
‘

decitusystem
. J

?

system ,

w

*

, reFerence
~ manual

Eflaflflfifl

COS - 310

System Reference Manual

Order No. AA-D647A—TA

October 1978

This is a reference manual for

the COS-310 system user who

wants to use the DIBOL

language in developing appli—
cation programs.

SUPERSESSION/UPDATE INFORMATION: This is a new manual.

OPERATING SYSTEM AND VERSION: COS-310 V 8.00

SOFTWARE VERSION: COS—310 V 8.00

To order additional copies of this document, contact

the Software Distribution Center, Digital Equipment

Corporation, Maynard, Massachusetts 01754.

digital equipment corporation - magnard. mossochusetts

First Printing, October 1978

The information in this document is subject to change without notice

and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this document.

The software described in this document is furnished under a license

and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on

equipment that is not supplied by DIGITAL or its affiliated companies.

Copyright C) 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in pre-

paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL DECsystem-lo MASSBUS

DEC DECtape OMNIBUS

PDP DIBOL OS/8
DECUS EDUSYSTEM PHA

UNIBUS FLIP CHIP RSTS

COMPUTER LABS FOCAL RSX

COMTEX INDAC TYPESET-B

DDT LAB-8 TYPESET—ll

DECCOMM DECSYSTEM-ZO TMS-ll

ASSIST-ll RTS-8 ITPS—lO

u/79-1u

CONTENTS

Page

PREFACE xi

INTRODUCTION xii

CHAPTER 1 DIBOL LANGUAGE 1-1

1.1 SOURCE PROGRAM 1-1

1.2 STATEMENTS 1-3

1.2.1 ACCEPT — Input/Output Statement 1—4

1.2.2 CALL - Control Statement 1-6

1.2.3 CHAIN - Control Statement 1—7

1.2.4 Data Manipulation Statements 1-9

1.2.4.1 Data Conversion 1-11

1.2.4.2 Arithmetic Expressions 1-11

1.2.4.3 Clearing Fields and Records 1-13

1.2.4.4 Moving Alphanumeric Data 1—14

1.2.4.5 Moving Numeric Data 1-14

1.2.4.6 Moving Records 1-15

1.2.4.7 Data Formatting 1—16

1.2.5 DISPLAY — Input/Output Statement 1-18

1.2.6 END - Compiler Statement 1—20

1.2.7 FINI — Input/Output Statement 1-21

1.2.8 FORMS — Input/Output Statement 1-22

1.2.9 GO TO — Control Statement 1-23

1.2.9.1 Unconditional GO TO 1-23

1.2.9.2 Computed GO To 1—23

1.2.10 IF — Control Statement 1—24

1.2.11 INCR 1—24

1.2.12 INIT - Input/Output Statement 1—26

1.2.13 ON ERROR — Control Statement 1—28

1.2.14 PROC - Compiler Statement . 1—29

1.2.15 READ - Input/Output Statement 1-30

1.2.16 RECORD — Data Definition Statement 1-31

1.2.17 RETURN — Control Statement 1-33

1.2.18 START - Compiler Statement 1—34

1.2.19 STOP — Control Statement 1-35

1.2.20 TRACE/NO TRACE - Debugging Statement 1-36

1.2.21 TRAP — Control Statement 1-37

iii

CONTENTS (Cont.)

Page

1.2.22 WRITE — Input/Output Statement 1-39

1.2.23 XMIT — Input/Output Statement 1—40

CHAPTER 2 THE MONITOR 2-1

2.1 MASTER CONTROL PROGRAM 2—1

2.1.1 MOUNT Messages 2-3

2.1.2 Operating Procedures 2-4

2.2 MONITOR COMMANDS 2—4

2.2.1 BATCH 2-5

2.2.2 DATE 2-6

2.2.3 DELETE 2-7

2.2.4 DIRECTORY 2-8

2.2.5 PLEASE 2—10

2.2.6 RUN 2—11

2.2.7 SAVE 2-13

2.3 EDITOR COMMANDS 2-14

2.3.1 ERASE 2—15

2.3.2 FETCH 2—16

2.3.3 LIST 2-17

2.3.4 Line Number 2—18

2.3.5 Number Commands 2-20

2.3.6 RESEQUENCE 2-21

2.3.7 WRITE 2-22

2.4 MONITOR ERROR MESSAGES 2-23

2.5 RUN-TIME ERROR MESSAGES 2-24

CHAPTER 3 SYSTEM GENERATION PROGRAM (SYSGEN) 3-1

3.1 SYSGEN/B OPERATING PROCEDURES 3—1

3.2 SYSGEN/C OPERATING PROCEDURES 3-3

3.3 SYSGEN ERROR MESSAGES 3-5

CHAPTER 4 DATA FILE UTILITY PROGRAM (DFU) 4-1

4.1 DFU OPERATING PROCEDURES 4-1

4.1.1 DFU,filnam Operating Procedures 4—2

4.1.2 DFU/B Operating Procedures 4-2

4.1.3 DFU/K Operating Procedures 4—3

4.1.4 DFU/D Operating Procedures 4—3

4.1.5 DFU/DL Operating Procedures 4—4

4.1.6 DFU/E Operating Procedures 4—5

4.1.7 DFU/EL Operating Procedures 4-6

4.2 LOGICAL UNIT ASSIGNMENTS ON THE

COS-310 SYSTEM 4-7

4.2.1 Determining Logical Unit Size 4-7

4.2.2 How Logical Units are Assigned by DFU 4—8

4.3 DISK USERS 4-9

4.4 DFU ERROR MESSAGES 4-10

iv

CHAPTER

CHAPTER

CHAPTER

CHAPTER

on

a>m<ncna>m .

I

I

I

I

I

hdwrahukaH
I

O

U'lnwaH
o

n

I

0

0-0340me CNEHFJPJFJH

I

g

o

o

o

c

I

Nl—l

WNH\DkOkaOKDKOKOKDkO
\D

oooooooooooo

bmwwWNNNl—J

CONTENTS (Cont.)

DIBOL COMPILER (COMP)

COMP OPERATING PROCEDURES

Source Program Compilation Listing
Storage Map Listing

CONDITIONAL COMPILATION PROCEDURE (CCP)
SIZE OF THE BINARY PROGRAM

COMPILER ERROR MESSAGES

DIBOL DEBUGGING TECHNIQUE (DDT)

DDT OPERATING PROCEDURES

DDT COMMANDS

DDT ERROR MESSAGES

CROSS REFERENCE PROGRAM (CREF)

CREF OPERATING PROCEDURES

CREF ERROR MESSAGES

PERIPHERAL INTERCHANGE PROGRAM (PIP)

PIP OPERATING PROCEDURES

Transfer Binary File (OPT— B)
Copy Device (OPT— C)
Transfer Data Files (OPT— D)
Consolidate Space in Directory (OPT- E)
Allocate Space to Binary Scratch Area

(OPT- E)

Copy and Verify (OPT- I)
Perform a Read/Check (OPT- R)
Transfer Source Files (OPT- S)
Transfer System Program (OPT- V)
Return to Monitor (OPT— X)

PIP ERROR MESSAGES

SORT PROGRAM (SORT)

SORT OPERATING PROCEDURES

SORT COMMAND FILE

Record Descriptor Division

INPUT/OUTPUT Division

MERGE OPERATING PROCEDURE

Merge Using SORT and the /A Option
Merge Using SORT and the /M Option
Merge Using SORT and the /n Option

SORT ERROR MESSAGES

oooooooooo III
I

LJ'IDWWH

oooooooooooooo \OkomWNflO‘

lllllllll \JanU1brom)N+a
H

\DkDSDkOKDkowKDKO
‘0

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

CHAPTER

10

10.1

10.2

10.3

10.3.1

CONTENTS (Cont.)

FILE EXCHANGE PROGRAM (FILEX)

UNIVERSAL DISKETTE

FILEX OPERATING PROCEDURES

COPY (OPT:C)
os/8 ASCII Input (Mode A)
COS-310 Data Input (Mode D)
Universal Input (Mode U)

Output Modes (A, D, S, U)

COS/8 ASCII Output (Mode A)
COS-310 Data File Output (Mode D)
COS-310 Source File Output (Mode S)
Universal Diskette Output (Mode U)

DELETE (OPTzD)
LIST (OPTzL)
EXIT (OPT:X)
ZERO (OPT:Z)

FILEX ERROR MESSAGES

PATCH PROGRAM (PATCH)

PATCH OPERATING PROCEDURES

ERROR CORRECTION

CTRL/U or R (Restart)

Wrong 01d Value

Bad Checksum

PATCH ERROR MESSAGES

BOOT PROGRAM (BOOT)

BOOT OPERATING PROCEDURES

BOOT ERROR MESSAGES

LINE CHANGE PROGRAM (LINCHG)

LINCHG OPERATING PROCEDURES

LINCHG ERROR MESSAGES

FORMAT PROGRAMS (DKFMT, DYFMT)

FORMATTING RK05 DISKS

FORMATTING RX02 DISKETTES

DUMP AND FIX TECHNIQUE (DAFT)

DAFT COMPILING PROCEDURE

DAFT OPERATING PROCEDURES

DAFT COMMAND FILE

DAFT COMMANDS

vi

10-11

10-11

10-13

11-1

11-1

11-3

11-4

11-4

11-4

11-5

12-1

12-1

12-1

13-1

13-1

13-2

14-1

14-1

14-2

15-1

15-1

15-1

15-2

15-2

CHAPTER

CHAPTER

CHAPTER

15.4.1

15.4.2

15.5

15.6

16.1

16.2

16.2.1

16.2.2

16.2.3

16.3

16.3.1

16.3.2

16.3.3

16.3.4

16.3.5

16.3.6

16.4

17

17.1

17.2

17.3

17.3.1

17.3.2

17.3.3

17.3.4

17.3.5

17.3.6

17.3.7

17.3.8

17.3.9

17.3.10

17.3.11

17.3.12

17.4

17.5

18.1

18.2

18.2.1

18.2.2

18.2.3

18.3

CONTENTS (Cont.)

Symbols Used in DAFT Commands

DAFT Command Summary
DAFT OUTPUT

DAFT ERROR MESSAGES

REPORT PROGRAM GENERATOR (PRINT)

PRINT COMPILING PROCEDURE

PRINT OPERATING PROCEDURES

FILEX - Creation of Source File

Compilation
Program Execution

PRINT COMMAND FILE

IDENT Section

HEADl and HEAD2 Section

INPUT Section

COMPUTE Section

PRINT Section

END Section

PRINT ERROR MESSAGES

FLOWCHART GENERATOR PROGRAM (FLOW)

FLOW COMPILING PROCEDURE

FLOW OPERATING PROCEDURES

FLOW COMMANDS

PROC Command

DISK Command

IF Command

CALL Command

START Command

STOP Command

GOTO Command

CGOTO Command

I/O Command

TITLE Command

SBTTL Command

PAGE Command

FLOW EXAMPLE

FLOW ERROR MESSAGES

MENU PROGRAM (MENU)

MENU OPERATING PROCEDURES

MENU COMMAND FILE

Display Section

Command Section

Accept Section

MENU ERROR MESSAGES

vii

Page

15-2

15—3

15-5

15—7

16~1

16-1

16-3

16-6

16-8

16-8

17-1

17-1

17-1

17-2

17-3

17-3

CONTENTS (Cont.)

Page

APPENDIX A COS-310 CHARACTER SET A-l

APPENDIX B COS-310 FILES B-l

B.l COS-310 SOURCE FILES B-l

B.2 COS-310 DATA FILES B-l

B.3 COS-310 BINARY FILES B-2

B.4 COS-310 SYSTEM FILES B—2

B.5 SYSTEM DEVICE FORMAT B-2

APPENDIX C ERROR MESSAGE INDEX C-l

APPENDIX D ADVANCED PROGRAMMING TECHNIQUES D-l

D.l ACCEPT AND DISPLAY D-l

D.l.l Background Information D-l

D.l.2 Interaction of ACCEPT and DISPLAY D-l

D.l.3 Example Using ACCEPT and DISPLAY D-2

D.l.4 Generalized ACCEPT Subroutines D—2

D.l.4.l Hardware Display Clear Feature D-2

D.l.4.2 Clear Incorrect Data by Displaying Spaces D-4

D.l.4.3 Other Desired Features D-6

D.l.4.4 Escape Code Sequences as Terminators D-8

D.2 DIRECT ACCESS TECHNIQUES D-8

D.2.l Background Information D-8

D.2.2 The Reason for Direct Access D-9

D.2.3 How the Direct Access Technique
Works in DIBOL D-9

D.2.4 Unsorted File D-10

D.2.5 Sorted File D—ll

D.2.6 Rough Table, No Index File D-12

D.2.7 Rough Table Plus Index File D—l3

D.2.8 Summary D-l4

D.2.9 Record Count D-l4

D.3 DIRECT ACCESS NOTES D-15

D.3.l XMIT Statements (Extending a File) D—15

D.3.1.l Truncating a File D—l5

D.3.l.2 Appending to a File D—15

D.3.l.3 Rewriting a File D—l6

D.4 NUMERIC FIELD VERIFICATION D-16

D.5 CHAIN STATEMENT NOTES D-l7

D.5.l Interaction of CHAIN and INIT

(channel, SYS) D—l7

D.5.2 Transferring Variable Values D—l7

D.5.3 Multiple CHAIN Entry Points D-18

D.6 DIBOL PROGRAMMING OF SOURCE FILES D-l9

D.6.l OPERATING PROCEDURES D-l9

D.6.2 Data Division D-19

D.6.3 Procedure Division D-20

viii

CONTENTS (Cont .)

Page

D.7 CHECKDIGIT FORMULA D-21

D.8 VT50/VT52 ESCAPE SEQUENCES D-22

GLOSSARY Glossary-l

INDEX Index-1

FIGURES

1-1 Sample Source Program 1-1

10-1 Universal Diskette 10—3

10-2 Flowchart of FILEX OPT:C 10'10

B-l Monitor Organization B-3

TABLES

l 1 Source Program Limitations 1 3

l 2 Terminating Characters 1 5

1 3 Special Characters 1 1

2—1 Monitor Keyboard Commands 2—2

5 l DIBOL Statement Words of Code Requirements 5 7

A 1 Characters Representing Negative Numbers A l

A 2 COS—310 Character Set A 2

PREFACE

This is a reference document for those interested in applying the

DIBOL language in a COS—310 system environment. Readers of this manu-

al are assumed to possess a basic knowledge of programming and of the

DIBOL language. Additional background may be obtained, however, by
consulting the COS-310 New User's Guide (AA—D758A-TA).

This manual is constructed in a usable order, yet it is not intended

that it be read sequentially. Each chapter and major section is con-

structed to be as informationally independent from other sections as

possible. This method was followed to allow reference to specific in—

formation without the need for frequent cross—referencing.

In addition to the information in the chapters, additional reference

material and summaries are provided in Appendices A through D and in

the Glossary.

INTRODUCTION

THE DIBOL LANGUAGE

DIGITAL's Business Oriented Language (DIBOL) is a COBOL-like language
used to write business application programs. The DIBOL language con-

sists of data definition and procedure statements.

OVERVIEW OF THE COS-310 SYSTEM

The COS-310 system is designed for the small system user. It is a

disk—based data processing system that is adaptable to a wide variety
of business—related processing tasks.

The COS—310 system is enhanced with use of diskettes, video display
terminals, and other DIGITAL hardware. Specially developed software

has been included to act as tools for both application programmers and

system operators.

Programs provided as part of COS-310 include but are not limited to

the following:

o MONITOR/EDITOR controls the calling and operating of all

other programs in the COS—310 system; provides the I/O con-

trol for the peripheral devices; and contains editing capa-
bilities for correcting user programs. This program is re-

ferred to throughout the manual as the Monitor.

0 SYSGEN builds and changes the system hardware configuration.

0 DFU assigns logical units and displays or prints a logical
unit table.

0 COMP translates DIBOL language source statements into a bina-

ry program which can be run on the Datasystem 308 or 310.

xiii

o PIP transfers data, source, or binary files between two de-

vices.

o SORT sequences records according to key characters or fields.

Records may be sorted into ascending (0—9 or A—Z) or descend-

ing (Z-A or 9—0) sequence.

THE COS-310 FILE STRUCTURE

Four types of files are used in COS-310: data, source, binary, and

system. Source files, compiled binary files, and system files can be

saved in COS—310 directories. Data files cannot be saved in COS-310

directories.

0 Data files are completely devoted to the storage of data to

be processed by DIBOL or system programs.

0 Source files contain control programs or DIBOL programs.

0 Binary files are the output of the compiler and contain DIBOL

programs translated into COS-310 interpretive code.

0 System files include programs (MONITOR, SYSGEN, DFU, PIP,

COMP, SORT, etc.) supplied as part of the COS—310 package.

MANUAL NOTATION CONVENTIONS

The following symbols, characters, and terms are used throughout this

manual.

Symbols Example Explanation

Lowercase PROC n User determined information to

characters be supplied.

Uppercase NO TRACE Words or characters to be

characters entered exactly as shown.

... RU CHAINO+...CHAIN7 Optional continuation of argu-
ments.

Characters ~RU SYSGEN/C Your input to the system.
in red

7

$
1‘

i
i

2
r

Symbols Example

L4 RUaJPIP

/T
START /N

/L

[1
PROC [n][/x]

RETURN

COS-310 CHARACTERS

Explanation

A space or blank.

Braces indicate that you must

make a choice of one of the

items enclosed.

Brackets indicate that you must

decide whether or not to use an

optional feature.

Information input via the key—
board must be followed by a RE-

TURN. The RETURN code indicates

that a line of information

(input) is complete. No symbol
for RETURN will be used in this

text. It will be assumed that

its use is understood.

COS-310 characters include letters A-Z; numbers 0-9; and the special
characters:

V-U'Juo
:—

+F—A
.

A=¢\
'U‘—‘

*(E

_.

-/v
%

|__1

TERMS

Alphanumeric
Refers to the entire COS—310 character set. Initialized values in

alphanumeric fields must be enclosed by single quotes.

Decimal, Octal

Refer to the numeric values associated specifically with base ten

(decimal) and base eight (octal).

XV

dev

Refers to a three—character designation for the device upon which

data is located. The first two characters indicate the type of

device; the third character indicates the drive the device is

mounted on. The types of devices are listed below.

RX indicates RXOl diskettes.

DY indicates RX02 diskettes.

DK indicates RK05 disks.

Expressions
Refer to variables, constants, or arithmetic expressions made up of

variables, constants, and the operators #, +, -, *, /.

Filnam,pronam,1abe1,cmndfl
Identify names assigned to files, programs, statements, and input
lines. These names may be of any length but only the first six

characters are significant.

Label can only contain alphabetic and numeric characters, but must

begin with an alphabetic character.

Pronam and cmndfl can contain any COS~310 character except

/I +1 -I —Il—.ll @, and ,.

It is advisable not to use -, /, @,L4, tab, and , in a data filnam.

These characters may complicate or inhibit some program execution.

Logical Units

Refer to data file storage areas. These units are accessed via a

logical unit table which is referenced by logical unit numbers.

Numeric

Refers to the characters 0—9 and combinations thereof.

xvi

CHAPTER 1

DIBOL LANGUAGE

This chapter provides reference information on the DIBOL language as

used in the COS-310 system. If other basic information is desired,
refer to the COS-310 New User's Guide.

1.1 SOURCE PROGRAM

A DIBOL source program (see Figure 1—1) consists of statements ar—

ranged in two divisions, Data and Procedure. Comments following a

semicolon document the contents and purpose of each statement.

Statement lines that begin with a semicolon contain only comments.

Tab settings are used in the program to improve clarity and ease of

reading.

The Data Division contains statements which define the type and size

of the information to be used in the program, and optionally contain

labels which identify the memory location where information can be

referenced. Initial values for these statements can be included in

this division.

The Procedure Division consists of statements which control program

execution. An alphanumeric label can be assigned to a statement with—

in the Procedure Division. A label must begin with a letter and can

have a maximum of six significant characters. Labels precede and are

separated from the statement by a comma. These labels are referenced

in other statements.

Each statement within a DIBOL program begins on a numbered line. Line

numbers are assigned manually or automatically when the program is

being typed. DIBOL does not use these numbers, but error messages,

editing functions, and debugging aids refer to them.

0100 START ;Optional compiler statement.

0110 RECORD INBUF ;Record named INBUF.

0120 STOCKN, D4 ;Numeric field named STOCKN.

0130 DESC, A25 ;Alphanumeric field named DESC.

0140 UCOST, D5 ;Five—character numeric field.

0150 QORDER, D4 ;Four-character numeric field.

0160 , D9 ;Unreferenceable unnamed field.

0170 RECORD OUTBUF ;Record named OUTBUF.

0180 , D4 ;Unnamed numeric field.

0190 , A25 ;Twenty—five character field.

0200 , D5 ;Unnamed field.

0210 , D4 ;Temporary storage field.

0220 ECOST, D9 ;Numeric field named ECOST.

0230 RECORD ;Unnamed record-temporary storage
0240 ;cannot be directly referenced.

0250 TITLE, A6, 'OVRHED' ;Field initialized to 'OVRHED'.

0260 PROC ;Beginning of Procedure Division.

0270 INIT(1,I,TITLE) ;Input 'OVRHED' yon channel 1.

0280 INIT(2,0,'OUTPUT') ;‘OUTPUT' on channel 2—output.
0290 LOOP, XMIT(1,INBUF,EOF) ;Transfers INBUF to EOF.

0300 OUTBUF=INBUF ;INBUF moved to OUTBUF.

0310 IF(STOCKN.LT.1000) GO TO LOOP ;Conditional statement.

0320 ECOST=UCOST*QORDER ;UCOST times QORDER moved to

0330 ;ECOST.
0340 XMIT(2,0UTBUF) ;Transfer OUTBUF onto channel 2.

0350 ;Blank line.

0360 GO TO LOOP ;Branch control to LOOP.

0370 EOF, FINI (2) ;Identifies end of logical unit.

0380 FINI (l) ;Writes record and closes file.

0390 STOP ;Stops program execution.

0400 END ;Marks the end of the program.

Figure 1-1 Sample

1-2 DIBOL LANGUAGE

Source Program

Table 1-1

Source Program Limitations

Maximum characters about 8,000 per file

Maximum number of source

files per program 7

Maximum number of symbols
16K byte system/24K byte
system or larger 365/511

Line numbers available 0-4095

Maximum characters

per line 120

1.2 STATEMENTS

There are six kinds of statements in DIBOL:

1.

6.

Compiler statements (START, PROC, and END) label the begin—
ning, division, and end of the program. These three state—

ments are non—executable. START and END are optional and

PROC marks the end of the Data Division and the beginning of

the Procedure Division.

Data definition statements (RECORD) describe the type and

size of data to be stored. Must include field information.

Data manipulation statements and INCR control the movement of

data within memory.

Control statements (CALL, CHAIN, GO TO, IF, ON ERROR, RETURN,

STOP, TRAP) effect the order of program statement execution.

Input/Output statements (ACCEPT, DISPLAY, READ, WRITE, and

XMIT) control data movement within memory or between memory
and peripheral devices. INIT and FINI associate and disasso—

ciate channel numbers used by the program. The FORMS state-

ment controls line spacing and paging on the printer.

Debugging statements (TRACE, NO TRACE) permit statement-by—
statement following of program execution.

These statements are discussed in alphabetical order rather than by
kind or by order of use.

DIBOL LANGUAGE 1-3

ACCEPT

1.2.1 ACCEPT - Input/Output Statement

The ACCEPT statement takes input from the keyboard; stores it in a

specified alphanumeric field, and stores the decimal value of the ter—

minating character (the last key typed) in a decimal field (see Table

1-2 Terminating Characters). The terminating value can be used in

statements later in the DIBOL program.

ACCEPT is primarily used with the DISPLAY statement and has the form:

ACCEPT (dfield, afield)

where:

dfield is the name of a numeric field where the decimal value

of the terminating character is to be stored.

afield is the name of an alphanumeric field where the keyboard

input is to be stored.

When an ACCEPT statement is encountered, the system waits for input
from the keyboard. Program execution continues either after afield is

full or after a terminating character is typed. When ACCEPT is termi—

nated before afield is full, the remaining character positions in the

afield remain unchanged. It is desirable to clear the afield before

an ACCEPT statement is executed.

Example:

ACCEPT (A,B) ;Stores input from the keyboard in B and

;stores the value of terminating the char-

;acter in A.

ACCEPT (A(3),B(4,5)) ;Stores input from the keyboard in the 4th

;and 5th characters of B, and stores the

;terminating value in the 3rd element of

;array A.

1-4 EIBOL LANGUAGE

Table 1-2

Terminating Characters

Decimal

Value Last Key Typed

00 Null or end-of-field

01 CTRL/A
02 CTRL/B
04 CTRL/D
05 CTRL/E
06 CTRL/F
07 CTRL/G
08 BACKSPACE or CTRL/H
09 TAB

10 LINE FEED

ll CTRL/K
12 CTRL/L
l3 RETURN or ENTER

14 CTRL/N
l6 CTRL/P
18 CTRL/R
20 CTRL/T
21 CTRL/U
22 CTRL/V
23 CTRL/W
24 CTRL/X
25 CTRL/Y
26 CTRL/Z
27 ESC

63 DELETE

DIBOL LANGUAGE 1-5

CALL

1.2.2 CALL - Control Statement

The CALL statement branches program control to an internal subroutine.

CALL has the form:

CALL label

where:

label is the'label of the first statement of a subroutine in

the Procedure Division of the program.

The CALL statement saves the return location in a pushdown stack so

that program control will return to that location when the subroutine

has been executed. Additional subroutine CALL statements may be nest-

ed within a subroutine to a depth of 50.

Example:

CALL SET

.<— ——————————————

STOP

SET, PROFIT=PRICE-COST

CALL CTAX

-->A=...

STOP

TAX=PROFIT/2
IF (TAX.GT.MAX)CALL ERROR

CTAX,

This example shows how execution control branches to and returns from

one subroutine to the next. The solid lines show the result of CALL

statements while the broken lines show the result of RETURN state-

ments.

--RETURN

1-6 DIBOL LANGUAGE

CHAIN

1.2.3 CHAIN - Control Statement

The CHAIN statement allows a DIBOL program which has exceeded the

available user memory to be separated into two or more smaller DIBOL

programs which are executed sequentially. Each program is written and

compiled separately. CHAIN programs are executed beginning with the

statement immediately following the PROC statement.

The form of the CHAIN statement is:

CHAIN n

where:

n is a numeric variable (0-7) representing the sequence

number of DIBOL binary programs as specified in the RUN

command. A maximum of seven programs can be chained

together.

When the CHAIN statement is encountered in a DIBOL program, execution

of the current program is stopped, and the indicated CHAIN program is

loaded. All CHAIN programs must be'properly declared in a RUN com—

mand. The program loaded by CHAIN will not return to the place where

the initial program was stopped. A return to a program requires a

CHAIN statement to that program.

Example:

.RUN START+HELP+TRY+ACCT

START HELP TRY ACCT

Data Div. Data Div. Data Div. Data Div.

. . . PROC

o PROC o y——>c

o —>- . -

PROC . . STOP

. . PROC

. CHAIN 2——-—r——>.
CHAIN l———— .

CHAIN 3———J

In this example START is chain 0, HELP is chain 1, TRY is

chain 2, and ACCT is chain 3. Although this example executes the

program sequentially, the programs could be chained in any order.

A program could chain back into itself.

DIBOL LANGUAGE 1-7

All file status information is destroyed between chained programs.

Therefore, all output and update files should be closed with a FINI

statement before executing a CHAIN to prevent the loss of information.

Both the TRACE and TRAP features are turned off when a CHAIN statement

is executed. They may be turned on again in the CHAIN program by
using an appropriate TRACE or TRAP statement. If DDT is being used

when a CHAIN statement is executed, control returns to DDT.

Any DIBOL record in a program loaded by the RUN command is automati-

cally cleared. However, if the record is in a program loaded by the

CHAIN statement, the record retains whatever contents it had in the

previous program unless the clear option (,C) is specified for the

record.

Executing a CHAIN statement with an argument which does not correspond
to a valid DIBOL binary program in the RUN command results in the

error message ILLEGAL CHAIN.

1-8 DIBOL LANGUAGE

DATA MANIPULATION

1.2.4 Data Manipulation Statements

Data manipulation statements convert data from numeric to alphanumeric
and vice versa, calculate arithmetic expressions, clear fields and

records, move data between fields or records, and format data. The

contents of a source area are stored in a destination area. Record

names are used in data manipulation statements only when data is moved

or cleared. The form of the statement is:

destination = source

where:

source is a variable, literal, or an expression identifying
data which is to be manipulated and then copied into a

destination area.

destination

is the area where the manipulated data is stored.

The destination area must be defined in the Data Division. The source

is always converted and justified to the data type defined for the

destination area. Data in the source remains unchanged; the destina-

tion area is always altered.

Variables:

A quantity that can be assigned any of a given set of values. The

following three formats are used with variables:

name

name (subscript)
name (position m, position n)

where:

name is a label (maximum of six characters) used to identify
a record or field.

name(subscript)
represents a subscripted array; the subscript must be

a numeric or an arithmetic expression whose value is

between 1 and the dimension specified for the array in

the Data Division. If name does not identify an array,

or the value of the subscript exceeds the dimension of

that array, other locations in memory are referenced.

No error message is generated unless locations are

referenced outside of the Data Division.

DIBOL LANGUAGE 1-9

name (position m, position n)
This form of subscripting references those characters

from position m to position n inclusive. Position n

must be greater than or equal to position m; position
n should be less than or equal to the dimension of the

array associated with name. Positions m and n must be

numeric characters with a value of l or greater. If

the variable name is subscripted, the successive array

elements should be considered strung out left to right.

Example:

Data Division defines A as 4D4

A(3,9) ;Wants 7 digits, 2 from A(l), all of

;A(2), and 1 from A(3).

Literals:

Numeric literals consist of a sequence of from 1 to 15 digits.

Alphanumeric literals consist of a sequence of COS—310 characters (ex-

cept single quotes) enclosed in single quotes.

A RECORD literal is used anywhere in the Procedure Division where a

record is allowed for XMIT (on channels opened for O, T, or L by an

INIT statement), for WRITE, or as the source in a data manipulation
statement. It is similar to an alphanumeric literal except it begins
with a double quote (") and ends with a single quote (').

Example:

PROC

XMIT (8,"HELLO') ;HELLO is a RECORD literal.

Example:

RECORD REC

FLDl, A5

, Al

FLD2, A5

PROC

FLDl = 'HELLO' ;HELLO is an alphanumeric literal.

FLDZ = 'THERE' ;THERE is an alphanumeric literal.

XMIT (8,REC)

Expressions:

An ordered set of characters treated in its totality as a symbol for

one idea or value.

1-10 DIBOL LANGUAGE

1.2.4.1 Data Conversion

Numeric values can be converted to alphanumeric and vice versa for the

purposes of input, output, calculations, and verification of numeric

data. This is done with the data manipulation statement:

destination = source

Alphanumeric to numeric conversions are right-justified, and spaces

are replaced by zeros. Numeric to alphanumeric conversions are

right-justified, and zeros are replaced by spaces. If the numeric ex—

pression equals zero, the alphanumeric field will contain only a zero.

alphanumeric destination alphanumeric source ;1eft-justified
alphanumeric destination = numeric source ;right-justified
numeric destination = numeric source ;right-justified
numeric destination = alphanumeric source ;right—justified

Alphanumeric values to be converted to numeric must be 15 or fewer

characters in length. If the alphanumeric field contains characters

other than digits, spaces, and the signs + or -, the message BAD DIGIT

results at run time. The data conversion statement should be preceded
by an ON ERROR statement if the contents of the alphanumeric source

may contain bad digits.

Data conversion is used to edit and verify numeric data following an

ACCEPT statement. Data is typed into an alphanumeric field and is then

converted to a numeric field by a data manipulation statement preceded
by an ON ERROR statement. Spaces and signs are not counted as char—

acters that are moved. Spaces in the alphanumeric field are ignored.
Signs may be imbedded anywhere in the alphanumeric field. If the ON

ERROR statement is executed, the data entered was not numeric.

1.2.4.2 Arithmetic Expressions

Arithmetic expressions are allowed only as the source in a data mani—

pulation statement. The expression can contain numeric elements, sub-

scripted data elements, constants, variables, and arithmetic opera—
tors.

There are five binary arithmetic operators which are executed in order

of priority. Operators with the same priority are executed left to

right.

(rounding) Order of priority:
/ (division) 1. rounding
* (multiplication) 2. multiplication and division

+ (addition) 3. addition and subtraction
- (subtraction)

DIBOL LANGUAGE l-ll

These operators are used with numeric values.

The signs —, +, # can be used in COS-310 as binary or as unary opera-

tors. As binary operators they indicate the mathematical operation to

be performed in an expression. As unary operators, the + has no ef-

fect; the unary
- negates the numeric value to which it is affixed.

The operator # can be used to convert an alphanumeric character to its

equivalent decimal code. This code can then be used by the program.

In this application, # appears before the character. For example:

A = #B ;A is a numeric field and B is an alphanumeric
;field. If B contains the characters XYZ, X is

;converted to its internal code, and the decimal

;equivalent, 57, is stored in A.

3 + #B ;A is a numeric field and B is an alphanumeric field

;containing XYZ. After conversion, the decimal

;equivalent of the first character of B, 57, is

;added to 3 and stored in A.

D, H

Since expressions in parentheses are executed first, the order of pri-
ority can be altered with the use of parentheses. In the following
expressions, A=10.

Fl= 100*A/2+3-l = 502

700Fl= 100* (A/2+3—l)

Rounding:

Rounding sets variables to specified character formats and increments

by l the least significant digit if the digit to the right before for-

matting was 5 or more (sign is unchanged). The sign # appears after

the character being rounded. The format for rounding is:

destination = A#B

A is rounded by B places; B is not greater than 7 (becomes modulo 8)
and is treated as a positive integer. The sign # appears after the

character that is being rounded.

TEMP=MONEY#2

If MONEY was 123456, TEMP becomes 1235.

If MONEY was 123446, TEMP becomes 1234.

If MONEY was —l473, TEMP becomes -15.

Typically, this feature is used for rounding to the dollar.

1-12 DIBOL LANGUAGE

Division:

The result of a division operation is expressed in unrounded whole

numbers.

The result of 5/3 is l and -l4/5 is —2. An error message occurs when

division by zero is attempted.

Multiplication, Addition, Subtraction:

These are basic arithmetic operations that will execute as requested.
If the resulting value (or an intermediate result) exceeds the size of

the destination field, the leftmost digits are dropped without an

error message being displayed.

1.2.4.3 Clearing Fields and Records

Data manipulation statements clear fields and records when used in the

form:

destination =

The destination can be a name designating a single field, a record, or

an array. Alphanumeric destinations are cleared to all spaces;

numeric destinations are cleared to all zeros. Any part of a field

can be accessed in a program statement by subscripting the beginning
and ending positions of the character string. An array name without

any subscripts clears only the first element in the array.

When a record is cleared, all numeric and alphanumeric fields are set

to spaces.

Examples:

Fl(5,7)= ;Clears characters 5, 6, and 7 in field Fl.

Al(5)= ;Clears the fifth element in an array.

Al(A)= ;Clears element A in array Al.

Fl(l,l)= ;Clears the first character in F1.

Al= ;Clears the first element in array Al.

RECNAM= ;Clears RECNAM to all spaces.

Record names can be subscripted to allow reference to record areas as

though they were in an array. All records to be so referenced must

follow one another and be of the same length.

DIBOL LANGUAGE 1-13

Example:

RECORD CUSNAM

,A3
RECORD BYRNAM

,A3
PROC

RECORD(2)= ;Clears RECORD BYRNAM.

1.2.4.4 Mdving Alphanumeric Data

Use the data manipulation statement to move the contents of one al—

phanumeric field (source) to another alphanumeric field (destination).

destination = source

If source is shorter than destination, data from source is

left—justified, and the rightmost characters of destination are undis—

turbed. If source is longer than destination, the rightmost char-

acters in source are not moved into destination. The source remains

unchanged.

Example:

RECORD ALPHA

A,A5,'ABCDE'

B,A3,'FGH'
RECORD NAMES

NAME,A4,'FRED'

NAME1,A7,'JOHNSON'
PROC

A=B ;Field A would contain FGHDE.

NAME=NAME1 ;NAME would contain JOHN.

1.2.4.5 Moving Numeric Data

Use the data manipulation statement to move the contents of one numer-

ic field to another numeric field.

destination = source

If source is shorter than destination, zeros are inserted on the left.

If source is longer, the most significant digits are not moved to des-

tination.

1-14 DIBOL LANGUAGE

Example:

RECORD A

FIGR, D3, 123

FIGR1,D5, 45678

RECORD B

NUMBl,D5, 45678

NUMB2,D3, 123

PROC

FIGRl

NUMBZ

FIGR ;FIGRl would contain 00123.

NUMBl ;NUMB2 would contain 678.

1.2.4.6 Moving Records

Movement of entire records can be accomplished with data manipulation
statements. All fields within a record are treated collectively as

alphanumeric fields during record manipulation. The manipulation
statement has the form:

destination = source

where:

destination

is a record label or a subscripted record label.

source is a record label, a subscripted record label, or a

record literal.

This data manipulation statement moves the contents of the source into

the space reserved in the destination. If the source is shorter than

the destination, the rightmost characters of destination are undis—

turbed. If source is longer, the rightmost characters of source will

not be moved into the destination.

Example:

RECORD PRTREC

,A92
RECORD DATA

NAME , A25

, A5

ADDR , A20

, A5

CITY , A20

, A5

STATE, A2

, A5

ZIP , A5

PROC

PRTREC=DATA ;Move DATA into PRTREC.

XMIT (8,PRTREC)

DIBOL LANGUAGE l—15

1.2.4.7 Data Formatting

Any numeric data field can be formatted into an alphanumeric field to

contain spaces and punctuation marks which are not stored with the

records on disk, and which cannot be present during arithmetic calcu—

lations. This is done with the following data manipulation statement:

Alphanumeric variable = numeric expression, format

Format specifies special characters to be inserted with the numeric

expression.

Example:

A = D, '—XXX,XXX.ZZ'

The eight-digit numeric at D is converted to alphanumeric code, refor-

matted with specified punctuation, and stored in alphanumeric field A.

The format string must be an alphanumeric expression. Most characters

on the printer or the keyboard can be used in a format string, but use

the following special characters with care: X, Z, *, —, ., '. Table

l-3 explains the special use of these characters.

Examples:

AMT is an alphanumeric field the same size as the associated for-

mat string:

AMT=123,'XXXXXX' ;AMT contains 123

AMT=123,'ZZZZZZ' ;AMT contains 123

AMT=123,'*XXXXX' ;AMT contains ***123

AMT=-1123,'—XXX,XXX' ;AMT contains — 1,123

AMT=123,'$*XXX.XX-' ;AMT contains $***l.23—

AMT=123456,'—XX.XX' ;AMT contains —12.34

Each comma, period, slash, minus sign, or any other special notation,
must be counted as a character position. In the AMT=123,'$*XXX.XX—'

example, AMT must be defined in a RECORD statement as a nine—character

alphanumeric field.

1-16 DIBOL LANGUAGE

Table 1-3

Special Characters

Character Explanation

X Used in a format to arrange a numeric field for

printout. Each X represents a digit and leading
zeros are automatically suppressed.

Z Used to suppress leading zeros when formatting out-

put.

* Used in a format string to replace leading zeros and

eliminate trailing spaces on printout. If the * is

anyplace except the first character in the string,
digits may also be replaced.

- Inserts an arithmetic sign in a number to be printed.
The sign can be placed before or after the number.

