

DECUS NO.

FOCAL8-60

TITLE

A SYSTEM FOR PRODUCTION OF PROBLEM SETS WITH INDIVIDUALIZED DATA

AUTHOR

H. Bradford Thompson

COMPANY

Department of Chemistry University of Toledo Toledo, Ohio

DATE

October 1969

SOURCE LANGUAGE

FOCAL

370

46

W

111

Sold Silver

ing terminal section in the section of the section

erge ger in Jahren die

0.0

A SYSTEM FOR PRODUCTION OF PROBLEM SETS WITH INDIVIDUALIZED DATA

DECUS Program Library Write-up

DECUS No. FOCAL8-60

ABSTRACT

The system produces problem sets for use in science and mathematics instruction, in which input data are changed for each student. Two programs are involved, (1) a FOCAL program into which the instructor inserts the algebra required to perform the calculations, and (2) a program which accepts a text with data positions marked, and then inserts individualized date from the FOCAL program (without the answers) and prints the copies. The system will work on any family-of-8 machine for which FOCAL is available.

1.0 INTRODUCTION

This system enables an instructor in a course involving calculations to prepare a number of sets of problems for his students. The problems have the same text except for varying input data. The type and complexity of problem possible is limited only by the imagination of the instructor and the very considerable capacity of the FOCAL programming system.

2.0 SYSTEM REQUIREMENTS

2.1 Hardware: Required: Basic PDP-8/I or equivalent plus ASR 33.

Useful: Extended memory. (See Section 4.3)

2.2 Software: Required: FOCAL (Any version having a random number function

(but see sec. 4.1).

Useful: Symbolic Editor; 8K FOCAL.

3.0 PROGRAM DESCRIPTIONS

Two programs are involved, a FOCAL program which calculates data and answers, and a Text-Assembly Program which introduces the data into a prepared text. The FOCAL program produces a tape bearing both data and answers. The Text-Assembly Program (TAP) discards from this tape everything but the answers, which it inserts into copies of the text printed on the teletype. Detailed descriptions of the two programs follow. Examples are presented in Section 5.

3.1 Problem-Set Generator (FOCAL)

- 3.1.1 Description: The FOCAL program consists of two sections (1 and 2) of basic text, plus statements prepared by the user for particular problems. Section 1 controls over-all program flow, determines the number of data sets desired, punches out leader, provides the loop containing the user's prepared statements, punches a terminating clue, punches trailer, then quits. Section 2 is essentially a random-number generator (See 4.1), producing a random number HI and a complementary value LO=1-HI.
- 3.1.2 Problem Preparation: The user must supply for the FOCAL program the limits to be set on the input variables, the algebraic and logical statements by which answers are obtained, and statements which print a table and punch a tape containing data and answers. The user-prepared statements must begin with section 3, and from there can use all of the higher section numbers allowed by the user's version of FOCAL.
 - 3.1.2.1 Random Data Generation. For each input variable, the user prepares a statement of the form

3.xx D0 2; SET X=HI*(upper limit)+LO*(lower limit)

thus producing a random value of X lying between these limits.

- 3.1.2.2 Answer Determination. Most commonly, the user will simply calculate each answer by SET statements. For complex problems, he has at his disposal the full arithmetic and logical power of FOCAL.
- 3.1.2.3 Data Output. The format of the output table must contain those clues required by the program TAP to distinguish data from format characters and answers. The basic requirement is quite simple: each item of data must be preceded by an = (as is normal in FOCAL), and each answer must be preceded by the letter A ahead of the = . The symbols A and = should not occur elsewhere on the tape. Further specifics regarding tapes are given in section 3.2.4. The symbols: and; should not be used immediately following the last digit of a datum, since they serve as special clues. They may be used elsewhere on a data tape. A typical data tape generation statement might be:

4.xx TYPE %5.02, !, ?X?, ? Y?, ? Z?, " A", V

where X, Y, and Z are data to be inserted in the problem texts, while the answer V will be printed in the FOCAL putput, but omitted from the texts.

