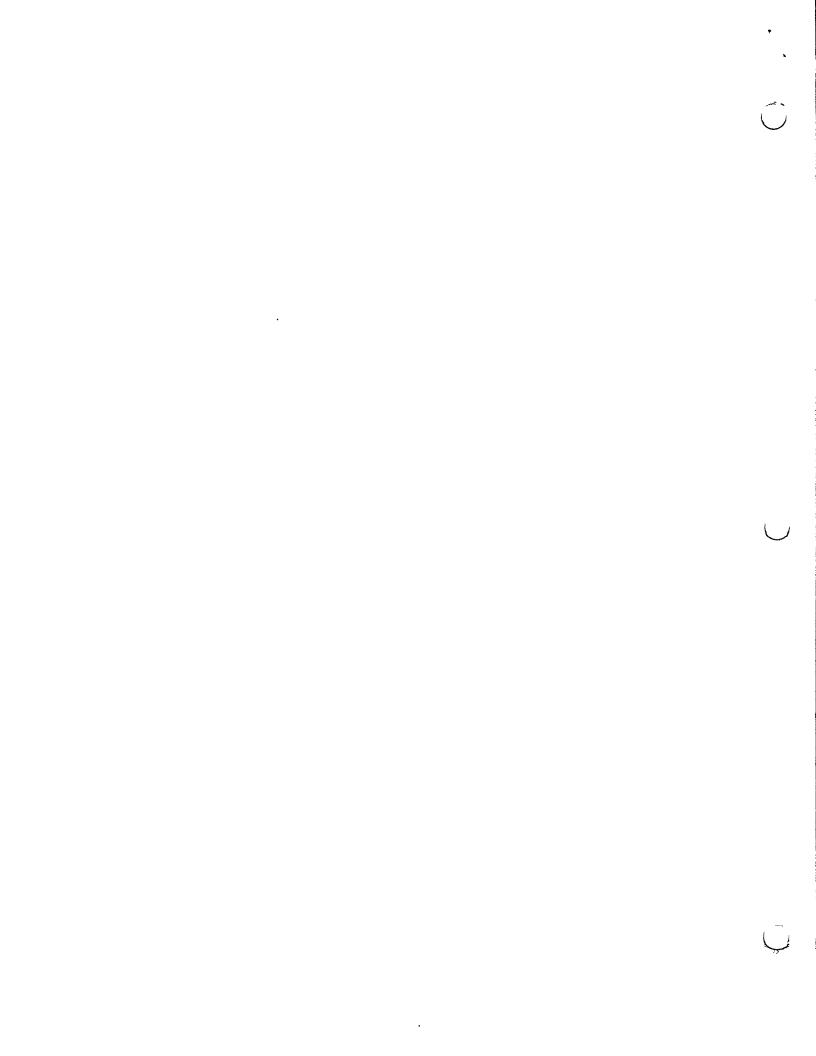
IDENTIFICATION

Product Code: MAINDEC 08-D1DA-D


Product Name: Extended Memory Checkerboard - Part 2

Date Created: September 8, 1965

Maintainer: Diagnostic Group

Previous Code: MAINDEC 820-2

1. ABSTRACT

MAINDEC 08-D1DA-D is a preliminary test for core memory failures on half-selected lines under worst-case conditions of reading and writing. It is used to test memory module X while running the program in memory module Y. This is applicable for test of Type 184 Memory Modules and MM08 Memory Modules.

MAINDEC 08-D1CA-D will also test the control portion of the Extended Memory Type 138 or Extended Memory Type 185.

2. REQUIREMENTS

Storage

The program occupies registers $0000_8 - 0111_8$ and tests memory from $0000_8 - 7776_8$.

The RIM Loader must be in registers 77568 - 77768.

Subprograms and/or Subroutines

High RIM Loader, Binary Loader Digital-8-2-U-RIM

Equipment

Standard PDP-8 and Extended Memory Module Type 183.

USAGE

3.1 Loading

If the Binary Loader is in memory, go to the Extended Memory Checkerboard Test. Otherwise, the RIM Loader and/or the Binary Loader must be loaded into memory.

The Extended Memory Checkerboard Test may now be loaded as follows:

Set 7777₈ in the SWITCH REGISTER Press LOAD ADDRESS key Place object tape in the ASR 33 Press START key on the operator console Engage reader

3.2 Switch Settings

Starting address: 0000_8 DF(X), IF(X).

Program Control Settings - One of four possible patterns that can be written is obtainable by each of the following SR settings.

