
DECIJ§ NCJ.

TITLE

AUTHCJF]

C=OMPANY

DATE

S0lJEC]ELANE3UAGE

ATTENTION

DECUS
PFROGFtAIVI LIBFRAF=Y

FOCAL8-271

Modification of FOCL/F for Data Acquisition and Control

Douglas E. Wrege

Georgia lnstil.ute of Technology
Nuclear Research Center
Atlanta, Georgia

This is a USER program. Other than requiring that it conform to submittal and review standards,
no quality control has been imposed upon this program by DECUS,

The DECUS Program Library is a clearing house only; it does not generate or test programs. No
worrcmty, express or i'mplied, is made by the contributor, Digital Equipment Computer U.1ers
Society or Digital Equipmellf Corporation as to the accuracy or functioning of the program or
relclted material, and no responsibility is assumed by These parties in cbnnection therewith.

\

C,-

/
., `

..h
'+,

``

t

•-u?wi

DECUS Program Librar Write-up

PREFACE

DECUS NO. FOCAL8-27]

FoCALTM has often been described a§ a ''pla§ticw language since it may be molded
into a form suited to an ,individual's needs and requirements. By "plastic" it is
meant that the language structure, syntax, and cormand§, are modifiable into a form
specified by the user. A triuly plastic language must have, among its attributes, as
few as possible syntactical 'rules, be easily modified, and above all be available t:a
the user (i.e. an "open shop" language). FOCAL is, not significantly more plastic
than any ot:her interpreter, however, since ic is list driven and syntactical limita-
tions are few compared to BASIC, FORTRAN, AI.Got., et:c. it does a reasonable job of
fulfilling t:he first two requirements. Availability of core is always a problem in
a mini-computer, but if not too many changes are required it is not impossible to
find space. Complete reworking of the interpreter itself is difficult since FOCAL
was never intended t:o be a plastic language, but if t:he user is satisfied with most
of the commands it is a reasonable starting point for scientific or arithmet:ically
oricuted problems. The large selling point is that FOCAI. is the closest: thing Co
an "open shop" language currently available, and this requiremeit must be met be-
fore t:alk can begin. The FOCAL interpreter has probably been modified by more non-
systems |]rogrammers than all "accepted" languages currently in use. For this reason
alone it perhaps warrents the tag "plastic".

This paper is intended to aid users in molding FOCAL to suit their own require-
ments as I have been doing for several years. As this paper will probably only be
read by so called "FC)GAL freaks" I will tend to be a lit:t:1e jargony and informal in
its presentation. For those puriests ac heart I apologize. .It is, of course, im-
possible to describe in detail how all of FOCAL works in a finite period of time,
but I hope that it will suffice to describe those routines most commonly used when
adding user writ:ten code to t:he int:erpreter.

A few words are in order about that peculiar breed of animal called programmers.
They are in general proud, competitive and usually extremely creat:ive. They are
quick to flaunt new creative ideas in t:he face of other programmers often implying
a lack of creativity on their part. Conversely, a programmer will quickly maintain
a defensive if not antagonistic position whenever their work is t:hreatened by Such
comments. One must remember that good programmers have the tendency t:o take credit
for an entire piece of work when they are only responsible for a segment or even a
small addition to someone elses work. This heightens the ant:agonism between pro-
grammers. I know that I have been guilty of the above faults more than infrequently.
The original creator of FOCAI,, Rick Merrell, has very justifiably objected to user
modification of FOCAL, especially since his interpreter was so free of flawso Con-
sequently, would be FOCAI, "plast:icizers" have been frowned on by Mr. Merrell and
conversely the appreciation which Mr. Merrell deserves has often been omitted. The
generation of a new language that has received §o much attenticm and modifications
by so many users should be looked upon with pride by it:s creator and sponsor. They
have created something t:hat is more than just a new language. I for one would have
to plead guilty on all charges stated above. Mr. Merrell cert:ainly deserves more
credit: t:han I for the work I have done in the past three years. However, being orie
of that arrogant: breed called programmers, all I can bring myself to say, in print,
is THANKS RICK!

\
1

MOI]IFlcATION OF FOcL/F For DATA ACQulslTION AND CONTROI.

D. E. Wrege
Small Computer Applications Lab

Nuclear and Biological Sciences Division-EES
and

The School of Nuclear Engineering
Georgia Institute of Technology

Atlanta, Georgia

ABSTRACT

::u:;n::ei:i;o:LEki:op:I:: i:sh:::1::: ::e;o:hc::: ::e:::::ed
to his application (without being forced to understand in de-
tail all the workings of FOCAL). Included are descriptive
discussions of how FOCAL works, the philosophy of the lan-
guage,. and sections technically oriented toward helping the
user actually code his additions. This paper is an exten-
tion of DECUS FOCAL 8-17 and includes most of the discus.sions
contained therein. The part:icular` versions of FOCAL des-
cribed will be FOCAL/69 and FOCAL/F, the latter being a ver-
sion of 8K FOCAL/69 wit:h modifications by the author allowing
assembler patches to be more easily added.

Introduction
Many users have found FOCAL** to be the answer to

their real-time and computational problems. The lan-
guage is extremely powerful and flexible with unique
text editing and debugging features. Although FOCAL
is slow in execution compared to machine language
coding, for most real-time problems or one-time cal-
culations, lack of speed is not a serious handicap.
Most users will agree that: a program can be written,
debugged, and executed in ''FOGAI," before t:he equiv-
alent could even be coded (and/or punched) in. any other
language. Additions or changes are easily made.

It will be assumed that the reader has a basic
knowledge of PDP-8 processor instruct:ions, PAI.
mnemonics (see Digital 's Small Com uter Handbook or
Introduction to Progranming), as ivell as a familiarity
with t:he Floating Point Package (DEC-08-YQYA-D). In
addition, he should be familiar with the ''FOCAL''**
language.

As many users have discovered, the internal
workings of FOCAL are an incredibly complex piece of
programming. Wit:h the need to int:er face the computer
to specialized equipment for individual applicat:ions,
t:here is the corresponding need for appropriate soft-
ware. If FOCAL could communicate lvith this equip-
ment:, one would have an extrerrLely powerful and fle2c-
ible computation and control package. this paper is
an att:empt to explain how user developed software
can be interfaced to the basic FOCAL package, wit:h-
out requiring the user to spend valuable time trying
to understand all of its detailed workings.

Section 11 will deal with a general discussion
of how FOCAL works, in a descriptive fashion. See-
tion Ill will be concerned with the philosophy of
the language. The last few sections will be more
technically oriented toward helping the user actually
code his additions. Finally, several examples and
ready coded routines, which may be used to simplify
the user's problems, are included.

Assemblers. Compilers. and InterDreters
In general, there are three routes that the

programmer can follow for machine execution. Pro-
grams t:hat: perform translations are assemblers, com-
pilers, or interpreters; each operate from conceptu-
ally different vanta8e points.

In a compiler level language, such as FORTRAN,
ALGOL and some BASICs, coding is written in a syntax
close to the way a human thinks. A compiler inter~
prets this and generates an object code which is
close to machine language. This, in turn, is trans-
lated into actual machine language instructions.
Finally these machine language instructions must be
read into core before execution. If any corrections
are to be made t:o t:he progl.am (debugging, additions,
or corrections), one must recompile the source coding,
read the new object coding in, and finally execut:e it.

An assembly level language, is inherently closer
to machine language than a compiler level language.
The user's coding is indeed remote from t:he way he
thinks about:` formulating a problem (he is even forced
to think in binary or octal, the machine's way of
formulating problems). About all an assembler lets
the programmer do is use mnemonlcs (words) and sym-
bols instead of binary numbers. For example, in the
I'AI, language, the instruction TAD I TEMP is assembled
as follows from the definitions:

TAD = 1¢¢¢8 /in the assembler's internal gym-
bol table

I = ¢4¢¢8 /internal symbol table
TEMP = ¢1¢¢ /user defined in coding

The assembler masks out the first 5 bits
from the last mne[nonic if there are more
than one (in this case TEMP); it t:hen ORS
the result wit:h the other mnemonics:

is paper a ''FOCAL!' program written in
the ''FOCAL" language will be enclosed in quotes.
The machine language coding of the FOCAL interpre-
ter will be referenced by the word FOCAL without
quotes.

1¢¢¢
i ¢4¢¢
I ¢1¢¢

15¢¢ This i§ the machine equivalent.

The PAL assent)1er is a little more Sophisticated
than this, of course, and performs functions a little
more complicated, but generally an assembler is in-
credibly stupid for what it can do. Note the simi-
larity t>etween PAI. mnemonics and machine languagei

|n a interpretive level language, no machine
language coding is generated for execution. An in-
terpreter is essentially a subroutine caller. It
contains a sut)routine for every conceivable opera-
tion it thinks the user wishes to perfom. If it
cannot: underst:and what: t:he user want:s, it: prints an
error message and waits for the user to in.ake himself
clearer. Every character that the user inputs is stored
in core. Upon execution the interpreter "interprets"
the program character by character and calls the sub-
routine indicated. Thus an interpretor never gen-
erates machine language (object code) from the source
code. It was once said that: when evaluating arith-
metic expre§§ions the difference between a compiler
and an interpreter is that a compiler comes up with
code that can calculate the answer when loaded and
executed while an interpreter merely comes up with
the answer.[' Thus an interpreter is at an advent:age
when doing one t:ime calculat:ions but at a disadvantage
when calculating iteratively (since it ITiust reinter-
pret the source code each tilne through).

