
. mnamo

;

J

Copyright {§) 1970

DEC-12-FZDA-D

1st Printing May 1970

by Digital Equipment Corporation

The material in this handbook, including but not limited

to instruction times and operating speeds, is for informa­

Lion purposes and is subject to change without notice.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC

FLIP CHIP

DIGITAL

PDP

FOCAL

COMPUTERLAB

For additional copies, order DEC-12-FZDA-D from

Digital Equipment Corporation, Program Library, Maynard,

Massachusetts, 01754. Price $1.00

TABLE OF CONTENTS

1. 0 Program Overview 1

2.0 Environment 1

3.0 Usage 1

4.0 Description of the Routines 3

4.1 LOOKUP 3
4.2 ENTER 4
4.3 REPLACE 4
4.4 FCF 8
4.5 DELETE 9

i

1.0 PROGRAM OVERVIEW

MILDRED (~ultiple .:ipdex ~ookup, ~eletion, Replacement and Entry: Disk) is a set

of PDP-12 subroutines for manipulation of ~AP6-DIAL1/DIAL-~S index;s.

There are three levels of routines, with provision for a routine at any but the

lowest level to call any routine of lower level. There is no provision for

reentrance or recursion, but the routines are serially reusable (except for

REPLACE, as explained later).

Locations 20 to 27 contain DJR, JMP pairs to the entry points of each major

routine, so that the coding can be modified without changing calls in external

routines.

2.0 ENVIRONMENT

MILDRED occupies two tape blocks and, when in core, uses four LINC memory blocks

(2~00 8 words), including space for the index. The routines are segment­

independent, but must be loaded at a segment boundary. Thus memory addresses of

20~~. 4~00, 14~0~, etc., can be used, but 2499 or 3999 may not. MILDRED requires

that the DIAL-MS I/O routines (blocks 322 and 323 of DIAL) reside in field 1,

76~~-7777. Because the disk data break locations (775~-7751) are in seqment 3,

MILDRED must not be used in segment 3 (i.e. field 0, 6~~0-7777) when attempting

to do disk operations with DF32 or RS08 disks. In this discussion, all locations

are relative to the segment into which MILDRED is loaded.

3.0 USAGE

3.1 The user's program must load MILDRED from a DIAL tape, add it to his program

with Add Binary, or assemble it with his program, at any memory address which is

a multiple of 2000 8 . It may then be reused until it is overlaid. He must also

load the DIAL-MS I/O routines from tape 0 before using MILDRED. The DIAL-MS I/O

routines may be loaded as follows:

LDF 7
RDC
6/322
RDC
7/323

3.2 Entry points for the routines of MILDRED start at location 2~ of the segment

into which MILDRED IS loaded, as follows:

20 - LOOKUP

22 - ENTER

24 - REPLACE

26 - DELETE

1LAP6-DIAL is hereafter referred to as DIAL.

1

3.3 LOOKUP, ENTER, and DELETE are called as follows:

LIF X
LOA I
FDV
JMP 2,0 (JMP 2 2 I

FDV, UNIT
TEXT "NAME????"

TYPE

START

LEN

/SEGMENT WITH MILDRED
/AC: POINTER TO FILE DESCRIPTOR VECTOR
/GO TO LOOKUP (ENTER, DELETE)

26)

/UNIT ,0-17 (SAME AS DIAL-MS UNITS)
/FILE NAME, ENDING WITH 77'S
/TO FILL FOUR WORDS (8 CHARS)

/,0,023 FOR SOURCE, ,0,0,02 FOR BINARY

/STARTING BLOCK NO. OF FILE:
/FILLED BY LOOKUP, ENTER, REPLACE,
/OR DELETE

/LENGTH OF FILE IN BLOCKS: FILLED IN
/BY LOOKUP, CALLER MUST SUPPLY IN
/ENTER-REPLACE, UNUSED BY DELETE

a) LOOKUP has two returns; the first, immediately following JMP 2,0,

is taken if there is an error in the parameter list, or the named file

is not found. The second, two words after JMP 2,0, is taken if the file

is found, indicating that the information in the file descriptor vector

is correct.

