
DECUSNO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

F~FiClGF(AM l,IE~f(ARV

8-l02a

A LISP INTERPRETER FOR THE PDP-8

G. van der Mey and W. L. van de~ Poel

Technical University of Delft
The Netherlands

lo1ay, 1968

AI though-this program has been tested by' the contributor, no warranty, express or impl ied, is mode by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

A LISP INTERPRETER FOR THE PDP-8

DECUS Program Library Write-up DECUS No. 8-102a

Summary

The present document gives a description of a system for the pro
gramming language LISP on the PDP-8. The system is designed to operate
on a basic PDP-8 with 4096 words of core storage and an ASR-33 Teletype.
In addition, the system will input on a high speed reader. More than
half of the storage is used as list space. The system is particularly
suitable for conversational use and teaching. There are very few
restrictions to the language, apart from the total storage space.

Introduction

The reader is assumed to be familiar with LISP, a programming language
for list manipulation. Detailed descriptions can be found in:

1. "LISP 1.5 programmer's Manual," J. McCarthy et aI, M.I.T.
Press, 1965.

2. "The Programming Language LISP - Its Operation and Application,"
E. C. Berkeley and D. G. Bobrow, eds., Information International,
Inc.

3. "LISP 1.5 Primer," Clark Weissman, Dickinson Publishing
Company.

This LISP system is an interpreter-based simplification of LISP 1.5 as
implemented on the IBM 7090. The severe restrictions on size in the
smallest PDP-8 have caused the omission of many advanced functions,
which can be defined in more basic functions. Nevertheless, the system
has been designed in a very general way, e.g. no restrictions on the
length of names and on the size of the push-down list, all functions
C ..•. R with as many as 11 A's or D's in between are built in, decimal
input/output (can be switched to octal independently for input and output).
The storage is used both for push-down space and list space. Only if
the total capacity of both together is too big, the system stops. The
push-down is organized itself as a list in the normal list space. A
very full assortment of error stops is included. Just as in 7090 LISP,
the programmer need not quote his arguments on the outside level; the
system has the function EVALQUOTE. Input tapes can be in ASCII code or
in CCITT2 Teleprinter five hole code. They can be mixed with the only
precaution that both kind of tapes start with blank (ASCII and CCITT2)
or with leader-trailer code (ASCII). Control over the printing and the
choice of low or high speed reader can be exercised by a mode number
instead of a function in EVALQUOTE. (See System Operation)

Inside the system a LISP cell occupies two locations in core. The first
location is used for the CDR part and the next location is used for the

- 1 -

CAR part. As all cells start in an even location, pointers are always
p-ven. Therefore, the rightmost bit has been used for other purposes,
e.g. the rightmost bit in the CAR part is the atom mark and the right
most bit in the CDR part is used in the garbage collector. It is
normally zero. As the CDR operation is more frequent than the CAR op
eration, this arrangem~nt allows the CDR to be simply performed by an
indirect access of a location.

Access to machine code programming is through a single function EXPR
of three arguments. Several useful actions can be accessed via this
function: inspection 'of a machine word, changing a machine word (also
in the system itself), logical and, logical not.

The system is located in addresses 2 to 37258; all the rest can be used
as list space. The standard binary tape will not destroy a minimum
binary loader in 7700-7777. By changing a single constant, the list
space can be lengthened or shortened. For example, machine code programs
can be placed above the list space. These changes can be made expressed
in the language LISP itself.

The Available Functions and Objects

The following list of objects and functions are built-in for PDP-8
LISP. When they are identical to the same function in 7090 LISP, they
are described very summarily, but several functions deviate in some
respects and are more fully described. In addition, a LISP definition
of the function is given where possible. This LISP description is not
always accurate, e.g. no error testing will be shown, nor will machine
code function be expressed adequately.

Built-in function names are recognized by the value of their pointer.
They do not have indicators SUBR or FSUBR on their property lists. In
fact there are five kinds of built-in functions and objects:

1. Special functions having an arbitrary number of arguments
or a very special treatment of their arguments. They are
LAMBDA, NIL, FUNARG, T, APVAL, COND, FEXPR, FUNCTI, GO, LIST,
MINUS, PLUS, PROG, QUOTE, RETURN, SETQ, and STOP.

