
mmsm

soFtuuare
support manual

digital equipment corporatbn

OS/8 SOFTWARE SUPPORT MANUAL

(Version 3)

DEC-S8-0SSMB-A-D

Order additional copies as.- directed on the Software
Information page at the back of this document.

digital equipment corporation • maynard. massaclnusetts

First Printing, January 1973
Revised, June 1974

The information in this document is subject to change without notice
and should not be construed as a coiranitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this docximent is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL'S copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright Cc) 1973, 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of

this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

dociiment requests the user ' s critical evaluation to assist us in

preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL
COMPUTER LAB DNC
COMSYST EDGRIN
COMTEK EDUSYSTEM
DDT FLIP CHIP
DEC FOCAL
DECCOMM GLC-8
DECTAPE IDAC
DIBOL IDACS

INDAC
KAIO
LAB-8
LAB-8/e
LAB-K
OMNIBUS
OS/8
PDP
PHA

PS/8
QUICKPOINT
RAD-8
RSTS
RSX
RTM
RT-11
SABR
TYPESET 8

UNIBUS

PREFACE

The 8K Operating System (OS/8) is an extremely powerful program
development system. OS/8 greatly expands the capabilities of any 8K
PDF- 8, 8/1, 8/L, 8/E, or PDP-12 computer having the necessary disk or
DECtape storage. Use of OS/8, is described in detail in the OS/8
HANDBOOK (DEC-S8-0SHBA-A-D)

.

This manual covers a wide range of advanced topics pertinent to the
experienced user. In Chapter 1 the various basic system concepts are
described and terms are defined. Chapter 2 explains the process by
which user programs call upon the system for the performance of
important operations including loading device handlers , opening and
closing files, and chaining to other programs. Chapter 3 covers the
functions of the Command Decoder and the means by which the user
program can employ its services. Chapter 4 explains the use and
operation of the device handlers in detail. Chapter 5 covers the
details of "custom tailoring" a system, including how to write a
device hemdler for a non-standard device.

HANDBOOK, as well as this manual, can be found in the Appendices.
Appendix A details the OS/8 directory structure and gives standard
file format. Appendix B describes the system data base and gives the
layouts of the system areas. Appendix C gives a complete list of
system error messages. Appendix D illustrates some useful advanced
techniques and programming "tricks" for use with the OS/8 system.
Appendix E is a complete list of the standard ASCII character codes
meaningful to OS/8. Finally, Appendix F describes a set of generalized
T /n ^^^^%^4' A r>£\t* f^^>** iic?^ iTMr^ci** 4-Kja OC /Q cfxtm^tstm

111

zy,Ti

CHAPTER 1

1.1

1.3
1.3,
1.3,
1.3,

1.5

CHAPTER 2

2 .1

2,.1,.1

2,.1,.2

2,.2

2,.2..1

2,.2..2

2,.2..3

2,.2..4

2.,2.,5

2..2..6

2..2.,7

2..2.,8

2.,2.,9

2..2.,10

2.,2.,11

CHAPTER 3

3.,1

3.2

3.3

OS/8 CONCEPTS A^ID TERMINOLOGY

SOFTWARE COMPONENTS OF OS/8

irlljiii!

File Names and Extensions
File Structured Devices
File Types
File Directories and Additional
Information Words

CORE CONTROL BLOCK
Program Starting Address
Job Status Word
Software Core Size

DEVICE NAMES AND DEVICE NUMBERS

THE DEVICE AND FILENAME PSEUDO-OPS

USER SERVICE ROUTINE

CALLING THE USR
Standard USR Call
Direct and Indirect Calling Sequence

SUMMARY OF USR FUNCTIONS
FETCH Device Handler
LOOKUP Permanent File
ENTER Output (Tentative) File
The CLOSE Function
Call Command Decoder (DECODE)
CHAIN Function
Signal User Error
Lock USR in Core (USRIN)
Dismiss USR from Core (USROUT)
Ascertain Device Information (INQUIRE)
RESET System Tables

THE COMMAND DECODER

COMMAND DECODER CONVENTION

COMMAND DECODER ERROR MESSAGES

CALLING THE COMMAND DECODER

3.4 COMMAND DECODER TABLES
3.4.1 Output Files
3.4.2 Input Files
3.4.3 Command Decoder Option Table
3.4.4 Example

i-age

1-1

1-1

1 »^

1-2
1-2
1-3

1-3

1-4
1-4
1-5
1-6

1-6

1-7

2-1

2-1
2-1
2-2

2-3
2-4
2-5
2-6
2-8
2-9
2-10
2-11
2-12
2-12
2-13
2-14

3-1

3-1

3-3

3-3

3-4
3-4
3-5
3-6
3-7

Page

3.5
3.5.1
3.5.2

3.6

3.7

3.8

CHAPTER 4

4.1

4.2
4.2.1

4.2.2 4.2.2
4.2.3
4.2.4
4.2.5
4.2.6
4.2.7
4.2.8
4.2.9
4.2.10

CHAPTER 5

5.1

5.2

APPENDIX A

A.l
A. 1.1
A. 1.2
A. 1.3

A.

2

A. 2.1
A. 2.

2

A. 2.

3

APPENDIX B

B.l

B.2

B.3
B.3.1
B.3.

2

B.3.

3

B.3.

4

B.3.

5

B.3.

6

SPECIAL MODE OF THE COMMAND DECODER
Calling the Command Decoder Special Mode
Operation of the Command Decoder in Special
Mode

CCL AND THE COMMAND DECODER

USEFUL LOCATIONS IN BATCH

CCL TABLES

USING DEVICE HANDLERS

CALLING DEVICE HANDLERS

DEVICE DEPENDENT OPERATIONS
Teletype (TTY)
High-Speed Paper Tape Reader (PTR)

High-Speed Paper Tape Punch (PTP)

Line Printer (LPT)
Cassettes
Card Reader (CDR)
TM8E Handler
File Structured Devices
TD8E DECtape
KL8E Teletype Handler

RECONFIGURING THE OS/8 SYSTEM

WRITING DEVICE HANDLERS

INSERTING DEVICE HANDLERS INTO OS/8

OS/8 FILE STRUCTURES

FILE DIRECTORIES
Directory Entries
Number and Size of OS/8 Files
Sample Directory

FILE FORMATS
ASCII and Binary Files
Core Image (.SV format) Files
Relocatable FORTRAN Library File

DETAILED LAYOUT OF THE SYSTEM

LAYOUT OF THE SYSTEM DEVICE

LAYOUT OF THE OS/8 RESIDENT PROGRAM

SYSTEM DEVICE TABLES
Permanent Device Name Table
User Device Name Table
Device Handler Residency Table
Device Handler Information Table
Device Control Word Table
Device Length Table

3-8
3-9

3-9

3-10

3-10

3-10

4-1

4-1

4-4
4-4
4-4
4-5
4-5
4-6
4-7
4-8
4-11
4-11
4-12

5-1

5-1

5-5

A-1

A-1
A-2
A-3
A-3

A-4
A-4
A-5
A-7

B-1

B-1

B-2

B-4
B-4
B-4
B-5
B-5
B-6
B-7

VI

Page

APPENDIX C

C.l

C-2

C.3

C.4

C.5

APPENDIX D

D.l

D.2

D.3

D.4

D.5

D.6

D.7
D.7.1
D.7.

2

D.8

D.9

D.

D,

D,

.9.1

.9.2

.9.3

D,

D.

D.

.10

.10.1
,10.2

APPENDIX E

APPENDIX F

F.,1

F. 2

F.

F.
F.

3

3.1
3.2

SYSTEM ERROR CONDITIONS AND MESSACjjES

SYSTEM HALTS

USR ERRORS

KEYBOARD MONITOR ERRORS

CCL ERROR MESSAGES

COMMAND DECODER ERRORS

PROGRAMMING NOTES

THE DEFAULT FILE STORAGE DEVICE, DSK

MODIFICATION TO CARD READER HANDLER

SUPPRESSION OF CARRIAGE RETURN/LINE FEED
IN FORTRAN

ACCESSING THE SYSTEM DATE IN A FORTRAN
PROGRAM

DETERMINING CORE SIZE ON PDP-8 FAMILY
COMPUTERS

USING PRTC12-F TO CONVERT OS/8 DECTAPES
TO OS/12 LINCTAPES

NOTES ON LOADING DEVICE HANDLERS
Problem with Multiple Input Files
Dynamically Loading Device Handlers

AVAILABLE LOCATIONS IN THE USR AREA

ACCESSING ADDITIONAL INFORMATION WORDS
IN OS/8
After a LOOKUP or ENTER
After a CLOSE
Rewriting the Current Directory Segment

SABR PROGRAMMING NOTES
Optimizing SABR Code
Calling the USR and Device Handler ' s from
SABR Code

CHARACTER CODES AND CONVENTIONS

OS/8 INPUT/OUTPUT ROUTINES

GENERAL DESCRIPTION

SUBROUTINE FUNCTIONS

SUBROUTINE PARAMETERS
Example
Subroutine Listing

C-1

C-2

C-4

C-7

D-1

D-1

D-2

D-4

D-4

D-5

D-6

D-7
D-7
D-7

D-S

D-9
D-9
D-9
D-9

D-10
D-10

D-12

E-1

F-1

F-1

F-1

F-3
F-3
F-5

Vll

CHAPTER 1

OS/8 CONCEPTS AND TERMINOLOGY

Before examining the details of the OS/8 system, the reader should
first be familiar with the simpler techniques and terms used within
the freimework of the OS/8 system. The material in this chapter, along
with that contained in the OS/8 HANDBOOK, provides the tools needed to
pursue the later chapters.

1.1 SOFTWARE COMPONENTS OF OS/8

There are four main components of the OS/8 system:

1. The Keyboard Monitor performs commands specified by the user
at the keyboard console. The nine Keyboard Monitor commands
(ASSIGN, DEASSIGN, GET, SAVE, ODT, RUN, R, START, and DATE)
are explained in Chapter 1 of the OS/8 HANDBOOK.

User programs can exit to the Keyboard Monitor by executing a
•IMP to location 7600 in field 0. All JMPs to 7600 must be
made with the DATA FIELD set to zero. This saves the
contents of locations 0000 to 1777 in field cuid loads the
Keyboard Monitor which could be called by a JMP to location
7605 in field 0. In this latter case the contents of core are
not saved, which conserves some time*

Existing system programs, device handlers, and the Command
Decoder test for the CTRL/C character in the terminal input
buffer and, on finding this character, abort the current
operation and perform a JMP to 7600 in field 0. Thus, typing
CTRL/C is the conventional method of calling the Keyboard
Monitor from the console.

2. Device hemdlers, which are subroutines for performing all
device-oriented input/output operations , can be utilized by
any program. These subroutines have standard calling
sequences and "mask" from the user program the special
characteristics of the I/O device. In this way, device
independent I/O is achieved. A detailed description of
device handlers is found in Chapter 4.

3. The User Service Routine (USR) is to a program what the
Keyboard Monitor is to the user. For example, progreims can
request the USR to fetch device handlers, perform file
operations on any device, chain to another program, or call
the Command Decoder. A full description of the USR functions
is found in Chapter 2.

1-1

4. The Command Decoder interprets a command line typed by the
user to indicate input and output files and various options.
The command line format is described in detail in Chapter 1

of the OS/8 HANDBCX3K. The Command Decoder removes the burden
of this repetitive operation from the user's program, A full
description of the Command Decoder's function is found in
Chapter 3.

5. Two other components, ABSLDR and ODT, are not logically part
of the OS/8 system. However, in the sources and listings,
ABSLDR is combined with the Keyboard Monitor and USR. ODT is

combined with the command decoder.

1.2 FILES

Files are basic units of the OS/8 system, and a thorough understanding
of file structure is required for its use. A file is any collection
of data to be treated as a unit. The format of this data is

unimportant; for example, OS/8 can manipulate several standard
formats, including ASCII files, binary files, and core image files.

The important consideration is that the data forms a single unit
within the system.

1.2.1 File Names and Extensions

An individual file is identified by its file name and extension. The
file name consists of up to six alphanumeric characters, optionally
followed by a two character extension. The extension is often used to
clarify the format of the data within the file. For example, an ASCII
file used as input to PALS might be given a PA extension, while a core
image file has a SV extension.

1,2.2 File Structured Devices

Devices that can be logically divided into a number of 256-word blocks
and have the ability to read and write from any desired block are
called file structured devices. Disks and DECtapes are file
structured devices while a paper tape reader or terminal is not.

Cassettes and magnetic tapes form an intermediate case. They may be
treated directly as non-file structured devices, or the program MCPIP
may appear to be file structured.

The system device (SYS) in any OS/8 system is always file structured,
as is the default storage device, DSK.

All OS/8 file structured devices must be logically divided into these
256-word blocks. Hence, 256 words is considered the st«uidard OS/8
block size. Some devices, like RK8, DECtape, and LINCtape, are
physically divided into blocks. These physical blocks should not be
confused with the logical 256-word blocks. For example, DECtapes must
be formatted with standard 129-word physical blocks, A logical OS/8

1-2

block consists of the first 128 words of two consecutive physical
DECtape blocks. The 129th word of every DECtape block is not used by
OS/8. Similarly, LINCtapes are formatted with 129 (or 128) words per
block but never 255, as this format is unacceptable to OS/8.

A i-T-iTron DC: /fl fi To con ei c <- c of fin*» irr mri]-p» cprtiien-t-i a.1 hlQclfs of ^Rfi

words each (consecutively numbered) . A minimum of one block per file
is required, although a single file could occupy all of the blocks on
a device.

1.2.3 File Types

Three different types of files exist in the OS/8 system:

1. An "empty file" is a contiguous area of unused blocks. Empty
files are created when permanent files are deleted.

2. A "tentative file" is a file that is open to accept output
and has not yet been closed. Only one tentative file can be
open on any single device at one time.

3. A "permanent file" is a file that has been given a fixed size
and is no longer expandable. A tentative file becomes
permanent when it is closed.

To further understand file types, consider what occurs when a file is
created. Normally, the User Service Routine, in creating a tentative
file, first locates the largest empty file available and creates a
usn^auive j.a.a.e xn ui^au space. i.i«jus estabxxshes ^hQ maxxmum space xnto
which the file can expand. The user progreim then writes data into the
tentative file. At the end of the data, the program calls the USR to
close the tentative file, making it a permanent file. The USR does so
and allocates whatever space remains on the end of the tentative file
to a new, smaller, empty file.

Tr'4T«. n^«-^«^4>«>*--««K0 -ai-ttf^ ^j^^i

To maintain records of the files on a device, OS/8 allocates blocks 1
through 6 of each file structured device as the file directory.
Entries in this directory inform the system of the name, size, and
location of each file, including all empty files and the tentative
file, if one exists. For a detailed description of the entries in the
file directory, see Appendix A.

Each entry in a directory can, optionally, have extra storage words
called Additional Information Words. The number of Additional
Information Words is determined at the time the directory is initially
created (normally by using the /S or /Z features of PIP; see Chapter
1 of the OS/8 HANDBOOK.

Whenever Additional Information Words are used, the first one for each
file entry is used to store the value of the System Date Word at the
time the file was created. OS/8 automatically uses one extra word per
entry for the date. This value is set by executing a DATE command

1-3

(see Chapter 1 of the OS/8 HANDBOOK) which codes the current date into
memory location 07666 in the following format:

J2f 34 89 11

MONTH
(l-14g)

DAY
(l-37„)

YEAR-19 70
(0-7)

A date word of implies that no DATE command has been executed since
the system initialization.

The values of Additional Information Words beyond the first are
user-defined. See Appendix D for further information on Additional
Information Words.

1,3 CORE CONTROL BLOCK

Associated with each core image file (SV file) is a block of data
called the Core Control Block. The Core Control Block is a table of
information containing the program's starting address , areas of core
into which the program is loaded, euid the program's Job Status Word.
The Core Control Block is created at the time the program is loaded by
ABSLDR or other means and is written onto the SV file by the SAVE
operation. More information on the Core Control Block can be found in
the description of core image files in section A. 2* 2. Note that
specifying arguments to the SAVE command as described in Chapter 1 of
the OS/8 HANDBOOK, can alter the contents of the target program's Core
Control Block.

When a program is loaded, the starting address and Job Status Word are
read from the Core Control Block and saved in core. The Core Control
Block itself is saved in the last 200 (octal) words of block 37 on the
system device unless the progreun was loaded with the R (rather than
GET or RUN) command.

1.3.1 Program Starting Address

The current starting address (used by the START command) is stored in

two words at locations 07744 and 07745. The format of these words is:

LOCATION CONTENTS NOTES

07744 62n3 n is the field in
which to start.

07745 nnnn Starting address of
the program.

1-4

1.3.2 Job Status ivord

The Job Status Word contains certain flags that affect OS/8
operations, sucn as v/hether to save core when loading the USR or

Command Decoder. The Job Status Word for the program currently in

core is saved at location 07746 and contains the following
information:

Bit Condition

Bit 0=1
Meaning

File does not load into locations 000 00

Bit 1=1

Bit 2=1

Bit 3=1

Bits 4 thru 9

Bit 10 = 1

Bit 11 = 1

File does not load into locations AOOOO
to ^1777.

Program must be reloaded before it can
be restarted.

Program does not destroy the contents of
the highest existing memory field, an
optimization for the Batch system.

Reserved for future use.

Locations 00000 to 01777 need not be
saved when calling the Command Decoder.

Locations 10000 to 11777 need not be
saved when calling the USR.

When bit 2 of the Job Status Word is 1, any attempt to perform a START
(without an explicit address) results in a

NO!!

error message being printed. As this bit is always zero in the Core
Control Block, the user program is expected to internally set this bit
(in location 7746) if a program is not restartable. This could be
done as follows

:

CDF
TAD I (7746
AND (6777
TAD (1000
DCA I (7746

/LOAD JOB STATUS WORD

/JOB IS NOT RESTARTABLE

The Job Status Word can be updated from the user's program or with the
ABSLDR /P option, thus providing optimization of tape (disk) motion.
More information on the Core Control Block can be found in the
description of Core Image (SV) files found in Appendix A.

ait 3 of the JSW (Job Status Word) is used as an optimization for the
Batch operating system. If a program can never cause the highest
existing memory field to be altered, this bit should be set. For
example, EDIT, PIP, FORT, and SABR can never use memory above 8K.

Thus, they should set bit 3 of the JSW. Programs such as ABSLDR,

1-5

LOADER, PALS and CREF can alter all of core. They should perhaps not
have bit 3 on. Note that the more core that exists , the more unlikely-

it is that a program will destroy upper core. Thus, on 28K systems,
only the largest FORTRAl^l programs can alter field 6 and, in general,
bit 3 should be set.

1.3.3 Software Core Size

Location 07777 contains the software core size in bits 6-8. This
represents the highest memory field available for use by OS/8. If bits
6-8 contain 0, all of the available memory is used. Most OS/8 cusps
interrogate this word to determine how much memory is available. The
other bits of this location are reserved for use by BATCH and should
not be touched by user programs.

1.4 DEVICE NAMES AND DEVICE NUMBERS

The OS/8 system can accommodate up to 15 separate devices. In Chapter
1 of the OS/8 HANDBOOK the reader is introduced to the concept of
device names. Briefly, each device on the system is recognized by
either a permanent device name (such as PTR or DTAl) which is created
when the system is built, or a user-defined device name determined by
an ASSIGN command. The system insures that the user-defined device
name takes precedence. For example,

.ASSIGN DSK DTA4

causes all future references to DTA4 to address the device DSK.

In calling the User Service Routine, a device can be alternatively
recognized by a device number. Each device on the system has a unique
predefined number in the range 1 to 17 (octal) assigned at the time
the system is generated. Thus, user programs have the choice of
referring to a device by either name or number. Referencing a device
by name is preferable, as it maintains device independence for the
program.

Accessing devices by number should be done only when the appropriate
number has been obtained from a USR INQUIRE CALL. Except for SYS and
DSK, the OS/8 peripherals do not have fixed numbers; instead, device
numbers vary whenever BUILD is used to modify a system. Thus, it is
suggested that reference by name be used whenever possible.

To determine whether a device name is recognized in the system,
attempt to ASSIGN that device. For example, to determine whether
LINCtape handlers are called LTA or DTA, perform:

. DEASSIGN

.AS LTAO

If the system responds with a dot (.), LTAO does indeed exist. If the
system responds with:

1-6

LTAO NOT AVAILABLE

no device named LTAO is present.

1.5 THE DEVICE AND FILENAME PSEUDO-OPS

Several of the USR functions take device names or file names as

argiiments. To simplify the task of generating these arguments, the
DEVICE and FILENAME pseudo-ops have been added to the PALS Assembler.

A device name consists of a two word block, containing four
alphanumeric characters in six-bit ASCII format. A block in this
format can be created by the DEVICE pseudo-op as follows:

DEVICE DTAl

generates the following two words:

0424
0161

Similarly, the FILENAME pseudo-op creates a four word block, the first
three words of which contain the file name and the fourth word of
which contains the file extension. For example:

FILENAME PIP.SV

generates the following four words:

2011
2000
0000
2326

Note that positions for characters 4 through 6 are filled with zeros.

The DEVICE and FILENAME pseudo-ops are used in examples in the
following chapters.

1-7

CHAPTER 2

USER SERVICE ROUTINE

The User Service Routine, or USR, is a collection of subroutines which
perform the operations of opening and closing files, loading device
handlers, program chaining, and calling the Commamd Decoder. The USR
provides these fionctions not only for the system itself, but for all
progreims running under the OS/8 system.

2.1 CALLING THE USR

Performing any USR function is as simple as giving a JMS followed by
the proper arguments. Calls to the USR take a standardized calling
sequence. This standard call should be studied before progressing to
the operation of the various USR functions.

In the remainder of this chapter, the following calling sequence is
referenced

:

TAD VAL The contents of the AC is appliCcUsle in
some cases only.

CDF N Where N is the value of the current
tirutjj.Guu J.J.CJ.U iiiuj.L.j.t>JLXBu uy J.U vuui.ax; •

GIF 10
JMS I (USR Where USR is either 7700 or 0200, (see

section 2.1.2}

.

FUNCTION This word contains an integer from 1 to
13 (octal) indicating which USR
operation is to be performed.

ARG{1) The number and meaning of these argument
words varies with the particular USR
function to be performed.

error return When applicable, this is the return
address for all errors.

normal return The operation was successful. The AC is
cleared and the data field is set to
current field.

2-1

This calling sequence can change from function to function. For
example, some functions take no value in the AC and others have fewer
or greater numbers of arguments. Nonetheless, this format is

generally followed.

The value of the data field preceding the JMS to the USR is
exceedingly important. The data field MUST be set to the current
field, and the instruction field MUST be set to 1. Note that a CDF is
not explicitly required if the data field is already correct. When a
doubt exists as to the data field setting, an explicit CDF should be
executed.

There are three other restrictions which apply to all USR calls , as
follows

:

1. The USR can never be called from any address between 10000
and 11777. Attempting to do so results in the:

MONITOR ERROR 4 AT xxxxx (ILLEGAL USR CALL)

message and termination of program execution. The value of
xxxxx is the address of the calling sequence (in all such
MONITOR ERROR messages).

2. Several USR calls take address pointers as arguments. These
pointers always refer to data in the same memory field as the
call.

3. When calling the USR from field 1, these address pointers
must never refer to data that lies in the area 10000 to
11777.

2.1.2 Direct and Indirect Calling Sequence

A user program can call the USR in two ways. First, by performing a

JMS to location 17700 In this case, locations 10000 to 11777 are saved
on a special area on the system device, and the USR is then loaded
into 10000 to 11777. When the USR operation is completed, locations
10000 to 11777 are restored to their previous values.

NOTE

By setting bit 11 of the Job Status Word
to a 1, the user can avoid this saving
and restoring of core when preserving
core is unnecessary.

Alternatively, a program can opt to keep the USR permanently resident
in core at locations 10000 to 11777 by using the USRIN function (see
section 2.2.8). Once the USR has been brought into core, a USR call
can be made by performing a JMS to location 10200. This is the most
efficient way of calling the USR. When USR operations have been
completed, the program restores locations 10000 to 11777 to their
initial state by executing the USROUT function, if necessary (see
section 2.2.9)

.

