
OS/8 
anguage Reference Manual 

Order No. AA-H609A-TA 



O W 8  
Language Reference Manual 

Order No. AA-H609A-TA 

ABSTRACT 

This document describes the following languages 
supported by OS/8: BASIC, FORTRAN IV, 
PALS, FORTRAN 11, FLAP/RALF, SABR. 

SUPERSESSION/UPDATE IN FORMATION: This manual supersedes sections of the 
OS/8 Handbook (DEC-S8-OSHBA-A-D). 

OPERATING SYSTEM AND VERSION: OS!8 V 3 D 

- -- - - - - ---- 

To order additional copies of this document, contact the Software Distribution 
Center, Digital Equipment Corporation, Maynard, Massachusetts 01754 

digital equipment corporation maynard, massachusetts 



First Printing, March 1979 

The information in this document is subject to change without notice 
and should not be construed as a commitment by Digital Equipment 
Corporation. Digital Equipment Corporation assumes no responsibility 
for any errors that may appear in this document. 

The software described in this document is furnished under a license 
and may only be used or copied in accordance with the terms of such 
license. 

No responsibility is assumed for the use or reliability of software on 
equipment that is not supplied by DIGITAL or its affiliated companies. 

Copyright (c) 197 9 by Digital Equipment Corporation 

The postage-prepaid READER'S COMMENTS form on the last page of this 
document requests the user's critical evaluation to assist us in pre- 
paring future documentation. 

The following are trademarks of Digital Equipment Corporation: 

DIGITAL 
DE C 
PDP 
DECUS 
UNIBUS 
COMPUTER LABS 
COMTEX 
DDT 
DECCOMM 
ASSIST-11 
VAX 
DECnet 

~~Csystem-10 
DECtape 
DIBOL 
EDUSYSTEM 
FLIP CHIP 
FOCAL 
INDAC 
LAB - 8 
DECSY STEM-2 0 
RTS-8 
VMS 
IAS 

MASSBUS 
OMNIBUS 
OS/8 
PHA 
RSTS 
RS X 
TYPESET-8 
TYPESET-11 
TMS-11 
ITPS-10 
SBI 





CONTENTS 

PAL8 

FORTRAN II 

7RALF 

SABR 



DOCUMENTATION SET FOR OS/8 

OS/8 SYSTEM GENERATION NOTES (AA-H606A-TA) 

The System Generation Notes provide the information you need 
to get a new OS/8 system running. 

OS/8 SYSTEM REFERENCE MANUAL (AA-H607A-TA) 

The System Reference Manual describes OS/8 system 
conventions, keyboard commands, and utility programs. 

OS/8 TECO REFERENCE MANUAL (AA-H6 08A-TA) 

The TECO Reference Manual describes the OS/8 version of this 
character-oriented text editing and correcting program. 

OS/8 LANGUAGE REFERENCE MANUAL (AA-H609A-TA) 

The Language Reference Manual describes all languages 
supported by OS/8, including BASIC, FORTRAN IV, and the PAL8 
assembly language. 

OS/8 ERROR MESSAGES (AA-H610A-TA) 

This manual lists in alphabetical order all error messages 
generated by OS/8 system programs and languages. 





CONTENTS 

P a g e  

CHAPTER 1 OS/8 BASIC 

OVERVIEW 
W r i t i n g  a BASIC P r o g r a m  
T h e  BASIC C h a r a c t e r  S e t  
E n t e r i n g  and R u n n i n g  a BASIC P r o g r a m  

ELEMENTS OF BASIC 
C o n s t a n t s  
N u m e r i c  C o n s t a n t s  
S t r i n g  C o n s t a n t s  
V a r i a b l e s  
N u m e r i c  V a r i a b l e s  
S t r i n g  V a r i a b l e s  
S u b s c r i p t e d  V a r i a b l e s  
E x p r e s s i o n s  
A r i t h m e t i c  E x p r e s s i o n s  
R e l a t i o n a l  E x p r e s s i o n s  
S t r i n g  C o n c a t e n a t i o n  