2. Functions with no arguments: GENSYM, READ, TERPRI.

3. Functions with one argument: ATOM, CAR, CDR, DEFINE, NULL,
NUMBER, PRINT.

4. Functions with two arguments: ASSOC, CONS, DEFLIS, EQ,
EQUAL, EVAL, GET, LESSP, RPLACA, RPLACD, SET.

5. Functions with three arguments: APPLY, EXPR.

APPLY - This is a func'tion of three arguments. It applies the function
mentioned in the first argument to the list of arguments men
tioned as the second argument. The association list to be used
is given in the third argument (often NIL) •

- 2 -

DEFINE ((
(APPLY(LAMBDA(FN ARGS ALIST) (PROG(K)

«NULL FN) (RETURN NIL»
«FN-pointer < certain address) (do machine code function»
«ATOM FN) (GO A»

B«EQ(CAR FN)FUNARG) (RETURN (AP?LY (CADR FN)ARGS(CADDR FN»»
«EQ(CAR FN)LAMBDA) .

(RETURN(EVAL(CADDR FN) (PAIRLIS(CADR FN)ARGS ALIST»))
(RETURN(APPLY(EVAL FN ALIST)ARGS ALIST»

A(SETQ K(ASSOC FN ALIST»
(COND(K(RETURN(APPLY(CDR K)ARGS ALIST»»
(SETQ K (GET FN EXPR»
(COND(K(RETURN(APPLY K ARGS ALIST»»
(GO B) »)

(PAIRLIS(LAMBDA(X Y A) (COND«NULL X)A)
(T(CONS (CONS (CAR X) (CAR Y»(PAIRLIS(CDR X) (CDR Y)A»» ») »

Remarks: The given definitions will take advantage of the features
of PDP LISP, e.g. COND has been omitted where possible (see under
COND) and standard object names need not be quoted. PAIRLIS has
been defined together with APPLY but is not a standard function
of the system.

APVAL - This is used as an indicator for objects having a value on the
property list. But in PDP-8 LISP is can also be used as a
function for sensing blank on tape. It returns T when a symbol
blank is typed in or read in by the tape reader; the tape steps
to the next symbol. When there is no blank under the tape reader,
it returns with NIL and does not move the tape. (For use see
also T.)

ASSOC - Looks up the first argument on the association list given in the
second argument. Returns with the pair found. If not found
then NIL.

DEFINE«(ASSOC(LAMBDA(X A) (COND
((NULL A) NIL)
«EQ(CAAR A)X) (CAR A»
(T(ASSOC X(CDR A») »»)

ATOM - Function of one argument. Returns with T if argument is atomic,
otherwise with NIL.

CAR - Returns with first of its argument, which must be a list. If
argument is atomic, then an error print follows. If a CAR
function is needed which can look into the atom it can be simu
lated with

DEFINE«(CAR(LAMBDA(X) (CDR(EXPR 3l72(PLUS(CONS NIL X)l)-l») »)

CDR - Returns with the rest of its argument when the first is removed.
Application to an atom is allowed to look into property lists;
however, this is not advisable for built-in functions as they
have no property list except OBLIST and NIL. Instead they have
a pointer into a machine code program which is recognized be
cause it is below a 'certain limit.

CDR(NIL) = NIL

- 3 -

C ... R - Any function with as many as eleven A's and D's may be given.
For example, (CAADDAR X) = (CAR(CAR(CDR(CDR(CAR X»»). On
first appearance of such a function, it will be placed on the
OBLIST with no properties. Nevertheless, it will be recognized
as a function unless it has been redefined as something else.

COND - pseudo-function having an indeterminate number of arguments,
each being a pair. If the first of a pair does not have the
value NIL, the value of the complete COND form has the value
of the second of the pair. Otherwise the next pair is tried.
An error print will follow if COND "drops out of the bottom"
except in PROG.

CONS - Function of two arguments. Constructs a dotted pair from its
arguments.

DEFINE - Defines a list of functions by attaching a form to the name on
the property list with the indicator EXPR. A function, also a
built-in function, may be redefined. The original significance
is then inaccessible unless the name is removed from the OBLIST.
with the help of this feature, a standard function can be rede
fined to print relevant information about its arguments and
values, or can count its number'of calls. It makes TRACE
superfluous.