LIF X
LOA I
JMP LOOKUP
JMP NOFIND

/GO FIND THE FILE
/lST RETURN FILE DOESN'T EXIST
/COME HERE WHEN FILE IS FOUND

b) ENTER has three returns; the first is taken if there already

exists a file of 1he same name and type. The second is taken on errors

in parameter list or insufficient space, either in file space or in the

index. The third indicates successful updating of the index.

LIF x
LDA I
FDV
JMP ENTER
JMP EXISTS
JMP NOS PACE

/SEGMENT CONTAINING MILDRED
/POINTER TO PARAMETER LIST

/GO ENTER FILE IN INDEX
/lST RETURN - FILE ALREADY EXISTS
/2ND RETURN - NO SPACE FOR FILE
/COME HERE ON SUCCESSFUL COMPLETION

Note that the largest file which can ever be stored on a DIAL tape is

310 blocks, because that is the length of the largest file area.

2

c) DELETE has only one return, immediately following the JMP 26.

3.4 REPLACE may be called only immediately after a call to ENTER which

took the second return. The parameter list need not be explicitly indi­

cated - REPLACE uses that from the preceding ENTER. But the instruction

field must be set again.

There are two returns; the first is taken on error in calling sequence

or insufficient space. (This can never occur if the new file is smaller

than or equal to the old file). The second indicates successful replac­

ing of the old file entry.

LIF X
JMP REPLAC
JMP NOSPAC

/SEGMENT CONTAINING MILDRED
/ENTER FOUND A FILE OF SAME NAME
/NO SPACE FOR NEW ONE
/COME HERE ON SUCCESSFUL REPLACE

If REPLACE is not able to find space for a new file, the old file re­

mains intact.

If the call to REPLACE is not immediately preceded by a call to ENTER

which returns indicating the file exists, the machine will halt and

MILDRED must be reloaded.

4.0 DESCRIPTION OF THE ROUTINES:

4.1 LOOKUP: (Level 2, entry point 21) RET3 (Beta 15) is set to 7777

to indicate external call. Internal calls enter immediately following

this point, at LKPS~~. Here, the return JMP is saved at RET2 (Beta 16).

The current instruction fiell is obtained and used to set the address

into which the index will be read. The caller's fields are saved and

used to set the data field for MILDRED to enable examination of the

I l ' 1 h' h • h user s parameter ist. Parameters are set up for READ, w ic is t en

called to bring in the index. Upon return, the index is checked for

validity (5757 in first word). If invalid, an empty index is built in

core by storing 5757 in each word (from lSSS to 1777), and the error

return is taken.

At LKPS2S, the name in the user's parameter list is compared with each

name in the index until a match is found or the end of the index is

reached. In the latter event, the error return is taken. If a match

is found, the type code in the user's parameter list is compared to 23

(S) and ~2 (B). If neither, the error return is taken. S causes a jump

1
DIAL-MS READ routines.

3

to WNTS; B jumps to WNTB, which increments the pointer to the index entry

by two and flows into WNTS.

Here RET3 is tested for internal or external call; if internal, RET2, the

return JMP, is incremented to allow the caller to distinguish between

those cases in which there was a successful name match, but no file of the

requested type, and those cases in which the name match was unsuccessful.

The starting block number of the file is then moved to the user's parameter

list. The length is then picked up and tested to see whether or not there is a

file of the requested type. If not, the length will be 5757, and the

error return will be taken. If the requested file exists, RET3 is tested

to check for external call. If external, the length is stored. The re-

turn address is then incremented to indicate a successful find, and LOOKUP

jumps to ERRTN. There, RET3 is tested again. If the call is internal,

return is immediate.

fore returning.

If external, LOOKUP restores the user's fields be-

4.2 ENTER (Level 3, Entry Point 22) Starting at NTR$$$, the return JMP

is saved in RET3 (Beta 15). LOOKUP is called at its internal entry point

LKP$$$. Because this is an internal call, there are three returns. The

first, indicating that there was no name match, jumps to NTR2, where

MARK (Beta 1$) is set to 7777 to indicate no name match, and flows to

NTR3, which increments the return address, there being no conflict with

existing files. From there, control flows in to FSP$$$ to find space for

the file. Subsequent processing is in common with REPLACE, and is described

below. The second return indicates that the name was found, but not with

the requested file type. A pointer to the matching entry is saved at MARK,

and ENTER jumps to NTR3 to increment the return JMP. The third return

from LOOKUP indicates that the named file exists. A pointer to its index

entry is saved at MARK, ENTSW (Beta 11) is set to 1776 to allow a REPLACE

to follow, and the first return is taken by going to RTRN$.