2-2

2.2 Summary of USR Functions

Function
Code Name

Returns
handler.

Operation

the entry address of the

10

11

12

13

14-17

LOOKUP Searches the file directory on any
device to locate a specified permanent
file.

ENTER Creates and opens for output a tentative
file on a specified device.

CLOSE Closes the currently open tentative file
on the specified device and becomes a
permanent file. Also, any previous
permanent file with the same file name
and extension is deleted,

DECODE Calls the Command Decoder. The function
of the Command Decoder is described in
Chapter 3.

CHAIN Loads a specified core image file from
the system device and starts it.

ERROR Prints an error message of the form USER
ERROR n Ax LOCATION xxxxx.

USRIN Loads the USR into core. Subsequent
calls to the USR are by an effective JMS
to location 10200.

USROUT Dismisses the USR from core and restores
the previous contents of locations 10000
to 11777.

INQUIRE Ascertains whether a given device exists
and, if so, whether its handler is in
core.

RESET Resets system tables to their initial
cleared state.

Not currently used, these request
numbers are reserved for future use.

An attempt to call the USR with a code greater than 13 (octal) will
currently cause a Monitor Error 4 message to be printed and the
program to be aborted.

2-3

2.2.1 FETCH Device Handler Function Code - 1

Device handlers must be loaded into core so as to be available to the

USR and user program for I/O operations on that device. Before

performing a LOOKUP, ENTER, or CLOSE function on any device, the

handler for that device must be loaded by FETCH.

The FETCH function takes two distinct forms:

1. Load a device handler corresponding to a given device name.

2. Load a device handler corresponding to a given device number.

First, the following is an example of loading a handler by name from

memory field :

CLA /AC MUST BE CLEAR
CDF /DF = CURRENT FIELD
GIF 10 /IF = 1

JMS I (USR
1 /FUNCTION CODE = 1

DEVICE DTA3 /GENERATES TWO WORDS: ARG(l)
/AND ARG(2)

6001 /ARG(3)
JMP ERR /ERROR RETURN

/NORMAL RETURN

ARGd) and ARG{2) contain the device name in standeurd format. If the

normal return is taken, ARG(2) is changed to the device number

corresponding to the device loaded. ARC (3) contains the following

information

:

Bits to 4 contain the page number into which the handler is

loaded.

Bit 11 is if the user program can only accept a 1-page

handler.

Bit 11 is 1 if there is room for a 2-page handler.

Notice that in the example above, the handler for DTA3 is to be loaded

into locations 6000 to 6177. If necessary, a two page handler could be

loaded; the second page would be placed in locations 6200 to 6377.

After a normal return, ARG(3) is changed to contain the entry point of

the handler.

A different set of arguments is used to fetch a device handler by

number. The following is an example of this form:

TAD VAL /AC IS NOT ZERO
CDF /DF = CURRENT FIELD
CIF 10 IF = 1

JMS I (USR
1 /FUNCTION CODE = 1

6001 /ARG(l)
JMP ERR /ERROR RETURN

/NORMAL RETURN

2-4

On entry to the USR, the AC contains the device number in bits 8 to 11

{bit to 7 are ignored). The format for ARG(l) is the same as that
for ARG(3) in the previous example. Following a normal return ARG(l)
is replaced with the entry point of the handler.

are as follows :

1. There is no device corresponding to the given device name or
device number, or

2, .An attempt was made to load a two "a^e handler into one paQs«
If this is an attempt to load the handler by name, the
contents of ARG{2) have been changed already to the internal
device number.

In addition, one of the following Monitor errors can be printed,
followed by a return to the Keyboard Monitor:

Error Message Meaning

MONITOR ERROR 4 AT xxxxx Results if bits 8 to 11 of the AC
(ILLEGAL USR CALL) are zero (and bits to 7 are

non-zero)

.

MONITOR ERROR 5 AT xxxxx Results if a read error occurs
(I/O ERROR ON SYS) while loading the device handler.

The FETCH function checks to see if the handler is in core, and if it
is not, then the handler and all co-resident handlers are loaded.
While the FETCH operation is essentially a simple one, the user should
be aware of the following points:

1. Device handlers are always loaded into memory field 0.

2. The entry point that is returned may not be on the page
desired. This would happen if the handler were already
resident.

3. Never attempt to load a handler xnto the 76G0 page or xnto
page 0. Never load a two page handler into the 7400 page.

For more information on using device handlers, see Chapter 4.

NOTE

Two or more device handlers are
" CO-resident" when they are both
included in the same one or two core
pages. For example, the paper tape
reader and punch routines are
co-resident, as are the eight DECtape
handler routines.

2.2.2 LOOKUP Permanent file Function Code = 2

This request locates a permanent file entry on a given device, if one
exists. An example of a typical LOOKUP would be:

2-5

TAD VAL /LOAD DEVICE NUMBER
CDF /DF=CURRENT FIELD
GIF 10 /IF = 1

JMS I (USR
2 /FUNCTION CODE = 2

NAME /ARG(l), POINTS TO FILE NAME
/ARG{2)

JMP ERR /ERROR RETURN
/NORMAL RETURN

NAME, FILENAME PROG. PA

This request looks up a permanent file entry with the name PROG. PA.

The device number on which the lookup is to be performed is in AC bit

8 to 11. ARG(l) contains a pointer to the file name. Note that the

file name block must be in the same memory field as the call, and that

it cannot be in locations 10000 to 11777. The device handler must have

been previously loaded into core. If the normal return is taken,

ARG(l) is changed to the starting block of the file and ARG(2)

contains the file length in blocks as a negative number. If the

device specified is a readable, non-file structured device (for

example, the papertape reader), then ARG(l) and ARG(2) contain the

file length in blocks as a negative nxoraber. If the device specified

is a readable, non-file structured device (for example, the paper tape

reader), then ARG(l) and ARG(2) are both set to zero.

If the error return is taken, ARG(l) and ARG(2) are unchanged. The

following conditions cause an error return:

1. The device specified is a write-only device.

2. The file specified was not found.

In addition, specifying illegal argvunents can cause one of the

following monitor errors, followed by a return to the Keyboard
Monitor:

Error Message Meaning

MONITOR ERROR 2 AT xxxxx Results if an I/O error occurred
(DIRECTORY I/O ERROR) while reading the device directory.

MONITOR ERROR 3 AT XXXXX Results if the device handler for
(DEVICE HANDLER NOT IN CORE) the specified device is not in

core.

MONITOR ERROR 4 AT xxxxx Results if bits 8 to 11 of the AC

(ILLEGAL USR CALL) are zero.

The LOOKUP function is the standard method of opening a permanent file

for input.

2.2.3 ENTER Output (Tentative) File Function Code = 3

The ENTER function is used to create a tentative file entry to be used

for output. An example of a typical ENTER function is as follows

:

TAD VAL /AC IS NOT ZERO
CDF /DF = CURRENT FIELD
CIF 10 /IF = 1

2-6

JMS I (USR
3

N'AME

JMP ERROR

/FUNCTION CODE
/ARG(l) POINTS
/ARC { 2

)

/ERROR RETURN
/MnRMAT. RPTTTTJM

= 3

TO FILE NAME

NAME, FILENAME PROG.LS

Bits 8 to 11 of the AC contain the device niunber of the selected
device; the device handler for this device must be loaded into core
before performing an ENTER function. If bits to 7 of the AC are
non-zero, this value is considered to be a declaration of the maximimi

length of the file. The ENTER function searches the file directory
for the smallest empty file that contains at least the declared number
of blocks. If bits to 7 of the AC are zero, the ENTER function
locates the largest available empty file.

On a normal return, the contents of ARG{1) are replaced with the
starting block of the file. The 2's complement of the actual length
of the created tentative file in blocks (which can be equal to or
greater than the requested length) replaces ARC (2). If the file
directory contains any Additional Information Words, the system DATE
(location 17666) is written as the first Additional Information Word
of the newly created tentative file at this time.

NOTE

The

If the selected device is not file
structured but permits output operations
(e.g., the high speed punch), the ENTER
operation always succeeds. In this
case, ARGCl) and ARG(2) are both zeroed
on return.

If the error return is taken, ARG.(l) and ARG(2) are unchanged.
follov;ing conditions cause an error return:

X. me utiviue ^peuxxxeu jjy ijj.t& o tu ij. ui. cuts tw, ±a a.

device.

2. No empty file exists which satisfies the requested length
requirement.

3. Another tentative file is already active on this device (only
one output file can be active at any given time)

.

4. The first word of the file name was (an illegal file name).

In addition, one of the following monitor errors can occur, followed
by a return to the Keyboard Monitor:

Error Message

MONITOR ERROR 2 AT xxxxx
(DIRECTORY I/O ERROR)

MONITOR ERROR 3 AT XXXXX
(DEVICE HANDLER NOT IN CORE)

Meaning

Result if an I/O error occurred
while reading or writing the device
directory

=

Results if the device handler for
the specified device is not in
core.

2-7

Error Message

MONITOR ERROR 4 AT xxxxx
(ILLEGAL USR CALL)

MONITOR ERROR 5 AT XXXXX
(I/O ERROR ON SYS)

MONITOR ERROR 6 AT xxxxx
(DIRECTORY OVERFLOW)

Meaning

Results if AC bits
zero.

8 to 11 are

Read error on the system device
while bringing in the overlay code
for the ENTER function.

Results if a directory overflow
occurred (no room for tentative
file entry in directory)

.

2.2.4 The CLOSE Function Function Code = 4

The CLOSE function has a dual purpose: first, it is used to close the

current active tentative file, making it a permanent file. Second,

when a tentative file becomes permanent it is necessary to remove any

permanent file having the same name; this operation is also performed
by the CLOSE function. An example of CLOSE usage follows:

TAD VAL /GET DEVICE NUMBER
CDF /DF=CURRENT FIELD
GIF 10 /IF=1
JMS I (USR
4 .

/FUNCTION CODE = 4

NAME /ARG(l)
15 /ARG(2)
JMP ERR /ERROR RETURN

/NORMAL RETURN

NAME, FILENAME PROG.LS

The device number is contained in AC bits 8 to 11 when calling the

USR. ARG(l) is a pointer to the name of the file to be deleted and
(ARG(2) contains the number of blocks to be used for the new permanent
file.

The normal sequence of operations on an output file is:

1. FETCH the device handler for the output device.

2. ENTER the tentative file on the output device, getting the
starting block and the maximum number of blocks available for
the file.

3. Perform the actual output using the device handler, keeping
track of how many blocks are written, and checking to insure
that the file does not exceed the available space.

4. CLOSE the tentative file, making it permanent. The CLOSE
operation would always use the same file name as the ENTER
performed in step 2. The closing file length would have been
computed in step 3.

After a normal return from CLOSE, the active tentative file is

permanent and any permanent file having the specified file name
already stored on the device is deleted. If the specified device is a

non-file structured device that permits output (the paper tape putnch,

for example) the CLOSE function will always succeed.

2-8

;:oTE

The user must be careful to specify the
same file names to the ENTER and the
CLOSE functions. Failure to do so can
cause several permanent files with
identical names to appear in the
directory. If CLOSE is intended only to
be used to delete some existing file,
then the number of blocks, ARG(2) should
be zero.

The following conditions cause the error return to be taken:

1. The device specified by bits 8 to 11 of the AC is a read only
device.

2. There is neither an active tentative file to be made into a
permanent file, nor a permanent file with the specified name
to be deleted.

In addition, one of the following Monitor errors can occur:

Error Message Meaning

MONITOR ERROR 1 AT xxxxx Results if the length specified by
(CLOSE ,ERROR) ARG(2) exceeded the allotted space.

MONITOR ERROR 2 AT xxxxx Results if an I/O error occurred
(DIRECTORY I/O ERROR) while reading or writing the device

directory.

MONITOR ERROR 3 AT xxxxx Results if the device handler for
(DEVICE HANDLER NOT IN CORE) the specified device is not in

core.

MONITOR ERROR 4 AT xxxxx Results if AC bits 8 to 11 are
(ILLEGAL USR CALL) zero.

2.2,5 Call Command Decoder (DECODE) Function Code = 5

The DECODE function causes the USR to load and execute the Command
Decoder. The Command Decoder accepts (from the Teletype) a list of
input and output devices and files, along with various options. The
Command Decoder performs a LOOKUP on all input files , sets up
necessary tables in the top page of field 1, and returns to the user
program. These operations are described in detail in Chapter 3, which
shoud be read before attempting to use the DECODE function.

A typical call to the Command Decoder looks as follows:

CDF /DF=CURRENT FIELD
GIF 10 /IF=1
JMS I (USR
5 /FUNCTION CODE = 5

/ARG(2), ZERO TO PRESERVE ALL
/TENTATIVE FILES
/NORMAL RETURN

2-9

ARG(l) is the assumed input extension, in the preceding example it is

".PA". On return from the Command Decoder, information is stored in

tables located in the top page of memory field 1. The DECODE function
also resets all system tables as in the RESET function (see RESET
function, section 2,2,11) if ARG(2) is all currently active
tentative files remain open; if ARG{2) is non-zero all tentative
files are deleted and the normal return is to ARG{2) instead of

ARG(2)+1.

The DECODE function has no error return (Command Decoder error
messages are given in Chapter 3) . However, the following Monitor error
can occvir:

Error Message

MONITOR ERROR 5 AT xxxxx
(I/O ERROR ON SYS)

Meaning

I/O error occurred while reading or
writing on the system device.

2,2.6 CHAIN Function Function Code = 6

The CHAIN function permits a program to load and start another program
with the restriction that the progrcim chained to must be a core image
CSV) file located on the system device. A typical implementation of
the CHAIN function looks as follows:

CDF
GIF 10
JMS I (USR
6

BLOCK

/DF=CURRENT FIELD
/IF=1

/FUNCTION CODE = 6

/ARG(l) , TAOTING BLOCK NUMBER

There is no normal or error return from CHAIN,
monitor error cam occur:

However, the following

Error Message

MONITOR ERROR 5 AT xxxxx
(I/O ERROR ON SYS)

CHAIN ERR

Meaning

I/O error occurred while reading or
writing on the system device.

If an attempt is made to CHAIN to a
file which is not a core image
(.SV) file. Control returns to the
keyboard monitor.

The CHAIN function loads a core image file located on the system
device beginning at the block number specified as ARG(l) (which is
normally determined by performing a LOOKUP on the desired file name)

.

Once loaded, the program is started at an address one greater than the
starting address specified by the program's Core Control Block.

CHAIN automatically performs a USROUT function (see section 2.2.9) to
dismiss the USR from core, and a RESET to clear all system tables see
section 2.2.11) , but CHAIN does not delete tentative files.

The areas of core altered by the CHAIN function are determined by the
contents of the Core Control Block of the core image file loaded by
CHAIN. The Core Control Block for the file is set up by other ABSLDR
or LOADER programs. It can be modified by performing a SAVE command
with specific arguments. Every page of core in which at least one

2-10

location was saved is loaded. If the page is one of the "odd
numbered" pages (pages 1, 3, etc,; locations 0200 to 0377, 0600 to
0777, etc.), the previous page is always loaded. In addition, CHAIN
always alters the contents of locations 07200 to 07577.

NOTE

CHAIN destroys a necessary part of the
ODT resident breakpoint routine. Thus
an ODT breakpoint should never be
maintained across a CHAIN.

With the above exceptions, programs can pass data back and forth in
core while chaining. For example, FORTRAN programs normally leave the
COMMON area in memory field 1 unchanged. This COMMON area can then be
accessed by the program activated by the CHAIN.

2.2.7 Signal User ERROR Function Code = 7

The USR can be called to print a user error message for a program.
The following is a possible ERROR call:

CDF /DF = CURRENT FIELD
GIF 10 /IF = 1
JMS I (USR
7 /FUNCTION CODE = 7

2 /ARG(l), ERROR NUMBER

THE ERROR function causes a message of the form:

USER ERROR n AT xxxxx

to be printed. Here n is the error number given as ARG(l); n must be
between and 11 (octal), and xxxxx is the address of ARG(l). I£
ARG(l) in the sample call above was at location 500 in field 0, the
message:

USER ERROR 2 AT 0050

would be printed. Following the message, the USR returns control to
the Keyboard Monitor, preserving the user program intact.

The error number is arbitrary. Two numbers have currently assigned
meanings

;

Error Message Meaning

USER ERROR AT xxxxx During a RUN, GET, or R command,
this error message indicates that
an error occurred while loading the
core image.

USER ERROR 1 AT XXXXX While executing a FORTRAN or SABR
program, this error indicates that
a call was made to a subroutine
that was not loaded.

2-11

2.2.8 Lock aSR in Core (USRIN) Function Code = 10

When making a nximber of calls to the USR it is advantageous for a

program to avoid reloading the USR each time a USR call is made. The

USR can be brought into core and kept there for subsequent use by the
USRIN function. The calling sequence for the USRIN function looks as

follows

:

CDF /DF = CURRENT FIELD
GIF 10 /IF = 1

JMS I (7700
10 /FUNCTION CODE = 10

/NORMAL RETURN

THE USRIN function saves the contents of locations 10000 to 11777 on

the system scratch blocks , . provided the calling program loads into

this area as indicated by the current JSW, and loads the USR, then

returns control to the user program.

NOTE

If bit 11 of the current Job Status Word
is a one, the USRIN function will not
save the contents of locations 10000
thru 11777.

2.2,9 Dismiss USR from Core (USROUT) Function Code = 11

When a program has loaded the USR into core with the USRIN function
and no longer wants or needs the USR in core, the USROUT function is

used to restore the original contents of locations 10000 to 11777. The

calling sequence for the USROUT function is as follows:

CDF /DF = CURRENT FIELD
GIF 10 /IF = 1

JMS I (200 /DO NOT JMS TO 17700!!
11 /FUNCTION CODE = 11

/NORMAL RETURN

The USROUT function and the USRIN function are complementary
operations. Subsequent calls to the USR must be made by performing a

JMS to location 7700 in field 1.

NOTE

If bit 11 of the current Job Status Word
is a 1, the contents of core are not
changed by the USROUT function. In this
case USROUT is a redundant operation
since core was not preserved by the
USRIN function.

2-12

2.2.10 Ascertain Device Information (INQUIRE) Function Code = 12

On some occasions a user may wish to determine what internal device
number corresponds to a given device name or whether the device
handler for a specified device is in core, without actually performing

Trr-T^inH oTseration. IN'^UIRE '^erform.s these operations for the user»

The function call for INQUIRE closely resembles the FETCH handler
call.

INQUIRE, like FETCH, has two distinct forms:

1, Obtain the device number corresponding to a given device name
and determine if the handler for that device is in core
(example shown below)

.

2, Determine if the handler corresponding to a given device
niimber is in core.

An example of the INQUIRE call is shown below:

/AC MUST BE CLEAR
/DF = CURRENT FIELD
/IF = 1

/FUNCTION CODE = 12
/GENERATES TWO WORDS:
/ARG(l) AND ARG(2)
/ARG(3)
/ERROR RETURN
/NORMAL RETURN

ARG(l) and ARG(2) contain the device name in standard format. When
the normal return is teUcen ARG(2) is cheuiged to the device number
corresponding to the given name, and ARG(3) contains either the entry
point of the device handler if it is already in core, or zero if the
corresponding device handler has not yet been loaded.

A slightly uXi.i.erent set Ci. arguments 1.3 useu to i-n^i

CLA
CDF
GIF 10
JMS I (USR
12
DEVICE DTA3

JMP ERR

device by its device number:

TAD VAL
CDF
GIF 10
JMS I (USR
12

JMP ERR

/AC IS NON-ZERO
/DF = CURRENT FIELD
/IF = 1

/FUNCTION CODE =12
/ARG(l)
/ERROR RETURN
/NORMAL RETURN

On entry to INQUIRE, AC bits 8 to 11 contain the device number.

2-13

NOTE

If AC bits to 7 are non-zero, and bits
8 to 11 are zero (an illegal device
nuiaber) a:

MONITOR ERROR 4 AT XXXXX

message is printed and program execution
is terminated.

On nontial return ARG(l) is set to the entry point of the device
handler if it is already in core, or zero if the corresponding device
handler has not yet been loaded. The error return in both cases is

taken only if there is no device corresponding to the device name or
number specified.

2.2.11 RESET System Tables Function Code =13

There are certain occasions when it is desired to reset the system
tables, effectively removing from core all device handlers except the
system handler. An example of the RESET function is shown below:

CDF
GIF 10
JMS I (USR
13

/DF = CURRENT FIELD
/IF = 1

/FUNCTION CODE =13
/O PRESERVES TENTATIVE FILES
/NORMAL RETURN

RESET zeros all entries except the one for the system device in the
Device Handler Residency Table (see section B.3.3, removing all
device handlers, other than that for the system device, from core.
This should be done anytime a user program modifies any page in which
a device handler was loaded.

RESET has the additional function of deleting all currently active
tentative files (files that have been entered but not closed). This is

accomplished by zeroing bits 9 through 11 of every entry in the Device
Control Word Table (see section B.3.5).

If RESET is to be used in this last fashion, to delete all active
tentative files, then ARG(l) must be non-zero and the normal return is

to ARG(l) rather than to ARG(1)+1. For example, the' following call
would serve this purpose

CDF
CIF 10
JMS I (USR
13
CLA CMA

/DF: CURRENT FIELD
/IF = 1

/FUNCTION CODE =13
/NON-ZERO:

The normal return would execute the CLA CMA and all active tentative
files on all devices would be deleted. The Keyboard Monitor currently
does not reset the Monitor tables. If user programs which do not call
the Command Decoder are used, it is wise to do a RESET operation
before loading device handlers. The RESET will ensure that the proper
handler will be loaded into core.

2-14

CHAPTER 3

THE COMMAND DECODER

OS/8 provides a powerful subroutine called the Command Decoder for use
by all system programs. The Command Decoder is normally called when a
program starts rvinning. When called, the Command Decoder prints an *

and then accepts a command line from the console Teletype that
includes a list of I/O devices , file names , and various option
specifications. The Command Decoder validates the command line for
accuracy, performs a LOOKUP on all input files, and sets up various
tables for the calling program.

The operations performed by the Command Decoder greatly simplify the
initialization routines of all OS/8 programs. Also, since commeind
lines all have a standard basic structure, the Command Decoder makes
learning to use OS/8 much easier.

3.1 COMMAND DECODER CONVENTIONS

Chapter 1 of the 03/8 HANDBOOK describes the syntax j.or the cominanu

line in detail. A brief synopsis is given here only to clarify the
later discussion in this chapter.

The command line has the following general form:

output files < input files/ (options)

There Ccin be to 3 output files and to 9 input files specified.

Output File Format Meaning

EXPLE.EX Output to a file named EXPLE.EX on
device DSK (the default file
storage device)

.

LPT: Output to the LPT. This format
generally specifies a non-file
structured device.

DTA2:EXPLE.EX Output to a file named EXPLE.EX on
device DTA2.

DTA2:EXPLE.EX [99] Output to a file named EXPLE.EX on
device DTA2. A maximum output file
size of 99 blocks is specified.

null No output specified.

An input file specification has one of the following forms:

3-1

Input File Format

DTA2 : INPUT

DTA2: INPUT. EX

INPUT. EX

PTR:

DTA2;

null

Meaning

Input from a file named INPUT. df on
device DTA2. "df" is the assumed
input file extension specified in
the Command Decoder.

Input from a file named INPUT. EX on
device DTA2. In this case .EX
overrides the assumed input file
extension.

Input from a file named INPUT. EX.
If there is no previously specified
input device, input is from device
DSK, the default file storage
device; otherwise, the input
device is the same as the last
specified input device.

Input from device PTR; no file
name is needed for non-file
structured devices.

Input from device DTA2 treated as a
non-file structured device, as, for
example, in the PIP command line:

*TTy:/L<DTA2:

In both of the last two foirmats, no
LOOKUP operation is performed since
the device is assumed to be
non-file structured.

Repeats input from the previous
device specified (must not be first
in input list, and must refer to a
non-file structured device) . For
example

:

* <PTR:,,

(two null files) indicates that
three paper tapes are to be loaded.