DEFINE«(DEFINE(LAMBDA(X) (DEFLIS X EXPR»»)

DEFLIS -Defines a list of functions by attaching a form to the name on
the property list with the indicator given in the second argu
ment. All built-in functions have names of no more than six
letters, mainly for economy reasons. Its effect is exactly the
same as DEFLIST in the 7090.

DEFINE ((
(DEFLIS(LAMBDA(L PRO) (MAPLIST L(FUNCTI(LAMBDA(J)

(DEFI (CAAR J) (CADAR J» »»)
(DEFI(LAMBDA(OB L) (PROG NIL

(RPLACA(PROP OB PRO (FUNCTI (LAMBDA NIL
(CDDR(RPLACD OB(CONS PRO(CONS NIL(CDR OB»») »)L)

(RETURN OB) »)
(PROP(LAMBDA(X Y FN) (PROG NIL
A «NULL X) (RETURN (FN)))

«EQ(CAR X)Y) (RETURN(CDR X»)
(SETQ X (CDR X»
(GO A) »)

(MAPLIST(LAMBDA(X FN) (COND«NULL X)NIL)
(T (CONS (FN X) (MAPLIST (CDR X) FN») ») »

EQ - Returns with T when its two arguments are identical pointers,
or when they point to numbers which have the same value.. Other
wise, its value ~s NIL.

,EQUAL - Returns with T if its arguments are equal i NIL if they are
unequal.

- 4 -

DEF.INE{ ({EQUAL{LAMBDA{X Y) {COND
({ATOM X) {COND ({ATOM Y) (EQ X Y»

(T NIL) »
{ (ATOM Y) NIL)
({EQUAL{CAR X) (CAR Y» (EQUAL {CDR X) (CDR Y»)
(T NIL) »»)

EVAL - Returns with the evaluated first argument, with the association
list given in the second argument.

DEFINE { {
(EVAL{LAMBDA{FORM ALIST) (PROG(K L)

{(NULL FORM) (RETURN NIL"»
((NUMBER FORM) (RETURN FORM»
«ATOM FORM) (GO A»

B (SETQ K(CAR FORM»
{(EQ K QUOTE) (RETURN (CADR FORM»)
«EQ K FUNCTI) (RETURN (LIST FUNARG(CADR FORM)ALIST»)
«EQ K COND) (PETURN(EVCON(CDR FORM)ALIST»)
{(EQ K PROG) (RETURN(EVPROG(CDR FOP~)ALIST»)
«ATOM K) (GO C»

D (RETURN{APPLY K(EVLIS(CDR FORM)ALIST)ALIST»
A (SETQ K(ASSOC FORM ALIST»

(COND(K(RETURN(CDR K»)
(RETURN(GET FORM APVAL»

C (SETQ L(GET K EXPR»
(COND(L(RETURN(APPLY L(EVLIS(CDR FORM)ALIST)ALIST»»
(SETQ L (GET K FEXPR»
(COND(L(RETURN{APPLY L(LIST(CDR FORM) ALIST) ALIST") »)
(RETURN(EVAL(CONS(CDR(ASSOC K ALIST» (CDR FORM»ALIST» »)

(EVCON(LAMBDA(C A) (COND
«EVAL(CAAR C)A) (EVAL(CADAR C)A»
(T(EVCON(CDR C)A» »)

(EVLIS(LAMBDA(L A) (COND
«NULL L) NIL)
(T(CONS(EVAL(CAR L)A) (EVLIS(CDR L)A») ») »

Remark: The functions EVCON and EVLIS are not available as
standard functions under these names.

EXPR - Used as indicator on property lists for functions which have
their arguments evaluated. In the PDP-8 LISP, EXPR also serves
as a function of three arguments. The arguments are supposed
to evaluate to numerical values (unless not used). It jumps to
the machine address indicated in the first argument with the
numerical value of the second argument in the accumulator. The
pointer to the second argument can be found in 0037, and the
pointer to the third argument in 0041. The machine code program
can return to the LISP system with the instruction 5171 (=G EV-5)
in case that no value need be returned. If a numerical value
must be returned, this can be done by going to 3175 with the
value in the AC. Back in LISP one then has a pointer to that
value as value. In the system, several machine code functions
are readily provided for the user. The most practical examples
will be given below. Octal numbers will be shown normally,
decimal numbers will be shown underlined.