4.3 REPLACE: (Level 3, Entry Point 24) starting at RPL$$$, the return

JMP is saved at RET3 (Beta 15), and ENTSW (Beta 11) is tested for 1776

(indicating that ENTER found a file conflict). Any other value indicates

a user error, and the program halts. The LDF instruction at GTF1 is then

moved into the instruction stream to again. setthe data field appropriately

for the user's parameter list, the length field for this file in the index

is set to 5757 to eliminate the old file, and REPLACE jumps to FSP$$~ to

find space for the file. From this point, processing is in common with

ENTER.

4

The search for file space is performed in two steps; first, a scan is

made to find any suitable space in the lower file area. The result, if

any, is saved; then a scan of the upper area is made. Because the index

is below the middle of the tape, the result of a successful scan of the

lower file area can be used to calculate an upper limit for scanning in

the upper file area. Beyond this limit, any suitable file space would

not be used, since the suitable space in the lower area is closer. Con­

versely, any space found in the upper area before reaching this limit must

be closer to the index than the space found in the lower area. Use of this

algorithm eliminates, therefore, the need to compare two possible spaces

for closeness to the index, and generally shortens the scan of the upper

file area.

Scanning itself is performed by the conflict-search routine, FCT, as

follows:

A tentative starting block (TRY) and the length of the desired file

(TRYLEN) are set up. Each non-empty index entry is compared to TRY by

subtracting its starting block from TRY. If the result is negative, the

file specified by this index entry starts at or above TRY. If adding

TRYLEN still gives a negative result, the file starts above the end of

the tentative file, and there is no conflict. The scan continues to the

next index entry.

If there is a conflict, control is returned to the caller to set a new

TRY.

If subtracting the starting block from TRY yields a positive result, TRY

is above the file specified by this entry, by the value of the result.

In other words, AC contains the distance between TRY and the file concerned.

This distance is subtracted from the length of the file in question. Here,

a negative result implies no conflict, and the scan continues with the next

index entry. A positive result represents a conflict, and control returns

to the caller.

During the scan of the lower area, TRY moves downward (away from the index).

Each time a conflict is found, a new TRY is calculated by subtracting TRYLEN

from the starting block of the file causing the conflict. This is the high­

est possible starting block which will not cause a conflict with this par­

ticular file. The conflict search routine is called again, and the whole

process repeated. Thus, the maximum number of iterations is the number of

5

files in the lower file area. During the scan of the upper area, the

process is equivalent, except that TRY moves upward. When a conflict

is found, a new TRY is calculated as the sum of the start and length of

the file in conflict.

In detail, the search is performed as follows:

A SKIP-IF-NEGATIVE instruction (APO I) is moved to FCF~S~ in the con­

flict search routine to make it ignore any files in the upper file area.

A pointer to the start block field of the user's parameter list is

saved at LPl (Beta 8). The user's length request is picked up, tested

for validity (zero or negative lengths cause a jump to RTRN~, indicating

error), and saved at TRYLEN. The length is then subtracted from 27~,

to give the block number of highest starting block in the lower file

area which could satisfy the request.

This value is in the AC at FSP~l~, the beginning of the search loop for

the lower file area. It is tested to assure that this starting block

is positive (i.e., that it is on the tape). If not, there is no space

large enough for the file in the lower area, and a jump FSP~2~ is taken.

If the starting block is positive, it is stored at TRY, and the conflict

search routine, FCF, is called. Return is to a JMP FCF~3~ if no file in

the index would overlap one which started at the block number in TRY.

If a conflict is found, the second return is taken from FCF; in this case,

TRYLEN is subtracted from the starting block number of the file which con­

flicts with TRY. This value is in the AC when FSP jumps to FSP~l~ to make

another search.

The code at FSP~2~ is entered, as described above, when TRY goes negative

before an acceptable space is found indicating that there is insufficient

continuous file space in the lower area for a file the size of TRYLEN.

