
mu classic

The Cla

Prlmer

SSlC

THE CLASSIC PRIMER:

‘

A SELF-TEACHING GUIDE

DEC-08-ECPGA-B-D

PREPARED

‘BY

V/‘x
COURSE DEVELOPMENT GROUP

EDUCATIONAL SERVICES DEPARTMENT

DIGITAL EQUIPMENT CORPORATION 0

- MAYNARD, MASSACHUSETTS

June, 1976

First Printing, May1975

The information in this document is subject to change
without notice and should not be construed as a

commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsi-
bility for any errors that may appear in this Guide.

The software described in this guide is furnished to

the purchaser under a license for use on. a single
computer system and can be copied (with the

inclusion of DIGITAL’s copyright notice) only for use

in such system, except as may be otherwise

authorized in writing by DIGITAL.

Digital Equipment Corporation assumes no responsi-
bility for the use or reliability of its software on

equipment that is not supplied by DIGITAL.

Copyright © 1976 by Digital Equipment Corporation

The following are trademarks of Digital Equipment
Corporation:

CLASSIC DEC DIGITAL

_,.a-a..\

PREFACE

This book is part of a three-volume set that

documents the CLASSIC system. The three volumes

in this set are:

(1) The CLASSIC Primer: A Self-Teaching Guide

Order No. DEC-08-ECPGA-B-D

(2) The CLASSIC User’s Reference Guide

Order No. DEC-08-ECUGA-B-D

(3) The CLASSIC Installation and Maintenance

Guide

Order No. DEC-08-ECIMA-B-D

The Primer is designed to assist the novice user in

learning to operate CLASSIC and write programs in

the BASIC language. The User’s Reference Guide

consists primarily of alphabetical directories of all the

commands recognized by CLASSIC with explanations
and examples of each command. The Installation and

Maintenance Guide provides step by step guidance
for installing the CLASSIC system and a detailed

procedure for correcting minor problems.

(so

/n“n»\y

/¢\\

Table ofContents

Chapter Page

1 RUNNING CLASSIC 1-1

How To Run a CLASSIC Program 1-1

Selected Programs on the BASIC Program

Demonstration Disk 1-8

2 USING CLASSIC .. 2-1

What Is CLASSIC? 2-1

Using the CLASSIC Software 2-3

Typing Rules Used in This Guide 2-3

3 BEGINNING BASIC PROGRAMMING 3-1

Understanding What To Do 3-1

3-A Calculating 3-1

3-B Printing Larger Numbers and Words 3-5

3-0 Printing Variable Results
..._.

.................... 3-9

3-D Editing Larger Programs 3-15

34E Using Disk Fiies 3-19

3-F Loops .. 3-22

3-G Creating FOR-N EXT Loops 3—28

3-H Supplying Larger Amounts of Data 3-22

3-l Organizing Your Programs 3—39

4 ADVANCED BASIC PROGRAMMING 4-1
'

4-A Numeric Functions 4-1

4-B Alphanumeric and Special Functions

(Part I) ... 4-10

4—C Alphanumeric and Special Functions

(Part II) .. 4-19

4-D Storing Data in Disk Files 4-28

4-E Using Monitor Commands 4-36

3%

,fl\

TABLE OF CONTENTS (Continued)

Chapter Page

5 CLASSIC APPLICATIONS 5-1

Understanding What To Do 5-1

5-A Examples of CLASSIC Applications 5-2

5-B Planning Programs for CLASSIC 5-5

5-C Documenting Your Programs 5-7

5-D Transporting Your Programs 5-9

5-E Identifying Further Resources 5-12

ADDENDUM: USING THE LINE PRINTER

APPENDIX A Write-Ups for Applications Programs A-1

ACEY02 A-1

ATTEN D and ATTSET A-3

CALC ... A-5

EASY02 and EASY03 A-5

GUESS

'

................................. A-6

HiviRABi A-6

HUFIKLE A-7

HUFIK02 A-8

MORGAG A-10

QUADEQ, QUAD02, and QUADO3 A-11

SYNONY and SYNSET A-12

WTDAVG A-13

APPENDIX B DECUS Program Submission Forms B-1

APPENDIX C Answers To Exercises C-1

to Chapter I

Running Classic

HOW TO RUN A CLASSIC PROGRAM

This chapter will help you learn how to run a computer

instructor that you want to use the computer. Arrange
for a time to use CLASSIC and ask him or her to lend

you copies of the CLASSIC System disk and the

BASIC Program Demonstration disk. Then follow

program on CLASSIC. Start by telling your teacher or these steps:

1 DO THIS

Make sure that the computer
is plugged into a 3-holed

I

Push the top of the red

ON/OFF switch on the front

of the machine so that it stays
" in.

BUT IF SOMETHING

LIKE THIS GOES WRONG,
READ THIS

1-1

DO THIS LIKE THIS

BUT IF SOMETHING

GOES WRONG-y
READ THIS

You should now hear some

“clicks" from inside the com-

puter. You may even hear the

soft whirr of fans. In a minute,

you should see a short flash-

ing line on the screen.

®
When you hold a CLASSIC

disk, DO NOT TOUCH THE

BROWN PARTS that appear

through the holes in the cover.

Always hold a disk only by its

cover.

DO NOT

TOUCH

HERE

enema

N81

1
HELSVW

SMOHHV :10 NOILOBHIG 3H.L

ZIIIVO HUM NGWH’dfl Zfll

Take the CLASSIC System
disk out of its envelope by

placing your thumb on the

label.

disk label

disk cover

disk surface

@
Lift the left-hand door on the

front of the CLASSIC by
pinching its latch between

your thumb and finger.

1-2

If you do not see this line,
make sure that the plug is

pushed all the way in and

press the red ON/OFF switch

again. If nothing happens this

time, ask your teacher or

instructor for help.

envelope

WEN,

wax

/"':\\‘

DO THIS

Slide the CLASSIC System
disk into the drawer, label side

up, but DO NOT FORCE THE

DISK into the drawer. It should

slide in smoothly.

@
Close the door over the disk,
but DO NOT FORCE THE

DOOR CLOSED. The door

latch will “click" when it is

closed properly.

G)
Take the BASIC Program Dem-

onstration disk out of its

envelope and slide it into the

right-hand drawer. Close the

right-hand door over the sec-

ond disk so that it clicks.

Push the top of the white

START button on the front of

the machine and let it go

again, allowing it to rock out.

LIKE THIS

1-3

BUT IF SOMETHING

GOES WRONG,
READ THIS

If the disk does not slide in

smoothly, make sure that you

have lifted the door all the way

up and that another disk is not

already in the drawer. If you

find another disk, slide it out

and give it to your teacher or

instructor. DO NOT PLACE

THE DISK ON THE DESK

WITHOUT ITS ENVELOPE.

If the door will not close, make

sure that the disk is pushed all

the way in. If you still cannot

close the door, ask your
teacher or instructor for help.

DO THIS

The numbers 0123 should now

appear on the screen.

Press the letter S on the

keyboard.

You should see the letter S

appear and then CLASSIC

should display a dot on the

next line.

®
Look at the CLASSIC keyboard
and find the space bar and the

keys that say CTRL, U, and

RETURN.

CTRL key

space bar

Now type R BASIC after the

dot, pressing the space bar

once between the R and B as

shown in the picture.

LIKE THIS

01238

.R BAS|C_

BUTIF SOMETHING
GOES WRONG,

READ THIS
-

If all of these numbers do not
appear, press the white

START button again. If they
still do not appear, make sure

that the left-hand disk is

pushed all the way in and that

its door is properly closed.

Then push the white START

button once again. If you still

do not see all the numbers,
ask your teacher or instructor

for help.

If the S does not appear on

screen, press the S key again.
If the dot does not appear,

repeat Step 7. Ask your
teacher or instructor if you

need help.

U key

RETURN key

If you make a mistake, hold

down the CTRL key and press

the U key. This will print A U

and another dot will appear.

Then type R BASIC correctly.

/m\

.//:\\

DO THIS LIKE THIS
BUT IF SOMETHING

GOES WRONG,
READ THIS

(9
Push the wide key that says

RETURN.

CLASSIC should print the

message NEW OR OLD—

Find the keys that say 1 and

0 on the top row of the

keyboard. You must always
use these keys to type the

numbers one and zero. The

keys that say I and O on the

second row of the keyboard
are used to type letters only.

number1 key

SHIFT key

On keys that have two char-

acters like thell and El keys,

you can type the upper char-

acter by holding down the

SHIFT key while pressing the

character key. For example, if

you want to type “:”, you must

hold down the SHIFT key and

press theEl key.

Everything you type will appear on the screen. If you make a

mistake, hold down the CTRL key and type U to tell CLASSIC to

delete the line you have just typed. Then retype the line correctly.

Pushing the RETURN key tells CLASSIC to read the line you have

just typed.

01238

.R BASIC

NEW OR OLD——

letter | key

These are typed by holding down the SHIFT key.

*
or

(J:

These are typed normally.

1-5

If NEW OR OLD—- is not

printed, look to see if a new

dot has been printed after any

other message that you might
see. If you see a new dot, type
R BASIC again and push
RETURN.

if you do not see the NEW OR

OLD— message or a new dot,
hold down the CTRL key and

press C. This sh0uld cause

CLASSIC to print a new dot.

Then type R BASIC and press
RETURN.

If NEW OR OLD— still does

not appear, ask your teacher

or instructor for help.

number 0 key

letter 0 key

: key

SHIFT key

DO THIS LIKE THIS

BUTIF SOMETHING

GOES WRONG,
READ THIS

@
Now type OLD RXA1:GUESS

after the NEW OR OLD—

message. Press the space bar

once between the D and R,
and be sure to use the correct

keys for1 and : as shown in

the picture.

Press the RETURN key again.
CLASSIC should then respond
only with the word READY as

shown in the figure above.

®
Now type:

RUN

and press RETURN. In a

minute, CLASSIC should

print:
GUESS BA 3.0

and then display messages for

you to read and questions for

you to answer. The computer
will tell you that it is waiting
for an answer by printing a

question mark (?). Type your
answers after the question
marks. Do not forget to press
the RETURN key after you

type to tell CLASSIC to read

your answer. If you make a

mistake, hold down the CTRL

key and press the U key.

@
When you have played GUESS

as much as you like, hold

down the CTRL key and type
C. This will cause the READY

message to be displayed
again.

01238

.R BASIC

NEW OR OLD —-OLD RXA12GUESS

READY

01238

.R BASIC

NEW OR OLD_OLD RXA1: GUESS

READY

Typing C while holding down the CTRL key tells CLASSIC to stop
whatever it is doing and let you type new lines.

1-6

If you make a mistake, hold

down the CTRL key and press

U. CLASSIC will respond ”DE-

LETED". Then type OLD

RXA1:GUESS again.

If the message OLD FILE

NAME— is printed, type
RXA1:GUESS and press RE-

TURN.

If the message BAD FILE is

printed, type OLD RXA1:

GUESS again and press RE-

TURN. lf BAD FILE is printed
again, ask your teacher or

instructor for help.

If any other message is

printed, make sure that the

right-hand door is closed

completely and begin again
from Step 7. If you have
further trouble, ask your
teacher or instructor for help.

If'a question mark does not

appear after the messages,
ask your teacher or instructor

for help.

(
\

/.§.m\

fl\

(I

/”\

DO THIS LIKE THIS

BUT IF SOMETHING

GOES WRONG,
READ THIS

®
Whenever you see the READY

message, you can ask

CLASSIC to run another pro-

gram. For example, type:
OLD RXA1:SYNONY

and press RETURN. CLASSIC

should respond:
READY

without any other message.

(9
Now type RUN and press
RETURN. In a minute, CLAS-

SIC should print:
SYNONY BA 3.0

and then give you further

instructions. SYNONY is a ten

question drill on synonyms
that records the scores

achieved by all the students

who use it. This program will

end by itself, so you do not

have to type CTRL/C.

(’1?
When the READY message

reappears, you can ask CLAS-

SIC to run another program if

you like. The names of some

of the other programs that you

can run using the BASIC

Program Demonstration disk

are:

ACEY02 HURK02

CALC MORGAG

EASY03 QUADO3

HMRABI WTDA VG

HURKLE

Each of these programs is ex-

nlnlnnd at {Inn and n5 {hie
Pluulcu cu ulv vuu u- "no

chapter. To use any of these,

type OLD RXA1: and the

program name as you did for

SYNONY in Step 15. For

example, you might type:
OLD RXA1:ACEY02

and press RETURN. Then type
RLIN as you did in Step 13.

63
When you have finished work-

ing with CLASSIC, type
CTRL/C as many times as

necessary until the dot reap-

pears on the screen at the

beginning of a line. Then open

the doors over the disks and

gently slide the disks out from

the drawers. Place the disks

back in'their envelopes so that

the labels can be seen. Hold

the disks as you did in Step 3.

When both disk drawers are

empty, close their doors and

push the bottom of the red

ON/OFF switch. The display
will disappear. Return the

disks to your teacher or in-

structor.

READY

OLD RXA1: SYNONY

READY

READY

OLD RXA1: SYNONY

READY

RUN

1-7

If any other message is dis-

played, type OLD RXA1:

SYNONY and press RETURN

again. If you have further

problems, ask your teacher or

instructor forhelp.

If further instructions are not

displayed, ask your teacher or

instructor for help.

SELECTED PROGRAMS ON THE

BASIC PROGRAM DEMONSTRATION DISK

Below are explanations of some of the programs that

you can run using the BASIC Program Demonstration

disk. Each program is followed by'part of a sample
run. The lines that you'type have been circled. For

additional information on these programs, see

Appendix A. (Your teacher or instructor may have

another disk with additional programs that you can

run.)

ACEY02 plays the card game Acey-Deucey. The

computer deals two cards and you bet

on whether a third card will fall be-

tween them. You begin with $100; aces

are high and deuces are low.

OLD RXAliACEYOZ

READY

ACEY02 BA 3.0 30-DEc-7S

AcEY—DUCEY Tuo

Do You UISH To SEE THE INSTRUCTIONS ('YES' oR 'NO')?.
YOU Nou HAUE s 100 .

HERE ARE YouR FIRST Tuo CARDS...

FOUR

TEN

YouR BET (3)1C)
YOUR THIRD CARD IS...

NINE

YOU UIN!!

YOU NOU HAUE $ 105 .

HERE ARE YOUR NEXT TUO CARDS...

NINE

EIGHT

YOUR DET (s)1@8

YOU STILL HAVE 5 iOS .

HERE ARE YOUR NEXT TUO CARDS...

ACE

SIX

YoUR BET (s)?<:>READY

CALC calculates the values of *CLASSIC
arithmetic expressions. Use for mul-

tiplication and I for division. Paren-

theses are allowed.

OLD RXAIICALC

READY

CALC DA 3.0 03-FED-76

YOUR EXPRESSION?

3+4 = 7

YOUR EXPRESSION?-

215 = 10

YOUR EXPRESSION?

7*4/3 = 9.33333

YoUR EXPRESSIDNTCD
READY

EASY03 finds the factors of numbers that you

enter —

you type a number and

CLASSIC displays all the numbers that
will divide into it evenly.

«IIIEIIIIEHEHID

READY

(III)

EASY03 BA 3.0 30-DEC—75

EASY03

THIS PROGRAM HILL FIND THE POSITIUE FACTORS OF ANY NUMBER THAT

YOU ENTER. AFTER YOU HAVE ENTERED ALL THE NUMBERS THAT YOU

ARE INTERESTED IN. ENTER 'OUIT' TO STOP THE PROGRAM.

YOUR NUMBER.
THE FACTORS OF 60 ARE:

YOUR NUMBER.

READY

GLIESS you try' to guess a number between 1

and 100 that the computer has- picked.

OLD RXA12GUESS

READY

GUESS BA 3.0 30-DEC-75

GUESS: THE NUMBER GUESSING GAME

PLEASE TYPE YOUR FIRST NAME AND THEN PRESS THE RETURN KEY.

UHAT IS YOUR FIRST NAME?-

HELL01 KATHY!

I AM THINKING OF A NUMBER BETUEEN 1 AND 100 .

TRY TO GUESS UHAT IT IS. (PRESS RETURN AFTER EACH GUESS.)

YOUR GUESSS::)Too HIG . GUESS AGAIN.

YOUR GUESS.

READY

HMRABI lets you act as governor for the ancient

city of Sumeria for a ten-year term of

office.

iflllfllflllflflfllflnl

READY

HHRABI BA 3.0 30-DEC—75

TRY YOUR HAND AT GOVERNING ANCIENT SUHERIA

SUCCESSFULLY FOR A 10-YR TERM OF OFFICE.

HAMURABI: I BEG TO REPORT TO YOU!

IN YEAR 1 , 0 PEOPLE STARUEDT 5 CAME TO THE CITY.

POPULATION IS NOW 100

THE CITY NON OUNS 1000 ACRES.

YOU HARUESTED 3 BUSHELS PER ACRE.

RATS ATE 200 EUSHELS.

YOU NOU HAUE 2300 BUSHELS IN STORE.

LAND IS TRADING AT 20 DUSHELS PER RE.

How MANY ACRES Do You UISH To DUY.

How MANY ACRES Do You UISH To SELLT

Hou MANY DUSHELS Do You UISH To FEED YOUR PEOPLE? (2000-3

How MANY ACRES Do You uISH TD PLANT UITH SEED?-

/”"\

”V

HURKLE

HOMEBASE

HURK02

HAMURABI: I BEG TO REPORT TO YOUy

IN YEAR 2 r 0 PEOPLE STARUED: 11 CAME TO THE CITY.

POPULATION IS NO” 111

THE CITY NOU OUNS 900 ACRES.

YOU HARUESTED 1 BUSHELS PER ACRE.

RATS ATE 0 BUSHELS.

YOU NON HAUE 3250 BUSHELS IN STORE.

HOU MANY ACRES DO YOU WISH TO BUY

LAND IS TRADING AT 25 BUSHELS PER

ACRE.READY

hides a Hurkle in a 10 by 10 grid and

you guess where he is hiding. The

Hurkle’s grid looks like this:

19
NORTH

8

7

6

5

WEST EAST
4

3 THISlS

2
GFllDPOlNT 7,.3

1

O 1 2 3 4 5 6 7 8 9

SOUTH
\.

You type your guess as two numbers

separated by a comma, the first

number corresponding to the east-

west location and the second to the

north-south location.

OLD RXAliHURKLE

READY

HURKLE DA 3.0 30—DEC—75

A HURKLE IS HIDING ON A 10 BY 10 GRID. HOMEBASE

ON THE GRID IS POINT 010 AND ANY GRIDPOINT IS A

PAIR OF UHOLE NUMBERS SEPARATED BY A COMMA. TRY TO

GUESS THE HURKLE’S GRIDPOINT. YOU GET 5 TRIES.

AFTER EACH TRYy I WILL TELL YOU THE APPROXIMATE

DIRECTION TO GO TO LOOK FOR THE HURKLE.

GUESS # 1 7»-
GO SOUTHEAST

GUESS # 2 1'-
GO SOUTHEAST

GUESS # 3 1'-
GD SOUTHEAST

GUESS # 4 ?(:)
READY

is a more difficult version of HURKLE

that uses a grid with both positive and

negative locations (a Cartesian co-

ordinate system). The HLIRK02 grid
looks like this:

NORTH

(22)

VVESST‘

('31'1)

EAST

(1 :2)

SOUTH

OLD RXA11HURK02

REAnY

HURK02 BA 3.0 30—DEC—75

HURKLE TUO

DO YOU UISH TO SEE THE INSTRUCTIONS ('YES' OR 'NO')flE:)
YOUR AUAILABLE OPTIONS ARE NOW 'GO'; .HELP-Y 'INSTR'y 'OUIT'Y

'
IZE'y

AND 'TRIES'. UHICH UOULD YOU LIKE TO EXERCISE (ENTER A UORD)

THE HURKLE IS HIDING IN AN B BY 8 COORDINATE GRID. HORIZONTAL

VALUES GO FROM -4 TO 4 AND VERTICAL UALUES GO FROM -4 TO 4 . FIND

THE HURKLE WITHIN 6 GUESSES!

YOUR FIRST GUESS (ENTER OOOROINATES SEPARATED BY A COMMA)?

GO EAST...

YOUR SECOND GUESS?-
YOUR FIRST COORDINATE IS OUTSIDE OF THE HURKLE’S GRID! TRY AGAIN...

YOUR SECOND GUESS?

GD NEST...

YOUR THIRD GUESS?-
GO UEST...

YOUR FOURTH GUESS?

HURK! HORN! YOU FOUND THE HURKLE IN 4 GUESSES!!

IF YOU’D LIKE TO PLAY AGAIN: PLEASE ENTER THE 'GO' OPTION BELOU.

YOUR AVAILABLE OPTIONS ARE NON 'GO'y 'HELP': 'INSTR'y 'OUIT': 'SIZE'v

AND 'TRIES-. UHIOH UOULO YOU LIKE TO EXERCISE (ENTER A NORII>?®
READY

MORGAG computes the monthly payments on a.

mortgage or any other long term loan.

You supply the amount of the loan,
the annual interest rate, and the

number of years that you will be al-

lowed to pay back the loan.

@flfllfllflllflflflflflfl

READY

«HEP

MORGAG BA 3.0 30-DEC—7S

COMPUTATION OF MORGAGE PAYMENTS

PLEASE INPUT THE PRINCIPAL (HITHOUT CO AS)?-
INPUT THE ANNUAL INTEREST R TE (IN Z).

INPUT THE TERM (IN YEARS)?

PRINCIPAL $ 29200

INTEREST RATE 9 Z

TERM 300 MONTHS
MONTHLY PAYMENT C 245.05

IF YOU UANT THE MONTHLY DREAKDOUN ON THE SCREEN: ENTER 'SCREEN'-

IF YOU WANT IT ON DISK ENTER 'DISK'.

IF YOU DON’T WANT IT AT ALL ENTER 'NO'.

YOUR ENTRY? SCREEN

OUTSTANDING INTEREST PRINCIPAL TOTAL TOTAL

MONTH PRINCIPAL PAYMENT PAYMENT INTEREST PRINCIPAL

1 29200 219 26.05 219 26.05

2 29173.9 218.8 26.25 437.8 52.3

3 29147.7 218.61 26.44 656.41 78.74

4 29121.2 218.41 26.64 874.82 105.38

5 29094.6 218.21 26.84 1093.03 132.22

6 29067.8 218.01 27.04 1311.04 159.26

7 29040.7 217.81. 27.24 1528.85 186.5

8 29013.5 217.6 27.45 1746.45 213.95

9 “C

READY

QUAD03 fInds the roots of a quadratic equation.
You supply the values of A, B, and C

for the equation:

A x2 + B x + C = 0

and the computer will tell you what

values of x will make the equation true.

OLD RXA1:OUAD03

READY

OUAD03 DA 3.0 30-DEC-75

THIS PROGRAM HILL SOLUE THE OUADRATIC EOUATION IN THE FORM:

AX"2 + BX + C = 0.

AFTER EACH ?, TYPE THE REQUESTED UALUE 8 PUSH RETURN.

THE ROOTS OF 2 X"2 + 40 X + 8 = 0 ARE:

-0.202042

-19.798

0

m

D

IIIH

DO YOU WISH Ta GGLUE ANOTHER GUADRATIC EQUATION?

ANGuER YES OR NO x PUSH RETURN.?€D

READY

SYNONY helps you practice recognizing syno-

nyms by asking you to enter a word

having the same meaning as the com-

puter’s word. This program presents
10 words and tells you if your answers

are correct or incorrect for each one. In

addition, the program records the total

number of correct and incorrect re-

sponses that have been typed for each

word.

OLD RXA1:SYNONY

READY

SYNONY HA 3.0 30-DEC-75

SYNONYMS

IF YOU SEE THE MESSAGE: EN AT LINE 2020

BELOW; RUN THE PROGRAM 'SYNSET' DY TYPING:

OLD RXAliSYNSET

AND THEN!

RUN

MESSAGE:

NO ERROR MESSAGE

A 5YNONYM OF A WORD IS ANOTHER UORD [N THE ENGLISH LANGUAGE

UHICH HA5 THE SAME OR UERY NEARLY THE SAME MEANING.

I CHOOSE A UORD -- YOU TYPE A SYNONYM.

uHAT IS A SYNONYM OF FIRSTTC§
READY

WTDAVG calculates a weighted average for aset

of up to 100 numbers. You enter the

weights for each number in the set and
~\

then you may enter as many sets as

(
‘

you like. This program has several op-
"

tions that you can exercise (such as

changing the weights for each grade)
which are explained in the instruc-

tions.

OLD RXA12HTDAUG

READY -

UTDAUG BA 3.0 30-DEC-75

UEIGHTED AUERAGING v

DO YOU WISH TO SEE THE INSTRUCTIONS ('YES' OR 'NO')?fiD

HOU MANY GRADES DO YOU HAVE FOR EACH STUDENT?3

INPUT YOUR RELATIUE HEIGHTS FOR EACH GRADE DELOU:

uEIGHT FOR GRADE # 1 RD
uEIGHT FOR GRADE a 2 .

uEIGHT FOR GRADE t 3 .

/“““\INPUT YOUR GRADE FOR STUDENT % 1 BELOW:

GRADE % 1 .

GRADE % 2

GRADE % 3 ?

THE UEIGHTED AUERAGE OF STUDENT # 1 ’S GRADES = 86.6666

INPUT YOUR GRADES FOR STUDENT a 2 BELou:

GRADE a 1 ?€)
READY

/‘:“\ X

//

.1“
/’

“\V

f“.

Chapter 2

Using Classic

WHAT IS CLASSIC?

CLASSIC is a computer system that is made up of

three parts: hardware, software, and documentation.

The hardware is that part of the system that you can

see and touch and bump into. The software is made
V

up of programs that control how the computer works.
’

(Think of a television set: the set itself is hardware,
but the programs that you see and hear are software.)
This guide is part of the CLASSIC documentation

which explains how to use the system. Each of these

three parts is described below in more detail.

IJA nnnui DI:

anUVVHnI;

The CLAS‘SIC hardware consists of four units (or
devices):

desk

(1) the desk,

(2) the keyboard/screen, keyboard
(3) the disk drives, and

(4) the central processing unit. diSk

dfives

The locations of these units are shown in Figure 2-1.

Desk. Your computer system is housed completely
within a movable desk. All the parts needed for

CLASSIC to work are put together so that the system

may be moved from one classroom to another quickly
and easily.

Keyboard/screen. The CLASSIC keyboard and screen

are used to “talk” or interact with the computer. When

the computer is running, you press keys on the

keyboard and those letters or numbers will appear on

the screen. The keyboard looks like a standard

. typewriter; the screen is like a small television. These
- two devices together are usually called the computer

terminal.

2-1

Disk drives. CLASSIC comes with several flexible

disks that can store your work in much the same way
that tapes for tape recorders store music. Some of

these disks are pre-recorded and are needed to make

the system work. Other disks are blank, allowing you
to store your own work. To be used, the disks must be

placed in the disk drives just as records must be

placed on a record player before you can listen to

them.

Figure 2-‘I
CLASSIC Hardware

screen computer

CentraI-Processing Unit. The “heart” of your CLASSIC

system is the central processing unit (CPU) which is

hidden at the very back of the desk. The CPU is like

the system’s motor: it must run for the system to do
anything at all. The CPU is sometimes referred to

simply as the computer.

Figure 2-2 shows how the CLASSIC hardware units

relate to each other. Directions for using each unit are

given in the CLASSIC User’s Reference Guide.

Suggestions for keeping the hardware working
properly and correcting minor problems are presented
in the CLASSIC Installation and Maintenance Guide.

SOFTWARE

CLASSIC can run three different types of programs:
the monitor program, the editor program, and BASIC

language programs.

When you push the white START button, CLASSIC

automatically runs the monitor program. You can tell

when this program is running because it prints a dot

(.) or an asterisk (*) when it is waiting for you to type.
The lines that you type when the monitor program is

running are called monitor commands. For example,
the line R BASIC typed after the dot is a monitor

command. Monitor commands are used to perform
certain operations such as copying programs from

one disk to another.

- KEYBOARD

CENTRAL

PROCESSING

UNIT

\.

y
-

Figure 2-2

Relationships Between CLASSIC Hardware Units

%

By typing the monitor command R BASIC, you ask

CLASSIC to run the editor program. The lines you

type when the editor program is running are called

editor commands. For example, the line OLD

RXA1:GUESS is an editor command. The editor

program does not print a dot", but does print the word

READY after it completes certain jobs. Editor
commands are used to write, change, and run BASIC

language programs.

BASIC language programs differ from the other types
of CLASSIC programs because you can write them.

ti

\8

2~2

BASIC is a language similar to English, and writing a

program in BASIC is like writing directions in English.
You may think of a BASIC language program as a

recipe that tells the computer h0w to do a specific
job, and each statement line in the program is like a

single step in that recipe. To display the statements

that make up a BASIC language program stored in the

computer’s memory on the screen, you can use the

editor LIST command.

The following example demonstrates the difference

between monitor commands, editor commands, and

BASIC language statements. Underlined commands

are typed by the user.

C

IR 3-510 NOTE 1
NEu oR oLn‘ I-DLII RXA1:GUE55 NOTE 2

READY

LIST 300
NOTE 3

GUESS EA 3.0 03-FEB—76

aoo REM xxx: Too Lou oR Too HIGH

310 REM

320 PRINT
-

Too -;

330 IF G>N THEN 360

940 PRINT -Lou-;

aso GCITCI 370 NOTE 4
360 PRINT 'HIGH'i

370 PRINT -. GUESS AGAIN.‘

330 PRINT

390 LET R=N+1

900 eoTo 630

910 END

READY

NOTES:
this operation is com-

pleted.

LIST 800 is an editor

com-(’
\

(1) R BASIC is a monitor com-

mand that tells CLASSIC

to run the editor program.
Notice the dot that pre-
cedes this command. The

dot was printed by the

monitor program, not

(3 V
mand that tells CLASSIC

to display the program
stored in its memory on

the screen, beginning with

typed by the user. line 800.

(2) OLD RXA1:GUESS is an (4) These are the BASIC Ian-

editor command that tells guage statements that

CLASSIC to find the pro- make up part of the pro-

gram called GUESS on

disk drive 1 (RXA1) and

put it into the computer’s

gram GUESS. Note that

each begins with a line

number and is made up of

memory. Notice that simple English words or/
READY is printed when mathematicalexpressions.,k

DOCUMENTATION

The CLASSIC documentation is made up of three

Guides:

(1) CLA SSIC Installation and Maintenance Guide

(2) The CLASSIC Primer: A Self-Teaching Guide

(3) CLASSIC User’s Reference Guide

These guides contain all the information that you will

need to work with CLASSIC, from installing it to

writing BASIC language computer programs to

correcting minor problems.

CLASSIC Installation and Maintenance Guide. The

CLASSIC system is designed so that it can be

installed by anyone who carefully reads and follows

the directions. The installation involves uncrating the

system, connecting its units, testing its operation,
and copying the BASIC system disk. The CLASSIC

Installation and Maintenance Guide provides step-by-

:KF“\\3
I

/‘\

step instructions for each of these four processes and

contains a complete maintenance section to help you

keep your CLASSIC in top working order and direct

you in correcting minor problems.

The CLASSIC Primer: A Self-Teaching Guide. The

CLASSIC Primer will help you teach yourself how to

work with CLASSIC. The first few chapters will lead

you through the use of the CLASSIC software, and the
last chapter will help you discover some of the many

ways to use CLASSIC and find further information on

computer uses in instruction. (If you have the

optional FORTRAN IV software but have never used a

computer before, it is recommended that you teach

yourself BASIC before you try to learn FORTRAN.)

CLASSIC User’s Reference Guide. Once you have

learned to use CLASSIC, you will often need a

reference to help you remember rules and the

meanings of error messages. This information is

collected in the CLASSIC User’s Reference Guide.

If you have the optional FORTRAN IV software, you
will also need the 08/8 Handbook (order number

DEC-08-OSHBA-A-D). Pages 1-78 to 1-92 of the 08/8

Handbook explain how to create a FORTRAN program
file with the Symbolic Editor. Pages 8-1 to 8-64

describe how a FORTRAN program is compiled,
loaded, and executed, and pages 8-65 to 8-124

discuss the various statements that make up the

FORTRAN IV language.

‘

USING THE CLASSIC SOFTWARE

/

As you learn to work with CLASSIC, you will make

mistakes. Some of your mistakes will be minor and

can be easily corrected. Others will be major and may

even destroy part of the CLASSIC software. To correct

these major errors, you will need a back-up or

duplicate copy of your system disks. Therefore,

BEFORE YOU DO ANY WORK ON YOUR SYSTEM,
MAKE SLIRE THAT THE PERSON IN CHARGE OF

YOUR CLASSIC SYSTEM HAS BACK-UP COPIES OF

7

ALL THE DISKS THAT YOU WILL USE.

TYPING RULES USED IN THIS GUIDE

Two conventions will be used throughout this Guide

to indicate what CLASSIC will display and what you

should type.

First, everything that you must enter (type in) through
the keyboard will be underlined. Anything that is not

underlined is displayed by CLASSIC. Look at the

following example:

.DA TE

NONE

In this example, CLASSIC displays the first dot, you

[type “DATE” (and then press the RETURN key), and

the system displays “NONE” and the second dot.

2-3

Second, “0” will be used to stand for the number

“zero” and “O” for the letter “oh”. You should also

note that there is a “1” key at the upper left-hand

corner of your keyboard which must be used to type
the number “one”. CLASSIC does not recognize lower

case letters, so neither the lower case “L” (“I”) nor the

upper case “I” can be used for the number “one” as

might be done on a standard typewriter.

(fax):

K“.

Chapter 3

Beginning Basic

Programming

UNDERSTANDING WHAT TO DO

In Chapter 1 you learned how to start CLASSIC and

run a program. Chapter 2 explained the difference

between the monitor program, the editor program,

\

and BASIC language programs. This chapter will help
‘

you teach yourself about CLASSIC by writing
programs in the BASIC language and using various

monitor and editor commands.

Each section in Chapter 3 contains exercises to help
you understand how CLASSIC works. Suggested
answers to these exercises are given in Appendix C.

For some exercises, however, there may be more than

one correct answer, especially when you are asked to

write your own computer programs.
'

SECTION 3-A

MAKING CALCULATIONS

ENTERING BASIC PROGRAMS

When you typed R BASIC in Chapter 1, CLASSIC set

aside a certain area of its memory for you to use as a

workspace. The workspace is used to write and run

BASIC language programs. When you typed OLD

RXA1:GUESS, you told CLASSIC to read the program
GUESS into your workspace from the disk that it

knows as RXA1. (RXA1 always refers to the disk in the

right-hand disk drive.) To tell CLASSIC that you want

to enter a new program into the workspace from the

keyboard, you could use the editor NEW command.

For example, you might type:

.3 BASIC

NEW OR OLD—NEW PROG1

READY

(Remember that lines that are not underlined are

I

typed by the computer, and lines that are underlined

must be typed by you and ended by pressing the

RETURN key.) The command:

NEW PROG1

tells CLASSIC that you want to write or enter a new

program called PROG1 into the workspace.

If you then type LIST (and push RETURN), CLASSIC

will print:

PROG1

READY

BA 3,0 THIS IS THE HEADER OF

YOUR PROGRAM.

LIST is an editor command just like OLD, RLIN, and

NEW. It tells CLASSIC to list the program in your

workspace. If you did not use the OLD command- to

read a program into the workspace and have not yet

put a new program into it, your workspace is empty
and only the header will be displayed. The header

consists of:

(1) the name of your program (PROG1),

(2) its extension (a two-letter code indicating its

type, usually BA for BASIC language pro-

grams), and

(3) the version number of the CLASSIC software

(3.0).

When the READY message appears, you may begin
entering a BASIC language program into the

workspace. This is done simply by typing BASIC

language statements at the keyboard. For example,

you might type:

10 PRINT 7

99 END

This program will then be in your workspace. The

program consists of two statements, a PRINT

statement and an END statement.

The END statement must always be the last statement

in your program.
'

Notice that each statement begins with a line number.

You may enter statements in any order, but CLASSIC

will automatically. put them in order by their line

numbers.

If you type LIST after this program has been entered,
the new contents of the workspace will be displayed.

LIST

PROG1 BA 3.0

10 PRINT 7

99 END

READY

To run this program, you must type RUN (and press

RETURN). In a few seconds, CLASSIC should print:

M

PROG1 BA 3.0

7

READY

If it does not, your program contains an error and

CLASSIC will print an error message. At this stage,
correct your errors simply by retyping your program
and RUNning it again. Error messages will be

explained later.

SCRATCH is another editor command. It tells

CLASSIC to erase the program in your workspace. If

you enter the SCRATCH command, your workspace
will be empty, just as it was after the NEW command.

You might think of your workspace as a chalkboard

that can be erased by typing SCRATCH. The editor

SCRATCH command may be abbreviated to SC.

Exercise 1. This exercise will help clarify the steps
that you must follow to enter and run a BASIC

language program.

Start CLASSIC as you did in Steps 1 through 8 of

Chapter 1. Then type the lines shown below. If you
make a mistake, simply retype the line.

.R BASIC Tell CLASSIC to run the editor

program.

NEW OR OLD—.NEW FIRST

Tell CLASSIC that you are

about to enter a new program
called FIRST.

READY

10 PRINT3+4 Type these lines. This new

program contains two state-

99 END ments. END is the last state-

ment because It has the high-
est line number.

M Tell CLASSIC to RUN the pro-

gram.

FIRST BA 3.0 This is the program header.

7 The result is 7 since 3+4=7.

READY

20 PRINT 3—4 Add these three statements to

W your program by typing them

40 PRINT3/4 with the line numbers 20, 30,
and 40. {

LIST Tell CLASSIC to LIST the pro- E y

gram in its workspace.

FIRST BA 3.0

10 PRINT3+4 Note that CLASSIC puts the

20 PRINT3-4 statements in order by the

30 PRINT3*4 line numbers.

40 PRINT 3/4

99 END

M Now RUN the program in your

workspace.

FIRST BA 3.0

7 These are the four results,
-1 one for each of the first four

12 statements in your program.
0.75 /

READY
’

Look at your program more carefully. Note the symbol
that is used to perform each of the four arithmetic
operations.

Operation Symbol

Addition +

Subtraction -

Multiplication
*

Division I

\

I").

/‘.-..\

Exercise 2. SCRATCH your workspace and enter the

following program:

10 PRINT 12+3

20 PRINT 12—3

30 PRINT 12*3

40 PRINT 12/3

99 END

Before you RUN this program, write down what you

think the computer will print. Then RUN the program
to check yourself.

Exercise 3. Write original programs using the PRINT

and END statements to make other calculations. Be

sure to SCRATCH your workspace between each

program and include the END statement as the last

statement in your program.

When you write your own programs, you may use any
whole numbers (integers) between 1 and 99999 as line

numbers.

CLASSIC allows line numbers from 1 to 99999.

However, instead of numbering statements .with

consecutive numbers (1 , 2, 3, etc.) use 10, 20, 30, and

so on. This gives you room to insert a new statement

between two old statements. For example, if you had

already entered a program using 10, 20, 30, 40, and 99

as line numbers, y0u could insert a statement

between statement 20 and statement 30 by using 25

as the line number of the new statement.

WRITING NUMERICAL EXPRESSIONS

So far, you have used the PRINT statement in the

following form:

“rm number PRlNT numerical expression

For example:

10 PRINT 3 + 4

line number-J |PRINT

numerical expression

A PRINT statement in this form tells the computer to

calculate the value (simplest form) of the numerical

expression and print the result on the screen.

A numerical expression can contain more than one

operation. For example, the program:

10 PRINT3+4+5

99 END

will print the number 12 on the screen. CLASSIC

usually prints the value of a numerical expression as a

decimal number. The following table shows the

values that CLASSIC will print for certain numerical

expressions.

3-3

Value

Expression Printed Remarks

3.14 3.14

-123 -123

2+3+4 9 2+3+4=5+4=9

2*3/4 1.5 2*3/4=6l4=1.5

1/2+3 3.5 1/2+3=.5+3=3.5

2+3/4 2.75 2+3/4=2+.75=2.75

1/(2+3) 0.2 1/(2+3)=1/5=.2
(2+3)l4 1.25 (2+3)/4=5/4=1.25
1/3 0 333333 Valuetruncated to

six digits
100/3 33.3333

The table above illustrates each of the following rules:

(1) Arithmetic operations are done in order from left

to right.

(2) All multiplications and divisions are done before

any additions or subtractions. For example, to

evaluate the numerical expression:

4 + 24/3‘2-5

CLASSIC: 4 + 24/3‘2-5
”I

(a) divides 24 by 3 to get 8, 4 + *2-5

(b) multiplies8times2to get16, 4+ 16 -5

(c) adds 4 to 16 to get 20, and then 20 -5
\M/

(d) subtracts 5 from 20 to get 15. 15

(3) Parentheses can be used to change the order in

which operations are done: all calculations within

parentheses are done before those outside paren-
theses. For example, to evaluate the numerical

expression:

((6 +14)/2-6)*3

CLASSIC: ((6+14)I2-6)*3
W

(a) adds 6 to 14 to get 20, (20 I2-6)*3
\M

(b) divides 20 by 2 to get 10, (10 -6)*3

f 4 *3(c) subtracts6 rom10to get4, and then

~

(d) multiplies4times3to get12. 12

There is a special program on the BASIC Program
Demonstration disk that you can use to experiment
with numerical expressions. This program is called

CALC and evaluates numerical expressions. A sample
RUN of this program is shown on the next page. Note

that “QUIT” may be used to terminate this program.

(CTRL/C will also work.)

Exercise 4. RUN program CALC from the BASIC

Program Demonstration disk and experiment with

various combinations of the four operations and

parentheses. If you make a mistake that causes

CLASSIC to end the program and print an error

message, simply type RLIN again after the READY

message appears and reenter your expression.

Sample Run of CALC: (1) BASIC programs are made up of statements.

(2) Each BASIC language statement begins with a

line number.

0 1:;- 1m 5;; III (3; (3) A line number may be any whole number between (\,
HIESIH [Jit- IIII...1'.'I--------iIl|...IIi ran 1 mail... [1:

1 and 99999-
‘

——

(4) The last statement in a BASIC program must be

|'~1 IfiII‘T
an END Statement.

HUN (5) When evaluating a numerical expression, CLAS-
——

SIC calculates values inside parentheses first,

Fm i" 1m -5 I.)
then does all multiplications and divisions from

" """
'

' ‘ "

left to right, and finally does all additions and .-

. .

‘ (W: V W
subtractions from left to right.

YUJIN final"l‘d::...:).:3.l.l..I-!23.33.3343
(6) If an expression contains parentheses within

,. , _. parentheses, expressions are evaluated from the .

*'-‘-'"{“-'"3"" "" "-0
innermost parentheses out.

,
(7) Program statements with mistakes can be cor-

TUUh hfikhhmmlflflln+a$4
rededbyshnMyrmyMngthan.

""-I-"’$‘M 1 =1
(8) Additional statements can be inserted into an

"

existing program by using the appropriate line

numbers.
'2 . 1?: Eii‘: 3' 1?: EEISESEE‘IIII 'l’i’m’ '.’.i5.'-l-I.‘:=i‘ . . .3 "l" I fl I I 'l H U41 The next section wrll talk about more things that you 3

,

can do with the PRINT statement.
‘

"

1x" (153+ 1'3) ==== C! o 15.".

'Y' [1] LJ I'R' IEEI X |'-" R IEEI S53 '13; Ill [1] N ’3’ f1 11’. 3‘- .3' 'J ,x" ~43

If 22’. +113 '} f «1 ==== 2|. 4 131?]

‘f [1] U I“: IEEI X I15“ I53: ISEI 55$ $53 III II] N ’E’ II. K113

1/3 -'=-'= O 4 13131311313133 /fi\
YOUR EXPRH$$IUHTfif$

3/3 W Oo$éééfié

YUUH EXPREEfiIUHTHUIT

li' Ii' (53 III Y

LOOKING BACK

You now know five editor commands:

LIST lists the program in the workspace
NEW enters a new program into the work-

space from the keyboard
'

OLD reads a program into the workspace
from a disk

RLIN runs the program in the workspace
SCRATCH erases the program in the workspace

You also know two BASIC language statements:

PRINT prints the value of a numerical expres-
sion on the screen

END signals the end of a BASIC program

In addition, you should remember the following rules:

3-4

SECTION 3-8

PRINTING LARGER NUMBERS AND WORDS

USING COM'MAS AND SEMICOLONS

In the previous section you used the PRINT statement

in the form:

line number PRINT numerical expression

A more general form of the PRINT statement is shown

below:

line number

For example:

10 PRINT3 + 4,3-4,3*4,3/4
hfl—J

line number

list of expressions—IPRINT

Note that the expressions in this PRINT statement are

separated by commas. The program:

10 PRINT 3+4,3-4,3*4,3/4

99 END

will causethe computer to print the following results:

RUNNH
7 -1 12

READY

PRINT list of expressions

0. 75

RUNNH tells the computer to RUN the program in the

workspace but without printing the header (NH
stands for No Header).

The computer prints a result for each expression in

the PRINT statement. Since the statement contained

four expressions, four results were printed.

The results PRINTed by a program are called the

program output.

When commas are used, CLASSIC will print up to five

results on each line. If there are more than five

expressions in the PRINT statement, additional

results are automatically printed on the next line.

For example, the statement:

10 PRINT 3 + 4,3—4,3*4,3/4,3*4 *5,3*4/5,3/4 *5

will causethe computer to print the following results:

RUNNH

7 -1 12 0. 75 60

2.4 3. 75

You can think of a line on your screen as being
divided into five print zones, each 14 spaces wide.

A comma in a PRINT statement tells CLASSIC to

move to the next print zone before printing the next

result.

If you use a semicolon (;) instead of a comma to

separate expressions, the results will be packed more

closely together:

10 PRINT 3+ 4;3-4;3*4;3/4 Note the semicolons (;).
99 END

RUNNH

7 -1 12 0.75 The results are "packed” more
—

closely together than if you

READY
had used commas.

LISTNH tells the computer to

LIST the program in the

workspace but without print-
ing the header (NH stands for

No Header).

LISTNH
_

10 PRINT 1iZIKMiSiéiT/H‘H‘Pflof.I.Iill-”i13914715?16717?1822|.‘7i220G1-2.lf1122§23i24

99 ENEI

When you use semicolons to separate expressions,
the computer will print up to 24 results per line. The

actual number, however, depends on the number of

digits that it must print. For example,

READY

RUNNH

1 E‘ 3 4 5 6 7 8 ‘7 In?) 11 'IE!

21 22 23 24

13 14 If? If: I7 ZIH 1‘9 210

READY

The first 20 results were printed on the first line; the

21 st through 24th on the second line.

A semicolon in a PRINT statement tells CLASSIC to

print the next result without moving to the next print
zone.

Whenever CLASSIC prints a number it uses the

following format:

sNb

where: s is the sign of the number (“-” for negative
and a blank for positive)

N is the number (up to six digits long)
b is a blank

Thus, at least 3 spaces are needed to print each

number. Since output lines (lines PRINTed by

programs) may be up to 72 spaces long and 72/3 =

24, up to 24 results may be printed on each line. This

format also explains the blank space at the beginning
of the output line in the preceding program and the

two spaces between each number: each number is

preceded by a blank that represents the sign of the

number (all positive in this case) and followed by a

blank. The next example demonstrates this more

clearly:

LISTNH

10 PRINT “29354

20 PRINT —:l

30 PRINT ~19?-

‘79 ENE!

f6f7il3f‘7i10? | '19 IS‘J13i11H.ISHrIF'I'NilBi I'N'EINIH TRI'iillJiEA

‘§--‘H~|O¢~‘I..I IN-II73"]1'5=---145--2l15'3"Glen-"1'75“ll“

READY

RUNNH
'

I 7 .l. 3 |--1 .| 33 In If 'Lf] [Q 70

:7 ".15 m";- ..-;43 my; .330

REAIIY

3-5

Using positive and negative numbers, you can more

easily see the sign-number—blank format (sNb). Note

that if a semicolon or comma ends a PRINT statement

(see line 20), the output of the next PRINT statement

continues on the same line.

Remember these things:

0 A PRINT statement can contain more than one

expression.
0 One result is printed for each expression in a PRINT

statement.

0 If a PRINT statement contains more than one ex-

pression, the expressions must be separated by a

comma (,) or semicolon (;).
o If commas are used for spacing, up to five results

per line are printed. If semicolons are used, the

results are “packed” more closely together. The

actual spacing depends on the size of the numbers

involved.

0 RUNNH is an editor command that tells CLASSIC

to run the program in the workspace without print-
ing the program header.

0 The results PRINTed by a program are called the

program output.

Exercise 5. Write a program to produce the following
results. Use commas and semicolons to adjust
spacing and make your program as short as possible.
Test your program on CLASSIC.

RUNNH

11 22 33 44

0.333333 0.665h66 1 1.33333

0.156637 o.n33333 0.135 0.375

-1 »2 e3 «4

READY

Exercise 6. Write a program to produce the following
results. Hint: you can have more than one

punctuation mark between two numbers.

RUNNH

J

0.35 0.75

0

“0-25 —O.75

-0.5

READY

STRINGS (ALPHANUMERICAL EXPRESSIONS)
So far, you have printed only numerical expressions.
The PRINT statement in the following program directs

the computer to print a string (alphanumerical
expression).

LISTNH

10 PRINF 'SIRINGS ARE MADE UP 0F LETTERS AND NUMDERS.

9? END

HEADV

RUNNH

STHLNGfi ARR HADI HP HP LETTERS AND NUMDERR.

READY

3-6

The string is enclosed in quotes. While a numerical

expression may contain only the digits 0-9 and signs
for arithmetic operations, a string may contain any

printing character on the keyboard except the

backslash (\) and the underscore (_).

The next example illustrates the difference between

strings and numerical expressions:

LISTNH

10 PRINT “14:6 * 13.8 2'? 14.6 * 13.8

20 PRINT 3.61 + 8.72i "IS THE SUM OF 3.61 I 8.72'

99 END

READY

RUNNH

14.6 * 13.8 = 201.43

12.33 IS THE SUM OF 3.61 + 3.72

READY

In this example, the strings are:

“14.6
*

13.8 =’!

“IS THE SUM OF 3.61 + 8.72”

The numerical expressions are:

14.6
*

13.8

3.61 + 8.72

Exercise 7. On a separate piece of paper, write down

what the computer will print when the following
program is run. Then run it on the computer to check

your answer.

10 PRINT
'

20 PRINT
'

30 PRINT
'

3_4+5,
“

40 PRINT
"

3*4+5v
"

50 PRINT '3/4+5 =
y 3/4+5, 1

60 PRINT “6+5*4*3/2 ='fi 6+5-4*3/2

99 END

1v '3+4/5 ='i

JV '3-4/5 :'§

1' '3*4/

, '3/4Xa —

,

3+4/5

3*4/5

Except for certain special characters (“ \
”

and “_”),
anything enclosed in quotation marks in a PRINT

statement is printed exactly as it appears. No

arithmetic is performed.

EXPONENTS — RAISING A NUMBER TO A POWER
A number is “raised to a power” by multiplying it by
itself. For example, “2 raised to the power of 3” is

evaluated (computed) by multiplying 2 times itself

three times:

23 = 2 x 2 x 2 = 8

In this expression 3 is the exponent of 2.

CLASSIC uses the circumflex (A) to indicate the

operation of exponentiation —— raising a number to a

power. (The circumflex is on the top row of keys
above the 6.) For example, 23 would be typed as 2A 3.

The following program illustrates exponentiation on

CLASSIC:

LISTNH

10 PRlNT '5" = G a ="; W -

20 PRINT "2 1

30 PRINT '1“

99 ENn

READY

IQUNNH

2 3

3”4

READY

”7

Here are some examples showing the values of

numerical expressions in which the A is used.

Expression Value
'

Remarks

2A5 32 2A5 = 2‘2‘2‘2‘2‘ = 32

3A2+4A2 25 3A2+4A2=9+16=25

(2+3)A4 625 (2+3)A4 = 5'A4 = 5‘5‘5“5 = 625

When an expression contains both exponentiation
and other arithmetic functions, the expOnentiation is

always done first. This order may, however, be

changed by using parentheses. For example, to

evaluate the expression:

(75) A 4*(8 + 2)

CLASSIC:

(7-5) A 4*(8 +2)

(a) subtracts 5 from 7to get 2. If A4*18+2I
v.1

(b) adds8t02toget10, 2 A4* 10

(c) raises 2to the 4th power to get16, 16
*

1

(d) and multiplies 16 times 10 to get 160. 160

Exercise 8. Write your own programs or use the CALC

program on the BASIC Program Demonstration disk

to experiment with exponents by finding the values of

the. following expressions:

(1) 12A(4/2) (6) 1010-6

(2) 55 (7) (2+6)A(4-2)

(3) 3/4A2 (a) 7A1

(4) (3/4)A2 (9) 7A0

(5) 3/(4A2) (10) 0A8

FLOATING -PO|NT NOTATION

CLASSIC displays very large and very small numbers

in floating -point notation:

LISTNH

10 PRINT 10

20 PRINT 100

30 PRINT 1000

40 PRINT 10000

50 PRINT 100000

60 PRINT 1000000

70 PRINT 10000000

99 ENE

In the program, each number

is expressed in standard or

common notation.

READY

RUNNH

10

100

ILOO

10000

100000

These numbers are printed in

standard notation, exactly as

they are written in the PRINT

statements.

.100000FI007

JOOOOOEWW
But these are printed in float-

READY
"lg-POM“ notation.

When you read numbers written in floating-point
notation, substitute the words “times ten to the

power of” for the letter “E”.

3-7

It a number is larger than 999999, it will be printed in

floating-point notation.

The following examples show the same numbers

expressed in standard notation, scientific notation,
and floating—point notation.

Standard Scientific Floating-
Notation Notation Point

1000000 1 x 106 .1 000005 + 007

10000000 1 x 107 .100000E + 008

100000000 1 x 108 .100000E + 009

1000000000000 1 x 1012 .100000E + 01 3

Look what happens when CLASSIC handles small

numbers:

LISTNH

10 PRINT J

20 PRINT .01

30 PRJNI‘ .00]

40 PRINT .0001

50 PRINT .0000] These numbers have more

60 PRINT .000001
' ‘

7o HUN, .0000”,
than SIX decrmal places

80 PRINT .00000001

90 PRINT .000000001

99 END

READY

RUNNH

0.]

0.0099979

8133],, ...so they are printed in float-

c.4550) ing-point notation.
0.000001

.99999

5999992h

.999999H

READY

But now there is a new problem: why did CLASSIC

print 0.0099999 for line 20 instead of 0.01? And why
did it print all those 9’s in the last three lines? The

answer is that when CLASSIC handles numbers less

than 1, it sometimes converts from standard notation

to floating-point notat'ion as shown in the following
table.

Standard Floating-
Notation Point

.1 0.1 or 0.0999999

.01 0.01 or 0.0099999

.001 0.001 or 0.0009999

.0001 0.0001 or 0.0000999

.00001 0.00001 or 0.0000099

.000001 0.000001 or 0.0000009

.0000001 .100000E-006 or .999999E-007

.00000001 .100000E-007 or .999999E-008

.000000001 .100000E-008 or .999999E-009

In general, floating-point notation is used for

numbers that require more than 6 digits in standard

notation. However, the number after the letter E must

be less than 617 and greater than -617.

You may use floating-point notation whenever you
wish to specify numbers. If the number can be written

in standard notation, a conversion will be made

before it is displayed. The following program
demonstrates this:

LIRTNR

10 PRINT 3R4+OR4

20 PRINT 3Fl~"fl

30 PRINT 2

40 PRINT T”

99 RNO

R I331 A III Y

R U N N H

O 0 0 0 O

12’. 0 0 0 (III

. 2|. F5 0 0 '1) 0 IE: ~f- 0 2|. 0

00$

R IE: :45: I] Y

Exercise 9. Write your own programs or use the CALC

program to experiment with exponentiation and

floating-point notation before you go on. A sample
run of the CALC program demonstrating these

features is shown at the right. Note the ways
that floating-point numbers may be entered. “E" is

considered to be part of the numberjust like the digits
0-9 and the signs + or -.

LOOKING BACK

In this section you have looked at ways to use the

PRINT statement with large numbers and words.

Sample Run of Program CALC:

. R rm SELLS

NEH OR OLHWNOLD RXA130ALC

READY

YOUR EXPRESSION?10000000000

10000000000 m .999999E+010

YOUR EXPRESSION?.OOOOOOOOOI

.0000000001 : .999PPPE~010

YOUR EXPRESSION?Q§:§

4E~O x 0.000004

YOUR EXPRESSION?3§:lg

4E~12 m .399999E~011

YOUR EXPRESSION?1é:lé

16“16 = .184467E+020

YDUR EXPRESSION?3S*4"36

35*4"36 = .105282E+024

YOUR EXPRESSION?2*3"2

YOUR EXPRESSION?2*2*2*2*2*2*2*2*2*2

”mfimfimfimfimqmflmqmqmq m anA
ngfinl¢$¢$a$glLlL$g m LUL“

YOUR EXPRESSION?2"2"2"2"2"2“2"2"2"2

2”2“2“2"2"2“2"2"2”2 .134077E+155

YOUR EXPRESSION?(2+3)~4*5/6"7

(E+3)*4*5/6"7 m 4.99993

YOUR EXPRESSION?-.3*2E456

m.3*2E456 =~.599980E+456

YOUR EXPRESSION?3*4E26-31E4SO

3*4E26—31E450 =~o309990E+452

YOUR EXPRESSIONTQUIT

REAHY

rmx

/.;.\\
r‘

\

/

K‘N

Remember these things:
0 A line on the CLASSIC screen is divided into five

print zones, each 14 spaces _wide.
0 A comma in a PRINT statement tells CLASSIC to

move to the next print zone before printing the next

result.

0 A semicolon in a PRINT statement tells CLASSIC to

print the next result without moving to the next

print zone.

0 Strings (alphanumerical expressions) can be made

up of any characters on the keyboard except for

the backslash (\) and the underscore (_).
o The circumflex (A) is used to indicate exponenti-

ation.

o If a number is larger than 999999 or smaller than

.000001, it will be printed in floating-point notation.

o The largest number that CLASSIC can work with is

1x10617. The smallest is 1x10'617.

SECTION 3-C

PRINTING VARIABLE RESULTS

The programs that you wrote forthe-previous sections

always printed out the same results each time you
ran them. If you wanted to solve a different problem,
you had to write a different program. This section will

show you how to make a single program print
different results.

USING VARIABLES

ln mathematics, variables are used to represent
unknown numbers. For example, you have probably
seen the equation:

A=7Tr2

that is used to represent the area of a circle. This

equation has two variables, “A” and “r”. “VT” is a

constant, approximately equal to 3.14.

In BASIC, there are several ways to represent
variables. One way is to use capital letters. Each

capital letter refers to a distinct location in the

computer’s memory. It may help you to think of part
of the computer’s memory as containing a set of 26

boxes, labelled A through 2, like this:

Al] H[:| cl] VEI

Bl] l[:| PEI w[:|

cl] J[:| OD x1]

DD KIII RIZI YIZI

EIII LEI Si] zEI

FE] MEI Tl]
GD N[:| ulj

Each location can hold one number at any time. The

current number in a location is known as the value of

the variable corresponding to that location. Before a

program is run, the values of all numeric variables are

0.

The following example shows how to assign a value

to a variable in a BASIC program:

10 LET A = 3 Assign the value 3 to the variable A.

20 PRINT A Print the value of A.

2m
RUNNH

3 The value of A is 3.

READY

In its simplest form, the LET statement assigns
values of constants to specific locations in the

computer's memory.

A more general form of the LET statement is shown

below:

line number LET variable = expression

For example:

10 LETS = 2*3+4*5
\—-——_--———J

I

line number.

LET

variable

expression

The following program demonstrates a simple use of

variables to evaluate expressions:

LISTNH

10 LET Rfil

20 LET E24

30 LET C=3+4

4O LET D=3~4

50 LET E=3k4

60 LET F=3/4

70 LET 6:3”4

80 PRINT niDiCihiEiFGU

99 END

RERDY

RUNNH

3 4 7 -1 12 0.7? $1

READY

The LET statement tells the computer to calculate the

value of the expression to the right of the
“

=
”

symbol
and assign this value to the variable that appears to

the left of the “=” symbol.

The value assigned to a variable in a LET statement

replaces any previous value of that variable. For

example, look at the following program:

LISTNH

10 LET 0:1

25 PRINT A

20 LET A=H

25 PRINT A

30 LET 9:3

35 PRINT A

99 END

READY

RUNNH

1

2

3

READY

Each time A is printed (lines 15, 25, and 35), a

different result is displayed (first “1”, then “2”, then

“3”). The following table shows why this occurred by
tracing the value of A as each statement is executed.

Statement Value
Remarks

of A

10 LETA = 1 1 Assign the value 1' to A.

15 PRINT A 1 Print the current value of A.

20 LET A = 2 2 Assign the value 2 to A.

25 PRINT A 2 Print the current value of A.

30 LETA = 3 3 Assign the value 3 to A.

35 PRINT A 3 Print the current value of A.

99 END 3

Exercise 10. What values will be printed by the

follOwing programs? Write your answers on a piece of

paper and then check yourself by running the

programs on CLASSIC.

10 LET X=3 10 LET X=3

20 LET X=5 20 LET Y=S

30 LET X=7 30 LET Z=7

40 PRINT X

99 END

40 PRINT XyYyZ

99 END

VARIABLE EXPRESSIONS

A variable expression is an expression that contains

one or more variables. For example, the following are

variable expressions:

A -c

A — B A*(B+C)
2*x AIB+CID

PIQ 314*sz

The computer evaluates a variable expression by

assigning values to its variable or variables and

carrying out the indicated operations.

For example, A*B is a variable expression with

variables A and B. If A = 3 and B = 4, then the value

of A*B is 12. But if A = -7 and B = 5, then the value

of A*B is -35.

Here are some more examples:

Variable Value(s) of Vaiue of

Expression Variable(s) Expression

A A = 3 3

A = -123 -123

A-B A=12andB=7 5

A = 3 and B = 4 -1

2*X X = 3.14 6.28

X = -6 -12

FIG P=35 and 0:5 7

P=2 and 0:3 0.666666

3-10

(A

fax

/‘"”\

/‘\

Variable Value(s) of Value of

expression VariabIe(s) Expression

-C C = 8 -8

C = 0 0

C = —1 2 12

A*(B+C) A=3,B=4,C=5 27

3.14*RA2 R=3 28.26

Each of the following programs directs the computer
to evaluate a variable expression and print the result.

LISTNH LISTNH

10 LET A=3 10 LET A=3

20 LET B=4 20 LET E=4

30 PRINT A+E 30 PRINT A*B

99 END 99 ENE

READY READY

RUNNH RUNNH

7 12

READY READY

Exercise 11. What values will be printed by the

following programs? Write down your answer on a

separate piece of paper and check yourself by running
the program on CLASSIC.

10 LET A=3 10 LET A=3

20 LET 5:4 20 LET fi=4

30 PRINT ATE 30 PRINT A-B

99 ENE 99 END

'

THE INPUT STATEMENT

At the beginning of this section you saw the equation:

A = 'lTr2

WhICh can be used to ca!cu!a.te

circle with radius “r". To use CLASSIC to calculate

the area of a circle, you can translate ”'u'r2 to the

he area, “A”, of a.

_

_

BASIC statement:

20 PRINT 3.14*R A 2 (7Tis approximately
equal to 3.14)

The following discussion shows how you can use a

variation of this statement to find the areas of circles

with different radii:

LISTNH

10 LET R=2 . ,

15 PRINT 'Rnnlus'. 'AREA' Here IS the program. It Will
20 PRINT Ry 3.14m": _

99 EN“
work for R_2.

READY

EEIIIIS AREA
RU" “-

2 12.56

READY

For FI=2, the area is 12.56.

Do NOT clear the workspace.
Instead enter a new statement

10 and keep the other three
1.0 LET R=3 statements.

RUNNH

RADIUS AREA

3 28.26

READY For R=3, A=28.26.

10 LET R=B Change statement 10 again.
RUNNH

RADIUS AREA And run the program.
a 200.96

READY For Fl=8, A=200.96.

You can reduce the amount of work required to find

the three areas by using the INPUT statement. Here is

a program that uses an INPUT statement to permit
input of a value of R:

LISTNH

10 INPUT R

15 PRINT 'RADIUS'; “AREA"

20 PRINT Rv 3.14XR”?

99 ENE

READY

RUNNH

?—
The computer types a quest-
ion mark and waits.

3-1 1

The question mark indicates that CLASSIC is waiting
for you to enter data. Data consists of numbers

and/or strings that are manipulated when a program
is executed.

If you enter 2 as your data and press the RETURN key,
CLASSIC will print:

R A III I U 53 A R IEEI A
I‘

.
1 u.

,3 1.1-3 9 11': 6)

R E A I! Y

meaning that a circle with a radius of 2 has an area of

12.56.

