
mmm

soPtuuare support
manual

digitalequipmentcorporation

PS/ 8 SOFTWARE SUPPORT MANUAL

For additional copies, order No. DEC-0 8-MEXB-D from the
Program Library, Digital Equipment Corporation, Mayneird,
Massachusetts, 01754. Price; ^MB^

First edition, July 1970
Second edition, April 19 71

Copyright © 19 70, 19 71^ 1972 by

Digital Equipment Corporation

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP COMPUTERLAB

FLIP CHIP FOCAL DIGITAL

UNIBUS OMNIBUS

CONTENTS

CHAPTER 1 PS/ 8 CONCEPTS AND TERMINOLOGY

1.1 Software Components of PS/

8

1.2 Files

1.2.1 File Names and Extensions

1.2.2 File Structured Devices

1.2.3 File Types

1.2.4 File Directories and Additional
Information Words

1.3 Core Control Block

1.3.1 Program Starting Address

1.3.2 Job Status Word

1.4 Device Names and Device Numbers

1.5 The DEVICE and FILENAME
Pseudo-ops

1-1

1-1

1-2

1-2

1-3

1-3

1-4

1-5

1-6

1-6

1-7

1-8

CHAPTER 2 USER SERVICE ROUTINE

2.1 Calling the USR

2.1.1 Standard USR Call

2.1.2 Direct and Indirect Calling
Sequence

2.2 Summary of USR Functions

2.2.1 FETCH Device Hahdler

LOOKUP Permanent File

ENTER Output (Tentative) File

The CLOSE Function

.2.5 Call Command Decoder (DECODE)

.2.6 CHAIN Function

.2.7 Signal User ERROR

,2.8 Lock USR in Core (USRIN)

.2.9 Dismiss USR from Core (USROUT)

,2.10 Ascertain Device Information
(INQUIRE)

2.2.11 RESET System Tables

,1

,2

3

4

2--1

2--1

2--1

2-2

2--3

2--4

2--7

2-8
2-10
2-12
2-13
2-14

2-15
2-•16

2-17

2-18

CHAPTER 3 THE COMMAND DECODER

3.1 Coininand Decoder Convention

3.2 Command Decoder Error Messages

3.3 Calling the Command Decoder

3.4 Command Decoder Tables

3.4.1 Output Files

3.4.2 Input Files

3.4.3 Command Decoder Option Table

3.4.4 Example

3.5 Special Mode of the Command De-
coder

3.5.1 Calling the Command Decoder
Special Mode

3.5.2 Operation of the Command
Decoder in Special Mode

3-1

3-1

3-3

3-4

3-5

3-5

3-6

3-7

3-8

3-9

3-10

3-10

CHAPTER 4 USING DEVICE HANDLERS

4.1 Calling Device Handlers

Device Dependent Operations

Teletype (TTY)

4,

4.

4,

4,

4,

4,

4.2.3

4

5

6

High-Speed Paper Tape
Reader (PTR)

High-Speed Paper Tape
Punch (PTP)

Line Printer (LPT)

Card Reader (CDR)

File Structured Devices

4-1

4-1

4-4

4-4

4-5

4-5

4-6

4-7

4-7

CHAPTER 5 RECONFIGURING THE PS/8 SYSTEM

5.1 Conditional Assembly of CONFIG

5.1.1 System Device Selection

5.1.2 Optional Device Parameters

5.1.3 Other Options

5.1.4 Example

5.2 Building a System on DECtape
or LINCtape

Adding New Device Handlers

Writing Device Handlers
3

,3.1

,3.2 Editing Device Handlers Into
CONFIG

5-1

5-1

5-2

5-3

5-5

5-6

5-7

5-7

5-8

5-12

11

APPENDIX A PS/8 FILE STRUCTURES A--1

A.l File Directories A-1

Directory Entries A-2

Number and Size of PS/8 Files A-3

Sample Directory A-

4

File Formats A-5

ASCII and Binary Files A-5

Core Image {.SV format) Files A-6

A-

8

/\ « X • X

A. 1.2

A. 1.3

A.

2

A. 2.1

A. 2.

2

A. 2.

3

Relocatable FORTRAN Library
File

APPENDIX B DETAILED LAYOUT OF THE SYSTEM B-1

B.l Layout of the System Device B-1

B.2 Layout of the PS/8 Resident B-2
Program

B,3 System Device Tables B-3

B.3.1 Permanent Device Name Table B-3

B.3.2 User Device Name Table B-4

B.3.3 Device Handler Residency Table B-5

B.3.4 Device Handler Information B-5
Table

B.3.5 Device Control Word Table B-6

B.3.6 Device Length Table B-7

APPENDIX C SYSTEM ERROR CONDITIONS AND MESSAGES

C.l System Halts

C.2 USR Errors

C.3 Keyboard Monitor Errors

C.4 Command Decoder Errors

C-1

C-1

C-2

C-4

C-5

APPENDIX D PROGRAMMING NOTES D-1

D.l The Default File Storage D-2
Device, DSK

D.2 Modification to Card Reader D-2
Handler

D.3 Suppression of Carriage Return/ D-5
Line Feed in FORTRAN

D.4 Accessing the System Date in a D-6
FORTRAN Program

ixx

D.5 Determining Core Size on PDP-8 D-7
Family Computers

D.6 Relocating Code D-9

D.7 Using PRTC12-F to Convert PS/8 D-10
DECtapes to PS/12 LINCtapes

D.8 Notes on Loading Device Handlers D-11

D.9 Available Locations in the USR D-13
Area

D.IO Accessing Additional Information D-14
Words in PS/

8

D.ll SABR Programming Notes D-16

APPENDIX E CHARACTER CODES AND CONVENTIONS E-1

APPENDIX F DOCUMENTATION UPDATE FOR THE 8K

PROGRAMMING SYSTEM USER'S GUIDE

F.l CREF, Cross-Reference Program
(DEC-P8-YRXA-PB)

F.1.1 Loading, Calling, and Using
CREF

F.l.

2

Interpreting CREF Output

F.l.

3

CREF Pseudo-ops

F.l. 4; Restrictions

F.2 LIBSET (DEC-P8-SYXB-PB)

F.2.1 Loading, Calling, and Using
LIBSET

F.2. 2 Examples of LIBSET Usage

F.2. 3 Subroutine Names

F.2. 4 Sequence for Loading
Subroutines

F.2. 5 LIBSET Error Messages

F-1

F-1

F-1

F-3

F-5

F-6

F-9

F-9

F-10

F-11

F-11

F-12

XV

INTRODUCTION

The 8K Programming System PS/8, is an extremely powerful

program development system. PS/8 greatly expands the capa-

bilities of any 8K PDP-8, 8/1, 8/L, 8/E, or PDP-12 computer

having the necessary disk or DECtape storage. Use of PS/8

is described in detail in the 8K Programming System User's

Guide , with which the reader should be familiar.

This manual covers a wide range of advanced topics pertinent

to the experienced user. In Chapter 1 the various basic

system concepts are described and terms defined. Chapter 2

explains the process by which user programs call upon the

system for the performance of important operations; includ-

ing loading device handlers, opening and closing files, and

chaining to other programs . Chapter 3 covers the functions

of the Command Decoder and the means by which the user program

can employ its services. Chapter 4 explains the use and opera-

tion of the device handlers in detail. Chapter 5 covers the

details of "custom tailoring" a system, including how to

write a device handler for a non-standard device.

Technical information, intended to enhance the information in

the 8K Programming System User's Guide as well as this manual,

can be found in the Appendices. Appendix A details the PS/8

directory structure and gives standard file formats. Appendix
B describes the system data base and gives the layouts of the

system areas. Appendix C gives a complete list of system error

messages. Appendix D illustrates some useful advanced techniques

and programming "tricks" for use with the PS/8 system. Appendix

E is a complete list of the standard ASCII character codes mean-

ingful to PS/8. Finally, Appendix F contains additions to the

8K Programming System User's Guide, sections covering the CREF

and Library Setup programs that will be included in later edi-

tions of the User's Guide.

V

PS/8 does not attempt to solve all problems. Since it runs

with the interrupt disabled, any calls to the system must be

made with the interrupt turned off. Nonetheless, PS/8 pro-

vides a powerful means to solve the most frequently encountered

problems in developing software for PDP-8 family computers.

VI

CHAPTER 1

PS/8 CONCEPTS AND TERMINOLOGY

Before examining the details of the PS/8 system the reader

should first be familiar with the simpler techniques and terms

used within the framework of the PS/8 system. The material in

this chapter, along with that contained in the 8K Programming
System User's Guide , provides the tools needed to pursue the

later chapters

.

1.1 Software Componenets of PS/8

There are four main components of the PS/8 system:

a. The Keyboard Monitor performs commands specified by
the user at the console. The nine Keyboard Monitor
commands (ASSIGN, DEASSIGN, GET, SAVE, ODT, RUN, R,
START, and DATE) are explained in Chapter 2 of the 8K
Programming System User's Guide .

User programs can exit to the Keyboard Monitor by
executing a JMP to location 7600 in field 0.

NOTE

All JMPs to 7600 must be made
with the DATA FIELD set to zero.

This saves the contents of location to 1777 in field
and loads the Keyboard Monitor which could be called

by a JMP to location 7605 in field 0. In this latter
case the contents of core are not saved, which conserves
some time

.

Existing system programs, device handlers, and the Command
Decoder test for the CTRL/C character in the Teletype*
input buffer and on finding this character abort the
current operation and perform a JMP to 7600 in field 0.
Thus, typing CTRL/C is the conventional method of call-
ing the Keyboard Monitor from the console.

*Teletype is a registered trademark of the Teletype Corporation.

1-1

b. Device handlers, which are subroutines for perform-

ing all device-oriented input/output operations,

can be utilized by any program. These subroutines

have standard calling sequences and "mask" from the

user program the special characteristics of the I/O

device. In this way, device independent I/O is

achieved. A detailed description of device handlers

is found in Chapter 4.

c. The User Service Routine (USR) is to a program what

the Keyboard Monitor is to the user. For example,

programs can request the USR to fetch device handlers,

perform file operations on any device, chain to another

program, or call the Command Decoder. A full descrip-

tion of the USR functions is found in Chapter 2.

d. The Command Decoder interprets a command line typed

by the user to indicate input and output files and

various options. The command line format is described

in detail in Chapter 3 of the 8K Programming System

User's Guide . The Command Decoder removes the burden

of this repetitive operation from the user's progrtim.

A full description of the Command Decoder's function

is found in Chapter 3.

1.2 Files

Files are basic units of the PS/8 system, and a thorough under-

standing of file structure is required for its use. A file

is any collection of data to be treated as a unit. The format

of this data is unimportant; for example, PS/8 can manipulate

several standard formats, including ASCII files, binary files,

and core image files. The important consideration is that

the data forms a single unit within the system.

1.2.1 File Names and Extensions

An individual file is identified by its file name and extension.

The file name consists of up to six alphanumeric characters,

optionally followed by a two character extension. The extension

is often used to clarify the format of the data within the file.

For example, an ASCII file used as input to PALS might be given

a .PA extension, while a core image file has a .SV extension.

1-2

1.2.2 File Structured Devices

Devices that can be logically divided into a number of 256

word blocks and have the ability to read and write from any

desired block are called file structured devices. Disks and

DECtapes are file structured devices while a paper tape reader

or Teletype is not.

The system device (SYS:) in any PS/8 system is always file

structured.

All PS/8 file structured devices must be logically divided

into these 256 word blocks. Hence, 256 words is considered

the standard PS/8 block size. Some devices, like RK8, DEC-

tape, and LINCtape, are physically divided into blocks.

These physical blocks should not be confused with the logical

256-word blocks. For example, DECtapes must be formatted with

standard 129 word physical blocks. A logical PS/8 block con-

sists of the first 128 words of two consecutive physical DEC-

tape blocks. The 129th word of every DECtape block is not

used by PS/8. Similarly, LINCtapes are formatted with 129

(or 128) words per block but never 256, as this format is

unacceptable to PS/8.

A given PS/8 file consists of one or more sequential blocks

of 256 words each (consecutively numbered) . A minimum of one

block per file is required, although a single file could

occupy all of the blocks on a device.

1.2.3 File Types

Three different types of files exist in the PS/8 system:

An empty file is a contiguous area of unused blocks,
Empty files are created when permanent files are
deleted.

1-3

b. A tentative file is a file that is open to accept
output and has not yet been closed. Only one tenta-
tive file can be open on any single device at one
time.

c. A permanent file is a file that has been given a
fixed size and is no longer expandable. A tenta-
tive file becomes permanent when it is closed.

To further understand file types, consider what occurs when

a file is created. Normally, the User Service Routine in

creating a tentative file first locates the largest empty

file available and creates a tentative file in that space.

This insures the maximum space into which the file can expand.

The user program then writes data into the tentative file.

At the end of the data, the program calls the USR to close

the tentative file, making it a permanent file. The USR

does so and allocates whatever space remains on the end of

the tentative file to a new, smaller, empty file.

1.2.4 File Directories and Additional Information Words

To maintain records of the files on a device, PS/8 allocates

blocks 1 through 6 of each file structured device as the file

directory. Entries in this directory inform the system of

the name, size, and location of each file, including all empty

files and the tentative file, if one exists. For a detailed

description of the entries in the file directory J see Appendix

A.

Each entry in a directory can, optionally, have extra storage

words called Additional Information Words. The number of

Additional Information Words is determined at the time the

directory is intially created (normally by using the /S or

/Z features of PIP; see Chapter 6 in the 8K Programming System

User's Guide.

1-4

'"^m^

Whenever Additional Information Words are used, the first one

for each file entry is used to store the value of the System

Date Word at the time the file was created. This value is

set by executing a DATE conmiand (see Chapter 2 in the

8K Programming System User's Guide)

.

NOTE

The value of the system DATE word is contained in
location 7666 in field 1; this word has the follow-
ing format:

34 8 9 11

MONTH DAY YEAR- 19 70
(l-14g) (l-37g) (0-7)

A date word of implies that no DATE command has been executed

since the system intialization.

The values of Additional Information Words beyond the first

are user-defined. See Appendix D for further information on

Additional Information Words.

1.3 Core Control Block

Associated with each core image file (.SV file) is a block of

data called the Core Control Block. The Core Control Block

is a table of information containing the program's starting

address, areas of core into which the program is loaded, and

the program's Job Status Word. The Core Control Block is

created at the time the program is loaded by the ABSLDR or

LOADER program and is written onto the . SV file by the SAVE

operation. More information on the Core Control Block can be

found in the description of core image files in section A. 2. 2.

1-5

NOTE

Specifying arguments to the SAVE command as described
in the 8K t>rogramming System User's Guide can alter
the contents of that program's Core Control Block.

When a program is loaded the starting address and Job Status

Word are loaded from the Core Control Block and saved in

core. The Core Control Block itself is saved in one of the

system scratch blocks unless the program was loaded with the

R (rather than GET or RUN) command.

1.3.1 Program Starting Address

The current starting address (used by the START command) is

stored in two words at locations 7744 and 7745 in field 0.

The format of these words is:

NOTES

N is the field in which
to start

Starting address of the
program

1.3.2 Job Status Word

The Job Status Word contains certain flags that affect PS/S

operations, such as whether to save core when loading the

USR or Command Decoder. The Job Status Word for the program

currently in core is saved at location 7746 in field and

contains the following information:

Bit Condition Meaning

Bit J?
= 1 File does not load into locations

to 1777 in field 0.

Bit 1=1 File does not load into locations
to 1777 in field 1.

Bit 2=1 Program must be reloaded before it
can be restarted.

1-6

LOCATION CONTENTS

7744 62N3

7745 addr

Bit Condition Meaning

Bits 3-9 Reserved for future use.

Bit 1^ = 1 Locations to 1777 in field
need not be saved when calling
the Command Decoder.

Bit 11 = 1 Locations to 1777 in field 1
need not be saved when calling
the USR.

More information on the Core Control Block can be found in

the description of Core Image (.SV) files found in Appendix A.

NOTE

When bit 2 is 1, any attempt to perform a
START (without an explicit address) results
in a

NO! !

error message being printed. As this bit is
always zero in the Core Control Block, the
user program is expected to internally set
this bit (in location 7746) if a program is
not restartable. This could be done as fol-
lows :

CDF
TAD 7746 /LOAD JOB STATUS WORD
AND (6777
TAD (.1000
DCA 7746 /JOB IS NOT RESTARTABLE

1.4 Device Names and Device Numbers

The PS/8 system can accommodate up to 15 separate devices.

In the 8K Programming System User's Guide the reader is intro-

duced to the concept of device names. Briefly, each device on

the system is recognized by either a permanent device name

(such as PTR or DTAl) which is created when the system is

built, or a user-defined device name determined by an ASSIGN

command. The system insures that the user-defined device

name takes precedence. For example,

.ASSIGN DSK DTA4

1-7

causes all future references to DTA4 to address the device DSK.

In calling the User Service Routine, a device can be alter-

natively recognized by a device number. Each device on the

system has a unique predefined number in the range 1 to 15 (17 g)

assigned at the time the system is generated.

Thus, user programs have the choice of referring to a device

by either name or number. Referencing a device by name is

preferable as it maintains device independence for the program.

1.5 The DEVICE and FILENAME Pseudo-ops

Several of the User Service Routine functions take device

names or file names as arguments. To simplify the task of

generating these arguments, the DEVICE and FILENAME pseudo-ops

have been added to the PALS Assembler.

A device name consists of a two word block, containing four

alphanumeric characters in six-bit ASCII format. A block in

this format can be created by the DEVICE pseudo-op as follows:

DEVICE DTAl

generates the following two words:

0424

J2fl61

Similarly, the FILENAME pseudo-op creates a four word block,

the first three words of which contain the file name and the

fourth word of which contains the file extension. For example:

FILENAME PIP.SV

generates the following four words :

1-8

2^11

2000

0000

2326

Note that positions for characters 4 through 6 are filled with
zeros

.

The DEVICE and FILENAME pseudo-ops are used in examples in the

following chapters.

1-9

CHAPTER 2

User Service Routine

The User Service Routine, or USR, is a collection of sub-

routines which perform the operations of opening and closing
files, loading device handlers, chaining programs together,

and calling the Command Decoder. It provides these functions
not only for the system itself, but for all programs running

under the PS/ 8 system.

2.1 Calling the USR

Performing any USR function is as simple as giving a JMS

followed by the proper arguments. Calls to the USR take a

standardized calling sequence. This standard call should be

studied before progressing to the operation of the various USR
functions

.

2.1.1 Standard USR Call

In the remainder of this chapter, the following calling

sequence is referenced:

TAD VAL The contents of the AC is applicable in
some cases only.

CDF N Where N is the value of the current pro-
gram field multiplied by 10 octal.

CIF 10
JMS I (USR Where USR is either 7700 or 0200, see

section 2.1.2)

.

FUNCTION This word contains an integer from 1 to
13 octal indicating which USR operation
is to be performed.

ARG(l) The number and meaning of these argument
'. words varies with the particular USR

function to be performed,
error return When applicable, this is the return

address for all errors,
normal return

2-1

This calling sequence can change from function to function.

For example, some functions take no value in the AC and others

have fewer or greater numbers of arguments. Nonetheless, this

format is generally followed.

NOTE

The CDF and GIF instructions preceding the JMS

to the USR in the calling sequence are very im-

portant. The DATA FIELD must be set to the cur-

rent field and the INSTRUCTION FIELD must be set

to 1 when calling the USR. In the examples given

in this chapter, it is arbitrarily assumed that

the call to the USR is made from field 0. On

return from any USR function the DATA FIELD re-

mains set to the current field and the AC is zero.

There are three other restrictions which apply to all USR

calls, as follows:

a. The USR can never be called from any address between

10000 and 11777*. Attempting to do so results in

the printing of the

:

MONITOR ERROR 4 AT xxxxx

message and termination of program execution. The
value of xxxxx is the address of the calling se-

quence (in all such MOIIITOR ERROR messages) .

b. Several USR calls take address pointers as arguments.
These pointers always refer to data in the same field

as the call.

c. When calling the USR from field 1, these address
pointers must never refer to data that lies in the

area 10000 to 11777.

2.1.2 Direct and Indirect Calling Sequence

A user program can call the USR in two ways. First, by per-

forming a JMS to location 17700 (location 7700 in field 1) , ad-

dresses in field 1 are written in this format). In this case.

*Where five digit addresses are given the leading digit refers

to the field. Thus, 11777 is location 1777 in field 1.

2-2

locations 10000 to 11777 are saved on a special area on the

system device, and the USR is then loaded into 10000 to 11777.

When the USR operation is completed, locations 10000 to 11777

are restored to their previous values.

NOTE

By setting bit 11 of the Job Status Word to
a 1, the user can avoid this saving and re-
storing of core when preserving core is un-
necessary.