The user may, of course, choose different formats for different numbers. He may output the data and answers intermixed, and have any number of data and answers, provided that (1) the data are typed in the order they are to appear in the text, and (2) each answer is preceded by an A. (Two or more A's will cause the program TAP to skip the corresponding number of output numbers.)

- 3.1.2.4 Program Testing. The algebraic algorithm and answer printing sections can easily be tested with data giving known answers if the program is written with this in mind. Most simply, if all the random data generation statements are included in section 3, followed by a "DO 4" statement, section 4, containing the calculation and output sections can be tested on-line. The test input data can be specified by an on-line (i.e., unnumbered) SET statement, followed by an on-line GOTO 4. An example of this technique is given in section 5.1.
- 3.1.3 Usage: After preparation of the required FOCAL sections, the program is started by a FOCAL GO command. In response to NO. OF SETS DESIRED: the user gives the number of individualized data sets wanted. The paper tape punch should be turned on immediately after typing the terminating character (space or carriage return) following this number.

The program will immediately begin turning out problem set data and answers. The punched tape will consist of

Leader: spaces (Code 240)
Data and Answers
A termination clue (= 99999:)
Trailer: spaces

The colon(:) terminating a number will halt the Text Assembly Program.

3.2 Text-Assembly Program

- 3.2.1 Description: TAP is a PAL III program which accepts a text tape in which the positions reserved for answers are indicated by @, then reads in the data tape from the FOCAL Problem Set Generator, abstracts the data, and inserts these values in copies of the text produced on the teletype.
- 3.2.2 Text Preparation: The text is printed using the DEC program DEC-18-U. Allowed symbols are:

Letters A to Z Digits 0 to 9 Symbols !"\$&'()*+-./:;<=>?

Other symbols will cause errors if included as text. Particular note should be taken that the symbols % and + cannot be used. The symbol @ is to be used only at the point where a datum is to be inserted. (The Form Feed tape symbol will also cause a break for a datum.) Text tape can easily be prepared using the DEC Symbolic Editor. Leader tape should be blank (produced by HERE IS). (Leader with the code 200 will produce a string of Y's.)

3.2.3 Usage: TAP is provided as a binary tape loaded in the usual manner with the BIN loader. It has two starting points, one for text readin and one for data readin and text output.

3.2.3.1 Text Readin.

- 1. Insert the text tape in the tape reader and turn on the reader.
- 2. Set SR to 0200, LOAD ADDRESS, START. Text will read in up to first @ symbol.
- 3. Press CONTINUE to read in subsequent text segments.

3.2.3.2 Data Readin, Text Output.

- 1. Insert data tape in the tape reader and turn on the reader.
- 2. Set SR to 0220, LOAD ADDRESS, START. Check first two or three text copies, then go to coffee.
- 3.2.4 Summary of Allowed Symbol Usage: The table below gives the allowed symbol usage on text tapes and in two different cases on data tapes. "Search Mode" means the data tape is being inspected for the letter A and the symbol =. "Number Mode" means an = sign has been encountered, and the data tape is being inspected for a datum.

Symbols	<u>In Text</u>	On Data Ta Search Mode	<u>Number Mode</u> ***
Letter A	Typed	Skip one = *	Terminate
Letter E	Typed	Ignored	Typed
B,C,D, F thru Z	Typed	Ignored	Terminate
+	Typed	Ignored	Typed
Digits 0 - 9	Typed	Ignored	Typed
=	Typed	Change Mode	Terminate
Space	Typed	Ignored	**
@	End Segment	Ignored	Terminate
:	Typed	Ignored	Halt Program
;	Typed	Ignored	Terminate Set
Other Symbols	See 3.2.2	Ignored	Terminate

^{*} Each time an A is encountered in Search Mode a counter is incremented which causes one = to be ignored. Thus "AAA" would cause the next three = to be ignored, and could cause the next three punched numbers to be bypassed.

