

DECUS NO.	8-324
TITLE	TSP - TREND SURFACE PLOTTING
AUTHOR	J. N. R. Jeffers
COMPANY	Submitted by: A. J. P. Gore The Nature Conservancy Lancashire, England
DATE	January 29, 1970
SOURCELANGUAGE	FORTRAN D

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor, Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the program or related program material, and no responsibility is assumed by these parties in connection therewith.

TSP - TREND SURFACE PLOTTING

DECUS Program Library Write-up

DECUS No. 8-324

ABSTRACT

This program consists of a group of segments for which the output of one segment is the input of the next. It enables the significance of linear, quadratic, and cubic trend surfaces to be determined for each of a number of variables on the co-ordinates of their distribution in two-dimensional space. The significance of the various surfaces having been determined, the fitted surface can be plotted by means of a contour map on the teletype.

TAPES REQUIRED

1. Form of program tapes - All program tapes are written in the PDP-8 FORTRAN-D language and are in the source language for ease of modification. There are seven segments in the complete trend surface plotting program, as follows:

(a) TSP2 - program to compute the regressor matrices from the original data tape of the grid co-ordinates;

(b) TSP3 - program to invert the regressor matrices computed by TSP2;

(c) TSP4 - program to compute sums of squares and products vectors for dependent variables;

(d) TSP5 - program to compute regressions of dependent variables on the linear, quadratic, and cubic expressions of the grid co-ordinates;

(e) TSP6 - program to compute the significance of the computed regressions;

(f) TSP7 - program to compute trend surface parameters. (N.B. this program will usually require to be modified to suit individual applications. For advice on how these modifications should be made, consult the author.)

(g) TSP8 - program to plot trend surfaces.

2. Form of data tapes - Three data tapes are required for this program:

(a) Data tape for TSP2 - This tape should consist of the number of sample points, followed by the grid co-ordinates for each point, e.g.

41		
3.44	7.29	
3.30	7.50	
3.15	7.70	
3.30	7.70	etc.

(b) Data tape for TSP4 - This tape should consist of the successive values of the dependent variable, with the sampling points in the same order as the data tape for TSP2. As many dependent variables as are required can be included on this data tape, eash as a single column vector.

(c) Data tape for TSP5 - A short data tape containing the means of the linear, quadratic, and cubic terms of the grid co-ordinates is required, and can be derived from the printed results of TSP2.

OPERATING INSTRUCTIONS

All of the program segments follow the usual operating procedures for the PDP-8 disk operating system. The sequence of the various calculations is given in Figure 1. Detailed instructions for the individual segments are as follows:

(a) TSP2 - The data tape for this segment is placed in the high-speed tape reader before continuing after the teletype has printed "READY." The high-speed punch should be switched on while a summary of the data is being typed. The output from this segment should be saved, and used as the input to TSP3.

(b) TSP3 - The output from TSP2 should be placed in the high-speed reader, and the high-speed punch switched on before continuing after "READY." The output from this segment should be saved and used as an input for TSP5.

(c) TSP4 - The data tape for TSP4 (see 2 (b) above) should be placed in the low-speed tape reader, and the data tape for TSP2 in the high-speed reader, and the high-speed punch switched on before continuing after "READY." The output from this segment should be saved and used as an input to TSP5.

(d) TSP5 - The data tape containing the means of the linear, quadratic, and cubic terms of the grid co-ordinates (see 2 (c) above) should be placed in the high-speed reader before continuing after "READY." The program will then pause for the insertion of the output from TSP4 in the slow-speed reader and the output from TSP3 in the high-speed reader, before continuing. After computing the regressions for the first dependent variable, the program will pause for the output from TSP3 to be replaced in the high-speed reader before continuing to read the next dependent variable.

