
An E-A world exclusive project:

Build your own
digital computer!
This is the first of a series of articles describing a complete general
purpose stored-program digital computer. Designed specifically for

home construction, the computer has an instruction repertoire which
includes all of the basic instructions available on most modern mini-

computers. Despite this the cost has been kept down to a level far

lower than any commercial machine, and the construction made very
straightforward by having virtually all the wiring on printed boards.
These features should make it an ideal project for anyone keen both to
learn in detail how a computer works, and to have a small computer
with which to gain experience in programming.

by JAMIESON ROWE

A few years ago when I first became
interested in digital electronics, one of the
things I found was that there were precious
few introductory books on the subject —
and not many of these were both readable

and satisfying. This made the going very
tough, and it was because of my own
difficulties in getting to grips with the

subject that I subsequently wrote the series

of articles which became our handbook
"Introduction to Digital Electronics."

That book has been very popular, with
more than 11,000 copies having been sold

to date. It has become widely used as a text

and reference in schools and technical

colleges, and although it is now in need of

updating I believe it has been of some value
in helping others to gain an insight into the
basic ideas involved in digital circuits and
their operation.

There is one section of the book,
however, that I am aware is likely to be
found less satisfying than the rest: that

dealing with the digital computer. While I

believe this section goes a little further than
is found in many basic works on the subject,

it is still likely to leave the serious reader with
a great many questions about the actual

design and operation of a stored-program
machine.

Basically I think this shortcoming
reflected my own modest understanding of

these matters, at the time the book was
written. And to this day there are very few,
if any, books or other sources from which
one can get more than a superficial un-
derstanding of the real "nitty gritty" of

computers.
Happily in my own case I was lucky

enough to have the opportunity to gain first-

hand insight into computer operation and
programming. Thanks to the generosity of

one of our parent companies, John Fairfax

and Sons Ltd, and the friendly co-operation

of their EDP Managers and staff, I was able

to spend many hundreds of lunch-time

hours writing programs and running them
on their Digital Equipment PDP-8
minicomputers.

It was this extremely valuable experience

which allowed me to finally grasp many of

the points about computer operation which
had never quite emerged from reading

books. Truly, there is no real substitute for

"hands on" experience, at least as far as the

basic operation of computers is concerned!
However there was still one whole area

into which even this experience had' not

provided insight, even though it had laid a

very worthwhile foundation: the actual

electrical design of a computer. And being

an incurably inquisitive person, this naturally

became the most intriguing aspect of all.

If, like myself, you've ever tried to get

hold of the circuits of a minicomputer, with

a view to finding out just how they function

in fine detail, you'll probably agree that this

is a well-nigh impossible task. I have never

found such circuits in any textbook, nor

have I been able to find them in any of the

voluminous manuals which seem to ac-

company the machines themselves. I can
only assume that the manufacturers prefer

to keep the exact details to themselves and
their servicing people.

There seemed to be no option, then, but

to sit down with some modern digital 1C

data books, and design my own small

computer based purely on a knowledge of

general operating principles.

This, then, is the story behind the project

itself. It has been a very interesting and
challenging one, and I believe that it has

taught me a great deal about the general

principles of small computer design. I hope
that at least some of these rewards may be
passed on to readers, as a result of its

description. I have spent considerable effort

in trying to ensure that construction of the

unit itself will present as few problems as

possible, and will be doing my best in these

articles to help the reader get the most
benefit from the overall exercise.

But enough of this preamble. By now, the

reader is no doubt wondering if I am ever

going to get around to introduce the gadget
itself!

Perhaps the best way to start is by
describing the computer as a scaled-down
version of the Digital Equipment PDP-8
machine —at least, in terms of its instruction

repertoire and basic console layout. It has
the same eight basic types of instruction,

and for convenience I have used the same
mnemonic names and similar coding.

A view of the “works" of the computer, taken before it was fitted into the case. Virtually all

of the wiring is taken care ofby the PC boards.

42~ ELECTRONICS. Australia, August, 1974

About this unique project . . .

Our description of this project is, we believe* a unique and historical event in the

development of popular electronics journalism. To the best of our knowledge it is the

first time, anywhere in the world, that a complete general purpose stored-program

digital computer has ever been described for home construction.

We believe it is particularly fitting that Electronics Australia is the first magazine to

publish such a project. As one of the longest established electronics magazines in the

world, it has always played a leading role in the do-it-yourself project and learn-while-

you-build tutorial fields, and this project marks a milestone in both these areas.

We are also proud that the project has been developed wholly by Editor Jim Rowe,
a member of the E-A staff for nearly fifteen years. Although the project has been

developed almost entirely in his own time as a "labour of love", it continues the

tradition which we have carefully built up over many years: that of describing as many
projects as possible which have been developed by our own staff, thoroughly tested,

and which therefore may be tackled by readers with confidence.

We believe this policy has piayed an important role in establishing E-A as the

leading electronics magazine in Australia, and one of the leading magazines in the

world.

This project will, we believe, have a particularly strong appeal not only for in-

dividuals, but also for high schools, technical colleges and other training establish-

ments. This is because it provides both a means of learning in detail the exact

operation of a modern stored-program digital computer, and also the opportunity

(when the computer is completed) of gaining direct experience of computer operation

and basic programming.
There have been many books published which cover the general field of digital

electronics, our own "Introduction to Digital Electronics" included. Similarly there

have been numerous logic training devices described, like our own Logic Trainer of

March and April 1973. However apart from giving the enthusiast a general idea of the

basic modules used in digital computers —such as shift registers, binary adders, and

logic gates, these books and devices generally reveal little of how a digital computer is

actually put together, and the detail of how it works.

To be sure, one is told that these basic modules are used to make up the broad

sections of a computer, such as the "arithmetic unit", the "control unit" and the

"memory unit". But little has been said of just what these sections comprise, and

exactly how they interact with one another to produce an operating stored-program

machine.
It was because Jim Rowe himself found these intriguing "fine details" of computer

design and operation inadequately explained, that he decided many months ago to

tackle the design and construction of a small computer for himself, He believed that

by doing this, he would not only learn these elusive secrets for himself, but would also

as a result be in the ideal position to pass them on to others.

In addition, there has been the second strong motivation for describing a low cost

do-it yourself computer: the fact that, for the first time, this will enable almost

anyone to sit down with a computer and obtain the "hands-on" experience which is.

so essential for a full understanding of how these revolutionary machines work.

As anyone who has ever played with a computer will tell you, there is absolutely no

substitute for this sort of experience. Until one has actually played with a computer,

these machines will always remain partly clouded by an element of awe and disbelief.

Modern minicomputers are very much lower in cost than the first computers, but

they are still rather too costly to make them sufficiently accessible to all who really

need this "hands-on" experience: the private individual, the school pupil, and the

college student.

It is our firm belief that Jim Rowe's little "EDUC-8" computer will play an im-

portant part in bringing computer technology down to these very people. For it is not

only a do-it-yourself construction project but a means of providing a small, yet fully

operational computer within the reach of almost everyone's pocket.

This has not been done purely because of

my own initial experience with the PDP-8
family of machines, nor out of a simple

desire to flatter the Digital Equipment people

— although they have undoubtedly played,

and are still playing, a leading role in

developing minicomputer technology. While

the design no doubt reflects in good
measure my familiarity with these machines,

and I am happy to pay tribute to the

eminence of DEC, this superficial plagiarism

has been done for a far more down-to-earth

reason.

The fact is that Digital Equipment has led

in the minicomputer field right from the

start, and there are many more DEC
machines in use than any other. Therefore

the chances are great that if the reader, after

building my little computer and gaining

experience with it, has the opportunity to

graduate to a commercial machine, it is

likely to be a DEC machine. By making the

operation of my machine as similar to a

PDP-8 as possible, I hope that this transition

to bigger and better things will be made
easier.

I should perhaps add that most
minicomputers have a great deal in com-
mon, so the fact that our machine is styled

on the PDP-8 should not be seen as making

it too specialised. In fact if the reader builds

up this machine and uses it to get a solid

grounding in basic computer operation and
programming, he or she should find very

little difficulty in making the transition to

almost any brand of commercial
minicomputer.

Essentially, then, this computer is rather

like a PDP-8 and other modern minicom-

puters, except that it is a good deal smaller.

Not so much in terms of physical size,

because the latest generation of

minicomputers are quite small themselves.

The contrast is more in terms of circuit

complexity, which has been scaled down
both to reduce the cost and to bring the

whole size of the project within the scope of

a single individual.

Probably the most obvious difference is in

terms of memory size, and this is because
the memory is the most costly part of any
computer. Whereas most modern
minicomputers have a memory with at least

a thousand or so storage locations, the

memory of this machine has only a modest
thirty-two.

While this much smaller memory capacity

would make the machine of very limited use

in practical computing applications, don't

assume from this that it is purely a toy. A
memory of 32 locations is entirely adequate
for demonstrating virtually all aspects of

basic computer operation and program-
ming.

In fact, it is surprising just how complex
and powerful a program one can fit into a

memory this size, as I have been
discovering! And in a very real sense, the

small size of the machine's memory makes
programming that much more of a

challenge. It is relatively easy to write a

program to perform a certain task, as any
experienced programmer will tell you — the

real trick is to achieve this end as

economically as possible.

With a memory of only 32 locations, one
cannot help being steered automatically in

the direction of economic programming!
This is not to say, of course, that a larger

memory would not have been desirable. A
larger memory would certainly broaden the

practical scope of the machine, and when
the description of the basic machine and its

peripheral devices is completed, I plan to

look at the' possibility of enlarging the

machine in this way. But unless memory
devices fall dramatically in cost, this will

probably involve a significant increase in the

overall cost of the machine, so that for the

present I must ask the reader to accept my
assurance that the present memory size

represents an entirely acceptable place to

start.

Apart from the memory size, there are

two other main ways in which the computer
is scaled-down in comparison with a typical

commercial minicomputer. One is the word
length, or the size of the binary numbers
used in the machine to represent both in-

structions and data numbers. Whereas most
commercial minicomputers have a word
length of either 12 or 16 binary digits or

"bits”, in this case the word length is only 8

bits.

Again, this has been done to reduce both

cost and circuit complexity. The main

penalty arising from the reduced woro
length is that the machine can normally deal

with only modest numbers — between plus

127 and minus 128, inclusive. The relatively

short word length has also made it

necessary to reduce the number of

augmented operate instructions, as will be

explained later. I believe both these

limitations are acceptable in view of the

savings made possible.

The other main way in which the machine

has been scaled down is in terms of the

number of input and output devices or

"peripherals" which it is designed to

communicate with at any one time.

Whereas many modern minicomputers are

designed to "interface" with up to as many
as 32 or 64 input and output devices at any

one time, this machine will only interface

with up to two of each —four in all.

This is a very minor limitation in a machine

designed mainly as an educational tool, I

believe, because the need to deal with large

ELECTRONICS Australia, August, 1974 43

DIGITAL COMPUTER

numbers of peripheral devices is largely

confined to practical data logging ap-

plications. Just about all of the basic

principles involved in input-output transfer

can be demonstrated using two input and
output devices, and in fact more devices

would probably only confuse the situation.

In any case the machine has been
arranged so that the input and output

devices simply connect to it via sockets on
the case rear. If a total of more than four

peripheral devices are built up or acquired, it

is therefore quite easy to substitute devices

as needed. Only four devices may be
plugged in at any one time, that is all.

What peripheral devices may be used

with the computer? Within reason, almost

anything. As part of the basic description, I

hope to describe a suitably simple and low
cost input keyboard unit, together with one
or two appropriate output display units.

After this I hope to give details for in-

terfacing with punched-paper tape readers

and punches. It may also be possible to give

details of other types of input and output

devices, if opportunity permits.

To a large extent, the range of possible

input and output devices to which the

computer may be connected will be limited

mainly by your imagination. There seems no
fundamental reason why it could not be

hooked up to all sorts of equipment, for all

sorts of jobs. I myself aim to try out a few
interesting possibilities, and I hope that

readers will be encouraged to do the same.
Of course, in view of the modest memory

capacity of the basic machine, it will

probably be necessary in some cases to

come up with some pretty fancy interfacing

circuitry to achieve the desired result. In

other words, to make use of some relatively

high-powered "hardware" in the peripherals

to make up for the fact that the computer
itself can't accommodate much "software"
— ie, much program.

Still, if you’re at all adventurous, this

should simply add to the challenge. My main
aim in these articles will be to help you gain

the necessary expertise, so that can go
wherever your imagination leads.

At this stage I should perhaps devote a

few words to explain the basic electrical and
physical construction of the computer.

All of the main circuitry of the machine is

designed around TTL digital integrated

circuits (ICs). There are a number of

medium-scale or MSI devices, used mainly

for the various registers, and one large-scale

or LSI device — the memory 1C. Apart from
these, the remaining devices are all low cost

"garden variety” 7400 devices. All should

be readily available.

No doubt some will wonder why I have
not used one of the new "microprocessor"

LSI devices as the heart of the machine.

This would have reduced the number of ICs

used, to be sure; in fact the whole computer
would probably have fitted on a single small

printed board. However I decided against

this approach quite early in the development
of the project, for two reasons which I

believe are conclusive.

The first is cost. Microprocessor chips are

still quite costly; at the time of writing they

sell for about $110 each. By the time one
adds a memory device and the additional

circuitry required to interface with a control

console and input-output devices, this

would make the cost of the resulting

machine considerably higher than the one
presented here. And I don't know about the

reader, but I myself would probably be far

too nervous to play around with any single

1C costing more than a hundred dollars!

But quite apart from the cost, there is the

matter of teaching potential. A
microprocessor chip is ideal for manufac-
turers wanting to build a computer into their

systems as an integral part, but by its very

nature it is not at all suitable for learning

how a computer functions. With virtually all

of the computer hidden away inside a 40-pin

1C package, all of the real mysteries remain
the property of the 1C maker.

As it stands, there are a total of 96 ICs in

the basic computer, most of these being low
cost 7400 series devices. Some 86 are used
in the basic processor and memory sections,

while the remaining 10 are used in the in-

ternal input-output interface circuitry.

If Lhis number seems a bit large, consider

that the ICs probably incorporate something
like 7,000 identifiable transistor elements.

Small wonder that this computer project

just wouldn't have been worth considering

before MSI and LSI devices became a

reality about two years ago.

Even with only 96 ICs to worry about, of

course, the computer is still not a small

project by do-it-yourself standards. If it had
to be wired up in the old fashioned way, it

would be an enormous job, and I doubt
whether anyone would have been even
remotely interested.

With this in mind I have designed the unit

so that virtually all of the wiring is performed
by printed boards. There are eight boards in

all making up the basic computer: a board
which takes care of all the front panel or

"console" wiring, an interconnection or

"mother" board, and six plug-in boards
which make up the various functional parts

of the machine.
As the mother board performs virtually all

of the interconnections between the sockets

for the plug-in boards, the actual hard wiring

involved in building the computer is very

small. Essentially it amounts to little more
than making the few dozen in-

terconnections between the mother and
front panel boards, together with the power
supply and input-output connector wiring.

I should mention here that to keep the
cost down, I have used only single-sided

printed boards for the project. This
inevitably means that wiring-up each board
involves fitting a number of wire links, in

addition to fitting the IC's and the few other
components. While this approach would not
be appropriate for commercial manufacture,
where the time needed to fit links might well

prove more expensive than double-sided

boards, I believe it is the right choice where
a home construction project is concerned.
The saving in board cost is quite dramatic,

and for the enthusiast should far outweigh
the small increase in assembly time and
tedium. At least, I hope so.

The complete computer is housed in a

metal case measuring about 30 x 10 x 35cm
(WxHxD), or about 11 % x 4 x 14 inches.

The basic machine draws about 3 amps at 5

volts DC, or about 1 5 watts. However I have
designed the power supply so that it can
supply power to a number of peripherals, to

simplify interfacing. As a result the total

power consumption may in practice rise as
high as 60 watts or so.

When one considers that this is probably
still going to be less than the power con-
sumed by the light bulb in the room you are

using the machine, it provides dramatic

evidence of the advances which have been
made in computer technology over the last

few years. The first computers were
probably somewhat simpler than this little

machine, yet occupied a complete room and
needed their own power sub-station!

For the benefit of those who would like to

know a little bit more about the computer
they would end up with if they embark on
this project, I have prepared a brief

specification which is shown in the box
panel. At this stage the specification may
not mean much to you, however, because it

really presupposes a knowledge of basic

computer operation. For most readers,

gaining this very knowledge will be the
whole point of the exercise, and if they
knew now they wouldn't be bothering.

The main idea behind giving it here is to

show that the computer is quite a capable
little machine, despite the fact that it has
been scaled down for home construction. It

has just about all the basic' capabilities found
in modern computers, and is therefore able

to demonstrate most aspects of computer
operation, although for the present you'll

probably have to take my word for this.

Incidentally, when the basic machine has
been described, I will then spend some time

discussing programming. So you need not
be concerned that having built the com-
puter, you won't know what to do with it.

Naturally you won't become an expert

programmer, but I hope you will emerge
from all this with a sound basic grounding —
if you can stick with it.

Two aspects of the project remain to be
discussed in this introduction, I think. One is

the name we have given the computer. Like

all good computers, it must have an im-

pressive-sounding name —that's traditional.

In this case we came up with the name
"EDUC-8", and our excuse for this

CHAPMAN’S „
MIDGET i""

W p

RATCHET KITS* *
LOCAL SUPPLIES AND

CATALOGUES AVAILABLE FROM ^

Local supplies

and catalogues

available from

SULtO
469 PACIFIC HIGHWAY, ARTARM0N, H.S.W.

Telephone: 42 4314

SPECIALISTS IN PBECISIDN FASTENING TOOLS

ELECTRONICS Australia, August, 1974 45

SPECIFICATION OF THE COMPUTER
The machine is a complete stored program general purpose digital computer.

Memory storage is provided by means of a bipolar static random-access integrated
circuit (RAM), organised to have a capacity of 32 locations.
Both instructions and data words use a format of 8 bits.

Almost all processing is performed serially, with alternative clock rates of ap-
proximately 500kHz and 2Hz. Instruction cycle times are constant at either speed, at
approximately 96 microseconds and 24 seconds respectively. Operation may be
either continuous or on a single instruction basis, as desired.
There are five main registers, comprising the program counter (PC), the ac-

cumulator (AC), the memory address register (MA), the memory buffer register
(MB) and the instruction register (IR). The front panel, of the machine is also
provided with a switch register for manual loading of addresses, instructions and
data.

Six types of memory reference instruction are provided, consisting of logical AND
(AND), binary addition (TAD), increment and skip if zero (ISZ), deposit and clear
accumulator (DCA), unconditional jump (JMP) and jump to subroutine (JMS). A
single address format is used for these instructions, but both direct and indirect
addressing are available.

Eight augmented operate (OPR) instructions are provided, comprising increment
accumulator (IAC), complement accumulator (CMA), clear accumulator (CLA),
rotate accumulator 1 bit right (RAR), rotate accumulator 1 bit left (RAL), skip on
zero accumulator (SZA), skip on minus accumulator (SMA) and halt (HLT). A
number of these instructions may be combined, for programming economy.
Three augmented input-output transfer (IOT) instructions are provided, each of

which may be arranged to specify either an input or output device, and one of two
possible devices in each category. The instructions are skip on device flag (SKF,
SDF), transfer data between device buffer and accumulator (KRS, LDS), and reset
device flag (RKF, RDF). The second and last of these may be combined for
programming economy.
The contents of all registers are displayed on the front of the machine by means of

light-emitting diodes (LEDs), allowing the operation to be readily followed.
Power consumption of the basic machine is approximately 15 watts, but rises to

approximately 60 watts with some combinations of input-output devices.

somewhat transparent pun is that the first

part stands for "Educational Digital micro
(u) Computer", while the figure 8 represents
either the number of basic instruction types,
or the word length, or both!
Anyway, it IS a small or "micro" com-

puter, and we hope it will prove useful as an
educational tool. It must have some sort of

name, and EDUC-8 is probably as good as
any.

Finally, there is the matter of cost. You
have probably been wondering if I was ever
going to be specific about this, and the truth
is that I have deliberately left it until now to
give you a chance to put the project in

perspective.

It is very difficult to be accurate about
cost, because as most readers will be well
aware, prices of electronic components are
fluctuating all the time. About the best I can
do is tell you that as far as we can estimate,
the complete basic computer will probably
cost you about $300 — maybe a little more,
quite possibly a bit less.

Don't, forget that because the project is

built on a number of boards, you can build it

up progressively a module at a time, and
distribute the outlay over a period of time.

We will be describing the project with this

approach specifically in mind, in fact, as
quite apart from the cost angle there are
other advantages in tackling the projept in

stages.

With a project this size there is a lot to be
said for building up the key sections one at a

time, and checking them out individually

before the final assembly as a system.
Well, that's the basic story on this new

project of ours. I hope some of my own
enthusiasm for it has rubbed off, and that by
this stage some of you will be champing at

the bit.

Before I close this introduction, I must
give grateful thanks to the many people who
have helped me very considerably in the
development of the project. I am indebted to

John Houston and Val Rech of Fairchild
Australia, Ron Bell of RCS Radio, Doug
Evans of Ferguson Transformers, Peter
Carter of A & R Soanar, David Segal of
Philips Elcoma, Brian Cleaves of Plessey
Australia, Norm Volkman of Wardrope and
Carroll Fabrications, and Erie Goodwin of
General Electronics Services — to name but
a few of the many who generously con-
tributed both advice and samples. I hope
that those not named in the foregoing will

please assume, rightly, that this is purely
because of lack of space.
There are also my fellow staff members at

E-A, who have been very tolerant of my
involvement with and enthusiasm for the
project. I must particularly express thanks to
Bob Flynn, who has been of great help in

the preparation of the printed board pat-
terns.

And last, but by no means least, I must
express my very grateful thanks to my wife
Laraine, for putting up with the long lonely
nights and weekends when I have been
either submerged in the workshop, or
present physically but almost constantly
preoccupied with a logic problem or printed
board pattern. The things we electronics
addicts inflict on our loved ones!

STOP PRESS!
Just as this issue was going to press, an

advance copy of the July issue of the US
magazine “Radio-Electronics” reached us.
In it they give details of Mark-8, a
minicomputer based around the Intel 8008
microprocessorIC and 1101 memory ICs.
Our design is not the first, then, as it

transpires — we were beaten by a few
weeks!
Ah well, such is life. Still, readers will now

have a choice of two computer designs, each
with rather different emphasis.

now
Where
You are

Going
Choose a career in the field of

Electronics— the Nation's most
progressive and fastest expand-
ing industry.

Advancement in this modern
science demands technical
ability, a sound knowledge of
basic principles and applications.

You can master the subject by
training at the Marconi School,

and be ready to grasp the oppor-
tunities that occur in the various

branches of Radio Technology.

BROADCASTING
A thorough grounding is avail-

able to students in the broad-
casting field, leading up to the

P.M.G. Broadcast Station
Examination.

COMMUNICATIONS (Marine)

An extension to the Broadcast
Operators course and extending
into the fields of Navigation Aids
and Electronic Devices used in

mobile communications as re-

quired by the P.M.G. Certificates

of Proficiency.

APPLIED SERVICING
Comprehensive training in the

maintenance and repair of radio

and television receivers offers

substantial rewards to compe-
tent technicians. Marconi School
training covers all aspects of
radio and television receiver

circuit applications, practical

exercises in fault finding and
alignment procedures.

The Marconi School Radio S'eroicing

correspondence course is approved by
the N.S.W. Apprenticeship Commission

Classes are conducted at:

67 Lords Road, Leichhardt.

Day: 9 a.m. to 4 p.m.

Evenings: 6 p.m. to 8.30 p.m. or

by Home-Study Courses (except

practical instruction on equip-

ment).

SEND FOR PROSPECTUS
There ii no obligation

NAME

ADDRESS

MARCONI SCHOOL OF WIRELESS
Box 218, P.O., Leichhardt 2040
A service *1

Amalgamates Wireless (Australasia) Ltd.

ELECTRONICS Australia, August, 1974

Our do-it-yourself

computer: how it works
This is the second in a short series of articles describing EDUC-8, our
uniquely conceived build-it-yourself digital micro-computer project.

Leading on from the introduction given last month, the author
describes the various sections and registers making up the machine,
and shows how they operate together as an automatic system.

by JAMIESON ROWE
Before worrying about the construction

of our microcomputer, no doubt most
readers will want to make sure that they

have a reasonably clear idea of the way it

works. I am therefore devoting this article to

a description of the basic operation of the

machine.
At this stage the aim will not be to make

the reader intimately aware of every fine

detail of the computer's operation, but

rather to paint in the broad picture. More
detailed discussion of the operation of each
section will be given, but later on as we deal

with the construction. I believe this

progressive approach will-help the reader to

assimilate the concepts more readily.

Let us begin with a brief revision of basic

concepts. You will perhaps recall from
previous reading that digital computers are

rather- unique electrical machines, in that

they are capable of performing not just one
function, but a number of alternative

functions. In fact each computer has a

repertoire of basic functional "tricks", any
one of which it can perform upon com-
mand; ie in response to an appropriate

instruction.

By making the tricks ir. its repertoire as

basic as possible, and by providing enough
of them, the machine is made capable of

performing an almost infinite variety of

tasks. Any given task to be performed is

analysed, and broken down into a logical

sequence of the computer's basic tricks. It

then follows that if the machine is made to

follow the appropriate sequence of in-

structions, known as a program, it will

perform the desired task.

By changing the program, the machine
can be made to perform different tasks at

will. But the point to grasp is that whatever
task is to be performed, the appropriate

sequence of instructions must be devised,

and fed into the machine. Although rightly

called a "general purpose" machine, a

computer can't do any task at all if it is not

provided with a program.
The important thing to remember about

the instructions which command the

machine to do its basic tricks is that they are

binary numbers. Nothing more, nothing less.

So that the program which tells the com-
puter how to do a certain task is simply a

string of binary numbers stored in its

memory.
What is the difference between the in-

struction numbers stored in the computer's
memory, and any other

y
numbers stored

there? There is no difference as such. It is all

a matter of interpretation.

Essentially, any and every binary number
stored in a computer's memory is potentially

capable of making the machine perform one
of its basic tricks. But at the same time, any
given number in the memory only becomes
an effective instruction when the computer
interprets it as such. So that the trick is to

ensure that the machine only interprets as

instructions those numbers intended to be
such.

Basically this is done by indicating the

location or address in the memory of the

first instruction of a program, before

pressing the "run" button to set it in

operation. In the normal course of events

the computer then interprets the numbers in

successive memory locations as the sub-

sequent instructions, unless commanded to

do otherwise by -one of the instructions.

Hence if the computer is started at the

correct starting address, and the program is

correct (!), only those numbers stored in the

memory as the program will be interpreted

as such.

Because its operation involves performing
a sequence of instructions stored in its

memory, a computer operates in a rhythmic

or cyclic fashion. In operation it repeatedly

fetches an instruction from the memory,
interprets it, and then performs or executes

the appropriate trick ip its repertoire. This

cyclic fetch-execute-fetch-execute . . .

sequence continues until halted either by

34 ELECTRONICS Australia, September, 1974

the operator, or by an instruction which
itself signifies "halt".

This basic sequence of operations is

shown in Fig. 1, which is a simple example
of what is known as a flow chart. Such
diagrams are often used in analysing and
describing computer operation, as we shall

see later, because they make it very easy to

visualise what is going on.

In this case the chart shows that after

starting and performing the fetch-execute

cycle for the first instruction, the computer
effectively makes a logical decision as to

whether it should halt or not. If the answer
is no, it returns to fetch and execute a

second instruction, and so on. This con-
tinues until the answer to the halt decision

becomes "yes", either because the operator

has pressed the halt button, or because the

last instruction performed happened to be
"halt".

With the foregoing hopefully clear in the

reader's mind, let us now look at the main
sections of a computer with the idea of

seeing just how it performs its tricks.

Perhaps the easiest way of doing this is to

look first at the sections of the machine
involved with instructions, and then at those
involved with data. Some sections will turn

out to be involved with both, but this should
not be a problem as our next step will be to

see how the two groups are fused together

to form the complete machine.
Fig. 2 shows the basic sections of the

machine involved with instructions.

Probably the most easily recognised of these
is the memory, and associated with this are

two registers known .respectively as the
memory address register (MA) and the

memory buffer register (MB). A register,

you may recall, is a set of flip-flops or similar

storage devices capable of containing a

binary number.
The function of the MA register is to hold

and indicate to the memory the binary

number address which specifies the
memory location with which the machine is

concerned at any particular instant. So that

during the fetch phase of the machine's
cycle, when the next instruction in the
program must be read out of the memory,
the MA must contain the correct address of

that instruction.

This "next instruction address" is fed to

the MA from the program counter (PC), a

register whose sole function is to keep track

of the computer's progress during a

program.
Initially, the starting address of the

program is fed into the PC, for example by
the operator using the console switches.

Then, when the number is fed from the PC
to the MA to allow the first instruction to be
fetched, at the same time the number is

incremented (increased by one) and fed

back into the PC. This ensures that during

the next fetch phase, the MA will be fed

with the address of the second instruction.

At that time, the number is again in-

cremented, and fed back into the PC ready

for the third fetch phase, and so on . . .

The function of the MB register is to act

as an intermediary between the memory
itself and the rest of the machine, as far as
the numbers actually stored are concerned.
Thus when an instruction number is read

out of the memory during a fetch phase, it

first enters the MB — to regain its com-
posure, as it were.
From the MB register, the part of the

instruction number known as the operation

code is passed on to a further register,

known as the instruction register (IR).

Don't worry about the significance of the

operation code now, as we will look at

instruction coding shortly. For the present, it

is sufficient to note that this part of the

instruction number specifies which type of

instruction has been fetched, and the
function of the I R is to "remember" this vital

information during the subsequent execute
phase. Without the IR, the computer would
literally forget what it was supposed to be
doing!

Within the IR register, the operation code
is still in the form of a binary number.
Associated with the IR is therefore an in-

struction decoder, whose purpose is to

interpret this number and generate the

various logic gating signals necessary to

perform the appropriate trick.

These, then, are the main sections of the

computer involved with instructions. Now
let us turn to look at the sections involved

with data — i.e., the numbers with which
the computer is to perform its tricks. These
sections are shown in Fig. 3.

As you can see, three of the sections from
Fig. 2 also appear in Fig. 3 — the memory,
the memory address register and the
memory buffer register. And these perform
the same functions with data as they did

1: BASIC OPERATION

with instructions. The MA register is used to

specify the address of a memory location

into or from which a data number is to be
transferred, while the MB register is used as

an intermediary store between that location

and the remaining sections of the computer.
Together with these three sections we,

now have an accumulator register (AC), an
arithmetic and logic section, and an input-

output interfacing section.

Essentially the function of the ac-

cumulator register is to retain or accumulate
the results of calculations, as they are being
performed. If you like, it is the "blackboard"
which shows how the sums are
progressing.

The arithmetic and logic operations are

not generally done in the accumulator itself,

but in the associated arithmetic and logic

section. Flowever this section, the AC
register and the MB register are closely

associated, and all three are to some extent

involved in most calculations. In binary

addition, for example, the two numbers,
being added are placed initially in the MB
and AC registers, and after they are added
together by the arithmetic and logic section,

the answer is placed in the AC register.

The final main section concerned with

data is the input-output interfacing section.

As the name suggests, this section carries

out the functions involved in transferring

data between the computer and its

"peripherals" — the input and output
devices. This involves not only the simple
shuffling of numbers in one direction or the
other, but associated tasks such as letting

one side know when the other is ready to

transmit or receive.

At this stage we have looked briefly at

those sections of the computer which are

involved with handling either instruction

numbers, or data numbers, or both.

However the thoughtful reader already may
have begun to suspect that there are still

further sections of the machine, whose
functions have as yet only been implied.

These are the sections involved with run
control and timing, and they are shown in

basic form in Fig. 4.

Basically the need for these sections
arises because the computer operates in a

cyclic fashion, as we have seen. Not only
this, but in fact both fetching an instruction

and executing it each involves a number of
steps, which must be done in sequence.
Gates must be opened and closed, registers

fed with control signals and clock pulses,

and so on, all in the right order. And quite
apart from this there is the need to be able to

control whether the machine is running or
not, and similar control functions. .

The sections which perform these tasks

are the clock oscillator, the run control

circuit, the console control switches, the
timing pulse generator, and the major state

generator.

The purpose of the clock oscillator is to

generate the master pulse train which
activates the entire machine when it is

running. It is therefore by controlling the
passage of these clock pulses to the re-

maining sections that the run control curcuit
functions. Broadly speaking, it lets the
pulses pass following a command to do so
by the console control switches, and
continues to let them pass until a command
to halt is received — either from the swit-

ches, as before, or upon the arrival of a halt

instruction. • .

When the computer is running the clock

pulses 1 pass from the run cpntrol circuit to

the next section, the timing pulse generator.

The function of this section is to use the
master clock pulse train to assemble a

number of timing and gating signals, each of

which may be used in various places
throughout the machine to perform
operations at certain times in each cycle.

Finally there is the major state gener-
ator, whose function is to define which of
the phases or "major states" the machine is

in at any given time. Immediately upon
being set running, the machine always
enters a fetch state or cycle, as we have
seen from Fig. 1 . At the end of the fetch
state it then normally enters the execute
state, although as indicated in Fig. 4 there is

a third and intermediate state known as
"defer". More will be said about this shortly.

Finally at the end of the execute state, the
machine either returns to fetch and con-
tinues, or halts.

I hope the foregoing description has at

least given the reader a broad idea of the
basic sections which form the computer,
and of the general functions they perform.
At this stage there will still be many
questions unanswered, and you will perhaps
be feeling rather unsatisfied. However now
that some of the foundations have been laid,

we can delve into things in a little more
detail.

Let us first look at the instruction coding
format used — ie, the way in which the
binary numbers which act as the in-

ELECTRONICS Australia, September, 1974 35

EDUC-8 computer

structions for the machine are actually
arranged to specify what is to be done.
As you might recall, EDUC-8 uses an 8-bit

word format. In other words, both the
instruction and data numbers handled in the
machine are 8 bits long. For convenience
the 8 bits are labelled from 0 to 7, with bit 0
being the least significant bit in terms of
binary weighting, and bit 7 the most
significant.

When such a number is interpreted by the
computer as an instruction, the three most
significant bits — bits 7, 6 and 5 — are taken
to represent the operation code. It is these
three bits which are stored in the instruction

register and decoded, to specify which type
of instruction "trick" is to be performed.
Now you will perhaps remember from

basic theory that three bits of information
can only represent eight different situations,

because there are only eight different bit

combinations: 000, 001, 010, 011, 100,
101, 110, and 111. This means that there
are basically only eight different types of
instruction in the machine's repertoire.

Six of these eight basic types of in-

struction are known as memory reference
instructions, because they each involve
some sort of operation with a number stored
in a location of the memory. Either a number
is taken out of the location and used for an
arithmetic or logic operation, or a new
number is stored in the location, or the
number is interpreted as the machine's next
instruction, and so on.

The combinations of the three operation
code bits used to represent these six in-

structions are 000, 001, O'! 0, 011, 100 and
101. For convenience we will refer to the
equivalents of these in the octal code, which
areO, 1, 2, 3, 4 and 5. (It is very much more
convenient to think in terms of octal code
than in binary, and I suggest you brush up
on the simple relationship between the two.
We will be using octal notation fairly

frequently from now on, but purely because
we humans find it easier to follow. The
computer itself deals purely with the
numbers in binary form, of course.)

The coding format used for memory
reference instructions is shown in Fig. 5(a),

where it is indicated that the operation code
bits 7,6 and 5 here specify one of the six

combinations just referred to. The four least

significant bits (0-3 inclusive) are used to

define the address of the memory location
whose contents are involved in the
operation concerned. This is known as the
operand address.

Don't v'orry for the moment about the
special significance of bit 4; we will return to
this shortly. Our more immediate concern is

the six types of memory reference in-

struction, and what each involves. Their
mnemonic names are probably already
vaguely familiar, because they were given in

the specifications panel. Flopefully now you
will be in a position to follow the operations
themselves.

The instruction type with operation code
O (octal) is known as the AND instruction.

Basically this involves reading out of the
memory the number stored in the location
specified by bits 0 to 3, and performing a
logical AND operation between this number
and the number currently in the accumulator
register. The AND operation is done on a
bit-by-bit basis, and the result placed in the
accumulator. As the accumulator will be left

with binary 1's only in those bit positions

where both initial numbers were 1 's, the
effect is to "mask" the number in the ac-
cumulator with that in the selected memory
location. As such, it can be a very useful
operation.

The instruction type with operation code
1 (octal) is known as the TAD instruction,

which is short for "Two's addition." This is

rather like the AND instruction, only the
operation performed between the number
read out of the selected memory location
and that in the accumulator is binary ad-
dition, using 2's complement arithmetic,
instead of ANDing. As before the result is

left in the accumulator. The TAD instruction
is the main arithmetic instruction; it can be
used for subtraction as well as addition, by
forming the 2's complement of the number
in the accumulator before the TAD
operation is performed.
The instruction type with operation code

3 (octal) is known as the DCA instruction,
short for "deposit and clear accumulator."
As this suggests, it simply involves taking

stored again in the same memory location.
But if the number has become zero after
being incremented, the machine also incre-
ments the contents of the program counter.
This ,means that the next instruction fet-

ched will not be that in the next consecutive
location, but that in the one after that. In
other words, the machine "skips" what
would normally be the next instruction.

Although it may not be apparent at this
stage, the ISZ instruction is a very powerful
one. Basically, it allows the machine to
make changes in the sequence of instruc-
tions automatically during a program; as tha
result of checking its progress.
The final memory reference instruction is

that with the octal operation code 4. This is

known as the JMS instruction, short for
"jump to subroutine." Like the JMP instruc-
tion, it involves replacing the contents of the
program counter register, so that the next
instruction is taken from somewhere other
than the next consecutive location. But in

this case the existing contents of the PC are

2; BASIC INSTRUCTION-ORIENTATED
REGISTERS 3 : BASIC DATA REGISTERS AND PATHS

the number currently in the accumulator,
and storing it in the memory location
specified by bits 0 to 3. The accumulator is

left cleared — ie, with a content of zero.

The instruction type with operation code
5 (octal) is known as the JMP instruction,

short for "jump." The effect of this in-

struction is to cause the address shown by
bits 0-3 to be transferred to the program
counter (PC) register, replacing the existing

content of the PC. This means that instead
of the machine fetching its next instruction
from the next consecutive location, it will

fetch it from the location specified in the
JMP instruction. This is a very useful in-

struction because among other things it

makes it possible for the machine to be
forced to repeat a sequence of instructions
many times.

You will probably have noticed that we
have so far ignored the instructions with
octal operation codes 2 and 4. These are a
little more complicated than the others, so
they should be studied a little more carefully:

The type 2 instruction is known as the ISZ
instruction, short for "increment and skip if

zero." It involves the following operations.
First, the number in the memory location
specified by bits 0-3 is read out, and incre-
mented (increased by one). Then the
machine tests the number, to see if it has
become zero or not. The number is then

not lost, as they are with the JMP instruc-
tion; instead they are stored, so that in due
course the machine can return to the next
consecutive location and continue.
A subroutine, you may recall, is a small

group of instructions which are used
repeatedly throughout a program. Rather
than simply repeat them at every place they
are needed, which would gobble up
memory space, it is far more efficient to
store them only once, and simply arrange for
the machine to jump over and perform them
whenever they are needed. Naturally when
this is done, it is essential that the computer
be able to keep track of where it has come
from in the main program, so that it can
return. This is the reason for the JMS in-

struction.

Basically what happens during the JMS
instruction is that the current contents of
the PC are taken and stored in the location
specified by bits 0-3 of the instruction. At
the same time this operand address is incre-
mented, and placed in the PC. This has the
effect that the next instruction fetched is

taken from the next consecutive location
from that in which the original PC contents
have been stored. In other words, the
computer stores the address in the main
program to which it will return, in the first

location of a subroutine, and will then
proceed to work through the subroutine.

36 ELECTRONICS Australia, September, 1974

EDUC-8 computer

How it actually uses the stored return ad-
dress to "get back" will be explained

shortly.

Let us now return to Fig. 5(a), and look at

the significance of bit 4. As you can see,

when this bit is zero it implies something
called "direct addressing," while if it is a one
it implies something else called "indirect

addressing.”

Thus far in discussing memory reference

instructions, we have tacitly assumed that

the only possible significance of bits 0-3 was
to specify the actual address of the location

in the memory occupied by the operand of

the instruction. However this is only one
way of using bits 0-3, the way known as

direct addressing. It is the simplest way,
and perhaps the way most readily visualised.

However it is not the only way, nor the

only desirable way. In fact there is another
way of using bits 0-3, which adds very

significantly to the flexibility of a computer
from the programmer's viewpoint. In this

alternative approach, bits 0-3 are interpreted

as specifying not the actual operand ad-
dress, but the address of a further location in

memory, in which the actual operand ad-
dress in itself stored. Not surprisingly, this

approach is known as indirect addressing.
At first sight, indirect addressing may

seem nothing more than a more com-
plicated way of doing the same thing as
direct addressing. But in fact it opens up all

sorts of new possibilities. For one thing, it

provides the means whereby the machine
can "get back” to the place where it left a

main program, from a subroutine. All that

need be done at the end of the subroutine is

to provide a JMP instruction with indirect

addressing, which specifies the address at

the start of the subroutine in which the

original return address was stored during

the JMS instruction.

Another very useful application of indirect

addressing is where an operation must be
repeated with the numbers stored in a

whole string of consecutive memory loca-

tions. By using a number in another location

as an indirect addressing "pointer,” the

numbers in the consecutive locations can be
made accessible very easily, simply by incre-

menting the number in the pointer location,

between operations.

Naturally enough, indirect addressing

involves extra steps compared with direct

addressing. The address specified by bits 0-

3 of the instruction word must be fed to the

MA register, and the actual operand address
read out of that location.

The need for these extra steps is the

reason behind the third major machine state,

defer, which we referred to briefly when
dealing with Fig. 4. In short, the machine
only enters the defer state, between fetch

and execute, if it is necessary to perform the

extra steps necessary for indirect addres-

sing. Indirect address memory reference

instructions thus involve three machine
cycles, whereas direct address instructions

involve only two.
Indirect addressing also has an advantage

over direct addressing in terms of access to

all possible memory locations. Unless a

rather long instruction word format is used,

it is not possible to directly address all loca-

tions in the memory. This is because the full

range of memory locations involves more
addresses than there are bit combinations
available in the instruction word, after the

operation code bits and direct / indirect

indicator bit are accounted for.

CONSOLE
CONTROL
SWITCHES

* TIMING PULSE
GENERATOR

r -\

* J

(HALT
INSTRUCTION!

MAJOR STATE
GENERATOR

-FETCH

-DEFER

-EXECUTE

4 : RUN CONTROL AND TIMING

In EDUC-8, for example, only bits 0-3
inclusive are available for the operand
address, and these four bits are capable of

specifying only sixteen possible addresses,
whereasthe memory actually has twice that

number. (If bit 4 were added, all 32 loca-

tions could be directly addressed, but we
would then have no way of indicating in-

direct addressing). A similar situation exists

with many computers, particularly those
using relatively short words.

This difficulty is avoided by arbitrarily

splitting up the memory into groups of

addresses called "pages,” and adopting the
convention that an instruction can only
address directly those memory locations in

the same "page" as the instruction itself.

Thus in the case of EDUC-8 the memory is

visualised as being split into two pages,
consisting of the first sixteen locations and
the last sixteen respectively.

The computer is then designed so that
when direct addressing is involved, it

automatically adds the missing fifth (most
significant) bit of the operand address,
making it the same as that of the instruction

itself. In effect, it "assumes" that the
specified direct address is in the same
"page" as the instruction.

While with indirect addressing it is still

necessary for the location in which the
actual operand address is stored to be in the
same page as the instruction, the operand
address itself can occupy a full word, and
can thus specify any location in the whole of

r

OPERATION CODE
(6 - 51

_____A
OPERAND ADDRESS

A

0 - DIRECT ADDRESSING
1 - INDIRECT ADDRESSING

(a) MEMORY REFERENCE INSTRUCTIONS

OPERATION CODE
<71 0 « CLA CMA RAL IAC
*

+ 4 + + *

7 5 5 4 3 2 I 1 1 0

4 + f +
1 = S2A SMA RAR HIT

(b) OPERATE MICROINSTRUCTIONS

OPERATION CODE DEVICE SHIFT
(6) SELECTOR DATA
*

s 4 4

7 1 E I 5 4 3 2 1 I 0

! 4 4
0 -INPUT CLEAR SKIP

1 -OUTPUT FLAG ON FLAG

(c) IOT MICROINSTRUCTIONS

5 : INSTRUCTION CODING FORMATS

the memory. Thus with EDUC-8 the stored
operand address can be anything up to 8
bits long, sufficient to specify 256 locations
- ample for the 32 locations actually

present, and with room for future memory
expansion!

Let us now look at the two remaining
types of instruction provided by EDUC-8, and
the coding formats used for them. The first

we will look at is that with the operation

code 7 (octal), which is known as the OPR
or "operate" type of instruction.

Although there is only the one operation

code associated with this type of in-

struction, it is actually subdivided into eight

different and distinct microinstructions,

some of which may be combined to form
further microinstructions. What makes this

"subdivision" possible is the availablility of

bits 0-4; because this type of instruction

does not make reference to the memory,
these bits are not required for specifying an
operand address. They can therefore be
used to extend or "augment" the basic

operation code.
The way the additional bits are used to

specify the eight different OPR microin-

structions is shown in Fig. 5(b). Rather like

the memory reference instructions, bit 4 is

used as an indicator bit. However in this

case it is merely used to indicate which of
two possible meanings is to be placed on 1 's

in the remaining four places. When bit 4 is

zero, bits 0,1 ,2 and 3 are used to specify the
four micro instructions IAC, RAL, CMA and
CLA respectively. On the other hand when
bit 4 is a 1, they specify instead the
microinstructions HLT, RAR, SMA and SZA
respectively.

The mnemonic IAC stands for "increment
accumulator." As the name suggests, this

microinstruction simply involves in-

crementing or adding, one to the number in

the accumulator. If the AC is initially zero,

then it will contain the binary number 1

following the IAC microinstruction.

The mnemonic RAL stands for "rotate

accumulator left." This involves shifting the
number in the AC one bit position to the left,

so that the content of bit position 0 moves
to position 1,1 to 2, 2 to 3, and so on. The
content of bit position 7, if there is any, is

shifted around into bit position 0. For binary

numbers less than the equivalent of decimal

127, RAL corresponds to multiplication by
two.
The third of this group of OPR

microinstructions is CMA, which stands for

"complement accumulator." It involves

taking the number in the accumulator and
changing it into its 1's complement — ie,

each bit is turned into its complement. Bits

which are initially zero become 1's, and
those which are initially one become zero. If

the AC is initially cleared (all zeroes), the

ELECTRON ICS Australia, September, 1974 37

EDUC-8 computer

CMA instruction gives it a content of one.

The fourth OPR microinstruction is CLA,
which stands for "clear accumulator." This

is almost self-explanatory; the contents of

the AC are simply wiped out, leaving the AC
bits all zero.

The first of the OPR microinstructions for

which bit 4 is a 1 is HLT, short for "halt."

