
DECUSND.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

ATTENTION

PROGRAM L,IBRARV

8-77

PDP-8 DUAL PROCESS SYSTEM

Richard M. Merrill

Digital Equipment Corporation
Maynard, Massachusetts

May, 1967

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS.

The DECUS Program library is a clearing house only; it does not generate or test programs. No
warranty, express or implied, is made by the contributor, Digital Equipment Computer Users
Society or Digital Equipment Corporation os to the accuracy or functioning of the program or
related material, and no responsibi lity is assumed by these parties in connection therewith.

PDP-8 DUAL PROCESS SYSTEM

DECUS No. 8/85-77

PURPOSE

The purpose of this system is to expedite the programming of multiprocessing problems on
the PDP-8 and PDP-S/S. It maximizes both the input speed and the portion of real time
actually used for calculations by allowing the program to run during the intervals between
issuing I/O commands and the raising of the device flag to signal completion of the com
mand. The technique also allows queuing of input data or commands so that the user need
not wait while his last line is being processed, and each line of input may be processed
as fast as possible regardless of its length.

This method is especially useful for a slower machine where the problem may easily be
calculation limited but would, without such a system, become I/O bound.

The program may also be easily extended to handle input from an A/D converter. Here
the input would be buffered by groups of readings terminated either arbitrarily in groups
of N or by zero crossings.

REQUIREMENTS

600 octal registers for the system for two TTY's plus buffer space.

Several device configurations are possible.

USAGE

To start the system, the user program should first clear all device flags that have not been
provided for in the interrupt routine ("NTRPT"). All such flags that are raised during run
time will cause the system to loop.

The user program should then load KADR and RADR with the appropriate addresses in the
user program to process the inputs. KADR and RADR may be changed by the user program
at any time. When the user program has finished, it should jump to IDLE.

The registers GETCK0' and GETCR0' contain the addresses of the subroutines to get charac
ters from the keyboard and the reader respectively. Simi larly OUTCT0' and OUTCP0'
contain the addresses of the subroutines to output characters on the TTY and on the high
speed punch.

The instructions for the high-speed paper tape equipment may be replaced with the I/O
instructions for an additional TTY, if desired, as indicated in the listing. The user may
want to tailor this program to his own particular application and will use this version
only as a guide.

DECUS No. 8/8S-77

METHODS

The method used is simple: a circular character buffer is maintained for each input
or output device being used.

Buffers

These buffers are assigned by the user program and should probably be at least twice
as long as the largest sentence expected. The buffers are unloaded character by
character via requests from the us,er program and hence might fill up if not called upon
frequently enough.

Pr?gr,!~_~ed ___ ~is?

Output proceeds in the same fashion by user calls (e .. g. JMS I OUTCT¢) to send single
characters. The overflow problem also exists here, but we have chosen to couse the
output calls simply to wait until enough of the buffer has been unloaded to accept the
next character. This, however, will detract from the overall efficiency of operation.

In order to allow the user to correct his typing and to help provide the program with
meaningful groups of input dota, each I ine is stored in the buffer unti I the user has
typed a carriage return indicating ~is approval of the data typed. Before doing this,
however, he may delete preceeding characters by typing "rubout." A UUII will print for
each character removed. The entire line may be killed by typing II ..

Thus, a line is terminated by a CR and control, thereupon, posses to the user program.
The address of the user process is stored in a register assigned to each input device.
For example, KADR contains the address of the program that will process the next
line of keyboard input.

This feature is provided as an option obtained when KECHOSW is non-zero.

In order to have characters printed as they are typed, an echo mode is provided by a
program switch for each TTY. These may be charged under program control so that the
echo mode may be turned on or off at wi II ..

Naturally, garbage may be produced if the program prints at the same time as the key
board is struck, if the latter is in the echo mode. This is also the only circumstance
which may cause a system hangup. Namely, if the output buffer is full when a char
acter is to be echoed, the program will loop indefinitely since echoes are made while
still in the interrupt process with the interrupt off.