If the number is positive, a space is substituted for

the minus sign. If the minus sign is placed in a po—
sition following the first significant digit but pre-
vious to the last position of a format string, it is

printed like any other insertion character.

Inserts a decimal point in a format string and forces

zeros to the right of the decimal point to be signi—
ficant.

, Used to insert a comma in a format string if there

are significant digits to the left.

All other COS—310 characters are treated as unconditional inser—

tion characters.

DIBOL LANGUAGE 1-17

DISPLAY

1.2.5 DISPLAY - Input/Output Statement

DISPLAY is used to show messages on the screen and to move the screen

cursor to a specified line and character position. Numeric fields are

used only for special effects.

The form of the DISPLAY statement is:

literal

DISPLAY (y,x, afield)

where:

Y

literal

afield

dfield

dfield

is a numeric expression representing the screen line

number. If the specified line number is greater than

the number of lines on a screen, the cursor is moved to

the last line on the screen.

A statement with y equal to 0 outputs a message begin-
ning at the present location of the cursor. If y is

zero, no positioning is done and x is ignored.

is a numeric expression representing the character po-
sition. If the specified character position is greater
than the width of the screen, the results are unpre-
dictable.

is an alphanumeric string or a numeric character

string. An alphanumeric string must be enclosed in

single quotes (') and is displayed at the character po-
sition specified. There is no carriage return/line
feed after the message; the cursor remains at the

character position at the end of the message.

is an alphanumeric field containing a message to be

displayed.

is a special numeric code that causes a particular op—
eration to occur.

The following numerics are recognized as special codes

by the COS—310 system.

Position cursor.

Clear to end-of-screen.

Clear to end—of—line.

Sound terminal alarm.\INI—‘O

1-18 DIBOL LANGUAGE

If a number is to be displayed, the numeric field must

be converted to an alphanumeric field before it can be

displayed on the screen.

Examples:

DISPLAY(0,0,7)

DISPLAY(10,1,1)

DISPLAY(2,20,DAY)

DISPLAY(1,10,0)

DISPLAY(11,37,2)

DISPLAY(0,0,'DATE')

DISPLAY(11,12,7)

DISPLAY(Y,X,ALARM)

DISPLAY(1,1,'HELLO')

;Sound terminal alarm.

;Clear from line 10, character position 1

;to end-of—screen.

;Beginning on line 2, character position 2

;display the contents of DAY.

;Position cursor at first line,

710th character position.

;Clears line ll from character 37 to the end

;of the line.

;Starting at the current cursor position,
;display the word DATE.

;Position cursor at line 11, character

;position 12 and sound terminal alarm.

;If the Data Division contains:

RECORD

Y,D2,20

X,D2,36
ALARM, Dl,7

;the cursor is set at line 20,
;character position 36 and an

;audible alarm is sounded.

;Display HELLO in the upper left—hand corner

;(line 1, character 1) of the screen.

DIBOL LANGUAGE 1-19

END

1.2.6 END - Compiler Statement

This optional statement is the last statement of a program. The

statement has the form:

END[/x]

where:

/x is one of the following option switches.

/N suppresses the printing of a compiler source pro—

gram storage map listing.

/T displays a compiler source program storage map

listing on the screen.

If no options are specified, a compiler source program storage map

listing is printed as usual.

An END statement option switch or lack of it can be overridden with an

option switch (/N, /G, /T) in the compiler RUN command. If no storage

map listing is printed, the label count and number of free locations

are not printed.

1-20 DIBOL LANGUAGE

FINI

1.2.7 FINI - Input/Output Statement

A FINI statement disassociates the channel number from the mode as

specified in an INIT statement. FINI is only necessary for mass

storage output and update files, but it is good programming practice
to close each data file opened. If an output or an update file is not

closed, records may be lost.

The FINI statement has the form:

FINI (channel)

where:

channel is a numeric expression (1—15) which specifies a chan—

nel number which was associated with a mode by an INIT

statement.

The following information is useful in determining the effect of a

FINI statement on files associated for various uses.

INIT

mode Effect of FINI Statement

I Reading of the file stops. File may be reopened and

read from the beginning. Disassociates channel

number.

0 An end-of-file (EOF) mark is written, the file is

closed, and the length of the file is written in the

directory. Disassociates channel number.

U Reading/writing of the file stops. Disassociates

channel number.

K,T,L Disassociates channel number.

S Reading of the file stops. Cannot be reopened.
Disassociates channel number.

Examples:

FINI (l) ;Disassociates channel 1 from a device and file.

FINI (A+B) ;Uses the sum of A+B as a channel number, and

;disassociates that channel from a device and file.

DIBOL LANGUAGE 1-21

FORMS

1.2.8 FORMS " Input/Output Statement

The FORMS statement is used to format printer output and has the form:

FORMS (channel,skip-code)

where:

channel

skip-code

Example:

INIT(l,L)

FORMS(1,3)

Example:

INIT(5,L)

FORMS(5,0)

is a numeric expression (1-15) associated with the

printer in a previous INIT statement. If the channel

specified is not associated with a printer, the state-

ment is ignored.

is a numeric expression which causes the printer to go
to the top of the page (0) or to skip the number of

lines specified (1 to 4095).

Negative numbers cause unpredictable results.

If the code exceeds 4095, then 4096 is subtracted from

the code and the remainder is used as the skip-code.

;1 is the channel number specified in a previous
;INIT statement and 3 is the number of lines to be

;left blank.

;5 is the channel number and 0 sends the listing
;to the top of the printer page.

1-22 DIBOL LANGUAGE

GO TO

1.2.9 GO TO - Control Statement

The GO TO statement branches program control to a line in the program

identified by the label. The GO TO statement has two forms:

unconditional and computed.

1.2.9.1 Unconditional GO To

The form of the unconditional GO T0 is:

GO TO label

where:

label is the label assigned to a statement line in the Proce—

dure Division where control is to be transferred.

Example:

GO TO SET ;Transfers control to SET.

1.2.9.2 Computed GO To

The computed GO TO has the form:

GO TO (labell...,labeln),variable

where:

label]...,labeln
are statement labels. There can be any number of la~

bels up to the limit that can be stored on one line

(120 characters).

variable is a decimal variable or expression representing a

value. This value identifies the label where control

is to branch.

Control is branched to the label corresponding to the sequence number

indicated by the variable. If the variable is negative, zero, or

greater than the number of labels, control passes to the next

statement in the program.

Example:

GO TO (LOOP,LIST,TOT),KEY ;Transfer control to LOOP if KEY=l,

;LIST if KEY=2, or TOT if KEY=3.

DIBOL LANGUAGE 1-23

IF

1.2.10 IF - Control Statement

An IF statement conditionally executes certain statements on the basis

of the result of a relational comparison between expressions. The

form of the statement is:

IF (expressionl.rel.expressionZ)statement

where:

expressionl and expression2
are literals, variables, or arithmetic expressions of

the same type.

.rel. is one of the following relational operators:

.EQ. Equal

.NE. Not equal

.LT. Less than

.LE. Less than or equal

.GT. Greater than

.GE. Greater than or equal

statement is one of the following control statements which is ex—

ecuted if the relationship is true.

GO TO label STOP

CALL label TRACE

RETURN NO TRACE

ON ERROR label

Expressionl and expression2 must be of the same data type: both num-

eric or both alphanumeric. In a numeric comparison, the shorter field

is internally filled to the length of the longer field, then the com-

parison is made between the longer field and the zero-filled field.

In an alphanumeric comparison, the comparison is made on the number of

characters in the shorter field.

If the result of the comparison is not true, the next statement in

program sequence is executed.

Examples:

IF (A.EQ.B) GO TO LABEL3 ;If A is equal to B, control

;is transferred to LABEL3.

IF (SLOT.NE.2) CALL BAD ;If SLOT is not equal to 2,

;control is transferred to

;BAD.

IF(SALES.LT.PROFIT+TAX-RENT) NO TRACE

;If SALES is less than PROFIT

;plus TAX minus RENT, the

;TRACE command will terminate.

1-24 DIBOL LANGUAGE

INCR

1.2.11 INCR

The INCR (increment) statement adds 1 to the specified numeric vari-

able and has the form:

INCR variable

where:

variable is a numeric variable to be incremented by l.

INCR should only be used with positive numbers and is typically used

to add one to a counter. Its use is faster than a data manipulation
statement.

Example:

INCR A2 :Add 1 to A2. This is identical in meaning to

;the data manipulation statement A2=A2+l.

DIBOL LANGUAGE 1-25

INIT

1.2.12 INIT - Input/Output Statement

The INIT statement associates a channel number with a logical unit on

a mass storage device or a character-oriented input/output device and

initializes the device. The form of the INIT statement is:

INIT (channe1,mode[,fi1nam][,logical unit #])

where:

channel

mode

is a numeric expression which specifies a channel

number (1-15) to be associated with a logical unit or

character-oriented device. This channel number is used

in the program to refer to the associated device.

If the number specified exceeds 15, it is interpreted
modulo 16; 16 is subtracted from the number specified
and the remainder is used by the system.

The following channels are initially associated with

the specified devices at program startup. These as-

signments can be changed with an INIT statement.

6 is the channel number for the printer.
7 is the channel number for the keyboard.
8 is the channel number for the screen.

A channel that is associated with a logical unit on a

mass storage device must be closed by a FINI statement

prior to another INIT. Opening of an output file

causes the previous contents of the file to be deleted.

is the one—character mode designation of a device to be

associated with the channel number. The mode designa-
tions are:

Mode Meaning Explanation

I IN Mass storage device (logical unit)
to be used for input.

0 OUT Mass storage device (logical unit)
to be used for output.

U UPDATE Mass storage device (logical unit)
to be used for direct access both

input and output.

(Continued on next page)

1-26 DIBOL LANGUAGE

Mode Meaning Explanation

K KBD Input from keyboard.

T TTY Output to screen.

L LPT Output to printer.

S SYS Input from a source file located on

the system device. This file name

must have been specified in a RUN

command.

filnam is an alphanumeric literal or variable that identifies

the data file on the logical unit. A data file name is

necessary with the I, O, and U modes, and is illegal
with other modes.

If the file name is not present for an input, a MOUNT

message is displayed. On output, if another file is

already located on the designated logical unit,
REPLACE? is displayed.

A temporary file name such as a file name beginning
with $ may be used. When this file name is used, no

REPLACE? is generated because the program recognizes
this file name as temporary and replaces it.

logical unit #

is an optional numeric expression which specifies the

logical unit (1-15) where the data file is stored or is

to be stored.

If the number specified exceeds 15, then 16 is sub—

tracted from it and the remainder is used by the sys-

tem.

It is good programming practice to specify the logical unit number and

the data file name. Data file names should be unique so that REPLACE?

messages are avoided.

Example:

INIT (15,I,'RENEW',6) ;Initializes channel number 15 for input.
;RENEW is the name of the input file found

;on logical unit 6.

DIBOL LANGUAGE 1-27

0N ERROR

1.2.13 ON ERROR - Control Statement

The ON ERROR statement branches program control to a specified state-

ment when a nonfatal executed error occurs in the statement following
the ON ERROR statement. ON ERROR can be written into the source pro—

gram immediately prior to a statement where a possible error might
occur. The form of this statement is:

ON ERROR label

where:

label is a label assigned to a statement in the Procedure

Division where control is to be transferred.

Example:

ON ERROR TRAP ;Statement which would branch program

;control to TRAP if DEC =ALPHA creates a

;nonfatal error.

DEC = ALPHA

The ON ERROR statement prevents a return to the Monitor for the fol—

lowing run-time errors.

Message Explanation

BAD DIGIT A non—numeric digit is used in an

alphanumeric-to-numeric conversion.

END OF FILE An end—of—file label was not specified in an XMIT

statement.

ILLEGAL RECORD Record number is too large or 0, or length speci-
fied in the record header word does not match the

length of the XMIT record.

LINE TOO LONG Input line overflowed the record into which it was

read.

NO FILE No file specified in RUN command to satisfy INIT

(SYS) statement.

NUMBER TOO LONG A field of more than 15 digits is used in a calcu-

lation.

ZERO DIVISOR Division by zero attempted.

1-28 DIBOL LANGUAGE

PROC

1.2.14 PROC — Compiler Statement

The PROC statement separates the Data and Procedure Divisions of a

DIBOL program. It is of the form:

PROC [n][/x][;comment]

where:

n

/x

comment

Examples:

PROC

PROC 4/L;

is a single digit, 0-7 (not an expression), indicating
the maximum number of logical units which the program

will have open simultaneously. If no number is speci—
fied, the compiler assumes 7. The available memory is

divided into buffers to handle the number of logical
units specified. The more buffers specified, the

smaller they must be. Smaller buffers generally result

in slower sequential data file processing and faster

random data file processing.

If the program opens more logical units than were spec-

ified in the PROC statement, a run-time error occurs.

is one of the following option switches:

/N suppresses compiler listing of source program.

/L lists source program and errors on the printer.

/T displays source program and errors on the screen.

The PROC option switch is active until disabled by a

START or END statement option switch. If no option
switch is specified, a compiler listing is printed.

A /N in the RUN COMP command overrides /L's or /T's in

the program; all printout except errors is suppressed.

is an optional string of text preceded by a semicolon

which is stored for output as a heading for the Proce-

dure Division of the compiler listing. When the com-

piler encounters the PROC statement, the printer moves

to the top of the next page and outputs the comment as

a header line.

;Printer will go to top—of—the-page.

TEST PROG. ;Four mass storage logical units will

;be open, source program listing and

;errors will be listed on the printer,
;the page heading will be TEST PROG.

DIBOL LANGUAGE 1-29

READ

1.2.15 READ - Input/Output Statement

The direct access READ statement allows a specified data record to be

moved from a named file to a specified area in memory. It has the

form:

READ (channel,record,rec#)

where:

channel is a numeric expression with a value of 1-15 specifying
a channel number which links the READ statement to the

related INIT statement. The INIT statement must speci-

fy Input or Update as the mode.

record is the name of the record into which data is to be

read.

rec# is a numeric or arithmetic expression specifying the

number of the record to be read.

If the program reads past the end—of—file mark, the results are unpre-

dictable (see Section 1.2.22 for restrictions on READ and WRITE

usage.)

Examples:

READ (5,REX,88) ;Reads the 88th record of the device linked

;to the channel which was opened with the

;INIT (5,...) statement and places it in the

;memory area labeled REX.

READ (6,BLT,EXPR) ;Reads the record specified by the

;expression EXPR and stores it in the memory

;area labeled BLT.

1-30 DIBOL LANGUAGE

RECORD

1.2.16 RECORD - Data Definition Statement

The RECORD statement reserves areas of memory where data is stored

during processing. A RECORD statement without field statement infor—

mation is of no use in the program. The total size of the data fields

within a named record cannot exceed 510 characters. An unnamed record

can contain no more than 4094 characters. Only named records can be

used in an I/O operation. Without a name, the record can act only as

a temporary storage area. The RECORD statement has the form:

XI

RECORD [name][]
CI

where:

name names the record, begins with an alphabetic letter,
contains a maximum of six significant characters, and

is unique within the program. The name is optional un*

less the record is to be referenced for data transfer.

,X allows one record to be overlayed into the same area as

another. The X must be preceded by a comma. More than

one overlay may define the same record, but the over-

laying record must be equal to or smaller than the rec-

ord being overlayed. A series of overlaying records

must be preceded by a record without a ,X. Overlaying
is useful in reformatting a previously defined data

record area.

,C clears the contents of a record loaded by a CHAIN com—

mand; all numeric fields are set to zeros and all al-

phanumeric fields are set to blanks if no initial value

has been specified. Do not use ,X and ,C in the same

record; no error will occur, but the program will ig-
nore the ,C.

Accompanying field information is of the form:

,D

[fldnam], [m]xn[,initial value][,P]

,S

where:

fldnam, is an optional name that identifies the file. A comma

can be used without the fldnam if the program does not

reference the individual field.

DIBOL LANGUAGE 1-31

is an optional repetition count character used to indi—

cate an array of values that can be referenced with a

single field name. The values must be of the same type
and size and can be initially entered as a continuous

string separated by commas following the type and size

designation. Not all values of an array need to be in-

serted at the program's inception.

indicates the field type as either alphanumeric A or

numeric D.

indicates the number of characters (maximum 15 numeric,
510 alphanumeric) in the field.

,initial value
an optional value initially inserted in the field.

Must agree in type and size with the xn designation.

,D an optional switch which calls the current date from

the Monitor and inserts it at the location designated
by the data field information. Cannot be used in the

same field as ,P.

,P an optional switch which, when the program is ready for

execution, asks for the insertion of information via

the keyboard. Cannot be used in the same field as a

,D. Enter all information as alphanumeric.

,8 an optional character used to assign the value of a

variable equal to the options used at run time.

Example:

RECORD INVENT ;Record named INVENT.

THINKO, D5 ;Field named THINKO with five numeric

;characters.

THINKl, 4D7 ;Array named THINKl with four

;7—character values.

STKOPT, A6, 'OPTION';Field named STKOPT initialized to

;OPTION.

BNKBAL, D7,1234567 ;Numeric field initialized to 1234567.

TRNSDT, D6, D ;Field to enter date from the Monitor.

INPUT, A10, P ;Field to allow entry to ten characters

;from keyboard.
RUNSW, A2, S ;Field to allow entry of /xx values

;from R PROG /xx.
RECORD, C ;Clears record loaded by CHAIN command.

NAME, A20 ;Alphanumeric field with 20 characters.

RECORD, X ;Unnamed record to overlay preceding
;record.

LNAME, A10 ;Alphanumeric field with 10 characters.

FNAME, A10 ;Alphanumeric field named FNAME.

1-32 DIBOL LANGUAGE

RETURN

1.2.17 RETURN - Control Statement

The RETURN statement is placed at the logical end of an internal

subroutine. It has the form:

RETURN

The RETURN statement returns control to the statement immediately fol—

lowing the last CALL statement or to the location from which a TRAP

statement transfered control.

A RETURN WITHOUT CALL error message results if a RETURN is attempted
when no CALL or TRAP has been executed.

Example:

CALL SET

4 I I I I I I I I I I I I I I

STOP

SET, PROFIT=PRICE-COST

STOP

CALL CTAX

—->A=...

RETURN ———————————

TAX=PROFIT/2
IF (TAX.GT.MAX) CALL ERROR

CTAX,

—-RETURN

This example shows how execution control branches to and returns from

one subroutine to the next. The solid lines show the result of CALL

statements and the broken lines show the result of RETURN statements.

DIBOL LANGUAGE 1-33

START

1.2.18 START - Compiler Statement

This optional statement can be used any number of times and can be in-

serted anywhere in the source program. Each time a START statement is

encountered during compilation, a top-of-page command occurs and a new

page heading is printed. START is frequently used to segment major
sections of programs. It has the form:

STARTI/x][;comment]

where:

/x is one of the following option switches:

/N suppresses compiler listing of source program.

/L resumes listing source program and errors on

printer.

/T resumes display of source program and errors on the

screen.

The START option switch is active until disabled by
another option switch. If no option switch is speci-
fied, a compiler listing is produced on the printer.
The switches can be overridden with an option switch in

the RUN COMP command.

;comment is an optional method to stipulate a line of text to be

output as a heading on the compiler listing.

If /N is specified in the RUN COMP command, it overrides /L or /T in

the source program and stops output of everything except errors. The

/L and /T will still determine to what device errors are output.

Example:

START;WAREHOUSE INFORMATION

;The printer will begin at the top of the page and

;will list WAREHOUSE INFORMATION as the title of the

;page.

START/T ;Resumes display of source program and errors on the

;screen.

1-34 DIBOL LANGUAGE

STOP

1.2.19 STOP - Control Statement

STOP terminates program execution and returns control to the Monitor.

It can be inserted anywhere in the Procedure Division. The form of

the statement is:

STOP

There can be more than one STOP statement in a program. STOP does not

close files; a FINI statement must be inserted before the STOP to

close files previously opened by an INIT statement.

The STOP statement has the same effect as END, but END can only be

used as the last statement in a program.

DIBOL LANGUAGE 1-35

TRACE/N0 TRACE

1.2.20 TRACE/NO TRACE - Debugging Statement

These statements are debugging tools used to follow the order of

statement execution. TRACE/NO TRACE can be written any place in the

Procedure Division of a program. The appearance of TRACE statements

in a program does not cause any TRACE output to be generated unless

the /T option is specified when the RUN command is given. The form of

the statement is:

TRACE

NO TRACE

Between the TRACE and NO TRACE statements are program statements which

are being debugged.

When program tracing is enabled, TRACE lists the order in which state-

ments are executed. TRACE causes the following message to be output
on the printer (xxxx is the line number):

AT LINE xxxx

If the line number identifies a data manipulation statement, the value

which is produced and stored by the statement is printed on the fol-

lowing line. Tracing continues until a NO TRACE statement is encoun-

tered.

Example:

AT LINE 0200

000006

Indiscriminate placement of TRACE statements causes excessive output
to the printer. To use the TRACE statement to best advantage, use IE

statements to isolate the problem to a certain part of the program and

then use TRACE on that part of the program.

1-36 DIBOL LANGUAGE

TRAP

1.2.21 TRAP — Control Statement

The TRAP statement allows a DIBOL program to be executed at the same

time that output is being printed. The format of the statement is:

TRAP label

where:

label is the label of a printer subroutine in the Procedure

Division of the program.

Because the printer is much slower than the central processing unit

(CPU), the TRAP statement is implemented to allow the CPU to continue

to execute rather than having to wait for material to be printed. A

buffer holds the characters until the printer can use them.

Whenever the print buffer empties, DIBOL statement execution temporar-

ily halts and a call is made to the label specified in the last TRAP

statement executed. When a RETURN is made from this call, normal pro-

gram execution resumes. The TRAP statement normally precedes a FORMS

or XMIT statement.

The following information is necessary to effectively use the TRAP

statement.

1. If the printer buffer empties during execution of an INIT,

XMIT, READ, WRITE, DISPLAY, or FINI statement while 1/0 is in

progress, the TRAP is delayed until execution of the I/O
statement is complete.

2. If the printer buffer empties during execution of an ACCEPT

statement, the ACCEPT statement is interrupted while the

printer buffer is loaded. A noticeable delay occurs only if

the keyboard buffer is filled during the time that the TRAP

subroutine is being executed. Since the keyboard buffer is

approximately 18 characters long, this filling usually takes

several seconds.

3. Always construct a TRAP subroutine so that output to the

printer is immediately followed by a RETURN statement.

DIBOL LANGUAGE 1-37

4. Printers are limited to output lines of' 126 characters in

length when using the TRAP statement. Outputting longer
lines results in the program spending all of its time servic-

ing printer TRAPs, thus cancelling the advantage of the TRAP

statement.

5. A DIBOL program is slowed down approximately 5 to 10% by the

TRAP processor.

Example:

The following-example program outputs numbers 1—500 on the printer
while some other task is being performed:

RECORD A

N, D3

PROC

TRAP SUB

FORMS(6,0) :Start LPT.

. ;Perform task.

LOOP, IF (N.LT.500) GO TO LOOP

STOP

SUB, N=N+l

IF (N.GT.500) RETURN

XMIT(6,A)
RETURN

1-38 DIBOL LANGUAGE

WRITE

1.2.22 WRITE - Input/Output Statement

A direct

memory to

access WRITE statement moves a data record from an area in

a specified file. It has the form:

WRITE (channel,record,rec#)

where:

channel is a numeric value of 1-15, specifying a channel which

relates the WRITE statement to an INIT statement. The

INIT statement must have specified Update as the device

mode.

record is the record from which data is output.

rec# is an expression specifying the number of the record on

which data is to be written.

Example:

WRITE (5,REX,88) ;Returns the 88th record from the memory area

Several r

statement

1.

2.

;REX to the device associated with the

;channel specified by INIT (5,...).

estrictions have been placed upon the use of READ and WRITE

s.

The channel involved must refer to a logical unit on a mass

storage device.

The file to be accessed with READ or WRITE operations must

contain records of uniform size.

Only one volume of a‘ multivolume file (the one currently
mounted) can be accessed by a READ/WRITE statement.

The record which is specified from the Data Division must be

the same size as the records of the file being accessed.

Attempting to READ or WRITE over the end-of—file mark results

in an error message and program termination.

Reading or Writing a record after end-of-file usually results

in an error message. Certain unpredictable conditions will

not crash the COS-310 system but will cause garbled data (on
a READ) or the loss of the output record (on a WRITE).

Unless a FINI statement is used before terminating a DIBOL

program which has Update files, the data from the last few

WRITE statements will not be output properly.

DIBOL LANGUAGE 1-39

XMIT

1.2.23 XMIT — Input/Output Statement

The XMIT statement transfers a data record and is of the form:

XMIT (channel,record[,eof label])

where:

channel

record

is a numeric expression (1-15) specifying a channel

number which associates the XMIT statement with the re—

lated INIT statement.

is a name previously used in a RECORD statement which

identifies the area in memory to which or from which

data is to be transmitted. It may be a simple or sub—

scripted variable, or a record literal.

Subscripted record names must be used with care. A

single subseript, such as REC(3), should only be used

if there are equal length consecutive records. The

first record must have a name but the others may be un—

named.

Examples:

RECORD REC

,D6

,AlO
RECORD

,D6

,AlO
RECORD

,D6

,AlO

;REC(1)

;REC(2)

;REC(3)

If a double subscript form is used, e.g., REC (n,m),
then n must be less than m—l, n must be odd and m must

be even (or the last character in the record). This

double subscript form refers to characters n—2 through
m—2 inclusive in the record. If n=1, it refers to

characters 1 through m-2. Whenever an XMIT occurs

referring to the record, two characters before char—

acter n in the record are destroyed; this is the

COS-310 word count. Do not be concerned about this if

n=l.

1-40 DIBOL LANGUAGE

eof label is the label of a statement to which the program

Examples:

branches if an end—of-file is read. It is used with

input files only. The input file is closed automati—

cally when an end—of—file is read. If a label is not

specified, an error message is output when an

end—of—file occurs. The same effect of an end—of-file

label can be achieved by an ON ERROR statement preced-
ing the XMIT without an end—of—file.

XMIT (3,INV,EOF) ;Transfers a record from the input file

XMIT

XMIT

XMIT

XMIT

;associated with the statement INIT

;(3,IN,..), to the record area in memory

;labeled INV. If end-of-file is

;reached, control branches to the

;Procedure Division statement labeled

;EOF. If the length of the record

;being read is greater than the defined

;size, an error message is output at run

;time. If the size of the record being
;read is smaller than the defined size,

;the record is left—justified and padded
;with spaces on the right. This format

;is just the opposite of the data

;manipulation statement which does an

;alphanumeric-to—alphanumeric operation.

(l,CUST,NEXT) ;Transfers a record from the input file

;associated with the INIT(1,I,...)

;statement to the RECORD area CUST. At

;end-of—file, it branches to the

;statement labeled NEXT.

(2,BUFF) ;Takes a record from RECORD area BUFF

(8,

;and puts it in the file associated

;with the INIT(2,...) statement

;(assuming channel 2 is initialized for

;output, printer, etc.).

"HI THERE') ;Would output the message HI THERE on

;the operator's terminal if channel 8

;was INITed to the TTY.

(8,CUST(1,7),EOF) ;Accesses the first five characters of

;the record area CUST.

DIBOL LANGUAGE 1-41

CHAPTER 2

THE MONITOR

2.1 MASTER CONTROL PROGRAM

The Monitor is the master control program for the COS—310 system. It

contains all the system I/O handlers:

0 Terminal

0 Mass Storage
0 Printer

The Monitor enables you to edit, compile, save, and execute programs.

It also maintains a directory of all programs stored on the system
device and lets you label, open, and close files as needed.

During program execution, the Monitor produces the messages which in-

struct the user to mount files. It also provides the means for batch—

ing commands for sequential execution.

The editing feature of the Monitor can be used to create DFU (Data
File Utility) tables and source files on the system device. These

tables and files may be stored for later use.

Table 2-1 lists the Monitor Keyboard Commands that are available in

on—line operations.

Table 2—1

Monitor Keyboard Commands

Keyboard
Command Function

CTRL/C

CTRL/O

CTRL/Q

CTRL/S

CTRL/U

CTRL/Z

DELETE

RETURN

Returns control to the Monitor. The Monitor displays
a dot and awaits a command. If the Monitor is al-

ready in control, CTRL/C has the same effect as a

CTRL/U.

Suppresses terminal echo of typed output. If echo is

already suppressed, CTRL/O restores the terminal

echo. CTRL/O is also used to halt and resume output
from an LI command or the compiler. The echo always
resumes the next time the dot is printed. All sup—

pressed output is lost.

Resumes output to the screen from the point at which

it was halted by CTRL/S.

Halts output to screen. No output data is lost.

CTRL/Q will resume output.

Deletes the current input line.

Signals the end of input and returns control to the

Monitor. Halts output of line numbers from an LN

_command.

Erases the last character typed and moves the cursor

to that character's position.

Indicates that a line of input is complete.

2-2 THE MONITOR

2.1.1 MOUNT Messages

The Monitor displays MOUNT messages on the screen whenever an input or

output logical unit number must be specified. These messages have the

form:

MOUNT filnam #nn FOR INPUT:

MOUNT filnam #nn FOR OUTPUT:

where:

filnam is the name of the data file desired by the program

currently executing.

#nn is the volume number (1 to 63) of the data file.

Respond to this message with the logical unit number(l-15) which indi-

cates the location of the data storage unit. If an error is made in

the reply, type CTRL/U and the correct reply.

The MOUNT message is displayed and the volume number is incremented

whenever the program reaches the end of the mass storage device yet
more information remains to be read or written.

When logical unit numbers specified in control programs are not avail—

able, a question mark precedes the MOUNT message:

?MOUNT filnam #01 FOR INPUT:

Respond to this message with a different logical unit number.

The following message is displayed when a file is already stored on

the logical unit specified in a MOUNT message:

REPLACE filnam #nn ?

Answer REPLACE with a Y to replace the old file; answer with any

other character to keep the old file. File labels beginning with any

character other than A—Z,], ", or [, are considered to be temporary
files, and no REPLACE message is displayed.

If output is to a previously unused logical unit, a garbled file name

or volume number may be displayed in the REPLACE message. This is be-

cause random characters are on the storage unit where the label should

be. Answer the REPLACE message with YES to replace the garbled file.

THE MONITOR 2-3

2.1.2 Operating Procedures

The Monitor is loaded via a bootstrap routine each time the system is

started. The Monitor signals that it is loaded into memory by dis-

playing the message:

COS MONITOR V 8.00 (or current version number)
DATE?

To proceed, type DATE (or DA), a space, the current date in the form

DA dd-mmm—yy. The date must be entered before proceeding. This date

is used during program execution to date reports, files, and newly
created programs.

The Monitor indicates that it is ready to accept other commands by

displaying either a dot (.) or by executing the batch file START.

START is executed if you selected the batch file option in the SYSGEN

operation (see Section 3.1 for SYSGEN operation).

2.2 MONITOR COMMANDS

The following commands apply to Monitor functions.

BATCH sequentially executes a string of monitor commands

DATE stores a date

DELETE erases programs from a device directory

DIRECTORY prints the names of stored files

PLEASE displays text on screen during program execution

RUN loads and executes programs

SAVE stores binary programs on a storage device

Only the first two characters of the command must be typed (R is suf-

ficient for the RUN command). Any additional characters up to the

first blank are ignored. All commands must be followed by the RETURN

key before execution will begin.

2-4 THE MONITOR

BATCH

2.2.1 BATCH

A BATCH command sequentially executes a string of Monitor commands.

As soon as a command file associated with a Monitor command is com-

pleted, another Monitor command is executed. Certain system programs

started by the RUN command may either terminate BATCH or will not ac-

cept input from the batch stream; these require operator interaction.

The form of the BATCH command is:

BA cmndfl

where:

cmndfl is the name assigned to a previously stored file con—

taining a list of Monitor commands.

Following is an example of a command file:

0090 RUN COMP,JOB1
0100 SAVE JOBl

0110 RUN DFU, SYSTAB

0120 RUN JOBl

0130 RUN JOBZ

0140 RUN SORT, SRCL

0150 RUN DFU,OLDTAB
0160 DE JOBl/B

All batch command files must be on the system device. A batch command

file should contain a BATCH command only as its last line.

A Monitor command read from a batch file is displayed on the screen

and executed. Type CTRL/C to terminate a batch command file; the

batch can then be restarted only at the beginning of the file.

All of the necessary programs and data files must be available during
BATCH execution. If an error occurs, BATCH terminates, control re—

turns to the Monitor, and a dot is displayed on the screen.

After the error is corrected, the entire batch command file can be

restarted or each remaining command can be individually typed.

When the batch command file is finished, control returns to the Moni-

tor and a dot is displayed on the screen.

THE MONITOR 2-5

DATE

2.2.2 DATE

The DATE command stores a date which is assigned to all programs that

are created or to reports that are printed. This date remains the

same until a new DATE command is issued or the system is rebooted.

The form of the DATE command is:

DA dd-mmm-yy

where:

dd is a two-digit decimal number representing the day.

mmm is a three—character alphabetic string which must be

the first three letters of the month.

yy is a two—digit decimal number representing the last two

digits of the year.

After the system is booted, the Monitor displays the message:

COS MONITOR V 8.00 (or current version number)
DATE?

If anything is typed before the date is entered, the Monitor repeats:

DATE?

If the date is entered incorrectly, the Monitor displays:

BAD DATE

Enter the date whenever the Monitor is booted. It is also used to

change the system date.

Examples:

'DA 25-SEP-76

'DATE 5-JUL-77

2-6 THE MONITOR

2.2.3 DELETE

DELETE

The DELETE command erases the named source, binary, or system program
from the specified device directory.

The form of the DELETE command is:

DE pronam[,dev1/x

where:

pronam

dev

/x

is the name of the program to be removed from the di—

rectory.

is the three—character designation for the physical
device where the program is stored. If no device is

specified, the system device is assumed.

Is a one- or two—character code indicating that the

program to be deleted is either a source (S), binary
(B), or system (SV) program. This code is necessary to

differentiate between three programs with the same name

but of different types. The code SV is used rather

than V to make it more difficult to mistakenly delete a

system program.

Data files are not deleted, they can only be replaced.

Examples:

.DE JOBl, RX3/B ;Delete binary program named JOBl from device

;RX3.
.DE PROGA,DK3/S ;Delete source program named PROGA from

;device DK3.

.DE INV/S ;Delete source program named INV from system
*;device.

.DE FILEX/SV ;Delete system program named FILEX from

;system device.

THE MONITOR 2-7

DI RECTO RY

2.2.§ DIRECTORY

The DIRECTORY command prints a list of programs stored on a physical
device or the name of the data file stored on a logical unit. Be sure

the printer is on-line before issuing the DI command.

The form of the DIRECTORY command is:

[deVJI/T]
DI

/logical unit #

where:

dev is a three-character designation for the mass storage
device on which the directory is stored, and must be

preceded by a comma or space. If not specified, the

system device is assumed.

/T is an optional switch which causes the directory to be

displayed on the screen. If /T is not specified, the

directory will be listed on the printer.

/logical unit #

is the number (1-15) of the logical unit assigned with

DFU (Data File Utility). A logical unit # must be pre—

ceded by /. Specifying a logical unit # causes a label

to be listed on the printer. The DI command must be

repeated each time a logical unit # is to be printed.

The directory contains the current date, names of programs, types of

programs, length (LN) in 512-byte blocks, and the date each program

was stored.

A logical unit label contains the file name, sequence number (if a

multivolume file), the date the file was created, file length in seg-

ments, and the number of the logical unit where the file was stored

when the label was requested. Segments are sixteen 512—byte blocks

long.

The only directory entry dates that are valid are those for the cur-

rent year and seven years preceding the current date. Any dates prior
to this time will be printed incorrectly.

2-8 THE MONITOR

Examples:

The command:

.DI DKO ;Directory from physical device DKO.

causes a directory similar to the following to be output on the

printer:

DIRECTORY l5-FEB-72

NAME TYPE LN DATE

COMP V 14 19-JAN-78

MORE S 10 lS-FEB-78

(0006 FREE BLOCKS)

TSTZ S 07 lZ-FEB-78

<0007 FREE BLOCKS>

TST4 S 07 lS-FEB-78

GLOP S 10 l5-FEB-78

<0579 FREE BLOCKS)

The command:

.DI/3 ;Directory from logical unit 3.

outputs a file label similar to the one below.

NAME SEQ. DATE

*

*

*

DEP #01 18—Nov—75 *

*

LENGTH: 0046 UNIT: 3 *

*

*

*

*

*

*

*

*

*

* **************************

THE MONITOR 2-9

PLEASE

2.2.5 PLEASE

The PLEASE command displays text on the screen during execution of a

batch command file.

The form of the PLEASE command is:

PLEASE text

The text is displayed exactly as entered and the terminal alarm is

sounded. Do as requested by the PLEASE text and type any key (includ-

ing CTRL/C) to continue the batch program.

To make a two—line PLEASE command, the first line is terminated with

AND and the second line begun with another PLEASE. The AND lets the

operator know more text is to follow.

Example:

If a

0020 RUN JOBl

0030 PLEASE PUT INVOICES IN PRINTER AND

0040 PLEASE TYPE 3 TO THE NEXT MOUNT MESSAGE

0050 RUN JOB3

0060 PLEASE PUT REGULAR PAPER IN PRINTER

When this batch command file is executed, JOBl will be run, the

first PLEASE text will be displayed, and the terminal alarm will

be sounded. The system waits for a key to be typed in reply to

the PLEASE text, then it displays the next PLEASE command. When

a key is typed in reply to the text, JOB3 is executed and the

last PLEASE text is displayed. Control returns to the Monitor

when a key is typed in reply to the last PLEASE text.

PLEASE command is given in a non-BATCH mode, the terminal alarm

sounds and the system waits for a RETURN key to be typed.

2-10 THE MONITOR

RUN

2.2.6 RUN

The RUN command loads and executes a system program or a binary pro-

gram using the named file. This command provides access to all other

system programs, such as:

RUN SYSGEN To build a new system or change system handlers.

RUN SORT To sort data files.

RUN PIP To move information between physical devices.

RUN COMP To compile a user source program into a binary
program.

The RUN command has the form:

pronam
RUN I][,filnaml...,filnam7][/xx]

chain0+chainl...+chain7

where:

pronam is the name of the program to be run.

If the program name is omitted, the Monitor loads and

executes the DIBOL program in the binary scratch area.

chain0+chainl...

are binary files which are part of one large program
which has been divided into several chained programs.
For example:

.RUN CHAINO+CHAIN1+CHAIN2+CHAIN3

would execute program CHAINO. CHAINO would then deter—

mine whether program CHAINl, CHAINZ, or CHAIN3 would be

run next.

THE MONITOR 2-11

filnaml...,fi1nam7
are source files which must be on the system device.

If one of the system programs is executed via the RUN

command and no source files are specified as input, the

file in the edit buffer is used as input (system pro-

grams only).

The maximum number of binary and source files per pro—

gram is eight (including pronam or chainO). Multiple
files are concatenated and passed to system programs as

one large file.

/xx is one or a combination of option switches aSSOCiated
with the program being run.

If the program file specified is not found, the following error mes-

sage is displayed.

FILE NOT FOUND

When a program is loaded into memory by a RUN command, the Monitor

temporarily stores the contents of the edit buffer in the editing
scratch area on the system device. The contents of the edit buffer

are returned to memory when program execution is complete.

Examples:

.RU 7Executes most recently compiled DIBOL

;program.

.RU JOBl ;Runs program called JOBl.

.RUN COMP, CHECK ;Compiles the source program CHECK.

.RUN ,BINl,BIN2 ;Runs the program from the binary scratch

;area using BINl and BIN2 as input files.

