
PROGRAM LIBRARY

DECUS NO. 8-526

TITLE PROCAL 10/71

AUTHOR Peter G. Kretzman

COMPANY Cold Spring Harbor High School
Huntington, New York

DATE March 31, 1972

SOURCE LANGUAGE PAL-D

Al though this program has been tested by the contributor, no warranty, express or implied, is made by the contributor.

Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the

program or related program material, and no responsibility is assumed by these parties in connection therewith.

1

PROCAL 10/71

DECUS Program Library Write-up DECUS NO. 8-526

NAME: PROCAL 10/71, an acronym for PROpositional CALculus.

ABSTRACT: PROCAL 10/71 is a conversational symbolic logic programming system

that uses the logical notation developed by J. Lukasiewicz of Poland, and is

especially oriented towards solving logical problems. Using the special nota¬

tion, the user can input any number of assumed logical premises, and then see

if his proposed logical conclusion is valid or invalid, based upon those prem¬

ises.

STORAGE: Main program from 0-1777; rest of memory serves as buffers and

pushdown.

LOGICAL THEORY:

pro 11
In any sort of logical/* such as the problem concerning the 'Tardy Bus'

in Appendix A, there are five major ways of connecting "true or false" types

of sentences. These connectors are called:

(1) Implication

(2) Disjunction

(3) Conjunction

(4) Equivalence

(5) Negation

For purposes of simplification, we will use these two sentences for

demonstration of these five types of logical connectors:

(1) John goes to the movies.

(2) Mary goes to the movies.

It will be seen that there are many ways of combining these two sentences,

but the primary ways are the five listed above.

IMPLICATION:

IF John goes to the movies, THEN Mary goes to the movies.

We will now set up a truth table, which is a true-false representation

of all the possible combinations of the two original sentences. To do this,

we will assign variable names to these sentences. These variables, therefore

may have either of two possible values-'true1 or 'false'. We will let 'P'

represent John going, and 'Q' represent Mary going. The truth table will

therefore look like this:

P | Q. ' IF P. THEN Q. (represented by "P-^Q.")

T ' T ' T

T ' F ' F
T-TRUE
F FALSE F ' T ' T

FF ' F ' T

Therefore, the only case where P-*Q (read as "if P, then Q") is false

is when P is true and Q. is false.

DISJUNCTION:

John goes to the movies OR Mary goes to the movies.

P OR d (represented by "P v 0")

T i T ' T

T ' F ' T
T-TRUE
F-FALSE F ' T ' T

F ' F ' F

Therefore, the only case where P OR 0 is false is when neither P nor Q is

true. (For you logicians, this is an inclusive or)

2

CONJUNCTION:

John goes to the movies AND Mary goes to the movies.

P

T

T

F

F

JL

T

F

T

F

P AND Q (represented by "Pa Q")

T

F

F

F

T-TRUE
F-False

Therefore, "P AND Q." is true only when P is true and Q. is also true.

EQU|VALENCE:

John goes to the movies IF, AND ONLY IF, Mary goes to the movies.

NEGATION:

P 1 Q. ' P IF, AND ONLY IF, a (represented by "PS
1 1

T ' T 1
i i

T

T i F 1
i i

F

F * T 1 F T-TRUE
i i F-FALSE

F 1 F 1
i i

F

, for "PS 0" to be true, P must have the same truth

NOT go to the movies.

P 1 Q ' NOT P' NOT a1

T ' T '
i i

F 1 F '
1 |

T ' F '
i i

F ' T »
i i

F 1 T 1 T i F '
«i i i i

F ' F 1 T ' T '

Therefore, Negation operates on only one variable, instead of two as in the others,

and is merely a reversal of the variables truth value.

3

PROCAL NOTATION:

Procal notation is unique from standard notation (which I have just

covered) in the fact that it needs no parenthesis or unusual characters

such as —Y or . It also, however has all of these five basic types

of logical connectives. To transfer a standard logical expression to

PROCAL notation, one may merely attach a prefix to the logical variables.