(e) TSP6 - Before running the TSP6 segment, it is necessary to create a data tape from the printed results of TSP5. This is done by punching the number of sample points, followed by the total sum of squares, sum of squares due to regression, and coefficient of determination for the linear, quadratic and cubic regressions. This data tape should be placed in the high-speed reader before continuing after "READY."

(f) TSP7 - On continuing after "READY," the program will pause for the entry of the regression coefficients of the significant trend surface. Note that the values for all nine coefficients must be entered even if they are zero. The coefficients must then be followed by the appropriate constant term, and by the starting value for the contours to be drawn and the contour interval. As a rough guide, the starting value should be a little below the minimum value recorded in the dependent variable and the contour interval about one third of the standard deviation of the dependent variable. The output from TSP7 is stored directly on the disk, in preparation for the use of TSP8.

2

(g) TSP8 - Before continuing after "READY," it is advisable to title the trend surface plot with the teletype switched to "local," followed by five or six line feeds. If an output tape is required, switch on the low-speed printer before continuing.

OUTPUT

The output from the various program segments is as follows:

(a) TSP2 - The means and standard deviations of the linear, quadratic, and cubic terms are typed, and the corrected sums of squares and products for the linear, quadratic, and cubic regressions are output on the high-speed punch in a form suitable for direct re-input to TSP3.

(b) TSP3 - The inverse regressor matrices are output on the high-speed punch in a form suitable for direct re-input to TSP5.

(c) TSP4 - This program outputs a vector of sums of squares and products for each dependent variable, in a form suitable for direct input to TSP5.

(d) TSP5 - This program prints the number of sampling points, the partial regression coefficients and constant, the total sum of squares and the sum of squares due to regression and the proportion of the total variability accounted for by the regression for the linear, quadratic, and cubic trend surfaces.

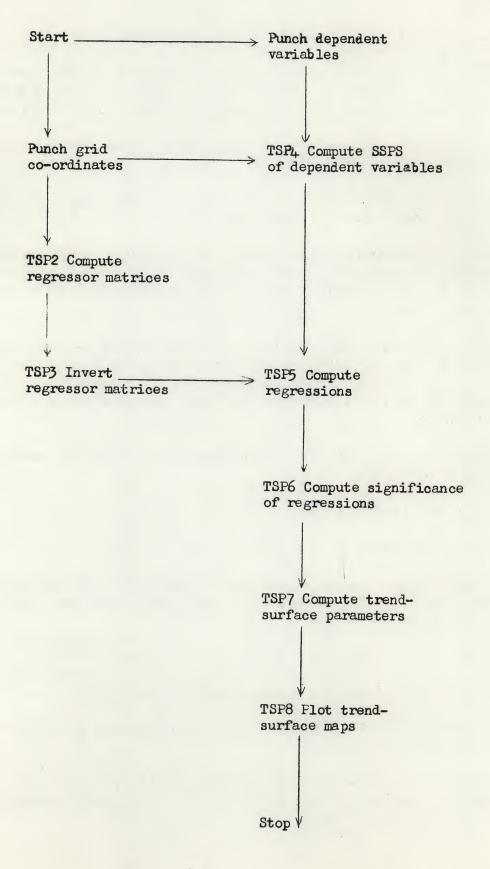
(e) TSP6 - The program prints the degrees of freedom and variance ratio testing the significance of the linear, quadratic, and cubic components of the trend surface.

(f) TSP7 - The parameters for the printing of a contour map of the trend surface are stored directly on the disk.

(g) TSP8 - The contour map of the fitted trend surface is typed. An example of a typical map is given in Figure 2.

STORAGE AND LIMITATIONS

Normal for FORTRAN-D


There are no limits on the number of points that can be used in the computation of the trend surfaces. The scale of the map that can be printed will usually be limited by the width of the printed line on the teletype.