A few words should be said about: the relative
merits of assemblyO compiler, and interpretive lan-
guage programs. Assuming good coding for all three,
assembly language code will always be the most effi-
cient code for a small computer. That is to say ex-
ecution time will be minimized and the minimum core
storage will be used. However, seldom is anyone
willing to code a problem at this level since coding
time will far outweigh the savings in machine time.
Consequent:1y assembly level codlng is usually re-
§tricted t:o problems which are run as production
calculations, or for the case of rate-limited problems,
or because the programmer is hung up on elegance or
just plain doesn't: know bet:ter. once again assuring
equally efficent codirig for compilers and interpre-
ters (not always a valid assumption) the compiler
will win in execution time of object code. This is
primarily because the interpreter must operate on
source code to decide what to do while the compiler
has already figured I:hat out when generating the object
code. For Single evaluations (non-icerat:ive problems)
the interpreter will win if compile and load time is
added t:o the compiler's object: run t:ime. wiiere an

:::;ffi::5o,:o:::p:a:i::e±:h:e::::I:::::]::::„r:=
interpret the source code each time through. At any
rate, no matter how much one argues, compiler level
languages generally look better with res|iect to ex-
ecution speeds than interpreters, but interpreters
will win when it comes tc conserving core storage.
For example, the FOCAL cormLand F J+1,1E4;S A(J)-FSQT(J)
takes 12 core 1'ocations in a 12 bit machine (packing
two characters per word). The code generated by a
compiler typically takes from a factor of 5 to 10 more
core. One must remelTiber t:hat since most compiler
level languages were originally designed to run on
large machines, the name of ±±£±E game .is "save every
microsecond" whereas interpreters like FOCAL were
written with the basic prellilse "save every possible
1 R. P. Warnock Ill, Private Communication, Chemistry

Department at Emory University, Atlanta, Georgia

3

core location''. The result is a time-core storage
tradeo££. Small machine users, wit:h limit:ed core
will find that interpreter level languages are pro-
bably the best route to take and FOCAL ls an ex-
tremely efficient interpreter.

Philosoi)hy

Rules and Syntactical Limltatlons - In general, the
fewer the rules and syntactical limitations of a
language the simpler and more flexible the language
will be. Conversely, few rules tend to increase
the number of typographical errors which are riot
caught by syntax checks. F'OCAL has very few rules,
which tend to make it one of the simplest to learn
and most powerful small machine interpreters around.
The basic rules are as follows:

1. All indirect program lines must be numbered
according to group number and 1.ine wit:bin
the group, (apoup NUREER). (LINE IN GRoup)
where
1<GROUP NUMBER<31
¢IqlNE IN GROTUPcO9
H6Ece, line nunbErs may run from 01.¢1 to
31.99 (excluding XX.¢¢)

2. A line may contain any number of commands,
(except WRITE, MODIFY, and ERASE) separated
by semicolons and lin.es are ended by a
carriage return. A cQprand has the form

(cormAND) (SPACE) ¢TUFF) (TERMINATOR)
where the command name must only contain
the correct first character to specify the
command (case of FOCAL/69) or the correct
first one or two charact:ers (FOCAL/F).
(That i§ ''SET", ''S", or ''SEBXSXYZ" are
valid in FOCL/F, but not SABC). The
command name must be followed by a space.
The syntactical form of ''STtJFF'' is deter-
mined by t:he particular command, and commands
are terminated by a semicolon or carriage
return,

3. Variables are specified by a one or two
character name, ±8± starting with ''F" (see
below) and a 12-bit subscript (a subscript
of 4096 and ¢ are the same). All variables
are floating variables.

4. All functions Start with F and cant:ain
parentheses. i.e. , FNAM (ARGunffNT).

These are the basic rules for the FOCAL inter-
preter. As one can see they are relatively few and
easy to remember.

Text Editin and Debu

A valuable feature of the FOCAL language is the
editing and debugging features. Since am interpre-
t:er stores the source code internally arLd must have
routines for handlilig text, the price which must: be
paid for a built in editor is small. Consequently
FOCAI. has many unique commands which facllitate
modification of text found only in editors. In
addition,there is the trace feature, which when
properly used, can out debugging times by as much as
an order of magnitude.

Interpretation

The interpretation of tlie source code is largely
''t:able driven". This is to say there is a table in
core which contains a list of all valid command
charact:ers, and a second t:able of dispat:ch addresses.

To iriterpret an individual colrmand FOCAL picks up the
first non-space character (or the first t:wo} if pre-
sent, in the case of .FOOL/F) and searches a list of

::Tm::::t:;;0::::::::i::':t::::::i::::::::i::;;::::e
control is transferred to that address. In addition
there are lists of characters which have t:h6 same or
similar attributes. e.g., ''TERMS" is a list of ex-
pression terminators, "ATLIST" is a list of ''ASK"
command special characters, ''FNTABL" is a list of
valid function names, etc. The virt:ue of a list:
driven interpreter is the ease in which additions or
changes may be made to the language, i.e. often by
merely inserting a new character into a list. This
feature is in part what makes FOCI. "plastic".

Recursion
I

One of the features of FOCAL which makes it so
powerful is that of recursion. Recursion is the
ability of a subroutine t:o call itself, e.g.:
FSQT (1 -FSQT (X)). In most compiler level languages
this operatioli is carried out by repeaclng the machine
language (FSQT) coding so that one version of the sub-
t:outine can call t:he other. In these cases the sub-
routine never really calls ±t§el£, rather it. calls a
separate identical piece of coding. An interpretive
level language cannot afford multiple identical sub-
routines for every possibility, since it would take
t°°m:ochns::::.hotN:t?n:h=a:?:q::::::u::=S:°::i2outlne

works. Schematically we may divide the subroutine
into a segment in which the logical operations are
coded and a Segment where temporary values in the
calculat:ion are stored. We can consider the sub-
rou[ine return to be stored in this temporary storage
area also. VIZ,

return
SQT, Int`ermediate

Variable
Storage

CODING

(eval. argument)
(take SQT of erg.)

If this hypothetical subroutine were to call
another subroutine (as is normally done in assenbly
language) , there would be no difficulties provided
that the intermediate storage of the two subroutines
are separate.

If the subrout:ine was to call it:self from within

€::i:Ee:a::¥€h:h:e::i:i::±n=::e:::#a:::::u=±::e:he
#§t£::ep;3graamw:;e:gt€§etEedfgg:¥gn:hfn€:g:g±#ge:tor.
age area, the original values would not be lost.

The Push-Down Stack or Push-Down List (PDL) con-
cept involves an intermediate storage area which is
"pushed-down" (making a new intermediate storage area
available) whenever a subroucine i§ called and "popped-
up" whenever a return occurs. VIZ,

Col)ING

(eval. argument) SQT
may

(take SQT a.£ arg.) be in
argu-
ment

To continue the example. the steps in t:he evaluat:ion
of FSQT (1-FQST (X)) would proceed as follows:

1. The main program calls the FSQT 9ubroutine.

4

LP

Storage area 1 is now "pushed" into the push-
down list making area 2 available.

2. The argument ''1-" is evaluated up to the next
FSQTOC). In order to evaluate this, the FSQT
subroutine ls called again!

3. On second entry to the subroutine, storage
area 2 (containing the main progran return and
the intermediate value of the argument) is
pushed-dour.

4. X is evaluated and then the square root is
taken..` 5. the subrout:ine returns (t:o the middle of it:-

self) with the answer FSQT(X). When this re-
turn is effected, storage area 2 is popped-
back-up (with the old intermediate values).

6, The answer FSQT(X) is subtracted from 1 to
form the argument 1-FSQT(X). The square root
of this is taken and the function returns to
the xpuln program.

Obviously, by using the PDL concept., subroutines
may call themselves t:o any level (as long as there ±s
PDL space available). .

For most efficient core utilization, FOCAL uses
the same PDL intermediate storage for all subroutines.
To do this, one value (POP-8 word) is pushedldown at
a time. Values are 'popped' in the reverse order that:
they are 'pushed'.

An additional feature of a PDL is that it can be
used for temporary storage of variables in non-recurL
sive routines. One may consider the PDL as an exteri-
sion of page zero since it can be accessed from any page.

Dat:a Ac uisit:ion Techni

Data acquisition and experimental control situa-
tions are invariably real time problems. Since the
original high level languages were not designed to run
in real time, data acquisition tasks have historically
been accomplished using pure assembly level coding.
This approach was primarily dictated by the cost of
computers, which required multiprocessing and/or time
sharing of resources to maintain economic feasibility.
It was ridiculous to tie up a multimillion dollar
machine. with a dat:a acquisition task which only used a
fraction of the resources of the computer. Conse-
quent:1y, `when computer controlled data acquisition tasls
were undert:aken a special version of an operat:ing 8ys-
tern was usually written (in machine language) which ran
the experiment in real time while using' the rest of the
computer resources for other tasks„ With the advent of
the mini-computer it became possible to dedicate an en-
tire machine to data acquisition tasks. The machine
language approach was maintained at first beGause of the
absence of high-level languages around which to build a
control syst:em. As the flexibility and ease of use 9f
high-level languages became apparent, not to mention the
availability of these languages, dat:a acquisition tasks
were undert:aken more and more frequently in t:hese lan-
guages. Unfortunatelly, pore often t:ham not, th.e imple-
mentation of high-level languages on mini-computers was
accomplished by system programmers attempting to silnulate
as closely as possible the high-level languages of the
large scale computer. These programmers had been so far
removed from real-time programming approaches that often-
times I:he implementation of the language was not well
suited t:o real-time data acquisition tasks. 1n addition,
when the languages were adapted for data acqulsitlon, the
wrong approach was taken, leading to the widespread opin-
ion that interpreters and the like could not handle these
types of tasks. Before considering techniques of data ac-
quisitlon in high level languages some general s[a[ements
reguarding advantages of this approach should be given.

The primary advantage of using an interpreter is
the flexibility which may be gained. Machine language
coding, although more efficient in most ways. 1s such
a monumental undertaking and so difficult to modify
that programmers attempt to program the most general
case anticipated. Consequently, the number of para-
meters which need to be supplied to the program be-
comes cumbersome and usually some segment of the pro-
gram is not even used in a specific experiment. In
addition, event:ually there comes the Clme when the
experiment:allsc wlshea I:o do somet:hll|g out:side I:he
scope of the existing program but tends to use stan-
dard control algorithms purely because it is so dif-
£icult to modify the program. By this time, it is
also common for the author of the data acquisition
progran to be in parts unknown, which makes the task
of modlflcatlon almost insurmountable. On the other
hand, with an interpreter, programmlng the logical
sequence of steps to run the experiment is suffi-
ciep.tly simple that it is not unreasonable to change
the high-level language program for each and every
experiment. A§ long as the interpreter can communi-
Gate with the special hardware without prescribing
the acquisition technique there is almost complete
flexibility in the software. In addit:ion, since the
data acquisition program ls written in a high-level
language, the experlmentalist ls continuously aware
of exactly what functions he is performlng i.n acquiring
the data. Cert:ainly the degree of ''black boxiness"
of data acquisition should be minimized in a research
envirorment .

