

prepared
by

soFtware documentation
soFtware engineering department

digital equipment corporation

pdp8 handbook series

FIRST PRINTING, APRIL 1974

The information in this document is subject to change without
notice and should not be construed as a commitment by Digital
Equipment Corporation. Digital Equipment Corporation assumes
no responsibility for any errors that may appear in this manual.
The software described in this document is furnished to the pur-
chaser under a license for use on a single computer system and
can be copied (with inclusion of DIGITAL'S copyright notice) only
for use in such system, except as may otherwise be provided in
writing by DIGITAL. Digital Equipment Corporation assumes no
responsibility for the use or reliability of its software on equipment
that is not supplied by DIGITAL.

Copyright @ 1974 by Digital Equipment Corporation

The following are trademarks of Digital Equipment Corporation:

DEC LAB-8 PDP
DECtape LAB-8/e PS/8
Digital Omnibus SABR
EduSystem OS/8 Unibus

Teletype is a registered trademark of the Teletype Corporation.

ERROR REPORTING

If you find any errors in this handbook, or if you have any ques-
tions or comments concerning the clarity or completeness of this
handbook, please direct your remarks to:

Digital Equipment Corporation
Software Communications, Parker Street
Maynard, Massachusetts 01754

ADDITIONAL COPIES

Additional copies of this handbook may be obtained by order-
ing DEC-S8-OSHBA-A-D. Please send your order to the address
below.

Digital Equipment Corporation
Communications Services, Parker Street
Maynard, Massachusetts 01 754

The OS/8 Operating System is a sophisticated operating system
designed for the PDP-8/E computer. This system permits use of
a wide range of peripherals and all available core up to 32K. OS/8
offers a versatile Keyboard Monitor that supervises a comprehen-.
sive library of system programs. These features make OS/8 a sig-
nificant improvement in small computer operating systems.

OS/8 SYSTEM PROGRAMS
Besides the Monitor facilities, OS/8 includes a library of power-

ful system programs which allow the user to do program develop-
ment using FORTRAN I1 or assembly language. A brief summary
of the system programs follows:

-

Concise Command' Language (CCL)
CCL provides the user with an extensive set of terminal
commands. Typical commands available in CCL include:
COPY, DIRECTORY, HELP,. RENAME, LIST, DE-
LETE, etc.
Symbolic Editor (EDIT)
EDIT is used to create or modify source files for use as in-
put to language processing programs such as PALS, SABR,
or FORTRAN. EDIT contains powerful text manipulation
commands for quick and easy editing.
PAL8 Assembler
PAL8 is the assembler for the OS/8 system. PAL8 accepts
source files in the PAL language and generates absolute
binary files as output. PAL8 also generates listing files which
can be used as input to CREF.
Peripheral Interchange Program (PIP)
PIP allows the user to transfer files between devices which
are in the OS/8 system. Complete file and directory main-
tenance functions are available in PIP.

4

ill

5. AbsoluteÃˆBinar Loader(ABSLDK).
ABSLDRwaccepts the binary output fifes produced by PAL8
and loads them into core.

6. Octal Debugging Technique (ODT)
ODT is a powerful octal debugging tool. All of the fea-
tures of older versions of ODT are implemented; but the
OS/8 version is designed so that no user core is needed.

7. File-Oriented Transfer Program (FOTP)
FOTP allows the user to transfer groups of files between
two OS/8 file-structured devices with- minimal terminal
interaction and device overhead, e.g., all ASCII files can
be transferred between a DECtape and-disk with one ter-
minal command.

8. Cross Reference (CREF)
CREF operates on the listings produced by PAL8 and
SABR. It produces a sequence numbered listing and a table
indicating where each user-defined tag and literal is
referenced.

9. DIRECT
DIRECT allows the user to print extended directory listings.

10. BOOT
The BOOT program loads the standard hardware boot-
straps into core.

1 1. Cassette/Magtape Positioner (CAMP)
CAMP allows the user to manipulate cassettes and mag-
netic tapes.

1 2. Resources (RESORC)
RESORC integrates system monitor tables and prints a
listing of active device handlers.

13. Magtape/Cassette PIP (MCPIP)
MCPIP is a file transfer program to be used with cassettes
and magnetic tapes.

' 14. PIP10
PIP10 is a file transfer program which reads and writes
PDP-10 ASCII DECtape files using a TC08 or TD8E
DECtape controller.

1 5. FORTRAN 11
The OS/8 system contains an extensive and powerful
FORTRAN package, consisting of the FORTRAN com-
piler, SABR assembler, Linking Loader, and Library func-
tion routines. Some of the many features of FORTRAN I1
are :
a. FORTRAN I1 is very easy to use. If desired, a FOR-

\

TRAN source program can be compiled, loaded, and
executed with a single terminal command.

b. Implied DO loops are permitted in FORTRAN 11.
c. FORTRAN I1 contains facilities to do program chain-

ing; this technique can be used to increase the effective
program size.

d. Device independent 110 is available, as well as the stan-
dard devices (console terminal, high-speed reader/
punch, card reader, and line printer).

16. Library Setup (LIBSET)
OS/8 LIBSET allows the user to create his own FOR-
TRAN I1 run-time libraries. The standard library supplied
with the system is LIB8. By using LIBSET, the user can
write his own routines in SABR and create a library.

17. System Build (BUILD)
BUILD allows rapid and easy alteration of the device con-
figuration in the system. New devices can be inserted by
simple keyboard commands, BUILD algo makes interfacing
user-coded device handlers a quick and easy job.

OTHER PROGRAMS AVAILABLE WITH OS/8
In addition to the standard OS/8 system programs listed previ-

ously, the following programs are available with OS/8:

BASIC
BATCH
TECO
FORTRAN IV

BASIC, BATCH, and TECO are provided in a single extension
kit. OS/8 BASIC is an interactive language yith a variety of ap-
plications. It contains such features as chaining, string manipulation,
and file-oriented input/output. Also included with BASIC are cer-
tain functions for use on the LAB-8/E.

OS/8 BATCH provides the user with a batch processing mon-
itor that is integrated into the OS/8 Monitor structure. The system
is organized in such a way that it may be used in either a keyboard
input configuration or as a batch stream processor. BATCH per-
mits the user to prepare his job on punched cards, high-speed
paper tape, or the OS/8 system device and leave it for the com-
puter operator to start and run.

OS/8 TECO is a powerful text editing and correcting program
that runs under the OS/8 operating system. TECO may be used
to edit any ASClI text such as program listings, manuscripts, cor-
respondence, etc.

OS/8 FORTRAN IV provides full ANSI FORTRAN IV under
the OS/8 operating system. The system is highly optimized with
respect to memory requirements, and an overlay feature is in-
cluded that can permit programs requiring up to 300K of virtual
storage to run on a PDP-8 or PDP-12. The library functions per-
mit the user to access a number of laboratory peripherals, to evalu-
ate a number of transcendental functions. to manipulate alpha-
numeric strings, and to output to a standard incremental plotter.

OS/8 110 DEVICES
OS/8 provides true device-independence. For the first time on

a PDP-8 computer, programs can be written without concern for
specific I/O devices. In running a program, the user can select the
most effective I/O devices available. Further, if the system con-
figuration is altered, programs need not be rewritten to takc advan-
tage of the new configuration.

The OS/$ system controls the copying of data from any ~nediunl
to any other medium by means of subroutine calls to execute I/O
routines. Logical names can be assigned to devices within the sys-
tem to enable symbolic referencing of devices.

Variable length 110 buffers can be specified by the user program.
Large buffers ensure efficient use of storage devices and a minimum
of time spent in data transfer operations by minimizing disk and
tape motion. OS/8 takes full advantage of the RK8E disk pack for
fast bulk storage, yet full system services are possible with a single
DECtape.

I
, HARDWAm CONFIGURATIONS

The OS/8 system can operate with a wide variety of devices as
the system deviceml The devices which can be used are:

TCOl /TC08 DECtape
LINCtape (PDP-12)
TD8E DECtape
DF32/RFO8 disk
RK8E disk
RK8 disk
TD8E DECtape can be used either with 12K words of core

memory or with 8K word? of core memory and 256 words of
Read-Only-Memory (ROM) .

If DF32 is the system device, at least 64K (2 platters) must be
available. In addition; if disk is the system device, cassettes or the
high-speed reader/punch provides a very useful tool.

The minimum OS/8 configuration is a PDP-8 series computer
with 8K words of core memory. one DECtape used as the system
device7 and a console terminal. A multiple DECtape system per-
forms appreciably faster than a single DECtape system. The mul-
tiple DECtape system reduces DECtape motion since it is possible
to copy directly (without intermediate searching) from the system
DECtape to another DECtape (or vice versa) when editing or
assembling.

A typical medium-sized system might contain a PDP-8/E with
at least 8K words of core memory, TD8E DECtape and control,
and an RK8E disk pack and control. A disk sistem offers the addi-
tional convenience of easy and fast access to files and large
amounts of storage.

Up to 15 devices can be interfaced to a single OS/8 system.
These optional devices include:

As many as 8 DECtape units (TCOl/TU55, TCO8/TU56, or
TD8E/TU56.

TA8ElTU60 cassette units
TM8E/TUlO magnetic tape units

1 The term system device refers to the device on which the OS18 system
resides and which it utilizes for system functions. Thus, DECtape unit 0
is the system device for a DECtape-based system. A nonsystem device is
any peripheral not specifically used for system functions, such as LPT:?
PTR:, DTA2:, etc.

vii

High-speed paper tape readerlpunch.
Up to four RK8E disks.
Up to four RK8 disks.
Up to four RSO8 disks.
Up to four DF32 disks.
Card reader (optical mark or punched cards).

-- Line printer.
PDP- 1 2 LINCtape.
PDP- 12 scope.

Any other device for which it is impossible to write a device
handler in one or two pages of core.

SYSTEM SOFTWARE COMPONENTS
The main software components of the OS/8 system are five:

Keyboard Monitor
Command Decoder
Library of system programs
Device handlers
User-Service Routine (USR)
The Keyboard Monitor provides communication between the

user and the OS/8 executive routines by accepting commands from
the console terminal. The commands enable the user to create log-
ical names for devices, run system and user programs7 save pro-
grams, and call ODT.

The Command Decoder allows the user to communicate with a
system library program by accepting a command string from the
keyboard indicating input/output files. Following the keyboard
command to run a system library program7 the Command De-
coder prints an asterisk (*) and then accepts the command line
containing the files to be used as input7 file name, and destination
of output, etc.

The library of system programs contains the programs mentioned
previously and any of the extension programs chosen by the user.

Device handlers are subroutines designed to transfer data to
and from peripheral devices. OS/8 is able to interface with as many

z as 15 different peripherals at a time. During system generation,
device handlers become an integral part of the system; both system
and user programs have access to any available device. (The
BUILD program allows quick and easy alteration of any avail-
able device.)

viii

The User Service Routine (USR) control the directory operations
for the OS/8 system. A program can use the USR by means of
standard subroutine calls such as those used to activate device
handler subroutines. Some of the functions performed by the USR
are loading device handlers, searching file directories, creating and
closing output files, calling the Command Decoder, and chaining
of programs. The details on the operation and use of the USR are
contained in the OS/8 Software Support Manual (DEC-S8-
OSSMB-A-D). For normal OS/8 usage, the USR function is un-
seen by the user and need be of no concern.

When OS/8 is operating, the Command Decoder, Keyboard
Monitor, and USR are swapped into core from the system device
as required, and when their operation has been completed, the '

previous contents of core are restored.
The core-resident portion of OS/8 is extremely small (256

words), allowing for a maximum use of core by user programs,

USING THE OS/S HANDBOOK
The OS/Handbook provides a complete user's guide for the

OS/8 operating system and system programs. The handbook is
divided into thiee parts, Part one contains detailed instructions for
getting a new OS/8 system running. Also included in part one are
the fundamentals of OS/8, including the Keyboard Monitor, Con-
cise Command Language (CCL), Command Decoder, the Abso-
lute Loader (ABSLDR) , Octal Debugging Technique (ODT) , and
Peripheral Interchange Program (PIP). The user must have a
complete understanding of the material contained in Chapter 1 to
use the OS/8 operating system.

Part two contains complete descriptions of the OS/8 utility
programs. These programs allow the user to perform a variety of
editing, 110 transfers, system generation, and file-oriented oper-
ations. - .

Part three describes the assemblers available with OS/8: PAL8,
SABR, FLAP, and RALF.

Part four describes the higher-level languages which can be run
under OS/8: BASIC, FORTRAN 11, and FORTRAN IV.

CHAPTER 1 OS/8 FUNDAMENTALS

Getting On Line With OS/8 .. 1-1
... . DECtape Systems 1 1

...................................... TC01 /TC08 DECtape Users 1-2
TD8E DECtape Users .. 1-4
LINCtape (PDP-12) Users .. 1-9

Building OS/8 From Cassette .. 1-10 .

Loading System Programs From Cassette 1-15
Building OS/8 From Paper Tape 1-17
Loading System Programs From Paper Tape 1-20
Disk as the System Device .. 1-25

RF08 and DF32 Disks ... 1-26
RK8E Disk .. 1-26
RK8 Disk .. 1-28

Restarting OS/8 i 1-29

.. Keyboard Monitor 1-30
... System Conventions 1-30

............ Permanent Device Names ..i 1-30
File Names and Extensions .. 1-32

.. Using the Keyboard Monitor 1-33
Keyboard Monitor Commands 1-35

Keyboard Monitor Error Messages 1-42

.. Command Decoder 1-45
...................................... Command Decoder Input String 1-45
.................................... Examples of Command Strings 1-48

Input/Output Specification Options 1-49
................................ Command Decoder Error Messages 1-51

CCL (Concise Command Language) 1 -52
CCL Commands .. 1-53

CCL Command Format .. 1-53
CCL Command Options .. 1-54
Wild Card Construction .. 1-55
Indirect Commands (@ Construction) 1-56
Nonstandard File Names (# Construction) 1-57

CCL Error Messages .. 1-75

Symbolic Editor .. 1-78
Calling and Using the Editor .. 1-78

Editor options .. 1-79
Special Key Commands to the Editor 1-80
Editor Text Buffer .. 1-82

Text Collection .. 1-82
Search Mode .. 1-83

Single Character Search .. 1-83
Character String Search .. 1-84

Editor Error Messages .. 1-89
Example Using the Editor .. 1-91
Summary of Editor Commands .. 1-92

Peripheral Interchange Program (PIP) 1-97
Calling and Using PIP .. 1-97

PIP Options .. 1-98
Examples of PIP Specification Commands 1 . 102

Additional Information Words in File Directories 1-1 05
PIP Error Messages .. 1-1 06

Absolute Binary Loader (ABSLDR) 1 . 108
Calling and Using ABSLDR .. 1-1 08

..... ABSLDR OptionsA 1-1 10
Examples of Input Lines .. 1 . 111

Notes on Using ABSLDR Correctly 1 . 112
ABSLDR Error Messages .. 1-1 13

Octal Debugging Technique (ODT) 1 . 113
Features .. 1 . 113
Calling and Using ODT .. 1 . 114

xii

. . . Commands - i..............*.................... 1-1 15
Special Characters ... 1-1 1 5
Illegal Characters .. 1-1 17
Control Commands .. 1 - 1 1 7

Additional Techniques .. 1 -1 2 1
Current Location .. 1 -1 21
Indirect References ... 1 -1 21

Errors ... 1-122
Programming Notes Summary .. 1-1 22
Summary of ODT Commands .. 1-1 22

..
CHAPTER 2 UTILITY PROGRAMS

BATCH .. 2-1 .
Introduction .. 2-1

.......... Batch Processing Under OS/8 : 2-2
BATCH Monitor Commands .. 2-4
The BATCH Input File .. 2-7

2-10 BATCH Error Messages ..
Running BATCH From Punched Cards 2-12 .

2-1 3 Restrictions Under OS/S BATCH
BATCH Demonstration Program 2-16
Loading and Saving BATCH ... 2-22

. Loading and Saving Programs 'for Use Under BATCH .. 2-22
Transferring the System Software from

Cassette to the System Device 2-22

BITMAP .. 2-26
Hardware and Software Requirements 2-26

... Loading BITMAP .: 2-26

.. BITMAP Output 2-28
BITMAP Error Messages .. 2-30
Assembly Instructions .. 2-30

+

BOOT ... 2-32
...

Xlll

BUILD .. i....................... 2-34
OS/ 8 Device Handlers .. 2-34

DECtape (LINCtape) Systems 2-35
Cassette Systems 2-36 ~*...............................
Paper Tape Systems .. 2-36

Calling and Using BUILD .. 2-38
BUILD Commands 2-40

The Hyphen Construction .. 2-41
PRINT .. 2-41
QLIST .. 2-42
LOAD .. 2-42
INSERT .. 2-44
DELETE .. 2-45
REPLACE .. 2-46
UNLOAD .. 2-47
NAME 1 2-48
ALTER .. 2-49
EXAMINE .. 2-49
DSK .. 2-49
CORE .. 2-50
DCB .. 2-51
CTL .. 2-51
VERSION .. 2-52
SYSTEM .. 2-52
BUILD .. 2-53
BOOTSTRAP .. 2-54

.. BUILD Error Messages 2-55
BUILD Device Handler Format 2-56

Header Block .. 2-57
Descriptor Block .. 2-57
Breakdown of DCB Word .. 2-59

.. Entry Point Offset 2-60

CAMP .. 2-62
.. CAMP Commands 2-62

.. BACKSPACE 2-62
EOF .. 2-63
HELP .. 2-64
REWIND .. 2-64

........ SKIP : ... 2-64

.. UNLOAD 2-66
.. . VERSION 2-66

.................................... CAMP Error Message Summary 2-66

Cross-Reference Program (CREF),................................. 2-69
Calling and Using CREF .. 2-69

CREF Options .. 2-69
Examples of CREF Usage .. 2-70

Pseudo-Op Handling .. 2-71
Interpreting CREF Output ... 2-72
Restrictions ... 2-73

.. CREF Error Messages 2-76

DIRECT .. 2-77
Calling and Using DIRECT .. 2-77

DIRECT Options .. 2-78
DIRECT Examples .. 2-79

.. DIRECT Error Messages 2-81

.. EPIC 2-83
Introduction .. 2-83
Loading EPIC 2-83
Restart Procedure .. 2-84
Paper Tape Facility ... 2-84

.......... ... Command Format : 2-84
Default Options .. 2-85
Error Conditions .. 2-86
Low-Speed 1/0 .. 2-86
Device Codes .. 2-87
Editing Capability .. 2-88

.. Initial Command Format 2-88
Editing Commands ... 2-88

Compare Capability ... i i 2-91
Command Format .. 2-91

Error Messages .. 2-92
Paper Tape Format 2-95
Loading EPIC From Paper Tape 2-95
EPIC Assembly Instructions .. 2-96

/^

XV

FOTP .. 2-97
.. Calling FOTP 2-97

.. Input Specifications 2-97
.. Output Specifications 2-99

Using FOTP .. 2-99
.. Advantages of Predeletion 2-103
.. Advantages of Postdeletion 2- 103

.. Control Characters 2-103
FOTP Options .. 2-1 04

Examples of FOTP Specification Commands 2-106
Error Messages .. 2- 108

Magtape/Cassette Peripheral Interchange Program
(MCPIP) .. 2- 1 1 0

Calling and Using MCPIP .. 2- 1 1 0
MCPIP Options .. 2-1 1 1

MCPIP Error Messages .. 2-1 1 3

PIP10 .. 2-1-16

Calling and Using PIP1 0 .. 2-1 16
PIP 10 Options .. 2-1 17
PIP1 0 Examples .. 2- 1 1 8
Error Messages .. 2-1 19

RESORC .. 2- 1 2 1
Calling and Using RESORC .. 2-1 2 1

.. RESORC Options 2-122
Fast Mode (/F Option) .. 2-122
Limited Mode (/L Option) .. 2-122
Extended Mode (/E Option) .. 2-1 24

RESORC Error Messages .. 2-1 27

Source Compare (SRCCOM) ... 2- 1 28
SRCCOM Assembly Instructions 2- 128
Loading SRCCOM .. 2- 128
SRCCOM Output .. 2-1 29
Error Messages .. 2- 1 3 1

xvi

TECO .. 2-132
Introduction ... ; 2-1 32
Introductory Commands .. 2-1 32
TECO Character Set .. 2- 142
File Specification Commands 2- 144 . ..
Page Manipulation Commands .. 2-1 46-
Buffer Pointer Manipulation Commands 2-147
Text Type-Out Commands .. 2-1 48
Deletion Commands .. 2-1 49
Insertion Commands .. 2-150
Search Commands 2-1 5 1 ..
Match Control Characters .. 2-1 54
Command Loops .. 2-1 55
Q-Registers .. 2-1 55 .
Branching Commands .. 2-157
Conditional Execution Commands 2-158
Numeric Arguments .. 2-1 60
Programming Aids .. 2-1 64
Error Messages .. 2-1 66
Manipulating Large Pages .. 2-1 67
Techniques and Examples-. 2-1 68
Running TECO on the PDP-12 2-172
Using TECO to Retrieve Lost Files 2-177
Incompatibilities Between OS/8 TECO and

DECs ystem- 1 0 TECO .. 2-178
Assembly Instructions .. 2-183
Error Messages .. 2- 1 84

CHAPTER 3 PAL8

Introduction .. 3 . 1

Calling and Using PAL8 ... 3-1

Character Set .. 3-5

Statements ..
Labels ..
Instructions ..
Operands ..
Comments ..

Format Effectors ..
Form Feed ..
Tabulations ..
Statement Terminators ...

.. Numbers

Symbols ..
Permanent Symbols ..
User-Defined Symbols .. s ...me

Current Location Counter ..
Symbol Table ..
Direct Assignment Statements ..

< .
Symbolic Instructions ..
Symbolic Operands ..
Internal Symbol Representation for PAL8

Expressions ..
Operators ... :
Special Characters ..

... PALS Instructions
...................................... Memory Reference Instructions

.. Indirect Addressing
.. Microinstructions

.. Operate Microinstructions
Input/Output Microinstructions

.. Autoindexing

.. Pseudo-Operators
Indirect and Page Zero Addressing

.. Radix Control
.. Extended Memory

.. End-of-File

xviii

.. Resetting the Location Counter
. Entering Text Strings ..

.. Suppressing the Listing
.. ~ Reserving Memory ..z.. A .

Conditional Assembly Pseudo-Operators
.. Controlling Binary Output

... Controlling Page Format
.. Typesetting Pseudo-Operator

~ Calling OS/8 User Service Routine
Relocation Pseudo-Op ..

* Altering the Permanent Symbol Table

Link Generation and Storage ..

Coding Practices ..:..

Program Preparation and Assembler Output

Terminating Assembly ...

PALS

PAL8
.

Error Conditions ..

Permanent Symbol Table ...

CHAPTER 4 SABR

Introduction ...
Calling and Using- OS/8 SABR ..

.. OS/8 SABR Options
Examples of OS/8 SABR I/O
Specification Commands ..

The Character Set ..
.. Alphabetic

............................ Numeric ...
Special Characters ..

Statements ..
Labels ..

xix

Operators- 4-6
Operands .. 4-7

Constants .. 4-7
Literals ... 4-8
Parameters .. 4-9
Symbols .. 4-9

Comments .. 4-10

.. Incrementing Operands 4-11

Pseudo-Operators .. 4-12
Assembly Control ... 4-16

.. Symbol Definition 4-20
Data Generating .. 4-22

Subroutines .. 4-24
CALL and ARG .. 4-25
ENTRY and RETRN .. 4-27
Example .. 4-28

Passing Subroutine Arguments .. 4-29
4-29 DUMMY ..

SABR Operating Characteristics .. 4-32
Page-by-Page Assembly .. 4-32

Page Format .. 4-33
Page Escapes .. 4-33

Multiple Word Instructions .. 4-34
Run-Time Linkage Routines .. 4-34 .
Skip Instructions .. 4-37
Program Addresses .. 4-38

.. The Symbol Table 4-38
.. Symbol Table Flags 4-38

.. The Subroutine Library 4-39
.. Input/Output 4-40

... Floating-point Arithmetic 4-41
Integer Arithmetic .. 4-43
Subscripting .. 4-43

.. Functions 4-44

......................... Utility Routines .. 4-45
DECtape 1/0 Routines ... 4-47

.. The Binary Output Tape 4-49
.. Loader Relocation Codes 4-49

............................. ~ Sample Assembly Listings : 4-53

.. SABR Programming Notes 4-57

.. Optimizing SABR Code 4-57
Calling the OS/8 USR and Device Handlers 4-60

.... The Linking Loader Q.... ; 4-62
............................ Calling and Using the Linking Loader 4-62

Linking Loader Options .. 4-63
............................ Examples of I/O Command Strings 4-66

Linking Loader Error Messages 4-67

Library Setup (LIBSET) .. 4-68
. Calling and Using LIBSET ... 4-68

... LIBSET Options 4-69
.. . Examples of LIBSET Usage 4-69

Subroutine Names .. 4-70
Sequence for Loading Instructions 4-70
LIBSET Error Messages .. 4-71

Library Programs .. 4-71

................ Demonstration Program Using Library Routines 4-73

CHAPTER 5 FLAP/RALF

Introduction .. 5-1

. Hardware Requirements .. 5 1

Statement Syntax .. 5-2
Tags .. 5-2

Instructions .. 5-2
Expressions .. 5-2
Comments .. 5-3

Arithmetic and Logical Operators 5-3

PDP-8 Operation Codes .. 5-4

PDP-8 Mode Addressing .. 5-6

... FPP Symbols 5-7
... Data Reference Instructions 5-7

* .. Special Format 1 5-9
Tl m ^ 0 .. Special ronnafc 2 &.,

Special Format 2Ã‘Conditiona Jumps 5-10
Special Format 2-Pointer Moves 5-10
Special Format 3 5-11

.. Special Format 3-Operate 5-12

.. FPP Mode Addressing 5-13

Literals .. 5-15

Links .. 5-16

.. Data Specification 5-16

.. Pseudo-Operators 5-16
.. = (equate) 5-17

.. . OCTAL 5 17
... . DECIMAL 5 17

... PAGE 5-17

.. BASE 5-17
TEXT ... 5-17
END .. 5-18

.. INDEX 5-18
ORG .. 5-18
ZBLOCK .. 5-18

5-1 8 .. LISTOF
.. LISTON' 5-18

xxii

.. F 5-21
E .. 5-21
ADDR ... i.. 5-21
COMMON ... i.

. .
5-21

... COMMZ 5-21
DPCHK .. 5-21

! ENTRY 5-21
EXTERN .. 5-21
FIELD 1 : ... 5-21

... SECT 5-22
SECT8 :. .. 5-22

. <

IF .. 5-19
REPEAT .. 5-20

Referencing Memory ... 5-22

.. RALF Features 5-24
Core Allocation .. 5-25
RALF Programming Notes ... 5-29

... Using the Assembler : ; '. 5-37
. .

Error Messages .. 5-38

CHAPTER 6 BASIC

Introduction to OS/ 8 BASIC : 6-1
Running BASIC .. 6-1

Entering the New Program .. 6-2
... Executing the Program 6-3

Correcting the Program .. 6-3
Interrupting Execution of the Program 6-4
Leaving the Computer .. 6-4

................................ Example of an OS/8 BASIC Run 6-4
.. OS/8 BASIC Overview 6-5

General System Description .. 6-5
OS/8 BASIC Statements and Commands 6-5

xxiii

.. OS/ 8 BASIC Arithmetic 6-6
Numbers .. 6-6
Variables .. j.. 6-8
Arithmetic Operations .. 6-8

Priority of Arithmetic Operations 6-9
Parentheses .. 6-9
Relational Operators .. 6-10
Rules for Exponentiation .. 6-11

... OS/ 8 BASIC Statements 6-11
Statement Numbers .. 6-13
REMARK-The Commenting Statement 6-14
Statements for Terminating a Program 6-14

END .. 6-14
STOP .. 6-14

LET-The Assignment Statement 6-15
Input/Output Statements and Functions 6-15

The INPUT Statement 6-15 ..
The PRINT Statement 6-16 ..
The TAB(X) Function 6-21 ..
The PNT(X) Function 6-21 ..

The READ and DATA Statements 6-22
.. RESTORE : .> 6-23

Control Statements 6-25 ..
GOT0 .. 6-25
IF-THEN and IF-GOT0 .. 6-26

Loops .. 6-27
.. FOR and NEXT Statements 6-27

... Nesting Loops i 6-29

Lists and Tables 6-30
.. Subscripted Variables 6-30

The DIM Statement .. 6-31

............................ OS/8 BASIC Functions and Subroutines 6-33
General Information on OS/8 BASIC Functions 6-33
Arithmetic Functions .. 6-34

The Random Number Function-RND(X) 6-34

xxlv

...................................... The Sign Function-SGN(X) 6-36
The Integer Function-INT(X) 6-37
The Absolute Value Function-ABS(X) 6-37
The Square Root Function-SQR(X) 6-38

Transcendental Functions .. 6-38
The Sine Function-SIN(X) .. 6-38

.............................. ... The COSINE Function-COS(X) 6-38
The Arctan Function-ATN(X) l 6-39

6-39 The Exponential Function-EXP(X)
The Natural Logarithm Function-LOG(X) 6-39

User Defined Functions .. 6-39 .

The FNA(X) Function and the DEF Statement 6-39
The UDEF Function Call and the USE Statement 6-40

The Debugging Function-TRC(X) 6-42 .

Subroutines '. ... 6-43
GOSUB and RETURN .. 6-43
Nesting Subroutines .. 6-45

Alphanumeric Information (Strings) 6-46
String Conventions .. 6-46

Constants and Variables .. 6-46
6-46 Dimensioning Strings ..

Inputting String Data .. 6-47
Strings in LET and IF-THEN Statements 6-49
String Concatenation .. 6-50

String Handling Functions '. 6-50
The LEN Function 6-50

. . The ASC and CHR$ Functions 6-51
The VAL and STR$ Functions 6-52
The POS Function .. 6-53

................................ The SEG$ Function 1 .. 6-53
The DAT$ Function 1 .. 6-54

........ Editing and Control Commands Ã :- 6-54
Correcting Programs .. 6-55

Erasing Characters and Lines 6-55
The RESEQ Program .. 6-55

................................ The LIST and LISTNH Commands 6-56
. .. The SCRATCH Command 6-57

The NEW Command .. 6-58
v

XXV

The OLD Command ..
The NAME Command ..
The SAVE Command ..

................................ The RUN and RUNNH Commands
The BYE Command. ..

Files. File Statements. and Chaining
General Information on OS/8 BASIC Files

System Devices ..
File Statements ..

Creating Assembly Language Functions
Introduction ...
The OS/8 BASIC System ..
The OS/8 BASIC Run-Time System

BRTS Core Layout ..
BRTS Overlays ..
BRTS Symbol Tables ..

Data Formats ..
Variables ..

.. Strings
Incore DATA List ..
The String Accumulator (SAC)

BRTS Symbol Table Structure ..
The Scalar Table ..

.. The Array Symbol Table

..... The String Symbol Table :
The String Array Table ..

.. Floating-point Operations
Floating-point Accumulator ..
Floating-point Routines ..
Floating-point Operations ..

.. BRTS Subroutines
.. Subroutine ARGPRE

Subroutine XPUTCH ..
.. Subroutine XPRINT

.. Subroutine PSWAP
Subroutine UNSFIX ..

.. Subroutine STFIND
.. Subroutine BSW

XXVI

.. Subroutine MPY 6-90
.. Subroutine DLREAD 6-90
.. Subroutine ABSVAL 6-91

Passing Arguments to the User Function 6-91
.................... Using the USE Statement : 6-93

.. BRTS 1/0 6-94
Terminal 1/0 .. 6-94
BRTS File Formats .. 6-95
BRTS Buffer Space : 6-95

6-96 BRTS Device Driver Space ...
The BRTS 1/0 Table .. 6-96

Interfacing the Assembly Language Function to BRTS .. 6-97
General Considerations and Hints 6-1 00

Routines Unusable by Assembly Language
Functions ... 6- 100

Using OS/8 .. 6-101
- Page 0 Usage .. 6-1 02

Assembly Language Function Examples : 6- 102

Compile-Time Diagnostics .. 6- 1 1 5

Run-Time Diagnostics ... 6-1 16

.............................. OS/8 BASIC System Build Instructions 6-1 18

Optimizing System Performance ... 6- 12 1

LAB8/E Functions for BASIC ... 6-1 24
Introduction ... 6-1 24
General Description ... 6- 124

...................... Preparing BASIC for LAB8/E Functions 6-1 25

..... Definition of LAB8/E Support Functions .i 6-1 26
LAB8/E Examples .. 6-1 36
Getting on the Air with BASIC : 6-147
LAB8/E Function Summary .. 6-1 48

CHAPTER 7 FORTRAN I1

Introduction .. 7-1
Calling and Using the OS/8 FORTRAN Compiler 7-1 .

xxvii

.. FORTRAN Options 7- 1
Example Program .. 7-3
Examples of FORTRAN 1/0
Specification Commands .. 7-4

Using FORTRAN or SABR with the Interrupt On 7-6
Using PAL8 with SABR or FORTRAN 7-7

.. FORTRAN I1 Source Language 7-8
.. Character Set 7 - 8

.. FORTRAN Constants 7-8
Integer Constants .. 7-8
Real Constants .. 7-9
Hollerith Constants .. 7-9

.. FORTRAN Variables 7-9
... Integer Variables 7-10

... Real Variables 7-10
.. Scalar Variables 7-10
.. Array Variables 7-11

.. Subscripting 7-11
.. Expressions 7-12

.. FORTRAN Statements 7-14
Line Continuation Designator .. 7-14

.. Comments 7-15
Arithmetic Statements .. 7-16
Input/Output Statements .. 7-16

Data Transmission Statements 7-17
FORMAT Statement .. 7-21

Control Statements .. 7-29
'GO TO Statement .. 7-29
IF Statement .. 7-30
DO Statement .. 7-30
CONTINUE Statement .. 7-32
PAUSE, STOP, and END Statements 7-32

Specification Statements .. 7-33
COMMON Statement .. 7-34
DIMENSION Statement .. 7-34
EQUIVALENCE Statement .. 7-35

Subprogram Statements .. 7-35
, Function Subprograms .. 7-36

xxviii

/

Subroutine Subprograms .. 7-37
Function Calls .. 7-40

Function Library .. 7-40

Floating-Peint Arithmetic ... 7-42

Device Independent 1 / 0 and Chaining. 7-42
The IOPEN Subroutine .. 7-42
The OOPEN Subroutine .. 7-43

... ... The OCLOSE Subroutine .. 7-44
The CHAIN Subroutine .. 7-44
The EXIT Subroutine i 7-44

DECtape I/ 0 Routines .. 7-44

OS/ 8 FORTRAN Library Subroutines 7-47

Mixing SABR and FORTRAN Statements 7-50

Size of a FORTRAN Program i. 7-50 4

FORTRAN Statement Summary .. 7-51

FORTRAN Error Messages .. 7-54
Compiler Error Messages .. 7-54
Library Error Messages .. 7-55

CHAPTER 8 FORTRAN" IV
.-.

. FORTRAN IV System Overview 8 1

4 The FORTRAN IV Compiler .. 8-9
... Examples 8-12

.. Compiler Error Messages 8-13

The RALF Assembler .. 8-15
Examples ... 8-19
RALF Assembler Error Messages 8-20

xxlx

The Loader .. 8-20
Loader Error Messages 1 8-29

FORTRAN IV Run-Time System (FRTS) 8-31
Run-Time System Error Messages 8-38

FORTRAN IV Library ..
Library Functions and Subroutines

FORTRAN IV Source Language
Constants, Variables, and Expressions

.. Constants
Variables ..
Expressic~s ...

.. Assignment Statements
Arithmetic Statements ..
The GO TO Assignment Statement

Control Statements ..
.. GO TO Statements

IF Statements ..
DO Statement ..
CONTINUE Statement ..
PAUSE Statement ..
STOP Statement ..
END Statement ..

DATA Transn~ission Statements
FORMAT Statement ..
DEFINE FILE Statement :
Input/Output Statements ... 8- 10 1

Device Control Statements .. 8-106
Specification Statementsma................................a... 8-107

Storage Specification Statements 8-107
The DATA Statement 8-112 . ..

.................................... Type Declaration Statements
Subprogram Statements ..

Functions ..
Subroutine Subprograms ..
RETURN Statement ..
BLOCK DATA statementI
EXTERNAL Statement ..

XXX

Paper Tape Loading Instructions

........................... FORTRAN IV Plotter Routines ..-.
.. Plotter Operation
... Plotter Commands

.. PLOTS
.. XPLOT

FACTOR ..
.. WHERE

SYMBOL ..
NUMBER ...

... PSCALE
.. AXIS

LINE ..
.. PLEXIT

Implementing the Plotter Routines
Getting Started ..
Adding the Plotting Routines

Examples ...

APPENDICES

Appendix A
Appendix B
Appendix C
Appendix D
Appendix E
Appendix F
Appendix G
Appendix H

Character Codes ..
Loading Procedures
Permanent Symbol Table

............................ OS/8 Demonstration Run
.................... OS/8 Error Message Summary

.......................... OS/8 File Name Extensions
................................ OS/8 Device Handlers

Obtaining OS/8 Version Numbers

LIST OF TABLES

................ Table 1-1 TC01 /TC08 DECtape Bootstrap 1-3
.......... Table 1-2 TD8E Initialization Error Messages 1-6

.................. Table 1 -3 1 2K TD8E DECtape Bootstrap 1-8

xxxi

Table 1-4
Table 1-5
Table 1-6
Table 1-7
Table 1-8
Table 1-9
Table 1-10
Table 1-1 1
Table 1-12
Table 1-13
Table 1-14
Table 1-15
Table 1-1 6
labie 1-17
Table 1-18
Table 1-19
Table 1-20
Table 1-21
Table 1-22
Table 1-23
Table 1-24
Table 1-25
Table 1-26
Table 1-27
Table 1-28
Table 2-1
Table 2-2
Table 2-3
Table 2-4
Table 2-5
Table 2-6
Table 2-7
Table 2-8

Table 2-9
Table 2-10
Table 2-1 1
Table 2-12
Table 2-13
Table 2-14

Cassette Bootstrap
.. System Devices

System Devices
... RF08/DF32 Disk Bootstrap

Single RK8E Disk Bootstrap
Multiple RK8E Disk Bootstrap
Single RK8 Disk Bootstrap
Multiple RK8 Disk Bootstrap
Permanent Device Names
Assumed Extensions
Keyboard Monitor Error Messages
Command Decoder ~ r r o r ' ~ e s s a ~ e s

.. CCL Options
Compiler/Assembler Extensions
CCL Error Messages
Editor Options ..
Editor Key Commands
Special Characters
Editor Error Codes
Symbol Editor Commands
PIP Options ..
PIP Error Messages
ABSLDR Options
ABSLDR Error Messages
ODT Command Summary
Run-Time Options
BATCH Monitor Commands
BATCH Error Messages
BITMAP Options

...................................... BOOT Mnemonics
Standard DECtape System Device Handlers
Standard Cassette System Device Handlers
Standard Paper Tape System Device

.. Handlers
OS/8 Device Handlers

............. BUILD Editing Characters
BUILD Error Messages

.. DCB Word
CAMP Error Messages

............ CREF Options $.

xxxii

Table 2-21
Table 2-22
Table 2-23
Table 2-24
Table 2-25
Table 2-26
Table 2-27
Table 2-28
Table 2-29
Table 2-30
Table 2-31
Table 2-32
Table 2-33
Table 2-34
Table 2-35
Table 2-36
Table 2-37
Table 2-38
Table 2-39
Table 2-40

................................ Table 2-1 5 CREF Error Messages 2-76
Table 2-1 6 DIRECT Options .. 2-78
Table 2-1 7 DIRECT Error Messages 2-81

.. Table 2-1 8 EPIC Commands 2-89
................................ Table 2-19 EPIC Error Messages 2-93

.. Table 2-20 FOTP Options 2-104

Table 2-41
Table 2-42
Table 2-43
Table 2-44
Table 2-45
Table 3-1
Table 3-2
Table 3-3
Table 4-1
Table 4-2
Table 4-3
Table 4-4
Table 4-5

................................ FOTP Error Messages
.. MCPIP Options

.............................. MCPIP Error Messages
....... RESORC Device Types i..

...................................... Kinds of Handlers
.......................... . RESORC Error Messages

...................................... Run-Time Options
.............. Restrictions .on Special Characters

...................... File Specification Commands
.................... Page Manipulation Commands

.... Buffer Pointer Manipulation Commands
........................ Text Type-Out Commands

Text Deletion Commands
Text Insertion Commands

...................................... Search Commands
.................. Match Control Characters :
.................. Q-Register Loading Commands
................. Q-Register Execution Commands
.............. Conditional Execution Commands

Characters Associated with Numeric '

,.Quantities ..
Arithmetic Operators
Radix Control Commands
Form Feed Processing Output Commands ..
TECO Command Summary
TECO Error Messages
PAL8 Run-Time Options

.. Use of Operators
...................................... PALS Error Codes

.. SABR Options
SABR Pseudo-Operators

...................................... SABR Error Codes
Linking Loader Options

.................. Linking Loader Error Messages

xxxiii

Table 4-6
Table 4-7
Table 5-1
Table 5-2
Table 5-3
Table 6-1
Table 6-2
Table 6-3
Table 6-4
Table 7-1
Table 7-2
Table 7-3
Table 7-4
Table 7-5
Table 7-6
Table 7-7
Table 8-1
Table 8-2
Table 8-3
Table 8-4
Table 8-5
Table 8-6
Table 8-7
Table 8-8
Table 8-9
Table 8-10
Table 8-1 1
Table 8-12
Table 8-1 3
Table 8-14
Table 8-15
Table 8-1 6
Table 8-17
Table 8- 1 8
Table 8-19
Table 8-20

LIBSET Error Messages
Library Error Messages
PDP-8 Operation Codes
FLAP/RALF Error Codes
FLAP/RALF Pseudo-Operators
OS/8 BASIC Language summary
Compile-Time Diagnostics
Run-Time Diagnostics
LAB 8/E Function Summary
FORTRAN I1 Options
Device Designations
Numeric Field Codes
FORTRAN Function Library
FORTRAN I1 Library Subroutines
FORTRAN I1 Language Summary
FORTRAN Library Error Messages
Standard FORTRAN IV File Extensions
FORTRAN IV Compiler Run-Time Options
FORTRAN IV Compiler Error Messages
RALF Assembler Run-Time Options
Loader Run-Time Options
Loader Error Messages
Run-Time System Option Specifications
Run-Time System Error Messages
FORLIB Calling Relationships
FORLIB Multiple Entry Points by Section
CLOCK Subroutine FUNCTN Arguments

.......... Truth Table for Logical Expressions
Conversion Rules for Assignment Statements
Numeric Field Codes

........................ Magnitude of Internal Data
Device Control Statements

............ FORTRAN IV Statement Summary
................ FORTRAN IV Plotter Routines

.. Special Symbols
Regular Characters :

xxxiv

LIST OF ILLUSTRATIONS

Figure 2-1
Figure 2-2
Figure 2-3
Figure 2-4
Figure 2-5
Figure 2-6
Figure 2-7

. Figure 2-8

Figure 2-9
Figure 2-1 0
Figure 3-1
Figure 3-2

Figure 3-3

Figure 3-4

Figure 5-1
Figure 8-1
Figure 8-2
Figure 8-3

Figure 8-4
Figure 8-5
Figure 8-6
Figure 8-7

Sample BATCH Input File 2-8
Punched Card Input File 2-14
TECO Command String for Example 2 2-1 73
TECO Flowchart for Example 2 2-174
TECO Macro for Example 3 2-175

.... Loading and Executing a TECO Macro 2-175
File Packing Macro 2-1 76
Loading and Running the File Packing
Macro .. 2-1 76
-Unpacking Macro 2-1 76
Loading and Running the Unpacking Macro 2-177
Memory Reference Bit Instructions 3-22
Group 1 Operate Microinstruction

.. Bit Assignments 3-24
Group 2 Operate Microinstruction

.. Bit Assignments 3-24
Group 3 Operate Microinstruction

.. Bit Assignments 3-25

.. AMOD Function 5-34
Preparing a FORTRAN IV Source File 8-2
Compiling a Source File 8-3
Assembling. loading. and Executing a

.. RALF File 8-4
FORTRAN IV Coding Form 8-66
Nested DO Loops 8-86
Spiral Plotter Example 8-1 45
Histogram Plotter Example 8-1 47

XXXV

xxxvi

getting on line
key board monitor
command decoder

ccl
editor

absldr
odt

os/8 Fundamentals

GETTING ON LINE WITH OS/8
OS/8 software is distributed to the user in a form appropriate

for his particular hardware configuration. The general system
categories are DECtape (LINCtape), casette, and paper tape.
This section provides the information that the user of any of these
types of systems needs to start using OS/8. The procedures for
bootstrapping a disk system and for restarting OS/8 are also con-
tained in this section. To get on line with OS/8 when the system
is first installed, refer to the section on the specific distribution
media.

DECtape Systems
This category includes TCOl/TC08, TDSE, and LINCtape

(PDP-12) hardware configurations. Since the software is supplied
on a system DECtape (or LINCtape), it is not necessary to build
an initial system, as it is when using cassettes or paper tapes.

Two tapes are distributed with each DECtape (LINCtape)
svstem. System Tape #1 contains the system programs and all
O S / ~ Monitor functions. System Tape $2 contains TDINIT.SV
(used in TD8E system initialization) and two TD8E DECtape
monitor images (8K ROM and 12K). Other files on this second
tape are the device handlers in a format suitable for the OS/8
BUILD program. Each file contains a handler for a specific device
type. These files are to be used as input for the LOAD command
in BUILD and are described in the BUILD section of Chapter 2.
In addition to these files, the tape also contains relocatable binary
files of the FORTRAN I1 library subroutines. LIBSET, the FOR-
TRAN I1 librarian, is used to create a FORTRAN I1 library as
described in Chapter 7.

Finally, the tape contains several OS/8 help files (.HL exten-
sion). These help files are intended to provide the user with a

quick command summary for most OS/8 programs. They can be
printed with either OS/8 PIP or the CCL command HELP.

TC01 /TC08 DECTAPE USERS
The following short procedure is used to start OS/8 on a

TC0 1 /TC08 system :

1. Mount the system DECtape (DEC-S8-OSYSB-A-UCl) on
unit 0 (this appears as unit 8 on some DECtape units), mak-
ing certain to wind at least 10 feet of tape onto the empty
reel. Set the tape unit switches to REMOTE and WRITE
LOCK.

2. Bootstrap the OS/8 DECtape by following one of two methods.
If the system includes an MI8-E hardware bootstrap option:
a. Place rhe terminal on line. Raise the SING STEP switch

on the PDP-8/E console. Press the CONT switch. Then
lower and raise the HALT switch. At least one console
indicator lamp should light.

b. Having mounted the OS/8 System Tape #1 on unit 0 as
described above, lower and raise the SW switch on the left
side of the console.

If the system does not include a hardware bootstrap, this
procedure will have no effect. In this case, execute step 1
above, place the terminal on line, and then perform the switch
manipulations shown in Table 1-1. For each step in the table,
place each of the PDP-8/E console SWITCH REGISTER
switches numbered 0 to 1 1 either in the up position if the
corresponding table entry is a 1 , or in the down position if
the corresponding table entry is a 0. When all 12 switches have
been set to correspond to a line in the table, follow the instruc-
tions in the right hand column and proceed to the next line. In
step 4, for example, place switches 2, 4, 7, and 10 in the up
position; place switches 1, 3, 5, 6, 8, 9, and 11 in the down
position; lift the DEP switch; and proceed to step 5. The
table also includes octal values of the binary switch settings for
the benefit of users familiar with octal numbers.

Table 1-1 TC01/ TC08 DECtape Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

press EXTD ADDR LOAD
press ADDR LOAD
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEPKey
press ADDR LOAD
lift DEP key
lift DEP key
press ADDR LOAD and
press CLEAR and
press CONT

Either bootstrapping procedure first rewinds the DECtape on
unit 0 to the end zone, then starts it moving forward, reading
block 0 into locations beginning at 7600 in field 0. In block
0 of the DECtape is a larger bootstrap which continues reading
the tape, installing the resident Monitor code, and finally
turning control over to the OS/8 Keyboard Monitor.

3. DECtape unit 0 will rock and the console terminal will respond
by printing a dot (.) at the left margin. At this point, OS/8 is
active; DECtape unit 0 must be set to WRITE ENABLE.

NOTE 8

If the terminal does not respond properly,
check that the bootstrap was loaded cor-
rectly, that unit 0 is selected and set to
REMOTE, that the correct tape is mounted,
and that the terminal is set to REMOTE or
LINE. If trouble persists, contact the local
Digital sales office.

TD8E DECTAPE USERS
OS/8 supports TD8E DECtape hardware in two configurations:

TD8E DECtape and 12K or more core, and TD8E DECtape and
8K core and 256-word Read-Only-Memory (ROM) .

TD8E DECtape users must run a special initialization program
before OS/S can be used. This program need only be run once to
create the proper configuration; thereafter, the appropriate TD8E
bootstrap (discussed shortly) can be used to start OS/8.
TD8E Initializatio~~ Program

Use the following procedures to initialize the TD8E DECtape
system.

1. Mount the binary DECtape (DEC-S8-OSYSB-A-UC2) on
DECtape ,]nit 0. Set the tape unit switches to REMOTE and
WRITE LOCK.

2. Turn the console terminal to LINE or REMOTE.
3. Execute one of the TD8E bootstraps (see TD8E Bootstraps in

this section).
4. When the bootstrap is executed correctly, the message:

is printed on the terminal. Then depending upon which type
of TD8E configuration is present, one of the following mes-
sages is printed to indicate the system on which OS/8 will be
built.

a. 8K ROM SYSTEM

is printed if the user has the 256-word ROM.

b. 12K SYSTEM

is printed if the user has no ROM but does have 12K or
more of core memory.

NOTE
If neither the ROM nor 12K of memory
exists, the message:

N E E D ROM OR 12K

appears, and the machine halts. This indi-
cates that the configuration is not suitable
for running the TD8E version of OS/8.

5. After the message specifying the hardware conf&ration (a or
b above), the following instructions to the user appear:

MOUNT A C E R T I F I E D DECTAPE O'J W I T I WRI TE-ENAELED
ALWPY s K E E P ORI G I NAL SYSTEM DECTAPES W R ~ TE-L ocii E D
S T R I K E A CHARACTER TO C W T I N U E

Perform the specified operations. At this point, the current
OS/8 Monitor is written onto a blank DECtape on unit 1.
Note that the original tape (on unit 0) is not written upon.

6. When the copy operation is complete, the following instruc-
tions are printed :

DISMOUNT TAPE #2 FORM UNIT @ AND SAVE I T
MOLINT ORIGINAL SYSTEM TAPE- # l OW UNI 7 C?
PREPARE TO CCPY F I L E S OVER
S T R I K E A CHARACTER TO CONTINUE

The system programs will now be copied from System Tape
1 (DEC-S8-OSYSE-A-UC 1) to the tape being created.
Perform the specified operations and type any character except
CTRL/Z to continue. PREPARE TO COPY FILES OVER
means to expect copying to take place; no additional prepara-
tion is implied. The following message is printed:

CQPYING F I L E S FROM UNIT 0 T O W I T 1
-..

and the system copies the files and updates the DECtape
directory.

NOTE
If the user wishes to perform nonstandard
special processing, he can respond with a
CTRL/Z to the preceding dialogue. If
CTRL/Z is typed, the following messages
appear:

TYPE 1 TO COPY F I L E S FROY U N I T k3 T O UNIT 1
TYPE 2 T O Z E R O THE DIkECTORY -OF UNIT 1
TYPE 3 T o LEAVE THE DIRECTORY OF UNIT 1 ALONE
S T R I K E A CHARACTER TO C @ I T I N U E

Reply with either a 1, 2, or 3 (which will
not echo) to indicate the desired option.
Typing any character other than those indi-
cated will repeat the request message. One
of the following confirmatory messages will
appear? to indicate the options 1, 2, or 3,
respectively :

C O P Y I N G F I L E S FROM U N I T 0 T O 1
Z E R O I N G T H E D I R E C T O R Y CiV T A P E U N I T 1
D I R E C T O R Y ON W I T 1 P R E S E R V E D

When the files have been copied, the following instructions
appear:

REMOVE AND S A V E T A P E CN W I T @
T A K E NEW T A P E C OJ U N I T 1) WHI CH W A S J U S T C R E A T E D
AND P L A C E I T U N I T @
I T I S Y O U R NEW O S / 8 S Y S T E M T A P E
S T R I K E A C H A R A C T E R T O C O N T I N U E

Remove the original OS/8 tape aod save it for later use. Set
DECtape unit 0 to WRITE-ENABLE? and type any character
to continue. The tape on unit 0 will be initialized to a TD8E
configuration.

When the initialization is completed, a dot (.) is printed at the
left margin of the terminal. OS/8 is active on a TD8E based
system.

TD8E Initialization Error Messages
The messages listed in Table 1-2 may appear during the TD8E

- initialization process.

Table 1.-2 TD8E Initialization Error Messages

Message Meaning

FATAL 1 0 ERROR Unable to read froni newly
copied system tape.

MOUNT CORRECT TAPE ON U N I T 0 Cannot copy tape currently
mounted.

NEED ROM OR 12K Improper hardware config-
uration.

Table 1-Zz TD8E Initialination Error Messages (Cant.)

Me.ssage Meaning
<

NOT OR
TAPE

IGINAL OS/ 8 SYSTEM
2

STRIKE A CHARACTER TO
CONTINUE

TYPE ANY OTHER CHARACTER TO
RETRY THIS I / O OPERATION

TYPE A TO ABORT AND
START OVER AGAIN

The tape copied from was
not an original OS/8 tape
supplied by Digital.
An 110 error occurred on
the DECtape. Type any
character to retry the oper-
ation. ...

First retry failed. Type any
other character to retry an-
other time.
~ e t u r n . to Step 1.

TD8E Bootstraps
8K ROM Bootstrap (PDP-8/E)

Set the switch register on the PDP-8/E console to 7470
(octal), i.e., set switches 0, 1 , 2, 3, 6, 7? and 8 in the up posi-
tion, and set switches 4, 5, 9, 10 and 11 in the down pas-ition.
Raise the SING STEP switch. Lower and raise the HALT
switch.
Press the EXTD ADDR LOAD, ADDR LOAD, CLEAR, and
CONT switches. The tape bootstrap will be executed and a mes-
sage will be printed (if initializing) or the OS/8 Keyboard Monitor
will print a. dot (.) to indicate that it is active. If initializing,
set DECtape unit 0 to WRITE-LOCK. If OS/8 is already
active, set DECtape unit 0 to WRITE ENABLE.

12K TD8E Bootstrap

The contents of the 12K TD8E bootstrap are included in Table
- . 1-3.

The tape bootstrap will be executed and a message will be
printed (if initializing) or the OS/8 Keyboard Monitor will print
a dot (.) to indicate that it is active. IF initializing, set DECtape
unit 0 to WRITE-LOCK. If OS/8 is already active, set DECtape
unit 0 to WRITE ENABLE.

Table 1-3 12K TD8E DECtape Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

9101 I
000 press ADDR LOAD and

press EXTD ADER L ~ A D
010 . lift DEP key
0 I0 lift DEP key
010 lift DEP key
01 I lift DEP key
011 IiftDEPkey
1 I I lift DEP key
I I0 lift DEP key
1 10 lift DEP key
01 1 lift DEP key a

0 10 lift DEP key
000 lift DEP key
000 lift DEP key
100 IiftDEPkey
001 IiftDEPkey
I01 lift DEP key
I I0 lift DEP key
00 1 lift DEP key
11 1 l ift DEP key .
000 IiftDEPkey
I01 lift DEP key
001 lift DEP key
0 10 lift DEP key
100 lift DEP key
110 IiftDEPkey

Table 1-3 12K TDSE DECtape Bootstrap (Cont.)

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

26 7747 111 111 100 111 IiftDEPkey
27 0077 000 000 11 1 11 1 lift DEP key
2 8 7400 11 1 100 000 000 lift DEP key
29 7300 1 1 1 01 l 000 000 press ADDR LOAD and

press CLEAR and
press CONT

Both the 8K ROM and 12K TD8E bootstraps perform the
same function, reading record 0 of the system tape into memory
and then starting it at location 7400 in field 0. The code that is
read into 7400 is a larger bootstrap which installs all resident
tables and then turns control over to the OS/8 Keyboard Monitor
or the TD8E initialization program. The 12K system must move
down to tape block 154 to accomplish the full bootstrap, which ex-
plains the extra tape motion.

When the TD8E system (either 8K ROM or 12K) is initialized,
only TD8E DECtapes 0 and 1 (DTAO, DTA1) are available on
the system. The others (DTA2-DTA7) are not in the system. To
make other drives available, the user must run the BUILD pro-
gram. Reference the BUILD section of Chapter 2 for details con-
cerning reconfiguring a system.

LINCTAPE (PDP-12 USERS)
The following is the bootstrap procedure for PDP-12 systems:

1. Mount the system LINCtape (DEC-12-OSYSB-A-ACl) on
LINCtape unit 0. Set the LINCtape switches to WRITE LOCK
and REMOTE. Set the terminal to LINE or to REMOTE.

2. Set the left switches to 0700. Set the right switches to 0000.
Set the MODE key to LINC.

3. Press 1/0 PRESET.
4. Press DO.

The LINCtape bootstrap will be executed, causing unit 0 to
move. When tape movement stops, ensure that the AC con-
tains -1 (has all lights on). If the AC does not contain -1,
return to step 1 above.

5. Press the START 20 key.
The LINCtape on unit 0 will move again, and a dot (.) will
be printed at the left margin of the terminal. OS/8 is now
active.

6. Set LINCtape unit 0 to WRITE ENABLE.

Building OS/ 8 From Cassette
When OS/8 software is supplied on cassettes, the BUILD sys-

tem library program is used to create the initial OS/8 system. The
following procedures are used to build OS/8 onto a mass storage
device.

1. The OS/ 8 cassette containing BUILD (DEC-S8-OSYSB-A-
TC1) supplied by Digital is WRITE protected (lugged red
tabs expose write protect holes). Open the locking bar on the
right side of cassette transport unit 0 by pushing it to the right.
Hold the cassette so that the DIGITAL trademark in large
letters is upright and to the front. Insert the cassette into trans-
port unit 0, rotating it over thedrive sprockets without forcing .
it, so that the locking bar closes over the back edge.

' Press the rewind button on the cassette transport unit once
to rewind the tape to the beginning of its leader/trailer seg-
ment. When the unit stops moving, the tape is positioned for
data transfer operations.

r 2. Bootstrap the OS/8 cassette by following one of two methods.
If the system includes an MI8-E hardware bootstrap option:
a. Place the terminal on line. Raise the SING STEP switch

on the PDP-8/E console. Press the CONT switch. Then
lower and raise the HALT switch. At least one console
indicator lamp should light.

b. Having mounted the OS/8 system cassette on unit 0 as
described above, lower and raise the SW switch on the
left side of the console.

If the system does not include a hardware bootstrap, this pro-
cedure will have no effect. In this case, execute step 1 above
and then perform the switch manipulations in Table 1-4. For
each step in the table, place each of the PDP-8/E console
SWITCH REGISTER switches numbered 0 to 11 either in
the up position if the corresponding table entry is a 1 ,. or in
the down position if the corresponding table entry is a 0.
When all twelve switches have been set to correspond to a line

in the table, follow instructions in the right hand column and
proceed to the next line- In step 3, for example, place switches
2, 4, 9, and 10 in the up position; place switches 0, 1, 3, 5 , 6,
7, 8, and 11 in the down position; lift the DEP switch; and
proceed to step 4. The table also includes octal values of t h e .

binary switch settings for the benefit of users familiar with
octal numbers.

. Table 1-4 Cassette Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

012 345 678 91011
100 000 000 000 press ADDR LOAD and

press EXTD ADDR LOAD
001 010 O i l 1 1 1 lift DEP key
001 010 000 110 1iftDEPkey
110 1 1 1 000 100 liftDEPkey
110 111 000 110 liftDEPkey
110 111 000 011 '' lift DEPkey
101 010
I l l 010
110 111
I l l 110
Oil 010
011 110
001 010
110 111
110 111
110 111
101 010
I l l 000
I l l 100
001 110
1 1 1 000
011 110
I l l 100 '

010 010
010 010
101 010

000 100
110 100
000 010
001 000
001 001
Oil 110
000 101
000 100
000 110
000 001
001 110
000 010
011 000
011 110
010 010
011 110
010 000
01.1 110
011 101
001 101

lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key.
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key -
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key

Table 1-4 Cassette Bootstrap (Cont.)

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

- - - - --

32 3557 Oil 101 101 1 1 1 IiftDEPkey
3 3 7730 1 1 1 1 1 1 01 1 000 lift DEP key

Ã

34 4000 100 000 000 000 press ADDR LOAD key and
press CLEAR and
press CONT

Either bootstrapping procedure should cause the system cas-
sette to move and BUILD to print a $ at the left margin of the
console terminal. If there is no response, check that the system
cassette is properly mounted on transport unit 0 and repeat the
bootstrapping procedure, paying particular attention to the
switch manipulations. Be careful not to bounce the DEP
switch.

3. When BUILD prints:

respond with the system device on which OS/8 is to be built.
(At this point, the usual command editing features of BUILD
are available; see Table 2-10 in the BUILD section of Chapter
2.) This response must be in the following form:

where "dev" represents one of the legal replies taken from
Table 1-5. The "n" is optional and need only be used to indi-
cate the number of physical disk platters which are present if
the system device is RF08 or DF32. The possible replies and
the maximum value of n which can be used for each one are
indicated below.

Table 1-5 System Devices

Device Maximum n

DF32 (DF32 disk) 4
RF08 (RF08 disk) 4
RK8 (RK8 disk) 1
RK8E (RK8E disk) 1

n must be a digit in the range 1 to 4. If no value for n is speci-
fied, a value of 1 is assumed. If a response other than a digit
is entered, the message:

is printed and the SYS command must be typed again. If n is
specified as a digit but is too large for the device specified, the
SYS command must be retyped. For examp1e:l

SSYS RF08=5 -
Z L A I
SSYS RF08=4 -
4. When a correct SYS command has been entered, e.g.;

SSY S RK8E -
BUILD prints another $. At this time, insert the desired de-

- vices for the initial system. The minimum system for cassettes
must have inserted the terminal handler, the mass storage de-
vice, and the cassette handlers. (See the BUILD section of
Chapter 2 for detailed information.)
In response to the $ printed by BUILD (indicated here by an
underline), type the following; each command line should be
followed by typing the carriage return key.

S I N TABA: CSA0- 1 - (cassette unit 0, drives 0 and 1)
SIN KL8 E: TTY - (terminal keyboard)

5. The user should also specify the device that is to be the default
mass storage device by entering the DSK command. For ex-
ample :

Any device other than SYS (or carriage return) specified in the
DSK command must be the permanent name of a device which
appeared in one of the INSERT commands.
-

1 Characters printed by the system are underlined to eliminate confusion
with characters typed by the user.

6. When alldesired devices have been entered with INSERT com-
mands, type the following in response-to the $;

SBUI L D
m

BUILD responds b y printing:

L O A D O S A 3 :

type CSAO, followed by carriage return, in response to this
message, i.e.,

L O A D OS#8: CSAO

BUILD loads and writes the various parts of OS/8 onto the .

system device. If a SYS ERR message occurs at any time dur-
ing the load, ensure that the system device is write-enabled and
press the CONT switch to retry. 1f the retry is unsuccessful7 re-
turn to step 2.

7. After writing OS/8, BUILD prints:

L O A D CD:

Respond with a carriage return. BUILD loads the Command
Decoder from cassette unit 0 and writes it onto the system de-
vice.

8. When BUILD responds with another $, type the following:

to initiate the final system creation process. BUILD creates
OS/8 on the system devi.ce, writes ABSLDR on the system
device, and prints:

SYS B U I L T . -
The dot indicates that the OS/8 Keyboard Monitor is activated.
BUILD is still in memory at this time and must be written onto
the system device. To save the copy of BUILD just used with
the current date, type:

.DATE mm/dd/yy (mm=month, dd=day, yy=year) -
<

. S A V E SYS BUILD -
This copy of BUILD reflects the current configuration of the
system. It can be loaded and rerun with the command:

.RUN S Y S BUILD -
9. The OS/8 system programs must now be loaded from their re-

spective cassettes. To load these programs, it is first necessary
to load MCPIP (Magnetic Tape/Cassette Peripheral Inter-
change Program). Type the following commands to load
MCPIP.

.GET S Y S BUILD. -
*START 17400 -

SAVE SY S MCPI P5 12000~6400 -
Loading System Programs From Cassette

After creating an OS/8 system from cassettes, the user must
transfer the system programs from cassette to the system device.
This transfer operation is performed with MCPIP which the user
has saved on the system device.

NOTE
Users with OS/8 software supplied on DEC-
tape (LINCtape) already have core images
of the system programs on the system de-
vice. This section concerns only users with
software supplied on cassettes.

Each cassette supplied with OS/8 contains several OS/8 system
programs. To transfer the programs to the system device, the user
mounts the appropriate cassette on a cassette drive and types
MCPIP commands as shown below. Use the following procedures
to load the system programs.

1. Mount the system cassette DEC-S8-OSYSB-A-TC2 on cassette
drive 0.

2. Mount the system cassette DEC-S8-OSYSB-A-TC3 on cassette
drive 1.

3. Type the following to call MCPIP from the system device:

v

* R M C P I P -
MCPIP responds with an asterisk, indicating that it is ready to
receive a command line of 1/0 specifications.

4. Respond as follows to the asterisks printed by MCPIP:

SYS: CCL SV<CSA0: CCL* SV - * SYS: D I RECT* SV<CSA0: D I RECT* Sb -
JLSY S: FOTP* SV<CSA0: F OTP* S\/
*SY S: P I Po SV< CSA0: P I P * SV - * SY S: L I B8 SV< CSA0: L I B8 SV -
*SYS: ED1 T o SV<CSA0: ED1 T * SV -
<;y<;i PALS 0 SV<CSA@: PALS SV
~ S Y S: CREF. SV* CSA0: CREF. SV
* SY S: B I TMAP* SVsCSA0: B I TMAP. SV -
SY S: BOOT SV<CSA0: BOOT* SV - * SY S: CAMP* SV< CSA0: CAMP* SV -
SY S: RK8 FMT SV< CSA0: RK8 FMT* SV -
SY S: RKEFMT SV<CSA0: RKEFMT* SV -
SY S: FORT SVeCSA1: FORT* SV -
SY S: SABR SV<CSA 1 : SABR* SV -
SY S: L OADER. SV<CSAI Â LOADER SV -
SYS: SRCCOM SV<CSA1: SRCCCM* SV - * SY S: E P I C* SV<CSAl : E P I C* SV -
*SYS: P I P l O * SV<CSAl : P I P 1 0 - S\/
@

SY S: RESORC SV<CSAl : RESORC* Sb -
ÃˆSYS DTCOPY SV<CSAI: DTCOPY SV -
SYS: TDCOPY SV<CSAl : TDCOPY. SV -
SYS: TDFRMT S V < C S A l t TDFRMT* SV -
SY S: DTFRMT SV<CSAl : DTFRMT* SV -
5. The source file of CCL should be written onto the system de-

vice if the user desires to add his own CCL commands. To
write this file on the system device, mount the system cassette
DEC-S8-OSYSB-A-TC6 on cassette drive 0. Respond as fol-
lows to the asterisk printed by MCPIP,

SY S: CCL PAeCSA0: CCL* PA -

This completes the building of the O S / ~ system. If the OS/8 ex-
tension cassette is available, see the appropriate chapters for load-
ing instructions. Additional device handlers may be loaded and
made active using BUILD. See the BUILD section of Chapter 2
for this procedure.

Building OS/8 From Paper Tapes
An OS/8 system can be initially constructed on a mass storage

device from the paper tapes supplied with each OS/8 kit. The
paper tapes can be loaded from a low-speed reader on a Teletype
or from a high-speed reader. This initial construction is only neces-
sary when the software is not supplied on DECtape or cassettes.

The system library program BUILD is used to construct an
OS/8 system from paper tapes in the following manner.

1 . Load the RIM and Binary loaders into field 0 (refer to Appen-
dix B for instructions on loading programs manually and on
paper tape).

2. Using the Binary Loader, load the BUILD binary tape (DEC-
S8-OSYSB-A-PBl) into memory..

3. After the entire BUILD binary tape has been loaded with no
checksum errors (i.e., AC=0), set the switch register to 200
(octal), i.e., set switch 4 in the up position, set all other
switches in the down position. Press the ADDR LOAD and
CONT switches. BUILD prints :

(At this point, all the usual editing features of BUILD are
available; see Table 2-10 in the BUILD section of Chapter 2.)
Respond with the system (mass storage) device on which
OS/8 is to be built. This response must be in the following .

form :

where "dev" represents one of the legal replies taken from
Table 1-6. The "=n" is optional and need only be used to
indicate the number of physical disk platters which are present
if the system device is an RF08 or DF32 disk.
The "n" must be a digit in the range 1 to 4. If no value for n
is specified, a value of 1 is assumed. If a response other than
a digit is entered, the message:

2 Characters printed by the system are underlined to eliminate confusion
with characters typed by the user.

is printed and the SYS command line-must be typed again. If
n is specified as a digit but is too large for the device specified,
the SYS command must be retyped. For example:

SSYS RF08=5 -
?PLAT
SSYS RF08=4 -

Table 1-6 System Devices

Device Maximum

DF32 (DF32 disk) 4
RF08 (RF08 disk) 4
RK8 (RK8 disk) 1
RK8E (RK8E disk) I

4. When a correct SYS command line has been entered, e.g.,

SSYS RK8E -
BUILD prints another $. At this time, insert the desired
devices for the initial system. The devices listed below must
be inserted for a minimum system with paper tape. Type the
following commands, followed by carriage returns, to insert a
low-speed paper tape configuration.

$IN KS3 3 : PTP,PTR (low-speed paper tape punch/reader)
$IN KL8E:TTY (terminal keyboard)

Type the following commands, followed by carriage returns,
to insert a high-speed paper tape configuration.

SIN PT8E:PTP,PTR (high-speed paper tape punch/reader)
$IN KL8E:TTY (terminal keyboard)

5. At this time, the user must specify the device that is to be the
default mass storage device by entering the DSK command.
For example :

Any device other than SYS (or carriage return) specified in
the DSK command must be the permanent name of a mass
storage device which appeared in one of the- INSERT com-
mands.

6. When all desired devices have been entered with IN commands,
type the following in response to BUILD'S $.

S B U I L D -
BUILD responds by printing:

\.

LOAD OS&:

At this point, load the OS/8 Keyboard Monitor tape (DEC-
S8-OSYSB-A-PB4) in the proper reader and respond PTR
followed by a carriage return, i.e.,

LOAD OSa: PTR

BUILD loads and writes the various parts of the OS/8 Key-
board Monitor onto the system device. If a SYS ERR message
occurs at any time during the load, ensure that the system
device is write-enabled and press the CONT switch on the
PDP-8/E console to retry. If the retry is unsuccessful, return
to step 2.

NOTE
When building from the low-speed reader
(KS33), remember to turn off the reader
when it reaches the leader/trailer at the end
of the paper tape.

7. When the Keyboard Monitor has been successfully written onto
the system device, BUILD prints:

LOAD CD:

Place the Command Decoder binary tape (DEC-S8-OSYSB-A-
PB5) in the proper paper tape reader and respond PTR fol-
lowed by a carriage return, i.e.,

LOAD CD: PTR

BUILD loads and writes the Command Decoder.
8. When BUILD responds with another $, type the following:

SBOOT -

to initiate the final system creation process. BUILD creates
OS/8 on the system device, writes ABSLDR on the system
device, and prints:

SYS BUILT
-

The dot indicates that the OS/8 Keyboard Monitor is activated.
9. At this time, BUILD is still in memory and it is necessary to

copy it onto the system device. To save the copy of BUILD
with the current date, type:

.DATE mm/dd/yy (mm=month, dd=day, yy=year)

.SAVE SYS BUILD

This copy of BUILD reflects the current configuration of the
system. It can be loaded and rerun with the command:

.RUN SYS B U I L D -
See the BUILD section of Chapter 2 for details of using BUILD
effectively.

ABSLDR (which resides on the system device) must now be
used to load the various system programs. Refer to the following
section for instructions.

Loading System Programs From Paper Tape
After an OS/8 system has been created from paper tapes using

BUILD, the system programs must be loaded using ABSLDR.
When loaded, the system programs are written onto the system
device with the SAVE command.

NOTE
Users with OS/8 software supplied on DEC-
tape (LINCtape) or cassettes need not be
concerned with this section. The information
in this section is only for users with software
supplied on paper tape.

Use the following procedures to load the various system pro-
grams. The binary tape identification number is indicated in paren-
theses after the program name. When the command Decoder prints
an uparrow () , high-speed reader only, type any character on the
keyboard to cause the tape to be read into memory.

In response to the dot (.) printed by the Keyboard Monitor,
type :

R ABSLDR (followed by the RETURN key)

ABSLDR prints an asterisk when it is ready to receive a command
line. Enter the command as specified for each program, ending the
command with an ALTMODE. ALTMODE echoes a $. When the
Keyboard Monitor responds with a dot, enter the SAVE command.
When the Keyboard Monitor responds with another dot, the system
program has been written onto the system device and ABSLDR
may be called again.

FORTRAN I1 (DEC-S8-OSYSB-A-PB6)
Place the FORTRAN I1 Compiler binary tape in the reader, and

type the following responses to the . and * printed by the Keyboard
Monitor and ABSLDR, respectively.

* R ABSLDR -
*PTR: C SP) S -
* S A V E SYS FORT -

SABR (DEC-S8-OSYSB-A-PB7)
Place the SABR Assembler binary tape in the reader, and type

the following responses to load and save SABR.

,
* R ABSLDR -
e T R : C S P) 5 . S A V E SY S SABR -

' PAL8 (DEC-S8-OSYSB-k-PB 12) :
Place the PAL8 Assembler bmary tape in the reader, and type

the following responses to load and save PAL8.

0 R ABSLDR -
3PTR: 8 S

SAVE SY S P A L 8 -
--

PIP (DEC-S8-OSYSB-A-PB 13)
Place the PIP binary tape in the reader, and type the fol1o.wing

responses to load and save PIP.

R ABSLDR - * PTR: 13000c 89 P) s -
SAVE SY S P I P -

MCPIP (DEC-S8-OSYSBLA-PB 14)
Place the MCPIP binary tape in the reader, and type the follow-

ing responses to load and save MCPIP.
-

O R ABSLDR -
*PTR: 12000C89 P I S
* S A V E S Y S M C P I P -

BITMAP (DEC-S8-OSYSB-A-PBl 5)
Place the BITMAP binary tape in the reader, and type the follow-

ing responses to load and save BITMAP.

R ABSLDR - * PTF: 1200019 5i -
. S A V E S Y S BITMAP -
EPIC (DEC-~8-OSYSB-A-PB 16)

Place the EPIC-binary tape in the reader, and type the following
responses to load and save EPIC.

R ABSLDR -
*PTR: 5 -
* S A V E S Y S E P I C -

Once an OS/8 system has been built on a disk, it may occasion-
ally be necessary to start (bootstrap) the system into operation
when nothing is in memory. For example, whenever an RK8E disk
cartridge is placed into its slot and is to be used, the system should
be bootstrapped. Also, if a program error is encountered such that
the contents of locations 7600-7777 in either field 0 or field 1 are
in doubt, the system should be bootstrapped. The following sec-
tions detail the specific bootstrap used for each type of disk.

*

RF08 AND DF32 DISKS
If the OS/8 system device is an RF08 or DF32 disk, use the

bootstrap shown in Table 1-7.

Table 1-7 RF08/DF32 Disk Bootstrap
- -- - -- - - -- - - - - - - - -

STEP OCTAL SWITCH REGISTER AND THEN
' # VALUES SETTING

012 345 678 91011
1 0000 000 000 000 000 press EXTD ADDR LOAD
2 7750 1 1 1 1 1 1 101 000 press ADDR LOAD
3 7600 1 1 1 110 000 000 lift DEP key
4 6603 110 110 000 011 liftDEPkey
5 6622 110 110 010 010 -1iftDEPkey
6 5352 101 011 101 010 lift DEP key
7 5752 101 1 1 1 101 010 liftDEPkey
8 7750 1 1 1 1 1 1 101 000 press ADDR LOAD and

press CLEAR and
press CONT

When the bootstrap has been loaded, the OS/8 Keyboard Mon-
itor should respond with a dot (.). If it does not, repeat the boot-
strap procedure. If an error persists, consult the local Digital sales
office.

RK8E DISK
If only one RK8E disk unit is present on the OS/8 system, use

the bootstrap shown in Table 1-8.

NOTE
If a PDP-12 computer is being used, execute
an 1/0 PRESET in 8 mode before perforrn-
ing step 5 of the bootstrap in Table 1-8.

Table 1-8 Single RK8E Disk Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

- -

012 345 678 91011
000 000 000 000 press EXTD ADDR LOAD
000 000 01 1 000 press ADDR LOAD
l l O A 1 l l 100 011 liftDEPkey
101 000 011 001 lift DEP key
000 000 01 1 000 press ADDR LOAD and

press CLEAR and
press CONT

If more than one RK8E disk unit is present on the system, the
user may choose which unit (0-3) he wishes to be the system de-
vice. To specifythe correct RK8E unit as the system device, load
the OS/8 disk cartridge in the desired unit and enter the bootstrap
shown in Table 1-9.

Table 1-9 Multiple RK8E Disk Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

012
000
'000
11 1
110
110
I l l
101
000

345
000
000
110
11 1
I l l
110
000
000

press EXTD ADDR LOAD
press ADDR LOAD
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
press ADDR LOAD

Enter the desired unit number (0-3) in switch register settings 9
and 10 as follows:

unit 0 all switches down
unit 1 switch 10 up; all others down
unit 2 switch 9 up; all others down
unit 3 switches 9 and-10 up; all others down

Press CLEAR and CONT.

When either of the bootstraps has been loaded, the OS/8 Key-
board Monitor should respond with a dot (.). If it does not, re-
peat the bootstrap procedure. If an error persists, consult the local
Digital sales office.

RK8 DISK
If the user has only one RK8 disk unit on his OS/8 'system, the

bootstrap in Table 1-10 is used to start OS/8. %

Table 1-10 Single RK8 Disk Bootstrap
- -- -- -- - - -

STEP OCTAL SWITCH REGISTER
VALUES SETTING AND THEN

612 345 67s- !?!G!l
1 0000 000 000 000 000 press EXTD ADDR LOAD
2 0030 000 000 01 1 000 press ADDR LOAD
3 6733 110 111 Oil Oil IiftDEPkey
4 5031 101 000 011 001 liftDEPkey
5 0030 000 000 01 1 000 press ADDR LOAD and

press CLEAR and
press CONT

NOTE
If a PDP- 12 computer is being used, execute
an 1/0 PRESET in 8 mode before perform-
ing step 5 of the above bootstrap.

If more than one RK8 disk unit is present on the system, the
user may choose which unit (0-3) he wishes to be the system de-
vice. To specify the correct RK8 unit as the system device, load the
OS/8 disk cartridge in the desired unit and enter the bootstrap
shown in Table 1 - 1 1.

Table 1-11 Multiple RK8 Disk Bootstrap

STEP OCTAL SWITCH REGISTER AND THEN
VALUES SETTING

012 345 678 91011
1 0000 000 000 000 000 press EXTD ADDR LOAD
2 0026 000 000 010 110 press ADDR LOAD
3 7604 1 1 1 110 000 100 liftDEPkey
4 6732 110 1 1 1 011 010 lift DEP key
5 6733 110 1 1 1 011 Oil IiftDEPkey
6 5031 101 000 011 001 liftDEPkey
7 0026 000 000 010 110 press ADDR LOAD

Enter the desired unit number (0-3) in the switch register set-
tings 9 and 10 as follows:

unit 0 all switches down
unit 1 switch 10 up; all others down
unit 2 switch 9 up; all others down
unit 3 switches 9 and 10 up; all others down

Press CLEAR and CONT.
When either of the above bootstraps has been loaded, the OS/8

Keyboard Monitor should respond with a dot (.). If it does not,
repeat the bootstrap procedure. If an error persists, consult the
local Digital sales office.

Restarting OS/ 8
If the OS/8 system ever ceases apparent response to the user,

the computer can be restarted by loading a restart address of either
7600 or 7605. To load a restart address, set the console switches
to 7600 or 7605, press the HALT, ADDR LOAD, EXTD ADDR,
CLEAR, and CONT switches. A period should be printed on the
terminal. If there is no response, OS/8 is no longer in memory and
must be bootstrapped in.

Starting at location 7600 causes the contents of locations 0-1 777
to be saved on the system device. These locations are then available
when the Keyboard Monitor resumes operation. Starting at 7605
does not save the core locations, but does save time on a DECtape
configuration.

KEYBOARD MONITOR
The Keyboard Monitor provides communication between the

user and the OS/8 executive routines by accepting commands
from the terminal Keyboard. The Keyboard Monitor allows the
user to create logical names for devices, run system and user
programs, save programs and to call ODT.

System Conventions
The OS/8 system has various conventions which are quickly

mastered by even the novice programmer. Naming procedures
for devices and file extensions have been designed as simple
mnemonics. OS/8 makes use of the terms: "word", "page",
ui-erTtfd99, on^ " I ~ l ~ k ~ ~ 0s -mni to uaxx'a ~f stcragc. l~ d i r ~ ~ t ~ q listicg~
and elsewhere file lengths are referenced in terms of blocks (or
records). The terms are defined as follows:

1 block = 1 record = 2 pages = words

Each word is composed of 12 bits. The internal structure of the
PDP-8 words and pages is described in detail in Chapter 2 of
Introduction to Programming

PERMANENT DEVICE NAMES
Each device in the OS/8 system is referenced by means of a

standard permanent device name. These names are used in all
1/0 designations and are listed in Table 1-12.

These names are the device names assigned when the OS/8
system is configured. They may be changed by reconfiguring the
system; however, caution should be observed when doing so.
Certain system programs operate on the premise that a specific
device name will be present in the system; for instance, PIP makes
use of the device name TTY: as the default device when doing
directory listings, CREF assumes LPT: as the default output
device, and the Command Decoder uses device DSK: as the
general default output device. Therefore, it is suggested that the
following device names remain present on the system:

SYS:
DSK:
TTY:
LPT:

Table 1-12 Permanent Device Names

Permanent Name I/O Device

S Y S

DTAn

LTAn

DSK

TTY

PTP

PTR

CDR

LPT

CSAn

MTAn

D F

RF

RKAn

TV

BAT

System device (disk if the system has a large disk
-RK8 or RF08; otherwise DTAO) .
DECtape n, where n is an integer in the range 0
to 7, inclusive.

When using BUILD, LINCtapes may be called
LTA rather than DTA. n is an integer in the range
0 to 7 inclusive. .

The default storage device for all files. The assign-
ment of DSK is specified at system generation
time. Usually DSK is the disk on a single disk sys-
tem or DTAO on a DECtape system.

Terminal keyboard and printer.

Paper tape punch.

Paper tape reader (before accepting input, the sys- ,

tern prints an up-arrow (f), to which the user re-
plies by typing any key).

Card Reader

Line printer (performs a form feed before it be-
gins printing output from a new program).

Cassette drive n, where n is an integer in the range
0 to 7, inclusive.

Magnetic tape drive n, where n is an integer in the
range 0 to 7 inclusive.

DF32 disk.

RF08 disk.

RK01 or RK05 disk unit n, where n is an integer
in the range 0 to 3.

VR12 scope (PDP-12 only).

Pseudo device which reads from BATCH input
stream (see BATCH section in Chapter 2).

FILE NAMES AND EXTENSIONS
Files are referenced symbolically by a name of up to six alpha-

numeric characters followed, optionally, by a period and an ex-
tension of two alphanumeric characters. The extension to a file
name is generally used as an aid for remembering the format of
a file. Some commonly used extensions are given in Appendix 'G.
Some programs (e.g., FOTP) also accept the characters * and ?
in file names. These characters have special meanings to the pro-
grams involved.

In most cases the user will want to conform to the standard
file name extensions established for OS/8. If an extension is not
specified for an output file, some system programs append assumed
extensions. Where an extension for an input file is not specified
by the user, the system does a search for that file name with the
default extension. Failing to find such a file, a search is then
done for the original file without an extension. For example, if
PROG were specified as an input file to PALS, the Command
Decoder would first look for the file PROG.PA (since .PA is the
standard extension for PAL8 input files). If PROG.PA were
not found, the Command Decoder would try to find the file PROG

' (with no extension). As not all system programs utilize default
extensions, reference the following table and the individual system
programs for details:

Table 1- 13 Assumed Extensions

Extension Meaning
- - -- - - -- - --

.SV Core image file or SAVE file; appended to a file name
by the R, RUN, SAVE, and GET Keyboard Monitor
commands.

.FT 8K FORTRAN source file.

.SB 8K SABR source file.

.PA PALS source file.

.BN Absolute binary file (default extension for ABSIDR,
BUILD, and BITMAP input files. Also used as the de-
fault extension for PALS binary output file).

Table 1- 13 Assumed Extensions (Cont.)
- - --

Extension Meaning

.RL Relocatable binary file (default extension for a Linking
Loader input file. Also used as the default extension for
an 8K SABR output file).

.MP File containing a loading map (used by the Linking
Loader). Also used as default extension for BITMAP
output files.

.LS Assembly listing-output file (default extension for PAL8
and SABR).

.TM Temporary file generated by FORTRAN or SABR for
system use (default extension for CREF input files and
PALS output files).

For example, if the user types:

.RUN DSK PROG -
Â¥

the file PROG.SV (on device DSK) is run, if found. If the user
types :

*RUN DSK PROG-A -
then PR0G.A (on device DSK) is run, if found.

Using the Keyboard Monitor
Each command to the Keyboard Monitor is typed at the

terminal keyboard. If corrections are necessary, they must be
made before entering the command line to the system. A com-
mand line is entered to the system by typing either the RETURN
key, which causes a carriage return/line feed operation but no
printed character, or an ALTMODE (ESCAPE on some Tele-
type Keyboards), which prints a $, but causes no carriage return/
line feed. Correcting mistakes is accomplished by typing the RUB-
OUT key, which deletes the last character typed and causes a
backslash (\) character to be printed followed by the character

which was deleted. Successive RUBOUTS each cause one more
character to be printed and deleted. The first non-RUBOUT
character typed (after the last RUBOUT in a sequence) causes
a closing backslash (\) to be printed, thus enclosing the deleted
characters with backslashes. For example:

User types: - .RUN DSK (RUBOUT) (RUBOUT) (RUBOUT) DTA1 :FILE
Teleprinter
Shows: - RUN DSK\KSD\DTAl : F I L E

If at any time an input line becomes so corrected that it is no
longer intelligible to the user, he can verify the contents of the
line by typing the LINE FEED key. This causes the entire input
line to be echoed as the Keyboard Monitor would see it at that
point. The line is not considered to be entered to the system, and
the user can proceed to edit, delete, or enter the line at his
discretion.
For example:

User types: ,RUN DTA3\3\2:PRG \G\OG (LINE FEED key typed)

System echoes: RUN D T A ~ : PROG
Ã

A command line may be deleted completely before it is en-
tered by typing a CTRL/U (produced by pressing the CTRL key
and U key simultaneously). This echoes as a TU, and returns con-
trol to the Keyboard Monitor without accepting the current input
line. Typing a CTRL/U causes a dot (.) to be printed at the left
margin and the Keyboard Monitor is ready to accept commands.

Control can be returned to the Keyboard Monitor while under
any of the system library programs by typing a CTRL/C (pro-
duced by pressing the CTRL and C keys simultaneously). This
echoes as a TC and the Keyboard Monitor signals that it is ready
to accept input by printing a dot (.) at the left margin of the ter-
minal screen or paper.

KEYBOARD MONITOR COMMANDS
The user has a choice of nine commands which he may type in

response to the dot (.) printed by the Keyboard Monitor. These
are: ASSIGN, DEASSIGN, GET, SAVE, ODT, RUN, R, START,
and DATE. Commands may be abbreviated by typing only the
first two characters. Execution occurs after typing the RETURN
or ALT MODE key.

Any errors the user may make while utilizing these commands
result in an error message being printed by the Keyboard Monitor.
After occurrence of an error, control returns to the Keyboard
Monitor and the command must be retyped. The error messages
and their explanations are listed in Table 1-14, following the de-
scriptions of the commands.

In addition to the Keyboard Monitor commands discussed in
this section, certain extended commands and features are available
to the user through the Concise Command Language (CCL). CCL
simplifies the entry of certain commands and performs operations
which could not be performed otherwise. See the CCL section in
this chapter for further information.

ASSIGN Command
The ASSIGN command is ofthe form:

ASSIGN dev udev
or

.AS dev udev

This command causes a new, user-defined device name (udev)
to be considered equivalent to the permanent device name (dev).
Only one ,user name can be associated with a single device at a
time. For example:

causes all future references to IN to refer to DECtape unit 1,
(references can still be made to the device DTA1 also).

If a user-defined device name is not indicated, any existing

user-defined name is removed and only the permanent device name
is valid. For example:

* A S DTA1 IN -
. A S DTAl -
The above sequence changes the name of DECtape 1 to IN and
then back to simply DTAl again.

The user-defined name is composed of up to four alphanumeric
characters; the user-defined name takes precedence over the per-
manent name. Device-independent programs are easily possible
since a change in the user name of a device by means of the AS-
SIGN command can change the operation of a routine without
changing the code.

Although user-defined names may be four characters long, the
name may not be unique in the OS/8 system. (This is due to the
fact that the device name is internally coded in only one word.)
A three or four character name may be tested for uniqueness by
typing an ASSIGN command as follows:

.AS name

If a 'name NOT AVAILABLE' message results, the name is
unique within the current system, is not in the system tables, and
therefore may be used.

All user-defined device names of one or two characters in
length are unique.

DEASSIGN Command
The DEASSIGN command is of the form:

and causes all permanent device names to be restored, dis-
carding all previous user-defined device names. For example:

causes DECtape 1 to be assigned the name IN. The DEASSIGN
command removes the name IN from the system tables; DTA1
can no longer be referenced as IN.

GET Command
The GET command is of the form :

.GET dev file-ex
or

.GE dev fi1e.e~

The GET command loads core image files (.SV format, not
ASCII or binary) into core from a device. This device (dev) is
specified along with the file name (file) and an optional file name
extension (.ex). The file is loaded into core with its core control
block; the core control block is then moved to a special area on
the system device, where it is maintained on the system device
and contains information about the file such as its starting ad-
dress and areas of core occupied by the file. Also contained is a
Job Status Word, which is saved (with the SAVE command) and
loaded in location 7746 of field 0 with the file to indicate what
parts of core the file uses and how, as follows:

Job Status Word

Bit Condition Meaning

B i t 0 = 1 . File does not load into locations 0-1777 in
field 0, (0000-1 777).

Bit 1 = 1 File does not load into locations 0-1777 in
field 1, (10000-11777).

Bit 2 = 1 Program must be reloaded before it can be
restarted because it modifies itself during exe-
cution.

<:

Bit 3 = 1 Program being run will not destroy the BATCH
monitor.

Bits 4 -- 9 Unused, and reserved for future expansion.

Bit 10 = 1 Locations 0-1 777 in field 0 need not be saved
when calling the Command Decoder overlays.

Bit 11 = 1 Locations 0-1777 in field 1 need not be saved
when calling the USR.

A core control block is created for each core-image file when the
file is created by the Linking Loader, ABSLDR, or the SAVE
command.

If a file name extension is not specified to the GET command,
the extension .SV (for core-image file) is added automatically to
the file name. For example:

attempts to fetch the file OH.SV from device DTA3.
The GET command is typically used before a debugging ses-

sion with ODT. GET is used to load the object program into
core, then ODT is called: and the program can be altered and/
or debugged (see the section on ODT for more details).

' SAVE Command
The SAVE command is of the form:

.SAVE dev fi1e.e~ a-b,c ,... ;s=n
or

.SA dev fi1e.e~ a-b,c ,... ;s=n

where :

a-b,c, ...

;s

=n

are the addresses of the areas and locations in core to
be saved. (In this case, locations a through b, loca-
tion c, and any other specified locations.) a, b, and c
are five digit locations. (The first digit represents the
field.) When a single location is indicated (c) the
entire page on which c is located is saved.

is the starting address of the file.

n is a four digit octal number representing the con-
tents of the Job Status Word (see the GET command).

The program currently in core is saved on the device (dev)
specified, with the file name indicated (fi1e.e~). If an extension
is not specified, the extension .SV is automatically added by the
system. If the remaining arguments are not given, the required
information is taken from the current core control block (refer
to the GET command).

There are some restrictions on the. SAVE arguments which
should be noted:

1. Each set of limits (a-b) must be in the same field and not
cross field boundaries. For example:

SAVE S Y S F O O '0200-20200 -
J

is illegal since the limits transcend a field boundary.
2. No two sets of limits can overlap; (i.e. a-b, c-d must not

overlap). In fact, once a location on a specific page is in-
cluded in the limits, any other location on that-care page,
whether overlapping or not, will produce an error message.
For example :

.SAVE SYS FOO 0-200,201-377 is illegal. -

3. In SAVEs involvingmemory fields other than field 0, the
field must be specified beforeeach of the two core limits.
If the field is unspecified, field 0 is assumed. Thus:

SAVE SY S FOO 20200- 0 377 is illegal, while -
.SAVE SYS FOO 20200-20377 islegal. -

4. SAVE files can include 7600 in any field. However, extreme
care must be taken when manipulating these areas, particu-
larly in fields 0 and 1, as the system resident code could
be destroyed by GETting area 07600-07777. It is sug-
gested that SAVEs involving 7600 be limited to fields above
field 2.

5. If the first location of a page is not a multiple of 400, that
page cannot be saved without the previous page. Thus the
following commands are equivalent:

.SAVE DSK PROG 2634

.SAVE DSK PROG 2400-2777 -

If an error message is printed in response to a SAVE command,
the program currently in core has not yet been saved. The core
image, however, is still intact.

Examples of SAVE commands are:

SAVE DSK CPROG 55,10500- 10577.5 10502 -

This statement saves the program in core on the disk as a file
named CPROG.SV. The areas of core saved are locations 0 to
177 in field 0 and locations 400 to 577 of field 1 (when a single
core location or part of a pase is indicated, the entire page on
which the locations occur is saved). The starting address of the
program is 502 in field 1. The core control block is updated to
contain this information and the old Job Status Word is taken
intact from the original core control block.

.SAVE DSK CPROG -
The above statement causes the program in core to be saved on
device DSK under the name CPROG.SV where the areas of core
to be saved are taken from the core control block currently
available.

ODT Command
The ODT command is of the form:

This command causes the system ODT to be loaded into core
and started-. ODT is a system overlay, and as such takes up none
of the user's program area unless the breakpoint feature is used,
in which case ODT uses locations 4, 5, and 6 of every field in
which a breakpoint had been placed. When using ODT to debug
programs, the user-defined device names cannot be used; each
1/0 device must be called by its permanent device name.

ODT is described in greater detail later in this chapter.

RUN Command
The RUN command is of the form:

.RUN dev fi1e.e~
or

.RU dev fi1e.e~

The RUN command, like the SAVE command, handles only
core-image files. The file indicated (fi1e.e~) on the device speci-
fied (dev) is loaded into core and its core control block is moved
to the system scratch area. The program is started at its starting
address. The RUN command is equivalent to a GET and a START
command.

If an extension to the file name is not specified, the extension
.SV is automatically added to the file name. For example:

.RU DTA-1 PROG -
causes the file PROG.SV on DECtape 1 to be loaded and started.

R Command
The RCommand is of the form:

,R fi1e.e~
and is similar to

.RUN SYS fi1e.e~

This command handles only core image files from the system
device. The file is loaded and started. If the file name extension
is not specified, the extension .SV is automatically added.

The R command differs from the RUN command in that a core
control block is not written to the system device. In order to save
a program which does not have its core' control block in the usual
location on the system device, all the optional arguments of the
SAVE command must be explicitly stated. System programs are
most often called using the R command, since they need not be
resaved.

To call a program which is to be later updated and saved, use
of the RUN or GET commands is suggested.

START Command
The START command is of the form:

.START nnnnn
or

.ST nnnnn

The program currently in core is started at location nnnnn. If the
argument nnnnn is omitted, the program is started at the starting
address specified in the core control block.
For example :

* S T 10555 -
*

starts the program in core at location 555 in field 1.

starts the program at the starting address given in the core control
block.

The START command clears certain areas of core-the device
handler in core table and the Command Decoder output area.

DATE Command
The DATE command is of the form:

.DATE mm/dd/yy
or

.DA mm/dd/yy

The DATE command sets up the date in the system for purposes
of dating directory entries and listings, printing on program output,
etc. For example :

indicates that the date is March 13, 1974.

Keyboard Monitor Error Messages
Table 1-14 lists the generalized and command Keyboard Monitor

errors. All errors return control to the Keyboard Monitor and the
command must be retyped. xxxx indicates the core location where
the error was detected.

1-42

Table 1- 14 Keyboard Monitor Error Messages

Message Meaning

BAD ARGS

BAD CORE IMAGE

BAD DATE

ILLEGAL ARG.

MONITOR ERROR 2 AT xxxx
(DIRECTORY I/ 0 ERROR)

MONITOR ERROR 5 AT xxxx
(I/O ERROR ON SYS)

MONITOR ERROR 6 AT xxxx
(DIRECTORY OVERFLOW)

name NOT AVAILABLE

name NOT FOUND

NO! !

The arguments to the SAVE com-
mand are not consistent and violate
restrictions listed in 1, 2, 3 under
SAVE command.

The file requested was not a core-
image file (it could have been an
ASCII or binary file).

The date has not been entered cor-
rectly (using slashes), or incorrect
arguments were used, or the date
was out of range.

The SAVE command was not ex-
pressed correctly; illegal syntax used.

Attempt made to output to a
WRITE-LOCKed device, usually
DECtape; or an error has occurred
reading/writing a directory.

An error occurred while doing I /O
to the system device. This error is
normally the result of not WRITE-
ENABLing the system device.

This message results if a directory
overflow has occurred (no room for
tentative file entry in directory).

The device with the name given is
not listed in any system table, or it
is not available for use at the moment
(check the device in question), or
the user tried to obtain input from
an output-only device (such as the
high-speed paper tape punch).

The file with the name given was not
found on the device indicated, or the
user tried to input from an ontput-
only device.

The user attempted to start (with
.ST) a program which cannot be
started. The user must not restart
any user program or system library

Table 1-14 Keyboard Monitor ~ k o r Message (Cont.)

Message Meaning

NO CCL!

SAVE ERROR

SYSTEM ERR

TOO FEW ARGS

USER ERROR 0 AT xxxx

abed?

program which modified itself while
in core (bit 2 of the Job Status Word
is set; see the GET command for
details).

The command was not a legal key-
board monitor command. It was, how-
ever, a valid CCL command, but the
file CCL.SV was not found or an
I/O error occurred while trying to
read the file.

An I/O error has occurred while
saving the program. The program re-
mains intact in core.

An error occurred while doing I /O
to the system device. The system
should be restarted at 7600 or 7605.
Do not press CONTinue, as this is
sure to cause further errors.

An important argument has been
omitted from a command. For ex-
ample,

would generate this message, as the
program to be run has not been
entered in the command.

An input error was detected while
loading the program. xxxx refers to
the Monitor location where the error
was generated.

Where abed is not a legal command;
for example, if the user typed:

. HELLO -
the system would echo:

HELLO?

COMMAND DECODER
Once a system program has been called via the Keyboard Mon-

itor, that system program may make use of the Command Decoder
by permitting the user to enter a list of 1/0 files and devices. The
Command Decoder prints an asterisk (*) at the left margin to
indicate it is ready to accept a command string.

The Command Decoder uses the same keyboard characters as
the Keyboard Monitor for the purpose of correcting typing mis-
takes. The RUBOUT key deletes one character per rubout. The
CTRL/U (tU) combination deletes an entire line. CTRL/C re-
turns the user to the Keyboard Monitor, and the LINE FEED key
causes the entire line (preceded by an asterisk) to be printed on
the terminal as it appears in the TTY input buffer.

The description of files, file names, extensions, devices, and de-
vice names is contained in the section concerning the Keyboard
Monitor; this description pertains to the Command Decoder as
well.

Command Decoder Input String
The expected string for 1/0 specification takes the form:

DEV: OUTPUT FILES<DEV: INPUT FILES

(While the left angle bracket (<) is the accepted divider character
between output and input files, the back arrow (+-) may also be
used.) There may be 0-3 output files and 0-9 input files, depending
on the requirements of the individual system program. The par-
ticular I /O string used with each system library program is de-
scribed in its respective section.
For example :

The PAL8 assembler would use the first output file (DTA1 :XY 1)
for the binary output of the assembly and the second output device -

(LPT:) for the listing. DSK:PROG or PROG.PA is the input
source file.

Multiple file specifications are separated by commas. If no out-
put files are indicated, the left angle bracket can be omitted. For
example :

*DSK: PROG -
would cause the file PROG on device DSK to be accepted as an
input file.

The forms in which 1/0 files may be specified in a command
string are illustrated below:

File Specifications

Form Example - Meaning

DEV1CE:FILE - ~ D T A ~ : F I L E I The I/O file is to be found
NAME under the specified name

(FILE1) on the device indi-
cated (DTA3 :)

DEVICE : - *LPT: When a device is indicated
without an associated file name,
the device is usually a non-
directory device. (If a direc-
tory device is used, the device
can be read, but not written;
for example, referencing DTAO

"causes the entire DECtape
Unit 0 to be used as the input
file. DSK: is always the default
output device.)

FILENAME- - * N A M E < D T A ~ : PROG A file name used without an
associated device indicates
that the file will be found on
an assumed device. For all
output files and the first input
file, the device is assumed to
be DSK:. The example indi-
cates DSK:NAME as an out-
put file. For input files after

File Specifications
*

Form Example Meaning

the first, the device is assumed
to be the device of the pre-
vious entry. For example:

causes the three input files to
be taken from DTA1.

NULL FILE The absence of an explicit
* J LPT< DTA 1 : QUEST, DTA2 : STAR file specification has different -

meanings in context, and is in-
dicated by a comma which is
not preceded by a file desig-
nation. For output files, a null
file indicates that there is no
output file for this position. If
the example given were an in-
put line to PALS, the first out-
put file (binary) would not
be generated, but the listing
would be output to the line
printer. For input files, a null
file indicates that the device
of the most recent entry is to
be used as a non-directory
device :

This input string allows three
paper tapes to be read from
the high-speed reader.

EXAMPLES OF COMMAND STRINGS
.-

Some examples of command strings specifying 1/0 are shown
below with appropriate explanations.
Example 1:

The file named SOURCE is the input file on device DSK: The
two output files are BINARY on DSK, and a second file on the
line printer (LPT). The PALS assembler uses this format; how-
ever, the assembler also adds the extension .BN onto the file
labeled BINARY. Thus, the output file on device DSK: will be

3 n T X T A n D X T nanicu DU'M finK.i-nF.

Example 2:

* I N P U T 1 -, INPUTS-, I N P U T 3 9 PTR: J -
This is a string of input files with no outpui file. Notice that the
left angle bracket is not necessary if there are only input files spec-
ified. This type of input might be given to one of the loaders
(which do not require output files). Three files are taken from
device DSK and then two are taken from the paper tape reader
(PTR: ,).
Example 3:

The input files C and D are taken from device XYZ (which could
be any device with the user-defined name XYZ). T h e output
files are a file named A on DTA2 and a file named B on DSK.
Example 4:

The input file is named SRC and is on DSK. The two output files
specified are one null file (no output file in that position) and a
file to be sent to the line printer (LPT) .
Example 5:

As in Example 2, this is another input only file string. The first
input file comes from the paper tape reader, as does the second
(PTR:,,). The third input file is named X and is on DTA1.
Example 6:

Both input files in this example come from the Teletype (gener-
ally the low-speed reader). The single output file is named A and
is stored on DSK.

INPUT/OUTPUT SPECIFICATION OPTIONS
In addition to output and input files which are indicated on the

file specification line to the Command Decoder, there are various
options which can also be indicated on this line. These options
are interpreted by the individual system programs and are covered
in detail in the sections describing the various programs. Options
are either numbers or alphanumeric option characters.

Numbers used as options are generally contained in the
command line with the equal sign (=) or square brackets ([1)
construction. The alphanumeric option characters are set off from
the 1/0 specifications by the slash (/) character for single char-
acter options, and parentheses for a string of single characters.
The usage of the slash, parentheses, equal sign, and square
brackets is explained below. These explanations will serve as
references and format specifications once the user has learned from
reading about each individual program which options he will be
needing.

The format for input to the Command Decoder looks generally
like the following:

DEW OUPUT FILES<DEV : INPUT FILES/OPTIONS

The Slash Construction
A single alphanumeric option character is preceded by a slash

and can occur anywhere in the input line, even in the middle of a
name, although the usual position is after the file specification. For
example:

is equivalent to:

The option specified is L, which PIP interprets as a command to
list the DSK directory beginning at file AB.

The Parentheses Construction
Any number of option characters can be grouped together in-

side parentheses. This construction is also valid anywhere in the
input line. For example:

is equivalent to:

The Equal Sign Construction
An octal number up to seven digits long and preceded by an

equal sign (=) may optionally be used as an indicator. This
construction is often used to set a starting address, but may be
assigned other functions as well. It may only occur once in a line
and must be followed by a separator character (comma, left
angle bracket, back arrow. ALT MODE key or RETURN key)
or by other options and a separator character. The following
example uses the equal sign construction and indicates three sep-
arate options :

Interpretation of options and = sign numbers varies depending
upon the program which called the Command Decoder. See the
individual system programs for details.

The Square Bracket Construction
The square bracket construction can only occur immediately

after an output file name and consists of an open bracket, a decimal
number between 1 and 255, and a close bracket. The square

bracket construction is generally only used by the more sophis-
ticated user to optimize file storage.

The open bracket ([) is produced .by holding down the SHIFT
key while typing a K (i.e., SHIFT/K); the close bracket (I) is
produced by typing a SHIFT/M. This construction is used to
provide an upper limit on the number of blocks (256 words per
block) to be contained in the output file in order to allow the
system to optimize file storage. For example:

The output files are a file named BINARY on device DSK: having
a maximum length of 19 blocks, and a file name LISTIN (only
six characters are significant) on the device DSK with a maximum
length of 200 blocks. The input file is SOURCE on device DSK;
the option specified is 8, which is interpreted by the program
being run.

Command Decoder Error Messages
The following is a complete list of the error messages which the

Command Decoder generates if a command string is improperly
input.

Table 1- 15 Command Decoder Error Messages
- - -

Message Meaning

ILLEGAL SYNTAX The command line was formatted in-
correctly or contains illegal characters.

name DOES NOT EXIST The device with the name specified
could not be found in the system tables.

name NOT FOUND The file with the name specified does
not exist on the device indicated.

TOO MANY FILES More than three output files or nine
input files were specified. Some pro-
grams may restrict the user to fewer
files.

CCL (CONCISE COMMAND LANGUAGE)
CCL (Concise Command Language) provides the OS/8 user with

an extended set of Keyboard Monitor commands. Some CCL
commands allow the user to call a system program indirectly, per-
form an operation, and return to the Keyboard Monitor. These
commands are more concise than the usual calling sequence of a
program. For example, instead of typing the following to call
PALS:

CCL can he used bv - typing .. - the following command:

*PAL F I L E - L

Other CCL commands perform functions not performed by
other OS/8 programs.

The user may write his own CCL commands and add them to
CCL. See the OS/8 Software Support Manual for instructions on
adding CCL commands.

CCL Commands
CCL commands are entered at the terminal in the same manner

as Keyboard Monitor commands, in response to the dot printed.
Normally, CCL commands are terminated with a carriage return.
Depending upon the command being used, control may return to
the Monitor when the operation is completed or may remain within
another OS/8 program. If the user wishes to remain within control
of another program when control would normally return to the
Monitor, he can terminate the CCL command with an ALTMODE.
This termination procedure is the reverse of the way in which most
OS/8 programs operate.

CCL COMMAND FORMAT
The full CCL command keyword need not be typed; each com-

mand has letters that are required. The CCL commands are listed
below in alphabetic order. Letters that are not required are printed
in italics, e.g., the CREATE command is shown as follows: a

CREATE
to indicate that only the letters CREA are required.
BACKSPACE
BOOT
CCL
COMPARE
COMPILE
COPY
CORE
CREATE
CREF
DATE
DEASSIGN -
DELETE
DIRECT
EDIT
EOF
EXECUTE
HELP
LIST
LOAD
MAKE
MAP
MUNG
PAL
PRINT
PUNCH
RENAME
RES
REWIND
SKIP

' SQUISH
SUBMIT
TECO
TYPE
UA
UB
uc
UNLOAD
VERSION
ZERO

In some cases, there are two commands to run a program. For
example, the MAKE and TECO commands both run the TECO
program, as does the R TECO command.

Most CCL commands are entered by typing the command fol-
lowed by an argument of the form-:

dev : output files <dev : input files/options

This is the 1/0 specification format used by the Command
Decoder. The slash construction and the parentheses construction
can be used to include options in the program being run by CCL.
If no input device is specified, DSK is assumed, If a file name is
specified with no extension but is followed by a dot, no default
extensions are tried. The actual format for each command is shown
in the command discussion.

CCL remembers arguments used by some CCL commands, e.g., i

COMPILE, and can use these arguments in other commands.
(This procedure is explained for each CCL command to which it
applies.) If, however, the DATE command is used to change the
current date, the remembered arguments are erased. Commands
which require remembered arguments produce a BAD RECOL-
LECTION message if no previous argument existed.

CCL COMMAND OPTIONS
Some CCL commands assume the inclusion of options that

wouldhave to be specified if the OS/8 program were called
directly. The DELETE command, for example, runs the FOTP
program, including the /L and /D options. Other options may be
included in the command line with the slash or parentheses con-
struction.

CCL also has options that may be included in a CCL command
line. These options are of the form :

-ex

where "ex" is one of the options specified in Table 1-1 6.

1-54

Table 1-16 CCL Options

Option. Meaning

Send output to LPT.
Generate a listing file (used with the COMPILE, EX-
ECUTE, and PAL commands). The listing file is written
onto SYS if no output device is specified and is given a
.LS extension.
Generate a core map (used with the COMPILE, EX-
ECUTE, and PAL commands).
Do not create a binary file (used with the COMPILE, EX-
ECUTE, and PAL commands).
Send output to PTP.
Send output to TV.
Send output to TTY.

WILD CARD CONSTRUCTION
Certain CCL commands that run the FOTP or DIRECT pro-

grams may use a wild card construction. These commands are
COPY, DELETE, DIRECT, LIST, RENAME, and TYPE.

The wild card construction means that the file name or- the ex-
tension in a CCL command may be replaced totally with an
asterisk or partially with a question mark to designate certain file
names or extensions. The asterisk is used as a wild field to
designate the entire file name or extension. For example:

Ã TEST 1. * All files with the name TEST 1 and any extension.
* .BN All files with BN extension and any file name.
* * All files.

The question mark is used as a wild character to designate part
of the file name or extension. A question mark is used for each
character that is to be matched; e.g., PR?? matches all files begin-
ning with PR that are two to four characters long. For example:

TEST2.B? All files with the name TEST2 and any extension
beginning with B.

TES??.PA All files with a PA extension and any file name
from three to five characters long beginning with
TES.

?? ? ? All files with file names of two characters or less.

Carriage returns and line feeds within the file are ignored, but nulls
are not; the nulls signify end-of-line. Command files may not ex-
ceed one block in length. If a command line is more than 512
characters in length, the following message is printed:

COMMAND L I N E OVERFLOW

NONSTANDARD FILE NAMES (# CONSTRUCTION)
In rare instances, a user may create a file that has a file name

unacceptable to OS/8. For example, a file name could contain
embedded spaces: ABC D.EF. CCL provides an alternate means
of specifying an 8-character file name (6 characters of name and 2
of extension, separated by a dot). The alternate specification is a
16-digit sequence of octal numbers which represent the internal
packed 6-bit representation for the file name. These octal digits are
preceded by a # to identify them as an alternate file name.

For example, the file name:

ABC D.EF

could be replaced by:

The 64 is the octal representation for a space. Note that all 16
digits must be given to use the alternate specification even though
the file name does not contain 16 digits. This is done by specifying
00 for any nonexistent characters. If all 16 digits are not present,
CCL prints the message:

BAD NUMBER

See Appendix A for a table listing the 6-bit octal code to be
used in the alternate file name construction.

BACKSPACE Command
The BACKSPACE command runs the OS/8 CAMP program .

and spaces a magnetic tape or cassette backward a specified num-
ber of files or records. This CCL command works in exactly the
same way as the CAMP BACKSPACE command. When CAMP
has completed a backspace operation, control returns to the Key-
board Monitor. See the CAMP section of Chapter 2 for a detailed
explanation of the BACKSPACE command.

BOOT Command
The BOOT command chains to the OS/8 BOOT program,

allowing the user to bootstrap onto another device or onto another
PDP-8 system. The BOOT command is of the form:

where dv is a mnemonic listed in Table 2-5 in the BOOT section of
Chapter 2. For example, the command:

. BOOT /RF
bootstraps onto the RF08 disk.

If the user wishes to halt before performing the actual bootstrap,
he can type the BOOT command followed by a period, e.g.

BOOT /CA.

The computer will halt, allowing the user to mount a new device.
Pressing the CONT switch completes the bootstrapping operation.
This form of the BOOT command is particularly useful when only
a single disk or DECtape drive exists on the system.

CCL Command

The CCL command disables the CCL program on the OS/8
Keyboard Monitor residing on the system device. This command
has no arguments and is of the form:

CCL

When the CCL command is used, the CCL feature of OS/8 is
deactivated; OS/8 will not accept CCL commands. If CCL is
desired at a later time, it must be reactivated with the R command,
i.e.,

COMPARE Command
The COMPARE command runs SRCCOM and compares two

source files line by line and prints all their differences. This com-
mand has the form:

Each time the COMPILE, LOAD, PAL, or EXECUTE com-
mand is executed, the command with its arguments is remembered
in a temporary file. Therefore, the file name used last can be
recalled for the next command without specifying the arguments
again. If, for example, the EXECUTE command:

EXECUTE TEST I PA

was entered previously, then the COMPILE command to specify
TEST 1 .PA could be:

COPY Command
The COPY command transfers files from one OS/8 1/0 device

to another. The command string can contain one output specifica-
tion and from one to five input specifications. This command runs
FOTP and includes the /L option among any other options
specified by the user.

The COPY command is of the form:

When the user enters a COPY command, the message:

FI L ES COP1 ED:

is printed and each file copied is listed on the terminal.
Examples :

The following command copies all files with .FT extensions from
DTAO to DSK.

. COPY DTA0: * FT
F I L E S COP1 EDZ
PROGl* FT
DTA3* FT
TEST* FT

The following command transfers all files from four to six char-
acters long beginning with FILE and having any extension.

*COPY DTA2: <DTA0: F I L E ? ? * *
F I L E S C OPI ED:
F I L E 1 PA
F I L E S * PA
F I L E x e D A
F I L E Z * BN

To understand the COPY operation, see the FOTP section of
Chapter 2.

CORE Command
The CORE command can be used in two different ways. One

way is the same as the CORE command in BUILD to specify the
highest core field available to the OS/8 system. This form of the
CORE command is :

where n is an octal number in the range 0 to 7, specifying the num-
ber of 4K core banks available to OS/8. The following table indi-
cates the value of n for the available core sizes.

0 all available core
1 8K *
2 12K
3 16K

For example, a system which is to use only 20K of a 32K system
would have the following CORE command:

The other form of the CORE command is the command typed
without an argument. When this form is used, the amount of core
actually in use by OS/8 is printed on the terminal. For example, if
a 32K system has been restricted to 20K by the. CCL or BUILD

. CORE command, the following would appear:

CORE
20K /32K CORE !

If all available core is in use on a 32K system, the following would
be printed. -

CORE
32K CORE!

CREATE Command
The CREATE command runs EDIT (the OS/8 Symbolic

Editor) and opens a new file for creation. The file specification
must consist of a single output file only. For example:

. CREA T E S T l * FT

is the same as

* R E D I T
* T E S T 1. FT<

If no argument is given, the argument used in the last CREATE or
EDIT command is assumed. See the Symbolic Editor section in
this chapter for a detailed explanation of EDIT. .

CREF Command
The CREF command runs the PAL8 assembler, including the

/C option which causes PAL8 to chain to the CREF program.
CREF produces a cross-reference listing file. If no listing file is
specified, the listing is sent to the line printer. For example, the
following command produces a CREF listing of the file DSK:
PROG.PA on the line printer.

DATE Command
If an argument is given with the DATE command, it is treated

as the standard Keyboard Monitor DATE command. If no argu-
ment is given, this command prints the current day and date on
the terminal or prints NONE if no date was specified. For example:

DA
THURSDAY J A N U A R Y 31, 1 9 7 4

If the user has created a file named DATE.SV, the DATE com-
mand runs that program, allowing the user to implement messages
of the day.

DEASSIGN Command
The DEASSIGN command is exactly the same as the Keyboard

Monitor DEASSIGN command. If CCL is enabled, CCL performs
this function instead of the Monitor.

DELETE Command
The DELETE command deletes one or more files from disk or

DECtape. The command string can contain one output specifica-
tion and from one to five input specifications. This command runs
FOTP and includes the /D and /L options among any other
options specified by the user.

The DELETE command has the form:

.DEL dev : file.ex<dev: file.ex/options

When the user enters a DELETE command, the message:

F I L E S DELETED:
/

is printed and each file deleted is listed on the terminal.
Examples :

The following example deletes any DSK file with a .BN exten-
sion if a file with the same name and a .PA extension exists on
DSK.

.DEL * * B N < * * P A
F I L E S DELETED:
T E S T 1 EN
T E S T S * BN

The following example deletes from DTAO any file of five or
less characters that begins with DATA and has any extension.

. DEL DTA0: DATA?. *
F I L E S DELETED:
DATA1 PA
DATA 1'. L S
DATA30 B N
DATA6. PA

To understand the DELETE operation, refer to the FOTP
section of Chapter 2.

1-63

DIRECT Command
The DIRECT command produces listings of OS/8 device

directories. The directories produced can be of several varieties,
depending upon the options specified in the DIRECT command
line. The standard directory listing consists of the following
columns: file name, file name extension, length in blocks written,
and creation date. The DIRECT command runs the DIRECT
program. See the DIRECT section of Chapter 2 for a complete
description of DIRECT and the available options.

In addition to the DIRECT options specified, the CCL options
-L, -P, -T, and -S can be used in the DIRECT command line. For
example, the command :

is the same as

. R D I R E C T
*LPT: cDTA1: / C

Both these commands will list on the line printer all files with
the current date that exist on the DECtape on DTA1.

EDIT Commands
The EDIT command runs EDIT (the OS/8 Symbolic Editor)

and opens an already existing file for editing. For example, the
CCL command:

ED1 T DATA 1

is the same as:

R E D I T
* D A T A 1 < D A T A 1

For a detailed explanation of EDIT, refer to the Symbolic Editor
section in this chapter.

If no argument is given, CCL assumes the argument used in the
last CREATE or EDIT command. If the EDIT command is used
with the < option, e.g.,

CCL remembers the argument up to but not including the <. Thus
the next EDIT command with no argument will edit the file TESTS.

EOF Command
The EOF command runs the CAMP program and writes a single

mark (file gap) on the specified magnetic tape or cassette. The
EOF command has the form:

.EOF dev :

where "dev" may be either MTAn or CSAn, signifying the device
on which the file mark is to be written. For example:

EOF MTA3:

writes an end-of-file mark on the magnetic tape mounted on MTA3.
The CCL EOF command operates in the same way as the

CAMP EOF command. See the CAMP section of Chapter 2 for a
detailed explanation of the CAMP commands.

EXECUTE Command
The EXECUTE command produces binary files and/or com-

pilation listings for the specified program files, loads the binary
file, and executes the program. The EXECUTE command has the
form:

The assembler or compiler used is determined by the source file
extension. In addition to the extensions listed in Table 1-17, the
EXECUTE command includes the following:

Extension Program

ABSLDR
LOADER or LOAD

If no file is specified, a search is made for a file with one of the
above extensions. The first such file found is executed.

The EXECUTE command, like the COMPILE command, will
accept processor switches in the -ex form to control the compiler or
assembler used.

Each time the EXECUTE, LOAD, PAL, or COMPILE com-
mand is executed, the command with its arguments is remembered

in a temporary file. If no argument is specified in a EXECUTE
command, CCL remembers the argument of the last COMPILE,
PAL, or LOAD command. For example, if the COMPILE com-
mand :

l COMPILE FILE10 PA

was previously executed, then the EXECUTE command to specify
FILE1 .PA could be:

EXECUTE

HELP Command
The HELP command prints useful information on specified

OS/8 programs. Each OS/8 program has a HELP file (.HL ex-
tension). It is these HELP files that are printed when a HELP
command is issued.

If OS/8 software was supplied on DECtape (or LINCtape), the
HELP files are present on System Tape #2 and can be run by
mounting that tape and specifying the unit in the HELP command.
For example, to print the HELP file for FOTP from the DECtape
mounted on DTA1, type:

If the OS/8 software is supplied on paper tape, the HELP files
are on DEC-S8-OSYSB-A-PA. The HELP file tape is composed
of separate segments with a short length of leader/trailer code be-
tween them. The files are listed below in the order that they appear
on the tape.These file segments must be separated and labeled be-
fore they can be used.

If no output device is specified, LPT is assumed.

LOAD Command
The LOAD command runs one of the OS/8 loaders, depending

on the extension of the first specified input file. The LOAD com-
mand is of the form:

A .BN extension runs ABSLDR. A .RL extension runs
LOADER (or LOAD). If no extension is given, a search is made

n,'̂ nnp of these extensions: The ,/G option may be f ~ r iz 1112 V V l L l A "*A"

specified to start execution of the program after it is loaded. If no
argument is given, CCL remembers the argument of the last COM-
PILE, PAL, or EXECUTE command.

MAKE Command
The MAKE command runs TECO and opens the specified file

for output. The MAKE command has the form:

.MA dev: file.ex

If no device is specified, DSK is assumed. If no file extension is
specified, .PA is assumed. If the file specified already exists, CCL
prints the message:

X S U P E R C E D I NG

Example :
The CCL command:

is the same as the following:

. R TECO
*EWDTA1: TEXT. TX SS

- -

To use the MAKE command, the user. must be familiar with
TECO as explained in Chapter 2.

MAP Command
The MAP command runs BITMAP and produces a core map of

the specified file. The MAP command is of the form:

.MAP dev : fi1e.e~

If no output device is specified, TTY is assumed. If no extension
is specified, .BN is assumed.
Example :

The CCL command:

M A P TEXT, DATA

is the same as

. R BITMAP
TTY: <TEXT. BN, DATA BN

See the BITMAP section of Chapter 2 for a complete explana-
tion of the BITMAP program.

MUNG Command
The MUNG command allows the user to operate on source files

and text using a predefined TECO macro. This command has the -

form :

.MUNG dev : file.ex,text

The MUNG command runs TECO which reads the first page of
the specified file into Q-register Y. The contents of this file are
assumed to be a TECO macro. If no extension is specified, .TE is
assumed. If a dot is typed after the file name, no extension is
assigned.

After the page is read in, all text between the comma and the
end of the line is entered into the TECO text buffer. This text is
presumed to be an argument to the macro. If no text is desired, no
comma is necessary. With the text pointer at the end of the buffer,
the macro in Q-register Y is executed. In the following example, the
text will specify source files to be edited by the TECO macro.

If the text argument is too long, CCL prints the error message:

COMMAND TOO LONG

Example :
This example assumes that the user wishes to remove the line

feeds from several files that contain carriage return and line feed
characters at the end of each line. This operation is desirable for
certain data files.

To perform this operation, the user has created a file called
MACRO.TE. This file contains the following.

HX ! Argument to Q-register 1
! HKGY! Move macro into text buff
! J ~ S F I L E S - ~ D G 1 ! Enter argument into macro
! J ~ S START ! s 0, . K ! Remove preamble
: d~ :I:<XYS : Izsert ccxm1132d tc kill Y
! H X ~ M ~ ! Move text buff into Q-register 1

and execute as macro

! ! START !
EBFILES ! Open file

* * * Any user TECO code may be substituted here * * *

! <N
S-D> ! Search for and remove line feeds

! EX! Exit back to Monitor

To remove the line feeds from a series of files, the user specifies
the name of the above file (MACRO.TE) and the name of the file
from which the line feeds are to be removed. For example:

.?SUNG MACRO>FILEl-DA

.MUNG MACRO, FI LE2 l DA
oMUNG MACRO,FILE10.DA

PAL Command
This command runs PAL8 and assembles the source file specified

as the argument of the PAL command. The PAL command has the
form :

If no extension is given, a search is made for a file with a .PA
extension. If no argument is given, CCL remembers the argument
of the last COMPILE, EXECUTE, or LOAD command.
See Chapter 3 for a detailed explanation of PALS.

PRINT Command
The PRINT command runs a program named LPTSPL, if the

user has such a program on his OS/8 system. This can be a user-
written program or a program obtained from DECUS.

PUNCH Command
The PUNCH command runs PIP and punches the file specified

on paper tape. This command has the-form:

.PU dev: file.ex<dev: file.ex

If no output is specified, PTP is assumed.

RENAME Command
The RENAME command renames one or more files on disk or

DECtape. The command can contain one output specification and
one input specification, RENAME changes the name of the file
from the input file name to the output file name. This command
runs FOTP and includes the /R option. The form of the RENAME
command is:

.REN dev: file.ex<dev: file.ex

When the user enters a RENAME command, the message:

F I L E S RENAMED:

is printed and each file renamed is listed on the terminal.
Examples :

REN DTA0: F I L E0* T X c D T A 0 : F I L E 1 TX
F I L E S RENAMED:
F I L E l o T X

REN NEWONE* BN<OLDQME* BM
F I L E S RENAMED:
OLDONE- BN

RES Command
The RES command runs the RESORC program and lists the

device handlers present on an OS/8 system. This command has the
form:

.RES dev : file.ex<dev : file.ex/options

Any option allowed on a RESORC command line is allowed
with the RES command. See the RESORC section of Chapter 2 for
a detailed explanation.

REWIND Command
The REWIND command runs the CAMP program and issues a

rewind command to a specified OS/8 device controller. This com-
mand operates in the same way as the CAMP REWIND command.
See the CAMP section of Chapter 2 for a complete description of
the REWIND command.

SKIP Command
The SKIP command runs the CAMP program and advances

over the number of files or records specified on a magnetic tape.
' See the CAMP section of Chapter 2 for a complete description of
the SKIP command.

SQUISH Command
The SQUISH command runs PIP, including the PIP /S option.

This command has the form:

.SQ dev: <dev:

If no output device is specified, the output device is assumed to
be the same as the input device. The following example:

is the same as the PIP command:

*SY s: <SY S: / S $

SUBMIT command
The SUBMIT command runs the BATCH program. This com-

mand is of the form:

.SUBMIT dev : file.ex<dev : fi1e.e~

where the output dev and file.ex are the optional spooling output
file and the input dev and fi1e.e~ are the BATCH input file. If no
device is specified, DSK is assumed. If no input extension is speci-
fied, .BI is assumed. See the BATCH section of Chapter 2 for a
complete description of the BATCH program.

TECO Command.
The TECO command runs the TECO program which then opens

the specified input file for reading and creates an output file. The
TECO command may have one output file and at least one input
file as arguments. If no argument is specified, the argument used in
the last TECO or MAKE command is assumed. If no output file
is specified, TECO does an edit backup on the specified file. If no
file extension is specified, .PA is assumed.
Examples :
The CCL command:

T E C O F I L E * BA

is equivalent to

O R TECO
* E B F I L E . BASY Â£ .

and the CCL command:

T E C O WINS* PAeLTA2: W I N * PA

is equivalent to

o R TECO
WIN20 PASERLTA2: .WIN* PAYS

The first page of the input file is read into the text buffer before
control is returned to the user.

If the TECO command is used with the < option, e.g.,

CCL remembers the argument up to but not including the <. Thus
the next TECO command with no argument will edit the, ,file
FILE1.

TYPE Command
The TYPE command runs the FOTP program, including the /U

option, and prints the specified file. The form of this command is:

1-73

.TY dev: file.ex<dev : fi1e.e~

If no output device is specified, TTY is assumed.Thus the CCL
command :

.TY D T A 0 : T E S T l e D A

is the same as

O R FOTP
*TTY: < D T A 0 : T E S T 1. DA/L /U

UA, UB, UC Commands
TL Asle T T A *, TTR "-, and - T T F 1 -- nnmmnnrk "------A are --- 11sp.d ---- to remember and

recall arguments. When one of these commands is typed with an
argument, CCL remembers the argument in a temporary file. This
argument must be a legal CCL command. For example:

l UA COPY DSK: < D T A 0 : * . FT

If the UA command is then typed without an argument, the last
UA argument is recalled and executed as a CCL command.

UNLOAD Command
The UNLOAD command runs the CAMP program and issues a

rewind and turn off line command to the specified magnetic tape
controller. This command may also be used to rewind a DECtape
or to write-lock an RK8E disk. See the CAMP section of Chapter
2 for a complete description of the UNLOAD command.

VERSION Command
The VERSION command prints the version numbers of both the

OS/8 Keyboard Monitor and CCL. This command has no argu-
ments and is of the form:

l VER

ZERO Command
The ZERO command runs PIP, including the /Z option, and

zeroes the device specified. Only file structured devices can be

specified in a ZERO command. The CCL command:

.ZERO DTA7:

is equivalent to

.R P I P
*DTA7: /Z<!

CCL Error Messages
The following error messages may appear in response to a CCL

command.

Table 1-18 CCL Error Messages

Message Meaning

BAD DEVICE The device specified in a CCL
command is not of the correct
form, (e.g., DTAO.PA:).

BAD EXTENSION Either an extension was specified
without a file name (e.g.,
DTAl:.PA) or two extensions

. were specified (e.g., DTA1:
FILE.PA.BN).

BAD MONITOR The version of the Keyboard
Monitor being used is not com-
patible with CCL. A newer ver-
sion of the monitor must be
obtained from Digital before
CCL can be used.

BAD NUMBER A CCL command which uses
the # construction does not
have the full 16-digit specifica-
tion that is required.

BAD RECOLLECTION An attempt was made to use a
previously remembered argu-
ment when no argument was
saved. This error occurs when
no argument was previously
saved or when the DATE com-
mand has been used since the
argument was saved.

BAD SWITCH OPTION The character used with a slash
(1) to indicate an option is not a
legal option.

Table 1-18 CCL Error Messages (Cont.)

Message Meaning

CANNOT CHANGE CORE
CAPACITY WHILE RUNNING
BATCH

% CAN'T REMEMBER

CCL 3X OVERLAY &
MONITOR INCOMPATIBLE

A CORE command was issued
while the BATCH program was
running.
The argument specified in a
CCL command line is too long
to be remembered or an I /O
error occurred.
The version of CCL being used
is not compatible with the Key-

COMMAND LINE
OVERFLOW

COMMAND TOO LONG

CONTRADICTORY
SWITCHES

name DOES NOT EXIST

ERROR IN COMMAND

ILLEGAL * OR ?

ILLEGAL SYNTAX

INPUT ERROR READING
INDIRECT FILE

board on it or present on the
system. Type R CCL to retry.
V L - ----,.- m e Luiiiuiaud line specified
with the @ construction is more
than 512 characters in length.
The length of a text argument
in a MUNG command is too
long.
Either two CCL processor
switches were specified in the
same command line (e.g., FILE-
PA-FT) or the file extension and
the processor switch do not
agree (e.g., FILE.FT-BA).
The device with the name given
is not present on the OS/8 ,

system.
A command not entered directly
from the console terminal is not
a legal CCL command. This
error occurs when the argument
of a UA, UB, or UC command
was not a legal command.
An *or ? was used in a CCL com-
mand that does not accept the
wild card construction. Only
CCL commands that run FOTP
or DIRECT allow the wild card
construction.
The CCL command line was
formatted incorrectly.
CCL cannot read the file speci-
fied with the @ construction.

Table 1-18 CCL Error Messages (Cont.)

Message Meaning

I / 0 ERROR ON SYS:

I/ 0 ERROR TRYING TO
RECALL

NO CCL!

NOT ENOUGH CORE

name NOT FOUND

% SUPERCEDED -

SWITCH NOT ALLOWED
HERE -

TOO MANY FILES

An error occurred while doing
I /O to the system device. The
system must be restarted at
7600 or 7605 (see Restarting
OS/8 in the Getting On Line
With OS/8 section of this chap-
ter). Do not press CONT, as
that will surely cause further
errors.
An I /O error occurred while
CCL was trying to remember an.
argument.
CCL.SV is not present on the -
system device. Refer to the Get-
ting On Line section of this
chapter for instructions on
loading programs onto the sys-
tem device.
The number- specified in a
CORE command is larger than
the number of 4K core banks
on the system.
The file with the name given is
not present on the specified
device, or the user tried to
input from an output-only
device.
The file specified in a MAKE
command already exists. This is
a warning message indicating
that the file is being replaced.
Either a CCL option was speci-
fied on the left side of the < or
was used when not allowed.
For example: COMPARE
FILE-NB.
Too many files were included in
a CCL command.

SYMBOLIC EDITOR
The Symbolic Editor is used to create and modify ASCII source

files so that these files may be used as input to other system pro-
grams (such as FORTRAN, SABR, and PAL8).

The Editor considers a file to be divided into logical units called
pages. A page of text is generally 50-60 lines long, and corresponds
approximately to a physical page of a program listing. (Note that
this is not the same as a core memory page.) The Editor reads
one page of text at a time from the input file into its internal buf-
fer where the page becomes available for editing. The Editor con-
tains commands for creating, modifying, or deleting characters,
lines, or complete logical pages of text.

Calling and Using the Editor
To call the Editor from the system device, type:

R E D I T

in response to the dot (.) printed by the Keyboard Monitor. The
system prints an asterisk (*) at the left margin, and in answer to
the asterisk, the user types the device designation and the output
file name, a left angle bracket, and the input device and file desig-
nation(~). For example:

causes input from the paper tape reader and from a file named
AA1 on DSK. The output file is named ABC and is stored on
DSK.

Once 1/0 file designations are entered, the Symbolic Editor is
ready to accept commands from the keyboard and signifies its
readiness by printing a number sign (#) at the left margin. This
symbol occurs whenever the Editor is waiting for a command.

Any device which operates in ASCII mode and has a device
handler in the system is available for use by the Editor. For ex-
ample, the high and low-speed reader/punch, DECtape, disk,
card reader and line printer are each legal devices. The Editor
only operates properly on ASCII files, however. No error message
is given if non-ASCII files are input to the Editor, but the results
of operations are garbled.

As many as nine and as few as zero input files are permitted.
If the number of input files is zero, (that is, a new file is to be
created using the terminal keyboard) the Editor allows input from
the keyboard via the Append ~ o m m a n d . ~ The Editor uses a key-
board input routine which is independent of the OS/8 terminal . -
handler, thus it is not necessary to specify TTY: as an input device
if text is to be created. (It is, in fact, recommended that TTY: not
be used as an input device, as input buffering may cause a loss of
characters on input.) Commands which attempt to read from any
other device (when no file name is specified) are disabled, and a
question mark (?) appears when a Read command is attempted.

The Editor allows only one output file. If no output file is speci-
fied, the only output operations which may be performed are L
(list buffer on TTY:) or V (list buffer on LP08 line printer).

0

EDITOR OPTIONS
The following three options are the valid 1/0 specification op-

tions for the Editor. (The format for 1/0 specification options has
been previously described in the section detailing the Command
Decoder. After reading these options, the reader is advised to turn
to that section to review the various formats.)

Table 1- 19 Editor Options

Option Meaning
- --

/ A Return control to the Editor after the file is closed (calls
Command Decoder for new files). If / A is not used, con-
trol returns to the Keyboard Monitor.

/ B Convert two or more spaces to a TAB when reading from
input device.

/ D Delete the old copy of the output file (if one exists) before
opening the new output file on the device. If / D is not
used, the old copy of the output file is not deleted until all
data has been transferred to the new file by an E or Q
command.

3See Example Using the Editor for an illustration of using the Editor to
create a program.

For example, the 1/0 specification line:

* D T A 2 : F I L E < D T A l :ARG/D -

deletes FILE on DTA2 (if such a file exists) before creating a new
FILE on DTA2.

Special Key Commands to the Editor
The Editor can be considered as operating in two different

modes: During w command mode, the Editor prints a # at the left
margin indicating that it is waiting for a command from the key-
board. Text mode is the condition of the Editor when it is process-
ing various editing and 1/0 commands (such as Insert and Ap-
pend).

The following commands allow the user to transfer between
modes. (These commands are produced by pressing the CTRL
key and the appropriate character key simultaneously.)

Table 1-20 Editor Key Commands
Ã

Mode in Which
Command Used Meaning

CTRL/ C Text and command Returns control to the Key-
mode board Monitor. The text buffer

is retained and the Editor re-
mains accessible to the user
with the START command. In
text mode, text between the last
carriage return and the fC is
lost.
The START command can be
used to restart the Editor as
follows :
T C

START. - * -
START recalls the Command
Decoder to accept new I/O

Table 1-20 Editor Key Commands (Cont.)

Mode in Which
Command Used Meaning

CTRL/ FORM

CTRL/ U

file designations. When the
START command is given, and
the previous output file is not
closed, that output file and the
contents of the output. buffer
are deleted.

Text Mode Stops the listing of text. Re-
turns control to Command
Mode.

Text Mode Returns the Editor to Com-
mand Mode.

Text Mode Typing CTRL/ U while enter-
ing text from the keyboard
causes text in the current line
to be ignored. A carriage re-
turn/line feed is generated and
the line may be retyped. (The
command is equivalent to typ-
ing rubouts back to the begin-
ning of the line.)

Other special Editor characters used to represent numbers or
-.

perform erasures are listed in Table 1-21.

Table 1-21 Special Characters

Character Example Meaning

.+IC The dot (.) character is used as the . - 7 ~ current line counter character. The

.L dot can be used alone, with + or -
an integer, or any place where a
number can be used.

/ 1 - 7 ~ The slash character is similar in use
1 - 5 ~ to the dot and represents the high- *

est numbered line in the text buffer.

Typing the # in response to Edi-
tor's prompting # prints the cur-
rent version number of the Editor.

Table 1-21 Special Characters (Cont.)

Character Example Meaning

RUBOUT Key Typing the RUBOUT key in text.
mode deletes one character from
the text buffer and causes a back-
slash to be printed. The erasure is
done right to left up to t h e last
CR/ LF. Typing the RUBOUT key
in command mode causes the entire
command line to be deleted.

Editor Text Buffer
In text mode, the Editor performs 1/0 operations on text stored

within the text buffer. Text is input to the Editor buffer until a
form feed is encountered on input. A line of text is terminated by
a carriage return. If no carriage return is present, the text entered
on that current line is ignored. The buffer has room for approxi-
mately 5600 (decimal) characters. When text has been input- to
the extent that there are only 256 decimal locations available in
the buffer, the TTY rings a warning bell. From this point on,
whenever a carriage return is detected during text input, control
returns to the Editor command mode and the TTY bell is rung.
This line-at-a-time input may continue until the absolute end of
buffer is encountered. At this point, no more text will be accom-
modated in the buffe~; a '?' is printed and control returns to com-
mand mode.

TEXT COLLECTION
The OS/8 version of the Editor contains an automatic text col-

lector which reclaims buffer space following the use of a D (delete),
S (Search), or C (Change) command. Formerly, deleted text was I
not physically removed from the buffer; now this text is removed
by the text collector, and the necessary pointers updated. If a full
buffer condition is reached, the user may output lines of text
(using the Punch command, for example), and then delete these
lines from the buffer-text collection is automatic and always oc-
curs on the three commands mentioned above.

- NOTE
If extremely large amounts of text are de-
leted, the text collection process could take
several seconds. For small amounts of text,
no appreciable time is lost. -

Search Mode
There are two types of searches available in the Editor. The

first is the standard character search, and the second is the char-
acter string search which allows the user to search for a combina-
tion of characters. Each is explained in turn.

SINGLE CHARACTER SEARCH
The single character search is of the form:

where m and 11 represent line numbers (m<n), and S initiates the
search ~omrnand.~ This search command searches the entire text
buffer or the line(s) indicated for the search character. The search
character is typed by the user after he types the RETURN key
which enters the command, and does not echo on the terminal
The Editor prinis the contents of the entire buffer or the indicated
line(s) until the search character is found. When the search char-
acter is found, printing stops and the user may type one of the
following :

Option Result -

text Enter text at that point at
which the search character was
found and printing stopped.

CTRL/G (TTY bell rings) Change the search character
to the next character typed;
search continues. If the char-
acter is not contained in the
line, the remainder of the line
will be printed and control will
be returned to command mode.

4A command summary is included in Table .l-23 at the end of this section.

Option Resuh

CTRL/FORM Continue searching for the next
occurrence of the character.

RETURN key End line here, deleting all sub-
sequent text on that line.

LINE FEED key Make two lines out of the cur-
rent line by inserting a car-
riage return at this point.

RUBOUT key Delete characters from this
line. Each rubout echoes a
backslash f\') for each char- ,

acter deleted. When all char-
acters have been deleted,
echoing of '\' stops.

CHARACTER STRING SEARCH
The character string search can identify a given line in the buf-

fer by the contents of that line or any unique combination of char-
acters. This search returns the line number as a parameter that can
be used to further edit the text. There are two types of string search
available: intra-buffer search and inter-buffer search.

Intra- Buffer Character String Search
The intra-buffer search scans all text in the current buffer for

a specified character string. If the string is not found, a ? is printed
and control returns to command mode. If the string is found, the
number of the line which contains the string is put into the current
line counter and control waits for the user to issue a command.

Thus, searching for a character string in this manner furnishes a
line number which can then be used in conjunction with other
Editor commands. This provides a useful framework for editing,
as it eliminates the need to count lines or search for line numbers
by listing lines.

An intra-buffer search is signalled by typing the ALT MODE
key (which echoes as $) in response to the Editor's #. The user
then types the string to be found (up to 20 characters long-any
additional characters typed are echoed but not included in the
search). The search string cannot be broken across line boundaries.

Typing a single quote (') terminates the character string and
causes the search to be performed, beginning at line 1 of the text
buffer. Use of the double quote (") causes the search to begin
at the current line +l. (Use of ' and " as command elements pro-
hibits their use in the search string.)

For example, assume the text buffer contains the following text:

ABC DEF GJO
lA2B3C4DSE6
STRINGABCD

The user wants to list the line that contains ABC; he types:

The search begins with line 1 and continues until the string is
found. The current line counter is set equal to the line in which
the string ABC occurred, and the L command causes the line to be
printed as follows:

ABC DEF GJO

Control returns to command mode, awaiting further commands. If
the user wanted' to find the next reference to ABC, he could type:

In this case, " is a command which causes the last string searched
for to be used again, with the search beginning at the current line
+l. I t is not necessary to enter the search string again. The com-

' mand may be used several times in succession. For example, if the
user wanted to find the fourth occurrence of a string containing the
characters FEWMET he could type:

This command will list the line which contains the fourth occur-
rence of that string. The L (List) command (or any other com-
mand code) can be given following either ' or ". The L command
causes the line to be listed when and if it is found.

To clear the text string buffer, the user can type:

The system responds with a question mark and the text string
buffer is cleared.

The properties of the commands ' and " allow for easy and
useful editing, as the following example illustrates. In order to
change the CIF 20 to CIF 10, the user can give the following
commands :

i?SDUM, ' S C I F 20Â° -
CIF 10 /NEW F I E L D

The above set of instructions first causes the Editor to start at line
1 and search for the line beginning with DUM,. A search is then
made for CIF 20, starting from the line after the line containing
DUM,. When this string is found, the line number of the line con-
taining the string CIF 20 becomes the current line number. The C
(Change) command is given, and the user then changes the line
to the correct instruction.

Since this search feature produces a line number as a result,
any operations which can be done by explicitly specifying a line
number can be done by specifying a string instead. For example:

will list the fourth line after the first occurrence of the text STRING
in the text buffer.

will list all lines between the two labels, inclusive.

will do a character search on the line which contains PFLUG. (The
user types the search character after typing the RETURN key that
enters the line.)

In cases where both strings and explicit numbers are used,
strings should be used first. For example, the following commands:

will not list the next line after the string BAD! occurs. The correct
syntax is:

Inter- Buffer Character String Search
The inter-buffer search scans the current text buffer for a char-

acter string. If the string is not found, the current buffer is written
to the output file, the buffer is cleared, and the next buffer is read
from the input device. The search then resumes at line 1 of the new
buffer. This process continues until either the string is found or no
more input is left. If input is exhausted, control returns to com-
mand mode with all the text having been written to the output file.
If the string is found, control returns to command mode with the
current line equal to the number of the line containing the first
occurrence of the string. For example, a command to find the
character string GONZO may appear as follows:

The J command initiates an inter-buffer search; .the $ is printed
automatically by the Editor, and the user types in the character
string to be sought. The search proceeds, and when the string is
found, control returns to command mode. The user types the .J=

construction to discover the number of the line in the current buffer
on which the string is contained. To find further occurrences of the
string GONZO, the user can use the F command. The F command
uses the last character string entered to search the buffer starting
from the current line count + 1.

The above example causes a search for the string GONZO starting
at the current line + 1. If no output file is specified to the J or F
commands, the Editor reads the next input buffer without attempt-
ing to produce any output. This provides an easy way of paging
through text for a particular string.

After the J or F commands have processed the entire input file,
it is necessary to execute either an E or Q command to close the
output file. If this is not done, the file will be deleted by the
Monitor.

The following two commands may be used to abort the string
search command, once given:

Command Explanation

CTRL/U A CTRL/U will return control to the Editor com-
mand mode if executed while entering text in a
string search command; the string search com-
mand is ignored, as in the following example:

The inter-buffer search for the characters WORD
was aborted by the user typing TU before ter-
minating the string with ' or ".

RUBOUT Executing the RUBOUT key while entering text
for a string search causes the text so far entered
to be ignored and allows a new string to be in-
serted. Editor answers the command by printing
$, as in the following example:

An example of the use of the character string search is contained
in the OS/8 Demonstration Run in Appendix D.

Editor Error Messages
Errors made by the user while running the Editor may be of two

types. Minor errors (such as an Editor command string error, an
attempt to execute a read or write command without assigning a
device, or a search for a nonexistent string) will cause a question
mark to be printed at the left margin. The command may be re-
typed. Major errors cause control to return to the Keyboard Moni-
tor and may be due to one of the causes listed in Table 1-22. These
errors cause a message to be printed in the form:

?ntC

where n is an error code and TC indicates that control has passed
to the Keyboard Monitor.

Table 1-22 Editor Error Codes

Error Code Meaning

0 Editor failed in reading a device. Error occurred in
device handler; most likely a hardware malfunction.

1 Editor failed in writing onto a device; generally a
hardware malfunction.

2 File close error occurred. For some reason theout-
put file could not be closed; the file does not exist
on that device.

3 File open error occurred. This error occurs if the
output device is a read-only device or if no output
file name is specified on a file-oriented output device.

4 Device handler error occurred. The Editor could not
load the device handler for the specified device. This
error should never occur.

During the editing of a file, the output device specified in the
command string may become full before the editing process is com-
plete. If this is the case and a write is attempted on that device,
an error occurs. The output file is closed, the message:

is printed; control returns to the Command Decoder for a new
set of 1/0 specifications. The user must indicate a new output file
which will contain the text that would not fit on the output device,
and any further editing the user wishes to do. Since the contents
of the text buffer are retained through this procedure, no text
will be lost if this error occurs.

NOTE
If no output file is specified when control
returns to the Command Decoder, the Edi-
tor returns to the Command Decoder again;
this continues until an output device is spe-
cified. However, specifying an improper
output device [such as PTR: ') will cause a
fatal error and the output buffer will be
destroyed.

Assuming the output device is valid, the Editor will continue
the operation which filled the old file, putting all output into the
new output file. After editing is completed, the output files should
be combinedwith PIP. The entire process may appear as follows:

.R EDIT -
*OUT<JN -
#Y -
J "
$STRING ' -
FULL Device DSK: is full; DTA3: is specified -
*DTA3:OUT2< - as the new output device, and editing
#. L - continues.

TAD STRING
#. D -
#E -
FULL - Device DTA3: has become full; DTA4:
*DTA4:OUT3< - is now specified as the output device, and

editing continues.

At this point the output "file" is the series of files-DSK:OUT,
DTA3:OUT2, and DTA4:OUT3. When output is split like this,
the split may have occurred in the middle of a line. Therefore, the
output files should never be edited separately as the split lines will
then be lost. In a case such as this, the files should be combined
with PIP as follows:

1-90

.R PIP -
*DTA2:OUT<DSK: OUT, DTA3: OUT29 DTA4:OUTS -

The new file, OUT, may then be edited.

Example Using the Editor
The following example illustrates both the use of the Editor to

create a new file, and a few of the commands available for editing.
Sections of the printout are coded by letter~corresponding ex-
planations follow :

 he user calls EDIT; the output file will be called FILE and
will be stored on the default device. There is no input file
since one will be created from the terminal keyboard. The
Append command is used to insert text into the empty buffer.

Text is inserted.

The user makes a mistake and uses the RUBOUT 'key to cor-
rect it.

More text is added.

The user notices a typing mistake he has made several lines
back in the text. He types a CTRL/FORM to finish the Ap-
pend command, searches for the illegal character, corrects it,
and then lists the line.

The P command writes the current buffer into the output file
placing a form feed after the last line. The K command deletes
all text in the current buffer, in preparation for a new page
of text.
The user inserts new text using the Append command. When
he is finished, he types a CTRL/FORM to end the command.

The E command closes out the file. Control is returned to the
Keyboard Monitor.

* F I L E <

9 P T R HANDLER F O R THOSE
/WITHOUT H I G H S P E E D 110 rPTp

I F Z E R O N O H S P T + L I S T < X L I S T >
IFNZRO NOHSPT <
0
CLA CLL CMX\L / S E T L I N K
JMS P S E T U P
K SF
J M P P T P C N T /KEYBOARD FLAG O F F
KRT
AND P T P 1 7 7
TAD P T P M 3

K R S

S Z A CLA
J M P P T P C N T

.

Summary of Editor Commands

The commands discussed in Table 1 - 23 can each be given when-
ever the Editor prints a # at the left margin. These commands are
of the general form:

1-92

where m and n represent the line number designation, (m<n) and
X represents the command letter. The command is entered to the
Editor with the RETURN key. umbers used in Editor commands

. are decimal numbers.

Table 1-23 Symbolic Editor Commands

Command Format Meaning

#A Append the following text being typed
at the keyboard until a form feed
(ASCII 214 or CTRL/FORM) is
found. The form feed returns control
to command mode. Text input follow-
ing the A command is appended to
whatever is present in the text buffer.

#B List the number of -available core lo-
cations in the text buffer. The Editor
returns the number of locations on the
next line. To estimate the number of
characters that can be accomm~dated
in this area, multiply the number of
free locations by 1.7.

*nC -T Change the text of line n to the line(s)
typed after the command is entered
(typing a form feed terminates the
command). Â¥\

#m, nC Delete lines m through n and replace
with the text line(s) typed after the
command is entered. (Typing CTRL/
FORM indicates the end of the in-
serted lines.) The C command utilizes
the text collector in altering text.

#nD Delete line n from the buffer.

#m, nD Delete lines m through n from the
buffer. The space used by the line to
be deleted is reclaimed as part of the
DELETE function. (Refer to Text
Collection in the section entitled Ed-
itor Text Buffer.)

Table 1-23 Symbolic Editor Commands (Cont.)

Command Format Meaning

E #E Output the current buffer and transfer
all input to the output file, closing the
output file.

F #F Follows a string search. Look for next
occurrence of the string currently be-
ing sought. (See section under Search
Mode concerning Inter-Buffer Charac-
ter String Search.)

Get and list the next line which has a
label associated with it. A label in this
context is any line of text which does
not begin with one of the following:

space (ASCII 240)
/ - (ASCII 257)
TAB (ASCII 2 1 1)
RETURN (ASCII 21 5)

At the termination of a G command,
control goes to command mode with
the current line counter equal to the
line just listed.

Get and list the first line which begins
with a label, starting the search at
line n.

Insert whatever text is typed before
line 1 of the text buffer. The form feed
(CTRL/FORM) terminates the enter-
ing process and sends control to the
command mode where Editor prints
a #.
Insert whatever text is typed (until a
form feed is typed) before line n of
the text buffer.

Inter-buffer search command for char-
acter strings (see section under Search
Mode concerning Inter-Buffer Charac-
ter String Search).

Kill the buffer. Reset the text buffer
pointers so that there is no text in the
buffer.

Table 1-23 Symbolic Editor Commands (Cont.)

Command Format Meaning

NOTE
The Editor ignores the commands
nK 01: m,nK. This is to prevent
the buffer from accidentally being
destroyed if the user means to
type a List command (m,nL).

List entire contents of the text buffer
on the terminal.

List line n of the text buffer on the
terminal.

List lines' m through n of. the text buf-.
fer on the terminal. Control then rc-
turns to command mode.

Move lines m through n directly be-
fore line x in the text buffer. The $
character represents typing the dollar
sign key (SHIFT/ 4). The old occur-
rence of the moved text is removed;
no buffer space is lost.

Write the current buffer to the indi-
cated output file and read the next
logical page.

Write the current buffer to the output
file, zero the buffer, and read the next
logical page. This is done n times until
the nth logical page is in the text buf-
fer. Control then returns to command
mode.

The N command cannot be used with
an empty text buffer. ? is printed if
this is attempted.

Write the entire text buffer to the out-
put buffer.

Write line n of the text buffer to the
output buffer.

Writes lines m through n, inclusive, to
the output buffer. When this buffer is

Table 1-23 Symbolic Editor Commands (Cont.)

Command Format Meaning

full, the text is output to the indicated'
output file. The P command auto-
matically outputs a FORM character
(214) after the last line of output.

Q #Q Immediate end-of-file. Q causes the text
buffer to be output. All text written
into the output buffer is then written
into the output file and the file closed,
with control returning to the Keyboard
Monitor.

Read from the specified input device
and append the new text to the current
contents of the buffer. If no input file
was indicated or if no input remains,
a ? is printed and control returns to
command mode.

S #s Character search command (see the
section entitled Search Mode).