FORMATTING BASIC STATEMENTS 
THE ASSIGNMENT STATEMENT -- LET 
THE COMMENT STATEMENT -- REMARK 
INPUT AND OUTPUT STATEMENTS 

INPUT 
READ, DATA, and RESTORE 
DIMENSION 
P R I N T  
P r i n t i n g  Z o n e s  -- F o r m a t  C o n t r o l  
C h a r a c t e r s  
P r i n t i n g  N u m b e r s  and S t r i n g s  
P r i n t i n g  w i t h  t h e  TAB and PNT F u n c t i o n s  

CONTROL STATEMENTS 
U n c o n d i t i o n a l  T r a n s f e r  -- GOT0 
C o n d i t i o n a l  T r a n s f e r  -- IF  GOT0 and 
I F  THEN 
L o o p i n g  -- FOR, S T E P ,  and NEXT 
N e s t e d  L o o p s  
S t o p p i n g  -- END and STOP 
J u m p i n g  t o  Subrout ines  -- GOSUB and 
RETURN 

FUNCTIONS 
N u m e r i c  F u n c t i o n s  
C a l c u l a t i n g  S i n e  -- S I N  
C a l c u l a t i n g  C o s i n e  -- COS 
C a l c u l a t i n g  t h e  A r c t a n g e n t  -- ATN 
C a l c u l a t i n g  t h e  T a n g e n t  
F i n d i n g  t h e  Square R o o t  -- SQR 
T h e  E x p o n e n t i a l  F u n c t i o n  -- EXP 
C a l c u l a t i n g  t h e  N a t u r a l  L o g a r i t h m  -- LOG 
T h e  In t ege r  F u n c t i o n  -- I N T  

ill 



CONTENTS ( C o n t .  ) 

P a g e  

T h e  A b s o l u t e  V a l u e  F u n c t i o n  -- ABS 
T h e  S i g n  F u n c t i o n  -- SGN 
R a n d o m  N u m b e r s  -- RND 
S t r i n g  F u n c t i o n s  
F i n d i n g  t h e  L e n g t h  o f  a S t r i n g  -- LEN 
F i n d i n g  a S u b s t r i n g  -- PoS 
D i s p l a y i n g  a S u b s t r i n g  -- SEG$ 
C o n v e r t i n g  a C h a r a c t e r  t o  A S C I I  C o d e  -- 
AS C  
C o n v e r t i n g  A S C I I  C o d e  t o  a C h a r a c t e r  -- 
CHR$ 
C o n v e r t i n g  N u m b e r s  f r o m  S t r i n g  t o  N u m e r i c  
F o r m a t  -- VAL 
C o n v e r t i n g  a N u m b e r  t o  a S t r i n g  -- STR$ 
U s e r - D e f i n e d  F u n c t i o n s  
T h e  F N a  F u n c t i o n  a n d  t h e  DEF S t a t e m e n t  
T h e  UDEF F u n c t i o n  C a l l  a n d  t h e  USE 
S t a t e m e n t  
T h e  D e b u g g i n g  F u n c t i o n  -- TRC 
C a l l i n g  f o r  t h e  D a t e  -- t h e  DAT$ F u n c t i o n  

F I L E  STATEMENTS 
F i l e  C o n t r o l  
O p e n i n g  a F i l e  -- F I L E #  
C l o s i n g  a F i l e  -- CLOSE# 
F i l e  1/0 
R e a d i n g  D a t a  f r o m  a F i l e  -- INPUT# 
W r i t i n g  D a t a  o n  a F i l e  -- PRINT# 
R e s e t t i n g  a F i l e  -- RESTORER 
C h e c k i n g  f o r  E n d - o f - F i l e  -- t h e  I F  END# 
S t a t e m e n t  

