
users manual

digital equipment corporotfon

U
S
S
S
S
S
S
S
S
S
S
S
S
S
S
^

P

p
p
p
p
p

p
p
p
p
p
p

DEC- 8E-0CASA-B-D

CASSETTE PROGRAMMING SYSTEM

USER'S MANUAL

For additional copies, order No. DEC-8E-0CASA-B-D from Software
Distribution Center, Digital Equipment Corporation, Maynard,
Massachusetts 01754

First Printing, March, 1973
Revised September, 1973

Printed July, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL'S copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (6) 1973, 1974 by Digital Ecjuipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAIO QUICKPOINT
COMSYST EDGRIN LAB-

8

RAD-

8

COMTEK EDUSYSTEM LAB-8/e RSTS
DDT FLIP CHIP LAB-K RSX
DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 OS/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

PAGE

CHAPTER 1 THE CASSETTE PROGRAMMING SYSTEM

1.1 INTRODUCTION TO A CASSETTE STORAGE SYSTIM 1-1
1.1.1 Hardware Components 1-2
1.1.2 Software Components 1-2

1.2 VfflAT IS A CAPS-8 CASSETTE? 1-2
1.2.1 The Format of a Cassette 1-4
1.2.2 The Sentinel File 1-4

1.3 THE SYSTEM CASSETTE 1-4

1.4 MOUNTING AND DISMOUNTING CASSETTES 1-5

1.5 CONCERNING EXAMPLES 1-6

CHAPTER 2 GETTING ON-LINE WITH THE CAPS-8 SYSTEM

2.1 SYSTEM PROGRAMS 2-1

2.2 SYSTEM CONVENTIONS 2-1
2.2.1 File Formats 2-1
2.2.2 Filenames and Extensions 2-2

Input/Output Devices 2-2

LOADING THE KEYBOARD MONITOR 2-3

USING THE KEYBOARD MONITOR 2-3
Making Corrections 2-3
Special Characters 2-4
I/O Designations and Specification Options 2-5

5 KEYBOARD MONITOR COMMANDS 2-5
5.1 Run Command 2-6
5.2 Load Command 2-7
5.3 DAte Command 2-7
5.4 Directory Command 2-7
5.5 DElete Command 2-8
5.6 Zero Command 2-9
5.7 REwind Command 2-10
5.8 Version Command 2-10

2.6 NOTES ON DEVICE HANDLERS 2-11

2.7 MONITOR ERROR MESSAGES 2-12

2.2.3

2.3

2.4
2.4.1
2.4.2
2.4.3

CHAPTER 3 SYMBOLIC EDITOR

3 .

1

INTRODUCTION

3.2 CALLING AND USING THE EDITOR
3.2.1 EDITOR Options
3.2.2 Input and Output Specifications
3.2.3 Version Numbers

3-1

3-1
3-1
3-2
3-3

111

3.3 MODES OF OPERATION
3.3.1 Transition Between Modes

3.4 SPECIAL CHARACTERS AND FUNCTIONS
3.4.1 RETURN Key
3.4.2 Erase (CTRL/U)
3.4.3 RUBOUT Key
3.4.4 Form Feed CCTRL/FORM)
3.4.5 The Current Line Counter C.

)

3.4.6 Slash (/)
3.4.7 LINE FEED Key
3.4.8 ALT MODE Key
3.4.9 Right Angle Bracket (>)

3,4.10 Left Angle Bracket C<)
3.4.11 Equal Sign (=)

3.4.12 Colon (:)
3.4.13 Tabulation (CTRL/TAB)

3.5 COMMAND STRUCTURE

3.6 COMMAND REPERTOIRE
3.6.1 Input Commands
3.6.2 Output Coimuands
3.6.3 Editing Commands

3.7 TEXT COT.LF.CTION

3.8 CHARACTER SEARCHES
3.8.1 Single Character Search
3.8.2 Character String Search

3.9 EDITOR ERROR MESSAGES

3.10 EDITOR DEMONSTRATION RUN

3-4
3-4

3-4
3-5
3-5
3-5
3-5
3-6
3-6
3-6
3-7
3-7
3-7
3-7
3-7
3-7

3-8

3-8
3-9
3-10
3-12

3-15

3-16
3-16
3-17

3-21

3-23

CHAPTER 4 SYSTEM COPY

4 .

1

INTRODUCTION

4.2 CALLING AND USING SYSTEM COPY
4.2.1 System Copy Options
4.2.2 Input and Output Specifications
4.2.3 System Copy Example

4.3 SYSTEM COPY ERROR MESSAGES

4-1

4-1
4-1
4-2
4-3

4-4

CHAPTER 5 PALC ASSEMBLER

5 . 1 INTRODUCTION

5.2 CALLING AND USING PALC
5.2.1 PALC Options

5.3 CHARACTER SET

5.4 STATEMENTS
5.4.1 Labels
5.4.2 Instructions
5.4.3 Operands
5.4.4 Comments

5-1

5-1
5-5

5-5

5-6
5-6
5-6
5-7
5-7

IV

5.5 FORMAT EFFECTORS 5-7
5.5.1 Form Feed 5-7
5.5.2 Tabulations 5-7
5.5.3 Statement Terminators 5-8

5.6 NUMBERS 5-9

5.7 SYMBOLS 5-9
5.7.1 Permanent Symbols 5-9
5.7.2 User-Defined Symbols 5-9
5.7.3 Current Location Counter 5-10
5.7.4 Symbol Table 5-11
5.7.5 Direct Assignment Statements 5-12
5.7.6 Symbolic Instructions 5-13
5.7.7 Symbolic Operands 5-13
5.7.8 Internal Symbol Representation for PALC 5-13

5.8 EXPRESSIONS 5-14
5.8.1 Operators 5-14
5.8.2 Special Characters 5-17

INSTRUCTIONS 5-20
Memory Reference Instructions 5-20
Indirect Addressing 5-20
Microinstructions 5-21
Autoindexing

J <

5.

1 :>

,9.1
5.,9.2
5.,9.3
5.,9.4

5..Ij?

5,,1)3.1

5,,1)3.2

5,,1)3.3

5.,1)3.4

5,,1^.5
5,,1)3.6

5,,1)3.7

5,.1)3.8
5,.1^.9
5,.1)3.1)3

5,.1)3.11
5,.1)3.12

5-23

PSEUDO-OPERATORS 5-24
Indirect and Page Zero Addressing 5-24
Radix Control 5-24
Extended Memory 5-25
End-of-File 5-26
Resetting the Location Counter 5-26
Entering Text Strings 5-27
Suppressing the Listing 5-27
Reserving Memory 5-27
Conditional Assembly Pseudo-Operators 5-28
Controlling Binary Output 5-28
Controlling Page Format 5-29
Altering the Permanent Symbol Table 5-29

5.11 LINK GENERATION AND STOl^AGE 5-30

5.12 CODING PRACTICES 5-31

5.13 PROGRAM PREPARATION AND ASSEMBLER OUTPUT 5-32

5.13.1 Terminating Assembly 5-33

5.14 PALC ERROR CONDITIONS 5-33

CHAPTER 6 CASSETTE BASIC

6.1 INTRODUCTION 6-1

6.2 CALLING BASIC 6-1

6.3 NUMBERS 6-2

6.4 VARIABLES 6-3

6.5 ARITHMETIC OPERATIONS 6-4
6.5.1 Priority of Operations 6-4
6.5.2 Prentheses and Spaces 6-5
6.5.3 Relational Operators 6-5

6.6 IMMEDIATE MODE 6-6
6.6.1 PRINT Command 6-6
6.6.2 LET Command 6-7
6.6.3 Looping PRINT and LET Commands 6-7

6.7 EXAMPLE RUN 6-8

6.8 BASIC STATEMENTS 6-10
6.8.1 Statement Numbers 6-10
6.8.2 Commenting the Program 6-10
6.8.3 Terminating the Program. 6-11
6.8.4 The Arithmetic Statement 6-11
6.8.5 Input/Output Statements 6-12
6.8.6 Creating Run-Time Input Files 6-25
6.8.7 Loops 6-27
6.8.8 Subscripted Variables 6-29
6.8.9 Transfer of Control Statements 6-31
6.8.10 Program Chaining 6-34
6.8.11 Subroutines 6-35
6.8.12 Functions 6-37

6.9 IMPLEMENTING A USER-CODED FUNCTION 6-44
6.9.1 Coding Formats 6-44
6.9.2 Floating-Point Format 6-46
6.9.3 Incorporating Subroutines with UUF 6-46
6.9.4 Writing the Program 6-47
6.9.5 Examples of User-Coded Functions 6-47

6.10 FLOATING-POINT PACKAGE 6-50
6.10.1 Instruction Set 6-50
6.10.2 Addressing 6-51

6.11 EDITING AND CONTROL COMMANDS 6-52
6.11.1 Erasing Characters and Lines 6-52
6.11.2 Listing a Program 6-53
6.11.3 Running a Program 6-54
6.11.4 Stopping a Run 6-54
6.11.5 Loading a User-Coded Function 6-55
6.11.6 Erasing a Program In Memory 6-55
6.11.7 Renaming a Program 6-55
6.11.8 Saving a Program 6-56

6.12 CASSETTE BASIC ERROR MES55AGES 6-57

6.13 CASSETTE BASIC SYMBOL TABLE 6-59

CHAPTER 7 USING CAPS-8 CODT

7.1 FEATURES 7-1

7.2 USING CODT 7-2
7.2.1 Commands 7-2

7.3 ILLEGAL CHARACTERS 7-8

7.4 ADDITIONAL TECHNIQUES 7-9
7.4.1 TTY I/O-FLAG 7-9
7.4.2 Interrupt Program Debugging

7.5

7.6
7.6.
7.6.

7.7

CHAPTER 8

8.1

8.2
8.2.1
8.2.2

8.3

CHAPTER 9

9.1

Octal Dump
Indirect References

ERRORS

OPERATION AND STORAGE
Storage Requirements - CAPS-8 System
Programming Notes Summary

COMMAND SUMMARY

CAPS-8 UTILITY PROGRAM

INTRODUCTION

CALLING AND USING THE UTILITY PROGRAM
Utility Program Options
Input and Output Specifications

UTILITY PROGRAM ERROR MESSAGES

BOOT

OPERATING PROCEDURES

7-9
7-9

7-9

7-9
7-10
7-10

7-11

8-1

8-1
8-1
8-2

8-2

9-1

A

B

C

D

E

F

APPENDICES

ASCII Character Codes

Error Message and Command Summaries

PALC Permanent Symbol Table

CAPS-8 Demonstration Run

Monitor Services

Assembly Instructions

A-1

B-1

C-1

D-1

E-1

F-1

TABLES

Table 2-1
Table 2-2
Table 2-3
Table 3-1
Table 3-2
Table 3-3
Table 3-4
Table 3-5
Table 3-6
Table 3-7
Table 3-8
Table 3-9
Table 4-1
Table 4-2
Table 5-1
Table 5-2
Table 5-3

CAPS-8 Extension Names
Directory Options
Keyboard Monitor Error Messages
EDITOR Options
Command Format
Input Commands
List Commands
Text Transfer Commands
Editing Commands
Search Character Options
Terminating a String Search
EDITOR Error Codes
System Copy Options
System Copy Error Messages
PALC Options
Use of Operators
PALC Error Codes

2-2
2-8
2-12
3-1
3-8
3-9
3-10
3-11
3-12
3-16
3-20
3-21
4-1
4-4
5-5
5-15
5-34

VI

1

Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 6-5
Table 6-6
Table 6-7
Table E-1
Table E-2
Table E-3

Cassette BASIC Functions
Function Addresses
Floating-Point Accumulator
Floating-Point Instructions
Relative Addresses
Cassette BASIC Error Messages
Cassette BASIC Symbol Table
Monitor Memory Map
Utility Subroutines and Locations
Header Record Structure

6-38
6-45
6-46
6-50
6-51
6-57
6-60

E-1
E-1
E-11

ILLUSTRATIONS

Figure 1-1 Cassette Programming System
Figure 1-2 CAPS-8 Cassette
Figure 1-3 Mounting a Cassette
Figure E-1 Switch Option Characters
Figure E-2 Ring Buffers

1-1
1-3
1-6
E-10
E-10

Vlll

CHAPTER 1
THE CASSETTE PROGRAMMING SYSTEM

1.1 INTRODUCTION TO A CASSETTE STORAGE SYSTEM

The PDP-8 Cassette Programming System (CAPS-8) is a small
system for the PDP-8/E (8/M or 8/F) computer and is de
the use of cassettes for program storage, rather than DE
tape or disk storage. CAPS-8 replaces paper tap
completely. The MI8-E Hardware Bootstrap initially loads
Keyboard Monitor into memory; with the use of the Mon
transfers and program loading and storage is done v
Cassettes are more convenient and reliable and much easie
paper tape, and in addition, cut the time involved in
storing programs using paper tape by almost one half.

programming
signed around
Ctape, paper
a procedures
the Cassette
itor all file
la cassette,
r to use than
loading and

CAPS-8 provides the user with a Keyboard Monitor, I/O facilities at
the Monitor level, and a library of System Programs, including a
machine language assembler, an editor, and a higher-level programming
language.

Figure 1-1 Cassette Programming System

1-1

1.1.1 Hardware Components

The Cassette Programming System is built around a PDP-8/E, 8/M, or 8/F
computer with a minimum of one TU60 dual cassette unit, a console
terminal (LA30 DECwriter, LT33 or LT35 Teletype, or VT05 DECterminal)

,

and BK of memory. A line printer is optional.

1.1.2 Software Components

A brief description of the software package available with the
Cassette Programming System follows. Each program is discussed in
greater detail later in the manual.

1. MONITOR - The Keyboard Monitor provides communication
between the user and the Cassette System Executive
Routines by accepting commands from the console terminal
keyboard. The commands allow the user to run system and
user programs, save programs on cassette, and obtain
directories of cassettes.

2. Symbolic EDITOR - The EDITOR allows the user to modify or
create source files for use as input to language
processing programs such as BASIC and PALC. The EDITOR
contains powerful text manipulation commands for quick
and easy editing.

3. PALC Assembler (Program Assembly Language—Cassette)
PALC accepts source files in the PAL machine language and
generates absolute binary files as output. These files
can then be loaded cind executed using Monitor commands.

4. BASIC - BASIC provides a higher- level programming
language which is easy to learn and use. It includes
such language features as user-coded functions, data
files on cassette, and program chaining.

5. System Copy (SYSCOP) - SYSCOP allows the user to transfer
files from one cassette to another, giving him the
ability to make multiple copies of a cassette and "clean
up" full cassettes so that they may become available for
future use.

1.2 WHAT IS A CAPS- 8 CASSETTE?

A CAPS-8 cassette is a magnetic tape device much like that used in a
cassette tape recorder. The tape itself and the reels it is wound on
are enclosed inside a rectangular plastic case (see Figure 1-2)

,

making handling, storage, and care of the cassette convenient for the
user.

1-2

On either end of one side of the cassette are two flex
tabs called write protect tabs (see A in Figure 1-2)

.

tab for each end of the tape; since data should only be w
direction on the tape, the user will need to be concerne
the tab which is specifically marked on the cassette labe
upon the position of this tab, the user is able to pro
against accidental writing and destruction of data. Wh.

pulled in toward the middle of the cassette so that
uncovered, the tape is write-locked; data cannot be writ
any attempt to do so will result in an error message. Wh.

pushed toward the outside of the cassette so that the hoi
the tape is write-enabled and data can be written onto i
be read from the cassette with the tab in either positior.

ible plastic
There is one

ritten in one
d with only
1. Depending
tect his tape
en the tab is
the hole is
ten on it and
en the tab is
e is covered,
t. Data can

The bottom of the cassette (B in Figure 1-2) provides an opening where
the magnetic tape is exposed. The cassette is locked into position on
a TU60 cassette unit drive so that the tape comes in cont.act with the
read/write head through this opening.

Both ends of the magnetic tape in a cassette consist of clear plastic
leader/trailer tape; this section of the tape is not used for
information storage purposes, but as a safeguard in handling and
storing the cassette itself. Since cassette tape is susceptible to
dust and fingerprints, the leader/trailer tape should be the only part
of the tape exposed whenever the cassette is not on a drive.

Figure 1-2 CAPS-8 Cassette

1-3

1.2.1 The Format of a Cassette

A cassette is formatted so that it consists of a sequence of one or
more files. Each file is preceded and followed by a file gap. (A gap
in this sense is a set length of specially coded tape.) All cassettes
must start with a file gap; any information preceding the initial file
gap is unreliable. A file consists of a sequence of one or more
records separated from each other by a record gap. The first record
of a file is called the file header record and contains information
concerning the name of the file, its type, length, and so on.
(Chapter 2 provides more information concerning header records.) A
record generally contains 12 8 (decimal) characters of information;
there are approximately 600 records per cassette tape.

Records consist of a sequence of one or more cassette bytes; a byte in
turn consists of eight bits each representing a binary zero or one.
Characters and numbers are stored in bytes using the standard ASCII
character codes (see Appendix A) and binary notation.

The number of records of information on a . cassette tape may be
estimated by the user. On the outside of the cassette case is a clear
plastic window (C in Figure 1-2) . Along the bottom, of this window is
a series of marks; each mark represents abovit 50 inches of magnetic
tape. Knowing that approximately 2 records fit on an inch of tape,
the user is able to make a reasonable guess as to the length of tape
and number of records available for use. By simply glancing at the
width of the tape reel showing in the window, the user can tell
quickly if he is very close to the end. Since he is given no advance
warning of a full tape condition, the user must visually keep track of
the length of tape he has available. Should the tape become full
before his file transfer has completed, einother cassette must be
substituted, cuid the transfer or output operation must be restarted.

1.2.2 The Sentinel File

The last file on a cassette tape is called the sentinel file. This
file consists of only a file header record and represents the logical
end-of-tape. A zeroed or blcink cassette tape is one consisting of
only the sentinel file.

1.3 THE SYSTEM CASSETTE

The software discussed in Section 1.1 is provided to the user on a

single cassette called the System Cassette. This is the cassette on
which the entire CAPS-8 System resides, and it is utilized for all
system functions. The System Cassette must always be mounted on drive
0; drive serves as the default device when the user fails to specify
another.

1-4

NOTE

Each TU60 dual cassette unit has two
drives . The drive on the left is always
odd-numbered and the drive on the right
even-numbered; thus, drive will be the
left drive. If the user has more than
one TU60 dual cassette unit, he should
pirobably label the drives in consecutive
order so that there will be no confusion
when he is using the system.

The write protect tab on the System Cassette should usucilly be in the
write-locked position so that data will not accidently be written on
it; it is suggested that the user make a copy of thisi cassette as
protection against loss or accidental destruction.

1.4 MOUNTING AND DISMOUNTING A CASSETTE

To mount a tape on a drive, hold the tape so that the open part of the
cassette is to the left and the full reel is at the top. Set the top
write protect tahi to the desired position depending upon whether data
is to be written on the tape.

Open the locking bar on the cassette drive by pushing it to the right
away from the drive (see A in Figure 1-3) . Next hold the tape up to
the cassette drive at approximately a 45-degree single and insert the
tape into the drive by applying a leftward pressure while
simultaneously rotating the cassette over the drive spirockets. This
brings the tape into position against the read/write head. Push the
tape into the unit so that when the cassette is properly mounted, the
locking bar automatically closes over the cassette back edge. (Figure
1-3 illustrates this procedure.)

Press the rewind button on the cassette unit (see B in Figure 1-3;
there is a rewind button for each drive) . This causes the cassette to
rewind to the beginning of its leader/trailer tape. (Pressing the
rewind button ci second time causes the cassette to revrind to the end
of the leader/trciiler tape and to the physical end--of-tape. The
cassette unit will click; this sound is almost inaudibJ.e and the user
may not hear it unless he is listening carefully. Normal usage
requires that the user press the rewind button only once whenever he
wishes to manually rewind a cassette) . Even though tapes which are
not actively being used on a drive should already be positioned at the
beginning, the user should develop the habit of automatically
rewinding a cassette. When the tape has finished winding, the
cassette will stop moving. The cassette is now in place; and ready for
transfer operations.

1-5

Figure 1-3 Mountincr a Cassette

Before removing a cassette f

rewound to its beginning,
button on the cassette unit
as explained in Chapter 2

leader/trailer tape will be
the cassette. To remove a
locking bar and the cassette
being actively used on a
small plastic boxes provided

rom a drivei, the tape should always be
This can be done by pressing the rewind

or by issuing the REwind Monitor Command
Rewinding a tape ensures that the clear

the only tcipe exposed at the open part of
cassette from the cassette drive, open the
will pop out. When cassettes are not
cassette drive, they can be stored in the
for this purpose by the manufacturer.

NOTE

Before using a new cassette, or prior to
using a cassette that has just been
shipped or accidently dropped, mount the
cassette on a drive so that the Digital
label faces the inside of the unit and
perform a rewind operation. Remove the
cassette, turn it ovcir, and perform
another rewind operation. This packs
the tape neatly in the cassette and
places the full tape reel at the proper
tension.

1.5 CONCERNING EXAMPLES

In the chapters that follow, care has been taken to include acutal
machine printout whenever possible. In cases in which there may be
some discrepancy as to whether a character was typed by the user or by
the system, that typed by the system will be underlined.

1-6

CHAPTER 2

GETTING ON-LINE WITH THE CAPS-8 SYSTEM

2.1 SYSTEM PROGRAMS

The Cassette Programming System is distributed on a single cassette,
called the System Cassette, which contains all the programs necessary
for loading the Monitor into memory and creating and lunning system
cind user programs. The directory of the System Cassette is as
follows

:

C2B00T .BIN 01/22/73 Ul

MONFOrt •BIN 01/22/73 Ul

sybcop •BIN 01/25/73 V2
EDIT .BIN 01/02/73 VI
PALC .BIN 01/02/73 VI
BASIC .BIN 01/02/73 VI

System files are in binary format (see Section 2.2.1). The first two
files on any System Cassette must be C2B0OT.BIN and MONTOR.BIN; these
two files comprise a bootstrap cind the Keyboard Monitor. C2B00T.BIN
loads the Monitor into memory from the System Cassettes; the Keyboard
Monitor links the user and the CAPS-8 System by providing a means of
communication between the two. By accepting commands from the console
terminal keyboard, the Cassette Keyboard Monitor allows the user to
run system and user programs, save eind recall files utilizing cassette
storage, and create, assemble, and load programs.

2.2 SYSTEM CONVENTIONS

The following conventions concern file formats and file naming
procedures and aire standard for the CAPS-8 System, as well as for many
other systems.

2.2.1 File Formats

The Cassette Programming System makes use of two types of file formats
— ASCII and Binary.

Files in ASCII format conform to the American National Standard Code
for Information Interchange in which alphanumeric characters are
represented by a 3-digit code. A table containing ASCII character
codes in 7- and 8-bit octal is provided in Appendix A.

Binary format files consist of 12-bit binary words representing PDP-8
machine language code. The standard DEC binary format is used with
the exception that no checksum is necessary. Binary files contain
field addresses and memory instructions and are read directly into

2-1

memory for immediate execution. CAPS- 8 System Programs are in binary
format, and programs which the user assembles with PALC are translated
into files in binary format.

2.2.2 Filenames and Extensions

System and user files are referenced symbolically by a name of as many
as six alphabetic characters (A-Z) or digits (0-9) , followed
optionally by an extension of from 1 to 3 alphabetic characters or
digits; (the first character in a filename must be alphabetic) . The
extension to a filename is generally used as an aid in remembering the
CAPS-8 format of a file. Table 2-1 lists commonly accepted extensions
— the user may or may not conform to this list as he chooses; it is
included here only as a guide:

Table 2-1 CAPS-8 Extension Names

Extension Meaning

PAL
BIN
BAS
TXT
DOC
DAT

PALC source file (ASCII)
System or user binary format file
BASIC source file (ASCII)
Text file (ASCII)
Documentation file (ASCII)
Data file (ASCII or other)

Generally the user may call his files by any mnemonic filename and
extension he chooses. In some cases, if he omits specifying an
extension, the System Program he is running may assume an extension.
For example, PALC assumes an extension of .PAL unless the user
indicates another, and the Run command assumes .BIN unless another
extension is specified.

2.2.3 Input/Output Devices

There are three available categories of input/output devices in the
Cassette Programming System: console terminal keyboard (including
paper tape reader and punch if an LT33 Teletype containing these units
is used as the console terminal) , cassette drives 0-7, and a line
printer. There are no permanent device names in the CAPS-8 System.
Command strings cind I/O designations are entered in such a way that
the user specifies the device by a drive nximber and the file by a
filename; option characters allow the user to direct listings to the
line printer or to otherwise change the normal operating procedure of

a program. The System Cassette — drive — is the default device if

no drive number is specified. For example:

.DI/L

2-2

(DI is a Monitor command instructing the computer to print a directory
listing of a cassette. Since no drive number is specified, drive —
the System Cassette — is assiomed. The option character L sends
output to the line printer instead of the console teriiinal, which is
the normal output device.)

2.3 LOADING THE KEYBOARD MONITOR

The CAPS-8 hardware bootstrap and C2B00T.BIN on the System Cassette
are used to load the Cassette Keyboard Monitor into memory. (Both
bootstraps are described in Appendix E.) Loading the Monitor is
accomplished as follows:

1. Ensure that the computer and terminal are on-line.

2. Press and raise the HALT key. Make sure that the SINGLE
STEP key is in a raised position.

3. Place the System Cassette (write-locked to protect data)
onto cassette unit drive 0;

4. Press and raise the SVJ key.

At this point the RUN lamp should be on and the System Cassette should
begin to move. The hardware bootstrap calls the first program on the
System Cassette (C2B00T.BIN) which in turn loads the Keyboard Monitor
(MONTOR.BIN) into memory. If an error occurs during the loading
process (for example, an error may be caused by the cassette being
improperly mounted, by a missing file on the tape, or by the
occurrence of an I/O error) no error message will inform the user
since the Monitor is not completely in memory. Instead, the System
Cassette may stop moving and the computer may loop or halt. If this
is the case, steps 2-4 above should be repeated.

Once the Monitor has been loaded, the System Cassette stops moving and
a dot is typed at the left margin of the console terminal page. This
instructs the user that the Monitor is now in memory and ready to
accept input commands.

2.4 USING THE KEYBOARD MONITOR

Each command to the Keyboard Monitor is typed at the console terminal
keyboard in response to the dot at the left margin. A command is

entered by pressing the RETURN key.

2.4.1 Making Corrections

Corrections may be made to the command line providing they are made
before the line is entered (that is, before a carriage return has been
typed). The RUBCUT key is used to correct typing errors. Pressing the

2-3

RUBOUT key once causes an open bracket ([) to be typed followed by the
last character entered into memory. After this character is echoed on
the console terminal it is deleted from memory. Successive RUBOUTs
each cause one more character to be printed and deleted. The first
non-RUBOUT character typed (after the last RUBOUT in a sequence)
causes a closing bracket (]) to be printed, thus enclosing only the
deleted portion of text within brackets. For example:

The user types: ,R BACIC (RUBOUT) (RUBOUT) (RUBOUT) SIC
The console terminal shows: ^H BACIC CCIC 3SIC
The string is entered to the Keyboard Monitor as: .R BASIC

2.4.2 Special Characters (CTRL/C, CTRL/0, and CTRL/U)

Control can be returned to the Keyboard Monitor while under any of the
System Programs by typing a CTRL/C (produced by holding down the CTRL
key and simultaneously pressing the C key) . If the Monitor is not
still in memory, a CTRL/C causes a complete rebootstrap by reading the
appropriate files from the System Cassette on drive 0. When it is
ready to accept input, the Keyboard Monitor types a dot at the left
margin of the teleprinter (i.e. console; terminal) page.

Teleprinter output can be suppressed by typing a CTRL/0 (produced by
holding down the CTRL key and simultaneously pressing the O key)

.

This allows execution of the program to continue, but stops all
console printout. Typing a second CTRL/0 will resume output again.
Unless output is extremely lengthy, or unless the program is waiting
for input from the user, processing of a program after an initial
CTRL/0 will usually be completed before the user is able to type a
second CTRL/0. Printout will automeitically resume when control is
returned to the Keyboard Monitor (indicated by a dot at the left
margin)

.

NOTE

CTRL/0 does not prevent certain
important error messagess from printing
on the console terminal.

A command line may be deleted completely, before it is entered, by
typing a CTRL/U (produced by holding down the CTRL key and pressing
the U key) . This causes the current command line to be ignored and
returns control to the Keyboard Monitor. The Monitor prints a dot at
the left margin to indicate that it is ready to accept another
command.

2-4

2.4.3 I/O Designations and Specification Options

Whenever the user runs a System Program or performs any I/O operation,
he must indicate the file(s) to be accessed, the cassette drive (s) on
which they are located, and any desired options associated with the
operation. Procedures used in entering this information are explained
below.

Monitor commands generally require only a single command line which
specifies the unit drive number (in the range 0-7), fiLename{s), and
option (s) in the following format;

.COMMAND DRIVE #: FILENAME:. EXT/OPTION (S)

COMMAND represents one of the eight Monitor commands discussed in
Section 2.5. The filename should be separated from the drive number
by a colon. Options are alphabetic characters and are separated from
the rest of the command line by the slash character (/) . Successive
options follow one another without any separating character. The
command line is executed by typing a carriage return.

I/O specifications to System Programs follow a different format.
First the System Program is called from the System Cassette using the
Monitor Run command. The System Program then asks for the input
filename, drive number, and options, jind then the output filename,
drive number, and options. This information is usually requested in
two separate command lines, but the actual format varies between
System Programs. Generally, the command strings appear as follows:

.R SYSTEM PROGRAM/OPTIONS
INPUT-DRIVE #:FILENAME
OUTPUT-DRIVE #:FILENAME

The appropriate chapter should be referenced for the accurate format.

Options are available in most System Programs and Monitor commands
allowing the user to change the order or format of input and output
operations from that which would normally be carried out by the
program. Again, interpretation of options varies; the user should
refer to the appropriate section or chapter to learn which options are
available and what actions will result from their use.

2.5 KEYBOARD MONITOR COMMANDS

There are eight Keyboard Monitor commands available to the user.
Commands are typed in response to the dot printed by the Monitor and
are entered when the RETURN key is pressed. Each command consists of
one or more alphabetic characters, followed by a space (or any
non-alphcibetic character) . Any error made while utilizing these
commands will result in a message informing the user (see Section
2.8). After occurrence of an error, control returns to the Keyboard
Monitor and the command must be retyped. (Since several of the
commands begin with the same letter, the user must be sure to note how
much of the command must be entered in order to distinguish it from
other commands. While it does not matter if too many characters are
entered, too few will cause errors.)

2-5

2.5.1 Run Command

The Run command is of the form:

.R Drive #: Filename/Option (s)

The Run command instructs the Monitor to load and execute the file
specified in the command line. The file should be in self-starting
binary format (tihat is, the last location in the source file must be
an origin setting which indicates the starting address of the file)

;

as the file is not in self-starting binary format, the program will be
loaded but execution will not begin; the user will have to proceed as
though he were using the Load command (see Section 2.5.2). The user
may omit specifying an extension as the Monitor assumes .BIN. For
example:

.R CART.BIW

or

.H CART

Regardless of which command string the user types , the Monitor assumes
.BIN, searches drive for the file CART. BIN, and executes it.

Options allowed in the command line depend upon the program the user
is running. Availability of options and results of their use are
discussed in Chapters 3, 4, 5 and 6. No error occurs if the user
specifies an option not allowed by a program; the option is simply
ignored.

Multiple files may be executed using the Run command. Patches to
programs, BASIC user-coded functions, and programs the user may have
created using PALC can be executed as follows:

.R Drive #:PR0G1, Drive #:PR0G2 ,. . .PROGn/Option (s)

where n represents any number of programs as long as the total number
of characters on the input specification line does not exceed 64. The
user must enter programs in the command line in the order in which he
wants them executed cind must be careful to include appropriate
starting, chaining, and return addresses (see Appendix E)

.

For example , assume the user has written a routine which will be used
for debugging purposes; each time a certain condition is met during
execution, this routine will be accessed, print a message and cause
execution to halt. The routine has been created using the CAPS-8
EDITOR, assembled with PALC, and is stored on cassette drive 1 as
DBG. BIN; it is loaded into memory with the user's program (TABLE.BIN
stored on cassette drive 0) . The programs are loaded as follows:

.R TABLE.BIN* 1 :DBU.B I iV

2-6

Chapter 6, BASIC, contains an example of running multiple files in
conjunction with the BASIC user-coded function feature.

2.5.2 Load Command

The Load command is used to load a binary file into memory and takes
the form:

.L Drive #:Filename.ext/Option(s)

This command is similar to the Run command except that the computer
halts after loading the file. To start execution, the user sets the
correct starting address in the Switch R€>gister, presses ADDR LOAD,
CLEAR and CONT (if the file is in self-starting binary format, the
user need only press CONT) ; appropriate addresses included in the
program (see Appendix E) will return control to the Keyboard Monitor
after execution.

Multiple files may be loaded in the same manner as in the Run command
by simply specifying them in correct execution order on the command
line:

.L Drive #:PR0G1, Drive # :PR0G2. . . .PROGn/Option(s)

Again, n may represent any number of programs as long as the total
number of characters on the command line does not exceed 64.

2.5.3 DAte Command

The DAte command is of the form;

.DA mm/dd/yy

where mm, dd, and yy represent the current month, day and year as
entered by the user. (One or two-digit numbers in the range 0-99 are
allowed in the DAte command. The Keyboard Monitor does not check for
errors other than the entry of a number which is outside this range.)
This date will then appear in directory listings (see Section 2.5.4),
cind the date of creation of all new files will be included. If the
DAte command is not used, directory listings will contain only
filenames, as illustrated in Section 2.1.

2.5.4 Directory Command

The Directory comiuand is of the form:

.Dl Drive #/Option(s)

and causes a directory listing of the cassette on the drive specified
to be output on the console terminal. No colon is necessary after the

2-7

drive number. There are
Directory command:

two options availcible for use with the

Table 2-2 Directory Options

Option Meaning

/L

/F

Causes the listing to be output
on the line printer rather than
the console terminal.

Causes a "fast" listing to be
produced (omitting creation
dates and version numbers)

.

In the following example a directory of cassette drive 2 is requested
and output (the version number in the directory listing reflects the
number of times the file has been accessed and changed using the
CAPS-8 EDITOR; see Chapter 3, Section 3.2.3):

li^/f>9/7!3

FILE .BIN (^3/17/78
ABCDEF.PAL
A .ASC y.T

R ^22

This same directory using the F option will be reduced to:

lH/29/7f>
FILE .RIM
ABCnEF.PAL
A .ASC

B

2.5.5 DElete Command

The DElete command is of the form:

.DE Drive #: Filename. ext

and causes the filename on the specified drive number to be deleted
from the directory. The filename is replaced by the name *EMPTY in
the directory listing and the file can no longer be referenced. Only
one file may be specified in the DElete command string at a time.

2-8

For example, assume the user wishes to delete the filename MATH. DAT
from the directory of cassette drive 3. He types:

.DE 3:MATH.DAT

and then obtains a directory listing of drive 3. The directory will
appear as follows:

11/17/78
TAPE .BAS 11/02/72
*EMPTr.
TOR .ASC 11/07/72 73

where *EMPTY represents the deleted filename MATH. DAT.

2.5.6 Zero Command

The Zero command is of the form:

.Z Drive #: Filename

and specifies that the sentinel file of the indicated cassette is to
be moved so that it immediately follows the file indicated in the
command line. (See Chapter 1 for a description of the sentinel file.)
All files following the sentinel file are deleted from the cassette
and that portion of the tape is completely reusable.

For example, assume cassette drive 3 contains the following directory:

LOOK .ASC l'^/23/7a V2
BASE .RAS
FOfJR 'BIM 11/17/72
EMPTY.
RAC E . E

and the user wishes to save only the first three files. He uses the
Zero command as follows

:

^Z 3:F0';R.Bir\J

and the sentinel file is placed immediately after the file FOUR. BIN.
The directory now reads:

LOOK. ASC 1 3/23/72 72
BASE. BAS
FO'JH.BIM 11/17/72

2-9

;vhen no filename is specifed in the command line, for example;

.Z 1

the cassette is said to be zeroed, or completely deleted of files; the
sentinel file is moved to the beginning of the cassette so that the
entire tape is available for use. This method is useful in "cleaning
up" cassettes which may contain several Ef-IPTY files in the directory
listing but have become full and therefore unavailable for further
use. First, any needed files are transfered to another cassette using
SYSCOP (see Chapter 4) , then the directory of the old cassette is
zeroed. The sentinel file is written at the beginning of the tape
making the cassette completely reusable.

All new tapes must be zeroed before they are first used. This ensures
that a sentinel file is present on the tape and moved to the beginning
of the tape.

2.5.7 REwind Command

The REwind command is of the form:

.RE Drive #

and causes the cassette on the drive numiber specified to be rewound to
its beginning. (The user can also cause the tape to rewind by
pressing the rewind button on the cassette unit.) System Programs and
Monitor commands always rewind a cassette before accessing a file, but
if the user delevopes the habit of rewinding the cassette himself he
performs a timesaving action. A cassette should always be rewound
before it is removed from a drive.

2.5.8 Version Command

The Version command is used to find out the version number of the
Monitor currently in use. Typing:

.V

instructs the Monitor to respond with the appropriate number. For
example:

indicates that version 1.2 is currently in use.

2-10

2.6 NOTES ON DEVICE HANDLERS

Device handlers for the CAPS-8 System are described in Appendix E. A
few notes of interest concerning their use are included here.

The line printer perforins a form feed operation before beginning an
output task. Characters are unpacked from the output buffer and
printed. A form feed is also produced following the completion of an
output task. The line printer handler is capable of handling only an
80 column printer.,

If the console terminal is an LT33 Teletype containing reader and
punch units, these may be used as input/output devices in conjunction
with the Teletype keyboard. To punch a tape, simply place the punch
unit to ON; to read a tape, place the reader unit to START.
Characters will be printed on the Teletype keyboard as they are read
or punched. Binary tapes may not be punched.

NOTE

The purpose of the Cassette Programming System is
the elimination of paper tape procedures

.

Cassettes provide a more convenient, reliable and
faster means of program storage than paper tape.
Therefore, although paper tapes may be read and
punched using the LT33 paper tape units, there is
no support for this type of I/O' and its use is not
encouraged.

If the user's program does not over-write certain areas of memory, the
parts of the Monitor which are in these locations are available for
use. This allows the user who takes advantage of writing his own
programs in the PAL machine language to access system hcindlers and to
restart or rebootstrap the Cassette Keyboard Monitor after program
execution. Infojrmation concerning Monitor Service Routines, I/O
routines, device handlers, and internal descriptions of the Keyboard
Monitor are provided in Appendix E.

2-11

2.7 KEYBOARD MONITOR ERROR MESSAGES

The following error messages may occur when the
used incorrectly:

Keyboard Monitor is

Table 2-3 Keyboard Monitor Error Messages

Message Meaning

BAD COMMAND

FILE NOT FOUND

INPUT ERROR ON UNIT n
OUTPUT ERROR ON UNIT n

The user has failed to follow the
correct syntax for Monitor commands.
This may be the result of mispelled
commands or too many or improper
arguments in a command string.

The Monitor could not locate the file
(or files) specified. The user should
check to be sure that filenames are
spelled correctly and that the unit
drive number specified is correct.

An I/O error has occurred on the cas-
sette drive specified. This may be
caused by an incorrectly formatted
cassette or may be due to a timing
error. The user should try the I/O
transfer using another cassette.

UNIT n NOT READY There is no cassette on the drive
specified, or no such drive exists.

Ul-ILOCK UNIT n The user tried to write data when the
write protect tab of the cassette on
the drive specified was write-locked.
To write data this tab must be
write-enabled.

2-12

CHAPTER 3

SYMBOLIC EDITOR

3.1 INTRODUCTION

The CAPS- 8 Symbolic EDITOR is used to create and modify ASCII source
files so that these files may be used as input to other System
Programs such as BASIC and PALC.

The EDITOR considers a file to be divided into logical units called
pages. A page of text is generally 50-60 lines long, and corresponds
approximately to a physical page of a pi'ogram listing. (Note that
this is not the same as a memory page) . The EDITOR reads one page of
text at a time from the input file into its internal buffer where the
page becomes available for editing. The Editor contains commands for
creating, modifying, or deleting characters, lines, or complete
logical pages of text. All commands consist of a single letter or a
letter with arguments, and are executed by typing the RETURN key.

3.2 CALLING AND USING THE EDITOR

To call the EDITOR from the System Cassette, type:

.R EDIT/Options

in response to the dot (.) printed by the Keyboard Monitor.

3.2.1 EDITOR Options

There are two options available for use with the EDITOiR; these are
described in Table 3-1. (Option usage has been previously discussed
in Chapter 2, Section 2.4.3).

Table 3-1 EDITOR Options

Option Meaning

/B

/M

Convert two or more spaces
reading from input device.

to TAB when

More than one file will be used for input.
(When one of these commands—E, F, J, N, R,

or Y— is issued and an end-of-file is
encountered, the EDITOR pauses and requests
that the user specify another input file,
thus allowing continuation of the command.
If the /M option has not been previously
specified in the input line, the end-of-file
condition remains in effect. See Section 3.9
for an example.)

3-1

3.2.2 Input and Output Specifications

After the EDITOR has been called from the System Cassette it asks for
the input specification as follows

:

*IN-^JT FILE-

The user responds with the input cassette drive number and the input
filename and extension, if any. For example:

*INP'JT FILE- 1 : ABA . PAL

If only a filename (and no input cassette drive) is specified, the
default device—drive —is assumed; the EDITOR prints the user's
input specification line, only first it includes the assumed default
device before echoing the filename, as illustrated below:

The user has typed the filename AB, but before this is printed, the
EDITOR inserts 0: and then goes on to echo AB. If the input file is
not found or if a syntax error occurs, the EDITOR prints a question
mark (?) , types cin asterisk (*) at the left margin, and waits for
another input designation. Any number of input files is permitted.

If no input specification is made, (that is, a carriage return only
has been typed in response to the INPUT request) , a new file will be
created using the console terminal keyboard as the input device. The
EDITOR allows input from the keyboard via the Append command (see
Example Using the EDITOR for an illustration of this method of
creating a program)

.

If more than one input file is to be entered, the /M option must be
specified when the EDITOR is called from the System Cassette. The
user responds to the INPUT FILE line with the drive number and
filename of the first input file. He enters output information as
described next, and then edits his file. When the end-of-file is
reached during the editing procedure, the EDITOR again prints the
INPUT FILE request cind the user responds with the drive number and
filename of the second file. When the user finishes editing his final
file and no more input files are available, he responds to the
editor's INPUT request by typing a carriage return; the EDITOR
continues and closes the output file. All input files are combined
under the one filename specified in the output line.