T #T Punch trailer tape. Causes 32 frames
of blank tape to be written into the
output buffer (only to non-directory
devices).

V *v If an LP08 line printer is available,.
the V command causes the entire text
buffer to be listed on the line printer.

#nv List line n of buffer on the line printer.

Am, nV List lines m through n inclusive on the
line printer.

Y # n y Skip to a logical page in the input file,
without writing any output. For ex-
ample :

reads through four logical pages of
input, deleting them without pqducing
output. The fifth page is read into the
text buffer and control automatically
returns to command mode.

Table 1-23 Symbolic Editor Commands (Cont.)

Command Format Meaning

>

<

LINE FEED
Key

Perform a character string search for
the string TEXT. (See the section un-
der Search Mode concerning Intra-
Buffer Character String Search). Fol-
lowing a string search, #" causes a
search for the next occurrence of the
string.

By typing these characters the user
can obtain the current line number
(.=) and the last line number in the
text buffer (/=). The number is
printed by the Editor immediately
after the user types the equal sign.
(The colon character is equivalent to
the equal sign.)

Equivalent to .+1L; list the next line
in the text buffer on the teleprinter.

Equivalent to .-1L; list the next line
in the text buffer on the teleprinter.

Equivalent to ,+1L; list the next line
in the text buffer on the teleprinter.

Print the current Editor version num-
ber.

PERIPHERAL INTERCHANGE PROGRAM (PIP)
PIP is the OS/8 system program which is used to transfer files

between devices, merge and delete files, and list, zero, and com-
press directories.
Calling and Using PIP

To call PIP from the system device the user types :

R P I P

in response to the dot printed by the Keyboard Monitor. The Com-
mand Decoder then prints an asterisk at the left margin of the tele-
printer paper and waits to receive a line of 1/0 files and options.
PIP accepts up to nine input files and performs output to a single
output file; options generally are placed at the end of the com-
mand string.

1-97

Since PIP performs file transfers for all file types (ASCII, Image
or SAVE format, or Binary), there are no assumed extensions as-
signed by PIP to file names for either input or output files. All
extensions, where present, must be explicitly specified.

Following completion of a PIP operation, the Command Qe-
coder again prints an asterisk at the left margin and waits for
another PIP 1/0 specification line. The user can return to the Key-
board Monitor by typing CTRL/C or by terminating the specifica-
tion line with ALTMODE.

PIP OPTIONS
The various options allowed on a PIP 1/0 specification line

are detailed in the following table. Either /A, /B, or /I is gen-
erally indicated for each transfer; if none of these are specified,
the system proceeds as though /A had been typed.

Table 1-24 PIP Options

Option Meaning

/ A Transfer files in ASCII mode. The file is modified as it is
copied: embedded blank tape and rubouts are deleted and
leader/ trailer code is reducd to a standard length. PIP may
also do some editing of the input file under control of the
/ C and /T options (see below).

/ B Transfer files in Binary mode (used for absolute and re-
locatable binary files). Leader1 trailer code is reduced to a
standard length, but the checksum is not recalculated.

NOTE
If several absolute binary files are combined
into one, the / S option must be indicated to
the Absolute Loader in order for the files to
load properly. (The Linking Loader will not
load combined files.)

/ C Eliminate trailing blanks. Valid in ASCII mode only.

/D Delete the old copy of the output file before doing any
data transfer. If / D is not used, the old copy is not deleted
until all input has been processed. For example:

- *DTA1 :OFILE<DTA2:NFILE/D
will first delete file OFILE on DTA1, and then transfer the
data from NFILE to a new OFILE. ID is useful when in-
sufficient room exists on the output device for both the old
file and the new file.

Table 1-24 ~ 1 ~ 0 p t i o n s (Cont.)

Option Meaning

/ D may be used to delete up to three files at a time by
specifying the files to be deleted as output files and not
specifying any input files. For example:

This command string deletes OLDABC from DSK, and
FILES from DTA3.

List directories in extended form (the lengths of the empty
files are also listed).

List directories in short form (file names only).

Ignore any errors which occur during a file "transfer and
continue copying.

Transfer files in image mode. Used to transfer core image
(SAVE format) files, and any other files which do not fall
into either ASCII or Binary categories.

This option always opens the output file even if no input
files were specified. Thus, the / I combined with the -n
option allows the user to substitute a named file for an
empty one. For example, a 23-block file named IMPORT.
PA was accidentally deleted. It can be recovered with the
following command:

Note that 23 10 = 278.

List the directories of the input devices onto the output
file starting at the file specified. Notice that in this case the
input file itself is not transferred, only the directory. The
directory listing is in extended form, but empty files are
excluded. If no output file is specified, TTY: is assumed if
i t exists.

Save n extra words per file entry in the directory to con-
tain descriptive information about the file (only the 2 low
order octal digits on nnnn are significant). or use with
the /Z and /S options only. Typing =1 allows the date of

Table 1-24 x BP Options (Cont.)

Opt ion Meaning

the file creation to be automatically stored in thedirectory.
(=1 is assumed after /Z or /S options unless otherwise
specified. Specifying =0 will still reserve one extra word
per entry.) Specifying =I00 will reserve no extra words
per entry. Ã

If an = option is included with an image mode (/I) trans-
fer, the low order 12-bits of the = option specify the de-
sired length with which to close the output file. The out-
put file is given this length except in the following two
cases:

1. If the data written is greater than the specified length,
the output file is given its correct size.

2. If the length specified is greater than the empty space
available, the data is transferred but the file is not
closed. The error message:

MONITOR ERROR 6 AT xxxx
(DIRECTORY OVERFLOW)

is printed and control returns to the Keyboard Monitor.
Data in the file following the EMPTY is not destroyed.

/ O Okay to compress files or to zero the directory. When used
with the /S or /Z option, /O prevents the messages ARE
YOU SURE? and ZERO SYS? from printing. The system
assumes that the user really wants the /S or / Z option

/ S Move all files from the input device to the output device,
eliminating any embedded empty files. All device names
should be explicitly stated, as no default devices are as-
sumed. The directory of the output device will contain only
those files that appeared on the input device. Whenever a
/S is initiated, PIP asks:

ARE YOU SURE?

The user responds with a "Y" if he wishes the compression;
typing any other character aborts the command.

Table 1-24 PIP Options (Cont.)

Option Meaning

NOTE
When the /S option is used, the output de-
vice directory is read to determine whether
it is a system directory. If a system exists on
the output device, that system will be pre-
served on the /S transfer. To eliminate the
system directory, a /Z must be performed
before the /S.

In addition to compressing directories, /S provides a means
of copying one device to another. DEctapes, for example,
can be copied by compressing one DECtape onto another

, tape.

/ T Perform the following conversions of special characters :

Character Is Converted To :

TAB enough spaces to reach the next
TAB stop (every eighth position) ,N

Vertical
TAB 5 LINE FEEDS

FORM FEED 9 LINE FEEDS

/ T option is valid in ASCII mode -* only.

/V Print the current version number of PIP. This option
should be included in the first command line entered after
PIP is called. The version number is printed on the con-
sole terminal.

/Y Copy the OS/8 System Area (records 0, 7-67) between
the output and first input file. Both devices must be file
structured devices. If no file name is specified after a device
name, the System +Area of that device is assumed. If the
/Z option is used with /Y, a zeroed system directory is
placed on the output device before the system transfer
takes place. A system directory indicates that file storage
starts at record 70 rather than record 7.

/Z Zero directory of output device before file transfer. Before
using a DECtape for the first time, the / Z option should
always be used to create an empty file directory. No input
files are specified. For example:

Table 1-24 PIP Options (Cont.) .

Option. Meaning

One extra word per entry is used if no "=" is specified.
Thus, the DATE word is always left available in a new
directory.

If an attempt is made to zero the directory of the system
device, the message :

ZERO S Y S ?

is printed. A response of 'Y' will zero the directory; any
. other response will abort the command and return control

to the Command Decoder.

No data transfer occurs if no input files are specified. Thus, as
mentioned previously, /Z can be used to zero a directory, and /D
can be used to delete a permanent file without creating a file. For
the three directory listing options (/E, /F, /L), if no output de-
vice is specified, the device TTY: is assumed. If no input device is
specified, device DSK: is assumed.

EXAMPLES OF PIP SPECIFICATION COMMANDS
The following are legal command strings to PIP. When PIP

has completed an operation, control returns to the Command De-
coder for additional input.
Example 1 (ASCII Transfer) :

. R P I P - * S Y S: BLACK<PTR: -

This command string transfers a tape from the paper tape reader
to a file on the system device under the name BLACK. PIP as-
sumes that the input tape is in ASCII format. (Control returns
to the Command Decoder, therefore, the .R PIP command need
only be given once.)

Example 2 (ASCII File Merge) :

This command string instructs PIP to merge the ASCII files FILE1
and FILE2 on DTA1 into one ASCII file, MERGE, on DTA3.
Example 3 (Binary Transfer) :

The above command reads a binary paper tape from the paper
tape reader and creates a binary file BIN.BN on the device DSK.
Example 4 (Image Transfer) :

PIP transfers the core image file PAL8.SV from the device DSK
to GAG.SV on the system device.

NOTE
A problem occurs when files longer than
255 blocks are transferred in Image Mode
from a directory device. If this is attemped,
the transfer will not end with the real end-
of-file, but will continue until the output
limit is reached; an error message will occur.
For example, trying to transfer FORT.PA
or SABR.PA from the directory device us-
ing Image Mode will cause this error.
ASCII mode must be used for all PIP trans-
fers of this type, or the FOTP program may
be used.

Example 5 (Directory Listing) :

This command string produces an extended listing of the device
DSK on the Teletype. An extended listing contains all files with

1 - 103

their associated lengths, and all empty spaces in the directory. For
example, an extended listing might appear as follows. (The cur-
rent date is printed before the file listing provided the DATE com-
mand has been given; see the section concerning the Keyboard
Monitor for a description of the DATE command.) :

2 / 1 7 / 7 2
E D I T . S V 1 2 1 / 1 0 / 7 2

Â¥
T E S T 2 4 1 / 1 0 / 7 2
ABCD *DA 1 2 / 1 7 / 7 2
:EMPTY> 7
T E S T 2 .RL 4 1 / 1 0 / 7 2
:EMPTY> 7 0 2

7 0 9 FREE BLOCKS

The file lengths and number of free blocks are designated as
decimal values. The date of file creation is printed if at least one
additional information word is present in the directory (refer to
the section Additional Information Words in File Directories).
Example 6 (Directory Listing) :

This command produces a directory listing of file names only. Thus,
the preceding directory would appear on the teleprinter as follows:

2 / 1 7 / 7 2
E D I T SV
T E S T 2
ABCD .DA
T E S T 2 .RL

7 0 9 FREE BLOCKS

Example 7 (Directory Listing) :

A command such as the above produces a listing of the DTA2
directory on the line printer; however, the files that occur before

, FETCH are not listed. The /L option gives the regular listing
which includes the file name and extension length, and date (if a
date is contained in the directory). Empty files are not indicated
in the listing.

Example 8 (System Area Transfer) :

- .

ZDTA1 :HEAD</Y

Records 0 and 7-67 are transferred from SYS: to a file named
HEAD on DTAl . .
Example 9 (System Area Transfer) :

The contents of the file HEAD on DTAl are transferred to the
System Area (records 0 and 7-67) of the system device. The input
file is checked for validity before the transfer occurs.
Example 10 (System Transfer with Directory Zero) :

This first creates a zero system directory on DTA1, and then
transfers the system area from DTAO to to the System Area on
DTA1. A system directory indicates that file storage begins at
record 70 rather than record 7.
Example 1 1 (System Area Transfer) :

This command string instructs PIP to transfer TRAN from D T A ~
to DTA1. Since the /Y option is used, TRAN must be a copy
of the OS/8 System Area. However, since transfers of this type
involve files on both the 1/0 devices, and not the System Area, the
transfer is treated as an image transfer and either the /Y or /I
options can be used.

Additional Information Words in File Directories
If a device has any additional information words specified in its

directory, OS/8 automatically enters the last date specified in a
DATE command into the first of the additional information words
when a file is created on that device. Dates put into these additional
words appear in directory listings. Words after the first are not
currently used by the OS/8 system.
Whenever a /Z or /S is given, additional words can be specified
by a /Z=n or /S=n construction. The number of additional
words can be changed by compressing a device onto itself. The

first additional information word is used by the system for the
- file's creation date.

NOTE
The system is initially created with one
additional word in the file directory.

PIP Error Messages
The following messages are printed by PIP in response to user

errors or improper command strings:

Table 1-25 PIP Error Messages
1

Message Meaning

ARE YOU SURE?

BAD DIRECTORY ON
DEVICE # n

BAD SYSTEM HEAD

CAN'T OPEN OUTPUT
FILE

DEVICE # n NOT A
DIR

Occurs when using the / S option. A re-
sponse of 'Y' will compress the files.

Error message occurs when:
1. PIP is trying to read the directory,

but it is not a OS/8 directory.
. 2. The output device does not have

a system directory, i.e., file storage
begins at record 7 (occurs during
a / Y transfer).

n is the number of the file in the input
file list.

If the / Y option is used and the area
being transferred does not contain OS/ 8,
this error message results.

Message has occurred due to one of the
following :

1. Output file is on a read-only device.
2. No name has been specified for

the utput file.
3. A '% / transfer has been attempted

to a non-directory device.
4. Output file has zero free blocks.

Message occurs when:
Y DEVICE 1. Trying to list the directory of a

non-directory device.
2. The input designated in a / Y

transfer is not on a directory de-
vice.

n gives the number of the device in the
input list.

A

Table 1-25 PIP Error Messages (Conk)

Message Meaning

DIRECTORY ERROR

ERROR DELETING
FILE

ILLEGAL BINARY
INPUT, FILE # n

INPUT ERROR,
FILE # n

IOERROR IN (file name)
' -CONTINUING

LINE TOO LONG IN
FILE # n

NO ROOM FOR
OUTPUT FILE

NO ROOM IN (file name)
-CONTINUING

OUTPUT ERROR

PREMATURE END OF
FILE, FILE # n

SORRY-NO
INTERRUPTIONS

An error has occurred while reading or
writing the directory during a /'S op-
tion. The option is aborted; output is
likely to be garbled.

An attempt was made to delete a file
that does not exist. Check that the de-
vice name was explicitly given for all
files.

Self explanatory; n is the number of the
file in the input file list.

An input error occurred while reading
file number n in the input file list.

An error has occurred during a /S
transfer. The name of the file being
transferred is indicated.

In ASCII mode a line has been found
greater than 140 characters. Make cer-
tain the file is an ASCII file. n is the
number of this file in the input list.

Self-explanatory; either room on device
or room in directory is lacking.

Occurs during use of the / S option. The
output device cannot contain all of the
files on the input device. The message is
printed for each file whichwill not fit
into the output device. The file name is
indicated.

Output error-possibly a WRITE
LOCKed device, parity error, or at-
tempt to output to a read-only device.

Message occurs in Binary Mode (/B)
only. A physical end-of-file has been
found before the final leader/trailer.

Error message occurs if:
1. TC (CTRL/ C) is typed while com-

pressing a file onto itself; the
transfer continues.

*

Table 1-25 PIP Error Messages (Cont.)

Message Meaning

ZERO SYS?

2. A / Y transfer is done with system
device as the output device, or if
the transfer has both input and
output on the same device.

If any attempt is made to zero the sys-
tem device directory, this message oc-
curs. Responding with 'Y' causes the
directory to be zeroed. Any other char-
acter aborts the operation.

ABSOLUTE BINARY LOADER
The Absolute Binary Loader is used to load the binary output

created by the PAL8 assembler. Input files are loaded according
to the options discussed in this section, and a core control block
is constructed (see the section concerning the GET command).
The standard input devices are the paper tape reader, DECtape,
LINCtape, the default storage device (DSK:), and SYS:, which
represents the system device. Any other device which can contain
absolute binary files can be used as an input device if a device
handler exists. The terminal (TTY:) should not be used, as the
binary code may appear as control characters to the TTY handler.

Calling and Using ABSLDR
ABSLDR normally accepts absolute binary files (relocatable

files must be loaded with the Linking Loader); however, save
(.SV) format files can be loaded with ABSLDR providing the
/I option is used. If no extension to the input file name is typed,
ABSLDR assumes the .BN extension. Up to nine input files are
allowed, but if more than one program is present in a file, only the
first program is loaded unless the /S option is used. (This feature
allows ABSLDR to ignore any 'noise characters' which might be
caused by reading over the end of a paper tape.)

The user calls the Absolute Binary Loader from the system
device by typing:

R ABSLDR

in response to the dot printed by the Keyboard Monitor. The sys-
tem responds by printing an asterisk at the left margin. The user
then types an input line to ABSLDR, indicating input files and any
options desired. ABSLDR does not recognize any output files,
since the purpose of the loader is to load and optionally start
binary output files. The format of the input line is:

*DEV : INPUT.EX/ (Options)

By typing the RETURN key at the end of an input specification
line, the loader is signalled that more input is to be given on the
next line. If the ALT MODE key is used as a line terminator, no
more input is expected, the Command Decoder is not recalled,
and control returns to the Keyboard Monitor. For example:

. R ABSLDR -
*DTAI : F i L E l > F I L E 2 9 F I L E 3 9 F I L E 4 (Carriage RETURN) -
*PTR: Â - (ALT MODE)

The preceding lines cause FILE1, FILE2, FILES, and FILE4
to be loaded at their absolute locations in core from, DECtape 1.
A file is then to be read from the paper tape reader. The $ char-
acter is printed by the ALT MODE key which indicates a return
to the Keyboard Monitor.

NOTE
If the /G option (load and begin execu-
tion) is specified, control always passes to
the program just loaded, regardless of which
line terminator was typed.

When ABSLDR has completed loading and control has returned
to the Keyboard Monitor, the program loaded may not be physi-
cally in core at that moment. ABSLDR utilizes system scratch
blocks to store those locations which would overlay various parts
of the Monitor. To examine core locations after using ABSLDR,
use ODT (see the section concerning ODT for instructions detail-
ing its use).

ABSLDR OPTIONS
The various options accepted by ABSLDR are described in

Table 1-26 .
Table 1- 26 ABSLDR Options

Option Meaning

Used when locations 0-1777 of field 0 are not being used
by the program. Eliminates extra DECtape motions to save
these locations, hence saves time. See the OS/8 Software
Support Manual for details of Job Status Word.

Similar to the / 8 option; used when locations 0-1777 of
field 1 are not to be saved.

Treat the input file(s) as a core-image-file to be overlaid
with the input of succeeding lines. (If this option is not
used in the first command line, it cannot be used unless
ABSLDR is recalled from the Keyboard Monitor level.)
The / I option can be used to make patches to an already
saved program without reassembling the entire program.

Reset internal core map of ABSLDR to appear as though
nothing has been loaded into core.

Load all binary programs in the specified input file(s)
(instead of loading only the first program in each file,
which is normally done). / S and / I operate on a line-at-a-
time basis. Each successive command line must have the
option respecified if it is required. For example:

These command strings instruct ABSLDR to take three files
from PTR (loading all binary programs in each file) and
three files from DTA1 (loading only the first binary pro-
gram in each file). /S is not implemented on the second
line.

Sets bit 3 of the Job Status Word (location 07746) and
prevents the Keyboard Monitor from reading a fresh ver-
sion of the BATCH monitor into core every time the mon-
itor level is reentered from the program level. This option
can be used with system programs that never use more
than 8K of core (PIP, FORTRAN 11, SABR). The /P
option should not be used with any program that occupies
or modifies core above field 1. (See the BATCH section
for further information.)

Table 1-26 ABSLDR Options (Cont.)

Option Meaning

/G Start program execution upon finishing the loading pro-
cedure. Normally, control returns either to the Monitor or
Command Decoder (depending on the terminator key). If
/ G is specified, control is given to the program just loaded.
The starting address is assumed to be 200 unless specified
in the input string. Control stays with the user's program
until it is released to the Monitor from within the program.
No automatic return to Monitor or the Command Decoder
occurs.

/ n Force loading of all files specified on this input line into
field n (where n is an octal integer).

=n Set the starting address of the program in core to n, where
n is a 5 digit octal integer. ABSLDR inserts a starting ad-
dress of 0200 in field 0 if no other address is indicated.
Specifying 0 as a starting address is equivalent to not spec-
ifying a starting address, thus ABSLDR would insert a
starting address of 0200.

EXAMPLES OF INPUT LINES
Example 1 :
- R ABSLDR - *SYS: PROG. SV/ I
*DTAl:PATCHS -
.SAVE SYS:PROG -
The above commands load the core-image file PROG.SV and then
overlay part of that program file with a binary patch from DTA1.
Control then returns to Monitor, at which time the user saves the
patched program on the system device.

When using the /I option, the starting address and Job Status
Word of the core image being loaded are ignored by the Loader.
The user must specify the starting address and contents of the Job
Status Word (unless the starting address is 200 in field 0, in which
case it need not be specified).
Example 2 :

. R ABSLDR -
*PIP. SV/I -
zPTR:=1300Z(89)$
*SAVE SYS PIP -

In this example, the user overlays.PIP with a binary patch which
will not change its starting parameters. This could also be accom-
plished using an explicit SAVE :

. R ABSLDR -
*PIP . SV/I -
*PTR: $ - . SAVE S Y S PIP; 1332)3=6~33 -
Example 3 :

- R ABSLDR
- - ZPTR: (8 9 ~ 1%

One binary tape is loaded from the paper tape reader. Areas
00000-0 1777 and 10000- 1 1777 of core are not used by the pro-
gram. The starting address of the program is considered to be
00200; control is transferred to the user program.

Notes On Using ABSLDR Correctly
ABSLDR is a complex program which, when used incorrectly,

can give unrecoverable errors. Points to remember when using
ABSLDR are:

If an erroneous starting address is specified, control will be
passed to that address, however random it may be. Thus,
specifying a starting address in non-existent memory, for
example, will very likely produce erroneous results, and
should not be attempted.
Trying to load a program into non-existent memory should
not be attempted.
Programs which load into 07600 or 17600 are ignored by
ABSLDR. No error is generated, but these locations are
never loaded. (It is a good idea not to use 7600 in any
field.)
Old versions of ABSLDR should not be used with a new
monitor.
New versions of ABSLDR should not be used with old mon-
itors.

ABSLDR Error Messages
Table 1-27 lists the error messages output by ABSLDR. In each

case, control returns to the Command Decoder; the entire pro-
cedure may be attemped again by resetting the loader (with the
/R option) and using different inputs.

Table 1-27 ABSLDR or Messages

Message Meaning

BAD CHECKSUM, File number n of the input file list has
FILE # n a checksum error.

BAD INPUT, FILE # n Attempt was made to load a non-binary
file as file number n of the input file
list, or a non-core image with / I option.

10 ERROR FILE # n An I/O error has occurred in input file
number n.

NO INPUT No input file was found on the desig-
nated device.

NO /I! Use of / I is prohibited at this point.

OCTAL DEBUGGING TECHNIQUE (ODT)
ODT allows the programmer to run his program on the com-

puter, control its execution, and make alterations to the program by
typing instructions at the keyboard.

Features
ODT features include location examination and modification;

and instruction breakpoints to return control to ODT (break-
points). ODT makes no use of the program interrupt facility and is. .

invisible to the user program.
The breakpoint is one of ODT's most useful features. When de-

bugging a program, it is often desirable to allow the program to
run normally up to a predetermined point, at which the program-
mer may examine and possibly modify the contents of the accumu-
lator (AC), the link (L), or various instructions or storage loca-
tions within his program, depending on the results he finds. To
accomplish this, ODT acts as a monitor to the user program.

The user decides how far he wishes the program to run and ODT
inserts an instruction in the user's program which, when encoun-
tered, causes control to transfer back to ODT. ODT immediately
preserves in designated storage locations the contents of the AC
and L at the breakpoint. It then prints out the location at which
the breakpoint occurred, as well as the contents of the AC at that
point. ODT will then allow examination and modification of any
location of the user's program (or those locations containing the
AC and L). The user may also move the breakpoint, and request
that ODT continue running his program. This will cause ODT to
restore the AC and L, execute the trapped instruction and continue
in the user's program until the breakpoint is again encountered
or the program is terminated normally.

Calli~ng and Using ODT
As explained in the section concerning the Keyboard Monitor,

ODT is called into use by typing:

in response to the dot printed by the Keyboard Monitor. Before
ODT is called, the user should have a running version of his pro-
gram in memory. None of the user's memory is disturbed by the
running of ODT, because the sections of the program which ODT
may occupy when in memory are preserved on the system device
and swapped back into memory as necessary. ODT uses the Job
Status Word of the particular program to determine whether or
not swapping occurs. If the program does not use locations 0-1777
in field 0, less swapping occurs during use of the breakpoint
feature.

If the user is typing any amount of a program directly into
memory (in octal), the memory control block of the program may
not reflect the true extent of the program. If octal additions are
made below location 2000 in field 0, ODT may give erroneous

- results. The user can correct this condition by correcting the Job
Status Word, which is location 7746 of field 0, and which can be
examined and changed using ODT. Location 7745 of field 0 is the
12-bit starting address of the program in memory and location
7744 contains the field designation in the form 62n3, where n is
the field designation of the starting address.

When using the breakpoint feature of ODT, the user should
keep certain operating characteristics in mind:

If a breakpoint is inserted at a location which contains
an auto-indexed instruction, the auto-indexed register is
bumped immediately after the breakpoint is hit. Thus, when
control returns to the user in ODT, the register will have
been increased by one. The breakpoint instruction is ex-
ecuted properly, but the index register, if examined, may ap-
pear one greater than it should.
ODT keeps track of the TTY flag and restores the TTY
flag when it continues from a breakpoint.
The breakpoint feature uses locations 4, 5, and 6 in the
memory field in which the breakpoint is set.
The breakpoint feature of ODT uses the table of user-de-
fined device names as scratch storage, destroying any device
names the user may have created. After a session with ODT
in which breakpoints are used, the user should give a DE-
ASSIGN command to clear out the user-device name table.
Breakpoints must not be set in the Monitor, in the device
handlers, or between a CIF and the following JMP instruc-
tion.

The user is advised not to use user-defined device names in'pro-
grams being developed with ODT breakpoints.

If any operations are attempted in non-existent memory, ODT
ignores the command and types "?". Thus, assuming the machine
in use has 8K (fields 0 and 1) and the user attempts to examine
locations in field 2 and above, ODT responds with ?.

ODT should not be used to debug programs which use inter-
rupts. Typing CRTL/C returns control to the Keyboard Monitor;
the program can be saved on any device.

Commands
SPECIAL CHARACTERS
Slash(/)Ã‘Ope Preceding Location

The location examination character (/) causes the location ad--
dressed by the octal number preceding the slash to be opened and
its contents printed in octal. The open location can then be modified
by typing the desired octal number and closing the location. Any
octal number from 1 to 4 digits in length is legal input. If more
than 4 digits are entered, only the last 4 entered are accepted by
ODT. Typing / with no preceding argument causes the latest
named location to be opened.

For example :

Return-Close Location
If the user has typed a valid octal number after the content of a

location is printed by ODT, typing the RETURN key causes the
binary value of that number to replace the original contents of the
opened location and the location to be closed. If nothing has been
typed by the user, the location is closed but the content of the lo-
cation is not changed. For example:

400/6046 location 400 is unchanged.
400/6046 234s location 400 is changed to contain 2345.
/2345 6046 replace 6046 in location 400.

Typing another command will also close an opened register. For
example :

40016046 401/6031 2346 location400isclosedandunchanged
400/6046 40 1 /2346 and401 is opened andchanged to 2346.

Line Feed-Close Location, Open Next Location

The LINE FEED key has the same effect as the RETURN key,
but, in addition, the next sequential location is opened and its con-
tents printed. For example:

400/ 15.40- location 400 is closed unchanged and 401 is
0840 /23 1 * 34 opened. User types change, 40 1 is closed con-
WW? / 7 6 5 B

taining 1234 and 402 is opened.

(Shift/N)-Close Location, Take Contents as Memory Reference
and Open Same

The up arrow will close an open location just as will the RE-
TURN key. Further, it will interpret the contents of the location as
a memory reference instruction, open the location referenced and
print its contents. For example:

40413270 t 3270 symbolically is "DCA, this page,
0047 0 145 12 0000 relative location 70," so ODT opens loca-

tion 470.

+(Shift/O) Close Location, Open Indirectly
The back arrow will close the currently open location and then

interpret its contents as the address of the location whose contents
it is to print and open for modification. For example:

ILLEGAL CHARACTERS
Any character that is neither a valid control character nor an

octal digit causes the current line to be ignored and a question
mark printed. For example:

ODT opens no location.

4 0 6 / l l 3 6 67K?
i

ODT ignores modification and closes
/ I 1 3 6 location 406.

CONTROL COMMANDS
nnnnG-Transfer Control to User at Location nnnn

Clear the AC then go to the location specified before the G. AU
indicators and registers will be intialized and the breakpoint, if
any, will be inserted. Typing G alone will cause a jump to loca-
tion 0.

nnnnB-Set Breakpoint at User Location nnnn
Instructs ODT to establish a breakpoint at the location spec-

ified before the B. If B is typed alone, ODT removes any previ-
ously established breakpoint and restores the original contents of
the break location. A breakpoint may be changed to another loca-
tion whenever ODT is in control, by simply typing nnnnB where
nnnn is the new location. Only one breakpoint may be in effect at
one time; therefore, requesting a new breakpoint removes any pre- -
viously existing one.

A restriction in this regard is that a breakpoint may not be set
on any of the floating-point instructions which appear as argu-
ments of a JMS.

The breakpoint (B) command does not make the actual ex-
change of ODT instruction for user instruction, it only sets up the
mechanism for doing so. The actual exchange does not occur until
a "go to" or a "proceed from breakpoint" command is executed.

When, during execution, the user's program encounters the loca-
tion containing the breakpoint, control passes immediately to ODT
(via location 0004). The C(AC) and C(L) at the point of the
interruption are saved in special locations accessible to ODT. The
user instruction that the breakpoint was replacing is restored, be-
fore the address of the trap and the content of the AC are printed.
The restored instruction has not been executed at this time. It will
not be executed until the "proceed from breakpoint" command is
OTven. Any user location, including those containing the stored AC
0

and Link, can now be modified in the usual manner. The break-
point can also be moved or removed at this time.

An example of breakpoint usage follows the section "Continue
and Iterate Loop . , ."

AÃ‘Ope C(AC)
When the breakpoint is encountered the C(AC) and C(L) are

saved for later restoration. Typing A after having encountered a
breakpoint, opens for modification the location in which the AC
was saved and prints its contents. This location may now be modi-
fied in the normal manner (see Slash) and the modification will be
restored to the AC when the "proceed from breakpoint" command
is given.

Open C(L)
Typing L opens the Link storage location for modification and

prints its contents. The Link location may now be modified as usual
(see Slash) and that modification will be restored to the Link when
the "proceed from the breakpoint" command is given.

C-Proceed (Continue) From a Breakpoint
Typing C, after having encountered a breakpoint, causes ODT

to insert the latest specified breakpoint (if any), restore the con-
tents of the AC and Link, execute the instruction trapped by the
previous breakpoint, and transfer control back to the user program
at the appropriate location. The user program then runs until the
breakpoint is again encountered.

NOTE
If a breakpoint set by ODT is not encoun-
tered while ODT is running. the object
(user's) program, the instruction which
causes the break to occur will not be re-
moved from the user's program.

nnnnCÃ‘Continu and Iterate Loop nnnn Times Before Break
The programmer may wish to establish the breakpoint at some

location within a loop of his program. Since loops often rim to
, many iterations, some means must be available to prevent a break

from occurring each time the break location is encountered. This
is the function of nnnnC (where nnnn is an octal number). After
having encountered the breakpoint for the first time, this command
specifies how many additional times the loop is to be iterated be-
fore another break is to occur. The break operations have been

described previously in the section on the B command.
Given the following program, which increases the value of the

AC by increments of 1, the use of the Breakpoint command may
be illustrated.

* 200
C L P CLL

AJ TAD ONE
B., ISZ CMT

JMP B
J M P A
H L T

ONE., 1
CNTa 0
s

ODT has been loaded and started. A breakpoint is inserted at
location 0201 and execution stops here showing the AC initially
set to 0000. The use of the Proceed command (C) executes the
program until the breakpoint is again encountered (after one com-
plete loop) and shows the AC to contain a value of 0001. Again
execution continues, incrementing the AC to 0002. At this point,
the command 4C is used, allowing execution of the loop to con-
tinue 4 more times (following the initial encounter) before stop-
ping at the breakpoint. The contents of the AC have now been
incremented to 0007.

M-Open Search Mask
Typing M causes ODT to open for modification the location

containing the current'value of the search mask and print its con-
tents. Initially the mask is set to 7777. It may be changed by open-
ing the mask location and typing the desired value after the value
printed by ODT, then closing the location.

M Line Feed-Open lower search limit
The word immediately following the mask storage location con-

tains the location at which the search is to begin. Typing the LINE
FEED key to close the mask location causes the lower search limit
to be opened for modification and its contents printed. Initially the
lower search limit is set to 0001. It may be changed by typing the
desired lower limit after that printed by ODT, then closing the
location.

M Line Feed-Open upper search limit
The next sequential word contains the location with which the

search is to terminate. Typing the LINE FEED key to close the
lower search limit causes the upper search limit to be opened for
modification and its contents printed. Initially, the upper search
limit is the beginning of ODT itself, 7000 (1000 for low version).
It may also be changed by typing the desired upper search limit
after the one printed by ODT, then closing the location with the-
RETURN key.

nnnnW-Word Search
The command nnnnW (where nnnn is an octal number) will

cause ODT to conduct a search of a defined section of memory,
using the mask and the lower and upper limits which the user has

specified, as indicated above. The word searching operations. are
used to determine if a given quantity is present in any of the loca-
tions of a particular section of memory.

The search is conducted as follows: ODT masks the expression
nnnn which the user types preceding the W and saves the result as
the quantity for which it is searching. (All masking is done by per-
forming a Boolean AND between the contents of the mask word,
C(M), and the word containing the instruction to be masked.)
ODT then masks each location within the user's specified limits
and compares the result to the quantity for which it is searching.
If the two quantities are identical, the address and the actual un-
masked contents of the matching location are printed and the
search continues until the upper limit is reached.

A search never alters the contents of any location. or example:
search locations 3000 to 4000, for all ISZ instructions, regardless
of what location they refer to (i.e. search for all locations begin-
ning with an octal 2) .

~ / 7 7 7 7 7000 Change the mask to 7000, open lower
7453/5273 3000 search limit.

Change the lower limit to 3000, open
upper limit.

7454/1335- 4000 Cnange the upper limit to 4000, close
location.
Initiate the search for ISZ instructions
These are 4 ISZ instructions in this

00033 /2575 section of core.

Additional Techniques

CURRENT LOCATION
The address of the current location or last location examined is

remembered by ODT and remains the same, even after the com-
mands G, C, and B are typed. This location may be opened for in-
spection merely by typing the slash (/) character.

INDIRECT REFERENCES
When an indirect memory reference instruction or an address

constant is encountered, the actual address may be opened by
typing T and <- (SHIFT/N and SHIFT/O, respectively).

Errors
The only legal inputs are control characters and octal digits. Any

other character will cause the character or line to be ignored and
a question mark to be printed by ODT. Typing G alone is an
error. It must be preceded by an address to which control will be
transferred. This will elicit no question mark also if not preceded
by an address, but will cause control to be transferred to location 0.

Programming Notes Summary
ODT will not turn on the program interrupt, since it does not

know if the user's program is using the interrupt. It does, however,
turn off the interrupt when a breakpoint is encountered, to prevent
spurious interrupts.

Breakpoints are fully invisible to "open location" commands;
however, breakpoints may not be placed in locations which the
user program will modify in the course of execution or the break-
point will be destroyed. Caution should be used in placing a break-
point between a call to USR function code 10 and the following
call to USR function code 1 1.

If a trap set by ODT is not encountered by the user's program,
the breakpoint instruction will not be removed.

ODT can be used to debug programs using floating-point in-
structions, since the intercom location is 0004, and since break-
points may be set on a JMS with arguments following.

Summary of ODT Commands -

The following table presents a brief summary of the ODT com-
mands. All addresses can be input as 5 digits, and are printed as
5 digits.

Table 1- 28 ODT Command Summary

Command Meaning

nnnnn/ Open location designated by the octal number
nnnnn, where the first digit represents the mem-
ory field. ODT prints the contents of the loca-
tion, a space, and waits for the user to enter a
new value for that location or close the location.

Reopen latest opened location.

1-122

Table 1-28 ODT Command Summary (Cont.)

Command Meaning

nnnn; Deposit nnnn in the currently opened location,
close that location and open the next sequential
location for modification. A series of octal
values can be deposited in sequential locations
through use of the ; character. Multiple ;'s skip
a memory location for each ; typed and pre-
pare to insert subsequent values beyond the
one(s) skipped.

RETURN key . Close the previously opened location.

LINE FEED key Close location; open the next sequential loca-
tion for modification, and print the contents of
that location.

Open the current location plus n for modifica-
tion and print the contents of that location.

n- Open the current location minus n for modi-
fication and print its contents.

Close location, take contents of that location ? o r A

(up-arrow or as a memory reference and open the location
circumflex) referenced, printing its -contents.

NOTE
No distinction is made between instruction
op-codes when using T. Thus, all op-codes .
(0-7) are treated as memory reference
instructions. Also, great care should be .

exercised when using ? with indirectly ref-
erenced auto-index registers. If ? is used
in this case, the contents of the auto-index
register is incremented by one. The user .

must check to see that the register contains
the proper value before proceeding.

+ or - Close location, take contents of that location
(back-arrow as a 12-bit address and open that address for
or underline) modification, printing its contents.

nnnnnG Transfer control of program to location nnnnn,
where the first digit represents the memory field.

Establish a breakpoint at location nnnnn, where
the first digit represents the memory field. Only
one breakpoint is allowed at any given time.

Table 1-28 ODT Command Summary (Coni.)

Command Meaning

M

LINE FEED

LINE FEED

RUBOUT key

Remove the breakpoint.

Open for modification the location in which
the contents of the accumulator were stored
when the breakpoint was encountered.

Open for modification the location in which
the contents of the link were stored when the
breakpoint was encountered.

Proceed from a.breakpoint.

Continue from a breakpoint and iterate past the
breakpoint nnnn times before interrupting the
user's program at the breakpoint location.

Open the search mask, initially set to 7777,
which can be changed by typing a new value.

Open the lower search limit. Type in the loca-
tion (4 octal digits) where the search will begin.

Open the upper search limit. Type in the loca-
tion (4 octal digits) where the search will
terminate.

Search the portion of core as defined by the
upper and lower limits for the octal value nnnn.
Search can only be done on a single memory
field at a time. See the F command.

Open for modification the word containing the
data field which was in effect at the last break-
point. Contents of D always appear as mul-
tiples of log-i.e., 10 means field 1, 20 field
2, etc.

Stop any printing currently in progress.

Open for modification the word containing the
field used by ODT in the W (search) corn- .

mand, in the =+ and f (indirect addressing)
commands, or in the last breakpoint (depend-
ing upon which was used most recently. The
contents of F are always expressed as multiples
of 1O8 (as in the D command).

Cancels previous number typed, up to the last
non-numeric character typed.

ion

batch

boot
build
camp

direct

epic
Potp

resorc
srccom
teco

utility prwmm

BATCH

Introduction
OS/8 BATCH provides PDP-8 users with a batch processing

monitor that is integrated into the OS/8 monitor structure. The
system is o r g ~ z e d in such a way that it may be used in either a
keyboard input configuration or as a batch stream processor.

BATCH may be run on any OS/8 system equipped with at least
12K of memory. A line printer, although optional, is highly de-
sirable. BATCH will support up to 32K of memory and any 1/0
devices that are present in the system.

OS/8 BATCH processing is ideally suited to frequently run pro-
duction jobs, large and long-running programs, and programs that
require little or no interaction with the user. BATCH permits the
user to prepare his job on punched cards, high-speed paper tape or
the OS/8 system device and leave it for the c&mputer operator to
start and run. Output is returned to the user in the form of line
printer and/or teleprinter listings that include program output as
well as a comprehensive summary of all action taken by the user
program, the monitor system and the computer operator.

BATCH provides optionai spooling of output files. This feature
serves to increase throughput on any system, but it is particularly
valuable when a line printer is not available. BATCH also performs
extensive command analysis and error diagnosis, as well as detailed
interaction with the user/operator to facilitate initializing the sys-
tem and establishing system parameters.

Almost any program that runs under interactive OS/8 may also
be run under BATCH. Since BATCH is called from the keyboard

- in the same manner as any other system program, interactive users
may use BATCH to execute multiprogram utility routines, even
when continuous batch processing is not desiredc

t

- 2- 1

With a few exceptions, BATCH uses the standard OS/8 com-
mand set. BATCH assumes that the reader is familiar with the '

operation and use of OS/8.

BATCH Processing Under OS/8
OS/8 BATCH maintains an input file and an output file. The

BATCH input file may be a punched card? high-speed paper tape,
disk or DECtape file consisting of a series of BATCH commands.
If the input file is a disk or DECtape file, it must reside on the

OS/8 system device or on a device whose handler is co-resident
with the OS/ 8 system device (e.g., RKBO on RK05 systems 1.

Each command in the BATCH input file'occupies one file record.
Jf the file is a punched card file: each punched card constitutes one
record, which must contain one complete BATCH command. If
the file resides on paper tape, disk or DECtape? each record con-
sists of one logical line? or all the characters between two line
terminators, including the second terminator.

The BATCH output file is a line printer listing on which BATCH
prints job headers, certain messages that result from conditions
within the input file, an image of each record in the input file and
certain types of user output. If a line printer is not present in the
system, the output file is printed on the terminal.

BATCH accepts user input files (i.e., program and data files)
from any device in lhe OS/8 system, with the exception that high-
speed paper tape input files are not allowed when the BATCH
input file also resides on high-speed paper tape. User output files
may be directed to any output device in the system.

BATCH also permits optional spooling of output files. When
spooling is requested, every non-file:stmctured output file is as-
signed a file name from a list of names maintained by BATCH
and directed to a file-structured spool device instead of the user
specified device. Spooling of output files increases BATCH through-
put when system resources are scarce and permits slow output
operations to be postponed until a more favorable time. For ex-
ample, a batch processing run that generates many output listings
may be initialized to re-route all listings from the terminal or line
printer to a specified DECtape unit. This DECtape may be dumped
onto the appropriate hard copy device after the run, when more
time is available. The spool device may be any file-structured de-
vice selected by the user.

i

OS/8 BATCH is called from the keyboard by typing:
..

R BATCH

(terminated by a carriage return) in response to the dot generated
by the OS/8 monitor. BATCH then calls the OS/8 Command
Decoder to obtain its parameters, input device and file name (if
file-structured). If CCL is enabled, BATCH may also be invoked
via the SUBMIT command, in which case the BATCH parameters,
input device and file name (if file-structured) are specified on the
same line as the SUBMIT command.

The format for a BATCH command string is:

*SPDV: +DEV: INPUT/option/option
*

where SPDV: is the device on which to spool non-file-structured
output. If SPDV: is not specified, no spooling is performed. Note
that spooling applies only to non-Me-structured output devices
specified to the Command Decoder. The output of programs such
as FOTP, which use a special mode of the Command Decoder, is
not spooled by BATCH. DEV : INPUT is the input device and file
if the input is from SYS: or a device whose handler is co-resident
with SYS:. The default extension for BATCH input files is .BI.
The Run-Time Options are used to specify input from the paper
tape reader or the card reader. The Run-Time Options and their
meanings are listed in Table 2-1.

Table 2-1 Run-Time Options

Option Meaning

The input file is to be read from the card reader (CR81.I or
CR8/ E)

Treat OS/ 8 Keyboard Monitor and OS/ 8 Command Decoder
errors as non-fatal errors. If /E is not specified, OW8 Key-
board Monitor and OS/ 8 Command Decoder errors cause the
current job to be aborted.

The input file is to be read from the paper tape reader.

Do not output a BATCH log. $JOB and $MSG are the only
line output to the terminal.

Output the BATCH log to the terminal. This option need be
specified only if a line printer is available. If a line printer is
not available, the BATCH log is automatically output to the
terminal.

Table 2-1 Run-Time Options (Cont.)

Option Meaning

/U BATCH will not pause for operator response to $MSG lines.
Any attempt to use 'ITY:, PTR:, or CDR: as input devices to
the Command Decoder in an unattended BATCH stream will
cause the current job to be aborted.

/ V Print the version number of OS/8 BATCH on the terminal.

16 Accept card input in DEC 026 format. This option is used
only when the / C option is specified. The default card iinput
format is DEC 029.

BATCE Xc~~iter Ccm~ands
A BATCH command is a character or string of characters that

begins with the first character of a record in the BATCH input
file. If the input file is a disk, DECtape or paper tape file, each
BATCH command must be followed by a carriage return/line feed
combination. If the input file is a punched card file, each command
must begin in the first column of a punched card. Disk and paper
tape 6les may contain form feed characters. Form feed characters
are ignored by BATCH on input.

OS/8 BATCH recognizes four monitor]eve1 commands. These
commands allow routine housekeeping operations in a multi-job?
batch processing environment and provide communication between
the BATCH progammer am! the computer operator. Table 2-2
lists the BATCH monitor commands, which may be considered as
an extension of the OS/8 Keyboard Monitor command set. Note
that the first character of the $JOB, $MSG and $END commands
is a dollar sign (shift/4). The BATCH monitor does not recognize
the ALT MODE character.

In the current version, any record that begins with a dollar s i p
character but is not one of the BATCH monitor commands listed
above is copied onto the output file and ignored by BATCH.

A BATCH processing job consists of a $JOB command record
and all of the commands that follow it up to the next $JOB or
$END record. Normally, all the commands submitted by one user
are processed as a single job? and all output from these commands
appears under one job header.

*
Table 2-2 BATCH Monitor Commands

Command Meaning

* $JOB Initialize for a new job and print a job header on the
output file. The remainder of the $JOB record is included
in the job header but ignored by BATCH. It should be
used for job identification, to provide correlation between
Teletype output, line printer output and spool device
output. -

$MSG Ring the terminal bell and print an image of the record
at the teleprinter. If the / U option was not specified, im-
plying that an operator is present, BATCH will pause
until any key is struck at the keyboard. If the /U option
was specified, processing continues uninterrupted.

$END Terminate batch processing and exit to the OS/8 Key-
board Monitor. A $END command record should be the
last record of every BATCH input file.

/
\

Copy the record onto the output file, then ignore it.
BATCH assumes that every record beginning with a slash
is a comment.

After BATCH encounters a $JOB command, it scans the input
file until the next Keyboard Monitor command is read. Any records
that follow the $JOB command and precede the first Keyboard
Monitor command are written onto the output file and ignored by
BATCH.

The first character of every Keyboard Monitor command record
is a dot (.), The rest of the record contains an OS/8 Keyboard

. Monitor command, which should appear in standard OS/8 format;
however, commands that would be terminated with an -ALT
MODE under interactive OS/8 should be terminated with a dollar
sign under BATCH. Every standard OS/8 Keyboard Monitor com-
mand is legal input to BATCH; however, the ODT command will
go to the terminal for input instead of the BATCH file. Typing
CTRL/C to ODT will terminate BATCH. Type: 7600G to ODT
to resume the BATCH run.

BATCH executes a Keyboard Monitor command by stripping
off the initial dot charicter and loading the remainder of the record
into the Keyboard Monitor buffer. BATCH then passes control to -

the Keyboard Monitor, which executes the command as though it

had been typed at the keyboard. Keyboard Monitor commands that
return control to the monitor level should be followed by a BATCH
monitor command or another Keyboard Monitor command. Key-
board Monitor commands that transfer control to the program level
should be followed by a Command Decoder file specification when-
ever the running program calls the Command Decoder. All OS/8
V3 CCL commands are legal under BATCH, including the SUB-
MIT command (which can be used to chain from one BATCH
stream to another).

When a running program calls the Command Decoder, the Com-
mand Decoder determines whether batch processing is in progress
and, if so, instructs BATCH to read the next record of the BATCH
input file. .BATCH expects this record to contain a Command
Decoder file specification.

The .first character of every Command Decoder file specification
record is an asterisk (*). The rest of the record contains an OS/8
Command Decoder file (and/or option) specification, which should
appear in standard OS/8 format. As with BATCH monitor com-
mands and Keyboard Monitor commands, any Command Decoder
specification that would be terminated with an ALT MODE under
interactive OS/8 should be terminated with a dollar sign under
BATCH.

BATCH executes a Command Decoder file specification by
stripping off the initial asterisk character and loading the remainder
of the record into the Command Decoder buffer. BATCH then
passes control to the Command Decoder, which decodes the file
specification as though it had been typed at the keyboard and re-
turns control to the running program.

If BATCH reads a record from the input file, expecting to find a
Command Decoder file specification, and finds a Keyboard Monitor
command instead, BATCH returns control to the monitor level by
recalling the Keyboard Monitor to execute the command. The run-
ning program is terminated and control remains at the monitor
level. If BATCH encounters a BATCH monitor command when it
expects to find a Command Decoder specification, it executes the
BATCH monitor command and continues processing the input file.
As long as a Command Decoder file specification is finally read
before the next Keyboard Monitor command, control will eventu-
ally return to the running program, and the file specification will be
executed.

2-6

A BATCH monitor command is legal at any level of command
execution, and the BATCH monitor returns control to the level
from which it was entered. Keyboard Monitor commands are also
legal at any level (under BATCH, but not under interactive OS/8);
however, the Keyboard Monitor terminates any program that may
be running when it is called and returns control to the monitor
level.

The computer operator may type CTRL/C at any time during a
batch processing run. Typing CTRL/C at the program level causes
an effective jump to location 07600, which recalls the BATCH
monitor. The BATCH monitor then recognizes the CTRL/C and
terminates the BATCH run.

The BATCH Input File
Figure 2-1 shows a listing of a BATCH input file. This listing

was produced by using PIP to transfer the BATCH input file from
disk to the console terminal, and the output has been reproduced
intact. Assume that OS/8 BATCH is loaded on a 12K system con-
tabling one TU56 dual DECtape transport, a line printer, a Tele-
type terminal, and a disk as the system device. If the disk file shown
in Figure 1 is specified as an input file, BbTCH will begin pro-
cessing by printing a job header and executing the DATE com-
mand.

Control remains at the monitor level, so BATCH executes the
next command by calling and starting the Peripheral Interchange
Program. PIP, in turn, calls the Command Decoder, which accepts
and decodes the file/option specification that occupies the next
executable record (following the comment) of the input file. The
Command Decoder passes control to the program level, and PIP
lists the short form of the system disk directory at the terminal.

If spooling is active, BATCH will intercept this output and store
it in a temporary file on the spool device. Assuming that DTAO is
the spool device and this listing is the first non-file-structured out-
put file intercepted by BATCH, the output will be stored in a file
named BTCHA1. BATCH then prints the message:

#SPOOL TO FILE BTCHA1

on both the console terminal and the line printer. The next file that
is rerouted to the spool device will be assigned the file name
BTCHA2, and successive files will be named:

BTCHA9
BTCHBO
BTCHB1

S J O d O S / 8 B A T C H P K O C E S S I N G EXAMPLE * 1
. D A T E 3 / 5 / 7 0
,H P I P
/ L I S T S Y S T E M D E V I C E D I R E C T O R Y ON T E L E T Y P E
i t T T Y ~ s Y s : / f -
INOW L IST THE D I R E C T O R Y OF D E C T A P E # 3 O N THE L P T
SMSS MOUNT TAPE # 5 ON U N I T 1
* L P 1 K D T A H / L
/ & O m T R A N S F t R F O R T R A N SOURCE. P R O G R A M
/ F K O M DISK T O DfcCTAPE # 3 (U N I T 1 1
$ M S G W R I T E . ~ N A B L E V N I T 1
* U T A I Ã ˆ F U Ã ˆ (T S l e F T < D S K I F O R T S l ,
/ C O h P I L f c F O R T R A N SOURCE
H F O K T *
* D T A ~ ~ F O R T S ~ , R ~ Ã ˆ F O R T S ~ ~ ~ . S ~ F O R T S ~ ~ F
I T H A T CUNCLUOES JOB # 1
SJ08 O S / B B A T C H PROCESSING EXAMPLE 9 2
S M S G MOUNT TAPE X t ' ON U N I T 1 , WITâ E N A B L E D
.R PAL8
* P T P < , D ~ A ~ : P R O G . L S < ~ .) T A ~ S P ~ - (O G . P A
.RUN DSK LPEF
* O T A ~ : P K O G , L S
/ t N D OF EXAMPLE <Ãˆ A N D END OF I N P U T F I L E
S f M O

Figure 2-1: Sample BATCH Input File

allowing a total of 260 spool device files, which is more than ade-
quate in view of the limited maximum size of the OS/8 file direc-
tory (about 240 entries). If output to a spool device file is generated
by a program that appends a default extension to output file names,
the spool device file will be assigned a standard default extension.
All of the spool device files may then be transferred to the terminal
or line printer by using the program FOTP, with the input file
specification dev: BTCH??.* .

Returning to the example of Figure 2-1, PIP executes the file
specification that appears in the fifth record, of the input file and
recalls the Command Decoder.

The Command Decoder then instructs BATCH to scan the input
file for the next file specification record. BATCH processes the
comment record by copying it onto the line printer, then processes
the $MSG command by ringing the terminal bell, copying the
$MSG record onto the terminal, and, assuming that an operator
is present, pausing until any key is typed at the terminal.

Once the operator has resumed processing by typing any char-
acter, BATCH reads the eighth record in the file, recognizes it as a
Command Decoder specification record, and transfers control back
to the Command Decoder.

Processing continues in this manner until the third Command

Decoder specification record is read. When BATCH searches for
the next file specification record, it reads and executes the last
$MSG command, then encounters a Keyboard Monitor command.
BATCH passes this command to the Keyboard Monitor, which
terminates PIP and calls the FORTRAN compiler to load and com-

-pile source program FORTS1. Upon completion of these opera-
tions, FORTRAN routes its output to the specified files and returns
control to .the monitor level. BATCH then encounters the second
$JOB record, causing it to terminate the current job and print a
new header.

The second job calls PAL8 to assemble a source program from
disk. The output listing is directed to the user's DECtape #2,
mounted on unit 1, while the binary output file is dumped onto
high-speed paper tape. The job concludes by running CREF to
produce a cross-referenced listing of the assembled program.

This job illustrates how OS/8 BATCH may be used to execute
multiprograrn utility routines. If user #2 is a programmer who
usually follows a PAL8 assembly by running CREF, job #2 could
be a utility routine that combines the call to PALS, the call to
CREF and both file specifications into a single software package
which may be run under batch processing or in an interactive en-
vironment.

The $END record that appears as the last record in Figure 2-1
serves as a signal that batch processing has concluded and causes
BATCH to recall the Keyboard Monitor and re-establish interactive

processing under OS/8. This command is always the last record of
the BATCH input file.

BATCH Error Messages
BATCH generates two types of error messages. BATCH gen-

erates run-time error messages which appear in the form:

#BATCH ERR

the second type of error message is generated when the Keyboard
Monitor or the Command Decoder recognizes a command error in
the BATCH input file. When this occurs, either the Keyboard
Monitor or the Command Decoder will transmit a standard OS/8
error message and BATCH will append a "#" character to the
~ A / Ã ˆ Â ¥ ? Â ¥ Â ¥ - Ã ˆ Ã ‡ Â ¥ Ã $ +hi'& Â¥Ãˆ-Ãˆ"*O@@O# r'/̂ ;t ^tT^T^ia'tfr' 4" this $A*-. u^~l l l~~ l l l eÃ GJ. LL1.d lÂ±l̂ ODU& ̂OW L I I U L 1 L U L / L / ^ U L O 111 L l 1 ^ AWlJLXJl.

#SYSTEM ERROR

Any occurrence of a Keyboard Monitor or Command Decoder
error normally causes BATCH to abort the current job and scan
the input file for the next $JOB command. If the /E option was
specified, BATCH treats Keyboard Monitor and Command De-
coder errors as non-fatal and continues the BATCH run.

Table 2-3 lists the BATCH error messages, their meanings, and
the probable cause for the error.

Table 2- 3 BATCH Error Messages

BATCH Error Message Meaning

#MONITOR OVERLAYED The Command Decoder attempted to
call the BATCH monitor to accept
and transmit a file specification, but
found that a user program had over-
layed part or all of the BATCH
monitor. Control returns to thb mon-
itor level, and BATCH executes the
next Keyboard Monitor command.

#BAD LINE. JOB ABORTED The BATCH monitor detected a rec-
ord in the input file that did not
have one of the characters dot, slash,
dollar sign or asterisk as the first
character of the record. The record
is ignored, and BATCH scans the
input file for the next $JOB record,

Table 2-3 BATCH Error Messages. (Cont.)

BATCH Error Message Meaning

#SPOOL TO FILE BTCHA1 Where the "A" may be any character
of the alphabet and the "1" -may be
any decimal digit. This message in-
dicates that BATCH has intercepted
a non-file-structured output file and
rerouted it to the spool device. This
is not, generally, an error condition.
Spool device file names are assigned
sequentially, beginning with file
BTCHA 1. Standard default exten-
sions may be assigned by some sys-
tem programs.

#MANUAL HELP NEEDED BATCH is attempting to operate an
I /O device, such as PTR or TTY,
that will' require operator interven-
tion. If the initial dialogue indicated
that an operator is not present, this
message is suppressed, the current
job is aborted, and BATCH scans the
input file for the next $JOB com-
mand record. If an operator is pres-
ent, he should have been notified
what action to take by a $MSG com-
mand.

#ILLEGAL INPUT A file specification designated TTY
or PTR as an input device when the
initial dialogue indicated that an op-
erator is not available. The current
job is aborted, and BATCH scans
the input file for the next $JOB com-
mand record.

#INPUT FAILURE Either a hardware problem prevented
BATCH from reading the next rec-
ord of the input file, o r BATCH
read the last record of the input file
without encountering a $END com-
mand record. If a hardware problem
exists, correct the problem and type
any character at the Teletype to re-
sume processing.

Table 2-3 BATCH Error Messages (Cont.)

BATCH Error Message Meaning

#SYS ERROR A hardware problem prevented
BATCH from performing an 1/0

. operation. Program execution halts,
and the system must be restarted
manually. This message often indi-
cates that the system device is not
write enabled.

INSUFFICIENT CORE FOR OS/ 8 BATCH requires 12K of core
BATCH RUN to run. Control returns to the OS/8

Monitor.

BATCH.SV NOT FOUND ON A copy of BATCH.SV must exist on
SYS: the system device. Control returns to

the OS/ 8 Monitor.

WRONG OS/8 MONITOR OS/8 BATCH requires an OS/8
Monitor no older than version 3.

DEV NOT IMPLEMENTED BATCH cannot accept input from
the specified input device because its
handler is not permanently resident
(SYS: or co-resident with SYS:).
Control returns to the Command
Decoder.

ILLEGAL SPOOL DEVICE The device specified as a spooling
output device must be file-structured.
Control returns to the Command
Decoder.

Running BATCH From Punched Cards
The carriage return and ALT MODE characters are not defined

in the punched card character set. BATCH permits terminating
carriage return characters to be omitted from punched card input
files. Thus, when BATCH reads a punched card input file, it
appends a carriage return to the content of each card, immediately
following the last character on the card that is not a space char-
acter. As with disk, DECtape or paper tape input files, BATCH
considers the dollar sign character to be equivalent to an ALT
MODE when it appears on a punched cardin any column except
the first.

When BATCH is run with a punched card input file, it is possible
for user input files to be embedded in the BATCH input file. User
input files should be inserted into the BATCH input file in such a
way that BATCH will never attempt to read a record of the user
file. That is, user fifes should follow a command record that trans-
fers control to the program level, and the running program must.
exhaust all records of the user file before returning to the monitor
level.

I

Figure 2-2 illustrates how the second sample job of Figure 2-1
may be modified to run from a punched card input file with an
embedded user file. In this example, PAL8 reads the punched card
user file and assembles the source program, then returns control
to the monitor level. BATCH reads the next card of the input file,
which should contain the .R CREF command. If PALS has not
read every record of the user input file, however, BATCH will en-

counter a record from this file rather than the Keyboard Monitor
command record. This results in the message:

#BAD LINE. JOB ABORTED

and causes BATCH to scan the input file until the next $JOB
record is read.

Restrictions Under OS/ 8 BATCH
OS/8 BATCH is a "friendly" system; that is, one which is

largely unprotected from user errors. The BATCH monitor resides
in locations 5000 to 7577 in the highest memory field available.
BATCH also uses the following locations in field 0 and the memory
field in which it resides:

LOCATION USED AS:
07777 Batch processing flag.
N7774-N7777 Internal pointers.

Both the Keyboard Monitor and the Command Decoder check the
- batch processing flag whenever they are entered from the program

level. Any user program that modifies location 07777 may cause
batch processing to be terminated prematurely before the next
record of the BATCH input file is read.

EMBEDDED
USER FILE

\

/END OF EXAMPLE #2

Hu

I

$MSG MOUNT TAPE #2 ON UNIT 1

Figure 2-2 Punched Card Input File

When the Keyboard Monitor is entered from the program level
(effective JMP to 07600 or 07605) it checks the batch processing
flag and reads a new copy of the BATCH monitor into core if
batch processing is in progress. The Command Decoder, however,
does NOT perform this operation. Thus, the Command Decoder
must not be called unless the BATCH monitor is already in core.

This means that large user programs may be loaded over the
BATCH monitor as long as they do not modify the last four loca-
tions in the highest memory field; however, once a user core load
has overwritten the BATCH monitor, execution must remain at
the program level until the Keyboard Monitor has been re-entered
and a new copy of the BATCH monitor is read into core. The
Command Decoder must not be called after a user program has
been loaded over the BATCH monitor.

In general, this restriction applies only to loader programs and
only when the loader calls the Command Decoder more than once
while building a large core load. Multiple calls to the Command
Decoder may be avoided when loading large programs during batch
processing if the core load is first built in a stand-alone environment
and then saved for subsequent execution under BATCH.

,

In conjunction with this, note that it is impossible to save the
core image of any program that overlays the BATCH monitor
under BATCH. After the load operation but before the save is
executed, the BATCH monitor will be read back into core, destroy-
ing part of the user program. Thus, the Keyboard Monitor SAVE
operation will cause part of the BATCH monitor to be saved in-
stead of that part of the user program which originally overlayed
the BATCH monitor.

BATCH Demonstration Program
The following listing was produced by running BATCH on a

12K PDP-8/E system containing a disk, DECtape and a line
printer. Only the Teletype output is reproduced here, and page
breaks were inserted arbitrarily to divide the listing into convenient
segments. The same BATCH input file has been processed twice,
with two different system configurations.

Notice that the first BATCH processing run begins by listing the
BATCH input file, and that the three demonstration programs are
listed shortly thereafter;

a R BATCH
*SYS:DEMO/U
SJ08 O S / 8 BATCH O E M O
S M S G f l E G I N BY L I S T I N G B A T C H I N P U T F I L E ON TERMI-NAL*
u P I P
* T T Y K D E M O , B I
.DATE 3 / 5 / 7 4
S M S G S Y S T E M D k V I C E ASSIGNED L O G I C A L NAME " I N n
. A S S I G N S Y S I N
S M S G MOUNT SCHATCr t DECTAPE ON U N I T I
.K P I P
/ Z E R O 0E.CTAPE DIRECTORY
%MSG W R I T E ENABLE U N I T 1
* D T A l l Ã § /
/ L I S T S Y S T E M D I R E C T O R Y ON L I N E P R I N T E N
*LPTÃˆ * IN : /
/TWAMSFkR D t M O P R O G R A M S T O DECTAPE
*OTAlÃˆDEM01.PA<OEMOl .P
*UTA110EMU2eFT< l ,>F~OZ.FT
* D T A ~ & O ~ ~ M ~ ~ . F T < D F M O ~ . F T
/ L I S T THE F I R S T DEMO PROGRAM
* T T Y K I N I I } E M Q l , P A / T
/ L I S T THE SECONU O E M O P R O G R A M
* T T Y Ã ˆ * l N i O E M Q (i . F T /
/ L I S T THE T H I R D D t M O P R O G R A M
* T T Y ~ ~ I N Ã ˆ O E W O ~ , P T /
/ A S S E M B L E l 7 t M Q l . P A
.R P A L 6
* I N I D E ~ O l , B ~ D E H ~ l e L S ~ N t U ~ M ~ l . p A
/ P R I N T CROSS) HEFFKENCE LISTING
*!? CREF
* L P T Ã ˆ < I N S 1 3 E M O l ~ L
/ L O A D ASSEMBLED B I N A R Y I N T O C O R E
,I4 A ~ L S L J R

*UEMOl,BN$
/RUN F I K S T QEWO P K O G R A M
. S T A R T c^k)

I N O W S A V E C O R E I M A G E OF DEMOl.PA, BUT MUST
/HELOAD F I R S T , S I N C k DEMO1 I S S E L F M O D I F Y I N G
,R ABSLUR
* I N : O E M O I D P N S
.SAVE S Y S D k M O l @ p i ? @ @

/ R U N D E M 0 1 . S V TO bE SURE THAT I T WAS SAVED C O R R E C T L Y
.dUN S Y S UEM01
/ N O W C O M P I L E FORTRAN M A I N L I N E P R O G R A M
1 4 FORT
* I N ; D E M 0 2 e 9 h (, t . P T ~ < l N ~ 0 E M 0 2 a F T $
/ C O M P I L E F O R T R A N F U N C T I O N R O U T I N E
R F O R T
* IN !DEM03 ,BN,LPT:< IN : t)EMQ3 .FTS
/ T R A N S F E R R Q T H S I N A K Y F I L E S T O DECTAPE
a R P I P
* D T A l : ~ E . ~ C I Z a B N ~ U F M O ~ ~ B N / B
* U T A ~ : O E . M O ~ . B N < D F M ~ ~ . B N / B
/ L O A D AND E X E C U T E F O R T R A N P A C K A G E
. t ? L O A D t R
* D E M O B . b M , Dfc:f403.RN/S
I R E N A M E OkM03.BN F O R FUTUKE REFERENCE
f ? P I P
* F A C T < D k M O ? , B N / I
*DEM04 .bN< /U
/ A D D FOKTgAN F U N C T I O N T O FORTRAN L I t f R A R Y
. R L1BSE.T
* L 1 6 6 . t 3 r ~ / S
*FACTS
/ F I N A L L Y , O f c L f c T b . T E M P O R A R Y F I L E " F A C T "
* K P I P
* F A C T C / O
/NOW CLfcAN UP D I S K A R E A
* O E h O I D ~ N ~ D k M D l . S V ~ D F M O Z p B N < ~ O
%MSG D E V I C E NAMfcS D t k S S I G N E D
* U E A S S I b N
St^ND

$MSG SYSTEM DEVICE ASSIGNED LOGICAL NAME " I N "

$NSG MOUNT SCRATCH DECTAPE ON U N I T 1 -
$MSG WRITE ENABLE UNIT 1

TYPE,

TEST,

CLA CLL
T L S
TAD I I R l
JMS TYPE
JMS TEST
J M P .-4
0
T S F
JMP .-I
T L S
CLA
J N P I TYPE
0 .
TAD I R 1
TAD 3355
SZA CLA
J M P I TEST
T S F
JMP .-1
J N P 7600
-335

FORTRAN DEMONSTRATI ON PROGRAM
DIMENSION A(35
DO 10 N = 2 , 3 4 , 2
A (N) = FACT(N)
WRITE (1 ,60)?(,A(N)
STOP
FORMAT (13,'! = ' , E 1 4 . 7)
E ND

FORTRAN FUNCTION T 0 COMPUTE FACT OR I A L S
FU NCT I ON FACT (!41
I F (N - 3 4) 1,5,5 .
I F (N) 2 , 4 . , 2
m= ?J-2
FACT= M
DO 3 K = l , M
C= N - K
FACT= FACT*C
RETURN
FACT=1.
R ETUR N
WRITE (1 . 6) N

FACT=0.
- RETUR N

6 F O R M A T C I S , ' ! EXCEEDS CAPACITY' OF PROGRAM.
EW

!! ! EXECUTION CONPLETE! ! !

!!!EXECUTION CONPLETE!!!

20! = 0.2432932B-19
22! = 0.1124001B-22
24! = 0.6204484E+24
261 = 0.4032915E+27
28! = 0.3048883 E+50
30! = 0.2652529B33
32! = .0.2631308E+35

34! EXCEEDS CAPACITY OF PROGRAM.
341 = 0.0Z100030E+30

- +

SMSQ DEVICE NAMES DEASSI GNED

The next run is initiated via the SUBMIT command.

Â ¥ S U B M I SYS:cSYS:DEMO/U/T
$JOB OS/8 BATCH DEMO

$MSG BEGIN BY LISTINS BATCH INPUT FILE O^i TELETYPE:
a R P I P
*TTYÃˆ<DEMO.B

#SPOOL TO FILE BTCHA1
.DATE 8/3/72
$MSG SYSTEM DEVICE ASSIGNED LOGICAL N A M E " IN-
.ASSIGM SYS IN
%MSG MOUNT SCRATCH DECTAPE ON UNIT 1
a R * PIP
/ZERO DECTAPE DIRECTORY

$MSG WRITE ENABLE UNIT 1
*DTAl: Ã§-/
/ L I S T SYSTEM DI2ECTORY O N L I N E PRINTER
*LPT: +I 5): /E

#SPOOL TO F I L E BTCHA2
/TRANSFER DENO PROGRAMS TO DECT APE * DTA I : DEMO1 . PAÃ§-DEMO . PA
*DTA I : DEN02 . FT+DEM(E . FT
*DTA1: DEMOS. FTÃ§-DEfl05 FT
/ L I S T FIRST DEMO PROGRAM * TTY: +I !̂ E M 0 1 . PA/T

W L TO F I L E BTCHA5
/ L I S T SECOND DEMO PROGRAM
*TTY: +-I Y: GENE. FT/T

#SPOOL TO FILE BTCHA4
/L IST THIRD DENO PROGRAM * TTY: *-I ?<: DEM03. FT/T

#SPOOL TO F I L E BTCHA5
/ASSEMBLE DEM01. PA
.R PAL8
*I !k DEMO1 .BN,DEM01 .LS<-IM: GEM01 .PA
/PRINT CROSS REFERENCE L I S T I N G
.R CREF
*LPT: *-I !I: DEMO1 .LS

#SPOOL TO F I L E BTCHA6
L O A D ASSEMBLED BINARY INTO CORE
.R A3SLDR * DEMO1 .B !<$
/RUM F I R S T DEMO PROGRAM
.START 200

I ! ! EXECUTI ON COMPLETE! ! !
/NOW SAVE CORE INA3E OF DEflOl.PA, BUT MUST
/RELOAD FIRST, S I N C E DEMO1 IS SELF-MODIFYING
.R ABSLDR
*I 4: DEMO1 .B 6
*SAVE SYS DEN01 0 200
/RUM DEMO1 .SV TO ENSURE THAT I T WAS SAVED CORRECTLY
fRW SYS DEMO1

. .
I ! ! EXECUTION COMPLETE! ! 1
/ W d COMPILE FORTRAN MAINLINE PROGRAM
.R FORT
*I N: DEMO2 .B N,LPT: +-I N: ENOE . FTS .

#SPOOL T O FILE BTCHA7
/COMPILE FORTRAN FUNCTIONR OUT1 ME
.R FORT
* I N : D E M O S . B ~ , L P T : Ã ‡ - I M : I E N ~ ~ . F T .

#SPOOL TO FILE BTCHA8
/TRANSFER BOTH-BINARY FILES T O DECTAPE
.R P I P
*DT41: DEMO2 .BN+DEMCE .B Ãˆ/
MA1 : DEM03.8 !I-DEMO3 .BN/B
-/LOAD AND EXECUTE FORTRAN PACKAGE
O R LOADER

*DE(1CE .B N, DEM05.3 N/G
*

2! = 0.2000000E+01
41 = 0.2400000E+02
6! = 0.7200000E+05-
81 = 0.4332000E+05

1O! = 0.3628800E+07
12! = 0.4790016E+09
141 = 0.87178299-11
16! = 0.2092279B-14
181 = 0.6402374E+16
201 = 0.2432902 I319
22! = 0.1124001B-22
241 = 0.6204484E+24
261 = 0.4032915E+27
281 = 0.3348883E+30
30! = 0.2652529B-33
32! = 0.2631308E+36

34' EXCEEDS CAPACITY OF PROGRAM.
341 = 0.0000000E+00

/RENAME DEMOS.BN FOR FUTURE REFERENCE
O R PIP

FACT-D 1105 B N / ~ * E M 0 3 . f l - /3
/ADD F O R T R A N FUNCTION T O F O R T R A N LIBRARY

R LIBSET
* L I B ~ . B 111s
*FACT$
/$I NALLY, DELETE TEMPORARY FILE " FACT"
.R PIP
*FACT49
/NOW CLEW UP DISK A R E A
DEMO1 .B N,DEN01 .SV, DEMO2 .BN-/D
$MSG DEVICE NAMES DEASSIGNED
.DEASSIGM
$E MD

#E,W BATCH

Loading and Saving BATCH
The paper tape binary version of OS/8 BATCH may be loaded

and saved on the OS/8 system device by typing the following com-
mands in response to the dot generated by the OS/8 monitor:

Once the ALT MODE ($) has been entered, the system will
print an uparrow and pause. Load the binary paper tape into the
high-speed reader, turn the reader on, and type any character at the
keyboard to continue.

Loading and Saving Programs
For Use Under BATCH

A program that never uses more than 8K of core can never de-
stroy the BATCH monitor. When this sort of program is loaded
from a DECtape system, considerable time is saved through use of
the / P option.

The /P option is a new ABSLDR option designed for use under
OS/8 BATCH. It causes the 400 bit of the job status word (loca-
tion 07746) to be set and prevents the Keyboard Monitor from
reading a fresh version of the BATCH monitor into core every time
the monitor level is re-entered from the program level.

For example, OS/8 PIP never uses more than 8K of core. Thus,
the best method of loading PIP would be:

- R ABSLDR -
*PTR: (89P)=13000$

The /P option is not really necessary on a disk system, because
very little time is required to refresh the BATCH monitor from
disk. The /P option should not be used with any program that
occupies or modifies core above field 1.

Transferring the System Software From Cassette to the System
Device

The following BATCH file can be used to transfer the OS/8
System Software from cassette to the system device.

SJOB JOB T O LOAD SYSTEM CASSETTE * 2 TO SYSTEM DEVICE
,R MCPIP
*SYSÃˆCCL.SV<CSA~ÃˆCCL,
*sYsIDIRECT.SV*CSA~IOIRECT.SV
*SYSÃˆFOTP.SV*CSA~:FOTP.S
*SYSiPI?.3V*CSA0iP!P.SV
* s Y S ! L I ~ ~ . R L * C S A ~ ~ L I B ~ . R L
*sYs*EDIT.SV*CSA~*EDIT.SV
*SYSIPALB.SV*CSA0?PAL8.SV
*SYSÃˆCREFmSV<CSA0!CREF,S
*SYSÃˆBITMAP.SV<CSA~:BITMAP.S
* S Y S t B O O T , S V ~ C S A 0 t B O O T , S V
*SYSÃˆCAMPnSV*CSAOzCAPP.S
*SYSÃˆRt<8FMT.SVdCSA01RK8FMTeS

*SYS~R%EFMT.SV<CSA@!RKEFMT.SV
SEND

SJOB JOB T O L O A D SYSTEM CASSETTE #3 T O SYSTEM DEVICE
,R MCPIP
*SYSÃ‡FORT.SV*CSAlÃˆFORT.
*SYSISABR,SV*CÂ§A1ÃˆSABR.
*SYStLOADER.SV~CSAl~LOADER.SV
*SYSÃˆSRCCOM,SV<CSA11SRCCOM,8
*SYSÃˆEPIC.SV~CSAl~EPIC.S
*SYSlPIPlB~SV~CSAIÃˆPIPIB,S
*SYSIRESORC.SV<CSAlÃˆRESORC,S
*SYS:DTCOPY.8V~CSAl~OTCOP~.SV
*SYSÃˆTDCOPY.SV*CSAi:TDCOPY,S
*SYSÃˆTDFRMT.$V<CSAltTDFRMT.S
* S Y S Ã ˆ D T F R M T . S V * C S A H D T F R M T , S
SEND

$ J O B J O B TO LOAD SYSTEM #4 TO SYSTEM D E V I C E
Â ¥ MCPIP
<iSYS!TC08SYmBN<CSA0;TC08SY,BN
* s Y s : T D ~ E S Y . B N < C S A ~ : T D ~ E S Y . B N
*SYS:LINCSYmBN*CSAO;LINCSY,BN
* s Y S Ã ˆ D F ~ ~ S Y . B N < C S A ~ Ã ˆ D F ~ ~ S Y .
* s Y S t R F 0 8 S Y e B N < C S A 0 i R F 0 0 S Y . B N
* s Y S Ã ˆ R K ~ ~ S Y . B N < C S A ~ ~ R K ~ ~ S Y , B
* s Y S ~ R K ~ E S Y , B N < C S A ~ Ã ˆ R K ~ E S Y , ~
*SYS~ROMMSY.BN<CSA@:RQMMSY.BN
*sVS:LINCNS,~N~C~A~:LINCNS.BN
*SYS:TC08NS.8NeCSA0tTC08NS.8N
*SYSÃˆRK8ENS.BNeCSA@:RK8â‚¬N5
* S Y S ~ P T ~ E . ~ N ~ C S A ~ * P T ~ E . B N
*SYSlLSPTmBNÃ‡CSA0ÃˆL8PT.

SJOB JOB T O LOAD SYSTEM C A S S E T T E # 5 TO SYSTEM D E V I C E
* R MCPIP
* S V S Ã ˆ l , I B 8 , R L * C S A l $ L l B 8 , R
*~YSÃˆGENIOX.RL*CSA~;GENIOX.R
~ S Y S ~ X O H . R L ~ C S A ~ : I O H . R L
* s Y s ! F L O A T . R L < C ~ A ~ I F L O A T ~ R L
*SYSÃˆINTEGR.RL~CSAI:INTEGR,R

$JOB JOB TO L O A D SYSTEM CASSETTE #6 TO SYSTEM DEVICE
.R M C P I P
* S Y S ~ C C L . P A ~ C S A ~ ! C C L . P A
SEND

$JOB JOB T O LOAD O S / 8 EXTENSION CASSETTE TO SYSTEM D E V I C E
* R M C P I P
* s Y s I B A T C H , S V < C S A ~ I B A T C H . S V
* s Y s ~ ~ A S I C . S V * C ' S A ~ ~ ~ A S I C . S V
* s Y s ~ B C O M P ~ S V ~ C S A ~ I B C O M P . S V
* s Y s Ã ˆ B L O A D . S V < C S A ~ I ~ L O A D . S
*SY$IBRTS.SV<CSAl<BRTS.SV
*sYsIBASIC.AF*CSA~Ãˆ~ASIC.A
ÃˆSYS~BASIC.SP<CSA~IBASIC~S
*SYSIBASIC.FF~CSA~ÃˆBASIC.F
*SYSIBASIC,UF*CSAI~BASIC.UF
*SYSÃˆEAEOVR.BN~CSAUEAEOVR.B
* S Y S I R E S E Q . B A * C S A ~ I R â ‚ ¬ S E Q .
* S Y S Ã ˆ T E C O ~ S V ~ C ~ A ~ ~ T E C O , S
*SYSIMSBAT.SV~CSA~IMSBAT.SV
*SYStGENIOX.RL<CSAllGENIOX*RL
SEND

BITMAP
BITMAP is an OS/8 utility program which constructs a table
(map) showing the memory locations used by given binary files.

Hardware and Software Requirements
BITMAP runs on the standard OS/8 configuration and requires

the OS/8 software package. BITMAP uses 8K of core to map
programs that use up to 16K of core, but requires 12K of core to
map programs using more than 16K of core.

Loading Bitmap
Type

.R B1 TMAP

to call the BITMAP program from the system device1. The sys-
tem responds by printing an asterisk (*) at the left margin. Type
the input line to BITMAP, indicating input devices and file name
(if input is from a mass storage device), any options desired, and
an output device and file name (if output is to a mass storage
device).

The standard input devices for BITMAP are: PTR, DTAn, DSK,
and SYS. Any other device which can contain absolute binary files
can be used as an input device if a device handler exists. TTY
should not be used, as the binary code may appear to the TTY
handler as control characters.

BITMAP accepts only absolute binary files. Relocatable and
core image files may not be used. If no extension to the input

'file name is typed, BITMAP assumes the .BN extension. If more
than one program is present in a file, only the first program is bit-
mapped. (This feature allows BITMAP to ignore any noise char-
acters which might be caused by reading over the end of a paper
tape.) This feature can be overridden by the /S switch.

Type the RETURN key at the end of an input specification line
to signal that more input is to be given on the next line. Use the
ALT MODE key as a line terminator when there is no more input;
the Command Decoder is not recalled, and control returns to the
Keyboard Monitor. The last line typed specifies the output device

1 System output is underscored throughout this manual.
= carriage return.

on which the bit map is to be produced. Any legal OS/8 output
device may be specified. If no output device is specified, output is
to the console terminal. For example:

If an output file is specified without an extension, BITMAP inserts
a .MP extension. The preceding lines cause FILEl, FILE2, FILE3,
and FILE.4 from DECtape 1 to be considered. Then a file is read
from the highspeed paper tape reader. The $ character is printed
by the ALT MODE key which indicates a return to the Keyboard
Monitor. The resulting bit map combining all the files read is pro- .

duced on the line printer.
The various options accepted by BITMAP are given below:

Table 2-4 Bitmap Options

Option Meaning

/R Reset internal bit map of BITMAP to look as though
nothing has been input.

/s Consider all binary programs in the specified input
file(s) (instead of only the first program in each file,
which is normally done).

/n Where n is an integer, forces mapping of all files spe-
cified QII this input line as if it were initially n field n.

/T This is used to change the style of output-i.e., put tele-â
type style output on non-teletype or non-teletype style
output on teletypes.

Examples of command lines to BITMAP:

The above commands create a bit map of the combined files
PROG.01 on the system device and PATCH-BN on ~ ~ ~ t a ~ e 5
and stores the output in the file MAP.MP on DECtape 1.

This example shows a bit map being produced on the line printer
for the combination of three binary files (A, B, and C) on the
device DSK:.

Oze b i ~ ~ ~ t q x is r e d froin the high-speed paper tape reader, and
a bit map is produced on the terminal combining all binary files on
that paper tape.

BITMAP Output
The output of BITMAP is a series of lines, each of which is

comprised of a string of digits. Each digit represents a single core
location? and can have the value O? 1, 2 or 3. The value is assigned
as follows:

' 0 means that the location was not loaded into.
1 means that the location was loaded into once.
2 means that the location was loaded into twice.
3 means that the location was loaded into three or more

times.
Appearance of a 2 or 3 may imply a programming error (e.g., two
separate routines are each trying to load values into the same lwa-
tion).

Each line of digits represents loo8 core locations and lines are
blocked in pairs to represent pages. On teletype output, the bit
map is bordered by a set of octal coordinates which associates
one core location to each digit. For any given entry in the map
the corresponding core location can be determined by adding the
horizontal and vertical coordinates that lie directly to the left and
above the entry.

The following is an example of teleQqx style output:

a I T w a p v 4 ~ T E L L ? 0

The following is an example of non-teletype style output:

B I T M A P VU F I E L D 4

BITMAP Error Messages
After each error message control returns to the Command De-

coder and the user can try the procedure again, or reset the pro-
gram (using the /R option) and try again using different inputs.

Message

110 ERROR
FILE #n
BAD INPUT,
FILE #n

BAD CHEEKSUM,
FlLE #n
NO INPUT

ERROR ON
OUTPUT
DEVICE
NO /I

Meaning

An 1/0 error occurred in input file number
n.
A physical end of file has been reached be-
fore a logical end of file, or extraneous char-
acters have been found in binary file n.
File number n of the input file list had a
checksum error.
No binary file was found on the designated
device.
Error occurred while writing on output de-
vice, i.e., output error on DECtape write.

Camiot produce a bitmap of an Enage file.

Assembly Instructions
Use PAL8 to make BITMAP-BN from BITMAP.PA as follows

R PAL8
*DEV: BI T M A P e D E V : BI TMAP

The listing file shown in parentheses is optional.
Use ABSLDR to make B1TMAP.SV from BITMAP.BN on a
DECtape file:

* R ABSLDR
*DEV: BI TMAP= 12000/9 $
.SAVE DEV BITMAP

To load and save the binary paper tape (DEC-S8-OSYSA-C-PB 17) :

.R ABSLDR
*PTR: = 12000/9 S t
.SAVE DEV BITMAP

and store in the file MAP.MP on DECtape 1.

BOOT

BOOT is an OS/8 program used to bootstrap from one PDP-8
system to another and to bootstrap from one device to another by
typing commands on the keyboard. BOOT can run conveniently
from OS/8 and COS 300 and can also run from any other PDP-8
monitor system (e.g., CAPS-8).

To run BOOT from COS 300, see the COS 300 System Refer-
ence Manual, Chapter 9 (DEC-08-OCOSA-E-D) .

To run BOOT from OS/8, type:

where dv is a 2-character mnemonic which must immediately fol-
low a slash. This mnemonic represents the device type and the
system to be bootstrapped. Do not attempt to bootstrap onto a
device which is not ready or does not exist.

To run BOOT from an OS/8 device with CCL enabled, type:

If the above form of call is used, BOOT.SV mustbe present on
the system device.

If the following is typed:

* R BOOT

the system responds with a slash and the user can respond with
the dv mnemonic.

If an illegal mnemonic is typed, the system prints:

to allow a new mnemonic to be entered. Type RUBOUT to erase
the line, then enter the command correctly.

If the device mnemonic is followed by a period, the program
loads the correct bootstrap into core and then halts. Press CONT
to branch to the bootstrap.

Table 2-5 lists the legal mnemonics for BOOT.

Table 2-5 Boot Mnemonics

Mnemonic Device System or Comments

CA TA8E cassette CAPS-8

DK Any disk (RF08, OS/8, COS 300
DF32, RK8E, RK8)

DL LINCtape DIAL-V2, DIAL-MS

DM RF08 or DF32 ~ i s k ~ o n i t o r

DT Any tape (TC08, OS/8, COS 300
TD8E, LINCtape)

LT LINCtape OS/8, COS 300

PT PT8E paper tape Loads BIN/loader into field 0

RE RK8E disk OS/8, COS 300

RF RF08, DF32 disks OS/8, COS 300

RK RK8 disk OS/8, COS 300

TC TC08 DECtape OS/8, COS 300, Disk Monitor,
DEC library system, and others

TD TD8E DECtape OS/8, COS 300

TY TC08 DECtape unit 4 Typeset bootstrap

VE Types BOOT'S version number

ZE Zeroes core (field 0)

More than one device of a particular type (e.g., disk, DECtape)
may be present on the OS/8 system. When the DK or DT
mnemonic is used, BOOT assumes the following priorities:

Disk . DECtape

1. RF08 or DF32 1. TC08
2. RK8E 2. TD8E
3. RK8 3. LINCtape

BUILD
BUILD is the system generation program for OS/8 which allows

the user to:

1. Create an OS/8 monitor system from cassettes or paper tapes.
2. Maintain and update device handlers in an existing OS/8

system.
3. Add device handlers supplied by Digital to a new or existing

system.
4. Add user-written device handlers to a new or existing system.

With BUILD, simple keyboard commands are used to manipulate
the device handlers which make up the OS/8 peripheral configura-
tion. BUILD allows the user to quickly and easily insert devices
which are not standard on the system.

OS/ 8 Device Handlers
Each OS/8 configuration has certain device handlers that are

available within BUILD when the system is supplied by Digital.
The handlers supplied with BUILD depend on the distribution
media of OS/8 software, i.e., DECtape (LINCtape), cassettes, or
paper tape. The device handlers supplied with BUILD are detailed
for specific distribution media in Tables 2-6, 2-7, and 2-8. (See
Appendix H for more detailed information concerning OS/8 device
handlers.)

- Device handlers that are included with BUILD must be made
active before they can be used by the OS/8 system. The BUILD
commands INSERT, REPLACE, and SYSTEM are used to make
device handlers active. A maximum of 15 handlers can be made
active, including the system device (SYS) and the default mass
storage device (DSK).

Inactive devices, even though they are included with the original
BUILD, cannot be used on the system until they are made active.
For example, several system handlers may be supplied with BUILD,
but only one may be marked active.

All other device handlers supported on OS/8 are supplied with
every configuration but those not included in the original BUILD
must be loaded into BUILD before they can be used. This is ac-
complished with the BUILD command LOAD. See Table 2-9 for
a complete list of the device handlers available with OS/8.

Handlers in BUILD are identified by two names, the first of
which is the group name. This is the name assigned to an entire
group of handlers all of the same type. For example, the nonsystem
TC08 DECtape handler as supplied with a DECtape system, which
has four separate handlers internally, has the group name TC.

In addition to the group name, a device also has a permanent
device name. This is the name by which OS/8 identifies the physi-
cal device. For example, TC08 DECtape unit 3 has the group
name TC and the permanent name DTA3.
DECTAPE (LINCTAPE) SYSTEMS

When OS/8 software is supplied on DECtape or LINCtape, the
device handlers shown in Table 2-6 are included in BUILD. The
handlers in Table 2-6 can be made active with the INSERT, SYS-
TEM, or REPLACE commands.

Table 2-6 Standard DECtape System Device Handlers

Handler

- -

Group
Name

Permanent
Name(s)

TC08 DECtape system handler
TC08 nonsystem DECtape

drives 0-3
12K TDSE DECtape system

handler and drives 0 and 1
'

8K ROM TD8E DECtape system
handler and drives 0 and 1

TD8E nonsystem DECtape
drives 0 and 1

TD8E nonsystem DECtape
drives 2 and 3

RKSE disk system handler
RK8E disk nonsystem handler

RK8 disk system handler
RK8 disk nonsystem handler
LTNCtape system handler
LINCtape nonsystem handler
RF08 disk system handler
Console terminal (2-page handler)
High-speed I/ 0 simulated on

ASR-3 3 Teletype
High-speed reader/punch
LPO8, LS8E, LVSE line printers
TA8E cassette drives 0 and 1
PDP-12 scope

ROM

RK8
RK0 1
LINC
LNC
RF08
KL8E
KS33

PT8E
LPSV
TA8A
VR12

SYS .
DTAO-DTA3

SYS, DTAO, DTA1

SYS, DTAO, DTA1

DTAO, DTA1

SYS, RKBO
RKAO, RKA1,
RKBO, RKB1

SYS, RKA1
RKAO, RKA1
SYS
LTAO-LTA3
SYS
TTY
PTR, PTP

PTR, PTP
LPT
CSAO, CSA1
TV

Other device handlers available with OS/8 but not included in
BUILD are listed in Table 2-9. The handlers supplied with a
DECtape or LINCtape system are on the System Tape #2 (DEC-
S8-OSYSB-A-UC2). To include extra handlers in BUILD7 mount
this tape and use the LOAD command.

CASSETTE SYSTEMS
When OS/8 software is supplied on cassettes, the device handlers

shown in Table 2-7 are included in BUILD. These handlers can be
made active with the INSERT, REPLACE, or SYSTEM com-
mands.

Table 2-7 Standard Cassette System Device Handlers

Handler
Group Permanent
Name Name(s)

RK8E disk system handler
RK8E disk system handler
RF08 disk system handler
DF32 disk system handler
Console terminal (2-page handler)
High-speed I/ 0 simulated

on ASR-33 Teletype
High-speed reader/ punch
TA8E cassette drives 0 and 1
LP08, LS8E2 LV8E line printers

PT8E
TA8A
LPSV

SYS, FXBO
SYS, RKAl
SYS
SYS
Tl-Y
PTR7 PTP

PTR, PTP
CSAO, CSAI
LPT

Other handlers supplied with OS/8 but not included in BUILD
are listed in Table 2-9. These liandlers are present on the system
cassette DEC-S8-OSYSB-A-TC4. To include extra handlers in
BUILD, build an OS/8 system, use MCPIP to move specific device
handlers onto the system device7 then use the BUILD command
LOAD.

PAPER TAPE SYSTEMS
When OS/8 software is supplied on paper tape, the device hand-

lers shown in Table 2-8 are included in BUILD. These handlers
can be made active with the INSERT, REPLACE, or SYS'IEM
commands.

2-36

Table 2-8 Standard Paper Tape System Device Handlers

Handler
Group Permanent
Name , Name(s)

RK8E disk system handler
RK8 disk system handler
RFO8 disk system handler
DF32 disk system handler
Console terminal (2-page handler)
High-speed I/O simulated

on ASR-33 Teletype
High-speed reader/ punch
TA8E cassette drives 0 and 1
LPO8, LSSE, LV8E line printers

PT8E
TA8A
LPSV

SYS, RKBO
SYS, RKAl
SYS
SYS
Try
PTR, PTP

PTR, PTP
CSAO, CSAl
LPT

Other handlers supplied with US/8 but not included in BUILD
are provided on two binary paper tapes. DEC-S8-OSYSB-A-PB2
contains the file-structured handlers. DEC-S8-OSYSB-A-PB3 con-
tains chkractekoriented handlers. These tapes contain handlers
which can be loaded into core using the BUILD command LOAD.

The BUILD device handler tapes are composed of separate seg-
ments, with a short length of leader/trailer code between them.
(All of these handlers are in the special format described in BUILD
Device Handler Format in this section.) Table 2-9 contains a list
of the handlers that are included on the tapes. The handlers are
listed in the order that they appear on the tapes. The TC08 handler
is the first segment on handler tape +l and the KL8E terminal
handler is the first segment on handler tape #2. It is suggested that
either the segments be labeled or separated for easier use.

To utilize a binary handler file, place the desired segment into
the paper tape reader. Use the BUILD command LOAD to load
that segment as follows:

$LOAD PTR[:] Type a colon (:) after the device name if
? BUILD was loaded Â£ra an OS/8 system
$ device. The T allows time to place the tape

in the reader. Type any keyboard charac-
ter to load the tape. When the $ reap-
pears, the handler has been loaded into
BUILD'S table. Type the BUILD com-
mand PRINT to ver@ that the handler
has been loaded.

Table 2-9 OS/S Device Handlers

File Name
on DECtape

Group Permanent LINCtape or
Handler Name Name(s) Cassette

- -

TC08 DECtape system handler TC08 SYSy DTAO TCO8SY .BN
12K TD8E DECtape system TD8E SYS7 DTA07 DTAl TD8ESY .BN

handler
8K ROM TD8E DECtape ROM SYS, DTAO, DTA1 ROMMSY .BN

system handler
LINCtape system handler LINC SYS7 LTAO LINCSY .BN
RK8E disk system handler RK8E SYS7 RKAO, RKBO RK8ESY .BN
RK8 disk system handler RK8 SYSy RKA07 RKAl RKO8SY .BN
RF08 disk system handler RF08 SYS - RFO8SY .BN
DF32 disk system handler DF32 St-S EF32Svrr .EX
TD8E DECtape drives 0 and 1 TD8A DTAO, DTAl TD8EA .BN
TD8E DECtape drives 2 and 3 TD8B DTA2, DTA3 TD8EB .BN
TD8E DECtape drives 4 and 5 TD8C DTA4? DTAS TD8EC .BN
TD8E DECtape drives 6 and 7 TD8D DTA6? DTL47 TD8ED.BN -
TC08 DECtape drives 0-7 TC DTAO-DTA7 TCO8NS .BN
LINCtape drives 0-7 LNC LTAO-LTA7 LINCNS .BN
RK8E disk nonsystem handler RK05 RKAO-3, RKBO-3 RK8ENS .BN
RK8 disk nonsystem handler RKOl RKAO-RKA3 RKO8NS .BN
RF08 disk nonsystem handler RF RF, NULL RFO8NS .BN
DF32 disk nonsystem handler D F DF DF32NS .BN

Console terminal (2-page KL8E TTY
handler)

Console terminal (1-page AS33 TTY
handler)

High-speed 110 simulated on KS33 PTR7 PTP
ASR-3 3 Teletype

High-speed reader1 punch PT8E PTR? PTP
LPO8? LS8E, LV8E line LPSV LPT

printers
Anelex 645 line printer L645 LPT
Card reader CR8E CDR
BATCH handler BAT BAT
PDP-12 scope VR12 TV
TUlO magnetic tape drives 0-7 TM8E MTAO-MTA7
TA8E cassetâ‚ drives 0 and 1 TA8A CSAO, CSA1
TA8E cassette drives 2 and 3 TA8B CSA2, CSA3
TA8E cassette drives 4 and 5 TA8C CSA4, CSAS
TA8E cassette drives 6 and 7 TA8D CSA6, CSA7

LSPT .BN

PT8E .BN
LPSV .BN

L645 .BN
CR8E .BN
BAT .BN
VR12 .BN
TMSE .BN
CSA .BN
CSB .BN
CSC .BN
CSD .BN

Calling and Using BUILD
BUILD is distributed as both a binary paper tape or cassette and

as a core image file (BUILD-SV) on the system DECtape or LINC-
tape. The binary BUILD file should be loaded and saved on the

system device when the initial system is built (see Getting On Line
with OS/8 in Chapter 1). To use the BU1LD.SV file on the system
device7 type the following command in response to ihe dot printed
by the OS/8 Keyboard Monitor:

RUN SYS B U I L D

NOTE
It is important that the user specify the RUN
or RU command7 rather than the R com-
mand, when loading BUILD into core. This
will allow the use of the SAVE command .
without specifying SAVE arguments.

BUILD responds by printing a $, si@aling that it is ready to accept
commands.

BUILD uses a keyboard monitor similar to that contained in
the OS/8 system. Text is input from the terminal and interpreted
by BUILD. Table 2-10 lists the special charac;ers that are available
for editing.

Table 2-10 BUILD Editing Characters

Character Function

ALT MODE key Terminate command; begin command ex-
ecution. No carriage returnlline feed is gen-
erated.

CARRIAGE RETURN Terminate command; begin command ex-
ecution. Also generate carriage returdline
feed combination.

CTRL/C Terminate command; return immediately to
the OS/8 Keyboard Monitor.

CTRLI 0 Terminate printing; return control to BUILD.
CTRL/ U Ignore line; the line may be typed again.
LINE FEED key Examine contents of the command line.
RUBOUT key Delete the last typed character from the

command.

The standard characters permitted ., in a BUILD command line
are:

A-Z, 0-g7 SPACE, PERIOD7 z7 COMMA7 COLON, HYPHEN

Typing any other chixracter causes the error message:

SYNTAX ERROR

BUILD Commands
The commands available in BUILD are:

ALTER
BOOT
BUILD
CORE
CTL
DCB
DELETE
DSK
EXAMINE
INSERT
LOAD
NAME
PRINT
QLIST
REPLACE
SYSTEM
UNLOAD
VERSION

The general format of the command string is:

$command args

where cornand represents a legal command from the list and
args represents a file name, device, group name, or other argu-
ment associated with the command. The cormnand can be typed in
full or abbreviated to the first two characters. For example:

are the same. If the user attempts to issue an illegal command.
BUILD replies by printing the illegal command preceded by a ?.
Thus the illegal command ERASE would appear:

SERASE
?ERASE
Â

THE HYPHEN CONSTRUCTION
Certain BUILD commands (DELETE, INSERT, REPLACE)

allow the use of the hyphen construction to specify more than one
permanent name. These permanent names must be four characters
long and must differ only in the last character. Permanent names
which meet this restriction can be inserted with the hyphen con-
struction so long as the last characters form a sequence of consecu-
tive ASCII characters.

For example, if the user wishes to delete DECtape handlers
DTAO, DTA1, DTA2, and DTA3, he can type:

or he can use the hyphen construction and type:

SDEL ET E DTA0- 3

PRINT
Syntax: .$PRINT or $PR
Function: Prints the detailed list of the BUILD devices tables.

The following example shows five handlers.

RF08 S SY S
RK8E: * S Y S * R K B 0
KL8E: *TTY
PT8 E: PTR *PTP
LPSV: LPT

Group names are printed first in each line followed by a colon.
Following the group name are the list of permanent names available
with each group. If one of the permanent names in a group is SYS,
then this handler can be a system handler. An OS/8 system must
have just one system handler. Some system handlers have other
handlers coresident with them.

Any handler that is active is marked with an asterisk to the
left of its permanent name (RKBO, TTY, PTP in the printout), and
the devices will be included in the new OS/8 system. (i.e., these
handlers were inserted with the INSERT, SYS, or REPLACE

2-4 1

commands. Other commands are available for removing, loading,
and deactivating handlers.) The preceding printout indicates that
RK8E is the system device. The handler RK8E:RKBO is also
marked as being active.

After printing the list of available handlers, the PRINT com-
mand might also print some additional information. If, for example,
the user specified RK8E:RKBO with the DSK command, the fol-
lowing is printed:

DSK = RK8 E: RK BO

If the user specified that core is to be restricted to 12K with the
CORE command; the message:

is printed, indicating that field 2 is to be the. highest core field
available to the OS/8 system.

QLIST
Syntax: $QLIST or $QL
Function: List the active permanent names on the system. No *

is printed and the system device is the only group name printed.
For example:

SOL1 ST
PTR D T A 3 RK08: S Y S L P T D T A 4

LOAD
Syntax: $LOAD activename or $LOAD dev:filename
Function: LOAD is used to load a new device handler into

BUILD. This handler can be one supplied by Digital or one writ-
ten by the user. See the OS/8 Software Support Manual (DEC-
S8-OSSMB-A-D) for instructions on writing device handlers. This
handler is input into BUILD as a binary file or image.

If BUILD is being run stand-alone, e.g., to create an initial OS/8
system, the LOAD command has the form:

$LOAD activename

where activename is the permanent name of an inputdevice han-
dler that has been made active with the INSERT, REPLACE, or
SYSTEM command. It must be a handler for a non-file structured
device. For example, to load a new handler from a binary paper
tape with the PTR handler already in BUILD, type:

S L O A D PTR

IF BUILD is being run under control of OS/8, the LOAD com-
mand has the form:

where dev is an input device handler that exists in the current O S / ~
system. (These are not the same as the handlers which are marked
active by BUILD.) If no dev: is specified, DSK: is assumed.

If dev: is non-file structured (i.e., paper tape), the filename may
be omitted. The filename has the form:

name. extension

Filename is the binary file of the new handler to be loaded^ The
default extension is .BN. If no extension is used, the dot (.) may
be omitted.
Example:

$LOAD DTA3:HANDLR.03 A file named HANDLR, with an
extension of 03 is loaded from
DTA3.

Several files to be loaded may be specified on one line, sepa-
rated by commas. A device must be specified for each file or DSK
will be assumed. If multiple files are specified, each file must con-
tain a separate handler to be loaded. For example:

SLOAD DTA3: F I L E 1 s DTA5: F I L E 2
.

Once the LOAD command-has been successfully issued, the new
device handlers are available for further manipulation. The new
handlers will appear in the PRINT output, but will not be marked
as active.

INSERT
Syntax: $INSERT gname, pname
Function: After a LOAD command has made a handler or

group of handlers available for insertion in the OS/8 system, the
INSERT command is used to make particular entry points active.
The INSERT command uses two arguments; gname and pnarne.
Gname is the group name of the handler, for example, the gname
for TC08 DECtape is TC. Pname is the permanent name by which
the device is currently known to BUILD. See Table 2-9 for a com-
plete list of permanent device names. TC08 DECtape thus has the
group name TC and the permanent names DTAO-DTA7.
Examples:

SIN KL8E3 TTY
SIN T C 0 8 8 S Y S

If no permanent name is specified (and no :), the first name in
. the device group is assumed. For example:

SINSERT T C

would assign DTAO as the permanent name.
Several handlers in the same group can be inserted in the same

command by separating the permanent names with commas. For
example:

If several permanent names (each four characters long) differ
only in the last character, they can be simultaneously inserted with
the hyphen construction so long as the last characters form a
sequence of consecutive ASCII characters.
Example:

SINSERT TC, DTA2- 5

is the same as

SIN SERT TC* D T A 2 8 D T A 3 , DTA4, D T A 5 -

and

S I N S E R T R K 0 1 , R K A 0 - 2

is the same as

S I N S E R T R K ~ ~ < R K A ~ , R K A ~ . Ã ˆ R K A

If the permanent name specified is not part of the group name
specified or if the group name does not exist, the following message
is printed:

name NOT FOUND

If disk is the device being inserted, the group name can be fol-
lowed by a construction of the form:

Where n is a digit in the range 1 to 7 and represents the number
of platters available. This option is used for the RF08 and DF32
disks. For example:

SIN R F s R F z 2

If no such option is specified, =1 is assumed. If n is too large for
the device specified, the following message is printed:

? P L A T
-

DELETE
Syntax: $DELETE aname
Function: DELETE talces a device which is currently marked

as active and makes it inactive. (Devices which are active are
marked with an * in the PRINT command output and are printed
by the QLIST command.)

The argument for DELETE is the permanent name of the device.
The current permanent name can be obtained from the PRINT or
QLIST output. The major function of DELETE is make device
slots available to BUILD.

For example, assume (hat the QLIST command output is:

D T A 0 D T A l R K 8 E : S Y S RKBO TTY LPT C S A O C S A 1 C S A 2 C S A 3

If the following command is issued to BUILD:

S D E L E T E C S A 0 i C S A l i C S A 2 i C S A 3

CSAO, CSA1, CSA2, and CSA3 will no longer be permanent
devices and the slots used by (he TA8A and TA8B device groups
will be made available to BUILD. The QLIST output after the
above command will be:

D T A 0 D T A l RKBE: SY S R K B 0 TTY L P T

Note that, as previous'ly explained, the hyphen construction can
be used in DELETE to remove a sequence of devices. Thus the
command to make the cassette handlers inactive could also be
typed as follows:

S D E L E T E C S A 0 - 3

REPLACE
Syntax: $REPLACE pname=gname, pname2
Function: REPLACE combines the functions of DELETE and

INSERT to provide a means of deleting one device and activating
another in a single step. The arguments for REPLACE are:

pname The permanent name of the device to be de?
leted. (Same as are argument of the DELETE
command.)

gname, pname2 The group name and permanent name of the
particular device to be inserted into the system
(see INSERT for more details).

Example: Assume the PRINT output is:

P T 8 E : * P T P * P T R
CR8E: * C D R
R K 0 5 : R K A 0 RK BO R K A 1 RK B 1

REPLACE can be used to delete the card reader (CDR) and insert
the RK05 group handler for RKAO:

*

The output of PRINT after this REPLACE is:

The hyphen construction can be used with REPLACE to delete
and insert more than one device handler. For example, assume
that LINCtape handlers LTAO, LTA1, LTA2, and LTA5 are to
be replaced with DECtape handlers DTAO, DTA1, DTA2, and
DTA5. This replacement could be accomplished with the com-
mand:

UNLOAD
Syntax: $UNLOAD gnarne, or $UNLOAD gname, pname
Function: UNLOAD is used to physically delete a handler group

(gname) or a permanent name (pname) from the BUILD system.
(This differs from DELETE, which does not physically eliminate
a device.) UNLOAD is primarily used when the NO ROOM error
occurs during a LOAD command.

For example, assume that the entire gr,oup of LINCtape han-
'

dlers is to be removed. The command is typed as:

This command unloads the LINCtape handler LNC and'all per-
manent names (LTAO, LTA1, LTA2, LTA3, etc.) associated with
it.

To remove a particular permanent name- from BUILD, e.g.,
DTA3, type:

SUNL OAD T C J D T A 3

This command does not unload the handler, just the entry point
name.

To remove several permanent names, but not the entire group,
the UNLOAD command is used with commas separating the per-
manent names. For example:

SUNL OAD TC, DTA0, DTA2

The hyphen construction cumot be used with the UNLOAD
command.

NAME
Syntax: $NAME pname=pname2
Function: The NAME command allows the user to alter the

device name which will be used by OS/8. T h e first argument,
pname, must be the current name of a device marked active in
the PRINT output. Pname2 is the name the user wishes to call
this device. Only 4-character device names may be used in the
NAME command. If longer names are entered, all characters be-
yond the first four are ignored. After the NAME command is used,
pname2 is the current permanent name; pname is unknown to
BUILD.
Example: Assume that the PRINT output is:

To change the paper tape reader so that it is recognized by the
permanent name READ, the following command is used:

The output from PRINT would then be:

If the permanent name specified as pname is not a currently
active device, the message:

pname NOT FOUND

is printed. If this message appears, check the PRINT output to\
determine the correct permanent name.

ALTER .

Syntax: $ALTER gname, loc=newvalue
Function: The ALTER command allows the user to change

locations in device handlers. The arguments are:

gnme Group name of the handler.
loc Relative octal location to be altered. If the han-

dler is a 1-page handler, loc must be an octal
number in the range 0-0177. If it is a 2-page
handler, loc must be an octal number in the
range 0-0377.

newvahe An octal number specifying the new contents of
the location specified by loc. If no =newvalue
is entered, BUILD prints the old value of loc
followed by a slash. Newvalue can then tie en-
tered or a carriage return can be typed to retain
the old value.

EXAMINE
Syntax: $EXAMINE gname, loc
Function: EXAMINE allows the user to examine, but not

modify, a location within a device handler. See the ALTER com-
mand.

DSK -

Syntax: $DSK=gname, pname or $DSK=aname
Function: The DSK command is used to specify which device

is to be designated as DSK, the default storage device for OS/8. If
the first form of the command is used, i.e.,

the gname is the group name of the device and pname is the per-
manent name. For example:

assigns DTAO as the device called DSK.
When the DSK command is issued, the permanent name need

not have been entered. However, the permanent name must be
entered, via an INSERT, REPLACE, or SYSTEM command be-
fore the BOOT command is issued.

If the second form of the command is used, i.e.,

aname must be a permanent name marked as active by BUILD.
For example, the following command specifies the already active
device RKAO as the default device DSK:

If no DSK command is entered, or if the command is issued
without an argument, i.e.,

SDSK

BUILD specifies SYS as DSK when a BOOT command is issued:

CORE
Syntax: $CORE n
Function: The CORE command is used to specify the highest

core field available to the OS/8 system being built. The n is
an octal number in the range 0 to 7. If n is 0 or omitted, or if the
CORE command is not used, the system built will use all of the
available core. If n specifies more core than is physically available,
the following message is printed:

- ,

The following table indicates the value of n for the available
core sizes:

n core - -
0 all available core
1 8K
2 12K
3 16K
4 20K
5 * 24K
6 28K
7 - 32K

For example, a system which is to use only 24K of a 32K system
would have the following CORE command:

SCORE 5

DCB
Syntax: $DCB aname or $DCBaname=newvalue
Function: The DCB command allows examination or modifica-

tion of the DCB word associated with a permanent name. (See the
section on BUILD Device Handler Formats for information on
DCB words.

The DCB word is the first word after the permanent name in a
description (from the handler header information words). Aname
must be the permanent name of a device currently marked as active
in the PRINT output.
Example:

SDCB DTA4= 6 1 60

changes the DCB of DTA4 so that this handler becomes a read-
only device. This command could also be typed-as:

CTL
Syntax: $CTL aname=loc
Function: The CTL command allows modification of the control

word which is the word after the DCB word in the handler header
block. For example:

SCTL L T A 3 = 2 4

changes the entry point of the LTA3 handler to be relative loca-
tion 24.

VERSION
Syntax: $VERSION or $VE
Function: The VERSION command prints the version number

of BUILD on the terminal.

SYSTEM
Syntax: $SYSTEM sname=n
Function: The SYSTEM command specifies devices which are

system handlers or coresident with system handlers. The number
n reflects the number of platters included in the system device
(valid only for multiple platter RF08 and DF32 disks). The avail-
able system handlers and their associated values for n are listed
in Table 1-6). The argument snarne must be one of the legal device
system names If it is not, BUILD prints:

thus requesting a new system specification.
Action is not taken on the SYSTEM command until'the BOOT-

STRAP command is given, so the user may respecify a device
with SYS. The system device used is the last one issued prior to
the BOOT command. Specifying a new system device is not always
necessary. For example, if the user wishes to insert new peripheral
handlers, then this command is not needed. If it is not issued, the
OS/8 system which is resident is not affected beyond altering the
device tables.

The SYSTEM command is included only for compatibility with
older versions of BUILD. The system device can be specified with
the INSERT command. For example, the command:

SSYS RF08=2

is the same as the command:

SINSERT RF08i SY S=2

If the device specified in the SYS command is not the current
system device, the user will have an opportunity to have a zero
directory placed on his new system device. If the system device
is the same as the current system device, no new directory will be
written.

BUILD
Syntax: $BUILD or $BU
Function: The BUILD command is used only when building an

initial OS/8 system from cassettes or paper tape. When the BUILD
command is typed, BUILD prints:

LOAD O S l 8 :

to which the user must respond with the device that contains the -
new OS/8 monitor, e.g.,

LOAD OS/8: CSAO

BUILD then loads and writes the various parts of OS/8 onto the
system device. After writing OS/8, BUILD prints:

LOAD CD:

to which the user responds with the appropriate device, or types
carriage return to specify that the device is the same as that specified
in the LOAD OS/8: message. BUILD loads the Command Decoder
and writes it onto the system device.

The BUILD command must not be used at any time other than
while building an initial OS/8 system. When this command is typed,
OS/8 assumes that the user is building a new OS/8 system and
automatically zeroes the system device directory. See Getting On
Line With OS/8 in Chapter 1 for instructions on building an initial
system.

BOOTSTRAP
Syntax: $BOOTSTRAP or $BO
Function: BOOTSTRAP is the command which finally imple-

ments all the changes that have been made using BUILD. BOOT
rewrites all relevant Monitor tables and device handlers to reflect
the updated system status. The devices which BUILD had marked
active now become device handlers in the system.

When a BOOTSTRAP command is typed, the system device
must have been explicitly specified with either the SYSTEM or
INSERT command. If no SYS is specified, the message:

SYS NOT FOUND

is printed.
If the system device specified is different from the current system

device, BUILD copies the system from the current system device to
the new system device. After the copy is complete, BUILD asks:

WRI TE Z E R O DI RECT ?

to determine whether a new (zero) directory is to be written on the
new system device. If the reply is YES, a zero directory will be
placed on the device. Any other reply causes the old directory to be
retained.

NOTE
Care should be exercised if the old directory
is to be retained. The directory must be that
of an OS/8 system device.

After this question has been answered, BUILD updates the system
and prints:

S Y S B U I L T
Â

Control returns to the Keyboard Monitor. When the BOOT-
STRAP command has performed its functions and the Keyboard
Monitor is once again active, it is a good idea to save the copy of
BUILD just used. In this way, an image of the current system
status is preserved, and the saved copy of BUILD can be used

again. When it is used again, the devices which were initially
marked active are still marked active. To save BUILD, type:

. SAVE SYS B U I L D

in response to the dot printed by the Keyboard Monitor. This as-
sumes that the user originally loaded BUILD into core with a RU
or RUN command.

BUILD Error Messages
The following is a list of error messages which may appear when

using BUILD. These messages are usually indicative of a syntax or
user error.

Table 2-11 BUILD Error Messages .
Message Explanation

?BAD ARG

?BAD INPUT

?BAD LOAD

?BAD ORIGIN

?CORE

I/ 0 ERR

?NAME

NO ROOM

No device name was included in the LOAD
command.
An error was detected in the binary file; it is
not a proper input for the LOAD command.
An attempt was made to load a binary handler
that is not in the correct format.
The origin in a binary file is not in the range
200-577.
A CORE command specified more memory
than is physically available, or the BOOT com-
mand was issued on an 8K system with a 2-
page system handler active. Two page system
handlers require at least 12K of core to be
present on the OS/ 8 system.
The device specified in a DSK command is not
a file-structured device.
More than 15 handlers, including SYS and
DSK, were active when a BOOT command was
issued.
An error occurred while reading from an input
device during a LOAD command.
A device or file name was not designated in a
command that requires one to be present.
Too many device handlers were present on the
system when a LOAD or BUILD command was
typed. The UNLOAD command must be used
to remove a handler before another can be
loaded.

Table 2-11 BUILD Error Messages (Cont.)

Message Explanation

name NOT FOUND The device or file name designated in the com-
mand was not found.

?PLAT The =n in a SYS command is too large for the
device specified, e.g., RF08=5.

?SYNTAX An illegal character was typed in a BUILD
command line. The line must be retyped.

?SYS This message appears when one of the follow-
ing conditions exists.
a. A permanent name in a SYS command was
not a system handler or coresident with one.
b. A BOOT command was issued when two or
more system handlers were active.
c. A BOOT command was issued when an ac-
tive handler which must be coresident with a
SYS handler did not have the system handler
active.

SYS ERR An I /O error occurred with a system handler.
The computer halts. Press CONT to retry or
restart the BUILD procedure from the begin-
ning. Do not assume that a valid OS/8 system
remains in core.

SYS NOT FOUND No active handler with the name SYS was pres-
ent when a BOOTSTRAP .command was issued.

BUILD Device Handler Format
The BUILD command LOAD is used to load device handlers

not provided by BUILD into core where they can be inserted into
the OS/8 system. The format of the input to LOAD is binary file
containing the handler, as well as a header block which contains
information pertaining to the devices included in that file. The user
should code the handler in PAL8 machine language according to
the following format.

The structure of the source for a BUILD device handler is:

*0
HEADER BLOCK

*200
BODY OF DEVICE

HANDLER

The origins at 0 and 200 are vital to BUILD. The *0 is an im-
portant part of theheader block and, if it is omitted, no load is
done. The *200 is also necessary for the load. If the handler con-
tains an origin outside the range 200-577, an error message is
generated and the load is aborted.

HEADER BLOCK
The header block contains the following information:

Word 1 : -X, where X is the number of separate handlers
contained in this file. Thus a handler for TC08
has the first word equal to -lO(octal).

Words 2-9: Descriptor block for the first handler in
group*

Words 10-17: Description block for second handler in
group.

Descriptor block for second handler in
group. If the handler is a system handler,
is followed by the length of the bootstrap
the bootstrap itself.

the

the

the
this
and

- Thus, each handler in the group must have an 8-word block
describing its characteristics. If more than 12 handlers are in a
group, an error is generated during the LOAD.

DESCRIPTOR BLOCK 8

Each 8-word descriptor block contains the following information.

Words 1,2: ' Device type name. This name is the group
name, or type, of all the handlers in this group
and is usually designated by the DEVICE -
pseudo-op.

t..

Example: DEVICE RK8

Words 3,4: OS/8 device name. This is the name (perma-
nent name) by which the particular device will
be recognized in the OS/8 system to be con-
figured. It can be altered by the NAME com-
mand.

Example: DEVICE RKAO

Word 5: Device Control Block. This word reflects the
type of device, in accordance with Table 2-12.
Bits 9-1 1 specify the maximum number of plat-
ters on the device (0=1).

Example: 4050

Word 6: Entrypoint word. This word must contain the
entry point offset in bits 5-1 1 (see ENTRY
POINT OFFSET). Bit 0 should be a 1 if the
handler is a 2-page handler. Bit 1 should be a
1 if the entry point is SYS. Bit 2 should be a
1 if the entry point is coresident with SYS.

Example: 0020

Word 7: Must be 0.

Word 8: Must be 0, except for a system handler which
uses it to specify the block length of the device.

As an example, consider the handler for the nonsystem RK05
handlers. This file contains four separate handlers; the source code
would appear as follows:

/4 DEVICES

DEVICE RK05; DEVICE RKAO; 4050; 0020; ZBLOCK 2
DEVICE RK05; DEVICE RKBO; 4050; 0021; ZBLOCK 2
DEVICE RK05; DEVICE RKA1; 4050; 0022; ZBLOCK 2
DEVICE RK05; DEVICE RKB1; 4050; 0023; ZBLOCK 2

*200
Ã‡

(HANDLER BODY)

The device type of the group is RK05 (Words 1-2). The perma-
nent device names are RKAO, RKBO, RKA1, RKB1. Since each
device is RK05, the device control block (DCB) word for each is
identical.

The entry point word indicates where the entry point for that
particular device occurs relative to the top of the page. Thus, in the
above example, RKAO enters at the 20th location from the top of
the page, RKBO at the 21st, etc.

It is vital that this information be accurate. If errors are made in
this data, unpredictable results occur when the system is generated.

BREAKDOWN OF DCB WORD
The DCB word for a device provides specific information which

is used in the OS/8 Monitor. Its structure is detailed in Table 2-12.

Table 2-12 DCB Word

Bit Meaning

0 1 if file-structured device

1 1 if read-only device (e.g., PTR)

2 1 if write-only device (e.g., LPT)

Device Type

3-8 00 = console terminal
01 = high-speed paper tape reader
02 = high-speed paper tape punch
03 = card reader
04 = line printer
05 = RK8 Disk
06 -= RF08 (1 platter)
07 = RF08 (2 platter)
10 = RF08 (3 platter)
11 = RF08 (4 platter)
12 = DF32 (1 platter)
13 = DF32 (2 platter)
1 4 = DF32 (3 platter)
15 = DF32 (4 platter)
16 = TC08 DECtape
17 = LINCtape
20 = TM8E magnetic tape
21 = TD8E DECtape
22 = BAT-BATCH handler
23 = RK8E disk

2-59

Table 2-12 DCB Word (Cont)

Bit Meaning

24 = NULL-NULL handler
25-26 = Unused

27 = TA8E cassettes
30 = PDP-12 scope

3 1-37 = Unused by Digital
40-77 = Reserved for user-written handlers

9-1 1 Used only by OS/ 8 Monitor

Whenever a device is to be inserted into OS/8, this structure
must be followed to obtain correct results.

ENTRY POINT OFFSET
Word 6 of each device descriptor block specifies the relative

entry point of that particular handler. Devices supplied by Digital
have a fixed set of entry points, described below.

Care should be used when coding new device handlers for in-
sertion into the system. The entry point offset for the new handler
must not be the same as that for any other file-structured device in
the system. For example, OS/8 currently uses relative entry points
7-23 for file structured devices. No new handler should have entry
points at 7 to 23 of the page. If this occurs, the system may perform
incorrectly.

Current file device and entry point offsets are listed below:

Device Entry Relative to Top of Page -
TC08 DECtape
TD8E DECtape
LINCtape
System device
RK8 disk

Thus, the user-coded file devices should use entry points other
than 7-23.

If a new file-structured user device is added to the system, it will
be necessary to alter the device length table in PIP to permit zeroing
of the device directory. To do this, ODT is used as follows:

.GET SYS PIP

.ODT
13 6nn/OOOO xxxx
TC user types CTRL/C
.SAVE SYS PIP

The nn represents the 2-digit device indicated in Table 2-12.
The xxxx is the negative of the last block number on the device.
Both nn and xxxx are octal numbers.

For example, if the new device is assigned a code of 40 (cur-
rently the first unused entry), and the last OS/8 block on the device
was block 1000, PIP would be changed as follows:

*GET S Y S P I P
ODT
13640/0000 7 000
t c . SAVE S Y S P I P

CAMP (CASSETTE AND MAGNETIC TAPE POSITIONER)
The CAMP (Cassette and Magnetic Tape Positioner) program

is used to position cassettes, magnetic tapes, and certain other
devices. To call CAMP from the system device, type:

R CAMP

in response to the dot printed by the Keyboard Monitor. CAMP
prints a # to indicate that it is ready to receive a command. The
command line entered may be terminated w:th a carriage return
(CAMP retains control) or an ALTMODE (control returns to
the Keyboard Monitor).

CAMP Commands
Each CAMP command begins with a keyword, consisting of

two or more letters. The full CAMP command need not be typed;
each command has letters that a.re required. The CAMP com-
mands are listed below in alphabetic order. Letters that are not
required are printed in italics.

BACKSPACE
EOF
HELP
REWIND
SKIP
UNLOAD
VERSION

BACKSPACE COMMAND
The BACKSPACE command spaces a magnetic tape or cas-

sette backward a specified number of files or records. This com-
mand may also be issued indirectly with the CCL BACKSPACE
command. (See the CCL section of Chapter 1 .)

The BACKSPACE command has the form:

BA dev: nnnn Files

Where "dev" is the permanent name of a cassette or magnetic
tape drive. The "nnnn" is an unsigned decimal number represent-
ing the number of records or files to backspace. This number must
be in the range 0-4095. If no number is entered, nnnn=l is as-
sumed. This number is followed by a keyword beginning with

either an R, indicating records, or an F indicating files. If neither
F nor R is entered, F is assumed.
Examples :

positions the cassette mounted on CSAO backward two files.

Ã‡B MTA1:

positions the magnetic tape mounted on MTA1 backward two files.
If a file mark is read before the proper number of records have

been spaced over, the message:

2 CAN'T - AT BOF

is printed and the device is moved forward one record to leave the
device positioned at the beginning of the file (just before a data
record).

The file at which the device is currently positioned is not counted
when an attempt is made to backspace a number of files. For ex-
ample, the command :*

moves backward over four file marks and then moves forward one
record, leaving the tape positioned at the beginning of the file. If
nnnn=O, this command backspaces to the beginning of the file at
which the tape is currently positioned.

EOF COMMAND
The EOF command writes a single file mark (file gap) on the

specified magnetic tape or cassette. This command may also be
issued indirectly with the CCL EOF command.

The EOF command has the form:

EOF dev:

where "dev" is the permanent name of a cassette or magnetic tape
drive.

Example :

HELP COMMAND
The HELP command prints a short message on the console

terminal, reminding the user of the CAMP command syntax. This
command is of the form:

REWIND COMMAND
The REWIND command issues a rewind command to one of the

+

following OS/8 device controllers: cassette, magnetic tape, or
TC08 DECtape. .

The REWIND command is of the form:

REWIND dev:

where "dev:" can be any OS/8 file-structured device. If "dev" is a
cassette, control returns to CAMP while the cassette is rewinding:
CAMP prints another #, indicating that it is ready to receive an-
other command. If "dev" is magnetic tape or. TC08 DECtape, the
device rewinds immediately and control returns to the OS/8 Key-
board Monitor while the device is rewinding. If a REWIND com-
mand is issued to any other OS/8 device (e.g., LINCtape), control
returns to CAMP after the device is rewound. .
Example :

SKIP COMMAND
The SKIP command advances over the number of files or records

specified on a magnetic tape. "This command may also be issued
indirectly with the CCL SKIP command. The SKIP command is not
implemented for cassettes.

The SKIP command has the form:

nnnn Records
#SKIP MTAn: Files

where MTAn may be any magnetic tape drive, depending upon the
number of magnetic tape drives on the. OS/8 system. The "nnnn"
is an unsigned decimal number representing the number of files or
records to be advanced over. This number must be in t he range
0-4095. EOD indicates that the tape is to be advanced to the end
of data. The end of data on a magnetic tape is a point between two
file marks. If EOD is specified, the tape must be rewound before
issuing the command if it is already past the end of data. If neither
"nnnn" nor EOD is specified, nnnn=l is assumed.

If a number is specified, it 'may be followed by a keyword be- -
ginning with either an R, indicating records, or an F, indicating
files. If neither F nor R is entered, F is assumed.
Examples:

- #SKIP MTA0: 2 RECORDS

advances the magnetic tape on MTAO forward two records.

advances the magnetic tape on MTA1 forward six files.
If a file mark is read before the proper number of records have

been advanced over, the warning message: -

TÃ CAN'T - AT EOF

is printed and the tape is roved backward one record to position
the tape at the end of the file (just after the last data record but
before the file mark). If nnnn=O, nnnn=l is assumed when skip-
ping records.

The file at which the tape is currently positioned is counted when
an attempt is made to advance over a number of files. Thus nnnn=l
means to advance to the beginning of the next file. If nnnn is
greater than 0, the tape is positioned at the beginning of a file (just
after a file mark but before any data records). If nnnn=O, the tape
is advanced to the end of thefile at which it is currently positioned
(before a file mark, but after all data records).

If the end of data is encountered before the specified number of
files have been skipped, the warning message:

% CAN'T - AT EOD

is printed and the tape is positioned at the end of data. If a tape is
already positioned at the end of data, the SKIP command produces
meaningless results.

UNLOAD COMMAND
The UNLOAD command rewinds and turns off line a magnetic

tape controller and returns to CAMP for another command while
the tape rewinds. Since the magnetic tape is turned off line, it must
be manually turned on line to be used after a UNLOAD command.

The UNLOAD command may also be used to unload TC08 and
TD8E DECtapes off of their reels. When used on DECtapes, the

.P . UNLOAD command rewinds the DECtape on the unit specinea,
selects a different unit, and returns control to CAMP for another
command. This DECtape unit cannot be used until another legal
command, e.g., the Keyboard Monitor ASSIGN command, is issued
to the DECtape controller.

The UNLOAD command can also be used to write-lock an
RK8E disk.

The UNLOAD command is of the form :

#UNLOAD dev:

where "dev" may be any one of the following:
magnetic tape
TC08 DECtape
TD8E DECtape
RK8E disk

VERSION COMMAND
The VERSION command prints the version number of CAMP

on the terminal. This command is of the form:

CAMP Error Message Summary
The error messages listed in Table 2-13 may appear during a

CAMP operation.

Table 2-13 CAMP Error Messages

Messages Explanation

% CAN'T-AT BOF

? CAN'T-AT BOT

% CAN'T-AT EOD

% CAN'T-AT EOF

A file mark was read before
the specified number of rec-
ords were read over in a
BACKSPACE command.
The device is moved for-
ward so that it is positioned
at the beginning of the file.
A BACKSPACE command
cannot move the device
backward the specified
number of files because the
device is positioned at the
beginning of the first file.
The specified number of
files cannot be advanced
over because the end of
data was encountered. -The
tape is positioned at the
end of data.
A file mark was read be-
fore the specified number

-

of records were advanced
over in a SKIP command.
The tape is moved back-
ward one record to leave it
positioned at the end of the
file.

? CAN'T-DEVICE DOESN'T EXIST The device specified in a
CAMP command is not
present on the OS/8 sys-
tem.

? CAN'T-DEVICE IS READ-ONLY The device specified in a
CAMP command is a read-
only device, e.g., PTR.

? CAN'T-DEVICE IS WRITE-ONLY The device specified in a
CAMP command is a
write-only device, e.g.,
TTY.
The operation specified ? CAN'T FOR THIS DEVICE
does notmake sensefor the
device specified, e.g., RE-
WIND LPT:.

Table 2-13 CAMP Error Messages (Cont.)

Messages Explanation

? CAN'T I/O ERROR

? NUMBER TOO BIG

? SYNTAX ERROR

This message is followed by
a brief explanation of the
input/ output error that oc-
curred.
The "nnnn" specified in a
BACKSPACE o r S K I P
command is greater than
4095.
An illegal character was
typed in a CAMP com-
mand or a command was -
formatted incorrectly. me
command must be retyped.

CROSS-REFERENCE PROGRAM (WF)
CREF aids the programmer in writing, debugging and maintain-

ing assembly language programs by providing the ability to pin-
point all references to a particular symbol. CREF .operates on
output from either the PALS, SABR, or RALF assembler.

Calling and Using CREF
To call CREF from the system device, type - --.

R CREF

in response to the dot printed by the Keyboard Monitor. The
Command Decoder is loaded and replies by printingan asterisk
at the left margin. The user enters one output file specification and
one input file specification.

NOTE
The input to CREF must be the listing pass
output from either the PALS, SABR, or
RALF assembler. If this is not the case,
CREF will not operate properly.

If no output file is specified, CREF assumes the output is to be
sent to the line printer. If no input file extension or output file
extension is specified, the extension .LS is assumed. If no input file
is specified, control returns to the Command Decoder until an in-
put file is specified. The CREF version number is printed at the
end of the CREF table in the form Vn, where n is the current
version number.

CREF OPTIONS
following options are available to the user. The option is

placed in the command string, along with the file specifications.

Table 2-14 CREF Options

Option Code Meaning

/p Disable pass one listing output. The output is re-
enabled when $ (or END if SABR code) is en-
countered. Thus the $ (END) and symbol table
are printed if the /P option is used. Inoperable
for RALF output.

/u Disable pass one listing output and the symbol
table. Inoperable for RALF output.

Table 2-14 CREF Options (Cont.)

Option Code Meaning

/ R Interpret input as RALF code.

/Q Interpret input as SABR code. Signal CREF to
accept special SABR characters. If the /Q option
is used, the /X option is forced on.

/x Do not process literals. For programs with too
many symbols and literals for CREF, this option
may create enough space for CREF to operate.

/ E Do not eliminate the file CREFLS.TM. If the /E
option is not specified, and CREF was chained

n A T 0 to from rrti.0, the file CREFLS.TM is eliminated.

/M Cross-reference mammoth files in two major
passes. Pass one processes the symbols from A
through LGnnnn; pass two processes the symbols
from LHnnnn through Z and literals. This permits
significantly large files to be cross-referenced. If
the /M option is used, the file CREF.SV must be
on the system device.

EXAMPLES OF CREF USAGE
Examples of calling and using CREF are given below.

Example 1:

The Command Decoder prints an *, CREF assigns LPT: as the
output device. The input file is PTEMP, assumed to be on device
SYS, with the extension .LS. If the file SYS:PTEMP.LS is not
found, a search for SYS:PTEMP is attempted.

Example 2:

Given to the Command Decoder, this command string causes
output to be sent to the line printer. The input is expected to be
a SABR listing file named SBRLS.LS or SBRLS from device
SYS:.
Example 3: -

.R CREF
* o T A ~ : L I S T < : ~ T * ~ : P A L I S T / X

This command string causes output to be sent to DECtape unit
1, as a file named LIST.LS. Input is expected to be a PAL8 list- - -

ing file called PALIST.LS or PALIST. No literals appear in the
CREF output table.
Example 4:

.R CREF
*DTA2:LIST<SYS :BIGLST

The source listing, symbol table, and cross-reference of symbols
in the file BIGLST or BIGLST.LS on SYS is in the file LIST.LS . .
on DTA2. To list the CREF output the user may now run PIP.SV
as follows:

.p. PIP
*LFT:<DTA2:LIST*LS

Pseudo-Op Handling
CREF recognizes certain pse~do-ops of the PAL8 and SABR

assemblers, these certain pseudo-ops caitse CREF to perform ac-
tions similar -to those taken by the assembler whose output is
being processed. These pseudo-ops are described below:

PAL8 Pseudo-Op Action Taken by CREF
- - -

EXPUNGE

FIXTAB

TEXT

$

SABR Pseudo-Op

END

OPDEF

SKPDF

TEXT

- - - - -- -

CREF purges its current symbol table of all per-
manent and user-defined symbols. If any literals
were in the symbol table, they are not deleted.

Causes all symbols (except literals) to be marked
as permanent symbols. After a FIXTAB, no ref-
erences will be reported by CREF.

Ignores characters between delimiters.

End-of-input signal.

Action Taken by CREF

End-of-input signal.

Creates a new permanent symbol table, a non-
skip type instruction.

Creates a new permanent symbol table, a skip
type instruction.

NOTE
Symbols entered by OPDEF and SKPDF
are processed by CREF. All references to
these defined symbols are listed. However,
no reference is flagged as a definition (i.e.,
no reference is followed by a # in the CREF
listing).

Ignores characters between delimiters.

Interpreting CREF Output
The output of CREF consists of two parts. On the first pass

through the input file CREF generates a sequence numbered list-
ing file. The sequence numbers are decimal. The /P and /U
options disable this part of the output.

The cross-reference table appears after the listing. This table
contains every user-defined symbol and literal, sorted alphabetical-
ly. Each literal is indicated by an underline (or back-arrow on
most DEC terminals) and followed by the field and address at
which the literal occurs. For each symbol and literal there appears
a list of numbers specifying the line in which each is referenced.

If CREF finds too many references to fit into core at one time,

2-72

multiple passes are required t o process ail symbols. The minimum
number of passes is two. The maximum number of passes depends
on the size of the input file, and the amount of core available.
CREF calculates the number -of core fields available .and uses all
available space for reference tables. If there is not enough core
available, three or more passes are required. For example, the
current OS/8 SABR assembler (55 18 source lines, 849 symbols)
requires four passes through CREF on an 8K machine.

The following example illustrates a program which has been
assembled with PAL8 and listed with CREF. Form feeds on the
terminal have been converted to a series of carriage return/line
feed combinations and a dotted tear line. Notice that in the CREF
table the line where the symbol is defined is followed by a # .
Symbols defined by OPDEF or SKPDF in SABR, and all literals
do not have a # following them.
/EXAMPLE PROGRAM

/ EXAMPLE PROGRAM PAL8-V9B a 3 / 0 5 / 7 4 'PAGE 1

/ EXAMPLE PROGRAM
/ I L L U S T R A T I N G D E T A I L S OF L I S T I N G FORMAT
/ USING P A L 8 AND CREF
a 2 0 0
START, CLA C L L

TAD A /CURRENT PAGE SYMBOL
TAD B /OFF-PAGE SYMBOL, L I N K GENERATED
TAD [2 /PAGE ZERO L I T E R A L
TAD CS /CURRENT PAGE L I T E R A L
DCA L I N K /OFF-PAGE SYMBOL, L I N K GENERATED
JMP I AOORP2 /USER CREATED L I N K

A t 0 0 1 1
ADDRP2, P 2 / I N D I R E C T ADDRESS

0 4 0 0 Â ¥ 4 0
0 0 4 0 0 1 2 0 7 P2, TAD L I N K
0 0 4 0 1 1 3 7 7 TAD C3
0 0 4 0 2 1 1 7 7 TAD t 2
0 0 4 0 3 1 3 7 7 TAD (3
0 0 4 0 4 3 2 0 7 OCA 0
0 0 4 0 5 6 2 1 3 CDF C I F 1 0
0 0 4 0 6 5 7 7 6 ' JMP F L D 1 - -
0 0 4 0 7 0 0 0 0 L I N K , 0 - - .

0 4 0 7 = L I N K
0 0 5 7 6 0 2 0 0
0 0 5 7 7 0 0 0 3
0 0 1 7 7 0 0 0 2

0 0 0 1 F I E L D 1
1 0 2 0 0 1 3 7 7 F L D l ! TAD C3
1 0 2 0 1 1 1 7 7 TAD t 2
1 0 2 0 2 6 2 0 3 C I F CDF 0
1 0 2 0 3 5 2 0 0 JMP START
1 0 3 7 7 0 0 0 3

s
1 0 1 7 7 0 0 0 2

/PAGE 2 START
/NOTE THAT T H I S I S A NEW L I T E R A L
/NOTE THAT T H I S I S SAME OLD L I T E R A L
/SAME AS CURRENT PAGE L I T E R A L
/CURRENT PAGE SYMBOL
/CHANGE F I E L D S
/OFF PAGE SYMBOL, L I N K GENERATED

/ F I E L D 1 1 DEFAULT TO PAGE 1 a 2 0 0
/NEW L I T E R A L ! BECAUSE I N PAGE 0 OF NEW F I E L D
/CHANGE F I E L D S AGAIN
/NO L I N K GENERATED, SAME PAGE, OTHER F I E L D

/ E X A M P L E PROGQAM

A 0 3 Q 7
AOORP2 0 2 1 0
0 0 1 0 7
F L O l a 2 0 0
L INK Mae7
P2 s u e 0
START @SBB

ERRORS OETECTEO: 0
LINKS GENERATE01 3

A 6 1 2 Ã

AOORPZ 11 13U
6 7 a 1 S ~ Ã
F L D l 23 3 0 n
L INK 10 17 S i l l 25
P? I ? :7s
START SÃ 3 3

' iB0177 8 , 19
30S76 9
00577 18 20
20177 3 1
18377 3 3

V 3

Restrictions
CREF has the following restrictions:

1. CREF can handle a maximum of 896 (decimal) symbols in one
major pass. (In 8K, PAL8 is limited to 897 symbols while
SABR is limited to fewer than 800 symbols.) If more than 896
symbols are found, an error message is generated.

2. If any symbol in the input file has more than 2044 (decimal)
references, an error message is generated.

3. If more than 8192 (decimal) source lines are input, sequence
numbers return to 4096, not 0.

4. If the /D option is used in PALS (to generate a DDT com-
patible symbol table) and the output listing is put through

*

CREF, no symbol table listing will appear.
5. Use of semicolons-This is a restriction which, when not ob-

served, could cause errors in the CREF table. It is recom-
mended that the user follow these suggestions when preparing
source files in order to insure a proper CREF listing. Semi-
colons should not be used on lines with pseudo-ops. In parti-
cular, a combination such as the following must not be used:

In this case, CREF does not process the page zero literal
properly. A literal is generated which is derived from the ex-
panded TEXT message. No error message is generated, but
the literal table entry is meaningless. As a general rule, semi-
colons should not be used as line terminators inside condi-
tional assembly brackets (<>). For example:

E X O R 3 0
I F N Z R O EX0SeCLA;TAD 8; HLT \ E R R O R *
\THIS IS THE NEXT L I V E PAST IFMZRO

The conditional code is not assembled; however, CREF does
not realize this and tries to process the bracketed instructions.
As a result of these semicolons, extra symbols may be pro-
cessed and some valid references missed. However if the code
had been assembled CREFwould operate properly. There
are two ways around this:
a. Write straight line code:

EXORs0
IFXZRO EXOF? <
CLA
TAP 8
HIT E R R O R .-

>

b. Use XLIST around conditional code, in the above example:

XLIST turns off the listing if the code does not assemble and
turns it back on after the conditional code.

6. Formats-There are several output formats that can be used
in generating a PALS listing file:
/T Form feeds converted to carriage return/line feeds.
/H No heading or form feeds generated.
/D DDT compatible symbol table is generated.
For best results with CREF, none of these switches should be

used. This generates a heading and form feed in the output.
CREF automatically converts form feeds to carriage return/
line feeds if output is to the terminal.

7. PAL8 generated links do not cause a reference to a link to be
noted by CREF. Only literals specifically generated with (and
[are processed by CREF.

CREF Error Messages
CREF errors are non-recoverable errors, and control returns to

the Keyboard Monitor through location 07605 (no core saved).
Table 2-15 lists the error messages printed by CREF.

Table 2-15 CREF Error Messages

Error Message Meaning

SYM OVERFLOW More than 896 (decimal) symbols and literals
were encountered during a major pass.

ENTER FAILED Entering an output file was unsuccessful-
possibly output was specified to a read only
device.

OUT DEV FULL The output device is full (directory devices
only).

CLOSE FAILED CLOSE on output file failed.

INPUT ERROR A read from the input device failed.

DEV LPT BAD The default output device, LPT, cannot be
used, as it is not available on this system.

2045 REFS More than 2044 (decimal) references to one
symbol were made.

HANDLER FAIL This is a fatal error on output, and can occur if
either the system device or the selected output
device is WRITE-LOCKed.

DIRECT
DIRECT is an OS/8 program that produces listings of OS/8

device directories. The directories produced can be of several
varieties, depending upon the options specified in the DIRECT
command line. The standard directory listing consists of the follow-
ing columns: file name, file name extension, length (decimal) in
blocks written, and creation date.

DIRECT supports the wild card construction, using * in placq
of the file name or extension or ? in place of a character. See the
FOTP section of this chapter for a description of wild card
construction.

Calling and Using DIRECT
To call DIRECT from the system device, type:

R D I R E C T

in response to the dot printed by the Keyboard Monitor. DIRECT
may also be called via the CCL command DIR (see the CCL sec-
tion in Chapter 1). The Command Decoder prints an asterisk at
the left margin, indicating that it is ready to accept a line of 1/0
files and options. One output specification and one to five input
specifications can be entered in a DIRECT command line. The
1/0 command line may be terminated with a carriage return
(DIRECT retains control) or with an an ALTMODE (control
returns to the Keyboard Monitor).

The output specification consists of a device upon which the
directory is to be produced, a file name, and a file name extension2
All parts of the output specification are optional, as is the output
specification itself. A file name and extension should be specified
if it is desired to save the directory for listing at a later time. If no
output device is specified, TTY is assumed. If a file name is given
without an extension, the extension .DI is assumed. The wild card
? and * are not permitted in DIRECT output file names or
extensions.

A DIRECT input specification consists of a device, an optional
file name, and an optional extension. The wild card * and ? are
permitted in input specifications. If an input device is specified
with no file name or extension, *.* is assumed. DIRECT deter-
mines which files have the form specified and prints a directory
listing of just those files.

DIRECT OPTIONS
The following table lists the options that may be used in a

DIRECT 1/0 specification line. Examples of the use of these
options are shown following Table 2-1 6.

Table 2-16 DIRECT Options

Option Meaning

Include the starting block numbers (octal) for each file in
the directory.
List only files with the current date, i.e., the date entered
with the most recent DATE command.

Include empty file spaces in the directory listing.
List a short form of the directory, omitting file lengths and
dates.
List additional information words in octal, other than the
first which is listed as the date.
List the standard form of the directory, including file name,
extension, length in blocks, and creation date. The / L
option is assumed if none is specified.
List only the empty spaces in the directory.
Use n columns in the directory listing. This option allows
the user to specify the number of directory entries per line
of output. The "n" must be in the range 0 to 7. The =n
option is useful when a wide column printer, e.g., 132
columns, is being used.
List only files with other than the current date.
List the remainder of the files after the first one found.
This option causes DIRECT to find the first file that
matches the specifications given and then list a directory
that includes the first matching file and all files that follow
it on the device. The / C and 1 0 options are still considered
when listing these remaining files. If /R and / V are used
in the same command, only the first file of the form speci-
fied is listed.
Treat each input specification separately. The / U option
creates a separate directory listing for each input specifi-
cation.
List files not of the form specified.
Print the version number of DIRECT.

DIRECT EXAMPLES
The following are legal command strings to DIRECT and the

resultant DIRECT output. To facilitate understanding of the
DIRECT options, the same device (DTAO) is used for each of the
examples, and the current date is 21-JAN-74.

When DIRECT has completed an operation, control returns to
the Command Decoder for additional input.
Example 1:

This example shows a directory of all the files on DTAO, listed in
two columns on the terminal (TTY).

- R D I R E C T
*DTA0: = 2

M T P A L A * P A 1 1 8 - J A N - 7 4 W N T S T A * BA 1 1 8 - J A N - 7 4
M T P A L B * P A 1 1 8 - J A N - 7 4 W N T S T B * BA I 1 9 - J A N - 7 4
W N T S T C * BA 1 1 9 - J A N - 7 4 WNPALA* PA 1 1 9 - J A N - 7 4
W N P P P A z P A 1 1 9 - J A N - 7 4 W N T S T D * BA 1 2 1 - J A M - 7 4
WNPALB* P A 1 2 1 - J A N - 7 4 M T P A L C * PA 1 2 1 - J A N - 7 4
WNXX * B A 1 2 1 - J A N - 7 4 WNXY * B A 1 2 1 - J A N - 7 4

7 1 8 FREE B L O C K S

Example 2:
This example shows all files that have a file name beginning

with WN, have any file extension, and do not have the current
date. The directory is listed in two columns on TTY.

W N T S T A - BA 1 1 8 - J A N - 7 4 W N T S T B - BA 1 1 9 - J A N - 7 4
W N T S T C - B A 1 1 9 - J A N - 7 4 W N P A L A - P A 1 1 9 - J A N - 7 4
W N P P P A - P A 1 1 9 - J A N - 7 4

7 1 8 FREE BLOCKS

Example 3:
This example shows files that have any file name, have a

extension, and have the current date. The directory is listed
single column on TTY.

WNTSTD* BA 1 2 1 - J A N 0 7 4
WNXX Ã ˆ B 1 21-JAN-74
WNXY * B A 1 2 1 - J A N - 7 4

718 FREE BLOCKS

Example 4:
This example demonstrates the use of the /U option to pro-

duce separate directories for each input spcification. The command
specifies that all files beginning with WN and having .BA exten-
c*n- A n s be listed first, and that all files beginning with WN and havin-

6

.PA extensions be listed next. The short form of the directory is to
be listed on the line printer (LPT) in three columns.

*LPT: CDTAP!: W i M ? ? ? ? . 64, M M ? ? ? ? . PA/F/U=3

21-JAN-74

7 1 6 F R E E B L O C K S

7 1 8 FQkE B L O C K S

Example 5:
This example demonstrates the use of the /V option to print

files not of the form specified and the use of the / O option to
exclude files with the current date. All files except those beginning
with WN are to be printed in a single column on TTY.

7 18 FREE BLOCKS

Example 6: .
This example demonstrates the use of the /R option to list part

of the directory. DIRECT is to find the first file that begins with
WN and has a .PA extension; that file and all files that follow are
to be listed. The directory is listed in two columns on TTY.

7 18 F R E E BLOCKS

Direct Error Messages
The following error messages may appear when running the DI-

RECT program.

Table 2-17 DIRECT Error Messages .

Message Meaning

BAD INPUT DIRECTORY

DEVICE DOES NOT HAVE A
DIRECTORY

EQUALS OPTION BAD

ERROR CLOSING FILE

ERROR READING INPUT
DIRECTORY

This message occurs when
the input device has- a bad
directory, e.g., the device
is not an OS/8 device, or
a DECtape has not been
zeroed.

The input device is a non-
directory device, e.g., PTR.
DIRECT can only read
directories from file-struc-
tured devices.

The =n option is not in
the range 0-7. .

System error.

An error occurred while
reading the directory.

Table 2-17 DIRECT Error Messages (Cont.)

Message Meaning

ERROR WRITING FILE

ILLEGAL *

ILLEGAL ?-

NO ROOM FOR OUTPUT FILE

THERE IS NO HOPE-THERE IS NO
TTY HANDLER IN YOUR SYSTEM!

An error occurred while
writing the output file.

An asterisk (*) was in-
cluded in the output file
specification or an illegal
* was included in the in-
put file name.

A question mark (?) was
included in the output file
~ P C C ~ ~ ~ C E L ~ ~ G E .

Self-explanatory; the out-
put device does not have
sufficient space for the di-
rectory to be written.

A command was issued to
print a directory on the
terminal when no TTY
handler is present on the
OS/ 8 system. Use BUILD
to insert a TTY handler in
the system.

EPIC

Introduction
EPIC, the Edit, Punch and Compare utility program for OS/8, is

designed primarily to assist users by performing the following
functions:

1. Read and punch paper tape files and patches
2. Edit arbitrary files

. 3. Compare files in any forniat

When EPIC is loaded, the command line determines which func-
tion is desired. Each of these functions is discussed as a separate
topic in these next few pages. This section assumes an elementary
knowledge of OS/8.

Loading EPIC
To load the EPIC program type R EPIC in response to the

OS/8 monitor's dot (.). Specify the EPIC function desired by in-
cluding one of the following numeric options in the file command
line:

R E P I C
0 paper tape
1 edit

*TRANS. AS< /0$ 2 compare

punch the file TRANS stored
on SYS.

* R E P I C
fetch FILEA from DTAl for

*DTAl: F I L E A . S V < / ~ S editing

compare file ABC on the disk
with file XYZ on DTAl and

.R E P I C output block numbers and lo-
cations of each non-match on

DSK: ABC SV<DTAI:XYZ SV/2!5 the Teletype.

After one of these numeric options has been included in a com-
mand, it need not be specified again in subsequent sequential
commands requiring the same option. Specifying the number puts
EPIC in a mode and it remains in that mode until another number
is specified. Initially, EPIC is set to option 0. The character ALT-
MODE, which prints as $ on the terminal, is used to end a com-
mand that includes a numeric option.

Restart Procedure
EPIC can be restarted at location 0200. Default options remain

active. The default options are discussed later in this section.

Paper Tape Facility
The paper tape option (/O) of EPIC punches OS/8 files and file

patches onto paper tape and creates OS/8 files from paper tapes.
Whole files or patches (blocks) of files can be read or punched.
Parity checks are punched to assure accurate reads. Note that a
unique paper tape format is used so that tapes must be both
punched and read by EPIC. A file punched by PIP, for example, is
not acceptable to EPIC.

Command Format
To request the paper tape facility, the option 0 must be spe-

cified. The form of the response to the command decoder's * de-
termines whether a tape is to be punched or read. In both cases,
no input files or devices are specified. To punch a tape, the file
name is specified; to read a tape, no file name is required (that in-
formation is encoded on the paper tape). The command line spec-
ifying the mode of EPIC is terminated by ALTMODE.
To punch a tape, the response is:

*dev:name</O/other options$.

To read a tape, the response is:

If a file name is specified, EPIC looks up the name on the specified
device and punches the file (including the file name) onto paper
tape. If no file name is specified, EPIC reads in a paper tape and
enters it onto the output device under the name it read in from
the tape.
The other options for handling paper tape are:

L Use low speed paper tape reader or punch
E Do not punch end of tape upon completion
P Punch or read a patch (instead of the whole file)
Z Set relative block to 0
=n Punch relative block n
Y Clear default name

These options can be combined to achieve the desired results.

L Option:

E Option:

8

P Option:

Y Option:

If the /L option is not specified, EPIC assumes a
high-speed paper tape device. Thus, SYS:</O
means read a tape from the high-speed reader to
device SYS but SYS:</O,/L means read it from
the low-speed device.
The /E option can be used to punch a series of
patches to a file for all patches except the last one.
With the /E option the end of tape mark is not
punched. The end of tape must have the "end of
tape" punch, a 377 punch and a length of leader/
trailer tape.
The /P option is required to indicate the tape to
be read or punched is a patch, not an entire file.
Generally, the command required to read in a patch
is simply dev: </P. File name and block specifica-
tions are already punched on the tape.
Option /Z or =n mustbe used with the / P option
to indicate punching block 0 or some other block
(relative block n), respectively. The patch is read
on top of an existing file on the specified output
device, i.e., modifying an old file, not creating a
new one.
The /Y option is used to clear the default file name
when switching from punching to reading paper
tape and when reading more than one paper tape.

Default Options
Throughout EPIC, if options, files, or devices are not specified,

the program defaults to the last such item specified. There is an
initial default device: SYS is assumed if no output device is spec-
ified. No options are assumed initially, however, except for relative
block 0. Notedhat device and file name options carry between

, EPIC modes 0, 1 and 2. Specifying an option (i.e., L, P, E, Z,
etc.) in a command string disables default to any options from the
previous command (except 0, 1, 2).
For example, to punch blocks 0, 1 and 30 of the file TRANS on
the SYS device and read them back onto that file on DTA3, the
commands are:

. R EPIC

*TRANS< /P /E /Z $

*= 1

*=30/P

*DTA3: < /Y

Punch block 0 of TRANS on
high-speed punch with no end
of tape punch. Note that
EPIC defaults to the paper-
tape option initially so 0 is
not required in this case.

Punch block 1 of file TRANS
with no end of tape character
on high speed device.

Punch block 30 of the file
.TRANS oh high-speed punch.
Punch end of tape (P dis-
ables E).