A second advant:age of using a high-level lan-
guage ls the reduction in software development Clue
and consequently cost. It is not unusual to spend
6 man-months to two nan-years in developing a moder-
ately sophist:icaced machine-language data acquisition
system. What is seldom realized is t:hat the majority
of t:he coding is concerned wit:h input: of parameters
to det:ermine how to run the data acquisition task,
calculations based on these parameters, reduction of
the dat:a, and outputing the results. The routines
which actually concern the external hardware irrvolve
typically legs than 10% of the total prograrming
effort:. By using an interpreter as the 90% base for
building a system, the effort required to produce a
sophisticated system is reduced, typically by an
order of magnitude.

For allnost all data acquisition systems, involving
a high-level language, some machine language codlng
must be added. The idea of a general purpose data-
acquisition high-level language is almost: preposterous.
FOOL/F, the subject o£ this paper, does not: really in-
trfed to be more than a basl8 for a data.acqulsitlon
system. The user must i= Some machine language
functions .or commands to do the actual data acquisl-
tion, otherwise the program ls inefficient and clumsy
at best. Probably one could not do what they vi8h by
simply using FOOL/F ulthou¢ modification. However,
FOOL/F is an attempt of a version of FOCAL which ls
easily modlflable (or plasclc). To my knowledge
there are very few (or no) examples of high-level
languages which are expressly intended to be modified.

Now that we have eat:abllshed the need for some
assembly level addltlons t:o the interpret:er let us
consider several classes of data acqui81tlon and con-
trol tasks.

1. I,ow Data Rates: This ls of cour'8e the easleBt
E=:ei5= =|=terpreter to haridle, and lt is
often assumed that thl§ ig the only case to
which an interpreter may be applied. We
chall put o££ trying ta refute this migaono
ception until following paragraphso It
should be noted Chat ln the field of research

almost 80°/a of the t:asks may be put in this
class. Physicists, for example, tend to
gravitate toward the barely doable problem
because those problens are t:he most: inter-
esting. In fact; if the experimentis not data-
rate limited it should probably be left to
those less fortunate in wealth of equipment.
Biologists, medical people, psychologists
and the like are dealing with relatively .
low data races due Co the nature of the
Blologlcal I.1fe Scale. oli occasion they
may be taking dat:a at high rates for smooth-
1ng purposes, but a more reasonable approach
might be to smooth during the process of
data collection, once again resulting in
moderate data rates. Enough said about t:his
class of applications.

2. Moderate !±£±E±£££: By moderate data rates
we are talking about 1-10 KC, probably in
short bursts. The reason I say short bursts
is that if the vol`rme of data ls large one is
probably not. expecting to do any analysis
and hence little feedback control of the
experiment. However one may be interested
in, Say, Several hundred to several thou-
sand pieces of lnformat:ion at 1-10 KC with
a relatively long wait bet:ween bursts of
data, in which analysis i§ undertaken. The
!g;gag approach to taking this data is to
link the data taking process (the ''time") to
the interpreter through t:he int:errupt ser-
vice routine. It is a result of this tech-
nique that interpret:ers are judged incapable
of performing these tasks. A more efflclent
technique is to set up the data collection
task in the interpreter by passing arguments
to t:he int:errupt service rout:ine and then
let: t:he dat:a collect:ion proceed ent:1rely
under interrupt control. when the task is
completed the` interpret:er can be informed
to proceed with analysis® A second method
is to set up the data collection argunerits
ln the high-level language and turn the
interrupt OFF for the duration of data
collection. Measurements may then be
passed to the high-level language for anal-
ysis after completion of I/o. In this manner
data collect:ion can proceed at full machine
language speedo wit:h Ilo speed Sacrifice
from the interpreter.

3. !±±8!| E±£± E±£±s: Fo.r cases wit:h high data
rates the lact:er technique discussed above
i8 the only reasonable approach. This o£
course ls true whether one ls using an in-
terpretlve language or machine language.
The one limitation ls the case where large
volumes of data are taken, contlnuou81y, at
a relatively high data rate. For these
cases one is not usually expecclng to do
any immediate analysis and ,probably will
liot do analy81s on a mlnl-computer ln any
event: .

Thus far little mention has been made about
hardware design to opt:imlze data acquisition or ex-
perimental control wi.th an interpreter. The avail-
ability of coxplex logical £unetiong that. integrated
clrcult technology has made possible coupled wit.n
decreasing core cost makes sophlsticnced data ac-
qulsltlon and control interfaces possible. Where-
ever it 1g possible the experlmentor should design
hardwa-re which allows the computer software to do
what it does best .1 make '1ogical decisions. For

5

example, when doing interval timing, it is relatively
inexpensive to design a clock which alerts the computer
after (computer) specified intervals. A Stepping
motor interface can either step the motor one time for
each IOT, or have a register which is loaded Wit:h I:he
total number of steps by a single I0T result:ing in
automatic hardware stepping of the not:ors. . SCope
display could utilize refreshed display via ddt:a
break or non-refreshed display via a storage scope.
High.rate data acquisition could be via data break
rather than under AC transfer. The Point that is
being made is that a kliowledge of bot:h hardware and
software should go into the design of any real time
system. The phrase "Hardware-Software Tradeoff" is
a very real one-.

Inside FOCLF

By effective utilization of some of the powerful
routines and subroutines ln FOCI,/F, additions of user
code tcy the interpreter may be rapid and efficient:.
The user, of course, must understand something about
the structure of FoCL/F and what the available sub-
routines do. The rest: of this document will be con-
cerned with descript:ions of the function of these
subroutines. It is intended that I:hese descriptions
be used only as a guide in the examinat:ion of the in-
ternal workings of FOOL/F. Those users who.wish to
make sophisticated additions or changes to t:he inter-
preter will need to examine the r6ut:ines for detailed
worlcings. Those users who wish to rnerely add sinple
functions should find these descriptions adequate for
their purposes, however it is strongly reccrmended
that no .one attempt to make modifications without
first consulting a listing.

As it is expected that most FOCI./F modifications
will be in the form of user written functions, Inost
users should perhaps skip to t:he section ent:itled
''Addit:ion of Functions". The ot:her sect:ions will more
fully explain some of the routines referred t:o in
that section.

It should also greatly inprove the learning
process to read this paper side by side with a listing
of the interpreter, although that is not required.
In the following paragraphs words in upper case will
usually refer to a mneumonics defined in the listing.

Although this paper refers specifically to FOOL/F,
most: of the discussions may be applied to the standard
FOCAL-8, or any other version o£ FOCAL. It will, of
course, be mandatory that t:he user obtain `a listlrig
of that: version they wish t:a modify ln order to find
which areas of t:his discussion apply. In developing
FOOL/F, the internal philosophy of FOCAL, as layed
out by rm. Merrill, has been followed, hence there
should be no philosophic variat:ions.

Fields-Core Layout

FOOL/F is an 8K version of FOCAL/69, or FOCAL-8.
The current version (12/1/72) is a§§embled to reside
in fields a and 1® The major body of the interpreter
resides in field I, termed the progran field or field
"P", and almost conplecely fills that field. The
interrupt service rout:ine, error recovery, extended
funct:ions, and the dynamically allocated storage re-
sides ln the text field or field "I". The dynanlcally
allocated area is oocupied by the user text:, push-
down stack, and variables. A schematic core map is
given in Figure 1.
Arlthmecic Rouclnes

FOOL/F does all of its arit:hmetlc operations with
a modified version of the Floating Point Package (FPP).

The standard package has been modified so t:hat .it
can be called from any field everi though lt resides
ln field P. There are two entry points; in both
cases t:he FPP must be entered with the data field
set to the field of call. These calls are:

and

CJ)F X / X=current field*10
CIF P / FPP in field P=1¢

JMS.I (FPNIX / enter FPP
XXX / pseudo FPP instructions

CDFX
CIFP
JMI I (FFT.

The ent:ry to FPNTX will initialize the floating data
field to be field P. . The floating data filed may be
changed at any time via t:he pseudo - FPP instruction:

FCDF X / X-desired field*10(8).

The pseudo - FPP instructions 'are:

FGET=0000

FAI)D.1000

FSUB=2000

FDIV=3000

FMUI.=4000

FPOW=5000

FPUT=6000

FNORM=7000

FEXT-'

FCDF=1

The order of t:he arithmetic instructions reflects
t:he prlori€y of arithmetic operands.

Other subroutines of use in arit:hmet:ic opera-
Clons are:

JMS I INTEGER

which truncates the floating accunulat:or (FLAG) to
a 23 bit signed tnt:eger and returns the low order
12 bits ln t:he AC. The converFe of INTEGER ls:

"S I (XFIX

which sets the FIAC to the 12
1n the AC. Note that: XFIX is
setup of the FI,AC but rather a
O<FI,AC<4096. And finally a ro
FIAC rf

i

iit integer contained

ot a signed integer
lows a range of
tine to negate the

JMS I MINSKI.

The at}ove t:hree rouclnes may only be called from
£1eld P, however from FIEI.D I the pseudo-instruction
FTINTG performs exactly like JMS I INTEGER and
F"INSKI ls the equivalent of MINSKI. the FPP may

be entered from field T via

Stack 0

FINT1=JMS I [FPNTX.

erations

As has been previc)ugly mentioned any recursive
language must have a stack or push-do n-list (IJDL).
Since 8-family machines do not have the hardware
facilities for stack operatic)ns these are accomplished
with subroutineg. It is important to renenber that
since stack operations are not accomplished with a
single instruction they may ±gji be used in the in-
terrupt service routine. The physical location of
the PDL in FOOL/F is shown schematically ln figure 1.
Anyone familiar with other versions of FOCAL (with
the exception of FOOL/S) will note that the stack
builds upwards in core from the Text area rather than
downwards f.ron top of core. The not:1vation for this
change is so that the command line may be appended to
text, result:ing in long command line capabilities,
and so that variables are not deleted when text is
modified. Text, variable§, and the PDL reside in the
same field so that there may be trade-off between
these areas for more

The PDL routine

PUSHA / Pu s

poe A. / Pap,
lth:he

PUSHF / PUS
AI)DRESS /at

I orit
pOpF / The

ADDRESS

PUSHJ / Sub
ADDRESS /put

/sub

POPJ / Sub

The aucoinde regisc
PDLm.