When the terminating symbol is : the program halts. When the terminating symbol is ; the rest of the text is skipped and a new problem set is begun.

^{**} Spaces in Number Mode are ignored if they follow the = and precede any other symbol. Otherwise, spaces terminate the number.

^{***} When Number Mode is terminated, the program returns to the next segment of text, and the terminating symbol is saved. When the next @ is encountered, the terminating symbol is recalled, and if it is an A or an =, it is used as indicated above under Search Mode. However, if the end of the text is encountered, the saved symbol is discarded.

4.0 NOTES

4.1 Generation of the Random Number HI.

The FOCAL function FRAN is inadequate in two versions tested. In FOCAL.W (1968) FRAN had an annoying habit of repeating a value several times. In FOCAL, 1969, FRAN was apparently bounded in the rather unusual interval 0.5 to 1.0, and occurred nearly twice as often at the lower end as at the upper. In either case, the simple definition of HI in terms of FRAN given in statement 2.1 of this program produces a random number much better suited to this program.

If a version of FOCAL without FRAN is employed, statement 2.1 may be used with FRAN () replaced by some arbitrary six-number fraction.

4.2 Timing:

TAP is I/O bound by reader and printer speeds. A large number of copies will require essentially the teletype time needed to type them. The FOCAL program will be similarly limited by printer-punch speed unless the answer calculation is quite complex.

4.3 Versions and Modifications Tested:

The Program Generation System has been tested using FOCAL.W (1968) and FOCAL, 1969 in the 4K versions, and FOCAL, 1969 with the 8K patch. A standard tape has been constructed including the 8K patch and FWAT (see above), which is the present working version at Toledo. 8K FOCAL allows for a very extended set of problems, and is ideal for this system. However, the 4K version functions in a very satisfactory manner.

A modification using a fast tape reader and punch is planned.

```
*2
            READ,
3332
      0333
                       KSF
7773
      6931
                        JMP .-1
0004
      5003
0005
      6036
                       KRA
                        JMP I READ
9996
      5472
             /ALPHAMERIC MESSAGE INPUT (TO MATCH DEC 8-18-U
             /CALL: JMS ALPHIN
                    (ADDRESS)
                    RETURN HERE
             *23
             ALPHIN,
9929
      9999
                        3
3321
      7327
                        CLA STL
                                              /OBTAIN STORAGE ADDRESS
                        TAD I ALPHIN
3322
      1 423
                        DCA ADR
0023
      3071
9924
      2020
                        ISZ ALPHIN
0325
                        JMS READ
                                              /READ A CHARACTER
      4002
            READIN,
9926
                        TLS
      69 46
                                              /BLANK TAPE?
0927
      7450
                        SNA
0939
      5925
                        JMP READIN
                                              YES. IGNORE LEADER
9331
      1073
                        TAD CONST
                                              CVI
9932
      7459
                        SNA
                                              /CR?
9933
                                              /YES
      5361
                        JMP CR
9934
                        IAC
                                              INO
      7001
0335
      7453
                        SNA
                                              /FORM FEED?
                                              /YES
0036
      5063
                        JMP TSYMR
                                              / NO. LESS THAN 214?
0337
      7510
                        SPA
                                              /YES. ASSUME LINE FEED
07 49
      5961
                        JMP CR
09 41
      1974
                        TAD CONST+1
00 42
      9975
                        AND MASK77
                                              /OBTAIN 8-BIT CODE
00 43
      7450
                        SNA
                                              10?
0044
      5063
                        JMP TSYMR
                                              /YES
00 45
      7430
             JOIN,
                        SZL
                                              /RIGHT OR LEFT 8 BITS?
                        JMP RIGHT
99 46
      5054
                        CLL RTL
0347
      7106
0050
      7006
                        RTL
9951
      7006
                        RTL
0052
      3072
                        DCA CHAR
9953
      5025
                        JMP READIN
9954
      1072
             RIGHT,
                        TAD CHAR
0055
                        DCA I ADR
      3471
```