Â

Rczd the tape frmi the high
speed device and put out to
file whose name is encoded
in the patch on device DTA3
until end of tape is reached.
File name and relative block
are punched on the tape so
this information is not neces-
sary. Y clears the default
name. (TRANS)

Error Conditions
If an error occurs while reading a block of paper tape, EPIC

outputs an appropriate error message (the error messages are
listed at the end of this section), and halts; the user should reposi-
tion the paper tape to the leader/trailer just in front of the block
just read before continuing (refer to the section on Paper Tape
Format); three consecutive read errors terminate the command.
When EPIC is reading in a non-patch file it checks the initial
block read of every tape and every block that is reread because
of error to determine if the read was accurate up to name and
block number. If the wrong block number or file name is read,
EPIC outputs an appropriate message indicating the type of error
and halts with AC=7777 to allow the user to reposition the tape
over the correct block or enter the correct tape before continuing.

Low Speed 1/0
The execution of EPIC differs for low speed I/O. Before start-

ing a low speed punch EPIC halts with 7777 in the AC to allow

2-86

the user to turn on the low speed punch and then press the CDm
key on the computer console. Upon completion of a punch com-
mand EPIC halts with the AC=0 to allow the user to turn off
the punch. When the CONT key is pressed, EPIC recalls the
command decoder. For low speed input EPIC halts only upon
completion of the read.

If a file or a series of files to be punched exceeds 32 blocks,
EPIC segments it by punching end of tape after 32 blocks. This
end of tape punch is done automatically and independently of
the E option; its purpose is to keep tapes physically short enough
to fit into a paper tape tray. Upon physical end of tape, EPIC
halts with the AC=0 if the low speed punch is being used to allow
the user to turn off the punch before continuing. As soon as the
punch is turned off, EPIC outputs the message END OF TAPE
ENTER NEXT and then halts with the AC=7777 to allow both
high and low speed users to remove the paper tape. Note that low
speed users get both halts, but high speed users only get the 7777
halt. In general, a halt with AC=0 means turn paper tape device
off and a halt with AC=7777 means turn device on. All halts are
terminated by depressing the console CONTinue key. If EPIC
encounters end of tape while reading a non-patch file it outputs
the message END OF TAPE ENTER NEXT and halts with
AC=7777 indicating that the file is segmented across a number
of tapes and that the user should enter the next tape.

Device Codes
Most of the execution time is spent waiting for paper tape devices.

During 110 wait, EPIC holds the device code and version number
in the AC. The device code is in bits 3-5 and the version number
is in bits 6-1 1. The codes are as follows:

1 high speed reader
2 high speed punch
3 low speed reader (console TTY)
4 low speed punch (console TTY)

If the user forgets to turn on the high speed reader, EPIC hangs
with lxx in the AC. EPIC can always be restarted at 0200. The
OS/8 CTRL/C is normally in effect; the exceptions are when
EPIC is waiting for a paper tape device or when input is from the
low speed reader.

NOTE
When input is from the low speed reader
EPIC forces the output device to be SYS
because it is the only OS/8 1/0 handler
that does not check for CTRL/C.

Thus, if the user were to enter the command:

EPIC would force it toke

Editing Capability
Option 1 of EPIC is the file editing and searching facility. With

this feature, patches can be added directly to the file by specifying
relative blocks and locations in the file.

INITIAL COMMAND FORMAT
The general format of a command for the editing option is:

.R E P I C

The ,/ 1 $ specifies edit mode for EPIC.
As with the paper tape option, default conditions apply. If no
device and/or file name is specified, the last one mentioned is used.
When editing, the only option available in the initial command is

/y Clear default name (if one exists)

Editing is performed one block at a time. The relative block cur-
rently being processed is the current block; the location currently
being processed is the current location (0-377). Relative block 0 is
the first block of the file if a file name is specified or block 0 of
the device if no file name is specified.

2-88

EDITING COMMANDS
After the initial (file specification) command, a series of key-

board commands are used to perform the editing. The general
format of an editing command is

where x is a command letter and 11142 are octal numeric argu-
ments. If a numeric argument is used, the letter is followed by a
comma. Up to 321Â characters can be typed on a line. Default con-
ditions apply to these commands as well. If carriage return is the
only character typed as an editing command, the last command
specified is executed. The commands available are as follows:

Table 2-18 EPIC Commands

Command Meaning

E

R, n

w

S, n l , n2

Exit to command decoder; write out current block of
file if it has been modified.

Read relative block n (octal) of file and set current loca-
tion to 0. Do not write current block. If n is not spec-
ified, the current block is read. If the relative block is
out of range, a ? is printed. There are 1341 blocks per
OS/8 tape and 6260 per RK8 disk platter.

Write the current block of file if it has been modified
and read in the next sequential block of the file. If the
current block is the last, block of the file, a ? is printed
and the current location is unmodified.

Search the current block for the value n l with the mask
n2. If either n l or n2 or both are omitted, the last value
specified is used. The initial mask is 7777. Masking
is performed in a logical AND fashion. If the S com-
mand is terminated by the RETURN key the search is
for the current block only. If terminated by the LINE
FEED key, the search continues to the end of the file.
If the search fails (either in the block for a carriage
return or at end of file for line feed) EPIC prints a ?.
If the search is successful EPIC prints

Table 2-18 EPIC Commands (Cent.)

Command Meaning

where m l is the relative block, m2 is the relative loca-
tion within the block and m3 is the contents of the loca-
tion. (ml is omitted if a previous match was found in
the same block.) To change the contents, type the new
contents (octal) after the slash. To continue the search
type the LINE FEED key; to terminate the search type
the RETURN key. (If the contents are not to be
changed, type one of the terminators.)

Open location n of the current block. If n is not spec-
ified, the last opened location is the default. If there
is no default, location 0 is opened. EPIC responds with

which is the contents of location n. This location may
be modified as in search. Terminating with the LINE
FEED key closes the current location and opens the
next. If the current location is the last one in the block,
location 0 of the next block is opened and the current
block is written out as if it had been modified.

C Print current status, as:

m l (F o r B) m2 m3 rn4

where m l is the current block, m2 is the current loca-
tion, m3 is the search word and m4 is the .mask word.
If F is typed, the file has been modified since option 1
was requested; B indicates the current block has been
modified. Once a modified block has been written to
the file, the F is the only code output.

Thus a reasonable sequence is:

R E D I T
*DSK:ISOMER</~S
R, 2
S, 3126,7770 .
?

>

Call EPIC .
Edit file ISOMER on DSK.
Read block 2.
Search for a 312x in that
block.
Not there.
Search for it throughout the
file.
Found at block 4, location
110.
Change contents to 3 12 1.
Search for 3 1xx throughout
the rest of the block (loca-
tions l 10-377).
Found at location 132 of
block 4.
Contains 3126. Change to
3127.
Check status.
At location 132 of block 4
which has been modified; the
current search word is 3126
and mask is 7777.
Write block 4.
Block 4 written but file is
only four blocks long, no
block 5 to read.
Read block 2.
Open location 10.
Contains 1367. Change to
1364.
Check next location. No
modifications.
Exit editing option.

Compare Capability
A third feature of EPIC is file compare (/ 2) . Because EPIC

uses an absolute compare technique, there are no limitations in
the data format or the length of the file. The files to be compared
must reside on the system device.
COMMAND FORMAT

Option 2 of EPIC requires only one command, .specified as
follows:

2-9 1

The first file to be compared is specified to the left of the angle
bracket, the second file to the right. The options are:

A Abort when the first non-match is found.

B List physical block number for each file where a non-match
exists.

If no options are specified, the block numbers and locations of
, each non-match are listed on the terminal.

For example, to compare files PYTHQ1 and PYTHG2 and find
all unequal locations, the sequence is as follows:

To compare them and list unequal blocks the command is:

If this block match followed the preceding locations match com-
mand, a sufficient command and its results are:

To abort after the first non-match, the sequence is:

Error Messages
EPIC can print one of the following error messages when per-

forming paper tape (option 0) operations.

2-92

Table 2-19 EPIC Error Messages

Message Explanation

BAD =BLK When EPIC is punching a patch it checks
the block specified by "=n" to see if it is
within range. If the block is out of range
EPIC outputs this error message and returns
to the command decoder. For example if a
file JOE were two blocks long and the user
requested:
JOE: ̂ /P=3
the error message would be printed.

END OF TAPE

END OF TAPE
ENTER NEXT

1/0 ERROR

L/T ERROR .

NEED : name1
FOUND name2

EPIC was expecting a block of tape and
found end of tape instead. EPIC halts with
ACz7777 to allow the user to reposition
the tape. When the user depresses CONT-
inue EPIC attempts to read the block.

When EPIC is reading a file that is seg-
mented across a number of paper tapes and
encounters the end of a segment, it outputs
this message and halts with AC=7777 to
allow the user to enter the next segment of
paper tape. Press the Console CONT key
to continue reading.

If EPIC encounters an error while reading
or writing a mass storage device, or a paper
tape read fails three consecutive times, it
outputs this error message, deletes the out-
put file if one exists, and returns to the com-
mand decoder.

EPIC was expecting leader trailer and found
non-leader trailer while attempting to read a
block. The program prints this error message
and halts with AC=7777 to allow the user
to reposition the tape then press the Com-
puter Console CONT key.

EPIC read a block of tape for the file
NAME2 when it was expecting a block of
the file NAME1,. This error would typically
occur when a user comes to the end of a
segment for NAME1 and enters some seg-
ment of NAME2 instead of the next seg-
ment for NAME1. EPIC halts with AC=
7777 to allow the user to enter the correct .

paper tape.

Table 2-19 EPIC Error Messages (Cont.)

Message Explanation

NEED:nlFOUND:n2 EPIC read block n2 of the file when it was
expecting block n l of the file. EPIC halts
with AC=7777 to allow the user to reposi-
tion the paper tape. This error typically
occurs when the user repositions the tape
to the wrong block after a read error.

PARITY ERROR EPIC failed to read a block correctly, e.g.
the reader dropped some bits. EPIC halts
with AC=7777 to allow the user to reposi-
tion the tape so that it can t ry the read
again.

PTR:NAME IS TOO The paper tape file NAME will not fit on
BIG FOR dev: the specified output device DEV:. EPIC

aborts the command and returns to the com-
mand decoder. EPIC makes the check for
size before writing on the output device.,

USR n dev:name The USR encountered an error while at-
tempting to perform a fetch, lookup, enter,
or close on the file NAME on device DEV.
n=l is a fetch, n=2 is lookup, n=3 is enter,
n=4 is close. EPIC aborts the command and
returns to the command decoder. For ex-
ample, if the user requests EPIC to punch
a file on SYS that does not exist:

EPIC outputs the message

indicating that it could not find the file
NILL on the device SYS.

Paper Tape Format
Paper tapes punched by EPIC have the following format:

START OF BLOCK J END OF TAPE
PUNCH PUNCH

Leader trailer is any string of 0 or 200 punches; usually it's just
200 punches; leader trailer is terminated by a 201 punch which
indicates the start of a data block. The first punch after the last
data block is 377 which is end of tape. Each data block has the
following format:

2
FEET
LIT

1 1 4

DATA
BLOCK

Each byte is 12 punches (96 bits) and corresponds to 8 12 bit
words; each byte is followed by an even odd parity punch of the
eight words in the byte. Each block is terminated by two CRC
punches of longitudinal parity.
The header byte contains information about the file e.g., file name
and relative block number. The data bytes constitute the actual
data of the block; there are 32 data bytes per 256 word block.

DATA
BLOCK

Loading EPIC From Paper Tape
For users who receive EPIC on paper-tape, use the following

procedure to load the tape and save it on a mass storage device.

INCHES
LIT

8
INCHES

L/T

CRC

,R ABSLLtK
Use ABSLDR

* P T K J S T - Read from reader; after f is
output, type any key to start

2
FEET .
L/T

reader
.SA S Y S E P I C fel*7577?0200"0 - Save on mass storage with

starting address of 200

P CRC p HEADER
BYTE

..-.. DATA
BYTE p p DATA

BYTE

EPIC Assembly Instructions
The PAL8 (version 9) assembler is used to assemble EPIC as fol-
lows:

To create the save file, use ABSLDR:

R ABSLDR - Call ABSLDR.
*OEV:tPIC.8M$ - Load EPIC.BN on device
.SA DEV EPIC K) -7577 ;0200~& specified.

Save EPIC on device speci-
fied.
0-7577 = area in core used
during execution. 0200 = re-
start address.

FILE ORIENTED TRANSFER PROGRAM (FOTP)
FOTP is an OS/8 program used to transfer files from one device

to another, to delete files from a device, and to rename files. FOTP
is significantly faster than PIP and performs certain functions not
available with PIP. For example, FOTP can transfer files longer
than 256 blocks and can perform multiple file transfers and
deletions without requiring multiple accesses of the directory.

FOTP copies files in image mode, i.e., it copies the file word for
word, character for character, without making any changes in the
file. (This corresponds to the /I option in PIP.) Thus FOTP may be
used to copy core image and binary files as well as ASCII files,
without specifying options to identify the type of file.

Calling FOTP
To call FOTP from the system device, type:

R FOTP

In response to the dot printed by the Keyboard Monitor. (FOTP .

may also be called indirectly by several CCL commands. See the
CCL section of Chapter 1.) The Command Decoder prints an
asterisk at the left margin and waits to receive a line of 1/0 files
and options. FOTP accepts one output specification and up to five
input specifications. The 1/0 specification line may be terminated -

with a carriage return (FOTP retains control) or with an
ALTMODE (control returns to the Keyboard Monitor).

INPUT SPECIFICATIONS
FOTP input specifications consist of a device, a file name, and

a file name extension. Input specifications are optional but must be
present if no output specification is included.

Within the input specification, FOTP allows a wild card con-
struction to be used. This means that the file name or the extension
may be replaced totally with an asterisk or partially with a question
mark to designate certain file names or extensions. The asterisk is
used as a wild field to designate the entire file name or extension.
For example:

TEST1 .* All files with the name TEST1 and any extension.
* .BN All files with a BN extension and any file name.
* * All files.

The question mark is used as a wild character to designate part
of the file name or extension. A question mark is used for each
character that is to be matched; e.g., PR?? matches on four char-
acters or less. For example:

TEST2.B? All files with the name TEST2 and any extension
beginning with B.

TES??.PA All files with a PA extension and any file name up
to five characters beginning with TES.

?? .?? All files with file names of two characters or less.

The asterisk and the question mark can be specified together in
the same command line.

999 * All files with file names of three characters or less.

The following are examples of legal FOTP input specifications:

DSK:
SYS:A
LTA3:TESTlA
DTA7:A.BN
FILE
FILE3 .DA
4
NAME?.TX,NAM??.BN
N?ME.
?????? D ?
*
*.BN
PRN: * .??
?W?B?Z.?A

A specification may not contain embedded *'s, e.g., A*B.* is an
illegal specification. The following are illegal input specifications:

A,B,C
A:B:C
A?*.B
.AB
DAT: A. *B
A?B:C
*:BIN

Example 1:
To copy the file SMILE.PA from DTA3 to DTA5, changing its

name to FROWN'PA, type:

DTA5: FROWN* PAeDTA3: SMILE* PS

in response to the * printed by the Command Decoder.
1. If FOTP does not find the file SMILE.PA on DTA3, the

message:

NO F I L E S OF THE FORM SMILEOPA

is printed and no transfer is performed.
2. FOTP examines DTA5 to determine whether it already con-

tains a file FROWN.PA. If FROWN.PA is already on DTA5,
FOTP deletes it before beginning the transfer. This process is
known as predeletion.

3. The /N option is used to specify that no predeletion is desired.
Thus the command:

DTA5: FROWN* PAeDTA3; SMILE* F A A

begins to copy SMILE.PA to DTA5 without deleting the old
FROWN.PA. FOTP does this by opening a tentative file
named FROWN.PA on DTA5. When the transfer operation is
successfully completed, the tentative file is closed. Closing this
tentative file makes it a permanent file and, at the same time,
deletes any old files of the same name. This process is known
as postdeletion.

4. FOTP assigns the creation date of SMILE-PA to FROWN.PA.
This is an advantage over PIP, which would assign the current
date to the new file. If files are always transferredwith FOTP,
the original creation date of the file is preserved. Thus this
feature of FOTP allows the user to differentiate between ver-
sions of a file since the more recent version should have a later
date.

5. The /T option of FOTP can be used to assign the current date
to a file. For example, if SMILE.PA is undated, FOTP assigns -
the current date to the newly created FR0WN.PA.

DTA5: FROWN. PAeDTA3: SMILE. P A / T

J

6. Advanced users may be using the additional information words
feature of OS/8. This feature allows the knowledgeable user
to associate additional information (other than the creation
date) with each file entry in a device directory. FOTP transfers
such additional information words from SMILE.PA to
FROWN.PA. (PIP does not perform this function.)
If the file structure on DTA5 has space for more additional
information words than appeared with SMILE.PA, then those
extra words are set to 0.
If the file structure on DTA5 does not have enough space for
all the additional information words associated with
SMILE.PA, then FROWN-PA is given as many as can fit (from
the left). Excess information words (on the right) are not
transferred.

Example 2:
Normally, one copies files from one device to another without

changing the file name. For example, to copy the file TEST.PA
from DTA1 to DTA2, type:

in response to the * printed by the Command Decoder. Since this
transfer operation is so common, FOTP allows the output file
name to be abbreviated to *.*. The *.* means that the input file
name is to be used as the output file name. Thus the preceding
command could be typed as:

Since the *.* specification is so frequently used, it is the default,
i.e., if no output file name is specified, *.* is assumed. Thus the
preceding command may be further simplified to:

DTA2: <DTA1: T E S T * PA

Example 3:
One of the more attractive features of FOTP is that it allows

multiple files being transferred from one device to another to be

2-101

included in the same command line. For example, to transfer five
FORTRAN source files from SYS to RKA2, the user could type:

The wild card characters * and ?, explained previously, are
particularly useful when doing multiple file transfers. For example,
to transfer all FORTRAN I1 source files from SYS to RKA2,
type:

The specification *.KT means files with any name that have the
.FT extension.

To copy all files from DTA1 to DSK, type:

Note that the *.* specification has different meaning when
placed on the left side of the < than it does when placed on the
right. When used on the output (left) side, *.* means that the
output file name is the same as the input file name. When used on
the input (right) side, *.* means transfer or consider all files on
this device. For example:

RKA2S < S Y S: TEST 10 PA, T E S T 2 0 PA, T E S T 3 8 PA

copies three files from SYS to RKA2. PIP would require three
commands, each transferring. one file, to perform the same opera-
tion.

Note that in the preceding example, no output file name is
specified, so *.* is assumed. No device is specified for the files
TEST2.PA and TESTS.PA, so the device specified as the previous
input device (SYS) is assumed.

Frequently, several files with similar names (as above) are to be
copied from one device to another. In many cases, these files can
be referenced by a single file specification by using the ? wild
character. For example the command:

transfers all files on DTA1 that have the extension .PA and that
have names beginning with TEST followed by one other character.

ADVANTAGES OF PREDELETION
The default mode (and the recommended one) of FOTP is to

use predeletion when copying files. Predeletion creates space on
the output device for the new file. Suppose that, in Example 1
above, DTA5 were almost full. There might not be enough space
on DTA5 for SMILE.PA. If, however, FROWN.PA is first deleted,
this could create enough space for SMILE.PA

Predeletion normally places the new file in the space occupied
by the file being replaced. In Example 1 above, if FROWN.PA is
first deleted, the space where it resided is empty. This empty space
could then be used for the new copy of FROWN.PA (the former
SMILEPA). If predeletion were not used, the new tentative file
for FROWN.PA would probably be placed at the end of the tape.
This procedure would create a gap (EMPTY) when the old copy
of FROWN.PA was deleted; thus the files on DTA5 'would be
ordered differently .

ADVANTAGES OF POSTDELETION
Postdeletion is a slightly safer method of transferring files since

the original file is not deleted until a transfer is successfully com-
pleted. Suppose that, in Example 1 above, SMILE.PA is an up-
dated version of the FROWN.PA that exists on DTA5 and that
these are the only two copies of a certain source file. If predeletion
is performed and SMILE.PA is discovered to have a permanent
input error, that source file will have ceased to exist because
SMILEPA will be unreadable and FROWN.PA will have been
deleted. The use of postdeletion in this case would save the original
copy (FROWN.PA) even though the updated version (SMILE.PA)
could not be read.

CONTROL CHARACTERS
The special characters CTRL/C and CTRL/P are used to

terminate FOTP operations. When CTRL/C is typed, FOTP con-
tinues operation until the files on the output device are the same as
those in the output device directory. Control then returns to the
OS/8 Keyboard Monitor.

CTRL/P causes FOTP to terminate the current operation but
FOTP retains control. The output device directory is updated to

reflect the operations completed before the termination occurred.
FOTP prints an asterisk and can receive another 1/0 specification
line.

If CTRL/C or CTRL/P is typed when deleting (/D) or renam-
ing (/R), no FOTP operations are performed and the message:

OR1 G I N A L 01 RECTORY PRESERVED

is printed.

FOTP Options
The options listed in Table 2-20 may be used in a FOTP speci-

fication line.

Table 2-20 FOTP Options

Option Meaning

/ C Current date. Consider only those input files with the cur-
rent date when performing a FOTP operation. For ex-
ample, if the command:

Is typed, FOTP transfers from DTAO to DSK only those
input files that have the current date.

/D Do not perform any I /O transfers, i.e., perform only dele-
tions. / D is not an abbreviation for delete although it

' usually performs that operation. This option compares the
input specification with the output specification, if any, for
matching files. If a match is made, FOTP performs as
though transferring the file, and then deletes the trans-
ferred file.
If no transfer occurs, no postdeletion occurs. Predeletion
might still occur unless the / N option is included. If no
output device is specified, FOTP assumes the first input
device specified as the output device. If no output files or
extensions are specified, i.e., *.* is specified or assumed,
the input file names become the output file names. If no
input files are specified, no deletion takes place.

/ F Failsafe. The /F option protects files during a transfer
operation. It is particularly useful when transferring a great
number of files from disk to DECtape. The / F option al-
lows a new volume to be mounted if a large file will not

Table 2-20 FOTP Options (Confc)

Option Meaning

fit on the output device or if all files- will not fit on the-
output device. If, for example, a user wishes to transfer.
all .BN files from DSK to DTAO, he types:

-.

DTA0:<DSK;*.BN/F

If the output device becomes full before transfer is com-
plete (or if a large file will not fit), FOTP prints:

MOUNT NEXT OUTPUT VOLUME:

Dismount the current tape and mount a new tape on the
same unit. Type any character to continue. The device
mounted must have a good OS/8 directory. FOTP then
continues the transfer on the new volume and updates
the directories of both volumes.

List on the terminal the names of files affected during the
FOTP operation. Note that neither the device nor the out-
put file is listed.

No predeletion. Delete output file names after a successful
I /O transfer occurs. If an I /O transfer proceeds, any other
files of the same name will automatically be deleted when
the file is closed.

Other than the current date. Consider only those input
files with a date other than the current date when perform-
ing a FOTP operation.

Query the user about each relevant file name to determine
whether he wants the specified operation to occur for that
file. This relevant file name could be either an input or out-
put file name depending upon the type of FOTP operation
being performed. For example, if input files are being re-
named, FOTP prints the affected input file names. If out-
put files are being deleted, FOTP prints the output files
that will be affected. FOTP prints each relevant file name on
the terminal and waits for the user to respond. A response
of Y causes the specified operation to be performed. Any
other response causes that file to be ignored and FOTP
prints the next relevant file name.

Table 2-20 FOTP Options (Cont.)

Option Meaning

/R Rename the output file without performing any transfer.
This operation is performed by specifying the same device
as both the input and output device. For example:

DSK: TESTS* PAeDSK: TESTS. PAIR

would change the name of the DSK file TEST2.PA to
TEST3.PA without performing any transfer.

/ T Assign the current date to the corresponding input file.

/ U Treat each input specification separately. This option causes
FOTP to find files in the same order as they are entered
in the input specifications. For example, the command:

DTA0: <DSKt TEST. PA, DATA1. F T i TESTS* PA/U/L

TEST. PA
DATA 1. FT
TESTS* PA

'Â¥Ã

finds the files in the order that they were specified in the
command, not in the order in which they may appear on
DSK.

/ V Consider only input files which do not have the form spe-
cified by the input specifications. For example, the com-
mand:

transfers to DTAO all files on SYS other than those with
.SV or .HL extensions.

/W Print the version number of FOTP on the terminal.

EXAMPLES OF FOTP SPECIFICATION COMMANDS Ã̂

The following are legal command strings to FOTP. When FOTP
has completed an operation, control returns to the Command
Decoder for additional input, unless the ALTMODE is used to
terminate the FOTP command line.

Example 4:

This command string transfers the file A.B from the device DSK
to DTAO.
Example 5:

This command string transfers the files A, B, C, D, and E from
the system device to DTA3.
Example 6:

This command string transfers all FORTRAN source files from
DTA5 to DTA2, producing a log of those copied.
Example 7:

This command string lists all FORTRAN files, then all BASIC
files on the line printer.
Example 8:

This command string copies from DTA3 to DSK all files other
than core image (.SV) and binary (.BN); it then copies from DTA2
to DSK all files other than those with names beginning with K. A
listing is printed of all files copied.
Example 9:

The above command copies the file A.B from DSK to DTA1,
changing its name to C.D, and assigns the current date to the file.

Example 10:

SY S: * w PL<LTA88 * w P P / N

The above command copies from LTA2 to the system device all
files with .PA extension, changing the extension to .PL.
Example 1 1 :

This command string deletes any disk file which has an exten-
I*

sion of .LS, .TM, or .BK or has a name beginning with TMP if the
file does not have the current date.

Error Messages
The error messages listed in Table 2-21 may appear during a

FOTP operation.

Table 2-21 FOTP Error Messages

Message ' Meaning

ALREADY EXISTS (file name) An attempt was made to rename
an outpuffile with the name of
an existing output file.

BAD INPUT DIRECTORY The directory on the specified
input device is not a valid OSI 8
device directory.

BAD OUTPUT DEVICE Self-explanatory. This message
usually appears when a non-file
structured device is specified as
the output device.

BAD OUTPUT DIRECTORY The directory on the specified
output device is not a valid
OS/ 8 device directory.

DELETES PERFORMED More than one input device was
ONLY ON INPUT specified with the / D option
DEVICE GROUP 1 when no output specification
CANT HANDLE (device or file name) was in-
MULTIPLE DEVICE cluded.
DELETES

2-108

Table 2-21 FOTP Error Messagks (Cont.)

Message Meaning

ERROR ON INPUT DEVICE,
SKIPPING (file name)

ERROR ON OUTPUT DEVICE,
SKIPPING (file name)

ERROR READING INPUT
DIRECTORY

ERROR READING
OUTPUT DIRECTORY

ERROR WRITING
OUTPUT DIRECTORY

ILLEGAL *

ILLEGAL ?

NO FILES OF THE
FORM xxxx

NO ROOM, SKIPPING
(file name)

SYSTEM ERROR-CLOSING
FILE

USE PIP FOR NON-FILE
STRUCTURED DEVICE

The file specified is not trans-
ferred, but any previous or sub-
sequent files are transferred and
indicated in the new directory.

The file specified is not trans-
ferred, but any previous or sub-
sequent files are transferred and
indicated in the new directory.

Self-explanatory.

Self-explanatory.

Self-explanatory.

An * was entered as an embeded
character in a file name, e.g.,
TMP* .BN.

A ? was entered in an output
specification.

No files of the form (xxxx) spe-
cified were found on the current
input device group.

No space is available on the out-
put device to perform the trans-
fer. Predeletion may already
have occurred.

Self-explanatory.

An input device specified is not
a file-structured device, e.g.,
PTR.

necessary. For example, to transfer a CAPS-8 file named
DATA01 to the disk, the user types:

if the standard cassette is mounted on drive 1 and. if the user's
OS/8 system has a handler for drives 0 and 1 (unit 0) with entry
point names of CSAO and CSA1. If a cassette handler is specified
without any file name, MCPIP uses the handler without modi-
fication, i.e., it uses the cassette as a non-file structured device
similar to a paper tape reader or punch. Thus, the command:

CSA2: < D S K : SI SCO BN

would perform the same operation with MCPIP as the command:

would perform with OS/8 PIP.
If the user specifies a magnetic tape handler with a file name,

MCPIP considers the magnetic tape as a file-structured device and
assumes that it has the same format as a standard cassette.

Since MCPIP performs file transfers for all file types, there are-
no assumed extensions assigned by MCPIP to file names for either
input or output files. All extensions, where present, must be ex-
plicitly specified, except when the /B option is used.

Following completion of a MCPIP operation, the Command
Decoder again prints an asterisk at the left margin and waits for

. another MCPIP 1/0 specification line. The user can return to the
Keyboard Monitor by typing CTRL/C or by ending a MCPIP
specification line with an ALTMODE.

MCPIP OPTIONS
The various options allowed on a MCPIP 1/0 specification line

are detailed in Table 2-22.

2-1 1 1

Table 2-22 MCPIP Options

Option Meaning

Transfer files in special CAPS-8 binary format. If the /B
option is used and no extensions are specified, MCPIP as-
sumes .BN for OS/8 files and .BIN for cassette files. If
input is from PTR: (high-speed paper tape reader), the
paper tape must be positioned on the leader.

The square bracket ([I) option allows the user to specify a
decimal file type on a cassette output file. The notation in
brackets does not refer to the file sizes in this case. Hence,
to create a file with the name CAS50.BI on cassette drive 1
and give it a flip type nf 3, the user types:

For output files other than cassette, square brackets have
the same meaning as in OS/8 PIP. For information on file
types, see the Cassette Programming System User's Manual
(DEC-8E-OCASA-B-D), Appendix E.

Delete the file specified from the output cassette or mag-
net:; tape. The / D option is only valid if the output device
is a cassette or magnetic tape. For example:

* M T A l : OFILE< /D

will delete OFILE from the magnetic tape on drive 1.

Specify in the low order 1 2 bits of n the number of words
(characters) per record which occur in the cassette or mag-
netic tape output file. The low order 12 bits of the n spec-
ification may be between 0 and 1000 (octal), inclusive.
If not specified, 200 is assumed.

The = option need not be specified for cassette or mag-
netic tape input files because MCPIP will determine the
record size from the file's header record. If the output
record size specified is greater than 1000 or if an input
record size is 0, MCPIP prints an error message since it
cannot handle variable-length records. The high order 11
bits of the = option are used to specify the version num-
ber for the file. The = option is ignored if the output file
is not a cassette or magnetic tape file.

2-1 12

Table 2-22 MCPIP Options (Cont.)

Option
-- --

Meaning

/L Read the input cassette or magnetic tape directory and
write it onto the output file. Notice that in this case the
input file itself is not transferred, only the directory. The
/L option applies only if the input device is a cassette or
magnetic tape.

/Z If no filename is specified, zero the cassette or magnetic
tape on the drive specified as output, by writing a sentinel
file on it, Every magnetic tape or cassette should be zeroed
before it is used for the first time. If a filename is speci-
fied (for a cassette or magnetic tape drive), write a sentinel
file after the file specified.

Although cassette or magnetic tape file names may have 3-
character extensions, OS/8 allows only 2-character extensions.
Thus, when looking up a cassette file, although all three characters
may be specified, only the first two are significant. For example,
CSAO:FILE.PAL might match a file called FILE.PAT. All files
on a standard cassette must be unique with respect to the file name
and the first two characters in the extension. On output, the third
character of the extension is always a space (unless the /B option
is specified).

NOTE
If CTRL/C is typed while a write operation
is in progress on a cassette or magnetic tape,
MCPIP writes an end-of-file before retum-
ing to the Keyboard Monitor.

MCPIP Error Messages
Error messages which appear while MCPIP is running are

shown in Table 2-23. If an output file is specified on a cassette or
magnetic tape and a file by that name already exists, the file on
the output drive is deleted before any transfer is performed. If
MCPIP detects an error while a cassette or magnetic tape output
file is open, it tries to close the output file by writing a sentinel
file on the output cassette or magnetic tape.

Table 2-23 MCPIP Error Messages
--

Message Meaning

CANNOT HANDLE VARIABLE The records on the input and
LENGTH RECORDS output files specified are not the

same size. MCPIP cannot han-
dle variable length records.

CLOSE ERROR MCPIP is not able to close the
file. A bad file just created on
magnetic tape or cassette must
be removed by placing a sentinel

' file after the preceding file. (See
the /Z option.)

device DOES NOT EXIST The device specified does not
- exist on the OS/8 system. "De-

vice" is a set of four characters
given when MCPIP expected an
OS/8 device name such as
DTAO.

ENTER ERROR

FETCH ERROR

file NOT FOUND

ILLEGAL * OR ?

ILLEGAL SYNTAX

INPUT ERROR

Error occurred while trying to
enter an output file. This mes-
sage usually means that the cas-
sette or magnetic tape has no
sentinel file.

Error occurred while trying to
fetch an OS/ 8 device handler.

The file specified cannot be
found. "File" is the actual name
of the file that was not found.

Wild card * or ? was specified
in a MCPIP command line.
MCPIP does not accept the
wild card construction.

The command line to the Com-
mand Decoder contains an ille-
gal character or was incorrectly
formatted.

An input error occurred while
reading the file.

Table 2-23 MCPIP Error Messages (Cont.)

Message Meaning

NO INPUT FILE

NO OUTPUT FILE

OUT-IN

OUTPUT DEVICE FULL

OUTPUT ERROR

RECORD SIZE TOO BIG

TOO MANY FILES

No input file was specified
when one was required.

No output file was -specified
when one was required.

Both the input and the output
devices were specified as the
same cassette or magnetic tape
drive.

Either room on device or room
in the directory is lacking.

Output error-possibly a
WRITE LOCKed device, parity
error, or attempt to output to a
read-only device.

The output record size specified
is greater than 1000 or an input
record size is 0.

More than 1 output device was
specified or more than 1 input
device was specified.

PIP10
PIP10 is an OS/8 utility program used to provide file com-

patability with the DECsystem-10 computer. PIP1 0 is capable
of transferring files to and from DECsystem-10 formatted DEC-
tapes. PIP10 provides the facilities for transferring ASCII, Image
(P a 1 0 binary output), and sequenced ASCII (LINED output)
files.

PIP10 uses an internal DECsystem-10 DECtape routine. This
routine optimizes file storage in the same way that the DECsystem-
10 Monitor does, thus resulting in the most efficient algorithm for
block storage.

PIP10 has the following features:

A ~ t ~ ~ m t i c d y dete-mi~es which sf the specified I X ~ C ~ P ~ S t"

is a DECsystem-10 tape (384(10) words/blocks).
Works interchangeably on TC08 and TD8E DECtape con-
trollers.
ReadÂ and writes to DECsystem-10 tapes in both forward
and reverse directions on TC08 tapes, forward only on
TD8E.
Keeps the DECsystem-10 DECtape directory in. core during
the file-copying operations of PIP10, thus eliminating the neces-
sity for rereading the directory. The directories are purged from
core when PIP10 reads another command line.
Permits transfers between two OS/8 devices as well as trans-
fers between two DECsystem- 10 tapes.
Zeroes DECsystem-10 DECtape directories, deletes DEC-
system- 10 files, and lists DECsystem- 10 directories.

Note that PIP10 cannot be used while running the OS/8 BATCH
program.

Calling and Using PIP10
To use PIP 10, type :

* R P I P 1 0

PIP10 respond: with an asterisk (*) and waits to receive a com-
mand line of 1/0 files and options. The command line must have
one output specification and may have from zero to nine input
specifications. Multiple input files are merged onto the output file.

2-1 16

A DECsystem-10 file name may have a 0- to 3-character file ex-
tension; an OS/8 file name may have a 0- to 2-character extension.

Remember that PIP 10 automatically determines which DECtape
mounted is a DECsystem-10 tape. Thus no indication of that na-
ture is necessary.

Following completion of a PIP10 operation, the PIP10 com- .

mand decoder again prints an asterisk at the left margin and waits
for another PIP10 1/0 command line. To return to the Keyboard
Monitor, type CTRL/C.

NOTE
PIP10 uses its own command decoder, not
the standard OS/8; however, the command
decoders are functionally the same.

PIP10 Options -

The various options allowed on a PIP10 1/0 command line are *

detailed in the following table. The general format for PIP10 com-
mand lines is the same as that for the standard OS/8 Command
Decoder.

Option Meaning

Transfer files in DECsystem-10 binary mode. The out-
put device must be a DECsystem-10 DECtape.

Delete the old copy of the output file before continuing
the transfer. If /D is not used, the file is copied before

/

the old copy is deleted.

List the short form of DECsystem-10 DECtape direc-
tory.

Copy in Image mode (compatible with PAL10 binary
files) rather than ASCII mode.

List the directory of the input device. This input device
must be a DECsystem-10 DECtape. If no output device
is specified, TTY is assumed to be the output device.

Preserve LINED sequence numbers in DECsystem-10
format. Sequence numbers are normally deleted.

Zero the output device directory. The output must be
a DECsystem- 10 DECtape.

2-1 17

PIP10 Examples
The following examples assume that a DECsystem-10 DECtape

is mounted on DTA7. In an actual operation, any unit may be used
since PIP10 can access any of the tape drives.
Example 1 :

*DTA7: F I L E . E X T < F I L E . E X / Z

The command line in Example 1 zeroes the DECsystem-10
directory on DTA7 and transfers FILE.EX from DSK to the
DECsystem-10 DECtape on DTA7. If /Z is not specified, the
DECsystem-10 tape should always have a valid directory on it

**~1mc'forci or0 attpmntpd
U b A U X b tXU.t.lOi-^A- 0 U A W M,Ãˆ,.WAAAj- Ã "̂-

Example 2 :

*DTA7: F I L E . E X T < D T A I . : P ~ * P T R : S , DTA7: PARZgTTY:

In Example 2, five input files are merged onto one DECsystem-
10 output file (FILE.EXT). The first input file is an OS/8 file
(P 1) on DTA1; the second and third files are read from the paper
tape reader; the fourth is a DECsystem-10 file named PARZ on
DTA7; and the fifth is from the terminal. This example shows that
input files need not be all OS/8 or all DECsystem-10.
Example 3:

The command line in Example 3 copies the DECsystem-10 file
(FILE.BIN) in Image mode since the DECsystem-10 file is a
binary file. /I must be used to copy DECsystem-10 binaries. Note
the use of square brackets [I in the command; they have the same
meaning as in the OS/8 command decoder.
Example 4 :

*DTA7: F I L E . EXT</D

Example 4 indicates the deletion of a DECsystem-10 file
- (FILE.EXT) from a device.

Example 5 :

If DTA7 has a DECsystem-10 DECtape mounted, the command
line in Example 5 will produce a directory listing of the device.

Error Messages
All errors cause PIP10 to abort the current command and print

another asterisk. The command can then be entered correctly.

Message Meaning

DEVICE FULL DECsystem-10 ran out
of space on the output
file during a transfer.

ERROR DELETING FILE The output file of a /D
command was not found,
or an error occurred
which deleted the file.

FILE NOT FOUND

1/0 ERROR

NO SUCH DEVICE

NOT OS8 FILE

NOT PDP-10 FILE

The requested file was
not found on the speci-
fied device.

1/0 device error, e.g.,
parity, write lock, out of
paper.

Device name used is not
legal in this OS/8 sys-
tem. /

The output device speci-
fied with a /L or /I? op-
tion was not an OS/8 de-
vice or file.

The output device speci-
fied with a /Z option was
not a DECsystem-10
tape, or the input device
specified with a /L or /F
option was not a DEC-
system-10 tape.

Message Meaning

OUTPUT FILE OPEN ERROR The output file could not
be opened. Check" output
directory to ensure that
enough space exists on
the device. .

PIP 10 CANNOT BE CHAINED TO Self-explanatory.

SYNTAX ERROR Invalid PIP 10 command
line.

RESOURCES (RESORC)
RESORC is an OS/8 program that is used to determine the

device handlers present on a given OS/8 system. Other infonna-
tion about the handlers is available through the use of RESORC
options.

Calling and Using RESORC
To call RESORC from the system device, type:

R R E S O R C

in response to the dot printed by the Keyboard Monitor. RESORC
may also be called via the CCL command RES (see the CCL
section in Chapter 1). The Command Decoder prints an asterisk at
the left margin and waits to receive a line of 1/0 files and options.
RESORC accepts up to nine input files and performs output to a
single output file; options generally are placed at the end of a com-
mand string.

The output specification is the device, and optionally the file
name -and extension, to which the RESORC listing is sent. TTY is
assumed if no output device is specified. If no file name is specified,
RE is assumed. If no file name extension is specified, .LS is as-
sumed.

The input specification may be one of three types:

No input specification
If no input specification is entered, the OS/8 system device
is assumed.
A device name only (dev:)
If the input specification is a device name only, the device
must be file-structured and is presumed to contain a valid
OS/8 directory and Keyboard Monitor. The device handlers
built into the system on that device are the ones listed by
RESORC. These handlers are not available to the user
unless he bootstraps onto the specified device (see the
BOOT program in this chapter).
A device and a file name (dev:file.ex)
If this type of input specification is used, the file must be
what is known as a system-head file. (Such files are created
by the /Y option in PIP and are copies of the system por-
tions of devices.) If no file name extension is specified, the

extension .SY is assumed. RESORC prints the handlers in
the system that were saved on the specified file. System-head
files are 50 (decimal) blocks long.

RESORC Options
RESORC has three operating modes which

options in the command line. These modes are:
Option Mode

/E Extended mode-detailed handler

are specified by

inÂ ormation
/F Fast mode-1 -line printout (default)
/L Limited mode-3-column / printout

FAST MODE (/F OPTION)
If the /F option i s specified in a RESORC command line*, or

if no options are specified, RESORC the permanent device
names for handlers which exist on the system. If RESORC cannot
determine the ASCII device name for one of the devices, it prints
the internal octal representation of the device name and encloses it
in parentheses. (This octal representation is included in the OS/8
Software Support Manual.) For example :

* R RESORC
* /F
SY Ss DSK* DTA2, DTA0s D T A l s (4667) s TTY , L P T

The first two devices are always SYS and DSK. When the fast
mode is used, the devices are separated by commas and listed in
order of their internal device numbers.

LIMITED MODE (/L OPTION)
If the /L option is used in a RESORC command line, the

handler information is printed in three columns. For example:

R RESORC
*A

1 2 8 FREE BLOCKS

NAME TYPE USER
SYS RKBE
DSK RKBE I N
DTAO TC08 0
TTY TTY
L P T LPTR L P T

Preceding the table of device names, RESORC prints the num-
ber of free blocks on the device. This information is not given for
system-head files since it is not available.

The first column (NAME) lists the permanent names of devices
on the system. The second column (TYPE) lists the physical type
of the handler. Each type of device is assigned a unique number by
OS/8. RESORC associates this number with a name as listed in

. Table 2-24. Note that physically different devices which are
similg in function have the same internal type code. For example,
line printers LP08, U 8 E , and L645 have an internal code of 04.

The third column (USER) lists the name given to the device with
the Monitor ASSIGN command. If RESORC cannot determine the
name from the internal octal, it prints the octal code enclosed in

Table 2-24 RESORC Device Types

Internal RESORC
Type Code Name Explanation

TTY
PTR
PTP
CR8E
LPTR
RK
RF08
RF08
RF08
RF08
DF32
DF32
DF32
DF32
TC08
LINC
TM8E
TD8E
BAT
RK8E-
NULL
TA8E
VR12

Console terminal
Paper tape reader
Paper tape punch
Card reader
Line printer
RK8 disk
RF08 disk .(l platter)
RF08 disk (2 platter)
RF08 disk (3 platter)
RF08 disk (4 platter)
DF32 disk (1 platter)
DF32 disk (2 platter)
DF32 disk (3 platter)
DF32 disk (4 platter)
TC08 DECtape
LINCtape
Magnetic tape
TD8E DECtape
Batch input handler
RK8E disk
NULL handler
Cassette
PDP-12 scope

Codes 25-26 and 3 1-37 are reserved for future use by Digital.
Codes 40-57 are reserved for user handlers.

EXTENDED MODE (/E OPTION)
When the /E option is used in a command line, RESORC pro-

vides more detailed information about the handlers configured into
+ the system.

headings. '

Heading

NAME

TYPE
MODE

SIZ

BLK

KIND

The /E option produces a table with the following

Meaning

I C ~ C E I ~ amrnbci fai the h ~ ~ d l i ~ . If a ~ m b ~ i
is missing, there is no internal number for this
handler.
Permanent device name for the handler. If RESORC
cannot determine the name, it prints the internal
coding.
Type of device as listed in Table 2-24.
One or more of the following three letters:

R The handler may be used for reading.
W The handler may be used for writing.
F The handler controls file-structured devices.

The size of the device in decimal OS/8 blocks. This
is only applicable for file-structured devices.
The block on the system device in which this handler
resides. If this number is followed by a +, this
indicates that the handler is two pages long. If this
entry is SYS, the handler is permanently resident in
core location 07600.
This entry tries to differentiate the handler more
specifically than the TYPE column. Since several
devices of the same type have the same device code,
there may be several handlers for the same device. If
the device type has only one handler, this entry may
be blank. The KIND specification has no meaning for
user-written handlers. Table 2-25 details the kinds of
handlers that may be on the system.

Table 2-25 Kinds of Handlers

Kind Type Description How Identified

TTY
TTY
PTR
PTR
PTP
FTP
CR8E
CR8E
LPTR
LPTR
LPTR

LPTR

LPTR

1 -page handler
2-page handler
low-speed reader
high-speed reader
low-speed punch
high-speed punch
DEC-026 card codes
DEC-029 card codes
old LP08 handler
old LS8E handler
LP08f LS8E/ LV8E
handler
LPSV altered for
LV8E
Anelex line printer

by number of pages
by number of pages
by IOT codes
by IOT codes
by IOT codes
by IOT codes
by table codes
by table codes
location dependent
location dependent
location dependent

location dependent

location dependent

Unit-the particular unit number of a multiple unit
device handler. For example, the RK8E disk can
have as many as four physical drives (0, 1, 2, 3) on
an OS/8 system. OS/8 considers the disk cartridge
in each drive as two logical units. The lower half is
the A unit and the upper half is the B unit. Thus
drive 2 consists of two logical units called A2 and
B2. .

Since the U column in the printout has space for only
one character, RESORC numbers the logical units
from 0 to 7. The following table shows the cor-
respondence between the U printout, the logical unit,
and the physical device.

Logical
Unit -

A0
BO
A1
B l
A2
B2
A3
B3

Physical
=Device

Version number (letter) of handler. No entry means
the handler predates OS/8 Version 3. Version num-
bers are of the form A-Z. The 6-bit of the ASCII
representation of the handler version letter resides
in the handler's entry point location. For example, a
handler with a version of A has a representation of
01. (See Appendix A for a list of the 6-bit octal
codes .)

ENT The relative entry point of the handler.
USER Same as for /L option. Current user name for the

handler as assigned by the Monitor ASSIGN com-
mand. -

3

in addition to the preceding, the /E option also provides the
following information. If a device was specified, as opposed to a
system-head file, RESORC prints:

number of files in directory
number of blocks used
number of segments used
number of free blocks
number of empties

* number of additional information words

RESORC also lists the following:

number of free device slots
number of free block slots
version number of Monitor if device is a system device

R RESORC
* / E

1 6 4 F I L E S I N 1025 BLOCKS U S I N G 6 SEGMENTS
2 1 6 7 FREE BLOCKS (1 4 E M P T I E S)

NAME T Y P E MODE S I Z BLK K I N D U V ENT USER
0 1 S Y S R K 8 E RWF 3248 S Y S 0 B 07
02 DSK RKSE RWF 3248 SY S 0 B 0 7
03 DTA0 T D S E RWF 7 3 7 1 6 + T D 8 A 0 A 10
04 DTA1 T D S E RWF 7 3 7 1 6 + T D S A 1 A 14
0 5 RKBO R K 8 E RWF 3248 S Y S 1 B 21
06 TTY TTY RW 1 7 + K L S E C 1 7 6

Â¥

07 PTP PTP W 20 PTGE A 00
1 0 PTR PTR R 20 PT8E A 1 1 2
1 1 LPT LPTR W 21 LPSV B 03

FREE DEVICE SLOTS: 0 6 s FREE BLOCK SLOTS: 04
OS/8 V3F

RESORC Error Messages
The following messages may appear during a RESORC opera-

tion.

Table 2-26 RESORC Error Messages

Message Meaning

?BAD DIRECTORY
%BAD MONITOR

$6 DEV IS NOT FILE
STRUCTURED

?INPUT ERROR

% NON SYSTEM DEVICE

%NOT A SYSTEM HEAD

?OUTPUT DEVICE FULL

?OUTPUT DEVICE IS
READ ONLY

?OUTPUT ERROR

?TTY DOES NOT EXIST

Input device directory cannot be read.
The input device may be a system de-
vice but the Monitor cannot be ac-
cessed.
The input device specified is not a file-
structured device, e.g., PTR.
An input error occurred during a
RESORC operation.
The .input device specified in a RE-
SORC command line is not an OS/ 8
system device.
The file name specified is not a system-
head file.
The output device specified does not
have enough room to copy the RE-
SORC file.
The output device specified is a read-
only device, e.g., PTR.
An error occurred while attempting to
output during a RESORC operation.
An output device was not specified in
the RESORC command line and the
TTY handler does not exist on the
OS/8 system. See the BUILD section
of this chapter for instructions on in-
serting TTY handlers. -

SRCCOM
SRCCOM is an OS/8 utility program which compares two source

files line by line and prints all their differences. Usually7 the two
files are different versions of a single program? in which case
SRCCOM prints all the editing changes which transpired between
the two versions, making it a useful debugging tool.

SRCCOM Assembly Instructions
To make SRCCOM-BN from SRCCOM.PA7 type

.R PAL8
*dev : SRCCOM (,dev : SRCC0M.LS) +dev : SRCCOM

The listing file shown in parentheses i's optional.
To make SRCC0M.SV from SRCCOM.BN, type

.R ABSLDR
*dev: SRCCOM$
.SA dev SRCCOM

To load and save the binary papertape (DEC-S8-OSYSA-<-PBl9)

.R ABSLDR
*PTR: $? (Type and character in response to ?)
.SAVE dev SRCCOM

Loading SRCCOM
To use SRCCOM, type

INPUT 1 and INPUT2 are the source files to be compared and the
input devices. Both files must be specified and be non-empty. If an
input device is omitted, it is assumed to be DSK.

OUTPUT specifies the output file and device where the differences
will be listed. If an output file name is specified? the default output
device is DSK. If the output device is non-file structured? a file name
is unnecessary. If output is to a file-structured device? an output
file name must be specified. If no output specification exists, TTY
is assumed.

The following run-time options are accepted by SRCCOM:

Table 2-27 Run-Time Options

Option Meaning

/ C Do not count differing comment fields as a difference.
/S Do not compare tabs and spaces when considering lines

different.
/T Convert tabs to spaces on output.
/B Count blank lines in the comparison. A blank line is con-

considered as a carriage return only. In particular space
carriage return combination unier /S/B is not treated
as a blank line.

/X ~ i k e /C, but does not print comment fields on the out-
put file.

Examples : .

e R SRCCCB4
*DSK: DI F F I L < D T A l : OR1 G a DTA2: COPY

Compare the source files ORIG on DTAl and COPY on DTA2,.
and store the differences on DSK as DIFFIL.

O R SRCCOM
*DI F F I L c F I RST, SECCND

Compare the source files FIRST and SECOND on DSK, and out-
put the differences to DIFFIL on DSK.

Compare source files FILE 1 on DTAl and one from the high-
speed paper tape reader, and output the differences to the line
printer.

SRCCOM Output
The first line of output printed by SRCCOM is "SRCCOM Vx,
where x is the current version number, then two header lines fol-
lowed by as many difference groups as necessary. The header lines
are printed as follows:

file 1) header line of file 1
file 2) header line of file 2

A difference group has the form:
1) /nnn line 1,file 1
1) line 2, file 1
1) line 3, file 1

.
1) line n, file 1

2) /nnn line 1, file 2
2) line ZY file 2

2) line my file 2
where nnn is the number of the difference group and lines 1
through n-1 of file 1 and 1 through m-1 of file 2 did not agree.
SRCCOM compares areas of the two programs, and prints differ-
ences until it finds 3 lines which agree. The last lines printed (line
n of file 1 and line m of file 2) are the first lines that agreed. The
number of consecutive lines to check for agreement may be changed
to any number (k) with the option =k in the command line.
Example :

File 1 - File 2 - SRCCOM OUTPUT

file 1) A
A A file 2) A
B X 1) I3
c c 1) c
D D ****
E E 2) x
F G 2) c
G H ********
H J 1) F
I 1) G
J 1) H

1) 1
1) J ****
2) G
2) H
2) J

Occasionally a decimal number appears following the close pa-
renthesis after the file number. This decimal number indicates the
source page in this file from which this line and all following lines
(until the next such number) come.

If the two files are identical, SRCCOM prints the message:

NO DIFFERENCES

in the output file.

Error Messages
SRCCOM error messages are of the form:

?n
where, n is a single digit. The meaning of the various digits are

?O Insufficient core; this means that the differences be-
tween the files are too large to allow for effective corn-
parison. Use of the /X option may alleviate this
problem.

? 1 Input error on file # 1 or less than 2 input files specified.

?2 Input error on file # 2.

? 3 Output file too large for output device.

?4 Output error.

? 5 Could not create output file.

TECO
Introduction

OS/8 TECO is a powerful text editing and correcting program
that runs under the OS/8 operating system. OS/8 TECO may be
used to edit any form of ASCII text such as program listings, manu-
scripts, correspondence and the like. Since OS/8 TECO is a
character-oriented editor rather than a line editor, text edited with
OS/8 TECO does not have line numbers associated with it, nor
is it necessary to replace an entire line of text in order to change .

one character.
Because OS/8 TECO is very versatile, it is necessarily com-

plex. This chapter is, therefore, didded into two parts. The fist
paxt contains basic idormation and introduces enough OS/8
TECO commands to allow the novice OS/8 TECO user to begin
creating and editing text files after only a few hours of instruction.
The introductory commands are sufficient for any editing applica-
tion; however, they are less convenient, in most cases, than the ad-
vanced commands presented later.

The second part introduces the full OS/8 TECO command set,
including a review of the introductory commands presented earlier.
This part also introduces the concept of OS/8 TECO as a pro-
gramming language and explains how basic editing commands may
be combined into editing "progrms" which are sophisticated
enough to handle the most complicated editing tasks.

Specific examples of the use of OS/8 TECO commands have
been de-emphasized throughout this manual. This was done be-
cause all of the OS/8 TECO commands have a consistent, logical
format which will quickly become apparent to the novice user.
However, each section of the chapter is concluded with one or
more elaborate examples which employ most of the commands
introduced up to that point. Users who are learning the T E C ~
commands should experiment with each command as it is intro-
duced, then duplicate the examples on their computer. Hereafter,
OS/8 TECO will be referred to as simply TECO.

Introductory Commands
TECO considers text to be any string of ASCII codes. Text

is broken down into units of pages, lines and characters. A page
of text consists of all the ASCII codes between two form feed

characters, including the second form feed. A line of text consists
of all the ASCII codes between two line feeds, including the second
line feed. A character is one ASCII code. Thus, every page of text
contains one form feed character, which is the last character on
the page. Every line of text contains one line feed, which is the
last character on the line.

TECO maintains a text buffer in which text is stored. The buffer
usually contains one page of text consisting of up to 4000 charac-
ters, but the terminating form feed character never appears in the
buffer. TECO also maintains a buffer pointer. The pointer is sim-
ply a movable position indicator which is always located between
two characters in the buffer, before the first character in the buffer,
or after the last character. The pointer is never located on a char-
acter.

Line feed and form feed characters are inserted automatically by
TECO. A line feed is automatically appended to every carriage
return entered into the buffer, and a form feed is appended to the
content of the buffer by certain output commands. Additional
line feed and form feed characters may be entered into the
buffer as text. If a form feed character is entered into the buffer,
it will cause a page break upon output. That is, all text preceding
the form feed will appear on one page, and the text following the
form feed will appear on the next page.

Finally, TECO also maintains an input file and an output file,
both of which are selected by the user through use of file specifi-
cation commands. The input file is any device except the keyboard
from which text may be accepted. For example, if a block of text
is stored on paper tape, the paper tape reader would be specified as
an input device when the tape is edited.

The output file is any device except the user terminal on which
edited text may be written. If the paper tape file mentioned above
were to be edited and written onto DECtape, for example, the out-
put file would be a user-named DECtape file (with optional file ex-
tion) on a specified DECtape transport unit.

If TECO resides on the system device it may be called from the
keyboard by typing:
R TECO
(terminated with a carriage return) in response to the dot gene-
rated by the OS/8 monitor. TECO will respond by printing an as-
terisk at the left margin to indicate that it is ready to accept user "

2-133

commands. At this point, one or more commands may be typed
at the keyboard, and TECO will execute the commands upon re-
ceipt of two consecutive ALT MODE characters. The ALT MODE
is a non-printing character which may be labelled ESCAPE on
some keyboards. TECO echoes a dollar sign ($) whenever an ALT
MODE is received.

A TECO command consists of one or two characters which
cause a specific operation to be performed. Some TECO com-
mands may be preceded or followed by arguments. Arguments may
be either numeric or textual. A numeric argument is simply an in-
teger value which might be used to indicate such things as the
number of times a command should be executed. A text argument
is a string of ASCII characters which might be words of text, f ~ i
example, or the OS/8 designation of a storage file.

If a command requires a numeric argument, the numeric argu-
ment always precedes the command. If a command requires a text
argument, the text argument always follows the command. All
text arguments are terminated by a special character (usually an
ALT MODE) which indicates to TECO that the next character
typed will be the first character of a new command.

If more than one command is typed in response to the asterisk
generated by TECO, the command string will be executed from
left to right until either all commands have been executed or a
command error is rec'ognized. When an error is encountered, a
message is printed and the rest of the command string is ignored.
In any case, TECO prints another asterisk at the left margin as
soon as it finishes execution of a command string, so that addi-
tional commands may be entered.

The extensive text editing capability of TECO implies a large
and versatile command set. However, the novice TECO user will
find that little more than a dozen basic commands suffice for most
editing requirements. The following section introduces the basic
TECO commands. The full command set will be described later in
this chapter.

TECO will accept input text from any input device in the OS/8
system. If input is supplied from any device except the keyboard,
the input device must be specified by means of an ER command
terminated by an ALT MODE. If the input device is a file-stmc-
tured device such as disk or DECtape, the file name and extension

(if any) should also be supplied. If a file name is specified but no
device is explicity defined, the OS/8 default device is assumed. The
ER command causes TECO to search for the specified file and print
an error message if the file is not found. This command does not
cause any of the file to be read into the text buffer, how-
ever. The following examples illustrate use of the ER command.

Command Function

ERdev:filnam.ex$ General form of the ER command where "dev:
filnam.ex9' is the OS/8 designation of the input
file. The command is terminated by an ALT
MODE, which echoes as a dollar sign.

ERPTR: $ Prepare to read an input file from the reader.

ERPROG.PA$ Prepare to read input file PROG.PA from the
OS/ 8 default device DSK.

EJ@TAl:PROG$ Prepare to read Â input file PROG from DTA1.

TECO will write output text onto any device in the OS/8 sys-
tem. If output is written onto any device except the user terminal,
the output device must be specified by means of an EW command
terminated by an ALT MODE. If the output device is a file-struc-
tured device, a file name and extension (if any) must also be sup-
plied. If a file name is specified but no device is explicitly defined,
the OS/8 default device is assumed. The following examples illus-
trate use of the EW command, which has the same format as the
ER command.

Command Function

EWdev:filnam.ex$ General form of the EW command where "dev:
filnam.ex9' is the OS/S designation of the output
file. The command is terminated by an ALT
MODE, which echoes as a dollar sign.

EWSYS:<TEXT.LS$ Prepare to write output file TEXT.LS on the
system device.

EWDSK:PROG$ Prepare to write output file PROG on the OS/8
default device DSK.

EWTEXT. AS$ Prepare to write output file TEXT.AS on the
OS/ 8 default device DSK.

It is not always necessary to specify an input file. If the user de-
sires to create a file without using any previously edited text as

onto an output device. Once a page of text has been written onto
the output file, it cannot be recalled into the text buffer unless the
output file is closed and then opened as an input file.

Command Function

Y Clear the text buffer, then read the next page of the input
file into the buffer.

P Write the content of the text buffer onto the next page of
the output file, then clear the buffer and read the next page
of the input file into the buffer.

nP Execute the P command n times, where n must be an in-
teger in the range OGnG4095. If n is not specified, a value
of 1 is assumed.

The buffer pointer provides the only means of specifying the lo-
cation within a block of text at which insertions, deletions or cor-
rections are to be made. The following commands permit the buffer
pointer to be moved to a position between any two adjacent char-
acters in the buffer. TECO positions the pointer before the first
character in the buffer after every Y or P command.

Command Function

L Move the pointer forward to a position between the next
line feed and the first character on the next line. That is,
advance the pointer to the beginning of the next line.

nL Execute the L command n times, where n may be any
integer. A positive value of n moves the pointer to the
beginning of the nth line following the current pointer posi-
tion. A negative value moves the pointer backward n lines
and positions it at the beginning of the nth line preceding
the current position. If n is zero, the pointer is moved back
to the beginning of the line on which it is currently posi-
tioned.

C Advance the pointer forward across one character.

nC Execute the C command n times, where n must be an in-
teger in the range -2048GnG2047. A positive value of n
moves the pointer forward across n characters (carriage
returdline feed counts two characters). A negative value
of n moves the pointer backward across n characters. If n
is zero, the pointer position is not changed.

These commands may be used to move the buffer pointer across
any number of lines or characters in either directions, however they

will not move the pointer across a page boundary. If a C com-
mand attempts to move the pointer backward beyond the begin-
ning of the buffer or forward past the end of the buffer, an error
message is printed and the command is ignored.

If an L command attempts to exceed the page boundaries in this
manner, the pointer is positioned at the boundary which would
have been exceeded. Thus, the command "-2000L" would position
the pointer before the first character in the buffer. The command
"2000L" would position the pointer after the last character in the
buffer. No error message is printed in either case.

The following commands permit portions of the text in the buffer
to be printed out for examination. These commands do not move
the buffer pointer:

Command Function

Type the content of the text buffer from the current posi-
tion of the pointer through and including the next line feed
character.

Execute the T command n times, where n must be an in-
teger in the range -2048GnG2047. A positive value of n
causes the n lines following the pointer to be typed. A neg-
ative value of n causes the n lines preceding the pointer to
be typed. If n is zero, the content of the buffer from the
beginning of the line on which the pointer is located up to
the pointer is typed. This facilitates locating the buffer
pointer.

Type the entire content of the text buffer.

The OT command is particularly useful for determining the po-
sition of the buffer pointer. This command should be used fre-
quently to determine that the pointer is actually located where the
user expects it to be.

The following commands permit the user to insert or delete text
from the buffer.

Command Function

Itext$ Where "text" is a string of ASCII characters terminated by
an ALT MODE, which echoes as a dollar sign. The spec-
ified text is inserted into the buffer at the current position
of the pointer, with the pointer positioned immediatelyafter
the last character of the insertion. ~nsertion commands
should be limited to a maximum length of 10 to 15 lines.

Command Function

K Delete the content of the text buffer from the current posi-
tion of the pointer through and including the next line feed
character.

nK Execute the K command n times, where n may be any in-
teger. A positive value of n causes the n lines following the
pointer to be deleted. A negative value of n causes the n
lines preceding the pointer to be deleted. If n is zero, the
content of the buffer from the beginning of the line on
which the pointer is located up to the pointer is deleted.

HK Delete the entire content of the text buffer.

D Delete the character following the buffer pointer.

nD Execute the D command n times, where n may be any
integer. A positive value of n causes the n characters fol-
lowing the pointer to be deleted. A negative value of n
causes the n characters preceding the pointer to be deleted.
If n is zero, the command is ignored.

Like the L command, D and K commands may not execute
across page boundaries. If any D or K command attempts to delete
text up to and across the beginning or end of the buffer, text will
be deleted only up to the buffer boundary and the pointer will be
positioned at the boundary. No error message is printed.

The following commands may be used to search for a specified
string of characters which may occur somewhere in the input file.
They cause the buffer pointer to be positioned immediately after
the last character in the specified string, if it is found.

Command \ Function

Stext $ Where "text" is a string of from 1 to 31 ASCII characters
terminated with an ALT MODE, which echoes as a dollar
sign. This command searches the text buffer for the next
occurrence of the specified character string following the
current pointer position. If the string is found, the pointer
is positioned after the last character in the string. If it is
not found, the pointer is positioned immediately before the
first character in the buffer and an error message is printed.

Ntext$ Performs the same function as the S command except that
the search is continued across page boundaries, if neces-
sary, until the character string is found or the end of the
input file is reached. If the end of the input file is reached,
an error message is printed and it is necessary to close the
output file and reopen it as an input file before any further
editing commands may be executed.

Both the S command and the N command begin searching for
the specified character string at the current position of the pointer.
Therefore, neither command will locate any occurrence of the char-
acter string which precedes the current pointer position, nor will it
locate any character string which continues across a page bound-
ary* J

fr

Both commands execute the search by attempting to match the
command argument character for character with some portion of
the buffer contents. If an N command reaches the end of the buffer
without finding a match for its text argument, it writes the content
of the buffer onto the output file, clears the buffer, reads the next
page of the input file into the buffer, and continues the search.

At this point, all of the basic TECO commands have been
introduced. Recall that TECO indicates it is ready to accept user
commands by printing an asterisk (*). Once TECO has printed an
asterisk, one or more commands may be typed at the terminal. Er-
rors may be corrected by typing the RUBOUT key to delete char-
acters. Each depression of the RUBOUT key deletes one charac-
ter, beginning with the last character typed, and then prints the
deleted character at the terminal. An entire command string may
be deleted in this manner, if necessary. Once the correct com-
mand(~) have been entered, typing a double ALT MODE ($$)
causes TECO to execute the command(s) in the order they were
entered, and print another asterisk so that additional commands
may be typed.

If TECO encounters an erroneous command, it prints an error
message and ignores the erroneous command as well as all com-
mands which follow it. All error messages are of the form:

where n is a number which references the list of error codes that
appears at the end of this chapter. Every error message is followed
by an asterisk at the left margin, indicating that TECO is ready to
accept additional commands. If the first command entered after a
TECO-generated error message is a single question mark character
(?), TECO will print the erroneous command string up to and
including the character which caused the error message. This facil-
itates locating errors in long command strings and determining how
much of a command string was executed before the error was en-
countered.

At the conclusion of an editing job, users may type control4 to
exit TECO and return to the keyboard. Control-C may be typed a

at any time during an editing run; it will cause an immediate exit
to the monitor as soon as it is recognized by TECO. Control-C
should not be typed while any output file is open.

The following example illustrates how TECO may be used to
create an OS/8 FORTRAN program for immediate execution. The
same procedure may be employed to create and execute programs
under PALS, SABR, and on so.

a R TECO
EMATEST F T S S
* I W R I TEC 1 , l)
1 FORMATC ' COMPI LER T E S T ')

RJ= 3
RK= 7
x = * 5
R I I = R K / R J * (2 - R K * F X / (3.*RJ>)
R = 1 0 * 6
S= 3 . 5
R I = 5
RJ= 2
RN= 7
Z=R+S*H / R J * R N / 3
WRITEC 1 , 2) R I I > Z

1 FORMAT(F 10. 20 F 1 2 . 5)
EN D

SPEFSS
* t C
O K F4
*ATEST/^
US 2
ML 0 0 1 7
. R TECO
* ERATEST* FTSEWBTEST* FTSY S Â
* S F 1 0 0 $0LDI 2 % 0 L T S $
2 FORMAT< F 1 0 . 2 0 F 120 5)
*PEFS$
* t C
0 R F4
*BTESTo FT

COMPILER TEST
-8 . 04 3 1 * @ 1 6 6 7

User calls TECO, spec-
ifies output file, and cre-
ates FORTRAN source
program.

He then closes the file
and exits to the mon-
itor.
User calls FORTRAN
and executes test pro-
gram.
FORTRAN lists two er-
rors, so user calls
TECO and edits correc-
tions into new output
file. ..

User finally calls FOR-
TRAN and successfully
executes the text pro-
gram.

The remainder of this chapter is devoted to a detailed descrip-
tion of the full TECO command set. It is assumed that the reader .
is familiar with the elementary TECO commands presented earlier.

2-141

TECO Character Set
TECO accepts the full ASCII character set, which is presented

in Appendix A. Most terminals will not transmit and receive all of
the ASCII codes; however, characters that are not available on the
user's terminal may be inserted into the TECO text buffer by means
of special commands which will be presented later in this section. *

TECO command strings may be entered by using upper case
characters, as indicated throughout this chapter, or by using the
corresponding lower case characters. A file which contains upper
and lower case text may be edited in the same manner as a file
which contains only upper case text. If such file is edited from a ter-
minal that does not accept lower case characters, all characters will
he printed at the terminal as their upper case equivalents.

TECO considers certain ASCII characters to be special charac-
ters. Most of the special characters are immediate action com-
mands. Typing these characters in a command string causes TECO
to perform a specified function immediately, without waiting for
the double ALT MODE which terminates the command string. Im-
mediate action commands may be entered at any point in a com-
mand string-even in the middle of a command or text argument.
For this reason, the special characters should not be used in text
arguments, exi-ipt where specifically indicated throughout this
chapter.

Table 2-28 lists the special characters, their functions and the re-
strictions associated with each character.

Table 2-28 Restrictions on Special Characters
-

Character Restriction

ALT MODE The ALT MODE character is a command termin-
ator. It may not be used in the argument of any
command except where noted specifically through-
out this chapter. TECO echoes a dollar sign when
an ALT MODE is received. ALT MODE may be
labelled ESCAPE on some terminals.

RUBOUT Typing a RUBOUT character causes the last char-
acter typed to be deleted. Typing consecutive RUB-
OUTS deletes one character for each RUBOUT
typed, beginning with the last character typed.
TECO echoes the deleted character whenever a
RUBOUT is typed.

L

Table 2-28 Restrictions on Special Characters (Cont.)

Character Restriction

CTRL/ U CTRL/U causes the current line to be deleted, and .

eches a TU and a carriage returdline feed.

CTRL/ C CTRL/C causes an immediate exit from TECO to
the OS/8 Keyboard Monitor. If an output file is
open when the CTRL/C command is executed, the
contents of the file will be lost.

CTRL/ P CTRL/P causes an immediate branch to the start-
ing address of TECO.

CTRL/ G Typing two .consecutive CTRL/ G characters causes
all commands which have been entered but not
executed to be erased. (If the terminal has a bell, it
will ring.) This command is used to erase an entire

- command string.

CTRL/ S If CONTROL/S is typed as the first character of a
new command string, the entire previous command
string, even if it was in error, is saved as a text
string in Q-Register Z. The previous contents, if
any, of Q-Register Z are destroyed.

The CTRL/Z character is used as an end-of-file terminator.
Inserting this character into a file may cause the file to be termin-
ated prematurely the next time it is read as an input file.

TECO also attaches special significance to the carriage return,
line feed, space and null characters. A line feed is appended to
every carriage return entered into the text buffer. Thus, it is neces-
sary to type a carriage return and then a RUBOUT in order to en-
ter a carriage return character which is not followed by a line feed.

Carriage return, line feed and space characters are ignored be-
tween commands in a command string; they may be inserted for
clarity or convenience whenever necessary. The null character
(CTRL-shift-P) is ignored by all TECO input commands.

Control characters which are not special characters (i.e. imme-
diate action commands) may be included in the text argument of any
TECO command. When used in this manner, the control character
must be produced by striking the CONTROL key and a character
key simultaneously. TECO will echo an uparrow followed by the

character which was typed whenever most control characters are
entered; however, some control characters do not echo, while
others, such as CTRL/L (form feed) or CTRL/G (bell) echo as
the function they perform.

Many control characters are also TECO commands. When a
control character is entered as a command, it may be produced by
striking the CONTROL key and the character key simultanteously
or else by typing an uparrow followed by the desired character.
This is advantageous because all control characters echo normally
when typed in the uparrow/character format.

File Specification Commands
An input file must be specified whenever TECO is requested to

accept text from any source except the keyhoard. An output file

must be specified whenever a permanent change is made to the input
file. Input and output files are selected by means of file specifica-
tion commands, which always include the OS/8 designation of the
input or output device. If the device is a directory device, the file
specification command also includes a file name and extension. If a
file extension is not explicitly defined, the null extension is issumed.
If a file name is specified but no device is explicitly defined, the OS/8
default device i s assumed.

Almost every editing job begins with at least one file specification
command. Additional file specification commands may be executed
during an editing job whenever required; however, TECO will only
keep one input file and one output file active at a time, and the
same file may not be used for both input and output. When an out-
put file is opened on a directory device, it is essential that the file
be closed by a TECO file closing command before any other output
file is opened. If this is not done, the content of the file will be lost.

Note that a bulk storage (directory device) input file must be a
file that presently exists on the system. A bulk storage output file
may be a file which presently exists, in which case TECO will cre-
ate a second file with same name and extension, then delete the
original file when the file is closed. It may also be a nonexistent file,
in which case TECO will create the specified file. Table 2-29 lists
the full file specification command set.

Table 2-29 File Specification Commands

Command Function

EWdev: filnam.ex$

EBdev: filnam.ex$

Opens a file for input where "dev:filnam.ex" is
the OS/8 file designation and "$" signifies an
ALT MODE.

Opens a file for output where "dev:filnam.ex" is
the OS/8 file designation and "$" signifies an
ALT MODE.

The EB command may be used for directory de-
vice files only. It opens file "dev:filnam.ex" for
input and file dev:filnam.BK for output then,
upon receiving any file closing command, switches
the file names before closing the files. Thus,
dev:filnam.ex is always the current, updated file
and "dev:filnam.BK" is the previous version of
the file, which may be retained as a backup file.

Closes the current output file.

Moves the remainder of the current input file to
the current output file, then closes the output file.

Performs the same function as the EC com-
mand, but then transfers control to the OS/8
CCL Processor to re-execute the most recently
typed CCL command of the group: PAL, COM-
PILE, EXECUTE, and LOAD. This allows the
user to go from TECO to a compiler and then
to execution of a program without returning to
the OS/8 Keyboard Monitor.

Performs the same function as the EC command,
but then returns control to the OS/8 monitor.

Typing CTRL/G causes an exit to the OS/8
monitor as soon as all previous commands have
been executed. It is equivalent to the uparrow
form of CTRL/C.

Many editing jobs are most conveniently accomplished by using
the EB command to open the designated input file and backup file,
then terminating the job with either an EC command, which re-
turns control to TECO, or an EX command, which returns control
to the OS/8 monitor. Note that once a directory device output file
has been opened with an EW or EB command, it must be closed

2-145

with an EF, EC, EG or EX command or else the content of the
file will be lost.

Page Manipulation Commands
The following commands permit whole pages of text to be read

into the text buffer from an input file or written from the buffer
onto an output file.

Table 2-30 Page Manipulation Commands

Command Function

HPW

P

Appends the next page of the input file to the current con-
tent of the text buffer, thus combining the two pages of
text on a single page with no intervening form feed character.

Clears the text buffer and then reads the next page of the
input file into the buffer.

Writes the content of the buffer onto the output file and
appends a form feed character. The buffer is not cleared
and the pointer position remains unchanged.

Executes the PW command n times, where n must be an
integer in the range 0GnG4095.

Writes the content of the buffer from the m+lth character
through and including the nth character onto the output
file. M and n must be integers in the range 0Gn<4095 and
m should be less than n. A form feed is not appended to
this output, nor is the buffer cleared. The pointer position
remains unchanged.

Equivalent to the PW command except that a form feed is
not appended to the output.

Writes the content of the buffer onto the output file, ap-
pending a form feed, then clears the buffer and reads the
next page of the input file into the buffer.

Executes the P command n times, where n must be an
integer in the range 0<n<4095.

Equivalent to m,nPW.

Equivalent to HPW.

All of the input commands listed in Table 2-30 assume that the
input file is organized into pages of less than 3800 characters each.
If any page of the input file contains more than 3800 characters,
the input commands will continue reading characters into the buffer

until either the first line feed following the 3800th character is
read or the 4000th character is read, whichever comes first. Special
techniques for handling files with pages in excess of 4000 charac-
ters in length will be developed later in this section.

Buffer Pointer Manipulation Commands
Table 2-3 1 summarizes the complete buffer pointer manipulation

command set. These commands may be used to move the pointer
to a position between any two characters in the buffer, but they will
not move the pointer across either buffer boundary. If any R or C
command attempts to move the pointed backward past the begin-
ning of the buffer or forward past the end of the buffer, the com-
mand is ignored and an error message is printed. If any L command
attempts to exceed the buffer boundaries in this manner; the pointer
is positioned at the boundary which would have been exceeded. No
error message is printed.

Table 2-31 Buffer Pointer ~ a n i ~ u l a t i o n Commands

Command Function

Moves the pointer to a position immediately preceding the
first character in the buffer.

Moves the pointer to a position immediately following the
nth character in the buffer. N must be an integer in the
range 0<n<4095.

Moves the pointer to a position immediately following the
last character in the buffer.

Advances the pointer forward across one character.

Executes the C command n times, where n must be an
integer in the range -2048GnG2047. If n is positive, the
pointer is moved forward across n characters. If n is neg-
ative, the pointer is moved backward across n characters.
If n is zero, the pointer position is not changed.

Equivalent to -1C.

Moves the pointer backward across one character.

Executes the R command n times, where n is an integer in
the range -2048<n<2047. If n is positive, the pointer is
moved backward across n characters. If n is negative, the
pointer is moved forward across n characters. If n is zero,
the pointer position is not changed.

Table 2-31 Buffer Pointer Manipulation Commands (Cont.)

Command Function

-R Equivalent to -1R.
L Advances the pointer forward across the next line feed and

positions it at the beginning of the next line.
nL Executes the L command n times, where n is an integer in

the range -2048GnG2047. A positive value of n advances
the pointer to the beginning of the-nth line following its
current position. A negative value of n moves the pointer
backwards to the beginning of the nth line preceding its
present position. If n is zero, the pointer is moved to the
beginning of the line on which it is currently positioned.

-L Equivalent to -lL.

Text Type-Out Commands
Table 2-32 summarizes the commands which may be used to type

out part or all of the content of the buffer for examination. These
commands do not move the buffer pointer.

Table 2-32 Text Type-Out Commands

Command Function

T Types out the content of the buffer from the current posi-
tion of the buffer pointer through and including the next
line feed character.

nT Executes the T command n times, where n is an integer
in the range -2048<n<2047. If n is positive. the n lines
following the current position of the pointer are typed. If
n is negative, the n lines preceding the pointer are typed.
If n is zero, the content of the buffer from the beginning
of the line on which the pointer is located up to the pointer
is typed.

-T Equivalent to -IT,

m,nT Types out the content of the buffer from the m+Ith char-
acter through and including the nth character in the buffer.
M and n must be integers in the range OGnG4095, and m
should be less than n.

.,.+nT Types out the n characters immediately following the buf-
fer pointer. N should be greater than zero.

-n,.T Types the n characters immediately preceding the buffer
pointer. N should be greater than zero (i.e. -n -should be
less than zero).

HT Types out the entire content of the buffer.

Users may stop the execution of any T command by typing
CTRL/O at the keyboard. Typing CTRL/O terminates execution
of the current T command, causes all subsequent T commands to be
ignored while the rest of the current command string is executed.
When used in this manner, the CTRL/O must be entered while
TECO is actually in the process of typing out text at the terminal.

Deletion Commands
Table 2-33 summarizes the text deletion commands, which per-

mit deletion of single characters, groups of adjacent characters,
single lines or groups of adjacent lines. *

Table 2-33 Text Deletion Commands

Command Function

Delete the first character following the current position of
the buffer pointer.

Execute the D command n times, where n is an integer in
the range -2048GnG2047. If n is positive, the n char-
acters following the current pointer position are deleted. If
n is negative, the n characters preceding the current pointer
position are deleted. If n is zero, the command is ignored.

Equivalent to -ID.

Deletes the content of the buffer from the current position
of the buffer pointer through and including the next line
feed character.

Executes the K command n times, where n is an integer in
the range -2048GG2047. If n is positive, the n lines
following the current pointer position are deleted. If n is
negative, the n lines preceding the current pointer position-
are deleted. If n is zero, the content of the buffer from the
beginning of the line on which the pointer is located up to
the pointer is deleted.

Equivalent to -1K.

Deletes the content of the buffer from the m+lth character
through and including the nth character. M and n must be
integers in the range 0GnG4095, and m should be less
than n.

Deletes the entire contents of the buffer. ..

Insertion Commands
Table 2-34 lists the full text insertion command set. All text in-

sertion commands cause the string of characters specified in the
command to be inserted into the text buffer at the current position
of the buffer pointer. Following execution of an insertion command,
the pointer will be positioned immediately after the last character
of the insertion.

The length of an insertion command is limited primarily by the
amount of core available for command string storage. During nor-
mal editing jobs, it is most convenient to limit insertions to about
10 or 15 lines each. If a very long insertion command begins to ex-
ceed the TECO command storage capacity, TECO will ring the
terminal bell once when ten characters of storage remain and once

I f * ' after each auuitional character that is eiiteied. When this occurs,
the command string should be terminated immediately. Attempting
to enter more than 10 additional characters into the current com-
mand string causes a fatal error.

With the exception of the nI$ command, insertion command ar-
guments may contain any ASCII characters that are not special
characters. The nI$ command will insert any character into the
buffer. including the special characters.

Table 2-34 Text Insertion Commands

Command Function

Where "text" is a string of ASCII characters terminated
by an ALT MODE, which echoes as a dollar sign. The
specified text string is entered into the buffer at the current
position of the pointer, with the pointer positioned imme-
diately after the last character of the insertion.

Where n is any ASCII code. This form of the I command
inserts the single character whose ASCII code is n into the
buffer at the current position of the buffer pointer. It may
be used to insert characters that are not available on the
user's terminal or special characters such as RUBOUT
which may not be inserted with the standard I command.

Where <I> is a tabulation, produced by pressing the
CONTROL key and the I key simultaneously. The TAB
character echoes as from one to eight spaces on most
terminals. This command is equivalent to the I command
except that the tabulation is also inserted into the buffer
immediately preceding the specified text string.

Table 2-34 Text Insertion Commands (Cent.)

Command Function

@I/text/ Equivalent to the I command except that the text to be
inserted may contain ALT MODE characters as long as it
does not contain two consecutive ALT MODES. A delimi-
ting character (shown as a slash here) must precede and
follow the text to be inserted. This delimiter may be any
character which does not appear in the insertion except for
the special characters.

Search Commands
In many cases, the easiest way to position the buffer pointer is

by means of a character string search. The search commands cause
*

TECO to scan through text until a specified string of characters,.
from 1 to 31 characters in length, is found and then position the
buffer pointer, at the end of the string. A character string search al-
ways begins at the current position of the pointer and proceeds in
the forward direction.

Table 2-35 Search Commands

Command Function

Stext$ Where "text" is a string of 1 to 31 characters ter-
minated by an ALT MODE. This command
searches the text buffer for the next occurrence of
the specified character string following the current
position of the buffer pointer. If it is not found, the
pointer is positioned immedately before the first
character in the buffer and an error message is
printed.

FStextl$text2$ The FS command is used to search for a character
string within the current editing buffer (function of
the S command) and replace it with another string.
If the string to be replaced is not found after the
current position of the buffer pointer and before the
end of the buffer, the search fails and no replace-
ment is made. Text1 is the string to be deleted and
text2 is the string to be inserted in its place. If
text2 is omitted, text1 is deleted without any string
replacing it. However, even when text2 is omitted,
its terminating ALT MODE must be present.

2-151

Table 2-35 Search Commands (Cont.)

Command Function

FNtextl$text2$ The FN command is used to search for a character
string in a page of the input file which may not yet
have been read into the buffer (function of the N
command) and replace it with another string. If
the search fails no replacement occurs. Text1 is the
string to be deleted and text2 is the string to be in-
serted in its place. If text2 is omitted, text1 is de-
leted without any string replacing it. However, even
when text2 is omitted, its terminating ALT MODE
must be present.

The backarrow command is identical to the N com-
mand except that the search is continued across
page boundaries by executing effective Y commands
instead of ? or HPY commands, so that no output
is generated.

TRtextl $text2$ The 1 fR command is identical to the FS command,
and is included only for compatibility with older
versions of OS/ 8 TECO.

If a search command is entered without a text argument, TECO - will execute the search command as though it had been entered with
the same character string argument as the last search command ex-
ecuted. For example, suppose the command "STHE END$" results
in an error message, indicating that character string "THE END''
was not found on the current page. Entering the command "N$"
causes TECO to execute an N search for the same character string.
Although the text argument may be om!tted, the command terrnina-
tor (ALT MODE, in this case) must always be entered.

Any of the TECO searchcommands may be preceded by the
number n, in which case TECO will search for the nth occurrence
of the specified text string.

Any of the search commands listed above may be preceded by a
colon (:). The colon is a search command modifier which sup-
presses error message generation and causes the next sequential
command to be executed with an argument of zero, if the search
fails. If the search succeeds, the next sequential command is ex-
ecuted with an argument of -1. If the next sequential command be-
longs to the class of commands which require a positive argument
(O<n<4095), the -1 is interpreted as a positive 4095. If the next .

sequential command does not require an argument, it is excuted as
it stands. The following examples illustrate use of the colon modi-
fier.

COMMANDS : : Stext$
:nStext$
:Ntext$
: nNtext$
: +text$
: n +text$
:FStextl $text2$
: nFStext 1 $ text2 $
:FNtext 1 $text2$
:nFNtext 1 $text2$

FUNCTION : In each case, execute the search command. If the
search is successful, execute the next sequential
command with an argument of -1 (or 4095, if it
is a command which must have a positive argu-
ment). If the search fails, execute the next com-
mand with an argument of zero. If the next com-
mand does not require a numeric argument, execute
it as it stands.

The @ character is another search command modifier. Inserting
an @ character between the numeric argument of any search com-
mand and the command itself causes TECO to accept the first char-
acter following the command as a delimiting character which will
will also be the command terminator. This character may be any
character which does not appear in the search command argument,
except for the special characters. When the @ command modifier
is used, search command arguments may contain ALT MODE
characters, as long as they do not contain two consecutive ALT
MODES. The following examples illustrate use of the @ command
modifier.

COMMANDS: @ S/ text/
n@S/ text/
@N/ text/
n@ N/ text/
@ Ã§- text/
n @ +/ text/
@FS/ text 11 text21
n@FS/ textl/ text2/

- @FN/ text 1 / text2/
n@FN/ text 11 text21

2- 153

FUNCTION : In each case, execute the search command with
text string "text" as an argument. This argument
must be preceded and followed by a delimiting
character which does not appear in the argument
(a slash is shown here). The search command argu-
ment may contain ALT MODE characters, as long
as it does not contain two consecutive ALT
MODES.

Match Control Characters
TECO executes a search command by attempting to match the

search command argument character-for-character with some por-
tion of the input file.

There are four special control characters that may be used in
search command arguments. These characters alter the usual
matching process that occurs when a search is executed. TECO
considers match control characters to be single characters (they
echo as two characters) and counts them as one of the maximum
3 1 characters in the search command argument. Table 2-36 lists the
match control characters and their functions.

Table 2-36 Match Control Characters

Character Function

A CTRL/X character indicates that this position in the
character string is unimportant.' TECO accepts every
other character as a match for control-X.
A CTRL/S character indicates that any separator char-
acter is acceptable in this position. TECO accepts any
character that is not a letter (upper or lower case A to
Z) or a digit (0 to 9) as a match for CTRL/S.

The CTRL/N character and the character following it
are treated as a single character in thesearch command
argument, but counted as 2 of the maximum 31 char-
acters. TECO accepts any character as a match for the
control-N/character combination EXCEPT the character
which follows the CTRL/ N. The combination CTRL/ N/
CTRLIS is legal; TECO accepts any character which is
not a separator as a match for fNfS.
A CTRL/Q character in a search command argument
indicates that the character following the CTRL/Q is to
be interpreted literally rather than as a command. This
character may be used to search for fX, fN, and fS char-
acters. It does not count as one of the maximum 31
characters in the search command argument.

As with all other control characters entered into text arguments,
match control characters must be typed by holding the CONTROL
key depressed while striking the character key. The uparrow con-
struction may not be used.

Command Loops
The user may cause a command string to be executed any nurn-

ber of times by placing the command string within angle brackets
and preceding the brackets with a numeric argument which des-
ignates the number of iterations. Iterated command strings are
called command loops. Loops may be nested in such a way that
one command loop contains another command loop which, in
turn, contains other command loops, and so on. Command loops
should not be nested to more than about 15 levels.

The general form of a command loop is:

where "command string" is the sequence of commands to be
iterated and n is the number of interations. N must be a positive
integar. If n is not supplied, a value of 4096 is assumed.

If a search command which is not preceded by a colon modifier
is entered into a command loop and the search fails, the command
loop is exited immediately and the command following the right
angle brackets of the loop is the next command to be executed.
No error message is printed.

Q-Registers
TECO provides 36 data storage registers, called Q-registers,

which may be used to store single integers and/or ASCII character
strings. Each Q-register is divided into two storage areas. In the
number storage area, each Q-register can store one integer in the
range -2048GnG2047. In the text storage area, each Q-register
can store an ASCII character string of up to 2000 characters which
may be either text or a TECO command string. Each Q-register
has a single character name which is one of the upper case letters A
to Z or one of the digits 0 to 9. In this manual, a 0-register name
is indicated by a lower case "q", which stands for any one of the
36 Q-registers.

Table 2-37 lists the commands which permit characters to be
loaded into the Q-registers.

2-155

Table 2-37 Q-Register Loading Commands

command Function

Where fU is an uparrow-U character, "q" is the name
of a user-specified Q-register, "string" is a string
of ASCII characters, and "$" signifies an ALT
MODE. This command inserts character string
"string" into the text storage area of Q-register "q".
(Do not confuse uparrow-U with CTRL/ U; CTRL/ U
is an editing command.)
Equivalent to the fU command except that the char-
acter string to be inserted into Q-register q may con-
tain ALT MODE characters as long as it does not
contain two consecutive ALT MODE characters.
The insertion must be delimited before and after bj'
any character (a slash is shown here) which does
not appear in the insertion.
Load n into the number storage area of Q-reg-
ister q, where n must be an integer in the range
-2049<ns$2048.
Add n to the contents of the number storage area of
Q-register q, where n should be an integer that will
not cause overflow. If n is not present, it is assumed
to be equal to 2.
Equivalent to n%q$ except that the resulting value
contained in Q-register q is used as a numeric argu-
ment for the next command. If the next command
does not require a numeric argument, this value is
discarded.
Copy the contents of the buffer from the current
position of the pointer through and including the
next line feed character into the text storage area
of Q-register q.
Execute the Xq command n times, where n is an
integer in the range -2048GnG2047. If n is positive,
the n lines following the current pointer position are
copied into the text storage area of Q-register q. If
is negative, the n lines preceding the pointer are
copied. If n is zero, the contents of the buffer from
the beginning of the line on which the pointer is
located up to the pointer is copied.

' Copy the contents of the buffer from the m+lth
character through and including the nth character
into the text storage area of Q-register q. M and n
must be positive, and m should be less than n.

i

Table 2-38 lists the commands which permit characters to be
retrieved from the Q-registers.

Table 2-38, Q-Register Execution Commands

Command Function

Gq Copy the contents of the text storage area of Q-register
q into the buffer at the current position of the buffer
pointer, leaving the pointer positioned after the last char-
acter copied.

Qq Use the integer stored in the number storage area of
Q-register q as the argument of the next command. The
characters "Qq" may be considered as equivalent to "the
value contained in the number storage area of Q-register
qy', where "q" is any Q-register name.

Mq Execute the contents of the text storage area of Q-register
q as a command string.

n"q Execute the contents of the text storage area of Q-register
q as a command string and use n as a numeric argument
for the first command in this string.

Branching Commands
TECO commands may be combined in sophisticated command

strings which are capable of solving even the most complex editing
problems. In fact, TECO might be considered a programming
language which accepts an input file as data and processes this
input to produce an output file. As with most programming lan-
guages, TECO provides an unconditional branch command and a
set of conditional execution commands.

To provide for branching within a command string, there must
be some means of naming locations inside the string. TECO per-
mits location tags which have the form:

! tag !

to be placed between any two commands in a command string. The
name "tag" will be associated with this location when the com-
mand string is executed. Tags may contain any number of ASCII
characters and any character except for special characters and,
exclamation points. Since tags are ignored by TECO except when
a branch command references the tagged location, they may also
be used as comments within complicated command strings.

The unconditional branch command is the 0 command which
has the form:

where "tag" is a named location elsewhere within the command
, string and "$" signifies an ALT MODE. When an 0 command is

executed, the next command to be executed will be the command
following the tag referenced by the 0 command, and command exe-
cution continues normally from this point.

If an 0 command is stored in a Q-register as part of a command
string which is to be executed by an M command, the tag refer-
enced by the 0 command must also reside in the same Q-register.

An important restriction on the 0 command prevents any 0
command which is inside a command loop from branching to a
tagged location preceding the command loop. However, it is always
possible to branch out of a command loop to a location which
follows the command loop.

Conditional Execution Commands
All conditional execution commands are of the form:

nUGcommand string'

where "n" is a numeric argument on which the decision is based,
'G" may be any of the conditional executional commands listed in
Table 2-39, and "command string" is the command string which
will be executed if the condition is satisfied. If the condition on n is
not satisfied, the command string will not be executed. Note that
the numeric argument is separated from the conditional execution
command by a double quote (") and the command string is
terminated with an apostrophe (') .

Conditional execution commands may be nested in the same
manner as iteration commands. That is, the command string which
is to be executed if the condition on n is met may contain con-
ditional execution commands, which may, in turn, contain further
conditional execution commands.

Table 2-39 lists the conditional execution commands. Each
conditional execution command must be followed by a command
string (not shown in Table 2-39) which will be executed only if
the condition is satisfied. This command string must be terminated
by an apostrophe. If the condition is not satisfied, the first com-
mand following the apostrophe will be the next command executed.

Table 2-39 Conditional Execution Command
,

Command Function

n-m"A Execute the following command string (terminated by an
apostrophe) if n is greater than or equal to m. Otherwise
skip the following command string. N and m should be
integers in the range OGnG4095.

n-m"B Execute the following command string (terminated by an
apostrophe) if n is less than m. Otherwise skip the fol-
lowing command string. N and m should be integers in
the range OGnG4095.

n"G Execute the following command string (terminated by an
apostrophe) if n is greater than zero. Otherwise skip the
following command string. N must be an integer in the
range -2048<n<2047.

n"L Execute the following command string (terminated by an
apostrophe) if n is less than zero. Otherwise skip the fol-
lowing command string.

n"E Execute the following command string (terminated by an
apostrophe) if n is equal to zero. Otherwise skip the fol-
lowing command string.

n"C Execute the following command string (terminated by an
apostrophe) if n is the decimal ASCII code of any char-
acter which is one of the upper or lower case letters A to
Z or one of the digits 0 to 9. Otherwise skip the following
command string.

e c n In general, integers n and ccm" will be variables (e.g. the con-
tent of a Q-register) whose values are computed during execution
of the command string. -

There is one further conditional execution command which is
not related to the commands listed in Table 2-39. The n; command,
where n is any integer, may be inserted between any two commands
in an iterated command loop. It has the general form:

where "m" is the iteration count, "stringl", "string2" and "string3"
are command strings and "n;" is the conditional exit command.
When the n; command is executed, it will cause TECO to exit the
command loop so that "string3" will be executed next if n is in
the range 0<n<2047. If n falls outside this range, the n; command

is ignored a d ''~triag2^~is executed-next. The semicolon may be
preceded by an argument such as \Qq (the value. of the numeric
part of Q-register q), orthe argument may be omitted if the semi-
colon command is preceded by a command that generates an
argument, such as any colon-modified search command.

Note that all unmodified search commands entered within com-
mand loops are executed as though they were preceded by a colon
and followed by a semicolon. If the search command is preceded-
by a colon modifier, however, it will be executed as it stands.

The conditional execution commands will accept user-supplied , -
numeric arguments (n and m Table 2-39) of the same form as
most other TECO commands. This is generally a trivial case, how-
ever, because the user will know in advance whether the condition
is satisfied, and need not use the conditional execution command.
The following section introduces run-time numeric quantities com-
puted by TECO which may also be used as numeric arguments.

Numeric Arguments
Almost all TECO commands may be preceded by a numeric

argument which generally indicates the number of iterations, or
how many times the command should be executed. Some numeric
arguments must be positive, while others may be negative or zero.
In any case, every numeric argument is stored as a single, 12-bit
word.

This leads to an important restriction on the maximum size of
any numeric argument. Commands which require positive argu-
ments must have an argument in the range 0<n<4095, since 4095
is the largest. number which may be stored in one 12-bit word.
Commands which may have positive or negative arguments require
an argument in the range -2048<n<2047, because -2048 is the
smallest number which may be stored in 12 bits using 2's comple-
ment notation, while 2047 is the largest number which may be
stored in this manner.

TECO maintains several internal counters which record con-
ditions within the text buffer. Each of the counters has a one-
character name which is equivalent to the current contents of the
counter. These characters may be entered as numeric arguments to
TECO commands. When the command is executed, the current
value of the designated counter is substituted for the character and
used in the numeric argument of the command.

v.

2- 160

Some of the characters which stand for specific values associated
with the text buffer have been introduced earlier in this section.
For example, the dot character (.), which references a counter that
always contains the number of characters between the beginning
of the buffer and the current pointer position, may be used in the
argument of a T command. The command ". , .+5T7' causes the
5 characters following the buffer pointer to be typed out. When
this command is executed, the number of characters preceding the
buffer pointer is substituted (twice) for the character "dot." The
addition is then carried out, and the command is executed as
though it were of the form "m,nT9'.

Table 2-40 lists all of the characters which have special
numeric values. Any of these characters may be used as numeric
arguments in place of the values they represent.

Table 2-40 Characters Associated with Numeric Quantities

Character Function

B Always equivalent to zero. Thus, B represents the position
at the beginning of the buffer, preceding the first character
in the buffer.

Z Equivalent to the number of characters currently con-
tained in the buffer. Thus, Z represents the position at the
end of the buffer, following the last character in the buffer.

Equivalent to the number of characters between the be-
ginning of the buffer and the current position of the
pointer, thus represents the current position of the pointer.

Equivalent to the numeric argument pair, "B,Z", or "from
the beginning of the buffer up to the end of the buffer."
Thus, H represents the whole buffer.

CTRL/,Z (or uparrow/Z) is equivalent to the number of
characters presently stored in the entire Q-register storage
area, including storage requirements for the command string
containing the fZ character. Maximum capacity of the
Q-register storage area is 2000 characters on an 8K sys-
tem, or 2944 characters on a 12K system.

nA Where n is a positive integer. Equivalent to the ASCII code
for the n+lth character following the current position of
the pointer.

Table 2-40 Characters Associated with Numeric Quantities (Cont.)

Character Function
- - -- -

?E CTRL/E (or uparrow/E) is equivalent to 4095 (-1) if
the buffer currently contains a full page of text (which was
terminated by a form feed in the input file) or 0 if the
buffer contains only part of a page of text (which filled-
the buffer to capacity before the terminating form feed
was read). The fE flag is tested by N, EC and EX com-
mands to determine whether a form feed should be ap-
pended to the content of the buffer on output.

IF CTRL/F (or uparrow1F) is equivalent to the current
value of the console switch register.

vx The combination of CTRL-shift-N (or a double uparrow)
followed by any character is equivalent to the value of the
ASCII code for the character. The " X in this example
may be any character except CTRL/C and CTRLIP.

A backslash (shift-L) character which is not preceded by
a numeric argument is equivalent to the value of the digit
string (if any) that begins with the character immediately
following the buffer pointer and is terminated by the next
character that is not a digit. The first character may be a
digit or one of the characters + or -. As each backslash
is evaluated, TECO moves the buffer pointer to a position
immediately following the digit string. If there is no digit
string following the pointer, the backslash is equivalent
to zero and the pointer position remains unchanged.

TT CTRL/T (or uparrow/T) is equivalent to the ASCII code
for the next character typed at the terminal. CTRL/T
(or uparrow1T) may be entered in the numeric argument
of any command. When TECO executes a command string,
every fT character encountered causes it to pause and
accept one character typed at the terminal. The ASCII
code for this character is then substituted for the fT.

Tv CTRLIV (or uparrow/V) is equivalent to the version num-
ber of the version of TECO which is currently being run.
This manual describes TECO version 3.

TH ' CTRLIH (or uparrow/H) is equivalent to zero.

Mq The Mq command (execute the content of the text storage
area of Q-register "q" as a command string) may return
a numeric value if the last command in the string returns
a numeric value and is not followed by an ALT MODE.

The numeric argument of a TECO command may
single integer, any of the characters listed in Table

consist of a
2-40, or an

arithmetic combination of integers and the characters listed in
Table 2-40. If an arithmetic expression is supplied as a numeric
argument, TECO will evaluate the expression. All arithmetic ex-
pressions are evaluated from left to right. Parentheses may be used
to override the normal order of evaluating an expression. If par-
entheses are used, all operations within the parentheses are per-
formed, from left to right, before performing operations outside
the parentheses. Parentheses may be nested, in which case the
innermost expression contained by parentheses will be evaluated
first. Table 2-41 lists all of the arithmetic operators that may be

- used in arithmetic expressions. All arithmetic is two's complement
arithmetic modulo 4096.

Table 2-41 Arithmetic Operators
- -- -

Operator Example - Function

Ignored if used before the first term in an
expression.

Addition, if used between terms.

Negation, if used before the first term in an
expression.

Subtraction, if used between terms.

Multiplication. Used between terms.

Integer divide and drop the remainder. Used
between terms.

Bitwise logical AND of the binary repre-
sentation of the two terms. Used between
terms.

Bitwise logical OR of the binary representa-
tion of two terms. Used between terms.

Table 2-42 lists three .commands which may be used to facilitate
entering arithmetic expressions into TECO command strings.

Table 2-42 Radix Control Commands

Command Function

Where n is an arithmetic expression which may contain
the operators listed in Table 2-12B. Upon execution,
this command causes the value of the expression to be
typed out at the terminal.

The CTRL/ 0 command causes all subsequent numeric
input to be accepted as octal numbers and all subse-
quent numeric output to be transmitted in octal. This
command must not be typed while TECO is executing
a T command. The octal radix will continue to be used
until the next CTRL/D command is executed or a
command error is encountered. All error messages are
printed as decimal numbers, and the decimal radix re-
mains set after any error message is printed.

The CTRL/D command causes all subsequent numeric
input to be accepted as decimal numbers and all subse-
quent numeric output to be transmitted in decimal.
This is the initial setting.

Where n is any arithmetic expression. The backslash
command (preceded by an expression) inserts the value
of n into the text buffer at the current position of the
pointer, leaving the pointer positioned after the last
digit of the insertion. The octal value of n will be in-
serted if the octal radix is set.

Some TECO commands generate numeric arguments which they
pass on to subsequent commands. An example is any colon-modi-

, fied search command, which causes the next sequential command
to be executed with an argument of -1 or 0, depending upon the
outcome of the search. Commands of this sort are very useful, but
occasionally it may be undesirable to have arguments passed in
this manner. A single ALTMODE character may be inserted be-
tween any two commands in a command string, as long as it is not
placed adjacent to another ALTMODE character. This ALT-
MODE has no effect on the individual commands, however a
numeric argument will never be passed across the extraneous ALT-
MODE.

Programming Aids
The characters carriage return, line feed, vertical tab and space

are ignored in command strings, except when they appear as part

. of a
two
The

text argument. These
TECO commands to
carriage return/line

characters may be inserted between ̂ ny
lend clarity to a long command string.
feed combination is particularly useful

for typing command strings which are too long to fit on a single
line.

One of the most powerful features of TECO is its ability to store
very long command strings so that a given sequence of commands
may be executed whenever needed. Long command strings may be
thought of as edited programs and, like any other type of pro-
gram, they should be documented by means of comments.

Comments may be inserted between any two commands by
using a tag construction of the form:

!THIS IS A COMMENT!

Comments may contain any number of characters and any char-
acters except the special characters. It is often convenient to in-
clude carriage return and line feed characters within the com-
ments so that the command string looks like:

TECO commands! This comment describes line 1
!TECO commands! This comment describes line 2
!more commands!
!$$! end of command string!

The CTRL/A command may be used to print out a statement
at any point during the execution of a command string. The
CTRL/A command has the general form:

TAtexttA

where the first TA is the actual command, which may be entered by
striking the control key and the A key simultaneously or by typing
an uparrow followed by an A character. The second CTRL/A
character is the command terminator, which must be entered by
' typing the control key and the A key simultaneously. The message
which appears between the CTRL/A characters may contain any
characters except the special characters and the ?A character.
Upon execution, this command causes TECO to print the speci-
fied message at the terminal.

The TAmessagetA command is particularly useful when it pre-
cedes a command whose numeric argument contains TT or TF

characters. The message may contain instructions notifying the
computer operator what sort of input is required.

A question mark character entered between any two commands
in a command string causes TECO to print all subsequent com-
mands at the terminal as they are executed. Commands will be
printed as they are executed until another question mark character
is encountered. The second question mark character may be in
the same command string as the first question mark, or it may
appear in a later command string. It may not be first character
typed after a TECO-generated error message, however.

If an error is typed while entering a command string, the error
may be corrected at any time before the double ALT MODE
which terminates the command string is typed. Characters may be
deleted individually by striking the RUBOUT key. Each depression
of the RUBOUT key deletes one character, beginning with the last
character typed, and causes the deleted character to be printed at
the terminal. If an entire command string is deleted in this manner,
TECO responds by printing a new asterisk at the left margin.

Typing two successive CTRL/G characters causes the current
command string to be erased completely. The double CTRL/G
command should not be confused with the single TG command.
The double CTRL/G must be produced by holding the control
key depressed while striking the G key twice (if the terminal has
a bell, it will ring). The uparrow form of CTRL/G may not be
used for the double CTRL/G command.

Error Messages
When TECO encounters an illegal command or a command

that cannot be executed, a numeric error message is printed at
the terminal. Error messages are of the form:
?n

Ã 11 where n is a 1- or 2-digit decimal number that references an
error message from the list contained at the end of this section.
When an error message is generated, the command to which it re-
fers is not executed, the rest of the, current command string is
ignored, and TECO prints an asterisk at the left margin to indicate
that it is ready to accept further commands.

The IS character can be very useful. For instance, if a long
insertion is typed without the "I" in front of it and an error re-
sults, TS can be used to save the insertion, and the GZ command

can be used to put it into the text buffer (including the trailing ALT
MODES).

In some cases it may be difficult to determine which command
in a long command string resulted in an error message. Typing a
question mark immediately after the TECO-generated error mes-
sage causes TECO to print current command string up to and
including the erroneous character. When used in this manner, the
question mark must be the first character typed after the error
message is printed. It is not necessary to follow the question mark
with an ALT MODE.

In general, TECO command strings should be limited to a maxi-
mum of 2000 characters. Command strings exceeding 2000 char-
acters in length should be split into smaller strings. Long command
strings are impractical because the probability of a command error
is increased and because a string which contains more than 2000
characters is too long to be stored in a Q-register.

TECO reserves a limited amount of core for command string
storage. If a very long command string (or a long insertion com-
mand) uses all but the last 10. command string storage locations,
TECO prints one CTRL/G character as soon as only 10 storage
locations remain and another CTRL/G after every additional
character that is entered. (CTRL/G "prints" as a bell ring if the
terminal has a bell.) Should this occur, the current command string
must be teminated. Attempting to enter more than 10 additional
characters results in a fatal error.

Manipulating Large Pages
TECO is designed to operate most efficiently when edited files

that contain no more than 3800 characters per page. If any page
of an input file contains more than 3800 characters, the various
TECO input commands will terminate reading that page into core
when the first line feed following the 3800th character is read or
when the 4000th character is read, whichever occurs first. Thus, it
is never possible for a page which contains more than 4000 char-
acters to reside entirely within the text buffer.

Most of the-TECO output commands append a form feed to the
content of the buffer whenever a page of text is written onto the
output file. If an input file contains pages which are more than
4000 characters long, these output commands will cause form feed
characters to be inserted into the file at locations where they may

not be desired. To prevent this', the user must understand exactly
how the output commands operate. These commands are described
briefly in Table 2-43.

Table 2-43 Form Feed Processing Output Commands

Output Command Form Feeding Processing

P, nP, PW and nPW Always append a form feed character to the
text contained in the buffer, regardless of
whether this text actually constitutes a com-
plete page of the file. That is, a form feed
is appended on output even though one may
not have been present upon input.

HP, HPW, m,nP and Never appends a form feed character to the
m, nPW text contained in the buffer.

N, EC and EX If the text contained in the buffer was fol-
lowed by a form feed character in the input
file, a form feed will be appended to this
text upon output. If this text was not fol-
lowed by a form feed character (i.e. if input
was terminated because the buffer had
reached the prescribed capacity), no form
feed will be appended.

If it becomes necessary to edit text that consists of large pages
without introducing extraneous form feed characters into the out-
put, this may be accomplished by avoiding all output commands
except the N, EC and EX commands. For example, if use of a P
command would introduce an extraneous form feed, use an N
command, instead, to search for a character string contained in
the next page of the input file.

Techniques and Examples
TECO may be used in three ways. The most elementary appli-

cation involves using TECO to create and edit ASCII files on-line.
The user enters short command strings, often consisting of a single
command, and proceeds from task to task until the file is com-
pletely edited.

Since every edited job is simply a sequence of TECO com-
mands, an entire job may be accomplished with one long command
string consisting of all the short command strings placed end to
end with the intervening double ALT MODE characters removed.
This leads to the concept of a TECO editing program, which is

simply a 1ong.command string that performs a certain editing task. <: ---

Editing programs may be -written (using TECO) and stored ill the
same manner as any other ASCII fife. Whenever the program is
needed, it may be read into the buffer as text, stored in a Q-register,
and executed by an Mq command (where "q" is the Q-register
name).

This is fine for clear-cut editing assignments, such as converting
from one format to another or editingcertain characters out of a
file, but many editing jobs are so complex that -a given editing
program will only solve a small class of-problems. The solution,*
in this case, is to write very specialized "editing subroutines."
TECO subroutines might perform such elementary functions as
replacing every occurrence of two or more consecutive spaces with
a tabulation character, for example, or ensuring that words are
not hyphenated across a page boundary. When an editing problem
arises, the right combination of subroutines may be loaded into
various Q-registers, augmented with additional commands if
necessary, and called by a "mainline" command string.

Editing subroutines are essentially macros; that is, sequences of
commands which perforIri commonly required editing functions.
Thus, the third and most powerful application of TECO is the
creation and use of a macro library. As each editing job is under-
taken, the user may look for sequences of operations which might
be required in future editing asignments. All of the TECO com-
mands required to perform such an operation may be loaded into
a Q-register and executed by means of an Mq or nMq command.
When the job is finished, the content of any Q-register which con-
tains a useful macro may be written onto an output file (via the
buffer) and saved in the macro library. The nMq command, which
was designed to facilitate use of macros, permits one run-time
numeric argument to be passed to the macro.

The following examples are intended to illustrate some of the
techniques discussed earlier. It would not be practical to include
examples of the use of every TECO command, since most of the
commands admit to many diverse applications. Instead, users are
encouraged to experiment with the individual commands.

Example 1 : Splitting, Merging, and Rearranging Files

Assume that the user has a file named PGM.PA on the system
device and this file contains data in the following form:

AB FORM CD FORMEF FORM GH FORM IJ FORM KL
FORM MN FORM OP where each of the letters A, B, C, etc.,
represents 20 lines of text and FORM represents a form feed char-
acter. The user intends to rearrange the file so that it appears in
the following format:
AOB FORM D FORM MN FORM EF FORM ICJ FORM KL
FORM P FORM GH
The following sequence of commands will achieve this rearrange-
ment. (Search command arguments are not listed explicitly.)

.R TECO
*EBPGM.PA$Y$$
*NC$$

Call TECO.
Specify input file and get first page.
Search for a character string in C to write A
slid B oli tile output file.
Save all of C in Q-register 1.
Delete C from the buffer.
Search for a character string in G to write D,
E and F on the output file.
Save G and H in Q-register 2.
Delete GH from the buffer and read IJ.
Move pointer to the beginning of J.
Insert C, which was stored in Q-register 1.
Search for a character string in M to write ICJ
and KL on the output file.
Save MN in Q-register 1 (the previous content
is overwritten).
Delete MN and read OP.
Save all of 0 in Q-register 3.
Delete 0 from the buffer.
Write P onto the output file, leaving the buffer
cleared (the input file is exhausted).
Bring GH into the buffer from Q-register 2.
Write GH on the output file and close it.
Open the partially revised file.
Move the pointer to the beginning of B.
Insert all of 0 from Q-register 3.
Search for a character string in D to write
AOB on the output file.
Write D on the output file and clear buffer.
Bring all of MN from Q-register 1 into the
buffer.
Write MN onto the output file, then close the
file and exit to the OS/ 8 monitor.

At this point, the file has been rearranged in the desired format.
Of course, this rearrangement could have been accomplished in

--
2-170

fewer steps if the commands listed above had been combined into
longer command strings. Note that the asterisks shown at the left
margin in this example are generated by TECO, and not typed by
the user.

Assume, now, that the same input file mentioned earlier, con-
taining data in the form:
A3 FORM CD FORM EF FORM. . . FORM OP
is to be split into two separate files, with the first file containing
AB FORM CD and the second file containing KL FORM M, while
the rest of the data is to be discarded. The following commands
could be used to achieve this rearrangement:

.R TECO
*ERFILE$EWFILE. 1 $ $

Call TECO.
Open the input file and the first output
file.
Read AB into the buffer.
Write AB FORM onto the output file and
read CD into the buffer. ,

Write CD onto the output file (without
appending a form feed), and close the
first output file.
Search for a character string in K. After
this command has been executed, the
buffer will contain KL. No output is gen-
erated by the search.
Open the second output file and write
KL onto it. Read MN into the buffer.
Move the pointer to the end of M, then
write M onto the output file.
Close the second output file and exit to
the OS/ 8 monitor.

As a final example of file manipulation techniques, assume that
the user has two files. One file is MATH.BK, which contains in-
formation in the form:
AB FORM CD FORM EF FORM GH FORM IJ FORM KL
and the other is MATH.FT, which contains:
MN FORM OP FORM QR
If both of these files are stored on DECtape unit 1, the following
sequence of commands may be used to merge the two files into a
single file, MATH.NW, which contains all of MATH.FT followed
by the latter half of file MATH.BK in the following format:
MN FORM OP FORM QR FORM GH FORM IJ FORM KL

,'

*R TECO
*ERDTAl : MATH.FT$$
*EWMATH.NW$$

Call TECO.
Open the first input file.
Open the output file on the OS/8 default
device.
Read MN into the text buffer.
Search for a character string in R to write
MN and OP onto the output file.
Write QR onto the output file, appending
a form feed.
Open the second input file.
Read AB into the buffer. QR is over-
written.
Search for a character string in G to de-
lete AB, CD and EF, leaving GH in the
buffer.
Search for a character string in K to
write GH and IJ on the output file, leav-
ing KL in the buffer.
Write KL onto the output file (without
appending a form feed) and close the
file, then exit to the OS/8 monitor.

Example 2: Alphabetizing by Binary Search
Assume that TECO is running and the buffer contains many

short lines of text, each beginning with an alphabetic character at
the left margin (i.e. immediately following a line feed). The lines
might consist of names in a roster, for example, or entries in an
index. Figure 2-3 shows a command string which will rearrange the
lines into rough alphabetical order. This command string groups
all lines which begin with the character "A" at the beginning of the
page, followed by all lines beginning with "B," and so on.

Figure 2-4 is a flowchart showing the sequence of operations
performed by this command string. The algorithm could be ex-
tended to place the entries in strict alphabetical order by having it
loop back to perform the same binary sorting operation on suc-
cessive characters in each line.

Example 3 : An Elementary TECO Macro
Figure 2-5 shows a TECO macro which right justifies the content

of the text buffer on a 60-space line. This macro assumes that the
buffer contains paragraphs of text in manuscript form, and that
every line which is not the last line of a paragraph contains be-
tween 40 and 60 characters.

When the macro is run, it counts the number of spaces and the

number of characters in each line. It then adds spaces between
words until the line contains a total of 60 characters. Lines which
contain fewer than 40 characters are assumed to be'paragraph
terminators. These lines are not justified. Figure 2-6 shows how the
macro may be stored, loaded and executed using DECtape unit 1
as the storage device. In this example, DECtape file "TEXT.AS'
is the file to be. justified.

TECO FIGURE 1
--Ã

!START! J BAUA!

!QA-QB"G XA K -L GA I U Z * !
. >

! QBUA !

Figure 2-3 Command String for Example 2

FIND FIRST LINE AND
PUT ASCII CODE FOR
INITIAL CHARACTER I N

PUT ASCII CODE FOR
INITIAL CHARACTER I N

I

SWITCH THE LINES

0-REGISTER A INTO INDICATE THAT A

l < STOP >

Figure 2-4 Flowchart for Example 2

J ! l ! ow BUS!

!Z-."G!
! < Q N A - 3 2 " E 1 %SÂ£ !
!WA-13"E OJUSTIFYS* !
! 1%N$> !

Figure 2-5 TECO Macro for Example 3

O R TECO
*ERDTAl: MACRO. T E $ Y HXI HK Â£
* E R D T A l : T E X T . A S S Y MISS
*

Figure 2-6 Loading and Executing a TECO Macro

Example 4: Managing a Macro Library
A TECO macro library is most conveniently stored with TECO

on the OS/8 system device. Macros are usually short enough to
require a small amount of storage space, however it is impractical
to store each macro in a separate named file, because a large macro
library stored in this manner would make the device directly un-
manageably large and might even exhaust the available directory
entries.

Figure 2-7 illustrates a macro that packs the user's TECO macro . library (or any other set of short ASCII files) into a single file
requiring only one directory entry. This macro could be stored on
the system device in a file named PACK.TE (the extension indicates
a TECO command string file). The user must also create a sep-
rate file containing the name of each file to be packed. This file must
be formatted as follows:

where each file specification after the first is preceded and followed
by a carriage return/line feed combination. Assume that such a.
file is created and stored as INDEXAS on the system device. If.
macro PACK.TE is also on the system device, the following com-
mands will pack all files listed in 1NDEX.AS into file MACLIB.PK
on the system device.

Y 10<A> HX0 HK OU1 0U2
<G0 6U : S
5; e U l 2 R 0x4 HK
1 E R D S K : S G 4 @ I * $ * H X 3
M 3 HK INS G 4 I \ Â 0U5
! A ! AZ"N PW HK @ U S @ A S 1
%2S> P 2 " E OBS' EF
! B ! HK 02\ I FILES PACKED
S H T HK

Figure 2-7 File Packing Macro

mR TECO
*ERSYS: P A C K * TESY HXP HKSS
* E R S Y S : I N D E X * ASSEWSY S: MACLI b* P K S M P t S
N F I L E S P A C K E D
*

Figure 2-8 Loading and Running the File Packing Macro

0U2 <Y -7.1 O P - 9 2 " E
t 2 S \ $ * * L l - 13"L 1, l - 1 x 4
0, K Q 2 " E O A S * E F
! A ! %2$ I EWDSK: S G 4
@ I * S - 0 , . X 3 M 3 0 s - K * "
PW> Q 2 " E O B S * E F
!B! @2\ I F I L E S U N P A C K E D
$ HT HK

Figure 2-9 Unpacking Macro

e R T E C O
+ E R S Y S: UNPACK. TESY H X U H K S S
* E R I N C E X - ASSMPSS
-8 F I L E S UNPACKED
*

Figure 2-10 Loading and Running the Unpacking Macro

The packing macro prints a message, as shown, where "n" is
the number of files that were packed. The files to be packed will be
taken from the system device. Files PACK.TE, 1NDEX.AS and
MACLIB.PK may reside on any file-structured device if the file
designations in the above command summary are changed accord-
ingly.

Once the packing macro has packed all the files into
MACLIB.PK, the individual files may be deleted. Alternatively,
macros could be saved in individual files on, say, DTA1 and the
packing macro could be used to pack the files into one system
device file simply by replacing the imbedded "ERDSK:" command
in the macro body with "ERDTAI:". If the library index is also
saved on the system device,' an unpacking macro may be used to
create an unpacked copy of the macro library whenever required,
and the original library tape may be saved as a backup.

Figure 2-9 illustrates a macro that unpacks the output file pro-
duced by the packing macro. This macro accepts a packed ASCII
file (such as MACLIB.PK), then unpacks the file and restores each
entry as a discrete file with the appropriate specification.

Assume that a user desires to access a macro or other ASCII
file that was packed into file MACLIB.PK, as shown in the pre-
vious example. If file UNPACK.TE contains the unpacking macro,
the following commands will unpack the entries and restore them
as individual, named files.

t l 99 The unpacking macro prints a message, as shown, where n is
the number of files that were unpacked. Once the files are un- ,

packed, they will be directed to the system disk. Alternately, the
unpacked files could be directed to. say, DECtape unit 5 by modify-
ing the "EWDSK:" command in the macro body to read
'EWDTA5 :".

Using TECO to Retrieve Lost Files
Inevitably, through user error, hardware error, or operating

system error, valuable files may be deleted or directories destroyed.

A two-word patch to TECO creates a program known as SUPER
TECO which may be a considerable aid in these situations. The
patch is:
.GET SYS TECO

2034/7420 7610
21 17/7450 7 4 1 0
t c
. S A V E S Y S STECO

To use STECO, mount the device on w
the file, then type:

hich you want to retrieve

* K STECO
*ERDEV: SS
* < S T R I N G S Â

where "string" is part of the first page of the desired file (for in-
stance, the title line). STECO will search the entire device for the
first occurrence of the specified strings. The device may contain
many old copies of the desired file. The user should examine the
text following each occurrence of the string; if it is an earlier ver-
sion, or a listing file, the user should continue searching until the
correct occurrence is found. Once the correct file is found, type:

* ERDEV: SEWDEV2: FI LESS
*N<STRIMGÂ£NENDSTRING$PWEFÂ

where n is the number of times you had to search for the specified
string on your investigation pass, and "endstring" is a string located
at the end of the file. This operation retrieves your file and copies
it onto another device. There may be meaningless characters pre-
ceding the first good line of your file, if so, delete them.

Incornpatabilities Between OS/8 TECO and DECsystem-10 TECO
OS/8 TECO is a proper subset of DECsystem-10 TECO with

the following exceptions:

1. The TU and tR commands do not exist on DECsystem-10
TECO.

2. The TS command as described on page 2-1 54 is implemented
differently on DECsystem-10 TECO (refer to the DECsys- -
tem- 10 Users Handbook).

OS/8 TECO assumes a semicolon after failing search com-
mands in interation brackets, DECsystem-10 TECO does
not.
The EC, TD, TO, and TW command do not exist in DEC- .
system- 10 TECO.
DECsystem-10 TECO ignores the number n in the n .
command and is equivalent to the OS/8 TECO OA com-
mand.
The "A and "B compares are not needed by DECsystem-10
TECO because "G &d "L are adequate to compare char-
acter pointers. '

The TZ and TV numeric values are not implemented by
DECsystem-10 TECO.

Table 2-44 TECO Command Summary

Command Function .

ERdev:filnam.ex$ Input file selection.
EWdev:filnam.ex$ Output file selection.
EBdev:filnam.ex$ I/ 0 file selection with backup protection.
Y Clear buffer and read one page of input file.
A Read one page of input file and append to current

buffer content.

BUFFER POINTER POSITIONS
B Before first character.

Current pointer position (number of characters
to left of pointer).

Z After last character (number of characters in
buffer. -

m,n From .m+l th character through and including n""
character.

H Entire buffer; equivalent to B,Z.

ARITHMETIC OPERATORS
-n Negation.
m+n Addition.
m-n Subtraction.
m*n Multiplication.
rn/ n Divide and truncate.
m&n Bitwise logical AND.
m#n Bitwise logical OR.
(Perform enclosed operations first.

Table 2-44 TECO Command Summary (Cont.)

Command Function

POINTER POSITIONS
nJ Position pointer between nth and n+lth characters.
nC Move pointer forward across n characters.
nR Move pointer backward across n characters.
mL Position pointer at beginning of nth line following

current position.
TYPE-OUT COMMANDS
nT Type buffer content from pointer position to be-

ginning of nth following line.
m,nT Type m+lth character through and including nth

character.
n'= Type the integer equivalent of expression n.
~AtextfA Type the enclosed text.
To Inhibit typeout.
DELETION COMMANDS
nD Delete the n characters following the pointer.
-nD Delete the n characters precedingthe pointer.
nK Delete the n lines following the pointer.
m,nK Delete the m+l th character through and including

the nth character.
INSERTION COMMANDS
Itext$ Insert text delimited by I and ALT MODE.
<I>text$ Insert tabulation, then text. <I> is a TAB (con-

trol-I) character.
n1 Insert character whose ASCII code is n.
@I/ text/ Insert text delimited by arbitrary character shown

as a slash.
n\ Insert the ASCII code for integer n.
OUTPUT
PW
P

AND EXIT
Write current page and append form feed.
Write current page, append form feed, clear buf-
fer, and read next page.
Write m+lth through nth characters without ap-
pending a form feed.
Close the current output file.
Close the current output file and exit to the OW8
monitor.
Immediate exit to the OS/8 monitor.
Exit to the monitor and do a START 200.
Write the rest of the input file on the output file
and exit to the monitor. ,

Write the remainder of the input file on the output
file and close the file.

Table 2-44 TECO Command Summary (Cont.)
-- -

Command Function

SEARCH COMMANDS
nStext$ Begin at the pointer and search for the nth occur- .

rence of the text delimited by the S and the ALT
MODE on the current page.

nNtext$ Equivalent to nStext$ except that the search is
continued across page boundaries.

n +-text$ Equivalent to nNtext$ except that no output is .
generated.

nFNtest1 $text2$ Do nNtextl$ and then replace text1 with text2.
: nStext$ Equivalent to nStext$ except ,that it returns a .

value of -1. If the search succeeds, or 0, if the
search fails. The colon may be used with N and
+- searches.

n@S/ text/ $ Equivalent to nStext$ except that the text is de-
limited by the arbitrary character following the S,
instead of ALT MODE.

Ix Accept any character in this position.
I s Accept any separator in this position. Save last

typed command.
IN Accept any character except the following char-

acter in this position.
IQ Interpret the next character literally, rather than

as a command.
ITERATION AND FLOW CONTROL
n< > Perform enclosed commands n times.
n; If n is positive, jump out of the current iteration

field.
!tag! Define a position named "tag" at this location.
()tag$ Jump to the position defined by "tag."
n"E If n=0, execute the following command string.
n "N If 40, execute the following command string.
n "L If n is less than zero, execute the following com-

mand string.
n"G If n is greater than zero, execute the following .

command string.
n9'C If n is the ASCII code for an alphanumeric char-

acter, execute the following commands.
n-m"A If n is greater than or equal to m, execute the

following commands.
n-m"B If n is less than m, execute the following com-

mands.
Q-REGISTER COMMANDS
nuq Store n in Q-register q.
Qq Equivalent to the value stored in Q-register q.

Table 2-44 TECO Command Summary (Cont.)

Command
- - --

Function

n%I Add n to the content of Q-register q and return
this value.

TUqtext$ Insert text into Q-register q.
nXq Load the n following lines into Q-register q.
m,nXq Load the m+1 " character through the nth char-

acter into Q-register q.
(3 Insert the content of Q-register q into the buffer.
Mq Execute the content of Q-register q as a command

string.

NUMERIC VALUES
nA ASCII value of nth character following pointer.
TE Form feed flag.
TF Console data switches.
TH Always equals zero.
vx Equivalent to the ASCII code for character "X."
Tz Command and Q-register storage words in use.
TO Set octal radix.
TD Set decimal radix.
\ Equivalent to the value of the digit string follow-

ing the pointer.
TT Equivalent to the ASCII code for the next char-

acter typed.
TV Equivalent to the number of the version of TECO

being run.

PROGRAMMING AIDS
9 After an error message, identifies erroneous char-

acter.
9 Except after an error message, toggles in and out

of trace mode. -^L

TGTG Erases current command string.

Running TECO On The PDP-12
When TECO is run on a PDP-12, part of the content of the text

buffer is displayed on the console scope. Initially, TECO displays
the three lines immediately preceding and following the buffer
pointer. An uparrow character (T) is displayed below the current
position of the pointer.

The nTW command, where n is a small positive integer and TW
is a control-W or uparrow/W character, causes TECO to display
the n lines preceding and following the current position of the
pointer on the scope. If a value of n greater than 7 is specified, the

Error Messages
TECO error messages consist of a question mark followed by a

number. Typing a second question mark immediately after an
error message printout causes the command string to be printed
up to and including the character which caused the error message.

Table 2-45 TECO Error Messages

Error Cause

Illegal command.
Incomplete command. Can mean either :
a. Character missing from command.
b. Iteration brackets do not match.
c. Conditional delimiters (double quote and apostrophe) do

match.
d. 0 command references nonexistent tag.
Non-alphanumeric Q-register name.
Command iterations or macro calls nested too deeply.
Text buffer overflow.
Search string longer than 3 1 characters.
Numeric argument missing before comma, equals sign, U, or
quote (").
Illegal file name in ER, EW or EB command.
Semicolon or failing search encountered on command level.
Iteration close (>) without matching open (<).
Attempt to move pointer outside of text buffer.
Q-register storage overflow.
Incomplete command.
Output file too large, or else output parity error.
Input file parity error.
File error; can mean either:
a. Input file not found by ER command.
b. Cannot enter output file with EW or El3 command.
c. Device specified for file does notexist.
d. EB command specifies a file on a non-file-structured device.
An output command was encountered which would have
caused TECO to overflow its current output file. User should
close the current output file and write all further output onto
one (or more) additional files. These files may be combined
if necessary.
Attempt to execute an output command without opening an
outout file.

pal 8

sabr

pal 8

INTRODUCTION
PAL8 is an 8K, two pass assembler designed to run under the

OS/8 Operating System. Pass 1 reads the input file and sets up the
symbol table. Pass 2 reads the input file and uses the symbol table
created in pass 1 to generate the binary (object) file. The binary
file is an absolute binary tape and may be loaded into core with
the Absolute Loader or Binary Loader. As an optional third pass,
a side-by-side octal and symbolic listing and the symbol table are
output. (Using the options available, the three passes may be
automatically executed. However, if the source file is to be read
from the paper tape reader, the user must reload the tape for each
pass.) The listing file may be used as an input to the Cross Refer-
ence Program (CREF), and the symbol table may be requested to
be in a form suitable for input to DDT. If a listing file, but no
binary file or /L or /G option was specified, PAL8 does not exe-
cute pass 2, but instead goes directly from pass 1 to pass 3.

PAL8 can handle 1/0 from any OS/8 device which handles
ASCII text, and has pseudo-ops and options not available in the
other PDP-8 assemblers. It is loaded and saved by way of the OS/8
Monitor and Absolute Loader. It will accept input generated by
the Editor and will generate output acceptable to Absolute Loader
and CREF.

CALLING AND USINGPAL8

PAL8 is called from the system device by typing:

R PAL8
in response to the dot printed by the Keyboard Monitor. The sys-
tem replies by activating the Command Decoder, which in turn
prints an asterisk (*) at the left margin of the teleprinter paper. At
this point a command string is entered which indicates the binary

and listing output devices and file names, the input devices and file
names, and any options selected by the user. 1 to 9 input files may
be specified. The format of the command string is:

If the extension to the file name is omitted, the following assumed
extensions are assigned:

.PA for input file.

.BN for binary output file.

.~S ' for listing output file.

.TM for intermediate CREF file (if the /C option was specified).

A null output file indicates no output file of that type is to be
generated. For example, to assemble, load and run a PAL8 pro-
gram named PROGRM which is stored on DECtape unit 1, the
user would type:

. After the assembly, the program will be loaded and run with the
starting address assumed to be location 0200 in field 0, and the
binary stored on the system device as BIN.BN.

The assembler prints any error messages encountered in the
program on the teleprinter. Typing CTRL/O at the keyboard
during an assembly will suppress the printing of error messages on
the teleprinter; however, messages are still printed in the output file
and occur immediately before the line that is in error.

PAL8 OPTIONS
Table 3-1 lists the options available in PAL8 which can be in-

dicated in the command string typed to the Command Decoder.
When the /L or /G option is specified, the user can also include

any option to the Absolute Loader in the 1/0 specification line for
PALS, such as = starting address option. If no address is specified,
execution begins at 200. If no binary output file is specified with
/L or / 'G a temporary file, PAL8BN.TM, is created and loaded.

Table 3-1 PALS Ron-Time Options

Option Meaning

This option makes the operator ! a 6-bit left shift instead of
an inclusive OR. (A!B equals Af1OO-t-B)

Chain to SYS:CREF.SV after assembly. The second output
file specified is the output file passed to CREF. The third
output file is where PAL8 generates its output. If no third
output file is given, SYS:CREFLS.TM is assumed. The /C
option supersedes the / G and / L options if specified in the
same command string. -

Generate a DDT compatible symbol table (applicable only if
a listing file is specified).

Enable error messages if a link is generated. The LG error
message would be generated as well as the link being nagged.

Disable extra zero fill in TEXT pseudo-op. If the text in the
TEXT pseudo-op contains an even number of characters, no
word of zeroes will be added to the end.

Call the Absolute Loader, load the binary file, and begin exe-
cution at the indicated starting address. If no starting address
is indicated, start at 200.

Generate non-paginated output. Header, page 'numbers and
page format are suppressed (applicable only if a listing file is
specified).

Do not list lines containing code in conditional brackets
which is conditionalized out.

Used in assembling very large programs; causes systems con-
taining 12K or more of core to use field(s) 2 and up as symbol
table storage.

Call the Absolute Loader at the end of the assembly and load
the binary file (applicable only if a binary file was specified).

Generate the symbol table, but not the listing (applicable
only if a listing file is specified. The /H option is assumed).

Disable origining to 200 after pseudo-op. The origin remains
what it was before the FIELD pseudo- op. -

Omit the symbol table normally generated with the listing
(applicable only if a listing file is specified).

Table 3-1 PAL8 Run-Time Options (Cont.)

Option Meaning

/T Output a carriage returnlline feed in place of the form feed
character(s) in the program (applicable only if a listing file is
specified).

/W Do not remember the number of literals that were previously
stored on a page after origining off page and then back on
again.

--

EXAMPLES OF SPECIFICATION STRINGS
Example 1:

The above lines cause the PAL8 assembler to be loaded from the
system device and the program S0URCE.PA (or SOURCE) to be
assembled. The binary output of the assembly is put onto the paper
tape punch, and the listing and symbol table on the line printer.
Example 2:

The above specification line causes PAL8 to assemble PROG-PA
(or PROG)7 putting the listing only into the file LISTXN.LS on the
default device DSK. No binary output and no symbol table are
generated.
Example 3:

The above specification line assembles INPUT.XY, putting the
binary output into a file named BIN.BN7 and then calls the Abso-
lute Loader7 which loads the file BXN.BN and starts it at 600.
(=600 is an option to the Absolute Loader specifying the starting
address.)
Example 4:

The preceding lines will assemble the file FROG from device
DTAl, checking for errors, which are listed on the teleprinter.
There are no output files.

RESTARTING AND TERMINATING PALS
PALS may only be restarted if the C o m a n d Decoder has not

been dismissed. For example:

.R PAL8
*?C
.ASSIGN DTA7 DSK
.ST
*

If a restart is attempted after the Command Decoder has been dis-
missed, NO! ! is typed and control returns to the Keyboard Moni-
tor. The user must call PALS for each assembly.

CHARACTER SET -

- The following characters are acceptable as input to PAL8:

1. The alphabetic characters: A through Z.
2. The numeric characters: 0 through 9.
3. ~ h e x a r a c t e r s described in following sections as special

characters and operators.
4. Characters which are ignored during assembly such as LINE

FEED, FORM FEED, and RUBOUT.

All other characters are illegal (except when used in a comment)
+- and cause the error message:

IC nnnn
-

to be printed during pass 1; nnnn represents the location at which
the illegal character occurred. (As assembly proceeds, each instruc-
tion is assigned a location determined by the current location
counter, detailed later in this chapter. When an illegal character or
any other error is encountered during assembly, the value of the
current location counter is returned in the error message.) Illegal
characters do not generally cause assembly to halt. If an illegal
character occurs in the middle of a symbol, the symbol is ter-
minated at that point.

S'rATEMErnS
PAL8 source programs are usually prepared on the .console

terminal (using the OS/8 EDITOR) as a sequence of statements,
Each statement is written on a single line and is terminated by
typing the RETURN key. There are four types of elements in a
PALS statement which are identified by the order of their appear-
ance in the statement and by the separating (or delimiting) charac-
ter which follows or precedes the element. These are:

1. label,
2. instruction
3. operand
4. /comment . --

A statement must contain at least one of these elements and may
contain all four types. The assembler interprets and processes- the
statements, generating one or more binary instructions or data
words, or pedorming an assembly process.

Labels
A label is the symbolic name created by the programmer to

identify the location of a statement in the program. If present. the
label is written first in a statement. It must begin with an alphabetic
character, contain only alphanumeric characters, and be terminated
by a comma; there must be no intervening spaces between any of
the characters agd the comma.

Ins~uctions
An instruction may be one or more of the mnemonic machine

instructions or a pseudo-operation which directs assembly process-
ing. (Assembly pseudo-ops are described later in this chapter.)
Instructions are terminated with one or more spaces (or tabs if an
operand follows) or with a semicolon, slash? or carriage return.

Operands
Operands are the octal or symbolic addresses of an assembly

language instruction or the argument of a pseudo-operator, and
can be any expression. In each case? interpretation of an operand
depends upon the instruction or the pseudo-op. Operands are ter-
minated by a semicolon, slash, or carriage return.

Comments
The programmer may add notes or comments to a statement by

separating these from the remainder of the line with a slash. Such
comments do not affect assembly processing or program execution
but are useful in the program listing for later analysis or debugging.
The assembler ignores everything from the slash to the next carriage
return.

It is possible to have only a carriage retum on a line, resulting
in a blank line in the final listing. No error message is given.

FORMAT EFFECTORS
The following characters are useful in controlling the format of

an assembly listing. They allow a neat readable listing to be pro-
duced by providing a means of spacing through the program.

Form Feed
The form feed code causes the assembler to output blank lines in

order to skip to a new page in the output listing during pass 3; this
is useful in creating a page-by-page listing. The form feed is gen-
erated by typing a CTRL/L on the console terminal. .
Tabulations

Tabulations are used in the body of a source program to separate.
fields into columns. For example, a line written:

GO, TAD TOTAL/MAIN LOOP

is much easier to read if tabs. are inserted to form:

G o , TAD TOTAL /MAIN LOOP

Statement Terminators
The RETURN key is used to terminate a statement and causes

a carriage returnlline feed combination to occur in the listing. The
semicolon (;) may also be used as a statement terminator and is
considered identical to a carriage return except that it will not ter-
minate a comment. For example:

,
TAD A /THIS IS A COMMENT; TAD B

The entire expression between the slash and the carriage return is
considered a comment. Thus in this case the assembler ignores the
TAD B. If, for example, the user wishes to write'a sequence of

instructions to rotate the contents of the accumulator and link six
places to the right, it might look like the following:

RTR
RTR
RTR

However, the programmer can alternatively place a11 three instruc-
tions on a single line by separating them with the special character
semicolon and terminating the entire line with a carriage return.
The above sequence of instructions can then be written:

NOTE
If an OS/8 CREF listing is desired, there
are certain restrictions on the use of semi-
colons. Refer to the section on CREF in
Chapter 2 of this handbook.

These multi-statement lines are particularly useful when setting
aside a section of data storage for use during processing. For ex-
ample, a 4-word cleared block could be reserved by specifying
either of the following:

LIST, 0
0
0
0

Either format may be used to input data words (data words may be
in the form of numbers, symbols, or expressions, explained next).
Each of the following lines generates one storage word in the object
program:

DATA, 7777
A+C-B
s
123+B2

NUMBEM
Any sequence of digits delimited by either a SPACE, TAB, semi-

colon, or carriage return forms a number. PAL8 initially interprets
numbers in octal (base 8). This can be changed to decimal using a
special pseudo-operator (explained later in this chapter). Numbers
are used in conjunction with symbols to form expressions.

SYMBOLS
A symb01 is a string of alphanumeric characters beginning with a

letter and delimited by a non-alphanumeric character. Although a
symbol may be any length only the first six characters are recog-
nized; since additional characters are ignored, symbols which are
identical in their first six characters are considered identical.

Permanent Symbols
The assembler' contains a table (called its permanent symhol

table) which lists the symbols for all PDP-8 pseudo-op codes, mem-
ory reference instructions, operate and IOT (input/output transfer)
instructions. These instructions are symbols which are permanently
defined by PAL8 and need no further definition by the user; they
are summarized at the end of the chapter. For example:

HLT This is a symbolic instruction assigned the value 7402
by the assembler and stored in its permanent symbol
table.

User-Defined Symbols
A11 symbols not defined by the assembler (and represented in its

permanent symbol table) must be defined within the source pro-
g-.

A symbol may be used as a staiement label, in which case it is
assigned a value equlal to the current location counter; it is called a
symbolic address and can be used as an operand or as a reference
to an instruction. Permanent symbols (instructions, special char-
acters, and pseudo-ops) may not be used as symbolic addresses.
The following are examples of legal symbolic addresses:

ADDR,
TOTAL,
SUM,
A1 7

The following are illegal symbolic addresses:

AD>M, (contains an illegal character)
~ABC, (first character must be alphabetic)
LA BEL, (must not contain imbedded spaces)
D+TAG, (contains a legal but non-alphanumeric character)
LABEL , (must be terminated by a comma with no interven-

ing spaces)

Current Location Counter
As source statements are processed, PAL8 assigns consecutive

memory addresses to the instructions and data words of the object
program.

The current location counter contains the address in which the
next word of object code will be assembled and is automatically
incremented each time a memory location is assigned. A statement
which generates a single object program storage word increments
the location counter by one. Another statement might generate six
storage words, incrementing the location counter by six.

The user sets or resets the location counter by typing an asterisk
followed by the octal absolute address value in which the next pro-
gram word is to be stored. If the origin is not set by the user, PAL8
begins assigning addresses at location 200.

*300 /SET CURRENT LOCATION COUNTER
TO 300

TAG, CLA
JMP A

B, 0
A, DCA I3

The symbol TAG (in the preceding example) is assigned a value
of 0300, the symbol B a value of 0302, and the symbol A a value
of 0303. If a symbol is defined more than once in this manner, the
assembler will print the illegal definition diagnostic:

ID address

where address is the value of the location counter at the second
occurrence of the symbol definition. The symbol is not redefined.

(For an explanation of diagnostic messages refer to the section
on PAL8 Error Conditions.) For example:

START,

CONTIN,

A,
COUNTER,
START,

*300
TAD A
DCA COUNTER
JMS LEAVE
JMP START
-74
0
CLA CLL

The symbol START would have a value of 0300, the symbol
CONTIN woukl have a value of 0302, the symbol A would bavc a ,
value of 0304, the symbol COUNTER (considered COUNTE by
the assembler) would have a value of 0305. When the assembler
processed the next line it would print (during pass 1):

ID coUNTE+oool

Since the first pass of PALS is used to define all symbols, the as-
sembler will print a diagnostic during pass 2 if reference is made
to an undefined symbol. For example:

*7170
A, TAD C

CLA CMA I

HLT
JMP A1

c , 0

This would produce the undefined symbol diagnostic:

Symbol Table
Initially, the assembler's symbol table contains the mnemonic

op-codes of the machine instructions and the assembler pseudo-op
codes; this is its permanent symbol table. As the source program is
processed, user-defined symbols along with their binary vakes are
added to the symbol table. The symbol table is listed in alphabetic
order at the end of pass 3.

-
3-1 1

During pass 1, if PAL8 detects that the symbol table is full (in
other words, there is no more memory space in which to store sym-
bols and their associated values), the symbol table exceeded diag-
nostic is printed:

SE address

and control returns to the OS/8 Monitor. If the system contains
more than 8K of memory, the user may choose the /K option with
the Run command, or more address arithmetic may be used to re-
duce the number of symbols. It is also possible to s e b e n t a pro-
gram and assemble the segments separately, taking care to generate
proper links between the segments (see LINK GENERATION
AND STORAGE). PAL8's symbol capacity is 992 symbols.
The permanent symbol table contains 24 pseudo-operations
and 71 symbols, leaving space for 897 possible user-defined sym-
bols. Each additional 4K allows 992 new symbols.

Instructions concerning altering the permanent symbol table are
discussed later in this chapter should the user wish to add instruc-
tions more suitable to his programming needs.

Direct Assignment Statements
The programmer may insert Dew symbols with their assigned

values directly into the symbol table by using a direct assignment
statement in the form:

VALUE may be a number or expression. No spaces or tabs may
appear between the symbol to the left of the equal sign and the
equal sign itself. The following are examples of direct assignment
statements:

All symbols to the right of the equal sign must be already defined.
The symbol to. the left of the equal sign is subject to the same re-
strictions as a symbolic address, and its associated value is stored
in the user's symbol table. The use of the equal sign does not incre-
ment the location counter; it is, rather, an instruction to the assem-
bler itself.

A direct assignment statement may also equate a new symbol to
the value assigned to a previously deiined symbol. For example:

BETA= 17
GAMMA=BETA -

The new symbol, G ~ M A , is entered into the user's symbol table
with the value 17. The value assigned to a symbol may be changed
a follows:

ALPHA=5
ALPHA=7 .

The second line of code shown changes the value assigned to
ALPHA from 5 to 7.

Symbols defined by use of the equal sign may be used in any valid
expression. For example:

*200
A=lOO /DOES NOT UPDATE CLC
B=400 /DOES N ~ T UPDATE CLC
A+B /THE VALUE 500 IS ASSEMBLED AT -

Loc. 200
TAD A /THE VALUE 1200 IS ASSEMBLED AT

Loc . 201

If the symbol to the left of the equal sign is in the permanent
symbol table, the redefinition diagnostic:

RD address

will be printed as a warning, where address is the value of the loca-
tion counter at the point of redefinition. The new value will be
stored in the symbol table; for example:

will cause the diagnostic:

Whenever CLA is used after this point, it will have the value 7600.

Symbolic Instructions
Symbols used as instructions must be predefined by the assembler

or defined in the assembly by the programmer. If a statement has
no label, the instructions may appear first in the statement and must

be terminated by a space, tab, semicolon, slash, or carriage return.
The following are examples of legal instructions:

TAD (a mnemonic machine instruction)
PAGE (an assembler pseudo-op)
ZIP (an instruction defined by the user)

Symbolic Operands
Symbols used as operands normally have a value defined by the

user. The assembler allows symbolic references to instructions or
data defined elsewhere in the program. Operands may be numbers
or expressions. For example:

TOTAL, TAD ACI + TAG

The values of the two symbols ACI and TAG (already defined by
the user) are combined by a two's complement add (see the section
on Operators). This value is then used as the address of the
operand.

Internal Symbol Representation for PAL8
Each permanent and user-defined symbol occupies four words

in the symbol table storage area. A PDP-8 instruction has an op-
eration code of three bits as well as an indirect bit, a page bit, and
seven address bits. The PALS assembler distinguishes between
pseudo-ops, memory reference instructions, other permanent sym-
bols, and user-defined symbols in the symbol table.

EXPRESSIONS
Expressions are formed by the combination of symbols, numbers,

and certain characters called operators, which cause specific arith-
metic operations to be performed. An expression is terminated by
either a comma, carriage return, or semicolon.

Operators
There are seven characters in PAL8 which act as operators:

+ Two's complement addition
- Two's complement subtraction

T Multiplication (unsigned, 12-bit)
% Division (unsigned, 12-bit)
! Boolean inclusive OR
& Boolean AND

Space Treated as a Boolean inclusive OR except
(or TAB) in a memory reference instruction

Two's complement addition and subtraction are explained in
detail in Chapter 1 of INTRODUCTION TO PROGRAMMING;
the user should refer to that handbook if he wishes more infor-
mation. No checks for overflow are made during assembly, and
any overflow bits are lost from the high order end. For example:

7755+24 will give a result of 1

The operators + and - may be used freely as prefix operators.
Multiplication is accomplished by repeated addition. No checks for

sign or overflow are made. All 12 bits of each factor are considered
as magnitude. For example:

3000T2 will give a result of 6000

Division isaccomplished by repeated subtraction. The numberof
subtractions which are performed is the quotient. The remainder is
not saved and no checks are made for sign. Division by 0 will
arbitrarily yield a result of 0. For example:

7000 % 1000 will yield a result of 7

This could be written as:

In this case the answer might be expected to be -1 (7777)' but all
12 bits are considered as magnitude and the result is still 7 ̂

Use of the multiplication and division operators requires an at-
tention to sign on the part of the programmer beyond that which is
required for simple addition and subtraction. Table 3-2 con-
tains examples of operators.

The ! operator causes a Boolean inclusive OR to be performed bit
by bit between the left-hand term and the right-hand term. (The
inclusive OR is explained in Chapter 1 of INTRODUCTION TO
PROGRAMMING.) There is an option which can be given to the
assembler to have "!" interpreted as a 6-bit left shift of the left
term prior to the inclusive OR of the right. According to this inter-
pretation:

if A=l and B=2
then A!B=0102

Table 3-2 Use of Operators

Expression Also written as: Result

7777+2 -1+2 +1
7776-3 -2-3 7773 or -5
Of2 0
2TO 0
1000f7 , 7000 or - 1000
0% 12 0
12% 0 0
7777% 1 -1%1 7777 or -1
7000% 1000 -1000% 1000 7
1%2 0

Under normal conditions A!B would be 0003. The & operator
causes a Boolean AND to be performed bit by bit between the left
and right values. The operation is the same as that indicated by the
memory reference instruction AND.

SPACE has special significance depending on the context in
which it is used. When the symbol preceding the space is not a
memory reference instruction as in the following example:

SMA CLA

it causes an inclusive OR to be performed between them. In this
case, SMA=7500 and CLA=7600. The expression SMA CLA is
assembled as 7700. When SPACE is used following pseudo-opera-
tors it merely delimits the symbol. When it is used after memory
reference operators it also signals the assembler that a memory
reference instruction must be assembled.

User-defined symbols are treated as operate instructions. For
example:

A=333
*200
CLA B,

Possible expressions and their values using the symbols just defined
are shown below. Notice that the assembler reduces each expres-
sion to one 4-digit (octal) word:

A
B
A+B
A-B
-A
1 -B
B-1
A!B
-71

0333
0222
0555
0111
7445
7557 -

022 1
0333 (an inclusive OR is performed)
7707

If the information generated is to be loaded, the current location , .

counter is incremented. For example:

produces three words of information; the current location counter -

is incremented after each expression. The statement:

HLT=HLT CLA

produces no information to be loaded (it produces an association in
the symbol table) and hence does not increment the current location
counter.

*4721
TEMP,
TEM2, 0

The location counter is not incremented after the line TEMP,; the
two symbols TEMP and TEM2 are assigned the same value9 in this
case 472 1.

Since a PDP-8 instruction has an operation code of three bits as
well as an indirect bit, a page bit, and seven address bits, the as-
sembler must combine memory reference instructions in a manner

- somewhat differently from the way in which it combines operate or
IOT instructions. The assembler differentiates between the symbols
in its permanent symbol table and user-defined symbols. The fol-
lowing symbols are used as memory reference instructions:

AND 0000 Logical AND
TAD 1000 Two's complement addition
ISZ 2000 Increment and skip if zero
DCA 3000 Deposit and clear accumulator
JMS 4000 Jump to subroutine
JMP 5000 Jump

When the assembler has processed one of these symbols, the space
following it acts as an address field delimiter.

*4100
JMP A
CLA A?

A has the value 4101, JMP has the value 5000, and the space acts
as a field delimiter. These symbols are represented as follows:

A 100 001 000 001
JMP 101 000 000 000

The seven address bits of A are taken, e.g.:

The remaining bits of the address are tested to see if they are zeros
(page zero reference); if they are not, the current page bit is set:

000 011 000 001

The operation code is then ORed into the JMP expression to form:

or, written more concisely in octal:

In addition to the above tests, the page bits of the address field
are compared with the page bits of the current location counter. If
the page bits of the address field are nonzero and do not equal the
page bits of the current location counter, an out-of-page reference
is being attempted and the assembler will take action as described
in the section on Link Generation and Storage.

,
Special Characters

In addition to the operators described in the previous section,
PAL8 recognizes several special characters which serve specific
functions in the assembly process. These characters are:

= equal sign
Ã comma
* asterisk

dot
' double quote

() parentheses
[] square brackets
/ slash
5 semicolon
< > angle brackets
$ dollar sign

4>
- The equal sign, comma, asterisk, slash, and semicolon have been

previously described. The remainder will be described next.
The special character dot (.) always has a value equal to the

value of the current location counter. It may be used as any integer
or symbol (except to the left of an equal sign), and must be pre-
ceded by a space when used as an operand. For example:

*200
JMP .+2

is equivalent to JMP 0202. Also,

will produce in location 0300 the quantity 2700. Consider:

The second line (CALL=JMS I.) does not increment the current
location counter, therefore, 0027 is placed in location 2200 and
CALL is placed in the user's symbol table with an associated value
of 4600 (the octal equivalent of JMS I).

If a single character is preceded by a double quote ("), the 8-bit
value of ASCII code for the character is used rather than interpret-
ing the character as a symbol (ASCII codes are listed in Appendix
A). For example:

CLA
TAD ("A

The constant 0301 is placed in the accumulator. The code:

will be assembled as 0256. The character must not be a carriage
return or one of the characters which is ignored on input (discussed
at the end of this section).

Left and right parentheses () enclose a current page literal
(closing member is optional).

*200

CLA
TAD INDEX
TAD (2)
DCA INDEX

The left parenthesis is a signal to the assembler that the expres-
sion following is to be evaluated and assigned a word in the con-
stants table of the current page. This is the same table in which the
indirect address linkages are stored. In the above example, the
quantity 2 is stored in a word in the linkage and literals list begin-
ning at the top of the current memory page. The instruction in
which the literal appears is encoded with an address referring to the
address of the literal. A literal is assigned to storage the first time
it is encountered; subsequent reference to that literal from the cur-
rent page is made to the same register. The use of literals frees
symbol storage space for variables and makes programs much more
readable.

If the programmer wishes to assignliterals to page zero rather than
to the current page, he may use square brackets, [and 1, in place of
parentheses. This enables the programmer to reference a single
literal from any page of memory. For example:

*200
TAD [2]
Â

The closing member is optional. Literals may take the following
forms: constant term, variable term, instruction, expression, or
another literal.