It should be no

effic!1ent core ut:ilization.

available are:

es the acctmulator onto the PDL

the top elemerit of the PDI. into
accumulator

ES three successive words starting
I)RESS (usually floating data)
the stack

reverse of PUSHF

outine call with return address
on the stack. ADDRESS ls the
outine address

outine return via top of stack

r used as the stack pointer is

ed that PoPA is effectively a

::::::::::;::::::::1':::::::::::::::i:::.:::#
t:nt:::c::o:i::interesting fact

is that t:he first
(or be warned against)
the POPJ subroutlne

is a POPA. Hence, if the AC is non-zero when doing
a POPJ, t:he return will be to the contents of the top
of the Stack p±!±± the accumulator. This may be ef-
fect:ively used for multiple returns from subroutlnes.

Argument: Evaluation

The routine which evaluates arithmetic expres-
sions is by necessity rec`irsive in riature. Unlike
compilers there is no line scanning to corrvert the
expression into Polish Notation. Instead the puBh-
dorm-stack 1§ used to defer some operations until
the.proper priority order ls established, while op-
erations already ln the correct order are lrmedlately
executed. Thus what is on t:he PDL at any time ls in
Polish Notation but does not necesgarlly contain the
complete expression at any one tine. Sinpllfled flow
charts of the EVALuatlon routine are contained in.the
appendix. The calling Sequence is:

PUSHJ /recursive subroutine call
EVAI. /Address of routine

Return

Upon return from EVAL the floating accumulator (FLAG)
contains the numerical value of the expression, the
terminating c!haracter is in CHAR, and SORTCN (See
SORTC in ''List Proc6§slng") is set to correspond to
the termina.ting charact:er. For example after eval-
uating ARcl in FT(3,ARC1,ARC2) a 11,11 ttill be ln CHAR
and SORTCN-14 (from the table "TERMS"), while after
ARG2 a ")" will be in CHAR and SORTCN=11.

When evaluating addit:1onal argunerLt8 1n funcclons,
as in FX(1,ARG1,ARG2), all temporary data must be
Stored in t:he PDL if the function is to be recursive.
That is to say FX(1,ARG1,FX(1,ARG3)) will only op-
erate successfully if the function is coded recursively®

The location preceeding EVAI. happens to be the
get a charact:er rout:1ne, GETC. Hence,. to move past
an argument separator, e.g. a corma, one may

PUSHJ
EVAL- 1 .

Other routines which evaluate arguments by
calling eval are:

PUSHJ
NXTARG

Return 1
Return 2

/ No next arg
/ Next arg evaluated.

this routine is for evaluating succesglve arguments
separated by corma's. Upon entering NXTARG, CIIAR is
tested for a colnma. If not present the first return
ls taken, ot:herwlse the rout:ine PUSHJs t:o EVAI,-1 and
takes the second return on completion. The rout:ine

PUSHJ
/RG

Return 1
Return 2

operates similar t:a NXTARG except that the FLAG i.a
trunc,ated to an integer before returning. Both re-
turns have the AC=).

For I:hose wlshlng to code functions in FIELD T, a

JMS I FTNXTARG

will perform similar to NXTARG with the following
notable exceptions. Chly one return is t:aken and that
is when there is another argument, if no`t FOCI,/F
dumps to I:he error rout.ine. And FTNXTARG ls E±gf re-
cursive. The non-recursively arrlses from the fact
that there a're no PDL subroutlnes ln FIEI,D T. Hence,
iJsers can only write non-recurs`{ve functions in FIEI.I)
T unless they want to also code s!t:ace subroutlnes.
this ls not a serious linieatlon since most special
application funct:ions are seldom used recursively.

Sorting

An interpreter works directly on source code:
1nterpretlng it, and executing the appropriate
rout:1nes as lt: goes. The sort:1ng comparison of char-
act:ers is the key to the interpreting process. FOCAL
derlve8 its e,fficlency from the direct way in which

7

it int:erpret:s code. Being JOSS-like. FOCAL needs to
do no line scanning, but rather exalnines characters
in a ''1eft to right" fashion. This is made possible
by the presence of a unique word for each command.
In addition, the requirement that only the first
characters in the command word specify the operation,
greatly reduces the number of character comparisons
which need to be made during execution.

FOCAL is list oriented with all comparisons
being between the current character, CHAR (or in some
cases the accumulator), and a list. The character
lists are all struct:ured with sequential unpacked
charact:ers (t:o speed up the sorting process) and are
ended with a negative number (bit a set:). The use o£
such lists in a page oriented machines like the PDP-8
family affords high core efficiency since such lists
may be Situated between "pages''. The subroutine§ for
sorting are:

SORTC

LIST-1
Ret:urn 1
Return 2

which compares the contents of CHAR to the list o£'
elements starting at LIST and ending with a negative
number. The subroutine return is to Return 1 i,f
CHAR is contained in the list, and to Return 2 if not.
If enAR is in the list the contents of SoRTCN con-
tains a number which when added t:o the address of
the top of t:he list:, IIIST. give the address of the
word that compared, i.e. SORTCN is the relat:ive
address of the positive comparison.

TESTN
RET1 /Period
RET2 / Other
RET3 /Numb er/

This is a variation of SORTC for comparing CIIAR against
a series of lists. There are three ret:urns. The first
is taLken if CHAR is a period ".'', RET2 is taken if
CHAR is not a pfriod or a number, and RET3 if CHAR is
a number. In addition if RET3 is t:aken then SORTCN
is t:he binary value of t:hat mmber. The AC must be
¢ when calling t:he above functions as well as

TESTC
RET1 / Terminat: or
RET2 /Number
RET3 /''F''
RET4 /Other

This routine takes four returns, similar to TESTN,
except different lists are used for comparisono For
t:he first: ret:urn SORTCN is set according to the list
TERMS (see appendix _). The second return ls as in
TESEN and the others are self explainatory.

Finally, there is a sorting and braliching sub-
routine which is used for most of the command int:er-
pretatian. This routine, SORTJ, has two lists as
arguments. The first list is the list of comparison
cords, and t:he second list is a list of addresses of

where control is to be transferred (via a JMP) if
there was a positive match. This routine

SORTJ
I,IST-1
LISTGO-LIST

Return /if not in list

may be entered wit:h the search character or word in
the accumulator. If the cont:elics of t:he accumulator
is zero the cont:ents of CHAR is used for comparison
to LIST.

By the use of these routines .complex branchilig
and flow may be accomplished.

Addition of Functions

The addition of functions to the interpreter by
writilig machine language roucilies is the most colnmon
way of modifying the interpreter (and the easiest:).
For details about routines and some of the discussion
continued in this section, t:he reader is referred to
other Sections.

F'unct:ions are detected (in EVAL) via the presence
of an ''F" beginning t:he function name. The single
exception is the variable F' which i§ t:he only legal
variable begirming with ''F" in FOCL/F. Upon detectiori
of the letter "F", characters are hash coded into a
number until the terminating left parenthesis "("
is detected. The hash code is constructed by first
clearing EFOP multiplying by two and adding I:he next
full 8-bit ASCII character of the funct:ion name. Not:e
that all combinations of characters may not be unique.
This hash coded name is compared to the list of
valid functions cont:ained in FNTABL for ai match via:

S ORTJ ,
FNTABL-1
FNTABF-FNTABL

The destination addresses (start of the function) are
contained in the table FNTABF. There are four unused
locations currently available in these tables, they
currently correspond to the function manes FAI)a, FNEW,
FCOM, and FN. Additional functions may be implement:ed
by replacing a nan-desired function. There are
currently available t:hree t:ypes of funct:ions. They
will be denoted by the words "normal", Field T", and
''FX'' functions.

Nomal functions must always start: in field P.
That is, the address corit:ained in FNTABF is a pointer
to a Field P location. Ingeneral, if a user wishes
to write a recursive function, then all coding con-
cerning argument evaluation should reside in Field
P and a normal function should be used. When a
function of any of the t:hree types is entered the
first argument has been evaluated and i§ in FLAG.
If additional arguments are t:o be evaluated, and a
recursive function is desired, all temporary vari-
able8 used in the funct:ion should be pushed onto
the PDI. via PUSHAs or PUSHFs before evaluat:ing t:he
next argument. There are three routines to evaluate
arguments, as previously mentioned® They are EVAI.,
ARC, and NXTRAG. Note that they must be called via
t:he stack by a PUSHJ. When the function is completed,
the functional value should be left in FLAG and a JMP
I EFUN3I executed. This function return checks for
the right pa.ren and nomalizes FLAG. Several

examples of normal functions are given in the appendix.
The Field T Functions reside in Field I. Since

the first argument is evaluated before the function
is entered any single argument functions are always
recursive in nature. As a result of the inaccessibility
of PDI routines in fieldT, multiple argument field T
functions are not recursive. To establish a link to
a field T functiin the function referenced in FNTABL
should be at FADC or below and the address in FNTABF.
should be the same as the other field T functions,
a.g. FCOS. A second list of actual destination
addresses resides in field T in the table starting
at FABI.E-2, t:he appropriate address should be placed
in this table. Upon completion of a function in
field T the pseudo-instruction LEAVE will preform
the appropriate return to EFUN3.

Subroutines available from field T are:
FTINTG=JMS FIXINT /effect:ive JMS I INTEGER

FINT1=JMS FPNIX frpp entry

FTERR /Error call

LEAVE /Function return

FPJMS= AIMS /Cross field subroutlne call.

The cross field subroutine call i§ a routine which
does an effective JMS I (Accumulat:or. The call is:

TAD (Subroutine address)
CIFP
FPJMS

Note that subroutlnes with multiple returns may not
be called via the FPJMS in§tructlon. Cme special
routine has been coded in field P to evaluate argu-
ment:s and return the integer part of the argument
(similar t:o the ARC subroutine), called by

TAD (FR S TARG
CIFP
FPJMS .

The third type of function is the FX functions.
The single function name FX has for its first argument:
a number specifying which sub function to call. These
functions must begin their coding in field P as ''normal"
functions do. The FX funct:ions are decoded via

FX, JMS I INTEGER /FX NUMBER
SORTJ

FXLIST-1• FXcO-FXI.I ST

FXNO, ERROR /*FX function not available

Hence, co implement an FX function the approprlace
address is entered in the li§C FXGO.