SEGMENTING PROGRAMS -- THE CHAIN STATEMENT 
BASIC COMMANDS 

E n t e r i n g  a New P r o g r a m  -- t h e  NEW Command 
C a l l i n g  f o r  a n  O l d  P r o g r a m  -- t h e  OLD 
Command 
R u n n i n g  a P r o g r a m  -- t h e  RUN Command 
D i s p l a y i n g  a P r o g r a m  -- t h e  L I S T  Command 
S t o r i n g  a P r o g r a m  -- t h e  SAVE Command 
R e n a m i n g  a P r o g r a m  -- t h e  NAME Command 
E r a s i n g  t h e  W o r k s p a c e  -- t h e  SCRATCH 
Command 
L e a v i n g  BASIC -- t h e  BYE Command 
R e s e q u e n c i n g  a P r o g r a m  -- C a l l i n g  RESEQ 
Key C o m m a n d s  

1 . 1 1 . 1 0 . 1  c o r r e c t i n g  T y p i n g  a n d  F o r m a t  E r r o r s  -- 
DELETE, CTRL/U 

1 . 1 1 . 1 0 . 2  E l i m i n a t i n g  P r o g r a m  L i n e s  -- RETURN 
1 . 1 1 . 1 0 . 3  I n t e r r u p t i n g  P r o g r a m  E x e c u t i o n  -- CTRL/C 
1 . 1 1 . 1 0 . 4  C o n t r o l l i n g  P r o g r a m  L i s t i n g s  o n  t h e  

T e r m i n a l  -- CTRL/S,  CTRL/Q, a n d  CTRL/O 

CHAPTER 2  CREATING ASSEMBLY LANGUAGE FUNCTIONS 2 - 1  

2 . 1  INTRODUCTION 
2 . 2  THE BASIC RUN-TIME SYSTEM - BRTS 
2 . 2 . 1  BRTS S y m b o l  T a b l e s  



P a g e  

T h e  S c a l a r  T a b l e  
T h e  A r r a y  S y m b o l  T a b l e  
T h e  S t r i n g  S y m b o l  T a b l e  
T h e  S t r i n g  A r r a y  T a b l e  
S t r i n g  Storage 
T h e  S t r i n g  A c c u m u l a t o r  
S t r i n g  A r r a y  Storage 
T h e  DATA L i s t  
A r r a y  S p a c e  
C o m p i l e r  P s e u d o - C o d e  
F i l e  B u f f e r  S p a c e  
D e v i c e  H a n d l e r  Space 
T h e  BRTS 1/0 T a b l e  
T h e  BRTS F l o a t i n g - p o i n t  P a c k a g e  
T h e  F l o a t i n g - p o i n t  A c c u m u l a t o r  
F l o a t i n g - p o i n t  R o u t i n e s  
BRTS O v e r l a y  B u f f e r  

CALLING FLOATING-POINT ROUTINES 
USING BRTS SUBROUTINES I N  ASSEMBLY-LANGUAGE 
FUNCTIONS 

ARGPRE 
XPUTCH 
XPRINT 
PSWAP 
UNSFIX 
STFIND 
ivip y 
DLREAD 
ABSVAL 

PASSING ARGUMENTS TO THE USER FUNCTION 
U s i n g  t h e  USE S t a t e m e n t  

BRTS INPUT/OUTPUT 
INTERFACING AN ASSEMBLY LANGUAGE FUNCTION 
TO BRTS 
SOME GENERAL CONSIDERATIONS 

R o u t i n e s  U n u s a b l e  by A s s e m b l y  L a n g u a g e  
F u n c t i o n s  
U s i n g  OS/8 
U s i n g  D e v i c e  D r i v e r  and F i l e  B u f f e r  S p a c e  
U s i n g  t h e  I n t e r r u p t  F a c i l i t y  
U s i n g  P a g e  0 

CHAPTER 3 OPTIMIZING SYSTEM PERFORMANCE 3 - 1  

3 . 1  BYPASSING THE B A S I C  EDITOR 3- 1 
3 . 2  PLACING BASIC OVERLAYS ON THE SYSTEM DEVICE 3 - 2  
3 . 3  GROUPING FUNCTION CALLS I N  BASIC PROGRAMS 3- 2 
3 . 4  MAKING SAVE IMAGES OF BASIC SOURCE PROGRAMS 3 - 3  