Alternatively, a program can opt to keep the USR permanently

resident in core at locations 10000 to 11777 by using the USRIN

function (see section 2.2.8). Once the USR has been brought into

core, a USR call can be made by performing a JMS to location 10200,

This is a more efficient way of calling the USR. When USR opera-

tions have been completed, the program restores locations 10000

to 11777 to their initial state by executing the USROUT function

(see section 2.2.9).

2.2 Summary of USR Functions

Function
Code Name Operation

1 FETCH Load a device handler into core. Returns
entry address of the handler.

2 LOOKUP* Searches the file directory on any device
to locate a specified permanent file.

3 ENTER* Creates and opens for output a tentative
file on a specified device.

4 CLOSE* The currently open tentative file on the
specified device is closed and becomes a
permanent file. Also, any previous per-
manent file with the same name is deleted.

*If the specified device is not file structured, the LOOKUP, ENTER,
and CLOSE functions verify only that the device is acceptable for
input in the case of LOOKUP, or output in the case of ENTER or CLOSE.
For example, ENTERing a file on the paper tape punch is a legal func-
tion.

2-3

Function
Code Name

5 DECODE

CHAIN

10

11

ERROR

USRIN

US ROUT

12 INQUIRE

13 RESET

14-17

Operation

The Command Decoder is called. The function
of the Command Decoder is described in Chap-
ter 3.

Loads a specified core image file from the
system device and starts it.

Prints an error message of the form
USER ERROR n AT LOCATION xxxxx

The USR is loaded into core. Subsequent
calls to the USR are by a JMS to 10200.

Dismisses the USR from core and restores
the previous contents of locations 10000
to 11777.

Ascertains whether a given device exists
and, if so, whether its handler is in core.

Resets system tables to their initial cleared
state.

Not currently used, these request numbers
are reserved for future use.

2.2.1 FETCH Device Handler Function Code = 1

Device handlers must be loaded into core so as to be avail-

able to the USR and user program for I/O operations on that de-

vice. Before performing a LOOKUP, ENTER, or CLOSE function on

any device, the handler for that device must be loaded by FETCH,

The FETCH function takes two distinct foirms

:

a. Load a device handler corresponding to a given
device name , and

b. Load a device handler corresponding to a given
device number.

2-4

CLA
CDF
GIF 10
JMS I (USR
1
DEVICE DTA3

6i2f|2(l

JMP ERR

First, the following is an example of loading a handler

by name:

/AC MUST BE CLEAR

/FUNCTION CODE = 1

/GENERATES TWO WORDS: ARG(l)
/AND ARG(2)
/ARG (3

)

/ERROR RETURN
/NORMAL RETURN

ARG(l) and ARG (2) contain the device name in standard format.

If the normal return is taken, ARG (2) is changed to the device

number corresponding to the device loaded. ARG(3) contains the

following information:

Bits to 4 contain the page number into which the
handler is loaded.

Bit 11 is if the user program can only accept a
one page handler.

Bit 11 is 1 if there is room for a two page handler.

Notice that in the example above, the handler for DTA3 is to be

loaded into locations 60 00 to 6177. If necessary, a two page

handler could be loaded; the second page would be placed in

locations 62 00 to 6377. After a normal return, ARG (3) is changed

to contain the entry point of the handler.

A different set of arguments is used to fetch a device

handler by number . The following is an example of this form:

TAD VAL /AC IS NOT ZERO
CDF
CIF 10
JMS I (USR
1 /FUNCTION CODE = 1

60)31 /ARG(l)
JMP ERR /ERROR RETURN
: /NORMAL RETURN

2-5

On entry to the USR the AC contains the device number in bits

8 to 11 (bits to 7 are ignored)

.

The format for ARG(l) is the same as that for ARG(3) in the

previous example. Following a normal return ARG(l) is replaced

with the entry point of the handler.

The conditions that can cause an error return to occur in

both cases are as follows

:

a. There is no device corresponding to the given
device name or device number, or

b. An attempt was made to load a two page handler
into one page. If this is an attempt to load
the handler by name, the contents of ARG(2)
have been changed already to the internal de-
vice number.

In addition, one of the following Monitor errors can be

printed, followed by a return to the Keyboard Monitor:

Error Message

MONITOR ERROR 4 AT xxxxx

MONITOR ERROR 5 AT xxxxx

Meaning

Results if bits 8 to 11 of the
AC are zero (and bits to 7 are
non-zero) .

Results if a read error occurs
while loading the device handler.

The FETCH function checks to see if the handler is in core,

and if it is not, then the handler and all co-resident* handlers

are loaded. While the FETCH operation is essentially a simple

one, the user should be aware of the following points:

a. Device handlers are always loaded into field 0.

*Two or more device handlers are "co-resident" when they are both
included in the same one or two core pages. For example, the
paper tape reader and punch routines are co-resident, as are the
eight DECtape handler routines.

2-6

b. The entry point that is returned may not be on
the page desired. This would happen if the handler
were already resident.

c. Never attempt to load a handler into 7600 or into
page 0. Never load a two page handler into 7400.

For more information on using device handlers, see Chapter 4.

2.2.2 LOOKUP Permanent File Function Code = 2

This request locates a permanent file entry on a given

device, if one exists. An example of a typical LOOKUP would be:

TAD VAL /LOAD DEVICE NUMBER
CDF
CIF 10
JMS I (USR
2 /FUNCTION CODE = 2

NAME /ARG(l) , POINTS TO FILE NAME
/ARG(2)

JMP ERR /ERROR RETURN
/NORMAL RETURN

NAME, FILENAME PROG. PA

This request looks up a permanent file entry with the name PROG. PA.

The device number on which the lookup is to be performed is in AC

bits 8 to 11. ARG(l) contains a pointer to the file name; note

that the file name block must be in the same field as the call,

and that it cannot be in locations 10000 to 11777. The device

handler must have been previously loaded into core. If the nor-

mal return is taken, ARG(l) is changed to the starting block of

the file and ARG(2) contains the file length in blocks as a nega-

tive number. If the device specified is a readable, non-file

structured device (for example, the paper tape reader), then ARG(l)

and ARG(2) are both set to zero.

If the error return is taken, ARG(l) and ARG(2) are unchanged.

The following conditions cause an error return:

2-7

a. The device specified is a write-only device.

b. The file specified was not found.

In addition, specifying illegal arguments can cause one of the

following monitor errors, followed by a return to the Keyboard

Monitor:

Error Message

MONITOR ERROR 2 AT XXXXX

MONITOR ERROR 3 AT xxxxx

MONITOR ERROR 4 AT xxxxx

Meaning

Results if an I/O error
occurred while reading the
device directory.

Results if the device handler
for the specified device is
not in core

.

Results if bits 8 to 11 of
the AC are zero.

The LOOKUP function is the standard method of opening a perma-

nent file for input.

2.2.3 ENTER Output (Tentative) File Function Code = 3

The ENTER function is used to create a tentative file entry to

be used for output. An example of a typical ENTER function is

as follows:

TAD VAL
CDF fi

GIF Ij?

JMS I (USR
3

NAME

JMP ERROR

NAME, FILENAME PROG.LS

/AC IS NOT ZERO

/FUNCTION CODE = 3

/ARG(l) POINTS TO FILE NAME
/ARG(2)
/ERROR RETURN
/NORMAL RETURN

Bits 8 to 11 of the AC contain the device number of the selected

device; the device handler for this device must be loaded into

core before performing an ENTER function. If bits to 7 of the

AC are non-zero, this value is considered to be a declaration of

2-8

the maximum length of the file. The ENTER function searches

the file directory for the smallest empty file that contains at

least the declared number of blocks. If bits to 7 of the AC

are zero, the ENTER function locates the largest available empty

file.

On a normal return, the contents of ARG(l) are replaced with the

starting block of the file. The 2's complement of the actual

length of the created tentative file in blocks (which can be

equal to or greater than the requested length) replaces ARG{2)

.

If the file directory contains any Additional Information Words,

the system DATE (location 17666) is written as the first Additional

Information Word of the newly created tentative file at this time.

NOTE

If the selected device is not file structured
but permits output operations (e.g., the high
speed punch) , the ENTER operation always suc-
ceeds. In this case, ARG(l) and ARG(2) are
both zeroed on return.

If the error return is taken, ARG(l) and ARG(2) are unchanged.

The following conditions cause an error return:

a. The device specified by bits 8 to 11 of the AC
is a read only device.

b. No empty file exists which satisfies the requested
length requirement.

c. Another tentative file is already active on this
device (only one output file can be active at
any given time)

.

d. The first word of the file name was (an illegal
file name)

.

In addition, one of the following monitor errors can occur,

followed by a return to the Keyboard Monitor:

2-9

Error Message

MONITOR ERROR 2 AT xxxxx

MONITOR ERROR 3 AT xxxxx

MONITOR ERROR 4 AT xxxxx

MONITOR ERROR 5 AT xxxxx

MONITOR ERROR 6 AT xxxxx

Meaning

Results if an I/O error occurred
while reading or writing the de-
vice directory.

Results if the device handler for
the specified device is not in
core

.

Results if AC bits 8 to 11 are
zero.

Read error on the system device
while bringing in the overlay
code for the ENTER function.

Results if a directory overflow
occurred (no room for tentative
file entry in directory)

.

2.2.4 The CLOSE Function Function Code = 4

The CLOSE function has a dual purpose: first, it is used to

close the current active tentative file, making it a permanent

file- Second, when a tentative file becomes permanent it is

necessary to remove any permanent file having the same name;

this operation is also performed by the CLOSE function. An

example of CLOSE usage follows

:

TAD VAL /GET DEVICE NU]

CDF
CIF 10
JMS I (USR
4

NAMIli

/FUNCTION CODE
/ARG(l)

15 /ARG(2)
JMP ERR /ERROR RETURN
• /NORMAL RETURN

= 4

NAME, FILENAME PROG.LS

The device number is contained in AC bits 8 to 11 when calling

the USR. ARG(l) is a pointer to the name of the file to be de-

leted and ARG(2) contains the number of blocks to be used for

the new permanent file.

2-10

The normal sequence of operations on an output file is:

a. FETCH the device handler for the output device.

b. ENTER the tentative file on the output device,
getting the starting block and the maximum
number of blocks available for the file.

c. Perform the actual output, using the device
handler, keeping track of how many blocks are
written, and checking to insure that the file
does not exceed the available space.

d. CLOSE the tentative file, making it permanent.
The CLOSE operation would always use the same
file name as the ENTER performed in step b.
The closing file length would have been com-
puted in step

After a normal return from CLOSE, the active tentative file is

permanent and any permanent file having the specified file name
already stored on the device is deleted . If the specified de-

vice is a non-file structured device that permits output (the

paper tape punch, for example) , the CLOSE function will always
succeed.

NOTE

The user must be careful to specify
the same file names to the ENTER and
the CLOSE functions. Failure to do
so can cause several permanent files
with identical names to appear in the
directory. If CLOSE is intended only
to be used to delete some existing
file, then the number of blocks, ARC (2)
should be zero.

The following conditions cause the error return to be taken:

a. The device specified by bits 8 to 11 of the
AC is a read only device.

b. There is neither an active tentative file to
be made into a permanent file, nor a permanent
file with the specified name to be deleted.

2-11

In addition, one of the following Monitor errors can occur:

Error Message Meaning

MONITOR ERROR 1 AT xxxxx Results if the length specified
by ARG(2) exceeded the allotted
space.

MONITOR ERROR 2 AT xxxxx Results if an I/O error occurred
while reading or writing the de-
vice directory.

MONITOR ERROR 3 AT xxxxx Results if the device handler for
the specified device is not in core.

MONITOR ERROR 4 AT xxxxx Results if AC bits 8 to 11 are zero.

2.2.5 Call Command Decoder (DECODE) Function Code = 5

The DECODE function causes the USR to load and execute the Com-

mand Decoder. The Command Decoder accepts (from the Teletype)

a list of input and output devices and files, along with various

options. The Command Decoder performs a LOOKUP on all input

files, sets up necessary tables in the top page of field 1, and

returns to the user program. These operations are described in

detail in Chapter 3, which should be read before attempting to

use the DECODE function.

A typical call to the Command Decoder looks as follows:

CDF
CIF 10
JMS I (USR
5 /FUNCTION CODE = 5

2001 /ARG(l) , ASSUMED INPUT EXTENSION
/ARGC2), ZERO TO PRESERVE ALL
/TENTATIVE FILES
/NORMAL RETURN

ARG(l) is the assumed input extension, in the above example

it is ".PA". on return from the Command Decoder, information

is stored in tables located in the top page of field 1. The

2-12

DECODE function also resets all system tables as in the RESET

function (see RESET function, section 2.2.11) if ARG(2) is

all currently active tentative files remain open; if ARG(2)

is non-zero all tentative files are deleted and the normal

return is to ARG(2) instead of ARG(2)+1.

The DECODE function has no error return (Command Decoder error

messages are given in Chapter 3) . However, the following Monitor

error can occur:

Error Message Meaning

MONITOR ERROR 5 AT xxxxx I/O error occurred while reading
or writing on the system device.

2.2.6 CHAIN Function Function Code = 6

The CHAIN function permits a program to load and start another

program with the restriction that the program chained to must

be a core image (.SV) file located on the system device. A

typical implementation of the CHAIN function looks as follows:

CDF
CIF 10
JMS I (USR
6 /FUNCTION CODE = 6

BLOCK /ARG(l), STARTING BLOCK NUMBER

There is no normal or error return from CHAIN. However, the

following monitor error can occur:

Error Message Meaning

MONITOR ERROR 5 AT XXXXX I/O error occurred while reading
or writing on the system device.

The CHAIN function loads a core image file located on the system

device beginning at the block number specified as ARG(l) (which

2-13

is normally determined by performing a LOOKUP on the desired

file name) . Once loaded, the program is started at an address

one greater than the starting address specified by the program's

Core Control Block.

CHAIN automatically performs a USROUT function (see section

2.2.9) to dismiss the USR from core, and a RESET to clear all

system tables (see section 2.2.11), but CHAIN does not delete

tentative files.

The areas of core altered by the CHAIN function are determined

by the contents of the Core Control Block of the core image

file loaded by CHAIN. The Core Control Block for the file is

set up by the ABSLDR or LOADER programs. It can be modified

by performing a SAVE command with specific arguments. Every

page of core in which at least one location was saved is loaded.

If the page is one of the "odd numbered" pages (pages 1, 3, etc.

;

locations 0200 to 0377, 0600 to 0777, etc.), the previous page

is always loaded. In addition, CHAIN always alters the contents

of locations 07200 to 07577.

NOTE

CHAIN destroys a necessary part of the ODT resi-
dent breakpoint routine. Thus an ODT breakpoint
should never be maintained across a CHAIN.

With the above exceptions, programs can pass data back and forth

in core while chaining. For example, FORTRAN programs normally

leave the COMMON area in field 1 unchanged. This COMMON area

can then be accessed by the program activated by the CHAIN.

2.2.7 Signal User ERROR Function Code = 7

The USR can be called to print a user error message for a pro-

gram. The following is a possible ERROR call:

CDF
CIF IjS

JMS I CUSR
7 /FUNCTION CODE = 7

2 /ARG(l) , ERROR NUMBER

2-14

The ERROR function causes a message of the form:

USER ERROR n AT xxxxx

to be printed. Here n is the error number given as ARG(l)

;

n must be between and Up/ and xxxxx is the address of ARG(l).

If ARG(l) in the sample call above was at location 500 in field 0,

the message:

USER ERROR 2 AT 00500

would be printed. Following the message, the USR returns con-

trol to the Keyboard Monitor, preserving the user program in-

tact.

The error number is arbitrary. Two numbers have currently as-

signed meanings

:

Error Message Meaning

USER ERROR AT xxxxx During a RUN, GET, or R command,
this error message indicates that
an error occurred while loading
the core image.

USER ERROR 1 AT xxxxx While executing a FORTRAN or SABR
program, this error indicates that
a call was made to a subroutine
that was not loaded.

2.2.8 Lock USR in Core (USRIN) Function Code = 10

When making a number of calls to the USR it is advantageous for

a program to avoid reloading the USR each time a USR call is

made. The USR can be brought into core and kept there for sub-

sequent use by the USRIN function. The calling sequence for the

USRIN function looks as follows:

CDF
GIF 10
JMS I (77|2fj3

10 /FUNCTION CODE = 10
I /NORMAL RETURN

2-15

The USRIN function saves the contents of locations 10000 to

11777 on the system scratch blocks, loads the USR into this

area in core, and returns control to the user program.

NOTE

If bit 11 of the current Job Status Word is a one,
the USRIN function will not save the contents of
locations 10000 to 11777.

Subsequent calls to the USR can be made directly by performing

a JMS to location 02 00 in field 1, saving the time necessary

to reload the USR each time it is called.

2.2.9 Dismiss USR from Core (USROUT) Function Code = 11

When a program has loaded the USR into core with the USRIN

function and no longer wants or needs the USR in core, the

USROUT function is used to restore the original contents of

locations 10000 to 11777. The calling sequence for the USROUT

function is as follows

:

CDF
GIF 10
JMS I {200 /DO NOT JMS TO 11100 M
11 /FUNCTION CODE = 11
: /NORMAL RETURN

The USROUT function and the USRIN function are complementary

operations. Subsequent calls to the USR must be made by per-

forming a JMS to location 7700 in field 1.

NOTE

If bit 11 of the current Job Status Word is a
1, the contents of core are not changed by the
USROUT function. In this case USROUT is a re-
dundant operation since core was not preserved
by the USRIN function.

2-16

2.2.10 Ascertain Device Information (INQUIRE) Function Code = 12

On some occasions a user may wish to determine what internal

device number corresponds to a given device name or whether the

device handler for a specified device is in core, without ac-

tually performing a FETCH operation. INQUIRE performs these

operations for the user. The function call for INQUIRE closely

resembles the FETCH handler call.

INQUIRE, like FETCH, has two distinct forms:

a. Obtain the device number corresponding to a

given device name and determine if the handler
for that device is in core (example shown below)

,

and

b. Determine if the handler corresponding to a

given device number is in core.

An example of the INQUIRE call is shown below:

/AC MUST BE CLEAR

/FUNCTION CODE = 12
/GENERATES TWO WORDS
/ARG(l) AND ARG(2)
/ARG(3)
/ERROR RETURN
/NORMAL RETURN

ARG(l) and ARG(2) contain the device name in standard format.

When the normal return is taken ARG(2) is changed to the device

number corresponding to the given name, and ARG(3) contains

either the entry point of the device handler if it is already

in core, or zero if the corresponding device handler has not yet

been loaded.

CLA
CDF
CIF 10
JMS I (USR
12
DEVICE DTA3

JMP ERR

2-17

A slightly different set of arguments is used to inquire

about a device by its device number:

TAD VAL /AC IS NON-ZERO
CDF
CIF lj2f

JMS I (USR
12 /FUNCTION CODE =12

/ARG(l)
JMP ERR /ERROR RETURN
: /NORMAL RETURN

On entry to INQUIRE, AC bits 8 to 11 contain the device

number (bits to 7 are ignored)

.

NOTE

If AC bits to 7 are non-zero, and bits 8

to 11 are zero (an illegal device number) a:

MONITOR ERROR 4 AT xxxxx

message is printed and program execution is
terminated.

On normal return ARG(l) is set to the entry point of the device

handler if it is already in core, or zero if the corresponding

device handler has not yet been loaded.

The error return in both cases is taken only if there is no

device corresponding to the device name or number specified.

2.2.11 RESET System Tables Function Code = 13

There are certain occasions when it is desired to reset the

system tables, effectively removing from core all device

handlers except the system handler. An example of the RESET

function is shown below:

2-18

CDF
CIF 10
JMS I (USR
13 /FUNCTION CODE = 13

/0 PRESERVES TENTATIVE FILES
: /NORMAL RETURN

RESET zeros all entries except the one for the system device in

the Device Handler Residency Table (see section B.3.3), removing

all device handlers, other than that for the system device, from

core. This should be done anytime a user program modifies any

page in which a device handler was loaded.

RESET has the additional function of deleting all currently ac-

tive tentative files (files that have been entered but not closed)

This is accomplished by zeroing bits 9 through 11 of every entry

in the Device Control Word Table (see section B.3.5).

If RESET is to be used in this last fashion, to delete all active

tentative files, then ARG(l) must be non-zero and the normal re-

turn is to ARG(l) rather than to ARG(1)+1. For example, the fol-

lowing call would serve this purpose:

CDF
CIF 10
JMS I (USR
13 /FUNCTION CODE =13
CLA CMA /NON-ZERO!

The normal return would execute the CLA CMA and all active

tentative files on all devices would be deleted.