A final caution: the function return EFUN3
checks for a rlghc parentheses by testing SORTCN
which is set by EVAI, at the end of argument evaluation.
Thus, if the SORTC rout:1ne is used by the function,
SORTCN must be Saved and restored before t:he effective
Jrm I EEN31.

Space Requirements

FOOL/F has been developed to the point where it
appears t:o have few free core locations for adding
user coding, eapeclally in field P® The intent,
in development of FOOL/F, was to make the interpreter

9

as powerful as po.ssible, using all free space. .For
users wishing to add their own functions, it is ex-
pected that Some of t:he routines will no longer be
desired. For example, t:he FX routines will be un-
necessary once specific functions are coded to control
special hardware, the high-speed reader/punch routines
may be replaced, or functions may be added in field
T at Some sacrifice to the t:ext buffer. Those who
wish to delete some of the implemented routines
should take care t:o delete the entrys to those rou-
tines from FNTABF and CONGO. Some of the rout:ines
users are most likely to delete are

IGETC - high speed reader

IPUTC - high speed punch

LIT,LEN,etc. -device switching

the deletion of these routines frees core from abcut
14660-15377. The LIBRARY commands may` be removed by
putting ERROR5s corresponding to the I,IBRARY commands
ln COMGO, or a 7777(8)' in I0LIST. Deleting the FX
fuentions by removing appropriate entries 1n FXGO
frees the areas occupied by DECNX, DECOCT, OCTDEC,
FXCT, FCOR, and FAND. This will give approximately
another ZOO locations. Since coding can be written
so compactly using FOOL/F routines this is a usually
adequate amount: of storage.

Routines may, of course, be added in field T
at ,the expense of some of the text buffer. To free
core in field T, include the following in your coding

FIELD FP /FP=1

*BUFR ; ULINE1

*ENDT; ULINE1

*LINF.1

/INSERT USER CODING HERE

/END OF USER CODING

ULINE1,¢;0

For those users who wish to add coding to FOOL/F
with the PS/8 overlays there is both good news and
bad news. The bad news first: Much le.ss space is
available in field P. Those areas which are likely
candidates are OCTDEC, FCOR, FXCT, FANI), and others
which you must ferret out:. Implementacion of t:he PS/8
colrmands takes most of the space formerly used by the
LIBRARY corrmands. The good news is that: t:he field T
functions, including the table FABLE are saved j!±£E
programs ln the "PROGRAM" commands. Hence, programs
which need dat:a acqui§itlon routines may be called
with those functions necessary for data acquisition,
and programs needing extended functions for data
re,ductlon may be called with their functions. In
Chls way only Chose functions nece§§ary for execution
need be in core. Fo.r further informat:ion on formact:ing
of such codlng refer to a listing of the overlay
FOCFUN.

Page zero locations 172-175 in field P are avail-
able and numerous page zero loc=tlons in field T.
See program listings for speclfics.

SumriiarL±[o£ Ru.leg for Addition o€ Funeti±±qg

I. Normal Functions

1. Select an area of core, 1f necessary by de-
1eclng undesired funct:ions.

2. Enter function name in FNTABL and starting
address of function in FNTABF®

3. Write function: function is entered wi.th
first argument evaluated. Additional ar-
guments may be evaluated using calls:

PUSHJ ; EVAL

PUSHJ ; ARC

PUSHJ;NITARG.

Care should be taken to PUSII temporary vari-
ables before evaluating argument:§ 1f a re-
cursive funct:ion is desired. Care should
also be taken to restore SORTCN and CHAR lf
changed during execution.

4. Return from function via a JMP I EFUN3I with
function value in FLAG

11. FX Functions

1. Select an area of core, if necessary by de-
1eting undesired functions.

2. Enter funct:ion address in FXG0 corresponding
to the desired FX number in FXI.IST.

3. Write the function: function is entered with
the corrima following t:he FX function number in
CHAR and t:he function number in FI;AC. Pro-
Geed as in normal functions.

Ill. Field T. Functions

1. Eriter FCOS in appropri;te location in FNTABF
and function name in FNTABL. The location in
the t:able must be between FADC and FN. Put
starting address in appropriate location in
FABLE.

2. Free core if necessary in field T (see via dig-
cussion in text) or delet:e undesired function
(e.g. FRAN,FX4, FX5, FX6).

3. Write function: function is entered with
first arg`ment evaluated in FLAG. If addi-
tional arguments must be evaluated the func-
tion will ;!g± be reour§ive and the arguments
may be evaluated (as integers) by

TAD (FRSTjmG
CIFP
FPJMS .

If non-integer arguments are required put a
NOP(7000) in FRSTARGi4. The FPP may be en-
tered via

GDFT
CIFP
FINT1

4. Exit is via the pseudo lnst:ruction LEAVE with
function value ln FI.AC.

The TEXT

The text is stored in Core a8 Shown in figure_2..
Characters are Stored in 6-bit stripped ASCII, two
characters per word. For charact:erg which are not
in the basic 64 character set, an octal 77 followed
by the 6-bit code of that character is stored.

\

10

Viz. ''A I.INE 0F TEXT would be stored as

I AL(SR Nf :H)
/IJ I,
/NE
/(sp) 0
/F (SP)
/TE
/xT
/ (carriage return)

Note that carriage return would conflict with the
character "M" if not preceeded by a 77.

Lines of indirect program (numbered lines) are
physically located in the text area in the order in
which they were created. The order of the lines is
maintained through use of "Threading'' t:he lines.
That is, sotred with each line is a i]ointer to the
next sequent:ial line, according to the line number,
see figureLi.

In order to find a line, t:here fore, it i§ merely
necessary to pick-up the address of I.INE¢, which is
always fixed in Core (the comment line), and thread
the list until t:he appropriate line is found.

Subroutines used for handling the text buffer
are:

GETC /puts next character in CHAR

PACKC /packs CHAR into text buffer

GETIN /forms a line number from characters
/contained in t:he t:ext into LINENO

F|NCIN /search for a I.INEN0
RET1 /not found; set I,ASTLN,THISIN
RET2 /found; and TEXTP

ENI)LN /inserts a line in text by fixing up
/pointers

DELETE /deletes duplicate line and siphors

TSTGRP /SKIP IF AC=LINEN0

In t:he above routines, where ap|)1icable, t:he loca-
tion LINEN0 contains t:he sought for or assembled
line number, LASTIN points to the lesser and/or
last line compared to LINENO, THISLN points to the
found or next larger line, and TEXP are pointers used
by GETC to unpack characters. The t:hree locations
AXOUT, XCT, and GT" are the TEXTPolnters; AXour
pointing to the next word to be fetched from the text
buffer, XCT containing a zero or 7777(8) depending
on whet:her t:he next: character t:o be fetched is the lef I:
or right half respectively and GTEM cont:aims t:he
last]![g=± get:ched from the text buffer. The equiv-
alent locations used by PACKC are AKIN, XCTIN, and
ADD.

oth`er page zero locat:ions are intimately con-
cerned with text. BUFR contains the address of the
next free core location in which text may be added,
i.e. BUFR points t:o the upper boundary of the t:ext
buffer used for storage of t:he indirect programo
AXIN will of course point: t:o the last: 1ocat:ion filled
by t:he Command line and PDlm the top of the stack.
CFRS aontalns the address o£ line zero and is thus the
starting place for the Search for lines. ENDT con-
tains the start of the text buffer, not including
LINE¢. and is used to reset BUFR when an ERASE TEXT
or ERASE ALL is executed. B0TTqu contains the upper
limit of the entire buffer including PDI. and variables,

and FIRSTV points t:o the st:art of the variable t:able.
For a better feel for how these pointers define the
text area see figure i.

I/0 and Interrupt Processing

With the exception of PS/8 devices I/0 i§ con-
trolled by the interrupt service routine. The pur-
pose of handling I/0 with the ION is §o that input
and output may proceed in parallel with calculations.
Of course, there ig a limit to the amount of bu££e±ing
so that programs may get I/0 bound. There is a single
character TTY input buffer and a 16 character output
buffer. The interpreter communicates with the in-
terrupt processor through the subroutines

PRINIC=JMS I OUT

REAI)C = JMS I INDEV.

In FOCI./F there are two output devices, one
being the console terminal (TTY) arid t:he ''other" de-
vice. For the basic version the ''other'' device is
the high speed punch, and for the PS/8 version the
''other" device ls specified by a device handler.
The switching between these devices is accomplished
by the LIBRARY commands which change OUTDEV (which
is called by PRINTC). OurDEV is the routine XOUTL
for the console and OPUTC for the ''other'' .device.
The reader will not:e, from consulting the listing,
that before any I/0 is attenpted to a PS/8 device,
that a routine XWAIT ls called. This routine waits
for TTY inteyrup€ routine to empty the Try buffer and

t5878f8:v#:g±E8 :::
e user has a systeni

then turns t:he I0F. The Mot:i
IfiE-e-rfti6t.~of.i-i;vti
nave. an.-interrupt lenin which I/0 defyices are normally disconnected` fr6m

#er:gE::;:3ttf:ci#Ey;u#::t::! ::i;1::t!T: "
NOP, TTY ou.put: 1s buffer.ed by a 16 charact:er buffer
starting a.t IOBUF. When XOUTL is called it: checks
to see if the teletype is in progress by examining
the contents of TELSW in field T. If TELSW=¢ then
the teletype is not in progress and the character
i§ immediately typed, and TELSW i§ set to a nan-zero
number. If TEI.SW is non-zero then XOUTL exanine§ the
buffer to see if there is room to stash the character.
If not it waits until there is room, otherwise the
character is placed in the buffer. This buffer is a
circular buffer wit:h locations cleared as characters
are typed. Hence, there is room in the buffer if
the next location is zero. The two point:erg OPTRO
and OPTRI are output and input pointers to the buffer.
They are circulated by updating pointers a§ follows:

TAD OPTRO /PICK UP POINTER
IAC
AND 17
TAD OPTR¢

DCA OPTRO

/16 locations in buffer
/Top of buffer: ADD HIGH
/ORDER
/UPDATE POINTER

The reader will not:e that: this cauge§ I:he pointer

::d::rfu::::::t::::¢°:::¢z:::]?PTRwhgive:7£&)e!:::r:::t
service routine detects that the teletype is ready to
print another character and the I/0 bu££er is empty,
then it clears the flag and Sets TELSW=¢ to indicate
''not in progress''.

