DECUS

PROGRAM LIBRARY

DECUS NO. FOCAL8-59
TITLE FOCAL OVERLAY COMMON AREA FOR 4K CORE MEMORY
AUTHOR Herbert Zimmermann
COMPANY Digital Equipment GmbH

Koln, Germany

DATE Submitted December 8, 1969

SOURCE LANGUAGE FOCAL

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

FOCAL OVERLAY COMMON AREA FOR 4K CORE MEMORY

DECUS Program Library Write-up DECUS No. FOCAL8-59

ABSTRACT
The common area is implemented with the function FNEW in the following way:
SET Z = FNEW(U, V, W)
U=1 means store into common area
U= 2 means fetch from common area
V =1 to 30 is the calling number of the data (storage area has a maximum of 30 datas)
W is the data in the floating point format
Two versions of the overlay tape are available:
1. For FOCAL without extended functions. The used area in core memory is 5071 g fo 53578.
2. For FOCAL with extended functions. The used area in core memory is 42718 to 45578.
The overlay "common area” is read in in a normal way:
Read in of FOCAL
Do initial dialogue
Stop computer
Read in of the overlay (SA = 7777)
Start at SA = 200
THE IMPLEMENTATION OF A "COMMON AREA" IN FOCAL WITH THE FUNCTION FNEW

The main function of a "common area” is to safe a set of data in a way that they cannot be erased
with a normal erase command.

Normally a "common area" is a prerequisite for chaining of user programs.
MINIMUM HARDWARE CONFIGURATION

PDP-8/1 or PDP-8/L (or computers of the PDP-8 family) with 4K memory,
SOFTWARE NEEDED

Binary loader
FOCAL version: DEC-08-AJAE-PB

DESCRIPTION

FOCAL consists of the interpreter program and the initial dialogue. Via the initial dialogue the
user tells the interpreter program whether he needs the extended functions or not. If the user types
"No" after all questions which are asked by FOCAL, he will have a user area from 32208 to 53778.
The content of the location 00358’ called Bottom, is used by FOCAL to determine the last free

address of the user area. Therefore the content of Bottom must be 5377,,.

8

If the user types "Yes" after all questions which are asked by FOCAL he will have a user area

from 32208 to 461 78. The content of the location Bottom will then be 46]78.

The additional function FNEW will be stored in the user area. Therefore Bottom must be corrected.
DEFINITION OF THE FUNCTION FNEW

With FNEW the user must be able to store and fetch a maximum of 30 datas with floating point
format in the "common area." The user must have random access to each data.

Therefore FNEW(U,V,W)

U =1 means store

U = 2 means fetch

V =1 to 30 means the calling number of the data
W is the data in floating point format.

Now we can write the following small program which asks for datas and stores them in the "common
area."

1.01 ERASE

1.03 FORV =1,30; DO 2

1.05 QUIT

2.05 ASK A(V)

2.10 SET U= 1;SET W= A(V)

2.15 SET Z= FNEW(U,V,W)
Z is a dummy variable

To get the datas out of the common area we may write the following small program.

1.01 ERASE

1.03 FORV =1,30; DO 2
1.05 QUIT

2.05 SETU=2

2.10 SET W= FNEW (U,V, Z)
2.15 TYPE %, W,

SHORT DESCRIPTION OF THE PROGRAM FNEW
(FOCAL without extended functions)

The common area is within the range of 52308 to 53778

1) Patch the address Bottom
The new value is 50708

Therefore *0035
BOTTOM, 5070
2) FOCAL must know where the start address of the new program is. The subroutine FNEW is
called XFNEW. When FOCAL has recognized FNEW in a user program it looks at the address

041 08' The content of this address must be identical with the start address of the subroutine XFNEW.

Therefore *0410
XFNEW

*5230
XENEW, XXXX

3) After FOCAL has recognized FNEW and found it valid it evaluates the first argument in the
parenthesis and provides the value of this argument for further action.

Question: Where can we find the value of this argument?

Answer: The value of the argument U is stored in the floating accumulator of the floating point
package. The floating accumulator has the following addresses:

00448 = FLAC

00458 =FLAC+ 1

00468 = FLAC + 2

Question: Which format has the data in the "floating AC?"

