
PROGRAM LIBRARY 

DECUS NO. 8-257 

TITLE UCONN-EAP, EDITOR-ASSEMBLER 

AUTHOR Gerald E. Zajac 
Submitted by Howard A. Sholl 

COMPANY University of Connecticut 
Digital Systems Laboratory 
Storrs, Connecticut 

DATE Submitted August 7, 1969 

SOURCE LANGUAGE MACRO-8 

ATTENTION 

This is a USER program. Other than requiring that it conform to submittal and review standards, 
no quality control has been imposed upon this program by DECUS. 

The DECUS Program Library is a clearing house only; it does not generate or test programs. No 
warranty, express or implied, is made by the contributor. Digital Equipment Computer Users 
Society or Digital Equipment Corporation as to the accuracy or functioning of the program or 
related material, and no responsibility is assumed by these parties in connection therewith. 





UCONN-EAP, EDITOR-ASSEMBLER 

DECUS Program Library Write-up DEC US No. 8-257 

GEZ 

Abstract 

UCONN-EAP is a combined symbolic editor and assembler written for a DEC 

PDP-5 or PDP-8 computer with a 4K memory. This program is compatible with the 

manufacturer supplied software in that it retains all the essential commands of 

the Symbloic Tape Editor and all the features of the PAL III assembler. In ad¬ 

dition the assembler will also handle literals. 

The symbolic program to be assembled must be stored in memory, and is thus 

limited to about 3070 characters which corresponds to an assembled program of 

one to two pages in length depending upon how heavily the symbolic program is 

commented. 

Since this program eliminates many steps involved in correcting assembly 

errors such as reloading separate editor and assembler programs, it should be 

extremely useful to someone learning to program a PDP-5 or PDP-8. 



TABLE OF CONTENTS 

PAGE 

Introduction - * 

Editor - 3 
Control Characters - 3 
Commands - 4 
Summary of Editor Commands - 8 

Assembler - 9 
Characters-- ~ ' 12 

Definition of Terms- 13 
Integers- 13 
Symbols- 13 
Symbol Definition - 13 
Expression- 14 
Current Address Indicator - 16 
Literals- 16 
Comments- 18 
Set Current Location Counter - 18 
Terminate Current Pass - 18 

Psuedo-Instructions - 19 
Error Messages - 21 
Operating Instructions - 22 

Switch Options - 22 
UCONN-EAP Symbol Table - 23 



-1- 

Introduction 

UCONN-EAP is a Symbol Editor-Assembler program that will edit and assemble 

a symbolic program without having to load a separate program to perform each 

function. It also eliminates the need for punching a new symbolic tape, in order 

to reassemble a program, everytime a change is made in the symbolic program. In 

addition, the assembled program may be loaded and run without disturbing UCONN-EAP, 

if it is restricted to a particular area in storage. Then if the programmer is 

not satisfied with his program he can return to the editor-assembler, make the 

appropriate symbolic changes, and reassemble his program; consequently, UCONN-EAP 

will save a programmer many steps and much time in obtaining a satisfactory pro¬ 

gram. However, to achieve the convenience and efficiency of UCONN-EAP, the 

symbolic program to be operated on must be stored in memory; consequently, it is 

limited to 3072 text characters. This corresponds to a program of approximately 

one to two pages in length. 

Although the length of the program to be operated on is limited, this editor 

assembler should nevertheless be extremely useful and efficient for novice pro¬ 

grammers who will usually be writing short programs and making frequent errors. 

Since the rules for using UCONN-EAP are very similar to those of the existing 

manufacturer-supplied software, a minimum of relearning is required to use MACRO-8 

or the Symbolic Tape Editor. 

All the essential commands of the Symbolic Tape Editor are retained in UCONN- 

EAP. The assembler contains all features of PAL III, and also includes one of the 

most useful MACRO-8 feature in that it will handle literals. By a switch option 

UCONN-EAP will either punch a binary tape with a check sum or produce an octal- 

symbol listing. 