/KEYBOARD READ

ISZ ADR

9956

2071

```
STL
9957
      7123
                        JMP READIN
9969
      5925
                                              /GENERATE DEC 8-18-U
             CR,
                        TAD CRCHAR
9961
      1070
                                              /CR AND LF CODES
                        JMP JOIN
0062
      50 45
                                              /TERMINATE THIS INPUT
             TSYMR,
                        SZL
9363
      7433
                        TAD CHAR
0064
      1072
9965
      3471
                        DCA I ADR
                        TAD ADR
0066
      1971
                        JMP I ALPHIN
0367
      5420
             CRCHAR,
                        45
0070
      0045
0071
      0000
             ADR,
                        0
             CHAR,
0072
      9999
                        0
             CONST,
                        -215
0073
      7563
3974
      3214
                        214
0075
      0077
             MASK77,
                        77
0076
      0000
             CHARIN,
             *175
2175
      9929
             QALFIN,
                        ALPHIN
                                              /PLANT ADDRESS
```

ADR 0071 ALPHIN 0020 CHAR 0072 CHARIN 0976 CONST 0073 CR 0061 CRCHAR 0070 JOIN 0045 MASK77 0075 QALFIN 0175 READ 0002 READIN 0025 RIGHT 0054 **TSYMR** 0063

5.0 EXAMPLES

*C SAMPLE GAS LAW PROBLEM

5.1 Gas Law Calculation: In this simple problem the number of moles of an ideal gas are calculated, given the pressure, volume, and temperature

```
*W
C-FOCAL, 1969
01.20 ASK! "NO. OF SETS DESIRED", SQ
01.25 T !; F NQ=1,70; T " "
01.30 FOR NQ=1,SQ; DO 3
01.40 T %6.00, 99999, ":";D 1.25;Q
02.10 S HI=67*HI+FRAN(); S HI=HI-FITR(HI); S LO=1-HI
03.10 DO 2; SET P=.8*L0+1.2*HI
03.20 DO 2; SET V=22*L0+25*HI
03.30 DO 2; SET T=288*L0+295*HI
03.40 DO 4
04.10 SET N=P*V/(.08206*T)
04.20 TYPE %6.03,! ? P?, ? T?, ? V?, "
*C TEST RUN WITH CHOSEN INPUT DATA
*SET P=1; SET V=22.4; SET T=273
*GOTO 4.1
      1.000 T= 273.000 V= 22.400
                                   A=
                                         1.000 *
*C
   DATA RUN
*G0
NO. OF SETS DESIRED: 10
P=
     Ø.882 T= 293.867 V=
                           24.160
                                    A=
                                         0.884
P=
      1.151 T= 292.377 V=
                           24.139
                                         1.157
P=
      1.015 T= 289.675 V=
                           24.565
                                    A=
                                         1.049
P =
     1.046 T= 290.498 V=
                           24.575
                                   A =
                                         1.078
P=
     Ø.971 T= 291.238 V=
                           22.658
                                    A =
                                         0.920
P=
     1.172 T= 293.041 V=
                           24.554
                                    A=
                                         1.197
P=
     Ø • 835 T= 291 • 331 V=
                           23.247
                                    A=
                                         0.812
P=
     1.053 T= 294.756 V=
                           23.048
                                    A =
                                         1.004
P=
     0.933 T= 290.606 V=
                           22.241
                                    A=
                                         0.870
P=
     1.017 T= 288.414 V=
                           24.963 A=
                                         1.072=
                                                 99999:
```

SAMPLE PROBLEM PRODUCED WITH INDIVIDUALIZED DATA ON THE PDP-8/I

HOW MANY MOLES OF AN IDEAL GAS AT A PRESSURE OF @ ATM AND A TEMPERATURE OF @ DEGREES KELVIN WILL BE REQUIRED TO FILL A @ LITER CONTAINER?