NOTE

Whenever a file extension is left off an
input file specification, the Command
Decoder first performs a LOOKUP for the
given name appending a specified assumed
extension. If the LOOKUP fails, a
second LOOKUP is made for the file
appending a null (zero) extension.

3-2

The Command Decoder verifies that the specified device names, file
names, and extensions consist only of the characters A through Z and
through 9. If not, a syntax error is generated and the command line is
considered to be valid.

There are two kinds of options that can be specified: first,
alphanumeric option switches are denoted by a single alphanumeric
character preceded by a slash (/) or a string of characters enclosed
in parentheses; secondly, a numeric option can be specified as an
octal number from 1 to 37777777 preceded by an equal sign (=) . These
options are passed to the user program and are interpreted differently
by each prograun.

Finally, the Command Decoder permits the command line to be terminated
by either the RETURN or ALT MODE key. This information is also passed
to the user program.

3.2 COMMAND DECODER ERROR MESSAGES

If an error in the command line is detected by the Command Decoder,
one of the following error messages is printed. After the error
message, the Command Decoder starts a new line, prints an *, and waits
for another command line. The erroneous command is ignored.

Error Message

ILLEGAL SYNTAX

Me£ming

The command line
incorrectly

.

IS fonnatted

TOO MANY FILES

device DOES NOT EXIST

More than three output files or
nine input files were specified.
(Or in special mode, more them 1
output file or more than 5 input
files.}

The specified device name does not
correspond to any permanent device
name or any user assigned device
name.

name NOT FOUND The specified input file neime was
not found on the selected device.

3.3 CALLING THE COMMAND DECODER

The Command Decoder is initiated by the DECODE function of the USR.
DECODE causes the contents of locations to 1777 of field to be
saved on the system scratch blocks, and Command Decoder to be brought
into that area of core and started. When the command line has been
entered and properly interpreted, the Command Decoder exits to the
USR, which restores the original contents of to 1777 cUid returns to
the calling progrcim.

3-3

NOTE

By setting bit 10 of the Job Status Word
to a 1 the user can avoid this saving
and restoring of core for programs that
do not occupy locations to 1777,

The DECODE call Ceui reside in the area between 0000 to 1777 and still
function correctly. A typical call would appear as follows:

CDF /SET DATA FIELD TO CURRENT FIELD
GIF 10 /INSTRUCTION FIELD MUST BE 1

JMS I (USR /USR=7700 IF USR IS NOT IN CORE
/OR USR=0200 IF USRIN WAS PERFORMED

5 /DECODE FUNCTION = 5

2001 /ARG(l) ,ASSUMED INPUT EXTENSION
/ARG(2),ZER0 TO PRESERVE
/ALL TENTATIVE FILES
/NORMAL RETURN

ARG(l) is the assumed input extension. If an input file name is given
with no specified extension, the Command Decoder first performs a

LOOKUP for a file having the given name with the assumed extension.
If the LOOKUP fails, the Command Decoder performs a second LOOKUP for
a file having the given name and a null (zero) extension. In this
example, the assumed input extension is ".PA".

DECODE perfoinos an automatic RESET operation (see section 2.2.11} to
remove from core all device handlers except those equivalent to the
system device. As in the RESET function, if ARG(2} is zero all
ciirrently active tentative files are preserved. If ARG(2} is

non-zero, all tentative files are deleted and DECODE returns to ARG(2)
instead of ARG(2)+1.

As the Command Decoder normally handles all of its own errors, there
is no error return from the DECODE operation.

3.4 COMMAND DECODER TABLES

The Command decoder sets up various tables in the top page of field
that describe the command line typed to the user program.

3.4.1 Output Files

There is room for three entries in the output file teible that begins
at location 17600. Each entry is five words long and has the following
format

:

3-4

8 9 10 11

WORD 1

WORD 2

WORD 3

WORD 4

WORD 5

USER SPECIFIED
FILE LENGTH

4 BIT-DEVICE
NUMBER

PILE NAME
CHARACTER 1

FILE NAME
CHARACTER 2

FILE NAME
CHARACTER 3

FILE NAME
CHARACTER 4

FILE NAME
CHARACTER 5

FILE NAME
CHARACTER 6

PILE EXTENSION
CHARACTER 1

PILE EXTENSION
CHARACTER 2

OUTPUT FILE NAME
6 CHARACTERS

FILE EXTENSION
2 CHARACTERS

Bits to 7 of word 1 in each entry contain the file length, if the
file length was specified with the square bracket construction in the
command line. Otherwise, those bits are zero.

The entry for the first output file is in locations 17600 to 17604,
the second is in locations 17605 to 17611, and the third is in
locations 17612 to 17616. If word 1 of any entry is zero, the
corresponding output file was not specified, A zero in word 2 means
that no file name wets specified.

Also, if word 5 of any entry is zero no file extension was specified
for the corresponding file. It is left to the user program to take
the proper action in these ccises.

These entries are in a format that is acceptable to the ENTER
function.

3.4.2 Input Piles

There is room for nine entries in the input file table that begins at
location 17617. Each entry is two words long and has the following
format

:

WORD 1

WORD 2

01234567 8 9 10 11

MINUS FILE
LENGTH

4-BIT DEVICE
NUMBER

STARTING BLOCK OF PILE

Bits to 7 of word 1 contain the file length as a negative number.
Thus, 377 (octal) in these bits is a length of one block, 376 (octal)
is a length of two blocks, etc. If bits to 7 are zero, the
specified file has a length greater than or equal to 256 blocks or a
non-file structured device was specified.

3-5

NOTE

This restriction to 255 blocks of actual
specified size can cause some problems
if the program has no way of detecting
end-of-file conditions. For example,
PIP cannot copy in image mode any file
on a file structured device that is

greater than 255 blocks long, although
it can handle in /A or/B modes (ASCII or
Binary) files of unlimited size. In /A
or/B modes PIP will detect the CTRL/Z
marking the end-of-file.

If this is liable to be a problem, it is

suggested that the user program employ
the special mode of the Commcmd Decoder
described in section 3.5 ard parform its
own LOOKUP on the input files to obtain
the exact file length.

The two-word input file list entries beginning at odd numbered

locations from 17617 to 17637 inclusive. If location 17617 is zero,

no input files were indicated in the command line. If less than nine

input files were specified, the unused entries in the input file list

are zeroed (location 17641 is always set to zero to provide a

terminator even when no files are specified)

.

3,4,3 Command Decoder Option Table

Five words are reserved beginning at location 17642 to store the

various options specified in the command line. The format of these

five words is as follows:

1 3 4 5 7 8 9 10 11

17642

17643

17644

17645

17646

HIGH ORDER 11 BITS F
= N OPTIONS

A B C D E F G H I J K L

M N P Q R S T U V W X

Y Z 1 2 3 4 5 6 7 8 9

LOW ORDER 12 BITS OF = > OPTIONS

Each of these bits corresponds to one of the possible alphanumeric

option switches. The corresponding bit is 1 if the switch was

specified, otherwise.

3-6

NOTE

If no = n option is specified, _
the

Command Decoder zeroes 17646 and bits 1

to 11 of 17642. Thus, typing -0 is

meaningless since the user program
cannot tell that any option was
specified.

Bit of location 17642 is if the

consmand line was terminated by a

carriage return, 1 if it was terminated
by an ALT MODE.

3.4.4 Example

TO clarify some of the preceding, consider the interpretation of the

following command line:

*BIN [10]<PTR:,,DTA2: PARA,MAIN /L=14200$

If this command line is typed to PALS, it would cause assembly of a

program consisting of four separate parts: two paper tapes, one file

named PARA. PA (or just PARA) on DTA2, and one file named MAIN. PA (or

iust MAIN) also on DTA2. The binary output is placed on a file named

BIN.BN on device DSK, for which only 10 blocks need be allocated. No

listinq is generated. In addition, automatic loading of the binary

output 'is specified by the /L option, with the starting address given

as 4200 in field 1. Finally, the line is terminated by the ALTMODE key

(which echoes as $) causing a return to the Keyboard Monitor after the

progr2ua is loaded.

In the case of this example, the Command Decoder returns to PALS with

the following values in the system tables:

NOTE

The entries for PTR (where no input file

ncune is specified) have a starting block
number and file size of zero. This is

always true of the input table for a

non-file structured device, or a file
structured device on which no file name

is given.

3-7

17600

17604

17605

17616
17617

17620
17621

17622
17623

17624
17625

17626
17627

17641

17642

17643

17644

17645

17646

242
I

DSK:IS DEVICE NUMBER 2

0211

1600 'file name is bin

0000

0000

^ > REMAINING ENTRIESar

0016

00 00

0016

00 00

NULL EXTENSION

IN OUTPUT TABLES
(are ZERO

> FIRST PTR INPUT

SECOND PTR INPUT

7667

0100

0007

0105

4001

0001

0000

0000

4200

DAT2: PARA PA IS 5 BLOCKS LONG,
BEGINNING AT 100(8)

DTA2: MAIN PA IS 256(10) OR MORE
> BLOCKS LONG, BEGINNING AT BLOCK 105(8)

REMAINING ENTRIES
i?i}lii INPUT TABLES

ARE ZERO.

LINE WAS TERMINATED BY ALT MODE

yL WAS ONLY OPTION SWITCH
SPECIFIED

— =14200 WAS SPECIFIED

3.5 SPECIAL MODE OF THE COMMAND DECODER

Occasionally the user program does not want the Command Decoder to
perform the LOOKUP on input files, leaving this option to the user
program itself. Programs such as format conversion routines which
access non-standard file structures could use this special format. If

the input files were not OS/8 format, a command decoder LOOKUP
operation would fail. The capability to handle this case is provided

3-8

in the OS/8 Command Decoder. This capability is generally referred to

as the "special mode" of the Command Decoder.

3.5.1 Calling the Command Decoder Special Mode

The special mode call to the Command Decoder is identical to the

standard DECODE call except that the assumed input file extension,
specified by ARG(l) , is equal to 5200. The value 5200 corresponds to

an assumed extension of ".*", which is illegal. Therefore, the

special mode of the Command Decoder in no way conflicts with the
normal mode.

3.5.2 Operation of the Command Decoder in Special Mode

In special mode the Command Decoder is loaded and inputs a command
line as usual. The appearance of the command line is altered by the
special mode in these respects:

1. Only one output file can be specified.

2. No more than five input files can be specified, rather than
the nine acceptable in normal mode.

3. The characters asterisk (*) and question mark (?) are legal
in file names and extensions, both in input files and on
output files. It is strongly suggested that these characters
be tested by the user program and treated either as special
options or as illegal file naunes. The user program must be
careful not to ENTER an output file with cin asterisk or
question mark in its name as such a file cannot easily be
ra^mipulated or deleted by the standard system programs.

The output and option table set up by the Command Decoder is not
altered in special mode. Entries in the input table are changed to

10 11

WORD i

VJORD 2

WORD 3

WORD 4

WORD 5

r" 1

4-BIT DEVICE
NUMBER

FILE NAME FILE NAME
CHARACTER 1 CHARACTER 2

FILE NAME
CHARACTER 3

FILE NAME
CHARACTER 4

FILE NAME
CHARACTER 5

FILE NAME
CHARACTER 6

FILE EXTENSION
CHARACTER 1

FILE EXTENSION
CHARACTER 1

i

BITS 0-7 ARE
ALWAYS

INPDT FILE NAME
6 CHARACTER

FILE EXTENSION
2 CHARACTERS

3-9

The table entry for the first input file is in locations 17605 to
17611; the second in locations 17512 to 17616; the third in locations
17617 to 17623; the fourth in locations 17624 to 17630; and the fifth
in locations 176 31 to 17635. A zero in word 1 terminates the list of
input files. If word 2 of an entry is zero, no input file name was
specified.

The OS/8 batch generating system will allow calls to the command
decoder in special mode.

3.6 CCL AND THE COMMAND DECODER

CCL uses its own copy of the Command Decoder instead of the copy
available from the monitor. Thus, the CCL Commcind Decoder has several
options not available via standard USR calls to the OS/8 Command
Decoder, e.g., multiple default extensions.

3.7 USEFUL LOCATIONS IN BATCH

BATCH will run whenever bit of location 07777 is a 1. The user may
wish to access the following useful locations in BATCH. The locations
are in the highest memory field availedsle to OS/8:

BATERR = 7000 JMP here to abort BATCH.

BATOUT = 7400 JMS here to print character
in AC in BATCH log,

BATSPL = 7200 JMS here to permit spooling
with default extension in AC.

3.8 CCL TABLES

A description of all tables used by CCL is included in the file CCL. PA
supplied to all users of OS/8 version 3.

3-10

CHAPTER 4

USING DEVICE HANDLERS

A device handler is a system subroutine that is used by all parts of
the OS/8 system and by all standard system programs to perform I/O
transfers. All device handlers are called in the same way and they
all perform the same basic operation: reading or writing a specified
number of 128 word records beginning at a selected core address.

These subroutines effectively maisk the unique characteristics of
different I/O devices from the calling progreun; thus, progreuns that
use device handlers properly are effectively "device independent".
Changing devices involves merely changing the device handlers used for
I/O.

OS/8 device handlers have another important feature. They are able to
transfer a number of records as a single operation. On a device like
DECtape this permits many bks of data to be transferred without
stopping the tape motion. On a disk, a single operation could
treUisfer an entire track or more. This capeUaility significantly
increases the speed of operation of OS/8 programs, such as PIP, that
have large buffer areas.

NOTE

The word "record" is defined to mean 128
words of data; thus, an OS/8 block
consists of two 128 word records.

4.1 CALLING DEVICE HANDLERS

Device handlers are loaded into a user selected area in memory field
by the FETCH function. FETCH returns in ARG(l) the entry point of the
handler loaded. The handler is called by performing a JMS to the
specified entry point address. It has the following format:

CDF N /WHERE N IS THE VALUE OF THE CURRENT
/PROGRAM INSTRUCTION FIELD TIMES 10 (OCTAL)

CIF /DEVICE HANDLER ALWAYS IN FIELD
JMS I ENTRY
ARG(l) /FUNCTION CONTROL WORD
ARG(2) /BUFFER ADDRESS
ARG(3) /STARTING BLOCK NUMBER

4-1

JMP ERR /ERROR RETURN
/NORMAL RETURN (I/O TRANSFER COMPLETE)

ENTRY 'o /ENTRY CONTAINS THE ENTRY POINT OF THE
/HANDLER, DETERMINED WHEN LOADED BY^TCH

As with calls to the USR, it is important that the data field is set

to the current program field before teldevice handler is called. On

exit from the device handler, the data field will remain set to the

current program field.

ARG(l) is the function control word, and contains the following

information:

Bits Contents

Bit for an input operation, 1 for an output
operation.

Bits 1 to 5 The number of 128 word records to be
transferred. If bits 1-5 are zero and the
device is non-file structured (i.e., TTY,

LPT, etc.) the operation is device dependent.
If the device is file structured (SYS,

DECtape, disk, etc.), a read/write of 40

(octal) pages is performed.

Bits 6 to 8 The memory field in which the transfer is to
be performed.

Bits 9 to 11 Device dependent bits, can be left zero.

Currently only bit 11 is used? on DECtape
bit 11 determines the direction in which the

tape is started. If bit 11 is 0, the tape
starts in reverse. If bit 11 is 1, the tape
starts forward. All other handlers ignore
these bits at present (except TM8E and TA8E)

.

NOTE

Starting forward saves time as long as

the block nvimber, ARG(3) , is about seven
or more blocks greater them the number
of the block at which the tape is

currently positioned,

ARG(2) is the starting location of the transfer buffer.

ARG(3) is the number of the block on which the transfer is to begin.

The user program initially determines this value by performing a

LOOKUP or ENTER operation. After each transfer the user program

should itself add to the current block number the actual number of

blocks transferred, equal to one-half the number of 128 word records

specified, rounded up if the number of records was odd.

There are two kinds of error returns: fatal and non- fatal. When an

error return occurs and the contents of the AC are negative, the error

is fatal. A fatal error can be caused by a parity error on input, a

write lock error on output, or an attempt to write on a read-only

4-2

device (or vice versa) . The meaning can vary from device to device,
but in all cases it is serious enough to indicate that the data
transferred, if any, is invalid.

When an error return occurs and the contents of the AC are greater
than or equal to zero, a non- fatal error has occurred. This error
always indicates detection of the logical end-of-file. For example,
when the paper tape reader handler detects the end of a paper tape it
inserts a CTRL/Z code in the buffer and takes the error exit with the
AC equal to zero. While all non-file structured input devices can
detect the end-of-file condition, no file structured device can;
furthermore, no device handler takes the non-fatal error return when
doing output.

The following restrictions apply to the use of device handlers:

1. If bits 1 to 5 of the function control word, ARG(l), are
zero, a transfer of 40 (octal) pages or an entire memory
field is indicated. Care must be used to ensure that the
handler is not overlaid in this call. This only applies to
file-structured handlers.

2. The user program must never specify an input into locations
07600 to 07777, 17600 to 17777, or 27600-27777, or the
page(s) in which the device handler itself resides. In
general, 7600-7777 in every memory field are reserved for use
by system software. Those areas should be used with caution.

3. Note that the amount of data transferred is given as a number
of 128 word records, exactly one half of an OS/8 blodc.
Attempting to output an odd number of records can change the
contents of the leist 128 words of the last block written.
For example, outputting 128 words to a block on the RK8 disk
causes the last 128 words of the block to be filled with
zeroes

.

4. The specified buffer address does not have to begin at the
start of a page. The specified buffer cannot overlap fields,
rather the address will "wrap around" memory = For example, a
write of 2 pages starting at location 07600 would cause
locations 07600-07777 and 00000-00177 of field to be
written.

5. If bits 1-5 of the function control word ARG(l) are zero, a
device-dependent operation occurs. Users should not expect a
40-page (full field) transfer of data. The CLOSE operation
of the USR calls the handler with bits 1-5 and 9-11 of the
function control word 0. This condition means 'perform any
special close operations desired'. Non-file structured
handlers which need no special handling on the conclusion of
data transfers should treat this case as a NOP. Examples of
usage of such special codes

:

LPT - perform a form feed
CSAn, MTAn - write two file marks

4-3

4.2 DEVICE DEPENDENT OPERATIONS

This section describes briefly the operation of certain standard OS/8

device handlers, including normal operation, any special

initialization operations for block 0, terminating conditions, and

response to control characters typed at the keyboard. Further

information on device h^lndlers can be found in Chapter 5.

4,2.1 1-Page Terminal (TTY) (AS33)

1. Normal Operation

This handler inputs characters from the terminal keyboard and

packs them into the buffer or unpacks characters from the

buffer cind outputs them to the console terminal.

On input, characters are echoed as they are typed. Following

a carriage return, a line feed character is inserted into the

input buffer and printed on the terminal.

2. Initialization for Block

None.

3. Terminating Conditions

On input, detection of a CTRL/Z causes a CTRL/Z (octal code

232) to be placed in the input buffer, the remaining words of

the buffer to be filled with zeros, and a non-fatal error to

be returned. On output, detection of a CTRL/Z character in

the output buffer causes output to be terminated and the

normal return to be taken. There are no fatal errors
associated with the 1-page terminal handler.

4. Terminal Interaction

CTRL/C forces a return to the Keyboard Monitor, CTRL/
forces an end-of-file on input (see 3) . CTRL/0 terminates

printing of the contents of the current buffer on output.

4,2.2 High-Speed Paper Tape Reader (PTR)

1, Normal Operation

This handler inputs characters from the high-speed paper tape

reader and packs them into the buffer.

2, Initialization for Block

The hemdler prints an up-arrow (t) on the terminal and waits

for the user to load the paper tape reader. By typing any

single character (except CTRL/C) the user initiates reading
of the paper tape.

4-4

;;oTE

On some terminals , up-arrow is replaced
by the circumflex ') character.

3, Terminating Conditions

Detection of an end-of-tape condition, indicated by the
failure to get a character in a specified period of time,
causes a CTRL/Z to be entered in the buffer, the remaining
words of the buffer to be filled with zeros, and a non-fatal
error to be returned. Attempting output to the paper tape
reader causes a fatal error to be returned.

4. Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.

4.2.3 High-Speed Paper Tape Punch (PTP)

1. Normal Operation

This handler unpacks characters from the output buffer and
punches them on the paper tape punch.

2. Initialization for Block

None.

3. Terminating Conditions

Attempting to input from the paper tape punch causes a fatal
error to be returned. There are no non-fatal errors
cissociated with this handler.

Typing CTRL/C forces a return to the Keyboard Monitor, but
only when actual punching has begun, or if tC is typed before
punching commences. If the punch is off line, tC is only
effective immediately before punching would begin.

4.2.4 Line Printer (LPT) (LPSV)

1. Normal Operation

This handler unpacks characters from the buffer and prints
them on the line printer. The characters horizontal tab
(ASCII 211) causes sufficient spaces to be inserted to
position the next character at a "tab stop" (every eighth
column, by definition) . The character vertical tab (ASCII
213) causes a skip to the next paper position for vertical
teibulation if the line printer hardware provides that
feature. The character form feed (ASCII 214) causes a skip
to the top of the next page. Finally, the handler maintains
a record of the current print column and starts a new line
after 80 or 128 columns have been printed. This heindler

4-5

fiinctions properly only on ASCII data. The handler for the

LS8E line printer handler utilizes the expcuxded character
capability of the printer. If a 216 (CTRL/N) character
appears anywhere in a line of text, the entire line is

printed in the expanded character mode. The 216 must be used

on a line-by-line basis,

2. Initialization for Block

Before printing begins, the line printer handler issues a

form feed to space to the top of the next page.

3. Terminating Condition

On detection of a CTRL/Z character in the buffer, the line

printer handler issues a form feed cuid immediately takes the
normal return. Attempting to input from the line printer
forces a fatal error to be returned. A fatal error is also
returned if the line printer error flag is set. There are no

non-fatal errors associated with the line printer handler.

4. Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.

5. Patching the LPSV Handler

The following patches are available for the LPSV line printer
h2mdler.

rel. loc 0: set to -printer width-1 (i.e. set to -121 (octal)
for an 80 column line
printer)

rel, loc 1: set to 4 for the LV8E line
printers

set to 14 for the LPOE and LS8E
printers

rel. loc 2; set to -40 to convert lower case to
upper case

set to if your printer can print
lower case

4.2,5 Cassettes

1, Normal Operation

This handler performs character I/O between the cassettes and

the buffer. It treats cassettes as a non-file structured
device. Data appears on cassette in 192-byte records.

2, Initialization for Block

On input the cassette is rewound. On output the cassette is

rewovind and a file gap is written.

3, Terminating Condition

4-6

An end-of-file on input is a software error.

4. Terminal Interaction

5. Special Codes (device dependent features)

If the handler is called with bits 1-5 of the function word
=0, then bits 10-11 are examined. The meaning of these codes
are as follows s

write a file gap
1 rewind also, then write a file gap if bit 0=1

2 space backwards one record
3 skip one file (direction depends on bit 0)

NOTE

The handler neither reads nor writes
standard files. It is merely a paper
tape replacement. It writes raw data
(organized into 192-byte records) onto
the cassettes starting at the beginning;
and then later reads it back.

The source is already in OS/8 BUILD format. The hauidler has only two
entry points (for drives A and B of a controller). The decision as to

which controller it uses is made at assembly time by changing the
symbol code. The result is as follows:

CODE DEVICE NAME HANDLER DEVICE CODE

TA8A A:CSAO
B:CSA1

70

1 TA8B A:CSA2
B:CSA3

71

2 TA8C A:CSA4
B:CSA5

72

3 TA8D ASCSA6
B:CSA7

73

The handler has the internal device code of 27 (see Table 2-12 in
Chapter 2 of the OS/8 HANDBOOK. The handler is two pages long.

4.2.6 Card Reader (CDR)

1. Normal Operation

This handler reads characters from the card reader and packs
them into the input buffer. Trailing spaces (blank columns)
on a card are deleted from input. The handler can accept
only alphanumeric format data on cards (the DEC029 standard
card codes are used)

.

4-7

2. Initialization for Block

None.

3. Terminating Conditions

A card which contains an underline character in column 1 (an

0-8-5 punch) with the remaining columns blank is an

end-of-file card. In addition, after reading each card the

handler checks to see if a CTRL/Z was typed at the keyboard.