2-12 THE MONITOR

SAVE

2.2.7 SAVE

This command copies the binary program from the binary scratch area

and stores it on the named device. The saved binary will be of

type B.

The form of the SAVE command is:

SA pronam[,dev][/Y]

where:

pronam is the name to be assigned to the binary program being
stored.

dev is the three-character designation for any mass storage
device which has a directory. If no device is given,
the system device is assumed.

/Y is used to bypass the REPLACE? message when a dupli-
cate name is ‘encountered. Normally used in a batch

mode to bypass operator response.

If the program name specified is a name already in the directory, the

Monitor displays:

REPLACE?

Type Y or YES to replace the old file with the new file. Type N or

any other character to leave the old file and return to the Monitor.

THE MONITOR 2-13

2.3 EDITOR COMMANDS

The COS-310 Monitor contains a line number editor. Every line of text

input to the Monitor is assigned a line number.

Example:

0100 START

0110 RECORD A

0120 A1, A64

0130 PROC 2

0140 INIT (2,IN,'MINT')
0150 LOOP, XMIT (2,A,EOF)
0160 XMIT (8,A)
0170 GO TO LOOP

0180 EOF, FINI(2)
0190 STOP

0200 END

Insertions, changes, and deletions are done with these line numbers.

The following commands are functions of the editor.

ERASE clears text from the edit buffer

FETCH loads a source file into memory

LIST outputs text to the screen or printer

Line Number outputs incremented line numbers

Number Commands edits text within the edit buffer

RESEQUENCE renumbers program lines

WRITE stores source files for later editing

These commands can be entered in response to the Monitor dot. Only
the first two characters of the command are needed. The exceptions to

this first-two-letter convention are in the line number and number

commands. All commands must be followed by the RETURN key.

2-14 THE MONITOR

2.3.1 ERASE

ERASE

The ERASE command erases (clears) text from the edit buffer.

The form of the ERASE command is:

ER [nl][,n2]

where:

n1

,n2

is the number of the line to be erased or the first of

two line numbers which delimit the lines to be erased.

If omitted, erasing starts at the beginning of the edit

buffer.

is the second of the two delimiting line numbers; it

indicates where erasing ends. If n2 is omitted but the

comma is included, erasing continues to the end of the

edit buffer.

If no line numbers are specified, the ERASE command clears the entire

edit buffer. Use this command to erase the edit buffer before enter-

ing any material to be edited.

Examples:

.ER

.ER 5

.ER ,5

.ER 5,10

.ER 5,

:Clears the entire edit buffer.

;Clears line 5.

;Clears from the start of the buffer through line 5.

:Clears from line 5 through line 10.

;Clears from line 5 through the end of the buffer.

THE MONITOR 2-15

FETCH

2.3.2 FETCH

The FETCH command erases the edit buffer and loads the named source

file from the specified device into memory.

The form of the FETCH command is:

FE filnam[,dev]

where:

filnam is the name of a previously stored source file which is

to be brought into memory.

dev is the three-character designation for the mass storage
device where the file is stored. If the device desig-
nation-is omitted, the system device is assumed.

If the source file is not found, the Monitor displays the message:

FILE NOT FOUND

Retype the command with the correct source file name or device desig-
nation. Consult the directory to find the proper name.

Examples:

.FE RICH ;Moves file RICH from the system device to the

;edit buffer.

.FE PAYROL,DK2 ;Moves file PAYROL from an RK05 disk on drive 2 to

;the edit buffer.

2-16 THE MONITOR

LIST

2.3.3 LIST

The LIST command outputs the specified lines or the entire contents of

the edit buffer to the printer or to the screen.

The form of the LIST command is:

LI [n1][.n2][/L]

where:

n1 is the number of the line to be output or the first of

two line numbers which delimit the lines to be output.
If omitted, output starts at the beginning of the edit

buffer.

,n2 is the second of two line numbers; it indicates where
'

output ends. If n2 is omitted but the comma is includ-

ed, output continues to the end of the edit buffer.

/L is the one-letter switch which will output the list to

the printer. If /L is not indicated, the list is dis-

played on the screen.

If no line numbers are specified, the entire contents of the edit

buffer is output. CTRL/O stops output from an LI command; CTRL/S
halts display on the screen; CTRL/Q resumes display halted by CTRL/S.

Examples:

.LI/L ;List entire edit buffer on printer.

.LI 5 ;Display line 5 on the screen.

.LI ,5 ;Display from beginning of buffer through line 5.

.LI 5,10 ;Display line 5-10, inclusive, on the screen.

.LI 5, ;Display from line 5 through the end of the buffer.

THE MONITOR 2—17

LINE NUMBER

2.3.4 Line Number

The Line Number command automatically outputs incremented line numbers

so new lines can be entered without manually typing each line number.

.The form of the Line Number command is:

LN [n][,inc]

where:

n is the number of the starting line. If no starting
line number is specified, 100 is assumed.

If the comma after the starting number and the incre-

ment number are omitted, the starting number and incre—

ment number are the same.

If the command is LN 100, the start line number is 100

and the increment remains unchanged from the last LN

command. Once in memory, the increment returns to 10.

inc is the increment between line numbers. If no increment

is specified, 10 is assumed.

If Line Number command is terminated and some editing has been done,

type the Line Number command (LN) with no arguments to display the

next number in sequence.

The LN command does not clear the edit buffer. Line Numbers 0 to 4095

are available. Under the default conditions (start at 100, increment

by 10), the program can be approximately 400 lines long.

The maximum number of characters on an input line, including the line

number and space, is 120. The line number and space are counted as

two characters.

No terminal screens are 120 characters wide. When the screen is full,
the Monitor executes a carriage return/line feed but does not display
the next line number. If the lZO—character input line length is ex—

ceeded, the Monitor gives the error message LINE TOO LONG and the en—

tire input line is lost.

2-18 THE MONITOR

If RETURN is the first key typed after an automatic line number, the

line number increments but a blank line is not generated. To obtain a

blank line, type the SPACE bar and the RETURN key. To obtain a blank

line after you manually enter a line number, type two spaces and the

RETURN key.

Tabs can be used to increase the readability of a program. The TAB

key on most terminals is set to produce up to 8 spaces. The first tab

goes to column 13 because the line number and space take the first

five spaces.

Type CTRL/Z to indicate the end of input and to halt the automatic

line numbering.

Examples:

.LN ;Requests line numbers starting at 100 with increments

;of 10.

.LN 10,5 ;Requests line numbers starting at 10 with increments

;of 5.

.LN ,100 ;Requests line numbers starting at 100 (default) with

;increments of 100.

.LN 50 ;Requests line numbers starting at 50 with increments

;of 50.

If an error is made when using automatic line numbers, use the DELETE

key or CTRL/U prior to typing the RETURN key. The DELETE key erases

the last character typed. CTRL/U erases the entire line; the Monitor

redisplays the line number.

If the edit buffer is full, the error message EDIT BUFFER FULL ap-

pears, and the last line entered is lost.

The edit buffer can be separated into two or more source files. This

is done with the following procedure:

WRITE the edit buffer as file B.

ERASE the last half of the edit buffer.

WRITE the edit buffer as file A.

FETCH file B.

ERASE the first half of the edit buffer.

WRITE the edit buffer as file B.

THE MONITOR 2-19

NUMBER COMMANDS

2 . 3 . 5 Number Commands

Any line beginning with a number can be edited in the edit buffer.

Lines are edited using the following form:

nnnn [text]

where:

nnnn is the number of a line you want to work on.

text is data to be input on the line. The data must be sep-
arated from the line number by one SPACE or a TAB. A

TAB becomes the first character of text.

If text is already at that line number, the new text replaces it.

Lines are stored in increasing line number order. Type the line

number and RETURN right after the line number to clear data from that

line.

An input line is limited to 116 characters plus the four-character

line number (a total of 120 characters).

Examples:

Text before editing:

.LI

0035 PROC

0040 INIT(I,V,IN)

0047 XMIT(6,B)

ooéo END

Editing commands:

.35 PROC l ;Inserts PROCl at line 35.

.40 INIT(1,IN,'LABEL',2) ;Inserts new text at line 40.

.47 ;Erases text and line number.

Text after editing:

.LI

0035 PROC l

0040 INIT(l,IN,'LABEL',2)

0060 END

2-20 THE MONITOR

RESEQUENCE

2.3.6 RESEQUENCE

The RESEQUENCE command renumbers the program lines to adjust for addi-

tion and deletion of lines.

The form of the RESEQUENCE command is:

RE [n][,inc]

where:

n is the starting line number. If no starting line

number is specified, 100 is assumed.

If the comma after the starting number and the incre-

ment number are omitted, the starting number and incre-

ment number are the same. If the comma is included,
the starting number is as designated and the increment

remains unchanged unless the Monitor is read back into

memory; once in memory, the increment returns to 10.

inc is the increment between line numbers. If no increment

is specified, 10 is assumed.

If the line number exceeds 4095 following a RESEQUENCE command, the

error message LINE # TOO LARGE results. Enter another RESEQUENCE com-

mand with smaller increments. If this is not done, the text will be

only partially resequenced and duplicate line numbers may result.

Examples:

.RE ;Resequences line numbers of a program in the edit

;buffer using 100 as the starting line number and 10

;as the increment.

.RE 10,5 ;Resequences line numbers of a program in the edit

;buffer using 10 as the starting line number and 5 as

;the increment.

.RE ,100 ;Resequences line numbers of the program in the edit

;buffer using 100 or the last specified line number as

;the starting line and 100 as the increment.

.RE 50, ;Resequences line numbers of a program in edit buffer

;using 50 as the starting line number without changing
;the increment.

THE MONITOR 2-21

WRITE

2.3.7 WRITE

The WRITE command stores a source file on the specified device so it

can later be compiled or fetched for editing.

The form of the WRITE command is:

WR filnam[,dev][/Y]

where:

filnam is the name (up to six characters) of the source file

to be stored.

,dev is the three—character designation for the mass storage
device where the program is to be stored. If no device

is specified, the system device is assumed.

/Y bypasses the REPLACE? message when a duplicate name is

encountered. Normally used in a batch file to bypass
operator response.

If the filnam specified is a duplicate name, the Monitor displays:

REPLACE?

Type Y or YES to replace the old file with the new file. Type N or

any other character to leave the old file and return to the Monitor.

2-22 THE MONITOR

2.4 MONITOR ERROR MESSAGES

Message

BAD COMPILATION

BAD DATE

BAD DIRECTORY

BAD LABEL

EDIT BUFFER FULL

ERROR IN COMMAND

ERROR ON deV, RETRY?

FILE NOT FOUND

ILLEGAL PROGRAM

ILLEGAL UNIT

IN USE

Explanation

Attempted to SAVE a compiled binary that

had errors. Correct errors before com—

piling.

Typed an unrecognizable date. Retype.

Attempted to reference or store a file

on a device with a damaged or nonexis-

tent directory. Only devices with di-

rectories can be used. If the directory
is damaged, call your Software Special-
ist.

No data file label, or label's form is

incorrect. Check for correct label.

Greater than 8,150 characters (see Sec-

tion 2.3.4 Line Number).

commandMiscellaneous. Check previous
for form and accuracy.

The wrong device was designated. Type N

for no retry. Any other input causes

the device handler to retry.

The file specified was not found on the

directory that was specified. Re-enter

file name or review directory for file

existence.

Attempted to run a system program that

has a different version number than the

Monitor. Version numbers must be the

same.

Either the specified logical unit number

is illegal (not 1—15) or the specified
device is not currently part of the sys—

tem. Replace the illegal number with a

correct unit number. Stipulate a cor-

rect device designation.

The specified logical unit is already

open. Select another logical unit.

THE MONITOR 2-23

Message Explanation

LINE TOO LONG More than 120 characters entered on an

input line. Line must be shortened.

LINE # TOO LARGE Line number greater than 4095.

Resequence line numbers or reduce the

total number of lines.

?NO FILE TO SAVE Nothing in the edit buffer when WRITE

command is issued. New data must be en-

tered.

NO INIT Program attempted to read or write on a

device that was not opened by the system

program. Device must be opened with an

INIT statement.

NO LP BUFFER Not enough memory to support the select-

ed printer (e.g., LQP printer requires
24K bytes of memory). Add more memory
or select another type of printer.

2.5 RUN-TIME ERROR MESSAGES

All errors are fatal unless the error is trapable and the statement in

which it occurs is immediately preceded by an ON ERROR statement with

a valid label (see Section 1.2.13 ON ERROR).

The messages marked with an asterisk (*) cannot be checked with an 0N

ERROR statement.

AT LINE nnnn is displayed under all run-time error messages; nnnn is

the DIBOL source program line number where the error occurred. If

COMP/O was specified for a program, nnnn is meaningless.

Message Explanation

*BAD CHAIN CHAIN argument does not match .RUN com—

mand. All chained programs must be stip-
ulated in the RUN command.

BAD DIGIT A character other than +, -, space, or

the digits 0-9 was encountered in an al-

phanumeric-to-numeric conversion. Check

and delete bad digits.

2-24 THE MONITOR

Message

*BAD PROGRAM

*DIBOL FILE NUMBER IN USE

*DIBOL FILE NUMBER NOT INITED

END OF FILE

*ILLEGAL DEVICE

ILLEGAL RECORD #

*ILLEGAL SUBSTRING

LINE TOO LONG

*NO BUFFERS LEFT

Explanation

Attempted to run a binary program which

contains a compilation error. Check

compilation listing for errors. Correct

errors and recompile.

In INIT, the channel number is already
associated with a device. Enter new

channel number/device combination.

An attempt was made to XMIT, READ, or

WRITE with a channel number that was not

associated with a device. Either INIT

the channel number or use a channel

number already opened.

The last record of an input file has

been read and the end—of-file mark en—

countered, but no EOF label was speci—
fied in the XMIT statement or in the ON

ERROR statement preceding the XMIT

statement. Rewrite XMIT statement.

Attempted to WRITE on a file that was

not opened for UPDATE or attempted to

READ from a file that was not opened for

INPUT or UPDATE. INIT file properly.

Either the record number is 0, past the

end of the logical unit, or the records

are not all the same length when you are

using UPDATE mode.

A DIBOL Procedure Division statement at—

tempted to access a subscripted data

field, Fl (m,n), but m<l or m>n.

Redefine data field.

Attempted to XMIT a record that is too

long for the area defined in the Data

Division. Redefine the area in the Data

Division.

Not enough memory available for I/O
buffers (e. ., DIBOL program is too

big). An 1/ buffer of some multiple of

512 characters is set up for each active

mass storage file. Another possibility:
too few files were specified in the PROC

statement. Specify more files.

THE MONITOR 2-25

Message

NO FILE

NUMBER TOO LONG

*PROGRAM TOO BIG

*PUSHDOWN OVERFLOW

*RETURN WITHOUT CALL

*SUBSCRIPT TOO BIG

ZERO DIVISOR

2-26 THE MONITOR

Explanation

No file specified in RUN command to

satisfy INIT (SYS) statement Specify
file.

A numeric field longer than 15 digits
was used in a calculation. Reduce to

within lS-digit limitation.

Binary program does not fit in available

memory. Reduce program size, or chain

program.

Statement is too complex and/or subrou—

tines are nested to a depth greater than

50. Simplify statement, reduce nesting,
or both.

The program tried to execute a RETURN,
but there was no place to go. Implement
CALL or TRAP statement or delete the RE-

TURN statement.

Program attempted to use a subscript
larger than that defined in the Data

Division. Note that the run—time system
does not detect all illegal subscripts,
only those which would cause the program
or the system to be destroyed. Redefine

subscript.

The program attempted to divide by zero.

Eliminate division by zero.

CHAPTER 3

SYSTEM GENERATION PROGRAM (SYSGEN)

The System Generation Program (SYSGEN) is a conversational program

used to create a system on a new device or to change the system
handlers in the current system. The SYSGEN statement has the follow-

ing form:

/B
RUN SYSGEN

/C

where:

/B builds a system in a new device.

/C changes handlers on the current system.

3.1 SYSGEN/B OPERATING PROCEDURES

Use SYSGEN/B to build a system on a new device.

At least two drives must be running and loaded on the system in order

to perform this operation. To execute SYSGEN/B, type:

RUN SYSGEN/B

After this command, SYSGEN displays the following question:

WHAT IS THE NEW SYSTEM DEVICE?

Respond by typing the three-character designation for the device that

you want to build a new system on. A message similar to the following
then appears on the screen.

ENTER NUMBER CORRESPONDING TO DESIRED CONFIGURATION

1 DK RK05 CARTRIDGE DISK DRIVES

2 RX RXOl FLOPPY DISK DRIVES

3 DY RX02 FLOPPY DISK DRIVES

4 DK & RX RK05 AND RXOl DISK DRIVES

5 DK & DY RK05 AND RX02 DISK DRIVES

Type the number corresponding to the kind of drive(s) that you want.

SYSGEN responds with:

PLEASE TYPE NUMBER OF PRINTER MODEL ON SYSTEM

1 LA8A DECPRINTER I USING DKC8-AA INTERFACE

2 LA35 DECWRITER II

3 LA36RO DECWRITER II

4 LQP LETTER-QUALITY PRINTER

5 LP05 300 LPM PRINTER

6 LA8 DECPRINTER I

7 LA120 DECWRITER III

8 NONE NO PRINTER

Type the number corresponding to the printer you want. If you select

a printer that does not have forms hardware, SYSGEN asks:

HOW MANY LINES PER PAGE?

Type the number of lines you want on each page. The default value is

66 lines. After lines-per-page has been specified, the system asks:

DO YOU WANT START-UP BATCH FILE?

Answer YES if you want the Monitor to execute the batch file START

every time you use the Monitor DATE command. Answer NO if you do not

3-2 SYSTEM GENERATION PROGRAM (SYSGEN)

want to automatically execute the batch file. This option does not

require any additional memory for the COS-310 Monitor or space on the

system device except for the space needed for the START file. You

create START by writing a batch file and naming it START.

After you enter YES or NO, SYSGEN responds by asking:

DO YOU WANT TO TRANSFER YOUR FILES?

Answer YES to copy the Monitor and the system, source, and binary
files onto the new system device. This transfer destroys anything
previously stored on the new system device. Answer NO to empty the

new device's directory and to copy the COS-310 Monitor onto the new

device; no files are transferred.

SYSGEN then asks:

IS EVERYTHING CORRECT?

Type YES if your answers are correct. Type NO and SYSGEN repeats the

questions starting at the request for the new system device.

The new system is built only after you give a YES response to SYSGEN's

last question.

If you chose not to transfer files, the COS MONITOR message is immedi-

ately displayed. If you chose to transfer files, the time needed to

make the transfer delays the COS MONITOR message.

SYSGEN/B does not reset the logical unit assignments to reflect the

new area occupied by the system on a disk. Use DFU to make new logi-
cal unit assignments.

The SYSGEN/B operation will fail if you attempt to transfer your files

to a device that does not have enough room for both the system and the

files. The operation can be done by rebooting the system and running
SYSGEN/B without transferring files onto one device and then running
SYSGEN/B without transferring files a second time onto another device.

Then use PIP OPT- E to put source files on one device and binary files

on the other device.

3.2 SYSGEN/C OPERATING PROCEDURES

Use SYSGEN/C to change handlers within the current system. To execute

SYSGEN/C, type:

RUN SYSGEN/C

SYSTEM GENERATION PROGRAM (SYSGEN) 3-3

SYSGEN displays the following statement:

ENTER NUMBER CORRESPONDING TO DESIRED CONFIGURATION

1 DK RK05 CARTRIDGE DISK DRIVES

2 RX RXOl FLOPPY DISK DRIVES

3 DY RXOZ FLOPPY DISK DRIVES

4 DK & RX RK05 AND RXOl DISK DRIVES

5 DK & DY RK05 AND RX02 DISK DRIVES

Type the number corresponding to the kind of drive(s) that you want.

SYSGEN responds with:

PLEASE TYPE NUMBER OF PRINTER MODEL ON SYSTEM

1 LA8A DECPRINTER I USING DKC8-AA INTERFACE

2 LA35 DECWRITER II

3 LA36RO DECWRITER II

4 LQP LETTER-QUALITY PRINTER

5 LP05 300 LPM PRINTER

6 LA8 DECPRINTER I

7 LAlZO DECWRITER III

8 NONE NO PRINTER

Type the number corresponding to the printer you want. If you select

a printer that does not have forms hardware, SYSGEN asks:

HOW MANY LINES PER PAGE?

Type the number of lines you want on each page. The default value is

66 lines. After lines-per~page has been specified, the system asks:

DO YOU WANT START-UP BATCH FILE?

Answer YES if you want the Monitor to execute the batch file START

every time you use the Monitor DATE command. Answer NO if you do not

want to automatically execute the batch file. This option does not

require any additional memory for the COS-310 Monitor or space on the

system device except for the space needed for the START file. You

create START by writing a batch file and naming it START.

3-4 SYSTEM GENERATION PROGRAM (SYSGEN)

After you enter YES or NO, SYSGEN asks:

IS EVERYTHING CORRECT?

Type NO and the entire sequence of questions begins again. Type YES

and SYSGEN responds:

SYSGEN COMPLETE--PLEASE RE-INITIALIZE SYSTEM

The system automatically halts and must be rebooted. The new handlers

are now in the system and SYSGEN/C is completed.

3.3 SYSGEN ERROR MESSAGES

Message Explanation

BAD SWITCH Attempted to use a switch other than B or C.

Use /B or /C.

dev MUST BE INCLUDED IN CONFIGURATION

Attempted to operate SYSGEN/C without desig-
nating a device handler. Enter the device

designation where needed.

FULL Ran out of room for files on new device. Run

SYSGEN/B twice without transferring files and

use PIP OPT- E to put source files on one

‘device and binary files on the other device.

The most common indication of error is the repeat of the question.
Answer the question again.

SYSTEM GENERATION PROGRAM (SYSGEN) 3-5

CHAPTER 4

DATA FILE UTILITY PROGRAM (DFU)

Use the Data File Utility Program (DFU) to make logical unit assign-
ments or to print a table of these assignments for reference. The

COS—310 system is shipped with logical units unassigned.

4.1 DFU OPERATING PROCEDURES

To execute DFU, type

RUN DFU

where:

,filnam

/xx

,filnam

/xx

is the name of a previously created file containing a

table of logical unit assignments. This file is stored

on the system device.

is an

tion

/B

/K

/D

/DL

/E

option switch which determines the specific func-

of DFU.

makes logical unit assignments from a table creat—

ed in the edit buffer.

makes new logical unit assignments directly from

the keyboard.

displays the table of current logical unit assign—
ments on the screen.

lists the table of current logical unit assign-
ments on the printer.

displays an expanded table of current logical unit

assignments. Similar to /D with the addition of

the file name, volume sequence number, creation

date, and length of the data file.

/EL lists the expanded table of logical unit assign—
ments on the printer.

If neither file name nor option switch is specified, DFU defaults

to /B.

4.1.1 DFU,filnam Operating Procedures

DFU,filnam takes the logical unit assignments from a table stored as a

file on the system device. To execute DFU,filnam type:

RUN DFU,filnam

The table is created with editor commands and contains the device de-

signation and the number of segments in each logical unit. The se-

quence of the entries determines the number associated with the logi—
cal unit. The table is created in the edit buffer and stored as a

named file. The table is similar to the following:
'

RXO, 41

Rxl, 41

RKl, 41

RK3, 21

A maximum of 15 entries can be made in the table.

The DFU program makes the assignments on the appropriate devices but

produces no output on the screen or printer.

4.1.2 DFU/B Operating Procedures

DFU/B makes logical unit assignments from a table in the edit buffer.

To execute DFU/B, type:

RUN DFU/B

The table is the same as the one used by DFU,filnam. The table must

be in the edit buffer. The processor makes the assignments on the ap—

propriate devices but produces no output on the screen or printer.

4-2 DATA FILE UTILITY PROGRAM (DFU)

4.1.3 DFU/K Operating Procedures

DFU/K makes new logical unit assignments from the keyboard.
cute DFU/K, type:

RUN DFU/K

DFU responds by prompting you to enter the logical
For example:

4.1.4 DFU/D Operating Procedures

DFU/D displays the table of current logical unit

To execute DFU/D,screen.

,RUN DFU/K

DFU V 8.00

1 = RXO,4l

2 = RXl,4l
3 = RX2,41

4 = RX3,41

5 = END

RUN DFU/D

type:

TO exe-

unit assignments.

assignments on the

A table similar to the following is displayed on the screen.

UNIT DEV. SEGS.

RXO 4l

RXl 41

RXZ 41

RX3 41

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

DATA FILE UTILITY PROGRAM (DFU) 4-3

where:

UNIT

DEV.

SEGS.

is the

is the

device

is the

unit.

logical unit number.

three-character designation of the mass

where the unit is located.

number of segments assigned to each

4.1.5 DFU/DL Operating Procedures

DFU/DL lists a table of current logical unit assignments.
table as in DFU/D except the table is listed on the printer.

execute DFU/DL,

same

type:

RUN DFU/DL

A table similar to the following is listed on the printer.

UNIT

where:

UNIT

DEV.

SEGS.

4-4 DATA

DEV. SEGS.

41

41

RXO

RXl

RXZ 41

RX3 41

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

-UNDEFINED-

is the

is the

device

is the

unit.

FILE

logical unit number.

three-character designation of the mass

where the unit is located.

number of segments assigned to each

UTILITY PROGRAM (DFU)

storage

logical

This is the

TO

storage

logical

4.1.6 DFU/E Operating Procedures

DFU/E displays the expanded table of current logical unit assignments.
This is similar to DFU/D with the addition of the file name, the

volume sequence number (1-63), the creation date, and the data length.
To execute DFU/E, type:

RUN DFU/E

A table similar to the following is displayed on the screen.

UNIT DEV. SEGS. NAME SEQ. DATE LEN.

l RXl 0037 FILEl l 2/ 4/76 0010

2 RXl 0002 FILEZ 1 1/28/76 0002

3 RXl 0002 FILE3 l 3/ 1/76 0002

4 - UNDEFINED -

5 - UNDEFINED -

6 - UNDEFINED -

7 - UNDEFINED -

8 - UNDEFINED -

9 - UNDEFINED —

10 - UNDEFINED -

ll - UNDEFINED —

12 - UNDEFINED -

l3 - UNDEFINED —

l4 — UNDEFINED -

15 - UNDEFINED -

where:

UNIT is the logical unit number.

DEV. is the three-character designation of the mass storage
device where the unit is located.

SEGS. is the number of segments assigned to each logical
unit.

NAME is the name assigned to the data file.

SEQ. is the sequence number (what volume in a multivolume

file) of that specific data file.

DATE is the creation date of the data file.

LEN. is the number of segments used by the data file.

When using DFU/E or DFU/EL, failure to mount each mass storage device

where logical units are assigned will either cause an error message or

will cause the system to stop processing until the mass storage device

is mounted.

DATA FILE UTILITY PROGRAM (DFU) 4-5

4.1.7 DFU/EL Operating Procedures

DFU/EL lists the expanded table of current logical
This is the same as DFU/E except the table is listed on the printer.
To execute DFU/EL, type:

RUN DFU/EL

assignments.

A table similar to the following is listed on the printer.

UNIT DEV. SEGS. NAME SEQ. DATE LEN.

l Rxl 0037 FILEl 1 2/ 4/76 0010

2 Rxl 0002 FILE2 1 1/28/76 0002

3 Rxl 0002 FILE3 l 3/ 1/76 0002

4 - UNDEFINED -

5 - UNDEFINED -

6 - UNDEFINED -

7 - UNDEFINED -

8 - UNDEFINED -

9 - UNDEFINED -

10 - UNDEFINED -

ll - UNDEFINED -

12 - UNDEFINED -

l3 - UNDEFINED -

l4 - UNDEFINED -

l5 - UNDEFINED -

where:

UNIT is the logical unit number.

DEV. is the three—character designation of the mass storage
device where the unit is located.

SEGS. is the number of segments assigned to each logical
unit.

NAME is the name assigned to the data file.

SEQ. is the sequence number (what volume in a multivolume

file) of that specific data file.

DATE is the creation date of the data file.

LEN. is the number of segments used by the data file.

The number of segments in a logical unit is up to you. COS—310 allows

one file in each logical unit.

4-6 DATA FILE UTILITY PROGRAM (DFU)

4.2 LOGICAL UNIT ASSIGNMENTS ON THE COS-310 SYSTEM

The assignment of logical units to mass storage devices provides
greater utilization of the storage area.

The COS-310 system handles storage using the following hierarchy:

2 characters 1 word

256 words 1 block

16 blocks 1 segment
Rx01 storage capacity
Rx02 storage capacity
RK05 storage capacity

41 segments
61 segments
406 segments II

II

II

II

H

II

Do not assign logical units to devices not currently part of the sys—

tem configuration.

4.2.1 Determining Logical Unit Size

The following procedure works when all records within a file are the

same size.

The size of a logical unit is dependent upon the record size and the

number of records required in the data file. To determine the number

of segments required for a logical unit, use the following steps:

Step 1 Determine the number of data characters in a record (maximum
of 510 characters). The number must be even. If the number

is odd, add one to make it even.

Step 2 COS—310 requires two characters to store the number deter—

mined in Step 1; add these two characters to the total from

Step 1. This new total is the record size.

Step 3 Determine the total number of characters required in the file

by multiplying the record size found in Step 2 by the number

of records desired.

Step 4 Add 512 characters for a file header and 2 characters for a

file trailer. This plus the total from Step 3 is the total

number of characters to be used in the logical unit.

Step 5 Because the logical unit size is expressed in segments rather

than in characters, the number from Step 4 must be divided by
8192. Round up any remainder.

The following algorithm can be used to perform this calculation by as-

signing values to fields DATA and RECS.

DATA FILE UTILITY PROGRAM (DFU) 4-7

RECORD

DATA, D3 ;Number of data characters per record.

RECS, D5 ;Number of records in file.

FSIZE, D15 ;Number of characters in file.

RECORD RESULT

A18, 'TRUE RECORD SIZE:
'

I

RSIZE, D3

, A26,
'

CHARACTERS FILE SIZE:
'

SIZE, D5

, A9,
'

SEGMENTS'

PROC

RSIZE 2 + ((DATA + l)/2)*2
FSIZE 512 + RECS * RSIZE + 2

SIZE = FSIZE/8192
IF (FSIZE.EQ.SIZE*8192)GO TO OK

SIZE = SIZE + 1

OK XMIT (8, RESULT)

4.2.2 How Logical Units are Assigned by DFU

On the system device, logical units are assigned in a pushdown order

beginning, at the end of the device. For example, a disk with three

logical units would be arranged, starting from the beginning, as:

Directory; Monitor; System programs; User programs; Unused space

to which new user programs may be added; Logical Unit 1; Logical
Unit 2; Logical Unit 3. As more logical units are assigned, Logical
Unit 1, Logical Unit 2, etc., move closer to the beginning of the dev-

ice.

On nonsystem devices, logical units are assigned in sequential order

starting at the beginning of the device. For example, a disk with 4

logical units might be arranged: Logical Unit 1; Logical Unit 2;

Logical Unit 3; Logical Unit 4; Unused space.

Example:

Logical Unit Device Size (Segments)

1 DKO 5

2 DKO 5

3 DKO 5

4 DKl 2O

5 DKl 21

6 DKl 20

4-8 DATA FILE UTILITY PROGRAM (DFU)

The preceding logical unit assignments would cause an RK05 system disk

(DKO) and nonsystem disk (DKl) to be organized as follows:

System Disk Non—system Disk

DKO DKl

(I)

LU3 E
E

LUZ U
lit-l

(D

L01
0

'\

U)

UNUSED UNUSED S
SPACE SPACE

(é:
o

a
USER

PROGRAM g
(SOURCE

N

U)
8 E

BINARIES) a
z
o
[d

SYSTEM m

PROGRAMS \D

M

M

MONITOR L06
Eng

32L05 _‘§
0

DIRECTORY LU4 5']:

It is advisable to create logical units only slightly larger than the

actual data file size since a short file in a large logical unit

wastes storage.

4.3 DISK USERS

The RK05 disk cartridges each contain 406 segments. Up to four RK05

drives can be mounted on a system. Approximately 200 blocks (or 12

segments) must be left unassigned to hold the operating system and

system programs. In addition, 50 segments should be left to store

source programs, control programs, and binary programs. This leaves

344 segments for logical unit assignments.

DATA FILE UTILITY PROGRAM (DFU) 4-9

DKO

l 12 62 406

system source and 344 segments

programs binary files for logical unit

assignments

A sample logical unit assignment might be:

DKO

l 12 62 268 314 360 406

system source and free logical logical logical
binary files space unit 8 unit 9 unit 10

The area between logical unit 8 and the system can be left unassigned
for system program overflow.

4.4 DFU ERROR MESSAGES

Message Explanation

BAD SWITCH Attempted to use an option switch other than

/B, /K, /D, /DL, /E, or /EL. Use only allow—

able option switches.

ILLEGAL DEVICE A device other than one usable by the system
was designated in the logical unit table.

Enter correct device designation.

INSUFFICIENT SPACE ON DEVICE

Attempted to allocate more segments than are

available on a device. Either allocate fewer

segments, make more segments available, or

use a larger device.

NOT ENOUGH ROOM FOR SYSTEM AND FILES

Device designated was too small to hold sys—

tem program and files. Use PIP OPT- E to put

system on one device and files on another.

TOO LARGE Number entered was larger than 4095. Enter

number smaller than 4095.

SYNTAX ERROR Missing commas, extra characters, etc.

Correct error and reenter.

4-10 DATA FILE UTILITY PROGRAM (DFU)

CHAPTER 5

DIBOL COMPILER (COMP)

The Compiler converts a DIBOL source program into a binary program and

reserves storage space for the constants, variables, and statements

used by the program.

The Compiler outputs a source program compilation listing and a

storage map listing of the records and fields used by the program.

Turn on the printer before running the Compiler.

5.1 COMP OPERATING PROCEDURES

To execute the Compiler program, type:

RUN COMP[,filnaml...,filnam7][/xx]

where:

filnaml...,filnam7
are file(s) to be compiled into one binary program. If

no files are specified, the program in the edit buffer

is compiled.

/xx is one or a combination of the following option
switches:

/N stops output of the compilation listing and the

storage map listing.

/G compiles the program and, if no errors are detect—

ed, executes the binary program; implies /N. The

message LOADING is displayed when compiling is

successfully completed. If INIT SYS is used in

the program, the program must have an END state—

ment to be compiled and executed with the /G op—

tion.
'

/T enables the TRACE function; implies /G.

/D transfers control to DDT; implies /G.

/0 creates a binary program that requires less memory

space by eliminating the TRACE feature and accu-

rate error reporting. Execution speed of the com-

piled program is increased by as much as 20%.

This option can be combined with /N or /G.

The /0 option saves memory space as follows:

0 Saves one location

statement.

0 Saves one location for each label.

0 Uses one location for each ON

statement.

for each executable

ERROR

Use the /0 option on thoroughly debugged programs.

Unless the /N or /G option is specified in the RUN COMP command, the

Compiler outputs a two-part compilation listing (Data Division and

Procedure Division) of the source program and a storage map either on

the printer or on the device specified in START, PROC, or END.

The Compiler underscores the number of the line where an error

and inserts a caret (“) pointing to the error.

occurs

Other errors are list—

ed on the storage map. Errors must be corrected before the program

can be executed.

The Compiler displays the number of errors as nn ERRORS

5.1.1 Source Program Compilation Listing

COS DIBOL lZ-JUL-78 WED COMPILATION LISTING V 8.00 PAGE 01

DATA DIVISION OPTIONAL COMPILATION STATEMENT

0100 START ;Optional compilation statement.

0110 RECORD INBUF ;Record named INBUF.

0120 STOCKN, D4 ;Numeric field named STOCKN.

0130 DESC, A25 ;Alphanumeric field named DESC.

0140 UCOST, D5 ;Five—character numeric field.

0150 QORDER, D4 ;Four—character numeric field.

0160 , D9 ;Unreferencable unnamed field.

0170 RECORD OUTBUF ;Record named OUTBUF.

0180 , D4 ;Unnamed numeric field.

0190 , A25 ;Twenty-five character field.

0200 , D5 ;Unnamed field.

0210 , D4 ;Temporary storage field.

0220 ECOST, D9 ;Numeric field named ECOST.

0230 RECORD ;Unnamed record-temporary storage
0240 ;cannot be directly referenced.

0250 TITLE, A6, 'OVRHED' ;Field initialized to 'OVRHED'.

5-2 DIBOL COMPILER (COMP)

COS DIBOL 12—JUL-78 WED COMPILATION LISTING V 8.00 PAGE 02

PROCEDURE DIVISION END DATA DIVISION-BEGIN PROCEDURE DIVISION

0260 PROC ;Beginning of Procedure Division.

0270 INIT(1,I,TITLE) ;Opens TITLE on channel l-input.
0280 INIT(2,0, 'OUTPUT') ;‘OUTPUT' on channel 2-output.
0290 LOOP, XMIT(1,INBUF,EOF) ;Transfer INBUF to EOF.

0300 OUTBUF=INBUF ;INBUF moved to OUTBUF.

0310 IF(STOCKN.LT.100) GO TO LOOP ;Conditional statement.

0320 ECOST=UCOST*QORDER ;UCOST times QORDER moved to ECOST.

0340 XMIT(2,0UTBUF) ;Transfer OUTBUF onto channel 2.

0350 ;

0360 GO TO LOOP ;Branch control to LOOP.

0370 EOF, FINI (2) ;Identifies end of logical unit.

0380 FINI (l) ;Writes record and closes file.

0390 STOP ;Stops program execution.

0400 END ;Marks the end of the program.

5.1.2 Storage Map Listing

COS DIBOL lZ-JUL-78 WED STORAGE MAP LISTING V 8.00 PAGE 03

NAME TYPE DIM SIZE ORIGIN

0001 INBUF RECORD 01 49 20000

0002 STOCKN DECMAL 01 04 20002

0003 DESC ALPHA 01 25 20006

0004 UCOST DECMAL 01 05 20037

0005 QORDER DECMAL 01 04 20044

0006 OUTBUF RECORD 01 49 20062

0007 ECOST DECMAL 01 09 20132

0010 TITLE ALPHA 01 06 20146

0011 ..l DECMAL 01 01 20154

0012 ..2 DECMAL 01 01 20155

0013 ..OUTP ALPHA 01 06 20156

0014 LOOP LABEL 00 01 10110

0015 EOR LABEL 00 01 10144

0016 ..1000 DECMAL 01 04 20164

0014 labels

NO ERRORS DETECTED. 08 K CORE REQUIRED [3956 FREE LOCS ~14 BUFFERS]

The storage map lists the record and field names and the labels as

they were processed by the Compiler. The information is arranged in

six columns with the following headings:

contains the internal number of the name in column 2.

This number is only used in machine—level programming.

DIBOL COMPILER (COMP) 5-3

NAME is the name (field name, record name, program label) or

literal used in the compiled program. Literals are

numeric or alphanumeric characters which appear in the

Procedure Division of the source program. Only the

first four characters of a numeric literal are used.

Each numeric literal is preceded by two periods (..) to

distinguish as an internal name. Numeric literals with
four characters or less appear only once on the storage
map even though they may occur more than once in the

program. Numeric literals with more than four char—

acters are listed each time they occur in the program.
Record literals begin with a double quote and end with
a single quote.

TYPE describes the use of name in the program.

ALPHA used as the name of an alphanumeric field or

as an alphanumeric literal.

DECMAL used as the name of a numeric field or as a

numeric literal.

RECORD used as a record name or as record literal.

LABEL used as a program label.