The effect of this instruction is simply to

cause the run control circuitry of the

machine to stop the passage of master clock

pulses to the timing pulse generator, at the

end of the current execute cycle.

The next of these is RAR, standing for

"rotate accumulator right." This is virtually

the opposite of the RAL microinstruction,

causing the number in the AC to be shifted

one position to the right. The content of bit

1 is moved into bit 0, that of bit 2 into bit 1

,

and so on. The content of bit 0 is moved
around and into bit 7, so that as before no

bits are lost. In effect the RAR instruction

corresponds to a division of the number in

the AC by two.
The seventh of the OPR microinstructions

is SMA, which stands for "skip on. minus
accumulator." The effect of this instruction

is to cause the content of bit 7 of the AC to

be tested, to see if it is a 1 (by convention,

the most significant bit of a number is taken

to indicate its sign — 0 means positive, 1

negative). If this bit is a 1, the contents of

the PC register are incremented, so that the

next instruction is fetched not frpm the next

successive memory location but from the

location after that.

And lastly there is the SZA microin-

struction, which stands for "skip on zero

accumulator." This is similar to the SMA
instruction, but involves a test of all bits of

the AC, not just bit 7. In this case the

contents of the AC are incremented only if

all AC bits are zero, so that a clear AC
causes the next instruction to be skipped.

The SMA and SZA microinstructions are

both very powerful ones from a

programmer's viewpoint, because they

provide a means whereby the program can

test the result of a calculation, and
automatically decide upon a course of

action.

Some of the OPR microinstructions may
be combined to form further microin-

structions. Thus CLA and I AC may be

combined, allowing the AC to be given a

content of 1 by means of a single in-

struction. Similarly CLA and CMA may be

combined, which has the effect of setting

the AC to a content of-1 . The CMA and IAC
microinstructions may also be combined,

allowing a number in the AC to be changed
into its 2's complement using only one
instruction. And finally the SZA and SMA
microinstructions may be combined, so that

the next instruction is skipped if the AC is

either zero or minus.

The main advantage of these combined
microinstructions is that they save memory
space, allowing more program to be fitted

into a given number of locations. They also

make a program run faster, because in effect

two separate "tricks" are done in a single

execute cycle.

The final type of instruction provided by
EDUC-8 is that with the operation code of 6

(octal). This is known as the IOT instruction

group, where IOT stands for input-output

transfer. Like the OPR instruction type, this

type is also sub-divided into a number of

microinstructions, and as the name
suggests, these are all concerned with the

transfer of information between the
computer itself and any input and / or

Output devices to which it may be con-

nected. The coding format used for IOT
microinstructions is shown in Fig. 5(c).

As before bits 7, 6 and 5 are used for the

operation code, in this case 6 (or binary

1 10). And bit 4 is again used as an indicator

bit, this time to specify whether the in-

struction concerned refers to an input

device, or an output device. A zero is taken

to specify an input device, and a 1 an output

device.

Bit 3 is also used as an indicator bit, in this

case to select which of the two devices of

each type the instruction is concerned with.

Thus if bit 3 is a 0, the instruction is con-

cerned with either input device "0" or

output device "0”, depending upon the

value of bit 4. Similarly if bit 3 is a 1, the

instruction is concerned with either input

device "1" or output device "1".

Between them bits 3 and 4 are thus used

to specify which of the four possible input-

output devices an IOT microinstruction is

concerned with. Hence even when four

devices are connected to the computer,

each can be dealt with individually.

Bits 0, 1 and 2 of the IOT instruction

format are used for the three different types

of IOT microinstruction. In other words,

these three bits form the augmented
operation code.

When bit 0 is a 1, this corresponds to a

"skip on device flag" microinstruction. The
effect of this microinstruction is to check
whether the input or output device con-

cerned has signalled its readiness to take

CLEAR
e ; EDUC-8 : BASIC ORGANISATION

ELECTRONICS Australia, September, 1 974 39

EDUC-8 computer

part in a transfer of data, by setting a flip-

flop known as its "flag”. If the flag is indeed
set, the contents of the PC are incremented
so that the next instruction is fetched not
from the next successive memory location,

but the one after.

There are two alternative mnemonics for

this microinstruction, SKF and SDF, used
for input and output devices respectively. In

either case the purpose of the microin-
struction is to allow the computer to
determine when a peripheral device is ready
to "do business."

The second type of IOT microinstruction
is that having al in the bit 1 position. This is

the "shift data” microinstruction,
represented by the mnemonics KRS (input)

and LDS (output) respectively. As the name
'suggests, this microinstruction is the one
which actually causes data to be transferred

between the computer and a peripheral. In

the case of an input uni}, the data is tran-

sferred from the input unit into the AC of the
computer. With an output unit, the data is

transferred from the AC into the output unit.

Finally there is the third type of IOT
microinstruction, in which bit 2 is a 1 . This is

the "reset device flag" microinstruction,

represented by the mnemonics RKF (input)

and RDF (output). Fairly obviously, this

microinstruction causes the flag flip-flop in

the device concerned to be reset, and it

allows the computer to signal to the
peripheral device that a data transfer is

complete. This allows the device concerned
to perform whatever housekeeping
operations are needed to prepare for a
further data transfer.

The "shift data" and "reset device flag"

IOT microinstructions may be combined, as
they take place at successive times in the
execute cycle. This forms the "shift data
and reset flag" microinstruction, with
mnemonics KRB (input) and LDB (output),
in which there is a 1 in. both bit positions 1

and 2. As before, the advantages of the
combined microinstruction are the saving in

memory space, and an increase in running
speed — two instructions for the price of
one!
By this stage you are perhaps beginning

to wonder just how the computer does all

these things. And that is, so to speak, the
64,000 dollar question. In the limited ?pace
available here it is not really possible to
answer the question fully; however for the
present I will try to give you a basic idea of
the principles involved. Hopefully this will be
sufficient to provide the background
necessary for the more detailed analysis
which will be developed as we look at each
section.

The basic organisation of EDUC-8 is

shown in Fig. 6. This is essentially a com-
bination of Figs. 2, 3 and 4, with the ad-
dition of a little more detail.

You will hopefully be able to recognise
the registers, such as the PC, the AC, the
MA, the MB and the IR, together with such
sections as the memory, the input-output
interface, and the timing pulse generator.
The arithmetic and logic section has been
broken down into its component parts,

which are now identified as a serial adder, a
carry flip-flop, and an AND gate.

The various signal paths between the
registers and sections are now shown in

more specific form, with controlling AND
gates indicated in various strategic
positions. These are numbered so that we
can refer to each conveniently. Note also

that there are four main signal "highways"
or bus lines, arbitrarily labelled the A-bus,
the B-bus, the C-bus and the D-bus. The
main control signals fed to each register and
section have also been indicated.

Essentially, the computer functions
by means of control signals applied to
the registers and the gates controlling
the various signal pathways. And the
control signals are formed by suitable
combinations of signals from three
sources: the timing pulse generator, the
major state generator, and the in-
struction decoder.
At first sight this seems a delightfully

general and vague statement, I know. The
only real way to give it more meaning is to
look at a specific example. Hopefully you
will then begin to see the general principles
involved, and will be able to visualise more
of the machine's operation for yourself.

Let us consider the fetch cycle, in which
as we have seen the computer must perform
the operations necessary to read out the
next instruction from its memory location,
and decode it ready for execution. You may
recall that the address of this instruction is

contained by the PC register, prior to the
start of the fetch cycle.

What happens is this. At the start of the
fetch cycle, the carry flip-flop is set to
contain a 1 by means of a signal applied to
its direct set input. This signal is produced
by combining the "fetch" signal from the
major state generator with a suitable timing
pulse from the timing pulse generator.

Following this gate 1 is opened for five

clock periods, by means of a control signal
produced by combining the "fetch" signal
with another signal from the timing pulse
generator. And because gate 1 connects the
output of bit 0 of the PC register to the C-
bus, to which the bit-4 input of the MA
register is connected, this has the effect of
connecting the PC output to the MA input.
The same control signal used to open gate

1 is also used to admit clock pulses to the
PC and MA registers, so that they are
simultaneously activated as shift registers.

Thus the number in the PC is shifted into the
MA, ready to be used to read out the in-

struction.

At the same time, the same control signal
is used to open gates 2 and 3, connecting
the C-bus to the A-bus through the serial

adder. This has the effect of connecting the
output of the PC back to its input, via the
adder. And the control is used also to admit
clock pulses to the carry flip-flop, so that it

can take part in the operation.
The effect of this second set of operations

is that the number initially in the PC is not
only shifted into the MA, but is also shifted

back into the PC — incremented. The in-

crementing takes place because the carry
flip-flop was set to contain a 1 , before the
shifting took place. Hence the number in the
PC is now incremented, ready to provide the
address of the next instruction — needed for

the next fetch cycle.

During the next part of the fetch cycle,

another control signal of eight clock periods
duration is produced by combining the
"fetch" signal with a suitable signal from
the timing pulse generator. This control
signal is then used to enable the memory, to
open gate 4, and to admit clock pulses to
the MB register. The effect of all this is to
cause the instruction number in the memory
location specified by the MA to be read out
of the memory, bit by bit, and shifted into

the MB register.

Following this yet another control signal is

produced, lasting for a single clock period,

and again formed by combining the "fetch"
signal with a suitable signal from the timing
pulse generator. This control signal is used
to enable the IR register and decoder (the
two are actually combined in a single 1C), so
that the operation code formed by bits 7, 6
and 5 of the instruction are taken from the
MB, stored and decoded.

Finally, the last operation of the fetch
cycle takes place. This involves the
production of yet another control signal,

formed by combining the "fetch" signal as
before with both a suitable signal from the
timing pulse generator, and a signal from the
instruction decoder which indicates
whether or not the instruction fetched is a
memory reference type or not. The control
signal thus formed is used to open a gate
(not shown) which connects the output of
bit 4 of the MB register to a flip-flop in the
major state generator known as the "defer
status flag".

The purpose of this last operation is to
signal the presence of an indirect addressing
memory reference instruction, if one is

present, to the major state generator. This is

so that the major state generator will enter a
defer cycle, if necessary, before starting the
execute cycle.

I hope this example will start to give you
an idea of what was meant by the bold face
paragraph above. Although we won't be
able to trace through the operation of the
machine during the defer cycle or the
execute cycle — particularly for each of the
various types of instruction (!) —you may by
now be able to see the basic principles
involved.

Table 1 gives an analysis of the steps
involved in each of the various machine
cycles. Using this and the example just given
as a guide, you should hopefully be able to
trace out what happens in each case.

In a nutshell, the various major states or
cycles are defined by the signals generated
by the major state generator. Each cycle is

then effectively split into a number of
segments by the timing pulse generator,
which produces appropriate signals lasting

various numbers of clock periods. The
signals from these two sections are then
used, together with signals from the in-

struction decoder, where appropriate, to
produce control signals which are applied to
the various signal gates and registers. That's
all there is to it!

As the table shows, each cycle lasts for a
total of 24 clock pulse periods. Not all of
these periods are used to generate timing
signals and initiate operations, but the 24-
period duration of the cycles has been used
to simplify the circuitry of the timing pulse
generator. At the two alternate clock pulse
rates provided, each cycle lasts for 48
microseconds or 12 seconds, respectively.
Thus at the fast rate, a normal fetch-execute
sequence lasts for 96 microseconds and a

fetch-defer-execute sequence 144
microseconds.
You will perhaps have noticed from the

table that besides the fetch, defer and
execute cycles, there are two further cycles
which we have not yet mentioned. These
are marked deposit and examine, and
perhaps their names have already suggested
their purpose.

Basically, these are both special "one-
shot" cycles mainly associated with control
switches on the front panel of the machine.
Deposit is used to manually enter numbers
(such as instructions) into selected memory
locations, while examine is used to manually
read out the contents of selected memory
locations, for checking. Both are used

40 ELECTRONICS Australia, September, 1974

TABLE 1 -CYCLES & INSTRUCTION TIMING
CYCLE TO T1 T2 - T5 - T9 T10 tvT T12 T13 T14 - T17 - 21 T22 T23

FETCH Clear

MA, IR,

carry

(also

mem
strobe)

set

carry

PC to MA,
PC + 1 to PC

clear

carry

Read instruction into MB Load IR

(last

half)

set defer

status,

MA4 to

MB4
if m. ref.

instruct.

DEFER Clear

MA,
carry,

mem
strobe

MB0-4

to

MA

ditto Read operand address

into MB

AND ditto ditto Read odt operand into

MB, AND with AC, result

into AC

ditto

TAD ditto ditto Read out

MB, 2's

result into

operand into

add with AC,
AC

ditto

ISZ ditto ditto,

set

carry

Read out operand, in-

crement and put result

into MB

ditto Set carry

if MB =0
Write cc ntents of MB,

circulate PC
through adder

DCA ditto MB0-4

to

MA

Write contents of AC,
load into MB also

ditto

JMS ditto ditto Write contents of PC, also

load MB
ditto Set

carry
Shift MA into

PC via adder

JMP ditto ditto ditto Shift MA into

PC (via adder)

SKF,
SDF

ditto

1
Set carry

if flag—

1

Circulate PC
through adder

LLJ

KRS,
LDS

ditto

H| Shift data between device

and AC

EXECUT

RKF

I1
ditto reset i/p

flag

RDF reset

o/pflag

ditto reset o/p
flag

IAC ditto set

carry

Circulate

adder

AC through ditto

RAL ditto

1
ditto

CMA ditto Circulate

inverter

AC through ditto

CLA Shift contents out of AC ditto

HLT ditto reset

run flag

RAR ditto Rotate
AC
one bit R

SMA ditto

Hi
Circulate PC
through adder

SZA HI
ditto Set carry

if AC= 0

Circulate PC
through adder

PC to MA,
PC + 1 to PC

ditto Load MB
from SR

Write contents of MB,
restore in MB

1

reset

run flag

EXAMINE
ditto ditto ditto ditto Read into MB reset

run flag

primarily <for loading in programs via the

console switches, and then checking that

the instructions have been loaded in

correctly.

Associated with the deposit and examine

switches on the front panel of the computer
is a third switch, marked load address. The
function of this switch is to allow a starting

memory address to be loaded into the PC
register prior to either depositing,

examining, or setting the machine running.

The remaining controls will be discussed
next month, when we start dealing with the
construction of the machine.

Stay with us! ®
ELECTRON ICS Australia, September, 1974 41

Our EDUC-8 computer:

starting construction
Having introduced our unique digital computer project and described
how it works, the author now starts to describe its construction. Both
circuit and wiring details are given for the power supply, front panel
board and mother board sections, which together form the foundation
of the machine.

by JAMIESON ROWE
EDUC-8 is built into a case of about the

same size and shape as a medium-powered
stereo amplifier. The case measures 29.3cm
wide, 10.3cm high and 35.7cm deep — or

11.5 x 4 x 14 inches, if you prefer. The
prototype case is made from 20 gauge steel,

and is finished in chocolate hammertone
lacquer.

The case is made in two sections, with
the main section forming its base, sides and
rear. The front and top are provided by the
second section, which is designed to slide

on from the front. Once assembled the two
are held together by a lip at the rear and by
four small self-tapping or "PK" screws.
No components whatever are mounted

on the front panel-top section of the case,
which serves purely as a cover and control
escutcheon. This has been done
deliberately, so that the machine may be
operated easily with the cover removed, to

facilitate servicing.

The power supply wiring of the machine
is built into the rear of the case, with the two
series-pass power transistors , and their

finned heatsinks mounted on the case rear

itself. Also mounted on the case rear are the
sockets for interconnection with the input
and output devices.

The actual computer proper is an
assembly of printed wiring or "PC” boards,
mounted in the front section of the case.
Two of the PC boards are mounted ver-

tically, spaced behind the plane of the case
front panel by about 2cm and 3cm
respectively. The remaining six boards plug
into edge-connector sockets mounted on
the second of the two vertical boards, to
form a vertical stack array.

The vertical board nearest the front panel
plane performs all of the wiring and in-

terconnections between the front panel
components — console switches, LED
indicators and so on. ^For fairly obvious
reasons it has been dubbed the "front panel
board”. The second vertical board makes
virtually alt of the interconnections between
the plug-in PC board sockets, and is known
as the "mother board". The copper etching
patterns for these two boards are coded
E8/F and E8/C respectively; both measure
28.3 by 9.5cm.

In vertical order from the top down the
plug-in boards respectively provide the
circuitry for the run control, major state
generator and timing pulse generator
(E8/T); the instruction register and decoder
(E8/D); the memory, memory address and
memory buffer registers (E8/M); the
program counter and serial adder (E8/P);
the accumulator (E8/A); and the input-

output interfacing circuitry (E8/10T). Each
of these six boards measures 21 ,5J>y 1 6cm,
and the etching pattern codes areIts shown
in the brackets.

Space has been left in the case so that the
plug-in PC boards may be easily removed or
replaced. The space also allows any one
board to be "extended out" for convenient
access during operation, by means of an
extender board. This is simply a PC board

It's growing!
Due to the falling prices for memory ICs,

it is now possible to provide EDUC-8
with a 128-word memory at virtually no
more than the original cost of the 32-
word version. In view of this .we are
modifying the design, so that as actually

described EDUC-8 will have a 128-word
memory — four times the original size.

Provision is also being made for ex-
pansion to 256 words, if desired.

with etched contacts along one end, with
conductor strips connecting these to the
pins of edge connector sockets mounted at
the other end. Thus by plugging the ex-
tender board into the computer mother
board socket(s) normally occupied by a
board, and plugging the board in turn into

the extender board sockets, the board is

brought out for convenient access while
leaving it still connected into circuit. The
extender board measures 24.5 by 18cm, and
its pattern is coded E8/X.
To remove a board and replace it with the

extender board, the boards above it must be
' temporarily removed to allow access. The

desired board is then removed, and replaced
by the extender board — with the sockets on
the latter facing upward. The other boards
can then be replaced, and finally the
displaced board plugged into the sockets on
the extender board. It then protrudes
vertically from the board stack, allowing
ready access to both sides.

With the exception of the extender board,
which is made from normal SR BP, all of the
PC boards in the prototype are made from
epoxy fibreglass laminate, and this is

probably preferable in view of its greater

50 ELECTRONICS Australia, October, 1 974

A view of the machine with the top/front
pane/ removed. Note that the front panel
board visible is an early version.

I

I

strength. However it is also a good deal

more expensive than SRBP and the newer
fireproof bakelite laminates, both because of

the higher cost of the laminate itself and
because it is tougher on drills. Whether this

extra cost is really justified is a moot point.

Largely for emotional reasons rather than
objective, fibreglass boards have become
traditional for "serious" projects such as
this, and there will no doubt be some who
will want to obtain the boards made from
this material regardless of cost. However if

you're a little daunted by the cost, I don't by
any means suggest that you should regard
fibreglass as essential. Provided that they
are handled with reasonable care, SRBP
boards should be quite satisfactory.

I do suggest, though, that you get boards
which are gold flashed — at least along the
edge connector pads. This will make for

very much more reliable connections, and is

well worth the small additional cost in-

volved. An electro-deposition process, gold
flashing gives the copper pads a coating of

gold which is thinner than the more ex-

pensive plating, but entirely adequate for

this sort of situation where the boards are

not going to be repeatedly removed and
replaced.

Probably the best place to start con-
struction of the computer is with the power
supply, as this can then be used to power
the other sections as they are built up. Apart
from having the psychological appeal of

letting you produce some working circuitry

early on, it will also allow you to check the
operation of the various boards as they are

completed. The order in which the boards
will be described has been deliberately

arranged so that this "checking as you
progress" technique can be exploited' as
much as possible.

As you will perhaps have noticed already,

the power supply circuit is very con-
ventional, its only noteworthy aspect being
that it has been designed to deliver up to 6
amps at a nominal 5V. It uses a conventional
bridge rectifier, driven by a suitably rated

10V stepdown transformer. The rectifier

bridge is of' the type having four high-

current' silicon diodes mounted in a single

package, such as the EDI type PB40.

The reservoir capacitor should have a

value of at least 1 5,000uF, to cope with the

heavy drain. It should also have a ripple

current rating of at least 5A, for the same
reason. Generally this means that we are

talking about a "computer grade" electro,

with a suitably impressive price tag.

However as this is the main reservoir electro

for the whole machine, it is worth getting

the best you can afford.

There are three types available at the time

of writing which appear to be quite suitable.

These are the Nippon Chemi-con type

EW16LGSN-1 5,000 B, available fron Allied

Capacitors; the type ELL-52052, made
locally by Plessey Australia; and the type

B41455 from Siemens Industries. The first

of these is 15,000uF, while the other two
are 22,000uF. All are single-ended clamp

mounting types.

The regulator circuit uses conventional

discrete transistors, rather than an 1C. This

has been done partly because there have

been, and still are to a certain extent, supply

problems associated with some of the most
suitable regulator ICs. A further reason is

that I have found it rather difficult to corhe

up with a 6 amp regulator circuit using an

1C, which is as stable as this simple discrete

circuit, without going to considerably

greater complexity and cost.

©- -EDUC-8 POWER SUPPLY ° WITH CLIP-ON HEATSINK
110 x 20mm FLAG OR SIMILARI

At top is a c/ose-up shot of the power
supply and IOT connector wiring, with the

circuit of the power supply above. At right

are details of the wiring on the small power
supply resistor panel.

There are only five transistors used, with
two 2N3055 power devices in parallel as the

series pass element. These are driven by a

medium power TO-5 PNP driver device,

which is driven in turn by two low power
NPN devices acting as the error amplifier.

The reference source is provided by a 6.2V
zener diode, this voltage being close to

optimum from the point of view of tem-
perature coefficient. A simple resistive

divider across the zener establishes the

nominal 5.2V reference against which the

output of the regulator is compared.
The two 0.33 ohm resistors in series with

the 2N3055 emitters are swamping
resistors, to ensure that the two devices

share the load current equally. The two 10
ohm series base resistors with their

associated 4700pF collector-base
capacitors, together with the .022uF
capacitor across the driver are to ensure that

+5V TO IOT SOCKETS.
COMPUTER BOARDS

2N3055
EMITTERS

the regulator is stable for all normal load

impedances. Without these components to

"throttle back the gain" at high frequencies,

this sort of circuit can become a very ef-

fective oscillator with caprcitive loading,

due to the excellent gain-bandwidth product

of the silicon transistors!

The two .047uF capacitors bypassing

either side of the power transformer

secondary are for RFI filtering, incidentally.

Withoul them, the operation of the machine

ELECTRONICS Australia, October, 1974 51

can be disturbed by mains switching
transients and other rubbish which can find

its way in via the transformer. The filtering

provided by the two simple bypasses has
been found quite effective, and no further

protection should be necessary providing
your machine is housed in a similar earthed
metal case.

Despite the simplicity of this power
Supply circuit, its performance is quite good.
Output voltage drops by only 0.12V when
the load current is changed from 500mA to

6 amps, which is more than adequate for

this sort of application. Similarly the output
ripple is well down, being less than 50mV
peak to peak even at the nominal full load
current of 6A. This means that the supply is

easily capable of delivering the nominal 3
amps required for the basic computer, with
another 3 amps available for powering the
logic in peripherals.

Incidentally this supply would perhaps be
worth considering in its own right as a
general-purpose heavy duty 5V supply for

logic development work. It is fairly rugged,
and will even take direct shorts across the
output providing they are of reasonably
short duration.

As there are only a handful of parts used
in the supply apart from the larger com-
ponents such as the power transformer and
reservoir electro, it has been wired up in

conventional fashion using a small length of
miniature tagstrip. Needless to say, the
wiring is not particularly critical, the main
thing being to wire up the leads carrying the
full load current in fairly heavy wire.
The basic wiring of the tagstrip is shown

in the small diagram, to serve as a guide.
The rest of the power supply wiring should
be easy to work out from the close-up
photograph. The two series-pass transistors

are mounted on individual 10-cm square
finned heatsinks, using the usual silicone

grease, mica or plastic insulation shim and
sleeved screws to electrically isolate the
device cases from the heatsinks and earthed
frame.

Don't forget that the mains flex should
enter the case through a grommetted hole,
be clamped upon entry, and have the active
and neutral wires terminated in a screw
connector strip. The earth wire should be
soldered to a lug screwed to the case, to
ensure a reliable machine earth.

Note that the PNP driver transistor should
have a small clip-on heatsink. This can be
one of the fancy moulded types if you like,

although a few square centimetres of 18 or
20 gauge sheet brass bent into a suitable
"flag" or "9" shape will do just as well.

As soon as the supply is wired up and you
have checked to make sure that no obvious
errors have been made, it can be switched
on — or "powered up", to use the ap-
propriate computerese — and its output
voltage checked. Regulation and ripple can
also be checked if you have the facilities,

although if the open-circuit output is right
the rest will probably be in order also.

As with most simple supplies, the open
circuit voltage tends to be a little higher than
when even a small load current is drawn. It

should measure between about 5.3 and 5.4
volts, dropping to about 5.12V at about
500mA drain and then dropping much more
slowly to around 5.00V at 6A. If your supply
is consistently higher or lower than these
figures, the cause will almost certainly be
due to the zener tolerance.

The remedy is simple: adjust the value of
either the 120 or 470 ohm resistors across
the zener, using higher value shunt resistors.

until the desired voltages are produced. Pad
down the 120 ohm resistor in this way if the
voltage is low, or the 470 ohm resistor if the
voltage is high.

With the power supply operational, you
will then be in a position to start on the
actual computer itself. T suggest that you
begin with the front panel board, as this will

let you see how the finished machine is

going to look. And with the board com-
pleted and hooked up to the power supply,

you will have an impressive array of lights

and switches to demonstrate your progress
to others!

The circuitry which is associated with the
front panel board is shown in the diagram.

ELECTRONICS Australia, October, 197452

CLOCK RAT

HIT COMM

.

HLT

ALL UNMARKED RESISTORS 1800 OSW

Above are wiring diagrams for the frontpanel board (top) and the mother board, showing all

parts and interconnections.

and as you dan see it is not particularly

complex. Seven of the ICs used are hex
inverter (7405) or hex buffer (7417) devices,

whose elements are used to drive the 42
LED indicators. The two different cir-

cuits used for the LED drivers are shown
down in the lower right of the diagram, with

a legend showing which signals use each
version. Basically those signals available in

positive logic form use the inverter element
drivers, while those in negative logic form
use the non-inverting buffer drivers.

Immediately above the LED drivers in the

diagram is the switch register, which is

simply eight switches and the same number
of 10k pullup resistors. This is a simple way
of generating static high or low logic levels,

and is all that is required. No suppression of

contact bounce is required, as the switches

are not involved in dynamic operation.

The remaining front panel circuitry is that

associated with the control switches. This

uses four low cost 7400 or 9002 quad gates,

together with a 9602 dual monostable or

"one-shot".

The three control switches which initiate

running of the machine — the RUN,
EXAMINE and DEPOSIT switches — are

fitted vyith bounce suppression flip-flops

which each use two 7400 gates. These
ensure that only a single, clean level

transition occurs whenever these switches
are pressed or released.

One of the 9602 one-shot elements is

used to sense whenever one of these three

switches is pressed, and to generate a single

pulse in response. This pulse becomes the
RUN COMMAND signal (negative logic),

which is sent to the timing and control

board to set the run flag flip-flop and start

the machine running.

This is the only immediate outcome of

pressing the RUN switch, as far as the front

panel circuit is concerned. However in the

case of EXAMINE or DEPOSIT, the output
from the one-shot is also combined with the

"OR" signal from the debouncing circuits to

set a small R-S flip-flop labelled the "deposit
or examine flag".

The output of this flip-flop becomes the

DEP + EXM logic signal (negative logic),

which is used throughout the machine to

distinguish an examine or deposit cycle from
normal running. Similarly the output signal

from the deposit debouncing circuit is also

taken away as a further logic signal, to

distinguish deposit from examine.

Note that provision has been made for a

deposit cycle to be initiated by an external

negative logic signal, as an alternative to

depressing the front panel switch. This has

been done to permit convenient loading of

programs by means of "hardware loader"

logic in an input device such as a paper tape

reader.

Before a program can be fed into the

machine by a sequence of deposit cycles, or

checked by a sequence of examine cycles,

its starting address must be loaded into the

program counter (PC) register. The same
operation is also necessary before the

program can be set running, in order that

the first instruction fetched will be the

correct one.
This function is performed by the LOAD

ADDRESS key, which as may be seen
generates a negative logic signal by simply

shorting the lower end of a 10k resistor

connected to the 5V line. Provision has also

been made for the same function to be
performed remotely, by what effectively

becomes an external negative logic LOAD
ADDRESS signal.

In either case the resulting negative logic

signal is inverted and used to generate two
signals which are fed to the PC register to

cause it to be loaded by the logic levels

present on the switch register output lines

ELECTRONICS Australia, October, 1974 53

(!

f

'

j

'

4

i

if

1l

EDUC-8 computer

SRO-6 inclusive (or SRO-7 inclusive with
the extended memory). The two signals are
LAI (negative logic), which is used to clear

the PC, and LA2 which is used to perform
the actual loading.

As may be seen, the circuit which
produces the two signals is quite simple,
using a two-input gate, the second one-shot
element from the 9602 device, and a further

gate used as an inverting buffer. The one-
shot is arranged to trigger only on negative-

going edges of the inverted (and therefore

positive logic) LA signal, so that if the load
address key switch were bounceiess the
one-shot would not operate until the key
were released.

If we ignore bounce for a minute, then, it

can be seen that the Q-bar or com-
plementary output of the one-shot will

remain in the high logic state while the LA
signal is present, because the one-shot will

not yet have triggered. As a result the gate
producing the LAI signal Will have two high
outputs, and will produce the signal to clear

the PC register.

Then, when the key is released, or the
external LA signal removed, the input of the
gate connected to the LA signal will go low,
causing the gate output to go high and thus
inhibiting the LAI signal. But at the same
time the one-shot will trigger, causing the Q-
bar output to go to the low state for a short
time. As a result the inverting buffer at-

tached to this output will produce the LA2
pulse signal, causing the address set up on
the switch register to be loaded into the
freshly cleared PC register.

Although you might think that this neat
chain of events would be fouled up by
contact bounce in the LOAD ADDRESS
key, this isn't so. If you trace through the
circuit, you'll see that the only effect of

bounce is to cause the sequence to be
repeated a number of times in rapid suc-
cession. And because the last "bounce"
after the key is released will always by
definition cause a negative-going transition

at the input of the one-shot, the last event
will always be the generation of an LA2
pulse. Hence despite bounce, correct

loading always takes place.

It is because the load address circuit is

unaffected by bounce that the LOAD
ADDRESS key is not provided with a

bounce suppression flip-flop as fitted to the

mra,

ftESET

Fla5

|OD0)

RESET
FLAG

DATA

CLOCK

+ 5V

DATA RESET FLAl

DEPJ2*
CLOCK LA

+ 5V

PITA6rfT'pBATA

The rear of the case, showing the iOTconnectors and regulator transistors.

RUN, EXAMINE and DEPOSIT keys. There
is no point in having a flip-flop if it is not
necessary.

One of the three remaining switches on
the front panel board is the SLOW/FAST
switch, which in the slow position com-
pletes the earth return circuit of a 47 uF
tantalum electrolytic capacitor. The other
end of the capacitor connects to the main
clock pulse generator on the timing board,
to alter its operating frequency.

The remaining two switches are the
HALT key and the SINGLE/CONTINUOUS
switch, which as may be seen are both in

parallel. Both have the effect of producing a

low logic level at one input of a gate acting

as an OR element, to produce a logic signal

labelled HALT COMMAND. The second
input of the OR gate is fed from the HLT
instruction output line (negative logic) of the
instruction decoder, so that the same HALT
COMMAND signal is generated in the event
of a "halt" instruction.

The effect of the HALT COMMAND
signal is to cause a reset pulse to be fed to

the run control flag flip-flop in the timing
circuit, at the beginning of the second half

of T23 of the next EXECUTE cycle. This in

turn causes the main run control flip-flop to

the reset at the ena of T23, so that the
machine stops running after fully com-
pleting the current fetch-execute cycle.

The run control flag flip-flop can only be
reset during T23 of an execute cycle, and
then only if the HALT COMMAND single is

present. This has a number of implications,

some of which will be discussed later. One
implication is that it is quite in order for the

FRONT PANEL
BOARD

SWITCH
MOUNTING

STRIP

PLUG-IN
BOARD

SR3 SOCKETS

IOT SOCKET CONNECTIONS
(VIEWED FROM WIRING SIDEI

SWITCH AND BOARD
MOUNTING DETAIL

At left are the IOT connector wiring' details,

mounting arrangements.

and at right the switch and vertical board

RUN and HALT keys to be pressed at the
same time — contradictory though this may
sound. Since the HALT key is effectively

only sensed during T23 of the execute cycle,

pressing both keys together and holding
them both down simply couses the machine
to run for a single complete fetch-execute
(or fetch-defer-execute) cycle.

In other words, it performs a single in-

struction step — nothing more, nothing less.

So that if the HALT key is held down
continuously and the RUN key pressed
repeatedly, the machine will simply step
through a program one instruction at a time.

This can be very handy for analysing the
operation of a program — particularly if it is

not doing what you expected!

It can be rather tedious having to hold the
HALT key down for any length of time,

though, and this is why the
SINGLE/CONTINUOUS switch is

provided. In the single step position, it is

simply equivalent to holding the HALT key
down ail the time — but a little easier on the
operator's finger.

Wiring of the front panel board should be
found a fairly straightforward task, if you
use the wiring diagram as a guide together
with the circuit and the photograph. Most of

the wiring should be fairly self explanatory,
although care should be taken with such
matters as correct orientation of the in-

dicator LEDs and the various ICs.

Note that provision is made on the board
' for indicator LEDs corresponding to bits 0-6

inclusive of the PC and MA registers. This is

sufficient for the 1 28-word memory, where
only 7 address bits are used, but will not

allow indication of the eighth bits (PC7 and
MA7) which become active if the memory is

expanded to 256 bits. Indicators for these
bits will be described later.

Probably the only other point to mention
about the front panel board at this stage
concerns the mounting of the switches. To
enable these to be replaced individually at

some future time, if they become faulty,

they have been mounted on a small metal

strip, which is attached to the front of the

PC board via small screws and nuts, at each
end. The switches are fastened to the strip

from the front using the screws and nuts

supplied with them, and with their bodies

passing through clearance slots. Finally their

rear lugs pass through holes in the PC
board, and are soldered to the appropriate

copper pads.
This technique should allow any of the

switches to be removed later on if

necessary, by undoing its mounting screws

ELECTRONICS Australia, October, 1974 55

an unsoldering its lugs using a small in-

strument iron introduced between the front
panel and mother boards. A little tricky, to
be sure, but not too difficult. The small
diagram shows the arrangement.

There is little tg say about the mother
board, particularly in terms of its circuit

function, because its main function is to
perform all of the interconnections between
the socket pins of the various plug-in
boards.

Apart from this very necessary and
worthwhile function, it also brings out the
connections between the plug-in boards
and the front panel circuitry, and between
the IOT board and the input-output device
sockets. It also reticulates the 5V supply
power, and mounts the four resistors used
to terminate the A,B,C and D data bus lines.

Whereas the twin PC edge connectors
used for all of the lower boards have their

"inner" ends open, to clear the board, the
single top board socket has both ends
closed.

The wiring of the mother board should
again be fairly evident from its wiring
diagram. The connections between it and
the front panel board are all marked iden-
tically, so that when the two boards are
wired up and mounted together via six half-

inch tapped spacers, it is simply a matter of
joining up the pads with the same markings.
In many cases these are exactly opposite
one another, so that interconnection in-

volves only a short length of tinned copper
wire bridging the gap. Where this has not
been possible, the pads are generally in the
same order, but merely a little further along
so that a short length of hookup wire will be
needed.
The only exceptions to this rule are the

connections to the PC and MA indicators,

which are separate on the mother board but
interleaved on the front panel board. This is

a little more tricky, but if each is wired
separately and with care, all should be well.

Note that there are no pads on the mother
board for the PC and MA register bit 5 and
bit 6 indicators — these will be dealt with
separately, at a later stage. For the present
leave the pads unconnected.

Note that there are four groups of four
pads at the bottom of the mother board,
which provide the input-output device
signal interconnections. These should be
connected to the appropriate rear panel
sockets, using the small connection diagram
as a guide. There are three small 6-pin DIN
sockets, two of which are used for the
output devices while the third is used for

input device 1 (ID1).

A larger 16-way socket is used for input
device 0 ODO), and the other pins of the
socket are connected to the switch register

pads SRO-7, the external deposit pad and
the external load address pad — the last two
being on the front panel board. This allows
the IDO socket to be used for input devices
incorporating a hardware loader, such as a
paper tape reader. Note that the external
DEPOSIT and LA connections between the
socket and the front panel board should be
made in twin shield wire, to prevent possible
malfunction due to spurious pickup.

In addition to control and data signal
connections, each input-output device
socket also receives 5V supply power direct
from the regulator output. This avoids
trouble dge to supply bus transients.

The 5V supply connections to the mother
and front panel boards should be wired in

fairly heavy leads, to ensure low voltage
drop. The stranded-conductor leads from a

EDUC-8 PARTS LIST - 1

MAIN CASE AND POWER SUPPLY

1

Case and lid/front panel, 29.3 x 70.3 x
35.7cm (W x H x D), with switch
mounting bracket.

1 Power transformer, 240V/ 10V at 6A
(Ferguson type PF3798, Jones type
JT 139 or similar)

2 10cm square finned heatsinks, flat

mounting type.

3 6-way DIN sockets (McMurdo type
1290-06-01)

1

16-way polarised plug and socket
(McMurdo type 1338-12-02, 1338-02-
02)

1 Silicon rectifier bridge, PB40 or similar

2 2N3055 NPN power transistors with
mounting accessories

1 TT800, BFS92, AY9139 or similar

medium power PNP silicon

2 BC108, BC208, BC548 or simitar

general purpose NPN silicon

1 BZX79/C6V2 or similar 6.2V 400mW
zener diode

2 4700pF LVpolyester or polycarbonate

1 .022uF LV polyester, etc
2 .047uF LV polyester, etc
1 470uF 10VW electrolytic

1 15,000uF or 22,000uF 16VW elec-

trolytic with mounting damp
Resistors: 2 x 0.33ohm 5W, 2 x lOohm

1W, 2 x lOOohm ’AW, 1 x 120ohm
’A W, 2 x 220ohm ’AW, l x 470ohm
’AW

Mains cord and plug; grommet and
damp for same; 2-way "B-B" con-
nector strip; 7-lug section of miniature
resistor panel; 2 x 2-tug miniature
tagstrips; 2 x 12.7mm tapped spacers;
rubber feet for case; screws, nuts,
washers, solder lugs, etc.

FRONT PANEL BOARD
1 Printed wiring board, code E8/F (28.3
x 9.6cm)

8 SPDTpaddle switch, redpaddle (CBK
type 7101)

2 SPDT paddle switch, grey paddle
(CBK type 7101)

3 SPDT spring return paddle switch, red
paddle (CBK type 7108)

2 SPDT spring return paddle switch,
black paddle (CBK type 7108)

4 spacers, untapped, 17mm long
4 7400 or 9002 quad gate
5 7405 or 9017 hex inverter (open

collector)

2 7417 or 9N17 hex buffer (open
collector)

1 9602 dual one-shot
42 Low cost red LED's single ended type
(OLD419, FLV110, 5082-4850. 5082-
4484, SL103, CQY24 or similar)

1 lOOpF NPO ceramic capacitor
1 .001uF LV polyester or polycarbonate
6 0.1uF LV polyester or polycarbonate
1 47uF 6VW tantalum electrolytic

Resistors: 42 x ISOohm 1/4W, 1 x Ik
1/4W, 18 x 10k 1 /4W, 1 x 22k
1/4W

Mounting screws for switch bracket;
hookup wire for links; solder, etc.

MOTHER BOARD
1 Printed wiring board, code E8/C (28.3
x 9.6cm)

4 32-way edge connector sockets, gold
PC tail dips (McMurdo type 133-14-
17) One socket dosed both ends
(dosed end foot type 4862-01-08)

7 16-way edge connector sockets, gold
PC tail clips (McMurdo type 133-12-
17)

3 0.1uF LV polyester or polycarbonate
capacitors

2 680ohm 1/4W resistors, 2 x 4700
ohm 1/4W resistors

Hookup wire for links, connections to

front panel board IOT connectors and
power supply; 6 x 12.7mm tapped
spacers for assembling boards;
screws, etc.

length of 3-core plastic insulated mains flex

are quite suitable.

The mother board-front panel board
assembly is mounted into the main case by
four '/sin Whitworth by 1 inch countersink-
head screws, two at each end in the cor-

ners. The screws pass through countersunk
holes in the wide turnover lips at the front of

the case, and are then fitted with clearance
spacers approximately % inch long. When
the board assembly is in position, the screws
then pass through the holes in the front

panel board, and mate with the tapped holes

in the spacers betvyeen the two boards.
Tightening the screws carefully thus
completes the assembly of the two boards,
and also fixes them rigidly behind the final

plane of the front panel.

With these boards wired up; connected to

the power supply and mounted in the case,

you can power up again and check
progress. It won't be easy to check the
operation of the control switches at this

stage, but you can certainly check the LED
indicator circuits and the operation of the
switch register switches.
When you switch on, all of the register

indicator LEDs on the left-hand side of the
front panel board shpuld light, while the rest

should all remain dark. Then, with a piece of

hookup wire with one end connected to

power supply negative lie, the case), it

should be possible to turn off each of the

register LEDs by touching the appropriate
interconnecting link with the wire.

With the same wire it should be possible
to light up any of the normally dark LEDs, by
touching their interconnection links or pads.

If any of the register LEDs don't come on
when power is applied, look for a wiring
error. The most likely cause will be a LED
wired in the wrong way around. Failing a
wiring error, you could have a faulty LED or
1C, which will have to be replaced.

Similarly if any of the instruction indicator

or machine state LEDs on the right-hand
'side of the board can't be turned on by
earthing the input of their buffer, again look
for a wiring error or a faulty component and
remedy it as soon as possible.

Finally, you can check the operation of

the switch register by temporarily con-
necting its inter connection pads to the
input pads of one or more of the register

indicator drivers. You can do this either one
switch at a time, or all at once — say by
connecting them to all of the MB or AC
register drivers. In the up position each
switch should cause its indicator LED to

light, while in the down position the LED
should be extinguished.

Barring a faulty switch or pullup resistor,

all should be well at this stage. You should
now be ready to tackle the timing and
control board, which will be the next section
described. ®

ELECTRONICS Australia, October, 1974 57

Building our computer:

three more sections
The description of our unique digitsl computer project continues here

with construction details for the timing and run control board, the in-

struction decoder board and the accumulator board. The author also

explains howto check the operation of these boards, in preparation for

the addition of the remaining sections.

by JAMIESON ROWE

The timing and run control board is the

uppermost of the EDUC-8 plug-in board

stack, and is coded E8 / T. The circuitry on

this board comprises the master clock

oscillator, the run control logic, the timing

pulse generator, and the major state

generator. The logic diagram for these

sections of the machine is shown in Fig 1

.

The master clock oscillator uses a circuit

which I have used in previous digital

projects, and found to be stable and reliable.

It is basically a relaxation oscillator using an

RC integrator feedback circuit around a

Schmitt trigger formed from half a 7413

device. A general purpose NPN silicon

transistor (BC108, BC208, BC548, etc) is

used as an emitter follower to reduce

loading on the integrator. This makes it

possible to generate stable frequencies as

low as 0.1Hz using practical values of

capacitance.

In this case the basic oscillator uses a 10k

resistor and 220pF capacitor, giving a "fast"

clock frequency of approximately 500kHz.

To produce the "slow" clock frequency of

2Hz, the appropriate front panel switch

connects a 47uF tantalum electrolytic

capacitor in parallel with the 220pF. The

connection to the switch and capacitor is

made via contact pad 7 of the board edge

connector, as shown.

The second half of the 7413 device is

used as a buffer between the master clock

oscillator and the run control logic. At the

heart of this latter section is the run control

flip-flop; this is a J-K element - half of a

7473 device -which controls the main gate

admitting the clock pulses to the timing

circuitry.

The clock input of the run control flip-flop

is driven by the master clock pulses

themselves, so that it operates the main gate

synchronously. This ensures that the gate

always opens and closes to pass complete

clock pulses, and never fractional pulses.

Opening and closing of the main gate is

performed by the run control flip-flop in

response to control signals applied to its J

and K inputs by a second flip-flop,

designated the "run flag".

The run flag flip-flop is a simple R-S type

formed from two 7400 gate elements. It is

initially preset to the state which produces a

low logic level at the J input of the run

control flip-flop, so that the main gate is

closed. However a negative logic RUN
COMMAND pulse fed to the run flag from

the front panel circuit via edge connector

pad 4 will cause the flag to switch to the set

state, applying a logic high to the J input of

the run control flip-flop. At the completion

of the next master clock pulse the latter will

therefore change state, opening the main

gate to begin the machine running.

Before we go any further, let me digress

briefly for a moment to introduce some
abbreviations which I will be using

frequently in the remainder of the present

description, and those to follow. Without

these abbreviations, the description would

become both unwieldy and difficult to

follow.

No doubt you will have noticed already

that some logic signals we have en-

countered use the positive logic convention

(high equals true), while others use the

negative convention (low equals true). This

occurs throughout the machine, the logic

conventions for each signal having been

chosen in order to simplify the logic and

minimise the number of devices. In some
cases the same signal is used in both

positive and negative logic forms, for dif-

ferent purposes.

To simplify discussion from now on, a

negative logic convention on the particular

signal or signal version being referred to will

be shown by means of the letter L in

brackets. Lack of this symbol will therefore

imply the positive logic convention. Hence

RUN and RUN (L) would be the positive

logic and negative logic versions of the same

signal, respectively.

Other abbreviations which will be used

are "FF" to stand for flip-flop, and "MCP"
for master clock pulses. There will be others

too, but these will be introduced as we go

along. Note that negative logic signals are

shown on the diagrams by a bar over the

designation, and also by a "bubble" at logic

element inputs and outputs. The diagrams

also show the logical OR operation as a plus

sign, whereas this will be spelled out in the

text as the symbol is not available in our

typesetting.

We should now be able to continue, in a

slightly more elegant manner.

Halting of the machine is achieved by

applying a negative pulse to the second

input of the run flag FF, to change its state

and apply a logic high to the K input of the

run control FF so that it will close the main

gate at the end of the current MCP.
Two different signals are used to reset the

run flag FF for halting, the two being applied

via a pair of 7400 gate elements connected

to form a negative logic OR gate. One signal

is a turn-on reset signal shown on the

diagram as R(L), which will be discussed

further shortly. The second signal is the

normal “halt" signal (L), used to stop the

machine running at the end of a deposit or

examine cycle, or at the end of an execute

cycle in response to a front panel control or

a "HALT" instruction.

The halt (L) signal is produced by a 2-

inputgate, one input of which is fed by a posi-

tive logic pulse produced by the timing

generator during the second half of T23,

and accordingly shown as T23.5. The

second input of the gate is fed from another

gate which performs an OR between the

DEP OR EXAM (L) signal from the flag on

the front panel board, and the output of a

further gate which ANDs the HLT COM
signal from the front panel board with an

EXECUTE signal produced by the major

state generator.