NOTE
Literals can be nested, for example:

*200
TAD (TAD (30

This type of nesting may be continued in
some cases to as many as 6 levels, depending
on the number of other literals .on the page
and the complexity of the expressions within
the nest. If the limits of the assembler are
reached, the error messages BE (too many
levels of nesting) or PE (too many literals)
will result.

Angle brackets are used as conditional delimiters. The code en-
closed in the angle brackets is to be assembled or ignored contingent
upon the definition of the symbol or value of the expression within
the angle brackets. (The IFDEF, IFNDEF, IFZERO, and IFNZRO
pseudo-operators are used with angle brackets and are described
later in this chapter.)

NOTE
Programs which use conditionals should .

avoid angle brackets in comments as they
may be interpreted as beginning or termi-
nating the conditional.

The dollar sign character ($) is optional at the end of a program
and is interpreted as an unconditional end-of-pass. It may however
occur in a text string, comment or " term, in which case it is inter-
preted in the same manner as any other character.

The following characters are handled by the assembler for the
pass 3 listing, but are otherwise ignored:

FORM FEED Used to skip to a new page
LINE FEED Used to create a line spacing without causing

a carriage return
RUBOUT Used by the EDITOR to allow corrections in

the input file

Nonprinting characters include: -

SPACE
TAB
RETURN

INSTRUCTIONS
There are two basic groups of instructions: memory reference and

microinstructions. Memory reference instructions require an op-
erand, microinstructions do not.

Memory Reference Instructions
In PDP-8 computers, some instructions require a reference to

memory. They are appropriately designated memory reference in-
structions, and take the following format:

Figure 3-1 Memory Reference Bit Instructions

0 1 2 3 4 5 6 7 8 9 1 0 1 1

Bits 0 through 2 contain the operation code of the instruction to be
performed. Bit 3 tells the computer if the instruction is indirect.
Bit 4 tells the computer if the instruction is .referencing the current
page or page zero. This leaves bits 5 through 11 (7 bits) to specify
an address. In these 7 bits, 200 octal (128 decimal) locations can
be specified; the page bit increases accessible locations to 400 octal
or 256 decimal. A list of the memory reference instructions and
their codes is given at the end of the chapter.

In PAL8 a memory reference instruction must be followed by a
space(s) or tab(s), an optional I or Z designation, and any valid
expression. It may be defined with the FIXMRI instruction. (See
pg. 3-33; Altering the Permanent Symbol Table.) Permanent sym-
bols may be defined using the FIXTAB instruction and may be
used in address fields as shown below:

OPERATION
CODE 7

I I

A=1234
FIXTAB
TAD A

ADDRESS
I I 1 1 I I

Indirect Addressing
When the character I appears in a statement between a memory

reference instruction and an operand, the operand is interpreted as
the address (or location) containing the address of the operand to
be used in the current statement. Consider:

TAD 40

which is a direct address statement, where 40 is interpreted as the
location on page zero containing the quantity to be added to the
accumulator. References to locations on the current page and page
zero may be done directly. "For compatibility with older paper-tape
assemblers the symbol Z is also accepted as a way of indicating a
page zero reference, as follows: ,

TAD Z 40

This is an optional notation, not differing in effect from the pre-
vious example. Thus, if location 40 contains 0432, then 0432 is
added to the accumulator. Now consider:

TAD I 40 -
- which is an indirect address statement, where 40 is interpreted as

the address of the location containing the quantity to be added to
the accumulator. Thus, if location 40 contains 0432, and location
432 contains 0456, then 456 is added to the accumulator.

NOTE
~ecause the letter I is used to indicate in-
direct addressing, it is never used as a vari-
able. Likewise the letter Z, which is some-
times used to indicate a page zero reference,
is never used as a variable.

Microinstructions
Microinstructions are divided into two groups: operate and

Input/Output Transfer (IOT) microinstructions. Operate micro-
instructions are further subdivided into 'Group 1, Group 2, and
Group 3 designations.

NOTE
If a programmer mistakenly specifices an
illegal combination of microinstructions, the
assembler will perform: an inclusive OR be-
tween them; for example:

CLL SKP is interpreted as SPA
(7100) (7410) (75 10)

OPERATE MICROINSTRUCTIONS
Within the operate group, there are three groups of microinstruc-

tions which cannot be mixed. Group 1 microinstructions perform
clear, complement, rotate and increment operations, and are des-
ignated by the presence of a 0 in bit 3 of the machine instruction
word.

LOGICAL SEQUENCE: 1 -CLA , CLL 2 - CMA,CML
3- IAC 4 - RAR, RAL, RTR ,RTL, BSW

0 1 2 3 4 5 6 7 8 9 1 0 1 1

Figure 3-2 Group 1 Operate Microinstruction Bit Assignments

Group 2 microinstructions check the contents of the accumulator
and link and, based on the check, continue to or skip the next in-
struction. Group 2 microinstructions are identified by the presence
of a 1 in bit 3 and a 0 in bit 11 of the machine instruction word.

ROTATE AC AND L RIGHT
ROTATE AC AND L LEFT

(BSW IF BITS 8,9 ARE 0)
ROTATE 1 POSITION IF A 0,2 POSITIONS IF A 1

BSW

.
LOGICAL SEQUENCE: 1 (BIT 8 IS 0) - SMA OR SZA OR SNL

(BIT 8 IS 1) -SPA AND SNA AND SZL
2 - CLA
3 - OW, HLT

IAC CLL CMA 1 1 1
I ,

0 1 2 3 4 5 6 7 8 9 1 0 1 1

Figure 3-3 Group 2 Operate Microinstruction Bit Assignments

CML 0

SMA

CLA

REVERSE SKIP SENSING OF BITS 5 ,6 ,7 IF SET 2
CLA 1 1 1

I I

1

~ r o u ~ 3 microinstructions reference the MQ register. They are
differentiated from Group 2 instructions by the presence of a 1 in
bits 3 and 11. The other bits are part of a hardware arithmetic
option.

CONTAINS A1 TO SPECIFY GROUP 3 I

0 1 2 3 4 5 6 7 8 9 1 0 1 1

Figure 3-4 Group 3 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined since
bit 3 determines either one or the other. Within Group 2, there are
two groups of skip instructions. They can be referred to as the OR
group and the AND group.

OR Group AND Group

MQA MQL
, ,

OPERATION
CODE 7

I 1

SMA SPA
SZA SN A
SNL SZL

The OR group is designated by a 0 in bit 8, and the AND group
by a 1 in bit 8. OR and AND group instructions cannot be com-

CONTAINS A1 TO
SPECIFY GROUP3
KE8-E EXTENDED ARITHMETIC ELEMENT

CLA

bined since bit 8 determines either one or the other.
If the programmer does combine legal skip instructions, it is

important to note the conditions under which a skip may occur.
1. OR Group-If these skips are combined. in a statement, the

inclusive OR of the conditions determines the skip. For
example:

SZA SNL

The next statement is skipped if the accumulator contains
0000 or the link is a 1 or both.

2. And Group-If the-skips are combined in a statement, the
logical AND of the conditions determines the skip. For
example:

SNA SZL

The next statement is skipped only if the accumulator differs
from 0000 and the link is 0.

fNPUT/OUTPUT TRANSFER MICROINSTRUCTIONS
These microinstructions initiate operation of peripheral equip-

ment and effect an information transfer between the central pro-
cessor and the Input/Output device(s); i.e., console terminal, and
line printer.

Autoindexing
Interpage references are often necessary for obtaining operands

when processing large amounts of data. The PDP-8 computers
have facilities to ease the addressing of this data. When one of the
absolute locations from 10 to 17 (octal) is indirectly addressed, the
contents of the location is incremented before it is used as an
address and the incremented number is left in the location. This
allows the programmer to address consecutive memory locations
using a minimum of statements. It must be remembered that
initially these locations (10 to 17 on page 0) must be set t o
one less than the first desired address. Because of their char-
acteristics, these locations are called autoindex registers. No
incrementation takes place when locations 10 to 17 are ad-
dressed directly. For example, if the instruction to be executed
next is in location 300 and the data to be referenced is on
the page starting at location 5000, autoindex register 10 can be
used to address the data as follows:

0276 1377 TAD C4777 /=5000-1
0277 3010 DCA10 /SET UP AUTO INDEX
0300 1410 TAD110 /INCREMENT TO 5000

/BEFORE USE AN AN
ADDRESS

When the instruction in location 300 is executed, the contents
of location 10 will be incremented to 5000 and the contents of
location 5000 will be added to the contents of the accumulator.
When the instruction TAD I 10 is executed again, the contents
of location 5001 will be added to the accumulator, and so on.

PSEUDO-OPERATORS
The programmer uses pseudo-operators to direct the assembler

to perform certain tasks or to interpret subsequent coding in a

certain manner. Some pseudo-ops generate storage words in the
object program, other pseudo-ops direct the assembler how to pro-
ceed with the assembly. Pseudo-ops are maintained in the per-
manent symbol table. The function of each PAL8 pseudo-op is
described below.

Indirect and Page Zero Addressing
The pseudo-operators I and Z are used to specify the type of

addressing to be performed. These were discussed earlier in the
chapter.

Radix Control
/'

Numbers used in a source program are initially considered to be
octal numbers. However, the programmer may change or alternate
the radix interpretation by the use of the pseudo-operators
DECIMAL and OCTAL. The DECIMAL pseudo-op interprets all
following numbers as decimal until the occurrence of the pseudo-op
OCTAL. The -OCTAL pseudo-op resets the radix to its original
octal base.

Extended Memory
The pseudo-op FIELD instructs the assembler to .output a field

setting so that it may recognize more than one memory field. This
field setting is output during pass 2 and is recognized by the Abso-
lute Loader which in turn causes all subsequent information to be
loaded into the field specified by the expression.. The form is:

FIELD n
Â¥

n is an integer, a previously defined symbol, or an expression with-
in the range O to 7.

This field setting is output on the binary file during pass 2
followed by an origin setting of 200. This word is read by the
ABSLDR when it is executed and begins loading information into
the new field.

The field setting is never remembered, in binary, by the assem-
bier and no initial field setting is output. However, H appears as
the high-order digit of the Location Counter on the listing. A
binary file produced without field settings will be loaded into field
0 when using the ABSLDR.

A symbol in one field may be used to reference the same location
in any other field. The field to which it refers is determined by the .

use of the CDF and CIF instructions. (The programmer who is
unfamiliar with the IOTs but wishes to use them should refer to-
the PDP/8E SMALL COMPUTER HANDBOOK and experi-
ment with several short test programs to satisfy himself as to their
effect.) CDF and CIF instructions must be used prior to any in-
struction referencing a location outside the current field, as shown
in the following example:

NEXT*

P 3 0 2 ~
PRINT,

PCDI FD

*200
TAD P 3 0 1
DCF 00
C I F 1 0
JMS P R I N T
C I F 10
JMP NEXT
3 0 1
F I E L D 1
* 200
TAD P 3 0 2
CDF 1 0
JMS PRINT
HLT
302
0
TL S
T S F
JMP . - 1
CL A
RDF
TAD PCDIF
DCA .+ 1
000
JMP I P R I N T
CDF CI F 0

When FIELD is used, the assembler follows the new FIELD
setting with an origin at location 200. For this reason, if the pro-
grammer wants to assemble code at location 400 in field 1 he must
write:

FIELD 1 /CORRECT EXAMPLE
$400

The followingis incorrect and will not generate the desired code:

*400 /INCORRECT
FIELD 1

3-28

Specifying the /O option to PALS inhibits the origin to 200 after
a FIELD pseudo-op.

End-Of -File
PAUSE signals the assembler to stop processing the file being

read. The current. pass is not terminated, and processing continues
with the next file. The PAUSE pseudo-op is present mainly for
compatability with paper tape assemblers, and its use is optional.

Resetting The Location Counter
The PAGE n pseudo-op resets the location counter to the first

address of page n, where n is an integer, a previously defined sym-
bol, or a symbolic expression, whose terms have been defined pre-
viously and whose value is from 0 to 37 inclusive. If n is not speci-
fied, the location counter is reset to the next logical page of mem-
ory. For example:

PAGE 2 sets the location counter to 00400
PAGE 6 sets the location counter to 01400

If the pseudo-op is used without an argument and the current loca-
tion counter is at the first location of a page, it will not be moved.
In the following example, the code TAD B is assembled into
location 00400:

*377
. JMP .-3

PAGE
TAD B

If several consecutive PAGE pseudo-ops are given, the first will
cause the current location counter to be reset as specified. The rest
of the PAGE pseudo-ops will be ignored.

Entering Text Strings
The TEXT pseudo-op allows a string of text characters to be

entered as data and stored in 6-bit ASCII by using the pseudo-op
TEXT followed bya space or spaces, a delimiting character (must
be a printing character), the string of text, and the same delimiting
character. Following the last character, a 6-bit zero is inserted as a
stop code. For example:

TAG, TEXT/ 123 */

The 'string would be stored as:

The IF option inhibits the generation of the extra 6-bit zero
acter.

Suppressing The Listing

char-

Those portions of the source program enclosed by XLIST
pseudo-ops will not appear in the listing file; the code will be
assembled, however.

Two XLIST pseudo-ops may be used to enclose the code to be
suppressed in which case the first XLIST with no argument will
suppress the listing, and the second will allow it again. XLIST
may also be used with an expression as an argument; a listing will
be inhibited if the expression is equal to zero, or allowed if the ex-

pression is not equal to zero. XLIST pseudo-ops never appear in
the assembly listing.

Reserving Memory
ZBLOCK instructs the assembler to reserve n words of memory

containing zeroes, starting at the word indicated by the current'
location counter. It is of the form:

ZBLOCK n

For example:

ZBLOCK 40

causes the assembler to reserve 40 (octal) words. The n may be an
expression. If n=0, no locations are reserved.

Conditional Assembly Pseudo-Operators
The IFDEF pseudo-op takes the form:

IFDEF symbol <source code>

If the symbol indicated is previously defined, the code contained
in the angle brackets is assembled; if the symbol is undefined, this
code is ignored. Any number of statements or lines of code may be
contained in the angle brackets. The format of the IFDEF state-
ment requires a single space before and after the symbol.

The IFDEF pseudo-op is similar- in form to IFDEF and is ex-
pressed:

IFNDEF symbol <source code>

If the symbol indicated has not been previously defined, the
source code in angle brackets is assembled. If the symbol is defined,
the code in the angle brackets is ignored. The IFZERO pseudo-op
is of the form:

IFZERO expression <source code>

If the evaluated (arithmetic or logical) expression is equal to
zero, the code within the angle brackets is assembled; if the expres-
sion is non-zero, the code is ignored. Any number of statements or
lines of code may be contained in the angle brackets. The expres-
sion may not contain any imbedded spaces and must have a single
space preceding and following it. IFNZRO is similar in form to
the IFZERO pseudo-op and is expressed:

IFNZRO expression <source code>

If the evaluated (arithmetic or logical) expression is not equal
to zero, the source code within the angle brackets is. assembled; if
the expression is equal to zero, this code is ignored. Pseudo-ops can
be nested, for example:

IFDEF SYM <IFNZRO X2 <. . .> >
The evaluation and subsequent inclusion or deletion of statements
is done by evaluating the outermost pseudo-op first.

Controlling Binary Output
NOPUNCH causes the assembler to cease binary output but

continue assembling code. It is ignored except during pass 2.
ENPUNCH causes the assembler to resume binary output after

NOPUNCH, and is ignored except during pass 2. For example,
these two pseudo-ops might be used where several programs share
the same data on page zero. When these programs are to be loaded
and executed together, only one page zero need be output.

Controlling Page Format
The EJECT pseudo-op causes the listing to jump to the top of

the next page. A page eject is done automatically every 55 lines;

EJECT is useful if the user requires more frequent paging. If this
pseudo-op is followed by a string of characters, the first 50 (octal)
characters of that string will be used as a new header line.

Typesetting Pseudo-Operator
DTORG is used in typesetting to output a two frame DECtape

block number (4 digits) in the binary tape. The form of this pseudo-
op is as follows:

DTORG expression

The first frame on the binary tape includes channels 7 and 8
punched (in the same manner as a FIELD setting) as a signal to a
special typesetting loader that the following data is to be loaded
into DECtape block n. The DTORG setting is added into the
checksum, unlike the FIELD setting, which is not included.
DTORG and FIELD should not be used in the same program.

I
Calling OS/ 8 User Service Routine

The pseudo-operators DEVICE and FILENAME may be used
by calls to the OS/8 User Service Routine, but have no other
meaning to the assembler. The form for these pseudo-ops is:

DEVICE name
FILENAME name.extension

When using DEVICE, the name can be from 1 to 4 alphanumeric
characters. These are trimmed to 6-bit ASCII and packed into 2
words, filled in with zeroes on the right if necessary. With
FILENAME (FILENA is also acceptable) the name (or name.-
extension) may be from 1 to 6 alphanumeric characters and
the optional extension may be 1 or 2 characters. The characters are
trimmed to 6-bit ASCII and packed 2 to a word. Three words are
allocated for the filename, filled with zeroes on the right if less than
6 characters are specified, followed by one word for the extension.
For example:

L, FILENAME ABC.DA
is equivalent to the following coding:

Relocation Pseudo-Op
It is sometimes desirable to assemble code at a givenlocation

and then move it to another location for execution. This may result
in errors unless the relocated code is assembled in such a way that
the assembler assigns symbols their execution-time addresses rather
than their load-time addresses. The RELOC pseudo-op establishes
a virtual location counter without altering the actual location
counter. The line:

RELOC expr

sets the virtual location counter to expr. The line:

RELOC

sets the virtual location counter equal to the actual location counter
and terminates the relocation section.

Example:

0400 *400
2000 RELOC 2000

02000* 1377 CODE, TAD (CODE
02001* 3005 DCA 5
02177* 2000 PAGE

0600 RELOC

The location marked CODE is loaded into location 400, but the
assembler treats it as if it were loading into location 2000. The
asterisks after the location-values indicate that the virtual and the
actual location counters differ for that line of code. RELOC always
causes current page literals to be dumped.

Altering The Permanent Symbol Table
PAL8 contains a table of symbol definitions for the PDP-8 and

OS/8 peripheral devices. These are symbols such as TAD, DCA,
and CLA, which are used in most PDP-8 programs. This table is
considered to be the permanent symbol table for PALS.

If the user purchases one or more optional devices whose instruc-
t:on set is not defined among the permanent symbols (for example
EAE or an A/D converter), he would want to add the necessary
symbol definitions to the permanent symbol table in every program
he assembles.

Conversely, the user who needs more space for user-defined
symbols would probably want to delete all definitions except the
ones used in his program. For such purposes, PALS has three
pseudo-ops that can be used to alter the permanent symbol table.
These pseudo-ops are recognized by the assembler only during
pass 1. During either pass 2 or pass 3 they are ignored and have
no effect.
EXPUNGE deletes the entire permanent symbol table, except
pseudo-ops.

FIXTAB appends all presently defined symbols to the perma-
nent symbol table. All symbols defined before the occurrence of
FIXTAB are made part of the permanent symbol table for the
current assembly.

To append the following instructions to the symbol table, the
user generates an ASCII file called SYM.PAL containing:

MUY =7405 /MULTIPLY
DVI=7407 /DIVIDE
CLSK=6 1 3 1 /SKIP ON CLOCK INTERRUPT
FIXTAB /SO THAT THESE WONT BE

/PRINTED IN THE SYMBOL TABLE

The ASCII file is then entered in PALS'S input designation. The
user may also place the definitions at the beginning of the source
file. This eliminates the need to load an extra file. Each time the
assembler is loaded, PALS'S permanent symbol table is restored.

The third pseudo-op used to alter the permanent symbol table in
PAL8 is FIXMRI. FIXMRI is used to define a memory reference
instruction and is of the form:

FIXMRI name=value

The letters FIXMRI must be followed by one space, the symbol
for the instruction to be defined, an equal sign, and the value of the
symbol. The symbol will be defined and stored in the symbol table
as a memory reference instruction. The pseudo-op must be repeated
for each memory reference instruction to be defined. For example:

EXPUNGE
FIXMRI TAD= 1000
FIXMRI DCA=3000
CLA=7200
FIXTAB

When the preceding program segment is read into the assembler
during pass 1, all symbol definitions are deleted and the three sym-
bols listed are added to the permanent symbol table. Notice that
CLA is not a memory reference instruction. This process can be
performed to alter the assembler's symbol table so that it contains
only those symbols used at a given installation or by a given pro-
gram. This may increase the assembler's capacity for user-defined
symbols in the, program.

LINK GENERATION AND STORAGE
In addition to handling symbolic addressing on the current page

of memory, PALS automatically generates links for off-page refer-
ences. If reference is made to an address not on the page where an
instruction is located, the assembler sets the indirect bit (bit 3) and
an indirect address linkage will be generated on the current mem-
ory page. If the off-page reference is already an indirect one, the
error diagnostic 11 (illegal indirect) will be generated. For example:

*2117
A, CLA

*2600
JMP A

In the example above, the assembler will recognize that the register
labelled A is not on the current page (in,this case 2600 to 2777)
and will generate a link to it as follows:

1. In location 2600 the assembler will place the word 5777
which is equivalent to JMP 1 2777.

2. In address 2777 (the last available location on the current
page) the assembler will place the word 21 17 (the actual
address of A).

During pass 3, the octal code for the instruction will be followed by
an apostrophe (') to indicate that a link was generated.

Although the assembler will recognize and generate an indirect
address linkage when necessary, the programmer may indicate an
explicit indirect address by the pseudo-op I. The assembler cannot

generate a link for an instruction that is already specified as being
an indirect reference. In this case, the assembler will print the error
message I1 (illegal indirect). For example:

f

*2117
A, CLA

*2600
J M P I A '

The above coding will not work because A is not defined on the
page where JMP I A is attempted, and the indirect bit is already
set.

Literals and links are stored on each page starting at page
address 177 (relative) and extending toward page address 0
(relative). Whenever the origin is then set to another page, the
literal buffer for the current page is output. This does not affect
later execution. There is room for 160 (octal) literals and links on
page zero and 100 (octal) literals on each other page of memory.
Literals and links are stored only as far down as the highest in-
struction on the page. Further attempts to define literals will result
in a PE (page exceeded) or ZE (page zero exceeded) error message.

CODING PRACTICES
A neat printout (or program listing, as it is usually called) makes

subsequent editing, debugging, and interpretation much easier than
if the coding were laid out in a haphazard fashion. The coding
practices listed below are in general use, and will result in a
readable, orderly listing.

A title comment begins with a slash at the left margin.

Pseudo-ops may begin at the left margin; often, however,
they are indented one tab stop to line up with the executable
instructions.

Address labels begin at the left margin. They are separated
from succeeding fields by a tabulation.

Instructions, whether or not they are preceded by a label
field, are indented one tab stop.

3-36

5. A comment is separated from the preceding field by one or
two tabs (as required) and a slash; if the comment occupies
the whole line it usually begins with a slash at the left mar-
gin.

PROGRAM PREPARATION AND ASSEMBLER OUTPUT
The following program was generated using the OS/8 EDITOR

and was assembled with PALS.

/SAMPLE PAL8 PROGRAM
/GETS I N P U T FROM KBD>HALTS WHEN "E" I S TYPED

* 200
BEGIN, KCC

K SF
J M P .- 1 /WAI T FOR FLAG
KRB /READ I N CHARACTER
TAD C -"E
SNA CLA / I S I T E ?
HLT
JMP BEGIN+ 1

/ E N D OF EXAMPLE
s

The program consists of statements and pseudo-ops and is
terminated by the dollar sign ($). If the program is large, it can be
segmented by placing it into several files; this often facilitates the
editing of the source program since each section will be physically
smaller. Ã

The assembler initially sets the current location counter to 0200.
This counter is reset whenever the asterisk (*) is processed.

The assembler reads the source file for pass 1 and defines all
symbols used. During pass 2, the assembler reads the source file
and generates the binary code using the symbol table equivalences
defined during pass 1. The binary file that is output may be loaded
by the Load command. This binary file consists of an origin setting
and data words.
During pass 3, the assembler reads the source file and generates
the code from the source statements. The assembly listing is output
in ASCII code. It consists of the current location counter, the
generated code in octal, and the source statement. Unless options
are chosen to suppress paging or to change the header, the first 50
(octal) characters of the first line of the source program will be used

as a heading for each page followed by the assembler version num-
ber, the date and the listing page number. The 5-digit first column
is the field number and 4-digit octal address (current location
counter); the 4-digit second column is the assembled object code.
The symbol table is printed at the end of the pass. The pass 3 out-
put is:

ISAMPLE PAL8 P R O G R A M

/SAMPLE PAL8 P R O G R A M
/GETS INPUT F R O M K B O n H A L T S WHEN "E" IS TYPED

0200 *20!9
6035 BEGIN, KCC
6031 KSF
5201 JMP .-I / W A I T FOR F L A G
6036 KRB I R E A D I N CHARACTER
1377 TAD (- I 1 â

7650 SNA CLA /IS I T E?
7 4 0 2 HLT
5201 JMP BEGIN+l

/END Of- EXAMPLE
7473

s

B E G I N 2300

TERMINATING ASSEMBLY
PALS will terminate assembly and return to the Monitor under

any of the following conditions:

1. Normal exit: The end of the source program was reached
on pass 2 (or pass 3 if a listing is being generated).

2. Fatal error: One of the following error conditions was found
and flagged (see the next section):

3. CTRL/C: If typed by the user, control returns to the Monitor.

PALS ERROR CONDITIONS
PAL8 will detect and flag error conditions and generate error

messages on the console terminal. The format of the error message
is:

CODE address

where code is a 2-letter code which specifies the type of error, and
address is either the absolute octal address where the error occurred
or the address of the error relative to the last symbolic tag (if there . .

was one) on the current page. For example, the following code:

BEG, TAD LBL
%TAD LBL

would produce the error message:

since % is an illegal character.
On the pass 3 listing, error messages are output as 2-character

messages on the line just prior to the line in which the error oc-
curred. The following table lists the PAL8 error codes. Those
labeled Fatal Error are followed immediately by an effective
CTRL/C.

Table 3-3 PALS Error Codes

Error Code Meaning

BE Two PAL8 internal tables have overlapped. This situa-
tion can usually be corrected by decreasing the level of
literal nesting or the number of current page literals used
prior to this point on the page. Fatal error: assembly
cannot continue.

CF Chain to CREF error. CREF.SV was not found on
SYS: .

DE . Device error. An error was detected when trying to read
or write a device. Fatal error assembly cannot continue.

D F Device full. Fatal error: assembly cannot continue.

1C Illegal character. The character is ignored and the as-
sembly is continued.

Table 3-3 PAL 8 Error Codes (Cont.)

Error Code Meaning
--- --

ID Illegal redefinition of a symbol. An attempt was made
to give a previous symbol a new value by means other
than the equal sign. The symbol is not redefined.

I E Illegal equals. An attempt was made to equate a variable
to an expression containing an undefined term. The vari-
able remains undefined.

I1 Illegal indirect. An off-page reference was made; a link
could not be generated because the indirect bit was al-
ready set.

IP Illegal pseudo-op. A pseudo-op was used in the wrong
context or with incorrect syntax.

IZ Illegal page zero reference. The pseudo-op Z was found
in an instruction which did not refer to page zero. The Z
is ignored.

LD The / L or / G options have been specified and the Abso-
lute Loader is not present on the system.

LG Link generated. This code is printed only if the / E option
was specified to PALS.

PE Current non-zero page exceeded. An attempt was made
te:

1. Override a literal with an instruction.

2. Override an instruction with a literal.
Ã

3. Use more literals than the assembler allows on that
page.

This can be corrected by decreasing either the number of
literals on the page or the number of instructions on the
page-

PH Phase error. A conditional assembly bracket is still in
effect at the end of the input stream. This is caused by
non-matching < and > characters in the source file.

RD Redefinition. A permanent symbol has been defined
with =. The new and old definitions do not match. The
redefinition is allowed.

Symbol table exceeded. Too many symbols have been
defined for the amount of memory available. Fatal error:
assembly cannot continue.

Table 3-3 PALS Error Codes (Conk),
-

Error Code Meaning

UO Undefined origin. An undefined symbol has occurred in
an origin statement.

US Undefined symbol. A symbol has been processed during
pass 2 that was not defined before the end of pass 1. .

ZE Page 0 exceeded. This is the same as PE except with
, reference to page 0.

PALS PERMANENT SYMBOL TABLE
The following are the most commonly used elements of the

PDP-8 instruction set and are found in the permanent symbol table
within the PAL8 Assembler. For additional information on these .

instructions and for a description of the symbols used when pro-
gramming other optional devices, see THE SMALL COMPUTER
HANDBOOK, available from the DIGITAL Software Distribution
Center. (All times are in microseconds and representative of the
PDP-8/E.) .
Mnemonic Code -

Memory Reference Instructions

Operation Time -

AND
TAD
ISZ
DCA
JSM
JMP
IOT
OPR

Logical AND
Two's complement add
Increment and skip if zero
Deposit and clear AC
Jump to subroutine
Jump
In/Out transfer
Operate

Group 1 Operate Microinstructions (1 cycle = 1.2 microseconds)

NOP 7000 No operation -
I AC 7001 Increment AC 3
BSW 7002 Byte swap 3
RAL 7004 Rotate AC and link left one 4
RTL 7006 Rotate AC and link left two 4

Mnemonic Code Sequence
- *

Operation

RAR 7010 Rotate AC and link right one 4
RTR 701 2 Rotate AC and link right two 4
CML 7020 Complement the link 2
CMA 7040 Complement the AC 2
CLL 7100 Clear link 1
CLA 7200 Clear AC 1

Group 2 Operate Microinstructions (1 cycle)

HLT
OSR
SKP
SNL
SZL
SZA
SN A
SMA
SPA

Halts the computer
Inclusive OR SR with AC
Skip unconditionally
Skip on non zero link
Skip on zero link
Skip on zero AC
Skip on non zero AC
Skip on minus AC
Skip on positive AC (zero is
positive)

Group 3 Operate Microinstructions

MQA 7501 Multiplier Quotient OR into AC
MQL 742 1 Load Multiplier Quotient
SWP 7521 Swap AC and Multiplier Quotient

Combined Operate Microinstructions

CIA 7041 Complement and increment AC 2.3
STL 7120 Set link to 1 1.2
GLK 7204 Get link (put link in AC, bit 11) 1.4
ST A 7240 Set AC to -1 2.0
LAS 7604 Load AC with SR 2.3

Mnemonic Code Operation Time - -
Internal IOT Microinstructions

SKON 6000 Skip with interrupts on and turn
them off

ION 6001 Turn interrupt processor on 1.2 *

IOF 6002 Turn interrupt processor off 1.2
GTF 6004 Get flags
RTF 6005, Restore flag, ION
SGT 6006 Skip if "Greater Than" flag is set
CAP 6007 Clear all flags

Keyboard/Reader (1 cycle)

KCF 6030 Clear keyboard flags
KSF 603 1 Skip on keyboard/reader flag 1.2 '

KCC 6032 Clear keyboard/reader flag and
AC; set reader run 1.2

KRS 6034 Read keyboard/reader buffer
(static) 1.2

KIE 6035 Set/clear interrupt enable
KRB 6036 Clear AC, read keyboard buffer

(dynamic), clear keyboard flags 1.2

Teleprinter/Punch (1 cycle)

TFL 6040 Set teleprinter flag
TSF 6041 Skip on teleprinter/punch flag 1.2
TCF 6042 Clear teleprinter/punch flag 1.2
TPC 6044 Load teleprinter/punch and

print 1.2
TSK 6045 Skip on keyboard or teleprinter

flag 1.2
TLS 6046 Load teleprinter/punch, print,

and clear teleprinter/punch flag 1.2

Mnemonic Code - Operation

High Speed Perforated Tape Reader

RPE 601 0 Set Reader/Punch interrupt en-
able

RSF 601 1 Skip if reader flag=l
RRB 6012 Read reader buffer and clear

flag
RFC 6014 d e a r flag and buffer and fetch

character

High Speed Perforated Tape Punch

PCE 6 0 2 0 Clear Reader/Punch interrupt
enable

PSF 602 1 Skip if punch flag=l
PCF 6022 Clear flag and buffer
PPC 6024 Load buffer and punch character
PLS 6026 Clear flag and buffer, load buffer

and punch character

Time

sabr

INTRODUCTION
The OS/8 SABR assembler is a modified version of the 8K

SABR assembler which is designed to run under the OS/8 Oper-
ating System.

The OS/8 SABR assembler can be used as the automatic sec-
ond pass of the FORTRAN compiler, called separately to do
assemblies of FORTRAN compiled files, or used as an independent
assembler with its own assembly language. In addition, SABR
statements may be used in an OS/8 FORTRAN program, expand-
ing the capabilities of the FORTRAN language.

Calling and Using OS/8 SABR
Unless otherwise specified, the SABR assembler is called auto-

matically by the system to assemble the output of a FORTRAN
compilation. At other times the user can call SABR by typing:

R SABP
a

in response to the dot printed by the Keyboard Monitor. When
the Command Decoder prints an asterisk at the left margin, the
user types the appropriate device assignations, 1/0 files, and any
of the acceptable options.

The line to the Command Decoder consists of 0 to 3 output de-
vice and file designations, 1 to 9 input device and file designations,
and the desired option (s) . The form is :

*BINARY,LISTING,MAP<INPUT FILE (S) /OPTION(S)

where BINARY represents the binary output, LISTING the list-
ing output, and MAP the Linking Loader loading map input. Un-
less alternate extensions are indicated, SABR assumes the following
extensions :

File Type Extension

input file .SB
binary output .RL
listing output .LS

If no binary output file is indicated, no binary output will be gen-
erated. However, if the /L or / G options are specified, a binary
file will be generated under the assigned name SYS:FORTRL.TM.

OS/8 SABR OPTIONS
The options which can be included in a command string to OS/8

SABR are listed in Table 4-1 .

Table 4-1 SABR Options

Option Meaning

Indicates that the input file is an 8K FORTRAN
output file.

Calls the Linking Loader, loads the program into
core and begins execution. If a binary output file is
not specified, then FORTRL.TM is loaded into core
and deleted from the file device. If a starting address
is not specified (using the options to the Linking
Loader), control is sent to the program entry point
MAIN (the FORTRAN compiler gives this name
automatically to the main program).

Calls the Linking Loader at the end of the assembly
and loads the specified binary file. If a binary out-
put file is not specified, then the temporary file
FORTRL.TM is loaded into core and deleted from '
the file device. The Loader then either returns to the
Keyboard Monitor with a core image or asks for
more input, depending on whether an ALT MODE
or RETURN key has terminated the input line.

Outputs the symbol table but not the rest of the list-
ing (applicable only if a listing file is specified).

Omits the symbol table from the listing (applicable
only if a listing file is specified).

When the /L or /G options are specified,-,any options to the ,

Linking Loader (described in the section concerning--the Linking
Loader) can be included in the command string for SABR. This
does not include the /L (Library) option of the Linking Loader,

- since it would conflict with the SABR /L option.

NOTE
The FORTRAN compiler - automatically.
generates an entry point named MAIN
whose address is the beginning of the pro-
gram. When writing a main program in
SABR, the user should specify the entry
point MAIN with the entry pseudo-op in
order to symbolically specify the starting ad-
dress to the Linking Loader. (Otherwise the
starting address must be specified to the
Loader as a five digit address.)

EXAMPLES OF OS/8 SABR 1/0
SPECIFICATION COMMANDS
Example 1:

R SABR -
*FORTRN TM/F/G -

DSK:FORTRN.TM is assembled as a FORTRAN output file and
the relocatable binary is loaded and started at the entry point
MAIN.
Example 2:

R SABR - * SY S TEERL-, TTY: <TEE/ S -

The input file TEE.SB (or TEE) on DSK: is assembled. The re-
locatable binary goes to the output file TEERL.RL on SYS:, the
listing without a symbol table goes to the terminal.

THE CHARACTER SET

ALPHABETIC
In addition to the letters A through 2, the following are con-

sidered by SABR to be alphabetic: ..
' [left bracket

] right bracket
\ back slash

NUMERIC
SABR recognizes the numbers:

SPECIAL CHARACTERS
The following printing and non-printing characters are legal:

Comma
/ Slash
(Left parenthesis

bC Quote
% ._ Minus sign

Number sign

RETURN
(carriage return)
Semicolon
LINE FEED
FORM FEED
SPACE

TAB
RUBOUT

delimits a symbolic address label
indicates start of a comment
indicates a literal
precedes an ASCII constant
negates a constant
increases value of preceding sym-
bol by one
terminates a statement

4 -:-.. n" .-. t.e~iiuiatc.a an instruction
ignored
ignored
separates and delimits items on
the statement line
same as space
ignored

All other characters are illegal except when used as ASCII
constants following a quote (") , or in comments or text strings.

Legal characters used in ways different from the above, and all
illegal characters, cause the error message C (Illegal Character) to
be printed by SABR.

STATEMENTS
SABR symbolic programs are written as a sequence of state-

ments and are usually prepared on the terminal, on-line, with the.
aid of the Symbolic Editor program. SABR statements are virtually
format free. Each statement is terminated by typing the RETURN
key. (Editor automatically provides a line feed). Two or more
statements can be typed on the same line using the semicolon as a
separator.

A statement line is composed of one or all of the following ele-
ments: label, operator, operand and comment, separated by spaces
or tabs (labels require a following comma). The types of elements
in a statement are identified by the order of appearance in the line
and by the separating or delimiting character which follows or
precedes the element.

Statements are written in the general f o m :

label, operator operand /comment (preceded by slash)

SABR generates one, or possibly more, machine (binary) in-
structions or data words for each source statement.

An input line may be up to 7Zio characters long, including
spaces and tabs. Any characters beyond this limit are ignored.

The RETURN key (CR/LF) is both an instruction and a line
terminator. The semicolon may be used to terminate an instruction .

without terminating a line. If, for example, the programmer wishes
to write a sequence of instructions to rotate the contents of the
accumulator (AC) and link (L) six places to the right, it might
look like this :

RTR
RTR
RTR

Using the semicolon, the programmer may place all three RTR's on
a single line, separating each RTR with a semicolon and termi-
nating the line with the RETURN key. The preceding sequence of
instructions could then be written:

RTR; RTR; RTR (terminated with the RETURN key)

This format is particularly useful when creating a list of data:

0200 0020 L I S T , 20;50;-30;62
0201 0050
0202 7750
0203 0062

Null lines may be used to format program listings. A null line
is a line containing only a carriage return and possibly spaces or
tabs. Such lines appear as blank lines in the program listing.

Labels
A label is a symbolic name or location tag created by the pro-

grammer to identify the address of a statement in the program.
Subsequent references to the statement can be made merely by
referencing the label. If present, the label is written first in a state-
ment and terminated with a comma.

0200 0000 SAVE, C?
0201 1200 ABC, TAD SAVE

SAVE and ABC are labels referencing the statements in location
0200 and 0201, respectively.

Operators
An operator is a symbol or code which indicates an action or

operation to be performed, and may be one of the following:
1. A direct or indirect memory reference instruction
2. An operate or IOT microinstruction
3. A pseudo-operator
All SABR operators, microinstructions and memory reference

instructions are summarized in Appendix C.

Operands
An operand represents that part of the statement which is manip-

ulated or operated upon, and may be a numeric constant, a literal
or a user-defined address symbol.

In the example last given, SAVE represents an operand.

CONSTANTS
Constants are data used but not changed by d program and are

of two types: numeric and ASCII. ASCII constants are used only
as parameters. Numeric constants may be used as parameters or as
operand addresses, for example :

0200 1412 TAD I 12

Constant operand addresses are treated as absolute addresses,
just as a symbol defined by an ABSYM statement (see Symbol
Definition). References to them are not generally relocatable,
therefore, they should be used only with great care. The primary
use of constant operand addresses is to reference locations on page
0 (see Linkage Routine Locations for free locations on page 0 of
each field). All constant operand addresses are assumed to be in
the field into which the program is loaded by the Linking Loader.

Constants may not be added to or subtracted from each other or
from symbols.

Numeric Constants
A numeric constant consists of a single string of from one to

four digits. It may be preceded by a minus sign (-) to negate the
constant. The digit string will be interpreted as either octal or
decimal according to the latest permanent mode setting by an
OCTAL or DECIM pseudo-operator
Control). Octal
The digits 8 and

ASCII Constants

mode is assumed at
9 must not appear in

A > 50 20
-20 3
DEC IM
80

(explained under Assembly
the beginning of assembly.
an octal string.

Eight-bit ASCII values may be created as constants by typing
the ASCII character immediately following a double quotation

4-7

marks ("). A minus sign may be used to negate an alphabetic con-
stant. The minus sign must precede the quotation mark.

The following are illegal as alphabetic

1 - 3 0 1
/BELL FOLLOWS "

constants: carriage return,
line feed, form feed and rubout.

LITERALS
A literal is a numeric or ASCII constant preceded by a left

parenthesis. The use of literals provides a special and convenient
way of generating constant data in a program. The value of the
literal will be assembled in a table near the end of the core page on
which the instruction referencing it is assembled. The instruction it-
self will be assembled as an appropriate reference to the location
where the numeric value of the literal is assembled. Literals are
normally used by TAD and AND instructions, as in the following
examples :

AND (7 7 7
T A D (-50
TAD ("C

The numeric conversion mode is initially set to octal, but is con-
trollable with the DECIM and OCTAL pseudo-operators. This
mode can be changed on a local basis by inserting a D (decimal)
or a K (octal) between the left parenthesis and the constant. For
example :

(D32 becomes 0040 (octal)
(K-32 becomes 7746 (octal)

This usage is confined only to the statement in which it is found
and does not alter the prevailing conversion mode.

A literal may also be used as a parameter (i.e., with no opera-
tor). In this case the numeric value of the literal is assembled as

4-8

usual in the literal table near the end of the core page currently
being assembled, and a relocatable pointer to the address of the
literal is assembled in the
appeared.

This feature is intended
subroutine arguments with

-

location where the literal parameter

primarily for use in passing external
the ARG pseudo-operator, which is

explained in greater detail later in the chapter.

PARAMETERS
A parameter is generally either a numeric constant, a literal or

a user-defined address symbol, which is intended to represent data
rather than serve as an instruction. It appears as an operand in a
statement line containing no operator. (An exception to this is a
parameter used in conjunction with the ARG pseudo-operator, ex-
plained in Subroutines.) In the following example, 200 and -320,
M, and PGOADR all represent parameters.

0200 0200 ABCJ 200; -320;"M
0201 7460
0 2 0 2 0315

/-

0203 0176 POINTR, PGOADR

SYMBOLS
Symbols are composed of legal alphanumeric characters and are

delimited by a non-alphanumeric character. There are two major
types of symbols: permanent, and user-defined.

Permanent Symbols
Permanent symbols are predefined and maintained in SABR's

permanent symbol table. They include all of the basic instructions
and pseudo-operators in Appendix C. These symbols may be used
without prior definition by the user.

4-9

User-Defined Symbols
A user-defined symbol is a string of from one to six legal alpha-

numeric characters delimited by a non-alphanumeric character.
User-defined symbols must conform to the following rules:

1. The characters must be legal alphanumerics-
ABCD . . . XYZ, [I \ f and 0123456789.

2. The first character must be alphabetic,
3. Only the first six characters are meaningful. A symbol

such as INTEGER would be interpreted as INTEGE.
Since the symbols GEORGE1 and GEORGE2 differ only
in the seventh character, they would be treated as the
same symbol: GEORGE.

4. A user-defined symbol cannot be the same as any of the
pre-defined permanent symbols.

5. A user-defined symbol must be defined only once. Sub-
sequent definitions will be ineffective and will cause SABR
to type the error message M (Multiple Definition).

A symbol is defined when it appears as a symbolic address label
or when it appears in an ABSYM, COMMN, OPDEF or SKPDF
statement (see Pseudo-Operators). No more than 64 different user-
defined symbob may occur on any one core page.

Equivalent Symbols
When an address label appears alone on a line-with. no instruc-

tion or parameter-the label is assigned the value of the next ad-
dress assembled.

TAG 1 9
TAG29 30
TAG39

TAG1 and TAG2 are equivalent symbols in that they are as-
signed the same value. Therefore, a TAD TAG1 will reference the
data at TAG2. TAGS, however, is not equivalent to TAG2. TAG3
would be defined as 1 greater than TAG2.

Comments
- A programmer may add notes to a statement by preceding them

with a slash mark. Such comments do not affect assembly or pro-
gram execution but are useful in interpreting the program listing

for later analysis and debugging. Entire lines of comments may be
present in the program.

None of the special characters or symbols have significance
when they appear in a comment.

/ T H I S I S A COMMENT L I N E .
/ T H I S ALSO. TAD;CALL;#"-2C+=!
A, TAD SAVE /SLASH S T A R T S COMMENT

INCREMENTING OPERANDS
Because SABR is a one-pass assembler and also because it

sometimes generates more than one machine instruction for a
single user instruction, operand arithmetic is impossible. State-

' ments of the form:

TAD T A G + 3
TAD L I S T - L I S T 2
JMP .+6

are illegal.. However, by appending a number sign to an operand
the user can reference a location exactly one greater than the
location of the operand (the next sequential location): TAD
LOC# is equivalent to the PAL language statement TAD LOC+ 1.

0200 0 0 2 0 LOC 9 20
0 2 0 1 0030 30
0202 1 2 0 0 START, TAD LOC /GET 20
0203 1 2 0 1 TAD LOC# /GET 30

P A G E
0400 0 2 0 0 A, L 0.C
0 4 0 1 0 2 0 1 Bi * LOC#

In assembling #-type references SABR does not attempt to de-
termine if multiple machine code words are generated at the sym-
bolic address referenced.

START, TAD I LGC /LOC I S . O.FF-PAGE
N OP /USER H O P E S TO MODIFY

Â

TAD (7500 /SMA
DCA S T A R T S

In the preceding example the user wishes to change the NOP in-
struction to an SMA. However, this is not possible because TAD
I LOC will be assembled as three machine code words; if START
is at 0200, the NOP will be at 0203. The SMA will be inserted at
0201, thus destroying the second word of the TAD I LOC execu-
tion.

To avoid this error, the user should carefully examine the as-
sembly listing before attempting to modify a program with #-type
references. In the previous example the proper sequence is: .

0202 4067 START, TAD I LOC
0203 0200 01
0204 1407
0205 7000 VAR, N OF
0206 1377 TAD (7500
0207 3205 DCA VAR
0377 7500

The #-sign feature is intended primarily for manipulating
DUMMY variables when picking up arguments from external sub-
routines and returning from external subroutines (see Passing Sub-
routine Arguments).

PSEUDO-OPERATORS
Table 4-2 lists all the pseudo-operators available in SABR,

whether used as a free-standing assembler, or in conjunction with
the Fortran compiler. The pseudo-operators are categorized and
explained in the following paragraphs.

Table 4-2 SABR Pseudo-Operators

Mnemonic Code Operation

ABSYM Direct absolute symbol definition, used to indi-
cate an absolute core address. For example:

ABSYM TEM 177 /PAGE ZERO ADDRESS

ARG

BLOCK

CALL

.
COMMN

CPAGE

DECIM

Argument for subroutine call, indicating a value
to be transmitted, one value per ARG state-
ment. Used only with CALL. For example:

N ~ J ARG (50
N 29 ARG LOCATN

Reserve storage block; reserves n words of core
by placing zeros in them. For example:

BLOCK 2 0 0 /RESERVE 300
BLOCK 1 0 0 / (O C T A L) LOCATIONS

Call external subroutine. For example:

CALL 29 SUBR

where 2 is the number of arguments to be
passed and SUBR is the subroutine name.

Common storage definition, used to name loca-
tions in field l as externals to be referenced by
any program. For example:

A J COMMN 20 /20 WORDS I N COMMON

Check if page will hold data, followed by the
number of words of code which must be kept
together in a unit on a page. That number of
words following the CPAGE will be assembled
as a unit on the next available core page.

Decimal conversion, numeric conversion in-
terprets all numbers input as . being decimal
numbers.

Table 4-2 SABR Pseudo-Operators (Cont.)

Mnemonic Code Operation

DUMMY

EAP

END

ENTRY

FORTR

1

LAP

Dummy argument definition, used in passing
arguments to and from subroutines. DUMMY
variables are defined in the subprograms which
reference them. For example:

ENTRY A 1
DUMMY X
DUMMY Y

Enter automatic paging mode, restoreautomatic
paging (See LAP).

End of program or subprogram.

Define program entry point, used at beginning
of subprograms to give name of entry point for
the Linking Loader. For example:

ENTRY SUBROU
SUBROU> BLOCK 2

Assemble FORTRAN tape.

Symbolic representation for indirect addressing.
For example :

DCA I ADD

Conditional assembly, of form:

IF NAME, 7

If the symbol NAME has been previously de-
fined, the statement has no effect. If NAME is
not defined, the next 7 symbolic instructions
are not assembled.

Leave automatic paging. Assembler is initially
set for automatic jumps to the next core page
when the current page is full (or upon REORG
or PAGE statements). This feature can be sup-
pressed with LAP.

Table 4-2 SABR P s e x ~ d o ~ r s (Cont.)

Mnemonic Code Operation

OCTAL

OPDEF

PAGE

PAUSE

REORG

RETRN

SKPDF

TEXT

Octai conversion, numeric conversion is orig-
inally set to octal and can be changed back to
octal after a DECIM pseudo-op has been used.

Define non-skip operator. For example:

OPDEF D T M 6 7 6 1

Terminate current page, begin assembly of suc-
ceeding instructions on next core page.

Pause for next tape, designed to allow large
source tapes to be broken into several smaller
segments. Assembly is conthued by pressing
the CONT switch.

Terminate page and reset origin; origin settings
are always to the first address of a page. For
example :

REORG 1000

Return from external subroutine, the name of
'the subroutine being left must be specified. Be-
fore the RETRN statement is used, the pointer
in the second word of the subprogram entry
must be incremented to the point following all
arguments in the calling program (after the
CALL statement).

Define skip-type operator. For example:

SKPDF DTSF 6 7 7 1

Text string similar to BLOCK, except that the
argument is a text string. Characters are stored
in six-bit stripped ASCII with a printing char-
acter used to delimit the string. For example:

TAG > TEXT / 1 2 3 * /

the string would be stored as:

Table 4-2 SABR Pseudo~perator~ (Cont.)

Mnemonic Code Operation

Odd characters are filled with zeros on the
right.

The floating-point accumuZator (in field 1).

ACH High-order word.

ACL Low-order word.

Assembly Control
END Every program or subprogram to be assembled

must contain the END pseudo-op as its last line.
If this requirement is not met, an error message
(E l is given.
The PAUSE pseudo-op causes assembly to halt
and is designed to allow the programmer to break

PAUSE

up a large source tape into several smaller seg-
ments. To do this, the programmer need only
place a PAUSE statement at the end of each sec-
tion of his source program except the last. Each
of these sections of the program is then output as
a~ indivi&ml kpe. 1Vhe11 ~ s s e ~ ~ b l y h2lts at 2

PAUSE, the user removes the source tape just
read from the reader and inserts the next one.
Assembly may then be continued by pressing the
CONTinue switch.

-/

WARNING
The PAUSE pseudo-op is designed specifi-
cally for use at the end of partial tapes and
should not be used otherwise.

The reason for this is that the reader routine may
have read data from the paper tape into its buffer
that is actually beyond the PAUSE statement.

Consequently, when CONTinue is pressed after
the PAUSE is found by the line interpreting rou-
tine, the entire content of the reader buffer fol-
lowing the PAUSE is destroyed, and the next tape
begins reading into a fresh buffer. Thus, if there
is any meaningful data on the tape beyond the
PAUSE statement, it will be lost.

DECIM Initially the numeric conversion mode is set for
octal conversion. However, if the user wishes, he
may change it to decimal by use of the DECIM
pseudo-op.

OCTAL If the numeric conversion mode has been set to
decimal, it may be changed back to octal by use-
of the OCTAL pseudo-op.
No matter which conversion mode has been per-
manently set, it may always be changed locally
for literals by use of the (D or (K syntax described
earlier. For example:

02g0 0320 ST*ART, 320
D E C IM

0201 El500 320
0202 0377 01 (K320
@203 1000 51 2

OCTAL
0204 0512 512
0205 0376 01 (D512
0206 0320 320

*

LAP The assembler is initially set for automatic genera-
tion of jumps to thinext core page when the page
being assembled fills up (Page Escapes), or when
PAGE or REORG pseudo-ops are encountered.
This feature may be suppressed by use of the
LAP (Leave Automatic Paging) pseudo-op.

EAP If the user has previously suppressed the auto-
matic paging feature, it may be restored to op-
eration by use of the EAP (Enter Automatic
Paging) pseudo-op.

PAGE

REORG

CPAGE

The PAGE pseudo-op causes the current core
page to be assembled as is. Assembly of succeed-
ing instructions will begin on the next core page.
No argument is required.
The REORG pseudo-op is similar to the PAGE
.pseudo-op, except that a numerical argument
specifying the relative location within the sub-
program where assembly of succeeding instruc-
tions is to begin must be given. A REORG below
200 may not be given. A REORG should always
be to the first address of a core page. If a REORG
address is not the first address of a page, it will
be converted to the first address of the page it
is on.

0200 7200 START,. CLA
P A G E

0400 7040 CMA
REORG 1000

1000 7041 C I A

The CPAGE pseudo-op followed by a numerical
argument N specifies that the following N words of
code1 must be kept together in a single unit and
not be spiit up by page escapes and iiterai tabies.
If the N words of code will not fit on the cwrent
page of code, the current page is assembled as if a

PAGE pseudo-op had been encountered. The N
words of code will then be assembled as a unit on
the next core page. An example follows.

NOTE
N must be less than or equal to 200 (octal)
in nonautomatic paging mode or less than or
equal to 176 octal in automatic paging mode.

lNormally data. However, if these N words are instructions, for example
a CALL with arguments, it is the user's responsibility to count extra
machine instructions which must be inserted by SABR.

@ 2 0 0 7 2 @ @ START, CLA
LAP / I N F I B I T PAGE ESCAPE
CPAGE 2 0 0 /CLOSES THE

0 4 0 0 0 0 0 0 NAME1 /CURRENT PAGE
0 4 m l 0 @ 0 @ NAME2 /AND ASSEMBLES

/THE NEXT PAGE

The conditional pseudo-op, IF, is used with the
following syntax:

IF NAME, 7

The action of the pseudo-op in this case is to first
determine whether the symbol NAME has been
previously defined. If NAME is defined, the
pseudo-op has no effect. If NAME is not defined,
the next seven symbolic instructions (not counting
null lines and comment lines) will be treated as
comments and not assembled.

/ABSYN NAME 1 7 6
I F NAME, 2 /THE NEXT L I N E

CLL RTL /TO BE ASSEMBLED
RAL /WILL BE "DCA LOC"

/ I F THE SLASH BEFORE "ABSYM NAME 1 7 6 "
/ I S REMOVED, THE "CLL RTL" AND "RAL"
/WILL BE ASSEMBLED.

0 2 0 0 3 2 0 1 DCA LOC
0 2 0 1 0 0 0 0 LOC, 0

Normally the symbol referenced by an IF state-
ment should be either an undefined symbol or a
symbol defined by an ABSYM statement. If this
is done, the situation mentioned below cannot
occur.

WARNING
In a situation such as the following, a special
restriction applies.

4-1 9

NAME, 0 .
I F NAME, 3

The restriction is that if the line NAME, 0 hap-
pens to occur on the same core page of instruc-
tions as the IF statement, then, even though it is
before the IF statement. NAME will not have been
previously defined when the I F statement is en-
countered, and on the first pass (though not in the
listing pass) the three lines after the IF statement
will not be assembled. The reason for this is that
location tags cannot be defined until the page on
which they occur is assembled as a unit.

Symbol Definition
ABSYM An absolute core address may be named using the

ABSYM pseudo-op. This address must be in the
same core field as the subprogram in which it is
defined. The most common use of this pseudo-op
is to name page zero addresses not used by the
operating system. These addresses are listed under
Linkage Routine Locations.
Operation codes not already included in the sym-
bol table may be defined by use of the OPDEF or
SKPDF pseudo-ops. Non-skip instructions must
be defined with the OPDEF pseudo-op and skip-
type instructions must be defined with the SKPDF
pseudo-op.

OPDEF
SKPDF

Examples of ABSYM, OPDEF and SKPDF syn-
tax:

0177 ABSYMTEM
0010 ABSYM AX
6761 OPDEF DTRA
677 1 SKPDF DTSF
7 540 SWDF SMZ

177 /PAGE 0 ADDRESSES
10
6761 INON-SKIP INSTR.
6771 /SKIP-TYPE INSTR.
7540

NOTE
ABSYM, OPDEF and SKPDF definitions
must be made before they are used in the
program.

COMMN ' The COMMN pseudo-op is used to name loca-
tions in field l as externals so that they may be
referenced by any program. If any COMMN state-
ments are used, they must occur at the beginning
of the source, before everything else including
the ENTRY statement. Common storage is always
in field 1 and is allocated from location 0200
upwards. Since the top page of field 1 is reserved,
no more than 384Oio words of common storage
may be defined.
A COMMN statement normally takes a symbolic
address label, since storage is being allocated.
However, common storage may be allocated with-
out an address label.
A COMMN statement always takes a numerical
argument which specifies how many words of
common storage are to be allocated; however, a

- 0 argument is allowed. A COMMN statement
with 0 argument allocates no common storage;
it merely defines the given location symbol at the
next free common location.
The syntax of the COMMN statement is shown
as follows :

@ 2 3 7 C\J CCYYV 2 3
0 220 B, C OMMN 10
0 2 3 0 COMMN 300
0 530 C J CCMMN 0
0 530 D J COMMK 10

ENTRY SUERUT

In this example-20 words of common storage are
allocated from 0200 to 0217, and A is defined
at location 0200. Then, 10 words are allocated

from 0220 to 0227, and B is defined at 0220.
Notice that if A is actually a 30 word array, this
example equates B (1) with A (2 1) .
The example continues by allocating common
storage from 0230 to 0527 with no name being
assigned to this block. Then 10 words are al-
located from 0530 to 0537 with both C and D
being defined at 0530.

Data Generating
BLOCK The BLOCK pseudo-op given with a numerical

argument N will reserve N words of core by
placing zeros in them. This pseudo-op creates
binary output, and thus may have a symbolic
address label.
Before the N locations are reserved, a check is
made to see if enough space is available for them
on the current core page. If not, this page is as-
sembled and the N locations are reserved on the
next core page. The action here is similar to that
of the CPAGE pseudo-op. Similar restrictions on
the argument apply.

{EXAMPLE OF HOW LARGE BLOCK STORAGE
/MAY BE ACHIEVED W I T H I N A SUBPROGRAM AREA

LAP / I N H I B I T P A G E ESCAPES
BLOCK 2 0 0 /RESERVE 500
BLOCK 2 0 0 / (0 CTAL) LOCAT I O N S
BLOCK 100
EAP /RESUME IMUKiAL CODING

As a special use, if the BLOCK pseudo-op is used
with a location tag (but with no argument or a
zero argument), no code zeros are assembled; in-
stead the symbolic address label is made equiv-
alent to the next relative core location assembled.
(This is equivalent to using a symbolic address
label with no instruction on the same line.)

LIST, BLOCK 3 /ASSEMBLES AS

/THREE ZEROS
/WITH "LIST"
/DEFINED AT THE
/FIRST LOCATION

NAME1, BLOCK /DEFINES NAME1 =
NAMES, BLOCK 0 /NAME2=NAME3=
NAMES, /NAME4
NAME4, BLOCK 2

TEXT The TEXT pseudo-op is used to obtain packed
six-bit ASCII text strings. Its function and use
are almost exactly the same as for the BLOCK
pseudo-op except that instead of a numerical ar-
gument, the argument is a text string. In partic-
ular, a check is made to be sure that the text
string will fit on the current page without being
interrupted by literals, etc.
The text string argument must be contained on .
the same line as the TEXT pseudo-op. Any print-
ing character may be used to delineate the text
string. This character must appear at both the be-
ginning and the end of the string. Carriage return,
line feed and form feed are illegal characters
within a text string (or as delineators). All char-
acters in the string are stored in simple stripped
six-bit form. Thus, a tab character (ASCII 21 1)
will be stored as an 11, which is equivalent to the
coding for the letter I. In general, characters out-
side the ASCII range of 240-337 should not be
used.

0200 2405 TAG , TEXT /TEXT EXAMPLE 123*;?/
0201 3024
0202 4005
0203 3001
0204 1520
0205 1405
0206 4061
0207 6263
0210 5273
0211 7700

SUBROUTINES
A subroutine is a subprogram which performs a specific opera-

tion and is generally designed so that it can be used more than
once or by more than one program. Direction of flow goes from the
main, or calling, program to the subroutine, where the action is
performed, followed by a return back to the address following the
subroutine call in the main program.

Internal subroutines are those subroutines which can only be
called from within a program. This type of subroutine is used
extensively in nearly all PDP-8 programs, and is handled through
the use of the JMS, JMS I, and JMP I instructions. An example of
an internal subroutine call follows:

0200 7300 START, CLA
0201 1204 TAD
0202 4206 JMS

DCA

0204 0001 N, 1
0205 0000 RESLT, 0

/SUBROUT I N E
0206 0000 TWO, 0
0207 7104 C1 , I .

mo!d ?'i'"!B "-ad C 7 T

0211 7402 HLT
0212 6201 05 JMP
0213 5606

The main program picks up a

CLL
N /GET NUMBER IN AC
TWO /TRANSFER TO SUB-

/ROUTINE
RESLT /STORE NUMBER

/(CONTROL RETURNS
/HERE

RAL / R O T A T E LEFT AND
/MULTIPLY BY 2
/CEECI< FCR %,"i,'EFL.G%
/STOP IF OVERFLOW

I TWO /RETURN TO MAIN

number (N) and jumps to the
subroutine (TWO) where N is multiplied by two. A check is made,
and if there is no overflow, control returns to the main program
through the address stored at the location TWO.

External subroutines are distinguished from internal subrou-
tines by the fact that they may be called by a program which has
been compiled, or assembled, without any knowledge of where the
subroutine will be located in core memory. Thus, external sub-
routines must be loaded with a relocatable linking loader. This
makes it possible for a programmer to build a library of frequently

used programs and subroutines which can be combined in various
configurations, and eliminates the need to reassemble, or recompile,
each individual program when a minor change is made in the
system.

A call to an external subroutine can be illustrated using the
following FORTRAN programs :

IPARM=S (Calling Program)
CALL T V ; O (I P A R M)
W R I T E (1 , 1 0 0) IPARM

1 0 0 FORMAT (1 5)
END

SUBROUTINE TWO(IARG 1
IARG= IARG+ IARG
RETURN
END

(Subroutine)

NOTE
Care should be exercised when naming a
function or subroutine. It must not have the
same name as any of the assembler mne-
monics or pseudo-ops or FORTRAN/SABR
library functions or -subroutines, as errors are
likely to result. The symbol table for SABR
Assembler is listed in Appendix C, and the
library functions are described in the section
The Subprogram Library.

Any time a subroutine is called, it must have data to process.
This data is contained in parameters in the calling program which
are then passed to the subroutine. The data is picked up by the
subroutine where it is referred to as arguments. (The subroutine
actually picks up the arguments by a series of TAD I's, and one
final TAD I for an integer argument, or by a call to the IFAD
subroutine if a floating point argument. This is illustrated in the
section entitled SABR Programming Notes.) SABR has special
pseudo-operators which facilitate the passing/handling of argu-
ments, and each will be explained in turn.

CALL and ARG
The CALL pseudo-op is used by the main program to transfer

control to the subroutine and is of the form:

4-25

CALL ..n,NAME

where n represents a one or two-digit number (62io maximum)
indicating the number of parameters to be passed to the subrou-
tine, and NAME (separated from n by a comma) represents the
symbolic name of the subroutine entry point.

The Assembler must know the number of parameters which
follow the call so that enough room on the current page can be
allowed. The CALL pseudo-op and its corresponding parameters
must always be coded on the same memory page; that is, there
must be no intervening page escapes. (Page format and page es-
capes are discussed later in the chapter.)

The ARG pseudo-op is used only in conjunction with CALL
and consists of the symbol ARG followed by one of the para-
meters (referred to as arguments in the subroutine) to be passed.
One ARG statement must be coded for each parameter.

In the previous FORTRAN example, the main program- (or it
may have been a subroutine) called a subroutine named TWO, and
supplied one argument:

CALL 1 > T W O
ARG IPARM
Â . .

SABR actually assembles the above instructions as follows (the
user may wish to consult the section concerning the Loader Relo-
cation Codes) :

0200 0000 IPARM, BLOCK 1

CALL 1 /TWO

ARG IPARM

END

ENTRY and RETRN
In the subroutine, the ENTRY statement must occur before the

name of the entry point appears as a symbolic address label. The
actual entry location must be a two-word reserved space so that - -

both the return address and field can be saved when the routine
is called. Execution of the subroutine begins at the first location
following the two-word ENTRY block. For example, the TWO
subroutine mentioned in the previous example would begin as fol-
lows :

ENTRY TWO
0200 0000 TV Oi BLOCK 2
0201 0000

RETRN TWO

END

When a subroutine is referenced in a CALL statement, the
Run-Time Linkage Routine LINK executes the transfer to the sub-
routine. It assumes that the entry point to the routine is a two-
word block. Into the first word of this block it places a CDF in-
struction which specifies the field of the calling program. In the
second word it places the address from which the CALL occurred.
(This is analogous to the operation of the JMS instruction.) In
the previous example, if the MAIN program had been in field 0,
a 6201 would have been deposited in the location at TWO, and a
0210 at TWO #.

The RETRN statement allows the user to return to the calling
program from the subroutine. The name of the subroutine being
returned from must- be specified in the RETRN statement so that
the Return Linkage Routine can determine the action required,
and also because a subroutine may have differently named ENTRY *

points. (This is analagous to the operation of a JMP I instruction.)
When a subroutine is entered, the second word of the entry name

block contains the address of the argument or next instruction
immediately following the subroutine call in the calling program,
and it is to this address that control returns.

Example
A user wishes to write a long main program, MAIN?, which

uses two major subroutines, S l and S2. S l requires two arguments
and S2 one argument. The user writes MAIN, S l , and S2 as three
separate programs in the following manner:

ENTRY MAIN
MAIN, CLA /START OF MAIN

.
CALL 2fS l
ARG X
ARG Y
CALL 1 a S 2
ARG Z
* .
END

,
ENTRY S l

S l J BLOCK 2

.
RETRN S l
EN D

ENTRY S2
S2 9 BLOCK 2

Â

RETRN S2
HMD

S l could also contain calls to S2, or S2 calls to Sl. Each of these
programs is independently assembled with SABR and loaded with
the Linking Loader. During the loading process, all of the proper
addresses will be saved in tables so that when the user begins
execution of MAIN, the Run-Time Linkage Routines (see SABR

-- -

2 A useful procedure in SABR programming is to provide an ENTRY
point named MAIN in the main program at the address where execution
is to begin. This assures that the starting address of the program will
appear in the Linking Loader's symbol print-out where it may be easily
referenced. If using OS/8, execution will begin at this address auto-
matically, eliminating the need to specify a 5-digit starting address.

Operating Characteristics), - which were automatically loaded, will
be able to execute the proper reference. Thus, MAIN will be able
to fully use S l and S2 and be able to pass data to and receive it
from them.

Passing Subroutine Arguments

DUMMY
A DUMMY pseudo-op is used in SABR to define a two word

block which contains an argument address. Indirect instructions
are used to pass arguments to and from subroutines through these
DUMMY variables. If a DUMMY variable is referenced indirectly,
it causes a CALL to the DUMMY Variable Run-Time Linkage
Routine (see Run-Time Linkage Routines) which assumes that
the DUMMY variable is a two-word reserved space where the
first word is a 62N1 (CDF N), with N representing the field of
the address to be referenced, and that the second word contains a
12-bit address.

As\ an example, consider the FORTRAN subroutine TWO
shown earlier. This could be written in SABR as follows (the user
may wish to refer to the section concerning the Subprogram
Library) :

/CALLED BY: CALL Tbl0 C I A R G)

ENTRY TWO / D E F I N E T H E
/ENTRY P T . U S E D

DUMMY IARG /TO P I C K UP ARC
IARG, BLOCK 2

TWO, BLOCK 2 /ENTRY P O I N T

TAD I TWO

I N C TWO# /GET ARG ADDRESS
DCA IARG
TAD I T W O '

I N C TWO#
DCA IARG#
TAD I IARG /GET ARGUMENT

/ I N T O AC
TAD I IARG /ADD I T AGAIN

DCA I IARG /RETURN ARG- T O

/ C A L L I N G PROGRAM
RETRN TWO

END

A second example may be one in which a user has written a
FORTRAN program which contains a call to a SABR subroutine
ADD:

A=2
N = 3
CALL A D D C A J N J C)
W R I T E (1,20)C
FORMAT (' T H E SUM I s ' ~ F 6 . 1)

t

S T O P

The FORTRAN program is compiled and the resulting SABR
code translates the subroutine call as follows :

4033 CALL 3 ,ADD
0305 06
6201 0 5 ARG A
0200 01
6 2 0 1 0 5 A R G N
0203 01
6 2 0 1 0 5 A R G C
0204 01

The CALL statement defines 3 parameters-A, N, and C , and the
subroutine name ADD. The subroutine itself would appear as
follows (the DUMMY variables X, K, and Z.facilitate the passing
of the arguments to and from the subroutine) :

/CALLED BY: CALL ADD (X s K s Z 5
ENTRY ADD
DUMMY X
DUMMY K
Â¥DUMM Z
BLOCK 2

BLOCK 2

BLOCK 2

x
0
0
BLOCK 2 /ENTRY P O I N T

TAD XPNT
DCA P N T R
TAD (-6
DCA CNTR
TAD I ADD

I N C ADD#
DCA I P N T R

I N C P N T R
I S Z CNTR
JMP A 1
TAD I K /GET 2ND ARG

CALL 0 s F L O T /CONVERT T O

/FLOAT ING P T
CALL 1 A F A D /ADD 1 S T ARG

ARG X

CALL 1 s I S T O /RETURN RESULT

ARG Z

RETRN ADD

END

The COMMN pseudo-op may be used to specify variables as
externals so that they may be referenced by any program. This 4

pseudo-op has been explained under Symbol Definition; an exam-
ple of its usage is included here.

0 2 0 0 C ;> COMMN 3 IRESERVES COMMON
/STORAGE

ENTRY CSQR /DEFINES ENTRY PT.
BLOCK 2 /ACTUAL ENTRY POINT

CALL 1 >FAD /GET THE ARGUMENT

ARG C

CALL 1 i F M P /MULTIPLY I T

ARG C

CALL 1 9 S T 0 /REPLACE WITH RESULT

ARG C

RETRN CSQR /RETURN TO CALLING

/PROGRAM
END

This subroutine computes the square of a variable C. C resides
in field 1 in common storage where it can be referenced by any
calling program through argument passing. The above is equivalent
to the FORTRAN subroutine :

S U B R O U T I N E CSQR
COMMON C
c=c*c
R E T U R N
EN D

SABR OPERATING CHARACTERISTICS
Page-by-Page Assembly

SABR assembles page-by-page rather than one instruction at a
time. To accomplish this it builds various tables as instructions
are read. When a full page of instructions has been collected
(counting literals, off-page pointers and multiple word instruc-
tions) the page is assembled and punched. Several pseudo-opera-
tors are available to control page assembly.

PAGE FORMAT
A normal assembled page of code is formatted as below:

ASSEMBLED
INSTRUCTIONS

JUMP TO

LITERALS
AND

OFF- PAGE
POINTERS

ESCAPE Irosi

Literals and off-page pointers are intermingled in the table at
the end of the page. k.

PAGE ESCAPES
SABR is normally in automatic paging mode: it connects each

assembled core page to the next by an appropriate jump. This is -

called a page escape. For the last page of code, SABR leaves the
Automatic Paging Mode and issues no page escape. The LAP
(Leave Automatic Paging) pseudo-operator turns off the auto-
matic paging mode. EAP (Enter Automatic Paging) turns it back
on if it has been turned off.

Two types of page escape may be generated depending on
whether or not the last instruction is a skip. If the last instruction
is not a skip, the page escape is as follows:

,

last instruction (non-skip)
5377 (JMP to xl77) *

literals
and
off -page
pointers

xl77/NOP

If the last instruction on the page is a skip type, the page escape
takes four words, as follows:

last instruction (a skip)
5376 (JMP to xl76)
5377 (JMP to xl77)
literals
etc.

x176/SKP
xl77/SKP

Multiple Word Instructions
Certain instructions in the source program require SABR to

assemble more than one machine language instruction (e.g., off-
page indirect references and indirect references where a data field
re-setting may be required). In the listing, the source instruction
will appear beside the first of the assembled binary words.

A difficulty arises when a multiple word instruction follows a
skip instruction. The user need be aware that extra instructions
are automatically assembled to enable the skip to be effected cor-
rectly.

Run-Time Linkage Routines
These routines are loaded by the Linking - Loader and perform

their tasks automatically when certain pseudo-ops or coding se-
quences are encountered in the user program. The user needs
knowledge of them only to better understand the program listing.
(The user may wish to refer to the section entitled Loader Relo-
cation Codes.)

There are seven linkage routines:

1. Change data field to current and skip CDFSKP
2. Change data field to 1 (common) and skip CDZSKP
3. Off-page indirect reference linkage OPISUB
4. Off-bank (common) indirect reference OBISUB

linkage
5. Dummy variable indirect reference linkage DUMSUB
6. Subroutine call linkage LINK
7. Subroutine return linkage RTN

The individual linkage routines functionas follows:.

1. CDFSKP is called" when a direct off-page- memory refer-
ence follows a skip-type instruction requiring the data field to be
reset to the current field.

Assembled
Program Code Meaning

,
SZA 7440
DCA LOC 4045 call CDFSKP

7410 SKP in case AC = 0 at .-2
4. 3776 execute the DCA via a

pointer near the end of the
-

page*

2. CDZSKP is called when a direct memory reference is made -
to a location in common (which is always in Field 1). The ac-
tion of CDZSKP is the same as that of CDFSKP except that it
always executes a CDF 10 instead of a CDF current (see Loader
Relocation Codes).

Assembled
Program Code Meaning

SZ A 7440
DCA CLOC 405 1 call CDZSKP

7410 SKP in case AC = 0 at .-2
3776 execute the DCA via a

pointer near the end of the
page.

3. OPISUB is called when there is an indirect reference to an
off-page location.

Assembled
Program Code Meaning - -
DCA I PTR 4062 call OPISUB

0300 01 relative address of PTR
3407 execute the DCA I via 0007

4. OBISUB is called when there is an indirect reference to a
location in common storage. In such a case it is assumed that the

location in common which is being indirectly referenced points to
some location that is also in common.

Assembled
Program Code Meaning -
DCA I CPTR 4055 call OBISUB

1000 address of CPTR in Field 1
3407 execute the DCA I via 0007

5. DUMSUB is called when there is an indirect reference to
a DUMMY variable. In such a case, DUMSUB assumes that the
DUMMY variable is a two-word vector in which the first word is
a 62N1, where N = the field of the address to be referenced, and
the second word is the actual address to be referenced.

Assembled
Program Code Meaning -
DCA I DMVR 4067 call DUMSUB

0300 01 relative address of DMVR
3407 execute DCA I via pointer

in location 0007

6. LINK is called to execute the linkage required by a CALL
statement in the user's program. When a CALL statement is used,
ii is assumed that the entry point of the subprogram is named in
the CALL and that this entry point is a two-bit word, free block fol-
lowed by the executable code of the subprogram. LINK leaves the
return address for the CALL in these two words in the same format
as a DUMMY variable.

Assembled
Program Code Meaning -
CALL 2, SUBR 4033 call LINK

0205 06 code word
ARG X 62M1 X resides in field M

0300 01 relative address of X
ARG C 6211 C is in common

1007 absolute address of C

7. RTN is called to execute the linkage by a RETRN state-
ment in the user's program.

Assembled
Program Code Meaning -
RETRN SUBR 4040 call RTN

0005 06 number of the subprogram
being returned from (SUBR)

Skip Instructions
In page escapes and multiple word instructions, skip-type in-

structions must be distinguished from non-skipping instructions.
For this reason both ISZ and INC are included in the permanent
symbol table. ISZ is considered to be a skip instruction and INC
is not. INC should be used to conserve space when the program-
mer desires to increment a memory word without the possibility
of a skip.

The first example below shows the code which is assembled for
an indirect reference to an off-page location following an INC in-
struction. The second example shows the same code following an
ISZ instruction.

Example 1:

INC POINTR 0220 ' 2376
TAD I LOC2 0221 4062

0222 0520 0 1 /OFF PAGE INDIRECT EXECUTION
0223 1407

Example 2:

ISZ COUNTR 0220 2376
TAD I LOC2 0221 7410 /SKIP TO EXECUTION

0222 5226 /JUMP OVER EXECUTION
0 2 2 3 4062
0224 0520 01 /OFF PAGE INDIRECT EXECUTION
0225 1407

A special pseudo-operator, SKPDF, must be used to define skip
instructions used in source programs but not included in the perma-
nent symbol table. For example:

SKPDF DTSF 6771

Program Addresses
Since each assembly is relocatable, the addresses specified by

SABR always begin at 0200, and all other addresses are relative
to this address. At loading time, the Linking Loader will properly
adjust all addresses. For example, if 0200 and 1000 are the relative
addresses of A and B, respectively, and if A is loaded at 2000,
then B will be loaded at 2000 + (1 000-0200) or 2600.

All programs to be assembled by SABR must be arranged to fit
into one field of memory, not counting page 0 of the field, or the
top page (7600 - 7777). If a program is too large to fit into one
field, it should be split into several subprograms.

' Explicit CDF or CIF instructions are not needed by SABR pro-
grams because of the availability of external subroutine calling and
common storage. Explicit CDF or CIF instructions cannot be as-
sembled properly.

The Symbol Table
Entries in the symbol table are variable in length. A one or two-

character symbol requires three symbol table words. A three- or
four-character symbol requires four words, and a five- or six-
character symbol, five words. Thus, for long programs it may be
to the user9s advantage to use short symbols whenever possible.

The symbol table, not counting permanent symbols, contains
nfi 4 4 words of storage. However, this space must be shared
when there are unresolved forward and external references tem-
porarily stored as two-word entries.

If we may assume that a program being assembled never has
more than 100io of these unresolved references at any one time,
this leaves 2464io words of storage for symbols. Using an average
of four words per symbol, this allows room for 61610 symbols.

The OS/8 version of SABR has a smaller space for symbol
tables, leaving 136410 words of storage, or 1620io if used as the *

second pass of FORTRAN I1 .
Symbol table overflow is a fatal condition which generates the

error message S.

SYMBOL TABLE FLAGS
Symbols are listed in alphabetic order at the end of the assembly

pass 1 with their relative addresses beside them. The following
flags are added to denote special types of symbols:

ABS

COM

OP

EXT

UNDF

The address referenced by this symbol is absolute.

The address is in common.

The symbol is an operator. .

The symbol is an external one and may or may not
be defined within this program. If not defined, there
is no difficulty; it is defined in another program.

The symbol is not an external symbol and has not
been defined in the program. This is a programmer
error. No earlier diagnostic can be given because it
is not known that the symbol is undefined until the
end of pass 1. A location is reserved for the unde-
fined symbol, but nothing is placed in it.

THE SUBPROGRAM LIBRARY
The Library is a set of subprograms which may be CALLed by

any FORTRAN/SABR program. These subprograms are auto-
matically loaded with the OS/8 FORTRAN/SABR.system; in the
paper tape system they are provided on two relocatable binary
paper tapes with part 1 containing those subprograms used by

- almost every FORTRAN/SABR program. This allows the user
to load only those routines which his program makes use of, thus
conserving symbol space.

Many of the subprograms reference the Floating-point Accumu-
lator located at ACH, ACM, ACL (20,21,22 of field 1). The
OS/8 Subprogram Library is summarized in the FORTRAN I1
chapter. The organization of the library programs, as they are pro-
vided in the paper tape system, is described in the following pages.

Part 1. "IOH" contains
"FLOAT" contains

"INTEGER" contains

"UTILITY" contains

"ERROR" contains

IOH, READ, WRITE
FAD, FSB, FMP, FDV, STO,
FLOT, FLOAT, FIX, IFIX,
IFAD, ISTO, CHS, CLEAR
IREM, ABS, IABS, DIV,
MPY, IRDSW
TTYIN, TTYOUT, HSIN,
HSOUT, OPEN, CKIO
SETERR, CLRERR, ERROR

Part 2. "SUBSC" contains SUBSC
"POWERS" contains IIPOW, IFPOW, FIPOW,

FFPOW, EXP, ALOG
"SORT" contains SQRT
"TRIG" contains SIN, COS, TAN
" ATAN" contains ATAN

Input/ Output
READ is called to initialize the 1/0 handler before reading data.

WRITE is called to initialize the 1/0 handler before writing data.
IOH is called for each item to be read or written. IOH must also
be called with a zero argument to terminate an input-output se-
quence.

All of the programs require that the Floating-point Accumu-
lator be set to zero before they are called.

CALL

ARG

ARG
ma*

CALL

ARG

CALL

ARG
am@

*ma

CALL

ARG
ma*

CALL

ARG

ARG

2, READ

(n ^DEVICE NUMBER
fa /fa=ADDR OF FORMAT

1, IOH

data 1 /data l=ADDR OF HIGH
/ORDER WORD OF
/FLOATING POINT
/NUMBER

1, IOH

data 2

1, IOH /TERMINATES READ
0

2, WRITE /INITIALIZES WRITE

(0

fa

4-40

The following device numbers are currently implemented:

4 1 (Teletype keyboard/printer) '

2 (High-speed reader/punch)
3 (Card reader/line printer)
4 (Assignable device)

Floating Point Arithmetic
FAD is called to add the argument to the Floating-point Ac-

cumulator.

CALL 1, FAD
ARG addres

FSB is called to subtract the argument from the Floating-point
Accumulator.

CALL * 1, FSB
ARG addres

FMP is called to multiply the Floating-point Accumulator by
the argument.

CALL 1, FMP
ARG addres

FDV is called to divide the Floating-Point Accumulator by the
argument. 4

CALL 1, FDV
ARG addres

CHS is called to change the sign of the Floating-Point Accu-
mulator.

CALL 0, CHS

All of the above programs leave the result in the Floating-point
Accumulator. The address of the high-order word of-the floating-
point number is "addres".

S T 0 is called to store the contents of the Floating-point

Accumulator in theargument-address. The floating-point accumu-
lator is cleared.

CALL 1, S T 0
ARG storag /storag=ADDRESS WHERE

/RESULT IS TO BE PUT

IFAD is called to execute an indirect floating-point add to the
Floating-point Accumulator.

CALL 1, IFAD
ARG Ptr /ptr=2 WORD POINTER

/TO HIGH ORDER
/ADDRESS OF FLOATING
/POINT ARGUMENT

ISTO is called to execute an indirect floating-point- store.

CALL 1, ISTO
ARG Ptr

CLEAR is called to clear the Floating-point Accumulator. The
AC is unchanged.

CALL 0, CLEAR

FLOAT and PLOT arc called to convert the integer contained
in the AC (processor accumulator) to a floating-point number and
store it in the Floating-point Accumulator.

CALL 0, FLOT or
CALL 1, FLOAT
ARG addr

IFIX and FIX are called to convert the number in the Floating-
Point Accumulator to a 12-bit signed integer and leave the result
in the AC.

CALL 0, FIX or
CALL 1, IFIX
ARG addr

ABS leaves the absolute value of the floating-point number at
"addr" in the Floating-point Accumulator.

CALL 1, ABS
ARG addr

Integer Arithmetic
MPY is called to multiply the integer contained in the AC by

the integer contained in "addr." The result is left in the AC.

CALL 1, MPY
ARG addr ,--

DIV is called to divide the integer contained in the AC by the
integer contained in "addr." The result is left in the AC.

CALL 1, DIV ,
ARG addr

IREM leaves the remainder from the last executed integer divide
in the AC.

CALL 1, IREM ,
ARG 0

(The argument is ignored.)

IABS leaves the absolute value of the integer contained in
"addr" in the AC.

CALL I, IABS
ARG addr

IRDSW reads the value set in the console switch register into
the AC.

CALL 0, IRDSW

Subscripting
SUBSC is called to compute the address of a subscripted.vari-

able, and can be used for doubly or singly subscripted arrays. On
entry, the AC should be negative for floating-point variables-any
negative number for singly subscripted variables, and 1's comple-
ment of the first dimension for doubly subscripted variables. For
doubly subscripted integer variables, the AC must be the first
dimension.

The general calling sequence for SUBSC is as follows:

*TAD (M / 1 S T D I M E N S I O N (U S E D ONLY
/ I F 2 D I M E N S I O N S)

*CMA /USED ONLY IF ARRAY I S
/ F L O A T I N G P O I N T -

23 S U B S C / S I N G L E S U B S C R I P T
CALL[j

33 S U B S C /DOUBLE S U B S C R I P T
*ARG J

ARG I
ARG B A S E
LOCA

/2ND D I M E N S I O N
11 ST DIMENSION
/BASE A D D R E S S OF ARRAY
/ADDRESS OF TWO WORD DUMMY
.YAEERESSk. LQCAT I !3?J ...

* Optional Statements.

For example, to load the I,Jth element of a floating-point array
whose dimensions are 5 by 7:

TAD (5
CMA / D I M E N S I O N S A R E 5 BY 7
CALL 3 , S U B S C
ARG J /ADDRESS O F 2 N D S U B S C R I P T
ARG I /ADDRESS O F 1 S T S U B S C R I P T
ARG ARRAY / B A S E A D D R E S S O F ARRAY
LOC /MUST B E A DUMMY V A R I A B L E
CALL 1 I F A D
ARG LOC

Functions
SQRT leaves the square root of the floating-point number at

"addr" in the Floating-point Accumulator.

CALL 1, SQRT
ARG addr

SIN, COS, TAN leave the specified function of the floating-point
argument at "addr" in the Floating-point Accumulator.

a CALL 1, SIN
ARG addr

ATAN leaves the arctangent of the floating-point number at
"addry' in the Floating-point Accumulator.

CALL 1, ATAN
ARG addr

ALOG leaves the natural logarithm of the floating-point num-
ber at "addr7' in the Floating-point Accumulator.

CALL 1, ALOG
ARG addr

EXP raises "e" to the power specified by the floating-point num-
ber at "addr" and leaves the result in the floating-point accu-
mulator.

CALL 1, EXP
ARG , addr

All of these subprograms require that the floating-point accu-
mulator be set to zero before they are called.

The POWER routines (IIPOW, IFPOW, FIPOW, FFPOW)
are called by FORTRAN to implement exponentiation. The first
operand is in the AC (floating-point or processor depending on
mode), and the address of the second is an argument. The address
of the result is in the appropriate AC upon return.

IIPOW
IFPOW
FIPOW
FFPOW

FUNCTION
NAME

CALL 2, FF'POW
ARG addr 2 /ADDRESS OF OPERAND 2

MODE OF
OPERAND 1

(BASE)

INTEGER
INTEGER
FLOATING POINT
FLOATING POINT

Utility Routines
*

OPEN is called at the beginning of every FORTRAN program
to start the high-speed reader/punch and teleprinter, and to initial-
ize the 1/0 routines for device code 4 if using the OS/8 FOR-
TRAN/SABR system. The form is :

MODE OF
OPERAND 2
(EXPONENT)

INTEGER
FLOATING POINT
INTEGER
FLOATING POINT

CALL 0 OPEN

MODE OF
RESULT

INTEGER
FLOATING POINT -
FLOATING POINT
FLOATING POINT

When an error is encountered in a program, the ERROR rou-
tine is called. The program passes to the ERROR routine the
address of the error message to be printed. The format of the
error message is 4
2 words:

characters in stripped ASCII and packed into

ENTRY ABC
XYZ* 0 1 0 2 ; 0 3 0 4

ABC* BLOCK 2
a

CALL I >ERROR
ARG XYZ

When control passes to the ERROR routine, the parameters
passed are picked up. In the case above, the parameters are as
follows: I

ARC XYZ

where N is the field that'XYZ is in, and 2343 is the address of
XYZ. The ERROR routine then punts the message at location
2343 pius a 5-digit address which is 2 greater than 2343.

ABCD ERROR AT N2345
n

Since XYZ is 2 locations before ABC, the address printed will be
the address of ABC.

The error message is usually placed just before the entry point
of the routine in which the error was detected-thus the address
printed by ERROR will be the .address of the entry point. This
provides a convenience to the programmer since the entry point
will appear in the Loader Map.

CKIO is a subroutine which waits for the TTY flag to be set. It
is called by the OS/8 EXIT subroutine to eliminate the possibility
of a garbled TTY output. It may be used in FORTRAN for pos-
sible expansion with interrupts, and is of the form:

CALL 09CKIO

The following subroutines-IOPEN, OOPEN, OCLOSE,
CHAIN, EXIT, and GENIO-are used by the OS/8 FORTRAN/
SABR Operating System for device independent 1/0 and chaining.

DECtape 1 / 0 Routines
RTAPE-and WTAPE (read and write tape) are the DECtape

read and write subprograms for the SK FORTRAN and 8K SABR
systems. The subprograms are furnished on one relocatable binary-

.coded paper tape which must be loaded into field 0 by the 8K
Linking Loader, where they occupy one page of core.

RTAPE and WTAPE allow the user to read and write any
amount of core-image data onto DECtape in absolute, non-file-
structured data blocks. Many such data blocks may be stored on a
single tape, and a block may be from 1 to 4096 words in length.

RTAPE and WTAPE are subprograms which may be called
with standard, explicit CALL statements in any 8K FORTRAN or
SABR program. Each subprogram requires four arguments sep-
arated by commas. The arguments are the same for both subpro-

/" grams and are formatted in the same manner. They specify the
following:

1. DECtape unit number (from 0 to 7)
2. Number of the DECtape block at which transfer is to

start. The user may direct the DECtape service routine to
begin searching for the specified block in the forward direc-
tion rather than the usual backward direction by making
this argument the two's complement of the block number.

3. Number of words to be transferred (lGNG4096)
4. Core address at which the transfer is to start.

DECtape 1/0 Routines for the FORTRAN I1 system are ex-
plained in Chapter 7. In SK SABR, the CALL statements to
RTAPE and WTAPE are written in the following format (argu-
ments may be either octal or decimal numbers) :

CALL 4 i V T A P E /WOULD BE SAME FOR RTAPE
ARG (6 /DATA U N I T NUMBER
ARG (200 /STARTING BLOCK NUMBER

/ I N OCTAL
ARG (604 /WORDS TO B E TRANSFERRED

/ I N OCTAL
ARG LOCB /CORE ADDRESS, START OF

[TRANSFER

In these examples, LOCA and LOCB may or may not be in com-
mon.

As a typical example of the use of RTAPE and WTAPE, as-
sume that the user wants to store the four arrays A, B, C, and D
on a tape with word lengths of 2000, 400, 400, and 20 respectively.
Since PDP-8 DECtape is formatted with 1474 blocks (numbered
0-2701 octal) of 129 words each (for a total of 190,146 words),
A, B, C, and D will require 16, 4, 4, and 1 blocks respectively.
(The block numbers used by RTAPE and WTAPE should not be
confused with the record numbers used by OS/8. A OS/8 record
is 256 words-roughly twice the size of a DECtape block.)

Each array must be stored beginning at the start of some DEC-
tape block. The user may write these arrays on tape as follows:

The user may also read or write a large array in sections by
specifying only one DECtape block (129 words) at a time. For
example, B could be read back into core as follows:

CALL RTAPE (0 ~ 1 7 ~ 2 5 8 . ~ B (l))
CALL RTAPE (0 , 1 9 > 1 2 9 ~ B (2 5 9))
CALL RTAPE (0 ~ 2 0 , 1 3 , B (3 8 8))

As shown above, it is possible to read or write less than 129
words by starting at the beginning of a DECtape block. It is im-
possible, however, to read or write starting in the middle of a
block. For example, the last 10 words of a DECtape block may
not be read without reading the first 119 words as well.

A DECtape read or write is normally initiated with a backward

search for the desired block number. To save searching time, the
user may request RTAPE or WTAPE to start the block number
search in the forward direction. This is done by specifying the .
negative of the block number. This should be used only if the
number of the next block to be referenced is at least ten block
numbers greater than the last block number used. For example,
if the user has just read array A and now wants array D, he may
write :

CALL R T A P E (0 , 1 9 2 0 0 0 , A)
CALL R T A P E C 0 , - 2 7 , 2 0 , D)

THE BINARY OUTPUT TAPE
SABR outputs each machine instruction on binary output tape

as a 16-bit word contained in two 8-bit frames of paper tape. The
first four bits contain the relocation code used by the Linking
Loader to determine how to load the data word. The last 12 bits
contain the data word itself.

RELOCATION 1 . CODE

SECOND FRAME

The assembled binary tape is preceded and followed by leader/
trailer code (code 200). The checksum is contained in the last two
frames of tape before the trailer code. It appears as a normal 16-bit
word, as shown below.

, I 1 LOW ORDER OF DATA WORD SECOND FRAME

All assembled programs have a relative origin of 0200.

Loader Relocation Codes
The four-bit relocation codes issued by SABR for use by the

Linking Loader are explained below. The codes are given in octal.
00 Absolute Load the data word at the current

loading address. No change is re-
quired.

'IMP L,OC / W E R E LOG I S
/AT @ f l y 7 (OF
/ C U R R E N T PAGE)

01 Simple Add the relocation constant to the
= Relocation word before loading it. (The relo-

cation constant is 200 less than the
actual address where the first word
of the program is loaded.) Items
with this code are always program
addresses.

In the above example, LOC2 ,is at
relative address 0520. If the first
word of the program (relative ad-
dress 0200) is loaded at 1000,
then the actual address of A is
1 176 and location 1 176 will be
loaded with the value 1320, which
will be the actual address of LOC2
when loaded.

03 External The data word is the relative ad-
Symbol dress of an entry point. Before en-
Definition* tering this definition in the Linkage

Tables so that the symbol may be
referenced by other programs at
run-time, the Linking Loader must
add the relocation constant to it.
The six frames of paper tape fol-
lowing the two-frame definition are
the stripped ASCII code for the
symbol.

Does not appear in assembly listings.

4-50

ADDRESS LOW ORDER m
I SPACE 1

04 Re-origin* Change the current loading address
to the value specified by the data
word plus the relocation constant.

05 CDF
Current

The data word is always a 6201
(CDF) instruction which has been
generated automatically by SABR.
The code 05 indicates to the Link-
ing Loader that the number of the
field currently being loaded into
must be inserted in bits 6-8 before
loading.

A J TAD LOC2
/WHERE LOC2 IS
/OFF PAGE S O
/THAT THE TAD
/ I N S T R . MUST B E
/ I N D I R E C T

If the program containing this code
is being loaded into field 4, relative
location 0300 will be loaded with
6241.
Such an instruction is referred to
in this document as CDF Current.
It is generated automatically by

* Does not appear in assembly listings.

4-5 1

06 Subroutine
Linkage
Code

SABR when a direct reference in-
struction must be assembled as an
indirect, and thereis the possibility
that the current data field setting is
different from the field where the
indirect reference occurs.

The data word is a special con-
stant enabling the Linking Loader
to perform the necessary linking
for an external subroutine call.
(c.f., CALL Pseudo-op). The
structure of the data word is shown
below.

I BITS 0-5 I BITS 6 -1 1 1
NUMBER OF LOCAL PROGRAM
ARGUMENTS NUMBER ASSIGNED
FOLLOWING TO THE EXTERNAL
THE CALL SUBROUTINE

Before the 12-bit, two-part code
word is loaded into memory, a
global external number will be sub-
stituted for the local external sym-
boi number in the right half of the
data word.

0200 4033 CALL 3, SUB
0201 0307 06

ARG X .-.

ARG Y
ARG Z

Here, SUB has been assigned the
local number 06 during assembly.
At loading time this number will
be changed to the global number
(for example, 23) which is as-
signed to SUB. In this example,
0323 would actually be loaded at
relative address 020 1.

10 Leader/Trailer * This code represents normal -

and leader/trailer. The checksum is
Checksum contained in the last two frames

of paper tape preceding the trailer
code.

12 High Common* The data word is the highest loca-
tion in Field l assigned to com-
mon storage by the program. This
item will occur exactly once in
every binary tape and it must be
the first word after the leader. If
no common storage has been al-
located in the program, the data
word will be 0 177.

17 Transfer* Signifies that reference to an ex-
Vector ternal symbol occurs in the as-

sembled program. The 12-bit data
word is meaningless. The next six
frames contain the ASCII code for
the symbol.
The Linking Loader uses this def-
inition to create a transfer table,
whereby local external symbol
numbers assigned during assembly
of this particular program can be
changed to the global external
symbol number when several pro-
grams are being loaded.

SAMPLE ASSEMBLY LISTINGS
The following examples are offered to illustrate many of the

features and formats of the SABR Assembler.

when a multiple word instruction occurs, the actual instruction
line is typed beside the first instruction.

* Does not appear in assembly listings.

0650 6201 0 5 LOC2, JMP NAME /OFF PAGE
0651 5774
0652 7106 C L L RTLSRTLSRTL
0653 7006
0654 7006

When there is an erroneous instruction, the error flag appears
in the address field. The instruction is not assembled.

0700 7200 N29 C LA
I CLL SKP

0701 7402 HLT

The page escape and literal and off-page pointer table are typed
with nothing except the correct address, value and loader code.

RTL
SMA

/SKP TO 1ST LOC* -
/NEXT PAGE (A C I S
/NOT MINUS 1
/SKP TO 2ND LOCO -
,*.-.,.- * ",-. . A "

/ I M L A L YHUL Â¥-H 13
/MINUS 1

I

Locations 0772, 0773, 0776 and 0777 make up the page escape
since the last instruction is a skip instruction (SMA). Refer to the
section concerning Page Escapes.

The following program has been assembled and listed. It cannot
be run without first debugging and editing it.

During the first pass, SABR outputs the binary tape and prints
error messages as they occur. In this case, none of the errors are
fatal, and assembly continues. The symbol table is printed, and
undefined symbols, external symbols, or any other special types of
symbols which cannot be determined until the end of the pass
are flagged in the symbol table.

The optional second pass of the Assembler produces a listing.
The 4-digit first column contains the octal address, while the

second column contains the octal code for each line of instructions.
Errors are also printed during the listing pass at the line in which - they occur. Meanings of error codes are described later in the
chapter.

The reader is also referred to Demonstration Program Using
Library Routines.

C AT PUNCH + 0 0 0 3

COUNT
DEC IMA
LT
MA IN
MESG
ORG
P TAP E
PUNCH
REF
RP T
START
TYPE

/PROGRAM TO PUNCH RIM FORMAT PAPER TAPES

OPDEF P L S 6 0 2 6 /DEFINE H I SPEED
SKPDF P S F 6 0 2 1 / I O T S
ABSYM REF 177
ENTRY MAIN
DECIMAL t

LAP
PTAPE, BLOCK 2 /PUNCH LEADER

/TAPE (2 0 0 CODE)
TAD (- 3 2 / 3 2 LOCAT IONS
DCA COUNT
OCTAL

START, TAD ORG
CLL CML RTR;RTR;RTR

AND (1 7 7
JMS PUNCH /PUNCH LEADING
TAD ORG / D I G I T S OF ADDRESS
AND (1 7 7 /PUNCH SECOND
JMS PUNCH / D I G I T S OF ADDRESS
TAD I ORG /NOW PUNCH CONTENTS
CLL RTR;RTR;RTR /OF THAT LOCATION

AND (7 7
JMS PUNCH
TAD I ORG - /GET SECOND D I G I T S
AND (7 7 /OF THAT LOCAT ION
JMS PUNCH
INC ORG , /POINT TO NEXT

/CORE LOCAT ION
I S Z COUNT /DONE YET?
JMP START /N 0
CALL 1 >TYPE /YES-, TYPE MESSAGE

ARG MESG

JMS LT /ENDING 2 0 0 CODE
OSR /GET NEW ADDRESS
DCA ORG /FROM SWITCH REGISTER

/PUT I T I N ORG
HLT /PAUSE
JMP MAIN /PUNCH NEW TAPE

MESG, TEXT "TAPE PUNCHED. ENTER ORIGIN & CONT

LT -i 0
OCTAL
TAD (- 4 0
DCA COUNT

RPT, TAD (2 0 0
JMS PUNCH
I S Z COUNT
JMP RPT
JMP I LT

/ 3 2 FRAMES OF
/LEADER/TRAILER
/PUNCH I T
/DONE?
/N 0
/RETURN

PUNCH, 0
P L S
P S F
JMP .-1
JMP I PUNCH

COUNT> 0
ORG > 7 3 0 0

RETRN PTAF'E

END

/PUNCH .
/WAIT FOR FLAG

SABR PROGRAMMING NOTES

Optimizing SABR Code
There are generally two types of programmers who will use the

SABR Assembler-those who like the convenience of a page-
boundary-independent code and need not be concerned with pro-
gram size, and those who need a relocatable assembler, but are
still very location conscious. These optimizing hints are directed
to the latter user.

One way to circumvent the cost of non-paged code is to make
use of the LAP (Leave Automatic Paging) pseudo-op and the
PAGE pseudo-op to force paging where needed. This saves 2 to
4 instructions per page by elimination of the page escape. In addi-
tion, the fact that the program must be properly segmented may
save a considerable amount.

Extra core-may be reduced by eliminating the CDF instructions
which SABR inserts into a program. This is done by using "fake
indirects". Define the following op codes:

O P D E F A N D 1 0400
O P D E F T A D 1 1400
O P D E F I S Z I 2400
O P D E F D C A I 3400

These codes correspond to the PDP-8 memory reference instruc-
tions but they include an indirect bit. The difference can best be
illustrated by an example:

If X is off-page, the sequence :

L A B E L , S Z A
DCA X

is assembled by SABR into:

L A B E L > S Z A
JMS 45
SKP
DCA I (X I

or four instructions and one literal.
The sequence :

.
LABEL.. S Z A

D C A I PX

assembles into three instructions for a saving of 40 percent. Note,
however, that the user must be sure that the data field will be cor-
rect when the code at LABEL is encountered. Also note that
SABR assumes that the Data Field is equal to the Instruction Field
after a JMS instruction, so subroutine returns should not use the
JMP I op code.

The standard method to fetch a scalar integer argument of a
subroutine in SABR is:

DUMMY X
I A R G , 0
X 9 B L O C K 2

S U B R , B L O C K 2

T A D I S U B R

DCA X
I N C S U E R #
T A D I S U B R

DCA X#
I N C S U B R #
T A D I X

DCA I A R G . .

This is the method the FORTRAN compiler uses, and although
it is standard, it is also the slowest. This code requires 19 words
of core and takes several hundred microseconds to execute.

The fastest way to pick up arguments within a SABR coded
external subroutine is as follows (this takes approximately one
fifth of the time of the previous method and four less locations) :

I A R G , 0
S.UBR, B L O C K 2

TAD S U B R
DCA X l

X l , H L T I R E P L A C E D
/ B Y C D F

T A D I S U B R #
DCA X 2
I N C S U B R #
T A D I S U B R #
DCA I A R G
I N C S U B R #

X 2 , H L T / R E P L A C E D
/ B Y C D F

T A D I I A R G
DCA I A R G . .

To pick up multiple arguments, the locations from Xl to X2+1
inclusive can be made into a subroutine.

Calling the OS/8 USR and Device Handlers

One important point to remember is that any code which calls
the USR must not reside in locations 10000 to 11777. Therefore.
any SABR routine which calls the USR must be loaded into a field
other than field 1 or above location 2000 in field 1. To call the
USR from SABR use the sequence :

CPAGE N / N = 7 + C # OF ARGUMENTS)
6 2 1 2 / C I F 10
JMS 7 7 0 0 /OR 200 I F USR IN CORE
REQUEST
ARGUKENTS /OPTIONAL DEPENDING ON REQUEST
ERROR RETURN /OPT I ONAL DEPENDING ON REQUEST

To call a device handler from SABR use the sequence:

CPAGE 12 , 1 1 0 I F "HAND" I N PAGE 0
620 2 / C I F 0
JMS I HAND /DO NOT USE JMSI
FUNCT
ADDR
BLOCK
ERROR RETURN
SKP

HAND, 0 /"HANDw MUST BE ON SAME PAGE
/AS CALL, OR I N PAGE 0

SABR ERRORS
In case of error, SABR prints the following codes in the address

field of the instruction line:

~ a b k 4-3 SABR Error Codes

Error Code Meaning

A Too many o r too few ARG statements follow
a call statement.

C An illegal character appears on the line.

D A device handler has returned a fatal condition.

L / L or /G option was indicated, but the
LOADER.SV file does not exist on the system

. device.

M A symbol is multiply defined. Listing of pro-
grams with multiple definitions have unmarked
errors.

An illegal syntax has been used, (as one of the
following) :

1. a pseudo-op with improper arguments,
2. a quote mark with no argument,
3. a non-terminated text string,
4. an improper address,
5. an illegal combination of micro-instruc-

tions.

E There is no END statement.

S Either the symbol table has overflowed, com-
mon storage has been exhausted, more than 64
different user-defined symbols occurred in a
core page, or more than 64 external symbols
have been declared. Could also indicate a sys-
tem error such as overflowed output file.

U No symbol table is being produced, but there
is at least one undefined symbol in the pro-
gram-

UNDF Undefined symbol, printed in the symbol table
' listing.

LINKING LOADER
The Linking Loader is the system program used to load and

link a user's program and subprograms in any field(s) of memory.
It can be called automatically to load or load and start a FOR-
TRAN or SABR program, or independently to load or load and
start a relocatable binary file stored on a device. It is capable of
loading programs over itself, and has options which allow the user
to obtain storage map listings of core availability.

The Linking Loader has the capability of searching program
libraries for subroutines which are referenced by the program in
core and to load those subroutines needed. (A library is a collec-
tion of relocatable"subroutines-FORTRAN or SABR output-
with a directory at the beginning to facilitate searching.) Any
library can be searched by using the /L option to the Loader, but
the system library, LIB8.RL, is searched automatically just before
the Loader completes the building of a core image of the user's
program. If LIB8.RL is not on the system device, there is no.auto-
matic library search. (The system program LIBSET is available
to allow the user to build his own subroutine library.)

The Linking Loader is capable of loading any number of user
and library programs into any field of memory. Several programs
are usually loaded into each field. Because of the space reserved
for the Linkage Routines, the available space in field 0 is three
pages smaller than in all other fields.

Any common storage reserved by the programs being loaded is
allocated in field 1 from location 200 upwards. The space reserved
for common storage is subtracted from the available loading area
in field 1. The program reserving the largest amount of common
storage must be loaded first.

The Run-Time Linkage Routines necessary to execute SABR
programs are automatically loaded into the required areas of every
field by the Linking Loader as part of its initialization. The user
needs to know nothing more about these routines than the par-
ticular areas of core they occupy.

Calling and Using the Linking Loader
The user can automatically call the Linking Loader following

assembly of either a SABR program or a SABR-assembled FOR-
TRAN program by use of the /L or /G options. For details on

\

automatic calling of the Linking Loader, see the FORTRAN sec-
tion of this chapter. 1

When the user wishes to call the Linking Loader specifically to
load or load and start a relocatable binary file, he issues the
command :

R LOADER

in response to the dot printed by the Keyboard Monitor. The Com-
mand Decoder replies by printing an asterisk at the left margin;
the user then indicates input and output files and any desired op- /Ã

tions. 0 to 1 output files and 1 to 9 input files are possible. Only
one binary program per file is permitted. The assumed extension
for input files is .RL. The output file, i f indicated, is used to hold
a map of the loaded program.

The user has the ability to either specify all options and oper-
ations to be performed on one line or to have various operations
performed individually. Where all options are being specified at
one time the line to the Command Decoder contains the complete
instructions for the Linking Loader. If operations are to be done
individually, the user can type a command, enter it with the RE-
TURN key, and that command will be executed, with another
command expected when the first is completed. To indicate the
last command, the user types an ALT MODE character, or ends
the last command with a /G option to start the program.

LINKING LOADER OPTIONS
The options to the Linking Loader are as shown in Table 4-4.

Table 4-4 Linking Loader Options

Option Meaning

/I A program doing device-independent input is to be loaded.
(This feature costs the user 3 pages of core.)

/ 0 A program doing device-independent output is to be loaded.
(This feature costs the user 3 pages of core.)

Table 4-4 Linking Loader Options (Cont.)

Option Meaning

If both / I and /O are indicated, 6 pages of core are used
to handle device-independent I/ 0.

/ I and / 0 , if used, must be given before or on the first
input line specifying files to be loaded. For example:

is acceptable, but

*INPUT -
* / 0 FILES -

f

is not legal and will generate an error message.

A program doing device-independent I /O requires two-
page device handlers at run-time. (This feature costs the
user one additional page if he is doing just input or output,
and two additional pages if he is doing input and output.

If /I, / O , and /H are indicated, 8 pages of core are used
to handle device-independent I/O. /H, if used, must be in-
dicated on or before the first line containing / I or / 0 , and
is meaningless without / I or / O also being specified.

Start the program after processing the rest of the command
string. Execution starts at the symbol MAIN unless other-
wise indicated.

Specifies the starting address of the program if other than
the entry point MAIN; n is an octal number up to 5 digits
long.

Output a map of the loaded programs onto the output file
specified, followed by a count of the free pages in each
field. If no output is specified, the map is put onto the tele-
printer. The assumed extension for map output file is .MP.
The map is printed after the rest of the command line is
processed.

Table 4-4 Linking Loader Options (Conk)

Option Meaning

/ U Similar to /M, but only outputs undefined symbols.

/ P Similar to /M, but only outputs counts of free pages in
each field;

/ n Search through the available fields starting at field n for
space large enough to hold each input file; n is an integer
in the range 0 to 7, inclusive. Only one binary program
can be in each input file. If n is not specified, the Loader
starts looking at field 0.

/ R Restart loading process (forget all previously loaded pro-
grams). This command is equivalent to restarting the Link-
ing Loader, but is much faster for DECtape systems since
no tape motion is involved.

/L Load the first input file as a library file (Loader expects a
Library Directory as the first block of the file). All other
input files on the line are ignored.

The Core Availability option (/P) causes the number of free
pages of memory in every field of memory to be printed in a list
on the teleprinter. For example, if the user has a 16K configura-
tion, a list like the following might be printed:

0002 (number of free pages in field 0)
0010 (number of free pages in field 1)
0030 (number of free pages in field 2)
0036 (number of free pages in field 3)

The number of pages initially available in field 0 is 0033 and in
all other fields is 0036.

The Storage Map option (/M), when selected, causes a list of
all program entry points to be printed along with the actual ad-
dress at which they have been loaded. Entry points of programs
which have been called but which have not been loaded are also

listed along with U flag for "undefined". Such flagged programs
must be loaded before execution of the user's programs are pos-
sible. The core availability list is automatically appended to the
storage map. A sample is shown below for an ,8K machine:

MAIN
READ
W R I T E
I OH
ERROR
GEN 10
FDV
C L E A R
I FAD
FMP
I S T 0
S T 0
FLO T
FAD
D I V
I REM
F SB
FLOAT
F I X
I F I X
C H S
0 0 1 1
ffim

EXAMPLES OF 1/0 COMMAND STRINGS *

The following are examples of possible input command strings:

This s t r ing loads DSK: PROG.RL, DT.A2: SUB1 . R L ,
DTA2:SUB2. RL, loads any necessary library routines requested,
and starts the program at the entry point MAIN. The same process
could have been done as follows:

4-66

Load DSK:PROG.RL ; -

Get a list of undefined symbols on the teleprinter;

*/u - . (Symbols go here) .

Load DTA2: SUBR1 .RL9SUB2.RL ;

Put loading map on the line printer, load the binary of any
library routines requested by the program, and exit ($ is
printed by the ALT MODE key);

.SAVE DTA2 FORTPG - -

Save the, core image on DTA2 as FORTPG.SV;

Start the core image at its starting address (entry point MAIN
in this case).

START -
Linking Loader Error Messages

The Linking Loader outputs error messages in the form

ERROR mum

where nnnn represents a 4-digit error code. Table 4-5 lists the
meanings of these error codes.

4-67 ,

Table 4-5 Linking Loader Error Messages --

Error Code Meaning

/ I or / 0 specified too late.

Symbol table overflow; more than 64 subprogram
names.

Program will not fit into core.

Program with largest common storage area was not
loaded first.

Checksum error in input tape.

Illegal relocation code.

An output error has occurred.

An input error has occurred (either a physical device
error, or an attempt was made to read from a write-
only device such as LPT:).

No starting address has been specified and there is
no entry point named MAIN.

An error occurred while the Loader attempted to load
a device handler.

I/O error on system device.

LIBRARY SETUP (LIBSET)
LIBSET, the FORTRAN Library Setup program, creates a

library of subroutines from the relocatable binary output of SABR.
These library files can be quickly and effectively scanned by the
Linking Loader, thus saving a great deal of the time involved in
loading frequently used subroutines. (Refer to the section con-
cerning the Linking Loader for information pertaining to relo-
catable library files, automatic loading of the LIB8.RL file, and
the /L option.)

Calling and Using LIBSET
To call LIBSET from the system device, the user types

R L I B S E T

4-68

in response to the dot printed by the Keyboard Monitor. The Com-
mand Decoder then prints an asterisk at the left margin of the
teleprinter paper and waits to receive a line of input. The general
form of input required to build a library file is:

*DEV:OUTPUT FILE <DEV:INPUT FILE(S)
* (additional input files) $

No more than nine input files are allowed on any one line, but
several input lines can be entered. The last input line mus't end
with the user typing the ALT MODE key (which echoes as $).
Only the first line can contain an output file. If no output file is
specified, a file named LIB8.RL is created on the system device.
The assumed extension for both input and output files is .RL.

NOTE
Files output from LIBSET are in a special
relocatable library format and must not be
copied with the /B option in PIP. Instead,
they should be copied by PIP in image (/ I)
mode.

LIBSET OPTIONS
Only one option is allowed in the use of LIBSET, and this is

described below:

Option Meaning

/s The /S option means that all input files on a line are
to be regarded as containing more than one relocatable
binary file. (This is analogous to the /S option in
ABSLDR.

NOTE
If /S is used on a line that contains no input
files, input from PTR: is assumed.

EXAMPLES OF LIBSET USAGE
Example 1:

*DTA2: SUBS<DTAl: SUB 1 9 SUBS, SUB3, PTR: -
T*SYS:FUNCl,FUNC2*VSS -

This example creates a relocatable library file on DTA2 named
SUBS.RL. This library will contain six FORTRAN (or SABR)
subroutines built by combining the relocatable binary file SUB1 .RL,
SUB2.RL, and SUB3.RL from DTA1 together with one relocata-
ble binary paper tape (note the T printed by OS/8 before loading
from PTR:) and the files FUNC1.RL and FUNC2.V5 from the
system device.
Example 2:

Since no output file was specified, this example creates a relocat-
able library file LIB8.R.L on the system device. This produces a
new FORTRAN library including the subroutines contained .in
the files ASIN and ACOS on device DSK, and several subroutines
combined on a single paper tape loaded from the high-speed reader.

Subroutine Names
It is important to distinguish between the OS/8 file name of a

relocatable binary program and its assigned Entry Point name. ---- m a - n ; n m nnly to the Command Decoder; the 111C 1llC l l d l l l C lias XUUUAAAAAK, urn

Entry Point name (or names) are the true subroutine names that
are meaningful to the Loader.

Further details on the format of relocatable binary files and re-
locatable library files can be found in the OS/8 Software Support
Manual (DEC-S8-OSSMA-A-D) .

Sequence for Loading Subroutines
LIBSET can combine files in any sequence to form a relocat-

able library file. However, the subroutines in any single library are
loaded by the Loader in the order in which they were originally
specified to LIBSET. Therefore, it is important to make sure that
subroutines are specified in order of size, with the largest sub-
routine being loaded first. If this is not done, cases can occur in
which insufficient core is available in any single field to load a
subroutine, whereas space would have been available if the sub-
routine had been loaded earlier.

LIBSET Error Messages
All errors are fatal* LIBSET recalls the Keyboard Monitor upon

encountering any of the following error conditions7 and must be
recalled in order to enter another command string.

Table 4-6 LIBSET Error Messages

-- - --

Error Message Meaning

BAD FORMAT OR
CHECKSUM-
TRY AGAIN

ERROR WHILE WRITING
OUTPUT FILE

INPUT ERROR

LIBRARY DIRECTORY
OVERFLOW

Error in reading relocatable binary file.

Fatal output error occurred.

Parity error on input.

Too many subroutines were specified.
Every subroutine name in the input file
requires four words7 and every relocat-
able binary file read requires two words.
If the total number of words exceeds
250, the library must be split into two
separate files.

LIBRARY PROGRAMS
During execution, the Library programs check for certain errors

and type out the appropriate error messages in the form:
X X X X E R R O R A T L O C N N m

where XXXX specifies the type of error, and NNNN is the loca-
tion of the error. When an error is encountered, execution stops,
and the error must be corrected.

When multiple error messages are typed, the location of the
last error message is relevant to the user program. The other error
messages are relevant to subprograms called by the statement at
the relevant location.

Table 4-7 Library Error Messages

Error Message Explanation

ALOG
ATAN
DIVZ
EXP
FIPW
FlMT 1
FMT2
FMT3
FMT4
FMTS
FLPW
FPNT

Attempt to compute log of negative number
Result exceeds capacity of computer
Attempt to divide by 0
Result exceeds capacity of computer
Error in raising a number to a power
htultiple decimal points
E or . in integer
Illegal character in I, E, or F field
Multiple minus signs
Invalid FORMAT statement
Negative number raised to floating power
Floating-point error; may be caused by
division by zero; floating- point overflow; at-
tempt to fix too large a number.
Attempt to take root of a negative number

OS/8 includes, in addition, the error message:

USER ERRC? 1 AT 00537

which means that the user tried tn reference an a t r y point d a
program which was not loaded.

To pinpoint the location of a Library execution error:

From the Storage Map, determine the next lowest numbered
location (external symbol) which is the entry point of the
program or subprogram containing the error.
Subtract in octal the entry point location of the program or
subroutine containing the error from the LOC of the error
in the error message.
From the assembly symbol table, determine the relative ad-
dress of the external symbol found in step 1 and add that
relative address to the result of step 2.
The sum of step 3 is the relative address of the error, which
can then be compared with the relative addresses of the
numbered statements in the program.

4-72

I

DEMONSTRATION PROGRAM USING LIBRARY ROUTINES
The following demonstration program is a SAEJR program show-

ing the use of the library routines. The program was written to add
two integer numbers7 convert the result into floating-point7 and
type the result in boih integer and floating-point format. The source
program was written using the Symbolic Editor7 assembled with
SABR, and loaded wifh the Linking Loader7 under the OS/8
Operating . System.

A
B
c
D
FLOAT
F ORMT
I OH
N
OPEN
START
S T 0
WRITE

4 0 33 START 9

0 0 0 2 0 6

ENTRY START

CALL 0 9 OPEN

TAD A
TAD B
DCA C
CALL 1 9 FLOAT

ARG C

CALL 1 ,STO

ARG D

CALL 2 9 V R I T E

ARG N

ARG FORMT

CALL 1 2 I OH

/ I / O DEVICES
/COMPUTE C=A+B

/CONVERT TO

/FLOATING POINT

/ I N I T I A L I Z E

1 1 1 0 HANDLER
/DEVICE NUMBER

/ 1 =TELETYPE
/FORMAT SPEC I -

/ F I CAT I ON
/TYPE INTEGER

/NUiY3ER

ARG C

CALL 1, I OH /TYPE FLOAT ING

/ P O I N T NUMBER
ARG D

CALL 1 , I OH /COMPLETE THE 110

ARG 0

HLT

FORMT, TEXT " (' T H E ANSWERS A R E 1 , 1 5 > F 7 * 2) "

1
2
2
0
BLOCK 3

The binary tape produced by the assembly was then run using
OS/8 with the following results:

T H E ANSWERS ARE 4 4-00

INTRODUCTION
FLAP and RALF are assemblers that translate PDP-8 or

PDP-12 processor and floating point processor (FPP) operation
codes in a source program into binary codes in two or three passes.
The first pass assigns numeric values to the symbols and places
them in the symbol table, the second pass generates the binary
coding, and the third pass generates the program listing. FLAP/
RALF is used to assemble programs using the FPP instructions
and capabilities. Numeric values can be calculated as 12-bit in-
tegers, 15-bit integers, 24-bit double precision fractions, 3-word
floating point values, or 6-word extended precision floating point
values. Refer to the FPP User's Guide, DEC-12-GQZA-D, for de-
tailed information on the floating point processor and its instruc-
tion set.

FLAP is designed to run on an OS/8 System with a Floating
Point Processor (FPP) without any other supporting programs. It
generates absolute binary output which is legal input to the OS/8
Absolute Loader [ABSLDR). RALF, an extension of FLAP, is
part of the OS/8 FORTRAN IV System. It accepts assembly lan-
guage files, or FORTRAN compiler output and generates relocat-
able binary modules that can be loaded by the relocatable loader
LOAD (also part of the OS/8 FORTRAN IV System).

The following sections describe the syntax, instruction formats,
addressing modes, and pseudo-operators in the assemblers. The
special features of RALF involving relocatable assembly are de-
scribed in the section entitled "RALF Features."

HARDWARE REQUIREMENTS
The minimum hardware configuration for FLAP is a PDP-8 or

PDP-12 with a Floating Point Processor (FPP). The minimum
hardware configuration for RALF is a PDP-8 or PDP-12 OS/8
System.

5-1

STATEMENT SYNTAX
A source program is a sequence of coding statements in the gen-

eral format:

(space)/ comment

A physical line of coding may be up to 127 characters long and is
terminated by a carriage return. A semicolon can be used in a line
of code (except in the comment field) to terminate a logical state-
ment, thus permitting several statements to be typed on a single
line. However, a set of logical statements separated by semicolons
must not exceed the 127 character limit.
A space is required in a statement:

after an instruction mnemonic
before a slash (/) used to indicate a comment
as an OR operator

Multiple spaces or tabs are equivalent to a single space. These
characters are optional after the comma defining a tag, after the
= sign that sets a value, and before a statement.

Tags
A statement tag is indicated by preceding the statement to be

labeled with a user-defined symbol followed by a comma. This
format assigns the current value of the location counter to the tag.

Instructions
An instruction may be a PDP-8 operation code, an FPP12 op-

eration code, a FLAP pseudo-operator, or a RALF pseudo-
operator.

Expressions
An expression can contain:

1. A user-defined symbol (equated symbol or tag).
2. The symbol ".", which has a value equal to the current loca-

tion counter.
3. A numeric constant.
4. Two or more of the above combined by operators.

FPP and PDP-8 instructions are illegal symbols in expressions.
User symbols can be 1 to 6 alphanumeric characters in length and

must start with a # or an alphabetic character. Any additional
characters are ignored. Thus, the symbols:

are acceptable, but in the symbol:

only the first six characters are stored as the symbol name. In this
case, all characters after ASYMBO are ignored. Up to 500 symbols
may be defined by the user in an assembly.

All integer expressions are computed in 15-bit 2's complement
arithmetic and then truncated if necessary (15 bits for 2-word FPP
memory reference instructions and 12 bits for expressions). The
following are examples of legal integer (address) expressions:

The radix pseudo-ops OCTAL and DECIMAL control the inter-
pretation of numbers used in expressions. Decimal numbers larger
than 32,767 and octal numbers larger than 77777 will be incor-
rectly converted, and cause the NE error. (Error messages are
listed at the end of the chapter.)

Comments
A comment is a note added by the programmer at the end of a

line of code, usually to indicate the logical sequence of the pro-
gram. A slash (/), preceded by one or more spaces or tabs,is typed
to specify the start of a comment. Comments must not contain
angle brackets (or).

ARITHMETIC AND LOGICAL OPERATIONS
The operators used by FLAP/RALF and their functions in

combining numbers or symbols to form expressions are:

Operator Function

+ 2's complement addition
- 2's complement subtraction
* multiplication

/ division
space or tab inclusive OR used to separate

two instructions
! inclusive OR
i b precedes an ASCII constant; e.g.,

"A has the octal value 301

Expressions are evaluated from left to right. They may not contain
floating point constants.

PDP-8 OPERATION CODES
PDP-8 operation codes are legal defined mnemonics for use with

FLAP/RALF. The following table lists the mnemonic, octal value,
and operation of each PDP-8 operation code. PDP-8 code must be
executed by the PDP-8 or PDP-12 processor. Assembler state-
ments using these codes are said to be coded (or executed) in
PDP-8 mode.

Table 5-1 PDP-8 Operation Codes

Mnemonic Octal Operation

Memory Reference Instructions:
AND 0000 logical AND
TAD 1000 2's complement add
ISZ 2000 increment and skip if zero
DCA 3000 deposit and clear AC
JMS 4000 jump to subroutine
JMP 5000 jump

Group 1 Operate Microinstructions:
NOP 7000 no operation
CLA 7200 clear AC
CLL 7 100 clear link
CMA 7040 complement AC
CML 7020 complement link
RAR 7010 rotate AC and link right one
RAL 7004 rotate AC and link left one
RTR 7012 rotate AC and link right two

Table 5-1 PDP-8 Operation Codes (Cent.)

Mnemonic Octal Operation

RTL 7006 rotate AC and link left two
IAC 7001 increment AC

Group 2 Operate Microinstructions:
SMA 7500 skip on minus AC
SZA 7440 skip on zero AC
SPA 75 10 skip on positive AC
SNA 7450 skip on non-zero AC
SNL 7420 skip on non-zero link
SZL 7430 skip on zero link
SKP 7410 skip
OSR 7404 inclusive OR switch register with AC
HLT 7402 halt

Combined Microinstructions:
CIA 7401 CMA IAC
LAS 7604 CLA OSR

IOT Microinstructions:
Keyboard/Reader

KSF 603 1 ' skip if keyboardjreader flag = 1
KCC 6032 clear AC and keyboard/reader flag
KRS 6034 read keyboard/reader buffer
KRB 6036 clear AC and read keyboard buffer and clear

, keyboard flag

Teleprinter/Punch
TSF 6041
TCF 6042
TPC 6044

TLS 6046

Program Interrupt
ION 6001
IOF 6002

skip if teleprinter/punch flag = 1
clear teleprinter/punch flag
load teleprinter/punch buffer, select and

print
load teleprinter/punch buffer, select and

print, and clear teleprinter/punch flag

turn interrupt on
turn interrupt off

Extended Memory (Type MC8/I)
CDF 62nl change to data field n
CIF 62n2 change to instruction n
RDF 6214 read data field into AC
RIF 6224 read instruction field into AC
RMF 6244 restore memory field
RIB 6234 read interrupt

PDP-8 MODE ADDRESSING
In PDP-8 Mode, addressing is specified by the contents of the

Memory Reference Instruction modified by the Data Field and In-
struction Field Registers. Direct addressing, specified by bit 3=0,
causes reference to the address given in bits 5-1 1 in page 0 of the
current field, if bit 4=0, or to the current page, if bit 4=1. Indirect
addressing, specified by bit 3=1, causes reference to the indirect
address contained in the location specified by bits 4-1 1, used as
above. Tie indirect address for AND,TAD.ISZ, and DCA refers
not to the current field, but to the field specified in the Data Field
Register: The JMP and JMS instructions refer to locations in the
field specified in the Instruction Field Register.

The Data Field Register and Instruction ~ i e l d Register are
originally set through the console switches, and can be set under
program control by means of 'the CIF and CDF instructions. The
CIF instruction causes the Instruction Field Buffer to be set to the
specified field. The CDF instruction causes the Data Field Register
to be changed immediately. Other instructions allow the program
to read, save, and restore the Data Field and Instruction Field
Registers. Completion of execution of a JMP or JMS instruction
causes the Instruction Field Register to be set to the contents of the
Instruction Field Buffer. This procedure permits a program to
choose a new field, then execute a jump from the current field to
a chosen address in the new field.

The character % appended to the end of a memory reference
instruction indicates indirect addressing and the character Z indi-
cates a page 0 reference:

CURRENT PAGE PAGE ZERO
DIRECT INDIRECT DIRECT INDIRECT

TAD A TAD% A TADZ A TADZ% A

DCA B DCA% B DCAZ B DCAZ% B

Spaces are not allowed between Memory Reference Instructions
and either the Z or % characters. The Z must precede the % when
both are used, i.e., do notwrite "DCA%Z".

FPP OPERATION CODES
The Floating Point Processor recognizes the following operation

code formats. There are three forms of Data Reference Instructions

analogous to the Memory Reference Instructions, and three Special
Format instruction forms analogous to the Operate Micro-Instruc-
tions.

Data Reference Instructions
Data Reference Instructions cause transfer between memory and

the floating point accumulator, a 36-bit register in the FPP. The
transfer may be 36 bits of floating point data or 24 bits of double
precision fixed point fraction data, depending upon where STARTF
or STARTD was most recently executed. In fixed point mode, the
last 24 bits of the FAC or memory are used, and the exponent is
unchanged. All eight of the Data Reference' Instructions can be
used in any of the three forms.

Throughout the description of the instructions that follow, these '

conventional symbols are used: '

C(1
FAC
M

Op Code

contents of enclosed quantity
floating accumulator
a variable multiplier
=2 in Double Precision Mode
=3 in Floating Point Mode
an indexing variable
X=0, do not index
1s$X<7, use specified index register
origin of index registers
address computed
an increment bit
=0, no incrementing
= 1, increment beÂ ore using index
symbol to avoid indexing
X=O 8(X)=O
x+o 8(X)= 1

Mnemonic Data Function

FLDA C(Y)-+FAC
FADD C(Y) + C(FAC)-+FAC
FSUB C(FAC) - C(Y)+C FAC
FDIV C(FAC)/C(Y)+FAC
FMUL C(FAC * C(Y)+FAC .

Op Code Mnemonic Data Function

5 FADDM C(Y) + C(FAC)+Y
6 FSTA C(FAC)+ Y
7 FMULM C(FAC) * C(Y)+Y

DATA REFERENCE INSTRUCTION FORMATS

12 23
I

ADDRESS
, I 1 , , I , I #

DOUBLE-WORD DATA REFERENCE INSTRUCTIONS

0 2 3 4 5 6 8 9 11

Y = C(bits 9-23) + M * (C(X + XO) + C(bit 5)) * S(X) -

OP CODE
I I

~INGL~-WOKD DIRECT REFERENCE

1 0 +

0 2 3 4 5 1 1

Y = C(base register) + 3 * (offset)

OP CODE
I I

x

1 ,

Y = C(bits 21-36 of C((base register) + 3 * offset))
+ (M) * (C(X + XO) + C(bit 5)) * 8(X)

ADDRESS
, ,

0

0 2 3 4 5 6 8 9 11

S(X) = l i f X # O a n d O i f X = O
M = 2 if fixed-point mode

= 3 if floating-point mode

OP CODE
I I

1 OFFSET
I 1 I I 1 I

SINGLE-WORD INDIRECT REFERENCE

1 1 + x
1 I

OFFSET
I 1

SPECIAL FORMAT 1 - Jump on count + trap

Op Code Mnemonic Function

2 JXN The index register X is incre-
mented if bit 5=1 and a jump is
executed to the address contained
in bits 9-23, if index register X is
nonzero.

3 The instruction-trap status bit is
4 set and the FPP12 exits causing
5 a PDP interrupt. The unindexed
6 operand address is dumped into
7 the APT.

The two trap instructions with op codes 3 and 4 are assigned a
special meaning by RALF, and the mnemonics TRAP3 and
TRAP4 respectively. TRAP3 acts as a JMP to PDP-8 Mode;
TRAP4 acts as a JMS to PDP-8 Mode. See the FORTRAN I V
SOFTWARE SUPPORT MANUAL for details.

12 23

ADDRESS

0 2 3 4 5 6 8 9 11

SPECIAL FORMAT 1

OP CODE
I I

SPECIAL FORMAT 2 - Load index and add index

Op Code Extension Mnemonic Function

0 10 LDX The contents of the index
register specified by the bits
9-1 1 are replaced by the con-
tents of bits 12-23.

0 11 ADDX The contents of bits 12-23
are added to the index reg-
ister specified by bits 9-11.

O O + x
, t

ADDRESS
8 I

SPECIAL FORMAT 2 - Conditional jumps
Jumps, if performed, are to the location specified by bits 9-23

of the instruction.

Up Code Extension Mnemonic

JEQ
JGE
JLE
J A
JNE
JLT
JGT
JAL

Function

Jump if FAC = 0
Jump if FAC 2 0
Jump if FAC < 0
Jump always
Jump if FAC # 0
Jump if FAC < 0
Jump if FAC > 0
Jump if impossible to fix the
floating point number con-
tained in the FAC; i.e., if the
exponent is greater than
(23)io.

SPECIAL FORMAT 2 - Pointer moves

Op Code Extension Mnemonic

1 10 SETX

1 11 SETB

1 13 JSR

JSA

Function

Set XO to the address con-
tained in bits 9-23 of the in-
struction.
Set the base register to the
address contained in bits
9-23.
Jump and save return. Jump

'

to the location specified in
bits 9-23 and the return is
saved in bits 21-35 of the
first entry of the base page.

An unconditional jump is de-
posited in the address and
address+ 1, where address is
specified by bits 9-23. The
FPC is set to address+2.

SPECIAL FORMAT 2

0 2 3 4 5 8 9 11

SPECIAL FORMAT 3 - NORMAL SIZE
Op Code Extension Mnemonic Function

0 1 ALN The mantissa of the FAC is
shifted until the FAC expo-

OP CODE
I I

nent equals t h e contents of

12 23
1

0 0

the index register specified by
bits 9-1 1. If bits 9-1 1 are
zero, the FAC is aligned so
that the exponent = (23),+
Setting the exponent = (23)io

. integerizes or fixes the float-
ing-point number. The JAL
instruction tests to see if fix-
ing is possible. In double-
precision mode, an arithmetic
shift is performed on the FAC
fraction. The number of shifts
is equal to the absolute value
of the contents of the speci-
fied index register. The direc-
tion of shift depends on the
sign of the index register con-
tents. A positive sign indi-
cates a shift toward the least
significant bit, while a nega-
tive sign indicates a shift to-
ward the most significant bit.
The FAC exponent is not al-
tered by the ALN instruction
in double-precision mode.

EXTENSION
I I I

0 2 ATX The contents of the FAC are
fixed and the least significant
12 bits of the mantissa are

F
I I I

Op Code Extension Mnemonic Function

loaded into the index register
specified by bits 9-11. In
double-precision mode the
least significant 12 bits of the
FAC are loaded into the spec-
ified index register. The FAC
itself is not altered by the
FATX instruction.

XTA The contents of the index
register specified by bits 9-1 1
are loaded right-justified into
the FAC mantissa. The FAC
exponent is loaded with (23)i ,,
and then the FAC is normal-
ized. This operation is typi-
cally termed floating a 12-bit
number. In double-precision
mode, the FAC is not nor-
malized.

0 4 NOP The single-word instruction
performs no operation.

0 5-7 1 These codes are reserved for
0 12-17 1 reserved instruction set expansion and
1 14-17 J should not be used.

SPECIAL FORMAT 3 - OPERATE

Op Code Extension 9-1 1 Bits Mnemonic Function

0 0 0 FEXIT Dump active registers
into the APT, reset
the FPP RUN flip-flop
to the 0 state, and in-
terrupt the PDP-8 pro-
cessor.

0 0 1 FPAUSE Wait for synchroniz-
ing signal. IOT FFST

, (6555) will restart the
instruction following
FPAUSE.

Op Code Extension Mnemonic Function -
FCLA Zero the FAC man-

tissa and exponent..

FNEG Complement FAC
mantissa. This instruc-
tion produces the true
negative, not the bit-
by-bit complement.

FNORM Normalize the FAC.
In double-precision
mode FNORM is a
NOP.

STARTF Start floating-point
mode.

STARTD Start double-precision
mode.

JAC Jump to the location-
specified by the least
significant 15 bits of
the FAC mantissa.

SPECIAL FORMAT 3

FPP MODE ADDRESSING
The FLAP/RALF assembler is able to interact with and effec-

tively use the rather complex addressing-scheme of the FPP. This
addressing scheme allows the FPP to access a full 32k words of
core through 15-bit addresses. It also allows the FPP to access a
movable base page through 7-bit addresses. The FPP can also use

OF CODE
I 1

2 or 3 bits to specify an index register from a movable set that can
modify the address. The FORTRAN compiler makes extensive use
of this addressing freedom, particularly in the subroutine calls.

The base page is a block of 128 floating point variables, or 384
12-bit words. The Special Format 2 instruction SETB gives the
FPP the origin of the base page. The pseudo-op BASE is used to

0 0 EXTENSION
1 I I

F
I I

pass the base page origin to the FLAP/RALF assembler. The
origin of the base page may be changed as often as necessary. The
first 8 locations of the base page serve as a pointer to memory.

The index registers are a block of seven 12-bit words in memory.
The Special Format 2 instruction SETX gives the FPP the origin
of the index registers. The locations used for the index registers
may be changed as often as necessary.

The three forms of Data Reference Instructions compute the
address of the data referenced in three different ways. The line of
print below the diagram of each instruction shows symbolically how
each address is computed. The address computation for the first form
begins with the 15-bit address in bits 9-23 of the instruction. If X
(bits 6-8) is zero, this is the address used. If X is nonzero, the con-
tents of the specified memory location, X+XO (where XO is the
beginning of the index registers, set by SETX), is used as an index.
If bit 5 of the instruction is equal to one, the index value is incre-
mented by one,The index value remains incremented after the in-
struction is completed. The resulting index value is multiplied by
either two or three, depending upon whether the FPP is in Double
Precision Fixed Point Mode (STARTD) or Floating Point Mode
(STARTF). This index is then added to theAoriginal address (bits
9-23 to form the address used.

The second data reference form is used to address the locations
on the base nape. The contents of hits 5-1 1 of the instruction are
multiplied by three and added to the origin of the base page, set
by the SETB instruction.

Note that the offset on the base page always assumes Floating
Point (3-word) variables. It is wise to prevent use of the base page
for storage of double precision fixed point variables or instructions.

The third form of data reference instruction provides an indirect
. or indexed indirect mode of address. The offset. bits 9-1 1 of the

instruction, are multiplied by three and added to the origin of the
base page. to give the address of a 3-word variable. The last 15
bits of this word are used for the address of the data. This address
may be modified by the index register exactly the same as in the
first form.

The FLAP/RALF Assembler will choose the form of the data
reference instruction that is generated. The second form (one word
direct) is usedinstead of the first form (two word direct) whenever

the data lies on the base page; no indexing is involved. The indirect
form is used whenever indirect addressing is called for by a % in
the assembler source statement.

LITERALS
Only FLAP allows literals in PDP-8 code. By starting an ex-

pression in a PDP-8 memory reference instruction with a left pa-
renthesis or square bracket (as explained below), the value after it
is taken "literally" by FLAP. There is then no need to specify an
address or tag that contains the value. Internally the value of the
literal expression is the address of the word generated by FLAP
that contains the evaluated expression.

If the expression starts with a left parenthesis, (, then the literal
-is placed at the end of the current page. If it starts with a left
bracket, [, the literal is placed at the end of page 0. Literal tables
are built backwards from the end of the page so that the most re-
cently defined literal has the lowest core address.

If the origin is changed to a new page, the previous page's literals
are output and the literal table is reset. If the origin is reset to a
previous page which contained literals, those literals may be over-
layed by any new literals. The previously-defined literals will not
be available for reference. For this reason, it is best to complete all
coding on any non-zero page before moving to another;

If the field is changed, the literals on page 0 of the previous field
are output and the page 0 literal table is reset. For this reason, it
is best to complete all coding in any one field before moving to
another.

Because locations 0-17 are generally used for interrupts and
autoindex registers, there may be only 1 12io (160s) literals on
page 0.
The following examples illustrate the use of literal expressions with
memory reference instructions:

TAD (POINTER generates a literal with the lower 12 bits of
the address of POINTER at the end of the
current page.

TAD [lo generates a literal containing 0010 at the end
of page 0.
/

The left bracket, [, is typed as a SHIFT/K on an ASR-33.

Literals may not be nested. For example, the expression:

TAD (TAD [lo

LINKS
Links are only generated by the FLAP assembler. If a PDP-8

memory reference is made to an address that is not on the same
page as the instruction, FLAP creates an indirect address linkage
on the current page. The address can, therefore, be accessed during
the second pass of the Assembler. For example, the coding:

O H G 200
30200 1 7 7 7 * T A D A

a0377 040u
PAGE

00400 lyZ5 A t

is equivalent to

O K G 200
00200 1 7 7 7 T A D I X

O R G 3 7 7
0 0 3 7 7 040k) X t A

PAGE
0400 1025 A t 1025

All instructions generating links are flagged in the listing with an
apostrophe (') following the generated code. The total number of
links is printed at the completion of assembly.

DATA SPECIFICATION
A logical line of code may consist of only an expression. Such

expressions can function as flags, pointers, constants, or symbols.
If the expression is larger than 12 bits, it will be truncated to 12
bits.

PSEUDO-OPERATORS
A pseudo-operator is a defined mnemonic code that is included

in the source program as a logical line to control some functions of
the assembler. Binary code may or may not be generated by a

pseudo-op, depending on its function. The FLAP/RALF pseudo-
ops and their functions are listed below.

EQUATE (=)
The symbol to the left of the = is assigned the value of the ex-

pression to the right of it.

OCTAL
All integers which follow are assumed to be in octal radix. The

digits 8 and 9 are flagged if they occur in octal radix. The radix is
initially set to octal by FLAP.

DECIMAL
All integers which follow are assumed

PAGE
The current location counter is set to t

in decimal radix.

he beginning of the next
core page. This pseudo-op is not in the RALF assembler. .

- -

BASE n
The location of the base page, n, is placed in FLAP/RALF base

register to be used in calculating single-word addresses. The argu-
ment, n, is an expression denoting a 15-bit address. The expression

,. may not contain any symbols that are defined after the BASE
pseudo-op occurs. A correct sequence is illustrated below.

O R G 400

A t F 2.0

8 Ã F 3 . 0

BASE A / S E T ASSEMBLER BASE R E G I S T E R
S E T 6 A / S E T FPP BASE REGISTER

FLDA A

If no BASE pseudo-op is included, all FPP memory reference in-
structions will be 2 words. Refer to the sections on FPP addressing,
and on referencing memory.

TEXT
A string of text may be entered by using the pseudo-op TEXT .

followed by a space or tab, a delimiting character, a string of text,
and the same delimiting character, issued in that order. The first

printing character after TEXT is the delimiter and the text string
is all the characters that follow it until the next occurrence of the
delimiter or a carriage return. The characters space, tab, , , and /
cannot be delimiters. For example:

TEXT %DATA%

causes the word DATA to be printed with the code at assembly
time as:

00200 0 4 0 1 T E X T % D A T A %
00201 2401

END
Input is terminated. (This pseudo-op is optional, and is never

printed on the listing.)

INDEX n
Set the location of the first FPP index register to n.

ORG expr
The current location counter is assigned the value of the lower

15 bits of the address expression expr. The expression should con-
tain only symbols which have previously been defined. For exam-
pie, to set the origin at location 400 of field 1. the pseudo-op used
is ORG 19466.

If the ORG pseudo-op is omitted, an origin of 200 in field 0 is
assumed, but the origin setting is not included in the binary output
file. For useful results, the user program must begin with an ORG
pseudo-op.

ZBLOCK n
Assemble a block of n words containing 0.

LISTOF
Continue assembly but inhibit further listing. There is no effect

on the first two passes or if the listing is currently inhibited. This
pseudo-op never appears in the listing.

LISTON
Cease to inhibit the listing. There is no effect on the first two

passes if the listing is not currently inhibited.

IFnnn (conditional assembly)
FLAP/RALF has ten conditional pseudo-ops. Four of them

require an argument expression:

pseudo-op function

IFZERO n < assemble if n is zero -
IFNZRO n < assemble if n is not zero
IFPOS n < assemble if n is positive
IFNEG n < assemble if n is negative

where n is an integer expression. For each of the above conditional
pseudo-ops, the expression n is evaluated and, if it fulfills the con-
ditions of the pseudo-op (e-g., n equals zero for IFZERO), the
subsequent coding is assembled. If the condition is not met, the
subsequent coding is ignored until a matching > is encountered.
Assembly is continued after the >. -

The fifth and sixth pseudo-ops are used in the format:

IFREF symbol < assemble if symbol was previously de-
fined or referenced.

IFNDEF symbol < where symbol may be defined or un-
defined. When an IFREF statement

. is encountered, subsequent coding is
assembled if the symbol after the
pseudo-op has been defined or refer-
enced in a previous statement. Note
that use of a symbol with an IFREF
pseudo-op or in a statement that was
skipped during assembly because the
condition required by a preceding con-
ditional pseudo-op was not met does
not constitute a reference to the sym-
bol. If the symbol has not been pre-
viously defined or referenced assem-
bly is continued after the matching
> is found.

The seventh through tenth pseudo-ops are:

IFSW n < assemble the enclosed code if the switch n
was set in the input/output file specification
to the command decoder, i.e. /n or (n).

assemble the enclosed code if the switch n
was not set.

assemble the enclosed code if the assembler
is FLAP. This pseudo-op is intended for use
in programs which may be assembled either
by RALF or by FLAP.

do not assemble the enclosed code if the as-
sembler is FLAP.

Conditionals may be nested. A possible nested conditional is

IFFLAP < IFREF A < ~ = 2 6 3 > >

Use of some of the conditional assembly pseudo-ops is illustrated
in the next example. '

I F P 0 9 -1 e
A i F 0.0

b

IFNEG - 1
00200 0000 0 Ã F. 0.0
00201 0000
00202 0i)Okl

D

IFREF A <
TAD A
s

WZ03 125id TAD 0

I F R E F C *
TAD C
Ã

IFNDEF D 4

Dm5

NO ERRORS
2 SYMBOLS, NO L I N K S

REPEAT n
Assemble the following line n times.

Generate a 1-word constant with value n. RALF does not sup-
port this pseudo-op.

5-20

F n .

Generate a 3-word floating point constant with value n. The
argument n may be written as a decimal floating point number, for
example 2.0, or in standard exponential format, for example 2E 10.
In standard exponential format, 2E10 is equal to 2 x 10l0.

E n
Generate a 6-word extended precision floating point constant

with value n. The argument n may be written as a decimal floating
point number or in standard exponential format.

ADDR
Generates a two-word address corresponding to the value of the

argument.

COMMON
Causes the assembler to enter the COMMON section whose

name follows the pseudo-op. Subsequent output is placed in the
named COMMON section until another section defining pseudo-op
is encountered.

COMMZ
Define Field 1 $-mode page 0 section. Used to give PDP-8 page

0 section for the Loader.

DPCHK
Indicates that the current module requires double precision hard-

ware in order to execute.

ENTRY
Defines program entry point. The symbol whose name follows

the ENTRY pseudo-op can be used as an external symbol by other
programs. Multiple entry points with the same name are accepted
by the assembler but cause an error from the loader.

EXTERN
The symbol following this pseudo-op is defined to be external

. to this assembly.

FIELD 1
Define FIELD1 $-mode section. Used to give field 1 name of

section for the Loader.

SECT
Define program section, used at the beginning of subprograms

to give the name of section for the Loader. For example:

SECT SUBROU
J A START
BASE

BO, F 0.
etc:

SECT8
Define 8-mode program section. Used at the beginning of 8-mode

subprograms.

REFERENCING MEMORY
A PDP-8 computer with an FPP is basically a 32K machine. All

of this memory may be referenced through the 15 bit address field
provided by the 2-word memory reference instructions. When it is
necessary to conserve memory, the base page and the short form
(1 word) of the memory reference instructions can be used. Those
instructions that have a floating point operand can use this short
form:

FADD FDIV FMUL FSTA
FADDM FLDA FMULM FSUB

The base page is a movable page 0 assigned by the user. To
determine the location referred to by the operand of the single
word instruction the displacement field (address expression) is
multiplied by 3 and added to the contents of the base register.
Thus, using the single word form of the instruction, any location
within 128 *3 locations of the base register can be referenced. (Only
128*3 locations can be accessed because the displacement field has
only 7 bits.) The location of the base page (via BASE) and the
operands (via ORG =.etc.) must be defined in the coding before
the FPP instruction. Then the short form of the instruction will be
executed unless the suffix # is added, forcing the long (2 word)
form.

Consider the following example of the BASE pseudo-op:

BASE 200
S E T 8 2 0 0

This same program can be written with a subroutine:

O K G Sd0
i t F 2 .e

JSA SUBS

HLT
BASE 0

SUBR, 0 1 0 /LEAVE 2 W O R D S FOR JS4

This routine performs the same operation as the first one. The
values 0, 3, 6, and 11 are used with BASE 0 so that the assembler
generates the correct 1 word instructions.

RALF FEATURES
RALF symbols may be absolute, relocatable, or external. When

a relocatable symbol appears in an assembled value, an indicator
is placed in the binary output file so that the relocating loader
(LOAD) will add the base loading address of the assembled value
to arrive at the value to be loaded. If an external symbol appears,
the loader will look up the name of the symbol in its symbol table
and substitute the value found there for the symbol. The loader
symbol table contains all symbols defined by the SECT, SECTS,
FIELD1, COMMON, COMMZ and ENTRY pseudo-ops of
RALF. Expressions using both absolute and relocatable terms are
evaluated as follows (where "op" is one of the set [+ - * / & !]
and "op 1 " is one of the set [* / & !I):

Expression Evaluated

numeric constant absolute
label relocatable

~ h c n l i i t ~ c q 2bscjEte
.."U"Lb.&W

rÃˆl..n-^l..+/ uuaui un-

relocatable -L absolute
relocatable - relocatable

absolute - relocatable
expression op 1 relocatable
relocatable op 1 expression

relocatable
absolute

relocatable
ERROR
ERROR
ERROR

RALF code is divided into sections. each section is a separately
loadable entry within the assembly. These sections are defined via
one of the five pseudo-ops: SECT, SECTS, FIELD1, COMMON
and COMMZ. Section names are placed in the External Symbol
Dictionary (ESD) which is used by the relocating loader to build
its symbol table. The pseudo-ops ENTRY and EXTERN allow
RALF programs to insert other symbols into the ESD and to refer
to these symbols in other RALF programs at load time. Table 5-3
lists the RALF pseudo-ops and their meanings.

Core Allocation
The user who wishes to link RALF modules containing PDP-8

mode code must be aware of the core allocation algorithm of the
loader. Five RALF pseudo-ops may be used to specify a section:
SECT, COMMON, SECTS, FIELD1, and COMMZ. These sec-
tions are loaded independently by the loader, including those in
the same RALF module. SECT is used to begin a section of RALF
code that can be loaded into any level and overlay and anywhere in
field 1 and above. COMMON is used to begin a sectionwith a given
name available to COMMON statements in FORTRAN or other
RALF modules. SECTS is used to begin a section of RALF code
that is loaded into level MAIN and is required to begin and end

-

on a page boundary. FIELD^ is used to begin a section subject to
all the restrictions of SECTS and in addition must be loaded into
field 1. COMMZ is used to begin a section subject to all the re-
strictions of FIELD1 and must be loaded into page 0.
The first COMMZ section encountered is forced to begin at loca-
tion 10000, thus enabling a page 0 in field 1. COMMZ sections of
the same name are handled like COMMON sections of the same
name (i.e., they are combined into one common section). This
feature allows 8-mode code in different modules to share page 0,
provided that the modules do not destroy each other's page 0
allocations. Suppose two modules were to share page 0, with the
first using location 0-17 and the second using locations 20-37:

*/Module A
COMMZ SHARE

PI, 1
p2, 2
KSUBA 1, SUBA1
KSUBA2, SUBA2

/Should not go over
/20 locations

TADZ PI
JMSZ% KSUBA1

/Module B
COMMZ SHARE
ORG .+20 /ORG past module A's

/Page 0
p3, 3
P4, 4
KSUBB, SUBB

LASTB -2
FIELD1 B

TADZ P3 .

The- two COMMZ sections will be put on top of one another, how-
ever, because of the ORG .+20 in module B, they will effectively
reside back to back. When the image is loaded. the COMMZ sec-
tions will look as follows:

Lac - CONTENTS

1 0000 1
000 1 2

2 SUBA1
3 SUBA2

1 0017 -1 /LASTA
1 0020 3

21 4
22 SUBB

If module A is to reference module B's page 0, the procedure is:

P3=20
TADZ P3

Alternately, a duplicate of the. source code for COMMZ SHARE
may be included in module B. Modules that are using the same
COMMZ section must be aware of how it is divided up. Although
COMMZ SHARE takes only 40 locations, the loader allocates a
full 200 locations to it. All 8-mode section core allocations are
always rounded up so that they terminate on a page boundary. If
COMMZ sections of different names exist, they are accepted by
the loader and inserted into field 1, but only one COMMZ is the
real page 0. In general, it is unwise to have more than 1 COMMZ
section name.

If there is more than one COMMZ pseudo-op in a module, they
are stacked one behind the other, but there is no way of specifying
which one starts at absolute location 0 of field 1. COMMZ sections
are allocated by the loader before FIELD1 sections.

For users who intend to write 8-mode code that will execute in
conjunction with certain 8-mode library routines, the layout of
PDP-8 FIELD1 #PAGE 0 is:

LOCATION USE -
0- 1 Temps for any non-interrupt time routine.
2-1 3 User locations.

14-157 System locations.
160-177 User locations.

1. Do not define any COMMZ sections other than the system
COMMZ which is #PAGEO.

2. If the system page 0 is desired, it will be pulled in from the
library if EXTERN #DISP appears in the code.

3. Do not use any part of page 0 reserved for the system.
FIELD1 sections are identical to COMMZ sections in most

respects. ~ e m o r y allocation for FIELD1 sections is assigned after
COMMZ sections. however, and FIELD1 sections are combined
with FORTRAN COMMON sections of the same name as well as
other FIELD1 sections of the same name. The first difference en-
sures that COMMZ will be allocated page 0 storage even in the
presence of FIELD1 sections. The second allows PDP-8 code to
be loaded into COMMON, making it possible to load initialization

code into data buffers.Two FIELD1 sections with the same name
may be combined in the same manner as two COMMZ sections.

The primary purpose of COMMZ is to provide a PDP-8 page 0;
the primary purpose of FIELD1 is to ensure that 8-mode code will
be loaded into field 1 and that generating CIF CDF instructions
in-line is not necessary. SECT8 sections may not be combined in
the manner of a COMMON and are not ensured of being placed
into field 1.