-" 5 -

EXPR(3172 X -1) or EXPR(1658 X -1) gives the contents of machine
cH.ldrC'ss X. When -1 is replaced by another number, this serve:::;
as a mask.

EXPR(3202 X Y) or EXPR(1666 X Y) will store in location X
the number Y. This function can be used to change the system
and forms the basic ingredient for a user-written LAP compiler.
Applications:

EXPR(1666 1373 3584) switches the system to octal reading.

EXPR(3202 2535 1037) switches the system to decimal.reading.

EXPR(3202 2034 1750) EXPR(3202 2035 144) EXPR(3202 2036 12)
switches the system to decimal printing.

EXPR(3202 2034 1000) EXPR(3202 2035 100) EXPR(3202 2036 10)
switches the system to octal printing.

EXPR(3202 2046 7061) switches the system to printing with sign.

EXPR(3202 2046 7000) switches the system to printing without
sign. (-1 \vill now appear as 7777 in octal or 4095 in decimal.)

EXPR(3174 X,Y} will return with the logical and operation on X
and Y.·

EXPR(3170 X Y} will return with switch register + X masked with
Y. The logical inverse can simply be made with (MINUS -1 X).

EXPR(l306 addend mask) will return with (single character +
addend) and mask from the tape reader in the code, as it stands
on tape.--

EXPR(2160 X NIL} will print a single character whose value in
internal representation is X. This can be used for outputting
characters which would otherwise be regarded as syntactic symbols
as space, (, or). Care must be taken, however, for the line
count as e.g. carr. ret. now also counts as a printable char
acter. The internal code· is: 0 = space, 2 = space, 3 = line
feed, 6 = carriage return, all other characters in the ASCII
table from code 241 to 335 are found by subtracting 236 octally,
e.g. 25 = digit 3, 43 = A, etc.

Sometimes it can be useful to know numerically the location of
objects. There is no EXPR for this but this can be done with
(PLUS(CONS NIL X)} as PLUS does not check whether the argument
really is a number. Conversely (CDR number) will convert a
number into a pointer.

FEXPR - Indicator on property lists to indicate special forms whose
arguments are not evaluated.

FUNARG - Atom used on the association list to be able to recover previous
association lists. Its operation is automatically introduced
by the system whenever FUNCTI is, used. The user almos't never
sees- the atom FUNARG printed. (See APP~Y and EVAL.)

FUNCTI - Same as FUNCTION in 7090 LISP. Used to quote literal functions
presen"ted as functional arguments.

- h -

GENSYM - Function with no arguments. It returns with a uniquely created
new atom, which will not be attached to the OBLIST. If appear
in print as: GGGG, GGHG, GGIG, ... , GGVG, GGGH,GGHH, ... ,
GGVV, ... ,GHGG, etc.

GET - Function of two arguments. Looks on the property list of
the object given as the first argument to find the indicator
given in the second argument. \vhen the second argument is
EXPR, FEXPR or APVAL, it need not be quoted as built-in names
in PDP-8 LISP. A GET applied to a built-in function will
always return with NIL.

DEFINE«(GET(LAMBDA(OBJ IND) (PROG(K)
(SETQ K(CDR OBJ»

A «NULL K) (RETURN NIL»
«EQ(CAR K)IND) (RETURN(CADR X»)
(SETQ K (CDR K»
(GO A) »»)

GO - Pseudo-function of a single argument. Goes to that argument
when used as a label within PROG. Otherwise, an error print
follows.

LAMBDA - Pseudo-function of two arguments. Binds the formal parameters
given in the first argument (which must be a list) to the
actual parameters. The number of actual and formal parameters
must fit in the case of EXPR's. Then the form given in the
second argument is evaluated. It is possible to give more than
two arguments to LAMBDA. In that case, all forms given will
be evaluated exactly as in PROG. There may be labels and GO
.sta"t;ements etc. The checking on the number of formals is sup
pressed; instead all extra formals play the same role as PROG
variables and are initialized to NIL.

LESSP - Function of two parameters. Return with T if first argument
is less than second.

LIST - Evaluates an arbitrary number of arguments and returns with a
list of the values.