0100	this setting is used tor the standard PDP-8 unit.
00008	These are used for special core units from other supplies.
0001	(Reference section 5.2.)
0101	This setting is used for Type 185, 186 or MM08 Memories
	of the PDP-8.

3.3 Start up and/or Entry

With the program in the desired memory field set the following:

- a. Load address 0000₈. Load the data field and instruction field of the memory containing the object program.
- b. Set the instruction CDF (62N1) to the field to be tested in the SWITCH REGISTER.
- c. Press DEPOSIT.
- d. Repeat step a.
- e. Reference Program Control Settings (section 3.2).
- f. Press START.

3.4 Errors in Usage

The contents of a given memory cell should be either 7777 or 0000. An error occurs if a 1 becomes a 0, or vice versa. The following pair of stops occurs for each error:

C(MA)	Error	Cause of Error
0071	ΕĪ	Memory cell does not contain 7777 or 0000. AC displays contents of cell in error.
0074	EIA	AC contains address of cell causing previous error stop.

3.5 Recovery from Such Errors

Error	Recovery Procedure
El	Record the C(AC). Press CONTINUE to reach the next halt.
E1A	Record the C(AC). Press CONTINUE to resume testing.

4. <u>RESTRICTIONS</u>

This program is only a preliminary test and should only be used to simplify memory adjustments and maintenance procedures.

Maindec 802* should be loaded into the memory module under test for a final test. (Reference Maindec 802* for usage)

5. DESCRIPTION

5.1 Discussion

^{*} See Appendix

In a standard core plane, a given core is selected when the combined voltages of the x-and y-selection lines exceed the threshold voltage for reversing the polarity of the core. This occurs at the intersection of the activated selection lines. However, all other cores which are threaded onto the activated lines will be slightly disturbed. Under marginal voltage conditions, such half-selected cores may also reverse polarity if their states are properly established by the pattern which the Checkerboard Test writes into memory.

When a selected core is in the 1 state, the read current causes it to reverse polarity and become 0. When the core is in the 0 state, the write current causes it to become 1. Thus, the possibility of a reading error is greatest when all the half-selected cores are in the 1 state; a writing error is most probable when all the half-selected cores are in 0 state.

If a half-selected core changes polarity, the error is detected when the memory register containing that core is tested by the program. For a reading error, the contents of that core will appear as a 0 in a field of 1's, and vice versa for a writing error.

Every Checkerboard Test pattern consists of alternating pairs of memory cells, one pair containing 7777's, the other containing 0000's. Since many manufacturers wire their core stacks in different ways, the same pattern of alternations cannot be used for every type of core and still allow a worst-case condition; that is, one in which all half-selected cores undergo the greatest possible disturbance which can occur when testing memory. The following pattern is used for the Ferroxcube memories with which most PDP-8's are provided.

x-axis
$$0 0 1 1$$

 (MA_{0-5}) $1 1 0 0$
 $1 1 0 0$
 $0 0 1 1$
 y -axis (MA_{6-11})

Since the y-axis selection lines are conditioned by the low-order six bits of the memory address register (MA₆₋₁₁), and the x-axis lines by the high-order bits (MA₀₋₅), the above array is interpreted as follows: (x- and y-axes should be interpreted as shown above).

Positions on the x-axis represent consecutive locations in memory from 00-77.

Positions on the y-axis represent consecutive 1008's. Thus, the lower left corner represents location 0000. This position contains a 0, which means that the contents of the entire memory cell at address 0000 are 0's. Likewise, the contents of memory cell 0201 are 1's or 7777; this is determined by reading the third row up on the x-axis, and across one position on the y-axis.

The pattern in memory appears as follows:

Address	Contents
0000	0000
0001	0000
0002	7777
0003	7777
0004	0000
0005	0000
0006	7777
0007	0000
• • • •	

thus:

It can be seen from the pattern matrix, that after 77₈ registers, the pattern reverses itself,

Address	Contents
0076	7777
0077	7777
0100	7777
0101	7777
0102	0000
0103	0000
0104	7777
0105	7777
0106	0000
0107	0000

And so on through memory. The pattern reverses every 100_8 registers.

5.2 Pattern Generation

The patterns generated by the other three switch register settings are defined by the following pattern matrices.