This sounds more complicated than it

really is, as the diagram shows. All it means

is that during normal running, the run flag

FF is turned off at time T23.5 if the machine

is either performing a deposit or an examine,

or if it is performing an execute cycle and

the HLT COM signal is present.

Both the run control and run flag FFs are

reset initially when power is applied to the

machine, to prevent it from running until this

is specifically commanded. This turn-on

reset function is performed by the R(L)

signal, generated by a simple circuit using a

7400 gate element whose two inputs are

taken to earth via a parallel combination of a

100k resistor and a 47uF tantalum elec-

trolytic capacitor.

When power is first applied, the capacitor

is an effective short-circuit to ground ap-

plied at the gate inputs. This produces a

logic high at the gate output, and hence the

R(L) signal at the output of its following

buffer inverter (V47420). However the

capacitor soon charges through the gate

input circuit, allowing the gate inputs to rise

to the high level. The R(L) signal therefore

disappears after it has served its purpose,

and does not appear until the next time

power is first applied after the machine has

been off.

The purpose of the 100k resistor is to act

as a bleed, so that the charge on the

capacitor leaks away reasonably soon after

the machine in turned off. At the same time)

the RC time constant has been chosen so

that the turn-on reset signal is not generated

unless power to the machine has been

interrupted for at least 2 or 3 seconds. This

means that very short mains interruptions

which would not upset operation, due to the

reservoir action of the power supply electro,

do not cause a reset to be generated.

As well as being used to reset the run flag

and run control FFs upon turn-on, the R(L)

signal is also used to perform the same
function for the main timing counter and the

other FFs in the timing and major state

generator logic.

The main timing counter is a Fairchild

9316 4-bit synchronous binary counter,

which receives master clock pulses directly

from the main gate. A synchronous counter

is necessary here, to ensure that all four

counter outputs change state

44 ELECTRONICS Australia, November, 1974

BC108.BCS48.etc.

ELECTRONICS Australia, November, 1974

EDUC-8 computer

simultaneously. This allows groups of

counter states to be combined to form

continuous timing signals lasting for a

number of MCP periods. If a normal non-

synchronous counter is used, the small

delays between outputs causes "notches"

in the resultant timing signals, which can

upset nnachine operation.

The actual timing signals are generated

from the various states of the timing counter

by means of a 931 1 /74154 decoder with a

network of gates connected to the first 1

2

of its 16 outputs. The twelfth or 11(L)

output of the decoder is also fed back to the

parallel enable or PE(L) input of the 9316,

effectively causing it to be reset after every

12 clock pulses. This establishes the 12-

pulse sequence on which the various cycles

of the machine are based.

The cycles are actually 24 clock pulses

long, so that for each machine cycle the

timing counter and decoder run twice

through their basic 12-pulse sequence.

Identification of the "first half" and "second
half" sequences of the cycles is performed

by the sequence counter FF, whose clock

pulse input is fed with an inverted version of

the 11(L) decoder output.

As may be seen, a number of gates

connected to the outputs of the timing

decoder are used to produce raw timing

signals corresponding to various time in-

tervals in the basic timing counter sequence.

In most cases the two outputs of the

sequence counter FF are then used to

separate the raw timing signals into the final

timing signals required. The exception is the

TO-OR-T12 (L) signal, which because it

occurs in both sequences of the cycle is

derived directly from the OIL) decoder

output.

To illustrate the generation of the other

timing signals, look at the logic involved in

generating the T2-9 and T14-21 signals.

These are both used for serial shifting of

instruction and data words, and both last for

8 MCP periods which by design occupy
corresponding positions in the first and
second 12-pulse sequences of each cycle.

Note that the raw signal is first derived by
the gates connected to the decoder outputs

2 — 9 (L), inclusive, and this signal is then

gated by the sequence counter FF outputs

to produce the final T2-9 and T14-21 timing

signals.

The signals generated directly by the

timing circuitry for use throughout the rest

of the machine comprise TO-OR-T12 (L),

T0.5 (L), T1 , T13, T2-9, T14-21 , and T22.5.

A further signal T23 is also generated, but

this is used solely by the major state

generator. Note that there are actually two
T2-9 signals and two T14-21 signals, with

duplicated logic. This is a carryover from the

original 32-word memory version of the

machine, where the second sets of gating

were required to produce T5-9 and T17-21
signals. Rather than redesign the board

completely, the gates have simply been

swung over to operate in tandem with the

original T-2-9 and T14-21 logic.

The major states of the machine are

defined by the logic circuitry associated with

the two remaining J-K flip-flops on the

timing board, those labelled "execute

control" and "defer control". This circuitry

operates as follows.

When power is first applied, both the

execute control and defer control FFs are

reset by the R (L) signal. The deposit or

examine flag FF on the front panel board is

also reset, by means of a signal produced by
the gate whose output connects to pad 1

7

of the edge connector. This preliminary

condition is equivalent to the FETCH state,

and accordingly a low level logic signal is

produced by a 3-input gate at the FETCH (L)

output of the circuit — pad 28. A high level

version of the same signal is produced by an

inverter and fed to pad 21.

If the machine is set running by means of

the RUN key, the first cycle will therefore

automatically be a fetch, as required. The
next cycle entered depends upon the type of

instruction fetched and decoded, and on
whether or not bit 4 of the instruction is a 1

,

in the case of memory reference in-

structions.

The decision is effectively made by the 4-

input gate whose output is connected to the

R-S flip-flop marked "defer flag". The in-

puts to this gate are arranged so that the

only situation in which it delivers a negative

logic pulse to set the defer flag FF is when a

memory reference instruction has ben
fetched (i.e., not IOT or OPR), bit 4 of the

MB register is a 1, and it is the first half of

T23 of a fetch cycle. If any of these con-

ditions are not satisfied, the defer flag FF is

not set.

In other words, the defer flag FF can only

be set during the first half of T23 of the

fetch cycle, and then only if there is both a

memory reference instruction fetched, and it

is also an indirect address instruction having

a 1 in the bit 4 position.

Note in passing that some of the con-

ditions necessary before the defer flag FF
can be set are actually tested by the 3-input

gate with its output connected to edge
connector pad 18. This gate produces a

signal designated F.T23.not(OPR OR IOT)

(L), which is fed via an inverter to one input

of the 4-input gate as well as being fed out

for use elsewhere in the machine.
The T23.5 pulse generated by the timing

logic is fed to the clock inputs of both the

execute control and defer control FFs, so

that both FFs are potentially capable of

switching to the set state at the end of T23
(which is also the very end of the fetch

cycle). However the outputs of the defer

flag FF are connected to the J inputs of the

two control FFs so that only one can in fact

be set. If the defer flag FF remains in its

initial reset state, the execute FF will be set;

alternatively if the defer flag FF has been set,

then the defer FF will be set instead.

Hence the machine is automatically led

into an execute or defer cycle, depending
upon whichever is appropriate. In either

case the FETCH and FETCH (L) signal

46 ELECTRONICS Australia, November, 1974

outputs are reversed in polarity, to signify

that the fetch cycle has ended, and either

the EXEC and EXEC (L) outputs are taken

high and low respectively, to indicate an

execute cycle, or the DEFER (L) output is

taken low to indicate a defer cycle.

If the execute control FF is set, the

machine enters an execute cycle and

performs the instruction concerned. Then at

the end of the cycle, the T23.5 timing pulse

will reset the execute control FF so that the

machine will return to a new fetch cycle.

On the other hand if the defer control FF
is set, the machine enters a defer cycle and
reads out of the memory the actual address

of the instruction operand. At the start of

the cycle the defer flag FF is also reset, as

the DEFER (LI signal is fed back to the gate

and inverter connected to its reset input. As
a result, when the end of the defer cycle is

reached, the T23.5 timing pulse not only

causes the defer control FF to be reset, but

also sets the execute control FF. Hence the

machine ends the defer cycle and correctly

enters an execute cycle.

If the machine is set running normally by

means of the RUN key, it therefore con-

tinues to run through alternate fetch and

execute cycles, with defer cycles

automatically interposed between fetch and

execute wherever necessary for indirect

memory reference instructions. This

operation only stops if a halt command is

encountered, as a result of the operator

pressing the HALT key, or by execution of a

halt instruction.

The machine also starts running if either

the deposit or examine keys are pressed, as

explained earlier. However in this case the

deposit or examine flag FF on the front

panel will be set, so that the DEP OR EXM
(L) signal will be fed to the timing and
control board via edge connector pad 6.

This signal has a number of effects. One is

that it ensures that the run flag FF is reset by

the first T23.5 timing pulse generated, so

that the machine automatically halts after a

single cycle. At the same time, the 3-input

gate which produces the FETCH (L) signal is

blocked, so that the machine does not

confuse a deposit or examine cycle with

fetch. This also has the effect of preventing

the defer flag FF from being set during the

first half of T23, by blocking the 4-input gate

(via the F.T23.not(OPR or IOT) (L) 3-input

gate).

„ln addition, the DEP OR EXM (L) signal

also prevents the execute control FF from

setting at the end of the cycle, by holding

down one input of the 2-input gate attached

to the latter'* J input.'

These actions all ensure that tor “deposit

or examine, the machine runs only for a

single 24-pulse cycle and then stops without

upsetting the major state circuitry. Note that

at the end of the cycle, the deposit or

examine flag FF on the front panel is

automatically reset by means of the

CANCEL DEP OR EXM (L) signal produced

by the gate attached to edge connector pad

17.

Two further logic and timing signals are

derived on this board. One i$ (F OR DEP OR
EXM) (L), fed to pad 24. The other is a

version of the same thing gated by T2-9,

and fed to pad 19.

Hopefully the foregoing description will

have given you a reasonably good idea of

the operation of the run control, timing and

major state generator logic. It has not been

possible to describe the exact function of

every gate and inverter, but if this were

attempted it would take far more space than

is available — and probably be rather

confusing.

The wiring of this board should be fairly

self-evident from the diagram of Fig. 2.

There are 21 ICs, a few small components
and a number of wire links. The main things

to watch are the position and orientation of

the ICs, and that the links are fitted

correctly. It is a good idea to use insulated

wire for the links, to prevent accidental

shorts. I used single-conductor PVC
covered hookup wire.

Don't forget to cut the slot next to pad 32

of the edge connector strip, so that the

board can be plugged into the top socket. It

may be necessary to file the side of the slot

nearest pad 32, and also perhaps the end of

the board next to pad 1 , to ensure that the

board will fit into the socket with all of the

pads mating correctly with the socket clips.

The same sort of preparation will probably

be necessary with the other plug-in boards,

as there will inevitably be small errors in the

boards as they come from the manufacturer.

Decoder board

We can now turn our attention to the

second plug-in board, which is that for the

instruction register and decoder, with the

code E8 / D. The logic for this "decoder
board" is shown in Fig. 3.

As you can see, the heart of this board is a

Fairchild 9334 1C, which actually functions

as both the instruction register (IR) and the

instruction decoder. This is because' the

9334 is what the maker describes as an 8-bit

addressable latch. In effect it comprises a 3-

bit binary decoder with inputs AO, A1 and
A2, whose eight outputs are coupled in-

ternally to eight R-S latch flip-flops.

When a low logic level is applied to the C
input, all of the internal FFs are reset. Then if

a low logic level is applied to the E input,

whatever logic level is present at the D input

will be stored in whichever of the eight FFs

corresponds to the decoded 3-bit number
applied at the AO, A1 and A2 inputs. In

effect, it is an eight-bit memory, where D is

the data input, E the write enable input and
the three A connections the address inputs.

In this application we clear all the internal

FFs of the device at time TO.5 of the fetch

cycle, by means of the simple gating shown
connected to the C input. Then, at time

T22.5 in the fetch cycle, after the instruction

has been fetched from the memory and has

settled in the MB register, a low logic pulse

is applied to the E input. As the D input of

the device is connected to logic* high, and
the three A inputs are connected to bits 7, 6
and 5 of the MB register via edge connector

pads R, Q and P, this has the effect that the

operation code pf the instruction is

decoded, and the corresponding 9334
output FF set.

Hence if the operation code is 010 (octal

2), output 02 would be set. Or if it is 110
(octal 6), output Q6 would be set. Whatever
the operation code, one and only one of the

outputs will go high, and will remain high

until T0.5 of the next fetch cycle.

Although the 9334 output concerned

thus provides the decoded form of the

instruction operation code from T22.5 of its

own fetch cycle until T0.5 of the following

fetch, this signal is in most cases only used

during the execute cycle. Hence the 9334
outputs are not used directly, but are gated

by the EXEC signal from the major state

generator. This produces the eight primary

instruction outputs, all of which are fed to

edge connector pads A—H inclusive, in

negative logic form: AND (L), TAD (L), IS2

(L), DCA (L), JMS (L), JMP (L), IOT (L) and

OPR (L).

An (OPR OR IOT) signal ungated by the

EXEC signal is also produced, and fed to

connector pad 16. The reason why the

signal is not gated by the EXEC signal is that

ft is used primarily on the timing and control

board (pad 20), to prevent the defer flag FF

being set for IOT or OPR instructions. To be

effective, it must therefore be present during

T23 of the fetch cycle.

The additional gating attached to the Q6
and Q7 outputs of the 9334 is involved in

decoding the augmented operation code of

the IOT and OPR instruction formats. Thus
the IOT signal is further gated by the signals

from MB register bits 0,1 and 2 to produce

the CLEAR IOT FLAG (L), IOT SHIFT (L)

and SKP ON IOT FLAG signals respectively,

fed to connector pads 6, 11 and 7.

Similarly the OPR signal is gated by both

EDUC-8 PARTS LIST - 2

TIMING AND CONTROL BOARD
7 PC board, code E8/T, 27.5 x 76cm

7 BC708, BC208, BC548 or similar NPN
transistor

9 7400 or 9002 quad 2-input gate 1C

4 7404 or 9076 hex inverter iC

2 7470 or 9003 triple 3-input gate IC

1 7473 or 9NJ3 dual Schmitt IC

7 7420 or 9004 dual 4-input gate IC

2 7473 or 9N73 dual J-K flipflop IC

7 937 7 or 74754 76-way decoder IC

7 9376 synchronous 4-bit counter IC

7 470 ohm ’A W resistor

2 2.2k / W resistors

7 70k 'AW resistor

7 700k 'A W resistor

7 220pF polystyrene or NPO ceramic

4 .047uF L V polyester or ceramic

7 47uF 6VW tantalum electrolytic

Insulated hookup wire for links

DECODER BOARD
7 PC board, code E8/D, 27.5 x 76cm

8 7400 or 9002 quad 2-input gate IC

2 7404 or 9076 hex inverter IC

2 7410 or 9003 triple 3 -input gate IC

1 7420 or 9004 dual 4-input gate IC

1 9334 eight bit addressable latch IC

2 2.2k 'A W resistors

3 .047uF LV polyester or ceramic

Insulated hookup wire for links

ACCUMULATOR BOARD
1 PC board, code E8/A, 27.5 x 76cm
2 7400 or 9002 quad 2-input gate IC

2 7401 or 9012 quad 2-input gate with

open collectors

1 7404 or 9016 hex inverter IC

2 7405 or 9017 hex inverter with open

collectors

1 7410 or 9003 triple 3-input gate IC

2 7495 or 9395 four-bit shift register

1 820 ohm ’A W resistor ’

3 2.2k 'A W resistors
j

4 ,047uF LV polyester or ceramic I

Insulated hookup wire for links

ELECTRONICS Australia, November, 1974 47

+ 5V TO ALL IC'S • + 6V (2)EDUC-8 computer

the MB bit 4 and its complement, and in

each case then further gated by MB bits

0,1,2 and 3 to produce the eight OPR
microinstruction signals CLA (L), CMA (L),

RAL (L), IAC (L), SZA (L), SMA (L), RAR
(L), and HLT (L). These are fed to connector

pads 31 — 24 inclusive, as shown.
The remaining logic circuitry on the in-

struction decoder board is involved in

producing secondary gating and timing

signals, by combining the foregoing primary

instruction and microinstruction gating

signals with timing signals. Thus a T14-21.
(JMS OR JMP) (L) signal is produced by
combining the JMS (L) and JMP (L) signals

in a gate performing the OR function, and
then gating this with the T14-21 timing

signal. The resultant is fed to connector pad
17, as shown.

Similarly a T2-9. (TAD OR IAC OR CMA)
(L) signal is produced and fed to pad 13, and
a T2-9 ISZ(L) signal produced and fed to

pad 14. A (JMS OR DCA) signal is also

produced and fed to pad 15.

Signals corresponding to those in-

structions and microinstructions which
involve PC register incrementing or

“skipping" -ISZ(L),SZA (L), SMA (L) and
SKP ON IOT FLAG (L) —are also combined
by a 4-input gate performing the OR func-

tion, and gated with the T14-21 signal to

produce a signal designated T14-21.SKP
(L), which is fed to pad 18.

And finally, signals corresponding to both
the major states and instructions which
involve the memory are assembled by a 4-

input gate and a 3-input gate, both per-

forming the OR function, and gated with the

appropriate T2-9 and T14-21 timing signals.

The outputs of the two gates are then
combined by a further gate performing the

OR function, to produce a signal designated

MEMORY ENABLE. This is fed to pad 23.

Wiring of the decoder board should be
fairly self-evident from the diagram shown
in Fig: 4. There are only 14 ICs, five minor
parts and again a number of wire links. As
before the main things to watch are that the

ICs are correctly orientated, in their correct

positions, and that the wire links are in their

correct positions.

The decoder board plugs into the mother
board position second from the top, im-

mediately below the timing and control

board.

Accumulator board

The third- section of EDUC-8 to be
described at this stage is that comprising the

accumulator (AC) register and its associated

logic. This section is on the plug-in board

coded E8 / A, and for convenience
described as the accumulator board. The
logic diagram is shown in Fig. 5.

As may be seen, the heart of this section

is the AC register itself, which is simply

formed by two 7495 four-bit shift register

ICs connected together to form an 8-bit

register. The 7495 devices are internally

connected for right shifting, which is of

course used for shifting data into and out of

the register, and also for the RAR
microinstruction. To achieve the left shifting

required for the RAL microinstruction, the

parallel inputs PA—PD of both devices are

connected to the outputs of the "next right"

positions. The PD input of the right 7495 is

connected to the A output of the left, to.

ELECTRONICS Australia, November, 1974 49

EDUC-8 computer

complete the loop so that all 8 bits are
retained.

The RAL (L) signal input at pad F is taken
to the "mode” (M) inputs of the two 7495s,
via an inverter to give the correct logic
polarity. Thus when the RAL microin-
struction occurs, the devices are switched
to the parallel loading mode. As the parallel
load clock inputs (CP2) are connected to the
T1 timing signal input on pad 13, a left shift
of one bit thus occurs at time T1 of an RAL
execute cycle.

The outputs of all eight AC bits are taken
to connector pads J—R inclusive, for
connection to the LED indicator drivers on
the front panel board. AC bit O is also
connection to pad 1 1 ,

for shifting of data to
the IOT interface board. Eight open-circuit
collector inverters with their inputs con-
nected to AC bits 0-7 and their outputs
commoned and taken to the positive rail via
an 820 ohm resistor are used to perform the
NOR function, so that their output at pad 15
is at logic high level only when all eight AC
bits are zero. This signal is used when
executing the SZA microinstruction.

The shift right clock pulse inputs CPI of
the two 7495 ICs are commoned and fed via
an inverter from a gate which ANDs master
clock pulses arriving at pad 9 with one of a
number of signals fed to it via the associated
gates. Thus a single clock pulse is fed to the
AC at T13 of an RAR microinstruction
execute cycle, due to the T13.RAR (L)

signal from pad 8. Similarly eight pulses are
applied during T2-9 of the execute cycle of a
TAD instruction or an IAC or CMA
microinstruction, due to the T2-9.ITAD OR
IAC OR CMA) (L) signal from pad 14, and
so on.

The bit 0 output of the AC is applied to
one input of the gate marked AND, the
other input of which connects to the D-bus
input on pad 7. After passing through an
inverter to restore the logic polarity the
output of the AND gate is then gated by an
inverted version of the AND (L) signal from
pad A. Thus during the execute cycle of an
AND instruction, a path is provided for serial

AN Ding of the number in the AC with the
number read from the memory via the D-
bus. The resultant is fed to the A-bus, pad 4,
and then back to the input of the AC via an
inverter.

The remaining logic of this section is

involved with connection of the AC bit 0
output to either the B-bus or C-bus (pads 5
and 6), as required, for various instructions
and microinstructions. I will not trace
through this in detail, to conserve space.
However it may be worth noting that the
effect of the CLA (L) signal from pad H is to
block two of the paths between ACO and
the B-bus, whereas the effect of the other
inputs is to enable a path between ACO and
either the B-bus or C-bus.
The logic has also been arranged so that

the CLA microinstruction can be combined
with either the IAC or CMA microin-
structions, and IAC also combined with
CMA.
As before the wiring of the accumulator

board should be straightforward, using the
diagram of Fig. 6 as a guide. There are 10
ICs, some nine minor parts and a number of
wire links, and here again the 1C orientation
and position should be watched carefully to
avoid errors. This board plugs into the
second bottom position on the mother

moo 2

»«««»«»
I 7420 i

»«nu»,
7400 <

m»»rr
CUD*

7410
(j

.
74Q4

e

IM44441

»i»«m
<7410

mi»M

«-»»««««

7400 C

MG 4

s 1

fc.2

* 3

4

5

10

11

12

13

14

15

16

17

18

19

' 20

21

22

23

24

25

- 26

27

28

.29

\
30

'31

32

X

' A
' B

XXtl c

•;rX: D

E

h
1 J

^ s' 0 K

, X; l

.

s'" s

XI’m
uyIXv

- % \ ", p

q
R

board, which is the uppermost of the two
positions having two 16-way edge con-
nectors.

When the three boards described in this

section have been wired up and checked
against the diagrams for errors, they may be
plugged into their respective sockets —
assuming that all seems well. It will now be
possible to test many of the basic functions
performed by these sections of the machine,
and this is a good idea before you proceed
to build up the remaining sections.

Testing progress
In order to perform the tests it is

necessary to make temporary connections
between the switch register pads SRO-7 on
the front panel board (also available on the
16-way input device connector), and the
MBO-7 connector pads on the left-hand end
of the mother board. SR0 should be
connected to MB0, SRI to MB1, and so on,
down to SR7 and MB7. This is to allow the
switch register to be used to "dummy" or
substitute for the MB register, as yet un-
wired.

With these temporary connections made,
apply the power. If all is well, the only LED
which will light on the right-hand side of the
front panel will be that for FETCH, which is

normally lit when the machine is not run-

ning. On the left-hand side of the front

panel, the LEDs for the PC and MA registers

should all be glowing, while those for the
MB register should correspond to the
positions of the SR switches — up switches
producing a glowing LED, and down
switches producing a dark LED. The LEDs
for the AC register will light in a random
pattern at this stage, and have no particular

significance apart from reflecting the turn-

on bias of the FFs in the AC devices.

For a first test, make sure that you can set
the MB register LEDs to any desired binary
number by setting it up on the SR switches.
This ensures that you have the temporary
connections right, so that the SR can indeed
be used as a substitute MB register to feed
in instructions.

Now set the FAST/SLOW switch to the
upper or slow position, and the
SINGLE/CONT switch to the upper or
single step position. The machine will now
be set for slow running, and single stepping.
Then set all eight of the SR switches to the
down or 0 position, in effect giving the
machine an AND instruction directly ad-
dressing memory location 0000 (which at

this stage does not exist, of course — nor
does any other location).

ELECTRONICS Australia, November, 1974 51

EDUC-8 computer

You are now ready for the first big test.

Watching the LEDs on the right-hand end of

the front panel, press the RUN key. The run
LED should light, showing that the machine
has started running, while the fetch LED
should remain lit — showing that it is

valiantly trying to perform the fetch cycle,

slightly handicapped at this stage by the lack

of both the PC register and the complete
memory system!
The fetch LED should remain lit for about

12 seconds, then it should go dark and the
execute LED should glow, showing that the
machine has correctly entered an execute
cycle. At the same time the AND instruction

LED should light, showing that the correct

"instruction” has been decoded and its

execution is being attempted.
Both the execute and AND instruction

LEDs should remain lit for another 12
seconds or so, whereupon both they and
the run LED should go dark, indicating that

the machine has stopped running. When
this happens the fetch LED should come
back on again.

During the execute cycle you may have
noticed that if there was a number other
than 00000000 in the AC register, it was
apparently shifted around eight bits to the

right, to end up where it began. This is

normal, as the machine performs the AND
operation between the number in the AC
and a logic "1" effectively present on the D-
bus when the memory board is absent. The
resultant is returned to the AC.

If all is well so far, set SR switch 4 to the
up position, to simulate the MB4 bit being
set to 1 for indirect addressing. Then press
the RUN key again. The previous chain of
events should now be repeated, except that
before entering the execute cycle the
machine should spend about 12 seconds
with the defer LED glowing.

If this checks out also, set switch SR4
down again and set SR5 to the up position,
to simulate a TAD instruction. Pressing the
RUN key should produce a repeat of the first

sequence, except that this time the TAD
instruction LED should glow durihg execute.
The number in the AC will also be lost, as
the machine will shift it out to attempt
passing it through the serial adder (at

present non-existent).

In similar fashion you can check the
decoding of the remaining primary in-

structions, simply by setting SR5, SR6 and
SR7 to the appropriate operation code. And
you can check that with bit 4 set to a 1 by
having SR4 up, the machine will pass
through the defer state between fetch and
execute, for the six memory reference in-

structions. You should conversely check
that it does NOT enter a defer cycle for the

IOT and OPR instructions, despite SR4
being up!

Finally, you can test those of the OPR
microinstructions which change the content
of the AC, without requiring the adder.
These are CLA, CMA and RAL. The other
two content-changing microinstructions
(IAC and RAR) can also be partially

checked, but at this stage will not work
properly because of the absence of the
adder.

To perform these checks, first set the
SLOW/ FAST switch to the down, or fast
position. Then set switches SR7, SR6 and
SR5 to the up position, to simulate the OPR
operation code (octal 7). Leave the
SINGLE/CONT switch in the up position,
for single step operation.
As the AC register content is probably

zero by this stage, the best microinstruction
to try first is probably CMA. So set switch
SR2 to the up position and switches SR4,
SR3, SRI and SR0 to the down position, to
set up the full CMA coding (octal 704). Then
press the RUN key, whereupon the AC
should be set to 11111111 (equivalent to
minus 1 in two's complement binary arith-

metic).

Pressing the RUN key again should
restore the AC content to all zeroes again,
and further presses should simply cause the
two AC content situations to alternate back
and forth. Make sure that you end the test
with the AC content at minus 1 , though, so

that you are ready to perform the next test.

This time set switch SR2 down, and SR3
up instead. This produces octal code 710, or
that for CLA. Pressing the RUN key should
now simply wipe out the AC content,
leaving it zero. Continued pressing should
have no effect.

To test the RAL instruction, it will be
necessary to have an AC content other than
zero or minus 1 , because these both look the
same no matter how many times they are
shifted left! The easiest way to give the AC a

suitable content is probably to turn the
power off for about 10 seconds, then turn it

back on. The AC content should then come
up with a random value, hopefully neither
zero nor minus 1

.

If you are unlucky, and the AC does come
up with zero or minus 1 consistently, there is

still a way to produce a suitable AC content.
This is by using the RAR microinstruction,

which as yet will function only partially but
sufficient for our purpose.

First set the SR switches back for CMA
(octal 704), and press the RUN key to give

the AC a content of minus 1 . Then set the
SR switches to octal 722, representing RAR
(SR7, 6, 5, 4 and 1 up, SR3,2 and 0 down).
Pressing the RUN key a few times should
then move zeroes into the AC from the left

hand end. Do this until you have about 3 or

4 bits left in the AC set to 1

.

Having produced a suitable content in the
AC by one or other of these methods, now
set the SR switches for the RAL microin-
struction (octal 702). Pressing the run key
should cause the number in the AC to be
shifted one bit position to the left, with the
value of AC bit 7 being transferred around
into bit 0. Further shifting should be
produced by continued pressing of the RUN
key.

At this stage you will have tested all of the
microinstructions capable of being per-

formed properly by the machine in its in-

complete form. You can if you wish test the
RAR microinstruction partly, along the lines

just described for setting up the AC for the
RAL test. You can also try the IAC
microinstruction (octal code 701), although
at this stage it will simply act in the same
way as CLA or DCA — simply clearing the
AC of any content and leaving zero.

Hopefully, your machine will have passed
all these tests, and you will be ready to work
on the program counter and adder board,
and the memory board. These will be
described next, so that before long you will

be able to get the machine actually running
in its basic form.

Troubleshooting
If you have struck trouble, in that your

machine doesn't perform as it should, there
are probably three likely causes. One is that
you may have made a wiring error, such as
an 1C in the wrong position or around the
wrong way, or a wire link in the wrong
position. The second possibility is that you
have a faulty connection in one of the PC
edge connectors — in which case cleaning
the board connector pads with a cloth

soaked in methylated spirit may help, or

failing this judicious bending of a guilty

socket clip may be required.

The third possibility is a faulty 1C, which
does occasionally occur. Here the trick is to

find the guilty device, of course, after which
the remedy is obvious.

I myself have encountered only two faulty

ICs, both of which were 7400 quad 2-input

gate devices. In both cases only one of the
four gates was faulty, but the symptoms
were identical: the gate operated purely as

an inverter from one input, completely
ignoring the other input. This suggests a

broken bonding wire from the package pin

to the chip, and it was perhaps significant

that both devices were of the moulded
plastic variety.

In both cases the effect of the fault in

terms of machine operation was to cause
the machine to perform an operation not
only when it should, but at other times as

well. In one case it skipped on the SMA
microinstruction regardless of whether the
AC was actually negative or not, for

example.
In a nutshell, the approach to use when

troubleshooting is to first study carefully the
symptoms, noting exactly what is going
wrong, and when (use the slow running
mode to help spot timing). Then look

carefully at the logic diagram, and you will

often be able to narrow down the fault area
quite closely. Finally, test out your theory
about where the fault may lie, using a logic

probe or a scope to analyse what is going
on.

It takes a while to get the hang of this, but
you'll find it will probably come to you faster

than you may anticipate. At first, the logic

circuits may seem bewilderingly complex,
but in reality only a small part of the total

circuit is generally involved at any one time.

PLEASE NOTE
In the initial explanation of EDUC-8

operation, it was stated that with a

cleared AC register, the effect of the

CMA microinstruction is to give the AC a

content of 1 . This is of course wrong; it

leaves the AC with all bits set to 1,

equivalent to minus 1 in 2's complement
notation.

It should also be noted that the RAR
microinstruction only corresponds to

division by two when the initial AC
register content is an even number — i.e.,

with bit 0 zero. This is because the

content of bit 0 moves to the bit 7

position following RAR.
In Fig. 6 of the same section, showing

the basic organisation of the machine,
the inverter shown after gate 14 should

be before this gate. The inverter is used
for the CMA microinstruction.

Finally, please note that the PC and
MA registers have now both been en-

larged from 5 to 8 bits, to cope with the

8-bit address words required for the

128/256 memory.

ELECTRONICS Australia, November, 1974 53

CD

Z

The EDUC-8 computer:

getting it going - at !;

Continuing with the construction of our unique digital computer
project, the author describes here the program counter and adder
section, and also the memory section. This completes the basic
machine, which should now be capable of running in a limited way via
the console controls and indicators.

by JAMIESON ROWE
Having completed the assembly and

testing of the timing and run control,
decoder, and accumulator sections, you
should now be in a position to complete the
basic machine by adding the program
counter and adder section, and the vital

memory section. These will be described
here, together with details of how to check
operation as you progress.

If you are keeping up with the description,
all going well you will have by the end of this
stage a complete basic computer, capable of
storing a program and executing it. The only
thing is that it will be an "introvert", capable
of communicating with the outside world
(i.e., you!) only via the console switches and
LED indicators. So that while it will be
capable of running, it won't perhaps seem
very spectacular or impressive. This will

have to wait until we give it the ability to
deal with input-output devices, and provide
it with some of these to communicate with.
These preliminary comments are just to

let you know where we’re heading, and
perhaps to encourage you if you were
beginning to falter. With that done, I hope
we can proceed.

For convenience, the program counter
(PC) register and the serial adder circuitry
are grouped together on a single plug-in
board, coded E8/P. This board is the same
size as the other plug-in boards described,
21.5 x 16cm, and has connector pads to
mate with both a 32-way and a 16-way
edge connector socket. It plugs into the
sockets fourth from the top on the mother
board, immediately above the accumulator
board.

The logic for the program counter and
adder sections is shown in Fig. 1 . As you
will perhaps have already noticed, the PC
register itself is formed by two 7496 five-bit

shift register devices, with only three flip-

flops being used in the first device. This
gives a total of eight bits, so that the PC is

capable of handling the 8-bit address words
needed for 256 memory locations.
The five parallel inputs of the 7496 which

is fully used are connected to pads 24-28
inclusive of the board edge connector, and
thence to SRO-SR4 of the switch register.

Similarly the three active parallel inputs of
the second 7496 are taken to SR5, SR6 and
SR7, in this case via flying leads (this device
has been added to the original design, as
part of the memory expansion to 256 words,
and this is the.reason for the flying leads).
The connections between the eight

parallel inputs and the switch register are for
loading addresses into the PC.

. The actual load address operation is

ELECTRONICS Australia, December, 1

carried out Dy means of the LAI (L) and LA2
control signals, which you may remember
are generated on the front panel board by
logic connected to the "load address" key.
These signals arrive at the PC board via pads
17 and 18. The LAI (L) signal is connected
to the clear inputs of the 7496s, to clear
them of any previous content. The LA2
signal line connects to the parallel load
enable inputs (PL), and this signal thus
causes the new address to be loaded from
the SR after clearing.

The least significant bit (LSB) output of
the PC is connected to the C-bus output
line, pad 6, via a control gate. The control
signal for, this gate is produced in turn by a
second gate, connected as a 2-input OR
element. The two signals fed to this gate are
the T2-9. (F OR DEP OR EXM) (L) signal fed
to the board via pad 20, and a T2-9.JMS (L)
signal derived from the T2-9 and JMS (L)
signals which arrive at the board via pads 13
and D, respectively.

Thus the LSB output of the PC is con-
nected to the C-bus and the B2 input of the
serial adder during T2-9 of either a fetch,
deposit or examine cycle, and during T2-9 of
a JMS execute cycle.

Similarly the LSB output of the PC is also
connected to the B-bus output line, pad 5,
and the A1 input of the serial adder, by
means of a control gate fed with a T14-
21.SKP signal derived from pad 22. Thus
this pathway is enabled during T14-21 of
the execute cycle of any of the instructions
involving instruction skipping.
The serial input of the PC is permanently

connected via an inverter element to the A-
bus input, pad 4. The output of the serial
adder is connected to the A-bus line via a
control gate, whose control signal is

produced by a 4-input gate functioning as
an OR element. And among the signals fed
to this element are the T2-9. (F OR DEP OR
EXM) (L) signal, and indirectly via further
gating the T14-21.SKP (L) signal. These
signals also fed to other gates connected to
the control inputs Ac and Be of the serial
adder, which will be described in more detail
in a moment.
MCP pulses arriving at the board via pad

1 1 are fed to the clock pulse inputs of the
7496 devices via yet another control gate,
whose control signal is again produced by a
3-input OR element. And not surprisingly,
the signals which thus enable the clock
pulse gate are T2-9. (F OR DEP OR EXM)
(L), T2-9.JMS (L), and T14-21.SKP (L).

The net result of all this is that during T2-9
of a fetch, deposit, or examine cycle, or T14-
21 of the examine cycle for a skip in-

struction, the contents of the PC are ef-
fectively shifted out of the register to the A-
bus, through the adder, and back into the
register again. Providing the carry FF of the
adder is set to one before this operation, the
PC content is therefore incremented at
these times.

In addition, the content of the PC is also
shifted out onto the C-bus during T2-9 of a
JMS execute cycle, ready to be written into
memory.

In tracing through these logic paths you
probably also noticed that a path from the
C-bus to the serial input of the PC, via the
serial adder, is also enabled during T14-21
of either aJMS orJMP execute cycle. This
is performed by the signal T14-21 .(JMS OR
JMP (L), which arrives at the board via pad
21. This signal also enables the clock pulse
gate of the PC.
The purpose of this further logic is to

allow the content of the PC to be replaced
as required during a JMS or JMP execute
cycle, from the MA register.

This completes the PC register logic,
which as you can see is not very complex.
The remaining logic on the board is that
associated with those serial adder functions
which do not involve the PC.
The serial adder consists of a 7480 full

adder device, with a 9001 high-speed J-K
flip-flop to store the carry. The adder inputs
A1 and B2 connect to the B-bus and C-bus
respectively, and are controlled by logic
signals applied to gating inputs Ac and Be
respectively. The two unused inputs A2 and
81 are tied together and taken to the 5V rail

via a protective resistor.

The output of the adder is taken to the A-
bus via a control gate, as we have already
noted. It is also taken to the C-bus via
another control gate, fed with a T2-9.IS2
signal derived from pad 19. This is used for
the "increment" part of the ISZ instruction.
The carry FF is reset at times TO and T12

of every machine cycle by the (TO OR T12)
(L) signal applied to its R-bar input from pad
8. Where the adder is to be used for in-

crementing either the PC, the AC or a
number fed from memory, the carry FF is

then set to 1 at either of times T1 or T13, by
means of the logic connected to its S-bar
input. For brevity this will not be described
in detail; but note, for example, that setting
occurs at T1 for. either fetch, deposit,
examine, IAC or ISZ. The setting at T13
occurs for a variety of other signals and
signal combinations, such as ISZ again, or
SZA together with a clear accumulator.
When the adder is used for incrementing,

the signal to be incremented is applied to
either the A1 or B2 inputs, from the B-bus or
C-bus, and appropriate control signals
applied to the adder control inputs and the
output control gates to enable the right

paths. The same procedure occurs for true
binary addition, which occurs only during
T2-9 of the TAD execute cycle. In both
cases MCP pulses are also fed to the clock
input of carry FF, so that it correctly stores
the individual bit carries.

72

PROGRAM

COUNTER

AND

ADDER

LOGIC

EDUC-8 computer

Apart from incrementing and addition, the
adder is also used as a passive data path
from the B-bus to the A-bus, during T2-9 of
the CMA execute cycle, and at time T1 3 of
the RAR execute cycle. It is similarly used as
a data path from the C-bus to the A-bus,
during T14-21 of the JMP execute cycle.
The latter path is usecf to transfer the new
"next instruction" address from the MA into
the PC.
You may care to follow through the

detailed logic paths involved in the operation
of the adder for yourself, using the basic
organisation diagram and cycle and in-

struction timing table given earlier as a
guide.

The wiring of the program counter board
is shown in Fig. 2. This board is coded
E8/P, and like those plug-in boards already
described measures 21.5 x 16cm. There are
1 4 I Cs on the board, together with a handful
of minor components and some wire links.
Wiring up the board should be fairly

straightforward using the diagram as a
guide; the main points to watch are that the
ICs are correctly orientated and that the
links are between the correct pads.
Note that there are connection pads near

the 7496 device whose axis is parallel to the
"back" of the board, for the attachment of
flying leads to switch register switches SR5,
SR6 and SR7, and to the LED indicator
circuits for PC5,PC6 and PC7. Flying leads
are needed here because this is the device
which I have added to expand the PC for the
larger memory; it has not been possible to
provide for the connections via the plug-in
connectors and the mother board.
The flying leads to the switch register

should be*fairly self evident. Of those for the
LED indicators, the leads marked PC5 and
PC6 simply go to the points on the top edge
of the front panel board which are marked
(PC5) and (PC6) in the previously given
wiring diagram. The remaining lead, that
marked PC7, will be dealt with shortly; it

requires special treatment because the front
panel board has no provision for an eighth
PC indicator LED or driver.
The logic circuit for the memory board is

shown in Fig. 3. As you can see, this board
includes the memory itself, the memory
buffer (MB) register, and the memory ad-
dress (MA) register.

The memory itself consists of two
Fairchild type 93415 random-access
memory (RAM) devices, although if only a
128-word memory is required, one device
may be omitted. Both are needed for the full

256-word memory.
The 93415 device is actually a 1024-bit

bipolar RAM, organised as 1024 single bits.
However, for this application I have in effect
"re-organised" the two devices so that they
each store 128 x 8-bit words.
The technique used for this relies on the

fact that EDUC-8 is a basically a serial
machine, and moves both instructions and
data words around one bit after the other, in
8 clock pulse sequences.
The address number fed to the memory

devices from the MA register is fed to the 7
most significant address inputs of the 93415
devices, with the 8th and most significant
bit used to determine which device is

selected. This leaves the three least
significant address bits of each device
unspecified, so that the addresses provided ;

by the MA basically correspond to groups of
eight adjacent memory locations in either

|

one device or the other.
I

74 ELECTRONICS Australia, December, 1974

The three least significant address bits of
the memory devices, AO, A1 and A2, are
connected together and also to the outputs
of a 3-bit binary counter, formed by part of a
7493 device. This has been called the
"memory strobe" counter, because its
action is to cycle the total memory address
applied to the two 93415 devices through
the eight appropriate bit positions, during
the eight MCP periods in which a word is
either written in or read out.

In effect, the strobe counter and the
decoding logic inside the 93415 devices for
the three least significant address bits form
an 8-way multiplexer and demultiplexer
which connects each of the locations in a
group of 8 to the write or read circuitry in
turn, during an 8-bit write or read sequence.
The main "address" specified by the
content of the MA simply determines which
group of 8 bit locations is involved.
You can visualise this action as one

whereby a number is stored by "spraying"
its 8 bits into the 8 locations of the group
selected by the MA address. Conversely, a
number is read out serially by in effect
sniffing each of the 8 locations at its

address, in turn.

The MEMORY ENABLE signal arriving at
pad 23 of the board (from the decoder
board) is used to enable the memory devices

whenever they are involved in machine
operation. The signal is fed to the "chip
select" or CS-bar inputs of the 93415
devices via two gates, one fed with the
MSB ouput from the MA register, and the
other fed with the complement of this
signal. Thus when bit 7 of the address is 0,
only memory device "0" is enabled; con-
versely when bit 7 is 1, only memory device"1"

is enabled.
The signal from pad 23 is also used to

gate MCP pulses to the strobe counter and
the MB register devices, so that both
operate whenever the memory is enabled.

If the memory devices are enabled with
the "write enable" or WE-bar control inputs
held at the logic high level, they perform the
read function. During the 8 MCP periods
concerned the content of the 8 memory
locations at the specified address are sensed
in turn (non-destructively), and appear one
after the other at the Do outputs of the
devices, which connect to the D-bus (pad
6).

Further gating also provides a path from
the Do outputs to the B-bus (pad 4) during
T2-9 of an ISZ execute cycle, and to the C-
bus (pad 5) for all read operations other than
T2-9. I SZ,
To achieve the memory write function

rather than read, the WE-bar control inputs

ELECTRONICS Australia, December, 1974 75

For fine detail work
— a hands free
magnifier

The Magna-Sighter is a precision

3-D binocular magnifier that leaves

your hands completely free for work,

it has hundreds of applications,

and is invaluable for scientists,

technicians, craftsmen, toolmakers,

hobbyists, etc. Slips easily over the

head-over glasses, too. Proved

and used by many U.S. universities,

space research bureaux, govern-

ment departments and major

industrial organisations. Available

in 3 different magnifications.

Price $18.00

STC 721

MK3NA-9GHIER
For further information send this coupon today:

rSTOTT TECHNICAL SERVICES ME/as?*!
1 (Division of Stott's

J

J
Technical Correspondence College Pty. Ltd.)

J

i 159 Flinders Lane, Melbourne, Vic., 3000 i

Please send me full information on the 3-D Magna-Sighter.
\

J I understand that no-Sales Representative will call.
I

• Name >

J
Address

j

i Postcode i

&QR-666
the ALL-band

COMMUNICATIONS RECEIVER

that gives

you the world
and an FM
option, too.

All-band/all-mode reception on frequencies 170 kHz to

30 mHz covered by 6 bands. Receives broadcasts In any

mode AM, SS8, CW or FM—with the. optional accessory

QR6-FM. Super sensitivity from dual gate M0S types FET's,

double signal selectivity and AGC characteristics. IF

circuit with mechanical and ceramic filters designed for

high selectivity, resistance to Interference; single button

selection of wide band (5 kHz/6dB) or narrow band 2.5

kHz/SdB). Altogether a high performance compact, smartly

styled unit of advanced design at a suggested 'Today' price

of $332.2,0.

NAME
Pleas* send details of ADDRESS
the Kenwood QR-&66

POSTCODE

I

I

I

I

EDUC-8 computer

of the 93415 device selected must be held at

the logic low level during the time when the
device is enabled. This is achieved by means
of a "write" control signal, applied to the
WE-bar inputs via a gate used to AND the
signal with the MCP pulses. This is to
restrict the actual writing operation to the
second half of each clock period, to ensure
that logic levels on data lines and address
lines have all stabilised before writing
commences.
The memory address or MA register is

formed by two 7496 five-bit shift register
devices, connected in very similar fashion to
those for the PC register. Here, however,
the parallel inputs of the devices are con-
nected to the outputs of the MB register.

The clear (CL-bar) inputs are connected to
edge connector pad 7, so that the MA is

cleared at time TO.5 of every machine cycle.

There are only four actual situations when
the memory write cycle is required: T2-9 of

either a JMS or DCA execute cycle, or T14-
21 of either a deposit cycle or an ISZ
execute cycle. The "write" control signal is

therefore generated by four gates fed by
signals from pads 1 1,1 8,8,C and 19. The
complement of the write control signal is

also used to disable the data path between
the Do outputs of the memory devices and
the C-bus, as this bus line is used to feed in

the data to be written.

The parallel load enable (PL) inputs of the
7496s are also connected together, and fed
with a signal formed by a simple logic circuit

combining signals from pads 12,16 and 22.
This causes the MA register to parallel load
the number in the MB register at time T1 of
either a defer cycle or an execute cycle
involving any of the memory reference
instructions — ie, time T1 for all cycles other
than fetch, deposit, examine, IOT execute
and OPR execute.
The MA register operates as a shift-right

register at times T2-9 of a fetch, deposit or
examine cycle, and at times T14-21 of a
JMS or JMP execute cycle. Clock pulses are
fed to the CP inputs of the 7496 devices by
the gates deriving signals from connector
pads 9,15, and 17. Note that the bit-0

output of the MA is also connected to the C-
bus line, via a control gate fed with the T14-
21. (JMS OR JMP) signal. This is used to
feed the operand address from the MA to
the PC via the adder, which either in-

crements it in the case of a JMS cycle, or
passes it unchanged in the case of a JMP
cycle.

The memory buffer or MB register is

formed by two 7495 four-bit shift registers,

and in that respect is similar to the ac-
cumulator. The outputs of the 7495 devices
are here also taken to eight inverter

elements, wired as before to form an 8-input
NOR gate. This is used to generate a "MB
equals 0" signal, required for the conditional
skip part of the ISZ instruction.

For most of the time, the MB register

operates in tandem with the memory,
storing and displaying the number being
written into or read from a memory location.

For these operations the MB operates as a

simple shift-right register, and this is

achieved by holding the 7495 mode control
(M) inputs at low logic level, with clock
pulses applied to the CPI -bar inputs when
appropriate.