REDEF is multiply defined (redefined). All at-

tempts at definition after the first are

flagged as errors in the compiler listing.

UNDEF*** is an undefined label referenced by the pro—

gram. For example: GO TO TAGl in a program

where TAGl does not appear as a label.

This error is output to the printer even if

the /N option is in effect. The line number

where the label is used is displayed.

DIM contains the array dimension (number of fields) of the

alphanumeric or numeric labels. The column is meaning—
less for other types of labels.

SIZE lists the size of the name. The size of a RECORD is

the number of characters in all its labels plus 2.

ORIGIN gives the octal byte memory address of the name.

The number of labels used, number of errors detected, memory required,
and free locations are listed at the bottom of the storage map. You

cannot get this information if you suppress listing of storage map.

Maximum number of labels allowed in a l6K-byte system is 365; in

24K—byte or larger systems, 511.

Use the SAVE command to store the binary program.

5-4 DIBOL COMPILER (COMP)

5.2 CONDITIONAL COMPILATION PROCEDURE (CCP)

The Conditional Compilation Procedure (CCP) is a feature which permits
you to include statements in a source program which will be compiled
only if you elect to have those statements compiled.

Statements included in a program for conditional compilation are en—

closed within angle brackets as in the following example.

RECORD A

Bl, D5

C1, A4

PROMPT, D1

RECORD N

NAME, A6

PROC

(PROMPT

XMIT(8,"ENTER NAMEz')
>

XMIT(7,N)
STOP

END

The left angle bracket (<) is followed by a control variable (in this

case PROMPT). Unless the control variable is turned on before the

left angle bracket is encountered, statements between the angle brack-

ets will be ignored. A right angle bracket marks the end of a condi—

tional area and is on a line by itself. The command to turn on a con-

trol variable is as follows:

=control variable

The above program requires the operator to type in a name on the key—
board. If this same program is recompiled with the control variable

PROMPT on, it produces a DIBOL program which first displays a message

to the operator.

RECORD A

Bl, D5

C1, A4

PROMPT, Dl

RECORD N

NAME, A6

PROC

=PROMPT ;Turn on prompt.
<PROMPT

XMIT(8,"ENTER NAME:')
>

XMIT(7,N)
STOP

END

Conditional compilation can also be used to debug statements in a

source program. Once the program has been tested, the control vari-

able can be removed by deleting the command to turn it on.

DIBOL COMPILER (COMP) 5-5

CCP also allows several similar (but not identical) programs to be

combined into one source program.

If the control variable used in a CCP statement is undefined, the com-

piler will automatically set aside space for it; this is wasteful of

space. For CCP, use variables that are already being used for some

other purpose.

The CCP value of a variable (on or off) is independent of the

variable's ordinary DIBOL value.

If a CCP variable is used in the middle of a record definition (in the

Data Division of a DIBOL program) the variable must have been previ-
ously defined, otherwise the Compiler will allocate additional space
for it in the middle of a record.

CCP sections can be nested to any depth. Any CCP section that is

turned off will be ignored by the Compiler. To indicate that certain

statements are not being used, the Compiler listing will not print the

line number for that statement. There must be a matching > for each <

used. If this condition is not met, the Compiler generates a CCP

ERROR message. This error is fatal if angle brackets do not match by
the end of the program.

5.3 SIZE OF THE BINARY PROGRAM

Each variable uses as many bytes of memory as specified in its data

definition statement. For example: a variable defined as 6D3 rem

quires 18 bytes of storage. This is 9 words since a computer word

consists of 2 bytes.

Variables defined in an overlay record share memory with the variables

in the record being overlaid.

Each RECORD statement requires one additional word of memory. This

word is reserved for storing the COS-310 word count during I/O opera»
tions.

Each record begins on a word boundary (an even—numbered byte address).

If the record length is odd (in bytes), one byte of memory is wasted.

Each literal used in the Procedure Division of a DIBOL program re~

quires storage (in bytes) equal to the length of the literal. The

length of a numeric literal is equal to the number of digits in the

number, including leading zeros.

Each distinct literal with a length of four or fewer characters ap-

pears only once in the space reserved for literals. Thus, if the lit—

eral 32 appears three times in the program, it will appear only once

in the reserved data area. However, literals larger than four char-

acters require space each time they appear in the program.

5-6 DIBOL COMPILER (COMP)

Each statement requires an overhead of one word. Each statement label

requires one word. Unlabeled statements with line numbers 1000 more

than the previous line number require one additional word each.

The number of words of memory generated by an expression can be deter—

mined by the following formula:

Add together the number of variables and literals used.

Add in the number of binary operators which appear.

operators include +, -, /, *, #-

The binary

Add one for each subscript reference.

The following table shows how many words of code are required by vari—

ous DIBOL statements.

Table 5-1

DIBOL Statement Words of Code Requirements

Statement

No. of Words of

Code Generated

ACCEPT (y,x) y+x+l
CALL label 1

CHAIN chnum chnum+l

DISPLAY (line,column,expr)
END [/list control]
FINI (channel)
FORMS (channel,skipcode)
GOTO label

line+column+expr+l
l

channel+l

channel+skipcode+l
l

GOTO (labell,...,labeln),key key+n+2
IF (exprl.rel.expr2)stmnt exprl+expr2+3
INCR var var+l

INIT (channel, dev) channel+2

INIT (channel, dev,filnam[,unit])
ON ERROR label

PROC [n] [/list control]
READ (channel,record,number)

channel+3+filnam+unit

l

0

channel+number+record+l

RETURN l

START [/1ist control] 0

STOP 1

[NO] TRACE l

TRAP 2

var= var+l

var=expr var+expr+l*
var=exprl,expr2 var+expr1+expr2+l
WRITE (channel,record,number) channel+number+record+l

XMIT (channel,record[,1abel]) channel+record+2

For the statement marked with an asterisk (*) in the previous table,
subtract 1 if the principal operator of exp: is binary + or -, and if

both types are numeric.

DIBOL COMPILER (COMP) 5-7

Example:

D = 3+5 takes 4 words of storage, while

D = 3*5 takes 5 words. Similarly,
D = 3+4+5 takes 6 words while

D = 3*(4+5) takes 7 words.

Additional space is also required by the internal symbol table. This

table consists of two words for each distinct variable, statement

label, or literal used.

5.4 COMPILER ERROR MESSAGES

Most Compiler error messages are printed on the source listing direct-

ly after the line on which the error occurs. A caret (A) in the error

message points to the approximate location of the error. Other errors

are listed in the storage map listing.

Message Explanation

BAD ALPHA VALUE Initial value in an alphanumeric data
'

definition statement did not begin or

end with a single quotation mark.

Insert single quotes.

BAD NUMERIC VALUE The initial value for a numeric field

was incorrectly formed. Check and form

correctly.

BAD PROC # The number in a PROC statement was not a

digit from 0 to 7. Enter 0 through 7.

BAD RELATIONAL An illegal relational occurs in an IF

statement. For example, a .GX. instead

of a .GT. Retype correctly.

CCP ERROR Matching angle bracket (< or >) missing.
Insert brackets.

COMMA MISSING No comma appeared where one was expect“
ed. Insert comma.

DATA INITIALIZATION MISSING No data initialization followed a comma

in a data definition statement. Remove

comma or input initial value.

5-8 DIBOL COMPILER (COMP)

Message

EXPECTED LABEL IS MISSING

EXPRESSION NOT ALLOWED

EXTRA CHARS AT STMNT END

FIELD TOO LARGE OR 0

ILLEGAL OPERATOR

ILLEGAL STMNT

INITIAL VALUE WRONG SIZE

LABEL NOT ALLOWED

MISSING CLOSE PAREN

MISSING OPEN PAREN

MISSING OPERAND

Explanation

A required label is missing. Enter

label.

A complex expression or bad character

occurs to the left of an = or where only
a variable is allowed. Find and cor-

rect.

Extra characters occur at the end of a

legal statement. Eliminate extra char-

acters.

In a data description statement, the di—

mension was 0 or more than 3 digits
long, or the field size was 0 or larger
than 511. Bring size dimensions within

limits.

A bad character was encountered in an

expression where an operator would be

expected. Check and replace with cor—

rect character.

The statement was not a data manipula—
tion statement (it had no =) nor did it

start with a recognizable keyword. Use

appropriate keyword and use = sign.

The initial value in a data specifica-
tion statement had a length different

from the field size specified. Make in-

itial value agree with defined size.

A label in an expression was the wrong

type or a record or a label which had

been redefined was used. Use unique
label of the correct type.

No close parenthesis occurred where one

was expected. Add parenthesis.

No open parenthesis occurred where one

was expected. Add parenthesis.

A binary operator occurs in an expres-

sion with no operand following it; or

no expression at all occurs where one is

expected. Insert operand and/or appro—

priate expression.

DIBOL COMPILER (COMP) 5"9

Message

MISSING OR BAD MODE

MISSING QUOTE

MISSING RELATIONAL

NAME PREVIOUSLY DEFINED

NOT A OR D

NOT LABEL

PROGRAM TOO BIG

RECORD TOO BIG

STMNT TOO COMPLEX

SUBSCRIPT ERROR

SUBSCRIPT NOT NUMERIC

TOO MANY ITEMS

5-10 DIBOL COMPILER (COMP)

Explanation

The mode designation in an INIT state—

ment was missing or began with an ille-

gal character. Insert correct mode de-

signation.

The statement contained an odd number of

quotes ('). Delete or add quote when

appropriate.

No relational appeared in an IF

ment. Enter legal relational.

state-

An attempt was made to redefine a previ—
ously defined name. Use unique name.

A character other than A or D occurred

in a data specification statement where

A or D was expected. Replace character

with A or D.

A symbol which was not a ‘1abel‘ oc-

curred where a

Enter proper label.

label was required.

Binary output too big for the

scratch area.

PIP OPT- E.

binary
Enlarge scratch area with

A named record exceeded 510 characters

in size. Either use unnamed record or

reduce the size of record.

The statement is too complex or is nest—

ed too deep. Simplify the statement.

No comma or close parenthesis
after a subscript.
punctuation.

occurred

Enter appropriate

The type of a subscript was not numeric.

Use numeric subscript.

More elements were

array than are

dimension.

initialized in an

specified in the field

Eliminate excess elements.

Message

TOO MANY SYMBOLS!

TOO MUCH DATA

UNDEFINED NAME

WRONG DATA TYPE

Explanation

A fatal error message. Only 365 symbols
allowed in symbol table in l6K-byte sys—

tem, and only 511 symbols allowed in

larger systems. The compiler stops com-

piling; no storage map can be produced.
Rewrite and shorten program.

Data Division exceeds 24K bytes.
Rewrite program.

A name is used which was not defined in

the Data Division. Define this name or

use a name already defined.

Mixed data types occurred in an expres-

sion, an argument which was supposed to

be numeric was not, or one of the argu—

ments in a data manipulation statement

was of the wrong type. Replace the

data.

DIBOL COMPILER (COMP) 5-11

CHAPTER 6

DIBOL DEBUGGING TECHNIQUE (DDT)

The DIBOL Debugging Technique (DDT) is used to debug binary programs.
If a program is compiled with the DDT option (/D), the compiled binary
program automatically branches to DDT upon execution. The features of

DDT include breakpoint, variable examination, subroutine call trace-

back, and iteration.

6.1 DDT OPERATING PROCEDURES

To execute a binary program with DDT, type:

pronam

RUN [][,filnaml...,filnam7]/D
chain0+chainl...+chain7

where:

pronam is the name of the binary program to be debugged.

If the program name is omitted, the Monitor loads and

executes the DIBOL program in the binary scratch area.

chain0+chainl...

are binary programs which constitute one large program
broken up into several chained programs. These are the

programs to be debugged.

filnaml...,filnam7
are names of source files on the system device.

/D is the option switch that requests DDT.

An additional 768 words of memory plus 3 words for each

label in the Data Division are required because of the

/D option.

During execution of the program, control is passed to DDT. The DDT

program displays an appropriate DDT version number followed by a hy—

phen (-) to indicate that it is ready to accept commands.

6.2 DDT COMMANDS

Command

variable=

variable=v

>n

CTRL/Z

Explanation

Display the contents of variable (a label from the Data

Division). Variable can have single or double sub—

scripts.

Set variable equal to v (v is any legal alphanumeric
string).

If v has more characters than defined for variable, ERR

IN CMD is displayed.

Display the contents of the last variable examined.

Set the last variable examined equal to v.

Set a breakpoint at line nnnn. One breakpoint is ac-

tive at a given time. A breakpoint set at line 0 is

meaningless because the program never executes line 0.

Execute the breakpoint at the nth occurrence of line

nnnn.

For example:

-$300
->4

When the program starts to execute line 300 for the

fourth time, the breakpoint is executed and control is

transferred to DDT.

Start execution of DIBOL program. If a breakpoint,
‘
Jr

is set at line number nnnn, control reverts to DDT when

nnnn is reached and the following message is printed:

BREAK!

Type additional commands in response to the hyphen (-).

6-2 DIBOL DEBUGGING TECHNIQUE (DDT)

1 Display the lines from which calls (CALL or TRAP com—

mands) were made (pushdown stack) during execution of

the DIBOL program. This command is generally used to

trace the execution of the program after a breakpoint
or system error has occurred. The is usually the

shift/six key.

While a DDT breakpoint is pending, if a DIBOL program error causes a

message such as ILLEGAL SUBSCRIPT or NUMBER TOO LONG to appear, con-

trol is transferred to DDT; DDT commands can be used for program ex-

amination. If an error is fatal, the DIBOL program cannot be restart—

ed by the CTRL/Z command.

Once a DIBOL program is running under DDT, DDT cannot be restarted un—

less a breakpoint occurs or an error occurs with a breakpoint pending.
Therefore, if you do not require a breakpoint but want to return to

DDT for program examination if an error occurs, set a breakpoint at a

line number which will not be executed.

6.3 DDT ERROR MESSAGES

Message Explanation

ERR IN CMD Entered an invalid DDT command. Correct the com—

mand and retry.

DIBOL DEBUGGING TECHNIQUE (DDT) 6m3

CHAPTER 7

CROSS REFERENCE PROGRAM (CREF)

The Cross Reference Program (CREF) is primarily an aid to program de-

velopment. It provides a table showing an alphabetical listing of all

labels used in a DIBOL source program, the line number where each

label is defined, and the line numbers where each label is used.

7.1 CREF OPERATING PROCEDURES

To execute CREF, type:

RUN CREF[,filnaml...,filnam7]

where:

filnaml...,filnam7
are the parts of a DIBOL source program (maximum 7).
If no files are specified, the program in the edit

buffer is used.

The CREF program reads the DIBOL program, lists the cross-reference

table on the line printer, and returns control to the Monitor.

CREF requires 16K bytes of memory and can handle any 16K-byte program

that does not have an excessive number of symbols and labels. If 24K

bytes or more is available, CREF expands its cross-reference table to

make use of the available space.

A minimal amount of error checking is performed by CREF; no attempt
should be made to cross reference programs having compilation errors.

If CREF finds a line it cannot work with, it prints:

nnnn Is BEING IGNORED

where:

nnnn is the number of the line CREF cannot work with.

Following is the cross—reference table for the DIBOL program in Figure
1-1 of Chapter 1.

COS-310 CREF V 8.00 24—MAY-78 WED PAGE 1

LABEL DEF REFERENCES

DESC 130

ECOST 220 340

EOF 390 310

INBUF 110 310 320

LOOP 310 330 380

OUTBUF 170 320 360

QORDER 150 340

STOCKN 120 330

TITLE 260 280

UCOST 140 340

LABELS DEFINED BUT NEVER REFERENCED: 01

where:

LABEL is the name of the label used in the program.

DEF is the line number in the program where the label is

defined.

REFERENCES

are the line numbers where each label is referenced.

7.2 CREF ERROR MESSAGES

Message

nnnn IS BEING IGNORED

Explanation

CREF detected a line

with. Usually means an invalid DIBOL

statement. Check line number for valid

statement and retry.

it cannot work

7-2 CROSS REFERENCE PROGRAM (CREF)

CHAPTER 8

PERIPHERAL INTERCHANGE PROGRAM (PIP)

The Peripheral Interchange Program (PIP) moves files between two logi—
cal units, copies the contents of one device onto another, and consol—

idates files to remove free blocks. PIP is also used to allocate more

space to the binary scratch area.

8.1 PIP OPERATING PROCEDURES

To execute PIP, type:

RUN PIP[,cmndfl][/n]

where:

,cmndfl is a previously stored file containing PIP commands.

Each command is on a separate line; no blank lines or

comments are used. When the command file is specified,
PIP reads a line from the file each time one of the

following prompts is displayed:

OPT-

IN-

OUT—

MORE?

TYPES OF FILES TO BE SKIPPED (S,B,V):

An end—of—file mark terminates the command file and re—

quires all responses to come from the keyboard.

The command file is ignored on machines with less than

24K bytes of memory capabilities.

Example:

If the cmndfl EXAMP contains:

0100 C

0110 RXO

0120 Rxl

0130 X

Then:

.RUN PIP,EXAMP ;will copy RXO to RXl.

/n indicates the number (0-9) of segments to allocate to

the binary scratch area. The /n switch is used in con—

junction with OPT- E, but is entered at the time that

the RUN PIP command is typed.

PIP responds to the RUN PIP command with:

PIP V 8.00 (or current version number)
OPT-

Respond with one of the following options:

Option Explanation

B transfer a binary file

C copy device

D transfer a data file

E consolidate directory space

I copy and verify data

R perform a read/check
S transfer source file

V transfer system file

X return to Monitor

After you respond, PIP displays IN and OUT questions requesting
option-dependent information.

Following is a summary of the PIP options and the information being

requested by the IN and OUT questions.

8-2 PERIPHERAL INTERCHANGE PROGRAM (PIP)

OPT
,

IN OUT

B filnam[,dev] filnam[,dev]
C dev dev

filnam[/logical unit #] filnam[/logical unit #1
D /K /L

/T
E ‘dev dev

I dev dev

R dev

S filnam[,dev} filnam[,dev]
V filnam[,dev] filnam[,dev]

8.1.1 Transfer Binary File (OPT- E)

Type B in response to OPT- to

file~oriented devices.

move a binary program between two

Answer the IN question with the name of the binary program to be moved

and, optionally, a comma and an input device designation. If no de—

vice is designated, the system device is assumed.

Answer the OUT question with the name to be assigned to the

file and, optionally, a comma and an output device designation.
device is designated, the system device is assumed.

output
If no

If you attempt to move data to or from a non—file—oriented device, the

IN or OUT message is repeated.

Example:

.RUN PIP

PIP V8.00

OPT- B

IN- TEST,DKO
OUT- TEST,DKl
OPT- X

;Request move of binary file.

;File named Test from DKO.

;File named Test to DKl.

8.1.2 Copy Device (OPT- C)

Type C in response to OPT- to copy the contents of one device onto a

similar device.

Answer the IN question with a device designation.

Answer the OUT question with a device designation.

PERIPHERAL INTERCHANGE PROGRAM (PIP) 8u3

Example:

.RUN PIP

PIP V8.00

OPT- C ;Request a copy between devices.

IN- DKO ;Input device is DKO.

OUT- DK3 ;Output device is DK3.

OPT- X

8.1.3 Transfer Data Files (OPT- D)

Type D in response to OPT- to transfer data files between devices.

Answer the IN question with a file name and optionally, a logical unit

number (1-15) preceded by a slash, or answer the IN question with /K.

Answer the OUT question with a file name and optionally, a logical
unit number preceded by a slash, or answer the OUT question with a

device switch. Output device switches are:

/L printer
/T screen

When the end of the input file is reached, PIP asks:

MORE?

Type N and the RETURN key if there is no more input or Y and the RE—

TURN key to specify more input.

PIP transfers alphanumeric data only. A negative number is treated as

the letter which has the equivalent code.

Examples:

.RUN PIP

PIP V8.00

0PT- D

IN- EMPNAM/l :Dump EMPNAM from logical unit 1 onto the printer.
OUT- /L
MORE? N

OPT- X

.RUN PIP

PIP V8.00

OPT- D

IN- HRPAy,2 ;Combines two data files into one output file.

OUT- PAYFIL/l
MORE? Y

IN- SALPAY,3
MORE? N

0PT- x

8-4 PERIPHERAL INTERCHANGE PROGRAM (PIP)

8.1.4 Consolidate Space in Directory (0PT- E)

Type E in response to OPT- to consolidate the free blocks on the input
device and store the files on the output device. It is possible to

erase one or two of the kinds of files (source, binary, or system)

during the consolidation. Free blocks are shown in the file directory
and are created when a file is deleted from the directory. The boot—

strap, Monitor, and logical units are not copied by OPT- E.

Answer the IN question with a device designation.

Answer the OUT question with a device designation.

When consolidating the system device onto itself, PIP OPT- E elimi-

nates the free space as shown below:

SYSTEM DEVICE (SYS)

f f logical logical logical
before files r files r files unit unit unit

e e 8 9 10

e e

logical logical logical
after files free unit unit unit

8 9 10

When consolidating a device other than the system device onto another

device, PIP OPT- E consolidates the free space but does not COpy logi-
cal units.

NONSYSTEM DEVICE

f f logical logical logical
before files I files I files unit unit unit

e e 8 9 10

e e

after files free

The following message asks which files you do not want copied,
and stored.idated,

TYPES OF FILES TO BE SKIPPED (S,B,V):

PERIPHERAL INTERCHANGE PROGRAM (PIP)

consol—

The files you choose to skip will be erased.

If all files are to be copied, consolidated, and stored, type the

RETURN key. If one or two of the types of files are to be skipped
(erased), type one or a combination of two of the characters S, V, B

separated by a comma and followed by the RETURN key.

The following example will consolidate free space but will not copy
source files from DKO to DKl.

Example:

.RUN PIP

PIP V 8.00

OPT- E

IN- DKO

OUT- DKl

TYPES OF FILES TO BE SKIPPED (S,V,B): S

All CTRL keys are ignored until the PIP OPT- E consolidation operation
is completed.

8.1.5 Allocate Space to Binary Scratch Area (OPT— E)

The PIP OPT- E is used in conjunction with /n to change the size of

the binary scratch area. The /n is typed along with the RUN PIP com—

mand.

Extremely large DIBOL programs may need more space than available in

the two segments (32 blocks) usually allocated to the binary scratch

area. Up to nine segments can be allocated with PIP OPT- E.

The following PIP operation will allocate two additional segments (32

blocks) to the binary scratch area on DKO. This particular operation
uses /2 as the /n option typed in the RUN PIP command.

.RUN PIP/2
PIP V 8.00

OPT- E

IN- DKl

OUT- DKO

TYPES OF FILES TO BE SKIPPED (S,V,B):

The following information is helpful when using OPT- E to change the

size of the binary scratch area.

0 If the output device is not the input device, the size of the

binary scratch area on the output device equals the sum of

the two segments normally in the binary scratch area plus the

number of segments stipulated by the /n in the RUN PIP com-

mand.

8-6 PERIPHERAL INTERCHANGE PROGRAM (PIP)

o If a device is consolidated onto itself, the binary scratch

area is set either to the size of the current area or to 2+n,
whichever is less. Compressing a device onto itself C an

shrink the binary scratch area. The binary scratch area can-

not be expanded if a device is being compressed onto

because that would require writing over existing files.

0 If /n is not specified in the RUN PIP command, the

itself

binary
scratch area is assumed to be the same size as the binary
scratch area of the input device.

8.1.6 Copy and Verify (OPT- I)

Type I in response to OPT- to copy an entire device onto a

device and verify the copy.

Answer the IN question with a device designation.

Answer the OUT question with a device designation.

Example:

.RUN PIP

PIP V8.00

OPT- I ;Request copy and verify.
IN- DKl ;Input device is DKl.

OUT— DK2 ;Output device is DK2.

OPT— X

similar

If your machine configuration includes an LQP printer, PIP OPT- I will

require 32K bytes of memory.

8.1.7 Perform a Read/Check (OPT— R)

Type R in reply to OPT— to verify the readability of a device.

Answer the IN question with the designation of the device to be read.

No OUT question is displayed.

Example:

.RUN PIP

PIP V8.00

OPT— R ;Request Read/Check.
IN- DKl ;Read contents of DKl.

OPT- X

PERIPHERAL INTERCHANGE PROGRAM (PIP) 8--7

8.1.8 Transfer Source Files (OPT— S)

Type S in response to OPT— to transfer source files between two

file—oriented devices.

Answer the IN question with the name of the source file to be trans—

ferred and, optionally, a comma and the input device designation. If

no device is specified, the system device is assumed.

Answer the OUT question with the name to be assigned to the output
file and, optionally, a comma, and the output device designation. If

no device is specified, the system device is assumed.

Example:

.RUN PIP

PIP V8.00

OPT— S ;Request transfer of source file.

IN- TEST,DKO ;Transfer TEST from DKO.

OUT— TEST,DK1 ;Receive TEST into DKl.

OPT- X

If you attempt to transfer to or from a non-file-oriented device, the

IN or OUT question is repeated.

8.1.9 Transfer System Program (OPT— V)

Type V in response to OPT- to move a system program between two

file-oriented devices.

Answer the IN question with the name of the system program to be

transferred and, optionally, a comma and the designation for the input
device. If no device is specified, the system device is assumed.

Answer the OUT question with the name to be assigned to the output
file, and, optionally, a comma and the output device designation. If

no device is specified, the system device is assumed.

Example:

.RUN PIP

PIP V8.00

OPT— V ;Request transfer of system program.

IN- SORT,DKl ;Transfer SORT from DKl.

OUT— SORT,DK3 ;Transfer SORT to DK3.

OPT- X

If you attempt to transfer to or from a non—file-oriented device, the

IN or OUT question is repeated.

8-8 PERIPHERAL INTERCHANGE PROGRAM (PIP)

8.1.10 Return to Monitor (0PT- X)

Type X in response to 0PT~ to terminate PIP and return to the Monitor.

This OPT— x feature is useful when PIP is included in a string of Mon—

itor commands in a BATCH program. The OPT- x signals the end of the

PIP program and the next Monitor command in the BATCH program is exe-

cuted.

8.2 PIP ERROR MESSAGES

Message

BAD DIRECTORY

COMPARISON ERROR

ILLEGAL DEVICE SWITCH

NO ROOM

Explanation

Attempted to reference or store a file on a

device with a damaged or nonexistent directo—

ry. Only files with directories can be used.

If the directory is damaged, call your

Software Specialist.

The verification part of OPT- I found a dis-

crepancy of information between the original
text and its copy. Retry the operation. If

discrepancies continue, you have a media

problem or a hardware problem.

A switch was specified for OPT- D that was

not /K for input or /L or /T for output. Use

one of the allowable switches.

Attempted to store a file on a full device.

Stipulate another device.

PERIPHERAL INTERCHANGE PROGRAM (PIP) 8-9

CHAPTER 9

SORT PROGRAM (SORT)

SORT is a utility program that arranges the records within COS-310

data files according to your needs. The data files must contain

fixed-length records.

Before you can execute SORT you must write a SORT command file that

defines the records to be sorted, specifies labels for input and out-

put files, and designates the arrangement (key) to be used in the

sort.

SORT uses a command file to rearrange one data file at a time. There

must be a separate SORT command file for each file sorted.

The SORT command file sorts each volume of a multivolume file separ—

ately. A merge pass must then be done to combine the volumes into one

file.

9.1 SORT OPERATING PROCEDURES

To execute SORT, type:

RUN SORT,cmndfll...,cmndfl7[/L]

where:

cmndfl]...,cmndfl7
is the SORT command file which can be stored as more

than one file. This file defines the records to be

sorted, specifies the labels for input and output
files, and designates the arrangement (key) to be used,

If no files are specified, the command file in the edit

buffer is used.

/L lists the SORT command file on the printer.

9.2 SORT COMMAND FILE

The SORT command file is created with editor commands and written on a

mass storage device. The command file consists of a Record Descriptor
Division and an INPUT/OUTPUT Division.

9.2.1 Record Descriptor Division

The Record Descriptor Division defines the fields within the records

to be stored. This division has the form:

DEFINE

Fs, xn

where:

DEFINE is the division heading (must be DEFINE) and is the

first statement in the file.

F5 are the fields in the record (must be P). All fields

must be defined in the Record Descriptor Division and

numbered in the order they appear in the record. These

numbers (5) begin with l, are nonskipped sequential,
and cannot exceed 511. Total record size cannot exceed

510 characters.

xn represents the field type (alphanumeric or numeric),
and the number of characters (1-510) in the field.

Each field descriptor statement (F5) is entered on consecutive lines

and is terminated with the RETURN key.

9.2.2 INPUT/OUTPUT Division

The INPUT/OUTPUT Division specifies the names of input and output
files and how many logical units are to be used for work areas during
the SORT operation. This division has the following format:

INPUT [filnam][/logical unit #][,filnam][/logical unit #]

[SORT n /logical unit #,...logical unit #1
KEY Fs[(m,n)][-],...
OUTPUT [filnam][/logical unit #]
END

9-2 SORT PROGRAM (SORT)

where:

INPUT [filnam][/logical unit #][.filnam][/logical unit #]

is the name of the file containing the records to be

sorted. If no name is specified, SORTIN is assumed.

If the command file is used for a separate merge opera-

tion, the second file name is the name of a file to be

merged with the first. The logical units identify the

storage location of the file.

[SORT n /logical unit #...,logical unit #1

is the number (n) of logical units (3 to 7) to be used

as work areas during the sort. These work areas are

labeled $WORK1, $WORK2...,etc. If the SORT statement

is not present, 4 units are assumed. The size of the

work units should be as large as one volume of the

input file. The logical unit numbers are default work

units. Using default units bypasses the MOUNT message.

KEY Fs[(m,n)][—],...

Fs is the field name (F) and number(s) of the field to

be used as the SORT key. The [(m,n)] delimit the part
of the field to be used as a SORT key. If no char-

acters are specified, the entire field is used as a

SORT key. The —

requests a SORT in descending order.

Up to eight fields or parts of fields can be specified
for the SORT key. The total size of the fields which

comprise the key cannot be larger than 510 characters.

The SORT is done left to right. The leftmost key is

most significant, and the leftmost character in each

key field is most significant for sorting purposes.

OUTPUT [filnam][/logical unit #1

END

is the file name to be given to the sorted records. If

this statement is missing, SORT assigns the name SRTOUT

to the output. For multivolume files, the names $TMPnn

(nn can be any two—character numeric from 00 to 99) are

used. The /1ogical unit number is the default unit for

the output file.

terminates control program.

SORT PROGRAM (SORT) 9-3

Following is an example of a SORT command file:

0010

0020

0030

0040

0050

0060

0070

0080

0090

0100

0110

DEFINE

Fl,D6 ;Part number.

F2,A30

F3,D7

F4,D6 ;Date.

F5,D6
INPUT PRTFIL/l ;Data file name.

SORT 4/2,3,4,5 ;Work units.
KEY Fl-,F4 ;Sort part numbers in descending order,

;Sort date in ascending order.

OUTPUT PRTFIL/l ;Sorted data file name.

END

9.3 MERGE OPERATING PROCEDURE

To execute SORT as a merge operation, type:

RUN SORT,cmndf11...,cmndfl7/x[L]

where:

cmndfll...,cmndfl7

/x

/L

is the command file (possibly stored in two or more

files).

is one of the following switches:

/A names of files to be merged are entered from the

keyboard in answer to the message INPUT FILE LA-

BELS:. The output data file and default unit name

are specified in the OUTPUT line of the command

file.

/M names of files to be merged are listed in the

INPUT line of the SORT command file. This option
bypasses the message INPUT FILE LABELS:.

/n name of files to be merged (all files must have

the same name) is listed in the INPUT line of the

SORT command file. This checks for the number of

files with the same name on the number of default

units as specified. If the number of units speci—
fied is more than the number of units shown on the

SORT control INPUT line, a MOUNT message is dis—

played for those files not on the INPUT line.

can optionally be used with any of the above switches

and lists the SORT control program on the printer.

9-4 SORT PROGRAM (SORT)

9.3.1 Merge Using SORT and the /A Option

To use the SORT program with the /A option to merge data files, first

write a SORT command file.

Following is a sample command file named PAYKEY:

0100 DEFINE

0110 F1,A6
0120 F2,D5
0130 F3,D11
0140 INPUT

0150 SORT 3/l,2,3
0160 KEY F2

0170 OUTPUT PAYROL/6
0180 END

To execute this sample command file with the SORT program and the /A

option, type:

~RUN SORT,PAYKEY/A

The program displays the following message to request the names of the

data files to be merged:

INPUT FILE LABELS:

Enter up to a maximum of six data file names and default units. Enter

at least two names or the error message N0 INPUT is displayed.

After you enter the file names and default units, the program is exe-

cuted. There are three SORT work units: logical units 1, 2, and 3.

The output data file is PAYROL; the sorted file is stored on unit 6.

9.3.2 Merge Using SORT and the /M Option

To use the SORT program with the /M option to merge data files, first

write a command file.

Following is a sample command file named PAYKEY:

0100 DEFINE

0110 F1,A6
0120 F2,D5
0130 F3,Dll
0140 INPUT PAYROL/4, PAYl/Z
0150 SORT 3/1,2,3
0160 KEY F2

0170 OUTPUT PAYROL/6
0180 END

SORT PROGRAM (SORT) 9-5

To execute this sample command file with the SORT program and the /M
option, type:

.RUN SORT,PAYKEY/M

The input data file names to be merged are found in the INPUT line of

the control file:

PAYROL on logical unit 4

PAYl on logical unit 2

The output data file, PAYROL, is put on logical unit 6.

9.3.3 Merge Using SORT and the /n Option

To use the SORT program with the /n option to merge data files with

the same name, first write a command file. The INPUT line contains

the name common to the files and the default units where the files are

found.

Following is a sample command file named PAYKEY:

0100 DEFINE

0110 F1,A6
0120 F2,D5
0130 F3,Dll
0140 INPUT PAYROL/4,2
0150 SORT 3/l,2,3
0160 KEY F2

0170 OUTPUT PAYROL/6
0180 END

To execute this sample command file with the SORT program and the /n

option, type:

.RUN SORT, PAYKEY/Z

The input data files to be merged are:

PAYROL on logical unit 4

PAYROL on logical unit 2

9-6 SORT PROGRAM (SORT)

9.4 SORT ERROR MESSAGES

Message Explanation

BAD DIGIT IN NUMERIC INITIAL VALUE

BAD RECORD SIZE

BAD WORK UNIT COUNT

EXTRA CHARS AT STMNT END

FIELD NUMBER MISSING OR 0

ILLEGAL SORT KEY

ILLEGAL UNIT

Alphanumeric character in a numeric ini-

tial value. Use only numeric characters

in initial numeric values.

File contains records of variable

length. All records to be stored must

be the same length. Redefine record

length.

Number of work units not in range 3-7.

Specify work units within allowable

range.

Characters not relating to statement ap-

pear on the statement line. Delete any

nonessential characters from statement

lines.

Field number is missing, is 0, or is

greater than or equal to 512. Enter the

missing number or enter a number between

1 and 511.

Bad syntax on KEY statement, KEY too

complex, or KEY statement missing.
Review key information and correct com-

mand file.

Default unit is 0 or greater than 15.

Correct command file.

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE

INITIAL VALUE TOO BIG

INITIAL VALUE TOO SMALL

Beginning quotation mark missing for in-

itial alphanumeric value. Put single
quotation at the beginning of the ini-

tial value.

The initial value specified is larger
than the field size. Either define a

larger field size or reduce the size of

the initial value.

The initial value specified is smaller

than the field size. Either redefine

the field size or increase the size of

the initial value.

SORT PROGRAM (SORT) 9-7

Message Explanation

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE

MISSING INITIAL VALUE

NO COMMA AFTER FIELD NAME

NO INPUT

NOT A OR D

NOTHING AFTER FIELD NAME

Quotation mark not specified at the end

of an alphanumeric initial value. Add

the missing close quotation marks.

Comma was inserted after type and size
but initial value was not specified.
Either delete comma or insert initial

value.

No comma or a character other than comma

was specified after the field name.

Enter the missing comma or delete incor—

rect character and then enter the comma.

Input file is null or not enough input
files specified for a merge. Two files

are needed to execute a merge. Use two

nonempty files.

A character other than A or D occured in

a data specification statement where A

or D was expected. Correct the command

file.

Field type and size are not specified
after field name and comma. Correct the

command file.

NUMBER REPEATED OR OUT OF ORDER

OUTPUT ERROR

TOO MANY FILES

UNIT xx IS FREE

UNRECOGNIZABLE LINE

9-8 SORT PROGRAM (SORT)

A field sequence number is used more

than once or is out of ascending order

sequence. Correct the command file.

Indicates an I/O error. Start SORT

over. If it continues, check for media

or hardware problem.

Merge only, more than 6 input files

specified. Specify no more than six

files for merge command file.

This is not an error. It is an informa—

tive message showing the logical units

that are free. xx is a COS logical unit

number.

Parameter line did not start with a good

keyword. Correct the command file.

CHAPTER 10

FILE EXCHANGE PROGRAM (FILEX)

The File Exchange Program (FILEX) transfers files between diskettes in

universal format and any COS—310 file storage device or any OS/8 file

on an RK05 disk (OS/8 files cannot be transferred to or from disk-

ettes).

Files are transferred in one of three formats: ASCII, IMAGE, or EBCD-

IC (universal format). The EBCDIC format is compatible with diskettes

produced by an IBM 3741 except when using multivolume universal inter—

change files or when mapping bad sectors.

10.1 UNIVERSAL DISKETTE

A universal diskette contains 77 tracks (some of which cannot be used

for data). Each track has 26 sectors numbered from 1 to 26. A sector

contains one record of 128 characters or less. (See Figure 10—1 for a

visual representation of a universal diskette.)

A record in a COS-310 file is assumed to be a string of characters

preceded by a word count and independent of sector boundaries. A

record on a universal diskette in EBCDIC format must begin on a sector

boundary and only one record is allowed per sector. If the record

does not fill a sector, the remainder of the sector is filled with

blanks. Since these restrictions make EBCDIC format inefficient and

wasteful of space, only use EBCDIC when you must read or write disk—

ettes compatible with IBM 3741 format.

Track 0 of the universal diskette contains the information which

describes the files on the diskette. Each of the 26 sectors on a

diskette has a specific function.

I p...»10-

Sector Function

1-6 Reserved.

7 Identifies the diskette format.

If bytes 0—3 contain VOLl in EBCDIC characters, the

diskette is assumed to have a universal interchange
format directory.

The remainder of sector 7 contains other information

which FILEX does not use.

8-26 Contain the labels or the directory entries. These

sectors contain information such as record length (up
to 128 characters) and creation date. For further de—

tails on these sectors refer to the IBM manual, form

number GA21-9128—0.

Each byte in sectors 8-26 has a special function.

Bytes Function

0—3 Are for label identification and contain

HDRl (DDR1 if the file has been delet-

ed).

6-13 Contain the file name.

23-27 Specify the record length.

29—30 Contain two EBCDIC characters which

identify the track number at the begin—
ning of the data.

31 Must be EBCDIC 0 (360 octal).

32-33 Contain two EBCDIC characters which

identify the sector number at the begin_
ning of data.

35-36 Contain the number of the last track

reserved for this file. Byte 37 must be

EBCDIC 0.

38-39 Contain two EBCDIC characters which

identify the number of the last sector

reserved for this file.

48—53 Contain creation year, month, and day.

10-2 FILE EXCHANGE PROGRAM (FILEX)

Bytes Function

75-76 Contain the track number.

77 Must be EBCDIC 0.

78-79 Contain the number of the next unused

sector.