METHOD

The method follows closely that described by the following papers:

J. W. Harbaugh, BALGOL program for trend-surface mapping, Special Distribution Publication, University of Kansas, 1963.

M. O'Leary, R. H. Lippert, and O. T. Spitz, FORTRAN IV and map program for computation and plotting of trend surfaces for degrees 1 through 6, Computer Contribution 3, State Geological Survey, University of Kansas, 1966.


```
Figure 2.
```

```
.FOSL
*IN-S:TSP7
*
*OPT-S
*OUT-S:DATA
*
*IN-
*
*READY
1
16.3551 12.4362 1.44363
0.205818 -3.70581 0
0 0 0
-60.3213
18.0 1.0
1
.FOSL
*IN-S:TSP8
*
*OPT-S
*OUT-
*
*IN-S:DATA
*
*READY
1
....
• •
• •
• •
• •
• •
••
```

••••••			
			2
			2
• • • • • • • • • • • • • • • • • • • •		2222222	2
	1	2222222	
	1111	222222	
	111111	222222	
.11111 1111	111111	22222	3
	1111111	2222	
0000000000		2222	
000000000000000000000000000000000000000	111111	222	
000000000000000000000000000000000000000	11111	2	
000000000000000000000000000000000000000	1111		
000000000000000000000000000000000000000	1111		

1	
C	PROGRAM TO COMPUTE REGRESSOR MATRICES TSP2
C	DIMENSION SX(9), SS(81), X(9)
	READ 2, 101, N
1ø1	FORMAT (I)
1,01	DO 10 I=1,9
	$S \times (1) = \emptyset . \emptyset$
1ø	CONTINUE
	DO 7Ø J=1,81
	SS(J)=Ø.Ø
7Ø	CONTINUE
	DO 16 I=1, N
	READ 2, 105, X(1), X(2)
1Ø5	FORMAT (E, E)
.,	X(3)=X(1)*X(1)
	X(4) = X(2) * X(2)
	X(5)=X(1)*X(2)
	X(6) = X(3) * X(1)
	X(7) = X(4) * X(2)
	X(8) = X(3) * X(2)
	X(9)=X(4)*X(1)
	EI=I
	DO 20 J=1,9
	DO 20 K=1,9
	KK=J+9*(K-1)
	SS(KK)=SS(KK)+(X(J)-SX(J))*(X(K)-SX(K))*(1.Ø-1.Ø/EI)
2ø	CONTINUE
	DO 16 J=1,9
	SX(J)=SX(J)+(X(J)-SX(J))/EI
61	CONTINUE
•••	EN=N
	DO 35 I=1,9
	K=I+9*(I-1)
	$X(I)=SQTF(SS(K)/(EN-1.\emptyset))$
25	
35	CONTINUE
	TYPE 101, N
	DO 1Ø3 I=1,9
	TYPE 1Ø4, SX(I), X(I)
1,ø3	CONTINUE
1ø4	FORMAT (/, E, E)
	M=2
	WRITE 2, 1Ø1, M
	WRITE 2, 1Ø5, SS(1), SS(2), SS(1Ø), SS(11)
	M=5
	WRITE 2, 101, M
	DO 40 I=1,37,9
	DO 40 J=1,5
	K=HJ-1
	WRITE 2, 1Ø5, SS(K)