Complete error checking is also provided during assembly. TJhen an error is 

detected, a message is printed which gives an error code and the decimal line 

number in the symbolic program where it occurred. After an error message is 



-2- 

printed, the command mode of the editor is reentered to permit the programmer to 

make any corrections. 

A switch option also permits testing a program for errors by suppressing 

punching of a binary tape. Thus a program can be tested for errors in a matter 

of a fev7 seconds. 



-3- 

The Editor 

The editor will perform all essential operations required for editing lines 

of text. The repertoire of commands permit listing, changing, deleting and in¬ 

serting lines of text. Data can be entered from either the Teletype keyboard or 

a paper tape reader. Output of text can either be done by listing the text buf¬ 

fer contents or punching an ASCII tape of the contents. A command Is also avail¬ 

able to punch leader-trailer code for ASCII tapes. 

The editor will store up to 3072 characters or 255 lines of text. If either 

of these values is exceeded, input stops, and an error message is printed. At 

this time the editor returns to the command mode. 

The editor operates in two nodes - command mode and text mode. TTien UC0NN- 

EAP is started, it is initially in the command mode; and as the name implies, 

commands are accepted from the Teletype keyboard under this mode. 

A command consists of a single alphabetic character representing an opera¬ 

tion or a single alphabetic character preceded by one or two decimal arguments 

specifying lines to be operated on. After typing a command, a carriage return 

will cause the editor to leave the command mode and enter the text mode to exe¬ 

cute the command. If a non-existant command code or an argument specifying a 

line, not in the buffer is given, the request will be echoed by a question mark, 

and the editor will wait for a new command. 

Under most commands, the editor will return automatically to the command 

mode when the operation is complete; however, under commands that require input 

of text, a form feed character is necessary to terminate the input. 

CONTROL CHARACTERS 

Carriage Return (4) 

The carriage return is used to terminate commands given by the operator and 

to terminate lines of text. When text is entered from the keyboard, it terminates 

the current line and advances the teleprinter one line. 



-4- 

Form Feed 

!#ien this character is detected while in the text mode, the bell will be 

rung; and the editor will return to the command mode. To enter this character 

the Control key must be held down while the Form key is pressed. 

TAB (-»!) 

This character is used for formatting. Tabs are set 8 characters apart; 

thus, whenever the Control and Tab key are pressed, spaces are stored in the buf¬ 

fer until the next tab position is reached. 

Although use of the tab in formatting produces a neat and easily read sym¬ 

bolic program listing, its use should be kept to a minimum on lengthy programs 

since the spaces inserted consume storage area. 

Back Arrow (•<-) 

The arrow causes the contents of the current line to be cancelled. The 

text following this character is then entered on the same line until a carriage 

return is given. This character is effective both when entering text from the 

keyboard and when reading tapes. 

COMMANDS , 

APPEND 

A* 

This command will cause new lines of text to be appended to the end of the 

text buffer from the Teletype keyboard until a form feed character causes a re¬ 

turn to command mode. No numerical arguments are permitted before the A. 

This command permits preparation of symbolic program tapes on line since 

it is the only command that will open an empty buffer for input of text from the 

keyboard. 

CHANGE 

nCii 

n,mCu 

This command must have one or two numerical arguments. nC will cause line 

n to be replaced by the lines entered from the keyboard, and n,mC replaces lines 



-5- 

n through m inclusively. Any number of lines may be inserted from the keyboard 

a form feed is given to return to the command mode. 

DELETE 

nD J 

nsmD } 

The delete command will delete the line specified by n or lines n through 

m inclusively. 

Since lines that are deleted or replaced are ignored rather than erased and 

used for storage of new text, it is possible to overflow the buffer if extensive 

changes are made. When this occurs the following error message is printed: 

BF LINE XXX 

BF is the error cede, and XXX is the number of lines in the buffer at the time 

of the overflow. 

FORM FEED 

F a 
Before executing this command, the program will halt to permit the Teletype 

punch to be turned on. Pressing the Continue switch will cause six leader 

characters (200) to be punched then a form feed character followed by about six 

inches of leader code. 