The EDITOR initially requests output info:nnation by printing:

•O'JTP'JT FILE-

3-2

The user responds with the output
example :

drive number and filename. For

Again, if no device is designated, drive is assumed and echoed.

If the output file is to have the same name as the input file, the
user need only type the correct output drive number followed by a
carriage return; the EDITOR will echo the assumed name. For example:

»IM?'?r FILF.- l sFILJ^.BAS
*0 1Ton FILE- ff; FILE.BAS

The EDITOR allows only one output file and creates the header for this
file on the specified cassette, deleting any file already on that
cassette under the same name (and replacing it with "EMPTY in the
directory listing) and leaving the cassette correctly postioned for
further output.

NOTE

If no output designation is specified
(that is, a carriage return only has
besen typed in response to the OUTPUT
FILE request) , the only output
operations which may be performed are L
(list buffer on the console terminal) or
V (list buffer on the line printer)

.

Only cassette files in ASCII mode are acceptable for use by the
EDITOR. No error message is given if non-ASCII files are input, but
the results of editing operations are garbled.

Once I/O file designations are entered, the Symbolic EDITOR is ready
to accept commands from the keyboard. It signifies this by printing a
number sign (#) at the left margin; this symbol occurs whenever the
EDITOR is waiting for a command.

3.2.3 Version Numbers

Each time a filename is indicated in response to the output file
specification line, the number is assigned to it. This number
(called the version number) signifies that a new file has been created
and that it hcis not been previously edited or referenced under this
filename.

The user may call a file from a specified cassette, make corrections
to it and change it any number of times before he is finally satisfied
with it or ready to use it for some other operation. In this case, he
may reference the file in the output specification line; by specifying
only the output cassette drive number followed by a carriage return,
since the filename itself will not be chcinged. Each time he does

3-3

this, the version number of the file is increased by 1. When the
version number of a file has been incremented in this manner so that
it is greater than 0, it appears in directory listings on the same
line as the filename (see Chapter 2).

NOTE

Version numbers associated with edited
files should not be confused with the V
Monitor command, which prints the
version of the Monitor currently in use.

3.3 MODES OF OPERATION

The EDITOR operates in one of two different modes: command mode or
text mode. In command mode all input typed on the keyboard is

as commands instructing the EDITOR to perform some
In text mode, all typed input is interpreted as text to

replace, be inserted into, or be appended to the contents of the text
buffer.

interpreted
operation.

3.3.1 Transition Between Modes

Immediately after being loaded into memory and started, the EDITOR is
in command mode. The special character # is printed at the left
margin of the teleprinter page indicating that the EDITOR is waiting
for a command. All commands are terminated by pressing the RETURN
key.

In text mode, the EDITOR performs I/O operations on text stored within
the text buffer. Text is input to the EDITOR buffer until a form feed
is encountered. A line of text is terminated by a carriage return.
If no carriage return is present, the text entered on the current line
is ignored. The buffer has room for approximately 5200 (decimal)
characters. When text has been input to the extent that there are
only 256 decimal locations available in the buffer, the console
terminal rings a warning bell. From this point on, whenever a
carriage return is detected during text input, control returns to the
EDITOR command mode and the bell is rung. This line-at-a-time input
may continue until the absolute end-of-buffer is encountered. At this
point, no more text will be accomodated in the buffer; a "?" is
printed and control returns to command mode every time the user
attempts to input more text.

3.4 SPECIAL CHARACTERS AND FUNCTIONS

A number
functions,
be low

.

of the console terminal keys have special operating
These keys and their associated functions are described

3-4

3.4.1 RETURN Key

In both command and text modes , typing the RETURN key causes a
carriage return cind line feed operation and signals the EDITOR to
process the infoimiation just typed. In command mode, :Lt allows the
EDITOR to execute the command just typed, A command will not be
executed until it is terminated by the RETURN key (with the exception
of =, explained later). In text mode, RETURN causes the line of text
which it follows to be entered in the text buffer. A typed line is
not actually part of the buffer until terminated by the RETURN key.

3.4.2 Erase (CTRL/U)

The erase character (CTRL/U combination) is used for error recoveries
in both command and text modes. It is generated by holding the CTRL
key while simultaneously typing the U key. When used in text mode,
CTRL/U cancels everything to its left back to the beginning of the
line; the EDITOR echoes i V and performs a carriage return/line feed
(CR/LF) ; the user then continues typing on the next l;.ne. When used
in command mode, CTRL/U cancels the entire command; the EDITOR
performs a CR/LF and prints a #. The erase character cannot cancel
past a CR/LF in either command or text mode.

3.4.3 RUBOUT Key

Rubout is used in error recovery in both command and text modes . In
text mode typing the RUBOUT key echoes a backslash (\) and deletes the
last typed character. Repeated rubouts delete from right to left up
to, but not including, the CR/LF which separates the current line from
the previous one., For example:

THE O'J'JICKWWICK RROW'NJ FOX

will be entered in the buffer as:

THE O'JICK 3H0*»:M FOX

When used in command mode, RUBOUT is equivalent to the <;TRL/U feature
and cancels the entire command; the EDITOR prints a #, performs a
CR/LF, and waits for another command to be entered.

3.4.4 Form Feed (CTRL/FORM)

A form feed signals the EDITOR to return to command mode. A form feed
character is generated by typing the CTRL and FORM keys
simultaneously. This combination is typed while in text mode to
indicate that the desired text has been entered and that the EDITOR
should now return to command mode. The EDITOR performs a CR/LF and

3-5

prints a # in response to a CTRL/FORM to indicate that it is back in
command mode. CTRL/G is usually equivalent to CTRL/FORM except in the
case of a SEARCH command, as explained in Section 3.8.1.

3.4.5 The Current Line Counter (.)

The EDITOR keeps track of the implicit decimal number of the line on
which it is currently operating. The dot (produced by typing the
period key) stands for this number and may be used as an argument to a
command. For example, .L means list the current line; .-1,.+1L means
list the line preceding the current line, the current line, and the
line following it, then update the dot (current line counter) to the
decimal number of the last line printed.

The following commands affect the current line counter as indicated:

1. After a Read or Append command, the current line counter
is equal to the number of the last line in the buffer.

2. After an Insert or Change command, the current line
counter is equal to the number of the last line entered.

3. After a List or Search command, the current line counter
is equal to the number of the last line listed.

4. After a Delete commeind, the current line counter is
equal to the number of the line immediately after the
deletion.

5. After a Kill command, the current line counter is equal
to 0.

6. After a Get command, the current line counter is equal
to the number of the line printed by the GET.

7. After a Move command, the current line counter is not
updated and remains whatever it was before the command
was issued.

3.4.6 Slash (/)

The slash symbol (/) has a value equal to the decimal number of the
highest numbered line in the buffer. It may also be used as an

argument to a command. For example: 10,/L means list from line 10 to
the end of the buffer.

3.4.7 LINE FEED Key

Typing the LINE FEED v*iile in command mode is equivalent to typing .+1

and will cause the EDITOR to print the line following the current one
and to increment the value of the current line counter by one.

3-6

3.4.8 ALT MODE Key

Typing the ALT MODE key while in command mode will cause the line
following the current line to be printed and the current line counter
to be incremented by one. If the current line is also the last line
in the buffer, typing either ALT MODE or LINE FEED will gain a
response of ? from the EDITOR indicating that there is no next line.
Some console terminals provide an escape key (ESC) in place of the ALT
MODE. Their functions are identical.

3.4.9 Right Angle Bracket {>)

Typing the right angle bracket (>) while in command mode is equivalent
to typing .+1L and will cause the EDITOR to echo > and then print the
line following the current line. The value of the current line
counter is increased by one so that it refers to the last line
printed.

3.4.10 Left Angle Bracket (<)

Typing the left angle bracket (<) while in command mode is equivalent
to typing .-IL and will cause the EDITOR to echo < and then print the
line preceding the current line. The value of the current line
counter is decreased by one so that it refers to the last line
printed.

3.4.11 Equal Sign (=)

The equal sign is used in conjunction with the pointer's dot (.) or
slash (/) , IVhen typed in command mode the equal sign causes the
EDITOR to print the decimal value of the argument preceding it. In
this way the user may determine the number of the current line (.=)

,

or the total number of lines in the buffer (/=) , or the number of
some particular line (/-8=) without counting lines from the beginning
of the buffer. No carriage return need be typed following the equal
sign.

3.4.12 Colon (:)

Typing a colon produces the same result as the equal sign (=)

.

3.4.13 Tabulation (CTRLAAB)

The EDITOR is written in such a way as to simulate tab stops at
8-space intervals across the teleprinter page. When the CTRL key is
held down cind the TAB key is typed, the EDITOR produces a tabulation.
A tabulation consists of from one to eight spaces, depending on the
number needed to bring the carriage to the next tab stop'. Thus, the

3-7

EDITOR may be used to produce neat colutnns on the teleprinter or line
printer page. The tab function is used in conjuction with the /B
option (for input and output) to allow the user to produce cind control
tabulations in the text buffer during input operations. On input
(under a Read command) , the EDITOR will replace a group of two or more
spaces with a tabulation if the user has specified the /B option.

3.5 COMMAND STRUCTURE

A command directs the EDITOR to perform a desired operation. Each
command consists of a single letter, preceded by zero, one, two or
three arguments. The commemd letter tells the EDITOR what operation
to perform; the arguments usually specify which numbered line or lines
of text are affected. Command format is illustrated in Table 3-2,
where E represents any command letter.

Table 3-2 Command Format

Type of Command Command
Format

Meaning

No Argument:

One argument

:

E Perform operation E

nE Perform operation
referenced line.

on the

Two Arguments

:

m,nE Perform operation E on
through n, inclusive.

lines m

Three Arguments: m,n$jE This combination is used by the
MOVE command only and is explained
in Section 3.6.3.

3.6 COMMAND REPERTOIRE

Commands to the EDITOR are grouped under three general headings:

Input Commands
Output Commands
Editing Commands

Explanation of the three types of commands is detailed in the
following sections. Each command description will state if the EDITOR
returns to command mode after completing the operation specified by
the command. All commands are entered when the RETURI^ key is typed.

The EDITOR prints an error message consisting of a question mark
whenever the user has requested nonexistent information or used
inconsistent or incorrect format in typing a command. For example, if
a command requires two arguments, and only one (or none) is provided,
the EDITOR will print ?, perform a carriage return/line feed, and
ignore the command as typed. Similarly, if a nonexistent command
character is typed, the2 error message ? will be printed, follov/ed by a
carriage return/line feed; the command will be ignored. However, if

3-8

an argument is provided for a commmand that does not require one, the
argument will be ignored and the normal function of the commmand
performed. For example:

User Types: Result:

L The buffer is empty. The user is asking for
? nonexistent information.

7,5L
?

17$10M
?

H

The arguments are in the wrong order.
EDITOR cannot list backwards.

The

This command requires two arguments before
the $; only one was provided.

The user types a nonexistent command letter.

3.6.1 Input Commands

Two commands are available for inputting text, and are described in
Table 3-3.

Table 3-3 Input Commands

Command Format Action and Explanation

#A Append the incoming text from the console
terminal keyboard to the information
already in the buffer (if there is no
input file the buffer will be empty
initially) . The EDITOR will enter text
mode upon receiving this command and the
user may then type in any number of lines
of text. The new text will be appended to
the information already in the buffer, if
any, until a form feed (CTRL/FORM key
combination) is typed; control then
returns to comniand mode.

By using the Append command with an empty
buffer, a symbolic program may effectively
be generated on-line by entering the
program via the keyboard.

Any rubout encountered during execution of
an Append command will delete the last
typed character. Repeated rubouts will
delete from right to left up to but not
beyond the beginning of the current line.

Table 3-3 Input Commands (Cont'd)

Command Format Action and Explanation

R #R Read a page of text from the input file on
the specified unit drive. The EDITOR will
read information from the input file until
a form feed character (CTRL/FORM key
combination) is detected or until the
EDITOR senses a text buffer full
condition. All incoming text except the
form feed is appended to the contents of
the text buffer. Information already in
the buffer remains there.

NOTE

In both these commands, the
EDITOR ignores ASCII codes 340
through 376. These codes
include the codes for the lower
case alphabet (ASCII 341-372)

.

The EDITOR returns to command
mode only after the detection of
a form feed or when a buffer
full condition is reached.

3.6.2 Output Commands

Output commands are subdivided into list and text transfer commands.
List commands will cause the printout of all or any part of the
contents of the text buffer to permit examination of the text. Text
transfer commands provide for the output of form feeds, corrected
text, or for the duplication of pages of an input file. List or text
transfer commands do not affect the contents of the buffer.

List Commands

The commands in Table 3-4 cause part or all of the contents of the
text buffer to be listed on the console terminal or line printer.

Table 3-4 List Commands

Command Format Action and Explanation

L #L LIST the entire page. This causes the
EDITOR to list the entire contents of the
text buffer on the console terminal.

L #nL LIST line n. This line will be printed
followed by a carriage return and a line
feed.

3-10

Table 3-4 List Commands (Cont'd)

Command Format Action and Explanation

L #m,nL LIST lines m through n inclusive on the
console terminal.

V #V List the entire text buffer on the line
printer (if one is available)

.

V #nV List line n of the buffer on the line
printer.

V #ra,nV List line m through n inclusive on the
line printer.

The EDITOR remains in command mode after a list command, and the value
of the current line counter is updated so as to equal the number of
the last line printed.

Text Transfer Commands

The following commands control the output of text and form feeds. The
EDITOR is designed to minimize the possibility of illegal or
meaningless characters being written into a source file; therefore the
illegal (nonexistent) codes 340-376 and 140-177, and most illegal
control characters will not be output.

Tcible 3-5 Text Transfer Commands

Command Format Action and Explanation

E #E Output the current buffer to the output
file and transfer all input to the output
file; close the output file.

P #P Transfer the entire contents of the text
buffer to the output buffer.

P #nP Transfer line n only to the output buffer.

P #m,nP Transfer lines m through n inclusive
(where m must be less than n) to the
output buffer. When the output buffer
becomes full, the text is output to the
indicated output file. The P command
automatically outputs a FORM character
(214) after the last line of output.

N #N Transfer the contents of the text buffer
to the output buffer, delete the text
buffer and read in the next logical page
of text from the input file.

3-11

Table 3-5 Text Transfer Commands (Cont'd)

Command Format Action and Explanation

#nN Execute the above sequence n times . If n
is greater than the number of pages of
input text, the command will proceed in
the specified sequence until it reads the
end of the input file, then it will return
to command mode.

#Q

The N command cannot be used with an empty
text buffer. A ? is printed if this is
attempted.

Immediate end-of-file. The Q command
causes the entire text buffer to be
output. All text written into the output
buffer is then written into the output
file and the file closed, with control
returning to the Cassette Keyboard
Monitor.

3.6.3 Editing Commands

The following commands permit deletion, alteration, or expansion of
text in the buffer.

Table 3-6 Editing Commands

Command Format Action and Explanation

#B List the numlber of available memory
locations in the text buffer. The EDITOR
returns the number of locations on the
next line. To estimate the number of
characters that can be accomodated in this
area, multiply the number of free
locations by 1.7.

#nC Change line n.
EDITOR enters
The user may n
text as he des
line. If more
all subsequent
renumbered and
updated app
terminates the

Line n is deleted, and the
text mode to accept input.

aw type in as many lines of
ires in place of the deleted
than one line is inserted,
lines will be automatically
the line count will be

ropriately. A CTRL/FORM
command

.

#m,nC Change lines m through n inclusive (m must
be numbered less the n) . Lines m through
n are deleted and the EDITOR enters text
mode allowing the user to type in any
number of lines in their place. All
subsequent lines will be automatically

3-12

Teible 3-6 Editing Commands (Cont'd)

Command Format Action and Explanation

renumbered to account for the; change
the line count will be updateid.

and

D

#nD

#m,nD

#F

#G

After any Change operation, a return to
command mode is accomplishesd by typing a
CTRL/FORM. After a Change, the value of
the current line counter (.) is equal to
the number of the last line input. The C
command utilizes the Text Collector in
altering text (see Section 3.7).

Delete line n. Line n is removed from the
text buffer. The current line counter and
the numbers of all succeeding lines are
reduced by one.

Delete lines m through n inc:lusive. The
space used by the line to be deleted is
reclaimed as part of the Delete function
(refer to Section 3.7, Text Collection).

Used during a string search. Find the
next occurrence of the string currently
being searched for (see Section 3.8.2,
Inter-Buffer Character String Search)

.

Get and list the next line which has a
label associated with it. (A label in
this context is any line OJ: text which
does not begin with a space, slash, TAB,
or RETURN) . The EDITOR begins with the
line following the current l:.ne (line .+1)
and tests for a line with a label. This
will most often be a line beginning with a
tag; it might also be a line containing an
origin. For example:

TAD (This is the current
nCA line)

/THIS IS A COMMENT
(This line would be
printed by the command
G)

*5P10'1

TAD

(This line would also
be printed if another
G were typed)

#nG Get and list the next line which begins
with a label; the EDITOR begins at line n
and tests it and each succeeding line as
described in the preceding example.

3-13

Table 3-6 Editing Cominaiids (Cont'd)

Conunand Format Action and Explanation

Both G and nG update the current line
counter after liinding the specified line.
However, if either version of the GET
command reaches the end of the buffer
before finding a line beginning with an
ASCII character other than a tab, slash,
or space, the current line counter retains
the value it vras assigned before the GET
was issued, and a ? is typed to indicate
that no tagged line was found. The EDITOR
remains in conunand mode after a GET
command

.

I #nl Insert the typed text before line n until
a form feed (CTRL/FORM) is encountered.
The EDITOR enters text mode to accept
input. The first line typed becomes the
new line n. Rubouts are recognized. Both
the line count and the numbers of all
lines following the insertion are
increased by the number of lines inserted.
The value of the current line counter is
equal to the number of the last line
inserted. To re-enter command mode, the
CTRL/FORM key combination must be typed
(terminating text mode) . If this is not
done, all subsequent commands will be
interpreted erroneonusly as text and
entered in the program immediately after
the insertion.

I #1 Insert text before line 1 (when used
without an argument)

.

J #J Initiate an inter-buffer string search
(See Section 3.8.2, Inter-buffer Character
String Search)

.

K #K Kill (delete) the entire page in the
buffer. The values of the special
characters (/) cind (.) are set to zero.
The EDITOR remains in command mode.

NOTE

The EDITOR ignores the commands
nK or m,nK. This prevents the
buffer from accidently being
destroyed if the user intended
to type a List command (m,nL)

.

3-14

Table 3-6 Editing Commands (Cont'd)

Command Format Action and Explcination

M #m,n$jM Move lines m through n inclusive to before
line j (m must be numerically less than n
and j may not be in the range between m
and n) . Lines m through n are deleted
from their current position and are
inserted before line j . The lines are
renumbered after the move is completed
although the value of the current line
counter (,) is uinchanged, as moving lines
does not use any additional buffer space.
(The $ character is produced by typing a
SHIFT/4.)

A line or group of lines may be moved to
the end of the buffer by specifying j as
/+1. For example, 1,10$/+1M. Since the
MOVE command requires three arcjuments , it
must have three arguments in orcier to move
even one line. This is done by specifying
the same line number twice. For example,
5,5$23M. This will move line :> to before
line 23. The EDITOR remains in command
mode after a Move command.

#nS Search line n for the character specified
after typing the S and a carriage return.
Allow modification of the line when the
character is found. (See Section 3.8.1,
Single Character String Search.

)

#nY Skip to a logical page in the input file,
without writing any output. For example,
#5y. , This command reads through 4

logical pages of input, deleting them
without producing output. The fifth page
is read into the text buffer and control
automatically returns to command mode. If
there are no more pages of input, the
EDITOR issues a ? and returns to command
mode.

#$TEXT" Perform a character string search for the
#$TEXT' string TEXT (see Section 3. 8.. 2, Intra-
#" Buffer Character String Search)

.

Following a string search, #" causes a
search for the next occurrence of the
string.

3.7 TEXT COLLECTION

The CAPS-8 EDITOR contains an automatic text collector which reclaims
buffer space following the use of a D, S, or C command. If a full

3-15

buffer condition is reached, the user may output lines of text (using
the P command, for example) , and then delete these lines from the
buffer—text collection is automatic and always occurs on the three
commands mentioned above.

NOTE

If extremely large amounts of text are deleted,
the text collection process could take several
seconds. For small amounts of text, no
appreciable time is lost.

3.8 CHARACTER SEARCHES

Two types of searches were mentioned in Table 3-6—the standard
character search and the character string search. Each is explained
in turn.

3.8.1 Single Character Search

The single character search may take one of the following forms:

#S
or

#nS
or

#m,nS

where m and n represent line numbers (m<n) , and S initiates the search
command. This command searches the entire text buffer (or the line(s)
indicated) for the search character. The search character is typed by
the user after he types the RETURN key which enters the command, aind

does not echo on the teleprinter. The EDITOR prints the contents of
the entire buffer or the indicated line(s) until the search character
is found. When the search character is found, printing stops and the
user types a response chosen from the following table:

Table 3-7 Search Character Options

Option Result

text Enter text at that point at which
the search character was found and
printing Sitopped.

CTRL/G (bell rings) Change the; search character to the
next character typed; search
continues. If the character is not
contained in the line , the
remainder of the line will be typed
and control will be returned to
command mode. (For example, CTRL/G
CTRL/G would cause the remainder of
the line to be listed.)

3-16

Table 3-7 Search Character Options (Cont'd)

Option Result

CTRL/FORM

RETURN key

LINE FEED key

RUBOUT key

Continue searching for the next
occurrence of the character.

End line here, deleting
subsequent text on that l;.ne.

all

Make two lines out of the current
line. Typing a line feed actually
inserts a carriage return without
returning control to command mode.

Delete characters from th«: line. A
rubout echoes a backslassh (\) for
each character deleted. When all
characters have been deleted,
echoing of "V stops.

3.8.2 Character String Search

The character string search can identify a given line in the buffer by
the contents of that line or any unique combination of characters.
This search returns the line number as a parameter that can be used to
further edit the text. There are two types of string search
available: intra-buffer search and inter-buffer search.

Intra-Buffer Character String Search

The intra-buffer search scans all text in the current
specified character string. If the string is not
printed and control returns to command mode. If the str
the number of the line which contains the string i

current line counter and control waits for the user
command. Thus, searching for a character string
furnishes a line number which can then be used in con
other EDITOR commcinds. This provides a useful framewor
as it eliminates the need to count lines or search for 1

listing lines.

buffer for a
found, a ? is

ing is found,
s put into the

to issue a
in this manner
junction with
k for editing,
ine numbers by

An intra-buffer search is signalled by typing the ALT MODE key (which
echoes as $) in response to the # printed by the EDITOR. The user
then types the string to be found (as many as 20 characters may be
specified—any additional characters typed are echoed but not included
in the search) . The search string cannot be broken across line
boundaries. Typing a single quote (') terminates the character
string; when the RETURN key is typed the search is performed beginning
at line 1 of the text buffer. Use of the double quote (") causes the
search to begin at the current line +1. (Use of ' and " as command
elements prohibits their use in the search string. An incorrect
response resets the current line counter to the becfinning of the

buffer.

)

3-17

For example, assume the text buffer contciins the following text:

ABC DEF bJO
lAaB3C4D5E6
.STRINtaABCD

The user wants to list the line that contains ABC; this could be
by typing:

done

#$ARC'L

The search begins with line 1 and continues until the string is found.
The current line counter is set equal to the line in which the string
ABC occurred, and the L command causes the line to be printed as
follows

:

ABC DEF CJJO

Control returns to command mode, awaiting further commands.
user wanted to find the next reference to ABC, he could type:

If the

r-L

In this case, " is a command which causes the last string searched for
to be used again, with the search beginning at the current line +1.
It is not necessary to enter the search string again. The command may
be used several times in succession. For example, if the user wanted
to find the fourth occurrence of a string containing the characters
FEWMET he could type:

#$ FEWKET"""'L

This command lists the line which contains the fourth occurrence of
that string. The L (List) command (or amy other command code) can be
given following either ' or ". The L command causes the line to be
listed when and if it is found.

In order to clear the text string buffer, the user can type:

The system responds with a question mark and the text string buffer is
cleared.

The properties of the commands ' and " allow for easy and useful
editing, as the following example illustrates. In order to change CIF
20 to CIF 10, the user can issue the following commands:

3-18

#$D'JM, '$CIF 30"C
GIF 1'3 /'MEW FIi;LD (CTRL/FORM)

The above set of instructions first causes the EDITOR to start at line
1 and search for a line beginning wi1ji DUM,. A search is then made
for GIF 20, starting from the line after the line containing the
string DUM, . When this string is found, the line number of the line
containing the string GIF 20 becomes the current line number. The G
command is given, and the user then changes the line to the correct
instruction, GIF 10 /NEW FIELD .

Since this search feature produces a line number as a result, any
operations which can be done by explicitly specifying a line number
can be done by specifying a string instead. For example:

will list the fourth line after the first occurrence of the text
STRING in the text buffer.

£$LABEL1, '^LABELa^-L

will list all lines between the two labels, inclusive.

will do a character search on the line which contains PFLUG. (The
user types the search character after typing the :return key that
enters the line.)

In cases where both strings and explicit numbers are used, strings
"should be used first. For example, the following commands:

#l+SnAD! 'L

will not list the next line after the string BAD! occurs. The correct
syntax is

:

#?V3AD! • +1L

Inter-Buffer Gharacter String Search

The inter-buffer search scans the current text buffer for a character
string. If the string is not found, the current buffer is written to
the output file, the buffer is cleared, and the next buffer is read
from the input device. The search then resumes at line 1 of the new
buffer. This process continues until either the string is found or no
more input is left. If input is exhausted, control returns to command
mode with all the text having been written to the output file. If the
string is found, control returns to command mode with the current line
equal to the numlDer of the line containing the first occurrence of the
string. For example, a command to find the character string GONZO may

3-19

appear as follows:

SliOIVZO'

#.=002^

The J conunand initiates an inter-buffer search; the $ is printed
automatically by the EDITOR, and the user types in the character
string he wishes to search for. The search proceeds, and when the
string is found, control returns to cormiand mode. The user types the
.= construction to discover the number of the line in the current
buffer on which the string is contained. To find further occurrences
of the string GONZO, the user can use the F command. The F command
uses the last character string entered to search the buffer starting
from the current line count +1.

#.=3106

The above example causes a search for the string GONZO starting at the
current line +1. If no output file is specified in the J or F
commands , the EDITOR reads the next input buffer without attempting to
produce any output. This provides an easy way of paging through text
for a particular string.

After the J or P commands have processed the entire input file, an E
or Q command must be executed to close the output file.

The following two commands may be used to abort the string search
command, once given:

Table 3-8 Terminating a String Search

Command Explanation

CTRL/U A CTRL/U will return control to the
EDITOR command mode if executed while
entering text in a string search
command; the string search command is
ignored, as in the following example:

#J
SWORDtfJ

The inter-buffer search for the
characters W0:RD was aborted by the user
typing fU before terminating the string
with ' or ".

RUBOUT Executing the RUBOUT key while entering
text for use in a string search causes
the text so far entered to be ignored
and allows a new string to be inserted.
The EDITOR answers the command by typing

3-20

Table 3-8 Terminating a String Search (Cont'd)

Command Explanation

$, as seen in the following example:

jfSCHAR (RUBOUT)
S

An example of the use of the character string search is contained in
the EDITOR Demonstration Run found at the end of this chapter.

3.9 EDITOR ERROR MESSAGES

Errors made by the user while running the EDITOR may be of two types.
Minor errors (such as an EDITOR command string error, an attempt to
execute a read or write command without assigning a device, or a
search for a nonexistent string) will cause a question mark to be
typed at the left margin of the teleprinter paper. The command may be
retyped.

Major errors force control to return to the Keyboard Monitor and may
be due to one of the causes listed in Table 3-9 . These errors cause a
message to be typed in the form:

?n+C

where n is one of the error codes in Table 3-9 and '^C indicates that
control will pass to the Keyboard Monitor when a character is typed.

Table 3-9 EDITOR Error Codes

Error Code Meaning

The EDITOR failed in reading from a
device. An error occurred in the device
handler; most likely a hardware
malfunction.

1 The EDITOR failed in writing onto a
device; generally a hardware
malfunction.

2 A file close error occurred. The output
file could not be closed; either the
cassette reached an end-of-tape
condition, or a sentinel file needs to
be written before any new output files
can be created on the cassette.

3-21

A ? occurs euiy time the EDITOR encounters a syntax error. In
addition, the following error message may be printed by the EDITOR:

Message

UNIT HAS OPENED FILE

Meaning

Two files cannot be open on the same
device at the same time.

During the editing of a file, the output cassette specified in the
command string may become full before the editing process is
completed. If this is the case and further writing is attempted on
that cassette, cin error occurs. The output file is closed and the
message:

FULLi-OUTPUT FILE-

is printed. The user must now indicate a new output cassette and file
which will contain the text that would not fit on the first cassette
and any further editing the user wishes to do. Since the contents of
the text buffer are retained through this procedure, no text will be
lost if this error occurs.

NOTE

If no output file is specified when this
condition occurs, the EDITOR again
requests an output file; this continues
until the output designation is
correctly specified.

Assuming the new output device is valid, the EDITOR will continue the
operation which filled the old file, putting all output into the new
output file. After editing is completed, the output files should be
combined using the EDITOR. The entire process may then appear as

follows:

^R EDIT
flNPUT FILE- 0;IN
^OUTPUT FILE- 1; OUT
#Y

SSTRING'
FULL OUTPUT FILE-2 t OUTEWP
#.L

TAD STRING
#.D
#E

Device 1: is full.
2: is specified as the
new output device
and editing continues.

3-22

At this point the output "file" is 2 files— 1:0UT, 2:0UTEMP. When
output is split like this, the split may have occurred in the middle
of a line. Therefore, the output files should never be edited
separately as the split lines will then be lost. In a case such as
this, the files should be combined with the EDITOR as follows:

^R EDIT/M
»INPUT FILE- l : OUT
OUTPUT FILE- 5;0UT
*E
INPUT FILE- 2;0UTEMP
INPUT FILE-

The new file, OUT, may then be edited.

3-23

3.10 EDITOR DEMONSTRATION RUN

The following example illustrates both the use of the EDITOR to create
a new file an(a a few of the commands available for editing. Sections
of the printout are coded by letters which correspond with the
explanations following the example.

.R EDIT
INPUT FILE-
OUTPUT FILE-0:PROO.PAL

#A

CHRPUT ,0
SNA
J MP I CHRPUT
CDF
OCA SHELF
TAD WI\HATl
SPC
JMP PUT#1
SNA CLO
JMP PUT#2
CM A
OCA WHATl

#.-5S
SNA CLO\A

#.L
SNA CLA

#P

#K

#A
TAD SHELF
AND (360
CLL RTL

/ACCEPTS CHAR IN AC AND
/PACKS IT INTO OUTPUT BUFFER
/IGNORES NULL

#E

^R EDIT
INPUT FILE- 0;PRQG.PAL
OUTPUT FILE-1 : PROG. PAL

#R
ISSPC'L

SPC

#•5

#E

SPC\A

3-24

A The user calls the EDITOR; the output
file will be called PROG, PAL and will be
stored on the default dcjvice—cassette
drive 0. There is no input file since
one will be created from the console
terminal keyboard. The Append command
is used to insert text into the empty
buffer.

B Text is inserted.

C The user makes a mistake and uses the
RUBOUT key to correct it

D More text is added.

E The user notices a typing mistake he has
made several lines back in the text. He
types a CTRL/FORM to finish the Append
command, searchs for the illegal
character, corrects it, and then lists
the line.

F The P command writes the current buffer
into the output file placing a form feed
after the last line. The K command
deletes all text in the current buffer
in preparation for a new page of text.

G The user inserts new text using the
Append command. When he is finished he
types a CTRL/FORM to end the command.

H The user closes the file; control
returns to the Cassette Keyboard
Monitor.

I In looking over the listing, the user
notices einother mistake; he opens the
file, calling it by the same name in
both the input and output specification
lines.

J The Intra-Buffer Character String Search
is used to locate the illegal
instruction and list it.

K The Single Character Search is used to
find the letter to be corrected, and the
RUBOUT key deletes it.

L The file is closed and control again
returns to the Keyboard Monitor.

3-25

CHAPTER 4

SYSTEM COPY

4.1 INTRODUCTION

The CAPS-8 System Copy (SYSCOP) program allows the user to copy
individual files or all files from one cassette to another, giving him
the ability to make multiple copies of a cassette, add files to a
cassette, emd "clean up" full cassettes so that they may become
available for future use. System Copy transfers all non-empty files
on the specified input cassette to the specified output cassette;
space taken up by previously deleted files (*EMPTY files) is regained.
(Single file transfers of ASCII files can be performed using the
CAPS-8 EDITOR; see Chapter 3.)

4.2 CALLING AND USING SYSTEM COPY

To call SYSCOP from the System Cassette, the user types:

.R SYSCOP/Options

in response to the dot (.) printed by the Keyboard Monitor.

4.2.1 System Copy Options

There are three options available for use with System Copy; these
options are discussed in Table 4-1.. (Option usage is explained in
Chapter 2, Section 2.4.3.)

Table 4-1 System Copy Options

Option Meaning

/F This option allows the user to transfer
individual cassette files from one
cassette to another. To use the /F
option, the user responds to the request
for input specification with the
cassette drive number and the name of
the file to be copied. If the user
mcikes a typing error while entering the
input specification, he can type CTRL/U
to redo the entry.

/U If the /U option is specified, drive 1

is zeroed and then drive is copied to
drive 1. (The /U option is especially
useful for making copies of the System
Cassette.) When the /U option is used,
no further I/O specifications are
necessary.

/Z This option causes the output drive
(indicated in thes output specification
line) to be zeroed before any copying
begins.

4-1

4.2.2 Input and Output Specifications

Before indicating the input and output drives to be used for the copy
operation, the user must ensure that the proper cassettes are mounted.
The input cassette (the one to be copied) should be write-locked to
protect the data. The output cassette (the one that will be the new
copy) should be write-enabled to receive the data. When the input and
output cassettes are mounted on the correct drives, the user is ready
to begin the copy operation.

After SYSCOP has been called from the System Cassette, it asks for the
input specification as follows:

IN-

The user responds with a single digit (0 through 7) specifying the
input cassette drive number. A carriage return is not necessary. If
the /F option was used, the user responds to the IN- query with the
drive number and the name of the file to be copied; in this case, the
user must also type a carriage return. In the following example, a
file named ECHO is to be copied from drive 1.

IN-:ECHO

After the input specification has been entered. System Copy requests
the output specification as follows:

OUT-

The user responds with a single digit (0 through 7) specifying the
output drive number. The output drive number cannot be the same as
the input drive number. If the user wishes to change the input/output
specifications at this point, he may type a carriage return instead of
the drive number eifter OUT- to return to the IN- message.

After both input and output drives have been indicated, the copy
operation starts. All non-empty files on the input cassette are
copied, in order, onto the output cassette. (If a file is to be
copied onto a cassette under the same filename and extension as one
already present on the cassette, it will still be copied; however,
future reference to the file will cause the first file under that name
to be accessed. To circumvent this condition, the user should first
delete any old files or 2ero the output cassette.) IVhen all files have
been copied, control returns to the Keyboard Monitor.

4-2

Only two responses other than the digits through 7 are accepted in
reply to the input/output specification messages: carriage return and
CTRL/C. Carriage return returns the user to the input specification
message; CTRL/C returns the user to the Keyboard Monitor. Any other
response is considered illegal. Illegal responses are neither
accepted nor echoed by System Copy; System Copy simply waits for the
user to type a legal response.

4.2.3 System Copy Example

In this example, the user wishes to make a copy of the System Cassette
which is mounted on drive 0. One purpose of the copy operation is to
regain wasted space being taken up by previously deleted files. A
directory listing shows that the System Cassette currently contains
the following files :

C2B00T.BIN 01/22/73
M0NTOR.BIN 01/22/73
SYSCOP.BIN 01/25/73
*EMPTY.
EDIT .BIN 01/02/73
PALC .BIN 01/02/73
BASIC .BIN 01/l()2/73
EMPTY.
EMPTY.
EMPTY.
EMPTY.
ABC . 01/22/73

The user mounts a write-enabled cassette on drive 2 and rewinds the
tape. He than calls System Copy as follows :

_j_R SYSCOP/Z

The /Z option will zero the cassette mounted on the cassette drive
specified in the OUT- message (drive 2) , leaving only the sentinel
file on the cassette. System Copy then requests the input and output
drive numbers and the user responds as follows:

IN-
QUT- 2

The copy operation starts. If System Copy detects any problems during
the copy operation, it prints one of the error messages explained in
Section 4.3. A successful copy operation returns control to the
Keyboard Monitor. The user can then issue a Directory command to
ensure that all files were copied correctly. In this example, a
successful copy operation should produce the following directory
listing:

C2B00T.BIN 01/22/73
MONTOR.BIN 01/22/73
SYSCOP.BIN 01/25/73
EDIT .BIN 01/02/73
PALC .BIN 01/02/73
BASIC .BIN 01/02/73
ABC . 01/22/73

4-3

4.3 SYSTEM COPY ERROR MESSAGES

Errors which occur during a System Copy operation may be of two types :

user errors and cassette errors. User errors may be corrected with
the appropriate action as detailed in Table 4-2. Cassette errors
normally require the user to use cinother cassette (for either input or
output) to complete the copy operation. Control does not return to
the Keyboard Monitor when a System Copy error occurs. The user may
use CTRL/C to return to the Monitor if he cannot correct the indicated
error.

Table 4-2 System Copy Error Messages

Message Meaning

INPUT ERROR ON UNIT n An input error has occurred on the
cassette drive specified. The user
should try the copy operation using
another cassette.

UNIT n NOT READY There is either no cassette on the
cassette drive specified or no such
drive exists.

UNIT n WRITE LOCKED The user tried to write data when
the write protect tab of the
cassette on the drive specified was
write-locked.

OUTPUT ERROR ON UNIT n An output error has occurred on the
cassette drive specified. The user
should try the copy operation using
another cassette.

4-4

CHAPTER 5

PALC

5 . 1 INTRODUCTION

PALC (an acronym for Program Assembly Language for Casse:tte) is an 8K
2-pass assembler (with em optional third pass) designed for the CAPS-8
System. A program written in PALC source language is translated by
the assembler into a binary file in two passes. Pass 1 reads the
input file and sets up the symbol table; pass 2 reads the input file
and uses the symbol table created in pass 1 to generate the binary
(object) file. The binary file may then be loaded into memory using
the Cassette Keyboard Monitor.

PALC allows I/O using any CAPS-8 device which handles ASCII text. It
is called from the System Cassette using the Keyboard Monitor Rian
command, accepts input generated by the CAPS-8 EDITOR, eind will
generate output acceptable for use with both the Monitor Load and Run
commands

.

5.2 CALLING AND USING PALC

The user calls PALC from the System Cassette by typing;

^R PALC/Options

PALC responds by printing:

-INPUT FILES

The user enters his input cassette drive number cind filename in answer
to the asterisk printed by PALC; a total of three input specifications
are allowed, so that the input interaction may appear as follows:

-INPUT FILES
*1 :TaA.PAL
*0»THB.PAL
jtllTKC.PAL

Usually input files will contain the extension .PAL (see Chapter 2,
Section 2.2.2), and PALC will assume this extension unless the user
explicitly designates another. Thus in the above example the user may
have responded by typing only 1:TRA, 0:TRB, and 1:TRC, in which case
PALC would automatically assume and echo the .PAL extension.

If the filename contains an extension other than .PAL, the user must
specify this extension when entering the input. For example:

-INPUT FILES
jfel tFAIL.I
jtS t TABLE .ASC
.tf ISHOR.

5-1

In the case of the third input file (SHOR.) an extension is not to be
indicated. If the user wants to prevent PALC from assuming .PKL, he
must be sure to include a period in the input line; otherwise PALC
will append .PAL and look for the filename with that extension.

If the user does not specify a drive numtier in his input line, the
default device—drive —is assumed. PALC will automatically insert
0: in the input line before echoing the filename as the user has
entered it. For example:

0 8FLOA.HAL

The user actually typed only the characters FLOA; PALC assumed both
the drive number and the .PAL extension and correctly inserted these
in the I/O line before echoing the complete line.

A carriage return typed in response to any of the asterisks indicates
that there are no more input files.

After the input specifications have been entered, PALC requests the
binary output as follows:

-BINAHY FILE

The user responds similarly here by indicating an output drive number
and filename. Only one binary file is allowed and it should have the
extension .BIN (since the Monitor Run and Load commands assume this
extension) . If the user wants his binary file to be called by the
same name as the first input file he need only type the drive number,
a colon, and a carriage return. PI<LC will echo this, adding the
filename with a .BIN extension. For example:

-INPUT FILES
*l : OPEN.HAL

-BINARY FILE
*e tOFEN.BIN

As in the input line, drive and the extension (.BIN) are assumed if

the user fails to specify them, and a response of only a carriage
return indicates that no binary file is to be produced.

Once the binary output line has been ansv/ered, PALC prints;

-LIST TO

The user has a choice of sending his output listing to either the
console terminal or the line printer. To send output to the console
terminal the user types the characters TTY in response to the asterisk
as follows:

-LIST TO
*TTY

5-2

To send output to the line printer, the user responds by typing LPT:

-LIST TO
JtLPT

A response of a carriage return indicates that no listing is to be
produced.

During a PALC assembly only one listing is produced and it may be sent
to only one device, either the line printer or console terminal. A
second listing must be produced by another assembly.

If more cassettes are to be involved in the assembly than the user has
TU60 unit drives, a certain procedure must be followed during the
assembly process. For example, assume the user has only one TU60 dual
cassette unit, and 3 input files are stored on individual cassettes.
His I/O specification is as follows :

-INPUT FILES
*1 !F1 .PAL
j!l0:F2.PAL
*0:F3.PAL
-BINARY FILE
±\ :RESLT.BIM
-UIST TO
*LPT

PALC is a 3-pass assembler, therefore all three input files will be
referenced 3 times. Assume the user has mounted IrFl.PiVL on drive 1,
and 0:F2.PAL on drive 0; assembly begins. First the file Fl is
processed, then F2 . After assembly of F2 PALC looks for F3, but since
the file is on a third cassette which is not mounted, the assembly
pauses and PALC prints:

MOUNT FS.PAL'f

This pause in the assembly allows the user to dismount a cassette and
replace it with the cassette containing the file F3.PAL. The user
then responds to the above I/O line with the drive niimber on which he
has mounted the new cassette (assume 0), as follows:

MOUNT F3.PAL70

If the response is valid, PALC responds by typing a CR/LF and
continues pass 1 of the assembly. (An invalid response causes PALC to
print a ?; the user may then type the correct response.)