SR Se		Patte	ern Mat	rix	
0000	x-axis	A 1	1	0	0
		1	1	0	0
		0	0	1	1
		0	0	1	_1
		y-a	×is		
0001	x-axis	♣ Ī	0	0	1
		1	0	0	1
		0	1	1	0
		0	1	1	0
		у-а	xis		
0021	x-axis	• 0	1	1	0
		1	0	0	1
		1	0	0	1
		0	1	1	0
		у-а	xis		

SR Se	tting		Patter	n Matr	ix
	x-axis	† 1	0	0	1
0101		0	ī	1	, 0
		0	1	1	0
		1	0	0	1

6. METHODS

6.1 <u>Discussion</u>

The program writes the pattern into the area of memory to be tested. It then tests each word as follows:

The contents of the word are checked for incorrect bits.

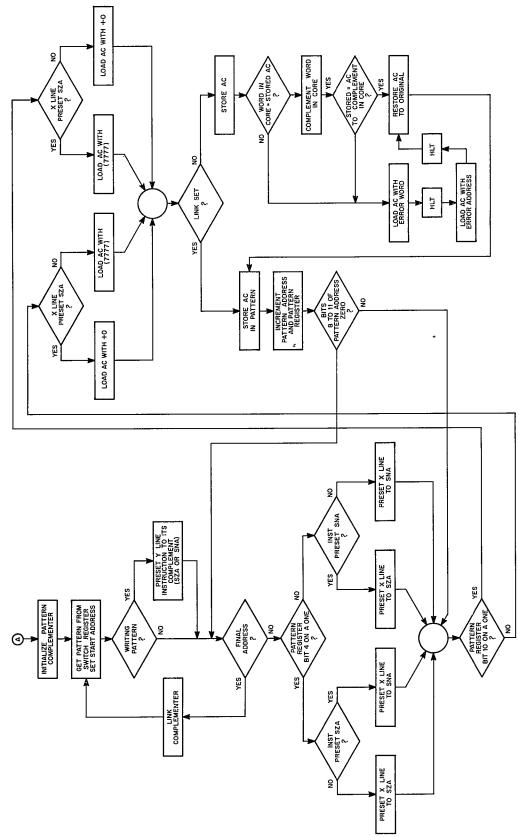
The contents are complemented, deposited in the same register, and retested for incorrect bits.

The original contents are returned to the register, and the next one is checked.

After all memory is tested, the program writes the complement of the pattern and proceeds to check as before. In this way, every core is tested for errors that might occur when it is read and when information is written into it.