CHAPTER 4 OS/8  BASIC SYSTEM BUILD INSTRUCTIONS 4 - 1  

4 . 1  THE BASIC SYSTEM 
4 . 2  MAKING SAVE IMAGES FROM BINARY F I L E S  
4 . 2 . 1  Non-EAE BASIC 
4 . 2 . 2  EAE BASIC 
4 . 3  ASSEMBLING THE BASIC SOURCES 



CONTENTS ( C o n t  . ) 

P a g e  

CHAPTER 5 

APPENDIX A 

APPENDIX B 

APPENDIX C 

APPENDIX D 

INDEX 

FIGURE 2 - 1  

TABLE 1- 1 

5- 1 

LAB8/E FUNCTIONS FOR OS/8  B A S I C  

GENERAL DESCRIPTION 
PREPARING BASIC FOR LAB8/E FUNCTIONS 
D E F I N I T I O N  OF LAB8/E SUPPORT FUNCTIONS 
L A B ~ / E  EXAMPLES 
GETTING ON THE A I R  WITH BASIC 
LAB8/E FUNCTION SUMMARY 

SUMMARY OF BASIC EDITOR COMMANDS 

SUMMARY OF BASIC STATEMENTS 

SUMMARY OF BASIC FUNCTIONS 

BASIC ERROR MESSAGES 

FIGURES 

BRTS C o n f i g u r a t i o n  

TABLES 

Index- 1 

A l p h a n u m e r i c  C h a r a c t e r s  and C o r r e s p o n d i n g  
A S C I I  C o d e  N u m b e r s  1 -34  
L A B ~ / E   unction S u m m a r y  5 - 1 9  



CHAPTER 1 

OS/8 BASIC 

1.1 OVERVIEW 

BASIC (Beginner's All-Purpose Symbolic Instruction Code) is a 
high-level computer language for scientific, commercial, and 
educational applications. 

BASIC is all-purpose. You can use it to process large amounts 
of data as well as to solve complex mathematical problems. 

BASIC is conversational. You write programs with simple 
English keywords and common mathematical expressions. You 
run, store, and retrieve programs with a set of simple 
commands resembling English verbs. 

BASIC is interactive. You can input data while a program is 
running and make changes and corrections in statements under 
the direction of the BASIC editor. BASIC locates any 
formatting errors you make in entering your program and prints 
appropriate messages to help you correct them. 

1.1.1 writing a BASIC Program 

You write a BASIC program as a series of numbered lines, each 
containing one or more instructions called statements. 

The format of a typical one-line statement line is 

For example: 

PRINT " H O O R A Y  ! ' RETURN 

Line Terminator (line number) 

The line number -- which may range from 1 to 99999 -- identifies the 
line and indicates its position in the sequence of operations set out 
in the program. You do not have to enter the lines in numerical 
order. BASIC automatically sorts them before it executes the program. 
You may remove or insert lines at any time to modify a program. For 
this reason, it is good programming practice to leave room for later 
additions by numbering lines in increments of five or ten. 

The first element in the statement -- the keyword -- tells BASIC what 
to do. For example, the keyword in the example -- PRINT -- instructs 
BASIC to display output, such as a message or the result of a 
computation, on the terminal. 

Statement 

Keyword Argument 



OS/8 BASIC 

The s e c o n d  e l e m e n t  i n  t h e  s t a t e m e n t  -- t h e  a rgumen t  -- may be  a  
f o r m u l a ,  a  word o r  p h r a s e ,  a  v a r i a b l e ,  a  l i n e  number -- a n y t h i n g  BASIC 
c a n  t a k e  a c t i o n  upon.  I n  t h e  example  a b o v e ,  t h e  a rgumen t  i s  t h e  
message  "HOORAY!", which  BASIC w i l l  d i s p l a y  on  t h e  t e r m i n a l .  