There are t:wo input devices ln FOCL/F. One ls
always the consol TTT and the other is t:he high s|]eed
reader or a PS/8-OS/8 device handler. As REAI)a calls
the input routine via a JMS I INDEV, the device

11

swit:chins is accomplished by filling INDEV with X133
for TTY input or IGETC for the ''other" device. For
t:he case of the high speed reader, JIGETC buffers the
input by a one page buffer® If t:he PS/8 overlay i8
being used IGEC calls ENAIT and t:hen buffers I:he out-
put into PS/8 blocks in field T.

As previously mentioned there is only a one
character input buffer for the TTY (called INBUF).
This location is cleared by X133 each time a char-
acter is fetched by FOOL/F. If a character is input
fr6m the TTY and the location ie non-zero then ati
exit: is taken to the error routine. The calling lo-
cation of this error is at KINTLth in field T. This
problem is usually encountered when inputting a pro-
gram or data\ from a paper tape in t:he TT¥ readero
Fortunately, PDP8/e owners can clear the TTY reader
flag without setting the reader run, hence an overlay
is available which will correct this problem. For
non-PDP8/e owners, t:his problem may not be overcome
as it ls in the hardware. Fort:unat:ely, by control of
t:he echo device in t:he LIBRARY comlnands, t:his error
exit may be circumvented for program irt.put. Note
that when inputting data via the ASK command the last
data point should be followed by blank leader-trailer
(or even turning the echo off will not correct the
overflow condition).

For users who wish to add to the int:errupt: pro-
cessor they may est:ablish a link to their skip chain
by using one of the user skip areas set up by FX(4,ARCS)
These skip rout:1nes follow USKIP, or EXIT in the in-
t:er=upt processor, (see t:he listing). There is a
useful routine available which will set the user de-
fined interrupt flag and exit fi.om t:he int:errupt
service r-outine, i£. this facility i§ desired. This
rout:ine is called by a "P I (UEX,IT. The user de-
fined inte-rrupt is a powerful way of corrmunicating
between the interrupt proce§§or and the user program.

The user defined interrupt is activated by the
presence of a non-zero number in core location USRINT-2
in field P. This location is checked whenever a
carriage return is encountered in t:he normal text
execution. If non-zero the current program is. in-
terrupted and the line or group specified by the
LIBRARY BREAK command is executed. Note that this
routine is not currently ne§tableo

ran Control

When in the command input mode (START through
IGNOR) characters are input from the input device
until the receipt of a carriage return. If first
input charact:er is a neumeric, the line is added to
the indirect: program text. If not: a neuneric t:hen
t:he co[nmand line is executed i[nmediately (INPUTX).
All information concerning prograln flow is contained
in the PDL, the TEXTPoint:ers, PC, and NAGSW.

The TEXTPointers (AXOUT, XCT, and GTEM) contain
the information necessary to "re[nember" where t:he
program is executing. NAGSW is a switch which de-
termines whether a single line, a group, or all is
being executed:

NAGSW=4000(8) for Single line

0001 for group

0000 for allo

The PC is FOCAL's "program counter" and conta.ins a
point:er to the beginning of the line which is being
currently executed. Note Chat: when executing se-
quential lines, the next line can be found by re-
placing PC wit:h t:he cont:ent:s of the core locat:ion
PC points to, viz.

C(PC) replaced by TAD I PC

(see indirect text format -FIGURE 2). When executing
the command line, in FOCI,/F, PC=77.

At the end of each complete command control is
transferred to PROC (usually via an effective JMP,
t:he except:ion is the FOR command which t:ransf ers
control via a PUSHJ). PROC, t:he primary cont:rol and
transfer coding, tests and o£ line by the presence
of a carriage return in CHAR. If a carriage return is
present then a POPJ is executed, if not then the next
command word i§ decoded and the appropriate routine
called. PROC, when deciding the cormand word, ignores
characters out to a terminator before branching.

If text execution is at t:he end cif a text line
then pushing NAGSW and PC will ''renenbed'where to re-
start t:ext exectuion. If at the end of a command the
TEXTP, and`CIIAR must also be pushed. If one wished to
execute a line or group from within a function or
when making up special commands, the D0 routine may
be used as it pushes the appropriate pointers. See
the coding of user defined functions (FNUM) or user
defined int:errupts (USRINT) in the listing for ex-
anples .

Variables

FOOL/F has two types of variables, "normal"
variables and arryed variables. It is important to
note that subscripted variables are Eg£ necessarily
arrayed variables.

A ''normal" variable is stored in core accor`ding
t:o figure 1, with 5 words allocated per variable. The
first word cont:ains t:he first two letters of t:he vari-
able name, left justified. The second word contains
the subscript, if no Subscript: i§ specified then the
subscript: that is stored is zero. Therefore, irl
FOCAL and FOCL/F,
variables. One

all variables are subscrl
will note, in verificat:ion of this fact,

that if A(50) is defined there is not necessarily an
A(i), A(2), eta. In FOCAI, the subscript is merely an
extention of t:he name. The ''norlnal'' variable format
is shown in figure i.

The routine which looks up variables ls GETARG or
GETVAR. The difference between these two entries is
that GETARG tests the leading character to make sure
it is not a neumatic. Both entries to t:he routirie must
be called via a PUSHJo This routine packs the variable
name (int:o AI)D) and evaluates the subscript if any.
Then a special routine, GSIP, is called t.o see if this
variable name is reserved as a special variable,
(discussed in later paragraphs)a If not, then the low
order twelve bits of the sut>script is st:ored, in XSUBS,
and the variable search is begun. The variable search
is begun, starting at FIRSTV and ending at either
PRIMEV (1f I:he variat]1e is a primed variable) or
BOTTOM (if a non-primed variable). If the variable is
found the pointer PTIR is set to the beginning of the
data (past the subscript) and the value of t:he variable
is copied into DATA in field P. The pointer PTl is
left: pointing to DATAo If t:he varia,ble is not in the
list, then t:he variable is created and initialized to
zero by adding to t:he beginning of the variable list
(at FIRSTV-5), and FIRSTV is reset: to the beginning
of the list. Finally PTl and PTIR are set as indicated
above. Exit i§ via a POPJ.

In the case that the variable na.me was reserved
for a special variable, an alternate scheme for finding
the variable i,s taken. Currently, these reserved
variable§ are true arrayed variables which are set
up by the VARIABI.E commands. These arrayed variables
are looked up using subscript computation and are
stored\ as three words per variable rather than five.

12

The routine used to do this variable lookup is. ARRVAR
and assoQiat:ed routines.

m§celaneous Routines

There are several utility routipes which sould
be mentioned as they may be found useful.

SPNOR: ignores spaces and AI."ODES;

RTL6: 'rotate accumulator left 6 places

ERROR: iexit to error routine, print error
message, and return t`o command mode.

ENDCOM: ends a command by ignoring characters
t:o next ; or carriage return,

IGNORE: ignores characters to the end of an.
I argument:. i.e. searches for ",".

PRNTLN: prints LINENO as a line number

Debugging

F
of XOD

V

availa
must b
XOD wi

This mo

L/F ha.s been coded so that a modified version
DECUS f}.Qq) may be used for debugging
sion of XOD must be assembled in field T
t:h break locations 2, 3, 4. This version is
e from the author. The following changes
made to the interpreter to avoid overwriting

FOOL/F variables

10031/7574
T0034 I 7 5] L
Tfjorol75]4

es BOTTOM so t:hat variables begin below HOD.

++

HOLro8+

If}OIma0/INIdm80/I

009P00ZPOO9EOOZE000€009ZOOZE

AENltld+AISHld+Hxlad+
NIXV+tlEna+LCINE:+DSHdD

HOIINON

{I{|uo8/sauou)•sHVAaEaiztltlv
SET8VIHizA'IVP¢tl0N

--,-.-,-

_#
•S¥VATVDOT

--..-,-,-,-,-fi
TGd:

(H3VLS)
ENITaNin¢HOD

ma9OHdLDEHIC[NITHNlrl
sNOILDmE

aHaNELXE
¢HNIT

LLSL
CV,

-

0090

.OSIN3

AtlEAODEHHOHHHHDIAHEsLdn2nlE[INI

0HEZEDvd

SUBROUTINES AND INTEENAI, ROUTINES
NEW INSTRUCTION.S

ROUTINE

PUSHA

POPA

PUSHF

POPF

PUSHJ

POPJ

GETC

PACKC

READC

SORTC

SORTJ

PRINTC

TESTC

TESTN

PENTLN

GETLN

FINDIJN

ENDLN

DELETE

TSTGRP

TSTLPR

RTL6

SPNOR

ERROR

EVAL

NXTARG

ARC

INTEGER

FPNTX

FPNT

XFIX

SETFLAC

EFUN3

CAI.LING SEQUENCE

PUSHA

POPA

PUSHF
ADDRESS

POP-F
ADDRESS

PUSHJ
SUBADD

POPJ

GETC

PACKC

READC

SORTC
LIST-i

RETRNI
RETEN2

SORTJ
LIST-I
IJISTG-I,IST

NOT IN I.IST

PR.INTC

TES,C
RETRNl /Term.
RETEN2 /Numb.
RETEN3 /F
RETEN4 /Letter

TESTN
RETEN| /„ . „
RETEN2 /Other
RETEN3 /Numb.

PENTLN

GETLN

FINDLN

ENDLN

DELETE

TSTGRP

TSTLPR

RTL6

SPNOR

ERROR

PUSHJ
EVAI,

PUSHJ
NXTARG

PUSHJ
ARG

JMS I INTEGER

JMS I (FPNTX

JMS I (FPNT

JMS I (XFIX

JMS I (SETFLAC

JMP I EFUN3I

EXPI.AINATION

Put contents of accumulator on top of PDI..
Add top of PDL to accumulator.
Push three words (or four) of data ontc> I>DL., starting
at ADDRESS.

Put top three (or four) words of PDL into cc>re
starting at ADDRESS.
Calls subroutine SUBADD recursively, putting return
address on top of PDL
Return from a recursive subroutine, by returnincr to
address on top of PDL.