DEFLIS«(LIST(LAMBDA(X A) (EVLIS X A»»FEXPR)

MINUS - Function with an arbitrary number of arguments. Returns with
.... -xn-2+xn-1 -xn. In particular, (MINUS X) = -X and
(MINUS X Y) = X ~ Y.

NIL - Serves as the empty list and at the same .time is an atom.

NULL

CDR(NIL) = NIL. As a function, it has an indeterminate number of
arguments and returns NIL as value. This can be useful as
comment, but all newly read words are placed on the OBLIST!
False is always represented by NIL; F does not have this sig
nificance unless it has been defined so explicitly.

Function of one argument. Returns with T if argument is NIL.
NULL has the same action as NOT, which is not included in the
system.

DEFINE«(NULL(LAMBDA(X) (EQ X NIL»»)

NUMBER - Same .as NUMBERP in 7090 LISP. Returns with T if argument is
a number.

_ 7 -

OBLIST - List of all programmer-defined objects. The object OBLIST
itself always appears at the bottom of the OBLIST; for technical
reasons there is an extra NIL at the top. Hence: CDR(OBLIST)
(APVAL(NIL .•. all defined objects OBLIST». The OBLIST
may be manipulated by the programmer including the element NIL.
CAUTION: Great care must be taken not to remove OBLIST from
the OBLIST.

PLUS - Function of an indeterminate number of arguments. Will per
form a signed additon on integers only. No test on the
exceeding of capacity is performed. No test is made on whether
the argument(s) is(are) numerical.

PRINT - Function of one argument. Will print the value of the argument
and also returns with that value. If the value is atomic, it
will only print the atom, no spaces will follow. Numbers are
pr~nted with the least number of digits, non-significant zeroes
are omitted and the sign when it is a plus. If the element to
be printed exceeds the capacity of the line (64 characters),
a carriage-return line-feed will automatically be given. Hence,
PRINT (X) PRINT(Y) will cause XY to be printed. Any symbol can
serve as a letter in a print name even space, carriage return,
dot, left parenthesis, etc. For that purpose, they must be
read in preceded by'. This will quote the next following
single character. Even' itself may serve as a character when
read as 'I. Hence, space may be printed with PRINT('), or on
the inside level with (PRINT(QUOTE ' ». When printing back
such a statement from a property list, it cannot be read in
again as the ' has disappeared in print. In that case,
(EXPR 2160 0 NIL) is preferable. A print name which is longer
than 64 characters cannot be printed back; a new line will be
given because the name did not fit into the previous line, and
this situation will continue to be so.

PROG - Has the same meaning as in 7090 LISP. The first argument is
a list of program variables, all set to NIL on entry; then fol
low statements and labels. Labels are atoms, statements are
not. In a PROG, a COND statement is allow~d to fallout of
the bottom. PROG is left on a RETURN statement, and the value
~eturned is the value of the argument of RETURN.

QUOTE - Prevents its argument from being evaluated. The value is the
unevaluated argument. Standard built-in objects need not be
quoted in PDP-8 LISP.

READ

DEFLIS«(QUOTE(LAMBDA(X A) (CAR X»»FEXPR)

- Function of no arguments. Reads a single S-expression from
tape or keyboard. All identifiers read for the first time are
put on the OBLIST. Identifiers may consist of any number of
characters and any character except left parenthesis, right
parenthesis, dot, space, carr. ret., line-feed, blank, and
apostrophe; however, these characters can be "quoted" by
preceding them with '. Then, they may again be a character of
a name. A name must start with a letter. An object starting
with a digit or a plus sign or a minus sign is regarded as a

- 8 -

number (except when preceded by'). An isolated plus sign and
minus sign is also a legal name, e.g. (LEFTHANDVARIABLE :=
A * TEMPERATURE) is a perfectly correct S-expression and will
be printed exactly the same; however, when ('234567 + ,777 A')B) is
read it will print as (234567 + -1 A)B). READ can read two
different codes: ASCII and CCITT2 code (5 track). The five
track tape must be put into the reader with the three hole
side on the same side as on the eight track tape. In the high
speed reader it will need a little bit of extra guiding on the
front edge. The system will recognize the code from the
leader. This contains no seventh hole but blank or eighth hole
for ASCII and contains five blank holes plus the seventh hole
=1 for CCITT2. In case CCITT2 code i~ read, no immediate
printing may be done (see Operation of the System). On switching
back to keyboard from CCITT2, a blank or leader symbol must
be typed first. (Control + shift + commerical at). For
switching from low speed to high speed reader see under op
erating instructions.