The next example demonstrates a run of the above

program for R=2, R=3, and R=8. (Note how the

PRINT statement at line 5 is used to tell the user the

type of entry that should be made.)

LISTNH

5 PRINT 'RADIUS'i

10 INPUT R

15 PRINT 'RADIUS': 'AREA'

20 PRINT Ry 3.14*R'2

99 END

REM”
Run the program.

wmg Enter 2 and press RETURN.

RADIUS AREA

2 12.56 For R=2, A=12.56.

READY

:%S?3 Run the program again.
RAD-IUSI— AREA Enter 3 and press RETURN.

3 28% For R23, A=28.26.

READY

RUNNH Run the program again.
R I' .?

nggé AMA EnmrBandpmssRETURN.
B 200.96 For R=8, A=200.96.

READY

Numbers may be entered in standard notation as

shown above or in floating-point notation:

LISTNH

5 PRINT 'RADIUS'i

10 INPUT R

15 PRINT 'RADIUS'y 'AREA'

20 PRINT R1 3.14*R"2

99 END

READY

RUNNH

RADIUS?3.6E4

RADIUS AREA

36000 .406944E+010

READY

The general form of the INPUT statement is:

line number INPUT list of variables

For example:

10 INPUT A,B,C

line number

INPUT

list of variables

Note that only the variables in the list are separated
by commas. There is no comma following the word

“INPUT” and there is no comma after the last variable

in the list.

The INPUT statement tells the computer to type a

question mark and then wait for the user to enter data.

Values entered in response to an INPUT statement

that contains more than one variable will be assigned
to the variables in sequence. For example:

LISTNH

10 INPUT

20 PRINT

30 PRINT '. fl
‘

40 PRINT 'C ="

99 END

If too few values are entered, a new question mark will

be printed and the computer will wait for the rest of

the values before it proceeds:

If too many values are entered, the extra values will be

saved and used for the next INPUT statement. When

the next INPUT statement is executed; no question
mark will be printed and the computer will not wait for

data to be entered. It will simply assign the leftover

values to the variables specified in sequence:

R E: (I III Y

frv/“‘"“\

A‘

,/"‘\

-3OGOT05

Remember these things:

0 The INPUT statement causes the computer to type
a question mark.

0 When the question mark appears, you must enter

one value for each variable in the INPUT statement.

The values are entered in the same Ieft-to-right
order as the variables appear in the INPUT

statement.

0 Numbers may be entered in standard or floating-
point notation. Type commas between values.

0 After entering the last number, press the RETURN

key. If you have done everything correctly, the

computer will proceed.

Exercise 12. The area of a triangle is found by multi-

plying 1/2 (or 0.5) times the length of its base (B)
times its height (H).

'3' PI“: III NT
"

I‘L'A III III U533
"

I: H

II. 0 I N I" U T I“:

.'I. '35 I3" Izi‘ III N T
"

F: A III III LI 353
”

v
"

A I”: IEEI A
"

12’. 0 F' I“: III N T I“: v 3 + II. It 3I< I55: .15.? AREA = V2 3“

9 ‘9 I55: N III

Write a program that asks you to enter B and H and

then prints the area of the triangle with those

dimensions.

Use your program to complete the following table.

_

B H Area

i 7.31 6.04

82 1 27

5x104 9x105

23.491 17.260

THE GO TO STATEMENT

The following program appeared on page 3-12.

LISTNH

5 PRINT 'RADIUS'f
10 INPUT R

15 PRINT 'RADIUS': 'AREA'

20 PRINT Ry 3.14XR"2

99 END

READY

RUNNH

REETUSTg
RADIUS AREA

2 12.56

READY

RUNNH

RADIUS?§
RADIUS AREA

3
'

23.26

READY

RUNNH

RADIUSTB

RADIUS
_'

AREA

8 200.96

READY

When you used it, you had to type RUN for each value

of R (see page 3-12). To eliminate the need to type
RUN for each new value of R, add the following GO

TO statement:

This directs the computer to “GO TO

statement 5” for the next instruction.

The program now looks like this:

5 PRINT 'RADIUS";

10 INPUT R

15 PRINT 'RADEUS“1

20 PRINT Ry 3.14XR'

30 GO TO 5

99 END

“AREA"

.q
Here is the GO TO statement.

Here is a RUN of the modified program:

Each time after printing the

results, the computer ex-

ecutes 3 GO TO 5 and auto-

RUNNH

RADIUS?3.14

RADIUS AREA

3.14 30.9591 .

RADIUS?6.22EI matlcally returns to the INPUT
RADIUS AREA

6.28 1.23.836
Statement

RADIUS?12.56

RADIUS AREA
How do you tell the computer

12.56
2

495.346 that you are finished? HOId
$33915 CTRL down, press C, and

release. The computer will

print REA-DY.

The GO TO statement has the general form:

line number GO T0 line number

For example:

30 GO TO 5

line number

GO T0

line number

The GO TO statement tells the computer to branch

(transfer control) to the statement with the stated line

number.

NOTE: The GO TO statement may be used either with

or without the space between the O and T. That is,
both of the following statements will mean the same

thing to the computer:

30 GO TO 5

30 GOTO 5

The GOTO statement is best understood with the aid

of a flowchart. A flowchart is a diagram that shows

the order in which things will happen. A flowchart for

the program on page 3-12 would look like this:

3-13

START

PRINT PROMPTING

MESSAGE FOR INPUT

RECEIVE DATA

FROM KEYBOARD

PRINT COLUMN TITLE

PRINT ANSWERS

The symbols used in a flowchart indicate the types of

processes to be executed, and the arrows show how

the computer activity flows from one process to

another. Thetrapezoid symbol (a) is used to indicate

an input or output (l/O) process. An oval (0)
indicates the beginning or end of a program. A branch

(GOTO) is shown by an arrow pointing to the next

process to be executed. In the example, the program
branches from the last statement to the first one.

Exercise 13. Complete the following program to

convert from degrees Centigrade (C) to degrees
Fahrenheit (F). The formula for this conversion is:

9
F = — x C + 32

5

10 PRINT “CENTIGRAIIE TEMPERATURE-a You write the formula in
20 INF'UT c

BASIC

40 PRINT c; was. new. .:.-; r: was. Faun-EN.-

50 PRINT

60 Bow E A PRINT statement without

any expressions tells CLASS-

IC to print a blank line.

You tell CLASSIC where it

should branch to.

99 ENE!

Use your program to complete the following table:

Degrees C Degrees F

100

37

6.8

0

-40

-100

-273.15

Most BASIC statements which do not involve input or

output (for example, LET statements) are represented
in a flowchart by rectangles. The rectangle is called

the “process” symbol. For example, this flowchart:

< START I

V

COMPUTE THE AREA OF A

CIRCLE WITH A RADIUS OF 6

PRINT THE RESULT

I STO P I

could be translated into this program:

10 I... IEEI 'I' #1 xx 3 I: II. «’MHS”?

23’ O F'R 1' NT
"

r-‘IIICIEEIA ==-'=
"

33 I71

‘3’ ‘3? I551 N III

Exercise 14. Draw a flowchart of the program in

Exercise 13 using the start, process, and |/O

symbols.

LOOKING BACK

This section has added three more BASIC language
statements to your vocabulary. You now know how to

use five statements:

INPUT GO TO

LET END

PRINT

You have been introduced to flowcharts and have

used symbols for three different processes:

Q Start or Stop

:3 Input or Output (HO)

:1 General Process

(57

/m\

(I

N

,/J\\

You also know seven editor commands:

OLD RUN

NEW RUNNH

SCRATCH LIST

LISTNH

There are many more BASIC statements to learn, but

there are only three more editor commands. The next

section will not teach you any new BASIC statements,
but it will show you more ways to use the statements

that you now know. In addition, the next section will

cover two more editor commands.

SECTION 3-D

EDITING LARGER PROGRAMS

CORRECTING TYPING ERRORS

When you write larger programs, you will make more

typing errors. These can be easily corrected as

discussed below.

Look once again at the program that was used to find

the area of a circle:

'5 PR INT "lit'MIII[l.lE§$";

1 0 III N F' U T It

11‘}; F'FtilIN'l' "lMIIIZlIlJSEl
"

,.
"

talitliifi
"

1-30 F'l-t'IL'NT Rs- l?$.:l.4>lcl'i'"‘ii.t

1'50 Glil'l'IJ "3

99 EEINIZI

You can make CLASSIC more conversational by
adding more messages to this program as follows:

110 PRINT 'THIS PROGRAM HILL FIND THE AREA OF A

120 PRINT 'CIRCLE FOR WHICH THE RADIUS IS ENTER

130 PRINT

140 PRINT 'ENTER EELDU THE RADIUS OF A CIRCLE:'

150 PRINT

160 PRINT 'YOUR FIRST CIRCLE’S RADIUS'?

170 INPUT R

180 PRINT

190 PRINT 'RADIUS': 'AREA‘

200 PRINT Ry 3.14*R"2

210 PRINT

220 PRINT 'YDUR NEXT CIRCLE’S RADIUS'I

230 GDTD 170

240 END

If you try. to enter (type) this program into your

workspace, it is very likely that you will make at least

one typing error. If you make a typing error and notice

it before you press the RETURN key, you can correct

the error in two ways.

First, you can press the DELETE key.

Each press of the DELETE key causes a single
character to be erased from the computer’s memory,

starting with the last character you typed.

When working with the editor, a short line is

displayed each time you press DELETE. When you

have erased back to the incorrect character, you can

resume typing. For example, if you typed “DlRCLE”

instead of “CIRCLE”, you could correct it like this:

140 PRINT "ENTER BELOW THE RADIUS OF A DIRCLE______CIRCLE.”

A short line is displayed each time the DELETE key is pressed.

When you press the RETURN key, CLASSIC will read

this line as:

140 PRINT “ENTER BELOW THE RADIUS OF A CIRCLE!”

3-1 5

Remember that the space is a character just like a

letter or number, so it must also be deleted if typed
incorrectly. For example, if you typed “BELWO THE”

instead of “BELOW THE”, you could correct it like

this:

140 PRINT “ENTER BELWO THE______ OW THE RADIUS OF A CIRCLE”

Note that the DELETE key was pressed six times to

delete the characters “WO THE”.

Before you press RETURN, you may also delete the

entire line by typing CTRL/U. CTRL/U is typed by
holding down the CTRL key and pressing the U key.
The editor will respond by printing “DELETED” and

ignore the line. You may then enter the correct line as

shown below:

CTRL/U typed here.

20 PRINT 3.14 DELETED

20 PRINT R, 3.14‘RA 2

If you do not notice your error until after you have

pressed the RETURN key, you must completely
retype the line in error.

Suppose that you enter a line with the wrong line

number. For example:

179 INPUT R

This statement must be line 170 because line 230 tells

the program to “GOTO 170”. You can enter the correct

line 170 simply by typing it, but then you will have:

170 INPUT R

179 INPUT H

To erase line 179, simply type the line number again
and press RETURN:

Press

179 RETURN

Key

and the line will be deleted.

LIST

PRUGl HA 3.0

110 PRINT 'THIS PROGRAM UILL FIND THE AREA OF A'

120 PRINT 'CIRCLE FOR UHICH THE RADIUS IS ENTERED.‘

130 PRINT

140 PRINT 'ENTER EELDU THE RADIUS 0F A CIRCLEI'

150 PRINT

160 PRINT 'YDUR FIRST CIRCLE’S RADIUS'§

170 INPUT R

130 PRINT

190 PRINT 'RADIUS'y 'AREA'

200 PRINT Rv 3.14XR"2

210 PRINT

220 PRINT 'YUUR NEXT CIRCLE’S RADIUS'?

230 GDTD 170

240 END

READY

Now you will notice a problem: you cannot see the

entire program on your screen at one time. This can

be helped partially by using the editor LISTNH

command.

The editor LISTNH command tells CLASSIC to list the

program in your workspace but without printing the

header (LIST No Header).

But even with the elimination of the header, the entire

program will not fit on your screen. You can list part
of the program by entering a line number with the

LIST or LISTNH command like this:

LISTNH 170

170 INPUT R

180 PRINT

190 PRINT 'RAHIUS': 'AREA'

200 PRINT Ry 3.14XR“2

210 PRINT

220 PRINT "YOUR NEXT CIRELE’S RADIUS'i

230 GDTD 170

240 ENH

READY

When a LIST or'LlSTNH command is followed by a

line number, the editor lists the program in the

_
workspace beginning with the line number specified.

Sometimes you will want to see the first part of a

program but not the later parts. To do this, type LIST

or LISTNH followed by the line number at which you

want the listing to start as described above. When all

the lines that you are interested

displayed, type CTRL/O by holding down the CTRL

key and pressing the letter 0 key.

CTRL/O tells CLASSIC to stop printing.

To erase a line from the workspace, type its number

followed by the RETURN key.

Exercise 15. Enter the program on page 3-15 into the

workspace. If you make mistakes, use the techniques
discussed to correct them. Then run the program to

make sure it works. (A sample run is shown in

Appendix C.)

LISTING PART OF A PROGRAM

Exercise 16. Try to LIST on the screen the program
that you entered into the workspace in Exercise 15:

In the following example, CTRL/O was typed while

the editor was still listing line 220:

LISTNH 170

170 INPUT R

180 PRINT

190 PRINT "RAUIUS"y "AREA"

200 PRINT R7 3.14*R“2

210 PRINT

220 PRINT

READY

“YOUR

3-1 6

(I

,/m"'\

in have been .

/"""\.

Remember these things:

0 Pressing the DELETE key erases one character

at a time, starting with the last character you

typed.

0 An entire line may be deleted before the RETURN

key is pressed by typing CTRL/U.

o Afterthe return key is pressed, a line containing an

error may be replaced simply by retyping the line.

0 A line may be deleted from the workspace by typing
its line,number and pressing RETURN.

o The contents of the workspace may be listed with-

out the header by entering LISTNH.

0 Part of a program may be listed by entering the

LIST or LISTNH command followed by the line

number at which you wish to begin the
listing.

0 CTRL/O will halt a listing.

Exercise 17. Experiment with the LIST and LISTNH

commands by displaying on your screen various parts
of the program you entered in Exercise 15. Find

out the maximum number of lines that the CLASSIC

screen can display at once.

CHANGING THE NAME OF THE WORKSPACE

‘

If you began this section by responding NEW PROG1

to the NEW OR OLD— query, the name:

PROG1 BA 3.0

appeared every time you typed LIST or RUN. But the

circle area program could be better named, perhaps
AREA, or RADIUS, or CIRCLE. To change the name of

the workspace, use the NAME command as shown

below:

NAME_ CIRCLE

READY

You can verify that the name of the workspace has
been changed by listing its contents:

LIST

CIRCLE an 3.0

110 PRINT 'THIS PROGRAM UILL FIND THE AREA OF A'

120 PRINT 'CIRCLE FOR WHICH THE RADIUS IS ENTERED.’
130 PRINT

140 PRINT 'ENTER DELDU THE RADIUS OF A CIRCLEt'
150 PRINT

160 PRINT 'YDUR FIRST CIRCLE’S RADIUS'?
170 INPUT R

190 PRINT

190 PRINT 'RADIUS'I 'AREA'

200 PRINT Ry 3.14XRTZ

210 PRINT

220 PRINT 'YDUR NEXT CIRCLE’S RADIUS'F
230 GDTD 170

240 END

READY

The editor NAME command changes the name of the
‘

workspace.

Exercise 18. Change the name of the workspace to

any of the following names and verify the change by
LlSTing the contents of the workspace as shown

above.

AREA ROUND

RADIUS CURVE

SAVING PROGRAMS ON DISKS

Programs entered into the workspace can be stored

on a disk with the editor SAVE command. If you store

programs on the disks, you will not have to retype
them every time you use the computer; they can be

read into the workspace with the editor OLD

command as you did with the program GUESS in

Chapter 1.

Programs are stored on the disks in areas called files.

Each file contains one program. Every file has a file

name and a file extension. The file name may be up to

six characters long, and the file extension up to two‘

characters long. For example,

CIRCLE BA

file name

file extension

The file name is usually used to identify a specific
file, while the file extension is used to indicate the

type of the file. For example, BASIC language
program files usually have the extension “BA".

Therefore, when you type:

NAME CIRCLE

the editor adds the extension “BA” to the name

“CIRCLE”. To use a different extension, you could

type:

NAME CIRCLE.JH

If this program was then saved on a disk, you would

have to tell the editor its extension to read it into the

workspace, like this:

OLD CIRCLE.JH

You should not use any of the following extensions

because they are reserved for special use by the

CLASSIC software:

Do not use the extensions:

AF SF UF

FF SV

If you simply type the SAVE command, the computer
will write a copy of the workspace on the CLASSIC

System disk with its Current name.

SA VE

READ Y

If another program already exists on the System disk

with the same name as the workspace, the above

command will cause the old program to be deleted

before the new one is stored. You will hear the disk

click when the workspace is being copied onto it.

3-1 7

If you wish to save a copy of the workspace on the

System disk with a name that is different from the

name of the workspace, you can specify the name

that you want after the SAVE command. For example,

SA VE ROUND

.This command will cause a copy of the workspace to

be stored on the System disk in a file called

ROUND.BA regardless of the current name of the

workspace.

If you wish to use an extension other than “BA”, you
can add the desired extension to the SAVE command.

For example,

SA VE ROUND. CL

will store a copy of the workspace in a file called

ROUND.CL on the System disk.

If you wish to store a program on the disk inserted in

drive1 (the right-hand disk drive), you must specify
both the device name RXA1 and the name of the file to

be used:

SA VE HXA 1.'CUH VE. CL

This command will cause the workspace to be stored

on the disk in RXA1 in a file called CURVE.CL. If the

extension is omitted, “BA” will again be added by the

system regardless of the name of the workspace.

When storing programs on RXA1, the file name must

always be entered. The command:

SA VE HXA1:

will cause the error message:

BAD FILE

to be displayed and the command will

executed.

not be

Exercise 19. Using the program that you entered in

Exercise 1.5, experiment with the SAVE command by
storing this program on the System disk and on a disk

inserted in drive 1. Test to see whether your program
has been properly stored by trying to read it back into

the workspace with the editor OLD command. If the

error message BAD FILE is not printed after the OLD

command, your program was properly stored on the

disk.

LOOKING BACK

You have now been introduced to all but one of the

BASIC editor commands. These are:

LIST display the contents of the workspace
LISTNH display the contents of the workspace

without printing the program header

NAME rename the workspace
NEW clear and rename the workspace

(equivalent to SCRATCH followed by
NAME)

OLD read a program into the workspace
RUN execute the program in the workspace
RUNNH execute the program in the workspace

without printing the program header

SAVE copy the program in the wOrkspace
onto a disk

SCRATCH erase the workspace

The BYE command will be explained in the next sec-

tion.

You should also know the special
recognized by the editor:

key entries

C'I'RL/C return to the editor from a BASIC

language program or to the monitor

from the BASIC editor

CTRL/O stop printing
CTRL/U delete the line being typed
DELETE delete the last character typed

The BASIC editor commands are reviewed in Chapter
3 of the CLASS/C User’s Reference Guide. That

chapter provides a quick reference for all the

operations that you can perform with the editor. It

also explains how each editor command can be

abbreviated and what is assumed by each one.

This section has introduced many new concepts. In

addition to the'points made on page 3-17 you should

remember these things:

0 Programs may be stored on disks in areas called

files, where each file contains one program.

0 Every file has a file name (up to six characters long)
and a file extension (up to two characters long).

0 The name of the workspace may be changed with

the editor NAME command.

0 The extensions A_F, FF, SF, SV, and UF are re-

served for special use by the CLASSIC software and

should not be used for your programs.

0 A copy of the workspace can be stored on a disk
with the editor SAVE command.

0 If another program already exists on the disks with

the same name as that used in the SAVE command,
it will be erased before the new copy is stored.

o The error message BAD FILE indicates that a SAVE
. _

or OLD command was not properly executed.

Section 3-E continues to discuss files and explains
“

how to obtain a copy of your program file on the

copier.

/’\

SECTION 3-E

USING DISK FILES

GOING BACK TO THE MONITOR

Each time a program is SAVEd, its name and

extension are written in the disk directory. The

directory is like a table of contents — it contains the

name, extension, and size of every file on-the disk. To

see the directory of your disk you must first get back

to the monitor.

To get back to the monitor program from the editor,
type BYE and press RETURN. The monitor program
will then be read into memory (erasing any program in

the workspace) and will print its dot.

BYE

You can also return to the monitor from the editor by
typing CTRLIC.

Figure 3-1 summarizes the ways to go from the

monitor to the editor to a BASIC language program
and back again.

To display the directory of the System disk on your

screen, enter the DIRECT command to the monitor:

.IIIIR'ECT

BASSIC .SU

BFE'TS .ESU

DIRECT . 8U

13 O A U [3 '7 551'

1'5 0 A [J [.3 '7 535

1'5 0 A U [3 '7 {‘3

HQ
._

VHLKASAQQVHSSr
B A S I C o 53 F' 1'5 0 ~11) U [.3 '7 {‘5

BA 8 I C 0 N F 3 0 AU [3.... '73:?

['2 E) L. . 8 U II. 115 0 -~- A U [3 7 '53}

F U 'I' F' o S U 1'5 0 --~ A U [3 '7 553

BCUMP .SU

BASIC «FF

BASIC «UP

BASIF .AF

RESEG .Bfi

PIP .SU

BLORH .SU

1'5 0 A U [3 M 7 "5

1'5 0 A U [3 '7 5

1'5 0 A U [3 '7 '53}

1'5 0 '-~ A U [3- 713‘}

1'5 0 ~~ A U [3 7 {‘55

1'5 0 A U [3 7 5

1'5 0 14-) [J [3 '7 '53}

(When you enter the monitor DIRECT command on

your system, the output will be different from that

shown above. Also, your directory will be followed by
a message indicating the amount of unused space on

the disk.)

The monitor DIRECT command is used to print the

directory of a disk on the terminal.

MONITOR PROGRAM

f BYE
_.n BASIC

or

CTRL/C

j

EDITOR PROGRAM

1

RUN

0' CTRL/C
RUNNH

4

BASIC PROGRAM

Figure 3-1

Going from the Monitor to the

Editor to a BASIC Language
Program and Back Again

The monitor DIRECT command in the form shown

lists each file on a separate line with the file name and

extension separated by a period (.). After each file

name and extension, this directory shows a number

and .a date. The number tells the amount of space that

the file occupies on the disk in units called blocks. If

you think of a disk as a book and the directory as a

table of contents, each file would be a separate
chapter and each block would be a separate page.

Any file takes up 'at least one block. The date

indicates the date that the file was stored.

If you list the directory of your System disk, you may
find that some files do not have dates after them. This

is because CLASSIC had not been informed of the

date on the day these files were stored.

The monitor DATE command informs CLASSIC of the

current date or tells CLASSIC to print the current date

on the screen.
'

Perform the following exercise to help you under-

stand how to use the monitor DATE command.

Exercise 20. Start CLASSIC in the normal manner

(Steps 1 to 8 in Chapter 1). If CLASSIC is already
started, restart it by pressing the white START button

again and typing S. (This will assure that the

computer’s memory is cleared.) Then follow these

steps:

(1) List the directory of your System disk by entering
the monitor DIRECT command as shown previ-
ously. Write down the name and extension of one

of the files that does not have a date after it.

If all the files on your disk have dates after them,
enter the following program into your workspace
and SAVE it on your disk as shown:

3-1 9

(2)

(3)

(4)

(5)

(6)

.s H: BREIIC

NIEEIN IIII’C (31....1'3 -------- NIEEIN IMTEEIEEE'T'

R EEC M] Y

.1. 0 P l‘i' I N "I"

3" ‘3’ :. N I]

555 P: U E.

“Dr-YT'EET"

RIEIPIDY

BYE

List the directory on your disk again to make sure

that this program has been saved without a date.

Type:

.DA TE

and press RETURN. CLASSIC will respond:

NONE

indicating that no date has yet been entered.

Enter today’s date in the form:

.DA TE mm/dd/yy

where: mm is the number of this month (1 -12)
dd is today’s day (1-31)

yy is the last two digits of this year

(00-99)

For example,

.DA TE 4/18/ 76

Repeat Step (2). CLASSIC will respond with the

date currently stored in its memory. For example,

.DA TE

SUNDAYAPFI/L 18, 1976

Type the following commands:

.FI BASIC

NEW OR OLD—fi/enam.ex

(Substitute the file name and extension of the

program that has no date where “filenam.ex”
appears above, just as it appeared when you listed
the directory. For example, “DATEST.BA”)

READY

SAVE Copy the contents of the work-

space back onto the disk.

READY

BYE Return to the monitor.

List the directory once again:

.D/FIECT

This time, the current date should be printed at

the t0p of your directory and should follow your

program name and size. For example,

CIRCLE. BA 1 18-A PR-76

file name—1i |size in blocks

creation date

Remember these things:

0 The date is entered with the monitor DATE

command in the form:

.DA TE mm/dd/yy

o If the monitor DATE command is entered with no

date, the current date recorded by the system will

be displayed. If no date is recorded, “NONE” will

be printed.

o A date following a directory entry indicates the date

that the corresponding file was created.

SHORTENING COMMAND LINES

For some commands, certain parameters can be left

out and the system will assume default parameters.

Defaults are parameters that are not typed by you but

are assumed by the system.

For example, you first used the monitor TYPE

command in the following form:

.TYPE filnam.ex

If you try this command:

.TYPE TTY: <fi/nam.ex

your file will also be displayed on the screen.

The default output entry for the monitor TYPE

command is “TTY:”.

The short version of the monitor TYPE command is

assumes “TTY:" as the default outputentry. :T-Tzris
the name CLASSIC calls the keyboard/screen. When

no specific output entries are typed, you need not

type the “< H.

The above paragraph spoke of “TTY:” as the name by
which CLASSIC references the keyboard/screen. You

have also seen the entry “RXA1:” that refers to the

disk inserted in disk drive unit 1, the right-hand drive.

Each CLASSIC unit that can be used to enter, display,
or store a file is called a device and has a

corresponding device name. The complete list of

device names that CLASSIC will recognize is as

follows:

RXAO:

SYS: disk inserted in drive unit 0 (on the

DSK:
' left)

RXA1: disk inserted in drive unit 1 (on the

right)
TTY: keyboard I screen

3—20

,K‘“\

”x

Whenever a file name is entered, CLASSIC assumes

that the file is on DSK: (RXAO:) unless you

specifically state RXA1:. For example, to run the

GUESS program in Chapter 1 you entered:

NEW OR OLD—OLD RXA1:GUESS

because GUESS.BA was on the disk in drive unit 1. If

you had entered:

NEW OR OLD—OLD GUESS

the system would have looked for GUESS on DSK: by
default. If it was not found, the message:

BAD FILE

would have been printed.

For most commands, then, the default device is DSK:

(RXAO:). Thus,

.DIRECT

prints the directory of the System disk inserted in

drive unit 0. To obtain the directory of the disk

inserted in drive unit 1, you must type:

.DIRECT RXA1:

The default output entry for the monitor DIRECT

command is “TTY:” just as it is for the TYPE

command. If no device is entered, “DSK:" is assumed

by default.

DELETING FILES

Once a file is saved-with the editor SAVE command, it

can be erased from the disk by returning to the

monitor and using the monitor DELETE command.

This is done by typing:

.DELE TE dev:filnam.ex

where “dev:fi|nam.ex” is the parameter of this

command and indicates the name and extension of

the file to be erased from the disk “dev:”. If the device

entry is omitted. the default assumed is “DSK:” (the
same as “RXAO:” and “SYS:”).

Exercise 22. Enter a short BASIC program into the

workspace (such as that on page 3—20) and SAVE it on

RXA1. Then use the monitor DELETE command to

erase the file. DO NOT DELETE ANY FILES THAT

YOU HAVE NOT PERSONALLY CREATED. List the

directories of your disks before and after the deletions

to assure that the files have been erased.

LOOKING BACK

With the help of this section, you should now be

familiar with the following monitor commands:

DATE inform CLASSIC of the current date

or print the current date on the

screen

DELETE erase a file from a disk

DIRECT display the directory of a disk

R BASIC start up the BASIC editor

TYPE display a file from a disk on the

screen

Uses of these commands are summarized in Chapter
2 of the CLASSIC User’s Reference Guide. Advanced

monitor commands will be presented in Chapter 4 of

this Primer.

The new concepts introduced in this section are as

follows:

3—21

0 Each disk has a directory that contains at least

the name and size of each file on that disk.

0 Some commands may accept parameters that

indicate how the command is to be carried out.

0 Command parameters usually have an output entry
and an input entry separated by a left angle bracket

(“<H)I
o If output or input parameters are left out of a com-

mand line, the system can sometimes assume

default entries for the missing parameters.

0 Each CLASSIC device is referred to by a device

name followed by a colon (:), for example, “TTY:”

means the keyboard/ screen.

You are well on your way to becoming a CLASSIC

programmer. The next few sections will help you learn

how to use more BASIC language statements to write

more sophisticated programs.

SECTION 3-F

LOOPS, DECISION POINTS, AND

STRING VARIABLES

”TEACHING THE COMPUTER TO COUNT

Look at the following program:

ASSIGN THE VALUE 1 TO K.

PRINT THE CURRENT VALUE

OF K.

INCREASE THE VALUE OF K

BY 1.

G0 AROUND AGAIN.

IF YOU DON’T INTERRUPT

THE COMPUTER, IT WILL GO

ON AND ON — COUNTING

NUMBERS.

INTERRUPT THE PROGRAM

BY TYPING CTRL/C.

II. 0 I... IEEI T |\'.' ==== .1.

20 F'FRIIIN'I' I\'.'

30 I...IEEIT I‘i' =13 Iii-I" II.

.b C: [3 [I] T [I] 1?. 0

‘3’ 9 I53: N III

The above program contains a loop:

10 LET K=1 THE VALUE OF K IS INITIAL—

20 pRIN-r K IZED T0 1 BEFORE THE

LOOPESO LET K=K+1
LOOP IS EXECUTED. EACH

TIME THROUGH THE LOOP,
40 GO TO 20 THE CURRENT VALUE OF K

99 END IS PRINTED AND INCRE-

MENTED BY 1, AND THEN

THE LOOP IS REPEATED.

This program might be translated to a flowchart like
this:

(START I

I
INITIALIZE

COUNTER

PRINT VALUE

OF COMPUTER

A L
INCREMENT COUNTER

4

The arrows show that the instructions in the last two

symbols are executed over and over.

A LOOP is a set of statements that the computer exe-z
cutes repeatedly.

The statement:

30 LET K = K + 1

may be analyzed as follows:

Before Statement After

30LETK=K+1 K E

K E 30LETK=K+1 K [:1
K E 30LETK=K+1 K |:|

Remember‘the general form of the LET statement:

line number LET variable=expression

The expression may be any BASIC expression. The

LET statement directs the computer to evaluate the

expression on the right side of the = sign and then

assign the computed value to the variable on the left

side of the 2 sign. If the expression is a variable

expression, like K +1 , it is evaluated using the current

value(s) of its variable(s). Therefore, the statement:

30 LETK=K+1

directs the computerto evaluate the expression K + 1

using the current value of K and then assign the new

value to K.

Exercise 23. Complete the following table on a

separate piece of paper, showing the value that each

variable will have after the statement has been

executed.

Before Statement After

K [E 30 LET K=K+L K:
E E 40 LET E=E+2 EI:I
N -. 200 LET N=N‘5 N]:|
x -10 235 LETX=X+5 XI:I
P E 280 LET P: P-20 p 1:]
Q 310 LETQ=15+Q a]:
L IE 325LETL=L+L+L 4:]
B 340LET B: -B+B B!:]

In order to clarify what happens as the computer
executes the sample program, you can “unwrap” the

loop and trace it. The following table “unwraps” the

loop to show the value of K following the execution of

each statement in the program. Results printed by the

computer are shown under the heading “OUTPUT”.

The program is traced seven times through the loop.

3—22

fl\

/,..-\

Statement K Output Remarks

1OLETK=1 _;

20 PRINTK

3O LET K: K +1

40 GO TO 20

1 First time through the loop.

20 PRINTK

3O LET K: K +1

40 GO TO 20

2 Second time through the loop.

20 PRINT K

30 LET K: K +1

40 GO TO 20

3 Third time through the loop.

20 PRINTK

30 LET K= K+1

40 GO TO 20

4 Fourth time through the loop.

20 PRINT K

30 LET K= K+1

40 GO TO 20

5 Fifth time through the loop.

20 PRINTK

30 LET K= K+1

40 GO TO 20

6 Sixth time through the loop.

‘d

‘d

CD

CD

CDC”

(h

(H

Ch

48

48

00

(O

(0

DJ

E)

hJ-*

20 PRINTK

3O LET K: K+1

40 GO TO 20

7 Seventh time through the loop.

CD

CD

‘4

and so on.

Statement A B c Remarks

Exercise 24. Trace the following program four times

through the loop by filling in the blanks in the table
below.

Statement A B C Remarks

1OLETA=1 _

17LETB=1 __

These statements are done once.

25LETC=A+B ___

30PR|NTA ___

36LETA=B ___

43LETB=C ___.—

50GOT025

First time through loop.

25LETC=A+B ___

30PR|NTA ___

36LETA=B

43LETB=C ___

50GOT025

Second time through loop.

continued on next page

25LETC=A+B

3OPR|NTA
_

36LETA=B

43LETB=C ___

50GOT025

Third time through loop.

25 LET C=A+ B

30PR|NTA

36 LETA= B

43 LET B=C

50 GO T025

Fourth time through loop.

Exercise 25. Without using the computer, show the

first five results printed by the computer under control

of each of the following programs. (Write the values

that will fill in the blanks on a separate piece of

paper.)

LISTNH LISTNH
10 LET X=1 10 LET E=2
20 PRINT X 20 PRINT E
30 LET X=X+2 30 LET E=E+2
40 GDTU 20 40 GDTD 20
99 END 99 END

READY READY

RUNNH RUNNH

and so on. and so on.

Exercise 26. Completeeach program below (fill in the

blanks on a separate piece of paper) so that when you

run it, the computer will produce the results shown.

Check your work with the computer.

LISTNH LISTNH LISTNH

10LETJ=|:I 10LETP=|:| 10LET5=|:|
20 PRINT J 20 PRINT P 20 PRINT 5

4o GDTD 4o GUTD 4o GDTD

99 END 99 END 99 END

READY READY READY

RUNNH RUNNH_ RUNNH
o

'

1 '1:
'

1 2 4

2 4 1.33333

3 8 0.444444

4 16 o.14e14:§
S‘Q 32 READY

READY e415
READY

SELF-STOPPING LOOPS

The loops that you have seen so far do not stop by
themselves. They go on and on until you manually
interrupt them by typing CTRL/C. Here is a loop that

terminates automatically:

3-23

10 I... I332 T

I{====ZI.19.0 F I"\' IINI Ii

1'5 0 I. I5 T |\===-I\f .'I

40 2.|F' IR" 4.36 TIII::.I'~I 1130

‘9‘? I::.NI.|

This program will print the numbers 1 to 5 and then

stop:

F: U N N H

.1.

L.

a
v

41'n

r—If"

REnnY

The IF statement at line 40 causes the computer to

make a decision. That is, if K is less than 6, the

program will branch to line 20. But if K is not less

than 6, the program will “drop through” to the

statement following the IF statement.

The IF statement directs the computer to examine a

relation between two expressions and branch to a

specified statement if and only if the relation is true.

If the relation is false, the statement with the next

higher line number is executed.

Decision points are represented in a flow chart by a

diamond (o). The above program would be charted as

follows:

‘ START)

INITIALIZE

COUNTER

PRINT VALUE

OF COUNTER

INCREMENT

COUNTER BY 1

IS

COUNTER VALUE

LESS THAN

Notice that there are two paths leaving the decision

symbol, one labeled, “YES” and the other “NO”. The

path followed depends upon the truth of the relation

specified in the IF statement.

Look at another example:

10 PRINT "GUESS HY NUHHER"

20 INPUT G

30 IF 6:6 THEN 60

DOES G EQUAL 6?

40 PRINT 'NDFF

so 'YUF!

GUESS MIAMI“ .

"

You GUT III"

99 ENE

If G equals 6, CLASSIC executes statements 10, 20,

30, 60, and 99. If G does not equal 6, it executes 10,

20, 30, 40, and 50 and then loops back to statement

20.

The table below traces the computer’s actions as it

executes each statement of the program. It also

shows the value of G after each statement is carried

out in the following run.

50 GDTD 20

_RUNNH
hUIua MY NUMBER

i’ 4

NEIF'I332 I I.-‘-.I. .3ll32“-555 fiIIEIIiIIIIN I. I. I.

3,2
NE] F' I332 o [EILJI333533535 flIII-II3III2N ,, e I.

’I’é

"([J F“ I 'Y I2] LI II-ili] T I T I

F: IEEI I33: III T

Statement G Remarks

I0 PRINT “GUESS Ivir NUMBER?"

20|NPUTG 4 First case: G=4

30lFG=6THEN6O 4 6:6 is false.

40 PRINT “NOPE GUESS AGAIN..." 4 “Drop through" to next

statement.

50 GO TO 20 Loop around.

20 INPUT G 9 Second case: G = 9.

30lFG=6THEN6O 9 6:6 is false.

40 PRINT “NOPE GUESS AGAIN...” 9 “Drop through” to next

statement.

50 GO TO 20 Loop around.

20INPUTG Third case: 6:6.

050, 6:6 is true; branch to

statement 60.

30|FG=6THEN60

60 PRINT ”YUP! YOU GOT IT!” 6

99 END Program stops.

Exercise 27. Draw a flowchart for the above program.

In general, the IF statement looks like this:

n IF e1re2 THEN t

where n = line number of the IF statement

e1 =any BASIC expression
r =any legal BASIC relation (see below)

3-24

rmx

/‘\

("N

‘/"‘\

LOOP

e2 = any BASIC expression
t =Iine number of the statement to be

executed next if and only if the re-

lation specified between e1 and e2
(“e1 r e2”) is true

For example,

35 IF X < 6 THEN60

IIIIIII
n IF e1 r e2 THEN t

is true if X is less than 6

X < 6

is false if X is not less than 6

The following table shows the BASIC relations with

their corresponding conventional relations:

Conventional BASIC Relation

Equal to

Less than

Greater than

< Less than or equal to

> Greater than or equal to

< Not equal to

VA“

Ilv

llAulleV/xn oo AVA vIIIl 222 Vnn
NOTE: GOTO may be substituted for the word THEN

in an IF statement.

For example,

35 IF X < 6 GOTO 60

is the same as:

35 IF X < 6 THEN 60

Exercise 28. The program below causes the computer
to print out “positive” or “negative”, depending upon
the value entered. lf 0 is entered, the program stops.
Draw a flowchart for this program and then enter it

into the computer and run it. Check that each of the

paths shown in your flowchart truly reflects the

actions taken by the computer.

LISTNH

— 10 PRINT "YUUR NIJHHIER';

20 INF'UT N

30 IF N=o THEN 99
'8 N EQUAL TO 0?

11+ @69-
40 IF N-=220 THEN 70

[S N LESS THAN 0?

I ®50 F'RINT 'F'DSIIITIUE‘

—

60 GDTD 10

70 PRINT 'NEGATIUE‘

_ BO GUTEI 10

99 ENIJ ;

READY

RUNNH

YElUR NUMBER'E'Q
F'DSITIUE

YOUR Nl.lHI'.tER'!’--A
NEGATIVE

YDUR NUI‘IEIERTO

READY

Exercise 29. A number is said to be a factor of a

second number if the first will divide evenly into the

second without leaving a remainder. Write a program
that allows you to enter two numbers and tells you
whether the first is a factor of the second. Use your

program to complete the following table:

First Second Is the First a Factor
Number Number of the Second?

8 64 Yes

6 44 N0

12 576 __

42 840 __

103 103 __

13 1276 __

11 6336 r

231 I 591 __

208 5200 __

184 1417 __

276 826 __

55 1870 __

The following flowchart will help you design your

program:

STA RT

RECEIVE TWO

NUMBERS FROM

KEYBOARD

SUBTRACT FIRST

FROM SECOND

REPORT THAT FIRST

IS A FACTOR OF

SECOND

REPORT THAT FIRST
IS NOT A FACTOR
OF SECOND

SUBTRACT FIRST

FROM RESULT

.|
STRING VARIABLES

A string variable is different from a numeric variable in

two ways:

0 A string variable name always ends with a dollar

sign ($). For example, A$ and S$ are valid string
variable names.

0 A string variable may not be used in a numeric

expression.

3-25

A string variable may only contain up to eight
characters unless you specifically declare it to

contain more (the way to do this will be discussed in

Chapter 4).

The following program demonstrates a simple use of

string variables:

STRING VARIABLES
LISTNH_ I l___.—’
10 LET A$='FIRST'

STRING CONSTANTS

20 LET E$='SECDND'

30 LET cs=-THIRn-

40 PRINT A$.Hsycs

99 END

READY

RUNNH_
FIRST SECOND THIRD

READY

In the above program, strings are assigned to variable

locations with the LET statement. Strings may also be

entered in response to an INPUT statement request:

LISTNH

10 PRINT 'UHAT IS YOUR NAME; PLEASE"?

20 INPUT N$

30 PRINT 'HELLDy 'fi Nfi; '!'

99 END

READY

RUNNH

UHAT IS YOUR NAMEv PLEASETEUEYLN

HELLO: EUELYNI

READY

Each string requested by an INPUT statement must be

ended by pressing the RETURN key. Therefore, if two

strings are to be entered, they must be typed on

separate lines. Commas, spaces, and other charac-

ters that can be used to separate numeric data cannot

be used to separate strings. These characters will be

interpreted as part of the string just like any other

characters. The next example demonstrates how this

works:

LISTNH

5 PRINT 'PLEASE ENTER YOUR FIRST AND LAST NAMES:'

7 PRINT

10 PRINT 'UHAT IS YOUR NAME; PLEASE'I

20 INPUT FyL

30 PRINT 'HELLOy 'i F$I
'

'; L5; '!'

99 END

READY

RUNNH

PLEASE ENTER YOU FIRST AND LAST NAMES:

UHAT IS YOUR NAME: PLEASETJESSE

TJAMES

HELLO: JESSE JAMES!

READY

If you try to assign a string longer than eight
characters to a normal string variable location, the SL

(String too Long) error message will be generated.

Exercise 30. Enter the above program into the

workspace, but add the statement:

40 GOTO 7

Then use this program to experiment with string
variables by entering strings that are of varying

lengths and contain special characters on the

keyboard. If you like, modify the program to

experiment further.

STRING VARIABLES IN IF STATEMENTS

The expressions compared in an IF statement may

contain strings as well as numbers, but evaluating the

relationship between two strings can be a very

involved process. The discussion here will be limited

to evaluating only the equality relationship; inequal-
ities will be discussed in Chapter 4.

Two strings are said to be equal if they contain the

same characters in the same order (including blanks

and punctuation).

For example, the following program will display the

word “EQUAL”:

1()

20 mm

30 I‘ J:I$ THEN 60

40 PRINT “NUT EQUAL"

5 GOTO 99

60 PRINT "EQUAL"
99 END

READY

RUNNH

EQUAL

READY

The next example will print “NOT EQUAL”:

LIEINH

Io LET n

20 LEI s"

30 II n
-

TH u $0

40 PRINT "NUT EIJAL"

so GUTU 99

60 PRINT "EQUAL"

99 END

READY

l IIINII

NOT EQUAL

READY

In an IF statement, the contents of a string variable

are usually compared to a specified string. For

example,

10 PRINT 'UHAT IS YOUR NAME: PLEASE'G

20 INPUT NS

30 PRINT 'HELLOy '9 N$§ '!'

40 PRINT 'DO YOU GO BY ANY OTHER NAMES";

50 INPUT A$

60 PRINT

70 IF A$='YES' THEN 10

99 END

READY

flaw
UHAI IS YOUR NAME! PLEASETSCOTT

HELLO; SCOTI!

DO YOU GO BY ANY OTHER NAHESTYEE

UHAT IS YOUR NAME; PLEASETDOUGLAS

HELLO! DOUGLAS!

DO YOU GO DY ANY OTHER NAHESTEQ

READY

3—26

7\

/‘"\k

A flowchart will help you follow this program:

START

PRINT

QUESTION

RECEIVE

RESPONSE

FROM

KEYBOARD

SAY "HELLO"

ASK ABOUT

OTHER

NAMES

DOES

USER HAVE

OTHER NAM E57

YES

Exercise 31. Modify the program that you wrote for

Exercise 29 (page 3-25) to ask the user if he or she has

another number to enter before it recycles for

additional input. Ask the user for a simple “YES” or

“NO” response and use a string variable to store that

response.

LOOKING BACK

You have learned one new BASIC statement in this

section, the IF statement. You have seen how this

statement is used to create self-stopping loops and to

evaluate relationships between both numeric and

string variables. In addition, you have learned how to

use variables to store strings up to eight characters

long.

Remember these things:

0 A loop is a set of statements that is executed

repeatedly.
o The IF statement is used to examine a relation

between two expressions. If the relation is true, the

computer branches to a specified statement. If it is

false, execution “drops through” to the next

statement.

0 Decision points are represented in a flow
chart

with

a diamond--shaped symbol.
0 String variable names always end with a dollar

sign ($)
0 A string variable may not be used in a numeric

expression.
0 A standard string variable may not contain more

than eight characters.

0 Each string entered in response to an INPUT

request must be ended by pressing the RETURN

key.
0 Strings are equal if they are exactly the same.

The next section will show you another way to create

program loops using fewer statements and a more
’

flexible format.

3-27

SECTION 3-G

CREATING FOR-NEXT LOOPS

THE FOR AND NEXT STATEMENTS

Loops made with the IF-THEN statement require you
to keep track of the number of times the loop is

executed. You saw the following program on page
3-24.

10 LET K==:L

20 PRINT K

30 LET K==K-l-1

40 IF' l<~=:its THIESIN

99 EINII

This program printed the numbers 1 to 5. The

following program is shorter, but will do the same

thing. It uses a FOR and a NEXT statement to add 1 to

K automatically each time the loop is executed:

20

LISTNH

10 FUR N=1 TD 5

20 PRINT K

30 NEXT K

99 ENE

}FOR-N EXT LOOP.

READY

RUNNH

Ul-beNH
READY

Every FOR statement must have a NEXT statement

and every NEXT statement must have a FOR

statement.

The flowchart for this program might look exactly the

same as the one on 3-24, but use of a FOR-NEXT loop
eliminates one statement in the program as compared
to the version using the IF statement. The following
trace will help you understand how a FOR-N EXT loop
works:

Statement K Out- Remarks

put

10FORK=1T05 1 Kstartsat1.

20 PRINT K 1 1 First time through loop.
30 NEXT K 2 K<5. Do it again.

20 PRINT K 2 2 Second time through loop.
30 NEXT K 3 K< 5. Do it again.

20 PRINT K 3 3 Third time through loop.
30 NEXT K 4 K<5. Do it again.

20 PRINT K 4 4 Fourth time through loop.
30 NEXT K 5 K<5. Do it again.

20 PRINT K 5 5 Fifth time through loop.
30 NEXT K 6 K>5. Stop the loop and reset K to

the terminal value.

99 END 5 Everything stops.

A FOR-NEXT loop consists of three things:

(1) a FOR statement,

(2) a NEXT statement, and

(3) one or more statements between the FOR state-

ment and the NEXT statement.

A FOR-NEXT loop begins with a FOR statement and

ends with a NEXT statement. The set of statements

between FOR and NEXT is called the body of the

loop.

BODY OF THE LOOP

10 I'TUIK' X113]. TU 113 THE SAME VARIABLE MUST

BE USED AS AN INDEX IN

.,
BOTH PLACES.

50 NEAI A

HERE IS ANOTHER EXAMPLE:

I ISTNH
- THIS FOR STATEMENT DE-

]‘0 FOR Nag TR 7.
FINES A SET OF VALUES

{.0 WIN-r ;;
"

FOR THE INDEX VARIABLE

99 IIENII [2.3.4.5.6.7]

REM-W
THE BODY OF THE LOOP IS

Rum EXECUTED REPEATEDLY,
'

g

'

ONCE FOR EACH VALUE OF

3' N DEFINED BY THE FOR

4
STATEMENT. NOTE THAT

_-,
THE INDEX IS INCREMENTED

5,
BY 1 EACH TIME THROUGH

7
THE LOOP.

READY

Exercise 32. Write down the numbers of the

statements which make up the body of the loop in the

following program:

I... I." $53 'I' N H
-I A

J.\! EMT

FOE Em? It

LET Hm3.14$R E

30 PRINT ETA

NEXT E

ENE

F: If: R III Y

IEL'U N N If
I‘L‘ I’~‘I III I U 533 it IZL‘ IEEI Pl

2’. II. 3? . ‘56;

3 13.? {3 o 15.?th

4 ‘55} (II o 1?. 4

I35: L53.~ r31 III Y

Exercise 33. The volume of a sphere may be

represented by the equation:

V : —'JTI'3

Write a program to display a table of volumes fOr

spheres with radii from 1 to 30.

3-28

After a FOR/NEXT loop is completed, the index will

be set equal to the value that it had the last time that

the loop was executed. For example, the value output

by statement 40 below will be 6:

|.. I S T N H

{'5 I._ E. T A ==== 0

1 0 E' C] R |\' -'=

'

'2 0 L F. T A =5 A ~I- |\'

3 0 N I552 X T |\'

40 PR INT I\'

9 9 E. N III

R E: A I] Y

R LI N N H

6

READY

The following table shows the set of values defined

for the index in each example of a FOR statement.

Line numbers are omitted.

FOR Statement Index Set of Values for the Index

FOR J :0 TO 3 J [0,1 ,2,3]
FOR I=1 T01 l [1]
FOR A=3 TO 5 A [3,4,5]
FOR X: -2 TO 2 X [-2,-1,0,1,2]
FOR B=1 TO 0 B Empty—the loop is skipped.

Exercise 34. Complete the following table on a
‘

separate piece of paper and then check your answers

by writing programs to test each case.

Set of Values
FOR Statement Variable for the Variable

FOR N=i T06

FOR C=0TO 5

FORW=-3TOO

FOR E=12TO12

FORT=7T05

FORX: .5 T0 2.5

FORY=1T02.5

FORZ=.5TO3 IIIIIIOZ
THE STEP CLAUSE

A variation of the FOR statement is shown in the

following program.

LISTNH

:3 ERTNTRT
To 9 erP .2 {—NOTE THE STEP CLAUSE.

30 NEXT N

99 mm THE STEP2 CLAUSE CAUSES

READY THE VALUE OF K TO IN-

MM CREASE BY2(|NSTEADOF1)
EACH TIME. YOU CAN VER—

IFY THIS BY EXAMINING THE

PRINTED RESULTS.0

u

m

u

H

READY

If the STEP clause isomitted, an increment value of 1

is assumed.

The following table shows the set of values defined

forthe variable in each FOR statement. Line numbers

are omitted.

FOR Statement Values of the Variable

FOR E=0T083TEP2 E=0,2,4,6,8
FOR E=0TOQSTEP2 E=0,2,4,6,8
FORV=1 T033TEP .5 V=1,1.5,2,2 5,3
FORW=1TO7STEPO W=1,1,1,
FORX=1TOSSTEP1 X=1,2,3
FORX=1TO3 X=1,2,3
FORY=3TO1STEP~1 Y=321

Exercise 35. Complete the following table on a

separate piece of paper and then check your answers

by writing programs to test each case.

Values of the
FOR Statement

Variable

FORT=0TOGSTEP3 T:

FORN=1TO5STEP1 N=

FORK=100TO1308TEP10 K:

FOR X=0TO1 STEP .25 X:

FORE=0TOOSTEP2 E:

FORB=3TOOSTEP-1 B:

Exercise 36. The surface area of a sphere may be

represented by the equation:

S = 4 7Tr2

Write a program to display a table of surface areas for

spheres with radii of 10, 20, 30, ..., 100.

VARIABLE FOR STATEMENTS

By using variables instead of numerals,-you can

obtain variable FOR statements such as the one in the

following program:

LISTNH‘

i3 Egguls': TO N
THE VALUE FOR N IS EN-

30 PRINT A TERED.

g?) ggfg :0 VARIABLE FOR-NEXT LOOP.

99 ENII 3 IS ENTERED AS THE VALUE

READY
OF N'

RUNNH FOR N=3, K=1,2,3,
?LJ. 5 IS ENTERED AS THE VALUE

OF N.

FOR N :5, K=1,2,3,4,5
0 IS ENTERED AS THE VALUE

OF N.

THE FOR LOOP IS SKIPPED

BECAUSE1 N.

a

[HOUIbLIH
Hknurou

Z-fl-fl m D 'J 4

Each of the three numbers in a FOR statement may be

replaced with a variable:

3-29

50FORK=ITOTSTEPS For example, the following nesting technique is

acceptable:
Initial value

Terminal Value

Step value
BODY OF

LOOP K

Exercise 37. Run the next program on your computer
and use it to complete the following table of index

values corresponding to initial, final, and step values,
in FOR-NEXT loops.

10 FIJI-'1' I<==0 TE) 1'5‘—

20 FOR L32 T0 6-1
BODYOFLOOPL LOOPL

130 NEXT l..-<—I LOOP K
40 FOR M31 T0 17-

BODY OF LOOP M LOOP M

'50 NEXT M-<—

60 NEXT N<—

But this is not allowed:

10 PRINT l'INlTlALy TERMINALy AND STEP UALUES'?

20 INPUT IvTvS

30 FOR K=I TD T STEP S

40 PRINT N

50 NEXT K
n --I .

$8 EEISTIO 1.0 FTJI‘I Nun-91 III
"I

99 EN" 2330 FOR ["5323 T [I] 4

BODY OF LOOP ?

Initial Terminal Step Index 3511) NISEZXT I'\' :

Value Value Value Values 40 NIEEZX'l" I... <

0 1 0.2

10 0 3

2 5 2
I I I I I

6 6 3 because neIther loop Is totally contaIned WIthIn the

0.0010 0.0013 0.0001 body of the other.

8 8 —1
__

You can use nested loops to generate tables for

'3 '4 -0.3 operations with more than one variable. For example,
-4 -3 *-0.3 the following program displays a multiplication table

926 1852 463 for all combinations of integers from 0 to 9:

0.01 -0.01 -0.005
'

LISTNH

100 PRINT 'MULTIPLICATIDN TABLE'

110 PRINT

NESTED LOOPS

It is possible to write a program containing one

loop inside another. This is known as nesting loops.

LISTNH

10 PRINT "I'I"J'

15 PRINT

20 FOR I=1 T0 2

3°
FF‘I“ :-'=;1 To 3 INSIDE

23 .4 race
OUTSIDE LOOP

60 NEXT I

99 END

READY

RUNNH

I

H

H

H

M

m

H

h'm
H

MPJM
READY

The inside loop is said to be nested within the outside

120 PRINT
-

'§

138 EEINP? T? I3. SIMPLE LOOP
150 NEXT N

160 PRINT

170 FOR L=0 TD 9

150 PRINT L?

190 FOR H=0 TO 9

200 IF LxHIIO THEN 220

210 PRINT
..

I; NESTED LOOPS
220 PRINT an;

230 NEXT H

240 PRINT

250 NEXT L

999 END

READY

RUNNH

HULIIFLICATION TAHLE

O 1 2 3 4 5 6 7 a 9

8 10 12 14 16 16

S 12 16 20 24 28 32 36

15 20 25 30 35 40 45

12 18 24 30 36 42 48 54

14 21 2B 35 42 49 56 63

16 24 32 40 4B 56 64 72

e

m

N

o

m

a

u

n

u

0

0000000000 0

m

u

a

m

a

u

m

H

o

H o

READY

loop.

When loops are posted. the inside loop must _be (Lines 200 and 210 In the above program were

completely contaIned Wlthln the body 0' the °Ut$lde included to format the output so that all numbers

|'00p. appeared in straight columns.)

3-30

x/m\,

/'""\

Exercise 38. Complete the following program by

specifying “C” or “Y” as the index for each of the

the computer to go to the statement following the

NEXT statement.

FOR-NEXT loops. When completed properly, this 0 When loops are nested, the inside loop must be

program will graph the equation in line 120. contained totally within the body of the outside

loop.

100 F'CJR‘ I: ::::----":_:j T [I] '55; The next section introduces another way to enter data

to a program and two more ways to name variables.

110 F'Fx‘ INT

Ii. 2’. 0 I... if. T X ==:: Y 1:3

1350 FOR U ;::;....;5{=_-; TC] 136

140 IF Ckx THEN 1?0

150 PRINT
u

u;

160 NEXT |:|
1'70 F'li’cIN'l' ">l<".3

180 NEXT El

999 lSElNIZI

Run the completed program, changing the equation in

line 120 to produce different graphs. For example,
these equations will produce graphs that fit on the

screen:

120 LET X3=:(Y"‘l'5 '1/4

120 |...|EIT X====7>I<Y

120 l...|EEIT X====13>l< (Y"?) ~30

>5) "-

LOOKING BACK

This section has introduced the technique of creating
loops with the FOR and NEXT statements.

Remember these things:

0 A loop made with the FOR and NEXT statements is

usually at least one statement shorter than a similar

loop made with the IF statement.
-

o The FOR statement defines a set of values for the

loop index by specifying the initial, terminal, and

step values of that index.

0 The body of a loop is executed once for each

member of the set defined by the FOR statement.

0 Every FOR statement must have a corresponding
NEXT statement which uses the same index

variable.

o If not specified, the STEP value of a FOR—NEXT

loop is assumed by the system to be +1.

0 The NEXT statement causes the body of the loop to

be executed again, using the next member of the

set. However, if all members of the set have al-

ready been used, then the NEXT statement directs

3-31

50 PRINT X1Y1Z1H

60 GOTO 30

'90 DATA 66181175

92 DATA 91188195

94 DATA 78173162

. X, Y, AND Z DENOTE THESECTION 3 H
FIRST, SECOND, AND THIRD

SCORE. M IS THE AVERAGE.
SUPPLYING LARGER AMOUNTS OF DATA

THE READ AND DATA STATEMENTS

When programs require a large amount of data, it is

sometimes more convenient to use a data table than

to supply the data through INPUT or LET statements.

A data table is created by using DATA statements,
and this data is entered into the program by means of

READ statements. The following program is a

modification of the program on page 3-13 that

calculated the area of a circle, and demonstrates the

use of a data table.

LISTNH

15 PRINT 'RADIUS'1 'AREA'

17 READ 5' ‘— THIS IS A READ STATEMENT.
20 PRINT R1 3.14xR"2

30 GDTO 17

4o DATA 12.21 17.3. 29.6<— THISISA DATA STATEMENT.
99 END

READY

RUNNH

RADIUS AREA

12.2 467.357

17.3 939.77

29.6 2751.14

HERE ARE THE RESULTS.

THIS MESSAGE MEANS

THAT THE COMPUTER HAS

READ ALL THE DATA.

DA AT LINE 00°17‘—

READY

The statement:

17 READ R

tells the computer to read one value of R from the list

of values in the DATA statement. Each time the READ

statement is executed, the computer reads the next

value from the DATA statement. In other words, the

computer remembers what value should be read next.

If there is no more data to be read in the DATA
' H H

statement, the computer prmts the DA message

and stops automatically.

Here is another example using the READ and DATA

statements:
'

Four students have each taken three quizzes. Their

scores are:

First Score Second Score Third Score

First Student 66 81 75

Second Student 91 88 95

Third Student 78 78 62

Fourth Student 80 83 86

The following program computes the average of the

three scores for each student:

LISTNH

10 PRINT 'FIRSI'1'SFCUND'1“THIRD'

20 PRINT 'SCURF"1'SCORE'1'5CHRE'1"AUERAGE'

30 READ X1Y12

40 LET H=(XIYI7)/3

96 DATA 80183186

99 END THIS IS THE DATA TABLE.

READY

RUNNH

FIRST SECOND THIRD

SCORE SCORE SCORE AVERAGE

66 81 75 74

91 88 95 91.3333

78 78 62 72.6666

80 83 86 83

DA AT LINE 00030

READY

THE AVERAGES OF THE

THREE SCORES ARE IN THIS

COLUMN

Data statements are not executed by the computer,
but simply place data in the computer’s memory to be

supplied when a READ statement is executed.

Therefore, DATA statements may be placed anywhere
within a program. If they are encountered during
program execution, the computer ignores them and

goes to the next executable statement. DATA

statements do not appear in a flowchart, and the

READ statement is represented as a process. The

above program would be flowcharted as follows:

START

PRINT

COLU M N

TITLES

READ DATA FROM

DATA TABLE

I

COMPUTE

AVERAGE I

PRINT

SCORESAND

AVERAGE

Exercise 39. Modify the above program to compute
the average of any number of scores and display a

table like this:

Number

of scores Average

3 89

_5 74.4

3—32

V

/‘“‘\

4

”N

Hint: Use a separate DATA statement for each set of

scores and let the first number in the DATA statement

indicate the number of scores in the set. Read this

number and then use it as the terminal value in a

FOR-NEXT loop. Sum the scores by using a

statement of the form:

60 LETS=S+T

where S is the sum of the scores and T is an individual

score.

Run your program using the following data:

Scores

First Student 82 88 97

Second Student 66 78 71 82 75

Third Student 82 86 100 91

Fourth Student 72 82 73 82

Fifth Student 61 73 67 8O 84 79

Exercise 40. Modify the program that you wrote for

Exercise 39 so that it will read all the sets of data to be

averaged and then stop. Do this by adding a special
data code, for example, “-99999,” that signals the end

of the data table. Then draw a flowchart for your final

program.

String data may also be entered through DATA

statements. When this is done, however, the string
data must be enclosed in quotes (“). For example,

90 DA TA “ONE", 1, “TWO”, 2

Although numerical and string data can be included in

the same DATA statement, you must make sure that

the numbers are read into numerical variables and the

letters or words are read into string variables. For

example, the following statement could be used to

read the deta in statement 90 above:

130 READ A3, A, B3, B

but this statement could not:

10 READ C3, 03, C, D

The following program uses both numerical and

string data:

LISTNH

10 PRINT I'NAME'; 'AUERAGE"

20 PRINT

30 READ N$

40 IF N$='END»UF~DATA" THEN 99

50 READ XrYyZ

60 PRINT Nfiy (X+Y+Z)/3

70 GDTD 30

BO DATA 'HILLEL'166181y7E

82 DATA 'JESSE'V91vBBy95

B4 DATA 'JD'yBOySEyfié

86 DATA “STAN'y7sy78162

BB DATA 'END‘DFnflATA'

99 END

READY

RUNNH

NAME AVERAGE

HILLEL 74

JESSE V1.3333

JD 83

STAN 72.6666

READY

The general form of the READ statement is:

line number READ list of variables

For example:

10 READ X, Y$,Z

line number—f

READ

list of variables

THE VARIABLES ARE SEP—

ARATED BY COMMAS.

The general form of the DATA statement is:

line number DATA list of data values

For example:

90 DA TA 66,81, 75, “DOUGLAS"
‘N-n--.u-Illll‘flllllll-IIIIIl’

line number—1
DATA

list of data values

The READ statement directs the computer to read one

value from the DATA statement for each variable in

the READ statement.

If there are two or more DATA statements in a

program, the values in the statement with the

smallest line number are used first, then the data in

the statement with the next smallest line number and

so on.

All the data in a program are considered together as a

single data table.

The following three sets of DATA statements are

equivalent:

90 DATA Rvfiyéyay12y15y19y2?y33v26y47y59

90 DATA 213yé

91 DATA Bylfly15119y2

92 DATA 33y26v47yfi?

90 DATA ByfiyévSvlflylfi

91 DATA 19yfl7v33y26y4?y5?

THE RESTORE STATEMENT

The RESTORE statement allows you to reuse DATA

statements, beginning with the lowest numbered

DATA statement in the program. An example of the

use of the RESTORE statement is shown on the

following page:

3-33

LISTNH

10 DATA 27316

20 DATA 8112

30 READ AVE 1D1E

40 PRINT AVDVC?D;E

50 RESTORE

60 READ FIG

70 PRINT FIG

99 END

THE RESTORE STATEMENT

AT LINE 50 ALLOWS THE

READ STATEMENT AT LINE

60 TO OBTAIN VALUES FROM

THE DATA STATEMENT AT

LINE 10.
READY

RUNNH

2 3 6 B 12

2 3

READY

You can think of the computer as working with DATA

statements by maintaining a pointer in the data table.

Each time a value is read, the pointer is advanced to

the next data value so that the computer knows which

value to read next. The RESTORE statement resets

the pointer to the beginning of the data table. Without

the RESTORE statement in the above program, the

“DA” error message would have occurred when

CLASSIC tried to execute line 60, because all of the

data in the data list would have already been read (the
pointer would have been at the end of the data table).

Exercise 41. Write a program to decode messages
written with numbers representing letters of the

alphabet. For example,

20,8, 9,19, 32, 9, 19, 28, 20, 8, 5, 34,4, 5, 3, 15,
4, 5, 4, 37, 13, 5, 19, 19, 1, 7, 5, 0

would be:

THIS IS THE DECODED MESSAGE

Note that any number over 26 represents a blank and 0

indicates the end of the message. Numbers 1 through
26 indicate the corresponding letters of the alphabet.