This command is useful for segmenting long tapes. That is, if this tape 

is read at a later time for editing or assembly, reading will stop whenever a 

form feed character is encountered; thus, the entire tape need not be entered in 

the text buffer. However, the form feed is not necessary at the end of a tape. 

INSERT 

nl 

Lines entered from the keyboard will be inserted before the line specified 

by the single argument n. If two numerical arguments are given, the second will 

be ignored. Any number of line.- can be inserted from the keyboard until a form 

feed character is given to terminate the entry. 



-6- 

KILL 

K it 

The entire contents of the buffer will be deleted. Ho numerical arguments 

are permitted. 

LIST 

U 
nL ) 

n ,mL J 

The lines specified will be printed on the teleprinter. If no arguments 

are given with the L, the entire buffer will be listed. nL causes line n to be 

printed; and n,mL causes lines n through m inclusively to be printed. The 

editor returns to the command mode after completing the listing. 

PUNCH 

Pi 

nP-i 

n ,mP 

Before executing this command, the program will halt to allot'? the Teletype 

punch to be turned on. Then pressing the Continue switch will cause the lines 

specified to be punched. No argument with the command causes the entire buffer 

to be punched. A single line will be punched if only one argument is given; if 

two arguments are given, lines n through m inclusively will be punched. 

BEAD 

Rl 

Paper tape will be read on the high speed paper tape reader until a form 

feed character is detected. This text will be appended onto the present contents 

of the buffer. Rubouts, line feeds, leader-trailer code (200), and blank tape 

is ignored. 

Although UCOKN-EAP was written to read paper tapes on a high speed reader, 

a low speed reader can be used by changing the contents of addresses 3152 and 

3154 to 6031 and 6036 respectively. 



TRAILER 

T i 

Before executing, the program will halt to permit the Teletype punch to be 

turned on. Pressing the Continue switch, will cause about six inches of leader- 

trailer to be punched. 

SYMBOL PRINT 

Si 

This command will punch about six inches of leader code, and then punch and 

list the user defined symbols that were entered in the assembler symbol table on 

the last assembly operation. The symbols are printed in the order that they were 

defined - the symbol is printed first followed by its octal value. After the 

symbols are listed, about six inches of trailer is punched. 

ASSEMBLE 

XI 

Control is transferred to the assembler and the symbolic program in the 

buffer is assembled. 



-8- 

Summary of Editor Commands 

Command Function 

Ad Append lines to end of buffer from the 
keyboard. 

nC'A Change line n. 

n,mC d Change lines n through m. 

nD J Delete line n. 

n,mD } Delete lines n through m. 

F'4 Punch form feed character and trailer 

code. 

nl 4 Insert lines before line n. 

Ki Kill the entire buffer contents. 

L J List entire buffer. 

nLii List line n. 

n,mL j List lines n through m. 

P I Punch entire buffer. 

nP ^ Punch line n. 

n,mP 1 Punch lines n through m. 

R i Read tape and append to end of buffer. 

S J List symbols from last assembly. 

T 1 Punch six inches of trailer code. 

xX Assemble the symbolic program contained 

in the text buffer. 



-9- 

ASSEHBLER 

This user's guide for the UCONN-EAP assembler assumes a knowledge of the 

basic rules for writing PDP-5/8 symbolic programs; however, if it is desired to 

learn or review this material, it is recommended that Sections 1 through 4 of 

MACRO-8 Programming Manual (Dec-08-CMAA-D) be read before reading this guide. 

This material will explain some of the terms used in this manual and also gives 

the instruction set of the PDP-8 which is the same as that of the PDP-5. 

This assembler duplicates the PAL III assembler completely; and in addi¬ 

tion it will also handle literals - a useful feature of MACRO-8; however, this 

is the only MACRO-8 feature contained in this assembler. 

The floating point instructions are contained in the symbol table of this 

assembler and to use these the user is referred to the PDP-8 Floating-Point 

System Programming Manual (8-5-S). 