2

DECUS No. 8/85-77

The sysre."'-' ii i halt if the input buffers overflow or if the program asks for characters
from the buffer that have not yet been read. The recovery to try in both cases is
to type either" II or CR and then hit "CONTINUE." This circumstance might
arise from the user's program asking for another character before going to IDLE, after
receiving a carriage return.

To avoid this, the routine has two returns: the first if the choracter is a CR and the
second if it is some other character, as illustrated below.

JMS

JMP .:l
DCA I 12

GETC <J:::::]----
/C.R., AC = 0

/other, AC::: OTHER

An alternative would be to assign a specific location to go to when a CR is received.
Such (i_ subroutine could be schematized this way:

JM5 Pointer for

DCA I 12
C . R. process

3

DECU5 No. 8/85-77

Another approach would be to write the user program completely without worrying about
IDLE, CR's and KADR by writing the get character routine so that it always comes bock
with a charocter and waits in IDLE if no characters are available:

<1----------------~~~~c::l:l ~:;;:-~:)
GETC . RO ~~-t{'crJ ~--~.

~ . - <J--------,
Ma \l'\ f\<t~r3rn

NO

EXECUTION TIME

On the average, it takes about 60 instructions to process one character. For a key
board or reader with a top speed of 10 cps, this represents only a 2.4% overhead.

4

I
I
f

I
I
I
I

THE PROGRAM

IOLE

~ ___ '(.:..:;;.E.;;;.5 _____ -{ ~OLEK)

IT\O..ke. ~t'c:..

NO :h 0..,", ""nCo t--------------t \"'~e'l"1"v. (0)>''' ',~
----j~-...... 0\"\.

NO
IbLF:;:)

NO

\(CCu,nT

\ON ~
- 1---1

The user program always jumps to IDLE when it has finished pro
cessing a line of data.

IDLE Loop and Switches

Figure 1 5

Io).l

IDLE Loop For Keyboard

Figure 2

6

\\-\E U~e:R'l>QQgt'~\"Y'\

~~ nCx..JJ ~ro~
~~ ~ eJ\., L '\'\e..

O-T "t>(j,~ a
It)fJU-T.

Sau~ AC
+ L\T1K

l:.trrs w.: 0

K\NT

--r---/ --==r<J -., I'll \"
)1----1 \4A L T 1

~~~~--- ] 

The computer interrupt hardware saves the program counter in location 
zero and jumps to location 1. Ther program then Jumps to "NTRPT". 

INTERRUPT PROCESSING 

Figure 3 
7 



~xlr J-~ 

GR"T /'leX' 

c../-IAf(flCT~R. 

frJuue 

fb,/?rE/?s 

INCRemenT 

HAJ-T 

If a HALT occurs in the keyboard progra~, the user may hit II +-" or 
C. R. on the keyboard and then press continue on the console. This 
procedure should help-recover somewhat from all system halts. 

INPUT SUBROU'!'INES 8 
Figure 4 



ENTRy 

)----------_+_ HAL T 

~~~---------------~~ 

ORE

)t---R
"4---0 . ---(KtC~O)

This is a typical subroutine to process an interrupt caused by the
keyboard/reader. It is run with the interrupt mode turned off.

Figure 5

9

KROR

KTGNO

1--_"_0--..(£ A'I T KI NT 1
YES

<:jOl.lTCT

[EXIT f(INT]

Character Processing
Figure '6

10

occrc1

>--"-M

£"xXT O("cf" C1"]

Character Output
Figure 7

11

~~Ni:>

L.. F.

Initialize
Pointers

Prepare Outpu
of First line

Setup
Input
Addresses

(IDLE)

kADR c:=J\--" ~.~
t
I
I
I
I

l
r

I
I

__ .-1

USAGE ILLUSTRATION

Figure 8

12

NO

Get-K~y-"
board
Input

Line
Process ~

'-----t- --

(IDLE)

	00
	01
	02
	03
	04
	05
	06
	07
	08
	09
	10
	11
	12