A section begins when a pseudo-op with its name first appears.
A SECTS section is not combined with another of the same name
in another RALF module. However, the second use of the same
name in the same module continues a section. For example:

SECT8 PARTA

SECT8 PARTA
The second mention of PARTA in the same module continues the
source where the first mention of PARTA ended. (There is a loca-
tion counter for each section.)

An 8-mode section does not have to be less than a page in length;
however. the programmer should be aware that a SECT8 section
which exceeds one page may be loaded across a field boundary and
could thereby produce disastrous results at execution time. For
this reason, it is generally unwise to cross pages in SECT8 code.
This situation will never occur on an 8K configuration. If the total
amount of COMMZ and FIELD1 code exceeds 4K, the loader
generates an OVER CORE message. The loader generates an MS
error for any of the following: 1

A COMMZ section name is identical to some entry point or
some non-COMMZ section name.
A FIELD1 section name is identical to some entry point or a
SECT, SECT8 or COMMZ section name.
A SECT8 section name is identical to an entry point or some
other section name.

5-28

COMMZ sections, like FORTRAN COMMONS, are never en-
tered in the library catalog.

RALF Progmmmhg Notes
The best means of creating RALF modules that can be called

from FORTRAN programs is to write a skeleton FORTRAN sub-
routine. The subroutine should be written so that it can be called
with the same "call" statement to be used for the RALF subroutine.
f l i s FORTRAN subroutine is then compiled with theRALF out- -
put sent to a mass storage file. This file may be modified using -
EDIT or TECO to create the desired module.

The address pseudo-op (ADDR) which generates a two word
relocatable 15 bit address (i.e., JA TAG without use of JA) might
prove useful in 8-mode routines. The following example demon-
strates a way in which an 8-mode routine in one RALF module
calls an 8-mode routine in another module:

EXTERN SUB

RIF
TAD
DCA
0
TAD
RTL
RAL
TAD
DCA
0

/Set DF to current.
ACDF /IF for return.
.+I

/CDF X
KSUB /Make a CIF from
CLL /Field bits

ACIF
.+l

/CIF to field
/Containing SUB

KSUB+ 1

KSUB, ADDR SUB /Pseudo-op to
/Generate 15 bit
/ADDR of subroutine
/SUB

ADCF, CDF
ACIF, CIF

In general the address pseudo-op can be used to supply an 8-mode
section with an argument or pointer external to the section.

FPP and 8-mode code may be combined in any RALF section.
PDP-8 mode routines must be called in FPP mode by either:

TRAP3 SUB
TRAP 4 SUB

A TRAP3 SUB causes FRTS to generate a JMP SUB with inter-
rupts on and the FPP hardware (if any) halted. TRAP4 generates-a
JMS SUB under the same conditions. The return from TRAP4 is:

CDF CIF 0
JMP% SUB

The return from TRAP3 is:

CDF CIF 0
JMP % RETURN+ 1

EXTERN #RETRN
RETURN, ADDR #RETRN

It is not possible to call PDP-8 mode subroutines from FOR-
TRAN. A RALF subroutine called from FORTRAN will be en-
tered in FPP-mode, it may branch into PDP-8 mode code using a
TRAP3 or TRAP4.
C ~ i ~ i i ~ t i i ~ k ~ t k f i b e i ~ ~ e f i FPI' ~ i i d 8 - i ~ ~ d ~ r ~ t i t i i i ~ best d ~ i i e at
the FPP level because of greater flexibility in both addressing and
relocation in FPP mode. The following routine demonstrates how
to pass an argument to, and retrieve an argument from, an 8-mode
routine :

EXTERN SUB
EXTERN SUBIN
EXTERN SUBOUT

FLDA X /Arg for SUB
FSTA SUBIN
TRAP4 SUB /Call SUB
FLDA SUBOUT /Get result
FSTA Y

If the 8-mode routine SUB were in the same module as the
FPP routine, the EXTERNS would not be necessary. In practice it is
common for FPP and 8-mode routines that communicate with one
another to be in the same section. A number of techniques can be
used to pass arguments. For example, an FPP routine could move
the index registers to an 8-mode section and pass single precision
arguments via ATX.

Because %mode routines are commonly used in conjunction with
FPP code (generated by the compiler), the &mode programmer
should be familiar with OS/8 FORTRAN IV subroutine calling
conventions. The general code for a subroutine call is a JSR, fol--
lowed by a JA around a list of arguments, followed by a list of
pointers to the arguments. The FPP code for the statement:

CALL SUB (X,Y,Z)

would be . .

EXTERN SUB
JSR SUB
J A BYARG
J A X
J A Y
J A Z

BYARG, .

The general format of every subroutine obeys the following scheme:

SECT SUB
J A #ST

TEXT +SUB+

RTN, SETX XSUB
SETB BSUB

BSUB, FNOP
J A

/Jump to start of
/Routine
/Needed for -
/Trace back
/Reset SUB'S index
/And base page
/Start of base page

ORG BSUB+30 /Restart for SUB
FNOP : JA RTN

GOBAK, FNOP : JA . /Return to
/Calling program

Location 0000 of the calling routine's base page points to the list
of arguments, if any, and may be used by the called subroutine
provided that it is not modified. Location 0003 of the calling
routine's base page is free for use by the called subroutine. Loca-
tion 0030 of the calling routine's base page contains the address
where execution is to continue upon exit from the subroutine, so
that a subroutine should not return from a JSR call via location 0
of the calling routine:

CORRECT INCORRECT
FLDA 30 FLDA 0
JAC JAC

This return allows the calling routine to reset its own index reg-
isters and base page before continuing in-line execution. General
initialization code for a subroutine would be:

BASE
#ST, STARTD

FLDA
FSTA
FLDA
SETX
SETB
BASE
INDEX
FSTA

30
GOBAK
0
XSUB
BSUB
BSUB
XSUB
BSUBX

/So only 2 words
/Will be picked up
/Get return JA
/Save it
/Get pointer to list
/Set SUB'S XR
/Set SUB'S Base

/Store pointer
/Somewhere on Base

STARTF - /Set F mode before
J A GOBAK /Return

The above code can be optimized for routines that do not require
full The JA #ST around the base page code is a con-
venience which may be omitted. The three words of text are nec-
essary only for error traceback and may also be omitted. If the
subroutine is not going to call any general subroutines, the SETX
and SETB instructions at location RTN and the JA RTN at4oca-
tion 0030 are not necessary. If the subroutine does not require a
base page, the SETB instruction is not necessary in subroutine
initialization; similar remarks apply to index registers. If neither
base page nor index registers are modified by the subroutine, the
return sequence:

/

FLDA 0
J AC

is also legal. In a subroutine call, the JA around the list of argu-
ments is unnecessary when there are no arguments. A RALF list-
ing of a FORTRAN source will provide a good reference of gen-
eral FPP coding conventions.

The AMOD routine is listed in Figure 5-1 to illustrate an u applica-
tion of the formal calling sequence. I t also includes an error con-
dition check and picks up two arguments. When called from
FORTRAN, the code is AMOD(X,Y) .

If a PDP-8 mode subroutine is longer than one page and values
are to be passed across page boundaries, the address pseudo-op,
ADDR, is required. The format is:

AVAR1, ADDR VAR1

/
/
/
/ A ? ! O D
/ - - - -
/
/ S U B R O U T I N E B M O D (X . Y)

S E C T A M O D / S E C T I O N N A N E C R E A L N U M B E R S)
E N T R Y N O D / E N T R Y P O I N T N A M E (I N T E G E R S)
J A # A N O D / J U M P T O S T A R T O F R O U T I N E
T E X T + A N D + / F O R E R R O R T R A C E B A C K

A M O D X R , S E T X X R A M O D / S E T I N D E X R E G I S T E R S
S E T B B P A M O D / A S S I G N E A S E P A G E

B P A M O D . F 0.0 / B A S E P A G E
X R A N O D , F 0.0 / I N D E X R E G S .
A M O D X , F 0.0 / T E M P S T O R A G E

O R S 1 0 * 5 + B P A M 0 3 / R E T U R N S E Q U E N C E
F N O P
J A A M O D X R
0

A N D F t T N , JA / E X 1 T
E X T E R N irA.^GS-rt

A M O D E R , T B A P 4 L A R G E R / P R I N T AM E R R O R M E S S A G E
F C L A / E X I T d I T H F A C = 0
J A A M D R T M
BASE 0 /STAY O N C A L L E R ' S BASE PG

/ L O N G E N O U G H T O GET R E T U R N A D D R E S S
MOO, / S T A R T O F I N T E G E R R O U T I N E S A M E A S
<IAROD, S T A R T D / S T A R T O F R E A L NU,1!. R O U T I N E

F L D A
FS T A
F L D A
S E T X
S E T S
B A S E
L D X
F S T A
F L O A Z
F S T A
FLUAX
FS T A
SiA2TF
F L D A 7 .
J E Q
J G T
F N E G
FS TA
F L D A Z
J G T
F N E G
L D X
F S T A
F D I V
JA L
ALN
F N O R i l
F M U L
F N E G
F A D 3
J X N
F N E G

A f l * J A

1 a*3
A N D R T N .
a
X R A M 0 3 m
B P A M O D
B P A f l O 3
1 , 1
B P A M O D
B P A K O D , 1
A N O D X
B P A X O ' J , 1 +
B P A M O D

B P AMOD
A M O D E R . +3

B P AMOD
A M O D X
.+5

0 9 1
A N O D X
B P A R O D
A R 0 3 E R
0

B P A M O D

A NO DX,
A N , 1

/ G E T R E T U R N J U M P
/ S A V E I N T H I S P R O G R A M
/ G E T P O I N T E R T O P A S S E D A R G
/ A S S I G N M O D ' S I N D E X R E G S
/ A N 3 I T S B A S E P A G E

/ABS VALUE

/ A 3 5 V A L U E
/ N O T E S I G N
/ S A V I N A T E M P O R A R Y
/ D I V I D E BY Y
/ T O O B I G .
/ F I X I T U P NOJ.

/ N U L I T P L Y I T .
/ N E G A T E IT.
/ A N 3 A D D I N X.
/ C H E C K S I G N

Figure 5-1 AMOD Routine

This generates a two-word (15 BIT) reference to the proper loca-
tion on another page, here VAR1. For example, to pass a value to
VAR 1, possible code is:

00124 1244 TAD VAR2 /Value on this page
00125 3757 DCA% AVAR1+1 /Pass through 12-bit

/location
00156 0000 AVAR1,ADDR VAR1 /Field and
00157 0322 /location of VAR1

Any reference to an absolute address can be effected by the ADDR
pseudo-op.
If it is doubtful that the effective address is in the current data field,
it is necessary to create a CDF instruction to the proper field. In
the above example, suitable code to add to specify the data field is:

TAD AVAR1 /Get field bits
RTL /Rotate to bits 6-8
RAL
TAD (6201 /Add a CDF
DCA .+l /Deposit in line
0 /Execute CDFn

If the subroutine includes an off-page reference to another RALF
module (e-g., in FORLIB), it can be addressed by using an
EXTERN with an ADDR pseudo-op. For example, in the display
program, a reference to the non-interrupt task subroutine ONQB
is coded as

EXTERN ONQB
ONQBX, ADDR ONQB

and is called by

JMS% ONQBX+l

No field change instruction is necessary here, because both library
modules are defined by field 1 pseudo-op's, and so are both in the
same field.

RALF does not recognize LINC instruction or PDP-8 labora-
tory device instructions. Such instructions can be included in the
subroutine by defining them by equate statements in the program.

5-35

For example, adding the sIatements:

PDP = 2
LINC = 6141
DIS = 140

takes care of all instructions for coding the PDP-12 display sub-
routine.

. When writing a routine that is going to be longer than a page,
it can be useful to have a non-fixed origin in order not to waste
core and to facilitate kodification of the code. A statement such as

IFPOS .-SECNAMk177-K<ORG
.-SECNAM&7600+20O+SECNAM>

will start a new page only if the value [current location less section
name] is greater than some K (start of section has a relative value
.of 0) where KG177 and is the relative location on the current page
before which a new page should be started. The ORG statement
includes an AND mask of 7600 to preserve the current page. When
added to 200 for the next page and the section name, the new
origin is set.

When calculating directly in a module, the following rules apply
to relative and absolute values.

relative - relative = absolute
absolute + relative = relativ~
OR {!I, AXD (&I ADD (+I of dat ive symhls

generate the RALF error message RE.

When passing arguments (single precision) from FPP-code to PDP
code, using the index registers is very efficient. For example,

FLDA% ARG 1 /Get argument in FPP mode
SETX MODE8 /Change index registers so XRO is

/At MODE8
ATX MODE8 /Save argument

TRAP4 SUB8 /Go to PDP-8 routine

5-36

/PDP-8 routine

TAD MODES /Get argument

MODES, 0 /index registers set here

The source of FORTRAN Library is the best collection available
of usefol coding techniques in RALF. Working examples include
subroutine linkage, 8-mode trap sequences, background task
inclusion7 interrupt handling, laboratory peripheral interfacing,and
mathematical calculation.

Using The Assembler
FLAPIRALF is run as a standard OS/S program by typing:

.R FLAP (or RALF)
*binary,listing+input 1 , i n p ~ t 2 ~

where binary is the binary output file, default extension ,RL, listing
-is the listing output file, default extension .LS; inputl, input2, etc.
are up to 9 source input files, default exteniions .RA . The source
files must contain only one FLAP/RALF source module (i.e.7 one
END statement).

.All error messages are printed on the terminal during pass 2,
without affecting the binary output file, along with the line which
caused the error. This output may be inhibited by typing CTRL/O.
The error messages are also printed above the error line on the
listing. FLAP/RALF error codes are listed in the next section.

Assembly may be aborted by typing CTRL/C. Each page of a
FLAP/RALF listing has a one line header in the form:

FLAP (or RALF) V nn mo da, yr PAGE r

where nn is the assembler version number, mo da, yr is the date,
and r is the page number.

The /S option, in FLAP, may be used to suppress the listing
5le and generate ohiy the symbol map on pass 3. If no listing S e
is specified, this option is ignored. The /T option performs the
same function in RALF.

Error Messages
During pass 2, error messages are printed at the terminal as they

occur, followed by the statement in which the error occurred.
During pass 3, error codes are printed in the listing immediately

preceding the line in which the error occurred, except the EG mes-
sage, which is printed after the line. If the line of code includes
statements terminated by a semicolon, then the error message for
a statement precedes the printing of its octal value on the next line.

A fatal error causes an immediate return to the OS/8 monitor
after the message is printed. The following table lists the error
codes and their meanings.

Table 5-2 FLAPIRALF Error Codes

Error Code Meaning

BE Illegal equate. The symbol had been defined pre-
viously.

BI Illegal index register specification.

BX Bad expression. Something in the expression is in-
correct or the expression is not valid in this context.

DV Kn attempt was made in an expression evaluation to
divide by zero..

EG The preceding line contains extra code which could
not be used by the assembler.

Error Code Meaning

External symbol error. (RALF only)

An error has occurred in the FPP or software float-
ing conversion routines. This could be due to an at-
tempt to convert an excessively large or small num-
ber, or an internal error in the assembler occurred.

A syntax error was encountered in a floating point
or extended precision constant.

The symbol or expression in a conditional is im-
properly used, or left angle bracket is missing. The
conditional pseudo-op is ignored.

An entry point has not been defined, or is absolute,
or is also defined as a common, section, or external.
(RALF only)

A literal was used in an instruction which cannot
accept one. (FLAP only)

Input/output error (fatal error).

Invalid reference in a PDP-8 instruction.

An index register was specified for an instruction
which cannot accept one.

The line is longer than 127 characters. The first
127 characters are assembled and listed.

The tag on the line has been previously encountered
at another location or has been used in a context
requiring an absolute expression.

Number error. A number out of range was specified
or an 8 or 9 occurred in octal radix.

Page overfiuw. Literals and instructions have been
overlapped. (FLAP only)

Relocatability error. A relocatable expression has
been used in context requiring an absolute expres-
sion. (RALF only)

5-39

Table 5-2 FLAPIRALF Error Codes (Comt.)

Error Code Meaning

ST User symbol table overflow (fatal error).

US Undefined symbol in an expression.

XS External symbol table overflow. Control returns to
the OS/8 Keyboard Monitor. (RALF only)

FLAP/ RALF Pseudo-Operators
The following table lists the FLAPIRALF pseudo-ops and gives

a brief description of each pseudo-op.

Table 5-3 FLAP/RALF Pseudo-Operators

Pseudo-op Meaning

ADDR

BASE expr

COMMON name

DECIMAL

E m

END

ENPUNC

ENTRY name

EXTERN name

F xxx

FIELD1 name

Place the 15-bit address of the symbol into two
words of core at the current position of the
location counter.

Assign base register for 1-word instructions.

Causes the assembler to enter the common sec-
tion whose name follows the pseudo-op.

Set radix for integer conversion to decimal.

Generate 6-word extended precision floating
point constant.

End of input.

Re-enable binary output (FLAP only).

Insert name into the ESD as an entry point.
The symbol name must be defined as a relocat-
able symbol in the current assembiy.

Insert name into the ESD as an external refer-
ence. The symbol name must not be defined in
the current assembly.

Generate 3-word floating point constant.

Similar to SECT8, but this section is restricted
to load into field 1 only.

Table 5-3 FLAP/RALF Pseudo-Operators (Cont.)

Pseudo-op Meaning

IFFLAP

IFNDEF n

IFNEG n

IFNSW n

IFNZRO n

IFPOS n

IFRALF

IFREF symbol

IFSW n

IFZERO n

INDEX n

LISTOF

OCTAL

ORG expr

PAGE

REPEAT n

s x x x

SECT name

SECTS

TEXT

ZBLOCK n

Assemble if the assembler is FLAP.

Assemble if n is not defined.

Assemble if n is negative.

Assemble if switch n was not set in Command
Decoder input.

Assemble if n is not zero.

Assemble if n is positive.

Assemble if the assembler is RALF.

Assemble if symbol has already been defined or
referenced.

Assemble if symbol was set in Command De-
coder input.

Assemble if n is zero.

Assign index register location.

Inhibit program listing.

Set radix for integer conversion to octal.

Set current location counter to lower 15 bits of
expr.

Set current location counter to the beginning of
next core page (FLAP only).

Repeat next line n times.

Generate 1-word constant (FLAP only).

Define name as a section and begin that section.
Subsequent SECT name commands will resume -

the section wherever it left off.

Similar to SECT, but this section is restricted
to load in level MAIN, on a 2008 word bound-
ary. SECT8 is used to define sections that con-
tain PDP-8 mode code.

Assemble the text between delimiters as packed
6-bit ASCII characters.

Assemble n words containing 0.

Equate symbol on left of = to value of expres-
sion on right.

basic
. Portranii
Fortran iv

basic

INTRODUCTION TO OS/8 BASIC
BASIC1 is an interactive programming language with a variety

of applications. It is used in scientific and business environments
to solve both simple and complex mathematical problems with a
minimum of programming effort. It is used by educators and stu-
dents as a problem-solving tool and as an aid to learning through
programmed instruction and simulation.

In many respects the BASIC language is similar to other pro-
gramming languages (such as FOCAL and FORTRAN), but
BASIC is aimed at facilitating communication between the user
and the computer. The BASIC user types in the computational
procedure as a series of numbered statements, making use of com-
mon English words and familiar mathematical, notations. Because
of the small number of commands necessary and its easy appli-
cation in solving problems, BASIC is one of the simplest computer
languages to learn. With experience, the user can add the advanced
techniques available in the language to perform more intricate ma-
nipulations or express a problem more efficiently and concisely.

OS/8 BASIC has a greater capability than 8K BASIC and con-
tains such added features as chaining, string manipulation, and
file-oriented input/output.

Running BASIC
Once the Keyboard Monitor has responded with a period to in-

dicate that it is ready to receive a monitor command, the user
types the following command:

.R BASIC

BASIC responds with the following:

1 BASIC is a registered trademark of the trustees of Dartmouth College.

6- 1

NEW OR OLD-

The user types in:

NEW FILE.EX

if the user is going to create a new program, where FILE.EX is the
name and extension of the new program. If the user wants to work
with a previously created program-that he saved on a storage
device, he types in the following:

OLD DEV:FILE.EX

where DEV: is the name of the OS/8 device on which his old file
is stored.
For example:

OLD DTA6:SAMPLE.BA

This response to NEW or OLD-retrieves the file named SAM-
PLE from DECtape 6 and replaces the current contents of user
core with the file SAMPLE. If the user specifies a device that does
not exist or that is not available for use, BASIC returns an error
message.

ENTERING THE NEW PROGRAM
After the user types in his filename, OS/8 BASIC responds with

the following:

READY

The user can begin to type in his new program or make changes
to his old program. When the new program is being typed, the
user must make sure that each line begins with a line number con-
taining no more than five digits and containing no spaces or non-
digit characters. The RETURN key must be pressed at the com-
pletion of each line. If, in the process of typing a statement, the
user makes a typing error and notices it before he terminates the
line, he can correct it by pressing the RUBOUT key or SHIFT/O
keys once for each character to be erased, going backward until
the character in error is reached. Then he may continue typing,
beginning with the character in error. Using the RUBOUT key or
SHIFT/O keys echoes a backarrow (e) for each character de-
leted. The following is an example of this correcting process (note
that a +- is typed for spaces as well as characters): ,

20 DEN F<-<-+F FNA(X,Y)= f' 2+3*Y

The corrected version of the above example would appear on a
subsequent listing of the program as:

20 DEF FNA(X,Y)=X t 2+3*Y

Program listings can be generated using the LIST or LISTNH
commands.

EXECUTING THE PROGRAM
After typing the complete program (do not forget to end with an

END statement), type RUN or RUNNH, followed by the RE-
TURN key. OS/8 BASIC prints the name of the program,

-the version of OS/8 BASIC, the current date (unless RUNNH is
specified), and then it analyzes the program. If the program can be
run, OS/8 BASIC executes it and, via PRINT statements, prints out
any results that were requested. The printout of results does not
guarantee that the program is correct (the results could be wrong),
but it does indicate that no syntactical errors exist (e.g., missing
line numbers, misspelled words, or illegal syntax). If errors of
this type do exist,-OS/8 BASIC prints-a message (or several mes-
sages) to the user. A list of these diagnostic messages, with their
meanings, is given at the end of the chapter.

NOTE
RUN and RUNNH are control commands.
and like all other OS/S BASIC edit and con-
trol commands, they do not require a line
number preceding the command.

CORRECTING THE PROGRAM
If the user receives an error message printout informing him,

for example, that line 60 is in error, the line can be corrected by
typing in a new line 60 to replace the erroneous one. If the state-
ment on line 110 is to be eliminated from the program, it is
accomplished by typing the following:

1 10 (followed by a carriage return)

If he wishes to insert a statement between lines 60 and 70, the
user types a line number between 60 and 70 (e.g., 65), followed
by the statement.

INTERRUPTING EXECUTION OF THE PROGRAM
If the results being printed seem to be incorrect and the user

wants to stop execution of his program, the user types CTRL/C
which is echoed by f C. The OS/8 BASIC editor responds with the
READY message whereupon the user can modify or add state-
ments and rerun his program.

LEAVING THE COMPUTER
When the user's program is finished and he no longer requires

the use of OS/8 BASIC, he types the BYE command (or CTRL/C)
to return control to the Keyboard Monitor.

EXAMPLE OF OS/8 BASIC RUN

The following is a simple example of the use of OS/8 BASIC.

READY
S C R A T C H

R BAS1 C
NEW OR OLDÃ‘NE SPMPLE* &A

R E A D Y
10 FOR N=1 TO 7
20 PRINT N*SOR(N)
30 NEXT N
40 P R I N T "DONE"
50 E N D
RUN

S A M P L E B A

1
2
3
4
5
6
7
DCNE

READY

Instruct monitor to bring
BASIC into core and start
its execution

BASIC asks whether new
or old program is to be run

BASIC is now ready to
receive statements

Type in statements

Run program

Program heading and re-
sults of program are printed

OS/8 BASIC Overview

GENERAL SYSTEM DESCRIPTION
The OS/8 BASIC system is divided into five discrete parts:

1. Editor
-2. Compiler
3. Loader I

4. Runtime System
5. Runtime System Overlays

The OS/8 BASIC ~ d i t o r is used to create and edit the source
program. On receipt of a RUN command, the Editor stores the
program in a temporary file and chains to the Compiler. The Com-
piler compiles the program into pseudo-instructions which are then
loaded into core with the Run-time System by the Loader. The Run-
time System interprets each pseudo-instruction, calling each of the
Overlays into core as needed. On completion of the program, the
Run-time System chains back to the Editor.

OS/8 BASIC STATEMENTS AND COMMANDS
OS/8 BASIC consists of program statements and system con-

trol commands which are needed to write programs. A number of
the elementary OS/8 BASIC statements and commands are:

LET
PRINT
READ
DATA
GOT0
IF G O T 0
IF THEN
FOR TO
STEP
NEXT
GOSUB
RETURN
INPUT
REM

OS/8 BASIC Statements

Assign a value to a variable.
Print out the indicated information.
Initialize variables to values from the data list.
Provide initial data for a program.
Change order of program execution.

) Conditionally change order of program execution.

1 Set up a program loop.

End a program loop.
Go to a subroutine.
Return from a subroutine.
Get initial values from the terminal.
Insert a program comment.

RESTORE Restore the data list.

DEF Define a function.
STOP Stop program execution.
END End a program.
DIM Define subscripted variables.
UDEF Define user-coded function.

.OS/8 BASIC Edit and Control Commands

LIST
RUN
SCRATCH
SAVE
OLD
NEW
NAME
BYE

List all stored program statements.
Run the currently stored program.
Delete the currently stored program.
Save the currently stored program.
Retrieve the old program.
Prepare for a new program.
Rename the currently stored program.
Exit from BASIC.

These statements and commands are explained in detail with actual
computer output in this manual. For the convenience of the user,
a detailed OS/8 BASIC Statement, Command and Function Sum-
mary is included at the end of the chapter.

The experienced BASIC programmer may elect to skip the first
six sections of this chapter since they are rather fundamental.
However, he should familiarize himself with the remaining sections
as they provide information specifically related to OS/8 BASIC.

OS/S BASIC ARITHMETIC
Numbers

An OS/8 BASIC number may be any number in the range - of
10-61n<N< l Oei6. OS/8 BASIC treats all numbers as decimal
numbers; that is, it accepts any number containing a decimal, and
assumes a decimal point after an integer. The advantage of treat-
ing all numbers as decimal numbers is that the programmer can
use any number or symbol in any mathematical expression with-
out regard to its type,

In addition to integer and decimal formats, a third format is
recognized and .accepted by OS/8 BASIC and is used to express
numbers outside the range .000001<~<999999. This format is

called exponential or E-type notation and in this format, a number
is expressed as a decimal number times some power of 10. The
form is:

where E represents "times 10 to the power of," thus the number is
read: "xx times 10 to the power of n." For example:

Data may be input in any one or all three of these forms. Results
of computations are output as decimals if they are within the range
previously stated; otherwise, they are output in E format. OS/8
BASIC handles six significant digits in normal operation and in-
put/output, as illustrated below:

Value Typed in Value Output By OS/8 BASIC

.O1 0.0099999

.0099 0.0099
999999 999999
1000000 .100000E+007
.0000009 -899999E-006

OS/8 BASIC automatically suppresses. the printing of leading and
trailing zeros in integer numbers and all but one leading zero in
decimal numbers. As can be seen from the .preceding examples,
OS/8 BASIC formats all exponential numbers in the form:

sign .xxxxxxE(+or-)n

where x represents the number carried to six decimal places, E
stands for "times 10 to the power of," and n represents the expo-
nential value.
For example:

-.347021E+009 is equal to -347,021,000
.726000E-003 is equal to 0.000726

Variables
A simple variable in OS/8 BASIC is an algebraic symbol repre-

senting a number, and is formed by a single letter or a letter fol-
lowed by a digit. For example:

Acceptable Variables Unacceptable Variables

I 2C-a digit cannot begin
a variable

B3 ABÃ‘tw or more letters
cannot form a variable

x
The user may assign values to variables either by indicating the
values in a LET statement, or by inputting the values as data.

10 LET 1=53721
20 LET B3=456.9
30 LET X=20E9
40 INPUT Q

These operations, as well as subscripted variables, are discussed in
detail in the section entitled LISTS AND TABLES. A discussion
of subscripted and unsubscripted string variables is provided in the
section entitled ALPHANUMERIC rNJhOKhii%liO~.

Arithmetic Operations
OS/8 BASIC performs addition, subtraction, multiplication,

division and exponentiation, as well as more complicated opera-
tions explained in detail later in the manual. The five operators
used in writing most formulas are:

Symbol
Operator Meaning Example

+ Addition A + B
- Subtraction A - B
* Multiplication A * B
/ Division A / B
?' (or * *) Exponentiation A f B or (A**B)

(Raise A to the B Power)

PRIORITY OF ARITHMETIC OPERATIONS
In any given mathematical formula, OS/8 BASIC performs the

arithmetic operations in the following order:

1. Parentheses receive top priority. Any expression within
parentheses is evaluated before an unparenthesized expres-
sion.

2. In absence of parentheses, the order of priority is:
a. Exponentiation
b. Multiplication and Division (of equal priority)
c. Addition and Subtraction (of equal priority)

3. If either 1 or 2 above does not clearly designate the order
of priority, then the evaluation of expressions proceeds from .
left to right.

The expression A 33 f C is evaluated from left to right as follows:

1. A f B = step 1
2. (result of step 1) f C = answer

The expression A/B*C is also evaluated from left to right since
multiplication and division are of equal priority:

1. A/B = step 1
2. (result of step 1)*C = answer

PARENTHESES
Parentheses may be used by the programmer to change the order

or priority (as listed in rule 2 above), because expressions within
parentheses are always evaluated first. Thus, by enclosing expres-
sions appropriately, the programmer can control the order of evalu-
ation. Parentheses may be nested, or enclosed by a second set (or
more) of parentheses. In this case, the expression within the inner-
most parentheses is evaluated first, and then the next innermost,
and so on, until all have been evaluated.
Consider the following example:

The order of priority is:

1. B f 2 . = step 1
2. . (result of step 1)+4 = step 2

6-9

3. (result of step 2)/X = step 3
4. (result of step 3)*7 = A

Parentheses also prevent any confusion or doubt as to how the ex-
pression is evaluated. For example:

A*B 1 2/7+B/C+D f 2
((A*B 1 2)/7)+((B/C)+D 1 2)

Both of these formulas will be executed in the same way. How-
ever, the inexperienced programmer or student may find that the
second is easier to understand. Spaces may also be used to increase
readability. Since the OS/8 BASIC compiler ignores spaces, the
two statements: -

1 0 L E T B = D T 2 + 1
10 LETB=D f 2+1

are identical, but spaces in the first statement provide ease in read-
ing.

RELATIONAL OPERATORS
A program may require that two values be compared at some

'point to discover their relation to one another. To accomplish this,
OS/8 BASIC makes use of the following relational operators:

- - equal to greater than
< less than => or >= greater than or

=< or <= less than or equal to equal to
> < or < > not equal to

Depending upon the result of the comparison, control of program
execution may be directed to another part of the program. Rela-
tional operators are used in conjunction with the IF-THEN state-
ment which is discussed in the next section.

The meaning of the (=) sign should be clarified. In algebraic
notation, the formula X=X+l is "meaningless. However, in '

OS/8 BASIC (and most computer languages), the equal sign
designates replacement rather than equality. Thus, this formula is
actually translated "add one to the current value of X and store
the new result back in the same variable X." Whatever value has
previously been assigned to X will be combined with the value 1.
An expression such as A=B+C instructs the computer to add the

values of B and C and store the result in a third variable A. The
variable A is not being evaluated in terms of any previously as-
signed value, but only in terms of B and C. Therefore, if A has
been assigned any value prior to its use in this statement, the old
value is lost; it is instead replaced by the value of B+C.

RULES FOR EXPONENTIATION
The following rules apply in evaluating the expression A f B.

Rule - \
1. If B=0, t h e n A t B = l
2. If A=O and B>0, then A f B=0
3. If A=O and B<0, then AfB=0

and a DV error message is printed
(See Appendix C)

4. If B is an integer >9, then
AT B=Ai*A2*As . . . *A,,, where n=B

5. If B is an integer <0 then
A /r B= 1 /(Al''A2*A3 . . .*An),
where n=B

6. If B is a decimal (non-integer)
and A>0, then A f B:=
EXP(B*LOG(A))

7. If B is a positive or negative
decimal (non-integer) and A<0,
program halts due to fatal error

Example

-3 f 2.6 is illegal.
Fatal error message
EM printed.

,

OS/8 BASIC STATEMENTS
The following Example Program is included at this point as an

illustration of the format of an OS/8 BASIC program, the ease in
running it, and the type of output that may be produced. This
program and its results are for the most part self-explanatory. Fol-
lowing sections cover the program statements and system com-
mands used in OS/8 BASIC programming.

REM - PROGRAM TO TAKE AVERAGE OF
REM - STUDENT GRADES AND CLASS GRADES
PRINT "HOW MANY STUDENTS* HOW MANY GRADES PER STUDENT "3
INPUT A,B
LET I = 0
FOR J=I TO A- 1
LET V=O
PRINT "STUDENT NUMBER = "t J
PRINT "ENTER GRADES"
LET D=J
FOR K=D TO D+(B-1)
INPUT G
LET V=V+G
NEXT K
LET V=V/B
PRINT "AVERAGE GRADE - "S V
PRINT
LET Q=0+V

100 NEXT J
101 PRINT
102 PRINT
103 PRINT "CLASS AVERAGE =";Q/A
104 STOP
140 END

READY
RUNNH
HOW MANY STUDENTS* HOW MANY GRADES PER STUDENT ?5,4
STUDENT NUMBER = 0
ENTER GRADES
?7 8
?8 6
?8 8
?74
AVERAGE GRADE - 8 1.5

STUDENT NUMBER = !
ENTER GRADES
? 59
?8 6
?70
?8 7
AVERAGE GRADE - 7 5.5

STUDENT NUMBER = 2
ENTER GRADES
? 58
?64
?7 5
?8 0
AVERAGE GRADE - 69.25

STUDENT NUMBER = 3
ENTER GRADES
?8 8
79 2
?8 5
?79
AVERAGE GRADE - 8 6

All of the statements in line 10 will be executed before BASIC
continues to the next line. Only one statement number at the be-
ginning of the entire line is necessary. However, it should be re-
membered that program control cannot be transferred to a state-
ment within a line, only to the first statement of the line in which
it is contained.

REMARK-The Commenting Statement
The REM or REMARK statement allows the programmer to

insert comments or remarks into a program without these com-
ments affecting execution. The OS/S BASIC compiler ignores
everything between REM and the end of the line. The form is:

(line number) REM (message)

In the Example Program, lines 10 and 15 are REMARK state-
ments describing what the program does. It is often useful to put
the name of the program and information relating to its use at the
beginning where it is available for future reference. Remarks
throughout the body of a long program will help subsequent de-
bugging by explaining the purpose of each statement within the
program.

s t 2 t e ~ ~ e ~ i s For T~!rn-i~z!ti~g A4 h ? 3 p - ~ ?

END
The END statement (line 140 in the Example Program) should

be the last statement of the entire program. The form is:

(line number) END

STOP
The STOP statement is used synonymously with the END state-

ment to terminate execution; but while END occurs only once at
the end of a program, STOP may occur any number of times. The
format of the STOP statement is:

(line number) STOP

This statement signals that execution is to be terminated at that
point in the program where it is encountered.

LET-The Assignment Statement
The Assignment (LET) statement is probably the most com-

monly used OS/8 BASIC statement and is used whenever a value
is to be assigned to a variable. It is of the form:

(line number) LET x = expression

where x represents a variable, and the expression is either a num-
ber, another variable, or an arithmetic expression. The word "LET"
is optional; thus the following statements are treated the same:

100 LET A=AtCB+10 110 LET L=L+l
100 A = A t B+10 110 L=L+l

The LET statement is not strictly an equality. LET means "eval-
uate the expression to the right of the equal sign and assign this
value to the variable on the left." Thus, the statement L=L+l
means "set L equal to a value one greater than it was before."

Input/ Output Statements and Functions
Input/output statements allow the user to bring data into a

program and output results or data at any time during execution.

THE INPUT STATEMENT

The INPUT statement is used when data is to be supplied by
the user from the terminal keyboard while a program is executing
and is of the form:

(line number) INPUT xl , x2, . . . , xn

where xl through xn represent variable names. For example:

25 INPUT A

This statement will cause the program to pause during execution,
print a question mark on the terminal console, and wait for the
user to type in a numerical value.
The following rules apply to the use of the INPUT statement.

Rule -
1. The following characters are recognized as acceptable when

inputting numeric data:

+ or - sign
digits 0 through 9

the letter E
leading spaces (ignored)
. (first decimal point)

All other characters are treated as delimiters for separating
numeric data.

10 INPUT A,B,C,D,E

READY

In the above example, A=10, B=32, C=16, D=8, and E=l. -

When inputting numeric data, two delimiters read in succes-
sion imply that the data between the delimiters is 0.

10 INPUT A,B,CtD,E

.

READY

In the above example A=5, B=10, C=0, D=12, and E= 15.
In response to an INPUT statement the user can provide
more data than is requested by the INPUT statement. The
remaining or unused data is saved for subsequent use by the
next INPUT statement. The question mark (?) is not printed
until the program is out of data.
When inputting string data, all characters are recognized as
part of the string, See ALPHANUMERIC INFORMATION
(Strings) for further information relating to strings.

THE PRINT STATEMENT
General

The PRINT statement is used to output results of computations,

comments, values of variables, or plot points of a graph on a
terminal. The format is:

(line number) PRINT expression

When used without an expression, a blank line will be output on the
terminal. For more complicated uses, the type of expression and the
type of format control characters (comma or semicolon) following
the word PRINT determines which formats will be created.

In order to have the computer print out the results of a computa-
tion, or the value of a variable at any point in the program, the user
types the line number, PRINT, and the variable narne(s) separated
by a format control character, in this case, commas:

5A=16 B=5 C=4
10 PRINT A, C-tB, SQR(A)
15 END

The PRINT statement may also be used to output a message or line
of text. The desired message is simply placed in quotation marks in
the PRINT statement as follows:

10 PRINT "THIS IS A TEST"

When line 10 is encountered during execution, the following will be
printed :

THIS IS A TEST

A message may be combined with the result of a calculation or a
variable as follows:

80 PRINT "AMOUNT PER PAYMENT=";R

Assuming R=344.961 when line 80 is encountered during execu-
tion, this will be output as:

AMOUNT PER PAYMENT = 344.961

The PRINT statement can also cause a constant to be printed on
the console. For example:

10 PRINT 1.234, SQR(10014)

will cause the following to be output at execution time:

Any algebraic expression in a PRINT statement will be evaluated
using the current value of the variables. Numbers will be printed
according to the format specified in the section entitled PRINTING
NUMBERS.

Format Control Characters
In OS/8 BASIC, a terminal line is formatted into five fixed zones

(called print zones) of 14 columns each. A program such as:

5 A=2.3\B=2i~\C=l56.75\D=l.134\E=23.4
10 PRINT A,B,C,D,E
15 END

where the control character comma (,) is used to separate the vari-
ables in the PRINT statement, will cause the values of the variables
to be printed using all five zones.

RUNNH
2.3 2 1 156.75 1.134 23.4

READY

It is not necessary to use the standard five zone format for output.
The control character semicolon (;) causes the text or data to be
output immediately after the last character printed.

The following example program illustrates the use of the control
characters in PRINT statements.

5 R E A D A s B s C
10 P R I N T A s B D C D A T ~ D B ~ ~ S C T ~
15 PRINT
20 PRINT A i 6; C; A t 2; B T 2 ; C* 2
25 D A T A 4 ~ 5 ~ 6
30 END
RUNNH

4 5 6
36

4 5 6 16 25 3 6

READY

As this example illustrates, when more thanfive variables are listed
in the PRINT statement, OS/8 BASIC automatically. moves the
sixthnumber to the beginning of the next line.

Printing Numbers
For any format (integer, decimal, or E-type) OS/8 BASIC prints

numbers in the form : -

sign number space

where sign is either minus (7) or blank (for plus) and a blank
space always trails the number.

10 A = 6 4 \ B = - 32\C=72.
20 P R I N T A; B; C
21 END

READY
RUNNH

64 - 3 2 12

READY

P R I N T Used With INPUT
Another use of the PRINT statement is to combine it with an

INPUT statement so as to identify the data expected to be entered.
As an example, consider the following program:

1 0 REM - PROGRAM T O COMPUTE - I N T E R E S T PAYMENTS
20 P R I N T " I N T E R E S T I N P E R C E N T e 9
25 I N P U T J
26 L E T J=J/10@
30 P R I N T "AMOUNT OF LOAN";
35 I N P U T A
40 P R I N T "NUMBER OF YEARS";
45 I N P U T N
50 P R I N T "NUMBER OF PAYMENTS P E R YEAR";
55 I N P U T M
60 L E T N=N*M
65 L E T I = J / M
7 0 L E T B= 1+1
7 5 L E T R = A * I /(1- 1 / E ? N)

7 8 PRINT
R @ PRINT "AMOUNT PER PAYMENT = " ; R -
8 5 PRINT "TOTAL INTEREST =@'i R*M-A
8 8 PRINT
9 0 LET E=A
9 5 PRINT " INTEREST APP T O PhIN B A L A N C E "
100 LET L=B*I
110 LET P=R-L
120 LET B=B-P
130 PRINT L,P,B
146) I F B > = R 60 T O 100
150 PRINT B*I,R-B*I
160 PRINT "LAST PAYMENT @';B*I+B
200 END

READY
R U N N H
INTEREST IN PERCENT??
AMOUNT OF LOAN?2500
N U M B E R OF Y EARS?2
N U M B E R OF PAYMENTS PÂ£f YEAR?4

AMOUNT PER PAYMENT = 344.965
TOTAL INTEREST = 259.724

--

I N T E R E S T APP T O P R I N
56. 2 5 283.715
49.7 539 29 5.212
a. 1116 3 0 ? - a s d
36.3 199 308- 6 ^ 5
29.3754 31 5. 59
22.2746 322. 69 1
15.0141 329.951
7.5901 5 337 .375

LAST PAYMENT 344 .93

BALANCE
221 1 - 2 8
19 16.27
!6!4:22
1305. 57
.- 7 0 3 . 9 8 2 r,

667.29 1
337.34

READY

As can be noticed in this example, the question mark is gram-
matically useful in a program in which several values are to be input
by allowing the programmer to formulate a verbal question which
the input value will answer.

THE TAB (X) FUNCTION
The TAB function, which may only be used in a PRINT state-

ment, allows the user to position the printing of characters anywhere
on the terminal line (or other printing device line when used with
PRINT#). Print positions can be thought of as being numbered
from 1 to 72 across the Teletype from left to right. The form of this
function is:

where the argument X represents the position (from 1 to 72 col-
umns available on the terminal) in which the next character will be
typed.

Each time the TAB function is used in a PRINT statement, posi-
tions are counted from the beginning of the line, not from the cur-
rent position of the printing head. For example, the TAB function
in the following program causes the character "/" to be printed at
24 equally spaced positions along the line.

10 FOR K=3 TO 72 STEP 3
20 PRINT TAB (K) ; "/";
30 NEXT K
40 END

If the argument X in the TAB function is less than the current posi-
tion of the printing head, printing is started at the current position.
If the argument X is greater than 72 (the number of columns avail-
ablein an output line), a carriage return-line feed is executed and
printing resumes at position 1.

THE PNT(X) FUNCTION
OS/8 BASIC provides an additional function, PNT(X), to in-

crease input/output flexibility. The function is primarily used for
outputting non-printing characters such as the "bell", but can be
used for more sophisticated applications. The PNT(X) function,
like the TAB(X) function, may only be used in either a PRINT or
PRINTS statement. The form of the function is:

PNT(X)
-

where the argument X represents the decimal value of the 7-bit
ASCII character to be output. For example, the statement:

10 PRINT "X=";3.14159;PNT(13);TAB(14);'7"
' will print the slash (1) on top of the equal sign after executing a

carriage return (CR=13io) and a TAB to column 2 as shown
below :

x,fci_i3.14159,_

Notice that a TAB(14) is required since OS/8 BASIC remembers
the print head to be at column 12 after the carriage return (1 1 col-
umns for X=,i3.14159n and 1 column for the PNT function). A
tab to column 2 after the carriage return provides a total of 14
columns. The PNT(13) carriage return does not zero the column
count but, in fact, adds to the column count. (This example may
not work on some terminals.)

The READ and DATA Statements
READ and DATA statements are used to provide data to a

program. One statement is never used without the other. The form
of the READ statement is:

(line number) READ xl ,x2 , . . . ,xn

where x l through xn represent variable names. For example:

10 READ A,B,C

A, B. and C are variables to which values will be assigned. Vari-
ables in a READ statement must be separated by commas. READ
statements are generally placed at the beginning of a program, but
must at least logically occur before that point in the program where
the value is required for some computation.

Values which will be assigned to the variables in a READ state-
ment are supplied in a DATA statement of the form:

(line number) DATA x l ,x2 . . . ,xn

where x l through xn represent values. The values must be sepa- .

rated by commas and occur i n the same order as the variables
which are listed in the corresponding READ statement. A DATA
statement appropriate for the preceding READ statement is:

70 DATA 1,2.3

Thus, at execution time A=l, B=2, and C=3.

6-22

The. DATA statement is usually placed at the end of a program
(before the END statement) where it is easily accessible to the
programmer should he wish to change the values.

A READ statement may have more or fewer variables than
there are values in any one DATA statement. The READ state-
ment causes OS/8 BASIC to search all available DATA state-
ments in the order of their line numbers until values are found for
each variable in the READ. A second READ statement will begin
reading values where the first stopped. If at some point in the
program an attempt is made to read data which is not present,
OS/8 BASIC will stop and print the following message at the
console:

DA AT LINE YYYYY

where YYYYY indicates the line which caused the error.

RESTORE
If it is desired to use the same data more than once in a pro-

gram, the RESTORE statement will make it possible to recycle
through the DATA list beginning with the first DATA statement.
The RESTORE statement is of the form:

(line number) RESTORE

An example of its use follows: '

15 READ B,C,D

55 RESTORE
60 READ E,F,G

80 DATA 6,3,4,7,9,2

100 END

The READ statements in lines 15 and 60 will both read the first
three data values provided in line 80. (If the RESTORE statement
had not been inserted before line 60, then the second READ would
pick up data in line 80 starting with the fourth value.)

The programmer may use the same variable names the second
time through the data or not, as he chooses, since the values are
being read as though for the first time. In order to skip unwanted
values, the- programmer may insert replacement, or dummy vari-
ables. Consider:

1 REM - PROGRAM T O I L L U S T R A T E U S E OF RESTORE
20 READ N
25 P R I N T "VALUES OF X ARE:"
30 FOR 1 = 1 TO N
40 READ X
50 P R I N T X,
60 NEXT I ,
7 0 RESTORE
8 0 READ M
185 P R I N T
1 9 0 PRINT "SECOND L I S T OF X VALUES"
200 P R I N T "FOLLOWING RESTORE STATEMENT: "
210 FOR 1 = 1 T O N
220 READ X
230 P R I N T X >
240 NEXT I
25@!lDPT-& A- !.-2
351 DATA 3*4
380 END

READY
RUNNH
VALUES OF X ARE:

1 2 3
SECOND LI S T OF X VALUES
FOLLOW1 N G RESTORE STATEMENT:

1 2 3
READY

The second time the data values are read, the first X picks up the
value originally assigned to N in line 20, and as a result, OS/8
BASIC prints:

To circumvent this, the programmer could insert a dummy variable
which would pick up and store the first value, but would not be
represented in "the PRINT statement, -in which case the output
would be the same each time through the list.

Control Statements
Certain control statements cause the execution of a program to

jump to a different line either unconditionally or depending upon .
some condition within the program. The following statements give
the programmer capabilities in this area.

GOT0
The GOTO (or GO TO) statement is an unconditional statement

used to-direct program control either forward or backward in a
program. The form of the GOT0 statement is:

(line number). GOT0 n

- where n represents a statement number. When the logic of the
program reaches the GOTO statement, the statement(s) immedi-
ately following will not be executed; instead execution is trans-
ferred to the statement beginning with the line number indicated.

The following program never ends; it does a READ, prints
something, and jumps back to the READ via a GOT0 statement.
It attempts to do this over and over until it runs out of data, which

i s sometimes an acceptable, though not advisable, way to end a
program.

10 REM - PROGRAM ENDING WIT4 E R R O R
1 1 REM - MESSAGE WEN OUT OF DATA
20 READ X
25 P R I N T "X='*;X, "Xt2="* ~ X t 2
30 G O T O 20
35 DATA 1,5,10,15,20,25
40 END

READY
RbNNH
X = 1 X t 2 = 1
X = 5 X t 2 = 2 5
x = 10 X t 2 = 10P-
X = 15 X t 2 = 225
X = 20 X t 2 = 400
X = 2 5 X t 2 = 625

DA AT L I N E 00P20

IF-THENandIF-GOT0
If a program requires that two values be compared at some

point, control of program execution may be directed to different
procedures depending upon the result of the comparison. In com-
puting, values are logically tested to see whether they'are equal,
greater than, less than another value, or possibly a combination of
the three. This is accomplished by use of the relational operators.

IF-THEN and IF-GOT0 statements allow the programmer to
test the relationship between two variables, numbers, or expres-
sions. Providing the relationship described in the IF statement is
true at the point it is tested, control will transfer to the line num-
bers specified. If the relationship described in the IF statement is

A - A - . 3 - - - A - - I ... S l I +--cfa- tr\ tho l i n e nor true at the puini it is> icsiicu, LULIUW w i n 110.11.31̂ i.u L..u

following the IF statement. The statements are of the form:

(line number) IF vl <relation>v2
THEN

where vl and v2 represent variable names, numbers, or expres-
sions, and x represents a line number. The use of either THEN or
GOT0 is acceptable.

In the following example, the value of the variable A is changed
or remains the same depending on A's relation to B.

100 IF A>B THEN 120
1 1 0 A = A t B-1
120 C=A/D

When using non-integer arithmetic in the IF-THEN statement,
the test for zero may not always be appropriate due to the nature of
the floating-point arithmetic used by the computer. To avoid this
problem, the programmer should either avoid using non-integer
arithmetic in the IF-THEN statement, or test for fractional values
less than the tolerance desired and set the value to zero.

IF-THEN statements that test the running variable in FOR-
NEXT loops (see the next section) are particularly sensitive to this
problem. f o r example:

10 FOR A=-5 TO 5 STEP .I
20 IF A=0 THEN 50
30 NEXT A
40 STOP
50 PRINT "EQUAL TO ZERO"
60 END

- The above program will never go to line 50.
,

LOOPS
Frequently programmers are interested in writing a program in

which one or more portions are executed a number of times,
usually with slight variations each time. To write the simplest pro-
gram in which the portion of the program to be repeated is written
just once, a loop is used. A loop is a block of instructions that the
computer executes repeatedly until a specified terminal condition
is met. BASIC provides two statements to specify a loop: FOR and
NEXT.

FOR and NEXT Statements
The FOR statement is of the form:

(line number) FOR v=xl TO x2 STEP x3

where v represents a variable name, and xl , x2, and x3 all represent
6.

'expressions (a numerical value, variable name, or mathematical ex-
pression). v is termed the index, xl the initial value, x2 the terminal
value, and x3 the incremental value. For example:

15 FOR K=2 TO 20 STEP 2

This means that the- loop will be repeated as long as K is less than
or equal to 20. Each time through the loop, K is incremented by 2,
so the loop will be repeated a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with sub-
scripted variables, using the value of the index as the subscript of
a previously defined variable (this is illustrated in the section con-
cerning Subscripted Variables).
The NEXT statement is of the form:

(line number) NEXT v

and signals the end of the loop. When execution of the loop reaches
the NEXT statement, the computer adds the STEP value to the
index and checks to see if the index is less than or equal to the
terminal value. If so, the loop is executed again. If the value of, the
index exceeds the terminal value, control falls through the loop to
the statement following the NEXT statement, with the value of the
index equaling the value it was assigned the final time through the
loop.

If the STEP value is omitted, a value of +1 is assumed. Since
+1 is the usual STEP value, that portion of the statement is
frequently omitted. The STEP value may also be a negative num-
ber.
The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the
loop. +1 is the assumed STEP value.

READY
10 FOR 1 = 1 TO 10
20 NEXT I
30 PRINT I
40 END
RUNNH
10

READY

If line 10 had been:

10 FOR 1=10 TO 1 STEP - 1
the value printed by the computer would be 1.

6-28

As indicated earlier, the numbers used in the FOR statement
are expressions; these expressions are evaluated upon first encoun-
tering the loop. While the index, initial, terminal, and STEP values
may be changed within the loop, the value assigned to the initial
expression remains as originally defined until the terminal condi-
tion is reached. To illustrate this point, consider the last example
program. The value of I (in line 10) can be successfully changed as
follows:

10 FOR 1=1 TO 10
15 LET 1=10
20 NEXT I

The loop will only be executed once since the value 10 has been
reached by the variable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal value, the loop will execute once, regardless of the STEP
value. If the starting value is beyond the terminal value, the loop
will never execute because an initial check is made of the starting
and terminal values before the loop is executed. The following
statement is executed but the loop it describes would never be
executed:

10 FOR 1=10 TO 20 STEP -2

It is possible to exit from a FOR-NEXT loop without the index
reaching the terminal value via an IF statement. Control may only
transfer into a loop which has been left earlier without being com-
pleted, ensuring that the terminal and STEP values are assigned.
Nesting Loops
It is often useful to have one or more loops within a loop. This
technique is called nesting, .and is allowed as long as the field of
one loop (the numbered lines from the FOR statement to the corre-
sponding NEXT statement, inclusive) does not cross the field of
another loop. A diagram is the best way to illustrate acceptable
nesting procedures:

ACCEPTABLE NESTING
TECHNIQUES

Two L e v e l N e s t i n g

UNACCEPTABLE NESTING
TECHNIQUES

FOR

r c ; E T

NEXT

ACCEPTABLE NESTING
TECHNIQUES

Three Level Nestino-

UNACCEPTABLE NESTING
TECHNIQUES

FOR

I NEXT

NEXT

LISTS AND TABLES
Subscripted Variables

In addition to single variable names, OS/S BASIC accepts
another class of variables called subscripted variables. Subscripted
variables provide the programmer with additional computing
capabilities for handling lists, tables, matrices, or any set of related
variables. Variables are allowed one or two subscripts. A single
letter or a letter followed by a digit forms the name of the variable;
this is followed by one or two integers in parentheses and separated
by commas, indicating the place of that variable in the list. Up to
31 arrays are possible in any program, subject only to the amount
of core space available for data storage. For example, a list might
be described as A(1) where I goes from 1 to 5. as follows:

A(1),A(2),A(3),A(4),A(5)

This allows the programmer to reference each of the five elements
in the list A. A two dimensional matrix A(IJ) can be defined in a
similar manner, but the subscripted variable A can only be used
once (i.e., A(1) and A(1,J) cannot be used in the same program). It
is possible, however, to use the same variable name as both a sub-
scripted and an unsubscripted variable. Both A and A(1) are valid
variable names and can be used in the same program.

Subscripted variables allow data to be input quickly and easily,
as illustrated in the following program (the index of the FOR
statement in lines 20, 42, and 44 is used as the subscript):

4 2 F O R 1 = 1 T O 2
L I S T

B A S 1 6 BA 3.0 1 8 - M A R - 7 4

10 REM - PROGRAM D E M O N S T R A T I N G R E A D I N G
1 1 REM - O F S U B S , C R I P T E D V A R I A B L E S
15 D I M A (~) J B (Z , ~)
1 6 P R I N T " A (1) WHERE A = l T O 53"
20 FOR 1 = 1 T O 5
25 READ A (1)
30 P R I N T A (I 1 3
3 5 N E X T I
38 P R I N T
39 P R I N T
40 P R I N T " B C I J J) WHERE 1 = 1 T O 2:"
4 1 P R I N T " AND J= 1 T O 3:"
42 F O R 1 = 1 T O 2
4 3 P R I N T
4 4 F O R J = 1 T O 3
48 READ B (I , J)
50 P R I N T B C I J ~) ~
55 N E X T J
56 N E X T I
60 DATA 1 ~ 2 , 3 , 4 , 5 , 6 1 1 . 8
6 1 DATA 8 ~ 7 ~ 6 ~ 5 s 4 ~ 3 ~ 2 ~ 1
65 END

READY
R U N N H
A (1) W H E R E A = 1 T O 53

1 2 3 4 5
{

B (I 9 . J) WHERE 1 = 1 T O 2:
AND J = 1 T O 3:

6 7 8 -
8 7 6

READY

The DIM Statement
From the preceding example, it can be seen that the use of

subscripts requires a dimension (DIM) statement to define the
maximum number of elements in the array. The DIM statement is
of the form:

(line number) DIM v1(n1), v&&
where v indicates an array variable name and n and m are integer
numbers indicating the largest subscript value required during the
program. For example:

15 DIM A(6,lO)

The first element of every array is automatically assumed to have
a subscript of zero. Dimensioning A(6, 10) sets up room for an
array with 7 rows and 11 columns. This matrix can be thought of
as existing in the following form:

and is illustrated in the following program:

10 REM - M A T R I X CHECK PROGRAM
15 DIM A<6s 10)
20 FOP 1 = 0 T O 6
22 LET A (I 3 0) = I
25 FOR J = O T O 10
28 L E T AC0,J)=J
30 PRINT A(IsJ13
35 NEXT J
40PF'INT '

45 NEXT I
50 END

READY
RUNNH
0 ! 2 3 4 5 5 7 8 9 !Â
1 0 0 0 0 0 0 0 0 0 0
0 0 0 0 0 a z ~ e p i
3 0 0 0 0 0 0 0 B 0 0
4 0 0 0 0 0 0 0 0 0 0
5 0 0 0 0 0 0 0 0 0 0
6 @ (a 0 0 0 f e ; 0 0 0 0

READY

Notice that a variable assumes a value of zero until another
value has been assigned. If the user wishes to conserve core space
by not making use of the extra variables set up within the array, he
should set his DIM statement to one less than necessary, DIM
A(5,9). This results in a 6 by 10 array which may then be refer-
enced beginning with the A(0,O) element.
More than one array can be defined in a single DIM statement:

10 DIM A(20), B(4,7)
This dimensions both the list A and the matrix B.

A number must be used to define the maximum size of the array.
A variable inside the parentheses is not acceptable and will result
in an error message by BASIC at compile time. The amount of
user core not filled by the program will determine the amount of
data the computer can accept as input to the program at any one
time. In some programs a TB error (too big) may occur, indicating
that core will not hold an array of the sizerequested. In that event,
the user should change his program to process part of the data in
one run and the rest later. . ,

NOTE-
If a subscripted variable is not defined by
a DIM statement; the variable is assigned an
array size- of ten.

OS/S BASIC FUNCTIONS AND SUBROUTINES
General Information On OS/8 BASIC Functions

OS/8 BASIC-provides a number of functions, as part of the
language, which perforrn,calculations. The use of these functions
eliminates the need for writing small programs to perform the
calculations. Functions have a three letter call name, followed by
an argument, X, which can be a number, variable, expression or
another function. Generally, functions may be used anywhere a
number or a variable is legal in a mathematical expression.
The following OS/8 BASIC functions are discussed in this chapter.

Function Meaning

Sine of X (X is expressed in radians)
Cosine of X (X is expressed in radians)
Arctangent of X (result expressed in radians)
ex (e=2.718282)
Natural log of X (lo@)
Random number
Absolute value of X (1x1)
Integer value of X
Sign of X - assign a value of +1 if X is positive,
0 if X is zero, or -1 if X is negative
Square root of X (X)
User-defined function
Trace function - Used for debugging OS/8
BASIC programs.

In. addition, there are a number of other functions provided by
OS/8 BASIC, which include printing functions and string handling
functions.

Function -,

p N T x > Printing functions
TAB(X)

VAL(X)
STR$(X)

String handling functions

Arithmetic Functions
THE RANDOM NUMBER FUNCTION - RND(X)

The RND(X) function produces pseudo-random numbers be-
tween 0 and 1. The argument X is a dummy argument and can be
any number.
If the user wants the first 20 random numbers, he can write the

10 FOR L = l TO 20
20 P R I N T RNDCX),
30 NEXT L
40 END

READY
RUNNH

0. 361 57 2 0. 3327 64 0. 633057 0.350342 0.670 166
0. 53979 5 0.8 479 0.026123 0.54126 0.9 34326
0.125244 0- 389 404 0.974853 B.516357 K.465088
0.44018 6 0.970947 0.28%89 0.867432 13. 178467

READY

A second RUN gives exactly the same sequence of numbers as the
first RUN this is done to facilitate the debugging of programs.
If the user wants 20 random one-digit integers, he can change line
20 to read as follows:

20 P R I N T I N T (1 0 * R N D (X I) *
RUNNH

The results will be as follows:

READY

To vary the type of random numbers (20 random numbers ranging
from 1 to 9, inclusive), the user can change line 20 as follows:

20 P R I N T I N T (9 * R N D (X) + 1) ;

To obtain random numbers which are integers from 5 to 24,
inclusive, the user can change line 20 to the following: -

20 P R I N T I N T C 2 0 * R N D (X) + 5) :

If random numbers are to be chosen from the A integers of which
B is the smallest, the user can call for INT(A*RND(X)+B).

The RANDOMIZE Statement
As noted in the example program, the same numbers in the same

order resulted both times the program was run. However, a differ-
ent set will be produced with the RANDOMIZE statement, as in
the following program:

5 RANDOMIZE
10 FOR L = l T O 20
20 P R I N T I N T (1 0 * R N D (X)) i
30 N E X T L
40 E N D

R E A D Y

RUNNH
0 7 0 0 2 7 7 3 2 5 7 0 (3 3 0 1 6 0 6 7

READY
RUNNH

1 4 6 5 7 6 0 6 2 2 9 4 7 1 2 1 1 3 0 6
READY

RANDOMIZE resets the numbers based on elapsed time spent
waiting for terminal I/O. For example, if RANDOMIZE appears
after a PRINT or INPUT instruction but before a statement with
the RND (X) function, then repeated RUNS of the program pro-
duce different results. If the instruction is absent, then the official
list of random numbers is obtained in the usual order. It is sug-
gested that a simulated model should be debugged without this
instruction so that one always obtains the same random numbers
in test runs. After the program is debugged, and before starting
production runs, the user inserts the following:

(line number) RANDOMIZE

at the appropriate place in the program.

THE SIGN FUNCTION - SGN (X)
The SGN function is one which assigns the value 1 if the argu-

ment is any positive number, 0 if zero, and - 1 if any negative num-
ber. Thus, SGN (7.23) = 1, SGN (0) = 0, and SGN (-.2387) =l.
For example, the following statement:

25 LET X=SQR (A f 2+2*B*C) *SGN (A)

assigns the sign of X to the sign of A.

6-36

THE INTEGER FUNCTION - INT (X)
The integer function returns the value of the nearest integer not

greater than X. For example, INT (34.67) = 34. By specifying
INT (X+.5) the INT function can be used to round numbers to
the nearest integer; thus, INT (34.67+.5) = 35. INT can also be
used to round numbers to any given decimal place by specifying:

INT (X*lO~D+.5)/10'T'D

where D is the number of decimal places desired. The following
program illustrates this function; execution has been stopped by
typing a CTRL/C:

REM - I N T F U N C T I O N E X A M P L E
P R I N T "NUMBER T O BE ROUNDED"3
I N P U T A
P R I N T " N O * O F D E C I M A L P L A C E S : "3
I N P U T D
L E T B = I N T (A * 1 0 t D + . 5) / 1 0 t D
P R I N T "A ROUNDED ="SB
G O T O 20
EN D

READY
RUNNH
NUMBER T O BE R O L M D E D ? 5 5 * 6 5 3 4 2 .
NO* O F D E C I M A L P L A C E S : ?2
A ROUNDED = 550 65
NUMBER T O B E R O U N D E D ? 7 8 * 3 7 5
NO. O F D E C I M A L PLACES: ?-2
A ROUNDED = 1 0 0
NUMBER T O B E R O U N D E D ? 6 7 * 8 9
N 0. OF D E C I M A L P L A C E S : ?- 1
A ROUNDED = 7 0
NUMBER T O BE R O U N D E D ? t C
READY

If the argument is a negative number, the value returned is the
largest negative integer (rounded to the higher- value) contained
in the number. For example, INT (-23) =-23 but INT (-14.39) -

- 1 5 .

THE ABSOLUTE VALUE FUNCTION - ABS (X)
The absolute value function is used to obtain the absolute

(positive) value of an expression. For example:

5 P R I N T A B S C - 6 6)
1 0 E N D

READY
R W N H

66

READY

THE SQUARE ROOT FUNCTION - SQR (X)
The square root function is used to compute the square root of

an expression. For example:

5 L E T B = 4 \ A = 2 . 5 \ C = . 5
10 P R I N T SQR(Bt 2- 4*A* C)
20 E N D
K u N i l K

3. 3 1 6 6 2

READY

If the argument of the SQR (X) function is <0, the absolute value
of the argument is used.

Transcendental Functions
THE SINE FUNCTION - SIN (X)

The sine function is used to calculate the sine of an angle spec-
ified in radians. For example:

5 REM - C A L C U L A T E S I N E 30 D E G R E E S
10 L E T P = 3 e 14159
20 P R I N T S I N (3 0 * P / 1 8 0)
25 END
RUNNH

0.5

READY

The cosine function is used to calculate the cosine of an angle
specified in radians. For example:

5 REM - C A L C U L A T E T H E C O S I N E OF 4 5 D E G R E E S
1 0 P R I N T C O S (45* 3. 1 4 1 5 9 / I8 0)
20 END
RUNNH

0.7 07 1 0 8

READY

This function calculates the angle (in radians) whose tangent is
given as the argument of the function. For example:

5 REM - C A L C U L A T E A T N C . 5 7 7 3 5)
10 P R I N T A T N (o 5 7 7 3 5)
20 E N D
RUNNH

00 523598

READY

THE EXPONENTIAL FUNCTION-EXP(X)
The EXP(X) function calculates the value of e raised to the X

power, where e is equal to 2.71 828. For example:

5 REM - C A L C U L A T E E X P O N E N T 1 A L V A L U E OF 1.5
10 P R I N T E X P C 1. 5)
20 E N D
RUNNH

40 43 1 6 9

READY

THE NATURAL LOGARITHM FUNCTION-LOG(X)
The LOG(X) function calculates the natural logarithm of X. For

example:

-
5 REM - C A L C U L A T E T H E L O G OF 959
10 P R I N T L O G (9 5 9)
20 E N D
RUNNH

6086589

READY

User Defined Functions
THE FNA(X) FUNCTION AND THE DEF STATEMENT

In addition to the standard functions OS/8 BASIC provides, the
user may define up to 26 functions of his own with the DEF state-
ment. The name of the defined function must be three letters, the
first two of which are FN, e.g., FNA, FNB, . . . , FNZ. Each DEF
statement introduces a single function and is of the form:

(line number) DEF FNA(X)=expression (X)

where A may be any letter and X is a dummy variable, but must be
the same on each side of the equal sign. The DEF statement may
appear anywhere in the program so long as it appears before the
first use of the function it defines. The function itself can be defined
in terms of numbers, several variables, other functions, or mathe-
matical expressions. For example, if the user repeatedly uses the
function e-x2+5, he can introduce the function by the following:

30 DEF FNE(X)=EXP(-X 12)+5

and call for various values of the function by FNE(.l), FNE(3.45),
FNE(A+2), etc- This statement saves a geat deal of time when the
user needs values of the function for a number of different values

Ã

of the variable.
The statement:

DEF FNA(S)=S t 2

will cause the later statement:

20 LET R=FNA(4)+ 1

to be evaluated as R= 17.
in.
1 nc user-defined function can be a function o f - m ~ i ~ than one vari-
able, as shown below:

25 DEF FNL(X,Y,Z,)=^SQR(X 1 2+Y T 2+Z T 2)

A later statement in a program containing the above function might
appear as follows:

55 LET B=FNL(D,L,R)

where D, L, and R have been definedin the program.

THE UDEF FUNCTION CALL AND THE USE STATEMENT
OS/8 BASIC has the capability for adding one or more user-

coded assembly language functions. These user functions may use
four numeric and two string arguments and once properly inter-
faced to OS/8 BASIC, they can be used as any other OS/8 BASIC ~

function. Complete instructions for % writing and interfacing such

functions are provided later in this chapter. A user-coded function,
if present, is specified in an OS/8 BASIC program as:

(line number) UDEF function name argument)

For example:

10 LET R=4
15 LET B=6
20 LET Q=10
25 UDEF PLT(X,Y,Z) i

30 LET D=PLT(R, B,0)
35 PRINT 4*D
40 END

Line 25 introduces the function PLT to OS/8 BASIC and indicates
the number and type of arguments associated with the function. In
line 30 the function is used as any other standard function might be
used in an OS/8 BASIC program. If the function requires the use
of an array, a USE statement identifying the array must precede the
statement that calls the function.

20 LET Q=10 *

22 USE S
25 UDEF PLT(X,Y,Z)

NOTE
A UDEF function name may consist of al-
phabetic characters only and must have at
least one argument (a dummy argument if
necessary).

The Debugging Function-TRC(X)
The TRC(X) function is used by the programmer to follow the

progress of a program and is, therefore, a useful debugging aid. The
form of this function is:

(line number) vl=TRC(X)

where vl is a dummy variable, X=l turns the function on and X=O
turns the function off. When TRC(1) is encountered in a program,
OS/8 BASIC prints the line number of each line in the program as
it is executed. The line numbers are printed between a pair of per-
cent signs so as to be distinguishable from other material that is
printed by the program. Program execution time is slowed down
considerably to accommodate the function and the extra printing
which it causes. When TRC(O) is encountered by the program the
function is turned off and normal program operation resumes.

The following example shows the effect of using the TRC(X)
function in a program to check the operation of a loop. The same
program with the TRC(X) function removed from the program, is
also shown.

With TRC(X) Function Without TRC(X) Function

5 REM B A S I C
6 REM F A C T O R I A L PROGRAM
1 0 FOR J = l T O 5
20 G O S U B 60
30 N E X T J
40 S T O P
60 L E T S = l
62 T = T R C C 1)
65 F O R K= 1 T O J
7 0 L E T S = S * K
7 5 N E X T K
77 T = T R C C 0)
80 P R I N T J a S
8 5 R E T U R N
9 0 END

READY
RUNNH
% 65 %
% 7 0 %
% 7 7 %

1 1
% 65 %
% 7 0 %
% 7 0 %
% 77 %

5 REM B A S I C
6 REM F A C T O R I A L PROGRAM
10 F O R J = l T O 5
20 G O S U B 60
30 N E X T J
40 S T O P
60 L E T S = l
65 F O R K= 1 T O J
7 0 L E T S = S * K
7 5 N E X T K
80 P R I N T J a S '
8 5 RETURN
9 0 END

READY
RUNNH

1
2
3
4
5

READY

With TRC(X) Function

READY

Subroutines
A subroutine is a part of the program perfortning some operation

that is required at more than one point in the program. Subroutines
are generally placed physically at the end of a program, usually
before DATA statements, if any, and always before the END state-
ment.
GOSUB AND RETURN

Two statements are used exclusively in OS./8 BASIC to handle
subroutines; these are the GOSUB and RETURN statements.
When a program encounters a GOSUB statement of the form:

(line number) GOSUB x

where x represents the first line number of the subroutine, control
then transfers to that line. For example:

When program execution reaches line 50, control transfers to line
200; the subroutine is processed until execution encounters a

6-43 .

RETURN statement of the form:

(line number) RETURN

which causes control to return to the statement following the
GOSUB statement. Before transferring to the subroutine, OS/8
BASIC internally records the next statement to be processed after
the GOSUB statement; thus the RETURN statement is a signal to
transfer control to this statement. In this way, no matter how many
different subroutines are called, or how many times they are used,
OS/8 BASIC always knows where to go next.
The following program demonstrates a simple subroutine:

1 REM - T H I S P R O G R A M I L L U S T R A T E S GOSUB A N D RETL'RM
1 0 D t F F N A (X) = A B S (I N T < X))
20 I N P U T A, B, C
30 G O S U B 1 0 0
40 L E T A= F N A< A)
50 L E T B = F N A(B)
60 L E T C = F N A (C)
7 0 P R I N T
80 G O S U B 1 0 0
9 0 S T O P
1 0 0 REM - T H I S S U B R O U T I N E P R I N T S O U T T H E S O L U T I O N S
1 1 0 REM - O F THE E Q U A T I O N : A (X t 2) + B (X) + C = 0
120 P R I N T " T H E E Q U A T I ON ? S a D 3 A; "*X T 2 + "i B; "*X + I*; C *

130 L E T D = B * B - 4 * A * C
1 4 0 I F D < > 0 T H E N 170
150 FKINT " O N L Y Wfc. S & U ~ I @J. - X = " i - & / < 2 * A)
166 RETURN
1 7 0 I F D < 0 T H E N 200
1 8 0 P R I N T "TWO S O L U T I 04s.. . X =**;

1 8 5 P R I N T (- B + S Q R (D l) / C 2 * A) 3 "AND X="; (- b - S Q R C D) /(2 * A)
190 R E T U R N
200 P R I N T " I M A G I N A R Y S O L U T I CNS... X = (I* ;

205 P R I N T - B / (2 * A) ; "f SQRC -D) /(2 * A) i ") A N D ("3
207 P R I N T - B/(2* A) 3 "a "3 - S Q R (- D) /(2* A) i ") "
2 1 0 R E T U R N
900 END

READY
RUNNH
? 1 , . 5 , - . 5
T H E E Q U A T I O N I S 1 * X t 2 + 0. 5 *X + -0.5
T W O S O L U T I ONS. . X = 0.5 AND X = - 1

T H E E Q U A T I O N I S 1 * X t 2 + 0 * X + 1
I M A G I N A R Y S O L U T I Q M S . . * X = (0 .Ã 1 A N D (0 , - I)

R E A D Y

Line 100 begins the subroutine. There are several places in which
control may return to the main program, depending upon a certain
condition being satisfied. The subroutine is executed from line 3 0
and again from line 80. When control returns to line 90, the pro-
gram encounters the STOP statement and execution is terminated.

It is important to remember that subroutines should generally be
kept distinct from the main program. The last statement in the main
program should be a STOP or GOT0 statement, and subroutines
are normally placed following this statement.

More than one subroutine may be used in a single program in
which case these can be placed one after another at the end of the
program (in line number sequence). A useful practice is to assign
distinctive line numbers to subroutines. For example, if the main
program is numbered with line numbers up to 199, 200 and 300
could be used as the first numbers of two subroutines.

NESTING SUBROUTINES
Nesting of subroutines occurs when one subroutine calls another

subroutine. If a RETURN statement is encountered during execu-
tion of a subroutine, control returns to the statement following the
GOSUB which called it. From this point, it is possible to transfer
to the beginning or any part of a subroutine, even back to the call-
ing subroutine. ~ u l t i ~ l e entry points and RETURN statements
make subroutines more versatile.

The maximum level of GOSUB nesting is ten levels, which
should prove more than adequate for all normal uses. Exceeding
this limit results in the message:

GS AT LINE YYYYY

where YYYYY represents the line number where the error oc-
curred. An example of GOSUB nesting follows (execution has been
stopped by typing a CTRL/C, as the program would otherwise
continue in an infinite loop).

10 REM F A C T O R I A L PROGRAM U S I N G G O S U B T O
15 REM C O M P U T E RECURSIVELY T H E FACTORS
40 I N P U T N
50 I F N > 2 0 THEN 120
60 X = l
7 0 K=l
80 GOSUB 200
9 0 P R I N T " F A C T O R 1 AL"; N ; "= "; X
110 G O T 0 40

120 PRINT "MUST BE 20 OR LESS"
130 GOT0 40
200 IF N= 1 THEN 230
210 N=N-1
220 GOSUB 200
225 N=N+ 1
227 X = X * N
230 R E T U R N
240 END

READY
RUNNH
?2
F A C T O R I AL 2 = 2
?4
F A C T O R I AL 4 = 24
?5
F A C T O R i AL 5 = 120
?T C
READY

ALPHANUMERIC INFORMATION (STRINGS)
In previous sections we have dealt only with numerical informa-
tion. However, O S / ~ BASIC also processes, or manipulates, al-
phanumeric information called strings. A string is a sequence of
characters, each of which is a'letter, a digit, a space. or some
character other than a statement terminator (backslash or carriage
return).

String Conventions
CONSTANTS AND VARIABLES

Strings may appear as constants or variables just as numerics
may. We have already used string constants in PRINT statements.
For example:

100 PRINT "THIS IS A STRING CONSTANT"

where the alphanumerics enclosed in quotes are the string constant,
Naming a string variable is similar to naming a numeric variable.

It consists of a letter followed by a dollar sign ($) or a letter and a
single digit followed by $. A$ and Al$ are both legitimate string
variable names; 2A$ and AA$ are not legitimate string variable
names.
DIMENSIONING STRINGS

OS/8 BASIC assumes that a string length is 8 characters or less
unless a string has been dimensioned in the form:

10 DIM A$(I)

where "I" is the length of string variable A$. "I" cannot exceed 72.
String lists (equivalent to single subscripted numeric variables)

are permitted in OS/8 BASIC and must be dimensioned in the
form:

20 DIM A$(K,L)

where K is the number of strings in the list and L is the length of
each string.

When referencing a subscripted string variable in a LET or IF-
THEN statement, for example:

25 LET B$(I) = "YES"

the expression I represents the place of that string variable in the
list B$.
Double subscripted string variables (string tables) are not permitted
in OS/8 BASIC.

INPUTTING STRING DATA
String data may be included in a DATA list but must always be

enclosed by quotation marks. In fact any string written into a pro-
gram must be enclosed by quotation marks to be recognized by the
OS/8 BASIC Compiler.

10 READ A$,B$,C$
20 PRINT C$;B$;A$
25 DATA "NG","RI","ST"
30 END

The program above prints STRING.
Quotation marks may be included in strings by indicating 2 quo-

tation marks in succession. For example the string A"B would
appear in a program as:

10 LET A$ = "A" "B"

Both string data and numeric data may be intermixed in a DATA
list but the burden falls on the programmer to assemble the list in
the correct sequence, since all READ statements for both string and
numeric data remove data serially from the DATA list. If he does
not. the results of the READ statement are unpredictable.

The INPUT statement may also be used for inputting string data
to a program. Quotation marks are not necessary when inputting

string data in response to the question mark (?)
INPUT statement unless the quotation marks
meant to be part of the string.

generated by the
are deliberately

330 PRINT "DO YOU WISH TO CONTINUE?"
340 INPUT A$
350 IF A$="YES" THEN 410
360 PRINT "ARE YOU SURE?"
370 INPUT B$
380 IF B$="N09' THEN 410
390 PRINT "PROGRAM STOPPED"
400 STOP
41 0 PRINT "LET'S CONTINUE"

490 END

Each string literal requested by an INPUT statement must be ter-
minated by a carriage return which acts as the data delimiter. This
is necessary since all characters, except for the carriage return, are
recognized as part of the data string.

10 I N P U T AÂ£,BS CS .
.
RUNNH
?ABCD
?EFGH
?IJ

v

In the above example A$*="ABCD", B$="EFGH" and C$="IJ".

6-48

STRINGS IN LET AkD IF-THEN STATEMENTS
Strings may be used in both LET and IF-THEN statements as

already indicated by some of the previous examples. Any of the
relational operators may be used in an IF-THEN statement to com-
pare strings. Strings are compared on the basis of the ASCII nu-
meric value of each character in the string. -

When comparing strings in an IF-THEN statement, the relational
operators have the following significance:

Operator

For example:

Meaning

earlier in ASCII numeric order than
later in ASCII numeric order than
same ASCII numeric order as or earlier,
in ASCII numeric order than
same ASCII numeric order
different ASCII numeric order than
same ASCII numeric order as or later in
ASCII numeric order than

10 IF "ABCD"<"ABC @" THEN 50
20 STOP

50 LET A$="ABCDY' .

Each character in string ABCD is compared, left-to-right, with
the respective character in string ABC @. A, B, and C match but D
and @ do not. The character @ has a lower numeric value than
the character D. Therefore the string ABCD is not earlier in ASCII
numeric sequence than ABC@ and the program stops at line 20.

If the strings in an IF-THEN comparison are of unequal length,
then OS/8 BASIC lengthens the shorter string to make it equal in
length to the longer string by appending an appropriate number of
ASCII space characters. In the following example:

6-49

1 0 IF "ABCD"<"AB" THEN 50
20 STOP

50 LET A$="ABCD"

string "AB" is treated as " A B n ~ " . Since the character C is earlier
in ASCII numeric order than the character "space," the IF-THEN
statement is true and control is transferred to line 50.

STRING CONCATENATION
Strings can be concatenated by means of the operator ampersand
(&). The ampersand can be used to concatenate string expressions
wherever a string expression is legal, with the exception that infor-
mation cannot be stored by means of a LET statement in concate-
nated string variables. That is, concatenated string variables cannot
appear to the left of the equal sign in a LET statement. For ex-
ample, LET A$=B$&C$ is legal, but LET A$&B$=C$ is not. An
example of string concatenation is:

10 READ A$,B$,C$
20 PRINT C$&B$&A$
25 DATA "NG," "RI," "ST"
30 END

Running this program causesSTRING to be printed.

String Handling Functions
A number of functions have been implemented that perform

manipulations on strings. These functions are LEN, ASC, CHR$,
VAL, STR$, POS, SEG$, and DAT$. Functions that return strings
have names that end in a dollar sign (Q; those functions that return
numbers have names that do not end in a dollar sign.

THE LEN FUNCTION
The LEN function returns the number of characters in a string.

It has the form:

Example:

SCRATCH

R EADY
5 D I M BSC 10)
10 h E A D AS, BS
2 R PhINT LEN(PSiSBS&"AROUMD")
30 DATA *'UPS "S "DOWNS PND "

40 EM D
RWJMH

20
*

READY

THE ASC AND CHR$ FUNCTIONS
The ASC and CHR$ functions perform conversion from and to

ASCII, respectively. The ASC function converts a one character
string to its ASCII decimal equivalent, and the CHR$ function con-
verts a decimal number to its equivalent ASCII character.
The ASC function has the form:

ASC (argument)

The argument is a one character string. ASC returns the equivalent
ASCII decimal number for the character.
The CHR$ function has the form:

CHR$ (numeric expression)

The value of the numeric expression is truncated to an integer
that is in the range 0 to 63. Integers greater than 63 are treated
modulo 64. That is, they are divided by 64 and the remainder be- *
comes the new integer. This integer is then interpreted as an ASCII
decimal number that is converted to its equivalent character (refer
to Appendix A for the ASCII decimal numbers and the equivalent
characters).
An example of the ASC and CHR$ functions follows:

5 FOR T = A S C ("A") T O ASCC "A") + 3
10 P F ' I N T " T H I S I S TEST "<&CHRS(T>
15 NEXT T
20 EVD

This is the beginning of a FOR loop that successively prints:

R EbDY
RUNNH
THIS I S TEST A
THIS I S TEST B
THIS I S TEST C
THI 5 I S TEST D

R E A D Y

THE VAL AND STR$ FUNCTIONS
The VAL and STR$ functions perform conversions from strings

to numbers and numbers to strings. The form of the VAL function
is:

VAL (string expression)

The string expression must look like any number which may be
legally typed in response to an INPUT statement. VAL returns the
actual number that the string represents. The VAL function does
not return the ASCII value of the number that the string represents,
it returns the number. For example, VAL ("25") returns the num-
ber 25. The 25 that is the argument to VAL is a string, the 25
that VAL returns is a number.
Example:

10 INPUT AS
20 PRINT V A L (A Â £) *
25 E N D

READY
R U N N H
?2.46111

4.92222

R E A D Y

The STR$ function returns the string representation (as a num-
ber) of its argument. The form of STR$ is:

STR$ (numeric expression)

The string that is returned is in the form in which numbers are out-
put in BASIC. For example, PRINT STR$(1.76 1 1 1 124) prints the
string 1.761 1 1.

THE POS FUNCTION
ThePOS function is of the form:

The function returns the location in string X$ of the first occur-
rence of string Y$ starting with Zth character in string X$. For
example:

20 LET X$="MONDAY"
25 LET X=POS(X$,"DAY,"l)

After line 25, X will be equal to 4. The arguments of the POS func-
tion may be constants, variables, or expressions.
The following rules apply in evaluating the POS(X$,Y $;Z) function.

1. If Y$ is a null string (no characters) then
POS(X$,Y$,Z)= 1

2. If X$ is a null string (no characters) then
POS(X$,Y$.Z)=0

3. If Z is less than zero or greater than the actual string length, a
fatal error (PA) is detected and program execution stops

4. If Y$ is not found, then
POS(X$,Y $,Z)=O

THE SEG$ FUNCTION
This function is of the form:

The function returns the substring of X$ which is between posi-
tions Y and Z inclusively. For example:

20 LET X$ ="MONDAY"
25 LET B=6
30 LET A$=SEG$(X$,2*B/3,B)

After line 30, A$ is equal to The arguments of the SEG$.

function may be variables, constants, or expressions.

The following rules apply in evaluating the SEG$(X$,Y.Z) function.

1. If YGO, Y is set equal to 1
2. If Y> length X$, then SEG$(X$,Y,Z) = null string (no

characters)
3. If ZGO, then SEG$(X$,Y,Z) = null string
4. If Z > length X$, then Z is set equal to length of X$
5. If Z<Y, then SEG$(X$,Y ,Z) = null string

THE DATS FUNCTION
The DAT$ function is of the form:

DAT$(X)

The function returns an eight character string giving the current
date in the form MM/DD/YY. For example:

S C R A T C H .---

The use of DAT$ function assumes the user has specified the
date in the OS/8 monitor command DATE. If the DATE com-
mand was not used, the DAT$ function outputs a null string (no -
characters).

EDITING AND CONTROL COMMANDS
Several commands for editing OS/8 BASIC programs and for

controlling their execution enable the user to perform such opera-
tions as:

erase characters or lines
list part or all of a program
save programs on various storage devices, and
call program from storage devices.

6-54

Correcting Programs
ERASING CHARACTERS AND LINES

Errors made while typing programs at the terminal are easily
corrected. Typing a SHIFT/O or pressing the RUBOUT key
causes deletion of the last character typed, and echoes as a back
arrow (+) on the terminal; One character is deleted each time the
key is typed. For example:

20 DEN F - - - F FNP(X,Y)=XT 2 + 3 * Y

The user types N instead of F and immediately notices his mistake.
He presses the RUBOUT key (or SHIFT/O) three time, which is
once for as many characters including spaces to, be deleted. He
makes the correction and continues typing the line. The typed line
enters the computer only when the RETURN key is pressed.

20 DEF F N A (X , Y) = X t 2 + 3 * Y

Sometimes it is easier to delete a line being typed and retype the
line rather than attempt a correction using rubouts. Typing
CTRL/U or pressing the ALTMODE key will delete the line cur-
rently being worked on and echoes DELETED and a carriage
return-line feed. Use of the CTRL/U or ALTMODE command is
equivalent to typing mbouts back to the beginning of the line.

To delete a line that has already been entered into the computer
the user simply types the line number followed by a carriage return.
Both the line number and the line are removed from his program.

The user may change individual lines by simply typing them in
again. Whenever a line is entered, it replaces any existing line which
has the same line number. New lines may be inserted anywhere in
the program by giving them line numbers which are between two
other existing line numbers. Using these editing capabilities, the
program may be modified and re-run until it works properly.

THE RESEQ PROGRAM
After the user has extensively modified his program, he may find
that some portions of the program have line numbers spaced so
closely together that they do not permit any further addition of
statements should he wish to do so. Renumbering the lines in the
program so as to provide a practical increment between line num-

bers can be accomplished automatically by using the RESEQ
program. It should also be noted that the RESEQ program modifies
the line numbers in GOSUB and IF-THEN statements to agree
with the new line numbers assigned to statements by the program.
Line lengths must not exceed 72 characters.
Typically, the program would be used as follows:

SAVE DSK:SAMPLE

READY

OLD DSK:RESEQ

READY

RUNNH

FILE? DSK:SAMPLE.BA

-
READY

OLD DSK:SAMPLE

READY

LISTNH

User saves program SAMPLE
which requires renumbering.

BASIC is ready for next command.

User calls for program RESEQ.

BASIC is ready for next command.

User runs program.

Program asks for filename.
User responds with name of pro-
gram to be renumbered.

Program asks for a starting line
number (START) and for the in- /

crement between line numbers
(STEP). User requested that SAM-
PLE start with line number 100
and each line be incremented by
10.

Renumbering is accomplished.
BASIC ready for next command.

User calls back his program.

BASIC ready for next command.

User gets listing of program SAM-
PLE for further modification.

The LIST and LISTNH Commands
An entire program can be listed on the terminal by typing

LIST. A heading is printed before the program itself and is of
the form:

FILE EX VERSION NO. DATE
.

6-5 6

For example, if the user is working on a program.named USER.BA
and wants a listing he types:

LIST

and BASIC responds with:

USER BA 1.0 26-JUL-72
100 LET X=l

200 END
READY

NOTE
When any OS/8 BASIC command is com-
pleted, the message READY is printed at -

the terminal. OS/8 BASICis then ready to
accept any-other commands from the user.

A part of a program may be listed by typing LIST followed by a
. line number. This causes that line and all following lines in the

- program to.be listed. For. example:

LIST 100

will list line 100 and all- remaining lines i n the program. Typing
CTRL/O while the listing is being printed terminates the printing
and outputs the READY message.

The LISTNH command may be used exactly as the LIST com-
mand, but it eliminates the heading from the listing.

The SCRATCH Command
The command:

SCRATCH
is provided to allow the programmer to clear his storage area; delet-
ing any commands, or a program which may have been previously
entered, and leaving a-clean-area in which to work. If the storage
area is not cleared before entering a new program, lines from pre-
vious programs may be executed along with the new program, caus-
ing errors or misinformation. The SCRATCH command eliminates

all old statements and numbers and should be used before new
programs are created.

The NEW Command
The NEW Command is used to name a program to be created

and performs an inherent SCRATCH on the storage area. The
command is in the form:

NEW FILE.EX

It assigns the filename to the program to be created. For example:

NEW USERA.BA

creates file USERA.BA.
An alternate method of naming programs is to type NEW followed
by the RETURN key. BASIC responds with:

FILE NAME-

The user types the filename and extension followed by the RE-
TURN key.

NEW (.BA is assumed and need not
FILE NAME-USERA.BA be typed)

NOTE
Extension .BA is assumed in the OLD,
NEW, NAME, and SAVE commands un-
less otherwise specified. If no extension is
specified in the OLD command, OS/8
BASIC first tries to load FILE.BA and if
unsuccessful tries to locate and load FILE
without the extension.

The OLD Command
This command retrieves a previously created file from a storage

device and places the file in the storage area of the computer. The
command is of the form:

OLD DEV:FILE.EX

For example:

OLD DTA1 :SAMPLE.BA

retrieves file SAMPLE from DECtape number 1 and places it in the
storage area of the computer.
An alternate method of retrieving a file is to type OLD followed
by the RETURN key. BASIC responds with:

FILE NAME-
0

The user types the device, filename and extension followed by the
RETURN key.

OLD
FILE NAME-DTA1 :SAMPLE.BA .

If the device is omitted, DSK: is assumed.

The NAME Command
This command permits the user to rename the program in the

storage area of the computer. The command is of the form:

NAME FTLE.EX

Since this commandchanges only the name of the storage area of
the computer-not its contents, it can be used to create two almost
identical versions of the same program. This is accomplished by ,

retrieving the first file, making modifications to it, and then SAVE-
ing the modified version under the new name.

The SAVE Command
The SAVE command saves on the specified device the file

currently in the storage area of the computer. The command is of
the form:

SAVE DEV:FILE.EX

If device is omitted, DSK: is assumed. If filename and extension
are omitted, the current filename and extension are used.

The SAVE command also provides a convenient method for
listing large programs quickly on the line printer rather than the
terminal. For example:

SAVE LPT:

will list the current program on the line printer.

The RUN and RUNNH Commands
After a BASIC program has been typed and is in core, it is ready

to be run. This is accomplished by simply typing the command:

RUN

The program heading is printed and the program will begin
execution. If errors are encountered, appropriate error messages
will be printed on the keyboard; otherwise, the program will run to
completion, printing whatever output was requested. When the
END statement is reached, OS/8 BASIC stops execution and
prints:

READY

If ilie program does not run properly, or contains an infinite loop
and, hence, will never stop, it may be terminated by typing
CTRL/C, which returns control to the OS/8 BASIC editor
(READY).
The RUNNH command suppresses printing of the heading and
may be used in place of the RUN command.

NOTE
If a program that is not SAVEd is RUN,
and for some reason is not retrievable by
LISTing, the program may be retrieved by
c d h g f ~ r GLE 5le BASIC.'+VS.

The BYE Command
The BYE command instructs the computer to exit from OS/8

BASIC and returns control to the OS/8 Keyboard Monitor. Typ-
ing a CTRL/C while in the OS/8 BASIC editor (READY) mode
also returns control to the OS/8 Keyboard Monitor.

NOTE
Never type BYE before SAVEing a newly
typed program. Unless the SAVE command
is used, the program will be lost.

FILES, FILE STATEMENTS AND CHAINING

General Information On OS/8 BASIC Files
SYSTEM DEVICES

The file capability provided by OS/8 BASIC allows the user to
write information into (PRINT#) or read information from

(INPUT#) files on devices other than the terminal. Devices such
as disks, DECtapes, and line printers permit the user the flexibility
and advantage of mass storageand high speed I/O, when writing
OS/8 BASIC programs. Each device in the OS/8 system is refer-
enced by means of its standard OS/8 permanent device name.

Files are referenced symbolically by a name of up to six alpha-
numeric characters followed, optionally, by a period and an exten-
sion of two alphanumeric characters. The extension to a file name
is generally used as an aid for remembering the format of a file.

A fixed length file is one which is already in existence. That is,
it has been created and CLOSEd. The length of a fixed length file
is equal to the number of blocks in the file and cannot be changed.

A variable length file is a newly created file. Until the file is
CLOSEd, it is equal in length to the largest free space oh the de-
vice. When the file is CLOSEd it becomes a fixed length file equal
in length to the actual number of blocks i t occupies. Unless the file
is CLOSEd, the CHAIN, STOP or END statements will cause a
loss of the file.
Data in numeric files are stored as successive three-word floating-
point numbers (85 to each OS/8 block) with the last word in each
block unused.

Data in ASCII files are stored in standard OS/8 format (three
8-bit characters to every two words). Refer to the next section of
this chapter and the PS/8 Software Support Manual (DEC-08-
MEXB-D).

File Statements
OS/8 BASIC provides a number of statements for operating on

files. They include:

FILE#
PRINTS
INPUT*
RESTORED
CLOSED
IF END#

The statements are distinguishable from other OS/8 BASIC state-
ments by the number sign (#) which appends the statement name.

The FILE # statement is used to open a file and is of the form:

(line number) FILEtype # numeric expression: string expression

where:

a. FILEtype is one of four possibilities:

FILEt ype Definition

FILE Fixed length-ASCII
FILEV Variable length-ASCII -

FILEN Fixed length-numeric
FILEVN . Variable length-numeric

b. The numeric expression has a value of from one to four and
represents the internal file number for the file number being
opened and is used in any other statements referencing this
file. FILE 4+0 .references the Teletype.

c. The string expression is either a string variable or string
constant which has a value of the form:

For example, the following program:

1 0 LET A$="DTA 1 :NFTSAK.RA7
20 FILEN ;:? 1 :A$

4

is equivalent to:

10 FILEN # 1 :"DTAl :NETSAK.BA7'

for opening fixed length numeric file NETSAK on DECtape num-
ber 1 and assigning it internal file number 1. If DEV: is missing
from the string expression, the device DSK is assumed by default.
Only four files, (numbered 1 through 4) besides the Teletype
(FILE $0) may be open in a program at any time. However, the
ability to open and close (CLOSED) files under program control
permits the user to access an unlimited number of files.

When selecting a FILEtype, the user should keep in mind that
variable length files (FILEV and FILEVN) are restricted to out-
putting only. That is. variable length files should be used in con-
junction with the PRINTS statement only. An attempt to read

(INPUT#) from a variable length file results in error message
VR. Only one FILEV or FILEVN may be active per device at a
given time.

The use of fixed length ASCII files (FILE) should be restricted
to use with the INPUT# statement, but may be used with the
PRINT# statement when the user is certain that the ASCII or
numeric data he is PRINTING (i.e., the number of characters) re-
places, exactly, the ASCII or numeric data on the file. It is recom-
mended that the use of fixed length ASCII files (FILE) for output
be entirely avoided.
The PRINT# statement writes data into files and is of the form:

(line number) PRINT#N: list of expressions and delimiters

where N is the numerical expression for a file number. For ASCII .
files, the expressions in the list can be string or numeric, and the
TAB and PNT functions can both be used. The delimiters can be
commas or semicolons and have the same meanings that they have
in the PRINT statement for the terminal. For numeric files, the
expressions may only be numeric variables separated by commas
or semicolons.

1 0 FILEV # 1 : "LPT: "
20 LET F=l
30 PRINT #F: TAB(28);DAT$(X)
40 CLOSE #F
50 END

This routine prints the date, starting at column 28 on the line-
printer.
The INPUTS statement reads data from files and is of the form:

(line number) INPUT #N: list of variables

where N is the numerical expression for a file number. The
INPUT# statement does not expect a line number on each line
of data in the file. If one is present, it is read as data:

10 DIM N$(19,15)
20 FILE # 1 :"LARRY"
30 FOR 1=1 TO 19
40 INPUT # 1 : N$(I)
50 NEXT I

The above routine reads 19 strings from DSK: file LARRY.
The previous paragraph indicated that numbers may be written

into an ASCII file. The reading of numbers from an ASCII file
requ!res some precaution if the data delimiter is other than a
comma or semicolon. In line 30 of the example below, the data
written into file number 1 will be separated by a carriage return
and line feed which are both written into the file. The subsequent
reading of numbers from the file in line number 80 shows the use
of a pair of dummy arguments (C and L) to compensate for the
carriage return and line feed since they would otherwise be read
as numeric data with a value of 0.

10 FILEV # 1 :A$
20 FOR I = 1 TO 10

+

30 PRINT #1:1
40 NEXT I
50 CLOSE #1
60 FILE # 1 :A$
7OFORI = 1 TO 10
80 INPUT # 1 : J,C,L
90 NEXT I

The RESTORE* statement is of the form:

where N is a numerical expression for the file number to be reset
to the beginning. If N is equal to zero, or if #N is missing from the
statement, the DATA list in the program is reset to the beginning.

10 FILE #2: "SUSAN"
2D INPUT #2: A,B,C,D
25 RESTORE #2
30 INPUT #2: E,F,G.H

This program uses the same values from disk file SUSAN for
variables A, B, C, and D as it does for variables E, F, G , and H.
The CLOSE# statement is of the form:

(line number) CLOSE #N

where N is the numerical expression for the file number to be
closed. For example :

10 DIM A$(5,10)
15 FOR 1=1 TO 4
20 LET A$ (I) = "SHERY" & CHR$(I+48)
25 FILE #I:A$(I)
30 INPUT #I:B$
35 IF B$="SANDY9' THEN 60
40 CLOSE #I
45 NEXT I
50 PRINT "CANNOT FIND SANDY"
55 STOP
60 PRINT "FOUND,SANDY"

90 END

This program searches. through four disk files (SHERY1 through
SHERY4) for the file that has SANDY as the first entry. If the
first entry in the file is not SANDY, the file is closed (statement 40)
and the next file is opened.

NOTE
The user must CLOSE# all output files be-
fore ending the program in order to prevent
the loss of data.

The IF END# statement allows the user to determine whether
or not there has been an End-of-File detected for the ASCII file in
question. The statement has the form:

(line number) IF END #N THEN line number

where N is a numerical expression for the ASCII file number. The
line number must refer to a line in. the program-

100 IF END # 1 THEN 170

170 END

If the IF END# statement is found true, the last INPUT# or
PRINT# (read or write) should be discarded.
The IF END# statement is not used to determine if more data is
available, but rather to determine if the last read or write was valid.
The first attempt, in an INPUT# or PRINT# statement, to read
or write past an end-of-file causes an abort of the 1/0 associated
with that read or write, and the program passes control to the next
operation to be performed. The second, and any subsequent
attempts, to read or write past an end-of-file, causes an RE or WE
runtime error to be printed for each syntactical item in the IN-
PUT# or PRINT# list. TO avoid a lengthy list of error messages,
avoid using long INPUT# or PRINTS lists in situations which
may approach an end-of-file.
Core image files have been implemented under OS/8 BASIC V3.
To create a core image file from a BASIC language source, type:

where PPiOG.BA is the source. The K switch indicates that a ccre
image file is to be created. The following additional switch/option
designations apply:

/N If the resulting core image will never be executed on a
12K TD8E system. This saves 400 words of memory but
reduces configuration independence.

If a copy of the run-time system should be loaded into the
core image. This increases the size of the core image file
by 10-50% (exactly 15 blocks) but eliminates the need for
a file access to read in BRTS at run-time. BRTS and
overlays must still exist on the system device, when the
program is run.

= n. Where n is an octal digit in the range l<n <m and m is
the highest memory field available on the host machine.
The highest memory field on the target machine will be n.
This may reduce configuration independence, since the

resulting core image will not load correctly on a machine
with fewer than n+l memory banks. If n is not specified,
n= 1 is assumed. If n is specified larger than m, n=m is
assumed.

In the absence of error conditions, the compiler post-processor
(BLOAD) will exit to OS/8. At this time, type:

,

.SA DEV: PROG

to create an executable core image. Additional arguments to the
save command must not be specified. The core image is executed
by typing:

.R PROG

as appropriate. Any errors flagged during compilation will prevent
creation of an executable core image file.
In contrast to normal BASIC program execution, which requires a
minimum of 6 file access operations, core image file execution
requires no more than two file accesses; one to read the core
image file and one to read BRTS if /B was not specified. Com-
piler/loader overhead is also eliminated, so that the reduction in
execution time is very significant, especially on DECtape systems.
The following error messages may occur during execution of a
BASIC core image file:

USER ERROR 1 AT nnnn
One of the files:

BRTS.SV -.
BASIC. AF
BASIC.SF
BASIC.FF

was missing from the system device.

USER ERROR 2 AT nnnn
An attempt was made to load a core image file produced under the
/ N option on a 12K TD8E system (without ROM).

USER ERROR 3 AT nnnn
Insufficient core to load this core image file.

When executing BASIC core image files on a DECtape system,
the following techniques will ensure minimum execution time:

1. Follow the recommended procedure for grouping calls to
functions according to the overlay in which the function
resides, to minimize overlaying at run-time. (Refer to the
section entitled THE OS/8 BASIC RUN-TIME SYSTEM)

2. Prepare a system DECtape which contains all of the BASIC
core image files, followed by:

BRTS.SV
BASIC.AF
BASIC.FF
BASIC.SF
B ASIC.UF (optional)

The BASIC core image files should reside near the beginning of
the DECtape. If chaining is employed, the least frequently run
programs should appear first on the DECtape.
The CHAIN statement provides a convenient means for dividing
large programs into a series of smaller programs which are written
and stored separately, and executed in a chain. The CHAIN state-
ment is of the form:

When BASIC encounters a CHAIN statement in a program, it
stops execution of that program, retrieves the program named in
the CHAIN statement from the specified device and file, compiles
the chained program and begins execution of the program. The
use of the CHAIN statement, therefore, is the automatic equivalent
of running an OLD with no header (RUNNH). The file BASIC.WS
will contain the original program in the chain and when execution
is complete, the BASIC storage area will contain the original
program.
Since BASIC removes the program which contains the CHAIN
statement from core before retrieving the chained program, the
user should make certain to CLOSE# all output files that are
opened by FILE statements in the program which contains the
CHAIN statement in order to avoid the loss of data generated by
the program.

A BASIC core image file may also execute CHAIN statements,
subject to the following restrictions:

1. A BASIC language source may not CHAIN to a BASIC
core image and vice versa.

2. When a BASIC language source chains to another BASIC
language source as described above, the extension of the
target file must not be ".SV". When a BASIC core image
chains to another BASIC core image, the extension of the
target file must be ".SV". This is the standard extension for
BASIC core image files.

In general, any departure from these procedures will cause a "CL"
error.

NOTES
1. Control commands OLD, RUNNH, and

SAVE are described in Chapter 8.
2. If DEV: is not specified, DSK: is

assumed by default .

CREATING ASSEMBLY LANGUAGE FUNCTIONS

Introduction
OS/8 BASIC has a facility which allows experienced PDP-8

assembly language programmers to interface their own assembly
language routines to OS/8 BASIC. This facility permits the user
to add functions to OS/8 BASIC which can operate directly on
special purpose peripheral devices. This section describes in some
detail the organization and internal characteristics of the OS/8
BASIC Run-time System (BRTS)and is intended to serve as a
programming guide for the creation of such user-coded assembly
language functions. This material assumes the user to be familiar
with OS/8 and PDP-8 assembly language.
In addition to this section the programmer would find most useful
a listing of the OS/8 BASIC Run-time System (DEC-S8-LBASA-
A-LA) .

The OS/8 BASIC System
The O S / ~ BASIC system is divided into the following discrete
parts:

1. The BASIC editor (BASIC.SV)
2. The BASIC compiler (BCOMP.SV)
3. The BASIC loader (BL0AD.SV)
4. The BASIC run-time system (BRTS.SV)
5. The run-time system

overlays (BAS1C.A.F')
(BASIC.SF)
(BASIC .FF)
(BASIC.UF) (if needed)

The OSj8 BASIC editor is used to create and edit the source
program. On receipt of a RUN command, the editor creates a
temporary file called BASIC.WS, stores the source in that file, then
chains to the compiler. The compiler compiles the program into a
12-bit pseudo-code which is loaded into core along with the run-
time system by +the loader. The run-time system interprets each
pseudo-instruction, calling each of the overlays into core as needed.
On completion of the program, the run-time system chains back to
the editor, and the cycle is repeated. Following is a diagram show-
ing the files on the systems device associated with or used by each
system component.

Associated
BASIC Component Files Usage -

Editor BASIC. WS program storage

Compiler BASIC.WS , program storage
BASIC.TM compiled code storage

Loader BASIC.TM compiled code storage

Run-time BASIC. AF
System BASICSF overlays

BASIC.FF (if needed)
BASIC .UF

The user must avoid the filenames above; they are reserved for the
OS/8 BASIC System.

The OS/8 BASIC Run-time System .
At the time the user's BASIC program is actually being ex-

ecuted, the portion of the BASIC system in control is the Run-time .

System (VRTS). BRTS is also in core when user-coded functions
are executed, therefore, a knowledge of it is essential to writing
an OS/8 BASIC assembly language function. Note that the -

following sections refer frequently to specific core locations in
BRTS by symbolic names (always capitalized). The actual value of
these symbols can be obtained from the symbol table for the
version of BASIC being used. Note that this symbol table is for a
non-EAE system; if the EAE overlay is used some of the minor
symbols will change. The major routine entry points mentioned in
this chapter, however, are the same for both systems. All diagrams
in this chapter have the lowest core address at the bottom.'This
chapter also makes use of the variable names A, A(O,O), A$, and
A$(0) to represent the general case. All references in this chapter
to "page 0" refer to the BRTS page 0 (Page 0, Field 0).

BRTS CORE LAYOUT
When executing, BRTS has the following configuration:

FIELD 0

INTERPRETER

FILE TABLE
0 9 8 HANDLERS

FIELD 1 1 FILE BUFFERS 1

BRTS

PSEUDO CODE

FIELD N
(WHERE N =

N 7 4 0 0 OR N 7 6 0 0

1 2 0 0 0

The highest core field is used for BRTS symbol tables, storing
of the field 1 and field 2 (if non-ROM TD8/E) resident portions of
the OS/8 Monitor, the incore DATA list (data generated by

- DATA statements in the program) and pseudo-code (generated by
the compiler). The bottom of the array space (marked by line A)
can exceed the field boundary and proceed into lower fields, but
this will only happen for large programs. Note that if the bottom of
the pseudo-code extends below line B (12000), some file buffer
space must be sacrificed, with corresponding loss of runtime file
capabilities. As the bottom of the pseudo-code approaches 10000,
the number of files which may be simultaneously open at runtime
approaches 0. At least 400 words of buffer must be free for each
file opened at runtime. The 8 file buffers and OS/8 handler areas
are allocated dynamically at runtime in response to FILE com-
mands in the BASIC program, and if not fully used may be used
as buffer space by the user function.

BRTS OVERLAYS
Locations 3400-4577 of field 0 serve as an overlay area, into

which the currently needed overlay is read. The overlays consist
mainly of functions which are infrequently used, and are con-
structed as follows:

BASIC.FF

BASIC. UF

Arithmetic Functions

SIN, COS, ATN, EXP, FIX, FLOAT, INT,
RND, EXPONENTIATION, SON, SQR, LOG

String Functions

ASC, CHR$, DAT$, LEN, POS, SEG$, STR$,
VAL, Error processing, TRC

File Functions

CHAIN, CLOSE, FILE, STOP

User Function

This last overlay, BASIC.UF is reserved for user-written assem-
bly language subroutines. Each time a call to the user routine is
issued, the overlay BASIC.UF is read into the overlay buffer, and
control is dispatched to the appropriate routine.

Note that the overlay driver reads in a new overlay only if the
overlay currently resident does not contain the function specified
in a given function call. If the function call is for a function which
is found in the currently resident overlay, no overlay 1/0 takes
place.

BRTS SYMBOL TABLES
BRTS locates variables and strings at runtime via four perma-

nently resident symbol tables. These tables, which always reside in
the highest core field, are the Scalar Table (for variables like A,
Bl), the Scalar Array Table (A(l),B(l, 1)), the String Symbol
Table (A$, A1 $), and the String Array Table, (B 1 $(2)).

Data Formats
VARIABLES

Variables are stored in core as standard three word floating
- point numbers. The first word is a signed, two's complement ex- -

ponent, while the second and third word represent the signed, two's
complement mantissa. ..

Single variables are stored as three word entries in the Scalar Table.
Arrays are stored in core as successive three word entries, with the
first subscript varying the fastest, and A(0,O) occupying the lowest
core address. The address and field of A(0,O) are specified in
the Scalar Array Table.

STRINGS
Strings are stored as 6-bit ASCII characters, with a character

count as the first word of the string. The left half of each character
word is used first, with unused characters padded with spaces (40s).
The character count is a signed, two's complement number repre-
senting the actual number of characters in the string, not the num-
ber of words devoted to that string. Each string is allocated

n+ 1 [INT(T)+l] words, where n is the maximum length specified-

in a DIM statement, whether that many words are actually used or
not.

"BASIC"

COUNT -
"BA"
'S1'<
" c "

COUNT-

COUNT FOR l___^Ã‘/--
NEXT STING

"BRTS"

COUNT

"BR"
\tTS"

COUNT FOR
NEXT STRING

The minimum string is one character long. The address of the
count word for each string is pointed to by its entry in the String
Symbol Table.
String arrays are stored as successive strings, with A$(0) occupying
the lowest core address. Each string is allocated enough space for
its maximum length, even though all of this space may not be used.

THEMAXIMUM
-COUNT LENGTH OF STRING

. A ,-. SPECIFIED IN DIM
A Ã UJj 1 1 STATEMENT.

NOTE
For any of the, above data types, a field
boundary may fall anywhere within any in-
dividual item. Routines that use successive
words in any data item must be careful to
check for a field boundary within that item.

INCORE DATA LIST
,The incore DATA list is stored as sequential data items in core.

Strings again are devoted even numbers of words, and are -pre-
fixed by a count. There is no separator or identifier of DATA items
and the DATA list is always in the highest core field. A page 0,
field 0 pointer to the starting address of the DATA list less 1 is
maintained at DLSTRT, and the address of the last word of the
list can be found at DLSTOP.

Example:

IN BASIC:
DATA 1 , 2,"THREEW, 4

IN CORE:

STARTING [---,---I -
DLSTRT ADDRESS OF

"\

COUNT STRING -m

FIELD N

POINTER TO DATA LIST-1 1

1 "THREE"

1 FIELD 0

THE STRING ACCUMULATOR (SAC)
All BRTS string operations use the String Accumulator (SAC)

as one of the operations, and the result is always left in the SAC.
The string accumulator is to strings as the hardware AC is to
PDP-8 instructions. The SAC starts at location SAC for 36 words
(72 characters), and the length of the string currently in the SAC is
stored as a negative number in STRLEN. A page 0 pointer to the
start of the SAC less 1 is maintained at SACPTR.

BRTS Symbol Table Structure
The BRTS symbol tables all reside in the highest core field. A

CDF to the symbol table field can be found in location CDFIO of
field 0.

first subscript is always 01, and the last word is the second dimen-
sion of the array (obtained by adding 1 to the N in the aforemen-
tioned DIM statement for the same reason). If the array is uni-
dimensional, the second dimension is zero. To locate the nt"
element in the array, BRTS performs the following calculation:

Addr of A(M,N)=3*[M+(DTMl+ l)*N]+Addr of A(0,O)

A pointer to the start of the Array - Symbol - Table less 1 (for use
in an index register) can be found in field 0 at location ARSTRT.
The scheme for arrays is:

ARSTRT 1 POINTER TO ARRAY TABLE - 1
FIELD 0

CDFIO [CDF X I '1

ARRAY S Y M B O L
TABLE iFiEiD A)

,
THE STRING SYMBOL TABLE

The String Symbol Table has successive three-word entries as
follows:

POINTER TO A(O.0)
CDF Y

r M*!
N* 1

1 POINTER TO STRING

4
/ E N T R Y 2 I I

J I A{",,N; 1

CDF FOR STRING
-MAXIMUM #OF CHARS IN

The first word is a 12-bit pointer to the count word of the string.
The second word of each entry is a CDF for that count word, and
the third word of the entry is the maximum length of the string (in
number of characters) stored as a two's complement negative num-
ber. A pointer to the start of the String Symbol Table (less 1) can be
found in field 0 location STSTRT. Note that the maximum number
of characters in the string represents the amount of space allocated
for the string; the amount of space actually used is represented by
the count word which is stored with the string.
The scheme for simple strings is:

STSTRT 1 POINTER TO STRING SYMBOL I 1
FIELD 0

CDFIO [CDF X

ENTRY 1 t
STRING

SYMBOL TABLE
(FIELD X) . STRING A$

(FIELD Y)

POINTER TO A$

MAX. LENGTH+]

WORDS LONG

COUNT FOR A $

ENTRY 2

THE STRING ARRAY TABLE
The String Array Table consists of consecutive 4-word entries,

with each entry as follows:

CDF Y .rTF]
-MAX LENGTH

DIMENSION OF A$ (0)

The first word contains a pointer to the count word of string
A$(O), and the second word contains a CDF for this count. The
third word has the maximum length (in characters) of each element

in the array stored as a two's complement negative number. The
last word contains the dimension of the string array, obtained by
adding 1 to the M in a DIM statement of the form DIM A$ (M,N)
because the first element is always A$(0). A pointer to the start of
the String Array Table less 1 can be found in field 0 at location
SASTRT.-
The scheme for string arrays is:

SASTRT [POINTER TO START OF STRING ARRAY TABLE-1 1
FIELD 0 I
CDFIO f CDF X I

STRING ARRAY
TABLE(FIELD X)

STRING ARRAY

COUNT
A $(CM N1
(FIELD Y)

To locate the n ̂ element of the string array, BRTS performs
the following calculation:

addr of A$ (N)=addr of A$ (O)+(INT
(ABS(Z)+ 1)

+l)*N
N

where Z = individual element length.

Fioating-Point Operations
The BRTS floating-point package is permanently resident, and

as such it is readily available for use by assembly language routines
for floating-point calculations.

FLOATING-POINT ACCUMULATOR
One of the operands of every floating-point operation is the

Floating Accumulator (FAC), and the result of all floating-point
operations (except FPUT) is always left in the FAC. The FAC is

found at EXP, HORD and LORD on page 0 with standard PDP-8
23-bit floating-point format:

EXPONENT
HI MANTISSA .

LOUD LOW MANTISSA

S I G N OF
MANTISSA.

The floating-point accumulator is to floating-point instructions
what the hardware accumulator is to PDP-8 machine language
instructions.

FLOATING-POINT ROUTINES
The following floating-point routines are

routine use:

Function Starting Address

ADD FFADD
SUBTRACT FFSUB
MULTIPLY FFMPY
DIVIDE FFDIV
INVERSE SUBTRACT FFSUB 1
INVERSE DIVIDE FFDIV1
LOAD PAC FFGET
STORE FAC FFPUT

The symbol "<-" means "is replaced by".
'

available for user sub-

Operation

FAC+FAC+OPERAND
FAC +FAC-OPERAND
FAC+FAC*OPERAND
FAC+FAC/OPERAND
FAC +OPERAND-FAC
FAC<-OPERAND/FAC
FAC ̂ OPERAND
OPERAND-FAC .

Note that the store function (FFPUT) is the only operation in
which, the result is not left in the FAC. Note also that FFPUT is a
nondestructive store, i.e., the FAC is the same after the store
operation as before.

There are two calling sequences for the floating-point routines,
each with a different method for passing the address of the operand.
Mode 1 is the most efficient, and canbe used whenever the operand
is in field 0. Mode 2 is the field independent call, but is more core
expensive than mode 1.

The mode being used is determined as follows:

1. If the contents of the AC is non-zero on entry, the mode used
is mode 2.

2. If the contents of the AC is zero on entry, the location FF is
examined. If FF is also zero, mode 1 is the calling mode. If
FF is non-zero, mode 2 is used.

The calling modes are as follows:
Mode 1-address of operand follows call to floating-point routine.

CLA
D C A FF /SWITCH FPÃ§P F O R MODE 1
JMS I P O I N T S /JUMP TO F L O A T I N G - P O I N T R O U T I N E
(OPERAND AOUR) /12 B I T ADDRESS OF OPERAND
a /RETURNS HERE
a

*
POINTR, (STARTING ADDS)

/FLOATING-POINT R O U T I N E
/ S T A R T I N G ADDRESS.

Mode 2-address of operand in AC on call to floating-point
routine.

CLA I A C
D C 4 FF
CDF N
TAD OPADDR
JHS I POINTR
t UNUSED)

POINTR, (STARTING ADOR)
OPAODR, (OPERAND)

/FF SWITCH NOT EQUAL TO 0 FOR M O M 2
/OF TO FIELD OF OPERAND
/ADDRESS OF OPERAND
/JUMP TO FLOATING-POINT ROUTINE
IJMIS LOCATION UNUSED
/RETURNS HERE.
/ADDRESS OF FLOATING-POINT ROUTINE
/ADDRESS OF OPERAND

Both modes return with a clear 'AC and the data field set to 0.
Note that the switch FF is not altered by the routines themselves,
hence it is only necessary to set it when desired to change modes,
not before every call.

The mode 2 call always returns to the second instruction follow-
ing the JMS call, skipping the word following the JMS. Since this
word is completely unused, it is a good location for constant
storage.

The FF switch is necessitated by the special case when it is
desired to reference an operand located at location 0-in a field
other than field 0. If the FF switch were not present, the floating-
point package w ~ u l d examine the AC, find it empty, and use the
address in the word following the call, since there is no way of
distinguishing an empty AC from an operand address of 0 loaded
into the AC. The FF switch, then, is used to tell the floating-point
package whether the zero AC means "mode 1 call" or "operand at
0."

BRTS maintains links for FGET and FPUT on page 0 of field
0, providing convenient access to these frequently used routines.

Page 0
Link Name Routine Linked

FGETL
FPUTL

Examples:
Some examples of BRTS floating-point code:

1. Routine to calculate X2+2X+ 1

-
CLA
D C A FF /OPERAND ADDRESS WILL

/FOLLOW CALLS (M O D E 1)
J M S I FGETL / L I N K IS ON, PAGE 43
x
JMS I FMPYLK / X * X
x
J M S I FPUTL / S A V E Xa2
Y
JMS I FGETL /LOAD X A G A I N
x

FFGET
FFPUT

JMS I FMPYLK
TWO
JMS I FADOLK
ONE
J M S I FADOLK
Y
c

Â

FAODLK, FFAOD
FMPYLK, FFMPY
TWO, 0002

2000
0000

ONE, 0001
3000

, 000Q
x , Â Â

* * Â

Â

y 1 0
0
0

/ R E S U L T NOW I N FAC

/ L I N K T O A D O R O U T I N E
/L IbK TO F L O A T I N G M U L T I P L Y
/ F L O A T I N G P O I N T CONSTANT
/2 .P

/ F L O A T I M G P O I N T CONSTANT
/1 .0

/ F L O A T I N G P O I N T TEMPORARY

2. Routine to add 5 successive floating-point numbers starting
at location 0 of field 2.

START, CLA
D C A OPADDR / F I K S T OPERAND AT L O C A T I O N 0
JMS I FCLR / Z E R O FAC
I A C
DCA FF / C A L L S A R E MODE 2

ALOOP, CDF 20
TAD OPADDR /OPERAND AOOR I N AC

- J M S I FAOOLK /CALL ADD R O U T I N E
M T N U S 5 , - 5 /LOCATION UNUSED, S O WE USE

TAD OPAORK / I T A3 A COUNTER

TAD K3 /UPDATE OPERAND ADDRESS
DCA OPADDR
ISZ M I N U S S IDONE?"
JMP ALOOP / N O
H I T /YES-ANSWER I N FAC.

FAODLU, FFADD / P O I N T E R T O ADD R U U T I M E
OPADOR, 0 / P O I N T E R T O OPERAND
K 3 t 3 / E A C H OPERAND IS 3 WORDS LONG.

FLOATING-POINT OPERATIONS
There are also four simple floating-point operations that operate

on the FAC and are available to user subroutines.

Function Starting Address Operation

NEGATE FFNEG FAC+-FAC
NORMALIZE FFNOR NORMALIZE +FAC
SQUARE FFSQ FACÃ§-FAC*FA
CLEAR FACCLR FAC +-0

These functions are all called by simple JMS, and return with
the hardware AC=O. Page 0 links are maintained for negate,
normalize, and clear.

Page 0 Link Routine

FNEGL FFNEG
FNORL FFNOR
FCLR FACCLR

BRTS Subroutines
There are several subroutines in BRTS which can be useful to

assembly language functions. A discussion of each of these routines
follows. They are identified in the discussion by the tag for their
starting address, and all tags referred to can be found in the sym-
bol table.

SUBROUTINE ARGPRE
Subroutine ARGPRE is used to locate scalar variables in the

Scalar Table. When called, it uses the rightmost 8 bits (0-255
decimal) of location INSAV as the entry number to be found, and

on return, the data field is set to the field of the variable and the
AC points to the exponent word of the variable. ARGPRE is
called via a JMS, and is used most often in passing arguments to
and from the user subroutine.
Example: Load the FAC with the third variable in the Scalar -

Table.

CLA
TAD C2

DCA I N S A V E
I A C

t O C A FF
JMS I ARGPRL
J M S I FGETL
(UNUSEO]
H L T

C2# 5
ARGPRL, ARGPRE

/ S E T FF S W I T C H
/CALL ARGPRE
/ T H E AC AND DATA F I E L D
/ A R E S E T , SO T H I S I'S A
/MODE 2 CALL.

SUBROUTINE XPUTCH
Subroutine XPUTCH is used to put ASCII characters into the

terminal ring buffer. When called, the %bit ASCII character is in
*I- - A n . me light-most 8 bits of the AC. Oii ictui1i, the r t ~ is cleared. Note
that unless the ring buffer is full; XPUTCH does not cause any
characters to be printed; it merely places the character in the
term'nal ring buffer. A page 0 link to XPUTCH is maintained at
location XPUT.
Example: Put a carriage return/line feed combination in the
teminal buffer.

CLA /LOAD CR I U T O AC
TAD K Z 1 5 /CALL XPUTCH V I A PAGE 0 L I N K
JMS I XPUT / L O A D L I h E F E E D I M Q AC
TAD K212 /PUT I N BUFFER
JMS I XPUT
HLT

K215, 215 / A S C I I CODE F0k CR
U212, 212 /ASCII C O D E FOR LF

SUBROUTINE XPRINT
Subroutine XPRINT is used to print the next character in the

terminal ring buffer. If there are characters waiting to be printed in
the ring buffer, XPRINT returns to the instruction following the
calling JMS. If the ring buffer is empty, XPRINT skips the instruc-
tion following the JMS on returning. XPRINT will actually print
a character only if the terminal is not busy; i.e., a call to XPRINT
means "print a character if possible" rather than "print a terminal
character." For a more detailed description of how the terminal
ring buffer 1/0 operates, see terminal I/O. BRTS maintains a page
0 link to XPRINT called PRINT.

=

Example: In the middle of a compute bound loop a call placed to
XPRINT keeps the terminal busy. At the end of the compute loop
a call is placed to XPRINT that empties the terminal ring buffer
before proceeding.

Â

JMS I P R I N T /CALL X P R I N T V I A PAGE 0 L I N K
MOP / T H I S I N S T R U C T I O N WILL BE

/ S K I P P E D IF RING BUFFER I F EMPTY

Â

I32 LOOPCN / L O O P CONTROLLING I N S T R U C T I O N
JMP L O O P I
JMS I P R I N T /LOOP I S DONE - EUPTY R I N G
JMP a m 1 /BUFFER BEFORE C O N T I N U I N G

SUBROUTINE PSWAP
Under normal conditions, BRTS runs with the OS/8 page

17600 portion of the resident monitor moved to the highest page of
core (second highest page TD8/E system). PSWAP is used to
swap this page back and forth prior to doing any operations with
OS/8. Prior to calling OS/8, PSWAP should be used to restore the

page 17600 resident to 17600, and when OS/8 operations are
complete, PSWAP should be called again to swap the 17600
resident back up to high core. A page 0 link to PSWAP is main-
tained at location PI SWAP. ,

Example: The following code uses the USR in OS/8 to perform a
LOOKUP on the file BASIC.DA on the system device.

Â

C L A
JMS I ?Â¶SWA
C L A I A C
CIF 10
JMS I K7700
5
FNAME
0
HLT
JMS I PUSHAP

/ A C SHOULD BE 0 Oh CALL
IRESTORE O S / 8 PAGE 17fee>0 RESIDENT
/ D E V I C E Ã FOR SYSÃ I S I

/CALL USR
/LOOKUP
/ P O I N T E D T O F I L E MAKE
/ C O N T A I N S LENGTH ON RETURN
/ERROR RETURN
/SWAP O S / 8 - R E S I D E N T BACK
/ T O H I G H CORE

NOTE
If PSWAP is used, it must be executed an
even number of times. When the assembly
language function is called, the page 17600
resident is at high core; when the function
returns to BRTS, the 17600 resident must
be back in high core.

SUBROUTINE UNSFIX
Subroutine UNSFIX is used to fix a positive, 12-bit, magnitude

only integer from the FAC and return with the result in the hard-
ware AC. The range of the fixed integer is 0-4095; an attempt to
fix a number larger than 4095 or a negative number will causean
T O " or "FM" error, respectively. UNSFIX is called via simple

JMS, and a page 0 link to.UNSFIX is maintained, called INTL.
UNSFIX destroys the contents of the FAC.
Example: The following code uses the FAC as a count of the
number of times to ring the bell on the terminal.

C L A
JMS I I N T L / F I X THE F A C TO 12 B I T INTEGER
CIA /NEGATE THE I N T E G E R '
O C A COUNTR /AND S T O R E AS COUNT

BELLOP, TAD K207 /ASCII F O R BELL
JMS I XPUT /PUT I N R I N G BUFFER
ISZ COUNTR /RIGHT N U M B E R YET?
J M P BELLOP /NO-RING ANOTHER BELL

SUBROUTINE STFIND
subroutine STFIND is used to locate a string variable or the

first element of a string array. When called, if the link is non-zero,
STFIND looks for an entry in the String Array Table. If the link
is zero, STFIND uses the String Symbol Table. For standard string
variables, the rightmost 8 bits of location INSAV are used as the
.number of the entry to be obtained; for string array variables the
last 5 bits are used. On-returns from STFIND, the AC contains a
CDF to the field of the string specified, location STRPTR points
to the first word (count word) of the string, location STRMAX
holds the-maximum length of the string (as a negative number),
and location STRCNT contains the actual number of characters in
the string (as a negative number). STFIND is used most often in
passing arguments to and from user functions.

Examples:
1. To find string number 7

TAD K6 /THE. NUMBERING STARTS W I T H 0
D C A I M S A V / S E T UP S T F I N D P O I N T E R
CLL /WE WANT SIMPLE S T R I N G
JMS I S T G I N L /CALL S T F I N D

2. To find the first element of string array number 2.

TAD K l / T H E SECOND ENTRY
D C A I M S A V
CLL C M L /WE WANT S T R I N G ARRAY
JMS I S T F I N L /CALL STFINiD

SUBROUTINE BSW
Subroutine BSW is used to swap the two halves of the hardware

AC. BSW is called by a simple JMS, and a page 0 link called
BSWL is maintained. Obviously, PDP-8/E users would perform
a hardware BSW instruction rather than use this subroutine.

SUBROUTINE MPY
Subroutine MPY is a 12 by 12 bit binary multiply routine. The

AC is multiplied by the contents of location TEMP3 (both num-
bers are treated as 12-bit, unsigned integers), and on return, the
high-order bits of the result are in TEMP6, and the low-order bits of
the result are in the AC. The page 0 link to MPY is MPYLNK.

SUBROUTINE DLREAD
Subroutine DLREAD is used to read the next word of the incore

DATA list into the AC. If there is no more data in the DATA list,
a DA error message results.

Example: Read the next number from the DATA list into the FAC.
'

C L 4
J M S I OLREAL IREAD EXPONENT I ~ O R D INTO A C
OCA EXP /STORE I N FAC
JMS I OLREAL /READ H I G H M A N T I S S A F R O M L I S T
DCA H O R D /STOPE H I G H M A N T I S S A WORD
JMS I OLREAL /READ LOK M A N T I S S A F R O M L I S T
DCA LOR0 / S T O R E LOW M A N T I S S A WORD

SUBROUTINE ABSVAL
Subroutine ABSVAL is used to take the absolute value of the

FAC. If the FAC is positive, ABSVAL is essentially a NOP; if the
FAC is negative, it is negated before return.

Passing Arguments To The User Function
BRTS calls the user assembly language function with a JMS

instruction. Prior to executing that JMS, it places the first numeric
argument in the FAC, the second in Scalar Table entry 0, the third
in Scalar Table entry 1, etc., until the argument list is satisfied. If
any string arguments are used, the first is found in the SAC and
the second is pointed to by String Table entry 0. The user function
obtains these arguments as needed by calling the routines
ARGPRE and STFIND appropriately.
Example: The following function takes the first two numeric argu-
ments and performs the operation on them specified in A$:

UDEF EXM (X,A$, Y)
LET Z=EXM (27bbPLUS'7,1)

Legal values for A$ are strings beginning with "PL" for "PLUS"
and "MI" for "MINUS".

T A D I SACP
TAD PL
SZA C L A
JMP EMINUS
DCA IKSAV

JMS I ARGf'RL
JMS I FADOL

ARGPRLp ARGPRE
J M P I E X M

EMINUS, TAD I S A C P
TAO M I

SZA CLA
JMP I IAL
DCA INSAV
JMS I ARGPRL
i - i s ?S"8i

SACPp S A C
JMF I E X M

PL. -20 14
M I # '1511
FADDL, FFAOO
FSU8Lp FFSUB
I AL. I A

/ENTRY POINT
/ INDEX REGISTER 5 POINTS TO SAC
/GET F I R S T 2 CHARS OF AS F R O M S A C
ICOMPAR THEM T O

/NOT "PLUS"-CHECK F O R " M I N U S N
/OPERATION I S P L U S - I N I T ARGRE TO GET
/SCALAR 0
/ F I N D Y . X I S ALREADY I N FAG
/ X + Y
/ T H I S LOC SKIPPED BY FADD
/DONE-RETURN WITH RESULT I N FAC
/ F I R S T TWO CHARS OF SAC AGAIN
/COMPAR TO M I
/ I S I T "MINUSn?
/NO-ERROR
/YES-SET UP ARGPRfe FOR ENTRY 0
/ F I N D Y e X I S ALREADY I N FAC
/ x w y
/ T H I S LOC SKIPPED BY FSUB
/RETi,iRN W I T H VALUE i h f i C

If the function is to return any value,
in the FAC on return. The user function
JMP I through the entry point.

that value should be left
must always return by a

To generate a fatal IA (illegal argument) error message, perform
a JMP to location IA in BRTS.

USING THE USE STATEMENT
If the assembly language function needs to know the location of

an array (for buffer space, multiple argument passing, array argu-
ment), the USE statement is necessary. The USE statement places
the octal number for the array specified into location USECON.
By using this value as an index into the Array Symbol Table, the
array specified can be located and used by the assembly language
function, as necessary.
For example: The hypothetical assembly language function PLT
requires a 100 word buffer. To assure allocation of this buffer, the
BASIC user of PLT isinstructed to dimension a 34 element array
and use it in a USE statement before calling the PLT function.
In BASIC:

10 R E M D E F I N E THE USER F U N C T I O N
20 UOEF PLT (X , Y)
30 R E M ALLOCATE A 34 ELEMENT (102 WORDS) A R R A Y FOR 4 BUFFER
tIZ D I M 8 (3 4 i

The function PLT finds B as follows:

100 USE 8
110 Y " P L T (3 ~ 2 m 8 1

l

Â

Â

TAD ARSTRT
OCA XRS
TAD C D F I O
OCA /+1
*
T A D I X R 5
DCA BPTR
TAD I XQ5
DCA D I M 1
TAD I X R 5

/GET ENTRY &UMBER OF B
/ M U L T I P L Y 8 Y 4 (EACH ARRAY TABLE ENTRY
/ I S 4 NORDS LONG)
/MAKE POINTER I N T O ARRAY TABLE
/AND SAVE I T
/GET CDF TO SYMBOL TABLE F I E L D
/PUT I N T O LINE
/CHANGE DF T O SYMBOL TABLE F I E L D
/GET POINTER T O B (0)
/SAVE FOR LATER
/GET ARRAY D I M E N S I O N 1

/GET ARRAY D I M E N S I O N 2

Note that the USE statement merely passes an array entry number
to the assembly language function; all actual parameters must be
obtained from the Array Symbol Table using that entry number as
an index. Note also that the physical location of arrays passed in
such a fashion can be almost anywhere in core, and a field
boundary may fall within the array.

BRTS 1/0
TERMINAL 1/0

BRTS drives the terminal asynchronously by maintaining a 40
character terminal output buffer and regularly calling subroutine
XPRINT. The procedure is as follows:

1. Characters are inserted into the terminal ring buffer by calling
subroutine XPUT. If the ring buffer is full, XPUT waits
until a character is printed and a slot is free.

2. BRTS regularly (at least once every pseudo-instruction) calls
subroutine XPRINT. XPRTNT acts as follows:
a. If the terminal flag is not set, XPRINT returns.
b. If the terminal flag is set, the buffer is checked for any

more characters. If it is not empty, the next character is
printed (via TLS) and XPRTNT returns.

XPRINT returns to the instruction following the calling JMS if
there are characters waiting in the ring buffer. If the ring buffer is
empty; XPRINT skips the next instruction before returning. This
scheme allows BRTS to do other things for most of the 100
milliseconds necessary to print a character, without turning the
interrupt on. It requires periodic calls to XPRINT, but the over-
head is still considerably less than the time wasted waiting for the
terminal flag.

Assembly language functions are free to use the ring buffer (it is
emptied before the function is called), or they may choose to per-
form simple terminal 1/0 (TLS, TSF, JMP.-1). If terminal 1/0 is
performed other than ring buffered I/O, the terminal flag must be
set when the user function returns to BRTS. Note that the assembly
language function need not call XPRINT; it may choose to place
characters in the ring buffer, and let BRTS empty it after the.
assembly language function has returned.

BRTS FILE FORMATS
BASIC files are formatted as follows:

1. Numeric files-Numeric files are formatted as consecutive
3 word floating-point numbers, 85 to each 256 word 0 ~ / 8
block. The last word in each block is unused. There is no
end-of-file marker.

Ã̂

2. ASCII Files-ASCII files are stored in OS/8 ASCII format,
that is, 3 8-bit characters packed to every two words as
follows:

The end of the file is marked with a CTRL/Z character.

0 3 4 11

BRTS BUFFER SPACE
Locations 10000-12000 in BRTS are devoted to file buffer

space. Buffers are allocated as they are needed, the lowest free
buffer always being allocated first. A map of currently allocated

HI ORDER CHAR 3

1 LO ORDER CHAR 3

CHAR 1

CHAR 2

buffers is maintained on page 0, called BMAP. Bits in the map are
on if the buffer is allocated, off if the buffer is free. Bit 11 repre-
sents the buffer from 10000-10377, Bit 10 for 10400-10777; Bit
9 for 11000-11377; and Bit 8 for 11377-11777. If any of the
buffers are not available because the pseudo-code or variable space
extends below 12000, the corresponding BMAR bits are set when
BRTS is started.

BRTS DEVICE DRIVER SPACE
Locations 7000-7577 are devoted to space for OS/8 device

drivers. Both one and two page handlers may be loaded; a map of
these three pages is maintained at DMAP. Page 7000-7177 is
represented in Bit 11; Page 7200-7377 in Bit 10, and 7400-7577
in Bit 9.
- Note that assembly language functions that are used in programs
which do not require more than one or two files open at once may
wish to use some of this driver and buffer space for, their own
purposes. This space can be allocated by setting appropriate bits in
BMAP. and DMAP. After the bits are set, BRTS will not use this
space in subsequent FILE commands.

THE BRTS 1/0 TABLE
BRTS keeps track of the status of each of the up to four files

which may be open simultaneously by means of the I/O table.
Starting at F1LE1, it has four 13-word entries, labeled FILE1,
FILE2, FILE3 and FILE4. Each name corresponds to the number
specified in the file statement which opened that file, and the format
of each entry is as follows:

HEADER WORD
STARTING ADDRESS OF BUFFER (IN FIELD 1)
CURRENT BLOCK IN BUFFER
READ/WRITE POINTER INTO BUFFER
HANDLER ENTRY POINT
STARTING BLOCK NUMBER FOR FILE
ACTUAL FILE LENGTH
MAXIMUM FILE LENGTH
POSITION OF PRINT HEAD (FOR COLUMN FORMAT-
TING)

FILE NAME
FILE NAME
FILE NAME
FILE NAME

The header word bits have significance as follows:

Bit Positions
/

Meaning

OS/8 number for device
Current character number for unpacking ASCII
files
0 if the current buffer load has not been changed
1 if current buffer load has been altered
0 if device is file structured
1 if device is read/write. only
0 if the handler is 1 page long
1 if it is a 2 page handler
0 if file is fixed length
1 if variable length
0 if more data in file
1 if EOF has been seen
0 if file numeric
1 if file ASCII

Interfacing The Assembly Language Function To BRTS
All assembly language functions are subroutines, called by a

JMS through the User Function Table. This table, which begins at
location 1560 in BRTS, contains absolute pointers to the starting
addresses of each of the user assembly language functions. User
functions must be origined to run between 3400 and 4577, and
must return to BRTS via a JMP I through the user function start-
ing address. To interface a set of user functions to BRTS, perform
the following operations:

*

1. Assemble all the user assembly language functions (up to
16io) together. They must fit between 3400 and 4577, but
may be anywhere within that space.

Load the user functions into core with the Absolute Loader,
and save locations 3400-4577 as the file BASIC.UF, which
is the user overlay.

.R ABSLDR
*USER.BN$
.SAVE SYS:BASIC.UF 3400-4577

Using OS/8 ODT, modify the User Function Table in
BRTS which starts at 1560, entering pointers to the user
assembly language functions. Unmodified table entries are
2408; replace these entries with the starting addresses
(pointers) to the user assembly language function. Starting
at location 1560, enter the pointers in the table in the exact
corresponding order in which the functions appear in the
UDEF statement which defines them.

.GET SYS:BRTS

.ODT
1560/240 3400 (LF)
1561/240 341 0
TC
.SAVE SYS:BRTS

On the procedure above two functions are interfaced which
start at locations 3400 and 3410 respectively. LF indicates
pressing the LINE FEED key. .

TI. Example: mere are three assembly language functions in our
package, called PLT, HI, and LO. The BASIC user is instructed
that when he uses this function package, PLT. HI and LO must be
defined in that order. The function files, then, look like:
Function Source (USER.PA)

*3400
H L ? , 0

'*
*

Â

JMP I HI

/ENTRY POINiT FQR HI
/ O R D E R OF ENTRY P O I N T S IS
/NOT C R I T I C A L

P L T , 0 /ENTRY P O I N T F O R PLT
*1.

Â

JMP I PLT
LO, 0 /ENTRY P O I N T F O R LO

To enter these three functions into the User Function Table in
BRTS, the procedure is:

.GET SYS:BRTS
.ODT
1560/240 PPPP (LF)
1561/240 HHHH (LF)
1562/240 LLLL
TC
.SAVE SYS:BRTS

where PPPP, HHHH, and LLLL represent octal starting addresses
for PLT, HI, and LO respectively. LF indicates pressing the LINE
FEED key.

NOTE
BRTS establishes calls to the user function
by setting up a one-to-one correspondence
between-the pointers at 1560 and the func-
tion names present in a UDEF statement.
Therefore, the order of the pointers must
exactly correspond to the order of the func-
tion definitions in UDEF. If the BASIC
user wants to use only the ntll function in a

,

given user package, he must still define n
functions in the UDEF statement, though
the first n-1 may be dummies.
For example: A package of eight assembly
language functions that use arguments as
follows:

Routine Name Function

FFATN
FFCOS
FFEXP
EXPON
INT
FFLOG
SGN
FFSIN
RND
FROOT
ASC
CHR
DATE
LEN
POS
SEG
STR
VAL
TRC

Routine Name

Arctangent Function
Cosine Function
Exponential Function (ex)
Power Function (AB)
Signed integer Function
Naperian log Function
Sign Function
Trigonometric Sine Function
Random Number generator
Square root Function
String Function ASC
CHR$ Function
DAT$ Function
String length Function
String search Function
String segmenting Function
STR$ Function
VAL Function
Trace Function

Function

CHAIN
CLOSE
OPENAF
OPENAV
QPENNF
OPENNV

USING OS/8

File manipulation Routines

So long as the assembly language function is carefully designed
to protect all core areas being used by BRTS, there are no restric-
tions on the function's use of OS/8. Once the page 17600 resident
monitor has been restored, the OS/8 User Service Routine (USR)
may be called at will, and files may be located, used, and closed
again. If the user's BASIC program does not need full file capabili-
ties, the assembly language function is free to use the driver space
from 7000-7577 and the buffer space from 10000-17777. The
assembly language function should be careful, however, to check
the bit maps and status words on-page 0 to make certain a given

6-101

area is free before using it. Note that the system device driver may
be used without restoring the page 17600 resident: restoration is
only required when it is desired to use the USR.

OS/8 runs with the interrupt off, and as an OS/8 based pro-
gram, BASIC does not use the interrupt facility. Locations 0-2,
however, in BRTS have been left free for any assembly language
functions which wish to use the interrupt facility. Prior to turning
on the interrupt system, an assembly language function must clear
i l l the f l i r r c left around by the OS/8 handiers, 2nd jbefore return- &+** &A*" - ^ f e u A

ing the function must turn off the interrupt system and set the
TTY flag.

PAGE 0 USAGE t

Following is a map of the BRTS page 0 usage. Locations
marked with an * may be used by the assembly language function
without saving the contents.

Locations

Interrupt vector
System parameters and temps
Index registers
System pointers
Compiler-BRTS communication
System registers
Floating-point package area
System registers
Constants
Links to BRTS subroutines
1/0 Table pointers

Assembly language functions are free, of course, to use any of the
pointers or constants, but they must be intact when control is re-
turned to BRTS.

Assembly Language Function Examples
To illustrate the material in the previous sections, two examples

of a complete assembly language function follow. The first exam-
p!e, which we call PLY, evaluates a second degree polynomial of
the form ax2* c. It requires six arguments: X.A,Rl $.B.R2$,C.
X is the variable; A,B and C are the coefficients, and R l $ and R2$
are the signs of the first order and constant term, respectively.

Legal values for Rl$ and R2$ are "+" and "-"; any other string
causes an error message to be printed. Note that this example is
tutorial in nature; it is meant to illustrate argument passing and
floating-point operations rather than a typical use for assembly
language functions.

The second example, ADC, is an example of an actual assembly
language function which samples an ADS-EA analog to digital con-
verter. It was written as part of a user function package intended
for laboratory use.

~ x a r n ~ l e 1 : PLY
In BASIC:

10 UDEF PLY (X,A,R1 $;B;R~$,c)

The pointer for PLY is 3460 and the function is coded as follows:
/LOCATIONS I N BRTS
/VALUES WERE OBTAINED FROM SYMBOL

* 1560
PLY / L I N K TO FUNCTION FOR BRTS

43400 /ASSEMBLY LANGUAGE FUNCTION OVERLAY STARTS
/ A T 3100

/SUBROUTINES USED BY THE FUNCTION PLY

/SUBROUTINE SEVAL-USE0 TO DETERMINE I P LEFT HALF OF AC CONTAINS
/A "+" OR "-". I F "*" t LOADS THE OCTAL EQUIVALENT OF V M S I FADOL"
/INTO THE AC AN0 RETURNS. I F "n 1 LOADS THE EQUIVALENT OF
/JMS I ' F S U B L I N T O THE AC AND RETURNS. I F THE CHARACTER I S EQUAL
/TO NEITHER, I T TYPES AN ERROR MESSAGE ON THE TERMINAL AND E X I T S
/FROM THE FUNCTION

SEVAL, 0
DCA SCNTV /SAVE A C I N TEMPORARY
TAD SCNTV
AND K7700 / S T R I P TO LEFT CHARACTER

TAD MPLUS
SZA CLA
JMP nc
TAD JMSADD
JMP I SEVAL

MCt TAD SCNTV
AN0 K7700
TA0 MMINUS
sz* C L A
JMP SERB
TAD JMSSUB
JMP I SEVAL

SERR, TAD EMESSA
OCA !is:

ELOOP. TAD I XU1
SNA
JMP I PLY
JUS I XPUT
JMS ELOOP.

JMSADD, JMS I FADOL
JMSSUB, JPS I FSUBL

EMESSA, EWESS-1
EMESS, 3 1 1

3 1 4
3 14
305
3 8 7 .
30 1
3 1 4
500
323
3 1 1
307
3 1 b
2 15
2 1 2
0

/COMPARE TO "+"
/ I S I T A "+"?
/NO-CHECK FOR A f1-"

/YES-LOAD AC WITH "JMS I FADOL"
/RETURN
/GET ORIGINAL AC VALUE AGAIN
/ S T R I P TO LEFTMOST CHAR
/CONPAR TO %-"
/ I S I T * m u ?

/NO-AN I L L E G A L STRING ARGUMENT HAS BEEN PASSED
/YES-LOAD *C WITH "JHS I FSUBLn
/AND RETURN
/&DORESS OF ERROR MESSAGE -1
T U n e v O F C T C T F Q < R Q E N T C TO ERROR MESSAGE , ... w - - ..--.- 3 - .

/GET CHAR OF ERROR MESSAGE
/ I S I T 07 (0 TERMINATES MESSAGE!
/YES-FUNCTION COMPLETE-RETURN TO BRTS
/NO-PUT CHARACTER I h R I N G BUFFER

/ I
1 L

L
/ E
/ G
/ A

L
/
/ s
/ I
/ G
/ N

/CR,LF
/TERMINATES MESSAGE

SCNTV, 0
I A C /BUMP AC BY 1
SZA CLA /SHOULD NOH BE 0
JMP SERB / I T I S NOT, SO PRINT ERROR MESSAGE
JMP I SCNTV IRETURN

/THE 'BODY OF THE FUNCTION I T S E L F

PLY, 0
TAD STRLEN
JM3 SCNTV
TAO I SACP
JMS SEVAL
DCA OP1
DCA INSAVE
CLL
JUS I S T F I N L
DCA STCOF
TAD STRCNT
JHS SCNTV

STCDFi
I S 2 STRPTR ,
JMP NOSKIP

/ENTRY POINT
/GET LENGTH OF THE STRING I N THE SAC (R l S I
/HAKE SURE I T I S ONLY 1 CHARACTER LONG
/GET THAT 1 CHARACTER FROM THE SAC
/GET THE CORRESPONDING ROUTINE CALL INTO THE AC
/ AND PLACE I T I N L I N E
/SET UP STFIND TO GET STRING TABLE ENTRY 0 (R 2 $ 1
/WE WANT REGULAR STRINGS, NO STRING ARRAYS
/ F I N D STRING ARGUKENT 2 (R2S1
/PUT THE COP I N L I N E WHERE I T S NEEDED
/GET COUNT FOR STRING R2S
/MAKE SURE I T ' S -1
/CHANGE OF TO F I E L D OF STRING R2S
/BUMP STRING POINTER PAST COUNT WORD
/If I S Z DOESN'T SKPpTHE STRING I S W I T H I N 1 F I E L D
/ I F I S 2 DOES SKP, THERE I S A F I E L D BOUNDARY

RDF
TAO C D F l B
DC* a+!
Â

NOSKIP, TAD I STRPTK
COP
JMS SEVAL
OCA OP2
JMS I FPUTL

x
JWS I FFSQL
DCA INSAV
JMS I ARGPRL
JWS I FMPYL

ARGPRL, ARGPRE
JMS I FPUTL
AXSQD
I A C
DCA INSAV

JMS I ARGPRL
JUS I FGETL

CDF10p CDF 1 0
JMS I FMPYL

x
JHS I FPUTL

B X
JMS I FGETL
AXSQD

D P l ,
ax

I A C
C L L RAL
DCA ItvSAV

JMS I ARGPRL
OP2, Â

K7700, T T 0 0
JMP I PLY

FADDL, FFAOD
FSUBLÃ FFSU8
FMPYL, FFMPY
SACP, SAC

, STFINL, STPIND
FFSQL, PFSQ

/FLOATING POINT STORAGE

/ W I T H I N THE STRING AND WE MUST BUMP THE DATA
/ F I E L D BY 1
/READ CURRENT DATA F I E L D
/MAKE A COP INSTRUCTION,INCREASING DF BY 1
/STORE THE NEW CDF I N L I N E
/CHANGE BY 1
/GET CHARACTER I N STRING

/AND GET T H ~ OPERATION IT REPRESENTS
/PLACE THAT OPERATION I N L I N E
/SAVE XVWHICH MAS I N THE FAC ON CALL

/ x-a
/ARG A CAN BE FOUND AT SCALAR TABLE ENTRY 0
/ F I N D THE ADDRESS OF A
/USE I T AS THEADORESS TO PASS TO THE MULTIPLY
/KOUTINE
/ T H I S WORD I S SKIPPED BY MULTIPLY ON RETURN
/SAVE A*Xg2
/

/THE THIRD NUMERIC ARGUMENT [El I S FOUND AT
/SCALAR TABLE ENTRY 1
/ F I N O THE ADDRESS OF B
/AND USE I T I N A MODE CALL TO FGET
/ T H I S LOCATION I S SKIPPED BY FGET ON RETURN
/ B * X

/LOAD FbC ÃˆIIT A*Xg2

/ T H I S LOCATION I S LOADED WITH A CALL TO THE ADD
/OR SUBTRACT ROUTINE, DEPENDING ON THE VALUE .
/OF . R l S . I N EITHER CASE, THE OPERAND I S B S

1.2 I N THE AC
/THE FOURTH NUMERIC ARGUMENT (C l I S FOUND
/ I N SCALAR TABLE ENTRY 2
/ F I N D THE ADDRESS OF C
/ T H I S LOCATION I S LOADED WITH A CALL T O ADD
/OR SUBTRACT, DEPENDING UPON THE VALUE OF RZS
/ I N EITHER CASE, I T I S A MODE TWO CALL WITH
/THE OPERAKD BEING C
/ T H I S IMSTRUCTION I S SKIPPED ON THE RETURN
/RETURN FROM THE FUNCTION-ANSWER I S I N THE FAC

Example 2: ADC
Assembly language function ADC comes from a laboratory package
of 11 routines, of which ADC is the eighth. ADC accepts one argu-
ment, the number of the channel to be sampled, and returns the
channel reading.

BASIC:
a ̂

uOEF DL.JACD) ,QUB (0) ,OUC (0) , D U O t D i ,OUE[n) t D U F (D 3 , D U G (0] , A D C fN3
REM SINCE AOC I S E I G H T H F U N C T I O N I N P A C K A G E ,
R E M I T MUST BE E I G H T H FUNCTION; I N UDEF
REM FIRST SEVEN ARE DUMMIES

YBADC (03
PR I N T 7
END

Modify the User Function Table in BRTS as follows:

*GET SY S BRTS

ODT

1560/0240
01561 /0240
01562 /0240
01563 /0240
01564 /El240
01565 /0240
01566 10240
01567 10240 4416
t c

SAVE SY S: BRTS

ADC is coded as follows:

*4416
INTL = 1 1 4
E X P 4 4
HORD 8 4 5
LORD 46
FNORL a 136

ADC, 0
JMS I I N T L
ADLM
ADST
ADSK
JMp a m 1

A O R B
DCA EXP
JMS F F L O T
JMP I AOC

/AR6-â ‚ I O T S
ADLM 6 5 3 1
AOST = 6532
ADR8 s 6 5 3 3
ADSK 6534

/ B R T S L O C A T I O N S
/TAKEN F R O M
/SYMBOL TABLE

/ENTRY P O I N T
/ F I X ARG TO I N T E G E R
/LOAD M U L T I P L E X E R
/ S T A R T CONVERSION
/ W A I T F O R COMPLETIOM FLAG

/READ VALUE

/ C O N V E R T TO F L O A T I N G POINT
/RETURN W I T H R E A D I N G I N FAC

/ L O A D M U L T I P L E X E R F R O M A C
I S T A R T CONVERSION
/ R E A D A/D BUFFER
/ S K I P ON A / D DONE

/ R O U T I N E T O CONVEST 1 2 - B I T I N T E G E R I N EXP I N T O
/ F L O A T I N G P O I N T NUMtfER I N F A C

FFLOTp 0
TAD E X P
D C A HORD / P U T NUMBER I N H I M A N T I S S A
DCA L O R D / Z E R O LOW M A N T I S S A
TAD d l 3
D C A EXP / I N I T I A L I Z E EXPONENT TO 11C10)
JMS I FNORL / N O R M A L I Z E
JMP I FFLOT /RETURN

K 1 3 , 13

Table 6-1 OS/8 BASIC Language Summary

ELEMENTARY OS/ 8 BASIC STATEMENTS

Statement Example Form Meaning
- - --

CHAIN CHAIN DEV: Stops execution of the cur-
Filename.& rent program, retrieves the

program named in the
CHAIN statement from the
specified device and file,
compiles the chained pro-
gram and begins execution
of the program.