When pass 1 is completed PALC automatically begins the second pass,
which creates the binary file. The binary output file specification
must now be made. Regardless of the output specification indicated in
the initial dialogue, PALC pauses and asks:

MOUNT iiESLT.BIN?

5-3

The user must mount the output cassette which is to contain the binary
file and respond with the drive numhier on which he has mounted it.
Assume he decides to mount the cassette on drive 0. He replaces the
cassette currently on that drive (containing F3.PAL) with the new
cassette amd responds to the command line as follows:

KOJNT HESLT.BIN7

PALC then opens the binary file on this cassette and prints:

BINAHY FILE OPENED ON

NOTE

The cassette used for binary output may
not contain any of the input files.
Under no circumstances should the
cassette containing th€! binary file be
removed from the drive until pass 2 is
completely finished. PAIiC will indicate
completion of the pass by printing the
message, "BINARY FILE CLOSED".

After specification of the binary output file, PALC continues pass 2

of the assembly by processing the first input file, Fl.PAL, currently
on drive 1. After this file is processed, PALC pauses smd asks:

MOUNT F2.PAL?

Since the binary file being created on drive is only partially
complete at this point, the user musst not remove the cassette from
that drive. He must instead remove the cassette from drive 1 and
replace it with the cassette containing F2.PAL, He then types 1 in
response to the I/O line and assembly continues until F3.PAL is
needed. PALC again pauses and asks

:

MOUNT F3»PAL?

Again the user replaces the cassette on drive 1 with the appropriate
one, correctly answers the I/O line, and assembly continues.

Once pass 2 is done, pass 3—the listing pass—must be processed.
Drive may again be used for input, cind assembly of input files
continues in the same manner as during passes 1 and 2

.

The procedure of mounting and dismovinting cassettes may be repeated as
many times as necessary until all input files are processed and the
desired output produced. If an I/O error occurs during any of the
three passes or if an output cassette becomes full, the user must
restart the assembly beginning with pass 1.

5-4

NOTE

When the assembly is complete, PALC
prints tC (CTRL/C) . The user then
mounts the system cassette and types
CTRL/C to return to the Monitor.

5.2.1 PALC Options

Table 5-1 lists the options available in PALC which may be indicated
in the Monitor Run or Load specification line.

Table 5-1 PALC Options
Option Meaning

/D Generate a DDT-compatible symbol table
(applicable only if a listing file is
specified)

,

/H Generate non-paginated output. Header,
page numbers and page format are
suppressed (applicable only if a listing
file is specified)

.

/K Used in assembling very large programs;
causes system containing 12K or more of
memory to use fields 2 and up as symbol
table storage.

/N Generate the symbol table, but not the
listing (applicable only if a listing
file is specified; the /H option is
assumed)

.

/S Omit the symbol table normally generated
with the listing (applicable only if a
listing file is specified)

.

/T Output a carriage return/line feed in
place of the form feed character (s) in
the program (applicable only if a
listing file is specified)

.

5.3 CHARACTER SET

The following characters are acceptable as input to PALC:

1. The alphabetic characters: A through Z

2. The numeric characters: through 9

3. The characters described in following sections as
special characters and operators

5-5

4. Characters which are ignored during assembly such
as LINE FEED, FORM FEED, and RUBOUT

All Other characters are illegal (except when used in a comment) and
cause the error message:

IC AT nnnn

to be printed during pass 1; nnnn represents the location at which the
illegal character occurred. (As assembly proceeds, each instruction
is assigned a location determined by the current location counter (see
Section 5.7.3). When an illegal character or any other error is
encountered during assembly, the value of the current location counter
is returned in the error message.) Illegal characters do not generally
cause assembly to halt. If an illegal character occurs in the middle
of a symbol, the symbol is terminated at that point.

5.4 STATEMENTS

PALC source programs are usually prepared on the console terminal
(using the CAPS-8 EDITOR) as a sequence of statements. Each statement
is written on a single line and is terminated by typing the RETURN
key.

There are four types of elements in a PALC statement which are
identified by the order of their appearance in the statement and by
the separating (or delimiting) character which follows or precedes the
element. These are:

label, instruction operand /comment

A statement must contain at least one of these elements and may
contain all four types. The assembler interprets and processes the
statements, generating one or more binary instructions or data words,
or performing an assembly process.

5.4.1 Labels

A label is the symbolic name created by the programmer to identify the
location of a statement in the program. If present, the Icdjel is
written first in a statement. It must begin with cm alphabetic
character, contain only alphanumeric characters, and be terminated by
a comma; there must be no intervening spaces between any of the
characters and the comma.

5.4.2 Instructions

An instruction may be one or more of the mnemonic machine instructions
or a pseudo-operation which directs assembly processing. (Assembly
pseudo-ops are described later in this chapter; Appendix C summarizes
both the mnemonic machine instructions and pseudo-ops used by PALC.)
Instructions are terminated with one or more spaces (or tabs if an

5-6

operand follows) or with a semicolon, slash, or carriage return, as
described in Section 5.5.3.

5.4.3 Operands

Operands are the octal or symbolic addresses of an ass£>mbly language
instruction or the argument of a pseudo-operator, and can be any
expression. In each case, interpretation of an operand depends upon
the instruction or the pseudo-op. Operands are terminated by a
semicolon, slash, or carriage return.

5.4.4 Comments

The programmer may add notes or comments to a statement by separating
these from the remainder of the line with a slash. Svich comments do
not affect assembly processing or program execution but are useful in
the program listing for later analysis or debugging. The assembler
ignores everything from the slash to the next carriage return. (For
an example see Section 5.5.3, Statement Terminators.)

It is possible to have only a carriage return on a line, resulting in
a blank line in the final listing. No error message is given.

5.5 FORMAT EFFECTORS

The following characters are useful in controlling the format of an
assembly listing. They allow a neat readable listing to be produced
by providing a means of spacing through the program.

5.5.1 Form Feed

The form feed code causes the assembler to output blank lines in order
to skip to a new page in the output listing during pass 3; this is
useful in creating a page-by-page listing. The form feed is generated
by typing a CTRL/L on the console terminal.

5.5.2 Tabulations

Tabulations are used in the body of a source prograrr; to separate
fields into columns (for details refer to Chapter 3). For example, a
line written:

GO, TAD TOTAL/MAIN LOOP

is much easier to read if tabs are inserted to form:

5-7

GO, TAD TOTAL /MAIN LOOP

5.5.3 Statement Terminators

The RETURN key is used to terminate a statement and causes a line
feed/carriage return combination to occur in the listing. The
semicolon (;) may also be used as a statement terminator and is
considered identical to a carriage return except that it will not
terminate a comment. For example:

TAD A /THIS IS A COMMENT; TAD B

The entire expression between the slash (/) and the carriage return is
considered a comment. Thus in this case the assembler ignores the TAD
B.

If, for example, the user wishes to write a sequence of instructions
to rotate the contents of the accumulator and link six places to the
right, it might look like the following!;

HTrt
HTH

However, the programmer can alternatively place all three instructions
on a single line by separating them with the special character
semicolon (;) eind terminating the entires line with a carriage return.
The above sequence of instructions can then be written:

HTH;HTH;HrR

These multi-statement lines are particularly useful when setting aside
a section of data storage for use during processing. For example, a
4-word cleared block could be reserved by specifying either of the
following:

LIST, 0; 0; 0;

or

LIST*

Either format may be used to input data words (data words may be in
the form of numbers, symbols, or expressions, explained next.) Each of
the following lines generates one storage word in the object progrcun:

5-8

DATA> 7777
A+C-B
S
123+82

5.6 NUMBERS

Any sequence of digits delimited by either a SPACE, TAB, semicolon, or
carriage return forms a number. PALC initally interprets numbers in
octal (base 8) . This base can be changed to decimal using a special
pseudo-operator (discussed in Section 5.10.2). Numbers are used in
conjunction with symbols to form expressions.

5 . 7 SYMBOLS

A symbol is a string of alphanumeric characters beginning with a
letter and delimited by a non-alphanumeric character. Although a
symbol may be any length only the first six characters are recognized;
since additional characters are ignored, symbols which are identical
in their first six characters are considered identical.

5.7.1 Permanent Symbols

The assembler contains a table (called its permanent symbol table)
which lists the symbols for all PDP-8 pseudo-op codes, memory
reference instructions, operate and lOT (Input/Output Transfer)
instructions. These instructions are symbols which are permanently
defined by PALC and need no further definition by the user; they are
summarized in Appendix C. For example:

HLT This is a symbolic instruction
assigned the value 7402 by the
assembler and stored in its permanent
symbol table.

5.7.2 User-Defined Symbols

All symbols not defined by the assembler (and represented in its
permanent symbol table) must be defined within the source program.

A symbol may be used as a statement label, in which case it is

assigned a value equal to the current location counter; it is called a

symbolic address and Ccin be used as an operand or as a reference to an
instruction. Permanent symbols (instructions, special characters, and
pseudo-ops) may not be used as symbolic addresses.

The following are examples of legal symbolic addresses:

ADDH*
TOTAL*
SUM*
Al«

5-9

The following are illegal symbolic addresses:

AD>Kj (contains an illegal character)
7ABC* (first character must be alphabetic)
LA BEL# (must not contain imbedded spaces)
D+TAG* (contains a legal but non-alphanumeric character)
LABEL t (must be terminated by a comma with no

intervening spaces)

5.7.3 Current Location Counter

As source statements are processed, PAIjC assigns consecutive memory
addresses to the instructions and data words of the object program.
The current location counter contains the address in which the next
word of object code will be assembled <ind is automatically incremented
each time a memory location is assigned. A statement which generates
a single object program storage word increments the location counter
by one. Another statement might generate six storage words,
incrementing the location counter by six.

The user sets or resets the location counter by typing an asterisk
followed by the octal absolute address value in which the next program
word is to be stored. If the origin is not set by the user, PALC
begins assigning addresses at location 200.

*300 /SET LOCATION COUNTER TO 300
TAG, CLA

J MP A

B,

A, DCA B

The symbol TAG (in the preceding example) is assigned a value of 0300,
the symbol B a value of 0302, and the symbol A a value of 0303. If a
symbol is defined more than 'once in this manner, the assembler will
print the illegal definition diagnostic:

ID address

where address is the value of the location counter at the second
occurrence of the symbol definition. The symbol is not redefined.
(For cin explanation of diagnostic messages refer to Section 5.14 PALC
Error Conditions.) For example:

*300
START, TAD A

DCA COUNTER
CONTIN, JMS LEAVE

JMP START
A, -74
COUNTER,
START, CLA CLL

5-10

The symbol START would have a value of 0300, the symbol CONTIN would
have a value of 0302, the symbol A would have a value of 0304, the
symbol COUNTER (considered COUNTE by the assembler) would have a value
of 0305. When the assembler processed the next line it would print
(during pass 1)

:

IR COUNTE+0001

Since the first pass of PALC is used to define all symbols, the
assembler will print a diagnostic during pass 2 if reference is made
to an undefined symbol. For example:

*7170
A, TAD C

CLA CMA
HLT
JMP A 1 The dollar sign must terminate

C, all PDP-8 assembly programs.
$

This would produce the undefined symbol diagnostic:

US A+0003

5.7.4 Symbol Table

Initially, the assembler's symbol table contains the mnemonic op-codes
of the machine instructions and the assembler pseudo-op codes as

listed in Appendix C; this is its permanent symbol table. As the
source program is processed, user-defined symbols along with their
binary values are added to the symbol table. The symbol table is

listed in alphabetical order at the end of pass 3.

During pass 1, if PALC detects that the symbol table is full (in other
words, there is no more memory space in which to store symbols and
their associated values) , the symbol table exceeded diagnostic is
printed:

SE address

The assembler then prints +C and waits for a response from the user.
By typing + C the user can return control to the Monitor. If the
system contains more than 8K of memory, the user may choose the /K
option with the Run command (see Section 5.2,1) , or more address
arithmetic may be used to reduce the number of symbols. It is also
possible to segment a program and assemble the segments separately,
taking care to generate proper links between the segments. (See

Section 5.11.) PALC's symbol capacity is 768 symbols. The permanent
symbol table contains 69 symbols, leaving space for 699 possible
user-defined symbols. Each additional 4K allows 768 new symbols.

Section 5.10.12 provides instructions concerning altering PALC's
permanent symbol table should the user wish to add instructions more
suited to his programming needs.

5-11

5.7.5 Direct Assignment Statements

The programmer may insert new symbols with their assigned values
directly into the symbol table by using a direct assignment statement
of the form:

SYMBOL=VALUE

VALUK may be a number or expression. No spaces or tabs may appear
between the symbol to the left of the equal sign and the equal sign
itself. The following are examples of direct assignment statements:

A=6
EXITrJMP I

C:A+B

All symbols to the right of the equal sign must be already defined.
The symbol to the left of the equal sign is subject to the same
restrictions as a symbolic address , and its associated value is stored
in the user's symbol table. The use of the equal sign does not
increment the location counter; it is, rather, an instruction to the
assembler itself.

A direct assignment statement may also equate a new symbol to the
value assigned to a previously defined symbol. In this case, the two
symbols share the same memory location.

BETAZ17
GAMMA^BETA

The new symbol, GAMMA, is entered into the user's symbol table with
the value 17.

The value assigned to a symbol may be changed as follows:

ALPHAr5
ALPHA=7

The second line of code shown changes the value assigned to ALPHA from
5 to 7. (This is legal but will generate an RD error message,
explained below.)

Symbols defined by use of the equal sign may be used in cUiy

expression. For example:
valid

A:100
B:400
A+B
TAD A

*?.00

/DOES NOT UPDATE CLC
/DOES NOT UPDATE CLC
/THE VALUE 500 IS ASSEMBLED AT LOG. 200
/THE VALUE 1200 IS ASSEMBLED AT LOG. 201

If the symbol to the left of the equal sign has already been defined,
the redefinition diagnostic:

RD address

will be printed as a warning, where address is the value of the
location counter at the point of redefinition. The new value will be

5-12

stored in the symbol table; for example:

CLA=7600

will cause the diagnostic:

RD '^0200

Whenever CLA is used after this point, it will have the value 7600,

5.7.6 Symbolic Instructions

Symbols used as instructions must be predefined by the assembler or
the programmer. If a statement has no label, the instructions may
appear first in the statement and must be terminated by a space, tab,
semicolon, slash, or carriage return. The following are examples of
legal instructions:

TAD (a mnemonic machine instruction)
PAGE (an assembler pseudo-op)
ZIP (an instruction defined by the user)

5.7.7 Symbolic Operands

Symbols used as operands normally have a value defined by the user.
The assembler allows symbolic references to instructions or data
defined elsewhere in the program. Operands may be numbers or
expressions. For example:

TOTAL* TAD AC I + TAG

The values of the two symbols ACl and TAG (already defined by the
user) are combined by a 2's complement add (see Section 5,8.1,
Operators) . This value is then used as the address of the operand.

5.7.8 Internal Symbol Representation For PALC

Each permanent and user-defined symbol occupies four words in the
symbol table storage area. A PDP-8 instruction has an operation code
of three bits as well as an indirect bit, a page bit, and seven
address bits. The PALC assembler distinguishes between pseudo-ops,
memory reference instructions, other permanent symbols, and
user-defined symbols in the symbol table.

5-13

5.8 EXPRESSIONS

Expressions are formed by the combination of symbols, numbers, and
certain characters called operators, which cause specific arithmetic
operations to be performed. An expression is terminated by either a
comma, carriage return, or semicolon.

5.8.1 Operators

There are seven characters in PALC which act as operators;

+ Two's complement addition
Two's complement subtraction

1- Multiplication (unsigned, 12-bit)
% Division (unsigned, 12--bit)
! Boolean inclusive OR
& Boolean AND

SPACE Treated as a Boolean inclusive OR
except in a memory refctrence
instruction

Two's complement addition and subtraction are explained in detail in
Chapter 1 of INTRODUCTION TO PROGRAMMING? the user should refer to
that handbook if he wishes more information. No checks for overflow
are made during assembly, and any overflow bits are lost from the high
order end. For example:

7755+24 will give a result of 1

The operators + and - may be used freely as prefix operators.

Multiplication is accomplished by repeated addition. No checks for
sign or overflow are made. All 12 bits of each factor are considered
as magnitude. For example:

3000+2 wall give a result of 6000

Division is accomplished by repeated subtraction. The number of
subtractions which are performed is the quotient. The remainder is
not saved and no checks are made for sign. Division by will
arbitrarily yield a result of 0. For example:

7000%1000 will yield a result of 7

This could be written as:

-1000%1000

in this case the answer might be expected to be -1 (7777) , but all 12
bits are considered as magnitude and the; result is still 7.

Use of the multiplication and division operators requires ein attention
to sign on the part of the programmer beyond that which is required
for simple addition and subtraction. The following table of examples
is given for reference.

5-14

Table 5-2 Use of Operators

Expression Also written as:

7777+2 -1+2
7776-3 -2-3
+ 2

2 +

1000+7
0%12
12%0
7777%1 -1%1
7000%1000 -1000%1000
1%2

Result

+1
7773 or -5

7000 or -1000

7777 or -1
7

The ! operator causes a Boolean inclusive OR to be performed bit by
bit between the left-hand term and the right-hand term. (The
inclusive OR is explained in Cliapter 1 of INTRODUCTION TO
PROGRAMMING.) For example:

if A=l and B=2
then A!B=0003

The & operator causes a Boolean AND to be performed bit by bit between
the left and right values. The operation is the same as that
indicated by the memory reference instruction AND.

SPACE has special significance depending on the context in which it is
used. When it is used to separate two permanent symbols or two
user-defined symbols, as in the following example:

SMA CLA

it causes an inclusive OR to be performed between them. In this case,
SMA=7500 and CLA=7600. The expression SMA CLA is assembled as 7700.
When SPACE is used following pseudo-operators and memory reference
instructions, it merely delimits the symbol.

User-defined symbols are treated as operate instructions. For
example:

A»333
222

B» CIA

Possible expressions and their values using the symbols just defined
are shown below. Notice that the assemhiler reduces each expression to
one 4-digit (octal) word:

A 0333
B 0222
A+B 0555
A-B 0111
-A 7445
1-B 7557
B-1 0221
Al B 0333
-71 7707

(an inclusive OR is performed)

5-15

If the information generated is to be loaded, the current location
counter is incremented. For example:

b-7;a+4;a-b

produces three words of information; the current location counter is
incremented after each expression. The statement:

HALT=HLT CLA

produces no information to be loaded (it produces an association in
the symbol table) and hence does not increment the current location
counter.

*4721
TEMP,
TEM2,

The location counter is not incremented after the line TEMP,; the two
symbols TEMP and TEM2 are assigned the same value, in this case 4721.

Since a PDP-8 instruction has an operation code of three bits as well
as an indirect bit, a page bit, and seven address bits, the assembler
must combine memory reference instructions in a manner somewhat
differently from the way in which it combines operate or lOT
instructions. The assembler differentiates between the symbols in its
permanent symbol table and user-defined symbols. The following
symbols are used as memory reference instructions:

Logical AND
Two's complement addition
Increment and skip if zero
Deposit and clear accumulator
Jump to subroutine
Jump

When the assembler has processed one of these symbols, the space
following it acts as an address field delimiter.

*4100
JMP A

A, CLA

A has the value 4101, JMP has the value 5000, and the space acts as a
field delimiter. These symbols are represented as follows:

A 100 001 000 001
JMP 101 000 000 000

The seven address bits of A are taken, e.g.:

000 001 000 001

The remaining bits of the address are tested to see if they are zeros
(page zero reference) ; if they are not, the current page bit is set:

AND 0000
TAD 1000
ISZ 2000
DCA 3000
JMS 4000
JMP 5000

5-16

000 oil 000 001

The operation code is then ORed into the JMP expression to form;

101 Oil 000 001

or, written more concisely in octal:

5301

In addition to the above tests, the page bits of the address field are
compared with the page bits of the current location counter. If the
page bits of the address field are nonzero and do not equal the page
bits of the current location counter, an out-of-page reference is
being attempted and the assembler will take action as described in
Section 5.11, Link Generation and Storage.

5.8.2 Special Characters

In addition to the operators described in the previous section, PALC
recognizes several special characters which serve specific functions
in the assembly process. These characters are:

= equal sign
, comma
* asterisk
. dot
" double quote
() parentheses
[] square brackets
/ slash
; semicolon
<> angle brackets
$ dollar sign

The equal sign, comma, asterisk, slash, and semicolon have been
previously described. The remainder will be described next.

The special character dot (.) always has a value equal to the value of
the current location counter. It may be used as any integer or symbol
(except to the left of an equal sign) , and must be preceded by a space
when used as an operand. For example:

iMP .+2

is equivalent to JMP 0202. Also,

*300
• *-2400

will produce in location 0300 the quantity 2700. Consider:

2200
CALL»JMS I •

0027

5-17

The second line (CALL=JMS I.) does not increment the current location
counter,' therefore, 0027 is placed in location 2200 and CALL is placed
in the user's symbol table with an associated value of 4600 (the octal
equivalent of JMS I)

.

If a single character is preceded by a double quote ("), the 8-bit
value of ASCII code for the character is used rather than interpreting
the character as a symbol (ASCII codes are listed in Appendix A) . For
example

:

CLA
TAD ("A

The constant 0301 is placed in the accumulator.

The code

:

will be assembled as 0256. The character must not be a carriage
return or one of the characters which is ignored on input (discussed
at the end of this section)

.

Left and right parentheses () enclose a current page literal (closing
member is optional)

.

*200

CLA
TAD INDEX
TAD (2)
OCA I NDEX

The left parenthesis is a signal to the assembler that the expression
following is to be evaluated and assigned a word in the constants
table of the current page. This is the same table in which the
indirect address linkages are stored. In the above example, the
quantity 2 is stored in a word in the linkage and literals list
beginning at the top of the current memory page. The instruction in
which the literal appears is encoded with an address referring to the
address of the literal, A literal is assigned to storage the first
time it is encountered; subsequent reference to that literal from the
current page is made to the same register. The use of literals frees
symbol storage space for variables and makes programs much more
readable.

If the programmer wishes to assign literals to page zero rather than
to the current page, he may use square brackets, [and] , in place of
parentheses. This enables the programmer to reference a single
literal from any page of memory. For example:

*200
TAD [2]

*500
TAD [2]

5-18

The closing member is optional. Literals may take the following
forms: constant term, variable term, instruction, expression, or
another literal.

NOTE

Literals can be nested, for example:

*200
TAD (TAD (30

This type of nesting may be continued in
some cases to as many as 6 levels,
depending on the number of other
literals on the page and the complexity
of the expressions within the nest. If
the limits of the assembler are reached,
the error messages BE (too many levels
of nesting) or PE (too many literals)
will result.

Angle brackets are used as conditional delimiters. The code enclosed
in the angle brackets is to be assembled or ignored contingent upon
the definition of the symbol or value of the expression within the
angle brackets. (The IFDEF, IFIMDEF, IFZERO, and IFNZRO
pseudo-operators are used with angle brackets and are described in
Section 5.10.9.)

The dollar sign character ($) is mandatory at the end of a program and
is interpreted as an unconditional end-of-pass . It may however occur
in a text string, comment or " term, in which case it is interpreted
in the same manner as any other character.

The following characters are handled by the assembler for the pass 3

listing, but are otherwise ignored:

FORM FEED Used to skip to a nev/ page
LINE FEED Used to create a line spacing without causing a

carriage return
RUBOUT Used by the EDITOR to allow corrections in the

input file.

Nonprinting characters include:

SPACE
TAB
RETURN

These characters are used for format control and have been previously
explained in Section 5.5.

5-19

5 . 9 INSTRUCTIONS

There are two basic groups of instructions: memory reference and
microinstructions. Memory reference instructions require an operand,
microinstructions do not.

5.9.1 Memory Reference Instructions

In PDP-8 computers, some instructions require a reference to memory.
They are appropriately designated memory reference instructions , and
take the following format:

1 2 3 4 5 6 7 8 9 10 11

OPERATION
CODE 7

1 1

ADDRESS

1 1 1
1 J

INDIRECT ADDRBSING
MEMORY PAGE

)

Memory Reference Bit Instructions

Bits through 2 contain the operation code of the instruction to be
performed. Bit 3 tells the computer if the instruction is indirect
(see Section 5.9.2). Bit 4 tells the computer if the instruction is
referencing the current page or page zesro. This leaves bits 5 through
11 (7 bits) to specify an address. In these 7 bits, 200 octal (128
decimal) locations can be specified; the page bit increases accessible
locations to 400 octal or 255 decimal. For a list of the memory
reference instructions and their codes, see Appendix C.

In PALC a memory reference instruction must be followed by a space (s)

or tab(s), an optional I or Z designation, and any valid expression.
It may be defined with the FIXMRI instruction as explained in Section
5.10.12, Altering the Permanent Symbol Tc±>le. Permanent symbols may
be defined using the FIXTAB instruction and may be used in address
fields as shown below:

FIXTAB
TAD A

5.9.2 Indirect Addressing

When the character I appears in a statement between a memory reference
instruction and an operand, the operand is interpreted as the address
(or location) containing the address of the operand to be used in the
current statement. Consider:

5-20

TAD 40

which is a direct address statement, where 40 is interpreted as the
location on page zero containing the quantity to be added to the
accumulator. References to locations on the current page and page
zero may be done directly. An alternate way to note the page zero
reference is with the letter Z, as follows:

TAD Z 40

This is an optional notation, not differing in effect from the
previous example. Thus, if location 40 contains 0432, then 0432 is
added to the accumulator. Now consider:

TAD I 40

which is an indirect address statement, where 40 is interpreted as the
address of the location containing the quantity to be added to the
accumulator. Thus, if location 40 contains 0432, and location 432
contains 0456, then 456 is added to the accumulator.

NOTE

Because the letter I is used to indicate
indirect addressing, it is never used as
a variable. Likewise the letter Z,
which is sometimes used to indicate a
page zero reference, is never used as a
variable.

5.9.3 Microinstructions

Microinstructions are divided into two groups : operate and
Input/Output Transfer (lOT) microinstructions. Operate
microinstructions are further subdivided into Group 1, Group 2, and
Group 3 designations.

NOTE

If a programmer mistakenly specifies an
illegal combination of micro-
instructions, the assembler will perform
an inclusive OR between them; for
example

:

CLL SKP is interpreted as SPA
(7100) (7410) (7510)

Operate Microinstructions

Within the operate group, there are three groups of microinstructions
which cannot be mixed. Group 1 microinstructions perform clear,
complement, rotate and increment operations, and are designated by the
presence of a in bit 3 of the machine instruction word.

5-21

1 2 3 4 5 6 7 8 9 10 11

1 1 1

1 1

CLA CLL CMA CML BSW lAC

ROTATE AC AND I

ROTATE AC AND I

D/^TATC 1 D/-^CITI/-^

RIGHT
LEFT

1 IC A rt O D/~\ciTir\MC IC A 1

t
1

1

(BSW IF BITS 8,9 ARE 0)

LOGICAL SEQUENCE: 1-CLA , CLL

3-IAC

2 -CMA, CML

4-RAR,RAL,RTR,RTL,BSW

Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions check the contents of the accumulator and
link and, based on the check, continue to or skip the next
instruction. Group 2 microinstructions are identified by the presence
of a 1 in bit 3 emd a in bit 11 of the machine instruction word.

2 3 4 5 6 7 8 9 10 11

1 1 1

1 1

1 CLA SMA SZA SNL OSR HLT

REVERSE SKIP SENSING OF BITS 5,6,7 IF SET 1

LOGICAL SEQUENCE: 1 (BIT 8 IS 0)-SMA OR SZA OR SNL
(BIT 8 IS I) - SPA AND SNA AND SZL

2 -CLA
3- OSR, HLT

Group 2 Operate Microinstruction Bit Assignments

Group 3 instructions reference the MQ register. They are
differentiated from Group 2 instructions by the presence of a 1 in
bits 3 and 11. The other bits are part of a hardware arithmetic
option.

1 2 3 4 5 6 7 8 9 10 11

OPERATION
CODE 7

1 1

CLA MQA WQL
1 1

CONTAINSAITO
SPECIFY GROUP 3 KE8-E EXTENDED

ARITHMETIC
ELEMENT

CONTAINS A 1 TO
SPECIFY GROUP 3

Group 3 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined since bit 3

determines either one or the other.

5-22

within Group 2, there are two groups of skip instructions. They can
be referred to as the OR group and the AND group.

OR Group AND Group

SMA SPA
SZA SNA
SNL SZL

The OR group is designated by a in bit 8, amd the AND group by a 1
in bit 8. OR and AND group instructions cannot be combined since bit
8 determines either one or the other.

If the programmer does combine legal skip instructions, it is
important to note the conditions under which a skip may occur.

1. OR Group— If these skips are combined in a statement,
the inclusive OR of the conditions determines the skip.
For example:

SZA SNL

The next statement is skipped if the accumulator
contains 0000 or the link is a 1 or both.

2. AND Group— If the skips are combined in a statement, the
logical AND of the conditions determines the skip. For
example

;

SNA SZL

The next statement is skipped only if the accumulator
differs from 0000 and the link is 0.

Input/Output Transfer Microinstructions

These microinstructions initiate operation of peripheral equipment and
effect an information transfer between the central processor and the
Input/Output device (s); i.e., cassettes, console terminal, and line
printer. The Permanent Symbol Table in Appendix C lists PALC's lOT's.

5.9.4 Autoindexing

Interpage references are often necessary for obtaining operands when
processing large amounts of data. The PDP-8 computers have facilities
to ease the addressing of this data. When one of the absolute
locations from 10 to 17 (octal) is indirectly addressed, the contents
of the location is incremented before it is used as an address and the
incremented number is left in the location. This allows the
programmer to address consecutive memory locations using a minimum of
statements.

5-23

It must be remeinbered that initially tliese locations (10 to 17 on page
0) must be set to one less than the first desired address. Because of
their characteristics, these locations are called autoindex registers.
No incrementation takes place when locations 10 to 17 are addressed
directly. For example, if the instruction to be executed next is in
location 300 and the data to be referenced is on the page starting at
location 5000, autoindex register 10 can be used to address the data
3,3 fOlXOWS *

0276* 1577 TAD C4777 /=5000-l
0277 3010 DCA 10 /SET UP AUTO INDEX
0300 1410 TAD I 10 /INCREMENT TO 5000

/BEFORE USE AS AN ADDRESS

0377 4777 C4777,4777
When the instruction in location 300 is executed, the contents of
location 10 will be incremented to 5000 and the contents of location
5000 will be added to the contents of the accumulator. When the
instruction TAD I 10 is executed again, the contents of location 5001
will be added to the accumulator, and so on.

5 . 10 PSEUDO-OPERATORS

The programmer uses pseudo-operators to direct the assembler to
perform certain tasks or to interpret subsequent coding in a certain
manner. Some pseudo-ops generate storage words in the object program,
other pseudo-ops direct the assembler how to proceed with the
assembly. Pseudo-ops are maintained in the permanent symbol table.

The function of each PALC pseudo-op is described below.

5.10.1 Indirect and Page Zero Addressing

The pseudo-operators I and Z are used to specify the type of
addressing to be performed. These have been previously discussed in
Section 5.9.2.

5.10.2 Radix Control

Numbers used in a source program are initially considered to be octal
numbers. However, the programmer may change or alternate the radix
interpretation by the use of the pseudo-operators DECIMAL cuid OCTAL.

The DECIMAL pseudo-op interprets all following numbers as decimal
until the occurrence of the pseudo-op OCTAL.

The OCTAL pseudo-op resets the radix to its original octal base.

5-24

5.10,3 Extended Memory

The pseudo-op FIELD instructs the assembler to output a field setting
so that it may recognize more than one memory field. This field
setting is output during pass 2 and is recognized by the Run (or Load)
command, which in turn causes all subsequent information to be loaded
into the field specified by the expression. The form is:

FIELD n

n is an integer, a previously defined symbol, or an expression within
the range 0<=n<=7.

This field setting is output on the binary file during pass 2 followed
by an origin setting of 200. This word is read when the Run (or Load)
command is executed and begins loading information into the new field.

The field setting is never remembered by the assembler and no initial
field setting is output. A binary file produced without field
settings will be loaded into field when using the Run (or Load)
command.

NOTE

A symbol in one field meiy be used to
reference the same location in any other
field. The field to which it refers is
determined by the use of the CDF and GIF
instructions. (The programmer who is
unfamiliar with thelOT'sbut wishes to
use them should refer to the PDP/8E
SMALL COMPUTER HANDBOOK and experiment
with several short test programs to
satisfy himself as to their effect.)

CDF and CIF instructions must be used
prior to any instruction referencing a
location outside the current field, as
shown in the following example:

*200
TAD P301
CDF 00
CIF 10

JMS PRINT
CIF 10
JMP NEXT

P301 , 301
FIELD 1

*200
NEXT, TAD P302

CDF 10

JMS PRINT
HLT

P302, 302
PRINT,

TLS
TSF

5-25

J'^p .-1

CLA

RDF
TAD PS203
DCA .+1
000
.JMP I PRINT

PS203, 6233

When FIELD is used, the assembler follows the new FIELD setting with
an origin at location 200. For this reason, if the programmer wants
to assemble code at location 400 in field 1 he must write:

FIELD 1 /CORRECT EXAMPLE
*400

The following is incorrect and will not generate the desired code:

*42i0 /INCTORfiECT

FIELD 1

5.10.4 End-of-File

PAUSE signals the assembler to stop processing the file being read.
The current pass is not terminated, and processing continues with the
next file.

The PAUSE pseudo-op should be used only at the physical end of a file
and with two or more segments of one program. When a PAUSE statement
is reached the remainder of the file is ignored and processing
continues with the next input file. PAUSE must be present or a PH
error will occur.

5.10.5 Resetting the Locatioh Counter

The PAGE n pseudo-op resets the location counter to the first address
of page n, where n is ein integer, a previously defined symbol, or a
symbolic expression, all whose terms have been defined previously and
whose value is from to 37 inclusive. If n is not specified, the
location counter is reset to the next logical page of memory. For
example:

PAGE 2 sets the location counter to 00400
PAGE 6 sets the location counter to 01400

If the PAGE pseudo-op is used without an argument and the current
location counter is at the first location of a page, it will not be
moved. In the following example, the code TAD B is assembled into
location 00400:

*377
J MP .-3

PAGE
TAD B

5-26

If several consecutive PAGE pseudo-ops are given, the first will cause
the current location counter to be reset as specified. The rest of
the PAGE pseudo-ops will be ignored.

5.10.6 Entering Text Strings

The TEXT pseudo-op allows a string of text characters to be entered as
data and stored in 6-bit ASCII by using the pseudo-op TEXT followed by
a space or spaces, a delimiting character (must be a printing
character) , the string of text, and the Scime delimiting character.
Following the last character, a 6-bit zero is inserted as a stop code.
For example:

TAG, TEXT/123*/

The string would be stored as:

SI 62

63 52
0000

5.10.7 Suppressing the Listing

Those portions of the source program enclosed by XLIST pseudo-ops will
not appear in the listing file; the code will be assembled, however.

Two XLIST pseudo-ops may be used to enclose the code to be suppressed
in which case the first XLIST with no argument will suppress the
listing, cind the second will allow it again. XLIST may also be used
with an expression as an argument; a listing will be inhibited if the
expression is equal to zero, or allowed if the expression is not equal
to zero.

5.10.8 Reserving Memory

ZBLOCK instructs the assembler to reserve; n words of memory containing
zeros, starting at the word indicated by the current location counter.
It is of the form:

ZBLOCK n

For example:

ZBLOCK 40

causes the assembler to reserve 40 (octal) words. The n may be an
expression. If n=0 , no locations are reserved.

5-27

S.10.9 Conditional A:-iseinb"ly Pseudo- Operators

The IFDEF pseudo-op takes tlie form:

iFDEF symbol "^soui'ce; coda>

If the symbol indicated is previously defined, the code contained in
the angle brackets is assembled; if the symbol is undefined, this code
is ignored. Any number of statements or lines of code may be
contained in the angle brackets. The format of the IFDEF statement
requires a single space before and after the symbol.

The IFNDEF pseudo-op is similar in form to IFDEF and is expressed;

IFNDEF symbol < source code>

If the symbol indicated has not been previously defined, the source
code in angle brackets is assembled. If the symbol is defined, the
code in the angle brackets is ignored.

The IFZERO pseudo-op is of the form:

IFZERO expresson <source ccde>

If the evaluated (arithmetic or logical) expression is equal to zero,
the code within the angle brackets is assembled; if the expression is
non-zero, the code is ignored. Any numlDer of statements or lines of
code may be contained in the angle brackets. The expression may not
contain any imbedded spaces and must have a single space preceding and
following it.

IFNZRO is similar in form to the IFZERO pseudo-op and is expressed:

IFNZRO expression < source code>

If the evaluated (arithmetic or logical) expression is not equal to
zero, the source code within the angle brackets is assembled; if the
expression is equal to zero, this code is ignored.

Pseudo-ops can be nested, for example:

IFDEF SYM <IFNZRO X2 <«..>>

The evaluation and subsequent i.nclusion or deletion of statements is
done by evaluating the outermost pseudo-op first.

5.10.10 Controlling Binary Output

NOPUNCH causes the assembler to cease binary output but continue
assembling code. It is ignored except during pass 2.

ENPUNCH causes the assembler to resume binary output after- NOPUNCH,
and is ignored except during pass 2. For example, these two
pseudo-ops might be used where several programs share the same data on
page zero. When these programs are to be loaded and executed
together, only one page zero need be output.

5-23

5.10.11 Controlling Page Format

The EJECT pseudo-op causes the listing to jump to the top of the next
page. A page eject is done automatically every 55 lines; EJECT is
useful if the user requires more frequent paging. If this pseudo-op
is followed by a string of characters, the first 40 (octal) characters
of that string will be used as a new heaider line.

5.10.12 Altering the Permanent Symbol Table

PALC contains a table of symbol definitions for the PDP-8 and CAPS-8
peripheral devices. These are symbols such as TAD, DCA, and CLA,
which are used in most PDP-8 programs. This table is considered to be
the permanent symbol table for PAI.C; all of the symbols it contains
are listed in Appendix C.

If the user purchases one or more optional devices whose instruction
set is not defined among the permanent symbols (for example EAE or an
A/D converter) , he would want to add the necessary symbol definitions
to the permanent symbol table in every program he assembles.
Conversely, the user who needs more space for user-defined symbols
would probably want to delete a] 1 definitions except the ones used in
his program. For such purposes , PALC has three pseudo-ops that can be
used to alter the permanent symbol table. These pseudo-ops are
recognized by the assembler only during pass 1. During either pass 2
or pass 3 they are ignored and have no effect,

EXPUNGE deletes the entire permanent symbol table, except pseudo-ops.

FIXTAB appends all presently defined symbols to the permanent symbol
table. All symbols defined before the occurrence of FIXTAB are made
part of the permanent symbol tcible until the assembler is reloaded.

To append the following instructions to the symbol table, the user
generates an ASCII file called SYMS.PHL containing;

mY-lAP.5 /MULTIPLY
DVI=7407 /DIVIDE
CLSK:6131 /SKIP ON CLOCK IMTERRUPT
FIXTAB /SO THAT THESE WON'T BE

/PRINTED IN THE SYMBOL TABLE

The ASCII file is then entered in PALC's input designation. The user
may also place the definitions at the beginning of the source file.
This eliminates the need to load an extra file-

Each time the assembler is loaded, PALC's permanent symbol table is
restored to contain only the permanent symbols shown in Appendix C.

The third pseudo-op used to alter the permanent symbol table in PALC
is FIXMRI. FIXMRT is used to define a memory reference instruction
and is of the form;

FIXMRI name:-value

5-29

The letters FIXMRI must be followed by one space, the symbol for the
instruction to be defined, an equal sign, and the value: of the symbol.
The symbol will be defined and stored in the symbol table as a memory
reference instruction. The pseudo-op must be repeated for each memory
reference instruction to be defined. For example:

EXPUNGE
FIXMRI TAD:100f!
FIXMRI DCA=5000
CLAr7200
FIXTAB

When the preceding program segment is read into the assembler during
pass 1, all symbol definitions are deleted and the three symbols
listed are added to the permanent symbol table. Notice that CLA is
not a memory reference instruction. This process can be performed to
alter the assembler's symbol table so that it contains only those
symbols used at a given installation or by a given prcgram. This may
increase the assembler's capacity for user-defined symbols in the
program.

A sximraary of the PALC pseudo-ops is provided in Appendix C.

5.11 LINK GENERATION AND STORAGE

In addition to handling symbolic addressing on the current page of
memory, PALC automatically generates links for off-page references.
If reference is made to an address not on the page where an
instruction is located, the assembler sets the indirect bit (bit 3)
and an indirect address linkage will be generated on the current
memory page. If the off-page reference is already an indirect one,
the error diagnostic II (illegal indirect) will be generated. For
example:

*?. 1 17

A, CLA

*2S00
JMP A

In the example above, the assembler will recognize that the register
labelled A is not on the current page (in this case 2600 to 2777) and
will generate a link to it as follows;

1. In location 2600 the assembler will place the word 5777
which is equivalent to JMP I 2777.

2. In address 2777 (the last available location on the
current page) the assembler will place the word 2117 (the
actual address of A)

.

During pass 3, the octal code for the instruction will be followed by
an apostrophe (') to indicate that a link was generated.

Although the assembler will recognize and generate an indirect address
linkage when necessary, the programmer may indicate eui explicit

5-30

indirect address by the pseudo-op I. The assembler cannot generate a
link for an instruction that is already specified as being as indirect
reference. In this case, the assembler will print the error message
II (illegal indirect) . For example:

*21 17
A, CLA

*2600
JMP I A

The above coding will not work because A is not defined on the page
where JMP I A is attempted, and the indirect bit is already set.

Literals and links are stored on each page starting at page address
177 (relative) and extending toward page address (relative)

.

Whenever the origin is then set to another page, the literal buffer
for the current page is output. This does not affect later execution.
There is room for 160 (octal) literals and links on page zero and 100
(octal) literals on each other page of memory.

Literals and links are stored only as far down as the highest
instruction on the page. Further attempts to define literals will
result in a PE (page exceeded) or ZE (page zero exceeded) error
message.

5.12 CODING PRACTICES

A neat printout (or program listing, as it is usually called) makes
subsequent editing, debugging, and interpretation much easier than if
the coding were laid out in a haphazard fashion. The coding practices
listed below are in general use, cind will result in a readable,
orderly listing.