2-19

CHAPTER 3

THE COMMAND DECODER

PS/8 provides a powerful subroutine called the Comniand Decoder

for use by all system programs. The Command Decoder is norm-

ally called when a program starts running. When called, the

Command Decoder prints a * and then accepts a command line from

the console Teletype that includes a list of I/O devices, file

names, and various option specifications. The Command Decoder

validates the command line for accuracy, performs a LOOKUP on

all input files, and sets up various tables for the calling

program.

The operations performed by the Command Decoder greatly simplify

the initialization routines of all PS/8 programs. Also, since

command lines all have a standard basic structure, the Command

Decoder makes learning to use PS/8 much simpler.

3 . 1 Command Decoder Conventions

Chapter 3 in the 8K Programming System User's Guide describes

the syntax for the command line in detail. A brief synopsis

is given here only to clarify the later discussion in this

chapter.

The command line has the following general form:

* output files < input files (options)

There can be to 3 output files and to 9 input files speci-

fied.

Output File Format Meaning

EXPLE.EX Output to a file named EXPLE.EX on
device DSK (the default file storage
device)

.

3-1

Output File Format

LPT:

DTA2:EXPLE.EX

DTA2:EXPLE.EX[99]

null

Meaning

Output to the LPT. This format generally
specifies a non-file structured device.

Output to a file named EXPLE.EX on device
DTA2.

Output to a file named EXPLE.EX on device
DTA2. A maximum output file size of 99
blocks is specified.

No output specified.

An input file specification has one of the following forms ::

Input File Format Meaning

DTA2 : INPUT

DTA2: INPUT. EX

INPUT. EX

Input from a file named INPUT. df on de-
vice DTA2. "df" is the assumed input
file extension specified in the Command
Decoder.

*

Input from a file named INPUT. EX on device
DTA2. In this case .EX overrides the as-
sumed input file extension.

Input from a file named INPUT. EX. If
there is no previously specified input
device, input is from device DSK, the
default file storage device; otherwise,
the input device is the same as the last
specified input device.

Input from device PTR; no file name is
needed for non-file structured devices.

Input from device DTA2 treated as a
non-file structured device, as, for
example, in the PIP command line:

*TTY : /L < DTA2

:

*Whenever a file extension is left off an input file specifica-
tion, the Command Decoder first performs a LOOKUP for the given
name appending a specified assumed extension. If that LOOKUP
fails, a second LOOKUP is made for the file appending a null
(zero) extension.

PTR:

DTA2

3-2

Input File Format Meaning

In both of the last two formats, no
LOOKUP operation is performed since the
device is assumed to be non-file struc-
tured.

null Repeats input from the previous device
specified (must not be first in input
list, and must refer to a non-file
structured device). For example:

* < PTR: ,

,

(two null files) indicates that three
paper tapes are to be loaded.

The Command Decoder verifies that the specified device names,

file names, and extensions consist only of the characters A

through Z and through 9. If not, a syntax error is generated

and the command line is considered to be invalid.

There are two kinds of options that can be specified: first,

alphanumeric option switches are denoted by a single alphanumeric

character preceded by a slash (/) or a string of characters en-

closed in parentheses; secondly, a numeric option can be speci-

fied as an octal number from 1 to 3 77 77 77 7 preceded by an equal

sign (=) . These options are passed to the user program and

are interpreted differently by each program.

Finally, the Command Decoder permits the command line to be

terminated by either the RETURN or ALT MODE key. This informa-

tion is also passed to the user program.

3.2 Command Decoder Error Messages

If an error in the command line is detected by the Command De-

coder, one of the following error messages is printed. After

the error message, the Command Decoder starts a new line,

prints a *, and waits for another command line. The erroneous

command is ignored.

3-3

Error Message Meaning

ILLEGAL SYNTAX The coirmand line is formatted incor-
rectly.

TOO MANY FILES More than three output files or nine
input files were specified.

device DOES NOT EXIST The specified device name does not
correspond to any permanent device
name or any user assigned device name.

name NOT FOUND The specified input file name was not
found on the selected device.

3.3 Calling the Command Decoder

The Command Decoder is initiated by the DECODE function of the

USR. DECODE causes the contents of locations to 1777 of

field to be saved on the system scratch blocks, and the Com-

mand Decoder to be brought into that area of core and started.

When the command line has been entered and properly interpreted,

the Command Decoder exits to the USR, which restores the original

contents of to 1777 and returns to the calling program.

NOTE

By setting bit 10 of the Job Status Word to a 1

the user can avoid this saving and restoring of
core for programs that do not occupy locations

to 1777.

The DECODE call can reside in the area between and 1777 in

field and still function correctly. A typical call would

appear as follows

:

CDF /SET DATA FIELD TO CURRENT FIELD
CIF lj3 /INSTRUCTION FIELD MUST BE 1

JMS I (USR /\5SR=n00 IF USR IS NOT IN CORE
/OR USR=J2f2j2(0 IF USRIN WAS PERFORMED

5 /DECODE FUNCTION = 5

2j2fj2fl /ARG(l) , ASSUMED INPUT EXTENSION
/ARG(2), ZERO TO PRESERVE
/ALL TENTATIVE FILES

: /NORMAL RETURN

3-4

ARG(l) is the assumed input extension. If an input file name

is given with no specified extension, the Command Decoder

first performs a LOOKUP for a file having the given name with

the assumed extension. If the LOOKUP fails, the Command De-

coder performs a second LOOKUP for a file having the given name

and a null (zero) extension. In this example, the assumed input

extension is ".PA".

DECODE performs an automatic RESET operation (see section 2.2.11)

to remove from core all device handlers except those equivalent

to the system device. As in the RESET function, if ARC (2) is

zero all currently active tentative files are preserved. If

ARC (2) is non-zero, all tentative files are deleted and DECODE

returns to ARC (2) instead of ARG(2)+1.

As the Command Decoder normally handles all of its own errors,

there is no error return from the DECODE operation.

3.4 Command Decoder Tables

The Command decoder sets up various tables in the top page of

field 1 that describe the command line typed to the user program.

3.4.1 Output Files

There is room for three entries in the output file table that

begins at location 1760i2(. Each entry is five words long and

has the following format:

1 23456789 10 11

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

USER SPECIFIED
FILE LENGTH

4-BIT DEVICE
NUMBER

FILE NAME
CHARACTER 1

FILE NAME
CHARACTER 2

FILE NAME
CHARACTER 3

FILE NAME
CHARACTER 4

FILE NAME
CHARACTER 5

FILE NAME
CHARACTER 6

FILE EXTENSION
CHARACTER 1

FILE EXTENSION
CHARACTER 2

OUTPUT FILE NAME
6 CHARACTERS

FILE EXTENSION
2 CHARACTERS

3-5

Bits to 7 of word 1 in each entry contain the file length,

if the file length was specified with the square bracket con-

struction in the command line. Otherwise, those bits are zero.

The entry for the first output file is in locations 17600 to

17604, the second is in locations 17605 to 17611, and the

third is in locations 17612 to 17616. If word 1 of any entry

is zero, the corresponding output file was not specified. A

zero in word 2 means that no file name was specified.

Also, if word 5 of any entry is zero no file extension was

specified for the corresponding file. It is left to the user

program to take the proper action in these cases.

These entries are in a format that is acceptable to the ENTER

function.

3.4.2 Input Files

There is room for nine entries in the input file table that

begins at location 17 617. Each entry is two words long and

has the following format:

WORD i

WORD 2

12 3 4 5 6 7 8 9 10 11

MINUS FILE
LENGTH

4-BIT DEVICE
NUMBER

STARTING BLOCK OF FILE

Bits to 7 of word 1 contain the file length as a negative

number. Thus, 377p. in these bits is a length of one block, 376

is a legnth of two blocks, etc. If bits to 7 are zero, the

specified file has a length greater than or equal to 256 blocks

or a non-^file structured device was specified.

3-6

This restri
fied size c
gram has no
tions. For
mode any fi
is greater
can handle
files of un
will detect

NOTE

ction to 255 blocks of actual speci-
an cause some problems if the pro-
way of detecting end-of-file condi-
example, PIP cannot copy in image

le on a file structured device that
than 255 blocks long, although it
in /A or /B modes (ASCII or Binary)
limited size. In /A or /B modes PIP
the CTRL/Z marking the end-of-file.

If this is liable to be a problem, it is sug-
gested that the user program employ the special
mode of the Command Decoder described in section
3.5 and perform its own LOOKUP on the input files
to obtain the exact file length.

The two word input tables begin in locations 17617, 17621, 17623,

17625, 17627, 17631, 17633, 17635, and 17637. If location 17617

is zero no input files were indicated in the command line. If

less than nine input files were specified, the unused entries

in the input file list are zeroed (location 17641 is always set

to provide a zero terminator even when nine files are specified)

.

3.4.3 Command Decoder Option Table

Five words are reserved beginning at location 17642 to store

the various options specified in the command line. The format

of these five words is as follows:

1 2 3 4 5 6 7 e 9 10 11

17642 * HIGH ORDER 11 BITS OF
= N OPTIONS

17643 A 6 C D E F 6 H I J K L

17644 M N P Q R S T u V W X

17645 Y Z 1 2 3 4 5 6 7 8 9

17646 LOW ORDER 12 BITS OF-N OPTIONS

Each of these bits corre-
sponds to one of the pos-
sible alphanumeric option
switches. The correspond-
ing bit is 1 if the switch
was specified, otherwise.

*Bit of location 17642 is
if the command line was

terminated by a carriage re-
turn, 1 if it was terminated
by an ALT MODE.

3-7

NOTE

If no =n option is specified, the Command De-
coder zeroes 17646 and bits 1 to 11 of 17642.
Thus, typing =0 is meaningless since the user
program cannot tell that any option was speci-
fied.

3.4.4 Example

To clarify some of the preceding, consider the interpretation

of the following command line:

*BIN[lj3] ,<PTR: , ,DTA2 : PARA, MAIN /h=lA200$

If this command line is typed to PALS, it would cause assembly

of a program consisting of four separate parts : two paper

tapes, one file named PARA. PA on DTA2 , and one file named

MAIN. PA also on DTA2. The binary output is placed on a file

named BIN.BN on device DSK, for which only 10 blocks need be

allocated. No listing is generated. In addition, automatic

loading of the binary output is specified by the /L option,

with the starting address given as 4 200 in field 1. Finally,

the line is terminated by the ALT MODE key (which echoes as $)

causing a return to the Keyboard Monitor after the program is

loaded.

In the case of this example, the Command Decoder returns to

PALS with the following values in the system tables:

NOTE

The entries for PTR (where no input file name is
specified) have a starting block number and file
size of zero. This is always true of the input
table for a non-file structured device, or a file
structured device on which no file name is given.

3-8

17600

17604

17605

17616

17617

17620
17621

17622
17623

17624

17625

17626

17627

17641

17642

17643

17644

17645

17646

0242

0211

1600

000(2

0000

0016

0000

0016

0000

0127

0100

0007

0105

4001

0001

0000

0000

4200

DSKI IS DEVICE NUMBER 2

) FILE NAME IS BIN

-NULL EXTENSION

REMAINING ENTRIES
IN OUTPUT TABLES
ARE ZERO

FIRST ptr; input

SECOND ptr; input

DTA2: PARA. F% IS 5 BLOCKS LONG,
BEGINNING AT 1008

I DTA2:MAIN.PA is 256(0 or MORE BLOCKS
f LONG, BEGINNING AT BLOCK 1058-

n REMAINING ENTRIES
t > IN INPUT TABLES
rj ARE ZERO.

LINE WAS TERMINATED BY ALT MODE

> /L WAS ONLY OPTION SWITCH SPECIFIED

= 14200 WAS SPECIFIED

3.5 Special Mode of the Command Decoder

Occasionally the user program does not want the Command Decoder

to perform the LOOKUP on input files, leaving this option to

the user program itself. For example CONVRT, which translates

Disk Monitor format DECtapes to PS/8 format DECtapes, cannot

permit an erroneous LOOKUP to occur on DECtapes that are not

in PS/8 format. The capability to handle this case is provided

in the PS/ 8 Command Decoder. This capability is generally re-

ferred to as the "special mode" of the Command Decoder.

3-9

3.5.1 Calling the Command Decoder Special Mode

The special mode call to the Command Decoder is identical to

the standard DECODE call except that the assumed input file

extension, specified by ARG(l) , is equal to 5200. The value

5200 corresponds to an assumed extension of ".*", which is

illegal. Therefore, the special mode of the Command Decoder

in no way conflicts with the normal mode.

3.5.2 Operation of the Command Decoder in Special Mode

In special mode the Command Decoder is loaded and inputs a

command line as usual. The appearance of the command line is

altered by the special mode in these respects:

a. Only one output file can be specified.

b. No more than five input files can be speci-
fied, rather than the nine acceptable in
normal mode.

c. The character asterisk (*) is legal in file
names and extensions, both in input files
and on output files. It is strongly suggested
that this character be tested by the user pro-
gram and treated either as a special option
or as an illegal file name. The user program
must be careful not to ENTER an output file
with an asterisk in its name as such a file
cannot be manipulated or deleted by the standard
system programs.

The output and option table set up by the Command Decoder is

not altered in special mode. Entries in the input table are

changed to the following format:

1 2345678910 11

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

4 -BIT DEVICE
NUMBER

FILE NAME
CHARACTER 1

FILE NAME
CHARACTER 2

FILE NAME
CHARACTER 3

FILE NAME
CHARACTER 4

FILE NAME
CHARACTER 5

FILE NAME
CHARACTER 6

FILE EXTENSION
CHARACTER 1

FILE EXTENSION
CHARACTER 1

BITS 0-7 ARE
ALWAYS

V INPUT FILE NAME
/ 6 CHARACTER

FILE EXTENSION
2 CHARACTERS

3-10

The table entry for the first input file is in locations 17605

to 17611; the second in locations 17612 to 17616; the third

in locations 17617 to 17623; the fourth in locations 17624

to 17630; and the fifth in locations 17631 to 17635. A zero

in word 1 terminates the list of input files. If word 2 of

an entry is zero, no input file name was specified.

3-11

CHAPTER 4

USING DEVICE HANDLERS

A device handler is a system subroutine that is used by all

parts of the PS/8 system and by all standard system programs

to perform I/O transfers. All device handlers are called in

the same way and they all perform the same basic operation:

reading or writing a specified number of 128 word records*

beginning at a selected core address.

These subroutines effectively mask the unique characteristics

of different I/O devices from the calling program; thus, pro-

grams that use device handlers properly are effective "device

independent" . Changing devices involves merely changing the

device handlers used for I/O.

PS/8 device handlers have another important feature. They are

able to transfer a number of records as a single operation.

On a device like DECtape this permits many blocks of data to

be transferred without stopping the tape motion. On a disk,

a single operation could transfer an entire track or more.

This capability significantly increases the speed of operation

of PS/8 programs, such as PIP, that have large buffer areas.

4.1 Calling Device Handlers

Device handlers are loaded into a user selected area in field

by the FETCH function. FETCH returns in ARG(l) the entry

point of the handler loaded. The handler is called by perform-

*The word "record" is defined to mean 128 words of data; thus,
a PS/8 block consists of two 128 word records.

4-1

ing a JMS to the specified entry point address. It has the

following format:

CDF N /WHERE N IS THE VALUE OF THE CURRENT
/PROGRAM INSTRUCTION FIELD TIMES 10 (OCTAL)

CIF /DEVICE HANDLER ALWAYS IN FIELD
JMS I ENTRY
ARG(l) /FUNCTION CONTROL WORD
ARC (2) /BUFFER ADDRESS
ARC (3) /STARTING BLOCK NUMBER
JMP ERR /ERROR RETURN

/NORMAL RETURN (I/O TRANSFER COMPLETE)

ENTRY, /ENTRY CONTAINS THE ENTRY POINT OF THE
/HANDLER, DETERMINED WHEN LOADED BY FETCH

As with calls to the USR, it is important that the Data Field is

set to the current program field before the device handler is

called. On exit from the device handler, the Data Field will

remain set to the c\xrrent program field.

ARG(l) is the function control word, and contains the following

information:

Bit (s) Contents

Bit for an input operation^
1 for an output operation.

Bits 1 to 5 The number of 12 8 word records to be
transferred must not be 0.

Bits 6 to 8 The memory field in which the transfer
is to be performed.

Bits 9 to 11 Device dependent bits, can be left zero.
Currently only bit 11 is used; on DEC-
tape bit 11 determines the direction in
which the tape is started. If bit 11 is

the tape starts in reverse. If bit 11
is 1 the tape starts forward.* All
other handlers ignore these bits at
present.

*Starting forward saves time as long as the block number, ARG(3)

,

is seven or more blocks greater than the number of the block at
which the tape is currently positioned.

4-2

ARG(2) is the starting location of the transfer buffer.

ARG(3) is the number of the block on which the transfer is to

begin. The user program initially determines this value by

performing a LOOKUP or ENTER operation. After each transfer

the user program should itself add to the current block

number the actual number of blocks transferred, equal to one-

half the number of 128 word records specified, rounded up if

the number of records was odd.

There are two kinds of error returns: fatal and non-fatal.

When the error return occurs and the contents of the AC are

negative the error is fatal. A fatal error can be caused by

a parity error on input, a write lock error on output, or an

attempt to write on a read-only device (or vice versa) . The

meaning can vary from device to device, but in all cases it is

serious enough to indicate that the data transferred, if any,

is invalid.

When the error return occurs and the contents of the AC are

greater than or equal to zero, a non-fatal error has occurred.

This error always indicates detection of the logical end-of-file.

For example, when the paper tape reader handler detects the end

of a paper tape it inserts a CTRL/Z code in the buffer and takes

the error exit with the AC equal to zero. While all non-file

structured input devices can detect the end-of-file condition,

no file structured device can; and no device handler takes the

non-fatal error return when doing output.

The following restrictions apply to the use of device handlers:

a. Bits 1 to 5 of the function control word, ARG{1)

,

must not be zero as this value is currently unde-
fined.

b. The user program must never specify an input into
locations 7600 to 7777 or 17600 to 17777 or the
page(s) in which the device handler itself resides.

4-3

c. Note that the amount of data transferred is given
as a number of 128 word records, exactly one half
of a PS/ 8 block. Attempting to output an odd num-
ber of records can change the contents of the last
128 words of the last block written.

d. The specified buffer address does not have to begin
at the start of a page. The specified buffer cannot
overlap fields, rather the address will "wrap around"
in a single field. For example, writing two records
from location 07600 would output 07600 to 07777 and
page of field 0, not field 1.

4.2 Device Dependent Operations

This section describes briefly the operation of each of the stan-

dard PS/8 device handlers, including normal operation, any special

initialization operations for block 0, terminating conditions,

and response to control characters typed at the keyboard. Further

information on device handlers can be found in Chapter 5.

4.2.1 Teletype (TTY)

a. Normal Operation

This handler inputs characters from the Teletype key-
board and packs them into the buffer or unpacks charac-
ters from the buffer and outputs them to the teleprintejr

.

It functions properly only on ASCII data.

On input, characters are echoed as they are typed. Fol-
lowing a carriage return, a line feed character is in-
serted into the input buffer and printed on the Teletype.

b. Initialization for Block

None.

c. Terminating Conditions

On input, detection of a CTRL/Z causes a CTRL/Z to be
placed in the input buffer, the remaining words of the
buffer filled with zeros, and a non-fatal error to be
returned. On output, detection of a CTRL/Z character
in the output buffer causes output to be terminated and
the normal return to be taken. There are no fatal errors
associated with the Teletype handler.

4-4

d. Teletype Interaction

CTRL/C forces a return to the Keyboard Monitor. CTRL/Z
forces an end-of-file on input (see c) . CTRL/0 termi-
nates printing of the contents of the current buffer on
output.

4.2.2 High-Speed Paper Tape Reader (PTR)

a. Normal Operation

This handler inputs characters from the high-speed paper
tape reader and packs them into the buffer.

b . Initialization for Block

The handler prints an up-arrow (t)* on the teleprinter
and waits for the user to load the paper tape reader.
By typing any single character (except CTRL/C) the user
initiates reading of the paper tape.

c. Terminating Conditions

Detection of an end-of-tape condition, indicated by the
failure to get a character in a specified period of time,
causes a CTRL/Z to be entered in the buffer, the remain-
ing words of the buffer to be filled with zeros, and a
non-fatal error to be returned. Attempting to output to
the paper tape reader causes a fatal error to be returned.

d. Teletype Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.

4.2.3 High-Speed Paper Tape Punch (PTP)

a. Normal Operation

This handler unpacks characters from the output buffer
and punches them on the paper tape punch.

b. Initialization for Block

None.

*0n some Teletypes , up-arrow is replaced by the circumflex (

character.

4-5

c. Terminating Conditions

Attempting to input from the paper tape punch causes a

fatal error to be returned. There are no non-fatal
errors associated with this handler.

d- Teletype Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.