DATA

DEF

DIM

DATA xl ,x2,...,xn Values x l through xn are to
be associated with corre-
sponding variables in a
READ statement. The val-
ues may be either numerics
or strings. Strings must be
enclosed by quotation
marks.

DEF FNB(x) = f(x) The user may define his own
DEF FNB(x,y) = f(x,y) function to be called within

his program by putting a
DEF statement at the begin-
ning of a program. The
function name begins with
FN and must have three let-
ters. The argument list in
the function may contain as
many as 4 numeric and 2
string arguments.

For numerics: Enables the user to create a
DIM v l (nl), v2(n2,m2) table or array with the speci-

fied number of elements
where v is the variable name -
and n and m are the maxi-
mum subscript values. Any
number of arrays can be di-
mensioned in a single DIM
statement.

Table 6-1 OS/ 8 BASIC Language Summary (Cont.)

Statement Example Form Meaning .

END

FOR-TO-
STEP

IF-GOT0

IF-THEN

For strings:
DIM vl $(I),v2$(K,L)

FOR v=xl TO x2
STEP x3

GOSUB x

I F f l r f2 GOT0 n

IF f l r f2 THEN n

I is the length of string vari-
able vl$, K is the number
of strings and L is the length
of strings of string variable
v2$. Strings longer than 8 -.

characters must be dimen-
sioned. String tables are il-
legal.

Last statement in the pro-
gram. Signals completion of
the prograw.

Used to implement loops;
the variable v is set equal to
the expression x l . From this
point the loop cycle is com-
pleted following which v is
incremented after each cycle
by x3 until its value is
greater than x2. If STEP x3
is omitted, x3 is assumed to be
+l . x3 may also be nega-
tive. If x3 is positive and
xl>x2, the loop is never
executed.

Allows the user to enter a
subroutine at several points
in the program. Control
transfers to line x.

Transfers control to line n
and continues execution
from there.

Same as IF-THEN.

If the relationship, r between
the expressions f l and f2 is
true, transfers control to line
n; if not, continues in regu-
lar sequence. If f l and f2
are strings they are com-
pared on the basis of the
ASCII numeric value of
each character in the string.

Table 6-1 OS/ 8 BASIC Language Summary (Cent.)

Statement Example Form Meaning

INPUT INPUT vl ,v2,...,vn

LET LET v = f

NEXT NEXT v

PRINT PRINT al,a2, ..., an

RANDOMIZE RANDOMIZE

READ READ vl ,v2,...,vn

REM REM

RESTORE RESTORE

Causes typeout of a ? to the
user and waits for the user
to supply the values of the
variables vi through vn.

Assigns the value of the ex-
pression f to the variable v.
The word LET is optional.

Used to tell the computer to
return to the FOR statement
and execute the loop again
until v is greater than or
equal to terminal value in
FOR statement (or v is <
terminal value if increment
<O).

Prints the values of the spec-
ified arguments, which may
be variables, text, or format
control characters (, or ;).

Generates new sets of-ran-
dom-numbers.

Variables v l through vn are
assigned the value of the
corresponding numbers or
strings in the DATA list.

When typed as the first three
letters of a line everything
between REM and end of
line is ignored to allow typ-
ing of remarks within the
program.

Sets pointer back to the be- .

ginning of the list of DATA
values.

JÃ‡

Table 6-1 OW8 BASIC Language Summary (Cont.) -

. Meaning Statement Example Form

RETURN RETURN ~ransfers control to the
statement following the last
GOSUB.

STOP STOP Terminates execution at that
point at which the statement
is reached in the program.

UDEF UDEF function name The UDEF statement is used
(arguments)

USE USE vl ,v2,...,vn

OS/8 BASIC FILE STATEMENTS

CLOSE +

FILE #
FILEV #
FILEN #
FILEVN #

INPUT #

I F END #

CLOSE AN:

FILE #n:s -

FILEV #n:s
FILEN #n:s
FILEVN #n:s

to define the syntax of a call
to a user-coded machine
language function (function
name) with its associated
arguments.

The USE statement identi-
fies lists and arrays refer-
enced by a user-coded ma-
chine language function.

Closes a file N previously
opened by a FILE#N state-
ment where N is the numer-
ical expression for the file
number.

These statements, respec-
tively, open a fixed length
ASCII, variable length
ASCII, fixed length nu-
meric, and variable length
numeric file, where n has a
value of from 0 to 4 and s
is a string expression with a
value of DEV:FILE.EX.

INPUT #N: vl,v2, ..., vn Reads v l through vn from
file number N.

I F END'#N THEN n If an attempt has been made
to read or write beyond the
last datum in file number N,
control passes to line num-
ber n.

Table 6-1 OSI 8 BASIC Language Summary (Cont.)

Statement Example Form Meaning

PRINT # PRINT #N: al,a2, ..., an Writes the values of the
arguments into file number
N.

RESTORE # RESTORE #N t^^f.l^ cptc pointer back to begin-
ning of file number N.

OS/ 8 BASIC CONTROL COMMANDS

BYE

CTRL/ C

CTRL/O

LIST
LI

LIST n
LI ii

LISTNH
LISTNH n

NAME
NA

NEW
NE

OLD
OL

RUN
RU

BYE

CTRL/C

CTRL/ 0

LIST
LI

LIST n
LI a

LISTNH
LISTNH n

Exits from BASIC and re-
turns control to Keyboard
Monitor.

Stops execution of program
and returns control to OS/ 8
BASIC editor. In editor
mode returns control to
OS/ 8 Keyboard Monitor.

Stops the listing of text and
returns control to BASIC
editor.

Lists program with heading.

Lists program starting from
line E, ;vith hezdiZ?g.

Same as LIST and LIST n,
but heading suppressed.

NAME FILE.EX This statement renames the
NA FILE.EX current program in user

core.

NEW FILE.EX Used to name a program to
NE FILE.EX be created. Performs an in-

herent SCRATCH.

OLD DEV: FILE.EX P e r f o r m s i n h e r e n t
OL DEV: FILE.EX SCRATCH and retrieves a

previously created file from
the device specified.

RUN
RU

Compiles and executes the
program currently in core,
with heading.

Table 6-1 OS/8 BASIC Language Summary (Cant.)

Statement Example Form Meaning

RUNNH RUNNH Compiles and executes the
program currently in core,
with heading suppressed.

SAVE SAVE DEV:FILE.EX Saves the current program . , .
SA SA DEV:FILE.EX on the device specified.

SCRATCH SCRATCH Deletes all program state-
SC SC ments from user core.

OS/ 8 BASIC FUNCTIONS

Function Meaning

ABS(X) This function returns the absolute value of the argu-
ment X.

ASC(X) This function returns the decimal ASCII number (see
Appendix A) corresponding to the character X.

- ATN(X) This function calculates the angle (in radians) whose
tangent is given by the argument X.

CHR$(X) X is a numeric expression (modulo 64) which, is trun- .

cated to an integer. The decimal integer is converted
to its equivalent ASCII character (see Appendix A).

COS(X) The cosine function is used to calculate the cosine of
an angle specified in radians.

p w (X) This function returns the data in the form MM/DD/
YY. The argument X is a dummy argument.

EXP(X) This function calculates the value of e(2.71828)
raised to the X power.

FNA(X) Used with a DEF statement to define a user function.
Thereafter used as any other function.

INT(X) This function returns the greatest integer less than
the value of the argument X.

LEN(X$) This function retunis the number of characters in
string X$.

LOG(X) The LOG(X) function calculates the natural loga-
rithm of X.

Table 6-1 OS!8 BASIC Language Summary (Coat.)

Function Meaning

This function, which can only be used in a PRINT
statement, outputs the character whose decimal ASCII
value is X. This function is useful for outputting non-
printing characters.

This function returns the location in string X$ of the
first occurrence of string Y$ starting with the Zth
character in string X$.

This function returns a random number. between 0
and 1.

This function returns the substring of X$ which is be-
tween positions Y and Z inclusively.

The sign function returns the value 1 if X is any posi-
tive number, 0 if zero, and -1 if any negative number.

This function is used to calculate the sine of an angle
specified in radians.

The square root function computes the square root of
the absolute value of an expression.

This function converts the numeric value of X to a
string which is its decimal representation.

This function which can only be used in a PRINT
statement, moves the print head to position X.

This function turns on the trace feature if x = 1 and
turns off the trace feature if x = 0. When the trace
feature is on, line numbers are printed between per-
cent signs as the lines are encountered in the program.
The feature is useful when debugging programs.

This function returns the number represented by the
string X$ which is the decimal representation of a
number.

Compile-Time Diagnostics
Compile-time diagnostic messages typed out by OS/8 BASIC are
in the form:

XX YY

where XX is the diagnostic code and YY is the line number at
which the error occurred.

Table 6-2 Compile-Time Diagnostics

Diagnostic Code Explanation

Error in CHAIN statement.

Error in DEF statement.

Error in DIM statement syntax or string dimension
greater than 72, or array dimensioned twice.

Error in file number or filename designation.

Incorrect FOR loop parameters or FOR loop syntax.

Error in function arguments or function not defined.

THEN or GOT0 missing from IF statement, or bad
relational operator.

I/ 0 error.

Missing equal sign in LET statement.

Statement too long (greater than 80 characters).

Line number defined more than once. YY equals -
line number before line in error.

Missing END statement.

Operand expected, not found.

Missing parenthesis or error in expression within
parentheses.

Operand of mixed type or operator does not match
operands (e.g., A$=l and A&2 are both incorrect).

NEXT statement without corresponding FOR state-
ment.

Line number missing after GOTO, GOSUB, or
THEN.

6-1 15

Table 6-2 Compile-Time Diagnostics (Cont.)

Diagnostic Code

Output file error.

Pushdown stack overflow. Result of either too com-
plex a statement (or statements) or too many nested
FOR-NEXT loops.

String literal too long or does not end in quote.

Subscript or function argument error.

Symbol table overflow due to too many variables,
line numbers, or literals. Combine lines using back-
slash (\) to condense program.

System incomplete. System files such as BASIC.SV,
BCOMP.SV, and BRTS.SV missing.

Program too big. Condense or CHAIN.

Too much data in program.

Too many total characters in the string literals.

Error in UDEF statement.

FOR loop without corresponding NEXT statement.

Undefined statement number, (i.e., statement num-
ber mentioned in statement is not in progFam.)

Incorrect or missing array designator in USE state-
ment.

Extra characters after the logical end of line. (E.g.,
LET A=B.D-the dot after the B suggests that B
is the end of the line and the characters .D appear
extraneous.)

Run-time Diagnostics
Run-time diagnostic messages typed out by OS/8 BASIC are in the
form:

XX AT LINE YYYYY

where XX is the diagnostic code and YYYYY is the line number
at which the error occurred. Most runtime errors stop execution of
the program. Those errors which do not stop the program are
termed non-fatal (NF) and are indicated below.

Table 6-3 Run-time Diagnostics

Diagnostic Code Explanation

GR

GS

IA

I F

IN.

No more file buffers available.

Inquire failure in CHAIN. Device not found.

Lookup failure in CHAIN. Filename not found.

Attempt to read past end of data list.

Device driver error. Caused by hardware I/ 0 failure.

No more room for drivers. Too many different de-
vices used in file commands.

Attempt to divide by 0. Results is set to zero. (NF)

Logical end of file. Usually caused when I/ 0 device
runs out of medium.

Attempt to exponentiate a negative number to a
power.

Enter error in opening file. Device is read only or
there is already one variable file open on that device
or file not found.

FILE busy. Attempt to use a file already in use.

OS/ 8 error while closing variable file. Device is read
only on file closed already.

Fetch error in opening file. Device not found, or de-
vice handler too big for available space.

Attempt to close or use unopened file.

Attempt to fix minus number. Usually caused by
negative subscripts or file numbers.

'̂

Illegal file number. Only 0,1,2,3,4 are legal.

Attempt to fix number greater than 4095. Usually
caused by negative subscripts of file numbers.

RETURN without a GOSUB.

Too many nested GOSUBs. The limit is 10.

Illegal argument in UDEF function call.

Illegal DEV : filename specification.

Inquire failure in opening file. Device not found.

Table 6-3 Run-time Diagnostics (Cont.)

Diagnostic Code Explanation

TTY input buffer overflow. Cause input buffer to be
cleared and outputs another ? (NF).

Attempt to take log of negative number or 0.

r Ã ˆ r i i r o error while overlaying. Caused by SYS de-
JL^*t,.\^

vice hardware error.

Numeric or input overflow.

Illegal argument in POS function.

Atempt to read past end of file. (NF)

String too long (greater than 72 characters) after
concatenating.

String too long or undefined.

Attempt to read string from numeric file.

String truncation on input. Stores maximum length
allowed. (NF)

Subscript out of DIM statement range.

Attempt to write string into numeric file.

Attempt to read variable length file.

Attempt to write past end of file (NF).

OS/8 BASIC System Build Instructions
OS/8 BASIC is distributed on DECtape and paper tape. The

DECtape version of OS/8 BASIC contains SAVE images (ready-
to-run)for each of the OS/8 BASIC system components as well
as binaries for each system component. The paper tape distribution
includes binaries for each of the system components. OS/8 BASIC,
then, is distributed as the following files:

File Component ~is t r ibuted on: -
BASIC.BN Binary for editor DECtape and paper tape
BASIC.SV Editor save image DECtape only
BCOMP.BN Compiler binary ~ ~ ~ t a ~ e and paper tape
BCOMP.SV Compiler save image DECtape only

BLOAD.BN Loader binary DECtape and paper tape
BLOAD.SV Loader save image DECtape only
BRTS.BN Run-time system binary DECtape and paper tape

(any PDP-8 or PDP-12)

EAEOVR.BN Overlay for KE8/E EAE DECtape and paper tape
(8/E with KE-8E-EAE)

BRTS.SV Run-time system save DECtape only
image (from BRTS.BN)

BASIC.AF Arithmetic function DECtape only
overlay

BASIC.SF String function overlay DECtape only
BASIC.FF File manipulation over- DECtape only

lay -
. Making SAVE Images from Binary Files:
To create SAVE images of each of the OS/8 BASIC binaries, per-
form the following OS/8 commands.

1. For the editor:

.R ABSLDR
*DEV:BASIC.BN$
.SAVE SYS:BASIC;3011

2. For the compiler:

.R ABSLDR
*DEV:BCOMP.BN$
.SAVE SYS:BCOMP;7000

3. For the loader:

.R ABSLDR
*DEV:BLOAD.BN$
.SAVE SYS:BLOAD;7605

4. For the run-time system:

.R ABSLDR
*DEV:BRTS.BN$ (without KE8/E EAE option)

or
*DEV:BRTS.BN,DEV:EAEOVR.BN$

(PDP-8/E, PDP-8M or
PDP-8F with KE-8E EAE)

.SAVE SYS:BRTS 0-6777

.SAVE SYS:BASIC.AF 3400-4577
.SAVE SYS:BASIC.SF 12000-1 3 177
.SAVE SYS:BASIC.W 13400-14577

NOTE
All BASIC system files must reside on the
systems device @YÂ§:)

5 . At this point, 3ASiC is ready to run.

Assembling the BASIC sources
Instructions for assembling each of the OS/8 BASIC sources

follow. PAL-8 (under OS/8) is used, and the descriptions represent
OS/8 ~ommands. To assemble OS/8 BASIC, a 12K machine is
required. -

' The OS/8 BASIC sources are named as follows: '

NAME-MM
,

where MM represents the version number. For the first release, the
files are named:

Name Component -
BASIC.03 Editor Source
BCOMP.03 Compiler Source
BLOAD.03 Loader Source
BRTS.03 Runtime System Source

1. To assemble the editor:

.R PAL8
*DEV:BASIC.BN<DEV:BASIC.O3

2. To assemble the compiler:

.R PAL8
*DEV:BLOAD.BN<DEV:BLOm.O3

3. To assemble the loader:

.R PAL8
*DEV:BCOMP.BN<DEV:BCOMP.O3

4. The run-time system source is conditiondized for PDP-8/E
with EAE. Assembly instructions for each of the supported

- configurations follow.

6- 1 20

Normal Usage Faster Equivalent

.R BASIC .R BCOMP
NEW OR OLD-FILE *FILE

READY
RUNNH
READY -

In general, use R BASIC when:

a. Creating new programs or modifying old programs
b. Debugging old programs

Use R BCOMP:

a. To run existing programs
b. In BATCH stream to run BASIC programs

Source files for use by BCOMP must conform to the following rules:

a. There should be no blank lines.
b. Statements must be in the order in which they are to be

executed.
c. Line numbers are only required for statements that are refer-

enced in IF, GOSUB, and GOT0 statements. In other words,
if the only way a statement may be reached is for the preced-
ing statement to be executed, it does not require a line num-
ber. in the following example, there are no unnecessary line
numbers.

FOR 1=1 TO 10
IF 1=2 THEN 400
PRINT I
GO TO 410
PRINT "TWO".
NEXT I
END

Note that the source file can be created in one of two ways: it
may be created in the normal fashion with the OS/8 BASIC editor
and saved (in which case all lines will contain line numbers), or it
may be prepared using any of the other OS/8 editors (EDIT,
TECO). In this second case, the user can take advantage of the
extra features supported by these sophisticated editors over the
OS/8 BASIC editor.

.=

PLACEMENT OF BASIC OVERLAYS ON SYS:
For DECtape system users, the performance of the system can be ,

improved by two simple steps:

a.

b.

Both

Use a DECtape drive other than DTAO for DSK: (via the
ASSIGN statement).
Place the OS/8 BASIC system files as close together on the
SYS tape as possible. The best approach is to make a "BASIC
tape" containing only the OS/8 system, PIP, and the BASIC
system image files.

actions have the effect of speeding up OS/8 BASIC by the
simple reduction of the tape motion required for overlaying and
compiling.

PLACEMENT OF FUNCTION CALLS WITHIN BASIC
PROGRAMS

Most of the BASIC functions and file operations reside in one of
the three system overlays. Since the system overlay driver reads in
an overlay only if the function desired is not present in the currently
resident overlay, overlaying overhead can'be reduced by the simple
mechanism of placing calls to functions that reside in the same over-
lay as close as possible in the BASIC program. For example:

10 INPUT A$
20 Z$= SEG$(A$,1,6)
30 FILEN #1: Z$
40 INPUT A$
50 Z$= SEG$(A$,1,6)
60 FILEN #2: Z$

The above BASIC program uses the first six characters of a string
typed by the user as a file name to open a BASIC file. It uses the
SEG$ function, a File command, the SEG$ function, and the File
command again. Since SEG$ and FILE are in different overlays,
the overlayer will be used four times. A faster way to accomplish
the same operations follows:

10 INPUT A$,B$
20 Z$=SEG$(A$, 1,6)
30 X$=SEG$(B$,1,6)
40 FILEN #1: Z$
50 FILEN #2: X$

and DR8-EA 12-channel buffered digital I/O. All functions, con-
tained in an overlay called BASIC.UF, reside in the overlay area of
BASIC (3400-4577) with the understanding that the entire set of
functions is in core whenever a given function is in use. Each func-
tion is called by a suitable three-character name, followed by any
necessary arguments.

General regulations on arguments passed by the user functions in
this package :

1. All arguments must be within the following range:

Hence, negative arguments (<0) will cause a fatal error, FM;
and positive arguments greater than 4095 (>4095) will cause
the fatal error, FO. Fatal errors terminate program execution
and return the user to command mode.

2. Furthermore, certain functions in this package require that the
arguments be further restricted. These restrictions will be stated
along with the discussion of each function later on. Argument
errors due to these added restrictions will cause the fatal error,
IA (illegal argument).

Preparing Basic for LAB8/ E Functions
The Basic Run-Time System (BRTS) provides for one overlay

area and divides a set of infrequently used functions into three sep-
arate overlays; namely, BASIC.AF, BASIC.SF and BASIC.FF.
Since a logical need for user-written assembly language subroutines
exists, a last overlay, BASIC.UF was reserved. It is this last overlay
that contains the 12 functions for LAB8/E support. Since the sub-
routines of this last overlay are determined apart from BRTS, it is
necessary that BRTS be given a list of core addresses for each of
the user subroutines. It is critical that the order of specifying these
links or addresses be in the same order that the UDEF statements
will appear in the program that calls the functions.

Before writing any program using these functions, it is absolutely
necessary to modify BRTS. The following example illustrates how
this is done. Notice that in the test programs at the end, the order
in the UDEF statements is the same as the ordering of the addresses
here. A list of the names of the functions associated with each ad-
dress is specified to the right for the sake of clarity only.

used for interrupts

IN1
PLY
DLY
DIS
SAM
CLK
CLW
ADC
GET
PUT
DRI
DRO

Since many of BASIC's functions also reside in overlays, the user
is cautioned about using a function that will cause the current set
of functions to be overlayed and thereby destroy any useful in-
formation. For example, the user cannot calculate a set of cosine
values and pass them to the PLY function to be stored, because
COS resides in BASIC.AF overlay and PLY resides in BASIC.UF.

Definition of LAB/ 8E Support Functions
Once BRTS has been modified to recognize - the user function

from the BASIC.UF overlay, BASIC programs making use of these
functions may be written. If a program requires the use of the Nth
function in the ordered list of links, the first (N-1) functions of
the list must be defined by UDEF statements or a set of (N-1)
dummy-named functions must precede the defining of the Nth func-
tion. For example:

In reference to the ordered list of functions in the previous sec-
tion, if the ADC function is the only one to be used in a particular
BASIC program, the UDEF statements must be:

10 UDEF IN1 (N) ,PLY (Y) ,DLY (N) ,DIS(S,E,N,X)
11 UDEF SAM(C,N,P,T) ,CLK(R,O,S) ,CLW (N) ,ADC(N)

However, it is recommended that the user always use the' complete
set of UDEF's each time one requires one or more functions in a -

program. This is recommended solely to keep careless omissions to
a minimum.

IN1 (N)
The initialize function has a twofold purpose. Its main purpose

is to locate the address of the array specified by BASIC's USE
statement and retain that address until BASIC.UF is overlayed by
one of the other three overlays.

A secondary purpose is to set a pointer to the first location of
the array. Consequently, an array may be used to store one set of
data followed immediately by a second set of data, provided the
IN1 function was called only once. This means that displayable
data (10 bits), and fixed point data (12 bits) may share the user
array at the user's discretion. If, however, the IN1 function was
again specified at the end of the first data run, the first set of data
is overwritten by the second set of data. Hence, IN1 effectively zeros *

the array in this case. Whenever an array is to be used in conjunc-
tion with one or more of the functions in the BASIC-UF overlay,
user first dimensions the array and eventually employs the USE
statement before the IN1 function can have meaning. For- example:

DIM A(3)

USE A

The argument N, for INI, is a dummy argument, and may be any
integer; 0, 1,2, . . .

%7henever the f ~ i x t i m s PLY, DIS, SAM, GET, and PGT are
used, make sure that the IN1 function has been previously called at
least once. When an array is given the dimension N, BASIC allo-
cates (N-tl) floating point words of memory which is actually
3 (N+1) single memory locations. Thus, in the example above,
BASIC allocates 4 floating point words or 12 single memory loca-
tions for the array. Each data value deposited into the user's array
by the user functions is a single precision value (uses one memory
word).

PLY(Y) .

The purpose of the plot function is to enable a BASIC program
to create y-data values and enter them into the user array sequen-
tially, beginning with the first unused location of the array. Each
floating point value is fixed to a ten (10) bit single precision value
before it is put into the array. The range of the y-data values must
be:

This is easily accomplished by inserting a scaling factor. (Refer to
line numbers 26 and 64 of the example program TESTOA.PG at
the end of this chapter.)

The data in the user array can be displayed as it is being passed
to the array (see DLY function) and/or be refreshed continuously
once all values have been entered into the array (see DIS function).

DLY (N)
The delay function is used only in conjunction with the PLY

function. It causes the scope to be refreshed with the contents of
the user array after each point is processed, so that the graphical
progress of data can be observed.

N is an integer such that l<N<1024. It specifies the maximum
number of points to be eventually displayed. Implied here is the
fact that the display will contain only the first N points even if the
arrays contain more than N points.

DIS (S,E,N,X)
' The display function is used to set up parameters for the dis-
playing of y-data stored in the user array. The display will begin
with the desired starting point, S of the array and display every Nth
point while not exceeding the desired endpoint, E (where N = 1,
2,3, . . .).

Depending on the value of X, the DIS function has two separate
operations. Operation when X equals zero (X=O): Indication is
given to the user-overlay-functions that a SAM function will be the
next BASIC instruction. Consequently the parameters mentioned
above are set up so that exactly one of the sampled channels can be
displayed 'on the fly'. To understand the use of the arguments
S,E,N,X; it is necessary to know how the A/D data is stored in the
user array. For example assume 100 samples/channel in each case:

ARRAY
CASE 1

SAM CH#0
CASE 2

SAM CH #3,4,5

To display CASE 1, once sampling begins :

To display CH#4 of CASE2, once sampling begins:

DIS (2,100,3,0)

Operation when X is greater than zero (X>0) : A user array of
y-data is to be displayed immediately. The display is continually
refreshed (no return to BASIC) until the operator types CTRL/N
on the keyboard.
Displayable y-data values are assumed to be 10-bit single precision
data words.
The x-coordinate for each y-data value is determined by a DEL-
TAX value found as follows:

DELTAX = 1023/ 1 [E-S) /N]

Due to the outcome of DELTAX, the display may not always use
the full width of the scope. However, the display is always centered.

S 2 1 ; E X ; (E-S)/N<1023. At least one point must be dis-
played and no more than 1024 points may be displayed.

SAM(C,N,P,T)
The sample function is used solely to set up parameters for sub-

sequent sampling of the ADC's or for subsequent sampling of
digital input registers (0,1,2) depending on the value of T.

TASK 1 (T=O) : Sample the ADC's

C = First channel # to be sampled; OGCX 17*.

N = Number of consecutive channels to sample; 1 GN< (208-C) .

P = Number of sample points/channel; P=0.

TASK 2 (T=0) : Sample digital input registers.

C = First register # to be sampled; K C X 2 .

N = Number of consecutive input registers to sample; 1 <N< (3-C) .

P = Number of samples/register; P=0.

Anytime a SAM instruction is used to sample the ADC's, exactly
one channel must be displayed on the fly. However, the sampling
rate is not slowed down by this requirement. Hence a DIS function
call must precede a SAM function call whenever TASK 1 is chosen.

It is possible to display digital input data so long as only the least
significant 10 bits will be displayed. However, this data can not be

- displayed 'on the fly' and can only be displayed via the DIS func-
tion once all data is in the array.

CLK(R,O,S)
The clock function sets up the clock to be used for A/D sam-

pling, for digital input sampling, or as a simple timing device.
R(rate) = desired frequency at which to run the clock

Value of R Frequency

1 External input
2 100 HZ
3 1K HZ
4 10K HZ
5 100K HZ -

6 1M HZ

O(overflow CNT) = number of clock ticks per interrupt with
the clock running at the desired frequency, R. 0<0<4095

S (Schmitt trigger) (SgO) = Activate all Schmitt triggers and
start the clock when any one of the three Schmitt triggers fires.
(S=O) Do not activate any Schmitt triggers and start up the clock
immediately .

As mentioned above, this single clock function is used to set the
clock for one of three separate tasks.

TASK 1 : Sample the ADC's.
The interrupts are turned on1 and the program waits in the dis-

play loop for a clock overflow; at which time the A/D channel(s)
is (are) sampled. The display loop will display the data for the
channel specified by the user in the DIS function. When all chan-

- nels have been sampled the requested number of times, the CLK
function returns to BASIC.

TASK2: Sample digital input registers.
~t each clock overflow, the digital input register(s) is (are)

sampled. When all registers have been sampled the requested num- .

ber of times, the CLK function returns to BASIC.

T.

1 When interrupts are turned on, the only possible valid interrupts can be
caused by the keyboard or the clock. Hence, any other interrupt is an un-
controllable, spurious interrupt (faulty hardware) which will cause a HLT
at location 4466. If this happens, do the following:
1. Set SWITCH REGISTER to 4476 and press ADDR LOAD.
2. Next, press the CLEAR and CONT switches to return to BASIC.
3. Type CTRL/C to return to the OS/8 Momtor.

NOTE
The sampled data from the ADC's or the
digital input registers is stored sequentially
in the user's array.

\

TASK3 : A simple timing device.
The clock is set up and started (unless it is to be started when a

Schmitt trigger fires) and then returns to BASIC.
The following illustrates what sequence of instructions are

needed for each task.

DIM A(n) DIM A(n) Z=CLK (R,O,S)
USE A USE A

CLW (N)
With the clock having been set up by CLK as a simple timer,

this clock wait function, when called, simply returns to BASIC
whenever a clock overflow occurs; and/or whenever a Schmitt trig-
ger fires,provided S was a non-zero argument in CLK.

Upon return to BASIC, a number is returned to the caller in-
dicating whether the return was due to a clock overflow, a Schmitt
trigger, or a clock overflow and the firing of a Schmitt trigger simul-
taneously. The number also indicates whether one of the above
conditions occurred before or after the CLW function was called.
N is a dummy argument (N=O, 1,2, . . .) .

The following table illustrates the various numbers returned.

Case 1: Clock overflowed or a Schmitt trigger fired after CLW is
called.

Overflow only Schmi t t Trigger Only Simultaneously

1 (Trigger 1 fired)
2 (Trigger 2 fired)
3 (Trigger 1 & 2 fired)
4 (Trigger 4 fired)
5 (Trigger 1 & 4 fired)
6 (Trigger 2 & 4 fired)
7 (Trigger 1,2 & 4 fired)

Case 2: Clock overflowed or a Schmitt trigger fired before CLW is
called.

Overflow only Schmitt Trigger only Simultaneously

The TEST4A.PG and TEST5A. PG examples make use of the
CLW function.

The CLW function has many useful applications. Subroutine
timing may be accomplished by starting the clock with a specific
rate and overflow count. The subroutine is called, and at the end of
the subroutine the CLW function is called to see if an immediate
return is obtained. This timing is empirical in that the user would
keep changing the rate and/or overflow count until Case 2 oc-
curred..Secondly, Schmitt trigger firing may be used to branch to
a particular subroutine or to notify the program to proceed with
specific tasks such as reading digital data or sampling an analog
input. Thirdly, time interval histograms and post stimulus histo-
grams are also possible (see TST20A.PG).

ADC (N)
This function is issued any time one wishes to sample A/D channel
N. The 10 bit data value is floated and returned to the caller for
immediate examination. O<N< 1 7s.

The BASIC statement W=ADC (3) asks that A/D channel #3
be sampled and the floating point value be assigned to W.
The TEST5A.PG example illustrates one use of the ADC function.

GET fA4.L)
This function is used to get one 12 bit word from the user array,

mask out certain bits and return the result as a floating point num-
ber to the caller.

L is Lth location of the user array. Hence, if an array has N single
precision words, L can take on meaningful values of 1,2,3, . . . ,N.

NOTE
Although BASIC allows 0 to be a meaning-
ful value in a dimension statement such as
DIM A(O), it must be understood that L
always begins with 1, where 1 stands for the
first single-word location of the array. Thus
DIM A(0) specifies an array of one floating
point word (three one-word locations).

3f is z i ~ s k i r i g iiiiiiib~i- such that K?v1<4995. Tnis fivaiing
point number is converted to a 12 bit binary number between 0
and 7777. Those bits that are zero will mask out or eliminate those
bits in the array value. If M=0, then no masking is done and the
12 bit array value is returned intact. M=O and M=4095 have the
same meaning.

The BASIC statement Y=GET(15,2) gets the second word of
the user array, masks out all bits except bits 8,9,10,11 and assigns
the floating point result to Y. Consequently, if an array is as
follows :

single prec WD1 { 5678
single prec WD2 { 1234 Fl. pt. word 0
single prec WD3 { 4455

WD2 = 1234g = 00101001 1 100a
MASK= 15io = 178-0000000011112
The 12 bit value after masking is:

000000001 loo2 = 1210
Hence, Y=12

NOTE
For user assistance in understanding decimal
to octal to binary conversions, refer to Zntro-
duction to Programming.

PUT (M,L)
This function enables a floating point number to be fixed to a

single 12 bit word and put into the user's array.
L is Lth location of the user's array. For an array of N single

precision words, L can take on meaningful values of 1,2,3, . . . ,N.
M is the floating point number to be fixed and stored in the

array. OGMG4095.

NOTE
Both GET and PUT functions imply that a
user's array must not exceed 4096 memory
locations, because of the general restriction
on any argument for these user functions.

The BASIC statement Y=PUT(128,4) means fix 128 to 12
bits (000 010 000 0002) and put the value into the 4th word
of the user array. TST 15A.PG, TST 16A.PG, TST17A.PG and
TST18A.PG illustrate the use of functions GET and PUT.

DRI (N)
This function is issued any time one wishes to sample a digital

input register, N (OGNG2). The 12 bit digital value is returned
to the user as a floating point number. Basic statement: X=DRI(O)
means that input register #0 is sampled and the floating point result
is assigned to X.

DRO (M,N)
This function is issued any time one wishes to set the bits of a

digital output register, N(O<NO). The output register bits are set
via the value of M (lGMG4095). If M=0, the output register is

cleared, otherwise the bits of the register remain set. Hence, addi-
tional bits of the register can be set while maintaining those set
earlier.

Basic statement: Z=DRO(9,1) means set bits 8 and 1 1 of out-
put register # 1 if not already set.

9, - 00000000 100 1

TST13A.PG and TST15A.PG illustrate the use of the DRI and
DRO functions.

LABS/ E Examples
The following set of BASIC programs illustrates a number of

ways the user functions may be implemented. Each program has
been kept as simple as possible.

Note that for TST12A.PG, TST13A.PG and TST15A.PG a bat-
tery powered 'black box' was used to interact with the digital 1/0
registers. The box contained a set of 12 switches which could set
any combination of bits for the digital input register, and it also
contains a row of 12 lights that were lighted by the contents of the
12 bit digital output register. When running TST18A.PG, use the
data from TST 17A.PG.

1 REM - PROGRAM NAME: T E S T 0 A . P6
0 PC-?? -
3 UDEF ISICN)~PLY(Y>.ÃˆDLYCN~,UISCS,â‚¬~\
4 UDEF SAMC C Ã ˆ N P, T) CALK< ha OJ 51 CLWCN? ADC(N?
5 UDEF G E T C M * L) , P U T (M , L) * D R I < N > , U h O < M , N ?
6 DIM A(342)
9 REM -
10 REM - CALC 1024 PTS & D I S P L A Y ON FLY
1 1 REM - WHEN DCNE D I SPLAY E V E R Y 10TH PT-
12 REM -
20 USE A
22 Z = I N I (0)
24 FOR N = 1 TO 1024
26 Y = < 3vN-2) /307 1
28 X = P L Y (Y)
30 W=DLY C 1 0 2 4)
32 NEXT N
34 V=DI S< 1 , 1024, 10, 1)
49 REM -
50 REM - CALC 30 PTS & DI SPLAY ONLY
51 REM - WHEN DONE-
60 Z = I N I (0 5
62 FOR N= 1 T O 30

64 Y = < 2 + N + 1) / 6 1 . 1
66 Z=PLY(Y)
68 NEXT N
7 0 \/=DISC l , 3 0 > 13 1)
80 END

1 REM - PROGRAM NAME: TEST1A. PG
2 REM -
3 UDEF INIcN)JPLYCY)~DLYCN),DIS(SJE~NJX)
4 UDEF SAM(C,N3 P, T) , CLKC R , 0, S) J CLWCN) A D C < N)
5 UDEF GET(M,L);PUTCM>L) JDRI C N) JDROCMJN) $

6 DIM A(3 4 2)
1 0 REM -
1 1 REM - SAMPLE CHAN 0 (1 0 2 4 TIMES)3DISPLAY
1 2 REM - ALL P T S ON THE FLY.
13 REM - 10 INTERRUPTS/SEC
1 4 REM -

,20 USE A
2 1 W=INI (0)
22 W=DI SC 1, 1 0 2 4 , 1 0)
2 4 X=SAMC 0, 1, 1 0 2 4 , 0)
2 6 Y=cLK (39 1 0 0 * 0)
28 Z=DI S(1, 1 0 2 4 s 1 , l)
40 REM -
41 REM - SAMPLE CHANNELS 0J I C 1 0 0 TIMES EACH).
42 REM - 1 0 INTERRUPTSjSEC3 DI SPLAY CHAN 0 WHILE

. 43 REM - SAMPLING, WHEN DONE SHOW THREE D I F F
44 REM - DI SPLAYS: DISPLAY CHAN 0--HI T t N DISPLAY
4 5 REM - CHAN 1- -HIT TN DISPLAY CHANS 0 & 1 *
50 USE A
5 1 W=INI (0)
52 W=DI S(1, 2 0 0 # 2 ~ 0)
54 X=SAM(0,2* 1 0 0 , 0)
56 Y=CLKC 3s 1 0 0 s 0)

. 58 Z = D I S (1 , 2 0 0 ~ 2 , 1)
60 U=DI S(2 , 2 0 0 ~ 23 1)
6 2 V=DI S(1 * 2 0 0 , 1, 1)
70 END

1 REM - PROGRAM NAMES TEST2A. PG
2 REM -
3 UDEF INI(N)SPLY(Y)JDLY(N),DISCS<E~N>X)
4 UDEF SAM(C3Ns P s T) ,CLKCR>O* S) J CLW(N)>PDC(N)
5 UDEF GET(MsL),PUTfM,L), D R I CiND3DFr0CM~iM)
6 DIM A(342)
10 REM -
1 1 REM - CALC A PARAbCLA CF 6 0 1 PTS AND D l SPLAY
1 2 R E M - ON THE FLY* WHEN DOME DISPLAY EbE-hY 10TH
13 REM - PT OF PARABOLA.

<

6-1 37

14 REM -
20 USE A
22 Z=INIC@)
24 FOR N=-300 TO 3P0
26 Y=CN*N)/ 106iRki0
28 X=PLYCY)
30 W=DLY(601)
32 NEXT N
34 V=DIS(1,6@1~ 108 1)
se REM -
51 REM - CALC A C U B I C OF 6f . l PTS & DISPLAY" 03 F L Y
52 REM - WHEN DONE DJ SPLAY EVERY 1PTH PT.
53 REM -
60 Z=INIC0)
62 FOP N=-300 TO 300
64 Y=c;M*N*N+27 000000) 1540000 10
66 X=PLYCY)
68 W=DLY(601)
70 NEXT N
72 V=DI SC 1, 6P1, 108 1)
80 END

1 REM - PROGRAM NAME: I ES73A. PG
2 REM - -
3 UDEF INICN),PLY(Y),DLY(N),DI5CS8E8N,X)
4 UDEF SAM< C ~ N J P J T) ~ CLKC fi, 0, S) J CLW(N) 8 ADC(N)
5 UDEF GETCM,L) PUTCM,L) DRI (N) 8 DF30<M3 N)
6 DIM A(342)
10 REM -
1 1 REM - ILLUSTRATE ABILITY TO A C C E S S U S E h bUFFEF^.
12 REV - PUT NiiMfcc't<<; 1-!(7i I \ l T Q i-UF T{s) THAT OK'DEF"
13 REM - & R E A D THEM OUT IS THE REVERSE ORDER*
14 REM -
20 Z=INIC0)
22 FOR N= 1 TO 10
24 PRINT N
26 T=N
28 R=PUT(T,N)
30 NEXT N
32 FOR N= 1 TO 10
34 N=11-N
36 P=GET(0,M)
38 PRINT P

- 40 NEXT N
50 END

PROGRAM NAME: T E S T ~ A . P G 1 REM -
2 REM -
3 UDEF IN1 (N) , P L Y (Y) ; DLYCN), DI S(S, E s N a X)
4 UDEF SAM(C>N.ÃˆP,T).ÃˆCLK(R,~,S),CLW(N),ADC(
5 UDEF G E T (M , L) , P U T (M ^ L) > D M (N) , D k O (M , N)
6 REM - SAMPLE W A N 0 I F CLOCK 0.F.
7 REM - SAMPLE CHAN 1 I F SCHMITT ONLY
8 REM - SAMPLE CHAN I F BOTH F I R E
9 REM - I F EAkLY, TELL USER
1 0 REM - ROUTINE ALSO OUTPUTS Z
1 1 X=CLK (3,4000, 1)
1 2 FOR N = 1 TO 1 0
1 4 Z = C L W (0)
1 5 P R I N T "Z=";Z
1 6 I F Z = O GOT0 30
18 I F Z < 0 G O T 0 24
19 I F Z < 8 G O T 0 34
20 I F Z = 8 GOT0 40
21 GOT0 40
2 4 I F Z<-8 GOT0 4 0
2 6 W=ADC(2)
28 GOT0 36
30 W=ADC(@)
3 1 G O T 0 36
3 4 W=ADCZ 1)
36 P R I N T W
37 GOT0 4 2
40 P R I N T "EARLY"
4 2 NEXT N
50 END

REM -
REM - USE CLK A S A S I M P L E TIMER.
REM - SAMPLE CHAN 0 EVERY 4 T H S E C AND PUT VAL T O 'IIY
REM - DO T H I S 10 T I M E S
REM -
X=CLK(3 , 4 0 0 0 3 0)
FOR 1 = 1 TO 1 0
Y=CLW< 0)
Z=ADC(0)
P R I N T Z
NEXT I
REM -
FEM - USE CLK AS A S I M P L E T I M E h -
REM - SAMPLE CHAN 1 TEN T1ME.S & SYNC OFF ANY

43 REM - SCHMITT T R I G G E R
44 REM -
5 0 X=CLK (4s 40003 1)
52 FOR 1=1 TO 18
54 Y=CLW(@)
5 6 Z=ADC(0)
58 P R I N T Z
60 NEXT I
7 0 END

1 REM - PROGRAM NAME: TEST7A.PG
2 REM -
3 UDEF IN1 (N) JPLY(Y) JDLY(N) JDIS(S.ÃˆEJNJX
4 UDEF SAM(CJNJP~T)~CLK(RJGJS)JCLW(N)JADC(N)
5 UDEF GET(MaL);PUT(M/L)aDRI (NlaDRG(M;N)
6 DIM A(342)
7 USE A
8 REM - DISPLAY A TRIANGLE
10 Â£=INI(0
12 FOR R=l TO 30
14 Y=N/30* 1
16 W=PLYCY)
18 Z=l/30-1
20 U=PLY(Z)
22 P=DLY(118)
24 NEXT N
26 FOR N=l TO 29
27 M=30-N
28 Y=N/30* 1
30 W=PLY(Y)
38 2=1/3@.1
54 U=PLY(Z)
36 P=DLY(118)
38 NEXT N
40 V=DlS<1~118~1~1)
42 END

1 REM - PROGRAM NAME: TEST8A.PG
2 REM -
3 UDEF INI(N>,PLY(Y)JDLY(N)JDIS(SJEJNJX)
4 UDEF SAM<CJNJPJT)JCLK(RJO, S>JCLWCN) JADCCN)
6 DIM A(342)
10 REM -
1 1 REM - SAMPLE CHAN 0 100 TIMES; DI SPLAY;
12 REM - HOWEVER SYNC OFF SCHMITT TRIGS*

1 REM - PROGRAM NAME: T E S T 9 A o P G
2 REM -
3 UDEF I N I (N) J P L Y (Y) , D L Y (N) J D I S (S . Ã ˆ E J N J X
4 UDEF S A M (C , N J P J T) J CLKCRJOJ S) J C L W < N) J A D C (N)
5 UDEF G E T (M J L) J P U T (M , L) J DRI (N) J DRO(MJN)
6 DIM A C 3 4 2)
1 0 REM -
11 REM - CALC A PARABOLA O F 40 1 P T S AND D I S P L A Y ON FLY
1 3 REM -
20 U S E A
22 Z = I N I (0)
24 F O R N = - 2 0 0 TO 200
26 Y = (N * N) / 4 0 0 0 1
28 X = P L Y (Y)
30 W = D L Y (4 0 1)
32 NEXT N
50 REM -
5 1 REM - CALC A C U B I C O F 4 0 1 P T S 16 D I S P L A Y ON FLY
52 REM - SHOW PARABOLA* WHEN DONE D I S P L A Y EVERY PT
53 REM - & THEN EVERY 1 0 T H P T
54 REM -
62 FOR N = - 2 0 0 TO 200
64 Y=(N*N*N+8000000)/16000010
66 X = P L Y (Y)
68 W = D L Y C 8 0 2)
70 NEXT N
7 2 V = D I S < 1 ~ 8 0 2 ~ \t 1)
7 4 V = D I S (1 , 8 0 2 , 1 0 3 1)
80 END *

1 REM - PROGRAM NAME: T S T 1 0 A . P G
2 REM -
3 UDEF I N I (N) J P L Y (Y) J DLYCN) J D I S (S J E J N J X)
4 UDEF S A M (C J N J ? J T) J CLKCRJOJ S) J C L W (N) J A D C (N)
5 UDEF G E T (M ; L) J P U T (M J L) J DRI (N) J DRO(MJN)

- 6 DIM A (3 . 4 2)

7 REM - T H I S ROUTN RETURNS 4 D I G I T S - 3 B I T S / D I G I T
1 0 USE A
1 1 Z = I N I < 0)
12 PRINT "VALUE"
14 INPUT Y
16 Z=PUT(YJ 1)
18 P=GET(7 s 1)
1 9 PRINT P
20 P=GET(5 6 ~ 1)
21 PRINT P
22 P=GET(448* 1)
01 DOTMT ?
24 P z G E T (3 5 8 4 ~ 15
25 PRINT P
26 GOT0 12
30 END

1 REM - PROGRAM NAME: TST 12Ae PG
2 !?EM -
3 ?EM - T H I S ROUTN SAMPLES DIGITAL BOARD
4 REX - # l TEN TIMES* ONCE EVERY 4 SECS & PUTS
5 REX - THE VALUES INTO USER BUF THEN I T PRINTS
6 RE24 - OUT THE 10 VALUES
1 0 UDEF INI(N)JPLY(Y)JDLY(N)JDIS(SJEJNJX)
1 1 UDEF SAM(CJNJPJT)JCLK(RJOJS).ÃˆCLV(N)JADC(N
12 UDEF GET(MJL)JPUT(MJL)~DRI(N)JDRO(MJN)
20 DIM AC342)
22 USE A
23 W = I N I (@)
2 4 X = S m (10 1, 10 , 1)
26 Y = c L K (3 ~ 4 0 0 @ ~ 0)
2 8 FOR N= 1 TO 1 0
30 'A'=GET(~JN)
32 PRINT W
34 NEXT N
4 0 E N D

1 REM - PRO GRAM NAME: TST 13Ae PG
2 REM -
3 REM - TEST THE OUTPUT REG-SEE THE L I G H T S L I T E
4 REM - UP . OCTAL INPUT LIGHTS THE LIGHTS AND
5 RE24 - THE LAMP? AN INPUT OF 0 CLEARS THE OUTPUT REG
1 0 UDEF INI(N)JPLYCY)JDLYCN)JDISCSJEJNJX)
1 1 UDEF S A M (C J N J P J T) J C L K < R J ~ J S) J C L W (N) J A D C (N)
12 UDEF GET(MJL)JPUT(MJL~)~DP.I(N)JDRO(MJN)

1 4 W=DRO(0,1)
1 6 PRINT "NUMBER"
1 8 INPUT Y
1 9 I F Y=@ GOT0 14
2 0 W=DRO (Y.Ã 1)
22 GOT0 1 6
30 END

1 REM -, PROGRAM NAME: TST15A. PG
2 REM -
3 UDEF I N I (N) > P L Y (Y) , D L Y (N) . Ã ˆ D I S (S , E . Ã ˆ N . Ã
4 UDEF SAM (C,N,P,T),CLK(R.ÃˆO,S),CLV(N).ÃˆADC(
5 UDEF GET(M.ÃˆL)'. PUTCMsL), DRI (N), DRO (MaN)
6 DIM A (3 4 2)
7 REM - T H I S ROUTN RETURNS 3 DIGITS-A B I T S / D I G I T
8 REM - (MASKING) I T F I R S T OUTPUTS THE DECIMAL
9 REM - EQUIV OF THE NUMBER
1 0 USE A
1 1 Z = I N I (0)
1 2 U = D R I (1)
1 3 PRINT V
16 X=PUT<W, 1)
1 8 P=GET< 1 5 , 1)
1 9 PRINT P
20 P=GET(240, 1)
2 1 PRINT P
2 2 P = G E T (3 8 4 0 , 1)
2 3 PRINT P
2 4 PRINT "WASTE TIME"
2 5 INPUT R -
26 GOT0 1 2
30 END

1 REX - PROGRAM NAME: TST16A. PG
2 REM -
3 UDEF I N 1 (K I) > P L Y (Y) , D L Y (N > . Ã ˆ D I S (S - Ã ˆ E . Ã ˆ N
4 UDEF SAM(C>N.ÃˆP,T),CLK(R,~~S),CLV<N).ÃˆADC(
5 UDEF GET(M,L).ÃˆPUT<M.ÃˆL),D (N),DRO (M a N)
6 DIM AC3)
7 ??EM - T H I S ROUTN SHOWS THAT ANY N;0<=N<=4095
8 PEN - PUT INTO A USER BUF I S RETURNED AS THE
9 PEN - SAKE VALUE*
1 0 USE A
1 1 Z = I N I (0)'-

12 PRINT "NUMBER"
14 INPUT Y
16 X=PUT(Y, 1)
18 Z=GET(0,1)
20 PRINT Z
26 GOT0 12
30 END

1 REM - PRO GRAM NAME: TST 17A. PG
2 REM - FILL AM ARRAY OF 30 WORDS WITH THE
3 RFM - FIRST 30 INTEGERS. WRITE THE ARRAY
4 !?EM - OUT TO DECTAPE*
5 UDEF INI(N)JPLY<Y).ÃˆDLY(N)JDIS(S,EJN,X
6 UDEF SAM(C.ÃˆNJP,T),CLK(R,OJS)JCLV(N).ÃˆADCC
7 UDEF GET(MJL)JPUT(M~L).ÃˆDRI(N).ÃˆDRO<MJ
8 DIM A(9)
9 USE A
10 X=INI(0)
1 1 FOR N=1 TO 30
12 PRINT N
13 X=PUT<NJN)
14 NEXT N
16 FILEVN#l:"DTAl:DATAePG"
22 FOR 1=0 TO 9
24 PRINT #1:A(1)
26 NEXT I
20 LiLi3S.C. ffi
30 END

1 REM - PROGRAM NAME: TST18AeFG
2 R E X - READ INTO AN ARRAY 10 FL PT $lDS
3 REM - (30 INTEGERS FROM MS) WRITE OUT THE
4 REM - 30 INTEGERS ON TTY
5 UDEF INI(N)JPLY(Y),DLY(N),DIS(S,EJNJX)
6 UDEF SAM(C.ÃˆN.ÃˆPJT).Ãˆ,CLK<R.~O,S).ÃˆCLW(N).ÃˆA
7 UDEF GET(M~L)JPUT(MJL)~DRI (N),DRo(M,N)
8 DIM A (9)
9 USE A
20 FILm <f l :llDTAl : DATA.PGV1
22 FOR 1=0 TO 9
2 4 INPUT #1:A<I)
2 6 NEXT I
28 CLOSE # I
29 X=INI(0) 4

30 FOR N = l TO 30
32 X = G E T < ~ . Ã ˆ N
34 P R I N T X
36 NEXT N
40 END

1 REM - PRO GRAM NAME: T S T 1 9 A e PG
2 REm -
3 U D E F INICN).ÃˆPLYCY).ÃˆDLY(N).ÃˆDIS<S,E.ÃˆN
4 U D E F SAM(C,ÃˆN.ÃˆP.ÃˆT),CLK(R,O.ÃˆS)~CLW(N).ÃˆA
5 U D E F GETCM,L>>PUT<M~L>.ÃˆDRICN)~DRO(M.Ãˆ
6 DIM A (1 6) -
1 0 REM - SAMPLE CHAN 0 50 T1MES;SYNC O F T SCHMITT;
1 1 REM - 1 0 INTERRUPTS/SEC;WHEN DONE D I S P L A Y T I L L TN;
1 2 REM - THEN W R I T E OUT DATA TO DTA1;
20 U S E A
2 1 V = I N I (0)
22 V = D I s < 1 , 5 0 . ~ 1 3 0)
24 X = S A M (0 , 1 a 5 0 a 0 5
26 Y = C L K < 3 > 1 0 4 3 1)
28 Z = D I S < l a 5 0 , 1 a 1)
29 F I L E V N # 1 :**DTAl: SAM. DA"
30 FOR 1=0 TO 1 6
32 P R I N T # l : A (I)
34 NEXT I
36 C L O S E # l
38 REM - D I S P L A Y A PARABOLA
40 P = I N I (0 >
4 R FOR N = - 2 5 TO 25
44 Y = (N * N) / 6 2 5 e 1
46 X = P L Y (Y)
48 U = D L Y < 5 1)
50 N E X T N
52 V = D I S (1 . ~ 5 1 3 1 , l)
54 REM - READ DATA BACK I N & D I S P L A Y I T A S B E F O R E
56 F I L E N #l :"DTAl:SAMeDA"
58 FOR 1=0 TO 1 6
60 I N P U T S I t A C I)
62 NEXT I
64 W = I N I (0)
66 Z = D I S (1 , 5 0 ~ 1 > 1)
68 END

1 REM - PROGRAM NAME: T S T 2 0 A - PG
2 REM -
3 U D E F INI(N).ÃˆPLY<Y).ÃˆDLY(N).ÃˆDIS(S.ÃˆE.Ã
4 U D E F SAM(C,NaPaT),CLK(RsO,S>,CLV(N),ADC(N>
5 U D E F GET(M,L>~PUT(M.ÃˆL).ÃˆDRI(N),DRO<M~
1 0 DIM X (1 0 0) . ~ Y (l @ @) , A (6 7)

1 1 REM - iJl=B!NS I N LATENCY<#EPOCHS T I L L DONE)
1 2 REM - T l = B I N WIDTHCTIH) IN MS(#MS/CLK 0 .F .)
1 3 REM - T2=BIN WIDTH O F LATENCYC#CLK 0*F* /EPOCHS)
1 6 PRINT " J l , T l a T 2 ? * '
1 8 INPUT J l a T l a T 2
2 0 1=0
21 J = O
2 2 K=O
23 Y = C L K C ~ J T ~ ~ ~)
25 Z=CLW(0)
30 I F Z=O GOT0 1 0 0
32 I F Z c 0 GOT0 3 6
34 I F Z c 8 GOT0 2 0 0
35 GOT0 38
3 6 I F Z > - 8 GOT0 200
3 7 REM - INCR UNDERFLO BIN 0
38 1=0
39 GOT0 300
99 REM - CLK O*F. 0NLY;BMP H I S T BIN

I = I + 1
I F I<>100 GOT0 1 1 0
REM - END OF TIMEaBMP H I S T BIN
X (1 0 0) = X (1 0 0 > + 1
1=0
REM - BMP LATENCY CTR
K=K+ 1
I F K < > T 2 GOT0 2 5
REM - AN EPOCH I S DONE
K= 0
J= J+ 1
I F J = J 1 GOT0 5 0 0
REM - MORE EPOCHS TO GO?
GOT0 25
RIB - CLK 0 - F - .AND SCHMITT TRIG
X (I) = X (I) + l
Y (J) = Y C J I + 1
GOT0 1 0 0
REM - SCHMITT TRIG ONLY
X (I) = X < I) + l
Y (J) = Y (J > + l
GOT0 2 5
REN - GET LARGEST BIN VALUE TO BE USED AS A
REM - SCALE FACTOR FOR DISPLAY
USE A
Q= 0
FOR I = @ TO 1 0 0
Z = X < I)
I F Q>=Z GOT0 5 1 6
Q= Z
NEXT I
REM - SCALE ALL BIN VALUES FOR MAX DISPLAY
W=INI (0)
FOR 1=0 TO 1 0 0

552 Z = X (I)
554 Y = Z / (Q + l)
555 V = P L Y (Y)
556 NEXT I
598 REM - GET L A R G E S T LATENCY VAL TO B E
599 REM - USED A S A S C A L E FACTOR FOR D I S P L A Y
600 Q=O
602 FOP- 1=0 TO 1 0 0
604 Z = Y (I 1
606 I F Q>=Z GOT0 6 1 0
608 O=Z
6 1 0 NEXT I
699 P-EM - SCALE ALL LATENCY VALS FOR MAX D I S P L A Y
700 FOR 1=0 TO 1 0 0
702 Z=YC I)
704 Y = Z / (Q + 1)
706 V = P L Y â ‚ ¬
708 NEXT I
7 1 0 REM - D I S P L A Y ' T I H *
71 1 V = D I S (1 , 1 0 1 , l . ~ 1)
7 1 2 REM - D I S P L A Y LATENCY
720 V = D I S (1 0 2 . ~ 2 0 2 a l , l)
725 REX - D I S P L A Y BOTH ' T I H ' & LATENCY S I D E BY S I D E
726 V = D I S < 1 , 2 0 2 ~ 1 , l)
800 END

Getting on the Air with BASIC
A. DECtape users:

Transfer the user overlays, BASICUF, from the DECtape
provided with the software kit to the OS/8 system device.

.R PIP
*SYS:BASIC.UF<DTAn: BASIC.UF/I

(where n=0,1,2, . . . , 7)
* TC

B. Papertape users:
Use the ABSLDR to read into core the user overlays which
are in binary format on the paper tape, provided with the
software kit. Then create a 'save file' on the system device.

.R ABSLDR
*PHR:$T (where $ symbolizes striking the ALT MODE

key
.SAVE SYS BASIC.UF 3400-4577

LAB8/ E Function Summary

Table 6-4 LAB8/E Function Summary

Function Explanation

Locate the address of the user array and initialize a
pointer to start of the array. N is a dummy argument.

Y-data created via the BASIC program is deposited
into the user array sequentially. O<Y<.O

Used in conjunction with PLY, the scope is refreshed
with the contents of the user array after each point
is processed. 1 <N< 1024 and N specifies the maxi-
mum number of points to be eventually displayed.

Meaning #1 (X=O). Set up parameters to display
ADC data once sampling begins.
Meaning $ 2 (X=O). An array of y-data is to be dis-
played immediately. In both cases, the display begins
with point S of the array, and every Nth point is dis-
played while not exceeding the desired point E.

Used to set up parameters for subsequent sampling
of the ADC's (T=0) or sampling of digital input
registers (T*O). C is the first channel # or digital
input register #. N is the number of consecutive
channels or r ~ r r i c t ~ r c - Ãˆ-Â£-)*"- - to sample. P is the number of
samples per channel or register.

Set up the clock for A/D sampling, digital input
sampling or for use as a simple timer. R is the desired
rite, 0 is the overflow count and S activates the
Schmitt triggers.

This function returns to the caller a number, in-
dicating whether the clock overflowed or a Schmitt
trigger fired and whether these occurred before or
after CLW was called.

This function is issued any time the user wishes to
sample A /D channel N.

A twelve (12) bit number from the user array at
location L is masked with the number M and re-
turned to the caller.

A floating point number, My is fixed to 12 bits and
stored in the user array at location L.

Table 6-4 LAB8/E Function Summary (Cont.)

Function ~ x ~ l a n a t i o n

This function is used any time the user wishes to sam-
ple a digital input register N.

The bits of digital output register N are set via the
value of M.

INTRODUCTION

OS/8 FORTRAN is an improved version of the paper tape 8K
FORTRAN. OS/8 FORTRAN contains such added features as
Hollerith constants, implied DO loops, chaining, mixing of SABR
and FORTRAN statements, and device-independent I/O.

It is assumed that the reader is familiar with the basic concepts
of FORTRAN programming. Several excellent elementary texts
are available (such as FORTRAN Programming by Frederic
Stuart, published by John Wiley and Sons, New York, 1969, and
A Guide to FORTRAN Programming by Daniel D. McCracken,
published by John Wiley and Sons, New York) if review is needed.

Calling and Using the OS/8 FORTRAN Compiler
The user calls the FORTRAN compiler by typing: .

R FORT
. .

in reply to the dot generated by the Keyboard Monitor. When the
command Decoder prints an asterisk at the left margin, the user
types the appropriate device designations, 1/0 files, and any of
the acceptable specification options allowed for 8K FORTRAN.
A carriage return is used to terminate a command string and begin
compilation.

The line to the Command Decoder consists of 0 to 3 output files,
1 to 9 input files, and any of the available options. The format of
the command line is :

*BINARY,LISTING,MAP<INPUT/OPTION(S)

The first output file holds the binary output in relocatable binary
format. If no extension is specified, the extension .RL is assumed.

7-1

If a binary output file is not indicated in the command line, then
no binary output will be generated. (An exception to this occurs
when either the /L or /G options are used; this is explained in the
section describing the individual options). The second output file
contains the listing; if no extension is specified, the extension .LS
is assumed. If no listing file is specified, a listing will not be gen-
erated. The third output file is the Linking Loader output, and,
unless otherwise specified, this file assumes the extension .MP.
(This output is produced by use of the /M, /U and /P options,
which are discussed in the section of this chapter concerning the
Linking Loader.) 1 to 9 input files are available with OS/8 FOR-
TRAN, although ordinarily only 1 is used. The default extension
for input files is .FT.

FORTRAN OPTIONS
The following table provides a list of the options which are

available under OS/8 FORTRAN. In addition to these, the /N
and /S options to the SABR Assembler may be specified to the
FORTRAN compiler, and1options to the Linking Loader other
than /L may be used. (The user is referred to the respective sec-
tions for details.)

Table 7-1 FORTRAN Options

Option Meaning

/ G Load and execute the file. The Linking Loader is
called, the binary output file is loaded and executed.
(If a binary file is not specified, a temporary file
named FORTRL.TM is created and stored on the file
device. This file is loaded into core and then deleted
from the file device.) If a starting address is not spe-

- cified (using the options described under the Linking
Loader) control is sent to the program entry point
MAIN (the FORTRAN compiler gives this name
automatically to the main program.

/ K Keep the file FORTRAN.TM as a permanent file.
The FORTRAN compiler produces an output file
named FORTRN.TM on the system device. This
file is the FORTRAN source program converted into
SABR assembly language, and serves as input to the
8K SABR assembler, which is automatically called by

Table 7-1 FORTRAN Options (Cont.)

Option Meaning

the compiler. The file FORTRAN.TM is then deleted
unless the / K option has been specified. The / K op-
tion saves the file as a permanent file, allowing future
editing and assembling.

/L Load, but do not start execution. Call the Linking
Loader at the end of the assembly and load the spe-
cified binary file. (If a binary output file is not speci-
fied, then the temporary file FORTRL.TM is loaded
into core and deleted from the file device.) When
using the /L option, the user has the choice of ter-
minating the command string with either an ALT
MODE or a carriage return. If ALT MODE is typed,
the Loader returns to the Keyboard Monitor with a
core image in core, while the RETURN key instructs
the Loader to ask for more input.

EXAMPLE PROGRAM
The following example illustrates the ease with which a FOR-

TRAN program can be executed under OS/8. The program TEST .

has been created with the Symbolic Editor and saved on device
SYS:

C FORTRAN DEMO ' T E S T *
c COMPUTE AND P R I N T POWERS OF TWO-

i D I M E N S I O N A(1 6)
WRITE (1 9 1 5)

15 FORMAT (/ 'POWERS OF TWO*.EXAMPLE PROGRAM'/)
DO 20 N = l $ 1 6

20 ACN)=2. **N .I
WRITE (1 9 2 5) (N . Ã ˆ A (N) , N = ~ . Ã ˆ ~

25 FORMAT (* 2 * * ' I 2 * = * F 1 0 * 2)
CALL E X I T
EN D

By issuing the following commands, TEST is loaded and executed;
execution is automatic with the /G option: . .

7-3

R FORT
*TEST/G

POWERS OF TWO.. EXAMPLE" PROGRAM

FORTRAN assembles one main program or subroutine per call.
A job with multiple subprograms is run by compiling each routine
separately and combining them with the Linking Loader.

Typing a CTRL/C (1C) at run time during a non-compute
. . , A :-l, ,--:I1 - - A
uuuu JUU win. 1cai111 control to ihe Keyboard Monitor. Typing
.ST at this point will restart the user's FORTRAN program. If 1C
is typed when compiling a program, FORTRAN will have to be
recalled.

EXAMPLES OF FORTRAN 1/0
SPECIFICATION COMMANDS
Example 1 :

R FORT -
*DTA1: TEST/G -

The input file TEST.FT (or TEST) on DTA1 is compiled, the
output stored in FORTRN.TM on the system device, and SABR
is called. SABR uses FORTRN.TM as input and outputs the as-
sembled file into FORTRL.TM, deleting the old FORTRN.TM.
The /G option specifies that the Linking Loader then loads

FORTRLTM and the Library Subroutines, deletes FORTRL.TM
upon loading, and sends control to the entry point MAIN.
Example 2:

. R FORT -
*MATRIX<MATRIX*AB/C-/U -

The input file MATRIX.AB on DSK is compiled and the output
stored in SYS:FORTRN.TM. SABR is called and assembles
SY S : FORTRN.TM, putting the relocatable binary output into
DSK: MATRIX-RL, deleting the file FORTRN.MT. The /G option
specifies that the Linking Loader then loads MATRIX.= and the
Library Subroutines, and then prints on the teleprinter (via /U)
a list of undefined external symbols and a count of the unused
pages in each memory field.
Example 3:

The FORTRAN Compiler compiles and SABR assembles the
file DSK: INPUT.FT (or INPUT), outputting the binary file as
SYS:FORTRL.TM. The Linking Loader is automatically called

' (/L) to load SYS:FORTRL.TM into core and delete that file from
SYS. The Linking Loader puts a full loading map on the LPT
device (/M). The Loader then asks for another command string.
If the line had been terminated with the ALT MODE key instead
of the RETURN key, control would be returned to the Keyboard
Monitor after loading.
Example 4:

. R FORT
*SUB 1 < SUB 1 -
. R FORT - * SUB2< SUB2 -
. R FORT -
*MAIN/L - - *SUB 1 9 S U B 2 1 G

The subroutines and the MAIN program are each compiled sep-
arately, and the MAIN program is loaded but not executed (as the
/L option indicates). The Linking Loader is called at the end of

the assembly and waits for more input. The / G option is used to
load the FORTRAN Library Subroutines and initiate execution of
the MAIN program.
Example 5:

* R F O R T -
*DTA5 : SOURCE/L -
The file SOURCE on DiA5 is compiled, assembled, and loaded
but not executed.
Example 6:

. R FORT -
+DTA1 : P R O G , P T P : - > P T P : < D T A l :PROG(NMG)

For those users with DECtape systems, keeping the source pro-
gram on a non-system DECtape and putting the binary on a non-
system DECtape gives the best possible results in terms of
minimizing tape motion. The above file, PROG, is loaded and
executed. The binary is stored on DTA1 under theG name
PROG.RL, and the symbol table, the map of the loaded program
and the count of the free pages in each field are punched onto
paper tape.

In DECtape systems, excessive DECtape motion can also be
eliminated by storing LIB8.RL on a non-system tape. The user
would then specify to the Loader:

Using FORTRAN or SABR with the Interrupt On
SABR code can be run with the interrupt on, providing the user

supplies his own interrupt handling code. That code which is ex-
ecuted when the interrupt is off must not call any of the SABR
subroutines and must be independent of all SABR or library sub-
routines and linkage subroutines. With the interrupt on, the user
should not call exit routines or do any generalized (device-inde-
pendent) I/O, unless those routines are modified to make allow-
ances for interrupts.

7-6

Using PAL8 with SABR or FORTRAN
It is possible to call PALS subroutines from a SABR or FOR-

TRAN program. The user should build a core image of the running
FORTRAN or SABR program and return to the Keyboard Mon-
itor by typing $ (ALT MODE key) on the last Linking Loader
Command. He should then save the core image. The core image

, file (.SV) can be used as input to the Absolute Loader (ABSLDR)
with the /I option, followed by the binary of the PAL8 routine.
For example :

. R ABSLDR -
*DTA7: CHAIN20 S V / I -
*PALSUB. BN/GÂ -

The above calls the Absolute Loader, loads the core image -

CHAIN2.SV and then merges the PALSUB.BN program with it.
Execution starts at location 200 and, when completed, the system

' -
returns to the Keyboard Monitor for further instructions.

FORTRAN Data Files
When doing FORTRAN output onto DECtape or disk into a

file which is to be read only as a data file by another FORTRAN
program, a significant time saving can be obtained by using A6
format to output floating-point variables and A2 format to output
integer values. The same format specifications must be used when
the data is read. The data file is not an ASCII file and should not
be edited with EDIT. The file should only be moved by PIP in
image mode (/ I option).

The following caution should be observed concerning programs
which may have been written and compiled with a previous ver-
sion of OS/8 FORTRAN:

. CAUTION
A FORTRAN compiler and its correspond-
ing Library constitute an interlocking set of
programs. No user should attempt to com-
pile a program under OS/8 and load it with
the paper tape FORTRAN, or vice versa.
Similarly, programs developed with the cur-
rent FORTRAN compiler should not be run
under an old FORTRAN system.

FORTRAN I1 SOURCE LANGUAGE

Character Set
The following characters are used in the FORTRAN 1anguage.l

1. The alphabetic characters, A through Z.
2. The numeric characters, 0 through 9.
3. The special characters:?

FORTRAN Constants
Constants are self-defining numeric values appearing in source

statements and are of three types: integer, real, and Hollerith.

INTEGER CONSTANTS
An integer (fixed point) constant is represented by a digit string

of from one to four decimal digits, written with an optional sign,

1 Appendix A lists the octal and decimal representations of the FORTRAN
character set.
2 Of these, the characters " ! $ % & # : ? < > T [I \ + may only appear
inside FORMAT statements or Hollerith constants.

and without a decimal point. An integer constant must fall within
the range -2047 to +2047. For example:

47
+47 (+ sign is optional)
-2
0434 (leading zeros are ignored)

0 (zero)

REAL CONSTANTS
A real constant is represented by a digit string, an explicit

decimal point, an optional sign, and possibly an integer expo-
nent to denote a power of ten (7.2 x lo3 is written 7.2E+03).
A real constant may consist of any number of digits but only the
leftmost eight digits appear in the compiled program. Real con-
stants must fall within the range of 2 1 . 7 ~ 1 0 ~ ~ .

HOLLERITH CONSTANTS
A Hollerith constant is a string of up to 6 characters (including

blanks) enclosed in single quotes. A Hollerith constant is treated
like a real constant, except that it cannot be used in arithmetic
expressions other than for simple equivalence (A=B). Any char-
acter except the quote character itself can be used in a Hollerith

- constant. For example:

' Î 0 IY '
' A + B = C
' 5 ^ 10'

FORTRAN Variables
A variable is a named quantity whose value may change during

execution of a program. Variables are specified by name and type.
The name of a variable consists of one or more alphanumeric
characters the first of which must be alphabetic. Although any
number of characters may be used to make up the variable name,
only the first five characters are interpreted as defining the name;

the rest are ignored. For example, DELTAX, DELTAY, and
DELTA all represent the same variable name.

The type of variable (integer or real) is determined by the
first letter of the variable name. A first letter of I, J, K, L, M, or
N indicates an integer variable, and any other first letter indicates
a real variable. Variables of either type may be either scalar or
array variables. A vaiiable is an array variable if it first appears~in
a DIMENSION statement. -
INTEGER VARIABLES

The name of an integer variable must begin with an I, J, K,
L, M, or N. An integer variable undergoes arithmetic calcula-
tions with automatic truncation of any fractional part. For example,
if the current value of IS is 5 and the current value of J is 9, J/K
would yield 1 as a result.

Integer variables may be converted to real variables by the
function FLOAT (see Function Calls) or by an arithmetic state-
ment (see Arithmetic Statements). Integer variables must fall within
the range -2047 to +2047.

Integer arithmetic operations do not check for overflow. For
example, the sum 2047+2047 will yield a result of -2. For more
information refer to Chapter 1 of Introduction to Programming or
any text on binary arithmetic.

A real variable name begins with any alphabetic character other
than I, J, K, L, M, or N. Real variables may be converted to integer
variables by the function IFIX '(see Function Calls) or by an
arithmetic statement. Real variables undergo no truncation in
arithmetic calculations.

SCALAR VARIABLES
A scalar variable may be either integer or real and represents a

single quantity. For example:

L i l

A
G 2
TOTAL
J

ARRAY VARIABLES
An array (subscripted) variable represents a single element of a

one- or two-dimensional array of quantities. The array element is *

denoted by the array name followed by a subscript list enclosed in
parentheses. The subscript list may be any integer expression or
two integer expressions separated by a comma. The expressions
may be arithmetic combinations of integer variables and integer
constants. Each expression represents -a subscript, and the values
of the expressions determine the referenced array element. For
example, the row vector Ai would be represented by the subscripted
variable A(I) , and the element in the second column of the first row
of the matrix A, would be represented by A (1,2).

Examples of one-dimensional arrays are:

while a two-dimensional array appears as follows:

Any array must appear in a DIMENSION statement prior to its
first appearance in an executable statement. The DIMENSION
statement specifies the number of elements in the array.

Arrays are stored in increasing storage locations with the first
subscript varying most rapidly (see Storage Allocation). The two-
dimensional array B (J, K) is stored in the following order:

For representation of arrays of more than two dimensions, refer
to the section entitled Representation of N-Dimensional Arrays
toward the end of this chapter.

SUBSCRIPTING
Since excessive subscripting tends to use core memory ineffi-

ciently, it is suggested that subscripted variables be used judi-
ciously. For example, the statement:

7-1 1

could be rewritten with a considerable saving of core memory as
follows:

Expressions
An expression is a sequence of constants, variables, and function

references separated by arithmetic operators and parentheses in
accordance with mathematical convention and the rules given
below.

Without parentheses, algebraic operations are performed in the
following descending order:

** exponentiation
- unary negation

* and / multiplication and division
+ and - addition and subtraction
- - equals or replacement sign

Parentheses are used to change the order of precedence. An
operation enclosed in parentheses is performed before its result is
used in other operations. In the case of operations of equal prior-
ity, the calculations are performed from left to right.

Integers and real numbers may be raised to either integer or real
powers. An expression of the form:

means AB and is real unless both A and B are integers. Exponential
(ex) and natural logarithmic (logf(x)) functions are supplied as
subprograms and are explained later.

Excluding ** (exponentiation), no two arithmetic operators may
appear in sequence unless the second is a unary plus or minus.

The mode (or type) of an expression may be either integer or
real and is determined by its constituents. Variable modes may not
be mixed in an expression with the following exceptions:

1. A real variable may be raised to an integer power:

2. Mode may be altered by using the functions IFIX and
FLOAT (see Function Calls):

The I in example 2 above, indicates an integer variable; it is
changed to real (in floating point format) by the FLOAT function.

Zero raised to a power of zero yields a result of 1. Zero raised
to any other power yields a zero result. Numbers are raised to
integer powers by repetitive multiplication. Numbers are raised to
floating point powers by calling the EXP and ALOG functions.
A negative number raised to a floating point power does not cause
.an error message but uses the absolute value. Thus, the expression
(-3.0)* *3.0 yields a result of +27.

Any arithmetic expression may be enclosed in parentheses.and be
considered a basic element.

I F I X (X + Y) / 2
(Z E T A)
(COS(SINCPI*EM)+X)

An arithmetic expression may consist of a single element (con-
stant, variable, or function call). For example:

Compound arithmetic expressions may
metic operators to combine basic elements.

be formed using arith-
For example:

Expressions preceded by a + or a - sign are also arithmetic
expressions. For example:

As an example of a typical arithmetic expression using arithmetic
operators and a function call, the expression for the largest root of
the general quadratic equation:

FORTRAN STATEMENTS
A FORTRAN source program consists of a series of statements,

each of which must start on a separate line. Any FORTRAN
statement may appear in the statement field (columns 7 through 72)
and may be preceded by a positive number, called a statement
number, of from 1 to 4 digits which serves as an address label and
is used when referencing the statement. When used, statement num-
bers are coded in columns 1 through 5 of the 72 column line. State-
ment numbers need not appear in sequential order, but no two state-
ments should have the same number. Statement numbers are limited
to a value of 2047 or less. -- -.

wnen using the Symbolic Editor to create the source program,
typing a CTRL/TAB (generated by holding down the CTRL key
and depressing TAB) causes a jump over the statement number
columns and into the statement field. Except for data within a
Hollerith field (see Input/Output Statements), spaces are ignored
by the compiler. The programmer may use spaces freely, however,
to make the program listing more readable and to organize data
into columns.

Line Continuation Designator
Statements too long for the statement field of a single terminal

line may be continued on the next line. The continued portion must
not be given a line number, but must have an alphanumeric charac-
ter other than 0 in column 6. If the Symbolic Editor is used, the pro-
grammer may type a CTRL/TAB followed by a digit from 1 to 9
before continuing the line. The continuation character is not treated
as part of the statement.

For example, using spaces, a continued statement would look as
follows:

WRITE (3 , 3 0 1
30 FORMAT (1 x 9 'THE FOLLOWING DATA I S GROUPED INTO THREE:

1 PARTS UNDER THE HEADINGS X, Y , AND Z . ')

Using tabs, the same statement would be typed:

WRITE (3 9 3 0)
3 0 FORMAT (I X j 1 T H E FOLLOWING DATA I S GROUPED INTO THREE

1 PARTS UNDElR THE HEADINGS X, Y, A N D Z. '

There is no limit to the number of continuation lines which may
appear. However, one restriction is that an implied DO loop must
not be broken, but must be on one line. For ease in program cor-
rection, it is recommended that continuation lines be minimized.

Comments
The letter C in column 1 of a line designates that line as a com-

ment line. A comment appears in a program listing but has no
effect on program compilation. Any number of comment lines may
appear in a given program, and comments that are too long for
one line may be continued by placing a C in the first column of the
next line. A comment line may not appear between another line
and its continuation.

FORTRAN statements are of five types:

Arithmetic, defining calculations to be performed;
Input/Output, directing communication between the pro-
gram and input/outp.ut devices;
Control, governing the sequence of execution of statements
within a program;
Specification, describing the form and content of data within
the program;
Subprogram, defining the form and occurrence of subpro-
grams and subroutines.

Each of these five types is explained in the following paragraphs.

7-1 5 ,

Arithmetic Statements
Constants and variables, identified as to type and connected by

logical and arithmetic operators form expressions: one or more
expressions form an arithmetic statement. Arithmetic statements
are of the general form:

where V is a variable name (subscripted or nonsubscripted), E is
an expression, and = is a replacement operator. The arithmetic
statement causes the FORTRAN object program to evaluate the
expression E and assign the resultant value to the variable V. Note

- that = signifies replacement, not equality. Thus, expressions of the
form:

are quite meaningful and indicate that the value of the variable A
is to be changed.

For example:

The expression value is made to agree in type with the variable
before replacement occurs. In the statement:

since META is an integer and the expression is real, the expression
value is truncated to an integer before assignment to META.

Input/Output Statements
Input/Output (I/O) statements are used to control the transfer

of data beween computer memory and peripheral devices and to
specify the format of the output data. 1/0 statements may be di-
vided into two categories:

7-1 6

1. Data transmission statements, READ and WRITE, specify
transmission of data between computer memory and 1/0
devices.

2. Nonexecutable FORMAT statements enable conversion be-
tween internal data (within core memory) and external data.

DATA TRANSMISSION STATEMENTS
The two data transmission statements, READ and WRITE, ac-

complish input/output transfer of data listed in a FORMAT state-
ment. The two statements are of the form:

R E A D (unit; format) 1/0 list
WRITE (unit, format) 1/0 list

where unit is a device designation which can be an integer constant
or an integer variable, format is a FORMAT statement line num-
ber, and the I/O list is a list specifying the order of transmission of
the variable values. During input, the new values of listed variables
may be used in subscript or control expressions for variables ap-
pearing later in the list.

For example:

reads a new value of L and uses this value in the subscripts of A
and B; where 2 is the device designation code, and 1000 is a
FORMAT statement number.

An element in an 1/0 list can take one of the following forms:

1. Arithmetic expression: expressions more complicated than a
single variable (which can be subscripted) are meaningless
in an input operation.

2. The name of an array (1 or 2 dimensional) : this indicates
that every element of the array is to be transmitted. Elements
are transmitted in the order in which they are stored in core.

For example:

D I M E N S I O N A (2 ~ 2)
R E A D (1,100) A

3. Implied DO Loops of the form:

repeat the list elements (sn) with the value of i being equal
to mi through m2 having an optional step value of m3. The
m's are integer constants or variables, i is an integer variable,
and s1-sn are the 1/0 list elements (possibly including an im-
plied DO loop). For example:

DIMENSION A (3 ~ 6)
WRITE (1,100) I . Ã ˆ (A C J , I) J = ~ , ~

will output the values:

I,ACl,I),A(2>I),A(3,1)

It is important to remember that when using implied DO
loops, the entire implied DO loop must be on the same input
line or card. An implied DO loop cannot be continued onto
the next line with a continuation character.

If no 1/0 list is specified for a WRITE statement, then in-
formation is read directly from the specified FORMAT statement
and written on the device designated.

Data appears on the external device in the form of record^.^ All
information appearing on input is grouped into records. On output
to the printer a record is one line. The amount of information con-
tained in each ASCII record is specified by the FORMAT state-
ment and the 1/0 list.

This should not be confused with the OW8 record, which is equal to 25610
words (2 DECtape blocks with the 129th word of each block ignored.)

7-1 8

Each execution of an 1/0 statement initiates the transmission of
a new data record. Thus, the statement:

is not necessarily equivalent to the statements below where 100 is
the FORMAT statement referenced:

In the second case, at least three separate records are required,
whereas, the single statement

READ (d, f) FIRST, SECOND, THIRD

may require one, two, three, or more records depending upon
FORMAT statement f.

If an 1/0 statement requests less than a full record of informa-
tion, the unrequested part of the record is lost and cannot be re-
covered by another 1/0 statement without repositioning the record.

If an 1/0 list requires more than one ASCII record of informa-
tion, successive records are read.

READ Statement
The READ statement specifies transfer of information from a

selected input device to internal memory, corresponding to a list
of named variables, arrays or array elements. The READ statement -

assumes the following form:

READ (d, f) list

where d is a device designation which may be an integer constant
or an integer variable, f is a FORMAT statement line number, and
list is a list of variables whose values are to be input.

The READ statement causes ASCII information to be read from
the device designated and stored in memory as values of the
variables in the list. The data is converted to internal form as
specified by the referenced FORMAT statement.

For example :

WRITE Statement
The WRITE statement specifies transfer of information from

the computer to a specified output device. The WRITE statement
assumes one of the following forms:

WRITE (d, f) list
WRITE (d, f)

where d is a device designation (integer constant or integer vari-
able), f is a FORMAT statement line number, and list is a list of
variables to be output.

The WRITE statement followed by a list causes the values of the
variables in the list to be read from memory and written on
the designated device in ASCII form. The data is converted to ex-
ternal form as specified by the designated FORMAT statement.

The WRITE statement without a list causes information (gen-
erally Hollerith type) to be read directly from the specified format
and written on the designated device in ASCII form.

The 1/0 device designations used in the READ and WRITE
statements are described in Table 7-2.

Table 7-2 Device Designations
-- - " ,- * - . - --

Device Code Input Designation Output Designation

1 Teletype keyboard or Teleprinter
low-speed reader

2 High-speed reader High-speed punch
3 Card reader (~ ~ $ 1 1) Line printer (LP08)
4 * Assignable device Assignable device

(see Device Independent 1/0 and Chaining)

Device code 3 is assigned to the card reader (for all READ
statements), and the line printer (for all WRITE statements)-. The
card reader uses a two-page device handler, which - is too large to

4 If using device code 4, the / I or / O options to the Linking Loader
must be given. If the assignable device is a two-page handler, the /H op-
tion must be given also.

be used with the device independent 1/0 feature (device code 4).
Therefore, the card reader has its own device code.

The line printer is a separate output device because it can require
special formatting, such as inserting a Form Feed to skip to the
top of a page. The contents of the first column of any line is a con-
trol character. These control characters are never printed. They
are as follows:

Character in Column 1 Resulting Spacing

space single space
0 double space
1 skip to top of

next page (Form
Feed)

all others single space

FORMAT STATEMENT
The nonexecutable FORMAT statement specifies the form and

arrangement of data on the selected external device. FORMAT
statements are of the form:

m FORMAT (Si,Sb.Sn)

where m is a statement number and each S is a data field specifica-
tion. Both numeric and alphanumeric field specifications may ap-
pear in a FORMAT statement. The FORMAT statement also
provides for handling multiple record formats, skipping characters,
space insertion, and repetition.

FORMAT statements may be placed anywhere in the source
program. Unless the FORMAT statement contains only alpha-
numeric data for direct 1/0 transmission, it will be used in con-
junction with the list of a data transmission statement.

During transmission of data, the object program scans the desig-
nated FORMAT statement; if a specification for a numeric field
is present, and the data transmission statement contains items re-
maining to be transmitted, transmission takes place according to the
specification. This process ceases and execution of the data trans-
mission statement is terminated as soon as all specified items have
been transmitted. The FORMAT statement may contain specifica-
tions for more items than are indicated by the data transmission

statement. The FORMAT statement may also contain specifica-
tions for fewer items than are indicated by the data transmission
statement, in which case, format control reverts to the rightmost
left parenthesis in the FORMAT statement. If an input list re-
quires more characters than the input device supplies for a given
record, blanks are inserted.

Numeric Fields

Numeric field specification codes and the corresponding in-
ternal and external forms of the numbers are listed in Table 7-3.

Table 7-3 Numeric Field Codes

Conversion Internal Form External Form
Code

E Binary floating point Decimal floating points
with E exponents:
0.324E+10 -

F Binary floating point Decimal floating point
with no exponent: 283.75

I Binary integer Decimal integer: 79 .
Conversions are specified by the form:

where r is a repetition count, E, F, and I designate the conversion
code, w is an integer specifying the field width, and d is an integer
specifying the number of decimal places to the right of the decimal
point. For E and F input, the position of the decimal point in the
external field takes precedence over the value of d. For example:

5 When using E format, or with numbers less than 1.0 when using F format
in a WRITE statement, a zero will be typed to the left of the decimal point.

FORMAT (1 5 > F 1 0 . 2 . ~ E 1 6 . 8)

could be used to output the line

32 - 1 7 -60 0 .59624575E+03

on the output listing.

The field width should always be large enough to include the
decimal point, sign, and exponent (plus a leading zero in OS/8
FORTRAN). In all numeric field conversions, if the field width
is not large enough to accommodate the converted number, aster-
isks will be printed; the number is always right-justified in the field.

Numeric Input Conversion

In general, numeric input conversion is compatible with most
other FORTRAN processors. A few exceptions are listed below:

1. Blanks are ignored except to determine in which field digits
fall. Thus, numbers are treated as if they are right-justified
within a field. In an F5.2 format, the following: .

are read as the number 0.12 (where 'b' represents a blank
space).

2. A null l ine delimited by two carriage return/line feed
(CR/LF) combinations is treated as a line of blanks, and
blanks are appended to the right of a line (if necessary) to
fill out a FORMAT statement. Thus:

are identical under an F5.2 format. If an entire line is blank,
numeric data from that line is read as zeros.

3. No distinction is made between E and F format on input.
Thus :

are all read identically under either an F5.2 or E5.2 format.

Alphanumeric Fields
Alphanumeric data can be transmitted in a manner similar to

numeric data by use of the form

where r is a repetition count, A is the control character, and w is
the number of characters in the field. Alphanumeric characters are
transmitted as the value of a variable in an 1/0 list; the variable
may be either integer or real.

Although w may have any value, the number of characters trans-
mitted is limited by the maximum number of characters which can
be stored in the space allotted for the variable. This maximum
depends upon the variable type; for a real variable the maximum
i c six characters, for an integer variable the maximum is two - -
characters. The characters are stored in stripped ASCII format. If
not enough data is supplied as input to the variables, the data is
padded with blanks on the right. For example:

if the user types at this point:

followed by a carriage return, the following are the values of the
variables: -

7-24

<

Variable Decimal Octal ASCII

M l -928 6140 1
M2 -864 6240 2
M3 -800 6340 3
M4 96 0140 A
M5 160 0240 B
M6 224 0340 C
M7 -2016 4040 blank
M8 -201 6 4040 blank-

If the above had been read in 4A2 format, the values would be as
follows:

Variable Decimal Octal ASCII

Ml -910 6162 1 2
M2 -831 6301 3 A
M3 131 0203 B C
M4 -2016 4040 blanks

.
M8 -2016 . 4040 blanks

As a second example:

R E A D (1 2 2 0) A L P H A
2 0 F O R M A T (A 6 1

the user types :'

and a carriage return, and the octal value of ALPHA is:

--

NOTE
The numeric value of alphanumeric
characters stored in floating point
variables is generally not meaningful.

Hollerith Conversion

Alphanumeric data may be transmitted directly from the FOR-
MAT statement by using Hollerith (H) conversion. H-conversion
format is normally referenced by WRITE statements only.

' In H-conversion, the alphanumeric string is specified by the form

&h, , ha, . . . 7 h,,

where H is the control character and n is the number of characters
in the string, including blanks. For example, the statement below
can be used to print PROGRAM COMPLETE on the output list--
ing .

FORMAT (1 7 H PROGRAM COMPLETE)

A Hollerith string may consist of any characters capable of
representation in the processor. The space character is a valid and
significant character in a Hollerith string.

An attempt to use H format specifications with a READ state-
ment will cause characters from the format field to be either printed
or punched. This can be a useful feature since it provides a simple
way of identifying data that is to be read from the Teletype key-
board. For example, the following instructions :

READ (1>30)A,B
3 0 FORMAT (4HA = , F 7 - 2 / 4 H B = ; F7 .S 1

cause A = and B = to be printed out before the data is read.
By merely enclosing the alphanumeric data in single quotes, the

same result is achieved as in H-conversion; on input, the characters
between the single quotes are typed as output characters, and on
output, the characters between the single quotes (including blanks)
are written as part of the output data. For example, when referred
to from a WRITE statement:

5 0 FORMAT (' PROGRAM COMPLETE' 1

7-26

causes PROGRAM COMPLETE to be printed. This method
eliminates the need to count characters.

Blank or Skip Fields

Blanks can be introduced into an output record or characters .

skipped on an input record by use of the nX specification. The. ..
number n indicates the number of blanks or characters skipped and
must be greater than zero. For example:

can be used to output the line:

STEP 28 Y = 3.872

Mixed Fields

A Hollerith format field may be placed among other fields of
the format. The statement:

can be used to output the line:

The separating comma may be omitted after a Hollerith format
field, as shown above.

Repetition of Fields
Repetition of a field specification may be specified by preceding

the control character E, F, or I by an unsigned integer giving the
number of repetitions desired.

F O R M A T (2 E 1 2 . 4 - > 3 1 5)

is equivalent to:

Repetition of Groups

A group of field specifications may be repeated by enclosing the
group in parentheses and preceding the whole with the repetition
number.

,, For example:

is equivalent to :

Multiple Record Formats

To handle a group of output records where different records
have different field specifications, a slash is used to indicate a new
record. For example, the statement:

is equivalent to:

for the first record and

for the second record.

The separating comma may be omitted when a slash is used.
When n slashes appear at the end or beginning of a format, n blank
records may be written on output (producing a CR/LF for each
record) or ignored on input. When n slashes appear in the middle
of a format, n-1 blank records are written or n-1 records skipped.
Both the slash and the closing parenthesis at the end of the format
indicate the termination of a record. If the list of an 1/0 state-
ment dictates that transmission of data is to continue after the
closing parenthesis of the format is reached, the format is repeated

from the last open parenthesis of level one or zero. Thus, the
statement:

causes the format:

F 7 * 2 , 2 (E 1 5 . 5 , E 1 5 * 4) ~ I 7

to be used on the first record, and the format:

to be used on succeeding records.

As a further example, consider the statement:

The first record has the format:

and successive records have the format:

Control Statements

The control statements GO TO, IF, DO, 'PAUSE, STOP, and
END alter the sequence of statement execution, temporarily or
permanently halt program execution, and stop compilation.

GO TO STATEMENT
The GO TO statement has two forms: unconditional and com-

puted.

Unconditional GO TO

Unconditional GO TO statements are of the form:

where n is the number of an executable statement. Control is trans-
ferred to the statement numbered n.

Computed GO TO
Computed GO TO statements have the form:

where ni, n2; . . . , n;; are statement numbers and J is a nonsub-
scripted integer variable. This statement transfers control to the
statement numbered nl, na . . . , nk if J has the value 1, 2, . . . , k,
respectively. The index (J in the above example) of a computed
GO TO statement must never be zero or greater than the number
of statement numbers in the list (in the example above, not greater
than k) . For example, in the statement:

the variable K acts as a switch, causing a transfer to statement 20
if K = 1, to statement 10 if K = 2, or to statement 5 if K = 3.

IF STATEMENT
Numerical IF statements are of the form:

IF (expression) nl, 112, na

where ni, n2, ng are statement numbers. This statement transfers
ccfitrd to the st3temmt auabered z1, z2, z:~ if the Y Z P ~ C sf the
numeric expression is less than, equal to, or greater than zero,
respectively. The expression may be a simple variable or any
arithmetic expression.

DO STATEMENT

The DO statement simplifies the coding of iterative procedures.
DO statements are of the form:

where n is a statement number, i is a scalar integer variable, and
mi, mi, m3 are integer constants or nonsubscripted integer vari-
ables. If m3 is not specified, it is understood to be 1.

The DO statement causes the statements which follow, up to
and including the statement numbered n, to be executed repeatedly.
This group of statements is called the range of the DO statement.
In the example above, the integer variable i is called the index, the
values of mi, ma, m3 are, respectively, the initial, terminal, and in-
crement values of the index.

For "example :

The index is incremented and tested before the range of the DO is
executed. After the last execution of the range, control passes to
the statement immediately following the terminal statement in what
is called a normal exit. An exit may also occur by a transfer out
of the range taking place before the loop has been executed the
total number of times specified in the DO statement.

DO loops may be nested, or contained within one another, pro-
vided the range of each contained loop is entirely within the range
of the containing DO statement. Nested DO loops may contain the
same terminal statement, however. A transfer into a DO loop from
outside the range is not allowed.

Within the range of a DO statement, the index is available for
use as an ordinary variable. After a transfer from within the range,
the index retains its current value and is available for use as a
~ a r i a b l e . ~ The values of the initial, terminal, and increment vari-
ables for the index and the index of the DO loop may not be
altered within the range of the Dostatement.

1

6 After a normal exit from a DO loop, the index of the DO statement has
the value of the index the final time through the loop plus whatever incre-
ment was assigned. For example :

after a normal exit the value of the index is 6. However, it is good program-
ming practice to avoid using the index as a variable following a normal exit
until it has been redefined, as according to ANSI FORTRAN Standards the
value is undefined.

The last statement of a DO loop must be executable, and must
not be an IF, GO TO or DO statement,

CONTINUE STATEMENT
This is a dummy statement, used primarily as a target for trans-

fers, particularly as the last statement in the range of a DO state-
ment. For example, in the sequence:

DO 7 K=INIT,LIMIT

. .
IF (X C K)) 2291397

. .
7 CONTINUE

4

a positive value of X(K) begins another execution of the range.
The CONTINUE provides a target address for the IF statement
and ends the range of the DO statement.

PAUSE, STOP, AND END STATEMENTS

The PAUSE and STOP statements affect FORTRAN object pro- .
gram operation; the END statement affects assembler operation
only.
Pause Statement

The PAUSE statement enables the program to incorporate oper-
ator activity into the sequence of automatic events. The PAUSE
statement assumes one of two forms:

PAUSE
or PAUSE n .

where n is an unsigned decimal number.
Execution of the PAUSE statement causes the octal equivalent

of the decimal number n to be displayed in the accumulator on the
user's console. Program execution may be resumed (at the next
executable statement) by depressing the CONTinue key on the
console.

In some cases the PAUSE statement may be used to give the
operator a chance to change data tapes or to remove a tape from
the punch. When this is done it is necessary to follow the PAUSE

statement with a call to the OPEN subroutine. This subroutine
initializes the 1/0 devices and sets hardware flags that may have
been cleared by pressing the tape feed button. For example:

PAUSE.
C A L L OPEN

NOTE
The CALL OPEN statement in OS/8 F.OR-
TRAN also resets all 1/0 on unit 4, the as-
signable channel. Any further READS or
WRITES on unit 4 without an intervening
IOPEN or OOPEN will print an error mes-
sage and abort.

Stop Statement

The STOP statement has the form:

STOP

It terminates program execution. STOP may occur several times
within a single program to indicate alternate points at which ex-
ecution may cease. Program control is either directed to a STOP
statement or transferred around it.

End Statement

The END statement is of the form:

and signals the compiler to terminate compilation. The END state-
ment must be the last statement of every program. (In OS/8
FORTRAN, the END statement generates a STOP statement as
well.)

Specification Statements
Specification statements allocate storage and furnish information

about variables and constants to the compiler. The specification
statements are COMMON, DIMENSION, and EQUIVALENCE
and, when used, must appear in the program prior to any execut-
able statement.

COMMON STATEMENT
The COMMON statement causes specified variables or arrays to

be stored in an area available to other programs. By means of
COMMON statements, the data of a main program and/or the
data of its subprograms may share a common storage area. Vari-
bles in COMMON statements are assigned to locations in ascend-
ing order in field 1 beginning at location 200 storage allocation.
The COMMON statement has the genera! form:

1 7 COMMON v,, v.,, . . . , v , ,

where v is a variable name. See the section entitled Common Stor-
age Allocation for greater detail.

DIMENSION STATEMENT
The DIMENSION statement is used to declare array identifiers

and to specify the number and bounds of the array subscripts. The
information supplied in a DIMENSION statement is required for
the allocation of memory for arrays. Any number of arrays may be
declared in a single DIMENSION statement. The DIMENSION
statement has the form:

: DIMENSION SI, s?, . . . , sn

where s is an array specification. For example:

DIMENSION AC 100 5
DIMENSION Y (~ ~) J P O R T (~ ~) J B C ~ ~ J 101, JC32)

Dimension statements are used for the purpose of reserving
sufficient storage space for anticipated data; it is the user's respon-
sibility to see that his subscripting does not conflict with the
DIMENSION statement declarations. For example:

The above statements would assemble without error; at run time
I (8) would be set equal to 2 and K(2) would be set equal to 3.

NOTE
When variables in common storage are
dimensioned, the COMMON statement must
appear before the DIMENSION statement.

EQUIVALENCE STATEMENT

The EQUIVALENCE statement causes more-than one variable
within a given program to share the same storage location. This is
useful when the programmer desires to conserve storage space. The
form of the statement is:

EQUIVALENCE (v*, vz . . .) , . . .

where v represents a variable name. The inclusion of two or more
variables within the parenthetical list indicates that these variables
are to share the same memory location and thus have the same
value. For example:

The variables RED and BLUE are now of equal value. The sub-
scripts of array variables must be integer constants. - For example:

Because of core memory restrictions within the compiler, vari-
ables cannot appear in EQUIVALENCE statements more than
once.

is valid, but the statement:

would not compile correctly.

Variables may not appear in both EQUIVALENCE and COM-
MON statements.

Subprogram Statements
External subprograms are defined separately from the programs

that call them, and are complete programs which conform to all
the rules of FORTRAN programs. They are compiled as closed
subroutines; that is, they appear only once in core memory regard-
less of the number or times they are used. External subprograms
are defined by means of the statements FUNCTION and SUB-
ROUTINE. Functions and subroutines must be compiled indepen-
dently-of the main program and then 10,aded together with the main
program by the Linking Loader.

NOTE
Care should be exercised when naming a
subprogram or subroutine. It must not have
the same name as any of the FORTRAN
library functions or subroutines, or assembler
mnemonics or pseudo-ops, as errors are likely
to result. The Library Functions are listed in
this chapter, and the symbol table for the
SABR Assembler is listed in Appendix C.

Subprogram definition statements may optionally contain dummy
arguments representing the arguments of the subprogram. They
are used as ordinary identifiers within the subprogram and are
replaced by the actual arguments when the subprogram is executed.

FUNCTION SUBPROGRAMS

A function subprogram is a subprogram which is called from
an arithmetic expression within the main program and returns a
single numeric value. A function subprogram begins with a FUNC-
TION statement and ends with an END statement. It returns con-
trol to the calling program by means of one or more RETURN
statements. The FUNCTION statement has the form:

where FUNCTION (or FUNC) declares that the program which
follows is a function subprogram, and identifier is the name of the
function being defined. The identifier must appear as a scalar vari-
able and be assigned a value during execution of the subprogram.
This value is the function's value.

Arguments appearing in the list enclosed in parentheses are
dummy arguments representing the function arguments. A function
must have at least one dummy argument. The arguments must
agree in number, order and type with the actual arguments used in
the calling program. Function subprograms may be called with ex-
pressions and array names as arguments. The corresponding dummy
arguments in the FUNCTION statement would then be scalar and
array identifiers, respectively. Those representing array names must
appear within the subprogram in a DIMENSION statement. Di-
mensions must be indicated as constants and should be smaller

than or equal to the dimensions of the corresponding arrays in the
calling program. Dummy arguments to FUNCTION cannot appear
in COMMON or EQUIVALENCE statements within the func-
tion subprogram.

A function should not modify any arguments which appear .in
the FORTRAN arithmetic expression calling the function. The
only FORTRAN statements not allowed in a function subprogram
are SUBROUTINE and other FUNCTION statements.

The type of function is determined by the first letter of the identi-
fier used to name the function, in the same way as variable names.

The following short example calculates the gross salary of an
individual on the basis of the number of hours he has worked
(TIME) and his hourly wage (RATE). The function calculates
time and a half for overtime beyond 40 hours. The function name
is SUM.

FUNCTION SUM(TIMEJRATE)
IF (TIME-40.).10~10~20

10 SUM = TIME * RATE
RETURN

20 SUM = (40.*RATE) + (TIME-~~'~)*~.~*RATE
RETURN
END

Depending upon which path the program takes, control will re-
turn to the main program at one of the two RETURN statements
with the answer. Assume that the main program is set up with a
statement to read the employee's weekly record from a list of
information prepared, on the high-speed reader :

REAll(2~5) NAME, NUM, NDEPJ TIME, RATE

This statement reads the person's name, number, department num-
ber, time worked, and hourly wage. The main program then cal-
culates his gross pay with a statement such as the following:

GROSS = SUM(TIME,RATE)

and goes on to calculate withholdings, etc.

SUBROUTINE SUBPROGRAMS
A subroutine subprogram is a subprogram which is called by

the main program via a CALL statement, and may return several

or no values. The subprogram begins with a SUBROUTINE state-
ment and returns control to the calling program by means of one
or more RETURN statements. The SUBROUTINE statement has
the form:

SUBROUTINE identifier (a,, a. . . . a,,)

where SUBROUTINE declares the program which follows to be a
subroutine subprogram and the identifier is the subroutine name.
The arguments in the list enclosed in parentheses are dummy argu-
ments representing the arguments of the subprogram. The dLimmy
arguments must agree in number, order, and type with the actual
arguments, if any, used by the calling program.

Subroutine subprograms may have expressions and array names
as arguments. The dummy arguments may appear as scalar or array
identifiers. Dummy identifiers which represent array names must
be dimensioned within the subprogram by a DIMENSION state-
ment. The dummy arguments must not 'appear in an EQUIVA-
LENCE or COMMON statement in the subroutine subprogram.

A subrouthe subprogram may use one or more of its dummy
identifiers to represent results. The subprogram name is not used
for the return of results. A subroutine-subprogram need not have
any arguments, or may use the arguments to return numbers to the
calling program. Subroutines are generally used when the result of
a subprogram is not a single value.

Example SUBROUTINE statements are as follows:

S U B R O U T I NE FACT0 (COEFF, N , R O O T S l
S J B R O U T I NR R E S I D (NUM,N,I-)EN,Y,t?ES)
S U B R O U T I N E S E R I E

The only FORTRAN statements not allowed in a subroutine sub-
program are FUNCTION and other SUBROUTINE statements.

The following short subroutine takes two integer numbers from
the main program and exchanges their values. If this is to be done
at several points in the main program, it is a procedure best per-
formed by a subroutine.

SUBROUTINE ICHGE C I , J)
ITEM=I
I = J
J= ITEM
RETURN
EN D

The calling statement for this subroutine might look as follows:

CALL ICHGE (M-ÃˆN

where the values for the variables M and N are to be exchanged.

CALL Statement

The CALL statement assumes one of two forms:

CALL identifier
or CALL identifier (ai, aa . . . , an)

The CALL statement is used to transfer control to a subroutine
subprogram. The identifier is the subroutine name.

The arguments (indicated by ai, through an) may be expres-
sions or array identifiers. Arguments may be of any type, but must
agree in number, order, type, and array size with the corresponding
arguments in the SUBROUTINE statement of the called subroil-
tine. Unlike a function, a subroutine may produce more than one
value and cannot be referred to as a basic element in an expression.

A subroutine may use one or more of its arguments to return
results to the calling'program. If no arguments at all are required,
the first form is used. For example :

CALL E X I T
CALL TEST (VALUE, 1 2 3 , 2 7 5 1

The identifier used to name the subroutine is not assigned a
type and has no relation to the types of the arguments. Arguments
which are constants or formed as expressions must not be modified
by the subroutine.

RETURN Statement
The RETURN statement has the form :

RETURN

This statement returns control from a subprogram to the calling
program. Each subprogram must contain at least one RETURN
statement. Normally, the last statement executed in a subprogram
is a RETURN statement; however, any number of RETURN state-
ments may appear in a subprogram. The RETURN statement may
not be used in a main program.

FUNCTION CALLS
Function calls are provided to facilitate the evaluation of func-

tions such as sine, cosine, and square root. A function is a sub-
program which acts upon one or more quantities (arguments) to
produce a single quantity called the function value. A function call
may be used in place of a variable name in any arithmetic ex-
pression.

Function calls are denoted by the identifier which names the
function (i.e., SIN, COS, etc.) followed by an argument enclosed
in parentheses as shown below:

IDENT (ARG, ARG, . . . , ARG)

where IDENT is the identifying function name and ARG is an
argument which may be any expression. A function call is eval-
uated before the expression in which it is contained.

FUNCTION LIBRARY
The standard FORTRAN library contains built-in functions, in-

cluding user-defined functions and subroutine subprograms.
Table 7-4 lists the built-in functions. These are open subrou-

tines: they are incorporated into the compiled program each time
the source program names them.

Function and subroutine subprograms are closed routines; their
coding appears only once in the compiled program. These routines
are entered from various points in a program through jump-type
linkages.

NOTE
A FORTRAN compiler and its correspond-
ing Library constitute an interlocking set of
programs. No user should attempt to compile
a program under OS/8 and load it with the
paper tape FORTRAN, or vice versa. Sim-
ilarly, programs developed with the current
FORTRAN compiler should not be run un-
der an old FORTRAN system.

Table 7-4 FORTRAN Function Library

Type
Function Definition of Argument (s)

ABS(x)
IABS(x)
FLOAT(x)

IFIX (x)

IREM (0)

IREM (x/ y)

EXP (x)
ALOG (x)
SIN (x)

COS (x)

TAN (x)

ATAN (x)

SQRT(x)

IRDSW (0)

the absolute value of x real
the absolute value of x integer
convert x from integer to real integer
format
convert x from real to integer real
format
remainder of last integer divide integer
is returned
remainder of x/y is returned integer

exponential of x, ex real
natural logarithm of x, logex real
sine of x, where x is given in real
radians
cosine of x, where x is given in real
radians
tangent of x, where x is given in real
radians
arc tangent of x, where x is given real
in radians

square root of x is returned real

read the console switch register, integer
returning a decimal equivalent
of the octal integer in the switch
register. The switch register can

b e set before executing the
FORTRAN program or, using
the PAUSE statement, during
execution.

FLOATING POINT ARITHMETIC
In general, floating point arithmetic calculations are accurate to

seven digits with the eighth digit being questionable. Subsequent
digits are not significant even though several may be typed to satisfy
a field width requirement. With the exception of the arctangent
function, which is accurate to seven places over the entire range,
results of function operations are accurate to six decimal places.

TI. -
1 1 1 ~ floating point arithmetic routines check for both overflow

and underflow. Overflow will cause the O W L error message
to be printed and program execution will be terminated. Under-
flow is detected but will not cause an error message. The arithme-
tic operation involved will yield a zero result.

DEVICE INDEPENDENT 1 / 0 AND CHAINING
OS/ 8 FORTRAN provides for device independent, file-oriented,

formatted 1/0 through use of the device number 4 in the READ
andg WRITE statements and several utility subroutines. These are
described below.

The IOPEN Subroutine
The subroutine IOPEN prepares the system to accept input

from a specified device when device code 4 is used in a READ
statement. IOPEN takes two arguments which are interpreted as
Hollerith strings. After a

CALL IOPEN(A,B)

any READ statement reading from device 4 will read from the file
specified by B (which must have the extension .DA) on the device
specified by A. For example:

CALL IOPENC'DTA~'J'INPUT*)

will prepare for input from the file DTA5:INPUT.DA

CALL IOPENC'Fl',B)

7-42

will prepare for input from the device Fl, which, in this case, is a
non-file-structured device.

If the file and device names are input via READ statements
which use A format in their FORMAT statements, then A6 format
must be used. @ signs rather than spaces should-be used to fill in
empty characters. For example, the following statements are con-
tained in a program:

WRITE (1 , 2 0 1
20 FORMAT C E N T E R F I L E NAME')

READ C ~ . Ã ˆ ~ ~) F N A M
22 FORMAT (A 6

CALL IOPENC *DSK', FNAME)
Â

Â

The Teletype prints:

ENTER F I L E NAME

and the user responds:

The OOPEN Subroutine
The subroutine OOPEN prepares the system to send output to

a specified device when device code 4 is used in a WRITE state-
ment. The arguments of OOPEN are treated like those of IOPEN.
Future WRITE statements using device 4 write on the device and
file specified in the call to OOPEN. An error message is printed
if the program has previously issued a CALL OOPEN without
issuing a subsequent CALL OCLOSE. For example:

C A L L OOPENC ' PTP ' , a)

prepares device 4 to output on device PTP.

C A L L OOPENC 'SYS ', ' L A D E '

prepares device 4 to output to the file SYS:LADE.DA.

7-43

The OCLOSE Subroutine
The subroutine OCLOSE is called with no arguments. Its func-

tion is to terminate output on the output file opened by OOPEN.
If OCLOSE is not called after a file has been written, that output
file will never exist on the specified device.

The CHAIN Subroutine
A call to the subroutine CHAIN terminates execution of the call-

.-- Lig, -- p~ograin and starts execution of the core image on the system

device as specified by the argument to CHAIN. Variables in com-
mon storage are not disturbed. For example:

C A L L CHAINC'PROGS')

causes the file SYS:PROG2.SV to be loaded and started. Notice
that PROG2 must be compiled and stored on the system device as
a core image (.SV) file in order to be successfully accessed.

The EXIT Subroutine
To return to the Keyboard Monitor from a FORTRAN program,

the EXIT subroutine is used, as follows:

CALL E X I T

DECTAPE 1 / 0 ROUTINES
RTAPE and WTAPE (read tape and write tape) are the DEC-

tape read and write subprograms for the 8K FORTRAN and 8K
SABR systems. For the paper tape FORTRAN system, these sub-
programs are furnished on one relocatable binary-coded paper tape
which must be loaded into field 0 by the 8K Linking Loader, where
they occupy one page of core.

RTAPE and WTAPE allow the user to read and write any
amount of core-image data onto DECtape in absolute, non-file-
structured data blocks. Many such data blocks may be stored on
a single tape, and a block may be from 1 to 4096 words in length.

RTAPE and WTAPE are subprograms which may be called with
standard, explicit CALL statements in any 8K FORTRAN or

SABR program. Each subprogram requires four arguments sep-
arated by commas. The arguments are the same for both subpro-
grams and are formatted in the same manner. They specify the
following:

1. DECtape unit number (from 0 to 7)
2. Number of the DECtape block at which transfer is to start.
' The user may direct the DECtape service routine to begin

searching for the specified block in the forward direction

rather than the usual backward direction by making this
argument the two's complement of the block number. For
additional information on this and other features the reader
is referred to the DECtape Programmer's Reference Man-
ual (DEC-08-SUCO-D) .

3. Number of words to be transferred (l<N<4096).
4. Core address at which the transfer is to start.

The general form is:

CALL RTAPE (n, , 112, ng, 114)

where ni is the DECtape unit number, n2 is the block number, ns
is the number of words .to be transferred, and n4 is the starting
address.

In 8K FORTRAN, an example CALL statement to RTAPE
could be written in the following format (arguments are taken as
decimal numbers) :

CALL R T A P E (6 > 1 2 8 ; ~ 3 8 8 > L o c A)

In this example, LOCA may or may not be in common.

As a typical example of the use of RTAPE and WTAPE, assume
that the user wants to store the four arrays A, B, C, and D on a
tape with word lengths of 2000, 400, 400, and 20 respectively.

Since PDP-8 DECtape is formatted with 1474 blocks (numbered
0-2701 octal) of 129 words each (for a total of 190,146 words) 7,
A, B, C, and D will require 16, 4, 4, and 1 blocks respectively.

DIMENSION IDIRC258)
CALL RTAPE(5,2,258, IDIR)

Each array must be stored beginning at the start of some DECtape
block. The user may write these arrays on tape as follows:

CALL WTAPE(0,1,2000>A)
CALL WTAPE(0,17,400=B)
CALL WTAPEC0,21,400,C)
CALL WTAPE(0->25,20,D)

The user may also read or write a large array in sections by
specifying only one DECtape block (129 words) at a time. For
example, B could be read back into core as follows:

As shown above, it is possible to read or write less than 129
words starting at the beginning of a DECtape block. It is impos-
sible, however, to read or write starting in the middle of a block.
For example, the last 10 words of a DECtape block may not be
read without reading the first 119 words as well.

7 The block numbers used by RTAPE and WTAPE should not be confused
with the record numbers used by OS/8. An OS/8 record is 256 words-
roughly twice the size of a DECtape block. An RTAPE or WTAPE record
number is exactly twice the corresponding OS/8 record number. For ex-
ample, to read the first segment of the OS/8 directory on DECtape #5,
the statements:

A DECtape read or write is normally initiated with a backward
search for the desired block number. To save searching time, the
user may request RTAPE or WTAPE to start the block number
search in the forward direction. This is done by specifying the neg-
ative of the block number. This should be used only if the number
of the next block to be referenced is at least ten block numbers
greater than the last block number used. For example, if the user
has just read array A and now wants array D, he may write:

The following section of a program demonstrates the use of
D E C ~ ; ~ ~ I/O. Assume that values are already present on the
DECtape.

DIMENS ION DATA(500

. .
NB=0
SUM=0
DO 100 N=1,10
CALL RTAPEC1,-NB,1500,DATA)
TEM=0
DO 50 K=1,500
TEM=TEM+DATA CK)
SUM=SUK+TEM
NB=NB+24
AMEAN=SL'M/5000
WRITE (1,410) SUM, AMEAN
CALL EXIT
FORMAT (' S U M = ' J E ~ ~ * ~ ' MEAN=',El5.7///5
END

-
FORTRAN LIBRARY SUBROUTINES

Table 7-5 contains a summary of the OS/8 FORTRAN library
subroutines. This list describes the routines available under OS/8
FORTRAN, their functions, and other routines which must also

be present in order for them to be used. The Subroutine Names
listed are the files which comprise OS/8 Source DECtape # 3
(available from the Software Distribution Center upon request).

Table 7-5 FORTRAN I1 Library Subroutines

Entry
Points, Routines Core

or Defined That are Require- Function the
Subroutine External Pre- ments Routine

Name Symbols requisites (Pages) Performs

IOH 'READ' FLOAT 11 Handles Input
'WRITE' UTILTY and Output
'IOH' INTEGR Conversion

FLOAT 'FAD' UTILTY 5 Floating
'FSB7 Point Arith-
'FMP' metic Package
'FDV'
'STO'
'PLOT'
'FLOAT7
'FIX'
'IFIX'
'IFAD'
'ISTO'
'ABS'
'CHS7

UTILTY 'OPEN' INTEGR 3
'GENIU'
'EXIT7
'ERROR7
' ~ ~ 1 0 7

POWERS 'IFPOW' FLOAT 3
'FFPOW UTILTY
'EXP' IPOWRS
'ALOG' INTEGR

FORTRAN De-
vice Routines,
Error Exit,
Normal Exit

Handles Num-
bers to
Floating
Powers

Table 7-5 FORTRAN I1 Library Subroutines (Cont.)

Entry
Points, Routines Core

or Defined That are Require- Function the
Subroutine External Pre- ments Routine

Name Symbols requisites (Pages) Performs

INTEGR 'IREM' UTILTY
'IABS'
'DIV'
'MPY'
'IRDSW'
'CLEAR'
'SUBSC'

TRIG 'SIN' FLOAT
'COS'

. 'TAN'

ATAN 'ATAN' FLOAT

SORT 'SORT' FLOAT
UTILTY

IPOWRS 'IIPOW' FLOAT
'FIPOW' INTEGR

IOPEN 'IOPEN' UTILTY
'OOPEN'
'OCLOS'
'CHAIN'

RWTAFE 'RTAPE' UTILTY
'WTAPE'

Integer Math
Package

Handles Sine,
Cosine, and
Tangent

Handles Arc-
tangents

Handles Square
Roots

Handles Num-
bers to Integer
Powers -

- OS/8 Device-
Independent
I/O, and
Chaining
Routines

OS/ Indepen-
dent DECtape
1/0 Routines

MIXING SABR AND FORTRAN STATEMENTS
An S in column 1 of an input line identifies that line as contain-

ing SABR code. This feature is very useful for performing in-
structions which are undefined in the FORTRAN language. For
example :

DIMENSION MC10

J=M(1 3

DO 5 5 K = 2 , 1 0
L=M(K)

S TAD \ L
S AND \ J
S DCA \ J
5 5 C O N T I N U E

This section of code will form the logical AND of M(1) through
M(10) in the variable J.

Notice that whenever a FORTRAN variable is used in a SABR
statement, the variable name is preceded by a backslash (\).
FORTRAN line numbers referenced in SABR statements are also
preceded by a backslash for identification purposes. (A backslash
is produced by typing a SHIFT/L.)

Information on calling subroutines which are written in SABR
assembly language from a FORTRAN program may be found in
the SABR chapter .

SIZE OF A FORTRAN PROGRAM
The maximum size of any FORTRAN program is 36 octal or

30 decimal pages of code.
OS/8 can run FORTRAN programs in 8 to 32K of core. No

one program or subprogram can be longer than 4K, however.
The user can estimate the size of his program as follows: Take

the amount of core available on the system (at least 8K) and from
i t subtract 4K for the linkage subroutines; external symbol table,
and I/O, math, error, and utility subroutines. From the remainder
subtract the amount of storage required for data. The remaining
space can be used to hold FORTRAN coding, at the rate of 50-70
FORTRAN statements per 1K of core.

One way to have a longer FORTRAN program in core than is
usually possible is to divide a FORTRAN program into three
chained segments : -

Segment I-inputs data into common storage
Segment 2-FORTRAN program for data processing
Segment 3Ã‘doe output to desired device(s)

This gives two space advantages:

The entire program does not have to fit into available core,.
only the largest segment.
If no 1/0 statements are used in the middle (computational)
segment, the 1/0 conversion routines will not be loaded with
that segment. Since these routines occupy over 11 0OIo words,
this technique allows the computational segment to be from
50 to 80 statements longer than a- similar program contain-
ing 1/0 statements.

When chaining to a subroutine, the user must be sure he has com-
piled, loaded, and saved a complete runnable main program on the
system device. This program is brought into core by the FORTRAN
CHAIN subroutine.

FORTRAN STATEMENT SUMMARY
A summary of the statements available under OS/8 FORTRAN

follows.

Table 7-6 FORTRAN Language Summary

Statement - Definition

Arithmetic Statements

Control Statements

v is a variable (scalar or array) ;
e is an expression.

f

Transfer control to the statement
numbered n.

Table 7-6 FORTRAN Language Summary (Cont.)

Statement Definition

CONTINUE

PAUSE
PAUSE n

STOP
END

Input/Output Statements

FORMAT (sl,s2,..;,sn)

Where ni-ni are statement num-
bers and j is a scalar integer vari-
able. This statement transfers
control to the jth member of the
series of ni.
This statement transfers control
to the statement numbered ni,n2,
or nq if the value of the numeric
expression is less than, equal to,
or greater than. zero, respectively.
The expression can be simple or
complex.
Repeat execution through state-
ment n, beginning with i=ml, in-
crementing by mg, while i is less
than or equal to m2. If m3 is
omitted, it is assumed to be 1.
m's and i's cannot be sub-
scripted. m's can be either in-
teger numbers or integer vari-
ables; i is an integer variable.
Dummy statement, used primar-
ily as a target for transfers, par-
ticularly the last statement in the
range of a DO loop. A DO loop
need not end with a CONTINUE
statement.
Temporarily suspend execution.
The octal equivalent of the deci-
mal number n is displayed in the
accumulator. Program execution
can be resumed by following the
statement with a call to the
OPEN subroutine.
Terminate execution.
Terminate compilation; must be
the last statement in a program.

Where Sl-Sn are data field spe-
cifications, this statement is used
with either a READ or WRITE
statement.

7-52

Table 7-6 FORTRAN Language Summary (Conk)

Statement Definition

READ (u,f) list

WRITE (u,f) list

Specification Statements

COMMON v1, v2, ..., vn

DIMENSION a1,a2,. . .,an

EQUIVALENCE (vi,v2,. ..,) ,
(vi,vi+~,.-.)

Where u is a device designation
(integer constant or integer vari-
able), f is a FORMAT state-
ment number, and list is a list of
variables.

Where u is a device designation
(integer constant or integer vari-
able), f is a format statement
number, and list is a list of vari-
ables.

Specified variables or arrays are
stored in an area available to
other programs.

Used to declare variable names
to be array names and specify
the number and bounds of each
one and two dimensional array.

The inclusion of two or more
variable or array names in a
parenthetical list indicates that
the quantities in the list are to
share the same memory location
and hence have the same value.
Subscripts of array variables .
must be integer constants. Names
must not appear in both EQUIV-
ALENCE and COMMON state-
ments.

Sub program Statements

FUNCTION v(al,a2, ..., an) Declares the program which fol-
lows to be a function subpro-
gram. v is the name of the func-
tion being defined. v must appear
as a scalar variable and be as-
signed a value during execution
of the subprogram.

Table 7- 6 FORTRAN Language Summary (Cont.)
-- -

Statement Definition

SUBROUTINE v(ai,ao, ..., an) Declares the program which fol-
lows to be a subroutine subpro-

CALL v
CALL v (ai,a2 i . . . , an)

RETURN

gram. The arguments in the
list (s) are dummy arguments
representing the arguments of the
subprogram. Dummy arguments
must agree in number, order,
and type with the arguments
used by the calling program.

Statement used to transfer con-
trol to a subroutine subprogram.
v is the subroutine name in the
SUBROUTINE statement. The
arguments can be of any type,
but must agree in number,
order, type and array size with
the arguments in the SUBROU-
TINE statement. One or more of
the arguments can be used to re-
turn results to the calling pro-
gram. For example:

CALL E X I T

CALL TECK ('MAS', 3)

Returns control from a subpro-
gram to the calling program.
Each subprogram must contain
at least one RETURN state-
ment. RETURN cannot be used
in the main program.

FORTRAN ERROR MESSAGES

Compiler Error Messages

The following OS/8 FORTRAN Compiler error messages are
self-explanatory.

7-54

ARITHMETIC EXPRESSION TOO COMPLEX
EXCESSIVE SUBSCRIPTS
ILLEGAL ARITHMETIC EXPRESSION
ILLEGAL CONSTANT
ILLEGAL CONTINUATION
ILLEGAL EQUIVALENCING
ILLEGAL OR EXCESSIVE DO NESTING
ILLEGAL STATEMENT
ILLEGAL STATEMENT NUMBER
ILLEGAL VARIABLE
MIXED MODE EXPRESSION -
SYMBOL TABLE EXCEEDED
SYNTAX ERROR (usually indicates illegal

punctuation)
SUBR. OR FUNCT. STMT. NOT FIRST

In addition, OS/8 FORTRAN contains the following error
messages :

Message ~ x ~ l a n & i o n

COMPILER The meaning of this message has been
MALFUNCTION extended to cover various unlikely Mon-

itor errors.
6

A device handler has signalled an I/O
error.

NO END STATEMENT The input to the Compiler has been ex-
hausted.

NO ROOM FOR The file FORTRN.TM cannot fit on the
OUTPUT system device.

SABR.SV NOT FOUND The SABR assembler is not present on
the%stem device.

Library Error Messages
During execution, the various library programs check for certain

errors and print error messages in the form:

. . XXXX ERROR AT LOC NNNNN

where XXXX is the error code and NNNNN is the location of
the error.

Table 7-7 FORTRAN Library Error Messages

Error Code Meaning

The following errors are fatal and cause a return to the Keyboard
Monitor.

ALOG Attempt to compute log of negative number.

IOER One of the following has occurred:

I. Device-izdepe~de~t innlit --r - er outp? at-
tempted without / I or /O options, or user
attempted to specify a device requiring a
two-page handler for device-independent
1/0 without using the /H option.

2. Bad arguments to IOPEN or OOHPEN: or
3. Transmission error while doing I / 0.

CHER File specified as argument to CHAIN not found
~n~sys tem device.

FMT1 Invalid Format statement.

The following input errors are fatal unless input is coming from
the Teletype, in which case the entire READ statement is tried
again.

FMT2 Illegal character in I format.

FMT3 Illegal character in F or E format.

The following errors do not termniate execution of the user's
program.

DIVZ Division b y zero-very large number is re-
turned.

EXP Argument to EXP too large-very large num-
ber is returned.

OVFL Floating point overflow-very large number is
returned.

FLPW Negative number raised to floating point
power-absolute value taken.

SQRT Attempt to take square root of negative number
-absolute value used.

FIX Attempt to fix a number >2047; 2047 is re-
turned.

In addition, the error message :

USER ERROR 1 AT XXXX
\

means that the user tried to reference an entry point of a program
which was not loaded, or possibly that he failed to define a sub-
scripted variable in a DIMENSION statement. XXXX has no
meaning.

To pinpoint the location of a library program execution error:

1. Determine, from the storage map, the next lowest numbered
location (external symbol) which is the entry point of the
program or subprogram containing the error.

2. Subtract, in octal, the entry point location of the program
, or subprogram containing the error from the location of the
error indicated in the error message.

3. From the assembly symbol table, determine the relative
address of the external symbol found in step 1 and add that
relative address to the result of step 2.

4. The sum of step 3 is the relative address of the error, which
can then be compared with the relative addresses of the
numbered statements in the program.

Undefined statement numbers are not detected until the assembly
phase, at which time a U error message is given. (Refer to the list
of SABR error messages.) ,

Fortran iv

FORTRAN IV SYSTEM OVERVIEW
OS/8 FORTRAN IV provides full standard ANSI FORTRAN

IV under the OS/8 operating system. The FORTRAN IV package .

requires a minimum hardware environment consisting of a PDP-8.
family processor with at least 8K of mainframe memory, a console
terminal, and at least 96K of mass storage. The system is auto-
matically self-expanding to employ a KE8-E Extended Arithmetic
Element, FPP-12 Floating Point Processor, up to 32K of main- *

frame memory, and any bulk storage or peripheral 1/0 devices
that may be present in the system.

Although such factors as maximum program size and minimum
execution time depend heavily on the hardware configuration on
which any program is run, OS/8 FORTRAN IV affords the full
capability of the FORTRAN IV language, even on a minimum
configuration, subject only to the restriction that double precision
and complex number operations require an FPP-12 with extended
precision option. The system is highly optimized with respect to
memory requirements, and an overlay feature is included that can
permit programs requiring up to 300K of virtual storage to run on a
PDP-8 or PDP-12. The library functions permit the user to access
a number of laboratory peripherals, to evaluate a number of
transcendental functions, to manipulate alphanumeric strings, and
to output to a standard incremental plotter.

A FORTRAN IV program written by the user is called a source
program, to distinguish it from the various object programs
generated by the OS/8 FORTRAN IV system. Source programs*
may be prepared off line on punched cards or low-speed paper
tape; however, it is usually most convenient to prepare source
programs on line by means of an editing program such as TECO or
EDIT. (See Figure 8-1.) The source file produced in this manner
is an image of the corresponding punched-card file, with carriage

return and line feed characters separating adjacent statements (that
would otherwise appear on adjacent punched cards) and ASCII
spaces or tabs entered in place of blank columns. Because of the
close analogy between punched card source files and other types
of source files, the terms "character" and "column" are used
interchangeably in this manual-.

EDITOR

Figure 8-1 Preparing a FORTRAN IV Source File

Once a source program has been prepared, it is supplied as input
to the FORTRAN IV compiler, which translates each FORTRAN
statement into one or more RALF (Relocatable Assembly
Language, Floating-point) statements and produces an output file
containing an assembly language version of the source program,
plus an optional annotated listing of the source. (See Figure 8-2.)

This is accomplished in three passes. System program F4.SV
begins compilation by building a symbol table and generating
intermediate code. F4 chains to PASS2.W automatically, and
PASS2 calls PASS20.SV to complete the translation into assembly
language during compilation pass 2. If a source listing was re-
quested, PASS20 chains to PASS3 .SV automatically, and PASS3
generates the listing during pass 3. Like PASS2, PASS20 and
PASS3 are never accessed directly by the user.

I

EDITOR PREPARATION
OF PROGRAM

-1 COMPILATION

Figure 8-2 Compiling a Source File

The RALF assembly language output produced by the compiler
must be assembled by system program RALF.SV, the RALF
assembler. (See Chapter 5 for a description of the RALF assem-
bler.) During assembly, each RALF assembly language statement
is translated into one or more instructions for either the PDP-8
processor or the FPP and an output file is created containing a

t.

relocatable binary version of the assembly language input. - This is
accomplished in two passes; a third pass is executed to generate an
annotated listing of the assembly language input file, if requested.

The relocatable binary file produced by the RALF assembler is
a machine language version of a single program or subroutine. This
file, called a RALF module, must be linked with its main program
(if it is a subroutine) and with any other subroutines, including
subroutines from the system library (e.g., FORLIB.RL) that it
requires in order to execute. System program LOAD.SVj the OS/8
FORTRAN IV loader, accepts a list of RALF module specifica-
tions from the console terminal and builds a loader image file
containing a relocated main program linked to relocated versions
of all subroutines and library components that the mainline re-
quires in order to execute. (See Figure 8-3.)

The loader image file is an executable core load, complete
except for run-time 1/0 specifications. It may be stored on any
mass storage (directory) device and executed whenever desired.
The loader also produces an optional symbol map that indicates
the core storage requirements of the linked and relocated program.
The overlay feature of the loader permits certain segments of a
program to be stored in the loader image file during execution and
read into core memory only as needed, which effectively provides
a tenfold increase in maximum program size.

The loader imzge file produced by the loader is read and
executed by system program FRTS.SV, the OS/8 FORTRAN IV
run-time system, which also configures an 1/0 supervisor to handle
any FORTRAN input or output in accordance with run-time 1/0
specifications. This makes the full I/O device independence of the
OS/8 operating system available to every FORTRAN IV program,
and permits FORTRAN programs to be written without concern
for, or even knowledge of, the hardware configuration on which
they will be executed. The run-time system assigns 1/0 device
handlers to the 1/0 unit numbers referenced by the FORTRAN
program, allocates 1/0 buffer space, and also diagnoses certain
types of errors that occur when the loader image file is read into
core. If no errors of this sort are encountered, the run-time system
starts the FORTRAN program and monitors execution to check
for run-time errors involving data I/O, numeric overflow, hard-
ware malfunctions, and the like. Run-time errors are identified at
the console terminal, and, when a run-time error occurs, the

system also provides complete error tiaceback to identify the full
sequence of FORTRAN statements that terminated in the error
condition.

Figure 8-3 Assembling, Loading, and Executing a RALF File

The compiler, assembler, loader, and run-time system each
accept standard OS/8 Command Decoder option specifications,
as do most OS/8 programs. The option specifications are alpha-
numeric characters which may be thought of as switches that, by
their presence or absence. enable or disable certain program

requested, intermediate output files produced by one system pro-
gram are deleted automatically after they have been read as input
by the next program in the chain sequence. This serves to optimize
storage requirements and minimize access time, particularly on
DECtape and LINCtape based systems.

The OS/8 FORTRAN IV system also includes FORLIB.RL, a
library of FORTRAN functions and subroutines, plus LIBRA,
the system librarian program. Almost every FORTRAN program
executes calls to library functions and subroutines which perform
such tasks as mathematical function evaluation, data 1/0 and
numeric conversion. When the loader recognizes that a program
or subroutine has called a library component, it copies a relocated
version of the referenced library routine into the loader image file
and links it to the calling routine. LIBRA is used to maintain the
library by inserting or deleting library functions or subroutines,
which are simply assembled FORTRAN files or specially coded
RALF modules. LIBRA may also be used to create alternate
libraries for use in place of the standard system library.

Because it affords full 1/0 device independence, highly op-
timized memory and bulk storage, program chaining, and a variety
of run-time options, OS/8 FORTRAN IV is necessarily some-
what complicated. In order to use the system most efficiently, it
is important to identify the four processes that must be performed,
in the proper sequence, to execute a FORTRAN source program:

Process Performed by

COMPILATION FORTRAN IV compiler (F4, PASS2,
PASS20 and PASS3).

ASSEMBLY RALF assembler (RALF).
RELOCATION FORTRAN loader (LOAD) using sys-

tem library.
EXECUTION FORTRAN run-time system (FRTS).

It is also important to identify the types of input that must be
supplied to each process listed above and the types of output that
will be produced. The OS/8 FORTRAN IV system accepts user-
generated FORTRAN source programs (supplied as input to the
compiler) and user-written RALF assembly language files (supplied
to the assembler) as input. It generates four types of output files:

RALF assembly language files generated by the compiler
and read as input by the assembler. Compiler output is
functionally equivalent to user-written RALF language
input.
Relocatable binary files generated by the assembler and
read as input by the loader.
Loader image files generated by the loader and read as
input by the run-time system. Once a program has been
written and debugged, it may be stored as a loader image
file and executed whenever required without the necessity
for further compilation, assembly, or relocation.
Optional listing files including the FORTRAN source
listing produced by the compiler, the RALF language listing
produced by the assembler, and a symbol map produced by
the loader.

addition, the FORTRAN program itself usually reads and
writes data files under the supervision of the run-time system;
FORTRAN I/O files are treated separately in the section on the
FORTRAN IV Run-Time System.

Every FORTRAN source program thus generates up to three
object files, aside from any 1/0 files that may be read or written
during execution, and up to three listing files. System-generated
files are most conveniently identified by assigning them the same
file name as the source.frorn which they were produced and a file
extension that identifies them by type. Table 8-1 lists the standard
file extensions used to identify various types of source and system-
generated files. The standard extensions are called default ex-
tensions because, when any output file name is specified with a null
extension, the appropriate standard extension is appended by
.default. Thus, specifying file "PROG" or "PROG." to the RALF
assembler, for example, causes the relocatable binary output from
the assembly to be written on file "SYS:PROG.RL9' where "SYS:"
is the default device when a file name is explicitly defined and
".RL" is the default extension for relocatable binary files. Specify-
ing a null file causes this output to be routed to file "DSK:
FORTRN.RTd" where "DSK:" is the OS/8 default device and
'FORTRN" is the default output file name. For clarity, all
examples in this chapter will use either null or default extensions,
although the user may explicitly specify any extension desired.

Table 8-1 Standard FORTRAN IV File Extensions ,

Extension File Type

FORTRAN language source file.
RALF assembly language file.
Relocatable binary (assembler output).
Loader image.
Listing or symbol map.
System temporary file. Created by certain multipass pro-
grams and normally deleted automatically after use.

This chapter assumes that the reader is familiar with the OS/8
operating system; however, all material has been presented in a
manner that requires minimal experience with OS/8. Every reader
should understand the use of the OS/8 Keyboard Monitor
(although only the monitor R command is referenced here) and
the OS/8 Command Decoder. In particular, notice that all Com-
mand Decoder . file/option specifications presented here are
illustrated in a standard format which may not be the most con-
venient format for an experienced user's particular application. In
addition, the Command Decoder provides file storage optimization
features which may be invaluable in many applications, but are
not covered in this chapter. DECtape and LINCtape users will
benefit from an understanding of the OS/8 file structure, so that
they may assign 1/0 files in a manner that minimizes access time
on tape-based systems.

The FORTRAN IV system of programs may be entered through
the CCL commands COMPILE, EXECUTE, and LOAD. These
commands are described in the CCL section of Chapter 1.

THE FORTRAN IV COMPILER
The OS/8 FORTRAN N. compiler accepts one FORTRAN

source language program or subroutine as input, examines each
FORTRAN statement for validity, and produces a list of error
diagnostics plus a RALF assembly language version of the source
program, along with an optional annotated source listing, as out-
put. A job containing one or more subroutines is run by compiling
and assembling the main program and each subroutine separately,
then combining them with the loader. F4 terminates a compilation
by chaining to the RALF assembler automatically unless it was

After accepting and decoding the file/option specification com-
mand, the compiler reads the input files in the order they were
entered, and compiles each FORTRAN source-statement until an
END statement is encountered. Any text following the first END.
statement is ignored. The compiler then writes a RALF assembly
language version of the source program onto the first output file,
or onto file SYS:FORTRN.RA if no first output file was specified.
It also copies an annotated source program listing onto the second
output file; however, this listing is not produced unless a second
output file was specifically defined. The third output file is not
used by the compiler; it receives a loader symbol map only when
chaining to the loader.

An internal 'statement number (ISN) is assigned to each
FORTRAN IV statement sequentially, in octal, beginning with
ISN 2 at the first FORTRAN statement. When an error is en-
countered during compilation, the compiler prints a 2-character
error code, followed by the ISN of the offending statement, on the
console terminal during pass 2. An extended error message is
printed below every erroneous statement in the listing, provided
that a listing is produced. Certain errors cause an immediate re-.
turn to the Keyboard Monitor, however, in which case the listing
file is never produced. Table 8-3 lists the FORTRAN compiler
error messages and describes the error condition indicated by each
mes.sage .

The compiler accepts four run-time option specifications, listed
in Table 8-2, any combination of which may be requested by

*

entering the appropriate alphabetic character(s) in the Command
Decoder file/option specification line. Any run-time options recog-
nized by the RALF assembler, the loader, or the run-time system
may be entered along with the compiler options; they will be
passed to the assembler automatically unless chaining is suppressed
(by an error condition or the A option) in which case they will be
ignored.

Table 8-2 FORTRAN IV Compiler Run-Time Options

Option Operation

Return to the Keyboard Monitor when compilation is com-
plete. If the A option is not requested, the compiler will
automatically chain to the RALF assembler.

Produce an annotated listing of the RALF assembly Ian-
guage output file. The listing is actually produced by the
assembler; thus, the F option is only valid when chaining to
RALF. The listing is routed to the same output file as the
FORTRAN source listing. It will overwrite the FORTRAN
listing if the second output file resides on a directory device.
It will not be produced if a second output file was not spe-
cifically defined.

Suppress compilation of ISNs. This reduces program mem-
ory requirements by two words per executable statement;
however it also prevents full error traceback at run time.

Optimize cross-statement subscripting during compilation.
This option should not be requested when any variable
which appears in a subscript is modified either by refer-
encing a variable equivalent to it or via a SUBROUTINE or
FUNCTION call (whether as an argument or through COM-
MON).

Examples
Compile, assemble, load, and execute a FORTRAN IV source

program:

.R F4 Compiles DSK:PROG.FT or
+ PROG /G DSK:PROG into DSK:FOR

TRN.RA, assembles it into
DSK:FORTRN.RL, links it
into DSK:FORTRN.LD, then
loads it into core and exe-
cutes it. No listing files are
produced.

Compile any source program by calling F4 and specifying the
file (or files) containing the source as input:

* R F4 Compiles DSK:PROG.FT or
* PROG /A else DSK:PROG. into SYS:.

FORTRN.RA. The back-
arrow is optional when there
are no output file specifica-
tions.

a R F4
*SY S: PROG. F f C N A)

Compiles SY S:PROG.FT in-
to SYS:FORTRN.RA under
the N option.

Obtain a source listing with error messages by specifying a list-
ing output file as the second output file. In these examples, the first
output file is a null file.

O R F4 Identical to the first example
*,LPT: < P R O G / A above, except that a listing is

produced on the line printer.

. R F4 Compiles DTA2:PROG.FT * 3 DTA1 Z PROGeDTA2: P R O G * FT/A/* into SYS:FORTRN.RA and
writes a source listing onto
file DTA1 :PROG.LS under
the N option. ,

Designate a specific output file to receive the compiler output by
specifying it as the first output file:

.R F 4 Compiles DSK:PROG.FT or
*PROG<PROG/A else DSK:PROG. into SYS:

PR0G.RA.

.R FU Compiles LTAO:WHAT.FT
~ I Ã ˆ ~ H E N . R A , w H E R E . L S ~ L T ~ ~ * ~ ~ ~ ~ (* or else LTA0:WHAT. into

SYS:WHEN.RA with a list-
ing routed to DSK:WHERE.
LS under the Q option.

Compiler Error Messages
During compilation pass 2, error messages are printed at the

console terminal as a 2-character error message followed by the
ISN of the erroneous statement. Typing CTRL/O at the terminal
suppresses the printing of error messages. If a listing was requested,
an extended error message is appended to the listing, immediately
following the erroneous statement, during pass 3. Except where
indicated in Table 8-3, errors located by the compiler do not halt
processing.

Table 8-3 FORTRAN IV Compiler Error Messages

Error
Code Meaning

More than six subroutine arguments are arrays.
Bad ASSIGN statement.
Bad dimensions (too big, or syntax) in DIMENSION,
COMMON, or type declaration.
Illegal in BLOCK DATA program.
Bad COMPLEX literal.
Syntax error in COMMON statement.
Bad syntax in DATA statement.
This type of statement illegal as end of DO loop (i.e., GO
TO, another DO).
Bad DEFINE FILE statement.
Hollerith field error in DATA statement.
Data list and variable list are not same length.
DO-end missing or incorrectly nested. This message is
not printed during pass 3. It is followed by the statement
number of the erroneous statement, rather than the ISN.
Syntax error in DO or implied DO.
DO loop parameter not integer or real.
Syntax error in EXTERNAL statement.
Syntax error in GO TO statement.
Assigned or computed GO TO variable must be integer
or real.
T T - l l - _ : * . L C 1Cl ..--,-.,. nuiici iui n C i u ~ 1 1 ui .
Error reading input file. Control returns to the Keyboard
Monitor.
Logical I F statement cannot be used with DO, DATA,
INTEGER, etc.
Argument of logical IF is not type Logical.
Input line too long, too many continuations.
Misspelled keyword.
Multiply defined line number.
Mismatched parenthesis.
Expected operand is missing.
Mixed variable types (other than integer and real).
Error writing output file. Control returns to the Key-
board Monitor.
Illegal operator.
Type / operator use illegal
or B not typed Logical).
Compiler stack overflow;
many nested loops.
Bad program header line.

8-14

4:

(e.g., A.AND.B where A and /

statement too big and/or too

Table 8-3 FORTRAN IV Compiler Error Messages (Cont.)

Error
Code Meaning

Nesting error in EQUIVALENCE statement.
Syntax error in EQUIVALENCE statement.
Attempt to re-define the dimensions of a variable.
Attempt to re-define the type of variable.
Syntax error in READ/ WRITE statement.
Bad arithmetic statement function.
Illegal subroutine name in CALL.
Error in subscript expression, i.e., wrong number, syn-
tax.
Compiler symbol table full, program too big. Causes an
immediate return to the Keyboard Monitor.
System error, i.e., PASS20.SV or PASS2.SV missing, or
no room on system for output file. Causes an immediate
return to the Keyboard Monitor.
Bad syntax in type declaration statement.
Undefined statement number. This message is not printed
during pass 3. It is followed by the statement number of
the erroneous statement, rather than the ISN.
Version error. One of the compiler programs is absent
from SYS: or is present in the wrong version.

THE RALF ASSEMBLER
The RALF assembler accepts one RALF assembly language

program or subroutine as input and produces a relocatable binary
, file, called a RALF module, as output. An optional annotated list-

ing of the input file may also be produced. RALF terminates an
assembly by returning to the Keyboard Monitor unless it was
requested to chain to the loader.

A RALF module is composed of an external symbol dictionary
(ESD table) and associated text. The ESD table lists all symbols
defined in the RALF input file, which may be sections, entry points,
or externs. Each of these symbols is assigned a relative address to
be used by the loader when it relocates the relative code by assign-
ing absolute core addresses. The text produced by RALF is a
relocatable binary version of the assembly language input file. All
text addresses are relative to the ESD table symbols.

A section can be thought of as a contiguous block of relocatable
code having a definite beginning and end, which is temporarily

assigned a relative starting address of 00000. A RALF file can
have more than one section defined in its ESD table. For example,
consider a subroutine containing a COMMON section which is
assembled by RALF. Both COMMON and the subroutine itself
are sections. An entry point is a location within a given section that
is referenced by code in other sections. An extern is a section or
entry point in some other module that is referenced within the
module currently being assembled.

Unless the A option is specified- to the FORTRAN IV compiler,
the RALF assembler is called automatically to assemble the output
of a successful compilation. In this case, RALF reads the assembly
language file just produced by the compiler as input and routes its
output, consisting of the assembled RALF module, to the first
output file that was specified to the compiler. If this file had a null
extension, the default extension ".RL" is supplied. If no first out-
put file was specified, the module is written onto default file
SYS:FORTRN.RL.

The RALF language output produced by the compiler is then
deleted, and an annotated listing of the RALF assembly language
input is written on the second output file specified to the compiler,
provided that a second output file and the F option were both
specified. This listing will overwrite the compiler source listing if
the second output file is a directory device file. Note, however, that
the RALF language - - listing is rarely required for most applications,
and should not be routinely requested. -

t h e RALF assembler might also be called separately to assem-
ble the output of a compilation produced under the A option or to
assemble a user-generated file written in RALF assembly language.
This is accomplished by typing:

R RALF

(terminated by a carriage return) in response to the dot generated
by the Keyboard Monitor. RALF replies by loading the OS/8
Command Decoder, which accepts and decodes a standard com-
mand line that designates 0 to 3 output files, 1 to 9 input files, and
any run-time option specifications. The file/option specification
command line is entered by typing:

(terminated b y a
generated by the

carriage return) in response to the asterisk
Command Decoder, where DEV:RALF.RA,

DEV:LIST.LS and DEV:MAP.LS are the relocatable binary
RALF module, annotated listing of RALF source, and loader,
symbol map, respectively; DEV:IFl .RA, . . . ,DEV:w9.RA are
input files 1 to 9; and "options" is a string of alphabetic characters
that designates any run-time options desired. If any input file name
is entered with a null extension, the assembler will search for the
indicated file name with an assumed extension of ".RA" and, if
this is unsuccessful, it will then search for the indicated file with a
null extension. If the first output file is entered with a null exten-
sion, the assembler appends the default extension ".RL". If the
second output ,file is a directory device file with a null extension,
the assembler appends the default extension ".LS".

When there is more than one input file, all of the input files are
assumed to contain the assembly language source for a single*
RALF module. After accepting and decoding the file/option
specification command, RALF reads the input files in the order
they were entered, and assembles every- RALF language state-
ment. RALF terminates the assembly by writing a-'relocatable
binary version of the input program or subroutine onto the first
output file, or onto file SYS:FORTRN.RL if no output files were
specified. It also copies an annotated source listing and symbol
table onto the second output file; however, this listing is not pro-
duced unless a second output file was specifically defined. The -
third output file is not used by the assembler; it receives a loader
symbol map only when chaining to the loader.

When an error is encountered during assembly, the assembler
prints a 2-character error code, followed by the label associated
with the erroneous statement, on the console terminal during pass
2. Error codes are also appended to the listing, on a line by them-

- selves immediately preceding the statement to which they apply
(except EG, which follows the line in error). Certain errors cause
an immediate return to the Keyboard Monitor, however, in which ,

case the listing is never produced. Table 5-2 lists the RALF assem-
bler error messages and describes the error condition indicated by
each message.

The assembler accepts the three run-time option specifications
listed in Table 8-4, any combination of which may be requested by
entering the appropriate alphabetic character(s) in the Command

Decoder file/option specification line. Any options recognized by
the loader or the run-time system may be entered along with the
assembler options; they will be passed to the loader automatically
unless chaining is suppressed (by an error condition or omission of
the L option specification), in which case they will be ignored.

Table 8-4 RALF Assembler Ran-Time Options

Option Operation

G Chain to the loader when assembly is complete and chain
to the run-time system following creation of a loader
image file.

L Chain to the loader when assembly is complete. If the L
option is not specified, RALF will return to the Keyboard
Monitor upon completion.

T Suppress the RALF assembly language listing and pro-
duce only a symbol table. The T option is ignored by the
assembler when a second output file was not specifically
defined. When chaining from the compiler, it is ignored
unless the F option and a listing output file were both
specified.

T l - - 1. - 1
111c syu~uui table produced by RALF and appended to the

RALF language listing includes the assembler version number,
system date, and the listing page number, followed by the number
of errors encountered during assembly, the number of symbols
defined in the program, and the number of absolute references
encountered in FPP instructions. All symbols referenced during
the assembly are then listed in alphabetical order, from left to right
across the page. An alphabetic code follows certain classes of
symbols and identifies them by type. The alphabetic codes are:

C = symbol names a COMMON section
F = symbol names a FIELD 1 section
S = symbol is the name of a section
U = symbol is undefined
X = symbol is external to this assembly
Z = symbol names a COMMZ section
8 = symbol names an 8-mode section

If no alphabetic code is shown, the symbol is an ordinary address
symbol. A numeric code is also printed after each symbol in the
list. The numeric code indicates the relative octal value of the
symbol except for the case of:

c, F, s., where the numeric code indicates the length
Z, or 8 codes of the section or commonblock.

U or X codes - where 00000 indicates undefined or external
symbols.

Examples
When chaining from the compiler to the assembler, RALF

deletes the compiler output after reading it as input:

- R F4 Produces R A L F module
*FROG SYS:FORTRN.RL and de-

letes compiler output file
SYS:FORTRAN.RA.

* R F4 Produces R A L F module
*PROG- V3,LPT: <PROG/F SYS:PROG.V3 and lists both

the FORTRAN source and
. the RALF language compiler

output on the line printer. . R F A
*DTA2: OBJ, DTP 1:LI STeDTA2; PROGC TF) RALF

DTA2:OBJ.RL and writes a
symbol map onto file DTA1:
LIST.LS. The FORTRAN
source listing is overwritten
and destroyed.

When calling the assembler to assemble and relocate the output
of a successful compilation produced under the A option or a user-
written RALF language source, the procedure is closely analogous
to that for running the compiler:
. R RALF
*PROG

Assembles DSK:PROG.RA
or else DSK:PROG. into
SYS:FORTRN.RL.

R RALF Assembles DTAl :FILE.RA
*, SYS:LI S T < D T A ~ : F I L E - <A into SYS:FORTRN.RL and

writes a listing on SYS:LIST.
LS.

. R RALF Assembles DSK:RALF.RA
* D T A I : TEMP. TM,LPT:<RALF- R A into DTAl :TEMP.TM and

writes a listing on the line
printer.

RALF Assembler Error Messages
During assembly pass 2, error messages are printed at the

console terminal as a 2-character error code followed by the label
associated with the erroneous statement. If a listing was requested,
error codes are printed during pass 3 on a line by themselves
immediately preceding the statement to which they apply (except
for EG, which follows the line in error). RALF error messages are
listed ia Tzbk 5-2.

THE LOADER
The OS/8 FORTRAN IV loader accepts up to 128 RALF

modules as input and links the modules, along with any necessary
library components, to form a loader image file that may be loaded
and executed by the run-time system. This is accomplished by
replacing the relative starting location (00000) of each section with
an absolute core address. Absolute addresses are also assigned to
all entry points defined in the input modules. Once all RALF
modules and library components have been assigned to some
portion of memory and linked, absolute addresses are assigned to
the relocatable binary text and the externs.

The overlay feature of the loader facilitates running programs
which are too large to be contained in available memory, making it
possible to run programs that require up to 300K words of storage
in less than 32K of actual core memory. This is accomplished by
dividing very large FORTRAN programs into a set of subroutines
linked by one mainline. Unlike the subroutines, each of which has
a section name by which it is called, the mainline does not have a
name and is therefore assigned section name #MAIN by the sys-
tem. An overlay scheme is then designed in such a way that the
memory requirement of those subroutines that are core-resident at
any given time does not exceed the available core memory.

An overlay is a set of subroutines stored on a bulk storage
device. When any subroutine in an overlay is called by the main-
line or another subroutine, the entire overlay is read into core,
where it generally replaces another overlay of equivalent size.

Levels are variable-size portions of memory reserved for specific
sets of overlays. OS/8 FORTRAN IV permits up to 8 levels,
designated level 0, level 1, and so on up to level 7. Level 0 is
always present and always contains only one overlay, called over-
lay MAIN, which always includes section #MAIN (the

FORTRAN or RALF mainline) as well as all COMMON sections,
8-mode sections and library components. Additional subroutines
may also reside in overlay MAIN; in fact, the entire program
should be loaded into level 0 if there is sufficient core available.

Levels 1 to 7 may each contain up to 16 overlays, only one of
which is core-resident at any given time during program execution.
If no subroutines are loaded into a given level, that level does not
exist for the current execution and no memory is allocated to it.
As execution begins, overlay MAIN is loaded into level 0 (where it
remains throughout execution) and started at the entry point of
section #MAIN. Other overlays are read into the block of memory
reserved for their particular level whenever one of their constituent
subroutines is called. As an overlay is read into a given level, it
overwrites any other overlay which may have been resident in that
level. Thus, no two overlays from the same level are ever core-
resident simultaneously.