1. A title comment begins with a slash at the left margin.

2. Pseudo-ops may begin at the left margin; often, however,
they are indented one tab stop to line up with the
executable instructions.

3. Address labels begin at the left margin. They are
separated from succeeding fields by a tabulation.

4. Instructions, whether or not they are preceded by a

label field, are indented one tab stop.

5. A comment is separated from the preceding field by one
or two tabs (as required) and a slash; if the comment
occupies the whole line it usually begins with a slash at

the left margin.

5-31

5.13 PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The following program was generated using the
CAPS-8 EDITOR and was assembled with PALC.

TAB function of the

*200
/EXAMPLE OF INPUT TO
/GENERATOR PROGRAM

THE FORMAT

BEGIN,
KCC

/START OF PROGRAM

KSF /WAIT FOR FLAG
JMP .-1 /FLAG NOT SET YET
KRB /READ IN CHARACTER
DCA CHAR
TAD CHAR
TAD MSPACE /IS IT A SPACE?
SNA CLA
HLT /YES
JMP BEGIN+2 /NO: INPUT AGAIN

CHAR, /TEMPORARY STORAGE
MSPACE, -2 40
/END OF
S

EXAMPLE

The program consists of statements and pseudo-ops and is terminated by
the dollar sign ($) . If the program is large, it can be segmented by
placing it into several files; this often facilitates t:he editing of
the source program since each section will be physically smaller.

The assembler initially sets the current location cov.nter to 0200.
This counter is reset whenever the asterisk (*) is processed.

The assembler reads the source file for pass 1 and defines all symbols
used.

During pass 2, the assembler reads the source file and generates the
binary code using the symbol table equivalences defined during pass 1.
The binary file that is output may be loaded by the Load command.
This binary file consists of an origin setting and data: words.

During pass 3, the assembler reads the source file and generates the
code from the source statements. The assembly listing is output in
ASCII code. It consists of the current locatior, counter, the
generated code in octal, and the source statement. The 5-digit first
column is the field number and 4-digit octal address (current location
counter) ; the 4-digit second column is the assembled object code. The
symbol table is printed at the end of the pass. The peiss 3 output is:

*200 PALC-Vl 03/06^73 PAGE 1

0200 *200
/EXAMPLE OF INPUT TO THE FORMAT
/GENtRATQP PROGRAM

00200 0000 BEGIN,
00201 6032 KCC
00?02 6031 KSF
00203 5202 JMP .-1
00204 6036 KRB
00205 3213 OCA CHAR
00206 1213 TAD CHAR
00207 1214 TAD MSPACE
00210 7650 SNA CLA

/START OF PROGRAM

/WAIT FOR FLAG
/FLAG NOT SliT YET
/READ IN CHARACTER

/IS IT A SPACE?

5-32

00311 7«02 HLT /YES
00212 5202 JMP BEGIN + 2 /NOHNPUT AGAIN
00213 0000 CHAR, /TEMPORARY STORAGE
TttiZlH 7540 MSPACE, -240

/END OF EXAMPUE
S

•200 PALC-Vl 03/08/73 PAGE 1-1

BEGIN 0200
CHAR 0213
MSPACE 0214

5.13.1 Terminating Asseinbly

PALC will a) terminate assembly, b) print a +C, and c) wait for the
user to mount the System Cassette on drive and type iC, under any of
the following conditions:

1. Normal exit—The $ at the end of the source program was
executed on pass 2 (or pass 3 if a listing is being
generated)

.

2. Fatal error—One of the following error conditions was
found and flagged (see the next section)

:

BE DE DF PH SE

3. "fC— If typed by the user, control turns to the Monitor.

5.14 PALC ERROR CONDITIONS

PALC will detect euid flag error conditions and generate error messages
on the console terminal. The format of the error message is:

CODE ADDRESS

where CODE is a 2-letter code which specifies the type of error, and
ADDRESS is either the absolute octal address where the error occurred
or the address of the error relative to the last symbolic tag (if
there was one) on the current page. For example, the following code:

BEG, TAD LBL
ZTAD LBL

5-33

would produce the error message:

IC BEG+0001

since % is an illegal character.

If at ciny time PALC prints tc, the user should make certain that the
System Cassette is mounted on drive and then type + C to return to
the Monitor. He should examine each error indication to determine
whether correction is required.

On the pass 3 listing, error messages are output as 2-character
messages on the line just prior to the line in which the error
occurred. The following table lists the PALC error codes. Those
labeled Fatal Error are followed immediately by an effective +C.

Table 5-3 PALC Error Codes

Error Code Explanation

BE

DE

DF

IC

ID

IE

II

IP

IZ

PE

Two PAL-C internal tables have overlapped,
error—assembly cannot continue.

Fatal

Device error. An error was detected when trying
to read or write a device. Fatal error—assembly
cannot continue.

Device full,
continue

,

Fatal error—assembly cannot

ignored andIllegal character. The character is
the assembly continued.

Illegal redefinition of a symbol. An attempt was
made to give a previously defined symbol a new
value by means other than the equal sign. The
symbol is not redefined.

Illegal equals—an equal sign was used in the
wrong context. Considered a warning and may not
indicate an error but rather an undefined symbol
at that point.

Illegal indirect—an off-page reference was made.

theIllegal pseudo-op— a pseudo-op was used
wrong context or with incorrect syntax.

m

Illegal page zero reference—the pseudo-op Z was
found in an instruction which did not refer to
page zero. The Z is ignored.

Current non-zero
made to:

page exceeded—an attempt was

5-34

Table 5-3 PALC Error Codes (Cont'd)

Error Code Explanation

1. Override a literal with an instruction

2. Override an instruction with a literal

3. Use more literals than the assembler allows on
that page.

This can be corrected by decreasing either the
number of literals on the page or the number of
instructions on the page.

PH Phase error—either no $ appeared at the end of
the program, or < and > in conditional pseudo-ops
did not match. Fatal error—assembly cannot
continue.

RD Redefinition—a permanent symbol has been defined
with =. The new and old definitions do not match.
The redefinition is allowed.

SE Symbol table exceeded—too many symbols have been
defined for the amount of memory available. Fatal
error—assembly cannot continue.

UO Undefined origin—an undefined symbol has occurred
in an origin statement.

US Undefined symbol— a symbol has been processed
during pass 2 that was not defined before the end
of pass 1.

ZE Page exceeded—same as PE except with reference
to page 0.

5-35

CHAPTER (5

CASSETTE Bi\SIC

6 . 1 INTRODUCTION

Cassette BASIC is an interactive programming language derived from
Dartmouth BASIC and designed to run vinder the Cassette Keyboard
Monitor. The BASIC language is aimed at facilitating communication
between the user and the computer. The user types his program as a
series of numbered statements, making use of common English words and
familiar mathematical notations. Because the BASIC language involves
learning only a small number of commands, it is a very easy language
to use. As the user gains familiarity with BASIC, he can add the
advanced techniques available to perfoinn more intricate manipulations
or express a problem more efficiently and concisely.

Cassette BASIC provides approximately 1.7 to 2K of memory for program
storage. Important features include 1- and 2-dimensional
subscripting, user-coded functions, program chaining, use of cassettes
for program storage, and use of line printer, if available, for
output

.

Beginning programmers may find a more fundamental approach to BASIC
language prograimming in Chapter 1 of THE EDUSYSTEM HANDBOOK,

6.2 CALLING BASIC (.R BASIC)

Using the Cassette Keyboard Monitor, BASIC is called from the System
Cassette by typing:

^R BASIC

When it is first loaded into memory, BASIC asks the user if he will
use run-time file input and output as follows:

USING RUN-TIME FILE I /0?(Y OR N)

The user responds with Y or N followed by a carriage return. Choosing
the run-time I/O feature leaves the user approximately 1.7K of memory
for program storage, whereas a response of N frees the space used by
the run-time I/O routines and provides an additional . 3K of memory
(enough for approximately 20-25 statements or 75 variables)

.

Statements associated with the run-time I/O feature are:

OPEN... FOR INPUT
OPEN. ..FOR OUTPUT
CLOSE
IF END#
PRINT*
INPUT*
COMMAS
NO COMMAS

6L-.1

If any of these statements are used witJiout the rvm-time I/O option
having been chosen during BASIC'S initial dialogue, BASIC will print a
NO FILES ERROR message at run-time.

BASIC then asks:

NEW OR OLD-

The user responds NEW if he intends to create a program at the
keyboard, and must respond with the name of the new program when BASIC
requests:

NEW PROGRAM NAME-

The program name is typed as a standard system filename (6 characters
or less) and an optional extension (1 to 3 characters) ; a program name
is entered even if the user does not intend to save the program for
future use. (A response of only a carriage return causes BASIC to
repeat the NEW PROGRAM NAME request. If the user types an ALT MODE in
response to this request, the name NONAME.BAS is assigned by BASIC.)
When the new program name has been entered, BASIC indicates that it is
ready to accept input by issuing a carriage return/line feed
combination.

If the user responds OLD to BASIC'S initial dialogue, BASIC assumes
that the program has been previously saved on a cassette and will ask:

OLD PROGRAM iVAME-
UNIT#(0-7):

The user must respond with the correct program name and file extension
(if any) , and then must specify which cassette unit drive the file is
stored on. (An incorrect response will return an error message.) When
this interaction is complete, BASIC will type:

READY.

and the user may edit or run his program.

6.3 NUMBERS

Cassette BASIC treats all numbers (in both integer and real formats)
as real, or floating point, numbers. That is, BASIC e.ccepts as input
any number containing a decimal point and assumes a decimal ppint
after any integer number entered.

In addition to integer and real formats, a third format is recognized
and accepted by BASIC in order to express numbers outside the range
.01<=x<1000000. This format is called exponential or E-type notation.
In this format, a number is expressed as a decimal nuimber times some
power of 10, as follows:

6-2

where E represents "times 10 to the power of". A number in
exponential notation is then read "xx times 10 to the power of n"; for
example:

23.4E2 = 23.4*(10 to the power of 2) = 2340

Data may be input in any one or all three of these forms. Internal
computations are carried out in floating point (real) format. Results
of computations within the range .01<=x<1000000 are output as either
real or integer decimal numbers (whichever is the correct but more
concise format) ; results outside this range are output in exponential
format. BASIC handles seven significant digits in normal operation
and input/output, as illustrated below:

Same Value
Value Typed In Output By BASIC

.01 .01

.0099 9.900000E-3
999999 999999
1000000 l.OOOOOOE+6

BASIC automatically suppresses the printing of leading and trailing
zeros in integer and decimal numbers and, as shown above, prints all
exponential numbers in the form;

(sign) x.xxxxxx E (+ or -) n

where x represents the number carried to six decimal places, E stands
for "times 10 to the power of", and n represents the exponent. For
example

:

-3.470218E+8.is equal to -347021800
7.260000E-4 is equal to .000726

6 . 4 VARIABLES

A variable in BASIC is a symbol which represents a number and is
formed by a single letter or a letter followed by a digit. For
example

:

Acceptable Variables Unacceptable Variables

I 2C - A digit cannot begin
a variable

B3 AB - Two or more letters
cannot form a variable

X

6-3

The user may assign values to variables either by computing the values
in a LET statement or by inputting the values as data; these
operations are discussed later.

6.5 ARITHMETIC OPERATIONS

BASIC performs addition, subtraction, multiplication, division and
exponentiation, as well as more complicated operations explained in
detail later in the chapter. The five operators used in writing most
formulas are

:

Symbol Meaning Example

+ Addition A + B
- Subtraction A - B
* Multiplication A * B
/ Division A / B
f Exponentiation A + B

(Raise A to the
Bth power)

6.5.1 Priority of Operations

In any given mathematical formula, BASIC performs arithmetic
operations in the following order of evaluation:

1. Parentheses receive top priority. Any expreession within
parentheses is evaluated before an unpcirenthesized
expression.

2. In absence of parentheses, the order of priority is:

a. Exponentiation

b. Multiplication and Division (of equal pr;Lority)

c. Addition and Subtraction (of equal priority)

3. If either 1 or 2 above does not clearly dessignate the
order of priority, then the evaluation of expressions
proceeds from left to right.

The expression AtB-^C is evaluated from left to right as follows:

1. A+B = step 1

2. (result of step 1) "tc = answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. A/B = step 1

2. (result of step 1)*C = answer

6-4

6.5.2 Parentheses and Spaces

Parentheses may be used by the progranmier to change the order of
priority (as listed in rule 2 of the previous section) . Since
expressions within parentheses are always evaluated first, the
programmer can control the order of evaluation by enclosing
expressions appropriately. Parentheses may be nested, or enclosed by
a second set (or more) of parentheses. In this case, the expression
within the innermost parentheses is evaluated first, and then the next
innermost, and so on, until all have been evaluated.

Consider the following example;

A=7*C<Bt2+4>/X)

The order of priority is

:

1. Bf2 = step 1

2. (result of step l)+4 = step 2

3. (result of step 2)/X = step 3

4. (result of step 3)*7 = A

Parentheses also prevent any confusion or doubt as to how the
expression is evaluated. For example:

A*Bt8/7+B/C+Dt2

C(A*Br8)/7)+f CB/C)+Dt2)

Both of these formulas will be executed in the same way. However,
most users will find that the second is easier to understand.

Spaces may be used in a similar manner., Since the BASIC compiler
ignores spaces, the two statements:

LET B = Dt2 + 1

LETB=Dt2+l

are identical, but spaces in the first statement provide ease in
reading.

6.5.3 Relational Operators

A program may require that two values be compared at some point to
discover their relation to one another. To accomplish this, BASIC

6-5

makes use of the following relational operators:

= equal to > greater than
< less than >= greater than or

<= less than or equal to
equal to <> not equal to

Depending upon the result of the comparison, flow of program execution
may be directed to another part of the program, or the: validity of the
relationship may cause a value of (indicating a FALSE condition) or
1 (indicating a TRUE condition) to be assigned to a variable. For
example:

15 X=Y</',

This statement assigns the value 1 to X if Y is greater than Z.
Relational operators are used primarily in conjunction with IF and LET
statements, both of which are later discussed in detail.

The meaning of the equal sign (=) should be clarified. In algebraic
notation, the formula X=X+1 is meaningless. However, in BASIC (cind

most computer languages), the equal sign designates replacement rather
than equality. Thus, the formula X=X+1 is actually translated: "add
one to the current value of X and store the new result back in the
same variable X"; whatever value has previously been assigned to X
will be combined with the value 1. An expression such as A=B+C
instructs the computer to add the values of B anc: C and store the
result in a third variable A; the variable A is not being evaluated in
terms of any previously assigned value, but only in terms of B and C.
Therefore, if A has been assigned any value prior to its use in this
statement, the old value is lost; it is instead replaced by the value
of B+C. Finally, the equal sign may be used in relational testing as
illustrated in the previous example.

6.6 IMMEDIATE MODE

Commands are available which allow Cassette BASIC to act as a
calculator—that is, the user types an algebraic exjiression which is
to be calculated and BASIC types back the result. This is called
Immediate Mode since the user is not required to write a detailed
program to calculate expressions and equations, but cem use BASIC to
produce results immediately. The commands used in Immediate Mode are
PRINT, LET and occasionally the FOR-NEXT combination. These are
explained in the following paragraphs.

6.6.1 PRINT Command

The PRINT command is of the form:

PRINT expression

BASIC is instructed to compute the value of the expresssion eind print
the result on the console terminal. The expresision is a normal

6-6

arithmetic expression v/hich may include nvimbers, variables, arithmetic
operators, eind functions (discussed in Section 6.8.12). A string of
text may also be printed (see Section 6.8.5—PRINT), For example:

PRIiNJT l/8t8
5.9604 6'!)E-08

6.6.2 LET Command

Values may be assigned to variables by use of the LET command as
follows;

LET variable=expression

The computer does not type anything in response to this command, but
computes the expression and assigns the value to the variable. The
variable may then be used in another computation or may be output
using the PRINT command. For example:

LET PI =3. 141 59

PRINT Pl*4t2

6.6.3 Looping PRINT and LET Commands

It is possible to include PRINT and LET commands in a loop so that
variables and results may be stored or printed in a series. Looping
is accomplished by means of FOR-NEXT statements in which the FOR
statement sets the limits of the loop and the NEXT statement
increments the count by 1. The only restriction in Immediate Mode
looping is that the command and the looping statements must appear on
one line. This is accomplished by using the backslash (\) character
to separate multiple statements on a line. (The backslash is produced
on an LT33 or 35 Teletype by pressing the SHIFT and L keys
simultaneously. Other types of terminals provide a separate key.) For
example:

LET Pl=3. 14159
FOR 1=1 TO 3 SPRINT PlflNNEXT I

This combination will print the results of 3.14159 to the 1st, 2nd,
and 3rd powers respectively.

More information on looping in general is provided in Section 6.8.7.

6-7

6.7 EXAMPLE RUN

The following Example Run is included at this point as an illustration
of Cassette BASIC'S initial dialogue, the format of a BASIC program,
the ease in editing and running it, and the type of output that may be
produced. The user calls in the program AVER from cassette drive 1

and attempts to run it. Execution is halted by a SYNTAX ERROR at line
30. The user lists the program, finds the mistake in line 30, and
also notices a mistake in line 85. He corrects these errors by
retyping the lines, and then reruns the program. After execution he
saves the corrected program on drive 1 under the original name.

Following sections cover the statements and commands used in BASIC
programming.

.R BASIC
USING RUN-TIME FILE I/0?CY OR N)N

MEW OR OLD -OLD

OLD PROGRAM NAME-AVER
UNIT#C0-7) :

1

READY.

HUN
HOW MAMY STUDENTS^ HOW MANY GRADES PER STUDEMT 7 5,4
SYXfTAX ERROR AT LINE 30

LIST
10 REM - PROGRAM TO TAKE AVERAGE OF
15 REM - STUDENT GRADES AND CLASS GRADES
20 PRINT "HOW MANY STUDENTS > HOW MANY GRADES PER STUDENT
30 INP(JT AjIB
40 LET 1=1
50 FOR J=I TO A
55 LET V=0
60 PRINT "STUDENT NUMBER =";j
7 5 PRINT "ENTER GRADES"
76 LET D=J
80 FOR K=D TO D+(B-1)
81 INPUT G

82 LET U=V+G
85 NEXT L
90 LET V=V/3
95 PRINT "AVERAGE GRADE =";V
96 PRINT
99 LET Q=Q+V
100 NEXT J
101 PRINT
102 PRINT
103 PRINT "CLASS AVERAGE =";Q/A
10^ STOP
1 40 END

&-.8

READY.

30 INPUT A*B
85 NEXT K
RUN
HOW MANY STUDENTS^ HOW MANY GRADES PER STUDENT ?5>4
STUDENT NUMBER = 1

ENTER GRADES
?78
?86
?88
?74
AVERAGE GRADE = 81.5

STUDENT NUMBER = 2

ENTER GRADES
?59
?86
?70
?87
AVERAGE GRADE = 7 5.5

STUDENT NUMBER = 3

ENTER GRADES
?58
?64
?75
?g0
AVERAGE GRADE = 69.25

STUDENT NUMBER = 4
ENTER GRADES
?88
?92
?85
?79
AVERAGE GRADE = 86

STUDENT NUMBER = 5

ENTER GRADES
?60
?78
?85
?80
AVKWGE GRADE = 75.75

CLASS AVERAGE = 77.6

READY

.

SAVE

UWIT#(0-7):l

READY.

6-9

6.8 BASIC STATEMENTS

The statements described in this section are used in creating BASIC
programs. These statements make up the body of the program; they
perform arithmetic calculations and input and output operations , and
control the order of program execution.

6.8.1 Statement Numbers

An integer number is placed at the beginning of each line in a BASIC
program. BASIC executes the statements in a prograir in numerically
consecutive order regardless of the order in which they have been
typed. A recommended practice is to number lines by fives or tens, so
that additional lines may be inserted in a program without the
necessity of renumbering lines already present. (BASIC programs may
be created using either the BASIC Editor as described here, or the
CAPS-8 EDITOR. If the CAPS-8 EDITOR is used, the programmer must make
certain to type his program in numerically consecutive order, as BASIC
will not sort it in this case.)

Multiple statements may be placed on a single line by separating each
statement from the preceding statement with a backslash (SHIFT/L)

.

This feature is particularly useful since statement numbers require
space in the symbol table; if unnecessary statement numbers are
eliminated by use of the backslash, there will be more room for
program storage. For example:

10 A=5\B=.3\C=3\PR1NT "ENTER DATA"

All of the statements in line 10 will be executed before BASIC
continues to the next line. Only one statement number at the
beginning of the entire line is necessary. However, it should be
noted that program control cannot be transferred to a statement within
a line, but only to the first statement of the line in which it is
contained (see Section 6.8.9, Transfer of Control Statements).

6,8.2 Commenting the Program (REM)

The REM or REMARK statement allows the programmer to insert comments
or remarks into a program without these comments affecting execution.
The BASIC compiler ignores everything on a line beginning with REM.
The form is

;

(line number) REM (message)

In the Example Run program, lines 10 eind 15 are REMARK statements
describing what the program does. It is often useful to put the name
of the program and information relating to its use at the beginning
where it is available for future reference. Remarks throughout the
body of a long program will help later debugging by explaining the
purpose of each section of code within the program.

6-10

6.8.3 Terminating the Program (END and STOP)

The END statement (line 140 in the Example Run program) , if present,
must be the last statement of the entire program. The form is:

(line number) END

Use of the END statement is optional. If executed, it signals the end
of the program and BASIC prints:

READY.

Variables and arrays are left in an undefined state, thereby losing
any values they have been assigned during execution.

The STOP statement is used synonymously with the END statement to
terminate execution, but while END occurs only once at the end of a
program, STOP may occur any number of times. The format of the STOP
statement is:

(line number) STOP

This statement signals that execution is to be terminated at that
point in the program where it is encountered leaving variables in a
defined state. (Variables will contain the values assigned when the
statement is encountered.)

6.8.4 The Arithmetic Statement (LET)

The Arithmetic (LET) statement is probcibly the most commonly used
BASIC statement. It causes a value to be assigned to a variable and
is of the form:

(line number) (LET) x = expression

where x represents a variable, and the cjxpression is either a number,
cinother variable, or an arithmetic expression. The word 'LET' is
optional; thus the following statements are treated the same:

LET A=AtB+10 LET C=F/G
A=AtB+10 C=F/6

As mentioned earlier, relational operators may be used in a LET
statement to assign a value to a varialsle depending upon the validity
of a relationship. If the statement is FALSE, the value is assigned
to the variable; if TRUE, the value 1 is assigned. For example:

IW'^ A=l
105 B=a
110 C=A=B
120 D=A>8
130 E=A<>B
140 PRINT C,D,K
150 EMD

6-11

Translated, this actually means "let C=l if A=B (0 otherwise) ; let D=l
if A>B (0 otherwise)" and so on. Thus, the values of C, D, and E are
printed as follows

:

RUN
1

READY.

There is no limit to the number of relationships that may be tested in
the statement.

6.8.5 Input/Output Statements

Input/Output statements allow the user to bring data into a program
and output results or data at any time during execution. The console
terminal keyboard, (LT33 Teletype reader and punch units, if present),
cassettes, and line printer are all available as I/O devices in
Cassette BASIC. Statements which control their use are described
next.

READ and DATA

READ and DATA statements are used to input data into a program. One
statement is never used without the other. The form of the READ
statement is:

(line number) READ xl,x2,...xn

where xl through xn represent variable names. For example:

10 READ A>B^C

A,B, and C are variables to which values will be assigned. Variables
in a READ statement must be separated by commas . READ statements are
generally placed at the beginning of a program, but must at least
logically occur before that point in the program wheire the value is
required for some computation.

Values which will be assigned to the variables in a READ statement are
supplied in a DATA statement of the form:

(line number) DATA xl,x2,...xn

where xl through xn represent values. The values must be separated by
commas and must occur in the same order as the variables which are
listed in the corresponding READ statement. A DATA statement
appropriate for the preceding READ statement is:

7 3 DATA 1^2»3

Thus, after executing the READ statement, A=l, B=2 , and C=3.

6-12

The DATA statement is usually placed at the end of a program (before
the END statement) where it is easily accessible to the programmer
should he wish to change the values.

A READ statement may have more or fewer variables than there are
values in any one DATA statement. The READ statment causes BASIC to
search all available DATA statements in consecutive line number order
until values are found for each variatile in the READ. A second READ
statement will begin reading values where the first stopped. If at
some point in the program an attempt is made to read data which is not
present or if the data is not separated by commas, BASIC will stop and
print the following message on the console terminal:

DATA ERROR AT LINE XXXX

where XXXX indicates the line number of the READ statement which
caused the error.

RESTORE

If it should become necessary to use the same data more than once in a
program, the RESTORE statement will make it possible to recycle
through the DATA statements beginning with the lowest numbered DATA
statement. The RESTORE statement is of the form:

(line number) RESTORE

An example of its use follows:

15 READ B^C>D

55 RESTORE
60 READ E»F>G

80 DATA 6>3*4>7>9>2

100 END

In this example, the READ statements in lines 15 and 60 will both read
the first three data values provided in line 80. If the RESTORE
statement had not been inserted before line 60, then the second READ
would pick up data in line 80 starting with the fourth value.

In recycling through data with a RESTORE statement, the programmer may
use the same variable names the second time through the data, or not,
as he chooses , since the values are being read as though for the first
time. In order to skip unwanted values, the programmer may insert
replacement (or dummy) variables. Consider:

6-13

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N
2 5 PRINT "VALUES OF X ARE:"
30 FOR 1=1 TO N
40 READ X
50 PRINT X,
60 NEXT I

70 RESTORE
185 PRINT
190 PRINT "SECOND LIST OF X VALUES'"
200 PRINT "FOLLOWING RESTORE STATEMENT:"
210 FOR 1=1 TO N
220 READ X
230 PRINT X..

240 NEXT I

2 50 DATA A, I,

2

251 DATA 3^4
300 END

RUN
VALUES OF X ARE:12 3 4

SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:
4 12 3

READY.

The second time the data values are read, the variable X (line 220)
picks up the value originally assigned to N in line 20 , and as a
result, BASIC prints:

To circumvent this, the programmer could insert a dummy variable (for
example, 205 READ Z) , which would pick up and store the first value,
but would not be represented in the PRINT statement. In this case the
output would be the same each time through the list.

INPUT

The INPUT statement is used when data is to be supplied by the user
from the console terminal keyboard while a program is executing, and
is of the form:

(line number) INPUT xl,x2,...xn

where xl through xn represent variable names. For example:

25 INPUT A*B*C

This statement will cause the program to pause during execution, print
a question mark on the console terminal, and wait for tlie user to type
three numerical values. The user must separate the values by commas;
they are entered into the computer by pressing the RETURN key at the
end of the list.

6-14

If the user does not insert enough values to satisfy the INPUT
statement, BASIC prints another question mark and waits for more
values to be input. When the correct number has been entered,
execution continues. If too many values are input, BASIC ignores
those in excess of the required number. The values are entered only
when the user types the RETURN key.

OPEN

Input and output files may be stored on cassette, and may be accessed
during run-time (providing the user has chosen the run-time I/O option
during BASIC'S initial loading dialogue) . Before an I/O file is
accessed however, the user must first open it via one of the following
commands

:

(line number) OPEN "n:xxxx" FOR INPUT
or

(line number) OPEN "nixxxx" FOR OUTPUT

where n represents the cassette drive numlDer (0-7) , and xxxx is any
legal filename (6 characters or less, and optional extension of 3

characters or less) . Input files are created either by using BASIC or
the CAPS-8 EDITOR (see Section 6.8.6), and must have been previously
stored on cassette before being accessed. For example, the statement:

815 OPEN "1 :TEST.DAT" FOR INPUT

opens an input file named TEST. DAT on cassette drive 1.

Only one input and one output file may be open at any time, and only
one file—either input or output—may be open on a given cassette
drive at one time.

CLOSE

The CLOSE statement is used to close a currently open output file, and
is of the form:

(line number) CLOSE

Suceeding OPEN FOR INPUT statements will perform an automatic close on
a previously open input file; however, the user should take note of
the following cases:

1. If the user attempts to open an input file on a cassette
which is currently open for output, BASIC will return an
I O ERROR, as the same cassette drive cannot be open for
both input and output at the same time.

2. If the user has an input file open on a cassette, and is
at its end-of-file (that is, a CTRL/Z has been
detected) , BASIC will allow him to open an output file

6-15

on the same cassette, since the input file is
theoretically "closed". However, if the usier has an
input file open on a cassette and is not at its
end-of-file, an I O ERROR will occur if he then tries to
open an output file on the same cassette. (See Section
6.8.9, IF END#, for more information on BASIC'S method
of detecting an end-of-file.)

3. If the user tries to open an output file and an output
file is already open on any cassette, BASIC will return
a "FILE OPEN ERROR"; before opening a new output file,
the current output file must be closed.

A close is automatically performed on both open input and open output
files by STOP, END and CHAIN statements, as well as by all errors
detected at run-time.

INPUT

#

Once an input file has been opened using the open statement, data can
be called into a program using the INPUT* statement. The form of this
statement is:

(line number) INPUT# xl,x2,...xn

where # signifies that the file is stored on cassette under the
filename and drive number specified in the last "C1PEN...FOR INPUT"
statement; xl through xn represent variable names.

When the BASIC program reaches the INPUT# statement during execution,
the data is automatically called into the program from cassette and
execution continues. INPUT # statements and INPUT statements may be
interspersed throughout a program. The input file need only be opened
once before it is referenced.

PRINT

The PRINT statement is used to output results cf computations,
comments, values of variables, or plot points cf a graph on the
console terminal. The format is:

(line number) PRINT expression

When no expression is indicated in the statement line, a blank line is
output. For example:

MS PRINT
810 PRI'\)T

Two blank lines will be output on the console terminal. By using
certain kinds of expressions and the control chaiacters colon and
semicolon, the user can create fairly sophisticated formats

.

6-16

In order to print out the results of a computation and the value of a
variable, the user types the line number, PRINT, and the variable
name(s) separated by a format control character (in this case, commas)
as follows:

5 A=16\B=5\C=4
10 PRINT A*C+B,SQR<A)

In BASIC, an output line is formatted into five columns (called print
zones) of 14 spaces each. The control character comma causes a value
to be typed beginning at the next available print zone. In the above
example, the value of A, the sum of A+B, and the square root of A are
printed in the first three print zones as follows:

RUN
16 9 4

A statement such as in line number 10 in this next example:

5 A=2.3\B=21\C=156.7 5\D=1 .134\E=23.4
10 PRINT A^BjC^D^E

causes the values of the variables to be printed in the same format
using all five zones:

RUN
2.3 21 156.75 1.134 23.4

When more than five variables are listed in the PRINT statement, the
sixth value begins a new line of output.

The PRINT statement may also be used to output a message or line of
text. The desired message is simply placed in quotation marks in the
PRINT statement as follows:

10 PRINT "THIS IS A TEST"

when line 10 is encountered during execution, the following is
printed:

THIS IS A TEST

A message may be combined with the result of a calculation or a

variable as follows:

80 PRINT "AMOUNT PER PAYMENT ="^R

Assuming R=344.96, when line 80 is encountered during execution, the
results are output as

:

AMOUNT PER PAYMENT = 344.96

If a number following a printed message is too long to be printed on a

single line, the number is automatically moved to the beginning of the
next line.

It is not necessary to use the standard 5-zone format for output. The
control character semicolon (;) causes the text or data to be output

6-17

immediately after the last character printed (separated from that
character by a space and followed by another space) . If neither a
comma nor a semicolon is used, BASIC assumes a semicolon. Thus both
of the following;

80 PRINT "AMOUNT PER PAYMENT ="R
80 PRINT "AMOUNT PER PAYMENT =";R

result in:

AMOUNT PER PAYMENT = 344.96

The PRINT statement can also cause a constant to be printed on the
console terminal. (This is similar to the PRINT command used in
Immediate Mode.) For example;

10 PRINT 1 .234>SQR< 10014)

causes the following to be output at execution time:

1.834 100.07

Any algebraic expression in a PRINT statement is evaluated using the
current value of the variables. Numlaers are printed according to the
format discussed in Section 6.3.

The following example program illustrates the use of the control
characters comma and semicolon in PRINT statements . The user may also
wish to refer to Section 6.8.12 for information pertaining to three
functions available for additional character control—TAB, PUT, and
GET:

10 READ A.,B,C
S0 PRINT A>B^C >At2 ,Bt2..Ct2
30 PRINT
40 PRINT AiBJC ;At2 JBf2:!Ct2
50 DATA 4 ,5,6
60 END

RUN
4 5

36

4 5 6 16 25 36

READY.

16 25

Another use of the PRINT statement is to combine it with an INPUT
statement so as to identify the data expected to be entered. As an
example, consider the following program;

6-18

10 REM - PROGRAM TO COMPUTE INTEREST PAYMENTS
20 PRINT "INTEREST IN PERCENT'S
25 INPUT J
26 LET J==J/100
30 PRINT "AMOUNT OF LOAN"i
35 INPUT A
40 PRINT "NUMBER OF YEARS";
45 INPUT N
50 PRINT "NUMBER OF PAYMENTS PER YEAR";
55 INPUT M
60 LET N=:N*M
65 LET 1 ==J/M
70 LET B == 1+1
75 LET R ==A*i/(i-:l/BtN>
78 PRINT
80 PRINT "AMOUNT PERt PAYMENT =";R
85 PRINT "TOTAL]INTEREST =";r*isi-a
88 PRINT
90 LET B =:A

95 PRINT " INTEREST APP TO PR IN BALANCE"
100 LET L,=B*I
1101 LET P =R-L
120' LET B =B-P
130 PRINT L/P,B
140 IF B> =RGO TO 100
150 PRINT B*I,R-B*I
160 PRINT "LAST PAYMENT ="B*I+B
200 END

HUN
INTEREST IN PERCENT?

9

AMOUNT OF LOAN72 500
NUMBER OF YEARS72
NUMBER OF PAYMENTS PER YEAR?4

AMOUNT PER PAYMENT = 344.9617
TOTAL INTEREST = 2 59.. 6932

INTEREST
56.25
49.75399
43.1 1182
36.32019
29.37576
22.27508
15.01463
7.590824

LAST PAYMENT

APP TO PRIN
288.7117
295.2077
301 .8498
308.6415
315.5859
322.6866
329.947
337.3708

= 344.9608

BALANCE
2211 .288
1916.081
1614.231
1305.589
990.0035
667.317
337.3699

READY.

As can be noticed in this example, the question mark is grammatically
useful when several values are to be input by allowing the programmer
to formulate a verbal question which the input values will answer.

6-19

PRINT*

The PRINT* statement is similar to the PRINT statement with the
exception that data and messages are sent to the current output file
on cassette rather than to the console terminal. The form of the
statement is:

(line number) PRINT# xl,x2,...xn

where # signifies that the output will be sent to the cassette drive
number and filename of the currently open output file, and xl through
xn represent data variables. (The current open file is determined by
the OPEN FOR OUTPUT statement, as detailed earlier in this section.)

If the user attempts to save data on a full cassette, BASIC prints an
error message and returns control to its editing jahase. The data
already output is lost, and the user will have to rerun his program
using a different output cassette.

COMMAS and NO COMMAS

Data stored in an output file on cassette is often called later as
input by another or the same program. (This is i.n fact the only
method of passing data between segments of a chained program.) In
order to be used as input, this data must be in the scime format as it
would appear if written in a DATA statement. Cassette BASIC provides
two statements for formatting this output—COMMAS and NO COMMAS.

In order to be used as data, individual values must be separated by
commas; the COMMAS statement inserts a comma after each item of data;
(unless the COMMAS statement is inserted in the program prior to
PRINT# statement, data will be output in the foirmat illustrated
earlier under the PRINT statement.) The form is:

(line number) COMMAS

A NO COMMAS statement will set the format back to its original state.
The COMMAS and NO COMMAS statements do not affect output on either the
console terminal or line printer.

The following example writes out four values in a file called
"OUT. DAT", reads the values back into memory and prints them on the
console terminal.

10 OPE!>J "1 :OfJT.DAT" FOR OUTPUT
15 COMMAS
20 PHINT# l;2J3;4
30 CLOSE
40 OPEN "1:OOT.DAT" FOR INPUT
50 INPUT# I:»J>K,L
60 PRINT IjJ>K>L
70 ElNJD

Output appears as follows

:

RUN
1 « 3 4

READY.

6-20

The COMMAS statement is not necessary if the user is only sending one
value per line. The preceding example could have been coded as
follows, with the same results:

10 OPEN "ItOQT.DAT" FOR OUTPUT
20 FOR 1=1 TO 4
30 PRINT* I

40 NEXT I

50 CLOSE
60 OPEN "1: OUT. DAT" FOR INPUT
70 INPUT* I^J^KiL
80 PRINT 1,J,K,L
90 END

In this case the file OUT. DAT would appear;

1

2

3

whereas in the first case it would appear as follows:

U2j3*4

The user must take care when inputting data from cassette files. For
example, if the file OUT. DAT is in the form:

1^2,3*4

and the user attempts to input these values using the following
statement:

53 INPUT* I^J^K

the proper values for I, J, and K will be read, but the rest of the
line will be lost as far as satisfying any future variables—just as

it would be lost if these values were input from the console terminal.
(Refer to the information concerning the INPUT statement in this
section.

)

LPT

The LPT statement is used to generate output on the line printer (if

one is available) and is of the form:

(line number) LPT

By inserting this statement anywhere in a program, all subsequent
output, with the exception of error messages, will be printed on the
line printer. The LPT statement is particularly advantageous for
outputting large amounts of calculated data, as can be seen from this

6-21

and following examples:

100 LPT
110 FOR F=33 TO 60 STEP 3

120 PRINT F^Fta
130 NEXT F
140 END

HON

30 900
33 10«9
3fe 1296
39 1521
HZ 176a
«5 2055
aa 230a
51 2601
5a 2916
57 32a9
60 3600

When the END statement is encountered in the program, the output
device is reset to the console terminal.

TTY OUT

The console terminal may be placed under program control so that
during execution of a program output may be sent alternately between
the console terminal and the line printer (if one is availcible on the
system)

.

Control is originally set with the console terminal. By issuing the
LPT statement discussed previously, all subsequent outjput can be sent
to the line printer. To return control to the console terminal from
within the program, the statement:

(line number) TTY OUT

is inserted. (Cassette I/O always returns control to the last device
indicated, so that the TTY OUT statement need only be used when the
line printer is involved.)

The following program makes use of almost all the availcible I/O
devices. The console terminal and line printer output Ls included.

5 HEM PROUF?AM TO DEMOMSTHATE ALL I/O DEVICES
IP) REM AVAILABLE IN CASSETTE BASIC
15 REM
20 PRINT "PROGRAM TO CALC'JLATE SQUARES AND SQUARE ROOTS"
25 PRINT
27 HEM GET LOOP LIMITS FROM USER
30 PRINT "INPUT LOWER LIMIT"
35 INPUT L
'!10 PRINT "INPUT UPPER LIMIT"
A5 INPUT U
50 PRINT "INPUT STEP"
55 INPUT S

57 HEM CREATE A CASSETTE FILE OF SQUARES OF NUMBERS
60 OPEN "1 :SnUARE.DAT"FOR OUTPUT

6-22

65 LPT
66 HEM PRIWT A FORM FHIRD OM LINEPRIMTEK
70 T=P'JTCia)
75 PRINT "TABLH: OF M'JMBERS AND THEIR SOMAHES"
80 PRINT
81 PRINT
82 PRIMT •• X'S" XtH"
83 PRINT
85 FOR X = L TO 'I STEP S

91^ PRINT X^X»^
95 REM ALSO SEND SO'JARES TO CASSETTE FILE
100 PRINT* Xta
135 ^JEXT X
11^6 CLOSE
110 T=P'JT(ia)
11 1 TTY O'lT

112 PRINT "TABLE OF SO'JARES COMPLETE"
113 LPT
115 PRINT "TABLE OF N'JMBRRS AND THEIR SO'JARE ROOTS"
13PI OPEN "1 :SO'TARE.DAT"FOR INPiJT

125 PRINT
126 PRINT
127 PRINT " X"*" SORCX)"
128 PRINT
130 FOR X=L TO 'I STEP S

135 INPIT* J

136 PRINT JjSORCJ)
l^lO) NEXT X

150 T=P'IT(12)
155 TTY O'JT

160 PRINT "PROGRAM COMPLETED"
165 END

nuN

PROURAM TO CALC'JLATE SO'JARES AND SO'JARE ROOTS

IN^'JT LOWER LIMIT
?1

INP'IT tJPPER LIMIT
?5^
INP'JT STEP
?1

TABLE OF SO'JARES COMPLETE

6-23

TABLE flF MJHBtRS ANO THfclR SQUARES

X-d

1

3

h

7

B

1?

1

4

ha
HI

155/

49
5PI

^4iii1.

TAbue OH NUMHtWS ANO TMfclk SfOUAkE WQOTS

SOk(X)

1

4

9

u9
(t.4

«1

1

?

3

4

S

b

7

b

r'4F:l 49
SI?

6-24

NOTE

If an LT33 Teletype is used as the
console terminal and it includes a
reader and punch, these devices may be
used for I/O operations at any time; no
special statement is required. To read
in data from the reader, position the
tape over the sprocket wheel; when input
is required, set the reader to START and
the tape will begin reading in. To
punch a tape, set the punch to ON and
all Teletype output will be punched on
the punch. Using the paper tape I/O
devices is, in effect, tJie same as using
the Teletype keyboard. Characters will
be typed on the Teletype keyboard as
tapes are being read or punched.

6.8.6 Creating Run-Time Input Files

Data files stored on cassette and used for input during execution can
be created either by use of BASIC itself or by use of the CAPS-8
EDITOR.

Using BASIC, the programmer creates a program which accepts values
from the console terminal keyboard and then writes these onto the
cassette as an output file. Data files consist of consecutive ASCII
characters. If the useful data in a file is to end before the actual
end-of-file, the last useful character must be followed by a CTRL/Z.
(This character is inserted by BASIC when the user closes an output
file. When later detected during input, BASIC sets an end-of-file
flag; the user can test an end-of-fil€i condition by using the IF-END#
statement.) The COMMAS statement is used to produce the correct format
for a data file when more than one value is on a single line.