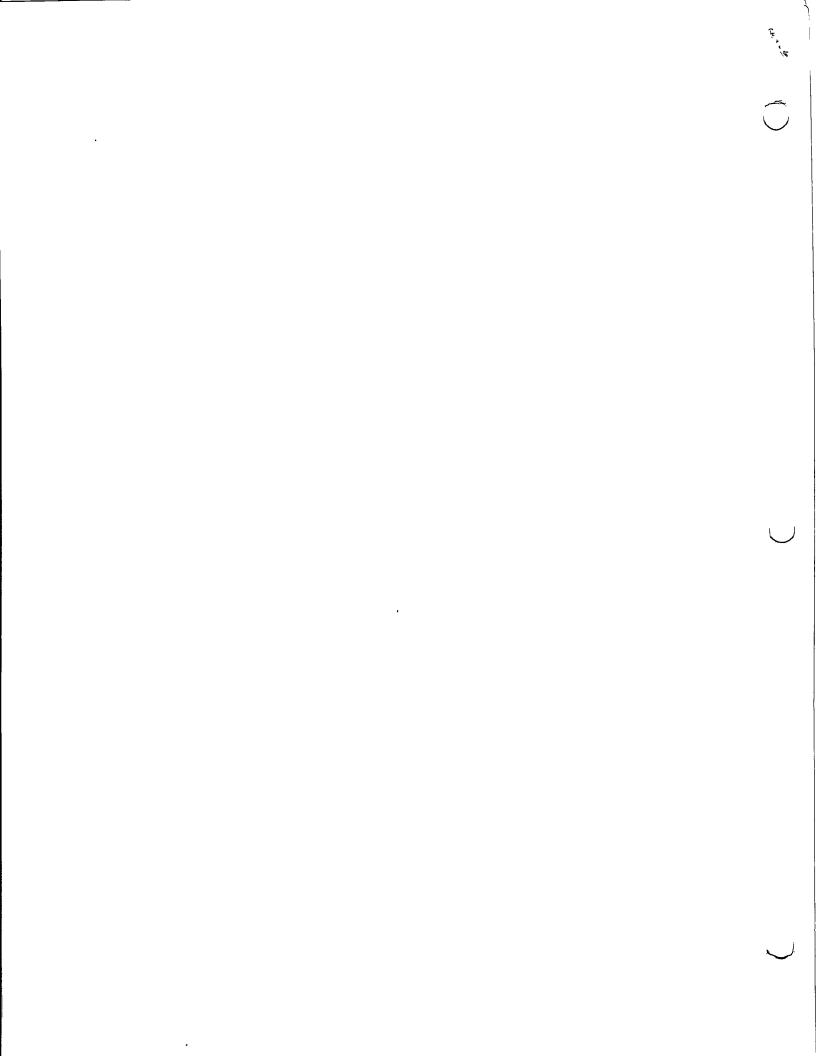
7. <u>EXECUTION TIME</u>

2 seconds


8. PROGRAM LISTING

/MAINDEC 08-D1DA-D
/EXTENDED MEMORY CHECKERBOARD-PART 2

		*Ø						
ØØØØ	ØØØØ		Ø					
ØØØ1	7121		CLL	CML	IAC			
ØØØ2	3107			COM	_,,,			
ØØØ3	7604	STX.	LAS					
0004	1111		TAD	MUD				
0005	3105		DCA	PAT				
0006	1111		TAD	MUD				
ØØØ7	3106		DCA	SA				
ØØ 1 Ø	2107	STB,	ISZ					
ØØ 1 1	1107		TAD	COM				
0012	Ø1Ø3		AND	DO T		/2		
ØØ 1 3	764Ø			CLA				
0014	1102		TAD	NOT		/1Ø		
0015	1077		TAD	HOT				
ØØ 1 6	3025		DCA	Y		/COMPLEMENT	THE	PATTERN


ØØ17 ØØ2Ø ØØ21 ØØ22 ØØ23 ØØ24	1101 1106 7650 5003 1105 0100	STC,	TAD POT TAD SA SNA CLA JMP STX TAD PAT AND ROT	/100 /TEST FOR FINAL ADDRESS /200
0025 0026 0027 0030 0031 0032	0000 1102 1077 3033 1105 0103	Υ,	Ø TAD NOT TAD HOT DCA X TAD PAT AND DOT	/Y LINE PRESETS X LINE /TO SNA OR SZA /2
ØØ33 ØØ34 ØØ35 ØØ36 ØØ37	0000 7040 7420 5047 3506	Х,	Ø CMA SNL JMP CCK DCA I SA	STORE PATTERN AND RECOMPLEMENT
00 40 00 41 00 42 00 43 00 4 4 00 45 00 46	2106 2105 1106 0104 7650 5017 5031	STD,	ISZ SA ISZ PAT TAD SA AND BOT SNA CLA JMP STC JMP X-2	/WORD WHEN CHECKING
00 47 00 50 00 51 00 52 00 53 00 54 00 55 00 56 00 57	3177 1506 7041 1177 7640 5070 1177 7040 3506 1506	CCK,	DCA WRD TAD I SA CMA IAC TAD WRD SZA CLA JMP CC3 TAD WRD CMA DCA I SA TAD I SA	/CHECK PATTERN /ERROR IN CORE /COMPLEMENT THE WORD /IN CORE
0061 0062 0063 0064	7001 1177 7640 5070		IAC IAC TAD WRD SZA CLA JMP CC3	/TEST COMPLEMENT WORD /ERROR
0065 0066 0067	1177 7100 5037	ccz,	TAD WRD CLL JMP STD-1	
0070 0071 0072	1506 7402 7200	CC3, El,	TAD I SA HLT CLA	/ERROR: AC CONTAINS INCORRECT WORD
0073 0074 0075	1106 7402 7300	ElA,	TAD SA HLT CLA CLL	/AC CONTAINS ADDRESS OF /REGISTER IN ERROR
ØØ76	5Ø65	CC4,	JMP CC2	

0077 0100 0101 0102 0103 0104	7640 0200 0001 0010 0002 0000	HOT, ROT, POT, NOT, DCT. B°T,	7640 200 0001 10 2 0000		/CONSTANTS
Ø1 Ø5 Ø1 Ø6 Ø1 Ø7 Ø1 1 Ø Ø1 1 1	9999 9999 9999 9999	PAT. SA, COM, RD, MUD,	Ø Ø Ø Ø Ø Ø Ø	•	/VARIABLES
BOT CCK CC2 CC3 CC4 COM DOT E1 A HOT NOT PAT RD ROT SA STD STD STX WRD	010 0004 0007 0007 010 010 011 010 011 010 011 001 00	17 15 16 16 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18			

APPENDIX

MAINDEC 802 - Memory Checkerboard Test