When UCONN-EAP is started, it is in the command mode of the editor; thus 

to assemble a program, an X followed by a carriage return must be typed on the 

teletype keyboard. After assembly is complete, UCONN-EAP returns to the command 

mode. However, before the command to assemble is given, the switch register 

must be set for the desired output from the assembler. Depending upon the switch 

settings, the assembler will produce a binary object program tape, an octal- 

symbolic program listing, or all output except error messages can be suppressed. 

The final option saves much time in testing a program for assembly errors, and 

whenever an error is detected, UCONN-EAP returns to the command mode of the 

editor to allow corrections to be made. These options are discussed in detail 

under the section on Operating Instructions. 

After assembly is completed a list of the user defined symbols and their 

respective octal values can be obtained by typing an S and a carriage return. 

If the teletype punch is turned on at this time, about six inches of leader code 

will be punched, then an ASCII listing of the symbols followed by another six 

inches of leader-trailer code. The symbols are listed in the order that they 



-10- 

were defined. This listing which gives the location of the symbols is useful for 

debugging a program if the programmer does not wish to take the time to make an 

octal symbolic listing of his program; moreover, a tape containing the symbols and 

their values is essential if the DEC Dynamic Debugging Technique (DDT) is to be 

used for debugging a program. 

An additional feature of this editor-assembler program is that an area is 

reserved for loading a programmer's object program. Page 1 (200-377), which is 

used as a scratch pad and temporary storage area when the assembler is operating 

and locations 1 through 60 on page 0 with the exception of location 10, are avail- £ 

able for loading of an object program when UC0NN-EAP is not running. The memory 

map in Figure 1 indicates which locations are available. Once the object program 

is loaded, it can be run to test its operation. Then if the programmer is not 

satisfied, he can restart UCONN-EAP, correct the symbolic program, and reassemble 

the program providing that his program did not alter any locations in UC01IN-EAP. 

The programmer may also load his object program in any unused portion of 

the text buffer which uses locations 4600 through 7600. The last used address 

of the text buffer can be determined by examining the pointer in location 10. 



-11- 

0000 
0001 

0007 
0010 
0011 

0060 
0061 

0177 
0200 

0377 
0400 

'U 'V. 
'V. <\j 

4577 
4600 

7577 
7600 

7777 

PDP-5 Program counter (not available for any program) 

Not used by UCONN-EAP 
Available for user programs 

UCONN-EAP pointer, not available for user programs 

Temporary storage for UCONN-EAP 
Available for user programs when UCONN-EAP is not running 

UCONN-EAP 
Not available for user programs 

Scratch pad area for UCONN-EAP 
Available for user programs when UCONN-EAP is not running 

UCONN-EAP 
Not available for user programs 

Text buffer of UCONN-EAP 
Location 0010 will give last used location, and programs 
may be loaded above the last used location without 
destroying contents of buffer 

Binary Loader program 
Not available for user programs 

iigure #1 



-12- 

CHARACTERS 

In writing symbolic programs the ASCII characters permitted are: 

Letters: 

ABCD.XYZ 

Digits: 

1234567890 

Non-printing Punctuation Characters: 

Space 

Carriage return 

Although tabs are used for formatting, the assembler never sees them be¬ 

cause the editor inserts the appropriate number of spaces when the symbolic pro- 

gram is stored in the text buffer. 

The following characters are used to specify operations to be performed 

upon symbols or numbers. 

Character 

Space 

+ plus 

- minus 

) carriage return 

, comma 

= equal 

* asterisk 

. period 

; semicolon 

$ dollar sign 

/ slash 

() parentheses 

Use 

Combine symbols or numbers 

Combine symbols or numbers (addition) 

Combine symbols or numbers (subtraction) 

Terminate line 

Assign symbolic address to preceding symbol 

Define parameter 

Set current location counter 

Has value of current program counter 

Terminate coding line 

End of symbol program 

Indicates start of comment 

Define literal on current page 



All characters that are ignored by PAL III or MACRO-8 are ignored by the 

EAP editor when the symbolic program is entered into the buffer from paper tape. 