NFSW (Beta 12) is set to zero to indicate this. The last block number

on the tape is subtracted from TRYLEN and stored at UPLIM so that UPLIM

contains the complement of the highest possible starting block which

would permit a file of the desired size to fit on the tape. FSP then

jumps to FSP~35 to scan the upper file area.

The code at FSP~3~ is entered when FCF is unable to find a file which

overlaps with one starting at TRY, thus TRY contains the starting block num­

ber of a space in the lower file area large enough to accommodate the de­

sired file. NFSW is set to 7777, indicating space was found in the lower

area. TRY is saved at SVTRY. The distance between this space and the

6

index is [346 - (TRY+ TRYLEN - 1)). The block as far from the index in

the upper file area is this number +347. The complement of the latter

result is calculated and stored at UPLIM. Thus the search of the upper

file area can be stopped and considered unsuccessful if no space can be

found closer to the index than the space already found in the lower area.

At this point 1control flows into FSP035, and processing is the same whether

space was found in the lower area or not.

A SKIP-IF-POSITIVE instruction (APO) is moved to FCF050, to cause files

in the lower area to be ignored during the conflict search. The AC is

initialized to 470, the first block of the upper area, and the upper area

scan is begun at FSP040. The AC is stored at TRY, then added to UPLIM.

If the result is positive, TRY is too large to be useful because it repre­

sents the starting block of a file which would run off the end of the tape,

or it is farther from the index than the space found in the lower area. A

jump is therefore taken to FSP050, which tests NFSW for a find in the lower

area. If none, there is no space, and an error return is taken via RTRN0.

If NFSW is set, however, the starting block at SVTRY is restored to TRY,

and control flows to FSP060.

If the sum of TRY and UPLIM was negative or zero (zero result will always

be negative), FCF is called to search for a conflict. On finding one,

the sum of the starting block and the length of the conflicting file is

taken as the next TRY, and FSP jumps to FSP040 to begin another scan. If

no conflict is found, however, before TRY exceeds the absolute value of

UPLIM, TRY represents the best starting block for the new file, and FSP

jumps to FSP060.

At this point, MARK (Beta 10) is tested to determine whether an index entry

with the desired name already exists. If so, control transfers to FSP100.

If not, the index is scanned for an entry containing 5757 in the name field,

indicating it is empty. If no empty entry is found, an error return is

taken via RTPN0.

If the name is not empty, XPNT is incremented by 4, to address the source­

file pointers, and control flows into FCF040. FCF05~ having been set to

an APO or APO I instruction1 the start block is compared to the index

TBLK to determine whether the file is in the wrong area for this scan.

If it is the wrong area, the loop is re-entered at FCF~l0. This check,

it should be noted, is unnecessary, but was included to speed the scan.

Thirteen octal words can be saved by its elimination if space becomes

tight.

7

If an empty entry is found, the file name is moved in from the user's para­

meter list. The user's type specification (S or B) is examined, and the

START and LENGTH pointers for the other file type are filled with 5757.

Control flows to FSPl~~, where the starting block and LENGTH are stored

in the index, and the starting block is stored in the user's parameter list.

The write code, parameter pointer, and return jump are setup for rewriting

the INDEX. The I/O handler is called via its internal entry point RWENT.

The return address is incremented, to indicate successful completion, the

user's fields restored, and control is returned to the caller.

4.4 FCF: (Level 2, no external Entry Point). FCF is the conflict search

routine. Given a starting block, TRY, and a length, TRYLEN, its task is

to scan the index for a file, one or more of whose blocks is in the range

from TRY to (TRY+TRYLEN-1). If it should find such a file, pointers

to the starting block and length are returned in XPNT and XPNT2, respec­

tively, and control is returned to (P+2), where Pis the address of

the calling jump. If no conflict is found, control is returned to (P+l).

Upon entry at FCF~~~, the return jump is savedct RET2, and XPNT (Beta 4)

is initialized to point to the first index entry. Control flows to

FCF~l~, where XPNT is incremented and tested for end-of-index. If

the end has been reached, there is no conflict and control returns to

the caller via RET2. If the end has not been reached, bit 9 of XPNT

is tested to determine whether XPNT is pointing to a file name or the

start and len area of the entry. In the latter case, control transfers

to FCF~4~. In the former, the name is compared to 5757. If equal, the

entry is empty, so XPNT is incremented by 6, and the loop is entered

again at FCF~l~.