When section #MAIN or any subroutine calls another sub-
routine, the flow of execution from calling routine to called routine
is referred to as part of a calling sequence. Every calling sequence
begins with a call from section #MAIN and ends with a call to
some subroutine that does not contain any further CALL state-
ments. Calling sequences generally contain branches, and they may
be very intricate. For example, assume that:

Routine/Subroutine Contains Calls To

mainline (#MAIN) SUB1, SUB2, SUB3
SUB 1 ALPHA, BETA
SUB2 SUB3
SUB3
ALPHA
BETA SUB2

Then the calling sequences could be mapped as:

When any subroutine CALL is executed, the system determines
whether the overlay containing the called routine is core-resident
and, if not, reads this overlay into its proper level in core, over-
writing any overlay which was previously resident in that level. No
such determination is possible for RETURN statements, however.
For this reason, it is extremely important to ensure that, at the end
of a calling sequence, all subroutines in the calling sequence are
still core-resident. In other words, no subroutine may execute a
CALL that will cause it, or any subroutine which called it, to be
overlaid. In the previous example, if SUB1, SUB2 and SUB3 oc-
cupy separate overlays in level 1 while ALPHA and BETA reside
in level 2, the calling sequence from #MAIN to SUB1 to BETA
to SUB2 will cause a fatal error because SUB2 will overwrite SUB1
and prevent control from returning to level 0. The FORTRAN
system guards against some errors of this type by enforcing the
following rules:

a. Subroutines in a given level cannot call other subroutines in
the same level if the called subroutine is in a different overlay.

b. Subroutines in high numbered levels cannot call subroutines
in lower numbered levels unless the call is to level 0. (This
convention is not enforced when the U option is specified to
the run-time system.)

These restricticzs ~ i l ! m t prexvezt fztd e r r m k a!! ci~ses. 31 the
previous example, if subroutine BETA is placed in level 0 instead
of level 1, the calling sequence from #MAIN to SUB1 to BETA
to SUB2 still causes a fatal error, even though neither of the en-
forced conventions is violated. Thus, any overlay scheme must be
designed with careful attention to calling sequences.

If the L or G option is specified to F4 or RALF, the loader is
called automatically to relocate the output of a successful assembly.
When chained to via F4, the loader reacts in one of two ways. If
the last Command Decoder file/option line was terminated with a
carriage return, it immediately fetches the Command Decoder and
proceeds as though it had been called from the monitor, as de-
scribed below. The only difference, in this case, is that certain
loader or run-time system options may have been passed to the
loader from RALF, and cannot be suppressed at this point. Also,
unless two different files are specified as output files, the loader
automatically routes its loader image to the first output file specified

to F4 or RALF at the start of the chain, with default extension
".LD7' assigned if this file had a null extension, or to file SYS:
F0RTRAN.LD iÂ no output files were specified. The relocatable
binary output produced by the assembler is deleted dter it has been
read as input. A loader symbol map is routed to the third output
file specified at the start of the chain sequence, if any, or to the
second output file, if any, specified to the loader as described below.
When this is a directory device file with a null extension, the default
extension ".LS9' is supplied.

If the last file/option specification supplied to the Command
Decoder was terminated with an ALTMODE character instead of
a carriage return, the loader reacts differently when chained to from
RALF. In this case, the loader assumes that the RALF module just
produced is a stand-alone mainline that requires no subroutines
(other than library components) in order to execute. The loader
does not call the Command Decoder under these circumstances.,
since level 0 is the only level that will be defined. Output is pro-
duced exactly as described above, and the loader either returns to

' the Keyboard Monitor upon completion or, if a G option specifica-
tion was previously entered, chains to the run-time system.

The loader may be called separately, to link and relocate a
of previously assembled RALF modules. This is accomplished
typing:

R LOAD

set
by

(terminated by a carriage return) in response to the dot generated
by the Keyboard Monitor. The loader replies by calling the OS/8
Command Decoder, which accepts and decodes one or more stan-
dard command lines3 each of which designates 0 to 9 input files, 0
to 2 output files, and any run-time option specifications desired.
Each file/option specification fine is entered by typing:

(terminated by a carriage return) in response to the asterisk gen-
erated by the Command Decoder. 1MAGE.LD is the loader image
output file and MAP.LS is the loader symbol map output file. The -
input files may be either relocatable binary RALF modules or a
library file, and "options" is a string of alphabetic characters that
designates any run-time options desired.

The hailer accepts up te 128 input fik specifications, one of
which may designate a library file to be used in place of the stan-
dard system library. The OS/8 Commabd Decoder, however, ac-
cepts a maximum of only 9 input file specifications per command
line. Thus, after each file/option command line is entered, the
loader recalls the Command Decoder to accept another command
line, and continues this process until the /'G option is received or a
line is terminated with an ALTMODE. Input file specifications
should be entered in sequence? beginning with all RALF files to be
joacied into level 0, foiiowed by files for level 1 overlay 1, level 1
overlay 2, and so on until all level 1 overlays are filled. Level 2
overlays are then built in the same manner, using as many file/
option specification lines as necessary, and the process continues
until all levels are filled. Each line may contain from 0 to 9 input
file specifications; null lines will be ignored by the loader.

At some point during this process, two output files and one
library (input) file may also be specified. The loader image file built
by the loader is routed to the first output file, which must reside on
a directory device, or to file SYS:FORTRN.LD if no output files are
specified. When the first output file has a null extension, the default
extension ".LDY' is supplied. The loader symbol map is routed to
the second output file, provided that a second file is specifically
defined. If this is a directory device file with a null extension, the
default e x t e n s i ~ ~ ".LS" is s~pplieg. Gne librzry EIe zay be specified
as an input file, to be used in place of the standard system iibrary.
This must be a specially formatted file, prepared with LIBRA as
described in the section concerning the FORTRAN IV Library,
and it must be specified on a command h e that contains no other
input file names. This command line may appear anywhere in the
file/option specification sequence. It is identified by the presence of
an L option specification.

If more than one first output file, second output file, or library
file is specified to the loader, only the last specification in each

. category is used. Previous specifications, including those supplied
- to F4 or RALF when chaining to the loader, are ignored.

Run-time option specifications are used to group the sequence of
input files into discrete overlays7 allocate overlays to certain levels,
and identify the user-generated library file, if any. Table 8-5 lists
the run-time options recognized by the loader and describes their

use. The E and H options, recognized by the run-time system, may
be entered on the same line as the G option when chaining to the
run-time system.

Table 8-5 Loader Run-Time Options

Option Operation

Continue the current line of input on the next line of in-
put. When specifying RALF files to the loader, there
may be more than 9 files that belong in a given overlay.
Since the Command Decoder will not allow more than
nine input files in one file option specification line, the C
option permits the additional files to be put on the fol-
lowing line. If the C option is not specified at the end of a
line, the current overlay is closed when the terminating
carriage return is received and subsequent input files are
placed in a new overlay in the current level. An excep-
tion to this is level 0, which only contains one overlay.
The presence of a C option specification is assumed on
every line until level 0 has been closed by an 0 specifi-
cation.

Treat the current line as the last line of input, and chain
to the FORTRAN IV run-time system when finished.

Accept the single input file specified on this line as an al-
ternate library to be used in place of the system library,
FORLIB.RL,

Close the level that is currently open, and open the next
sequential level for input. RALF files specified on sub-
sequent lines are assigned to overlays in the new level
until the new level is closed by the next 0 specification (or
the end of input).

Include system symbols in the loader symbol map. Sys-
tem symbols are identified by an initial "#" character.
This option is only valid when a symbol map output file ,

was specifically defined.

Ignore the rules governing subroutine calls between
overlays. 'This option should only be used when sub-
routines making illegal calls will not be accessed during
execution since, in general, any illegal subroutine call
will cause unpredictable behavior at run time.

Input msy be terminated by entering a G option specification on
the last line and/or by terminating the last line with an ALTMODE
character rather than a carnage return. If the G specification and
the ALTMODE both appear, this indicates that the user has no
file/option specification input for the run-time system and prevents
the run-time system from calling. the Command Decoder.

The following sequence of Command Decoder specification lines
illustrates the use of option specifications to allocate RALF files to
particular overlays.

R L O A D Loader is called from Key-
board Monitor.

* S Y S : P R O G o L D a L P T : <PROGO RL Loader image file will be
routed to SYS:PROG.LD
while the symbol map is
printed on the line printer.
PROG-RL is placed in level
0 overlay MAIN. Since the
presence of a C option speci-
fication is assumed on every
line preceding the first 0 op-
tion specification7 level 0
overlay MAIN remains open.

Place subroutines ALPHA
and BETA in level 0 overlay
MLA.IX. The presexc sf a C
option specification is as-
sumed.

* /O Close level 0 and open level
1 overlay 1.

* < S U B l . RL, S U B 2 . RL, SUB30 RL Place SUB 1, SUB2 and SUB3
in level 1 overlay 1. Close
overlay 1 and open overlay 2.

*<SUB40 RL, SUBS. R L 8 StJB6. RL /C Place SUB47 SUBS and
SUB6 in level 1 overlay 2.
Accept further input for this
overlay on the next line.

* < D T A l : S U 0 7 . R L / O Place SUB7 in level 1 over-
lay 2. Close level 1 and open
level 2 overlay 1.

Place SUB8 in level 2 over-
lay 1 . Close overlay 1 and
open overlay 2.

Place SUB9 in level 2 over-
lay 2. Close overlay 2 and
open overlay 3.

Use file DSK:LIB.RL in
place of SYS:FORLIB.RL as
the library file. In spite of its
position in the specification
list7 any library components
will be placed in level 0. The
S option specification re-
quests an augmented loader
symbol map.

*<SUBl@*RL/O
s'

Place SUB 10 in level 2 over-
lay 3. Close level 2 and open
level 3 overlay 1 .

*eSUBll*RL,DTAl: S U B 1 2 * R L / G Place SUB1 1 and SUB12 in
level 3 overlay 1 . Close level
3? terminate input, and chain
to the run-time system when
finished.

This sequence of commands will provide the following overlay
scheme:

Level -
0
1
1
2
2
2
3

Overlay

MAIN
1
2
1
2
3
1

Contents

PROG7 ALPHA, BETA library subroutines
SUB 1 , SUB2, SUB3
SUB4? SUBS; SUB6, SUB7
SUB8
SUB9
SUB 10
SUBll, SUB12

Note that all of the input files except those containing SUB7,
SUB87 and SUB 12 are taken from device DSK:, the OS/8 default
device. The left angle bracket (or backarrow) character 'is optional
when a file/option specification line contains only input file specifi-
cations, but it has been included here for clarity. Obviously, there
are many other ways in which the sequence of file/option specifi-

cations shcwii a h v e could have been entered to produce an iden-
tical result.

Considerable foresight is required when designing an overlay
scheme. Since an overlay may have to be read into core whenever
one of its constituent subroutines is called, a great deal of useless
110 results from inefficient overlay design. The system does verify
that an overlay is not already resident before reading it into core.

T LGVels -.. mist be aii iiii~gral nttmber ~f system bl~cks (400 octal
words) in size and big enough to accommodate the largest overlay
they contain.

Ideally? then, the largest overlay in a level should occupy slightly
less than some multiple of 400 (octal) words of storage. and all
overlays in a level should be marly equal in sizeL For example, if
level 1 contains three overlays requiring 300, 100, and 150 octal
words of storage, respectively, then the two smaller overlays should
be combined because level 1 will be 400 octal words long in any
case. If the three overlays require 500, 100, and 150 octal words
of storage? all three should be combined because level 1 will be
1000 octal words long in any case.

Frequently called subroutines should be kept core-resident when-
ever possible, perhaps by placing them in level 0 or in a level that
contains rarely accessed overlays. Within the loader image file, sub-
routines are stored in the order in which they were specified to the
loader. Thus, grouping frequently called subroutines into adjacent
lsvels also speeds executioil by i -ed~~i i ig the access time ~eqtiired to
read an overlay into core, particularly from DECtape or LINCtapeI
When running very large programs with many overlay levels, it may
be desirable to make level 0 as small as possible, in spite of the
resulting excess 110. This is accomplished by minimizing COM-
MON (which always occupies level 0), dividing the mainline into a
series of subroutines, and creating a new mainline that contains
predominately CALL statements. Note? however, that all library
subroutines will reside in level 0, regardless of the location of sub-
routines that call them.

Any error recognized by the loader during generation of a loader
image file results in &in error message, printed on the console ter-
minal, immediately following the input specification line that caused
the error condition. Table 8-6 lists the loader error messages and
describes the error condition indicated by each message.

.
The optional loader symbol map lists all symbols defined in the

loader image file and identifies each syrrzbol by overlay, level, and
memory address:

LOADER L21 04 130 /73

S Y f i i J O L VALUE L V L OVLY

A 10400 1 00
RRGERR 00204 0 k30
0 10400 1 a1
C 11214 1 01
E X I T 00223 0 00
#iYAIN 10000 0 a0

12a0a = IST F ~ E E L O C A T I O N

LVL OVLY L E N G T H

Following the alphabetical list of symbols, the loader prints the
address of the first free memory location and the length, in octal
words, of each overlay defined. This information is useful in opti-
mizing memory requirements.

Loader Error Messages
The loader prints error messages on the console terminal during

generation of a loader image file, Except where indicated in Table
8-6, loader errors are fatal. The loader returns control to the Key-
board Monitor when a fatal error condition is encountered.

Table 8-6 Loader Error Messages

Error Message Meaning

BAD INPUT FILE An input file was not a RALF module.

BAD OUTPUT DEVICE The loader image file device was not a
directory device, or the symbol map
file device was a read-only device.
The entire line is ignored.

ILLEGAL ORIGIN A RALF routine tried to store data
outside the bounds of its overlay.

Table 8-6 Loader Error Messages (Cont.)

Error Message Meaning

MIXED INPUT The L option was specified on a line
that contained some file other than a
library file. The library file (if any) is
accepted. Any other input file speci-
ficatio~ is - igmred. --

MULT SECT - b y c ~ ~ ~ b i ~ a t i o n ~f efitry poirit,
COMMON section (with the excep-
tion of multiple COMMONS) or pro-
gram. section of the same name
causes this error, except as shown in
the following table

ENTRY
POIXT SECT SECT8 COMMON COMMZ FIELD1

- SECT MS MS MS OK OK OK
SECT8 MS MS MS OK OK OK
COMMON MS MS MS OK MS OK
COMMZ MS MS MS MS OK MS
FIELD 1 MS MS MS OK MS OK
- - - -- - - - - - -- - - -

NO MAIN No RALF module contained section
#MAIN.
-F*. .
1 1 1 ~ iwader image requires more than
32K of core memory.

OVER IMAG Output file overflow in the loader im-
age file.

OVER SYMB Symbol table overflow. More than 253
(decimal) symbols in one FORTRAN
job.

TOO MANY LEVELS The 0 option was specified more than
7 times.

TOO MANY OVERLAYS More than 16 overlays were defined in
the current level.

TOO MANY RALF FILES More than 128 input files were speci-
fied.

The following FATAL error messages occur when the Loader is
linking and relocating:

SYSTEM ERROR

LOADER I /O ERROR

O S / 8 ENTER ERROR

and indicate an error detected by OS/8 while trying to perform a
USR function.

All errors identified during the loading procedure are followed
by a line of the form:

1 00 nnn

where "1" is the level in which the error occurred, 4'00" is the
overlay in which the error .occurred, and "nnn" is the module num-
ber, within the referenced overlay, that caused the error. Some
errors (e.g., NO MAIN) are .attributable to a single module, and the
module numbers for this type of error are meaningless.

FORTRAN IV RUN-TIME SYSTEM (FRTS)
The OS/8 FORTRAN IV run-time system reads? loads, and

executes a loader image file produced by the loader. It also
configures a software 110 interface between the FORTRAN IV

- program and the OS/8 operating system? then monitors program
execution to direct 1/0 processes ana identify certain types of run-
time errors. The run-time system is called automatically to load
and execute the loader image file produced by the loader whenever
the G option is specified to the loader.

When chained to from F4, RALF, or LOAD, the run-time system
reacts in one of two ways. If the last Command Decoder file/
option line was terminated with a carriage return? it immediately
fetches the Command Decoder and proceeds as though it had been
called from the Keyboard Monitor, as described below. The only
difference, in this case, is that certain run-time system options may
have been passed to the run-time system from the loader, and can-
not be suppressed at this point. If the last file/option specification
line supplied to the Command Decoder was terminated with an
ALTMODE character instead of a carriage return, however, the
loader assumes that no user input is required. The Command
Decoder is not called. The loader image file just produced is read

as input, and, unless the H option was previously specified, it is
loaded and executed.

The FORTRAN IV Run-Time System is able to accept file 1/0
specifications. This allows the user to write a source program which
refers to 110 devices as integer constants or variables. This pro-
gram may be compiled, assembled, and loaded into an image file.
This image file may be run any number of times, each time specify-
ing different physical I/O devices. Thus logical unit 8 may refer in

1 Cl one run to the console termin$, in another run to a d i s ~ ~ile, and ifi
anothw run to a paper tape punch.

These run-time specifications allow the FORTRAN program to
use the OS/8 file handling capabilities, to use any OS/8 supported
110 device, aad potentidly to use any 110 device fur which an
OS/8 device handler can be written.

The following pages explain how the user gives the run-time
4

system the connections between OS/8 device and file names and
the FORTRAN logical unit numbers.

FORTRAN IV programs are usually saved as loader image files
and executed by calling the run-time system from the Keyboard
Monitor to load and execute the saved loader image. This is ac-
complished by typing:

R FRTS

(terminated by a carriage return) in response to the dot generated
by the Keyboard Monitor. The run-time system replies by calling
the OS/8 Command Decoder to accept one or =ore stmdard file/
option specification lines. It recalls the Command Decoder after
processing each line, until a line terminated by an ALTMODE
character is received.

The run-time system accepts two classes of Command Decoder
file/option specifications. The first class specifies the load module
to be executed; the second class specifies the run-time file assign-
ment. When it is called from the Keyboard Monitbr, the run-time
system loads the Command Decoder to accept one input file name,
perhaps followed by the E or H option specifications, described in
Table 8-7. This information is not required when the loader chains
to the run-time system because the loader image file just produced
is automatically read as input, while the E and/or H options could

have been specified to the loader along with the G specification that
requested chaining.

Thus, the loader image input file to be executed must be iden-
tified on the first file/option specification line when FRTS is called
fromthe Monitor, and must not be specified at all when the loader
chains to FRTS. This Command Decoder line has the form:

where 1MAGE.LD is the loader image input file and "options" is E
or H or both. If this line is terminated by an ALTMODE, the pro-
gram is executed; if it is terminated with a carriage return, the
Command Decoder is recalled to accept run-time file specifications.

Once the loader image file to b; executed has been identified, the
run-time system recalls the Command Decoder to accept any
FORTRAN 1/0 device specifications. Of the nine 1/0 unit num-
bers available under FORTRAN IV, four are initially assigned to
FORTRAN internal device handlers by the system as follows:

1/0 Unit Internal Handler Comments

1 paper tape reader Single character buffer.
2 paper tape punch Single character buffer.
3 line printer LP8 and LS8E only. Ring buffered.
4 console terminal Double buffered output, single

character input.

The FORTRAN internal handlers listed above are not the same
as the OS/8 device handlers. The FORTRAN internal handlers are
designed for ASCII text only and will not execute binary or core
image I/O. Also, FORTRAN internal handlers are interrupt driven
to execute foreground 1/0 concurrently with background computa-
tion.

FORTRAN internal device handlers may be assigned different
unit numbers, in addition to those listed above, by typing:

(in response to the asterisk generated by the Command Decoder)
where m is the 1/0 unit number (1 to 4) of one of the internal
handlers listed above and n is a different unit number (1 to 9) which
is also to be assigned to that internal handler. This specification

causes all program references to logical unit n to perform I/O to
device m in the preceding table. For example:

/6=2 Assigns the FORTRAN internal paper tape punch
handler as 1/0 unit number 6, in addition to unit num-
ber 2.

/ I =2 Assigns 1/0 unit number 1 to the FORTRAN internal
paper tape punch handler instead of the internal paper
tape reader handler.

OS/S device handlers for non-directory devices may be assigned
1/0 unit numbers by typing:

(in response to the asterisk generated by the Command Decoder)
where n is an 1/0 unit number (1 to 9) and DEV: is the standard or
assigned designation for any supported non-directory device. For
example:

LPT:/3 Specifies the OS/8 line printer handler to be used in-
stead of the FORTRAN internal line printer handler,
possibly because the line printer is not an LP08 or
LSSE.

Existing directory device files may be assigned 1/0 unit numbers
by typing:

(in response to the asterisk generated by the Command Decoder)
where n is an 1/0 unit number (1 to 9) and DEV:FILE.EX is the
standard OS/S designation for an existing directory device file. For
example:

DTA1 :FORIO.TM/2 Assigns unit number 2 to DECtape file
FORIO.TM rather than to the FOR- *

TRAN internal paper tape punch han-
dler, where FORIO.TM is an existing

'h

file on DECtape unit 1.

A directory device file that does not presently exist may be as-
signed a FORTRAN 1/0 unit number in the same manner by
entering it as an output file on the specification line; however, only

one such file may be created on any particular device. For example:

FORIO.TM</9 Assigns unit number 9 to file DSK:FORIO.
TM, which has not been created at load time.

In any case, only one device or file specification is permitted on
each line, and no more than 6 directory device files may be created
by the FORTRAN program. Excess files after the sixth are ac-
cepted and written, but they will not be closed. If a file created by
the program has the same file name and extension as a pre-existing
file, the old file is automatically deleted when the new file is closed.

The Command Decoder "[n]? specification may be used to opti-
mize storage allocation when assigning files that do not yet exist,
where n is a decimal number that indicates the maximum expected
length of the file, in blocks.

Each time a run-time 1/0 specification is terminated with a
carriage return, the Command Decoder is recalled to accept another
specification. When a specification is terminated with an ALT-
MODE, the program is run.

Although existing files are specified as though they were input
files and nonexistent files are specified as though they were output
files, any file that has been assigned a unit number may be used for
either input or output. The content of a nonexistent file is undefined
until it has been written by the program.

Table 8-7 Run-Time System Option Specifications

Option Operation

H Halt after loading but before starting the program.
Press the CONTinue switch on the processor, to com-
mence execution.

E Ignore the following run-time system errors, any of
which indicates that an error was detected earlier in
the compilation/ assembly/ loading process:

a. Illegal subroutine call.
b. Reference to an extern in an overlay other than

in the form "JSR EXTERN" (i.e., CALL state-
ment).

c. Reference to an undefined symbol.

Table 8-7 Run-Time System Option Specifications (Cont.)

Option Operation

Any of the above may lead to unpredictable program
behavior as, in general, some portion of the program
will not be loaded or executed.

Carriage control switch. The first character on every
output line is processed as a carriage control character
(see FORTRAN IV LANGUAGE SUMMARY by all
FORTRAN internal handlers and also by the OS/8
hard copy handlers TTY and LPT. The first character
on every output line is processed as data, in the same
manner as any other character, by all OS/8 handlers
except TTY and LPT. Entering a C option specifica-
tion on the command line that assigns an I/O unit
number to a particular handler reverses the processing
of carriage control characters for that device. Thus:

TEMP(2C)
assigns file DSK:TEMP. as I / O unit 2. The C option
causes the first character of every output line to be
processed as a carriage control character. If C were
not specified, these characters would be processed as
data.

/C/6=3
assigns the FORTRAN internal line printer handler
as I/O unit 6 . as well as unit 3. The first character of
every line will be processed as a carriage control char-
acter on unit 3, and as a character of data on unit 6.

The OS/8 FORTRAN IV run-time system executes with the
PDP-8/E interrupt system enabled. OS/8 device handlers are not
interrupt driven; however, certain handlers may execute with the
interrupt system enabled because the devices they control have in-
terrupt enable switches which the handlers do not set. FRTS allows
for this by running with the interrupt system enabled when driving
handlers of this type, and disabling the interrupt system when a
handler that does not run under interrupts is loaded. Handlers that
can run with the interrupt system enabled include:

TC08 DECtape system handler and nonsystem handlers DTAO
to DTA7

RF08 system handler

8-36

RK8 system handler and nonsystem handlers RKAO to-RKA3
RK8E system handler and nonsystem handlers RKAO to RKA3

and RKBO to RKB3
Any FORTRAN internal handlers

These OS/8 handlers do not permit interrupts from these devices,
but they do permit other devices, e.g., CLOCK, to interrupt the
data transfer. Note that TD8E is absent from this list because the
TD8E data transfer cannot be interrupted.

The run-time system recognizes two classes of error conditions.
Certain errors are diagnosed while the core image file is being read
from a storage device and loaded into core memory. Other errors
may occur during execution of the FORTRAN program. Both
classes of run-time errors are identified on the console terminal.
Table 8-8 lists the FRTS error messages and describes the error
condition indicated by each message. The run-time system error
traceback feature provides automatic printout of statement numbers
corresponding to the sequence of executable statements that ter-
minated in an error condition. At least one statement number is
always printed. This number identifies the erroneous statement or,
in certain cases, the last correct statement executed prior to the
error. When-a statement was compiled under the N option, how-
ever, the system cannot generate meaningful statement numbers
during traceback.

The console terminal serves as FORTRAN 1/0 unit 4 for both
input and output. Terminal input is automatically echoed on the
console printer. In addition, the run-time system monitors the key-
board continually during execution of a FORTRAN program.
Typing CTRL/C at any time causes an immediate return to the
OS/8 Monitor. Typing CTRL/B branches to the system traceback
routine, and then exits to the monitor. This traceback routine
causes a printout, similar to the error traceback, including the cur-
rent subroutine, the line number in the next higher level subroutine
from which it was called, etc., to the main program. This facilitates
locating infinite loops when debugging a program. The following
additional special characters are recognized by the console terminal
handler and processed as shown:

RUBOUT Deletes last character accepted.

CTRL/U Deletes current line of input.

CTRL/I (Tabulation.) Converted to appropriate number of
spaces.

CTRL/Z Signals end-of-file on input.

Tentative output files (that is, files created by the FORTRAN
program) are closed automatically upon successful completion of
program execution provided that either:

1. An END FILE statement referencing the file was executed.
FRTS assigns a file length equal to the actual length of the file.

2. The last operation performed on the file was a write operation.
FRTS proceeds as though an END FILE statement hadbeen
executed.

3. A DEFINE FILE statement referencing the file was executed
but an END FILE statement was not executed. Upon comple-
tion of program execution, FRTS assigns a file length equal to
the length specified in the DEFINE FILE statement.

Execution of a REWIND statement does not close a tentative
file, nor does it modify the tentative file length.

Run-Time System Error Messages
, The run-time system generates two classes of error messages.

Messages listed in Table 8-8 identify errors that may occur during
execution of a FORTRAN program and errors that may be en-
*countered when the run-time system is reading a loader image file
into memory in preparation for execution, or accepting I/O unit
specifications. Except where indicated, all run-time system errors
cause full traceback and an immediate return to the monitor. Non-
fatal errors cause partial traceback, sufficient to locate the error,
and execution continues.

Table 8-8 Run-Time System Error Messages

Error Message Meaning

BAD ARG Illegal argument to library function.

CAN'T READ IT! I /O error on reading loader image file.

CAUTION-NO DP The present hardware configuration
does not include an FPP-12 Floating-
Point Processor with double precision
option. Execution continues; however,

Table 8-8 Run-Time System Error Messages (Cont.)

Error Message Meaning

all double precision operations default
to real arithmetic (with unpredictable
results) and all complex operations
also produce unpredictable results.

D.F. TOO BIG

DIVIDE BY 0

EOF ERROR

FILE ERROR

FILE OVERFLOW

FORMAT ERROR

FPP ERROR

INPUT ERROR

I/O ERROR

MORE CORE REQUIRED

Product of number of records times
number of blocks per record exceeds
number of blocks in file. Note that for
a random access file the length in
OS/8 blocks must be no less than the
number of records times the integer
but must be greater than the quotient
of floating point variables per record
divided by 85. /

Attempt to divide by zero. The re-
sulting quotient is set to zero and
execution continues.

End of file encountered on input.

Any of:
a. A file specified as an existing file

was not found.
b. A file specified as a nonexistent file

would not fit on the designated de-
vice.

c. More than 1 nonexistent file was
specified on a single device.

d. File specification contained "*" as
name or extension.

Attempt to write outside file bound-
aries.

Illegal syntax in FORMAT statement.

Hardware error on FPP start-up.

Illegal character received as input.

Error reading or writing a .file, tried to
read from an output device, or- tried to
write on an input device.

The space required for the program,
the I /O device handlers, I/O buffers
and the resident Monitor exceeds the
available core.

Table 8-8 Run-Time System Error Messages (Cont.) .
Error Message Meaning

NO DEFINE FILE

NO NUMERIC SWITCH

NOT A LOADER IMAGE

OVERFLOW

OVERLAY ERROR

PARENS TOO DEEP

SYSTEM DEVICE ERROR

TOO MANY HANDLERS

USER ERROR

UNIT ERROR

Direct access 1/0 attempted without a
DEFINE FILE statement.

The referenced FORTRAN I/O unit
was not specified to the run-time sys-
tem.

The first input file specified to the run-
time system was not a loader image
file.

Result of a computation exceeds upper
bound for that class of variable. The
result is set equal to zero and execu-
tion continues. This error is detected
only if an FPP is present.

Error while reading overlay.

Parentheses nested too deeply in FOR-
MAT statement.

I /O failure on the system device.

Too many I /O device handlers are
resident in memory, or files have been
defined on too many devices.

Illegal subroutine call, or call to unde-
fined subroutine. Execution continues
only if the E option was requested.

I/ 0 unit not assigned, or. incapable of
executing the requested operation.

FORTRAN N LIBRARY
The OS/8 FORTRAN IV system contains a general purpose

FORTRAN library FORLIB.RL, which may be extended and
modified by the librarian LIBRA. The library gives the program-
mer the capacity to compute arithmetic and transcendental func-
tions, use the complex and double precision options of the FPP,
read console - switches, and interface with standard laboratory
peripherals.

The OS/8 FORTRAN librarian, LIBRA, is used to create and
maintain libraries of RALF modules. The loader uses one such
library, specified by the user, to resolve undefined external symbols.
Each library contains a collection of RALF modules and a catalog,
which lists the program section names and entry points defined in
the modules, along with sufficient information for the loader to find
them.

LIBRA'S tasks are to create libraries (and their catalogs) from
user-specified sets of modules (RALF output files), to add new
modules to existing libraries, to copy the contents of a library to a
new library (all with various options on selective deletion and re-
placement during the copy), and to list the catalogs of libraries.

To create a library, call LIBRA by typing:

R L I B R A

in response to the dot generated by the Keyboard Monitor. LIBRA
loads the OS/8 Command Decoder, which prints an asterisk at the
left margin. In response to the Command Decoder's asterisk, type
in the following order: .
1. The output device and name of the library to be created (LIBRA

assigns the extension .RL unless one is specified). If no output'
file is specified, the default name FORLIB.RL is used and out-
put is to the system device.,

2. The desired number of index blocks (decimal, maximum 255)
enclosed in square brackets. LIBRA allocates two index blocks

'
if no specification is given.

3. The output device for the catalog listing when the library build
is complete (preceded by a comma). If no device is specified,
the listing is suppressed.

4. The input files (RALF output modules) or libraries to be in-
cluded in the library (preceded by a backarrow or left angle
bracket).

5. Options:
/C to continue input specification on next line.
/I if a decision is to be made on insertion of each entry point
or section name.
/Z if an existing file of the same name is to be replaced by the

Ã

new library.

/R if a new input file is to replace a module of the same name
already in the library.
The = option if extra blocks are to be allowed for library expan-
sion.

For the above command, a library named LIB 1 .RL is created on
the system device containing the existing library, LIBO.RL, and
the files R l , R2,. .., R6. Five blocks are allocated for the index;
the catalog is printed on the console terminal and 20 (octal) extra
blocks are reserved for future expansion. The /Z indicates that if a
file already exists with the name LIB1 .RL, it is to be replaced by
the newly created library.

If there are more than nine modules to be included, type /C to
continue input specification on the next line. Note that the "="
option and the output device for the catalog listing must be specified
on the last line (that is, the one without /C). The /Z, if it is used,
must appear on the first line.

In this case the library now contains the additional hies R7, R8,
. .., Rl1 . The /I and /P. options can be specified at any point in the
command line. Both /I and /R apply only to modules listed on the
line in which they appear.

To expand a previously created library, call LIBRA as usual.
Specify the name of the old library file as the first output file, the
catalog listing file, if desired, next, and then the modules or libraries
to be added as input. Do not specify /Z.

R L I B R A
*L I B1. RLJ TTY: <ROUT,MOD

LIBRA adds the contents of ROUT and MOD to LIB1. If the old
library file name does not exist, a new library is created using de-
fault options if necessary. since LIBRA cannot change the size of
the index or the room left for expansion at this time, it is useless
to specify index blocks and expansion blocks.

If a module entry point or section name being added to a library
duplicates a name in the library catalog, the, duplicate name is
printed on the terminal. The name in the catalog continues to refer
to the original module, unless:

/R is specified on a command line, then the new module is put in
the library and the old module of the same name is deleted (un-
less there are other names for the old module, in which case only

4
the duplicate name is deleted). For example:

causes any of the input modules R l , R2, and R3 to replace ex-
isting modules in L1BO.RL with the same entry point or section
name.

/I is specified on the LIBRA command line, then input file entry
points and section names are listed on* the console terminal. If
the names duplicate names in the catalog, the message printed is:

xxxx IS DUPLICATE NAME; KEEP OLD OR NEW?

where xxxx is an entry point or section name. LIBRA waits for
the user to type OLD and a RETURN (or just a RETURN or 0
and a RETURN) to keep the old name; NEW and a RETURN
(or N and a RETURN) to delete the use of the old name and
include the new. The question is repeated if any other character
is typed.

If the new names do not appear in the catalog, the message typed
is:

xxxx: INCLUDE?

where xxxx is the new entry point or section name.

Type YES and a RETURN (or just a RETURN or Y and a
RETURN) to include the name or NO and a RETURN (or N
and-a RETURN) to omit it. The question is repeated if any other
character is typed.

A catalog listing can be obtained at any time by omitting the
input file specification in the call to LIBRA. For example:

O R L I B R A
* FORLI B. RL.Ã LPT: <

prints the catalog of FORLIB on the line printer. LIBRA'S version
number (Vxx) is output as part of the catalog heading.

Entry points and section names may be deleted from the catalog
by combining the I and Z options. Each catalog entry is listed on
the console terminal with the message:

name: INCLUDE?

Type Y and RETURN to include the section name or entry point;
type N and RETURN to deleteit. If all catalog entries correspond-
ing to a particular module are deleted from the catalog in this
manner, the module is deleted from the library and the message:

MODULE IS DELETED

is printed on the console terminal.
FORLIB.RL, the standard library supplied with the FORTRAN

IV system, contains functions and subroutines that perform math-
ematical calculations and drive various peripheral devices. This
library may be modified with LIBRA to fit the needs of a particular
installation. Although at least one copy of the standard library
should be maintained as a backup, it may be desirable to delete
unwanted routines from FORLIB in order to reduce storage re-
quirements. For example, double precision routines may be deleted
if an installation does not include an FPP-12 with extended pre-
cision option. Care should be exercised not to delete subroutines
that may be called by the various system programs or by other
1 - library routines that are not deleted. Table 8-9 lists the librarv J

routines that execute calls to entry points in other routines; in gen-
eral, when an entry in the right - column of Table 8-9 is deleted, the
corresponding entry in the left column may not be called.

Table 8-9 FORLIB Calling Relationships

Section Name: Executes Calls to:

SYNC
DISP
EXPIR
EXP3
ALOG10
cos
TAN
SIND

DISP, ONQI
ONQB
EXP3
ALOG, EXP
ALOG
SIN
SIN, COS
SIN

Table 8-9 FORLIB Calling Relationships (Cont.)

Section Name: Executes Calls to:

COSD
TAND
ASIN
ACOS ,

ATAN2
SINH
COSH
TANH

- --

SIN
TAN
ATAN, SQRT
ATAN, SQRT
ATAN
EXP
EXP
SINH, COSH

For example, to delete the entry points ABS, IABS, and LSW
from the catalog, the proper command to LIBRA is:

Respond with Y and a carriage return to all of the messages except:

I A B S : I N C L U D E ? N
ABS: I N C L U D E ? N
MODULE I S D E L E T E D

Â

LSW: I N C L U D E ? N

The module containing ABS and IABS is deleted from the library
because all of its section names and entry points have been deleted
from the catalog. Entry point LSW is deleted from the catalog, but
the corresponding module remains in the library because other
entry points are still present in the catalog. Table 8-10 lists the
FORLIB entry points that are contained in modules with different
section names.

Table 8-10 FORLIB Multiple Entry Points by Section
*

Section Name Other Entry Points

IABS
SIGN
AMINO
AMAXO
DIM
PLOT
REALTM
CHARS
IFIX
AMOD
RSW
ONQI
SYNC

ABS
ISIGN
AMIN1, MINO, MINI
AMAX1, MAXO, MAX1
IDIM
SCALE, CLRPLT, #DISP
SAMPLE, ADB
CGET, CPUT, CHAR
AINT, INT
MOD
LSW, SSW, ROPEN, EXTLVL, RCLOSE
ONQB
CLOCK, TIME, #CLINT

The catalog entries #FIX, #RFDV, #LTR, #EQ, #NE, #GE,
#LE, #GT, #LT, #EXPIR, #CLINT, and #EXPI1 are used
by the compiler and should not be deleted.

Library Functions and Subroutines
Library functions and subroutines are called in the same manner

as user written functions and subroutines. The following section lists
- - - - - - - ; loLla i n T7nRTR A N proprams the library components tnai a ~ a ~ ~ ~ ~ ~ ~ Lw A .-,A. A.z

and illustrates calling sequences. where necessary. Arguments must
be of the correct number and type, but need not have the same
name as those shown in the illustrative examples. Routines that
require LAB8/E or PDP-12 hardware are marked with an
asterisk*. Routines that will run on the FPP with extended pre-
cision option are marked with a dagger sign (+). Neither symbol
may be used in the actual FORTRAN program. Certain library
routines are used by the FORTRAN system programs and are not
available to a user's FORTRAN program. These routines may be
identified by the initial "dk" character in the entry point or section
name, and are not listed in the following section.

ABS (SINGLE-PRECISION ABSOLUTE VALUE)
ABS calculates the absolute value of a real variable by leaving

the variable unchanged if it is positive (or zero) and negating the
variable if it is negative.

ACOS (SINGLE-PRECISION ARC-COSINE FUNCTION)
ACOS calculates and returns the primary arc-cosine (in radians)

of a real argument less than. or equal to 1.0 according to the
relation:

If x = 0.0, ACOS(x) = 7~/2.0

ADB* (RETURN NEXT SAMPLE FROM REAL-TIME SAM-
PLING BUFFER)

ADB gets and returns the next sample in the range [-5 1 2, 5 1 11
from the real-time sampling buffer. The following program illus-
trates how ADB may be used to sample 500 points from channel 3
and plot them on the scope:

DIMENSION PLTBUFC 400) J DATBUFC 50)
1 CALL CLRPLTC 400, PLTBUF)

CALL REALTM < DATBUFJ 5 0 8 38 1 J 500
CALL CLOCK (8 , 1 0)
DO 100 1 ~ 1 , 500

100 CALL PLOTC 1 3 1 / 3 8 4 * ~ A D B (X > / 1 @ 2 4 * + * 5)
READC 1, 10)Q

10 FORMATC 1 2)
G O TO 1
STOP
EN D

After finishing the plotting, the program waits for the user to
type the RETURN key, and then repeats the sampling-display
process. Note that REALTM sets up the sampling procedure, while
CLOCK actually initiates the sampling.

ADC* (ASYNCHRONOUS SAMPLING)
The ADC function accepts an integer argument in the range [O,

151, assumed to be a channel number. It returns the current value
of the referenced channel as a real number in the range [-I, I].
Sampling employs the fast SAM instruction for one or multiple
channels. ADC may not be used in a program that also uses
REALTM. The following program illustrates the use of the ADC
function.

C EXAMPLE. O F ADC F U N C T I O N
C h E Q U I hES P D P 1 2 O R LABSE HAKDWAhE
C S A M P L E S A^D IfPES ANALOG IiMFUT
c

1 0 COiMTIa'JUE
V K I l E C 4 a 100)

1 0 0 F O F M A K 8 TYPE IiV C H A P E L iMUMBLh *
1 *&VE DUMBER O F SAMPLES*)

R E A D C 4 j 1 0 1) :VCjMS
1 0 1 FOfMATC 2 1 31

DO 20 I = 1 * ^ S
X= ADCCN C)
U R I TEC 4* 1 0 2) X

1 0 2 FOH4ATCF15.5)
20 C O N T I N U E

GO10 1 0
CALL E X I T
EiV D

AIMAGf (COMPLEX TO IMAGINARY CONVERSION)
AIMAG returns the imaginary part of its complex argument as a

real variable.

AINT (SINGLE-PRECISION FLOATING-POINT TON IN-
TEGER)

AINT is a floating-point truncation function. Given a real argu-
ment, it truncates the fractional part of the argument and returns
the integral part as an integer. This is accomplished by taking the
absolute value of the argument, aligning and normalizing this result,
then restoring the original sign. AINT, IFK, and D>iT perform
identical functions.

ALOG (SINGLE-PRECISION NATURAL LOGARITHM)
ALOG calculates and returns the natural (Naperian) logarithm

of a real argument greater than zero. Any negative or zero argu-
ment returns an error message and a value of 0.0. The algorithm
used is an 8-term Taylor series approximation.

ALOG 10 (SINGLE-PRECISION COMMON LOGARITHM)
ALOG10 calculates and returns the common (base 10) logarithm

of a real argument greater than zero. Any negative or zero argu-
ment returns an error message and a value of 0.0. The calculation
is accomplished by calling ALOG to compute the natural logarithm
and executing a change of base.

AMAXO (SmGLE-PRECISION MAXIMUM VALUE)
AMAXO accepts an arbitrary number of integer arguments and *

retuns a real value equal to the largest of the arguments.

AMAXl (SINGLE-PRECISION MAXIMUM VALUE)
AMAXl accepts an arbitrary number of real arguments and

returns a real value equal to the largest of the arguments.

AMINO (SINGLE-PRECISION MJ3IIMUM VALUE)
AMINO accepts an arbitrary number of integer arguments and

returns a real value equal to the smallest of the arguments.

AMINl (SINGLE-PRECISION MINlMUM VALUE)
AMINl accepts an arbitrary number of real arguments and re-

turns a real value equal to the smallest of the arguments.

AMOD (SmGLE-PRECISION A MODULO B)
AMOD accepts two real argumeats and returns a real value

equal to the remainder when the first argument is divided by the
second argument. If the second argument is not sufficiently large to
prevent overflow, an error message and a value of 0.0 are returned.

ASIN (SINGLE-PRECISION ARC-SINE)
ASIN calculates and returns the arc-sine (in radians) of a real

argument in the range [-I, I] according to the relation:

If the argument falls outside the range [-I, I], an error message
results.

ATAN calculates and returns the primary arc-tangent (in radi-
ans) of a real argument. The argument is first reduced according to .
the rqlations:

and the arc-tangent is then computed by a power series approxima-
tion.

AY1AN2 (SINGLE-PRECISION ARC-TANGENT OF TWO AR-
GUMENTS)

ATAN2 accepts two real arguments, assumed to be an abscissa
and an ordinate respectively, and calc~~lates the arc-tangent of the
quotient of the first argument divided by the second argument, This
is accomplished by calling ATAN to find the principal arc-tangent
of the quotient and then adjusting the result, depending upon the
quadrant in which a point defincd by the arguments falls, accord-
.- -
i l l g i~ the ~ ~ k i t h ~ :

argument in first quadrant :itan2(y,x) = at:in(y/x)
argument in second quadrant :itan2(y,x) = at :in(y/ x) - - T
argument in third quadrant atan2(y,x) = atan(y/ x)- T

argument in fourth quadrant atan2(v.x) = at:in(v/ x)-1 r

CABS-t (COMPLEX ABSOLUTE VALUE)
CABS accepts a complex argument and returns the absol~lte

value of the argument as a real variable defined by:

CABS(X+iY) = SQR.T(X*:*?-t-Y **?I
FC0S-f (COMPLEX COSINE)

CCOS accepts a complex argument and returns the cosine of thc
argument, a complex number defined by:

CGET (CHARACTER GET SUBROI.JTINI3
'The calling sequence:

CALI4 CGET (STRING,N,CHAR)

causes the Nth character to be unpacked froni STRING and stored
in CHAR as a variable in the range 0, 63, where STRING is a
character string in A6 format.

CHKEOF (CHECK FOR END-OF-FILE SUBROUTINE)
CHKEOF accepts one real, integer or logical argument. After

the next formatted read operation, this argument will be set to
non-zero if the logical end-of-file was encountered. or to 0 if the

1
logical end-of-file was not encountered. The following is an exam-
ple of the use of CHKEOF:

$ /
CALL CHKEOF(E0F)
READ (N,lOl)DATA
IF (EOF.NE.0) GO TO 999

CLOCK* (INITIALIZE CLOCK SUBROUTINE)
The purpose of the CLOCK subroutine is to initialize certain

features of the KWl2A or DKSES real-time clock. The calling
sequence is:

CALL CLOCK (FUNCTN,RATE)

Depending upon the arguments FUNCTN and RATE, CLOCK
can enable Schmitt triggers, clock controlled A/D conversions, or
run the clock at a variable rate. The clock is always run on in-
terrupt. Both arguments may-be either integer, real, or logical in
type. The first argument indicates a class of clock functions7 and
the second specifies a clock rate in * ~ e r t z . A common use of the
clock routine will be in conjunction with the REALTM subroutine.
With one exception noted below, the clock routine is independent
of hardware type. That is, a program employing the KWl2A clock
on a PDP-1 2 does not require modification to run on a PDP-8. The
FUNCTN argument controls the enabling of all Schmitt triggers?
clock controlled AID conversions, and clock ate or external input
according to the scheme shown in Table 8-1 1.

Combinations of the conditions in Table 8-1 1 may be enabled by
setting FUNCTN to a value equal to the sum of the values of the
desired conditions. For example, to enable all Schmitt triggers, set
FUNCTN=7 (the sum of 4, 2, and 1); to enable clocked AID
conversion at an external rate, set FUNCTN=24, etc. If a clock
condition is not specified, the clock is disabled. Every call to
CLOCK clears any functions which may have been enabled by
previous calls to CLOCK and redefines clock conditions according
to the new arguments. If the FUNCTN argument is out of range

(e.g. negative)? the clock conditions enabled are arbitrary. Once
the clock has been started, the calling program may disposition a
Schmitt trigger via the SYNC subroutine? read the time of day via

. TIME7 or use the clock in conjunction with some other routine
such as REALTM. Schmitt triggers 1, 2 and 3 correspond to the
DK8ES events I , 2 and 4, respectively, or the KWl2A clock chan-
nels I , 2 and 3, respectively.

Table 8-1 1 CLOCK Subroutine FUNCTN Arguments

Value of
FUNCTN

0 none, or enable clocked A / D conversion, more than one
channel

1 enable Schniitt trigger I
2 enable Schmitt trigger 2
4 enable Schmitt trigger 3
8 enable clocked AID conversion, one channel

16 enable the clock to run under external input

The rate at which the clock runs is specified by the argument
RATE7 which has two different meanings that are dependent upon
tho ETTKTPTAT ovmv>-omt TC +h nnl lae Anfin m-4 n-Ac-:@.r .-.- --.+----I
b'kw .u L 3 a~5u111b11~. IL u l C ~ U ~ I L L U U G ~ MUL D ~ L G I L J ail G A L c i l i a L

rate (e.g., FUNCTN less than 16'1, then RATE is interpreted as. a
number in Hertz and specifies the rate of clock interrupts.

When the clock is run at a programmable ratel the rate must fall
in the range [0.0244, 4096.01, or one tick every 250 microseconds
to every 40 seconds. Specifying a rate outside this range causes the
clock to be disabled (which may be desirable in some cases). The
calling program should not specify an unnecessarily high clock rate,
as this slows down program execution. Because the allowable set of
programmable clock rates is discrete, the clock may not run at
exactly the specified rate but will always be less than or equal to
the specified rate and within one percent of it. The actual rate can
be computed from the specified rate by:

RA = RB/ IRB/ RR]
RA = actual rate
RR = requested rate
[] = greatest integer

RB = base rate - maximum number in the set (100000,
10000, 1000, 100) that satisfi6s the condition.
RB/ RE<4096

If an externally driven clock is specified, RATE is interpreted
as the number of external ticks between clock interrupts; and must
be in the range Cl, 40961. If the argument is outside this range7
the interrupt rate will be arbitrary. The RATE argument is actually
an overflow count7 and the actual rate of the clock can be deter-
mined from:
- RA = RE/RATE

where RE is the rate of the external input and RA is the actual
clock rate. The advantage of an externally driven clock is that it
may run at an arbitrarily high rate; however, specifying too high a
rate may hang up the FORTRAN system. The callini sequence to
define an external clock for the KWl2A differs from that of a call
for the DW8ES in that the KWl2A calling program must enable
Schmitt trigger 1. Optional clock execution is obtained on a
KW12A external clock when RATE=l . Note that the arguments
for a KWl2A external clock are sufficient to enable a DK8ES
external clock7 but not vice versa.

CL0G-f (COMPLEX NATURAL LOGARITHM FUNCTION)
CLOG calculates and returns the natural logarithm of its com-

plex argument, as defined by the relation: '

CLRPT* (CLEAR PLOT SUBROUTINE)
The calling sequence:

CALL CLRPLT (N,BUFFER)

clears the current plot, if any7 and assigns an N element buffer
(designated BUFFER) which will hold 3N/2 points for display.
The display is actually created by the PLOT subroutine. The vari-
able BUFFER must be an array with at least N elements.

CMPLX? (REAL-TO-COMPLEX CONVERSION FUNCTION)
CMPLX accepts two real arguments and returns a complex

value with real part equal to the first argument and imaginary part
equal to the second argument.

CONJG f (COMPLEX CONJUGATE FUNCTION)
CONJG calculates and returns the complex conjugate of its

complex argument. This is accomplished by leaving the real part of
the argument unchanged, and negating the imaginary part.

COS (SINGLE-PRECISION COSINE FUNCTION)
COS calculates and returns the cosine of a real argument (in

radians) by applying the identity:

COSD (SINGLE-PRECISION COSINE IN DEGREES)
COSD calculates and returns the cosine of a real argument (in

degrees). This is accomplished by adding 90 to the argument,
converting the result to radians, and extracting the sine.

COSH (SINGLE-PRECISION HYPERBOLIC COSINE FUNC-
TION)

COSH calculates and returns the hyperbolic cosine of a real
argument according to the relation:

and an error message is returned.

CPUT (CHARACTER PUT SUBROUTINE)
The calling sequence:

CALL CPUT (STRING,N,CHAR)

causes CPUT to insert CHAR as the Nth character in STRING,
where STRING is a character string stored in A6 format, and
CHAR is a number in the range [O, 631 which is interpreted as a
character. The following program illustrates the use of CGET and
CPUT.

.DAI A S T W ' d E f ! * /
WFiITE(4> 1 0 @) 51R

l a@ FOWIATC ' i iEY ! I N A 5 C I I ' a A 6)
W R I T E (~ B 101)

101 FOfiMAT(* AEY ! I L ~ DECIMAL * 1
DO 10 I = l ~ 4
CALL CGETC S T b I > I C d A W
W h I T J 5 (4 > 102) I C d A h

1 0 COblTIHUE
102 FOMIATC 16)

DO 20 I = 19 6
J= 2* I
CALL CFbTC 5 T h 1, J)

20 COig T I N U E
lih1 TE(43 103) STH

103 E O i H A T (' NEW S l h I b l G *>A6)
C L L E X I T
EV D

. Fi F4
*TCHRC/GS

t I E f ! I d A S C I I r iEf !
HEY! I N EECIMAL

8
5

2 5
33

L ~ E W S l k I N G E D F H J L

CSINf (COMPLEX SINE FTJNCTION)
CSIN calculates and returns the %sine of a complex argument

according to the relation:

SIN(X+iY) = SIN(X)*COSH(v+i*COS(X)*SmHv)

CSQRTT (COMPLEX SQUAW ROOT FTJNCTION)
CSQRT calculates and returns the square root of a complex

argument.

DABS? POUBLE-PRECISION ABSOLUTE VALUE FUNC-
TION)

DABS returns the absolute value of its double-precision argu-
ment by negating the argument if it is negative, or returning it'
intact if it is positive.

DATANT (DOUBLE-PRECISION ARC-TANGENT FUNC-
TION)

DATAN calculates and returns the primary arc-tangent of its
double-precision argument. The argument is first reduced to the
interval [0, %] with the identities:

and the arc-tangent is then calculated as a continued fraction
approximation.

DATAN2-f (DOUBLE-PRECISION ARC-TANGENT OF TWO
ARGUMENTS)

DATAN2 accepts two double-precision arguments, assumed to
be an abscissa and an ordinate respectively, and calculates the arc-
tangent of the quotient of the first argument divided by the second
argument. The result is then adjusted, depending upon the quad-
rant in which a point defined by the arguments falls, in the same
manner as for the ATAN2 function.

DATE (OS/8 DATE SUBROUTINE)
DATE accepts three integer arguments, accesses the current

OS/8 system date, and returns an integer Â£ro 1 to 12 correspond-
ing to the current month as the fist argument, an integer from 1
to 3 1 corresponding to the current day as the second argument, and
an integer from 1970 to 1977 corresponding to the current year as
the third argument.

DBLE? (SINGLE- TO DOmLE-PRECISION CONVERSION)
DBLE accepts a real argument and returns a double-precision

value equal to the argument, filled out with zeroes in the low-order
three words.

DC0S-f (DOmLE-PMCISION COSINE FUNCTION)
DCOS calculates and-returns the cosine of a double-precision

argument (in radians). This is accomplished by adding PI12 to the
argument and passing this result t~ the DSIN function*

DEXP-f (DOUBLE-PRECISION EXPOmNTIAL FUNCTION)
DEXP calculates and retuvs the exponential function of its

double-precision argument by applying the method of Kogbetliantz
(D M Journal of Research and Development, April, 1957, pp
1 10-5).

8-56

DIM (SmGLE-PECISION POSITNE W A L DIFFERENCE)
DIM calculates and returns the positive difference of two real

arguments. That is7 if the first argument is larger than the second
argument, DIM returns the difTerence between the arguments; if
the first a p m e n t is less than or equal to the-second argument,
DIM returns 0.0.

. DLOGT POmLE-PWCISION NATURAL LOGARITHM)
- DLOG ,calculates and returns the natural (Naperian) logarithm
of its double-precision argument. This is accomplished by reducing
the range of the argument through application of a method de-
scribed by Ralston and Wdf in their text, Numerical Methods for
Digital c;mputers7 and then performing a Taylor series expansion.

DLOGI o t (DO~LE-PRECISION COMMON LOGARITHM)
DLOG 10 calculates and returns the common (base 10) logarithm

of its double-precision argument by extracting the natural loga-
rithm:and executing a change of base.

DMAXl POUBLE-PRECISION MAXIMUM VALUE) +

DMAXl accepts an arbitrary number of double-precision argu-
ments and returns the largest of the arguments.

DMml PODLE-PRECISION MINIMUM VALUE)
DMINl accepts an ~ arbitrary number of double-precision argu-
ments and returns the smallest of the arguments.

DMODT (DOUBLE-PRECISION A MODULO B FUNCTION)
DMOD. accepts two double-precision arguments and returns a

double-precision value equal to the remainder when the first argu-
ment is divided by the second argument. If the second argument is
not sufficiently large to prevent overflow7 an error message and a
value of 0.0 are returned.

DSIGNT PODLE-PECISION TRANSFER-OF-SIGN)
DSIGN accepts two double-precision arguments, calculates the

absolute value of the first argument7 and returns this value if the
second argument is positive (or zero), or the negative of this value
if the second argument is negative.

DSIN? (DOUBLE-PRECISION SINE FUNCTION)
DSIN calculates and returns the sine of a double-precision

argument (in radians). The argument is first reduced to the range
[0, P1/2], and the sine is .then calculated from a Taylor series
approximation.

DSQRT? (DOUBLE-PRECISION SQUARE ROOT)
DSQRT calculates and returns the (positive) scpare root of a

positive double-precision argument. Any negative argument results
in an error message.

EXP (SINGLE-PRECISION EXPONENTIAL FUNCTION)
EXP calculates and returns the exponential function of a real

argument. The algorithm uses a numerical method after
Kogbetliantz (IBM Journal of Research and Development, April,
1957, pp 110-5).

EXTLVL* (READ PDP-12 EXTERNAL LEVEL)
EXTLVL accepts two integer, real or logical arguments. The

first argument is assumed to be a PDP-12 external level number in
the range [O, 121. If the referenced external level is at +3 volts
(floating), the second argument is set equal to 0. If the referenced
external level is at 0 volts (ground), the second argument is set
equal to 1. If the first argument is outside the range 10, 121, the
value returned in the second argument is unpredictable. If
EX'l'LVL is called on a PDP-8, the second argument will always
be set to zero.

FLOAT (MEGER-TO-FLOATING-POINT CONVERSION)
FLOAT accepts an integer argument and returns a real variable

equal to the argument.

IAJ3S (INTEGER ABSOLUTE VALUE FUNCTION)
IABS calculates and returns the absolute value of an integer

variable by leaving the variable unchanged if it is positive (or
zero), and negating the variable if it is negative.

IDIM (INTEGER POSITIVE DIFFERENCE FUNCTION)
IDIM calculates and returns the positive difference of two

integer arguments. That is, if the first argument is larger than the
second argument, IDIM returns the difference between the argu-
ments; if the first argument is less than or equal to the second
argument, IDJM returns a value of 0.

IDINT (DOmLE-PRECISION INTEGER TRUNCATION)
IDINT accepts a double-precision argument and returns the

largest integer that is less than or equal to the argument.

IFIX (SINGLE-PRECISION FLOATING-POINT-TO-INTE-
GER FUNCTION)

IFIX is a floating-point truncation function. Given a real argu-
ment? it truncates the fractional part of the argument and returns
the integral part as an integer. IFIX? AINT and INT perform the
same function.

INT (SINGLE-PRECISION FLOATING-POINT-TO-INTEGER)
INT is a floating-point truncation function that performs the

same function as AINT and IFIX.

ISIGN (INTEGER TRANSFER OF SIGN FUNCTION)
ISIGN accepts two integer arguments? calculates the absolute

value of the first argument, and returns this value if the second
argument is positive (or zero)? or the negative of this value if the
second argument is negative.

LSW* (READ PDP-12 LEFT SWITCH REGISTER)
LSW accepts two real? integer or logical arguments. The first

argument is assumed to be a PDP-12 left switch register switch
number in the range [0, 111. Upon return? the second argument is
set to the logical value of the referenced switch (either 0 or 1). If the
first argument is outside the range [07 l l] ? the result that will be
returned in the second argument is unpredictable. If LSW is called
on a PDP-8, a value of 0 is always returned.

MAXO (SINGLE-PRECISION MAXIMUM VALUE)
MAXO accepts an arbitrary number of integer arguments and

returns an integer result equal to the largest of the arguments.

MAXl (SINGLE-PRECISION MAXIMUM VALUE)
MAXl accepts an arbitrary number of real arguments and

returns an integer result equal to the largest of the arguments.

MINO (SINGLE-PRECISION MINIMUM VALUE FTJNCTION)
MINO accepts an arbitrary number of integer arguments and

returns an integer value equal to the smallest of the arguments.

8-59

MINI (SINGLE-PRECISION MINIMUM VALUE FUNCTION)
MINI accepts an arbitrary number of real arguments and returns

an integer value equal to the smallest of the arguments.
4

MOD (INTEGER A MODULO B FUNCTION)
MOD accepts two integer arguments and returns an integer

value equal to the remainder when the first argument is divided
by the second argument. If the second argument is not sufficiently
large to prevent overflow, an error message and a value of 0 are
returned.

ONQB (PLACE TASK ON BACKGROUND JOB CHAIN)
ONQB is a subroutine which is called from PDP-8 mode RALF

code to place a PDP-8 mode task on the list of background tasks.
These background tasks are executed in round-robin order when-
ever the PDP-8 processor has nothing to do (e.g., while waiting for
terminal input). If FPP-12 hardware is present, these background
subroutines execute in parallel with the execution of the
FORTRAN program by the FPP-12. ONQB is called by a
sequence such as:

JMS% X0NQB-I- 1
ADDR BR JOB

where BRJOB is the address of the background job, a subroutine
which must obey all the conventions of ONQI. ONQB resides in
field 1 and should only be called from field 1. See the FORTRAN
IV Software Support Manual for details.

ONQI (PLACE INTERRUPT HANDLER ON SKIP CHAIN)
ONQI is a subroutine which is called from PDP-8 mode RALF

code to put the interrupt handler of a device on the interrupt skip
chain. When an interrupt is received by the PDP-8 processor, the
processor checks each device on the skip chain, then the FPP, then
the standard FORTRAN peripherals, e.g., line printer. If the
interrupt was caused by a device with a handler on the skip chain,
the PDP-8 processor branches to the handler. ONQI is called by a
sequence such as:

JMS% XONQI+ 1
IOT
ADDR IHNDLR

XONQI, ADDR ONQI
EXTERN ONQI

where IOT is the actual IOT code for the device skip-on-flag in-
struction and 1HNDLR is the address of the interrupt handler for
this device. ONQI always resides in field 1 and must be called by
PDP-8 mode RALF code in field 1 only. The interrupt handler is
entered with the AC cleared and the data and instruction fields set
to 1. It should return with these registers in the same state. ONQI
should not be called more than once for any given IOT.

PLOT* (DISPLAY DATA ON PDP-12 OR LAB-8/E SCOPE)
The calling sequence:

CALL PLOT (M,X,'Y)
plots M points whose X coordinates are in the array X and whose
Y coordinates are in the array Y into the plot buffer specified by
the CLRPLT routine. A background task plots the contents of all
points entered into the plot buffer on the scope whenever the
PDP-8 processor would otherwise be idle. When X is 1, X and Y
are interpreted as scalars. The scope is scaled with (0,O) in the
lower left corner and (1.3,l.O) in the upper right corner. These
values may be altered by a call to SCALE.
PLOTR* (CHANGE SCOPE BUFFER VALUES)

The calling sequence: '

CALL PLOTR (M,X,Y,I)
alters the M entries in the plot buffer beginning at the Ith entry,
getting the new X coordinates from the array X and the new Y
coordinates from the array Y. Calling this subroutine does not
alter the number of points displayed by the background display
task.

RCLOSE* (CLOSE A PDP-12 RELAY)
RCLOSE accepts an integer, real, or logical argument assumed

to be a PDP-12 relay number in the range [O, 51 and closes the
referenced relay. If the argument falls outside the specified range,
the result is unpredictable. RCLOSE has no effect when called
on a PDP-8.

ROPEN* (OPEN A PDP-12 RELAY)
ROPEN accepts one integer, real or logical argument, assumed

to be a PDP-12 relay number in the range [0, 51, and opens the
referenced relay. If the argument falls outside the specified range,
the result is unpredictable. ROPEN has no effect when called on a
PDP-8.

RSW (READ SWITCH REGISTER)
RSW accepts two real, integer or logical arguments. The first

argument is assumed to be a switch register switch number in the
range [O, 111. The second argument is set to the logical value of
the referenced switch (right switch register on the PDP-12). If the
first argument falls outside the range [O, I I], the result that will be
returned in the second argument is unpredictable.

SCALE* (DEFINE SCALE OF SCOPE)
SCALE defines the scope screen scaling for calls to PLOT. The

calling sequence is:
fr

CALL SCALE (XLO, YLO, XHT, YHI)

where:

XLO is the value at the left edge of the screen.
YLO is the value at the bottom of the screen.
XHI is the value at the right edge of the screen.
YHI is the value at the top of the screen.

If SCALE is never called, the assumed values are equivalent to:

CALL SCALE (0,0,1.3,1 .O)

SIGN (SINGLE-PRECISION TRANSFER OF SIGN)
SIGN accepts two real arguments, calculates the absolute value

of the first argument, and returns this value if the second argument
is positive (or zero), or the negative of this value if the second
argument is negative.

SIN (SINGLE-PRECISION SINE FUNCTION)
SIN calculates and returns the sine of a real argument (in

radians). The argument is reduced to the first quadrant, and the
sine is then computed from a Taylor series expansion.

SIND (SINGLE-PRECISION SINE (DEGREES) FUNCTION)
SIND calculates and returns the sine of a real argument (in

degrees). This is accomplished by converting the argument to
radians and passing this value to the SIN function.

SNGLt (DOUBLE- TO SINGLE-PRECISION CONVERSION)
SNGL accepts a double-precision argument, truncates the low-

order bits, and returns the resulting real value.

SiNH (SINGLE-PRECISION HYPERBOLIC SIGN)
SINH calculates and returns the hyperbolic sine of a real argu-

ment according to the relations:

SQRT (SINGLE-PRECISION SQUARE ROOT FUNCTION)
SQRT calculates and returns the (positive) square root of a

positive real argument. Any negative argument results in an error
message.

SSW * (READ PDP-12 SENSE SWITCH)
SSW accepts two real, integer or logical arguments. The first

nnn-19 - - - n o o i - t r i t ~ h nnrnhpr in the argument is assumed to be a rur L A abiiob DvvAb+aA ..--vvA
range [0, 51. The second argument is set to the logical value of the
referenced sense switch. If SSW is called on a PDP-8, a value of
zero is always returned. If the first argument falls outside the range
[O, 51, the result that will be returned in the second argument is
generally unpredictable. The exception is the calling sequence:

CALL SSW (1 4,RUA12)

which returns RUA12=0 on a PDP-8 and RUA12=1 on a
PDP-12.

SYNC* (READ A SCHMITT TRIGGER)
SYNC determines whether a Schmitt trigger has been fired, and

must not be called unless CLOCK has been called at least once.
SYNC accepts two real, integer or logical arguments. The first
argument is assumed to be a Schmitt trigger number in the range
[I, 31. The second argument is set to one if the referenced Schrnitt

trigger has fired since the last time it was read, or to zero other-
wise. The referenced Schmitt trigger is also-reset to the not-fired, or
zero, state. A call to CLOCK sets all triggers to the zero state, and
any trigger that was not enabled by a call to CLOCK is always in
the zero state. If the first argument falls outside the range [I, 31, an
unpredictable result (either zero or one) is generally returned. If
the first argument is zero, however, a value of zero is always
returned.

TAN calculates and returns the tangent of a real argument (in .

radians). This is accomplished by computing the quotient of the .
sine of the argument divided by the cosine of the argument; thus,
if the cosine of the argument is zero, an error message is returned.

TAND (SINGLE-PRECISION TANGENT, DEGREES)
TAND calculates and returns the tangent of a real argument (in

degrees). This is accomplished by converting the argument to
radians and passing the resulting value to the TAN routine.

TANH (SINGLE-PRECISION HYPERBOLIC TANGENT)
TANH calculates and returns the hyperbolic tangent of a real

argument by computing the quotient of the hyperbolic sine of the
argument divided by the hyperbolic cosine of the argument.

TIME* (READ TIME OF DAY)
TIME may be called as a subroutine with one real or integer

- argument, or as a function with a dummy argument. It returns the
elapsed time since the clock was started. This result will be in
seconds unless the clock is running under external input, in which
case it will be in external ticks, with the interval between ticks
specified by the clock rate (see CLOCK).

FORTRAN IV SOURCE LANGUAGE
The FORTRAN language is composed of mathematical-form 3

statements constructed in accordance with precisely formulated
rules. FORTRAN (source) language programs consist of meaning-
ful sequences of FORTRAN statements that direct the computer
to perform specified operations and computations. OS/8
FORTRAN IV is compatible with ANSI Standard FORTRAN;
that is, programs written in compliance with the ANSI Standard
FORTRAN (3.9-1966) are acceptable to OS/8 FORTRAN N.

Certain features of OS/8 FORTRAN IV are not defined by the
standard, so users intending to write OS/8 FORTRAN IV pro-
grams to be used on other machines should ensure either that they
do not use the non-standard features, or that the other machines
on which the programs are to be run also include these features.

FORTRAN source programs are generally written on a coding
sheet such as the one shown in Figure 8-4. Each line of a program
contains three fields: statement number field, line continuation
field, and statement field. A fourth field, the identification field
consisting of columns 73 to 80, is ignored by the compiler. It may
be used to number statements sequentially or for any other purpose.

A statement number consists of one to five digits entered in
columns 1-5. Leading zeros or blanks (leading and trailing) are
retained on the listing, but otherwise ignored in this field. State-
ment numbers may be assigned in any order, but they must be
unique. Any statement referenced by another statement must have
a statement number. Statement numbers on specification statements
are ignored.

FORTRAN
COOIhiC ĉ."

Figure 8-4 FORTRAN IV Coding Form

If a FORTRAN statement is so large that it cannot conveniently ,.
fit into one statement field, the statement fields of up to 5 additional
lines may be used to specify the complete statement. The first line
of a statement must have a blank in column 6. Continuation lines
must have some character other than a blank in column 6.

FORTRAN statements define arithmetic operations, call for
input or output, and alter the sequence of program execution. Any
FORTRAN statement may appear in the statement field (columns
7-72). Except when they occur as alphanumeric data within a
FORMAT statement, DATA statement, or literal constant, blanks
(spaces) are ignored and may be used freely for appearance pur-
poses. A TAB at the beginning of a line or after the statement
number causes spacing to column 7. The first TAB after column 7
is treated as a blank by the compiler. Any input line that does
not contain a TAB or at least 6 other characters in columns 1-72
is ignored by the compiler.

Comments explaining the program may be written in any format.
A line which contains the letter C in column 1 is interpreted as a
line of comments. Comment lines are printed on all listings, but are
otherwise ignored by the compiler. A comment line must not im-
mediately precede a continuation line.

Constants, Variables, and Expressions
CONSTANTS

The constants, variables, and expressions described below are
basic to expressing data values in the FORTRAN language. Seven
types of constants are used in OS/8 FORTRAN IV programs:
integer, real, double precision, octal, complex, logical', and Hol-
lerith.

Integer Constants
An integer constant consists of from one to seven decimal digits

written without a decimal point. Negative- constants must be pre-
ceded by a minus (-) sign; however, the plus (+) sign preceding a
positive constant is optional. Embedded commas and blanks are
not allowed in integer constants.
Examples:

0
4-05 1
-440
6073

Integer constants must fall within the range -2t23 to 2t23-1
(-8,388,608 to 8,388,607 decimal). When used as subscripts, in-
teger constants are taken modulo 2T 1 2 (4096 decimal). The follow-
ingare illegal as integer constants:

10.3 (decimal point)
5,000 ~ (comma)
9000000 (outside acceptable range)

Real Constants
A real constant is an integer constant followed by a decimal point,

a second string of digits and an optional exponent. Only the leftmost
six digits, aside from leading zeros, are used by the compiler. A
negative constant must be preceded by a minus (-) sign. The plus
(+) signpreceding a positive real constant is optional.

Real constants may be entered in exponential notation, as illus-
trated below, by specifying a positive or negative decimal value
followed by the letter E and a 1-3 digit integer which may be posi-
tive, negative or zero. The value of the real constant is taken as
the value of the decimal number preceding the letter E multiplied
by that power of 10 indicated by the integer following the letter E.
This notation eliminates leading and trailing zeroes from very large
or very small real constants. The absolute value of any real constant
must fall within the approximate range 10T-615 to 10T615 (or zero).
Examples:

The following are not valid real constants.

6,517.6 (comma)
131 (no decimal point or exponent)
IDE (no exponent)
20E1.5 (exponent must be integer)

Double Precision Constants
,'

A double precision constant is a real constant that contains extra
significant digits. Aside from leading zeroes, only the leftmost 17
significant digits of a double precision constant are used by the
compiler.. The decimal point may be omitted from a double pre-
cision constant that does not have a fractional component. In other

. -respects, double precision constants conform to the same format as
real constants, except that the letter D is used in place of the letter
E, preceding the exponent, when exponential notation is employed.
Double precision arithmetic requires the presence of an FPP with
extended precision option.
Examples:

24.671 325982134DO
3.6D2 (i.e., 360.)
3.6D-2 (i.e., .036)
3.0DO
3D0

Octal Constants
An octal constant is a string of octal digits (0-7 only) preceded

by the letter 0. Only the 12 low-order digits are used by the com-
piler. Octal constants are valid only in DATA statements where
they are generally used to set %its for masking purposes.
Examples:

DATA ~ 0 ~ / 0 1 0 3 2 / -

DATA BASE/07777/

Complex Constants
FORTRAN IV provides for direct operations on complex num-

bers. A complex constant is written as an ordered pair of real con-
stants separated by a comma and enclosed in parentheses.
Examples:

The first constant of the pair represents the real part of the com-
plex number, and the second constant represents the imaginary
part. The real and imaginary parts may each be signed. The en-
closing parentheses are part of the constant and always appear,
regardless of context. The two parts are represented internally by

single precision floating-point numbers occupying adjacent posi-
tions in memory. Complex arithmetic can only be done on the FPP
using the extended precision option.

Logical Constants
The two logical constants (.TRUE. and .FALSE.) have the in-

ternal values 1. and O., respectively. Logical constants may be
entered in DATA or input statements as .TRUE. or .FALSE.
(or abbreviations .T. or .F.). The enclosing - periods are part of the
constant and always appear. Logical quantities are operated upon
by logical operators only.

Hollerith Constants
A hollerith constant (or literal constant) is a string of ASCII

characters. There are two forms by which a Hollerith constant may
be represented.

Form 1 : nH character string

where n is the number of characters following the H.
Examples:

'WORDS'
'1 23'

The single quote character which delimits a Hollerith constant in
form 2 may be included in the character string if immediately pre-
ceded by a second single quote character. Thus, 'DON' 'T' will be
stored as DON'T.

A Hollerith value may be entered in a DATA statement or FOR-
MAT statement as a string of one to six ASCII characters per in-
teger or real variable, and one to twelve per complex or double
precision variable.

VARIABLES
A variable is a quantity which is represented by a symbolic

name. Arithmetic statements and ASSIGN statements are used to

8-70

change the value of a variable, by computation or assignment, dur-
ing program execution. 1/0 statements and subroutine calls can
also change the value of a variable. A variable name is a string of
one to six alphanumeric characters, the first of which must be
alphabetic:

Valid Names Invalid Names

J 1ACT (first character number)
ALPHA STANDARD (too long)
MAX FILE 1 (space within name)
A34 #MAIN (# not alphanumeric)

There are five types of variables: integer, real, double precision,
complex, or logical. Definitions for these types correspond to
definitions of constants of the same type, i.e., integer variables take
on a value of from zero to any positive or negative integer in the
range -8,388,607(decimal) to 8,388,607(decimal); real variables
contain a decimal point; etc.

Type classification is assigned to a variable explicitly via a type
declaration statement or by virtue of the initial letter of its name. A
first letter of I, J, K, L, M, or N indicates an integer var iable .~ny
other first letter indicates a real variable. The type declaration state-
ment overrides the type assigned by an initial letter.

Arrays
Variables can be either scalar (representing a single quantity)

or array (representing many quantities with one name). An entire
array is identified by its name, while a single element of the array
is identified by a subscript, in parentheses, following the array name.

Variable Refers To

ARRAY(1) The first element of a one-
dimensional array named
ARRAY.

B(l,3) The element located in the
first row and the third col-
umn of a two-dimensional
array named B.

Subscripts
The subscripts of an array variable can be integer constants or

expressions. For example, A(l), A(ONE), and A(I+1,2*K+3*J)
illustrate valid subscripts. The elements of an array must be of the
same type, i.e., all real or all logical.

The extent of an array is determined by the dimensions it is
assigned. This may be done by means of a DIMENSION or COM-
MON statement, or as part of a type declaration statement.

EXPRESSIONS
An expression is a combination of elements (constants, sub-

scripted or nonsubscripted variables, and function references), each
of which is related to another by operators and parentheses. An
expression represents one single value that is the result of calcula-
tions specified by the elements and operators that make up the
expression. An expression may, itself, function as an element in
another expression if it is enclosed in parentheses. The FORTRAN
language provides two kinds of expressions: arithmetic and logical.

A rit hmetic Expressions
An arithmetic expression is a combination of constants, variables,

and function references separated by arithmetic operators and
parentheses. In the absence of parentheses, algebraic operations
within arithmetic expressions are performed in the following
descending order:

** exponentiation
- unary minus

* and / multiplication and division
+ and - addition and subtraction - - . equals or replacement sign

Parentheses are used to change this order of precedence. An
operation enclosed in parentheses is performed before its result is
used in other operations. In the case of operations of equal prece-
dence, the calculations are performed from left to right. Additional
computations (such as sine, cosine, or square root extraction) may
be specified via a function reference.

An arithmetic expression may consist of a single constant, vari-
able, or function call, referred to as a basic element. For example:

2.7 1828
Z(N)
TAN (THETA) '..

Any function reference acts as a basic element in an expression,
since all functions return a unique value for any given argument.
The reference SQRT(4.), for example, always represents the value
2. in an expression.

Any arithmetic expression may be enclosed in parentheses and .
considered as a basic element. For example: +

IFIX(X+Y)/2
(ZETA)
(COS(SIN(PI*EM)+X))

*

Compound arithmetic expressions may be formed using numeric
op.erators to combine basic elements. For example: -

x + 3
TOTAL/A
PI*EM

A basic element preceded by a + or - sign is also an arithmetic
expression. For example:

With the exception of unary minus, no two arithmetic operators
may appear in sequence. For instance, X*/Y is illegal.

Parentheses do not imply multiplication, thus (A+B)(C+D) is
improper. This expression must be written:

(A+B) * (C+D)

A typical numeric expression using numeric operators and a
function reference, the expression for one of the roots of the general
quadratic equation

might be coded as:

The following examples illustrate conversion of other mathe-
matical expressions into FORTRAN expressions.

In generals only real and integer - quantities may be mixed in
arithmetic expressions. No other type mixing is legal. Logical vari-
ables and constants may only be operated upon by logical operators
(.AND., .OR., .NOT., .XOR., .EQV.). Hollerith literals in expres-
sions have type integer, with only the first six characters being used.

Logical Expressions
A logical expression combines logical constants, logical variables,

logical function references, and logical expressions, using the logical
or relational operators given below.

Logical operators can combine only basic elements whose type is
logical. Relational operators compare units of type integer, real, or
double-precision. The value of such an expression will be of logical
type (that is, .TRUE. or .FALSE.). The relational operators .EQ.
and .NE. may also be used with complex expressions. Complex
quantities are equal if the corresponding parts are equal.

Logical Operator
- - --

.NOT. expr

expr 1 .AND .expr2

exprl .OR.expr2

expr 1 .XOR.expr2

Meaning

Has the value .TRUE. only if the expression
is .FALSE., and has the value .FALSE. only
if the expression is .TRUE.

Has the value .TRUE. only if exprl and
expr2 are both .TRUE., and has the value
.FALSE. if either exprl or expr2 or both are
.FALSE.

(Inclusive OR) Has the value .TRUE. if
either exprl or expr2 or both are .TRUE.,
and has the value .FALSE. only if both
exprl and expr2 are .FALSE.

(Exclusive .OR.) Has the value .TRUE. if
either exprl or expr2, but not both, are

8-74

Logical Operator Meaning

.TRUE., and has the value .FALSE. other-
wise.

exprl .EQV.expr2 (Equivalence) Has the value .TRUE. if exprl
and expr2 are both .TRUE. or both .FALSE.,
and has the value .FALSE. otherwise.

Relational operator Relation

. GT. greater than

.GE. greater than or equal to

.LT. less than -

.LE. less than or equal to

.EQ. equal to

.NE. not equal to

The enclosing periods are part of the logical and relational opera-
tors, and must be present.

A logical expression, like an arithmetic expression, may consist
of basic elements or a combination of elements, as in

where BOOL is a logical function with 1 argument, or a singly-
dimensioned logical array. A logical expression may also be en-
closed in parentheses and function as a basic element. Thus, the
expressions:

A.AND.(B.OR.C)

and

are evaluated differently.

No two logical operators may appear in sequence, except in the
case where .NOT. appears as the second of two logical operators.
Any logical expression may be preceded by the unary operator
.NOT. as in:

Logical and relational operations (unless overridden by paren-
theses) are carried out in the following order:

For example, the logical expression

is interpreted as

T k r e x e 16 l~giczi! operators theoretically possible between the
logical expressions. Two d thcm arc cofistants (tme and fzdse) m d
four are unary operators (that is, the value of one of the two ex-
pressions is irrelevant to the value of the operation). These six are
marked by asterisks in Table 8-12. The remaining ten operators
can be most conveniently represented as shown at the right of the
table, with A and B representing the two logical expressions in-
volved.

Assignment Statements
A variable may be assigned a value at any point in the source

program. During program execution, the most recent assignment
determines the variable's value in subsequent statements. The
statements which may be used to assign a value to a variable are
the arithmetic and logical statements which assign a numeric or
logical value and the ASSIGN statement which assigns a statement
number.

ARITHMETIC STATEMENTS
Arithmetic statements indicate computations to be pedomed by

OS/8 F O R T U N IV.

Form v=e

where v is- a variable name

e is an expression
- - is the replacement operator

Effect The variable v is assigned
the value of expression e.

Table 8-12 Tmth Table for Logical Expressions

Expressions Involved :

F F T T FORTRAN IV
F T F T Expressions

* FALSE F F F F .FALSE.

AND F F F T A.AND.B

XOR F T T F A .XOR. B

NOR T F F F .NOT. (A .OR. B)

EQv T F F T A .EQV. B
* NOT B T F T F .NOT. B

* NOT A T T F F .NOT. A

NAND T T T F .NOT. (A .AND. B)

* TRUE T T T T .TRUE.

'The arithmetic statement associates a variable name with a value.
This name may then be used in subsequent expressions to represent
the value. Thus, if the arithmetic statement A=2 is executed first,
the statement B=A+l is equivalent to the statement B=24-1, or
B=3.

Since the equal sign in the arithmetic statement does not indicate
cqua!ity but, rat?xr7 a replacement; statements of the form:

are perfectly legal. The arithmetic statement is, in fact, the only
means in FORTRAN by which the results of computations repre-
sented by expressions may be stored.

In the following examples, the expregsion to the right of *the
equal sign is evaluated and converted when necessary to conform
to the type of the variable to the left of the equal sign. The con-
verted value is stored in the storage location associated with the
variable name to the left of the equal sign. That is, if a real ex-
pression is assigned to an integer variable, the value of the expres-
sion is converted to an integer before assignment.
Examples:

The expression to be assigned must be capable of yielding a value
which conforms to the type attribute of the variable to which it is
being assigned. The compiler pedorms conversions in accordai~ce
with Table 8-1 3.

THE GO TO ASSIGNMENT STATEMENT
The ASSEN statement is used in conjunction with an assigned

GO TO statement to permit symbolic referencing of statements.

Form ASSIGN n to var

Where n is a statement number
var is an integer or real variable

Effect The variable represents the assigned statement number
and may be used in an assigned GO TO statement.

Table 8-13 Conversion Rules for Assignment Statements

TO: DOUBLE LOGICAL LITERAL
FROM: REAL INTEGER COMPLEX PRECISION CONSTANT CONSTANT

Real

Integer

--

N-Convert non-zero to 1.0 (logical truth)
D-Direct replacement
C-Conversion between integer and floating point
R-Real only (imaginary part set to 0) ,
I-Set imaginary part to 0

~ - ~ i ~ h order portion of .expression assigned
L-Set low-order part to 0 '

6-Use the first character in the literal and five characters following

/
The statement number assigned must be that of an executable

statement. If more than one ASSIGN statement refers to the same
integer variable name, the value assigned by the last executed state-
ment is the current value.

An integer variable which has obtained its value via an ASSIGN
statement must be redefined via an arithmetic statement before it
can be used in any context other than the GO TO statement. For
example, the statement:

ASSIGN 10 TO COUNT

associates the variable name COUNT with statement number 10
and the statement:

is then invalid. The statement becomes valid, however, if preceded
by an arithmetic assignment statement such as:

which assigns COUNT the integer value of 10. The use of an
arithmetic assignment, however, invalidates any future use of the
variable COUNT in an assigned GO TO.

An assigned GO TO must not be used to transfer program con-
trol outside of the program or subprogram in which it appears.

Control Statements
OA * alalcments are normally executed in the sequence in which they

appear in the source program. This sequence may be altered by the
use of the FORTRAN control statement: GO TO, IF, DO, CON-
TINUE, PAUSE, STOP, CALL and RETURN. The CALL and
RETURN statements, which transfer control to and from sub-
routines, are described later in this section.

GO TO STATEMENTS
The GO TO statement transfers control directly to a specified

statement. There are three forms of the GO TO statement: un-
conditional, computed, and assigned. A GO TO statement may
appear anywhere in the executable portion of the source program
except as the terminal statement in a DO loop.

Unconditional GO TO Statement

Form GOTOn

Where n = the statement number of an executable statement

Effect Control is transferred to statement n

When control .is transferred by a statement of the form GO TO
n, the usual sequential processing continues at the statement whose
number is a.
Examples:

Computed GO TO Statement -.

Form GO TO (nl ,n2,...,nK)e
'.

An optional comma may follow the right parenthesis.

Where n l ,n2,...,nk are statement "numbers

e is a positive (non-zero) integer expression whose
value is less than or equal to the number of statement
numbers within the parentheses.

Effect Control is transferred to the statement whose number
is eth in the list of statement numbers.

The integer expression in a computed GO TO statement-acts as
a switch, as in the example given below:

If K=l, control will be transferred to statement 20; if K=2, to
statement 10; or if K=3, to statement 6 . If K has a value less than
1 or greater than the number of statements within the parentheses,
unpredictable results occur.

Assigned GO TO Statement

Form G O T O v
or

GO TO v,(nl ,n2 ,..., nk)

Where v is an integer variable

nl,n2, ..., nk are statement numbers whose values may
have been assigned to v

Effect Control is transferred to the statement whose number
is currently associated with the variable v via an AS-
SIGN statement.

An ASSIGN statement defines an integer
statement number. Thus, when the statement:

ASSIGN 10 TO LOOP

has been executed, control is transferred to
assigned GO TO statements:

GO TO LOOP

or

GO TO LOOP, (1 0,20,100)

or real variable as a

statement 10 by the

either of which may be used to transfer control to whichever state-
ment number is currently associated with LOOP.

An assigned GO TO statement must never be used to transfer
program control outside of the program or subprogram in which it
appears.

IF STATEMENTS
An IF statement causes control to be transferred on the basis of

the value of a specified expression. There are two forms of the IF
statement: arithmetic and logical.

Arithmetic IF Statement

Form IF (arithmetic expression) n l ,n2,n3

Where n l ,n2,n3 are statement numbers

Effect Control is transferred to:
n l if expression <0
n2 if expression = 0
n3 if expression >0

An IF statement transfers control to one of three statements, as
shown in the model, according to the value of the expression given.
For example, the statements:

ALPHA=3
IF (ALPHA) 10,20,30

transfer control to statement number 30. Complex expressions may
be used in an arithmetic IF statement; however, only the real part
is used in the comparison. If less than three statement numbers are
present, control passes to the next sequential statement for each of
the missing conditions. Thus:

IF (ALPHA) 10
STOP

transfers control to 10 if ALPHA is negative, otherwise it executes
the STOP statement.

Logical IF Statement

Form IF (logical expression) statement

Where statement may be any executable statement except
another logical IF or a DO statement

Effect the statement-given is executed if the expression has
the value .TRUE., otherwise, the next statement in
sequence is executed.

Examples:

LOGICAL T,F
IF (T.OR.F)X=Y+l u

IF (Z.GT.X) CALL SWITCH (S,Y)
IF (K.EQ.INDEX) GO TO 15

. DO STATEMENT
DO statements provide for the repeated execution of a statement

or series of statements.

Form DO n i=ml ,m2,m3

Where n is a statement number

i is a nonsubscripted integer or real variable

ml ,m2,m3 are integer or real constants or expressions

Effect i is set to m l and statements following the DO state-
ment up to and including statement n are executed
repeatedly increasing i by m3 at the end of each
iteration, until i is greater than m2.

The statements which are executed as a result of a DO statement
are called the range. The variable i is called the index. The values
m l , m2, and m3 are, respectively, the initial, limit, and increment
values of the index. Note that the range of a DO need not be merely
a section of straight line code following the DO statement. A con-
trol statement which causes instructions elsewhere in the program
to be executed is permissible, as long as control eventually comes
back to the terminal statement. When the range contains such con-
trol statements, it is called an extended range.

If m3 is omitted, an increment of 1 is assumed. A zero or nega-
tive increment is not permitted. The range of a DO is always
executed at least once, regardless of the values of the limit and
increment. After each execution of the range, the increment value
is added to the value of the index and the result is compared with
the limit value. If the value of the index is not greater than the
limit value, the range is executed again using the new value of the
index.
Examples:

DO 5 1=1,100
(I= 100 during last iteration of DO loop)

DO 20 1=5,100,2
(1 ~ 9 9 during last iteration of DO loop)

DO 100 1=0,100,2
(I= 1 00 during last iteration of DO loop)

After the last execution of the range, control passes to the state-
ment immediately following it. This exit from the range is called the
normal exit. Exit may also be accomplished by the execution of a
control statement within the range.

The values of the initial, limit and increment variables or ex-
pressions of the DO loop may be altered within the range of the
DO statement. Such alteration will not affect the operation of the
loop, since the values of m l , m2, and m3 are remembered by the
program. Altering the index will affect the number of iterations of
the loop, however. This value is available for program use as a
variable.

For example: .

In this example, the value of the index I is used as the minuend
in determining the value of TEMP. Also, when a statement trans-
fers controloutside the range of a DO loop, e.g., by a GO TO or
IF, the index retains its current value and is available for use as a

. variable. A transfer into a DO loop from outside its range may
cause improper partial execution of the loop unless the transfer
into the range is a return from the extended range.

1

The terminal statement of a DO range must not be a GO TO,
DO, RETURN, STOP, PAUSE, or an arithmetic IF statement. A
logical IF statement is allowed as the last statement of the range,
provided that it does not contain any of the statements mentioned
above. As an example:

In this case, the range is considered ended when, and if, control
would normally pass to the statement following the entire logical
IF statement. Statement 5 is executed four times whether or not the
statement Y(K)=X(K) is executed. Statement 6 is not executed
until statement 5 has been executed four times. Note that if state-
ment 5 were:

it would be an error.
Any statement which serves as the range limit of a DO loop must

not be used as the transfer point for IF or GO TO statements which
are outside the DO loop. The range of a DO statement may also
include other DO statements. This is referred to as nesting. The
range of any nested DO statement must fall entirely within the
range of the next outermost DO statement; that is, every statement

in the range of an inner loop must be within the range of its enclos-
ing outer loop. It is possible for a terminal statement to be the ter-
minal statement for more than one DO loop, however. Figure 8-5
illustrates the order in which nested DO'S are executed.

Figure 8-5. Nested DO Loops.

Do loops may be nested to a depth of (at least) ten levels. In
calculating this depth, one implied DO in an 1/0 statement counts
as one level, whose range is the single statement and n implied
DO'S within one 1/0 statement count as n levels the ranges of
which are all within the single statement.

CONTINUE STATEMENT
The CONTINUE statement consists of the text:

CONTINUE

and causes continuation of the normal sequence of program exe-
cution. CONTINUE is principally used as the range limit of DO
loops in which the last statement would otherwise be a GO TO,
IF, PAUSE, STOP or RETURN statement. The CONTINUE
statement is also used as a transfer point for IF and GO TO
statements within the DO loop that are intended to begin another
repetition of the loop. For example:

8-86

DO 25 1 ~ 1 ~ 2 0
D=D<-5.0

7 I F < A - B) 1 0 a 3 0 , 2 5
1 0 A=A+1 .0

B = B - 2 . 0
GO TO 7 *

25 CONTINUE
30 C= A+ B -

A CONTINUE statement used as the range limit of any number
of DO loops is compiled as an executable instruction, as in this
example:

Â

55 CONTINUE
Â

A CONTINUE statement which serves as the range limit of a
DO loop must not be used as the transfer point for IF or GO TO
statements which are outside the DO loop. If it serves as the range
limit of several DO loops, as above, it must not "be used as the .

transfer point for IF or GO TO statements which are outside the
innermost loop. For example:

DO 20 I s 1 3 5 0
I F C K O E Q . ~) G O TO 1 0 (incorrect)
DO 1 0 1 = 1 8 5 0
I F C K Ã ˆ E Q O ~ G O TO 20 (correct)
WRITE < 58 1 0 0) I J JaK

1 0 . CONTINUE
20 CONTI NUE
100 FORMAT (3 1 6)

EN D

PAUSE STATEMENT

Form PAUSE
PAUSE number

Where number is an integer variable or expression

Effect The number, if any, is typed on the console terminal.
Execution is suspended until the user presses CON-
Tinue on the computer console.

The PAUSE statement interrupts program execution.

STOP STATEMENT
The STOP statement is placed at the logical end of a program.

Form STOP

Effect terminates the program and returns control to the
OS/% monitor.

The STOP statement terminates program execution. No continu-
ation is possible. If no STOP statement is present in a program, a
STOP occurs when control passes to the END statement in the
MAIN program.

A CALL EXIT statement is equivalent to a STOP and closes
tentative files at the last block written on the file. Control returns to
the OS/8 Monitor.

END STATEMENT
The END statement consists of the text:

END \

and is placed at the physical end of a program or subprogram. In
the main program, the END statement is equivalent to STOP; in a
subroutine, END is equivalent to RETURN. The compiler assumes
the presence of an END statement if it fails to find one before the
end of the source input file. A program can not reference an END
statement.

Data Transmission Statements
Data transmission statements control the transfer of data between

computer memory and 1/0 devices. These include three distinct
types of statement: data description (FORMAT) statement, input/

output (READ and WRITE) statements, and device control
(BACKSPACE, REWIND, and END FILE) statements.

FORMAT STATEMENT
The FORMAT statement describes the form and arrangement

of data on a record.

Form FORMAT (specl ,spec2,. ../. . .)
Where specl,spec2 define consecutive series of characters

within a record.

/ is the end of the record description.

) is the end of a statement.

Effect Specifies either the type of conversion to be per-
formed between the internal and external representa- .
tion of data or the format of fixed data.

A FORMAT statement'must have a statement number which is
used in other statements for reference.
The field specification (spec) is one of the following:

nAw
nBw.d
nDw.d
nEw.d
nFw.d
nGw.d
nH
nIw
nLw
-sP
Tw
nX
'string'
"string"

where:

n = an unsigned non-zero integer stating the number of times
the field specification is to be repeated.

A,B,D,E,F,G,H,I,L,P,T,X = type of conversion

w = non-zero, unsigned integer constant specifying width of
field. Field width must be large enough to provide for all
characters (including decimal point, sign? and exponent)
necessary to constitute the data value plus any blank
characters needed to separate it from other data values.
The data value within a field is right justified; if the value
is too large for the field, the field is filled with asterisks.

.d = unsigned integer constant (may be zero) specifying num-
ber of digits to the right of the decimal point or, for G
conversion, the number of significant digits.

Field specifications must be written in the same sequence as the
data record being described, except when the T specification is
used.

A FORMAT statement may describe one or more records, each
of which can consist of one or more field specifications. The char-
acter "/" (slash) indicates that a new 'record is being described.
For example, the statement:

FORMAT CGl0*2/158 2 F 8 e 4)

is equivalent to

for the first record, and:

FORMAT C I 5a2F8 4)

for the second record. Field specifications are separated by com-
mas as shown above. The separating comma may be omitted when
a slash is used. When n slashes appear at the end or beginning of a
format, n blank records may be written on output or n records
skipped on input. When n slashes appear in the middle of a format,
n-1 blank records are written or n-1 records skipped.
For example,

FORMAT (1 6, / / / a 2F5e 1)

8-90

where /// indicates that two records are to be skipped
A group of field specifications may be repeated by enclosing the

group in parentheses and preceding the enclosed group with a
repetition number. For example,

Both the slash and the closing parenthesis at the end of the fomat
indicate the termination of a record. If the list of an input/output
aatement dictates that transmission of data is to continue after the
closing parentheses of the format is reached? the format is repeated
starting with that group repeat specification terminated by the last
preceding right parenthesis, or7 if none exists, then to the first left
parenthesis of the format specification. Thus, the statement:

FORMAT (F7.2,3 (12,2(13,E9.3) 17))

group repeat Iteminator
specification Last preceding

right parenthesis

causes (F7 .273(1272(13,E9.3)17)
to be used on the first record, and the format

, to be used on succeeding records. -

As a further example, consider the statement:

The first record has the format

and successive records have the format

FORMAT statements may be placed anywhere within the
executable portion of the source program. Unless the FORMAT
statement contains only Hollerith data for direct input]output
transmission, it will be used in conjunction with the list of a data

transmission statement. Because FORMAT statements are refer-
enced by READ or WRITE statements, each FORMAT statement
must have a statement number.

The ASCII character string comprising a format specification
may be stored as an array. Input/output statements may then refer
to the format by giving the array name, rather than the statement
number of a FORMAT statement. The stored format has the
same form as a FORMAT statement excluding the word "FOR-
* a A - 99 -1

l v i ~ 1 . 1 fie enclosing parentheses are required.
Field specifications in a FORMAT statement should be of the

same type as the corresponding items in the 110 list; that is7
integer quantities require integer (I) conversion, etc. There are
three types of field specifications: numeric? logical? and alpha-
numeric (including Hollerith). In addition, a blank field description
may be given to skip portions of an input record or to embed
blanks within an output record.

Numeric Fields
Numeric fields are specified by one-letter codes (B, D, E, F7 G

or I) which designate the type of conversion to be performed. Two
parameters may appear in a numeric field description, depefiding
on the field type. These are: an integer (w) specifying the field
width (which may be greater than required to provide for blank
cebm~fis between f i ~ ~ ~ ~ b e r s) 2fid 2fi ifikger (d) specifyi~g ?he EWI-

ber of decimal places to the right of tbe decimal point or, for G
conversion, the number of significant digits. Decimal points are
not permitted in I conversion. (For B, D, E, F and G input? the
position of the decimal point? if present in the external field, takes
precedence over the value of d in the format.) Conversion codes
and the corresponding internal and external forms of the numbers
are listed in Table 8-14. Numeric fields are right justified with the
addition of leading spaces and, if necessary? trailing zeroes.

Single precision I/O specifications will transfer a maximum of
six decimal digits of accurate data. Double prkision 110 specifica-
tions will transfer a maximum of 15 decimal digits of accurate data.

- Table 8-14 Numeric Field Codes

Conversion Internal External External
Code Form Input Form Output Form

D Double
precision

B Double
precision

E Real

F Real

G Real

I Integer

Decimal number
with or without a
decimal point or
exponent field.

Same as D.

Decimal number .
with a.D exponent
field and a decimal
point.

Same as F.

Decimal number
with or without a
decimal point or
exponent field.

Decimal number
with or without a
decimal point or
exponent field.

Decimal number
with or without a
decimal point or
exponent field.

Decimal number
without a decimal
point or exponent.

Decimal number
and an E exponent
with a decimal point
field.

Decimal number
with a decimal point.

Decimal number
with a decimal point
and with or without
an E exponent field.

Decimal number
without a decimal
point or exponent.

The allowable numeric field specification forms are:

1. B w . ~
2. Dw.d
3. Ew.d
4. Fw.d
5. Iw
6. Gw.d

For example:

FORMAT (15aF10.2a D l 8 - 10)

could be used to output the line

bb32bbbb-l7.6ObbO.596254768lE+O3

8-93-

on the output listing. (The letter b represents a blank or space.)
Since there is no carriage control character in the statement? the
first character is interpreted as a carriage control character and is
not printed.

Complex quantities are transmitted as two independent real
quantities. The format specification consists of two successive real
specifications or one repeated real specification. For instance? the
statement

could be used in the transmission of three complex quantities.
The G format is the general format code that is used to t ra~smit

data having a specific number of significant figures, no matter what
the magnitude of the number. This format is intended to allow use
of the simplest output format which can express the desired value
in the space allowed. The rules for input are the same as for E
format.

The form of the output conversion (E or F) is a function of the
magnitude of the data being converted. Table 8-15 shows the
magnitude of the internal data, M, and the resulting method of
conversion.

Table 8-1 5 Conversion Under G Format

lO(d-2)<=M<lO(d-1) F(w-4).1, 4X
lO(d-l)<=M<lo(d) F(w-4) -0, 4X
A11 others Ew.d

Scale factors may be written for B, D, E, F, and G con-
version. A scale factor is written:

where s is a signed or unsigned integer that specifies the scale
factor and P is the identifying character.

-
For F type conversions, the scale factor specifies a power of ten,

so that

(scale factor)
external number = (internal number)* 10

For D and E conversions, the scale factor multiplies the fraction
by a power of ten, but the exponent is decreased accordingly leav-
ing the number unchanged except in form. For example, if the
statement:

FORMAT CF8.3aE16.5)

corresponds to the line

bb26.45 1 bbbb-0.41321E-01

then the statement

FORMAT C-IPF8.3a2PE16e5)

- would correspond to the line

bbb2.645bbb-41.3215E-03

For G type output conversions, the scale factor is not used
unless the magnitude of the number is such that E format is used.
In input operations, the scale factor is not used if there is an ex-
ponent in the external field.

When no scale factor is specified, a scale factor of zero is as-
sumed. Once a scale factor has been specified, however, it holds for
all subsequent B, D, E, F, and G type conversions within the same
format unless another scale factor is encountered. A zero scale
factor may be resumed via an explicit specification. Scale factors
have no effect on I type conversions.

Logical Fields
Logical data can be described in a manner similar to numeric

data. A logical field description has the form:

where L is the conversion code character and w is an integer

specifying the field width. The data is transmitted as the value of
a logical variable in the input/output list. On input, the first non-
blank character in the data field must be .T., T, .F. or F; the value
of the logical variable will be stored as .TRUE., .TRUE.; or
.FALSE., .FALSE., respectively. Leading blanks and the period
preceding the T or F are ignored. If the data field is blank, a value
of false will be stored. On output, w-1 blanks followed by the
letter T or F, according to the variable's value, will be transmitted.
For example, if the specification were L10, the output for the value
.TRUE. would be:

Hollerith Data A Conversion
Hollerith data that is to be stored by the program is specified by:

where A is the conversion code character and w is. the number of
characters in the field. The alphanumeric characters are transmitted
as the value of a variable in an input/output list. The variable may
be of any type. The sequence:

READ C 2 * 5 > V
5 FORMAT (A 4)

causes four characters to be read and placed in memory as the
value of the variable V.

The value of w is limited to the maximum number of characters
which can be stored in the space allotted for a single variable. If
w exceeds this amount, the extraneous rightmost characters are
lost on input, and on output the characters after the sixth (twelfth
with double precision) are not significant. If w is less than the num-
ber of characters which can be stored in the space allotted to the
variable, on input the characters are left justified and blank-filled on
the right of each list item. On output the leftmost w characters in
the variable are transmitted to the output field.

Hollerith Data H Conversion
Hollerith data which is not changed by the program is specified

by one of two forms. One, called H conversion, is:

where H is the control character and n is the number of characters
in the string (including blanks). For example/the format in the
statement below can be used to print PROGRAM COMPLETE on

' the output listing.

FORMAT (17H PROGRAM COMPLETE) -

f.

Referring to this format in a READ statement causes the 17
characters to be replaced with a new string of characters- from the
input file.

In the second form, the Hollerith data is simply enclosed in
. single quotes. The output result is the same as in H conversion; on

output the characters between the quotes (including. blanks) are -
written as part of the output data, as with Hollerith constants. This
form is illegal on input. A quote character within the data is
represented by two successive single quotes. For example:

FORMAT < * PROGRAM COMPLETE ' 1

A Hollerith format field may be placed among the other fields of.
the format. For example, the statement:

FORMAT (I 58 7H FORCE=F. 10.. 5)

can be used to output the line:

Note that the separating comma may be omitted after a
Hollerith format field. The legal characters in a Hollerith field are
the 64-character graphic subset of ASCII, with the exception of
" @ ", which must not be used. a'

Carriage Control
The first character of each ASCII record controls the spacing of

the line printer or Teletype. This character may be established by
beginning a FORMAT statement for an ASCII record with IHc,
where c is the desired control character. The line spacing actions,
listed below, occur before any printing:

Character Effect -
blank Advance carriage to next line.

0 zero Skip a line (double space).
1 one Form feed-go to top of next page;

equivalent to 0 on TTY.
4- plus Suppress skipping~overprint previous line.

For example, the program:

A= 140
50 FORMAT (2F3 1)

X=(A-5*25)/2*5
WRITE C 6 ~ 1 0 0) X

100 FORMAT (1 H ! s F Q . I)
STOP
END

moves the line printer paper to the top of the next sheet (1H1) and
prints b3.5 on the first line. If any unexpected character appears
first in the FORMAT statement, it is processed as a blank.

It is often desirable to print a prompting sequence, such as a
question, to which a response is to be entered on the same line.
To cause such prompting, a $ is included at the end of a FORMAT
statement that is associated with a- WRITE statement that has been
satisfied. This will inhibit the carriage return and line feed before
the next input. For example:

The output is:

SAMPLE NO* 5 1 s t RED
RED

-
Record Layout Specification

Input and output can be made to begin at any position within a
FORTRAN record by use of a field description of the form:

where T is the spacing control character and w is an unsigned
integer constant specifying the character position in a FORTRAN
record where the transfer of data is to begin.

For printed output, w corresponds to the (w-l)^ print position,
since the first character of the output buffer is a carriage control
character and is not printed. (A blank carriage control indicator is
assumed.) For example:

FORMAT < T ~ ~ . Ã ˆ . " B L A C K ' T S ~ 'WHITE' 5

causes "BLACK" to appear in columns 29-33 and "WHITE" to
appear in columns 49-53. The statement:

FORMAT (T 5 0 . ~ 'BLACK'# T30'WHITE1)

causes "BLACK" to appear in columns 49-53 of one line and
"WHITE" to appear in columns 29-33 of the following line. The-'
two lines will constitute two separate records if later read as input.
On input, the statement:

1 FORMAT (7 ' 3 5 . ~ F 5 . 0)
READ (38 1) X

causes the first 34 characters of the input data to be skipped, and
the next five characters to be used as the value of X. If an input
record containing

is read with the format specification

then the characters XYZ and ABC are read, in that order. The
T-code can be used in a FORMAT statement with any other type
of format code.

Blanks can be introduced into an output record or characters
skipped on an input record by use of the specification:

where the spacing control character is X and n is the number of
blanks or characters skipped and must be greater than zero. For
example, the statement:

can be used to output the line

bSTEPbbb28bbbbbbbbbbYzb-3.872

The preceding blank would not be printed on the terminal or line
printer.

DEFINE FILE STATEMENT
The FORTRAN program may read or write chosen records out

of a direct-access file without reading intermediate records. In the
more common sequential access, the FORTRAN program must
read or write each record in turn until the correct record is found.
No DEFINE FILE statement is required for sequential access to
mass storage files.

-> ---w. 7- - v w - m e L J J ~ M ~ N ~ ^ MLE statement is required so that mass storage
files may be referenced as direct access files by input/output state-
ments.

Form DEFINE FILE al(bi,cl,U,vl),a2(b2,~2,U,v2), . .

Where a is an integer constant or variable name that is the
symbolic designation for this file specified to the run-
time system.

b is an integer expression that defines the number of
records in the file.

c is an integer expression that defines the length (in
floating point variables) of each file record. Each
single precision integer or real variable or constant
requires one floating point variable; double precision
and complex variables or constants require two.

U is a fixed argument designating that the file is
unformatted.

v is an integer variable name, called the associated
variable, which is set at the conclusion of an input/
output operation on the file to point to the next
record.

Effect Describes a mass storage file for use with input/
output statements.

The associated variable (v) in a DEFINE FILE statement is
used to maintain an index of records processed. I t is set auto-
matically after an input/output statement is executed. The state-
ment:

specifies a 1000-record file, each record of which is 100 floating
point variables long. The variable IV1 will maintain an index of
records processed, providing a pointer to the next record.

The symbolic file designation (a) cannot be passed as a dummy
argument to a define file statement in a subroutine.

INPUT/OUTPUT STATEMENTS
The input/output statements, READ and WRITE, govern

transfer of data records between internal storage and peripheral
devices. Each statement can contain an input/output list naming
the variables and array elements to be given values on input or
whose values are to be transmitted on output. Both formatted and
unformatted records can be transmitted. A formatted record re-
quires the use of a format specification.

Input/Output Lists
An input/output list contains variable names and array ele-

ments whose values kill be assigned on input or written on output.
Constants a r e not allowed as list items. During input, the new
values listed can be used in subscript or control expressions for
variables appearing later in the list. For example:

reads a new value for L and uses this value in subscripts of A and
B.

The transmission of array variables may be controlled by index-
ing similar to that used in the DO statement. This is called an
implied DO and includes as a list element a parenthesized list of
control variables followed by the index control. For example:

is equivalent to:

The indexing may be compounded by nesting the implied DO'S
as in the following:

The above statement reads in the elements of array MASS in the
following order:

If an entire array is to be transmitted, the indexing may be
omitted and only the array name written. The array is transmitted
in order of increasing subscripts with the first

most rapidly. Thus; the example above could have been written:

READ (7~75) MASS

assuming that the array MASS is dimensioned MASS(4,5). The
same statement can transmit integer and real quantities. If the data
to be transmitted exceeds the items in the list, the extra data is
ignored.

Input/Output Records
All data is transmitted by an input/output statement in terms of

records. The maximum amount of information in one record and
the manner of separation between records depends upon the
medium. For punched cards, each card constitutes one record; on
a terminal, a record is one line; for ASCII records, the amount of
information is specified by the FORMAT reference and the 1/0

list; for magnetic tape binary records, the amount of information is
specified by the 1/0 list.

Each execution of an input or output statement initiates the
transmission of a new data record. If an input/output statement
requests less than a full record of information, the unrequested
part of the record is lost and cannot be recovered by another input/
output statement without repositioning the record. Repositioning is
not possible on all devices, however. If an input/output statement
requires more than one ASCII record of information, successive
records are read in sequence.

The READ Statement

Form READ (u,f) list formatted READ
READ (u,f)
READ (u) list unforrnatted READ
READ (u)

READ (a'r) list direct access mass
storage READ

Where u is an input unit designation

f is a format statement reference number

list is an 1/0 list of variable names

a is a symbolic mass storage file number (unsigned
integer constant or integer variable)

' designates direct access

r is the record number where transfer begins
(integer expression)

Effect Input is performed according to the arguments of
the READ statement.

The unit designation(u) referred to in READ statements must
be an integer in the range 1 to 9. Unit designations are assigned
via a device specification command to the run-time system. If
device specifications are not made, the system assumes the standard
device designations given in the section on the FORTRAN IV
Run-Time system. Thus; READ (1'10) could refer to input from
the high-speed paper tape reader, and READ (4,ll) could refer to
input from the terminal. Formatted and unformatted records
should not be mixed on a single unit.

A formatted READ statement causes information to be read
from the specified unit and put in memory. The data are con-
verted from external to internal form as specified by the referenced
FORMAT statement. If an 1/0 list is provided, the data are stored
as the values of the listed variables. The second form of the for-
matted READ statement is used if the data are transmitted directly
into the specified format. For example,

Detection of end-of-file during input causes a fatal run-time system
error unless the library subroutine CHKEOF was called. CHKEOF
should only be used with formatted 1/0 involving a single record.

When a comma is encountered on input, this signals the end of
the current field and causes the next input character to be read as
the first character of the next input field.

An unformatted READ statement causes binary information
to be read from the unit designated and stored in memory as values
of the variables in the 1/0 list, if any. If the record contains more
words than the list requires, that part of the record is lost. If more
items are in the list than are in one record, additional records are
read until the list is completed.

A direct access READ statement provides random access to
fixed-length records in a mass storage file. The file whose i~coids
are to be read must be defined by a DEFINE FILE statement. For
example,

DEFINE FILE ATCC 100- 100a Ua PT)
READ (ATC'5)ARRAY

The WRITE Statement

Form WRITE (u,f) list formatted WRITE
WRITE (u,f)
WRITE (u) list

WRITE (u) unformatted WRITE

WRITE (a'r) list Direct access mass storage
WRITE

Where u is an output unit designation (unsigned integer
constant or variable)

f is a format statement number

list is an 1/0 list of variable names

a is a symbolic mass storage file number

' designates direct access

r is an associated variable (record pointer)

Effect Output is performed as specified by the arguments of
the WRITE statement.

The unit designation (u) referred to in WRITE statements may
be an integer in the range 1 to 9. u n i t designations are assigned
via a device specification command to the run-time system.

A formatted WRITE statement may appear with or without an
1/0 list. If a list is provided, the values of the variables in the list
are read from memory and written on the unit designated in ASCII
form. The data is converted to external form as specified by the
designated FORMAT statement. If no list is supplied, information
is read directly from the specified format and written on the
designated unit in ASCII form. For example:

f - l M I T E Ca,10d)
100 F O R M A T (0 OUTPUT R E C O I ? D R I

. will produce the following record on unit 2:

OUTPUT K E C O U O

In the case of an unformatted or direct-access WRITE, the
values of the variables in the list areread from memory and written
on the unit designated in binary form. A record holds 85 single
precision variables. If the list elements fill more than one record,
successive records are written until the list is completed. If the list
elements do not fill the record, the remaining part of the record
contains unknown data. Thus, if there are 100 variables in the list,
two records are used; one record contains 85 variables and the

second record contains 15 variables and unknown data. For
example:

will produce three records on unit 6, the first will contain X(l) to
X(85); the second will contain X(86) to X(170), and the third will
contain X(171) to X(200).

A direct access WRITE statement outputs a fixed-length record
directly into a mass storage file. The file must have been defined
previously via the execution of an appropriate DEFINE FILE
statement. For example:

DEVICE CONTROL STATEMENTS
There are three device control statements-BACKSPACE,

END FILE, and REWIND, which apply to any file-structured
device (DECtape, and disk). Their forms and effects are listed in
Table 8-16.

Table 8-16 Device Control Statements

Statement Effect

BACKSPACE u If the next record which would be read or written
on unit (u) is n, BACKSPACE repositions the
unit so that the next record to be read or written
will be n-1. If the first record is the next record
to be read or written, the BACKSPACE state-
ment has no effect.

Table 8-16 Device Control Statements (Cod.)

. . Statement Effect
-- -

REWIND u Repositions the designated unit (u) to the begin-
ning of the file. If the unit is at the beginning of
the file, the REWIND statement has no effect.

END FILE u Writes an END-OF-FILE character in the spec-
ified file (u), provided that the file has been writ-
ten on by a formatted WRITE. END FILE does
not execute a REWIND.

Specification Statements
Specification statements may be divided into three categories:

Storage specification statements, DIMENSION, COMMON and
EQUIVALENCE, which give the compiler storage allocation
instructions; data specification statements, DATA and BLOCK
DATA, which are used to enter values; and type declaration state-
ments, INTEGER, REAL, DOUBLE PRECISION, COMPLEX,
and LOGICAL, which specify the type of variable.

STORAGE SPECIFICATION STATEMENTS ,

DIMENS7ON Statement

Form DIMENSION name 1 (ul ,.. .,u7), name2 (vl ;. .. ,v7) ,...
Where u l , ..., u7 and v l , ..., v7 are the maximum values of

the subscripts they represent, up to a maximum of seven
r

subscripts. 8

,
Effect The array name assigns the type to the array. Storage

is allocated according to the dimensions given.

Each array specification gives the array name and the maximum
size which each of its subscripts may assume. Array size is limited
to 4096 elements. Each size specification must be a non-zero
positive integer constant. For example:

defines A as a on'e dimensional array variable with storage loca-
tions for 10 FPP words. In floating-point FORTRAN, each FPP

word occupies three storage locations. Therefore allocating storage
locations for 10 words reserves 30 locations of core. Array B is
defined as a two dimensional array with storage for 24 FPP words
(4x6) ; 72 locations are reserved. Array X is a 3 dimensional array
with 125 FPP words, reserving 375 locations.

In certain cases involving subroutines, a dimension may be an
unsubscripted integer parameter.

Any number of arrays may be declared in a single DIMENSION
statement. Each array variable appearing in the program must
represent an element of an array declared in a DIMENSION
statement, unless the dimension information is given in a COM-
MON or TYPE statement.

Dimension information may appear only once for a given vari-
able. The DIMENSION statement must precede any reference to
the variable including reference in a DATA or EQUIVALENCE
statement. TYPE declaration or COMMON statements may appear
anywhere in a program unless they include dimension information.

A subprogram can establish adjustable arrays at execution time
if both the array name and the subscript size are expressed as
dummy arguments in the subroutine, as in:

To do this, the prqprnrmz- estz5lish *4, X, Y 2nd Z 2s
required arguments The dummy array must not exceed the dimen-
sions of the main program array but may be smaller if the call pro-
vides lower subscript sizes than those of the main program dimen-
sioning or if the initial array element referenced is not the beginning
of the main program array.

COMMON Statement

Form COMMON/blockl /a,b,c/block2/d,e7f/ ...

Where block1 ,block2,..., are the block n'ames.

a,b,c, d,e,f are the variables to be assigned to each
block.

Effect Specified variables or arrays are stored in an area
available to other programs.

By means of COMMON statements, the data of a main program
and/or the data of its subprograms can share a common storage
area. The common area can be divided into separate blocks which -

are identified by block names that may not be the same as any pro-
gram variable names. A block is specified as follows:

The variables which follow the block name indicate scalar or
array variables assigned to the block. They are placed in the block
in the order in which they appear in the block specification. For
example, the statement:

indicates that the elements X,Y, and T are to be placed in block
R in that order, and that U, V, W, and Z are to be placed in block
C-. Variables whose names appear in the formal parameter list must
not also appear in COMMON declarations within the subroutine.
A COMMON block may not have the same name as a variable in
the same program. Also, a COMMON block may not have the
same name as any subprogram which is used at the same time as
the COMMON block.

Block entries are linked sequentially throughout the program,
beginning with the first COMMON statement. For example, the
statements : 7

have the same effect as the statement:

One block of COMMON storage, referred to as blank COM-
MON, can be left unlabeled. Blank COMMON is indicated by two
consecutive slashes, for example

indicates that B, C, and D are placed in blank COMMON. The

8-109

slashes may be omitted when blank COMMON is the first block of
the statement, as in:

C O M M O N B,C,0

Storage allocation for blocks of the same name begins at the same
location for all programs executed together. - For example, if a
program contains :

C O M M O N A p H / K / X , Y D Z
. X-3

as its first COMMON statement, and a subprogram has

as its first COMMON statement, the quantities represented by X
and U are stored in the same location, i.e., X and U both equal 3.
A similar correspondence holds for A and D in blank COMMON.

COMMON blocks may be of any length, subject to the limita-
tions on available memory.

Array names appearing in COMMON statements may have di-
mension information appended if the arrays have not been declared
via a DIMENSION statement or a type declaration. For example:

specifies the dimensions of the array T while entering T in blank
COMMON. If array dimensions are not defined in a COMMON
statement, they must be defined in some other type statement.

EQUIVALENCE Statement

Form EQUIVALENCE (v 1 ,v2,. . . ,) , (vk,vk+ 1,. . .) , . .
Where vl ,v2,..,vk are the variable names.

Effect The variables within the parentheses identify the same
storage location. b

Example :

specifies that the values of the variables RED and BLUE are stored
in the same location. If used at different times, multiple variables
with different values can occupy the same storage location or if used
at the same time, multiple variables can be assigned the same value
through the use of EQUIVALENCE.

The master variable in an equivalence group is either the variable
in the group that is in COMMON (only one such variable per group
is legal) or the first variable in the group. All the other variables of
an equivalence group are considered slaves and can only appear in
one group. The master of an equivalence group should be large
enough to encompass aU of the slaves equivalenced to it.

The subscripts of array variables in an EQUIVALENCE state-
ment must be integer constants. Example:

The formal parameters of a subroutine must not appear in EQUIV-
ALENCE statements within that subprogram.

The variables assigned by an EQUIVALENCE statement must
be within the same main program or within the same subprogram.

EQUIVALENCE and COMMON
Variables may appear in both COMMON and EQUIVALENCE

statements, but no two quantities in COMMON may be set equiv-
alent to one another.

Quantities placed in a COMMON block by means of EQUIV-
ALENCE statements can cause the end of the COMMON block
to be extended. For example, the statements:

cause the COMMON block R to extend from X to A(4), arranged
as follows:

x
Y A (l)
Z A(2)

A(3)
A(4)

EQUIVALENCE statements which would require extension of
the start of a COMMON block are not allowed. For example, the
sequence :

is not permitted, since it would require A(1) and A(2) to extend .

the starting location of block R.
Care must be exercised when using EQUIVALENCE and

COMMON statements.

THE DATA STATEMENT

Form DATA .var listl/val listllvar list2/val list2/,. . .
Where var list contains- a string of variables separated by

commas

. /val list/ contains a string of data items separated
by commas

Effect A value from val list is assigned to the corresponding
variable in var list.

The DATA statement is used to supply initial or constant values
for variables. The specified values are compiled inio the object
program, and become the values assumed by the ,variables when
program execution begins. Such values may also be provided via a
BLOCK DATA subprogram. Initial values for variables in COM-
MON may not be specified insubprograms which may be overlaid
at execution time (refer to Loader description). It is recommended
that variables in COMMON be initialized only by means of a
BLOCK DATA subprogram.

Variables in the variable list may be either single subscripted
or unsubscripted arrays, or the name of an entire array.

When an entire array is given, data'values must be specified for
each and every element of the array. Data elements are stored in
the array in the same order as that used for the data transmission
and storage arrays, i.e., in order of increasing subscripts with the
first subscript varying most rapidly.

Allocation to memory locations in the array stops when:
/

a. the data item list is exhausted, or,
b. data items have been allocated to the entire array. If so,

additional data items will be allocated to succeeding variables
listed.

When Hollerith or literal constants are encountered in the values
list, they are assigned to the associated variables in the same man-
ner as in assignment statements.

A Hollerith value in a data statement will occupy (n+5)/6
words of storage (36-bit FPP words), with any partial words filled
to the right with blanks.

The data items following each list of variables must have a
one-to-one correspondence with the variables of the list, since
each item of the data specifies the value given to its corresponding
variable.

Data items assigned may be numeric, Hollerith, octal, or logical
constants. For example,

specifies the value 5 for ALPHA and the value .16 for BETA. Any
item of data may be preceded by an unsigned non-zero integer
constant followed by ah asterisk. This notation indicates that the
item is to be repeated. For example,

*

D A T A A C ~ I Ã ˆ A C ~) Ã ˆ A C ~ I ~ / ~ * ~

' specifies the value zero for array elements A(1)-A(3). As another
example :

will initialize

A(1, l) and A(2,l) to 1
A(1,2) ,A(2,2) and B(1) to 2
B(2) to 3, and B(3) to 4

TYPE DECLARATION STATEMENTS

Form type vl,v2,v3, ...

Where type may be INTEGER, REAL, DOUBLE PRE-
CISION, COMPLEX, LOGICAL

v l ,v2,v3, .. . represent variables

Effect All variables in the list are assigned the given type.

A variable can appear in only one type statement, Type declara-
tion statements override any implicit type specifications determined
by the first letter of a variable. Type statements can be used to give
dimension specifications for arrays. Adjustable arrays in subpro-
grams can also be defined via type statements. Each variable or
function name in a type statement is defined to be of that specific
type throughout the program; the type cannot change.
Examples :

Subprogram Statements
Using subprograms, a statement or group of statements can be

written once and then referenced whenever the implemented opera-
tion is to be executed. The use of subprograms saves programming
time and computer memory. There are three categories of sub-
programs in FORTRAN: FUNCTION subprograms, SUBROU-
TINE subprograms and BLOCK DATA subprograms. Functions
and subroutines consist of one or more FORTRAN statements
which may be invoked by name and, as appropriate, with values
upon which they are to operate. A function differs from a subrou-
tine in that it is always called with at least one parameter, and
always returns at least one value as the value to be used for the
function reference in the expression in which it occurs. A subroutine
may be called with or without parameters and may return values
only through its parameters or via COMMON. BLOCK DATA
subprograms contain specification statements only and are used to
specify initial values for variables in COMMON.

The transmission of arguments between a subprogram reference
and the subprogram itself is accomplished by the use of dummy
variables within the subprogram definition. Those variables in the
subprogram which are dummy variables are listed in the subpro-
gram definition statement. References to the subprogram may then
supply values for these arguments in the same order and be sub-
stituted for them whenever they appear in the subprogram.

FUNCTIONS
An internal function is defined via a form of the arithmetic state-

ment and may be referenced only by the program in which it is
defined.

Form name (argl,. . .) =expression

Where name is the function name

argl, ... are dummy arguments. These variables will
be altered whenever the function is used and should
not be referenced elsewhere in the program.

expression is the function definition

Effect Defines an internaTfunction.

An arithmetic statement function definition is a single statement.
The expression which defines the function may include dummy
arguments, ordinary variables, external functions and previously
defined internal functions.

In the following definition:

X is a dummy argument and A an ordinary variable. When the
function is referenced, the current value of A and the supplied
value of X will be used to evaluate it. All function definitions of
this type must precede the first executable statement of the program
in which they appear, and follow the last specification statement
appearing in the program.

FUNCTION Statements
An external function, one which may be referenced by other

programs, is defined via the FUNCTION statement. A function
reference may only appear within an expression and must, like
other elements of expressions, have a specified type. Type may be

8-1 15

specified in the definition itself or via any other FORTRAN type
specification facility.

Form t FUNCTION name (argl,. . .)
Where t is an optional type specification (e g real)

name is the function name

argi, ... are dummy arguments

Effect Defines an external function subprogram.

The function name must be a legal symbol which is assigned a
value within the subprogram definition. The last value assigned
to this name is the function's value. There must be at least one
argument and arguments must agree in number, order, and type
with actual arguments given by the calling program. A maximum
of six dummy arguments may be given in a FUNCTION statement.
Example :

F U N C T I O N HCX5
IF (X.GE.12.0) G O T O 50
M~l0.0 * 2.5
RkTURN

50 Mm.5 5 . 0
RETURN
END

Dummy arguments may represent the following elements in the
function definition: expressions, alphanumeric strings, array names,
or elements and subprogram names. Dummy arguments which
represent array names must appear within the subprogram either in
a DIMENSION statement, or in one of the type statements that
provide dimension information. Dimensions given as constants
must not exceed the dimensions of the corresponding arrays in the
calling program. Dimensions given as dummy variables may be
used to specify adjustable dimensions for array name arguments.
For example, in the statement sequence:

the dimensions of array A are specified by the dummy arguments M
and N, khile the dimension of array B is given as a constant. The
various values given for M and N by calling the program must be
within the limits of the actual arrays which the dummy array A .--
represents. Various arrays may be substituted tor A. These arrays
may each be of different size. Dummy dimensions may only be
given for dummy arrays. Note in the above example that the array
C, which is not a dummy argument, must be given absolute dimen-
sions. A dummy argument can not appear in an EQUIVALENCE
statement in the function subprogram.

A function may modify any arguments which appear in the
FORTRAN arithmetic expression calling the function. The only
FORTRAN statements not allowed in a function subprogram are
SUBROUTINE, BLOCK DATA, and another FUNCTION state-
ment.

A function is called by placing the function name in the program.
Control then passes to the function subroutine. The quantity result-
ing from the function subroutine replaces the function name in the
calling expression.

SUBROUTINE SUBPROGRAMS
A subroutine subprogram is defined external to the program which
references it. Subroutine definition is initiated by a SUBROUTINE
statement. A subroutine is referenced by a CALL statement and
returns control to the calling program by means of one or more
RETURN statements.

SUBROUTINE Statement

Form SUBROUTINE name or
SUBROUTINE name (argl,. . .)

Where name is a subroutine name

argl, ... are optional dummy arguments

Effect The program which follows is declared a subroutine
program.

The arguments in the parenthesized list are dummy arguments
representing the arguments of the subprogram. The dummy argu-
ments must agree in number, order, and type with the actual
arguments used by the calling program. A subroutine subprogram

need not have any arguments at all; a maximum of six dummy
array arguments are allowed. m e n supplied, they may be expres-
sions, alphanumeric strings, array names, array elements, scalar
variables, and subprogram names.

Dummy variables which represent array names must be dimen-
sioned within the subprogram by a DIMENSION or type declara-
tion statement. As in the case of a function subprogram, either
constants or dummy identifiers may be used to specify dimensions
in a DIMENSION statement. The dummy arguments may not
appear in an EQUIVALENCE or COMMON statement in the
subroutine program.

A subroutine or function subprogram may use one or more of its
dummy arguments to represent results. For example:

S U B R O U T I N E C O M P U T (A , ~ Ã ˆ A N S

might require the user to supply numeric values for A and B to be
computed, and a variable for ANS in which to store the results.
The only FORTRAN statements not allowed in a subroutine sub-
program are FUNCTION, BLOCK DATA, and another SUB-
ROUTINE statement.

Constants in call lists of subroutines and function subprograms
are not protected. Therefore, a function such as the following will
I csuit ill erroneous vahies.

CALL Statement

Form CALL name or
CALL name (argl,. . .)

Where name identifies a subprogram
argl,. . . are actual arguments

Effect Control is* transferred to the subroutine subprogram.

The arguments of a CALL statement can be expressions, array
names, array elements, scalar variables, alphanumeric strings, or

subprogram names; arguments may be of any type, but must agree
in number, order, type and array size (except for adjustable arrays,
as discussed under the DIMENSION statement) with the corre-
sponding arguments in the SUBROUTINE statement of the called
subroutine. A subroutine cannot be referred to as a basic element
in an expression.

RETURN STATEMENT
The RETURN statement consists of the text:

This statement returns control from a subprogram (subroutine or
function) to the calling program. Normally, the last statement
executed in a subprogram is a RETURN statement. Any number
of RETURN statements can appear in a subprogram.

BLOCK DATA STATEMENT
The BLOCK DATA statement is used to establish a block data

subprogram, a data specification subprogram which is used to enter
initial values for variables in common blocks. No executable state-
ments can appear in a block data subprogram. A block data sub-
program is established by a BLOCK DATA statement consisting
of the text:

%

B L O C K D A T A

This statement declares the program which follows to be a data
specification subprogram and must be the first statement of the
subprogram. For example:

B L O C K D A T A
C O M M O N A,b ,C
C O M M O N / X / A R R ~ Y ~ ~ @ ~
I N T E G E R A , C
REAL U
D A T A A , ~ , C / S ~ I , ~ , ~ /
L O G I C A L A i ? R . A Y / I H 0 * 0 /
FND

This subprogram causes blank common to be initialized with the
integer 5, a real variable 1.5, an integer 0 as its first three variables
and an array with 100 zeroes.

The subprogram 'contains only type statements, EQUN-
ALENCE, DATA, DIMENSION, and COMMON arguments. A
complete set of specifications must be given for an entire common
block. A single block data subprogram can initialize any number
of named COMMON blocks.

EXTERNAL STATEMENT

Form EXTERNAL identifier,identifier,. . . .,identifier

Where identifier is the name of a subprogram

Effect The identifier is declared a subprogram name and
may be used as the argument of other subprograms.

Function and subroutine subprogram names can be used as the
actual arguments of subprograms. When they are, their names must
be distinguished from ordinary variables by their appearance in an
EXTERNAL statement.

Any subprogram name given as an argument to another subpro-
gram must have previously appeared in an external declaration in
the calling program (i.e., as an identifier in an EXTERNAL).
Example :

E X T E R N A L S!GMA,THETA

Â

CALL T R I G F (8 I G M A , l . 5 , A N S W E R)

Â

CALL T R I G F [THETA, 18-7, ANSWER)
Â

Â

END

SUBROUTINE T R I G F ~ F U N C ~ A R G , A N S W E R)
Ã

~ N S K E R ~ F U N C (~ R G)
Â

RETURN
E N D

Table 8-17 FORTRAN IV Statement Summary

Statement Form Effect

Arithmetic
statement
function
definition

ASSIGN

BACKSPACE

BLOCK DATA

CALL

COMMON

CONTINUE

DATA

DEFINE FILE

Ã DIMENSION

The value of expres-
sion b is assigned to
the variable a.

t name(a1 ...)= x The value of expres-
sion x is assigned to
f(a1 ...) after parame-

ifc ter substitution.

ASSIGN n TO v Statement number n
is assigned as the
value of integer vari-
able v for use in an
assigned GO TO
statement.

BACKSPACE u Peripheral device u
is backspaced one
record.

BLOCK DATA

CALL prog
CALL prog(a1 ...)

CONTINUE

DATA var listllval list11 ...

DEFINE FILE
al(bl,cl,U,vl) ...

DIMENSION array
(vl ..., v7) ...

Identifies a block
data subprogram.

Invokes subroutine
named prog, supply-
ing arguments when
required.

Variables (a,b,c) are
assigned to a com-
mon block.

No processing, target
for transfers.

Assigns initial , , or
constant values to
variables.

Describes a mass
storage file for di-
rect access I/O.

Storage allocated ac-
cording to dimen-
sions specified for
the array.

Table 8-17 FORTRAN IV Statement Summary (Cant.)

Statement Form Effect

END

END FILE

EQUIVA-
LENCE

EXTERNAL

FORMAT

FUNCTION

END

END FILE u

EQUIVALENCE (v 1 ,v2,. . .,),

EXTERNAL subprog,. . .

FORMAT (spec l ,sped,.. ./ . . .)

FUNCTION name (a1 ...)

(1) GO TO n
-.-

(2) GO TO (nl, ..., nk),e

8-122

Statements following
the DO up to state-
ment n are iterated
for values of integer
variable i, starting at
i =ml, incrementing
by m3, terminating
when i>m2.

Cease program com-
pilation; equivalent
to STOP in main
p rogram o r RE-
TURN in subpro-
gram.

Wri tes E N D - O F -
FILE character in
file u.

Identifies same stor-
age location for vari-
ables within paren-
theses.

Declares a subpro-
gram for use by
other subprograms.

Specifies conversions
between internal and
external representa-
tion of data.

Indicates an external
function definition.

Transfers control to:

(1) statement n

(2) to statement n l
i f e = 1,
to statement nk
if e=k.

Table 8-17 FORTRAN IV Statement Summary (Cont.)

Statement Form Effect

(3) GO TO v
GO TO v(n1 ,..., nk)
GO TO v,(nl ,..., nk)

(3) Transfers control
t o s t a t e m e n t
number assigned
to v optionally
checking that v
is assigned one
of the labels n l
.... nk.

Logical

PAUSE

READ

RETURN

REWIND

STOP

IF (arith expr)nl ,n2,n3

IF (logical expr) statement

PAUSE
PAUSE number

READ (u,f) list
READ (u,f)
READ (u) list
READ (u)
READ (a'r) list

RETURN

REWIND u

STOP

Transfers control to
n l if expr <0, n2 if
expr = 0, n3 if expr
>o.

Executes statement if
expression has value
.TRUE., otherwise
executes next state-
ment in sequence.

Value of expression
E is assigned to vari-
able V.

Program execution
in te r rup ted a n d
number printed, if
given.

Reads a record from
a peripheral device ~

according to specifi-
cations given in the
arguments of t h e
statement.

Returns control from
a subprogram to the
calling program.

Repositions designa-
ted unit to the begin-
ning of the file.

Terminate program
execution.

-

Table 8-17 FORTRAN IV Statement Summary (Cont.)

Statement Form Effect

SUBROUTINE SUBROUTINE name(a1, ...) Declares name to be
a subroutine subpro-
gram and a l , ..., if
supplied, as dummy
arguments.

@n(~
J r - type vl,v2,v3, ...

WRITE WRITE (u,f) list
WRITE (u,f)
WRITE (u) list
WRITE (u)
WRITE (a'r) list

Where the variables
vn are assigned the
indicated type, i.e.,
Real, Integer, etc.

Writes a record to a
peripheral device ac-
cording to specifica-
tions given in the ar-
guments of the state-
ment.

PAPER TAPE LOADING INSTRUCTIONS
The FORTRAN IV system may be loaded from paper. tape

using OS/8 EPIC. Of the nine files that make up the system, the
following eight :

F4.SV
PASS2.SV
PASS20.SV
PASS3 .SV
RALF. SV
L0AD.SV
FRTS.SV
LIBRA.SV

are on separate paper tapes, as indicated, and may be read in any
order. After these tapes have been read, the six tapes that comprise
the library (FORLIB.RL) must be read in ascending numerical
order. A typical procedure might be:

.R EPIC Load OS/ 8 EPIC.

Designate the device on which
the new FORTRAN IV sys-
tem will be built and mount
the F4.SV tape in the reader.

Mount the PASS2.SV tape in
the reader.
Mount the PASS20.SV tape
in the reader.
Mount the PASS3.SV tape in
the reader.
Mount the RAL'F.SV tape in
the reader.
Mount the LOAD.SV tape in
the reader.

i Mount the FRTS.SV tape in
the reader.
Mount the LIBRA.SV tape in
the reader.
Mount the first FORLIB.RL
tape in the reader.

E N D OF TAPE ENTER NEXT Continue to read the six
END OF TAPE ENTER NEXT
E N D OF TAPE ENTER NEXT

FORLIB.RL paper tapes in

E N D OF TAPE ENTER NEXT increasing numerical order.
E N D OF TAPE ENTER NEXT
* tc

PDP-12 users who create OS/8 FORTRAN IV systems from
paper tape and require the real-time capabilities of this system
must assemble the RALF modules containing REALTM, ADB,
ADC, PLOT, CLRPLT, and SCALE, then add these modules to
the system library. The routines to be assembled and inserted are
contained on three paper tapes. A typical procedure might be as
follows.

.ASS IGN SYS DEV
Ã̂ P I ?

* D E V : F I L E 1 oRA<PTH:
T
*DEV: F I L E 2 . R A e P T R :
t
*DEV: FI LE3.RA<PTil :
t

Use OS/8 PIP to read the
RALF modules, in ascend-
ing numerical order, onto
temporary files.

*tC Assemble the temporary files

.R RALF under RALF.
*DEV:FILE3.RL<DEV:FILE3.R

.R RALF
* D E V t F I L E ~ * R L < D E V Ã ˆ F I L E ~ . R '

* R RALF
* P E V : F I L E l . R L < D E V : F I L E l e R A

.!7 L I 9 R A
*DEV: T E N P L B . Q L < D E V ~ F o R L I B . W 15

Use LIBRA to create a tem-
* T C porary library containing 13

extra blocks for expansion.
.R P I P
*DEV: FORLIB.RL</D
~ T T C Use PIP to delete the old

library.
.Q LIBRA
* D E V : F O R L I B . R L [~ I C D E V : TEMPLB.RL,DEV:FILEI .RL,DEV:FILE~.RL*DEV!FILE~.RL/R

NOTE
Use LIBRA to merge the temporary library
and the new RALF modules. LIBRA will
print a list of duplicate module names on the
console terminal. When all output has ended
and LIBRA prints an asterisk at the left
margin, type CTRL/C to return to the
monitor.

The following program example provides a simple test to verify
that the OS/8 FORTRAN IV system is operating correctly. When
duplicating the illustrated procedure, use care to distinguish be-
tween user input and machine output. Type CTRL/L at the point
marked (T) to return the editor to command mode. Type ALT
MODE (ESCAPE on some terminals) at the point markedo to
generate the dollar sign character ($) .

.R E D I T
* EXA NP L<

i f f l ITE (4 , 1 0 0)
FORMAT (1 H " T H I S IS A S I M P L E EXAMPLE 8 F A PROGRAM")
X z 2 . 5
Y z 3 . 1 4
z =x*y
WRITE (4 , 2 0 0) X 9 Y 9 Z
FORMAT (1 H "X="F4 .2 , " Y="F4 .2 , " X*Y="F4.2)
END

WRITE (4 , 1 0 0)
FORMAT (I H " T H I S I S A S I M P L E EXAMPLE OF A PROGRAM")
X Z . 5
Y = 3 . 1 4
Z=X*Y
WRITE (4 , 2 0 0) X v Y v Z
FORMAT (1H "X="F4.2," Y="F4 .2 , " X*Y="F4 .2)
END

.R F4 ,-
*,TTY: ,TTY:<EXAMPL/G

OS/g FORTRAN 'IV 3.02 J U N 1 1973 PAGE O N E

0002 rfRITE (4,100)
0003 100 FORMAT OH "THIS IS A SIMPLE EXAMPLE OF A PROGRAM")
0004 X=2.5
0005 Y=3.14 \

0006 Z=X*Y
0007 tilRITE (4,200) X , Y , Z
0010 200 FORMAT OH "X="F4.2," Yz"F4.2," X*Y="F4.2)
001 1 END

LOADER V21 06 101 /73

SYMBOL VALUE LVL OVLY

A R G E R R 00204 0 00
EXIT 00223 0 00
#WIN 10000 0 00

10400 = 1ST FREE LOCATION

LVL OVLY LENGTH

*$
THIS IS A SIMPLE EXAMPLE OF A PROGRAM
X=2.50 Y=3.14 X*Y=7.85

FORTRAN IV PLOTTER ROUTINES
The X,Y plotter routines control an incremental plotter (Cal-

comp 563, 565 or similar) for use with OS/8 FORTRAN N. The
routines permit the user to generate a wide variety of plotted
information, including:

1. Labelled axes,
2. Textual data,
3. Graphs from data arrays (X and Y), with optional scaling of

either array and centered symbols denoting the location of a
data point, '

4. Variables from the FORTRAN IV program plotted in F
format,

5 . Individual point and vector plotting.

The user also has control of:

Pen position (up or down),
Origin of plotted information,
Scaling of any plot,
Rotation of text and axes.

The routines included are :

Table 8-18 FORTRAN IV Plotter Routines

Name Function

PLOTS

XYPLOT

FACTOR

WHERE

SYMBOL

NUMBER

AXIS

LINE

PLEXIT

Initializes all other plotter routines to the user's hard-
ware configuration.

Moves pen to specified X,Y location with pen in up or
down position, permits origin control.

Scales size of subsequent plotting data.

Passes current position and factor to the user program.

Prints textual information (such as titles) at any angle
and special symbols to indicate a data point.

Prints each digit in a variable, including optional deci-
mal point and truncation.

Defines parameters for axis annotation and size of final
plot for data array.

Plots an axis, at any angle, including segment markings
and title.

Generates the graph of data in two arrays (X and Y).

Terminates all plotting.

The system must support any OS/8 FORTRAN IV configura-
tion plus: XY/8e interface for PDP-8/E, or XY interface for

PDP-12, 8, or 8/1 and an incremental plotter suitable for one of
the above interfaces.

The system must have OS/8 (QFS8-A) and OS/8 FORTRAN
IV (QF008-AB).

Plotter Operation
To optimize the use of the X,Y plot routines, a brief description

of the plotter operation is presented here. The plotter permits six
basic functions: drum down (+X movement), drum up (-X
movement), pen left (+Y movement), pen right (-Y movement),
pen up and pen down. Diagonal movement is accomplished by a
combination of pen and drum motion. The plotting increment is a
function of the plotter itself, generally .005 or .O1 inches. Each
line plotted is in this incremental unit. Hence upon very close
examination vectors plotted at angles other than multiples of 45
degrees may appear sightly non-linear. This effect is unnoticeable
at normal viewing distances from the plotter where all vectors
appear smooth. If the user requests a vector that exceeds the
physical width of the plotter, the pen will move to the physical
limit and plot the remaining section at the margin. This may distort
subsequent plotting, depending on the user's sequence of com-
mands. Therefore, be sure the pen is either physically located in- a
useful position at the start of the plot or use the plotting commands
to monitor its position to prevent such problems.

Plotter Commands
PLOTS

The routine PLOTS must be called once at the start of each plot-
ting program to initialize internal parameters to the current con-
figuration. The call is:

CALL PLOTS (X,Y)

where :

X is the increment size of the plotter in inches; generally .O1
or .005 inches.

Y is 0 if running on a PDP-8/E;
1 if running on a PDP-8/I, PDP-8, or PDP-12.

PLOTS initializes the factor (for overall plot size) to one and
clears old pen location and origin status. Note that although the

plotter may actually move in inches, the code can cause it to
behave as if it were millimeters (or any other unit) by including
the proper conversion in the FORTRAN code.

XYPLOT
XYPLOT is the routine that actually causes pen and drum move-

ments on the plotter. Routines such as NUMBER and AXIS
eventually use XYPLOT. This routine is useful when a plot is to
be generated one vector at a time by the user program (rather than
saving an array, for example). It also controls the origin, defined as
the logical point (0,O) for future plotting.

The call is of the form:

CALL XYPLOT (X,Y,I)

where :

X,Y is the X,Y coordinate in inches to which the pen is to
move relative to the most recently established origin
point.

I is an integer of the set (-3,-2,2,3) which controls pen
position and establishes the origin point, as follows:

If I= 2, the pen is down during the move.
If I- 3, the pen is up duiiijg the iiiovc.
Tf T is negative; the pen moves to point X,Y and this
point is then established as the current origin point (0,O).
If a value outside this set is called, the pen defaults to
down.

For example :

CALL XYPLOT(4,-2,-2)

moves from the current position to 4,-2 with the pen down and
establishes this location as the origin point (0,0).

CALL XYPLOT(-7,3,3)
Â

moves the pen in the up position to -7,3. If these two commands
are sequential, then this move would be -7 inches of X and +3 of
Y, from 0,O to -7,3.

No single vector can be plotted longer than 4095 plotting incre-
ments, or approximately 40.9 inches for a -01 increment -plotter or
20.4 for a ,005 increment plotter.

FACTOR
Overall plot size can be increased or reduced by using the

FACTOR routine. The call is:

CALL FACTOR(Z)

where :

Z is the ratio of the desired plot size to the current size. This
value is initialized by PLOTS to 1. Calling FACTOR with
Z=l resets the plot to its initial size. The absolute value of
Z is used. For example, to double the size of the plot, the
call is CALL FACTOR (2) ; to halve it, is CALL FAC-
TOR (5) .

WHERE
The WHERE routine passes three values to the user program:

current X position, current Y position and current factor. This
routine is most commonly used to determine the current location
of the pen in a long plotting sequence, or to calculate a delta X or
Y value for the next step in a graph.
The call is :

CALL WHERE (X,Y,Z)

where :

X is set to the current X position

Y is set to the current Y position

Z is set to the current factor

Consider the following example:

At the completed running of this program the statement XVAL=
-5YVAL= 3 will be printed on device 4.

SYMBOL
The SYMBOL routine has two forms:

1. Print any number of letters and symbols
2. Print a single character

The available character set for both forms is found in Tables
8-19 and 8-20.

Table 8-19 Special Symbols

YMBOL CODE SYMBOL CODE SYMBOL CODh

Table 8-20 Regular Characters

SYMBOL CODE SYMBOL CODE SYMBOL CODE

Multiple Characters
Any of the above characters, except pi, inTable-8-20 can be

combined in any order to print titles, legends, labels or the like
using a multiple character call:

CALL SYMBOL (X,Y,H,T,A,N)

where:

X,Y is the coordinate in inches of the lower left corner of the
first character to be printed.

H is the height in inches of each character. Because char-
acters are considered to be on a 7x7 grid, a multiple of
7 times the increment size is recommended (i.e., a mini-

m u m of .07 for .O1 increment plotters and .035 for ,005
increment plotters). The actual plotting grid occupied by
any character, is 6x4, the remaining 1x3 being used for
spacing between characters.

T is the text in A or Hollerith format.

A is the angle at which the text is to be printed and is
specified in degrees from the X axis.

N is the number (positive integer) of characters to be
plotted and must be greater than 0 and equal to or less
than the number of characters in T.

For example :

"̂ 1

will, on a non-PDP8/e machine with a .O1 increment plotter,
initialize the origin point at the current pen location, move from
there to 1,l and print the 12 characters in TEXT, namely TEXT
EXAMPLE, in letters .21 inches high at 0 degrees from the X axis,
i.e., parallel to the side of the plotter.

The program above is equivalent to:

Note that the character pi can only be plotted by a single character
command because it has no Hollerith representation.

Single Characters
Two types of single characters can be plotted:

1. Characters from the available character set listed in Table 8-20.
2. Special symbols used to denote a data point. The available

special symbols are listed in Table 8-19. Their use differs from
other characters i n that their starting and terminating point is
the center of the character, not the lower left corner. These.
symbols occupy a 4x4 grid.

The call is:

CALL SYMBOL (X,Y,H,I,A,N)

where:

x , y is the X,Y coordinate of the lower left comer of a regular
character, including pi, or the center for a special symbol.

is the height in inches of the symbol and should be 7 times
the increment size for a regular character and 4 times the
increment size for a special symbol (i.e., .02 or .04
minimum depending on the plotter).

is in the range 1-63 for regular characters (Table 8-20)
and 100-1 17 for special symbols (Table 8-19). If a non-
acceptable value is used, SYMBOL prints a space in its
place.

is the angle in degrees from the X axis at which the
character is printed.

is -1 if the pen is to be up during the move to X,Y or -2
if the pen is to be down during the move to X,Y.

For example :

This will plot the letter A .35" tall at 180 degrees to the X axis
on a PDP-8/E. The pen will be up during the move from 0,0 to
-6,2, the lower left comer of the A.

Ã

-This will plot the first special character .2 inches tall centered at
point 1,4 at an angle of 270 degrees to the X axis on a non-PDP-8/E.
The move of the pen from its current location to the start of the
character (1,4) will be visible.

NUMBER
To facilitate handling internal format data (floating point) the

NUMBER routine is included. It plots floating point numbers in a
format similar to FORTRAN N F format. One number at a time
is plotted using the call:

CALL NUMBER (X,Y,H,Z,A,N)

where :

X,Y is the coordinate of the lower left corner of the first char-
acter of the number.

H is the height of each character, preferably 7 times incre-
ment size (each number is considered to occupy a 7x7
grid).

Z is the number to be plotted. It may be a real or integer
number.

A is the angle to the X axis at which to plot the number.

N is an integer that controls the format of the number Z as
follows:

Value of N Result

0 Z is truncated and plotted as an integer
followed by a decimal point

-1 Z is truncated and plotted as an integer

Value of N Result -
=>I N digits to the right of the decimal point

are plotted. The number is rounded based
on the value of the (N+ 1) th digit.

<-1 N- 1 digits are truncated from the integer
portion of the number.

Note that the accuracy of the number printed cannot exceed 6
digits, however at the user's discretion he may plot up to 19 digits
with an expected loss of accuracy. If a bad digit is found in Z, that
digit defaults to 0. For Z less than one a leading zero is included.
For example :

CALL PLOTS(.0@5,1J
C"@
A ~ l 9 8 q f Ã ˆ 7
CALL X Y P L U T (0 , 0 , * 3 1
CALL N U M ~ ~ ~ , R C I ~ ~ I , B ~ P A ? C ~ ~)
CALL h U M B t R (l , 2 , . 0 7 1 A , C , - l)
CALL N U M B Â £ R [l , 3 , . l * , h , C , ~ 2
CALL N U M B t R (l , 4 , . l * , A , C , Z)
CALL P L E X I T
END

Statistically the above program will be plotted as follows:

. Starting Height Number
Location (Inches) , Plotted Angle -

1,1 .07 * 6/7 198. 0
1 2 .07 * 6/7 198 0
1,3 .14 * 6/7 19 0
1 A .14 * 6/7 198.68 0

If the number (Z) is out of range of the acceptable number of
characters including minus sign and decimal point, the message:

->

NUMBER OF D I G I T S NOT 1.-19

is printed on the console device (unit 0).

8-137

PSCALE
For many applications, the data to be plotted is scattered irregu-

larly across the total range and in a manner not neatly related to
unit (inch) increments. To permit plotting data in a finite (user
specified) length graph with labelled axis, the PSCALE routine is
invoked to establish two critical plotting parameters-starting value
and scaling increment. The starting value can be positive or nega-
tive and a maximum or minimum. It is the value printed at the
starting axis annotation. The scaling increment is the delta value
between succeeding axis annotations and is the number of dataunits
per inch of plot, adjusted to 1,2,4,5 or 8 * 10TN. These two values
are used by the AXIS and LINE routines to produce a properly
annotated axis and a graph whose data includes all points in a user
specified length. PSCALE does no plotting; its use is in conjunction
with AXIS and/or LINE. It is generally called twice~once for X
(abscissa) values and once for Y (ordinate) values.
The call is :

CALL PSCALE (A,L,N,I)

where :

A is the array containing the data to be plotted. This array .

must have extra locations at the end in which PSCALE can

L is the length (integer) of the axis that the data is to cover.
L must be greater than or equal to 1.

N is the number of data values in A to be considered. N must
be greater than or equal to 1.

I is the increment between data values to be considered. The
first value examined is always A (l) , the next is A(l+I) .
If I is positive, the calculated starting value will be a
minimum value.
If I is negative, the calculated starting value will be a
maximum and the scaling increment will be negative.

The calculated starting value is stored at A(N* J+1) , the scaling
increment is stored at A(N*J+J+l) where J is the absolute value

of I. Be sure to dimension A to a length sufficient to include these
locations. Consider the data array ARRAY:

Element Contents

The statement :

CALL PSCALE (ARRAY,5,5,2)

PSCALE will use ARRAY (1) , ARRAY (3) , ARRAY (5) ,
ARRAY (7), and ARRAY (9) in determining the starting value
and scaling increment. For the example above, the scaling incre-
ment is 2.0 and the starting value is 0.

If an axis length of less than one is supplied, the message:

A X I S LENGTH 4 1

is printed on device 0. If all elements of the data array are the same,
the message:

M A X P T a M I N P T

is printed.

AXIS
For most graphs, the presence of labelled axes adds significantly

to interpreting the data. The AXIS routine draws an axis with
labelled tic marks at one inch intervals and a title or other annota-
tion parallel and centered to the axis. AXIS must be called
separately for an X and a Y axis. The starting value and scaling

increment discussed in PSCALE must have been determined pre-
viously to calling AXIS.

The call is:

CALL AXIS (X,Y,T,N,L,A,F,D)

where:

X,Y are the coordinates of the start of the axis, in inches,
relative to the current origin. Often when two axes are
required, X and Y are 0 for both calls. It is suggeste A +L-4 u L l l a L

the physical origin of the axis be at least Vz in from any
edge of the plotter, as annotation will require that space.
This position becomes the new origin for subsequent
plotting.

T is the title in Hollerith format. It is printed .14 inches tall
(dependent on existing user specified plotting factors)
and centered along the axis. If the scaling increment is
greater than 99 or less than .01, the notation * 10 is added
at the end of the title.

N is the number of characters in the title (T) to be printed.
Its sign is used to specify on which side of the axis the
tic marks and their labels are to be: positive means the
positive (counter clockwise) side of the axis, negative is
the negative or clockwise side. Positive-labeling is gener-
ally used for Y axes and ncgativc for X axes.

L is the length of the axis in inches. Note that this value
should not exceed the width of the plotter for an axis in
that direction. The absolute value of L is used.