4ø

6Ø

*

CONTINUE
M=9
WRITE 2, 1Ø1, M
DO 6Ø I=1,81
WRITE 2, 1, 05, SS(I)
CONTINUE
STOP
END

7

L		
	INVERT MATRICES TSP3	
AMIO	DIMENSION A(156)	
23Ø	READ 2, 3, N	
3	FORMAT(I)	
5	LAST =N*N	
	11=1	
	12=LAST-N+1	
	DO 100 J=1, N	
	DO 1Ø1 I=11,12, N	
	READ 2,5, A(I)	
5	FORMAT (E)	
1ø1	CONTINUE	
1,01]=]+]	
	12=12+1	
1,ØØ	CONTINUE	
	WRITE 2,6, N	
6	FORMAT (/, I)	
149	DO 150 J=1, N	
	DO 105 I=1, N	
	A (LAST+I)= \emptyset . \emptyset	
1ø5	CONTINUE	
1,00	A(LAST+J)=1.0	
	PVT=A(J)	
	J3=LAST+J	
	DO 106 KP=J, J3, N	
	A(KP)=A(KP)/PVT	
1,06	CONTINUE	
.,	DO 11Ø KRT=1, N	
	IF (KRT-J) 1Ø7,11Ø,1Ø7	
1ø7	KRI=KRT	
.,	KR2=KR1+LAST	
	KPR=J	
	RWC=A(KR1)	
	DO 109 KR=KR1, KR2, N	
	A(KR)=A(KR)-RWC*A(KPR)	
	KPR=KPR+N	
1,09	CONTINUE	
11ø	CONTINUE	
	DO 111 I=1, LAST	
	A(I)=A(I+N)	
111	CONTINUE	
15Ø	CONTINUE	
2,0,0	ILNE=4	
	NR=NRC=1	
]=]	
	12=LAST-N+1	
	KONT =1	
	DO 210 JP=1, N	

	DO 213 I=11, 12, N
	WRITE 2, 212, A(I)
212	FORMAT(E)
	IF(N-NRC)216,216,215
216	IF(N-NR)213,213,217
217	NR=NR+1
	NRC=KONT=1
	ILNE=4
	GO TO 213
215	IF(KONT-ILNE)214, 220, 214
220	ILNE=ILNE+4
	WRITE 2, 221
221	FORMAT (/,/)
214	KONT=KONT+1
	NRC=NRC+1
213	CONTINUE
	11=11+1
	12=12+1
21Ø	CONTINUE
	GO TO 23Ø
END	

L	
С	PROGRAM TO COMPUTE DEPENDENT VECTOR TSP 4
	DIMENSION X(1Ø), SS(1Ø), SX(1Ø)
1	READ 2,101, N
1Ø1	FORMAT (/, I)
	WRITE 2, 101, N
	DO 10 I=1, 10
	$\times(I) = \emptyset.\emptyset$
	$SS(I) = \emptyset.\emptyset$
	$SX(I) = \emptyset.\emptyset$
1Ø	CONTINUE
	DO 20 1=1, N
	READ 2, 10^{2} , $X(1)$, $X(2)$
1.02	FORMAT (E, E)
	X(3)=X(1)*X(1)
	X(4) = X(2) * X(2)
	X(5) = X(1) * X(2)
	X(6) = X(3) * X(1)
	X(7) = X(4) * X(2)
	X(8) = X(3) * X(2)
	X(9) = X(4) * X(1)
	EI=I
	READ 1, 102, X(10)
	DO 4Ø J=1,1Ø
	SS(J)=SS(J)+(X(J)-SX(J))*(X(1Ø)-SX(1Ø))*(1.Ø-1.Ø/EI)
	SX(J)=SX(J)+(X(J)-SX(J))/EI
4ø	CONTINUE
2ø	CONTINUE
	EN=N
	DO 5Ø I=1,1Ø
	WRITE 2, 1Ø2, SS(I)
5Ø	CONTINUE
	WRITE 2, 1Ø2,SX(1Ø)
	PAUSE
	GO TO 1
	END