‘5
4

esqxe 15

1
u

(I

[/‘i r

2

FlCATlON
a?\\4

Figure 10—1 Universal Diskette

FILE EXCHANGE PROGRAM (PILEX) 10~3

COS-310 character codes are never used in a universal interchange
file. All data on a universal diskette is stored in either 7—bit

ASCII or 8-bit EBCDIC. ASCII format is equivalent to data written as

a continuous string of bytes ignoring sector boundaries; records are

terminated by a carriage return/line feed. The first record of a file

must begin on a sector boundary. All character code translation and

record blocking is done implicitly by FILEX and need not be explicitly
specified.

File name extensions are not normally recognized in universal inter—

change format; instead, a single eight-character file name is used.

In order to provide some degree of compatibility with 08/8, FILEX has

been designed to accept a six—character file name with a two—character

extension. If a file name on a universal diskette has more than six

characters, it must be entered in the format of filnam.ex. File names

must not include spaces anywhere within the file name or between it

and the extension.

10.2 FILEX OPERATING PROCEDURES

To execute FILEX, type:

RUN FILEX [,cmndfl]

where:

,cmndfl is the name of a previously created file containing a

table of desired logical unit assignments.

If the command file option is not used, FILEX uses the

logical unit assignments already in the system.

If the command file is used, FILEX uses a special RX02

handler that reads and writes RXOl compatible diskettes

and assigns logical unit numbers on RXOl and RX02 disk~

ettes in the same system, provided the system is con_

figured for RXOZS. Assignments of this kind usually
cannot exist on the same system.

These RX02 assignments remain in effect. When FILEX is

completed, however, all logical units assigned to RXOls

become undefined.

Following the RUN FILEX command, the program displays:

FILEX V8.00 (or current version number)

OPT (C, D, L, X, 2):

Enter one of the options; C, COPY; D, Delete; L, List; X, exit;

or Z, Zero (clear).

10-4 FILE EXCHANGE PROGRAM (FILEX)

10.3 COPY (OPT:C)

OPT:C copies the contents of one file onto another. If you select op—

tion C, the system requests the input mode (the directory structure

and the file format) of the file to be copied.

INPUT MODE (A, D, U):

Type the letter corresponding to the input mode to be used: OS/8
ASCII (A), COS—310 Data (D), or Universal (U).

10.3.1 05/8 ASCII Input (Mode A)

ASCII format is that used by 08/8. If you select input mode A, the

program displays:

FILE NAME:

Type the file name and the device designation in the following form:

filnam[.ex][,dev]

where:

filnam[.ex]
is a six-character or less file name plus an optional
two—character extension identifying the file to be

input.

,dev is a three-character device designation. 08/8 RXOl and

COS-310 RXOl diskettes are incompatible so do not spec-

ify an RXn device designation.

If the device is not specified, the system device is

assumed.

If the file name given already exists, FILEX displays:

REPLACE?

Type Y for YES, N or any other character for NO.

Having established the input file name, the program displays:

OUTPUT MODE (A, D, S, U):

Sections 10.3.4 through 10.3.4.4 explain the OUTPUT MODE.

FILE EXCHANGE PROGRAM (FILEX) 10-5

10.3.2 COS-310 Data Input (Mode D)

If you select input mode D, the program displays:

FILE NAME:

Type the file name and the logical unit # in the following form:

filnam [/logical unit #1

where:

filnam is a six—character or less name identifying the file to

be input.

[/logical unit #1 ,

identifies the logical unit where the file is found.

Having been given the input file name, the program displays:

OUTPUT MODE (A, D, S, U)

Sections 10.3.4 through 10.3.4.4 explain the OUTPUT MODE.

10.3.3 Universal Input (Mode U)

If you select input mode U, the program displays:

DISKETTE DATA MODE (A, I, U):

Type the letter corresponding to the diskette data mode to be used:

A, ASCII; I, Image; U, Universal.

If you select any one of the diskette data modes A, I, or U, the pro—

gram displays:

FILE NAME:

Type the input file name in the following form:

filnam[.ex][,RXn]

where:

filnam[.ex]
is a six-character or less name plus an optional
two-character extension. This name identifies the

input file.

10-6 FILE EXCHANGE PROGRAM (FILEX)

,RXn is a three-character device designation. Must be RX;

n represents the drive on which it is mounted.

After you type the file name, FILEX displays:

OUTPUT MODE (A, D, S, U):

Sections 10.3.4 through 10.3.4.4 explain the OUTPUT MODE.

10.3.4 Output Modes (A, D, S, U)

The four output modes are: A, 08/8 ASCII; D, COS-310 data file; S,
COS-310 source file; and U, Universal diskette.

10.3.4.1 OS/8 ASCII Output (Mode A)

If you select output mode A, the program displays:

FILE NAME:

Type the file name and the device designation in the following form:

filnam[.ex][,dev]

where:

filnam[.ex]
is a six-character or less file name plus an optional
two-character extension. This file name identifies the

file where output is to go.

,dev is a three—character designation of the device where

the output is to go. OS/8 RXOl and COS-310 RXOl disk—

ettes are incompatible so do not specify an RXn device

designation.

If the device is not specified, the system device is

assumed.

Type the file name; FILEX executes the transfer and returns to:

OPT (C, D, L, X, Z):

OS/8 files are always multiples of 16 blocks long. For this and other

reasons, the resulting 08/8 output files may be longer than necessary.
Use the 05/8 PIP program /A to recover the unnecessary space.

FILE EXCHANGE PROGRAM (FILEX) 10-7

10.3.4.2 COS-310 Data File Output (Mode D)

If you select output mode D, the program displays:

FILE NAME:

Type the file name and logical unit # in the following form:

filnam[/logical unit #1

where:

filnam is a six—character or less name identifying the file

where output is to go.

/logical unit #

identifies the logical unit where the output file is

found.

Type the file name; FILEX executes the transfer and returns to:

OPT (C, D, L, X, 2)):

10.3.4.3 COS-310 Source File Output (Mode S)

If you select output mode S, the program displays:

FILE NAME:

Type the file name in the following form:

filnam

where:

filnam is a six—character or less name to be assigned to the

COS—310 output file.

The output file is generated 16 blocks long.

To correct the directory entry to reflect the actual length of the

file, do a FETCH and a WRITE as follows:

FE filnam ;Fetch the file you have just created.

WR filnam/Y ;The WRITE command enters the correct file

;length into the directory. The /Y switch

;bypasses the REPLACE? message response when

;a duplicate file name is encountered.

10-8 FILE EXCHANGE PROGRAM (FILEX)

Type the file name; FILEX executes the transfer and returns to:

OPT (C, D, L, X, Z):

10.3.4.4 Universal Diskette Output (Mode U)

If you select output mode U, the program displays:

DISKETTE DATA MODE (A, I, U):

The three diskette data modes are: A, ASCII; I, Image; U, Univer—

sal.

Select diskette data mode A (ASCII), I (Image), or U (Universal), and

the program displays:

FILE NAME:

Type the file name in the following form:

filnam[.ex][RXn]

where:

filnam[.ex]
is a six—character or less name plus an optional
two—character extension to be assigned to the output
file.

,RXn is a three—character device designation. Must be RX;
n represents the drive on which it is mounted.

If you selected diskette data mode A or I, FILEX performs the transfer

and returns to:

OPT (C, D, L, X, Z):

In diskette data mode A or I, sector boundaries are ignored. An ASCII

transfer (A) deletes nulls and rubouts, removes parity, and terminates

each record with a RETURN. An Image transfer (I) reads and writes

each byte exactly. The net effect of an Image transfer is similar to,

and, in most cases, indistinguishable from an ASCII transfer.

If you selected diskette data mode U, the program displays:

OUTPUT RECORD SIZE (DEFAULT=80):

Type a number (1-128) representing the size of the output record. If
you respond with RETURN, the record size defaults to 80. In this uni-

versal diskette data mode, one sector is equal to one record which is

equal to one line.

FILE EXCHANGE PROGRAM (FILEX) 10-9

Type the output record size; FILEX performs the transfer and returns

to:

OPT (C, D, L, X, Z):

Figure 10-2 is a visual representation of the execution of the C op-
tion in FILEX.

OPT (C, D: L! x! Z):

INPUT MODE (A, D, U)t

1 1

_DISKETTE DATA MODE (A, I, U):

FILE NAME:

OUTPUT MODE (A, D, S, U):

lIW

DISKETTE DATA MODE (A, I, U):

I
FILE NAME:

(
FILE NAME: FILE NAME:

OUTPUT RECORD SIZE (DEFAULT = 80):

Figure 10-2 Flowchart of FILEX OPT:C

10-10 FILE EXCHANGE PROGRAM (FILEX)

10.4 DELETE (0PT:D)

OPT:D deletes a single file from the universal diskette directory. If

you select option D, the program displays:

FILE NAME:

Type the file name in the following form:

filnam[.ex],RXn

where:

filnam[.ex]
is a six-character or less file name plus an optional
two-character extension which identifies the file to be

deleted.

,RXn is the three-character designation of the device on

which the file is found. Must be RX; n identifies the

drive on which the device is mounted.

Type the file name; FILEX deletes the file and returns to:

OPT (C, D, L, X, Z):

10.5 LIST (OPT:L)

OPT:L displays a listing of all the files in the universal diskette

directory. If you select option L, the program displays:

DISKETTE DRIVE NUMBER:

Type the number corresponding to the drive on which the diskette is

mounted. After you type the number, FILEX displays a table similar to

the following:

NAME RESERVED USED DATE

IMAGE 73 73 03-JUN-76

ASCII 73 73 03-JUN-76

IBM 576 576 03-JUN-76

ASCZ 73 73 03-JUN-76

IBMZ 193 193 03-JUN-76

<EMPTY> 910 0

(EMPTY) 0 0

<EMPTY> 0 0

<EMPTY> 0 0

(EMPTY) 0 0

<EMPTY> 0 0

<EMPTY> O 0

FILE EXCHANGE PROGRAM (FILEX) 10-11

(EMPTY) 0 0

<EMPTY> 0 0

(EMPTY) 0 0

<EMPTY> 0 0

<EMPTY> 0 0

<EMPTY> 0 0

<EMPTY> 0 0

where:

NAME is either the file name or a designation for an empty
area.

RESERVED is either the number of sectors reserved for a file or

the number of sectors available for additional files.

There is space for a total of 19 files using a total of

1898 sectors.

USED is the number of sectors actually used by the file.

DATE is the creation date of the file.

FILEX then returns to:

OPT (C, D, L, X, Z):

10.6 EXIT (OPT:X)

OPT:X returns control to the COS—310 Monitor.

10.7 ZERO (OPT:Z)

OPT:Z zeros (clears) an entire universal diskette and makes it ready
for new files. If you select option Z, the program displays:

DISKETTE DRIVE NUMBER:

Type the number corresponding to the drive on which the diskette to be

zeroed is mounted. When zeroing is completed, FILEX returns to:

OPT (C, D, L, X, Z):

A zeroed universal diskette has one file name entry (DATA) in the di-

rectory. This reserves 1898 sectors (the entire diskette). Before

any files can be transferred to this diskette, DATA must be deleted

using OPT:D of FILEX.

10-12 FILE EXCHANGE PROGRAM (FILEX)

10.8 FILEX ERROR MESSAGES

The most common error message is a return to the options. This is

caused by inputting an answer, usually a file name, in the wrong for—

mat. Check the format of your answer and retry.

Message Explanation

BAD DIRECTORY Attempted to reference or store a file on a

device without a directory or on a device

where the directory has been destroyed. Only
devices with directories can be used. If the

directory is damaged, call your Software Spe—
cialist.

DEVICE ERROR The system failed in an attempt to read from

or write to a device. Retry the operation.
Check for media problem (use PIP OPT— R), or

check for hardware problem.

FILE ALREADY EXISTS A file name already on the universal diskette

was entered in response to the output FILE

NAME: message. The system returns to OPT

(C, D, L, X, Z): Start the option sequence

again and use a unique file name.

FULL COS—310 source output file exceeds 16 blocks;
IBM output file too large for device. The

system outputs as much as it can and then

displays the error message. Use larger de—

vice, reduce the size of output, or determine

if the loss is worth the change.

ILLEGAL DEVICE The file name information contains a device

that is not in agreement with the logical
unit information. Stipulate new device in-

formation.

INSUFFICIENT SPACE ON DEVICE

Attempted to allocate more segments than are

available on a device. Either allocate fewer

segments, make more segments available, or

use a larger device.

NO END No end—of-file mark in the 05/8 input file.

Correct the input file.

FILE EXCHANGE PROGRAM (FILEX) 10-13

Message

NO ROOM

Explanation

No room is available for the file in the out-

put device directory (OS/8, IBM). Delete to

make space or use a device with directory
space.

NOT ENOUGH ROOM FOR SYSTEM AND FILES

NOT FOUND

NOT UNIVERSAL DISKETTE?

TOO LARGE

SYNTAX ERROR

TOO BIG

Designated a device that is too small to ac—

comodate both the system program and the

files. Use PIP OPT— E to put system program
on one device and files on another.

The input file name was not found. The sys—

tem displays FILE NAME: Check the directory
for the name of a file on the system. Enter

a name.found in the directory.

Requested a device that does not contain

universal floppy. Request a device with un—

iversal floppy.

The number of segments in a logical unit ex—

ceeded 4095.

The file containing the logical unit assign—
ments is formatted incorrectly. Reformat the

file.

The record is too large. It exceeds 120

characters for source file output or 510

characters for data file output. Reduce the

size of the record.

10-14 FILE EXCHANGE PROGRAM (FILEX)

CHAPTER 11

PATCH PROGRAM (PATCH)

PATCH is used to fix (patch) either a system program or the Monitor on

a COS-310 system. All input information for the PATCH operation is

distributed as official patches from Digital Equipment Corporation.
The patch information is a line-by—line dialogue. No other informa-

tion should be used.

System programs (files) and the Monitor consist of blocks of numerical

information coded into machine language instructions and stored on the

system device. These machine language instructions are numbered from

0 to 377 octal. PATCH reads one of these blocks, allows you to exam—

ine and/or change individual words within the block, and writes the

block back out to the system device.

11.1 PATCH OPERATING PROCEDURES

To execute PATCH, type:

RUN PATCH[,cmndfl] [/C]

where:

,cmndfl is a previously stored file of PATCH commands. Each

command is on a separate line; there can be no blank

lines or comments. When the command file option is

specified, PATCH reads a line from the command file

each time one of the following prompts is displayed:

FILE NAME:

BLOCK:

LOCATION:

NEW VALUE:

RELATIVE CHECKSUM:

After the last line of the command file has been used

or an error is encountered, all responses must come

from the keyboard.

11-1

/C changes the blocks on the system device. Without /C,
PATCH simulates the patching operation but does not

change the file on the system device. When run without

the /C option, PATCH displays:

CHECKSUM CORRECT--USE OPTION C TO UPDATE

After the RUN PATCH command, the program displays:

PATCH V8.00 (or current version number)
FILE NAME:

Respond with the following information as provided by DIGITAL:

o The name of the file to be patched.

o /N to indicate a patch for the Monitor. The system responds
PATCHING MONITOR.

o /X to indicate the end of the PATCH-operation. The message
EXIT is printed and control returns to the Monitor.

If you enter a file name or /N, PATCH displays:

BLOCK:

Answer with either the number corresponding to a block within a file,
or END to indicate that no more blocks are to be patched.

If the block number is typed, the program displays:

LOCATION:

Respond with either the number corresponding to a location to be

patched, or END to indicate that no more locations are to be patched.

If a location number is typed, the program displays:

OLD VALUE: nnnn

where:

nnnn is the old (current) value at the location.

This display requires no input and is followed by:

NEW VALUE:

11-2 PATCH PROGRAM (PATCH)

Enter the new value as indicated in the information supplied by DIGI—

TAL. The program displays:

LOCATION:

Answer with either the number corresponding to a location to be

patched, or END to indicate that no more locations are to be patched.

If END is typed, the program displays:

RELATIVE CHECKSUM:

Enter the checksum from the information supplied by DIGITAL. If this

checksum is correct, the program displays either:

NEW BLOCK PATCHED OK

or

CHECKSUM CORRECT—-USE OPTION C TO UPDATE

The patch has been accurately entered. Use option C to update the

program. Once the program is updated it cannot be changed except by
another PATCH routine. Following the OK statement, the program asks

for another block number where patching is to be done:

BLOCK:

If further patching information is available, enter it. If no more

patching information is provided, type END. Following END the program

displays the number (nn) of blocks patched within the file:

nn BLOCK(S) PATCHED IN THIS FILE

With this statement the program requests the name of another file to

be patched.

FILE NAME:

Enter the file name as supplied by DIGITAL. If patching is complete,

type /X.

Following /X, the program displays:

EXIT

COS MONITOR V 8.00 (or current version number)

11.2 ERROR CORRECTION

Much of the seriousness of errors while patching can be eliminated

with the use of the command file option.

PATCH PROGRAM (PATCH) 11-3

11.2.1 CTRL/U or R (Restart)

If at any time prior to the end of the checksum statement an error is

discovered, type R (for Restart) and PATCH will return to the FILE

NAME question. During the PATCH operation, the DELETE key is inoper-
able. If you make an error on a line, type CTRL/U and the correct in-

formation.

11.2.2 Wrong Old Value

The old value displayed by the program must be the same as the old

value supplied in the PATCH information. If it is not, go through the

following procedure.

Step 1 Be sure that everything previously typed is letter perfect.
If the wrong BLOCK number was typed, type R and restart at

FILE NAME. If the wrong LOCATION was typed, type RETURN in

answer to NEW VALUE. This makes no change to the location

specified. Type the correct location number in answer to L0—

CATION.

Step 2 If everything typed was correct, check the version number of

the Monitor or the system program in question.

Step 3 If everything seems in order but the dialogue doesn't agree,

save all output and consult your Software Specialist.

11.2.3 Bad Checksum

If an error in the checksum is detected, the following message is dis—

played:

BAD CHECKSUM

LOCATION:

The faulty block is not written to the system device.

The newly changed block is still in memory. Review the numbers and

the locations to see if they are correct. If the error is found, fix

it and then type END to the LOCATION: message. If an error is not

found, type R to restart the program and patch the entire block again.

11-4 PATCH PROGRAM (PATCH)

11.3 PATCH ERROR MESSAGES

Most error messages result from incorrect entries. Check each entry
for accuracy. All entries must be exactly as supplied by DIGITAL.

Message

BAD CHECKSUM

BAD DIRECTORY

BAD NUMBER

BLOCK TOO BIG

FILE NOT FOUND

LOCATION TOO BIG

NO CHANGE IN BLOCK

Explanation

An attempt was made to write a block which

was incorrectly patched. Type R and restart

the program.

Attempted to reference or store a file on a

device with a damaged or nonexistent directo-

ry. Only files with directories can be used.

If the directory is damaged, call your

Software Specialist.

A number with either more than 4 digits, a

nondigit, or the digits 8 or 9 was typed.
Enter number correctly.

An incorrect block number was typed. It can—

not be larger than the length of the file

being patched. Enter the correct block

number.

The file was not found on the system device.

Check the directory for the file name. If

the file name is not found, check for correct

version number.

A location greater than 377 was typed.
Retype location number.

An attempt was made to write a block with no

changes in it. Make proper changes using
patch information.

PATCH PROGRAM (PATCH) 11-5

CHAPTER 12

BOOT PROGRAM (BOOT)

BOOT is used to bootstrap the system from one device to another, i.e.,
if the system has been moved from one type of device to another, boot

is run to start the system on the new device.

12.1 BOOT OPERATING PROCEDURES

To execute BOOT, type:

RUN BOOT/xx

where:

/xx is the two—character designation for the device which

you want to get into operation.

/DK is the RKOS disk unit 0.

/RX is the RXOl diskette unit 0.

/DY is the RXOZ diskette unit 0.

An attempt to bootstrap a device which is not ready or does not exist

will produce unpredictable results.

12.2 BOOT ERROR MESSAGES

Message Explanation

N0 N0 device or an illegal device designation was

specified. Control returns to the Monitor.

Specify a legal device designation.

CHAPTER 13

LINE CHANGE PROGRAM (LINCHG)

The Line Change Program (LINCHG) is a utility program which temporari—
ly changes the lines-per-page configuration of printed programs with—

out affecting the SYSGEN lines-per-page default value of 66. Its use

is limited to printers without forms hardware.

13.1 LINCHG OPERATING PROCEDURES

To execute LINCHG, type:

RUN LINCHG[/n]

where:

/n is the number of lines you want on a page.

If you do not use the /n option, the program displays:

HOW MANY LINES PER PAGE?

Type the number (1-99) of lines you want. LINCHG installs this speci—
fied number as the number of lines-per—page. The system defaults to

66 lines—per-page.

The LINCHG number will remain in effect unless a further call to

LINCHG is made, the system is rebooted, or the system is closed down.

Example:

Following is a batch program with a SYSGEN default of 66 lines-per-

page. Line change commands change the lines-per—page of various pro-

grams.

13-1

.RUN JOBl ;66 lines-per—page.

.RUN LINCHG/10

.RUN JOB2 ;10 lines—per-page.

.RUN LINCHG/33

.RUN JOB3 :33 lines-per-page.

.RUN LINCHG/99
.RUN JOB4 ;99 lines-per-page.
.RUN LINCHG

HOW MANY LINES PER PAGE?

50

.RUN JOBS :50 lines-per—page.

.RUN LINCHG/66

The above example shows how a series of programs may be run starting
with the normal default for the first program, then incorporating a

variety of changes for the programs which follow, and finishing with

the default number. The 66 lines-per-page can also be reestablished

by rebooting the system.

13.2 LINCHG ERROR MESSAGES

Message Explanation

INVALID OPERATION Attempted to change lines-per-page on a

printer with forms hardware. Such a change
cannot be made.

13-2 LINE CHANGE PROGRAM (LINCHG)

CHAPTER 14

FORMAT PROGRAMS (DKFMT, DYFMT)

Before an RK05 disk or an RX02 diskette can be used on COS-310, it

must be initialized. Initialization consists of formatting the disks.

Do not initialize a disk or diskette containing any important informa-

tion such as the Monitor or other such files. Initialization destroys
the data on the disk.

Formatting the RK05 and RX02 means writing the necessary timing and

sense marks onto the disk or diskette and erasing any other informa-

tion.

An RXOl diskette can be formatted to become an RX02 diskette. This

procedure cannot be reversed. The RXOl diskette does not need to be

formatted to be used on an RXOl drive.

14.1 FORMATTING RK05 DISKS

To format an RK05 disk, type:

RUN DKFMT

The program displays:

DKMFT V 8.00

DRIVE?

Respond with the number (0—3) of the drive where the disk is mounted.

After you type this number the following message is displayed:

ARE YOU SURE?

Any response other than Y (Yes) brings back the DRIVE? question. A Y

(Yes) response causes the program to display:

WRITE PASS

READ PASS

14-1

These two phrases indicate that the program is in operation; they re-

quire no response from the keyboard. Some time (a matter of seconds)

elapses after each phrase appears while the program completes that

particular phase of operation.

When the formatting operation is complete, the program displays:

DRIVE?

This is a cue to begin formatting another disk. Time is allowed

the physical changing of disks.

CTRL/C to return to the Monitor.

for

If the formatting is complete, type

14.2 FORMATTING RX02 DISKETTES

To format an RX02 diskette, type:

RUN DYFMT

The program displays:

DYFMT V 8.00

DRIVE?

Respond with the number (0-1) of the drive where the disk is mounted.

The program displays:

ARE YOU SURE?

Any response other than Y (Yes) brings back the DRIVE question. A Y

(Yes) response causes the program to display:

FORMATTING DRIVE n

where:

n is the number (0-1) of the drive previously indicated.

This statement remains on the screen until formatting is completed.
When the formatting is completed, the program displays:

DRIVE?

This is a cue to begin formatting another diskette. Time is allowed

for the physical changing of the diskettes. If the formatting is com-

pleted, type CTRL/C to return to the Monitor.

14-2 FORMAT PROGRAMS (DKFMT, DYFMT)

CHAPTER 15

DUMP AND FIX TECHNIQUE (DAFT)

The Dump and Fix Technique (DAFT) program is similar in function to an

editor, but it is used for data records. DAFT allows you to search

for, examine, and change records, and to list records or parts of

records on the printer or on the screen.

DAFT allows one input and one output file to be open at the same time.

These two files can be the same file when in UPDATE mode. Memory al-

ways contains a record from the input file known as the

current record. The current record can be modified by the CHANGE com—

mand before being written on the output file. An output file is not

needed if records from the input file are only being examined.

15.1 DAFT COMPILING PROCEDURE

Because the DAFT program is distributed as two DIBOL source files,
these two source files must be compiled into one binary file before

DAFT can be executed. To compile DAFT, type:

.RUN COMP,DAFTA,DAFTB

.SAVE DAFT

15.2 DAFT OPERATING PROCEDURES

To execute DAFT, type:

RUN DAFT[,cmndf11...,cmndfl7]

where:

cmndfl1...,cmndfl7
are previously stored files which contain DAFT commands

to be used to dump or fix a data file. If the optional
command files are not present, commands are entered via

the keyboard. After the last command in the last file

15-1

is executed, additional commands can be entered through
the keyboard. An asterisk (*) is displayed to indicate

that the DAFT program is ready for a command.

15.3 DAFT COMMAND FILE

The command file is created with the COS editor and contains DAFT com—

mands. The entries in the command file are ordered accordin to a se—

quence of needs within individual records. To create an effective
command file you must know the contents of the record and the possible
areas needing correction.

15.4 DAFT COMMANDS

The first word in a DAFT command is a keyword consisting of any number

of nonblank characters, only the first of which is significant. Some

commands involve both a keyword and arguments. These arguments are

separated from each other and from the keyword by one or more spaces.

15.4.1 Symbols Used in DAFT Commands

n represents an unsigned nonzero positive integer. If it

is optional in a command and is omitted, n=l is as—

sumed.

<a,b> represents a key field of character positions a through
b inclusive. Both a and b are unsigned nonzero posi—
tive integers and b must not be smaller than a. If

this is optional in a command and is omitted, the sub-

scripted area specified in the KEY command is used.

+ indicates that before a record is read from the input
file, the current record in memory (if there is one) is

written on the output file. The + sign does not have a

space before it unless it is the only argument.

data represents a piece of data. Alphanumeric data has the

form:

‘characters...'

Numeric data has the form:

[—1 digits...

15-2 DUMP AND FIX TECHNIQUE (DAFT)

Before being used in executing a command, data is ad—

justed to the same length as the key field <a,b>. If

the data is smaller and alphanumeric, it is

left—justified in the field and filled with spaces on

the right. If data is smaller and numeric, it is

right-justified and filled with zeros on the left. If

data is larger and alphanumeric, excess characters on

the right are ignored. If it is larger and numeric,
excess characters on the left are ignored.

15.4.2 DAFT Command Summary

Commands are entered after DAFT displays an asterisk (*).

Command Function

Advance [n][+] Advances the input file n records.

Backspace [n] Backspaces n records if the input file was

opened with the UPDATE command.

Change [<a,b>]data Replaces the data in the current key field of

the record currently in memory with the data

specified. If <a,b> is used, it temporarily
overrides the key field specified in the key
statement.

Display [n] Sets the width of the line of the listing
device (screen or printer) to n characters

(maximum 130). If n is omitted, this command

turns the grid on if it is off and turns it

off if it is on.

Exit Returns control to the COS—310 Monitor if no

output file is open.

Fini [+] Closes the output file. If + is specified,
the current record and the remainder of the

input file are first copied to the output
file. To write data to a file Opened for UP-

DATE, the + must be specified.

Goto n[+] Makes record n the current record.

Help Displays a summary of DAFT commands.

DUMP AND FIX TECHNIQUE (DAFT) 15-3

Command Function

Input filnam[/logica1 unit #]

Opens the specified file for input. The

first record is read and becomes the current

record.

Key a,b Sets the key to character positions a through
b inclusive.

List [n][<a,b>][+] Prints n consecutive records beginning with

the current record. The subscript <a,b> rep—
resents the consecutive characters that are

to be considered.

Output filnam[/logical unit #]

Opens the specified file for output.

Put In] Writes n copies of the record currently in

memory onto the output file.

Query Displays the names of the input and output

files, the units where the files are located,
the record currently in memory, and the ver-

sion number of the DAFT program.

Rewind Reopens the input file. The first record be—

comes the current record.

Search [<a,b>]data[+] Searches the current record and then succeed—

ing records for an occurrence of the speci-
fied data appearing in the key field.

Type [n][<a,b>][+] Same as List except output is displayed on

the screen.

Update filnam[/logical unit #]

Opens the specified file for updating. This

command can only be specified for a file with

fixed-length records since direct access 1/0
is used to move records.

Version Displays the version number of DAFT.

Write [n] Performs the same function as Advance [n]

[+]. The nth record after the current record

becomes the new current record.

X Outputs the record number and size of the

current record on the output device (either
screen or printer depending on whether the

last record was output by a Type or List DAFT

command). The printer is the initial output
device.

15-4 DUMP AND FIX TECHNIQUE (DAFT)

15.5 DAFT OUTPUT

Records can be listed with a grid above them. The grid has two lines

of numbers which show the character positions. The lower of the two

lines represents the ones digits of the column counts. The upper line

represents the tens digits. The tens digits are printed for the first

and last column in the record (or part of the record) or whenever the

tens digit increments. If there is a hundreds digit, it is printed in

column 1 or whenever it increments.

Following is an example of a DAFT program in operation.

,R DAFT

*HELP

ADVANCE N+

BACKSPACE N

CHANGE <A,B> DATA

DISPLAY N

EXIT

FINI +

GOTO N+

HELP

INPUT LABEL/UNIT
KEY A,B

LIST N KEY+

OUTPUT LABEL/UNIT
PUT N

QUERY
REWIND

SEARCH <A,B> DATA +

TYPE N <A,B>+
UPDATE LABEL/UNIT
VERSION

WRITE N

X

*VERSION

DAFT VERSION 8.00

*INPUT MAILING/l
*DISPLAY 70

*T 1

RECORD 000001 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

DIGITAL EQUIPMENT CORP. D. F. PAVLOCK 12-3

146 MAIN ST. MAYNARD MA01754OS/8-l 0012345All

*D

*T 2

RECORD 000001 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

DUMP AND FIX TECHNIQUE (DAFT) 15-5

0 l 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890
DIGITAL EQUIPMENT CORP. D. F. PAVLOCK 12-3

7 8 9 10 1 2 3 4

1234567890123456789012345678901234567890123456789012345678901234567890
146 MAIN.

ST. MAYNARD MA01754OS/8-l 0012345All

RECORD 000002 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

0 1 2 3 4 5 6 7

1234567890123456789012345678901234567890123456789012345678901234567890

DIGITAL EQUIPMENT CORP. K. RICHER 12-3

7 8 9 10 1 2 3 4

1234567890123456789012345678901234567890123456789012345678901234567890

146 MAIN ST. MAYNARD

MA01754COS 300 0001972T 3

*T 2<25,50>

RECORD 000002 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

2 3 4 5

56789012345678901234567890

K. RICHER

RECORD 000003 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

2 3 4 5

56789012345678901234567890

S. RABINOWITZ

*A 1

*KEY 1,50

*T 2

RECORD 000004 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

0 1 2 3 4 5

12345678901234567890123456789012345678901234567890

DIGITAL R. LARY

RECORD 000005 OF FILE MAILNG, RECORD LENGTH=140 CHARACTERS

0 l 2 3 4 5

12345678901234567890123456789012345678901234567890

DEC 8. G. WELCOME

15-6 DUMP AND FIX TECHNIQUE (DAFT)

*Q

INPUT FILE: MAILNG OPEN

UNIT: 01

OUTPUT FILE: /NONE/
UNIT: 00

KEY=<001,050>

RECORD 000005 OF FILE MAILNG, RECORD LENGTH=14O CHARACTERS

DAFT VERSION 8.00

15.6 DAFT ERROR MESSAGES

Message Explanation

BAD DIGIT IN DATA In a Change or Search command, a character

other than digits or a minus sign
is contained in a numeric data field.

Remove bad characters.

CANT BACKSPACE PAST BEGIN OF FILE

Attempted to backspace past the beginning of

file. The first record in the file becomes

the current record.

CANT BACKSPACE WITH SEQUENTIAL INPUT

Attempted to backspace with sequential input.
Backspace only possible when file is in up-

date mode.

END OF INPUT FILE AT RECORD nnnn

Attempted to read past the end—of—file mark

on the input file. This is not necessarily
an error. nnnn was the last record read.

The input file is closed. Reopen the file.

EXCESSIVE GRID SIZE The grid (printer width) may not be greater
than 130 characters. Reduce the grid size.

EXTRA CHARS Extra characters were found after the end of

a command. Remove extra characters.

ILLEGAL RECORD - CLOSING FILE

The file being updated contains a bad record

(one not the same size as record I). Only
fixed—length records are permitted on such

files. The file is closed. ReOpen the file.

DUMP AND FIX TECHNIQUE (DAFT) 15-7

Message

KEY ENTIRELY PAST END OF

Explanation

RECORD

The key specified in a List or Type DAFT com-

mand began with a character greater than the

record size. Reduce the size of the key.

KEY EXTENDS PAST RECORD END

KEY TOO BIG

NO DATA

NO INPUT FILE

NO LABEL NAME

NO OUTPUT FILE

OUTPUT FILE ALREADY OPEN

OUTPUT FILE STILL OPEN

PUSHDOWN OVERFLOW

0 NOT ALLOWED

Attempted a change with a key that extends

past the end of a record. However, a list

with such a key is possible. In such a case,

the list is terminated at the end of the

record.

The key exceeded 100 characters. Reduce the

size of key.

Data was not specified in a CHANGE or SEARCH

command. Specify required data.

The command does not have an input file.

Open an input file.

The file name was omitted in an INPUT, OUT—

PUT, or UPDATE command. Implement a name.

The command requires an output file but one

is not open. The command is terminated at

the point just prior to writing the current

record on the output file. Open an output
file.

A request was made to open an output file

while one was already open. Only one output
file can be open at a time. The request is

ignored. Close the current output file be-

fore opening a new file.

An EXIT cannot be made when the output file

is open. The output file can be closed with

the FINI command or CTRL/C.

The program will abort with this message when

too many errors are made. Restart DAFT.

The 0 (zero) is not a permissible argument.
Don't use 0.

15-8 DUMP AND PIX TECHNIQUE (DAFT)

CHAPTER 16

REPORT PROGRAM GENERATOR (PRINT)

PRINT eases the creation of report programs. Using a command file

which describes the report, PRINT generates a DIBOL program which pro-

duces the report.

PRINT is two programs chained together. The first program reads and

validates the command file while creating memory table entries. If no

command file errors are detected, the second program produces the

DIBOL report program. The two programs which generate the report pro—

gram require a total of 16K bytes of memory.

16.1 PRINT COMPILING PROCEDURE

PRINT is distributed as several source files. The files must be com—

piled into two programs before PRINT can be executed.

The PRINT source files contain the following information:

o PRINTl, PRINT2 are the data sections.

0 PRINT3, PRINT4, PRINTS, PRINT6 are the procedure sections of

the parsing (reading and validating) phase.
0 PRINT7, PRINTB, PRINTS, PRINTO are the procedure sections of

the generation phase.

Use the following procedure to compile the distributed PRINT source

files into binary programs.

.RUN COMP,PRINT1,PRINTZ,PRINT3,PRINT4,PRINT5,PRINT6

.SAVE PRINTA

.RUN COMP,PRINT1,PRINT2,PRINT7,PRINT8,PRINT9,PRINTO

.SAVE PRINTB

16-1

16.2 PRINT OPERATING PROCEDURES

To execute PRINT, type:

RUN PRINTA+PRINTB,cmndfl[/Xy]

where:

cmndfl is the name of a previously stored command file.

PRINTA+PRINTB

are the compiled PRINT DIBOL programs.

x is a switch which determines whether the command file

is to be listed on the printer; N means no list, L

means list.

y is a switch which determines whether the DIBOL program

(data file) created by executing PRINT is to be listed

on the printer; N means no list, L means list.

If x and y are both N, the switches and their preceding slash can be

omitted.

The output from the RUN PRINT command is a data file which must be

converted to a source file with the use of FILEX.

16.2.1 FILEX - Creation of Source File

Use the following FILEX command sequence to create a source file from

the data file created by PRINT. (See Chapter 10 for FILEX informa—

tion.)

.RUN FILEX

FILEX V 8.00

OPT (c, D, L, x, Z): c

INPUT MODE (A, D, U): D

FILE NAME: $RPG/logica1 unit #
OUTPUT MODE (A, D, s, U): 8

FILE NAME: pronam
OPT (c, D, L, x, Z): x

Pronam is any name desired, but it is usually the same name as is used

in the IDENT line of the command file.

16-2 REPORT PROGRAM GENERATOR (PRINT)

16.2.2 Compilation

To compile the DIBOL source program created by running the PRINT out—

put through FILEX, type:

.RUN COMP,pronam

.SAVE pronam

16.2.3 Program Execution

To execute the compiled DIBOL program, type:

.RUN pronam

where:

pronam is the name of the source program created by FILEX and

compiled in Section 16.2.2

The execution of this program produces the report.

16.3 PRINT COMMAND FILE

The Print Command File has six sections:

IDENT identifies the program and author

HEAD1,HEAD2 provides page headings for the report
INPUT describes the input file

COMPUTE describes any computation to be done

PRINT describes the report column headings
END is an optional directive at the end of the Print

Command File

16.3.1 IDENT Section

The form of the IDENT section is:

IDENT pronam[/logica1 unit #][,author]

where:

pronam is the name of the DIBOL source program to be generat-
ed.

/logical unit#

is the number referencing the storage location of the

program.

REPORT PROGRAM GENERATOR (PRINT) 16-3

,author any text from 1 to 24 characters in length.

Example:

IDENT TEST4l/l4, JOHN DOE ;Program named TEST41, on logical unit

:14, written by John Doe.

16.3.2 HEADl and HEADZ Section

HEADl is the first heading line on each page of the report. HEADZ is

the second line. HEADl and HEADZ are both optional. The only differ-

ence between HEADl and HEADZ is that HEADl information will be expand-
ed (if space permits) by inserting a space between each character.

HEADZ has no such expansion capability.

The form is:

[HEADl 'text']

[HEADZ 'text']

where:

text is a string of up to 132 characters from the COS-310

character set, exclusive of single quotes.

There can be more than one HEADl or HEADZ line. If this is the case,

the individual texts are linked together.

Example:

HEADl 'COMPUTATION AND SUMMARY RESULTS'

HEADl 'FOR AUGUST, 1973'

16.3.3 INPUT Section

The INPUT section consists of the INPUT statement on one line followed

by field description lines describing the fields of the input record.

The form of the input statement is:

INPUT [filnam[/logical unit #]][,S]

where:

filnam is the name of the input file.

16-4 REPORT PROGRAM GENERATOR (PRINT)

/logical unit #
is the logical unit on which the input file resides.

,5 summarizes rather than describes the report.

If the file name is omitted, the generated program will request it

when the report is run.

The form of each field description line is:

[fldnam],

A

n[.m][,Lr[P]]
D

where:

fldnam is the name of the field.

A is an alphanumeric field.

D is a numeric field.

n is the size of the field, expressed in characters (510
maximum for A field, 15 maximum for D field).

.m is the number of decimal places in the field and is

valid only for numeric fields.

,Lr is used only for the break fields (a break field is

used in conjunction with ACCUMULATE to print totals).
The r is a single digit expressing the relative impor-
tance of the field; 1 indicates least important and 9

indicates most important. When totals are printed for

a more important break, totals for all lesser breaks

are also printed.

P starts a new report page after the totals for this

break are printed.

The maximum number of fields is 20.