These characters are: 

Form-feed 

Blank Tape 

Rubouts 

Code 200 

Line Feed 

DEFINITION OF TERMS 

INTEGERS 

This assembler will accept only octal integers. The digits 8 or 9 appearing 

in any number will give an illegal character error. The integers may be composed 

of one to four octal digits. If more than four digits occur, the fifth will be 

interpreted as an illegal character. 

SYMBOLS 

A symbol is a string of alphameric characters obeying the following rules: 

1. The first character must be alphabetic. 

2. The remaining characters are either alphabetic (A-Z) or numeric (0-9). 

3. Only the first six characters are meaningful. Any additional charac¬ 

ters are ignored. 

4. A symbol is terminated by any non-alphanumeric character. 

SYMBOL DEFINITION 

There are two methods of assigning a value to a symbol. 

Parameter assignment: 

A symbol is assigned the value of an algebraic expression by means 

of an equal sign. For example 

B=CAT+D0G 

B will be assigned the value of CAT + DOG; however, the value of CAT 

and DOG must have been previously defined. Also no space is allowed 



-34- 

between B and the equal sign. The program counter is not incremented 

when a symbol is defined with an equal sign. 

TAG: 

If a symbol is the first on the line and it is followed by a comma, 

it will be assigned the value of the current location counter. For 

example: 

*200 

CLA 

RAT,TADX 

RAT will be assigned a value of 201. 

If at any time an attempt is made to redefine a previously defined 

symbol with either the comma or the equal sign, an illegal redefini¬ 

tion error will occur and assembly will be terminated. Controj. then 

returns to the editor 

EXPRESSION 

Symbols and numbers can be combined by the following operators: 

+ plus 2’s complement addition 

- minus 2's complement subtraction 

space the space may signify an inclusive OR or it may act 

as a delimiter. 

If the operation is to be addition or subtraction, no spaces are allowed 

between the operator and either the preceding or following symbol or number; 

and if the OR operation is to be performed, the space must be the only operator 

between the symbols or numbers. The operations are performed as they are en¬ 

countered in moving fron left to right across the expression. 

For example: 

A=D+E F-G 

First the 2’s complement addition of D and E is performed. Next this sum 



-15- 

is OR'ed with F, and then G is subtracted from the result. 

However, the space acts as an address delimiter if it immediately 

follows the mnemonic of a memory reference instruction when this mnemonic 

if the first symbol. 

For example: 

*3725 

A, 0 

• • • 

TAD A 

A is a user defined symbol with a value of 3725, and the expression TAD A 

is evaluated as follows: 

The 5 high order bits of A are taken as shown: 

A 011 11 1 010 101 

011 11 

These five bits are tested for all zeros, for a page 0 reference, 

and if they are not, they are then compared against the page bits of the 

current location counter to see if it is a current page reference. If it 

is a current page address, the current page bit (bit 5) is set. 

TAD 001 010 000 000 

Next the seven low order bits of A are OR'ed with the operation code to 

obtain: 

TAD A 001 011 010 101 

or more concisely as an octal number: 

1325 

If it had happened that A was not on the zero page or on the current 

page where TAD A occured, an illegal reference error message would have 

been given. 

If the instruction had been: 

TAD I A 



-16- 

the "I" would mean that A is to be used as an indirect address. Thus, the 

indirect address bit (bit 3) would also have been set to give: 

TAD I A 001 111 010 101 

or more concisely: 1725 

The address field of a memory reference instruction may also be any 

valid expression. For example: 

TAD A+30 

CURRENT ADDRESS INDICATOR 

The period (.) has a value equal to the current location counter, and may ^ 

be used in any expression. For example: 

*300 

TSF 

JMP .-1 

JMP .-1 is equivalent to JMP 300 and will cause a jump back to the TSF instruction. 

Or: 

*300 

.+20 

would produce in location 300, the number 320. 