After either an end-of-file card or a CTRL/Z being typed, a

CTRL/Z is inserted in the buffer, the remaining words of the
input buffer are filled with zeros, and a non-fatal error is

returned. Attempting to output to the card reader causes a

fatal error to be returned,

4. Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.
Typing CTRL/Z forces an end-of-file to occur (see 3.)-

4.2.7 TM8-E Handler

1. Normal Operation:

When the handler is used in its normal mode, single-file
mode, magtapes may consist of exactly one file. It starts at
the beginning of the tape euid consists of consecutive records
until an end-of-file mark (EOF) is reached. In this sense, a
magtape is similar to one big paper tape. This is the same
way that OS/8 currently treats ceissettes.

Since the capacity of magtapes is so big, provisions have
been made for storing multiple files per tape. In such a
structure, several files may exist on one magtape. They are
unlabeled and are separated from each other by a single file
mark. The last one is followed by two file marks. Each
•file' looks like a paper tape. It is referenced in a
non-file structured memner. The magtape handler must be
altered first to work in file mode. Then the magtape must be-

positioned to exactly the correct spot where the read or
write operation will commence. This may be done with any
program using the auxilieiry capabilities of the magtape
handler (described below) , or the positioner program, CAMP.
To read a file, the handler must be positioned to just before
the first data record of that file. To write file #1, rewind
the tape (i.e., be at BOT) . To write file #n, (n>l) the
handler should be positioned after the (n-l)st file mark on
the tape. Previous file n and all files past it then become
unreadable (non-existent)

.

A. Device-Dependent Capabilities:

The TM8-E hcuidler has several auxiliary features which
may be invoked by a user program which calls the handler
in a device-dependent meuiner. These features all rely on
the contents of bits 9-11 of the function word (argument
1 of the handler call) and some require argument 3 in
addition.

4-8

These features are brought to life whenever the handler
is called with a page count of (bits 1-5 of the
function word). Call bits 9-11 of the ftinction word, the
Special Function Register (SFR) for short, and also refer
to bit of the function word as the direction bit- If
the page count is not , the contents of the SFR is
ignored.

If the page count is 0, then the SFR together with the
direction bit (and possibly argument 3) determine what
special function to perform, as follows:

SFR OPERATION

0. CLOSE. Write two EOF's.

1. Rewind.

2. Space forward/reverse records. The direction to
space is determined by the direction bit (0 means
space forward, 1 means space reverse) . The negative
(two's complement) of the number of records to space
over is given by argument 3 of the handler call, (-1

means space past one record, means 4096 records.)
The error return is taken if either a file mark or
BOT is encountered. In such cases, you would be left
positioned at the beginning of a file.

3. Space forward/reverse files. The direction to space
is determined by the direction bit (0 means space
forward, 1 means space reverse) . The negative of the
number of file marks to space past is given by
argument 3 (-1 means space past one file mark;
means 4096 file mcurks). In reverse mode, the tape is
left positioned at the end of a file; an error is
given if BOT is encountered. In forward mode, the
tape is left positioned at the beginning of a file.
If EOD is reached, the handler automatically performs

marks; no error is given.

4. Rewind the unit and put drive off-line.

5. Write a single EOF.

6. Special read/write function. The direction bit (as

usual) determines read or write (0 means read, 1

means write) . The specified I/O operation is
performed between the user's buffer (start is
specified by argument 2) and the very next magtape
record. Only one record is transferred and the
user's buffer must be large enough to contain it.
The record length is specified by the negative of
argument 3 (in words). meeuis a record length of
4096.

7= Unused, Reserved for future usee If specified, it
currently acts as a NO-OP.

In each case, the unit affected is determined by the handler entry
point.

4-9

B. Other Common Operations:

(a) To backspace n files, use special code 3 to pass over
n+1 file marks backwards, then use special code 2 to
advcuice (forward) over one record (EOF) ignoring the
EOF error,

(b) To advance to EOD, first perform a backspace of one
record (or perform a rewind to play safe) then use
special code 3 to advance over 4096 files in the
forward direction (argioment 3=0) .

2. Special Handling for Block

If the handler is called to read or write block 0, it will
first perform a rewind. This feature can be patched out if
desired by altering relative location 1 from a to a 1. This
altered handler should be operating in file mode. The
original handler should be operating in single-file mode.

A. Special Handling for CLOSE:

A close operation is signaled to the handler by calling
it with a function word which heis a page count of (bits
1-5) and which has bits 9-11 all zeroes. This is how the
USR CLOSE operation calls the heuidler (OS/8 V3 only.
This causes the handler to write two successive file
marks on the tape. Two successive EOF's is the software
indication of end-of-data (EOD)

.

B. Restrictions

:

In single-file mode, should not have more than 4095
blocks because on trying to write the 4096th block, the
handler will think it's writing block and perform a
rewind. This restriction does not apply when using the
handler in file-mode; but beware, same cusps, such as
PIP, are suspected to behave strangely on block 4096 of
non- file-struetured devices

.

3. Terminating Conditions

None.

4. Keyboard Interaction:

Typing tC on the keyboard while the handler is in operation
causes the handler to abort and return to the OS/8 keyboard
monitor via location 7600. Such action is ill-advised since
it leaves the magtape without an end-of-file indicator.

5. Error Conditions:

On a hard error, the handler taUces the error return (with a
negative AC) and the AC contains the contents of the main
status register, as follows:

4-10

Bit on Meaning

Error flag
1 Tape rewinding
2 Bor
3 Select error
4 Parity error (vertical, longitudinal, or

CRC)
5 EOF
6 Record length incorrect
7 Data request late
8 EOT
9 File protect
10 Read compare error
11 Illegal function

4.2.8 File-Structured Devices

1. Normal Operation

(DECtape, LINCtape, TD8E DECtape, DF32, RF08, and RK8, RK8E)

These handlers transfer data directly between the device and

the buffer.

2, Initialization for Block

None.

3, Terminating Conditions

A fatal error is returned whenever the trcuisfer causes one of

the error flags in the device status register to be set. For
example, a fatal error would result if a parity error
occurred on input, or a write lock error occurred on output.
The device handlers generally try three times to perform the

operation before giving up eind retiurning a fatal error.

There are no non-fatal errors associated with file structured
devices.

4. Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.

NOTE

The system device handler does NOT
respond to a typed CTRL/C.

4.2.9 TD8E DECtape

TD8E DECtape is the new accumulator treuisfer DECtape. Since OS/8 is a

noninterrupt driven system, TD8E DECtape has data transfer rates

equivalent to those for TC08 DECtape; however, the interrupt should
never be used with the TD8E. Device handlers for TD8 DECtape are

supplied as a standard part of OS/8. Each pair of drives (0, and 1, 2

and 3, etc.) requires a 2-page device handler. Thus, to have all

4-11

eight TD8E drives in the system at one time will require four separate
handlers. Thus for TD8E, it is wise to restrict usage to those units
that physically exist. Also, the tape drives are hardwired to select
one of two possible unit numbers; thus, the first pair of drives
installed must be called units to 1. Any others numbers will cause a
SELECT error. In this case, the computer hangs until the correct
drive is selected.

4.2.10 KL8E Terminal Handler

Listed are the features of the KL8E handler. Those that are
conditional are marked by an asterisk:

1. It reads a line at a time. Whenever the user types CR, it
enters CR, LF into the buffer; it echoes CR, LF; and then
pads the remainder of the buffer with nulls and returns to
the calling program. The characters get put into the buffer,
one character per word. Thus every third character is a null
as far as OS/8 is concerned.

2. RUBOUT deletes the previous character. It echoes as either a
back slash (\) or as the character rubbed out, depending on
eissembly parameters. RUBOUT at the beginning of a line acts
as tU.

3. CTRL/U echoes as tU £uid erases the current line, allowing the
user to retype it. (It also echoes CR, LF.) The buffer
pointer is reset to the beginning of the buffer.

4. CTRL/Z echoes as tZ (followed by CR, LF) and signals
end-of-input. The tZ enters the buffer and the remainder of
the buffer is padded with nulls. The error return is taken
with a positive AC (non-fatal error)

.

5. Nulls are ignored.

*6. The altmode characters (octal 175 and 176) are converted to
escapes (octal 33)

.

*7. Lower-case characters typed may be automatically converted to
upper case.

8. CTRL/C echoes as tC and returns control to the keyboard
monitor via location 07600.

On output; (either normal output or when echoing input)

1. CTRL/C on keyboard echoes as tC and returns control to the
keyboard monitor via location 7600.

2. CTRL/0 on keyboard stops further echoing. All echoing ceases
(through possibly many buffer loads) until either the handler
is reloaded into core or the user types a character other
than to on the keyboard. Not operative during input.

3. tS causes the hcuidler to stop sending to the terminal. No
characters are lost and outputting resumes when a tQ is
typed. tS and tQ do not echo. These characters are

4-12

operative only upon output. On input, they are treated like
any other input characters. This is very useful on high
speed CRT displays.

4. Nulls are ignored.

*5. Lower case characters may be optionally printed as upper case
and flagged with an apostrophe.

*6 . Tabs may be handled in one of three manners

:

a. Output as actual tabs

,

b. Output as actual tab followed by padding of two rubouts,

c. Output as the correct number of spaces to bring the text
to the start of the next tab stop.

7. Whenever the output line reaches the end of the physical line
(length set at assembly time) , the handler automatically
performs a carriage-return line-feed.

*8. The escape character (octal 33) prints as a dollar sign,

*9. The handler may be set to delay about 16 ms after typing any
character (specified at assembly time) , for example, line
feed.

*10. Control characters are printed as their corresponding letter
preceded by an up-arrow. Thus CTRL/K prints as tK,

4-13

CHAPTER 5

RECONFIGURING THE OS/8 SYSTEM

It is sometimes necessairy to construct an OS/8 system from scratch, or
to make a new peripheral device available to OS/8. Both of these tasks
are a part of reconfiguring the OS/8 system. OS/8 BUILD, which is
described in detail in Chapter 2 of the OS/8 HANDBOOK, allows the user
quickly and easily to build a new system or to alter the device
complement of an existing system.

5.1 WRITING DEVICE HANDLERS

A device handler is a page-independent subroutine one or two pages
long. The device handler must run properly in any single page or two
contiguous pages in field (except 0000 to 0177 or 7600 to 7777) . All
device handlers have the same calling sequence:

CDF N
GIF
JMS I ENTRY
FUNCTION

BUFFER
BLOCK
ERROR

NORMAL

/N IS CURRENT FIELD TIMES 10 (OCTAL)
/DEVICE HANDLER LOCATED IN FIELD
/ENTRY IS DETERMINED BY SR "FETCH"
/FUNCTION IS BROKEN DOWN AS FOLLOWS:
/BIT « FOR READ
/BIT 0=1 FOR WRITE
/BITS 1 TO 5 = NUMBER OF PCS TO TRANSFER
/BITS 6 TO 8 = FIELD FOR TRANSFER
/BITS 9 TO 11 = DEVICE DEPENDENT BITS
/CORE ADDRESS OF TRANSFER BUFFER
/BLOCK NUMBER TO START TRANSFER
/ERROR RETURN, AC>=0 MEANS END-OF-FILE

AC<0 MEANS FATAL ERROR
/NORMAL RETURN

The device hcuidler reads or writes a number of 128 word records
beginning at the selected block. In general, device handlers should
conform to the following standards:

1. On normal return from a device handler the AC is zero and the
DATA FIELD is always restored to its original entry value.

2. Although the starting block number has true significcmce only
for file structured devices , handlers for non-file structured
devices can check the block number and perfoinn initialization
if the block number is zero. For example, the line printer
handler outputs a form feed before printing when the
specified block number is zero.

3. Handlers should be written to be as foolproof as possible
checking for the most common errors in the calling program.

5-1

Examples of typical user errors are: calling handler wxth

non-zero AC (always perform a CLA in the handler); trying to

read on a write only device, or trying to wrxte on a read

only device (gives a fatal error return) ? specifying pages

to be transferred (accept as meaning no actual transfer is to

talce place); or attempting to access a nonexistent block

(gives a fatal error return)

.

4. Device handlers normally check to see if a CTRL/C (ASCII 203)

has been typed at the system console by the user. If one

has, the handler aborts I/O and JMP's to location 7600 m
field 0. The seven low order bits of the keyboard should be

checked for a 3 so as to allow parity terminals. KRS should

be used over KRB so that any paper tape in the reader will

not be advanced if its character is not tC.

5 Device handlers should be able to detect standard error

conditions like checksum or parity errors. Whenever

possible, several attempts to perform the transfer should be

made before aborting I/O and taking the error exit. In

addition, when operator intervention is required, the handler

would normally wait for the action rather than take a fatal

error exit. For example, if the paper tape punch is not

turned on, the PTP handler waits for the punch to be turned

on.

6. By convention, in any handler for a device (like DECtape)

that can search either forward or backward for a block. Bit

11 of the fimction word (one of the device-dependent bits)

controls the starting direction of the search. Bit 11 is a 1

if the starting direction is forward and a if it is

reverse. The other two device dependent bits are not

assigned any significance at the present time,

7. Remember that the user specifies a multiple of 128 words to

transfer, whereas the transfer starts at the beginning of a

128 or 256 word block. This means that the handler must

provide that capability of reading or writing the first half

of a block, writing the first half of the block causes the

contents of the second half of the block to be altered. For

example, writing 128 words to the RK8 disk (256 word blocks)

causes the second half of the block to be filled with zeroes.

This is usually done by the hardware controller.

8. The entry point to a two page device handler must be in the

first page.

9. A number of handlers (maximum of 15 decimal) can be included

in the one or two pages of code. Where more than one handler

is included in a single handler subroutine, the handlers are

called co-resident. Co-resident handlers are always brought

into core together. For example, all eight DECtape handlers

fit into one page; hence, the DECtape handlers are

co-resident. One restriction on co-resident handlers is that

if they are two pages long all entry points must be in the

first page^

10. The USR, while doing file op rations, maintains in core the

last directory block read n order to reduce the number of

directory reads necessary. Ihe proper fxinctioning of this

feature depends on the fact that every handler for a

5-2

11.

12.

file-structured device on a single system has a unique entry

point relative to the beginning of the handler. The relative

entry points currently assigned for file structured handlers

are:

Device Handlers

System Device Handler
DECtape, LINCtape or TD8E DECtape
RKAO
RKAl
RKA2
RKA3
RK08 or DF32
Reserved for user

Relative Entry foints

10 to 17
2a
21
22
23
24
40 to 67

If the device is block oriented (such as DECtape, LINCtape,

or Disk) , then the handler transfers data directly with no

alteration. However, if the device is character oriented

(such as a paper tape reader. Teletype, or line printer), the

hcindler is required to pack characters into the buffer on

input and unpack them on output. The standard OS/8 character

packing format puts three 8-bit characters into two words as

follows

:

WORD 1

WORD 2

CHARACTER 3

BITS 0-3 CHARACTER 1

CHARACTER 3

BITS 4-7 CHARACTER 2

11

For example, the 3 characters 'ABC' would be packed into 2

words as follows:

Word 1: 6301
Word 2i 1702

When packing characters on input, the character CTRL/Z (octal

232) is inserted at the logical end-of-file (for excunple, at

the end of the tape in the paper tape reader handler)

.

Following CTRL/@ the remaining words of the input buffer

should be zeroed.

A close operation should be performed by non-file structured

handlers if bits 1-5 and 9-11 of the function word are 0.

The device handler, whether one or two pages long, must be completely

page independent: it must be capable of executing in any page(s) in

field 0, except page and 7600 to 7777. Page independent code can

have no address constants. Writing one page handlers is relatively

easy, since the addressing structure of the PDP-8 is essentially page

independent. Writing page relocatcible code for two pages, however, is

considerably more difficult, as the two pages must communicate. The

usual technique utilized in writing two page heindlers is to include

some initialization code which includes a JMS. This replaces that

location by an address on the page the heuidler was loaded on. Using

this, the handler can then determine where the relevant pieces of code

are in core.

5-3

As ein example, the following is the initialization procedure performed
by the TD8E DECtape routine. This is by no means the only technique
that is possible, but it is a workaible solution.

JINIT,

*200

JMP INIT

/EXECUTED CODE

/START INITIALIZATION

INIT, JMS.
BASE, TAD CRDQAD

SPA
JMP NXINIT
TAD INIT
DCA CRDQAD
ISZ .-1
ISZ BASE
JMP BASE

/FOUND OUT WHERE WE ARE.
/INIT GETS ADDRESS OF BASE
/NEGATIVE TERMINATES LIST
/INITIALIZE SECOND PAGE
/NOW UPDATE THE LIST OF
/ADDRESS DEPENDENT LOCATIONS
/POINT TO NEXT ELEMENT
/NEXT INPUT VALUE
/LOOP OVER INPUT TABLE.

CRDQAD,
CINIT2,
CSELCT,
CXUNIT,
BUFF,

NXINIT

,

BASE2,

INIT2

,

INIT3

,

R4LINE-BASE
INIT2-BASE
SELECT-BASE
XUNIT-BASE
4000

/THESE ARE ALL POSITIVE DIFFERENCES,
/SINCE THE ROUTINES INDICATED ARE
/IN THE SECOND AGE. AFTER
/INITIALIZATION, CRDQAD POINTS TO
/THE ACTUAL ADDRESS OF R4LINE, ETC.
/THE 4000 IN BUFF TERMINATES
/THE FIRST INITIALIZATION,
/MORE PAGE INDEPENDENT CODE

JMS I CINIT2 /INITIALIZE SECOND PAGE
DCA JINIT
JMP JINIT

*400

TAD CTRY3
SNA
JMP I INIT2
TAD INIT2
DCA CTRYS
ISZ .-1
ISZ INIT3
JMP INIT3

/CLEAR OUT JINIT. NO MORE
/RELOCATING IS NEEDED UNTIL THE
/HANDLER IS LOADED INTO CORE GAIN.
/SECOND PAGE OF HANDLER

/ADDRESS OF BASE2 GOES HERE

/A TERMINATES THIS LIST

/ADD VALUE OF BASE2 TO LIST
/PUT BACK INTO LIST
/NEXT LOC. TABLE

CTRY3,
CRWCOM,
XBUFF,

TRY3-BASE2 /THIS LIST GETS VALUE OF BASE

2

TRWC0M-BSSE2 /ADDED IN TO POINT TO THE REAL
/ROUTINE.

5-4

Writing 2 page independent code can be expensive in terms of core

required. The routines should be set up in such a way as to minimize

communication between the two pages. Some other points to keep in

mind are:

1. Relocation code is once-only code. It is done once when the

handler is loaded and need never be done again until the

handler is re-loaded from the system device. For this

reason, the relocation code can be placed in a buffer area or

setup in temporary scratch locations which are later used as

temporary storage.

2. A useful hint is that a JMP into the next page of code is not

required. The code can just as easily fall through 377 into

400, This may save a few locations of relocation code.

3. Useful techniques for writing 2-page handlers can be found in

the source of the KL8E handler.

5.2 INSERTING DEVICE HANDLERS INTO OS/8

After the handler has been written and thoroughly debugged as a

stand-alone routine, it can be integrated into the OS/8 Monitor, where

it will become a resident device handler. To accomplish the

integration, use OS/8 BUILD, described thoroughly in the BUILD section

in Chapter 2 of the OS/8 HANDBOOK.

Notes for writing system handlers system handlers may be integrated

into BUILD just like non-system handlers with the following additional

notes

1. Body of system handler should be origined to 200 but must

start with a 2 BLOCK 7. Entry point must be at relative

location 7 (corresponds to location 7607).

2. Name of system handler must be SYS.

3. Each handler entry point has eUi 8-word handler block

associated with it. The following additions, apply:

a. word 5: bits 9-11 should normally be 0.

If the device can have multiple platters (like RF08)

then this field specifies maximum number of platters
allowed. Each platter above first bumps internal DCB

code by 1.

word 6: bit 0=1 means system device is two pages long.

The second page is origined into 400 but resides in

field 2 location 7600. Bit 1=1 if entry point is SYS.

Bit 2=1 if entry point is coresident with SYS.

word 7: must be

word 10: number of blocks in device. Immediately
following the header records is the code for the

device's bootstrap. This is preceded by minus the

number of words in the bootstrap. No origins may appear

in this code. It must be less them 47 locations long.

5-5

APPENDIX A

OS/8 FILE STRUCTURES

iJ±KiiL-TUKii. £JA.i F3

Blocks 1 through 6 on all file structured devices are reserved for the

file directory of that device. Six blocks are always allocated,

though all are not necessarily active at any given time. To minimize

the number of directory reads and writes necessary, OS/8 fills one

directory block completely before overflowing onto a second block.

Thus the user with only a few files can perform directory LOOKUPS and

ENTERS faster than one with many files.

The directory blocks are each structured according to the following

format

:

ENTRY

* ^

377
(8)

MINUS THE NUMBER OF ENTRIES
IN THIS SEGMENT

THE STARTING BLOCK NUMBER
OF THE FIRST FILE IN THIS
SEGMENT

LINK TO NEXT SEGMENT-ZERO
ir NO NEXT SEGMENT

FLAG WORD-POINTS TO LAST WORD
OF TENTATIVE FILE ENTRY IN
THIS SEGMENT
DIRECTORY SEGMENTS ARE ALWAYS
LOADED INTO LOCATIONS 11400
TO 117777 BY THE USR; THIS
POINTER IS EITHER OR BETWEEN
1400 TO 1777.

MINUS THE NUMBER OF
ADDITIONAL INFORMATION WORDS
THE NUMBER OF ADDITIONAL
INFORMATION WORDS SPECIFIED
MUST BE THE SAME IN ALL
DIRECTORY SEGMENTS

BEGINNING OF FILE ENTRIES

END OF DIRECTORY BLOCK

ds>

Locations through 4 of each directory block are called the segment

header.

A-1

A. 1.1 Directory Entries

There are three types of file directory entries. They are PERMANENT

FILE ENTRY, EMPTY FILE ENTRY, and TENTATIVE FILE ENTRY. A permanent

file entry appears as follows

:

Location Contents Jotes

FILE NAME
CHARACTER

FILE NAME
CHARACTER

Pn

FILE NAME
CHARACTER 3

FILE NAME
CHARACTER 4

FILE NAME
CHARACTER 5

FILE NAJ'IE

CHARACTER 6

THE FILE NAME AND EXTENSION
ARE PACKED IN SIXBIT ASCII
{i.e. , "A" would be 01)

FILE EXTENSION FILE EXTENSION
CHARACTER 1 CHARACTER 2

ADDITIONAL
INFORt-IATION
WORDS

;

N, THE NUMBER OF ADDITIONAL
INFORMATION WORDS, IS GIVEN
BY WORD 4 OF THE DIRECTORY

^' \ HEADER. WORD 4 OF THE ENTRY
I

/ IS EITHER OR THE CREATION
DATE OF THE FILE.

NOTE
If word 3 is zero, the given file has a
null extension.

An empty file entry appears as follows:

Location Contents

ENTRY IS ALWAYS 0000

MINUS THE NUMBER OF BLOCKS
IN THIS EMPTY FILE

A tentative file entry appears as a permeinent file entry with a length

of zero. It is always immediately followed by an empty file entry.

When the tentative file is entered in a directory, location 3 in the

segment header becomes a pointer to this entry. The CLOSE function
inserts the length word of the tentative file entry, raeUsing it a

permanent file, and adjusts the length of the following empty file

entry (deleting that entry if the length becomes zero)

.

Whether or not there is a tentative file open on any device is

determined by examination of bits 9 to 11 of the system Device Control
Word Table (see section B.3.5) not the contents of location 3 in the
segment header. Zeroing these bits in the Device Control Word Table
makes the active tentative file on the device inactive. The next time
that the system has to write the directory segment, the inactive

A-2

tentative file entry is removed. The distinction between active and
inactive tentative files is made so that OS/8 can avoid spending the
time required to perform an extra read and write of the device
directory.

A. 1.2 Number and Size of OS/8 Files

All files on an OS/8 device must occupy a contiguous group of blocks
on the device. The length of any file is indicated in its directory
entry, and the starting block of the file is deduced by adding
together word 1 of the segment header and the lengths of all files

whose entries precede it in the directory segment.

