
I \ DECUS
\ I PROGRAM LIBRARY ----

DECUS NO.

TITLE

AUTHOR

COM PANY

DATE

FORMAT

8-89

XOD - Extended Octal Debugging Program

Michael S. Wolfberg

Moore School of Electrical Engineering
University of Pennsylvania
Phi ladelphia, Pennsylvania

September 15, 1967

Although this program has been tested by the contributor, no warranty, express or implied, is made.by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibi I ity is assumed by these parties in connection therewith.

University of Pennsylvania
THE MOORE SCHOOL OF ELECTRICAL ENGINEERING

Philadelphia, Pennsylvania

TO: Users of the PDP-8 and DEC-338

FROM: Michael S. Wolfberg

DATE: September 15, 1967

SUBJECT: XOD - Extended Octal Debugging Program

XOD is an octal debugging program for a PDP-8 with Extended
Memory which preserves the status of program interrupt system at break­
points. The program occupies locations 6430 through 7577 of any memory
field.

From the on-line Teletype, the user can exa~ne and modify the
contents of any memory location. Positive and negative block searches
with a mask may also be performed.

XOD includes an elaborate breakpoint facility to help the user
run sections of his program. When this facility is used, the debugger
also uses locations 0005, 0006, and 0007 of every memory field.

The ability to punch binary tapes is not included in XOD.

- 2 -

Loading, Starting, Restarting

XOD may be loaded into any memory field, and it occupies locations
6430 through 7577.

The STARTING ADDRESS of XOD is 7000.

During the operation of XOD or during the execution of a user's
program, XOD may be restarted at 7000. When XOD is restarted at a time
when it was already in control, none of the registers or indicators
associated with breakpoints.are affected.

Returning to Monitor

For use with PDP-8 operating systems, typing ctrl C causes XOD to
jump to location 07600 with the accumulator clear.

Octal Numbers

An octal number may consist of any number of octal digits (one of
the characters 0,1, ... ,7). Only the last four digits are taken as the number.

Illegal Characters, Errors

Whenever an illegal character is inputted or an improper command is
.typed, XOD responds with a question mark followed by CR/LF, and the line is
ignored.

Field Specification

Bits 6 through 8 of location 6612 within XOD determine the highest
memory field with which XOD is operating. The supplied tape of XOD has 0010
in location 6612, so that an 8-K memory is assumed. This number is used when
XOD is running a u·ser's program and is checked when a field specification is
typed.

At any particular time, the attention of XOD is directed towards one
memory field, and all specified locations refer to that field.

Typing an octal digit followed by # causes XOD to change its field
of attention to the field specified by the digit. The MASK is set to 7777.
If the field is the same one as the field in which XOD is running, the lower
and upper limits are set to 0000 and 6427. Otherwise, the limits are set to
0000 and 7777.

When XOD is waiting for type-in, the Data Field lights indicate the
current field of attention.

Examinations

Typing an octal number followed by / causes XOD to open the
location specified by the number, and type out. the contents of the location.
If no location was already open, the current location (*) is set.

- 3 -

Current Location

* has the value of the location last opened when no location
was already opened. (This includes searches.)

Although it is usually typed alone, *
following an octal number to signify addition.
will open location *+5.

can be typed immediately
For example, typing 5*/

Carriage Return

If a location is open, typing an octal number followed by a CR
causes XOD to set the contents of that location to the value of the octal
number.

Line Feed

LF first acts like a CR and then opens location *+1.

Limits, MASK

The lower and upper limits (LL and UL) for zeroing and searchin~
are stored within XOD at locations 7400 and 7401. The MASK used in searches
is stored at 7402. These quantities are initialized when a user specifies
a field of attention (by #). If the field of attenti~;~ is set to the field
where XOD is residing, the user may examine and modify these quantities. The
following commands to XOD permit the user to set either of the limits or the
MASK independent of the field of attention.

Zeroing

Setting LL

Typing an octal number followed by L causes XOD to set
the lower limit (LL) to the value of the octal number.

Setting UL

Typing an octal number followed by U causes XOD to set
the upper limit (UL) to the value of the octal number.

Setting MASK

Typing an octal number followed by M causes XOD to set
the MASK to the value of the octal number.

Typing an octal number followed by % causes XOD to set the contents
of locations LL through UL to the value of the octal number. If no number is
typed preceding the %, a value of 0 is assumed.

Positive (Negative) Searching

Typing an octal number followed by > «) causes XOD to search
locations LL throu~h UL. All locations whose contents (do not) equal the
value of the octai. number in the bits specified by the MASK are typed out.
During the course of a search the user may stop the search by striking any key.

- 4 -

Reading Binary Tape

In order to read a binary tape, place the tape in the reader in
the leader area and START the reader. XOD immediately jumps to location
7777 of the field where XOD is residing. There is presumably some type of
binary loader at this location which then reads in the tape. After reading
is finished,XODmay be restarted at its starting address.

Program Execution and Breakpoints

Most of the space occupied by XOD consists of the coding necessary
for a thorough breakpoint facility. The user may command XOD to assign a
breakpoint at any location of any field. This assignment has no immediate
effect, but is important when the user commands XOD to start running his
program. When he does thiS, XOD saves the contents of the location where
the breakpoint was assigned and replaces it by a special breakpoint instruc­
tion (5005). XOD also plants special instructions into locations 0005, 0006,
and 0007 of every memory field (without saving their contents). It then
appropriately sets the accumulator, link, data field, Teletype output flag,
and program interrupt status and jumps to the user's program.