Get next character into CHAR.
Pack next character (CHAR) into text buffer.
Read a character from INDEV into CHAR.

Sort CHAR against I.IST: return to RETENl if in list,
return to RETEN2 if not in list. SORTCN is set to
relative location in LIST.

•qort a,HAR or C(AC) aaainsL list: if in list branch
according to addresses in I.ISTG. if not in list return
to call+3.

Print CHAR or AC on OUTDEV.

Multiple return on CHAR attribute. Also ignores
spaces before tes+.ing next CHAR. SORTCN set.

Multiple return on CHAR attribute. SORTCN is set if
nTimber.

Print contents of LINENO
Unpack and form a I.INENO, set NAGSW.

Search indirect text for LINENO. Set THISLN, LASTLN
and TEXTP.

Insert line number pointers.
Remove old line number and siphon text.
Text contents of AC against LINENO. (SKP if =)
Skip if left-paren.
Rotate left 6 places.
Move past spaces and ALTMODEs.
Terminate execution and print error message.

Evaluate an arithmetic expression. Leave value in FI.AC.

Move past a "," and evaluate an argument, return to
call+2 if no "," found, call+3 otherwise.
Similar to NXTARri except truncate FljAC to integer.

Truncate FLAG to integer and return low order 12 bits
in AC.
Enter f loa€ing point package. Data field must be set
to calling field. Floating Data Field = field of call.
As above excetit Floating Data Field = field P.
Set FLAC to integer value of AC.
Set FLAG to integer value of AC and do function return.
Function return.]4

£:£:gE:§:Sg:E£: Siq®¢O-Oq-ia,-®qo u\
=€===£€=6===3€Ie . r- I.` Lr` ur` a - I- ® - ro u` ta- ,® ,® 1 - q a , - - tL t^ q ,a

'5

=£= ===== ==3=?==?#=€==
=S= ====S €=€==S==3Sa=£

14400
14401
i 4412
14493
144® 4
i 4 41 5
1449 6
1449 7
1441®
14411
14412
14413
14414
14415

4422
14423
I 4 42 4
I 4 42 5
1442 6
1442 7
1443e
14431
14432
14433
14434
14435
1446 6
!4437
14440
1444 I
14442
14443
14444
14445
14446
14447
1445,

C0fflLST9

323 "§
1123 ® E&77tig.+cos
3,6 "F

22®6 ®0&77tl ®.+-F
e311 „1
1111 coF&77tll0+-I
f3e4 „D

4 .0&77tlg®+"D
7"a
7 "O&77tl®9+"a
5.C-
S .0&77tllo+.C
I"A
I "§&77,I,,+"A
4e.I
4 "y&?7tl ee+"I
4.L
4 -I&77,I e®+"I
5.E
5 "R&77Si a.+4.I
7.W
7 e°R&77t| ®e+"V

®515 con
2215 ®O&77t! I.+"M
e32l eQ
392i " Li&77fl e.+"a
1322 "R
i®22 -E&77ti e®+-R
®317 e.0
2"7 "N&77tl..+"0
9326 „V
6426 "A&77tl.I+"V
25.2 °eR&77t| ©e+e'B
!®14 -E&77t!S,+"L
7?77 -I

777 rlH

/CORIMA#D DEC©DI#G LIST

/SET

/FOR

/IF

/DO

/G®TO

/COMMENT

/ASK

/TypE

zLIBfaARy

/ERASE

/WRITE

/"®Dg FY

/QUIT

/RETURN

/®« - 3 WAY D® BRA«CIf

/VARIABLE (ARRAYED)

/BRA»CM-MUST BE SPELLED OIIT
/LET
/EXPANDIBLE

/EXPA»D^BLE C®MMA«D§
/THIS LIST IS ENDED BY -Jfls I (IGNORE-

]6

11176
11 177
1121,
I 12,I
i 1212
11213
112,4
112®5
11296
112®7
11219
I 1211
1!212
11216
11214
11215

11221
I 1222
11223
11224
11225

/¢OMMAND ROUTINE ^DDRE§SES

COHGO.SET
SET
FOR
FOR
XIF

7456 XIF
e4g€ D0
94,e DO
®573 G®TO
¢573 coT®
®6.€ COMMENT
e696 COMMENT
1226 ASK
1226 ASK
!227 TYPE

47
214
2®4
034
134

13®3
!3,3
!77

1177
335,
335,
7452
7452

7S27
7527
7527
7527
7527

TYPE
LIBRARY
LIBRARY
ERASE
ERASE
XWRITE
XWRITE
MOD I FY
H®D I FY
START mETUR» TO COMMAND MODE vl^ .QulT®
START
XRETRN
XRETRN
0» /ON - 3 WAY D0 BRANCH
ON

VARIABLE
VARIABLE
XBRANCH /HOT ABREVIATED
LIBflAR
ERROF!5
ERRORS
ERRORS
ERRORS
ERRORS
ERROFt5
ERRORS

/LET FOR USER
/*COMMAND HOT
/*€®MM^BID HOT
/*C®MMA»D NOT
/*C®MM^WD »OT
/*COMMA»D NOT
/*COMMAHD NOT
/*Col"A»D NOT

17

DEFINED FUNCTI0fls
IMPLEME«TED.
EttpLEHEWTEDo
IMPLEM,=«TED.
IMPLEMENTED®
I MPLEM`E NTE D .
IMPLEMENTED.
IHPLE"ENTED.

EXPANDABLE COMMANDS

140S,
14©01

/LIST 0F COOED FUHCTIO# NAMES

g.e FNTABL=.
533 2533 /ABS
€5e 265e /§GN

14©25
14924
14925
1492 6
i A02 7
14®39
14931
14932
14933
14934

/LOG
/SIN
/COS
/SOT
/MEW

25G7 /COM
„40 /FIN
2672 /POUT
1316 /FN
9331 /X
TAD EFOP

4®23 FB=®
/F (evuLL)

/USER DEFINED FU»CTIO»§
/0

/LIST ENDED BY JMS 0UTCRLF
/NOTE THAT flAMES RAY BE HASHED VIA
;"At2+Bt2+st2- will GENERATE sAneE CODE
/AS ABoVE FOR eABS- 2565e
/NOTE: ALL Fu«cTION NAmEs AftE »oT u»IQUE'I!!

18

/LIST 0F FUNCTIO# ADDRESSES

1421,
I 42 I i
142 92
142®3
i 42 9 4
14295
14216
14207
i 42 i a
I 42 I I .
i 42 I 2
I 42 I 3
i 42 I 4
i 42 i 5
i 42 I C
i 42 I 7
1422,
14221
14222
14223
14224
1422 5
14226
I 42 2 7
142 3®
I 42, 5 I
14232
i 42 3 3
I 42 3 4

421g FNTABF=.
2106 NABS
2..2 XSGN
3C22 XINT
7512 XDY§
7527 ERRORS

4® FIN
42 Four
27 ERRORS
35FX
26 FNULL
65 FHUM
65 FNUH
65 FNUM
65 FNUM
65 ENUM
65 FNUM
65 FNUM
65 FNLJM
65 F»UM
65 F»UM

TERHS= ®

/ABS
/SIGN PART
/IHTEGER PART
/DISPLAY AND INTENSIFY
/*FADC FUNCTION NOT AVAILABLE.
/RAWD®M NuqBER
/ARC TAMGE«T
/EXPONENTIAL
/LOG
/TRIG FUNCTIONS

/SQUARE ROOT
;NEW;*F«Ev Fu»cTIOw NOT IMpi.EriENTED.
/COM /*FCOM FUNCTION NOT IMPLEMENTED.
/FIN
/Four
/FN /*FN FU»CTlo» NOT IMPLEMENTED.
/X
/ F(N ULL)
/ FJ ® F9

/TEF"IMATOR T
24, /SPACE

FOR

L-PARS

R-PARS

®EVAL' AID .GETVAR.

FLAVORS

/C.R. 17
/= TO Em GETARG m®H ®sET.

19

/EXAfflpLE 0F A FIELD T FUWCTIOW

8 I 6® 0
al 6© I
9 i ee 2
•3 I 6© 3

91
91

/XRANl® A FIELD T RANDOM NUMBER GENERATOR FOR FOCL/F

;crfe5#Ep2%¥7E§g#>tfa.i;yEa033L8I!6¥uMBER IN RANGE .-i
1271 XRANl, TADLSPR

81614
31615
al 616
Jl 617
al 62g
al 621
a I 622
a 1 62 3
8 I 62 4

2' I 62 7
Zl 63®
gl 631
al 652
al 653
al 634
31635
al 636
•3 I 63 7

Zl 640
31641
81642
31643

8165®
91 651
91652

81655
g1656
al 657

CLL HAL
^»D CONST2
DGA TEMPI
T^D uspR
AND [177
I TEMP i

TEMP 1
LSPR

AND [177
RTL
RTL
HAL
TAB MSPR
DCA TEMP2
§ZL
ISZ TEMpl

7410 CO#ST2, 749®

TAB
CLl-
SZL
ISZ TEMP2
S«P
ISZ TEMPI
MOP

CLL
TAB
DCA
TAI)
HAL
SZL
I§Z TEMPI
MOP
CLL
TAD
DCA
TAB

©1662
81663
81664
•al 665

HAL
TAD MAXSPR
TAB TEMPI
DCA MAXSPR
TAB MAXSPR
CLL RAE
CDF CIF P
DCA I FTFLAC+I

M5PR

20

3434
3432
5665
2,11 /
®®®, RAXSPR
ff®®, M§PR,
0,01 LSPR,
11,, TEHpl,
1010 TEHP2®

DCA I FTFLAC+2
DCA I FTELAC
JHP I ,+I

EFUN3

13600
i 3 60 i
I 3 69 2
I 3 6® 6
I 3 69 4
I 3 69 5
i 3 69 6
i 5 69 7
13610
13611

02®®1
92g12
92103
f2|®4
12,05
12Ce6
02©®7
2,19

12011
92g12
®2013

/FX FUWCTIOW DECODER

FXLI ST= ®

FX GO= ®

JMS I IWTEGER
SORTJ

FXLIST-i
FXGO-FXLI§T

ERROR

FCOR /FX(I,
FXCT /FX{2.
FAND /FX(3,
FX4 /FX (4.
FX5 /FX(5,
FX6 /FX(6®
FXWO /FX(7®
OCTANX /FX(8,
FXNO /FX{99
DECNX /FX{ I..