Each directory segment must have enough unused words at the end to
accommodate a permanent file entry (N+5 words, where N is the number
of Additional Information Words). Thus, if N is the number of
Additional Information Words the maximum number of permanent file
entries in any one segment is

:

256-7 - (N+5) 244-N
MIN = [] = t]

N+7 N+7

with N=l, MAX=40, and MIN=30. Since there are six segments in the
directory, the maximiom number of files possible (with N=l) would be
240.

Finally, OS/8 devices are limited to 40 95 blocks, each block being 256

words long. Thus, the maximum size of any single oS/8 file structured
device is 1,048,320 words. Blocks through 6 of the device are
unavailable for file storage; therefore, the largest possible file is

4088 blocks long, or 1,046,528 words.

A. 1.3 Sample Directory

The initial directory written when the OS/8 system is built looks as

follows

:

A-3

Locatiicn

SEGMENT
HEADER

;tes

PERMANENT
FILE
ENTRY

EMPTY
FILE
ENTRY

4

i'5
[

6

7

ko

tl

^2

(13

;i4

377,

T.\C EMTRIES

FILE STORAGE STARTS AT BLOCK 70
g*

NO ADDITIONAL DIRECTORY SEGMENTS

N"0 TENTATIVE FILES.

ONE ADDITIONAL INFORi'IATION 'WORD

FILE NAME IS "ABSLDR"

FILE EXTENSION IS .SV

DATE IS 10/31/70

LENGTH IS FIVE BLOCKS

EMPTY FILE

LENGTH IS 12448 (676lo) BLOCKS -

THIS IS DEPENDENT ON THE SYSTEM
DEVICE USED. 676 IS THE VALUE
FOR A DECTAPE SYSTEM

*This leaves room for the OS/8 System
Areas.

A. 2 FILE FORMATS

There are three different standard file formats used by OS/8 and

associated system programs:

1. ASCII and Binary files.

2. Core Image files (.SV format).

3. Relocatable FORTRAN library files (LIB8.RL is the only

current example of this format)

.

NOTE

Binary files can contain either absolute

binary data (i.e., output from PALS) or

relocateible binary data (i.e., output

from SABR)

.

A. 2.1 ASCII and Binary Files

ASCII and Binary files are packed three characters into two words, as

follows:

WORD 1

WORD 2

CHARACTER 3

BITS G-3

CHARACTER 3

BITS 4-7

CHARACTER 1

CHARACTER 2

3 4

The following conventions are used by OS/8 system programs:

1. In ASCII files the character NULL (ASCII 000) i^ ^^^^^^
ignored. Most programs only examine the low-order 7 bits, in

ASCII files. The parity bit is usually ignored; do not

assume Sa; this bit is set or that data transfers will

preserve it (image mode transfers, always preserve it).

A-

4

2. In Binary files the binary data must be preceded by one or
more frames of leader/trailer code (ASCII 200 code) . The
first character of binary data must be either 100 to 177
(octal) (an origin setting for absolute binary files) , 240 to
257 (octal) (a COMMON declaration frame for relocatable
V~ ^ «. .» . f^l.-.^l ... -inn / .^f^,^ ^1 \ v.r^^'^Vi i r^ 3w^ <»k-*--tf-r^ii c-^4-4>^«^«-r
SJA,ritXJ,y i-xXca/ f u-i, _Jtlu \uCua^/ f WU^v^iA ^ij ci±i \j*.J~'^J,ii K>5ww^ii«^»

The end of binary data is indicated by one or more frames of
leader/trailer code.

3. ASCII and Binary files are terminated by a CTRL/Z code (ASCII
232). In binary files, a CTRL/Z code data rather than

A. 2. 2 Core Image (.SV Format) Files

A core image file consists of a header fay the actual core image. The
header block is called the Core Control Block. The Core Control Block
consists of the first 128 words of the 256 word block reserved for
that purpose. The second 128 words are unused. The Core Control
Block is formatted as follows:

Location

1

2

3

4

2K +3

377

Contents

CORE CONTROL BLOCK

MINUS THE NUMBER OF CORE SEGMENTS

CDF CIF (STARTING FIELD)

STARTING ADDRESS

JOB STATUS VJORD

M

Notes

6 2N3 WHERE N IS THE
STARTING FIELD

CORE SEGMENT

CONTROL DOUBLE WORDS

(K IS THE NUMBER OF
CORE SEGMENTS)

»r
REMAINDER OF BLOCK

^ IS UI'TUSED

A-

5

The format of the Job Status Word is as follows:

Bit Condition Meaning

Bit 0=1 File does not load into locations to 1777
in field 0.

Bit 1=1 File does not load into locations to 1777
in field 1.

Bit 2 = 1 Program must be reloaded before it can be
restarted.

Bit 3 = 1 Program never uses above 8K. This is used
when Batch processing is active.

Bit 10 = 1 Locations to 1777 in field need not be
preserved when the Command Decoder is called.

Bit 11 = 1 Locations to 1777 in field 1 need not be
preserved when the USR is called.

The Core Segment Doublewords control the reading and writing of the

associated areas of core. The format of each entry is as follows:

Location Contents Notes

MULTIPLE OF 4001

2

CORE ORIGIN

NUMBER OF PAGES FIELD
TO LOAD TO LOAD

8

BITS AND 9-11
ARE ZERO

1 5 6 8 9 11

The core origin must be a multiple of 400 (octal) . The Core Segment
Control Doublewords are sorted within the header block in order of

decreasing field and increasing origin within the same field. There

ccin be no more than 32 (decimal) Core Segment Control Doublewords in

any Core Control Block.

The Core Control Block for the program at the time it is loaded into

core is always saved in words 200 (octal) through 377 (octal) of block
37 (octal) (one of the system scratch blocks) on the system device.

It is placed there by the GET and RUN operations or by the ABSLDR or

LOADER programs. This Core Control Block is used when performing a

SAVE without arguments.

NOTE

The R command differs from the RUN
command in that the program's Core
Control Block is not written onto the
scratch area when using the R commcind.

In order to SAVE a program that has been
loaded by the R command all of the
arguments of the SAVE commemd must be
explicitly stated.

A-6

A. 2. 3 Relocatable FORTRAIi Library File

A relocatable FORTRAN library consists of a library directory block

followed by relocatable binary segments. The directory block has the

following format:

Location Contents

377,

CHI

CH3

LOAD POINTER

CH2

CH4

CH6

'additional entries

Notes

NAME OF ENTRY IN
SIXBIT ASCII PADDED
VJITH TPAILING BLANKS

i^

} DENOTES END OF
NAME ENTRIES

t:^.

-LOADER CONTROL WORD(S)
.END OF LOADER CONTROL
WORDS FOR THIS ENTRY

The Load Pointer is a number between and 377 (octal) which points

(relative to the beginning of the block) to an array of Loader Control
Words. The Loader Control Words have the following information:

11

NUMBER OF PAGES OCCUPIED
BY THIS SEGMENT AFTER LOADING

(STARTING BLOCK OF RELO-
CATABLE BINARY DATA)
(DIRECTORY BLOCK #)-l

There can be one or more Loader Control Words for each entry. The
Loader Control Words for an entry are teirminated by a word of zero.
The following is a simple directory block.

A-7

Location Contents

1117

1

2

3

4

5

6

7

10

11

12

13

LOADER
CONTROL f373
WORDS FOR/-

"EXIT" »'*

^375
LOADER ,

CONTROL J376
WORDS F0r(

1040

4040

0376

0530

1124

4040

0373

"lOH*
"377

8

0000

0000

0000

0000

0207

0411

0000

2400

0000

NAME OF ENTRY IS "lOH "

LOAD POINTER FOR " lOH"

NAME OF ENTRY IS "EXIT "

LOAD POINTER FOR "EXIT"

, MARKS END OF ENTRIES

(RELATIVE BLOCK 10 „) (ONE
PAGE LONG)
(RELATIVE BLOCK 12„) (TWO
PAGES LONG) "

(RELATIVE BLOCK 1) {12g PAGES
LONG)

A-8

APPENDIX B

DETAILED LAYOUT OF THE SYSTEM

This appendix covers three topics: the reserved areas on the system
device, the resident portion of OS/8, and the various system tables.

B.l LAYOUT OF THE SYSTEM DEVICE

The first 70 octal blocks (14K words) on the system device are
reserved by the OS/8 system. These blocks are used as follows:

Block (s) in Octal

1-6
7-12
13-15
16-25
26
27-50
51-53
54-55
56
57
60-63
64
65
66
67

Contents

System Bootstrap Routine
Device Directory
Keyboard Monitor
User Service Routine
Device Handlers
ENTER Processor for USR
System Scratch Blocks
Command Decoder
SAVE and DATE Overlays
Monitor Error Routine
CHAIN Processor for USR
SYSTEM ODT
Reserved for System Expansion
CCL Reminiscences
12K TD8E Resident code
CCL Overlay

File storage begins with block 70 (octal).

The system scratch blocks are used for preserving the contents of core
when the Keyboard Monitor, USR, Commeind Decoder, or ODT are loaded.
In addition, various system programs use the scratch area. Most
importantly, the SAVE command expects the Core Control Block to be
loaded in words 200 (octal) to 377 (octal) of block 37 (octal). The
Core Control Block is stored at those locations by the GET or RUN
command or by the ABSLDR or LOADER program.

B-1

A detailed breakdown of system scratch block usage follows:

Block (s) in Octal

27-32

33-36

37

40-47

50

Contents

The contents of locaticns 10000 to 11777 are
saved in this area when the USR is loaded.

The contents of locations to 1777 are saved
in this area when the Command Decoder,
Keyboard Monitor, or ODT is loaded.

Words 200 (octal) to 377 (octal) of this

block contain the Core Control Block for the

last program loaded by the GET or RUN

command, or the ABSLDR or LOADER program.

Used as scratch storage by the ABSLDR and
LOADER programs.

Reserved for future expansion.

B,2 LAYOUT OF THE OS/8 RESIDENT PROGRAM

The top core pages in fields 0, 1, and 2 are used by the resident

portion of OS/8 and are not accessable by the user. As a general

rule, system and user programs should never destroy the contents of

locations 7600 to 7777 of any field.

The resident portion of OS/8 is structured as follows:

Location Contents Notes

7600

7605

7607

7743
7744

7745

7746

7747

7750

7755
7756

WRITE OPERATION *\ NON-DESTRUCTIVE
ENTRY TO PS/

8

JMP TO FIELD 1 FOR READ

SYSTEM DEVICE HANDLER

—DESTRUCTIVE
ENTRY TO PS/8

*\ ENTRY TO SYSTEM
DEVICE HANDLER

CURRENT STARTING ADDRESS

JOB STATUS WORD

RESERVED FOR DATA BREAK
LOCATIONS

7777 H
PROGRAM SETUP AREA

MUST ALWAYS BE ZERO

T
-THE KEYBOARD MONITOR
AND ODT MODIFY THIS
AREA

B-2

Location

7500

7615
7617

7641
7542
7643

7645
7646
7647

7665
7666
7667

7677
7700

7740
7741

7757
7760

7776
7777

,4*" OUTPUT FILE LIST (3 ENTRitS).

^
^

TOP PAGE OF FIELD 1

Contenrs Notes

INPUT FILE LIST
(MAXIMUM 9 ENTRIES)

HxGH 11 BITS OF —

N

SPECIFIED OPTIONS

LOW 12 BITS OF =N

DEVICE HANDLER
RESIDENCY TABLE

SYSTEM DATE WORt)

READ OPERATION
(LOAD KEYBOARD MONITOR)

USR CALL AND RETURN AREA

USER DEVICE
NAME TABLE

DEVICE CONTROL WORD TABLE

UNUSED

-0 MARKS END
OF LIST

-* BIT 0=1
IF COMMAND
LINE TERMI-
NATED BY
ALTMODE

COMMAND
y DECODER
awFa

-ENTRY TO USR

NOTE
- SYSTEM ODT DESTROYS
CONTENTS OF THIS TABLE
WHEN SETTING BREAKPOINTS

RESERVED FOR FUTURE USE

Systems built around TD8E DECtape without the Read-Only-Memory option

use 7600 in field 2 as an extension of the system devxce handler.

TOP PAGE OF FIELD 2.

7«;oo

7773
7774

7777

used only for 12K TD8E
systems. Part of system
hiuidler resides here in that
case.

Four words reserved for BATCH
use if machine has exactly
12K. Contains pointers into

input file.

If the machine has more than 12K, the top 4 location (7774-7777) of

the last field are reserved for use by BATCH.

If a ROM (Read-Only-Memory) is being used with an 8K TD8E system,

locations 7400-7777 of field 7 are inaccessible to the user. That

core is used for system handler functions.

B-3

B.3 SYSTEM DEVICE TABLES

Each device is described to the system by entries in five system
tables. Each of these tables is fifteen words long, where the device
number is the index into the table. The five tables are described
below.

B,3,l Permanent Device Name Table

Entries in this table specify the permanent name of each device. The
entries are computed by encoding the actual four-character device name
in a single word as follows:

1. The device name is expressed as two words in the standard
DEVICE format. For example, if the device name were "PTR"
the two words would be:

WORD 1: 2024
WORD 2: 2200

Note that when the device name is left justified; O's are
inserted to fill four characters.

2. A single word is created by adding together these two words,

3. If word 2 is non-zero, bit of the resulting word is forced
to be a one. For example, the table entry for "PTR" would be
4224.

An entry of zero means that there is no device for the corresponding
device number.

NOTE

Conventionally, device names consist
only of the characters A to Z and to
9. The first character of the device
name should be alphabetic. The coding
used makes all one and two character
device names unique; however, names of
more than two characters are not unique.
For example, "PTR" and "RTP" have the
same encoding.

The Permanent Device Name able is fifteen locations long; it resides
in the USR. when the USR is in core the beginning of the table is in
field 1 at a location the address of which is contained in location
10036.

B,3.2 User Device Name Table

Entries are made in this table whenever the user performs an ASSIGN
and are restored to zero by a DEASSIGN. These entries have the same
format as those in the Permanent Device Name Table,

The User Device Name Table resides in locations 17741 through 17757.

B-4

B.3.3 Device Handler Residency Table

When a device handler is loaded by the USR, the entry in this table

for the device loaded (and entries for all devices whose handlers are

co-resident, if any) is set to contain the entry point^for the device

handler. Entries other than those that contain an address above 7600

(thus referring to the system handler) are restored to when a RESET,

DECODE or CHAIN fmiction is executed. When a program exits to the

Keyboard Monitor this table is not cleared. The Keyboard Monitor

Commands GET, RUN, R, SAVE, and START (with no explicit address) clear

this table.

NOTE

Since the system device handler is

always resident the first entry (SYS is

always device number 1) in the Device
Handler Residency Table is always 7607
(the entry point of the system device
handler)

.

The Device Handler Residency Table resides in locations 17647 through

17665.

B.3.4 Device Handler Information Table

Each entry in this table contains all the information needed by the

USR to load the corresponding handler. The format of these entries is

as follows

:

Bit Condition Meaning

Bits 0=1 If this is a two page device handler.

Bits 1 to 4 Contain the relative block location of
the device handler record on the system
device. This is computed by subtracting
15 (octal) (one less than the first
device handler block) from the actual
block nximber.

Bits 5 to 11 Contain the offset of the handler entry
point from the beginning of the page.
Note that the entry points to all
handlers must be in the first page.

If ein entry is the corresponding device handler is not saved in any

of the device handler storage blocks. This is always true of device

number 1 (the system device) and for all device numbers that are not

used in a given configuration. The Device Handler Information Table

is 15 locations long and resides in the USR. When the USR is in core

the beginning of the table is in field 1 at a location the address of

which is contained in location 10037.

B-5

B,3.5 Device Control Word Table

Entries in this table specify special device characteristics,
including the physical device type. The entry format is as follows:

Bit Condition

Bit 0=1

Bit 1=1

Bit 2=1

Bits 3 to 8

Bits 9 to 11

Meaning

If the device is file-structured.

If the device is read-only.

If the device is write-only.

Contain the physical
(described below) ,

device type code

For file structured devices, these bits
contain the directory block ninnber of
the currently active tentative file. If
bits 9 to 11 are zero, there is no
active tentative file on the device.
For non-file structured devices, bits 9

to 11 are always zero. Bits 9 to 11 are
reset to zero by the commands GET, RUN,
R, SAVE, START (with no explicit
address) and optionally by the CISR

functions RESET and DECODE.

The device type is a number between
through 20 (octal) are currently
follows

:

and 77 (octal) , of which
assigned to existing devices, as

Device Code

1
2

3

4

5
6

7

10
11
12
13
14
15
16
17
20
21
22
23
24
25-26
27
30
31-37
40-57

Device

Teletype
High-speed paper tape reader
High-speed paper tape punch
Card Reader
Line Printer
RK8 Disk
256K Disk (RF08)
512K Disk (RF08 + RS08)
768K Disk (RF08 + 2 RSOS's)
1024k disk (RF08 + 3 RS08«s)
32K Disk (DF32)
64K Disk (DF32 + DS32)
96K Disk (DF32 + 2 DS32's)
128K Disk (DF32 + 3 DS32's)
DECtape
LINCtape (PDP-12 only)
TM8E Magnetic Tape
TD8E DECtape
BATCH handler
RK8E Disk
NULL
reserved for future disks
TA8E Cassette
VR12 Scope
reserved for future use by DEC
reserved for use by users

B-6

The Device Control Word Table resides in locations 17760 through

17776.

There is a sixth table that is not normally considered part of the

system tables. This is the Device Length Table and is used only by
PIP to perform the /Z (zero directory) and /S (compress device)

options. This table is 64 locations long, one entry for each possible
device type. In this table an entry of means that the corresponding
device is non-file structured; otherwise the entry contains the
negative of the number of available 256-word blocks on the device.

For example, the entry for a 256K disk would be 6000 (octal) (minus

2000 (octal), or 1024 (decimal), 256-word blocks).

The Device Length Table resides in PIP, When PIP is brought into core

the Device Length Table is in locations 13600 to 13677. When new
device types are added to the system this table should be patched with
ODT to reflect the device length of the new device.

A similar table occurs in RESORC which the user may wish to patch. It

is located in field locations 2000-2377 and contains 64 four-word
entries; one entry for each device type. Words 1 and 2 of an entry
cire the names of the device (in sixbit) and word 3 is the negative of

the number. Word 4 of the entry should be for non-standard devices.

B-7

APPENDIX C

SYSTEM ERROR CONDITIONS AND MESSAGES

This is a summary of all error messages that are a result of system
errors. These errors are also described in the relevant sections of
this manual and in the OS/8 HANDBOOK.

C.l SYSTEM HALTS

Errors that occur as a result of a major I/O failure on the
device can cause a system halt to occur. These are as follows:

system

Value of PC

QQ501

07461

07605

07702

07764

07772

^te^ming

A read error occurared while attempting to
load ODT. Return to the Keyboard Monitor by
restarting at 07605.

An error occurred while reading a program
into core during a CHAIN, Return to the
Keyboard Monitor by restarting at 07605.

An error occurred while attempting to write
tKo Keyboard Monitor area onto the system
scratch blocks. Verify that the system
device is not WRITE LOCKed and restart at
location 07600 to try again.

A user program has performed a JMS to 7700 in
field 0. This is a result of trying to call
the USR without first performing a GIF 10, As
location 07700 has been destroyed, the user
must re-bootstrap the system.

A read error occurred while loading a
program. Return to the Keyboard Monitor by
restarting at 07605.

A read error ocurred on the system scratch
area while loading a program. Return to the
Keyboard Monitor by restarting at 07605.

C-1

10066

10256

17676

17721

17727

17736

An input error occurred while attempting to

restore the aSR. Return to the Keyboard

Monitor by restarting at 07605,

A read error occurred while attempting to

load the Monitor by restarting at 07605.

An error occurred while attempting to read
the Keyboard Monitor from the system device.
Try again be restarting at location 07605. DO
NOT PRESS CONTINUE.

An error occurred while saving the USR area.

Verify that the system device is not WRITE
LOCKed, and press CONTINUE to try again.

An error occurred while attempting to read
the USR from the system device. Return to
the Keyboard Monitor by restarting at 07605.

An error occurred while reading the scratch
blocks to restore the USR area. Return to
the Keyboard Monitor by restarting at 07605.

Also, there is one halt in the LOADER program:

00005 A parity error occurred when attempting to
overlay the LOADER from the system scratch
blocks. Return to the Keyboard Monitor by
restarting at 07605, and try again.

After retrying the operation which caused the failiure, if the error

persists, it is the result of a hartware malfunction or a parity error

in the system area. Run the appropriate diagnostic program to check

the device cuid rebuild the system.

C.2 USR ERRORS

Fatal errors that occur during operation of the USR cause the message:

MONITOR ERROR n AT xxxxx

to be printed. In these cases, the value "n" describes the error and

'xxxxx"" is the address of the call to the USR that caused the error.

The six Monitor errors are:

Message

MONITOR ERROR 1 AT XXXXX
[CLOSE ERROR]

MONITOR ERROR 2 AT xxxxx
[DIRECTORY I/O ERROR]

Meaning

File length in CLOSE function is

too large.

An I/O error occurred while at-
tempting to read or write a

directory block. This is generally
caused by the device being WRITE
LOCKed.

C-2

MONITOR ERROR 3 AT XXXXX
[DEVICE HANDLER NOT IN CORE)

MONITOR ERROR 4 AT XXXXX
[ILLEGAL USR CALL]

MONITOR ERROR 5 AT xxxxx
[I/O ERROR ON SYS]

MONITOR ERROR 6 AT XXXXX
[DIRECTORY OVERFLOW]

The device handler required for a
file operation (LOOKUP, ENTER,
CLOSE) is not in core.

Illegal call to the USR; either an
attempt has been made to call the
USR from locations 10000 to 11777
or a device number of zero was
specified.

I/O error occurred while reading or
or writing on the systei" device.
Verify that the system device is
not WRITE LOCKed.

Directory overflow occurred (see
section A. 1.2 for limitations on
number of directory entries)

,

In addition to the MONITOR ERROR messages, system and user progreuns

can use the USR to print:

USER ERROR n AT xxxxx

by using the ERROR function. In this case the value of '

user-defined and "xxxxx" is the address of the call to the USR.

Currently, two USER ER1W3R numbers have been assigned:

IS

Message

USER ERROR AT xxxxx

USER ERROR 1 AT XXXXX

Meaning

An I/O error occurred while
attempting to load a program with
the GET, RUN, or R command.

While running a FORTRAN or SABR
progrcUQ, an attempt was made to
call a subroutine that had not been
loaded ^

If an I/O error is made during the monitor CHAIN function the message

CHAIN ERR

is generated, and control returns to the keyboard.

Following either a MONITOR ERROR message or a USER ERROR message the
USR exits to the keyboard Monitor? the current contents of core are
preserved and bit 2 of the Job Status Word is set to a 1 to prevent
continuing from the error.

C.3 KEYBOARD MONITOR ERRORS

In addition to the USR errors described previously, the following
errors can occur after a command is given to the Keyboard Monitor:

C-3

Message

aaaa?

BAD ARGS

BAD CORE IMAGE

BAD DATE

device NOT AVAILABLE

ILLEGAL ARG

name NOT FOUND

NOll

NO CCLl

SAVE ERROR

SYSTEM ERR

TOO FEW ARGS

Meaning

The Keyboard Monitor cannot interpret
the command "aaaa". For exaunpie if the
user types HELLO the system will respond
HELLO?

Arguments to a SAVE command
inconsistent, or illegal.

are

The file requested with an R, RUN, or
GET command is not a core image file.

In^roper synteuc in a DATE command.

The permcuient device name specified in
an ASSIGN, SAVE, RUN, or GET command
does not exist.

The SAVE command was not expressed
correctly.

The file name specified was not located
on the device indicated. This error can
also be caused by trying to RUN or GET
from an output only device.

A START commamd (with no address
specified) is prohibited when bit 2 of
the Job Status Word (location 07746) is
a 1.

Command was a valid CCL command but
CCL.SV is not on the system.

An I/O error occurred while saving the
program. The contents of core remain
intact.

An error occurred while doing I/O to the
system device.

An argument has been omitted from a

command

.