There are two situations where this mode
of operation is not used, and where the
7495 devices are made to accept parallel

76 ELECTRONICS Australia, December, 1974

JS_

(TO SUPPLEMENTARY LED PANEL!

data input. The first of these situations
occurs during time T13 of a deposit cycle,
when the parallel inputs of the MB are
connected to the switch register switches,
to load in the number to be deposited. A
T13. DEP signal is derived from the signals
on connector pads 10 and 19 for this
purpose, and is used to drive the M inputs of
the 7495 devices to logic high level for one
MCP period. As MCP pulses are connected
to the CP2-bar inputs of the devices, this
causes loading to occur at time T13.5 of the
deposit cycle.

Note that whereas the parallel inputs of
the 7495 device corresponding to the 4 least
significant bits of the MB connect directly to
SRO, SRI, SR2 and SR3, the parallel inputs
of the second device connect to the
remaining four switch register lines via a
9322 quad 2-input multiplexer device. This
is because these inputs must alternatively
connect to the outputs of the four most
significant MA register, bits, for the second
MB parallel loading situation.

This situation occurs at time T23 of the
fetch cycle, when a memory reference
instruction has been fetched. Here, you may
recall, the four most significant bits of the
instruction address must be transferred from
the MA to the MB, so that the machine will

"remember" the page of memory from
which it has fetched the instruction. It needs
this information to complete the operand
address, in the case of a direct memory
reference instruction, or the address of the
operand address in the case of an indirect
instruction.

The switching (S-bar) input of the 9322
multiplexer is normally held at logic high
level, and thus the "1" inputs of the device
are connected to its outputs. The parallel
inputs for the four most significant bits of
the MB are thus normally connected to SR4,
SR5, SR6 and SR7, and remain so during
the deposit operation. However the S-bar
input of the 9322 is taken to pad 14, which
also feeds through an inverting OR gate to
the M input of the coupled 7495. As a result,
the arrival of the F.T23. not (OPR OR IOT)
(L) signal at pad 14 causes the 9322 to
switch the parallel inputs of the 7495 to the
MA outputs, from the SR lines, and at the
same time the 7495 M input is driven high
so that loading takes place.
The wiring diagram for the memory board

is shown in Fig 4. Like the other plug-in
boards this one also measures 21.5 x16cm,
being coded E8/M. As you can see, it in-

volves 18 IC's, a small number of passive
components, and again a number of wire
links.

Wiring the board should present few if

any problems if this diagram is followed
carefully. As before the main points to
watch are that the ICs are correctly
orientated and in the correct positions, and
that the wire links are wired correctly.

Note that the memory device positions

are marked "
0
"
and

"
1 ", to signify which

device is designated by the appropriate
values of bit 7 of the MA register. In other
words, device "0" is that which forms the
"first half" of the 256-word memory, and
device "1” the second half.

I would suggest that you use sockets for

the two memory devices, as they are by far

the most expensive ICs in the whole
machine. Use high quality sockets,
preferably of the "low profile" type so that

they do not raise the devices too high from
the board. Otherwise you may have trouble
with the device packages fouling the
decoder board, when the board is plugged
in.

Like the program counter board, the

memory board has some flying leads
connecting to it. As before these have been
made necessary because of the expansion
of the memory to 256 words.
The two flying leads marked MAS and

MA6 should be fairly self-explanatory. They
go to the pfoints on the top edge of the front
panel board which are marked (MA5) and
(MA6), to drive the appropriate LED in-

dicators.

You may recall that the front panel board
has no provision for the eighth indicator
LEDs of the PC and MA registers, PC7 and
MA7, or for their drivers. These LEDs must
be mounted on a small supplementary
panel, cut from Veroboard or similar
material, which is mounted in front of the
front panel board so that the LEDs are
correctly positioned in line with the others.
Two inverter elements on the memory

board, which would otherwise have been
unused, have been arranged to serve as the
drivers for the two additional LEDs. The
input of the inverter for the MA7 LED is

connected to MA7 by the memory board
pattern, and only its output need concern
the constructor. This is the flying lead
marked MA7-bar, which goes to the sup-
plementary panel.

(FROM PROGRAM COUNTER BOARD!

FIG 4

To allow the second inverter to be used as
the PC7 driver, a lead must be wired bet-
ween its input and the PC7 output on the
program counter board. This is the flying

lead marked PC7. The output of the driver

then goes to the supplementary panel, like

that for the MA7 LED, via the lead marked
PC7-bar.

Details of the supplementary panel used
to support the PC7 and MA7 LEDs and their

series 180 ohm resistors are shown in Fig. 5.

The board measures 21 x 32mm, and is cut
from a scrap of Veroboard with 0.1 in

conductor spacing.

Only one conductor strip need be cut on
the panel - that third from the top, used for

terminating the two resistors and the flying

leads to the memory board. Note that the
resistors should be the small % -watt size, to
fit comfortably. The two LEDs should also

be of a type having a fairly short body, and
mounted hard against the panel to produce
a shallow overall assembly.
As shown, the panel is supported in front

of the front-panel PC board in such a
position that the two LEDs are in line with
those in the rest of the array. The panel is

supported by two small "U" shaped strips,

fashioned from a scrap of 18G sheet brass

ELECTRONICS Australia, December, 1974 77

EDUC-8 computer
SUPPORT STRIPS (ALSO COMPLETE +6V

or similar. As well as supporting the panel,
the strips also complete the 5V supply
connection for the LED anodes, as they are
soldered to the 5V copper area on the front
panel board.

With both the program counter and
memory boards completed and checked
over carefully, you should now be ready to
try them out. The first step is to plug in the
program counter board, after having
carefully cleaned its edge connector pads
and made sure that it mates correctly with
its sockets. It plugs into the mother board in
the fourth position down, don't forget,
immediately above the accumulator board!
Now turn on the power. Things should be

much the same as with the first three boards
in position, except that now the LED in-

dicators for the PC register should show
some random number instead of being all lit

(apart from PC7, which has only just been
added).

If all is well so far, set the SR switches all

to zero (down position) and press down the
load address key. All PC indicator LEDs
should go out, and should stay out when the
key is released.

Now try loading an address into the PC,
by setting the SR switches to a number
other than zero, and repeating the process.
The LEDs should remain dark when the load
address key is pressed, but adopt the bit
pattern set by the SR switches when it is

released.

Try a variety of numbers in this way, just
to make sure that all is well. Note that when
the load address key is pressed, the previous
content of the PC should be cleared, with
the new content being loaded in only when
the key is released.
You can now test the PC incrementing

function. To do this, set the FAST / SLOW
switch to the lower position (fast), and the
SINGLE / CONT switch to the upper
position (single). Then press the examine
key, whereupon the number in the PC
should increment — increase by one. Further
pressing of the examine key should repeat
the process, and in fact you should be able
to run the PC right through its full 256 bit
combinations, by simply pressing the key
enough times.

Pressing the deposit key instead of the
examine key should have the same effect at
this stage, so try this also. And you can also
try pressing the run key, which should have
the same effect again, at least in terms of

the PC being incremented. It may also have
other effects, depending upon the setting of
the SR switches (which will still be doubling
for the MB register, assuming you have left

in the temporary connections used in the
previous tests).

You can now check the "skip" in-

crementing of the PC, or at least one in-

stance of it — the SZA microinstruction. Do
this in the following way. First, set the SR
switches to octal 710, corresponding to
CLA. Then, leaving the FAST / SLOW and
SINGLE /CONT in their present positions,
press the run key. This should clear the AC.
Now set the SR switches to octal 730,

corresponding to SZA, and note the number
in the PC register. Then press the run key
again, and you should see the PC increment.
Further presses of the run key should
produce further increments.

If all is well this far, your PC is working as
it should, and the serial adder must also be
fairly right. However to test the adder
further, you can run through the various
OPR microinstructions, and check that they
are working correctly.

Perhaps the best one to check first is

CMA, whose octal code is 704. So set the
SR switches to this, and press the run key.
This should cause the AC content to change
from all zeroes to all ones. Further presses of
the key should simply cause the AC to
swing back and forth between these two
situations.

You have already tried the SZA
microinstruction to check that it causes PC
incrementing with an AC content of zero,
but just to make sure that all is well, end up
the CMA test with the AC set to all ones.
Then set the SR switches to octal 730
again, and try pressing the run key. This

i

EDUC-8 COMPUTER
PARTS LIST - 3

1 PROGRAM COUNTER & ADDER
\

BOARD
\

1 PC board, code E8/P, 21,5 x 16cm
5 7400 or 9002 quad 2-input gate 1C
1 7401 or 9012 quad 2-input gate with

' open collectors

2 7404 or 9016 hex inverter 1C
2 7410 or 9003 triple 3-input gate 1C

;

1 7480 or 9380 gated full adder 1C
;

2 7496 or 9396 5-bit shift register
1 9001 high speed J-K flip-flop

2 2.2k 'A W resistor

i

5 .047uF LV polyester or ceramic
Insulated hookup wire for links, flying

!
leads.

MEMORY BOARD
1 PC board, code E8/M, 21.5 x 16cm
6 7400 or 9002 quad 2-input gate 1C
1 7401 or 9012 quad 2-input gate with
open collectors

1 7404 or 9016 hex inverter
2 7405 or 9017 hex inverter with open

collectors

1 7493 or 9393 4 -bit counter
2 7495 or 9395 4-bit shift register
2 7496 or 9396 5-bit shift register
1 9322 quad 2-input multiplexer
2 93415 1024-bit RAM lor only 1, for

128-word memory)
2 820 ohm 'A W resistors
5 .047uF LV polyester or ceramic
2 16-pin DIL sockets. Low profile high

quality type
Insulated hookup wire for links,- flying

leads.

SOLDER TO +5V
COPPER AREA

FRONT PANEL
BOARD

time the PC should not increment.
Now set the SR switches to octal 701,

corresponding to I AC. Pressing the run key
should now cause the AC to clear, as the
"all ones" content corresponds to minus 1
in 2's complement notation, and minus 1

incremented gives zero. Further presses of
the run key should cause further increments,
so that the AC content should become 1 2
3, 4 and so on.
Now try testing the RAR microin-

struction, by setting the SR switches to
octal 722. Pressing the run key this time
should cause the number in the AC to be
rotated to the right by one bit, with the
content of bit 0 transferred to bit 7. Each
time you press the run key the number in theAC should move by one bit in this way, so
that a total of 8 presses should restore the
number to its original position.

If you stop the number with a 1 in the bit
7 (most significant bit) position, this will let
you try the SMA microinstruction. Do this
by setting the SR switches to octal 724
whereupon pressing the run key should
cause the PC register to be incremented. Do
this a few times, just to make sure that
incrementing occurs each time. Then set the
SR switches to octal 702 (RAL) or 722
(RAR), and rotate the number in the AC
until there is a 0 in the bit 7 position. Now
reset the SR switches to 724, and press the
run key once more. This time the PC should
not be incremented, as the AC content is no
longer "negative" (according to 2's com-
plement notation).

The combined OPR microinstructions can
also be tested at this stage, although if all
has been well so far, they should all work as
a matter of course.
Thus CLA.IAC (octal 711) should cause

the AC to be set to 1 , while CLA.CMA (octal
714) should cause it to be set to minus 1

instead. Similarly CMA.IAC (octal 705)
should cause the number in the AC to be
changed into its 2's complement, while
SZA.SMA (octal 734) should cause the PC
to be incremented if the number in the AC is
either zero or negative.

Haying now tested just about all of the
functions of the machine in its incomplete
form, the next step is the big one: adding the
memory board, to complete the basic
machine and make it capable of running.

Prepare for this by turning off the power,
and then removing the temporary con-
nections between the' SR switches and the
MB register outputs.
Note that if you have only one 93415

memory device at this stage, it would be
best to plug it into the "0" socket. The
discussion which follows will in fact assume
that this is the case.

Clean the edge connector pads on the

ELECTRONICS Australia, December, 1974 79

i

AC92/H1

EDUC-8 PROGRAM "first trst"

STEP MNEMONIC CODE

0 START, CLA 710
1 INCH, IAC 701

2 BACK, NOP 700

3 NOP 700

4 ISZ INOX 211

5 JMP BACK 502

6 ISZ INDY 212

7 JMP INCR 501

10 HLT 721

11 INDX, 0 000

12 INDY, 0 000
A simple pmgram you can use to check that your machine is capable of running, it merely
increments the AC register256 times, and then stops.

EDUC-8 computer

memory board carefully, and plug it into the
sockets on the mother board between the
program counter and decoder boards. Then
turn on the power once more.

Set the SR switches to' zero (all down),
and load this into the PC by pressing the
load address key. Then, with the
SLOW / FAST switch set to the down or
fast position, press the examine key. A
random number should appear in the MB
register, representing the turn-on bias bits of
the flip-flops in the first 8 bit locations of the
93415 device in the "0" memory socket.

Press the examine key a few more times.
This should bring out more random numbers
into the MB, probably a different number
each time (but not necessarily).
Now you can try loading in a few num-

bers, using the deposit function. To do this,

first load a suitable starting address into the
PC, by setting it up on the SR switches and
pressing the load address key. You can load
in any convenient starting address you
fancy, although an easily remembered one is

the very first: location zero.
After having loaded the starting address

into the PC, set up a suitable number on the
SR switches. Then press the deposit key,
and you should see the number appear on
the MB registers LEDs. At the same time the
starting address should have transferred
from the PC to the MA, while the PC
content should have incremented.

If all seems well, set up another number
on the SR switches, and press the deposit
key again. The process should be repeated,
with the new number appearing in the MB.
Note that you do not have to load in a new
address for the second deposit, because the
PC has already incremented after the first.

You can deposit a third and fourth number
(or more) if you like, by further deposits.
By these steps, you should .have stored

the numbers into a consecutive group of
memory locations. To check that this has in

fact happened, set up your initial starting:

address again on the SR switches, and load
it into the PC with the load address key.
Then press the examine key, and the
number you stored in the first address
should appear in the MB again. Further
presses of the examine key should cause the
second, third, fourth and other numbers
stored to appear also.

If all is well so far, the odds are that your
memory is working correctly, and the
machine should now be capable of running.
So probably the best thing to do next is to
load in a simple program, and see if it runs.
The simple test program shown is

probably a good one to try, as it is quite
short and easily loaded. Don't worry too
much about the program itself, as we will

deal with programming soon. At this stage
all you need to know is that it is a very
simple one, using mainly the ISZ and JMP
instructions, which causes the accumulator
to be incremented 256 times.

First set up a suitable starting address on
the SR, and load it into the PC. Then deposit
each of the eleven octal code numbers of
the program in turn, as before. After this has
been done, check that you haven't made
any mistakes by loading the starting address
into the PC once again, and examining the
stored numbers. If they check out correctly

against the list, you are just about ready.
The final step in preparation is to move

the SINGLE/CONT switch to the down
position, to allow the machine to run

continuously. The FAST/SLOW switch
should already be in the down position, for
fast operation, and this is correct.

Are you ready? All you have to do now is

load the starting address once more into the
PC, and press the run key.
Upon doing so, the RUN indicator should

light, with the FETCH and EXECUTE in-

dicators also lighting a little less brightly to
indicate that the machine is flitting back and
forth between them. The ISZ, JMP and
OPR indicators should also be partially lit,

showing that the machine is doing these
types of instruction.

But more dramatic than these should be
the AC register LEDs, which if all is going
well will be showing a brisk counting
operation. The binary number in the AC
should be incrementing, probably at a rate
just too fast for you to keep track. The in-

dicators for the PC, MA and MB registers
should all be partially lit, perhaps with some
brighter than others, indicating that these
registers are involved in a lot of dynamic
activity.

In the discussion of progress testing
given at the end of the description of the
timing, decoder and accumulator boards,
it was stated that the CMA microin-
struction could be tested with only these
plug-in boards in position. In fact this is

not so, as the CMA recirculation loop
uses the serial adder as its return path-
sway. So if you tried this test and it didn't
work, don't worry!
The CMA microinstruction will work

correctly when the program counter
board is now added, however, as
described in the present discussion.

If you have had trouble in finding a

reservoir capacitor for the power supply,
please note that 33,000uF 25VW units

are readily available from Siemens In-

dustries. Order via your supplier.

This situation should continue for about
30 seconds, until the accumulator fills up
and overflows. The machine should then
promptly stop running.

If you used location zero as your starting

address, as shown, the registers should now
show the following octal contents:

PC: 011 MB:721
MA: 010 AC:000
If this is the case, you can be fairly sure

that your machine is working correctly. At
this stage we have not tested some of the.

memory reference instructions, but this can
wait. For the moment, you will no doubt
want to try feeding the test program into

other parts of the memory, and make sure
that it runs there also.

You can also try setting the FAST/
SLOW switch to the upper or slow position,

and try running the program at the slow
clock rate. This will enable you to follow its

operation in detail, as it fetches out each
instruction and then executes it.

But please note one important point:
when depositing or examining,
ALWAYS make sure that the
FAST / SLOW switch is set to the down
or fast position. Otherwise, the machine
will not correctly recognise that a
deposit or examine cycle is required,
and will start running. This will do noj
harm, but can be annoying!

Incidentally, you don't have to feed in the

test program again simply in order to re-run

it; merely load the starting address into the
PC as before and press the run key. That is

all, unless of course you want to store it in

another part of the memory, and run it there.

In this case, you will have to feed it in again.

Your machine should now be ready for

the addition of the sixth plug-in board, the

input-output transfer or IOT interface board.

This will be described next, along with a

simple input keyboard device and a simple

output display — your first two
"peripherals”.

ELECTRONICS Australia, December, 1974 81
/

if you've been keeping up with the description of our computer
project, by this stage you're probably eager to add the final section, so
that it will be able to interact with peripherals. Details of this section
are given here, together with a simple input keyboard unit and a low-
cost output display unit.

by JAMIESON ROWE

The remaining section of the basic
machine to be described is the IOT in-

terfacing logic, which handles programmed
transfer of data between the machine itself

and any input and output "peripherals"
which may be cqnnected to it. This logic is

mounted on the last plug-in PC board,
which plugs into the lowest position on the
mother board. Coded E8 / IOT, the' board
measures 16 x 21.5cm like the boards
previously described.

The logic diagram for this section of the
machine is shown in Fig. 1 . As may be seen,
it is the simplest and most straightforward
section in the machine, involving a relatively

small number of gates and inverters.

You may recall that the design of the
machine is such that it will interface with a
total of four input-output devices at any one
time; two input devices and two output
devices. These connect to the machine via

four rear-panel sockets, which for con-
venience are labelled "Input device 0"
(IDO), "Input device 1" (ID1), "Output
device 0" (ODO), and "Output device 1"

ODD.
Broadly speaking, it is the task of the IOT

interfacing logic to select the device
designated by an IOT instruction, and
perform one or more of the three basic
operations involving that device. These are
testing the device's flag; transferring data to
or from the device, and resetting the flag.

Generally they are performed in that order,
althoagh this is not necessarily the case.

From earlier discussion you may recall

that bits 3 and 4 of an IOT instruction are
used to specify the device concerned. Bit 4
is used to differentiate between input and
output devices, while bit 3 is used to in-

dicate either a "0" device or a "1 " device.
Inverted versions of the signals

corresponding to these two instruction bits,

derived from MB3 and MB4 of the memory
buffer register, reach the IOT board via edge
connector pads 5 and 6. The inverters and
gates connected to these pads form a simple
one-of-four decoder, whose outputs are
each used to gate one of the four sets of
inpirt-obtput device logic. Thus only one of
the latter sets can be operative at any one
time, corresponding to the device specified
in the instruction. This part of the logic thus
acts as a "device selector".

As you have probably already noticed by
now, each device interface involves four
logic signals: flag sensing (L), flag reset (L),

shift clock pulses (L), and data (L for output
devices). Of these the first is always in effect
an "input" signal, the second and third are
always, "output" signals, and the last is an
input signal for input devices, but an output
signal for output devices.

The flag sensing inputs for ail four device
interfaces use negative logic polarity (true
equals L). This has been done to ensure that

peripheral devices
at right is the octal

if a selected device interface has no device
actually connected, a program will be able
to detect the condition, and not proceed in

error. An unconnected TTL input floats to
high level, so that with negative logic the
flag sensing input of an interface floats to
the "flag not set" state if no device is

plugged into the corresponding socket.
Hence the absence of the device makes
itself apparent to a program in terms of a
continuously "reset" flag condition.

Upon entering the interface, the flag

sensing signals are inverted and gated with
the appropriate device select signals from
the decoder. The gates used are open-
collector types, and the outputs of all four
gates are combined to achieve a wired-OR
function. The resultant signal is then in-

verted and gated with the "SKP on IOT
FLAG" signal from the main instruction

decoder, which enters the board via edge
connector pad 8. The output of the gate
thus goes low if, and only if, there is a "skip
on IOT flag" instruction, and the selected
device flag is set. The gate output, labelled

IOT SKP (L), is taken to edge connector pad
9, from where it goes to the program
counter and adder board.

A signal to reset input device flags at time
T13 of a "clear IOT flag" instruction is

generated by inverting the CLR IOT FLG (L)

signal entering the board via pad 7, and
using this to gate the T13 timing signal

which enters via pad 13. This is then in-

verted and gated by the device selector

signals as before, to produce the final FLAG
RESET (L)^ signal for each device.

The clr iot flag.tl 3 signal can also
be used to reset the output device flags, in

the same way, and this is in fact the normal
way of .connecting the output device flag

reset logic. However to allow for possible
situations where a particular output device
may require its flag to be reset before data
transfer, rather than after, provision has
been made for an alternative CLR IOT
FLAG.T1 signal to be used. This is

Picture below shows the basic machine together with the two simple
describedm thepresent section. At left is the simple keyboard unit while
display unit.

64 ELECTRONICS Australia, January, 1975

generated in the same way as the first

signal, using the T1 timing signal from pad
15.

Either reset signal may be used for each of
the two output device interfaces, simply by
fitting the appropriate wire link in one of two
possible positions.

The actual data transfer between
peripherals and the machine takes place

during times T2-9 of an IOT shift in-

struction. Accordingly an IOT SHIFT. T2-9
signal is produced by taking the IOT SHIFT
(L) signal entering the board at pad 11,

inverting it, using it to gate the T2-9 timing

signal entering at pad 14, and inverting the
resultant. This is then used for three tasks,

the first of which is to gate master clock

pulses (MCP) entering the board at pad 10.

After inversion the resultant signal is fed to

each interface for gating with the ap-

propriate device select signal to produce
each CLOCK (L) output signal.

The second application of the IOT SHIFT.
T2-9 signal is to gate the AC BIT 0 signal

entering via pad 12, to enable the output

data path from the accumulator register.

After inversion the output of the gate is fed

to each output device interface for further

gating by the device select signals, to

produce each DATA (L) output. Thus during

an IOT shift instruction specifying an output
device, the device selected is able to receive

the 8 data bits from the AC register during

times T2-9 of the instruction execute cycle.

Finally, the IOT SHIFT. T2-9 signal is also

used to enable a data path between the

input device interfaces and the machine A-
bus data line. Each input device data line is

gated by the appropriate device select

signal, as before, then the two are combined
in a gate performing the OR function. The
output of this gate is then gated by the IOT
SHIFT. T2-9 signal, and the resultant fed to

the A-bus via pad 4. Hence if an IOT shift

instruction specifies an input device, the 8

data bits from that device are able to pass to

the A-bus (and ultimately to the AC register)

during times T2-9 of the instruction execute

cycle.

Only eleven low-cost ICs are used on the

IOT interface board to perform these

functions, and the wiring is quite

straightforward. The diagram of Fig. 2
shows the position and orientation of the

ICs on the board, together with the position

of the wire interconnection links and the

few minor components used.

The diagram shows the output device flag

reset signal links in the "T13" positions,

with the alternative link positions for "T1"
resetting shown dashed. I suggest you wire

the board initially with the links in the T13
positions, as shown, as this is likely to be

suitable for most output devices you will

want to use. One or both links can always

be changed over at some later stage, if you

find this necessary for a particular

peripheral. The link furthest from the edge

connector is that for ODO, while the other is

that for OD1.
When the board is wired, and you are

confident that no errors have been made,

clean its edge connector pads with a soft

cloth moistened with methylated spirit, and

plug it into the lowest socket position on the

mother board. All going well, your EDUC-8
microcomputer should now be complete,

and potentially capable of "conversing"

with the outside world via peripheral

devices.

There is an almost endless variety of

devices to which a micro-computer like

EDUC-8 can be connected. On the input

side, almost any piece of equipment whose
"output" or status can be encoded as an 8-

bit binary number is a potential input device.

Similarly, any piece of equipment whose
operation is capable of being controlled or

"programmed" by an 8 bit binary number,,

or which is capable of accepting an input

signal digitally encoded as a stream of such

numbers, is a potential output device.

Don't just assume, then, that the only

possible peripherals for your EDUC-8 are the

conventional "attachments" one
associates with a traditional computer — like

a paper tape or card reader, a punch or a line

printer. These have their uses, and because

you will no doubt want to know how they

can be hooked up to your machine, I will try

and give details for as many of them as

possible in following sections. But the field

ELECTRONICS Australia, January, 1975 65

EDUC-8 computer

is wide open for you yourself to experiment
with all sorts of ideas, using the computer to
monitor and control the operation of
anything that takes your fancy.

Only by people experimenting in this way
will the applications of computers be ex-
tended, and their full potential be realised.
So once you have your EDUC-8 machine
operational and you have a few simple
peripherals under your belt, don't be shyl
Let your imagination loose, and see if you
can' t come up with a completely new
computer application.

So that you will have a couple of simple
peripherals to "cut your teeth on", as it

were, I have produced a very simple and low
cost input keyboard unit, and a companion
octal display output unit. These are very
basic input and output units, but they are
easy to build and should serve to illustrate
the basic principles involved. Details of the
two units are given in the remainder of this
section.

The keyboard unit is a very simple unit
using only five ICs together with an array of
low-cost silicon diodes for encoding. A sixth
1C may be added if desired, to drive LED
indicators for showing the buffer register
contents and flag status.
The heart of the unit is a 16-key keyboard

assembly made by Mechanical Enterprises,
Inc. of Virginia, and available in Australia
from General Electronic Services Pty Ltd.
The catalog number of the keyboard is type
SK 760, and it is fitted with mercury
keyswitches — which feature bounceless
contacting. The keyboard is available with a
set of double-shot moulded keytops, with
the inscriptions shown in the photographs.
The logic for the keyboard unit is shown

in Fig. 3, except for the diode encoding
array. As may be seen, a 7496 / 9396 five-
bit shift register is used for the buffer
register, to keep things simple and minimise
costs. Although the register has a basic
capacity of 5 bits, it is used to generate 8-bit
words by using a little bit of "trickery". The
additional 3 bits are produced by
manipulating the logic level applied to the
serial data input Ds.
As the encoding table shows, the en-

coding used is a slightly modified version of
the standard known as "ASCII" (American
Standard for Computer Information In-
terchange). The ten numerals are encoded
simply as their binary equivalent, while the
other symbols are encoded as the binary

SIMPLE KEYBOARD — ENCODING
i

Key Bits7,6,5 Bit4 Bit3 Bit2 Bitl B(t0

66

equivalents of decimal 10, 11, 12, 13 and
14, except that the three most significant
bits are also set.

The key inscribed "CTRL" is used to
control the value of the fifth bit in the en-
coded word. Its action is thus rather like a
shift key on a typewriter, enabling each of
the other 1 5 keys to be used to produce a
second code. By this simple means, the 16-
key unit is able to produce 30 different
output characters, making it quite flexible.
The diode encoding matrix uses negative

encoding, so that the parallel loading inputs
of the 7496 register are normally at high
togic level. When any of the keys except the
CTRL key are pressed, at least one of the
four least significant bit lines are taken low
The gates connected to these lines ac-
cordingly produce a "key pressed" signal,
which is used to trigger a one-shot using
half the 9602 device. The output pulse from
the one-shot is then fed to the parallel load
enable input PL of the 7496, causing the
four least significant bits of the encoded
number to be loaded into the buffer. If the
CTRL key has also been pressed along with
the initiating key, the fifth bit will also be set.
The trailing edge of the one-shot output

pulse is also used to trigger a second one-

,

5.hot, formed by other the half of the 9602.
I

This produces a further pulse (negative

ELECTRONICS Australia, January, 1975

0 0 0 0 0 0 0

j

1 0 0 0 0 0 1

{

2 0 0 0 0 1 0
3 0 0 0 0 1 1

I 4 0 0 0 1 0 0
5 0 0 0 1 0 1

6 0 0 0 1 1 0
7 0 0 0 1 1 1

8 0 0 1 0 0 0
9 0 0 1 0 0 1

LF 1 0 1 0 1 0
+ 1 0 1 0 1 1

X 1 0 1 1 0 0—
1 0 1 1 0 1

T 1 0 1 1 1 o
CTRL -

1 _

logic), which is used to set the flag flip-flop.
The flag FF is a simple R-S type formed from
two cross-coupled gates. Its ouput is
buffered by a 7437 gate element connected
as an inverting driver, to become the flaa
output line of the unit.

,,^.
9 FLAT. SET (L) signal appearing on

this line thus indicatas to tha computer that
a character has been received by the
keyboard, and is available. As soon as the
program in the computer tests the flag line
and senses that it has been set, it ac-
cordingly sends a set of eight shift clock

v

11
?.

8 k0Vboard along the SHIFT
L.LUCK (L) line, to enable the character to
be shifted out of the keyboarder and into the
cor AC register.

The eight data bits leave the buffer via the
E output, and pass through two 7437 gates
connected as buffer elements. They then go
along the DATA output line to the computer
IOT interface. Note that the shift clock
pulses reaching the keyboard from the
computer interface are also passed through
a 7437 buffer element, which acts as a line
receiver and Dulse restorer.
When the data has been transferred to theAC register of the computer, the last phase

of the IOT transfer takes place. The IOT
interface sends a RESET FLAG (L) pulse to
the keyboard unit, and this is used to reset

the flag FF. It is also used to clear the buffer
register, making sure that the latter is ready
to receive a new character.

As you can see, it is quite an elementary
input unit, using a bare minimum of logic. At
'the same time, it provides all that is really

necessary, at a fairly low cost. The main
cost will be the keyboard assembly itself.

This will involve a little more outlay than for

similar units using mechanical keyswitches,
but the zero bounce of the mercury swit-

ches allows the logic to be kept simple.
I used some of the flat bonded multi-wire

cable from the wiring between the keyboard
and the logic board, as you can see from the
photograph. This makes the job a little

easier, because of the colour coded wires,

and also makes the final result more at-

tractive.

I have produced a small PC board pattern
for the keyboard. This is coded E8 / K1 , and
measures 15.2 x 10.2cm. The wiring for the
board is shown in Fig. 4; as you can see, the
board includes the wiring for the diode
encoding array. The connector pads for the
interconnection wires linking the diodes to
the keyboard are arranged in the same order
as the keyboard output pads, to simplify the
wiring (see Fig. 5). This assumes, of course,
that you fit the keytops to the switches in

the positions shown. Otherwise you will

have to rearrange the connections.
Although space is provided on the board

for the 7405 1C, this is not required for basic

operation of the keyboard unit. It is only
needed if you want to provide the unit with
a set of LED indicators to show the contents
of the data buffer and the status of the flag

FF. The additional wiring is shown in Fig. 3
using dashed lines.

If you decide to add this facility, note that

no provision has been made on the PC
board for mounting either the LEDs or their

180-ohm series dropping resistors. The six

LEDs would be mounted on, or behind a
small window in the case front panel, with
the resistors on a small tagstrip nearby.
The works of the keyboard unit are

housed in a small utility box. I used one of
the hammertone finish cases from War-
drope and Carroll Fabrications Pty Ltd,

measuring 14 x 11.5 x 5cm and having a
wrap-around lid. The logic board is mounted
in the bottom of the case, using four screws
which are also used to attach rubber feet to
the case underside. Nuts are used to space
the board up from the case, to prevent
shorts.

The keyboard assembly is screwed to the
underside of the case lid, using 16.5mm
long spacers to ensure that the keys
protrude by the appropriate amount. The

COM
0 1 4 78 E 2 + — 3 S 9 X + LF CR I

1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

1

7 8 9 X

4 5 6
^e
•

1 2 3 LF

0 + — CR

PIG. 5

v
\ v,‘

'

'V-

--
^ ^

* a- Yl - , -*

.‘ :V' |7. 8 (;9. 1*-,
|£J;

,..\y
14. >5. *6

.

sjH-

n. 12. ,3 LF
liv:

,0 H- — CTRL
'

« *
\

;

>,y
um
BB3BB&X6

HW"VT7T-.
• NM' W

‘ * i .'S

*t \ k \

This top view of the simple keyboerd shows
the keytop inscriptions end positions. The
connections for the switch essembly ere

shown et left. A full elphenumeric keyboerd
may be described at a later stage.

clearance hole in the lid for the keys is

square, and measures 76mm per side.

The keyboard unit receives its 5V power
from the computer, via the same cable used
to make the logic connections. The cable
used must therefore provide a minimum of
six conductors. I used a multi-wire cable of
the type made for TV remote control units,

and this particular cable has six insulated
wires together with a single shielded wire. I

used the shielded wire for the data line, with
the shield braid connected in parallel with
one of the other wires as the earth line. The
spare unshielded wire was connected in

parallel with the active 5V line, to hopefully
lower its impedance also.

The cable enters the keyboard unit case
through a grommeted hole, and is clamped
to prevent strain on the connections. The
wires are then separated and connected
directly to the PC board pads. The other end
of the cable is fitted with a 6-pin DIN plug,
with the connections corresponding to the
IOT socket connections given in an earlier

section.

Before we leave the simple keyboard unit,

there are a couple of minor points which
should be borne in mind when the unit is in

operation. Because of the simple logic used,
the unit cannot store the three most
significant data bits of the output character
prior to the actual data transfer. This means
that for correct encoding from the non-
numeric keys (except CTRL), these keys
must be kept pressed at least until three of
the eight shift clock pulses have occurred.
When the computer is operating at its fast

clock rate, this is a rather academic point,

because the computer will typically shift the
character out of the keyboard within about
300u8 of the flag being set. It is unlikely that
you will be able to press a key down for less

than thisl

However if the fast / slow switch on the
computer is set to the slow rate, to make it

easier to analyse operation, you will have to
remember to hold the non-numerical keys
down until the character is shifted out.

Otherwise, the three most significant bits

ELECTRONICS Australia, January, 1975 67

EDUC-8 computer

will not be encoded. This is a minor point,
but one which should be remembered.
The second point to note is that the CTRL

key does not itself initiate loading of the
keyboard buffer, or setting of the flag FF.
Pressed alone, it will have no effect. Rather,
it must be pressed in conjunction with one
of the other keys. The correct procedure is

to press the CTRL key first, hold it down,
and then press the desired active key. The
two are best released in the reverse order —
active key first, then the CTRL key.
From the keyboard unit let us now turn to

the simple display unit. Like the keyboard,
this has been designed to demonstrate the
basic essentials of a practical peripheral — in

this case an output device.
In broad terms, the display unit simply

receives an 8-bit data
_
number from the

computer and displays it as an equivalent 3-
djgit octal number. The octal digits are
displayed on three 7-segment LED readouts,
and the particular LEDs used are a fairly new
type from Litronjx having brighter and larger
(0.6in high) digits than usual.
The reason why octal digits are used for

the display, rat’her than decimal, is that
conversion from an 8-bit pure binary
number to the equivalent decimal digits is

not easy. In comparison, conversion to the
equivalent octal digits is quite straight-
forward, since it is merely a matter of
decoding each group of three bits in-

dependently.
Although the fact that the display reads

out in octal may seem a disadvantage, in

fact it is quite useful sinAe the instructions
for a machine like EDUC-8 are most con-
veniently handled in octal. In many
situations it is convenient to think of the
data in terms of octal notation, also. From a
tuitional viewpoint, the exercise and mental
flexibility involved in translating from octal
into more familiar decimal can also be very
worthwhile.

fiessrasaiN

OUT

SHIFTClOTRin

DATA OUT

>LEDS
-2

([THENCE 1S0A
RESISTORS

'1
I TO +5V)

•optional

To encode three full octal digits, nine bits
would be required, and as we have in this
case only 8 bits, this means that the display
is really only one of "2 K" digits, To make it
more flexible, I have provided the display
jwith a switch, giving two alternative
decoding formats. One has the partial digit

I"
0*51 significant position, ie, the

377 format, while other has it in the
centre position, giving the "737" format.
The first format is in some ways the

logical one, and is the one you would
normally use for displaying data numbers.
However the second format corresponds to
that used for the EDUC-8 instructions,
which use the three most significant bits for
the operation code. By providing the display
with a switch, you can readily select the
format most suitable for what is beino
displayed.

The logic for the display unit is shown in
Fig. 6. As you can see, it is again fairly
straightforward. Data from the computer
passes through a 7437 gate acting as a line

receiver and reshaper, and then enters the
buffer register. This is a 74 1 64 / 93 1 64 8-bit
shift register device, very handy for this sort
of application.

The eight outputs of the buffer register
are then connected, some via the format
selector switch, to three 9307 decoder
devices. These are normally designated as
decimal to 7-segment decoders, but by
grounding the A3 inputs they become octal
to 7-segment decoders. Driver transistors
are then used to match the 9307 outputs to
the inputs of the three Litronix type DL750
readouts. The transistors are needed as the
9307 device outputs are not capable of
driving sufficient current into the DL750
inputs, 'due to the voltage drop of the
double-junction LED segments.
The DL750 readouts should be available

through your normal supplier, on order from
the Australian agents for Litronix, Cema
Distributors Pty Ltd.
As well as changing the decoding con-

nections,- the format switch is also used to
control the leading zero blanking facility
provided by the 9307 decoders. One switch
pole is used to enable the blanking for 377
format readout, and inhibit it for 737 format
Leading zeroes are thus blanked when the
display is being used for data words, but
unblanked for display of instruction words —
where all bit combinations have a

= 7 - -L-

-~r

yy- - - 4$ v—

x

se~'~

68 ELECTRONICS Australia, January, 1975

EDUC-8 OCTAL DISPLAY UNIT LOGIC

significance and must be displayed.

The R-C network connected to the reset'

(R-bar) input of the 74164 buffer is used to

automatically clear the buffer when the 5V
supply is connected to the unit. This gives

the display its own "turn-on reset" facility,

preventing spurious displays even if the unit

is plugged into the computer with power
applied.

This does mean, however, that if the

format selector switch is in the 377 position,

so that leading zero blanking is operative,

the display would normally be completely

blank when power is applied. To ensure that

it is always easy to check that the display

unit is "active", with power applied, the

"decimal point" LED on the DL750 for the
most significant digit is connected via a 220-
ohm resistor to the 5V rail. It thus acts as a

pilot lamp.
Strictly speaking, because the display unit

does not have to perform any time-

consuming mechanical or electrical

processing of the 8-bit numbers fed to it,

there is little need for it to indicate its status

to the computer via a flag system. After all,

in itself it is capable of displaying numbers
just as rapidly as the computer is capable of

shooting them out!

However, from the human user's point of

view', each number displayed should last a

reasonable time, to allow it to be recognised
and perhaps recorded on paper before it is

succeeded by the next number. Because of

this requirement, then, rather than from a

need to allow time for its internal

processing, the display unit is provided with
a flag system.
As before, the flag flip-flop is formed from

two gates from a 7437 1C, with a third gate
used as a buffer-driver for the FLAG (L)

output line back to the computer. The
remaining circuitry is simply a time delay,

arranged so that after the computer sends
the display a number and resets the flag, a
predetermined time elapses and then the
flag is set again to indicate that the display

has been held for a suitable time.

The display unit itself can thus be used to

regulate the rate at which numbers are fed

to it. This can simplify programs, as a time-

delaying instruction loop might otherwise be
necessary to regulate the display rate.

However note that the computer and its

program are under no obligation to test flag

status before sending another number; as

the flag system is an arbitrary one, it can be
ignored if desired. In this respect the display

is rather different from most peripherals.

The actual delay circuit used is one which
is quite simple, yet allows stable and easily

adjusted delays. The PUT is triggered by the

RESET FLAG (L) pulse from the computer,

discharging the 47uF capacitor, and turning

off the two Darlington transistors. The input

ELECTRONICS Australia, January, 1975

KENWOOD MT JW ^
&QR.-666

the ALL-band

COMMUNICATIONS RECEIVER

that gives

you the world
and an FM
option, too.

All-band/all-mode reception on frequencies 170 kHz to

30 mHz covered by 6 bands. Receives broadcasts in any
mode AM. SSB. CW or FM—with the. optional accessory
QR6-FM. Super sensitivity from dual gate MOS types FET's,

double signal selectivity and AGC characteristics. IF

circuit with mechanical and ceramic filters designed for

high selectivity, resistance to Interference; single button
selection of wide band (5 kHz/6d8) or narrow band 2.S
kHz/6dB). Altogether a high performance compact, smartly
styled unit of advanced design at a suggested ‘Today' price
of $332.20.

^ W r: t r or’.;i s comp^nu
Radio Con i n i c a t i o n Sitter

|jj|^

tin 0
m 0

. Mall coepon NOW I

|
Weston Electronics Company I

215 North Roelcs Rd., North Rocks, N.S.W. 2151 Phone 530-7400 I

Please send details ol ADDRESS..
the Kenwood QR-445

POSTCODE..

NOTICE TO ADVERTISERS
TheTrade.Practicas Act 1974 came into force on October 1, 1974.
Certain provlaions of the Act relating to consumer protection place a heavy
burden upon advertisers, advertising agents and publishers of ad-
vertisements.

Section 52 of the Act imposes a general

duty on everyone (individual and cor-

poration alike) not to engage, in trade or

commerce, in conduct that is

"misleading or deceptive."

In addition Section 53 (read with
Sections 6 (3) (c) and 79) makes it a
criminal offence (punishable in the case
of an individual by a fine of $10,000 or 6
months' Imprisonment and in the case of

a corporation by a fine of $50,000) for an
individual or corporation to do any of the
following in trade or commerce in

connection' with the supply or possible

supply of goods or services or in con-
nection with the promotion by any
means (for example advertising) of the
supply or use of goods or services,

namely:—
"(a) falsely represent that goods or ser-

vices are of a particular standard,

quality or grade, or that goods are

of a particular style or model;

(b) falsely represent that goods are

new;
(c) represent that goods or services

have sponsorship, approval, per-

formance characteristics, acces-

sories, uses or benefits they do not

have;

(d) represent that the individual or

corporation has a sponsorship, ap-
proval Or affiliation [he, she or] it

does not have;
(e) make false or misleading state-

ments concerning the existence of,

or amounts of, price reductions;

(f) make false or misleading state-

ments concerning the need for any
goods, services, replacements or

repairs; or

(g) make false or misleading state-

ments concerning the existence or

effect of any warranty or guaran-
tee."

Apart from the criminal sanction for a

breach of Section 53, an individual or

corporation infringing Section 52 or 53 is

liable to proceedings for injunction and
for damages suffered by an injured party.

In view of the obvious impossibility of

our ensuring that advertisements sub-

mitted for publication comply with the

Act, advertisers, and advertising agents
will appreciate the absolute need them-
selves to ensure that the provisions of

the Act, including the sections specified

above, are complied with strictly.

It is suggested that in cases of doubt
advertisers and advertising agents seek
legal advice.

SUNGRAVURE PTY. LTD.

EDUC-8 PARTS LIST-4
IOT INTERFACE BOARD
1 PC board, code E8//OT, 16 x 21.5cm
3 7400 or 9002 quad 2-input gate 1C
2 7401 or 9012 quad 2-input gate with

open collectors

3 7404 or 9016 hex inverter 1C
3 7437 quad 2-input buffer 1C
4 Ik AW resistors

4 .047 LV polyester or ceramic
capacitors

insulated hookup wire for links, etc.

SIMPLE KEYBOARD UNIT
(OPTIONAL)
1 PC board, code E8/K1, 152 x 101mm
1 7496/9396 5-bit register 1C
1 7400 or 9002 quad 2-input gate iC
1 7402 quad 2-input positive NOR gate
IC

1 7437 quad 2-input buffer IC
1 9602 dual one-shot IC
37 General purpose silicon diodes, type

1N914, AN2003, etc.

1 Ik ’AW resistor

1 10k AW resistor

6 27k 'AW resistors

1 33k A W resistor
1 lOOpF polystyrene or ceramic
1 1000pF polystyrene or ceramic
2 .047uF LV polyester or ceramic
1 Meta! case (see text)

1 16-switch keyboard. Mechanical En-
terprises type SK760, with set of key-
tops as described

1 6-pin DIN plug
Length of cable for interconnection (see

text)

Rubber feet screws, nuts, 16.5mm
spacers, etc.

Required only for
LED indicator facility:

1 7405 or 9017 hex inverter with open
collectors

6 LEDs, type OLD419, FLV110, 5082-
4850, CQY24 or simitar.

6 180-ohm AW resistors

OCTAL DISPLAY UNIT
(OPTIONAL)

1 PC board, code E8/S, 140 x 101mm
3 DL750 7-segment LED displays
3 9307 decoder ICs
1 74164/93164 8-bit register IC
1 7437 quad 2-input buffer IC ’

1 7413 Schmitt trigger IC
21 BC108 or similar NPN silicon

transistor

2 BC109 or similar NPN silicon tran-
sistor

1 D13T1, 2N6027 or MEU21 PUT
A Wresistors: 1 x 10-ohm, 21 x 82-ohm,

1 x 220-ohm, 1 x 470-ohm, 1x1k, lx
2.2k, 1 x6.8k, 1 x 10k, 1 x22k, 1 x47k

1 500k linear pot
1 lOOOpF polyester or ceramic
2 .047uF LV polyester or ceramic
1 0.1uF LV polyester or ceramic
1 47uF 6VW tantalum electro
1 Metal case (see text)

1 5-pole 2-position miniature rotary
switch

1 6-pin DIN plug
Length of interconnecting cable (see

text), 4 rubber feet, piece of orange
perspex for viewing window, 2 knobs
for controls, grommet, screws, etc.

ELECTRONICS Australia, January, 1975

I

At right is a view of the completed octal
display, white above is a close-up of the PC
board mounted on the back panel.

of the 7413 Schmitt trigger is thus taken
low, and its output switches to the high
state. This condition remains until the 47uF
capacitor re-charges, through the 47k
resistor and 500k pot. As soon as the
capacitor voltage rises to two Vbe drops
above the Schmitt trigger threshold, the
trigger switches and its output drops to the
low .state. The .001 uF coupling capacitor
thereupon feeds a negative-going pulse to
the flag FF, to set it.

The 500k pot may be used to adjust the
time delay from a minimum of about 2
seconds to a maximum of around 20
seconds. When the computer program uses
the flag system of the display to regulate the
display rate, the pot therefore becomes the
display time adjustment.
As with the simple keyboard unit I have

produced a PC board pattern for the octal
display. The board is coded E8 / S, and
measures 14 x 10.2cm. The wiring diagram
for the board is shown in Fig. 7. The only
parts of the display unit which do not mount
on the board are the format switch and the
500k timing pot.