SAMPLE PROBLEM PRODUCED WITH INDIVIDUALIZED DATA ON THE PDP-8/I

HOW MANY MOLES OF AN IDEAL GAS AT A PRESSURE OF 1.053 ATM AND A TEMPERATURE OF 294.756 DEGREES KELVIN WILL BE REQUIRED TO FILL A 23.048 LITER CONTAINER?

SAMPLE PROBLEM PRODUCED WITH INDIVIDUALIZED DATA ON THE PDP-8/I

HOW MANY MOLES OF AN IDEAL GAS AT A PRESSURE OF 0.933 ATM AND A TEMPERATURE OF 290.606 DEGREES KELVIN WILL BE REQUIRED TO FILL A 22.241 LITER CONTAINER?

SAMPLE PROBLEM PRODUCED WITH INDIVIDUALIZED DATA ON THE PDP-8/I

HOW MANY MOLES OF AN IDEAL GAS AT A PRESSURE OF 1.017 ATM AND A TEMPERATURE OF 288.414 DEGREES KELVIN WILL BE REQUIRED TO FILL A 24.963 LITER CONTAINER?

SAMPLE PROBLEM PRODUCED WITH INDIVIDUALIZED DATA ON THE PDP-8/I HOW MANY MOLES OF AN IDEAL GAS AT A PRESSURE OF 99999 5.2 Gas Sample Collected over Water: This example, provided by Dr. Duane F. Burow, uses two modifications worthy of attention.

```
*C-FOCAL, 1969
*01.20 ASK ! "NO. OF SETS DESTRED", SO
*71.22 FOR TC=13,49 ; TYPE 72.00,?TC?;ASK ?PT(TC)?
*01.25 T !; F NO=1,70; T " "
*01.30 FOR NO=1,50; DO 3
*01.40 T 76.00, 99999, ":";D 1.25;Q
*02.10 S HI=67*HI+FRAN(); S HI=HI-FITR(HI); S LO=1-HI
*03.10 DO 2; SET X=FITR(10.0*LO+390.0*HI)
*03.20 D0 2; SET Y=FITR(700*L0+750*HI)
*03.30 DO 2; SET TC=FITR(10*LO+40*HI)
*73.31 SET PW=PT(TC)
*93.49 DO 4
*04.10 SET V=<273*X*(Y-PW)>/(TC+273)*760
*04.20 TYPE %3.00,! ?NQ?, ? X?, ? Y?, ? IC?, " A", V
```

Note that the user wished to read in a table (vapor pressures of water at specific temperatures), and so introduced the line 01.22. He also desired to round off all data, and used the FITR function for this purpose.

Note also how Dr. Burow obtained problem sets with consecutive numbering by including "?NQ?" in his TYPE statement.

6.1 Problem-Set Generator (FOCAL):

01.20 ASK! "NO. OF SETS DESIRED", SO 01.25 T!; F NO=1,70; T" " 01.30 FOR NO=1,50; DO 3

01.40 T %6.00, 99999, ":";D 1.25;Q

6.2 Text-Assembly Programs: An ASC11 tape of TAP is available. It consists of three segments, a master segment at 0200, a version of DEC-8-18-u at 0100, and a text-input subroutine starting at 0006. Core from 0367 on is a text buffer, capable of holding approximately 7200 characters.