	PROGRAM TO COMPUTE REGRESSION ST, DIMENSION SXY(11), SX(81), B(1Ø), X(1Ø)	ATISTICS TSP 5
	DIMENSION SYV(11) SY(81) $B(10)$ $Y(10)$	
	DO 60 I=1,9	
	READ 2, 1Ø2, X(I)	
	TYPE 101, N	
	FORMAT (/,/,I)	
	RSS=Ø.Ø	
	K=1	
	DO 4Ø J=1, M	
	B(I)=B(I)+SX(K)*SXY(J)	
	K=K+1	
	CONTINUE	
	CONTINUE	
	$B(1\emptyset) = SXY(11)$	
	$B(1\emptyset)=B(1\emptyset)-B(1)*\times(1)$	
	TYPE 1Ø2, B(I)	
	RSS=RSS+B(I)*SXY(I)	
	CONTINUE	
	TYPE 1Ø2, B(1Ø)	
	RR=RSS/SXY(1Ø)	
	TYPE $1\emptyset3$, $SXY(1\emptyset)$, RSS, RR	
	FORMAT (/, E, E, E)	
1	IF (M-9) 5,6,5	
	GO TO 3	
	PAUSE	
	GO TO 4	
	END	
		CONTINUE PAUSE READ 1, 101 , N TYPE 101 , N FORMAT $(/, /, 1)$ DO $101 = 1, 11$ READ 1, 102 , $5XY(1)$ FORMAT $(/, E)$ CONTINUE READ 2, 101 , M MM=M*M DO $201 = 1$, MM READ 2, 102 , $5X(1)$ CONTINUE RSS= 0.0 K=1 DO $301 = 1$, M B $(1)=0.0$ DO 40 J=1, M B $(1)=0.0$ DO 40 J=1, M B $(1)=0.0$ CONTINUE CONTINUE CONTINUE B $(10)=5XY(11)$ DO $501 = 1$, M B $(10)=B(10)-B(1)*X(1)$ TYPE 102 , B (10) RSS=RSS+B (10) RSS=RSS+B (10) RR=RSS/ $5XY(10)$ TYPE 102 , B (10) RR=RSS/ $5XY(10)$ TYPE 103 , $5XY(10)$, RSS, RR FORMAT $(/, E, E, E)$ IF $(M-9)$ 5, 6, 5 GO TO 3 PAUSE GO TO 4

L	
С	PROGRAM TO COMPUTE SIGNIFICANCE OF REGRESSIONS TSP 6
	DIMENSION SS(9)
	READ 2, 101, N
1ø1	FORMAT (I)
1	DO 10 I=1,9
	READ 2, 102, SS(I)
1ø2	FORMAT (E)
1ø	CONTINUE
	NR=2
	NDF=N-3
	EN=NDF
	RSD=(SS(1)-SS(2))/EN
	$FR=(SS(2)/2.\emptyset)/RSD$
	TYPE 103, NR, NDF, FR
1ø3	FORMAT (/,/,/,/,I,I,E)
	NR=3
	NDF=N-6
	EN=NDF
	RSD=(SS(4)-SS(5))/EN
	$FR=((SS(5)-SS(2))/3.\emptyset)/RSD$
7.44	TYPE 104, NR, NDF, FR
1,04	FORMAT (/, I, I, E)
	NR=4
	NDF=N-1Ø EN=NDF
	RSD=(SS(7)-SS(8))/EN
	FR=((SS(8)-SS(5))/4.0)/RSD
	TYPE 104, NR, NDF, FR
	GO TO 1
	END
	LINU