A is the angle in degrees at which the axis is to be drawn. X
axes are generally at 0 and Y axes at 90.

F is the starting value and will be used as the annotation for
the first tic mark. The annotations include two signifi-
cant places after the decimal point. This value may be
determined by PSCALE or supplied by t h e user. If
calculated by PSCALE, F must be the appropriate array
element. If the user chooses to calculate his own starting
value and scaling increment, be aware that a tiny F and
large D or large F and tiny D do not produce a mean-
ingful graph.

8-1 40

D is the scaling increment between tic mark annotations. It
may be determined by PSCALE or by the user. If cal-
culated by PSCALE, D must be the appropriate array
element.

For best results axes should be drawn at multiples of 45 degrees
(including 0). AXIS uses the routine NUMBER.

LINE
Pairs of data points in two arrays can be combined by LINE and

plotted according to user specified parameters. Points to be plotted
can be indicated by a special symbol and can also be connected by
a continuous line. LINE requires a starting value and scaling in-
crement for each array such as those produced by PSCALE.
The call to LINE is:

CALL LINE (A,B,N,I,L,J)

where:

A is the name of the array whose values are to be the abscissa
values.

Â£ is the name of the array whose values are to be the ordinate
values.
For A and B, the (N*I+ 1)th element must contain its
starting value and the (N*I+I+l)^ element must contain
its scaling increment, as supplied by the user or PSCALE.

N is the number of points in each array to be plotted. The
same number of points is taken from each array.

I is the increment at which the data in A and B is collected,
i.e., every Ith point is plotted. I must be greater than 0.

L determines the manner in which the line is plotted, as
follows :
If L is positive, each point is connected by a line and a
special symbol is plotted at each point.
If L is 0, each point is connected by a line, and no symbols
are drawn.
If L is negative, no connecting lines are plotted. Each point
is indicated by a special symbol.

J is a value between 100 and 1 17 according to Table 8- 19
indicating the special symbol to be used in the plot.

The pen should be located at the logical 0,O position of the
graph when a call to LINE is issued. If the preceding plot operation
was drawing an axis in the usual manner, the pen should be prop-
erly positioned. If I or N is less than or equal to 0, the LINE
routine returns without plotting.

PLEXIT
In order to permit the plotting routines to finish completely, the

routine PLEXIT must be called once when all commands.
have been issued. PLEXIT does a final pen up operation.

Implementing the Plotter Routines
GETTING STARTED

In order for the plotter to interface properly to OS/8 FOR-
TRAN IV, the following patch must be made to the file FRTS.SV.
It adds a clear plotter flag IOT to the run-time device initialization
chain. The sequence is:

/User types 4020 / Response
/at terminal is 7000.
/User types 6502

JFc /Type CTRL/C to exit ODT

/Assumes FRTS.SV on SYS
/ Device

ADDING THE PLOTTING ROUTINES
The FORTRAN plotting routines are supplied as relocatable

RALF (R L) modules that can either be added to the FORTRAN
library (FORLIBRL) or specified explicitly to the loader. To add
the files to FORLIB.RL, the procedure is:

PLOTLB may then be used by specifying it as a library to the
loader or it may be copied using PIP so that no additional loader
specifications are required. If you choose not to add the plotting
modules to the library, and prefer to specify them to the loader, it
is suggested that only the modules required by the FORTRAN
program be specified in order not to waste space. In general the
user employing elaborate overlay schemes will not want these in
his library, while the user with shorter programs will.

The core requirements to the nearest hundredth location of the
files are:

XYPLOT 1000 locations in field
1 and 700 elsewhere
(includes FACTOR,PLOTS,
WHERE, and PLEXIT).

SYMBOL 500
symbol table 700 (regular and special

characters)
NUMBER 1300
PSCALE 1000
AXIS 1500 (requires NUMBER)
LINE 600

Note that the routines PLOTS, XYPLOT, FACTOR, WHERE,
PLEXIT, SYMBOL and the symbol table, including the code in
field one, are all loaded if any one of those routines is called.

Loading the Plotter Routines from Papertape
If the relocatable plotter routines are supplied on paper tape,

they must be loaded into mass storage using the program EPIC.
Place each tape in the reader before typing the response to the
asterisk. The sequence is:

.@ E P I C
*/0$
* / Y
* / Y
* / Y
* / Y
*tc

/ Mount XYPLOT.RL
/Mount NUMBER.RL
/ Mount AXIS.RL
/ Mount PSCALE.RL
/ Mount LINE.RL

The above puts the files on device SYS.

8-1 43

Examples
An example combining several of the commands is shown below.

This program requests user input of text and then plots it as a
spiral.

The actual plotter output is shown in Figure 8-6.

Figore 8-6 Spiral Plotter Example

8-145

The next example plots a histogram.

The actual plotter output is shown in Figure 8-7.

Figure 8-7 Histogram Plotter Example

8-147

chamcter codes ,

ASCII Character Set

Decimal Decimal
8-Bit 6-Bit EquivaIent 8-Bit 6-Bit Equivalent

Character Octal Octal (A1 Format) Character Octal Octal (A1 Format)

96 !
160 9

224
288

$

352 %
416 &
480 9

544
608

(

672
1 *

736
800

4-

864
928
992

1056
2

1120 9

1184
1248

< - -
1312 a >
1376 ?
1440
1504

@

1568
r

1632
\

1696
I

T(A):
-992 '4-1-
-928 LeaderiTrailer
-864 LINE FEED
-800 Carriage RETURN
-736 SPACE
-672 RUBOUT
-608 Blank
-544 BELL
-480 TAB
-416 FORM

1 An abbreviation for American Standard Code for Information Interchange.
2 The character in parentheses is printed on some Teletypes.

loading procedures

Initializing the System
' Before using the computer system, it is good practice to initialize
all units. To initialize the system, ensure that all switches and con-

. trols are as,specified below.

1. Main power cord is properly plugged in.
2. ~e&al is turned OFF.
3. Low-speed punch is OFF.
4. Low-speed reader is set to FREE.
5. Computer POWER key is ON.
6. PANEL LOCK is unlocked.
7. Console switches are set to 0.
8. SING STEP is not set.
9. High-speed punch is OFF.

10. DECtape REMOTE lamps OFF.

The system is now initialized and ready for your use.

Loaders
READ-IN MODE (RIM) LOADER

When a computer in the PDP-8 series is first received, it is noth-
ing more than a piece of hardware; its core memory is completely
demagnetized. The computer "knows" absolutely nothing, not even
how to receive input. However, the can manually
load data directly into core using the console switches.

The RIM Loader is the very first program loaded into the com-
puter, and it is loaded by the programmer using the console

switches. The RIM Loader instructs the computer to receive and
store, in core, data punched on paper tape in RIM coded format
(RIM Loader is used to load the BIN Loader described below.)

There are two RIM loader programs: one is used when the input
is to be from the low-speed paper tape reader, and the other is used
when input is to be from the high-speed paper tape reader. The
locations and corresponding instructions for the low-speed reader
are listed in Table B - 1. The high-speed reader RIM loader is listed
in Table B-2.

For each step in the table, place each of the PDP-8/E console
SWITCH REGISTER switches numbered 0 to 11 either in the up
position if the corresponding table entry is 1, or in the down posi-
tion if the corresponding table entry is 0. When all 12 switches have
been set to correspond to a line in the table, follow the instructions
in the right hand column and proceed to the next line. The tables
also include octal values of the binary switch settings for the benefit
of users familiar with octal numbers.

Table B-1 RIM Loader for ~ o w - s ~ c k d Reader

Step Octal Switch Register
Values Setting

And Then

012 345
000 000
111 111
110 000
110 000
101 011
110 000
I l l 001
I l l 000
I l l 101
101 011
I l l 000
110 000
101 011
110 000
I l l 100
011 111
011 011
101 011

678
000
101
01 1
01 1
101
01 1
000
000
001
101
000
01 1
110
01 1
010
11 1
I l l
101

9101 1
000
no
010
001
I1 1
110
110
110
000
I l l
110
001
11 1
100
000
110
110
110

press EXTD ADDR LOAD
press ADDR LOAD
lift DEP key
liftDEPkey .
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key

Table B-2 RIM Loader for High-speed Reader

Step Octal Switch Register And Then
values Setting

012 345
1 0000 000 000
2 7756 111 111
3 6014 110 000
4 6011 110 000
5 5357 101 011
6 6016 110 000
7 7106 111 001
8 7006 111 000
9 7510 111 101

10 5374 101 011
11 7006 111 000
12 6011 110 000
13 5367 101 011
14 6016 110 000
15 7420 111 100
16 3776 Oil 111
17 3376 011 011
18 5357 101 011

678
000
101
00 1
001
101
00 1
000
000
001
11 1
000
001
110
001
010
I l l
11 1
101

9101 1
000
110
100
001
i l l
110
110
110
000
100
110
00 1-
11 1
110
000
110
110
I l l

press EXTD ADDR LOAD
press ADDR LOAD .
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key
lift DEP key

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done
by performing the steps illustrated in Figure B-2, which also
shows how to correct an incorrectly stored instruction.

When loaded, the RIM Loader occupies absolute locations 7756
through 7776.

1 S E T T Y M T 1
SELECTOR SWITCH

SET SWITCHES 6-8
TO DESIRED

INSTRUCTION FIELD*

TO DESIRED
MECTAPE USERS SHOULD

LOAD RIM INTO FIELD 0

pk-, EXT LOAD ADDR

ADDR LOAD

PRESS DEP u
1 PRESS DEP

INSTRUCTIONS

RIM IS LOADED

Figure B-1 Loading the RIM Loader

INDICATOR

EXT ADDR LOAD

SET' SR=7756 Q
PRESS

...-...--..-.--

ADD R LOAD

RIM IS LOADED 6

Figure B-2 Checking the RIM Loader

BINARY (BIN) LOADER-
The BIN Loader is a short utility program which, when in core,

instructs the computer to read binary-coded data punched on paper
tape and store it in core memory. BIN is used primarily to load the
programs furnished in the software package (excluding the loaders
and certain subroutines) and the programmer's binary tapes.

BIN is furnished to the programmer on punched paper tape in
RIM-coded format. Therefore, RIM must be in core before BIN
can be loaded. Figure B-3 illustrates the steps necessary to prop-
erly load BIN. And when loading, the input device (low- or high-
speed reader) must be that which was selected when loading RIM.

LOAD RIM

SET ROTARY
SELECTOR SWITCH

SET SWITCHES
6-8 TO FIELD

WHICH CONTAINS 1 RIM 1
SET SWITCHES

9-1 1 TO FIELD IN *,
EXT ADDR LOAD

SET SR=7756 +
PRESS ADDR LOAD a

HIGH-SPEED

TURN HSR ON

1 PRESS HALT 1
SET SWITCHES
6-8 TO FIELD

BIN WAS LOADED

I

+I ADDR LOAD

PRESS EXAM @

Figure B-3 Loading the BIN Loader

When stored in core, BIN resides on the last page of core, oc-
cupying absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it
would always be available for use-the programs in DEC's soft-
ware package do not use the last page of core (excluding the Disk
Monitor). The programmer must be aware that if he writes a
program which uses the last page of core, BIN will be wip-
ed out when that program runs on the computer. When this
happens, the programmer must load RIM and then BIN before
he can load another binary tape.

Binary tapes to be loaded should be started on the leader-trailer
code (Code 200), otherwise zeros may be loaded into core, destroy-
ing previous instructions.

Figure B-4 illustrates the procedure for loading binary tapes
into core.

SET SWITCHES
6-8 TO FIELD IN

WHICH BIN IS

EXT AOOR LOAD m
1 SET SR TO 7777 1

SET SR=3777 & PUT TAPE IN LSB

t
PUT TAPE IN HSR LSR TO START

PRESS C L E M I

Figure

YES

IS LOADED

B-4 Loading a Binary Tape Using BIN

The

permanent symbol
table

following are the elements of the PDP-8 instruction set
found in the SABR permanent symbol table. These instructions
are already defined within the computer. For additional informa-
tion on these instructions and for a description of the symbols

. used when programming other, optional, 1/0 devices, see the Small .

Computer Handbook, available from
tion Center.

INSTRUCTION

Mnemonic Code Operation

Memory Reference Instructions
AND 0000 Logical AND.

the DEC Software Distribu-

CODES

Time (pec.)l

2.6
TAD 1000 Two's complement add 2.6
IS2 2000 Increment and skip if zero 2.6
INC 2000 Nonskip ISZ . 2.6
DCA 3000 Deposit and clear AC 2.6
JMS 4000 Jump to subroutine 2.6
JMP 5000 Jump 1.2

Sequence
Group 1 Operate Microinstructions (1 cycle2)
NOP
IAC
RAL
RTL
RAR
RTR
CML
CMA
CLL
CLA

No operation
Increment AC
Rotate AC and link left one
Rotate AC and link left two
Rotate AC and link right one
Rotate AC and link right two
Complemented link
Complement AC
Clear link
Clear AC

1 Times are representative of the PDP-8/E.
2 1 cycle is equal to 1.2 microseconds. .

Mnemonic Code Operation Sequence

Group 2 Operate Microinstructions (1 cycle)
HLT 7402 Halts the computer
OSR 7404 Inclusive OR SR with AC
SKP 74 10 Skip unconditionally
SNL 7420 Skip on nonzero link
SZL 7430 Skip on zero link
SZA 7440 Skip on zero AC
SNA ' 7450 Skip on nonzero AC
SMA 7500 Skip on minus AC
SPA 7510 Skip on positive AC (zero is positive

Combined Operate Microinstructions
CIA 7041 Complement and increment AC 2, 3 .
STL 7120 Sent link to 1 1 , 2
STA 7240 Set AC to - 1 2

Internal IOT Microinstructions
ION 6001 Turn interrupt processor on
IOF 6002 Disable interrupt processor

Keyboard/ Reader (1 cycle)
KSF 603 1 Skip on keyboard/ reader flag
KRB 6036 Clear AC, read keyboard buffer

(dynamic), clear keyboard flags

Telenrinter/ Punch (l cycle]

TSF 6041 Skip on te l~~r in te r /~unch flag
TLS 6046 Load teleprinter/ punch, print, and clear

teleprinter/ punch flag

High Speed Reader-Type PR8/ E (1 cycle)
RSF 601 1 Skip on reader flag
RRB 6012 Read reader buffer and clear reader flag
RFC 6014 Clear flag and buffer and fetch

character

High Speed Punch-Type PP8/ E (1 cycle)
PSF 6021 Skip on punch flag
PLS 6026 Clear flag and buffer, load buffer and

punch character

PSEUDO-OPERATORS

The following is a list of the SABR assembler pseudo-operators.

ABSYM
ACH
ACM
ACL
ARG
BLOCK
CALL
COMMN
CPAGE
DECIM
DUMMY
EAP
END
ENTRY
FORTR
I
IF
LAP
OCTAL
OPDEF
PAGE
PAUSE
REORG
RETRN
SKPDF
TEXT

demonstration run

The following pages present a demonstration of the use of t h e
OS/8 system. The terminal output is set off by letters (to its left)
which correspond to the textual explanations on the facing page.
This demonstration illustrates the procedures involved and use of
many of the OS/8 system programs and commands.

The CCL command is used to zero the DECtape on Unit 1,
specifying one additional information word in the directory.

The user then types the DATE command to set the system date
to April 10, 1974.

The ASSIGN command is used to give DTA1 the additional
name IN. All subsequent references to IN refer to DTA1.

DIRECT is called to list the directory of DECtape Unit 1. A
directory listing of DTA1 is produced,

The Keyboard Monitor GET and SAVE commands are used
to copy EDIT from the system device to DTA1.

The FORTRAN compiler is run via the CCL command COM-
PILE to compile and execute the program TEST1 on the
device DSK: An output relocatable binary file named TEST1
is saved by SABR on DECtape Unit 1. The program has an
error in it. Control is returned to the Keyboard Monitor after
execution and the error message-printed on the terminal.

The program EDIT, located on DTA1, is used to correct the
error in TEST1. The old program, TEST1, is input to the
Editor, and the new (corrected) program, TEST2, is written
by the Editor onto DTA1. The first page is yanked into core.

The user has noticed a misspelled word in FORMAT line 35
and used the string search feature of the Editor to correct it.
An END statement is appended to the program.

*ZERO DTA1!=1

.DA 4 / 1 0 / 7 4

. A S DTA1 I N
* D I R I N :

0 GET S Y S ED1 T

0 SAVE I N ED1 T 0- 50003 2 0 0 ~ 2 0 0 1

CALL E X I T
T

N O END STATEMENT

* R U N I N E D I T
* I N : T E S T 2 . FT<TEST l * FT

'#/: 0055
$3 5 'L
35 FORMAT < 'THE AVERATE I S ' F 2 0 * 21)

* S
35 FORMAT ('THE AVERAT\GE I S * F 2 0 * 2 / >

kL FORMAT (' T H E AVERAGE I S * F 2 0 . 2 /)

/L
CALL E X I T

END

I The user instructs the Editor to list the entire FORTRAN
program.

J Note the use of implied DO loops in the READ and WRITE
statements . . .

K and device independent I/O. A file named Al3CD.DA is
opened on the default device DSK and data is written into it.
When all the data is entered, the file is closed. Later, this file
is again opened, and the data is read and used by the program.

L An S in column 1 of a FORTRAN line indicates that the line
contains SABR code.

M CALL EXIT is used to return control to the Keyboard Ã Mon-
itor after execution.

N After listing the program,, the E command to the Editor closes
the file and returns control to the Keyboard Monitor.

T H I S PROGRAM PRESENTS A FEW OF THE FEATURES
OF 0 9 8 FORTRAN; SPECIFICALLY I T INCLUDES IM-
P L I E D DO LOOPS-. DIRECT INSERTION OF SABR CODE
AND EXPANDED I /O.

T H I S SECTION READS DATA FROM THE TTY AND WRITES
I T ONTO THE DSK AS AM ARRAY*

DIMENSION A(1 0)
CALL OOPEN (' DSX ' -. ' ABCD' 1
WRITE (1 , 1 0 5
FORMAT ('ENTER 1 0 NUMBERS IN F 6 . 2 FORMAT. '
WRITE (1 ~ 1 1)
FORMAT ('FOLLOW EACH WITH A CARRIAGE RETURN:*//)
READ (1 ~ 1 5) CACN), N=1-. 1 0)
WRITE (49 1 5) (ACNI-. N=1-. 1 0)
FORMAT (F 6 . 2)
CALL OCLOSE

THIS SECTION ADDS THE NUMBERS STORED ON THE DSK
AND AVERAGES THEM-. PRINTING BOTH RESULTS ON
THE TELETYPE.

SUM=0.0
DO 20 1 = 1 ~ 10
AC I >=0.0
CALL IOPEN (' DSK ' J ' ABCD' 1
READ (49 1 5) . CACN)-. N = 1 , 1 0)
DO 25 N = 1 - . 1 0
SUM= SUM+ACN 1
CONTINUE
WRITE (1 - . 3 0) SUM
FORMAT (/ ' T H E SUM I S ' F 2 0 . 2)
AVR=-SUM / 1 0 .
WRITE C1-.35)AVR
FORMAT C 'THE AVERAGE I S ' F 2 0 . 2 / 5

THE SABR CODE FOLLOWING CHECKS FOR A CARRIAGE
RETURN CHARACTER TO IN I T I ATE REPEATING THE
PROGRAM ANY OTHER CHARACTER TERMINATES THE
PROGRAM.

WRITE (1 9 4 0)
FORMAT C ' TO REPEAT* TYPE A CARRIAGE RETURN. ' / / 1
K S F
JMP x
KRB
TAD MYES
SZA
JMP \50
GO TO 5
- 2 1 5
WRITE (1 > 6 0)
FORMAT </'PROGRAM DONE1//)
CALL EXIT
EN D

0 The ASSIGN command is used to change the assigned name
of DTA1 from IN to OUT. The FORTRAN compiler is called
again, and the program is loaded. An output relocatable binary
file named TEST2 is saved by SABR on DECtape Unit 1.

P The FORTRAN program is executed via the CCL command
EXECUTE. The /G, /I, and /O options cause automatic
loading and execution of the program and the device indepen-
dent I/O, and results are calculated and returned. Execution
is not repeated.

Q The DEASSIGN command is used to delete all user-assigned
device names. The ASSIGN command is then used to give the
name X to D T A ~ .

R he CCL command DIR is used to obtain a directory listing
of DECtape Unit 1. TEST2.RL is the relocatable binary out-
put file from the FORTRAN compilation.

S Next, the CCL command DIR is used to print the directory of
the system device on the line printer. ABCD.DA is the FOR-
TRAN data file created in the preceding program.

T The CCL command DEL is used to delete the unwanted files
PROGS and PROG4, from the system device. Then the ASCII
file TEST2 is copied from DECtape Unit 1 to the system device
with the CCL command COPY.

. A S DTA1 OUT .

. C O M P I L E O U T : T E S T 2 < O U T : T E S T 2

EXECUTE OUT: T E S T Z / G / I /O

ENTEft 10 NUMBERS I N F 6 . 2 FORMAT*
FOLLOW EACH WITH A CARRIAGE RETURN:

1 6 . 2 3
32. 00
1 7 1 . 4 5
2. 15
22.10
7 7 . 3 5
2 .9 1
66.00
* 46
27. 50 /

THE SUM I S
THE AVERAGE I S

T O REPEAT* TYPE A CARRIAGE RETURN.
'Ã

PROGRAM DONE

E D I T *S\ / 12 1 0 - A P R - 7 4
TEST2 F T 4 10-APR-74
TEST2 * R L 4 1 0 - A P R - 7 4

I. 7 1 0 FREE BLOCKS

ABSLDReSV 5 15-JAN-74
CCL "SV 17 26-FEB-74
DIRECTOSV 7 16"JAN-74
FOTP OSV 8 18-JAN-74
P I P eSV 1 1 18-JAN-74
LIB8 ,RL 29 18-JAN-74
EDIT eSV 1 0 18-JAN-74
PALS eSV 16 18-JAN-74
CREF OSV 1 3 16-JAN-74
BITMAPeSV 5 18-JAN-74
FORT OSV 25 18mJAN-74
SABR WSV 24 18-JAh-74
LOADER,SV 15 18i.JAN-74
SRCCOM.SV 5 18-JAN-74
BOOT OSV 5 18-JAN-74
BUILD "SV 33 18eJANw74
E P I C ,SV 14 18-JAN-74
P I P 1 0 e8V 17 18-JAN-74
REaORCmSV 10 10-JAN-74
DTPRMToSV 7 18-JAN-74
TOFRMT.SV 9 18-JAN-74
RKaFMTOSV 9 18-JAN-74
R K E F M T a S V 6 16-JAN-74
CAMP .SV 8 18-JAN-74
MCPIP ,SV 13 18-JAN-74 .

DTCOPYe8V 5 18-JAN-74
TOCOPY.SV 7 18wJANmT4
L ~ B s E T ~ s v 5 i 8 -J~h4-74
CCL ,PA 130 26-FEB-74
TEST1 OBK 4 l l * A P R a 7 4
T E S T 1 , R L 4
T E S T 1 eFT 4 10-APR-74
TEST2 .RL 4 10-APR-74
ABCD 1 10-APR-74
P R O G 3 * 1 10-APR-74
PROG4 I 10-APR.74

2295 FREE BLOCKS .

DEL PROG39 PROG4
F I L E S DELETED:

PROG4-

=I8
error message

summary
The following summary is provided for the user's convenience.

Error messages generated by OS/8 programs are listed in alpha-
betic order and identified by the system program .by which they
are generated. This appendix is only a summary. Refer to the
appropriate chapters for more detailed information about error
conditions.

Message
~-

Program Explanation

SRCCOM

Editor

Linking
Loader

Linking
Loader

Linking
Loader

Linking
Loader

Linking
. Loader

Linking
Loader

E- 1

Insufficient core-this means
that the differences between
the files are too large to al-
low for effective comparison.
Use of the /X option may
alleviate this problem.

Editor failed in reading a de-
vice. Error occurred in device
handler; most likely a hard-
ware malfunction.

/I or /O specified too late. .

Symbol table overflow; more
than 64 subprogram names.

Program will not fit into core.

Program with largest com-
mon storage area was not
loaded first.

Checksum error in input tape.

Illegal relocation code.

Message - Program Explanation

,-
2

2045 REFS

Linking
Loader

Linking
Loader

Linking
Loader

Linking
Loader

Linking
Loader

SRCCOM

Editor

An output error has occurred.

An input error has occurred
(either a physical device er-
ror, or an attempt was made
to read from a write-only de-
vice such as LPT:).

No starting address has been
specified and there is no en-
try point named MAIN.

An error occurred while the
Loader was attempting to
load a device handler.

1/0 error on system device.

Input error on file # 1 or less
than 2 input files specified.

Editor failed in writing onto
a device. Generally a hard-
ware malfunction or WRITE-
LOCKed device.

TECO Illegal command.

SRCCOM Input error on file #2.

Editor File close error occurred. The
output file could not be
closed; the file does not exist
on that device.

TECO Incomplete command. (See
TECO in Chapter 2.)

CREF More than 2044 (decimal)
references to one symbol
were made.

SRCCOM Output file too large for out-
put device.

Editor File open error occurred.
This error occurs if the out-
put device is a read-only de-
vice or if no output file
name is specified on a file-
oriented output device.

Message Program Explanation

TECO Non-alphanumeric Q-register
name.

SRCCOM

Editor

TECO

SRCCOM

TECO

TECO

TECO

TECO

TECO

TECO

TECO

TECO

TECO

Output error.

Device handler error occur-
red. The Editor could not
load the device handler for
the specified device. This er-
ror should never occur.

Command iterations or mac-
ro calls nested too deeply.

Could not create output file.

Text buffer overflow.

Search string longer than 31
characters.

Numeric argument missing
before comma, equal sign, U,
or quote (").

Illegal filename in ER, EW,
or EB command.

Semicolon or failing search
encountered on command
level.

Iteration close (>) without
matching open (<).

Attempt to move pointer out-
side of text buffer.

Q-register storage overflow.

Incomplete command.

14 TECO Output file too large, or else
output parity error.

15 TECO Input file parity error.

16 TECO File error. (See Chapter 2.)

17 TECO An output command was en-
countered which would have
caused TECO to overflow its
current output file. Users
should close the current out-
put file and write all further

Program Explanation

ALOG

ALREADY EXISTS
(filename)

ARE YOU SURE?

TECO

FORT
Library

FOTP

PIP

ARITHMETIC FORT
EXPRESSION TOO
COMPLEX

AS F4

?BAD ARG BUILD

BAD ARG FRTS

BAD ARGS

BAD-BLK

Keyboard
Monitor

EPIC

E-4

output onto one (or more)
additional files. These files
may be combined if neces-
sary.

Attempt to execute an out-
put command without open-
ing an output fiie.

Too many or too few ARG
statements follow a CALL
statement.

More than six subroutine ar-
guments are arrays.

Attempt to compute log of
negative number.

An attempt was made to re-
name an output file with the
name of an existing output
file.

Occurs when using the /S
option. A response of Y will
compress the files.

Self-explanatory.

Bad ASSIGN statement.

No device name was included
in the LOAD command.

Illegal argument to library
function.

The arguments to the SAVE
command are - not consistent
and violate restrictions.

When EPIC is punching a
patch itchecks the block spec-
ified by =n to see if it is
within range. If the block is
out of range EPIC outputs
this error message and re-
turns to the command de-
coder.

Message Program Explanation

BAD CHECKSUM, ABSLDR File number n of the input
FILE #n file list has a checksum error.

BAD CHECKSUM, BITMAP File number n of the input
FILE #n file list had a checksum error.

BAD CORE IMAGE Keyboard The file requested was not a
Monitor core image file.

BAD DATE Keyboard The date has not been en-
Monitor tered correctly, or incorrect

arguments were used, or the .

date was out of range.

BAD DEVICE CCL The device specified in a
CCL command is not of the
correct form.

?BAD DIRECTORY RESORC Input device directory cannot
be read.

BAD DIRECTORY ON
DEVICE #n

BAD EXTENSION

BAD FORMAT OR
CHECKSUM-
TRY AGAIN

?BAD INPUT

BAD INPUT DIRECTORY

BAD INPUT FILE

PIP
\.

CCL

BUILD

DIRECT
FOTP

Loader

Error message occurs when:
1. PIP is trying to read the

directory, but it is not an
0.5,' 8 directory.

2. The output device does
not have a system- direc-
tory; i.e., file storage be-
gins at record 7 (occurs
during a /Y transfer).

n is the number of the file in
the input file list.

Either an extension was spec-
ified without a file name or
two extensions were specified.

Error in reading relocatable
binary file.

An error was detected in the
binary file; it is not a proper
input - for the LOAD com-
mand.

The directory on the specified
input device is not a valid
OS/8 directory.

An input file was not a RALF
module.

Message Program Explanation

BAD INPUT, FILE #n - ABSLDR

BAD INPUT, FILE #n BITMAP

#BAD LINE. JOB BATCH
ABORTED

?BAD LOAD

?BAD MONITOR

BAD MONITOR

BAD NUMBER

BUILD

RESORC

P O T
LLL

CCL

?BAD ORIGIN BUILD

BAD OUTPUT DEVICE FOTP

Attempt was made to load a
non-binary file as file number
n of the input file list; or a
non-core image with / I op-
tion.

A physical end' of file was
reached before a logical end
of file, or extraneous charac-
ters were found in binary file
n.

The BATCH monitor de-
tected a record in the input
file that did not have one of
the characters dot, slash, dol-
lar sign, or asterisk as the
first character of the record.
The record is ignored, and
BATCH scans the input file
for the next $JOB record.

An attempt was made tq load
a binary handler that is not
in the correct format.

The input device may be a
system device but the Moni-
tnr csnwt t""* &r"cessed.

7-1- xue version of the Keyboard

Monitor being used is not
compatible with CCL. A
newer version of the monitor
must be obtained from Dig-
ital before CCL can be used.

A CCL command which uses
the # construction does not
have the full 16-digit specifi-
cation that is required. .

The origin in a binary file is
not in the range 200-577.

This message usually appears
when a non-file structured de-
vice is specified as the output
device.

Message Program Explanation

BAD OUTPUT DEVICE Loader

BAD OUTPUT
DIRECTORY

BAD RECOLLECTION

BAD SWITCH OPTION

BATCH-SV NOT FOUND
ON SYS:

F O P

CCL

CCL

PIP

BATCH

F4

FLAP
RALF

PAL8

FLAP .
RALF

FRTS

F4

FLAP
RALF

E-7

The loader image file device
was not a directory device, or
the symbol map file device
was a read-only device. The
entire line is ignored.

The directory on the specified
output device is not a valid
OS/ 8 device directory.

An attempt was made to use-
a previously remembered ar- -
gument when no argument
was saved.

The character used with a
slash (/) to indicate an op-
tion is not a legal option.

If the /Y option is used and
the area being transferred does -
not contain OS/8, this mes-
sage results.

A copy of BATCH.SV must
exist on the system device.
Control returns to the OS/8
Monitor.

Bad dimensions (too big, or
syntax) in DIMENSION,
COMMON or TYPE declara-
tion.

Illegal equate. The symbol
had been defined previously.

Two PAL8 internal tables
have overlapped. Fatal error
-assembly cannot continue. '

Illegal index' register specifi-
cation.

No more file buffer available.

Illegal in BLOCK DATA pro-
gram.

Bad expression. Something in
the expression is incorrect, or
the expression is not valid in
this context.

Message Program Explanation
-- - -

C SABR

CANNOT CHANGE CORE CCL
CAPACITY- WHILE
RUNNING BATCH

CANNOT HANDLE VARI- MCPIP
ABLE LENGTH-
RECORDS

% CANT-AT BOF CAMP

- ̂
? CAN'T-AT BOT CAMP

% CANT-AT EOD CAMP

% CAN'T-AT EOF CAMP

? CAN'T-DEVICE CAMP
DOESN'T EXIST

? CANT-DEVICE IS CAMP
READ-ONLY

? CAN'T-DEVICE IS CAMP
WRITE-ONLY

-
An illegal character appears
on the line.

A CORE command was is-
sued while the BATCH pro-
gram was running.

The records on the input and
output files specified are not
the same size.

A file mark was read before .

the specified number of rec-
ords were read over in a
BACKSPACE command. The
device is moved forward so
that it is positioned at the
beginning of the file.

A BACKSPACE command
cannot move the device back-
ward the specified number of
files because the device is po-
sitioned at the beginning of
the first file.

The specified number of files
cannot be advanced over be-
cause the end of data was en-
coiinterecl. The tape is posi-
tioned at the end of data.

A file mark was read before
the specified number of rec-
ords were advanced over in a
SKIP command. The tape is
moved backward one record
to leave it positioned at the
end of the file.

The device specified in a
CAMP command is not pres-
ent on the OS/8 system.

The device specified in a
CAMP command is a read-
only device; e.g., PTR.

The device specified in a
CAMP command is a write-
only device; e.g., TTY.

Message Program Explanation

? CAN'T FOR THIS CAMP
DEVICE

The operation specified does
not make sense for the device
specified.

? CAN'T I/O ERROR CAMP

CAN'T OPEN OUTPUT PIP
FILE

CAN'T READ IT FRTS

%CAN'T REMEMBER CCL

CAUTION- DO DP FRTS

CCL #x OVERLAY & CCL
MONITOR INCOMPAT-
IBLE

CH BCOMP

PAL8

CHER FORT
Library

This message is followed by a
brief explanation of the input/
output error that occurred.

Message occurs due to one of
the following:
1. Output file is on a read-

only device.
2. No name has been speci-

fied for the output file.
3. A /Y transfer has been at-

tempted to a non-directory
device.

4. Output file has zero free
blocks.

I/O error on reading loader
image file.

The argument specified in a
CCL command line is too
long to be remembered or an
I/O error occurred.

The present hardware config-
uration does not include an
FPP-12 Floating-point Pro-
cessor with double precision
option.

The version of CCL being
used is not compatible with
the Keyboard Monitor pres-
ent on the system. Type R
CCL to retry.

Error in CHAIN statement.

Chain to CREF error-
CREF-SV was not found on
SYS:.

File specified as argument to
CHAIN not found on system
device. *

BRTS Inquire failure in CHAIN.
Device not found.

Message Program Explanation

BRTS

Lookup failure in CHAIN.
Filename not found.

Bad COMPLEX literal.

CLOSE ERROR MCPIP MCPIP is not able to close
the file. A bad file just cre-
ated on magnetic tape or cas-
sette must be removed by
placing a sentinel file after
the preceding file.

CLOSE FAILED

CO

CREF

F4

CLOSE on output file failed.

Syntax error in COMMON
statement.

Â¥

The command line specified
with the @ construction is

COMMAND LINE OVER-
FLOW

CCL

more than 512 characters in
length.

COMMAND TOO LONG CCL The length of a text argument
in a MUNG command is too
long.

COMPLIER MALFUNC-
TION

FORT The meaning of this message
has been extended to cover
Various unlikely Monitor er-
rors.

CONTRADICTORY
SWITCHES

Fither two CCL processor
switches were specified in the
same command line or the
file extension and the proces-
sor switch do not agree.

BUILD A CORE command specified
more memory than is physi-
cally available, or the BOOT
command was issued on an
8K system with a 2-page sys-
tem handler active. Two page
system handlers require at
least 12K of core to be pres-
ent on the OS/8 system.

SABR A device handler has returned
a fatal condition.

BRTS Attempt to read past end of
data list. *

Message Program Explanation

DA F4 Bad syntax in DATA state-
ment.

DE BCOMP Error in DEF statement.

BRTS Device driver error. Caused
by hardware 1 / 0 failure.

F4 This type of statement illegal
as end of DO loop.

PALS Device error. An error was
detected when trying to read
or write a device. Fatal er-
ror-assembly cannot con-
tinue.

DELETES PERFORMED FOTP More than one input device
ONLY ON INPUT was specified with the / D op-
DEVICE GROUP 1 tion when no output specifica-
CAN'T HANDLE MUL- tion (device or filename) was
TIPLE DEVICE included.
DELETES

?DEV IS NOT FILE RESORC The input device specified is
STRUCTURED not a file-structured device;

e.g., PTR.

DEV LPT BAD CREF The default output device,
LPT, cannot be used as it is
not available on this system.

DEV NOT IMPLE-
MENTED

DEVICE DOES NOT
HAVE A DIRECTORY

DEVICE FULL

DEVICE #n NOT A
DIRECTORY DEVICE

BATCH BATCH cannot accept input
from the specified input de-
vice because its handler is
not permanently resident
(SYS: or co-resident with
SYS:). Control returns to the
Command Decoder.

DIRECT The input device is a non-
directory device; e.g., PTR,
DIRECT can only read di-
rectories from file-structured
devices.

PIP 10 DECsystem-10 ran out of
space on the output file dur-

. ing a transfer.

PIP Message occurs when:
1. Trying ,to list the directory

of a non-directory device.

Message Program Explanation

D.F. TOO BIG

DIRECTORY ERROR

DIVIDE BY 0

DIVZ

DL

DN

PAL8

F4

FRTS

F4

BCOMP

PIP

FRTS

FORT
Library

F4

F4

BRTS

F4

2. The input designated in a
/Y transfer is not on a di-
rectory device.

n gives the number of the de-
vice in the input list.

Device full. Fatal error-as-
sembly cannot continue.

Bad DEFINE FILE state-
ment.

Product of number of records
times number of blocks per
record exceeds number of
blocks in file.

Hollerith field error in DATA
statement.

Error in DIM statement syn-
tax or string dimension greater
than 72, or array dimensioned
twice.

An error has occurred while
reading or writing the direc-
tory during a / S option.

Attempt to divide by zero.
rvn ARC 1csuiniig quaticfit IS set

to zero and execution con-
tinues.

Division ' by zero; very large
number is returned.

Data list and variable list are
not same length.

DO-end missing or incorrectly
nested. This message is not
printed during pass 3. It is
followed by the statement
number of the erroneous state-
ment rather than the ISM

No more room for drivers.
Too many different devices
used in file commands.

Syntax error in DO or im-
plied DO.

Message Program Explanation

name DOES NOT EXIST CCL The device with the name
Command given is not present on the
Decoder OS/8 system. .
MCPIP

F4 DO loop parameter not inte-
ger or real.

?DSK BUILD The device specified in a DSK
command is not a file-struc-
tured device.

DV BRT3 -Attempt to divide by 0. Re-
sult is set to zero (NF).

FLAP An attempt was made in an
RALF expression evaluation to di-

vide by zero.

END OF TAPE

SABR There is no END statement.

BRTS Logical end of file. Usually
caused when I/O device runs
out of medium.

FLAP The preceding line contains
RALF extra code which could not

be used by the assembler.
Â

" BRTS Attempt to exponentiate a
negative number to a power.

BRTS

EPIC

Enter error in opening file.
Device is read only or there
is already one variable file
open on that device or file
not found.

EPIC was expecting a block
of tape and found end of tape
instead. Press CONT to retry.

END OF TAPE ENTER EPIC When EPIC is reading a file
NEXT that is segmented across a

number of paper tapes and
encounters the end of a seg-
ment, it outputs this message
and halts with AC=7777 to
allow the user to enter the
next segment of papertape.
Press CONT to continue read-
ing.

Message Program Explanation

ENTER ERROR MCPIP Error occurred while trying
to enter an output file. This
message usually means that
the cassette or magnetic tape
has no sentinel file.

ENTER FAILED CREF Entering an output file was
unsuccessful-possibly output
was specified to a read-only
device.

EOF ERROR FRTS End of file encountered on
input.

EQUALS OPTION BAD DIRECT The =n option.'is not in the
range 0-7.

ERROR CLOSING FILE

ERROR DELETING FILE

DIRECT System error.

An attempt was made to de-
lete a file that does not exist.

PIP
PIP10

ERROR IN COMMAND CCL A command not entered di-
rectly from the console ter-
minal is not a legal CCL
command. This error occurs
when the argument of a UA,
UB, or UC command was not
a legal command.

The file specified is not trans-
ferred, but any previous or
subsequent files are % trans-
ferred and indicated in th:
new directory.

ERROR ON INPUT DE-
VICE SKIPPING
(filename)

FOTP

ERROR ON OUTPUT
DEVICE

Error occurred while writing
on output device; i.e., output
error on DECtape write.

The file specified is not trans-
ferred, but any previous or
subsequent files are trans-
ferred and indicated in the
new directory.

ERROR ON OUTPUT
DEVICE SKIPPING
(fiilename)

FOTP

An error occurred while read-
ing the directory.

ERROR READING IN-
PUT DIRECTORY

DIRECT
FOTP

ERROR WHILE WRIT-
ING OUTPUT FILE

LIBSET Fatal output error occurred.

ERROR WRITING FILE DIRECT An error occurred while writ-
ing the output file.

Message Program Explanation

ERROR WRITING OUT- FOTP Self-explanatory.
PUT DIRECTORY

ES RALF External symbol error.

F4 Syntax error in EXTERNAL
statement.

EXCESSIVE SUBSCRIPTS FORT Self-explanatory.

FB FORT Argument to EXP too large;
Library very large number is returned.

+ BRTS FILE busy. Attempt to use a
file already- in use.

BRTS OS/8 error while closing vari-
able file. Device is read-only
on file already closed.

FE BRTS Fetch error in opening file.
Device not found, or device
handler too big for available
space. .

FETCH ERROR MCPIP Error occurred while trying
to fetch an OS/8 device han-
dler.

FI BRTS Attempt to close or use un-
opened file.

*

FILE ERROR FRTS Any of:
a. A file specified as an exist-

ing file was not found.
b. A file specified as a non-

existent file would not fit
on the designated device.

c. More than 1 nonexistent
file was specified on a single
device.

d. File specification contained
"*" as name or extension.

FILE NOT FOUND PIP10 The requested file was not
found on the specified device.

FILE OVERFLOW FRTS Attempt to write outside file
boundaries.

FIX FORT Attempt to fix a number
Library >2047; 2047 is returned.

Message Program Explanation

FLPW

FPP ERROR

FR

FULL
Us

FLAP
RALF

FORT
Library

BRTS

FORT
Library

FORT
Library

FORT
Library

BCOMP

BRTS

BRTS

FRTS

BCOMP

FLAP
RALF

FRTS

BCOMB

Editor

BRTS

E-16

An error has occurred in the
FPP or software floating con-
version routines.

Negative number raised to
floating point power; absolute
value taken.

Attempt to fix minus number.
Usually caused by negative
subscripts or file numbers.

Invalid format statement.

Illegal character in I format.

Illegal character in F or E
format.

Error in file number of file
name designation.

Illegal file number. Only 0, 1,
2, 3, 4 are legal.

Attempt to fix number greater
than 4095. Usually caused by
negative subscripts of file
nnmhmrc
.*.A*..U~.".

Il!ega! syntax in FORMAT
statement.

Incorrect FOR loop parame-.
ters or FOR loop syntax.

A syntax error was encoun-
tered in a floating point or
extended precision constant.

Hardware error on FPP start-
UP.

Error in function arguments
or function not defined.

The specified output device
has become full. The file is
closed; the user must specify
a new output file.

RETURN without a GOSUB.

Message Program Explanation

GS BRTS Too many nested GOSUBS.
The limit is 10.

GT F4 Syntax error in GO TO state-
ment.

GV F4 Assigned or computed .GO
TO variable must be integer
or real.

- HANDLER FAIL CREF This is a fatal error on output
' and can occur if either the
system device or the selected
output device is WRITE-
LOCKed. ,

BUILD More than 15 handlers, in-
cluding SYS and DSK were
active when a BOOT com-
mand was issued.

HO F4 Hollerith field error.

SABR An illegal syntax has been
used.

I A BRTS Illegal argument in UDEF
function call.

1C FLAP The symbol or expression in ,
RALF a conditional is improperly

used, or left angle bracket is
missing. The conditional
pseudo-op is ignored.

1C PALS Illegal character. The charac-
ter is ignored and the assem-
bly continued.

ID PAL8 Illegal redefinition of a sym-
bol.

IE +. F4 Error reading input file. Con-
trol returns to the Keyboard
Monitor.

PAL8 Illegal equals-an attempt was
made to equate a variable to
an expression containing an
undefined term. The variable
remains undefined.

Message Program Explanation

ILLEGAL*

ILLEGAL.?

ILLEGAL ARG.

ILLEGAL ARITHMETIC
EXPRESSION

ILLEGAL BINARY
INPUT, FILE #n

ILLEGAL CONSTANT

ILLEGAL CONTINUA-
TION

RALF

BCOMP

BRTS

F4

PAL8

FLAP

DIRECT
FOTP

CCL
?AC?I?

DIRECT
FOTP

Keyboard
Monitor

FORT

PIP

FORT

FORT

E-18

An entry point has not been
defined, or is absolute, or also
is defined as a common sec-
tion, or external.

THEN or GOT0 missing
from I F statement, or bad re-
lational operator.

Illegal DEV: filename specifi-
cation.

Logical I F statement cannot
be used with DO, DATA,
INTEGER, etc.

Illegal indirect-an off -page
reference was made; a link
could not be generated be-
cause the indirect bit was al-
ready set.

u

A literal was used in an in-
struction which cannot ac-
cept one.

An asterisk (::) was included
in the output file specification
or an illegal * was included
in the input file name.

A~ :: or ? was used in a CCL
r*in>m~.~~c! thzt dces cot ac-
cept the wild card construc-
tion.

A question mark (?) was in-
cluded in the output file spec-
ification.

The SAVE command was not
expressed correctly; illegal
syntax used.

Self-explanatory.

Self-explanatory; n is the
number of the file in the input
list.

Self -explanatory.

Self -explanatory.

- -
Message Program Explanation

ILLEGAL EQUIVALENC- FORT Self -explanatory.
ING

- #ILLEGAL INPUT BATCH A file specification designated
TTY or PTR as an input de-
vice when the initial dialogue
indicated that an operator is
not available. The current job
is aborted, and BATCH
scans the input file for the
next $JOB command record.

ILLEGAL OR EXCES- FORT Self-explanatory.
SIVE DO NESTING

ILLEGAL ORIGIN Loader A RALF routine tried to
store data outside the bounds
of its overlay.

ILLEGAL SPOOL DEVICE BATCH The device specified as a
spooling output device must
be file-structured. Control re-
turns to the Command De-
coder.

ILLEGAL STATEMENT FORT Self-explanatory.

ILLEGAL STATEMENT FORT
NUMBER

ILLEGAL SYNTAX

ILLEGAL VARIABLE

IN

INCOMPATIBLE!

?INPUT ERROR

INPUT ERROR

CCL
Command
Decoder
MCPIP

FORT

BRTS

ABSLDR

RESORC

CREF
MCPIP

Self-explanatory.

The command line was for-
matted incorrectly.

Self-explanatory.

Inquire failure in opening
file. Device not found.

The versions of ABSLDR
and the Keyboard Monitor
being used are incompatible.

An input error occurred dur-
ing a RESORC operation.

An input error occurred
while reading the file.

FRTS Illegal character received as
input.

LIBSET Parity error on input.

Message Program
- --

Explanation

INPUT ERROR, FILE # n PIP An input error occurred while
reading file number n in the
input file list..

INPUT ERROR READING CCL CCL cannot read the file spec-
INDIRECT FILE ified with the @ construc-

V. tion.

#INPUT FAILURE BATCH

INSUFFICIENT CORE BATCH
FOR BATCH RUN

IOER

1 / 0 ERR

BCOMP

BRTS

FLAP
RALF

FORT

FORT
Library

BUILD

Either a hardware problem
prevented BATCH from read-
ing the next record of the in-
put file, or BATCH read the
last record of the input file
without encountering a $END
command record.

OS/8 BATCH requires 12K
of core to run. Control re-
turns to the OS/8 Monitor.

I/O error.

TTY input buffer overflow.
Causes input buffer to be
cleared and output another ?
(NF) -
Input/output error (fatal er-
ror).

A device handier has sig-
nalled an I/O FORT error.

One of the following has
occurred :
1. Device independent input

or output attempted with-
out / I o r /O options, or
user attempted to specify
a device requiring a two-
page handler for device-
independent I/O without
using the / H option.

2. Bad arguments to IOPEN
or OOPEN, or

3. Transmission error while
doing I/O.

An error occurred while
reading from an input device
during a LOAD command.

Message Program Explanation

1/0 ERROR FRTS Error reading or writing a
file, tried to read from an out-
put device, or tried to write .
on an output device.

PIP10 I/O device error; e.g., parity,
write lock, out of paper.

EPIC If EPIC encounters an error
while reading or writing a
mass storage device, or a
paper tape read fails three
consecutive times, it outputs
this error message, deletes
the output file if one exists,
and returns to the Com-
mand Decoder.

I/O ERROR, FILE #n

1 0 ERROR IN (file name)
-CONTINUING

I/O ERROR ON SYS:

I/O ERROR TRYING TO
RECALL

ABSLDR
BITMAP

PIP

CCL

CCL

PAL8

FLAP

FLAP
RALF

An I/O error has occurred in
input file number n.

An error has occurred during
a /S transfer.

An error occurred while
doing 1/0 to the system de-
vice. The system must be
restarted at 7600 or 7605
(see Restarting OS/8 in the
Getting On Line with OS/8
section of Chapter 1). Do not
press COW, as that will
surely cause further errors.

An I/O error occurred while
CCL was trying to remem-
ber an argument.

Illegal pseudo-op-a pseudo-
op was used in the wrong
context or with incorrect syn-
tax.

Invalid reference in a PDP-8
instruction.

An index register was speci-
fied for an instruction which
cannot accept one.

Message Program Explanation

LIBRARY DIRECTORY
OVERFLOW

LINE TOO LONG IN
FILE #n

LOADER 11'0 ERROR

L/T ERROR

PALS

SABR

PALS

PALS

F4

LIBSET

PIP

BRTS

Loader

BCOMP

BCOMP

F4

FLAP
RALF

EPIC

E-22

Illegal page zero reference-
The pseudo-op was found in
an instruction which did not
refer to page zero. The Z is
ignored.

/L or / G option was indi-
cated, but the LOADER.SV
file does not exist on the sys-
tem device.

The /L or /G options have
been specified and ABSLDR
is not present on the system.

Link Generated-only printed
if the / E switch was speci-
fied to PALS.

Argument of logical IF is not
type Logical.

Too many subroutines were
specified.

In ASCII mode, a line has
been found greater than 140
characters.

Attempt to take log of nega-
tive number or 0.

Fatal error message indicat-
ing that an error was de-
tected by OS/8 while trying
to perform a USR function.

Missing equal sign in LET
statement.

Statement too long (greater
than 80 characters).

Input line too long, too
many continuations.

The line is longer than 128
characters. The first 127 char-
acters are assembled and
listed.

EPIC was expecting leader/
trailer and found non-leader
trailer while attempting to

Message Program ' Explanation

#MANUAL HELP
NEEDED

ME

MIXED INPUT

MIXED MODE
EXPRESSION

MK

ML

MM

MO

SABR

BATCH

BCOMP

FLAP
RALF

BCOMP

Loader

FORT

F4

F4

F4

BCOMP
F4

read a block. The program
prints this error message and
halts with AC=7777 to allow
the user to reposition the tape
then press the CONT key.

A symbol is multiply-defined.
Listings of programs with
multiple definitions have un-
marked errors.

BATCH is attempting to op-
erate an I/O device, such as
PTR or TTY, that will re-
quire operator intervention.

Line number defined more
than once. YY equals the
line number before line in
error.

The tag on the line has been
previously encountered at an-
other location or has been
used in a context requiring an
absolute expression.

Missing END statement.

The L option was specified on
a line that contained some
file other than a library file.
The library file (if any) is
accepted. Any other input file
specification is ignored.

Misspelled keyword.

Multiply-defined line number.

Mismatched parenthesis.

Operand expected, not found.

MONITOR ERROR 2 AT Keyboard Attempt made to output to a
xxxx (DIRECTORY I/O Monitor WRITE-LOCKed device usu-
ERROR) ally DECtape; or an error

has occurred reading/ writing
a directory.

E-23

Message . Program Explanation
- -

MONITOR ERROR 5 AT
xxxx (I/O ERROR ON
SYS=)

MONITOR ERROR 6 AT
xxxx (DIRECTORY
OVERFLOW)

#MONITOR OVERLAYED

MORE CORE REQUIRED

MT

MULT SECT

Keyboard
Monitor

Keyboard
Monitor .

BATCH

FRTS

BCOMP
F4

An error occurred while do-
ing 1/0 to the system device.
This error is normally the
result of not WRITE-EN-
ABLEing the system device.

A directory overflow has oc-
curred (no room for tentative
file entry in directory).

The Command Decoder at-
tempted to call the BATCH
monitor to accept and trans-
mit a file specification, but
found that a user program
had overlayed part or all of
the BATCH monitor. Control
returns to the monitor level,
and BATCH executes the
next Keyboard Monitor com-
mand.

The space required for the
program, the I /O device
handlers (I/O buffers) and
the resident Monitor exceeds
the available core.

Operand of mixed type or
operator does not match
operands.

Loader Any combination of entry
point, COMMON section
(with the exception of multi-
ple COMMONS) or pro-
gram section of the same
name causes this error, ex-
cept as shown in the Table
8-6.

BUILD
I

A device or filename was not
designated in a command
that requires one to be pres-
ent.

Message Program Explanation

FLAP Number error. A number out
RALF of range was specified or an

8 or 9 occurred in octal
radix.

NEED: nlFOUND : 13.2

NEED: name1 FOUND
name2

EPIC EPIC read block n2 of the
file when it was expecting
block n l of the file. EPIC
halts with AC+7777 to al-
low the user to reposition

- the paper tape.

EPIC EPIC read a block of tape
for the file NAME2 when it
was expecting a block of the
file NAME1. -.

BCOMP NEXT statement without cor-
responding FOR statement.

BCOMP Line number missing after
GOTO, GOSUB, or THEN.

NO!! Keyboard The user attempted to start
Monitor (with .ST) a program which

cannot be started.

NO CCL!

NO DEFINE FILE

NO END STATEMENT

NO FILES OF THE FORM
xxxx

Keyboard
Monitor

FRTS

FORT

FOTP

BITMAP

CCL.SV is not present on the
system device or an I/O error
occurred on the file. Refer to
the Getting occurred while
trying to read On Line section
of Chapter 1 for instructions
on loading programs onto the
system device.

-
Direct access I/O attempted
without a DEFINE FILE
statement.

The input to the compiler has
been exhausted.

No files of the form (xxxx)
specified were found on the
current input device group.

Cannot produce a bitmap of
an image file.

ABSLDR Use of /I is prohibited at this
point.

Message Program Explanation

NO MAIN

- NO NUMERIC SWITCH

NO OUTPUT FILE

?NO ROOM

NO ROOM FOR OUTPUT

NO ROOM FOR OUTPUT
FILE

NO ROOM IN (file name)
-CONTINUING

NO ROOM, SKIPPING
(filename)

NO SUCH DEVICE

% NON SYSTEM DEVICE

NOT A LOADER IMAGE

% NOT A SYSTEM HEAD

ABSLDK
BITMAP

MCPIP

LOADER

FRTS

MCPIP

BUILD

FORT

DIRECT
PIP

PIP

FOTP

PIP10

RESORC

FRTS

RESORC

. Y n o input ur bins* file was
found on the designated de-
vice.

No input file was specified
when one was required.

No RALF module contained
section #MAIN.

The referenced FORTRAN
1/0 unit was not specified to +

the run-time system.

No output file was specified
when one was required.

Too many device handlers
were present on the system
when a LOAD or BUILD
command was typed. The
UNLOAD command must be
used to remove a handler be-
fore another can be loaded.

The file FORTRN.TM can-
not fit on the system device,

Either room on device or
room in directory is lacking.

Occurs during use of the /S
option. The output device
cannot contain all of the files
OR the input device,

No space is available on the
output device to perform the
transfer. Predeletion may al-
ready have occurred.

Device name used is not legal
in this OS/8 system.

The input device specified in
a RESORC command line is
not an OS/8 system device.

The first input file specified
to the run-time system was
not a loader image file. *

The filename specified is not
a system-head file.

Message Program Explanation

name NOT AVAILABLE Keyboard
Monitor

NOT ENOUGH CORE

name NOT FOUND

file NOT FOUND

NOT OS8 FILE

CCL

BUILD
CCL
Command
Decoder *-

Keyboard
Monitor

MCPIP

The device with the name
given is not listed in any sys-
tem table, or it is not avail-
able for use at the moment,
or the user tried to obtain in-
put from an output-only de-
vice.

The number specified in a
CORE command is larger
than the number of 4K core
banks on the system.

The device or file name desig-
nated in the command was
not found.

The file specified cannot be
found.

The output device specified
with a /L or /F option was
not an OS/8 device or file.

NOT PDP-10 FILE PDP10 The output device specified
with a /Z option was not a
DECsystem-10 tape, or the
input device specified with a
/L or /F option was not a
DECsystem-10 tape.

? NUMBER TOO BIG CAMP The "nnnn" specified in a
BACKSPACE or SKIP com-
mand is greater than 4095.

OE BRTS Driver error while overlay-
ing. Caused by SYS device
hardware error.

OF BCOMP Output file error.

F4 Error writing output file.
Control returns to the Key-
board Monitor.

OP F4 Illegal operator.

OS/8 ENTER ERROR Loader Fatal error message indi-
cating that an error was de-
tected by OS/8 while trying
to perform a USR function.

Message Program Explanation

OUT DEV FULL

OUT-IN

?OUTPUT DEVICE FULL

OUTPUT DEVICE FULL

?OUTPUT DEVICE IS
READ ONLY

?OUTPUT ERROR

OUTPUT ERROR

OUTPUT FILE OPEN
ERROR

ov
OVER CORE

OVER IMAG

OVER SYMB

OVERFLOW

F4

CREF

MCPIP

RESORC

MCPIP

RESORC

RESORC

MCPIP

PIP10

BRTS

Loader

Loader

Loader

FRTS

E-28

Type/operator use illegal
(e.g., A.AND.B where A
and/or B not typed Log-
ical).

The output device is full (di-
rectory devices only).

Both the input and the out-
put devices were specified as
the same cassette or mag-
netic tape drive.

The output device specified
does not have enough room
to copy the RESORC file.

Either room on device or
room in the directory is lack-
ing.

The output device specified is
a read-only device; e.g., PTR.

An error occurred while at-
tempting to output during a
RESORC operation.

Output error-possibly a
WRITE-LOCKed device, par-
ity error, or attempt to out-
put to a read-only device.

The output file could not be
opened. Check output direc-
tory to ensure that enough
space exists on the device.

Numeric or input overflow.

The loader image requires
more than 32K of core mem-
ory.

Output file overflows in the
loader image file.

Symbol table overflow. More
than 253 (decimal) symbols
in one FORTRAN job.

Result of a computation ex-
ceeds upper bound for that
class of variable. The result

Message Program Explanation

' OVERLAY ERROR FRTS

OVFL FORT
Library

PA BRTS

PARENS TOO DEEP FRTS

PARITY ERROR EPIC

<Â

PD BCOMP

PIP10 CANNOT BE PIP 10
CHAINED

?PLAT BUILD

is set equal to zero and exe-
cution continues. This error
is detected only if an FPP is

, present.

Error while reading overlay.

Floating point overflow; very
large number is returned.

Illegal argument in POS func-
tion.

Parens nested too deeply in
FORMAT statement.

EPIC failed to read a block
correctly; e.g., the reader
dropped some bits. EPIC
halts with AC=7777 to al-
low the user to reposition
the tape so that it can try the
read again.

Pushdown stack overflow.
Result of either too com-
plex a statement (or state-
ments) or too many nested
FOR-NEXT loops.

Compiler stack overflow;
statement too big and/or too
many nested loops.

Current non-zero page ex-
ceeded* attempt was made
to:

Bad program header line.

Phase error-a conditional
assembly bracket is still in
effect at the end of the in-
put stream-this is caused by
nonmatching < and > char-
acters in the source.

Self-explanatory.

The =n in a SYS command
is too large for the device
specified; e.g., RF08=5.

Message Program Explanation

PREMATURE END OF
FILE, FILE #n

PTR:name IS TOO BIG
FOR dev:

t

RECORD SIZE TOO BIG

FLAP

PIP

EPIC

F4

BCOMP

F4

F4

PAL8

BRTS

RALF

MCPIP

F4

F4

E-30

Page overflow. Literals and
instructions have been over-
lapped.

Message occurs in Binary
Mode (/B) only. A physical
end-of-file has been found be-
fore the final leader/ trailer.

The paper tape file name will .

not fit on the specified output
device DEV:. EPIC aborts
the command and returns to
the Command Decoder. EPIC
makes the check for size be-
fore writing on the output de-
vice.

Nesting error in EQUIVA-
LENCE statement.

String literal too long or does
not end in quote.

Syntax error in EQUIVA-
LENCE statement.

Attempt to redefine the di-
mensions of a variable.

Redefinition - a permanent
symbol has been defined with
. The new and old defini-
tions do not match. The re-
definition is allowed.

Attempt to read past end of
file (NF).

Relocatability error. A relo-
catable expression has been
used in context requiring an
absolute expression.

The output record size speci-
fied is greater than 1000 or
an output record size is 0.

Attempt to redefine the type
of variable.

Syntax error on READ/
WRITE statement.

--

Message Program Explanation

SABR.SV NOT FOUND

SAVE ERROR

SORRY-NO
INTERRUPTIONS

#SPOOL TO FILE
BTCHA 1

SABR

FORT

Keyboard
Monitor

BRTS

PAL8

F4

BRTS

F4

PIP

BATCH

Either the symbol table has
overflowed, common storage
has been exhausted, more
than 64 different user-defined
symbols occurred in a core
page, or more than 64 ex-
ternal .symbols have been de-
clared. Could also indicate a
system error such as over-
flowed output file.

The SABR assembler is not
present on the system device.

An 1/0 error has occurred
while saving the program.
The program remains intact
in core.

String too long (greater than
72 characters) after concate-
nating.

Symbol table extended-too
many. symbols have been de-
fined for the amount of mem-
ory available. Fatal error-
assembly cannot continue.

Bad arithmetic statement
function.

String too long or undefined.

Illegal subroutine name in
CALL.

TC (CTRL/C) is typed
while compressing a file
onto itself; . the transfer
continues.
A /Y transfer is done with
system device as the out-
put, or if the transfer has
both input and output on
the same device.

Where the "A" may be any
character of the alphabet and
the "1" may be any decimal
digit. This message indicates
that BATCH has intercepted

-

Message Program Explanation

SQRT

SUBR. OR FUNCT. STMT.
NOT FIRST

% SUPERSEDED

SWITCH NOT ALLOWED
HERE

FORT
Library

BRTS

BCOMP

F4

BCOMP

BRTS

F4

FLAP
RALF

BRTS

FORT

CCL

BRTS

CCL

E-32

a non-file structured output
file and rerouted it to the
spool device. This is not, gen-
erally, an error condition.

Attempt to take square root
of negative number; absolute.
value used.

Attempt to read string from
numeric file.

Subscript or function argu-
ment error.

Error in subscript expres-
sion; i.e., wrong number,
syntax.

Symbol table overflow due to
too many variables, line
number, or literals. Combine
lines using backslash (/) to
condense program.

String truncation on input.
Stores maximum length al-
lowed (NF).

Compiler symbol table full,
program too big. Causes an
immediate return to the Key-
board Monitor.

User symbol table overflow
(fatal error).

Subscript out of DIM state-
ment range.

Self-explanatory.

The file specified in a MAKE
command already exists. This
is a warning message indi-
cating that the file is being
replaced.

Attempt to write string into
numeric file.

Either a CCL option was
specified on the left side of

Message Program Explanation

SYM OVERFLOW

SYMBOL TABLE
EXCEEDED

?SYNTAX ERROR

SYNTAX ERROR

?SYS

BCOMP

F4
+.

CREF

FORT

BUILD

CAMP

FORT
PIP 10

BUILD

the < or was used when riot
allowed.

System incomplete. System
files such as BASIC.SV,
BCOMP.SV, and BRTS.SV
missing.

System error; i.e., PASS20.
SV or PASS2.SV missing, or
no room for output file.
Causes an immediate return
to the Keyboard Monitor.

More than 896 (decimal)
symbols and literals were
encountered.

Self -explanatory.

An illegal character was
typed in a BUILD command
line. The line must be re-
typed.

An illegal character was typed
in a CAMP command or a
command was formatted in-
correctly. The command must
be retyped.

Invalid command line.

This message appears when
one of the following condi-
tions exists:

A permanent name in a
SYS command was not a
system handler or co-
resident with one.
A BOOT command was
issued when two system
handlers were active.
A BOOT command was
issued with a active han-
dler which must be co-
resident with a SYS han-
dler did not have the
system handler active.

Message Program Explanation

SYS NOT FOUND BUILD

SYSTEM DEVICE ERROR FRTS

SYSTEM ERR

SYSTEM ERROR

SYSTEM ERROR-
CLOSING FILE

Keyboard
Monitor

Loader

FOTP

BCOMP

BCOMP

F4

THERE IS NO HOPE- DIRECT
THERE IS NO TTY
HANDLER IN YOUR
SYSTEM!

A hardware problem pre-
vented BATCH from per-
forming an 1/0 operation.

A n T In n w m v /v~'*/-*I>TT-Â£Ãˆ/ vx7-I th
L u *, _/ ^LA "A """I-tA A ̂ Vt. .. .Ira.- -

a system handler. The com-
puter halts. Press CONT to
retry or restart the BUILD
procedure from the begin-
ning. Do not assume that a
valid OS/8 system remains in
core.

No active handler with the
name SYS was present when
a BOOTSTRAP command
was issued.

I/O failure on the system
device.

An error occurred while do-
ing I/O to the system device.
The system should be re-
started at 7600 or 7605. Do
not press CONTinue as this
is sure to cause further
errors.

Fatal error message indicat-
ing that an error was de-
tected by OS/8 while trying
to perform a USR function.

Self-explanatory.

Program too big. Condense
or CHAIN.

Too much data in program.

Bad syntax in type declara-
tion statement.

A command was issued to
print a directory on the ter-
minal when no TTY handler
is present on the OS/8 sys-
tem. Use BUILD to insert a
TTY handler in the system.

Message Program Explanation

TOO FEW ARGS

TOO MANY FILES

TOO MANY FILES

TOO MANY FILES

TOO MANY HANDLERS

TOO MANY LEVELS

TOO MANY OVERLAYS

TOO MANY RALF FILES
w .

?TTY DOES NOT EXIST

UNDF

Keyboard
Monitor

CCL .

Command
Decoder

MCPIP

FRTS

Loader

Loader

Loader

BCOMP

RESORC

SABR

BCOMP

BCOMP

SABR

An important argument has
been omitted from a com-
mand.

Too many files were included
in a CCL command.

 ore than three output files
or nine input files were spec-
ified. Some programs may
restrict the user to fewer files. .

~ b r e than 1 output device
was specified or more than 1
input device was specified.

Too many I/O device han-
dlers are resident in memory,
or files have been defined on
too many devices.

The 0 option was specified
more than 7 times.

More than 16 overlays were
defined in the current level.

More than 128 input files
were specified.

Too many total characters in ,
the string literals.

An output device was not
specified in the RESORC
command line and the TTY
handler does not exist on the
OS/8 system. See the BUILD
section of Chapter 2 for in-
structions on inserting TTY
handlers.

No symbol table is being pro-
duced, but there is at least
one undefined symbol in the
program.

Error in UDEF statement.

FOR loop without corre-
sponding NEXT statement.

Undefined symbol; printed in
the symbol table listing.

Message Program Explanation

USE PIP FOR NON-FILE
STRUCTURED DEVICE

USER ERROR

USER ERROR 0 AT xxxx

USER ERROR 1 AT xxxx

USR n dev:name

T-n '-mo r n u
r

PALS

BCOMP
F4

FLAP
RALF
PAL8

FOTP

FRTS

Keyboard
Monitor

FORT
Library

EPIC

BCOMP

E-36

I/O unit not assigned, or in-
capable of executing the re-
quested operation.

Undefined origin-an unde-
fined symbol has occurred in
an origin statement.

Undefined statement number.

Undefined symbol in an ex-
pression.

An input device specified is
not a file-structured device;
e.g., PTR.

Illegal subroutine call, or
call to undefined subroutine.
Execution continues only if
the E option was requested.

An input error was detected
while loading the program.
xxxx refers to the Monitor
location where the error was
generated.

The user tried to reference
an entry point of a program
which was not loaded, or he
failed to define a subscripted
variable in a DIMENSION
statement. xxxx has no mean-
ing.

The USR encountered an
error while attempting to
perform a fetch, lookup, en-
ter or close on the file
name on device dev. n=l
is a fetch, n=2 is lookup,
n=3 is enter, n=4 is close.
EPIC aborts the command
and returns to the Command
Decoder.

Incorrect or missing array
designator in USE statement.

4

Message Program Explanation

Version error. One of the
compiler programs is absent
from SYS: or is present in
the wrong version.

VR BRTS

WE BRTS

WRONG OS/8 MONITOR BATCH

ZERO SYS?

BCOMP

RALF

PAL8

PIP

Attempt to read variable
length file.

Attempt to write past end of
file (NF).

OS/8 BATCH requires an
OS/8 Monitor no older than
version 3.

Extra characters after the
logical end of line.

External symbol table over-
flow. Control returns to the
OS/8 Keyboard Monitor.

Page 0 exceeded-same as
PE except with reference to
page 0.

If any attempt is made to
zero the system device direc-
tory, this message occurs. Re-
sponding with Y causes the
directory to be zeroed; any
other character aborts the
operation.

file name extensions
- This appendix lists the file name extensions used in OS/8.

Extension Meaning

BASIC source file (default extension for a BASIC input
file).

Batch input file.

Backup ASCII file (default extension for a TECO output
file).

Absolute binary file (default extension for ABSLDR,
BUILD, and BITMAP input files; also used as default ex-
tension for PALS binary output file).

Data file.

Documentation file.

Directory listing.

FORTRAN language source file (default extension for
FORT input files).

Help file (default extension for HELP input files).

F4 load mode (default assumed by run-time system, F4
loader).

Assembly listing output file (default extension for PAL8
and SABR) .
Macrosource file.

File containing a loading map (used by the Linking
Loader).

PAL8 source file.

RALF assembly language file.

F- 1

Fyt~ncinn - a-v--.,+--- Meaning

Relocatable binary source file.

Relocatable binary file (default extension for a Linking
Loader input file; also used as the default extension for an
8K SABR output file).

8K SABR source file.

Core image file or SAVE file; appended to a file name by
the R, RUN, SAVE, and GET Keyboard Monitor com-
mands.

System head.

TECO macro file (default extension for a MUNG input
file) .
Temporary file generated by FORTRAN or SABR for
system use (default extension for CREF input files, and
PAL8 output files).

Text files.

OS/B device handlers

The device handlers supplied with the OS/8 system have cer-
tain operating characteristics which the user should understand.
Most of these are extremely simple and require no action by the

user. Some device handlers perform additional operations for the
user when 1/0 is being performed on a given device. This appen-
dix gives a brief description of the OS/8 device handlers. See the ,

OS/8 Software Support Manual (DEC-S8-OSSMB-A-D) for more
detailed information concerning device handlers.

HIGH-SPEED READER/PUNCH
The device handler for the high-speed paper tape reader, before

reading a tape, prints an uparrow (f) and waits for the user to
type any single character at the keyboard. This gives the user time
to check the reader to ensure that the tape is loaded correctly, and
it facilitates reading multiple tapes, e.g., a PALS source tape must
be loaded three times for the three passes of the assembler. Char-

, acters are read from the paper tape and packed into an input
buffer. The end of the paper tape or a full input buffer causes the
buffer to be made available to the user program. Typing CTRL/C
while the tape is moving causes a return to the Keyboard Monitor.

The handler for the high-speed paper tape punch unpacks char-
acters from the output buffer and punches them on paper tape.
Typing CTRL/C causes a return to the Keyboard Monitor. The
punch must be manually turned on before an attempt is made to
output to that device.

LOW-SPEED READER/PUNCH
In addition to the handler for the high-speed reader/punch, a

similar handler is available for the ASR-33 Teletype low-speed
reader/punch. This handler allows users not having high-speed
1/0 to read and punch binary format tapes. (The standard TTY
handler cannot be used for binary format tapes, as the binary

format can appear as control characters to the handler.) The oper-
ation of this handler is exactly the same as that for the high-speed
----I-- /-----I. .---/t./i-+ +Lo+ +LA -~Ãˆ%ovÂ¥ÃˆÂ¥/- ;c nnt n-rin+faA rcauci/ pu i i~ i i C A G G ~ L n i a ~ L L L ~ U ~ U X X U V V Juwi L/AJ.AJIbw^kA.

TTY HANDLERS
There are two TTY (console terminal) handlers available: a

1-page handler and a 2-page handler. Both handlers perform 1/0
transfers between the terminal keyboard and an input buffer, or
between an output buffer and the terminal.

The 1-page handler echoes all terminal input and performs a
line feed operation after any typed carriage return. A CTRL/O
typed while output is being printed terminates printing of the cur-
rent output buffer.-A CTRL/C typed at any time during input or
output causes a return to the Keyboard Monitor. Typing CTRL/Z
as input terminates input and gives an end-of-file indication to the
calling program. The TTY handler should not be used to read
binary tapes from the low-speed reader.

The 2-page TTY handler may be used only to read or write
ASCII files; results are unpredictable with non-ASCII files. In
addition to the features included in the- 1-page handler, this han-
dler includes the use of the RUBOUT key to delete the previous
character and echo it either as a backslash (\) or as the character
rubbed out, the use of CTRL/U to delete the current line, and the
use of the TAB key to output the correct number of spaces to bring
the text to the start of the next tab stop.

The 2-page TTY handler also includes approximately 30 free lo-
cations so that the user may conditiunalize certain nonstandard
features. See the OS/8 Software Support Manual for a complete
list of these features.

LINE PRINTERS
The OS/8 line printer handler is a 1-page handler for the LP08,

LS8E, and LV8 line printers. This handler performs a form feed
operation before beginning an output task. The characters are un-
packed from the output buffer and printed. A form feed is also
produced following the completion of an output task. Typing
CTRL/C while the line printer is in operation causes a return to
the Keyboard Monitor. A CTRL/Z found in the output buffer
causes printing to terminate and a form feed to be produced. Tabs
and line overflow are handled; nulls are ignored.

Relative location 0 of this handler specifies the width of the line
printer. This location may be patched using the ALTER command
in BUILD. The location is set to the one's complement of the width
desired. Initially, this location is set to 7573 (octal) which cor-
responds to a 132-column printer. For example, to indicate an 80-
column printer, location 0 should be set to 7657 (octal).

VR12 SCOPE
The VR12 scope handler for OS/8 (running on a PDP-12) dis-

plays characters on the VR12 scope on both channels. When the
scope is full, the handler stops reading characters from the buffer
and displays what is known as a scope page. The screen is con-
sidered full whenever the end of the buffer is reached, a CTRL/Z
is encountered in text, or when the number of lines displayed be-
come equal to the maximum number specified by the user. The
user can advance to the next scope page by typing any character,
other than CTRL/C.

When CTRL/C is typed, control returns to the Keyboard Mon-
itor. Control does not return to the calling program until a char-
acter is typed at a point when the handler is displaying the last
scope page of a particular buffer load.

To use the VR12 handler, the user sets the number of lines de-
sired in a single scope page via the switch register (right switches).
The switch register is set to the negative of the number of lines to
be displayed in a scope page. When text reaches the right margin
of the scope face, it is continued on the next physical line of the
scope.

A line feed or form feed character causes succeeding text to con-
tinue on the next physical line. Carriage return characters have no
effect on the display.

CARD READER
The device handler for the card reader reads cards in alpha-

numeric format from either a punched card reader or an optical
mark card reader. Card format can have up to 80 characters per
card; trailing blanks are deleted from each card. Blank cards cause
a carriage return/line feed to be entered into the data stream.
Typing CTRL/C while cards are being read terminates reading
and returns control to the Keyboard Monitor. Typing CTRL/Z
terminates further reading and performs as though an end-of-file
card was read. (An end-of-file card contains a <Ã character in

column 1 (0-8-5 punch) with the remaining columns blank. Either
CTRL/Z or the end-of-file card is necessary to terminate reading.)
It is not possible to RUN or GET a program from the card reader
as these commands assume a directory device.

DECTAPES
Any DECtape other than the system device (if the system is a

DECtape system) can be interrupted with a CTRL/C, returning
control to the Keyboard Monitor. DECtape unit 0 on a DECtape
system must never be WRITE LOCKed while operating OS/8.

MAGNETIC TAPE
The handler for magnetic tape reads and writes either 7- or 9-

channel magnetic tape with odd parity at 800 bpi. This handler is
non-file structured but may be altered by the user to read and write
files. CTRL/C returns control to the Keyboard Monitor but its use
is not recommended since it leaves the tape without an end-of-file
indicator.

CASSETTES
The cassette handler performs character 1/0 transfer between

the cassettes and the buffer. It treats cassettes as non-file structured
devices. Data appears on cassette in 192-byte records. Typing
CTRL/C returns control to the Keyboard Monitor.

BATCH HANDLER
The OS/8 batch handler is used from a BATCH job to read

from the BATCH stream. This is a age handler for read-only,
 on-file structured devices. If this handler is used when BATCH
is not running, it generates a fatal error. The BATCH handler
reads characters from the BATCH stream, ignoring line feeds, and
creating a line feed after a carriage return. When the handler
encounters a line beginning with a dollar sign, it pads the buffer
with CTRL/Z and nulls, and takes the end-of-file return.

DSK AND SYS
The DSK and SYS device handlers work automatically without

any user intervention.

obtaining OS/Q

version numbers
When the user receives new OS/8 software or when he wishes

to report problems with the software, he must know the version
number of the OS/8 program in question. Most OS/8 system pro-
grams have version numbers that can be obtained by typing a
command to the OS/8 Command Decoder * or to the called pro-
gram. Some system programs print the version number at the
beginning of the output listing. The following table shows how to
obtain version numbers for most OS/8 system programs.

Program How to Obtain Version Number

ABSLDR
BASIC
BATCH
BITMAP
BOOT
BUILD
CAMP
CCL
Command Decoder
CREF
DIRECT
EDIT
EPIC
F4 Compiler
F4 Loader (LOAD)
FLAP
POTP
FRTS

Internal only.
Printed in program heading.
Type /V in BATCH command string.
Printed at top of output listing.
Type VE to the / printed by BOOT.
Type VE to the $ printed by BUILD.
Type VE to the # printed by CAMP.
Type VER to the Keyboard Monitor.
Internal only.
Printed at end of CREF output listing.
Type / W to the * printed by DIRECT.
Type # to the # printed by EDIT.
Internal only.
Printed in heading of output listing.
Printed in heading of loading map.
Printed in heading of output listing.
Type /W to the * printed by FOTP.
Type / V to the * printed by FRTS (to be

implemented later).

- -

Program How to Obtain Version Number
- --

r - . l - - --.A Tk a-- :*-- JYcy uutu u MUlIlLUi

MCPIP
ODT
PALS

e

PIP
PIP 10
RALF
RESORC
SRCCOM
TECO

T' .--- x r q n A- AL., V--.L-Ã‘ '\x--:+-..
ypc v LA LU me ~ c y uuaiu iviuiii~ui.

Type I V to the * printed by MCPIP.
Internal only.
Printed in heading of output listing.
Type I V to the * printed by PIP.
Printed in heading of directory listing.
Printed at heading of output listing.
Type / V to the * printed by RESORC.
Printed in heading of output listing.
Type CTRLIV to the * printed by TECO.

ABS function,
FORTRAN 11, 7-41
FORTRAN IV, 8-46
SABR, 4-42

Absolute Binary Loader (ABSLDR),
1-21, 1-108

correct use, 1-1 12
error messages, 1 - 1 1 3
Options, 1-1 10, 1-1 11

Absolute relocation address, SABR,
4-49

Absolute value function, BASIC,
6-37

ABSYM pseudo-op, SABR, 4-20
A conversion (FORTRAN IV), 8-96
A/D converter, 6-124
Addition,

BASIC, 6-8
PALS, 3-15

Addresses of operands, SABR.4-7
Addresses, PALS, 3-9, 3-23
Addressing, FLAPZrRALF

in FPP mode, 5-13
in PDP-8 mode, 5-6

Algebraic operations, FORTRAN
11, 7-12

ALOG function,
FORTRAN 11, 7-41
FORTRAN IV, 8-48
SABR, 4-45

Alphabetic characters, SABR, 4-4
Alphabetizing with TECO. 2-172
~lphanurneric,

field specifications. FORTRAN 11.
7-22, 7-24

information. BASIC. 6-46
Altmode character, TECO, 2-1 34
ALTMODE command, BASIC, 6-55
ALTMODE echo, 1-21
AND, Boolean (PALS), 3-16
AND group skip instructions, PALS,

. 3-25
.AND. (logical operator), FOR-

TRAN IV, 8-74
Angle bracket (<), usage,

command decoder, 1-45
PALS, 3-21, 3-30

Arctangent function,
BASIC, 6-39

FORTRAN IV, 8-49, 8-50, 8-55,
8-56

ARG pseudo-op, SABR, 4-25
Arguments,

dummv. FORTRAN 11. 7-36
SABR; '4-25, 4-29

Arithmetic expressions,
FORTRAN 11, 7-13
FORTRAN IV, 8-72

Arithmetic functions, BASIC, 6-34
Arithmetic operations,

BASIC. 6-6, 6-8
FLAP/RALF, 5-3
FORTRAN 11, 7-42
PALS, 3-14; 3-15
SABR, 4-41, 4-43

Arithmetic operators, TECO, 2-163
Arithmetic statements,

FORTRAN 11, 7-16
FORTRAN IV, 8-77

Arrays,
BASIC, 6-3 1
BASIC string, 6-74
FORTRAN 11,
FORTRAN IV, 8-7 1
SABR, 4-43, 4-48

Array specifications, FORTRAN IV,
8-107

Array symbol table, BASIC, 6-77
ASCII

character set, A-1
constants, SABR, 4-7 A

conversion, BASIC, 6-5 1
file format, BASIC, 6-95
source files, 1-78
stripped format, FORTRAN 11,

7-24
text strings, SABR, 4-23

Assembler, FLAP/RALF-see
FLAP/RALF

Assembling RALF file (FORTRAN
IV), 8-5

Assembly error. RALF. 8-17
~s sembf i instructions, '

BITMAP. 2-30
EPIC, 2-96
SRCCOM. 2-128
TECO, 2-183

Assembly language function, BASIC,
6-69, 6-97, 6-101, 6-102

Assembly, SABR

control, 4- 16
first pass, 4-54
page-by-page, 4-32
" v m A Â¥t^oo ^-<A
1 ^ / V ' U A , M jJU-"LX, 7 a7

Assembly termination PALS, 3-38
ASSIGN command, keyboard mon-

itor, 1-35
Assignment statements,

BASIC, 6-15
FORTRAN IV. 8-76, 8-79

ASSIGN statement, FORTRAN IV,
8-78

Asterisk (*) usage,
ABSLDR response. 1-2 1
command decoder,' 1-45, 2-6
TECO. 2-134
wild card in DIRECT, 2-77
wild card in FOTP, 2-97

@ construction, CCL, 1-56
ATAN function

FORTRAN 11, 7-41
FORTRAN IV, 8-49
SABR. 4-44

ATAN, ' library subroutine, FOR-
TRAN II. 7-47

~utoindexing, PALS, 3-26
Automatic paging mode, SABR,

4-3 3

B
Back-arrow (+) character,

BASIC, 6-2, 6-55
Command decoder, 1-45

Background-foreground I/O FOR-
TRAN IV, 8-33

Backslash, keyboard monitor, 1-3 3,
1-34

BACKSPACE command, CCL, 1-57
BACKSPACE statement, FOR-

T D A X T T X T g- 106 ~nnit L V

Base page, FPP (FLAP/RALF),
5-13, 5-22

BASIC,

statements, 6-1 1
statement summary, 6-109
strings, 6-46
'iiihrnntin~s 6-44 ...--- - ------. ",
system build instructions, 6-1 18

BASIC Run Time System (BRTS),
6-69

assembly language function, 6-69,
6- 102

buffer storage, 6-95
core layout, 6-7 1
data formats, 6-73
floating-point operations, 6-80
general considerations, 6-1 00
interfacing assembly language

function to BRTS, 6-97
I/O, 6-94
overlays, 6-72
passing arguments to the user

function, 6-91
subroutipes, 6-85
symbol table structure, 6-76
system components, 6-70

BATCH, 2-1
demonstration program, 2-15
error messages, 2-9, 2-10, 2-11
input file, 2-1, 2-8
loading and saving, 2-21
monitor commands, 2-4
output file, 2-2
restrictions, 2- 13
running from punched cards, 2-12
run-time options, 2-3
transferring software from cas-

sette, 2-21
Binary output control, PAL8, 3-31
Binary output tape, SABR, 4-49
BITMAP (binary tape) load, 1-23
BITMAP utility program, 2-26

assembly instructions, 2-30
error messages, 2-30
hardware/software requirements,

2-26
arithmetic, 6-6
arithmetic functions, 6-33
BRTS-See BASIC Run-Time

System
commands, 6-54
compile-time diagnostics, 6-1 15
debugging function, 6-42
exit, 6-4
files, 6-60
function summary, 6-1 13, 6-1 14
getting on the air, 6-148
LAB8/EÃ‘se LAB8/E
optimizing system 'performance,

6-121
overview, 6-5
running, 6-1
run-time diagnostics, 6-117

- - -

loading, 2-26
options, 2-27
output. 2-29

BLOCK 'DATA statement,
FORTRAN 11. 7-44
FORTRAN w, 8- 1 19

Block number, FORTRAN 11, 7-45
BLOCK pseudo-op, SABR, 4-22
Boolean AND, PAL8, 3-16
Boolean inclusive OR, PALS, 3-15
BOOT (binary tape) load, 1-25
BOOT command. CCL. 1-58
BOOT (bootstrap utility program),

2-32
mnemonics, 2-3 3

Bootstraps,
DF32 disk, 1-26

for cassette, 1-10 through 1-15
LINCtape for PDP-12 systems,

1-9
MI8-E, 1-2, 1-10
RF08, disk, 1-26
RK8 disk, 1-28
RK8E disk, 1-26, 1-27
TCOl/TC08. 1-3
TD8E, 1-4 '

Bracket (F) used in PDP-8 exnres-
s i o n - (f i ~ ~ ~) , 5- 1 5

Branching commands, TECO, 2-1 57
Breakpoints, 1-1 15
BRTSÃ‘Se BASIC Run-Time Sys-

tem
Buffer pointer, TECO, 2-133

manipulation commands, 2-147
Buffer space, BASIC, 6-95
BUILD, (system generation pro-

gram, 1-10 through 1-19, 2-34
cassette device handlers, 2-36
commands, 2-40
DECtape device handlers, 2-35
device handler format, 2-56
device handlers, 2-34
editing characters, 2-39
error messages, 2-55, 2-56
OS/8 device handlers, 2-38
paper tape device handlers, 2-37

Building BASIC system, 6-1 19
Building OS/8

from cassette, 1-10
from paper tape, 1-17

- BYE command, BASIC, 6-60

c
Calling,

ABSLDR, 1-108
BASIC. 6-1
BATCH, 2-2
BUILD. 2-38
CREF, 2-69
Editor, 1-78
FOTP, 2-97
MCPIP, 2-1 10
ODT, 1-114
OS/8 and device handlers, 4-60
PAL8, 3-1
PIP, 1-97
PIP10, 2-116
RESORC, 2-12 1
TECO, 2- 13 3

Calling relationships, FORLIB, 8-44
Calling sequence, FORTRAN IV

loader routines, 8-21
CALL (pseudo-op), SABR, 4-25-
CALL statement,

FORTRAN II, 7-39
FORTRAN IV, 8- 1 18

CALL subroutine. FORTRAN IV.
8-22

CALL OPEN statement, FOR-
TRAN 11, 7-33

CAMP (Cassette and Magnetic Tape
Positioner program),

commands, 2-62
error messages, 2-67
load, 1-25

Carriage control (FORTRAN IV),
8-97, 8-98, 8-99

Cassette and Magnetic Tape Posi-
tioner-see CAMP

Cassette
file names, 2-1 10, 2-1 13
software, 1-10, 2-21
system BUILD, 2-36
system load, 1-15
transfer program, 2-1 10

CCY (Concise Command Lan-
guage), 1-52

commands, 1-52, 1-58
error messages. 1-75
file names, nonstandard, 1-57
indirect commands, 1-56
load, 1-24
options, 1-54
source file, 1-16
wildcard construction, 1-55

CDF current'SABR. 4-51
CDFSKP ~ h k a g e routine, SABR,

4-35
CDZSKP Linkage routine, SABR,

4-35
Chaining

FORTRAN 11. 7-42. 7-51 -

FORTRAN IV, 8-6 '
CHAIN STATEMENT, BASIC,

6-68
CHAIN subroutine, SABR, 4-47
Changing the numeric conversion

mode, SABR, 4-17
Character deletion,

BASIC, 6-2, 6-55
keyboard monitor, 1-33, 1-34

Characters,
ASCII, A-1
BASIC format control, 6-1 8
FORTRAN 11, 7-8
ODT special, 1 - 1 15
PAL8, 3-5
PAL8 special, 3-18
SABR. 4-4
symbolic Editor special, 1-8 1,

1-82
TECO, 2-133, 2-142

Character search, Symbolic Editor,
1-83

Character string search, Symbolic
Editor, 1-84

Checksum, SABR, 4-49, 4-53
CHR$ function, BASIC, 6-51
CHS subprogram, SABR, 4-41

- m T n B..~-....+:..n c A R D A A<;
L h 1 V OUUlUULltn^, I-> -̂TLI->XV, 7--ru

CLEAR, subprogram, SABR, 4-42
Clock function, LAB 8/E, 6-13 1
CLOCK subroutine FUNCTN argu-

ments, FORTRAN IV, 8-52
Clock wait function, LABS/b, 1-32
CLOSE# statement, BASIC, 6-64
Closed subroutines, FORTRAN 11,

7-35
Codes,

ASCII character, A-1
leader/trailer, SABR, 4-49
Loader relocation, SABR, 4-49
numeric field, FORTRAN 11,

7-22
Coding form, FORTRAN IV, 8-66
Coding practices, PALS, 3-36
Comma used a s separator in com-

mand decoder, 1-45
Command Decoder. 1-45

called from BATCH, 2-9
error messages, 1-5 1
examples, 1-48
file specifications, 1-46
input string, 1-45
1/0 specification options, 1-49

Command format, editing (EPIC),
2-88

Command loops, TECO, 2-155
Command mode, Editor, 1-80
Commands,

BASIC editing and control, 6-54
BUILD, 2-40
CAMP, 2-62
CCL, 1-52
EPIC, 2-88, 2-89, 2-90
l.--.lt2..-^ -̂..:+,... 1 2 <
AGV uwalu A ~ ~ U ~ U L W I . x--/-/

ODT, 1-115
Plotter. 8-129 through 8-142
specialz keyboard commands to

Editor. 1-80. 1-81
TECO, ' 2-1 32, 2-136 through

2-151. 2-157. 2-158. 2-179
through 2-182'

Command string examples, Com-
mand Decoder, 1-48

Command string format, BATCH,
2-3

Command summary, ODT, 1-122,
1-123

Symbolic Editor, 1-92 through
1-97

Comments,
FLAP/TALF, 5-3
FORTRAN 11, 7-15
FORTRAN IV, 8-67
PALS, 3-7

SABR, 4-10
TECO. 2-165

COMMON statement, .
FORTRAN II. 7-34
FORTRAN IV, 8-108, 8-111

Common 'storage, SABR, 4-21
COMMON pseudo-op, SABR, 4-2 1
COMPARE command.

CCL, i-58
EPIC. 2-92

~ o m ~ a t a b i l i t ~ , DECsystem 10 files,
2-1 16

Compilation of FORTRAN IV
source file, 8-3

COMPILE command. CCL. 1-59
Compile time diagnostics, ' BASIC,

6-1 15, 6-1 16
Compiler, FORTRAN I1

error messages, 7-54
loading and operating, 7-1
suppressing output, 7-5

Compiler, FORTRAN IV, 8-9
run time options, 8-12
error messages, 8-14, 8-15

Complex constants, FORTRAN IV,
8-69

Computed GOTO,
FORTRAN II,7-30
FORTRAN IVY 8-8 1

Conditional assembly pseudo-opera-
tors, PALS, 3-30

Conditional delimiters, PAL8. 3-2 1
Conditional execution commands,

TECO, 2-158, 2-159
Conditional pseuduop, SABR, 4-1 9
Conserving storage space, FOR-

TRAN 11, 7-35
Console terminal as I/O device,

FORTRAN IV, 8-37
Constants,

BASIC string, 6-46
FORTRAN 11, 7-8, 7-9, 7-53
FORTRAN IV, 8-67
SABR, 4-7

Continuation lines, FORTRAN IV,
8-67

CONTINUE statement,
FORTRAN 11, 7-32 .
FORTRAN IV, 8-86

Control characters, FORTRAN 11.
7-2 1, 7-26

Control statements. BASIC. 6-25
FORTRAN 11, 7-29
FORTRAN IVY 8-80

Conversion,
BASIC string, 6-51, 6-52
FORTRAN H Hollerith, 7-26
SABR numeric, 4-8, 4-17

COPY command, CCL, 1-60
CORE command. CCL, 1-61

Core image files, 1-37
BASIC, 6-66

Core layout, BASIC, 6-71
Corrections, keyboard monitor, 1-34
COS function, .

FORTRAN 11, 7-41
FORTRAN IV, 8-54

Cosine function, BASIC, 6-39
CPAGE pseudo-op, SABR, 4-1 8
CREATE command, CCL, 1-62
CREF (binary tape) load, 1-22
CREF command, CCL, 1-62
Cross-Reference Program (CREF),

2-69
error messages, 2-76
options, 2-69
output, 2-72
'pseudo-op handling, 2-7 1
restrictions. 2-73

CTRL/C
BATCH, 2-6
FOTP, 2- 103
TECO. 2-141

CTRL keys, keyboard monitor, 1-34
CTRL/P (FOTP), 2-103
CTRL/TAB, FORTRAN 11, 7-14
CTRL/U, 6-55
Current location counter, PAL8, 3-5,

3-10, 3-19
Current location, ODT, 1-12 1

DAT$ function, BASIC, 6-54
Data, .

blocks, FORTRAN 11, 7-44 q-- n cb , FORTRAN 11, 7-7
formats, BASIC, 6-73
generation, SABR, 4-22
reference instructions, FLAP/

RALF, 5-7, 5-14
specification, FLAP, 5-16 .
statement, BASIC, 6-22
statement, FORTRAN 11, 7-17
statement, FORTRAN IV, 8-112
transfer-see Peripheral Inter-

change Program
transmission specification, FOR-

TRAN 11, 7-21
transmission statement, FOR-

TRAN IV, 8-88
word, SABR, 4-7, 4-49

DATE command,
CCL, 1-62
keyboard monitor, 1-42

Dates. file creation. 1-105
D (decimal) conversion, SABR, 4-8
DEASSIGN command,

CCL. 1-63
keyboard monitor, 1-36

Debugging function, BASIC, 6-42
Decimal format, BASIC, 6-6
DECIM pseudo-op, SABR, 4-7, 4-17
DECsystem-10 file compatibility,

2-116
DECsvstem-10 file names. 2-1 17
~ ~ ~ i y s t e m - 1 0 TECO versus OS/8 -

TECO. 2-178
DECtape b'mtstrap, 1-3

TCOl/TC08, 1-3
TD8E, 1-4

DECtape file for BATCH input, 2-1
DECtape format, SABR, 4-48
DECtape 1/0 routines,

FORTRAN 11, 7-44
SABR, 4-48

DECtape systems, BUILD, 2-35
DECtape systems software, 1-1
DEFINE FILE statement, FOR-

TRAN IV, 8-100
Definition of symbols, SABR, 4-20
DEF statement, BASIC, 6-39
Delay function, LAB8/E, 6-128
DELETE command, CCL, 1-63
Deleting TECO commands, 2-166
Deletion commands, TECO, 2-149
Deletion of characters,

BASIC, 6-2, 6-55
keyboard monitor, 1-33, 1-34

Delimiters, PAL8 conditional, 3-21
Demonstration program. -

BATCH, 2- 1 5
OS/8. D-1

Descriptor block, BUILD. 2-57
Device codes for paper tape, EPIC,

2-87
~ e v i c e ~ o n t r o l Block (DCB) word,

BUILD, 2-59
Device control statements, FOR-

TRAN IV. 8-106
Device designations, FORTRAN 11,

7-17. 7-20
Device driver storage, BASIC, 6-96
Device entry points, 2-60
Device handler assignment, FOR-

TRAN IV, 8-33
Device handler format, BUILD, 2-

<I

Device handlers, OS/8, 2-34, 2-38,
8-36. G-1

cassette, 2-36
DECtape, 2-35
LINCtape, 2-35
papertape, 2-37

Device handlers, RESORC, 2-12 1,
2-125

Device handlers, OS/8 USR (SABR),
4-60

Device independent 1/0 and chain-
ing,

FORTRAN II,7-42
SABR, 4-47

Device mnemonics, BOOT, 2-33
Device names,

assignment of, 1-35
deassignment of, 1-36
for cassettes, 2-1 10, 2-1 13
keyboard monitor, 1-30, 1-3 1

DEVICE pseudo-ops, OS/8, 3-32
Device specifications, FORTRAN

IV, 8-33
Device types, RESORC, 2-123
DF32 disks, 1-26
Diagnostics, BASIC,

compile time, 6-1 15, 6- 1 16
run-time, 6- 1 16, 6- 1 17, 6- 1 1 8

Dimensioning strings, BASIC, 6-46
DIMENSION statement,

FORTRAN 11, 7-1 1, 7-34, 7-36
FORTRAN IV, 8-107

DIM statement, BASIC, 6-31
Direct assignment statements, PALS,

3-12
DIRECT binary tape load, 1-24
DIRECT command, CCL, 1-64
Direction of program flow, SABR,

4-24
DIRECT utility program, 2-77

error messages, 2-81, 2-82
examples, 2-79
options, 2-78
wild card construction, 2-77

Disk as system device, 1-25
Disk file for BATCH input, 2-1
Display function, LAB8/E, 6-129
Distribution,

OS/8, 1-1
OS/8 BASIC, 6- 1 19

DIV, SABR, 4-43
n : . r ; c ' 1 / ' ~ ~
W A V X O L V / - H ,

BASIC, 6-8
PALS, 3-15

DK8-ES real-time clock, 6-124
DO loops, implied, FORTRAN 11,

7-18
DO statement,

FORTRAN 11, 7-30, 7-31
FORTRAN IV, 8-83

Dollar sign ($),
ALTMODE echo, 1-2 1
BATCH usage, 2-4, 2-5
BUILD response, 1 - 12
PAL8 usage, 3-21

DOT (.) character,
monitor response, 1-3
PALS, 3-19

Double precision constants, FOR-
TRAN IV. 8-69

Double quote (") character,
PALS, 3-19

SABR, 4-7
DR8-EA, 6-124
DTORG- pseudo-op, PALS, 3-32
Dummy arguments,

FORTRAN 11, 7-36
FORTRAN IV, 8- 1 16

DUMMY pseudo-op, SABR, 4-29
Dummy statement, FORTRAN 11,

7-32
Dummy variables, SABR, 4-12
DUMSUB Linkage routine, SABR,

4-36

E
EAP pseudo-op, SABR, 4-17
EDIT commands, CCL, 1-64
EDIT editing program, 8-1
EDIT (Editor binary tape) load, I -

22
Editing characters, BUILD, 2-39
Editing commands, EPIC, 2-88
Editor bypass, BASIC, 6-121
Edit, Punch and Compare (EPIC)

utility program-see EPIC
EJECT pseudo-op, PALS, 3-3 1
END FILE statement, FORTRAN

IV, 8-107
End of file, PALS, 3-29
End-of-tape punch, EPIC, 2-86
END pseudo-op, SABR, 4-16
END statement,

BASIC, 6-14
FORTRAN 11, 7-33, 7-36
FORTRAN IV, 8-88

Entry point offset, BUILD, 2-60
Entry point, SABR, 4-27
ENTRY statement, SABR, 4-27
EOF command, CCL, 1-65
EPIC (binary tape) load, 1-23
EPIC (Edit. Punch and Compare)

utility program, 2-83
assembly instructions, 2-95
command format, 2-84
compare commands, 2-9 1, 2-92
editing commands, 2-88 through

2-90
error conditions, 2-86
error messages, 2-93, 2-94
initial command format, 2-88
loading, 2-83
loading from paper tape, 2-95
low-speed I/O, 2-86
options, paper tape, 2-84
paper tape format, 2-95
restart, 2-84

.EQ. (relational operator), FOR-
TRAN IV, 8-75

Equal sign (=)
arithmetic statements, 8-78
command decoder, 1-50

EQUIVALENCE statement,
FORTRAN 11, 7-35
FORTRAN IVY 8-1 10, 8-1 11

Equivalent symbols, SABR, 4-10
.EQV. (logical operator), FOR-

TRAN IVY 8-75
Error codes, PALS, 3-39, 3-40, 3-41
Error conditions,

EPIC. 2-86
FRTS, 8-37
ODT. 1-122

Error messages,
ABSLDR, 1 - 1 1 3
BATCH, 2-10, 2-11, 2-12
BITMAP, 2-30
BUILD, 2-55
CAMP, 2-67
CCL, 1-75, 1-76, 1-77
Command Decoder, 1-5 1
CREF, 2-76
DIRECT, 2-81,2-82
Editor. 1-89

FORTRAN 11, 7-54, 7-55
FOTP. 2-108
FRTS,' 8-38, 8-39, 8-40
FORTRAN IV compiler. 8-13. 8- - ,

14, 8-15
FORTRAN IV loader, 8-29, 8-30
keyboard monitor, 1-42,l-43,l-44
Linking Loader (SABR), 4-67
MCPIP, 2-113, 2-1 14, 2-115
PIP, 1-106 through 1-108
PIP10. 2-119. 2-120
RALF assembler, 8-20
RESORC. 2- 127
SABR, 4-46,4-60
SABR library, 4-7 1
SRCCOM, 2-1 3 1
TD8E initialization, 1-6
TECO, 2-166, 2-184

Error message summary, OS/8, E-1
ERROR routine, SABR, 4-46
Errors in FORTRAN IV system

programs, 8-6
Errors in typing, BASIC, 6-2, 6-55
EXECUTIVE command, CCL, 1-65
Executing RALF file (FORTRAN

IV),8-5
Exiting BASIC. 6-4
Exit, normal, FORTRAN 11, 7-31,

7-54
EXIT subroutine,

FORTRAN U, 7-44
SABR, 4-46

Exit TECO, 2- 14 1
EXP function,

FORTRAN 11, 7-41
SABR, 4-45

Exponential format, BASIC, 6-7
Exponential function, BASIC, 6-39
Exponentiation, BASIC, 6-8, 6-1 1

SABR, 4-45

FORTRAN II, 7-12, 7-13
FORTRAN IV. 8-72
PALS, 3-14

EXPUNGE pseudo-op PALS, 3-34
Extended memory, PALS, 3-27
Extension for BATCH input file, 2-3
Extensions, CCL compiler-assem-

bier, 1-59
Extensions to file names, keyboard

monitor, 1-32
External

subprograms, FORTRAN 11, 7-35
subroutines, SABR, 4-25
symbol definition, SABR, 4-50

Externals, SABR, 4-21
EXTERNAL statement, FORTRAN

IVY 8-120
External symbol dictionary (ESD

table), RALF, 8- 15

FAC (floating point accumulator),
BASIC, 6-80

FAD, (floating point addition),
SABR, 4-41

Fake indirects, SABR, 4-57
.FALSE. (logical value), FORTRAN

IVY 8-74 -
FDV (floating point division), SABR,

4-4 1
Fields, FORTRAN I1

alphanumeric, 7-2 1, 7-24
mixed, 7-27
numeric, 7-21, 7-22
repetition of, 7-27
skip, 7-27

Fields,' FORTRAN IV, 8-90
logical, 8-95
numeric, 8-92, 8-93

File gap on magnetic tape, 2-63
File manipulation with TECO, 2-

169, 2-177
specification commands, 2- 144, 2-

145
FILENAME pseudo-op, OS/8, 3-32
File names,

CCL nonstandard, 1-57
DECsystem-10,2-117
FORTRAN IV, 8-8, 8-9
keyboard monitor, 1-32
OS/8 extensions. F-1

File ' Oriented ~ransfer Program
(FOTP), 2-97

error messages, 2-108
input specifications, 2-97
load, 1-24
options, 2-104
output specifications, 2-97

File pages, Editor, 1-78
Files, BASIC, 6-60

formats, 6-95
c t f l t ~ r n ~ n t s , 6-6 '\ - - - - - -- - - -- - -

Files, FORTRAN IV
file/option specification command,

8-10
output, 8-8

File specifications,
Command Decoder, 1-46
FRTS, 8-32

File transfers, DECsystem-10, 2-1 16
First pass assembly, SABR, 4-54
Fixed length ASCII files, BASIC, 6-

63
Fixed point, FORTRAN 11, 7-8
FIXMRI pseudo-op, PAL8, 3-34
FIX, SABR, 4-42
FIXTAB pseudo-op, PALS, 3-34
FLAP/RALF assemblers

arithmetic operations, 5-2
data specification, 5-16
error messages, 5-37, 5-38
FPP mode addressing, 5-13
FPP operation codes, 5-6
hardware, 5-1
literals, 5- 15
logical operations, 5-2
PDP-8 mode addressing, 5-6
PDP-8 operation codes, 5-4
pseudo-operators, 5- 16, 5-39, 5-40
RALF features, 5-24
referencing memory, 5-22
statement syntax, 5-2
using assembler, 5-36

Floating point
arithmetic, FORTRAN 11, 7-42
arithmetic, SABR, 4-40, 4-41
operations, BASIC, 6-80
routines. BASIC. 6-8 1
also see, FLAPIRALF; FPP;

RALF
FLOAT,

function, FORTRAN 11, 7-41
library subroutine, FORTRAN 11,

7-47
SABR, 4-42

FLOT, SABR, 4-42
FMP, SABR, 4-41
FNA(x) function, BASIC, 6-39
FPP-12 floating point processor, 8-1
FPP mode addressing, FLAP/RALF,

5-1 3
FPP,ope%tion codes, FLAP/RALF,

5 4 *T~*

FRTS (FORTRAN IV run-time sys-
tem), 8-21, 8-32

background/foreground operation,
8-33

error messages, 8-38, 8-39, 8-40
option specifications, 8-35, 8-36

FSB, SABR, 4-41
Foreground/background I/O, FOR-

TRAN W , 8-33
FORLIB.RL (FORTRAN IV library

of functions and subroutines),
8-7, 8-40, 8-44

Format control characters, BASIC,
6-18

Formats,
assembly listing, PALS, 3-7
DECtape, SABR, 4-48
error message, SABR, 4-46
stripped ASCII, FORTRAN 11, 7-

24
FORMAT statement,

FORTRAN 11, 7-17, 7-18, 7-21
FORTRAN IV, 8-89

Form feed, PALS, 3-7
FOR statement, BASIC, 6-27
FORTRAN library, 5-36
FORTRAN 11,

calling, 7-1
character set, 7-8
compiler, 7-1
errors, 7-54
language, 7-8
load, 1-2 1
maximum size of program, 7-50
mixing SABR and FORTRAN I1

statements, options, 7-2
program execution, 7-1
program segments, 7-5 1

FORTRAN IV, 8-1
compiler, 8-9
library, 8-40
loader, 8-20
paper tape loading instructions, 8-
- 124

plotter routines, 8- 127
RALF assembler, 8- 1 5
run-time system (FRTS), 8-3 1
source language, 8-65

FOTP- see File Oriented Transfer
Program

Functions
BASIC, 6-33, 6-39, 6-113, 6-114,

6-123
FORTRAN IT, 7-40, 7-41
FORTRAN IV. 8-46
LAB8/E, 6-148
SABR, 4-44

FUNCTION statements,
FORTRAN 11, 7-36
FORTRAN IV, 8-1 15

G IFNDEF pseudo-op, PAL8, 3-3 1
Generating data, SABR, 4-22 IFNZRO pseudo-op, PAL8, 3-31

GENIO, SABR, 4-47 IF statements, FORTRAN IV, 8-82
.GE. (relational operator), FOR- IF-THEN statement, BASIC, 6-26,

TRAN IV, 8-75 6-49
IFZERO pseudo-op, PAL8, 3-3 1 GET command, keyboard monitor, pRTs, 8-32 1-37

Get function, LAB8/E, 1-34 Implied DO loops, FORTRAN 11,
7-18 Getting on the air with OS/8 BASIC, lnCore DATA list, BASIC, 6-T5 6-148 Incrementing operands, SABR, 4-1 1

- - G format conversions, FORTRAN values, .

IV, 8-94
GOSUB subroutine, BASIC, 6-43 FORTRAN 11, 7-18, 7-32
GOTO statement, FORTRAN IV, 8-84

BASIC, 6-25 Index,
FORTRAN 11, 7-29, 7-30 FORTRAN 11, 7-30, 7-31
FORTRAN IV, 8-80 FORTRAN IV, 8-84

Groups, repetition of, FORTRAN Indirect addressing, FLAP/RALF,
11, 7-28 5-6

PALS, 3-23, 3-27
.GT. (relational FOR- meet commands, CCL, 1-56

TRAN IV, 8-75 Indirect references, ODT, 1-12 1

H
Initialization of TD8E system, 1-4

bootstraps, 1-7, 1-8
Handlers-see Device handlers error messages, 1-6
Hardware bootstrap, 1-2, 1-3, 1-4, Initialize function, LAB8/E, 6-127

also see Bootstraps Initial value,
Hardware configuration, FLAP/ FORTRAN119 7-31

RALF, 5-1 FORTRAN IV, 8-84
FORTRAN IV, 8-1 Input devices, BITMAP, 2-26

H conversion (FORTRAN IV), 8-96 Input files,
Header block, BUILD, 2-57 BATCH, 2-1, 2-7, 2-8
HELP command, CCL, 1-66 Editor, 1-79
High common, SABR, 4-53 TECO, 2-133
Histogram plotter example, FOR- Input/0utput

TRAN IV, 8- 147 BASIC Run Time System (BRTS),
. Hollerith, FORTRAN I1 6-94, 6-96

constants, 7-9 list, FORTRAN 11, 7-17
conversion, 7-26 low speed, with EPIC, 2-86
strings, 7-42 SABR, 4-40

- Hollerith, FORTRAN IV transfer microinstructions, PALS,
constants, 8-70 3-26
data, 8-96 Input/output specifications,

Hyphen construction in BUILD, 2-41 CCL, 1-54
Command Decoder, 1-49

I DIRECT, 2-77 FOTP, 2-97
IABS, RESORC, 2- 12 1

- FORTRAN 11, 7-41 Input/output statements
SABR, 4-43 BASIC, 6-15

- IF, FORTRAN 11, 7-16
statement, FORTRAN 11, 7-30 FORTRAN IV, 8-101 through 8-
pseudo-op, SABR, 4-19 106

IFAD, SABR, 4-42 Input register sampling, LAB8/E, 6-
IFDEF pseudo-op (PALS), 3-30 135
IF END# statement, BASIC, 6-65 INPUT statement, BASIC, 6-15, 6-
IF-GOT0 statement, BASIC, 6-26 19, 6-47
IFIX, INPUT # statement, BASIC, 6-63

FORTRAN 11, 7-41 Input string, Command Decoder, 1-
SABR, 4-42 45

Index-9

Inputting string data, BASIC, 6-47
Insertion commarfds, TECO, 2- 150
Instruction codes, C- 1
i~stmctions~

FLAP/RALF, 5-2
FORTRAN II operating, 7-1
PALS, 3-6, 3-22
SABR multiple word, 4-34
0 A T>T> -1.:- A 11 A 1 1
.Y.nu.iv ship, -t-J->, -t J /

Integer arithmetic, SABR, 4-43
Integer constants,

FORTRAN 11, 7-8
FORTRAN IVY 8-67

Integer format, BASIC, 6-6
INTEGER function, BASIC, 6-37
Integer variables,

FORTRAN II,7-10
FORTRAN IVY 8-71

INTEGR Library subroutine, FOR-
TRAN 11, 7-49

Inter-buffer character string search,
Editor, 1-87

Internal statement number (ISN),
FORTRAN IVY 8-1 i

Internal subroutines, SABR, 4-24
Internal symbol representation,

PALS, 3-14
Intra-buffer character string search,

Editor, 1-84
I/OÃ‘se Input/output
IOH Library subroutine, FORTRAN

11, 7-42, 7-48
IOPEN, SABR. 4-47

~ i b r a r y subroutine, FORTRAN
11. 7-42, 7-49

IPOWRS Library subroutine, . FOR-
TRAN 11.7-49

IRDSW function FORTRAN 11, 7-
41

IRDSW, SABR. 4-43
IREM function. FORTRAN 11. 7-41
IREM, SABR, 4-43
IRFM .function. FORTRAN 11. 7-41
IRFM, SABR, 4-43
ISTO, SABR, 4-42

Job status word, keyboard monitor,
1-37

K
KE8-E extended arithmetic element,

8- 1
Keyboard Monitor, 1-30

commands, 1-35
file names and extensions, 1-32
permanent device names, 1-30,

system conventions, 1-30
using the monitor, 1-33

K (octal mode), SABR, 4-8

LAB8/E functions for OS/8 BASIC,
C . l ' ^ A
U L A - T

examples, 6- 135
function summary, 6-148
preparation, 6-125
support functions, 6- 127

Labels,
PALS, 3-6
SABR, 4-5, 4-6

LAP pseudo-op, SABR, 4-17
Large pages, TECO, 2-167
Leader/trailer code, SABR, 4-49

checksum, 4-53
LEN function (string length), BASIC,

6-50
*LE. (relational operator), FOR-

TRAN IV; 8-75
LET statement, BASIC, 6-15, 6-49
Levels of overlays, FORTRAN IV

loader, 8-20, 8-28
LIB8 (LIB8 relocatable binary tape)

load, 1-22
LIBRA (FORTRAN IV system li-

brarian), 8-7, 8-41, 8-126
Libraries, FORTRAN IVY 8-7, 8-40

functions and subroutines, 8-46
through 8-65

Library, FORTRAN I1
error messages, 7-55
functions, 7-41
subroutines, 7-47, 7-48, 7-49
subprograms, 7-40

Library. SABR
programs, 4-7 1
subprograms, 4-39
error messages, 4-72

LIBSET (Library Setup binary tape)
load, 1-22,

LINCtape bootstrap for PDP- 12
systems, 1-9

system BUILD, 2-35
system software. 1-1

~ i n e continuation designator, FOR-
TRAN 11, 7-14

Line deletion, keyboard monito~; 1-
3 4

LINE FEED key, 1-34
Line of text (TECO), 2-132
Linkage routines, SABR, 4-34, 4-62

CDFSKP, 4-35
SDZSKP, 4-35
DUMSUB, 4-36

LINK, 4-27,4-36
OBISUB, 4-36
OPISUB, 4-35
RTN, 4-37

Link generation and storage, PALS,
3-35

Linking Loader, SABR, 4-62
error messages, 4-68
loading, 4-63
operation, 4-62
options, 4-63

Links, FLAP, 5-16
LIST and LISTNH commands,

BASIC, 6-56
LIST command, CCL, 1-67

/

Listing files, FORTRAN IV, 8-8
Listing suppression, PALS, 3-3.0
Lists, BASIC, 6-30
Lists, FORTRAN 11, 7-18

subscript, 7- 1 1
Literals,

PAL8, 3-20, 3-21
PDP-8 code (FLAP), 5-15
SABR, 4-8

LOAD command, CCL, 1-68
Loader, FORTRAN IV, 8-20

error messages, 8-29, 8-30
image file, 8-4, 8-8, 8-23
run-time options, 8-25
image files, FRTS, 8-32
symbol map output file, 8-23

LOADER (Linking Loader binary
tape) load, 1-22

Loader relocation codes, SABR, 4-
49 through 4-53

Loading
BATCH, 2-21
binary output, 1-108
BITMAP, 2-26
EPIC, 2-83
EPIC from paper tape, 2-95
instructions, paper tape (FOR-

TRAN IV), 8-124
plotter routines from paper tape,

8- 143
procedures, summary, B- 1
RALF file (FORTRAN IV), 8-5
relocatable programs, 2-62
SRCCOM, 2-128
system from paper tape, 1-20

Location counter, resetting (PALS),
3-29

Logarithm function, BASIC, 6-39
Logarithm, natural, SABR, 4-45
Logical constants, FORTRAN IV,

8-70
Logical expressions, FORTRAN IV,

8-74. 8-77
Logical fields, FORTRAN IVY 8-95

Logical operations, FLAP/RALF,
5-3

Logical operators, FORTRAN IVY
8-74

Looping commands, TECO, 2- 155
Loops in BASIC program, 6-27

nesting, 6-29
.LT. (relational operator), FOR-

TRAN IV, 8-75
Low-speed 1/0 with EPIC, 2-86

Macro library management, TECQ
2-175

Magnetic tape file names, 2-113
Magtape/Cassette Peripheral Inter-

change Program (MCPIP), 1-
15, 2-110

binary tape load, 1-23
error messages, 2-1 13, 2-1 14, 2-

115
options, 2-1 12, 2-1 13

Manipulating DUMMY variables,
SABR, 4-12

MAP command, CCL, 1-69
Match control characters, TECO,

2-154
Maximum size of a FORTRAN pro-

grain, FORTRAN 11, 7-50
MCPIP-see Magtape/Cassette Per-

ipheral Interchange Program
Memory addresses, PALS, 3-10
Memory, FPP (FLAP/RALF), 5- 13,

5-22
Memory reference instructions,

PAL8, 3-22
Memory reservation, PALS, 3-30
Merging files with TECO, 2-169
Microinstructions, PALS, 3-23
MIS-E hardware bootstrap, 1-2, 1- 10
Mixed fields, FORTRAN 11, 7-27

-
Mixing SABR and FORTRAN state-

ments, FORTRAN 11, 7-50 *

Mnemonics for devices, BOOT, 2-33
Monitor commands, BATCH, 2-4
MPY, SABR, 4-43
Multiple entry points, FORLIB, 8-46
Multiple file specifications, Com-

mand Decoder, 1-45
Multiple record formats, FOR-

TRAN 11, 7-28
Multiple word instructions, SABR,

4-34
Multiplication,

BASIC, 6-8
PALS, 3-15

Multistatement lines, PALS, 3-8
MUNG command, CCL, 1-69

N
NAME command. BASIC, 6-59'
Names

of device handlers, BUILD, 2-34,
2-35, 2-41

of files, FORTRAN IV, 8-8, 8-43
Natural logarithm function,

BASIC. 6-39
SABR, 4-45 -

.NE. (relational operator), FOR-
TRAN IV, 8-75

Nested DO loops, FORTRAN IV,
8-86 - - -

Nested literals, PALS, 3-21
Nested loop commands,

BASIC, 6-29
TECO, 2-155

Nested pseudo-ops, PALS, 3-3 1
Nested subroutines, BASIC, 6-45
NEW command, BASIC, 6-58
NEXT statement, BASIC, 6-27
Nonexecutable FORMAT state-

merits, FORTRAN 11, 7-17
NOPUNCH pseudo-op, PALS, 3-3 1
Normal exit, FORTRAN 11, 7-3 1
.NOT. (logical operator), FOR-

TRAN IVY 8-74
Null extension, FORTRAN IVY 8-10
Null lines, SABR, 4-6
Numbers, BASIC, 6-6

printing format, 6-19 .
Numbers. PALS. 3-9
Number sign (A),

CCL. 1-57
~ d i t o r , 1-78
SABR, 4-12

Numeric,
arguments, TECO, 2-1 60
characters, SABR, 4-4
constants, SABR, 4-7
conversion mode, SABR, 4-8, 4-17
field codes, FORTRAN 11, 7-22
field specifications, FORTRAN 11,

7-2 1
fields, FORTRAN IV, 8-92, 8-93
file format, BASIC, 6-95
input conversion, FORTRAN 11,

7-23

OBISUB Linkage routines,
SABR, 4-36

Object files, FORTRAN IV, 8-8
OCLOSE subroutine,

FORTRAN 11. 7-44
SABR, 4-47

Octal constants, FORTRAN IV,
8-69

Octal Debugging Technique (ODT),
1-1 13

commands, 1-1 15, 1-122
arors, 1-122
special characters, 1-1 15

. techniques, 1 - 12 1
OCTAL pseudo-op, SABR, 4- 17
ODT command, keyboard monitor,

1-40
ODT-see Octal Debugging Tech-

nique
Off-page references, PAL8, 3-3 5
OLD command, BASIC, 6-58
OOPEN subroutine,

FORTRAN 11, 7-43
SABR, 4-47

OPDEF pseudo-op, SABR, 4-20
Operands,

PALS, 3-6
SABR, 4-5, 4-7,4-11

Operate microinstructions, 3-24
Operations

algebraic. FORTRAN 11, 7-12
arithmetic and logical,' FLAP/

RALF, 5-3
Operators, BASIC

arithmetic, 6-8
relational, 6- 10

Operators, FORTRAN IV
logical, 8-74
relational, 8-75
arithmetic, 8-72

Operators,
PALS, 3-14, 3-15, 3-16
SABR. 4-5. 4-6

OPISUB' ~ i n k a ~ e routine, SABR,
4-35

Optimizing SABR code, SABR, 4-57
Options,

ADQT ni-' 1-1 In
L S L M J i J k U A y . l . - A A V

BATCH, 2-3
BITMAP, 2-27
CCC, 1-55
CREF, 2-69, 2-70
DIRECT, 2-78
Editor, 1-79
FOTP, 2-104
FRTS, 8-35, 8-36
PAL$, 3-2, 3-3, 3-4
PIP, 1-97 through 1-102
PIP10, 2-117
RESORC, 2-122
SRCCOM, 2-129
switch register, 2-60

OR, Boolean inclusive (PALS), 3-15
OR group skip instructions, PALS,

3-25
.OR. (logical operator), FORTRAN

IVY 8-74

Outvut,
BITMAP, 2-28
CREF. 2-72
SRCCOM, 2-129

Output commands, TECO, 2-168
Output control, PAL8, 3-31
Output file name default, FOR-

TRAN IV, 8-8
Output files,

BATCH, 2-2
Editor, 1-79
FORTRAN IVY 8-2, 8-7, 8-8
FORTRAN IV loader, 8-23
TECO, 2-133

Output register, LAB8/E, 6-135
Output specifications,

DIRECT, 2-77
FOTP, 2-99
RESORC, 2- 12 1

Output tape, binary SABR, 4-49
Overflow. FORTRAN 11. 7-42
0verlays, BASIC, 6-66, 6- 10 1, 6- 122

.
BRTS. 6-72

Overlays, . FORTRAN IV loader,
8-20, 8-22

levels, 8-28
MAIN, 8-21

Packed 6-bit ASCII text strings,
SABR, 4-23

Page-by-page assembly, SABR, 4-32
Page format control, PALS, 3-31
Page format, SABR, 4-33
Page manipulation commands,

TECO, 2-146
Page of text, TECO, 2-132
PAGE pseudo-op, SABR, 4-18, 4-57
Page zero addressing, PALS, 3-27
Page 0 reference, FLAP/RALF, 5-6
Page 0 usage, BASIC run-time sys-

tem, 6-102
Paging mode, automatic, SABR,

4-3 3
PAL command, CCL, 1-70
PAL8 Assembler

binary tape load, 1-23
calling, 3-1
characters, 3-5, 3-18
coding practices, 3-36
error conditions, 3-40
link generation and storage, 3-35
memory reference instructions,

3-22
microinstructions, 3-23
options, 3-2
permanent symbol table, 3-4 1
program preparation, 3-37

pseudo operators, 3-26
restarting and terminating, 3-5
statements, 3-6
terminating assembly, 3-38

PAL8 pseudo-op handing, CREF,
- 2-72

Paper tape format, EPIC, 2-95
Paper tape loading instructions

(FORTRAN IV), 8-124
Paver tane option. EPIC. 2-84

Paper tape system loading, 1-20
Parameters, SABR, 4-8, 4-10
Parentheses,

BASIC arithmetic operations, 6-9
Command Decoder. 1-50

. FORTRAN 11, 7-12
PAL8, 3-20
PDP-8 expression (FLAP)

Pass 1, 2 and 3, PAL8, 3-1, 3-37
Passing subroutine arguments,

SABR, 4-29
PAUSE

pseudo-op, SABR, 4- 16
statement, FORTRAN 11, 7-32
statement FORTRAN IVY 8-88

PDP-8 mode addressing. FLAP/ -*

RALF, 5-6
PDP-8 operation codes. FLAP/ - -

RALI?, 5-4,5-5
PDP-8/E interrupt system, 8-36
PDP- 12 computer. 1-26
PDP-12 and TECO,~-182
PDP-12 system, bootstrap proce-

dure, 1-9
Period (.) character-see DOT (.)

character
Peripheral Interchange Program,

(PIP), 1-97
binary tape load, 1-23 .
error messages, 1- 106 through

1-108 - - - -
examples of specification com-

mands, 1-102
options, 1-98 through 1-102

Permanent device names, keyboard
monitor. 1-30. 1-3 1

Permanent symbols,
PALS, 3-9
SABR, 4-9

Permanent symbol table,
PALS, 3-11, 3-33, 3-41 through

3-44
SABR, 4-38, C-1

PIP-see Peripheral Interchange
Program

PIP10 utility program, 2-1 16
binary tape load, 1-24

error messages, 2- 1 19
options, 2-1 17

Plot function. LABWE. 6-128
Plotter, FORTRAN TV *

commands, 8- 129 through 8-1 42
examples, 8-144 through 8-147
initialization, 8- 142
loading from paper tape, 8-143
ruutiiie~, 8-127, 8-128

Plotting routines added to FOR-
TRAN library, 8-142

PNT(x) function, BASIC, 6-21
POS function, BASIC, 6-53
Postdeletion, FOTP, 2-103
POWER routines, SABR, 4-45
POWERS Library subroutine, FOR-

TRAN 11, 7-48
Predeletion, FOTP, 2-103
PRINT command, CCL, 1-71
PRINT statement, BASIC, 6-1 6,

6-19
PRINT # statement, BASIC, 6-63
Priority of arithmetic operators,

BASIC, 6-9
Program addresses, SABR, 4-38
Program assembly, PALS, 3-36
Program correction, BASIC, 6-55
Program execution, BASIC, 6-3
Programming notes, SABR, 4-57

TECO, 2-164
Program termination statements,

BASIC, 6-14
Pseudo-operators,

FLAP. 5-16

LAB conditional, 3 -30
PAL8 nested, 3-3 1
SABR, 4-12 through 4-29, C-1

Pwndo-on handline. CREF. 2-7 1
Punch and compare pro$am-see

EPIC
PUNCH command, CCL, 1-71
Punched card program preparation,

FORTRAN IV, 8-1
Punched cards, 2-12

input file, 2-14
PUNCH pseudo-op, PALS, 3-31
Put function, LAB8/E, 6-135

Q
Q registers, TECO, 2-155, 2-156
Question mark (?) in ODT, 1-1 15-

wild character CCL, 1-55

R
Radix control

PAL8, 3-27
TECO commands, 2-1 64

RALF assembler, 5-24, 8-15
assembly error. 8- 17
error messages; 8-20
FORTRAN IV files, 8-8
hardware configuration, 5- 1
output, 8-3
programming notes, 5-30
relocation and linking of modules,

8-23
run-time options, 8-18
statements, 8-2
subroutines, 5-30

RANDOMIZE statement. BASIC,
6-3 5

Random number function, BASIC,
6-34

Range,
DO loop, FORTRAN IV, 8-84,

8-85
integer constants, FORTRAN 11,

7-9
integer variables, FORTRAN 11,

7-10
real constants. FORTRAN 11. 7-9

READ statement,
BASIC, 6-22
FORTRAN 11, 7-17, 7-19
FORTRAN IV, 8-101, 8-103
SABR, 4-40

Real constants, FORTRAN IV, 8-68
Rearranging files with TECO, 2-169
Record formats, multiple, FOR-

TRAN 11, 7-28
Records, FORTRAN 11, 7-18
Relational ooerators.

BASIC, 6-10
FORTRAN IV. 8-75

Relative origin, SABR, 4-49
Relocatable binary files, FORTRAN

IV, 8-8
Relocatable linking loader, SABR,

4-24
RELOC pseudo-op (relocation),

PAL8. 3-33
REM statement, BASIC, 6-14
RENAME command, CCL, 1-71
REORG pseudo-op, SABR, 4-18
Re-origin. SABR. 4-5 1
~ e ~ e t i t i o n ,

of fields. FORTRAN 11. 7-27
of groups, FORTRAN 11, 7-28

Replacement operator, FORTRAN
11, 7-16

RES command, CCL, 1-7 1
RESEQ program, BASIC, 6-55
Reserving memory, PALS, 3-30
Reserving words of core, SABR,

4-22
RESORC utility program, 2-121

binary tape load, 1-24

error messages, 2- 127
device types, 2-123
handlers, 2-125
options, 2-122

Restarting
EPIC, 2-84
PALS. 3-5
OS/~, ' 1-29

RESTORE statement. BASIC. 6-23
RESTORED statement, BASIC,

6-64
Restrictions.

BATCH, '2-1 3
CREF. 2-73

RETRN,' SABR, 4-27
RETURN key,

PAL8, 3-7
SABR, 4-5

RETURN statement,
FORTRANII, 7-36,7-40
FORTRAN IVY 8-1 19

RETURN subroutine, BASIC, 6-43
REWIND command, CCL, 1-72
REWIND statement, FORTRAN

\ IV, 8-107
RF08 disks, 1-26
RIM loader programs, 8-2
RK8 disk bootstrap, 1-28, 1-29
RK8E disk bootstrap, 1-26, 1-27
Routines, BASIC floating point, 6-8 1
Routines, FORTRAN 11, 7-44
Routines, SABR

DECtape I/O, 4-47
DUMMY, 4-29
ERROR. 4-46
LINK, 4-27
POWER. 4-45
RTN, 4-36
Utility, 4-45

Routines unusable by assembly lan-
guage functions, BASIC, 6-101

Rubout key,
BASIC, 6-2, 6-55
Editor, 1-84
keyboard monitor, 1-33, 1-34

RUN and RUNNH commands,
BASIC, 6-60

Run command, keyboard monitor,
1-41

Running TECO on PDP-12, 2-182
Run-time diagnostics, BASIC, 6-1 16.

6-117. 6-118
Run-time 'linkage routines, SABR.

4-34 ,

Run-time options,
FORTRAN IV, 8-35
FORTRAN IV loader, 8-25
RALF assembler, 8-18

Run-time system,
BASIC, 6-71

FRTS. 8-32
RWTAPE Library subroutine. FOR-

TRAN 11, 7-49

s
SABR assembler

binary tape load, 1-2 1
code optimization, 4-57
error messages, 4-60
mixing SABR and FORTRAN I1

statement, 7-50
options, 4-2
permanent symbol table, C-1
programming notes, 4-57
sample listings, 4-53

SABR pseudo-op handling, CREF,
2-72

SAC (string accumulator) BASIC,
6-7 6

Sample function, LAB8/E, 6-1 30
SAVE command,

BASIC, 6-59
keyboard monitor, 1-38, 1-39

Saving BATCH, 2-21
Scalar table, BASIC, 6-77
Scalar variables, FORTRAN 11,

7-10
Scale factors, FORTRAN IV, 8-94,

8-95
SCRATCH command, BASIC, 6-57
Search commands, TECO, 2-150
Search mode, Symbolic Editor, 1-82
SEG$ function, BASIC, 6-53
Semicolon use,

BASIC format control character,
6-18

FLAP/RALF, 5-2
PAL8 statement terminator, 3-7

SHIFT/O keys in BASIC, 6-2, 6-55
SIGN function, BASIC, 6-36
Simple relocation, SABR, 4-50
Sine function, BASIC, 6-38
SIN function

FORTRAN II,7-41
FORTRAN IV, 8-63
SABR, 4-44

Single character search, Editor, 1-83
Single quotes (') in Hollerith con-

version. FORTRAN IV. 8-97
Six-bit ASCII text strings, packed,

SABR. 4-23
Size of a 'FORTRAN I1 program,

7-50
SKIP command, CCL, 1-72
Skip fields, FORTRAN 11, 7-27
Skip instructions,

PAL8, 3-25
SABR, 4-33, 4-37

SKPDF pseudo-op, SABR, 4-20

Slash (/),
Command decoder, 1-49
FLAP/RALF, 5-3
FOPÃ̂TPÃ̂ II, 7-28
PAL8 comment field, 3-7

Slave computer, 6-124
Software distribution OS/8, 1-1
Source Compare Utility Program

(SRCCOM j, 2-128
assembly, 2-128
error messages, 2-1 3 1
loading, 2- 128
options, 2-129
output, 2-129

Source language, FORTRAN IVY
8-65

Source program,
FORTRAN 11, 7-3
preparation, FORTRAN IV, 8-1

Space character
FLAP/RALF, 5-2
PALS, 3-16

Special characters,
PAL8, 3-18, 3-19
SABR, 4-4

Specification statements,
FORTRAN 11.7-33
FORTRAN IV, 8- 107

Specification strings, PALS, 3-4
Splitting files with TECO, 2-169
Spool device files, BATCH, 2-2, 2-7,

2-8
Square brackets ([I) characters,

Command Decoder. 1-50
PALS, 3-20 '

Square root function, BASIC, 6-37
SORT function -

FORTRAN 11, 7-41
FORTRAN IV, 8-64
C A R D 3-44
"L XJufJL.,

SQRT library subroutine, FOR-
TRAN 11, 7-48

SQUISH command, CCL, 1-72
SRCCOM-see Source Compare

Utility program
START command, keyboard mon-

itor, 1-41
Starting OS/8 on

TCOl/TC08 DECtape, 1-2, 1-3
TD8E DECtape, 1-4
LINCtape, 1-9

Statement field, FORTRAN 11, 7-1 4
Statement label, PALS, 3-9
Statement numbers, --.

BASIC, 6-13
FORTRAN 11, 7-14
FORTRAN IV, 8-66
FORTRAN IV internal, 8-11

Statements,

BASIC, 6-12, 6- 108 through 6-1 1 3
Statements, FORTRAN I1

arithmetic, 7-16
control, 7-29
data transmission, 7- 17, 7-2 1
input/output, 7- 16
mixing SABR and FORTRAN 11,

7-50
nonexecutable FORMAT, 7-17
specifications, 7-3 3
subprogram, 7-35

Statements, FORTRAN I1
CALL, 7-39
CALL OPEN, 7-33
COMMON, 7-34
CONTINUE, 7-32
DIMENSION, 7-34, 7-36
DO, 7-30
END, 7-33,7-36
EQUIVALENCE, 7-35
FORMAT, 7-18, 7-2 1
FUNCTION, 7-36
GO TO, 7-30
IF, 7-30
PAUSE, 7-32
READ, 7-17, 7-19
RETURN, 7-36, 7-40
STOP, 7-33
SUBROUTINE, 7-38
WRITE, 7-17,7-20

Statements, FORTRAN IV, 8-67
arithmetic, 8-77
assignment, 8-75,'8-79
carriage control, 8-97, 8-98, 8-99
control, 8-80
data transmission. 8-88
device control, 8- 106
input/output, 8-101 through 8-106
specification, 8- 107
summary, 8-12 1 through 8-1 24
type declaration, 8-1 14

Statements, PALS, 3-6
Statements, SABR, 4-5, 4-27
Statement syntax, FLAP/RALF, 5-2
Statement terminators, PALS, 3-7
Statement types, FORTRAN 11,

7-15
STO, SABR, 4-42
STOP statement,

BASIC, 6-14
FORTRAN 11-7-33
FORTRAN IV, 8-88

Storage,
common, SABR, 4-21
conserving space, FORTRAN 11,

7-35
location, FORTRAN 11, 7-35

Storage specification, FORTRAN
IV, 8-107

STR$ function, BASIC, 6-52
Strings, BASIC

array table, 6-79 * .

concatenation, 6-50
conventions, 6-46
handling functions, 6-50
storage, 6-74
symbol table, 6-78

Strings, Hollerith, FORTRAN 11,
7-42

Stripped ASCII format, FORTRAN
11. 7-24

SUBMIT command, CCL, 1-72
Subprogram library, SABR. 4-39
Subprograms, FORTRAN II

external, 7-35
function, 7-36
library, 7-40
subroutine, 7-37

Subprogram statements,
FORTRAN 11, 7-35
FORTRAN TV, 8-1 14

Subroutines, BASIC, 6-33, 6-43
nested, 6-45
BRTS, 6-85

Subroutines, FORTRAN I1
chaining, 7-5 1
closed, 7-35
library, 7-47
subprograms, 7-37

Subroutines, FORTRAN I1
CHAIN, 7-44
EXIT, 7-44
IOPEN, 7-42
OCLOSE, 7-44
OOPEN, 7-43

Subroutines, FORTRAN IV, 8-46
through 8-65

Subroutines, PDP-8 mode, 5-30
Subroutines, RALF, 5-29
Subroutines, SABR

argument passing, 4-29
external, 4-25
internal, 4-24
linkage code, 4-52

Subroutines, SABR
CKIO, 4-46
EXIT, 4-46

SUBROUTINE statement,
FORTRAN 11, 7-38
FORTRAN IV, 8-1 17

SUBSC, SABR, 4-43
Subscripted variables,

BASIC, 6-30
FORTRAN 11, 7- 1 1
SABR, 4-43

Subscript list, FORTRAN 11, 7-1 1
Subscripts,

BASIC, 6-3 1

FORTRAN I1 array, 7-34
FORTRAN IV. 8-72

Subtraction,
BASIC, 6-8
PAL8, 3-15

Su~uression of
listing, PAL8, 3-30
printed error messages, FOR-

TRAN IV, 8-13
Symbol definition, SABR, 4-20
Symbolic address, PALS. 3-9
Symbolic Editor, 1-78

commands, 1-93 through 1-97
error messages, 1-89
key commands, 1-80
options, 1-79
search mode, 1-83
special characters, 1-8 1

Symbolic instructions, PALS, 3-13
Symbolic operands, PALS, 3-14
Symbol map output file, FORTRAN

IV loader, 8-23
Symbols,

PAL8, 3-9
SABR, 4-9,4-10

Symbol table. C-1
- BRTS, 6-73, 6-76
PAL8. 3-11
SABR; 4-38 ' -

System build instructions, BASIC,
6-1 19

System conventions, keyboard mon-
itor, 1-30

System devices
for cassette build, 1-12,
for paper tape build, 1-1 8

System tape processing, nonstandard,
1-5

Tables, BASIC, 6-30
Tabs.

FLAP/RALF, 5-2
FORTRAN 11. 7-15

Tabulations, PALS, 3-7
TABfx) function, BASIC, 6-21
Tags, FLAP/RALF, 5-2
TAN function,

FORTRAN 11, 7-41
FORTRAN IV, 8-65
SABR, 4-45

TC01/TC08 systems software, 1- 1,
1 ^
1 -Z

TD8E DECtape system,
bootstraps, 1-7, 1-8
error messages, 1-6
initialization, 1-4
software, 1-1

Index-

TECO command, CCL, 1-72
TECO (Text Editing and Correcting)

program, 2-132
arithmetic operator, 2-153
assembly instructions, 2-183
branching commands, 2-157
buffer pointer manipulation com-

mands, 2-147
character set, 2-1 42
command loops, 2- 155
command summary, 2-179 through

2- 182
conditional execution commands,

2-158
deletion commands, 2-1 49
error messages, 2- 167, 2-1 84
examples, 2-1 67 through 2- 177
file specification commands, 2- 144
incompatibilities with DECsystem-

10, 2-178
insertion commands, 2-1 49, 2-1 50
introductory commands, 2- 132
large pages, 2-1 67
match control characters, 2-154
numeric arguments, 2- 160
page manipulation commands,

2-146
programming aids, 2- 164
Q-registers, 2-155
retrieving lost files, 2-177
running on PDP-12, 2-1 82
search commands, 2- 15 1
techniques, 2-1 69
text typeout commands, 2-148

Terminal value, FORTRAN 11, 7-3 1
Terminating PALS, 3-5
Termination of assembly, PALS,

3-38
Terminators, PAL8 statement, 3-7 - - - a - r",Ã̂:.Â¥.
1 exi U U I L ~ I , EUIUJI, 1-82
Text collector, Editor, 1-82
Text Editing and Correcting pro-

gram-see TECO
Text mode, Editor, 1-80
TEXT pseudo-op, SABR, 4-23
Text strings, packed six-bit ASCII,

SABR, 4-23
Text strings, PALS, 3-29
Text typeout commands, TECO,

2-1 48
Traceback feature, FRTS, 8-37
Transcendental functions, BASIC,

6-38
Transfer vector, SABR, 4-53
TRC(x) function, BASIC, 6-42
TRIG library subroutine, FOR-

TRAN 11, 7-49
.TRUE. (logical value), FORTRAN

IV, 8-74

Truncation,
FORTRAN 11, 7-10
FORTRAN IV, 8-48, 8-59

Truth table for logical expressions,
FORTRAN IV, 8-77 -

Two's complement addition and sub-
traction, PAL8, 3-15

Two-word block, SABR, 4-27, 4-29
"I-- - - - - - . - -
1 W U - W U L ~ vector, SABR, 4-36
Type classification, FORTRAN IV,

8-7 1
TYPE command, CCL, 1-72
Type declaration statements, FOR-

TRAN IV. 8-1 14
Typeset pseudo-operator, PALS,

3-32
Typing error, BASIC, 6-2, 6-55

u
UA, UB, UC commands, CCL, 1-74
UDEF function, BASIC, 6-41
Unconditional GDTO,

FORTRAN II,7-29
FORTRAN IV, 8-80

Underflow, FORTRAN 11, 7-42
UNLOAD command, CCL, 1-74
Uparrow (f) command decoder re-

sponse, 1-21
User assembly language function,

BASIC, 6-91
User-defined functions, BASIC, 6-39
User defined symbols,

PALS, 3-9, 3-1 1
SABR, 4-10

User service routine,
called by PAL8, 3-32

USE statement, BASIC, 6-93
USR and device handler, SABR,

4-60
Utility commands, 2-1
UTILITY library subroutine, FOR-

TRAN 11, 7-48
Utility routines, SABR, 4-45

v
VAL function, BASIC, 6-52
Variable length files, BASIC, 6-62
Variables,

BASIC, 6-8, 6-30, 6-48, 6-73
FORTRAN 11, 7-9, 7-17

array, 7-1 1
integer, 7-1 0
maximum, 7-24
real, 7-10
scalar, 7-10
subscripted, 7-1 1

FORTRAN IV, 8-70
SABR, 4-12, 4-43

VC8-E display control, 6-124

VERSION command, CCL, 1-74
Version numbers, OS/8, H-1

Wild card construction,
CCL, 1-55
DIRECT, 2-77

Wild field, FOTP, 2-97
WRITE function (SABR), 4-40
WRITE statement,

FORTRAN 11, 7-17, 7-20
FORTRAN IV, 8-101, 8-104

WTAPE routine,
FORTRAN 11, 7-44
SABR, 4-47

x
.XOR (logical operator), FORTRAN

IV, 8-74

z
Z character, FLAP/RALF, 5-6
ZERO command, CCL, 1-74
Zeroes, leading/trailing FORTRAN

IV, 8-66, 8-68

Index- 1 9

	000
	001
	002
	003
	004
	005
	006
	007
	008
	009
	010
	011
	012
	013
	014
	015
	016
	017
	018
	019
	020
	021
	022
	023
	024
	025
	026
	027
	028
	029
	030
	031
	032
	033
	034
	035
	036
	1-000
	1-001
	1-002
	1-003
	1-004
	1-005
	1-006
	1-007
	1-008
	1-009
	1-010
	1-011
	1-012
	1-013
	1-014
	1-015
	1-016
	1-017
	1-018
	1-019
	1-020
	1-021
	1-022
	1-023
	1-024
	1-025
	1-026
	1-027
	1-028
	1-029
	1-030
	1-031
	1-032
	1-033
	1-034
	1-035
	1-036
	1-037
	1-038
	1-039
	1-040
	1-041
	1-042
	1-043
	1-044
	1-045
	1-046
	1-047
	1-048
	1-049
	1-050
	1-051
	1-052
	1-053
	1-054
	1-055
	1-056
	1-057
	1-058
	1-059
	1-060
	1-061
	1-062
	1-063
	1-064
	1-065
	1-066
	1-067
	1-068
	1-069
	1-070
	1-071
	1-072
	1-073
	1-074
	1-075
	1-076
	1-077
	1-078
	1-079
	1-080
	1-081
	1-082
	1-083
	1-084
	1-085
	1-086
	1-087
	1-088
	1-089
	1-090
	1-091
	1-092
	1-093
	1-094
	1-095
	1-096
	1-097
	1-098
	1-099
	1-100
	1-101
	1-102
	1-103
	1-104
	1-105
	1-106
	1-107
	1-108
	1-109
	1-110
	1-111
	1-112
	1-113
	1-114
	1-115
	1-116
	1-117
	1-118
	1-119
	1-120
	1-121
	1-122
	1-123
	1-124
	2-000
	2-001
	2-002
	2-003
	2-004
	2-005
	2-006
	2-007
	2-008
	2-009
	2-010
	2-011
	2-012
	2-013
	2-014
	2-015
	2-016
	2-017
	2-018
	2-019
	2-020
	2-021
	2-022
	2-023
	2-024
	2-025
	2-026
	2-027
	2-028
	2-029
	2-030
	2-031
	2-032
	2-033
	2-034
	2-035
	2-036
	2-037
	2-038
	2-039
	2-040
	2-041
	2-042
	2-043
	2-044
	2-045
	2-046
	2-047
	2-048
	2-049
	2-050
	2-051
	2-052
	2-053
	2-054
	2-055
	2-056
	2-057
	2-058
	2-059
	2-060
	2-061
	2-062
	2-063
	2-064
	2-065
	2-066
	2-067
	2-068
	2-069
	2-070
	2-071
	2-072
	2-073
	2-074
	2-075
	2-076
	2-077
	2-078
	2-079
	2-080
	2-081
	2-082
	2-083
	2-084
	2-085
	2-086
	2-087
	2-088
	2-089
	2-090
	2-091
	2-092
	2-093
	2-094
	2-095
	2-096
	2-097
	2-098
	2-099
	2-100
	2-101
	2-102
	2-103
	2-104
	2-105
	2-106
	2-107
	2-108
	2-109
	2-110
	2-111
	2-112
	2-113
	2-114
	2-115
	2-116
	2-117
	2-118
	2-119
	2-120
	2-121
	2-122
	2-123
	2-124
	2-125
	2-126
	2-127
	2-128
	2-129
	2-130
	2-131
	2-132
	2-133
	2-134
	2-135
	2-136
	2-137
	2-138
	2-139
	2-140
	2-141
	2-142
	2-143
	2-144
	2-145
	2-146
	2-147
	2-148
	2-149
	2-150
	2-151
	2-152
	2-153
	2-154
	2-155
	2-156
	2-157
	2-158
	2-159
	2-160
	2-161
	2-162
	2-163
	2-164
	2-165
	2-166
	2-167
	2-168
	2-169
	2-170
	2-171
	2-172
	2-173
	2-174
	2-175
	2-176
	2-177
	2-178
	2-179
	2-180
	2-181
	2-182
	2-183
	2-184
	3-000
	3-001
	3-002
	3-003
	3-004
	3-005
	3-006
	3-007
	3-008
	3-009
	3-010
	3-011
	3-012
	3-013
	3-014
	3-015
	3-016
	3-017
	3-018
	3-019
	3-020
	3-021
	3-022
	3-023
	3-024
	3-025
	3-026
	3-027
	3-028
	3-029
	3-030
	3-031
	3-032
	3-033
	3-034
	3-035
	3-036
	3-037
	3-038
	3-039
	3-040
	3-041
	3-042
	3-043
	3-044
	4-001
	4-002
	4-003
	4-004
	4-005
	4-006
	4-007
	4-008
	4-009
	4-010
	4-011
	4-012
	4-013
	4-014
	4-015
	4-016
	4-017
	4-018
	4-019
	4-020
	4-021
	4-022
	4-023
	4-024
	4-025
	4-026
	4-027
	4-028
	4-029
	4-030
	4-031
	4-032
	4-033
	4-034
	4-035
	4-036
	4-037
	4-038
	4-039
	4-040
	4-041
	4-042
	4-043
	4-044
	4-045
	4-046
	4-047
	4-048
	4-049
	4-050
	4-051
	4-052
	4-053
	4-054
	4-055
	4-056
	4-057
	4-058
	4-059
	4-060
	4-061
	4-062
	4-063
	4-064
	4-065
	4-066
	4-067
	4-068
	4-069
	4-070
	4-071
	4-072
	4-073
	4-074
	5-001
	5-002
	5-003
	5-004
	5-005
	5-006
	5-007
	5-008
	5-009
	5-010
	5-011
	5-012
	5-013
	5-014
	5-015
	5-016
	5-017
	5-018
	5-019
	5-020
	5-021
	5-022
	5-023
	5-024
	5-025
	5-026
	5-027
	5-028
	5-029
	5-030
	5-031
	5-032
	5-033
	5-034
	5-035
	5-036
	5-037
	5-038
	5-039
	5-040
	5-041
	5-042
	6-000
	6-001
	6-002
	6-003
	6-004
	6-005
	6-006
	6-007
	6-008
	6-009
	6-010
	6-011
	6-012
	6-013
	6-014
	6-015
	6-016
	6-017
	6-018
	6-019
	6-020
	6-021
	6-022
	6-023
	6-024
	6-025
	6-026
	6-027
	6-028
	6-029
	6-030
	6-031
	6-032
	6-033
	6-034
	6-035
	6-036
	6-037
	6-038
	6-039
	6-040
	6-041
	6-042
	6-043
	6-044
	6-045
	6-046
	6-047
	6-048
	6-049
	6-050
	6-051
	6-052
	6-053
	6-054
	6-055
	6-056
	6-057
	6-058
	6-059
	6-060
	6-061
	6-062
	6-063
	6-064
	6-065
	6-066
	6-067
	6-068
	6-069
	6-070
	6-071
	6-072
	6-073
	6-074
	6-075
	6-076
	6-077
	6-078
	6-079
	6-080
	6-081
	6-082
	6-083
	6-084
	6-085
	6-086
	6-087
	6-088
	6-089
	6-090
	6-091
	6-092
	6-093
	6-094
	6-095
	6-096
	6-097
	6-098
	6-099
	6-100
	6-101
	6-102
	6-103
	6-104
	6-105
	6-106
	6-107
	6-108
	6-109
	6-110
	6-111
	6-112
	6-113
	6-114
	6-115
	6-116
	6-117
	6-118
	6-119
	6-120
	6-121
	6-122
	6-123
	6-124
	6-125
	6-126
	6-127
	6-128
	6-129
	6-130
	6-131
	6-132
	6-133
	6-134
	6-135
	6-136
	6-137
	6-138
	6-139
	6-140
	6-141
	6-142
	6-143
	6-144
	6-145
	6-146
	6-147
	6-148
	6-149
	6-150
	7-001
	7-002
	7-003
	7-004
	7-005
	7-006
	7-007
	7-008
	7-009
	7-010
	7-011
	7-012
	7-013
	7-014
	7-015
	7-016
	7-017
	7-018
	7-019
	7-020
	7-021
	7-022
	7-023
	7-024
	7-025
	7-026
	7-027
	7-028
	7-029
	7-030
	7-031
	7-032
	7-033
	7-034
	7-035
	7-036
	7-037
	7-038
	7-039
	7-040
	7-041
	7-042
	7-043
	7-044
	7-045
	7-046
	7-047
	7-048
	7-049
	7-050
	7-051
	7-052
	7-053
	7-054
	7-055
	7-056
	7-057
	7-058
	8-001
	8-002
	8-003
	8-004
	8-005
	8-006
	8-007
	8-008
	8-009
	8-010
	8-011
	8-012
	8-013
	8-014
	8-015
	8-016
	8-017
	8-018
	8-019
	8-020
	8-021
	8-022
	8-023
	8-024
	8-025
	8-026
	8-027
	8-028
	8-029
	8-030
	8-031
	8-032
	8-033
	8-034
	8-035
	8-036
	8-037
	8-038
	8-039
	8-040
	8-041
	8-042
	8-043
	8-044
	8-045
	8-046
	8-047
	8-048
	8-049
	8-050
	8-051
	8-052
	8-053
	8-054
	8-055
	8-056
	8-057
	8-058
	8-059
	8-060
	8-061
	8-062
	8-063
	8-064
	8-065
	8-066
	8-067
	8-068
	8-069
	8-070
	8-071
	8-072
	8-073
	8-074
	8-075
	8-076
	8-077
	8-078
	8-079
	8-080
	8-081
	8-082
	8-083
	8-084
	8-085
	8-086
	8-087
	8-088
	8-089
	8-090
	8-091
	8-092
	8-093
	8-094
	8-095
	8-096
	8-097
	8-098
	8-099
	8-100
	8-101
	8-102
	8-103
	8-104
	8-105
	8-106
	8-107
	8-108
	8-109
	8-110
	8-111
	8-112
	8-113
	8-114
	8-115
	8-116
	8-117
	8-118
	8-119
	8-120
	8-121
	8-122
	8-123
	8-124
	8-125
	8-126
	8-127
	8-128
	8-129
	8-130
	8-131
	8-132
	8-133
	8-134
	8-135
	8-136
	8-137
	8-138
	8-139
	8-140
	8-141
	8-142
	8-143
	8-144
	8-145
	8-146
	8-147
	8-148
	A-00
	A-01
	A-02
	B-01
	B-02
	B-03
	B-04
	B-05
	B-06
	B-07
	B-08
	C-01
	C-02
	C-03
	C-04
	D-01
	D-02
	D-03
	D-04
	D-05
	D-06
	D-07
	D-08
	E-01
	E-02
	E-03
	E-04
	E-05
	E-06
	E-07
	E-08
	E-09
	E-10
	E-11
	E-12
	E-13
	E-14
	E-15
	E-16
	E-17
	E-18
	E-19
	E-20
	E-21
	E-22
	E-23
	E-24
	E-25
	E-26
	E-27
	E-28
	E-29
	E-30
	E-31
	E-32
	E-33
	E-34
	E-35
	E-36
	E-37
	E-38
	F-01
	F-02
	G-01
	G-02
	G-03
	G-04
	H-01
	H-02
	index-01
	index-02
	index-03
	index-04
	index-05
	index-06
	index-07
	index-08
	index-09
	index-10
	index-11
	index-12
	index-13
	index-14
	index-15
	index-16
	index-17
	index-18
	index-19
	xBack