4.2.4 Line Printer (LPT)

a. Normal Operation

This handler unpacks characters from the buffer and
prints them on the line printer. The characters hori-
zontal tab (ASCII 211) causes sufficient spaces to be
inserted to position the next character at a "tab stop"
(every eighth column, by definition) . The character
vertical tab (ASCII 213) causes nine line feeds to be
output. The character Form Feed (ASCII 214) causes
a skip to the top of the next page. Finally, the
handler maintains a record of the current print column
and starts a new line after 80 columns have been printed.
This handler functions properly only on ASCII data.

b. Initialization for Block

Before printing, the line printer handler issues a
form feed to space to the top of the next page.

c. Terminating Conditions

On detection of a CTRL/Z character in the buffer, the
line printer handler issues a form feed and immediately
takes the normal return. Attempting to input from the;

line printer forces a fatal error to be returned. Also
if the line printer error flag is set a fatal error is
returned. There are no non-fatal errors associated with
the line printer handler.

d. Teletype Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.

4-6

4.2.5 Card Reader (CDR)

a. Normal Operation

This handler reads characters from the card reader and
packs them into the input buffer. Trailing spaces (blank
columns) on a card are deleted from input. The handler
can accept only alphanumeric format data on cards (the
DEC029 standard card codes are used)

.

b. Initialization for Block

None.

c. Terminating Conditions

A card which contains an underline character in column 1

(an 0-8-5 punch) with the remaining columns blank is an
end-of-file card. In addition, after reading each card
the handler checks to see if a CTRL/Z was typed at the
keyboard. After either an end-of-file card or a CTRL/Z
being typed, a CTRL/Z is inserted in the buffer, the
remaining words of the input buffer are filled with zeros,
and a non- fatal error is returned. Attempting to output
to the card reader causes a fatal error to be returned.

d. Teletype Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.
Typing CTRL/Z forces an end-of-file to occur (see c)

.

4.2.6 File Structured Devices

a. Normal Operation (DECtape, LINCtape, DF32, RFJ3f8, and
RK8)

These handlers transfer data directly between the device
and the buffer.

b. Initialization for Block

None.

4-7

c. Terminating Conditions

A fatal error is returned whenever the transfer caused
one of the error flags in the device status register to
be set. For example, a fatal error would result if a
parity error occurred on input, or a write lock error
occurred on output. The device handlers generally try
three times to perform the operation before giving up
and returning a fatal error. There are no non-fatal
errors associated with file structured devices.

d. Teletype Interaction

Typing CTRL/C forces a return to the Keyboard Monitor,

NOTE

The system device handler does NOT re-
spond to a typed CTRL/C.

4-8

CHAPTER 5

RECONFIGURING THE PS/8 SYSTEM

In the instructions on building PS/8 in the 8K Programming
*

System User's Guide , mention is made of the several paper

tapes marked CONFIG distributed with each system. Each PS/8

system contains the source file CONFIG. PA, either on DECtape,

paper tape (in two parts) , or LINCtape. CONFIG contains all

configuration dependent parts of the PS/8 system, including

all device handlers, device dependent system tables, bootstrap

routines, and system device handlers.

The problem of changing the system configuration is reduced

to editing the CONFIG file and assembling the result to pro-

duce a new binary tape. This new binary tape is then used in

building a modified system. The following chapter describes

in detail the ways in which CONFIG can be modified.

5.1 Conditional Assembly of CONFIG

The source file CONFIG. PA contains a number of conditional

symbols. These are symbols that, in conjunction with some

IFDEF, IFNDEF, IFZERO, or IFNZRO pseudo-ops, cause various sec-

tions of the program to be assembled with PALS. Creating

standard system variations requires the proper definition of

one or more of these parameters.

Although it is not explicitly stated, the instructions given
could also be used to create a PS/8 System DECtape. Mount the
tape to be built on Unit j3 , WRITE ENABLEd, and follow the in-
structions given. The binary tape marked "DECtape CONFIG"
would be used in place of one of the disk CONFIG' s.

5-1

5.1.1 System Device Selection

One and only one of the system device parameters can be

defined and assigned a non-zero value.

a. RF08 Disk System

Defining RFj38 = n, where n is 1,2,3, or 4

causes an n disk RFj38 to be the system device.
For example:

RFjef8=2

would generate a 512K RF/RS08 system.

b. DF32 Disk System

Defining DF3 2 = n, where n is 1,2,3, or 4

causes an n disk DF3 2 to be the system device.
For example

:

DF3 2=2

would generate a 64K DF/DS32 system.

NOTE

Because PS/8 alone takes 14K of the
system device, it is felt that a
single disk DF32 has insufficient
storage for PS/8. The system is
not supported by DEC on a 32K disk.

c. RK8 Disk System

Defining RK8=1 causes an RK8 disk to be the
system device, generating an RK8 system.

d. PDP-12 LINCtape System

Defining LINCSyS=n, where n is 1 or 2 causes
LINCtape unit to be the system device. If
LINCSYS=1, the default file storage device
(device DSK) is also LINCtape unit 0. If
LINCSYS=2, the default file storage device
is LINCtape unit 1, which is to be preferred
as it minimizes tape motion.

5-2

NOTE

When LINCSYS is the specified system parameter,
the user must be certain to explicitly specify
LINCTAPE=1 (see section 5.1.2), otherwise DEC-
tape rather than LINCtape handlers would be in-
cluded in the system.

e. DECtape System

If no other system device parameters are speci-
fied, DECtape unit is the default system de-
vice. One can also define DECTAPE=n, where n
is 1 or 2 to cause DECtape unit to be the
system device. If DECTAPE=1 , the default file
storage device (device DSK) is DECtape unit 0.
If DECTAPE=2, the default file storage device
is DECtape unit 1, which is to be preferred as
it minimizes tape motion.

5.1.2 Optional Device Parameters

The standard system, generated by defining one of the system

device parameters, contains the following device handlers:

Device Code Meaning

SYS Selected system device

TTY Teletype

PTR High-speed paper tape reader

PTP High-speed paper tape punch

CDR Card reader (CR8 or CMS)

LPT LPjelS Line printer

DTAj2(-DTA7 Handlers for eight DECtape drives

DSK Default file storage device, always the same
as the system device unless LINCSYS=2 or
DECTAPE=2 are used.

These device handlers can be replaced by others by defining one

of the following parameters:

5^3

LINCtape handlers

If the computer is a PDP-12, it is necessary
to replace the standard DECtape handlers with
LINCtape handlers. This must be done explicitly
by defining LINCTAPE=1.

LP12 Line Printer, Type 645

A small number of systems have the old style
line printer rather than the new LPj2f8. Defin-
ing LP08=0 causes a device handler for the LP12
(Type 645) line printer to replace the standard
LP08 handler.

NOTE

The FORTRAN run time I/O routines, with
the exception of the device-independent
I/O routines, do not use PS/8 handlers.
Therefore, in FORTAN use the statement
WRITE (3,n) only works on the LPj2i8 line
printer. To use a different printer the
FORTRAN subroutine UTILTY.SB (available
on source DECtape #3) must be modified.

Low-Speed Paper Tape

The standard Teletype handler (TTY) checks for
-tC and +Z control characters (CTRL/C and CTRL/Z) .

To enable the handler to work on terminals that
utilize parity ASCII, the handler ignores the
leading bit when checking for these characters.
For this reason non-ASCII input is not acceptable
to the Teletype handler.

While this is no problem to systems having a
high-speed paper tape reader, those who lack one
would be unable to load any binary paper tapes
under PS/8. For this reason there is a special
low-speed paper tape handler available in CONFIG.
To assemble this option, define the following:

N0HSPT=1

When N0HSPT=1 is used the PTR and PTP handlers
are replaced with new Teletype routines. (The
names of the new handlers remain PTR for input
and PTP for output.

)

5-4

WARNING!

The source of CONFIG released in November
1970 contains an error in this 1ow- speed
paper tape routine. To correct this , in- 1

sert the following code immediately before
the terminating $ in CONFIG. PA:

IFNZRO NOHSPT <*6522
RTL
RTL
DCA PTR
TAD PTR >

This omission will be corrected in later
releases of CONFIG

Like the high-speed paper tape reader handler, the
low-speed handler prints a f character before
reading a tape. The user then loads the tape to
be read in the low-speed reader and sets the Tele-
type reader switch to START. While reading from
the low-speed reader, do NOT type anything on the
keyboard. At the end of the reading process, turn
the Teletype reader control switch to STOP and re-
move the tape.

The PTR and PTP handlers differ from the standard
TTY handler in that they ignore control characters.
The PTR handler recognizes an end-of-tape condition
by "timing out" the low- speed reader - it expects
the keyboard/reader flag to be reset within 150 ms
and if it is not, an end-of-file occurs. At the
end-of-file a CTRL/Z is automatically inserted in
the buffer following the last character read.

5.1.3 Other Options

There is one more option that can be used in building a non-

standard PS/8 system. The parameter DIRECT determines whether

or not the system directory is to be zeroed when the system is

rebuilt. Defining DIRECT=1 causes a new system to be built

without zeroing the old directory. This feature is useful

when reconfiguring a system to avoid having to reload all of

the files currently on the system device.

5-5

5.1.4 Example

As an example of reconfiguring a PS/8 system, suppose a machine

has the following configuration:

a. PDF- 8/1 computer

b. DECtape

c. RFjZfS disk with two RSj38's (768K of storage)

d. Type 645 line printer (LP12)

e. High-speed reader/punch

f. Card reader

The following steps would be taken to build a system tailored

to the above configuration.

a. Build the system in the usual manner using the
RFj2f8 CONFIG provided and the instructions in
the 8K Programming System User's Guide .

b. Use PIP to put the file CONFIG. PA on the disk.

c. Execute the following commands:

.R EDIT
*PARA.PA <

#A
/PARAMETER FILE
RFJ08=3 /3 PLATTER RFjEiS SYSTEM
LPjaf8=J2r /OLD STYLE LINE PRINTER
DIRECT=1 /PRESERVE SYSTEM DIRECTORY

#E

• R PAL8
*PTP:< PARA, CONFIG

d. Use the paper tape punched by PAL8 as the CONFIG
binary in building a new system.

e. Finally, since the DIRECT parameter prevented the new size o
the system device (changed from 256K to 768K for this ex-
ample) from being automatically written in the directory,
it must be updated by the following operation:

.R PIP
*SYS: < SYS:/S=1
ARE YOU SURE?
YES

5-6

5.2 Building a System on DECtape or LINCtape

To avoid the time involved in rebuilding the system off paper

tape each time it is changed, the binary tapes of PS/8, the

Command Decoder (CD) , and CONFIG can be placed on DECtape (or

LINCtape) and the system built by the following procedure:

a. Put the system tape on unit and the tape,
containing the binary files PS8.BN, CD.BN,
and CONFIG. BN on unit 1 (where CONFIG. BN cor-
responds to the system configuration)

.

b. Bootstrap the DECtape (or LINCtape) system
and execute the following command:

.R ABSLDR
*DTA1 : PS 8 , CONFI G/G

c. The system should halt with 7777 in the AC
(if not, an error has occurred, try again
from step b) ; press CONTINUE to proceed.
If the system device is not being changed,
the build is complete at this point, other-
wise execute the following command:

.R ABSLDR
*DTA1 :PS 8 , CONFIG ,CD/G

d. The new system is built and responds to the
RETURN key by printing a dot when ready to
accept input. Now, if necessary, transfer
files to the new system device with PIP.

Of course the above procedure is not limited to DECtape or LINC-

tape. The files PS8.BN, CD.BN, and CONFIG. BN could just as

easily be placed on a disk and loaded from there. The example

is intended to illustrate a useful alternative technique for

building a system.

5.3 Adding New Device Handlers

PS/8 system programs have been organized so that all non-

Teletype I/O is done via calls to standard system device

handlers. Any new device for which a handler is written can

be added to the system by changing CONFIG and rebuilding the

5-7

system. Once this is done, all existing system programs are

able to use the new device. This flexibility is one of the

most important features of the PS/8 system.

NOTE

In the November 19 70 version of PS/8 the follow-
ing cannot use devices that require two page de-
vice handlers:

a. GET, RUN, and SAVE operations,

b. CONVERT output device must have a one-page
handler

,

c. PIP cannot perform /Z or /D operations on
devices requiring two page handlers,

d. SABR cannot use two page handlers, and

e. General I/O in FORTRAN, READ (4, n) and WRITE
(4,n), cannot use two page device handlers.

Future versions of PS/8 will not contain these
restrictions

.

The following sections describe in detail how to add a new de-

vice handler. For further information on device handlers, the

reader should consult Chapter 4. Examples of standard handlers

can be found in the listing of CONFIG which can be ordered from

the DEC Program Library (DEC-P8-MW3A-LA)

.

5.3.1 Writing Device Handlers

A device handler is a page-independent one or two page long

subroutine. The device handler must run properly in any single

page or two contiguous pages in field (except 0000 to 0177

or 7600 to 7777) . All device handlers have the same calling

sequence

:

5-8

CDF N
GIF
JMS I ENTRY
FUNCTION

BUFFER
BLOCK
ERROR

NORMAL

/N IS CURRENT FIELD TIMES 10 (OCTAL)
/DEVICE HANDLER LOCATED IN FIELD
/ENTRY IS DETERMINED BY USR "FETCH"
/FUNCTION IS BROKEN DOWN AS FOLLOWS:
/ BIT 0=0 FOR READ
/ BIT " 1 FOR WRITE
/ BITS 1 TO 5 = NUMBER OF PCS TO TRANSFER
/ BITS 6 TO 8 = FIELD FOR TRANSFER
/ BITS 9 TO 11 = DEVICE DEPENDENT BITS
/CORE ADDRESS OF TRANSFER BUFFER
/STARTING BLOCK NUMBER FOR TRANSFER
/ERROR RETURN, AC>=;2(MEANS END-OF-FILE
/ AC<;af MEANS FATAL ERROR
/NORMAL RETURN

The device handler reads or writes a number of 128 word records

beginning at the selected block. In general, device handlers

should conform to the following standards:

a. On normal return from a device handler the AC is
zero and the DATA FIELD is always restored to
its original entry value.

b. Although the starting block number has true sig-
nificance only for file structured devices,
handlers for non-file structured devices can
check the block number and perform initialization
if the block number is zero. For example, the
line printer handler outputs a form feed before
printing when the specified block number is zero.

c. Handlers should be written to be as foolproof as
possible. Examples of typical user errors are:
calling handler with non-zero AC (always perform
a CLA in the handler) ; trying to read on a write-
only device, or trying to write on a read-only
device (give a fatal error return) ; specifying
pages to be transferred (accept as meaning no ac-
tual transfer is to take place) ; or attempting to
access a nonexistent block (give a fatal error re-
turn) .

d. Device handlers normally check to see if a CTRL/C
(ASCII 203) has been typed by the user. If one
has, the handler aborts I/O and JMP ' s to location
7600 in field 0.

5-9

e. Device handlers should be able to detect standard
error conditions like checksum or parity errors.
Whenever possible, several attempts to perform
the transfer should be made before aborting I/O
and taking the error exit. In addition, when
operator intervention is required, the handler would
normally wait for the action rather than take a
fatal error exit. For example, if the paper tape
punch is not turned on, the PTP handler waits for
the punch to be turned on.

f. By convention, in any handler for a device (like
DECtape) that can search either forward or back-
ward for a block, Bit 11 of the function word (one
of the device'-dependent bits) controls the start-
ing direction of the search. Bit 11 is a 1 if
the starting direction is forward and a if it
is reverse. The other two device dependent bits
are not assigned any significance at the present
time.

g. Remember that the user specifies a multiple of
128 words to transfer, whereas the transfer starts
at the beginning of a 256 word block. This means
that the handler must provide the capability of
reading or writing the first half of a block.
When writing the first half of the block, the con-
tents of the second half of the block can be
altered.

h. The entry point to a two page device handler must
be in the first page.

i. A number of handlers can be included in the one or
two pages of code. Where more than one handler is
included in a single handler subroutine, the handlers
are called co-resident. Co-resident handlers are
always brought into core together. For example,
all eight DECtape handlers fit into one page; hence,
the DECtape handlers are co-resident. One restric-
tion on co-resident handlers is that if they are
two pages long all entry points must be in the first
page.

j. The USR, while doing file operations, maintains in
core the last directory block read in order to re-
duce the number of directory reads necessary. The
proper functioning of this feature depends on the
fact that every handler for a file-structured device
on a single system has a unique entry point relative
to the beginning of the handler. The relative entry
points currently assigned for file structured handlers
are

:

5-10

Device Handlers Relative Entry Points

MAGtapes
System Device Handler
DECtape or LINCtape
RKAJ2(

RKAl
RKA2
RKA3

to 6

7

10 to 17
20
21
22
23

k. If the device is block oriented (such as DECtape,
LINCtape, or disk), then the handler transfers
data directly with no alteration. However, if
the device is character oriented (such as a paper
tape reader. Teletype, or line printer) , the
handler is required to pack characters into the
buffer on input and unpack them on output. The
standard PS/8 character packing format puts three
8-bit characters into two words as follows

:

WORD *

WORD 2

CHARACTER 3
BITS 0-3 CHARACTER 1

CHARACTER 3
BITS 4-7 CHARACTER 2

When packing characters on input, the character
CTRL/Z (octal 232) is inserted at the logical
end-of-file (for example, at the end of the tape
in the paper tape reader handler) . Following
CTRL/Z, the remaining words of the input buffer
should be zeroed.

The device handler, whether one or two pages
long, must be completely page independent: it
can be loaded and executed in any page in field

except page and 7600 to 7777. Page independ-
ent code can have no address constants. For ex-
ample, the following routine illustrates how a
table lookup would be performed in page independ-
ent and non-page independent code

:

Non-Page Independent Code

TAD INDEX
TAD (TABLE)
DCA TEMP
TAD I TEMP

Page Independent Code

TAD INDEX
TAD (TAD TABLE)
DCA .+1

INDEX,
TEMP ,

TABLE , .

.

INDEX,
TABLE

,

5-11

The page independent method works only because
the table must be in the same page. Writing

_

page independent code for one page handlers is

quite easy. Two page handlers are considerably
more difficult, since communication between the
two pages requires the handler to determine where
in core it was loaded. Specifically, two page
handlers often include one-time initialization
code that performs a JMS to determine where it
is. The card reader handler in CONFIG should
be studied by anyone who writes a two page
handler.

5.3.2 Editing Device Handlers Into CONFIG

Once a new handler has been written and thoroughly debugged as

a stand-alone subroutine, it can be added to the system by edit-

ing the handler into CONFIG. PA, changing certain sections in

CONFIG, reassembling the result, and building a new system from

the binary tape produced. Follow the following steps to build a

new PS/8 system:

a. Edit the handler into CONFIG. The handler should
be origined into the areas of core between 4400
to 5577 or 14000 to 17577.

b. Select a system block on which to write the handler.
The first device handler storage block is "DVHORG"*,
and the last available block for device handlers
is "DVHORG" + 7 (blocks 16 [octal] to 2 5 [octal] in
the current system) . Existing device handlers re-
quire blocks "DVHORG" through "DVH0RG"+4.

c. In the generation section of CONFIG (the subroutine
"WRDEVH") edit in a call to the system handler to
write the desired device handler onto the selected
device handler storage block. The calls already
included in this subroutine should provide suffi-
cient examples.

d. Select a device number for the new device. The
number must be in the range 3 to 15 because device
number 1 is reserved for SYS and device number 2

is reserved for DSK. The number selected will re-
move some standard device from the system; the de-
vice removed should be a "useless" one (for example,
remove DTA7 if the system has less than 8 DECtape

*Names in quotes refer to symbols used in CONFIG. PA.

5-12

drives) . If the handler contains co-resident
device handlers , several device numbers must be
selected (not necessarily consecutive numbers)

.

e. Edit into CONFIG the new entries for the Perma-
nent Device Name Table ("SDNAME") and the Device
Handler Information Table ("SDVHND"). In both
cases the device number is an index to the table
entry to be changed. See Appendix B for informa-
tion about entries in these tables. Remember
that entries must be made for all co-resident
handlers.

NOTE

When considering a name for the device,
be certain to select one that does not
conflict with an existing device name.
See section B.3.1.

f. Check the device Type Table explained in section
B.3.5. If the new device is similar to an exist-
ing device then assign the new device the same
device type code as the existing device. (If the
device is file structured, it can only be similar
to devices of the same size.) Otherwise select
a new device type in the range 21 to 77 (octal)

.

Now edit into CONFIG a new entry in the Device
Control Word Table ("DCB"), see section B.3.5
to get the format for an entry. Again, entries
must be made for all co-resident handlers.

g. If there is any device other than the system de-
vice that should be the new default file storage
device (DSK) , change the entries for device num-
ber 2 in the Device Handler Information Table
("SDVHND") and the Device Control Word Table ("DCB")
to be identical to the entries for the selected
device.