LITERALS 

The use of the literal provides a means of using a constant without tne pro¬ 

grammer explicitly reserving a location for the constant. For example, adding 

five to the accumulator could be coded as: 

TAD B 

TAD BDX 

• • • 

BDX, 5 



-17- 

But by using a literal, it would be coded as: 

TAD B 

TAD (5) 

• • • 

The left parenthesis tells the assembler that 5 is to be stored in the con¬ 

stants table at the end of the current page. The instruction in which the literal 

appears is then encoded with an address referring to the location where the con¬ 

stant is stored. The first literal encountered after the program counter is set, 

is assigned to the last location on the current page (page address 177). The next 

literal, if it is not equal to the first, is stored at page address 176, and so 

on. A literal is stored only when first encountered; any subsequent references 

are to this location. 

Any valid expression may be enclosed within the parenthesis, and the right 

parenthesis may be omitted. The following examples are acceptable: 

AND (177 

TAD (CLA+100 

The last example, CLA is a permanent symbol with a value of 7200; thus, the last 

example is equivalent tc: 

TAD (7300 

The following example is illegal: 

TAD (5)+(7) 

Literals may not be nested. If a binary tape is being punched, the literals are 

punched at the end of every page in which they are used. If the program counter 

is reset to a previously used page, the assembler has no way of knowing this; thus, 

any literals generated this time will be stored over those previously generated 

when the object program is loaded into memory. 



-18- 

COMMENTS 

Comments may be placed at any point in a program. They must start with a 

slash and end with a semicolon or carriage return. If a semicolon occurs within 

a comment, the characters following the semicolon will be interpreted as the start 

of another instruction on a new line; thus, any printing characters except the 

semicolon may appear within a comment. 

SET CURRENT LOCATION COUNTER 

The current location counter is reset whenever an asterisk (*) is encountered 

as the first non-space character on a line. The current location counter is set 

to the value of the expression following the asterisk. 

For example: 

*370 

*D+20 

are acceptable, however, D must have been previously defined. 

The starting address of a program is initially set to 200 by the assembler; 

thus, 200 will be the origin if none is specified by the programmer. 

TERMINATE CURRENT PASS 

The dollar sign $ encountered as the first non-space character cf a line sig¬ 

nals the assembler to terminate the current assembly pass. If no $ is placed at 

the end of a program, the assembler will attempt to assemble until the last line of 

the text buffer is encountered, and if it does reach the end of the buffer, it will 

print an error message consisting of: 

$? LINE XXX 

XXX is the last line of the buffer plus one. 



-19- 

PSUEDO-INSTRUCTIONS 

The psuedo instructions are directions to the assembler to perform specified 

tasks. In UCONN-EAP, there are only two psuedo-instructions, EXPUNGE and FIXTAB. 

These are used for altering the permanent symbol table. 

EXPUNGE will expunge the entire symbol table except for the psuedo-instructions. 

FIXTAB fixes all the symbols that are currently in the symbol table. 

For example: 

*200 

SMSF=6101 

BEGIN, CLA 

TAD A 

JMP X 

A, 0240 

FIXTAB 

X, DCA B 

• • • 

In the above example, all the symbols defined before the FIXTAB will become 

part of the permanent symbol table. That is, SHSF, BEGIN, and A will be added to 

the permanent symbol table and will have the values 6101, 0200, and 0203 respec¬ 

tively. 

EXPUNGE 

TAD=1000 

JMP=5000 

CAT=6010 

FIXTAB 

$ 

In this example the EXPUNGE psuedo-instruction tells the assembler to delete 

the entire symbol table. Following this, the symbols TAD, J11P, and CAT are entered 



-20- 

in the user symbol table, but upon encountering the FIXTAB these three symbols are 

placed in the permanent symbol table; consequently, only these three symbols are 

now in the permanent symbol table. 

Once these psuedo instructions are used to alter the symbol table, the pro¬ 

gram will have to be reloaded to restore the original symbol table. 

To obtain a new program tape after the symbol table is altered, the text 

buffer should be killed (see kill command under Editor) to reset the pointers. 

A binary punch routine can then be used to punch a new binary tape of the program 

by punching all locations between 10g and the last location occupied by the new £ 

symbol table. This last address can easily be determined by examining the pointer 

in location 0140* 



-21- 

ERROR MESSAGES 

The general form of the error message is: 

CC XXXXXX LINE YYY 

CC is a two character code specifying the type of error. If XXXXXX is printed, it 

is the character or symbol in question, and YYY is the decimal number of the line 

in the symbolic program where the error occurred. 