HINT: Receive the coded input via an INPUT

statement, checking for the end of the message after

each input. Use the code number to control how far a

data table containing all the letters of the alphabet is
ot;<:rt\lu¢3rl carurl [\nniruuli +l\zn Igniiznr ¥I\uur\ri E3¢3¢13+ +|1¢3 rlcx+c
uLuaIuIIU\A ullu Llulrlul lIIU IUllUI ILJuIlu. IIChJUt tIIU unata

table pointer after each search with the RESTORE
statement.

ERROR MESSAGES

Error messages are very common occurrences. They
can be caused by typing errors or problems in

program execution. Most errors are easily corrected.

When working with a BASIC language program, the

computer tries to help you find your errors by printing
a code indicating the type of error and the line in

which it was found. A complete table of all the error

messages that CLASSIC generates is given in

Appendix E of the CLASS/C User's Reference Guide.

Perhaps you have already seen some of these error

messages when you ran programs previously or made

mistakes in entering monitor and editor commands.

Program error messages are usually of the form

XX AT LINE YY

OI’

XX YY

where XX is the error code, and

YY is the number of the line in which the error

occured.

To understand these errors, look up their codes in the

Reference Guide and correct the problem in your

program.

Exercise 42. For each of the following statements,
write the reason for its error (if any) on a separate
piece of paper. If you do not think that a statement

will cause an error message, try it out on your

computer.

Incorrect Statement Reason

10 READ, A,B,C
20 READ, XY

30 REED P,Q,R,S,T
40 READ A+ B

50 READ |;J;K
60 READ AA,BB
70 READ ABC

80 READ 3.14

120 DATA 1 /2,2/3,3/4
130 DATA A,B,C,D,E
140 DATA, 3.7,2.9

Error messages for monitor and editor commands are.

usually more informative. However, detailed explana-
tions of these messages are also given in Appendix E

of the Reference Guide to help you understand them.

Each message in Appendix E is followed by a solution

code referring to an entry in the table in Appendix
F. This solution code table suggests actions that

can be taken to correct the error.

OTHER VARIABLE NAMES

So far, you have used only the letters of the alphabet
to name variables. Thus, you have been limited to‘ 26

numeric variables (A through 2) and 26 alphanumeric
variables (ASE through. 23:). These have probably been

enough names for you to use, but perhaps you had to

use letters to stand for values that didn’t quite match.

For example, if you used S for “score”, you couldn’t

use it for “sum" and “student number” in the same

program.

CLASSIC allows you to combine a single digit with a

letter to name a variable. For example,

SO S1 S2 N1$ N9$
Thus you can now name up to 286 numeric (A-2 and

A0-29) and 286 alphanumeric (A$-Z$ and A0-29)
variables in a single program.

When a letter and a digit are combined in a variable

name, the letter must precede the digit.

The following are not valid variable names:

CC 3G$ PX$ $A0

2J 77 42$ L$5

A modification of the averaging program on the

preceding page is shown below. This version

demonstrates the use of combination variable names.

N1$ is the student’s first name, N2$ his or her last

3-34

/‘m\

/‘:N\

/’""'\

/""\

name, S1, 82, and $3 the three scores, and M the

arithmetic mean or average.

10

20 -. 5 iQySH

30
'

Mfli$1f

40 PRINT NE$$ "v"; Nlmy M

50 NEXT K

60 HATA "DUUG"V"CA

70 DATA "JANE“v“

$0 HATA "MAWN"9"HU

90 HATA “RUTH“v"$M

99 END

READY

luff -.

s5; M :l: 'r H , I52 u TH

REAHY

SUBSCRIPTED VARIABLES

A third way to name variables is by using subscripts.
A subscript in conventional form looks like this:

X

LThis is a subscript.
The symbol “X3” is read “X sub 3.”

ln BASIC, subscripted variables are written in a

slightly different way. Here is a BASIC subscripted
variable:

X(3)

This is a subsCript—J
“X(3)” is read “X sub 3”.

The subscripted variables X(1), X(2), X(3), etc., each

correspond to a location in the computer’s memory

just like simple variables:

X(3) Exm Cl X(2) E

Subscripted variables have two advantages over

simple and combination variables. First, you may use

subscripts outside the range of 0 to 9, for example,
X(34), by using the DIM statement (this will be

explained toward the end of this section). Second,

you may refer to a subscripted variable using a

variable as a subscript:

Subscripted

variable—1
X(K)

ariable subscript
lf K=1, X(K) is X(1).
if K=2, X(K) is X(2).
lf K=3, X(K) is X(3).

The set of data [X(1), X(2), X(3), etc.] is referred to as

a list.

A list is made up of all the subscripted variables that

have the same variable name.

Exercise 43. Using the data shown below, complete
the table of values for the subscripted variables

shown.

A(1) fl 3(1) 3.7 I

A(2) E 3(2) .92 J E
A(3) 3(3) 3 K a
A(4) 0(2) 4 x

.Subscripted Subscripted
Variable Value Variable Value

A(1) 8 A(2*l) _

AU) 8 A(I+J) _

A(K) _ A(I+2) _

A(X) A(2*J-1)
B(|) _ A(X-3) _

B(3) _ A(X-K+J) __

B(J) __ A(J‘K-X) _

C(J) _ A(C(2)) _

3(1 + I) A(B(C(2)-1))

The following rules apply to the use of subscripts and

subscripted variables:

(1) A subscript may be a number, a numeric variable,
or a numeric expression.

(2) The value of a subscript must not be negative. If it

is, an FM error message will be displayed and the

program will Stop.

(3) if the subscript is not a whole number, the com-

puter uses the whole number part of the sub-

script. For example:

X(3.7) is the same as X(3).
lf K=2.9, P(K) is P(2).

(4) The computer permits a subscript value of zero.

For example, the following program will display
the number 15.

10 LET A(0): 15

20 PRINT A(0)

30 END

Exercise 44. Following are two sections of a program.
Write down the values that will be stored in each

variable location after these statements have been

executed.

3-35

10 FOR N=1 TO 4 [9(1) [9(3)
20 LET P(N)=2 /\ N P(2) P(4)
30 NEXT N

F(1) F(4)
70 LET F(1)=1 F(2) F(5)
75 FOR K=2 TO 6 F(3) F(6)
80 LET F(K) = K*F(K—1)
85 NEXT K

A use of subscripted variables is demonstrated by the

next example. This program “sorts” numbers by
placing them in order from lowest to highest. Notice

the structure of the two FOR-NEXT |Oops at lines

170-240 and 180-230.

LIS TNH

100

110

120

I30

140

150

160

170

180

190

$3()()

PRINT "UNEORTEH HRTAI"

EUR KwL TU 10

REGH N(K)

PRINT N(N)9

NEXT N

PRINT

PRINT

EUR KIWI T0 9

FUR NEWKI+I TU 10

IP N(KI)£mN(NR) THEN 230

LET TWN(NI)

310 LET N(K1)flN(KE)

220 LET N(NE)WT

230 NEXT N2

240 NEXT N1

250 PRINT "SORTED HGTQI"

260 EUR NW1 TU 10

270 PRINT N(K)?

280 NEXT K

500 HfiTfi 669YEyEPyEEy77vfl5y4flyvflyé7v73

999 ENH

REGHY

RUNNH

UNSURTEH HHTR?
6) 6 75 $9 93 77 RE 48

SURTEH UGTGI

48 59 66 6? 75 ?7 78

REQHY

A flowchart

85 92 93

for this program appears below.

This flowchart uses connectors (letters within circles)
to direct program flow to distant points.

START

PRINT "UNSORTED"

MESSAGE

L
READ AND PRINT VALUES

OF LIST N IN ORIGINAL

3-36

I,

lNITlALlZE FlRST COUNTER

(K1)T01

®——-l
IMTMLEESECOND

COUNTER

(K2) T0 K1 + 1

NO

YES

0

AsmGNVALUEOF

mKnTot

I
ASSIGN VALUE OF

N(K2) TO N(K1)

I
ASSIGN VALUE OF

TTO N(KZ)

<5

$3
INCREMENT

Y1KZB

INCREMENT

K1 BY1

NO

PFIINT

"SORTED"

MESSAGE

l
PRINT SORTED VALUES OF

LIST N

/“’“’\

”N

l/fl“\\
/

/

Exercise 45. Using the program on the previous page
as a model, write your own program to “invert” a list

of 10 numbers. That is, given the list:

23 4 35 32 19 7 26 8 14 13

your program should output:

13 14 8 26 7 19 32 35 4 23

Use a FOR-NEXT loop and subscripted variables to

perform the inversion.

LARG ER DATA SETS

You may use subscripts with values from 0 to 10 for a

variable in any program (A(O) through A(10)). If you

wish to use values greater than 10 you must specify
the largest value that your subscript will have by
using the DIM (dimension) statement.

Look what happens if you try to use 11 as a subscript
without dimensioning a list:

LIETNH

10 LET A(10)=110
. .

20 PRINT ~10) LIne 30 uSBd a subscript of
3° LET fi(11)=111~—

40 PRINT R(ll) 11 u u u

99 END

READY

RUNNH

110

. . . and an error message was

printed.
5U RT LINE 00030—

The following program adds the DIM statement:

LISTNH

5 DIN A(ll)

10 LET fi(10)=110

20 PRINT A(IO)

The DIM statement at line 5

tells the computer that the
30 LET A(11)=111

40 PRINT M11) subscript Of A Will be at most
99 END

11 .

READV

“3T2"
‘— Now the program works as

111 desired.

RERDV

If you don’t mention a subscripted variable in a DIM

statement, the computer assumes that its subscripts
will not exceed 10 in value.

A DIM statement has the following general form:

line number DIM list of subscripted variables

For example: 10 DIM A(20),B(30)
—,_4

line number ——t 1
DIM

list of subscripted
variables

The above DIM statement tells the computer that:

The value of any subscript of A must not exceed 20.

The value of any subscript of B must not exceed 30.

Exercise 46. Modify the program on the previous page
to sort up to 100 numbers. Enter the number of

numbers to be sorted as the first item in the data table
- and use a READ statement to assign it to a variable.

Then construct numerical expressions that use this

variable to specify the terminal values of the indices

of the FOR-NEXT loops.

TWO-DIMENSIONAL DATA SETS

Sometimes it is convenient to organize a set of data

into a two-dimensional matrix or array. Arrays are

made by using variables with two subscripts. For

example,

30 LET A(4,9) = 14

Each variable in an array is called an array element.

The first subscript corresponds to the row number of

the element and the second to its column number. An

array dimensioned with the statement:

15 DIM A(3,4)

can be thought of as existing in the following form:

COLUMNS

A01 2A03A04

A1 A11A12A13 ,4

20 A21 A 2 23 24

o 31 32 3 4

ROWS

This array has 4 rows and 5 columns. Note that this is

one more than the numbers of rows and columns

specified in the DIM statement because the number-

ing begins with 0 rather than 1.

A two—dimensional array provides the easiest method

for tallying survey or test data and recording how

many people responded to each available option. For

example, imagine that you had an eight-question
survey with four possible responses to each question
coded as 1, 2, 3, and 4. The response sheet for this

survey might look like this:

Survey Response Sheet

Directions: Circle the code numbers corresponding to your

responses for each question.

(1) 1234 (5) 1234

(2) 1234 (6) 1234

(3) 1234 (7) 1234

(4) 1234 (8) 1234

The following program tallies the number of people
choosing each response for each question:

3-37

LISTNH

100 DIH T(314)

110 FDR h1=1 TD 9

120 FOR K2=l TD 4

130 LET T(K11K2):U INITIALIZING

ROUTINE
140 NEXT K:

150 NEXT kl

160 REAU N

170 FDR K1=1 TO N

130 FUR h?=| TD 3

190 READ R

300 LET TIKEIR):I(R?IRII1

310 NEXT K2

220 NEXT K1

TALLYING

ROUTINE

230 PRINT 'NUESTIDN'yy'RLSFUNSFS'

240 PRTNT r'l'y'Z'v'l'v'Q'

250 FOR h1=l Tu a

260 FRINT Klv

270 FOR Nazi Th 4

:60 PRINT Tlhl-h2)r

29o NExr x:

300 NEXT h]

OUTPUT

ROUTINE

Boo nATA 5

510 nATn 2.1V

Syo BATA 1,1.

530 DATA 2v1r

540 DATA 3,3,

:50 para 4.4.

999 ENn

READY

RUNNH

QUESTION

a:\D~L'tbL-HJH HMO—JHOVJD— —r.\ouoo-A roar-oa—o r-‘Oi-‘oaaoi—
READY

The above program uses three pairs of FOR-NEXT

loops. The first nested loop initializes the values of all

the subscripted variables to zero. The second tallies

the responses by reading a response (Ft) to a specific
question (K2) and then using that response as the

column subscript in the LET statement in line 200.

The third nested loop simply outputs the response
data in a format that will fit on the CLASSIC screen.

Notice that the “zero” elements (T(0,0), T(0,1), T(1 ,0),
etc.) were not used in the above program. If you
needed to conserve memory space in a very large
program, you could make use of these zero elements

and dimension array T as (7,3).rather than (8,4). You

would then have to change the values of the indices in

the loops as well. Alternatively, you might use the

zero elements to store the number of people who did

not respond to a specific question.

Exercise 47. Write a program to tally results on an

eight-question multiple-choice test with three

possible responses for each question. Output for

each question the number of students who responded
correctly, the number who responded incorrectly, and

the number who did not respond. Use the above

program as a model and store your response data in
a two-dimensional array. You will need two types of

data in your program, the correct responses as well as

the students’ responses. Enter the correct responses
into a one-dimensional data list using HEAD and
DATA statements. Use the following data to test your

program (0: no response):

Question Number: 1 2 3 4 5 6 7 8
Correct Response: 2 3 3 2 1 2 1 3

Response to Questions

Student 1 2 3 4 5 6 7 8

A 2 1 3 0 3 3 2 2

B 2 3 3 2 1 1 2 2

C 1 3 2 3 1 2 0 0
D 2 1 2 1 3 2 3 3

E 2 2 3 0 1 3 3 2

F 2 3 2 1 3 2 0 2

G 1 3 3 2 1 3 1 0
H 2 1 2 0 0 1 3 3

| 2 2 3 1 1 2 3 2

J 2 3 2 3 3 2 3 1

LOOKING BACK

You have now learned three ways to supply data to

programs: through LET statements, INPUT state-

ments, and FtEAD/DATA statements. Each of these

has advantages and disadvantages, and thus each

has different applications:

0 The LET statement is the most flexible because the

values of expressions can be assigned to specific
variable locations. However, one statement is

needed for each assignment.

0 The INPUT statement allows you to enter data

while a program is running. It is the easiest way for

other users of your program (besides yourself) to

enter data because it does not require that actual

BASIC language statements be changed. It is,
however, relatively slow.

0 The FtEAD/ DATA statements provide the fastest

way for entering a large amount of data but they are

relatively difficult to correct if they contain an error

(the entire DATA statement must be retyped). Data

statements take up room in the computer’s memory
and may not include any expressions that have to

be evaluated.

You also know three ways to name variables: with a

single letter, with a single letter followed by a single
digit, and with one or two subscripts.

You can now write sizeable BASIC language
programs. As your programs get larger and larger,
they become more and more difficult to follow and

understand, both for you and for anyone else who

wishes to use y0ur programs. The next section

introduces some ways to organize your programs so

that they will be easier to follow.

3—38

r53
/

r\

/“\

SECTION 3-I

ORGANIZING YOUR PROGRAMS

ADDING COMMENTS TO YOUR PROGRAMS

The sample programs that are being discussed are

getting longer and longer. Flowcharts have been used

to make programs easier to understand, and

rectangles have been used to make the listings easier

to follow. You can make your programs easier to

follow by adding comments or remarks to name and

separate the major sections and explain things that

might confuse the reader.

The REM statement is ignored by the computer and

can be used to add remarks to a program.

When the computer encounters a REM statement, it

simply skips over it.

The program below is identical to the program on

page 3-38, but REMarks were added to make it

more readable. Note that any comment may
be typed after the letters “FIEM”—the entire line is

ignored by the computer.

LISTNH

40 REM *** TALLY

50 REM

60 REM THIS PROGRAM TALLIES THE NUMBER OF PEOPLE

70 REM CHOOSING EACH OF 4 RESPONSE FOR EACH OF 9

BO REM QUESTIONS.

90 REM

100 DIM T(By4)

102 REM ARRAY 'T' STORES THE TALLY COUNTS

104 REM

106 REM *** INITIALIZING ROUTINE

108 REM

110 FOR K1=1 TO B

120 FOR K2=1 TO 4

130 LET T(K17N2)=0

140 NEXT N2

150 NEXT K1

155 REM

160 READ N

162 REM "N' IS THE NUMBER OF SURVEYS TO BE TALLIED.

164 REM

166 REM *** TALLYINB ROUTINE

158 REM

170 FOR N1=1 TO N

180 FOR N2=1 TO B

190 READ R

195 REM 'R' [S A RESPONSE TO QUESTION NUMBER 'K2'.

200 LET T(N2rR)=T(K2vR)+1

210 NEXT N2

220 NEXT K1

223 REM

225 REM *** OUTPUT ROUTINE

227 REM

230 PRINT 'QUESTluN'IIIRESPDNSES-

240 PRINT r'1"y"2"y"3'y'4'

245 REM

250 FOR K1=1 TO B

260 PRINT N11

270 FOR K2=1 TD 4

230 PRINT T(N11K2)y

290 NEXT N2

300 NEXT RI

470 REM

480 REM **X

490 REM

500 DATA 3

503 REM THE FIRST DATA ITEM INDICATFS THE NUMBER OF

505 REM SURVEYS TO BE TALL1ED> THE ACTUAL RESPONSES

507 REM GIVEN FOLLOW BELOW:

510 DATA 2v1y4y411137114

S20 DATA 111y3y4y21411y3

530 DATA 211v4147113 ,3

540 DATA 2h2v41471731h11
550 DATA 473-4v1y3y31212

999 END

DATA TABLE

READY

Exercise 48. Add REMarks to the program that you
wrote for Exercise 47 to make the program easier to

follow and understand. Run your modified program to

assure that it still works correctly.

CHANGING THE LINE NUMBERS

IN YOLIR PROGRAMS

As programs become modified and. remarks are

added, you often find that you run out of line numbers

with which to add new statements. For example, it

would be difficult to add another routine between

lines 160 and 170 in the TALLY program at the left

because most of the intervening lines numbers have

already been used.

CLASSIC has a special program to resequence the

line numbers in a program. This program is stored in

the file RESEQ.BA on the system disk. To use this

program, you must first store your own program on a

disk with the editor SAVE command. For example,

SA VE RXA 1:TALL Y. BA

You can then call RESEQ into your workspace with

the command:

OLD RESEQ

When you run RESEQ, the program will first ask you

the name of the file you wish to resequence by
printing:

FILE?

Respond to this query by entering the complete
device, file name, and extension of your program (no
defaults are assumed). For example,

FILE? RXA1:TALLY.BA

FIESEQ will then print:

START, STEP?

and wait for you to enter the number that you wish

your program to start with and the difference that you
want between each successive line number (your
entries must be separated by a comma).

A complete example of this procedure is shown

below. (The workspace originally contained the

program shown at the left.)

SAVE RXA'I.I'I'AI...|...Y.I{tA
THE USEFI INDICATES THAT

RESEQ SHOULD START WITH

“WHY,“ _.

LINE NUMBER 100 AND USE
E)L.I.I RESEQ AN INCREMENT OF 10 BE-

RFAXIY
TWEEN LINE NUMBERS.

RIJNNH WHEN THE READY MEs-

FILEE’E’RXAZI.:‘I'Al...LY.f.IA SAGE REAPPEARs, YOUR

START yS'I"|':”.F"i’:I.()t.)y :l.() PROGRAM WILL HAVE BEEN
—‘

RESEQUENCED.

READY

To read your original program back into the

workspace, use the editor OLD command:

OLD RXA1: TALLY. BA

The listing on the following page shows the program

at the left after it was resequenced.

When a program contains references to line numbers

(such as GOTO and IF statements), the RESEQ

program automatically changes these references to

correspond to the new line numbers.

3-39

LISTNH

100 REM **I

110 REM

120 REM

130 REM

140 REM

150 REM

160 DIM T(a.4>

17o REM ARRAV -r-

180 REM

19o REM ***

zoo REM

210 FOR R1=1 T0 8

220 FOR R2=1 r0 4

230 LET T(K17K2)=0

240 NEXT R2
'

250 NEXT K1

260 REM

:70 READ u

TALLY

THIS PROGRAM TALLIES THE NUMBER OF PEOPLE

CHOOSING EACH 0F 4 RESPONSE FOR EACH OF R

QUESTIONS-

STORES THE TALLY COUNTS

INITIALIZINU ROUTINE

280 REM 'N'

290 REM

300 REM *l*

310 REM

320 FOR N1=1 TO N

330 FOR Kfl=1 TD 8

340 READ R

350 REM 'R' IS A RESPONSE TO QUESTION NUMBER 'NZ'.

360 LET T(NErR)=T(KEsR)+1

370 NEXT N2

380 NEXT R1

390 REM

400 REM *l*

410 REM

420 PRINT 'OUESTION":V'RESPONSES'

IS THE NUMBER OF SURVEYS TO BE TALLIED.

TALLYING ROUTINE

OUTPUT ROUTINE

430 PRINT r'l'y'2“y'3'y'4'

440 REM

450 FOR K1=1 T0 8

460 PRINT N1:

470 FOR K2=1 TD 4

450 PRINT T(NIyK2)v

490 NEXT N2

500 NEXT K1

510 REM

520 REM ill DATA TARLE

530 REM

540 DATA 5

550 REM THE FIRST DATA ITEM INDICATES THE NUMBER OF

560 REM SURVEYS T0 DE TALLIED. THE ACTUAL RESPONSES

570 REM GIVEN FDLLUH DELOU:

580 DATA 2vlr4y4v173y114

590 DATA 1v1131412147113

600 DATA 2111414111311rd

610 DATA 21214y4y113y211

620 DATA 413v4yly3y3-272

630 END

READY

The RESEQ program can be used only with BASIC

language programs that contain 350 or fewer lines.

Any attempt to resequence a larger program will

result in an error message. The RESEQ program may
take as long as 10 or 15 minutes to resequence a large
program, so you should not terminate it prematurely.
As long as the disk drives continue to click, RESEQ is

operating properly.

Exercise 49. Enter the following program into your

workspace and store it on RXA1. Then use RESEQ to

resequence the line numbers so that they begin with

1000 and have an increment of 10. Run the program
before and after you resequence it to make sure that it

works. Do not forget to SAVE this program before you
OLD RESEQ, or you will have to enter it again.

10 READ N

30 IF NfiO THEN 90

35 IF N=0 THEN 72

50 FOR K=1 TO N

60 PRINT 'X';

70 NEXT N

71 GOTO 10

72 PRINT

73 PRINT
‘

'F

74 GUTO 10

90 FOR N=1 IO —N

100 PRINT
'

'i

140 IF Nk-EO THEN 10

150 PRINT 'PRESS RETURNI';

155 INPUT AS

200 DATA "5161—1717101hlv4r-14y4v~51410

205 DATA —114y~13v3y_813r01-1v4v—515v-3131—81370

210 DATA ”1Il4r'3r41—574!0715r—5r710

215 DATA 67—4151—311510r“2v37“672!—6r4y—6v410

220 DATA -3'3r~4v21-718101-4731-2’27-8v510

225 DATA -5y51-9r4r-6v4rOy—6ySy-9y151—20

999 END

MULTIPLE STATEMENTS ON ONE LINE

There is one more technique that you can use to

organize your programs: writing more than one BASIC

statement on a single program line. To do this, you

simply need to separate your statements with a

backslash (\). This key is next to the LINE FEED key.
Only the first statement in the line has a line number.

For example, the following line:

40 INPUT A \ PRINT A *12

is equivalent to:

40 INPUT A

50 PRINT A *12

You can only branch to the first statement in any

program line.

The message “try again” could not be printed by the

following statement:

60 IF A$='YES' THEN 130 \ GDTD 200 \ PRINT 'TRY AGAIN'

because the execution of this statement will always
stop before the PRINT statement is encountered.

There is no way that the program can get to the PRINT

statement without first hitting GOTO 200. For this

reason, SOTO statements shoutd atways be last if

they are used in a multiple-statement line.

The use of multiple statements has both advantages
and disadvantages. On the plus side, the technique
saves space in the computer’s memory and on your
disks by eliminating the need for some statement

numbers. This can allow you to write larger programs.
The technique also makes some statement groups

(like small FOR-NEXT loops) easier to identify. On

the minus side, errors are harder to correct with

multiple statements on a single line because you
must retype the entire line. Also, complicated
formulas are often confused if several are typed on

the same line. The use of this technique therefore

involves some “give-and-take”. It is generally a good
idea to avoid multiple statements until all the “bugs”
(programming errors) in your program have been

found and corrected. Then go back and merge your
statements to save space.

The following program demonstrates the use of

multiple statements per line to shorten the TALLY

program.

3-40

(I

{a
‘\

.flX

/"\

.w
100 REM *** TALLY

110 REM

120 REM THIS PROGRAM TALLIES THE NUMBER OF PEOPLE

130 REM CHOOSING EACH OF 4 RESPONSE FOR EACH OF 9

140 REM QUESTIONS.

150 REM

160 DIM T(B14)

170 REM ARRAY 'T' STORES THE TALLY COUNTS

180 REM

190 REM *** INITIALIZING ROUTINE

200 REM

210 FOR K1=1 TO B \ FOR N2=1 TO 4 \ LET T(N11N2)=0

240 NEXT N2 \ NEXT K1 \ READ N

230 REM 'N' IS THE NUMBER OF SURVEYS TO BE TALLIED.

290 REM

300 REM *** TALLYING ROUTINE

310 REM

320 FOR K1=1 TO N \ FOR N2=1 TO B \ READ R

350 REM 'R' IS A RESPONSE TO QUESTION NUMBER 'K2'.

360 LET T(K21R)=T(K21R)+1 \ NEXT K2 \ NEXT K1

390 REM

400 REM iii OUTPUT ROUTINE

410 REM

420 PRINT 'GUESTION'11'RESPONSES' \ PRINT 1'1'1'2'1'3'1'4'

440 REM

450 FOR N1=1 TO B \ PRINT N11 \ FUR K2=1 TO 4

480 PRINT T(K11K2)1 \ NEXT K2 \ NEXT N1

510 REM

520 REM *** DATA TABLE

530 REM

540 DATA 5

550 REM THE FIRST DATA ITEM INDICATES THE NUMBER OF

560 REM SURVEYS TO BE TALLIED. THE ACTUAL RESPONSES

570 REM GIVEN FOLLOU DELOU:

580 DATA 211141411131114

590 DATA 111131412141113

600 DATA 211141411131113

610 DATA 212141411131211

620 DATA 413141113131212

630 END

READY

Exercise 50. Use the multiple-statement-line tech-

nique to shorten the program given for Exercise 49

(page 3-40). Run the program after you have

modified it to make sure that it still runs correctly.

SUBROUTINES

REMark statements, evenly sequenced line numbers,
and multiple-statement lines all help improve a BASIC

language program without changing its actual

sequence or logic. That is, the application of any of

these three techniques to a specific program would

not change the flowchart describing how that

program will work. A fourth technique for organizing
your programs, the use of subroutines, involves

arranging the actual statements in your program in a

logical or structured manner.

A subroutine is a group of statements that might be

thought of as a separate program within your main

program. The use of subroutines offers three benefits

in BASIC language programming:

(1) Subroutines help segment, or modularize a

program so that its general structure may be more

easily followed and understood.

(2) If the same operation is performed many times

within the same program, it may be easier to

isolate that operation as a subroutine and branch

to it whenever needed rather than repeat the same

statements many times.

(3) Subroutines can be written so that they are prac-

tically little programs in themselves. For example,
the sort routine discussed on page 3-36 could

easily be made into a subroutine. Once this is

done, this subroutine could be inserted into any

program where such a sort is needed and then

“called” to perform the needed operation.

The program for Exercise 49 uses two FOR-NEXT

loops to perform the same operation: Printing a single
character repeatedly. This program might be better

structured using a subroutine:

900 REM *** MAIN PROGRAM

950 REM

1000 READ N

1010 IF NfiO THEN 1100

1020 IF N=0 THEN 1070

1023 REM

1025 REM *** N IS POSITIVE

1027 REM

1030 LET A$='X“

1040 GOSUB 2000

1060 GOTO 1000

1063 REM

1065 REM *X* N IS ZERO

1067 REM

1070 PRINT

1080 PRINT
'

'1

1090 GOTO 1000

1093 REM

1095 REM *i* N 13 NEGATIVE

1097 REM

1100 LET N=~N

1110 LET A$="
'

1120 GOSUB 2000

1130 IF Nfi20 THEN 1000

1140 PRINT 'PRESS RETURN:“§

1150 INPUT A$

1152 STOP

1154 REM

1156 REM *** DATA TABLE

1153 REM

1160 DATA -5161-1717101_1141-14141-51410

1170 DATA -1141-13131*B13101-1141—5151_3131~81310

1130 DATA -1,14,_3,4,-5,4,0,15,_5,7,0

1190 DATA éy“415!_3115YoYWLIEY—bVQY—614VM67410

1200 DATA _3131*4121-718101_4131—2121*01810
1210 DATA -5151—9141-614101-6131~91151_20

1900 REM

1910 REM *** SUEROUTINE

1920 REM

2000 FOR N9=1 TO N

2010 PRINT A$1

2020 NEXT N9

2030 RETURN

9999 END

This program has a main routine, a data table, and a

subroutine. The subroutine in lines 2000-2030 is

“called” by the GOSUB statements in lines 1040 and

1120.

The GOSUB statement calls (transfers control to) a

subroutine.

When a GOSUB statement calls the subroutine, the

computer goes to line 2000 and executes lines 2000 to

2020. The RETURN statement in line 2030 sends the

computer back to the line following the GOSUB that

called the subroutine.

The RETURN statement returns control to the

statement following the GOSUB statement that called

the subroutine.

When the subroutine is called by the GOSUB at line

1040, the RETURN statement causes control to

branch to statement 1060. When_it is called by the

GOSUB at line 1120, RETURN branches control to

statement 1130.

The STC3P statement at line 1145 prevents the

program from “falling into” the subroutine un-

expectedly.

The STOP statement causes program execution to be

terminated.

3-41

If a RETURN statement is encountered before a

GOSUB is executed, a GR error message will result.

Subroutines are represented in a flowchart by a

special symbol: El:l]- This symbol appears in

the flowchart of the main program to indicate that a

subroutine is called. The actual operation of the

subroutine is usually charted on a separate page. For

example, flowcharts of the program, and subroutine

on the previous page are shown below:

Main Program Flowchart

&

READ A NUMBER (N)
FROM THE DATA TABLE

PRINT-N

SPACES

SKIP TO NEXT

LINE AND PRINT

5 SPACES

PRINT"X"
N TIMES ‘I

Subroutine Flowchart

START

INITIALIZE COUNTER

TO1

PWNTCHARACTER

STOREDINAS

INCREMENTCOUNTER

BY 1

YES

NO

RETURN

Exercise 51. The following program was discussed on

page 3-36: -

100 PRINT 'UNSORTED DATA!"

110 FOR K=1 T0 10

120 READ N(N)

130 PRINT N(N)F

140 NEXT N

150 PRINT

160 PRINT

170 FOR K1=1 T0 9

180 FOR N2=K1+1 I0 10

190 IF N(K1)fi=N(N2) THEN 230

200 LET T=N(NI)

210 LET N(K1)=N(K2)

220 LET N(NE)=T

230 NEXT N2

240 NEXT K1

250 PRINT 'SURTED DATmt"

260 FOR K=1 T0 10

270 PRINT N(N)$

280 NEXT K

500 DATA 66175159193177vBEv4Bv92167r78

999 END

Note the similarity in the loops at lines 110-140 and

260-280. Restructure this programto use a subroutine

to perform the printing done by these loops.

LOOKING BACK

This chapter has introduced four techniques for

organizing your programs: remarks, evenly se-

quenced line numbers, multiple statements on a

single line, and subroutines.

Remember these things:

0 Comments may be added to a program listing by
means of the REM statement. These statements are

ignored while the program is being executed.

o The line numbers in a program may be resequenced
with the RESEQ program.

a More than one statement may be written on a single
program line by separating the statements with

backslashes (\). When this is done, however, the

program can only branch to the first statement in

the line.

0 A subroutine can be thOughi of as a “program
within a program” which is “called” by a GOSUB

statement.

0 A RETURN statement terminates a subroutine and

transfers control to the statement following the last

GOSUB statement that was executed.

o A STOP statement can be used to terminate the

execution of a program and return control to the

editor.

You now know 15 of the 25 BASIC statements

available on CLASSIC. As you write your own

programs, you will probably find it easier to refer to

the BASIC Statement Directory in Chapter 4 of the

CLASSIC User’s Reference Guide than to refer back to

this self-teaching guide. The BASIC Statement

Directory presents each individual statement and lists

the rules involved in using that statement. The

introductory pages to that chapter review the general
concepts involved in writing BASIC language pro—

grams and introduce the formats used in the

directory.

This section concludes the first self-teaching chapter
on the BASIC language. The next chapter is entitled

3-42

C“

1/“"‘\

‘//’“D\\

xx

"Advanced BASIC Programming” and explains the

advanced features Of using BASIC on the CLASSIC

system. Before you go on, make sure that you have

learned all of the statements covered in this chapter
by writing programs of your own which demonstrate

their uses. While working the computer, use the

Reference Guide to help you remember rules and

formats that you may have forgotten.

3-43

/*‘\

,r/“x

Chapter 4

Advanced Basic

Programming

SECTION 4-A

NUMERIC FUNCTIONS

A function is a special kind of subr0utine. It is similar

to a subroutine because it causes the computer to

perform a special process. It is different from a

subroutine in two ways:

(1) it is called by indicating the function name within

a numerical or string expression (it does not

require a GOSUB statement), and

(2) it requires one or more arguments.

Arguments are numeric values or strings that are

operated on by a function.

Considerthe following program. This program uses a

subroutine to find the absolute value* of a number X:

it) IlINF'U'l" K

1‘" 0 [3'1 [1] 531.] 1-3 :I. 0 (it

30 l‘i'li'tIlIN'l" X

40 li-I-lil'l'lj] 10

100 IF Kin-wt“; 'i‘l-llEEIN 121.130

:l._:l 0 l... IEEI 'l‘ X =3 X

11330 liiliEI'l'lJli'cN

9‘99" ISEINIII

lit if: A i] Y

EtlJi’lNl-l

"5’4

.4

'F'M’l

.5;

"i’ {3

RlEI—rthIiY
"

For positive numbers and zero, the absolute value of a number

is the same as that number. For negative numbers, the absolute

value of a number is -1 times that number. For example, the

absolute value of +43 is +43, but the absolute value of -18 is

+18.

Note: CLASSIC does not require the word LET in

variable assignment statements. That is, the follow-

ing statement would be equivalent to statement

number 110 above:

110 X=-X

The programs in this Guide use the word LET to be

consistent with other BASIC language systems (see
Section 5-D).

The following program finds the absolute value of X

using a numeric function:

10 INF‘UT X

30 PRINT AB€$(X)<—THIS STATEMENT PRINTS

40 GOTU 10
THEABSOLUTEVALUEOFX.

99 END

R E A [I Y

|"' U N N H

"5’ 4

The absolute value function is called by the

expression:

ABS(X)

function name

argument

The argument can be any number, numeric variable,
or numeric expression, even one containing another

function. This function is called a numeric function

because its argument is numeric and it “returns” a

numeric value.

Numeric functions may be used anywhere that a

numeric expression is allowed.

SIMPLE NUMERIC FUNCTIONS

The square root (SQR) function. In mathematics, the

symbol is used to indicate the square root

operation. In BASIC, the corresponding symbol is

SQFi(). The function SQFi(X) returns the non-

negative square root of the absolute value of X. Look

at the following example:

10 PRINT snPc4111uPceu)

20 PRINT sntha) 1$9P<w253

99 END

PUNNH

2 5

2 a

READY

Perhaps you recall that Va is used to mean the

non—negative square root of a, and— «I? is used to

mean the negative square root of a.

Here is a program to compute the two square roots of

a:

INPUT A

PPINT 30R<fiJyw$flRtfiJ

3o GUTU 10

99 END

PUNNH

T4

2 «P

T4095

54

39
0

T2

1.41421
,7 .—. --.

! to

PEfinY

II. 0

"' if} 4

0

1 . 41-41321

IF A=0 THERE IS NO NEGA-

TIVE SQUARE ROOT.

THESE ANSWERS ARE AP-

PROXIMATIONS TO THE

SQUARE ROOTS OF 2.

By using the FOR-NEXT loop, you can build your own

square root table:

4—2

10 EUR X21 TU 10

1330 PRINT XySSEJFH'X)

30 NEXT,X
99 ENH

RUNNH

1 1

2 1.41421

3 1.73205

4 2

5 2.23607

6 2.44949

7 2.64575

8 2.82843

9 3

10 3.16228

REAHY

Here is another application of the SQFi function: If

you know the lengths of two sides of a right triangle,
you can compute the length of the third side by

fl“\

applying the Pythagorean theorem. For example, 3

suppose c is the length of the hypotenuse and a and b

are the lengths of the other two sides as indicated in

the diagram below.

Given a and b, you want to compute c:

E PRINT "fi"y"B"y"fl"

10 HERD R W

20 LET C iR<fiMH+B“EJ

30 PRINT RIBIC

40 GUTU 10

50 DfiTfi 39411315v1y1

9? END

RUNNH

0 B C

3 4 5

12 5 13

1 1 1.41431

DR fiT LINE 00010

It ES: P1 1'] ‘i’

From the results, you see that:

If a=3 and b=4 then c=5

lf a=12 and b=5then 0:13

If a=1 and b—_-1 then c=1.41421

Note that the argument to the SQFi function at line 20

is a numeric expression. The computer evaluates the

expression inside the parentheses and then executes

the SQR function using the result.

./°"\

.1;\
‘.

Exercise 52. Suppose that you know the values of a

and 0. Write a program to compute and print the value

of b. Then use your program to obtain the value of b

for each of the following:

1
'

2 3.6

The sign (SGN) function. Suppose that you wanted to

write a program to output the positive square root of a

number when you input a positive number, and the

negative square root when you input a negative
number. Here is one program to do the job:

10 PR INT
"

Y [I] U R NUMB II R
"

It

$1.33 OI I N P U T III

1'53 0 I P {til} T H E: N (53C?

#4 0 I... |§E.' "l" ‘.3 ‘.I III R i' {-‘I 2'

'3' 0 [3} (II T l'.] '.P' 0

IS 0 I... E: "I" 535: === 53 III R (III '3‘

'9'0 P R I N T
"

AN SSSbJIEEI R =-'-'=
"

3553

£530 [BETTE] 10

‘9‘)" END

R E: PI It ‘I'

R U N H H

"I" [J U R NU MP- IEi' R 1’3
r31 I‘JI'EILIIIEEIR =-':= 13.".

‘f' U U R HUM .' :""‘

--':_.-
P] N SWISS. R ====

3 {'3 1.138 4 3

T [I] U R N. U M B I35. R '5'“ "‘l_
R I:. Pt II ‘T’

\l-.. A-

-A...r
-“.- _______________ on“ t. ..-L:-_

IUU Udll

.l‘t
Ile llllb plUgldlll UDIIIIQ

ll eOUI‘I lUllUllUll,

makinngI osniderably shorter in theeprocess.

The sign (SGN) function returns the value of -1 if the

argument is negative, +1 if it is positive, and 0 if it is

zero.

LIUTNH

10 PRINT "YUUR NUMBER"?

20 INPUT fl
'

70 PRINT "QNHUER m "I

80 GUTU 10

99 END

EEC-3N If {it) >I<EE$ [II R (' PI)

R E: {3, II ‘I'

R UNNII

‘Il'JUR NUI'IJII'RI’_'.".__I‘.3
I'-"-Ii\ItSLxII-IE.'I3: === ‘.I' 3 099013.".

"I" [I] U R N U I'I' II E: R ’5’ I_‘
ANSWER :z:: ---1 II. 3 441:}! 553

"f U U R N U M l?- IEEI R 'i" _L_
RE #1 IIIY

Exercise 53. When a number is squared, the result is

always positive. Write a program to output the square
of a number with the opposite sign that the number

had originally. For example, 6 should generate ~36,
and -2 should generate 4.

The integer (INT) function. The INT function returns

the value of the largest integer not greater than the

argument. For example,
10 PRINT INT(o).INHI)3I:NT(::2)3IzN'r(3.14)3INT(7.993

99 END

REAUY

RUNNH

o I. :2 :5 7

REAUY

From these results, you can see that:

lNT(O) = 0 lNT(1) = 1

lNT(3.14) = lNT(7.99) =

The INT function is best understood with the help of a

number line.

INT(2) =

Point A is at 3. The largest integer not greater than 3

is 3. Therefore, lNT(3) =

Point B is at 1 ‘.25. The largest integer not greater than

1.25 is1. Therefore, lNT(‘1.25) = 1. Notice that if X is

not an integer, the largest integer‘not greater than X is

to the left of X on the number line.
'

Point O is at -1 .25. The largest integer not greater than

-1.25 is -2. Therefore, lNT(-1.25) = -2.. Once again,
the largest integer not greater than -1.25 is to the left

of -1.25 on the number line:

-2 < -1.25

Remember these things:

0 If X is a whole number, than lNT(X) = X. For

example,

lNT(O) = lNT(1) =

INT(2) = lNT(3) =

lNT(-6) = lNT(-4)—_

o If X is a positive number, then lNT(X) is the whole

number part of X. For example,

lNT(2.99) = lNT(123.45)=123
lNT(0.75) = 0 lNT(.05) = 0

o If X is a negative number, then lNT(X) is one less

than the whole number part of X. For example,

lNT(-3.6) = - lNT(-12.4) = -

lNT(-.3) = - INT(-8.8) = -

Exercise 54. The INT function can be used to round

numbers. Enter the following program into the

computer and use it to round several values to the

nearest whole number:

10 INPUT X

:30 F'IZIZIZN'I" IN'I‘(X-I-OIE3‘)

3t) III-iiil'l'I‘Il 10

‘9‘? ENIII

4-3

Exercise 55. Modify the program in Exercise 54 to

round numbers to the nearest tenth and the nearest

hundredth. Finally, try to round a number to the

nearest ten (10, 20, 30, etc.) and the nearest hundred.

To do this, you will have to use a numerical

expression as the function’s argument and then

perform a multiplication or division on the value

returned.

Exercise 56. Let x be a 2-digit whole number. That is,
x is a whole number such that:

10$ x $99

Define a number y as follows:

y=sum of the digits of x

For example, if x=10 then y=1+0=1
if x=25, then y=2+5=7
if x=99, then y=9+9=18

Complete the following program to compute y for a

given value of x. RUN it for the DATA shown.

10 READ X

:30 LII-IT Y=[:I

30 F'R INT X r Y

40 GUTU 10

9() 139 TR 1()v].5'r£331137 14()!5’9

‘9‘? END

READY

Exercise 57. Let 2 be the number obtained by
reversing the digits of x. For example:

if x=10 then z=01=1

if x=37 then 2:73

if x=99 then 2:99

Modify the program that you wrote for the above
exercise so that the computer computes and prints

A 3the value of z insteau o. the value of y.

The next two parts of this section discuss logarithmic
and trigonometric functions, respectively. If you have

not yet studied logarithms or trigonometry, skip to

the random number function on page 4-6.

LOGARITHMIC FUNCTIONS

The logarithm (LOG) function. CLASSIC computes
logarithms to the base 9, where e=2.71828. These

logarithms are usually referred to as natural

logarithms. To display the natural logarithm of 6, you
could use the statement:

70 PRINT LOG(6)

The LOG function computes the natural logarithm of
the argument.

Very often, students begin studying logs with the
base 10 rather than the base e. Perhaps you have seen

the rule:

Iogcb
logab =

logca

Since CLASSIC computes logs to the base 9, you can

find the log of N to the base 10 by substituting
specific values into the above equation as follows:

logeN
lo M: —Q10

loge10

In BASIC, this equation would be:

10 LETL = LOG (N)/LOG(10)

where L is the log of N to the base 10.

The program below demonstrates the use of

the LOG function to create a table relating natural

and base 10 logs. The function itself is called at line

70.

10 PRINT

20 PRINT 'N'y

30 PRINT

40 FOR N=1 TD 9 STEP 1 \ GUSUH 70 \ NEXT N

50 FOR N=10 TO 90 STEP 10 \ GOSUB 70 \ NEXT N

60 LET N=100 \ GUSUB 70 \ STOP

70 PRINT Nr LUG(N)1} LOG(N)/LOG(10)
90 RETURN

99 END

'NATURAL LOG OF N'; 'LOG OF N TO THE BASE 10'

READY

RUNNH

N NATURAL LOG OF N LOG OF N TO THE BASE 10

1 0 0

2 0.693147 0.30103
3 1.09961 0.477121

4 1.38629 0.60206
5 1.60944 0.69997
6 1.79176 0.779151
7 1.94591 0.845099
9 2.07944 0.90309
9 2.19722 0.954242
10 2.30258 1

20 2.99573 1.30103
30 3.4012 1.47712
40 3.69988 1.60206
50 3.91202 1.69997
60 4.09434 1.77815
70 4.24849 1.9451
80 4.38203 1.90309
90 4.49991 1.95424
100 4.60517 2

READY

Exercise 58. Chemists measure the acidity of

solutions in units called pH (potential of Hydrogen).
The pH of a solution is equal to -1 times the log to the

base 10 of the hydrogen ion concentration:

pH = -Iog1o (hydrogen ion concentration)

Write a program which computes the pH of a solution

when you enter a concentration.

The exponent (EXP) function. The exponent function

performs exactly the opposite of the operation
performed by the logarithm function. That is, given
the argument N and using 2.71828 as e, the LOG

function finds X in the following equation:

eX= N [X= LOG(N)]

and the EXP function finds Y in this equation:

Y=eN [Y= EXP(N)]

The EXP function can thus be used to convert

logarithms back into regular numbers. This is called

taking the antilog of a number. You supply a number

,/m<~..\

//

and the EXP function will return the number whose

natural logarithm equals that number.

The program below demonstrates the use of

the EXP function to raise e to the Nth power and

the use of the LOG function to reverse the operation
of the EXP function.

100 PRINT

110 PRINT 'N'y 'EXP(N)'1 'L33(EXP(N))'1 'LDG(N)'! 'EXP(L33(N))'

120 PRINT

130 FOR N=1 T3 9 STEP 1 \ GDSUE 130 \ NEXT N

140 FOR N=10 T3 90 STEP 10 \ GDSUB 130 \ NEXT N

150 FOR N=100 T0 900 STEP 100 \ GDSUB 130 \ NEXT N

160 LET N=1000 \ GDSUB 180

170 STOP

130 PRINT N1 EXP(N): L33(EXP(N)): L33(N); EXP(L33(N))

190 RETURN

200 END

READY

RUNNH

N EXP(N) L33(EXP(N)) LDG(N) EXP(L33(N))

1 2.71323 1 0 1

2 7.33905 2 0.693147 2

3 20.0355 3 1.09361 3

4 54.5931 4 1.33629 4

5 143.413 5 1.60944 5

6 403.423 6 1.79176 6

7 1096.63 7 1.94591 7

3 2930.95 3 2.07944 3

9 8103.06 9 2.19722 3.99999

10 22026.4 10 2.30253 9.99999

20 .435162E+009 20 2.99573 20

30 .106364E+014 30 3.4012 30

40 .235332E+013 40 3.63388 40

50 .518453E+022 50 3.91202 49.9999

60 .114193E+027 60 4.09434 59.9999

70 .251537E+031 70 4.24349 69.9999

80 .554049E+035 30 4.33203 79.9999

90 .122035E+040 90 4.49931 39.9999

100 .263799E+044 099.999 4.60517 99.9993

200 .722523E+037 200 5.29332 200

300 .194219E+131 300 5.70373 299.999

400 .522047E+174 400 5.99146 399.999

500 .140335E+213 500 6.21461 499.993

600 .377210E+261 600 6.39693 599.999

700 .101400E+305 700 6.55108 699.998

300 .272534E+343 300 6.63461 799.993

900 .732614E+391 399.999 6.80239 899.998

1000 .196933E+435 0999.99 6.90775 999.993

READY

Exercise 59. Modify the program that you wrote for

Exercise 58 to convert from pH to concentration. You

input a pH, and the computer should output the

corresponding hydrogen ion concentration. (Hint:
you will need a_LOG(10) term in your expression
because the EXP function uses the base e rather than

10.)

TRIGONOMETRIC FUNCTIONS

Angles supplied as arguments to CLASSIC trigono-
metric functions must always be expressed in

radians. Radians are related to degress by the

formula:

R:'JTD/180

where R is the angle measure in radians,
D is the angle measure in degrees, and

'u'is the constant 3.14159...

A 180 degree angle, then, is the same as a 3.14159

radian angle. The program in the next column

converts degrees to radians for selected angles using
the above formula.

CLASSIC has two functions that compute trigono-
metric values, the sine (SIN) function and the cosine

(COS) function. To print the sine and cosine of an

angle (A) in radians, you could use the statement:

160 PRINT S/N(A), COS(A)

Degree to Radian Conversion

10 PRINT

20 PRINT ”ANGLE IN'r :ANGLE IN“

30 PRINT
"

DEGRE_S“r'RADIAN5“

40 PRINT

60 FOR K30 T0 360 STEP 15

70 PRINT Kr 3.14159XN/180

80 NEXT N

99 END

READY

RUNNH

ANGLE IN fiNGLE IN

DEGREES RADIAN8

0 0

15 0.261799

30 0.523598

45 0.785397

60 1.0472

75 1.309

90 1.57079

105 1.83259

120 2.09439

135 2.35619

150 2.61799

165 2.87979

180 3.14159

195 3.40339

210 3.66519

225 3.92699

240 4.18879

255 4.45058

270 4.71238

2B5 4.97418

300 5.23598

315 5.49778

330 5.75958

345 6.02138

360 6.28318

READY

To compute the tangent (T) of an angle (A), you

simply have to divide the sine by the cosine:

50 LET T: S/N(A)/COS(A)

There is also one function to go the other way, the

arctangent (ATN) function. The following statement

will print the measure of the angle A (in radians)
whose tangent is the number T:

60 PRINT ATN(T)

The program on the next page uses the SIN and COS

functions to print a table of sines, cosines, and

tangents for angles measuring between 0 and 477

radians. It then converts from the tangent back to the

original angle by using the ATN function. Note that

4-5

Trigonometric Functions

100 PRINT

110 PRINT 'ANGLE'y 'SINE'! 'COSINE'r 'TANGENT'y 'ANGLE'

120 PRINT

130 LET P=3.14159

140 FOR K=0 TD 4*P STEP P/4

150 LET A=K

160 PRINT N7 SIN(A)7 CDS(A)1

170 LET T=(SIN(A)/COS(A))

180 PRINT T! ATN‘T)

190 NEXT K

200 END

READY

RUNNH

ANGLE SINE COSINE TANGENT ANGLE

0 0 0.999999 0 0

0.785397 0.707106 0.707108 0.999997 0.785396

1.57079 0.999999 0.000003 333772 1.57079

2.35619 0.70711 -0.707104 -1.00001 -0.785403

3.14159 0.00000637 —0.999999 -0.00000637 ~0.00000637

3.92698 —0.707101 -0.707113 0.999983 0.78539

4.71238 -0.999999 -0.00000974 102699 1.57079

5.49777 -0.707115 0.707098 -1.00002 -0.78541

6.28317 -0.00001273 0.999999 -0.00001273 -0.00001273

7.06857 0.707096 0.707119 0.999969 0.785382

7.85397 0.999999 0.00001798 55628.7 1.57078

8.63936 0.70712 ~0.707093 -1.00004 -0.785417

9.42476 0.00001947 -0.999999 -0.00001947 -0.00001947

10.2101 -0.707092 —0.707123 0.999957 0.785376

10.9955 —0.999999 -0.00002397 41721.5 1.57077

11.7809 -0.707124 0.707088 *1.00005 -0.785424

12.5663 -0.00002547 0.999999 -0.00002547 -0.00002547

READY

the argument to the SIN and COS functions may be

any value, but the radian angle returned by the ATN

function is always in the range :72 to + 7/2. From

your math class, you may remember that an angle of

77/2 (or 1.57079) radians is the same as an angle of

5 'IT /2 (or 7.85397) radians. Once again, note the

limitations in CLASSIC’s accuracy by comparing the

values computed for these two angles in the program

output.

Exercise 60. Change lines 130, 150, and 180 in the

above program so that the output is generated for

angles in degrees instead of radians. Use the

conversion formula discussed on the previous page.

Exercise 61. Surveyors use trigonometric functions to

find the heights of tall buildings and trees by a

method called triangulation. Use the computer to

perform triangulation as follows.

Look at the figure below:

d

By measuring the distance d and the angle 0: , one

can calculate the height h with the formula:

h = d tanoc

Write a program that allows you to input values for d

(in meters) and o: [in degrees) and outputs the

corresponding value of the height h.

THE RANDOM NLIMBER (RND) FUNCTION

Imagine that you flipped a coin ten times and that

every time it came up “heads” you wrote “1” and every

_,|

4-6

time it was “tails” you wrote “0”. The numbers that

you had written might look like this:

1 0 1 1 1 0 1 0 0 1

If you rolled a die and wrote down the number of

spots showing on top, you might get this result:

5215364214

In each case, a random sequence of numbers was

generated. Each number in the sequence was

selected at random from a given set of numbers. In

the first case, numbers were selected at random from

the set [0,1]. In the second case, they were selected

from the set [1 ,2,3,4,5,6].

When numbers are selected at random, each number

in the set has the same chance of being selected as

any other member of the set. That is, the probability
of selecting any member of the set is the same as the

probability of selecting any other member.

You can obtain a random sequence of numbers from

the set [0,1,2,3,4,5,6,7,8,9] by using a spinner like the

one pictured below:

V

A
V

SPIN THE WHEEL SELECT

THE NUMBER AT WHICH |T

STOPS. THE WHEEL IS

SHOWN STOPPED AT

SEVEN.Ab
Sequences of random numbers are generated by
CLASSIC by using the RND function. Here is a

sequence of 15 random numbers:

READY

10 FOR K=1 TO 15

20 PRINT RND(0>y

30 NEXT K

99 END

BUENH. 935

.67511

.741854

READY

.229581

.682372

.397713

.533074

.991239

.709588

.132211

.806084

.995602

.915352

.783713

.237358

Every number in the random sequence is greater than

zero but less than one. In other words,

0<RND(0) <1.

Every time the computer evaluates RND(0), it

generates another random number between zero and

one. In the above program, RND(0) occurred in a

FOR-NEXT loop and was evaluated 15 times.

Therefore, 15 random numbers were printed. The RND

function does not require a specific argument; you

may use 0 or any other number or numeric variable.

Suppose that you wanted a random sequence in

which each number in the sequence is zero or one.

Here is one way to get it:

/’":‘\:

/“=\\
.

10 FOR K=1 T0 20

20 PRINT INT(2*RND(0))$

30 NEXT K

99 END

m
0 0 1 0 1 1 1 0 1 1 0 0 1 1

READY

The computer prints only ones and zeroes because

2*RND(0) is always between (but never equal to) 0

and 2. That is,

0 < 2*RND(0)< 2

The |NT(2*RND(0)) can thus be only 1 or 0. Note that

this statement uses one function as the argument for

another (the RND function is part of the argument for

the INT function).

The RND function is useful if you want to use the

computer to simulate (imitate) a real-life activity in

which chance plays a part. The following program
uses random numbers to simulate flipping a coin 20

times:

10 FDR N=1 TD 20

20 LET R=INT(2*RND(0)>

30 IF R=1 THEN 60

001010

R IS EITHER 0 OR 1. IF R=1,
“HEADS" IS PRINTED.

OTHERWISE, R=0 AND

“TAILS” IS PRINTED.

40 PRINT 'TAILS'y

50 GDTD 70

60 PRINT 'HEADS'y ‘——‘

70 NEXT N

99 END

READY

RUNNH

TAILS

HEADS

TAILS

TAILS

TAILS

HEADS

TAILS

HEADS

HEADS

TAILS

HEADS

TAILS

TAILS

HEADS

HEADS

HEADS

HEADS

HEADS

TAILS

TAILS

READY

The next program simulates dice rolling:
10 PRINT 'HDU MANY RDLLS'i

20 INPUT T

30 PRINT

40 PRINT 'FIRST DIE'r'SECDND DIE'y'TDTAL'

50 PRINT

60 FDR K=1 TD T

65 LET A=INT(6*RND(0))+1

70 LET B=INT(6*RND(0))+1

80 PRINT A187A+B

90 NEXT K

99 END

RUNNH

HOW MANY RDLLSfiE

0<-6*RND(0)< 6

THEREFORE INT(6*RND(0))
YIELDS [1,2,3,4,5,6]

FIRST DIE SECOND DIE TOTAL

5

7

9

7

10

5

6

4 OHDNM
READY

Exercise 62. The possibility set for an expression is

the complete set of values that that expression can

have. The possibility set for |NT(2*RND(0)) is [0,1].
What is the possibility set for each of the following
expressions? (Write your answers on a separate piece
of paper.) .

(1) |NT(3*RND(0))
(2) INT(6*RND(0))
(3) lNT(6*RND(0))+1
(4) INT(10*RND(0))
(5) lNT(10*RND(0))/10

Look what happens when you run the program on

the previous page more than once:

READY

RUNNH

0.361572

0.539795

0.125244

0.332764

0.8479

0.389404

0.633057

0.026123

0.974853

0.350342

0.54126

0.516357

0.670166

0.934326

0.465088

READY

RUNNH

05361572
0.539795

0.125244

0.332764

0.8479

0.389404

0.633057

0.026123

0.974853

0.350342

0.54126

0.516357

0.670166

0.934326

0.465088

READY

4-7

The set of random numbers returned is the same both

times. To get a new set of random numbers, you must

use the RAN DOMIZE statement.

The RANDOMIZE statement allows a new set of

random numbers to be generated.

2 RANDDHIZE

10 FOR K=1 TD 15

20 PRINT RND(0):

30 NEXT K

99 END

READY

RUNNH

0.630615

0.374268

0.929443

0.206299

0.0817871

0.837158

0.171631

0.825439

0.392334

0.126221

0.700928

0.147705

0.447021

0.354736

0.7146

READY

READY

The above output is different than that in the previous
column. The only difference in the program is that the

RANDOMIZE statement has been added.

Remember these things:

0 The RND function returns a random value between

0 and 1.

o The RANDOMIZE statement allows a new set of

random numbers to be generated by the RND

function.

Exercise 63. Write a program to simulate the rolling of

two dice 1000 times and output the percent of times

that each possible total occurs. Your output might
look something like this:

RUNNH

TDTAL DOTS SHDHN PERCENT OCCURRENCE

2 2.5

ggnnv
— —L

IIISEIL the RHIVUUIVIILE state

program several times to see how

DEFINING" YOUR OWN FUNCTIONS

In addition to the functions supplied by CLASSIC,

you can also define your own functions. This is done

by using the DEF statement. For example,

10 DEF FNA(X) =X+3

If this function has been defined, the statement:

20 PRINT FNA(6)

will cause the number 9 to be printed, because

6+3=9.

A|| user-defined functions begin with the letters PM

and have one additional letter. Therefore, you can

define up to 26 functions in any one program. Each

function can have either one or two arguments. The

variables used as the arguments in the DEF statement

are called “dummy” arguments and need not have any
other significance in your program; they are simply
used in the definition of the operation to be carried

out. The formula specified in the DEF statement may
be any valid numerical expression, and it may contain

up to 14 dummy arguments.

Aunnln-n- . _.._ 1 _

IUII lllb'

The general format of the DEF statement is as

follows:

line number DEF FNa(x,y) = formula

For example,

10 DEF FNP (A,B) = SQR(AA 2+ BA 2)

line number—T
DEF

v W

FN

function identifier

dummy arguments

formula

Only the dummy arguments may be used as variables

in the formula.

The next example program defines a function that

converts Fahrenheit temperature to Centigrade. The

math formula for this conversion is:

5
c = F-32 x——()

9

Note the way that this is translated into BASIC with

the DEF statement:

10 RRP FNC<T)R<TW.32)*5/9

20 PRINT

30 PRINT "PRHRRNHRTT TEMPERATURE";

40 INPUT A

50 PRINT PNC<R>;"RRRRRRS cRRTTaRRPR"

60 GDTU 20

99 RNn

RUNNH

FAHRENHEIT TEMPERATURETBTR

117.6 REGRPPR CENTIGRADE

F‘ A H R E N H E I T T F M F' ISEI R A T U R IE: ’? 3 2-9.

1 7 o 6 D E [3 R E E S [3 E N T Ill [3 |"\' A II F:

F A H R E N H F. 1' T T F. M F' E l‘k' A T U R E "i" ‘9‘ 8 9 f.)

55 4’6 o 6 DE G R E F. ‘3 C) E N T I [3 R A D I35."

FAHRENHEIT ‘i'lZ—ZMF'IEL‘R'R'i'l..lik'l553'§=""‘i1:

READY
—

The next example shows an adaption of the above

program to change either Fahrenheit to Centigrade or

Centigrade to Fahrenheit. This program has two DEF

statements. Note the awkward way in which the
words FAHRENHEIT and CENTIGRADE are assigned
to locations A1$, A2$, B1$, and 32$ at lines 210 to

240 because these words are too long to fit into a

single string variable (limited to 8 characters). The

next section will show you a way to solve this

problem more elegantly and perform other operations
on strings.
100 REH *** TEMPERATURE CGNUERSIGNS

110 REH

120 REM *tt FUNCTION DEFINITIONS

130 DEF FNC(T)=(T—32)t5/9

140 DEF FNF(T)=(9/5)*T+32

150 REM *** USER TEMPERATURE INPUT

160 PRINT \ PRINT 'TEHPERATURE';

170 INPUT T0, Ti

180 IF T$='C' THEN 270

190 REH _ttt FAHRENHEIT TD CENTIGRADE

200 LET A=FNC(T0)

210 LET A1$='FAHREN'

220 LET A2$='HEIT'

230 LET Bl$='CENTI'

240 LET 32$='GRADE'

250 GOTD 330

260 REH *** CENTIGRADE T0 FAHRENHEIT

270 LET A=FNF(T0)

280 LET A1$='CENTI'

290 LET A2$='GRADE'

300 LET Bl$='FAHREN'

310 LET 32$='HEIT'

320 REM *** ANSUER PRINT-OUT

330 PRINT TO; 'DEGREES 'F A1$F ABS;
'

= 'i

340 PRINT A; 'DEGREES '5 31$; D2$

350 GGTO 160

360 END

READY

RUNNH

TEHPERATURE?32 F

32 DEGREES FAHRENHEIT = 0 DEGREES CENTIGRADE

TEHPERATURE?98.6 F

98.6 DEGREES FAHRENHEIT = 37 DEGREES CENTIGRADE

TEHPERATURE?100 C

100 DEGREES CENTIGRADE = 212 DEGREES FAHRENHEIT

TEMPERATURE?"273.15 C

-273.15 DEGREES CENTIGRADE = -459.67 DEGREES FAHRENHEIT

TEHFERATURE?:Q
READY

Exercise 64. When a program uses formulas that

contain the same term, it is sometimes easier to

define this term as a function'rather than type it in

several statements. For example, the following
formulas all contain the term “';Tr”:

circumference of a circle

area of a circle

Z'u'r = 2-(7Tr)

77¢ =r47n)

i r3 =Ar2-(7Tr)
3 3

4778 = «477»

volume of a sphere

surface area of a sphere

Write a program that allows you to input a value for r

and outputs each of the above four values. Define '17 r

as a function and use it to evaluate this term whenever

needed.

LOOKING BACK

You now know all of the numeric functions that are

available in CLASSIC BASIC. They are:

ABS returns the absolute value of an expression.
ATN returns the angle (in radians) whose tangent is

the given argument
COS returns the cosine of the angle specified in

radians

EXP returns the value of e (2.71828) raised to the

4s

I

/Rfim\‘

//

”T

,/"

//M*\

power of the argument
FNa returns a value computed by a corresponding

DEF statement

INT returns the value of the largest integer not

greater than the argument
LOG returns the natural logarithm of the argument
RND returns a random number between 0 and 1

SGN returns 1 if the argument is positive, 0 if it is

zero, and -1 if it is negative
SIN returns the sine of the angle specified in

radians

SQR returns the square root of the argument

Before you go on to the next section, you might like

to study the program below. This program plays
the game of 23 Matches and uses the RND and

lNT functions to figure out how to beat you. Enter this

program into your computer and run it. If you look at

the program carefully, you might be able to figure out

a strategy to beat CLASSIC.