8

XPNT2 is set to address the length field, which is tested for validity.

If negative, there is no file of that type, and the loop is re-entered

at FCF~l~. If the length is positive, the starting block is subtracted

from TRY. If the result is negative or zero, TRY is below the start of

this file by complement of AC, and control transfers to FCF~6~. If the

result is positive, TRY is above the start of this file by the contents

of AC. Subtracting this value from the file length gives a positive

result if there is a conflict, a negative or zero result if none. If

there is a conflict, it is returned to the caller via FCF~7~. If not,

the scan is resumed at FCF~l~.

The code at FCF~6~ is entered when TRY is below the start of this file.

TRYLEN is added to the complement of the block difference. A negative

or zero result implies no conflict, and the scan continues at FCF~l~.

A positive result is a conflict, so control flows into FCF~7~, which

increments RET2 and jumps to it.

4.8 DELETE: (Level 3, Entry Point 26). Beginning at DEL~~~, the re-

turn jump is saved at RET3 (Beta 15). LOOKUP is then called via the

internal entry point LKP~~~ to find the name and file to be deleted.

On each of the alternate returns, a JMP RTRN~ is taken, since it is un­

necessary to delete a file which does not exist. On the third return,

the start and length words for this file are filled with 5757 to eliminate

the file. Bit l~ of the address of the length word is complemented to

give the address of the length word for the other file type; that is, if

a source file is being deleted, the low order digit of the address of its

length word is 5. Complementing bit 1 gives 7, the address of the binary

length. The length of the other type file is tested to determine whether

such a filee:xi.sts. If it is positive, a jump is taken to DEL~l~. If

negative, there is no file of the other type, so the name area of the

index entry is set to 5757. At DEL~l~, the write code, return jump, and

parameter pointers are set up, and the I/O handler is called at RWENT to

rewrite the index.

5.0 FLOW CHARTS

9

LOOKUP
NAME

INCREMENT
RETURN

FOUND YES

T~PE/

/ [

__b;_ I

SAVE

POINTERS

SAVE
POINTERS
ALLOW
REP pl.CE

I

RTRN,0

RETURN l
~

10

I

I
CLEAR OLD

INDEX

_-=:~n!Y
~ .

cp

tSP969
< POIN'rl!:~~-NQ_ -
'~AV2~ / ,_. ___ l~-P~?!

I SCAN FOR
YES j' EMPTY INDEX

ENTRY

FSPl,0,0

STORE
STARTING
BLOCK
& LEN

RE-WRITE
INDEX

1

__ 1_.
RETURN I

' 1 ' /'

11

DELETE

I \/

J

I LOOKUP
NAME

-~---

~UND'
? ,/

,_f __
STORE 5757
IN FILE
ENTRY

A
--,

s
RE A~~-

' FILE OF . f
' ~THER TYIJ"" I

', ? ,/

'.j(NO

STORE 5757
IN

NAME

JtoEL,01,0
REWRITE

INDEX

J,,RTRN,0

I RETURN '.

LOOKUP

READ
INDEX

IS

LK~,0;A,0 -

HERE ~N~O~-~

~:;s
)-~.) I LKP030

INCR INDEX POINTER .. -r-
E= EMPT~Yj .. c (5757

-,---·

I I
~ERRTN .

~// Ai'_ O~, , Y-E S ____ ------i
!ERRTN

NO [RE~URN l
COMPARE FIRST WORD

1 >F REQUESTED FILE

TO FIRST WORD INDEX

FILE NAME

"" ~

l'.::

NO

ERRTN

POINT TO
BINARY
POINTERS

13

WNTB

NO

WNTS

POINT TO
SOURCE
POINTERS

UPDATE
USER'S
FDV

YES

DELETE

ENTER

Entry Points

Environment

FCF

Flowcharts

Introduction

Loading MILDRED

LOOKUP

Memory Addresses

REPLACE

Usage

INDEX

1, 2' 9

1, 2 I

1

1

8

9

1

1

1,2,3,

1

1,3,4

1

	Table Of Contents
	1.0 - Program Overview
	2.0 - Environment
	3.0 - Usage
	Index