Here are the assigned prefixes:

IMPLICATION: C —►

DISJUNCTION: A V'

CONJUNCTION: K A

EQUIVALENCE: E

NEGATION: N ^

Therefore, to encode this standard expression in PROCAL notation:

(P—rQ) W*(Pa~Q)

First encode anything in parenthesis, then combine together:

(1) P^Q: CPQ

(2) P/v~Q: KPNQ

(3) ^P\^Q): NKPNQ

(4) (P-^QJ^^Pa^Q): ECPQNKPNQ

For more examples of this method of coding, see Appendix A and the TARDY BUS

PROBLEM.

4

OPERATION:

PROCAL 10/71 is loaded into core using the standard DEC binary loader.

PROCAL is also compatible with the 4K Disk Monitor System, and the dialogue

with the system would look like this:

J-OAD^

* IN-T

ST=7600j

11
_o_SAVE PROCAL!0-1777; 1000^

Starting address is 1000 octal.

When first started, PROCAL will print a heading with the name, author,

and version number of the program. It will then proceed to ask for a logical

premise by typing:

PREMISE #1:

The user may now input his premise, with the special notation previously

explained. When a carriage return is struck, PROCAL will check the logical

expression or WFF (Well Formed Formula) for errors. The three errors it checks

for at this stage are:

1) Illegal character (not P,Q,R,S,T,U,C,A,K,E,N)

2) A WFF beginning with C,A,K or E (CAKE-WFF) does not have two logical

expressions following.

3) A WFF beginning with N (N=WFF) does not have one logical expression

following.

5

1

If any of these errors are picked up, PRROCAL will type "ILLOGICAL",

and ask for the premise again. When a logically sound WFF has finally been

input, PROCAL will store it, and ask for another, in the same fashion.

When the user finishes putting in the premises, he should type ALTMODE as

the first character of a line. (ALTMODE is also labeled PREFIX OR ESCAPE)

PROCAL will now request a logical conclusion that supposedly follows from

the previously inputted set of premises. The same logical errors are checked

for with the conclusion as with the premises. However, the user must make

sure to use his logical variables in strict order, for if one needs two variables

and chooses P and T, PROCAL will determine that there is a SX (syntax) error.

When a carriage return is struck on the conclusion, and PROCAL detects no errors,

the logical entity of premises and conclusion is evaluated, and PROCAL will

then type whether the conclusion is valid or invalid, based upon that set

of premises. It is then possible to check any number of conclusions on that

set of premises, as PROCAL will then ask for another conclusion, wiping the

first from its memory. If it desired to return to the premise mode, and

re-input the premises, the user may type ALTMODE. At any time of input,

a control C will return the user to the core resident monitor.

NOTICE: A WFF in PROCAL must be less than 63 characters long, due to limited

space.

»

THEORY:

PROCAL 10/71's main algorithm is the use of a binary truth table

mathematically set up in core memory for evaluation. This truth table resides

from 2000-2577. This is where PROCAL obtains the truth value for the variables

in a given instance. This truth table covers all the possible combinations for

6

the number of variables currently in the premises and conclusion combined.

Procal's second major algorithm is the use of a recursive subroutine,

coupled with several pushdown stacks. Normally, a machine language subroutine

may not be reentered from within itself, since the return address is stored as

the first location of the subroutine and would thdis be overwritten upon

duplicate entry. However, if some way were found to store that return address,

along with any temporary and intermediate subroutine data accumulated in that

run in a storage area, it would be possible to reenter. Such a storage area

is a pushdown stack (PDL), also referred to as a "first in, last out" stack.

This pushdown stack has two operations: PUSHing and POPping, which are inverses

of each other. Pushing is defined as placing a data word ON the top of the

PDL and POPping is defined as taking a word OFF the top of the PDL. Here is

a simplified diagram of a PDL:

^oe

§OTTO(Y\

A
B

f-Ves-
J.OOO*

The order in which these words--.were PUSHed was E,D,C,B,A. The order in which

they will be POPped is A,B,C,D,E.