RETURN - Function of one argument. If is used to return from a PROG with
the value of the argument.

RPLACA - Replace the CAR link of the first argument by the second
argument.

RPLACD - Replace the CDR link of the first argument by the second
argument. Both these functions must be handled with great
care as they can destroy existing list structure. ~n particular
one must never try to replace the property list of a standard
atom unless that atom is redefined with DEFINE or DEFLIS.

·The RPLACA will leave the atom mark intact.

SET - Function of two arguments. Sets the value of the first argu-

SETQ

STOP

ment, bound on the association list equal to the value of
the second argument. It returns with the value of the second
argument.

DEFLIS«
(SET(LAMBDA(X A) (RPLACD(ASSOC(EVAL(CAR X)A)A)

(EVAL(CADR X)A) »))FEXPR)

- Same as SET, but automatically quotes its first argument.
SET and SETQ can only effectively be used within LAMBDA or
PROG.

DEFLIS«(SETQ(LAMBDA(X A) (RPLACD(ASSOC(CAR X)A)
(EVAL(CADR X)A) »))FEXPR)

- No arguments. Returns with NIL. Press CONTINUE to'restart.

T - Has value T for True. In PDP-8 LISP, T also is a function
which will return its argument as value. This is used
especially in PROG. COND forms can be abbreviated to the
condition pairs only. When the first element evaluates to
NIL, the function NIL will return with NIL; but when the first
element evaluates to T, the value of the second argument is

- , -

taken, e.g. (COND«NULL L) (GO A») can be abbreviated to
«(NULL L) (GO A»). With COND every Boolean not NIL is re
garded as T. This is not the case in the abbreviated pairs.
The first element must evaluate to T or NIL. Another example
is skipping blank tape before READ. Although READ will do
this automatically, one has no way of knowing that there has
been blank other than: ... (PROG(K L) (GO B) A (SETQ K T) B
«APVAL) (GO A» (SETQ L(READ» ...) K will be NIL unless blank
has been skipped by the function APVAL. When it is desirable
to have T available as a normal variable one can give:

DEFINE«(T NIL») RPLACD(T NIL)

This redefines T and then removes all its properties.

DEFINE « (T (LAMBDA (X) X»» DEFLIS («T T» APVAL)

TERPRI - This will print carriage return, line-feed and will set the
line count to zero. Its value is NIL. PRINT('
or EXPR(2160 6 NIL) EXPR(2160 3 NIL) would not have exactly
the same effect, as these do not reset the line count.

Some Important Addresses in the System

It can be necessary to inspect some system variables with EXPR(3172 X-I)

6 contains the cumulative number of times that the garbage collector
has been called.

14 contains the last character read

15 contaihs the shift in CCITT2 code. 0 = letters, 1 = figures.

16 contains the line count, counting from -77 to 0

25 contains the pointer to the association list

27 contains the pointer to the stack

30 contains the pointer to the free list

35 contains the pointer to the first argument

37 contains the point€r to the second argument

41 contains the pointer to the third argument

45 contains the beginning point of the list space minus the' end point.
This must be an even difference.

0, 1 and 102 are kept free for interrupt service.

100 contains the address of the basic IN routine.

- 10 -

2270 contains the address of the basic OUT routine.

17 contains the GENSYM count from which the GENSYM names are derived.

2re~~_1:~o_!1:_~_~ __ ~h~_Ey::;_~m

The system is provided on BIN code tape and can be loaded by a BIN
loader which must not occupy more than the last half page of store.
(7700-7777). For the high speed reader a bootstrapping BIN loader is
placed in front of the BIN tape which is completely self starting when
any normal BIN loader is already in the machine. If the tape is put
into the reader on the first stretch of blank tape, it can be loaded
by a minimal bootstrap routine:

20 LA, 6011 DEP, 5020 DEP, 6016 DEP, 7012 DEP, 7010 DEP, 7440 DEP,
2027 DEP, 3002 DEP, 5020 DEP, 22 LA, START.

The system can be restarted on

3000LA, START. This will clear the whole system. The OBLIST is
emptied and the GENSYM count is zeroed.