The l i n e  t e r m i n a t o r  -- RETURN -- e n t e r s  t h e  program l i n e  i n t o  t h e  
s y s t e m .  Even t hough  you t y p e  t h e  l i n e  on  t h e  keyboa rd  and  s e e  i t  
echoed  on y o u r  t e r m i n a l  s c r e e n ,  t h e  B A S I C  e d i t o r  does n o t  r e c e i v e  i t  
u n t i l  you s t r i k e  t h e  RETURN key.  

The l a s t  l i n e  i n  e v e r y  BASIC program m u s t  b e  a n  END s t a t e m e n t .  The 
f o r m a t  i s  

( l i n e  number)  END 

BASIC s t a t e m e n t s  a r e  d e s c r i b e d  i n  S e c t i o n s  1 . 3  t h r o u g h  1 . 7 . 5 .  

1 . 1 . 2  The BASIC C h a r a c t e r  S e t  

The a l p h a b e t  o f  t h e  BASIC l a n g u a g e  is t h e  f u l l  s e t  o f  ASCII (Amer ican  
S t a n d a r d  Code f o r  I n f o r m a t i o n  I n t e r c h a n g e )  c h a r a c t e r s .  T h i s  s e t  
i n c l u d e s  

Uppe r - ca se  l e t t e r s  A t h r o u g h  Z 

Numbers 0 t h r o u g h  9 

S p e c i a l  c h a r a c t e r s  ( *  and  $ ,  f o r  examp le )  

N o n p r i n t i n g  c h a r a c t e r s  ( s p a c e  and  t a b ,  f o r  examp le )  

You may i n c l u d e  a l l  ASCII c h a r a c t e r s  i n  a  p rogram.  BASIC c o n v e r t s  
l o w e r - c a s e  l e t t e r s  t o  uppe r  c a s e ,  i g n o r e s  n o n p r i n t i n g  c h a r a c t e r s ,  and 
l e a v e s  a l l  o t h e r  c h a r a c t e r s  unchanged .  

1 . 1 . 3  E n t e r i n g  and  Running  a  BASIC Program 

To r u n  a  BASIC p rog ram you mus t  f i r s t  e n t e r  i t  i n t o  a  s p e c i a l  a r e a  i n  
t h e  memory o f  you r  compu te r  -- c a l l e d  t h e  workspace  -- t h a t  BASIC 
r e s e r v e s  f o r  u s e r - w r i t t e n  p rog rams .  To d o  t h i s ,  summon t h e  BASIC 
e d i t o r  by t y p i n g  

B A S I C  - 

i n  r e s p o n s e  t o  t h e  Mon i to r  d o t .  BASIC w i l l  t h e n  d i s p l a y  t h e  message  

t o  d e t e r m i n e  i f  you want  t o  e n t e r  a  p rog ram f rom t h e  t e r m i n a l  o r  r u n  
o n e  t h a t  you have  p r e v i o u s l y  s t o r e d  a s  a  f i l e .  

Assume, f o r  examp le ,  t h a t  you have  a  new program c a l l e d  CHEERS t h a t  
you want  t o  e n t e r  and  r u n .  Type 



As soon as BASIC displays a message to indicate that it is READY, 
begin typing your program line by l i n e .  

This complete four-line program now resides in the workspace. To run 
it, type the command 

RUN 

BASIC displays a header line, followed by the program output. 

HOORAY ! 
Hi1OF':AY ! 
HOORAY ! 

In addition to the RUN command, BASIC provides commands that let you 
display on the terminal the program that is in the workspace, store it 
as a file on a peripheral device and retrieve it later for re-use, 
change its name, renumber it, or erase it from the workspace. For a 
complete description of BASIC commands, see Section 1.11. 

1.2 ELEMENTS OF BASIC 

The following sections define the elements of BASiC programming. 

1.2.1 Constants 

A constant is a quantity with a fixed value. In BASIC, you may enter 
constants from the terminal or instruct BASIC to read them from a data 
list or from a file during program execution. 

1.2.1.1 Numeric Constants - BASIC accepts numbers within the range 

and treats all numbers as decimal numbers. That is, it accepts any 
number containing a decimal and assumes a decimal point after any 
integer. 