The Game of 23 Matches

100 REM ***23 MATCHES

110 PRINT 'LET'S PLAY 23 MATCHES. UE START WITH 23 MATCHES.

115 PRINT 'YOU MOUE FIRST. YOU MAY TAKE 112 OR 3 MATCHESo'

120 PRINT 'THEN I MOUE...I MAY TAKE 112 OR 3 MATCHES.I

125 PRINT 'YOU MOUE! I MOUE AND SO ON. THE ONE WHO HAS TO'

130 PRINT 'TAKE THE LAST MATCH LOSES.l

135 PRINT 'GOOD LUCK AND MAY THE BEST COMPUTER (HA HA) UIN.

140 PRINT

150 LET M=23

200 REM *XXTHE HUMAN MOUES

205 PRINT

210 PRINT 'THERE ARE NOU'iMi'MATCHESo'

215 PRINT

220 PRINT 'HOU MANY DO YOU TAKE';

230 INPUT H

240 IF HPM THEN 510

250 IF H<}INT(H) THEN 510

260 IF H<=0 THEN 510

270 IF Hl=4 THEN 510

280 LET M=M-H

290 IF M=0 THEN 410

300 REM *XXTHE COMPUTER MOUES

305 IF M=1 THEN 440

3‘0 LET R=M-4*INT(M/4)

320 IF Ri>1 THEN 350

330 LET C=INT(3*RND(0))+1

340 GO TO 360

350 LET C=(R+3)-4XINT((R+3)/4)

360 LET M=M-C

370 IF M=0 THEN 440

375 PRINT

380 PRINT '1 TOOK'?C§'...';

390 GO TO 210

400 REM ***SOMEBODY UON (SEE LINES 29013051370)

410 PRINT

420 PRINT 'I WON!!! BETTER LUCK NEXT TIME.‘

430 GO TO 140

440 PRINT

450 PRINT 'O.K. SO YOU UON. LET’S PLAY AGAIN.‘

460 GO TO 140

500 REM XXXTHE HUMAN CHEATED! (SEE LINES 240 THRU 270)

510 PRINT 'YOU CHEATED! BUT I’LL GIVE YOU ANOTHER CHANCEo'

520 GO TO 215

999 END

READY

4-9

SECTION 4-B

STRING AND SPECIAL FUNCTIONS (Part I)

LONGER STRINGS

Here is part of the temperature conversion program
that you saw on the previous page:

2 8 O I... E T A II. fli '~"~'
"

['3 If" N T I
“

1132 ‘3’ 0 I... |::. T A1295 ”-=
"

l3 R A II I

3 00 L. E T H 1 iii ===
"

E' A H R E N
“

3' 1 (3' I... E T B 2 SIS ==
"

H E I T
"

In this program, the words “Fahrenheit” and

“Centigrade” have to be split up because they are over

eight characters long. If you tried to read all the

characters into a single string variable location, you
would get an error message:

290 LFIT A$="CEN'I‘IGRAI‘IF"'

R I'r==
"

FA H R EN H L ..

330 PRINT "THIS PROGRAM CONVERTS "3A$3" TU "5B$

360 END

RUNNH

SL AT LINE 00280

READY

The SL error message means that a string was too

long to be stored in the variable location desired.

CLASSIC normally allows a maximum of eight
characters to be stored in each string variable

location. By using the DIM statement, however, you
can cause CLASSIC to store up to 72 characters in a

single variable location:

145 DIM A$(10)vH$(10)

280 LET A$2“CENTIGRADE"

290 1395::
..

F'Al-l H

330 PRINT "IHIE F'l-‘Illll'fiiFi'AM C(IINUERTEI

360 END

"3A$9" TU "3H$

READY

RUNNH

THIS PROGRAM EUNUERTS CENTIGRADE TU FAHRENHEIT

READY

By adding statement 145 _to the temperature
conversion program and changing the string vari-

ables, the program can be simplified. In the following

listing, the statements ‘Outlined by rectangles were

changed from the previous version.

1 0 0

110

120

130

140

143

TEMPERATURE CUNUERSIONS

XXX DIMENEIUN 0E ETRING LENGTHS

141-7," IIIM mum), m,

148 I.""' fig|',(-
..:.---.\

I49

150

15,0 PRINT \ Fay-(INT

170 INPUT TOI T$

180 J T$m"C" THEN ERG

190 F M XXX EAH ENHEIT TU CENTIERADE

200 LET ARENC(T0)

'2' I o

:2 3 o

250 GUTU 330

260 REM XXX CENTIGRADE T0 EAHRENHEIT

270 LET ARENECTOI

I

u':

280 LE

LE

A $ z:

I?) 0 0 $ ===

T

T B

320 REM XXX

330 RRINT I0;

340 RRINI n;

350 GUTU 160

360 END

Note that the statement:

145 DIM A$(10), B$(10)

does not dimension string arrays. It dimensions two

strings, A$ and B$, each up to 10 characters long.

The statement DIM S$(n) dimensions a single string
variable, 35, with a length" of n characters.

To dimension a string list, you must supply two

numbers within the parentheses of a DIM statement:

145 DIM A$(Ry10)

14B LET A$(1)="FAHRENHEIT"

149

330 PRINT 'THIS PROGRAM CUNVERTS "9 A$(}/fi
'

TU “i A$(2)

360 END

READY

RUNNH

THIS PROGRAM BUNVERTS FAHRENHEIT TU CENTIGRADE

READY

The statement:

145 DIM A$(2,10)

does not set up a two-dimensional array. It

dimensions 3 strings, A$(0), A$(1), and A$(2), each

up to 10 characters long.

The statement DIM S$(m,n) dimensions m +1 string
variables, each up to n characters long.

The temperature conversion program can now be

further modified. As before, the changed statements

are outlined by rectangles in the following listing.

100 REM xxx TEMPERATURE CONVERSIUNS

110 REM

120 REM XXX NITIONE

130 REE FNE<I)—<r

140 "r
'

R

143 REM XXX 5 ETRINE LENGTHS

A La
'

DIM_A$(2y10)

4-1 0

/““\

g
‘\

/fl>\l

”N

148 LET A$(1):“FAHRENHE"'

149 LET A$(2)3“CENTIGRA

150 REM XXX USER TE

160 PRINT \ PRINT “H

170 INPUT T0» T$

1E0 IP T$m"C" THP' ”70

190 REM XXX PQHRENHEIT

200 LET QHPNC(TO)

EATURE INPUT

ERGTUREH;

TU CENTIGRADE

240 REM

250 GUTU 330

260 REM XXX

270 LET fimFNP(TO}

CENTIGRRHE T0 PAHRENHEIT

320 REH XXX RNRNER PRINT HUT

330 PRINT T0? "HI
"""""

”39$(N);
"

u "g

340 PRINT A? ”U "§fi$(3 N)

350 I 6:- 0

360
'

Exercise 65. The program to play the game of 23

Matches shown on page 4-9 pits you against the

computer. Modify this program so that the computer
acts only as a scorekeeper (and referee) and allows

you to play 23 Matches with up to 10 other people.
Use a string list to store the names of all the players
(up to 20 characters each) and print out the name of

the player who should move next. The part of your

program that accepts and analyzes input might be

modeled after lines 220 to 350 of the program on

page 4—9. The sample solution to this exercise that

appears in Appendix C is modeled after the flowchart

which appears in the next column.

DlMENSION STRING LIST

GET NUMBER OF PLAYER-

FROM KEYBOARD

ASK USERS TO ENTER

NAMES OF ALL PLAYERS

INITIALIZE MATCH COUNT TO 23

GET PLAYER'S MOVE

FROM KEYBOARD

DECREMENT MATCH COUNT AL

PRiNT NAME

OF

WINNER

D0

PLAYERSWISH TO

PLAY AGAIN?

COMBINING STRINGS

Sometimes it is convenient to combine two or more

strings.

The process of combining strings is known as con-

catenation.Concatenation is indicated by using the

ampersand(&).

When strings are concatenated, one is appended to

another:

4-1 1

10 PRINT "ME" 3
9? END

RUNNH

MEYDU

"

‘1’ UL!
"

I3: E m Iii Y

Concatenation can be used to combine two or more

strings into a single variable:

10 LET A$H“ABED"

20 LET B$W"EFGH"

40 LET Hmn & B$

50 PRINT D$

60 [TET E$mB1i 3 A$

?0 PRINT E$

99 END

READY

RUNNH

ABCDESIF'BH

EFBHABCD

REIMJY

The length of a concatenated string cannot exceed the

maximum length allowed by the system. In the

following program, the SL (String too Long) error

message was printed because the maximum length of

F$ is 8 and the length of A3 & B$ & C3 is 12:

10 LET A$w"ABCD"

20 LET B$H"EEGH"

30 LET I "TJKL"
80 LET EWA X B$ X C$

90 PRINT Ffi

99 END

READY

RUNNH

EL AT LINE 00080

E'EAIIIY

The problem can be corrected by adding a DIM

statement:

'5'} IIIIIIN Efli “f 112‘.)

if} LET
"

20 LET

130 LET (Ilfl
"

IJKL.
"

$30 LET I3":l1‘~'===A ‘13 1% If‘-’2|'>

’90 PRINT F'fl':

C" ’2? END

R L] N N H

a-cm

fit Iii [3 I] E E [3 H I .J It: i...

R E ii‘i I] "i’

Note that A$ & 33 does not produce the same result

as 33 & A$. Strings are always combined in

the order shown in the statement, and parentheses
have no effect:

10 LET A$m'ABC"

20 LET B$m 'DEF'

30 LET C$='GHI“

40 PRINT AXB8C$

50 PRINT A$&(B$&C$)

60 PRINT (AXB)XC$

9? END

READY

RUNNH

ABCDEFGHI

ABCIIIEF'E-il-l I

ABCIIIEFEEHI

READY

Following is a demonstration of combining strings by
concatenating first names and last names. The pro-

gram reads a first name and a last name and then

stores them both in a single variable location with the

last name first, a comma and a space, and then the

first name. Note also the format of the DIM statement

at line 10.

10 DIM N$(3120)

20 FOR N=1 T0 3

30 READ F$v L$

40 LET N$(K)=L$ 8 I,
'

8 F$

50 NEXT K

60 DATA 'HDH"

70 FOR N=1 T0 3

30 PRINT N$(K)

90 NEXT K

99 END

'JONES'; 'RITA'! 'LAND" 'FRANN" 'SHITH'

READY

RUNNH

JONES: BOB

LAND; RITA

SMITH: FRANK

READY

Exercise 66. Use concatenation in a FOR-NEXT Icop
to create a program that works like this:

?w
H/H/H/H/

?2 LOW

éOWLOW
The output should be the result of printing a single
variable with a statement such as:

70 PH/N T S$

Hint: Look at the INPUT statement in line 170 of the

.program on page 4-8.

442

/

a

("m}\

./=”\

STRING TO NUMERIC CONVERSION

The value (VAL) function. Your work with CLASSIC

so far has generally kept strings and numbers

separate, even though you know that both types of

data may be operated on by the computer. The

statement:

40 LET A =A/10

is correct, but:

40 LET A =A$/10

is not. Look at the following program:

10 PRINT \ PRINT "YOUR NUMBER"

20 INPUT A$

30 IF A$W“QUIT" THEN 99

40 LET A3A$/10

50 LET AHINT(A)+IO*(A"INT(A))

60 PRINT "ANSUERH "9A

Y0 GUTU 10

99 END

R E: A III Y

R UN NH

M T 40

R E: A III Y

This program results in an MT (Mixed Type) error

message because statement 40 tries to perform a

numeric operation on a string variable.

The above program is trying to let the user input data

for the equation at line 50 and, at the same time,

recognize the entry “QUIT” as an indication that the

user has entered all the data. The problem is that

string and numeric data are stored in the computer in

different ways, and the computer cannot work with

one where the other is expected. Thus, the statement:

40 LETA =A$/10

is not allowed even though A$ may be “25” or some

other number. The way in which data typed in

response to an INPUT query will be stored depends
upon the type of variable used in the INPUT

statement. That is, you can type “25” as a response to

either of the following statements:

20 INPUT A

20 INPUT A$

but the first one will store your response as a number

and the second will store it as a string.

Strings can be converted to numerics by using the

VAL function:

40 LET A = VAL(A$)

The VAL function converts strings to their numeric

equivalent.

Here is the corrected program:

IO F‘litilIN'i' \ PRINT
"

YtillJIit NLJMBIEEZR "a:

1130 IIINF'LI‘i' M;

”(50 IF (Sufism:
“
QUIT

“

'i‘l-llEEN ‘W

355 LEE T A===UAL(Aili)

40 I... [~22 T AHA/’10

1:50 I... IEEI T An: I NT (A) +10% (A I NT (A) .‘1

(iii) PRINT
"

ANSESNIEEIRW
"

5'5 A

'70 E} [I] T [3) 10

‘3"? IEEINIII

R E A III Y

I55: U N N H

Y C] U R N LJ M 13 E: R '5’ 1'5 "5.

A N S N l:. R i=3 {3

"r' [I] U R N U M B ER 'i’ 1’8

A N 8 lal IEEI R === .1. 53'

Y [Ll Ll R N U M 13 E51 R 'i" 35

ANSSNEEIR::= 3
—

YOUR NUMI-fi:l§2l¢t’i’[21l.lili 'i'

it“ Iii: A I] Y

Note that the user may now enter both numbers_and
strings. The VAL function in line 35 converts strings
to numerics for use in the equation in line 40.

The above program calculates the sum of the digits in

a two-digit number. By modifying this program to

recognize the response “HELP”, you can make it more

meaningful to the user:

10 PRINT \ PRINT 'YQUR NUMBER'?

20 INPUT A$

30 IF A$='QUIT' THEN 99

35 IF A$='HELP' THEN 75

40 LET A=UAL(A$)/10

50 LET A=INT(A)+10*(A—INT(A))

60 PRINT 'ANSUER ='; A

70 GUTU 10

75 PRINT \ PRINT 'THIS PROGRAM UILL COMPUTE THE SUN
'

80 PRINT 'DF THE DIGITS IN A 2-DIGIT NUMBER.
'

\ GDTU 10

99 END

READY

RUNNH

YOUR NUMBER?HELP

THIS PROGRAM HILL CDHPUTE THE SUM

OF THE DIGITS IN A 2-DIGIT NUMBER.

YDUR NUMBER?42

ANSWER = 6
._—

YOUR NUMBER?GUIT

READY

The argument supplied to the VAL function must be a

valid string expression; the only operation allowed is

concatenation. Following are some experiments with

the VAL function to demonstrate how it works with

different arguments:

4-1 3

10 PRINT UAI...(4*5)

9‘? END

RUNNH

FR 10

READY

10 PRINT UNA “4*53“)

9‘? END

RUNNI—I

4

READY

10 PRINT UAI..(“4'>I<'EJ“)

9‘? END

RIJNNH

MT 10

FR 10

RIEl-‘tIIIY

10 PRINT UAL(“4”8“5“)

9? END

RUNNH

45

READY

LOOK UP THESE ERROR

MESSAGES IN APPENDIX E

OF THE CLASSIC USER’S

GUIDE.

Exercise 67. Use the VAL function to modify the game
of 23 Matches on page 4-9 so that it recognizes the

response “UNCLE”. Program this response to

indicate that the human player concedes victory to the

computer and wishes to begin the game again with 23

matches.

The string (STR$) function. CLASSIC also has a

function that converts numbers to their equivalent
strings. .

The STR$ function coverts numbers to strings. The

resultant strings do not have a leading or trailing
blank.

The following two programs demonstrate the differ-

ence between numeric and string output:

-10 FOR I\"—‘-=() T0 9

10 FOR |\'====0 TC] 9 THIS STATEMENT PRINTS

:20 PRINT m <———NUMBERS.

:50 NEXT l:

99 END

R Iii fit [I Y

F.‘ U N NH

(Ill-2341:5678"?

HEnuv

THIS STATEMENT PRINTS

.130 PRINT SB'I'R‘I3(I\')§4_STRINGS.

:50 NEXT K

‘5“? END

R I552 A [I Y

R U N NH

01 23455627IEI9

READY

Note the presence of the leading and trailing blanks in

the first program and their absence in the second.

The STR$ function is very useful in formatting output,

especially when used together with the length (LEN)
function. The combined use of these functions is

discussed below.

OUTPUT FORMATTING

The length (LEN) function. The LEN function allows

you to determine the number of characters in a string.
Here is a simple program to demonstrate how the

LEN function works:

10 PRINT I...[-IIN('TI-|EI IIIlJIIIIIIN“)

20 PRINT l..EIN("SI...Y FOX")

30 PRINT LENC".JUMF'EEII.I QUEER Tl-IISEI“)

40 PRINT I.-|EEIN("L.AZY BRULIN IIICIII-i')

9‘? [END

RlJNNH

HP—‘Njfl If}4
F.‘ E AIJ Y

Here is another example:

10 DIM A$(72)

20 PRINT \ PRINT 'YOUR ENTRY'?

30 INPUT A’

40 PRINT
'

50 GOTO 20

99 END

LENGTH ='i LEN(A$)

READY

RUNNH

YOUR ENTRYTNDU IS THE TIME

LENGTH = 15

YOUR ENTRY?FOR ALL GOOD HEN
LENGTH = 16

YOUR ENTRYTTO COME TO THE AID QE THEIR EDUN BI.
LENGTH = 36

YOUR ENTRY?"C

READY
T—

4-1 4

”c“\

{,,
a ,

"N

Check your work by running the following program:
The LEN function returns the number of characters in

the string indicated in the argument. {[0 l’j‘f’jm'mN , _ . _. . _ _ _ _ .. _

2-30 l'-'|--£.|.Nl N .v I...l:.N (5.5 l l-u'fli (N)) 9 (5""I...l::.N ($5 T Hfli (NJ)

'30 [3011'] 10

With a little work, you can use this function to format 40 Ill-“HF! 43’ 91.133619539153373 v 61045

numbers as described below. ‘9‘? EZ'NIZI

The format used by CLASSIC to print numeric data
litii'm'lY

causes numbers to be lined up at the left

(left-justified) rather than at the right (as is usually
done). Look at the following program:

The FOR—N EXT l00p discussed above was added as a

subroutine to the program in column 1 to produce the

//“K\

10 LET N===1 following results:

:20 FOR K===1 Ti) (5‘: 10 LIEST’ N221

30 PR INT N 1130 F‘L‘JFL' I<===IL TC] 6:

40 LET N===Nhkil0 1135' tI-itJEilJB '20

50 NEXT K 30 PRINT N

9‘? END 40 LEEIT N:==N)l<10

_

'50 NEXT K

REAIIIY e30 ESTUF'

RUNNI-l 112' 0 Iii'lill'i' I‘;'0===::I. Til] c.3---- I... [IN (S; TR :is (NJ)

1 530 PRINT
"

"i

10 ‘90 NlSEIXT KO

100 95 IIL'ISEZ'T'URN

1000 ‘99 EEINIJ

49‘300 mam”
J. (10000

FUJNN H

:I.
REMIY 10

7

To cause these numbers to be lined up at the right 100
V

(right-justified), you must first know the number of 1000
‘

digits in each. Unfortunately, the following expres- 10000
sion is not allowed:

100000

LEN(N) I=J:E:-’-11iIY

because the argument in the LEN function must be a

string. Using the STR$ function, you can convert N to

a string and then find its iength:

5 LET L = LEN(STR$(N))

Here is one more example. This time, the above

program was modified to line up the decimal points in

numeric output:

20 FOR K=1 TD 6

Following is a FOR-NEXT loop that uses the LEN and 3: EggflaNm
STR$ functions in aform similar to that shown above:

33 zERi¢TKN
'70 Fill? l<()=-'==:l. T0 6----|...EIN (Ei'T'litSlSCN)) i3 3%:

2.75:333~7-36.74v4e9.491r5739y92.4725

i530 F'F.‘ INT
" "

9 70 FOR K0=1 to 4-LEN(STR$(INT(N)))

:90 NIEEIXT K0 - ‘33 fig?“
'

This loop prints a number of blanks depending upon 32 EfiEURN
the number of digits in N. If N :47, then STR$(N) will

READY

be “47” and LEN(STR$(N))=2. Since 6-2=4, this RUNNH

FOR-NEXT loop will be executed 4 times and print 4 33335
blanks. 36:74

489.491

Exercise 68. COpy the following table onto a separate 5733 w

piece of paper and fill in the blanks.
”’47”

READY

N LEN(STR$(N)) 6-LEN(STR$(N))

47 2 4

126
_

287g
_ —

This program used the INT function and considered
_ —

only the number of digits in the Integral part of N.

61045 _ _ Thus, line 70 used three functions, one insude the

4-1 5

next. CLASSIC evaluates each function in turn from

the inside out and then uses the result as the

argument to the next function. This is called

“nesting” functions, and is the same as nesting
parentheses when writing numerical expressions.

When functions are nested, you must make sure that

the value returned by each function is of the correct

type (numeric or string) to be used as the argument
for the next function to be called.

Exercise 69. The following program displays a table

of the squares and square roots of numbers. Modify
this program so that the output is formatted by lining

up the decimal points.
10 PRINT 'N'y'SQUARE ROOT'y'FOURTH ROOT'

20 LET N=.1

30 FOR K=1 TO 7

40 PRINT N’

50 PRINT SOR(N)7

60 PRINT SQR(SOR(N))

70 LET N=INT(N*10+.5)

80 NEXT K

99 END

RUNNH

N SQUARE ROOT FOURTH ROOT

0.1 0.316228 0.562341

1 1 1

10 3.16228 1.77828

100 10 3.16228

1000 31.6228 5.62341

10000 100 10

100000 316.228 17.7828

READY

Hint: Assign the value to be printed to a temporary
variable and use this variable in your subroutine.

The tab (TAB) function. Another function that can be

used to format output is the TAB function. This

function may only be used in a PRINT statement.

Before using it, however, you must understand that

CLASSIC allows you to display output in only 72 of

the 80 character positions on your screen.

Exercise 70. Enter and run the following program on

your CLAS |C system to demonstrate the way in
ulhlnh +hn nnlnmnn an. anmknvnd An +kn nnvnnn-

VVIIIUII LIIU UUI IllllO GIG IIUIIIIJGIGU \Jll LIIU OUIUUII.

130 P |1.. |'.NT "w";

a0 NEXT K1

9? END

You will see that after 72 characters are printed, the

cursor moves to the beginning of the next line before

printing continues.

The argument to the TAB function indicates the

column position at which the next character should

be printed.

If the cursor is not already at or past the column

position indicated by the argument, it is moved to

that position before printing continues:

10 PRINT TAB(1)9“*“

20 PRINT TAB(2)9"*"

30 PRINT TAB(3)§"*“

99 END

READY

PUNNH

*

*

*

READY

If the cursor is past the position specified in the

argument, the TAB function has no effect.

The next example prints out the column numbers to

help you understand the TAB function:

10 FOR K1=1 TD 7

20 FOR K2=1 TO 9

30 PRINT STR$(K2)i

40 NEXT K2

50 PRINT '-'i

60 NEXT K1

70 PRINT '12'

30 PRINT TAB(6); 'THIS MESSAGE BEGAN IN COLUMN 6'

90 PRINT TAB(27>; 'THIS MESSAGE BEGAN IN COLUMN 27'

95 PRINT TABl42)? 'THIS MESSAGE BEGAN IN COLUMN 42'

99 END

READY

RUNNH

123456789-123456789-123456789-123456789-123456789-123456789-123456789-12

THIS MESSAGE BEGAN IN COLUMN 6

THIS MESSAGE BEGAN IN COLUMN 27

THIS MESSAGE BEGAN IN COLUMN 42

By using the TAB function, you can simplify the

formatting program that was shown on the previous
page. The following program formats integers:

10 LET NW1

20 EUR Fm” T0 8

30 PRINT TAB(?~LEN(STP$(N)))§ N

#0 LET NmN*10

50 NEXT K

99 END

'[
\L
n:

F: U N N H

ATIV
A.

II.

1 (I)

II. 0 0

ll. 0 0 0

1|. 0 0 O 0

II. 0 O 0 O 0

READY

The next program formats decimals:

20 FOR K=1 TO 6

23 READ N

30 PRINT TAB(5-LEN(STR$(INT(N))))i N

50 NEXT K

55 DATA 2.75r 337.3736.74y 489.491, 573B:92.4725

99 END

READY

RUNNH

2.75

337.3

36.74

489.491

5738

92.4725

READY

446

/“\

rmx

/.—\\\
/
/

Line 30 above contains four functions nested one

inside the next. Note that each returns the correct

type of data (string or numeric) required as an
‘

argument by the next function to be evaluated.

Exercise 71. Modify the program that you wrote for

Exercise 69 so that it uses the TAB function to help
format the output. You may wish to define part of the

formatting formula in a function to simplify the

programming.

The TAB function is extremely useful for drawing
graphs. The program below graphs the equation
supplied at line 30. (The subroutine at line

80 prints out the column numbers.) Note what

happens when the argument to the TAB function is

greater than 72.

10 GOSUB 90

20 FOR K=1 TD 10

30 LET T=K

40 PRINT TAE(T)? 'i'

50 NEXT K

60 GOSUB BO

70 STOP

80 FOR Kl=1 T0 7 \ FOR K2=1 TO 9 \ PRINT STR$(K2)5

90 PRINT '—'§ \ NEXT K1 \ PRINT '12' \ RETURN

99 END

\ NEXT K2

READY

51W
123456739—123456739—123456759—123456739-12345679v—123456759—123456739—12
)lr

*

123456739-123456759-123456739-123456789-123456739-123456739-123456789-12

READY

30 LET T=T+K

RUNNH

123456739-123456759-123456759-123456739-123456789—123456739-123456739-12

*

*

i

i

i

l

i

*

123456739-123456759-123456739—1234567BV—123456739-123456739-123456759-12

READY

30 LET T=K'2

RdNNi—i

2 3456799-123456739-123456739-123456789-123456789-123456739-123456739-12

*

l

i

i

*

123456799-123456789-123456789-123456759-123456799-123456789-123456739-12

READY

Exercise 72. Enter the above program into your

workspace and run it for different equations by
changing line 30. The following equations will

produce some interesting results:

30 LET T=36+ ((4-K)/2)A 3

30 LET T: 72*RND(0)
30 LET T=2*T+1

30 LET T=36-(4-K)A 2

Here is one last example for people interested in

math: The program below graphs the sine function.

Once again, you can change the statement at line 30

_to graph other functions (for example, cosine and

tangent).

10 LET P=3.14159

20 FOR K=0 TO 4*? STEP F/6

30 LET T=11+10*SIN(K)

40 PRINT TAB(T)? '*'

50 NEXT N

99 END

READY

RUNNH

READY

The print (PNT) function. The fourth function that

CLASSIC provides to help you format screen output is

the PNT function.

The PNT function is used to control the screen

through a BASIC language program.

Like the TAB function, the PNT function may only be

used in a PRINT statement.

Exercise 73. The following program demonstrates

simple screen operations that can be performed with

the PNTfunction. Enter and run this program on your

CLASSIC.

10 LET A$W"BEFURE"

20 LET H$fl"RFTER"

30 HERB N

40 PRINT “NW “$N§A$EPNT(N)B

50 GUTU 30

$0 DATA 7y8y9y10v13

?9 END

READY

Your results should demonstrate the following
actions (line numbers are omitted).

Statement Action

PRINT PNT(7) sounds terminal buzzer

PRINT PNT(8) moves cursor one space to the left

PRINT PNT(9) moves cursor to next tab stop (tabs
stop are in every 8th column: 8,16,
24, etc.)

PRINT PNT(10) moves cursor down one line

PRINT PNT(13) moves cursor to left-hand margin
of current line

The PRINT statement automatically positions the

cursor at the beginning of the following line unless

you end the statement line with a semicolon.

4—1 7

Therefore, the following program will print an asterisk

at the beginning of a new line instead of in column 8.

2H) I‘l' I“: .II NT

13. 0 II‘ IE" I N T

“:5"? I53. N I]

I“: IEEI 19-1 III "1'

I“: LI N N H

H l::. I... I... [I]

if:

Iii: I55: [31 I] "I"

"HELLU"1PHng;

ll*ll

By adding a semicolon at the end of line 10, the

program works as follows:

11:) F'RIIIN'I"
"

l-~ll£§1l...l-.i:i
"

ilii'N'i“ i 9);?

I3: U N N H

H 1532 L. 1.. iii t

I15: [‘52 fit III ‘1’

The CLASSIC screen may also be operated in Escape
Mode. This mode allows certain characters to control

the operation of the screen and copier. Under program

control, Escape Mode is activated by supplying 27 as

the argument to the PNT function:

40 PRINT PN T(27)

The special operation performed is then determined

by the next character printed. For example,

40 PRINT PNT(27); “A”

moves the cursor up one line.

Exercise 74. Below is a modification of the program

for Exercise 73 to demonstrate the use of the PNT

function with Escape Mode. The statements at line 33

and 35 were added just to slow things down enough
for you to see what each operation does. Enter and

run this program. Respond to the input query by

typing any character and pressing RETURN.

SI 0 I... E: T A ‘IS -':-‘=
“

1-?- E. I? U I5": E
"

133 If) I... If}. T 1-3 SI: ====
"

f-‘I F" T I35: I5:
“

13' 0 Fl IEEI r31 III N $I3~

3' 5 I“ F: I N T
“

III II] N T I N U IEEI
"

1.5 55 III N F“ U T 2'. ‘Ii

~40 F' R INT
"

N ‘Ii ===t
"

§N$$
" "

sir-Hi ii II'NT i" 27) NH": "GEN":

3550 (:7 U T [I] 5 (f:

{:30 I.|1'31T'1’31
"

R
"

y
“

[I
"

y
“

|'-I
"

v
"

...|
"

v
"

Ii
"

'19 9 E: N III

I3: ES: {-31 I] ‘1"

Your results should demonstrate the following
actions:

448

Statement Action

PRINT PNT(27); “A”

PRINT PNT(27); “C”

moves cursor up one line

moves cursor right one posi-
tion

PRlNT PNT(27); “H” moves cursor to upper left-

hand corner of screen

(“home” position)

erases from cursor position
to end of screen

erases line from cursor to"

right margin

PRINT PNT(27); “J”

PRINT PNT(27); “K”

LOOKING BACK

This section has brought you a long way toward

understanding some of CLASSIC’s more powerful
capabilities. It has presented many examples, and

hopefully you will see a use for these functions in€ T
some of the programs that you plan to write.

Remember these things:

0 Undimensioned strings may not exceed 8 char-

acters in length.

0 The DIM statement may be used to allow strings up
to 72 characters inlength. For example:

10 DIM R$(72)

0 String variables may have (at most) one subscript. ,

"These variables are dimensioned with the form: <
10 DIM S$(m,n)

where m is the maximum-valued subscript allowed

and n is the maximum length of each string.

0 Strings may be concatenated by using the amper-
sand operator.

The functions presented in this section are sum-

marized below:

(x

L

‘\

LEN returns the number of characters in a string
/

PNT controls special operations on the screen

\

STR$ converts numeric data to strings
TAB positions the cursor along a print line

VAL converts string data to numerics

The next section will help you learn about the

remaining six functions available on your CLASSIC

system.

-

//‘%\

SECTION 4-C

STRING AND SPECIAL FUNCTIONS

(Part II)

AUTOMATIC PROGRAM TRACING

You have traced several programs manually to gain an

understanding of how specific statements control

program flow. Tracing is also valuable for finding
bugs in complicated programs. CLASSIC can trace

programs automatically by using the TRC function.

The TRC function is used as a switch: it either turns

trace mode on or turns it off, depending upon the

value of the argument.

TRC(1) turns trace mode on. TRC(0) turns trace mode

off.

When trace mode is on, the line number of each

statement executed is printed between percent signs

(%).

10 LET D=TRC(1)

20 LET K=1

30 PRINT 'K NDU ERUALS'i K

40 LET N=K+1

45 IF K<=3 THEN30

99 END

mm THE LINE NUMBER OF EACH

EUE‘ZHZ STATEMENT EXECUTED IS

1 30 z DISPLAYED ENCLOSED IN

E ZSZEMLS
1

PERCENT SIGNS AS THE

PROGRAM RUNS.Z 45 Z

Z 30 Z

K NDU EGUALS 2

Z 40 Z

Z 45 Z

Z 30 Z

K NDU EGUALS 3

Z 40 Z

Z 45 Z

TURNTRACEON.

READY

Normal mode is resumed in the following program by
turning the trace off with the statement at line 50:

1o LET D=TRC(1)

20 LET K=1

30 PRINT 'K NOU EGUALS'E K

40 LET K=K+1

45 IF K<=3 THENzo

50 LET n=TRC(0)4-— TURN TRACE OFF.
55 IF K<=6 THEN 30

99 ENn

TURNTRACEON.

READY

RUN

TRA BA 3.0 30-DEC-75

20 Z

30 Z

NON EGUALS 1

40 Z

45 Z

30 Z

NDU EGUALS 2

40 Z

45 Z

30 Z

NDU EGUALS 3

40 Z

45 Z

50 Z

NON EGUALS 4

NO“ EGUALS 5

NOW EGUALS 6ZZZNNNZNNNZNNNZNN
READY

Even when trace mode is on, the line numbers of.

some statements are not printed. If you modify the

above program by creating a FOR—NEXT loop, the line

number of the NEXT statement will not be printed in

the trace:

10 LET DWTRC(1)

20 FUR NR1 T0 3

30 PRINT "K NON EGUALS“? K

40 NEXT N

50 LET DmTRE(0)

60 PRINT “END OF PROGRAM"

99 END

READY

RUNNH

Z 20 Z

30 Z

Nflw EGUALS 1

30 Z

NUH ERUALS 2

30 Z

NUN_ERUALS 3

50 Z

END OF PROGRAM

.“T’ZNZNZN
READY

Note that the line number of statement 60 is not

printed because trace mode is turned off at line 50

The program below prints numbers in ascending
order. Note that the line numbers of the GOTO

statements (40 and 60) are not printed in the trace.

10 LET.D=TRC(1)

15 READ A! B

20 IF A}B THEN 50

30 PRINT A; B

40 GOTO 15

50 PRINT B; A

60 GOTD 15

70 DATA 4:7

80 DATA 9’3

90 DATA 5’5

99 END

READY

RUNNH

Z 15 Z

Z 20 Z

Z 30 Z

4 7

PQEQ
><

LP

{J

F‘

CI<DEA P<

PEP<
3 9

hJEA
§<

?{

>4

(3!!
:4

}<

><

DA AT LINE 00015

READY

4-1 9

The following table lists all the BASIC language
statements that are available on CLASSIC and

indicates which ones are traced by the TRC function:

Traced Not Traced

CHAIN DATA

CLOSE# DEF

FILE# DIM

FOR END

GOSUB GOTO

IF NEXT

IF END# RANDOMIZE

INPUT REM

INPUT# STOP

LET

PRINT

PRINT#

READ

RESTORE

RESTORE#

RETURN

In all of the programs that have been discussed so far,
trace mode has been turned on with the statement:

10 LET D: TRC(1)

and turned off with:

50 LET D = TRC(O)

The D in these statements has no meaning; it only
serves as a placeholder in the statement syntax
(grammar). You may use any variable name you
choose on the left of the equal sign.

Exercise 76. If you have previously SAVEd a program
on a disk, read it into the workspace with the editor

OLD command and add the functions TRC(1) and

TRC(O) at different places. Run the program to see

how this function affects its output. If you have not

previously SAVEd a program or would like to write a

new one, enter a new program or one that you wrote

for a previous exercise into the workspace with the

editor NEW command. Include branching statements

and several TRC functions. Run your program to see

what happens.

GAINING ACCESS TO THE SYSTEM DATE

You learned how to enter the date into your CLASSIC

system with the monitor DATE command on page
3—19. You can gain access to this date under program
control with the date (DAT$) function.

The DAT$ function returns the system date as an

eight-character string.

The dialogue on the next column demonstrates how

the DAT$ function works:

. [IA 2/4/76 <_—A NEW DATE IS ENTERED.

ODE!

IAIEZIIINESDAY FEBRUARY

THE USER

1976+CONFIRMS THE

SYSTEM DATE.

4!

o R BASIC
—.

____ 7
.. THE USER STARTS UP

NEH Uh ULD NLU [HRIUMU4—
THE BASIC EDITOR.

READY A NEW

10 PRINT "TODAY’S DATE IS
'

3E|AT$(0)<'PROGRAM

9‘? END IS ENTERED.

RU—N
THE DAT$ FUNCTION

. RETURNS THE

04-FE‘B—76WSTEM DATE AS

AN EIGHT CHAR--

ACTER STRING.

IIATIIMD BA 3.0

TODAY’S DATE 18 02/04/76

READY

The argument to the DAT$ function is not significant;
it may be any number or numeric expression. If a date

has not been entered with the monitor DATE

command, the DAT$ function returns an empty string
(it has a length of 0).

You can also use the DAT$ function as part of a string
expression:

10 LET D$ = DA T$(0)

Since the system date is returned as a string
containing only eight characters, the variable on the

left side of the equal sign in the above statement does

not need to be dimensioned.

Among other uses, the DAT$ function is useful for

dating entries in data files. Data files are introduced

in Section 4-D.

THE CLASSIC CHARACTER CODE

The character (CHR$) function. Suppose that you

wanted to write a program with the backslash (\)
as part of the print-out. Look what happens:

10 Iii'li‘cIIINT "Fill-7:531“ PART \. SESIEEZiltilNIII PART“

9'? END

R'lJNNI-I

”LIB 10

LB 10

REAI‘JY

These error messages are printed because CLASSIC

interprets line 10 as a multiple-statement line, with

two statements separated by the backslash. Neither

statement is complete, so two error messages are

generated.

Since the backslash causes this problem, CLASSIC

provides the character (CHR$) function to reference

characters by a special code:

10 PRINT 'FIRST PART 'f CHR$(28)F

99 END

RUNNH

FIRST PART \SECOND PART

READY

4-20

'

SECOND PART
'

/

k

\

”“1

/M\

Each character that CLASSIC can display has code

number between 0 and 63. The backslash is number

28, so the statement:

10 PRINT CHR$(28)

prints the backslash character.

The CHR$ function can also be used to assign
characters to a string variable:

10 film A$(Eé)

20 FOR Kml T0 26

3o LET nemn$ & CHR$(N)

x 40 NEXT H
’

50 PRINT at

99 END

READY

RUNNH

ABCHEFGHI JKL.MNDF'IQRS'I'UUUXYZ

READY

The above program concatenates A$ with each

successive character from code number 1 to code

number 26. From the print-out for this program, you
can see that characters 1 to 26 correspond to the

letters of the alphabet.

The decimal code number of each character that can

be printed by CLASSIC is shown in the following
table:

Decimal Character Decimal Character

0 @ 32 (space)
1 A 33 !

2 B 34
“

3 C 35 #

4 D 36 $
5 E 37 %

6 F 38 &

7 G 39
’

8 H 40 (
9 I 41)

1 0 J 42
"

1 1 K 43 +

1 2 L 44
,

1 3 M 45 ~

1 4 N 46 .

1 5 0 47 /

1 6 P 48 0

1 7 Q 49 1

1 8 R 50 2

1 9 S 51 3

20 T 52 4

21 U 53 5

22 V 54 6

23 W 55 7

24 X 56 8

25 Y 57 9

26 Z 58
'

Decimal Character Decimal Character

27 [59 ;

28 \ 60 <

29] 61 =

30
A

62 >

31 — 63 ?

Besides providing a method for printing the

backslash, the CHR$ function is also useful for

understanding the sequence by which CLASSIC sorts

string data. This application will be discussed in

conjunction with the ASC function.

The ASC function. The ASC function reverses the

operation of the CHR$ function.

The ASC function returns the code number of the

character supplied as its argument.

The statement:

30 PRINT ASC(”E”)

will therefore cause the number 5 to be printed.

The program below demonstrates the use of

the ASC function to convert characters to their

equivalent code numbers. Note that if the argument to

the ASC function contains more than one character,
for example, “ERIC”, the code number of the first

character in the string (“E” in this case) is returned.

10 PRINT \ PRINT 'YOUR CHARACTER'?

20 INPUT CS

.30 PRINT
'

40 SOTO 10

99 END

'7 CS?
'

IS CHARACTER NUMBER'i ASC(C$)

READY

RUNNH

YOUR CHARACTERZA
J IS CHARACTER NUMBER 1Q

YOUR CHARACTEREH
H IS CHARACTER NUMBER 8

YOUR CHARACTEREE
E IS CHARACTER NUMBER 5

YOUR CHARACTERfii
IS CHARACTER NUMBER 35

YOUR CHARACTERZ;
\ IS CHARACTER NUMBER 28

YOUR CHARACTERTE
C IS CHARACTER NUMBER 3

YOUR CHARACTER?:E
READY

Sorting string data. The IF statement has been used

many times to compare the values of numeric

variables. The following program, for example, is a

modification of the one that was used on page 4-19 to

print two numbers in ascending order:

10 PRINT \ PRINT "FIRST NlJMBII—L‘Ft'w

15' INF‘UT A -

18 PRINT “SECOND NUMBER';

20 INF‘LIT B

30 IF" m-Et ‘I'HESZN 60

40 PRINT
"

'i M

'50 GU'ITJ :l.()

"COMES EIESIF'ORIEI'S E4

continued on next page

441

60 F'RINT
'

”III; “COMES BEFOREWA

70 BOTO 10

99 ENII

RUNNH

FIRST NUMBER 'tfi
SECOND NUMBERI’Q

5 COMES BEFORE 8

FIRST NUMBER 333
SECONO NUMBEREQ

6 COMES BEFORE 12

FIRST NUMBER ?:Q
READY

Here is a second modification of the program to allow

it to compare strings:
LISTNH

10 PRINT \ PRINT 'FIRST LETTER'i

15 INPUT A$

19 PRINT 'SECOND LETTER'?

20 INPUT B$

30 IF A$>B$ THEN 60

40 PRINT
'

'iASi' COMES BEFORE '?B$

50 GOTO 10

60 PRINT
'

'iDii' COMES BEFORE 'FA$

70 GOTO 10

99 END

I

READY

RUNNH

FIRST LETTERRQ
SECOND LETTERzg

A COMES EEFORE J

FIRST LETTER?§
SECOND LETTERZ;

COMES BEFORE 8

FIRST LETTER?:§
READY

In the first case above, A comes before J because A is

character number 1 and J is character number 10. In

the second case, # comes before & because # is

character nllmber’ 35 and 8!- Is chalactel Ilulllbel 38-

Look what happens when you compare strings that

are two to eight characters in length:

10 PRINT \ PRINT 'FIRST NAHE'?

15 INPUT AS

19 PRINT 'SECOND NAHE'?

20 INPUT B’

30 IF A$>B$ THEN 60

40 PRINT
-

-; as;
-

COMES BEFORE -; as

so GOTO 10

60 PRINT
-

-; as;
-

COMES BEFORE -; as

70 GOTO 10

99 END

READY

RUNNH

FIRST NAME?JOSEPH

SECOND NAHE7HARY

JOSEPH COMES BEFORE MARY

FIRST NAME?fiDfiEB
SECOND NAHE7AARON

AARON COMES BEFORE HDSES

FIRST NAHE?ABRAHAH

SECOND NAHE7ISAAC

ABRAHAH COMES BEFORE ISAAC

FIRST NAHE?ART

SECOND NAHE?ARTHUR

ARTHUR COHES BEFORE ART

FIRST NAHE?BILLY

SECOND NAME?BILL

BILLY COHES BEFORE BILL

FIRST NAME3:E
READY

4-22

Here CLASSIC makes the decision as to which string
is greater by comparing the two first characters. If

these characters are the same, the two second

characters are compared. If these are the same, the

two third characters are compared, and so on. For

example, when comparing JOSEPH to JOHN, the

decision as to which is greater is made after the third

pair of characters:

E

JOHN comes before JOSEPH (“JOHN” < “JOSEPH”)
because H is character number 8 and S is character

number 19.

Look at the last two comparisons in the previous
program. CLASSIC reported that ARTHUR comes

before ART and BILLY comes before BILL. This order

is not consistent with the rules that most people
follow when putting names. in alphabetical order. In

the phone book, for example, ART would come before

ARTHUR.

This comparison problem is caused by the fact that

CLASSIC ran out of letters in one of the strings before

a decision could be made:

T

A

When this happens, CLASSIC concatenates the

shorter string with spaces until it is the same length
as the longer string:

A R T H U R

Hill
/\ FR 1- 5-4 L_J L_J

(“LI’ represents a space.) CLASSIC therefore decides

that ARTHUR comes before ART because H

(character number 8) comes before space (character
number 32).

You sawa program to sort numbers on page 3-36. The

program on the following page performs the same

operation with strings. That is, it arranges the

elements in a one-dimensional string array in

ascending order by successive comparisons. This

program uses nested loops with K1 and K2 as the

indices of the two loops. The comparison is done at

line 240. If A$(K1)3A$(K2), the program increments

K2 and another comparison is made. But if

A$(K1) > A$(K2), the string in A$(K1) is switched with

the string in A$(K2) by the statements at lines 250-270

before incrementing K2.

H

U R

/‘“\

,r/\.

100 FOR K=1 TD 5 \ READ A$(K) \ NEXT K

110 DATA 'DE';'BEE'r'DEET'r'BEETS'r'BEETLE'

120 FOR K1=1 T0 4

130 FOR K2=K1+1 T0 5

'240 IF A$(K1){A$(K2) THEN 280

250 LET T$=A$(K1)

260 LET A$(K1)=A$(N2)

270 LET A$(K2)=T$

280 NEXT.N2

290 NEXT N1

SORT ROUTI N E

300 PRINT \ PRINT IISORTED DATA2'\ PRINT

310 FOR K=1 T0 5

320 PRINT A$(K)

330 NEXT K

999 END

READY

RUNNH

SORTED DATA:

BEETLE

BEETS

BEET

BEE

BE

READY

Note the form of the two FOR statements in this

program:

120 FOR K1=1TO 4

130 FOR K2=K1+1TO 5

This arrangement makes the maximum number of

comparisons that are ever needed to sort any five

pieces of data with the routine used in this program.
This type of sorting routine is called a bubble sort

because the smaller values are “bubbled” up to the

top of the list in a stepwise manner.

Since CLASSIC concatenates shorter strings with

spaces before a comparison is made, the results of

the above program were not printed in alphabetical
order as you would find them in the dictionary. You

can modify this procedure by concatenating shorter

strings with the at sign (@) before the values of the

strings are compared. Since the @ sign is character

number 0, this action will cause the value of the

shorter string to be less than the value of the longer
string if the corresponding leading characters are the

same.

B E @

B E E

BE @ comes before BEE because @ comes before E.

The following program demonstrates concatenation

with the at sign.

100 FOR K=1 T0 5 \ READ A$(K) \ NEXT K

110 DATA 'BE'r'BEE'r'BEET'r'EEETS'I'BEETLE'

120 FOR K1=1 T0 4

130 FOR K2=K1+1 TD 5

140 IF LEN(A$(K1))=LEN(A$(K2)) THEN 240

150 LET xs=esu<1>

155 LET Y$=A$fl<2)

160 IF LEN(X$)>LEN(Y$) THEN 21o
NEWSTATEMENTS

170 FOR K=1 To LEN(Y$)-LEN(X$) TO CONCATENATE
:lBO LET xs=xs a 'e' SHORTER

:33 gm 23° STRINGS WITH

210 FOR K=1 To LEN(X$)—LEN(Y$) THE AT (@) SIGN
220 LET Y$=Y$ a '9' BEFORE COM-
225 NEXT K

230 IF xs<vs THEN 290
PARISON'

1235 EDT!) 250

240 IF A$(K1)<A$(K2) THEN 280

250 LET T$=A$(K1)

260 LET A$(K1)=A$(K2)

270 LET A$(K2)=T$

280 NEXT K2

290 NEXT K1

300 PRINT \ PRINT 'SORTED DATA:'\ PRINT

310 FOR K=1 T0 5

320 PRINT A$(K)

330 NEXT N

999 END

READY

RUNNH

SORTED DATA:

BE

BEE

BEET

BEETLE

BEETS

READY

In this program, the lengths of A$(K1) and A$(K2) are

compared at line 140. If they are of equal lengths, the

program branches to line 240 where a normal

comparison is made. (Line 240 is exactly the same as

it was in the previous program.) But if the strings are

of unequal length, they are first stored in temporary
variables (X$ and Y$ — see lines 150 and 155). The

program then determines which is shorter (line 160),
and the shorter string is concatenated with @ signs
until it is the same length as the longer string (lines
170-190 and 210-225). A comparison is then made

between the modified strings (line 230). If the relation

specified in line 230 is true, the program branches to

line 280, K2 is incremented, and the loop is repeated.
If the relation is false, the program goes to line 250

and the values of A$(K1) and A$(K2) are switched.

Exercise 7?. Modify the above program to sort

up to 100 strings, each 20 characters in length.
Indicate the number of strings to be sorted as the first

item in y0ur data table. Use a DIM statement to

dimension your string list and modify the FOR

statements to handle a variable number of data items.

TAKING STRINGS APART

On page 4-10 you learned how to put strings together
by concatenation. The last two functions that

CLASSIC provides will allow you to take strings apart.

The position (POS) function. The position function is

used to search one string to find out if another string
is contained within it. This function takes three

arguments:

POS(A$, T$, N)

function name ‘4

Istring to be searched

string to be searched for

position at which to begin search

The function POS(A$,T$,N) searches string A$ for the

first occurrence of T$ starting at position N.

lf T$ is part of A$, the POS function returns the

number of the position at which the first character in

T$ occurs in A$. |f T$ is not in A$, the POS function

returns the value 0.

Look at the following example:

10 DIM A$(52)

15 FOR J=1 TO 2

20 FOR H=1 TO 26 \ LET A$=A$ 3 CHR$(K) \ NEXT K

25 NEXT J

30 F'RINT \ FOR K=1 TO 5 \ PRINT

35 PRINT '12'

40 PRINT A$

50 PRINT POS(A$v

60 PRINT POS(A$y 'NO'! 1)

70 PRINT POS(A$1 'N'v 20)

80 PRINT POS(A$I 'XYZ'v 26)

90 PRINT P05(A$I 'FED'r 1)

99 END

'123456789-'? \NEXT N

'N'! 1)

RUNNH

123456789—123456789~123456789-123456789—123456789—12

AFCDEFGHIJKLMNOPGRSTUUUXYZABCDEFGHIJKLMNOPQRSTUUUXYZ

14

14

40

50

0

READY

Notice that the value 14 is printed by line 60 as well as

line 50 because the POS function returns the number

of the position at which the first character of the

string to be searched for (“N” or “NO”) occurs. The

value 40 was printed by line 70 because the search for

N started at position 20 rather than position 1. Line 90

printed 0 because the string FED was not found at all.

Exercise 78. Enter the following program to the

computer and use it to experiment with the POS

function as shown in the sample run.

10 DIM A$(26)

20 FOR K=1 TO 26 \ LET A$=A$ I CHR$(K) \ NEXT K

30 PRINT \ PRINT '123456739-123456789-123456'
40 PRINT At

50 PRINT \ PRINT 'UHAT LETTER DD YOU NEED'?

60 INPUT T$

65 LET P=PD5(AITVI)

70 PRINT
'

'7 T‘?
'

[5 AT POSITIDN'SP

BO GOTO 50

99 END

READY

RUNNH

123456739-123456739-123456

ABCDEFGHIJKLMNDPORSTUUUXYZ

UHAT LETTER DO YOU NEEDZE
E IS AT POSITION 5

UHAT LETTER DO YOU NEEDZE
U IS AT POSITION 22

UHAT LETTER DO YOU NEED7JKL

JKL IS AT POSITION 10

UHAT LETTER DO YOU

oNEEDZ’I IS AT POSITION

UHAT LETTER DO YOU NEED?:E
READY

The next set of examples will examine a use of the

POS function to search fora “key” set of characters in

a user entry.

Begin by studying the program below. This program

presents the user with tWo one-digit numbers and

asks him or her to enter the sum.

110 PRINT \ PRINT

120 RANDOMIZE

130 LET A=INT(10*RND(0)J

140 LET H=INT(10*RND(O))

150 PRINT \ PRINT 'HOU MUCH IS'; A?

160 INPUT C

180 IF C=A+B THEN 230

210 PRINT
'

INCORRECT.

220 GOTO 150

230 PRINT
'

CORRECT!I

240 GOTO 130

270 END

'THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.I

-+-; Bi

PLEASE TRY AGAIN...I

READY

RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HOU MUCH IS_3 + 7 ?10

CORRECT!

HOU MUCH IS 6 + 9 ?12

INCORRECT. PLEASE TRY AGAIN...

HOU MUCH IS 6 + 9 ?15

CORRECT!

HON MUCH IS 4 + 8 ?’C

READY

Suppose the user decided to enter “IT’S 3” instead of

just “3” when asked for the sum of 3 and 0. Look what

would happen:
RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HON MUCH IS 8 + B ?IT’S 16

INCORRECT. PLEASE TRY AGAIN...

HOW MUCH IS 8 + B INCORRECT. PLEASE TRY AGAIN...

HOW MUCH IS 8 + B INCORRECT. PLEASE TRY AGAIN...

HOW MUCH IS 8 + B INCORRECT. PLEASE TRY AGAIN...

HOIrJ MUCH IS 8 + B CORRECT!

HOW MUCH IS 8 + 3 '?"C

READY
—

EnnI-u nI-‘nvnrvl-nv i'n thn nn‘ru “IT’S” in i
L_¢Z\lll \llIclltz‘ll‘7I II III‘; ‘7IILI , I\2 I

system as a 0. Since there are four characters (I,lT,,
and S), the system prints the “incorrect” message

four times before it finally reaches the 3 and judges
the answer “correct”.

A modified version of this program that corrects

the above problem is shown on the neXt page. This

version uses the POS function to search the user’s

entry for the correct answer. The new statements have

been enclosed in boxes.

100 DIM A$(72)

110 PRINT \ PRINT 'THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.‘

120 RANDOMIZE

130 LET A=INT(10*RND(O))

140 LET B=INT<10*RND(O))

150 PRINT \ PRINT 'HOU MUCH IS'? A;

160 INPUT A5

170 LET C$=STR$(A+D)

180 IF POS(A$1 'GUIT'11)}O THEN 270

190 IF POS(A$y 'HELP'11)}0 THEN 250

200 IF POS(A$1C511)}O THEN 230

-+-; B;

210 PRINT
'

INCORRECT. PLEASE TRY AGAIN..
'

220 GOTO 150

230 PRINT
'

CORRECT!l

240 GOTO 130

250 PRINT
'

'i A; '+'9 Di '=

260 GOTO 130

270 END

'iA+Bi '. HERE’S ANOTHER...‘

READY

RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

4-24

/‘“’\\

/"“”\

”N

HOU MUCH IS 7 + 0 ?IT’S 7

CORRECT!

HDU MUCH IS 7 + 6 ?THE ANSWER IS 13

CORRECT!
'——

HOW MUCH IS 7 + 2 ?UM...S?

INCORRECT. PLEASE TRY AGAIN...

HOU MUCH IS 7 + 2 ?UOULD YOU BELIEVE; 9

CORRECT!

HOW MUCH IS 3 + B ?I NEED A LITTLE HELP
3 + B = 11 . HERE’S ANOTHER...

HON MUCH IS 1 + 3 ?GDSHI I KNOU THAT’S A!!!

CORRECT!

HON MUCH IS 9 + 4 ?HON’T YOU EVER QUIT?

READY

In order to use the POS function, both the user’s

response and the correct answer had to be stored as

strings (see lines 160 and 170). Once this was done, it

was also possible to search for the words “QUIT” and

“HELP” (lines 180 and 190). This type of response

decoding is called a keyword search.

Note the form of the IF statement at line 180:

180 IF POS(A$,"QUIT", 1) > 0 THEN 270

Remember that the POS function returns a positive
integer if the second string is found in the first, and a

value of 0 if it is not. This IF statement will therefore

cause a branch if and only if “QUIT” is in A$.

Exercise 79. Enter the above program and see if you
can fool this program by making it think that an

incorrect answer is correct.

The segment (SEG$) function. Here is one way that

the arithmetic program can be fooled:

I RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HOU MUCH IS 9 + 9 fig
CORRECT!

HON MUCH IS 7 + 3 ?-10

CORRECT!

HON MUCH IS 6 + 1 ?”C

READY

In the second problem (3+1), the program searched

the user’s response fora 4. It found a4 and judged the

answer to be correct even though the actual entry was

negative 4. By using the SEG$ function, you can make

the program sophisticated enough to distinguish
between positive 4 and negative 4 even when working
with strings.

The SEG$ function returns a segment of the string
specified in its argument.

The following program demonstrates how the SEG$
function works:

10 DIM A$(26)

20 FOR K=1 TO 26 \ LET A$=A$ 8 CHR$(K) \ NEXT K

30 PRINT '123456789-123456789-123456'

40 PRINT A$

50 PRINT SEG$(A$72;6)

60 PRINT SEG$(A‘713724)

70 PRINT SEG$(A$!4710)

80 PRINT SEG$(A$721721)

99 END

READY

RUNNH

123456789-123456789-123456
ABCDEFGHIJKLMNOPORSTUUUXYZ

BCDEF

MNOPGRSTUUUX
DEFGHIJ

U

READY

The program returns segments of the string A$ (which
contains the 26 letters of the alphabet). The complete
string and the number of each position are first

printed by lines 30 and 40. Lines 50 through 80 then

print segments of this string.

Like the POS function, the SEG$ function requires
three arguments:

SEG$ (A$,X, Y)

function name —J
_1string to be segmented

position of first character

position of last character

The function SEG$ (A$,X,Y) returns the Xth through
Yth characters in A$ inclusive.

Exercise 80. Enter the program below into your

computer and use it to experiment with the SEG$
function as in the sample run shown.

On page 4—26 is a modification of the arithmetic

program which uses the SEG$ function to catch

negative inputs. The modified statements are

enclosed in a box. Note that both numeric arguments
to the SEG$ function are the same in this case (P—1),
because the program only needs to compare a single
character.

Here is another way to trick the arithmetic program:

RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HOW MUCH IS 7 + 4 ?THE ANSWER IS NOT 11

CORRECT!

'10 DIM A$(26)

20 FOR N=1 TO 26 \ LET A$=A$ 8 CHR$(K) \ NEXT K

30 PRINT \ PRINT '123456789—123456789-123456'

40 PRINT A$

50 PRINT \ PRINT

60 INPUT XrY

70 PRINT TAH(X)$ SEG$(A$rXrY)

80 GOTO 50

99 END

'UHICH LETTERS HOULD YOU LIKE'?

4-25

READY

RUNNH

123456789-123456789—1 23456 THIS Is THE STRING To BE

ABCDEFGHIJKLMNOF‘QRSTUUUXYZ
'SEGMENTED

E THROUGH 12TH

UHICH LETTERS UDULD you LIKE?4.12 EnaniEREnsmenswnu.
DEFGHIJNL

ED-

THE 18TH THROUGH 22ND

WHICH LETTERS UOULD YOU LIKE?1B!22 (EDSARACTERSAHE
RETURN-

RSTUU

UHICH LETTERS UOULD YOU LINE?7:14

GHIJKLMN

X=Y SO ONLY ONE CHAR-
UHICH

AcTER Is RETURNED.
LETTERS UOULD YOU LIKE?11111

K

UHICH LETTERS UOULD YOU LIKE?10130

JKLMNOPQRSTUUUXYZ

Y LEN(X$) SO Y IS SET TO

LEN (X3). or 28.

. Y NO CHARACTERS
UHICH LETTERS UOULD YOU LIKE?16:B {HERST‘JURNEQ

2:333:
LETTERS woum YOU LINE?1.5 IVHHEEgfiggEIRSSETT°1BY

IF x on Y Is NEGATIVE, AN

ERROR MESSAGE Is PRINT-

” H I C H

ABCDE

LETTERS HOULD ED AND THE PROGRAMYOU L IKE?0 , 5
— STOPS.

UHICH LETTERS WOULD YOU LIKE?-175

FM AT LINE 00070

READY

100

110

120

130

140

150

160

170

180

190

200

210

220

DIM A$(72)

PRINT \ PRINT

RANDOMIZE

LET A=INT(10*RND(0))

LET D=INT(10*RND(0))

PRINT \ PRINT 'HOw MUCH IS'; A5

INPUT A$

LET C$=STR$(A+D)

IF POS(A$1 'OUIT';1)}0 THEN 270

IF POS(A$1 'HELP'y 1)}0 THEN 250

IF POS(A$1C$;1)}0 THEN 230

PRINT
'

INCORRECT. PLEASE TRY AGAIN...’

GOTO 150

'THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.‘

'+w m

no

32

2M

LET P=POSAyC$r1)
IF SEG$(A$vP-11P-1){}'—' THEN 236

SOTO 210

as

am

no

no

2w

PRINT
'

CORRECT!‘

GDTO 130

PRINT
'

'§A§

GOTO 130

END

I.Ll:l:i_:l:l:A.Ln:I.

READY

RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HOU MUCH IS 2 + S ?-11

INCORRECT. PLEASE TRY AGAIN...

HOW MUCH IS 2 + 9 ?Ll
CORRECT!

‘

HOU MUCH IS 5 +

INCORRECT.
1?;6

PLEASE TRY AGAIN...

HOU MUCH IS 5 + 1 ?6

CORRECT!
—

HON MUCH IS 9

9 + 0 = S .

+ 0 ?HELP

HERE’S ANOTHER...

HOW MUCH IS 2 + 1 ?LET’S OUIT FOR NOU

READY

This problem can be corrected by adding the

following statements:

236 IF POS(A$1 'NOT'11)=0 THEN 238

237 IF POS(A$1'NOT'11)fiPOS(A$rC$11)THEN210

238 PRINT
'

CORRECT!‘

The run below demonstrates this improvement, but

also turns up another weakness, failure to recognize
“NJT”.

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HOU MUCH IS 0 + 4 ?THE ANSUER

INCORRECT.

IS NOT 4

PLEASE TRY AGAIN...

HOU MUCH IS 0 +

CORRECT!

4 ?THE ANSUER IS 4???

HOU MUCH IS 1 + 7 ?THAT CAN’T BE 8

CORRECT!

HOU MUCH IS 2 + 5 ?HOUIUE BETTER QUIT

READY

Exercise 81. Try to fix this problem yourself.
(You may have to resequence the program to get more

room). Run your new version and find still more ways

to increase the program’s ability to detect incorrect

answers.

Exercise 82. For a real challenge, try to fix the

following problem:

RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HON MUCH IS 9 + 6 ?0123456789101112131415161718

CORRECT!

HOw MUCH IS 9 + 0 ?0123456789101112131415161718

CORRECT!

nr.r.r-r|1-I

I'\I'\I:.Lrl :

HON MUCH IS 7 + 8 ?0123456789101112131415161718

C

HOU MUCH IS 8 + 7 ?"C

READY
7——

Hint: Use the POS function to find the correct answer.

Then use the SEG$ function to check the positions
.before and after the correct answer (if any). You can

find out if the characters in these two positions are

numbers by examining their codes using the ASC

function to see if they fall between 48 and 57.

LOOKING BACK

In this section, you have studied the last six functions

that are available in CLASSIC BASIC:

ASC(X$) returns the code number of

the first character in X$

CHR$(N) returns the character whose

code number is N

DAT$(0) returns the system date (if
any) in the form MM/DD/YY

4-26

(.

/”‘“’“\

{

POS(A$,T$,N) searches A$ for the first

occurrence of T$ starting at

position N

SEG$(A$,X,Y) returns a segment of A$ from

positions X to Y

TRC(N) turns trace mode on if N=1

and turns trace mode off if

N = 0

Perhaps you have noticed the following rule:

Functions whose names end in a dollar sign (3)
always return strings. All other functions return

numbers.

Chapter 5 in the CLASSIC User’s Reference Guide

summarizes all of the BASIC functions that are

available on the CLASSIC system and provides a

ready reference for your future use. For more

examples of function usage, look at the listings of the

programs supplied in Appendix A.

The next section will introduce you to the use of disk

files for storing data and help you learn the remaining
seven statements that can be used in a BASIC

language program on CLASSIC.

4-27

SECTION 4-D

STORING DATA IN DISK FILES

PROGRAM CHAINING

It is possible to write a BASIC program so large that

CLASSIC will not be able to run it. When this

happens, you will get the TB (Too Big) error

message. The easiest way to correct this problem is

usually to break the program into two parts and then

chain from one program to the other. Chaining is

performed with the BASIC CHAIN statement. For

example:

30 CHAIN “RXA 1: TARGET. BA
”

The CHAIN statement causes the program specified
to be run.

The general format of the CHAIN statement is:

line number CHAIN “dev:filnam.ex”

The complete device, file name, and extension of the

program to be run should be specified, as no default

parameters are assumed by the system. No matter

how many programs are chained to each other, the

workspace will always contain the first program in the

chain when control finally returns to the editor.

A simple use of the CHAIN statement is demon-

strated at the right.

Besides allowing programs to be of virtually unlimited

size, the CHAIN statement can also be used to create

a master control program for a set of computer

programs. The program on the next page prints out a

list of all the programs on the BASIC Program
Demonstration Disk and 'allows you to chain to a

program simply by entering a file name.