The following program illustrates one method of doing this:

5 REM - PHOGRAM TO ACCEPT DATA FROM THE CONSOLE
10 REM - TERMINAL AMD CREATE A RUNTIME INPUT FILE
20 OPEN "0:RTIN.DAT" FOR OUTPUT
25 PRINT "INPUT A>B*CjD"i
30 INPUT A*B>C*D
35 COMMAS
40 PRINT* A>B*C>D
45 PRINT "INPUT FCI) FOR 1=1 TO 10"

50 DIM F(10)
52 REM - COMMAS NOT NEEDED SINCE ARRAY WILL
53 REM - BE OUTPUT ONE ELEMENT PER LINE
55 NO COMMAS
60 FOR 1=1 TO 10
70 PRINT "F("I")"i
7 5 INPUT FCn
80 PRINT# F(I)
85 NEXT I

90 PRINT "INPUT \}\,\J2.Z"

95 INPUT V\,V2.,Z
97 REM - COMMAS ARE NEEDED SINCE VU V2 AND Z

93 REM - WILL BE OUTPUT ON THE SAME LINE

6-25

100 COMMAS
105 PRINT# \}l,\J2^Z

1 10 CLOSE
1 1 5 END

rtUN

SAVE

UNlT#(0-7) :g

READY.

The CAPS-8 EDITOR can also be used to create an input file. The
EDITOR first asks for input and output devices and filenames; then the
user types the file using EDITOR commands and making sure the format
is correct for BASIC. The same data file in the above example can be
created using the EDITOR as follows:

i.R EDIT
* INPUT FILE-
OUiVdl- FILE- 2rtfIN.DAT

J.A

1 .37»2.346j.-13.267^-1 .056
23
3.56
1 .436
38
9.386
23.067
89
54

12.467
-1

123,34567^789

IL
1.37,2.346>-13.8 67,-1.0 56
23
3.56
1 .436
38
9.026
83.067
89
54
12.467
-1

123*34567*789

#E

6-26

6.8.7 Loops (FOR, NEXT and STEP)

A loop is a set of instructions which are repeated over and over
again, each time being modified in some way until a terminal condition
is reached. FOR and NEXT statements define the beginning and end of a
loop; STEP specifies an incremental value. The FOR statement is of
the form:

(line number) FOR v=xl TO x2 STEP x3

where v represents a variable name, and xl, x2 , and x3 all represent
formulas (a formula in this case means a numerical value, variable
name, or mathematical expression), v is termed the index, xl the
initial value, x2 the terminal value, and x3 the incremental value.
For example

:

15 FOR K=a TO 20 STEP 2

This loop will be repeated as long as K is less than or equal to 20.
Each time through the loop, K is incremented by 2 , so the loop will be
executed a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with
subscripted variables using the value of the index as the subscript of
a previously defined variable (this is illustrated in Section 6.8.8,
Subscripted Variables)

.

The NEXT statement is of the form:

(line number) NEXT v

where v is the index of the FOR loop and signals the end of the loop.
When execution of the loop reaches the NEXT statement, the computer
adds the STEP value to the index and checks to see if the index is
less than or equal to the terminal value. If so, the loop is executed
again. If the value of the index exceeds the terminal value, control
falls through the loop to the following statement, with the value of
the index equaling the value it was assigned the final time through
the loop. (Note that this method of handling loops varies among other
versions of the BASIC language.)

If the STEP value is omitted, a value of +1 is assumed. (Since +1 is
the usual STEP value, that portion of the statement is frequently
omitted.) The STEP value may also be a negative number.

The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the loop.
+1 is the assumed STEP value,

10 FOR 1=1 TO 10
20 NEXT I

30 PRINT I

40 END

RUN
10

READY.

6-27

If line 10 had been:

10 FOR 1=10 TO 1 STEP -1

the value printed by the computer would be 1.

As indicated earlier, the numbers used in the FOR statement are
formulas; these formulas are evaluated upon first encountering the
loop. While the index, initial, terminal and STEP values may be
changed within the loop, the value assigned to the initial formula
remains as originally defined until the terminal condition is reached.
To illustrate this point, consider the previous example. The value of
I (in line 10) can be successfully changed as follows:

10 FOR 1=1 TO 10
15 LET 1=10
80 NEXT I

The loop will only be executed once since the value 10 has been
reached by the variable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal value, the loop will execute once, regardless of the STEP
value. If the starting value is beyond the terminal value, the loop
will also execute only once.

It is possible to exit from a FOR-NEXT loop without the index reaching
the terminal value. This is known as a conditional transfer and is
explained in Section 6.8.9. Control may only transfer into a loop
which has been left earlier without being completed, ensuring that the
terminal and STEP values are assigned.

Nesting Loops

It is often useful to have one or more loops within a loop. This
technique is called nesting, cind is allowed as long as the field of
one loop (the numbered lines from the FOR statemisnt to the
corresponding NEXT statement, inclusive) does not cross the field of
another loop. A diagram is the best way to illustrate acceptable
nesting procedures

:

ACCEPTABLE NESTING
TECHNIQUES

UNACCEPTABLE NESTING
TECHNIQUES

Two Level Nesting

1 FOR
pFOR
h^IEXT
pFOR
'-NEXT
NEXT

FOR
-FOR
'-NEXT
-NEXT

6-28

Three Level Nesting

—FOR
FOR

pFOR
L-NEXT
FOR
EXT

NEXT
NEXT

pFC

-FOR
I
—FOR
r-FOR
•-NEXT
f-FOR

H-NEXT
L-NEXT
NEXT

A maximum of eight (8) levels of nesting is permitted,
limit will result in the error message:

FOR ERROR AT LINfE XXXX

Exceeding that

where XXXX is the number of the line in which the error occurred.

6.8.8 Subscripted Variables

In addition to single variable names, BRSIC accepts another class of
variables called subscripted variables. Subscripted variables provide
the programmer with additonal computing capabilities for handling
lists, tables, matrices, or any set of related variables. Variables
are allowed one or two subscripts. A single letter forms the name of
the variable, followed by one or two integers in parentheses,
separated by a comma, indicating the place of that variable in the
list. Up to 26 arrays are possible in any program (corresponding to
the letters of the alphabet) , subject only to the amount of memory
space available for data storage. For example, a list might be
described as A(I) where I goes from 1 to 5 , as follows:

A(l) ,A(2),A(3),A(4) ,A(5)

This allows the programmer to reference each of the five elements in
the list A. A two dimensional matrix A (I, J) can be defined in a
similar manner, but the subscriped variable A can only be used once
(i.e., A(I) and A(I,J) cannot be used in the same program). It is
possible however, to use the same variable name as both a suliscripted
and am unsubscripted variable. That is, both A and A(I) are valid
variable names for use in the same program.

Subscripted variables allow data to be input quickly and easily, as
illustrated in the following program (the index of the FOR statement
in lines 20, 42 and 44 is used as the subscript)

:

10 REM - PROGRAM DSMOMSTRAT IMU READ I Mb
11 RKM - OF S'IBSCRIPTED VARIABLES
15 DIM A(5),B(2*3)
18 PRINT "ACn WHERE A = l TO 55"
P.0 FOR 1 = 1 TO 5

25 READ ACI)
30 PRIMT ACn;
35 MEXT I

38 PRINT
39 PHIMT
40 PRINT ••B(l,J) WHERE 1 = 1 TO P.:"

HI PRINT •• AND J=l TO 3:"
zjg FOR 1 = 1 TO 2

6-29

43 PRINT
Zl^i FOR J=l TO 3

48 READ B(I,J)
50 PRINT R(I*J);
55 NEXT J

56 NEXT I

60 DATA 1 >8>3>4*5*6*7^8
61 DATA 8^ 7 ^6^5^4*3^2^!
65 END
H'JN

AC I) WHERE A=l TO 5 J

1 R 3 4 5

B{I>J) WViERE 1 = 1 TO 3:
AND J=l TO 3:

6 7 8

8 7 6

READY.

DIM

From the preceding example, it can be seen that the use of subscripts
requires a dimension (DIM) statement to define the maximum number of
elements in the array. The DIM statement is of the fonri:

(line number) DIM vl(nl), v2(n2,m2)

where v indicates an array variable name and n and m are integer
numbers indicating the largest subscript value required during the
program. For example;

15 DIM AC6>10)

The first element of every array is automatically assumed to have a
subscript of zero. Dimensioning A(6,10) sets up room for an array
with 7 rows and 11 columns. This matrix can be thought of as existing
in the following form:

AO , AO , 1 ... A0,10
A1,0 Al,l ... Al,10
A2,0 A2,l ... A2,10

A6,0 A6,l ... A6,10

and is illustrated in the following program:

6-30

10 REM - MATRIX CHECK PROGRAM
15 DIM A(6*10)
20 FOR 1=0 TO 6
22 LET A(Ij0)=I
25 FOR J=0 to 10
28 LET A(0;.JJ=J
30 PRINT A(I>J);
3 5 NEXT J
40 PRINT
4 5 NEXT I

50 END

RUN
1 2 3 4 5 6 7 8 9 10

1

2

3

4

5

6

READY.

Notice that a variable assumes a value of zero until another value has
been assigned. If the user wishes to conserve memory space by not
making use of the extra variables set up within the array, he should
set his DIM statement to one less than necessary, i.e. DIM A(5,9).
This results in a 6 by 10 array which may then be referenced beginning
with the A (0,0) element.

More than one array can be defined in a single DIM statement:

10 DIM A(20>> B<4>7)

This dimensions both the list A and the matrix B.

A number must be used to define the maximum size of the array. A
variable inside the parentheses is not acceptable and will result in
an error message by BASIC at run-time. The amount of memory not
filled by the program will determine the amount of data the computer
can accept as input to the program at any one time. In some programs
a TOO-BIG ERROR may occur, indicating that memory will not hold an
array of the size requested. In that event, the user should change
his program to process part of the datei in one run and then chain to
another section to process the rest (see Section 6.8.10).

6.8.9 Transfer of Control Statements

Certain control statements cause the execution of a program to jump to
a different line either unconditionally or as a result of some
condition within the program. Looping is one method of jumping to a
designated point until a condition is met. The following statements
give the programmer added capeibilities in this area.

6-31

Unconditional Transfer (GOTO)

The GOTO (or GO TO) statement is an unconditional stattsment used to
direct program control either forward or back in a program. The form
of the GOTO statement is:

(line number) GOTO n

where n represents a statement number. When the logic of the program
reaches the GOTO statement, the statement (s) immediately following
will not be executed; instead execution is transferred to the
statement beginning with the indicated line number.

The following program never ends; it does a READ, prints something,
and j lamps back to the READ via a GOTO statement. It atempts to do
this over and over until it runs out of data, which is <in acceptable,
though not advisable, way to end a program.

10 REM - PHOtiRAM ENDIfOU WITH KRROR
11. REM - MESSAUE WHi^M O'JT OF DATA
30 READ X
35 PRINT "X=*'X*"Xta ="Xt8
30 GO TO 80
35 DATA 1/5^10*15^20*85
40 END

H'JN

X= 1 Xf8 = 1

X= 5 Xt8 = 85

X= 10 Xt8 = 100

X= 15 Xt8 = 885
X= 80 Xt8 = 400
X= 35 X»8 = 685

DATA ERROR AT LINE 20

jitADY.

Conditional Transfer (IF THEN and IF GOTO)

A program sometimes requires that two values be compared at some
point; control of program execution may be directesd to different
procedures depending upon the result of the comparison. In computing,
values are logically tested to see whether they are equal, greater
than, less than another value, or possibly a combination of the three.
This is accomplished by use of the relational operatoirs discussed in
Section 6.5.3.

IF THEN and IF GOTO statements allow the programmer to test the
relationship between two formulas (variables, numbers, or
expressions) . Providing the relationship described in the IP
statement is true at the point it is tested, control will be
transfered to the line number specified, or the indicated operation
will be performed. The statements are of the form:

(line number) IF vl <relation> v2 GOTO [or THEN] x

6-32

where vl and v2 represent variable names or expressions, and x
represents a line number or an operation to be performed. The use of
either THEN or GOTO is acceptable.

The following two examples are equivalent (the value of the variable A
is changed or remains the same depending upon A's relation to B)

;

100 IF A>B THEN 120
110 A=AtB-l
120 C=A/D

100
110

IF A<=B THEN A=AtB-1
C=A/D

IF END#

The IF END# statement is used to verify cin end-of-file
during run-time input. The form of this statement is:

condition

(line number) IF END# THEN n

IF END# instructs BASIC to perform a check on the validity of the last
INPUT* statement referencing the currently open input file; n
represents a line number or operation to be performed. If an
end-of-file (CTRL/Z) was detected during the last INPUT* statement,
BASIC transfers control to the specified line number or performs the
indicated operation. If an end-of-file was not detected, then no
operation occurs. For example:

150 OPEN "l:UALUE" FOR INPUT

200 INPUT* A#B*C
210 IF END# THEN 530
215 LET X=SGNCA)

530 PRINT "INPUT FILE- -NOT ENOUGH DATA'

53 5 STOP

6-33

In this example the programmer provides his ovm error message if there
is an insufficient number of values for his variables. If there are
two valid numbers remaining in the input file when staitement 200 is
reached, then the variables A and B will receive valid input. When
the program attempts to input a value for C, BASIC will detect an
end-of-file and return a value of zero for C. As it executes the IF
END# statement, BASIC will note that it has jusit reached the
end-of-file, and will transfer control to statement number 530, as the
user intended.

However, assiame that as line 200 is executed there is only one valid
data value left in the input file. An end-of-file is detected this
time when BASIC tries to read a value for B; B is set to zero. When
BASIC attempts to continue reading a value for C, an EOF ERROR will be
returned (see Section 6.12) and program execution will terminate since
the user has tried to read past the end-of-file. A good way of
circumventing this condition is to include both the INPUT # and the IF
END# statements in a loop and input one value at a time. Using this
method allows the programmer's own error message to be printed before
BASIC is allowed to read past the end-of-file.

6.8.10 Program Chaining (CHAIN)

Since Cassette BASIC allows at most only 2K words of memory for
program storage, it is possible that a program may be too large to fit
in memory at one time. However, Cassette BASIC compensiates for this
by allowing different segments of a program to be stored on cassette
and called as needed. Although each program segment is restricted to
2K of memory, total program length is effectively unlimited. The form
of the CHAIN statement is

:

(line number) CHAIN "niXXXX"

where n is the cassette drive number, and XXXX is the name of the file
to be chained to. The CHAIN statement should be the last statement in
the user's program. When BASIC transfers to the progrcim specified in
the statement, it removes the old program from memoiry. Data is not
passed in memory during the chain, so the user should be careful to
save any data he will need in an output file. (See Section
6.8.5—PRINT#.) The chain automatically closes any open output file,
transfers control to the lowest statement number in tJie new program,
and continues execution.

For example, the following section of a program stores some data
values on an output cassette and chains to a file calltid PART2:

4 50 OPEN "ItDATA" FOR OUTPUT
^155 COMMAS
460 PRINT* B>C*D*G*H*Z
465 NO COMMAS
473 FOR 1=1 TO 10
475 PRINT* A<n
480 NEXT I

485 CLOSE
490 CHAIN "1:PART2"

6-34

The values stored by this section of the program in the cassette file
DATA can be read in by the second section of the program—PART2—and
can continue to be used. PAPT2 might appear as follows:

1 DIM AC 10)
5 OPEN "1:DATA" for INPUT
10 INPUT# B,C>D^G>H>Z
15 FOR 1=1 TO 10
80 INPUT# AC I)

2 5 NEXT I

6.8.11 Subroutines (GOSUB and RETURN)

A subroutine is a section of code performing some operation that is
required at more than one point in the program. Often a complicated
I/O operation for a volume of data, a mathematical evaluation which is
too complex for a user-defined function, or any number of other
processes may best be performed in a subroutine.

Subroutines are generally placed physically at the end of a program,
usually before DATA statements, if any, and always before the END
statement. Two statements are used exclusively in BASIC to handle
subroutines; these are the GOSUB and RETURN statements.

A program begins execution and continues until it encounters a CX)SUB
statement of the form:

(line number) GOSUB x

where x represents the first line number of the subroutine. Control
then transfers to that line. For example:

50 GOSUB 200

When program execution reaches line 50, control transfers to line 200,
and the subroutine is processed until execution encounters a RETURN
statement of the form:

(line number) RETURN

The RETURN statement causes control to return to the statement
following the (MSUB statement. Before transferring to the sxibroutine,
BASIC internally records the next statement to be processed after the
GOSUB statement; thus the RETURN statement is a signal to transfer
control to this statement. In this way, no matter how many different
subroutines are called, or how many times they are used, BASIC always
knows where to go next.

The following program demonstrates a simple subroutine:

6-35

1 REM - THIS PROGRAM ILLUSTRATES GOSUB A^5D RETURN
10 DEF FNA<X)=ABSC1NTCX))
20 INPUT A^B^C
30 GOSUB 100
40 LET A=FNA(A)
50 LET B=FNA(B)
60 LET C=FNACC)
70 PRINT
80 GOSUB 100
90 STOP
100 REM - THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
110 REM - OF THE EQUATION: ACXt2) + BCX) + C =

120 PRINT "THE EQUATION IS "A"*Xt2 + "B"*X + "C
130 LET D=B*B-^*A*C
140 IF D<>0 THEN 170
150 PRINT "ONLY ONE SOLUTION... X ="-B/<2*A)
160 RETURN
170 IF D<0 THEN 200
180 PRINT "TWO SOLUTIONS... X =";

185 PRINT (;-B+SQRCD))/(8*A)"AND X =" (-B-SQRC D))/<«*A)
190 RETURN
200 PRINT "IMAGINARY SOLUTIONS... X = C";
205 PRINT -B/(2*A)"^"SQRC-D)/(2*A)") AND C";
207 PRINT -B/(2*A)","-SQRC-D)/(2*A)")"
210 RETURN
900 END

RUN
?1^ .5^-.

5

THE EQUATION IS 1 *Xt2 + . 5 *X + -.5

TWO SOLUTIONS... X = .5 AND X =-1

THE EQUATION IS 1 *Xt2 + *X + 1

IMAGINARY SOLUTIONS... X = < ^ 1) AND (>-l :i

READY.

Line 100 begins the subroutine. There are several places in which
control may return to the main program, depending upon the flow of
control through the various IF statements. The subroutine is called
from line 30 and again from line 80. Vvlien control returns to line 90,
the program encounters the STOP statement and execution is terminated.
It is important to remember that subroutines should generally be kept
distinct from the main program. The last statement in the main
program should be a STOP or GOTO statement, emd subroutines are
normally placed following this statement. A useful practice is to
assign distinctive line numbers to subroutines. For example, if the
main program is numbered with line numbers up to 199, 1:hen 200 and 300
could be used as the first numbers of two subroutines.

Nesting Subroutines

Nesting of subroutines occurs when one subroutine calls another
subroutine. If a RETURN statement is encoxintered during execution of
a subroutine, control returns to the statement follov/ing the GOSUB

6-36

which called it. From this point, it is possible to transfer to the
beginning or any part of a svibroutine, even back to the calling
subroutine. Multiple entry points and RETURN statements make
subroutines more versatile.

The mciximum level of GOSUB nesting is about ten (decimal) levels,
which should prove more than adequate for all normal uses . Exceeding
this limit will result in the message:

GOSUB ERROR AT LINE XXXX

where XXXX represents the line number where the error occurred. An
example of GOSUB nesting follows. Execution has been stopped by
typing a CTRL/SHIFT/P combination (see Section 6.11.4, Stopping a
Run) , as the program would otherwise continue in an infinite loop.

10 REM - FACTORIAL PROGRAM USING GOSUB TO

15 REM - RECURSIVELY COMPUTE THE FACTORS
^0 INPUT N
50 IF N>20 THEN 120
60 X=l
70 K=l
80 GOSUB 900
90 PRINT "FACTORIAL •N'

ft —ftX

110 GO TO 40
120 PRINT "MUST BE 10 OR LESS'

130 GO TO 40
200 X=X*K
210 K=K+1
220 IF K<=N THEN GOSUB 200
230 RETURN
240 END

RUN
?2
FACTORIAL
?4
FACTORIAL
?5
FACTORIAL
7

= 2

= 24

= 120

STOP.
READY.

6.8.12 Functions

BASIC defines several mathematical calculations for the programmer,
eliminating the need for tables of trig functions, square roots, and
logarithms. These functions have a 3-letter call name, followed by an
argument, x, which can be a number, variable, expression, or another
function. Teible 6-1 lists the functions available in Cassette BASIC.

Most are self-explanatory; those that are not and are described in

greater detail are marked with an asterisk.

6-37

Table 6-1 Cassette BASIC Functions

Function Meaning

SIN(x)
COS(x)
TAN(x)
ATN(x)

EXP(x)
LOG(x)

*SGN(x)

*INT(x)
ABS(x)
SQR(x)

*RND(x)
*TAB(x)
*GET(x)
*PUT(x)
*FNA(x)
*UUF(x)

Sine of x (x is expressed in radians)
Cosine of x (x is expressecl in radians)
Tangent of x (x is expressed in radians)
Arctangent of x (result is expressed

in radians)
e to the xth power (e=2.71£;282)
Natural log of x (loggx)
Sign of x—assign a value of +1 if x is

positive, if X is zero, or -1 if x
is negative

Integer value of x
Absolute value of x (|x|)
Square root of x (/x)

Random number
Print next character at space x
Get a character from input device
Put a character on output device
User-defined function
User-coded function (machine language

code)

Sign Function (SGN(x))

The sign function returns the value +1 if x is a positive value, if

X is zero, and -1 if x is negative. For example, SGN(3.42)=1,
SGN(-42)=-l, cind SGN (23-23) =0. The following example illustrates the
use of this function:

10 REM - SGN FUNCTION EXAMPLE
20 READ A>B
2 5 PRINT "A="A,"B="3
30 PRINT "SGNCA)="S6N(A)*"SGMCB)="SGN(B)
40 PRINT "SGNCINTCA))="SGNCINT(A))
50 DATA -7.32> .44
63 END

Integer Function (INT(x))

The integer function returns the value of the nearest integer not
greater than x. For example, INT (34. 67) =34 . By specifying INT(x+.5)

the INT function can be used to round numbers to the nearest integer;
thus, INT (34. 67+. 5) =35. INT can also be used to round numbers to any
given decimal place by specifying:

INT (X*10 +D+. 5) /lO -fD

where D is the number of decimal places desired,
program illustrates this function; execution has
typing a CTRL/SHIFT/P

:

The following
been stopped by

6-38

10 REM - INT FUNCTION EXAMPLE
20 PRINT "NUMBER TO BE ROUNDED"

>

30 INPUT A
40 PRINT "NO. OF DECIMAL PLACES";
50 INPUT D
60 LET 3=IMT(A*10tD+.5)/10tD
70 PRINT "A ROUNDED = "B
80 GO TO 20
90 END

RUN
NUMBER TO BE ROUNDED? 55. 6534l2
NO. OF DECIMAL PLACES72
A ROUNDED = 55.65
NUMBER TO BE R0UNDED778 .375
NO. OF DECIMAL PLACES? -2

A ROUNDED = 100
NUMBER TO BE R0UNDED?67 .89
NO. OF DECIMAL PLACES?-!
A ROUNDED = 70
NUMBER TO BE ROUNDED?
STOP.
READY.

If the argxjinent is a negative number, the value returned is the
largest negative integer (rounded to the higher value) contained in
the number. For example, INT (-23) =-23 but INT (-14.39) =-15.

Random Number Function (RND(x))

The random number function produces a random number n which is in the
range 0<n<l. The nvimbers are not reproducible, a fact the programmer
should keep in mind when debugging or checking his program. The
argument x in the RND(x) function call can be any number, as that
value is ignored. The following program illustrates the use of this
function to generate a table of random numbers.

10 REM - RANDOM NUMBER EXAMPLE
25 PRINT "RANDOM NUMBERS"
30 FOR 1=1 TO 30
40 PRINT RNDC0)^
50 NEXT I

60 END

RUN
RANDOM NUMBERS
.7759228 .08069808 .5008833 .2790171 .1661529
.4857633 .4192038 .1433537 .08728769 .2335427
.6156673 .5921191 .01170888 .7411813 .341708
.3796163 .2023254 .7974058 .9635064 .6043865
.9547609 .2890875 .1416765 .2482717 .2145417
.05880478 .3859534 .8404774 .5692836 .8514056

READY.

6-39

HUN
RANDOM NUMBERS
4 5

1

8 3

2 4
8 7

7

READY.

It is possible to generate random nvunbers over any range by using the
following formula:

(B-A)*RND(0)+A

This produces a random number (n) in the remge A<n<B. For exeunple, in
order to obtain random digits in the range 0<n<9, line 40 in the
previous example is changed to read:

40 PRINT 9+RNDC0),

To obtain random integer digits , the INT functi on is used in
conjunction with the RND function (using the same values for A and B
above) as follows:

40 PRINT INT(9*RNDC0))>

When the program is run, the results will look as folli^ws:

8 1 8
7 8 5

8 8

7 7 4
1 8 2

7 5

Notice that the range has changed to 0<=n<9. This is because the INT
function returns the value of the nearest integer not greater than n.

Tab Function (TAB(n))

The TAB function allows the user to position the printing of
characters anywhere on the teleprinter (or line printer) line. Print
positions can be thought of as being numbered from 1 to 72 across the
console terminal line (1 to 80 across the line printer line) from left
to right. The form of this function is:

TAB(n)

where the argument n represents the position (from 1 to the total
number of spaces available) in which the next character will be typed.
For example, TAB (3) causes the character to be printed at position 3.

Each time the TAB function is used, positions are counted from the
beginning of the line, not from the current position of the printing
head. For example, the following statement:

10 PRINT "X =";TABC3>r'/";3. 14159

will print the slash on top of the equal sign, as shown below:

RUN
X * 3.14159

6-40

The following is an example of the sort of graph that can be drawn
with BASIC using the TAB function:

30 FOR X=0 TO 15 STEP .5
40 PRINT TABC30+15*SIN<X>*EXP(-.1*X));"*"
50 NEXT X

RUN

*

*
*

*

*

*

*

*

*

*

*

*

*

*
*

*

*

*

*

PUT and GET Functions (PUT(x) , GET(x))

Cassette BASIC provides two additional functions, PUT and GET, to
increase input/output flexibility on the console terminal or line
printer. Using these statements, the programmer can "PUT" an ASCII
character on the current output device, or "GET" a character from the
current input device. (ASCII character codes are listed in Appendix
A.) GET is of the form:

GET(x)

where the argument x is a dvurany variable which may be any value.
GET(x) will be assigned the decimal value of the ASCII code of the
next character input on the current input device.

For example, if the following statement appears in a program:

10 LET L=GET<0)

6-41

and the next character input is an M, the variable L will be assigned
the value 77 (decimal).

PUT is of the form:

PUT(x)

where the argument x represents either the decimal value of the ASCII
code of the character to be output, or the characte:r itself. For
example, the statement:

15 L=PUTCGETCV>)

will wait for a character to be read from the current input device and
then print it on the current output device. A statement such as;

30 PRINT PUT<Q)

will print the character typed as well as the decimal value of the
ASCII code for that character. (Since both the character and the
decimal value are typed, PUT and GET statements should not be used
with cassette files.)

NOTE

If the user is inputting characters from
paper tape via the paper tape reader on
cm LT33 Teletype, he should be careful
to position the tape on the first
character to be input. Otherwise blank
tape may be entered, which is
interpreted as a "BREAK" and stops a
running program.

The PUT function can also be used to format output. For example, to
print a trig table on the line printer with a heading and 50 data
lines per page, the form feed character (12 decimal) can be "puT" to
the printer as follows:

100 LPT
110 GOSUB 1030
120 GOSUB 500
125 REM - SET UP TRIG TABLE
130 FOR J=0 TO 360 STEP .5

140 LET L=L+1
150 LET B=J/180*3.14
160 PRINT J»SIN(B)>COS<B)>TAN(B).ATtg(B)
165 REM - PRINT 50 ENTRIES IN TABLE
170 IF L=50 THEN GOSUB 500
180 NEXT J
190 GOSUB 1000
200 GOSUB 1000
210 STOP
500 REM - PRINT HEADER
50 5 GOSUB 1000
510 PRINT
520 PRINT
530 PRINT "ANGLE". "SINE"/"COSINE"»"TANGENT". "ARCTANGENT"
540 PRINT
550 RETURN
1000 REM - PRINT FORM FEEDS TO ADVANCE PAPER
1005 X=PUT(ia)
1010 L=0
1020 RETURN
1030 END

6-42

The beginning of the line printer output from this program follows.
The first page of the table continues through an angle of 24.5
degrees: then the header and the next 50 entries are printed on the
next page, and so on until the values have been output (in steps of
.5) for all angles through 360 degrees.

ANGLE

.5
1

1.5

2.5
3

3.5
a

tt.5

5

5,5
6

6.5
7

7.5
B

«.5

SINE

e,7a2ll2E-03
.01744356
,02616368
.03468181
,04359729
,05230945
,06101763
.06972117
.0784194
.08711167
,09579731
.1044757
.1131461
,1218079
.1304604
.139103
.147735

COSINE

1

,999962
,9998479
,9996577
,9993915
,9990492
,9986309
.9961367
.9975665
.9969205
,9961986
.9954009
,9945274
,9935764
,9925537
,9914535
,9902779
,989027

TANGENT

6,722444E-
.01744621
.02617264
.03490305
,04363878
,05238116
,06113134
,06989125
,07866164
,08744408
,09623993
,1050506
,1138774
,1227217
,131585
.1404687
,1493741

ARCTANGENT

03 a.722001E-03
,01744268
,0261607
,03487474
.0435835
.05228564
.06097986
,06966486
.07833935
,08700204
,09565166
.1042869
,1129067
,1215095
,1300944
,13666
,1472052

2«.5 .414496 ,9100512 ,4554645 ,4038923

FNA" Function (DEF FNA(x))

In some programs it may be necessary to execute the same mathematical
formula in several different pj.aces., Cassette BASIC allows the
programmer to define his own function in the BASIC language and then
call this function in the same manntjr as the square root or a trig
function is called. Only one such user-defined function may be
included per program. The function is defined once at the beginning
of the program before its first use, and consists of a DEF statement
in combination with a 3-letter function name, the first two letters of
which must be FN. The format of the DEF FNA statement is as follows:

(line number) DEF FNA(x) =formula(x)

The A in the FNA portion of the statement may be any letter. The
argument (x) has no significance; it is strictly a dummy variable but
must be the same on each side of the equal sign. The function itself
can be defined in terms of numbers, several variables, other
functions, or mathematical expressions. For example:

10 DEF FNA(X)=Xt2+3*X+4

or

6-43

20 DEF FNCCX)=SQR(X+4)+l

The function

:

10 DEF FNL(S)=St2

will cause the later statement:

20 LET R=FNA(4>+1

to be evaluated as R=17.

The user-defined function can be a function of only one variable.

User-Coded Function (UUP)

The user-coded function is explained in detail in the next section.

6.9 IMPLEMENTING A USER-CODED FUNCTION (UUF)

A special user-coded function is available in Cassette BASIC for the
prograiraner who is familiar with the PD:p-8 instruction set and 27-bit
mantissa floating-point format. BASIC'S internal format is 27-bit,
sign-magnitude mantissa floating-point; thus, all user-generated
values must be in that format and all coding must be compatible with
it. The user codes the function in the PDP-8 series machine language
instructions, assembles it with the PAL(3 Assembler, and loads the
resulting binary file as an overlay to one of the existing functions
(ATAN, LOG, etc.) Thus, while BASIC is running, this special function
can be requested and used in a fashion analogous to the built-in BASIC
functions. The user-coded function, if present, is specified in the
BASIC program as:

UUF{n)

where n can be any BASIC expression.

6.9.1 Coding Formats

Due to memory restrictions, the user-coded function must replace one
or more of the existing Cassette BASIC functions. Table 6-2 lists the
functions which may be overlaid and the areas of memory they occupy.
Also listed is the transfer table address through which BASIC calls
the given extended function.

6-44

Table 6-2 Function Addresses

Function Locations Occupied Transfer Tadjle Address

FNA 5453-5546 1131
ATN 6200-6271 1134
SQR 5412-5452 1137
RND 5350-5406 1143
TAB 5547-5572 1147

The functions SIN, COS, and TAN are interdependent, but all three may
be deleted as follows:

SIN 5600-5674 1132
COS 1133
TAN 1144

Almost a full page is freed by deleting the following:

FNA 5412-5572 1131
SQR 1137
TAB 1147

For each function replaced by the UUF, the user must set the
corresponding transfer table location to point to an error routine so
that accidental calls to that function will generate an error
condition rather than a spurious call to the UUP. The \iser does this
by inserting a statement such as the following in his UUF:

+ 1143 /TABL'=: ADDHESS FOR R^JD

64/!ll /P0IMT5R TO SYN)TAX ERROR RO'JTINE

To include a user-coded function, all conventions requd.red for the
PALC Assembler must be observed. The coding language is PDP-8 machine
language code, but can include instructions in the modified
floating-point package, which is described later in this chapter in
Section 6.10.

When floating-point statements are to be included in the program, it
is necessary only to indicate the start of floating-point notation by
including the following operator:

FENTER

immediately before the first floating-point statement. Similarly
floating-point coding is terminated by the operator:

FEXIT

immediately after the last floating-point statement. There can be as

many sections of floating-point code as necessary in the. program, but
each must be delimited in this mcinner.

6-45

6.9.2 Floating-Point Format

The floating-point format used by Cassette BASIC allocates three
storage words in sign magnitude convention as follows (in sign
magnitude convention the sign bit rather than the mantissa, expresses
the sign of the entire number)

:

WORD 2

EXPONENT

-SIGN BIT

Five memory locations are used to represent the floating-point
accumulator, as follows:

Table 6-3 Floating-Point Accumulator

Location Name Value Contents

ACS

ACE

ACl

AC2

AC 3

0024 Sign

0025 Exponent (200 octal biased;
i.e. the constant 200 is added
to the exponent to make the
range 0-377)

0020 High order word

0017 Mid order word

0016 Low order word

All of BASIC'S mathematical operations are in floating-point format;
therefore, if any temporary storage locations are required by the UUF
subroutine, they must specify three words. For example;

UTEMP>0;0;0

6.9.3 Incorporating Subroutines with UUF

When adding a user function, it becomes necessary to reference some of
Cassette BASIC'S subroutines at specific times in the coding. Most of
these calls are needed in order to preserve a compatible format
throughout the system. The BASIC subroutines which may be referenced
are described below. (The complete BASIC symbol table is included as
Tcible 6-7 at the end of this chapter.)

6-46

BEGFIX

If a value is to be returned to the accuiniulator as a result of the
user function, tliat value must be in noiinalized floatin<j-point format.
If floating-point arithmetic is used throughout the user function,
then the value in the FAC (floating-point accumulator) is in
normalized floating-point format and need not be converted. If
fixed-point arithmetic is used anywhere in the function, then the
subroutine BEGFIX must be referenced before the value (::loating-point)
is saved in order that the storage locations are properly initialized
to accept a floating-point value. Using this procedure, the five FAC
locations are prepared accordingly. However, because the value to be
stored only requires 12 bits, a subsequent DCA AC3 statement is
sufficient. BEGFIX is located at 3760 and is called via a JMS
instruction.

ANORM

If a fixed-point value is added to the FAC, ANORM normalizes the FAC
in order that it be in a format suitable for Cassette BASIC. The
routine supplies the acceptable values for the locations ACE, ACS, ACl
and AC2. ANORM is assigned the location 4600.

FIX

To convert a value in the FAC to an integer, as when printing
character, the subroutine FIX is called; it is located at 4744.

6.9.4 Writing the Program

A user-coded function must respt one of Cassette BASIC'S tables to
recognize the function, otherwise, UUF is considered to be an
undefined fionction. The pointer is at location 1150; a statement such
as the following is required:

*1150
UUF

Procedures for loading a user-coded function are contained in Section
6.11.5. Examples of user-coded functions follow.

6.9.5 Examples of User-Coded Functions

Example 1—This program calculates squares and square roots for a

series of values. The BASIC program is as follows:

100 FOR A=33.1 TO 33.9 STEP .1

110 PRINT A*'rJF(A>*SQR(A)
120 NEXT A
130 END

6-47

The user-coded function is

:

PALC-V/l 18/87/72 PAUB' 1

/'JSER-CODED FiJiMCTION TO CALCaLATE
/SQtJARES OF NUMBERS
/

/THE FUNCTION LOADS INTO FIELD
/INTO THE AREA OCCUPIED BY THE 'ATN'
/FUNCTION

4435 FENTEP[=4435
2000 FST=2000
0200 FWD=800
6000 FMP=6000
0000 FEXIT=:0000
6441 SXERR=:6441
1134 *U34

01 134 6441

1 150

SXERR

*1150

/SO REFERENCES TO ATN W

/YIELD AN ERROR

01 150 6200

6200

UfJF

*6200

/DEFINE IJ'JF IN FUNCTION

06200 0000 UIJF,

06801 4435 FENTER /INTO FLT.PT.PKG.-A IS

06208 2204 FST+FWD+X-. /SAVE A
06803 6803 FMP+FWD+X-. /A*A
06804 0000 FEXIT
06805 5600 JMP I UUF /ALL DONE
06806 0000 X* ; ;

06207 0000
06810 0000

0001 FIELD 1

3000 3000
S

/TO START BASIC WHEN LOADED

WILL

TABLE

IN FAC

PALC-Vl 18/27/78 PAUE 1-1

FENTER 4435
FEXIT 0000
FMP 6000
FST 2000
FWD 0800
SXERR 6441
TJF 6800
X 6806

output after execution is:

HUN
33.1 1095.61 5.75386
33.2 1 108.24 5.761944
33.3 1 108.89 5.770615
33.4 1 1 15.56 5.779873
33.5 1 188.85 5.787918
33.6 1 188.96 5.796551
33.7 1 135.69 5.80517
33. P! 1 148.44 5.813777
33.9 1 149.81 5.888371

READY

.

6-48

Example 2—The following program tests a student's ability to convert
the octal value in the console switches to its decimal equivalent.
Line 120 will set P equal to the decimal value of the setting. Line
130 determines if the correct answer was typed:

100 PRINT "WHAT DECIMAL VAL'JE DO THE SWITCHES EQiJAL?"
110 INP'JT M

180 LET P = 'J'JF(0)

130 IF P = JJ THEN 800
140 PRINT "TRY A(iAIN"
150 GO TO 100
200 PRINT "CORRECT"
300 END

The user-coded function is:

PALC-Vl 13/37/73 PAtiE 1

/'.ISER-CODED F'INCTION TO READ THE CONSOLE
/SWITCHES AMD
/

/THE FWCTION

COMVERT TO FLOATIML. POIMT

LOADS IMTO FIELD ZERO
/INTO THE AREA PREyio'jsLY occ'jpie:d by
/THE •H^JD F'JMCTIOM-THE RANDOM NvFMBER
/UENERATOR
/

FIELD3300
4435 FeNTER=4435
0030 KEXIT=3333
4030 FAD=4003
8030 FST=a030
0230 FWn=333
3763 3E(jFIX =3760
4630 AHOHM=4603
3016 AC3=16
6441 SXERR=6441

1 143 1 143
01113 6441 SXERR /SO REFERENCES TO H.MD

/WILL YIELD AN ERROR
1 150 *1 153

aiisn 5353

5353

iJ'IF

*5353

/DEFINE 'JiJF IN F'INCTION

053S!1 3300 'DF, 3

!?53S1 4756 JMS I 'IBEUFIX /PREPARE FOR
/INTEUEH VALJE

PI535a 7604 LAS /UET CONTENTS
/OF SW. REli.

PI5353 3316 DCA ACS /SAVE IN LOW
/ORDER FAC

05354 4757 JMS I ')ANORM /NORMAL I ;1E

05355 5750 JMP I :j'JF /RET JRN

05356 3760 'JBElJFIX.BEUFIX

05357 4630
0031

lANORM, AMOHM
FIELD 1

3033 *3330 /TO START ')P BASIC JHE.M LOADED

PALC-yi ia/27/7a page i-i

AC 3 3316
ANORM 4603
BEUFIX 3763
FAD 4030
FENTER 4435
FEXIT 0033
FST 2300
FWD 3P03
SXERR 6441
JANOHM 5357
JBEGFI 5356
lUF 5353

6-49

An exeunple of a run in which 200 (octal) was set ;Ln the console
switches follows

:

RUN
WHAT DECIMAL VALUE DO THE SWITCHES; EQUAL?
?120
TRY AGAIN
WHAT DECIMAL VALUE DO THE SWITCHES EQUAL?
?ia8
CORRECT

READY.

6.10 FLOATING-POINT PACKAGE

Information concerning the PDP-8 modified Floating-Point Package which
the programmer will find useful in coding a function follows.

6.10.1 Instruction Set

The legal instructions in the modified Floating-Point Package used by
Cassette BASIC are explained in Table 6-4:

Table 6-4 Floating-Point Instructions

Instruction Value Meaning

FST

FLD

FWD

BKWD

2000

3000

FAD 4000
FSB 5000

FMP 6000

FDV 7000
FJMP 1000
FENTER 4435
FEXIT 0000

0200

0600

FSNE 0040
FSEQ 0050
FSGE 0100
FSLT 0110
FSGT 0140
FSLE 0150

Store the contents of the floating accum-
ulator (FAC) . The contents of the
FAC are not changed.

Load FAC with contents of relative
address.

Add contents of relative address to FAC.
Subtract contents of relative address

from FAC.
Multiply the contents of the FAC by the

contents of the relative address.
Divide FAC by contents of relative address.
Floating-point jiamp to relative address.
Start floating-point code.
Exit floating-point code. Return to PDP-8

code.
Access a relative location in the forward

direction.
Access a relative location in the backward

direction.
Skip if FAC <>
Skip if FAC =
Skip if FAC =>
Skip if FAC <0
Skip if FAC >0

Skip if FAC <=

6-50

The following instructions require indirect (and relative) addressing
and therefore only address field 1. Their operation is the same as
the corresponding direct instruction.

Table 6-5 Relative Addresses

Instruction Valu

FSTI 2400
FLDI 3400
FADI 4400
FSB I 5400
FMPI 6400
FDVI 7400
FJMPI 1400

Operation

Store
Load
Add
Subtract
Multiply
Divide
Jump

6.10.2 Addressing

The Floating-Point Package uses relative addressing. Thus, all
statements that address a location must include one of the operators
FWD or BKWD plus a reference to the current location. Such a
reference is generally in the form:

op code instruction + FWD (BKWD) + LTEMP-.

The operator FWD is used when the address of the location to be
referenced is numerically greater than the current address; BKWD is
used when the address of the location to be referenced is numerically
less than the current address. LTEMP-. in conjunction with the FWD
or BKWD operator defines the relative address of the location to be
operated on (LTEMP) with respect to the current location. This
relative displacement is then used by tiie Floating-Point Interpreter
to access the contents of the three wo3rds at LTEMP. This can best be
seen in an example:

4010 fad+fv;d+ltemp-.