NOTE

The new device DSK will no longer be
equivalent to the system device, hence
its device handler will no longer be
permanently resident. The entry in the
Device Handler Residency Table (see sec-
tion B.3.3) must be zeroed. This is done
by editing the following code into the
end of CONFIG:

*1^50',0 /DSK IS NON-RESIDENT

*Names in quotes refer to symbols used in CONFIG. PA.

5-13

h. All the edits to CONFIG are now complete.
Assemble the new source of CONFIG and re-
build the system by following the instruc-
tions given in section 5.1.

i. Finally, if the new device is a file struc-
tured device for which it was necessary to
select a new device type code in step f,

the Device Length Table in the file PIP.SV
must be patched so that PIP can perform /Z
and /S operations on the device correctly.
This can be done easily by using the system
ODT as follows

:

Teleprinter Output Notes

.GET SYS: PIP

.ODT

13 6nn/0jZfj3|2f xxxx where nn is the new de-
vice type code in octal

+C and xxxx is minus the
.SAVE SYSrPIP highest PS/8 block num-

ber for the device, also
in octal.

5-14

APPENDIX A

PS/8 File Structures

A.l File Directories

Blocks 1 through 6 on all file structured devices are re-

served for the file directory of that device. Six blocks

are always allocated but all are not necessarily active at

any given time. To minimize the number of directory reads

and writes necessary, PS/8 fills one directory block com-

pletely before overflowing onto a second block. Thus the user

with only a few files can perform directory LOOKUPS and

ENTERS faster than one with many files.

The directory blocks are each structured according to the

following format:

ENTRY

:*

3778

MINUS THE NUMBER OF ENTRIES
IN THIS SEGMENT

THE STARTING BLOCK NUMBER
OF THE FIRST FILE IN THIS
SEGMENT

LINK TO NEXT SEGMENT- ZERO
IF NO NEXT SEGMENT.

FLAG WORD- POINTS TO LAST WORD
OF TENTATIVE FILE ENTRY IN

THIS SEGMENT

MINUS THE NUMBER OF
ADDITIONAL INFORMATION WORDS

BEGINNING OF FILE ENTRIES

END OF DIRECTORY BLOCK

{DIRECTORY SEGMENTS ARE ALWAYS
LOADED INTO LOCATIONS 1 1400
TO 11777 BY THE USR.THIS
POINTER IS EITHER OR BETWEEN
1400 AND 1777

TtHE NUMBER OF ADDITIONAL
\) INFORMATION WORDS SPECIFIED

1 MUST BE THE SAME IN ALL
LDIRECTORY SEGMENTS

f

Locations through 4 of each directory block are called the

segment header.

A-l

A. 1.1 Directory Entries

There are three types of file directory entries

file entry appears as follows:

A permanent

Loca-
tion Contents Notes

FILE NAME
CHARACTER 1

FILE NAME
CHARACTER Z

1

FILE NAME

CHARACTER 3

FILE NAME

CHARACTER 4

2
FILE NAME
CHARACTER 5

FILE NAME
CHARACTER 6

3
FILE EXTENSION

CHARACTER 1

FILE EXTENSION

CHARACTER 2

4

i

ADDITIONAL
. INFORMATION j

WORDS

N + 3

N+4 MINUS FILE LENGTH IN BLOCKS

THE FILE NAME AND EXTENSION
S IS FWCKEO IN SIXBIT ASCII

(i,e.,"A"WOULD BE 01).

N.THE NUMBER OF ADDITIONAL
INFORMATION WORDS, IS GIVEN
BY WORD 4 OF THE DIRECTORY
HEADER. IF N # . THEN WORD
4 OF THE ENTRY IS THE
CREATION DATE OF THE FILE.

Note - if word 3 is zero, the given file has a null extension,

An empty file entry appears as follows:

Loca-
tion Contents

ENTRY IS ALWAYS 0000

MINUS THE NUMBER OF BLOCKS
IN THIS EMPTY FILE

A-

2

A tentative file entry appears as a permanent file entry with

a length of zero. It is always immediately followed by an

empty file entry. When the tentative file is entered in a

directory, location 3 in the segment header becomes a pointer

to this entry. The CLOSE function inserts the length word of

the tentative file entry, making it a permanent file, and ad-

justs the length of the following empty file entry (deleting

that entry if the length becomes zero)

.

Whether or not there is a tentative file open on any device

is determined by examination of bits 9 to 11 of the system Device

Control Word Table (see section B.3.5) no t the contents of

location 3 in the segment header. Zeroing these bits in the

Device Control Word Table makes the active tentative file on

the device inactive. The next time that the system has to

write the directory segment, the inactive tentative file entry

is removed. The distinction between active and inactive tenta-

tive files is made so that PS/8 can avoid spending the time

required to perform an extra read and write of the device direc-

tory.

A. 1.2 Number and Size of PS/8 Files

All files on a PS/8 device must occupy a contiguous group of

blocks on the device. The length of any file is indicated in

its directory entry, and the starting block of the file is de-

duced by adding together word 1 of the segment header and the

lengths of all files whose entries precede it in the directory

segment.

Each directory segment must have enough unused words at the end

to accommodate a permanent file entry (N+5 words, where N is the

number of Additional Information Words). Thus, if N is the number

of Additional Information Words the maximum number of permanent

file entries in any one segment is

:

MAX = r
256-5 - (N+5)i r 246-N]

A-3

Directory fragmentation (alternation of permanent file entries

with empty file entries) reduces this maximum, and in the worst

case the number of permanent file entries in any one segment is

limited to

:

MIN - r 256-7 - (N+5) 1 = r 244-N .,

- L 1^+7 J L N+7 J

with N=l, MAX=40, and MIN=30. Since there are six segments in

the directory, the maximum number of files possible (with N=l)

would be 2 40.

Finally, PS/8 devices are limited to 4095 blocks, each 256

words long. Thus, the maximum size of any single PS/8 file

structured device is 1,048,320 words. Blocks through 6 of the

device are unavailable for file storage; therefore, the l£irgest

possible file is 4088 blocks long, or 1,046,528 words.

A. 1.3 Sample Directory

The initial directory written when the PS/8 system is built

looks as follows

:

Loca-
tion Contents Notes

SEGMENT /

HEADER ^

PERMANENT
FILE <

ENTRY

EMPTY
FILE

ENTRY I 14

3778

* THIS LEAVES
PS/8 SYSTEM

TWO ENTRIES

FILE STORAGE STARTS AT BLOCK 709*

NO ADDITIONAL DIRECTORY SEGMENTS

NO TENTATIVE FILES

ONE ADDITIONAL INFORMATION WORD

FILE NAME IS "ABSLDR"

FILE EXTENSION IS .SV

DATE IS 10/31/70

LENGTH IS FIVE BLOCKS

EMPTY FILE

LENGTH IS 12448 <676,q) BLOCKS -

THIS IS DEPENDENT ON THE SYSTEM
DEVICE USED, 676 IS THE VALUE FOR
A OECTAPE SYSTEM.

ROOM FOR THE
AREAS

A-

4

A. 2 File Formats

There are three different standard file formats used by PS/8

and associated system programs:

ASCII and Binary files*

Core Image files (.SV format)

Relocatable FORTRAN library files (LIB8.RL is the
only current example of this format)

A. 2.1 ASCII and Binary Files

ASCII and Binary files are packed three characters into two

words, as follows:

WORD 1

WORD Z

CHARACTER 3
BITS 0-3 CHARACTER 1

CHARACTER 3
BITS 4-7

CHARACTER 2

3 4

The following conventions are used by PS/8 system programs:

c.

In ASCII files the character NULL (ASCII 0)2(0)

is always ignored.

In Binary files the binary data must be pre-
ceded by one or more frames of leader/trailer
code (ASCII 2)2^0 code) . The first character of
binary data must be either 100 to 177 octal (an
origin setting for absolute binary files) or
240 to 257 octal (a COMMON declaration frame
for relocatable binary files) . The end of binary
data is indicated by one or more frames of leader/
trailer code.

ASCII and Binary files are terminated by a CTRL/Z
code (ASCII 232). In binary files, a CTRL/Z code
occurring before the trailer code is treated as
data rather than end-of~file.

*Binary files can contain either absolute binary data (i.e.,
output from PALS) or relocatable binary data (i.e. , output from
SABR) .

A-

5

A. 2. 2 Core Image (.SV format) Files

A core image file consists of a header block followed by the

actual core image. The header block is called the Core Con-

trol Block. The Core Control Block consists of the first 128

words of the 256 word block reserved for that purpose. The

second 12 8 words are unused. The Core Control Block is format-

ted as follows

:

Loca-
tion Contents Notes

CORE CaVTROL BLOCK

2K+3

MINUS THE NUMBER OF CORE SEGMENTS

CDF CIF (STARTING FIELD)

STARTING ADDRESS

JOB STATUS WORD

«:

3778I

62N3 WHERE N IS THE
"STARTING FIELD

CORE SEGMENT

' '
) CONTROL DOUBLEWORDS

t

(K IS THE NUMBER OF
CORE SEGMENTS

J

REMAINDER OF BLOCK
IS UNUSED

The format of the Job Status Word is as follows

Bit Condition

Bit 0=1

Bit 1=1

Meaning

File does not load into locations to 1777
in field 0.

File does not load into locations to 1777
in field 1.

Bit 2=1 Program must be reloaded before it can be
restarted.

A-

6

Bit Condition

Bit 10 = 1

Bit 11 = 1

Meaning

Locations to 17 77 in field need not be
preserved when the Command Decoder is called.

Locations to 1777 in field 1 need not be
preserved with the USR is called.

The Core Segment Doublewords control the reading and writing of

the associated areas of core. The format of each entry is as

follows

:

Loca-
tion Contents Notes

1 CORE ORIGIN MULTIPLE OF 4008

2 NUMBER OF PAGES
TO LOAD

FIELD
TO LOAD

BITS AND 9-11

ARE ZERO

The core origin must be a multiple of 400g. The Core Segment

Control Doublewords are sorted within the header block in order

of decreasing field and increasing origin within the same field.

There can be no more than 32, „ Core Segment Control Doublewords

in any Core Control Block.

The Core Control Block for the program at the time it is loaded

into core is always saved in words 200p through 377„ of block 37g

(one of the system scratch blocks) on the system device. It is

placed there by the GET and RUN operations or by the ABSLDR or

LOADER programs. This Core Control Block is used when performing

a SAVE without arguments

.

NOTE

The R command differs from the RUN command in that
the program's Core Control Block is not written on-
to the scratch area when using the R command. In
order to SAVE a program that has been loaded by the
R command all of the argument of the SAVE command
must be explicitly stated.

A-

7

A. 2. 3 Relocatable FORTRAN Library File

A relocatable FORTRAN library consists of a library directory

block followed by relocatable binary segments. The directory

block has the following format:

Loca-
tion Contents Notes

CH 1 CH 2

1 CH 3 CH 4
NAME OF ENTRY IN

^ SIXBIT ASCII PADDED
WITH TRAILING BLANKS

2 CH 5 CH 6

3> LOAD POINTER

/a

1 5

! ADDITIONAL ENTR
«
•

lES
>

S
-

e>

,
DENOTES END OF
NAME ENTRIES

Ni »
: :

•r

— *. LOADER CONTROL WORD(S)

— -^ END OF LOADER CONTROL* WORDS FOR THIS ENTRY

*
• *

"

3770

The Load Pointer is a number between and 377j, which points

(relative to the beginning of the block) to an array of Loader

Control Words. The Loader Control Words have the following

information:

z •NUMBER OF PAGES OCCUPIED
BY THIS SEGMENT AFTER
LOADING

D
-(STARTING BLOCK OF RELOCATABLE
BINARY DATA)- (DIRECTORY BLOCK #)-1

A-

8

There can be one or more Loader Control Words for each

entry. The Loader Control Words for an entry are termi-

nated by a word of zero. The following is a simple directory

block.

Loca-
tion Contents Notes

LOADER
CONTROL
WORDS

FOR "EXIT"

LOADER
CONTROL
WORDS

F0R"I0H" 13773

1117

1 1040 i

2 4040

3 0376

4 0530

5 1124 '

6 4040

7 0373

10 0000

11 0000
>

12 0000

13 0000

: J:

373 0207 (

374 0411 (

375 0000

376 2400

1778 0000

*'r/Mj "NAME OF ENTRY IS"I0H '

LOAD POINTER F0R"I0H"

NAME OF ENTRY IS" EXIT.."

LOAD POINTER F0R"EXIT"

) MARKS END OF ENTRIES

(RELATIVE BLOCK lOsKONE PAGE LONG)

(RELATIVE BLOCK 128XTW0 PAGES LONG)

(RELATIVE BLOCK 1)(123 PAGES LONG)

A-

9

APPENDIX B

DETAILED LAYOUT OF THE SYSTEM

This appendix covers three topics: the reserved areas on the

system device, the resident portion of PS/8, and the various

system tables.

B.l Layout of the System Device

The first 70o blocks (14K words) on the system device are re-
o

served by the PS/8 system. These blocks are used as follows:

Block (s) in Octal Contents

System Bootstrap Routine
Device Directory
Keyboard Monitor
User Service Routine
Device Handlers
ENTER Processor for USR
System Scratch Blocks
Command Decoder
SAVE and DATE Overlays
Monitor Error Routine
CHAIN Processor for USR
System ODT
Reserved for System Expansion

File storage begins with block 70g.

The system scratch blocks are used for preserving the contents

of core when the Keyboard Monitor, USRy Command Decoder, or ODT

are loaded. In addition, various system programs use the scratch

area. Most importantly , the SAVE command expects the Core Control

Block to be loaded in words 200g to 377g of block 37g. The Core

Control Block is stored at those locations by the GET or RUN com-

mand or by the ABSLDR or LOADER program.

A detailed breakdown of system scratch block usage follows:

B-1

pr

i-e1

7-12
13--15
16-•25
26
27-50
51-•53
54--55

56
57
6 0--63
64--67

Block (s) in Octal

27-32

33-36

37

40-47

50

Contents

The contents of locations 10000 to 11777
are saved in this area when the USR is
loaded.

The contents of locations to 1777 are
saved in this area when the Command De-
coder, Keyboard Monitor, or ODT is loaded,

Words 200g to 377g of this block contain
the Core Control Block for the last pro-
gram loaded by the GET or RUN command, or
the ABSLDR or LOADER program.

Used as scratch storage by the ABSLDR and
LOADER programs.

Reserved for future expansion.

B.2 Layout of the PS/8 Resident Program

The top core pages in fields and 1 are used by the resident por-
tion of PS/8 and are not accessible by the user. Future expansion
of PS/8 may later require space to be allocated in the top page
of field 2. As a general rule, system and user programs should
never destroy the contents of locations 7600 to 7777 of aii^

field.

The resident portion of PS/8 is structured as foilows

Loca-
tion Contents Notes

7600
WRITE OPERATION

— NON-DESTRUCTIVE
ENTRY TO PS/e

7605 JMP TO FIELD 1 FOR READ DESTRUCTIVE
ENTRY TO PS/8

7607

<

7743

: SYSTEM DEVICE HANDLER :
r^ENTRY TO SYSTEM

DEVICE HANDLER

7744

7745
CURRENT STARTING ADDRESS

7746 JOB STATUS WORD

7747 — MUST ALWAYS BE ZE

7750

7755

RESERVED FOR DATA BREAK
LOCATIONS

7756

7777

! PROGRAM SETUP AREA S

— THE KEY BOARD
1 MONITOR AND ODT

MODIFY THIS AREA

B-2

TOP PAGE OF FIELD 1

Loca-
tion Contents Notes

7600
,
' OUTPUT FILE LIST (3 ENTRIES)

7616
7617

7641

7642

7643

7645

7646

7647

7665

7666

7667

7677
7700

7740
7741

7757
7760

7776

7777

INPUT FILE LIST

(MAXIMUM 9 ENTRIES)

e

HIGH 11 BITS 0F = N

SPECIFIED OPTIONS

LOW 12 BITS OF =N

DEVICE HANDLER
RESIDENCY TABLE

SYSTEM DATE WORD

READ OPERATION
(LOAD KEYBOARD MONITOR)

USR CALL AND RETURN AREA

USER DEVICE
NAME TABLE

A

DEVICE CONTROL WORD TABLE

UNUSED

^

-0 MARKS END
OF LIST

-* BIT = 1 IF

COMMAND LINE
TERMINATED BY
ALTMODE

COMMAND
DECODER
AREA

KENTRY TO USR

NOTE
-SYSTEM ODT DESTROYS
CONTENTS OF THIS TABLE
WHEN SETTING BREAKPOINTS

RESERVED FOR FUTURE USE

B.3 System Device Tables

Each device is described to the system by entries in five sys-

tem tables. Each of these tables is fifteen words long, where

the device number is the index into the table. The five tables

are described below.

B.3.1 Permanent Device Name Table

Entries in this table specify the permanent name of each device.

The entries are computed by encoding the actual four-character

device name in a single word as follows

:

B-3

a. The device name is expressed as two words in
the standard DEVICE format. For example, if
the device name were "PTR" , the two words would
be:

WORD 1: 2024
WORD 2: 2200

Note that when the device name is left justified;
O's are inserted to fill four characters.

b. A single word is created by adding together these
two words

.

c. If word 2 is non-zero, bit of the resulting word
is forced to be a one. For example, the table
entry for "PTR" would be 4224.

An entry of zero means that there is no device for the corre-

sponding device number.

NOTE

Conventionally, device names consist only of the
characters A to Z and to 9. The first charac-
ter of the device name should be alphabetic. The
coding used makes all one and two character device
names unique; however, names of more than two
characters are not unique. For example, "PTR"
and "RTP" have the same encoding.

The Permanent Device Name Table is fifteen locations long; it

resides in the USR. When the USR is in core the beginning of

the table is in field 1 at a location the address of which is

contained in location 10 03 6.

B.3.2 User Device Name Table

Entries are made in this table whenever the user performs cin

ASSIGN and are restored to zero by a DEASSIGN. These entries

have the same format as those in the Permanent Device Name

Table.

The User Device Name Table resides in locations 17741 through

17757.

B-4

NOTE

The User Device Name Table is used by ODT for
setting breakpoints. For this reason the user
should never ASSIGN any user device names when
debugging with ODT.

B.3.3 Device Handler Residency Table

When a device handler is loaded by the USR, the entry in this

table for the device loaded (and entries for all devices whose

handlers are co-resident, if any) is set to contain the entry

point for the device handler. Entries other than those that

contain an address above 7600 (thus referring to the system

handler) are restored to when a RESET, DECODE or CHAIN function

is executed. When a program exits to the Keyboard Monitor this

table is not cleared. The Keyboard Monitor Commands GET, RUN,

R, SAVE, and START (with no explicit address) clear this table.

NOTE

Since the system device handler is always resi-
dent, the first entry (since SYS is always de-
vice number 1) in the Device Handler Residency
Table is always 7607 (the entry point of the
system device handler)

.

The Device Handler Residency Table resides in locations 17647

through 17665.

B.3.4 Device Handler Information Table

Each entry in this table contains all the information needed by

the USR to load the corresponding handler. The format of these

entries is as follows

:

B-5

Bit Condition

Bit 0=1
Bits 1 to 4

Bits 5 to 11

Meaning

If this is a two page device handler.

Contain the relative block location of
the device handler record on the system
device. This is computed by subtracting
15 octal (one less than thei first device
handler block) jrom the actual block numlser.

Contain the offset of the handler entry
point from the beginning of the page.
Note that two page device handlers must
have their entry points in the first page.

If an entry is the corresponding device handler is not saved

in any of the device handler storage blocks. This is always

true of device number 1 (the system device) and for all device

numbers that are not used in a given configuration. The Device

Handler Information Table is 15 locations long and resides in

the USR. When the USR is in core the beginning of the table is

in field 1 at a location the address of which is contained in

location 10037.

B.3.5 Device Control Word Table

Entries in this table specify special device characteristics,

including the physical device type. The entry format is as

follows:

Meaning

If the device is file-structured.

If the device is read-only.

If the device is write-only.

Bit Condition

Bit 0=1
Bit 1=1
Bit 2=1
Bits 3 to 8 Contain the physical device type

code (described below).

B-6

Bit Condition Meaning

Bits 9 to 11 For file structured devices, these bits
contain the directory block number of
the currently active tentative file.
If bits 9 to 11 are zero, there is no
active tentative file on the device.
For non-file structured devices, bits
9 to 11 are always zero. Bits 9 to 11
are reset to zero by the commands GET,
RUN, R, SAVE, START (with no explicit
address) and optionally by the USR func-
tions RESET and DECODE.