Answer: FLAC contains the exponent
FLAC + 1 contains the high order part of the mantissa
FLAC + 2 contains the low order part of the mantissa

Question: We don't need the floating point format. We need the integer value of the "floating
AC." How can we get the integer value?

Answer: After FOCAL has recognized FNEW, the program jumps indirect via address 0410, to
XFNEW. The integer value of the "floating AC" is transferred to the accumulator with the command:

JMS | Integer
therefore

XFNEW, CLA
JMS | Integer

Question: Where can we find the subroutine Integer?

Answer: The address 00538 contains the start address of the subroutine Integer

therefore INTEGER = 0053

This means if U =1 the accumulator contains value 000]8

4) After the Evaluation of U we have to evaluate the argument V

Question: How can we store the value of the argument V in the "floating AC?"

Answer: First we have to jump over a space which may be in the parentheses and a comma. This
will be done with

SPNOR
GETC

Both commands are subroutines which can be reached with indirect JMS. The addresses which
contain the start addresses of the subroutine are located in page g. Therefore

SPNOR = JMS | XSPNOR
= JMS | 160

= 45608

GETC = JMS | UTRA
= JMS | 145
= 4545

Now we evaluate the argument V with the commands

PUSHJ
EVAL

PUSHJ is a jump to the subroutine XPUSHJ. EVAL is an address which is used within the subroutine
XPUSHJ. Therefore

PUSHJ = JMS | XPUSHJ
= JMS | 140
= 5540
EVAL = 1613
After the execution of PUSHJ; EVAL the value of the argument V is in the "floating AC. "

5) After we have used the value of the argument V in our subroutine XFNEW we need the value of
the argument W.

Question: How can we store the value of the argument W in the "floating AC?"

Answer: Similar to 4)

- SPNOR
GETC
PUSHJ
EVAL

6) To get a data from the "common area" we must do the following. We store the data from the
common area in the "floating AC ., *

TAD Data 1/ Exponent

DCA FLAC

TAD Data 2 / High order mantissa
DCA FLAC + 1

TAD Data 2 / Low order mantissa
DCA FLAC + 2

JMP | EFUN

The return to the FOCAL user program is done by JMP | EFUN

JMP | EFUN

EFUN = 0]638

The command JMP | EFUN. is doing the following:

The "floating AC" will be combined with the variable name in the FNEW function and will be stored
somewhere in the user area

SET Z = FNEW()

after return
(FLAC

Z= (FLAC+1
(FLAC + 2

7)
Question: How can we type an error message on the teletype during execution of XFNEW?

Answer: We store the ASCIl sign, which we will type, in the accumulator and give the command
JMS | Outdev. After execution of JMS | Outdev return goes to the address after the instruction.

JMS | OUTDEV

OUTDEV = 00638

Question: How can we stop the execution of XFNEW?
Answer: With

JMP | FOST
FOST, 02008

FOST is the start address 2008 of FOCAL

8)

Question:

functions?

Answer:

9)
Question:

Answer:

10)
Question:

Answer:

1)
Question:

Answer:

How can we modify the program FNEW to use it with FOCAL with the extended

Modify:
Bottom
XFNEW
AM 1
AM 2
STTABL

If we need a smaller or greater "common area, " what can we do?

Modify:

Bottom

MMaxsp / negative, maximum data number
STTABL / start address of the common area.

How can we read the program "common area" into core memory?

Use RIM loader
Bin loader

FOCAL
Do initial dialogue
Stop the computer

Read in the paper tape binary FOCAL overlay "common area”
Start FOCAL manually with SA = 200

Where can we get additional information regarding to FOCAL?

Buy

Manual: Advanced FOCAL, technical specifications
DEC-08-AJBB-DL

FOCAL listing: DEC-08-AJAE-LA

Ask local software support specialist

If not enough, wait:

FOCAL is open ended, new informations will currently be issued.