BASIC uses a second format -- called exponential or E-type 
notation -- to express numbers outside the range +.00001<N<999999. 
The format for an E-type number is 

xxxx. xxxx E (+ or - )  nnn 

where E represents "times 10 to the power of." Thus, for the number 
23.4E2, read "23.4 times 10 to the power of 2." Expressed another way, 

You may input data in either format. Results of computations with an 
absolute value outside the range +.00001<N<999999 are always output in 
E-type format. 



OS/8 BASIC 

BASIC prints six significant digits in normal operation as shown in 
the following examples. 

You enter: BASIC outputs: 
.O1 .O1 
.0099 .0099 
999999 999999 
1000000 l.OOOOOE+OO6 
.0000009 9.00000-007 

BASIC automatically suppresses leading zeros in integer numbers and 
trailing zeros in decimal fractions. BASIC outputs exponential 
numbers in the form 

(blank or - )  x.xxxxxE (+  or - )  nnn 

For example: 

-3.37021E+008 equals -337,021,000 
7.26000E-004 equals 0.000726 

BASIC stores numbers internally with a precision of 23 bits. 
Arithmetic operations are accurate to 22 bits. No rounding is done. 

BASIC does conversions from ASCII to internal format and vice-versa in 
extended precision. Conversion to internal format is rounded to 23 
bits. On output, BASIC rounds the result to 6 decimal digits. 

1.2.1.2 String Constants - A string constant is any keyboard 
character or group of characters -- letters, numbers, spaces, 
symbols -- that you want to use as data. In BASIC programs, string 
constants must be enclosed by quotation marks. The quotation marks 
i z s t r u c t  BASIC ta t r e a t  c h a r ~ c t e r s  wit hi^ khsx exzckly z s  YOU type 
them in at the terminal. 

For example, this program of PRINT statements 

10 P R I N T  " I  AM A STRING" 
20 F:lFtIN-r " @ x $ - - * z  $ X S  * 
30 P R I N T  "$346+98" 
40 P R I N T  " " " H I  THE:RE! 
50 PRINT  "30 + 20" 
60 P R I N T  30 + 20 
99 E-'ND 

will cause BASIC to display 

I A M  A STRING 
@ ^ r " * X  $ % #  
$346 + 98 

Note that BASIC does not consider the enclosing quotation marks to be 
part of the string. As line 40 demonstrates, to display quotation 
marks, you must place them within a double pair. 

Lines 50 and 60 show the difference between string and numeric data. 
The quotation marks cause BASIC to display the string "30 + 20" 
exactly as you enter it. In line 60 BASIC performs a computation on 
the expression 30 + 20 and prints the sum of 50. 



OS/8 BASIC 

1 . 2 . 2  V a r i a b l e s  

I BASK pr-r'.s-f~-a~,m-!no. a v a r i a b l e  i s  a symbol ic  name r e p r e s e n t i n g  a 
number o r  a  c h a r a c t e r  s t r i n g .  When you a s s i g n  a  n u m e r i c  o r  s t r i n g  
v a l u e  t o  a  v a r i a b l e  ( w i t h  a LET s t a t e m e n t ,  f o r  e x a m p l e ) ,  t h e  v a l u e  is 
s a i d  t o  be " s t o r e d "  i n  t h e  v a r i a b l e .  T h i s  means t h a t  BASIC h a s  p l a c e d  
t h e  v a l u e  i n  a memory l o c a t i o n  == o r  l o c a t i o n s  -- associated w i t h  the 
v a r i a b l e  name. 

For  example ,  t h e  f o l l o w i n g  s t a t e m e n t  s t o r e s  t h e  v a l u e  37 i n  t h e  
v a r i a b l e  N .  

I f  N a l r e a d y  c o n t a i n s  a  v a l u e ,  t h e  new v a l u e  r e p l a c e s  i t .  