The device type is a number between and 77 „, of which
o

through 20g are currently assigned to existing devices, as

follows

:

Device Type
Code Device

Teletype
1 High-speed paper tape reader
2 High-speed paper tape punch
3 Card Reader
4 Line Printer
5 RK8 Disk
6 256K Disk (RFj2f8)

7 512K Disk (RF|af8 + RSi2f8)

10 76 8K Disk CRF0Q + 2 RS08"s)
11 1024K Disk (RF08 + 3 RS/2f8's)
12 32K Disk (DF32)
13 64K Disk (DF32 + DS32)
14 96K Disk (DF32 + 2 DS32's)
15 128K Disk (DF32 + 3 DS32's)
16 DECtape
17 LINCtape (PDP-12 only)
20 Magnetic Tape
21-77 To be assigned

The Device Control Word Table resides in locations 17760
through 1777 6.

B.3.6 Device Length Table

There is a sixth table that is not normally considered part
of the system tables. This is the Device Length Table and

is used only by PIP to perform the /Z (zero directory) and /S

B-7

Ccompress device) options. This table is 64 locations long,,

one entry for each possible physical device type. In this

table an entry of means that the corresponding device is

non-file structured; otherwise the entry contains the negative

of the number of available 256-word blocks on the device.

For example, the entry for a 256K disk would be 6000g (minus

2000 , or 1024^Q, 256-word blocks).

The Device Length Table resides in PIP. When PIP is brought

into core the Device Length Table is in locations 13600 to

13677. When new device types are added to the system this

table should be patched with ODT to reflect the device length

of the new device.

B-8

APPENDIX C

SYSTEM ERROR CONDITIONS AND MESSAGES

This is a summary of all error messages that are a result of

system errors. These errors are also described in the rele-

vant sections of this manual and in the 8K Programming System

User's Guide.

C.l System Halts

Errors that occur as a result of a major I/O failure on the

system device can cause a system halt to occur. These are as

follows

:

Value of PC Meaning

00601 A read error occurred while attempting to load
ODT. Return to the Keyboard Monitor by restart-
ing at 07605.

07461 An error occurred while reading a program into
core during a CHAIN. Return to the Keyboard
Monitor by restarting at 07605.

07605 An error occurred while attempting to write the
Keyboard Monitor area onto the system scratch
blocks. Verify that the system device is not
WRITE LOCKED and restart at location 07600 to
try again.

07702 A user program has performed a JMS to 7700 in
field 0. This is a result of trying to call
the USR without first performing a GIF 10. As
location 07700 has been destroyed, the user must
re-bootstrap the system!

07764 A read error occurred while loading a program.
Return to the Keyboard Monitor by restarting at
07605.

07772 A read error occurred on the system scratch area
while loading a program. Return to the Keyboard
Monitor by restarting at 07605.

C-1

Value of PC Meaning

10066 An input error occurred while attempting to
restore the USR. Return to the Keyboard Moni-
tor by restarting at 7605.

10256 A read error occurred while attempting to load
the Monitor Error routine. Return to the Key-
board Monitor by restarting at 07605.

176 76 An error occurred while attempting to read the
Keyboard Monitor from the system device. Try
again by restarting at location 07605. DO NOT
PRESS CONTINUE.

17721 An error occurred while saving the USR area.
Verify that the system device is not WRITE
LOCKED, and press CONTINUE to try again.

17727 An error occurred while attempting to read the
USR from the system device. Return to the Key-
board Monitor by restarting at 7605.

17736 An error occurred while reading the scratch
blocks to restore the USR area. Return to
the Keyboard Monitor by restarting at 07605,,

Also, there is one halt in the LOADER program:

00005 A parity error occurred when attempting to
overlay the LOADER from the system scratch
blocks. Return to the Keyboard Monitor by
restarting at 07605, and try again.

After retrying the operation which caused the failure, if the

error persists it is the result of a hardware malfunction or a

parity error in the system area. Run the appropriate diagnostic

program to check the device and rebuild the system.

C. 2 USR Errors

Fatal errors that occur during operation of the USR cause the

message:

MONITOR ERROR n AT xxxxx

to be printed. In these cases, the value "n" describes the

C-2

error and "xxxxx" is the address of the call to the USR that

caused the error. The six Monitor errors are:

Message

MONITOR ERROR 1 AT xxxxx

MONITOR ERROR 2 AT xxxxx

MONITOR ERROR 3 AT xxxxx

MONITOR ERROR 4 AT xxxxx

MONITOR ERROR 5 AT XXXXX

MONITOR ERROR 6 AT xxxxx

Meaning

File length in CLOSE function is
too large.

An I/O error occurred while at-
tempting to read or write a direc-
tory block. This is generally
caused by the device being WRITE
LOCKED

.

The device handler required for
a file operation (LOOKUP, ENTER,
CLOSE) is not in core.

Illegal call to the USR; either
an attempt has been made to call
the USR from locations 10000 to
11777 or a device number of zero
was specified.

I/O error occurred while reading
or writing on the system device.
Verify that the system device is
not WRITE LOCKED.

Directory overflow occurred (see
section A. 1.2 for limitations on
number of directory entries)

.

In addition to the MONITOR ERROR messages, system and user pro-

grams can use the USR to print:

USER ERROR n AT xxxxx

by using the ERROR function. In this case the value of "n" is

user-defined and "xxxxx" is the address of the call to the USR.

Currently, two USER ERROR numbers have been assigned:

Message

USER ERROR (ji AT xxxxx

Meaning

An I/O error occurred while at-
tempting to load a program with
the GET, RUN, or R command.

C-3

Message

USER ERROR 1 AT xxxxx

Meaning

While running a FORTRAN or SABR
program, an attempt was made to
call a subroutine that had not
been loaded.

Following either a MONITOR ERROR message or a USER ERROR message

the USR exits to the Keyboard Monitor; the current contents of

core are preserved and bit 2 of the Job Status Word is set to

a 1 to prevent continuing from the error.

C.3 Keyboard Monitor Errors

In addition to the USR errors described previously, the follow-

ing errors can occur after a command is given to the Keyboard

Monitor:

Message

aaaa;

TOO FEW ARCS

device NOT AVAILABLE

name NOT FOUND

BAD ARCS

ILLEGAL ARC.

SAVE ERROR

Meaning

The Keyboard Monitor cannot inter-
pret the command "aaaa" . For ex-
ample, if the user types HELLO,
the system will respond HELLO?

An argiament has been omitted from
a command.

The permanent device name specified
in an ASSIGN, SAVE, RUN, or GET com-
mand does not exist.

The file name specified was not
located on the device indicated.
This error can also be caused by
trying to RUN or GET from an output
only device.

Arguments to a SAVE command are in-
consistent.

Illegal syntax in a SAVE command.

An I/O error occurred while saving
the program. The contents of core
remain intact.

C-4

Message

BAD CORE IMAGE

NO! !

BAD DATE

SYSTEM ERROR

Meaning

The file requested with an R,
RUN, or GET command is not a
core image file.

A START command (with no address
specified) is prohibited when
bit 2 of the Job Status Word
(location 07746) is a 1.

Improper syntax in a DATE com-
mand.

An error occurred while doing
I/O to the system device.

C.4 Command Decoder Errors

The following errors are printed by the Command Decoder. After

the error message, the Command Decoder starts a new line, prints

a *, and waits for another command line. The erroneous command

is ignored.

Message

ILLEGAL SYNTAX

TOO MANY FILES

device DOES NOT EXIST

name NOT FOUND

Meaning

The command line is formatted in-
correctly.

More than three output files or
nine input files were specified.*

The specified device name does
not correspond to any permanent
device name or any user assigned
device name.

The specified input file name was
not found on the device indicated,

*In the special mode of the Command Decoder this message would
be printed if more than one output file or five input files
were specified. See section 3.5.

C-5

APPENDIX D

PROGRAMMING NOTES

This appendix is a potpourri of ideas and techniques

that have proven useful in programming the PDP-8.

PS/8 users may find some use in their own programs

for the techniques mentioned here.

D.l The Default File Storage Device, DSK

D.2 Modification to Card Reader Handler

D.3 Suppression of Carriage Return/Line Feed in FORTRAN I/O

D.4 Accessing the System Date in a FORTRAN Program

D.5 Determining Core Size on PDP-8 Family Computers

D.6 Relocating Code

D.7 Using PRTC12-F to Convert PS/8 DECtapes to PS/12 LINCtapes

D.8 Notes on Loading Device Handlers

D.9 Available Locations in the USR Area

D.IO Accessing Additional Information Words in PS/8

D.ll SABR Programming Notes

D-1

D.l The Default File Storage Device, DSK

The Command Decoder, as noted earlier, makes certain assumptions

about the I/O device where none is explicitly stated. Namely,

on all output files where no device name is given, the device

DSK is assumed. On the first input file where no device name is

given, DSK is assumed. Subsequent input files assume the same

device as the previous input file. This convention was adopted

to simplify typing command lines.

The permanent device name DSK is assigned when the system is

built. On all standard systems, DSK is equivalent to SYS. Chang-

ing the default file storage device is described in Chapter 5. A

useful technique is to use the ASSIGN command to redefine the

meaning of DSK temporarily. For example, where device DTA|2f is

equivalent to DSK and it becomes desirable to change DSK to DTAl,

the following command can be given:

.ASSIGN DTAl DSK

DTAl remains the default file storage device until it is assigned

a new name or a DEASSIGN command is executed. This technique is

considerably easier to use than rebuilding the entire system.

D.2 Modification to Card Reader Handler

The standard card reader handler for PS/8 uses the DECj?29 standcird

card codes. Some installations may prefer to use the DECi^ae codes

instead. This can be done by changing the card conversion table

in CONFIG, reassembling CONFIG, and rebuilding the system, or by

rebuilding the system using the following procedure:

a. Follow steps 1, 2, and 3 given in section 8.2 of the

8K Programming System User's Guide (if building a

DECtape system, mount the tape on which the system
is to be built on unit ffS, WRITE ENABLEd, and load
the DECtape CONFIG binary tape in step 3)

.

D-2

b. Make the following patch:

CHANGE LOCATION FROM TO

5704
5705
5706

5714
5715
5716

5724
5725
5726
5727

5734
5735
5736

c. Now continue building the system with step 4 of
section 8.2 in the 8K Programming System User's
Guide. The new system will have modified card
codes.

NOTE

This procedure does not affect FORTRAN
run time card input with READ (3,n) . The
conversion table for FORTRAN is
UTILTY.SB on source DECtape #3.

3203 7735
4007 4076
3502 0774

7514 3314
0577 1002
3637 0305

0104 3204
1211 1273
3374 3606
0641 1341

7316 3716
3410 1175
1376 3401

D-3

026 PUNCH CARD CODES

Octal 8-bit DECJ2(2 6 Octal 8-bit DEC026
Code Code

blank

Character

SPACE

Code Code

8-4

Character

240 300 §

241 12-8-7 1 301 12-1 A
242 0-8-5 " 302 12-2 B

243 0-8-6 # 303 12-3 C

244 11-8-3 $ 304 12-4 D

245 0-8-7 % 305 12-5 E

246 11-8-7 & 306 12-6 F

247 8-6 I 307 12-7 G

250 0-8-4 (310 12-8 H

251 12-8-4^
) 311 12-9 I

252 11-8-4 * 312 11-1 J

253 12 + 313 11-2 K

254 0-8-3
f 314 11-3 L

255 11 - 315 11-4 .M

256 12-8-3 • 316 11-5 N

257 0-1 / 317 11-6

260 320 11-7 P

261 1 1 321 11-8 Q
262 2 2 322 11-9 R
263 3 3 323 0-2 S

264 4 4 324 0-3 T
265 5 5 325 0-4 U'

266 6 6 326 0-5 V
267 7 7 327 0-6 w

270 8 8 330 0-7 X
271 9 9 331 0-8 ^

272 11-8-2 • 332 0-9 z

273 0-8-2 • 333 11-8-5 [

274 12-8-6 < 334 8-7 \
275 8-3 = 335 12-8-5]

276 11-8-6 > 336 8-5
/v.

277 12-8-2 ? 337 8-2^

On some IBM 026 Keyboards this character is graphically repre-
sented as n .

2

A card containing an 8-2 in column 1 with all remaining columns
blank is an end-of-file card.

D-4

D.3 Suppression of Carriage Return/Line Feed in FORTRAN

It is often desirable to suppress the automatic carriage return/
line feed (CR/LF) following FORTRAN WRITE statements to achieve

an easily readable text. The following three methods in PS/8

FORTRAN can be used to achieve this result:

a. Follow the I/O, list of a WRITE statement with a
comma. Thus, the following statements:

WRITE Cl,li2f)2f) N,
100 FORMAT (1X,15HTHE VALUE OF A(,I2,5H) IS)

READ (1,1^2(1) A(N)
lj2fl FORMAT CF8.4)

result in the following single line (assume N has
a value of 12 and a value of 147.83 is being input):

THE VALUE OF A (12) I S 147.83

b. Use of an empty field print statement enables a text
to be printed without a following CR/LF when there
is no variable to be printed. For example:

WRITE (l,lJ3f2) IDUMMY,
lj?2 FORMAT ('DESIRED TEXT" ,I|af)

c. READ statement using break character, as follows:

READ (l,lj2fl) IA,IB,IC
lj2fl FORMAT ('A=' ,11, '6=' ,11, 'C=' ,11)

results in no CR/LF after each phrase is printed.
That is, the output is all printed on a single line.

D-5

D.4 Accessing the System Date in a FORTRAN Program

The availability of the system Date word in location 17666 is

useful to many PS/8 programs. The following FORTRAN program

illustrates how the Date can be accessed in SABR code:

C PROGRAM PRINTS THE CURRENT DATE
C
S DUMMY DATE
S TAD I DATE
S DCA TEMP
S TAD TEMP
S AND C7
S DCA \ lYR
S TAD TEMP
S RAR;RTR
S AND (37
S DCA \IDAY
S TAD TEMP
S CLL RAL;RTL;RTL
S AND C17
S DCA \IM0

WRITE Cl,l|?|?) IMO,IDAY,IYR
10fi FORMAT (/'DATE: ' 12 ' - ' 12 ' -197 " 11/)

CALL EXIT
S CPAGE 2

SDATE, 6211
S 7666
STEMP

,

)2f

D-6

D.5 Determining Core Size on PDP-8 Family Computers

Many times system programs need to determine the amount of core

available to them at run time. For example, the PS/8 system

programs LOADER, PALS, and CREF perform this calculation. Be-

cause of differences in the extended memory control of PDP-8

family computers, subroutines that work on one machine might not

work on another

.

The following three conditions cause the most difficulty:

a. On a PDP-8 with an extended memory control, address-
ing nonexistent memory from field J? causes the
following instruction to be skipped and the contents
of the corresponding field |? location to be executed.
For example:

CDF 70 /NONEXISTENT FIELD
TAD I CX) /EXECUTED LOCATION X
HLT /THIS INSTRUCTION SKIPPED

X, CLA CLL CML RAR /LOAD 4000

the preceding code causes 4000 to be loaded into
the AC and the HLT instruction to be skipped when
executed on a PDP-8.

b. On a PDP-12 with an odd number of 4K banks (12K,
20K, 2 8K) , all reads in the first nonexistent field
load zeros. Reads to higher fields, as well as all
reads to nonexistent memory on a machine with an
even number of 4K banks load all one bits.

c. The PDP-8/L normally treats all CDF's to fields 2

through 7 as NOP ' s . (It tests bits 6 and 7 of all
CDF and CIF instructions for 0's before executing
the lOT.) However, there is a special 12K option
for the PDP-8/L called a BMJ38. With this option
a CDF to field 2 is valid, but a CDF to field 3 re-
sets the Data Field to 0. CDF's to fields 4

through 7 remain NOP ' s

.

For those who are interested, the following subroutine has been

tested on the PDP-8, 8/S , 8/L, 8/1, 8/E, PDP-12, and LINC-8 com-

puters. For the purpose of this example, it is assembled at

00200. This is not essential, it can be in any 40 (octal)

locations of any page in field 0.

D-7

/SUBROUTINE TO DETERMINE CORE SIZE.

/THIS SUBROUTINE WORKS ON ANY PDF- 8 FAMILY
/COMPUTER. THE VALUE, FROM 1 TO IJ? (OCTAL),

/OF THE FIRST NON-EXISTENT MEMORY FIELD IS

/RETURNED IN THE AC.

/NOTE — THIS ROUTINE MUST BE PLACED IN FIELD ^

J?2J2fJ2f 0000 CORE,
i2f2j?l 7300 CLA CLL
J?2i2f2 6201 COR0, CDF
J2(2j2f3 1237 TAD CORSIZ

J?2|2(4 7006 RTL
J2f2j2(5 7004 RAL
J?2j2(6 0217 AND COR70
02^1 1232 TAD COREX
021J? 3211 DCA . + 1
0211 6201 CORl, CDF /N
J3f212 1635 TAD I CORLOC
0213 7000 C0R2, NOP
0214 3211 DCA CORl
0215 1213 TAD C0R2
0216 3635 DCA I CORLOC
0217 0070 COR70, 70
0220 1635 TAD I CORLOC
0221 7400 CORX, 740J2f

0222 1221 TAD CORX
0223 1236 TAD CORV
0224 7640 SZA CLA
0225 5232 JMP COREX
0226 1211 TAD CORl
0227 3635 DCA I CORLOC
0230 2237 ISZ CORSIZ
0231 5202 JMP COR0

0232 62je}l COREX, CDF
0233 1237 TAD CORSIZ
0234 5600 JMP I CORE

0235 0221 CORLOC, CORX
0236 1400 CORV

,

1400

0237 0001 CORSIZ, 1

/{NEEDED FOR PDP-8L)
/GET FIELD TO TEST

/MASK USEFUL BITS

/SET UP CDF TO FIELD
/N IS FIELD TO TEST
/SAVE CURRENT CONTENTS
/(HACK FOR PDP-B:)

/7000 IS A "GOOD" PATTE:E^

/(HACK FOR PDP-8. , NO-OP)
/TRY TO READ BACK 7000
/(HACK FOR PDP-8, .NO-OP)
/GUARD AGAINST "WRAP AROUND"
/TAD (1400)

/NON-EXISTENT FIELD EXIT
/RESTORE CONTENTS DESTROYED

/TRY NEXT HIGHER FIELD

/LEAVE WITH DATA FIELD
/IST NON-EXISTENT FIELD

/ADDRESS TO TEST IN EACH FIELD
/7000+7400+1400 =

/CURRENT FIELD TO TEST

D-8

D.6 Relocating Code

One useful programming trick is generating relocated code by
means of the ENPUNCH and NOPUNCH features of PALS.

In this case, relocated code is code that, for some reason, is
to be loaded into an area of core different from the area in
which it is to be executed. For example, the system device handler
for PS/8 is loaded into 6600 through 6777, so as not to affect
the Binary Loader, and during the build process it is moved to the
top page of field j3r where it resides. Of course, it cannot be
simply assembled directly into 6600, since various address con-
stants would be generated incorrectly. The way around this
situation is to do two origins: the first to the location in
which the code is loaded and the second to the location in which
it is eventually executed . The second origin is preceded by
a NOPUNCH so that no origin punch is put onto the binary output
of PALS.

For example, if some code were to be loaded into 12 77 through 1476
but executed at 2000 through 2377, the following should appear
in the source file preceding the code:

*12 77 /ADDRESS TO LOAD
NOPUNCH
*2^00 /ADDRESS OF EXECUTION
ENPUNCH

/CODE BEGINS HERE

*1477 /RESET ACTUAL ASSEMBLY ORIGIN

This technique is used in several places in the source of PS/8.

NOTE

Code that is relocated in this fashion must not
use current page literals as they will be loaded
into the wrong area. In addition, current page
literals should not be used in any code that
immediately precedes the relocated code, and
that is to be loaded onto the same page.

D-9

D.7 Using PRTC12-F to Convert PS/8 DECtapes to PS/12 LINCtapes

Many users of PS/8 on the PDP-12 will be interested in the fact

that, since PS/8 uses an identical file structure on all devices,

PDP-8 DECtape in PS/8 format may be directly copied to PS/8

LINCtapes by the PRTC12-F program.

The PRTC12-F program uses the PDP-12 TC12-F hardware option to

read DECtapes and convert these tapes to LINCtape. This hard-

ware option is required to read DECtapes on the PDP-12.

The PRTC12-F program is described in the document DEC-12-YIYA-D.