Therefore, using the PDL to store return addresses and temporary data, it

is possible to call a subroutine recursively to any limit, as long as there is

PDL space available.

This concept is the major reason for the existence of PROCAL, for it is

used to evaluate the WFFs.

If the uses uses too many or too long WFFs, to an extent that there is no more

core available Ito the PDL, PROCAL will type "PUSHDOWN STACK OVERFLOW" and loop

PROCAL MAY NOT BE RESTARTED UNDER THESE CIRCUMSTANCES!!! However, this is

7

umiKeiy, since a great aeai ot room is aiiocatea ror pusnuown

REFERENCES:

Allen, Layman E. WFF 'n PROOF: The Game of Modern Logic

Autotelic Instructional Material Publishers, New Haven, Connecticut 1968

Copi, Irving M. Symbolic Logic, third edition, Macmillan, London 1967

Wrege, Doug® FOCAL: How to write New Subroutines and Use Internal Routines,

Atomic Energy Commission, 1968 (available from DECUS)

8

J

9

THE TARDY BUS PROBLEM

Given the following three statements as premises:

(1) If Bill takes the bus, then Bill misses his appointment, if the bus is late.

(2) Bill shouldn't go home, if (a) Bill misses his appointment, and (b) Bill feels downcast.

(3) If Bill doesn't get the job, then (a) Bill feels downcast, and (b) Bill should go home.

Is it valid to conclude:

Ql. Th at if Bill takes the bus, then Bill does get the job,
if the bus is late?

YES NO

Q2. That Bill does get the job, if (a) Bill misses his
appointment, and (b) Bill should go home?

Q3. That if the bus is late, then (a) Bill doesn't take the bus,
or Bill doesn't miss his appointment, if (b) Bill doesn't get
the job?

Q4. That Bill doesn't take the bus, if (a) the bus is late, and
(b) Bill doesn't get the job?

Q5. That if Bill doesn't miss his appointment, then (a) Bill
shouldn't go home, and (b) Bill doesn't get the job?

Q6. That Bill feels downcast, if (a) the bus is late, or

(b) Bill misses his appointment?

Q7. That if Bill does get the job, then (a) Bill doesn't feel
downcast, or (b) Bill shouldn't go home?

Q8. That if (a) Bill should go home, and Bill takes the bus, then
(b) Bill doesn't feel downcast, if the bus is late?

A I

9

CODING THE TARDY BUS PROBLEM

VARIABLE MEANING

P Bill takes the bus.

Q Bill misses his appointment.

R The bus is late.

S Bill should go home.

T Bill feels downcast.

U Bill gets the job.

PREMISE PR OCA L Notation

1) (P/vR)—>Q CKPRQ

2) (Q^TH>"S CKQTNS

3) * U—->(TaS) CNUKTS

CONCLUSION PROCAL Notation

1) (PaRH>u CKPRU

2) (QAS)—>U CKQSU

3) R_>(^pv(H u—XD)) CRANPCNUQ

4) (Ra^U)—>^P CKRNUNP

5) *Q—>(*S/U) CNQKNSNU

6) (RvQ)—>T CARQT

7) u—^Tv^S) CUA NT NS

8) (SaP)—>(R—>^T) CKSPCRNT

A 2

10

PREMISE#!: CKPRQ
PREMISE #2: CKQTNS
PREMISE #3: CNUKTS
PREMISE #4:

CONCLUSION: CKPRU

VALID

CONCLUSION: CKQSU

VALID

CONCLUSION: CRANPCNUQ

VALID

CONCLUSION: CKRNUNP

VALID

CONCLUSION: CNQKNSNU

INVALID

CONCLUSION: CARQT

INVALID

CONCLUSION: CUANTNS

INVALID

CONCLUSION: CKSPCRNT

VALID

CONCLUSION:

1

>