C.4 CCL ERROR MESSAGES

Message

BAD DEVICE

BAD EXTENSION

Meaning

The device specified in a CCL command is

not of the correct form, (e.g.,
DTAO.PA:)

.

Either an extension was specified
without a file name (e.g., DTAli.PA) or
two extensions were specified (e.g.,
DTA1:FILE.PA.BN)

.

C-4

BAD MONITOR

BAD NUMBER

BAD RECOLLECTION

BAD SWITCH OPTION

CANNOT CHANGE CORE
CAPACITY WHILE RUNNING
BATCH

%CANT REMEMBER

CCL 3X OVERLAY &

MONITOR INCOMPATIBLE

COMMAND LINE OVERFLOW

The version of the Keyboard Monitor
being used is not compatible with CCL.

A new version of the monitor must be

obtained from Digital before CCL can be

used.

A CCL command which uses the #

construction does not have the full
16-digit specification that is required.

An attempt was made to use a previously
reiaeinbered argument when no argument was
saved. This error occurs when no
argument was previously saved or when
the DATE command has been used since the
argument was saved.

The character used with a slash (/) to
indicate an option is not a legal
option.

A CORE command was issued while the
BATCH program was running.

The argvunent specified in a CCL command
line is too long to be remembered or an

I/O error occurred.

The version of CCL being used is not
ctMopatible with the Keyboard Monitor
present on the system. Type R CCL to
retry.

The command line specified with the @

construction is more than 512 characters
in length.

COMMAND TOO LONG

CONTRADICTOR SWITCHES

name DOES NOT EXIST

ERROR IN COMMAND

ILLEGAL * OR ?

The length of a text argument in a MUNG
conoaand xs too xcng.

Either two CCL processor switches were
specified in the seime command line

(e.g., FILE-PA-FT) or the file extension
and the processor switch do not agree
(e.g., FILE.FT-BA).

The device with the name given
present on the OS/8 system.

is not

A command not entered directly from the
console terminal is not a legal CCL
command. This error occurs when the
argiiment of a UA, UB, or UC commsuid was
not a legal command.

An * or- ? was used in a CCL command that
does not accept the wild card
construction. Only CCL commands that
run FOTP or DIRECT allow the wild card
construetion

.

C-5

ILLEGAL SYNTAX

INPUT ERROR READING
INDIRECT FILE

I/O ERROR ON SYS:

The CCL command line was
incorrectly.

formatted

I/O ERROR TRYING TO
RECALL

NO CCLl

NOT ENOUGH CORE

name NOT FOUND

%SUPERCEDED

SWITCH NOT ALLOWED HERE

TOO MANY FILES

CCL Ceuinot read the file specified with
the @ construction.

An error occurred while doing I/O to the
system device. The system must be
restarted at 7600 or 7605. Do
not press CONT. as that will surely
cause further errors.

An I/O error occurred while CCL was
trying to renumber an argument*

CCL.SV is not present on the system
device.

The nvanber specified in a CORE commauid
is larger than the ntmber of 4K core
banks on the system.

The file with the name given is not
present on the specified device, or the
user tried to input from an output-only
device.

The file specified in a MAKE ctxnmand

ed-ready exists. This is a warning
nessage indicating that the file is
being replaced.

Either a CCL option was specified on the
left side of the < or was used when not
allowed. For exan^le: COMPARE FILE-NB.

To xaany files were included in a CCL
command

.

C-6

C.5 COMMAND DECODER ERRORS

The following errors are printed by the Command Decoder. After the

error message, the Command Decoder starts a new line, prints a * and
j^ n -«-«4.i,«-.- /^^rnmanH 1 1 n<a . The erroneous command is ignored.

Message Meaning

ILLEGAL SYNTAX The command line is formatted
incorrectly.

TOO MANY FILES More than three output files or nine

input files were specified (regular

mode) or > 1 output or > 5 input
(special mode)

.

name NOT FOUND The specified input file name was not

foiind on the device indicated.

C-7

APPENDIX D

PROGRAMMING NOTES

This appendix is a potpourri of ideas and techniques that have proven
useful in programming the PDP-8. OS/8 users may find some use in their
own progreims for the techniques mentioned here.

D.l The Default File Storage Device, DSK

D,2 Modification to Card Reader Handler

D,3 Suppression of Carriage Return/Line Feed in FORTRAN I/O

D,4 Accessing the System Date in a FORTRAN Program

D,5 Determining Core Size on PDP-8 Family Computers

D.6 Using PRTC12-F to Convert OS/8 DECtapes to OS/12 LINCtapes

D.7 Notes on Loading Device Handlers

D.8 Available Locations in the USR Area

D.9 Accessing Additional Information Words in OS/8

D.IO SABR Programming Notes

D.l THE DEFAULT FILE STORAGE DEVICE, DSK

The Command Decoder, as noted earlier, makes certain assumptions about

the I/O device where none is explicitly stated. Neunely, on all output
files where no device name is given, the device DSK is assumed. On

the first input file where no device name is given, DSK is assumed.
Subsequent input files assume the same device as the previous input
file. This convention was adopted to simplify typing command lines.

The permanent device name DSK is assigned when the system is built.

On all standard systems, DSK is equivalent to SYS. A useful technique
is to use the ASSIGN commauid to redefine the meeuiing of DSK
temporarily. For example, where device DTAO is equivalent to DSK and

D-1

it becomes desirable to change DSK to DTAl, the following command can

be given:

.ASSIGN DTAl DSK

DTAl remains the default file storage device until it is assigned a

new name or a DEASSIGN command is executed. This technique is

considerably easier to use than rebuilding the entire system.

If 'DSK' has not been assigned via the ASSIGN command, then 'DSK*

always exists and has internal device number 2. User programs wishing
to use DSK should do an INQUIRE to find its number in case the
operator has re-assigned it.

D.2 MODIFICATION TO CARD READER HANDLER

The standard card reader handler for OS/8 uses the DEC029 standard
card codes. Some installations may prefer to use the DEC026 codes
instead. This can be done by changing the card conversion codes with
the BUILD command ALTER.

1. Call OS/8 BUILD by typing:
RUN SYS BUILD

in response to the dot printed by the Keyboard Monitor.

2. Load the card reader handler as described on page 2-42 of the
OS/8 HANDBOOK.

3. Use the ALTER command (see page 2-49 of the OS/8 HANDBOOK)
to make the following chcinges:

CHANGE RELATIVE LOCATION

104
105
106

114
115
116

124
125
126
127

134
135
136

The new system will have modified card codes.

Note that this procedure does not affect FORTRAN rtin time card input
with READ (3,n). The conversion table for FORTRAN is UTILTY.SB on
source DECtape #2. (DEC-S8-OSyE3-A-UA2)

! page
iges:

2-49 of the

FROM TO

3203
4007
3502

7735
4076
0774

7514
0577
3637

3314
1002
0305

0104
1211
3374 •

0641

3204
1273
3606
1341

7316
3410
1376

3716
1175
3401

D-2

026 PUNCH CARD CODES

tal 8-bit DEC026
CODE CODE

240 BIANK
241 12-8-7
242 0-8-5
243 0-8-6
244 11-8-3
245 0-8-7
246 11-8-7
247 8-6

250 0-8-4
251 12-8-4
252 11-8-4
253 12
254 0-8-3
255 11
256 12-8-3
257 0-1

260
261 1
262 2

263 3
264 4

265 5
266 6

267 7

270 8

271 9

272 11-8-2
273 0-8-2
274 12-8-6
275 8-3
276 11-8-6
277 12-8-2

Octal 8-bit DEC026
CHARACTER CODE CODE CHARAi

SPACE 300 8-4 @
1 301 12-1 A
n 302 12-2 B
303 12-3 C
$ 304 12-4 D
% 305 12-5 E
& 306 12-6 F
• 307 12-7 G

(310 12-8 H
) 311 12-9 I
* 312 11-1 J
+ 313 11-2 K
1 314 11-3 L
- 315 11-4 M
• 316 11-5 N
/ 317 11-6

320 11-7 P
1 321 11-8 Q
2 322 11-9 R
3 323 0-2 S
4 324 0-3 T
5 325 0-4 a
6 326 0-5 V
7 327 0-6 w

8 330 0-7 X
9 331 0-8 Y
: 332 0-9 z

? 333 11-8-5 [

< 334 8-7 \
s 335 12-8-5]

> 336 8-5 t

? 337 8-2

NOTE

On some IBM 026 Keyboards this character
is graphically represented as q .

A card containing an 8-2 in column 1
with all remaining columns blank is an
end-of-file card.

D-3

D.3 SUPPRESSION OF CARRIAGE RETURN/LINE FEED IN FORTRAN

It is often desirable to suppress the automatic carriage return/line

feed (CR/LF) following FORTRAN WRITE statements to achieve an easily

readable text. The following three methods in OS/ 8 FORTRAN can be

used to achieve this result:

1. Follow the I/O list of a WRITE statement with a comma. Thus,

the following statements:

WRITE (1,100) N,
100 FORMAT (1X,15HTHE VALUE OF A(,I2,5H)4IS)

READ (1,101)A(N)
101 FORMAT (F8.4)

result in the following single line (assume N has a value of

12 and a value of 147.83 is being input):

THE VALUE OF A(12) IS 147.83

2. Use of an empty field print statement enables a text to be

printed without a following CR/LF when there is no variable
to be printed. For example:

WRITE (1,102) IDUMMY,
102 FORMAT ('DESIRED TEXT ',10)

3. READ statement using break character, as follows:

READ (1,101) IA,IB,IC
101 FORMAT (•A=',I1»'B=',I1,'C=1,I1)

results in no CR/LF after each phrase is printed. That is,

the output is all printed on a single line.

D.4 ACCESSING THE SYSTEM DATE IN A FORTRAN PROGRAM

The availability of the system Date word in location 17666 is useful

to many OS/8 programs. The following FORTRAN program illustrates how

the Date can be accessed in SABR code:

C PROGRAM PRINTS THE CURRENT DATE
C
S DUMMY DATE
S TAD I DATE
S DCA TEMP
S TAD TEMP
S AND (7

S DCAXIYR
S TAD TEMP
S RARjRTR
S AND (37
S DCA \IDAY
S TAD TEMP
S CLL RAL;RTL;RTL
S AND (17
S DCA \IMO

WRITE (1,100) IMO,IDAY,IYR
100 FORMAT (/'DATE: ' 12 ' -12-197 ' 11/)

D-4

CALL EXIT
s CPAGE 2

SDATE

,

6211
S 7666
STEMP,

D.5 DETERMINING CORE SIZE ON PDP-8 FAMILY COMPUTERS

Many times system programs need to determine the amount of core

available to them at run time. For example, the OS/8 system programs

LOADER, PALS, and CREF perform this calculation. Because of

differences in the extended memory control of PDP-8 family computers,
subroutines that work on one machine might not work on another.

The following three conditions cause the most difficulty:

1. On a PDP-8 with an extended meitrary control, addressing
nonexistent memory from field causes the following
instruction to be skipped and the contents of the
corresponding field location to be executed. For example:

CDF 70 /NONEXISTENT FIELD
TAD I(X) /EXECUTED LOCATION X
HLT /THIS INSTRUCTION SKIPPED

X, CLA CLL CML RAR /LOAD 4000

The preceding code causes 4000 to be loaded into the AC and
the HLT instruction to be skipped when executed on a PDP-8.

2. On a PDP-12 with an odd number of 4K banks (12K, 20K, 28K)

,

all reads in the first nonexistent field load zeros. Reads
to higher fields, as well as all reads to nonexistent memory
on a machine with an even number of 4K banks load all one
bits.

3. The PDP-8/L normally treats all CDF's to fields 2 through 7

as NOP's. (It tests bits 6 to 7 of all CDF and GIF
instructions for O's before executing the lOT.) However,
there is a special 12K option for the PDP-8/L called a BM08.
With this option a CDF to field 2 is valid, but a CDF's to
fields 4 through 7 remain NOP's.

For those who are interested, the following subroutine has been tested
on the PDP-8, 8/S, 8/L, 8/1, 8/E, PDP-12, and LINC-8 computers. For
the purpose of this example, it is assembled at 00200.

/SUBROUTINE TO DETERMINE CORE SIZE,

/THIS SUBROUTINE WORKS ON ANY PDP-8 FAMILY
/COMPUTER. THE VALUE, FROM 1 TO 10 (OCTAL),
/OF THE FIRST NON-EXISTENT MEMORY FIELD IS
/RETURNED IN THE AC.

/NOTE — THIS ROUTINE MUST BE PLACED IN FIELD

D-5

0200 0000 CORE,
0201 7300 CLA CLL
0201 6201 CORO, CDF
0203 1237 TAD OCRS I

Z

0204 7006 RTL
0205 7004 RAL
0206 0217 AND COR70
0207 1232 TAD COREX
0210 3211 DCA .+1
0211 6201 CORl, CDF \N
0201 1635 TAD I CORLOC
0213 7000 C0R2, NOP
0214 3211 DCA CORl
0215 1213 TAD C0R2
0216 3635 DCA I CORLOC
0217 0070 COR70

,

70
0020 1635 TAD I CORLOC
0221 7400 CORX, 7400
0022 1221 TAD CORX
0223 1236 TAD CORV
0224 7640 SZA CLA
0225 5232 JMP COREX
0226 1211 TAD CORl
0227 3635 DCA I CORLOC
0230 2237 ISZ CORSIZ
0231 5202 JMP CORO

0232 6201 COREX, CDFO
0233 1237 TAD CORSIZ
0234 5600 JMP I CORE
0235 0221 CORLOC, CORX
0236 1400 CORV, 1400
0237 0001 C0RSI2, 1

/(NEEDED FOR PDP-8L)
/GET FIELD TO TEST

/MASK USEFUL BITS

/SET UP CDF TO FIELD
/N IS FIELD TO TESV
/SAVE CURRENT CONTENTS
/(HACK FOR PDP-81)

/7000 IS A "GOOD" PATTERN

/(HACK FOR PDP-8., NO-OP)
/TRY TO READ BACK 70 00

/(HACK FOR PDP-8,. NO-OP)
/GUARD AGAINST "WRAP AROUND"
/TAD (1400)

/NON-EXISTENT FIELD EXIT
/RESTORE CONTENTS DESTROYED

/TRY NEXT HIGHER FIELD

/LEAVE WITH DATA FIELD
/IST NON-EXISTENT FIELD

/ADDRESS TO TEST IN EACH lELD
/7000+7400+1400=0
/CURRENT FIELD TO TEST

D.6 USING PRTC12-F TO CONVERT OS/8 DECTAPES TO OS/12 LINCTAPES

Many users of OS/8 on the PDP-12 will be interested in the fact that,

since OS/8 uses an identical file structure on all devices, PDP-8

DECtape in OS/8 format may be directly copied to OS/8 LINCtapes by the

PRTC12-F program.

The PRTC12-F program uses the PDP-12 TC12-F hardware option to read

DECtapes and convert these tapes to LINCtape. This hardware option is

required to read DECtapes on the PDP-12

THE PRTC12-F program is described in the document DEC-12-YIYA-D, This

document describes the program operation in detail, and must be read
before attempting to use PRTC12-F. The operations that convert OS/8

format DECtapes are as follows?

1.

2.

Mount the OS/8 DECtape on unit 1 and a PDP-12 LINCtape
formatted with 129 words per block on unit 2.

When the READ questionnaire is displayed, respond as follows
(responses are underlined; the character J stands for
carriage return and i stands for line feed)

:

READ 1777 J BLOCKS
TAPE FORMAT A) UNIT 1)

D-6

STARTING WITH BLOCK ^ +

etc.

3. l^fhen the WRITE questionnaire is displayed, respond as

follows

:

WRITE THE RESULT
IN TAPE FORMAT Bj ON UNIT 2J
STARTING AT BLOCK 0^4-
etc.

D.7 NOTES ON LOADING DEVICE HANDLERS

D.7.1 Problem With Multiple Input Files

There is a problem associated with reusing Device Handler areas in

OS/8, This problem is best illustrated by an example:

Assume a program has reserved locations 1000-1377 for its input

handler and locations 7400-7577 for its output handler. If the

progreun gives a USR FETCH command to load the DTAl handler as an input
device handler, all 8 DECtape handlers will load into 1000-1377, since
they are all co-resident. If another FETCH is issued to load the DTA2

handler as an output device handler, that handler will not be loaded,

because it shares space with the DTAl handler currently in core. This

is fine ~ however, if the user now switches input devices and FETCHes

the paper tape reader handler as an input device hamdler it will

destroy the DTA2 handler and the next attempt to output using the DTA2

heuidler will produce errors. There are two ways to get around this

problem.

1. Always assign the hemdler which you expect to stay in core
the longest first, Mosi: programs Ceui process more than one
input file per program step (e,g, , an aaseidbly pass is one
program step) but only one output file; therefore, they
assign the output handler before any of the input handlers.
In the above example, the problem would be eliminated if the
DTA2 handler were assigned first.

2. Always give a USR RESET call before each FETCH. Obviously,
this call should not delete any open output files. This
means that the USR will always load the new handler, even if
another copy is in core. The user must FETCH the output
handler again before issuing the USR CLOSE call, otherwise
the USR will determine that the output handler is not in core
and give a MONITOR ERROR 3 message.

8K FORTRAN uses this second method for device-independent I/O at run

time.

D.7 .2 Dynamically Loading Device Handlers

Some programs which use dyncimic core allocations will want to use OS/8

De'" ce handlers but cannot afford to always allocate the maximum of

two pages per handler. The following is a subroutine which loads a

device handler dynamically, returning its entry in the AC. It assumes
that the name of the handler is in locations NAMEl and NAME2, and a

D-7

subroutine GETPAG exists uhich gets a page rrom rhe cottom or

available field of storage and rsrurns its address m rhe AC. .his

example subroutine runs in field 1 and can only be callea from field

1, but can be rewritten for any other possibility.

/MOVE DEVICE NAME INTO "INQUIRE" COiMMAND

ASSIGN,
TAD NAMEl
DCA Nl
TAD NAME 2

DCA N2
CDF CIF 10
JMS I (7700
10
JMS I (200
12

Nl,
N2,
LOCI,

JMP ASSERR
TAD LOCI
SZA
JMP I ASSIGN
JMS GETPAG
DCA L0C2

ASSTRY, TAD N2
JMS I (200
1

I.0C2,
JMP TWOPAG
TAD L0C2-
JMP I ASSIGN

TWOPAG, JMS GETPAG
ISZ L0C2
CLA
JMP ASSTRY

ASSERR, • « • «1 •

/USRIN - FORCE USR INTO CORE

/INQUIRE

/NO SUCH DEVICE - QUIT

/IS THE HANDLER ALREADY IN CORE?
/YES - RETURN ITS ENTRY POINT
/GET A PAGE DYNAMICALLY

/LOAD DEVICE NUMBER

/FETCH
/PAGE TO FETCH INTO
/FAILED - MUST BE A TWO-PAGE HANDLER

/RETURN ENTRY POINT
/GET ANOTHER PAGE
/SET "TWO PAGE HANDLER ALLOWED" BIT

/FETCH WILL SUCCEED THIS TIME
/ERROR ROUTINE

D.8 AVAILABLE LOCATIONS IN THE USR AREA

A few programs may need additional storage space in field 1 when the

USR is in core. A number of locations in the USR area (10000 to

11777) are available and may be used whenever the USR is in core. The

locations are as follows:

1.

2.

3.

4.

Locations 10000 to 10006 are available for scratch storage
and/or ODT breakpoint usage, without restriction.

All auto-index registers (locations 10010 to 10017) may be

used, but these locations are destroyed by USR operations.

Location 10020 to 10037 may be used as scratch storage with

no restrictions.

Locations 11400 to 11777 are used by the USR to preserve the

last directory segment read while performing a LOOKUP, ENTER,

or CLOSE operation. Location 10007 contains a Jcey specifying
which segment of which device is currently in core.

D-8

Any user program may use locations 11400 to 11777 as scratch
storage as long as location 10007 is set to before the
first use. of course, the LOOKUP, ENTER, and CLOSE
operations will read a directory segment into 11400 to 11777
and set 10000 7 to a non-zero value again.

D.9 ACCESSING ADDITIONAL INFORMATION WORDS IN OS/8

In all of these cases, the USR must have been previously brought
core with the USRIN function.

into

D.9.1 After a LOOKUP or ENTER

After a LOOKUP or ENTER, location 10017 points to the length word of

the file entry. To get a pointer to the first Additional Information
word, a program would execute the following code;

CDF 10
TAD I (1404

SNA
JMP NONE
TAD I (0017
DCA POINTER

/GET # OF ADDITIONAL INFORMATION WORDS
/FROM DIRECTORY

/NO ADDITIONAL INFORMATION WORDS

POINTER" now points to the first Additional Information Word.

D.9. 2 After a CLOSE

Because CLOSE is a legal operation even if no output file is present,

following a CLOSE. To alter the Additional Information Words of a

permanent file, do a LOOKUP to get the directory segment into core,

then alter the words and rewrite the directory segment.

D.9. 3 Rewriting the Current Directory Segment

Whenever a user program changes the Additional Information Words of a

file, it must rewrite the directory segment containing that file entry
in order to make sure the changes are permeinently recorded.

The following code, which must be in field 1, will rewrite the current
directory segment:

CDF 10
TAD 7

AND (7

DCA SEGNO
CIF
JMS I 51

/CODE IS IN FIELD 1

/GET DIRECTORY KEY WORD
/EXTRACT SEGfffiNT NUMBER

/LOC 51 POINTS TO THE DEVICE HANDLER

D-9

4210 /WRITE OPERATION
1400 /DIRECTORY SEGMENT CORE ADDRESS

SEGNO ,

JMP ERROR /ERROR REWRITING DIRECTORY

Location 10 051 will always point to the device handler entry point

used to read in the last directory segment, following a LOOKUP or

ENTER operation.

D.IO SABR PROGRAMMING NOTES

D.10.1 Optimizing SABR Code

There are two types of lasers who will be using the SABR assembler -

those who like the convenience of page-boundary-independent code and

are willing to pay the price for it, and those who need a relocatable

assembler but are still very location conscious. These optimizing

hints are directed to the latter user.

One way to beat the high cost of non-paged code is to Page It

Yourself. This is done by using the LAP (Leave Automatic Paging)

pseudo-op and the PAGE pseudo-op to force paging where needed. This

saves 2 to 4 instructions per page from elimination of the page

escape. In addition, the fact that the program must be properly

segmented may save a considereible amount.

Wasted core may be reduced by eliminating the ever-present CDF
instructions which SABR inserts into a program. This is done by using

"fake indirects". Define the following op codes:

OPDEF ANDI 0400
OPDEF TADI 1400
OPDEF ISZI 2400
OPDEF DCAI 3400

These codes correspond to the PDP-8 memory reference instructions but
they include an indirect bit. The difference can best be appreciated

by an example:

If X is off-page, the sequence

LABEL, SZA
DCA X

is assembled by SABR into

LABEL, SZA
JMS 45
SKP
DCA I (X)

or four instructions and one literal.

D-10

The sequence

PX,

LABEL, SZA
DCAI PX

assembles into three instructions for a saving of 40 percent. Note,
however, that the user must be sure that the data field will be
correct when the code at LABEL is encountered. Also note that the

SABR assumes that the Data Field is equal to the Instruction Field
after a JMS instruction, so subroutine returns should not use the JMPI

op code.