The construction of the display unit

should be fairly clear from the photographs.
I built the prototype into a vinyl-covered
steel case made by the Australian Transistor
Company. Coded type 70-50-40, it

measures 191 x 127 x 102mm, and has a
brushed aluminium front panel.
The PC board is mounted on the

removable rear panel of the case, using 2-
inch long screws and nuts as spacers. The
format selector switch and display time pot

PLEASE NOTE
1 he components tor the mother board,
shown in PARTS LIST 1, should show
2 x 470 ohm resistors, not 2 x 4.7k.

are also mounted on the rear panel, un-
derneath the board, while the connection
cable enters the case via a grommeted hole
and is clamped there also. This keeps the
construction very simple, as all the "works"
are attached to the rear panel and can be
removed as an assembly for easy access.
The case front panel has a rectangular

cutout 10 x 4cm, opposite the readouts,
with a piece of orange-tinted perspex
cemented inside to improve viewing con-
trast. In this way the case itself acts as a
viewing hood for the display, and they are
clearly seen from a distance of many metres.

Four rubber feet on the bottom of the
case complete the unit itself.

As with the simple keyboard, the display
unit obtains its 5V power from the com-

puter, and must therefore connect to the
latter via a cable having at least six con-
ductors. I used a length of the same "TV
remote control" cable as before, and again
used the shielded wire for the DATA line..

The cable again terminates in a 6-pin DIN
plug, to mate with one of the EDUC-8 IOT
device sockets.

Well, you now have the information to
complete your EDUC-8 microcomputer,
together with the details of two simple'
peripheral units to connect to it. More
advanced peripherals will be described and
discussed shortly. But before we deal with
more hardware, some discussion of basic,
programming would no doubt be ap-
preciated, and this will be the subject of the
next section.

ELECTRONICS Australia, January, 1975 71

Programming your

EDUC-8 microcomputer
At this stage you will no doubt be keen to try your hand at writing some
programs, so that you can really start making your computerjump through
hoops. With this in mind, we take a break here from talking about
hardware, and discuss basic programming..

by JAMIESON ROWE

Computer programming is a big subject, and
in the space available here we will only be able

to scrape the surface. We will deal only with

basic machine language programming, as it

affects a simple machine like our EDUC-8. Even

so, it will be necessary to assume that you have
a fairly good grasp of the basic operation of

the machine given in an earlier section. If this

material has become a little hazy, I would sug-

gest that you read through it again before

proceeding.

To recapitulate briefly, it is worth stressing

again that a digital computer like EDUC-8 deals

only with binary numbers. This applies to both

the data upon which it operates, and the in-

structions which specify its operations. In fact

the only difference between data and instruction

numbers is that the latter are interpreted as

such, a point which should become clearer as

we go on.

In the case of EDUC-8, the binary numbers
used for both data and instructions are of eight

bits. Any eight bit number is capable of being

interpreted by the machine as an instruction,

in the sense that all combinations of eight bits

have a significance when interpreted as an
instruction.

For example the binary number 00000000
corresponds to zero when it is interpreted as

a data number, but if interpreted by EDUC-8
as an instruction it causes the machine to per-

form a logical AND operation between the

number in the accumulator register (AC) and
the number stored in the memory location

whose address in 0000 in the current memory
page—that 1 6-word portion of the memory in

which the instruction itself is stored.

In the same way, the number 11111111
is equivalent to decimal 256 in simple binary,

or minus 1 in two's complement binary. But
if interpreted by EDUC-8 as an instruction, it

would cause the machine to increment the

program counter if the number in the AC regis-

ter is either zero or negative, at the same time
rotate the number in the AC register one bit

to the right, and finally halt the program.

As noted earlier, there are eight basic types
of instruction "trick" in the machine's reper-

toire, with some of these having a variable form
determined by the location in memory of the
operand to which they refer, and others being
subdivided into specific sub-tricks or micro-in-

structions. Every different micro-instruction and
instruction form has its own specific 8-bit binary
code number.

In the truest and most basic sense, then, a
computer program is a sequence of binary
numbers, in this case each of 8 bits. The com-

|

puter itself is quite incapable of interpreting

instructions in any other form. A program writ-

ten in binary number form is thus said to be
in machine language".

Unfortunately, we human beings who must
write the programs do not find it particularly

easy to remember all of the binary code
numbers corresponding to the various instruc-

tions. For convenience, then, it is usual for

programmers to visualise and write machine
language programs in octal notation. This gives

code numbers which are quite readily remem-
bered and manipulated, after a little practice.

Forexample an instruction whose binary form
is say 01 101101 becomes 31 5 in octal form,

while another whose binary form might be
111 10010 becomes 722. You can see from
these how much easier machine language pro-

gramming becomes by using octal notation.

It is important to realise, however, that if

programs are written in octal notation, or in

any other non-binary form, this is done purely
for the convenience of the human programmer.
Computers themselves "understand" only
binary numbers, and regardless of their initial

form, all programs must ultimately be fed into

the machine in binary.

A program written in octal notation is some-
what easier to handle than in binary, but still

tends to be rather abstract and inconvenient
from the human viewpoint. There is no obvious
functional correspondence between the code
numbers and the instructions they represent,

making it necessary for them to be learned by
rote. Even when this is done, it is by no means
easy to visualise the operation of a program
simply by scanning the code numbers.

It is for this reason that programs are often

written in what is called "mnemonic language".
Here each type of instruction is represented by
a three or four letter symbol, whose form is

arranged to make its significance easily remem-

bered. Hence the symbol "AND" is used to

represent the logical AND instruction, for ex-

ample, while "JMP" is used to represent the
jump instruction.

Other easily remembered symbols are used
to represent variations in the form of instruc-

tions, and as labels for memory addresses. For
example an instruction might be written as
"TAD I POINTR”, where TAD stands for two's
complement addition, I indicates that the in-

struction involves indirect addressing, and
POINTR is the label given to the address in

the current memory page containing the ad-
dress of the operand.
So that you can start to become familiar with

the octal coding and mnemonic symbols for

the instructions in EDUC-8's repertoire, I have
drawn them up as a table. This can be used
as a convenient guide when writing programs,
until you get to the stage where you know them
all by heart.

By writing a program initially in mnemonic
language, it is relatively easy for the program-
mer to Visualise ijs operation. Of course it is

still necessary to translate the program into

binary coding for the machine, but this is not
difficult if handled in octal. After a while, you’ll

be able to set the SR switches of the machine
in binary, from octal coding, without batting

an eyelid!

Needless to say, the translation from mne-
monics into code is rather tedious, and the ideal

solution is to have the computer do the job
itself. In fact this is always done with full-scale

machines, where a program known as an "as-
sembler" is supplied as part of the software
package sold with the machine, for this very
purpose.

The idea is that the assembler program is

stored in the machine, and under its control

the machine reads the symbolic version of the
new program—say from punched paper
tape—and translates it to produce the binary
code equivalent. This may be punched out as
a second paper tape, known as the "object”
tape. It is the object tape which is then used
to feed the new program into the machine,
when it itself is to be run.

Programs written in mnemonic form are often

said to be written in "assembly language", to

emphasise that they are one stage removed

Recommended for further reading

Of necessity, the discussion of basic computer programming given here is only a brief

introduction to the subject. It covers the basic principles, to a degree which should enable
you to begin writing simple programs with a fair amount of confidence and success.
But there will inevitably be questions raised in your mind which will remain unanswered.

For a more complete introduction to the subject, I can only suggest that you refer
to a modern textbook on the subject.

A book I can warmly recommend is "Introduction to Programming", published by
the Digital Equipment Corporation. It is available from Digital Equipment Australia Pty
Ltd, at a cost of $2.50 including post and packing.
To obtain a copy, send a cheque for the above amount to the Education Manager,

Digital Equipment Australia Pty Ltd, 1 23 Willoughby Road, Crows Nest 2065, with the
envelope marked "Electronics Australia Enquiry".

64 ELECTRONICS Australia, February, 1975

from true machine language. But it should be
noted that there is a simple 1 : 1 relationship

between the two, in the sense that for every
machine language instruction to be performed
ultimately by the machine, there must be a

corresponding assembly language instruction.

As you are probably aware, this process of

using the computer itself to simplify program-
ming and reduce the tedium is often carried

a stage further. By providing the machine with

a more elaborate translation program known
as a "compiler ", it can be made to translate

programs written in more abstract language.
The compiler program can be arranged to gen-
erate whole sequence of machine language
instructions in response to a single input com-
mand, freeing the programmer from the need
to worry about every tedious detail.

You have no doubt come across the names
of the more abstract or "higher level

'

'
program-

ming languages which have been developed
to take advantage of compiler translation: FOR-
TRAN, ALGOL, COBOL, BASIC, FOCAL, and
so on. Because these programming languages
make it particularly easy to write problem-solv-
ing programs, and have them running rapidly

(after compiling), they are often called prob-
lem-orientated programming languages.

As you might expect, a compiler program
tends to be quite long; very much longer than
could be fitted into the 256-word memory of

EDUC-8. This means that the convenience of
writing programs in a problem-orientated lan-

guage is simply not available with this machine,
unless you care to compile programs manually.

On the other hand it may well be possible
to write an assembler program small enough
to fit into the machine's memory, to permit
automatic assembly of programs written in

mnemonics. I have not had time to try writing
such a program as yet, but hope to do so soon.
Details will certainly be published, if this proves
practical.

In the meantime, I suggest that you write
your programs in mnemonic form, and then
manually code them in octal using the guide
table. This is not difficult, and will be good
practice. With the programs in octal form, for
the time being you can feed them into the
machine manually via the console switches.
Later on, when you perhaps have a paper tape
punch and reader, you can turn them into binary
tapes for rapid and convenient loading.

Before we turn our attention to the actual

"nitty gritty" of programming, a few broad
comments on techniques are probably in order.

The first step in programming is to make sure
that you define clearly the task which the com-
puter is to perform. This may sound trite, but
it is not. It is very important, for unless the
task is clearly defined, it is all too easy to

produce a program which may perform a task

other than the one you really wanted. As it may
be hard or tedious to modify it later on, the

best way to avoid a lot of wasted effort is to

make sure of defining the goal in the first place.

Having defined the job to be done, the next

step is to decide upon the way in which it can

be achieved. This step often tends to blend with

the third step, which is that of analysing the

task and breaking it down into the specific

computer operations which will be necessary.

A very useful technique which can be used
to simplify these steps is flowcharting. This
involves drawing a graph or flowchart, which
shows the various steps which will make up
the program, and the logical sequence in which
they are performed. By letting you visualise

more clearly the steps involved, the flowchart
makes it easier to refine and simplify the pro-
gram before you progress any further. It also

EDUC-8 PROGRAM ENCODING GUIDE
Mnemonic Operation Code

AND
MEMORY REFERENCE INSTRUCTIONS

logical AND OXX
TAD 2 's complement add 1XX
ISZ increment and skip if zero 2XX
DCA deposit and clear AC 3XX
JMS jump to subroutine 4XX
JMP jump 5XX

NOP

(XX = operand address and mode)

OPERATE (OPR) MICROINSTRUCTIONS
no operation 700

IAC increment AC 701
RAL rotate AC one bit left 702
CMA complement AC 704
CLA clear AC 710
NOP no operation 720
HLT halt at end of execute cycle 721
RAR rotate AC one bit right 722
SMA skip on minus AC 724
SZA skip on zero AC 730

CLA. IAC

COMBINED OPR MICROINSTRUCTIONS
set AC to contain 1 71

1

CLA.CMA set AC to contain -1 714
SZA.SMA skip if AC is zero or minus 734
CMA. IAC complement and increment AC

(form 2’s complement) 705

SKF
INPUT/OUTPUT TRANSFER (IOT) INSTRUCTIONS

skip on input flag 601,611
SDF skip on output flag 621,631
KRS read input buffer 602,612
LDS load output buffer 622,632
RKF reset input flag 604,614
RDF reset output flag 624,634

KRB
COMBINED IOT INSTRUCTIONS

read input buffer, reset flag 606,616
LDB load output buffer, reset flag 626,636

makes it possible to compare various ap-

proaches in tackling the problem (there are

usually a number of possible ways, and it may
not be easy to pick the most efficient).

After using flowcharts to settle upon the

approach and refine the exact way in which

the steps are to be performed, the next phase

FIG. 1

is to actually write the program. This is generally
known as the "coding" phase.

You might imagine that this would be the

last real stage in the process of programming,
followed only by assembly and storage in the

machine before operation. However this is

rarely the case. Generally there is a further

stage, because human fallibility almost always
ensures that a program won't work in its initial

form.

The final stage is therefore one in which you
perform "debugging". This involves running
the program one or more times, noting the

errors it makes, analysing these with the flow-

charts and the written version of the program,
and making the appropriate modifications to

remedy matters. The modified assembly lan-

guage version is then assembled once more,
to produce the final object tape (hopefully!).

Let us now turn to the detail of programming.
Probably the best way to start is with a very
elementary example.

Suppose we have two numbers, stored in

memory locations, and we wish to add one to

the other and store their sum in a third memory
location. This is a very simple task, and would
not normally involve a program of its own; it

would simply form a minor step in a larger

program. However for the sake of the exercise,

a flow-chart for the steps involved is shown
in Fig. 1

.

This is a very simple flow-chart, as you can
see. There are only two different sorts of opera-
tion symbol, and the logical flow is in a simple
linear fashion between the rounded START and
HALT terminations. The rectangular boxes re-

present the functional steps, with the arrows

ELECTRONICS Australia, February, 1975 65

EDUC-8 computer

on the connecting lines showing the direction
of flow.

The reasoning behind the various steps should
be fairly self-evident. The accumulator register

is first cleared, to make sure that there is no
residue from a previous operation to confuse
the issue. Then the first number is added into

the accumulator, followed by the second
number. This forms their sum in the accumula-
tor, which is deposited in the desired memory
location. Finally the machine is halted.

The mnemonic or assembly language form
of a simple program to perform this task might
look like this:

CLA /start; clears AC
TAD A /adds first number
TAD B /adds second number
DCA C /deposits sum
HIT /halts

A, /location of first number
B, /location of second number
C, /location in which sum is stored.

The first thing to note is that the actual

program itself consists only of the left-hand

column. All of the words to- the right of the
oblique slashes are comments, purely for the
benefit of anyone trying to follow what is going
on—including perhaps the programmer him-
self, at some later stage. Whether you add such
comments to your own programs is entirely

optional; a few at strategic points in a program
can be very helpful, but it would normally be
both unnecessary and tedious to put as many
as shown here. I have added them merely to

help you in getting the idea.

When a program written in assembly lan-
' guage is translated into binary code, these
comments are completely ignored. Assembler
programs may be arranged to do this automa-
tically, by ignoring all characters on the sym-
bolic tape which follow a slash and precede
a carriage return.

The other main thing to note about our first

program example is that the three memory
locations used to store the two numbers and
the sum have been given labels— "A”, "B” and
"C". These are simple one-letter labels, but in

practice these can generally be any convenient
combination of letters and numerals—as long
as they do not coincide with the mnemonics
used for the actual instructions. This is not so
important when you are coding programs your-
self, manually, but it is essential if they are
going to be coded by an assembler. Any
ambiguity between labels -and instruction
mnemonics would then lead to errors.

The main advantage of using labels is that
it frees you from worrying about the exact
locations of each instruction and data number
in memory, at least during the initial stages.
It is still necessary to keep track of your position
in memory, so as to be able to satisfy the
requirements for memory reference instruc-
tions. But by using the labels you can leave
the exact details of memory location until last,

when the actual coding is done. And if the
coding is done by an assembler program you
may never need to worry about the details, as
the program may do it for you!

Normally if the two numbers to be added
together were to be loaded into the machine
as part of the program, their numerical values
would be shown after the commas following
their address labels. On the other hand if they
were going to be loaded separately, the initial

content of the two locations might be shown

as zero. Similarly the content of the sum storage
location would normally be shown as zero, to
emphasise that the initial content is not signifi-

cant. (But the latter is not necessary for correct
operation of the program, as storing the sum
in this location would automatically erase any
previous content.)

Some of these points may become clearer
if we look at the octal code equivalent to our
program example. If the program were going
to be stored in the computer's memory starting
at the very first location, i.e., address 000, its

coding would be as follows, where the locations
in memory have been shown at the left for
reference:

Location Code
000 710
001 105
002 106
003 307
004 721
005 (first number)
006 (second number)
007 (sum stored here)

I suggest you spend a little time comparing
this with the assembly language form, as this
is probably the best way of grasping some of
the ideas of coding. Note that the program
occupies eight memory locations, five for the
actual instructions and three for the storage
locations. The two numbers to be added to-

gether would be stored along with the instruc-
tion numbers, in locations 005 and 006, and
after the program has been run their sum will

be found in location 007.
If you look carefully at the coding for the

three memory reference instructions, some of
the points made earlier about the details of
memory location should start to become clearer.
Because they must refer to the location of the
operand concerned, the exact coding for such
instructions varies with the position of the
operand in memory. This is in contrast with
the operate microinstructions, whose coding
remains fixed.

To emphasise this, here is how the coding
for the same program would look if we were
to store it in the next group of eight memory
locations, at the same time changing the posi-
tions of the three data storage locations so that
they precede the instructions instead of follow
them:

Location Code
010 (first number)
01

1

(second number)
012 (sum stored here)

013 710
014 110
015 1 1

1

016 312
017 721

Notice how the exact form of the memory
reference instructions has changed, to corre-
spond to the new addresses of the operands,
while the operate microinstructions are unal-
tered. The fact that the data storage locations
are now "ahead" of the actual instructions has
only altered the exact coding of the program,
however, not its operation. It is still an entirely
valid coding for the program task we wished
to perform.

In practice it is often convenient to place at
least some of the data storage locations before
the actual instructions. The only thing to watch
when this is done is that you remember to
always start the program at the first actual
instruction. If this is not done, the machine will

fetch data numbers and interpret them as in-

structions — which can produce some rather
strange results!

I hope this very elementary programming

example has helped you to grasp some of the
rather subtle concepts involved. If nothing else,

you will hopefully have begun to see by now
the way in which instructions and data numbers
stored in the machine differ only in terms of

interpretation.

Let us now consider a programming example
that is a little more complex. Say we have two
numbers stored in the machine's memory, as
before, but this time we wish to find the dif-

ference between the two and store it again—but
always as a positive number. This time the
flowchart would be as shown in Fig. 2.

Here we cause the two numbers to be sub-
tracted, instead of added, by turning the first

into its negative equivalent (in 2's complement
binary notation) before the second is added.
This leaves their difference in the AC; but as
we have no way of knowing which of the two
numbers will be the larger, this difference may
be either positive or negative.

As we wish to store the difference in positive
form, it is therefore necessary to make the
program perform a logical decision (diamond
shaped box), and branch in one of two direc-
tions depending upon the result of that decision.
If it finds the result is positive, it should store
it away unchanged; but if the result is negative,
it should convert it into the equivalent positive
number before storing it.

This is done by forming the two's comple-
ment of the difference, in the same way used
to negate the first number.

ELECTRONICS Australia, February, 1975

A program written in assembly language to

perform this task might look rather like this:

START, CLA /clears AC
TAD NUMA /adds first number
CMA. IAC /forms 2's

complement
TAD NUMB /produces difference

SMA /is diff negative?

JMP STORE /no, go to store it

CMA.IAC /yes, form 2's

complement
STORE, DCA DIFF /store it

HLT /halt

NUMA, /first number
NUMB, /second number
DIFF, /difference stored

here

Here the labels "NUMA", "NUMB” and
"DIFF" have been used for the three data

storage locations, just to show you another

possibility. Similarly a label "START" has been
attached to the first instruction, mainly to clarify

exactly where the program starts. This can be
very worthwhile if there are data storage loca-

tions ahead of the instructions. The second last

instruction has also been labelled "STORE”,
but for a more important reason which should
emerge in a moment.

The conversion of the first number into its

2’s complement is performed by a single in-

struction, the combined operate microinstruc-

tion CMA.IAC. The second number is then

added to the AC as before, in this case forming

the difference.

The logical decision and program branching

is achieved by using the operate microinstruc-

tion SMA, together with a JMP instruction. If

the difference stored in the AC is negative, the

effect of the SMA microinstruction is to cause
the program to skip the next consecutive in-

struction, so that it automatically goes to the

seventh instruction (CMA.IAC) and forms the

2's complement of the difference as required,

before storing it. But on the other hand, if the

difference is already positive, the SMA microin-

struction will not cause a skip, and the program
will instead go to the next consecutive instruc-

tion.

This instruction is the JMP instruction, and
its purpose is to allow the program to proceed

directly to store the difference. This is achieved

by giving the "DCA DIFF" store instruction the

label "STORE", and writing the jump instruc-

tion as JMP STORE. If the program is coded
by an assembler program, this will cause the

correct coding to be automatically generated,

taking into account the actual memory location

of the instruction which is effectively the

operand of the jump instruction.

If it were to be stored in the computer's

memory starting at location 000, the octal

coding for this second program example would
be:

Location Code
000 710
001 1 1

1

002 705
003 112
004 724
005 507
006 705
007 313
010 721
01

1

(first number)
012 (second number)
013 (difference stored here)

This is a very simple example of a program
involving a logical decision and so-called "con-

ditional branching”, but even so it illustrates

that a program is not necessarily confined to

the simple execution of a linear sequence of

instructions. The ability of the machine to test

for certain conditions, and branch in various

directions according to the result of the test,

expands the whole scope and flexibility of pro-

gramming considerably.

Of the operate microinstructions in EDUC-8's
repertoire, there are three which are used in

this way for conditional branching: SMA, SZA
and their combination SZA.SMA. Instructions

which may also be 'used for conditional branch-

ing are the IOT skip instructions SKF and SDF,
and the memory reference instruction ISZ.

The ISZ instruction is in fact very powerful.

One of its other applications is for another

important programming technique known as

"looping". The best way to illustrate this is

with another simple example.
Let us say you want to repeat a certain se-

quence of instructions five times. One way to

do this would be to simply repeat the group
of instructions five times, so that the machine
performed them one after the other. However
this would tend to take up a considerable

amount of memory. This space can be almost

completely saved by arranging for the program
to loop around and perform the single group
of instructions five times, before continuing.

The principle used to achieve looping is

shown in Fig. 3. Ahead of the sequence of

instructions to be performed a number of times,

a storage location is loaded with a number
known as the "index", whose value is made
equal to the 2’s complement of the number
of times the instruction sequence is to be per-

formed. In this case the index is set to minus
5, as we wish to perform the sequence five

times. This preliminary operation is known as

"initialising".

After the actual sequence of instructions to

be repeated, the index number is arranged to

be incremented. Then the program is arranged
to test whether the value of the index has
become zero or not. If not, the machine is made

(CONTINUE) FIG. 3

to jump back to the start of the sequence. If

on the other hand the index has become zero,

the machine is allowed to continue with the

next consecutive instruction.

Because the index has initially been set to

the 2's complement of the number of times

the sequence should be repeated, it will not

actually reach zero until the correct number of

loops has occurred. Thus with our example
where the index is set to minus 5, the program
will automatically loop five times before pro-

ceeding.

The ISZ instruction can be used to perform

both the index incrementing, and the testing

to see if its value has reached zero. The looping
back is then arranged simply by following the
ISZ instruction with a JMP back to the start

of the loop, as follows:

GO,

CLA
TAD CONST
DCA INDX /initialises index to

-5
. . . . /sequence
. . . . /of

. . . . /instructions

ISZ INDX /increment index,

test

JMP GO /not zero yet, keep
going

Note that CONST would be a storage location

with the number minus 5 as its content, while

INDX would be another location used to store

the index. The rows of dots represent the in-

structions before, inside and after the loop. Note
that the loop may include any desired number
of instructions.

Looping is a particularly useful technique, as

you can imagine. It allows considerable reduc-

tion in the length of programs, as most pro-

grams involve a certain amount of repetition.

Or looking at it in another way, looping allows

more efficient use of computer memory, so that

more elaborate programs can be fitted into the

available space.

Note that the ISZ instruction is not the only

one which can be used as the basis of looping.

Broadly speaking, any of the skip instructions

can be used to achieve looping, just as they

can be used to achieve branching. The most
appropriate instruction to use for looping de-

pends upon the type of loop required—whether
the program should loop for a fixed number
of times (unconditionally), as in our example,

or until some condition has been reached. The
ISZ instruction is often the most suitable for

theformer, but instructions like SMA, SZA, SKF
and SDF are generally more suitable for the

latter.

An interesting example of the use of looping

is where two numbers are to be multiplied

together. Here one number may be used to

control the number of times the other is added
to itself, by converting the first number into

its 2’s complement and using it as the index

for a loop around an instruction added the

second number to the AC:

MULT, TAD NUM1
CMA.IAC
DCA INDX /initialises

ADD. TAD NUM2
ISZ INDX /finished yet?

JMP ADD /no, keep going
HLT /yes, halt

NUM1

,

/first number
NUM2, /second number
INDX, 000 /index stored here

Note that in this case the program would halt

with the product of the two numbers in the

AC register. It could be arranged to store the

result in a suitable location, like the earlier

examples, simply by adding the appropriate

DCA instruction between "JMP ADD” and
"HLT".

A flow chart for the example just given is

shown in Fig. 4, to allow you to follow through

the idea a little more easily.

Apart from its use in arranging program
looping, the ISZ instruction can also be used
to actually modify the instructions within the

loop, so that the program need not simply

repeat a sequence exactly the required number

ELECTRONICS Australia, February, 1975 67

EDUC-8 computer

of times, but can perform a series of similar

operations. An example of this is well worth
looking at, because it demonstrates that in-

structions are not necessarily ' sacred" and
unalterable.

Say you have a set of eight numbers stored
in consecutive memory locations, and you wish
to add them all together to form their sum in

the AC register. One way of doing this would
be to have a sequence of eight different TAD
instructions, each one referring to one of the
eight locations. But it is more efficient to use
looping around a single TAD instruction, and
simply modify the address part of the instruction

each time.

Thus if the locations in which the numbers
are stored are given the labels "A", "A+1",
"A + 2

", etc, the program would look like this:

START, CLA
TAD CONST
DCA INDX

GO, TAD A
ISZ GO
ISZ INDX
JMPGO
HLT

CONST, 370
INQX, 000
A,

A+1,
A+ 2,

/initialises index

/modify instruction

/done 8 times?

/no, keep going

/yes, halt

/minus 8

/first number

Only the first three data number locations

have been shown, with dots to suggest the

remaining locations. Note that the value given

for CONST is the 2's complement of decimal

8, in "377" format octal notation.

Of the two ISZ instructions used in this ex-

ample, only the second is used "fully"— i.e.,

to both increment and test whether the operand
has reached zero. The first ISZ instruction is

used purely to increment the TAD instruction,

and this is a perfectly valid way of using an
ISZ instruction.

The only thing the programmer must do when
using the ISZ instruction in this way is make
sure that the number or instruction being incre-

mented will never reach zero, or alternatively

ensure that the program does not make an error

if it does. In this example we know that the

TAD instruction will only be incremented 8
times, so that there is no problem.

In cases, where it is not easy to predict if

zero will or will not be reached, and no branch-

ing or looping must occur, the best idea is to

follow the ISZ instruction with a NOP or "no
operation" instruction.

Although the method just illustrated can often

be used to perform a series of similar opera-

tions, it is not always convenient to directly

modify an instruction or sequence of instruc-

tions. For one thing, this complicates matters

if the program is to be re-run, because the

modified instruction or sequence of instructions

will have to be changed back to their initial

coding.

In such cases, use can be made of a

similar technique, but one which uses indirect

addressing via a "pointer". Here the pointer

is incremented to change the memory locations

referenced, not the basic instructions.

For an example of this, consider a situation

where we have a set of eight numbers in con-

secutive memory locations, as before, but this

time we want to add a constant—say octal

60—to each one, and replace it in its initial

location. A program to do this could take the

following form:

START, CLA
TAD CONST
DCA INDX /initialises index

TAD BUFSA /fetches add. of

first no.

DCA POINTER /initialises pointer

GO, TAD 1 POINTER /fetch number
TAD CON60 /adds 60
DCA 1 POINTER /replace number
ISZ POINTER /increment pointer

ISZ INDX /finished yet?

JMP GO /no, continue

HLT /yes, halt

CONST, 370
INDX, 000
BUFSA, /address offirst no.

POINTER, 000 /pointer stored

here

CON60, 060
A,

A+1,
A+ 2,

/first number

It is possible to use the one number as both
index and pointer, in some situations, and this

can be used to simplify and shorten the program
still further. In the example just given, this could

be done fairly easily, by arranging for the eight

data numbers to be stored in the last eight

locations in memory. The value of INDX each
time would then automaticaly correspond to the

required pointer address. You may care to try

re-writing the program to do this, just for the

exercise.

Along with the technique of using a pointer,

the example just given also shows one impor-
tant application of indirect memory addressing.

Another important application of this should
become apparent in a moment, as we discuss

another very useful programming technique—
the subroutine.

Like looping, subroutines are used to allow
a particular sequence of instructions to be used
repeatedly during a program. But the advantage
of the subroutine is that the sequence may be
used in many different parts of a program, not

necessarily in contiguous fashion. The sequence
is made a separate entity, with the program
jumping to it as required—and then returning

back to where it jumped from, each time.

The general idea is shown in Fig. 5. As you
can see, the subroutine is in effect a separate
program module, to which the machine jumps
from the main program whenever the subrou-
tine sequence is needed. After having used the

subroutine, the machine then jumps back to

the main program, to continue on from where
it was.

The instruction which is used to provide

subroutines is the JMS instruction. This is a

little like the JMP instruction, in that it has the

effect of replacing the existing content of the

PC register so that the machine takes its next

instruction from a place other than the next

consecutive location. But in contrast with the

JMP instruction, where the existing content of

the PC register is lost, with the JMS instruction

the PC content is stored in the address given

in the instruction, and the next instruction taken

not from that address, but from the one after

that.

This is used in the following basic way. The
first location of a subroutine sequence is set

aside as a storage location, immediately before

the first of the actual subroutine instructions.

Then whenever the subroutine is needed in the

main program, a JMS instruction is used, spe-

cifying the address of the storage location. The
effect of the JMS instruction is to store in that

location the address of yvhat would otherwise
have been the next consecutive instruction in

the main program, and to take the first subrou-

tine instruction as its next actual instruction.

In other words, the JMS instruction causes
the machine to jump to the subroutine, but at

the same time stores the address in the main
program to which it should return, in the su-

broutine storage location. This stored address

is known as the "return address", for fairly

obvious reasons.

To arrange for the machine to jump back into

the main program at the end of the subroutine,

it is merely necessary to make the last subrou-

tine instruction an indirect JMP instruction,

specifying the storage location at the start of

the subroutine. The machine then automatically

fetches the return address from the storage

location, and places it into the PC register.

In terms of actual instructions, a subroutine

and its associated JMS instructions tend to look

as follows, when encountered in an assembly
language program:

JMS SUBRT

JMS SUBRT

JMS SUBRT

SUBRT, 000 /stores return add. here
• • • /first subr. instructions

JMP I SUBRT /fetches return

add . to exit

Here the top section represents the

ELECTRONICS Australia, February, 1975 69

EDUC-8 computer

main program, with JMS instructions wherever
the subroutine is needed. The subroutine itself
is beneath it, with its storage location for the
return address at the start, and the indirectJMP
instruction used to exit at the end. Note that
although the label "SUBRT" has been used
here for simplicity, any other suitable label may
be used.

This is the basic way of providing a subrou-
tine, and is probably the way most often used.
It is possible to elaborate on the basic idea,
for example if you want to transfer additional
data numbers into and out of the subroutine
(normally the only data transferred is the con-
tent of the AC register), but space limitations
prevent us from going into this further here.

An important application of subroutines is

in servicing input/output devices, and we will
look at this shortly. However before we do, it

may be worthwhile to mention briefly the gen-
eral use of indirect addressing for memory
reference instructions, in connection with
memory pagination.

As mentioned in the earlier section dealing
with basic machine operation, the eight-bit
instruction words used in EDUC-8 do not allow
direct addressing of all memory locations. This
is because a full eight bits would be needed
to address 256 locations, and at least three
of the eight instruction bits are already required,
for the operation code.

In fact, there are only four bits available for
the actual operand address portion of a memory
reference instruction, as bit 4 is used to indicate
the addressing mode. As there are only 16
combinations possible with four bits, this means
thatany given memory reference instruction can
only specify one of 16 partial addresses.

This problem is not unique to EDUC-8, but
is in fact shared with many minicomputers. The
only difference is one of scale—with a typical
commercial machine, some 256 partial ad-
dresses may be specified, rather than just 1 6.
And with EDUC-8, we get around the problem
in the same way used in a commercial machine.
The convention adopted in the machine is

to divide the memory effectively into "pages”,
in this case of 16 locations each. The full

256-word memory of the machine is thus con-
sidered to consist of 1 6 pages, each comprising
1 6 locations, and with octal addresses as
shown:

000-017
020-037
040—057
060-077
100-117
120-137
140—157
160—177

200—217
220-237
240-257
260-277
300-317
320—337
340-357
360—377

In effect, the instruction decoding logic of
the machine "assumes” that the partial address
given in a memory reference instruction refers
to the corresponding actual address lying in

the same page as the instruction itself. Thus
if a TAD instruction is in the first page of
memory and has the octal code 105, the ma-
chine will regard the location specified as that
with the address 005. However a TAD instruc-
tion with the same coding, but in the last page
of memory, will be taken as specifying the
location with the octal address 365.

This applies to both direct and indirect ad-
dressing, in the sense that the address of the
actual operand address specified in an instruc-
tion is also assumed to lie in the same page
as the instruction. So that if an indirect DCA

instruction with octal code 3 1 3 is located in
the first page of memory, in executing the
instruction the machine will seek the number
stored in memory at address 0 1 3 as the address
at which to store the AC register contents. But
if the same instruction code were encountered
on the second last page of memory, the machine
would seek the storage address at memory
address 353.

From the programmer's point of view, the
effect of all this is to restrict the range of loca-
tions which may be specified by a direct ad-
dressing memory reference instruction, to those
locations within the same memory page as an
instruction itself—known as the "current page".
However if you want to specify a location out-
side the current page, all that is necessary is

to use indirect addressing instead, with a loca-
tion on the current page used to store the actual
operand address.

An example should illustrate the idea. Say
you are in the first page of memory, and need
to deposit the AC contents into the location with
octal address 246, in the eleventh page. The
way to do so is to assign a suitable storage
location on the current page, say at address
017, and store in that location the desired
depositing address—octal 246. Then in the
program itself all that is required is the indirect
addressing DCA instruction with octal code
337.

If you find that "337" a little hard to work
out, it is made up as follows. The first figure

is the operation code for a DCA instruction,

octal 3, which is no problem. The remaining

two figures are actually a combination of 01 7,
the address of the current page storage location

1

and 020, which is the octal representation of
the bit (bit 4) which indicates an indirect ad-
dressing memory reference instruction.

To round off this introductory look at pro-
gramming, let us now consider briefly what is
involved in programmed transfer of data to and
from peripheral devices. This is usually called
'TOT servicing"

As mentioned in an earlier section, IOT ser-
vicing involves three distinct operations. One
is testing the flag line of the IOT device con-
cerned, to see if the device is ready to "do
business

; this is often described as testing flag
status. The second operation is transferring the
actual data, and the third is resetting the device
flag. The latter not only prepares for the next
servicing cycle, but generally also serves to
indicate to the device that the data transfer is

complete, at least from the computer's view-
point.

The three instructions which perform these
operations for an input device are nominally
labelled SKF, KRS and RKF-although these
mnemonics are arbitrary and could be varied
to suit different types of input device. The
second and third instructions may be combined
to produce the instruction nominally called
KRB, which transfers data and resets the device
flag in the same execute cycle.

These instructions are used to service an
input device such as the simple keyboard unit
by arranging them in the following sequence:

TEST, SKF /is flag set?
JMP TEST /no, keep looking
KRB /yes, transferand reset

As you can see, the SKF instruction is ar-
ranged to form part of a small program loop,
by following it with a JMP instruction which
forces the program to jump back to SKF again.
While the device flag remains reset, the pro-
gram thus twiddles its thumbs" by jumping
back and forth between the two instructions.

However as soon as the device flag is set,
indicating that the keyboard has a character
ready for transfer, the program can escape from
the loop because the SKF instruction will cause
the JM P instruction to be skipped. The machine
will then fetch and execute the KRB instruction,
transferring the character into the AC register

and resetting the keyboard flag. Fig. 6 illustrates
the technique in flow-chart form.

A similar instruction sequence is used for
servicing output devices, where the corre-
sponding instructions are SDF, LDS and RDF,
or LDB combining the second and third. How-
ever many output devices like paper tape
punches and printers have drive mechanisms,
which may be deactivated when the flag FF
is set. For this reason, the instruction sequence

ELECTRONICS Australia, February, 1975 71

JO

JO

JO

T5

IS

15

16

iS

'0

!5

!S

:5

The program coding blank at right may help
you in writing programs. Rather than use the
blank itself, however, run off photocopies and
use these.

for output device servicing are often rearranged
thus:

LDB /load device buffer,

reset flag

TEST, SDF /device used char yet?

JMP TEST /no, keep looking

By doing this the character is loaded into

the device buffer first, and the flag reset to

activate the punching or printing mechanism.
Then the program is forced to wait until the
device indicates that the character has been
processed, before proceeding. As before this

is achieved by using a JMP instruction to pro-
duce a small loop.

IOT device servicing sequences such as these
are often needed many times in a program, and
when this occurs it is usual to make them
subroutines. Thus a program to make the ma-
chine act like an elementary desk calculator,

using the simple input keyboard and octal dis-

play devices, might have two IOT servicing

subroutines labelled "READ" and "DISPLV".
Then whenever characters were to be read from
the keyboard, this would be simply achieved
by the instruction JMS READ, while to display
a character would be achieved by the instruction

JMS DISPLV.
The two subroutines themselves would be

written as follows:

READ, 000
TEST, SKF

JMP TEST
KRB
JMP I READ

DISPLY, 000
LDB

BACK, SDF
JMP BACK
JMP I DISPLY

With EDUC-8, these are the only basic
methods available for IOT device servicing.

More complex machines generally offer the
ability to service IOT devices in alternative ways,
some of which may avoid the time-wasting flag

test loop. A common approach is one employing
an "interrupt" system, where the machine
continues with its main program until a device
signals its availability.

And with those brief details of IOT program-
ming I must bring this section to a close. It

has only been possible to deal with basic pro-

gramming in a very limited way, and you will

no doubt have many questions as yet unans-
wered. But hopefully you will now have enough
basic insight into the concepts involved to

provide a foundation for further study, as well

as for trying your hand at some programs.

To help you in this regard, I have prepared
artwork for a simple program coding sheet. This

has space for 32 instructions, or two pages
of memory, and provides for both writing the

instructions in assembly language, and insert-

ing the octal coding. As such, it can make
program writing a little easier and more con-
venient. I suggest that you run the page through
a copier, and provide yourself with a stack of

copies to actually write programs on. This way
you can keep the printed reproduction as a

reference.

It has not been possible to give any examples
of complete practical programs here, because
of space limitations. However I will try to give
some examples along these lines as we deal
with further input and output devices. ®

-(£a)- EDUC-8 program

STEP MNEMONIC CODE

0

1

2

3

4

5

6

7

10

11

12

13

14

15

16

17

20

21

22

23

24

25

26

27

30

31

32 \

33

34

35

36

37

ELECTRONICS Australia, February, 1975 73

nterfacing EDUC-8

Resuming the discussion of peripherals, the author explains here
how to go about interfacing surplus paper tape readers and punches
to your completed EDUC-8 microcomputer. Full logic circuits are
given for typical reader and punch units, together with details of
how to modify the circuits for other types. Software is also dis-

cussed, and a useful program presented to enable convenient
punching of program tapes.

by JAMIESON ROWE
By this stage, quite possibly you have your

EDUC-8 microcomputer and its two basic per-

ipherals working, and have been trying your
hand at some programs. If so, you've no doubt
begun to find it tedious loading each program
into the machine via the front panel switch

register, and will probably be keen to provide

a more convenient and speedy means of

achieving the same result.

There are a number of alternatives to the

manual method of feeding programs and data

into a computer, as you are probably aware,

and these generally involve a storage medium
such as punched cards or tape, cards with

optical marks or magnetic coating, magnetic
tape, or a magnetic disc or drum. Each of these
has its own combination of advantages and
disadvantages, although some are now looked
upon less favourably than others in commercial
computer applications — where the emphasis
tends to be on faster and faster operation.

For the present I am going to deal with only

one of these storage media and its handling,

although I hope to be able to discuss certain

others in later instalments. The medium chosen
for this initial foray into the subject is punched
paper tape.

Why punched paper tape? Well, it seems to

me one that is particularly well suited for storage
of the modest-size programs used for an educa-
tional microcomputer like EDUC-8. The pro-

gram tapes are short — at the most they are

likely to be about a metre long, including leader

and trailer. This makes them easy to handle,

and quickly loaded into the machineeven with

a slow reader unit. At the same time the en-

coded information they contain is quite accessi-

ble, and can easily be "read” by eye after a

little practice.

The equipment required to handle punched
paper tape is also quite compact, and relatively

simple.

There is also a very practical reason for the
choice: I believe you are more likely to be able
to pick up surplus punched paper tape equip-
ment than any other. There is a lot of this

equipment being "pensioned off" from com-
mercial data processing facilities at present, it

generally being replaced by key-to-disc systems.
Probably the most suitable sort of punch tape

equipment to look out for in this context is the
hardware making up what was generally known
in the EDP industry as a "keypunch station".
These were not connected directly to a com-
puter, but were used merely for off-line pre-

paration of data input tapes from type-
writer-style keyboards.

64 ELECTRONICS Australia, March, 1975

There are two broad types of keypunch sta-

tion. The simpler type was used for initial tape
preparation, and has only a keyboard and tape
punch unit together with the necessary power
supply and encoding logic. The other type is

known as a "verifier station", because it was
used to compare the tape produced by the first

operator with ostensibly the same information
re-entered by a second operator (to try and
detect, and correct, operator errors); this type
of equipment has not only a keyboard and
punch, but a tape reader as well.

The verifier station equipment is the one to
aim for, in other words, because this will,yield

both a paper tape punch and reader, together
with the necessary power supply unit to operate
them. And for a bonus you’ll get a keyboard
unit — I hope to describe how to use this also
with the computer, later on.

If you're lucky, you may well be able to get

hold of a complete verifier station for a few
tens of dollars. Quite large numbers have been
literally dumped in recent years, which seems
almost criminal — particularly since most were
made no more than twenty years ago, and cost

more than a thousand dollars each!

By the way, it is important to make sure that

you get tape equipment designed to take paper
tape 2.54mm (1 inch) wide, and that it punches
and reads the full 8 bit positions or "levels”

possible with this tape. There are other types

of equipment around, some of which use the

same width tape but only 7 of the bit positions,

while others use a narrower tape and either

5 or 6 bit positions. None of these would be

BIT POSITIONS

OOO o O
O O o OO

OO O o OO
O O o O
O OO o O O
OOO Oo OO
O O o OOO

O OOO o O O

DIRECTION
OF TRAVEL

FIG. 1
SPROCKET HOLES

anything like as suitable for interfacing with

EDUC-8 as is the 8-level tape equipment, be-

cause the instruction and data words for the
machine are all of 8 bits.

To help you in checking that a set of equip-
ment is designed for the correct 8-level tape,

Fig. 1 shows the main features of this tape.

It also shows the standard way of interpreting

the bit position, with the three least significant

bits on one side of the sprocket hole track, and
the remaining five on the other.

Note that the type of encoding used in surplus
keypunch gear is not important for our present
purpose, as this part of the equipment is not
used.

Incidentally, new punched tape equipment
is available, if you can afford it. For example
McMurdo Australia have a basic tape reader
of Italian manufacture, the Ghielmetti type DTR
40K. This operates at up to 40 characters per

second, but costs $270.
The reader and punch unit pictured are both

from a verifier station marketed by a big British

computer firm, and are fairly typical. Both units

were originally made by the Welmec Corpora-
tion, of London. The reader unit is designated
type R8. 1 , and the punch unit type SI 8.8. Both
operate from a nominal 1 20V DC supply, and
are capable of working at speeds up to around
10-15 characters per second.

The Welmec R8. 1 reader unit uses mechani-
cal sensing of the punched holes, by means
of eight small spring-loaded sensing pins. These
are attached to a yoke assembly, which is

moved upward towards the tape by a pair of
heavy-duty solenoids. Each sensing pin is con-
nected by a mechanical linkage to a set of switch
contacts, so that the contacts close if their pin
meets a hole and is able to traveHts full upward
stroke. Conversely if a sensing pin does not
encounter a hole, it is prevented from moving
its full stroke by the tape, and its contacts
remain open.

At the top of its stroke, the yoke assembly
trips a set of bi-stable switch contacts, which
during the upward stroke have been closed.
The contacts then latch in the open position,

and because they control the current to the main
actuator solenoids, this causes the yoke assem-
bly to fall back to its rest position under the
influence of gravity and a tension spring.

The yoke assembly has a pawl which engages
with a ratchet mounted on the same shaft as
the reader's tape sprocket. In falling back to

its rest position the yoke assembly thus causes
the tape to be incremented to its next row of

punched information — after the sensing pins

have been withdrawn. Finally, at the bottom,
of the return stroke, the yoke assembly trips

the latching contacts of the bi-stable solenoid
control switch, completing the cycle and ready-

ing the reader for another.

Note that with this type of reader mechanism,
the number actually encoded on the tape is only
"read" by the sensing pins, and reflected in

their switch contacts, at the top of the stroke.

This tends to make interfacing a little more
complex than with other types, which generally

Above are two views of the Welmec tape punch, as

modified by the author, with the power pack visible in

the right-hand shot. At right is the companion reader unit,

as modified for loading.

tend to read the tape in a static fashion—i.e.,

whenever the tape is not actually moving.
This means that the simple circuits I have

developed for use with the Welmec reader and
similar "on the fly" types should work even
more reliably with static types, and in that sense
they should be suitable for almost any mechan-
ism. On the other hand a static reading mech-
anism will generally work quite well with even
simpler circuits, should you wish to take advan-
tage of this.

Let us now look at the logic circuits required

to interface a reader mechanism with our

EDUC-8 computer. There are actually two dif-

ferent types of circuit, because there are two
distinct functions which a reader may be called

upon to perform.

One of the functions is to read input data

into the machine, under the control of a pro-

gram, in the same way data is fed in via the

keyboard. This can be the major function of

a reader with a large machine, but with a small

machine like EDUC-8 it is likely to be of rather

less importance than the second function: load-

ing programs.
It is of course possible to load programs in

the same way as data is read into the machine,

under program control. Here the machine must
contain a small program known as a "loader”

or "bootstrap", whose sole purpose is to direct

the machine in loading in the real programs.

The bootstrap program may either be stored

in the normal memory of the machine, after

having been fed in manually via the console,

or alternatively it may be provided by the com-
puter manufacturer in "hard wired" form —
i.e., part of the actual wiring, usually an au-

xiliary read-only memory or ROM.
While a bootstrap program may be used with

EDUC-8, this is not a very attractive proposition

because the bootstrap would take up valuable

memory locations. Even if it took up only 10
or 1 5 memory locations, this would be a sig-

nificant and irking proportion of the total 256
available.

Happily this can be avoided, by providing

a reader unit itself with the necessary logic

"know how" to enable it to load programs
automatically. Provision was made in the basic

EDUC-8 design to allow this to be done, by
means of the external "load address" and
"deposit" signals.

Logic circuits will be presented here for both
types of tape reader function. They will be
presented separately, but could be combined
if you so desire. The first, that for program
loading, is shown in Fig. 2.