3001 LA, START. This will initialize the system but will keep the
OBLIST and all properties of the objects. In both cases EVALQUOTE
will be entered now. Blank at the beginning of a tape is skipped and
sensed for code (ASCII or CCITT2), a pair is read, this pair is
evaluated and the value can be printed. Then the next pair is read
and evaluated, etc.

Control over what is input and output can be made by a mode number.
The mode number is input in the place of the first element of an
EVALQUOTE pair. This mode will be set now and the system will again
expect a pair (or can accept another mode number). There are four
bits in the mode number which have a significance.

When 1 is absent, all characters input will be echoed immediately on
low speed input (keyboard or low reader). There is no echo
for the high speed reader. Also the function READ will echo.

When 1 is present, there will be no echo but each S-expression of the
EVALQUOTE pair will be reproduced after it has been completely
read in. If CCITT2 code is read, the direct echo will not
work correctly but on mode bit 1, the output will be in ASCII.

When 2 is absent, the value of EVALQUOTE will not be printed but any
explicit PRINT function in the program will print.

When 2 is present, the value of EVALQUOTE will be printed.

When 4 is absent, reading takes place on the low speed reader (or keyboard) .

When 4 is present, reading takes place on the high speed reader.

'hen 40 (or 32 in decimal) is present, only the echo is suppressed.

- 11 -

Mode 2 is initially installed. Each change in mode will persist until
explicitly changed again, but any error will reinstall mode 2.

An error will result in an error printout which cannot be suppressed by
the mode and which has the format:

STOPnumber followed by some indication what has gone wrong, e.g. the
name of the function. ,After an error the system will immediately go
on reading the next pair for EVALQUOTE. This can give rise to further
errors if, for example, the number of brackets in the input material
is wrong.

There are two errors of a special kind:

? will be printed if all working space has been used, whether for stack
or list. In this case pushdown list, association list, etc. are cleared
and another collection is made. The system theri comes to a stop. If
CONTINUE is pressed, the next pair for EVALQUOTE will be read. In ex
treme cases, even by clearing the stack and a list, new space cannot be
found and the collector will continue to print ? I

The commercial at sign will be printed if the special collector stack
overflows. This will be rarely the case as this stack is only used in
the CAR direction. A depth of 42 is provided. Also, a second collector
run is tried, and the system stops and must be restarted with CONTINUE.

The system can change the size of the working space by executing
EVAL «EXPR 3 20 2 45 (MINUS 3725 < last usable address (odd»)) NIL). This
will put in 458 the difference between the first usable address (=3725)
and the last usable address (normally 7677). The change in 45 has no
direct effect but comes into play on the next restarting (or on a col
lector run). Therefore it is advisable to have the change in size
followed immediately by EXPR(3000 NIL NIL) to reinitialize the system
and to create a new free space. Changing the size gives the possibility
to add machine code functions to the system or run a small LISP compiler
to compile machine code functions behind the list space.

This issue will run on a PDP-8 as well as on the PDP-8/S. As this issue
is an adaption of a LISP system for the 8 only, a patch had to be made
for some instructions which did have a different action in the 8/S.

If working space is at premium, one can enlarge the working space to
the maximum amount possible, thereby overwriting the loaders by
EXPR(3202 45 3726) or decimally: EXPR(1666 37 2006).

The operation of the system could concisely be described by the following
program for EVALQUOTE:

DEFINE«(EVALQUOTE(LAMBDA() (PROG(FN ARGS VALUE MODE ECHO HI)
START3000 (CLEAR)

(CLEARGENSYM)
ERROR (SETQ MODE 2)
START3001(TERPRI)

(SETQ ECHO (EQ(LOGAND MODE 45)0»
(SETQ HI (EQ(LOGAND MODE 4)4»
(SETQ FN (READ»
«EQ(LOGAND MODE l)O} (GO NOFN)}
(PRINT FN)

- 12 -

NOFN ((NUMBER FN) (GO NEWMODE»
(SETQ ARGS (READ»
((EQ(LOGAND MODE 1)0) (GO NOARGS»
(P RINT ARGS)
(TERPRI)