The standard method to fetch a scalar integer argument of a subroutine
in SABR is:

Code

lARG,

SUBR,

DUMMY X

BLOCK 2

TAD I SUBR
DCA X
INC SUBR«
TAD I SUBR
DCA X#
INC SUBR#
TAD I X
DCA lARG

X, BLOCK 2

This code requires 19 words of core and takes several hundred
microseconds to execute. The following sequence:

Code

IARC,
SUBR, BLOCK 2

TAD I SUBR
DCA X
INC SUBR#
TADI SUBR#
DCA lARG
INC SUBR#

X, HLT /THIS IS A CDF
TAD I lARG
DCA lARG

takes only 14 wurds cuid executes j.u apprcxxniatej.y ^.^3 tus txmet

D-11

D.10.2 Calling the USR and Device Handlers from SABR Code

One important thing to remember is that any code which calls the USR

must not reside in locations 10000 to 11777, Therefore, any SABR
routine which calls the USR must be loaded into a field other than 1

or above location 2000 in field 1. To call the USR from SABR use the

sequence

:

CPAGE n
6212
JMS 7700
REQUEST
ARGUMENTS
ERROR RETURN

/N«7+{# OF ARGUMENTS)
/GIF 10
/OR 200 IF USR IN CORE

/OPTIONAL DEPENDING ON REQUEST
/OPTIONAL DEPENDING ON REQUEST

To call a device handler from SABR use the sequences

HAND,

CPAGE12
6202
JMS I HAND
FONCT
ADDR
BLOCK
ERROR RETURN
SKP

/lO IF "HAND" IN PAGE
/GIF
/DO NOT USE JMSI

/"HAND" MUST BE ON SAME PAGE
/AS CALL, OR IN PAGE Oil

D-12

APPENDIX E

CHARACTER CODES AND CONVENTIONS

Table E-1 contains a list of the control characters used by OS/8 and
eissociated system programs. Table E-2 contains the OS/8 character
set, which is a subset of the complete ASCII code, the unlisted codes
are generally not used by OS/8 or the system programs. Note the
following:

1. On some terminals, the chsuracter back-arrow {-) is replaced
by an underline (_) character, and the up-arrow (t) is
replaced by circumflex C)

.

2. Some terminals use parity codes rather than forcing the
leading bit of the 8-bit character code to be a 1, To avoid
problems, OS/8 system programs always ignore the parity bit
during ASCII input.

3. OS/8 does not handle lower case characters (octal codes 341
through 372). The exceptions to this are the editors, EDIT
and TECO. The KL8E and LPSV handlers can be modified to
heuidle lower case.

Table E-1
OS/8 Control Chcuracters

Octal
8-bit
Code

Character
Name Remarks

000 null Ignored in ASCII input.

200 leader/trailer Leader/trailer code precedes and
follows the data portion of binary
files.

203 CTRL/C OS/8 break character, forces return
to Keyboard Monitor, echoed as tC,

207 BELL CTRL/G.

211 TAB CTRL/I, horizontal tabulation.

212 LINE FEED Used as a control character by the
Command Decoder and ODT.

213 VT CTRL/K, vertical tabulation.

214 FORM CTRL/L, form feed.

E-1

Octal
8-bit
Code

Table E-
05/8 Contrc

1 (Cont.)
1 Characters

Character
Name Remarks

215

216

RETURN

217 CTRL/0

225 GTRL/U

232 CTRL/Z

233

375

376

377

ESC

ALTMODE

PREFIX

RUBOUT

Carriage return, generally echoed
as carriage return followed by a

line feed.

Used only on LS8E line printer.
Puts current line into expanded
cheuracter mode.

Break Character, used to suppress
Teletype output, echoed as to.

Delete current input
as tU.

line , echoed

End-of-File character for all ASCII
and binary files (in relocatable
binary files CTRL/Z is not a
terminator if it occurs before the
trailer code)

.

ESCape replaces ALTMODE on sane
terminals. Considered equivalent
to ALTMODE,

Special break
Teletype input.

character for

PREFIX replaces ALTMODE on some
terminals. Considered equivalent
to ALTMODE.

Key is labeled DELETE on some
terminals. Deletes the previous
character typed.

E-2

Table c-2
ASCII Character Codes

Octal Punched Character
8-bit 6-bit Card Representa-

Code Code Code tion Remarks

240 40 blank space (non-printing)

241 41 11-8-2 ! exclamation point

242 42 8-7 M quotation marks

243 43 8-3 # number sign

244 44 11-8-3 $ dollar sign

245 45 0-8-3 % percent

246 46 12 & ampersand

247 47 8-5 1 apostrophe or acute
accent

250 50 12-8-5 (
opening parenthesis

251 51 11-8-5)
closing parenthesis

252 52 11-8-4 * asterisk

253 53 12-8-6 + plus

254 54 0-8-3 t comma

255 55 11 minus sign or hyphen

256 56 12-8-3 • period or decimal point

257 57 0-1 / slash

260 60
261 61 1 1

262 62 2 2

263 63 3 3

264 64 4 4

265 65 5 5

266 66 6 6

267 67 7 7

270 70 8 8

271 71 9 9

272 72 8-2 • colon

273 73 11-8-6 • semicolon

274 74 12-8-4 < less than

275 75 8-6 = equals

276 76 0-8-6 > greater than

277 77 0-8-7 7 question mark

300 00 8-4 § at sign

301 01 12-1 A
302 02 12-2 B

303 03 12-3 C

304 04 12-4 D

305 05 12-5 E

306 06 12-6 F

307 07 12-7 G

310 10 12-8 H

311 11 12-9 I

E-3

Table E-2 (Cont.)
ASCII Character Codes

Octal
8-bit
Code

6-bit
Code

Punched
Card
Code

Character
Representa-
tion Remarks

312
313
314
315
316
317

320
321
322
323
324
325
326
327

330
331
332
333
334
335
336
337

12
13
14
15
16
17

20
21
22
23
24
25
26
27

30
31
32
33
34
35
36
37

11-1
11-2
11-3
11-4
11-5
11-6

11-7
11-8
11-9
0-2
0-3
0-4
0-5
0-6

0-7
0-8
0-9
12-8-2
11-8-7
0-8-2
12-8-7
0-8-5

J
K
L
M
N
O

P

Q
R
S
T
U
V
w

X
Y
Z
[

\
opening bracket,SHIFT/K
backslash, SHIFT/L
closing bracket, SHIFT/M
circtimflex
underline - EOF signal

1.

2.

3.

4.

5.

6.

7.

8.

9.

10.

NOTES

These are the DEC029 stcuidard Ccurd codes.

On most DEC Teletypes circumflex is replaced by up-arrow (t).

A card containing 0-8-5 in column 1 with all remaining
columns blank is an end-of-£ile ceird.

On most DEC Teletypes underline is replaced by back-arrow

On some IBM 029 keyboards [is graphically represented as a
cent sign (<=) .

On some IBM 029 keyboards \ is graphically represented as
logical NOT (-)

.

On some IBM 029 keyboards
vertical bar (

I)

.

is graphically represented as

On a very few LP08 line printers, the character diamond (0)
is printed instead of backslash.

On a very few LP08 line printers, the character heart (c) is
printed instead of underline.

The character number sign on some terminals is replaced by
pound sign (#)

.

E-4

APPENDIX F

OS/8 INPUT/OUTPUT ROUTINES

Appendix F describes a set of generalized I/O routines for use under
the OS/8 system. The routines presented here are used in all the OS/8
CUSPS (Commonly Used System' Programs) in more or less this form.
Variations are made depending on the particular application and how
errors are to be handled. The routines, as indicated, will work as
presented. The routines work most efficiently in field 1, since GIF
10 's are not necessary when addressing the Monitor, and the Commcuid
Decoder tables are similarly available. Obviously the routines can be
modified to run in any memory field or core locations.

F.l GENERAL DESCRIPTION

These subroutines assume that the Command Decoder tables have been set
up to indicate the proper I/O devices. The routines handle device
hemdler assignment without user interference. All I/O is done by
simple subroutine calls. The user program never needs to interface
with the Monitor or device handlers. All buffering and internal
bookkeeping are performed by the routines. In these routines, it is
OOB Mill^rM WAft«»te V^««JkJf %^AA^ \f%A*mff\A W %A^ V ^««^ ^tS V*^«^«A «.*W «.* W^*M«.» f ^ « «« « f *m*-b*

output routine does not automatically set up for the next output
device. This modification can be made if desired. As many as nine
inputs are hcuidled automatically. When input from one device is
exhausted, the input routine will automatically utilize the next
device specified in the CcHimand Decoder list of inputs.

Following is a brief list of the subroutines and their functions.

ICHAR - Character input routine.

Call sequence:

JMS ICHAR
ERROR RETURN
NORMAL RETURN

F-1

Error:

Nonnal

:

If AOO, an EOF on input has occurred. No more
input is available. If AC<0, a device error has

occurred.

8 bit character is in the AC.

OCHAR - Character output routine.

Call:

TAD CHAR /8 BIT CHARACTER
JMS OCHAR
ERROR RETURN
NORMAL RETURN

Error:

AC<0 implies a fatal error.
AC > or = implies that the hole allotted for
output was exceeded.

Normal:

AC««0. The character heui been put into the device
output buffer.

lOPEN - Input initialize routine.

Call:

JMS lOPEN
RETURN

Return:

Input pointers reset. The next cetll to ICHAR
will read from the first device in the Command
Decoder input list.

OOPEN - Output initialize routine.

Call:

JMS OOPEN
ERROR RETURN
NORMAL RETURN

Error

:

Normal

:

If AC > or = 0, no output device was specified.
If AC<0, an error occurred opening the file.

An output file has been opened. No action if

the output was a non-file structured device.

F-2

OCLOSE - Output close routine.

Calls

JMS OCLOSE
ERROR RETURN

NORMAL RETURN

Error:

Normal

:

Either the closing length is too large for the
space allotted or an output error has occurred.

The output file is now a pemicuient file on the
output device.

F,3 SUBROUTINE PARAMETERS

These subroutines hcindle device assignment and internal buffering
automatically. To accomplish this, certain parameters must be defined

at assembly time. These parameters specify all details of handler
location, and buffer size for the routines.

Parameter Definition

INBUP = Address of input buffer,

INCTL = Input buffer control word. See the section on
using device handlers for details of the control
word format,

OUBUF = Output buffer address.

OUCTL = Output buffer control word. This must be a

negative nuinber to indicate a wrxte operation,

INRECS = Number of input records in input buffer. INRECS =

INCTL/256 (DECIMAL),

INDEVH = Address of input device handler.

OUDEVH = Address of output device handler.

The parameters can either be a part of the actual subroutine source,

or they can be contained in a separate parameter file to be assembled
with the subroutine file. The latter approach provides greater
flexibility in using the routines.

F.3.1 Example

simply calls the Command Decoder, and transfers input from the input
devices to the output file, closes the output, and exits.

F-3

CALLCD,

OK,

TSTEOF

,

CLOSE,

OUTERR,

CLERR,

TERR,

FIELD 1

*2000
JMS I (7700
10
JMS I (200
5

JMS I (IOPEN

JMS I (OOPEN
SMA CLA
JMP OK
JMS TERR
TEXT /OPEN FAILED/
JMS I (ICHAR
JMP TSTEOF

JMS I (OCHAR
JMP OUTERR
JMP OK
SMA CLA
JMP CLOSE
JMS TERR
TEXT /READ ERROR/
JMS I (OCLOSE
JMP CLERR
JIfP CALLCD
JMS TERR
TEXT /OUTPUT ERROR/
JMS TERR
TEXT /CLOSE ERROR/

TAD I TERR
RTR;RTR;RTR
JMS TYPIT
TAD I TERR
JMS TYPIT
ISZ TERR
JMP TERR+1

/LOCK MONITOR INTO CORE.

/CALL COMMAND DECODER
/TO PICK OPTIONS.

/SETUP TO START LOOKING AT
/CD INPUT FILE.
/OPEN UP AN OUTPUT FILE.
/IF AC<0, WE HAD A FATAL
/TYPE ERROR. AOO IS O.K.
/ERROR.

/EITHER ERROR OR EOF.
/SAVE IT.

/TRANSFER THE CHARACTER
/OUTPUT ERROR
/TRANSFER UNTIL EOF FOUND,
/IF NEC, FATAL
/EOF. CLOSE OUTPUT

/CLOSE OUTPUT FILE.
/CLOSE ERROR
/NEXT,

TYPIT,

CRLF,

TTYOUT,

AND (77
SNA
JMP CRLF
TAD (300
JMS TTYOUT
JMP I TYPIT
TA (215
JMS TTYOUT
TAD (212
JMS TTYOUT
JMP CALLCD

TLS
TSF
JMP.-l; CLA; JMP I TTYOUT

F-4

F.3.2 Subroutine Listing

A listing of the routines follows. The parameters are set up in such

a way as to allow them to be put into a separate file. Another
parameter, ORIGIN, determines the location of the routines.

F-5

PAL8-V7 12/27/72 P*GE 1

/PA««MtTfeH ntHNITlOlsii

iOnn OUHUF= 500H
Ud,)Vi OUCTL* 420M
bhat^ QUDEVH sb60U

buid!^ INdUf-" 5«i5l)

Ziva INCTL*0200
0001 INRECS Bl
700f') INUEVH 7000
bbUd OHIGIN 6600
/7b<? UC8=7760

HI' 01 FIELD
bbiifl •ORIGIf
0titU) INFLD« INCTL&70
HUil^ nuFLn»iOUCTL«70

IfebCip 7UH('1 iN7«wn, Tiidl'i

H.b01 BHUt! lOPEN, U

ibboa ratp CLA CMA
lh^Pi3 3333 DC A INCHCT
ifab^a 2210 ISZ INEOF
IbbtiS 1-3 7 7 TAU C7617
IhbUb 3H11 OCA INFPTR
ibbe7 5hei JMK I lOPEN
IbblB eno0 INtOK, a
Ifabll (IIH.'C' INFPTH, B
lb612 OQvia INPTH, t!

1C613 Bgtin ICmAH, a
lbbl4 7bO0 lN7bU0, TbUZ
Ib6l5 b2ia HDF
Ibblb l?a5 TAD INCDIF
lbbl7 3331 OCA INHTRN
lb620 bam INCHAR, COF INFLD
lbb?l 2360 ISZ INJMP
Ibb?.? 2333 iSZ INCHCT
lbb?3 53H0 IMJMPP, JMP INJMP
lhfci;4 12113 TAD INtOF
IbbeS 7bba SNA CLA
lbb2b 5231 JMP INGBUF
lbb27 «33J Gf, rNtw, JMS INNEwF
IbbSPl b2/7 JMP EOFtRR
Ibbil 12H1 INIjHuF, TAD INCTR

/OUTPUT BUFFER STARTS AT 05000.
/AND IS 2 PAGES LONG.
/OUTPUT HANDLER GETS LOADED AT 6600.
/ALLOW TWO PAGE HANDLERS,
/INPUT BUFFER STARTS AT 05400
/ALSO TWO PAGES LONG.
/2 PAGES « 1 RECORD
/ALLOW 2 PAGE INPUT HANOLtR AT 7000.
/THE SUBROUTINES RESIDE AT 16600,
/DEVICE CONTROL TABLE

WE

1

I

/INPUT BUFFER FILED
/OUTPUT BUFFER FIELD

/INITIALIZE INPUT

16632 7uin CUL
16633 13/6 TAD (INWtCS
ibbsa 7420 SNL
16635 3201 OCA INCTR
lbb3b 7 4 30 bZL
16637 2210 iSZ INEOF

/SET TO READ FROM NEW DEVICE.
/FORCE A NEW INPUT FILE.
/POINT TO CD INPUT LIST.

/INPUT A CHARACTER.

/SAVE CALLING FIELD FOR RETURN

/DATA FIELD TO FIELD OF BUFFER
/3 - WAY UNPACKING SWITCH
/INPUT BUFFER EXHAUSTED?
/NO. .UNPACK THE NEXT CHAR.
/DID LAST READ GIVE EOF ON THIS DEVICE?

/NO. CONTINUE READING.
/VES..GET NExr INPUT IF IT EXISTS.
/TAKE EOF EXIT FROM ICHAR.
/INCTR HOLDS THE CURRENT LENGTH OF
/The INPUT FILE. WHEN THE AMOUNT REMAINING
/TO READ IS LESS THAN THE SIZE OF THE
/INPUT BUFFER, AN EOF IS SIGNALLED,

/UPDATE REMAINING LENGTH

/AND SIGNAL EOF FOR NEXT READ.

PALfl-V7 12/27/72 PACE l-l

tht-ad 7172
Ihbttl /fll2

lhh«2 7012
lhh«3 lS7b

CLU CML CMA RTR
RTR
RTR
TAD
OCA

CINCTL*1
INCTLW

/CONSTRUCT A CONTROL WORD FOR THIS
/READ FROM THE OVERFLOW, IF ANY,
/AND THE STANDARD CONTROL WORD.

PALfl-VT ia/27/7a PAGE 3

lhfc«5 6203 iNCOiF, GIF COF
166<lf> 6211 CDF 10
Ibba? Hint JM5 I INHNOL
Ib650 0000 INCTLW,
IbfeSl 5a00 INBUKP, INrtuF
IbfcSS 0000 INREC,
16653 5273 JMP INtRRX
lb65a 1252 INBRtC, TAU INREC
lt.b55 137b TAD (INRtCS
lh«»bb 325? OCA INREC
lbb57 1250 TAO INCTLW
IbbbB 0214 AND 1N76B0
Ibbbl 7104 CLL RAL
Ihbba 125H TAD INCTUW
lbb63 02l<* ANU IN7600
Ibbba 7040 CMA
IbbbS 3333 DCA INCHCT
Ihfebb 1223 TAD INJMPP
IbfcbT 3300 OCA INJMP
lbb70 1251 TAO INBUFP
lfab7l 3212 OCA INiPTH
lbb72 52<;0 JMP INCHAH
1bb73 2210 INERKX, ISZ INtOF
lbb74 7700 SMA CLA
)bb75 5254 JMP INOKEC
lb67b 7330 INERK, CLA CLL CML RAR
lb677 5331 EOKEKR, JMP INRTRN
lb7B0 740a INJMP, MLT
IbTBl 5322 JMP ICMAHl
lb7P)3 531b JMP ICHAHa
lh703 1223 ICHAK3. TAU INJMpP
lfa704 33U(d OCA INJMP
1670S 1613 TAD I INPTR
lb70b 0200 INg00, AND IN7400
lb707 7112 CLL RTh
lh/10 7012 HTH
)b7lJ 1?S0 TAO INCTLW
Ib7j2 70 1? HTR
16713 7012 RTR
lh7m 2212 ISZ INPTH
Ib?!^ 5323 JMP INCOMN
Ib7lb 1612 ICHArt?, TAU I INPTR
16717 0200 ANU IN7400
167?0 3250 DCA INCTLW
lb7dl 2212 iSZ INPTR
lh7?a 161? IChAKl, TAD I INPTH
lb7«?3 13574 INCOMN, AND (377
167iea 157 3 TAU C-232
16725 7450 SNA
167t'6 5227 JMP GETNEW
lbfe7 1372 TAO (232
16730 2213 ISZ ICHAR

/NOW DO A CALL TD THE INPUT HANDLER
/WE ARE IN FIELD 1, HANDLER IN FIELD

/INPUT CONTROL WORD
/INPUT BUFFER ADDRESS
/POINTER TO INPUT RECORD

/UPDATE POINTER INTO FILE

/NOW COMPUTE THE NUMBER OF CHARACTERS
/INTHIS INPUT OUPFER

/NEW NUMBER OF CHARACTERS.
/RESET 3 WAY StilTCH

/AND BUFFER POINTER
/NOW READ THE BUFFER
/SET EOF JUST IN CASE
/IF <0, A PHYSICAL ERROR
/EOF ON INPUT
/FATAL
/GET OUT
/3 WAY UNPACK SWITCH
/GET 1ST OF 3

/SECOND

/SET FOR FIRST CHAR, NEXT
/THE THIRD WORD IS MADE QF THE HIGH
/ORDER FOUR BITS OF THE FIRST
/TWO,

/POINT TO NEXT WORD
/GET OUT WITH CHAR IN AC

/SAVE HIGH ORDER FOR THIRD WORU

/IS IT A -Z (EOF)?

/YES. .LOOK AT NEXT INPUT

/TAKE NORMAL RETURN

PAL6-VT ia/27/72 PAGE 3

16731 0000 INkTKN,
lb73a 5613 JMP I IChArt

1(>733 777 7 INNEwF, -I

6733 INCHCTa INNthF
lh73i(bil\ CDF 10
Jfc.7i5 1371 TAD (INDtVH*!
lh736 33<t4 DC* INHNRL
lt-7i7 1611 TAD I INFPTH
Ifr7il0 7«5« SNA
lb7<H 5733 JMP I INNEWF
lfc7aa it70h JMS I iNgee
Ib7u3 0001 1

lh744 0000 INHNULf
Ih7u5 7^02 HLT
1^746 1611 TAD I INI-PTH

Ib7u7 0370 AND (7760
\hTi?i 7440 SZA
16751 1367 TAD C17
\hT33 7132 CLL CML RTR
1^753 7012 RTR
Ih/Sa 3?fcl DCA INCTH
lh7!55 £«ill ISZ INFPTR
lh756 1611 TAO I INFPTR
16757 32^2 DCA INHEC
16760 2211 ISZ INFPTR
16761 3210 OCA INEOF
1676? 2333 ISZ INNElvF

16763 5733 JMP I INNEwF
6601 INCTRiilOPEN

16767 0017
16770 7760
16771 7001
1677? 0232
16773 7546
1677a 0377
16775 0201
16776 O0l'il

16777 7617
70P0 PAGE

17 000 0000 OOPEN,
1 7CT01 7600 OIJ76U0,r 7600
17nM2 lidl TAO UU7601
17H03 3221 OCA OUHUK
170B« 1377 TAO (OUDtVh+1
17005 3214 DCA OUHNQL
17 006 1601 TAD I OU7600
17007 0376 AND (17
17010 7050 SNA
17011 524a JMP ONOFIL
17012 4775 JMS 1 (200
17013 0001 1

170ia 0000 OUHNUL •

17015 740P hLT

/CIF CDF N.

/INITIALIZE IN CASE wE NEEU A NEW
/MORE INPUT?

/NOPE
/CALL MONITOR TO GET HANDLER

/VERY UAOl

/GET INPUT FILE LENGTH

/NEGATIVE OF FILE LENGTH

/POINT TO STARTING BLOCK

/STORE IN HANDLER CAUL
/NEXT INPUT,
/CLEAR EOF FLAG.

/OPEN OUTPUT FILE

/POINT TO OUTPUT FILE NAME IN CD
/AREA

/INITIZLIZt OUTPUT DEVICE HANDLER
/PICK UP OUTPUT DEVICE NUMBER

/IS THERE ONE?
/NO, .INHIBIT OUTPUT
/FETCH OUTPUT HANDLER

/BAD THING

PALB-VT

170^2 00(90 OUfcLtN,
170P3 5232 JMH OEFAIL
17024 3350 OCA OUCCNT
17025 3774 OCA I (DIJTINH
17026 47 7 3 JMS I (OIJStTP
J7e'?7 2200 ISZ OOPEN
17(130 6213 ClOHETN, CDF CIF 10
17P31 5600 JMF I OOPEN
17(332 1601 OtFAiLf TAU I OU7600
i?e:<i3 0372 AND (7760
17034 7650 SNA CUA
17^35 5242 JNP ONTEKR
17036 1601 TAO I OU7600
17037 0376 AND (17
1 7040 3601 OCA I OU7600
17041 5216 JMP OUENTR
17042 7330 ONTEKRi CtA CLL CML RAH
17043 5230 JHP OOKF-TN
17044 2774 ONOFIL* ISZ I (OUTINH
17045 5230 JMP OORETN
17046 0000 DUTOnP,
17047 3300 OCA OUCTtW
17050 6211 CDF 10
17051 17 7 4 TAO I (OUTINH
17052 7640 SZA CLA
17053 5304 JMP UUNOtuR
17054 1350 TAD OUCCNT
17055 7450 SNA
17056 2300 ISZ OUCTLW
17057 1221 TAD OUBLK
17060 3302 OCA OUREC
17061 1300 TAU OUCTLW
17062 7106 CLL RTL
17063 7006 RTU
17064 7006 RTL
17065 0376 ANU (17
17066 1350 TAD OUCCNT
17067 3350 OCA OUCCNT
17070 1350 TAO OUCCNT
IV 071 7120 CLl. CML
17072 1222 TAO OUELEN
17073 7660 SNL SZA CLA
17074 5646 JMP I OUTDMP
1 ^075 6203 oiicinF, CIF CDF
17076 6211 COF 10
17077 4614 JMS I OUHNOL
17100 0000 OUCTLW,
17101 5000 OUbUF
1710-^ 0000 OUREC, a
17103 74 10 SKP
17104 2246 OUnOi»(R. ISZ nUTOMP
n\h'-: 5646 JMP I UUTOMP

0020 PTpi0020

12/27/72 CAGE 4

/GETS SUE OF HOLE AVAILABLE
/FAILURE. SEE HHAT WE 010,
/CLEAR CLOSING LENGTH
/CLEAR OUTPUT INHIBIT
/SET UP POINTERS

/RETURN O.K.
/IF LENGTH»8, GIVE OPEN ERROR
/IF NOT, MAKE IT AND TRV AGAIN

/MAS 0. FAILED

/MAKE IT a

/AND TRY AGAIN

/INHIBIT OUTPUT

/DUMP OUTPUT BUFFER
/STORE CONTROL WORD

/IS OUTPUT INHIBITED?