This circuit has been designed to load pro-

gram tape punched in the following way. First,

the tapes have a length of "leader", blank

except for the sprocket holes; this allows the

tape to be inserted into the reader gate without

concern for the actual information. Then at the

end of the leader, the start of the information

itself is indicated by a single hole punched in

the most significant bit position (track 7 in Fig.

1).

The row (or "frame", as they are called)

immediately following the start bit is then used
to contain the address of the first memory
location in which the program is to be stored.

After this, the succeeding frames contain the

program itself, i.e., the actual instructions in

the order they are stored in memory. No further

address information is required after giving the

first storage address, as the instructions are

automatically stored in consecutive locations.

The tape is arranged to end a few sprocket holes

after the last instruction.

This format is illustrated in Fig. 3. Note that

it is usual to cut the start and end of tapes

as shown, to make it clear which end is which.

The heart of the loader logic in Fig. 2 is the

two RS flip-flops FFA and FFB, formed by t 'he

cross-coupled gates G2-G3 and G4-G5 respe *c-

tively. These effectively form the "memory” t t>f

the loader, and control its operating sequence ’•

ELECTRONICS Australia, March, 1975 65

EDUC-8 computer

When power is first . applied, both flip-flops

are reset by the R-C ci ret jit connected by diodes
to the free inputs of Gi3 and G5. To initiate

loading after a tape hati been inserted into the
reader, the operator m erely presses the "load
button". This takes the associated input of gate
G1 to logic high, and because the other input
of G1 will normally al so be high (more about
this soon), the output of G1 will go low.
The effect of this is to switch FFA to the set

state, with the output of G2 high and that of
G3 low. Base curren t thus flows in transistor
T2, via the series dio. de and resistor connected
to the output of G3. Accordingly T2 conducts,
and applies forward, bias to the gate of the
C106B SCR, which triggers into conduction.
The circuit is thus completed for the reader
activator solenoids, and the reader mechanism
thus starts operatin g.

Pulsed by the ac :tion of the latching reader
switch contacts, wl rich alternatively make and
break the solenoid I circuit at the bottom and
top of the strokes,, the reader begins scanning
the tape.

A small low-volt :age relay RLY A is connected
via a 2.7k/ 10W dropping resistor in parallel

with the reader s lolenoid circuit, such that its

current is also s ilternatively switched by the
latching reader s witch contacts. A set of chan-
eover contacts o n RLY A is then used to gen-
erate a feedbacl ,< logic signal, whose bounce
transients are S' uppressed by the RS flip-flop

formed by gates » G£l and G9. When the reader
is operating, th e output of gate G8 is thus a
rectangular was re, whose high-to-low transition
occurs at the ti op of the reader yoke's stroke.

This transitia m is important, because it corre-
sponds to the ii nstant in the reading cycle when
the sensing pi n contact have been stabilised
in their "read" positions. Hence the signal from
G8 is used.to trigger three cascade-connected
monostables

(one-shots) D1, D2 and 03. The
first monostat ile 01 is used to generate a pulse
about 60us 1

long, immediately following the
transition, w /h ile 02! and 03 produce two
smaller puls' as (about 3us) which follow se-
quentially.

It is the tl nird pulse, from D3, which plays
the first part

; in the loading sequence, via gate
G7. The sec ;ond input of this gate is driven by
a PNP trans ristor, T3, whose base is connected
to the read er sensing contacts associated with
bit positior i 7.

During t ;he sensing of the paper tape leader
where thei re are no information holes punched,
all of the r eader sensing contacts remain open.
However, upon the arrival of the "start" frame,
the corns icts for bit 7 close at the top of the
stroke, s jo that T3 conducts and takes the
second ii pput of G7 high. When the pulse from
monosts ible D3 arrives at G7, the gate output
therefor e goes low, and this causes FFB to be
set.

The setting of FFB causes two things to
happer Cine is that the inputs of gate G16
are tak :en low, so that its output goes high;
this er table ss gates G1 7-G24, to open the data
paths between the eight sets of reader sensing
conta cts arid the switch register circuits of the
comf juter. 1

Tl" re second thing that happens when FFB
sets is that gate G6 now has both inputs taken
n'9' tl, so that its output goes low and that of

2 goes high. This enables gate G 1 4, so that
at the top of the reader stroke for the next
cc insecutivo frame, the 60us pulse from mon-
0 stable Dll causes G14 to deliver a LO%D'
ADDRESS (L) pulse to the computer. Because

66 ELECTRONICS Australia, March, 1975

the reader sensing contacts will simultaneously
be sensing the initial loading address on the
tape, this causes the computer to load the
address into the PC via the switch register
circuit.

This is providing, of course, that all of the
switch register switches are in the "up” or 1

position, so that gates G1 7-G24 in the loader
can control the logic levels. This is also neces-
sary for correct depositing, so that when the
loader is operated, the SR switches must always
be in the up position.

Immediately after the address is loaded, the
short pulse from monostable D2 arrives at the
input of gate G 1 0. As the second input of this
gate is now high, because FFB has been set,
the output of G 1 0 is thus driven low briefly.

And this in turn resets FFA, so that now only
FFB is left in the set state.

Despite the resetting of FFA the reader mech-
anism continues to operate, because of the
second diode and resistor connected from the
base of T2 to the output of G5. Gate G6 is

disabled, as the output of G2 has now gone
low, but G 1 1 is now enabled, because the
outputs of G3 and G4 are now both high. This
causes the output of G1 1 to go low, and the
output of G1 3 to go high, enabling gate G1 5.

As a result, at the top of the next consecutive
reader stroke, the 60us pulse from monostable
D1 is now passed by G1 5, to deliver a DEPOSIT
(L) pulse to the computer. And this occurs when
the reader sensing contacts are registering the
first instruction, so that the computer will

deposit this instruction as required in the first

desired memory location.

This last sequence of events will be repeated
for succeeding frames of the tape, depositing
each of the instructions in turn. The loading
sequence will normally only come to an end
when the tape end sensing switch of the reader
mechanism registers that the tape has run out.
The switch breaks the 1 20V supply to the
solenoids, stopping the mechanism. At the
same time it causes the "tape fault" lamp to
light, and resets FFB of the loading logic, by
turning on transistor Tl via the 120k resistor
connecting to the latter's base.

When FFB resets, the output of G 1 6 goes
low, disabling gates G 1 7-G24 and thus freeing
the switch register circuits for normal operation.
At the same time G 1 5 is disabled, so that both
the LOAD ADDRESS (L) and DEPOSIT (L) lines
are also freed. And as both FFA and FFB are
reset, the loader circuit is back to its initial state,

ready for loading another program when re-

quired.

As you can see, the operation is not particu-
larly complicated, yet the circuit performs the
required loading sequence simply and reliably.

It contains only eight ICs, of which six are of
the low-cost "garden variety": 7400 x 3, and
7401 x 3. The remaining two are 9602 devices,
to provide the monostable elements. Together
with the ICs there are three low cost transistors,
two 2N3638 or similar, and one BC108 or
similar; also a C106B or similar SCR, some
diodes and a handful of minor components.

Note that because the reader solenoids are
highly inductive, they tend to generate a high
back-EMF when their current is switched. This
is the reason for the R-C circuit across the 1 20

V

switch contacts, for the EM408 diode, and for
the R-C network across the SCR. The latter is

to reduce the rate of rise in anode voltage, which
would otherwise cause the SCR to turn on
spuriously — and to its detriment.

The 10k pull-up resistors connected to the
outputs of gates G17-G24 are effectively in

parallel with similar value resistors on the front
panel board of the computer itself. I have found
them necessary in order to ensure completely
reliable operation of the loader with "worst

case" 7401 gates, whose output leakage in

the high output state can be as high as 250uA.
The additional resistors would not be required

if the existing resistors in the machine were
reduced from 1 0k to 4.7k, but this is not easy
once the machine is assembled.
The pull-un resistors shown on the outputs

of G 1 4 and G 1 5 are for the same purpose.
Again it is easier to fit additional resistors in

the loader, rather than to change the existing
resistors in the machine itself.

Note also — and this is very important
that for correct loader operation, the 0. 1 uF
capacitor shown bypassing the external
deposit line of the computer should be re-
moved, and replaced by a unit of .001 uF.
This is necessary to prevent faulty operation
due to distortion of the loader's DEPOSIT
(L) pulses from G 1 S. The easiest way to make
the change is to clip the original capacitor
from the front panel board, and to wire the
new one in at the 1 6-pin loader socket on
the machine's rear panel.

The exact physical form of the loader logic
just described will depend upon the reader unit
you obtain, and this is left to you. In my case
all of the circuitry except the SCR, its R-C circuit

and RLY A with its dropping resistor were
mounted on one of our "Multi-DIP” boards —
the larger size, having space for eight ICs. The
other parts just mentioned were mounted on
a small square of Veroboard, and both boards
mounted inside the original reader case beside
the mechanism.
The loader connects to the computer via a

multi-way cable, which brings 5V DC to the
loader as well as making the signal connections.
The cable ends with a 1 6-way McMurdo plug,
mating with the loader socket on the computer
rear panel.

High voltage for the loader is derived from
the original keypunch power pack, which is a
simple transformer and selenium bridge unit
with a IOOOuF reservoir electro and a rating
of about 2A continuous. I used a "Bulgin''
3-way panel-mounting plug on the loader, mat-
ing with a cord-type socket on the cable from
the power pack.

Note that the purpose of G1 in the loader
logic circuit is to prevent the load button from
setting FFA if the high voltage is not connected,
or if the reader gate is open (which opens the
tape end switch). When there is no high voltage,
the contacts of RLY A revert to their normal
positions, so that the output of G8 remains low
and prevents G1 from responding to the load
button.

This has been done to prevent the reader
from suddenly "bursting into life" while the
tape gate is being closed, if the load button
has accidentally been pressed. Such a sudden
start could well damage the tape, by moving
it before the gate is properly closed and latched
in position.

I should perhaps point out that the circuit
of Fig. 2 does not show the 5V supply connec-
tions to the various ICs; these are assumed.
Also not shown but nevertheless required are
the usual bypass capacitors on the 5V line. I

used two 0.1 uF LV polyester capacitors in the
loader, one where the 5V enters the board, and
the other at the far end.

The other logic circuits given here will as-
sume the same power supply and bypassing
provisions.

As mentioned earlier, this loader circuit
should be suitable not only for "on the fly"
reader mechanisms like the Welmec R8. 1 , but
also for those with static reading. However, if

the reader mechanism uses a stepping motor
or a motor and clutch escapement for tape drive,

ELECTRONICS Ausi>-alia, March, 1975 67

EDUC-8 computer

in place of the solenoids, you will need to
modify the circuit slightly.

Such reader mechanisms are generally not
capable of self-cycling like the Welmec unit.

They must usually be triggered into operation
for each read cycle, by means of a pulse fed
to the driver circuit controlling the stepping
motor or clutch escapement solenoid.
As an example of what is required for this

type of mechanism, Fig. 4 shows the changes
I found necessary to adapt the loader logic for
use with a type 1 741 reader made by the Tally
Corporation of Seattle. This reader has a
synchronous motor and clutch escapement
drive system, the clutch escapement being
actuated by a small solenoid. This is driven with
the appropriate length pulses (about 4.5ms) by
a power transistor fed by a monostable, both
of which are built into the reader unit.

You can see from Fig. 4 that the main change
to the logic is the addition of a simple clock
oscillator, whose output takes the place of the
feedback logic signal from G8 in Fig. 2. The
gate formerly used for G8 is now used as an
OR gate, which enables the clock oscillator
when either FFA or FFB are set. The oscillator
circuit is one that the author has used many
times before — in fact the same circuit as used
for the main clock generator in EDUC-8. It uses
one half of a 7413 Schmitt trigger device, with
a BC108 or similar NPN transistor.

The trigger pulses required for the monosta-
ble and driver circuits of the reader are derived
from the output of D1, via the gate formerly

tively slowly to the drive pulse — compared
with the 70-odd microseconds required for the
logic to operate. In fact the tape typically does
not start to move until about 3ms after the start
of the drive pulse, and the sensing contacts
do not begin moving for another 3 or 4ms.
There is thus more than enough time to sense
the tape before the sensing contacts are dis-
turbed.

Note that there are other motor-clutch
readers, like the Tally model 424, which do
not provide the clutch solenoid driver or its

monostable. For such readers the remaining
9602 element in the loader logic may be used
to generate the required pulse (4.5ms long for
the Tally 424), and a suitable power transistor
used to drive the solenoid.
The Tally model 424 has either a 48V solen-

oid, of 220 ohms resistance, or a 24V solenoid
with 50 ahms resistance. In either case a series
R-C circuit of 0.25uF and 10 ohms should be
fitted across the coil, and probably also an
EM408 or similar diode as with the solenoids
of Fig. 2. With these to suppress transients,
the driver transistor could well be a 2N3055
or the smaller 2N3054.

The Tally readers may be fitted with a tape
end sensing switch, but this is not connected
into the clutch escapement circuit. It is left free,
for use in the associated logic.1

I simply con-
nected it as shown in Fig. 4, so that it merely
turns on T1 to reset FFB as before.

Having looked at the logic required for a
program loader, let us now turn to the logic
required for program-controlled reading. This
is considerably simpler, as you can see from
Fig. 5. Note that this circuit has again been
designed for a Welmec type R8.1 reader or

This produces a clean H-L transition at the
output of G6, triggering monostable D1 and
subsequently D2. In this case these produce
pulses of length about 1 Ous and 1 us respec-
tively.

The pulse from D1 is produced first, and this
is fed to the parallel load enable inputs of the
buffer register. This causes the information from
the reader sensing contacts to be loaded into
the buffer. Then D2 produces its pulse, and
because the Q-bar output of D2 is connected
to the free input of G2, this sets the flag FF.
When the flag FF sets, this removes the

forward bias from transistor T1
,
preventing the

SCR from conducting at the end of the return
stroke, and hence stopping the reader. At the
same time the flag line to the computer is driven
low by G3, indicating to the machine that the
reader has a character ready for transfer.
As soon as the program in the machine tests

the flag line and finds the flag set, it can accord-
ingly shift the contents of the reader buffer out,
by feeding clock pulses in via G7. The number
in the buffer leaves via G8 and G4, the latter
being the line driver and the former an inverter
to maintain correct logic polarity.

Note that when the contents of the buffer
are shifted out, the buffer is automatically
cleared because of the earthed PA, PB and DS
inputs on the first 7496. This causes zeroes
to be shifted into the buffer as the character
is shifted out, clearing it ready for a new cycle.

The final phase of the reader cycle occurs
when the computer sends its RESET FLAG (L)
signal, which resets the flag and restarts the
mechanism ready for a new cycle.

The RESET FLAG (L) signal is also fed to the
CL-bar inputs of the buffer ICs even though
during normal reading the buffer will already
be cleared when the signal arrives. The reason
for the connection is that the buffer ICs will
generally contain a spurious character when
power is first applied, due to either the random
turn-on effect or to the reader going through
a spontaneous read cycle (before a tape is
inserted). With the circuit as shown, the pro-
gram can be arranged to pre-clear the buffer
by an RKF instruction, before reading com-
mences.

As with the loader logic, the circuit of Fig.
5 may be adapted for use with a stepping-motor
or motor-clutch type reader. The modifications
for a Tally type 1 741 reader are shown in Fig.
6. As before the main change is the addition
of a clock oscillator which in this case is enabled
directly by the output of G1 in the flag FF.
The output of the clock oscillator connects
directly to D 1 , as before.

Drive pulses for the clutch escapement mon-
ostable and driver are taken from the output
of D1

, as before, in this case using the second
7413 element as an isolating gate. Although
the pulse is only 1 0us in this case, shorter than
with the loader, this is still quite adequate.

used as G9. The 60us pulses from D1 are quite
suitable for triggering the escapement monos-
table, so that the clutch increments the reader
sprocket to move the tape one frame forward
after each H-L transition in the clock oscillator
output. The pot in the oscillator circuit thus
becomes the loading rate adjustment, and with
the Tally. 1 741 reader it can be set for speeds
up to 50 characters per second.
As the clutch escapement pulse is being

derived from D1, it might seem as if loader
operation would be disrupted, with the tape
being moved at the very time sensing takes
place. However, this does not happen, because
the reader clutch escapement responds rela-

68 ELECTRONICS Australia, March, 1975

a similar "on the fly" type.
Here there are only five ICs, of which two

are 7496 devices which form the buffer regis-
ter. The others are a 7437 forming the flag
FF (G 1 -G2) and the line drivers, a 7400 forming
the feedback bounce integrating FF (G5-G6)
and the clock pulse and data inverters (G7 and
G8), and a 9602 dual monostable for D1 and

Operation is as follows. Initially, the flag FF
formed by G1 and G2 is reset, with the output
of G2 in the low state. This causes' transistor
T1 to conduct, triggering the SCR and starting
the reader. Then at the top of the reader stroke,
RLY A is turned off, along with the solenoids!

If you are going to use the reader logic with
a Tally type 424 reader, without the inbuilt
monostable and driver, a second 9602 will be
needed to generate the 4.5ms pulse, with a
2N3054 or 2N3055 as before.

Incidentally, the two 7496 devices used for
the buffer register in the reader logic could
easily be replaced by a single device, one of
the newer 74165 type. This is an 8-bit parallel
to serial register, more or less a mirror image
of the 74164 in terms of function. The main
logic change required if you want to use this
device is that the parallel load pulse will need
to be taken from the Q-bar output of D1, as
an active low pulse is required.

The final logic circuit to be given is that for
a tape punch, shown in Fig. 7. This has been

+5V

G 1 -G4 : 7437
G5-G8 : 7400
D1.D2 : 9602

EDUC-8 PROGRAM-CONTROLLED READER LOGIC

developed for the Welmec type SI 8.8 punch,

as pictured, although it should be fairly suitable

for most surplus punch units.

Mechanically the Welmec punch is not unlike

the companion reader, in that the drive is pro-

vided by a large solenoid and yoke system

which can cycle itself via a bi-stable switch.

However in this case the single drive solenoid

operates not from the 1 20V DC supply, but

from the 240V AC mains. Its current is therefore

switched indirectly, via relay RLY B. A network

of RF chokes and series R-C elements is used

to suppress the very significant switching tran-

sient, with a sealed RFI filter in the mains cord

for good measure.

When the yoke of the punch mechanism is

pulled up by the solenoid, it is potentially able

to force eight hardened punch pins through the

tape, which is held between two die plates. But

which of the punch pins are actually forced

upward depends upon the position of each of

eight spacer bars, controlled by the coding

solenoids. Only those punch pins whose spacer

bars are pulled into position by their coding

solenoids actually punch holes, so the pattern

of holes punched is controlled by the solenoids.

As you can see from the circuit, the punch

logic is not very different from that for the

CLUTCH
ESCAPEMENT

DRIVER

FIG. 6 PROGRAM-CONTROLLED READER LOGIC
(MOTOR TYPE READER)

ELECTRONICS Australia, March, 1975 69

EDUC-8 computer

program-controlled reader. Relay RLY B con-

trolling the main punch solenoid is controlled

by an SCR driver, triggered by transistor T1.

This in turn is controlled by gate G5, and also

by the manual tape feed button. A second relay

RLY A is used as before to provide a feedback

logic signal, conditioned by the flip-flop formed
by gates G6 and G7. In this case the H-L
transition of the feedback signal signifies the

end of the punch downward stroke, at the very

end of the cycle.

In normal operation, the computer first shifts

the character to be punched into the punch's

buffer register, which is formed by the 74164
device. It then resets the punch flag FF. This

causes a high-to-low transition at the output

of G2, which triggers monostable D1

.

The output pulse from D1 does two things.

One is to enable gates G8-G1 5, which transfer

the character code stored in the buffer register

to the coding solenoid drivers. These are tran-

sistor-SCR circuits like that used for the main

solenoid relay. Those solenoids corresponding
to the buffer bits set to 1 are thus turned on,

pulling the appropriate spacer bars into

position.

The second effect of the pulse from D1 is

to enable gate G5, whose other input is cur-

rently held high by the output from G6. The
output of G5 thus goes low for the duration

of the pulse, causing T1 to trigger the SCR
and so activate RLY B and the main punch
solenoid. The combination of holes determined
by the coding solenoid is then punched, when
the punch yoke reaches the top of its stroke.

At the top of the stroke the bi-stable switch

disconnects the 1 20V supply from relay B, so

that it turns off and switches off the main
solenoid. At the same time the bi-stable switch

also connects 1 20V to RLY A, so that it ac-

tivates. This causes the flip-flop formed by G6
and G7 to change state. The output of G7 goes
high, and remains there until the punch yoke
falls to the bottom of its return stroke. Then
the bi-stable switch reverses, turning off RLY
A and re-applying power to the RLY B circuit

ready for the next punch cycle.

When RLY A turns off, the output of G7 falls

to the low state, and this triggers monostable

D2. The output from D2 then sets the flag FF,

indicating that punching has been completed.

Note that when the bi-stable switch removes
the 1 20V supply from RLY B at the top of the

punch stroke, it also removes the supply from
the coding solenoids and their SCR drivers. The
coding circuits are thus reset, ready for a new
character.

As before, the mechanical form of the punch
logic circuitry will depend very largely upon
the punch unit you have. With the Welmec unit

I was able to wire up all of the low-voltage

wiring on a cut-down version of the large

Multi-dip board, the two redundant 1C positions

being cut off to allow the board to be fitted

inside the punch case. The eight coding solen-

oid driver circuits together with the driver for

RLY B were wired up on a piece of Veroboard,
which was similarly mounted inside the case.

RLY A and RLY B are two "3000" type relays,

which were already mounted inside the case.

It is not practical to build the power pack
into the punch case, and in any case this

operates the reader unit as well as the punch.
It is left in its original case, with a heavy-duty
5-wire cable connecting it to the punch unit

ELECTRONICS Australia, March, 1975 71

<T\ binary tapes from
-HEaJ- EDUC-8 PROGRAM KEYBOARD OCTAL CODE

starts at 0(66

STEP MNEMONIC CODE

0 READ.Jt 000

1 TEST.SKF 611

2 JMP TEST 501

3 KRB 616

4 JMP I READ 520

5 B1JFF,0 000

6 START.P.KF 614

7 JMS READ /fetches A 400

10 DCA BUFF 305

11 TAD BUFF 105

12 LDB /display A 626

13 TAD BUFF 105

14 RAL 702

15 RAL 702

16 DCA BUFF 305

17 JMS READ /fetch B 400

20 TAD] BUFD 137

21 F.AL 702

22 RAL 702

23 RAL 702

24 XA 3 BUFD 337

25 TAD I BUFD 137

20 LDB /display AB 626

27 JDS 1 RE in /fetch C 436

30 TAD 1 BUFD 137

31 XA 1 BUFD 337

32 TAD 1 BUFD 137

33 LDB /display ABC 626

34 JMP 1 tt'MT 535

35 C0HT, 0-tJtt* 100

36 ROT, 0SS* 000

37 B'JFD, tUSb* 005

40 JMS I REDB /fetch cormand 433

1 SMA /punch? 724

2 J.UP SCRB /no, scrub 510

3 CLA /yes, go aheod 710

4 TAD 1 BUFB /fetch word 134

5 LPB 636

6 CHEK, SPF 631

7 JMP CHEK 506

10 CLA 710

11 LDB /clears lisplay 626

12 JMP 1 STAD /back to start 535

13 ROT, 00* 000

14 B’.JRB, JtljZlB* 005

15 STAD, 007* 007

16

17

You can use this simple program to punch out

program tapes, using the simple input keyboard

and display, it occupies only three pages of

memory. Note that the constants identified with

asterisks are initially in “377" format octal,

but are then converted into "737“ format to

avoid possible confusion. The program starts

at location 006.

to provide both 240V AC and 1 20V DC as

required; the fifth wire is earth.

Apart from the power pack, the punch unit

was made fully self-contained by transferring

into its case the back space button and the
'

'tape

fault" lamp. These were originally in the small

control console of the keypunch station. The

old multi-way connector was removed from the

side of the punch case, and replaced with a

small aluminium plate. This mounts the back

space and manual feed buttons, the tape fault

lamp and the 6-way "Bulgin'
1

captive plug used

to connect with the power pack cable.

The connection to the computer is made via

a length of multi-conductor "TV remote con-

trol" cable, as with the simple keyboard and

octal display units. The cable leaves the punch
case via a grommeted hole, and terminates in

a 6-pin DIN plug mating with the output device

connectors on the rear panel of EDUC-8.
Since probably the main use of the punch

with EDUC-8 will be to prepare program tapes,

I have reproduced here a small program which
allows you to punch program tapes easily using

the simple keyboard unit and the octal display.

In effect, the program is a very elementary

"assembler", producing binary code from 3-

digit octal mumbers.

To use the program, connect the keyboard
unit to EDUC-8's input device socket number
1 , the octal display unit to output device socket

number 0, and the tape punch to output device

socket number 1 . Then turn on both the com-
puter and the punch power supply and, using

the manual feed button on the punch, run off

a suitable length of leader — say 20cm.
Now load the program into the machine, and

enter 006 into the PC register as the starting

address. Then set the machine running by
pressing the run key. The program is now ready

to begin punching a program tape.

First press the "4” key on the keyboard, and
after this press the "0" key twice. The octal

display should now show "400", and if it does,

press the "LF" key. This will cause the punch
to encode the start bit on the program tape,

in bit postion 7. The reason for pressing the

keys to give octal 400 is simply that this corre-

sponds to the binary number 10000000, in

the "737 ' format assumed by the encoding
program.

A similar process is used to encode the first

loading address on the tape, and the actual

instructions. Simply use the keys on the key-

board to inter in the octal code for the numbers
to be punched, and if the octal display shows
that you have made no mistake in keying in

the three digits, press the LF key to have the

resulting binary number punched.

If, on the other hand, the octal display shows
that you have made an error keying in the digits,

it is merely necessary to press one of the nu-

meral keys instead of the LF key. This will cause

the program to ignore the number keyed in,

and clear its buffer ready for a new character.

You can then try over again.

This is a very simple little encoding program,

and you will no doubt be able to write more
pretentious and elaborate ones yourself, if not

immediately then later on. However, I have

found it quite adequate for preparing program

tapes and offer it to you as something to get

you started.

Incidentally if you have a program already

in the computer's memory, there is a quick way
to punch it on tape for future use—providing

that it doesn't take up all of memory. This is

by using a "dump” program, written to punch
out all of the numbers stored in a designated

section of memory.

Such a program can also be used for dupli-

cating tapes, if you have only a tape loader.

Simply load the tape in, then dump it as many
times as required. You may care to try writing

such a dump program— it is a worthwhile exer-

cise, and you'll find the program useful.

I hope the foregoing gives you a fairly good
idea of the way in which punched paper tape

equipment may be interfaced with your com-
puter. As you can see, it is not difficult or unduly
complex. If you are able to get hold of the

necessary hardware, it is well worth the effort

to make up at least the loader and punch units

— not only for the exercise, but also because

it makes program loading much moie con-

venient!

A discussion of other peripheral devices will

follow.

QUAD
50 E

PROFESSIONAL
power amplifier

w

A single channel mono amplifier de-

signed for Broadcast, Recording and
other applications in the Audio
Industry.

The multiple output windings of the Quad 50

terminate in a multiple output socket on the ampli-

fier. Choice of matching is obtained by various

connections in the output plug which is part of the

installation itself. Quad SO amplifiers may, therefore,

be moved from one application to another without

adjustment. With the exception of output
impedance, the performance of the amplifier is

identical with any output configuration.

The standard of quality is of the highest order

and with any complex input, distortion falling within

the useful part of the audio range will not exceed

a small fraction of one percent. Overloading with

any load will not significantly affect long time

constants, ensuring immediate recovery and mini-

mum distortion resulting from such overload.

Brief specification

POWER RESPONSE:
— 1 dB at 30 H2 and 20 kHz ref to maximum output

DISTORTION:
40 Hz <0.35% i any level

1kHz<0.1% f
up to

10kHz<1.0% » maximum output

OUTPUT SOURCE IMPEDANCE:
0.5-fl in series with 25 pH for 5.5 ft connection.

Others in direct proportion.

HUM & NOISE:
Better than 80 dB referred to full output.

FREQUENCYRESPONSE:
Unbalanced input:

-1 dB 30 Hz and 20 kHz ref: 1'kHz.

600A bridging:

- 2dB 30 Hz and 20 kHz ref: 1 kHz.

INPUT LEVEL:
0.5V for full output, balanced or unbalanced

Preset adjustment for higher levels.

INPUT IMPEDANCE:
Unbalanced:
1 4—50 KA depending on preset gain.

600 bridging:

<14 K Ain parallel with 50 H.

STABILITY-
Unconditionally stable with any load.

Price and full particulars obtainable

from the Australian Agent:

British Merchandising i 'tv. Ltd.,

:rk Street. Sydney.
tone: 29-1.571.

'

ELECTRONICS Australia, March, 1975 73

nterfacing EDUC-8 with

i Philips 60SR printer unit

Continuing the discussion of interfacing peripherals with the com-

pleted EDUC-8 microcomputer project, the author describes here

the interfacing necessary for a Philips 60SR mosaic printer unit.

With such a printer, your computer is able to print out messages,

requests or the results of calculations in easily read form.

by JAMIESON ROWE
Most computers have a printing unit of some

kind among their output peripherals, to allow

them to communicate easily with a human

operator and at the same time provide a perma-

nent record of their interaction. With small

machines there may be only the printing section

of a teletypewriter, while larger machines tend

to have one or more high-speed line printers

as well.

Interfacing with a printer thus tends to be

an integral part of most computer systems, so

that the description of our EDUC-8 educational

computer system would not really be complete

if it did not include a discussion of this aspect.

Even if you don't actually get around to obtain-

ing a printer and hooking it up to your com-

puter, I hope you will find the discussion of

interest and value.

I have selected the Philips 60SR mosaic

printer unit as the basis for discussion, for two

main reasons. One is that it appears to be the

only small printer unit offering a full alphanu-

meric character set which is readily available

at the time of writing. The second reason is

that Philips Elcoma very kindly made a sample

unit available, to allow me to test and debug

the power supply and interfacing circuitry!

The 60SR printer must be bought new, and

as such will cost you considerably more than

surplus paper tape gear. In fact, together with

its associated electronics module, it will cost

more than the EDUC-8 computer itself. This

shows how far the cost of computers has fallen,

thanks to modern 1C technology, while the cost

of mechanical peripherals like printers has

tended to remain static. The cost differential

is likely to increase even further in the future,

unless we see some breakthrough i n technology

which will allow precision machinery to be

made more cheaply.

In any event, the 60SR printer appears to

be the most economical way of providing full

alphanumeric printout facilities for a small

computer like EDUC-8. The only possible ex-

ception would be a surplus teleprinter, but these

are in very scarce supply.

As shown in the photograph, the complete

printing unit consists of the 60SR mechanism

itself, together with two PC boards forming its

associated CM64 electronics module. One PC8,

known as the CC64 character circuit, provides

the read-only memory (ROM) and scanning

logic necessary to generate any one of 64

different alphanumeric characters, when com-

manded. The other PCB provides the power

stages to drive the printer head solenoids from

the CC64 output lines; it is known as the AC64
amplifier circuit.

The 60SR printing mechanism is a compact

66 ELECTRONICS Australia, April, 1975

one, designed to print lines of up to 20
characters in length on paper 60mm wide. It

takes readily available rolls of paper, as sold

for adding machines and printing desk calcula-

tors. It takes standard typewriter ribbon,

although an alternative version (60SA) is avail-

able which takes pressure-sensitive paper, and

does not use a ribbon.

The character printing is not performed by

the familiar raised-symbol hammers or "golf-

ball", but by a set of seven blunt-tipped needles

which strike the paper from the rear and force

it against the inked ribbon. The needles are

arranged in a vertical column, although the

solenoids which drive them against the paper

are disposed horizontally.

The needle and solenoid array form the print-

ing head, which is driven horizontally across

HELLO/ I'M EDUC-8 --

SPEAKING TO YOU VIA

THE PHILIPS 60SR

MATRIX PRINTER

Above is a sample of the print-out, reproduced

actual size. Fig. 1, below, shows the printer

motor circuits.

the paper by a small synchronous motor. As

the head travels across the paper, the needle

solenoids are driven by the scanning electronics

so that they produce the desired characters as

a pattern of dots. Each character is formed as

the head moves through approximately 1 ,5mm,

corresponding to five needle-widths, and thus

consists of a pattern of dots selected from a

matrix or mosaic 7 dots high by 5 dots wide—

hence the name "mosaic printer".

One advantage of this method of printing is

that there are a very small number of moving

parts compared with a conventional typewriter

or teletypewriter mechanism, giving improved

reliability. The fact that the characters are

"formed" by the scanning electronics also

makes such a printer very flexible, because the

character set may be changed easily by ex-

changing the ROM in the electronics for an-

other.

As a result of these advantages, mosaic

printers are becoming increasingly used, and

seem likely to replace other types eventually.

The 60SR printer is therefore very much an

example of "upcoming technology", as far as

printers are concerned, although only a small

one.

The printer mechanism uses four

synchronous motors. One is for head drive, one

for paper feed, and the remaining two for ribbon

feed. The motors are controlled by a number

of microswitches, connected as shown in Fig.

1 . Note that switches C, A and B are operated

by a bistable "memory bar", which is moved
between its two stable positions by the printer

head at each extreme of its travel. Similarly

switch G, controlling the direction of rotation

of the ribbon motors, is controlled by a second

"memory bar" which senses ribbon tension.

Tibi V

U J 81 B2 B3

MANUAL PAPER FEED
{WHEN STOPPED)

This is the complete Philips printer package
60SR printer mechanism, CC64 character gen-
erator board, and AC64 driver board. Only a
small amount of additional logic is needed to

drive them from the EDUC-8 computer.

Switch D is used to sense whether or not

the printing head is in its resting or "home"
position, at the extreme left-hand side of the

paper; it operates as soon as the head leaves

this position. Switch F is arranged to operate
when the head has moved a short distance from
the home position, when the drive motor has
reached full speed; it is used to signal the

electronics module that printing may begin.

Switch E is operated by the printing head near
the right-hand extreme of its travel, and is used
to time the operation of the paper feed motor.

The operation of the mechanism for a typical

printing cycle is as follows. Initially the printing

head is in the home position, and the switches
are all in the positions shown. The cycle begins
when terminals C3 and C4 are connected to-

gether externally, completing the head motor,

circuit through contacts Cl -3.

The head motor starts turning, and moves
the head away from the home position. Switch
D then operates, closing contacts D1-3 and
thereby latching the head motor circuit for the
remainder of the cycle. This ensures that opera-
tion is independent of the external C3-C4 con-
tacts, as soon as they have initiated the cycle.

After about 80 to 100 milliseconds the head
motor has reached its full synchronous speed.
The position of switch F is such that it is now
operated by the head, and this can be used
to indicate to the electronics module that print-

ing can begin. As the head continues to move
across the paper at constant speed, the solen-
oids then drive the printing needles against the
paper under the control of the electronics mo-
dule, printing the desired characters.

When the head nears the end of its forward
travel, switch E is operated, opening contacts
El -3 and closing E2-3. This has no immediate
effect, but serves, to prevent the head motor
from operating the instant that the head reaches
the end of its travel and operates the main
memory bar. When the bar is operated, it re-

verses switches C, A and B.

Switch contacts Cl -3 are opened and con-
tacts C2-3 closed, causing the head motor to

reverse. The printing head thus begins moving
back to its home position.

The reversal of switch A at the end of the
forward head travel causes contacts A2-3 to

open, and contacts A1-3 to close. However
because contacts E3-1 are open, there is no
immediate effect. It is only when the head has
moved back towards its home position by a
short distance, releasing switch E, that the
paper motor is energised via contacts A1 -3 and
El -3. The paper motor thus begins to feed the
paper up, bringing the characters just printed
into view and at the same time advancing the
paper for the next line.

The paper motor only operates for a short
time, however; just enough to advance the
paper by about 5mm. It stops as soon as the
head completes its return to the home position,

operating the memory bar once again and re-

versing switch A.

Shortly before the head reaches the home
position it operates switch F, forcing it back

to its resting position to prevent restarting of

the electronics module until the head has re-

gained full speed in a new cycle. And finally

when the home position is reached, switch D
is operated along "with the memory bar
switches, resetting all switches to their initial

positions and de-energising the head motor
until a new cycle is triggered by external closure
of C3-C4.

During the whole of the cycle the ink ribbon
motors have been energised along with the
headmotor, via contacts D1-3. They have
therefore moved the ribbon along as required,

in a direction determined by the ribbon memory
bar and switch G.

You will no doubt have noticed that switch

B plays no direct part in the operation of the

printer mechanism. Like switch F it is provided
for control of the electronics module, primarily

to inhibit printing during the return travel of

the head.

Note that the operation of the paper drive

motor during the cycle may be inhibited, if

desired, by opening the connection between
switch contact E3 and its 24V supply rail. The
paper may also be advanced manually, if de-

sired, by using an external pushbutton or switch
to join contacts A1 and A4 when the printer

is stopped.

The CM64 character module provides all of

the character generation and head driving elec-

tronics for mosaic printers like the 60SR. It

has a repertoire of 64 different alphamumeric
and punctuation symbols, which are generated
in response to the application of a 6-bit

character code number and a "start printing"

(L) command pulse.

The 6-bit code used to specify which
character is to be printed is a sub-set of the

American Standard Code for Information Inter-

change, or "ASCII" code. A chart of the 64
characters available, together with the 2-digit

octal equivalent of their 6-bit selection code
numbers, is shown in Fig. 2. This table was
actually printed by the 60SR printer itself,

under the control of a small program running
in the prototype EDUC-8 computer.
The heart of the CM64 module is the

character generation ROM on the CC64 PC
board. This is a 2240-bit device, organised as
64 35-bit words. Each of the 35-bit words is

pre-programmed with the 5x7 mosaic dot
pattern for a printing character. The 6-bit

character selection number fed to the CM64
module is used as an address for the ROM,
to determine which of the 35-bit words is made
available to the scanning circuitry.

The scanning circuitry consists of a start cir-

ELECTRONICS Australia, April, 1975 67

EDUC-8 computer

cuit, a scanning oscillator, an 8-bit shift counter

and a decoder, and a set of gates controlling

the ROM data outputs.

When the START PRINTING (L) input is

applied to the module, :t- a triggers the start

circuit which enables the scanning oscillator.

The shift counter begins counting, and its out-

puts are decoded by the decoder to sequentially

select each of the 5 groups of 7 bits in the

35-bit ROM word corresponding to the vertical

columns of the character to be printed. When
the ROM data outputs stabilise each time, the

output gates are enabled to allow the 7 bits

concerned to pass to the AC64 driver circuits,

and thence to the head solenoids.

The dot information for each of the five ver-

tical columns making up the character are thus
read out and fed to the printing needles, one
after the other, so that the character is printed

as the printing head moves along the paper.

After the fifth column of data is read out from
the ROM, the decoder generates a "Demand
new character” (L) output pulse at the QDNC
output, to signal that the current character has
been printed and another should be supplied.

At the same time the output gates are inhibited,

so that the printing needles are prevented from
operating. This continues for two scanning
oscillator cycles, giving a space after each
character equivalent to the width of two col-

umns. The scanning oscillator is then turned

off, so that the scanning cycle for that character
ends.

The scanning oscillator runs at approximately
400Hz, so that the columns of the characters

are read out at approximately 2.5ms intervals.

The exact scanning/printing rate can be ad-
justed, by means of a preset potentiometer on
the CC64 PC board, to give between 1 8 and
20 characters per line.

Note, by the way, that the Philips 60SR
printer is rather different from a teletypewriter,

in that once the mechanism has begun to print

a line, it must complete that line. This means
that one cannot simply feed individual
characters or words to the printer, at any con-
venient time. If you do so, it results in each
character or word occupying a separate line,

a rather wasteful and hard to read printout

format!

Fig 3: The complete printer electronics, with

the CC64 and AC64 mode '• v; shown as well

as the additional interfac., / k . Only four

ICs are used in the latter. - two tran-

sistors and a relay.

Q1| 021 Q3| Q4l Q5| Q6| Q7l

E OF 2200pF-
IN P.S.

Gil G2| G3T G4J G5J G6| G7j

- +5VT0 IC S.

CCS4 ANDAC64
MODULES

•-OVTOIC'S.
CC64 ANOAC64

OV FROM
POWER SUPPLY

OUTPUT GATES

MOS ROM
2240 BITS.

64 CHARACTERS

fc
T

,

fl

R
R
C
THH°Scl

1

CHARACTER
GENERATOR
MODULE
(CC64)

MICROSWITCH (F)

ON PRINTER

MAY BE USED FOR ACTUATING
A BELL. OR OTHER

NON PRINTING FUNCTION

D1. 02 : 1N914. »tc.

G1-4 : 7437
G5-7 7400
II 6 : 7404

OATA BUFFER : 74164

1 TT801.
2N3053.etc.

MICROSWITCH (B)

ON PRINTER

-(£*)- EDUC-8 INTERFACING LOGIC FOR PHILIPS 60SR MATRIX PRINTER

68 ELECTRONICS Australia, April, 1975

To achieve the more usual and tidy format
of having the characters and words grouped
together to form reasonable length lines, the
individual characters must be supplied to the
CM 64 module one after the other, as requested
by the "Demand new character"' signal. This
means that before sending the first character
of a line to the printer, you must make sure
that the remaining characters for the line are
available, to be sent after it at intervals of
approximately 20ms.

The "whole line at a time" requirement of
the 60SR printer does tend to make it a little

unsuitable for certain applications, such as
echoing an input keyboard. It also tends to
complicate other applications such as printout
of a text string, unless a "trick" is pulled in
the interfacing logic. More about this shortly.

The AC64 amplifier circuit PCB of the printer
electronics consists of the seven driver stages
for the printer head needle solenoids. The driver
stages turn on theirappropriate solenoids, when
selected, for the last half of each column scan-
ning interval—about 1.25ms each time. The
solenoids operate from 24V DC, each drawing
approximately 850mA when activated. The
peak current from the 24V supply can therefore
be as high as 6A during a 1 .25ms printing
interval (for example, when a full column of
dots is being printed), but due to the 1 : 1 mark-
space ratio and the variations between
characters, the average peak current is nearer
1 .5A.

The interfacing logic I have developed to
connect the Philips 60SR up to the EDUC-8
computer is shown in Fig. 3. As you can see,
it is fairly straightforward, and uses only 4
low-cost ICs, two transistors, a relay and a
handful of minor parts.

You have probably identified by this stage
the two main parts of the logic, because they
are similar to those used in previously described
peripherals: the flag FF, formed by gates G1
and G2, and the data buffer register, formed
by the 74164 8-bit register.

The six least significant bit outputs of the
74164 data buffer register are connected to
the six ROM address inputs of the CC64
character circuit, so that 6-bit words fed from
the computer may be used to specify which
of the 64 characters available is to be printed
each time. The seventh "inhibit” input of the
CC64 is connected to the flag FF, so that the
ROM is not actualfy allowed to sense the ad-
dress code until the computer resets the flag.
This prevents spurious operation as the 6-bit
data word is shifted into the register from the
computer; by the time the flag is reset, the data
word is fully settled in the buffer.

The two transistors form a driver circuit for
the relay, which is used to activate the printer
mechanism start contacts C3-C4. The input to
the driver circuit is taken from the flag FF, so
that the relay closes the circuit between the
printer contacts whenever the flag FF is in the
reset state. Thus when the computer resets the
flag after feeding out a character code number,
the printer mechanism is started at the same
time as the ROM address inputs are enabled.

Note that the flag resetting does not itself

trigger the start circuit of the CC64 character
circuit. This is because the actual printing must
be controlled by the printer mechanism. Hence
if the character fed to the circuit from the com-
puter is the first of a new line, printing will
not begin for some time after the flag is reset—
until the printer signals via switch F that the
head is up to speed.

The START PRINTING (L) signal applied to
the 1 st-bar input of the CC64 board is supplied
by G7. This acts as an AND gate, fed by signals
derived from printer microswitches F and B via

bounce suppression flip-flops. In contrast with
the bounce suppression flip-flops in previous
peripherals, these use inverter elements (11-12
and 13-14), but work in the same way. Inverters
are used here merely for economy.
Due to the action of G 7, the CC64 start circuit

is triggered into operation only for that part
of the forward head travel in each printing cycle
between the operation of switch F (signalling
that the head is up to speed) and the reversal
of switch B (signalling the end of forward head
travel). It is prevented from being triggered
during the entire return travel, and also for the
first 1 00ms or so of the forward travel, before
the head motor reaches full speed.

Gates G5 and G6, inverters 15 and 16 and
diodes D1 and D2 are used to control which
of two available signals are used to set the flag
FF, to signal to the computer that a new
character is required.

Predictably, the "demand new character"

signal from the CC64 board QDNC-bar output
is one of the two signals, this being provided
by the CC64 decoder precisely for such pur-
poses. And this is in fact the signal normally
used. It is fed to the input of G2 via 15, G5
and D1

, and then via the differentiating circuit
formed by the .001 uF capacitor and the 2 2k
resistor.

The differentiating circuit is necessary be-
cause the signal from the CC64 output is

approximately 2.5ms long. If this were applied
directly to the flag, it would block the flag in
the set state for the equivalent of more than
25 computer instruction cycles. As a result the
computer would keep sending new characters,
in the mistaken belief that the printer was keep-
ing up! The differentiating circuit prevents this
from taking place by effectively converting the
signal into a much shorter pulse—about 2us—
derived from the leading edge of the longer
signal.

a

While setting the flag in this way using the
"demand new character" signal is entirely ade-
quate for many purposes, it is not sufficiently
flexible to permit efficient and convenient
printout of text strings. This is because of the
one full line at a time" requirement of the
60SR mechanism, which has no facility for
executing a carriage return before the end of
the line.

If the "demand new character" signal were
the only signal available to set the flag, this
would mean that each line of a text string would
have to be ended with a number of spaces,
designed to ensure that the printer did not
reverse in the middle of a word. It would be
tedious in the extreme to work out the number
of spaces required for each line. Also, as the
spaces must be stored in the computer's mem-
ory along with the rest of the text string, they
would take up valuable memory space.

It is to avoid this that I have provided the
alternative flag set signal. This is derived from
the printer microswitch B, again via the bounce
suppression flip-flop formed by 13 and 14, and
is applied to the G2 input via G6, D2 and the
differentiating circuit as before.

When the logic selects this flag set signal
instead of the "demand new character" signal,
the flag FF is not set until the printer head
completes its current printing cycle, and returns
fully to the "home" position. This means that
the character whose code is currently applied
to the ROM address inputs is simply repeated
until the end of the current line. The printing
electronics is then inhibited as usual during the
return head travel, and the flag FF is reset only
when the cycle is complete.

Thus if the code for space (octal 40) is applied
to the ROM address inputs, the effect of select-
ing this alternative flag set signal is to automa-
tically fill in the end of the line with spaces.

The selection of the two alternative flag sig-
nals is performed by the data word itself, fed
into the buffer by the computer. This is possible
because while the computer handles 8-bit
words, only six of the eight bits are required
by the CC64 ROM to specify the required
printing character. The two remaining bits are
thus available for auxiliary control functions,
and I have used one of these to perform the
required selection of set signals. The bit used
is the most significant one, available at Oa of
the buffer.