The breakpoint instruction must not be inserted into the user's
program as an instruction by location modification.

The user's program will execute normally unless control passes to
the breakpoint location. In this event, a "breakpoint trap" occurs, which
consists of a jump back to XOD. When XOD is re-entered, the location of
the trap, accumulator, link, data field, Teletype output flag, and program
interrupt status are all saved. At this time XOD types out the location of
the breakpoint trap (including the field) followed by a right parenthesis
followed by the contents of the link and accumulator. .

The user may then use the facilities of XOD for examination and
modification of any memory location. He may also remove the breakpoint
assignment or reassign it to some other location. He .may restart XOD
at its starting address without affecting the saved status of the user's
program.

If the user wishes to resume his program where it left off, he may
command XOD to proceed. The proceed command causes XOD to restore the saved
status, perform the instruction which is at the location of the last break­
point trap, and to continue to run the user's program.

If a user's program doesn't return to XOD through a breakpoint trap,
the user .may restart XOD at its starting address. When this is done, the
contents of the breakpoint location are restored and the saved accumulator,
link, and Teletype output flag are all cleared. XOD will not allow the
user to perform a proceed command until after the next breakpoint trap.

There is a HLT instruction at location 6430 of XOD to catch control
in case a user's program runs wild.

- 5 -

Running a Program

Typing an octal number followed by I causes XOD to:

1) if a breakpoint is assigned, set it up and also set up locations
000) , 0006, and 0007 of eVery memory field.

2) set the data field to the field of attention.

3) have program interrupt off.

4) restore the saved accumulator, link, and Teletype output flag.

5) jump to the location (in the field of attention) specified by the
number preceding the I

Breakpoint Assignment

Typing an octal number followed by II causes XOD to assign a
breakpoint at the location (in the current field of attention) specified
by the number. If no expression precedes the II, any breakpoint assignment
is removed. Only one breakpoint .may be assigned at a time, but it may be
changed, even before proceeding back to the userfs program.

A breakpoint should not be assigned at a location -;,.rhich is either
modified or whose contents are used as data. Otherwise, there are no
restrictions on breakpoint placement, as far as the breakpoint trap occurring.
There are, however, three restrictions on the breakpoint assigr~ent if the uSer
wishes to proceed back to his program:

1) A breakpoint must not be assigned at any CIF instruction, nor at any
instruction which follows a CrF instruction until after the next JMP or JMS
instruction. More precisely, the restriction exists at locations where the
contents of the instruction field register differ from the contents of the
instruction buffer register.

2) A breakpoint must not be assigned at a location where the interrupt system
could be on and where the program depends upon the preservation of the
contents of the save field register.

3) A breakpoint must not be assigned at any of the following EAE instructions:
MUY, DVI, SHL, ASR, LSR.

Proceeding

Typing a causes XOD to:

1) if a breakpoint is assigned, set it up and also set up locations 0005, coo6,
and 0007 of every memory field.

2) restore the saved accumulator, link, data field, Teletype output flag,
and program interrupt status.

3) perform the instruction which is at the location of the last breakpoint
trap, and proceed from there.

- 6 -

If an octal number is typed preceding the ! , automatic proceeds
are generated by XOD for the number of times equal to the value of that
octal number before a breakpoint trap causes the debugger to regain control.
(This facility is called multiple proceeding.)

Program Interrupt

When a breakpoint trap occurs, XOD determines the status of the pro­
gram interrupt system and then the interrupt system is kept off during XOD
operations.

When a breakpoint trap occurs, further program interrupts are disabled
within a couple of memory cycles by the execution of a ClF instruction. Thus
if a user wishes to use XOD on a 4-K PDP-8 to debug a program using the interrupt
system, he must have an interrupt service routine which works.

If XOD is being used to debug a program occupying only memory field
zero and using the program interrupt system, and if XOD is in another memory
field, it is advisable to include an RMF instruction in the interrupt service
routine. The chances of an interrupt occurring during one of the critical
two machine cycles are rather small. However, if the user performs multiple
proceeds, then there are many cycles during which the interrupt system is
not disabled while control is within XOD. This necessitates a working
interrupt service routine which includes an RMF instruction and preserves the
accumulator and link.

state of XOD

Whenever XOD is in control, the user may examine and alter locations
within the debugger which contain useful information:

Location

6600
6601
6602
6603

6604

6605

6606

6007

6610

6611
6612

7400
7401
7402

Contents

saved link (may be only 0 or 1)

saved accumulator

saved data field (bits 6-8)
saved Teletype output flag (zero = clear,
non-zero = set)

saved interrupt status (.may be only 0 for
off or 1 for on)

proceed counter (is indexed by an ISZ
instruction)

breakpoint assignment field (bits 6-8) or
if sign is minus, there is no breakpoint
assigned

breakpoint assignment location

last breakpoint trap field (bits 6-8) or if
sign is minus, proceeding is not allowed

last breakpoint trap location

highest field being used (bits 6-8)
lower limit (LL)

upper limit (UL)

MASK

	0
	1
	2
	3
	4
	5
	6