4363 LTEMP»0;0;0

The contents of that location which is (4063-4010) locations forward
from the current address, (i.e. the contents of LTEMP) , are added to
the FAC. Similarly:

146 ALOC>0;0;0

«

152 FMP+BKWD+.-ALOC

At line 152 the contents of FAC are multiplied by the contents of the
location that is (152-146) locations backward from the current
address.

6-51

6.11 EDITING AND CONTROL COMMANDS

Errors made while typing at the console keyboard are easily corrected.
BASIC provides jspecial commands to facilitate the editing procedure.

6.11.1 Erasing Characters and Lines
(SHIFT/0, RUBOUTS, NO RUBOUTS , ^iLTMODE)

There are two methods available for erasing a character or series of
characters one at a time. Typing a SHIFT/O causes the deletion of the
last character typed and echoes as a back arrow («-) on the LT33 (or
35) Teletype, or as an underscore (—) on most other console
terminals. One character is deleted each time the key is typed.

The RUBOUT key (or DELETE key on some terminals) may also be used for
deletion of characters one at a time providing the command:

RUBOUTS

has been typed on the keyboard before the editing is done. This
command eneibles the RUBOUT key to be used and must be typed each time
a new program is in memory. If the user has neglected to type this
command, he may not use the RUBOUT key. A later command of:

NO RU)30UTS

disables the key for use.

For example

:

10 LEB-T A=10*B

The user types a B instead of T and immediately notices the mistake.
He may type SHIFT/O (or RUBOUT key, if enabled) once to delete the B,

(and as many times more as characters, including spaces, are to be
deleted). After the correction is made, he may continue typing the
line. The typed line enters the computer only when this RETURN key is
pressed. Before that time any number of correctionis can be made to
the line.

20 DEN F---F FNA(X*y)=Xt2+3*Y

When the RETURN key is typed, the line is input as:

20 DEF FlMA(X>Y)=Xt2 +3*Y

Notice that spaces, as well as printing characters, may be erased.

The user may erase an entire line (provided the RETUR]^ key has not
been typed) by typing the ALTMODE key (ESCAPE key on some keyboards)

.

BASIC echos back:

6-52

DELETED

at the end of the line to indicate that the line has been removed.
The user continues as though it were a new line. If the RETURN key
has already been typed, the user may still correct the line by simply
typing the line number and retyping the line correctly. He may delete
the line by typing the RETURN key immediately after the line number,
thus removing both the line number and line from his program.

If the line number of a line not needing correction is accidentlally
typed, the SHIFT/O or RUBOUT key may be used to delete the number (s)

;

the user may than type in the correct numbers. Assume tile line:

10 IF A>5 GOTO 230

is correct. The programmer intends to insert a line 15, but instead
types

:

10 LET

He notices the mistake and makes the correction as follows:

10 LET-—---5 LET X=Z-3

Line 10 remains unchanged, and line 15 is entered.

Following cin attempt to run a program, error messages may be output on
the console terminal indicating illegal characters or formats, or
other user errors in the program. Most errors can be corrected by
typing the line number (s) and correction (s) and then rerunning the
program. As many changes or corrections as desired may be made before
runs.

6.11.2 Listing a Program (LIST, LIST and LPT)

An indirect program or data can be listed on the active output device
by typing the command:

LIST

followed by the RETURN key. The entire program (or data) will be
listed.

A part of a program may be listed by typing LIST followeid by a line
number. This causes that line and all following lines in the program
to be listed. For example:

LIST 100

will list line 100 cuid all remaining lines in the progrcim.

6-53

The LIST command may be used in conjunction with the LPT command as
follows:

LPT
LIST

This will list the current program on the line printer. Control is
reset to the console terminal after the listing is completed.

6.11.3 Running a Program (RUN, RUN and LPT)

a BASIC program has been typed and is in memory, it i;

L. This is accomplished by simply typing the command:

RUW

followed by the RETURN key. The program will begin execution. If
errors are encountered, appropriate error messages will be typed on
the keyboard; otherwise, the program will run to completion, printing
whatever output was requested. When the END statement is reached,
BASIC stops execution and prints

:

READY.

The line printer, if available, can be used in conjunction with the
RUN command, as follows:

LPT
RUM

After this command is issued, all output during progreim execution is
diverted from the console terminal to the line printer, eliminating
the need of inserting the LPT statement within the program. The
output device is reset to the console t€:rminal after execution.

6.11.4 Stopping a Run (CTRL/C, CTRL/0, CTRL/SHIFT/P, BREAK)

To Stop a program during execution or to return to the Keyboard
Monitor at any time, type a CTRL/C (by pressing the CTRiLi key and the C
key simultaneously) . This causes the current operation to be eiborted
immediately and the Cassette Keyboard Monitor to be re-bootstrapped
from the System Cassette.

The command CTRL/0 (produced by typing the CTRL and O keys
simultaneously) is used to stop teleprinter output temporarily. The
program will continue to execute but output will not be printed unless
an error occurs or unless BASIC is waiting for a command or for data
from an input stiitement. In the latter case, the console terminal is
the expected input device. This feature is particularly useful for
programs that print lengthy introductions and then request a
user-specified parameter. Typing CTRL/0 after the program is started
will cause BASIC to bypass printing the introduction and wait until

6-54

the parameter is specified, thereby saving the time required to print
the message. A second CTRL/0 will resume output.

NOTE

For most programs that do not wait for
input from the terminal, processing of
the program after an initial CTRL/0 will
be completed before a second CTRL/0 can
be typed. Thus, it is veiy possible for
no output to be printed rather than the
anticipated partial output.

Certain terminals (such as Teletype models LT33 and 35) are equipped
with a BREAK key which may be used in Cassette BASIC to interrupt
program execution. Pressing the BREAK key causes a halt in execution
and a return to the BASIC Editor for more commands. For those systems
containing terminals not equipped with the BREAK feature, the same
result can be produced by pressing the CTRL, SHIFT, and P keys
simultaneously.

6.11.5 Loading a User-Coded Function

A user-coded function is created using the CAPS-8 EDITOR; it is
assembled using PALC. The resulting binary file is loaded with BASIC
using the Monitor Run or Load commands as follows:

or
.R BASIC, drive #:filename

.L BASIC, drive #:filename

Assiame a user-coded function called UUF.BIN is stored on cassette
drive 3. Assume also that the file UUF.BIN has been coded so as to
include the correct starting address for BASIC. The user runs BASIC
loading the function as follows

:

.R BASIC^UUF

The starting address for BASIC is included in the program and coded as
follows

:

FIELD i

•31300

S

The new function may now be used in any files the user wishes to edit
and run.

6.11.6 Erasing a Program in Memory (SCRATCH)

The command;

SCRATCH

6-55

or

SCR

is provided to allow the programmer to clear his storage area,
deleting any commands or a program which may have been previously
entered, and leaving a clean area in which to work. If the storage
area is not cleared before entering a new program, lines from previous
prograuns may be executed along with the new program, causing errors or
misinformation. The SCRATCH command eliminates all old statements cind
numbers and should be used before ciny new programs are read into
memory or created at the keyboard.

Note that the SCR command does not clear the program name. If the
user wishes to create a new program with a new name, he should use the
NEW command which also performs a SCRATCH.

6.11.7 Renaming a Program (NAME)

The user may change the name of the program in memory by issuing the
command

:

NAME

BASIC responds by asking:

NEW PROGRAM NAME-

The user specifies a new filename (and extension, if desired) . This
changes the name of the program without, affecting its image in memory.
All subsequent references to the program must use this new name.

6.11.8 Saving a Program (SAVE)

Once the user hais created or edited a program, he may \jant to save the
new version on a cassette for later use. He does this by typing:

SAVE

BASIC asks;

UMIT #<0-7):

to which the user responds with the number of the cassette drive on
which he wishes the program to be stored. The progrcim is saved under
its current name—that is, the name used in BASIC'S initial dialogue,
or its new name if the NAME command has been used to change it. (If

the filename is the same as one already present on the cassette, the
old file is replaced by *EMPTY in the directory and the new file is

6-56

written onto the cassette.) After the program has been
still in memory eind may be RUN or edited further.

saved, it is

Attempting to save a program on a full cassette causes BASIC to return
to the editing phase; the user must save the program on another
cassette.

If the user does not specify a name for his program in the initial
dialogue (by responding with an ALT MODE to the NEW PROGRAM NAME
request) , the program will be saved under the assigned name
NONAME.BAS.

If the user SCRATCHes a program, creates another program without
assigning a name to it by use of the NEW or NAME commands, and then
attempts to save it, it will be saved under the name of the last
program which was in memory, possibly deleting that program if saved
on the same drive.

6.12 CASSETTE BASIC ERROR MESSAGES

BASIC checks all commands before executing them. If for some reason
it cannot execute a command, BASIC indicates this by typing one of the
following error messages and the number of the line in which the error
occured. The form is:

ERROR MESSAGE AT LINE XXXX

Table 6-6 lists the errors BASIC checks for and reports before
execution.

Table 6-6 Cassette BASIC Error Messages

Message Meaning

ARGUMENT ERROR

CHAIN ERROR

DATA ERROR

EOF ERROR

EXPRESSION ERROR

FILE NAME ERROR

A function has been given an illegal
argument; for example: SQR(-l)

A cassette error occurred while doing
program chaining; the user should not
attempt to run the prograni in memory
again.

There were no more items in thie data list.

An attempt was made to reeid past the
end-of-file during run-time input.
Program execution terminates and control
returns to the Keyboard Monitor.

One of BASIC'S internal lists overflowed
while attempting to 6'valuate an
expression.

A mistake or illegal character was found
in the user's specification of a cassette
drive # or file name in either a CHAIN or
an OPEN statement.

6-57

Table 6-6 Cassette BASIC Error Messages (Cont'd)

Message Meaning

FILE OPEN ERROR

FOR ERROR

FUNCTION ERROR

GOSUB ERROR

I ERROR

The user attempted to open a run-time
output file when one was alre.ady open, or
a hardware error occurred.

FOR loops were nested too deeply.

The user attempted to call a function
which had not been defined.

Subroutines were nested too deeply.

The user attempted to do run--time input
and output to the same cassette at the
same time.

IN ERROR

LINE TOO LONG

LINE # ERROR

A cassette error occurred while attempting
to carry out an OLD command or while doing
run-1ime input

.

A line of more than 80 characters was
entered; BASIC ignores the whole line and
waits for the user to enter a new line.

A GOTO, GOSUB, or
nonexistent line.

IF referenced

LOOKUP ERROR

NEXT ERROR

NO FILES ERROR

OUT ERROR

RETURN ERROR

SUBSCRIPT ERROR

BASIC could not find a run-time: input file
on the drive specified.

FOR and NEXT statements were not properly
paired.

The user attempted to do run-time file I/O
without first specifying so during BASIC'S
initial dialogue.

An error (proba!bly end-of-tape) occurred
while doing cassette output either during
a SAVE or during run-time output. If the
error occurred during a SAVE, the user
should retry the SAVE to a. different
cassette. If the error occurred during
run-time output, he should re-run his
program using a different cassette for
output.

A RETURN statement was issued when not
under control of a GOSUB.

A subscript has been used which is outside
the bounds defined in the DIM statement.

6-58

Table 6-6 Cassette BASIC Error Messages (Cont'd)

Message Meaning

SYNTAX ERROR A command did not correspond to the
language syntax. Common examples of
syntax errors are misspelled commands,
unmatched parentheses, and other
typographical errors. Reference to an
undefined UUF will also produce this
diagnostic.

TOO BIG, LINE IGNORED The combination of program size and number
of variables exceeds the capacity of the
computer. Reducing one or the other may
help. Otherwise, the user must break his
program into parts and chain them
together. A large number of DATA
statements might be put into a run-time
input file.

The following programming errors are not reported by Cassette
BASIC, but instead are used in the computation as specified. They
are included here for the programmer's reference.

1. Attempting to use a number in a computation which is too
large for BASIC to handle will produce a result which is
meaningless.

2. Attempting to use a number in a computation which is too
small for BASIC to handle will result in the value zero
being used instead.

3. Attempting to divide by zero will produce a result which
is meaningless.

6.13 CASSETTE BASIC SYMBOL TABLE

Table 6-7 lists the Cassette BASIC symbols and their values.
This information is useful when writing user-coded functions.

6-59

Table 6-7 Cassette BASIC Symbol Table

/POP-8/fc CASStTTE BASIC PAi.a-v8 l?/Z7/12 PAGE 51

AHCDEF 1763

ACE fciy^S

A c N a « 1 7

ACS 0He::4

AC) tJMaV!

AC? ^ P 1 7

AC^ B«lh
A n n RES t! P 7 1

ALf<^:LP UUh*)

ALLOC 1U6M
A L L ^ 314
ALTMOD ^hf^t

ALi «*)5a

AMATCH bSkJ^!

ANOPM ahyia

AhGERR 7-^47

ARi-LOC <A'^i^:i

A k 1 4 a K ?

ASKAGN WS"^
ATLINt b4b)
A T f^ e> ^ t" B

AT^^HIG ^^t""!

ATNilOW 6<?£e0

AT^NPt bP.-i?

HaOCHN 7i,?b4

(:< C K w D S a "d S

KEr.t-ix s?*?'-!

fiKfAK bS,?,P

hSKIP ^73S

rtLiFtMD b?/it1

MljE&T bat.'tl

CAM 7t'r'V

CAPKET Shha
C ASINi hbl 4

CaSOUT 6/i/3

CCNT« OHaf'

CGtT be.bt

C M A 1 M / i1 i 1

ChA(.-Nt «l'Vl

CHAW OK a>>al,

ChtCKw e;i4U

CHK.en f>4^^ifl

ChN:FWh(358P
Ci-f-'G it'ic3

C M N M S 3 5 6 i

Chftr-ET 04 1 /

CKhKAK t34a
C K C, T W Z 4 1 /' 4

r, L E A » V (? a b a

C L I- V S b

CLOS kii^^b

CLUSt biiPlB

CLOSED 117^'

CMSwCH 0176
cnamst na5a
CNCLk 0141
CNtRP 05W1
CNTFnO It^bV'

C ^J r L 7 a « 7

CNlLOZ «134
LNilO 1301
CnuELO I?!0P'4

COLUMN «130
COMCK P?77
LdiiMAS 61715

LOMKON 3377
COi-'ON 11?3
CONST 13b7
COkEIN PI423

COS Stl6
L (Vv T 7 14 3

URlF 6531
LkLFU 52S7
CPLFPi* 37'^fc

CTklC t-Hifib

CTKLCJ 7604
LTHLZI ^fcSe?

CTH/CK 'Ml 3

CTKZhP wH'i5i?

tvlLOO "^ViP.e

L' A 1 A E K 1 6 7 f?

UFCExP H043
uECFHA <343
UftPEK ^I53lri

UEF lb75
LELKTE *>b01

L'FVCOH rsba
VihlH 3«e21

UlulMl 3^?2
U I b I T 317 6

u- Ibl, UP 6b^7
LJ I It 6 tt 7 ri

iy 1 H F L A i>l I/-I 3 4

blVLP 4/H5
OIvxTt 3341
UOITNU 1247
uPuEN OfUb
U IN S W 'A 6 "> l^'

DCK'iCi^T 3i^!42

uor7E«^ 6576
u P r L A t> 334^
uf.Uf.TX 3162
uOuHTK "6 2'D

I'P I 1 6bS7
C-h) ICK 7.<3/

OvLOOP b245
Owi?IT 6731
ECHO 7023
EOIT 2412
EM.) 2400
ENOLIN 57fc)2

EMINM 733?
EM3NUM 3321
ENOPDL 5743
EMEP 6404
EOFAO 4526
EOFkTN 665M
EHTR k)060

EKKOR 4136
EVAL 1000
EvALGO 1004
EXECljT 0213
EXIT 2407
EXP 6H00
EXPGOO b242
ExPcnN 5764
EXPOK 5265
EXTLOC 0224
FAO 4000
FAOEXT 1314
FAO I 4 400
F A L T 64 4

FATNAX 627 3

FA PNC 6337
FaTNCH 634?
FATnCJ 6345
FATNCl 6304
FAFNC? 6307
FATNC3 6312
FATNC4 6315
FATNC5 6320
FATNC6 6323
FATNC7 6326
FATNCa 6331
FATNC9 6334
FaTnSX 6?/2
FATNT 6276
FATiNTT biiSl

FulGIT 3 335
FDV 7 000
F'DWl 7400
FtNTfcP 4435
Ft^(P 0746
FtXlT 00ki0

FEXPCl 6072
FtXPC2 6075
Ft)(PC3 6100
Ft XHC4 6 103
FtXPC5 6106
FE)(PC6 6111

FEXPF 6067
FEXPI 6061
FEXPU 6064
FHER 5117
FILALT 0367
FILNAM 0600
FILNR 1356
FILl 0606
FINOIT 0560
FINOLU 0566
FIOER 7135
FIX 4 7 44
FIXEXI 4 7 73
FIXITU 5200
FIXLIN 2135
FIXLUP 4750
FIXUP 5143
FJMP 1000
FJMPI 1400
FJUMp- 1130
FLD 5000
FLUI 3400
FLOGCl 6172
FLQGC2 6153
FLOGCS 6156
FL0GC4 6161
FMP 6000
FMPT 6400
FMTENF 5121
FMTl 5123
FMT2 5051
FMT3 5126
FN 5453
FNtRH 5172
FNEXIT 1200
FOR 0415
FOHCT 0065
FOROON 0663
FORERR 0503
FORLIM 0721
FORLIS 5744
FORSTE 0724
FORVAR 0454
FOUND 0576
FPAOO 4456
FP&nUR 4504
FPOIV 466/
FPOOIT 4237
FPFLAG 0154
FPGOrn 4273
FPJMP 4317
FPJUnP 4274
FPLAC 4351
FPLOOP 4202
fPMUL 4530

6-60

Table 6-7 Cassette BASIC Symbol Table (Cont'd)

/P0P-8/£ CASSETTE BASIC PAL«-V8 12/27/72 PAGE 51-1

FPNOAD a27(7i

FFOPER 4305
FPPG7 a?.?.!

FPSKIP a31«
FPSTQ 4322
FPSue 4U55
FPT 420H
FPTfcMP 457f>

FPTH 0061
FPZOIV 4V3fe

FPINP 1243
FRINPI 12fol

FRMDx 5n0a
FROUT 1?P2
FkSTNE 2101
FSB 50fc'0

FSBI 5400
FSFQ a^lb?!

FSGfe 0l0fi

F s (.- T i/'lau

FSINCI bTlS
FSIMC3 b7l6
FSIKC4 57?!
FSlNCb 5/24
F8IMC6 5727
FSINC/ 5732
FSItviM4 5735
FSI'vjOK 5657
FSlNZ 5705
FSINZZ 5710
FSIN10 5b41
FSLt 1.31 5W
FSLT ann
FSNtfc I3B4P

FSOkX 54P7
FST 2i:S0C'

FSTI 24P0
FT4NT1 567'
FTANT2 57i^2

Fu^JTAB 1131
FUPKCI 5Vb2
Fwo /isrc^

FVXPFX fei123

GALT 7242
r-Vlf,?. 1557
f-itX Pf-ifc 1

GfeTADD 14C.".''

GhTbLK I7t»
r, P. T C H 7 2 Cn»

GhTCHk tin/

2

GtTCS «7 12
Gfcinf k?27 5

GtTj 17b5
GtTLIN 2^tl2

GtTL«t 2577

GETOPR 11^12

uFTUNi 0^240

tjEfVAR C1303

bEfWD 1^177

bLOnp 2711
uNtXT «b07
GObOTH 0534
bOLIST 5764
bn&UB PI507

GOIEMP P'tiSS

bOTiT 7207
U-OTITI 721^
Gtno M521
GOiOPK 1202
i^OTSS 11^.71

GOTSTE 0634
bOUT 7244
GPTR KKfe2

b«tJ 7223
GPUELA 7221
GSriEND S777
bSBPTW f*163

GSSl 1555
GSS2 155b
GToKLP 1722
GTtMP 727115

ijTJMH 0442
btjMPl v^42/f

oTPTR 0(^36

HAP 043 7

HALF PI451

filGHwD 4333
MLOOP ?t>77

nLOPl 27 31
HLP 4163
HMOL«< h800
nPfP 0063
lAMLES 2103
ii'SiOO 6764
lAO 1257
iCASEP 5157
iruiJNT ^062
JEKR 6663
iti(TL.C 02 35
IF 0372
XFl 0403
IGMOkE 2137
ImmEl) n55
IMMEOA 1155
iN 3430
iNCHN 7 403
JNUPV (^131

iMUFxi ''nn4
lNUEx2 0015
iN'LCTM 4t!77

I^LC)OP 0573
INUUPF 0434
INPUUP 4034
INPPTR 4076
InPSET 0553
INPTN 0272
INPUT 4007
I\PUTN 7316
INSERT 2027
lNSt<T5 2025
INT 6434
IM»IDTM 4136
lONAM 0227
lOUNJT 1301
IPNDPE 4024
ISDEF2 3511
ISUIG 6532
ISOIM 1472
ISIT 4564
ISITOF 0551
ISITFU 1105
ISITLI 4100
ISITl 4422
ISLIT 4127
ISSDME 1643
ISU^^IN 1010
ITSDEF 3513
ITSOP 3217
ITSt 3253
nSOP 1220
ITSP 3270
lUNlT 6660
jBPtNT 3707
JISOIG 3344
JMATCH 2770
JPUTCH 0763
JUST0 3142
JUST0F 3152
JUSTBP 3155
JUSTl 3137
JUST2 3141
KbUiN 0421
KbDINP 7626
KHUFEN 6762
KbUFST 6737
KfcPTW 007 7

KEYlAiU 0231
KICiNOP 1676
KM200 ZI/ilS

KM4H0a 2170
K50M0 2167
Kb201 7005
LAStKK bfel2

LttEGIN 5622
LtftP 3355

LET 0304
LETDO 0205
LETTER 3445
LFXLUP 2331
LHALF 3067
LIMIT 1600
LINBUF 5551
LINENO 0054
LINFIX 2326
LIST 3600
LISTAL 3610
LISTLU 3612
LISTSO 3611
LIST2 3636
LIST3 3655
LIST4 3661
LISTS 3676
LITRAL 3123
LJMS 7255
LKER 1312
LKERR 0330
LLSOUT 7400
LNQENO 3626
LOADED 4123
LOCCTR 0045
LOCTEM 0671
LCCTMP 1677
LCG 6114
LCGACE 6165
LCGFwO 6164
LC'GOKW 6167
LC'OK 0306
LOOKER 7310
LOOKUP 7002
LOWLOC 2166
LPTQUT 7347
LLIKERR 0326
LUNIT 0332
LLIP 3404
LUPF 0430
L4LUP 3664
MAYZER 4612
MEiHEAK 7603
MENOLI 00<11

MENOPD 2361
MGOLIS 0720
MGSrtEN 0527
m:;nus 1316
MLBEGI 0171
MLEMD 0172
MLINbU 0040
MNSONE 0736
MONITR 0100
MOREDI 6470
MQREIN 4000

6-61

Table 6-7 Cassette BASIC Symbol Table (Cont'd)

/P!)P-8/t LASStTTK F^ASIC PAl.b-v8 1^/27/7? PAGE 51-a

MOkfRO lt£C
Movfc ^aic'i

MOVLUP <il^t
MPkJNT fct!!c3

M P Y b ? ? 1

MpVLUH ubb?
MfOA /St;l

MUL 7ac'l

MSTt-ei a^iS
M 7 X y 1 T i 1 7 3

MULCLrt "'37 1

MUL^-XH J5?b7

MULxTt iiatfi

MULXl 33/1
MU5TBE aShfe

NAM ti3^?

KAMCHK 0hSl
^J A (-1 f 10 3 7

MAMfcK 003?
NAMLOC i<l316

MCTHL;£ hTi'i
H f W 1 V? U 7

Nfc'.'JflO U-ibi!

NtWLlN 'dhi'h

Mfci-'MES lU:^
Nt^T ff. ().-.)

NtXTfeR Pfo/3

NtXTR t7b7
NJ t > T V A 0^37
M-MtS g^t:7

Nt-DPEN b3bS
N'M lf143

NOPLiMP 463?
^OCHNiG 304k1

MOCOM 6)76
NDCOMM ti3(?7

NOCk 4C156

NHNbLN 3104
MONZEK 5KH4
NHPAWE 103?
NOPCP i???0
NOPE 1314
NOBLFT fea?3

NORMED S?.i<i

NORMIT b207
NORUHO 5574
N'OSSl 1457
N0SS2 1452
NOT 3426
NOTbAD 2153
NDTl^lG 4620
MGTCP 3P123

NOTEM 6626
NOTFUL 6712

rjO'HER 0'437

^OIKkU PI3P5

NOT MOW 1776
fjUrsUN 3271
MOITXT P236
IMOIVAK \\IA?.

NOlXll^ ^^236

N(UYtT 6741
N s r M T A /^ 5 3

inTCmAN 122i(;

NIILiM 1201^

MinHIJf-' 5335
NUPCHK M7?b
Mi/ULMS 3124
JtCO 4435
uCAStff 2574
UC:C 5205
UCbUNT 8761
uEh'R 67 5/
UIH 7^5 7

UJUMH 1276
t'l. U 1ii5 7

ULUdO 10h2
ULL.KLr, Pi.'ifS

UL'JMfcS UU
ULUnP ('!H7ii

ULL'3 11 PIP''

UML 1^147

UMtDIM U'61
ONtSS 1B73
OrLVl 5312
UC76l^0 5452
00/736 2324
OPuONE 1203
OPt Pfc30
OPtN 3575
UPtNl 12P1K

UPtRAN 1/075

OPNERR 1354
UPUTAB 71316

UPS l?026
uPuTC 7147
OPl Vi0?'i

ap2 ^0Z^
0P3 0021
OTtMP 1271
0T£MP1 7012
OTHER 3(^00

OUNIT 6760
OUPSET 1026
OUTDEV 0133
QurD2 013?
UUTNUM 5000
UurOK 1332

OV 0013
Ola 2171
011100 3547
Oil 506
0110 2357
012 0067
0122 2 7 72
013 1562
014 2356
O140A ^762
0140a 2745
017 514 4

01 /4B 3352
0177 0027
017/0 3353
02 0064
02 1151
0200 0153
O2040A 3350
02062 5344
0212 0175
0215 01/4
02 3 1366
Oc'i3 3770
0240 0051
0253 5145
0255 5146
0256A 5153
0256B 6575
0260 0012
02/ 3345
0305 5147
032 3115
036 2771
03734 1152
03737B 0776
03755 1273
0377 00/3
04 0156
040 2777
04014 1153
042 3103
04200 3102
04213 1154
05400 5347
06203 0046
07 0074
0700 1272
O7000A 2565
O7000B 3473
07077 1275
0/520 5150
07545 4777
0/570 6456
07577 4577

07600 4345
07603 2774
07610 5345
O7640A 0754
076408 2765
07673 3306
077 0140
07700 2610
u7706A 6544
O7706C 3472
07715 2775
07725A 3075
07725» 3346
07737 3116
07740 0056
07741 3743
07743 4743
07745 0160
07/53 3101
07762 2325
07763A 0761
07/63B 3076
07764A 1274
07764R 3077
07764C 3351
07766 5151
07770 0057
07771 5152
07772 5154
07773 5346
U7774 1561
07776 3347
PACN 4/42
PAD 0347
PAOOQN 0741
PAKBUF 0763
PALI 0146
PANOKM 0144
PAKGER 0047
PARI 0145
PASSCR 0474
PBARKD 2773
PBEGFI 1773
PCCUNT 0744
PCHKFI 0161
PCLOS 0143
PCOMMA 0273
PCQwT 0137
POL 0036
POLIST 5703
PEOIT 0122
PENON 0271
PENONM 0365
PERMSY 5111
PERROR 0101

6-62

Table 6-7 Cassette BASIC Symbol Table (Cont'd)

/f'(iF-8/fc CASSfcTTP BASIC PAL6-V8 \?J?im PAGE 51-3

P 1. 1^ s; w H / a 7

K K V A L a 1 k' 3

P f- X k C U C^ Ui 5

P (- X P 5 7 7 6

Pe 1

X

i-Ji u'
PPNEPhi "jSab

PFPLCO «5/S
PtETAIJ t?tta

PGfcTBL 0117
HLitTCH fcCJiS

PRETLI aw^

pr,tTnp 1.S76

P 1. 1 T V A iS n =5

Pf.OLTS 21^2
PC-OTPP icM 11

•-HLP 0:?b'5

Pir.r-.:(jw i-;"?:^

P I ^ T b ^ 7 8

Pi.'^iTL :m7:^

PL ''» GI v^ 1 /?
PLtrnO t1?(;,ii

PLfcTTt 31 CM
PL J f- IT eS^b
PL I^HU fe737

PL INK I I" lb?
P L I S T ^ b / n

P L t T I? A 3 3 b u

PLL'L. b7yb
PLU? 13iy
PMHk'EA iiSbi;;

PMPY blb5
^^Mrt^6 blbfi

PNe.u,LI 117 7

PNONBL 0124
PNOTMQ db73
PNUMBU iia'ia

POADU 01bb
PDIP a035
POP ixXh^

POPERA 31.?1

P0P3 aa3a
POUINU 0121
PPASSC 011.?

PPOHS k51c7
PPERMS i?b72
PPPLOn i,7ai

PPFORL 17ba
PPINT 606?l

PPOP 01i?j7

PPRINT 011f)

PPWINLI Bl?5
PPUSH 0106
PPUTCH 0333

PPKXgO \\bi
PPcNT S5ib
PKtStT Ml3h
HPINbL .?31^e?

KKlNCn P3l?b

PPINKX ??lb
PPINHA ^?6feJ

PRINQU Pr"??

PPIMSK ?3?0
PPJNT ?17?
PRINTC ^^07
P»lMTG ?t>Hb
KRiMrh ?^?a
PPlNTr-' 73P^
PSiMTx 370^
PPIMI? PI 74
PkiMjM ?74b
PRi^Vw 3h51
PWLOOP 371

1

P R M t^ d a 3

HPuGiMA 1114
PPoUbP 37??
P P i t M P l^ t^ 4 2

PPTXPt 37?0
PSAve ?4b3
PSIjN S675
PSKIPI Iblfe

PSLHUP «l?f.
PSPACE lbb0
p.") TICK 0l?3
tSlOP 3776
psrovtt, 0114
PSxE«;k" 011712

pr. VMTA at;s2

PTAhOE 'ib70

PTABf-L Sb71
PTArtLE 2776
PTtN 015((1

PTtXT 0100
PTUBIG 3021
PUatPP SSas
PUbH 2362
PIJTCOF 7014
PIJTCH 07 4 1

PijTEK 7000
PUTJ 3b50
PWhEPE 0647
PXPORL eb57
PXLlNb 3744
PXXCKL 3117
PXXFnF ?b71
PXXEXI 3120
PXXLIT 3122
PXxThE 2567
PZtWDO 65«5

P7640 0722
QtPKOP 1571
QMK 0771
RBSwCH 0135
K C H hi 6 7 6 3

RtAD 1622
PhADIT 6664
WtADLQ 80'»6

WtADY 6525
PELATfc 1342
WfcMPAC 3043
i^tCEER 6700
PeStTl 7072
HtSTOk 3771
PtTNEK 0713
HtTUPN 0677
PhALF 3071
RIGHT 0433
RIP 6661
RI^LtPT 6413
RMJ 5353
HNOJMP 5350
RTBEND 1600
PTilUF 1400
HTIOME 3103
RUBO 5573
RUN 2457
RUMC 2456
RUMIN 2510
PUNLUP 2472
RU^^INuT 2504
RIjN2IN 2550
RUN2LU 2521
RUN2N0 2544
SAVE 1000
SAVtl 2461
SCHMUR 1656
5CRATL 2445
SCRATl 0332
StARCH 1657
SETINC 0200
StrSGN 4512
St-N 0726
5IMPLV 3465
SIN 5624
SJUMP 0241
S^IPIT 0471
SKPSYM 2762
SLASH 1332
SLOOP 2675
SLSHTM 1337
SNUMFL 0066
SPACER 1163
SPLtFT 0142
SQEXIT 5450

SQLOOP 5435
SQR 5412
S:3ERR 1563
S:5FIX 4/75
SI50NE 0336
SSTi^Q 0337
ST 3005
STAR 1327
S'^ARTH 3000
STICKI 6430
S'^OBUF 0747
S'^QP 2401
S"ORCH 0704
S-OVAR 0333
SWP 7521
SXER 0551
SKERR 6441
TAB 5547
TaSDES 6375
TAriDO 6350
TaBFLG 2343
TaBL 3652
TaBTHP 2360
TAN 5600
THEGFI 5572
TEMP 0003
TEMPS 3102
TEN 0000
TMESKI 1353
TLSDUT 7402
TMP 0031
TOOLON 5162
TPRINT 6376
TRALUP 2131
THANSF 2126
TRYAGI 5131
TRYAL 0270
TRYALT 0271
THYQLO 3075
TRYSTE 0626
TTYO 7024
TTYOUT 7350
TUBIG 1173
TWIOTH 2355
TWOLF 3557
TWOSS 1074
TVTPAK 3046
TVQUES 1145
UDOPER 1363
UCIHl 3561
UJM8 0004
UMOPER 1321
UMOERF 4645
UNIT 0012
UPARRO 6457

6-63

Table 6-7 Cassette BASIC Symbol Table (Cont'd)

/PDP-8/fe CASSETTE BASIC PALB-VS 12/27/72 PAGE 51-4

UPARRX 5740 XXbOSU 5321 XKTAN 5204
1,IPARR2 4365 *XbOTO 5300 XXTeXT 5540
nSERFN Ifel? XXCiT 514? X)1THEN 5305
UTEH 0411 XXiF 5312 XXTO 5lfc5
UTEMl 0021 XXINPT 5332 XXTTYO 5437
l.iUJMP 0ari0 *XlNPU 5337 XxUNA« 5542
laUHS 0401 XXINT 5231 XXUPAR 5122
ULiUJMS 0416 XXLbRA 5163 X>:UUF 5253
VAk 0335 XXLE 5124 X10 0010
VAi^TEM 0554 XXLET 527a ZCNTLO 7147
VSCHIN 3S23 *XLIS 5502 ZtMOON 5142
VbCHLU 34ya XXUIST 5476 7.t«0 0150
VSCHNO 3517 XXLIT0 5545 ZHXtX 4767
l^iAJT 6200 XXLOG 5212
VUITR 6601?- xVLPT 5i»tti4

WOIEMP 1072 XXUT 5145
UjO»D 005E XXMINU 5114
I'iTEM 6613 AXNAM S534
xexfccu 0aia xvNiOMt 5530
XKISIT Ml"^ XXNCOM 5447
yf.KSTl (-.533 XXMh; 5132
XGf<LiS7 ?270 *VNEW 5525
VISIT 71?4 XXNEXT 5326
VlSjn 0S2'^ JiXNHUB 5467
XNOST /ay/ xxuDi 0005
XMUSTl 05al xxQr)(J 0i/iP6

xptG2 0i^'ii xxan3 0007
XHirC 0010 XXULU 5522
VkPlT PCI 11 XXUPt> 5161
yxAhS 52<r3 XXUPN 5412
XXATN 520/ XXUIJTP 5u22
XXf^?LS 5260 XXHLUS 5ll<^
XxChAN 5a27 XXKRIN 52h7
XXCLOS 5155 xXHRNt 5262
VxClSE 5U16 XXPUI 5242
XXfJJMA 5ii55 XXRBRA 5157
yyCUMM 5151 xxkEAD 537b
XXCfj.S 5201 XXREM 53^6
XXCRLE 5256 XXkETR 534a
yxi:ATA 54ti2 XXKMl) 5234
XXOrF 53/2 aXRSTU 5361
XXDIM 5355 XXHue 5462
XXt[> 5135 XXKUN S505
xxtL 514r'i xkSav S517
VXENO 5454 r.vSAvK 5513
vyf•:NO^ 54ij6 Ay&r.hi S51n
XXf-nP b54l XViiEMl SI 53
XXf-U 514i xxb(iN 522b
XxExIT 55aa AXSlNi 5237
yxF.XP 5215 AX6LA3 5i20
XXKINl 5543 AXbQK 5220
XXFN 5176 XXSTrtR 5116
vyfoP 5315 xxSTtP 5171
XXGF-; 5127 xv.'^roP 53S1
Xxr,|-,T 524S xxlAp 5250

6-64

CHAPTER 7

USING CAPS- 8 CODT

Using CODT, the programmer can run his binary program on the computer,
control its execution, and make alterations to his program by typing
at the Teletype keyboard.

CODT occupies any four pages of core, in the same field, that the user
desires. The user may change the location of these four pages of core
by reassembling the source. If the user progreun resides in the first
few pages of memory, then CODT should be loaded in the upper pages of
memory, and vice versa. The user progrcim cannot occupy (overlay) any
location used by CODT, including the breakpoint locations (locations
4, 5, and 6 on page zero).

7.1 FEATURES

CODT features include location examination and modification; octal
core dumps to the Teletype using the word search mechanism; and
instruction breakpoints to return control to CODT (breakpoints) . The
user's program can run with interrupts on. CODT may reside in any
field, not necessarily the same as the user's field.

The breakpoint is one of CODT's most useful features. When debugging
a program, it is often desircible to allow the program to run normally
up to a predetermined point, at which the programmer may examine and
possibly modify the contents of the accumulator (AC) , the link (L)

,

or various instruction or storage locations within his program,
depending on the results he finds. To accomplish this, CODT acts as a
monitor to the user program.

The user decides how far he wishes the program to run and CODT inserts
an instruction in the user's program v^hich, when encountered, causes
control to transfer back to CODT. CODT immediately preserves in
designated storage locations the contents of the LINK and AC at the
breedc. It then prints out the location at which the break occurred,
as well as the contents of the LINK and AC at that point. CODT will
then allow excunination and modification of any location of the user's
program (or those locations containing the AC cind L) . The user may
also move the breakpoint and request that CODT continue running his
program. This will cause CODT to restore the AC and L, execute the
trapped instruction and continue in the user's program until the
breakpoint is again encountered or the program is terminated normally.

7-1

7.2 USING CODT

When the programmer is ready to start debugging a new program at the
computer, he should have at the console:

1, A binary copy of the new program on a cassette.

2, A complete octal/symbolic program listing.

3, A binary copy of the CODT program (previously assembled so as
not to interfere with the user's program).

RUN PROG, CODT

The binary of CODT must be the last file to be run. Execution
automatically begins in CODT.

7.2.1 Commands

SLASH (/)—OPEN PRECEDING LOCATION

The location examination character (/) causes the location addressed
by the octal number preceding the slash to be opened eind its contents
printed in octal. The open location Ccin then be modified by typing
the desired octal number cind closing the location. Any octal number
from 1 to 4 digits in length is a legal input. Typing a fifth digit
is an error and will cause the entire modification to be ignored cuid a
question mark to be printed by CODT. Typing / with no preceding
argument causes the latest named location to be opened (again)

.

Typing 0/ is interpreted as / with no argument. For example:

400/6046
400/6046 2468?
400/6046 12345?
/6046

The memory field referenced is that field specified by the location in
CODT symbolically referenced by F. For example, if the contents of F
were 20, then the command

423/

would examine location 423 in memory field 2.

7-2

RETURN—CLOSE LOCATION

If the user has typed a valid octal numlDer, after the content of a
location is printed by CODT, typing the RETURN key causes the binary
value of that number to replace the original contents of the opened
location and the location to be closed. If nothing has been typed by
the user, the location is closed but the content of the location is
not changed. For example:

400/6046
400/6046 2345
/2345 6046

location 400 is unchanged
location 400 is changed to contain 2345,
replace 6046 in location 400.

Typing another command will also close an opened register. For
example

:

400/6046 401/6031 2346 location 400 is closed and unchanged and
400/6046 401/2346 401 is opened and changed to 2346.

LINE FEED—CLOSE LOCATION, OPEN NEXT LOCATION

The LINE FEED key has the same effect as the RETURN KEY, but, in
addition, the next sequential location is opened and its contents
printed. For example:

400/6046
0401/6031 1234
0402/5201

location 400 is closed unchanged and 401
is opened. User types chcuige, 401 is
closed containing 1234 and 402 is
opened

.

SEMICOLON—CLOSE LOCATION, AND UNOBTRUSIVELY OPEN NEXT LOCATION

The SEMICOLON key has the same, effect as the LINEFEED key except that
the location and contents of the next sequential location are not
printed. Therefore,

400/6046 3211; 4162; 5000

has the same effect as

400/6046 3211
401/6031 4162
402/5201 5000

This makes it convenient for the user to change several sequential
locations.

f (SHIFT/N)—CLOSE LOCATION, TAKE CONTENTS AS MEMORY REFERENCE AND
OPEN SAME

The up arrow (circumflex) will close an open location just as will the
RETURN key. Further, it will interpret the contents of the location
as a memory reference instruction, open the location referenced and
print its contents . For exetmple :

7-3

404/3270+
0470/0212 0000

3270 symbolically is "DCA, this page,
relative location 70," so CODT opens
location 470.

«- (SHIFT/O) CLOSE LOCATION, OPEN INDIREICTLY

The Back arrow (or iinderscore) will close the currently open location
and then interpret its contents as the address of the location whose
contents it is to print cind open for modification. For exeimple:

365/5760+
0360/0426^
0426/5201

nnnnG—TRANSFER CONTROL TO USER AT LOCATION nnnn

Clear the AC then go to the location specified before the G (in the
field specified by F) . All indicators and registers will be
initialized and the breakpoint, if any, will be inserted. Typing G
alone will cause a jump to location 0.

nnnnB—SET BREAKPOINT AT USER LOCATION nnnn

Instructs CODT to establish a breakpoint at the location specified
before the B (in the field specified by F) . If B is typed alone, CODT
removes any previously established breakpoint and restores the
original contents of the break location. A breakpoint may be changed
to another location, whenever CODT is in control, by simply typing
nnnnB where nnnn is the new location. Only one breakpoint may be in
effect at one time; therefore, requesting a new breakpoint removes any
previously existing one.

A restriction in this regard is that a breakpoint may not be set on
any of the floating-point instructions which appear as arguments of a
JMS . For example

:

TAD
DCA
JMS
FADD Breakpoint illegal here.

BrecUcpoint legal here.

A breakpoint may not be set on a CIF instruction, nor on cui

instruction which is meant to be executed between a CIF and its
corresponding JMP or JMS instruction.

A breakpoint may not be set on a memory reference instruction which
references an auto-index register.

A breakpoint may not be set on a two-word EAE instruction, nor may it
be set on ciny of the following instructions

:

7-4

SKON
ION
lOF

The breedcpoint (B) command does not make the actual exchange of CODT
instruction for user instruction, it only sets up the mechemism for
doing so. The actual exchange does not occur until a "go to" or a
"proceed from breakpoint" command is executed.