Thus if a character is to be printed normally,
with other characters to follow in the current
line, this is achieved by leaving the most sig-
nificant bit a zero. This has the effect of inhibit-
ing gate G6, but enabling gate G5 via 16. Hence
the "demand new character" flag set signal
is selected.

On the other hand if the character is required

ELECTRONICS Australia, April, 1975 69

EDUC-8 computer

to be repeated until the end of the current line,

all that is necessary is to make the most signifi-

cant bit of its code number a one. This causes
gate G5 to be inhibited, and gate G6 to be
enabled instead, so that the "end of cycle'' flag

set signal is selected.

It may not be immediately apparent, but this

facility greatly increases the efficiency and con-
venience of the printer. For example all that

is necessary to end each line in a text string

is to store a single "repeating space'' (octal

code 240). This is simple, convenient and
economical in terms of memory space.

In effect, a "repeating space" becomes the
functional equivalent of a carriage return— line

feed combination with other printers, and offers

most of the flexibility this gives.

But this is not all, because the repeating
facility may be used with any of the 64
characters in the 60SR's repertoire. And be-
cause you can make such a repeated character
the first—and only—character of a line, this

makes it possible to "stretch" a single character
into a line the full printing width of the paper.
Thus for a line of asterisks all you need is

a single character, with the octal code 252.
Similarly code 255 gives a line of dashes (minus
signs), or code 237 a line of underlines—either
of which makes a very suitable way of providing
top and bottom rules for list-out tables, etc.

And the beauty is that they only require a single

character code!

Note that the character repeating facility uses
only one of the two "spare" data word bits,

so that there is still one bit available for con-
trolling any other function you may care to add
to the printer. All that is necessary is to take
the output from Ob of the 74164 data buffer,

and provide the required circuitry.

One possibility would be to have this bit

control the line feed facility of the printer, by
using another small relay to perform the
switching function shown dashed in Fig. 1 . The
relay could be driven from the Ob output of

the data buffer via a transistor driver circuit

rather like that shown for the printer start relay.

Another possibility would be to provide the
printer with a "bell" facility, so that the com-
puter can alert the operator when desired. Again
this would involve a transistor driver circuit

rather like that used for the printer start relay,

in this case driving a small electric bell—or
perhaps a Sonalert.

If you would like more than one such addi-
tional facility this could also be done, by using
a one-of-four decoder driven by the two spare
bits, rather than use the two bits direct. A
suitable decoder would be one-half of a 9321
device, driven from the Oa and Ob outputs of
the 74164. The existing flag reset logic could
be driven from the "2" output of the decoder,
leaving the other three outputs for the additional

control functions. But note that as the outputs
of the 9321 decoder are active low, the inverter

16 would need to be swapped over into the
G6 gating input line, from the G5 gating input.

There are five distinct power supply require-

ments for the printer peripheral as a whole.
The printer mechanism itself needs 24V AC,
at a current of around 420mA. The printing

needle solenoids and the relay run from 24V
DC, with an average current requirement of

around 1.5A (6A peak). The electronics in the
CC64 circuits requires + 1 3V DC at 30mA and
— 13V at 0.5mA, while +5V DC at about
370mA is required for the CC64, AC64 and
the interfacing logic.

Of the five supply requirements, only the 5V
DC supply is available from the computer, via

the IOT connector cable. The remaining four
must be supplied by a separate power supply
built into the printer unit, and the circuit devel-
oped for this is shown in Fig. 4.

With a little ingenuity I have been able to

provide all four of the required supplies from
a single power transformer, one having two
secondary windings each rated at 1 2V/ 1 .33A.
The transformer actually used is the Ferguson
type PL30/40VA, one of their "low profile"

40VA family. This actually has two 1 5V wind-
ings, tapped at 1 2V, and it is the 1 2V portion
of each winding that is used here.
The two windings are connected in series to

form a centre-tapped 24V winding, which
directly provides the 24VAC required for the
60SR printer mechanism. At the same time a
bridge rectifier is connected across the full

winding, and this is used both to produce both

the 24V solenoid-relay supply and the low-cur-
rent + 1 3V supply.

The full output from the rectifier bridge is

fed to a 1600uF/65VW reservoir electro. A
simple series-pass regulator circuit is then used
to regulate the output at the required 24V. The
series-pass transistor is a readily available
2N3055 transistor, which is driven by a
TT801, 2N3053 or similar TO-5 transistor of
nominal 1W rating. Two 1W zener diodes, one
a 1 0V type and the other a 1 5V are used to

provide the reference. A 2000uF/25VW elec-
tro is used across the output of the supply to

provide the peak current capacity, with a
2.7k/ 1W bleed resistor to improve regulation.

Although the peak current drawn by the
printer solenoids is 6A, this simple circuit

maintains the 24V line well within the allowed
tolerance at all times. In fact peak-to-peak ripple

when printing a line of "B" characters (a fairly

severe test) is barely IV, and for typical lines

is only about half this figure.

The + 1 3V supply is derived from the
centre-tap of the transformer winding, which

floats at half the main bridge output voltage.
A simple shunt regulator using a 13V/1W
zener is used for regulation, with a 2200uF/
1 6VW electro across the output to reduce ripple
to an acceptably low level.

Note that because the transformer winding
floats at a DC voltage of approximately 1 8V
above earth, neither side of the printer mechan-
ism wiring may be earthed. This has no adverse
effects, and no complications in terms of inter-

connections with the electronics—the contacts
of the printer start relay simply float with the
printer circuitry, while the contacts of micro-
switches F and B connect only to the logic
circuitry, and not to the printer circuit.

A separate half-wave shunt rectifier circuit

connected to one side of the transformer wind-
ing is used to produce the negative supply
voltage. Again a 13V/1W zener diode is used
for regulation, and a 2200uF/16VW electro

for improved filtering.

Although the total power consumption of all

four supplies connected to the power trans-

former in the power supply can be as high as
50VA when the printer is actually printing a

line of characters, the fact that printing only
occurs for about 45% of the total printer cycle

means that average load on the transformer is

well within its 40VA rating. This is so even
if the printer is used continuously, so that the
transformer runs quite cool. In fact the main
reason for using the 40VA transformer is to

obtain satisfactory regulation.

Note that the five rectifier diodes used in the

power supply are specifed as A14 series de-

vices. These devices are transient protected, and
in view of their great ruggedrtess I recommend
that you use them at least for the main rectifier

bridge. Although the 100V rated A14A type
is shown, the 50V A1 4Y could be used instead
if available, or failing these the more readily

available A14D (400V). The price of all three
types is very little higher than regular plastic

diodes.

An important point to watch when connecting

Fig 4: The power supply circuit for the printer. This provides 24V AC for the printer motors,
24V DC for the relay and needle solenoids, and two 13V DC supplies for the CC64 character
module.

ELECTRONICS Australia, April, 1975 71

EDUC-8 computer

up the printer circuitry to the power supply is

that the earth return of the 24V solenoid wiring

should be run directly back from the AC64 PCB

socket pin to the negative lug of the 2000uF

electro. There are heavy current pulses flowing

in this lead during printing, and if they are not

kept out of the rest of the electronics, the voltage

spikes caused by lead inductance can cause

all sorts of misfunction. The separate earth

return ensures that this does not occur.

The remaining earth pin on the AC64 board

should be run to a common earth point, estab-

lished where the earth braid of the computer

IOT cable is terminated. The earth connection

of the CC64 board should also be made to this

point, which is then linked to the earth pins

of the various interfacing ICs, and back to the

earthy lugs of the two 2200uF filter capacitors

in the power supply. The 5V supply line from

the computer should be bypassed to this earth

line with ,047uF LV polyester capacitors upon

termination from the cable, at the AC64 and

CC64 supply pins, and also near the 74164

and 7437 devices.

No details will be given here for the mechani-

cal side of the printer, as this will depend upon

the way you want to package it. As there are

only four ICs, two transistors, a small cradle

relay and a handful of small parts in the inter-

facing logic, these can easily be mounted on

a small PCB or square of Veroboard cut to match

the CC64 and AC64 boards. The power supply

wiring can be built up easily on a small length

of miniature resistor panel, apart from the major

parts. _ .

Note that the CC64 and AC64 PC boards

are designed to plug into 35-way edge connec-

tor sockets, having 0.1 in connector spacing,

and I suggest that you use sockets rather than

solder direct to the boards, to avoid

damage—they are not cheap. As the exact

dimensions of sockets vary, it is best to obtain

the matching Philips type F061 sockets (12-

digit code 2422 048 1 3503); two will be

needed. _ . „

,

Full connection details for the CC64 and

AC64 boards is provided on leaflets supplied

with them. Note that the CC64 is provided with

outputs from the scanning counter and the

oscillator, but these are not used here. The

AC64 is also provided with duplicate output

connections from the solenoid drivers both as

a row of pins of the top of the board, and as

a group of pads on the edge connector. The

latter are not used here, as the cable from the

printer head is provided with a connector which

mates with the row of pins.

The connections for the printer mechanism

are clearly marked along the terminal board at

the rear of the frame, and also on small connec-

tors supplied "plugged on to the various

connector pins. The connection code is the

same as used in Fig. 1 ,
so that you should

have no trouble in wiring this up.

Finally, a word about programming for the

printer. Basically, the printer is handled in much

the same manner as any other output device,

the usual way being to service it via a subroutine

which transfers the data word out to the device

buffer from the AC register, resets the device

flag, and then waits until the flag is set again.

The data words sent to the printer will be

the codes for the particular characters to be

printed, supplemented by the control bit—or

bits, if you have wired the printer to respond

to both.

If you have wired the printer according to

€
Mj.^ssAcr. pi- iltep"

L tlDUC'8 PROGRAM 3A =

STEpj UJEMONIC CODE

D
j

ST/..! . T . Cl A 710

|

TAJ BPS /fetch stait cf buffer 117

2 DCA PTK /initialise pointer 316

3 CON, TAJ 1 PTH /fetch char 136

fl S2A /terminate code? 731—

1

5 Jl'.'P .+2 /no, keep goir-9 507 I

G
|

HLT /yes, step 721

7 LPE 626 _
10 51+ > print sequence i

621 |

11 Jf/.P .-1 J 510

12 1SZ PTE /incident pointer t
216

13 JMP 00H /continue 1
503

10 HLT /end of buffer — no torn'. LZii

15

1G p-n-.,0y i 000

17 BFS,f*20 I
020

20 (first char to be printed)
1

21 (second char

)

22 (third char)

"23 . . . (

20 ~i~H

Fig 5: A simple program to print out text strings,

from a buffer starting at location 020. Note

that the instructions in 005 and Oil use a

full point to represent the "current memory

location"; this is a fairly common mnemonic

convention.

Fig. 3 the basic character code will be as shown

in Fig. 2, with the control bits normally both

being set to zero. To make any desired character

repeat until the end of a line, the code is simply

modified by setting the most significant bit to

1 —equivalent to adding octal 200.

If a program must print out an instruction

to the operator, an explanation or some other

string of text characters, this is normally done

by storing the appropriate string of code

numbers in sequence in the memory, as part

of the program. The part of memory occupied

by the text string is usually called the "text

buffer". To print the text the program is pro-

vided with a small instruction loop, wherein

an indirect TAD instruction using a "pointer"

address is used to fetch the code numbers from

the buffer locations one after the other, by

incrementing the pointer address each time

around the loop.

As the "at" symbol corresponding to octal

code 00 is very rarely used in text strings, this

can be used as a message terminate code. Thus

the string of characters forming the message

in the text buffer need only be followed by a

000, and the instruction loop used for the

printing out arranged to jump out of the loop

immediately it recognises that the number

fetched from the buffer is zero. This allows the

message itself to time the number of times the

loop is traversed, and avoids the need to set

a loop counter to different values for different

length messages.

The simple program shown in Fig. 5 should

help to illustrate these techniques. It is purely

a program to print out a pre-recorded mes-

sage", and you can make it print out any mes-

sage you like simply by depositing the appro-

priate character codes in the locations begin-

ning at that with address 020. Note that if you

do not end the desired message with a 000

terminate code, the program will continue to

print out whatever random numbers are present

in the rest of the memory, and will only stop

when it has printed the contents of location

377.

This illustrates the very simplest type of pro-

gramming for a printer, where the characters

are simply stored and "played back". There

are many other possibilities. For example the

program which was used to print out the table

of Fig. 2 used this technique for the text at

the top of the table, but printed the table itself

by using an index variable which was printed

out to give the first character, then analysed

to produce the codes for the equivalent octal

digits, which were then printed out also—after

printing 6 spaces. Then the index was incre-

mented, and the process repeated to produce

the second line. This was arranged to be re-

peated for a total of 64 times (77 octal), to

printout all 64 characters and their octal codes.

Space prevents me from giving the program

itself here, and in any case it would be a good

exercise for you to try writing one yourself,

knowing what has to be done and the general

line of attack. Here's a clue, though: to print

out a 3-bit binary number as the equivalent

octal digit, all you need to do is add octal 60,

to get the required code number.

Incidentally, in writing programs which in-

volve the printer, don't worry too much about

the fact that it needs to be fed with a stream

of characters once a line printing cycle has been

started. Even though EDUC-8 is not a particu-

larly fast computer, it is still quite fast compared

with the printer.

In fact the time interval available to the com-

puter to generate and deliver a new character,

after the printer flag has been set by the "de-

mand new character" signal, is typically

6.25ms. This is equivalent to about 65 fetch-

execute instruction cycles—so that there should

normally be more than enough time for the

computer to keep up. Unless you have a very

complex program, it is more likely to be spend-

ing most of its time waiting on the printer!

I hope the discussion given here of the Philips

60SR printer and its operation with the EDUC-8

microcomputer is of interest to you. While only

a small printer, it makes a very worthwhile

addition to the overall EDUC-8 system, and

illustrates very well the way in which larger

printers are used.

PLEASE NOTE
Further testing of the interfacing logic

given for the Welmec paper tape punch, m
the last section, has revealed that malfunc-

tion can occur during fast repetitive punch-

ing, due to a timing problem.

Because RLY A, used to generate the "end

of cycle" flag setting signal, is driven from

the top contact of the bistable switch con-

tacts, it can reset the flag slightly before

the cycle has actually ended. If the computer

immediately loads in a new character and

resets the flag (still before the cycle has

actually ended), the punch will ignore the

new character. At the same time the com-

puter program continues to wait for the

punch to set its flag, to indicate that it has

punched the character. Thus the system

"hangs up".

There are a number of ways in which this

can be prevented, but the neatest and most

effective way is to simply slow the operation

of RLY A down, using an R-C circuit between

the top contact of the bistable switch and

the + 1 20V supply line (in parallel with the

existing spark suppressor capacitor). I found

that a 4.7uF/ 1 50V electrolytic in series

with a 220 ohm 1W resistor did the job

very well.

ELECTRONICS Australia, April, 1975 73

Continuing the description of suitable peripheral devices to interface with

his EDUC-8 microcomputer project, the author here gives details of a

full alphanumeric input keyboard unit. The logic is capable of fully encod-

ing all 128 characters of the standard 7-bit ASCII code.

by JAMIESON ROWE
Although the simple 1 6-key input keyboard

unit described earlier is likely to be adequate'

for many purposes, there will no doubt be some
constructors who will want to provide their

EDUC-8 microcomputer with a full type-

writer-style keyboard unit. Apart from offering

increased communication flexibility and con-

venience, a full keyboard also allows you to

work with programs requiring full alphanumeric

input, such as symbolic editors, assemblers and

compilers.

With this in mind I have developed a design

for a full ASCII-type input keyboard, which will

be described here.

The logic circuit has been designed to work

with any keyboard assembly having the re-

quired number of switches, providing these can

be used as SPST or "form A" switches (nor-

mally open, but closed when the key is pressed).

The switches need not be bounceless, as the

logic will cope with any normal amount of

contact bounce.

I have built up the design and checked it

out with a surplus keyboard switch assembly,

typical of the type available in obsolete key-

punch equipment. This type of keyboard is likely

to be that most accessible to you, at reasonable

cost. Providing the switch contacts are in

reasonable condition, such a keyboard should

be quite suitable, although most will need a

thorough dusting, lubrication and treatment

with contact cleaning fluid before use.

You can, of course, elect to wire up the

keyboard using a new keyswitch assembly, of

which a number are available— at an appro-

priate price. For example General Electronic

Services (99 Alexander St, Crows Nest, NSW

2065) can supply a 56-key keyboard assembly

made by Mechanical Enterprises, Inc., of Vir-

ginia. Designated type AA-L2-R2, it has gold

contacts, an 8-keylength space bar, and two

1 ’/a-keylength shift keys. The price is approxi-

mately $ 1 30.

A new keyswitch assembly will undoubtedly

give you a better looking keyboard, and ultima-

tely greater reliability. However, as the cost of

a surplus keyboard is unlikely to cost you more
than about $ 1 0-20, there is a considerable cost

incentive. in ""making do" with one of these.

The keyboard unit shown in the pictures is

from the same surplus keypunch station which

provided the Welmec reader and punch units

previously described. It is fairly typical of the

sort of keyboard switch assembly you are likely

to obtain from such sources, solid in construc-

tion and still quite serviceable despite many
years of work.

The keyboard logic presented here is capable

of encoding all 1 28 characters of the standard

7-bit ASCII code, in contrast with some of the

alphanumeric keyboard designs published el-

sewhere. In addition, the logic incorporates

reverse shift mode encoding, for those keys

where this is normally used.

Incidentally, if you’ve forgotten what the

acronym "ASCII" stands for, it is the American

Standard Code for Information Interchange.

For the benefit of those not too familiar with

the ASCII code, it is shown in Table 1 . As you

can see, the 1 28 characters are arranged in

eight columns, each column having 1 6 rows.

The 1 6 row positions are defined by the four

least significant bits of the code, bits 0-3, while

the three remaining bits are used to define the

columns. Each one of the 1 28 character cells

in the array is therefore defined by a unique

combination of the 7 encoding bits.

Columns 2, 3, 4 and 5 comprise the printing

characters normally used on teletypewriters and
printers (such as the Philips 60SR printer, for

example). These columns include all of the

upper-case alphabetic symbols, the decimal

numerals, and all of the commonly used punc-

tuation marks. The 64 characters concerned are

often considered as a distinct sub-set of the

full 128-character code, known as "6-bit

ASCII”.

As far as keyboards are concerned, the

characters in columns 4 and 5 are normally

provided with keys of their own, while those

of columns 2 and 3 are usually arranged to

share common keys, with a "shift” key used

to change the encoding and distinguish be-

tween one column and the other. Usually the

characters in column 3 are the "normal"

characters for these keys, and those in column
2 the "shift" characters— except for the

character pairs in rows 12, 13, 14 and 15

These usually follow the reverse convention,

with comma, minus, fullstop and oblique the

"normal” characters and their corresponding

characters the "shift" equivalents.

This special treatment of the four keys con-

cerned tends to complicate the logic, as we will

see shortly. However it has apparently become
standard because of the greater use normally

given to the four characters in column 2, com-

pared with those in column 3. It would be a

nuisance having to press the shift key every

time one wanted a comma or fullstop, for

example.

Columns 6 and 7 of the table comprise the

lower case alphabet and some infrequently used

symbols and control codes. Many keyboards

do not provide for these codes to be generated,

apart from "del" (delete or rubout)and perhaps

"alt mode". This is because lower case charac-

ters are not necessary in most communication,

and are not even available on many printers. For

At left is the prototype keyboard unit, which is built

inside the case of a surplus keypunch keyboard. The

I

view above shows the logic board, mounted on the

\
bottom plate of the case.

72 ELECTRONICS Australia, May, 1975

TABLE 1 : ASCE CHARACTER CODE
_

0

0

0

0

0

1

0

1

0

0

1

i

0

0

1

0

1

1

1

0

1

1

1____

B
6

B
5

B
4

B
3

B
2

B
i

B
0

"--^COLUMN
ROW

0 1 2 3 4 5 6 7

D aa 0 NUL DLE SPACE 0 @ P \ P

BBBD 1 SOH DC1
j

i A Q a q

DBaB 2 STX DC2 99
2 B R b r

B1BB
3 ETX DC3 #(£) 3 C S c s

i0BB 4 EOT DC4 $ 4 D T d t

BBBD 5 ENQ NAK 0/
SO 5 E U e u

B0BB 6 ACK SYN & 6 F V f V

BDaB 7 BELL ETB 9 7 G W 9 w

DBBB 8
BACK
SPACE CAN (B H X h X

DBBa 9 HOR.
TAB EM

)
9 1 Y

i Y

0BDB 10 LINE
FEED SUB * : J Z

i 2

aaBa 1

1

VERT.
TAB ESCAPE +

9
K n k {

DBBD 12
FORM
FEED FS

9
<C L \ 1 ;

DBBa 13 CARRIAGE
RETURN GS — = M u m l (ALT

J MODE)

iiBD 14
SHIFT
OUT RS - > N A(t) n

DDBDl
15 SHIFT

IN US / 7 0 0
DEL

(RUB OUT)

OEL H a

6 ra
i

8 m -
s

O,
1

A
1

\
j

cs

W

CTRL

CR

0D B N M Hm ?

/
SHIFT

Above is a table showing the 128 characters
of the 7-bit ASCII code, with their coding. At
right is the standard keyboard format used for

this code.

the same reason it is usual for the upper case
characters to be the ''normal'' characters, with
the lower case characters in columns 6 and
7 encoded by using the shift key—just the
opposite of the convention used with type-

writers.

The characters in the remaining two columns,
columns 0 and 1 , are known as the non-printing
or "control" characters. These are used to

indicate changes in encoding mode, to control

printer formatting, and for other facilities which
may need to be controlled by "transparent"
character codes—distinguishable from printing

characters.

Generally most of the codes in columns 0
and 1 are generated using a "control" key,

which acts rather like a second shift key. Any
desired code in column 0 is generated by
pressing the control key in conjunction with
the key in column 4 corresponding to the de-
sired row code. Thus "form feed" may be
generated by pressing "control" and "L”, while
"horizontal tab" is equivalent to control-1.

In some cases special keys are provided for

column 0 character codes, because they are
used fairly frequently. This is generally done
for "carriage return", "line feed", "back
space" and "bell"—the last of these being used
to activate the signalling bell of a teletypewriter.

The codes in column 1 are normally gen-
erated by using the control key in conjunction
with the keys for columns 3/2, although some
teletypewriters provide a special key for

"escape".

Note that the characters in the ASCII code
are not completely rigid, with certain codes

being used .to represent two different characters
on occasion. Thus the character in row 3 of

column 2 is generally the "number" sign on
American equipment, but the "pound" sign on
machines of UK origin. Similarly the code in

row 1 3 of column 7 is sometimes used to

represent "wiggly closing bracket", and some-
times the non-printing control key "alt mode".

All of the character codes shown in the table

may be generated using the logic circuit which
will now be described. As many special keys
as desired may be used to generate column
0 and 1 codes, depending upon the number
of keys available on the keyboard you use. The
remaining codes may be generated using the
control key. Similarly the shift key may be used
to generate the characters in columns 6 and
7, although "del" may be provided With a

special key if you so desire.

As you can see from the circuit diagram, the
main alphanumeric keyswitches are wired in

an array, whose rows and columns correspond
to those of columns 2, 3, 4 and 5 of Table
1. There are 16 "row" keylines, and three

"column" keylines—two of which correspond
directly to columns 4 and 5 of the tabie, while
the last corresponds to both columns 2 and
3 (which use common keys).

At the heart of the encoding logic is an 1C

specially designed to perform keyboard encod-
ing. This is the HD-0165, made by Harris

Semiconductor in the USA. It is available on
order through your usual parts supplier, from
the local agents for Harris, Cema Distributors

Pty Ltd of 2 1 Chandos Street, Crows Nest, NSW
2065. At the time of writing it costs about $9,
but performs a job which would otherwise
involve many diodes, transistors and ICs.

The HD-0165 is a 16-line to 4-line binary
encoder, which also generates both a "strobe"
or "key pressed" signal and a "rollover” or

"more than one key pressed" signal.

As you can see from the circuit, the H D-0 1 6 5
is used to perform the basic encoding of the
four least significant bits. As this corresponds
to the row encoding for Table 1 , its 16 inputs
accordingly connect to the 16 "row" keylines
of the keyswitch array.

Encoding of the remaining three bits of the

ASCII code is performed by the logic circuitry

involving gates G6,G7,G10-12, and inverters

11-6, using signals derived from the "column"
keylines. The actual column keyline signals are

generated by PNP transistors T1, T2 and T3.

ELECTRONICS Australia, May, 1975 73

amazing
mflonR-ure

lets you focuson
fine detail regardless

of lighting!

magnifier
flashlight

4
v

Illuminates and magnifies

whatever you are viewing!

What a useful combination!

A concentrated light beam and

magnifier all in one! So compact

it fits in your hand, pocket,,

purse or glove box.

Precision made in the United

States, amazing Magna-Lite

is yours for just $5.95!

With a money back

guarantee! Hurry while

shipment lasts! Mail

no-risk coupon today!

.Optical magnifying lens.

H, • 2 batteries included.

Powerful flashlight.

• Lightweight, only

1%oz. fits pocket

purse or desk.

• replacement
batteries readily

available

at most
, chemists.

MONEY
BACK

GUARANTEE
HOWTO ORDER : Fill in BOTH sections of the coupon. In each section print your
name and full postal address in block letters. Cut the entire coupon out around the
dotted line. Send it with your money order or crossed cheque to Electronics
Australia, Reader Service (Magna-Lite) P.O. Box 93, Beaconsfield, N.S.W., 201 4.

Cheques should be endorsed on the back with senders name and address and made
payable to Electronics Australia. This offer is open to readers in Australia only.

^batteries!

All hobbies!

|

• T.V. programmes —
in the dark!

finds light switches,

keyholes in the dark!

Perfect for bedside use!

Road maps & street guides!

Read phone books at a glance!’’

CLIP COUPON — MAILTODAY

!

Name

.

Address

.

State Postcode.

Electronics Australia Magna-Lite Offer No . 36/75

Name

Address

State Postcode

Please send me (state quantity) Magna- Lite/s. I enclose
my cheque, postal/money order to the value of $

74 ELECTRONICS Australia, May, 1975

EDUC-8 computer

These are wired so that when any of the keys

in the associated keyline is pressed, the result-

ing input current drawn by the HD-01 65 passes
through the base-emitter junction, turning the
transistor on.

Further logic signals are generated by the
"shift” keyswitch, and the "control" keyswitch.
Special keys such as "carriage return", "line

feed" (LF), "back space" and "bell" are
arranged to have the same effect as if the control

key were pressed along with the corresponding
column 4 alphabetic key, by means of diodes
D3-D10. Thus D3 and D4 ensure that the

carriage return key generates the ' control
'

' and
"M" signals, as well as causing T3 to conduct.

As the "space bar" key is equivalent to

”shift-0", diodes D1 and D2 are used to achieve

a similar result when this key is pressed. Here
the key causes activation of the "0" input of

the HD-0165, generation of the "shift" signal,

and conduction of T1—all three of which are

needed to achieve the same result as shifted

zero.

The actual encoding for bit 4 is generated
at the commoned outputs of gate G6 and in-

verter 13. These are both open-collector ele-

ments, with their outputs tied together to

achieve a wired-OR function. Similarly the bit

5 encoding is generated at the commoned
outputs of G7-I4, and the bit 6 encoding at

the commoned outputs of 15-16.

The inputs of these elements are fed with
the column keyline logic signals from T1, T2
and T3 together with the control and shift

keyline signals, to achieve the correct encoding.
For example 14 is fed with the control keyline

signal, to ensure that bit 5 is false (0) whenever
the control keyline is activated—corresponding
to a column 0 or

1

1 character. Gate G7 is fed

with the inverted shift keyline signal from II,

together with a wired-OR combination of the

column 4 and 5 keyline signals from T3 and
T2, so that bit 5 is again made false whenever
a column 4 or 5 key is pressed without the

shift key.

Similarly 15 and 16 are fed with the column
2/3 keyline signal from T1, and the control

keyline signal, respectively, which ensures that

bit 6 is false whenever a key or key combination
corresponding to a character in columns 0, 1,

2 or 3.

Inverter 13 is fed with the column 4 keyline

signal from transistor T3. As columns 0 and
7 are equivalent to column 4 characters com-
bined with either the control or shift keys, this

automatically ensures that bit 4 is always false

for all column 0, 4 and 7 characters.

The signals fed to gate G6 are used to obtain

the correct bit 4 encoding for columns 2 and
3. Because of the inverted shift mode operation

of the row 12, 13, 14 and 15 keys, this is

a little more complex than it might otherwise
be. What must occur is that for the rows 0-1

1

keys, bit 4 must be false when the shift key
is pressed, while for the rows 12-15 keys bit

4 must be false if the shift key is NOT pressed.

This is achieved by using gate G9 to monitor

the bit 2 and bit 3 outputs from the HD-01 65,
so that its output is low whenever both these

Shown opposite is the complete circuit of the

ASCII keyboard encoder. Encoding of the 4-bit

row address portion of the code is performed
by the Harris HD-0 165 1 6-line to 4-bit encoder
!C, at top centre.

EDUC-8 computer

bits are high — signifying a row 12, 13, 14

or 1 5 character. This signal and its complement

are then gated with the shift signal and its

complement, by gates GIO and G 1 1 . The

outputs of these gates are then combined by

G12, performing an OR function. Finally G5
gates the resulting logic signal with the column

2/3 keyline signal from T1. If you trace all

this through, you'll find that it does the required

job. Monostable elements M 1 and M2 are used

to generate a clean "key pressed" signal from

the strobe (L) and N-key-rollover (L) outputs of

the HD-01 65. In the configuration shown, they

both suppress key contact bounce, and also

prevent encoding errors due to accidental

pressing of more than one key.

Gate G5 is an open-collector element, used

as an inverter for the HD-01 65's strobe (L)

signal. When a single key is pressed, the output

of G5 thus goes high, and carries with it the

trigger input of monostable Ml . Ml thus trig-

gers, and its ouput goes high for a period of

approximately 20ms. This interval is set by the

2uF capacitor and 1 5k resistor, with diode D1 2

used to compensate for possible capacitor leak-

age. The 20ms delay is to allow for keyswitch

contact bounce to die away, before further

events are initiated.

The Q output of Ml is connected to the

complementary trigger input of monostable

M2, so that when the output of Ml falls back

to the low state at the end of the 20ms delay,

M2 is normally triggered — producing a clean

"key pressed" (L) signal at its Q-bar output.

However because the reset input of M2 is

connected to the output of G5, and both are

tied to the "N-key-rollover" (L) output of the

HD-01 65, triggering of M2 can only take place

if a single key remains pressed. If a second

key has been pressed accidentally, the reset

input of M2 will be held low, and it will be

prevented from triggering.

If this occurs, correct triggering will take

place when the second key is released, assum-

ing that the intended key remains pressed.

The clean "key pressed" (L) signal produced

at the Q-bar output of M2 is a pulse of approxi-

mately 500ns duration. The pulse is used to

perform two functions, one being to enable the

parallel-load input of the data buffer register

— a 74165 device. This causes the encoded

7-bit ASCII character to be loaded into the

buffer, ready for despatch to the computer.

The second function performed by the key

pressed pulse is to set the flag FF, formed by

cross-connected gates G1 and G2. Buffer gate

G3 is thus able to take the flag line low, indicat-

ing to the computer that a character is available.

As with the other input peripherals described,

the computer itself performs the actual data

transfer, sending clock pulses to the data buffer

register and accepting the data via the in-

verter/ driver G4.

Note that as the EDUC-8 input/output cir-

cuitry is designed to handle 8-bit numbers, the

keyboard data buffer is an 8-bit register. This

means that there is a spare bit, as only seven

are used for the ASCII encoded characters. The

eighth bit may be set permanently to either a

high (H) or low (L), as desired, by tying the

PA input of the 74165 either to +5V (via a

protective resistor) or to ground, as desired.

In many minicomputer systems the eighth bit

produced by an alphanumeric input keyboard

unit is permanently set to high (1), as this allows

MODIFIED TAPE READER LOGIC—CORRECTION

There is an old rule in electronics publishing, that it is very unwise to publish a circuit

you haven't actually tried. It is almost inevitable that if you do so, the circuit won't work!

I have proved the rule still applies, much to my embarrassment. In the description of

punched paper tape peripherals, the circuit I gave in Fig. 6 showing how to modify the

program-controlled reader logic for use with a motor-clutch type reader mechanism had

not actually been tried. Due to lack of time, I had deduced it by analogy from Fig. 4.

Needless to say, it won t work properly. The main problem is that there is no way

for the computer to know when the clutch mechanism has incremented the tape.

Rather than attempt to patch up this circuit, I have started again from scratch. And

the effort was worthwhile, because it turns out that the job can be done much more

simply, using only three ICs—a 74165 as the data buffer, a 9602 dual monostable for

timing, and a 743 7 for the flag FF and line drivers. The circuit is shown below, and

it should be fairly self-explanatory. It should be taken to replace the original Fig. 6.

PLEASE NOTE ALSO that the parts list given for the program counter and adder board

(main computer parts list 3) is in error. It should list only 4 x 7400 or 9002 quad

2-input gates, not 5, and it should list 1 x 7420 dual 4-input gate.

SIMPLIFIED P.P. TAPE READER LOGIC FOR EDUC-8

ready identification of alphanumeric or "sym-

bolic" character strings. I have used the same
convention, and I suggest you do too.

In the prototype keyboard unit shown in the

photographs, most of the logic was wired up

on one of our multi-DIP utility PC boards. This

was then mounted on the bottom plate of the

keyboard case, using suitable spacers. Pieces

of flat multi-coloured cable were used to con-

nect the board to the keyswitches, and to tran-

sistors T1, T2 and T3. These were mounted

for convenience on some existing tagstrips

inside the main keyswitch frame.

Before using the keyboard assembly, it was

necessary to remove all of the existing switch

wiring as this was arranged in a connection

array quite different from the one required.

Before wiring the switches according to the new
array, the complete assembly was cleaned

thoroughly and the key contacts sprayed with

one of the aerosol contact cleaning fluids.

At the same time, the opportunity was taken

to re-arrange some of the keytops, so that the

keyboard became closer to that used in a type-

writer or teleprinter. You may care to do this

also, as the keys on many keypunch keyboards

have the keys in rather different positions. The

keys and positions of a normal ASCII key-

board are shown in the diagram, to help you

if you want to aim for an arrangement as close

to this as possible. I recommend that you do

this unless you have a good reason to do other-

wise.

As before, the keyboard unit connects to the

computer via a length of multi-way cable, and

a 6-pin DIN plug. As well as performing the

logic signal connections, the cable also supplies

the keyboard logic with its 5V DC power.

ELECTRONICS Australia, May, 1975 77

Teaching your EDUC-8

to play a melody
As a change from the more conventional peripheral units so far described
as part of the EDUC-8 system, the author here describes a "music player"
output device. Producing musical notes which are under program control
in terms of pitch, octave and duration, it may be used either purely for
demonstration purposes, or to form the foundation of a digital music
synthesiser system.

by JAMIESON ROWE
At this stage, having described a number of

input and output peripheral devices of the con-

ventional "computer attachment" variety, it

seems appropriate to describe something rather

less so. If nothing else, I hope this will perhaps
start to show you that there is a whole area

of largely unthought-of computer applications

and interfacing possibilities, which is wide open
for you to explore.

The device I have chosen to do this is a

"music player" output device, which is capable
of producing a monophonic melody under the
direction of a suitable program in EDUC-8.
While only a simple device, it provides program
control of note pitch, octave and duration, and
thus allows the computer to play tunes in quite

a convincing manner.
As it stands, it is just the thing for dem-

onstrating the EDUC-8 system to non technical

people. Such people generally don't find the

more conventional peripherals and functions of

the computer very impressive, perhaps because
it isn't easy for them to visualise just what is

involved. But plug in the music player, feed

in a simple tune playing program, and their

eyes soon light up when the system starts

playing "Greensleeves", or some other familiar

tune—with no revolving record, unwinding
tape, or other moving parts!

If you wish, however, it could be used as

the start of a more elaborate arrangement. By
adding facilities for programmable attenuation,

filtering and so on, it could well be expanded
into a digital music synthesiser system. The
potential seems to be there for quite a lot of

development work along these lines, if you find

the idea of digital music synthesis interesting.

Whether you intend building it up purely as

a simple music player or as the start of a more
complex synthesiser, I think you'll find the

device well worth constructing. And good fun,

too!

At the heart of the device is one of the new
MOS LSI top-octave note frequency synthesiser
ICs, which takes an input signal at the lowest
common multiple frequency, and simul-
taneously performs all of the frequency divi-

sions necessary to produce the 1 2 notes of the
"even-temperament" musical octave.

There are two almost identical devices of this

type currently available, either of which may
be used in the player. One is the type AY-5-
021 2, made by General Instrument Microelec-

tronics, and the other is the MK50242, made
by Mostek Corporation. These are functionally

equivalent, the only difference being that the

latter operates from a single + 1 2V supply rail

whereas the former requires a —12V rail as

well. The GIM chip is available on order from
General Electronic Services, while the Mostek
chip may be ordered from Total Electronics.

Whichever chip is used, in this circuit it is

fed with an input signal at very close to 500kHz.
As a result the 1 2 locked semitone outputs

produced correspond to the octave beginning
with the third C-sharp above middle C— i.e.,

the octave with A equal to 1 760Hz. These notes

are then fed to four cascaded binary dividers,

so that the actual output pitch range of the

player unit covers the four octaves below this

initially synthesised octave. In other words, the

player produces output notes extending for two
octaves either side of middle C.

In electronic organs, for which these top
octave synthesiser chips are primarily intended,

the input reference signal is generally derived
from a crystal oscillator. This gives an appro-

priately high order of absolute pitch accuracy,

as well as high stability. However for the present
application a crystal oscillator has not been
used, as high accuracy and stability are scarcely

necessary.

Note, by the way, that we are talking here
of absolute pitch accuracy and stability, not

relative pitch accuracy. The intervals between
the notes are automatically locked by the 1C;

it is only the absolute pitch of all the notes
as a whole which can be varied.

As you can see from the circuit diagram, the

oscillator used to generate the 500kHz signal

is a simple R-C oscillator using half a 7413
Schmitt trigger device. This feeds the note
synthesiser chip via a logic level converter stage
using a BC108 or similar transistor. The os-
cillator frequency may be adjusted using the

25k pot, which thus becomes the "absolute

pitch" tuning control for the player.

Strictly the exact osci I lator freq uency requ i red

will depend upon the absolute pitch reference

used, because the 1C division ratios used to

give the various note intervals are only 3-digit

approximations. Thus if you use A = 440Hz
as the pitch reference, the correct oscillator

frequency will be 499.840kHz, but if you use

C = 261 Hz, the correct oscillator frequency

will be 499.032kHz. As you can see the dif-

ferences are rather academic, and 500kHz is

probably quite close enough for most purposes.

The 1 2 outputs of the note synthesiser 1C

are each provided with a buffer stage, using

a BC1 08 or similar NPN transistor. This is again

for logic level conversion, so that the signals

may be fed to the TTL note multiplexer.

The note multiplexer is a 74150 device,

which in effect forms a digitally programmable
16-position switch. Only one of its 16 inputs

may be connected to the output at any one
time, and the particular input selected is deter-

mined by the logic levels applied to the "ad-
dress" inputs A, B, C and D.

As these inputs are connected in turn to the
H, G, F and E outputs of the 74164 data buffer

register, respectively, this- means that the four

least significant bits of the 8-bit number fed

to the player from the computer provide the

"instruction" to the note multiplexer. Each of

the 1 6 possible combinations of these four bits

Perhaps it doesn 't look much iike a music box,

but hook it up to your EDUC-8 and an amplifier

and it will play almost any tune you care to

encode. This prototype was built up in a small

utility case, with the ICs mainly on one of the

EA "Multi-DIP" PC boards. The full logic dia-

gram is shown overleaf.

ELECTRONICS Australia, June, 1975 77

1®—I"

'• l

—

i

ELECTRONICS Australia, June, 1975

EDUC-8

MUSIC

PLAYER

UNIT

2xEM401,
BY126/50,etc.

A simple power supply circuit for the music player device, to provide the supply voltages not
available from the computer itself. Note that the 12V section is only required for the AY- 1 -02 12
chip, andmaybe omitted for the Mostek MK50242.

will force the 74150 device to connect the

corresponding input to its output.

There are only 1 2 signals to be multiplexed,

in this case, so that four of the 1 6 combinations
provided by the 74150 are not used. These
are 0000, 1101, 1110 and 1111, corre-

sponding to octal 00, 15,16 and 1 7. If speci-

fied by the computer data word, all four combi-
nations produce silence, or a musical rest.

The 1 2 address combinations corresponding
to octal numbers 01-14 inclusive are used for

the active notes. The coding used is in simple
progression, i.e., C-sharp is octal 01 ,

D is 02,
D-sharp: 03, and so on up to C: 14,

The output of the 74150 note multiplexer

is fed to a 7493 binary divider, which consists

of four flip-flops connected in cascade. Thus
the selected note frequency is divided by 2,

4, 8 and 1 6, with signals at the appropriate

sub-multiple frequencies available at the four

device outputs. The four 7493 outputs thus

effectively provide the selected note, but in each
of four octaves.

To select which octave is required, a 7401
quad 2-input gate is used to produce a simple
1-of-4 multiplexer. The four open-collector out-

puts of the 7401 are connected together, with
a single 470-ohm output load. This forms a
wired-OR configuration, so that any one of the
four gates can feed the output.

Gating signals for this simple octave mul-
tiplexer are derived from outputs C and D of

the data buffer register, via half of a 9 32 1 dual

decoder device. Each half of the 9321 is a 2-bit

decoder, with active low outputs. For each half

of the device, only one of the four outputs can
be low at any one time, and the output con-
cerned depends upon the state of the two input

bits. Thus the input bit combination 00 causes
output 0 to go low, while input combinations
01, 10 and 11 cause outputs 1, 2 and 3 to

go low respectively. Each half of the 9321 has
a separate enable (L) input, which must be low
before any output can go low.

As the 9321 device has active low outputs,

and the 7401 device used as the octave mul-
tiplexer requires active high selection signals,

a 7404 device is used for inversion. The two
"left over" inverters in the 7404 are not used
in the present player circuit, and could be used
for-other things if desired.

The output of the 7401 becomes the audio
output of the music player, and is fed to an
output socket via a simple R-C shaping circuit

to provide a moderate amount of smoothing.
This helps remove switching transients, and
helps to make the square-wave signal a little

less "harsh".

The audio output signal is of about 3V peak-

to-peak, and has. a source impedance of about
1 k. You can therefore feed it into almost any
audio amplifier, via the "radio" or "auxiliary"

inputs.

At this stage, it should be fairly clear that

the circuitry so far described is capable of taking
the six least significant bits of a data number
fed to the player from the computer, and using

them to select and play any one of the 1

2

musical notes, in one of 4 octaves. Thus, for

example, octal 22 will result in the sounding

of the D in the second lowest octave, while

octal 67 will produce the G- of the topmost
octave.

The remaining circuitry of the player device
has been provided to automatically time the
duration of notes. Four programmable note
durations are provided, controlled by the re-

maining two bits of the data word—available

at outputs A and B of the 741 64 data buffer

register.

The way in which the two control bits are

used to control note duration is by having them
determine the delay period of a simple timing

circuit, used to set the flag flip-flop after the

latter has been initially reset by the computer
following delivery of the data word. By con-

necting the enable (L) input of the 93,21 de-

coder feeding the octave multiplexer to the flag

FF, this means that the note produced by the

player only lasts for the interval between reset-

ting of the flag FF by the computer, and the

subsequent setting by the timer, after the pro-

grammed delay.

The timing circuit is basically the same as
that used in the simple octal display unit, de-
scribed earlier. It uses a D1 3T1 programmable
unijunction or PUT to discharge a capacitor,

when triggered by the flag reset signal. The
capacitor is then allowed to charge, and when
it reaches a certain charge level a flag setting

pulse is produced by a level detector circuit.

The level detector uses two BC 1 09 transistors,

feeding the other half of the 7413 Schmitt
trigger device.

The delay time is programmed by using four

PIMP transistors to switch in four different values

of charging resistance. The transistors may be
type 2N3638, BC1 78, BC327 or similar, and
they are controlled by the four outputs of the

second half of the 9321 decoder device, con-
nected in turn to the A and B outputs of the

data buffer.

The four timing resistors have values which
vary in binary ratio, so that each gives a delay
time and note duration twice as long as its

successor. Thus if the two most significant bits

of the data word are both zero (octal 0--), the

resulting note duration will be of say one unit

long. If the less significant bit is 1 (octal 1-)

the note will last for 2 units of time, while if

the more significant bit is 1 (octal 2-) the note

will last for 4 time units. Finally if both bits

are 1 (octal 3-) the note will last for 8 time

units.

The binary time ratios have been provided

not because of some slavish desire to "keep
everything binary", but merely because this is

the normal relationship used in music. Thus
octal 3-- could correspond to a minim or half-

note, octal 2- to a crotchet or quarter-note, octal

1- to a quaver or eighth-note, and octal 0~
to a semiquaver, or sixteenth-note.

Naturally the correspondence between the

binary-octal coding and the various notes will

depend upon the actual delay time and the

musical tempo. By varying the timing capacitor,

shown on the circuit as 0.22uF, you can adjust

the relationship at will. Larger capacitor values

will give a slower tempo, or longer note values
for the same tempo, while smaller capacitor

values will give either a faster tempo or shorter

note values.

You could provide a number of capacitor

values, selected by a manual switch on the

player, if you wish. Ideally the values should

be in binary ratio, so thaf you could start with

values of 0.1 uF and 0.47uF in addition to the

existing 0.22uF.

To recapitulate, then, the music player unit

operates as follows. To play a note, the com-
puter must send an appropriately coded data
word into the player's data buffer register. The
four least signficant bits of the word cause the
74150 note multiplexer to select the desired
note, while the next two bits are applied to the

octave multiplexer half of the 9321 decoder,
ready to select the octave in which the note

ELECTRONICS Australia, June, 1975 79

02 04 05 07 11 13 14 22 24 25 27 31 33 34 42 44 45 47 51 53 54 62 64 65 67 71 73 74

BASIC NOTE ENCODING
NOTE LENGTH ENCODING 000 =

1 V) 100 = 2 200 = 4 300 = 8 (J)

I EVat MIDDLE C = 134 (377 FORMAT OCTAL)

Using this note encoding guide, you should find it fairly easy to encode any desired tune for

playing by the device. Note that the final code for a note is formed by adding the basic note
code to the desired duration code, as shown by the example.

X

EDUC-8 computer

is to be played.

The computer must then reset the flag FF,

which enables the 9321 decoder, and this in

turn enables the octave multiplexer to begin

sounding the note. At the same time the D 1 3T1

PUT in the timing circuit is triggered, discharg-

ing the timing capacitor. The second half of

the 9321 decoder is also enabled, turning on

one of the four timing resistor switching tran-

sistors according to the coding of the two most

significant data word bits.

When the timing capacitor recharges, after

the appropriate period of time, the level detector

circuit sets the flag FF once more, disabling

the 9321 decoder and hence causing the note

to end. At the same time, the flag line of the

player goes low, indicating to the computer that

the note has been played. The computer may
then send another note, if this is appropriate,

to repeat the cycle.

Note that the player may be arranged to play

"rests", or periods of silence, by feeding it

words whose note coding corresponds to one

of the four unused note multiplexer addresses.