16.3.4 COMPUTE Section

This optional section starts with a line containing only one word:

COMPUTE

DIBOL statements appear on succeeding lines in the following form:

fldnam = expression

REPORT PROGRAM GENERATOR (PRINT) 16-5

where:

fldnam is the name of a destination field and must not dupli-
cate any input field name nor any prev1ous computation

result name.

expression .

is any valid DIBOL expression. It may be a s1ngle al—

phanumeric field or literal, or any numeric expressmn.

Unlike DIBOL, PRINT uses decimal places. It will not allow addition

and subtraction of expressions with different numbers of decimal

places. The result of such an expression will have the same number of

decimal places as the elements of the expression.

The number of decimal places in the result of a multiplication expres—
sion is the sum of the decimal places in the two expressions.

The number of decimal places in the result of a division expression is

the difference in decimal places between the number being divided and

the divisor.

To-adjust the number of decimal places for any expression, multiply by
the constant 1.00 with the number of decimal places equal to the long—
est number of decimal places in the other values. For example, expr 1

has 2 places, and expr 2 no places, then

expr l *
expr 2 * 1.00

has four decimal places.

PRINT allows decimal places in numeric constants.

16.3.5 PRINT Section

The PRINT section begins with a line containing only one word:

PRINT

The next 12 lines describe the fields to be printed (not all 12 lines

must be used). The form of these field descriptions is:

fldnam, 'text'[,A][,format]

where:

fldnam is the name of the field and must be either an input
field or the result of a computation.

16-6 REPORT PROGRAM GENERATOR (PRINT)

'text'

,A

format

is an alphanumeric string of COS—310 characters delim—

ited by single quotes. This text is used as the head-

ing of the report columns and on the total lines for

break fields.

is present only if the field is to be accumulated and

the sum is to be printed on total lines. The field

must be numeric.

is a string of text showing the format for the numeric
fields. If the format is not included, PRINT will cre-

ate one using the description of the field (if this is

an accumulated field, two extra places will be as-

sumed). That created format will use an appropriate
number of decimal and integer places in the following
form:

XX,XXX.XX-

The text used for titles may be several words separated by asterisks.

This centers each word over a column in separate lines. For example:

GPAY, 'GROSS*PAY'

will cause

GROSS

PAY

to be placed over the GPAY column. If GPAY is also a break field,
then:

GROSS PAY TOTAL

will be used on the total line instead of GROSS*PAY TOTAL.

The field descriptor lines may also be of the form:

,An

Where n is the size of the field. This will produce n blank columns

in the report.

If any two field descriptors are not separated by a filler descriptor,
then two blank columns will separate the fields in the report.

Example:

PRINT

NAME, 'EMPLOYEE NAME‘

DEPT, 'DEPARTMENT'

GPAY, 'GROSS*PAY',A,XX,XXX.XX

REPORT PROGRAM GENERATOR (PRINT) 16-7

16.3.6 END Section

The END section is optional and consists of a line containing only the

word:

END

16.4 PRINT ERROR MESSAGES

Most errors in PRINT result from incorrect information in the command

file. These are correctable with the editor and Monitor commands.

PRINT evaluates each statement in the command file for correctness.

Whenever errors occur, the entire line where the error occured and a

message are printed. The number printed near the error message indi-

cates the character position where the error occurred. The following
error messages are used by PRINT.

Message Explanation

ALPHA LITERAL REQUIRED Expected alphanumeric literal is miss—

ing. Insert where appropriate.

ALREADY DEFINED Attempt to name a field in the INPUT or

COMPUTE section with a name that was

previously used. Correct the command

file.

HEADER IS TOO LONG The header line exceeds 132 characters.

Correct the command file.

IMPROPER DEFINITION Filler item in the PRINT section is used

incorrectly. Correct the command file.

IMPROPER LITERAL Literal too long. Shorten the literal.

IMPROPER USE OF DECIMAL PLACES

The number of decimal places exceeds the

size of the field being defined. Reduce

the number of decimal places.

INTEGER FROM 1—15 REQUIRED The size of a numeric field specified in

the INPUT section must be between 1-15.

Correct the command file.

16-8 REPORT PROGRAM GENERATOR (PRINT)

Message

INTEGER FROM 1-132 REQUIRED

INTEGER REQUIRED

LITERAL TOO LONG

MUST BE IDENT

MUST BE NUMERIC ITEM

MUST BE S

NEED FILE NAME

NO ENDING QUOTE

NO INPUT DIRECTIVE

NO PRINT ITEMS

NOT DEFINED

NOT ENOUGH RIGHT PARENTHESES

PICTURE TOO LONG

Explanation

The expected numeric fields out of

range. Reduce the field size to fewer

than 132 characters.

Integer missing where expected. Check

and insert as needed.

Field description exceeds 30 characters.

Reduce to fewer than 30 characters.

The first section in the command file

must be IDENT. Correct the command

file.

An item expected to be numeric is de-

fined incorrectly. Redefine.

S is the only legal option in the INPUT

statement that follows the comma.

Insert S.

File name missing from IDENT statement.

Correct the command file.

No closing quote for a HEADl, HEADZ, or

PRINT statement. Insert closing quote.

The INPUT statement is missing. Correct

the command file.

No fields are specified following the

PRINT statement. Correct the command

file.

Attempted to print a field that has not

been defined. Correct the command file.

A statement in the COMPUTE section has

too few right parentheses. Correct the

command file.

The picture or edit mask for printing
exceeds 22 characters. Reduce to fewer

than 22 characters.

REPORT PROGRAM GENERATOR (PRINT) 16-9

Message

SYNTAX ERROR

TOO MANY COLUMNS IN REPORT

TOO MANY

TOO MANY

TOO MANY

TOO MANY

TOO MANY

COMPUTE STATEMENTS

DATA ITEMS

LEFT PARENTHESES

LIST ITEMS

RIGHT PARENTHESES

UNKNOWN DIRECTIVE

Explanation

Statement contains illegal characters or

options. Correct the command file.

More than 132 columns under HEADl,
HEADZ, or PRINT sections. Correct the

command file.

More than eight COMPUTE statements were

specified. Correct the command file.

More than 20 data items in the INPUT

section. Correct the command file.

A statement in the COMPUTE section is

too complicated to be deciphered by
PRINT. Simplify the command file.

More than 20 list items in the INPUT

section. Correct the command file.

A statement in the COMPUTE section has

too many right parentheses. Correct the

command file.

An invalid section statement. Only
IDENT, HEADl, HEADZ, INPUT, COMPUTE,

PRINT, and END are legal. Check your

statements for incorrect statements;
correct the command file.

16-10 REPORT PROGRAM GENERATOR (PRINT)

CHAPTER 17

FLOWCHART GENERATOR PROGRAM (FLOW)

The flowchart generator program (FLOW) produces a flowchart from a set

of input commands.

The flowchart is always written to a file named $PASSl located on log—
ical unit 1. A printed flowchart can also be produced by using the

appropriate option switches. The flowchart generator programs are

distributed as source programs and must be compiled before use.

17.1 FLOW COMPILING PROCEDURE

FLOW consists of several DIBOL programs.

To compile the FLOW programs, type:

.RUN COMP,FLOW1,FLOW2,FLOW3,FLOW4

.SAVE FLOW

.RUN COMP,KREF

.SAVE KREF

17.2 FLOW OPERATING PROCEDURES

The commands to execute FLOW have the form:

RUN FLOW,cmndf11...,cmndfl7[/xx]
RUN SORT,KRFSRT
RUN KREF

where:

cmndfl]...,cmndfl7
are previously stored source files containing the FLOW

commands to be used in generating a flowchart.

/xx is one of the following option switches:

17-1

/L lists the flowchart on the printer. If /L is

omitted, the flowchart will only be placed in file

SPASSl on logical unit 1.

/P indicates that the input files are DIBOL programs
with the FLOW commands imbedded in the program.
When the /P option is used, only input lines be-

ginning with a semicolon followed by any number of

periods followed by a space or a tab are treated

as FLOW commands. No semicolon — period —

space

configuration is needed if the FLOW commands are

not part of a DIBOL program.

KRFSRT is a special sort command file that will sort the

cross-reference scratch file. KRFSRT is distributed as

part of the COS-310 software.

KREF is a cross-reference DIBOL program that works specifi—
cally with FLOW. This produces a cross—reference table

containing an alphabetical listing of all labels used

in the flowchart, the page number where each label is

defined, and the page numbers where each label is used.

KREF is distributed as part of the COS-310 software.

FLOW uses logical units 1, 2, 3, 4, and 5. Logical unit 1 must be

large enough to contain the flowchart print image (usually 10 segments
is sufficient). Logical units 2, 3, 4, and 5 must each be large

enough to contain the KREF scratch file (usually 5 segments in each

logical unit).

17.3 FLOW COMMANDS

Although some FLOW commands look like DIBOL statements, they are de—

fined and used differently. FLOW commands have the following general
format:

[;..][1abel][,] command

where:

;.. is the special indicator used with the /P option to

distinguish between FLOW commands and DIBOL statements.

label is the FLOW statement label.

command is one of the following FLOW commands:

PROC [;Jltext]
DISK [;][text]

YES

IF NO :label [;][text]

17-2 FLOWCHART GENERATOR PROGRAM (FLOW)

CALL label [;][text]
START [;][text]
STOP [;1[text]
GOTO label

CGOTO labe11,labe12,...
1/0 [;][text]
TITLE [;][text]
SBTTL [7][text]
PAGE

text is the information to be placed in the flowchart

block. This text is usually centered within the

blocks. Some commands require the text in a

specific format.

Spaces and/or tabs may be inserted for legibility.

17.3.1 PROC Command

The PROC (process) command allows you to put up to 65 characters in-

side a process block. The following process block will be generated

by the command line:

PROC ;BUILD A TAB CHARACTER

* *

* *

* BUILD A TAB *

* CHARACTER *

* *

* **************

17.3.2 DISK Command

The DISK command allows you to put up to 55 characters inside a disk

block. The following disk block will be generated by the command

line:

DISK :OPEN SYS FILE FOR INPUT

* k

* OPEN SYS *

* FILE FOR *

* INPUT *

* *

FLOWCHART GENERATOR PROGRAM (FLOW) 17-3

17.3.3 IF Command

The IF command allows you to put up to 37 characters inside a decision

block. The IF command requires that the text field be preceded by the

following field:

YES

:label to branch to

NO

The following decision block will be generated by the command line:

IF NO:ERROR ;IS THERE A SYS FILE?

*

* *

* * NO **********

* IS THERE A *—--->* ERROR *

SYS FILE? **********

* *

* YES

17.3.4 CALL Command

The CALL command allows you to put up to 33 characters inside

a subroutine block. The CALL command requires that the text field be

preceded by the subroutine name.

The following subroutine block will be generated by the command line:

CALL HOF ;OUTPUT PAGE MARKER

* HOF *

* OUTPUT PAGE *

* MARKER *

* *

17-4 FLOWCHART GENERATOR PROGRAM (FLOW)

17.3.5 START Command

The START command allows you to put up to 13 characters inside a start

block. The following start block will be generated by the command line:

START ;HOF ROUTINE

* HOF ROUTINE *

17.3.6 STOP Command

The STOP command allows you to put up to 13 characters inside a stop
block. The following stop block will be generated by the command

line!

STOP ;RETURN

* RETURN *

17.3.7 GOTO Command

The GOTO command allows you to put up to six characters inside a GOTO

block. The following GOTO block will be generated by the command line:

GOTO NEXT

————————— >* NEXT *

FLOWCHART GENERATOR PROGRAM (FLOW) 17-5

17.3.8 CGOTO Command

The CGOTO (computed GOTO) command allows you to flowchart multiway
branches. The text field consists of labels separated by commas with-

out imbedded spaces. The following blocks will be generated by the

command lines:

PROC ;BRANCH BASED ON COMMAND NUMBER

CGOTO PROCES,DISK,IF,SUBR

* *

*BRANCH BASED *

* ON COMMAND *

* NUMBER *

* *

I **********

1 --------->* PROCES *

! **********

l ————————— >* DISK *

l **********

1 ————————— >* IF *

1 **********

1 ————————— >* SUBR *

17.3.9 I/O Command

The I/O command allows you to put up to 47 characters inside an I/O
block. The following I/O block will be generated by the command line:

I/O ;DISPLAY 'ERROR'

* *

DISPLAY
* 'ERROR' *

17.3.10 TITLE Command

The TITLE command allows you to specify up to 40 characters as a

flowchart title. The title will appear at the top of all subsequent
pages.

17-6 FLOWCHART GENERATOR PROGRAM (FLOW)

17.3.11 SBTTL Command

The SBTTL command allows you to specify up to 40 characters as a sub—

title. The subtitle is printed on the line below the title. The

SBTTL command implies a top—of-page command.

17.3.12 PAGE Command

The PAGE command advances the listing to the top of the next page.
FLOW automatically generates new pages when necessary, making the PAGE

command unnecessary in most instances.

17.4 FLOW EXAMPLE

The best example of the use of the flowchart generator is FLOW itself.

FLOW commands have been inserted into the FLOW source files (FLOWl,

FLOWZ, FLOW3, FLOW4). To produce a flowchart of FLOW, use the follow-

ing procedure:

0 Assign the necessary logical units using DFU.

o Compile the flowchart programs.

0 Enter the following commands:

.RUN FLOW,FLOW1,FLOW2,FLOW3,FLOW4/PL

.RUN SORT, KRFSRT

.RUN KREF

17.5 FLOW ERROR MESSAGES

Message Explanation

NO INPUT FLOW has no information to build a flowchart.

Build a command file.

ERROR An error has occurred. The line of text

where the error occurred will be displayed on

the next line. Check the line and correct

the error.

FLOWCHART GENERATOR PROGRAM (FLOW) 17-7

CHAPTER 18

MENU PROGRAM (MENU)

The MENU program allows you to select and execute commands from a pre-

viously created command file. MENU permits more orderly execution of

commands.

18.1 MENUWOPERATING PROCEDURES

To run MENU, type:

RUN MENU , cmnd f l

where:

cmndfl is the name of the MENU command file stored on the sys-

tem device. If none is specified, the file in the edit

buffer is used.

MENU displays the text found in the Display Section of the command

file and will accept a six-character operator response at the screen

location specified in the Accept Section. The operator response is

compared to the list of valid responses specified in the Command Sec-

tion. If a match is found, the corresponding Monitor or editor com-

mands are then executed by COS-310.

MENU can be included in a batch command file only as the last command

in the file.

18.2 MENU COMMAND FILE

The MENU command file is created using COS—310 editor commands and is

stored on the system device. It consists of three sections: Display,
Command, and Accept. The order of these sections within the file is

vital.

18-1

Example:

DISPLAY

COPY COPY RXO TO Rxl

DIR PRINT DIRECTORY OF RXO

COMMAND

COPY =ER

=l C

=2 RXO

=3 RXl

=4 x

=WR SCOPY/Y
=PLEASE MOUNT DISKETTE ON DRIVE 1

=R PIP.$COPY
=DE SCOPY/S
=R MENU,cmndfl

DIR =DI,RXO
=R MENU,cmndfl
ACCEPT (24,10)

18.2.1 Display Section

The Display Section has the form:

DISPLAY [/N]
text

where:

DISPLAY is the first statement in the command file (must be

DISPLAY).

/N is an optional switch to suppress clearing the screen

prior to displaying the text. Without /N the screen is

cleared.

text is text to display on the screen beginning on line one.

Each line of text begins with a new line number. If a

line of text contains more characters than can be dis-

played on a screen line, the extra characters are lost.

Any line beginning with a semicolon is assumed to be a

comment and is not displayed.

18-2 MENU PROGRAM (MENU)

18.2.2 Command Section

The Command Section has the form:

COMMAND

code=command

where:

COMMAND

code

command

is the first line in the section (must be COMMAND).

is an operator response that contains a maximum of six

characters. The Command Section may contain up to

sixty codes.

is a COS-310 Monitor or editor command that is executed

when its corresponding code is entered as the operator

response. There can be no spaces or tabs between the

equal sign and the command.

A series of commands may be executed by listing the

commands on subsequent lines with no code to the left

of the equal sign. The series of commands is combined

to produce a batch command file. This batch command

file cannot be longer than one block.

There may be as many as 3995 characters in the Command

Section.

18.2.3 Accept Section

The Accept Section has the form:

ACCEPT (y,x) [/N]

where:

ACCEPT

Y

is the first line in the section (must be ACCEPT).

is a decimal number (cannot be an expression) designat-
ing the screen line number where the operator response

is to be entered. If y is greater than the number of

lines on the screen the results are unpredictable.

MENU PROGRAM (MENU) 18-3

x is a decimal number (cannot be an expression) repre-

senting the screen column number where the operator

response is to be entered. If x plus the operator re-

sponse (maximum of six) is greater than the screen

width, the results are unpredictable.

/N is an optional switch to suppress clearing the screen

prior to executing the selected command from the Com-

mand Section.

The location (y,x) may fall within the text displayed by the Display
Section.

18.3 MENU ERROR MESSAGES

Message

ACCEPT SECTION NOT FOUND

COMMAND SECTION NOT FOUND

DISPLAY SECTION NOT FOUND

ILLEGAL CURSOR POSITION

ILLEGAL STATEMENT

TOO MANY COMMANDS

TOO MANY COMMANDS FOR 1 CODE

18-4 MENU PROGRAM (MENU)

Explanation

No Accept Section in the command file.

Correct command file.

No Command Section in the command file.

Correct command file.

No Display Section in the command file.

Correct command file.

An illegal cursor position (or none) was

requested in the Accept Section.

Correct command file.

Command file contains, a meaningless
statement. Correct command file.

The Command Section is too large.
Reduce size of Command Section.

The series of commands under one code

exceeds 1 block in length. Correct com—

mand file.

APPENDIX A

COS-310 CHARACTER SET

In both source and data files, characters (alphanumeric and numeric)

are stored two characters per word in six-bit binary. Negative
numbers are stored with the high-order bit of the low—order digit set

to 1. For example, the number 1234- is stored as two words in the

following form:

22 23 WORD 1

1 2

24 65 WORD 2

3 4 (with high-order bit on)

This number is recognized as 123T. This means that any program in

which the numeric-to—alphanumeric conversion is not made might produce
negative numbers with letters. Refer to Table A-1 for a list of char-

acters representing negative numbers.

Table A-1

Characters Representing Negative Numbers

Negative Equivalent Decimal Octal

Number Character Code Code

-0 P 49 61

-1 Q 50 62

-2 R 51 63

-3 S 52 64

-4 T 53 65

-5 U 54 66

-6 V 55 67

-7 W 56 70

—8 X 57 71

-9 Y 58 72

Table A-2

COS-310 Character Set

Decimal Octal Decimal Octal

Code Code Character Code Code Character

00 00 Null 32 40 ?

01 01 Space 33 41 @
02 02 1 34 42 A

03 03
"

35 43 B

04 04 # 36 44 C

05 05 $ 37 45 D

06 06 % 38 46 E

07 07 & 39 47 F

08 10 '
40 50 G

09 11 (41 51 H

10 12) 42 52 I

11 13 * 43 53 J

12 14 + 44 54 K

13 15 , 45 55 L

l4 l6 - 46 56 M

15 17 . 47 57 N

16 20 / 48 60 o

17 21 0 49 61 P

18 22 l 50 62 Q
19 23 2 51 63 R

20 24 3 52 64 S

21 25 4 53 65 T

22 26 5 54 66 U

23 27 6 55 67 v

24 30 7 56 70 W

25 31 8 57 71 X

26 32 9 58 72 Y

27 33 : 59 73 Z

28 34 ; 60 74 [
29 35 < 61 75 Tab

30 36 = 62 76]
31 37 > 63 77

1

A-2 COS-310 CHARACTER SET

APPENDIX B

COS-310 FILES

There are four types of files in the COS-310 system: source, binary,
data, and system. Source, binary, and data files have similar struc-

ture. System files use standard 05/8 SAVE format.

B.1 COS-310 SOURCE FILES

Each line in a source command file or DIBOL source file must be input
with a line number. This makes all source files look the same and

makes them compatible with COS-310. Each input line has the following
format:

word line n-l words, two COS-310

count (n) number characters per word

The first word contains the word count for that line. It is computed
with the following expression.

n = ((number of characters on line +1)/2)+l

The second word is the statement line number, 0000-7777 octal

(0000-4095 decimal).

The third and successive words contain the text of the line packed two

COS-310 characters per word. The total characters of data per line

does not include the two-character (l word) word count number.

3.2 COS-310 DATA FILES

Every block in a data file is completely devoted to the storage of

data. Each logical unit holds only one data file. Labels on data

files are associated with logical units by the Monitor in conjunction
with DIBOL or system programs.

The format of a line in a data file is similar to the format for a

line in a source file except there is no line number on a data file.

A line of text in a data file has the following format:

word n words, two characters

count (n) per word

The first word contains the word count for that line. It is computed
with the following expression:

n = (number of characters in record +l)/2

The second and successive words contain the text of the line, two

COS-310 characters per word.

3.3 COS-310 BINARY FILES

Although the contents of a binary file are interpreted differently
than the contents of a data file, externally the two files are struc-

tured exactly alike. That is, the binary code for each line of a

DIBOL source program is stored as a word count followed by the inter-

pretive code to be used by the run-time system.

3.4 COS-310 SYSTEM FILES

All system files are stored in OS/8 SAVE format. The first block of

the file is a memory control block indicating where in memory the rest

of the blocks of the file are to be loaded. Each successive block is

a 256-word memory image. See the 08/8 Software Support Manual for de—

tails.

3.5 SYSTEM DEVICE FORMAT

COS—310 puts a label on all devices. This label occupies the first

256 words of each device; four words are the actual label, one word

is the date, and the other words may be a bootstrap.

Figure 3-1 illustrates the layout of the Monitor portion of the system
device. As noted in the figure, COMP should be the first file in the

file area. The location of COMP is particularly important when the

binary scratch area is to be expanded.

3-2 COS-310 FILES

BLOCK NO.

(Octal)

0

Bootstrap

1

Directory

10

Monitor

14

Editor Overlay

20

Editor

34

Run—Time System
Loader

40

Edit Buffer

60

Run-Time System

70

Compiler Overlays

100

Binary Scratch Area

140

Files

END OF MEDIA

Figure 8-1 Monitor Organization

COS-310 FILES 8-3

A label is automatically put on a system device. The directory of a

system device is organized as follows:

Word Contents

0 The negative number of directory entries in this block.

1 The starting block number for file storage.

2 The link word to the next directory block or empty if

end. There are seven directory blocks on all multifile

devices.

3 Empty (unused).

4 The negative number of auxiliary words per entry (al-

ways equals —l).

5 The first two characters of name.

6 The next two characters of name.

7 The last two characters of name.

8 A two-character extension.

9 The date.

10 Length of the file (negative).

11-255 Repeat of 5-10 for each file.

Space for other kinds of files is allocated on the disk beginning at

the first free block following the COS-310 system files. On an RK05

disk, the system directory knows that the available space for file

storage only extends to block 4095.

Access to Data Files

Data Files are referenced by their logical unit numbers as assigned by
DFU. DFU actually sets up an internal table containing the following
information for each logical unit:

0 Handler address

0 Drive number

0 Starting segment
0 Length in segments

3-4 COS-310 FILES

The handler address is a pointer to the specific device handler to use

for a particular logical unit. The drive number indicates which disk

drive to reference. The starting segment is indicated by a 12-bit

number which points to the physical device space allocated for the

logical unit. The length is the number of segments reserved for this

logical unit.

Example:

If logical unit 14 is assigned to a 32-block area on DKl, the four-

teenth entry in the table might contain the following information:

DK handler drive starting segment length
address 1 212 (octal) —40 (octal)

Any references to logical unit 14 would refer to segments 212-251

(octal) of DKl. The first block in segment 212 would have a label for

that logical unit.

COS-310 FILES 3-5

APPENDIX C

ERROR MESSAGE INDEX

This index will refer you to the chapters where corrective and back-

ground information is located. Locate the error message you have en-

countered and go to the chapter referenced.

‘more than once, check the message listed with the program that you are

running.

Message

ACCEPT SECTION NOT FOUND

ALPHA LITERAL REQUIRED

ALREADY DEFINED

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

BAD

ALPHA VALUE

CHAIN

CHECKSUM

COMPILATION

DATE

DIGIT

DIGIT IN DATA

DIGIT IN NUMERIC INITIAL VALUE

DIRECTORY

DIRECTORY

DIRECTORY

DIRECTORY

Program

MENU

PRINT

PRINT

COMP

Run—Time

PATCH

Monitor

Monitor

Run-Time

DAFT

SORT

FILEX

Monitor

PATCH

PIP

If the message is listed

Refer to

Chapter 18

Chapter 16

Chapter 16

Chapter 5

Chapter 2

Chapter 11

Chapter 2

Chapter 2

Chapter 2

Chapter 15

Chapter 9

Chapter 10

Chapter 2

Chapter 11

Chapter 8

Message

BAD LABEL

BAD NUMBER

BAD NUMERIC VALUE

BAD PROC #

BAD PROGRAM

BAD RECORD SIZE

BAD RELATIONAL

BAD SWITCH

BAD SWITCH

BAD WORK UNIT COUNT

BLOCK T00 BIG

CANT BACKSPACE PAST

CANT BACKSPACE WITH

CCP ERROR

COMMA MISSING

COMMAND SECTION NOT

COMPARISON ERROR

DATA INITIALIZATION

DEVICE ERROR

BEGIN OF FILE

Program

Monitor

PATCH

COMP

COMP

Run—Time

SORT

COMP

SYSGEN

DFU

SORT

PATCH

DAFT

SEQUENTIAL INPUT

FOUND

MISSING

DAFT

COMP

COMP

MENU

PIP

COMP

FILEX

deV MUST BE INCLUDED IN CONFIGURATION

DIBOL FILE NUMBER IN USE

DIBOL FILE NUMBER NOT INITED

DISPLAY SECTION NOT

EDIT BUFFER FULL

FOUND

C-2 ERROR MESSAGE INDEX

SYSGEN

Run-Time

Run-Time

MENU

Monitor

Refer to

Chapter

Chapter

Chapter

2

ll

5

Chapter 5

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

N

IBWUIW
11

15

15

2

18

Chapter 2

Message

END OF FILE

END OF INPUT FILE AT RECORD nnnn

ERR IN CMD

ERROR

ERROR IN COMMAND

ERROR ON dev, RETRY?

EXCESSIVE GRID SIZE

EXPECTED LABEL IS MISSING

EXPRESSION NOT ALLOWED

EXTRA CHARS

EXTRA CHARS AT STMNT END

EXTRA CHARS AT STMNT END

FIELD NUMBER MISSING OR 0

FIELD TOO LARGE OR 0

FILE ALREADY EXISTS

FILE NOT FOUND

FILE NOT FOUND

FULL

FULL

HEADER IS TOO LONG

ILLEGAL CURSOR POSITION

ILLEGAL DEVICE

ILLEGAL DEVICE

ILLEGAL DEVICE

ILLEGAL DEVICE SWITCH

Program

Run-Time

DAFT

DDT

'FLOW

Monitor

Monitor

DAFT

COMP

COMP

DAFT

COMP

SORT

SORT

COMP

FILEX

Monitor

PATCH

FILEX

SYSGEN

PRINT

MENU

DFU

FILEX

Run—Time

PIP

Refer to

Chapter

Chapter

Chapter

Chapter

Chapter

’Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

2

15

6

17

10

2

ll

10

3

16

18

4

10

2

8

ERROR MESSAGE INDEX C-3

Message

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

ILLEGAL

IMPROPER DEFINITION

OPERATOR

PROGRAM

RECORD - CLOSING FILE

RECORD #

SORT KEY

STATEMENT

STMNT

SUBSTRING

UNIT

UNIT

IMPROPER LITERAL

IMPROPER USE OF DECIMAL PLACES

IN USE

INSUFFICIENT SPACE ON DEVICE

INSUFFICIENT SPACE ON DEVICE

Program

COMP

Monitor

DAFT

Run—Time

SORT

MENU

COMP

Run-Time

Monitor

SORT

PRINT

PRINT

PRINT

Monitor

DFU

FILEX

INITIAL ALPHA VALUE DOESN'T BEGIN WITH QUOTE

INITIAL

INITIAL

INITIAL

INTEGER

INTEGER

INTEGER

INVALID

KEY ENTIRELY PAST END OF RECORD

C-4 ERROR MESSAGE INDEX

VALUE TOO BIG

VALUE TOO SMALL

VALUE WRONG SIZE

FROM 1-15 REQUIRED

FROM 1-132 REQUIRED

REQUIRED

OPERATION

SORT

SORT

SORT

COMP

PRINT

PRINT

PRINT

PATCH

DAFT

Refer to

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

5

2

15

2

9

18

16

16

16

l6

l6

l3

l5

Montage

KEY EXTENDS PAST END OF RECORD

KEY TOO BIG

LABEL NOT ALLOWED

LINE TOO LONG

LINE # TOO LARGE

LINE TOO LONG

LITERAL TOO LONG

LOCATION TOO BIG

MISSING CLOSE PAREN

Program

DAFT

DAFT

COMP

Monitor

Monitor

Run-Time

PRINT

PATCH

COMP

MISSING CLOSE QUOTE ON ALPHA INITIAL VALUE

MISSING INITIAL VALUE

MISSING OPEN PAREN

MISSING OPERAND

MISSING OR BAD MODE

MISSING QUOTE

MISSING RELATIONAL

MOUNT filnam #nn FOR INPUT:

MOUNT filnam #01 FOR INPUT:

MOUNT filnam #nn FOR OUTPUT:

MUST BE IDENT

MUST BE NUMERIC ITEM

MUST BE S

NAME PREVIOUSLY DEFINED

NEED FILE NAME

nnn IS BEING IGNORED

SORT

SORT

COMP

COMP

COMP

COMP

COMP

Monitor

Monitor

Monitor

PRINT

PRINT

PRINT

COMP

PRINT

CREF

Refer to

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

15

15

16

ll

16

16

16

16

ERROR MESSAGE INDEX C-S

Message

NO

NO BUFFERS LEFT

NO CHANGE IN BLOCK

NO COMMA AFTER FIELD NAME

NO DATA

NO END

NO ENDING QUOTE

NO FILE

?NO FILE

NO INIT

NO INPUT

NO INPUT

NO INPUT

NO INPUT

NO LABEL

TO SAVE

DIRECTIVE

FILE

NAME

NO LP BUFFER

NO OUTPUT FILE

. NO PRINT

NO ROOM

NO ROOM

NOT A OR

NOT A OR

ITEMS

D

D

NOT DEFINED

NOT ENOUGH RIGHT PARENTHESES

Program

BOOT

Run—Time

PATCH

SORT

DAFT

FILEX

PRINT

Run-Time

Monitor

Monitor

FLOW

SORT

PRINT

DAFT

DAFT

Monitor

DAFT

PRINT

FILEX

PIP

COMP

SORT

PRINT

PRINT

NOT ENOUGH ROOM FOR SYSTEM AND FILES

C-6 ERROR MESSAGE INDEX

DFU

Refer to

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

11

15

10

16

16

15

15

15

16

10

16

16

4

Program

NOT ENOUGH ROOM FOR SYSTEM AND FILES

NOT FOUND

NOT LABEL

NOTHING AFTER FIELD NAME

NUMBER REPEATED OR OUT OF ORDER

TOO LARGE

NUMBER TOO LONG

OUTPUT ERROR

OUTPUT FILE ALREADY OPEN

OUTPUT FILE STILL OPEN

PICTURE T00 LONG

PROGRAM TOO BIG

PROGRAM TOO BIG

PUSHDOWN OVERFLOW

PUSHDOWN OVERFLOW

RECORD TOO BIG

REPLACE?

REPLACE filnam #nn ?

RETURN WITHOUT CALL

STMNT TOO COMPLEX

SUBSCRIPT ERROR

SUBSCRIPT NOT NUMERIC

SUBSCRIPT TOO BIG

SYNTAX ERROR

SYNTAX ERROR

FILEX

FILEX

COMP

SORT

SORT

DFU

Run-Time

SORT

DAFT

DAFT

PRINT

COMP

Run-Time

DAFT

Run—Time

COMP

Monitor

Monitor

Run-Time

COMP

COMP

COMP

Run-Time

DFU

PRINT

Refer to

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

10

10

15

15

16

ERROR MESSAGE INDEX C-7

Message

T00

T00

T00

T00

T00

T00

T00

T00

T00

T00

T00

TOO

MANY

MANY

MANY

MANY

MANY

MANY

MANY

MANY

MANY

MANY

MANY

MUCH

COLUMNS IN REPORT

COMMANDS

COMMANDS FOR 1 CODE

COMPUTE STATEMENTS

DATA ITEMS

FILES

ITEMS

LEFT PARENTHESES

LIST ITEMS

RIGHT PARENTHESES

SYMBOLS!

DATA

UNDEFINED NAME

UNKNOWN DIRECTIVE

UNRECOGNIZABLE LINE

WRONG DATA TYPE

ZERO DIVISOR

0 NOT ALLOWED

C-8 ERROR MESSAGE INDEX

Program
'

PRINT

MENU

MENU

PRINT

PRINT

SORT

COMP

PRINT

PRINT

PRINT

COMP

COMP

COMP

PRINT

SORT

COMP

Run-Time

DAFT

Refer to

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

Chapter

16

18

18

16

16

9

5

16

16

16

APPENDIX D

ADVANCED PROGRAMMING TECHNIQUES

D.1 ACCEPT AND DISPLAY

D.1.1 Background Information

XMIT statements were originally used when the terminal was a Teletypefi
The VT52 display terminal uses newer concepts

-—

programmable cursor

control and hardware display clear. ACCEPT and DISPLAY statments were

added to the DIBOL language to use these features. The terminal can

now be used in two ways:

1. As a Teletype by using XMIT statements.

2. As a powerful data entry tool by using ACCEPT and DISPLAY

statements.

(Refer to the ACCEPT and DISPLAY statements in Chapter 1 before

proceeding further.)

D.1.2 Interaction of ACCEPT and DISPLAY

ACCEPT and DISPLAY statements are used extensively in data entry pro—

grams. These data entry programs typically work one of two ways. The

first asks (DISPLAY) questions and interprets (ACCEPT) answers. This

method of operation closely simulates a Teletype. The second method

displays a format or heading on the screen and moves the cursor either

to the right or to a position below the question to be answered.

With the second method, the format is never cleared but data is en—

tered and cleared continuously from the screen. This method is used

in repetitive data entry and updating. Quite often the four keys up

arrow, down arrow, left arrow, and right arrow have special meanings.
For example, assume ten headings are displayed on the screen, indicat-

ing ten fields are to be entered or updated. The up arrow might be

used to re—enter information in the first field, no matter which field

is currently being entered; the down arrow might mean no more infor-

mation for any of the fields; the left arrow might restart entering
data into the current field; the right arrow might mean go on to the

next field without changing the current field.

D.1.3 Example Using ACCEPT and DISPLAY

To enter a six—digit customer number and a lS—character customer name,

the following program might be used:

RECORD

TCHAR,D2

ALPHA,A15
CNO,D6

CNAME,A15
PROC l

DISPLAY(1,1,1) ;Clear screen and position cursor.

DISPLAY(0,0,'CUSTOMER NO. CUSTOMER NAME')
LOOP, DISPLAY(2,1,2) ;Clear line 2 and position cursor.

ALPHA= ;Clear this field.

ACCEPT(TCHAR,ALPHA)
ON ERROR LOOP ;Re—enter if not numeric.

CNO=ALPHA

ALPHA= ;Clear this field again.
DISPLAY(2,16,0) ;Position cursor.

ACCEPT(TCHAR,ALPHA)
CNAME=ALPHA

. ;Save data.

GO TO LOOP

D.1.4 Generalized ACCEPT Subroutines

D.1.4.1 Hardware Display Clear Feature —

Although the previous exam-

ple works properly, it lacks features which would be useful:

1. Type RUBOUT to clear the previously entered character from

both the program and the display.

2. Type CTRL/U (a DIGITAL convention) to clear the entire cur-

rent line from both the program and the display.

Since data acceptance is getting more sophisticated, it can best be

performed by calls to a subroutine. The following two subroutines and

test programs will accept data from the keyboard and use the RUBOUT

D-2 ADVANCED PROGRAMMING TECHNIQUES

key and the CTRL/U key as previously specified. The first program
uses the clearing feature built into the hardware of the VT52.

Unfortunately, this feature destroys data if it is on the same line

and to the right of what is being accepted.

START ;Erases remainder of line for errors.

RECORD

KBDBUF, A80 ;Storage for keyboard input.
RECORD ,X

KBDIN, 80A1

RECORD ;Work area.

ROW, D2 ;Cursor Y—coordinate on entry to subroutine VT52

;(needed for correction only).
COL, D2 ;Cursor X—coordinate on entry to subroutine VT52

;(needed for correction only).
TCHAR, D2 ;Terminating character in an accept statement.

CHAR, Al ;Input character from an accept statement.

VTSZIN, D2 ;Number of characters accepted by subroutine VT52.

VTLIM, D2 ;Number of characters to be accepted by
;subroutine VT52.

PROC

BEGIN, DISPLAY(1,1,1) ;Clear screen. ***********

DISPLAY(1,40,'ERASED IN CORRECTION‘) * *

DISPLAY(1,1,'NAME:') * *

ROW=1 * SAMPLE *

COL=6 * TEST *

VTLIM=20 ;20 characters maximum. * PROGRAM *

CALL VT52 *
‘

*

IF (KBDBUF.EQ.'END') STOP * *

GO TO BEGIN ***********

Calling sequence

ROW= Y coordinate

COL= X coordinate

VTLIM= Maximum number of characters to accept
CALL VT52\.

~-

~.

~o

~o

;Accept a maximum of VTLIM characters at location specified by

;ROW and COL. Return when either the maximum number of characters

;(VTLIM) has been entered, a termination character is entered,

;or a space is entered. Rubout deletes last character entered and

;CTRL/U eliminates the entire entry. RUBOUT and CTRL/U clear the

;remainder of the line faster than displaying spaces.

VT52, VT521N=

KBDBUF=

VT522, ACCEPT(TCHAR,CHAR)
IF (TCHAR.EQ.O) GO TO VT523 ;Nonterminating character.

IF (TCHAR.EQ.21) GO TO VT524 ;CTRL/U.

ADVANCED PROGRAMMING TECHNIQUES D-3

VT523,

VT524,

VT525,

D.1.4.2 Clear Incorrect Data

program clears incorrectly entered data by displaying spaces.

IF (TCHAR.EQ.32) GO TO VT525

RETURN

IF(CHAR.EQ.‘ ') RETURN

INCR VTSZIN

KBDIN(VT521N)=CHAR
IF (VT521N.EQ.VTLIM) RETURN

GO TO VT522

IF(VT521N.EQ.0) GO TO VT52

DISPLAY(ROW,COL,2)

GO TO VT52

IF(VT521N.EQ.0) GO TO VT522

KBDIN(VTSZIN)=
VT52IN=VT521N-l

DISPLAY(ROW,COL+VT521N,2)

GO TO VT522

by Displaying Spaces
— The

;RUBOUT.

;Terminating character other

;than rubout or CTRL/U.
;Space is a terminating
;character.

;To eliminate this feature,

;remove this statement and put
;label on next statement.

;VT521N=# of input characters.

;The specified number of

;characters were input.

;Clear characters entered

;to end—of—line.

;RUBOUT previous character

;to end-of-line.

following
This is

slower than using the hardware display clear feature, but data on the

same line and to the right is not cleared.

KBDBUF,

KBDIN,

BLNKSO,
ROW,

COL,

TCHAR,

CHAR,

VTSZIN,

VTLIM,

VT52XX,

START ;Corrects only characters in error.