When, during execution, the user's program encounters the location
containing the breakpoint, control passes immediately to CODT (via
location 4, 5, and 6). The C (AC) and C(L) at the point of
interruption are saved in special locations accessible to CODT. The
user's data field is stored in location D and his instruction field is
stored in location F as well as internally by CODT. The user
instruction that the breakpoint was replacing is restored; before the
address of the trap and the content of the LINK amd AC: are printed.
The restored instruction has not been executed at this time. It will
not be executed until the "proceed from breakpoint" command is given.
Any user location, including those containing the stored AC and Link,
can now be modified in the usual manner. The breakpoint can also be
moved or removed at this time.

An example of breakpoint usage follows the section 'CONTINUE AND
ITERATE LOOP...".

A—OPEN C(AC)

When the breakpoint is encountered the C(AC) and C(L) are saved for
later restoration. Typing A after having encountered a breakpoint
opens for modification the location in which the AC weis saved and
prints its contents. This location may now be modified in the normal
manner (see Slash) and the modification will be restored to the AC
when the "proceed from breakpoint" command is given.

Similarly, other key locations in CODT may be examined and modified as
follows

:

L—OPEN CONTENTS OF LOCATION L (LINK)

F—OPEN CONTENTS OF LOCATION F

D—OPEN CONTENTS OF LOCATION D (USER'S DATA FIELD)

7-5

NOTE

Whenever any of the locations A, L, F,
D, M are referenced, CODT automatically
sets the value of F to be the field of
CODT.

C—PROCEED (CONTINUE) FROM A BREAKPOINT

Typing C, after having encountered a breakpoint, causes CODT to insert
the latest specified breakpoint (if any) ; restore the contents of the
AC and Link; execute the instruction trapped by the previous
breakpoint; and transfer control back to the user program at the
appropriate location. The user program then runs until the breakpoint
is again encountered.

Regardless of the value of F, the C command resumes program execution
at the precise spot where it had been previously stopped. The user's
data field is first set to that specified by location D.

NOTE

If a trap set by CODT is not encountered
while CODT is running the object
(user's) program, the insstruction which
causes the break to occur will not be
removed from the user's program.

nnnnC—CONTINUE AND ITERATE LOOP nnnn TIMES BEFORE BREAK

The progrcimmer may wish to establish the breakpoint at some location
within a loop of his program. Since loops often run to many
iterations, some means must be available to prevent a break from
occurring each time the brecik location is encountered. This is the
function of nnnnC (where nnnn is an octal number) . After having
encountered the breakpoint for the first time, this command specifies
how many additional times the loop is to be iterated before another
break is to occur. The brecik operations have been described
previously in the section on the B command.

Given the following program, which increases the value of the AC by
increments of 1, the use of the breakpoint command may be illustrated.

7-6

*200
0200 7300 CLA CLL
0201 1206 A, TAD ONE
0202 2207 B, ISZ CNT
0203 5202 JMP B
0204 5201 JMP A
0205 7402 HLT
0206 0001 ONE ,1
0207 0000 CNT ,0
A 0201
B 0202
CNT 0207
ONE 0206

0201B
200G
0201 (0;0000
C
0201 (0;0001
C
0201 (0;0002
4C
0201 {0;0007

CODT has been loaded and started. A breakpoint is inserted at
location 0201 and execution stops here showing the AC initially set to
0000 and the link 0. The use of the Proceed command (C) executes the
program until the breakpoint is again encountered (after one complete
loop) and shows the AC to contain a value of 0001. Again execution
continues, incrementing the AC to 0002. At this point, the command 4C
is used, allowing execution of the loop to continue 4 more times
(following the initial encounter) before stopping at the breakpoint.
The contents of the AC have now been incremented to 0007,

M—OPEN SEARCH MASK

Typing M causes CODT to open for modification the location containing
the current value of the search mask and print its contents.
Initially the mask is set to 7777. It may be changed by opening the
mask location and typing the desired value after the value printed by
CODT then closing the location.

LINE FEED—OPEN LOWER SEARCH LIMIT

The word immediately following the mask storage location contains the
location at which the search is to begin. Typing the LINE FEED will
open for modification the first location after the mask, and its con-
tents will be printed. Initially, the lower search limit is set to
0001. It may be changed by typing the desired lower limit after that
printed by CODT, then closing the location.

7-7

LINE FEED—OPEN UPPER SEARCH LIMIT

The next sequential word contains the location with which the search
is to terminate. Typing the LINE FEED key to close the lower search
limit causes the upper search limit to be opened for modification and
its contents printed. Initially, tlie upper search limit is the
beginning of CODT itself, 7000 (1000 for low version). It may also be
changed by typing the desired upper search limit after the one printed
by CODT, then closing the location with the RETURN key.

nnnnW—WORD SEARCH

The command nnnnW (where nnnn is eui octal number) will cause CODT to
conduct a search of a defined section of core, using the mask and the
lower and upper limits which the user has specified, as indicated
above. The searching operations are used to determine if a given
quantity is present in any of the locations of a particular section of
memory

.

The search is conducted
which the user types
quantity for which it
within the user's speci
to the quantity for whi
identical, the addres
matching location are
limit is reached. The
F.

as follows: CODT masks the expression nnnn
preceding the W and saves the result as the
is searching. CODT then masks each location

fied limits with C (M) and compares the result
ch it is searching. If the two quantities are
s and the actual unmasked contents of the
printed and the search continues until the upper
search occurs in the memory field specified by

A search never alters the contents of any location. For example:
Search location 3000 to 4000 for all ISZ instructions regardless of
what location they refer to (i.e. search for all locations beginning
with an octal 2)

.

Set the field to 2

Chcmge the mask to 7000, open lower
search limit.
Change the lower limit to 3000, open
upper limit.
Change the upper limit to 4000, close
location.
Initiate the search for ISZ
instructions

.

These are 4 ISZ instructions in
this section of core.

FOOlO
M7777

20
7000

7453/0001 3000

7454/7000 4000

2000W

0200/2467
3057/2501
3124/2032

7.3 ILLEGAL CHARACTERS

Any character that is neither a valid control character nor an octal
digit, or is the fifth octal digit in a sequence, causes the current
line to be ignored and a question mark printed. For example:

7-8

4:? CODT opens no location.
4U?
0406/4671 67K CODT ignores modification cind closes
/4671 location 406.

7.4 ADDITIONAL TECHNIQUES

7.4.1 TTY I/O-FLAG

CODT automatically notes the status of the TTY flag after encountering
a breakpoint and restores it after performing a CONTINUE.,

7.4.2 Interrupt Program Debugging

CODT executes an lOF when a breeikpoint is encountered. {It does not
do this when more iterations remain in an nnnnC command.) This is done
so that an interrupt will not occur when CODT prints the breakpoint
information. CODT thus protects itself against spurious interrupts
and may be used safely in debugging programs that turn on the
interrupt mode. CODT restores the interrupt facility to its former
state when it resumes execution.

7,4.3 Octal Diomp

By setting the search mask to zero and typing W, all Locations (in
field F) between the search limits will be printed on the Teletype.

7.4.4 Indirect References

When an indirect memory reference instruction is encountered, the
actual address may be opened by typing + and -<- (SIIIFT/H and SHIFT/O,
respectively)

.

7.5 ERRORS

The only legal inputs are control characters and octal digits. Any
other character will cause the character or line to be ignored and a
question mark to be printed by CODT. Typing G alone is an error. It
must be preceded by an address to which control will be transferred
This will elicit no question mark also if not preceded by an address,
but will cause control be transferred to location 0.

7-9

7.6 OPERATION AND STORAGE

7.6.1 Storage Requirements - CAPS-8 System

CODT can be run in a standard CAPS-8 system and requires 1000 (octal)
core locations and three locations (4,5,6) on page zero of every field
which uses a breakpoint. CODT is page-relocatable.

The source tape can be re-origined to the start of any memory page
except page zero and assembled to reside in the four pages following
that location, assuming they are all in the same memory bank.

7.6.2 Programming Notes Summary

CODT must begin at the start of a memory page (other than page zero)
and must be completely contained in one memory field.

The user's program must not use or reference any core locations
occupied or used by CODT and vice versa.

Breakpoints are fully invisible to "open location" commands; however,
breakpoints may not be placed in locations which the user program will
modify in the course of execution or the breakpoint will be destroyed.

If a trap set by CODT is not encountered by the user's program, the
breakpoint instruction will not be removed.

The user may type CTRL/C at any time to return to the CAPS-8 Monitor
(assuming his program did not destroy CAPS-8).

7-10

7.7 COMMAND SUMMARY

nnnn/

/

RETURN key

LINE FEED key

+ (SHIFT/N)

*- (SHIFT/O)

Illegal character

nnnnG

nnnnB

B

A

L

C

nnnnC

M

LINE FEED key

LINE FEED key

nnnnW

F

D

Open location designated by the octal number
nnnn.

Reopen latest opened location.

Close previously opened location.

Close location ajid open the next sequential
one for modification.

Close location and allow immediate
modification of the next location.

Close location, take contents of that
location as a memory reference and open it.

Close location, open indirectly.

Current line typed by user is Ignored, CODT
types: ? (CR/LF) .

Transfer program control to location nnnn.

Establish a brecikpoint at location nnnn.

Remove the breakpoint.

Open for modification the location in which
the contents of the AC were stored when the
breakpoint was encountered.

Open the location storing the link.

Proceed from a breakpoint.

Continue from a breakpoint and iterate past
the breakpoint nnnn times before interrupting
the user's program at the breakpoint
location.

Open the search mask.

Open lower search limit.

Open upper search limit.

Search the portion of core as defined by the
upper and lower limits for the octal value
nnnn.

Open location F.

Open location D.

7-11

CHAPTER 8

CAPS- 8 UTILITY PROGRAM

8.1 INTRODUCTION

The CAPS-8 Utility Program (UTIL) allows the user to take files stored
on paper tape and transfer them to cassette, using either the
high-speed or low-speed reader. The Utility Program will transfer
both ASCII and BINARY files.

8.2 CALLING AND USING THE UTILITY PROGFIAM

To call the Utility Program from the system cassette, the user types:

.R UTIL/OPTIONS

in response to the dot (.) printed by the Keyboard Monitor.

8.2,1 Utility Program Options

There are two options available for use with the Utility Program;
these options are discussed in Table 8-1. (Options usage is explained
in Chapter 2, Section 2.4.3.)

Table 8-1
Utility Program Options

Option Meaning

/H The /H option is used to designate the
high-speed reader as the input device. Note
that the high-speed reader is the default
input device. That is, if no option is
specified the program assumes that the
high-speed reader is the input device.

/L The /L option is used to designate the
low-speed reader as the input device.

8-1

8.2.2 Input and Output Specifications

Before indicating the input and output devices to be used in the file
transfer, the user must ensure that the proper reader is ready and
that the cassette the file is to be copied onto is write-enabled.
When this has been done, the user is ready to begin the file transfer.

After UTIL has been called from the system cassette, it asks the
following:

MODE-

The user responds with a single character (A or B) to indicate whether
the file being put on the cassette is ASCII or BINARY.

OUT-

The user responds by typing the drive number the output cassette is
mounted on and the name of the output file to be put onto it, i.e.,
3:F00. In B mode, .BIN is the default extension.

After these two queries have been answered UTIL prints the following:

f

The user responds by typing any character; this response starts the
file transfer. (If /L had been typed, the user merely turns on the
low-speed reader.

)

8.3 UTILITY PROGRAM ERROR MESSAGES

Errors which occur during the Utility Program operation may be of two
types: User errors and cassette errors. User errors may be corrected
with the appropriate action as detailed in Table 8-2. Cassette errors
normally require the user to use another cassette to complete the copy
operation. Control does not return to the Keyboard Monitor when a
Utility Progreim error occurs. The user may use CTRL/C to return to
the Monitor if he cannot correct the indicated error.

Table 8-2
Utility Program Error Messages

Message Ifeaning

UNIT n NOT READY There is either no cassette on the cassette
drive specified or no such drive exists.

OUTPUT ERROR ON UNIT n An output error has occurred on the cassette
drive specified. The user should try the
tremsfer operation using another cassette.
Or perhaps, the user tried to write data when
the write protect tab of the cassette on the
drive specified was write- locked.

8-2

ENTER ERROR ON UNIT n

UNIT n FULL

CLOSE ERROR ON UNIT n

INPUT ERROR

CHECKSUM ERROR

An error occurred while trying to open a new
cassette file.

There was not enough room on the cassette.

An error occurred during a close operation.

In binary mode, the paper tape reader stopped
or ran out of tape before a checksum was
encountered.

In binary mode, the checksum did not agree;
probably a hardware read error. Try again.

Whenever cin error occurs, the program writes a new sentinel on the
open cassette if possible.

8-3

CHAPTER 9

BOOT

BOOT is used to make it convenient to bootstrap from one system to

another, or from, one device to another by typing commands on the

keyboard.

BOOT can run conveniently from CAPS-8 and other monitor systems,

i.e., OS/8 and COS-300.

9.1 OPERATING PROCEDURES

To run BOOT from CAPS-8 the user types:

.R BOOT

the system will respond by typing a slash, at which time the user

responds with the device mnemonic.

If an illegal mnemonic is typed, the system types "NO" and prints a

slash to allow the user to try again. In this case, the user can

type RUBOUT to erase a line and try again.

If a legal mnemonic was given, but the system configuration does not

include the corresponding device (or the device is not ready) , the

bootstrap may hang.

The following is a list of legal mnemonics;

System or Comments

CAPS-8

OS/8, COS-300

DIAL-V2, DIAL-MS

Disk Monitor

OS/8, COS-300

OS/8, COS-300

Loads BINLDR into field

9-1

CA TA8E cassette

DK Any disk (RF08,
DF32, RK8E, RK8)

DL LINCtape

DM RF08 or DF32

DT Any tape (TC08,
TD8E, LlNCtape)

LT LINCtape

PT PTBE Papertape

Mnemonic Device System or Comments

RE RK8E disk OS/8, COS-300

RP RF08, DF32 disks OS/8, COS-300

RK RK8 disk OS/8, COS-300

TD TD8E DECtape OS/8, COS-300

TY TC08 DECtape unit 4 Typeset Bootstrap
types boot's version number

TC TC08 DECtape OS/8, COS-300, Disk monitor,
DEC library system, and others

ZE Zeroes core (field 0)

If the device mnemonic is followed by a period, the program will load

the correct bootstrap into core and then halt. Hitting continue

branches to the bootstrap.

Example

:

^R BOOT

/DT

The preceding bootstraps onto a DECtape system (on DECtape unit 0)

.

The underlined characters were typed by the computer.

9-2

APPENDIX A
ASCII CHARACTER SET

Character

A
B
C
D
E
F
G
H
I

J
K
L
M
N
O
P
Q
R
S

T
U
V
W
X
Y
Z

1

2

3

4

5

6

7

8

9

8-Bit
Octal

301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
321
322
323
324
325
326
327
330
331
332
260
261
262
263
264
265
266
267
270
271

7-Bit 8~Bit
Octal Character Octal

101 1 241
102 n 242
103 # 243
104 $ 244
105 % 245
106 & 246
107 1 247
110 (250
111) 251
112 * 252
113 + 253
114 » 254
115 255
116 • 256
117 / 257
120 •

• 272
121 1 273
122 < 274
123 = 275
124 > 276
125 7 277
126 @ 300
127

[
333

130 \ 334
131

]
335

132 i 336
260 -^ 337
261 Leader/Trailer 200
262 BELL 207
263 TAB 211
264 LINE FEED 212
265 FORM 214
266 CARRIAGE RETURN 215
267 CTRL/Z 232
270 SPACE 240
271 RUBOUT 377

BLANK 000

7-Bit
Octal

241
242
243
244
245
246
247
250
251
252
253
254
255
256
257
272
273
274
275
276
277

133
134
135
136
137

240

A-1

APPENDIX B
ERROR MESSAGE Al^D COMMAND SUMMARIES

The following summaries are provided for the user's convenience; they
are grouped in alphabetical order according to the SyEtem Program to
which they pertain. As these are only summaries the useir is referred
to the appropriate chapters for details.

KEYBOARD MONITOR (Chapter 2)

Error Messages

Message

BAD COMMAND

FILE NOT FOUND

10 ERROR ON UNIT n

UNIT n NOT READY

UNIT n WRITE LOCKED

Meaning

The user has failed to follow the
correct syntax for Monitor commands.

The Monitor could not locate the file
(or files) specified.

An I/O error has occurired on the
cassette unit drive specified. The
user should try the I/O transfer
specifying another cassette.

There is no cassette on the unit
drive specified, or no such drive
exists.

The user tried to write data when the
write protect tab of the cassette on
the drive specified was wjrite- locked.

Commcinds

Command

DATE

DELETE

DIRECTORY

Explanation

Allows the user to enter the month,
day, and year. This date is then
represented in directory Listings.

Causes the file named in the command
line to be deleted from the cassette
drive specified.

Causes a directory listing of the
cassette specified in the command
line.

B-1

KEYBOARD MONITOR (Con't)

Coramand

LOAD

REWIND

RUN

VERSION

ZERO

Explanation

Instructs the Monitor to load the
file(s) specified in the command
line. (The correct starting address
is then set in the switch register
and execution is started by pressing
CONTinue.)

Causes the cassette on the drive
specified to be rewound to its
beginning.

Instructs the Monitor to load and
execute the file(s) specified in the
command line

.

Causes the version number of the
Monitor currently in use to be
printed on the console terminal.

Causes deletion of all files
following the filename specified in
the command line. If no filename is
indicated, all files are deleted and
the sentinel file is moved to the
beginning of the cassette.

EDITOR (Chapter 3)

Error Messages

Error codes are printed in the form Pn+C where n represents one
of the following:

Code Meaning

The EDITOR failed in reading from a
device. An error occurred in the
device handler; most likely a
hardware malfunction.

1 The EDITOFl failed in writing onto a
device; generally a hardware
malfunction.

2 A file close error occurred. The
output file could not be closed.

A question mark (?) may appear any time the EDITOR encounters a
syntax error.

B-2

In addition, the EDITOR contains the following error message:

Message Meaning

UNIT HAS OPENED FILE Two files cannot be open on the same
cassette at the same time.

Commands

Command Meaning

A Append text from the keyboard to
whatever is present in the text
buffer.

B List the niamber of avai].able memory
locations in the text buffer.

C Change the text of a spescified line
or lines.

D Delete the specified lin€!(s) from the
buffer.

E Output the current buffer and
transfer all input to the output
file; close the output fi.le.

F Find the next occurrence of the
string currently being searched for.

G Get and list the next line which has
a label associated with ;Lt.

I Insert text before a speicified line
in the text buffer.

J Initiate an inter-buffer search for a
character string.

K Kill the buffer; rese: the text
buffer pointers so that: there is no
text in the buffer.

L List entire contents (or specified
lines) of the text buffer on console
terminal.

M Move specified lines from one place
in the text to another, deleting the
old occurrence of the text.

N Write the current buffer to the
indicated output file, kill the
buffer and read the next logical page
from the input file.

B-3

EDITOR (Con't)

Command

P

S

V

. = or .

:

/= or /:

LINE FEED
Key

Meaning

Write the entire text buffer (or
specified lines) to the output
buffer.

Immediate end-of-file. Q causes the
text buffer to be output to the
output file and the file closed.

Read from the specified input device
and append the new text to the
current contents of the buffer.

Search for the character specified.

List the entire text buffer (or only
specific lines) on the line printer.

Skip to a logical page in the input
file, without writing any output.

Perform a search for a specified
string of characters.

List the current line number (.=) or
list the last line number in the text
buffer (/=)

.

List the next line in the text buffer
on the console terminal.

List the previous line in the text
buffer on the console terminal.

List the next line in the text buffer
on the console terminal.

SYSCOP (Chapter 4)

Error Messages

Message

INPUT ERROR ON UNIT n

UNIT n NOT READY

Meaning

An input error has occurred on the
cassette unit specified. The user
should try the copy operation using
another cassette.

There is no cassette on the unit
drive specified, or no such drive
exists.

B-4

SYSCOP (Con't)

Message

UNIT n WRITE LOCKED

OUTPUT ERROR ON UNIT n

Meaning

The user tried to write data when the
write protect tab of the cassette on
the drive specified was write- locked.

An output error has occurred on the
cassette unit specified. The user
should try the copy operation using
another cassette.

PALC (Chapter 5)

Error Messages

Error Code

BE

DE

DF

IC

ID

IE

II

IP

IZ

PE

Explanation

Two PALC Internal tables
overlapped. Fatal error.

have

An error was detected when trying to
read or write a device.

Device full.

Illegal character. The character is
ignored and assembly continues.

Illegal redefinition of a symbol.
The syiTibol retains its old
definition.

Illegal equals. An equal sign was
used in the wrong context.

Illegal indirect,
reference was made.

An off-page

Illegal pseudo-op. A pseudo-op was
used in the wrong context or with
incorrect syntax.

Illegal page zero reference. The
pseudo-op Z was found in an
instruction which did net refer to
page zero. The Z is ignored.

Current non-zero page exceeded,
attempt was made to:

1. Override a
instruction

literal with

An

an

B-5

PALC (Con't)

Error Code

PH

RD

SE

UO

US

ZE

2.

Meaning

Override an
literal

instruction with a

3. Use more literals than the
assemhiler allows on that page

Phase error. Either no $ appeared at
the end of the program, or < and > in
conditional pseudo-ops did not match.

Redefinition. A permanent symbol has
been defined with =. The new and old
definitions do not match. The
redefinition is allowed.

Symbol table exceeded. Too many
symbols have been defined for the
amount of memory available.

Undefined origin. An undefined
symbol has occurred in an origin
statement.

Undefined symbols. A symbol has been
processed during pass 2 that was not
defined before the end of pass 1.

Page exceeded. Same as PE except
with reference to page 0.

BASIC (Chapter 6)

Error Messages

Message

ARGUMENT ERROR

CHAIN ERROR

DATA ERROR

EOF ERROR

EXPRESSION ERROR

Meaning

A function was given an illegal
argument; for example: SQR(-l)

.

A cassette error occurred while doing
program chaining.

There were no more items in the data
list.

The user attempted to read past the
end-of-file during run- time input.

One of BASIC'S internal lists
overflowed while attempting to
evaluate an expression.

B-6

BASIC (Con't)

Message

FILE NAME ERROR

FILE OPEN ERROR

FOR ERROR

FUNCTION ERROR

GOSUB ERROR

I O ERROR

IN ERROR

LINE TOO LONG

LINE # ERROR

LOOKUP ERROR

NEXT ERROR

NO FILES ERROR

OUT ERROR

RETURN ERROR

Meaning

A mistake was found in the user's
specification of a cassette drive #
or filename in either a CHAIN or an
OPEN statement.

The user attempted to open a run-time
output file when one was already
open, or a hardware error occurred.

FOR loops were nested too deeply.

The user attempted to call a function
which had not been defined.

Subroutines were nested too deeply.

The user attempted to do run-time
input and output to the same cassette
at the same time.

A cassette error occurred while
attempting to carry out an OLD
command or while doing run-time
input.

A line greater than 80 characters in
length was typed; BASIC ignores the
line and waits for a new one to be
entered.

A GOTO, GOSUB, or IF statement
referenced a nonexistent line.

BASIC could not find a run-time input
file on the drive specified.

FOR and NEXT statements were
properly paired.

not

The user attempted to do run-time
file 1/0 without first specifying so
during BASIC'S initial dialogue.

An error (probably end-of-tape)
occurred while doing cassette output
either during a SAVE or during
run-time output.

A RETURN statement was issued
not under control of a GOSUB.

when

B-7

BASIC (Con't)

Message

SUBSCRIPT ERROR

SYNTAX ERROR

TOO BIG, LINE IGNORED

Meaning

A subscript was used which was
outside the bounds defined in the DIM
statement.

A commcind did not correspond to the
language syntax, or an undefined UUF
was referenced.

The combination of program size eind

niimber of variables exceeded the
capacity of the computer.

Statements

Statement

CHAIN

CLOSE

COMMAS

DATA

DEF

DIM

END

FOR-TO-STEP

GOSUB

GOTO

IF-END#-THEN

IF-GOTO
IF-THEN

Meaning

Link to next user program.

Close open output file.

Output data values to a cassette
inserting a comma between each value.

Set values for a READ.

Define a function.

Dimension subscripted variables.

Signals the end of program execution.

Set up a program loop; increment the
counter by a value specified using
STEP.

Transfer control to a subroutine.

Transfer control to the line number
specified in the command line.

Transfer control (or perform an
operation) depending upon the
validity of the last INPUT#
statement.

Transfer control (or perform an
operation) depending upon the
relationship between variables
specified in the command line.

B-f

statement

INPUT

INPUT

#

LET

LIST

LIST#

LPT

NAME

NEW

NEXT

NO COMMAS

NO RUBOUT

OLD

OPEN FOR INPUT/OUTPUT

PRINT

PRINT

#

READ

REM

RESTORE

RETURN

RUBOUTS

SAVE

Meaning

Input values
terminal.

from the console

Input values from a data file.

Assign a value to a variable.

List program (or specific lines) on
console terminal.

List program (or specific lines) on
line printer.

Send output to the line printer.

Rename the program in memory.

Specify a new progreim name.

Continue a program loop until a
terminating value is reached.

Terminate outputting of commas.

Disable the RUBOUT command.

Call saved program from cassette into
memory.

Open a file on cassette for input or
output

.

Print values or specified text on the
console terminal

.

Output values to a data file.

Read values from a data list.

Insert remarks or comments in the
program.

Reset DATA value to its original
value.

Return from a subroutine to the main
body of the program.

Allow the use of the RUBOUT key to
delete characters.

Save the program in memory on the
cassette to be specified.

B-9

BASIC (Con't)

Statement

SCR

STOP

TTY OUT

Meaning

Delete the current program in memory.

Transfer control to the END
statement.

Return output to the console terminal
(after using LPT)

.

Functions

Function

SIN(x
COS(x
TAN(x
ATN(x
EXP(x
LOG(x
SGN(x
INT(x
ABS(x
SQR(x
RND{x
TAB(x
GET{X
PUT(x
FNA(x
UUF{x

Meaning

Sine of x
Cosign of x
Tangent of x
Arctangent of x
Exponential value of x
Natural log of x
Sign of x
Integer value of x
Absolute' value of x
Square root of x
Generate a random number
Print character at space x
Get character from input device
Put character on output device
User-defined function
User-coded function

B-10

APPENDIX C
PALC PERMANENT SYMBOL TABLE

The following are the most conunonly used elements of the PDP-8
instruction set and are found in the permanent symbol table within the
PALC assembler. For additional information on these instructions and
for a description of the symbols used when programming other,
optional, I/O devices, see THE SMALL COMI'UTER HANDBOOK, available from
the DEC Software Distribution Center. (All times are in microseconds
and respresentative of the PDP-8/E.)

Mnemonic Code Operation Time

Memory Reference Instructions

Logical AND
Two ' s complement add
Increment and skip if
Deposit and clear AC
Jump to subroutine
Jump

AND 0000
TAD 1000
ISZ 2000
DCA 3000
JMS 4000
JMP 5000

sero

2.6
2.6
2.6
2.6
2.6
1.2

Mnemonic Code Operation Sequence

Group 1 Operate Microinstructions (1 cycle =1.2 microseconds)

NOP 7000
lAC 7001
RAL 7004
RTL 7006
RAR 7010
RTR 7012
CML 7020
CMA 7040
CLL 7100
CLA 7200
BSW 7002

No operation
Increment AC
Rotate AC and link left one
Rotate AC and link left two
Rotate AC and link right one
Rotate AC and link right two
Complement link
Complement AC
Clear link
Clear AC
Swap Bytes in AC

3

4

4

4

4

2

2

1
1

4

C-1

Mnemonic Code Operation

Group 2 Operate Microinstructions (1 cycle)

Halts the computer
Inclusive OR SR with AC
Skip unconditionally
Skip on nonzero link
Skip on zero link
Skip on zero AC
Skip on nonzero AC
Skip on minus AC
Skip on positive AC (zero is positive)

HLT 7402
OSR 7404
SKP 7410
SNL 7420
SZL 7430
SZA 7440
SNA 7450
SMA 7500
SPA 7510

Sequence

3

3

1

1
1
1
1

1

1

Combined Operate Microinstructions

CIA 7041
STL 7120
GLK 7204
STA 7240
LAS 7604

Complement and increment AC
Set link to 1

Get link (put link in AC, bit 11)
Set AC to -1
Load AC with SR

2,3
1,2
1,4
2

2,3

MQ Microinstructions

MQL 7421 Load MQ from AC, then clear AC
MQA 7501 Inclusive OR the MQ with AC
CAM 7621 Clear AC and MQ
SWF 7521 Swap AC and MQ
ACL 7701 Load MQ into AC

Internal lOT Microinstructions

SKON 6000 Skip if interrupt ON, euid turn OFF
ION 6001 Turn interrupt processor on
lOF 6002 Disable interrupt processor
SRQ 6003 Skip on interrupt request
GTF 6004 Get interrupt flags
RTF 6005 Restore interrupt flags
SGT 6006 Skip on greater than flag
CAF 6007 Clear all flags

C-2

Mnemonic Code Operation

Keyboard/Reader (1 cycle)

KSF 6031
KCC 6032

KRS 6034
KRB 6036

KCF 6030
KIE 6035

Skip on keyboard/reader flag
Clear keyboard/reader flag and AC;

set reader run
Read keyboard/reader buffer (static)
Clear AC, read keyboard buffer
(dynamic) , clear keyboard flags
Clear keyboard/reader
AC 11 to keyboard/reader interrupt

enable F.F.

Teleprinter/Pmich (1 cycle)

TSF 6041 Skip on teleprinter/punch flag
TCF 6042 Clear teleprinter/punch flag
TPC 6044 Load teleprinter/punch and print
TLS 6046 Load teleprinter/punch, print, and clear

teleprinter/punch flag
TFL 6040 Set teleprinter/punch flag
TSK 6045 Skip on printer or keyboard flag

Line Printer (1 cycle)

LSF 6661 Skip on character flag
LCF 6662 Clear character flag
LSE 6663 Skip on error
LPC 6664 Load printer buffer; print on full buffer or

control character
LIE 6665 Set program interrupt flag
LLS 6666 Clear line printer flag, load character

and print
LIF 6667 Clear program interrupt flag

Cassette (1 cycle)

KCLR 6700
KSDR 6701
KSEN 6702
KSBF 6703
KLSA 6704

KSAF 6705
KGOA 6706

KRSB 6707

Clear all
Skip on data flag
Skip on error
Skip on ready flag
Load status A from AC 4-11, clear

AC, load 8-bit complement of
status A

Skip on any flag or error
Assert the contents of status A,

transfer data if read or write
Read status B into AC 4-11

C-3

Mnemonic Code Operation

Memory Extension Control, Type MC8/E (1 cycle)

CDF 62N1
CIF 62N2
RDF 6214
RIF 6224
RIB 6234
RMF 6244
CDI 62N3

Change to data field N
Change to instruction field N
Read data field
Read instruction field
Read interrupt buffer
Restore memory field
Change to data field and instruction field N

PSEUDO-OPERATORS

The following is a summary of the PALC assembler pseudo-operators and
a brief description of their functions. Detailed information
concerning these pseudo-ops is contained in Chapter 5

.

DECIMAL - Causes all following nuiriiers to be interpreted as
decimal.

OCTAL - Causes all following numbers to be interpreted as
octal.

FIELD - Causes a field setting.
I - Represents indirect addressing.
Z - Denotes a page zero reference.
EXPUNGE - Deletes the entire permanent symbol table.
FIXTAB - Appends presently defined symbols to the permanent

symbol table.
PAGE - Resets the location counter to the next page.
XLIST - Suppresses listing while continuing assembly; a

second XLIST continues listing.
IFDEF - If the symbol is defined, the code within brackets

is assembled.
IFNDEF - If the symbol is not defined, the code within

brackets is not assembled.
IFZERO - If the expression is zero, the code within brackets

is assembled.
IFNZRO - If the expression is not zero, the code within

brackets is not assembled.
FIXMRI - Defines a memory reference instruction.
ENPUNCH - Resumes binary output after NOPUNCH.
NOPUNCH - Continues assembling code but stops binary output.
ZBLOCK - Reserves words of memory.
EJECT - Causes the listing to jump to the top of the next

page.
TEXT - Allows a string of text characters to be entered.

C-4

APPENDIX D
SYSTEM DEMONSTIW.TION RUN

The following example run, in which the user creates a binary and
listing file from an ASCII source file, illustrates a typical use of
the CAPS-8 System. The machine output is coded by letters in the left
margin which correspond to the textual explanations found following
the run

.

r .DA 01/04/7 3

^

_.DI 1

01/04/73
FILE .BIN
MATH .DAT

• ^ 1

ia/17/72 V2

.rt ^ALC

-INt^Ur FILES
*2:rESr.FAL

-BINAriY FILE

-LIST TO

JS STArtT
US L260 »0001

KCLR>6700

6700 KCLR»6700
6701 KSDR«670l
6702 KSEN»6702
6703 KS6F»6703
6704 KLSA=6704
6705 KSAF»6705
6706 KGOA«6706
6707 KRSB»6707
7002 BSW«7002
3602 LOC«3602

4000 *400U

US
?«e!00 1000 START, TAD fl>re

04001 1206 CRCCHK, TAD L260
04002 6704 KLSA
04003 6706 KGOA
04004 6703 KSBF
04005 5204 RDCOD, JMP .-1
0400fe 7264 L260, CML STA RAL

PALC-Vl 01/04/73 PAGE 1

D-1

r

c
o
n
t
i

n
u
e
d

US
04007 0000 iJ^rlN

04010 7610 SKP CLA
04011 3211 DCA .

5^4012 3636 OCA I PTR
04013 1205 TAD RDCOD
0401it 670a KLSA
04015 6706 LOOPf KGOA
0<»01^ 6701 KSOR
04017 5216 JMP ,-l-*|/WA
04020 7002
04021 7430 bZL
04022 1636 TAD I PTR
04023 7022 CML BSkn

04f!24 3636 DCA I PTR
04025 7420 SNU
04026 2236 I5Z PTK
04027 2235 ISZ KNT
04030 5215 JMP LOOP
04P)31 7346 STA CLL RTL
04032 7002 BStN

04033 3235 OCA KNT
04034 5201 JMP CRCChK
04035 7737 KNT, 7737
04(23^ 3557 PTW, LOC-23
0403'/ 7730 H5B, -50

%

/t,OiiD lUTO srA. Rfe6. A

1-*|/WAIT FOR DATA FLAG

KCLRs670ld

CRCCHK a0foi

PALC-Vl fcl/0<»/73 PAGE 1-1

KNT
LOC
LOOP
L260
M5P^

PTR
RUCOD
START

4035
36Li2

4(^15

4006
4037
4036
4fc65

.rt EDIl

INPUT FILE

-

2 :TEST.PAL
fOUTPUr FILE- 1 :TESr.HAL

D-2

£n

STAKT^ TAD Krt0

STAHT* TAD i«;h\50

#. 7L

< jt-;

_4.L

#. 5S

KDEN

KDVSEN

KLSA /LOAD INTO STA. KEG. A

j;$l"L
JK^' . -1 /WAIT FOri DATA FLAG

#.ii

JMH . -

i

/WAIT FOrt DATA FLAG

#£

r irt i^ALC/N

-INPUT FILES
*1 MEST.PAL

-BINAftV FILE
it^: TEST.BIN
-LIST TO
ATT If

BINArtY FILE ON UNIT 2

BINAHV FIL^ CLOSED
CRCCHK 40(^1

KNT /•(^35

LOG 36(^2

LOOP ^P115

L2 6&) 4006
M50 4037
PTR 4036
RDCOD 40555

V. START 4000

L < .DEL 2:TEST.HAL

D-3

A The Keyboard Monitor is loaded and the DAte command is used to
indicate the current date. The user requests a directory
listing of cassette drive 1; he decides to zero the directory,
thereby deleting all files present on the cassette.

B PALC is called from the System Cassette. The input file,
TEST. PAL, is stored on cassette drive 2. The user decides to
specify as output only a listing on the line printer. Two
errors are flagged by the assembler and printed on the console
terminal during its second pass.

C The listing is printed on the line printer. The user then
marks this listing with appropriate corrections and insertions.

D PALC prints a .fC; the user makes sure that the System Cassette
is still mounted on drive and then types a +C to cause
control to return to the Monitor.

E The Editor is next called from the System Cassette so that the
errors in the file TEST. PAL may be corrected. The input is
again drive 2, and the output file will be sent to the
previously zeroed cassette on drive 1.

F The R command brings in the first page of text and the
intra-buffer search is used to find the first error. This
misspelling is corrected using the single character search
command and the rubout character.

G The next mistake occurs 7 lines further in the listing; the
incorrect character is found and corrected. The line is also
listed to make sure the correction was made properly.

H The user inserts a comment in the 5th line forward from this
line by skipping eihead 5 lines, searching for the A, and then
adding the comment to the line.

I The intra-buffer search is used to locate the next correction;
a tab is inserted between the 1 and the tcib already present.

J The file is closed.

K The user calls PALC again, specifying the edited file on drive
1 as the input. The /N option is used to obtain only a listing
of the symbol table; the binary file is output to drive 2, and
the symbol table is listed on the console terminal.

L After assembly, PALC prints -tC and waits while the user makes
sure the System Cassette is mounted on drive 0. He then types
+C and control returns to the Monitor. The user deletes the
first input file (the uncorrected TEST. PAL) from the cassette
on drive 2 to complete his session.

D-4

APPENDIX E
MONITOR SERVICES

Included in this Appendix is information the user needs if he intends
to create files using the PAL machine language or reference system
device handlers.

E.l MONITOR MEMORY MAP

The CAPS-8 Keyboard Monitor occupies the following memory locations;
if the user's program does not overwrite these areas of memory, the
routines they contain will be available for use fro:ii within his
program and the Monitor may be restarted after execution. (Section
E.2 provides more information concerning these routines.)

Table E-1 Monitor Mejmory Map

Address Contents

FIELD

7400 LPT and Console Terminal Handlers
7600 Bootstrap, KBD Handler, Interrupt Routine

FIELD 1

5200-6200 Keyboard Monitor and Commands
6200 WAIT and part of Cassette HANDLER
6400 CLOSE and ENTER
6600 Cassette HANDLER
7000 LOOKUP
7200 UTIL and part of Cassette HANDLER
7400 Binary Loader
7600 Buffer

E.2 MONITOR SERVICE UTILITY SUBROUTINES

The user may direct his
subroutines providing
otherwise destroyed.

program to one of the following utility
the routine has not been overwritten or

Table E-2 Utility Subroutines and Locations

Address Name Location Service

LPOCHR 07400 This routine is used to print a
character on the line printer. The
calling sequence is:

E-1

Table E-2 Utility Siibroutines and Locations (Cont'd)

Address Name Location Service

CDF (current field)
GIF
TAD character
JMS I (LPOCHR

TTOCHR 07402

LPPUTP

LPGETP

LPCHCT

ECHO

TTSIZ

TTPUTP

07404

07405

07406

07407

07410

07411

The character in bits 5-11 of the AC
is added to the line printer ring
buffer to be printed.

This routine is used to print a
character on the console terminal.
The calling sequence is:

CDF (current field)
GIF
TAD character
JMS I (TTOCHR

The character in bits 5-11 of the AG
is added to the teleprinter ring
buffer to be printed. (The character
will not print if ECHO is off at the
time, but can be designated as a
"must print" character by turning AC
bit 3 on. This causes the character
to force ECHO on .

)

This address contains the next free
location in the line printer buffer.

LPGETP contains the previous location
which was output in line printer
buffer (never a pointer)

.

This location contains the number of
line printer interrupts yet to be
expected.

If this address contains -1, ECHO is
off (no ECHO) ; if it is set to 0,
ECHO is on.

This address contains the length of
the teleprinter ring buffer (niamber

of characters it can hold)

.

TTPUTP contains the next free
location in the teleprinter output
buffer.

TTGETP 07412 This address contains the last
location which was output in the
teleprinter buffer (never a pointer)

.

E-2

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location Service

TTCHCT

LPSIZ

MONRES

KBDFLG

KBDIN

07413 TTCHCT contains the number of
teleprint€jr interrupts yet to be
expected.

07414 This location contains one less than
the length of the line printer ring
buffer (number of characters it can
hold -1)

.

07415 MONRES is the location in field
which can be branched to in order to
restart the Keyboard Monitor in
memory (assuming the Keyboard Monitor
has not been destroyed) . Control
jumps from this location to the
routine MON.

07600 Branching to this location causes a
complete rebootstrap of the Keyboard
Monitor from the System Cassette on
drive 0. If an I/O error occurs or
if the cassette on drive does not
contain the file MONT0R.BIN, the
system waits for the user to mount a
good Syst«im Cassette; typing a CTRL/C
will then rebootstrap.

07601 If this location contains a non-zero
number, it signifies that a character
(other than CTRL/0 or BREAK) was
typed on the keyboard and has not yet
been read. It is lost if a second
character gets typed before the
previous one is read.

07602 This location contains the last
character typed on the keyboard,
(Here BRE;\K and CTRL/0 do count.)

BREAK

CTRLCJ

07603 This location contains a 1 if a BREAK
has not been used; if it has.

07604 If this location is 0, then whenever
CTRL/C is typed, the Monitor will
branch to 07600 and bootstrap (after
the current cassette operation
finishes). If not 0, then when the
current cassette operation finishes

,

control is transferred (with
interrupts on) to this location in
field 0. Set this to point to MONRES
if the Keyboard Monitor has not been
des troyed

.

E-3

Table E-2 Utility subroutines and Locations (Cont'd)

Address Name Location Service

KBDCHR

07605 Saine as 07600.

07626 This routine reads a character from
the keyboard. It waits for KBDFLG to
be non-zero, then zeroes it and
returns the contents of KBDIN in the
AC. The calling sequence is:

CDF (current)
CIF
JMS I (KBDCHR

DISMIS

INTRPT

LPBUFR

TTBUFR

MONSTART

MON

WAIT

07645 The systera branches to this location
to dismiss an interrupt.

07657 The interrupt routine begins at this
address.

07731 LPBUFR is the start of the default
line printer ring buffer (initially
of length 2)

.

07734 TTBUFR is the start of the default
teleprinter ring buffer (initially of
length 30)

.

15200 Branching to this location starts the
Monitor, assuming that the entire
Monitor is still in memory. The
routine waits for TTY and LPT then
resets buffers to defaults and
empties them. Sets CTRLCT to point
to MONRES. Sets ECHO on and sets
BREAK to 1. Notes cassettes as not
being in use.