NOARGS(SETQ VALUE (APPLY FN ARGS NIL»
((EQ(LOGAND MODE 2)0) (GO START300l»
(PRINT VALUE)
(GO START300l)

NEWMODE(SETQ MODE FN)
(GO START300l) »)

(CLEAR(LAMBDA() (RPLACD OBLIST(QUOTE(OBLIST»»)
(CLEARGENSYM(LAMBDA() (EXPR 3202 17 0»)
(LOGAND(LAMBDA(X Y) (EXPR 3174 X Y»») EVALQUOTE NIL

Some features have not been shown adequately. The function READ will
print an immediate echo if ECHO = T. The hiqh speed reader will be
used if HI = T. An error will give an error print and will go to
ERROR. If anywhere inside an EVALQUOTE pair a blank or trailer code is
read this is an error. Blank will only be skipped before a pair. This
feature can be used to stop a tape on the high speed reader by ending
the previous pair with carr. ret., line feed, blank. The function READ
will then react as if the new pair had begun because of the carr. ret.
and gives an error stop. The error stop then automatically returns the
mode to 2 and hence switches to keyboard.

List of Error Prints

Depending on whether the system prints in decimal or in octal, the
following error numbers will be printed:

octal decimal
-~- ~- -.~ ~ - - -~--- - -~.-.

213 139

243 163

331 217

346 230

422 274

501 321

522 338

554 364

567 375

744 484

1022 530

1231 665

kind or error

value of this variable is not defined

a number is standing in the place of a function

built-in function has too few arguments

built-in function has too many arguments

this functional argument is no function

L~~BDA form has to few arguments

LAMBDA form has too many arguments

GO, RETURN or a COND with undefined value has
been encountered outside of a PROG

GO has an unknown label

first argument of SET or SETQ is not atomic

wrong number of arguments in this function

first element of a pair in DEFINE or DEFLIS is
not a name

- 13 -

octal decimal kind of error (continued) -----

1345 741 name in position of a function which is not Cl

function

1501 833 the CAR of an atom has been taken

2432 1306 blank in a LISP expression cannot occur

2504 1348 closing parenthesis cannot occur here

2525 1365 blank after a number has been found

3252 1706 blank after I has been found

? working space is full

at sign collector stack is full

~~~e !nformation on the As~embly Listing 

The assembly of the system was done on a slightly changed PAL. 
indication of an indirect bit was changed from I to Y and the Z 
page zero was removed (by a binary change in PAL, 2322/3100 and 
Furthermore, the following EXPUNGE tape was given: 

EXPUNGE 
FIXMRI 
E=OOOO E stands for latin ET 
FIXMRI 
A=lOOO A for Add 
FIXMRI 
X=2000 X for indeX 
FIXMRI 
B=3000 B for ~ring 
FIXMRI 
S=4000 S for Subroutine jump 
FIXMRI 
G=5000 G for Go to 
W=7000 W for no operation 
C=7200 C for Clear acc. May be used in group 1 and 2 
F=7l00 F for set link False 
1=7040 I for Invert acc 
U=7020 U for 'Changing the link bit 
R=70l0 R for ~ight shift 
L=7004 L for Left shift 
D=7002 D for Double shift 
Q=700l Q for Qount in acc 
M=7500 M for skip on ~inus 
Z=7440 Z for skip on Zero 
T=7420 T for skip on link bit True 
N=74l0 N for ~on or skip Next 
K=7404 K for ~eys 
H=7402 H for Halt 
FIXTAB 

- 14 -

The 
for 

2326/0) . 



This compressed code shortens the tape considerably and has the ad
vantage of being very easily memorized, e.g. N Z = skip on Non Zero, 
F D L = make link bit False and shift Double Left. A load-and-go 
assembler, one pass, has been constructed which can read this same code 
and in addition has some other features as an ALGOL-like block structure 
for local names, relocatable loading, general use of symbolic names 
over page bounds, etc. 

An annotated program write-up is given in Dutch. This reflects the 
use of this load-and-go assembler. For general use this code has been 
slightly modif.ied in the above-mentioned way to be usable on PAL as
semblers as well. 

- 15 -




	001
	002
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12
	13
	14
	15
	16