RECORD

A80 ;Storage for keyboard input.
RECORD ,X
80Al

RECORD ;Work area.

A80 ;80 blank characters.

DZ ;Cursor Y coordinate on entry to subroutine VT52

;(needed for correction only).
D2 ;Cursor X coordinate on entry to subroutine VT52

;(needed for correction only).
D2 ;Terminating character in an ACCEPT statement.

Al ;Input character from an ACCEPT statement.

D2 ;Number of characters accepted by subroutine VT52.

D2 ;Number of characters to be accepted by
;subroutine VT52.

DZ ;Temporary storage for subroutine VT52.

PROC

D-4 ADVANCED PROGRAMMING TECHNIQUES

BEGIN,

~u

~¢

~n

~u

‘0

DISPLAY(l,l,l) ;Clear screen. ***********

DISPLAY(1,40,'NEVER ERASED') * *

DISPLAY(l,l,'NAME:') * *

ROW=1 * SAMPLE *

COL=6 * TEST *

VTLIM=20 ;20 characters maximum. * PROGRAM *

CALL VT52 * *

IF (KBDBUF.EQ.'END') STOP * *

GO TO BEGIN ***********

Calling sequence

ROW= Y-coordinate

COL= X-coordinate

VTLIM= Maximum number of characters to accept
CALL VT52

;Accept a maximum of VTLIM characters at location specified by
;ROW and COL. Return when either the maximum number of characters

;(VTLIM) has been entered, a termination character is entered,
;or a space is entered. RUBOUT deletes last character entered and

;CTRL/U eliminates the entire entry. RUBOUT and CTRL/U display
;space(s) to delete only the necessary characters (not the

;remainder of the line).

VT52,

VT522,

VT523,

VT524,

VT525,

VT521N=

KBDBUF=

ACCEPT(TCHAR,CHAR)
IF (TCHAR.EQ.0) GO TO VT523 ;Nonterminating character.

IF (TCHAR.EQ.21) GO TO VT524 ;CTRL/U.
IF (TCHAR.EQ.32) GO TO VT525 ;RUBOUT.

RETURN ;Terminating character other

;than RUBOUT or CTRL/U.
IF(CHAR.EQ.' ') RETURN ;Space is a terminating

;character.

;To eliminate this feature,

;remove this statement.

INCR VT52IN ;VT521N=# of input characters.

KBDIN(VT521N)=CHAR
IF (VTSZIN.EQ.VTLIM) RETURN ;The specified number of

;characters were input.
GO TO VT522

IF(VT521N.EQ.0) GO TO VT52

DISPLAY(ROW,COL,BLNK80(l,VT521N)) ;Clear characters entered.

DISPLAY(ROW,COL,0) ;Reposition cursor.

GO TO VT52

IF(VT52IN.EQ.0) GO TO VT522

KBDIN(VT521N)=
VT521N=VT521N-l

VT52XX=VT521N+COL

DISPLAY(ROW,VT52XX,' ') ;Rubout previous character.

DISPLAY(ROW,VT52XX,0) ;Reposition cursor.

GO TO VT522

ADVANCED PROGRAMMING TECHNIQUES D-S

D.l.4.3 Other Desired Features - In addition to the features found in

the previous program, the following features might also be desired:

1. Right justification of numeric fields.

2. Automatic cursor positioning.

These features are used in the following subroutine and test program:

START ;Subroutine VT52A and VT52N.

RECORD

KBDBUF, A80 ;Storage for keyboard input.
RECORD ,X

KBDIN, 80Al

RECORD ;Work area.

BLNK80, A80 ;80 blank characters.

ROW, D2 ;Cursor Y coordinate.

COL, D2 ;Cursor x coordinate.

TCHAR, D2 ;Terminating character in an ACCEPT statement.

CHAR, A1 ;Input character from an ACCEPT statement.

VT52IN, D2 ;Number of characters accepted.
VTLIM, D2 ;Number of characters to be accepted.
VTSZSW, D1 ;Cleared for alpha input, set to l for numeric input.
VT5215, D15 ;Contains numeric input for VT52N entry. Not changed

;or used in VT52A entry.
VTSZXX, A16 ;Temporary storage for redisplay of numeric input.

PROC 0

DISPLAY(1,1,1) ;Clear screen. ***********

BEGIN, INCR ROW * *

IF (ROW .GT. 24) STOP * *

DISPLAY (ROW,53,'NOT ERASED') * *

DISPLAY (ROW,1,'NAME:') * SAMPLE *

COL=7 * *

VTLIM=20 ;20 characters maximum. * TEST *

CALL VTSZA * *

IF (KBDBUF.EQ.‘END') STOP * PROGRAM *

DISPLAY(ROW,30,'NO:') * *

COL=34 * *

VTLIM=15 * *

CALL VTSZN * *

GO TO BEGIN ***********

Calling sequence

ROW= Y coordinate

COL= X coordinate

VTLIM= Maximum number of characters to accept
CALL VT52A for alphanumeric input
CALL VT52N for numeric input-

‘0

‘0

\o

‘0

fil

D-6' ADVANCED PROGRAMMING TECHNIQUES

;Accept a maximum of VTLIM characters at location specified by ROW

;and COL. Return when VTLIM characters or a termination character

;is entered. For numeric input, a space is a terminator.

;RUBOUT deletes last character entered and CTRL/U eliminates the

;entire entry. RUBOUT and CTRL/U display space(s) to delete only
;the necessary characters (not the remainder of the line).

;For numeric input, the entire entry is redisplayed right-justified
;with leading zeros suppressed. VT5215 contains the number

;on return to the calling program.

VT52A,

VT52N,

VT52,

VT522,

VT522X,

VT522Y,

VT523,

VT523B,

VT523X,

VT524,

VT525,

VT525W= ;Entry for alphanumeric input.
GO TO VT52

VTSZSW=1 ;Entry for numeric input.
VT521N=

KBDBUF=

DISPLAY(ROW,COL,0) ;Position cursor.

ACCEPT(TCHAR,CHAR)

IF(TCHAR.EQ.0) GO TO VT523 ;Nonterminating character.

IF(TCHAR.EQ.21) GO TO VT524 ;CTRL/U.
IF (TCHAR.EQ.32) GO TO VT525 ;RUBOUT.
IF (VT521N.EQ.0) RETURN ;No input except terminating

;character.
IF (VTSZSW.EQ.0) RETURN ;Alphanumeric input.
VT5215=KBDBUF(1,VT521N) ;Numeric input (can't exceed

;15 digits).
VT52XX(l,VTLIM+l)=VT5215,'XXXXXXXXXXXXXXX-' ;Allows negative

;numbers.
‘

DISPLAY(ROW,COL,VT52XX(1,VTLIM+1)) ;Display numeric input
;right—justified and zero

;suppressed.
RETURN

IF (VTSZSW.NE.1) GO TO VT523X ;Save alphanumeric input.
IF (CHAR.EQ.‘ ') GO TO VT522X ;Space as a terminating

;character for numeric input.
IF (CHAR.EQ.'—') GO TO VT523X ;Minus sign is acceptable.
IF (CHAR.LT.'0') GO TO VT523B ;Check for numeric input.
IF (CHAR.LE.'9') GO TO VT523X

DISPLAY (0,0,7) ;Sound alarm-—bad input.
GO TO VT52 ;Start over (don't clear

;the error).
INCR VT52IN ;VT521N=# of input characters.

KBDIN(VT521N)=CHAR
IF (VT521N.EQ.VTLIM) GO TO VT526 ;The specified number of

. ;characters were input.
GO TO VT522

IF (VT52IN.EQ.0) GO TO VT52

DISPLAY(ROW,COL,BLNK80(l,VT52IN)) ;Clear characters entered.

GO TO VT52

IF (VT521N.EQ.0) GO TO VT522

KBDIN(VT521N)=
VT52IN=VT52IN-l

VT52XX=VT521N+COL

DISPLAY(ROW,COL+VT521N,‘ ') ;Rubout previous character.

ADVANCED PROGRAMMING TECHNIQUES D-7

DISPLAY(ROW,COL+VT521N,0) :Reposition cursor.

GO TO VT522

VT526, IF(VTSZSW.EQ.1) GO TO VT522Y

RETURN

D.l.4.4 Escape Code Sequences as Terminators — A command protocol is

built around the Escape code (27 decimal) to implement commands needed

by the VT50 and VT52, but not found in 7-bit ASCII. Upon receiving
the Escape code 27, the terminal is set to Escape mode and treats the

next character received as a command. Commands created in this manner

are called Escape Sequences.

In order to use the VT50/VT52 cursor positioning keys as terminators

for an ACCEPT statement, the DIBOL program must check for the Escape
code (decimal 27) and then execute another ACCEPT statement into a one

character alphanumeric field. The contents of this variable can be

checked to determine which key was typed. The program then will erase

the alpha character entered in this manner and go to the routine asso-

ciated to the key that was typed.

SPECIAL ESCAPE SEQUENCES

27-A+

27—B+ Cursor Positioning
27—C+ Functions

27—D+

of numeric keypad

27—P Special function keys at top

(Unlabeled at present)

D.2 DIRECT ACCESS TECHNIQUES

D.2.1 Background Information

A file contains records of fixed or variable length.

Regardless of the record size, the operating system automatically
writes the records into 512—character blocks. The size of a record

(in characters) is two plus the number of characters in all the fields

in the record. (The two added characters represent the record size in

characters divided by two.) If the resulting record size is odd, add

one character since only an even number of characters may be written.

Example:

If the two fields in a record are defined as a D9 field and an

A88 field, the record size is 100 (2+9+88+l).

D-8 ADVANCED PROGRAMMING TECHNIQUES

Assuming that all of the records in this file are the same

length, the operating system will pack 5 records and the first 12

characters of the sixth record into the first block; the last 88

characters from the sixth record, 4 records, and the first 24

characters from the eleventh record into the second block; and

so on to the end.

When this file is later processed, either sequentially (defined
as input in an INIT statement) or through direct access (defined
as UPDATE in an INIT statement), the operating system will com-

pletely restore the record, even if it overlaps two blocks, be-

fore passing it to the DIBOL program.

D.2.2 The Reason for Direct Access

Many applications involve the sequential processing of data. For ex—

ample, a transaction file is entered in random order, sorted and then

used to update a master file sorted in the same sequence. Errors in

the transaction file cannot be found until the UPDATE program is run.

The errors are corrected and a new transaction file is made for the

corrected items, which is then sorted and run against the master file.

This process continues until no more errors exist. This type of pro—

cessing evolved 20 years ago with the age of electronic data process—

ing. Systems specialists have desired a better method of operation.

The best method is to verify that data is entered correctly. The op—

erator keying the data file should be able to interact with the master

file. For example, a program can be written in which an operator

entering payroll information could type an employee number and know

within a second or two whether this employee exists on the master

file. This would be impossible with sequential processing because of

the time involved in sequentially accessing every record. Direct ac-

cess permits retrieval of any desired record without processing any

other records.

D.2.3 How the Direct Access Technique Works in DIBOL

DIBOL uses a record number to access any record in a file. The pro-

gram has to convert operator input into a record number recognizable
by the operating system. This section on direct access will explain
several methods to make this conversion.

ADVANCED PROGRAMMING TECHNIQUES D-9

0.2.4 Unsorted File

Assume that you have an unsorted file containing 1 to 99 records.

Each record contains a KEY field as well as other fields. This key
will be used for direct access. The first thing done in the following
program is to fill up a table. There is a one-to-one correspondence
between each element in the table and each record in the file. No 1/0
is necessary to determine if a specified code is in the master file

since this code would not have a match in the table lookup.

RECORD MASTER

KEY, D5 :Could be any size field.

, A90 :Remainder of file.

RECORD :Working storage.

TABLE, 10005 ;Table containing keys.
I, D3 ;Index.

LOOKUP, D5

PROC 1

INI'I‘ (1 , INPUT,
'
FILNAM ')

LOAD, XMIT(1,MASTER,EOF)
INCR I

TABLE(I)=KEY
GOTO LOAD

EOF, FINI(1)
INCR I

TABLE(I)=99999 :Indicates end of table.

INIT(1,UPDATE,'FILNAM')

. ;LOOKUP contains code for master

;file lockup.

I:

FINDIT, INCR I

IF(TABLE(I).EQ.LOOKUP) GO TO FOUND ;Match.

IF(TABLE(I).EQ.99999) GO TO NONE 7N0 match.

GOTO FINDIT

NONE XMIT (8,'RECORD NOT FOUND')
STOP

FOUND, READ(1,MASTER,I) ;Read record I.

D-10 ADVANCED PROGRAMMING TECHNIQUES

0.2.5 Sorted File

Use the same circumstances as in Section D.2.4 except sort the file by

key. Filling the table is the same, but table lookup is faster since

the code is not compared to every element in the table. A "no match"

condition is known as soon as the table element exceeds the code.

It is possible to cut down the number of comparisons in the table

lookup by comparing the middle of the table to the code, checking
which half of the table might contain the code, determining the middle

of that half of the table, and so on until the element is found. This

technique allows faster access, but programming it is much more com-

plicated.

RECORD MASTER

KEY, D5

, A90

RECORD ;Working storage.

TABLE, 100D5

I, D3

LOOKUP, D5

PROC 1

INIT(1,INPUT,'FILNAM')

LOAD, XMIT(1,MASTER,EOF)
INCR I

TABLE(I)=KEY
GOTO LOAD

EOF, FINI(l)
INCR I

TABLE(I)=99999 ;Indicates end of table.

INIT(l,UPDATE,'FILNAM')

. ;Lookup contains code for master

file.

I:

FINDIT, INCR I

IF(TABLE(I).EQ.LOOKUP) GO TO FOUND ;Match.

IF(TABLE(I).GT.LOOKUP) GO TO NONE ;No match.

GOTO FINDIT

NONE, XMIT (8,'RECORD NOT FOUND')
STOP

FOUND, READ(1,MASTER,I) ;Read record I.

ADVANCED PROGRAMMING TECHNIQUES D-ll

It is impractical to use direct access with DIBOL on an unsorted file

containing many records since an exceedingly large lookup table would

be needed.

D.2.6 Rough Table, No Index File

At some point, a file will contain too many records for every key to

be saved in a table. When this point is reached, two solutions are

available.

The first is to create a "rough" index table containing every 10th or

20th key. For lookup, the rough index will specify within 10 or 20

records on the master file which one is desired. These 10 or 20

records are then sequentially examined to find the desired record (see
the following example program).

The second solution is to create a "rough" index table and a “fine"

index file. In this method, the rough index table specifies to within

10 or 20 records of the file desired. The index file is then sequen-

tially examined to find the desired key. If a match occurs, the mas-

ter file is then read.

The proper use of an index file technique can cut down on the number

of I/O reads. For example, a master file of 98 characters per record

would take up to four I/O reads to find the desired record if the

rough index could narrow within 20 records. An index file technique
would take one I/O read to find the master record. This technique be-

comes faster as the size of the master file record increases.

RECORD MASTER

KEY, D5

, A90

RECORD :Working storage.
TABLE, 100D5 ;lst,let,4lst key,etc.
1, D4

J, D4

LOOKUP, D5

PROC l

INIT (l,INPUT,'FILNAM')

LOAD, XMIT(1,MASTER,EOF)
INCR I

IF (I.NE.I/20*20+l) GO TO LOAD

INCR J

TABLE(J)=KEY ;Save only lst,21st,4lst key, etc.

GO TO LOAD

EOF, FINI(1)
INCR J

TABLE(J)=99999 ;Indicates end of table.

INIT(1,UPDATE,'FILNAM')

D-12 ADVANCED PROGRAMMING TECHNIQUES

ROUGH,

FINE,

FOUND,

0.2.7 Rough

LOAD,

EOF,

;LOOKUP contains code for master file.

=1

NCR I

IF(TABLE(I).LE.LOOKUP) GO TO ROUGH ;No rough match yet.

I

I

I=(I—2)*20 ;Set I to beginning of rough index-1.

INCR I

READ(l,MASTER,I)

IF(KEY.LT.LOOKUP) GO TO FINE ;NO match yet.
IF(KEY.EQ.LOOKUP) GO TO FOUND ;No match.

XMIT (8,‘RECORD NOT FOUND')
STOP

Table Plus Index File

RECORD MASTER

D5

A90

RECORD

100D5

D4

D4

D5

RECORD INDEX

D5

PROC 2

INIT(1,INPUT,'FILNAM')

INIT(2,0UTPUT,'XFILE')
XMIT(1,MASTER,EOF)
INCR I

XKEY=KEY

XMIT(2,INDEX) ;Create fine index file.

IF(I.NE.I/20*20+l) GO TO LOAD

INCR J

TABLE(J)=KEY
GO TO LOAD

FINI(l)

FINI(2)
INCR J

TABLE(J)=99999

INIT(l,UPDATE,'FILNAM')
INIT(2,UPDATE,'XFILE‘)

;Working storage.
;lst,2lst,4lst key, etc.

;Index file.

;Save only lst,let,4lst key.

;Indicates end of table.

;LOOKUP contains code for master file.

i=1

ADVANCED PROGRAMMING TECHNIQUES D-13

ROUGH, INCR I

IF(TABLE(I).LE.LOOKUP) GO TO ROUGH ;No rough match yet.

I=(I—2)*20 ;Set to beginning of rough index-l.

FINE, INCR I
.

READ(2,INDEX,I) ;Read index record.

1F£XKEY.LT.LO0KUP) GO TO FINE ;No match yet.
IF(XKEY.EQ.LOOKUP) GO TO FOUND :No match.

XMIT (81'RECORD NOT FOUND')
STOP

READ(1,MASTER,I) ;Match.
FOUND, ,

D.2.8 Summary

This discussion on direct access does not include information about

all possible situations. In cases where the master file is between

2,000 and 40,000 records, the approach might be to have a very rough
table, a rough index file, a fine index file, and a master file.

It is possible to work with a large unsorted master file by creating
an index file containing two fields: the key field and the record

number of the master file. Sort the index file by key. When a

match is found on the key field of the index file, the program uses

the record number field to read the proper record of the unsorted mas—

ter file.

Creation of an index table or an index file can be done in a separate

program. This separate program can save from several seconds to sev-

eral minutes each time the program is run. The index file would only
need to be changed when a master file is updated (perhaps on a weekly
or monthly basis).

D.2.9 Record Count

To keep track of the number of records in a master file, reserve one

field in the first record to contain the record count. The record

count is the number of records in the file. When a record is added to

this file, the record count in the first record is incremented by one

and written out. This technique will work fine with a master file

that is out of order.

D-14 ADVANCED PROGRAMMING TECHNIQUES

D.3 DIRECT ACCESS NOTES

0.3.1 XMIT Statements (Extending a File)

XNIT statements can be interspersed with direct access operations on a

file. An XMIT following a READ with record n is equivalent to a READ

of record n+1. Successive XMIT's read records n+2, n+3, etc.

An XMIT following a WRITE of record n transmits data to record n+1.

Records n+2 to the end of the file may be changed by successive XMIT's

after a WRITE. However, to change a series of records in the middle

of the file, do not use a WRITE followed by several XMIT's.

The XMIT statement used after a WRITE statement has the following use-

ful applications.

D.3.1.l Truncating a File — To truncate a file after record N, use

the following sequence:

READ(channel,record,n)

WRITE(channe1,record,n)
XMIT(channel,NULL,EOF)

EOF, FINI(channel)

where NULL is a record with no contents defined by:

RECORD NULL

RECORD

0.3.1.2 Appending to a File — To append records to the end of a file

with n records, use the following sequence:

READ(channel,record,n)
WRITE(channel,record,n)
XMIT(channe1,record) ;Append records to file.

XMIT(channel,record)

XMIT(channel,NULL,EOF)

EOF, FINI(channel)

ADVANCED PROGRAMMING TECHNIQUES D-15

0.3.1.3 Rewriting A File - To rewrite a file from record n to the end

of the file, use the following sequence:

WRITE(channel,record,N)
XMIT(channe1,record)

XMIT(channel,record)

. ;Rewrite records to end—of-file.

XMIT(channel,NULL,EOF)
EOF, FINI(channel)

D.4 NUMERIC FIELD VERIFICATION

Any numeric field that is entered in a DIBOL program should be checked

to determine if it contains only numeric data. The numeric field

should be read as an alphanumeric field through an XMIT or ACCEPT

statement. Then it is moved to a numeric field. This move is preced—
ed by an ON ERROR statement to check for non—numeric data. For exam-

ple:

RECORD

TCHAR, D2

DECMAL, D5

ALPHA, A5

PROC

ALPHA=

ACCEPT(TCHAR,ALPHA)
ON ERROR FIX

DECMAL=ALPHA

With an alphanumeric-to-numeric move, many checks are done. The fol—

lowing examples illustrate most cases:

ALPHANUMERIC NUMERIC
'

123' 00123

'123
'

00123

'00123' 00123
'

—123' 00128
‘

123—' 00128

'-123—' 00123
'

12-3' 00128

'1-2—3' 00123

'1+2+3' 00123

'1+2—3' 00128

'1 23
'

00123

'00128' illegal

D-16 ADVANCED PROGRAMMING TECHNIQUES

The only legal characters in an alphanumeric-to-numeric move are 0 to

9!I.——JI +I and ‘-

If a data file contains numeric fields, these fields must be read as

numeric. If they contain a negative number, the least significant
character contains a minus sign and is listed with its equivalent
character. For example, —37 would look like 3W. If 3W were read as

alphanumeric, and then converted to numeric, a run-time error would

occur since any letter of the alphabet is illegal in an

alphanumeric-to-numeric conversion.

D.5 CHAIN STATEMENT NOTES

0.5.1 Interaction of CHAIN and INIT (channel,SYS)

Source input files can be specified in a RUN command containing chain—

ed programs. Accessing such files must be done according to the fol-

lowing rules.

1. All CHAIN files must be listed in the RUN command before the

source files.

.RUN PRONAM+CHAIN1+CHAIN2,INPl,INP2

2. Any CHAIN statement which is to open the first source input
file must first "skip over" the remaining chained files by
issuing dummy INIT(channel,SYS) statements. In the above RUN

command, in order to read file INPl, PRONAM would have to

issue two dummy INIT(channel,SYS) statements. Because CHAINZ

is the last chain program, it would not have to issue any

dummy statements.

If the RUN command were:

RUN pronam, filnaml...,filnam7

the source files could be processed more than once by executing a

CHAIN 0 statement in pronam.

D.5.2 Transferring Variable Values

For the value of a variable to be successfully transmitted from one

chained program to another, the variable in which the value appears

must occupy the same location in both CHAIN programs. This may be ac-

complished by either of the two following methods.

ADVANCED PROGRAMMING TECHNIQUES D-l7

1. Define all records which are to be passed between chained

programs first, and make the definitions identical (except
for variable names which may be different).

Example:

Chainl Chain2

RECORD RECORD CPINFO

CUST, A30 CUST, A30

PROD, D2 PCODE, D2

RECORD INVENT RECORD INVENT

STOCK, D4 QUANTY, D4

2. Use the compiler storage maps listing for the two CHAIN pro-

grams to verify that the desired variables occupy the same

storage location.

0.5.3 Multiple CHAIN Entry Points

Sometimes it is desirable to have several entry points into a CHAIN

program. However, the CHAIN statement always starts execution of the

chained program at the first statement following the PROC statement.

Using the technique of transferring variable values between chained

programs, multiple entry points can be programmed as indicated in the

following example.

Chainl

RECORD

WHERE,D2,01
RETURN,D2

PROC

GO TO(Ll,L2,L3,L4),WHERE

Ll,RETURN=2

CHAIN 2

L2,...

D-18 ADVANCED PROGRAMMING TECHNIQUES

Chainz

RECORD

WHERE,D2
RETURN,D2

PROC

GO TO(E1,E2,E3),WHERB

WHERE=RETURN

CHAIN l

D.6 DIBOL PROGRAMMING OF SOURCE FILES

D.6.l Operating Procedures

Up to seven source files can be used in a DIBOL program. They are

specified at run time by:

RUN pronam, filnaml...,filnam7

The edit buffer is not available to a DIBOL program.

D.6.2 Data Division

The RECORD description would be as follows:

RECORD recnam

LINENO, A2

CHAR, A120

LINENO contains a two-character line number in binary. Most programs

ignore the line number. However, it can be converted to decimal by
the statement:

varnam = #LINENO*64+#LINENO(2,2)

Varnam must be a four-digit field.

CHAR contains the characters of one line created by the editor. The

DIBOL program may want to determine the number of characters in the

record. This can be done by preceding the RECORD statement with the

lines:

RECORD

TRICK, 2A1

and adding the following line in the Procedure Division:

varnam = (4096-64*#TRICK(3)—#TRICK(4)*2

Varnam must be a three-digit field.

There is no tabbing within CHAR. The tabbing seen by output from the

Monitor command LIST or LIST/L is done by the operating system. Tabs

are internally stored as characters with a decimal equivalent of 61.

Any character may be checked for a tab by the statement:

IF(#CHAR(n,n).EQ.61) GO TO TAB

ADVANCED PROGRAMMING TECHNIQUES D-19

D.6.3 Procedure Division

The first source file specified in the RUN command is opened by the

following statement:

INIT(channel,SYS)

Each record is accessed by the following statement:

XMIT(channel,record,eof label)

When an end—of-file condition occurs, the program transfers to the EOF

label of the XMIT statement. At that EOF label, a FINI channel state—

ment must be executed prior to an INIT(channel,SYS) to open a second

source file. To handle a variable number of source files, precede the

INIT(channel,SYS) statement by an ON ERROR statement. The program

will transfer to the ON ERROR statement when an INIT(channel,SYS)
statement is executed and there are no more source files.

The only way to process a source file more than once is to execute a

CHAIN n statement which resets the operating system pointers to the

source files.

This example combines up to seven source files into a single data

file. The resulting data file can be converted to a source file using
FILEX.

Example:

RECORD

SIZE, D3

RECORD

TRICK, 2A1

RECORD LINE ;Line from source file.

, A122

PROC 2

ON ERROR NOFILE

INIT(l,SYS) ;Open system file.

INIT(2,0,'$FILE',1) ;Open output file on logical unit 1.

NEXT, XMIT(1,LINE,EOF) ;Read a line from source file.

SIZE=(4096-64*#TRICK(3)-#TRICK(4))*2 ;Get size of line.

XMIT(2,LINE(3,SIZE+2)) ;Output line without line number.

GO TO NEXT

EOF, FINI(l) ;Close system file.

ON ERROR DONE

INIT(l,SYS) ;Open next system file.

GO TO NEXT

DONE, FINI(2) ;Close output file.

NOFILE, STOP

D-20 ADVANCED PROGRAMMING TECHNIQUES

D.7 CHECKDIGIT FORMULA

In most applications involving identification numbers, each number may

be verified for accuracy by a checkdigit, a redundant digit added to

the normal number. The checkdigit is determined by performing an ar—

ithmetic operation on the number in such a way that the usual errors

encountered in transcribing a number are detected. The checkdigit is

determined as follows:

Step 1 Start with a number....5764.

Step 2 Multiply the first digit and every other digit by 2 (left to

right). 5 * 2 = 10 6 * 2 = 12

Step 3 Add the digits in the resulting numbers and the digits not

multiplied. 1+0+7+1+2+4 =15

Step 4 Subtract the sum from Step 3 from the next higher number end-

ing in zero. 20-15=5

Step 5 Add the checkdigit to the end of the original number. 57645

(This is the correct checkdigit if the number is entered in a

D4 field.)

Note that a checkdigit procedure is not completely error proof. In

the example given above, 5764 or 5673 give the same checkdigit. It is

unlikely, however, that transpositions of this sort will occur. The

checkdigit does not guard against the possible assignment of an incor-

rect but valid code, such as the assignment of a wrong valid identifi—

cation code to a customer.

If the number entered for a checkdigit calculation is shorter than the

field, the rightmost digit is used as the checkdigit and the remainder

of the number is right—justified and padded with zeros on the left.

The zeros are considered when the checkdigit formula is calculated.

ADVANCED PROGRAMMING TECHNIQUES D-21

D.8 VTSO/VTSZ ESCAPE SEQUENCBS

A command protocol is built around the escape code (027) to implement
those commands needed by the VT50/VT52 but not found in 7-bit ASCII.

Upon receiving the escape code 027, the terminal is set to escape mode

and treats the next character received as a command. Commands created

in this manner are called Escape Sequences. The VT50/VT52 recognizes
the following Escape Sequences:

Code Character Action Taken

27 ESC The first 027 changes the mode, the second 027

changes it back.

65 A Moves cursor up one line.

66 B Moves cursor down one line.

67 C Moves cursor right one position.

68 D Moves cursor left one position.

72 H Moves cursor to the home position.

74 J Erases from cursor position to the end—of-

screen.

75 K Erases line from cursor to right margin.

90 Z Requests the terminal to identify itself. The

VT50 terminal will respond with 027 047 072;
VT52 terminal will respond with 027 047 075.

Other terminals will respond in different

ways.

1Teletype is a registered trademark of the Teletype Corporation.

D-ZZ ADVANCED PROGRAMMING TECHNIQUES

GLOSSARY

alphanumeric
A character set that contains letters, digits, and other characters

such as punctuation marks. The COS-310 alphanumeric character set

includes the uppercase letters A—Z, the digits 0—9, and most of the

special characters on the terminal keyboard. Two of these char-

acters, back slash (\) and back arrow (<——) (shown on some termi-

nals as an underscore), are illegal.

array
A DIBOL technique for specifying more than one field of the same

length and type. The array 5D3 reserves space for five numeric

fields, each to be three digits long. The array 2A10 describes two

alphanumeric fields, each to be ten characters long.

ASCII

American Standard Code for Information Interchange. This is one

method of coding alphanumeric characters.

batch file

A file containing a sequence of commands. A command to execute the

file will cause the commands within the file to be executed sequen-

tially.

batch processing
The technique of automatically executing a group of previously
stored Monitor commands.

binary operator
An operator, such as + or —, which acts upon two or more constants

or variables (e.g., A=B—C).

binary program
The kind of program which is output by the compiler.

binary scratch area

The area in memory where the binary program is stored during execu-

tion.

Glossary-l

bit

A binary digit (0 or 1).

block

The basic COS-310 unit of mass storage capacity. A block consists

of up to 512 characters.

bootstrap
A short routine loaded at system start-up time which enables the

system software to be read into machine memory.

branch

A change in the sequence of execution of COS—310 program state-

ments.

buffer

A temporary storage area usually used for input or output data

transfers.

bug
An error or malfunction in a program or machine.

byte
A group of bits considered as a unit. A byte is the smallest unit

of information that can be addressed in a DIBOL program.

channel

A number between 1 and 15 used to associate an input/output state-

ment with a specified device.

character

A letter, digit, or other symbol used to control or to represent
data.

character string
A connected linear sequence of characters.

clear

Setting an alphanumeric field to spaces or a numeric field to

zeros.

command

An operator request for Monitor services; usually to be executed

following a RETURN key.

comments

Notes for people to read; they are ignored by the compiler.
Comments are optional and follow a semicolon on a statement line.

concatenated

Strung together without intervening space.

2-Glossary

conversational program
A program.that prompts responses from an operator and reacts de-

pending upon the response from the operator.

cursor

The flashing light indicator which appears at the point on the

screen where the next character will be displayed.

data

A representation of information in a manner suitable for communica-

tion, interpretation, or processing by either people or machines.
In COS-310 systems, data is represented by characters.

data entry
The process of collecting and inputting data into the computer data

files. Data entry is key to disk.

data management
The planning, development, and operation of a system like COS-310

by an organization to mechanize its information flow and make

available the data needed by the organization.

debug
To detect, locate, and remove errors or malfunctions from a program
or machine.

DEC

Acronym for Digital Equipment Corporation.

decimal

Refers to a base ten number.

delimiting
The bounds (beginning and end) of a series or string.

device designation
A three-character designation for a mass storage device. The first

two characters designate the type of device; the third character

designates the number of the drive on which the device is mounted.

device independence
COS—310 system design permits data files and programs to be stored

on either diskettes or disks. At run time, the operator chooses

the most suitable or most available input and output devices.

device designations
A three-character abbreviation used to name the COS-310 I/O dev-

ices.

TTY = Screen

KBD = Keyboard
LPT = Printer

DKO-DK3 = Disk drives

RXO-Rx3 = Disk drives

DYO—DY3 = Disk drives

Glossary-3

DIBOL

Digital's Business Oriented Language is a COBOL—like language used

to write business application programs. The source language of the

COS—310 system.

direct access

The process of obtaining data from, or placing data into, a storage
device where the availability of the data requested is independent
of the location of the data most recently obtained or placed in

storage. Direct access is available to users of COS-310 systems by
writing the position number of any record in a data file. For ex-

ample, you can request the 5th, 35th, and 711th records in a file.

directory
A place for listing information for reference. Displayed or print-
ed with the DI command.

dump
To copy the contents of all or part of storage, usually from memory
to external storage.

edit buffer

The work area in memory where source files are created and edited.

end-of-file mark

A control character which marks the physical end of a multivolume

file. For both input and output files, the Monitor detects this

EOF mark and types a message for the operator asking that the next

volume in the file be mounted.

fatal error

An error which terminates program execution.

field

A specified area in a data record used for alphanumeric or numeric

data; cannot exceed the specified character length.

file
.

A collection of records, treated as a logical unit.

fixed-length records

Each record in a data file is the same length. Fixed-length rec—

ords are the only type handled by COS-310 utility programs and the

only type on which direct access to data files is allowed.

flowchart

A pictorial technique for analysis and solution of data flow and

data processing problems. Symbols represent operations, and con-

necting flowlines show the direction of data flow.

4-Glossary

handlers

A specialized software function which interfaces between the system
and peripheral devices.

illegal character

A character that is not valid according to the COS-310 design
rules. DIBOL will not accept back slash (\) and back arrow (<——)
(back arrow is replaced on some terminals with underscore) in al-

phanumeric strings.

initialization

Putting a device into the correct format or position where it can

successfully function in a configuration.

input
Data flowing into the computer.

input/output
Either input or output, or both. I/O.

jump
A departure from the normal sequence of executing instructions in a

computer.

justify
The process of positioning data in a field whose size is larger
than the data. In alphanumeric fields, the data is left-justified
and any remaining positions are space-filled; in numeric fields

the digits are right-justified and any remaining positions to the

left are zero—filled.

key
One or more fields within a record used to match or sort a file.

If a file is to be arranged by customer name, then the field that

contains the customers' names is the key field. In a sort opera—

tion, the key fields of two records are compared and the records

are resequenced when necessary.

load

To enter data or programs into main memory.

load-and-go
An operating technique in which there are no stops between the

loading and executing phases of a program.

location

Any place where data may be Stored.

logical unit number

A number (1—15) which identifies an entry in a logical unit table.

The table references the number to a location on a mass storage
device.

Glossary-5

logical units

An area of storage on a mass storage device. Up to 15 logical
units may be assigned at system start—up by the data file utility
program (DFU). These areas and their assigned sizes are listed in

the logical unit table printed by DFU.

loop
A sequence of instructions that is executed repeatedly until a ter—

minal condition prevails. A commonly used programming technique in

processing data records.

machine—level programming
Programming using a sequence of binary instructions in a form exe—

cutable by the computer.

mass storage device

A device having large storage capacity.

master file

A data file that is either relatively permanent or that is treated

as an authority in a particular job.

memory
The computer's primary internal storage.

merge
To combine records from two or more similarly ordered strings into

another string that is arranged in the same order. The latter

phases of a sort operation.

mnemonic

Brief identifiers which are easy to remember. Examples are KBD,

LPT, and TTY.

mode

A designation used in INIT statements to indicate the purpose for

which a file was opened or to indicate the input/output device

being used.

modulo

A condition where the specified number exceeds the maximum

condition in a variable. The maximum allowable number is then

subtracted from the specified number and the remainder is used by
the processor. In modulo 16, if 17 were specified (maximum is 15),
16 would be subtracted from 17 and the processor would use 1 as the

variable.

Monitor

A COS—310 system program that loads and runs programs and performs
other useful tasks.

nest

To embed subroutines, loops, or data in other subroutines or pro-

grams.

6-Glossary

nonfatal error

An error which will not completely terminate program execution.

nonsystem device

A device that does not contain the operating system and the Moni—
tor. A device used exclusively for data storage.

option switch

A one— or two—character designation indicating a special function
in conjunction with a command. Usually preceded by a slash (/) in

COS-310.

output
Data flowing out of the computer.

overlay
The technique of specifying several different record formats for

the same data. Special rules apply.

parameter
A variable that is given a constant value for a specific purpose or

process.

peripheral equipment
Data processing equipment which is distinct from the computer.

pushdown stack

A list of items where the last item entered becomes the first item

in the list and where the relative position of the other items is

pushed back one.

random access

Similar to direct access.

RECORD

A statement that reserves memory for DIBOL data language programs.

segment
Sixteen blocks of storage. A block is 512 bytes long.

sequential operation
Operations performed, one after the other.

serial access

The process of getting data from, or putting data into, storage
where the access time is dependent upon the location of the data

most recently obtained or placed in storage.

screen line number

The number which indicates the order of the horizontal lines on the

screen.

Glossary-7

sign
Indicates whether a number is negative or positive. Positive

numbers do not require a sign, but negative numbers are prefixed
with the minus sign (—).

significant digit
A digit that is needed or recognized for a specified purpose.

source program
A program written in COS-310 DIBOL language.

statement

An instruction in a source program.

string
A connected linear sequence of characters.

subscript
A designation which clarifies the particular parts (characters,
values, records) within a larger grouping or array.

switch character

A single letter specified in a command following a slash (/).

syntax
The rules governing the structure of a language.

system configuration
The combination of hardware and software that make up a usable com-

puter system.

system device

A mass storage device reserved for Monitor, Run-Time System, and

other system and source programs.

systems directory
A list of programs on the systems device with lengths, dates of

creation, and other useful information.

system handlers

The specialized software which interfaces between the system and

peripheral devices.

terminal alarm

A signal emitted from the terminal.

unary operator
An operator, such as + or -, which acts upon only one variable or

constant (e.g., A=-C).

utility program
A system program which performs common services and requires format

programs. Examples are SORT and PRINT.

8-Glossary

variable

A quantity that can assume any one of a set of values.

variable—length record

A file in which the data records are not uniform in length. Direct

access to such records is not possible.

verify
To determine if a transcription of data has been accomplished accu-

rately.

word

A string of 12 binary bits representing two COS-310 characters.

zero fill

To fill the remaining character positions in a numeric field with

zeros.