/*FX FU»CTI0M NOT AVAILABLE

/FIELD I FUNCTION TABLE

FTERR /*LJNDEFIWED. FIELD I FU«CTI0M
BLE= .+ i

XRANI
FTATN
FTEXP
PTLOG
ITS I H
FTCO§
FT§RT
FABLE-I
FABLE-I
FABLE-I
FABLE-I

JI_

/EXAMPLE 0F ADDED COMMAND

/COOING FOR 'BRANCH' COMMAND
/ "BRANCH #" WILL BRANCH T0 THE INDICATED LINE #
/ IF THE LAST INSTRUCTION EXECUTED BY THE FX.(2..„

)
/ FUNCTION DID NOT PRODUCE A SKIP®

|5635 1245
|5636 764g
13657 5777
|3640 454!
15641 1375
16642 5776
15645 453C
13644 5249
3645 0010

13646
13647
1365®
I 3 65 I
13 652
I 3 65 6
I 3 65 4
13655
I 3 65 6
i 5 65 7
13669
16661
I 3 6 62
13663
13664
13665
13666
13667
1367©

17512

17517 4453
|7520 co63
17521 76,®
17522 4566
17523 6957
L752`4 7391
|7525 5527

XBRANC, TAB SKPFLG
SZA CLA
JHP I (GOT0
SORTC

TLIST
JMP I (PROC
GETC
JMP .-4

SKPFLG, 8

/CHECK SKIP FL
/DID LAST FX{Z®".) CAUSE A skip?
/NO - TREAT BRANCH AS COTO
/YES - IGNORE UP T0 TERMI»ATOR
/TLIST CONTAINS TERMINATORS
/TERMINATOR FOUND=EXIT T0 PROC
/MOVE PhsT CHARACTER
/ANI) TEST NEXT®

/EXAMPLE OF FX FtJNCTIO».

FXCT® PUSHJ /GET FIRST ARC AFTER FX(I.a
NXTARG .

ERROR /*N0 ARGUMENTS IN FX(2,X,X).
JMS `1 INTEGER /FIX INSTRUCTION
PUSHA
PUSHJ

ARC
DCA FLAG+2
POPA
D€A .+3
DCA SKPFLG
TAB FLAG+2
g
ISZ SKPFLG

XFXIT, DCA FLAG+2
DCA ELAC+i
TAB (27
DCA FLAG
JMP I EFUN3I

/SAVE FOR ARC CALL
/EVALUATE 2NI) ARGUMENT

/NO 2ND ARGUMENT
/RECALL I»STRUCTIO»
/PREPARE TO EXECUTE IT
/CLEAR SKPFLG
/FETCH AC
/EXECUTE INSTRUCTION
/INDICATE M0 SKIP
/SAVE AC VALUE
/CLEAR I+I,GH ORDER PART

/SET NORMALIZATION CONSTANT
/TERMINATE "NCTI0N CALL

/FDIS(X,Y) DISPLAY FTHCTION

XDYS, JMS I INTEGER
PUSHA
PUSHJ

NXTARG
ERROR

JMS I INTEGER
6963
Cl.A CLL
POPA
6,57

/12-BIT INTEGER PART
/SAVE T0 MAKE RECURSIVE
/EVALUATE Y ARGUMENT
/-,- SHOULD BE NEXT
/*N0 Y VALUE IN FDIS(X,Y)

/MAKE 12 BITS
/LOAD Y (I. BITS)
/CLEAR AC TO L.OAP X'
/RESTORE X VALUE
/LOAD X AND INTENSIFY

CLA CLL
JMP I EFUN3I /RETURN T0 FOCLF

22

FOOL/F

COMMANDS

ASK [X,Y,"TEXTt .,., I I ACCEPT INPUT VALUES
BRANCH <Ll> GOT0 LI IF LA§T FX(2) I)ID NOT SKIP
COMMENT ®®®®®®®..®i®i®i®ii®®®®.®®®®|.®®®® IGNORE REST OF LINE

Do [Gl] „ SuBR0uTI»E CALL
ERASE [VARIABLES] DELETE NORMAL VARIABLES
ERASE <TEXT 0R Gl DELETE ALL TEXT 01 LIllES
ERASE ALL a..o „ ERASE 80" TEXT AND VARIABLES
FOR <X=El(,E2],E3>! ... COMMAND REPEATED I(ES-El)/E2t+I TIMES
COTO Ill I „ START PROGRAM EXECUTION AT LI
IF (El)ILl9L2,L3] CONDITI0WAl. GOTO
LET <F.:Gl> ASSIGM USER DEFINED FUWCTI0M
LIBRARY BREAK, <Gl> ASSIGN USER DEFINED INTERRUPT
LIBRARY ECHO.<DEV|CE> „ §WITcll Ecl+0 DEVICE
LIBRARy INpuT,-DEvlcE> a §wlTcn INpuT DEvlcE
LIBRARY OUTPUT,<l)EVICE> SWITCH OUTPUT DEVICE
MODIFY <l.I> `...... ® „®.. EDIT LINE LI
MOVE <Ll.L2> i..o...t.. EDIT LINE I.I IWT0 L2| KEEPING Ll
ON (El)[G|.G2.G5] „ COWI}ITIOWAL SUBROUTIIIE CALl.
PROGRAM <p--> PS/8 FILE COMMANDS
Quit slop pnoGI^M EXEcuTIOw
RETURN TERMIWATE DO §UBROUTIME
SET <X=El> o ASSIGN VALUE T0 VARIABLE
TYPE I El , -TEXT-® I , i a S, Z I ® OUTPUT
VARIABLE <---> t i ARRAY VARIABl.I SETUP
WRITE [Gl I LIST PROGRAM 0R LINE§

< > ENCLOSE REQUIRED TERMS. I I ENCLOSE OPTIONAL TERMS.
I 0R TWO LETTER ABBREVIATIONS MAY BE USED FOR COMMANDS." REPRESENTS A VARIABLE.

E2, AND E3 ARE ARITHMETIC EX.PRESSIO»§.
12. AND L3 ARE LINE NUMBERS.
G2
L2

ICH' DO-NOT BEGIIf WITH A NUMBER OR AN -A-.

AND G3 ARE LIllE OR GROUP NUMBERS.
L3,Gi,G2, AND ca MAT BE REPLACED By ARITHMETlc ExpREssloNs

IS A USER DEFINED FUNCTI0N (FI.Fl...„F9 ALLOWED).

23

ADVANCED COMMANDS

NOW-PS/8 VERSION

TELETYPE
LIBRARy mHo9 HIGHspEED

NONE

LIBRARY INPUT, TEL.ETYPE
HIGWSPEED

TELETYPE
LIBRARY OUTPUT, lilGHSPEED

BOTH

LIBRARY INPUT, REWIND

VARIABLE LIMIT9<# VARIABLES>
VARIABLE OPEN,<X>,<START>
VARIABLE CL.OSE,<X>
VARIABLES KILL

PS/8

TELETYPE
FILE
NONE

TEIETYPE
FILE

TELETYPE J
FILE
BOTH

INPUT [DEVS]<NAME[®EX]>
OUTPUT [DEVS]< NAME[a EX] >

VARIABLE MAKE,<# BLOCXS>,[DEVS]<NAME>
VARIABLE OPEN,<X>.[DEV8]<IIAME>
VARIABLE CLOSE,<X>
VAFilABLES KILL

PS/8 PROGRAM COMMANDS

PROGRAM CALL,[DEve]<NAME>[!cO"MAND sTRING] „ suBROuTINE CALL
PROGRAM DELETE9[DEVI]<NAME> ®..®..a.®®.®®.n„ DELETES FILES
PROGRAM EXIT TERMINATE "PROGRAM CALL-
PROGRAM GET,[DEV!]<NAME> ®..®® ® LOAD PROGRAM.
PROGRAM RUN,[DEVI]<NAME>[;COMMANDS] ®..®...a.. PROGRAM CHAIN.

FUNCTIONS

rs I N (A)
ro 0 S (A)
mTN(A)
FIX P (A)
FSQ T (A)
FA a S (A)
F(ARCS)
FT (AR G S)
Fl (ARCS)
F2 (AR GS)
F3 (A R G S)
F4 (AR G S)

FI TR (A)
FS G N(A)
FDI S (X , Y)
mAN()
FI H()
Four()

®,®

F.5(ARCS) .
F6(ARCS) .
F7(ARCS)
F8{ARGS) ®
F9(ARGS) .

®®,,

.... CORE EXAMINE

....... „ EXECUTE
LOGICAL AND

LR)®.® INTERRUPT
INTERRUPT EXAMINE

6,N) USER BUFFER FETCH
8,A).„.. DECIMAL T0 0CTAL
IB,A)„.. OCTAL TO DECIMAL

""u.a USER DEFINED FUNCTIONS

24

a

SYMBOLS AND CllARACTERS

t * / + -........ EXPONENT, MIILTIPLYi DI
()[]<> ENCLOSURES FOR ARITH
I ..®... OUTPUTS A CARRIAGE RETURN/LINE FEED - OR
•........................... OUPUT§ .STRING" -TYPE 0R ASK

...... ®® „ TABllLATI0N CONTROL -TYPE 0R ASK
•.......................... TYPE S-OUTPUTS SYMBOL TABLE.
........ ® ®.® FORMAT CONTROL -TYPE

.............. TRACE SWITCH
. . . ® . . ® ® . . ® ® COMMA ND TERMI NATOR

a ® ARGUMENT §EP^RATOR
ALTMODE a.® LINE CONTINUATION CliARACTERS STATUS 0F SPACE
CTRL& iiiioiioli|I.i| io END-OF-FILE CHARACTER
CTRL/a CHANGES SEARCH CHARACTER IN "M0I)IFY- OR -MOVE"
CTRL/L ...a. SEARCH FOR NEXT OCCURRENCE 0F SEARCH CHARACTER
LINE FEEI) ®... RETAIN REST oF LINE IN mol]IFy
RETURN ENDS COMthAND LINES

25

je--
C.

i=