This document describes the program operation in detail, and

must be read before attempting to use PRTC12-F. The operations

that convert PS/8 format DECtapes are as follows:

a. Mount the PS/8 DECtape on unit 1 and a PDP-12
LINCtape formatted with 129 words per block on
unit 2.

b. When the READ questionnaire is displayed,
respond as follows (responses are underlined;
the character ^ stands for carriage return
and 4- stands for line feed) :

READ 1777J BLOCKS
TAPE FORMAT A J UNIT iJ
STARTING WITH BLOCK ^J^
etc.

c. When the WRITE questionnaire is displayed, respond
as follows

:

WRITE THE RESULT
IN TAPE FORMAT B) ON UNIT 2j
STARTING AT BLOCK j? J i

etc.

D-10

D.8 Notes on Loading Device Handlers

A. Problem with multiple input files

There is a problem associated with reusing Device Handler areas

in PS/8. This problem is best illustrated by an example:

Assume a program has reserved locations 1000-1377 for its input

handler and locations 7400-7577 for its output handler. If the

program gives a USR FETCH command to load the DTAl handler as

an input device handler, all 8 DECtape handlers will load into

1000-1377, since they are all co-resident. If another FETCH is

issued to load the DTA2 handler as an output device handler,

that handler will not be loaded, because it shares space with

the DTAl handler currently in core. This is fine — however, if

the user now switches input devices and FETCHes the paper tape

reader handler as an input device handler it will destroy the

DTA2 handler and the next attempt to output using the DTA2

handler will produce errors. There are two ways to get around

this problem.

1. Always assign the handler which you expect to

stay in core the longest first. Most programs can

process more than one input file per program step

(e.g., an assembly pass is one program step) but

only one output file; therefore, they assign the

output handler before any of the input handlers

.

In the above example, the problem would be

eliminated if the DTA2 handler were assigned

first.

2. Always give a USR RESET call before each FETCH.

Obviously, this call should not delete any open

output files. This means that the USR will always

load the new handler, even if another copy is in

core. The user must FETCH the output handler again

before issuing the USR CLOSE call, otherwise the

D-11

USR will determine that the output handler is not

in core and give a MONITOR ERROR 3 message.

8K FORTRAN uses this second method for device-independent I/O

at run time

.

B. Dynamically Loading Device Handlers

Some programs which use dynamic core allocations will want to

use PS/8 Device handlers but cannot afford to always allocate

the maximum of two pages per handler. The following is a sub-

routine which loads a device handler dynamically, returning its

entry in the AC. It assumes that the name of the handler is in

locations NAMEl and NAME2, and a subroutine GETPAG exists which

gets a page from the bottom of available field j? of storage and

returns its address in the AC. This example subroutine runs in

field 1 and can only be called from field 1, but can be re-

written for any other possibility.

ASSIGN, J2f

TAD NAMEl
DCA Nl
TAD NAME

2

DCA N2 /MOVE DEVICE NAME INTO "INQUIRE" COMTdAND

CDF CIF 10
JMS I (7700
10 /USRIN - FORCE USR INTO CORE
JMS I (200
12 /INQUIRE

Nl,
N2, J?

LOCI, j2f

JMP ASSERR /NO SUCH DEVICE - QUIT
TAD LOCI
SZA /IS THE HANDLER ALREADY IN CORE?
JMP I ASSIGN /YES - RETURN ITS ENTRY POINT
JMS GETPAG /GET A PAGE DYNAMICALLY
DCA L0C2

ASSTRY, TAD N2 /LOAD DEVICE NUMBER
JMS I (200
1 /FETCH

L0C2, j3f /PAGE TO FETCH INTO
JMP TWOPAG /FAILED - MUST BE A TWO-PAGE HANDLER
TAD L0C2
JMP I ASSIGN /RETURN ENTRY POINT

TWOPAG, JMS GETPAG /GET ANOTHER PAGE
ISZ L0C2 /SET "TWO PAGE HANDLER ALLOWED" BIT
CLA
JMP ASSTRY /FETCH WILL SUCCEED THIS TIME

. ASSERR, /ERROR ROUTINE

D-12

D.9 Available Locations in the USR Area

A few programs may need additional storage space in field 1

when the USR is in core. A number of locations in the USR area
ClOOOO to 11777) are available and may be used whenever the USR
is in core. The locations are as follows:

A. Locations 10000 to 10006 are available for scratch
storage and/or ODT breakpoint usage, without restriction.

B. All auto-index registers (locations 10010 to 10017) may be
used, but these locations are destroyed by USR operations.

C. Location 10020 to 10037 may be used as scratch storage
with no restrictions.

D. Locations 11400 to 11777 are used by the USR to preserve
the last directory segment read while performing a LOOKUP,
ENTER, or CLOSE operation. Location 10007 contains a key
specifying which segment of which device is currently in
core.

Any user program may use locations 11400 to 11777 as

scratch storage as long as location 10007 is set to

before the first use. Of course, the LOOKUP, ENTER, and
CLOSE operations will read a directory segment into 11400
to 11777 and set 10007 to a non-zero value again.

D-13

D.IO Accessing Additional Information Words in PS/8

In all of these cases, the USR must have been previously brought

into core with the USRIN function.

A. After a LOOKUP or ENTER

After a LOOKUP or ENTER, location 10017 points to the length word

of the file entry. To get a pointer to the first Additional

Information Word, a program would execute the following code:

CDF IjH

TAD I C14j?4 /GET # OF ADDITIONAL INFORMATION WORDS
/FROM DIRECTORY

SNA
JMP NONE /NO ADDITIONAL INFORMATION WORDS

TAD I (J^l^l?

DCA POINTER

"POINTER" now points to the first Additional Information Word.

B. After a CLOSE

Because CLOSE is a legal operation even if no output file is

present, it is not suggested that Additional Information Words

be modified following a CLOSE. To alter the Additional Informa-

tion Words of a permanent file, do a LOOKUP to get the directory

segment into core, then alter the words and rewrite the directory

segment.

C. Rewriting the Current Directory Segment

Whenever a user program changes the Additional Information Vfords,

of a file, it must rewrite the directory segment containing that

file entry in order to make sure the changes are permanently

recorded.

The following code, which must be in field 1, will rewrite the

current directory segment:

D-14

SEGNO

,

CDF Ipf

TAD 7

AND (7

DCA SEGNO
GIF
JMS I 51
421J2f

1400

JMP ERROR

/CODE IS IN FIELD 1

/GET DIRECTORY KEY WORD
/EXTRACT SEGMENT NUMBER

/LOC 51 POINTS TO THE DEVICE HANDLER
/WRITE OPERATION
/DIRECTORY SEGMENT CORE ADDRESS

/ERROR REWRITING DIRECTORY

Location 10051 will always point to the device handler entry point

used to read in the last directory segment, following a LOOKUP or

ENTER operation.

D-15

D.ll SABR Programming Notes

A. Optimizing SABR Code

There are two types of users who will be using the SABR assembler -

those who like the convenience of page-boundary-independent code

and are willing to pay the price for it, and those who need a

relocatable assembler but are still very location conscious. These

optimizing hints are directed to the latter user.

One way to beat the high cost of non-paged code is to Page It

Yourself. This is done by using the LAP (Leave Automatic Paging)

pseudo-op and the PAGE pseudo-op to force paging where needed.

This saves 2 to 4 instructions per page from elimination of the

page escape. In addition, the fact that the program must be

properly segmented may save a considerable amount.

Wasted core may be reduced by eliminating the ever-present CDF

instructions which SABR inserts into a program. This is done by

using "fake indirects". Define the following op codes:

OPDEF ANDI |2f4J2fJ?

OPDEF TADI 14^fH

OPDEF ISZI 24J?|?

OPDEF DCAI 3 4j2fJ2f

These codes correspond to the PDP-8 memory reference instructions

but they include an indirect bit. The difference can best be

appreciated by an example

:

If X is off-page, the sequence

LABEL, SZA
DCA X

is assembled by SABR into

D-16

LABEL, SZA
JMS 45
SKP
DCA I (X)

or four instructions and one literal,

The sequence

FX, X

LABEL, SZA
DCAI PX

assembles into three instructions for a saving of 40 percent.
Note, however, that the user must be sure that the data field
will be correct when the code at LABEL is encountered. Also
note that the SABR assumes that the Data Field is equal to the

Instruction Field after a JMS instruction, so subroutine returns
should not use the JMPI op code.

The standard method to fetch a scalar integer argument of a

subroutine in SABR is:

Code

lARG, DUMMY X

SUBR, BLOCK 2

TAD I SUBR
DCA X
INC SUBR#
TAD I SUBR
DCA X#
INC SUBR#
TAD I X
DCA lARG

X, BLOCK 2

This code requires 19 words of core and takes several hundred

D-17

microseconds to execute. The following sequence:

Code

lARG,
SUBR,

X,

BLOCK 2

TAD I SUBR
DCA X
INC SUBR#
TADI SUBR#
DCA lARG
INC SUBR#
HLT
TAD I lARG
DCA lARG

/THIS IS A CDF

takes only 14 words and executes in approximately 1/3 the time.

B. Calling the USR and Device Handlers from SABR code

One important thing to remember is that any code which calls the

USR must not reside in locations 10000 to 11777. Therefore, any

SABR routine which calls the USR must be loaded into a field

other than field 1 or above location 2000 in field 1. To call

the USR from SABR use the sequence:

CPAGE n
6212
JMS 7 7^?^

REQUEST
ARGUMENTS
ERROR RETURN

/N=7+(# OF ARGUMENTS)
/CIF lJ2f

/OR 2)2f0 IF USR IN CORE

/OPTIONAL DEPENDING ON REQUEST
/OPTIONAL DEPENDING ON REQUEST

To call a device handler from SABR use the sequence;

CPAGE 12
62p(2

JMS I HAND
FUNCT
ADDR
BLOCK
ERROR RETURN
SKP

HAND, J?

/l)2f IF "HAND" IN PAGE j?

/CIF
/DO NOT USE JMS

I

/"HAND" MUST BE ON SAME PAGE
/AS CALL, OR IN PAGE 01

[

D-18

APPENDIX E

CHARACTER CODES AND CONVENTIONS

Table E-1 contains a list of the control characters used by

PS/8 and associated system programs. Table E-2 contains

the PS/8 character set, which is a subset of the complete

ASCII code, the unlisted codes are generally not used by

PS/8 or the system programs. Note the following:

a. On some terminals, the character back-

arrow {<-) is replaced by an underline

(_) character, and the up-arrow (+) is

replaced by circumflex (^) .

b. Some terminals use parity codes rather

than forcing the leading bit of the 8-

bit character code to be a 1. To avoid

problems, PS/8 system programs always

ignore the parity bit during ASCII input.

c. PS/8 does not handle lower case charac-

ters (octal codes 341 through 372)

.

E-1

Table E-1

PS/8 Control Characters

Octal
8-bit
Code

Character
Name Remarks

200

2j2f3

217

225

232

null

leader/trailer

CTRL/C

2J37 BELL

211 TAB

212 LINE FEED

213 VT

214 FORM

215 RETURN

CTRL/0

CTRL/U

CTRL/Z

Ignored in ASCII input.

Leader/trailer code precedes and
follows the data portion of binary-
files.

PS/8 break character, forces re-
turn to Keyboard Monitor, echoed
as fC.

CTRL/G.

CTRL/I , horizontal tabulation.

Used as a control character by
the Command Decoder and ODT.

CTRL/K, vertical tabulation.

CTRL/L, form feed.

Carriage return, generally echoed
as carriage return followed by a

line feed.

Break Character, used conventionally
to suppress Teletype output, echoed
as to.

Delete current input line, echoed
as fU.

End-of-File character for all ASCII
and binary files (in relocatable
binary files CTRL/Z is not a termi-
nator if it occurs before the
trailer code)

.

E-2

Table E-1

PS/8 Control Characters

Octal
8-bit
Code

Character
Name Remarks

233

375

376

377

ESC

ALTMODE

PREFIX

RUBOUT

Escape replaces ALTMODE on some termi-
nals. Considered equivalent to ALTMODE,

Special break character for Teletype
input.

PREFIX replaces ALTMODE on some termi-
nals. Considered equivalent to ALTMODE,

Key is labeled DELETE on some terminals,
Deletes the previous character typed.

E-3

Table E-2

ASCII Character Codes

Octal Punched
8-bit 6-bit Card,^.

Code^-^'Code Code

24/3 40 blank
241 41 11-8-2
242 42 8-7

243 43 8-3

244 44 11-8-3
245 45 0-8-4
246 46 12
247 47 8-5

25)3 50 12-8-5
251 51 11-8-5
252 52 11-8-4
253 53 12-8-6
254 54 0-8-3
255 55 11
256 56 12-8-3
257 57 0-1

26(? 60
261 61 1

262 62 2

263 63 3

264 64 4

265 65 5

266 66 6

267 67 7

270 70 8

271 71 9

272 72 8-2

273 73 11-8-6
274 74 12-8-4
275 75 8-6

276 76 0-8-6
277 77 0-8-7

300 00 8-4

301 01 12-1
302 02 12-2
303 03 12-3
304 04 12-4
305 05 12-5
306 06 12-6
307 07 12-7

Character
Representa-
tion Remarks

space (non-printing)
! exclamation point
II quotation marks

niimber sign (1^)
#

$ dollar sign
% percent
& ampersand
1 apostrophe or acute

accent

+

/

1

2

3

4

5

6

7

8

9

>

@
A
B
C
D
E-

F
G

opening parenthesis
closing parenthesis
asterisk
plus
comma
minus sign or hyphen
period or decimal point
slash

colon
semicolon
less than
equals
greater than
question mark

at sign

E-4

Octal
8-bit
Code

Table E-2 (Cont'd)

ASCII Character Codes

6-bit
Code

Punched
Card
Code (1)

Character
Representa-
tion Remarks

31j3

311
312
313
314
315
316
317

10
11
12
13
14
15
16
17

12-8
12-9
11-1
11-2
11-3
11-4
11-5
11-6

H
I

J
K
L
M
N

320
321
322
323
324
325
326
327

20
21
22
23
24
25
26
27

11-7
11-8
11-9
0-2

0-4
0-5
0-6

P

Q
R
S
T
U
V
W

330
331
332
333
334
335
336
337

30
31
32
33
34
35
36
37

0-7
0-8
^"^

(5)12-8-2;^'
11-8-7^^^
0-8-2 , .

12-8-7^/'
0-8-5^-^'

X
Y
Z

[

\
]

opening bracket, SHIFT/K
backslash, SHIFT/l(8)
closing bracket, SHIFT/M
circumflex (?) „>

underline '

Footnotes

:

(1) These are the DEC029 standard card codes.
(2) On most DEC Teletypes circumflex is replaced by up-arrow (t).

(3) A card containing 0-8-5 in column 1 with all remaining columns
blank is an end-of-file card.

(4) On most DEC Teletypes underline is replaced by backarrow ("*") •

(5) On some IBM 029 keyboards this character is graphically repre-
sented as a cent sign (*).

(6) On some IBM 029 keyboards this character is graphically repre-
sented as logical NOT (-.) .

(7) On some IBM 029 keyboards this character is graphically repre-
sented as vertical bar (|) .

(8) On a very few LP08 line printers, the character diamond (o)

is printed instead of backslash.
(9) On a very few LP08 line printers, the character heart (o) is

printed instead of underline.
(10) The character number sign on some terminals is replaced by

pound sign (£)

.

E-5

APPENDIX F

DOCUMENTATION UPDATE FOR THE

8K PROGRAMMING SYSTEM USER'S GUIDE

This appendix contains two sections on new PS/8 system pro-

grams: PS/8 CREF, a cross reference listing program, and

LIB SET, a new program for building a library of FORTRAN sub-
routines .

F.l CREF, Cross-Reference Program (DEC-P8-YRXA-PB)

CREF is a PS/8 program which aids the programmer in writing,
debugging and maintaining assembly language programs. CREF

provides the ability to pinpoint all references to a parti-
cular symbol in assembly language programs. CREF operates on

output from either the PALS or SABR assemblers.

F.1.1 Loading, Calling, and Using CREF

In order to- load CREF, place the CREF binary tape (DEC-P8-

YRXA-PB) into the reader and load as follows:

.R ABSLDR
*PTR:/9$

where the $ character indicates typing of the ALT MODE key.

When the f character is printed, type any keyboard character
to initiate reading the paper tape. When reading is completed.
Keyboard Monitor responds with another dot. Type:

-SAVE SYS: CREF

and CREF is saved on the system device.

F-1

To call CREF from the system device, type:

•R CREF

where the . is the Keyboard Monitor active signal. The Com-

mand Decoder is then loaded and replies with a star at the

left margin. The user then enters one output file specifica-

tion and one input file specification.

NOTE

The input to CREF must be the listing pass
output from either assembler. If this is

not the case, CREF will not operate proper-
ly.

If no output file is specified, CREF assumes the output is to

be sent to the line printer. If no input file extension is

specified, the extension .LS is assumed. If no input speci-

fication is given, control returns to the Command Decoder un-

til an input file is specified.

An example of calling CREF is shown below:

.R CREF
*PTEMP

The Command Decoder prints *, CREF assigns LPT: as the output

device. The input file is DSK:PTEMP.LS. If the file PTENIP.LS

is not found, a search for DSK:PTEMP is attempted.

No output file extensions are appended. Options which can be

specified to CREF are described in Table F-1.

TABLE F-1

CREF OPTIONS

Option Code Meaning

/X Do not process literals. For programs with too

many symbols and literals for CREF, this option
may create enough space for CREF to operate.

F-2

Option Code Meaning

/R Interpret input as SABR code. Signal to CREF
to accept special SABR characters. Also, if
R is used, /X is forced on.

/P Disables pass one listing output. The output
is re-enabled when $ (or END if SABR code) is
encountered. Thus the $ (END) and symbol table
are printed if /P is used.

Examples of calling CREF are shown below.

.R CREF
*SBRLS/R

The line to the Command Decoder causes output to be sent to the

line printer. The input is expected to be a SABR listing file

named SBRLS.LS or SBRLS from device DSK:.

.R CREF
*DTA1:LIST< DTA3 :PALIST/X

The above line to the Command Decoder causes output to be sent

to DECtape unit 1, to a file named LIST. Input is expected to

be a PALS listing file called PALIST.LS or PALIST. No literals

appear in the CREF output table.

F.1.2 Interpreting CREF Output

The output from CREF consists of two parts. On the first pass

through the input file, CREF generates a sequence numbered list-

ing of the file. The sequence numbers are decimal. /P disables

this part of the output.

Following the listing, the cross reference table appears. This

table contains every user defined symbol and literal sorted

alphabetically. For each symbol, there appears a list of num-

bers specifying the lines in which that symbol is referenced.

F-3

If CREF finds too many references to fit in core at one time,

multiple passes are required to process all symbols. The mini-

mum number of passes is two. The maximum depends on two things:

a. Size of the input file, and

b. Amount of core available

CREF calculates the number of core fields available and uses

all available space for reference tables. If enough core is

not available, three or more passes are required.

For example, the current PS/8 SABR assembler (5518 source lines,

849 symbols) requires a total of four passes through CREF on

an 8K machine.

/EXAMPLE CREF OUTPUT PAL8-V6 PAGE 1

1 /EXAMPIjE CREF out:
2 0200 *200
3

4

5

/THIS IS WHAT TYP;

0200 1211 TAD Al
6)2f2/2ll 3212 DCA COUNT
7 |2f2)2(2 7001 lAC
8 02/2(3 7104 CLL RAL
9 0204 2212 ISZ COUNT

10 J2f205 5203 JMP .-2
11 J2f2j3f6 3213 DCA F2
12 J0207 1377 TAD (7777
13 i2(21i2f 7402 HLT
14 0211 7400 Al, -400
15 j2(212 0000 COUNT,
16 0213 0000 F2,
17 0377 7777
18 $

(FORM FEED)

/SET COUNTER

/EXAMPLE CREF OUTPUT PAL8-V6 PAGE 1-1

Al 0211
COUNT 0212
F2 0213

19

(FORM FEED)
Al 5 14#
COUNT 6 9 15#
F2 11 16#
L0377 12

F-4

Form feeds on the Teletype are converted to a series of carriage

return/line feeds and a dotted tear line. Notice that in the

CREF table the line where the symlsol is defined is followed by

a #. Symbols defined by OPDEF or SKPDF in SABR and all literals

do not have a # following them.

F.1.3 CREF Pseudo-Ops

CREF recognizes the pseudo-ops of the assembler whose output it

is processing. Certain pseudo-ops cause CREF to perform actions

similar to those taken by the assembler.

PAL8 Pseudo-Op

EXPUNGE

FIXTAB

TEXT

$

SABR Pseudo-Op

END

OPDEF

SKPDF

TEXT

Action Taken by CREF

CREF purges its current symbol table of all
permanent and user defined symbols. If any
literals were in the table they are not de-
leted.

Causes all symbols (except literals) to be
marked as permanent symbols. After a FIXTAB,
no references to previously defined symbols
will be reported by CREF.

Ignores characters between delimiters.

End of input signal.