The duration of the rest may be programmed
just as with normal notes, by using the two
most significant bits. Thus octal code 100 will

produce a rest of 2 time units duration, while

code 300 will produce a rest 8 units long.

Note also that the 74164 data buffer register

is fitted with an R-C circuit connected to the

clear (L) input. This is to reset the register when
power is first applied to the player, so that it

doesn't burst into spontaneous song!

Most of the ICs in the music player are of

the TTL type, and are powered from the 5V
supply of the computer, via the connection

cable. The only exception is the note synthesiser

chip, where both of the alternative ICs require

+ 12V, with the AY- 1-02 12 requiring —12V
as well. To provide these voltages the player

includes a small power supply, whose circuit

is shown in the small diagram.

The current drain from the + 1 2V rail is only

about 20-2 5mA, while that for the —1 2V rail

is even lower—around 4mA. As a result the

power supply is very straightforward, using a

miniature 1 2V / 1 50mA transformer such as the

Ferguson type PF2851 or similar. Two half-

wave voltage doubling rectifiers are used, with

simple zener diode shunt regulators. Note that

the —1 2V part of the supply may be omitted

if the Mostek 50242 note synthesiser chip is

used.

I built up the prototype player unit in a small

utility box, of the type used for small stereo

amplifiers, etc. Most of the components and
wiring were mounted on one of the EA "Multi-

dip" boards, which are very suitable for this

sort of one-off project using a number of ICs.

The only parts of the circuit not. mounted on

the Multi-dip board were the note synthesiser

1C with its thirteen transistor buffer stages and

power supplies and the power transformer. The

latter was simply mounted in the case near the

rear, with its primary connections taken to a

B-B connector strip to mate with the mains cord

wires in the approved manner.

To mount the note synthesiser chip, its

buffers and power supplies conveniently, I used

one of the PC boards originally designed for

the "Crystal Locked Musical Tone Generator",

described in the August 1974 issue of Elec-

tronics Australia. The board is coded EA 74/
09, and was designed to take the chip and
buffers, as well as power supply circuitry.

Although the present voltage-doubler rectifiers

are a little different from those used in the

original project, the power supply wiring can
still be fitted on the PC board quite easily.

To give you an idea of the programming
required for the music player, I have reproduced

here a simple tune-playing program which wil

play a sequence of notes, automatically spaced

by rests. Each rest is equal in duration to the

note which immediately precedes it, a simple

arrangement which gives a fairly natural sound
to most tunes.

The coding for the tune to be played must
be stored along with the program in the memory
of the computer, beginning at location 030
octal . The tune can occupy the entire remainder
of the memory, which forms the "tune buffer"

area. As this comprises some 347 octal or 232
decimal locations, the program can play quite

lengthy tunes. (Only the actual notes of the tune

are stored, the program itself inserting the

spacing rests.)

You can make the program play the notes

of a tune without the spacing rests by replacing

the instructions in locations 15, 16 and 1

7

(octal) with "NOP” instructions (octal 700).

This will give a "legato" effect, which can be
more appropriate with some tunes.

This is a very simple program, and you will

no doubt want to try your hand at a more
elaborate effort later on. But this one should

at least serve to get your music player going.

To help you in encoding tunes for the player,

we have prepared a diagram which shows the

notes laid out in piano keyboard fashion, with

their corresponding coding alongside. The note

length encoding is also shown beneath; this

is added to the note encoding to form the

N MUSIC PLAYER SA=010
-(£*). EDUC-8 PROGRAM (less TUNE,

STEP MNEMONIC C.iflE

D PLAY.0 000

LMB 626

2 SMF 621

3 JV.P .-1 502

4 JMP 1 PLAY 520

5 1N.1Y ,0 000

6 BUFS.030 030

7 MASK , 300 </377 format 600

10 STP.T.CLA 710

11 TAD BUFS 106

12 DCA INDY 306

13 GO, TAD 1 INDY 125

14 JMS PLAY 400

15 TAD 1 INJY 125

16 AND MASK 007

17 JMS PLAY 400

20 ISZ 1 1NJA 226

21 JMP 1 GOAD 525

22 HLT 721

23 JM.P I STTA 524

24 STTA.010 010

25 GOAD, 01

3

013

2G INUA.005 005

27

30 (start of tune buffer)

31

32

33

34

35

36

37

This simple program will play tunes with each

note followed by a rest of the same duration.

The notes of the tune are stored in memory
along with the program, beginning at location

030 (octal).

complete code number for each note. Hence
if you want a note to be middle C, and to last

for 2 units of time, the coding is 100 + 34,

or 1 34.

Note that the octal format assumed by the

note encoding diagram is "377" format, which

is fairly obviously the more appropriate in view

of the way in which the player interprets the

8-bit words fed to it.

So that you won't have to work out the

encoding of a tune before you can get your

player working, here is the coding for the fam-
iliar tune "Greensleeves". It is in 377 format

octal, with bars separated by semicolons: 224;
327, 231, 233, 134, 233; 331, 226, 222,
124, 226; 327, 224, 224, 122, 224; 326,
222, 313, 224; 327, 231, 233, 134, 233;
331, 226, 222, 124, 226; 227, 126, 224,
223, 121, 223; 324, 224, 324, 200; 342,
242, 141, 233, 331, 226, 222, 124, 226;
327, 224, 224, 122, 224; 326, 222, 313,
200; 342, 242, 141, 233; 331, 226, 222,
124, 226, 227, 126, 224, 223, 121, 223;
324, 324, 200; 300, 300, 300,. . . The code
300s at the end are simply to give silence after

the tune ends, for better effect.

I suggest that you punch this coding onto

paper tape. Using a modified version of the

program given earlier for program tape punch-

ing from the keyboard unit. Modify the program

so that it will accept the octal input digits in

377 format, instead of the 737 format used

for program encoding.

If you start this and all subsequent tune tapes

with an "end of leader" bit code, followed by
code 030, they can be loaded into the computer
tune buffer at any time, without disturbing the

tune playing program itself. This way, you can
change tunes at will, without having to load

in the program itself each time.

Incidentally, if you load in the tune playing

program without an intentional tune, and set

it going, it will "play" whatever random
numbers are already in the computer's mem-
ory—either the remains of earlier programs, or

the turn-on bias bits of the memory RAM flip-

flops if you have just turned on. Either way,

the sounds produced can be quite weird!

Well, that's the basic music player device,

which will let your EDUC-8 play a simple tune.

It's fairly straightforward, as you can see, and
leaves plenty of room for elaboration should

you be so inclined.

One idea would be to build a companion unit,

which would take the raw audio output from

the player and put it through a programmable

attenuator and filter system, to vary both ampli-

tude and harmonic content under the control

of a second 8-bit word. Three of the bits could

be used to give eight different amplitude levels,

say, while the remaining five could be used

to control the characteristics of a programmable
formant filter.

For the attenuator you could use three NPN
transistor switches, driven from the three

appropriate outputs of the data buffer register,

and switching the shunt resistors in a ladder-

type resistive attenuator circuit. The filter

scheme could be implemented in a similar way,

with the transistors effectively switching high

or low-pass filter sections in and out of the

signal path. The whole unit might involve say

a 74164 for the data buffer, eight BC108 or

similar transistors, and some R’s and C's.

Another idea would be to expand the player

itself, with additional data buffers, so that it

could play a number of notes at once—for

chords. The data words from the computer

could be directed to the various buffers using

a simple multiplexer scheme.

No doubt other ideas along these lines will

occur to you as you go along. Have fun!

ELECTRONICS Australia, June, 1975 81

Interfacing EDUC-8 to

teleprinters & mag. tape

To conclude the description of his basic EDUC-8 microcomputer

system, the author presents here a design for a flexible receiver-

transmitter circuit capable of interfacing the computer with

asynchronous peripheral devices such as teleprinters. Full details

are given for interfacing with typical teleprinters, together with

details of a simple system for magnetic tape recording using an

elementary "modem”
by JAMIESON ROWE

No description of a computer system de-

signed for educational work would be complete

without at least a brief look at asynchronous

interfacing. Apart from any other reasons, there

is the very practical one that in most schools,

colleges and universities the peripheral device

most likely to be available for interfacing is the

familiar teleprinter or "Teletype" (the latter

name is a trademark).

I realise that for the individual private con-

structor, the interest in teleprinter interfacing

is likely to be more theoretical than practical,

as teleprinter machines are neither plentiful nor

cheap. Brand new machines of the most appro-

priate 8-bit ASCII coded type cost anywhere
from about $850 to $1500, depending upon
options. Even secondhand machines in moder-

ate condition tend to cost upwards of $200,
and they are not available very often.

Second-hand machines using the older 5-bit

Baudot or Murray code are available slightly

more frequently, and for a more reasonable

cost. However while these can be interfaced

with the computer, they are less attractive than

the. 8-bit ASCII type because of the need to

arrange for code conversion.

Happily there is a second and quite practical

application of the asynchronous interfacing

technique, which should be well within the

grasp of the individual constructor. Most people

have a tape recorder, of either the reel-to-reel

or cassette variety, and by using the

asynchronous interface with a simple fre-

quency-shift "modem” to be described, such

recorders may be used for convenient storage

of both programs and data.

But even if you don't have access to a tele-

printer, nor feel disposed to build up the circuit

for magnetic tape interfacing, I hope the dis-

cussion of asynchronous interfacing will prove

interesting and worthwhile background infor-

mation. It is after all an important area within

the broad' spectrum of computer interfacing,

and as such is worth knowing about.

To begin, then. With all of the peripheral

devices described so far, although the flag

signals which initiate information transfer are

generally not fixed in time relationship with

respect to the computer's clock pulses, the

actual transfer operation itself is always con-

trolled by and locked to the clock pulses. In

that sense they may be regarded as

"synchronous" peripherals.

Inevitably, there arise situations where one

wishes to interface a computer to devices which

by their very nature do not lend themselves

to this sort of synchronous transfer. Broadly

speaking, the devices concerned are designed

to transfer information at their own fixed speed,

which cannot readily be altered to synchronise

with the computer. Probably the most common
such device is the teleprinter machine.

Developed around 1 906 as an improvement
on the simple Morse key and sounder telegraph

system, the teleprinter machine has a keyboard

and printer mechanism resembling a typewriter.

However unlike a typewriter the two are not

connected permanently together; they are func-

tionally separated, and share a common case

purely for convenience.

In the simplest possible telegraphy system

using teleprinters, the keyboard of the machine

at one end of the line is connected electrically

to the printer of the machine at the other end,

and vice-versa. However as this doesn't allow

each operator to see what they have transmit-

ted, the connections are usually arranged so

that each printer is also able to monitor or

"echo" the information sent by its own key-

board.

Being designed for telegraphy, teleprinters

are on-off or digital devices. And as they were
developed for use over two-wire lines (or single

wire and earth), they transfer the information

in serial digital form. Each character is sent and
received as a sequence of bits, with the number
of bits per character and their transmission rate

being fixed for a given type of machine and
system.

Each character bit sequence has a fixed

"start" bit, to identify the beginning of the

character. This is followed by from 5 to 8

"data" bits, representing the actual character

itself encoded in one of a number of codes.

Finally there are one or more fixed "stop" bits,

to identify the end of the character sequence.

The character bit sequences are generated

at the teleprinter keyboard by a rotary commu-
tator switch, known as the "transmitter dis-

tributor". This has a number of fixed contact

segments, one for each of the total number of

bits in the character sequence, and a rotating

brush contact driven by a fixed-speed motor
via a clutch. The rotating brush is connected

to a power supply, generally a constant-current

type designed to deliver either 20 or 60 mA.
With no key pressed, the clutch is disen-

gaged, and the distributor remains stationary.

The brush contact touches a commutator seg-

ment permanently connected to the output line,

so that the line receives current. This is 'known

as the idle or "mark" condition.

When a key is pressed, a mechanical encod-

ing system first operates a number of fixed

switches. These open or close the connections

between each of the various "data bit" seg-

ments of the commutator and the output line,

setting up the coding of the character to be

sent. Then the drive clutch is engaged, where-

upon the motor rotates the distributor through

one revolution. As it rotates, the brush contact

effectively "scans" the various segments.

After leaving its idle position, the brush first

contacts a segment which is permanently open
circuit. This breaks the line circuit, to generate

a no-current or "space” bit at the start of every

character— i.e., the start bit. Then the brush

scans the data bit segments, in each case mak-

ing (mark) or breaking (space) the line circuit

depending upon the coding set up for the

character concerned. Finally the brush contacts

one or more segments which are permanently

connected to the line, to generate one or more

mark bits—the stop bits.

At the end of the cycle the clutch disengages

to bring the distributor to a halt, with the brush

still in contact with the last stop bit segment.

The machine thus stops with the line circuit

made once more— i.e., in the mark condition.

The basic format of a teleprinter transmitted

character thus consists of a start bit, a number

of data bits, and a number of stop bits, where

the start bit is always a "space" (no current),

and the stop bit or bits are always "marks”

(current). Many computer-type teleprinters use

8 data bits and 2 stop bits, giving the format

shown in the small diagram.

The printer mechanism of the receiving tele-

printer uses a similar technique to the keyboard

in order to produce printed characters from the

incoming serial bit sequences. There is again

a rotating assembly driven via a clutch from

a constant-speed motor, but in this case it is

a set of selector cams which control the actua-

tion of mechanical decoding linkages from an

electromagnet. The electromagnet, known as

the "selector magnet", is also used to control

the driving clutch.

The signalling current flowing in the line is

used to energise the selector magnet, and

accordingly the magnet remains energised

while ever the transmitting teletype is idling.

In this situation the printer clutch is held disen-

ELECTFtONICS Australia, July, 1975 69

DATA 1 . STOP - 1

BIT BITS r BiTs

~l
(CURRENT)

1 1 1
1 i i i

B1
|

B2 | B3 1 B4 | B5
|

BE | B7 | B8
(LSB)

| | | | | | 1
(“SB)

1 1 1 1 1 J 1

i

i

i

“SPACE" LEVEL i

(NO CURRENT) J
EARLIEST POSITION/
OF NEXT START BIT

The serial data format used by 8-bit ASCII teleprinters, showing the way that the start and

stop bits are appended.

<J3G i*
I2-

<}
Fua5-

+ 5V m- + 5V TO IC s

2.2k ^ 1

J 1

1 TRANS.

001

Ih

RETET
FLAG H

A

B TRANS. BUFFER
74164

I— T
Ik H 3 C 0 E F G H

1 1
1 1 1 T-*

'FTtTtTtm

*ii
3—°£>~

-r-n.
'

01^

NPB NS8 POE NDB1 NDB2 CS td3 T08

7

5 S 4 3 2 1 TEOC TBMT

TCP TSO

UART
SI 883, AY-5- 1012. 2536

RESET :

RDA PDA RPE RFE ROB SWE RD8 7 6 5 4 3 2 1 Rpg

vss|

VGG

VDD

RSI

ooo “ T

- + 5V

--12V

-OASYNCHRONOUS
SERIAL OUT
(H » MARK)

OASYNCHRONOUS
SERIAL IN

|H - MARK)

* LINKS TO SET SERIAL
WORD FORMAT

ADJUST CLOCK FREQUENCY
TQ 16 TIMES DESIRED

BAUD RATE
IE, 1 760Hz - 110BAUD

UART : S1883.AY 5-1012.2536
OR SIMILAR (SEE TEXT)

T BUFFER : 74164
R BUFFER : 74165

CLOCK OSC. : 555
D1-2 : 9602
G1-4 ; 7437
G5-8 : 7437
11-4 : 7404

gaged by the magnet, and the printer does not
operate.

As soon as a character begins to be transmit-
ted, the line current is broken for the duration
of the start bit. This causes the printer selector

magnet to release, allowing the clutch to en-

gage. The selector cams begin to rotate, from
their rest position. As they rotate, they allow
their corresponding printer mechanism decod-
ing linkages to be actuated by the selector

magnet, if it is energised, at the appropriate
instants during the cycle (corresponding to the
various data bits).

At the end of the last data bit, the printer
decoding linkages have thus been set up ac-
cording to the coding of the transmitted
character. A further linkage actuated by the
selector magnet at the beginning of the stop
bit (or first stop bit, if there are more than one),

70 ELECTRONICS Australia, July, 1975

FIG. 1 ASYNCHRONOUS SERIAL INTERFACE

is then used to activate the printing mechanism
and print the character. At the same time the
energised selector magnet disengages the se-
lector cam clutch, to end the cycle.

As you can see, the system relies upon the
motors of both machines rotating their respec-
tive mechanisms at identical speeds. Angular
synchronism is achieved by having fixed idling
positions, and by having the printer "triggered"
into synchronism with the transmitted character
by the action of the start bit in causing the
selector magnet to engage the clutch.

There are basically two problems to be solved
in order to interface a teleprinter machine with
a computer. The first and simpler is that the
machine can only transfer information serially,

and at a fixed speed, which is generally much
lower than the computer clock rate.

Thus most 8-bit ASCII coded teleprinters

intended for use with computers are designed
to run at a speed corresponding to 1 1 0 bits
per second, or 1 1 0 baud. As there are a total
of 1 1 bits used per character, this corresponds
to a maximum of 1 0 characters per second.

Machines designed for the older 5-bit system
generally run even slower, at 50 baud. In most
cases these machines use a stop bit of 1 . 5 times
the duration of the other bits, which is loosely
termed "1 .5 stop bits". This gives an effective
7.5 bits per character, or a maximum of 6.66
characters per second at 50 baud.
Although it involves a certain amount of

fiddling, the low speed requirement is not too
much of a problem. So that providing the
charactors may be encoded appropriately, aug-
mented with the required start and stop bits,

and sent at the correct low speed, it is really
not too difficult to drive a teleprinter printing

FROM EDUC-8

FIG. 2 ASYNCHRONOUS INTERFACE PCS WIRING

mechanism from a computer. As the printing

mechanism is already designed to automatically
synchronise with incoming characters, it will

operate normally.

However it is when one comes to consider
using the teleprinter keyboard to send
characters to the computer that the second
problem arises. This is because the keyboard
cannot be synchronised with the computer; it

sends each character bit sequence at its own
rate, and immediately following a keystroke.

What is needed for keyboard interfacing is

therefore a logic circuit capable of electrically-

duplicating the operation of the teleprinter se-
lector mechanism—one which is able to recog-
nise the arrival of a start bit, and synchronise
with it to strobe in the following data bits.

This is by no means an easy task, as a few
moments' reflection may reveal. Until a few
years ago, teleprinter keyboard interfacing thus
involved quite a lot of complex circuitry.

Happily there are now available single LSI

integrated circuits which take care of the whole
operation of interfacing with asynchronous de-

vices like teleprinters—both the transmitting

and receiving sides. They are called "universal

asynchronous receiver-transmitters", or
"UARTs" for short. The word "universal” is

used because the devices are arranged to be
programmable in terms of the number of data

bits, stop bits, baud rate, and so on, to suit

a wide variety of teleprinters and other devices.

UARTs generally come in an impressive 40-
pin dual-in-line package, and considering their

complexity they come surprisingly cheap

—

around $8-10. This seems to be because they
are used in large quantities in the data com-
munications industry.

As you can see from Fig. 1 , a UART is used
as the heart of the asynchronous interfacing

unit I have developed for the EDUC-8 system.
And using such a device, the interface becomes
deceptively simple and straightforward. There
are three alternative UART devices which may
be used: the American Microsystems S1883
(available from Cema Distributors), the General
Instrument Microelectronics Ay-5-1012 (from

General Electronic Services), and the Signetics

2536 (from Tecnico Electronics).

Strictly the three devices are not quite iden-

tical, because the SI 883 is capable of being
programmed for "1.5” stop bits, in addition
to the single and double stop bit programming
provided on the other two devices. However
this is really only an academic difference, as
it only affects the maximum rate of character
transmission when working with 5-bit tele-

printers. All three devices will work with such
machines, as well as with most others, and thus
for all practical purposes they may be regarded
as identical.

We don't have the space here to analyse the
operation of a UART in detail, and if you are
interested I suggest you try and get hold of

a data sheet and applications brochure from
one of the distributors. However if you bear
in mind the foregoing description of teleprinter

operation, the general idea should become clear

to you as we look at the circuit of Fig. 1

.

The transmitter and receiver sections of the
UART both need a source of external clock
signals, at a frequency of 1 6 times the desired

baud rate. Thus for normal 1 1 0 baud tele-

printers, the required clock rate is 1 760Hz. As
you can see, this is provided by a simple pulse
generator using a 555 timer 1C. The 5k preset

pot is used to set the frequency to produce the
exact baud rate required. The values of the pot,

its series resistor and the 0. 1 uF charging capa-
citor may all be changed, if necessary, to adapt

the interface to baud rates very much higher
or lower than the nominal 1 1 0 baud rate
shown.

A single set of logic inputs are used to pro-
gram both the transmitter and receiver sections
of the UART for the serial word format required.
The inputs are those marked NPB (no parity

bit), NSB (number of stop bits), POE (parity

odd/even), NDB1 and NDB2 (both used for
setting the number of data bits). These are taken
to either the high or low logic level to program
the device for the format required.

For our purposes, the most appropriate for-

mat is words having 8 data bits, no parity, and
2 stop bits. This is very suitable for handling
both instruction and data words from EDUC-8,
and is also the format used on many 1 1 0 baud
teleprinters. As it happens, this format is pro-
grammed by taking all five of the UART logic

inputs to the logic high level, as shown.
Probably the only other format you are likely

to want is that for 5-bit teleprinters, which use
5 data bits, no parity, and "1.5" stop bits.

To program the UART for this format, simply
take the NDB1 and NDB2 inputs down to low
level, leaving the others at high level. Strictly

only the SI 883 device will give the correct
"1.5" stop bits, but the other devices will still

give satisfactory operation.

The UART transmitter section has 8 parallel

inputs for the data bits to be transmitted, la-

belled TD1-8. To provide these with the data
word to be transmitted, the interface uses a
741 64 device as a buffer. The word is shifted
into the buffer serially, at the computer clock
rate, as with the other output devices which
have been described.

The word is actually loaded into the
-

UART's
internal data buffer from the 74164 by the
RESET FLAG (L) pulse from the computer,
which is fed not only to the transmitter flag

FF, but to the TDS-bar (transmit data strobe)

input of the UART. This input not only causes
the word to be fed into the UART, but also

triggers the transmitter circuitry to begin trans-

mitting it. Accordingly the UART adds the start

bit and stop bits required, and feeds the word
out of the TSO (tramsmit serial out) terminal,

at the correct baud rate.

When the last data bit has been transmitted,

the UART signals that a' new number may be
loaded for transmission, by producing a high
logic level at its TBMT (transmitter buffer empty)
output. This signal is fed through inverter 12,

and used to set the transmitter flag FF via the
,001 uF differentiating capacitor. The flag FF
is formed by gates G2 and G3, with G1 used
as a buffer for the FLAG (L) line to the computer.

When the UART sets the flag FF to signal

that the last data bit of the current word has
been transmitted, the stop bits still have to be
transmitted. Thus the computer has a time
period equivalent to two bits at the
asynchronous rate— i.e., about 1 8 milliseconds

at 1 1 0 baud— in which to feed the next number
into the 74164 buffer. The computer can thus
keep up with the UART quite easily, and cause
characters to be sent at the maximum character

rate, if desired.

The receiver side of the UART accepts the

asynchronous serial input at its RSI (receiver

serial input) terminal. When a character arrives

at this terminal, the receiver circuitry automa-
tically detects its start bit, synchronises with

it, and strobes the following data bits into an
internal buffer. It then indicates that a received

word is available at its eight parallel outputs
RDI-8, by producing a logic high level at its

ODA (output data available) output.

The external receiver interfacing circuitry

inverts this signal through inverter 13, and uses
it to trigger a monostable, D1 . The output from
D1 is a narrow pulse (about lus), and is used

ELECTRONICS Australia, July, 1975 71

EDUC-8 computer
+ SV + 5V

to load the data from the UART outputs into

the external receiver buffer register, formed by

a 741 65 device. The pulse is also used to set

the receiver flag FF, formed by gates G5 and

G6. Gate G7 is used as before to provide

buffering for the FLAG (L) line.

The output of monostable D1 is also fed to

a second monostable D2, whose output is a

second 1 uspulseimmediatelyfollowingthefirst.

This is used to reset the UART's internal re-

ceiver flag circuitry, readying it for the arrival

of another character.

When the receiver flag FF is set, the computer

is thus made aware that a character has been

received and is ready for transfer in the receiver

buffer. It can then transfer the character into

the AC register as with any other input device,

by supplying clock pulses and receiving the data

via the line driver G8.
Note that the UART requires both 5V and

— 12V power supplies, being a MOS device.

The 5V supply comes from the computer, and

is used to power the other interface ICs as well.

The —12V supply involves only about 40mA,
and is provided by a small supply in the inter-

face unit itself. Inverter 14 and its associated

R-C network are used to reset various internal

UART circuitry when the power is first applied.

To make it easier for you to build up the basic

asynchronous interfacing circuit of Fig. 1 , 1 have

designed a small PC board for the job. It is

coded E8/SR-T, and the wiring for the board

is shown in Fig. 2. As you can see, links are

provided to allow the unit to be programmed
for various word formats.

Incidentally, you probably realised it anyway,

but just in case you haven't I should perhaps

point out that the interface connects to two of

the EDUC-8 input/output ports. The transmitter

section connects to one of the output ports (ODO
or OD1), while the receiver connects to one

of the input ports (IDO or ID1). This is because

it is really two peripheral devices in one—or

more correctly, it ''interprets" for two.

The TSO and RSI terminals of the UART are

not designed to connect directly to a teleprinter

line. In fact they are basically standard TTL logic

terminals, with the convention such that the

logic high level represents the "mark" condition

for both, and logic low the "space" level. Both

normally remain high when the UART is idling.

FROM UART-
SERIAL OUT

7413/2 4. 7 |<: ;

1 -A 2N3638,

n /
^BC327,.«c

L _Z3jO—**——TO
_</ ioon

1—

—

JT

-+ ^ 20mA LINE INPUT
V TO TTY SELECTOR
C MAGNET DRIVER

-- J (K$R-33,«tc.)

6 HARDWARE
V ECHO

+ 5V

<IP
7413/2

TO TTY
KEYBOARD
DISTRIBUTOR

FIG. 3 TELEPRINTER INTERFACING (33 SERIES TELETYPE)

To connect the interface with a typical

modern teleprinter like the Teletype series 33
machines (KSR-33 or ASR-33), you will need

supplementary circuitry as shown in Fig. 3. This

also includes the small power supply required

to produce the — 12V rail for the UART.

The 33 series Teletypes have an internal

selector magnet driver circuit, so that the in-

coming signal line does not drive the magnet
coils directly. This simplifies the external cir-

cuitry required, as there is no need to worry
about inductive spikes, back-EMF, etc. All that

is required is a logic inverter and a simple PNP
transistor stage, shown at the top of Fig. 3.

Note that as shown, the PNP stage is de-

signed to provide 20mA of signal current into

the teleprinter selector magnet driver. This of

course assumes that the driver is adjusted to

expect this current level, rather than the alter-

native 60mA level. The changeover from 60mA
to 20mA input is quite easily made, if required,

by swapping over a link in the driver circuit.

The remaining logic shown in Fig. 3 forms
an input shaping and Schmitt trigger circuit

to produce a signal from the teleprinter key-

board distributor contacts, suitable for feeding

to the UART serial input on the interface PC
board. The R-C components and diodes are

used to clean up the signal fed to the 7413
Schmitt trigger element, to remove bounce and
other spurious transients.

Note that the distributor contact circuit is

connected to both the 5V supply rail and to

a source of — 1 5V from the small power supply.

The resulting 20V swing helps in producing

a clean signal from the rotating distributor

contacts.

You have probably noticed that the second
half of the 7413 Schmitt trigger device is used

72 ELECTRONICS Australia, July, 1975

as the inverter for the PNP selector driver am-
plifier. This makes it possible to provide a
"hardware echo” facility, so that if desired the
printer can be made to automatically echo
whatever is transmitted to the computer from
the keyboard. As you can see, this is achieved
simply by disconnecting one of the spare inputs

of the 7413 from logic high, and connecting
it instead to the output of the lower 741

3

element. The top element thus becomes a ne-

gative-input OR gate, feeding signals to the

printer from either the UART or the keyboard.

Older teleprinter machines differ from the

newest 33-series Teletype machines in that they

generally do not have an internal selector mag-
net driver circuit. In other words, the incoming
signal line drives the selector magnet windings
directly. The magnet has two windings, which
are connected in series for 20mA operation or

in parallel for 60mA operation.

To operate one of these older machines with

the interface, you will need to modify the circuit

of Fig. 3 as shown in Fig. 4. The change mainly

involves the addition of a further rectifier circuit

to the power supply, to generate about 25V,

together with a medium power NPN transistor

to switch the selector magnet current.

As you can see, the magnet windings are

connected in parallel for 60mA operation, as

this gives more reliable operation from a 25V
supply. The two 1 80 ohm resistors are to set

the current level, while the two diodes and the

R-C circuit associated with the magnet windings
are to suppress the inductive back-EMF.

Don't forget that in order to operate an older

teleprinter of the 5-bit variety with the EDUC-8

system (or with any other computer, for that

matter), you will have to perform code conver-

sion somewhere in the system. This is because
5-bit machines use the Baudot or Murray code,

not ASCII.

The code conversion could be done by the

computer program itself, but this will of course

involve valuable memory space. Perhaps a

neater way would be to interpose read-only

memory circuitry between the UART data inputs

and outputs and the 74164 and 74165
buffers, in the interface circuit of Fig. 1 . You
could use either 1C ROMs, or diode arrays.

I hope the foregoing information will enable

you to connect up a teleprinter to your EDUC-8
system, if you want to do so, with a fair degree
of confidence and success.

As mentioned earlier, the asynchronous in-

terfacing unit of Figs. 1 and 2 may also be
used for storing program and data on magnetic
tape. Before closing, I will give a brief descrip-

tion of how this is done. Almost any mono
recorder may be used, of either the cassette

or reel-to-reel variety.

As with a teleprinter, it is not all that difficult

to transfer information from the computer to

magnetic tape—providing the transfer is made
at a suitable rate, in this case one which will

fall within the modest bandwidth of an audio
recorder. The problems tend to occur in the

reverse transfer direction: from the tape back
to the computer. Like the teleprinter, a tape

recorder tends to supply information at its own
fixed rate, and cannot be synchronised readily

with the computer clock pulses.

Happily the same asynchronous data format

used for teleprinters may be used for tape
recording and playback— all that is needed is

to encode the data in audio tones, so that the
recorder is not required to handle DC levels.

The most reliable results are obtained using

the technique of frequency-shift keying, or

"FSK", where the two digital data levels are

recorded as tones of differing pitch . This means
that the tape is always recorded with a tone

of one pitch or the other, which allows the

effects of drop-out to be minimised.

Generating and demodulating FSK signals

used to be a fairly complex business, but thanks
to modern 1C technology it is now fairly

straightforward. As shown in Fig. 5, only two
ICs and a transistor are required in order to

adapt the basic asynchronous interface circuit

of Fig. 1 for magnetic tape recording.

Both of the ICs are made by the Exar Cor-

poration, and are available in Australia from
A. J. Ferguson Pty Ltd (order through your usual

supplier). They are the XR-2206 waveform
generator device, and the XR-221 1 tone and
FSKdetector device. Each costs around $5.00.

The XR-2206 device is designed to produce
either square, triangular or sine waveforms over

a wide frequency range, and has the additional

feature that its frequency may be switched

between two values by a TTL logic signal ap-

plied to pin 9. Here it is used to generate sine

waves of either 1 400Hz or 1 200Hz, with the

higher frequency corresponding to "mark" and
the lower to "space”. The signal from the TSO
output of the UART is fed to pin 9 to produce

the required FSK signal, which appears at pin

2 of the device. This is fed to the recorder via

a preset pot, to adjust recording level.

To decode the FSK signals on playback, the

output from the recorder is fed to the XR-22 1 1

device. This device is especially designed for

FSK demodulation, and works on the phase-

locked loop principle. It will lock onto input

signals anywhere between 2mV and 3V RMS,
so that the output from the recorder can vary

over a very wide range without causing a data

error.

The XR-22 1 1 device has two outputs, a

tone-detect (L) output which appears at pin 5,

and the actual FSK demodulation output which
appears at pin 7. By wiring transistor T1 as

shown, the output from the device remains low
when there is no incoming tone— i.e., when
the tape is stopped. By using one of the spare

inverters on the interface board, this low is

changed to a high, so that the RSI input of

the UART receives the correct "mark" signal

whenever a character is not actually being

played back from the tape.

As soon as the tape is started and tone ap-

pears, the level at pin 5 of the XR-221 1 falls

to the low logic level, and transistor T1 turns

off. However the level at pin 7 will still be low

whilever the tone from the tape is at the "mark”
frequency. It will only go high when the tone

changes to the "space" frequency, and the

inverter will thus feed the correct logic levels

to the UART.
For correct operation the VCO of the XR-

221 1 must be set to give a free-running fre-

quency midway between the incoming mark
and space frequencies— i.e., 1300Hz in this

case. This is set by means of the 5k preset

pot in series with the 1 8k resistor, connected

to pin 12.

You can perform this adjustment reasonably

well by recording a section of tape with a single

character repeated, and monitoring the output

signal going to the RSI input of the UART with

an oscilloscope. Then adjust the 5k pot while

playing back the tape, until you are getting a

clean, noise-free signal.

(Continued on page 107)

ELECTRONICS Australia, July, 1975 73

INFORMATION CENTRE

(Continued from p.105)

it would be more convenient if editorial pages were
separated by a full page advert, in practice this

situation is virtually impossible to achieve. We would
refer you to the forum pages of the January 1974
issue of EA, where we answered a previous critic

in some detail. Thank you for your suggestion and
your kind remarks.

LOW FREQUENCY RESPONSE: I am 15 years old

and have been interested in electronics for about

2 years now. I must congratulate you on a clearly

set out anqj informative magazine. I have recently

built the PM 136 amplifier and thanks to the simple
instructions and dear diagrams managed to get it

operating first go.

I connected the amp to a turntable fitted with

a suitable cartridge and a pair of speakers, and I

am extremely pleased with the resulting sound.

As I opera't^ the set in a very small room (about
12’ x 9'), it requires a fair degree of bass lift to achieve

a "flat" sounding response. This, however,
dramatically increases turntable rumble as well as

low frequency surface noise to a very large extent,

causing the woofer cone to travel about 1
"
excursions

at half volume setting.

Is there any way of attenuating the response below
about 20Hz without major circuit changes to the

amplifier? It seems to me that this must be quite

a common problem, so I am hoping you can answer
this in the pages of "Information Centre". (N.G.,

Carlingford, NSW.)

£Thank you very much for your comments about
the magazine. It is possible to design circuits to roll

off the bass response at 20Hz, although we have
never presented such a design. From the description

of your symptoms, it appears that you may be suffer-

ing from acoustic feedback between the speakers
and the turntable unit.

A simple test for this is to move the turntable to

another room. If the large cone excursions stop, it

is almost certain that acoustic feedback was the cause
of the excursions. It will now be necessary to return

the turntable to the original room, while still retaining

the acoustic isolation.

It may be necessary to increase the isolation by
providing extra suspension for the plinth, or by
placing it on some sort of flexible mounting, similar

to that used to support the turntable on the plinth.

Another approach is to use a wall shelf to support
the plinth and turntable, to avoid coupling of vibra-

tions from the floor.

If acoustic feedback is not causing your troubles,

then there is little which can be done. A high pass
filter with a cutoff frequency at 20Hz will not elimin-

ate any audible rumble and surface noise. However,
it may eliminate distortion caused by bottoming of

the woofer cone due to large subaudible signals.

Any filter with a higher cutoff frequency will elim-

inate rumble and surface noise, along with any signals

which have similar frequency components, and for

this reason is not recommended.We can only suggest

that it may be necessary to use less bass boost.

LOST IN CAVES: An idea occurred to me while
listening to the current record "journey To The Centre
Of The Earth" concerning a possible project. Two
people had become separated while exploring a cave
but were able to find each other and determine their

distance apart "by use of their chronometers". I

expect this was done by measuring the time lag

between their speech.
I have thought out a way in which this idea could

be implemented (details enclosed), and was won-
dering if this could possibly form the basis of a
project. (Tony Picone, 99 Rowena Street, Richmond,
Vic. 3121). .

®Due to the rather specialised nature of the device
you have in mind, we do not think that it would
be suitable as a project. However, we will keep your
idea in mind. We have published your full name
and address so that any interested readers can con-
tact you direct.

DIMMER BUZZ: Recently, I had an opportunity to
tape an amateur stage show at a nearby hatl. Lighting

for the stage was dimmed by modern solid state

triac control using all three phases of the electricity

supply. The result was a quite troublesome buzz
throughout the whole length of the recorded pro-
gramme except for the start when the lights were
not working. The microphone leads were 12 yards
long, of shielded cable.

My questions are: Was the interference induced
through the input to the tape recorder via the micro-
phones and long leads or via the mains supply whicfi

the tape recorder and light dimmers were connected
to, or both of the above? How can I eliminate the
problem on future occasions? Thanks for an interest-

ing magazine which is well worth the price. I never
miss a copy. (T. P., Richmond, Vic).

®lt is quite likely the buzz you experienced was
radiated via the supply lines as RF interference which
could be induced directly into the mic cables or
picked up directly by the tape recorder. In addition,

the mains interference could be fed directly into the
tape recorder via its power supply. Without being
in a position to eliminate each possibility, it is not
possible to nominate the principal cause. As a first

suggestion, 12 yards of cable is rather long unless

you are using low impedance microphones and/
balanced input connections.

DEAD LETTER: We are holding material originally

addressed to Mr D. Shropshall, PO Box 216, Roe-
bourne, W.A. 6718. This has been returned by the
postal authorities, presumably because they could
not deliver it. If Mr Shropshall will advise us of his

present address we will forward the material to him.

(Continued on p. 110)

NOTES & ERRATA
PHILIPS 10GHZ DOPPLER MODULE (May
1975): The circuit of the prototype intruder

alarm should show the 100k load resistor of

the BC109 preamp transistor connecting to the
8.2V supply rail, not to the 10V rail.

EDUC-8 computer—from page 73

For slightly better results, it is necessary to

measure the actual output frequencies of the

XR-2206, using a digital counter. These will

probably be slightly different from the nominal
figures, due to the effect of component toler-

ances. Then work out the mean of the two
frequencies, by adding -them together and di-

viding by two.

Finally, set the free-running frequency of the

XFI-22 1 1 to this mean frequency, in the follow-

ing manner. With the power off, disconnect the

033uF capacitor from pin 3, and connect a

temporary link between pins 2 and 10. Then
turn on the power, and with no tone input

signal, connect the digital counter to pin 3.

Adjust the 5k pot until the counter indicates

the correct mean frequency. Then turn off the

power, and restore the circuit as it was. The
XR-2211 should now give very clean and
reliable demodulation of the FSK recordings.

Note that the XR-2206 device requires a 1 2V
power supply rail, so that a small rectifier circuit

must be added to the interface power supply
as shown. The XR-221 1 operates from the 5V
computer rail. '

In closing, it might be worthwhile to point
out that the simple FSK modulator-demodulator]
or 'modem" of Fig. 5 could also be used forj

transmitting data signals over radio links. 3J

ANNOUNCE THE ARRIVAL

OF A BULK SHIPMENT OF

DUKE AM/FM/MPX

STEREO TUNERS

Specifications:

FM-88-108MHz

S/N ratio better than 50dB

IF Rejection better than 90dB

Stereo separation better than 30dB
Muting and AFC switches

Linear scale dial

Signal strength meter

FM stereo auto mpx.

AM-535-1 605kHz

Sensitivity 50dB

IF rejection 45dB

Selectivity 25dB

Ferrite bar antenna

Flywheel tuning

STOCK AVAILABLE

THIS MONTH

WHOLESALE ENQUIRIES TO:

John Carr & Co Pty Ltd

405 Sussex St,

Sydney.

Phone 211-5077

RETAIL ENQUIRIES TO:

Jaycar Pty Ltd

PO Box K39,

Haymarket 2000.

Phone 211 5077.

ELECTRONICS Australia, July, 1975 107

INTERFACING A BURROUGHS SELF-SCAN
DISPLAY PANEL TO YOUR EDUC-8

A Burroughs Self-Scan display panel is very suitable for use with

the EDUC-8 computer system, offering full alphanumeric readout

with large, brightly lit characters. The interfacing needed to hook

up such a panel to your machine is quite straightforward, as

explained below.

There are a number of display panels in the Burroughs range which could be used

with the EDUC-8 system. I elected to try the SSD1 000-0041
,
which has an internal

refresh memory and can display a line of 16 characters 10mm high. Alternatively you

could use the SSD1 000-0040, which can display a line of 32 characters about 5mm
high. There is also a panel which will display up to 80 characters 5mm high. All panels

are available from Cema Distributors Pty Ltd, of 21 Chandos St, Crows Nest NSW 2065.

The SSD1 000-0041 costs $204, plus $2 for a matching 10-way PC connector

(SR-1 27), and plus 1 5% sales tax where applicable. This seems quite reasonable consider-

ing that it offers inbuilt refresh memory. Cema are providing data sheets with each unit

purchased.

For details on the operation of Self-Scan discharge panels, I can only refer you here

to Greg Swain s article in the October 1374 issue of Electronics Australia.

The interfacing required for the 1 6-character panel is shown below, and as you can

see it is quite straightforward. A 74164 device is used as a data buffer, to provide the

panel with its required 6-bit ASCII characters. The RESET FLAG(L) pulse is used to enable

the panel's DATA PRESENT (L) input, while the panel s subsequent DATA TAKEN (L)

output is used to set the flag FF via monostable D2— used to stretch the pulse to ensure

overlapping the input pulse. Gates G5, G6 and G7 and monostable D1 are used to clear

the display whenever a carriage return or similar non-printing control character is received,

to begin a new line.

The Self-Scan panel requires two additional supply voltage apart from the +5V from

the computer: + 250V for the actual display, and -12V for the MOS refresh memory.

These are provided by the simple power supply shown. Note that zeners are used to

regulate the 250V line, which must be maintained within plus/minus 5%.

printed circuit/^
•Accurately machine printed /etched. I
• Phenolic & fibreglass-gold/tin plated. I
• Special manufacturers' packs of 10.

• EA, R&H, ET, Philips, Mullard

available. I
• Specials to your drawing.

• Plus post 40c. Imm despatch.
* $ *

ET1533A-B 2.50 ET601N 2.50 72T2D 2.20

ETI440 4.50 ET801G 2.80 ET023 2.80

ETI40Q 2.00 74A1 2.20 ET021 2.80

75W3 2.00 74HPL 2.00 72T2ABC 4.40

ET1532 2.20 7312T2.80 73V1B 3.30

ETI529B 3.30 ET601D 2.20 73V1A 6.60

ETI52SA 4.50 ET601C 2.60 72SA1 3.30

ET1702 2.50 ET420C 2.40 ET022 2.80

ET601R 2.60 ET420D 2.40 7 1 C 1

2

4.40

ET601P 2*50 ET420B 2.80 ET019 2.80

E8SRT 3.00 ET420A 2.20 ETQ18 2.80

75EM6 2.50 ET524 2.80 ET017 2.80

75SD4 2.50 ET6D1B 3.30 ET014 2.80

75A01 2.50 ET601N 3.90 ET007 2.50

ET414E 2.50 rreoiF 2.80 71T12 3.30

ET414D2 3.20 ET601E 3.90 ET011 2.00

ET430 2.00 ET601A 3.30 71P8 2.80

ET314 2.06 73TU11 2.80 ETG8S 2.80

ET1 16 2.50 73P11 2.80 72C2 3.90

E8S 3.00 ET520A 4.40 ET012 2.20

E8K1 3.00 ET520B 4.40 72A6 2.50

ET52B 2.00 73C12 4.90 72PS6 2.20

ET312 3.00 73BA9 2.80 ET006 2.80

7S01 2.50 ET113 3.10 ET034 2.90

74MX12D 3.50 ET419 2.20 71SA4C 3.30

74MX12C 2.60 ET218 3.50 71SA4B 2.80

74MX12B 3.20 ET417 1.70 71SA4A 2.80

74MX12A 2.80 EH09 2.80 ET025 2.80

ET701 2.50 ET414D 1.30 71W7B 2.20

ET527 2.00 73T07 2.80 71W7A 2.20

ET428 2.80 73S6 1.30 ET003 2.80

ET313 2.00 ET521 3.90 7103 4.00

ET530 2.00 ET213 1.10 ET005A 2.50

ET427 2.50 ET416 .3.30 71TU2 2.20

ET426 2.00 73D1 1.70 70SL1 4.00

74MX8 2.00 ET518 2.20 70PA1 4.00

74EM9 2.50 733C 2.80 70RD1 4.00

74TU8 2.50 73T1 2.80 70TX2 4.00

ET429 2.20 ET414C 2.80 70F10 2.20

E8X 5.00 ET414B 2.80 70A2 4.00

E810T 5.00 ET414A 2.80 ET004 4.00

E8P 5.00 72M12 2.60 70CD1 2.20

|

E8M 5.00 72SA9M 2.80 71R1 2.20

E8D 5.00 ET413 2.80 7007 2.00

ESA 5.00 ET034A 3.10 70P6 4.00

E8T 5.00 72S11 2.80 71A8 2.50

E8F 6.00 72G7 2.80 70K6 4.00

ESC 6.00 72110 1.30 70BF08 2.20

74C9 4.20 721 IT 3.30 71R1 4.00

7408 4.00 ET037-4Q 8.00 70TX1 6.00

ET424 2.50 72SA10 3.10 70C4 6.00

ET311 2.50 72C8 2.80 70C1 4.00

ET526 2.50 ET029 2.20 70P1 2.50

ET114 2.50 72S10 2)60 69C11 6.00

ET6W 2.50 72R9 2.80 69F10 2.50

74SA5 4.00 72SA9 2.80 70A1 2.50

ET601M 2.50 ET033 3.30 89D10 6.00

ET601L 2.50 72MX6 3.10 68C10 3.00

ET422 3.30 72n 3.30 69P9 3.00

74S3 2.50 ET026 2.80 89C9 6.00

ET6Q1J 3.00 72IF6 2.20 69P5 3.00

ET423 2.20 71A8 2.80 6810CL 6.00

ET420E 3.30 72P3 2.20 B9S3 6.00

ET521B 2.00 72R2 2.80 89T5 4.00

ALL SILICON 30/60w PA
PORTABLE AMPLIFIER

6’/,"Wx3’4"Hx8yi"D.
12-16V, two inputs, 5 &
lOOmV. 1 5 ohm output. No.

763D. Also 125,250, 500 ohm
output No. 763A. All $70 each.

For 240V operation $33 extra.

Freightcollect.

COILS and IF's

W x V*" x 2"H. AM $2.50 ea. plus post 30c.

RF CHOKES Plus post 40c.

381 AIR: 2.5mh 50ma—Pye 70c.

381 IRON: lOuh to I.OOOuh 25ma 70c.

FILTERS Plus post $1.

2 7 : Line filter 2 amp $ 1 2.

29: Line filter l0/20amp $37.50.
L 30:Pulsefitter2amp$12.

MAI L cheque or money order

(add postage) direct to:

—

RCS radio pty ltd

651 FOREST RD BEXLEY
NSW 2207 587 3491

ELECTRONICS Australia, August, 1975 71