C	PROGRAM TO COMPUTE TREND SURFA	CE DADAMETERS TOPT
C	DEFINE DISK	ACE PARAMETERS ISP/
	DIMENSION K(74), B(10), V(9)	
	DO 1Ø I=1,74	
	READ 2, 1Ø1, K(I)	
1Ø	CONTINUE	
1Ø1	FORMAT (I)	
1ø2	FORMAT (E)	
5	N5=1	
	N1=Ø	
	V24=8.Ø	
	DO 20 1=1,9	
	ACCEPT 102, B(1)	
2ø	CONTINUE	
	ACCEPT 1Ø2, B(1Ø)	
	ACCEPT 1Ø3, V21, V22	
1Ø3	FORMAT (E, E)	
4	V23=2.Ø5	
3	IF (K(N5)) 31,1,1	
31	NØ=-K(N5)	
51	DO 30 I=1, NØ	
	V23=V23+Ø.Ø5	
	WRITE 3, 101, K(N5)	
3ø	CONTINUE	
11	N5=N5+1	
	IF (N1-6Ø) 3,32,3	
32	V24=V24-Ø.1	
	N1=Ø	
	IF (N5-74) 4,4,33	
33	STOP	
33		
	GO TO 5	
1	N3=K(N5)	
	N4=Ø	
9	V(1)=V23	
	V(2)=V24	
	V(3)=V(1)*V(1)	
- Au	V(4) = V(2) * V(2)	
	V(5)=V(1)*V(2)	
	V(6) = V(3) * V(1)	
	$\vee(3) = \vee(3) = \vee(1)$ $\vee(7) = \vee(4) * \vee(2)$	
	V(8)=V(3)*V(2)	
	$\vee(9) = \vee(4) * \vee(1)$	
	VØ=Ø.Ø	
	DO 4Ø I=1,9	
	$\bigvee \emptyset = \bigvee (I) * B(I) + \bigvee \emptyset$	

4ø	CONTINUE
	∨Ø=∀Ø+B(1Ø)
	N2=Ø
	V25=V21
7	V25=V25+V22
	N2=N2+1
	IF (V25-VØ) 34, 34, 35
34	IF (N2-19) 7, 35, 35
35	WRITE 3, 101, N2
	N4=N4+1
	N1=N1+1
	V23=V23+Ø.Ø5
	IF (N4-N3) 9,11,9
	END

L		
L C	TREND SURFACE PLOTTING PROGRAM TSP 8	
	DEFINE DISK	
	DIMENSION K(6Ø)	
32	$DO 4\emptyset = 1,2\emptyset$	
02	DO 20 J=1,60	
	READ 3,99, K(J)	
20		
20	CONTINUE	
99	FORMAT(I)	
	DO 30 J=1,60	
	IF(K(J)) 21, 22, 22	
12	TYPE 100	
ØØI	FORMAT (".")	
	GOTO 3Ø	
1	TYPE IØI	
1Ø1	FORMAT ("Ø")	
	GOTO 3Ø	
2	TYPE 102	
1ø2	FORMAT (" ")	1 (F) (F)
- /	GO TO 3Ø	
3	TYPE 1Ø3	
Ø3	FORMAT ("1")	
po	GO TO 3Ø	
4	TYPE 1Ø2	÷ (1)
-	GO TO 3Ø	
5	TYPE 1Ø4	
1,ø4		
1,04	FORMAT ("2")	
6	GO TO 30	
0	TYPE 1Ø2	
7	GO TO 30	
7	TYPE 1Ø5	
1ø5	FORMAT ("3")	
	GO TO 3Ø	
8	TYPE 1Ø2	
	GO TO 30	
9	TYPE 1Ø6	
1,06	FORMAT ("4")	
1	GO TO 3Ø	
1ø	TYPE 1Ø2	
	GO TO 3Ø	
11	ТҮРЕ 107	
1,Ø7	FORMAT ("5")	
	GO TO 3Ø	
21	TYPE 1Ø2	
	GO TO 3Ø	
13	TYPE 108	
1,08	FORMAT ("6")	
.,	GO TO 3Ø	
	001000	

14	TYPE 1Ø2
	GO TO 3Ø
15	TYPE 109
1,09	FORMAT ("7")
	GO TO 3Ø
61	TYPE 102
	GO TO 3Ø
17	TYPE 110
11	FORMAT ("8")
	GO TO 30
81	TYPE 102
	GO TO 3Ø
91	TYPE 111
111	FORMAT ("9")
	GO TO 30
22	LIST=K(J)
	GO TO (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19), LIST
øз	CONTINUE
/	TYPE 112
121	FORMAT(/)
ø4	CONTINUE
	TYPE 113
131	FORMAT (/,/,/,/,/,/,/)
	PAUSE
	GO TO 23
	END