/PROBLEM SET TYPEOUT PROGRAM

			ADIN SEGMENT		
0200	69 46	*200	TLS		
0201	3213		DCA SEGCNT		/CLEAR SEGMENT COUNT
0202	1215	gn.	TAD BUFFER		POLEAR SEGMENT COUNT
0203	4341	INLOOP,			/READ A SEGMENT
0204	2213		ISZ SEGCNT		
0205 0206	3214 7402		DCA BUF2		9
0207	1214		HLT TAD BUF2		/AWAIT ANOTHER SEGMENT
0210	5203		JMP INLOOP		
0211	0000	BUFPTR,	0		
0212	0000	SEG,	Ø		
0213	0000	SEGCNT,	Ø		
0214	0000 0367	BUF2,	0		
0213	0301	BUFFER,	BFAREA		
aa0a	7000	*220			
0220 0221	7200 3333		CLA		
0222	6046		DCA CHATMP		/CLEAR CHARACTER HOLDOVER
0223	7300	BGN2.	CLA CLL		
0224	1213		TAD SEGCNT		*
0225	7041		CIA		
0226	3212		DCA SEG		/PLANT SEGMENT COUNTER
0227 0230	1215	NVTCES	TAD BUFFER		
0230	4361 3211	NXTSEG,	JMS CONTYP		/PRINT A SEGMENT
0232	2212		DCA BUFPTR ISZ SEG		
0233	5235		JMP INDIN		/GET A NUMBER
0234	5223		JMP BGN2		CET A WOMBER
0235	7240	INDIN,	STA		
0236	3331		DCA AKLUE		/INITIALIZE COUNT OF A'S
	1333		TAD CHATMP		11111111111111111111111111111111111111
0240 0241	1332		TAD M301		
	7440 5250		SZA		/TEST FOR A
0243	7240		JMP NOTANS STA		(AUGUED CO
	1331		TAD AKLUE		/ ANSWER SIGNAL RECEIVED
0245	3331		DCA AKLUE		/INCREMENT COUNT
0246	4324	SEARCH,	JMS READR		/INPUT A CHARACTER
0247	5240		JMP INDIN+3		
0250 0251	1337 7450	NOTANS,	TAD P4		
0252	2331		SNA		/SKIP UNLESS AN =
0253	5246		ISZ AKLUE JMP SEARCH		/ IF =, TEST FOR ANS
0254	4324	NUMBER,	JMS READR		
0255	3333		DCA CHATMP		
0256	1333		TAD CHATMP		
0257 0260	1334 7650		TAD M240		/SPACE?
0261	5254		SNA CLA JMP NUMBER		ACIAND THE TOTAL
	3237		Jeil NOMBEK	13	/SKIP INITIAL SPACES

PAUSE

0262	1333	NJOIN	TAD CHATMP	
	1335		TAD M3Ø5	/TEST FOR E
	7450		SNA	
Ø265	5314		JMP DIGPRT	
	1340		TAD P12	-
	7450		SNA	/TEST FOR;
0270	5223		JMP BGN2	/TERMINATE PROBLEM SET
0271	7001		IAC	
0272			SNA	/TEST FOR :
0273	7402		HLT	
0274	7500		SMA	/TEST FOR CODES GT 273
0275	5322		JMP NXTSG2	/ TERMINATE NUMBER
	1340		TAD P12	
	7500		SMA	/TEST FOR DIGIT
0300	5314		JMP DIGPRT	
	7001		IAC	
			SNA	
	7450		JMP NXTSG2	
	5322		TAD P3	/AC=CHAR CODE-254
	1336		SNA	7110-01,111 0002 00 1
	7450		JMP NXTSG2	*
	5322		SMA	
	7500		JMP DIGPRT	/- OR •
	5314			7 - OK •
	7001		IAC	/TEST FOR +
	7640		SZA CLA	YIEST FOR Y
0313			JMP NXTSG2	/PRINT CHAR
	7200	DIGPRT,	CLA CUATMB	FRINI CHAN
0315	1333		TAD CHATMP	
	6046		TLS	
	4324		JMS READR	
0320	3333		DCA CHATMP	
Ø321	5262		JMP NJOIN	
	1211	NXTSG2,	TAD BUFPTR	
0323	5230		JMP NXTSEG	*
			_	
0324	0000	READR,	0	
0325	6031		KSF	*
0326	5325		JMP1	
0327	6036		KRB	
0330	5724		JMP I READR	
0331	0000	AKLUE,	Ø	
0332	7477	M301,	-301	
0333	0000	CHATMP,	0	
0334	7540	M240,	-240	
0335	7473	M305,	-305	
0336	0003	P3,	3	
Ø337	0003	P4,	4	
0337	0012	P12,	12	
W 3 40	2100	1 1 6 9		