Action Taken by CREF

End of input signal.

Creates a new permanent symbol, a non-skip
type instruction.

Creates a new permanent symbol, a skip-type
instruction.

NOTE

Symbols entered by OPDEF and SKPDF are
processed by CREF. All references to
these defined symbols are listed. How-
ever, no reference is flagged as a defini-
tion (i.e. , no reference is followed by
a # in the CREF listing)

.

Ignore characters between delimiters.

F-5

F.1.4 Restrictions

CREF has the following restrictions:

a. Input format — CREF can only detect errors of a
simple form (described below) . If the input is
neither a PALS or SABR listing file, the results
of CREF are unpredictable in the cross reference
table.

b. CREF can handle a maximum of 896 (decimal) symbols,,
In 8K, PALS is limited to 89 7 symbols while SABR
is limited to fewer than 800 symbols. If more than
896 symbols are found, an error message is generated.

c. If any symbol in the input file has more than 2044
(decimal) references, an error message is generated.

d. If more than 8192 (decimal) source lines are input,
sequence numbers return to 4096, not 0.

e. If the /X option is used in PALS (to generate a DDT
compatible symbol table) and the output listing is
put through CREF, no symbol table listing will ap-
pear.

f. Use of semi-colons — This is a restriction which,
when not observed, could cause errors in the CREF
table. It is recommended that the user follow
these suggestions when preparing source files to
insure a proper CREF listing.

1. Semi-colons should not be used on lines
with pseudo-ops. In particular, a com-
bination such as the following must not
be used:

*3j

TEXT %ERROR% ; TAD [42

In this case, CREF does not process the
page zero literal properly. A literal
is generated which is derived from the
expanded TEXT message. No error message
is generated, but the literal table entry
is meaningless.

F-6

2. When using conditional code a good rule to

observe is to not use semi-colons inside
conditional code. For example:

EXOR =
IFNZRO EXOR <CLA;TAD B; HLT /ERROR>
/THIS IS THE NEXT LINE PAST IFNZRO

The conditional code is not assembled but
CREF does not realize that and does try to

process the bracketed instructions. As a

result of these semi-colons, extra symbols
may be processed and some valid references
missed. If the code had been assembled,
however, CREF would operate properly.

There are two solutions to this restriction:

Write straight line code:

EXOR =
IFNZRO EXOR <

CLA
TAD B
HLT ERROR
>

or use XLIST around conditional code, in the
above example:

IFZERO EXOR <XLIST>
IFNZRO EXOR <CLA;TAD B ; HLT/ERROR>
IFZERO EXOR <XLIST>

XLIST turns off the listing if the code does
not assemble and turns it back on after the
conditional code.

h. Formats — There are several output formats that can be

used in generating a PALS listing file:

/T Form feeds converted to carriage return/
line feeds

/H No headings or form feeds generated

/D DDT compatible symbol table is generated.

For best results with CREF, none of these switches _ should

be used. This generates a heading and form feeds in the

output. CREF automatically converts form feeds to carriage
return/line feeds if output is to the Teletype.

F-7

F.1.5 CREF Error Messages

CREF errors are non-recoverable errors, and control returns

to the Keyboard Monitor through 07605 (no core saved) . CBEF

is not restartable and typing START results in

NO! !

being printed as a reply.

Error Message

SYM OVERFLOW

ENTER FAILED

OUT DEV FULL

CLOSE FAILED

INPUT ERROR

DEV LPT BAD

2045 REFS

HANDLER FAIL

Meaning

More than 896 (decimal) symbols and liter-
als were encountered.

Entering an output file was unsuccessful,
possibly output was specified to a read
only device.

The output device is full (directory de-
vices only)

.

CLOSE on output file failed.

A read from input device failed.

The default output device, LPT, cannot be
used as it is not available on this system.

More than 2044 (decimal) references to one
symbol were made.

Fatal error on output. Can occur if either
the system device or the selected input de-
vice is write locked.

F-8

F.2 LIBSET (DEC-P8-SYXB-PB)

LIBSET, the FORTRAN Library Setup program, creates a library

of subroutines from the relocatable binary output of SABR.

These library files can be quickly and efficiently scanned by

the Linking Loader saving a great deal of time in loading

frequently used subroutines. How the LOADER uses relocatable

library files, including automatic loading the LIB8.RL file

and the /L option, is described in the 8K Programming System

User's Guide .

F.2.1 Loading, Calling, and Using LIBSET

The LIBSET program is available from the Program Library on

binary paper tape CDEC-P8-SYXB-PB) . In order to load LIBSET,

place the binary tape into the reader and load as follows

:

.R ABSLDR
*PTR: = 1260j3$

where the character $ indicates typing of the ALT MODE key.

When the i character is printed, type any keyboard character

to initiate reading of the paper tape. When reading is com-

pleted, the Keyboard Monitor responds with another dot. Type:

.SAVE SYS: LIB SET

and LIBSET is saved on the system device.

To call LIBSET from the system device, type:

•R LIBSET

F-9

in response to the dot printed by the Keyboard Monitor. The

Command Decoder then prints a star at the left margin of the

teleprinter paper and waits to receive a line of input. The

general form of input required to build a library file is:

*output<(input file list)
* (additional input f iles)

$

No more than nine input files are allowed on any one line, but

several input lines can be entered. The last input line must

end with the user typing the ALT MODE key (which echoes as $)

.

Only the first line can contain an output file. If no output

file is specified a file named LIB8.RL is created on the sys-

tem device. The assumed extension for both input and output

files is .RL.

NOTE

Files output from LIBSET are in a special re-
locatable library format and must not be copied
with the /B option in PIP. Instead they should
be copied by PIP in image (/I) mode.

TABLE F-2

LIBSET OPTIONS

Option Code Meaning

/S The /S option means that all input files on a
line are to be regarded as containing more
than one relocatable binary file. (This is
analogous to the /S option in ABSLDR.

)

NOTE

If /S is used on a line that contains no in-
put files, input from PTR: is assumed.

F.2.2 Examples of LIBSET Usage

Example 1

;

*DTA2iSUBS<DTAl:SUBl,SUB2,SUB3,PTR;
't' *SYS : FUNCl , FUNC 2 . V5 $

F-10

This example creates a relocatable library file on DTA2 named

SUBS.RL. This library will contain six FORTRAN (or SABR) sub-

routines built by combining the relocatable binary file SUBl.RL,

SUB2.RL, and SUBS.RL from DTAl together with one relocatable

binary paper tape (note the i printed by PS/8 before loading

from PTR:) and the files FUNCl.RL and FUNC2.V5 from the system

device.

Example 2

;

*AS IN, ACQS
'

*/S$ +

Since no output file was specified this example creates a

relocatable library file LIB8.RL on the system device. This

produces a new FORTRAN Library including the subroutines con-

tained in the files ASIN and ACQS on device DSK, and several

subroutines combined on a single paper tape loaded from the

high-speed reader.

F.2.3 Subroutine Names

It is important to distinguish between the PS/8 file name of

a relocatable binary program and its assigned Entry Point Name.

The file name has meaning only to the Command Decoder, the

Entry Point Name (or Names) are the true subroutine names that

are meaningful to the LOADER.

Further details on the format of relocatable binary files and

relocatable library files can be found in Appendix A.

F.2.4 Sequence for Loading Subroutines

LIBSET can combine files in any sequence to form a relocatable

library file. However, the subroutines in any single library

are loaded by the LOADER in the order in which they were origin-

F-11

ally specified to LIBSET. Therefore, it is important to

make sure that subroutines are specified in order of size,

with the largest subroutine being loaded first. If this is

not done, cases can occur in which insufficient core is avail-

able in any single field to load a large subroutine, whereas

space would have been available if the subroutine had been

loaded earlier.

F.2.5 LIBSET Error Messages

All errors are fatal. LIBSET recalls the Keyboard Monitor

upon encountering any of the following error conditions.

LIBSET must be rerun in order to try again.

Error Message Meaning

BAD FORMAT OR CHECKSUM - TRY AGAIN Error in reading relocat-
able binary file.

ERROR WHILE WRITING OUTPUT FILE

INPUT ERROR

LIBRARY DIRECTORY OVERFLOW

Fatal output error occurred.

Parity error on input.

Too many subroutines were
specified. Every subrou-
tine name in the input file
requires four words, and
every relocatable binary
file read requires two words.
If the total number of words
exceeds 250, the library
must be split into two separ-
ate files.

F-12

Additional Information
Words, 1-4, 1-5, 2-9, D-14

Alphanumeric options, command
decoder, 3-3

ASCII
character codes, E-4
files, A-5

ASSIGN entry, B-4
asterisk symbol (*), 3-1, 3-10
Auto-index registers, D-13

Binary files, A-5
Blocks

core control, 1-5
DECtape, 1-3
LINCtape, 1-3
logical, 1-3
physical, 1-3
standard size, 1-3

Calling
command decoder, 3-4
command decoder special mode, 3-1
CREF, F-1
device handlers, 4-1
USR and device handlers

from SABR code, D-18
User Service Routine, 2-1, 2-3

Card Reader handler modifica-
tion, D-2

Card Reader (CDR) operations, 4-7
Carriage return/line feed sup-

pression in FORTRAN, D-5
CDF instructions, 2-2
CDR, see Card Reader
CHAIN function, 2-4, 2-13, 2-14

core area alteration, 2-14
data passing, 2-14
monitor error, 2-13

Character codes and conventions, E-1
ASCII, E-4

Characters, lower case, E-1
Checksum errors, 5-10
CIF instructions, 2-2
Circumflex, E-1
CLOSE function, 2-3, 2-10, 2-11,

2-12, A-3, D-14
Code relocation, D-9
Command decoder subroutine , 1-2

,

3-1, D-2
calling, 3-4
command line format, 3-1
conventions, 3-1

error messages, 3-3, 3-4
errors, C-5
example command line, 3-8
input file format, 3-2, 3-3
input files, 3-6
legal device names, 3-3
option table, 3-7
output file format, 3-1, 3-2
output files, 3-5
special mode, 3-9, 3-10
tables, 3-5
termination, 3-3

Command line format, 3-1
Components, PS/8 system, 1-1
Conditional assembly of CONFIG, 5-1
CONFIG, D-2
CONFIG. PA source file, 5-1

conditional assembly, 5-1
device handler code, 5-3
optional device parameters, 5-3
other options, 5-5
system device selection, 5-2

Control characters, E-2 , E-3
Conversion PS/8 DECtapes to PS/12

LINCtapes, D-10
Co-resident handlers, 5-10
Core

area, CHAIN, 2-14
image (.SV format) files, A-6
segment doublewords format, A-7
size PDP-8 computers, D-7
size, subroutine to determine, D-8

Core control block, 1-5,-6,-7, A-6
format, A-6
Job Status Word, 1-5, 1-6
starting address, 1-5, 1-6

CREF, Cross Reference Program, F-1
calling and loading, F-1
error detection, F-6
error messages, F-8
examples, F-2, F-3
formats, F-7
options, F-2, F-3
pseudo-ops, F-5
restarting, F-8
restrictions, F-6
using, F-1

CTRL/C, 1-1
Current directory segment, re-

writing, D-14

X-1

Data field, 2-2
Data passing, CHAIN, 2-14
DATE

command, 1-5
system word, 1-5, 2-9
system word (FORTRAN) , D-6

DEASSIGN corainand, B-4
DECj2f29 standard card code, D-2
DEC026 standard card code, D-2, D-4
DECODE function, 2-4, 2-12, 2-13,

3-4
monitor error, 2-13
normal return, 2-13

Decoder, Command see Command
decoder subroutine

DECtape to LINCtape conversion, D-10
DECtape
operations, 4-7
system, 5-3
system building, 5-7

DEVICE pseudo-op, 1-8
Device control word table, B-6
Device dependent operations, 4-4
Device handler

adding new, 5-7
call format, 4-2
call sequence, 5-8, 5-9
code, 5-3
editing into CONFIG, 5-12
errors, 5-9
information table format, B-5,-6
loading, 2-5, D-11, D-12
residency table, B-5
standards, 5-9, 5-10
writing, 5-8
utilization, 1-2

Device handler usage, 4-1
calling device handlers, 4-1, 4-2
card reader, 4-7
device dependent operations, 4-4
file structured devices, 4-7
high-speed paper tape punch, 4-5
high-speed paper tape

reader (PTR) , 4-5
line printer, 4-6
TTY, 4-4

Device length table, B-7
Device parameters, optional, 5-3
Devices, file structured, 1-3
Device names, B-4

assumed, D-2
command decoder, 3-3
and numbers, 1-7, 1-8
selection, 5-13

DF32 Disk system, 5-2
operations, 4-7

DIRECT option, 5-5
Direct calling sequence, USR, 2-2
Directory block

example, A-9
structure, A-1

Directory
entries, A-2
file, A-1
fragmentation. A-

4

sample, A-4
segment, rewriting current, D-14

DSK, Default file storage device, D-^

Editing device handlers into
CONFIG, 5-12

Empty file, 1-4, A-2
End-of-file condition, command

decoder, 3-7
ENPUNCH, D-8
ENTER function, 2-3, 2-8, 2-9, 3-6

D-14
error return, 2-9, 2-10
normal return, 2-9

ERROR function, 2-4, 2-14
Error messages

command decoder, 3-3, 3-4
CREF, F-8
LIBSET, F-12
Monitor, 2-15
summary, C-1

Error return
CLOSE, 2-11, 2-12
device handler, 4-3
ENTER, 2-9
FETCH, 2-6
INQUIRE, 2-18
LOOKUP, 2-7, 2-8

Errors
checksum, 5-10
command decoder, C-5
CREF, F-6
keyboard monitor, C-4
parity, 5-10
USR, C-2

Example
command line, 3-8
reconfiguration, 5-6

Exit, system, 1-1
Extensions, file names and, 1-2

X-2

FETCH conunand, D-11
FETCH function, 2-3,-4,-5,-6, 4-1
File

formats, A-

5

number, A-3, A-4
size, A-3, A-4
starting block, A-3

Files, 1-2
ASCII, A-5
core image (.SV format), A-6
data format, 1-2
directories, 1-4
empty, 1-3, A-

2

multiple input, D-11
names and extensions, 1-2
permanent, 1-4, A-2
relocatable FORTRAN library. A-

8

system device (SYS:), 1-3
tentative, 1-4, A-3
types, 1-3

FILENAME pseudo-op, 1-8
File structured devices, 1-3
File structured devices operation

4-7, 4-8
File structures, A-1

ASCII, A-5
binary , A-5
directories, A-1
formats, A-5
relocatable FORTRAN library. A-

8

Formats
command decoder option table, 3-7
CREF, F-7
file data, 1-2

FORTRAN
carriage return/line feed sup-
pression, D-5

8K, D-12
library file, relocatable, A-8
Library Setup program, F-9
program system date, D-6
run time I/O routines, 5-4

Halt
LOADER program, C-2
system, C-1, C-2

High speed paper tape punch (PTP)
operation, 4-5, 4-6

High speed paper tape reader
(PTR) operation, 4-5

Indirect calling seauence USR, 2-2

Information words, additional, 1-4,
1-5

Input file format, command
decoder, 3-2, 3-3

format, 3-6
Input tables, command decoder, 3-7

special mode, 3-10
INQUIRE function, 2-4, 2-17, 2-18
Instruction field, 2-2

Job Status Word, 1-6
format, A-6

Keyboard monitor, 1-1
calling, 1-1
errors, C-4

LAP (Leave Automatic Paging
pseudo-op) , D-16

Layout of resident program, B-2
Layout of system, B-1
LIBSET, FORTRAN Library Setup

Program, F-9
calling, F-9
copying LIBSET files, F-10
error messages, F-12
examples, F-10, F-11
loading, F-9
loading sequence, F-11
options, F-10
subroutine names, F-11
using, F-9

LINCSYS, 5-2, 5-3
LINCtape

handlers, 5-4
operation, 4-7
system building, 5-7

Line printer (LPT) operation, 4-6
LOADER program halt, C-2
Loader control words, A-8, A-9
Loading

CREF, F-1
device handlers, D-11
device handlers dynamically, D-12

Logical end-of-file, device
handler, 4-3

LOOKUP function, 2-3, 2-7, D-14
Lower case characters, E-1
Low-speed paper tape, 5-4
LP12 line printer, type 645, 5-4

X-3

Masking, 1-2, 4-1
Maximum number of files, A-4
Maximum size of file, A-4
Monitor error,

CHAIN, 2-13
CLOSE, 2-13
ERROR, 2-15

Multiple input files, D-11

Names
device, 1-7, 1-8, B-4
file, 1-8

Normal return,
CLOSE, 2-11
ENTER, 2-9
FETCH, 2-6
INQUIRE, 2-17, 2-18
LOOKUP, 2-7
RESET, 2-19

Null files, 3-3
Number and size of file, A-3
Numbers, device, 1-7, 1-8
Number symbol (#) , F-5
Niomeric options, command

decoder, 3-3

ODT breakpoint, CHAIN, 2-14
ODT breakpoint usage, D-13
Operating command decoder in

special mode, 3-10
Optional device parameters

CONFIG, 5-3
Options , command line

alphanumeric, 3-3
numeric, 3-3

Option tables, command decoder, 3-7
special mode, 3-10

Output files, command decoder, 3-5
format, 3-1, 3-2

Output table, command decoder
in special mode, 3-10

Program starting address, 1-6
format, 1-6
START command, 1-6

PRTC12-F program, D-10
Pseudo-ops, CREF

PAL8, F-5
SABR, F-5

PTP see High-speed paper tape
punch

PTR see High-speed paper tape
reader

PUNCH feature, D-9

R command. A-

7

Record, definition of, 4-1
Record transfer, 4-1
Reconfiguration, 5-1

adding new device handlers, 5-7
building system on DECtcipe or

LINCtape, 5-7
editing device handlers into

CONFIG, 5-12
example, 5-6
writing device handlers, 5-8

Relocating code, D-9
RESET function, 2-4, 2-18, 2-19

deleting tentative files, 2-19
normal return, 2-19

Resident program layout, B-2
Restarting CREF, F-8
Restrictions

command decoder in special
mode, 3-10

device handlers, 4-3
USR calls, 2-2

Rewriting current directo3:y seg-
ment, D-14

RF)2f8 disk system, 5-2
operations, 4-7

RK8 disk system, 5-2
operations, 4-7

RUN command. A-

7

PAGE pseudo-op, D-16
PAL8, CREF pseudo-ops, F-5
Parity

codes, E-1
error, device handler, 4-3
errors, 5-10

PDP-12 LINCtape system, 5-2
Permanent device name table, B-3
Permanent file, 1-4, 2-10, A-2
Permanent file entry, 2-7

/S (compress device) option, B-8
SABR

code, D-16
code, calling USR and device

handlers, D-18
CREF pseudo-ops, F-5
programming notes, D-16

Sample directory, A-4
SAVE command, 1-5, 1-6
Segment header, A-1

X-4

Semicolons, CREF, F-6, F-7
Special mode of the command de-

coder, 3-9, 3-10
START command, 1-6, 1-7
Storage space USR area, D-13
.SV (core image) file, 1-5, A-6
Subroutine to determine core

size, D-8
Summary USR functions, 2-3

CHAIN, 2-13
CLOSE, 2-10
DECODE, 2-12
ENTER, 2-8
ERROR, 2-14
FETCH, 2-4
INQUIRE, 2-17
LOOKUP, 2-7
RESET, 2-18
USRIN, 2-15
USROUT, 2-16

Syntax error, command line, 3-3
SYS, D-2
System
building on DECtape or LINC-

tape, 5-7
DATE, 1-5, 2-9
Date word, 1-5
Date word, FORTRAN, D-6
device selection, CONFIG, 5-2
device (SYS:), 1-3
device tables, B-3
exit, 1-1
layout, B-1
scratch blocks

Up arrow character (f) , 5-5
User device name tables, B-4, B-5
USR (User Service Routine) 1-2

area storage space, D-13
calling, 2-1
direct calling, 2-2
ERROR, C-3
function summary, 2-3
indirect calling, 2-2
restrictions, 2-2

USRIN function, 2-3, 2-4, 2-15, 2-16
USROUT function, 2-4, 2-14, 2-16

Write lock error, device handler,
4-3

/X option, CREF (PALS) , F-6

B-1,
software components

,

B-2
1-1

Tables
permanent device name, B-3, B-4
system device, B-3
user device name, B-4, B-5

Table lookup example, 5-11
Teletype (TTY) operation, 4-4, 4-5
Tentative file, 1-4, 2-10, A-3

deletion, 2-19
entry, 2-8

Termination, command decoder, 3-3
Terminology, 1-1
TTY see Teletype

X-5

Digital Equipment Corporation PIIIHIinilll
IVIaynard, IVIassachusetts EIDSuDull

printed in U.S.A.