Once you have  a s s i g n e d  a  v a l u e  t o  a  v a r i a b l e ,  BASIC w i l l  u s e  t h e  v a l u e  
i n  a n y  e x p r e s s i o n  i n  which  t h e  v a r i a b l e  appears.  For example:  

T h i s  s t a t e m e n t  e v a l u a t e s  t h e  e x p r e s s i o n  N*2 and s t o r e s  t h e  r e s u l t  i n  
t h e  v a r i a b l e  B. 

You may i n s t r u c t  BASIC t o  c h a n g e  t h e  v a l u e  o f  a  v a r i a b l e  a n y  number o f  
times d u r i n g  o n e  e x e c u t i o n  o f  a  p rog ram.  BASIC a l w a y s  u s e s  t h e  mos t  
r e c e n t l y  a s s i g n e d  v a l u e  when p e r f o r m i n g  c a l c u l a t i o n s .  

The f o l l o w i n g  s e c t i o n s  d e s c r i b e  n u m e r i c  v a r i a b l e s ,  s t r i n g  v a r i a b l e s ,  
and s u b s c r i p t e d  v a r i a b l e s .  

1 , 2 0 2 - 1  Numeric  V a r i a b l e s  - A n u m e r i c  v a r i a b l e  name c o n s i s t s  o f  a  
l e t t e r  o r  a l e t t e r  f o l l o w e d  by a  d i g i t .  For  examp le ,  

A c c e p t a b l e  V a r i a b l e s  U n a c c e p t a b l e  V a r i a b l e s  

M 2 C  ( A  v a r i a b l e  c a n n o t  b e g i n  w i t h  a  d i g i t . )  

R2 AB ( A  v a r i a b l e  may c o n t a i n  o n l y  o n e  l e t t e r . )  

U n l e s s  you s p e c i f y  o t h e r w i s e ,  BASIC a u t o m a t i c a l l y  s e t s  a l l  v a r i a b l e s  
t o  z e r o  b e f o r e  e x e c u t i n g  a  p rog ram.  However,  i f  you w i s h  t o  a s s i g n  
z e r o ,  i t  is good programming p r a c t i c e  t o  d o  t h e  i n i t i a l i z i n g  y o u r s e l f  
a t  t h e  b e g i n n i n g  o f  t h e  program.  You c a n  d o  t h i s  w i t h  a  s e r i e s  o f  LET 
s t a t e m e n t s  o r  by u s i n g  READ and  DATA s t a t e m e n t s .  Fo r  e x a m p l e ,  t h i s  
s t a t e m e n t  

t e l l s  BASIC t o  a s s i g n  0 t o  A and  B and  5 t o  C .  ( S e e  S e c t i o n  1 . 6 . 2  f o r  
READ and  DATA.) 

1 . 2 . 2 . 2  S t r i n g  V a r i a b l e s  - A s t r i n g  v a r i a b l e  name c o n s i s t s  o f  a  
l e t t e r  -- o r  a  l e t t e r  and  a  d i g i t  -- f o l l o w e d  by  a  d o l l a r  s i g n .  A$ 
and  A2$ a r e  b o t h  l e g i t i m a t e  s t r i n g  v a r i a b l e  names; 2A$ and  AA$ a r e  
n o t .  

You may a s s i g n  no more t h a n  e i g h t  c h a r a c t e r s  t o  a  s t r i n g  v a r i a b l e  
u n l e s s  you have  f i r s t  s p e c i f i e d  t h e  d i m e n s i o n s  w i t h  a  D I M  s t a t e m e n t .  
( S e e  S e c t i o n  1 . 6 . 3 . )  



1.2.2.3 Subscripted Variables - A subscripted variable consists of a 
string or numeric variable name followed by a subscript in 
parentheses. A subscript may be a number, a numeric variable, an 
expression, or any two such elements separated by a comma. The 
following are all legal subscripted variables: 

If the subscript is not a whole number, BASIC uses only the whole 
number part. Thus, in the example above F$ (3.4) is the same as F$ (3). 
BASIC permits a subscript value of zero. 

The subscript in a numeric variable serves as a pointer to a location 
in a list or table. For example, this subscripted numeric variable 

x (3) 

indicates the fourth position in the list 

Note that all subscripted variables in a list or table share the same 
variable name. 