PAUSE

0177 0364 QALPTR,

ALPTR

```
/CALL: JMS CONALF WITH STORAGE ADR IN AC
           /(AC) ON EXIT = FIRST UNUSED ADDRESS
           QMESAG=176
           QALFIN=175
0341
     0000
           CONALF,
                    0
0342 3347
                     DCA ALFPTR
0343 1357
                     TAD INSTRI
                                        /PLANT PRINTOUT CALL
                     DCA I ALFPTR
0344 3747
0345 2347
                     ISZ ALFPTR
0346 4575
                     JMS I QALFIN
0347 0000 ALFPTR,
                     Ø
0350
     7001
                     IAC
0351
     3347
                     DCA ALFPTR
0352
    1360
                     TAD INSTR2
                                       / PLANT PRINTOUT RETURN
0353 3747
                     DCA I ALFPTR
0354 1347
                     TAD ALFPTR
0355
     7001
                     IAC
0356
     5741
                     JMP I CONALF
0357 4576 INSTR1,
                     JMS I QMESAG
0360 4577 INSTR2,
                     JMS I QALPTR
           /CALL: JMS I CONTYP WITH STORAGE ADDRESS IN AC
           /(AC) ON EXIT = NEXT BUFFER ADDRESS
0361 0000 CONTYP,
0362
     3364
                     DCA ALPTR
0363 5764
                     JMP I ALPTR
0364 0000 ALPTR,
                     Ø
0365
     1364
                     TAD .-1
0366 5761
                     JMP I CONTYP
0367 0000 BFAREA,
                     Ø
           *177
```

/CONSECUTIVE ALPHAMERIC ARRAY READ AND TYPE

PAUSE

AKLUE	0331
ALFPTR	0347
ALPTR	0364
BFAREA	0367
BGN2	0223
BUFFER	0215
BUFPTR	0211
BUF2	0214
CHATMP	Ø333
CONALF	0341
CONTYP	0361
DIGPRT	0314
INDIN	0235
INLOOP	0203
INSTR1	0357
INSTR2	0360
M240	0334
M3Ø 1	0332
M3Ø5	0335
NIOLN	0262
NOTANS	0250
NUMBER	0254
NXTSEG	0230
NXTSG2	0322
P12	0340
P3	0336
P4	0337
QALFIN	0175
QALPTR	0177
QMESAG	0176
READR	0324
SEARCH	0246
ŞEG	0212
SEGCNT	0213

/MESSAGE TYPE-OUT *100 MESAGE. CLA CMA TAD MESAGE DCA 10 TAD I 10 DCA MSRGHT TAD MSRGHT RTR RTR RTR JMS TYPECH TAD MSRGHT JMS TYPECH JMP MESAGE+4 MSRGHT, TYPECH, AND MASK77 SNA JMP I 10 TAD M40 SMA JMP .+3 TAD C340 JMP MTP TAD M3 SZA JMP .+3 Ø133 TAD C212 JMP MTP TAD M2 SZA 51 42 JMP .+3 01 40 TAD C215 JMP MTP 01 42 TAD C245 01 43 MTP TSF JMP .-1 01 45 TLS CLA JMP I TYPECH

/DIGITAL 8-18-U MODIFIED

```
0150
       0077
              MASK77,
                         77
0151
       7740
              M 40,
                         - 40
0152
       0340
              C340,
                         343
0153
       7775
             M3,
                         -3
0154
       0212
              C212,
                         212
0155
       7776
             M2,
                         -2
01.56
       0215
              C215,
                         215
0157
       0245
              C245,
                         245
                         *176
0176
      0100
             QMESAG,
                         MESAGE
             PAUSE
C212
         0154
C215
         0156
C245
         0157
C340
         0152
MASK77
         0150
MESAGE
         0100
MSRGHT
        0116
MTP
        0177
M2
        0155
M3
        0153
M49
        0151
QMESAG
        0176
TYPECH
        0117
```