Look at the format of the CHAIN statement at line

420. Since a string expression is used rather than a

‘simpie string, “RXA1:” and “.BA” have to be

concatenated with A$ to complete the dev:filnam.ex

form required as the parameter of the CHAIN

statement. Note once again that the workspace
contains the first program in the chain when control

finally returns to the editor. Therefore, RUNNH

causes the index program to be rerun. The CL error

message results because file RXA1:GEUSS.BA could

not be found.

To prevent the CL message, you can modify the

index program 'as shown on page 4-29. (The new

statements have been enclosed in a box). This

program simply checks the validity of the user’s entry
by comparing it to each available program name in

turn (see lines 280-310). When a match is found, the

CHAIN statement at line 420 is executed. If no match

is found, a message is printed and the user is asked

to make a new entry (lines 350-380).

Exercise 83. Obtain a copy of the BASIC Program
Demonstration Disk from the person in charge of your
CLASSIC (your system manager) and enter the

program on page 4-29. Use it to CHAIN to various

BASIC demonstration programs.

.R BASIC
__

A NEW PROGRAM CALLED
NEN OR OLD-—NEU TARGET TARGET IS ENTERED INTO

THE WORKSPACE.

READY

10 PRINT 'THIS MESSAGE IS BEING PRINTED BY THE “i

20 PRINT 'TARGET PROGRAM.II

9? END

w

TARGET BA 3.0

THIS MESSAGE IS BEING PRINTED BY THE TARGET PROGRAM.

WHEN RUN, TARGET PRINTS

A MESSAGE THAT IDENTI-

FIES ITSELF.

READY

SAVE RXA11TARGET

READY THE WORKSPACE NAME IS

NAME CHAIN CHANGED TO CHAIN.

READY STATEMENT 20 IS CHANGED

20 PRINT "CHAINING PROGRAM“ AND THE MODIFIED PRO-

fl GRAM IS LISTED.

CHAIN BA 3.0

10 PRINT 'THIS MESSAGE IS BEING PRINTED BY THE ';

20 PRINT 'CHAINING PROGRAM'

99 END

READY

RUN

CHAIN BA 3.0

THIS MESSAGE IS BEING PRINTED BY THE CHAINING PROGRAM

WHEN RUN, CHAIN ALSO

PRINTS A MESSAGE THAT

IDENTIFIES ITSELF.

A CHAIN STATEMENT ISREADY

3o CHAIN 'RXA1:TAF\'GET.BA' ADDED A5 LINE 30 AND THE

LIST CONTENTS OF THE WORK—

SPACE ARE LISTED AGAIN.

CHAIN EIA 3.0

10 PRINT 'THIS MESSAGE IS BEING PRINTED BY THE '9

20 PRINT 'CHAINING PROGRAM'

3O CHAIN lRXA1:TARGET.BA'

99 END

READY

RUN

CHAIN BA 3.0

THIS MESSAGE IS BEING PRINTED BY THE CHAINING PROGRAM

THIS MESSAGE IS BEING PRINTED BY THE TARGET PROGRAM.

WHEN THE MODIFIED PRO-

GRAM IS RUN, IT CHAINS TO

TARGET. THEREFORE, THE

READY IDENTIFYING MESSAGES
LIST ARE PRINTED BY BOTH

PROGRAMS.
CHAIN BA 3.0

10 PRINT 'THIS MESSAGE IS BEING PRINTED BY THE '9

20 PRINT 'CHAINING PROGRAM.
.

. . . . WHEN CONTROL RETURNS

‘33 E331”
F‘XM‘TARGET‘HA

TO THE EDITOR, THE WORK-

SPACE CONTAINS THE FIRST

READY PROGRAM IN THE CHAIN.

4-28

TARGET IS SAVED ON RXA1.

(/fi‘ImN‘

.r‘x

/“‘”\

100 PRINT \ PRINT "THE PROGRAMS AVAILABLE ON THE BASIC' 100 PRINT \ PRINT ITHE PROGRAMS AVAILABLE ON THE BASIC'

110 PRINT -PROORAM DEMONSTRATION DIOR ARE:- \ PRINT' 11o pRINT 'PRDGRAM DEMONSTRATION DISK ARE:- \ PRINT

120 REM 120 REM
130 REM xxx PROGRAM NAME PRINTER

130 RE” *** PROGRAM NAME PRINTER
140 REM

140 REM
'

1:0 FUR I\'=1 TC] 6
’

._

130 READ N1$yN2$yN3$
150 FOR K—1 TO 6

170 F'RINT'N1$9N2$1N3$ 160 READ N1$vN2$yN3$

180 NEXT R 170 PRINT N1$7N2$1N3$

190 REM 130 NEXT R

200 REM xxx INPUT OUERY 190 REM
910 RE"

_ _

200 REM xxx INPUT OUERY
220 PRINT \ PRINT 'UHICH UOULD YOU LIRE TO RUN-I 21° REM

gig fiESUT
9‘ \ PRINT

220 PRINT \ PRINT 'UHICH wOULD YOU LIKE TO RUN';

400 REM xxx CHAIN STATEMENT
23° INPUT A$ \-PRINT

410 RE” ‘240 REM

fig RESIN
'RXM“ & M 3‘ "3“”

250 REM xxx CHECR FOR UALID PROGRAM NAME

. 260 REM
440 REM xxx DATA TABLE

450 REM 27o RESTORE

460 DATA -ACEY02-.-ATTEND','ATTSET-. 'CALC-.'EASY02' 280 FOR K=1 T0 17

470 DATA 'EASYOB'y'GUESS'y'HMRABI'y'HURNLE'y'HURKOZ' 29o READ N$

490 DATA 'MORGAG'r'GUADEG'y'GUAHOZ'y'GUAflO3“1”SYNONY' 300 IF N$=A$ THEN 420

490 DATA 'SYNSET'9“UTDAUG'9" 310 NEXT R
I5500 END 320 REM

.

330 REM xxx MESSAGE FOR INVALID NAME
READY

34o REM
RUNNH

350 PRINT A$i
'

IS NOT ON THE DEMONSTRATION DISK.-

THE PROGRAMS AUAILABLE ON THE BASIC 360 RESTORE

PROGRAM DEMONSTRATION DISN ARE: 370 PRINT 'CHOUSE ANOTHER
'

\ PRINT

380 GOTO 150

ACEY02 ATTEND ATTSET

CALC EASY02 EASY03 390 RE"

GUESS HMRABI HURRLE 400 REM xxx CHAIN STATEMENT

HURN02 MORGAO OUADEO 41o REM

(MMDOE OUAD03 SYNONY 420 CHAIN 'RXA1:' 2 A$ 2 '.DA'
SSYNSET HTDAUG 43o REM

wHICH UOULD YOU LIKE TO RUNTCALD :28 :5:
*** DATA TABLE

460 DATA 'ACEYOQ':'ATTENU":“ATTSET'; 'CALC"9"EA5Y02'

YOUR EXPRESSIONTASX6 470 DATA 'EASYO3';"GUESS'I'HMRABI'y'HURNLE"V"HURN02'

480 DATA 'MORGAG':“OUADEQ'y'GUADOB'r"OUAD03'y"SYNONY“

45x6 = 270 490 DATA 'SYNSET':'UTDAUG‘:"

500 END
YOUR EXPRESSION?GUIT

READY

READY w
RUNNH

,

THE PROGRAMS AVAILABLE ON THE BASIC

THE PROGRAMS AUAILABLE ON THE BASIC PROGRAM DEMONSTRATION DISK ARE:

PROGRAM DEMONSTRATION DISK ARE:

ACEY02 ATTEND ATTSET

I
q

_ E .

33:33 fig§Y°P EAST°3 OUESS HMRADI HURNLE
_ RABI HURkLE

,, q I
_

-HURK02 MORGAG GUADEG
HURRoE MORGAO OUADEO

OUADoz GUAD03 SYNONY QUADQQ ““9305 SYNONY

SYNSET UTDAUG SYNSET HTDAUG

UHICH UOULD YOU LIKE TO RUN?GEUSS wHICH wOULD YOU LIKE TO RUN?OEUSS

n

GEUSS IS NOT ON THE DEMONSTRATION DISK.
CL AT LINE 0°4L°

CHOOSE ANOTHER

R AE DY
ACEYOD ATTEND ATTSET

CALC EASY02 EASY03

GUESS HMRABI HURNLE

HURKOQ MORGAG OUADEO

OUADOQ OUAD03 SYNONY

SYNSET wTDAUG

HHICH HOULD YOU LIKE TO RUN?GUESS

GUESS: THE NUMBER GUESSING GAME

PLEASE TYPE YOUR FIRST NAME AND THEN PRESS THE

RETURN KEY.

UHAT IS YOUR FIRST NAME?

4-29

Exercise 84. Write two programs of your own

that chain to each other. Make each print out

at least one message and require at least one user

entry. Note the amount of time that it takes one

program to chain. to the other, especially if you write

large programs. In Section 4-E you will learn a way to

speed up the chaining process.

STRING DATA FILES

So far, you have used the CLASSIC disk only to store

BASIC language programs. However, disk files can

also contain data for use by BASIC programs. Storing
data in disk files is one of the most powerful uses of a

computer system because it allows a program to work

with an extremely large amount of data in a minimum

amount of time. Disk files also allow data generated
as output by one program to be used as input to

another program without requiring you to enter it

manually through the keyboard.

Writing a disk file. Data is written to a disk file in very
much the same manner as it is written to the screen.

That is, you simply have to tell the system the name
'

of the file that you want the data written into and then

use a variation of the PRINT statement to do the

actual writing.

Specifying the name of a file to be written (or read) is

known as opening a file. To open a file, use the FILE#

statement. This statement tells the system the type of

file that you wish to open, the number by which you
will refer to the file in your program, and the name of

the file. For example,

10 FILEV #1: “RXA1:OUTPUT.JH”
W

file type —t Ifile number

file name

File type V is used for all files that will receive string

I

output. The number that is assigned to the file in the

FILE# statement is used by the PRINT# statement to

indicate where data will be written:

20 PRINT #1: ”THIS DA TA IS STORED IN A DISK FILE.
”

The above statement causes the message indicated to

be written into the file opened as file number 1.

Whenever data is written to a file, that file must be

closed before program execution stops or the file

itself will be erased:

30 CLOSE #1

When these three statements are put together into a

program, here is what happens:

10 FILEV #1:

20 PRINT #1:

30 CLOSE #1

99 END

'RXA1:DUTPUT.JH'

'THIS DATA IS STORED IN A DISK FILE.l

READY

RUNNH

READY

This program does not cause anything to be output "to

the screen. However, you can verify that something
has actually been written to the disk file by using the

monitor TYPE command:

BYE

.TYF'E RXA13IJUTF'UT..JH

'THIS DATA IS STORED IN A DISK FILE.

In addition, the name of the file written will appear in

the disk directory.

The following rules apply to use of the FILE#,
PRINT#, and CLOSE# statements:

9 In all three statements, the file number is pre-
ceded by a number sign (#).

o In the FILE# and PRINT# statements, the file

number is followed by a colon (:).
o A colon is not used in the CLOSE# statement.

0 The file number may be any numeric expression
whose value is between 0 and 4, inclusive.

0 The file name in a FILE# statement may be any

string expression, but all parameters must be

specified in the form dev:fl|nam.ex and enclosed

in quotes. No defaults are assumed.

0 File #0 is always open and always refers to the

keyboard/screen as shown in the following
example:

1 0 F'RINT

99 END

#03 'UUTF'UT TD SCREEN'

READY

RUNNH

OUTF'UT T0 SCREEN

READY

0 Except for the addition of the file number, the

PRINT# statement (when used with alphanumeric
files) works just like the PRINT statement. That is,
the exact same rules regarding output format

(spacing, print zones, use of commas, semicolons,

the TAB and PNT functions, etc.) are followed for

both statements. The PRINT# statement simply
creates a disk fIle containing information just as it

would be printed on the screen.

Reading a disk file. To read from a disk file, you must

first open it as an input file. If the file contains string
data, specify no file type in the FILE statement:

50 FILE #1: “RXA1:OUTPUT.JH”

Once the file is opened for reading, data is read with

the INPUT# statement:

60 INPUT #1: A$

These statements are demonstrated in the following
program:

, 4-30

/“""\

l/m\

r‘x

FILEU #13

PRINT *1:

30 CLOSE #1

'RXA13OUTPUT.JH'

'THIS DATA IS STORED IN A DISK FILE.

DIH A$(72)

FILE *1: 'RXAi:OUTPUT.JH'

INPUT #13 AS

PRINT A$

99 END

READY

RUNNH

THIS DATA IS STORED IN A DISN FILE.

READY

Note that A$ had to be dimensioned because the

input line contained over eight characters. The

statement at line 70 simply displays on the screen the

data read from the file. Like the PRINT and PRINT#

statements, the INPUT and INPUT# statements follow

the exact same rules when used with a string file. The

only difference is that INPUT reads from the terminal

and INPUT# reads from a disk file.

Besides the terminal (reserved as FILE#0), CLASSIC

can have up to 4 disk files open at the same time,
numbered 1 through 4. On a single disk, however,

only one file can be open for writing (as a type V file)
at any one time. If you attempt to write to two files on

the same disk at the same time, an error message will

result.

Exercise 85. To make sure that you can use the file

statements discussed so far, write a program similar

to the one on the previous page that writes a file

7 containing the first four lines of Lewis Carroll’s

“Jabberwocky”:

’Twas brillig, and the slithy toves

Did gyre and gimble in the wabe;

All mimsy were the borogoves,
And the meme raths butgrabe.

Verify that your program has run properly by
displaying the file on the screen with the monitor

TYPE command. Then write a second program that

uses the INPUT# statement to read the file and the

PRINT statement to display its contents.

Detecting the end of a file. When data is read from a

disk file, the system steps through the file in much

the same way the READ statement steps through the

values in DATA statements. You have seen that the

message:

DA AT LINE n

occurs when the end of a data table is encountered.

The DA error message automatically causes the

program to stop.

In the following example, a second line of data and a

GOTO statement have been added to the file program
to make it try to read past the end of the file. Look

what happens:

4-31

10 FILEU i1: 'RXA1:OUTPUT.JH'

20 P INT #1: 'THIS DATA IS STORED IN A DISK FILE.‘

#1: 'THIS 5 THE S ON OF TH DA A.‘

30 CLOSE #1

40 DIM A$(72)

50 FILE #1: 'RXA13OUTPUT.JH'

60 INPUT #1: A$

70 PRINT A$

99 END

READY

w
THIS DATA IS STORED IN A DISK FILE.

THIS IS THE SECOND LINE OF THE DATA.

THIS IS THE SECOND LINE OF THE DATA.

RE AT LINE 00060

THIS IS THE SECOND DAMN-THIS IS THE CONTENTS

OF A$.

LINE OF THE

RE AT LINE 00060

THIS IS THE SECOND LINE OF THE DATA.

RE AT LINE 00060

THIS IS THE SECOND LINE OF THE DATA.

RE AT LINE 00060

THIS IS THE SECOND LINE OF THE DATA.

RE AT LINE 00060

THIS IS THE SECOND LINE OF THE DATA.

RE AT LINE 00060

THIS IS TH"C

READY

The FIE error message indicates that the program tried

to read past the end of the data file, but execution is

not terminated. Instead, the program simply informs

the user of the error and continues to print the

contents of A$.

CLASSIC provides a special variation of the IF

statement to allow you to catch this error. This

statement has the form:

line number IF END # file number THEN line number

For example,

65 IF END #1 THEN 90

By adding this statement (and statement 90) to the

program on the previous page, you can catch the end

of file condition and avoid the error message:

FILEU #1:

20 PRINT #1:

25 PRINT #1: 'THIS IS THE SECOND

30 CLOSE #1

40 DIH A$(72)

FILE #1: 'RXA1IOUTPUT.JH'

'RXA1:OUTPUT.JH"

'THIS DATA IS STORED IN A DISK FILE.‘

LINE OF THE DATA.ll

70 PRINT as-
80 GOTO 60

[90 PRINT 'END OF FILE REACHED.LJ
99 END

READY

RUNNH

THIS DATA IS STORED IN A DISK FILE.

THIS IS THE SECOND LINE OF THE DATA.

END OF FILE REACHED.

READY

Note that the IF END# statement is placed
immediately after the |NPUT# statement. This

placement is necessary for the statement to work

correctly.

Another feature of data files that resembles data

tables is the use of the RESTORE# statement. This

statement has the form:

line number RESTORE# file number

and causes the pointer indicating the next value to be

read to be set back to the beginning of the file. This

statement is similar to the RESTORE statement, but it

resets a data file rather than a data table.

By adding- a RESTORE# statement to the above

program as statement number 75, neither the second

line of data nor the end of file condition is ever

reached:

10 FILEU #1: 'RXAltOUTPUToJH'

20 PRINT #1: 'THIS DATA IS STORED IN A DISK FILE.I

25 PRINT #1: 'THIS IS THE SECOND LINE OF THE DATA.I

30 CLOSE #1

40 DIM A$(72)

50 FILE #1: 'RXAliOUTPUToJH'

60 INPUT #1: A$

70 PRINT A$

75 RESTORE #1

so GUTO so

l 90 PRINT -END OF FILE REAOHED.'I
99 END

READY

BREED
THIS DATA IS STORED IN A DISK FILE.

THIS DATA IS STORED IN A DISK FILE.

THIS DATA IS STORED IN A DISK FILE.

THIS DATA IS STORED IN A DISK FILE°

THIS DATA IS STORED IN A DISK-FILE.

THIS DATA IS STORED IN A DISK FILE.

THIS DATA IS STOR”C

READY

Exercise 86. Modify the above program so that it

displays both lines of data stored in the file before it

repeats itself.

Uses of string data files. In Appendix A you will find

three programs that make use of string data files for

three very different purposes. MORGAG (page A-10)
allows the user to direct output to a disk file to speed
up processing. The program output may then be

displayed on the screen with the monitor TYPE

command. ATTEND (page A-3) uses a disk file to

store data on student attendance. This file is set up

by the program ATTSET and is then updated
(modified by reading and rewriting the data) by the

program ATTEND. The third program, CALC (page
A-5), writes an actual BASIC language program in a

string data file and then chains to that program and

executes it. When finished, the second program
chains back to CALC.

Exercise 87. Study the write-ups and listings for the

programs mentioned above. Run these programs from

the BASIC Program Demonstration Disk and study
their output. Display the data files written by these

programs on your screen or copier by using the

monitor TYPE command. If you wish, add the TRC

function to these programs to help you trace their

flow. (Do not SAVE any modified versions of these

programs on the Demonstration Disk). After'you have

studied these programs carefully, write a program of

your own that both writes and reads a string data file.

<Try to use all of the file statem'ents introduced so far:

CLOSE# closes a data file

FILE# opens a string file so that data

can be read from it

FILEV# opens a string file so that data

can be written' to it

IF END# detects the end of an alphanu- --

meric file

INPUT# reads data from a file

PRINT# writes data to a file
‘

RESTORE# resets the file data pointer to the

beginning of the file.

Another use of files is to pass data from one program
to another during a chain. When the CHAIN statement

is executed, all data in the computer’s memory is lost.
,

If you wish to use some of it in a chained program, 5/
you must first write it into a disk file before chaining \\
and then read it back in after chaining:

OLD RXA13FILE12.BA

READY

LISTNH

TUB-REM xxx PROGRAM 'FILE12'

110 REM

120 PRINT

130 PRINT "THIS PROGRAM UILL FIND THE STANDARD DEUIATION'

140 PRINT "OF ANY SET OF NUMBERS THAT YOU ENTER.‘
,

150 PRINT { \

160 PRINT "ENTER YOUR SET OF NUMBERS BELOW: AND INDICATE~

170 PRINT 'THE END OF YOUR SET DY ENTERING '-—99999'-.-

180 PRINT

190 PRINT 'YOUR NUMDERS'i

200 REM

210 REM XXX DATA INPUT

220 REM

230 DIM N(1000)

240 FOR N=1 TD 1000

250 INPUT H

260 LET N(K)=H

270 IF N1N)=-99999 THEN 320

280 NEXT K

290 REM

300 REM XXX CREATION OF DATA FILE

310 REM

320 LET K=K_1

330 FILEUN #11 "RXA1:DATAPA.SS"

340 PRINT *1: N

350 FOR K0=1 TO K

360 PRINT #1: N(K0)

370 NEXT KO

380 CLOSE #1

390 CHAIN 'RXAl:FILE13.DA'

400 END

READY

OLD RXA1:PILE13.HA

READY

LISTNH

100 REM XXX PROGRAM 'FILE13"

110 REM

120 LET T=O

130 LET T2=0

140 FILEN #1: "RXAl:DATAPA.SS"

150 INPUT #1: A

160 REM

170 REM XXX DATA INPUT

180 REM

190 FOR K=--1 TO A continued on next page

4—32

«f

confinuedfronflastpage

200 INPUT #1: H

210 LET T=T+H

220 LET T2=T2+H“2

230 NEXT R

240 REM

250 REM xxx

260 REM

270 LET S=SRR((T2«(T“2)/A)/A)

280
.-

'

290

300
I'

310

320

330

340 \.NT

350 RRINT "nu YOU wISH TO ENTER ANOTHER SET OF NUMBERS";

360 INPUT A$

370 IF A$m“YES" THEN 43o

OUTPUT

T "THE STANDARD DEUIATION OF YOUR"? A9 "NUMBERS I82"
nn c-

XXX OUERY FOR ANOTHER RUN

380 IF Y" THEN 430

390 IT NO" THEN 440

400
”I

N" THEN 440

410 T “PLEASE ENTER ONLY "“YES"" OR ““NO"".“

420 GE 3 340

430 CHAIN "RXAl:FILE12.DA“

440 END

READY

OLD RXAI:FILE12.BA

READY

RUNNH

THIS PROGRAM HILL FIND THE STANDARD DEUIATION

OF ANY SET OF NUMBERS THAT YOU ENTER.

ENTER YOUR SET OF NUMBERS BELON; AND INDICATE

THE END OF YOUR SET BY ENTERING "-99999“.

YOUR NUMBERS?1Oy20y30y4095096097018019011001—99999

THE STANDARD DEUIATION OF YOUR 10 NUMBERS IS:

28.7228

DO YOU UISH TO ENTER ANOTHER SET OF NUMBERS?YES

THIS PROGRAM HILL FIND THE STANDARD DEUIATION

OF ANY SET OF NUMBERS THAT YOU ENTER.

ENTER YOUR SET OF NUMBERS BELOU: AND INDICATE

THE END OF YOUR SET BY ENTERING '-99999".

YOUR NUMBERST75980785990795’1007—99999

THE STANDARD DEUIATION OF YOUR 6 NUMBERS IS:

8.53912

DO YOU UISH TO ENTER ANOTHER SET OF NUMBERS?NO

READY

NUM ERIC DATA FILES

If you try to read numbers from a string file, problems
can occur:

10 FILER) i=1:
"

RXA'. {OUTPUT . IJH
"

20 FOR KPI TO 10

30 PRINT #1: R

40 NEXT R

50 CLOSE II

60 FILE #1: 'RXA1:UUTPUT.JH"

70 FOR KPi TU 10

so INPUT #IIN

90 PRINT N

95 NEXT N

99 END

READY

RUNNH

1

o

J>

<3

<3

Li

<3

<3

DJ

(3

READY

The computer seems to have written two zeroes in

between each of the data values. This is not really the

case. The real reason for this result is explained
below.

You will remember that after a PRINT statement is

executed, the cursor is always positioned at the

beginning of the next line unless the PRINT statement

ends with a comma or a semicolon. CLASSIC does

this by sending two special characters to the

terminal. These are called the carriage return and line

feed characters and are exactly the same as those

sent by the PNT(13) and PNT(10) functions,

respectively. The carriage return and line feed

characters are also written when CLASSIC outputs
data to a string disk file. When these characters are

read back into numeric variables by the INPUT#

statement, they are interpreted as zeroes.

To help you understand this, look at the following
diagram. This diagram shows the actual characters

that are stored in the alphanumeric file written by
statements 10 to 50 of the above program. (Each box

represents one character position).

1 III? :22:

SPACE 2 SPACE ciflfifie IRE

SPACE 3 SPACE ciflfifie IES

SPACE 4 SPACE °§I$fie I2:

5 III? II:

SPACE 6 SPACE cigfifie IE:

. $338.29 I2:

SPACE 8
SPACE cgt'l‘frge flier;

SPACE 9 SPACE cigar? £223
‘ °

TILT? It:

4-33

When this file is read back with the FOR-NEXT loop at

lines 70-95, the spaces are ignored but the carriage
return and line feed characters are interpreted as

zeroes. Thus, the first ten numbers interpreted by the

lNPUT# statement are as follows:

1002003004

One way to correct this problem is to always read data

from string files as strings and then convert numbers

to numeric data by using the VAL function:

10 FILEV #13 “RXA120UTPUT.JH"

20 FOR K31 TU 10

30 PRINT #1: K

40 NEXT K

50 CLOSE #1

60 FILE #1: 'RXA120UTPUToJH'

?0 FOR Kai TU 10

80 INPUT #12 N$

90

95

9‘?

RR INT Um... (N515)

NEXT I‘l'

IEEINII

READY

RUNNH

“OLGVEFLfl-bwhlf"
10

REAIIIY

A better method is to restrict the use of string files to

string data and to use numeric type files to store

numeric data. Files can be opened as numeric type by
adding the letter N to the FILEV and FILE statements:

10 F/LEVN #1: "HXA1:OUTPUT.JH”

60 F/LEN #1: "HXA1:OUTPUT.JH”

When numeric files are used, the problem caused by
the carriage return and line feed characters dis-

appears:

LEO ETEEUN #1: -Pxn1:UUTPUT.JH'
20 FOR K=1 T0 10

30 PRINT #1: N

40 NEXT N

50 CLOSE #1

F30 FIEEN #1: "RXfithUTPUT.JH'I

4-34

170

80

90

95

9‘?

FOR K==1 T0 10

INF‘UT #12 N

F'RINT N

NEXT N

ENIII

REAIIIY

RUNNH

‘OOOVLKLfl-but‘JI-r-
1o

READY.

No special conversion needs to be performed; the

data values can be read directly into numeric variables

with successive INPUT# statements. Writing a

numeric data file is similar to creating a numeric data

table: no matter how many PRINT# statements are

needed to write the file, all the data will be considered

as a single set, and all spaces, carriage returns, and

line feeds will be filtered out.

There are two other differences between numeric files

and string files. First, you will remember that it was

possible to write numbers into a string file. It is not

possible, however, to write strings into a numeric file:

10
9-)
(in, .

L30

4 0

'5 0

5) 0

1370

8 0

9 0

9 5i

(3) \3)

“

RXA II. f, C] U T F" U 'l" T. .Jl-I
"

10

'

HUMP-ER "a?

FILEUN T1:

FDR Kml T0

PRINT T1:

NEXT N

CLflfiE #1

FILEN it: 'RXA130UTPUT.JH'

FUR Nx1 To 10

INPUT #1: N

PRINT N

NEXT N

END

N I

REAHY

RUNNH

53H AT LINES.- 00030

READY

WEN

The SW error message indicates that an attempt was

made to write a string into a numeric file and causes

termination of the program.

Second, the end of a numeric file cannot be

recognized by the system:

10 FILEUN #1: “RX01§DUTPUT.JH”

20 FOR Nfil TU 10

30 PRINT #1: K

40 NEXT K

50 CLOSE #1

60 FILEN #1: "RXAIIUUTPUT+JH“

80 INPUT #1: N

90 PRINT N

95 GUTU 80

9‘? ENIJ

READY

F: U N N H

II

no::=-:>ocoooo#emwambumJ

REMIY

If CTRL/C had not been typed during the above run,

the system would have gone on printing zeroes

indefinitely. The inability of the system to recognize
the end of a numeric file also means that the IF END#

statement cannot be used with these files.

Exercise 88. Write a program of your own that makes

use of a numeric data file and includes the FILEVN#

and FILEN# statements. Try different arrangements of

the expressions in a PRINT# statement to see if they
have any effect on the program’s ability to reread the

data. For example, find out if the statement:

30 PRINT #1: K, K+ 1, K+2

causes the same result as:

30 PRINT #1:K; K+ 1; K+2

and:

30 PRINT #1: K

33 PRINT#1: K+ 1

35 PRINT 1: K+2

Devise further experiments of your own to test the

ways in which numeric files differ from string files.

Exercise 89. When data tables become large, they can

occupy so much of the computer’s memory that little

is left for the program itself. Therefore, large amounts

of data are often stored in files rather than data

tables. Modify the TALLY program on page 3-39 so

that it reads data from a disk file rather than a data

table. Write a separate program to create the file from

the original data table.

LOOKING BACK

You have now been introduced to all of the BASIC

statements that are available on your CLASSIC

system. Chapter 4 of the CLASSIC User's Reference

Guide summarizes these statements and provides an

alphabetical reference for you to use while you are

programming.

The programs in Appendix A demonstrate the many
different types of things that you can program
CLASSIC to do using the BASIC language. Chapter 5

discusses these programs fully and suggests some

programming guidelines that you might follow to

make your programs easier for others to use.

The final section in this chapter will help you learn

how to use the remaining monitor commands.

4—35

SECTION 4-E

USING MONITOR COMMANDS

In Chapter 1 you learned the monitor command R

BASIC, and in Section 3-E you learned the monitor

commands DATE, DELETE, DIRECT and TYPE. This

section will introduce you to the other eight CLASSIC

monitor commands and show you new ways to use

the commands that you already know.

VARIATIONS OF THE DIRECT COMMAND

If you are looking for a specific file on a disk, you
need not list the entire directory. Just type in the

name of the file that you are looking for and CLASSIC

will display its directory entry if it is present:

. [I I RIEEEI T l'k'Xfi .'l. i EZr—‘1I...l.'l 4 11m

GALE .BA 4

If it is not present, only the number of free blocks on

the disk will be displayed.

Up to nine different file names may be entered on one

line. The example below shows the abbreviation for

the DIRECT command and requests that the directory
entries for two files be displayed if they are present:

3 IIIR' HXAII fiSYNUNY 44 tm v SESYNEEET . 11m

SYNUNY e Fir-‘4 .‘i. ;.-?.

SYNSETJM 1|.

Note that the device name for SYNSET.BA is not

specified. CLASSIC assumes that SYNSET.BA is on

RXA1 because the preceding file is on RXA1. In this

command, each file specified is considered as an

input entry to the DIRECT command (see page 3-20).

In any list of input entries, each file is assumed to be

on the same device as the preceding file.

Entering options. Some monitor commands allow

you to enter options which affect the functioning of

the command. Options can be either letters or

numbers. If they are letters, options are preceded by
slashes (I).

One option recognized by the monitor DIRECT

command is /F. This option causes a “fast” directory
to be printed, displaying only the file names:

. [II FIEIIIZT l‘tXfil i/ 1'

ACEYOE.BA

ATTENH.Bfi

ATTSETQBA

BALE .Bfi

EASYO$.BA

EASYD3.BA

GUESS .Bfi

HMHfiBI.Bfi

HURKLE.BA

HUHKOEqBA

HURGAG.BD

QUAHEG.HA

QUfiHOE«Hfi

GUfifl03.Bfi

SYNDNYoBAV

SYNSEToBH

HTDAUG.Bfi

When a number option is used,‘it always follows an

equal sign (=). When used with the DIRECT

command, the number option indicates the number of

columns to be used in displaying the output:

ACEY02.BA 2 erratum-m 24

ATTSETJJA 2 CALC .34 4

IEASSY02.BA 1 EASY013.BA 4

GUESS .r-m 5 HMRABI.BA 2:23.

l-IURNLE.BA 4 HURK02.BA 31

MURGAGJGA 1o GUAHEG.BA 2

nunnoema 4 uunnomm 5

ssvnonvma 12 SYNSET.BA 1

urmwama 19

More than one option may be entered in a single
command line:

.HIR RXA13/Ffi5

ACEYOE.BA

EASYO3.BA

MORGAG.BA

SYNSET.BA

ATTEND.BA

GUESS .BA

GUADEGoBA

NTDAUGoflfi

Exercise 90. Insert the System disk in drive 0 and the

BASIC Program Demonstration disk in drive 1. List

the directories of both disks using the options
discussed above.

The wild card construction. Wild cards are used to

replace all or part of the file name or extension in a

monitor command line.

A wild card may be either an asterisk or a question
mark. An asterisk replaces an entire file name or

extension while a question mark replaces only a

single character.

To list only those files on the system disk with the

extension .SV, enter the following command:

4-36

E?

K,

/‘

ATTSEToBA SALE .39 EASY02.BK
HMRABI.BA HURKLEoBA HURK02oBA

GUAD02.BA GUADO3vBA SYNDNY.BA

/4:K<

fix

.IIIR RXAO:*.SU

CCL .SU 17 21—JAN--75

I]IF:E[:T.SU 7 OS~MAY~75

I-“CITF' .SU 8 08-—MAY-~75

F'IF' .SU 11 08--MAY~75

I-ZICOMF' .SU 17 18—JAN—«74

BASIC .SV 9 13-MAY--75

I-ZILIJAIII .SV '7 13—MAY-75

HRTS .SU 1'5 08~MAY-—75

The above command uses the asterisk wild card to

replace the file name in the input entry. When the

computer searches the disk directory for files that

match the input entry, any file with an extension of

.SV is accepted because all file names match the

asterisk wild card.

The asterisk wild card can also be used to replace the

file extension:

. [III-1' FL'XAOi’ BASIC o >I<

BASIC .AF 4 18mJfiNw74

BASIC .SF 4 08mMfiYw75

BASIC .FF 4 18 JAN ?$

BASIC .SV 9 13 MAY ?5

BASIC .UF 4 18MJAN~?4

BASIC .HS é 20wJULW75

In this case, the directory entries for all files with the

name BASIC and any extension are displayed.

The question mark replaces individual characters in

the file name or extension. When searching for files to

match the input entry, the computer accepts any
characters in the positions containing question
marks. The following command therefore displays the

directory entries for all files whose names start with B

and have an .SV extension:

I III I I3: Iii: X {310 5 B "E“ 'I’ 'F 'i" 'i" .-. $331.)

,

B C [J M I” t. SE: U SI. ll. £53I (it N I? 4

ISIRSS’I CI v SW 9" II. I. -~--I"Ir-’?i ‘1’
'

1-3 L U A III I- S U 3"“ 3|. 1'5 I‘I f-‘l ‘r’

BRTSES 0 $55K) 1'55 ()IE?""I‘II‘-’~‘l‘t" 53

113173 FREIISEI I-Itl...I'JI.'Z|‘C$EE;

The next command displays all files whose names

start with B and have an .SV extension but whose

names are not more than four characters long:

0 I] I I3: 1'3"?" ’5’ "5’ 6 ES; U

1'} I512 T if? I If; U II. 5 ll") II. ...| f‘t N 7' {iii

The question mark wild card may not be used in an

output file entry.

Options may be used in a command line containing
wild cards:

.DIR RXAO:B?????.*/F=5

BCDHP .SV BASIC .AF BASIC .SF BASIC .FF BASIO .SV

BLUAD .SV BRTS .SV BABIC .UF BLKJAKnflA BLKJAC.BA

BASIC ~US

Exercise 91. More examples of wild cards and options
used with the monitor DIRECT command are

presented in the CLASSIC User’s Reference Guide.

Study these examples and experiment with wild cards

by displaying various directory listings of the system
and demonstration disks on your screen. For

example, try entering the following commands to see

what happens:

.DIR RXAO:B*.SV

.DIRECT SYS:*.*

.DIR DSK:

.DIR RXA1:??*.??

.DIR *.?F

.DIRECT .SV

.DIR SYS:BAS|C

.DIR RXA‘I :???Y??.BA

RENAMING DISK FILES

So far, you know how to create disk files by writing
BASIC language programs or outputting program data

to a disk. You also know how to erase files with the

monitor DELETE command. If you wanted to change
the name of a program file, you could therefore do it

by the following procedure:

(1) Start up the BASIC editor and read the file to be

renamed into the workspace with the editor OLD

command.

(2) SAVE the file under a new name.

(3) Return to the monitor and erase the old copy of

the file with the DELETE command.

Not only is the above procedure rather clumsy, but it

does not work for data files. CLASSIC therefore

provides the RENAME command to simplify this task.

The monitor RENAME command changes the names

of disk files.

The general format of the RENAME command is as

follows:

.RENAME dev:newfile.ex< dev:oldfll.ex

(The command word RENAME may be abbreviated to

REN.) The device entry on both sides of the < must

be the same.

4-37

Exercise 92. Insert the system disk into drive unit 0

and a “scratch” disk (one that has files on it but that

you can afford to erase) into drive unit 1. List the

directory of the scratch disk, and then change the

name of one of its files using the monitor RENAME

command. Verify that the file has been renamed by
listing the disk directory again.

The RENAME command will also accept wild cards.

With any monitor command besides DIRECT, it is

recommended that you always include the IQ optiOn.
This option will query (ask) you about each file to be

affected. A response of Y will cause the indicated

operation to take place, while a response of N will

cause that file to be skipped. The IQ option works

with wild cards like this:

.RENAME RXfi13*.RNéRXfi12*¢TM/G

FILES RENAMEU:

UNE. TM?Y

Tun. TMTN

THREE. TM?Y

FOUR. TM?N

FIVE. Tutv

oIIIIR RXfiIl 3* .Ti'l wk 9 RN

0 N E: o R N 1 3 0 R U [3 '7 6

T H U o T M II. 1'5 0 A U Iii 7 (5

T H R E: IE. 9 R N ll. 2'5 0 R U [3 -: '7 6

I? 0 U R e T M II. '5 0 R U I?) 7 6

I57 I U IE. 9 R N ll. '3 O A U [3} 7 6

Note that the asterisk on the left side of the < in the

above command line has a different significance from

the one on the right. tn an input file entry (on the

right), the wild card means any file name or

extension. In an output entry (on the left), the wild

card means “use the same name or extension as in

the input entry”. Therefore, only the file extensions

will be changed by the above command.

Exercise 93. Experiment with the RENAME command

using wild cards and the IQ option to change the

names of other files on your scratch disk.

Do NOT rename the files on RXAO or your system will

not operate properly.

COPYING DISK FILES

The COPY command. Very often, you will find it

useful to copy a disk file from one disk to another.

This can be done with the monitor COPY command.

This command has the form:

.COPY dev:output.ex<dev:input.ex

After this command is executed, the output file will

be an exact copy of the input file. For example,

.COPY SYS:LOAN.DM <RXA1:MORGAG.BA

will cause a copy of MORGAG.BA on RXA1 to be

created on SYS (RXAO). The new copy will be named

LOAN.DM. .

If the name of the file is not to be changed, only the

output device needs to be specified in the output
entry. Each of the following three commands will

therefore accomplish the same task:

.COPY RXAO:MORGA G. BA.< RXA 1:MORGA G. BA

.COPY RXAO: *.
*

< RXA1:MORGAG.BA

.COPY RXAO:<RXA1:MORGAG.BA

Like the DIRECT command, the COPY command

accepts wild cards and different options. For

example, the following command line will copy all

files with .BA extensions from RXAO to RXA1,

querying the user before each copy is made:

.COPY RXA1:< RXAO: *. BA /0

Exercise 94. The complete set of options allowed by
the COPY command and examples of their use are

presented in the User’s Reference Guide. Read these

pages and experiment with the COPY command by

transferring files from RXAO to RXA1 and back again.
Once again, do not change the name of the original
system files on RXAO or your system will not function

properly.

The ZERO command. Sometimes it is desirable to

delete all the files on a disk. This can be done in two

ways. One way is to use the DELETE command with

wild cards for both the file name and extension

entries. With this method, it is possible to

accidentally erase all the files on your system disk

and therefore destroy the CLASSIC software.

A safer method is to use the ZERO command. This

command tells CLASSIC to erase all files on the disk

specified. If you try to zero the System disk by
mistake, CLASSIC will respond:

ZERO SYS?

Always respond N to this query to avoid losing the

system software.
The monitor ZERO command should thus be used

only in the following form:

.ZERO RXA1:

Exercise 95. Try out the monitor ZERO command by
following these steps:

(1) Copy all of the files on your scratch disk onto the

system disk by entering:

.COPY SYS: < RXA 1:

(2) List the directory of RXA1: to verify that its files

are still present.

(3) Zero your scratch disk by entering:

.ZERO RXA1:

(4) List the directory of RXA1: to verify that its files

have been erased.

The SOUISH command. There are two ways to put the

files back onto RXA1 by copying them from RXAO.

One way is to use the monitor COPY command in the

form:

4—38

l/un:

.COPY RXA1:<SYS:

A faster way is to use the SQUISH command:

.SQUISH RXA1:<SYS:

The SQUISH command has two advantages and two

disadvantages when compared with the COPY

command. Its advantages are that it is faster than the

COPY command and that it automatically eliminates

any gaps between files on the output disk. Its

disadvantages are that it automatically zeroes the

output disk (erasing any previously stored files) and

cannot be interrupted by a CTRL/C. To counteract

these disadvantages CLASSIC therefore prints the

message:

ARE YOU SURE?

before a SQUISH command is executed. A response
of Y will cause the SQUISH to occur; N will return

control to the monitor without execution of the

command.

Exercise 96. The SQUISH command is very useful

when you want to make an exact copy of the RXAO

disk. Enter the following command to your system:

.SQUISH RXA1:<SYS:

When CLASSIC prints ARE YOU SURE?, check your
command line to be sure that it is typed correctly and

then respond with Y.

WARNING: Never specify svs:, DSK:, or FIXAO: as

the output device in a SQUISH command. This action

will destroy the CLASSIC system software.

This command erases all files from RXA1 and then

writes the monitor program on that disk. When it is

completed, the monitor dot should reappear. If an

asterisk (*) appears rather than the dot, type CTRLIC

to return to the monitor.

Once you have copied the monitor program, you can

copy all the other files needed to create a CLASSIC

System disk by typing:

.COPY RXA1: <BASIC. *, *.SV,RESEQ.BA

Exercise 97. Enter the above commands to your

system and then verify that the new disk can be used

as a system disk by inserting it in RXAO, starting the

system, and running the BASIC editor.

The procedure outlined above (which creates a new

copy of the CLASSIC System Disk) can be clarified by
the following diagram:

RXAO
_

RXA1

.R PIP

BASIC

.RXA1: <(YZ!$

BASIC

ONITOR

‘
.COPY RXA1:<-BAS|C.*,*.SV,RESEQ.BA

MONITO' MONITOR

BASIC BASIC

If you now compare the directories of RXA1 and

RXAO, you will see that they are exactly the same. Try
the following experiment. Take the System Disk out

of RXAO and place it on the desk. Move the other disk

from RXA1 to RXAO. Then try to restart the system.

What happened? Probably nothing. The system would

not work because the disk in the drive does not

contain the monitor program.

The monitor program is the only file ever stored on a

disk that does not have an entry in the disk directory.

To copy the monitor program, you must use the R PIP

command.

The R PIP command. To copy the monitor program, it

is necessary to type the following lines:

.R PIP —

Push

*RXA1:< (Y2) ESC
"

Key

This is a two-line command and has no variables. It

should be typed exactly as shown above. When you

push the ESC key, the system will display a dollar

sign ($).

STORING PROGRAMS IN COMPILED FORM

Exercise .98. Obtain a watch with a second hand, and

then type the following commands:

HI“!

.FI' DHOIC

NEW OR OLD—OLD RXA1:HURK02

READY

now type RUNNH but do not press the RETURN key
until you note the position of your watch’s second

hand. Determine how long it takes for CLASSIC to

begin executing HURK02 from the time that you

press the RETURN key. Note the elapsed time on a

separate piece of paper.

As soon as you press the return key, CLASSIC begins
to compile your program. This means that the

program is translated into an internal form that can

actually be executed by the computer. Compilation
usually takes only a few seconds, but with a very large

program, like HURK02, it can take a little longer.
When programs are no longer going to be changed, it

is often convenient to store them in their compiled
form so that the program does not have to be

recompiled each time that it is run.

To store a program in compiled form, you must use

two monitor commands. The first command causes

the BASIC language program to be compiled and the

4-39

compiled form to be placed in the computer’s
memory. This is a two-line command of the following
form:

.R BCOMP

*dev:filnam.ex/K = 3

The dev:fi|nam.ex entered as a parameter to this

command should specify the BASIC language
program that you wish to compile. For example,

.R BCOMP

*RXA1:HURK02.BA/K=3
_

The [K and :3 must be included in this command in

order for it to work properly. IK tells the computer to

translate the indicated program into compiled form,
and = 3 tells it the amount of memory that is available

for use.

To store the compiled form of your BASIC language
program on a disk, type:

.SA VE dev:filnam

where dev: is the device name on which you
want the compiled program

stored, and

filnam is the file name that should be

used in storing the program.

No file extension should be specified; CLASSIC

automatically appends the extension .SV to programs
stored in compiled form. For example,

.SA VE FIXA1:HUFIK02

There will now be two programs named HLIRK02 on

RXA1, HURK02.BA and HURK02.SV. Note the

difference between this command and the editor

SAVE command:

The editor SAVE command stores programs in their

BASIC language form. The monitor SAVE command

stores programs in their compiled form.

To run a compiled program, you must use the monitor

RUN command. For example,

.RUN RXA1:HURK02

This command has the same general format as the

monitor SAVE command:

.RUN dev:filnam

CLASSIC automatically looks for a file with the

extension SV.

The editor RUN command executes BASIC language
programs. The monitor RUN command executes

programs stored in compiled form.

The complete process of compiling, storing, and

running a BASIC language program is shown below:

4R BCOMP

#RXAI:HURNOQ.BA/K=3

.SAVE RXAleURKOZ

.RUN RXAltHURKOB

HURKLE THU

flU YUU WISH TO SEE THE INSTRUCTIONS ('YES' UR 'NU”)?

Exercise 99. Enter these commands into your

computer and record how long it takes for CLASSIC to

begin executing the program once you press the

RETURN key after the RUN command. Compare this

time to the value that you foundwhen using the editor

RUN command.

There is one special rule that you must follow when

storing and running programs in compiled form:

BASIC language programs can only chain to other

BASIC language programs, and compiled programs
can only chain to other compiled programs.

Exercise 100. Experiment with this rule by storing and

running the TARGET and CHAIN programs that were

demonstrated on page 4—28 in both BASIC language
and compiled form. When both programs are in

compiled form, the CHAIN statement must be in the

form:

30 CHAIN “RXA1:TARGET.SV"

Note the difference in the time required to chain

between programs in BASIC language and compiled
forms.

LOOKING BACK

This section concludes the introduction to all of the

commands and statements that make up the

CLASSIC software. Additional examples and notes on

the monitor commands discussed in this section can

be found in Chapter 2 of the User’s Reference Guide.

The commands in that chapter are described in

alphabetical order.

Throughout Chapter 4, you have seen many examples
of BASIC programs which apply CLASSIC’s cap-

abilities toavariety of tasks. In Chapter 5, you will be

introduced to more sophisticated CLASSIC applica-
tions. By studying Chapter 5 and the accompanying
programs in Appendix A, you will learn additional

tricks of the programming trade and get some new

ideas about programs that you can write for CLASSIC.

4-40

,2"‘\

Chapter 5

Classic Applications

UNDERSTANDING WHAT TO DO

This chapter introduces you to some of the things
that you should consider when you apply CLASSIC’s

capabilities to certain tasks.

The chapter is broken down into five lessons or

modules. The first module discusses the types of

computer applications that are found in today’s
schools and colleges and presents examples of

programs that can be run on your CLASSIC system.
The second, third, and fourth modules will help you

learn about:

(1) how to plan a large computer program,

(2) ways to make it easier for others to use your

programs, and

(3) some things to consider so that your programs
can be used on computers other than CLASSIC.

The final module lists books and magazines that you

may use to teach yourself more about computers in

education.

Each module contains the following five sections:

(1) What You Will Do

(2) How Far You Should Go

(3) Things You Will Need

(4) What It’s All About

(5) Self-Test

Each of these sections is described below to guide
you in using them effectively.

What you will do. The first part of each module is an

exact statement of what you will be able to do when

you have completed the module. All the information,

5-1

examples, and learning activities presented in the

module are designed to help you do what is stated.

You should read this statement carefully to under-

stand the purpose of each module and avoid

unnecessary work.

How far you should go. This section describes how

much you should work on the module before you

proceed to the next one. If you think that you already
know the material to be covered as it is described

here, test yourself with the self-test.

Things .you will need. The section is a list of all the

materials you will need to do the learning activities in

the module. For example, some modules require
CLASSIC while others do not, and some require a

special demonstration disk. This section will help you

plan your work.

What it’s all about. This is the largest section of each

module. It discusses (1) the information needed to

complete the module, (2) examples of CLASSIC

usage, and (3) learning activities that you can carry
out.

Self-test. Each module ends with a self-test that you

can take to measure your learning. This test will let

you know whether you are ready to go on to the next

module or whether you need more practice on the

current one. If you think that you can pass this

self-test without going through the “What It's All

About” section, go ahead and try. If you do pass the

test, go on to the next module. If you do not, work

more carefully on the activities in “What It’s All

About”.

DISKS

There are two disks which are referred to in this

chapter and will be needed to carry out the learning
activities. The first is called the CLASSIC System disk

and contains the CLASSIC system software. The

second is the BASIC Program Demonstration disk and

contains sample programs for you to run. Copies of

these disks should be available from your instructor

or the person in charge of your CLASSIC (your system

manager).
‘

MAKE SURE THAT YOUR SYSTEM MANAGER HAS

BACK-UP COPIES OF BOTH DISKS BEFORE YOU

WORK ON THIS CHAPTER.

Instructions for making back-up copies of your disks

may be found in Chapter 1 of the CLASSIC

Installation and Maintenance Guide.

MODULE 5-A

EXAMPLES OF CLASSIC APPLICATIONS

WHAT YOU WILL DO

Examine the programs on the BASIC Program
Demonstration disk that demonstrate instructional
computer applications. Look for situations in your

own school or community in which programs of these

types might be useful. Then choose one of the

program descriptions on page 5-4 to use as a basis

for developing your own application program in later

modules.

HOW FAR YOU SHOULD GO

For each of the following four categories of

instructional computer applications, describe at least

one situation in your own school or community in

which CLASSIC might be applied.

(1) Administration

(2) Computer-Assisted Instruction (CAI)
(3) Problem Solving
(4) Simulation

THINGS YOU WILL NEED

(1) CLASSIC

(2) CLASSIC System disk

(3) BASIC Program Demonstration disk

WHAT IT’S ALL ABOUT

Figure 5-1 shows some of the most common

instructional computer applications. (Many computer
programs fall into more than one of these categories.)
Each of these applications will be discussed, and the

programs on your demonstration disk will be used as

examples. Each program has a write-up that explains
how it works. These write-ups appear in Appendix A.

INSTRUCTIONAL
COMPUTER

APPLICATIONS

Business

Computation
Mathematics

Engineering

PROBLEM SOLVING

Figure 5-1

Instructional Computer Applications

5-2

F\

/m’\

fix

(

fix

fl-‘\

Administration. The computer has become an

important part of almost every large organization in

the world. In fact, the administrative jobs that

“amputers do are so sizable that most of our large
chools and businesses would find it difficult to do

their jobs without computers.

In schools and colleges, computers are used to keep
student records, improve class scheduling pro-

cedures, keep financial records, print grade reports,
and supply guidance information.

CLASSIC is a small computer compared to those that

may handle the administration of your school and

community, but it can still be used to do some types
of administrative tasks. One of these tasks might be

weighted grade averaging, a simple calculation that

applies a “weighting” effect to the averaging of a set

of numbers. This task. is often used by teachers who

wish to “average” quizzes, papers, and tests to arrive

at a final numerical grade but who feel that short

‘uizzes should count less than large exams. The

rogram that demonstrates this task is called

WTDAVG (“Weighted Averaging”). Read the write-up
for this program on page A-13 and run the program

from the demonstration disk.

The second task involves file storage — saving
information from one run of a program to be used in

another. Program ATTEND demonstrates this task by
keeping a record of student attendance. This program

is also available on your demonstration disk and its

‘~'rite-up is on page A-3. Try it before you go on.

Computer-Assisted Instruction. CAI is a term that has

been applied to many different instructional computer

applications. In its most general sense, CAI includes

any use of the computer to assist instruction. More

often, the term CAI refers to applications in which

students run programs written by an instructor and

interact with the computer system by answering
questions printed on the terminal. This limited

‘oplication is also called drill-and-practice or tutorial

.JAI. CAI also includes the use of the computer to test

students. In this application, the computer usually
stores information on each student’s score and can

display this data for the instructor.

The program on your demonstration disk that

illustrates CAI in drill-and-practice and testing is

called SYNONY, and its write-up appears on page
A-12. This program uses the disk to store questions,
answers, and information about student performance.
Try it out before you go on.

Computer Science. The amazing growth in the

number of organizations that use computers has

created many jobs for people with computer
experience. Computer science is a wide field that

includes skills such as programming and general
computer operations, topics that your CLASSIC is

ell suited to helping you learn. (Chapter 3 is

designed to be an introduction to this field.)

Computer literacy is also a part of computer science.

A person who is computer literate is one who has

some idea of how computers operate, how people use

them, and what their capabilities and limitations are.

(This chapter introduces you to some concepts in

computer literacy.) CLASSIC can be used to

demonstrate each of these principles and can provide
a stepping stone to advanced courses in computer
science.

Problem solving. In this application, the computer is

used to do the tedious calculations that are usually
done by hand. Problem solving is the oldest

application of calculational machines. It was for the

purpose of speeding up mathematical computations
that the abacus, adding machine, slide rule,

calculator, and computer were invented. The applica-
tion of the computer to problem solving in

instructional situations is limited only by imagin-
ation.

Several programs are included on the demonstration

disk that illustrate problem solving. These are:

CALC calculates the value of any

valid CLASSIC mathematical

expression (write-up on page

A-5)
EASY02 finds the factors of a given

number (page A-5)
MORGAG computes mortgage pay-

ments (page A-10)
QUADEQ solves quadratic equations

(page A-11)

Look at the write-ups for these programs and run

them from your demonstration disk.

Simulation. This final category of instructional
computer applications is among the most popular
uses of the computer in education. This category
includes games and simulated experiments, pro-

grams that allow the user to match his or her wits

against the computer and run experiments without

any real risk.

There are three programs on your demonstration disk

that have educational value as well as being enjoyable
to run. The first of these is HMRABI, which allows

you to act as Hamurabi, the governor of the ancient

city of Sumeria. This simulation demonstrates the

importance of balance in running the affairs of state.

The write-up is on page A-6.

The second program is called HURKLE. This is a

game which tests your knowledge of the Cartesian

coordinate system (see the write-up on page A-7) by
finding a “Hurkle” hiding within a grid. With a little bit

of practice, you should be able to find the Hurkle with

a relatively small number of guesses. HURK02 is a

more challenging version of this game (see page A-8).

The last application program is ACEY02 (the write-up (4) Simulation:

is on page A-1). This is a version of the Acey-Deucey (a) Games _ almost any game can be simulated
card game. USING ACEYQZ YOU can gamble hundreds on the computer. if you have a favorite one, \

of dollars Without opening your wallet. There are a write a program that simulates it.
‘

few tricks of the trade, however, and some thinking
about probabilities will greatly increase your

(b) Titration - simulate an acid-base titration in
‘

chemistry. Your program should reflect aswinnings. . . .

_ many of the Important factors In a real titra-
Try running each of these programs. tion as possible.
SELF-TEST

Now that you have been introduced to some

instructional computer applications, look around your ,

-school, college, or community for ways to apply
CLASSIC. Describe at least one task for each of the

four application areas specified in “How Far You

Should Go”. Discuss the descriptions that you write

with people who might use your ideas. These

discussions will help you to further define the tasks

and understand if your ideas will work.

Listed below are descriptions of programs in four

different applications areas. Choose one of these
7

descriptions to use as a basis for developing your (own application program in later modules. (If none of

these suit you, you may make up your own.)

(1) Administration:

(a) Frequency - write a program that analyzes a

set of scores and displays a bar graph show-

ing the number of times that each score was

achieved.

(b) Inventory - this program might maintain a file

of all the audio-visual equipment in your
school or college, including usage data as (
well as the type, cost, supplier, and purchase
date of each machine.

(2) Computer-Assisted Instruction

(a) Fractions - present 10 multiple choice fraction

problems in the following form:

2 1
_ + __ =

/'

3 4
l\

(A) _3_ (B) A (C) 1_1 (D) E
7 12 12 4

YOUR ANSWER (A,B,C, OR D)?

(b) Spelling - display a sentence on the screen
_

containing a misspelled word. Then ask the

user to type the correct spelling of the word in

error.

(3) Problem Solving:

(a) Cubic - expand the QUAD03 program on the

BASIC Program Demonstration disk to solve

cubic equations of the form:

Ax3+Bx2+Cx+D=0

(b) Bounce - create a program that will diagram
the bouncing of a rubber ball. \

5—4

”N

x’AN‘

,lfl-‘x

MODULE 5-B

PLANNING PROGRAMS FOR CLASSIC

WHAT YOU WILL DO

Plan and write an application program for the

description that you selected at the end of Module

5-A. Your program need not be very long, but it

should be sizable enough to use many different types
of BASIC statements (perhaps 50 - 100 lines).

HOW FAR YOU SHOULD GO

DiscuSs your program plan with your instructor or

system manager. He or she should agree that your

plan is a good one for CLASSIC and that your program
is not too large to be completed within a reasonable

amount of time. Write your program and save your
work on a disk for use in Modules 5-C and 5-D.

THINGS YOU WILL NEED

(1) CLASSIC

(2) CLASSIC System disk

(3) Scratch or blank disk (if available)

WHAT IT’S ALL ABOUT

In this module, you will develop a complete computer

program, planning the program as a whole rather than

building on pieces of programs as in Chapter 4. By
doing this, you will better understand the work

involved in writing programs and be better prepared to

write programs for any task.

In planning your program, follow the simple stepwise
procedure defined below.

(1) Write down your idea.

(2) Consider your time.

(3) Consider CLASSIC’s capabilities.
(4) Define exactly what you want to do.

(5) Test your programming techniques on the

computer.
(6) Write your program off-line.

(7) Enter your program.

(8) Debug your program.

(9) Document your program.

Write down your idea. The first step in planning any

program is to describe what your program will do as

carefully as you can. Your description should be

precise and complete. For example, the following
description is not good enough to build a program
from:

The program will calculate how much you must

pay back if you borrow a certain amount of

money.

This is better:

Given:

(1) the amount of money borrowed,
(2) the yearly interest rate to be paid, and

(3) the number of years allowed to pay back the loan,

the program will calculate:

(1) the monthly interest rate,

(2) the number of months allowed to pay back the

loan, and

(3) the amount of money to be paid each month.

Note that both input and output are specified. (This
is a description of the first part of MORGAG, the

application program written up on page A-10.)

Expand upon the program description that you have

chosen by specifying what data you will supply, what

the computer will do with it, and what results will be

printed. Describe your intended program as carefully
as you can.

Consider your time. Consider how long it will take

you to write the program that you have described.

Your work in Chapters 3 and 4 probably convinced you

that computer programming can be a time-consuming
task. If you are programming simply for fun and have

no special date by which your program must be

completed, you need not be too concerned about the

time. But if you have a deadline, you might do better

to trim your idea down to a more reasonable size. You

can usually come back and add your other ideas

later.

Consider CLASSIC’S Capabilities. A second point that

beginners often fail to consider is the capability of

their computer. CLASSIC is a powerful machine, but

it has limitations just like any other machine. As you

plan, keep the following points in mind:

(1) CLASSIC has a finite memory size. The computer
can handle very large programs, but only if they
do not contain large arrays. (Remember that the

RESEQ program can only handle up to 350 lines.)
If your programs are too big for CLASSIC, break

them up and use the CHAIN command.

(2) Your disks also have finite size, especially if you

store all your programs and data files on the

system disk. For programs using very large
amounts of data, plan to use a blank disk for your

files instead of the system disk.

(3) Four files may be open at once, and only one of

these may be used for writing.

(4) Print—out is limited to 72 columns. Therefore, any

line longer than 72 columns will have its extra

characters printed on the next line.

(5) CLASSIC may be used by one student at a time or

by a group of students together. Programs
designed to collect data from many students one

at a time should be kept short. For example, con—

sider what would happen if'30 students each had

to interact independently with a program for 10

minutes. The entire process would require 300

minutes, or 5 hours, or almost every minute of an

entire school day.

Think about the considerations mentioned above and

modify your original written idea, if necessary, before

you go on.

5-5

Define exactly what you want to do. Take your

carefully considered idea and break it down into fine

detail. At this point in the planning process you may

wish to draw a generalized flowchart for your program
to show how it will work. Flowcharting was

introduced in Chapter 3 to show what the computer
does when you give it certain instructions. General-

ized program flowcharts are less detailed. Figure 5-2

is a flowchart of the program planning task that is

being discussed in this module. You will remember

that each block contains instructions on activities to

be carried out. Decision points are shown with a

diamond, and entry and exit points are shown with an

oval. At this point, make a generalized flowchart and

discuss your program plan with your instructor or

system manager as described in the first part of “How

Far You Should Go”. Before you begin programming,
you will want to make absolutely sure that your time

will be well spent.

Test out needed programming techniques on the

computer. Your detailed plan will call for certain tasks

to be done in certain ways. A programmer is seldom

completely sure that his or her approach to a problem
is correct until it is actually tried on the computer.
The programmer may have a wrong idea about the use

of a specific program statement or how the computer
executes a specific series of statements. These are

called logic errors, as no error messages are printed
by the computer but the program does not do what

the programmer wishes.

Before you begin writing your complete program, test

your logic by writing simple programs to try out your
ideas.

Write your program. Don’t make the mistake of trying
to write your program at the keyboard. This is

extremely difficult and time--consuming. Large pro—

grdllls dlU UUSL WfillUll Ull a plUCU Oi papUl [all IUl lllall

while sitting at the terminal.

Enter your program to the system. With your program

written, you should have little trouble typing it into

your system. Be sure that you SAVE your program on

a disk so that you will not have to retype it the next

time you want to use it. It is agood idea to SAVE your

program after every 25 to 30 lines that you type
because you may mistakenly delete lines or your
entire program and lose a good deal of work. If you
are working on a very large program, ask your system
manager if you can borrow a disk for your own use.

Debug your program. Programming errors are known

as bugs, and the process of correcting them is known

as debugging. It is unusual to enter a program, type
RUN, and not receive any error messages. Program-
mers usually make at least one typing error in every
five to ten lines. These errors are easy to correct,
because the computer prints out each error that it

finds and the line numbers in wnich the errors occur.

RUN your program and correct its errors. After you

debug your program, don’t forget to SAVE it again to

correct the copy on your disk.

STA RT

WRITE DOWN

YOUR IDEA

L
‘

WILL

YOU HAVE
ENOUGH TIME?

REVISE
YOUR IDEA

S
YOUR COM-

PUTER CAPABLE
OF THE

TASK?

DEFINE EXACTLY
WHAT YOU WANT TO DO

L
‘

OUR PRO-

”Rafi
WORK?

APPROACH

WRITE YOUR
PROGRAM.

ENTER YOUR

PROGRAM

DOES
YOUR PR0,- $3ng

GRAM RUN PRO— PROGRAM
’

PERLY

DOCUMENT
YOUR PROGRAM

Figure 5-2

Program Planning Flowchart

5-6

/"m\\
.

I

//“-\
I

Logic errors are more difficult to find and correct.

These bugs can only be found by running your
. program and checking to make sure that it runs

correctly. If it does not, you have probably made logic
errors. Run your program and check its logic as

follows:

(1) Input simple data that you can check by perform-
ing the computer’s calculations yourself. For

example you might check the logic in EASY03

(see page A-5) by entering 4 or 6 or 12. The first

entry should give three factors: 1,2, and 4. The

second should give 1,2,3, and 6, and the third

should give 1,2,3,4,6, and 12.

Input data that will test out all the logical paths in

your program. That is, make sure that all your
branches are executed properly. In EASY03, for

example, you would want to check that line 560 is

executed only when the relationship in line 520 is

true. You would also want to be sure that the

program terminates when the word “QUIT” is

entered (lines 440 - 460).

Correct as many logic errors in your program as you
can find. Once this is done, give your program to a

friend to try. (Other people always seem to be very

good at finding mistakes!)

Document your program. Program documentation

consists of written instructions to others on how to

use your program. This guide is the CLASSIC

documentation, and you would have a hard time using
CLASSIC without it. The same is true of the programs

(2)

‘

that you write: they will be difficult for others to use

without documentation. You will use your work from

this module to learn about program documentation in

Module 5-C.

SELF-TEST

Dtsouss your program plan and final

your instructor or system manager. He or she should

agree that your program accomplishes all of the tasks

nrnrh If‘+ uqun
PIVUUUL 'VILII

_

outlined in your plan efficiently. If any tasks have

been left out or if more efficient programming
techniques are warranted, incorporate these into your

program before going on to Module 5—C.

5-7

MODULE 5-C

DOCUMENTING YOUR PROGRAMS

WHAT YOU WILL DO

Document the program that you developed for Module

5-B so that it may be used by someone else without

personal assistance from you.