Glossary-9

INDEX

A

/A, Sort, 9—4

ACCEPT,
clear afield before, 1-4

generalized subroutines,
D—2

ACCEPT —

Input/Output statement,

1—3, l-4, 1-37

subroutines, D—2

used with DISPLAY, 1-4

ACCEPT and DISPLAY, interaction,
D-l

Access to Data files, B—4

Add one to counter, l—25

Addition (+), 1-11

Addition of lines, RESEQUENCE,
2—21

Advanced Programming Techniques,
D-l

Afield,
clear before ACCEPT, 1-4

defined, 1—4

stores keyboard entry, 1-4

Aid to program development, 7—1

Alarm,
terminal, l—l8, 1-19

terminal is sounded (PLEASE),
2—10

Algorithm for calculating segments
of logical units, 4-7

Allocate space to binary scratch

area, 8—1, 8—6

Alphanumeric,
data, moving, 1-14

definition, xv

destination cleared to spaces,
1—13

fields formatted to numeric

fields, 1-16

fields with embedded signs, l—ll

label, l—l

literal, 1—9, 1-10

string, 1—18

Alphanumeric values to numeric

values, 1-11, l-lS

Angle brackets (CCP), 5-5

Appending a file, D-15

Arithmetic expressions, l—ll

Arithmetic expressions,
addition, 1—13

calculate, 1-9

division, 1—13

multiplication, 1-13

rounding, 1—12

subtraction, 1—13

Arithmetic operations, basic, 1-13

Arithmetic operators, binary, l—ll

Arrange records, 9—1

Array,
dimensions specified, 1-9

names without subscripts, 1-13

subscripted, 1-9

Arrays, 1—32

Arrow key,
down, D—l

left, D—l

right, D-l

up, D-l

ASCII,

files transferred in format,
10-1

FILEX OS/8 input, 10-5

FILEX OS/8 output, 10-7

Assignment of logical units, 4-1,
4-7

Assignments,
logical unit on COS-310, 4—7

table of logical unit, 4—2, 4-3,
4-5, 4-6

Automatic cursor positioning, D~6

Automatic line numbers, 2-19

B

BATCH,

certain programs terminate, 2-5

Monitor command, 2-5

restart after error, 2-5

BATCH command file, 2-4, 2—5

Batch file, terminate with CTRL/C,
2—5

Batch file START (SYSGEN), 3-2,
3—4

Batch file START, space required,
3—2

Batch stream, not accept input
from, 2—5

Batching commands, 2-1

Binary arithmetic operators, l—ll

Binary file, transfer, 8-3

Binary files, COS—310, xiv, B—2

Binary operators,
addition (+), 1—11

COS—310, 1—12

division (/), l-ll

multiplication (*), l—ll

priority of execution, l-ll

rounding (#), l—ll

subtraction (-), l—ll

Index-1

INDEX (Cont.)

Binary program, 2—13

compiler converts source program

to, 5_l

copied and stored on device,
2—13

debug with DDT, 6-1

erase with DELETE, 2—7

RUN executes, 2-11

size of, 5-6

use SAVE to store, 5-4

Binary scratch area, 2-12

Binary scratch area, allocate

space to, 8—6

Blank line, to obtain, 2—19

BOOT,
error messages, 12—1

operating procedures, 12—1

program, 12~1

Bootstrap, BOOT is, 12-1

Bootstrap, Monitor loaded via, 2-4

Braces notation conventions, xv

Brackets, angle (CCP), 5-5

Brackets notation conventions, xv

Branch program control, 1-6, 1—23

Breakpoint, DDT, 6-1

C

,C option (clear record), 1—31

Calculate arithmetic expressions,
1—9

Calculating the segments for a

logical unit, 4-7

CALL — Control statement, 1—3, 1—6

CALL to subroutine, 1—6

CALL traceback, subroutine, (DDT),

6-1

Caret points to error, 5—8

CCP (Conditional Compilation
Procedure), 5-5

CCP sections nested to any depth,
5-6

CCP value independent of DIBOL

value, 5—6

CHAIN and INIT, interaction, D—l7

CHAIN - Control statement, 1-3,

1—7

CHAIN,
control returns to DDT, 1—8

DIBOL program, 1-7

multiple entry points, D—l8

programs declared in RUN

command, 147

program example, 1-7

TRACE and Trap turned off, 1—8

with valid binary program, 1—8

2—Index

Character Set, COS—310, xv, A—ll

Characters,
line number limitations, 2—20

lowercase, xiv

maximum in source program, 1-3

maximum number on line, 2—18

maximum per line, 1-3

red, xiv

special COS-310, xv

special in formatting, 1-17

terminating, 1—5
I

uppercase, xiv

Channel (definition), 1-21

Channel in INIT, 1-26

Channel number associates mode,
1-26

Channel number disassociates mode,
1-21

Change system handlers, 3—1, 3—3

Change system date, 2—6

Changes to lines-per-page
configuration, 13-1

Changes using line numbers, 2—14

Check, perform a Read/, 8-2, 8—7

Checkdigit formula, D—Zl

Clear data from line, 2—20

Clear fields and records, 1—9,

1—13, 1—19

,Clear function, hardware display,
D—2

Clear incorrect data, D-4

Clear text from edit buffer, 2—15

Clearing feature of VT52, D—3

Close data files, 1—21

Cmndfl (definition), xvi

BATCH, 2-5

DAFT, 15-1

FILEX, 10—4

FLOW, 17-1

MENU, 18-1

PATCH, ll—l

PIP, 8—1

PRINT, 16-2

SORT, 9—1, 9-2

Code,

COS—310 interpretive, xiv

requirements, 5—7

skip-code, 1—22

words of required, 5-7

Command file,
BATCH, 2-5

DAFT, 15—2

FILEX, 10—4

FLOW, 17-1

MENU, 18-1

PIP, 8—1

INDEX (Cont.)

PRINT, 16—2, 16—3

SORT, 9—1, 9—2

Commands, DDT, 6-2

Commands entered in response to

Monitor, 2—4, 2—14

Commands, Monitor Keyboard, 2—2

Commands, orderly execution of

(MENU), 18—1

Comments,

following semicolon, 1-1

on statement line, 1-1

with PROC, 1-29

with START, 1—34

COMP,

/DI 5-2

/G, 5-1

/NI 5-].

/0, 5—2

/T, 5-1

COMP (compiler),
accessed by RUN, 2-11

defined, xiii, 5—1

DIBOL, 5-1

operating procedures, 5—1

Comparison between expressions,
1—24

Comparison between relational

expressions, 1-24

Compatibility with OS/8, 10-4

Compilation procedure,
conditional (CCP), 5-5

Compilation, source program

listing, 5-2

Compiler,
converts to binary program, 5—1

DIBOL, 5-1

error messages, 5—8

operating procedures, 5—1

statement, END, PROC, START,

1—3, 1-20, 1-29

statements, 1-3, 1—20

storage map listing, 5—3

Compiling procedure,
DAFT, 15—1

FLOW, 17—1

PRINT, 16-1

Computed GO TO, 1—23

Conditional compilation (CCP), 5-5

Consolidate space in directory,
8-2, 8-5

Consolidate files, 8—1

Control,

branches by CALL, 1—6

branches to RETURN, 1-6

branches with GO TO, 1-23

master program, 2—1

Control statements (DIBOL), 1-3

CALL, 1—6

CHAIN, 1—7

GO TO, 1-23

IF, 1-24

ON ERROR, 1—28

RETURN, 1-33

STOP, 1-35

TRAP, 1—37

Conventions,

braces, xv

brackets, xv

manual notation, xiv

Conversational program, 3—1

Conversion, data, l—ll

Conversions, justification of,
1-11

Convert to equivalent decimal

code, 1-12

Converting data, 1-9

Converts and justify source data,
1-9

Copy and verify, 8-2, 8—7

Copy binary program onto device,
2—13

Copy device, 8—3

Copy Monitor and/or files, 3—3

COS—310:

arranges records in files, 9-1

binary files, B—2

binary operators, 1—12

character set, A-l

characters, xv

data files, B-l

data input, FILEX, 10—6

data output, FILEX, 10—8

file structure, xiv

files, B—l

interpretive code, xiv, 2-14

line number editor, 2—14

logical unit assignments, 4—7

records in, 10—1

source file output, FILEX, 10—8

source files, B-l

storage hierarchy, 4-7

system files, B-2

unary operators, 1—12

COS MONITOR, 2-4

Create system on new device, 3—l

Creation of report programs, 16—1

Creation of source file (PRINT),
FILEX, 16-2

CREF (Cross Reference) program,
7-1

error messages, 7—2

Index—3

INDEX (Cont.)

operating procedures, 7—1

table, 7-l

CTRL/C
Monitor Keyboard command, 2—2,
to terminate batch file, 2-5

CTRL/O, 2-2, 2-17

CTRL/Q, 2-2, 2-17

CTRL/S, 2—2, 2-17

CTRL/U, 2-2, 2-19, 11—4, 0—1

CTRL/Z, 2-2, 2—19, 6—3

Current date specification (,D),
1—32

Cursor positioning, 1—18, D—6

D

,D RECORD (data specification),
1—32

DAFT (Dump and Fix), 15-1

command file, 15—2

compiling procedure, 15—1

error messages, 15-7

keyword, 15—2

operating procedure, 15-1

output, 15-5

Data,

clear from line, 2—20

clear incorrect, D-4

copy and verify, 8-2, 8-7

Data conversion, 1-9, 1-11

Data definition statement

(RECORD), 1-3, 1-31

Data division, l—l, D-19

Data division, define destination

area in, 1-9

Data entry programs, D—l

Data file output, COS—310 (FILEX),
10-8

Data file, transfer a, 8—2, 8-4

Data File Utility program (DFU),

4—1

Data files, xiv

access to, B—4

COS—310, B-l

COS—310 arranges records in, 9—1

replace, 2—7

transfer, 8—4

Data,

format, 1—9

formatting, 1-16

input, cos—310 (FILEX), 10-6

move between fields, 1—9

move from memory with WRITE,

1-39

4—Index

moving alphanumeric, 1—14

moving numeric, 1—14

transfer with XMIT, 1—40

Data manipulation,
expressions, l—lO

literals, 1—10

statements (DIBOL), 1-3, 1—9

variable name, 1—9

variables, 1-9

Datasystem 308 or 310, xiii

DATE command, 2—4, 2-6

DATE, Monitor command, 2-6

Date, system stores, 2—6

Dates, valid, 2—8

DDT

(DIBOL Debugging Technique), 6-1

commands, 6—2

error messages, 6-3

in CHAIN, 1-8

operating procedures, 6—1

Debug binary programs, 6—1

Debug statements with CCP, 5—5

Debugging aids use numbers, l—l

Debugging (DIBOL) statements 1—3

Debugging statements, TRACE/NO
TRACE, 1—36

Debugging technique, DIBOL, 6-1

Debugging tools, 1—36

Decimal (definition), xv

Decimal value, stores in dfield,
1—4

Decimal value, terminating
characters, 1—5

Decimal code, equivalent, 1—12

Default conditions, line number,
2—18

Default, DFU/B, 4—2

Default, lines—per—page (SYSGEN),
13-1

Default value (SYSGEN), 3-2

DELETE command, 2—2, 2—4, 2—

Delete, FILEX, lO—ll

DELETE key, 2—2, 2—19

Deletion of lines (RESEQUENCE),
2—21

Deletions with line numbers, 2-14

Destination,
area defined, 1-9

alphanumeric cleared to spaces,
1-13

defined in Data Division, 1—9

numeric cleared to zeros, 1—13

stores source data, 1-9

Determining logical unit size, 4-7

Dev (definition), xv

7

INDEX (Cont.)

Development, aid to program, 7-1

Device,

COPY! 8—3

create system on new, 3—1

designation, xv

order of logical units on, 4-8

store binary program on, 2-3

system format, B—2

Dfield (defined), 1—4

Dfield, stores decimal values, 1-4

DFU (Data File Utility), xiii, 4-1

DFU,
error messages, 4-10

logical unit assignments, 4-8

operating procedures, 4—1

DIBOL compiler (COMP), 5—1

DIBOL debugging technique (DDT),

6—1

DIBOL (DIGITAL's Business Oriented

Language), xiii

DIBOL,

direct access, D—9

kinds of statements in, 1-3

language, l—l

programs in CHAIN, 1-7

slowed by TRAP, 1—38

table of symbols, 7—1

programming of source files,
D—19

source program, l—l

statement, words of code

required, 5—7

statement, use terminating
value, 1—4

DIBOL statements,

compiler, l—3

control, 1—3

data definition, 1—3

data manipulation, 1—3

debugging, 1-3

Input/Output, 1—3

DIGITAL's Business Oriented

Language (DIBOL), xiii

Dimensions of an array, l-lO

Direct address in DIBOL, D-9

Direct access,

KEY field for, D—9

access, reason for, D—9

access, READ statement, l-30

access techniques, 8—5

access, WRITE statement, 1—39

DIRECTORY command, 2—4, 2-8

Directory entry dates, valid, 2-8

DIRECTORY, Monitor command, 2—4

Directory space, consolidate, 8m5

Directory, system device, B-4

Disk, formatting an RKOS (DKFMT),

14—1

Disks, logical unit assignments on

RKOS, 4-9

Diskette,
data mode, 10—6

compatible with IBM 3741 format,
10—1

formatting an RXOZ (DYFMT), 14—2

functions of sectors on

universal, 10-1

in universal format, 10—1

DISPLAY, ACCEPT used with, 1-4

Display clear feature, hardware,

D-2

DISPLAY - Input/Output statement,

1—18

DISPLAY, interaction with ACCEPT,
D-l

DISPLAY, numeric fields for

special effects, l-l8

DISPLAY statement, 1—3, 1—8, 1-37

Division

(/), 1—1, 1-13

Data, l-l, D-l9

Procedure, l-l, D—20

results of, l—12

DKMFT (format RK05 disk), 14—1

Dollar, rounding to the, l—12

Down arrow key, D-l

Dump and Fix Technique (DAFT),
15—1

Duplicate line numbers, 2-21

DYFMT (format RXOZ diskette), 14-2

E

EBCDIC format, files transferred

in, 10-1

Edit buffer,
contents returned to memory,

2—12

contents stored in editing
scratch area, 2—12

erase (clear) text from, 2—15

lines edited in, 2—20

list from, 2-17

output to screen or printer,
2—17

separated into files, 2-19

source files loaded into, 2-16

Editing,
features of the Monitor, 2—1

functions refer to line numbers,
l-l

Index-5

INDEX (Cont.)

scratch area, 2-12

Editor commands,

ERASE, 2-14, 2—15

FETCH, 2—14, 2-16

LIST, 2-14, 2—17

Line Number, 2—14, 2—18

Number Commands, 2—14, 2-20

RESEQUENCE, 2-14, 2—21

WRITE, 2—14, 2—22

Editor, COS—310 line numbers, 2—14

Effective use of TRAP, 1—37

Eight-bit EBCDIC, 10—4

End of subroutine, RETURN, 1—33

END, same effect as STOP, 1—35

Erase edit buffer, load source

file, 2-16
Eliminate free space, 8-5

End—of-file, 1—28, 1—40, 2—25

END compiler statement, 1—3, 1—20

Equivalent decimal code, 1—12

ERASE command, 2-14, 2-15

Erase program, DELETE, 2—7

Erase text from edit buffer, 2—15

Error, caret points to, 5—8

Error checking, minimal by CREF,
7—1

Error correction (PATCH,) 11—3

Error during automatic line

numbering, 2-19

Error, line with underscored, 5-2

Error messages, C—l

Error messages, Appendix C

BOOT, 12-1

COMP, 5—8

CREF, 7—2

DAFT, 15—7

DDT,‘6—3

DFU, 4~10

FILEX, 10-13

FLOW, 17-7

LINCHG, 13—2

MENU, 18—4

Monitor, 2-23

PATCH, 11-5

PIP, 8-9

PRINT, 16-8

Run-Time, 2—24

SORT, 9—7

SYSGEN, 3-5

Error terminates BATCH, 2-5

Errors, fatal, 2—24

Errors, trappable (nonfatal), 2—24

Escape code sequences as

terminators, D-8

Escape sequences, VTSO/VTSZ, D-22

6-Index

Examination of variables with

SORT, 6-1

Exit, FILEX, 10-12

Expressions,
arithmetic, 1-11

calculate arithmetic, 1—9

data manipulation, 1—10

(definitions), xvi, 1—10

parentheses in, 1—12

relational comparisons, 1—24

Extending a file, D-15

F

Fatal error, 2-24

Fatal error, DIBOL program under

DDT, 6—3

FETCH command, 2-14, 2-16

Field descriptor statement, SORT,

9-1

Field, numeric verification, D—16

Field, part accessed by
subscripting, 1—13

Field statement information, 1—31

Fields, clear, 1—9

Fields, clearing, 1—13

File,

appending, D—15

batch START (SYSGEN), 3-4

batch START, space required, 3-2

exchange program (FILEX), 10—1

extending a, D—15

index technique, use of, D-l2

name extension, OS/8

compatibility, 10—4

output, COS—310 data (FILEX),
10-8

output, COS-310 source (FILEX),
10—8

replace an old, 2—13

rewriting a, D-16

source loaded into edit buffer,
2—16

source stored on specified
device, 2-22

START batch, to execute, 3—2

status information destroyed
(CHAIN), 1-8

structure, xiv

transfer a binary, 8—2, 8—3

transfer a data, 8-2, 8-3

transfer a source, 8—2, 8-3

transfer a system, 8—2, 8—3

truncating, D-l5

File name, garbled, 2-3

File name extensions, 10-

Files,

binary, xiv,
consolidate,
COS—310, B-l

B-2

8-1

data, xiv, B—4

source, xiv,

system, xiv,

Files,

B-l

B-2

INDEX

4

DIBOL programming of source,

D-l9

maximum number in program, 2—12

multiples passed as one file,
2-12

skipped (erased), 8—5

sorted, D-ll

edit buffer separated into two,

2-19

source per program, 1-3

transferred in ASCII format,

10-1

transferred in EBCDIC format,
10-1

transferred in IMAGE format,
10-1

unsorted, D— 10

FILEX (File Exchange program),
10—1

command file , 10 -4

creation of source file

16—2

error messag

Input Mode,

es,

10-5

10—13

(PRINT),

operating procedures, 10—4

Option C flowchart, 10—

FILEX options,
C, Copy, 10-

D, Delete, 1

L, List, 10—

X, exit, 10—

Z, Zero (cle

4, 1

0-4,
4, 1

4, 1

ar).

0-5

10—11

0-11

0-12

10—4,
FILEX Output Modes, 10-7

Filnam, xvi

FINI statement ll— 3, 1—21

Fix technique, Dump and,
15-1

Fixed-length records, 9-1

FLOW (Flowchart Generator),
command file

commands, l7

, 17

-2

-l

10

10-12

, 1-37

(DAFT),

compiling procedures, 17-1

error messages,

example of, 17-7

17-7

Flowchart Generator program

(FLOW), l7 -1

(Cont.)

Format data, 1-9

Format, diskettes compatible with

IBM 3741, 10—1

Format for rounding, 1—12

Format printer output, 1-22

Format system device, B—2

Formats,

files tranSferred in, 10-1

programs, 14-1

Formatting data, 1-16

RKOS disks (DKFMT), 14—1

RXOZ diskettes (DYFMT), 14—2

numeric fields to alphanumeric
fields, 1-16

special characters, 1—17

Forms hardware, printers without,
3-4

FORMS statement, 1—3, 1—22

G

Garbled file name, 2-3

Generalized ACCEPT subroutines,
D-2

GO TO — Control statement, 1-3,
1—23

H

Handler address, B—5

Handlers,

change in system, 3-3

contained in Monitor, 2—1

Hardware display clear feature,
D—2

Hardware, printers without forms

(SYSGEN), 3-4

Hierarchy, COS-310 storage, 4-7

IBM 3741 format, diskettes

compatible with, 10-1

IF - Control statement, 1—3, 1—24

IF, to make best use of TRACE,
1—36

IMAGE format, files transferred,
10—1

Incorrect data, clear, D-4

Increment, rounding, 1—12

INCR (increment) statement, 1—3,
1—25 ,

Index, error messages, C-l

Index file technique, D—12

INIT -

Input/Output statement,

1-3, 1-26, 1-37

Index-7

INDEX (Cont.)

INIT, interaction of CHAIN and,
D-l7

INIT, logical unit No. in, 1-27

Initial values for statements,

l-l, 1—32

Initialization, 14-1

Input,
COS-310 data (FILEX), 10-6

line limitations, 2—20

maximum characters on line, 2-18

OS/8 ASCII (FILEX), 10—5

universal diskette (FILEX), 10—6

Input/Output statements (DIBOL),

ACCEPT, 1—4

DISPLAY, 1—18

INIT, 1—26

READ, 1—30

WRITE, 1-39

XMIT, 1-40

I/O handlers, 2-1

1/0 statements, 1-3

Input/Output division (SORT), 9—2

Insertions with line numbers, 2-14

Interaction of ACCEPT and DISPLAY,

D—l

Interaction of CHAIN and INIT,
D—l7

Internal subroutine, 1-6

symbol table, 5-8

Iteration, DDT, 6-1

J

Justification of numeric fields,

right, D—6

Justified conversions, l—ll

Justify source data, 1—9

K

KEY field for direct access, D—10

Key, last typed, l—S

Keyboard commands, Monitor, 2—2

Keyboard input, stores in afield,
1—4

Keyword, DAFT, 15—2

KREF, FLOW, 17—2

KRFSRT, FLOW, 17—2

L

Label (definition), xvi, l-l

Labels,
maximum allowed in 16K byte

system, 5—4

8—Index

maximum allowed in 24K byte
system, 5—4

referenced in statements, l—l

separated from statements, l—l

table of, used in DIBOL program,
7—1

Language,

DIBOL, xviii, 1-1

Last key typed, 1-5

Left arrow key, D—l

Limitations,

input line, 2—20

source program, 1—3

LINCHG (Line Change program), ll—l

Line, characters per, l~3

LINCHG,
error messages, 13—2

operating procedures, 13-1

Line Change program (LINCHG), 13—1

Line Number (LN) command, 2—14,
2—18

Line Number Editor, 2—13

Line Number Editor commands, 2-18

Line number exceeds 4095, 2—21

Line number default conditions,

2—18

Line numbers automatically output,
2—18

Line numbers,

changes with, 2—14

deletions with, 2—14

insertions with, 2—14

Lines—per-page configuration,
change, 13-1

List programs for review, 2—8

LIST command, 2-14, 2-17, 10—11

Listing, source program

compilation, 5—2

Literals

alphanumeric, l—lO

data manipulation, l—lO

(defined), 1—10, 5-6

numeric, l—lO

RECORD, 1-10

LN (Line Number) command,

2-14, 2—18

Logical units, xvi

Logical unit assignments, 4-1

from the edit buffer, 4—2

from a stored file, 4—2

from the keyboard, 4—3

displayed on screen, 4-3

listed on printer, 4.4

on RKOS disks, 4-9, 4-10

INDEX (Cont.)

Logical unit, PLEASE, 2—4, 2—10

assigned by DFU, 4-8 RUN, 2-4, 2—11

calculating segments for, 4—7 SAVE, 2—4, 2—13

defined, xvi Monitor commands, sequential
pushdown, 4—8 execution of, 2—5

size, 4—7 Monitor, copy (SYSGEN), 3-3

table, maximum entries, 4—2 Monitor dot, commands in response

Logical unit size, 4-7 to, 2-14

Logical units, Monitor, editing features of, 2-1

maximum open, 1-29 MONITOR/EDITOR Programs, xiii

order on a nonsystem device, 4-8 Monitor Keyboard commands,
order on a system device, 4—8 CTRL/C, 2-2

Lowercase characters, xiv CTRL/O, 2-2

CTRL/Q, 2—2

M CTRL/S, 2-2

CTRL/U, 2—2

Machine language instructions, CTRL/Z: 2-2

11-1 DELETE, 2—2

Mapping bad sectors, 10—1 RETURN, 2—

Master control program, 2—1 Monitor loaded via bootstrap, 2—4

Master file, records in, D-l4 Monitor, ON ERROR prevents return

Memory, contents of edit buffer to, 1—28

returned to, 2—12 Monitor error messages, 2—23

Memory, move data with WRITE, 1-39 Monitor operating procedures, 2—4

Memory, record‘moved to, 1—30 Monitor organization, B—3

Memory requirements because of DDT Monitor, to patch, ll-l

option (/D), 6—1 Monitor, return to, 8-2, 8-9

Memory saved by COMP/O, 5—2 MOUNT messages, 2—3

MENU, Move data between fields, 1—9

command file, 18—1 Moving,
error messages, 18—4 alphanumeric data, 1—14

operating procedures, 18-1 numeric data, 1-14

program, 18-1 records, 1—15

program file, 18—1 Multiple CHAIN entry points, D—18

Merge pass, combine volumes, 9-1, Multiple definition of fields,
9—4 1—31

Messages, MOUNT, 2-3 Multiple files passed as one file,

Messages, show on the screen, 1—18 2-12

Mode, Multiplication (*), 1-11, 1—13

associates, 1-26 Multivolume universal interchange
designations, 1—26 files, lO—l

disassociate, 1—21

input (FILEX), 10—4 N
output (FILEX), 10—9

Modulo 16, 1-26 Name (defined), data manipulation,
Monitor, 2—1 1—9

commands, 2-4 Negative numbers, characters

copy files and (SYSGEN), 3—3 representing, A—l

error messages, 2—23 Nested, CCP sections to any depth,

keyboard commands, 2-21 5-6

organization, 3-3 Nested, subroutine CALLS, 1—6

Monitor commands, Nested to depth Of 50, 1'6

BATCH,2—4, 2-5 No index file, rough table, D-12

DATE, 2-4, 2—6 NO TRACE statement, 1-3, l—34

DIRECTORY, 2-4, 2—8 Nonsystem device, order of logical
units, 4-8

Index-9

INDEX (Cont.)

Notation conventions,

braces, xv

brackets,.xiv
manual, xiv

RETURN, xv

symbols, xiv

Number commands, 2-14, 2-20

Number, editing functions refer

to, 1‘1

Numbered line begins statement,

1—1

Numbers, debugging aids refer to,
1-1

Numbers, error messages refer to,

1—1

Numbers, negative, A-l

Numeric,

data, moving, 1-14

data verification, l—ll

(definition), xvi

destinations cleared to zeros,

l-13

fields, formatting to

alphanumeric, 1-16

fields, special effect in

DISPLAY, 1-18

field verification, D—l6

fields, right justification, D—6

literals, 1—10

values converted to

alphanumeric, l—ll

variable, add one to, 1—25

'variable, CHAIN, 1—7

0

Octal (definition), xv

Old file, replace, 2-13, 2-22

ON ERROR - Control statement,

1—3, 1—28

ON ERROR, preceding a data

conversion statement, 1—11

ON ERROR presents return to

Monitor, 1—28

Operating procedures,
BOOT, 12-1

COMP, 5-1

CREF, 7—1

DAFT 15-1

DDT, 6-1

DFU, 4-1

DKFMT, 14-1

DYFMT, 14-2

FILEX, 10-4

lO-Index

LINCHG, 13—1

MENU, 18—1

Merge, 9-4

Monitor, 2-4

PATCH, ll—l

PIP, 8-1

PRINT, 16-2

SORT, 9-1

SYSGEN, 3—1
_

Operations, basic arithmetic, 1-13

Operator interaction, BATCH may

require, 2—5

Operators,
binary arithmetic, l—ll

binary and unary, 1—12

binary, priority of execution,

l—ll

Order of program execution, 1—36

Orderly execution of commands

(MENU), 18-1

Organization of the Monitor, B-3

OS/8,
ASCII Input (FILEX), 10-5

ASCII Output (FILEX), 10-7

compatibility, 10—4

file name extensions for

compatibility, 10—4

files on RKOS disk, 10-1

Output,
‘

COS-310 source file (FILEX),
10-8

DAFT, 15-5

Modes (FILEX), 10-7

OS/8 ASCII (FILEX), 10-7

Universal diskette (FILEX), 10—9

Overlay record, 1-31

p

,P (RECORD) (information

insertion), 1—32

Parentheses in arithmetic

expressions, 1—12

PATCH,

cmndfl, 11-1

error correction, 11-3

error messages, 11—5

operating procedures, ll-l

program, ll—l

restart, 11-3

Perform a Read/Check, 8-2, 8—7

PIP (Peripheral Interchange
Program),

accessed by RUN, 2-11

error messages, 8-9

INDEX (Cont.)

operating procedures, 8-1

PIP options,
B, 8—2, 8-

8-I

PLEASE command, 2-4, 2—10

PRINT (Report program generator),
16-1

compiling procedure, 16—1

error messages, 16-8

Print logical unit table, 4—1

Printer,
contents of edit buffer output

to, 2—17

limitations because of TRAP,
1—38

on-line, 2-8

slower than processor, 1-37

without forms hardware, 3-2

without forms hardware (SYSGEN),
3-4

Priority of execution, binary
operators, 1—11

PROC, comment with, 1—29

PROC statement, 1-3, 1—29

Procedure, conditional compilation
(CCP), 5—5

Procedure Division, l-l, D—20

Program,
binary copied and stored, 2—13

binary executed by RUN, 2—11

CHAIN, example of, 1—7

control, branches with GO TO,
1-23

development aid, 7-1

DIBOL binary sequence, 1—7

DIBOL CHAIN, 1-7

DIBOL slowed by TRAP, 1—38

erase with DELETE, 2—7

examination, DDT, 6-3

execution, Monitor, 2-1

execution, order of, 1—36

execution terminated with STOP,
1—35

last statement in, 1—20

master control, 2-1

maximum number of files in, 2—12

readability, 2-19

renumber lines within, 2-21

size of binary, 5—6

source (DIBOL), 1-1

source files per, 1—3

source compilation listing, 5—2

source limitations, 1—3

system executed by RUN, 2-11

table of labels used in DIBOL,
7—1

tracing, 1-36

Programs,
ACCEPT and DISPLAY in, D—l

binary debugged with DDT. 6—1

certain terminate BATCH, 2—5

directory of stored, 2—8

list for review, 2—8

segment sections, 1—34

type of, 2-7

Programming, DIBOL source files,
D—l9

Programming techniques, advanced,
D—l

Pronam (definition), xvi

Pushdown, order of logical units,
4—8

Pushdown stack, 1-6

R

READ — Input/Output statement,

l—3, 1—30

READ, restrictions on use, 1-39

Read/Check, perform a, 8-2, 8—7

Readability of program, 2—19

Record,
COS-310 file (defined), 10—1

count, D-l4
,

Descriptor Division (SORT), 9—2

moved to memory, 1—30

names in data manipulation, 1—9

names, subscripted, 1-40

names subscripted in an array,

1-13

overlaying, 1-31

size dependent on logical units,
4—7

RECORD — Data definition

statement, 1-3, l-31, 5—6

literals, 1—10

Records,

arrange COS—310 data, 9—1

clear, 1—9

clearing, 1—13

master file, D—l4

moving, 1—15

subscripted, use with care, 1—40

Index-11

INDEX (C0nt.)

Red characters, xiv

Relational comparisons between

expressions, 1—24

Renumbering program lines, 2—14,
2-21

Repetition count character, 1—32

Replace an old file, 2-13

Replace an old source file, 2—22

Report programs, creation of, 16-1

Report program generator (PRINT),

16-1

RESEQUENCE command, 2—14, 2-21

Restart (PATCH), 11-4

Restrictions on READ and WRITE,
1-39

Return after LN, 2—19

RETURN at end of subroutine, 1-33

RETURN key, xv, 2—2, 2-19

RETURN - Control statement, 1-3,
1—33

RETURN, control branches to, 1—6

Return to Monitor, PIP, 8-2, 8—9

RETURN without CALL or TRAP, 1-33

Rewriting a file, D-l6

Right arrow key, D-l

Right justification of numeric

fields, D—6

RK05 disk, format (DKFMT), 14-1

RK05 disk, logical unit

assignments on, 4-10 .

Rough table, no index file, D—12

Rounding of numbers (#), 1—12

RUN command,
CHAIN declared in, 1-7

Monitor, 2—4, 2—11
,

Run—Time error messages, 2-24

RX02 diskette, format (DYFMT), 4—2

S

,8 (RECORD) (assign value of

variable), 1—32

SAVE command to store binary
program, 2—4, 2—13, 5—4

Scratch area (binary)
modification, 2—12, 8-6

Screen,

contents of edit buffer output
to, 2—17

line number, 1-18

move cursor on, 1-18

when full, 2—18

Search for records, 15-1

Sectors on universal diskette,
10-1, 12-1

12-Index

Segment programs, 1—34

Segments, calculating for logical
unit, 4-7

Semicolon, comments after, 1-1

Sequential execution of Monitor

commands, 2—5

Seven-bit ASCII, 10-4

Signs embedded in alphanumeric
fields, l—ll

Size,

binary program, 5—6

defined in RECORD statement, 1—1

determining logical unit, 4-7

Six-bit binary word, A-l

Skip—code (definition), 1—22

Skip (erase) files, 8—5

SORT program, xiv, 9—1

accessed by RUN, 2-11

command file, 9—1, 9—5

error messages, 9—7

key, 9-3

operating procedures, 9-1

Sorted file, D—ll

SORTIN, 9-3

Source (defined) data

manipulation, 1—9

Source area stored in destination,
1—9

Source area converted and

justified, 1—9

Source files, xiv, D-19

COS-310, B-l

COS—310 output (FILEX), lO~8

DIBOL programming of, D-l9

creation of, 16—2

load into edit buffer, 2—16,
2—16

per program, 1—3

replace old, 2—22

stored on device, 2—22

separate edit buffer into two,

2—19

transfer, 8—2, 8—8

Source program,

compilation listing, 5—2

compiler converts to binary, 5-1

debug with CCP, 5-5

DIBOL, l-l

erase with DELETE, 2-7

limitations, 1—3

maximum characters in, 1—3

Space,
allocate to binary scratch area,

8-6

consolidate directory, 8—2, 8-5

INDEX (Cont.)

Special characters, xv, 1-17 Storage map, listing, 5-1, 5—3

Special characters in formatting, Store binary program on device,
1—17 2-13

Special codes in DISPLAY, l-18 Store system date, 2—6

Special DISPLAY codes, 1-18
. Subroutine, ACCEPT, D—2

START — Compiler statement, l—3, Subroutine, branches control to,
l-34 l—6

START system on new device, 12-1 Subroutine,
START with comment, 1—34 CALL statements, 1—6

START, call traceback, 6-1

batch file, 2—4, 3—2 internal, 1—6

batch file space required, 3—3 nested in, 1—6

batch file (SYSGEN), 3-4 TRAP, 1—37

With comment, l—34 Subroutines, generalized ACCEPT,

Statement, D—l

CHAIN encountered, 1—7 Subscripted array in data

comments in, l—l manipulation, 1-9

define size of, l—l Subscripted record names, l-l3,
define type of, 1—1 1—40

last in program is END, 1-20 Subscripting to access parts of

lines with comments, l—l fields, 1—13

separated from label, 1-l Subtraction (—), 1—11, 1-13

Statements, Symbol table, internal, 5-8
Data Division, l-l

Symbols,
data manipulation, l—9 DAFT command, 15—2
initial values for, 1—1 maximum in system, 1—3

reference labels, 1'1 notation convention, xiv
SlX kinds in DIBOL: 1-3 SYSGEN (System Generation

Statements, DIBOL PROGRAM), XIII, 3-1

ACCEPT, l—3 SYSGEN default, 3—2, 13-1

CALL, 1-6 SYSGEN/B, 3—1

CHAIN, 1-6 SYSGEN/C, 3-3

END: 1‘20 boot to start on new device,
FINI, 1-21

12-1
FORMS' 1‘22

change handlers in, 3—3

$3,T2:2}1'23 cos—:10 logical] units an,
4-7

crea e on new ev1ce,
—

0N ERROR' 1'28
date change, 2-6

PROC, 1-29
date stored by DATE, 2-7

READ, 1-30
device directory, B-4

device holds BATCH cmndfl, 2—5

device, order of logical units,

RECORD, 1-31

START, 1-34

STOP, l-3, 1—35 4-8

TRACE/NO TRACE: 1'36 encounters ACCEPT, l—4

TRAP, 1-37 device format, B—2

WRITE, 1-39 files, xiv, B—2

XMIT, 1-40 files, COS—310, B-2

STOP — Control statement, 1—3, files, transfer, 8-2, 8-8

1'35 generation program (SYSGEN), 3-1

STOP, I/O handlers in Monitor, 2—1
SAME EFFECT AS END, 1-35

'

maximum symbols per, 1-3

terminates program execution, program, erase with, 2—7
1-35

.
program, transfer, 8-8

Storage hierarchy, 4—7 programs accessed by RUN, 2—11

programs executed by RUN, 2—11

Index-l3

INDEX (Cont.)

T

TAB key produces 8 spaces, 2—19

Tab settings, 1—1

Table, labels used in DIBOL

program, 7—1

Table, logical unit assignments,
4—2, 4—6

Table lookup, direct access, D—lO,
D—ll

Tabs used for readability, 2-19

Terminal alarm is sounded

(PLEASE), 2-10

Terminal BATCH, certain programs,
2—5

Terminate program execution with

STOP, 1—35

Terminating character, 1-4, 1-5

Terminating value, used by DIBOL,
1—4

Terminators, escape sequences, D—8

Text, erase (clear) edit buffer,
2—15

Text, lines of assigned a line

number, 2—14

308, Datasystem, xiii

310, Datasystem, xiii

Top-of—page command, 1—34

TRACE — Debugging statement, 1-3

TRACE,
indiscriminate placement of,

1—36

turned off in CHAIN, 8—3

use of IF to isolate, 1—36

Trace/No Trace statements, 1—36

Traceback, subroutine call (DDT),
6—1

Transfer,

binary file, 8—2, 8-3

data (XMIT), 1-40

data files, 8—4

data records, 1—40

files, ASCII format, 10-1

files, SYSGEN, 3-3

files, universal format, 10—1

source files, 8—2, 8—8

system files, 8—8

Transferring control through IF

statement, l—24

Transferring variable values, D—7

TRAP - Control statement, 1—3,
1—37

TRAP,
information for effective use

of, 1—37

l4—Index

limitations on printers, 1—38

normally precedes FORMS or XMIT,
1—37

slows DIBOL programs, 1—38

subroutine construct, 1—37

turned off in CHAIN, 1—8

Trappable error, 2—24

Truncating a file, D~15

Two-line PLEASE command, 2—10

Type, define in RECORD statement,

1-1

U

Unary operators in COS—310, 1—12

Unconditional GO TO, 1-23

Underscores line number with

errors, 5-2

Universal diskette,

(definition), lO—l

format for, lO-l

functions of sectors, 10-1

input (FILEX), 10-4, 10—6

interchange format directory,
10-2

output (FILEX), 10-9

Unsorted file, D-lO

Up arrow key, D—l

Uppercase characters, xiv

V

Valid directory entry dates, 2—8

Value,
default (SYSGEN), 3-2

initial (definition), 1—32

terminating used by DIBOL, 1—4

Values,
CCP different than DIBOL, 5—6

transferring variable, D-l7

Variable,
add one to numeric, l—25

examination in DDT, 6—1

name, 1-9

numeric in CHAIN, 1-7

values, transferring, D—l7

Variables (defined), 1—9, 5—6

Verfication, numeric field, D—16

Verify data, copy and, 8-2, 8-7

Verify numeric data, l—ll

VT50/VT52 Escape Sequences, D—22

VT52 clearing feature, D-3

W INDEX (Cont.)

Word boundry, 5-6

Word count number, B—l

Words of code requirement, 5-7

WRITE - editor command, 2-14, 2-22

WRITE * Input/Output statement,

1—3, 1-37, 1—39

WRITE,
move data with, 1—39

restrictions on use, 1—39

X

XMIT - Input/Output statement,

1—3, 1—37, 1—40

XMIT statement, extending a file

with, D-15

2

Zero, divison by, 1-28, 2-26

lS-Index

Please
cut

along

COS-310 System Reference Manual

AA-D647A-TA

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will

use comments submitted on this form at the company's
discretion. Problems with software should be reported

on a Software Performance Report (SPR) form. If you

require a written reply and are eligible to receive

one under SPR service, submit your comments on an SPR

form.

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs

required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer

Higher-level language programmer

Occasional programmer (experienced)

User with little programming experience

Student programmerDECIDED Non-programmer interested in computer concepts and capabilities

Name Date

Organization

Street

City State Zip Code

or

Country

Fold Here

Do Not Tear - Fold Here and Staple

BUSINESS REPLY MAIL

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS

PERMIT NO. 33

MAYNARD. MASS.

Postage will be paid by:

Eflflfllfill
Business Products

Software Development Group
MKl-Z/H32
Continental Blvd.

Merrimack, New Hampshire 03054