Whenever an error occurs UCONN-EAP returns to the command mode of the editor 

so that corrections can be made. 

ERROR CODES 

BF Either the text buffer or the line location table is full; that is, 

an attempt was made to store more than 3072 characters or more than 255 

lines. The line number given is the last line stored. This is the only 

non-assembly error. 

IC Illegal Character. A non-alphameric character appeared in a symbol, 

some character other than an octal digit occurred in an octal number, 

or more than 4 digits appeared in an octal number. 

IR Illegal Reference. An off-page reference was made to some page other 

than page 0. 

PE Page Exceeded. The number of locations used on a page exceeded those 

available. 

RD Illegal Redefinition. An attempt was made to redefine a symbol by use 

of a comma or an equal sign. 

ST Symbol Table-Full. 124.^ permanent and user-defined symbols can be 

stored. 

US Undefined Symbol. A symbol was used that had not been previously defined. 

$? No dollar sign occurred before the end of the text buffer was reached. 



-22- 

OPERATING INSTRUCTIONS 

To assemble a program with UCONN-EAP: 

1. Load UCONN-EAP with the Binary Loader. 

2. Set the Switch Register to 0400. 

3. Depress Load Address. 

4. Depress Start. 

Now that UCONN-EAP is running the symbolic program can be typed in from the 

33-ASR keyboard or read in from paper tape. (See section on the Editor for the 

appropriate commands.) 

When the symbolic program is stored in the text buffer, the switch register 

can be set as explained below to obtain a binary object program tape, an octal- 

symbolic listing, or all output except error messages will be suppressed during 

assembly. All output is on the 33-ASR Printer/Punch. Once the switch register 

is set for the desired option, UCONN-EAP can be told to assemble the symbolic 

program stored in the text buffer by typing an "X" and a carriage return. 

After assembly is completed and UCONN-EAP has returned to the command mode, 

the user defined symbols can be listed by typing an S and a carriage return. 

SWITCH OPTIONS 

Switch Up 

None 

0 

1 

0 and 1 

Punch a binary object tape 

Print an octal symbolic listing 

Suppress punching binary object tape 

Octal symbolic listing will be printed but leader and 

trailer will be suppressed 

10 P.etain user symbols from last assembly operation 

If switch 10 is down (off) user symbols are cleared from the symbol table 

each time assembly mode is entered. 



-23- 

UCONN-EAP SYMBOL TABLE 

Pseudo Instructions 

EXPUNGE 

FIXTAB 

I 

Z 

Memory Reference Instructions 

AND 0000 

TAD 1000 

ISZ 2000 

DCA 3000 

JMS 4000 

JMP 5000 

Microinstructions 

NOP 7000 

CLA 7200 

CLL 7100 

CMA 7040 

CML 7020 

RAR 7010 

RTR 7012 

RAL 7004 

RTL 7006 

IAC 7001 

SMA 7500 

SZA 7440 

SPA 7510 

SNA 7450 



-24- 

SNL 7420 

SZL 7430 

SKP 7410 

OSR 7404 

HLT 7402 

Combined Microinstruction 

CIA 7041 

LAS 7604 

STA 7240 

STL 7120 

GLK 7204 

Program Interrupt 

ION 6001 

IOF 6002 

Analog to Digital Converter 

ADC 6004 

High Speed Perforated Tape Reader 

RSF 6011 

RR3 6012 

RFC 6014 

Teletype Keyboard Reader 

KSF 6031 

KCC 6032 

KRS 6034 

KRB 6036 



Teletype Teleprinter/Punch 

TSF 6041 

TCF 6042 

TPC 6044 

TLS 6046 

Floating Point Interpretive Commands 

FEXT 0000 

FADD 1000 

FSUB 2000 

FMPY 3000 

FDIV 4000 

FGET 5000 

FPUT 6000 

FNOR 7000 

Oscilloscope Display, Type 34B 



* t 