HOW FAR YOU SHOULD GO

At least two of your friends or colleagues should be

able to use your program without any assistance.

THINGS YOU WILL NEED

(1) Program developed for Module 5-B

(2) CLASSIC

(3) BASIC System disk

WHAT IT’S ALL ABOUT

Program documentation has two parts: directions for

running and using the program and information to

allow others to change the program. Documenting

your program, though sometimes difficult, is always
worthwhile, because it makes it much easier for

others to use your program. This module deals with

documenting y0ur programs so that they may be used

by others on the CLASSIC. (The next module

examines the problem of writing your programs so

that they may be used on computers other than

CLASSIC.)

Directions. Whenever you begin to document a

program, ask yourself this question: “If I hand a disk

with my program on it to some friends who know how

to operate CLASSIC, what additional information will

they need to run my program?” First, others will need

to know the name of your program so that they can

call it into memory with the BASIC editor OLD

command. Second, they will need a statement of your

program’s purpose so that they know what to expect
the program to do. As soon as they RUN your

program, other people might find that they do not

understand its directions for supplying input.
Therefore, the third documentation need is a

description of how the program works. Fourth, make

it a practice to warn other users in advance about

possible bugs, limitations, or other unusual things
that they might find when they use the program.

Finally, give them a complete listing of your program

so that they can make corrections if anything goes

wrong.

To summarize, it is recommended that you give
others the following five pieces of information to help
them use a program that you have written:

(1) the name of your program,

(2) a statement of its purpose,

(3) a description of how it works,

(4) a warning about possible errors or limitations,
and

(5) a complete listing.

The write-up for MORGAG on page A-1O has each of

these details clearly marked.

Further information. In Module 5-B it was mentioned

that you might want to modify someone else’s

programs rather than write a similar one from scratch.

This idea can be carried one step further by saying:
almost any program that you could possibly dream of

writing has already been written in some form on

someone else’s computer! So why write new

programs at all?

The answer is two-fold. First, programs written on

one computer are often difficult to use on another

computer for various reasons. (The ability of a

program to run on more than one computer is called

its transportability, and the considerations involved in

writing transportable programs are discussed in the

next module.) Second, other people’s programs will

seldom do exactly what you want them to do. You will

therefore want to change or modify these programs,
but you may find this much more difficult than it first

appears if the author has not documented his or her

program clearly. The following four guidelines are

therefore suggested for documenting programs so

that they may be easily modified.

(1) Use REMark statements freely.
(2) Leave large differences between the line numbers.

(3) Include a variable directory.
(4) Program in a modular fashion.

Each of these guidelines is discussed more fully
below, and documentation for each program men-

tioned appears in Appendix A.

Use REMark statements freely. Program QUADEQ is a

relatively simple program. Look at the listing for this

program on page A-11. This is a good program
because it performs a difficult calculation and can

handle most quadratic equations of the form Ax2 +

Bx + C = 0.1 But suppose you wanted to modify this

program so that it would print a special message if

the equation only had one root. Or perhaps you would

like it to graph the equation or identify “degenerate”
quadratics (where A=0). Even though QUADEQ is

simple, you would have to spend some time figuring
out how this program works before you could modify
it. This job would be easier if the programmer had

included REMark statements in his program as

guides. Look at the listing of program QUAD02 on

page A—12. This is exactly the same as QUADEQ,

except that REMark statements have been added.

Which do you think would be easier to modify?

A word of caution -— realize that REMark statements

take up room in your program just like other BASIC

statements. That is, QUAD02 will take up more

storage space on your disk than QUADEQ. Other

users may wish to copy your program onto a crowded

disk which does not have enough room for the

program with all its REMark statements. If your

program never branches to a REMark, they may delete

these statements without huring your program and

1Quadratic equations are usually studied in beginning
algebra. They may always be written in the form Ax2 + Bx + C =

0 and have one or two "roots”, which are values that may be

substituted for “x" to make the equation true.

5—8

save space on their disk. Therefore, you should never

refer to the line number of a REMark statement in a

GOTO, IF-THEN, lF-GOTO, or GOSUB statement.

Leave large differences between the line numbers.
Look at the listing for the program HMRABI on page
A-6. This program has a good number of REMark

statements, but it is still quite difficult to modify
because there are often very small differences

between line numbers. For example, there isn’t much

chance of modifying the program between lines 320

and 324 because each line number is used. The

solution to this problem is simple: use the RESEQ

program on your CLASSIC System disk (see page

3-39) to resequence the lines and leave enough room

for modification. You might try starting your

programs with line 1000 and using a step of 10. This

leaves plenty of room for adding BASIC statements.

Include a variable directory. Program QUADEQ was

made easier to understand by adding REMark

statements to make it into QUAD02. This program can

be made even clearer by adding a variable directory as

was done in QUAD03 (see page A-12). This directory
lists each variable in the program and tells what each

is used for. It provides a quick reference for

“decoding” the BASIC language program.

Another illustration of the variable directory’s value is

in program HMRABI. In the write-up for this program
on page A-6, you will find three hints on the

interrelationships of various things in the game.
These relationships were discovered only after ,

studying the program (lines 450, 455, and 540) to find
'

out what all the variables stand for. Perhaps the

original author was trying to hide these relationships
from the user to make the game more dependent upon
chance. You will find that HMRABI is still quite a

challenge even with this extra information.

Program in modular fashion. The last guideline is

both a suggestion for clear documentation and

programming in general. “Program in a modular

fashion” meansthat you should have distinct parts in
‘

your programs and make generous use of sub-

routines. This technique is best' illustrated by
programs ACEY02 and HURK02. If you compare these

two programs carefully, you will see that modular

programming simplified the programming as well as

the documentation.

Other techniques. After studying the programs and

guidelines in this module, you may still be wonder-

ing why some things were done as they were.

For example, why wasn’t CLASSIC’s multiple
statement per line capability used in ACEY02 and

HURK02? Why was the word LET used in variable

assignment statements even when this word is not

needed with CLASSIC? The answers to these

questions involve considerations of program trans-

portability and are discussed in the next module.

SELF-TEST

Document the program that you developed for Module

5-B according to the guidelines that have been

/"‘“_

described. Give your documented program and

write-up to two of your friends and colleagues and ask

them to use your program for its intended purpsoe.

Let them do so on their own, and then discuss their

experiences. If your program is properly documented,

your friends should have been able to run it without

assistance and give you valuable comments on your

work.

MODULE 5-D

TRANSPORTING YOUR PROGRAMS

WHAT YOU WILL DO

Make the programs that you wrote for Module 5-B

transportable to other computers.

HOW FAR YOU SHOULD GO

Submit the final version of your program and its

documentation (developed in Module 5-C) to the

Digital Equipment Computer Users Society (DECUS)
in acceptable form.

THINGS YOU WILL NEED

(1) Program developed for Module 5-B

(2) Documentation written in Module 5-C

(3) CLASSIC

(4) CLASSIC System disk

WHAT IT’S ALL ABOUT

There are several points that you should consider in

writing transportable programs1. These are:

(1) REMark statements,
(2) multiple statements per line,

(3) terminal display characteristics,
(4) the LET statement, and

(5) statement numbers.

REMark statements. In Module 5-C, it was recom-

mended that you use REMark statements freely. In

this module, this recommendation is reinforced to

draw your attention to another use of the REMark

statement: making specific comments on specific
program statements. This was done in programs

ACEY02 and HLIRK02 to make them readily adaptable
to the DECsystem-10, one of DIGITAL’S larger
computers. As a matter of fact, these programs were

originally written on the DECsystem-10 and then

transferred to CLASSIC. Thus you can see that careful

planning can make your BASIC language programs

relatively easy to transport from one computer to

another. Remember, however, that you should never

branch to REMark statements so that other users can

delete them without creating other problems in your

program. Look over your program and add more

REMark statements if necessary.

Multiple statements per line. For each program
statement that you begin with a line number, a certain

amount of overhead is taken up in CLASSIC’s memory
and in the disk storage file. That is, the statement:

100 PRINT \ PRINT \ PRINT "HELLO!”

will take up less room than:

1For further guidelines on transportability, read the following two

articles:

(a) Confer, Ronald W. “Universal BASIC: A Way to Reduce

Conversion Costs". ACM SIGCUE Bulletin 8(2):3-9, April
1974. (The address of the ACM SIGCUE is given in Module

5-E.)

(b) lsaacs, Gerald L. “lnterdialect Translatability of the BASIC

Language”. ACM SIGCUE Bulletin 8(4):11-22, October 1974.

1974.

5-9

700 PRINT

110 PRINT

120 PRINT ”HELLO!”

because the first way has fewer line numbers. While

it is highly desirable to write your programs so that

they are as compact and efficient as possible,
unfortunately many computer systems do not allow

multiple statements per line. Multiple statements on

one line also make programs much harder to revise.

Thus programs ACEY02 and HLIRK02 do not contain

multiple statements per line because they were

written to be very transportable. Separate any

multiple statements that you have in your program
and use the RESEQ program to provide additional

space between line numbers. Then RUN your program

to make sure that it still works.

Terminal display characteristics. There are two

characteristics of your terminal (keyboard/screen)
that you will want to consider in writing transportable

programs: line width and display speed.

The screen on your CLASSIC has a width of 80

columns. Most terminals, however, have widths of

only 72 columns. Forthis reason, you should limit the

lengths of your program and output lines to 72

characters, or others will get peculiar-looking
displays when they try to RUN or LIST your program
on a smaller screen. (Your statements must be limited

to 72 characters if you plan to use the RESEQ

program.)

You are probably already aware that your screen

displays information very quickly, and perhaps you
have already learned a few tricks for using the 12 lines

on your screen without losing information at the top.
Other terminals, however, often print at 1 /6 the speed
of your screen, a rather slow pace for the average
reader. Thus, if you are developing highly interactive

programs, you should keep the print--out to a
I; AH In IIIIInImUIII. ll y'C'u' Ileeu LU give very .ong d.recti0

diagrams, include them in your documentation.

Revise your program with these two considerations to

improve their transportability.

The LET statement. CLASSIC does not require you to

use the word LET in statements such as:

200 D = BA2-4*A*C

Most newer BASIC systems do not require the word

LET either, but some of the older ones still do. The

interesting point'is that all BASIC language systems
allow the word LET, even if it is not required.
Therefore, if you use LET your statement will be

understood by all BASIC language computers, while

omitting LET will cause a problem with some.

Similarly, CLASSIC allows either
**

or A to represent

exponentiation. The A is more often available on

other systems, so you should use this notation in

your programs. Make these modifications before you

go on.

Statement numbers. Your computer system allows

statements to be numbered up to 99999. One of

DIGITAL’s other computers (the PDP-11) only allows

nrctn
UIIOUI

statements up to 32767, and some smaller machines

can only accept numbers to 9999. Most BASIC

language systems allow statement numbers up to

9999. Thus, try to keep your statement numbers to 4

digits so that they will run on any machine. This is

easily done with the RESEQ program after your

program is fully developed.

Revise and test the program that you developed for

Module 5-C according to the transportability guide-
lines stated above.

The DIGITAL Equipment Computer Users Society
(DECUS) is a company-supported organization for

users of DIGITAL computers. One of the major
functions of the society is the DECUS Library which

distributes all types of programs. These programs are

submitted by users of DIGITAL computers and are

distributed to other users upon request. A minimal

charge is made for handling and reproduction.

To submit theprogram that you wrote in Module 5-C,
fill out a New Program Submission form and send it

to DECUS with your program. A copy of this form

appears in Figure 5-3. (Another copy is in Appendix B

and additional forms may be obtained by writing to

DECUS at one of the addresses listed on the form.) To

fill out this form, follow these steps:

1. Object Computer the computerthat your program
is intended to run on. In most cases, this will be
CLASSIC for the program that you write. (The
source computer is the computer that the program
was written on; also CLASSIC for most of your
programs.)

2. File Name and Version No. - the actual name that

you have used to SAVE your program on a disk

(e. g. WTDAVG) and the version number that you
have assigned to it (if any).

/fi)\

3: TIIIe - the full title of anIr nrng ram, e_g_, \AIQght-
ed Averaging.

4. Author- your name or the name of the person who

wrote the program.
5. Submitter- your name (if you are not the author).
6. Affiliation - the name of your school, college, or

\

organization.

7. Address - the address of your school, college, or

organization.
8. Category - a one or two word classification of

your program such as the areas of instructional

computer applications discussed in Module 5-A.

9. Monitor/Operating System — “OS/8” for all pro-

grams written on CLASSIC.
10. Core Storage Required - write “less than 16K”,

meaning that your program will fit on a CLASSIC

system.
11. Hardware Required - if your program refers to the

disk drives, screen, or printer by name (RXAO,
RXA1, TTY, or LPT), write the name of the re-

quired device here.

12. Other Software Required - if you are using a

standard CLASSIC system, write “none”. Other-

wise indicate the required software here.

5-1 0

/w.=,\

DECUS lIIRARV

MW PROGRAM sUIMlssloN

Fun in be med 4.... “blaming n.— mum». la chus.

A. GENERAL IMORMAYION

I. Ohl-leuwul-KI)
_

1. Fill Null- Vlnim M.

(I. ml.

4. Author

5. sum: my (if on... um mnhu)

5. Alliliorinn

7. my.“

Soul:- cmm. [if differ-M)

Cm",

a. Cur-wry (pllalfi Iii! in «a: of Enoch-mu)

v. Monitor/Operating smm- etc No.-

stoning Addnu'lo. Con 5m.- mull-d

ll. Had-m llquind

12. on... swim.- Poqvirld

u. Souvcl luv-wan-

u. I: ~-
- -

mum

DEC or DECUS Nn.‘

l5. Dan. 11' Nam-d or Pmihl. Fulurl Ruiriom

a. MAYIRIAL summm

Docmnlrnien

mum [I wan-w El lining C] Ducunnlnlionlungwg-(ilclhulhunEnglinhl
lln Englhh)

on... Mal-rial lplm- 1pm,;

P1" Ver-

obi-=1 Kiln-y D ob|nsz5CII D Sewn D on...

oicm E] imag- E] Mined: Formal Moglz: 7lmek El vr-uek C] m

Spun, me/Syflcm 1.... 05/3, LAN, DIAL, nos-ll, nos-ls, m.)

obimrllu D SwruFil-I D Documnlaiie-‘Filn D on"

c. AUIMORIZAIION

.- full pinniulm m ozcus Io
-

In all mmmd "in, in ii

nd npvmnl Ilia! I luv- and and wind-m ml- und all

Ecus.

January ms

Figure 5-3

DECUS New Program Submission Form

13. Source Language - the language in which your

program is written; BASIC for all programs

written on a standard CLASSIC system.
14. Restrictions, Deficiencies, Problems - describe

here any special characteristics that are import-
ant for people to understand when using your

program, such as limits on array size.

15. Date of Planned or Possible Future Revisions - if

you plan to modify your program, indicate when

on this line.

16. Documentation -

you must always submit listings
for your programs or they will not be accepted,
Short and well-documented programs may only
require a short abstract to make them under-

standable, but longer programs should be sub-

mitted with complete write-ups such as those in

Appendix A. If you send y0ur program on a disk,
write “RX01 flexible disk” on the Other Material

line.

17. The other materials listed do not apply to

CLASSIC and should be left blank.

18. Sign and date the authorization statement at the

bottom of the form.

If your program is less than 100 lines long, you need

to send only the DECUS form and a LlSTing of it for

acceptance. If possible, however, send DECUS an

actual disk with your program on it. (Your disks may
be mailed safely, but label them “MAGNETIC

MATERIALS — DO NOT X-RAY”.) DECUS will copy

your program and return your disk or replace it with a

new one. If your program is over 100 lines long, you
must send it on a disk for it to be accepted. If you
revise your program at a later date, you should submit

a)Program
Revision Submission form (see Appendix

B .

SELF-TEST

The self-test for this module is simply to submit your

documented, transportable program to DECUS in

acceptable form. You may photocopy the New

Program Submission form in Appendix B or write to

DECUS for more forms. Fill out the form completely,
and send your program to DECUS on a disk if you can.

If you are short of disks, collect programs from

several of your friends onto one disk and submit them

together.

MODULE 5-E

IDENTIFYING FURTHER RESOURCES

WHAT YOU WILL DO

Identify books, magazines, and organizations that

can provide you with information on instructional

computing beyond that given in this Guide.

HOW FAR YOU SHOULD GO

Identify at least five resources that can provide you
with further information as described above.

WHAT IT’S ALL ABOUT

Thefollowing is ashort list of books, magazines, and

organizations that you may wish to read, subscribe

to, and contact for further information on instruc-

tional computing.
Books. The number of books in print that deal

specifically with instructional computer applications
is relatively small. On the other hand, a large number

of books have been written on the BASIC language,
and 'many of these contain small application
programs as examples. A review of 34 books on

BASIC is published in a serialized article that began in

the March-April issue of Creative Computing (see
page 5-13 forthe address of this magazine). The titles

of these books are listed below in the order in which

they were published.

Title Author Publisher

1. BASIC, Sixth Edition Waite and University
Mather Press of NE.

2. BASIC Programming Kemeny and Wiley
Kurtz

3. Programming in BASIC Farina Prentice Hall

4. Introduction to an Algo- (no author) NCTM

rithmic Language
(BASIC)

5. Introductionto Comput- Nolan Holt, Ftinehart

ing Through BASIC & Winston

Language
6. A Guide to BASIC Pro- Spencer Addison-

gramming Wesley
7. Problem-Solving With Sage Entelek

The Computer
8. Introduction to Program- Hare Harcourt-Brace

ming: A BASIC

Approach
9. BASIC For Beginners Gateley and McGraw-Hill

Bitter

10. Discovering BASIC Smith Hayden
11. Basic BASIC Coan Hayden
12. Computer Science: Forsythe, et al. Wiley

BASIC Language Pro-

gramming
13. Elementary BASIC With Farina Prentice-Hall

Applications
14. Teach Yourself BASIC Albrecht Tecnica

15. Time Sharing’s BASIC General

Language Electric

16. BASIC Programming Murrill and Intext

Smith

17. BASIC: An Introduction Sharpe and Free Press

to Computer Program- Jacob

ming...
18. Computer Programming Pavlovich and Holden-Day

19.

in BASIC

An Introduction to the

BASIC Language

Tahan

Skehon Holt, Rinehart

& Winston

Title Author Publisher

20. Basic BASIC: Self-ln- Peluso, et al. Addison—

structional Manual Wesley
21. BASIC Programming for Sass Allyn & Bacon

Business

22. Fundamental Program- Gross and Harper & Rowe

ming Concepts Brainerd

23. Programming Time- Barnett Wiley
Shared Computers in

BASIC

24. Introducing BASIC Blakeslee Educomp
25. Computing withthe Gruenberger Canfield Press

BASIC Language
26. Business Programming Diehr Wiley

with BASIC

27. Entering BASIC Sack and SFIA

Meadows

28. My Computer Likes Me Albrecht Dymax
29. Elements of BASIC Lewis and N00

Blakeley
30. AVisual Approach to Smith CDC

BASIC

31. BASIC, A Computer Pro- Pegels Holden-Day

gramming Language...
32. BASIC Albrecht, Fin- Wiley

kel & Brown

33. A Guided Tour of Com- Dwyer and Houghton Mif-

puter Programming in Kaufman flin

BASIC

34. Principles of Data Stern and Wiley

Processing Stern

Some of the following may also be of interest to you.

Atkinson, Richard C., and H. A. Wilson. Computer-
Assisted Instruction: A Book of Readings. Academic

Press, Inc., New York, N.Y. 1969.

Ball, Marion J. What Is a Computer? Houghton Mifflin

Company, Boston, Mass. 1972. (Elementary level.)

Holtzman, Wayne H. (ed.) Computer-Assisted ln-

struction, Testing, and Guidance. Harper & Row,

Publishers, New York, N.Y. 10016. 1970.

Lippey, Gerald (ed). Computer-Assisted Test Con-

struction. Technology Publications,

Englewood Cliffs, NJ. 07632. 1974.

Martin, James. Design of Man-Computer Dialogues.
Prentice-Hall, Inc., Englewood Cliffs, NJ. 1973.

Nelson, Theodor H. Computer Lib/Dream Machines.

Hugo’s Book Service, Box 2622, Chicago, Illinois

60690. 1974.

Many additional short books and pamphlets are

available at low cost from DIGITAL. Write to

Digital Equipment Corporation, Communications

Services, Marlboro, Massachusetts 01752 to order a

Curriculum Materials Product Catalog. Some repre-

sentative materials are listed below.

Problems for Computer Mathematics

Advanced Problems for Computer Mathematics

101 BASIC Computer Games

Understanding Mathematics and Logic Using BASIC

Computer Games

BASIC Matrix Operations
Computer-Augmented Calculus Topics
A Curriculum Guide for a School Computer Program

in Mathematics

Huntington l Simulation Programs

5-12

/\

{

/fl\

/“\

I

//"='\,

Huntington II Simulation Programs
Getting Started in Classroom Computing
Population: A Self-teaching BASIC Primer

A Curriculum Guide for Teaching BASIC

Business Data Processing I

Business Data Processing II

Computer Problems for Business

Magazines. There are several magazines that contain

articles on instructional computing. Some repre-

sentative publications are listed by the addresses

from which they can be ordered.

Creative Computing
Ideametrics

P. O. Box 789-M

Morristown, N.J. 07960

EDU

Educational Products Group
Digital Equipment Corp.
146 Main Street

Maynard, Mass. 01754

Educational Technology
Educational Technology Publications

140 Sylvan Avenue

Englewood Cliffs, N.J. 07632

People‘s Computer Company
P. O. Box 310

Menlo Park, CA 94205

THE Journal (Technical Horizons in Education)
Information Synergy, Inc.

P. O. Box 992

Acton, Mass. 01720

Organizations. The following organizations address

themselves directly to the topic of applying the

computer effectively in instructional situations. All

have conventions at various locations in the United

States once or twice per year. In addition, most

publish a journal or newsletter and have special
membership rates for students.

ACM SlGCUE (Association for Computing Machinery
Special Interest Group for Computer Uses in

Education)
1133 Avenue of the Americas

New York, N.Y. 10035

ADCIS (Association for the Development of Com-

puter-based Instructional Systems)
P. O. Box 70189

Los Angeles, California 90070

AEDS NAUCAL (Association for Educational Data

System, National Association for Users of Com-

puter Applications to Learning)
1201 16th Street, N.W.

Washington, D.C. 20036

DECUS (Digital Equipment Computer Users Society)
Digital Equipment Corporation
Parker Street, Bldg. PK3-1

Maynard, Mass. 01754

This module has supplied you with a short list of

resources on instructional computing. By looking at

some of these resources you will find still others that

you may wish to explore. Find out what books and

magazines are available in your library that contain

information or instructional computing and write to

one or more of the organizations listed for further

information. When you have identified and explored
at least five additional resources, you will have

completed this module.

5-1 3

(

r‘x

,

//fl:\\

USING THE LINE PRINTER

A. PRINTING FILES

1. From the monitor, use the TYpe Command:

The TYpe command is normally used to display the

contents of printable files on the screen. By
specifying LPT: as the output device, the file is

transmitted instead to the line printer.

.TY LPT: HURKLE.BA ---Prints the BASIC pro-
'

gram “HURKLE” on

line printer.

2. From the BASIC editor, use the SAVE Command:

The SAVE command under BASIC is normally used

to store (save) BASIC language programs on

floppy disks. You can, however, direct BASIC to

save programs on the line printer by typing:

.SAVE LPT:

B. PRINTING FILE DIRECTORIES

To print a directory on the line printer, specify LPT: as

the output device:

.DIR LPT: ---prints the entire directory of RXAO on

the line printer

.DIR LPT: RXA1: ---lists the directory of disk #1 on

the 'line printer

C. ACCESS TO LINE PRINTER FROM BASIC

PROGRAMS

BASIC language programs can send output to the

printer by using the FILEV and PRINT# statements.

The PRINT statement normally writes data on the

screen. However, by using the FILEV# statement to

open the “LPT:” file, output is directed to the line

printer.

The PRINT# statement writes data onto the line

printer and is of the form:

(line number) PRINT#N: list of expressions and

delimiters

where N is a numerical expression equated to the line

printer. The expressions in the list can be string or

numeric, and the TAB and PNT functions can both be

used. The delimiters can be commas or semicolons

and have the same meanings that they have in the

PRINT statement for the terminal.

10 FILEV#1:.“LPT:”

20 LET F=1

3O PRINT#F:TAB(28);DAT$(X)
40 CLOSE#F

50 END

This routine prints the date, starting at column 28 on

the line printer.

NOTE: The user must CLOSE# all output file before

ending the program in order to prevent the

loss of data.

(7

-

MORGAG

Appendix A

Write-Ups for
’

Applications Programs

APPLICATIONS PROGRAMS

The programs that are written up in this Appendix all

reside on the BASIC Program Demonstration disk.

‘The write-ups are presented in the following order:

Page
ACEY02

ATTEND and ATTSET

CALC

EASY02 and EASYO3

GUESS

HMRABI

HURKLE

HURK02

I

AANVQQCHUIOOA
t't com—Lo

QUADEQ, QUAD02, and QUAD03

SYNONY and SYNSET

WTDAVG

Sample runs for some of these programs appear at the

end of Chapter 1.

ACEY02

This program allows you to play the card game
“ACEY-DEUCEY“ with the computer. CLASSIC will

“deal" two cards and then ask you to bet on whether a

third card will fall between the other two. For

example, if your first two cards are a nine and a

queen, you will win if the third card is a ten or jack. If

any other card turns up (including a nine or a queen)
you will lose. When you win, the amount of money
that you bet is added to your pocket; when you lose it

is subtracted.

The program has three options which are explained in

the instructions within the program itself. If you do

not put in a valid number to the YOUR BET ($)? query,

>>>>>>Z§>>>>>>

the system will interpret each character that is

non-numeric as a 0. When you finally get the ? back

and the system is waiting for your input, retype your

bet as a valid number. Some interesting things
happen if you try to make negative bets.

The program might be modified by adding a

“probability” option which would allow the user to

request a computation of the probability of winning
with any given hand. Class discussion of win/loss

probabilities would increase the program’s educa-

tional value.

LIST

ACEY02 BA 3.0 30~DECO75

1000 REM

1010 REM X

1020 REM X

1030 REM X

1040 REM X

1050 REM

1060 REM

1070 REM

X X

X

A C E Y — D U C E Y T U D X

X

XX X X X X X X X X X X X X X X X X X X X

1080 REM

1090 REM

1100 REM

1110 REM

1120 REM

1130 REM

1140 REM

1150 REM

116 REM

11?0 REM

1180 REM

1190 REM

1200 REM

1210 REM

1220 REM

X X X X X X X U A R I A E L E D I R E C T 0 R Y

USAGEVARIABLE

A INPUT CODE: 0='YES'1 1='N0'

A$ GENERAL ALRHAMERIC USER INRUT

1260 REM E USER’S DET

1270 REM 00$ CHR$<34) f']

1380 REM 01m Cofi 3 "v
'

3 C0$ ['v '3

1290 REM D(K1 CARDS DEALT

1300 REM K GENERAL FURnNEXT LOOP INDEX

N$(h) CARD NAMES
'

ROUND COUNTER

ROUND NAMES: R(0)='FIRST'v R$(1)='NEXT'

NEGATIVE BET COUNTER

R

M R$(R)

M X

133 RE

1340 RE

continued on next page

A-1

REM

REM X X X X X X X D E C L A R A T I O N S

REM

LET C0s=CHRs(34)

LET Cl =c0$ a -.
-

3 cos

REM ~— FOR nECSYSTEM—Io. REPLACE ABOUE STATEMENT uITH:

REM LET c1s=cos+-. -+cos

DIM D(3>1N$(14:B)1R$(2:B)

REM -- FDR DECSYSTEM—lOy REPLACE ABOUE STATEMENT uITH:

REM DIM D(3)yN$(14)yRs(2)

DATA
-

-. 'DEUCE'y 'THREE': 'FOUR'; 'FIUE': 'SIX'y 'SEUEN'

DATA 'EIGHT': -NINE-. -TEN-. 'JACK'; 'GUEEN': 'KING'y 'ACE'

FDR K=1 TO 14

READ N$(K)

NEXT K

LET =.01

LET M=100

LET R=o

LET R$(0)='FIRST'

LET Rs(1)='NEXT'

LET x=o

DEF FNA(X)=2+INT(13XRND(0))

REM

REM —

REM * x m m x x x M A I N P R o G R A M

REM ————————————————————————

REM

GOSUB 2620

PRINT 'ACEY—DUCEY Tun-

PRINT
-

—————————————————
-

PRINT

PRINT

PRINT -nu you uISH TO SEE THE INSTRUCTIONS (-; cos; 'YES'? cos;

RRINT
-

0R -; cos; 'NO'? cos; -)-;

GOSUB 2670

IF A=0 THEN 1730

GOSUB 2960

GOSUB 3270

GOSUD 3200

REM

REM X X X X X X X D E A L E R

REM

FOR K=1 TO 3

LET D(N)=FNA(K>

NEXT N

PRINT

PRINT Rs(R)?
'

'HERE ARE YOUR '? TUO CARDS..:'

PRINT Ns(1)? N$(D(1))

PRINT Ns(1)? Ns(D(2))

PRINT

PRINT 'YOUR BET ($)'?

LET R=1

REM

REM X X X X X X X B E T I N P U T

REM

INPUT B

PRINT

IF Bfio THEN 2290

IF B=o THEN 2350

IF B=77777 THEN 2330

IF B=99898 THEN 2410

[F B 99999 THEN 3930

IF BFM THEN 2500

REM

REM XXXXXXX DEALING OF THIRD CARD

REM

PRINT llYOUR THIRD CARD IS...‘
- PRINT Ns(1)? N$(D(3))

THEN 2140

IF .

- THEN 2140

IF THEN 2100

[F A THEN 2210

GOTO 2140

IF D(3)fiD(2) THEN 2210

REM

REM XXXXXXX PLAYER LOST

REM

PRINT 'SORRY? YOU LOSE.‘

LET M=M-B

GOSUB 3250

GOTO 1790

REM

REM XXXXXXX PLAYER HON

REM

PRINT 'YOU UINll'

LET M=M+B

GOSUB 3250

GOTO 1780

REM

REH XXXXXXX NEGATIUE BET

REM

GOSUB 3490

GOTO 1790

REM

REM XXXXXXX RESHUFFLE OPTION

REM

GOSUB 3170

B=o

. PRINT
'

GOSUB 3250

GOTO 1790

REM

REM XXXXXXX INSTRUCTIONS OPTION

REM

GOSUD 2860

LET 5:0

GOSUB 3270

PRINT

PRINT 'YOUR CARDS HERE...‘

GOTO 1830

REM

REM XXXXXXX BET } MONEY

3500

3510

3520

3530

3540

355

3560

3570

3590

3590

3600

3610

3620

REM

PRINT

PRINT

PRINT 'YOUR CARDS ARE...‘

GOTO 1930

REM

REM

REM

REM

REM

REM

REM

REM

PRINT PNT(27)?

RETURN

REM

REM XXXXXXX

REM

INPUT As

PRINT

IF POS(Asy'Y'11)<}0 THEN 2790

REM —- FOR DECSYSTEM-101 REPLACE

REM IF INSTR(1yAsr'Y')<>0

IF POS(Asy'N'yl)<>0 THEN 2910

REM -- FOR DECSYSTEM—lo; REPLACE

REM IF INSTR(11Asr'N'){>0

IF A$='OUIT' THEN 3930

PRINT
'

PLEASE INPUT '?

PRINT C0s? 'GUIT'? Cos? '.

GOTO 2670

LET A=1

RETURN

LET A=0

RETURN

REM

REM

REM

GOSUB

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT
'

PRINT 'INSTRUCTIONS'

PRINT
'

IF R=o THEN 3070

PRINT

GOTO 3090

PRINT 'GOUD LUCK! THE HOUSE HILL

PRINT 'I'M SHUFFLIN’...‘

PRINT

PRINT '(TYPE '?

PRINT
'

INPUT As

RETURN

REM

REM

REM

PRINT

PRINT

PRINT

RANDOMIZE

RETURN

REM

REM

REM

PRINT

GOTO 3280

GOSUB 2620

PRINT 'YOU '?

IF 9=0 THEN 3320

PRINT 'NOU'?

GOTO 3330

PRINT 'STILL'?

PRINT
'

HAUE

IF n

'YOU ONLY HAVE s'? M
'

TO

X X X X X X X

XXXXXXX SCREEN CLEARER

'H'? PNT(27)? 'J'?

'YES'y 'NO'y AND 'G

Cos?

YOUR

X X X X X X X I N S T R

2620

'ACEY-DUCEY IS PLAYED

'COMPUTER HILL ACT'

'AS DEALER AND '? cos;

Cos?
'

TO YOU '? Cos?

'THEN HAUE'

'THE OPTION TO BET OR NOT T

'OR NOT YOU THINK'

'THAT THE NEXT '? Cos?

'BETUEEN THE FIRST THO

'HIGH). IF YOU DO NOT UISH

00$; '. THE FOLLOUING THRE

'MAY BE SUBSTITUTED FOR BET

'INDICATED:'

IN TH

'DEA

'FACE

'CAR

(ACE

77777

99998

99999

Cos? 'Y'? Cos?
'

UHEN YOU HAVE FINISHED RE

C A R D

'ZOOP!

X X X X X X X M O N E Y

REM

REM

PRINT

PRINT

PRINT

XXXXXXX OUT OF MONEY

'YOU BLEU

PRINT 'TO BEGIN

PRINT 'GAMET '?

GOTO 4020

REM

REM

REM

LET X=X+1

IF X=2 THEN 3660

IF X=3 THEN 3790

REM

REM XXXXXXX FIRST TIME

REM

PRINT

PRINT

PRINT

YOUR

THE'

HAD! SINCE

X X X X_X X X N E G A T

'NO NEGATIUE BETS ALLOUED!

'UITH A FINE'

'OF s'? ABS(B>? '.

PRINT 'YOU AN OFFER'

PRINT 'YOU CAN’T REFUSE!‘

LET M= —ABS(B)

LET B: 01

GOSUB 3250

RETURN

TRY TH

BET!! TRY AGAIN.‘

UIT' RESPONSE DECODER

ABOUE STATEMENT UITH:

THEN 2790

ABOUE STATEMENT UITH:

THEN 2910

'YES'? Cls?

CHOICE'?

'NO'? Cos? '1 OR

U C T I O N S

E FOLLOHING MANNERZ THE '?

L'? C0$;
'

THO '? Cos?

UP'? Cos? '. YOU UILL '?

O'BET? DEPENDING UPON UHETHER

D'? Cos?
'

S ARE'

TO BETy

E CODES'

S TO PERFORM THE FUNCTIONS '?

HILL HAVE A VALUE

ENTER '? Cos? '0'?

RESHUFFLE THE CARDS‘

REDISPLAY THESE '?

END THE GAME'

SPOT YOU s 100 TO BEGIN.

AND PRESS '? Cos?

ADING.) READY'?

'RETURN'?

R E S H U F F L E R

P R I N T E R

THE HOUSE SPOTTED YOU s 100

I U E B E T T H R E A

THIS TIME HE'LL LET YOU

AT AGAIN AND WE’RE GONNA MAKE

'CARDS'?

1

;

cos;

1

/’“\
,)

/“"‘“\

r“

/""\

/='\.

3630 REM

3640 REM XXXXXXX SECOND TIME

3650 REM

3660 PRINT

3670 PRINT

3680 PRINT

3690 PRINT

3700 PRINT

3710 PRINT

'UADID AH TELL YAr KID? NOU LOOKIE HERE: UE AIN’T GOT NO 'i

'ROOM FA NO'

'PUNKS ON DIS KUMPOODA.

'GETSA OFF!‘

EIDER YOUSE UISES UP UR YOUSA '6

3720 PRINT 'YOU NUU GOTTA ONLY ONE DOLLAH.

3730 LET M=1

3740 RETURN

3750 REM

3730 REM *xxxxxx THIRD TIME

3770 REM

3780 GOSUH 2620

3790 FOR K=1 TO 5

3900 PRINT 'EANG!! '; PNT(7>i

3810 REM _— FOR nECSYSTEM—10. REPLACE ABOvE STATEMENT UITH:

3820 REM PRINT 'BANGl! -; CHR$(7);

3830 NEXT N

3840 PRINT

3850 PRINT

3860 PRINT

3870 PRINT 'SUME PEOPLE JUST NEUER LEARN...

3880 PRINT

3990 GDTD 4160

3900 REM

3910 REM

3920 REM

3930 PRINT

3940 PRINT 'YOU ENDED UP UITH s-; M;

SPEND IT UISELY...‘

REST IN PEACE!I

X X X X X X X G U I T T I N G R O U T I N E

'. SINCE THE HOUSE SPOTTED '?

3950 PRINT 'YOU $ 100'

3960 PRINT 'TO BEGINT
'

3970 IF M=100 THEN 4090

3980 IF M}100 THEN 4140

3990 REM

4000 REM XXXXXXX THE PLAYER OUES US

4010 REM

4020 PRINT ‘YOU OUE.US $'?

4030 PRINT 'MAYNARDT'

4040 PRINT IMASSACHUSETTS AND HAVE A NICE DAY!I

4050 GOTO 4160

4060 REM

100-M? '. JUST SEND YOUR CHECK TO US IN 'F

4070 REM XXXXXXX THE PLAYER IS EUEN

4080 REM

4090 PRINT 'YOU’RE EUEN! SO HAPPILY! MY FRIEND.‘

4100 GOTO 4160

4110 REM

4120 REM *XXXXXX UE DUE THE PLAYER

4130 REM

4140 PRINT 'THE HOUSE OUES YOU $'f M-100; '. PLEASE CONTACT OUR'

4150 PRINT

4160 PRINT

4170 PRINT

'RUBBER DIVISION FOR PAYMENT.‘

'DYE!I

4180 PRINT

4190 END

‘

ATTEND and ATTSET

ATTEND demonstrates CLASSIC file usage by
providing teachers with a method for entering,
updating, and printing their class attendance records

on the computer. The program computes simple
statistics on attendance and might be modified to

calculate other values needed by a school system.

ATTEND stores information on each student in a file

called “ROSTER.AT” on RXA1. Depending upon
which option you enter, the program will perform the

following operations:

(1) Remove a student from the file (“DELETE”
option).

(2) Add a student to the file ("ENTER” option).
(3) List the attendance data on each student in the

file (“LIST” option).
(4) List the names of all

(“ROSTER” option).
(5) Display the total attendance figures for the whole

file (“SUMMARIZE" option).
(6) Allow you to supply attendance data for a school

day on each student in the file. That is, you can

inform the program whether the student was

present, absent, or present but tardy today
(“SUPPLY” option).

(7) Display all available options (“HELP” option).
(8) Terminate the program (“QUlT” option).

Each time you enter an option the program will

perform the related operation. After each operation is

students in the file

A-3

completed (except “QUIT”), the program will ask for

another option.

In order to use this program you must first:

(1) Enter a date into the system (with the monitor

“DATE” command).
(2) Set up the file “ROSTER.AT” by running

ATTSET.BA. You should only have to do this

once, unless ROSTER.AT becomes unusable for

some reason. The file created by ATTSET.BA will

contain only the current date. If you try to run

ATTEND without having set up BOSTER.AT, a

message of the form “EN AT LINE nnnnn” will

be displayed.
You can then use the “ENTER” option to put the

names of all your students into the file ROSTERAT. If

new students join the class later, they can also be

added to .the file with the “ENTER” option. If students

leave, they can be removed from the file with the

“DELETE” option.

At this point, the file contains the name of each of

your students in alphabetical ,order. To supply each

day’s attendance data for the students, use the

“SUPPLY” option. The file will then contain the

following data for each student:

(1) name,

(2) number of days present,
(3) number of days absent, and

(4) number of days tardy.

This is the student’s record. A record is part of a file

and is a-collection of related data items treated as a

unit. The data in file ROSTER.AT is arranged like this:

LAST FIRST DAYS ans oAvs LAST FIRST DAYS DAYS DAYS ""5
NAME NAME PRESENT ABSENT TAHDV NAME NAME RESENT ABSENT TAnov :

\ LJk

| DATE

T Y

Flral Student's Record Second Student's Rocord

The “LIST” option will display all the data in the file,
along with the following figures:

(1) Days registered (days present plus days absent)
(2) Percent present (days present divided by days

registered)
(3) Percent absent (days absent divided by days

registered)
(4) Percent tardy (days tardy divided by days present)

If the data in ROSTER.AT are not correct, you can

re-create the file with ATTSET. However, since

ATTSET erases all the data in the file, you will have to

supply every student’s attendance for each day
registered to bring the file up to date.

LIST

ATTEND DA 3.0 30-DEC-75

1000 REM

1020 REM

1040 REM

1060 REM

1080 REM

1100 REM

1120 REM

continued on next page

1140

1160

1150

1200

1220

1240

1260

1250

1300

1320

1340

1360

1350

1400

1420

1440

1460

1450

1500

1520

1540

1560

1550

1600

1620

1640

1660

1650

1700

1720

1740

1760

‘1750

1500

1520

1540

1560

1550

1900

1920

1940

1960

1950

2000

2020

2040

2060

2050

2100

2120

2140

2160

2150

2200

2220

2240

2260

2250

2300

2320

2340

2360

2350

2400

2420

2440

2460

2450

2500

2510

2520

2540

2560

2550

2600

2620

2640

2660

2650

2700

2720

2740

2760

2750

2500

2520

2540

2560

2550

2900

2920

2940

2960

2990

3000

3020

3040

3060

3050

3100

3120

3140

3160

3150

3200

3220

3240

3260

3250

3300

3320

3340

3360

3350

3400

REM 1111 UARIARLE DIRECTORY

REM

REM VARIABLE USAGE

REM —— -~ — ——

REM As DATE READ FROM FILE

REM Rs ANSUER TO INSTRUCTIONS QUERY

REM cs ANSUER TO OPTIONS QUERY

REM Os ANSUER TO REAOY QUERY

REM E$ -R1A1:ROSTER.AT-

REM Fs LAST NAME—READ FROM FILE

REM B$ FIRST NAME—READ FROM FILE

REM H DAYS PRESENT

REM H2 TOTAL DAYS PRESENT

REM I nAYS ABSENT

REM 12 TOTAL DAYS ABSENT

REM J$ LAST NAME—ENTERED FROM TERMINAL

REM K$ FIRST NAME—ENTERED FROM TERMINAL

REM L DAYS REGISTEREO

REM M PER CENT PRESENT

REM N PER CENT ABSENT

REM O PER CENT TARDY

REM P OAYS TARQY

REM P2 TOTAL DAYS TARDY

REM Qs ANSUERS TO PRESENT x TARDY QUERIES

REM R RETURN CHARACTER—READ FROM FILE

REM S NUMBER OF STOOENTS

REM

REM 1111 DECLARATIONS

REM

OEF FNR<x>=INT1I1oo1x>+.5>

DEF FNS(X)=LEN(STR$(INT(X)>)

DIM 03(72)1D$(72)yE$(72)yF$(72>yG$(72)yJ$<72):K$(72)

DIM A$<72)vE$(72)

REM

REM ————————————————————————

REM 1111 M A I N P R O G R A M

REM ————————————————————————

REM

REM

REM 1111 REAn DATE RECORD FROM FILE

REM

LET E$='RXA1!ROSTER.AT'

PRINT -IF YOU SEE THE MESSAGE: EN AT LINE 02120-

PRINT 'BELOU: RUN THE PROGRAM --ATTSET-- RY TYPING:-

PRINT
-

OLD RXA1:ATTSET'

PRINT 'AND THEN:-

PRINT
-

RUN'

PRINT

PRINT -MESSAGE:-

FILEtltEs

PRINT -NO MESSAGE-

INPUT :1: A$

IF POS<A31'/'r1){=1 THEN 2320

PRINT

PRINT 'THE LAST TIME THAT THE ROSTER HAS UP—DATED HAS ON '1 As

GOTO 2420

REM

REM 1111 BAD FILE

REM

PRINT

PRINT -FILE --RxA1:ROSTER.AT-- HAS REEN CORRUPTEn. RUN PROGRAM '1

PRINT"--RxA1:ATTSET.5A---

PRINT -TO CORRECT THIS PROBLEM BEFORE USING THIS PROGRAM.-

STOP

PRINT

REM

REM 1111 CHECR SYSTEM nATE

REM

IF PUS(DAT$(X)y'/'11)}0 THEN 2550

PP RT -PLEASE RETURN TO THE MONITOR ANO ENTER THE CURRENT DATF -=

PRINT -UITH THE-

PRINT -MONITOR "DATE" COMMANO BEFORE RUNNING THIS PROBRAM.‘

STOP

CLOSEtl

REM

REM 1111 INSTRUCTIONS QUERY

REM

PRINT 'DD YOU uISH TO SEE THE INSTRUCTIONS (ANSNER YES OR NO>-T

INPUT 53

IF Rs=-YES- GOTO 6500

IF B$='NO' THEN 2520

GOTO 2660

REM

REM 1111 OPTIONS QUERY

REM

PRINT 'ENTER THE OPTION TOU UANT'P

INPUT C$

PRINT

PRINT

IF C$='HELP' GOTO 7220

IF DELETE' GOTO 3300

IF ENTER- GOTO 3700

IF LIST- GOTO 4250

IF ROSTER- GOTO 4960

IF QUIT- GOTO 3220

IF SUMMARIzE- GOTO 5150

IF C SUPPLY- GOTO 5920

PRINT C$;' IS NOT A UALIn OPTION. THE "HELP" OPTION DISPLAYS A'

PRINT -LIST OF UALIO OPTIONS.-

GOTO 2520

PRINT\PRINT

PRINT C$i' PROCESSING HAS BEEN COMPLETED. YOU MAY NON ENTER'?

PRINT
-

ANOTHER OPTION.-

CLOSEtl

GOTO 2520

STOP

REM

REM 1111 DELETE OPTION

REM

GOSOR 6360

PRINT -ENTER LAST NAME OF STUDENT TO RE DELETED'?

INPUT Js

PRINT -ENTER FIRST NAME'?

INPUT Rs

GOSUR 6520

A-4

3420

3440

3460

3450

3500

3520

3540

3560

3550

3600

3620

3640

3660

3650

3700

3720

3740

3760

3750

3500

3820

3540

3560

3550

3900

3920

3940

3960

3950

4000

4020

4040

4060

4050

4100

4120

4140

4160

4150

4200

4220

4240

4260

4250

4300

4320

4340

4360

4350

4400

4420

4440

4460

4450

4500

4520

4540
4560

4550

4600

4620

4640

4660

4650

4700

4720

4740

4760

4750

4500

4520

4540

4560

4550

4900

4920

4940

4960

4950

5000

5020

5040

5060

5050

5100

5120

5140

5160

5150

5200

5220

5240

5260

5250

5300

5320

5340

5360

5350

5400

5420

5440

5460

5450

5500

5520

5540

5560

5550

5600

5620

5640

5660

5650

S700

IF ENDtl THEN 3540

IF JSK=FXO THEN 3500

GOSUD 6660

GOTO 3400

LET J$='?'

GOTO 3400

IF J$='?' GOTO 3600

PRINT K$?' 'TJSi' COULD NOT BE DELETED 'i

PRINT 'BECAUSE THE NAME HAS NOT IN THE FILE.‘

CLOSE$2

GOTO 3120

REM

REM

REM

GOSUB 6360

PRINT 'ENTER LAST NAME OF STUDENT TO BE ADDED‘?

INPUT J5

PRINT 'ENTER FIRST NAME'?

INPUT KS

OOSUB 6520

IF END#1 THEN 4020

IF J$&K${FSG THEN 3920

IF JXK=FSG THEN 4140

OOSUB 6660

GOTO 3800

PRINT#2:J$

PRINT#2:K$

PRINT 090:0

LET J$='?'

GOTO 3830

IF J$='?'

PRINT#2:J$

PRINT#2:K$

PRINT#2:0;OIO

CLOSE#2

GOTO 3120

PRINT Ksi'

LET J$='?'

PRINT 'EECAUSE THE NAME HAS ALREADY ON THE FILE.‘

GOTO 3660

REM

REM

REM

FILEiliES

INPUTtltAs

PRINT TAB(24)F'ATTENDANCE DATA

PRINT

PRINT

PRINT

PRINT

¥*** ENTER OPTION

THEN 4100

'iJ$I' COULD NOT BE ADDED 'i

***i LIST OPTION

'?A$

TAB(6)i'STUDENT’S'iTAE<25)?'DAYS';TAB(35)9'DAYS'?

TAE(50)T'DAYS'?TAD(65)5'DAYS'

TAB(B);'NAME'iTAD(24);'REGIS.'iTAD(34);'PRESENT'i

PRINT TAD<49)i'AESENT'?TAB(65)§'TARDY'

GOSUB 6520

IF END #1 THEN 3120

+1

GOTO 4560

GOTO 4650

LET M=FNR(H/L)
LET N=FNR(I/L)

IF H=>1 GOTO 4660

LET O=0

GOTO 4650

LET U=FNR(P/H)

PRINT Fs;- -;G$a

GOSUB 4740

GOTO 4440

PRINT TA5(27—FNS(L));L

PRINT TAB<34—FNS(H));H

PRINT TA5139-FNS1M));'

PRINT TAR<49—FNS(I));I

PRINT TAB<54-FNS(N));-

PRINT TAB<64—FNS(P>);

i

I

('ISTR$(M)i'Z)'i

?

('FSTR$(N)3'Z>';

PRINT TAB(69-FNS(O));'('iSTR$(O)T'Z)'

RETURN

REM

REM **** ROSTER OPTION

REM

FILE#1:E$

INPUTfltAs

PRINT TAB(4);'ROSTER

PRINT

SOSUB 6520

IF ENDGI THEN 3120

'PAs

PRINT F$i' '?G$

GOTO 5040

REM

REM ***X SUMMARIZE OPTION

REM

FILE#1:E$

INPUTilkfis

PRINT TABtZS)?'ATTENDANCE SUMMARY

PRINT

LET S=O

H2=O\IZ=0\P2=O

BOSUB 6520

IF END#1 THEN 5440

LET S=S+1

LET H2=H2+H

LET I 2+1

LET P2=P2+P

GOTO 5300

LET L=H2+12

IF L=}1 GOTO 5520

M=0\N=O\O=0

GOTO 5640

LET M=FNR(H2/L)

LET N‘FNR(I2/L)

GOTO 5620

';A$

LET O 0

GOTO 5640

LET O=FNR(P2/H2)

PRINT TAE(6)P'NUMBER OF'i

PRINT TAD(25)§'DAYS'TTAE(35 I

PRINT TAB(6)F'STUDENTS'?

PRINT TAE(24)§'REGIS.'9TAB(34)T'PRESENT'?TAD(49)I'ADSENT'?

DAYS'TTAB(50)T'DAYS'PTAD(65)T'DAYS'

/‘m\\

r‘x

/“"’”\

7260

7280PRINT
'

7300

7320PRINT

7340

7360

7380

7400

7420

LIST

ATTSET

1000

1020

1040

1060

1080

1100

1120

1140

1160

1180

1200

1220

1240

1260

1280

1300

1320

1340

1360

"

INPUT

PRINT TAB(65)I'TARDY'

LET H=H?

LET I=IL

LET P=P2

PRINT TAE(9)iS;

GDSUB 4740

GOTO 3120

REM

REM

REM

GOSUE 6360

GUSUR6520

IF ENDil GOTO 4100

PRINT 'uns 'IGSI'

INPUT as

IF O$='YES'

IF G$='NO'

GOTO 5980

LET I=I+1

GOSUE 6660

GOTO 5940

LET H=H+1

PRINT 'uns 'iG$i'

INPUT as

IF Q$='YES' THEN 6260

IF O$='NO' THEN 6100

GOTO 6160

LET P=P+1

GOTO 6100

REM

REM

REM

FILE*1:E$

INPUTiIIAs

FILEut2:Es

PRINTi2:DAT$(X)

RETURN

REM

REM

REM

INPUT*1:F$

IF END*1 THEN 6530

INPUT*1:G$yRyHnyPyR

RETURN

REM

REM

REM

PRINT¥2¢F$

PRINT*2:G$

PRINT*2IHII;P

RETURN

REM

REM

REM

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

iiii SUPPLY OPTION

'IF$I' PRESENT TODAY (YES OR NO)‘;

GOTO 6140

GOTO 6080

'iF$?' TARDY TODAY (YES OR NO)‘;

iiii OPEN FILES

iiii READ A STUDENT

iiii WRITE A STUDENT

iiii PRINT INSTRUCTIONS

'THIS PROGRAM MAINTAINS AN ATTENDANCE FILE.‘

'IT ALLOWS YOU TO ENTER ATTENDANCE DATA AND

'OUT THIS DATA'

'IN A STANDARD FORM.

'ROSTER.AT AND'

'IT MUST DE PRESENT ON RXA1 IN CORRECT FORM

'PROGRAM TO RUN-'

'THIS FILE MAY BE CREATED

'PROGRAM ATTSET.BA ON'

'RXA1. IF YOU WANT TO SEE THE LIST OF OPTIONS AVAILABLE 'I

'IN THIS PROGRAMy'

'ENTER "HELP" AFTER

PRINT 'I

THE FILE USED BY THIS PROGRAM IS 'i

FOR THIS 'I

(OR CLEARED) FY RUNNING 'I

THE OPTION OUERY.‘

'(TYPE "Y" AND PRESS "RETURN" WHEN YOU'i
'

HAVE FINISHED READING.) READY'i

Di

GOTO 2920

REM

REM

REM

PRINT 'THE AVAILABLE OPTIONS ARE!‘

PRINT
'

DELETE REMOVE A STUDENT FROM THE ROSTER'

PRINT
'

ENTER ADD A STUDENT TO THE ROSTER'

HELP DISPLAY THIS MESSAGE'

LIST LIST ATTENDANCE DATA ON ALL STUDENTS'

ROSTER LIST THE ROSTER'

QUIT TERMINATE THIS PROGRAM'

SUMMARIZE SUMMARIZE THE ATTENDANCE DATA'

SUPPLY INPUT ATTENDANCE DATA'

iiii HELP OPTION

PRINT

PRINT
'

PRINT
'

PRINT
'

GOTO 2820

END

BA 3.0 30-DEC-75

REM ———————————

REM

REM

REM

IF POS(DAT$(X)r'/'v1)}0 THEN 1200

PRINT

PRINT

PRINT

PRINT

STOP

FILEU*1:'RXA1:ROSTER.AT'

PRINT #1: DAT$(X)

CLOSE *1

PRINT

PRINT

PRINT

PRINT

PRINT

END

iiii

'NO DATE HAS BEEN ENTERED TO THE SYSTEM.

'WITH THE'

'HONITOR "DATE" COMMAND

PLEASE DO SO 'I

DEFORE YOU RUN THIS PROGRAM.‘

'YOU CAN NOW RUN THE PROGRAM "ATTEND"
'

OLD RXA1:ATTEND'

'AND THEN:'
'

R

FY TYPING:'

N'

A-5

CALC

The use of the computer as a powerful calculator has

always been one of the most common instructional

applications. CALC allows you to input any valid

CLASSIC numerical expression and prints out the

value of that expression.

This program uses one BASIC language program to

write another, CHAINs to the newly written program,
and then CHAle back to the original one. This

process is necessary because different numbers can

be specified in a single expression while running a

program, but you must recompile the program if you
want to change the expression itself. CALC takes care

of this problem automatically and allows you to enter

new expressions continuously. If you make an error in

entering your expression and receive an error

message, simply type RUN‘ to begin the program

again.

LIST

CALC EA 3.0 30~DEC—75

100

110

120

130

140

150

160

170

180

190

200

REM

REM

REM

REM

REM

REM

REM

REM

REM VARIABLE USAGE

REM

REM

REM

REM

REM

REM

REM

REM BEFORE THIS PROGRAM CAN BE USED;

iiii C A L C

iiii VARIABLE DIRECTORY

USER’S INPUT

MEDIUM ON WHICH THIS PROGRAM RESIDES

iiii NOTES

'MS' MUST BE SET TO THE

270 REM DEVICE SPECIFICATION FOR THE MEDIUM ON WHICH THIS PROGRAM

280 REM RESIDES. (SEE LINE 370.)

290 REM

300 REM> IT IS RECOMMENDED THAT ALL REMARKS BE DELETED FROM THIS

310 REM PROGRAM TO MINIMIZE CHAINING TIME.

320 REM

330 REM

340 REM iiii DECLARATIONS

350 REM

360 DIM E$(72)

370 LET H$~'RXA1'

380 REM

390 REM iiii USER INPUT

400 PRINT

410 PRINT 'YOUR EXPRESSION'?

420 INPUT E5

430 PRINT

440 IF E$='OUIT' THEN 590

4* REM

460 REM iiii WRITING OF FILE 'COMP.EA'

470 REM

480 FILEV *1: M5 '1COMP.DA'

490 PRINT *1: '10 DIM E$(7?)'

500 PRINT *1: '20 E$="'§ E$i
""

510 PRINT #1: '30 PRINT EST
"

="y'? E$

520 PRINT #1: '40 CHAIN "RXA12CALC.DA"'

530 PRINT *1: '99 END'

540 CLOSE *1

550 REM

560 REM iiii CHAINING TO FILE 'COMP-BA'

570 REM

580 CHAIN M$ fl 'ICOMP.DA'

590 END

EASY02 and EASY03

This program finds the factors of a given number and

is on your demonstration disk in exactly the same

form in which it was submitted to DECUS (the Digital
Equipment Corporation User Society; see Module

5-D).

The program was modified by using some of the

CLASSIC string functions and adding REMarks to

create EASY03.

LIST

EIASYOP. BA 3590 30-~-[IEIC~75

10 PRINT “NUMBER OF' PROBLEMS I8";

20 INPUT N

30 FOR K=1 TO N

40 PRINT

50 PRINT 'NUMBER IS";

60 INPUT X

70 PRINT "FACTORS AREt'

80 FOR le TO INTCX/2+.5)

90 IF X/FQFINT(X/F) THEN 110

100 PRINT F

110 NEXT F

120 PRINT

130 NEXT N

140 END

LIST

EASYOZ BA 3.0 30-DEC—75

100 REM

110 REM

120 REM

130 REM

140 REM

150 REM

160 REM

170 REM

190 REM

190 REM

200 REM

210 REM UARIABLE
220 REM --------

230 REM F

240 REM N

250 REM N

260 REM

270 REM

290 PRINT

290 PRINT

**** E A S Y O 3

**** UARIABLE DIRECTORY

FACTOR INDEX

NUMERICAL FORM OF USER INPUT

5 ACTUAL USER INPUT

**** DIRECTIONS

'EASYOE'

300 PRINT
'

'

310 PRINT

320 PRINT

330 PRINT

340 PRINT

350 PRINT

'THIS PROGRAM OIL

'NUMBER THAT'

'YOU ENTER.

360 PRINT 'THAT YOU'

370 PRINT 'ARE INTERESTED IN: ENTER

330 PRINT CHR$<34>;

390 REM

400 REM

410 PRINT

420 PRINT
430 PRINT 'YOUR NUMBER'i

440 INPUT N$

450 PRINT

460 IF N$='OUIT' THEN 610

470 N=UALCN$)

480 REM ****

490 REM '

500 PRINT 'THE FACTORS OF'? N? 'AREl'

510 FOR F=1 TO INT(N/2+.5)

520 IF N/F{}INT(N/F) THEN 570

530 REM

540 REM

550 REM

560 PRINT TAD<1+LEN(STR$(N))-LEN(STR$(F)))? F

570 NEXT F

SBO'PRINT N

590 REM *XXX

600 GOTO 410

610 END

L FIND THE POSITIUE FACTORS OF ANY
'

AFTER YOU HAUE ENTERED ALL THE NUMBERS '5

'? CHR$(34)? 'OUIT'i
'

TO STOP THE PROGRAM.‘

**** NUMBER INPUT

FACTOR CALCULATION

**** FACTOR PRINT OUT

RECYCLE FOR NEXT NUMBER

READY

GU ESS

This is a simple game that challenges the user to

guess a number that the computer has chosen at

random between 1 and 100. After each guess, the

computer gives the user a hint by telling whether the

guess was too high or too low.

GUESS BA 3.0 30-DEC-75

XXXX

XXXX VARIABLE DIRECTORY

UARIABLE

USER’S GUESS

GUESS COUNTER

THE SECRET NUMBER

$ USER’S FIRST NAME

300 REM

310 REM

320 REM

330 DIM N$(72)

340 REM

350 REM

360 REM

370 PRINT

380 PRINT
'

390 PRINT —————————————————————————————————

400 PRINT

410 PRINT

420 PRINT 'PLEASE TYPE YOUR FIRST NAME AND THEN PRESS THE RETURN NEY.‘

430 PRINT
440 PRINT

'

450 INPUT N$

460 RANDOMIZE

470 PRINT

480 PRINT 'HELLOy '9 N5; '!'

490 PRINT

500 PRINT

510 REM

520 REM

530 REM

540 PRINT 'I AM THINKING OF A NUMBER BETUEEN 1 AND 100 .'

550 GOTO 570

560 PRINT '1 AM THINKING OF ANOTHER NUMBER BETUEEN 1 AND 100 .'

570 PRINT 'TRY TO GUESS UHAT IT IS. (PRESS RETURN AFTER EACH GUESS.)'

**** DECLARATION

**** HEADER

UHAT IS YOUR FIRST NAME'?

**** DIRECTIONS

590 PRINT

590 LET N=INT(100*RND(O))+1

600 LET K=1

610 REM **** GUESS INPUT

620 REM

630 PRINT 'YOUR GUESS'?

640 INPUT G

650 REM *ttt RIGHT ON

660 REM

670 IF G<>N THEN 820

690 PRINT

690 PRINT 'THAT’S ITy 'i N$§ '! YOU GUESSED THE NUMBER IN'i Ki

700 PRINT 'GUESSES. '5

710 IF K}7 THEN 760

720 IF K=7 THEN 740

730 PRINT 'UERY 'i

740 PRINT 'GODDl'i

750 PRINT

760 PRINT

770 PRINT

780 GOTO 560

790 REM

BOO REM

810 REM

820 PRINT
'

TOO 'i

830 IF G}N THEN 860

840 PRINT 'LOU';

850 GOTO B70

860 PRINT 'HIGH'i

870 PRINT
'

GUESS AGAIN.‘

890 PRINT

B90 LET K=K+1

900 GOTO 630

910 END

*XXX TOO LOU OR TOO HIGH

READY

HMRABI

Hamurabi was the name of the king in the ancient city
of Sumeria. HMRABI allows you to try to fill the king’s
shoes in managing the economy of this ancient city
by buying and selling land, feeding the people from

your storehouses, and planting crops over a ten year

period. You will soon learn that without studying the

program, this is a difficult task. Here are three hints

to get you started.

(1) It takes 20 bushels of grain to feed each person in

the city each year.

(2) It takes 1 person to tend every 10 acres that you
wish to plant with seed.

./”m\

,/“=\

(3) It takes 2 bushels of grain to seed each acre that

you wish to plant.

The program is included on your demonstration disk

in essentially the same form that it is printed in 101

BASIC Games. Only slight modifications have been

made to make it run on CLASSIC. Suggestions for

improving this program are in Module 5-D.