LISTING
FOCAL OVERLAY "COMMON AREA"
FOR FOCAL WITH EXTENDED FUNCTIONS (4K)
PATCH ADDRESS 4476 FROM 7041 TO 7848

AM1 4550

AM2 4551

BOTTOM @35

CNTR 4555

EFUN31 #4136

END 4452

EVAL 1613

FLAC pg44

FOST 7200

FRTT 4457

FRT2 4502

GETC 4545

INTEGE @053

MMAXSP 4554

MI 4544

M2 4545

OUTDEV #@63

OUTH1 4453

OUTP2 4455

PNTRI 4552

PNTR2 4557

PUSHJ 454f9

P1 4546

QMARK 4547

QPRINT 4445

SPNOR 4568

STTABL 4556

UBUF 4543

VBUF 4553

XAMI 4517

XAM2 4531

XFNEW 443¢
*0f35

#4035 4278 BOTTOM, 4279
*A14

gag 4430 XFNEW
*4430

443¢ 7208 XFNEW, CLA

4431 4453 JMS | INTEGER

4432 3343 DCA UBUF

4433 1343 TAD UBUF

4434 1344 TAD MI

4435 7650 SNA CLA

4436 5253 JMP OUTHI

4437
4449
4441
4442
4443
4444
4445

4447
4458
4451

4452
4453
4454
4455
4456
4457
44¢f
4461

4462
4463
4464
4465
4466
4467
4478
4471

4472
4473
4474
4475
4476
4477
4500
4501

4502
4503
4504
4505
4506
4507
4518
4511

4512
4513
4514
4515
4516
4517

1343
1345
7650
5255
1346
4463
7200
1347
4463
7200
5652
B200
1350
5257
1351
5257
3352
4560
4545
4540
1613
4453
7450
5245
3353
1353
1354
7708
5245
1353
1344
7041
3355
7080
3353
2353
2353
2353
2355
5302
1353
1356
3357
4560
4545
4544
1613
5752

7200

QPRINT,

END,
ouThl,

OuTg2,

FRT1,

FRT2,

XAM1,

TAD UBUF
TAD M2
SNA CLA
JMP OUTP2
TAD P1

JMS | OUTDEV
CLA

TAD QMARK
JMS | OUTDEV
CLA

JMP | END
FOST

TAD AMI
JMP FRT1
TAD AM2
JMP FRT1
DCA PNTRIT
SPNOR
GETC

PUSHJ

EVAL

JMS | INTEGER
SNA

JMP QPRINT
DCA VBUF
TAD VBUF
TAD MMAXSP
SMA CLA
JMP QPRINT
TAD VBUF
TAD Mi

CIA

DCA CNIR
NOP

DCA VBUF
ISZ VBUF
ISZ VBUF
ISZ VBUF
ISZ CNTR
JMP FRT2
TAD VBUF
TAD STTABL
DCA PNTR2
SPNOR
GETC

PUSHJ

EVAL

JMP | PNTR1
CLA

4520
4521
4522
4523
4524
4525
4526
4527
4530
4531
4532
4533
4534
4535
4536
4537
A540
4541
4542

4543
4544
4545
4546

4547
4550
4551
4552

4553
4554
4555
4556
4557

1044
3757
2357
1045
3757
2357
1046
3757
5536
7208
1757
3044
2357
1757
3045
2357
1757
3046
5536

oy
7777

7776
9261

#4277
4517
4531

08

o
7741

i
4271

0y

TAD FLAC
DCA | PNTR2
ISZ PNTR2
TAD FLAC +1
DCA | PNTR2
ISZ PNTR2
TAD FLAC +2
DCA | PNTR2
JMP | EFUN

XAM2, CLA
TAD | PNTR2
DCA FLAC
ISZ PNTR2
TAD | PNTR2
DCA FLAC +1
ISZ PNTR2
TAD | PNTR2
DCA FLAC +2
JMP I EFUN.