/VEP.
/IF THIS IS FIRST WRITE, START THE
/SEARCH FORMARD ON OECTAPE

/GET STARTING BLOCK OF THIS
/TRANSFER

/COMPUTE « OF RECORDS TO OUTPUT

/UPDATE CLOSING LENGTH

/SEE IF CLOSING LENGTH WILL BE
/BIGGER THAN OUTPUT HOLE

/WILL BE TOO BIG

/DO THE WRITE

/ERROR
/TAKE NORMAL RETURN

PALa-V7 X2/27/72 PAGE 3-1

1701t. 160J OUtNTH, T40 I OU7fcl>10

17Bt7 4775 JMS X (2ea /ENTER THE OUTPUT FILE
17020 0003 3

17021 7601 OUl^L^, 7faBl /GETS STARTING BLOCK DF HOLE

P*L8-V7 12/87/72 PAGE 5

1711^6 0000 OCLOSjEi H
171M7 6211 COP 10
17110 1774 TAD I (OUTINH
57111 7640 SZA CUA
17112 5352 JMP OCISZ
17113 4771 JMS I (OTVPE
17111 03 7 AND (770
nii-j 1372 TAO (-PTP
1711b 7640 SZA CLA
17 117 1367 TAO C232
17 120 4766 JMS I (OCHAN
17121 5353 JMP OCRET
17122 4766 JMS I (OCHAK
17123 5353 JMP OCRET
17124 4766 FILWIP. JMS I CQCHAR
1712b 5353 JMP OCRET
17126 4771 JMS I (OTYPE
17127 7710 SPA CLA
17130 1365 TAO (100
17131 1364 TAD (77
17132 0763 AND I (OUDWCT
17153 7640 S7.A CLA
171 Jfl 5324 JMP KILLIP
17135 1763 TAD I (OUDtHCT
17 lib 137S TAD (OUCTL»3T00
17 137 745D SNA
17140 5344 JMP NODUMP
17141 1362 TAO caeBie^ouFLD
17142 4246 JMS OUTOMP
17143 5353 JMP OCRET
17144 1601 NOOUMP» TAD I DU7600
17145 4775 JMS I IZZHS
1714«) 0004 4

17147 7601 0U76k)1, 76011

17150 0000 OUCCNT,
17151 7410 SKP
17 152 2306 OCISi, ISZ OCLCISE
17153 6213 OCRET, CDF CIF 10
17154 5706 JMP I QCLQSE

171 fc2 <40?!0

17163 7272
17164 0077
17165 0160
17166 7211
17167 0232
17170 0770
17171 7274
17172 7760
17173 7200
17174 7373
17175 0200
17176 0017
17177 6601

/CL50E OUTPUT FILE

/IF OUTPUT INHIBITED, CLOSE IS A NOP,

/A NOP
/DETERMINE IF OUTPUT IS TO PTP
/IF IT IS, DON'T OUTPUT A "Z,

/NOT PTP, OUTPUT -Z *S EOF

/ERROR RETURN
/FILL WITH a CHARACTERS

/FILL TO BOUNDARY WITH

/IF OUTPUT IS DIRECTORY DEVICE, FILL
/MHOLE RECORD, ELSE HALF RECORD

/ARE WE UP TO BOUNDARY YET?

/NO

/IS THERE A FULL WRITE LEFT?

/YES. BUT DON'T DO IT, AS "Z IS OUT.

/DUMP LAST BUFFER

/GET DEVICE NUMBER
/CLOSE THE OUTPUT FILE

/POINTER TO FILE NAME
/CLOSING FILE LENGTH HERE
/ERROR
/NORMAL RETURN
/RESTORE CALLING FIELDS

PAL8-V7 12/27/72 PAGE 5-1

7203 PAGE
17200 awn OUSETP,
17201 1377 TAD (OUCTL&370B
I7afi2 7041 CIA
172P3 3272 DCA OUDKCT
17204 1376 TAO (OUBUF
17205 3270 DCA OUPTR
172Plh 1271 TAD OUJMHE
17?H7 3224 DCA OUJMP
17210 5<J0W JMP I OUSETP

/INITIALIZE OUTPUT POINTERS

/DOUBLE WORD OUTPUT COUNT
/INITIALIZE WORD POINTER

/3 WAY UNPACK Sv^ITCH

PAL«-V7 12/27/72 PAGE 6

i7?n BBHOI 0CH4K,
17?18 0375 AND (37/
17213 32fcb OCA QUTEMP
17211 6211 RDF
17-'1'3 1371 TAU CCie- CDF
1721b 3261 DCa OUCRtT
17217 127 i TAD OUTIhH
17220 761^1 SZA CL*
17221 5263 JMp OUCOHN
17222 6201 nUCHAH, CDK OUFLU
172,'^ 2221 ISl OUJMP
1722a 7iia2 OIIJMH, MLT
1722'3 5261 J MP OChAwi
17226 5256 JMP 0CHAH2
17227 1266 DCMAf<3f TAD OUT e MP
172ii^ 7106 CLU RTU
17251 70ph WTL
17252 k3373 AND (7100
17233 1667 TAD I OUPOI.D
17231 3667 QUA I OUPDI.D
17235 1266 TAD CUTEMP
17236 7112 CLU KTH
17 2 3 7 7012 RTW
17210 raid RAK
172U1 ^iJi AND (7 4011

17212 167H TAO I OUPT«
17243 3b7H DCA I UUPTK
172U1 1271 TAO CjUJMiPE
172l'5 3221 OCA OUJMP
172146 22;n ISZ OUPTP
17217 2272 ISi 01)Ul»CT

172I5B 5263 JMP OUCOMN
172S1 1372 TAD (uuCTt
172-32 1/71 JMS I (OuTDMP
17253 5261 JMP DUCKET
17251 420Cil JMS OUSETP
172'35 5263 JMP OUCOMN
17256 127H DCM4H2, TAU OUPtH
17257 3267 OCA OUPOLD
172»,0 2270 ISZ OUPTR
17261 1266 OCHAKl , TAD OUTEMP
17262 36/H OCA I OUPTR
17?63 2211 aiJCOMM. ISZ OCHAR
17261 7102 OUCHtT, HLT
17265 5611 JMH I OChAH
17266 00U)0 OUTEMP. a
1726/ apitu OUPOLO, Id

17270 MOtiO OUPTK,
17271 5221 niJJMPE. JMP OUJMP
17272 acipti OIJDWCT,
1/2/3 OkH'.l OUTIivH,
17271 0Mf1C.) OTYPt, a

/OUTPUT CHARACTER ROUTINE
/ISOLATE EIGHT BITS

/GET FIELD WE wERE CALLED
/FROM

/OUTPUT INHIBITEO?

/YES, NOP,
/GO TO DATA FIELD OF SUFFER
/BUMP CHARACTER SWITCH
/GETS JMP., JMP. I, ETC.

/ThiKO CHAR
/HIGH ORDER BITS GO INTO THE
/HIGH ORDER a HITS OF THE
/FIRST OF TWO WORDS

/THE SECOND DOUBLE WORD GETS
/THE LOW ORDER BITS OF
/THE THIRD CHAR

/RESET CHARACTER SkilTCh

/POINT TO NEXT BUFFEH WORD
/BUMP DOUBLE COUNT AFTER
/3 CHARS.
/GET OUT
/RtADV TO OUTPUT A BUFFER
/OUTPUT IT
/AN ERROR
/RESET OUTPUT POINTERS

/POINT TO FIRST DOUBLE WORD

/POINT OuPTR TO SECOND

/NORMAL EXIT

172/5 6211 RDF
/OTYPE LOOKS AT THE OUTPUT DEVICE »,

PAU8-V7 12/27/72 PAGE 6-1

J7?7fe 137a
17277 iiiib

TAD (CIF CUF

17300
17301
1730?
17303
1730a
173H5
1730h
17307

6?11
177a
k33fc7

1366
3266
1666
IDS?.

S67a
OTHTN,

OCA OTHTN
CDr IB
TAD I (761^0
AND (17
TAO (OCB-1
OCA OIJTtMP
TAD I OUTfcMP
HUT
JMP I OTYPt

/AND LOOKS UP THE OCB WORD FOH
/THAT DEVICE.

/GET OCB ENTRY

PAua-VT 12/2;/72 P*GE 7

173t.b 77b/
l/3b7 10017
W37C1 7bCilB

)7W1 IVUh
17372 a£0O
173 7 3 7U00
1737a 6203
)7i75 0377
J7376 SBCiW
17377 0?0:i)

anei FIELD 1

aiicii? •20e)0
12tl(i0 <J777 JMS I (7700 /LOCK MONITOR INTO CORE
laptii mnw 10
Ir'flkia 4776 CALLCD, JM3 1 (200 /CALL THE COMMAND DECOOER
l?klH3 aP!t55 5
12«H4 i/)ak)0

12^115 4775 JMS I (lOPEN /SETUP INPUT POINTERS
12PH6 «774 JMS I (OOPEN /OPEN OUTPUT FILE
ler'B7 77K0 SMA CLA /ERROR, IF AC<0, IT WAS KATAL
12P10 522d JMP OK /NON FILE STRUCTURED OUTPUT
12011 4263 JMS TERR
12012 1720 TEXT /OPEN FAILED/
12G13 0?.16

12014 40k)6

12015 0111
12?lb MBS
12C!ilT 04^0
12P20 4773 OK, JMS I (ICHAR /READ A CHARACTER
12l121 S227 jMp TSTEOF /ERROR, SEE IF EOF.
12022 /4b0 SNA /IGNORE BLANKS
12023 322a JMP OK
12li'24 4772 JMS I (OCHAR /AND OUTPUT THE CHARACTER
121325 5243 JMP OUTERR
12P26 5223 JMP OK /CONTINUE UNTIL EOF.
12027 770(?) TSTEOF, SMA CLA /WAS IT FATAL?
12030 5240 JMP CLOSE /NO, .EOF. CLOSE OUTPUT
12031 4263 JMS TERR
12B32 22a5 TEXT /HEAD ERROR/
121.133 0104
12P'34 4005
12035 2222
l2M3fe 1722
12(»37 00Hti

12P40 4771 CLOSL, JMS 1 (OCLOSE
12P41 5253 JMP CLERR /FILE CLOSE FAILED
12042 5202 JMP CALLCD /NEW INPUT,

12K43 4263 OUTEKW, JMS TERR
12044 1725 TEXT /OUTPUT EHROR/
12045 2420
12046 eiStfa

12047 4005
12050 2223

PAL8-V7 12/27/75 PAGE 7-1

laCbl 1722
125152 mM
l<?Hb3 4263 CLERK, JMS TERR /CLOSE FAILURE
12054 13314 TEXT /CLOSE FAIUEO/
12355 1T23
124156 0540
12H57 06(:il

12Phl?l 1114
120^1 0504
12062 0000

120^3 0tnio TEKR, /ROUTINE TO PRINT ERROl
12064 1663 TAD I TErtH

12065 7012 RTH>RTP>RTR
l?nb6 7012
12P67 7012
12070 4275 JMS TYPIT /TYPE THE CHARACTER
12071 1663 T40 I TEXH
12072 4275 JMS TYPIT
12073 2263 ISZ TERR
12074 5264 JMH TERR+1

12P175 0C1(1H TYPIT,
12076 0370 ANO (77 /ISOLATE THE CHARACTER
1?P!77 7 450 SNA
121(7)0 5304 JMf CRLF /0 TERMINATES IT
J2tHl .1367 TAO (30(9

l^\v^ 4311 JMS TTYOUT
12103 5675 JHP I TYPIT
12104 1366 CSUF, TAD (215
12105 4311 JMS TTYOUT
12U16 1365 TAO (212
12107 4 311 JMS TTYOUT
12110 5202 JMH CALLCD

12111 0000 TTYOUT,
12H2 6046 TLS
12113 60i«l TSF
12114 5313 JMP .-1
12115 721^0 CLA
12116 5711 JMP I TTYOUT

12165 0212
12166 0215
12167 0300
12170 ^1077

12171 71 £6
12172 7211
12173 66 1 i

12174 7000
12175 6601
12176 0200
12177 7700

sss-^txisss

PAL6-V7 ia/27/72 PAGE 7-2

CALLCD aaea ORIGIN 6600
Cl.fcHR 3053 UTr^TN 7306
CLOSE acsaa OTYPE 7274
CKI.F Hiaa OUOLK 7021
0C& 77bia OUbUF 5000
EUFt«R 6f>77 OUCCNT 715H
FILLIP 712« UUCDIF 7075
GtTNtW 6627 UUCHAR 7223
ICHAR 6613 UUCOMN 7363
ICHARl 6732 OUCRET 736<l

ICHAR2 6716 OUCTL 4200
ICHARS 6703 OUCTLW ri00
INBREC 665a OUUEVH 6600
iNoijF saeo OlJOhCT 7272
INBUFP 6651 OUkLEN 7032
INCDIF 66a'5 UUtNTR T016
INCHAR 662(1 OUKLU CII000

INCMCT 6733 OUHNDL 70ia
INCOMN 6753 UUJMP 7224
INCTL 02Pm UUJMPt 7271
INCTLw 6650 UIJNOInR 7104
INCTR 6601 uukolo 7267
INOtVH 7000 OIIPTH 7370
INEtlF 66ia (JUKEC 7103
INEHR 6676 ODSETP 7200
INtHRX 6673 0UTI1MP 7046
INFLO 0000 UUFEnP 7266
INKKTH 6611 OUIEHH 2043
iNGhUh 6631 UUt INH 7373
INHNOL 67fta UU760O 7001
INJMP 670(1 uu76ai 7147
INJMPP 6633 PTP 0030
INNEWF 6733 TERR 2063
INPTR 6612 TSTEOF 2037
INReC 6652 TTtOUT 2111
INRECS tlHtJl nPlT 3075
INRTRN 6731
IN2t10 6706
IN7«0W 66013

IN7600 661«
lOPEN 6601
NOOuMP 7ioa
OCHAR 72J1
DCHARl 7261
QCHAR3 7356
OCHArtS 7237
OCISZ 7152
OCLOSE 7106
OCRtT 7l5i
OEFAIL 7M32
Ors 3020
ONDt-IL 70au
ONTERR 7042
OOPEN 71100

OORtTN 7030

INDEX

Additional information words, 1-3,
•3-7 - n-Q- - , ^ -

Alphanumeric option. Command
Decoder, 3-3

switches, 3-6

ALTMODE key, 3-3
_

Ascertain device information
(INQUIRE function) , 2-13

ASCII character codes, E-2, E-3

ASCII files format, A-4
ASSIGN command, 1-6

Asterisk, caution in using, 3-9

Batch mode, 3-10
Batch operating system, 1-5

Binary file format, A-4
Block, core control, 1-4

Blocks
directory, A-1
system scratch, B-1

Blocks of words, 1-2, 1-3

BUILD program, 5-1

Call Command Decoder (DECODE
«,,-_4.^nn\ 9—in. ?-?

in Special Mode, 3-9

Calling device handlers, 4-1

Calling USR and device handlers
from SABR code, D-13

Card codes, DEC029, 4-7

Card Reader (CDR) operation, 4-7

Card Reader handler modification,
D-2

Carriage return/line feed suppres-
sion in FORTRAN, D-4

Cassettes operation, 4-6

CCL, 3-10
CCL error messages, C-4
CHAIN f.miction, 2-10
Character codes

ASCII, E-2. E-3
OS/8, E-1

Character mode, expanded, 4-6

Character packing format, 5-8

Characters, lower case, E-1
Circumflex O character, 4-5

CLOSE function, 2-8, D-9
Code, non-paged, D-10
Command Decoder

calling, 3-3
conventions, 3-1
error messages, 3-3

errors summary, C-7
example, 3-6
options, 3-3

output files, 3-4
special mode, 3-8, 3-9
tables, 3-4

COMMON area, 2-12
Control characters, OS/8, E-1
Conventions
Command Decoder, 3-1

OS/8, E-1
Core control block, 1-4, 2-11, A-5
Core image files (.SV format), A-5
Core origin, A-6
Core segment doublewords, A-6
Core size, PDP-8 computers, D-5

software, 1-6
Co-resident device handlers, 2-6

Creating files, 1-3

Data exchange in core, 2-12
Data field value, 2-2

Data transfer, 4-1, 4-2

DATE command, 1-3, 2-7

DECODE function, 2-9

DECtape operation, 4-1
Default file storage device, DSK,

D-1
Deleting tentative files, 2-14

Device control word table, B-6
Device dependent operations, 4-4

Device handler
entry point, 2-14, 5-8

information table, B-5
residency table, 2-15, B-5

Device handlers
device dependent operations, 4-4

Card Reader (CDR) , 4-7

Cassettes operation, 4-6
High-Speed Paper Tape Punch

(PTP) , 4-5
High-Speed Paper Tape Reader

(PTR) , 4-4
file structured devices operation,
4-11
TD8E DECtape, 4-11
TM8E Magtape, 4-8

Device handlers, 1-1
calling, 4-1
co-resident, 2-6
inserting into OS/8, 5-5
loading dynamically, D-7
notes on loading, D-7
writing, 5-1

Device length table, B-7
Device names and numbers, 1-6

DEVICE pseudo-op, 1-7
Devices, file structured, 1-2

DF32 disk operation, 4-11

INDEX-1

Direcr calling sequence, 'JSR, 2-2

Directories, file, 1-3

Directory block structure format,
H-1

Directory entries, A-2
Directory example, A-3
Directory segment, rewriting, D-9
Directory, system, 5-4

Dismiss USR from core, 2-12
Dot (.) used as system response, 1-6

Doublewords, core segment, A-6

Empty file entry, A-2
Empty files, 1-3
End-of-file card, 4-7
End-of-file condition, 4-2, 4-3

ENTER output (tentative) file
function, 2-6, D-9

Entry points for device handlers,
5-2

ERROR function, 2-11
Error messages, Command Decoder,

3-3
Error messages summary, C-1
Error returns, device handler, 4-2

Exit to Keyboard Monitor, 1-1
Expanded character mode, 4-6

Extensions of file names, 1-2

FETCH device handler function, 2-4,

4-1
File creation, 1-3

File directories, A-1
block format, A-1
entries, A-2
example , A-4
formats, A-4
number , A.-3

size, A-3
File extension, omission of, 3-2

File length restriction. Command
Decoder, 3-5

FILENAME pseudo-op, 1-7

Files, 1-2
additional information words, 1-3

devices, 1-2
directories, 1-3

names, 1-2
types, 1-3

File' structured devices operation,
4-11

Formats for
character packing, 5-3

command line, 3-1
directory block structure, A-1
files, A-4
FORTRAN Library File, A-7
input file, 3-2

Job Status Word , A-6

Form feed, 4-5
FORTRAN Library File Format, A-7
Functions, USR see USR functions

High-Speed Paper Tape Punch (PTP)

operation, 4-5
High-Speed Paper Tape Reader (PTR)

operation, 4-4
Horizontal tab, 4-5

Indirect calling sequence, USR, 2-2

Information words, additional, 1-3,
2-7

accessing, D-10
Input file format, 3-2

Input files. Command Decoder, 3-5

Input/output routines, F-1
Input table. Command Decoder, 3-9

INQUIRE function, 2-13
Inserting device handlers into

OS/8, 5-10

Job Status Word, 1-5, A-6

Keyboard Monitor, 1-1
error summary, C-3

KL8E terminal handler, 4-12

LAP pseudo-op, D-10
Layouts for OS/8 system, B-1
LINGtape operation, 4-7
Line Printer (LPT) operation, 4-5,

4-6
Load and start subprogram, 2-11
Loading device handlers dynamically,

D-7
Lock USR in core (USRIN) , 2-12
Logical blocks, 1-2
LOOKUP permanent file function, 2-5,

D-9
Lower case characters, E-1

Names of devices, 1-6
Names of files, 1-2
Number and size of OS files, A-3
Numbers of devices, 1-6
Numeric option, Command Decoder, 3-3

ODT breakpoint, 2-11
Operations, device dependent, 4-3

Options
Command decoder, 3-3, 3-6

Origin of core, A-6
Output files, Command Decoder, 3-4

INDEX-

2

PAGE pseudo-op, D-10
Permanent device name table, B-4
Permanent file, 1-3

deletion, 2-8, 2-9
entry, A-2

Physical blocks, 1-2
PIP, 3-5
Procram, see 3pecij.ic suoject
Prcgramiaing notes, D-1
PRTC12-F used to convert DECtapes

to LINCtapes, D-6
Pseudo-ops

DEVICE, 1-7

Punch card codes, DEC026, D-3

Records (definition) , 4-1
outputting odd number of, 4-3

RESET system table, 2-14
Resident program layout, B-2
RESORC, B-7
Restrictions to USR calls, 2-2
RETURN key, 3-3
RF08 disk

operation, 4-11
RK8E handlers, 4-11
ROM (Read-Only-Memory) , B-3

SABR programming notes, D-10
SAVE command, 1-4, 2-11
Scratch blocks, B-1, B-2
Signal user ERROR function, 2-11
Size of OS files, A-3
Software components, 1-1
Software core size, 1-6
Special mode of Command Decoder,

3-8
calling, 3-9
operation, 3-9

Standard USR call, 2-1
restrictions, 2-2

START command, 1-4
Starting address of program, 1-4
Storage space, additional, D-9
Storage words, 1-3
Subroutine

examples, F-4
functions, F-1, F-2
listing, F-5
parameters, F-3

Summary of USR functions, see USR
functions

•SV file, 1-4
System DATE, 2-7
System device layout, B-1
System devices, 1-6
System device table, B-4
System halts error messages

summary, C-1
System table values, Command

Decoder, 3-7

Tables
Command Decoder, 3-4
device control word, B-6
device handler information, B-5
device handler residency, B-5
device length, B-7
permanent device name, 3-4
system device, E—

4

user device name, B-4
TD8E DECtape

operation, 4-11
Teletype operation, 4-4
Tentative files, 1-3

closing, 2-8
deletion, 2-4
entry, A-2

Terminal handlers
1-page, 4-4
2-page, 4-12

Up arrow (+) character, 4-4
User device name table, B-4
User Service Routine (USR) , 1-1,

2-1
available location in area, D-9
calling, 1-6, 2-1
calling sequences, 2-2
errors summary, C-2
restrictions on standard call,

2-2
USR functions

CHAIN, 2-10
CLOSE, 2-8
DECODE, 2-9
ENTER, 2-6
ERROR, 2-11
FETCH, 2-4
INQUORE, 2-13
LOOKUP, 2-5
PJ:SET, 2-14
summary , 2-3
USRIN, 2-3, 2-12
USROUT, 2-2

Vertical tab, 4-5

Wrap around memory, 4-3
Writing device handlers, 5-1
Word blocks, 1-2

INDEX-3

OS/8 Software Support Manual

DEC-S 8-OSSMB-A-D

READER'S COMMENTS

NOTE: This form is for document comments oniy. iTODxems
with software should be reported on a Software
Problem Report (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page)

.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for im.provement

.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,

what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

I
I

Assembly language programmer

Q Higher-level language programm.er

I I

Occasional programmer (experienced)

I I
User with little programming experience

|~) Student programmer

I I
Non-programmer interested in computer concepts and capabilities

Name Date

.

Organization^

Street ———

-

City —State Zip Code
or

Country

If you do not require a written reply, please check here. Q

-Fold Here -

— Do Not Tear • Fold Here and Staple

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by;

Software Conmninications
P. 0. Box F
Maynard, Massachusetts 01154,

FIRST CLASS

PERMIT NO. 33

MAYNARD, MASS.