The uses of the variables in this program are as

follows:

Variable Usage

A Current acreage
C Number of people not starved

D gNumber
of acres to plant

Number of people starved

D1 Total number of people starved

E Number of bushels eaten by rats

H Number of bushels harvested

L Final number of acres per person
P Current population

P1 Percent of population starved per year

Number of bushels to buy
Number of bushels to sell

Number of bushels of grain in store

Trading rate of land in bushels per acre

Year

Note that one variable stands for different things at

different points in the program.

gNumber
of bushels to feed people

N-<(D

0

LIST

HMRABI BA 3.0 30-DEC-75

10 REM **** HMRABI

20 REM

30 REM

80 PRINT 'TRY YDUR HAND AT GOVERNING ANCIENT SUMERIA'

85 PRINT 'SUCCESSFULLY FOR A 10-YR TERM OF 0FFICE.'\PRINT

9O RANDOMIZE\LET D1=0\LET P1=0

100 LET Z=0\LET P=95\LET S=2800\LET H=3000\LET E=H-S

110 LET Y=3\LET A=H/Y\LET I=5\LET D=1

910 LET D=O

215 PRINT\PRINT\PRINT 'HAMURABI: I BEG TO REPORT TO YDU1'\LET Z=Z+1

217 PRINT 'IN YEAR'fo'r'iDi'PEDPLE STARVEDI'TIi'CAME TD THE CITY.‘

218 LET P=P+I

227 IF G}0 THEN 230

228 LET P=INT(P/2)

229 PRINT 'A HORRIBLE PLAGUE STRUCK! HALF THE PEOPLE UIED.‘

230 PRINT 'PDPULATIDN IS NDH'iP

232 PRINT 'THE CITY NDU DUNS'TAI'ACRESo'

235 PRINT 'YOU HARUESTED'TYT'BUSHELS PER ACRE.‘

250 PRINT 'RATS ATE'iEi'BUSHELS.‘

260 PRINT 'YDU NDU HAUE'TSF'BUSHELS IN STDRE.'\PRINT

270 IF Z=11 THEN 860

310 LET C=INT(10*RND(0))\LET Y=C+17

312 PRINT 'LAND IS TRADING AT'TYI'EUSHELS PER ACRE.‘

320 PRINT 'HDU MANY ACRES DO YOU WISH TO BUY'?

321 INPUT D\IF 9&0 THEN 350

322 IF Y*G<=S THEN 330

323 GDSUB 710

324 GDTD 320

330 IF G=O THEN 340

331 LET A=A+G\LET S=S—Y*G\LET C=0

334 GDTO 400

340 PRINT 'HDU MANY ACRES DD YDU UISH TD SELL'i

341 INPUT Q\IF G<0 THEN 850

342 IF R<A THEN 350

343 GDSUB 720

344 GDTD 340

350 LET A=A-G\LET S=S+Y*G\LET C=0

400 PRINT

410 PRINT 'HOU MANY BUSHELS DO YOU WISH TO FEED YDUR PEDPLE'P

411 INPUT 9

412 IF G<O THEN 850

418 REM XXX TRYING TD USE MORE GRAIN THAN IN THE SILDS?

420 IF Gfi=S THEN 430

421 GDSUB 710

422 GDTO 410

430 LET S=S—R\LET C=1\PRINT

440 PRINT 'HDU MANY ACRES DO YOU UISH TD PLANT HITH SEED'?

441 INPUT D\IF D=0 THEN 511

442 IF Bio THEN 850

444 REM XXX TRYING TO PLANT MDRE ACRES THAN YOU DUN?

445 IF D<=A THEN 450

446 GDSUE 720

447 GDTO 44o continued on next column

449 REM xxx ENOUGH GRAIN FOR SEED?

450 IF INT<O/2><s THEN 455

452 GOSUR 710

453 GOTO 440

454 REM xxx ENOUGH PEOPLE TO TENO THE CROPS?

455 IF O<1oxP THEN 510

460 PRINT 'BUT YOU HAUE ONLY';P;'PEDPLE TO TEND THE FIELOS. NOU THENy'

47o GOTO 440

510 LET S=S-INT(D/2)

511 GOGUR 800

512 REM xxx A ROUNTYFULL HARUESTl!

515 LET Y=C\LET H=UxY\LET E=o

521 GOSUR 800

522 IF INT(C/2)<}C/2 THEN 530

523 REM xxx THE RATS ARE RUNNING UILD!!

525 LET E=INT<S/C)

53o LET S=S-E+H

531 GDSUB 800

532 REM xxx LET’S HAUE SOME BABIES

533 LET I=INthxrzoxA+S)/P/1oo+1>

539 REM xxx HDU MANY PEOPLE HAO FULL TUMMIES?

5w ETCflNHGflm

541 REM xxx HORRORS. A 152 CHANCE OF PLAGUE

542 LET O=INT<1ox(2xRNU(0)—.3))

550 IF P<C THEN 210

551 REM xxx STARUE ENOUGH FOR IMPEACHMENT?

552 LET n=P—C\IF O>.45xP THEN 560

553 LET P1=((z—1>xP1+Ox100/P>/z

555 LET P=C\LET D1=D1+D\GDTD 215

560 PRINT\PRINT 'YDU STARUED'fDi'PEDPLE IN ONE YEAR!!!‘

565 PRINT 'OUE TO THIS EXTREME MISMANAGEMENT YOU HAVE NOT DNLY'

566 PRINT 'BEEN IMPEACHEO ANO THROUN OUT OF OFFICE BUT YOU HAUE'

567 PRINT -ALSO 8EEN OECLAREO ’NATIONAL FINK’ !!'\GDTD 990

710 PRINT -HAMURABI: THINK AGAIN. YOU HAUE DNLY'

711 PRINT SI-BUSHELS OF GRAIN. NOU THEN,-

712 RETURN

720 PRINT -HAMURA81: THINK AGAIN. YOU DUN ONLY-;A;-ACRES. NOU THENy'

73o RETURN

8oo LET C=INTrRNO(0)x5)+1

801 RETURN

85o PRINT\PRINT 'HAMURABI: I CANNOT OO WHAT YOU UISH.-

855 PRINT -GET YOURSELF ANOTHER STEUARUiiiii-

857 GDTO 990

860 PRINT 'IN YOUR 10—YEAR TERM OF OFFICE.-;P1;-PERCENT OF THE'

862 PRINT -POPULATION STARUED PER YEAR ON AUERAGEY I.E.. A TOTAL DF'

865 PRINT Dli'PEDPLE DIED!!'\LET L=A/P

870 PRINT -YOu STARTEO wITH 10 ACRES PER PERSON ANO ENOEO wITH-

875 PRINT Li'ACRES PER PERSON.-\PRINT

880 IF P1>33 THEN 565

885 IF L<7 THEN 555

890 IF P1>10 THEN 940

892 IF L<9 THEN 940

895 IF PIPE THEN 960

896 IF L<10 THEN 960

900 PRINT -A FANTASTIC PERFORMANCE!!! CHARLEMANGE: DISRAELI: ANO-

905 PRINT 'JEFFERSDN COMBINED COULD NOT HAUE DUNE BETTER!'\GDTD 990

940 PRINT 'YDUR HEAUY—HANOEO PERFORMANCE SMACKS OF NERO AND IUAN IU.‘

945 PRINT 'THE PEOPLE (REMAINING) FIND YOU AN UNPLEASANT RULERT ANn.-

950 PRINT -FRANKLY. HATE YOUR GUTS!'\GDTD 990

960 PRINT -YOUR PERFORMANCE COULD HAVE BEEN SOMEwHAT BETTER. RUT-

955 PRINT -REALLY UASN'T TOO BAD AT ALL. -:INTth.8xRNn(o))T'PEOPLE HOULO-

970 PRINT -OEARLY LIKE TO SEE YOU ASSASSINATEO BUT HE ALL HAUE OUR-

975 PRINT 'TRIUIAL PRUBLEMS.‘

990 PRINT

995 PRINT -SO LONG FOR NOw.-\PRINT

999 ENO

HLIRKLE

Hurkle? A Hurkle is a happy beast and lives in another

galaxy on a planet named Lirht that has three moons,
Hurkles are favorite pets of the Gwik, the dominant

race of Lirht and... well, to find out more, read “The

Hurkle is a Happy Beast” in the bookA Way Home (by
Theodore Sturgeon published by Pyramid).

In this program a shy Hurkle is hiding on a 10 by 10

grid. Homebase is point 0,0 in the Southwest corner.

Your guess as to the gridpoint where the Hurkle is

hiding should be a pair of whole numbers, separated
by a comma. After each try, the computer will tell you

the approximate direction to go look for the Hurkle.

You get five guesses to find him.

A diagram of the grid is shown on the next page.

NORTH
9

8

7

6

5

WEST EAST
4

3 THISIS

2 GRIDPOINTZ.3

1

o

/o 1 2 3 4 5 6 7 8 9

HOMEBASE SOUTH

LIST

HURKLE BA 3.0 30—UEC—75

90 REM XXX! HURNLE

100 REM

101 REM

105 RANDOMIZE

110 N=S

120 6:10

210 PRINT

990 PRINT 'A HURKLE IS HIDING ON A'iGi'BY'iGi'GRIU. HOMEBASE'

230 PRINT 'ON THE GRID IS POINT OvO AND ANY GRIDPOINT IS A'

240 PRINT 'PAIR OF wHOLE NUMBERS SEPARATED BY A COMMA. TRY TO'

250 PRINT 'GUESS THE HURKLE’S GRIDPOINT. YOU GET'iNi'TRIES.‘

260 PRINT 'AFTER EACH TRY: I UILL TELL YOU THE APPROXIMATE'

270 PRINT 'DIRECTION TO GO TO LOOK FOR THE HURKLE.‘

280 PRINT

285 A=INT(G*RNU(0))

286 B=INT(G*RND(0))

310 FOR K=1 TO N

320 PRINT 'GUESS t'iKi

330 INPUT XyY

340 IF ABS(X'A)+AES(Y-B)=O THEN 500

350 REM PRINT INFO

360 GOSUE 610

370 PRINT

380 NEXT K

410 PRINT

420 PRINT

430 PRINT

440 PRINT

450 PRINT

460 PRINT

470 GO TO 285

500 REM

'SORRYr THAT’S';N$'GUESSES.'

'THE HURNLE IS AT 'iAf'r'iB

'LET’S PLAY AGAIN. HURKLE IS HIDING.‘

510 PRINT

520 PRINT 'YOU FOUND HIM IN'iHi'GUESSESl'

530 FOR I=1 TO 3 \ PRINT \ NEXT I

540 GO TO 440

610 PRINT '60 'i

620 IF Y=U THEN 670

630 IF YCE THEN 660

640 PRINT 'SOUTH‘?

650 GO TO 670

660 PRINT “NORTH'?

670 IF X=A THEN 720

680 IF XfiA THEN 710

690 PRINT 'wEST'i

700 GO TO 720

710 PRINT 'EAST';

720 PRINT

730 RETURN

999 END

HURK02

This is a modified version of HURKLE. it uses positive
and negative grid points and tests your ability to find

the Hurkle in a “Cartesian” coordinate grid like the

one below.

NORTH

(22)

WEST

(_31-1)

EAST

(1 .-2)

SOUTH

Points are addressed by two coordinates, the first

corresponding to a point on the east-west axis, and

the second to a point on the north-south axis. Point

0,0 is at the exact center of the grid (marked 69).
Several other points are marked to help you find your

way around.

Complete directions for playing HURK02 are con-

tained within the program itself. More possible
modifications to the program are listed below.

(1) The game could be made easier by using only
Quadrant I on the Cartesian coordinate grid. This

quadrant has only positive coordinates and would

make the game simpler. The program might even

allow the user to select the type of grid he or she

wants after the instructions query.

(

(2) The user’s distance from the Hurkle might be re-

ported, using the formula

D=SQR(((X-H) /\ 2) +(Y—V) A 2))

This would make “HURKLE” less of a guessing
game by allowing the user to calculate his or her

inputs. (See “MUGWMP” in 101 BASIC Games.)

(3) If the programmer does not wish to report the

actual distance with the above formula, he or she

might make the program report only whether the

user is getting closer to the Hurkle or moving
farther away. This would be an immense help to

beginners who are not familiar with the relation-

ships of the coordinates in each quadrant.

(4) It would also be helpful to beginners to print out

the Cartesian coordinate grid either by request at

the beginning or with a trace of the user’s guesses

if he or she does not find the Hurkle. This might
be done on the copier rather than the screen. With

(7)

LIST

HURKOZ BA

1000

1010

1020

1030

1040

1050

1060

1070

1080

1090

1100

1110

1120

1130

.
1140

m
‘150

60

4170
1180

1190

1200

1210

1220

1230

1240

1250

1260

1270

1280

1290

1300

1310

1320

1330

340

50

360
1370

1380

1390

1400

1410

1420

1430

1440

1450

1460

1470

1480

1490

1500

1510

1520
730

40

J50

1560

1570

1580

1590

1600

1610

1620

1630

1640

1650

1660

1670

1680

1690

1700

1710

1720

1730

1740

1750

1760

1770

1780

1790

1800

1810

1820

1830

1840

1850

160

70

380

1890

this featUre, the user should improve much faster

than with the trial and error method used in this

version.

An escape clause might be added to the guess

input, allowing the user to terminate the game in

the middle. This would take the form of a

numeric code, for example “99999,99999”. These

escapes are generally good ideas to include so

that the user always feels that he or she is in

control of the computer rather than vice-versa.

3.0 30—DEC-75

REM X X X X X X X X X X X X X X X X X

REM X

REM X

REM X

REM X

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM

REM A

REM A$

REM

REM

REM G1

REM G2

REM G3

REM G4

REM H

REM I1

REM I2

REM I3

REM K

REM N

REM N1

REM P0

REM

REM

REM

REM X

REM Y

REM

REM

REM

REM

LET

LET

DIM

REM

X

X

H U R K L E T H O X

X

XX X X X X X X X X X X X X X X X

X X X X X X X V A R I A B L E D I R E C T O R Y

VARIABLE

INPUT CODE: 0='NO'1 1='YES'

GENERAL ALPHAMERIC USER INPUT

CHR$<34) E'J

C0$ X '1
'

X C0$ ['1 'J

HORIZONTAL GRID DIMENSION

VERTICAL GRID DIMENSION

USER—REQUESTED HORIZONTAL GRID DIMENSION

USER-REQUESTED VERTICAL GRID DIMENSION

USER INPUT1 HORIZONTAL GUESS

TOTAL NUMBER OF GAMES PLAYED

NUMBER OF GAMES IN ”HIGH THE HURKLE UAS FOUND

NUMBER OF GUESSES IN GAMES COUNTED IN 'I2'

GENERAL FOR—NEXT LOOP INDEX

NUMBER OF TRIES ALLOUED PER HIDING PLACE

USER—REQUESTED NUMBER OF TRIES PER HIDING PLACE

NUMERIC ARGUMENT PASSED TO A SUBROUTINE

GUESS COUNTER

ORDINAL EXPRESSION OF GUESS NUMBER

USER INPUT1 VERTICAL GUESS

HORIZONTAL COORDINATE’OF HURKLE'S HIDING PLACE

VERTICAL COORDINATE OF HURKLE’S HIDING PLACE

T

T§(K)

V

X X X X X X X D E C L A R A T I O N S

C0§=CHR$(34)

C1§=CO$ X '1
'

T$(1018)
-— FOR DECSYSTEM 101

REM DIM T$(10)

DATA 'FIRST'1 'SECOND'1

DATA 'SIXTH'1 'SEVENTH'1

FOR N=1 TO 10

READ T§(N)

NEXT K

LET Il=0

LET I2=

REM

REM

REM

REM

REM

REM

REM

GOSUB 3320

PRINT
'

URKLE TUO'

PRINT
'

————————————
'

PRINT

PRINT

PRINT 'DO YOU WISH TO SEE THE INSTRUCTIONS ('1

PRINT
'

OR '1 C0$1 'NO'1 C0$1 ')'1

RANDOMIZE

LET G1=6+2XINT(4XRND(0))

LET G +2XINT(4XRND(0>>

LET N=J+INT(3XRND(O))

GOSUB 3870

IF A=0 THEN 1870

GOSUB 4170

REM

REM

REM

PRINT

PRINT

P0=1

X C0$

REPLACE ABOVE STATEMENT UITH:

'THIRD'1 'FOURTH'1

'EIGHTH'1 'NINTH'1

'FIFTH'

'TENTH'

P R O G R A MX X X X X X X

C0$1 'YES'1 C0$1

X X X X X X X O P T I O N I N P U T

'YOUR AVAILABLE OPTIONS ARE NO” '1

continued on next column

GOSUB 4060

PRINT 'UHICH UOULB YOU LIKE TO EXERCISE (ENTER A UORD)'1

INPUT A9

PRINT

IF A$='GO' THEN 2090

IF HELP' THEN 2960

IF INSTR' THEN 1330

IF QUIT' THEN 4540

IF SIZE' THEN 3140

IF A TRIES' THEN 3570

PRINT 'PLEASE ENTER ONLY '1

P0=2

GOSUB 4060

PRINT '('1 C0$1 'HELP'1 C0$1
'

PRINTS AN EXPLANATION OF EACH.) '1

PRINT 'YOUR CHOICE'1

GOTO 1920

REM

REM X X X X X X X T H E
'

G O
'

O P T I O N

REM

REM

REM XXXXXXX SET THE HURKLE'S COORDINATES

REM
'

X“—G1/2+INT((GlX1)XRND(0))

G2/2+INT((G2+1)XRND(O))

PRINT C2$1

GOSUB 3820

PRINT 'THE HURKLE IS HIDING IN A'1

IF SEG$(STR$(Gl)1LEN(STR$(G1))1LEN(STR$(G1))) '8' THEN 2210

REM —- FOR DECSYSTEM—101 REPLACE ABOVE STATEMENT UITH:

REM IF RIGHT$(STR$(G1)1LEN(STR$(G1)))<>'
'

THEN

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

REM

REM XXXXXXX

REM

FOR T=1 TO N

PRINT

IF T>10 THEN 2340

PRINT 'YOUR '1 T$(T)1

GOTO 2350

PRINT 'YOUR'1 T1

PRINT
'

GUESS'1

IF Thl THEN 2330

2210

'N'1

G11 'BY'1 G21 'COORDINATE GRID.

'VALUES GO FROM '1 G1/
‘

'TO'1 61/21 'AND VERTICAL '1

'VALUES GO FROM '1 G2/ 'TO'1 G2/21 '. FIND'

'THE HURKLE UITHIN'1 N1 'GUESSES!‘

HORIZONTAL'

INPUT THE GUESSES

'TH'1

PRINT
'

(ENTER COORDINATES SEPARATED BY A COMMA)‘1

INPUT H1V

REM

REM XXXXXXX CHECK GUESSES FOR VALIDITY

REM

IF H<—G1/2 THEN 2470

IF H}+Gl/2 THEN 2470

IF VD-GZ/Z THEN 2490

IF V}+62/2 THEN 2490

GOTO 2550

PRINT
'

YOUR FIRST'1

GOTO 2500

PRINT
'

YOUR SECOND'1

PRINT
'

COORDINATE IS OUTSIDE OF THE HURKLE’S GRID! TRY AGAIN...‘

GOTO 2300

ER M

REM XXXXXXX

REM

EVALUATE A VALID GUESS

IF ABS(X—H)+ABS(Y-V)=0 THEN 2720

IF N=T THEN 2620

GOSUB 4380

NEXT T

REM

REM 1111111 OUT OF GUESSES

REM

PRINT

PRINT

PRINT 'SORRY1 BUT YOU HAVE HAD THE LIMIT OF'1 N1 'GUESSES. THE -;

PRINT 'HURKLE uAS HIDING'

PRINT 'AT POINT '1 STR$(X)1 '1'; STR$(Y)1
-

.-

Po=0

GOTO 2810

REM
'

REM 1111111 FOUND HURKLE MESSAGE

REM

PRINT

IF T>5 THEN 2790

FOR K=1 TO 6—T

PRINT 'HURK! -; PNT(7)1

REM —— FOR DECSYSTEM-101 REPLACE ABOVE STATEMENT UITH:

REM PRINT 'HURK! '1 CHRs(7);

NEXT K

PRINT 'YOU FOUND THE HURKLE IN'1 T1 'GUESSES!!'

P0=1

PRINT

PRINT 'IF YOU’D LIKE TO PLAY AGAIN1 PLEASE ENTER THE '1 cos; '80-;

PRINT cos;
-

OPTION BELOU.‘

PRINT

REM

REM 1111111 INCREMENT THE SAME AND TOTAL GUESSES COUNTERS

REM

LET Il=I1+1

2+P0

THEN 1870

LET I3=I3+T

GOTO 1870

REM

REM 1 1 1 1 1 1 1 T H E
-

H E L P
'

O P T I O N

REM

GOSUB 3820

PRINT 'YOUR OPTIONS PERFORM THE FOLLOUING FUNCTIONS:-

PRINT
'

GO LOCATE THE HURKLE AT A NEU GRID POINT AND '1

PRINT 'ALLOU YOU TO'

PRINT
'

GUESS UHERE IT IS HIDING'

PRINT
'

HELP DISPLAY THIS MESSAGE'

PRINT
'

INSTR DISPLAY THE INSTRUCTIONS'

PRINT
'

QUIT END THE GAME'

PRINT
'

SIZE CHANGE THE SIZE OF THE GRID IN UHICH THE '1

continued on next page

PRINT 'HURNLE CAN HIDE'

PRINT
'

TRIES CHANGE THE NUMBER OF TRIES ALLOWED TO FIND ';

PRINT 'THE HURKLE'

PRINT 'TO MAKE THE COMPUTER EXERCISE AN OPTION; SIMPLY TYPE ';

PRINT 'ITS KEYUORD BELOU.‘

GOTO 1870

REM

REM X X X X X X X T H E
'

S I Z E
'

O P T I O N

REM

GOSUB 3820

PRINT 'THE CURRENT SIZE OF THE HURKLE’S GRID IS'; G1; 'DY'; 62;

PRINT '(HORIZONTAL DY'

PRINT 'VERTICAL). YOUR NEH DIMENSIONS MUST ALSO BE EVEN ';

PRINT 'INTEGERS. ENTER YOUR'

PRINT 'NEU DIMENSIONS BELOU SEPARATED BY A COMMA; HORIZONTAL ';

PRINT 'DIMENSION FOLLOUED'

PRINT 'BY VERTICAL. YOU MAY LEAVE THE GRID SIZE UNCHANGED BY ';

PRINT 'ENTERING '; C03; '0;0'; C03; '.'

'YOUR NEU DIMENSIONS';

G3;G4

"0 THEN 3280

THEN 3410

INT(G3/2) THEN 3490

IF G4/2{>INT(G4/2) THEN 3510

XXXXXXX VALID INPUT

Gl=G3

G2=G4

PRINT

PRINT 'THE NEH SIZE OF THE HURKLE’S GRID

GOTO 3440

REM

REM

REM

PRINT

PRINT

PRINT

PRINT

GOTO 1870

REM

REM

REM

PRINT
'

GOTO 3520

PRINT
'

YOUR SECOND';

PRINT
'

DIMENSION IS NOT AN EVEN INTEGER!

GOTO 3230

REM

REM

REM

GOSUB

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

INPUT

PRINT

IF N1<fi0 THEN 3690

PRINT 'THE NUMBER OF TRIES ALLOUED UILL REMAIN AT';

GOTO 3710

LET N=N1

PRINT 'YOU UILL NOU DE ALLOUED';

PRINT

GOTO 1870

REM

REM

REM

REM

REM

REM

REM

REM

REM

PRINT PNT(27);

RETURN

IS'; G1; 'DY'; 62; '.'

XXXXXXX 0;0 INPUT

'THE HURNLE’S

'DY'; G2; '.'

GRID UILL REMAIN ITS CURRENT SIZE OF'; G1;

XXXXXXX NON-INTEGER INPUT

YOUR FIRST';

PLEASE TRY AGAIN...‘

X X X X X X X T H E
'

T R I E S
'

O P T I O N

3820

'YOU ARE NOU ALLOUED';

'ENTER YOUR NEU'

'LIMIT BELOU. YOU MAY LEAVE THE LIMIT UNCHANGED

'ENTERING '; C03; '0'; C03; '.'

N; 'TRIES TO FIND THE HURNLE. ';

BY ';

'YOUR NEU LIMIT';

N1

N; '.'

N; 'TRIES TO FIND THE HURKLE.l

X X X X X X X

XXXXXXX SCREEN CLEARER

'H'; PNT(27); 'J';

REM

REM XXXXXXX 'YES'; 'NO'; AND 'OUIT' RESPONSE DECODER

REM

INPUT A3

PRINT

IF POS(A3;'Y';1)<}0 THEN 3990

REM -— FOR DECSYSTEM-10; REPLACE

REM IF INSTR(1;A3;'Y')<>0

IF POS(A3;'N';1)<}0 THEN 4010

ABOVE STATEMENT UITH:

THEN 3990

REM -- FOR DECSYSTEM-IO; REPLACE ABOVE STATEMENT UITH:

REM IF INSTR(1;A3;'N')fi>0 THEN 4010

IF A3='OUIT' THEN 4540

PRINT
'

PLEASE INPUT '; C03; 'YES'; C13; 'NO'; C03; '; OR ';

PRINT C03; 'OUIT'; C03; '. YOUR CHOICE';

GOTO 3870

LET A=1

RETURN

LET A=0

RETURN

REM

REM X X X X X X X O P T I O N P R I N T E R

REM

PRINT C03; 'GO'; C13; 'HELP'; C13; 'INSTR'; C13; 'OUIT'; C13;

PRINT 'SIZE'; C03; ;

IF P0=2 THEN 4120

PRINT ';'

PRINT 'AND '; C03; 'TRIES'; C03; '. ';

RETURN

PRINT '; OR '; C03; 'TRIES'; C03; '.'

RETURN

REM

REM X X X X X X X I N S T R U C T I O N S

REM

GOSUD 3820

PRINT 'A HURNLE IS HIDING IN A CARTESIAN COORDINATE GRID'

continued on next column

A-10

4190 PRINT 'LIKE THE ONE AT THE RIGHT. GUESS ITS LOCATION DY';

4200 PRINT
'

(POS)'

4210 PRINT 'ENTERING A HORIZONTAL COORDINATE FOLLOUED DY A ';

4220 PRINT
' '

4230 PRINT 'VERTICAL ONE. FOR EXAMPLE; THE X IS AT -4;1 .';

4240 PRINT
'

X !'

4250 PRINT 'POINT 0;0 IS AT THE CENTER OF THE GRID; WHERE ';

4260 PRINT
'

{--+ P E'

4270 PRINT 'THE + IS. AFTER EACH GUESS; I WILL TELL YOU '3

4280 PRINT
'

(NEG) ! (POS)'

4290 PRINT 'UHERE TO GO TO FIND THE HURKLE DY SAYING '; C03; 'NORTH';

4300 PRINT C03;
'

S'

4310 PRINT 'FOR THE POSITIVE VERTICAL DIRECTION; '; C03; 'UEST'; C03;

4320 PRINT
'

FOR (NEG)'

4330 PRINT 'THE NEGATIVE HORIZONTAL; ETC. GOOD LUCK!‘

4340 RETURN

4350 REM

4360 REM X X X X X X X D I R E C T I O N A L H I N T E R

4370 REM

4380 PRINT 'GO ';

4390 IF V=Y THEN 4440

4400 IF V}Y THEN 4430.

4410 PRINT 'NORTH';

4420 GOTO 4440

4430 PRINT 'SOUTH';

4440 IF H=X THEN 4490

4450 IF HPX THEN 4480

4460 PRINT 'EAST';

4470 GOTO 4490

4480 PRINT 'UEST';

4490 PRINT '...'

4500 RETURN

4510 REM

4520 REM X X X X X X X G U I T T I N G R O U T I N E

4530 REM

4540 PRINT

4550 IF Il<2 THEN 4650

4560 PRINT 'YOU PLAYED A TOTAL OF'; 11; 'GAMES AND FOUND THE ';

4570 PRINT 'HURNLE IN'; I2; 'OF THEM~'

4580 PRINT 'THAT’S A UINNING PERCENTAGE OF'; 100X12/Il; 'Z !'

4590 PRINT

4600 IF 12<2 THEN 4650

4610 PRINT 'IN THE'; I2; 'GAMES YOU UON; IT TOOK YOU AN AVERAGE OF';

4620 PRINT 13/12; 'GUESSES TO'

4630 PRINT 'FIND THE HURKLE.‘

4640 PRINT

4650 PRINT 'BYE!I

4660 PRINT

4670 END

MORGAG

Program name: MORGAG.BA

Purpose: Given:

(1) an amount of money borrowed,

(2) the yearly interest rate to be paid, and

(3) the number of years allowed to pay back the loan,

the program will calculate:

(1) the monthly interest rate,

(2) the number of months allowed to pay back the
lAnn and

(3) the amount of money to be paid each month.

In addition, it prints the following data for each

month:

(1) the number of the payment,
(2) the amount of money still unpaid (the outstand-

ing principal),
(3) the amount of interest paid that month,

(4) the amount of principal paid that month,

(5) the total amount of interest paid to date, and

(6) the total amount of principal paid to date.

How it works. The data to be given to this program (as
mentioned above) are supplied through the INPUT

statements at lines 1780, 1820, and 1860.

The amount to be paid each month is calculated with

the formula

M = P*|

1
1

(1 + |)T
where M is the monthly payment

is the amount of the loan

l is the monthly interest rate

A.

l/a\

T is the number of months allowed to pay
back the loan

and these values are displayed on the screen.

MORGAG then asks whether or not the user wishes to

see a monthly breakdown of the mortgage payments.
This section prints the following values for each

monthly payment:

(1) monthly payment number,
(2) outstanding principal,
(3) interest payment,

(4) principal payment,

(5) total interest paid to date, and

(6) total principal paid to date.

This table may be printed on the screen or in a disk

file called “MORT.MO” on RXA1: or it may be

omitted. The action to be taken is determined by the

response to the query at line 2440.

Limitations. This program takes quite a long time to

run. Therefore, it is recommended that the monthly
breakdown be directed to a disk file rather than the

screen. This data can then be printed on the screen or

copier with the monitor TYPE command.

The program is not totally accurate for loans of

$10000.00 or more because CLASSIC BASIC can only
store numbers to an accuracy of 6 digits. That is,
some pennies will be lost as $29078.33 will be stored

as $29078.3. However, the cumulative error in a

$30000 mortgage was found to be less than $3.00 at a

yearly interest rate of 9.5%, or less than 0.01% error.

Listing. A complete program listing is shown below.
LIST

MURGAG BA 3.0 30—3EC—75

1060 REM ———————————

1020 REM XXXX M 3 R G A G

1040 REM ———————————

1060 REM

1030 REM

1100 REM

1120 REM

1140 REM

1160 REM XXXX VARIABLE DIRECTORY

1130 REM

1200 REM UARIAELE USAGE

1220 REM ——————————————

1240 REM I MoNTHLY INTEREST

1260 REM Io INTEREST PAYMENT

1230 REM 12 TOTAL INTEREST PAID

1300 REM K MoNTH

1320 REM M MONTHLY PAYMENT (PRINCIPAL + INTEREST)

1340 REM P PRINCIPAL

1360 REM P2 TUTAL PRINCIPAL PAID

1330 REM a YEARLY INTEREST RATE

1400 REM T TERM

1420 REM Ys OUTPUT MEDIUM

1440 REM

1460 REM XXXX nECLARATIoNS

1430 REM

1500 DEF FNR(X)=INT((100XX)+.5)/100

1520 DEF FNS(X)=LEN(STR$(INT(X)))

1540 REM

1560 REM

1530 REM XXXX

1600 REM

1620 REM

1660 PRINT 'COMPUTATION OF MORGAGE PAYMENTS'

1630 PRINT

1720 REM XXXX

1740 REM

1760 PRINT 'PLEASE INPUT THE PRINCIPAL (UITHOUT COMMAS)‘;

1780 INPUT P

1800 PRINT 'INPUT THE ANNUAL INTEREST RATE (IN Z)‘;

1320 INPUT I

1840 PRINT 'INPUT THE TERM (IN YEARS)‘;

1860 INPUT T

1380 PRINT

1920 REM XXXX

1940 REM

1960 LET T=TX12

1930 LET G=I

2000 LET I=I/1200

2020 REM

2040 REM XXXX

PRINCIPALy INTEREST: AND TERM OUERIES

CONUERT TO MONTHLY FIGURES

CDHPUTE MONTHLY PAYMENT
_

continued on next column

2060 REM

2030 LET M=FNR<PXI/(1_1/(1+I)"T))

2100 REM

2120 REM XXXX

2140 REM

2160 PILEut1:-TTY:-

2200 PRINT 'PRINCIPAL'f TAE(30)i 's'; P

2220 PRINT 'INTEREST RATE'i TA8(35); n; -z-

2240 PRINT 'TERM-; TA3(33); T; TAE(40)i 'MDNTHS'

2260 PRINT 'MDNTHLY PAYMENT-; TA8130); -s-; TAE(36—FNS(H))F M

2270 PRINT

2230 REM

2300 REM XXXX

2320 REM

2340 PRINT 'IF You UANT THE MONTHLY EREARnouN ON THE SCREEN:';

2360 PRINT
'

ENTER "SCREEN--.-

2330 PRINT 'IF You UANT IT ON DISK ENTER --nISN--.-;

2400 PRINT 'IF YOU DON’T uANT IT AT ALL ENTER "ND"
-

2420 PRINT 'YDUR ENTRY';

2440 INPUT Ys

2460 IF Y$='NO' GOTO 3420

2430 IF Y$='DISK” BUTD 2560

2500 IF Y$='SCREEN' GDTU 2640

2520 PRINT
-

PLEASE ENTER --SCREEN--. "DISN": DR --N3--. '1

2540 BDTU 2420

2560 CLoSE #1

2580 FILEU#1:'RXA1:HURT.MD'

2600 PRINT

2620 PRINT

2640 PRINT #1:

2660 PRINTX1:

2690 REM

2700 REM XXXX

2720 REM

2740 PRINT #1: TAB(B>i 'DUTSTANDING'? TA3(23); 'INTEREST-; TA3<35);

2760 PRINT #1: 'PRINCIPAL';TAH(50)i'TUTAL'iTAE(64)i'TDTAL'

2780 PRINT :1: -MCNTH-;TA3(9);-PRINCIPAL-;TA3(24);-PAYMENT-;

2300 PRINT *1: TA3(36); -PAYMENT-; TA3143); 'INTEREST'; TAD(62)f

2320 PRINT #1: -PRINCIPAL-

2840 PRINT *1:

2860 FoR K=1 TO T

2330 REM

2900 REM XXXX

2920 REM

2940 LET IO=FNR(PXI)

2960 LET P2=PNR<P2+M—Io>

2930 LET I2=FNR(I2+Io>

3000 REM

3020 REM XXXX

3040 REM

3060 PRINT #1: TA3(4—FN5(K>>; STRs(K);

3030 PRINT *1: TA3114—FN51P)); P;

3100 PRINT #1: TAS<26~FN5<I0))I Io;

3120 PRINT *1: TABt38—FNStM—I0>); M-IOF

3140 PRINT *1: TAD(52~FNS(12))F I2;

3160 PRINT #1: TAB(66—FNS(P2))i P2

3180 REM

3200 REM XXXX

3220 REM

3240 LET P=FNR(P-(M—IO))

3260 REM

3230 REM XXXX

3300 REM

3320 IF Y$='SCREEN' GOTD 3400

3340 IF N/12=INT(K/12) SUTC 3330

3360 GDTD 3400

PRINT SUMMARY REPORT

MONTHLY BREAKDOWN OUERY

PRINT HEADING LINES

COMPUTE MONTHLY PAYMENT DREAKDOUN

PRINT MONTHLY PAYMENT BREAKDOWN

COMPUTE OUTSTANDING PRINCIPAL

COUNT MONTHS ON DISK

3330 PRINT 'JUST FINISHED MONTH *‘iK

3400 NEXT K

3420 CLOSE *1

3440 END

QUADEQ, QUAD02, and QUAD03

QUADEQ is a program similar to EASY02, but it finds

the roots of quadratic equations (see page 5-29).
Although short and to the point, QUADEQ can

differentiate between equations with real and com-

plex roots and solve either type.

QUAD02 and QUAD03 are adaptions of QUADEQ,
made by adding REMark statements to clarify the

program through documentation. The executable

statements in these three programs are all exactly the

same. See Module 5-C for a further discussion of the

documentation of these programs.
LIST

QUADEQ BA 3.0 SO—OEC—75

10 PRINT 'THIS PROGRAM HILL SOLVE THE OUADRATIC EQUATION IN THE FORM:I

20 PRINT 'AXH2 + BX + C = 0-'

30 PRINT 'AFTER EACH Tl TYPE THE REQUESTED UALUE X PUSH RETURN.I

40 PRINT\PRINT 'A = '5\INPUT A

50 PRINT'B = ';\INPUT B\PRINT 'C = 'T\INPUT C

60 D=BHZ ’ AXAXC

70 IF D < 0 THEN 110

80 R1=(—E+SGR(D))/(2*A) \ R2=(—B-SOR(D))/(2XA)

90 PRINT 'THE ROOTS OF I; A; 'XRZ +'; B? 'X +'? C5
'

= 0 ARE:'

100 PRINT R1 \ PRINT R2 \ GOTO 140

110 P1=—B/(2*A) \ P2=SGR(AES(D))/(2XA)

120 PRINT 'THE COMPLEX ROOTS OF I; A? 'XRZ +'i B; 'X +'; C;
'

= 0 ARE:-

130 PRINT P1;
'

+'? P2; 'I' \ PRINT P1?
'

—'? P2; '1'

140 PRINT\PRINT 'DO YOU UISH TO SOLUE ANOTHER OUADRATIC EQUATION?I

150 PRINT 'ANSHER YES OR NO X PUSH RETURNu'i \ INPUT 0‘

160 IF Q$='YES' THEN 40

17° EN"
continued on next page

LIST

OUADO2 BA 3.0 30-DEC-75

100 REM I!!!

110 REM

120 REM

130 REM *th

140 REM

150 PRINT 'THIS PROGRAM HILL SOLUE THE GUADRATIC EOUATION IN THE FORM?I

160 PRINT 'AX"2 + BX + C = O.‘

170 PRINT 'AFTER EACH Tl TYPE THE REQUESTED VALUE 2 PUSH RETURN.I

190 REM

190 REM XXII

200 REM

210 PRINT\PRINT 'A = '?\INPUT A

220 PRINT'B = '?\INPUT B\PRINT 'C =

230 REM

240 REM I!!!

250 REM

260 D=B'2 - 4¥A*C

270 IF D < 0 THEN 370

280 REM

290 REM #111

300 REM

310 R1=(-B+SOR(D))/(2¥A) \ R2=(-B-SOR(D))/(2¥A)

320 PRINT 'THE ROOTS OF '? A? 'X"2 +'? B? 'X +'? C?
'

= O ARE1'

330 PRINT R1 \ PRINT R2 \ SOTO 430

340 REM

350 REM I!!!

360 REM

370 P1=—B/(2¥A) \ P2=SOR(ABS(D))/(2*A)

390 PRINT 'THE COMPLEX ROOTS OF '? A? 'XCZ +'? B? 'X +'? C

390 PRINT P1?
'

+'? P2? 'I' \ PRINT P1?
'

-'? P2? 'I'

400 REM

410 REM I!!!

420 REM

430 PRINT\PRINT 'DO YOU WISH TO SOLUE ANOTHER OUADRATIC EOUATION?‘

440 PRINT 'ANSUER YES OR NO 2 PUSH RETURN.'? \ INPUT 0‘

450 IF O$='YES' THEN 210

460 END

O U A D 0 2

DIRECTIONS

INPUT OF A? E? AND C

'?\INPUT C

CALCULATION OF THE DETERMINANT

CALCULATION OF REAL ROOTS

CALCULATION OF COMPLEX ROOTS

w H O D 70 m

RERUN QUERY

LIST

OUADOE BA 3.0 30—DEC-75

100 REM *XXX O U A D O 3

110 REM
_

120 REM

130 REM

14o REM

150 REM

160 REM

17o REM xxxx VARIABLE DIRECTORY

180 REM

190 REM UARIABLE USAGE

200 REM —————————————

21o REM A USER INPUT. COEFFICIENT CF 'X“2' TERM

220 REM B USER INPUT; COEFFICIENT CF -x- TERM

230 REM C USER INPUT. -C- TERM

240 REM D DISCRIMINANT

250 REM P1 REAL PART CF A CCMPLEx RCCT

26o REM P2 IMAGINERY PART CF A CCMPLEx RCCT

27o REM Cs USER RESPCNSE TC RERUN CUERY

280 REM R1 FIRST REAL RCCT

29o REM R2 SECOND REAL RCCT

300 REM

310 REM xxxx CIRECTIDNS

320 REM

330 PRINT 'THIS PROGRAM UILL SOLVE THE OUADRATIC EQUATION IN THE FORM:'

340 PRINT 'AX": + BX + C = O.‘

350 PRINT 'AFTER EACH Ty TYPE THE REQUESTED VALUE 2 PUSH RETURN.I

360 REM

370 REM ****

390 REM

390 PRINT\PRINT 'A =

INPUT OF A? B: AND C

'?\INPUT A

400 PRINT'E = ?\INPUT E\PRINT 'C = '?\INPUT C

410 REM

420 REM IXIX CALCULATION OF THE DETERMINANT

430 REM

440 D=B“2 - 4*AIC

450 IF D i 0 THEN 550

460 REM

470 REM *X**

450 REM

490 R1=(-E+SOR(D))/(2*A) \ R2=(-B-SOR(D))/(2¥A)

500 PRINT 'THE ROOTS OF '? A? 'X"2 +'? B? 'X +'? C?
'

= 0 ARE3'

510 PRINT R1 \ PRINT R2 \ SOTO 610

520 REM

530 REM *XXX

540 REM

550 P1=-E/(2*A) \ P2=50R<AES(D))/(2*A)

CALCULATION OF REAL ROOTS

CALCULATION OF COMPLEX ROOTS

560 PRINT 'THE COMPLEX ROOTS OF '? A? 'X“2 +'? B? 'X +'? C?
'

= 0 ARE2'

570 PRINT P1?
'

+'? P2? 'I' \ PRINT P1?
'

—'? P2? 'I'

580 REM

S90 REM XXIX RERUN QUERY

600 REM

610 PRINT\PRINT 'DO YOU UISH TO SOLUE ANOTHER OUADRATIC EQUATION?I

620 PRINT 'ANSUER YES OR NO 3 PUSH RETURN.'? \ INPUT O$

630 IF O$='YES' THEN 390

640 END

SYNONY and SYNSET

SYNONY is a CAI application program that can be

used in both drill—and-practice and testing modes.

The program presents the student with a word and

asks him or her to supply a synonym. As a drill,
students can run this program over and over, as each

word presented accepts at least four different correct

answers as synonyms. As a test, a single run of

SYNONY could evaluate a specific lesson on

synonyms.

unis program maintains a data file called

“SYCOR.TS” on RXA1: which stores the total number

of times that a correct synonym was entered for each

word. This file must be created by the program
RXA1:SYNSET before SYNONY can be used. An EN

error message is printed by SYNONY if “SYCOR.TS”

does not exist. The problem is corrected simply by
running SYNSET.

Many other words and correct answers could be

added to SYNONY by supplying additional DATA

statements. The number “10” in the DATA statement

at line 3740 tells the program how many different sets

of words follow. The numbers in subsequent data

statements indicate the number of synonyms in that

set. These numbers must be adjusted when additional

data are entered.
LIST

SYNCNY BA 3.0 30—DEC—75

1000 REM ———————————

1020 REM xxxx S Y N C N Y

1040 REM ———————————

1060 REM

1080 REM

1100 REM

1120 REM

1140 REM

1160 REM

1180 REM

1200 REM

1220 REM xxxx VARIABLE DIRECTORY

1240 REM

1260 REM UARIABLE USAGE

1280 REM —————————————

1300 REM As STUDENT’S ANSUER

1320 REM 8 NUMBER CF CURRENT CUESTICN

1340 REM J POINTER TC UCRC IN LIST CF SYNCNYMS

1360 REM N TCTAL NUMBER CF CUESTICNS

1380 REM N2 NUMBER CF SYNCNYMS FCR CURRENT UDRD

1400 REM as FILE NAME CF SCCRE FILE

1420 REM R$ ANSUER TC TCTAL SCCRES CUERY

1440 REM S SCCRE ARRAY RDU PCINTER

1460 REM T SCCRE ARRAY CCLUMN PCINTER

1480 REM us LIST CF UCRnS USED IN CUESTICNS

1500 REM us LIST CF SYNCNYMS FOR CURRENT UDRD

1520 REM x ARRAY CF TCTAL SCCRES

1540 REM

1560 REM xxxx DECLARATICNS

1580 REM

1600 nIM 4fi(70)

1620 DIM a$(70)

1640 CIM x(2.10).us(10120>
1660 CEF FNS(X)=LEN(STR$(INT(X)))

1680 CIM vs(10120)

1700 REM

1720 REM xxxx

1740 REM

1760 REM

1780 REM xxxx

1800 REM

1820 PRINT 'SYNCNYMS-

1840 PRINT

1860 LET O$='RXA1:SYCOR.TS'

1880 PRINT 'IF YOU SEE THE MESSAGE: EN AT LINE 2020'

1900 PRINT 'BELou. RUN THE PROGRAM "SYNSET" BY TYPING:'

1920 PRINT
'

CLn RXA1:SYNSET'

1940 PRINT ‘AND THEN:-

1960 PRINT
'

R

1980 PRINT

2000 PRINT 'MESSAGE:'

2020 FILENt1:Cs

2040 PRINT 'NO ERRCR MESSAGE'

2060 REM

2080 REM xxxx

2100 REM

2120 FOR S=1 TC 2

2140 FOR T= 1 TC 10

2160 INPUT #1: X(S.T)

2180 NEXT T

2200 NEXT 5

2220 CLCSE #1

2240 PRINT

2260 REM

2280 REM xxxx

2300 REM

2320 PRINT 'A SYNCNYM OF A UCRB IS ANCTHER UORD IN THE ENGLISH LANGUAGE'

2340 PRINT 'uHICH HAS THE SAME DR VERY NEARLY THE SAME MEANING.-

2360 PRINT

2380 PRINT '1 CHOOSE A UCRC —— YOU TYPE A SYNCNYM.'

2400 REM

2420 REM xxxx READ 0 CF CUESTICNS z CCUNT THEM

2440 REM

2460 READ N

2480 LET C =C+1

PRINT SYNSET MESSAGE

N'

READ FILE OF SCORES

PRINT EXPLANATION FOR USER

continued on next page

A-1 2

A,

/“““\,

2500 PRINT

2520 IF C}N THEN 3120

2540 REM

2560 REM IXXX READ A LINE OF SYNONYMS

2530 REM

2600 READ N2

262 FOR J=1 TO N2

2640 READ H§(J)

2660 NEXT J

2630 REM

2700 REM ttxx STORE CURRENT HORD 2 ASK QUESTION

2720 REM

2740 LET U5£C)=H$(1)

2760 PRINT 'HHAT IS A SYNONYM OF 'iHS(1)§

2730 INPUT A5

2300 REM

2320 REM *Xtt TEST TO SEE IF THE ANSWER IS CORRECT

2340 REM XXXX AND ADD TO THE SCORE FOR THAT HORD

2360 REM

2330 FDR J=2 TO N2

2900 IF A$=H$(J) THEN 3000

2920 NEXT J

2940 PRINT
' HRONG'

2960 LET X(2rC)=X(21C)+1

2930 GOTO 2480

3000 PRINT
' CDRRECT'

3020 LET X(1vC)=X(1yC)+1

3040 GOTO 2430

3060 REM

3030 REM *XXX ASK IF USER HANTS TD SEE TOTAL SCORES

3100 REM

3120 PRINT 'SYNONYM DRILL COMPLETED.‘

3140 PRINT

3160 PRINT 'DO YOU WANT TD SEE THE TOTAL SCORES?‘

3130 PRINT 'ANSHER "YES" DR "NO". YOUR CHDICE'F

3200 INPUT R5

3220 IF R$='YES' GOTO 3530

3240 IF R$='NO' GOTO 3330

3260 PRINT

3230 PRINT 'PLEASE '1

3300 GOTO 3130

3320 REM

3340 REM XXXX OUTPUT TOTAL SCORES FILE

3360 REM

3330 FILEUNG1:O$

3400 FOR S=1 TD 2

3420 FOR T=1 TO 10

3440 PRINT #1: X(SrT)

3460 NEXT T

3430 NEXT S

3500 GOTO 3300
3520 REM

3540 REM *DXD DISPLAY TOTAL SCORES

3560 REM

3530 PRINT

3600 PRINT TAB(14)€'HORD TIMES TIMES'

3620 PRINT TAD<14)i' CORRECT HRONG'

3640 PRINT

3660 FOR T=1 TO N

3630 PRINT TAB(13—LEN(U$(T)))TU$(T)i

3700 PRINT TAB(27-FNS(X(1;T)))?X(17T)i

3720 PRINT TAD(37-FN5(X(21T))>?X(27T)

3740 NEXT T

3760 PRINT

3730 GOTO 3330

3300 CLOSE f1

3320 REM

3340 REM XXXX NUMBER OF QUESTIONS 8 LISTS OF SYNONYMS

3360 REM

3330 DATA 10

3900 DATA 5v'FIRST'y'START'v'DEGINNING‘y'ONSET'y'INITIAL'

3920 DATA 51'SIMILAR'1'ALIKE';'SAME'r'LIKE'v'RESEMDLING'

3940 DATA 51'MODEL':'PATTERN'y'PROTOTYPE'r'STANDARD'y'CRITERION'

3960 DATA 51'SMALL'v'INSIGNIFICANT'I'LITTLE'r'TINY'v'MINUTE'

3930 DATA 6.'STOP'r'HALT'r'STAY'J'ARREST'r'CHECK'r'STANDSTILL'

4000 DATA 6v 'HOUSE':'DHELLING'I'RESIDENCE'y'DOMICILE'y'LODGING'

4020 DATA 'HADITATION'

4040 DATA 7r'PIT'r'HOLLOH'r'HOLE'r'UELL'r'GULF'y'CHASM'y'ABYSS'

4060 DATA 7y'PUSH':'SHOUE';'THRUST'r'PROD'I'POKE'r'DUTT'r'PRESS'

4030 DATA 6r'RED'r'ROUGE'r'SCARLET'r'CRIMSON'r'FLAME'r'RUDY'

4100 DATA 7r'PAIN'y'SUFFERING'y'HURT'y'MISERY'y'DISTRESS'y'ACHE'
4120 DATA 'DISCOMFORT'

4140 END

LIST

SYNSET DA 3.0 30-DEC-75

1000 REM ———————————

1020 REM xxxx 5 v N s E r

1040 REM ———————————

1060 REM

1090 REM

1100 REM

1120 FILEUNfl:'RXA1:BYCOR.TS'

1140 FOR K=1 TO 20

1160 PR1NT¢1:0

1190 NEXT K

1200 CLOSEfl

1220 PRINT 'YDU CAN Now RUN "5YNONY" av TYPING:'

1240 PRINT OLD RXA1:SYNONY'

1260 PRINT 'AND THEN:'

1280 PRINT
'

_R N'

1300 END

WTDAVG

This program computes the weighted average of a

group of grades. The user must tell the program the

number of grades that will be included in each

average and the relative weight that each is to have in

the final computation. Further instructions are

contained within the program itself, and use of this

program is discussed in Module 5-A.

LIST

HTDAUG BA 3.0 30-DEC-75

1000 REM -----------

1010 REM XXXX H T D A U G

1020 REM -----------

1030 REM

1040 REM

1050 REM

1060 REM

1070 REM -

1030 REM XXXX UARIABLE DIRECTORY

1090 REM

1100 REM UARIABLE USAGE

1110 REM ---7

1120 REM A5 GENERAL ALPHAMERIC USER INPUT

1130 REM D DIUISOR FOR HEIGHTED AUERAGE

1140 REM G(K) GRADES

1150 REM I STUDENT NUMBER INDEX

1160 REM K GENERAL FOR-NEXT LOOP INDEX

1170 REM KS RECAPITULATION TYPE

1130 REM N NUMBER OF GRADES

1190 REM T FINAL GRADE OR TOTAL OF HEIGHTS

1200 REM “(K1 HEIGHTS OF GRADES

1210 REM

1220 REM *XXX DECLARATIONS

1230 REM

1240 DIM G(100)rH(100)

1250 LET I=1

1260 REM ------------------------

1270 REM XXXX M A I N P R O G R A M

1230 REM

1290 REM

1300 REM

1310 REM XXX! INSTRUCTIONS OUERY

132 REM

1330 GOSUD 2310

1340 PRINT 'HEIGHTED AUERAGING'

1350 PRIN?
'

'

1360 PRINT

1370 PRINT

1330 PRINT 'DO YOU HISH TO SEE THE INSTRUCTIONS ("YES" OR "NO")'i

INPUT Ai

PRINT

IF POS(A$1'Y'11

IF POS(A$r'N'y1)\

IF A$='OUIT' THEN 2640

PRINT
'

PLEASE INPUT "YES"r "NO": OR "GUIT". YOUR '7

PRINT 'CHOICE'?

GOTO 1390

GOSUB 2360

REM

REM XXXX NUMBER OF GRADES INPUT

PRINT

PRINT 'HOH MANY GRADES DO YOU HAUE FOR EACH STUDENT'?

GOSUD 2670

IF A{\-99999 THEN 1590

'GRADES' THEN 1500

'HEIGHTS' THEN 1670

IF NP1 THEN 1720

PRINT
'

HE FIRST NEED TO KNOH HOH MANY GRADES YOU HILL ENTER.l

GOTO 1500

IF A= 33333 THEN 1500

IF A 7777 THEN 1500

IF AfixINT(A) THEN 1670

IF A<0 THEN 1670

IF A>=2 THEN 1700

PRINT

PRINT
'

YOU NEED AT LEAST THO NUMBERS TO FIND AN AUERAGE.‘

GOTO 1500

PRINT

PRINT
'

PLEASE INPUT A POSITIUE INTEGER.‘

GOTO 1500

LET N=A

REM tht HEIGHT INPUTS

PRINT

PRINT 'INPUT YOUR RELATIUE HEIGHTS FOR EACH GRADE BELOH:'

FOR K=1 TO N

PRINT
'

HEIGHT FOR GRADE i'; Ki

GOSUD 2670

IF A€}-99999 THEN 1320

IF A§='GRADES' THEN 1500

IF A§='HEIGHT5' THEN 1720

PRINT
'

POSITIVE HEIGHTS ONLYr PLEASE!‘

GOTO 1750

IF A{}-38333 THEN 1330

LET K$='HEIGHT'

IF N=1 THEN 1750

PRINT 'THE HEIGHTS YOU HAVE ENTERED SO FAR AREt'

GOSUD 3070

GOTO 1750

IF A=-77777 THEN 1720

IF A10 THEN 1300

LET H(K)=A

NEXT K

REM XIXX GRADE INPUTS

PRINT

PRINT 'INPUT YOUR GRADES FOR STUDENT f'i I? 'DELOHS'

FOR K=1 TO N

PRINT
'

GRADE 0'? K7

-99999 THEN 2010

'GRADES' THEN 1500

='HEIGHTS' THEN 1720

THEN 2070

$

IF “=1 THE" 196°
continued on next page

2040

2050

2060

2070

2080

2090

2100

2110

2120

2130

2140

2150

2160

2170

2180

2190

2200

2210

2220

2230

2240

2250

2260

2270

2280

2290

2300

2310

2320

2330

2340

2350

2360

2370

2380

2390

2400

2410

2420

2430

2440

2450

2460

2470

2480

2490

2500

2510

2520

2530

2540

2550

2560

2570

2580

2590

2600

2610

2620

2630

2640

2650

2660

2670

2680

2690

2700

2710

2720

2730

2740

2750

2760

2770

2780

2790

2800

2810

2820

2830

2840

2850

2860

2870

2880

2890

2900

2910

2920

2930

2940

2950

2960

2970

2980

2990

3000

3010

3020

3030

3040

3050

3060

3070

3080

3090

3100

3110

3120

3130

3140

3150

3160

3170

3180

PRINT 'THE GRADES YOU HAVE ENTERED FOR STUDENT t'? I? 'SO FAR ARE3'

GOSUD 3070

GOTO 1960

IF A=—77777 THEN 1930

LET G(K)=A

NEXT K

REM xxxx uEIGHTED AvERAGE CALCULATION

REM

LET T=O

LET D=0

FOR N=1 TO N

LET T=T+G<N)xU(K)

LET D=D+U(K)

NEXT N

PRINT

PRINT 'THE UEIGHTED AUERAGE OF STUDENT 0'; I; "S GRADES = -; T/D

PRINT

LET I=I+1

GOTO 1930

REM

REM ---------------------

REM xxxx S U D R O U T I N E S

REM —————————————————————

REM

REM

REM xxxx SCREEN CLEARER

REM

PRINT

RETURN

REM

REM xxxx INSTRUCTIONS

REM

GOSUD 2310

PRINT 'THIS PROGRAM COMPUTES UEIGHTED AVERAGES OF SETS OF ';

PRINT 'GRADES. FIRST IT'

PRINT 'UILL ASK YOU HDU MANY GRADES YOU UILL ENTER PER STUDENT. ';

PRINT
'

THEN IT uILL-

PRINT 'ASK THE RELATIvE HEIGHTS TO ASSIGN EACH GRADE. FOR A ';

PRINT 'REGULAR AUERAGEy'

PRINT 'ALL THE RELATIUE uEIGHTS ARE "1". IF YOU UANT TO '9

PRINT 'UEIGHT A GRADE TuICE'

PRINT 'AS HEAUILY AS NORMAL. ENTER "2". ETC. YOU UILL THEN -;

PRINT 'ENTER ALL YOUR'

PRINT 'GRADES FOR ONE STUDENT; THEIR UEIGHTED AUERAGE HILL DE ';

PRINT 'DISPLAYED: AND'

PRINT 'THE PROGRAM uILL RECYCLE FOR ANOTHER STUDENT’S GRADES. 'i

PRINT 'YOU MAY ENTER A'

PRINT 'UALID OPTION TO ANY INPUT OUERY. THESE OPTIONS ARE '1

PRINT "-GRADEG--. '-HELP".-:

PRINT "'INSTR"v "OUIT"1 "RESTART"Y AND --UEIGHTS". '1

PRINT "'HELP" PRINTS AN EXPLANATION-

PRINT 'OF EACH.-

PRINT

PRINT '(TYPE "Y" AND PRESS "RETURN" UHEN YOU HAUE FINISHED 'i

PRINT 'READING.) READY'?

INPUT As

IF POS(A$1'Y'71)<>0 THEN 2620

GOSUD 2680

GOSUD 2310

RETURN

REM

REM xxxx RESPONSE DECODER

REM

INPUT As

IF A$='GRADES' THEN 2930

IF A$='HELP' THEN 2970

IF A$='INSTR' THEN 3020

IF As='GUIT' THEN 3370

IF At RESTART' THEN 2390

IF As='UEIGHTS' THEN 2930

FOR K1=1 TO LEN(AS)

IF ASC(SEG$(A$YK1IK1))=46 THEN 2780

IF ASC(SEG£(A$YK11K1))<48 THEN 2820

IF ASC(SEG$(A$YK11K1))>57 THEN 2820

NEXT N1

LET A=UAL(A$)

RETURN

REM *ttt INUALID OPTION

PRINT

PRINT
'

INUALID ENTRY -- TRY AGAIN OR ENTER "HELP". YOUR'i

PRINT 'YOUR CHOICE'?

GOTO 2670

REM

REM KXXX 'RESTART' ENTERED

REM

LET A=-77777

RETURN

REM XXIX 'GRADES' OR 'UEIGHTS' ENTERED

REM

LET A=-99999

RETURN

REM XXXX 'HELP' ENTERED

REM

GOSUD 3240

LET A=—88888

RETURN

REM XIXX 'INSTR' ENTERED

REM

GOSUD 2360

GOTO 2980

REM

REM **** RECAPITULATION PRINTER

REM

IF K=1 THEN 3200

FOR =1 TO K STEP 5

K1 T0 K1+4

K THEN 3170

PRINT
'

('1 SEG$('

IF K$='GRADES' THEN 3150

PRINT ”(N2);

GUTO 3160

PRINT G(N2)$

NEXT K2

PRINT

PRINT

'v112-LEN(STR$(K2))>1 STR$(K2)T -) I;

continued on next column

A-1 4

3190

3200

3210

3220

3230

3240

3250

3260

3270

3280

3290

3300

3310

3320

3330

3340

3350

3360

3370

NEXT K

RETURN

REM

REM

REM

GOSUD

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

PRINT

GOTO 2

END

1

till HELP MESSAGE

2310

'THE VALID OPTIONS ARE AS FOLLOWS:'
'

GRADES CHANGE THE NUMBER OF GRADES PER STUDENT'
'

HELP DISPLAY THIS MESSAGE'
'

INSTR DISPLAY THE INSTRUCTIONS'
'

GUIT TERMINATE THE PROGRAM'
'

RESTART ERASE THE CURRENT SET OF UEIGHTS OR '1

'GRADES AND'
'

RESTART THE ENTERING PROCEDURE
'

'
HEIGHTS CHANGE THE UEIGHTS ASSIGNED FOR EACH '1

'GRADE'

'THE HEIGHT FOR EACH GRADE MUST BE GREATER THAN 0.‘

560

/“"*'\

//‘“‘\

(xx Appendix B

DECUS Program

Submission Forms

/.\
DECUS LIBRARY

\ I PROGRAM SUBMISSION INFORMATION

Programs should be submitted to:

DECUS Program Librarian DECUS Executive Secretary

Digital Equipment Computer Users Society or Case Postale 340

146 Main Street l2“ Geneva 26/
Maynard, Massachusetts U.S.A. 0|754 Switzerland

The Following material MUST be included:

(1) Completed submittal form

Read the following notes which explain the form.

Section A

(l) Obiect Computer(s) - computer(s) on which the program runs.

Source Computer -

computer on which program was assembled (if different).

(2) File Name - mnemonic or acronym of 6 characters (8 for PDP-l2) for mass storage purposes.

Version No. - indicate version or development level. If unspecified DECUS will assume version No. 1.

(3-7) Self-explanatory.
(8) Category Codes - indicate the category or categories best suited for the category index of the

library catalog.
(9) Monitor - if the program runs under a monitor, all relevant details must be specified.
(IO-l4) Self-explanatory
(15) Please indicate if major revision or development is planned, with estimate of completion date.

Section B

The submission of an assembly'(Pass 3) listing is optional but desirable; short listings may be incorporated into the

ertn—UD. Other acceptable material includes flow-charts, cross referenced listings, core maps or any other relevant

documeruation. The abstract must be written in English but full documentation may be in any language.

Section C

The authorization at the bottom of the submission form must be signed by the person having legal right and interest in

the submitted program.

(2) Abstract

An abstract (in English) of up to l00 words must be attached. This will be used in the preparation of the DECUS Library
Catalog entry.

(3) Write-up

It is requested that documents be suitable for direct reproduction. Clear operating and loading instructions must be part of

any document submitted. Where applicable a printed copy of the tape file index, including a brief description of each

file function, would be helpful.

(4) Paper Tape

All material should be fully labelled with program name, version, starting address (where applicable) and tape format

(ASCII, binary, etc.). Source tapes should be submitted whenever possible.

and/or

(5) DECtape/LINCtape/Magtape

Attach to each tape a printed index of tape file contents. Specify mark track format used. Source files should be

submitted whenever possible.

PROGRAM REVISIONS

Revisions to existing DECUS or DEC programs should be accompanied by a program revision submission form (attached)

EN-114GB-07-R275-(369) January 1975

r"\

r“.

DECUS LIBRARY

PROGRAM REVISION SUBMISSION

Form to be used for modifications or revisions to existing DEC or DECUS software.

A. GE NERAL INFORMATIO N

l. Obiect Computer(s) Source Computer (if different)

2. Original File Name and Title

DECUS or DEC No.

3. Original Author

4. Revising Author

5. Affiliation

6. Address

Country

B. CHANGE INFORMATION

Please specify any changes to the following:

1. Category

2. Monitor/Operating System* DEC No.*

3. Core Storage Required Starting Address*

4. Hardward Required

5. Other Software Required DEC or DECUS No.*

6. Restrictions, Deficiencies, Problems

C. REASON(s) FOR REVISION

I. Debug, correct known problem El 4. Increased operational efficiency El
2. Extend to handle new or different configurations I: 5. Operate on different processor a Specify

3. Operate under different monitor or new system l: 6. Other (please specify)

D . MATERIAL SUBMITTED

Documentation

All revisions should include a detailed statement of the changes made to the existing program.

Revised Abstract Revised Write-up I: New Listing

Paper Tape

Obiect Binary D Binary Patch E Obiect ASCII C] Source |:| Other

DECtape I: LINCtape E] Mark Track Format Magtape: 7Track D 9Track |:| BPI

Specify Format/System (e.g. OS/8, LAP4, DIAL, DOS—ll, DOS-l5, etc.)

Obiect Files D Source Files I: Documentation Files D Other

E. AUTHORIZATION

I, the undersigned, give full permission to DECUS to publish information regarding this revision and to reproduce and distribute

this revision in full or in part to all interested parties, in accordance with the than standard policies of DECUS for reproduction
and distribution of programs submitted to DECUS. I further warrant and represent that I have good and sufficient title and all

rights and interest in and to the revision to grant such permission to DECUS.

Date Signed

*Where Applicable

B-3

(II Appendix C

. Answers To Exercises

\1

k;2 FIRST

READY

5

10 PRINT

20 PRINT

30 PRINT

. 40 PRINT

99 ENn

READY

04~FEB*76

6.

10 PRINT ,

20 PRINT .

:50 PRINT 0.

/40 PRINT .—.25. —.75

50 PRINT ..—.5

99 END

READY

10 PRINT IV05!!!1025,I075!IO!I’vlli'OQSI!“o75!lll“05

99 END

7.

RUNNH

COMPUTERS D0 ARITHMETIC LIKE THIS:

3+4-5 = 2 3+4X5 = 23 3+4/3 = 3.8

3~4+S = 4 3-4XS =*17 3~4/5 P 2.2

3X4+5 = 17 3X4~5 = 7 3*4/5 a 2.4

3/4+5 = 5.75 3/4-5 =-4o25 3/4X5 = 3.75

6+5~4*3/2 = 5

READY

12-/\(4l2)

55

3/4/\2

(3/4)/\2

3/ (4 A 2)

1010-6

(2 + 6) A (4-2)

7A1

7A0

0A8

10.

READY

10 LET X=3

2O LET X=5

30 LET X=.7

40 PRINT X

99 ENII

RUNNH

7

READY

11.