15201 This routine restarts the Monitor but
does not do any of above.

15400 Starting at this location also
restarts the Monitor and resets
locations that may be in a temporary
state if the Monitor has been stopped
(e.g., by hitting STOP) prematurely.

16200 This routine waits for the last
cassette operation (if there was one)
to complete. The calling sequence
is;

E-4

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location Service

CDF (current)
CIF 10
JMS I (WAIT
<error return

>

<nonnal return >

If an error return is taken, bit
may be on and bits 4-11 will contain
the contents of status register B at
the time of error. This routine
should be called sometime after every
call to HAI^DLER.

CINUSE

ESTATE

CLOSE

BACK

16273 If this location contains a 0,
cassettes are ready; 1 means
cassettes are in use; -1 means
cassettes had an error in a previous
operation.

16274 This location contains the status of
register B at termination of cassette
operation.

16400 Calling this subroutine terminates an
output file and writes a new sentinel
file at the end of the cassette. The
calling sequence is:

TAD (UNIT
CDF (current field)
CIF 10
JMS I (CLOSE
< error return

>

< normal return>

The error return is taken only if an
end-of-tape is encountered before the
sentinel file is successfully
written.

16402 This routine positions the cassette
so that the header record of the
current file may be written over.
The calling sequence (field 1 only)
is:

ENTER 16404

JMS I (BACK
< error return>
< normal return>

Calling this siobroutine opens a new
file on a cassette. '.:he calling
sequence is:

E-5

Table E-2 Utility Siibroutines and Locations (Cont'd)

Address Name Location Service

TAD (UNIT
CDF (current field)
CIF 10
JMS I (ENTER
<error return >

<norinal return >

where UNIT is the cassette unit drive
number. Before making this call, the
user must set up the new filename in
an in-core header record known as the
SINCH. ENTER automatically puts the
date eind record size into the SINCH
for the user. (The SINCH format is
described in Section E.4). The
INCH is destroyed.

16600 This routine calls the system
cassette handler which is resident
and will be used by all system
programs. The handler routine is
also available to any user who does
not load over it. Before calling
this hcUidler, the user must ensure
that the cassette is correctly po-
sitioned. See also LOOKUP, ENTER,
and CLOSE. The calling sequence is:

CDF (current field)
CIF 10
TAD (UNIT
JMS I (HANDLER
ARGl (function control word)
ARG2 (buffer address)
< error return

>

<normal return >

HANDLER

The unit number is left in the AC.
Only bits 8-11 are used (units 0-17
octal). However, to specify unit 0,

at least one other bit (of bits 0-7)
must be on. It is more convenient,
therefore, to leave the unit number
as a character in the AC (0-9 would
be 60-71). A real 12-bit in the AC
means use the previous unit. (The
initial unit is 0.)

The function control word has the
following form:

Bit 0: means read
1 means write

Bits 6-8: field of buffer
Other bits are ignored.

E-6

Table E-2 Utility Subroutines aiid Lcoations (Cont'd)

Address Name Location Service

The length of the record (in 8-bit
bytes) must have been previously
stored in location BSIZE. The
specified record size must be between
1 and 377. LOOKUP and ENTER return
with BISZE set to 200 (octal), the
usual record size.

If an error return is made, the AC
bits 4-11 specify the contents of
status register B when the error
occurred. These bits are summarized
below

!

bit 4: CRC/block error
bit 5: timing error
bit 6: EOT/BOT
bit 7: EOF
bit 8: drive empty
bit 9: rewind
bit 10 : write lock oui:

bit 11 : ready

Bit of 1the AC will be a 1

error occurred on th(»

handler <3all as opposed
current hcmdler call.

if the
previous
to the
This is

because the handler will wait (by
calling WAIT) if it is called while
it is already in use. The user can
meinually wait for th«j cassette
operation to be completed Ijy calling
WAIT. If an error occurss , bit of
the AC will always be on in this
case.

The user may check to see if the
handler is in use without waiting by
interrogating the location CINUSE.
Non-zero means that the handler is in
use. Two successive calls to HANDLER
should not be made \fithout am
intervening call to WAIT.

BSIZE 17000 This location
record size.

contains the current

LOOKUP 17002 Calling this subroutine positions a
cassette at a specified file to be
read. The calling sequence is:

E-7

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location Service

TAD (UNIT
CDF FROMFLD
CIF 10
JMS I (LOOKUP
CDF (filenamefid)
ptr to filename
<error return >

<not found return >

<found return >

UNIT represents the cassette unit
drive number. The header is put in
the INCH. The filename consists of
11 consecutive ASCII characters.

UTIL 17200 This routine allows the user to
specify that a utility operation be
performed. The user must be famil-
iar with the hardware specifications
as described in the TU60 CASSETTE
TAPE TRANSPORT MAINTENANCE MANUAL
(DEC-00-TU60-DA) to understand what
these operations do and what
conditions cause errors. The calling
sequence is

:

CDF n
CIF 10
TAD (UNIT
JMS I (UTIL
utility code
<error return

>

<normal return>

The following are legal utility
codes; all other codes are illegal.

10 rewind
30 backspace file gap
40 write file gap
50 backspace block gap
70 skip to file gap

OPTl
0PT2
OPT 3

17400 Switch option characters (e.g., /A)
17401 stored as 36 bits for A-Z, 0-9 as
17402 shown in diagram in Figure E-1.

E-8

Table E-2 Utility Subroutines and Locations (Cont'd)

Address Name Location Service

OPT 1

OPT 2

OPT 3

A B C D E F G H I J K L

M N P Q R S T U V W X

Y Z 1 2 3 4 5 6 7 8 9

Figure E-1 Switch Option Characters

SINCH

DATE

INCH

17403 See ENTER.

17531- These locations contain 8 characters
17540 representing the date (e.g.,

01/22/73)

.

17600 See LOOKUP.

E.3 RING BUFFERS

Ring buffers must be located in upper core (4000-7777) of field 0.
They consist of one or more buffer segments, each one of which
consists of two or more consecutive locations (the last one pointing
to the next segment) . The last segment points to the first one. Ring
buffers can be changed by System Programs.

Figure E-2 Ring Buffers

E-9

E.3.1 Modifying t±ie Ring Buffers

The initial ring buffer supplied by the Monitor consists of one buffer
segment of length LPSIZE (TTSIZE) not counting the pointer. The first
location is called LPBUFR (TTBUFR) and the last location is called
LPBFND (TTBFND) . The value LPSIZE-1 (TTSIZE) is stored in the
location LPSIZ (TTSIZ) . The buffer is initially empty. The next
location free in the buffer is pointed to by LPPUTP (TTPUTP) and the
previous location which has already been output is known as LPGETP
(TTGETP) . Both these locations point only to positive words, never to
negative pointers. LPCHCT (TTCHCT) is the ones complement of the
number of characters left in the buffer to be output if I/O is still
in progress. (Specifically, it is the number of flags which have yet
to come up.) LPCHCT (TTCHCT) is zero (0) if there is no output in
progress

.

To enlarge the ring buffer, wait until LPCHCT (TTCHCT) is zero. Then
set LPBFND (TTBFND) to point to the start of the buffer and have the
end of the buffer point to LPBUFR (TTBUFR) . Change LPSIZ (TTSIZ) to
be the length of the buffer (length -1 in case of LPSIZ) not counting
pointer words. Interrupts may be on while this is done providing no
LPT (TTY) I/O is initiated.

E.4 HEADER RECORD FILE STRUCTURE

All files the user creates must begin with a header record (40 octal
bytes long) , followed by 200 octal byte long records. The structure
of a header record is as follows

:

Table E-3 Header Record Structure

Bytes (octal) Description

1-6 Filename; may consist of any alphabetic character
or digit and is padded with spaces on the right.

7-11 Filename extension; see Table 2-1 for recommended
extension names.

12 File type; maintained by the system for its
convenience and for standard compatibility. File
types are

:

1 ASCII file
2 Standard DEC Binary File
12 Bad file (Specified for all

deleted files)

Refer to Section 2.2.1 for em explanation of
these file types.

13-14 File record length; always has the value 0,200
(i.e., 200) for compatability with standards.

15 File sequence number (not used)

.

E-10

Table E-3 Header Record Structure (Cont'd)

Bytes (octal) Description

16 Header continuation byte; always 0.

17-24 ASCII date stored as dd nun yy, or 6 spaces if no
date was specified when the file was saved. This
is the creation date of the file.

25 File version number. New files are version cind

are automatically incremented by the CAPS-

8

EDITOR.

26-40 Not used.

E-11

E.5 CAPS- 8 BOOTSTRAPS

The CAPS-8 Hardware Bootstrap is used to load the Cassette Keyboard
Monitor into memory. This bootstrap is stored in the computer in
read-only-memory so that it is always available for use. Pressing the
SW switch on the computer console causes this bootstrap to be
executed; it calls the program C2B00T.BIN into memory from the System
Cassette. The CAPS-8 Hardware Bootstrap is comprised of the following
instructions, included here for the user's information:

/CASStTTt SYSU'h miUTSlKAH PALC-Vl Kl/ia«/73 PAGE 1

/CASbFTTt SYSTEM HCOTSTWAP

/ COPYKIGHT 197r?

/ DltiXTAl. tQl,'lP:-l!:'NT CORPORATION
/ MAYNAPl;, MASS. 1^175^

/ S . K .

/STAKTiNG LHCATION tNOWMALLY): maiAO
/STAKTXNG LOCATION FOW CJS/S: 3777

(^ 7 f 1 K S 1< s b 7 1! 1

bTCv? AStN = fi7ii^

c7i>^ KSriH=h7i(i3

e 7 ., a (\ L S A s b 7 P a

b7if;S KSAFsb7(^5
b7K;t7 Kt'OAsb/Pb
fe7v'7 KH5t*sh/k'7
7?.i^? oSKtsTPii^i^ /P0P-8/£, -8/F, AND -b/M ONLY
i^i'P, LqC = ifeH^ /LOCATION WHERE StCONOAHY

/600TSTPAP REALLY GETS LOADED

IFDEI- GSB <*3777;CLL>
abi0 «4t50M /INITIALIZE PULSE CLEARS THE LINK

P<».?K0 1?37 START, TAD f<bi^ /CHANGE READ CRC CODE Cfe5 TO
/REWIND <1> [SIN]

pi*&l(il \i:i]h CRCCMK, TAD L?bi?! /LOAD READ CRC CODE INTO STATUS
/kEGISTER a [JMP I START]

r/«?l"? b7.jw KLSA /FIKST TIME THROUGH, LINK MUST
/ot 1 HERE

i'a^j^J b7t-b KGOA /INITIATE THE OPERATION (READ
/CRC OR REWIND OR FRWD KIlE GAP)

Pl««i?a b7i;? KSBF /READY?
0ui7i0S 5?v?a RDCOU. JMP .-1 /NO, WAIT
PttP0b 7^t.a L2pI^» CmL STA RAL /SET L = l AND AC= A HALT C7776)
0af".^7 671",? kSEN /any errors?
piavUi? 7f,lH SKP CLA /NO
l^ia^ll 3Sn DCA , /HALT ON ANY ERROR EXCEPT FOR

/REwInD OR FRWD FILE GAP
0U'/HS i'lSb DCA 1 PTR /CAN'T ALLOW 'TAO I PTR' LATER

/TO AFFECT LINK
04ei3 l?k54 TAD KDCOD /GET CODE FOR READ C0]
04014 fe70u ^LSA /LOAD INTO STATUS REGISTER A

E-12

04015 fe/fcfe LODP,

Kagllfr b7Bl

04017

0«e:?l
040?2
04^l^3

5Slt>
7vl02

7430
1<536

7P22

KGOA

KSOR

•1JMP
HSw
SZL
TAD 1 PTft

CML HSw

/FIRST TIME STORES 173 INTO MEMORY
/(fl-8IT COMPLIMENT OF RDCOD)
/OTHER TIMES READS ONE 6-BIT
/BYTE OF PAIR
/NEW DATA WORD READY?

/NO, WAIT
/MOVE 6-BIT BYTE Tn H.O. AC
/WHICH fe-BlT BYTE DF THE PAIR?
/^ND, SO ADO IN 1ST BYTE
/SWAP BACK AGAIN. SET LINK TO

/CASSfcTTtr SYSTF.I- nflUTSTKAP PalC-VI eil/04/73 PAGE 1-1

C/j 4 i? ^ u

''^ "!:' ? 5

4 i'i ^ h

51 4 3! 3 P

Mae31
•0403a
04^33

04 34
PI4P3S

iLi4i5:<fo

IJ' tt '^^ 3 7

3^36
7 4?ri

b?l5
7 34b

n ii

3Sb7
7 7.V-)

OCA
SNL

1 PT»

TSZ PTR
ISl KNT
JMP LOcr
?STA CLL kTL

/INDICATE NEXT BYTE
/STORE BACK INTO MEMORY
/ARE WE DONE LOADING BOTH 6-81T
/BYTES?
/YES, SO POINT TO NEXT MEMORY WORD
/BUMP COUNTER
/REITERATE

KN.T,

PTh,
M h n ,

/ThJ
/II
/TMf
/r['i0

/ThI
/ [in
/Py
/THf-:

/IS
/.SI, C

/ U;w
/tK<E

/"'ir*

/THf
/BtG

bSw /SET AC=7b7/
UCA KNT /SET COUNT TO ALLOw READING A

/200 BYTE RECORD
JMP CKCChK /en CHECK THE CRC
7737 /ONES COMPLIMENT OF NUMBER OF

/BYTES TO LOAD
L0C-a3 /MtMORY LOCATION TO BEGIN LOAD AT
''^'/i /CLA SPA SZL

^ -^ouiiNit Binary luauS binary ULES into memory,
dtulNS tY LOAiUNG A RECORD OF SIZE 43,
N criNTiMutS to LOAU SUCCESSIVE RECORDS EACH OF SIZE

b p p u r

I. A I ION
iHt St
FlKST

K t-, A f) I

U h S S i V

M + O , W

CASSE
; I T N b L E

i,T hYT
Mt AOt
iNNlMG

ESS C

S 4 1'l

CONDA
rfc.MO

N IS
E wOR
Ht-kE

TIE R

S> 5 w rj

ls as
W , AK
OP T

ONTIN
AND

RY bO
RY LO
LUAUE
OS AR
A AND
ECOKO
kOS G

CAN
n WhE
Mt kE

UE5 UNTIL IT DESTROYS ITSELF.
4ti01 ARE REPLACED BY JMP KBTN]

OTSTKAP.
CATION BEFORE A NEw CASSETTE RECORD

WITH A RANDOM VALUE (173).
c LOADED WITH THE 12-6IT QUANTITY,
d ARE SUCCESSIVE b-B]T BYTES FROM

ET LUAUEU IF THE CASSETTE CONTAINS
(AhM") DUES5 HAPPEN WHEN 'LOADING''
N 'LOADING' THE ORIGIN AT THE
C K .

E-13

/CASSETTE. SYSTEM bOUTSTRAP PALC-Vl 01/04/73 PAGE 1-2

CRCCHK «0iJl

KNT
LDC
LOOP
L2fcZI

Mb0
PTR
RDCOD
STAWT

aP«35

36(5?
aK15

ft!33V

4036
aPMS
«0K0

E-14

C2B00T.BIN is the bootstrap which loads the Keyboard Monitor into
memory. It is stored on the System Cassette and is comprised of the
following instructions:

/ icCONOAn r HOO r -5 T'^'Ar' '-'AlC-vI page 1

/ .^hi-ONDAKY i^OOTSrkAf-
/ COPYKli.Hf I'^/d
/ UliUTAL ("fJUlP'-ifcNT LOKPOkATION
/ riAVfjAffU, MmS6, Vilfb^

/ S . H .

? ii " d '-s^i-iz'/ ;i s

^

bT\6i KSHFsb7Cii
b't M* i«;LSA = t»/0U

fiOPUtMCH

3 h •:) r*. Mhh'.'d

^S-ii'?. 7 ? u
'.1 r> I N , S 1 A

?>3k:)3 .5M7 ijCA th;i»,M

tiS*Ji.'!y I-^iJ ITSf^LO, TAu LOF;<i

Oibn-a i;?3n hCa |-lu
w^swb i^ii!*:! nsn^r., dca dhl, /assumls qhtgin always appears

/AKTtP FIEUO SfcTTlNti
.'''3^:^7 7?4!'i bTNji.uR, 6Ta
iii^ia ii07 dca okcjS»v

?li*'ll a?«< JMS GETbYT
C13M!5 /:JvV f-uOL» «Sw
Ci3r.l3 iWd CLl kTH
?i36ia /u<;/) SiilL

t^i^lS b^3S JMp SPEC /hlT a = l

M^f'lb 7br-3 SPA /tilT 4 = 1(3 CTWO KiOPO COMMAND?
;i3*5l7 <f<i;7 JSZ DRGSw /IS ORIGIN
iV5b5H 7Tei.l N/Wihi-l, NOP
a3b^l 7?,:j4 kal
«3>^2^ 7 1/ja CLL KAL
i')3*»e'3 iiBb [ICa TEM
nSoSa ttc'a3 jMS bRTdYT
r^ocfb 130f lAO TE^" /COMBJNiE
•?!3^?b ?307 ISZ OWbSi»:

H3b^/ b?/.b JMP ITbORU /ORIGIN
ii<*>3vl /U03 FLD, HLT
,US31 37i:lS DCa I ORG
Mi^h'i ^iaS ISZ ORG
'>'3*>33 b?ril CDf-0, CUE M

(^3c>3a iH.J7 JMP biNLOR
M3fr3b 7^^^ SPECf 3Ma-
I'l^feSb 530^ JMp MON
vi3<537 7^3i rTL
036a0 »<?23 AND M7H00
i!3»5ai 7?i(£)a iaSi.1

i-riho? b.?8« JMP ITSFLO
V13^a3 ;V10ii GETHYT,
?i3^tta 5317 ISZ GRKNT
i-13f>a5 55/4 JMH RDbYTE
eS^ttb 13ll TAO X260

E-15

/ ^>:^ti,"|;J^^'' riLiii I C) 1 Vrth' Prfl.C-Vt PAGE 1-1

5 " b S

S •
' -14

<, - /-, ,,'

S-.M

_S r^ "^ il

^ p-» '^ h

<^^/

".- / -1

^ f- 7 n

s -. ?

;

1 I ; i

'1 ' ;: <

Sr"il

y i-i 4 1

/ i / r'

>i > r
'

.' i c' '

< M ,'

1 ^ 1 ^'

o / :>^

-, ^ ' ^

IT K.. T

,

« y i p

,

CL«

:> t. ;> A

^ ri u a

r. » o r

JKH

.(N I i

•SZa

rtl, T

r 4i)

STL
JMf I

I Al;

1.1 C A

\ All

^LSA

!»> S U I-

^ !•; A

•• S| i(-

.IflP I

X /

I

/ la

t I

T

X'4

X, 1

%?

vs f ir"

6 IZ z.

MjT

.-1

i,t'

I

T b y r

'ijb7 /riLOCK .r/(li-. /LOCATItJiM 3701 IS SKIPPED HY
/PKIMfthtY LOAOEW

fj'jpi 'nCh

'H/.'l, ' '' '
1

'1

tNPUf.Cl-

i'.S-'>'^ h-^13 -.'.v.. COK Llr liO

i..S 'i'^< e) / . 'i J i'^ K I . + 1

03 / :iu br':-'l S2J.1

,^,S?''^ .^/n U P '"j
r P

i', .<, / i,'^
^^ ;'./.;-,,/(T ? % i''

'•.S(v'/ :"! '^ '.,'
I ^ ij «' ^A S V ' p i)

1-37 i;! ..-rii--' x^.'ia. c>^ii^i

i' S / 1 1 ..r^O*) XSh^f ,^hii

i:' 3 7 1 ? •^^/T ,X ^ 7 C , 2/*'

1/'. 3 7 13 / 7 3 7 trni

,

/737
1^3714 a '1 3 '.^ xk;jT. a^53S

>-! 3 7 1 ^ y . 3 f^ xw rf<« <uj3'-'

ii 3 / 1 <^ 4.^^2 xa--?<e H'.ll'i?

•^37 1 7 i'l
,''/.;" &f<H, ^. r v

^ 3 7 ^ .,1 /Y M X7?7'* ? /7a

y 3 7 P) n n t- 1 •' S i -1

^13 7<i? 1 h A v1 X/nW,l 7ti.l'1

i^57a3 •J.
" J 1/1 K e . 5 K ^

r i')

i^37aa 1313 T A U X773/
M37^5 37 lU nCA I XKNT

/Str UP PRIMARY rtOOTSTHAP

E-16

/ SECQNOArfY BOOTSTRAP f'«LC-Vl PAGE 1-8

Ifli7?b 3715 DCa I XPTW
ViT?J 133^ TAD X3P11
H57 3f^ 373? OCA 1 x«v^n
t!3'31 blii JMP I kESKT
vyiU'i 3£?11 X3gl 1, 3211
{".nii 40 n xatUi, 4011
?li/3'4 i) H U 1^ 2BL0CK a«»0-
i':U\\V\<d 3<S3^ 6llN

?.4i1t5l 3 1, i^i r/1 JMP I .-1

/A "DCA KDR LOCATION 4011

/MUST tND IN OCTAL i<10

/ .Sf-:coNOAwY HoorsiKAp PALC-Vl PA[,E 1-3

M 1 r..:

CUr.1
FIRST

POCiL

f;r_lDYT

ITSFLD
ITSflki,

K S 1) F

If) ,

^Juri-;,T

I 7 :i 1' C^

Ok 5

n K']; s ^1

^ D r- Y T t
- r. .^ r. T

SPtC
T e.

--^

Y ^. M r

X c> 1 ,

i r' : ':

^ c- 1 :•

X r: / :-i

''3';i 1

f a ; 1 1

t ?>..' /.

V / / .S 7

X 7 / / 4

3^|1^

ih&l
Shii
U^l

361^
3*143

3/17
3 ri i-j 4

3 6 "1 h

b 7 .n
3 7;',ie

3hb5
3r.^'''

3 / '.' :i

3 7ii7

3 >W 4

iJe5
^ (5 3 S

i / /, iS

3 7 1?
37 1(1

i/ n
5/1.^

3/3?
3 / 1 '^

3 7 33
3 7 ? P

J/M
3/d.i

E-17

APPENDIX F
ASSEMBLY INSTRUCTIONS

CAPS-8 source programs are supplied on DECtape. Thesie sources are
assembled with PALS and copied to cassette with PIPC. To build the
CAPS-8 system cassette with PIPC, the user must load the OS/8 cassette
handlers as described in USING AND LOADING YOUR NEW OS/8 CASSETTE
HANDLERS (DEC-S8-UCASA-A-D) . The following instructions may be used
to assemble the sources, print source listings, and cieate the CAPS-8
system cassette on drive 0.

.H PALtt

*C2B00T ^TEKH <C2B00T
.H CHEF

.ri HAL8
MONT OH* TEMP <CAS^50N
•a CriEF
*TEMP
• ri PALti
*SYiiC0P*TEM4^<SYSC0P
.H CHEF
TEKP
•a PAL8
*ED1TC*TEMP<EDITC
.H CriEF

*TEKP
•H HAL8
*PALC*TEMP<PALC
.H CriEF
•TEKP
.H PAL8
*CBASIC*TEKP<CBASIC/K
• ri PIP
*lpt:<temp.ls

•a PIPC
*CSA0:</Z
*CSA0 :C2B00T<C2B00T/B
*CiiA0 :I«!ONTOri<KONTOH/B
*CSA0 :i3VSC0P<SYSC0P/B
*CiiA0 :E0ITC<EDITC/B
*CSA0 tPALC<PALC/B
*C SA0 :CBAS I C <CBAS I C /B
*TTY:<CSA0:/L

F-1

INDEX

Addressing, BASIC, 6-51
Alteration of text, 3-12
ALTMODE Key,

in BASIC, 6-52
in Editor, 3-7

AND, Boolean, 5-15
Angle brackets, left/right (<>)

Editor, 3-7
PALC, 5-19

ANORM subroutine, BASIC, 6-47
Append command. Editor, 3-9
Arithmetic operators, BASIC, 6-4
Arithmetic statement, BASIC, 6-11
Arrays, BASIC, 6-29
maximum number, 6-28
maximum size, 6-30

ASCII character set, A-1
ASCII format files, 2-1
Assembler output, PALC, 5-32
Assembly instructions, CAPS-8, F-1
Autoindexing, PALC, 5-23

BASIC language, 1-2, 6-1
arithmetic statements, 6-1
calling, 6-2
editing and control commands, 6-52
error messages, 6-57
error message summary, B-6
example run, 6-8
floating point package, 6-50
functions summary, B-10
immediate mode, 6-6
numbers, 6-2
statements, 6-10
statement summary, B-8
symbol table, 6-59
variables, 6-3

BEGFIX subroutine, BASIC, 6-47
Binary format files, 2-1
Binary output, controlling PALC,

5-28
BKWD statement, BASIC, 6-51
Boolean AND, 5-15
Boolean inclusive OR, 5-15
Bootstraps, E-13
BOOT PROGRAM, 9-1

BOOT, 9-1
Legal Mnemonics, 9-2

Brackets,
angle (<>) , 5-19
square ([]) , 2-4

BREAK command, BASIC,

Calling
BASIC, 6-1
Editor, 4-1
PALC, 5-1
System Copy, 4-1

CAPS-8 Cassette, see cassette
Carriage return, 4-3

Cassette
direictory listing, 2-1
file, 1-4
format, 1-4
handler, E-6
mnemonic code, PALC, C-3
mounting/dismounting, 1-4, 1-5

Cassette, BASIC, 6-1
CHAIN statement, BASIC, 6-33
Changing text. Editor, 3-12
Characters,

ASCII, A-1
CTRL, 2-4
Editor special, 3-4
Monitor switch option, E-10
PALC, 5-5
PALC special, 5-17

Character searches. Editor, 3-16
Character string search. Editor,

3-15, 3-17, 3-19
CLOSE statement, BASIC, 6-15
Coding formats, BASIC, 6-44
Coding practices, PALC, 5-32
CODT, 7-1

additional techniques, 7-9
commands, 7-2 to 7-8
command summary, 7-11
ERRORS, 7-9
features, 7-1
illegal characters, 7-8
indirect references , 7-9
interrupt program debugging, 7-9
octal dump, 7-9
operation and storage, 7-9
programming dates, 7-10
storage requirements, 7-10
TTY I/O-FLAG, 7-9
using, 7-2

Colon {:), 3-7
Command format. Editor, 3-8
Command mode. Editor, 3-4
Commands

BASIC, 6-6
Editor summary, B-3
keyboard monitor summary, B-1

COMMAS statement, BASIC, 6-20
Comma used as format control

character, 6-17
Commenting the program, BASIC, 6-10
Comments, PALC, 5-7
Conditional assembly pseudo-operators,

PALC, 5-28
Conditional delimiters, PALC, 5-19
Conditional transfer, BASIC, 6-28,

6-32
Console terminal output, PALC, 5-2
Control characters, BASIC, 6-17
Control commands, BASIC, 6-52
Controlling PALC binary output, 5-28
Conventions of systeni, 2-1

X-1

Corrections, Keyboard Monitor, 2-3
Creating run-time input files,

BASIC, 6-25
CTRL/C

Editor, 4-3
BASIC coiranand, 6-54

CTRL characters, 2-4
CTRL keys. Editor, 3-5, 3-7
CTRL/0 command, BASIC,
Current line counter. Editor, 3-6
Current location counter, PALC, 5-10

DATA statement, BASIC, 6-12
DAte command, 2-7
DECIMAL pseudo-op, PALC, 5-2 4

Default device, PALC, 5-2
DEF statement, BASIC, 6-4 3

DElete command. Keyboard Monitor, 2-8

Deletion of page. Editor, 3-14
Deletion of text, 3-12, 3-13
Delimiters, PALC conditional, 5-11
Delimiting character, PALC, 5-6
Device, default, PALC, 5-2
Device handlers, 2-11
Devices, I/O, 2-2
DIM statement, BASIC, 6-30
Direct assignment statement, PALC,

5-12
Directory command, 2-7

options, 2-8
Directory of system cassette, 2-1
Dismounting a cassette, 1-5

Editing and control commands, BASIC,
6- 52

Editor
calling, 3-1
character searches, 3-16
commands, 3-8, 3-12
command summary, B-3
demonstration run, 3-23
error messages, 3-21, 3-22
error message summary, B-2
operating modes, 3-4
text collection, 3-15

EJECT pseudo-op, PALC, 5-30
End of file, PALC, 5-2 6

End of pass, PALC, 5-19
END statement, BASIC, 6-11
ENPUNCH pseudo-op, PALC, 5-2 8

Entering text strings, PALC, 5-2 7

Equal sign (=)

BASIC, 6-6
Editor, 3-7

Erase (CTRL/U) , Editor, 3-5

Erasing a program in memory, BASIC,
6-5 5

Errors, Keyboard Monitor loading, 2-3

Errors in Programming, BASIC, 6-59

Error recovery. Editor, 3-5
Error Messages,

BASIC, 6-5 7
summary, B-6

Editor, 3-21, 3-22
summary, B-2

Keyboard Monitor, 2-12
summary, B-1

PALC, 5-34
summary, B-5

System copy, 4-3
summary, B-4

E-type notation, 6-2
Example programs, BASIC, 6-8
Expansion of text. Editor, 3-12
Exponential format, 6-2
Expressions, PALC, 5-14
EXPUNGE pseudo-op, PALC, 5-29
Extended memory, PALC, 5-2 7

Extensions of filenames, 2-2

FAC function, BASIC, 6-4 7

FENTER statement, BASIC, 6-4 5

FEXT statement, BASIC, 6-4 5

FIELD pseudo-op, PALC, 5-2 5

Field of nesting loops, 6-2 8

File formats, 2-1
File gap, 1-4
File header record, 1-4
Filenames, 2-2
Files, multiple input. Editor, 3-2
Files, transferring individual.

System Copy, 4-1
File types, E-11
FIX subroutine, BASIC, 6-4 7

FIXMRI pseudo-op, PALC, 5-29
FIXTAB pseudo-op, PALC, 5-29
Floating-Point format, 6-4 6

normalized, 6-4 7

Floating-point package, 6-45, 6-50
FNA function, BASIC, 6-4 3

Form Feed
Editor, 3-5
PALC, 5-7

?ormat control characters, BASIC,
6-17

Formats for BASIC numbers, 6-2
Formats of files, 2-1
FOR-NEXT loop, BASIC, 6-2 7

exiting from, 6-2 8

FOR statement, BASIC, 6-2 7

Function addresses, BASIC, 6-4 5

Function control word, E-6
Functions.

BASIC, 6-3 7

summary, B-10
Editor, 3-4
user coded BASIC, 6-4 4

FWD statement, BASIC, 6-51

GET function, BASIC, 6*-41

Getting on-line, 2-1
GOSUB nesting, maximum level, 6-3 7

GOSUB statement, BASIC, 6-3 5

GOTO statement, BASIC, 6-32

X-2

Hardware bootstrap (MI8-E) , 1-1
Hardware components, 1-2,

IFDEF pseudo-op, PALC, 5-2 8
IF END* statement, BASIC, 6-3.4
IF GOTO statement, BASIC, 6-32
IFNDEF pseudo-op, PALC, 5-2 8
IFNZRO pseudo-op, PALC, 5-28
IF THEN statement, BASIC, 6-32
IFZERO pseudo-op, PALC, 5-28
Illegal symbolic addresses, PALC,

5-10
Immediate mode, BASIC, 6-6
Implementing a user-coded function,

BASIC, 6-44
Incorporating subroutines with UUF,

BASIC, 6-46
Incremental value, BASIC, 6-27
Index in FOR statement, BASIC, 6-2 7
Indirect addressincf, PALC, 5-2 0,

5-24
Initial value in FOR statement,

BASIC, 6-27
Input commands. Editor, 3-9
Input file extensions, PALC, 5-1
Input files, creation of, BASIC,

6-2 5

Input specifications

,

Editor, 3-2
PALC, 5-1
System Copy, 4-2

INPUT statement, BASIC, 6-14
INPUT* statement, BASIC, 6-16
Input/output devices, 2-2
Input/output statements, 6-12
Input/output transfer micro-

instructions, PALC, 5-2 3

Insert command. Editor, 3-14
Instructions, PALC, 5-6, 5-30
Instruction set, BASIC, 6-50
Interactive programming language,

BASIC, 6-1
Integer number format, BASIC, 6-2
Inter-buffer character string

search. Editor, 3-19
Internal format, BASIC, 6-4 4

Internal symbol representation
for PALC, 5-13

Ihtra-buffer character string
search. Editor, 3-17

INT function, BASIC, 6-3 8

INT(x), integer function, BASIC,
6-3 8

I/O designations, 2-5
lOT microinstructions, PALC, C-2

Keyboard monitor, 1-1, 1-2
commetnds, 2-5
command summary, B-1
error messages, 2-12, B-1
loading and using, 2-3
memory map, E-1
services, E-1

Keyboard reader mnemonic code,
PALC, C-3

Keys, special Editor, 3-5, 3-6,
3-7

Labels, PALC, 5-6
Language, interactive programming,

(BASIC) , 6-1
Leader-trailer tape, 1-3
Left angle bracket (<) , Editor, 3-7
LET command, BASIC, 6-7
LET statement, BASIC, 6-11
Levels of nesting, maximum, 6-29
LINE FEED key. Editor, 3-6
Line printer listing. Editor, 3-11
Line Printer mnemonic code, PALC,

C-3
Line printer output, PALC, 5-3
Link generation and storage, PALC,

5-3
LIST and LPT command, BASIC, 6-5 4

LIST command, BASIC, 6-5 3

List commands. Editor, 3-10
Listing a program, BASIC, 6-5 3

List of arrays, BASIC, 6-28
Literals, assigning PALC, 5-18
Load command, 2-7
Loading keyboard monitor, 2-3
Local symbolic addresses, PALC, 5-9
Loops , 6-2 7

LPT and RUN commands, BASIC, 6-54
LPT statement, BASIC, 6-21

Matrices, BASIC, 6-2 9

Maxim\am level of GOSUB nesting,
BASIC, 6-3 7

Memory extension control, PALC, C-4
Memory map. Monitor, E-1
Memory reference instructions , PALC

,

5-2 0, C-1
Microinstructions, PALC, 5-21, C-1,

C-2
MI8~E hardware bootstrap, 1-1
Monitor, see Keyboard Monitor
Mounting a cassette, 1-5
Move text. Editor, 3-15
MQ microinstructions, C-2
Multiple files, 2-6, 2-7

Editor input, 3-2
Multiple input cassettes, PALC, 5-3
Multiple statements, BASIC, 6-10
Multistatement lines, PALC 5-8

NAME command, BASIC, 6-56
Nested parentneses, BASIC 6-5
Nesting, level of GOSUB, BASIC,

6-37
Nesting, Levels of, 6-2 8,

Nesting loops, 6-2

£

Nesting procedures, 6-2 8

Nesting subroutines, 6-3 6

NEW statement, BASIC, 6-2
NEXT statement, BASIC, 6-2 7

NO COMMAS statement., BASIC, 6-20

X-3

NOPUNCH pseudo-op, PALC, 5-28
Normalized Floating-Point format,

BASIC, 6-47
NO RUBOUTS command, BASIC, 6-52
Niimbers

in BASIC, 6-2
in PALC, 5-9
of statements, BASIC, 6-10

Numbers, version, 3-3

Octal pseudo-op, PALC, 5-24
OLD statement, BASIC, 6-2
OPEN statement, BASIC, 6-15
Operands, PALC, 5-7
Operate microinstructions, PALC,

5-21, 5-22, C-1, C-2
Operating modes, Editor, 3-4
Operators

,

BASIC arithmetic, 6-4
PALC, 5-14, 5-15
relational, 6-11

Options, PALC, 5-5
OR, Boolean inclusive, 5-15
Order of execution of BASIC state-

ments, 6-10
Output commands. Editor, 3-10
Output file extensions, PALC, 5-2
Output file. Editor, 3-3
Output specifications

Editor, 3-2
PALC, 5-2
System Copy, 4-2

Page deletion, 3-14
Page format, PALC, 5-29
PAGE n pseudo-op, PALC, 5-2 6

Page zero addressing, PALC, 5-2 4

PALC (Program Assembly Language for
Cassette) , 1-2

assembler output, 5-3 2

calling, 5-1
coding practices, 5-31
character set, 5-5
delimiting character, 5-6
error codes and conditions, 5-33,

5-34
error message summary, B-5
format effectors, 5-7
instructions, 5-2
link generation and storage, 5-3
numbers, 5-9
options, 5-5
permanent symbol table, C-1
program preparation, 5-3 2

pseudo-operators, 5-2 4

statements. 5-6
symbols, 5-9

Parentheses in BASIC, 6-5
Pass 1, PALC, 5-1, 5-3
Pass 2, PALC, 5-1, 5-3
Pass 3, PALC, 5-4

PAUSE pseudo-op, PALC, 5-26
Permanent symbols, PALC, 5-9
Permanent symbol table, altering

PALC, 5-29
PRINT command, BASIC, 6-6
Print positions, BASIC, 6-40
PRINT statement, BASIC, 6-16
PRINT# statement, BASIC, 6-20
Print zones, 6-17
Priority of operations, BASIC

arithmetic, 6-4
Programming errors, BASIC, 6-59
Program Assembly Language for

Cassette, see PALC
Program chaining, BASIC, 6-34
Program preparation, PALC, 5-32
Program storage, BASIC, 6-1
Pseudo operators, PALC, 5-24

summary, C-4
PUT function, BASIC, 6-4 2

Radix control, PALC, 5-2 4

Read command. Editor, 3-10
Reader record file structure, E-11
READ statement, BASIC, 6-12
Real format, BASIC, 6-2
Record, file header, 1-4
Relational operators, BASIC, 6-11
Relative addressing, BASIC, 6-51
REMARK statement, BASIC, 6-10
Renaming a program, BASIC, 6-5 6

RETURN key. Editor, 3-5
RETURN statement, BASIC, 6-3 5

Return to command mode. Editor, 3-5
Reserving memory, PALC, 5-2 7

Resetting location counter, PALC,
5-26

RESTORE statement, BASIC, 6-13
Rewind button, 1-6
REwind command, 2-10
Right angle bracket (>) , Editor, 3-7
Ring buffers, E-10
RND(x) function, BASIC, 6-39
RUBOUT command, BASIC, 6-5 2

Rubout key, 2-3, 3-5
Run command, 2-6
RUN command, BASIC, 6-5 4

Running a BASIC program, 6-5 4

Run-time input file creation, BASIC,
6-2 5

Run-time output files, BASIC, 6-15

SAVE command, BASIC, 6-5 6

Saving a program, BASIC, 6-5 6

SCRATCH command, BASIC, 6-5 5

Search for character. Editor, 3-16
Search for character string. Editor,

3-13, 3-15, 3-17, 3-19
Semicolon used as BASIC format control

character, 6-17

X-4

Sentinel file, 1-4
Service utility subroutines,

Monitor, E-1
SGN(x) function, BASIC, 6-38
SHIFT/0 command, BASIC, 6-52
Single character search. Editor, 3-16
Sign bit, BASIC, 6-4 6

Skip command. Editor, 3-15
Slash (/) symbol. Editor, 3-6
Software components, 1-2
Spaces, BASIC, 6-5
Special characters, PALC, 5-17
Specification options, 2-5
Square brackets ([]), 2-4
Statement numbers, BASIC, 6-10
Statement summary, BASIC, B-8
Statements, PALC, 5-6
direct assignment, 5-12

Statement terminators, PALC, 5-7
STEP value, BASIC, 6-2 7

Stopping a run, BASIC, 6-54
STOP statement, BASIC, 6-11
String search termination. Editor,

3-20
Subroutines , Monitor service

utility, E-1
Subroutines, BASIC, 6-35
Subscripted variables, BASIC, 6-2 9

Subscripts, BASIC, 6-30
Suppress listing, PALC, 5-2 7

Switch option characters, E-10
Symbolic addresses illegal in

PALC, 5-10
Symbolic Editor, 1-2, 3-1
symbolic instructions, PAEC, 5-13
Symbolic operands, PALC, 5-13
Symbols, PALC, 5-9
Symbol table,

BASIC, 6-59
PALC, 5-11

Syntax error. Editor, 3-22
System cassette, 1-4

directory, 2-1
System conventions, 2-1
System Copy (SYSCOP) , 1-2

calling, 4-2
error messages, 4-4
error message summary, B-4
example, 4-3
options, 4-2

System demonstration run, D-1
System programs, 2-1

TAB function, BASIC, 6-40
Tabulation (CTRL/TAB) , Editor, 3-7
Tabulations, PALC, 5-7
Teleprinter/Punch mnemonic code

,

PALC, C-3
Terminal value in BASIC loop, 6-27
Terminating assembly,. PALC, 5-34
Terminating string search, Editor,

3-20
Terminating the BASIC program, 6-11
Text collection. Editor, 3-15
Text mode. Editor, 3-4
TEXT pseudo-op, PALC,. 5-27
Text transfer commands. Editor, 3-11
Transfer of control statements, BASIC

6-31
Transferring individual files,

System Copy, 4-1
Transition between modes. Editor, 3-4
TTY OUT statement, BASIC, 6-22
TU60 dual cassette unit, 1-5

Unconditional transfer, BASIC, 6-32
Underlining in examples, 1-6
User-coded functions,, examples of

BASIC, 6-4 7

User-defined symbols,, PALC, 5-9
Using cassette, BASIC, 6-1
Utility codes, E-9
UTILITY PROGRAM, 8-1

error messages, 8-2, 8-3
options, 8-1
UTIL, 8-1

Variables, BASIC, 6-3
subscripted, 6-2 9

Version command, 2-10
Version numbers. Editor, 3-3

Write protect tabs, 1-3
Writing the program, BASIC, 6-4 7

XLIST pseudo-op, PALC, 5-2 7

Zero command, Keyboard Monitor, 2-9
Zeroing output file, 4-2

X-5

Cassette Programming System Users Manual
DEC-8E-0CASA-B-D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Softv/are
Problem Report (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page)

.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggeistions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manucil? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most n€;arly represent.

I I
Assembly language programmer

I I
Higher-level language programmer

I I
Occasional programmer (experienced)

I I
User with little programming experience

I I
Student programmer

I I
Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code
or

Country

If you do not require a written reply, please check here. Q

-Fold Here-

-- Do Not Tear - Fold Here and Staple -

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system,, and are published periodi-
cally. For information on the distribution of these docuinents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Office in the United States.. In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy
Paris, France Solna, Sweden
The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center
146 Main Street 1400 Terra Bella
Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-
change center for user-written programs and technical application in-
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS DECUS
Digital Equipment Corporation Digital Equipment, S.A.

146 Main Street 81 Route de I'Aire
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