INTEGER=£@53

UBUF, g

M1, -1

M2, -2

P1, #261

OUTDEV=0063

FOST=0204d

QMARK, #277

AMI, 4517

AM2, 4531

PNTRI, [}

SPNOR=4560

GETC=4545

PUSHJ=4540

EVAL=1613

VBUF, [/}

MMAXSP, 7741

CNITR, g

STTABL, 4271

PNTR2, [/}

FLAC=ig44

EFUN =g136

LISTING
FOCAL OVERLAY "COMMON AREA™
FOR FOCAL WITHOUT EXTENDED FUNCTIONS (4K)
PATCH ADDRESS 5276 FROM 7641 TO 7848

AM1 5350

AM2 5351

BOTTOM @35

CNTR 5355

EFUN 2136

END 5252

EVAL 1613

FLAC Ap44

FOST 5200

FRT1 5257

FRT2 5302

GETC 4545

INTEGE g¢53

MMAXSP 5354

M1 5344

M2 5345

OUTDEV #d63

OUTH1 5253

ouTg2 5255

PNTRT 5352

PNTR2 5357

PUSHJ 4548

P1 5346

QMARK 5347

QPRINT 5245

SPNOR 4560

STTABL 5356

UBUF 5343

VBUF 5353

XAMI 5317

XAM2 5331

XFNEW 523¢
*(35

2935 5076 BOTTOM, 5074
*410

g4 5230 XFNEW
*5230

5230 7208 XFNEW, CLA

5231 4453 JMS | INTEGER

5232 3343 DCA UBUF

5233 1343 TAD UBUF

10

5234
5235
5236
5237
5248
5241
5242
5243
5244
5245
5246
5247
5250
5251
5252
5253
5254
5255
5256
5257
526
5261
5262
5263
5264
5265
5266
5267
5278
5271
5272
5273
5274
5275
5276
5277
5340
5301
5302
5303
5304
5305
5306
5307
5318
5311

1344
7650
5253
1343
1345
7650
5255
1346
4463
7200
1347
4463
72080
5652
o200
1350
5257
1351
5257
3352
4560
4545
4540
1613
4453
7450
5245
3353
1353
1354
7700
5245
1353
1344
7041
3355
7008
3353
2353
2353
2353
2355
5302
1353
1356
3357

QPRINT,

END,
ouTdl,

OuTH2,

FRTI,

FRT2,

TAD Mil
SNA CLA
JMP OUTAI
TAD UBUF
TAD M2
SNA CILA
JMP OUT#2
TAD P1

JMS | OUTDEV
CLA

TAD QMARK
JMS | OUTDEV
CLA

JMP I END
FOST

TAD AMI
JMP FRT1
TAD AM2
JMP FRT1
DCA PNTRI
SPNOR
GETC
PUSHJ

EVAL

JMS | INTEGER
SNA

JMP QPRINT
DCA VBUF
TAD VBUF
TAD MMAXSP
SMA CLA
JMP QPRINT
TAD VBUF
TAD M1

CIA

DCA CNTR
NOP

DCA VBUF
ISZ VBUF
ISZ VBUF
ISZ VBUF
ISZ CNTR
JMP FRT2
TAD VBUF
TAD STTABL
DCA PNTR2

11

5312
5313
5314
5315
5316
5317
5320
5321
5322
5323
5324
5325
5326
5327
5330
5331
5332
5333
5334
5335
5336
5337
5344
5341
5342

5343
5344
5345
5346

5347
5350
5351
5352

5353
5354
5355
5356
5357

456§
4545
454
1613
5752
7200
1644
3757
2357
1045
3757
2357
10846
3757
5536
72008
1757
3044
2357
1757
3045
2357
1757
3046
5536

2208
7777

7776
9261

2277
5317
5331

v

v

7741

s
5071

sy

SPNOR
GETC
PUSHJ
EVAL
JMP | PNITR1

XAMI, CLA
TAD FLAC
DCA | PNTR2
ISZ PNTR2
TAD FLAC +1
DCA | PNTR2
ISZ PNTR2
TAD FLAC +2
DCA | PNTR2
JMP 1 EFUN

XAM2, CLA
TAD | PNTR2
DCA FLAC
ISZ PNTR2
TAD | PNTR2
DCA FLAC +1
ISZ PNTR2
TAD | PNTR2
DCA FLAC +2
JMP | EFUN

INTEGER=0053

UBUF, [/

M1, -1

M2, -2

P1, g261

OUTDEV=gs3

FOST=0200

QMARK, @277

AMI, 5317

AM2, 5331

PNTRI, g

SPNOR=456f

GETC=4545

PUSHJ=4548

EVAL=1613

VBUF, J/]

MMAXSP, 7741

CNTR, g

STTABL, 5071

PNTR2, g

FLAC=0d44

EFUN =0136

12