10 LET

20 LET

2'50 F'RIII NT AME

99 END

READY

RUNNH

~1

READY

12.

5 PRINT

144

31 25

= 0.1875

0.5625

= 0.1875

= 10000

I O).5

H o—AN

10

20

30

40

‘3"?

LET X33

LET YRS

LET 237

PRINT XYZ

END

READY

RUNNH

3 5 7

READY

933

3:4

10 LET A===3

20 LET D===4

30 F'RINT A/D

9‘? END

RUNNH

READY

'BASE AND HEIGHT'i

10 INPUT 39H

20 PRINT 'BASE'i'HEIGHT'i'AREA'

30 PRINT ByH10.S*B*H

99 END

READY

RUNNH

BASE AND HEIGHT?7.31!6.04
‘

continued on next column

HEIGHT

6.04

BASE AREA

7.31

READY

RUNNH

BASE AND HEIGHT?829127

BASE HEIGHT

82 127

AREA

S207

READY

RUNNH

BASE AND HEIGHT?5E499E5

BASE HEIGHT

50000 900000

AREA

READY

RUNNH

BASE AND HEIGHT?23.491y17.260

BASES HEIGHT AREA

23.491 17.25,

READY

13.

10 PRINT “CENTIGRADE TEMPERATURE";

20 INPUT 6

25 REM

30 LET F =

35 REM

40 PRINT c;

50 PRINT

55 REM

60 GOTO 10

7o REM

99 END

(9/5) x c + 32

"DEG. CENT. = 'iFi'DEG.

READY

RUNNH

CENTIGRADE TEMPERATURETIOO

100 DEG. CENT. W 212 DEG. FAHREN.

CENTIGRADE TEMPERATUREQQZ
37 DEG. CENT. 3 98.6 DEG. FAHREN.

CENTIGRADE

6.8 DEG.

TEMPERATURE?6.8

CENT. H 44.24 DEG.

CENTIGRADE

0 BER. CENT. I

TEMPERATUREZQ
32 DEG. FAHREN.

CENTIGRADE

w40 DEG.

TEMPERATURETW40

CENT. * W40 DEG. FAHREN.

CENTIGRADE

m100 DEG.

T |:'. M F' E R A T U R E 'E’ 1|. 0 0

CENT. m m148 DEE. FAHREN.

‘ERATURE? Q

IINT. R ”4 9.67 LIB.

CENTIGRADE

READY

TEMPERATURE?”C

C-2

22.0762

.225000E+011

202.727

/
e

FAHREN.'\

FAHREN.

FAHREN.

__

\

/

/"‘m\\1

1/‘L\\

14.

23. Before Statement After

K 25 30 LET K=K+L K 26

C START D E 6 4o LET E = E + 2 E 8

N 4.2 200 LET N = N*5 N 21

-
x -10 235 LET x=x+5 x -5

/1
pm prompt

]
P o 280 LET P= P-20 P -20

f°“”P“t Q -3.1 310 LETQ=15+Q Q 11.9
’

L 5 325 LETL=L+L+L L 15

B 7 340LETB=-B+B B o

Receive degrees
e.cnt from

keyboard 24. Statement A B c Remarks

I
10 LET A=1 3 These statements are done

17 LET 13:1 1 1 Once-

Convertdeg.cent.
— _

to deg. Fahren- 25 LET C=A+B
1 l 3 First time through loop.

30 PRINTA l l 3

l 36 LET A=B l l i

43 LETB=C l l 3

print 50 GO To 25

result

25 LET C=A+B 1 2 3 Secondtimethroughloop.

30 PRINTA 3 3 3

'
36 LET A=B 3 3 3
43 LET B=C

"

3 3 3
50 GO To 25

25 LET C=A+B 3 3 3 Third time through loop.

30 PRINTA 3 3 i
36 LET A=B 3 3 i

15- 43 LETB=C 3 3 3
50 GO To 25

WPROGRAM HILL FIND THE AREA OF" A
25 LET C=A+B 3 3 3 F°unhtimethr°“9h'°°p'

CIRCLE FOR wHICH THE RADIUS IS ENTERED.
3° PR'NTA 3 3 3
36 LET A=B 3 3 3

ENTER BELUN THE RADIUS UP A CIRCLE: 43 LET 8:0 3 3 3
50 GO To 25

YOUR FIRST CIRCLE'S RAL'I'JzUS'g
25.

RAIJ '1: US AREA

:5 228.25 READY 10 LET E===113

10 LET X=1 133.0 F'R'INT E

YOUR NEXT CIILI‘L'CLEE’S FtMIIIIUS’fl 20 PRINT x 30 LET EmE-f-Q

RADIUS; AREA
30 LET X=X+2 40 [30le ‘30

4 50.11.14
40 GOTO 20 9", IlNI'

99 END I‘HJNNH

YUUR NEXT 1:: :1: REILE’S RA1111111113'1’39 RUNNH :3.

1 4

3 6

17. The maximum number of lines that the CLASSIC 5 8

screen can display at once is 12. continued on next page

7
'

10

9 12?

11 14

13 16

15 18

17 20

19 223‘ ”lg

21".: REAL]

READY

26.

10 LEIT J====0 10 LET F'==1 10 LET S==36

20 PRINT .J 20 F'FR'INT F' .20 LET S==S/L'5

30 LET J===J+ZL 30 LET F'=F'*2 30 PRINT 3

40 GDTU 2330 40 [SOTO 20 40 GUTU 20

9'"? END 9‘? END 99 END

27.

START

Print introductory
message

Receive guess

from keyboard

Does guess
= 6?

Print confirming
message

< STOP >

_

Print guess

again message

C-4

28.

A
Print

29.

10 PRINT “NUMBERS TO BE TESTED“;

1130 INPUT MB

30 LET T=B

40 LET T=T~A

{'50 IF 1:0 THEN 90

:50 IF' T1:=-0 THEN 40

'70 PRINT A; "IS NOT A FACTOR UFWB

£30 GOTD 10

90 PRINT MWS A I-nLiUh UFWB

‘95 GUTU 10

9‘? END

30.

First Second Is the FirstaFactor

Number Number of the Second?

8 64 Yes

6 44 No

12 576 1g
42 840 1§§

103 103 Y_es_
13 1276 fl
11 6336 Y_es_

231 591 N_o
208 5200 E
184 1417 fl
276 826 fig

55 1870 E

/'m‘\

/=\\

/"'“\

/«=..\\
r

‘\

31

10

20

30

40

50

60

70

80

90

91

93

95

97

R9

RRINT “NUMBERS TO BE TESTED";

INRUT AyB

LET T=B

LET TmTwA

IF Tao THEN 90

IF T}0 THEN 40

PRINT A; “IS NOT A FACTOR

OOTO 91

PRINT A$"IS A FACTOR

PRINT

PRINT 'DO YOU HAVE MORE NUMBERS";

INRUT A$

1F A$2"YES"

END

0F“$H

OF';H

THEN 10

READY

EHNNH
NUMBERS TO BE TESTEH?§730

5 IS A FACTOR OF 30

HO YOU HAVE MORE NUMBERS?YES

NUMBERS TO BE TESTED?5V31

5 IS NOT A FACTOR OF 31

DO YOU HAVE MORE NUMBERS?NO

READY

32. Statements 25 and 30 make up the body of the

loop in this program.

33

READY -

10 PRINT IRAHIUS.!.UOLUME.

20 FOR R31 T0 10

30 PRINT Ry(4/3)#3.14#R“3

40 NEXT R

99 END

RUNNH

RADIUS VOLUME

1 4.18666

2 33.4933

3 113.04

4 267.946

5 523.333

6 904.32

7 1436.02

8 2143.57

9 3052.08

10 4186.66

READY

34

Set of Values

FOR Statement Variable for the Variable

FORN=1TO6 N Ehz&m5£]

FORW=-3 TO 0 _\gv_ [-3,-2,-1,o]

FORE=12TO12 3 [12]

FOR T=7TO5 L Empty

FORX=L5T025 33 Latsgjj

FORY=1T025 3; [32]

FORZ=5TO3 ;; [enegjj

35

FOR Statement Values of the variable

FOR T=0TOGSTEP3

FORN=1T058TEP1

FOR K=100TO130 STEP10

FORX=0TO1 STEP .25

T: [0,3,6]

N=Euzam$
K= [100310320330]

x= [0,.25,.5,.75,1j
FORE=0TOOSTEP2 E: [0]

FOR B: 3 TO 0 STEP-1 B= C3,2,1,0]

36

10-RRINT "RADIUS“7"8URFACE AREA"

20 FOR R=10 TO 100 STEP 10

30 PRINT Ry4*3.14*R”2
40 NEXT R

99 END

READY

RUNNH

RADIUS SURFACE AREA

10 1256

20 3024

30 11304

40 20096

50 31400

60 43216

?0 61344

80 80384

90 101736

100 125600

READY

C6

31

lnltial Terminal Step Index

value value value values

0 1 0.2 L0,.2,.4,.6,.8,1j
10 0 3 Empw
2 5 2 [2,4]
6 6 3 R:
0.0010 0.0013 0.0001 E001,.0011,.0012,.0013]
8 8 -1 [8]
-3 -4 -0.3 E3,-3.3,-3.6,-3.9]
-4 -3 -0.3 Empty
926 1852 463 [926,1389,1852] ‘

0.01 -0.01 -0.005 [.01,.005,0,-.005,-.01J

3&

100 FOR Y=~5 T0 5

110 PRINT

120 LET XPY“2

130 FOR C=~35 TO 36

140 IP cymx THEN 170

150 PRINT
"

";

160 NEXT 0

170 PRINT "*“9

180 NEXT Y

999 RNu

RUNNH

*

x

x

x

I

X

I

x

x

x

I

REAHY

39

100 PRINT "NUMBER'

110 PRINT 'OF SCORES'1'AUERAGE'

120 PRINT

130 READ N

140 LET 9:0

150 FOR N=1 TO N

160 READ T

170 LET S=S+T

180 NEXT K

190 PRINT N;S/N

200 GUTU 130

900 DATA 3’82y88y97

continued on next column

C6

910 DATA 5966,78171v82173

920 DATA 4;82186;100y91

930 DATA 4,72,82,73y82

940 HATA 6;61;73967;80984y79

999 END

READY

RUNNH

NUMBER

OF SCORES AVERAGE

3 89

5 74.4

4 89.75

4 77.23

6 74

HA AT LINE 00130

READY

40

100 PRINT “NUMBER“

110 PRINT 'OF SCORES';'AUERAGE'

120 PRINT

130 READ N

135 IF N=-99999 THEN 999

140 LET S=0

150 FOR K=1 TO N

160 READ T

170 LET S=S+T

180 NEXT K

190 PRINT NvS/N

200 GOTO 130

900 DATA 3782988797
910 DATA 5766778771782975

920 DATA 47829867100191

930 DATA 4772982973782

940 DATA 6761773767y80784779

950 DATA ~99999

999 END

REAHY

RUNNH

NUMBER

OF $CURES AVERAGE

3 89

5 74.4

4 89.75

4 77.25

6 74

READY

<0

)Mm\\

39. 42.

Incorrect statement Reason

10 FiEAEbA,B,C Extra comma

20 FiEAD®© Extra comma and invalid vari-

START able name

30 REED P,Q,Fi,S,T FiEAD spelled incorrectly
40 FiEADAGBB Calculations not allowed in

Prim

'

FiEAD statements
_ ,

columntitles 50 READ |®J®K Commas required between

variables

60 READ”, Invalid variable names

a d

eanflfli‘iéfiifif’“ 70 READ @ Commas omitted

80 READ Constants not allowed in

FiEAD statements

+
120 DATA1@,2(ZB,3CD4 Calculations not allowed in

ls

number

-99999?
7

DATA statements

130 DATA ®,®,©,®,® Variables not allowed in

DATA statements

140 DATA®3.7.2.9 Extra comma

Read scores from

data table

43;

Print number of
4.scores and average

Subscripted Subscripted
variable Value variable Value

A(1) g A(2*II) -__6
A(') g A“ +J) L0

NM E. A(' + 2) 1—0

A(X) 1_3 A(2*J-1) 1.9
B(I) 3.7 A(X-3) _8_

B(3) 2 A(X-K + J) 1=0

B(J) i2 A(J*K-X) fi

41 ,
ON) A A(C(2)) E
B(1 + I) 9.2 A(B(C(2)-1)) m

100 PRINT 'CUHEH MESSAGE";

110 INPUT C

120 IF CPO THEN 130

123 PRINT

125 PRINT

127 BUTD 100

130 IF C€=26 THEN 160

140 PRINT
'

'9

150 GDTU 110

160 RESTDRE

170 FOR K=1 TD 0 44_
180 READ L$

190 NEXT K

200 PRINT L$i

210 GOTO 110

500 DATA 'A'r'B'r'C'r"H'r'E'r'F'r'G'

510 DATA 'H'r'I'r'J'r'N'r'L"r'M“r“N'

1:20
DATA :0:.:F-:,:u:.:r<:ylslprr'

"U" 10 FOR N:1TO 4

338 ES?
U’u’x'Y'Z

20 LET P(N):2 N PH) 2 P(3) 8

REAIIY
30 NEXT N P(2) 4 P(4) 16

%%%E% MESSAGE32018r9r1913279!19728r20y8r513471315119r19:177r510
THIS IS THE MESSAGE

7o LET F(1)=1 F(1) 1 F(4) 24

Egg; "ESSAGETE 75 FOR K= TO 6 F(2) 2 F(5) 120

80 LET F(K) : K*F(K-1) F(3) 6 F(6) 720

85 NEXT K

45

100 PFINT "ORIGINAL DATAfi“

110 EUR K31 TU 10

120 READ N(K)

130-PRINT N(K)T

140 NEXT K

150 PRINT

160 PRINT

170 FOR le TD 3

180 LET TmN(K)

19D LET N(K)%N(11“KJ

ROG LET_N(llmfi)WT
210 NEXT K

220 PRINT "INVERTED DATAT“

230 FOR Kml TU 10

240 PRINT N(K)$

250 NEXT K

500 DATA 2394935932919v7926y8£14913

999 END

READY

RUNNH

ORIGINAL DATA:

23 4 35 32 19 7 26 8 14 13

INVERTED DATA:

13 14 8 2 7 19 32 35 4 23

READY

4S

80 DIM N(100)

90 READ S

120

130

140

150

160

DATA.”

READ N(N)

PRINT N(K)i

NEXT N

PRINT

PRINT

\ IF NIEIQ’THEN 140 \PRINT

170

180

FOR N1=i TO S-1

FOR K2$N1+1 T0 8

190

200

210

220

330

240

I50

IF N(K1)iflN(N2) THEN

LET TmN(K1)

LET N(K1):N(K2)

LET N(K2)=T

NEXT NE

230

NEXT N1

PRINT "SORTED DATA3“

2’. 7 0

.132 E2 0

mOO

OO
:50

J40

999

PRINT N(N)}

NEXT N

DATA CI

DATA 1v60144r30172v67112163y76

DATA fl7v92154r39164152v23165y46v55

DATA 34v68y23196y43

DATA 64

END

\ IE K 2 THEN 280 \ PRINT

continued on next column

UNSORTED DATA:

21 60 44 20 72 67 76 27 92 54

39 64 32 22 65 46 68 23 96 43

SORTED DATA:

12 I) 21 22 23 27 34 39 43' 44 46 52

54 55 60 63 64 64 65 67 68 72 76 92

READY

47.

HERD .

100 DIM C(8)gT(8y2)

110

120

130

140

150

160

FDR'K1=1 T0'8‘

READ C(Kl)

FOR K2=0 T0 2

LET T(l<1:|<2)=o
NEXT N2

NEXT K1

170

190

190

200

210

READ N

FOR K1=1 TO N

FOR K2=1 TO 8

READ R

IF REO THEN 240

22Q_LET T!K210)=T(KZ;O)+1I

GOTO 280

IF R=C(K2) THEN 270

LET T(R2.1)=T(K2.1)+1]

GOTO 280

LET T(K2;2)=T(K212)+1|

280

290

300

310

NEXT K2

NEXT N1

PRINT I‘GUESTION'r'CORRECT'y'INCORRECT'

PRINT

320

330

340

350

360

370

380

FOR N1=1 TD 3

PRINT R1.

FOR R2=2 T0 0 STEP

PRINT T(N1,N2).

NEXT K2

PRINT

NEXT

—1

K1

500

510

520

530

540

550

560

570

580

590

600

610

999

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

DATA

END

273131271121173

10

'2.1.3.o.3,3.2,2
213131211v17213

11372v37112y0y0

271121113121373

21E!310!1131372

213!2v1!31210!2

1!3!3!2!113!110

211;?!01011y3y3

2y2y31111121312

213121313121311

READY

RUNNH

QUESTION

NUMBER

CORRECT

RESPONSES

INCORRECT

RESPONSES

F3

,1

LE

Lfi

r3

Ln

Ln

0:

'1)

\I

Ln.

b

LP.

Ln

Ln

f-J

GVQUIDNFJH
READY

OMITTED

f-Jf-JOl-‘NOOO

'NUHBER'y'RESPONSES'y"RESPONSES'y'OHITTED'

I”
K

K

/‘“\

48.

.Llfilflfl
10 REM ill SCORE

20 REM

30 REM THIS PROGRAM SCORES AN EIGHT OUESTION MULTIPLE CHOICE

40 REM TEST AND TALLIES THE NUMBER OF STUDENTS UHD ANSWERED EACH

50 REM OUESTION CORRECTLY (STORED IN T(Or2))r INCORRECTLY (STORED

60 REM IN T(Dv1))y AND NOT AT ALL (T(D-0)).

70 REM

100 DIM C(B)1T(812)

102 REM THE CORRECT ANSUERS FOR THE TEST ARE STORED IN LIST 'C'.

104 REM THE RESPONSE TALLIES ARE STORED IN ARRAY 'T'

105 REM

106 REM Iii INITIALIZINO ROUTINE

108 REM

110 FOR K1=1 TO B

120 READ C(K1)

130 FOR K2=0 TO 2

140 LET T(K1:K2)=0

150 NEXT K2

160 NEXT K1

165 REM

17o READ N
_

172 REM -N- IS THE NUMBER OF TESTS TD RE SCDRED.

174 REM

176 REM xxx TALLYING ROUTINE

17a REM

130 FOR K1=1 TO N

190 FOR K2=1 TO a

:00 READ R

205 REM 'R' IS A RESPONSE TO OUESTION NUMBER -K2-.

210 IF R>o THEN 240

213 REM

215 REM THE NEXT TUO STATEMENTS ARE EXECUTED ONLY IF NO

217 REM RESPONSE HAS OIUEN.

220 LET T(K210)=T(K2r0)+1

225 REM

23o GDTD 230

235 REM

240 IF R=C(K2) THEN 270

243 REM

245 REM THE NEXT TUO STATEMENTS ARE EXECUTED ONLY IF AN

247 REM INCORRECT RESPONSE HAS GIUEN.

25o LET T(K271)= T(k2y1)+1
255 REM

260 GOTO 230

263 REM

265 REM THE NEXT STATEMENT IS EXECUTED ONLY IF A CORRECT

267 REM RESPONSE HAS GIUEN.

270 LET T(K2:2)=T(K272)+1

275 REM

260 NEXT K2

290 NEXT K1

293 REM

295 REM xxx OUTPUT ROUTINE

297 REM

300_ PRINT 'DUESTIONfy'CORRECT'v'INCORRECT' .

310 PRINT 'NUMDER'.'RESPONSES-.IRESPONSEs'.'OMITTED'

315 PRINT

320 FOR K1-1 TO B

330 PRINT K1;

350 FOR K2-2 TO 0 STEP -1

350 PRINT T(K1uK2)y

360 NEXT K2

370 PRINT

360 NEXT K1

335 PRINT

400 REM

410 REM xxx DATA TABLE

420 REM

43o REM THE FIRST DATA STATEMENT CONTAINS THE CORRECT ANSUER58
500 DATA 2.3.3.2.1.2.1,3

505 REM THE NEXT DATA STATEMENT INDICATES THE NUMBER OF TESTS

507 REM TO BE SCORED:

510 DATA 10

513 REM

515 REM THE REMAINING DATA STATEMENTS CONTAIN THE ACTUAL

517 REM RESPONSES GIUEN:

520 DATA 2.1.3.0.3131212

53o DATA 2.3.3.2.1.1.2.2

54o DATA 1,3,2131112,0.o

550 DATA 2,1,2,1,3,2,3,3

560 DATA 2!2!3I0r113!312

570 DATA 2,312.1.3.2.o,2

530 DATA 17373727173I170

590 DATA 2.192.010.173.3
600 DATA 2,2,3,1,1,2,3,2

610 DATA 2,3,2.3.3.2.3.1

999 END

READY

49.

.R BASIC

NEU OR OanmNEw EX49

READY

10 READ N

30 IF NEo THEN 9o
35 IF N=o THEN 72

50 FOR K=1 TO N

60 PRINT -x1;
20 NEXT K

71 GOTD 10

72 PRINT

73 PRINT
'

'9

74 GUTU 10

90 FOR N3'1 TO "N

100 PRINT
'

'§

110 NEXT K

140 IF N}“20 THEN 10

150 PRINT 'PRESS RETURN"F

155 INPUT AS

200 DATA “576!“17’7IOVW1VAVM14y47“59490

205 DATA "'194’"13!3v""89390y""1’49—‘5959-“3937-‘87390

210 DATA Mlv14y“3949“574707159“59790
215 DATA 69"4757"3715707“2737'Dy27"'"0741”67470

220 DATA —3737"4727“778707"473y72727“878!0

225 DATA *5757“9747“694107“6131“9715y”20

999 END

SAVE RXA1§EX49oDA

READY

OLD RESEO

READY

RUNNH

FILE?RXA13EX49.BA

START!STEF?1000;10

READY

OLD RXAltEX49

READY

LIST

EX49 DA 3.0 16WSEPM76

1000 READ N

1010 IF N{0 THEN 1100

1020 IF N=0 THEN 1070

1030 FOR K=1 TO N

1040 PRINT 'X';

1050 NEXT R

1060 GUTO 1000

1070 PRINT

1080 PRINT
'

';

1090 GDTD 1000

1100 FOR K=1 TO “N

1110 PRINT
'

'i

1120 NEXT K

1130 IF N}— 20 THEN 1000

1140 PRINT 'F'RESS RETURN3'9

1150 INPUT A$

1160 DATA ”5761“1717107"1747-14741_51410
1170 DATA_~1’4-T13737’EJ37QITJ141—515y7313y—87310

1189 DATA "11141—d747—574’01151—57710

1190 DATA 61—4151'3715107—2131—6727—6141—674’0

1200 DATA ‘3’3’“4721‘778101—4131‘2721—81810

1210 DATA ‘5’57—9’47-614’0’-6131-91151-20

1220 END

READY

50.

ISTNH

1000 READ N \ IF N<O THEN 1100 \ IF N=O THEN 1070

1030 FOR K=1 TO N \ PRINT 'X'; \ NEXT K \ GOTO 1000

1070 PRINT \ PRINT
'

'1 \ GOTO 1000

1100 FOR K=1 TO —N \ PRINT
'

'1 \ NEXT K

1130 IF N}*20 THEN 1000 \ PRINT 'PRESS RETURNi'; \ INPUT A5

1160 DATA ‘5767”1777!°!_1147—14147—57410

1170 DATA ‘1747‘13737”973707"1’47‘5757—3’37—9’370

1130 DATA ‘1r141—374y—514101151-5r790

1190 DATA 67“4757—3115’09—273!_6121—6141—674y0

1200 DATA “373im4y27—773707—4731"2727‘87370

1210 DATA *5759—9741W694107‘6y31‘9r15,“20

122 END

READY

RUNNH

XXXXXX XXXXXXX

XXXX XXXX XXXX

XXXX XXX XXX

XXXX XXXXX XXX XXX

XXXXXXXXXXXXXX XXXX .XXXX
XXXXXXXXXXXXXXX XXXXXXX

XXXXXX XXXXX XXXXXXXXXXXXXXX

XXX XX XXXX XXXX

XXX -XX XXXXXXXX

XXX XX _XXXXXXXX' .

xxxxx JJQQL .xxxx
xxx. xxxxxxxxxxxkxxx

READY

BYE

(3-9

51

100 PRINT 'UNSDRTED DATA3“

110 FOR K=1 TU 10 \ READ N(K) \ NEXT K

120 GDSUB 700

150

160

170

180

I90

200

210

220

230

240

250

PRINT

PRINT

FOR R121 T0 9

FOR R2mR1+1 TD 10

IR N(K1){=N(K2) THEN

LET TmN(R1)

LET N(K1)wN(K2)

LET N(R2)=T

NEXT R2

NEXT R1

RRINT ”SURTED

230

DATA"

270

Ei()()

STOP

DATA 66v75v59993977v85948992967978

700

710

720

730

EUR K31 TU 10

PRINT N(K)$

NEXT K

RETURN

999 END

READY

RUNNH

UNSDRTED

66 75

DATA:

59 93 77 85 48 92 67 78

SURTED

48 59

READY

DATA

66 67 75 77 78 85 92 93

52

10

20

30

40

50

90

99

PRINT 'A"y“C'y“B'

READ AyC

LET BuSGR(C”2*A"2)

PRINT A989B

GOTD 20

DATA 152929393.694o7

END

READY

RUNNH
R C B

1 1.73205
'

2.23607

3.02159

.I bun-.2 .7
DA AT LINE 00020

READY

C—1 0

53

10

20

30

40

99

PRINT "YOUR

INPUT N

PRINT 'ANSUER 3

GUTU 10

END

READY

RUNNH

VbUR'NUMBERfig
ANswER = *36

YOUR NUMBER?:§
ANSRER m 4

YOUR NUMBER?3.14

ANsuER = ~9.éfi9fi9

YOUR NUMBER?:§
READY

54

10 INPUT X

20 PRINT INT(X+0.5}

30 GUTU 10

99 END

RUNNH

IR¢I

Ifléoa

9W12697
-I v“) "'1

.I. A'; /

.1,
.--Y.

I?. e

REAIY

A

9

NUMBER“;

~1*SGN(N)*N”2

55. Rounding to the nearest tenth:

10 INPUT X

20 PRINT

30 60TH

99 END

10

READY

RUNNH

I15¢21

1592

ImlflloOE

~121

I2¢617

2.6

?“C

READY'

INT(IO*X+Oofi)/10

{
I

zmx

/m\

/”7\

/l‘"“\

Rounding to‘the nearest hundredth:

10 INPUT X

20 PRINT INT(100*X+0)/100

30 GOTD 10

99 END

READY

RUNNfl
?1.3156

1 031

?66.449

66.44

?*15.326

"15 o 33

’?"C

READY

Rounding to the nearest ten:

20 PRINT 10*INT(X/10+0.5)

LISTNH

10 INPUT X

20 PRINT 10*INT(X/10+0.5)

30 GUTD 10

99 END

READY

RUNNH

fififi
60

T224.5

220

?~77

~80

?~80

~80

?“C

READY

Rounding to the nearest hundred:

10 INPUT X

20 PRINT 100*INT(X/100+0.5)

30 GUTU 10

99 END

READY

RUNNH

TA
0

?430.02

500

?—270

“300

”-"E
READY

5&

10 READ X

I20 LET Y=INT(X/10)+10*(X/10-INT(X/10))I
25 REM

30 PRINT XyY

40 GDTD 10

90 DATA 10,15,23,37,40,99

99 END

READY

RUNNH

10

15

23

37

40

99 C0

DA AT LINE 00010

READY

51

10 READ X

20 LET Y=INT(X/10)+100*(X/10~INT(X/10))

30 PRINT XyY

40 GOTU 10

90 DATA 10y37v99

99 END

READY

RUNNH

10 1

37 73

99 98.9999

DA AT LINE 00010

READY

5&

10 PRINT "HYDROGEN ION CONCENTRATION";

20 INPUT C

30 PRINT “PH 3"; “LOG(C)/LUG(10)

40 GUTU 10

99 END

READY

RUNNH

HYDRGGEN IDN GDNGENTRATIDN?.0000001

RH m 7

HYDROGEN IGN CUNCENTRATION?.00003875

RH = 4.41173

HYDROGEN IDN CONCENTRATION?.00000000387

RH = 8.41229

HYDROGEN IGN CDNGENTRATIGN?I.24E~10

RH : 9.90638

HYDROGEN IGN CDNGENTRATIDNID.77E—2

EH 2 1.5D7EE

HYDROGEN IGN CUNCENTRATIDN?"C

RIEIAIIIY
—

C-1 1

59.

10 PRINT 'PH'i

20 INPUT P

30 PRINT 'HYDROGEN ION CONCENTRATION ='i

40.GOTO 10

99 END

EXP(—P¥LOG(10))

READY

RUNNH

PHEZ
HYDROGEN ION CONCENTRATION =

PH?4.41173
HYDROGEN ION CONCENTRATION = 0.00003875

PH?O.AJ.222

HYDROGEN ION CONCENTRATION =

Wm
<

HYDROGEN ION CONCENTRATION =

PH71155252

HYDROGEN ION CONCENTRATION = 0.0277001

£221}?

60.
100 PRINT

110 PRINT 'ANGLE'v'SINE'r'COSINE'y'TANGENT'y'ANGLE'

120 PRINT

130 LET P=1OO

140 FOR K=0 TO 4¥P STEP P/4

150 LET A=3.14159¥K/130

160 PRINT KySIN(A)1 COS(A)v

170 LET T=SIN(A)/COS(A)

130 PRINT T1130¥ATN(T)/3.14159

.100001E-006

.337006E-009

.124002E5009

190 NEXT K

200 END

READY

RUNNH

ANGLE SINE COSINE TANGENT ANGLE

-

o
_

0 0.999999 0 o

45 0.707106 0.707109 0.999999 45

90 0.999999 0.0000015 667544 90

135 0.707109 -0.707105 —1 ~45.0002

190 0.00000337 -0.999999 —0.00000337 -0.00019312

225 —0.707104 -0.70711 0.999991 44.9999

270 —0.999999 —0.00000599 166996 99.9997

315 —o.707112 0.707102 —1.00001 -45.0005

360 —0.00000674 0.999999 —0.00000674 —0.00039624

405 0.707102 0.707112 0.999995 44.9996

450 0.999999 0.00001049 95363.4 99.9995

495 0.707114 —0.707099 —1.00002 -45.0007

540 0.00001199 —0.999999 —0.00001199 -0.00069665

595 -0.707099 —0.7o7115 0.999976 44.9993

630 -o.999999 —0.00001349 74171.6 99.9993

675 —0.707119 0.707096 —1.00003 —45.0009

720 —0.00001349 0.999999 —o.00001349 —o.00077249

READY

61..

10 PRINT 'DISTANCE.IN METERS'i

20 INPUT D

30 PRINT 'ANGLE IN DEGREES';

40 INPUT A

50 LET A=3o14159*A/180

60 PRINT 'HEIGHT = '3DXSIN(A)/COS(A)T'METERS'

:7() FhfiJIPII

80 GOTO 10

99 END

READY

W
DISTANCE IN METERSTEQ
ANGLE IN DEGREES362
HEIGHT = 86.6022 METERS

DISTANCE IN METERS?126.3
ANGLE IN DEGREES?4B¢5

HEIGHT = 142.756 METERS

DISTANCE IN METERS?85932

ANGLE IN DEGREES?1o90

HEIGHT = 2.83201 METERS

DISTANCE IN METERS?:Q
READY

C-1 2

62.

(1)

(2)

(3)

(4)

(5)

[0.1.2]

[0,1,2,3,4,5]

[1l2l3i4’5’6]
[0,1,2,3,4,5,6,7,8,9]

[0,.1,.2,.3,.4,.5,.6,.7,.8,.9]

63.

100 REM xxx INITIALIZATION

110 REM

12o DIM T(12)

130 FOR K=1 TO 12 \ LET T(K)=0\NEXT K
“

140 PRINT "TOTAL DOTS SHOUN'.'PERCENT OCCURRENCE-

150 RANDOMIZE

16o REM

17o REM xxx SIMULATION
‘

180 REM

190 FOR K=1 TO 1000

200 LET A=1+INT(6xRND(0))
210 LET B=1+INT<6xRND(0))

22o LET T(A+B)=T(A+B)+1

230 NEXT K

240 REM

25o REM xxx OUTPUT

26o REM
_ g/

270 FOR K=2 TO 12 \ PRINT Ry. T(R)/1o \ NEXT R \

290 END

READY

RUNNH

TOTAL DOTS SHOUN PERCENT OCCURRENCE

2 3.2

3 5.6

4 7 .7

5 12.6

6 13.5

7 14.2

a 15.6 /
‘

9 11 Q
10 7.5

‘

11 6.5

12 2.6

READY

RUNNH

TOTAL DOTS SHDwN PERCENT OCCURRENCE

2 2.8

3 5.2

4 9
P

11.4

6 13.1 /

7 16.2

8 14.2

9 10.8

10 9

11 5.7

12 2.6

READY

64.

'1

100 REH ________________

.110 REH It! CIRCLE FUNCTIONS

120 REH ————————————————

130 REH

140 REH XXX FUNCTION DEFINITION

150 REH ‘

160 DEF FNP(X)=3.14159XR

170 REH

130 REH ll! DATA INPUT

190 REH

200 PRINT ‘RADIUS';
210 INPUT R

220 REH

230 REH lit OUTPUT

240 REM

250 PRINT 'RADIUS'r'CIRCUHFERENCE'y'CIRCLE AREA'v'SURFACE AREA'y'UOLUHE'
260 PRINT Ry 2*FNP(R): R!FNP(R)1 4*R*FNP(R)1 4*R”2*FNP(R)/3

270-PRINT

230 GOTO 200
.

-

290 END contunued on next page

r‘x

‘READY
RUNNH

RAEIUSTAE
RADIUS CIRCUMFERENCE CIRCLE AREA SURFACE AREA VOLUME

42 263.993 5541.76 22167 310339

RADIUS?2.315

RADIUS
"

CIRCUMFERENCE CIRCLE AREA SURFACE AREA UDLUME

2.315 14.5455 16.8365 67.3459 51.9686

RADIUST3E10

RADIUS CIRCUMFERENCE CIRCLE AREA SURFACE AREA UCLUME

.3oooooE+011 .135495E+012 .232742E+022 .113097E+023 .113097E+o33

RADIUS?.00002;§
RADIUS CIRCUMFERENCE CIRCLE AREA . SURFACE AREA UCLuME
0.0000215 0.00013697 .149301E—oaa .597203E-ooa .433967E-013

RADIUSI;E
“BEADY

65.
100 REM ———————————————————————

110 REM xxx 23 MATCHES SCORE KEEPER

120 REM ———————————————————————

130 REM

140 REM KKK DIMENSION STRINGS

150 REM

160 DIM N$(10120)

170 REM

180 REM XXX GET NAMES

190 REM

200 PRINT 'HOW MANY PEOPLE WILL PLAY'i

210 INPUT N

220 PRINT

230 FOR K=1 TO N

240 PRINT 'WHAT IS PLAYER t'i K? "S NAME'?

250 INPUT N$(K)

260 NEXT K

270 REM

280 REM KKK PLAY THE GAME

29o REM

300 PRINT

310 LET M=23

320 FOR R=1 TO N

330 PRINT

340 PRINT N$(K): "S TURNz'

350 PRINT 'THERE ARE NOW'F Mi 'MATCHES.‘

360 PRINT 'HOW MANY DO YOU WISH TO TANE';

370 INPUT H

330 IF H<=0 THEN 420

390 IF Hf=4 THEN 420

400 IF H>M THEN 420

410 IF H=INT(H) THEN 440

420 PRINT 'YOU CHEATEH! I’LL GIVE YOU ANOTHER CHANCE:...'

430 GOTO 330

440 LET M=M-H

450 IF M=0 THEN 520

460 IF M=1 THEN 560

470 NEXT K

480 GOTO 320

490 REM

500 REM XXX SOMEBODY LOST

510 REM

520 PRINT \ PRINT

530 PRINT N$(K)§
'

LOST THIS TIME!I

540 LET K=N-1

550 GDTO 630

560 PRINT \ PRINT

570 IF K<>N THEN 590

530 LET K=0

590 PRINT N$(K+1);
'

MUST TAKE THE LAST MATCH!‘

600 REM

610 REM KKK PRINT SCORES

620 REM

630 LET S(K+1)=S(K+1)+1

640 PRINT \ PRINT

650 PRINT ‘THE SCORE IS NOW:'

660 PRINT 'NAME'y'NUMBER OF GAMES LOST'

670 FOR K=1 TO N

630 PRINT N$(K)y S(K)

690 NEXT K

700 REM XXX RERUN QUERY

710 REM

720 PRINT \ PRINT

730 PRINT 'DO YOU WANT TO PLAY AGAIN ("YES" OR "NO")'i

740 INPUT A$

750 IF A$='YES' THEN 300

760 IF A$='NO' THEN 790

770 PRINT 'PLEASE ANSWER ONLY "YES" OR "NO".'

780 GOTO 730

790 END

READY

HOW ANY PEOPLE WILL PLAY?2
-.

WHAT IS PLAYER I 1 ’S NAMETHILLEL

,WHAT IS PLAYER I 2 ’8 NAME
— continued on next column

C-1 3

HILLEL’S TURN:

THERE ARE NOW 23 MATCHES.

HOW MANY DO YOU WISH TO TAKEfi;

JESSE’SVTURN:

THERE ARE NOW 21 MATCHES.
HOW MANY DO YOU WISH TO TAKE?2I

HILLELfS TURN:

THERE ARE NOW 19 MATCHES.

HOW MANY DO YOU WISH TO TAKES;

JESSE’S TURN:

THERE ARE NOW 17 MATCHES.

HOW MANY DO YOU WISH TO TAKE?1

HILLEL’S TURN:

THERE ARE NOW 16 MATCHES.

HOW MANY DO YOU WISH TO TAKE?£‘

JESSE’S TURN:

THERE ARE NOW 14 MATCHES.

HOW MANY DO'YOU WISH TO TAKE?l

HILLEL’S TURN:

THERE ARE NOW 13 MATCHES.

HOW MANY DO YOU WISH TO TAKE?§

JESSE’S TURN:

THERE ARE NOW 10 MATCHES.

HOW MANY DO YOU WISH TO TAKE?l

HILLEL’S TURN:

THERE ARE NOW 9 MATCHES.

HOW MANY DO YOU WISH TO TAKE?2

JESSE’S TURN:

THERE ARE NOW 7 MATCHES.

HOW MANY DO YOU WISH TO TAKE?2

HILLEL’S TURN:

THERE ARE NOW 5 MATCHES.

HOW MANY DO YOU WISH TO TAKE?$

JESSE’S TURN:

THERE ARE NOW 4 MATCHES.

HOW MANY DO YOU WISH TO TAKE?§

HIEEEL MUST TAKE THE LAST MATCH!

THE SCORE IS NOW:

NAME NUMBER OF GAMES LOST

HILLEL 1

JESSE 0

DO YOU WANT TO PLAY AGAIN ('YES' OR ‘NO')?NO

READY

66

10 DIM S$(72)

20 LET S$m"

30 INPUT T9A$

40 FOR K=1 TO T

50 LET S$:S$ 2 A$

60 NEXT K

70 PRINT S$

80 GOTO 20

99 ENE

READY

W
?4 HI

HIHIHIHI

?2 LOW

LOWLOW

T3 HIGI

HIGIHIGIHIGI

?"C

READY

67 .-

100 REM xxx 23 MthHES
110 LET M-23

120 PRINT

130 PRINT 'NE START NITH 23 MATCHES.

140 PRINT 'TAKE 1v 2! OR 3'

150 PRINT 'MATCHES.

160 PRINT

170 REM iii

ISO PRINT

190 IF M>1 THEN 220

NHEN IT IS YOUR TURN: YOU MAY
'

THE ONE NHO MUST TAKE THE LAST MATCH LOSES.I

THE HUMAN MOUES

200 PRINT 'THERE IS NON ONLY 1 MATCH LEFT.‘

21o GOTO 230

220 PRINT 'THERE ARE NDN'i M5

230 PRINT

'MATCHES.‘

240 PRINT 'HON MANY MATCHES DO YOU NISH TO TAKE'?

242 INPUT H5

244 IF H$<>'UNCLE' THEN 254

245 PRINT

249 PRINT

250 LET M=23

252 GOTO 180

254 LET H=UAL(H$)

246 PRINT 'O.K.v LET’S START AGAIN...‘

260 IF H>M THEN 320

270 IF H=INT(H) THEN 290

290 GOTO 320

290 IF HPo THEN 310

300 GOTO 320

310 IF H<4 THEN 340

320 PRINT 'YOU CHEATED!

330 GOTO 230

340 LET M=M~H

350 IF M=o THEN 530

360 REM

37o REM xxx

390 REM

39o LET R=M—4xINT(M/4)

400 IF M=1 THEN 530

410 IF R<>1 THEN 440

420 LET c=INT<3xRND(0))+1

430 SOTO 450

440 LET c=(M+3)-4xINT<(M+3)/4)

450 LET M=M—c

460 IF M=o THEN 590

470 PRINT

490 PRINT '1 TOON'i c;

490 RANDDMIZE

500 GOTO 190

510 REM xxx

520 REM

530 PRINT

540 PRINT

550 PRINT '1 NON!

560 LET M=”3

57o GOTU 160

530 PRINT

590 PRINT

600 PRINT 'CONGRATULATIONS!

610 PRINT

620 PRINT 'YOU NON THIS TIME.

630 GOTO 560

640 END

SOMEBODY NON

NE START NITH 23 MATCHES.

MATCHES.

THERE ARE NON 23 MATCHES.

I’LL GIVE YOU ANOTHER CHANCE:'

THE COMPUTER MOUES

'MATCHES.'

BETTER LUCK NEXT TIME....

YOU MADE ME TAKE THE LAST MATCH.‘

BUT LET'S PLAY AGAIN...‘

NHEN IT IS YOUR TURN; YOU MAY TAKE 1. 2; OR 3

THE ONE NHO MUST TAKE THE LAST MATCH LOSES.

HON MANY MATCHES DO YOU NISH TO TAKETE

I TOOK 2 MATCHES.

THERE ARE NON 19 MATCHES.

HON MANY MATCHES DO YOU NISH TO TAKET§

I TOOK 3 MATCHES.

THERE ARE NON 13 MATCHES.

HON MANY MATCHES DO YOU NISH TO TAKETUNCLE

U.K-l LET’S START AGAIN...

THERE ARE NON 23 MATCHES.

HON MANY MATCHES DO YOU NISH TO TAKEfig

I TOOK 3 MATCHES.

THERE ARE NON 18 MATCHES.

THERE ARE NON 9 MATCHES.

HON MANY MATCHES DO YOU NISH TO TAKE71

I TOOK 3 MATCHES.

THERE ARE NON 5 MATCHES.

HON MANY MATCHES DO YOU NISH TO TAKETE

I TOOK 2 MATCHES.

THERE IS NON ONLY 1.MATCH LEFT.

HON MANY MATCHES DO YOU NISH TO TAKE?;

I NON! BETTER LUCK NEXT TIME...

THERE ARE NON 23 MATCHES.

HON MANY MATCHES DO YOU NISH TO TAKE?"E
READY

'

68.

N LEN(STR$(N))

47

1 26

8

2873

61045 IUII-IM-t
co

N

10 READ N

20 PRINT N.LEN(STR$(N)).6—L

30_GDT0 10

4o DATA 47.1269892873961045

99 END

READY

RuNNH

7

'3

4

1 6

8

2873

61045 LS

J5

P‘

{J

P5

DA AT LINE 00010

mu

REAIT

69

10 PRINT

2 LET N=.1

30 FOR Kml T0 7

40 LET S=N

45 GOSUB 100

50 LET S=SQR(N)

55 GOSUB 100

60 LET S=SGR(SGR(N))

63 GOSUB 100

6-LEN(STR$(N))

FNNKfiWJh
EN(STR$(N))

P‘

PJ

LH

54

J>

‘N"v"SGUARE ROOT'1"FOURTH ROOT"

HON MANY MATCHES DO YOU NISH TO TAKE?;

I TOOK 2 MATCHES.

THERE ARE NON 13 MATCHES.

HON MANY MATCHES DO YOU NISH TO TAKET;
I TOOK 2 MATCHES.

65 PRINT

7o LET N=INT<Nx10+.5)

80 NEXT R

90 STOP

100 FOR K0=1 TO 6—LEN(STR$(INT(S)))

110 PRINT
-

-;

120 NEXT KO

130 PRINT STR$(S).

14o RETURN

999 END

C-1 4

fix

/‘"‘\

READY

RUNNH

N SOUARE ROOT FOURTH ROOT

0.1 0.316228 0.562341

_1 1 1

10 3.16228 1.77828

100 10 3.1622

1000 31.6228 5.62341

10000 100 10

100000 316.228 17.7828

READY

71.

[—57DEF—FNF(x—)=7——LEN_<STRT<I—Nnx) 1 TI.

10 PRINT

20 LET N=r1

30 FOR K=1 TO 7

'N' r 'SGUARE ROOT' r 'FOURTH RDOT'

PR NT TAD<FNF(N) H

70 LET N=INT(NX10+.5)

STR(N)

PRINT TAB(14+FNF(SRR(N))H STR$(SGR(N)H
PRINT TAD(ZB+FNF(SOR(SGR(N)))H STR$(SGR(SGR(N)))

READY

30 LET T=2¥T+1

RUNNH

123456789-1234567B9~123456789—123456739—123456739-123456739-123456789-12

x

x

i

i

x

*

123456789—123456789-123456739—123456739-123456739-123456739-123456789-12

READY

30 LET T=36—(4-N)"2

RUNNH

123456789—123456739-123456789—123456739-123456739—123456739-123456789-12

*

l

i

x

i

l

x

X

123456789—123456789—1234567B9-12345678?—123456789-1234567B?-123456789-12

READY

77.

BO DIM A$(100120)y

90 READ N

T$(20)r X$(20)1 Y3t20)

90 NEXT K
100 FOR K=1 TO N \ READ As<K> \ NEXT K

99 END 120 FOR K1=1 TO N-l

130 FOR K2=K1+1 TO N

QEQDY 140 IF LEN(AS(K1))=LEN(A$(K2)) THEN 240

N11. 150 LET xs=As(K1>

R SQUARE ROOT FOURTH ROOT 155LETvumsm2>

0‘ 1 0'316229 0‘562341 133 EERLEEEXRTEREIii—{2523.33
1 1 1 180 LET xs=xs a '9-

10 3.16228 1.77828 égggg§g§30
'1

‘
.10° 1° 3‘16‘29

210 FOR K=1 TO LEN(X$)—LEN(Y$)'

1000 31.6228 5.62341 220 LET Ys=Ys s '0'

10000 100 10 225

NE)”
K

THEN 2230 I xs<Ys BO
100000 316.229 17.7929

235 BOTO 250

240 IF A£(K1)<A$(K2) THEN 280

READY 250 LET Ts-AMKI)

260 LET A$(K1)=A£(K2)

27o LET AstK2>=Ts

280 NEXT K2

290 NEXT K1

300 PRINT \ PRINT 'BORTED DATA:- \ PRINT

72
310 FOR K=1 TO N/3+1

- 320 PRINT As<K),. A$(K+1+INT(N/3))vv A$(K+2+2¥INT(N/3))

330 NEXT K

500 DATA 50

$8 ESSUE=§°TD B
510 DATA 'HISSOURI': 'CONNECTICUT': 'NEU MExICO-. 'UISCONSIN'

52o DATA -ALADAMA-. -MARYLAND-. -TENNESSEE-. -NEDRASKA-. -UTAH-
'

53o DATA -RHODE ISLAND'v 'SOUTH DAKOTA'Y -UEST UIRGINIA'

54o DATA -MINNESOTA-. -CALIFORNIA-. 'FLORIDA': 'OHIO'

.. . 550 DATA -KENTUCRY-. 'INDIANA'y 'MASSACHUSETTS-. 'OREGON'

gg :gifiTKTAB(T"
*

56o DATA 'NEU JERSEY-. 'UIRGINIA'I 'HAINE': -DELEuARE'

60 GDSUB BO
570 DATA 'IDAHO'; -ILLINOIS-. 'NORTH CAROLINA-. -ALASKA-

530 DATA 'NEU YORK-. ITExAS-. ‘GEORGIA'; 'KANSAS'r -UYOMINC'

7% FSTDP _

T \ _ \
.

K
590 DATA -uASHINsTON-. 'HICHIGAN'v 'HISSISSIPPI'v 'IOUA'

go P3§N¥1:f..°\7NEX:DE Kf‘; T3 21°.P51NT
STR“K2" \ NEXT 2

600 DATA 'UERNONT': 'MONTANA-. 'PENNSYLUANIA'Y 'HAUAII'
’ 1 RI" - RETURN

610 DATA -LOUISIANA-. 'COLORADO'I 'OKLAHOMA-. -SOUTH CAROLINA-
99 EN“

620 DATA 'ARIZONA'v 'ARKANSAS': 'NORTH DAKOTA-. -NEUADA'

63o DATA 'NEu HAMPSHIRE-

2533; 999 END

123456789-123456789-123456769—123456789-123456739—123456789-123456789—12
READY

*

*
RUNNH

; SORTED DATA:

*
ALADAMA LOUISIANA OHIO

*
ALASKA MAINE OKLAHOMA

*

*
ARIZONA MARYLAND OREGON

. ARKANSAS MASSACHUSETTS PENNSYLUANIA

123456789—123456789—123456789—123456789—123456789-123456789-123456739—12 CALIFORNIA HICHIGAN RHODE ISLAND

_
COLORADO MINNESOTA SOUTH CAROLINA

READY
_

RN”
CONNECTICUT MISSISSIPPI SOUTH DAKOTA

%%fi%%1_l:131__ifll DELEUARE MISSOURI TENNESSEE

c
FLORIDA MONTANA TEXAS

1234U67B9-123456789-12345:789—123456789—123456789-123456769-123456789-12 GEORGIA NEBRASKA UTAH

*
HAUAII NEUADA UERMONT

*
IDAHO NEu HAMPSHIRE UIROINIA

*
ILLINOIS NEu JERSEY UASHINSTON

*
INDIANA NEu MEXICO UEST UIRSINIA

IOUA NEu YORK HISCONSIN

*
KANSAS NORTH CAROLINA UYOMING

*
KENTUCKY NORTH DAKOTA

123456789—123456789—123456789—123456789-123456789—123456789-123456739—12 READY

C-1 5

81.

100

120

140

160

180

200

220

240

260

280

300

320

340

380

DIM A$<72)

PRINT \ PRINT

RANDOMIZE

'THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.I

LET A=INT(10*RND(O))

LET B=INT(10*RND(0)>

PRINT \ PRINT

INPUT A$

'HOH MUCH IS'? A? '+'i D?

LET C$=STR$(A+D)

IF POS(A$I'OUIT'11)}0 THEN 560

'IF POS(A$:'HELP'71)}0 THEN 520

IF POS(A$7C$;1)}O THEN 390

PRINT
'

GOTO 200

INCORRECT. PLEASE TRY AGAIN.v-'

LET P=POS(A$7C$11)

HERE’S ANOTHER...‘

490 IF SEG$(A$rP-11P~1){}'-' THEN 440

420 GOTO 320

440 IF POS(A$:'NOT':1)=0 THEN 490

460 IF POS(A$;'NOT'y1)<POS(A$-C$71) THEN 320

480 IF POS(A$1'N’T'71)=O THEN 490

495 IF POS(A$I'N’T'11){POS(A$7C$r1) THEN 320

490 PRINT
'

CORRECT!‘

500 GOTO 160

520 PRINT
'

'I A; '+'i D; '='? A+D§ '-

540 GOTO 160

560 END

READY

RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HOW MUCH IS 4 + 5 ?IT ISN’T 9

INCORRECT-

HOW MUCH IS 4 + 5

CORRECT!

HOH

PLEASE TRY AGAIN...

?I GUESS IT MUST DE 9

MUCH IS 2 + 5 ?I’M OUITTING NOH!!!

READY

400

no

M0

4w

DIM A$(72)

PRINT \ PRINT

RANDOMIZE

'THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.I

LET A=INT(10*RND(O))

LET D=INT(10*RND(O))

PRINT \ PRINT

INPUT A5

'HOH MUCH IS“? A? '+'i Hi

I: FN— Th‘IAlfi\
LLT uv—Slna\nlul

IF POS(A$v'OUIT'yl))O THEN 560

IF POS(A$v"HELP'11)}O THEN 520

IF POS(A$1C$11)I0 THEN 380

PRINT
"

GOTO 200

INCORRECT. PLEASE TRY AGAIN...I

LET P=POS(A$:C$11)

IF SEG$(A$yP—lyP-1){}“—' THEN 440

GOTO 320

IF POS(A$1'NOT'11)=O THEN 480

IF POS(A$1'NOT";1)EPOS(A$yC$y1) THEN 320

HERE’S ANOTHER...‘

480 IF POS(A$1'N’T'11)=O THEN 490

485 IF POS(A$7'N’T“yl){POS(A$yC$11) THEN 320

490 IF ASC<SEG$(A$1P-11P—1))fi48 THEN 493

491 IF ASC(SEG$(A$yP-1yP—1))}57 THEN 493

492 GOTO 320

493 LET P1=P+LEN(C$)

494 IF ASC(SEG$(A$IP17P1>><4B THEN 496

495 IF ASC(SEG$(A$IP11P1))£57 THEN 320

~496 PRINT
'

CORRECT!“

500 GOTO 160

520 PRINT
'

“I A? '+'? D; '="? A+D$ '.

540 GOTO 160

560 END

READY

RUNNH

THIS PROGRAM HELPS YOU PRACTICE ARITHMETIC.

HOH MUCH IS 3 + 4 ?THAT’S 7

CORRECT!

HOW MUCH IS 4 + 4 ?1234§67B9101112131415161718
INCORRECT. PLEASE TRY AGAIN...

HOU MUCH IS 4 + 4 ?UELL1 I GUESS IT MUST BE 9

CORRECT!

HOW MUCH IS 3 + 0 ?THAT’S ENOUGHy I QUIT!

READY

10 FILEU #13
20 PRINT #1:

30 PRINT #1:
'

'RXA12JABBER.LC'

40 PRINT *12'ALL MIMSEY HERE THE DOROGROUES‘

50 PRINT *1:'

60 CLOSE #1

70 PRINT “JABHERHOCNY FILE CREATED"

99 END

READY

RUNNH
_

JADBERHDCKY FILE CREATED

READY

BYE

.TYF- RXA12JABBFRILC
’TUAS'BRILLIGI AND THE SLITHY TOVES

DID GYRE AND GIMBEL IN THE MADE

ALL MIMSEY HERE THE BOROGRDUES

AND THE MOME RATHS OUTGRABE

.R BASIC

NEH OR OLD~"NEH RXA13X85A

READY

10 FILE #1: "EXAltJABDEB.LC"

40 INPUT #1: L$

50 PRINT L$

60 NEXT K

99 END

“EADY

’THAS HRILLIG AND THE SLITHY TOUES

DID GYRE AND GIMBLE IN THE MADE;

ALL MIMSY HERE THE BURUGDUES!

AND THE HOME RATHS OUTGRABE.

E

READY

86.

LIST

10 F: EU #1: ”RXAI:UUTPUT.JH"

20 IanT #12 "THIS DATA IS

25 PRINT #1:

30 CLOSE #1

40 DIM A$(72)

50 FILE #1: "RXAI:UUTPUT.JH"

60 INPUT #1: A$

65 IF END #1 THEN 90

70 PRINT A$

80 OOTU 60

90 RFRTORE #1

95 GOTU 60

99 END

READY

RUNNH

THIS DATA “I

THIS IS TE”

THIS DATA

IN A DISK FI.E

INE OF THE DATA.

IN A D

TH IS THE S ND LINE 0 .

"

TH DATA IS
' -----

I IN A nIIN [LE.

TH IS THE . 0ND LINE OF THE DATA.

THIS nAfig
READY

C-1 6

AND THE MOME RATHS OUTGRABE“

THE

"’TUAS BRILLIG; AND THE SLITHY TOVESI
DID GYRE AND GIMBEL IN THE HABE'

STORED IN A DISK FILE."

"THIS IS THE SELUND LINE OF DATA.“

/“‘*\

/"\

(_

/’m\

//m“\

88. All three arrangements produce the same results:

100 LET leo

110 FILEUN #1: "RXAltTEST"

[12c PRINT #1: RIRHJ R124
130 CLOSE #1

140 FILEN #1: 'RXAl:TEST“

150 INPUT #1: AyByC

160 PRINT A3B30

999 END

READY

HUNNH

10 '11 12

READY

120 PRINT‘EliKz K+1y K+2

RUNNH

10 11 12

READY

120 PRINT #1: K

123 PRINT #1: K+1

125 PRINT #1} KT?

RUNNH

10 11 12

READY

89

100 REM *** TALLY2

110 REM

120 REM THIS PROGRAM URITES THE DATA FILE FUR TALLYT.

130 REM

140 FILEUN #13 'RXA :0UESTI.UN'

150 READ N

160 PRINT *1: N

170 FOR K1=1 TO N
180 FOR N2=1 TO B

190 READ R

200 PRINT #1: R

210 NEXT N2

220 NEXT N1

230 CLOSE #1

240 PRINT 'OUESTIUN DATA FILE WRITTEN.I

510 REM

520 REM *** DATA TABLE

530 REM

540 DATA-5

550 REM THE FIRST DATA ITEM INDICATES THE NUMBER OF

560 REM SURVEYS TO BE TALLIED. THE ACTUAL RESPONSES

570 REM GIVEN FOLLOW BELOW:

580 DATA 211741471r311’4

590 DATA 1'113147274’113

600 DATA 271141411731173

610 DATA 212141411131271

620 DATA 4i3i4ilr3737272

630 END

READY

RU H__flfl_
QUESTION DATA FILE WRITTEN.

READY

100 REM xxx TALLY

110 REM

120 REM THIS PROGRAM TALLIES THE NUMBER OF PEOPLE

130 REM CHOOSING EACH OF 4 RESPONSES FOR EACH OF a

140 REM OUESTIONS.

150 REM

160 OIM T(Bv4)

17o REM ARRAY 'T' STORES THE TALLY COUNTS

180 REM

190 REM xxx INITIALIZINO ROUTINE

200 REM

210 FOR R1=1 TO B

220 FOR R2=1 TO 4

230 LET T(K1.R2)=o

240 NEXT R2

250 NEXT R1

255 REM

260 FILEN'S1: -RxA1:OUE5TI.ON-

27o INPUT #1: N

275 REM

290 REM 'N' 18 THE NUMBER OF SURVEYS TO BE TALLIEO.

290 REM

300 REM xxx TALLYING ROUTINE

310 REM

320 FOR R1=1 TO N

330 FOR R2=1 TO 8

335 REM

34o INPUT #1: R

345 REM

350 REM -R- 18 A RESPONSE TO QUESTION NUMBER 'KQ“.

360 LET T<R2.R)=T(R2.R>+1

370 NEXT R2

330 NEXT R1

390 REM

400 REM xxx OUTPUT ROUTINE

410 REM

420 PRINT “GUESTIDN”11"RESPUNSES“

430 PRINT y-1'.-2",-3~y-4~

440 REM

450 FOR K121 TO E

460 PRINT Riv

470 FOR RE=1 TO 4

480 PRINT T<R1.RE),

490 NEXT R2

495 PRINT

500 NEXT R1

630 ENO

REAOT

RUNNH

OUESTTON RESPONSES

1 E 3

1 1 3 o

O 3 1 1

3 o o 1

4 1 0 0

5 3 J l

6 o o 4

7 :3 :z o

8 1 1 2

REAOY

C-1 7

HID

H

O

E

b

o

H

”W

{/‘flx

Please
cut

along
this
line.

The CLASSIC Primer:

A Self-Teaching Guide

DEC-OS-ECPGA-B—D

READER’S COMMENTS

NOTE: This form is for document comments only. Problems with software should be reported on a Software

Problem Report (SPR) form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized? Please make suggestions for improvement.

Is there sufficient documentation on associated system programs required for use of the software described in this

manual? If not, what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

1:] Assembly language programmer

El Higher-level language programmer

El Occasional programmer (experienced)
1:] User with little programming experience
El Student programmer

El Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code

or

Country

If you require a written reply, please check here. [1

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

EflEJflIEIl
Software Communications

PO. Box F

Maynard, Massachusetts 01754

K‘”\

/'""\\

/“‘“\

DIGITAL EQUIPMENT CORPORATION, Corporate Headquarters: Maynard, Massachusetts 01754, Telephone: (617) 897-5111

SALES AND SERVICE OFFICES

DOMESTIC — ARIZONA, Phoenix and Tucson . CALIFORNIA, Los Angeles, Monrovia, Oakland, Ridgecrest, San Diego, San Francisco

(Mountain VIew),Santa Ana, Sunnyvale and Woodland Hills - COLORADO, Englewood . CONNECTICUT, Fairfield and Meriden - DISTRICT OF

COLUMBIA, Washington (Lanham, Md.)o FLORIDA, Orlando - GEORGIA, Atlanta - ILLINOIS, Chicago (Rolling Meadows) - INDIANA,

Indianapolis 0 IOWA, Bettendorf o KENTUCKY, Louisville o LOUISIANA, Metairie (New Orleans) 0 MASSACHUSETTS, Marlborough and

Waltham o MICHIGAN, Detroit (Farmington Hills) 0 MINNESOTA, Minneapolis - MISSOURI, Kansas City and St. Louis - NEW HAMPSHIRE,

Manchester 0 NEW JERSEY, Fairfield, Metuchen and Princeton . NEW MEXICO, Albuquerque - NEW YORK, Albany, Huntington Station,

Manhattan, Rochester and Syracuse - NORTH CAROLINA, Durham/Chapel Hill - OHIO, Cleveland, Columbus and Dayton 0 OKLAHOMA,

Tulsa . OREGON, Portland 0 PENNSYLVANIA, Philadelphia (Bluebell) and Pittsburgh 0 TENNESSEE, Knoxville . TEXAS,

Austin, Dallas and Houston 0 UTAH, Salt Lake City 0 WASHINGTON, Bellevue o WISCONSIN, Milwaukee (Brooktield)

INTERNATIONAL — ARGENTINA, Buenos Aires o AUSTRALIA, Adelaide, Brisbane, Canberra, Melbourne, Perth and Sydney 0 AUSTRIA,

Vienna o BELGIUM, Brussels 0 BOLIVIA, La Paz o BRAZIL, Puerto Alegre, Rio de Janeiro and Sao Paulo o CANADA, Calgary, Halifax, Montreal

Ottawa,Torontoand VancouveroCHILE,Santiagoo DEN MARK, Copenhageno FINLAND, Helsinki 0 FRANCE, Grenoble and Paris - GER MANY,

Berlin, Cologne, Hannover, Frankfurt, Munich and Stuttgart o HONG KONG . INDIA, Bombay 0' INDONESIA, Djakarta o ISRAEL, Tel Aviv

ITALY, Milan and Turin o JAPAN, Osaka and Tokyo 0 MALAYSIA, Kuala Lumpur o MEXICO, Mexico City 0 NETHERLANDS,

The Hague 0 NEW ZEALAND, Auckland 0 NORWAY, Oslo 0 PUERTO RICO, Santuroe o SINGAPORE o SPAIN, Barcelona

and Madrid - SWEDEN, Stockholm 0 SWITZERLAND, Geneva and Zurich 0 TAIWAN, Taipei 0 UNITED

KINGDOM, Birmingham, Bristol, Dublin, Edinburgh, Leeds, London, Manchester and Reading o VENEZUELA, Caracas

O

	Front Cover

	Table of Contents

	Chapter
1
	Chapter
2
	Chapter 3

	Chapter
4
	Chapter 5

	Appendix
A
	Appendix B

	Appendix
C
	Comment
Form
	Back Cover

	Front Cover

	Table of Contents

	Chapter
1
	Chapter
2
	Chapter 3

	Chapter
4
	Chapter 5

	Appendix
A
	Appendix B

	Appendix
C
	Comment
Form
	Back Cover

	Front Cover

	Table of Contents

	Chapter
1
	Chapter
2
	Chapter 3

	Chapter
4
	Chapter 5

	Appendix
A
	Appendix B

	Appendix
C
	Comment
Form
	Back Cover

	Front Cover

	Table of Contents

	Chapter
1
	Chapter
2
	Chapter 3

	Chapter
4
	Chapter 5

	Appendix
A
	Appendix B

	Appendix
C
	Comment
Form
	Back Cover

	Front Cover

	Table of Contents

	Chapter
1
	Chapter
2
	Chapter 3

	Chapter
4
	Chapter 5

	Appendix
A
	Appendix B

	Appendix
C
	Comment
Form
	Back Cover

	Front Cover

	Table of Contents

	Chapter
1
	Chapter
2
	Chapter 3

	Chapter
4
	Chapter 5

	Appendix
A
	Appendix B

	Appendix
C
	Comment
Form
	Back Cover

	Front Cover

	Table of Contents

	Chapter
1
	Chapter
2
	Chapter 3

	Chapter
4
	Chapter 5

	Appendix
A
	Appendix B

	Appendix
C
	Comment
Form
	Back Cover