Two subscripts appended to a n u m e r i c  variable (and separated by 
commas) indicate a row and column number in a table. This variable 

points to row three column five. 

One subscript appended to a string variable name indicates the length 
of the string. Two subscripts indicate its position in a list and its 
length. For example, this variable 

will accept a string constant 35 characters long. This variable 

R$(5,35) 

indicates 
string 35 

that the sixth position 
characters long. 

list (beginning with holds a 

You cannot create a table of string variables in a BASIC program. 

A program may contain the same variable in both a subscripted and an 
unsubscripted form. For example, BASIC will recognize A(1) and A in 
the same program. However, once subscripted, a variable must contain 
the same number of subscripts throughout the program. If A(1) occurs, 
for example, BASIC will not accept A(3,4). 

For further discussion of lists and tables, see the DIM statement in 
Section 1.6.3. 



1.2.3 Expressions 

An expression is a group of numerics or alphanumerics which, when 
evaluated, equals a number or a string. Expressions contain special 
symbols -- called operators -- which direct BASIC in its evaluation. 
BASIC recognizes three types of operators: 

e ~rithmetic operators 

a Relational operators 

a String operators 

1.2.3.1 Arithmetic Expressions - BASIC uses the following operators 
to perform addition, subtraction, multiplication, division, and 
exponentiation. 

Symbol Meaning 

+ Addition 

Example 

- Subtraction A-B 

/ Division A/B 

or ** Exponentiation A/B or A**B 

In any mathematical formula, BASIC first treats expressions enclosed 
by parentheses. After parentheses, BASIC maintains the following 
order of priority. 

2. Multiplication and Division (equal priority) 

3. Addition and Subtraction (equal priority) 

When all of the operators in an expression have equal claim to 
priority, BASIC simply evaluates the expression from left to right. 
For example, in this expression, 

BASIC adds A to B and then subtracts C from the sum. 

Parentheses let you control the order in which BASIC performs the 
operations called for in an expression. You may nest parentheses 
within parentheses. Where nesting occurs, BASIC will give first 
attention to the elements contained in the innermost "nest." 

In this example, 

the order of priority is 

1. B**2 BASIC raises B to the power of 2. 

2. B**2+4 BASIC adds 4 to B**2. 

3. (B**2+4) /X BASIC divides the result so far by X. 

4. 7((B**2+4)/X) BASIC multiplies by 7 and then assigns the 
result to A. 



Since  BASIC ignores  space s ,  you may use them t o  make complex 
exp re s s ions  e a s i e r  t o  read .  Spacing w i l l  c ons ide r ab ly  improve t h e  
appearance of  t h e  example above. 

1.2.3.2 R e l a t i o n a l  Express ions  - R e l a t i o n a l  o p e r a t o r s  i n s t r u c t  BASIC 
t o  determine t h e  r e l a t i o n s h i p  between two va lue s  i n  an exp re s s ion .  
BASIC recognizes  s i x  r e l a t i o n a l  o p e r a t o r s .  

< l e s s  than 

=< or  <= l e s s  than  or equa l  t o  

> g r e a t e r  than  

=> o r  >= g r e a t e r  than o r  equa l  t o  

< >  o r  X not  equa l  

R e l a t i o n a l  o p e r a t o r s  s e t  t h e  c o n d i t i o n s  i n  IF-THEN s t a t emen t s .  Th i s  
s t a t emen t  

d i r e c t s  BASIC t o  determine t h e  r e l a t i o n s h i p  between A and B and jump 
t o  l i n e  50 i f  A is g r e a t e r .  

You can use s t r i n g s  and s t r i n g  v a r i a b l e s  i n  r e l a t i o n a l  exp re s s ions .  
BASIC compares s t r i n g s  one alphanumeric c h a r a c t e r  a t  a  t ime ,  us ing 
ASCII code numbers t o  determine i f  one c h a r a c t e r  i s  " g r e a t e r "  o r  
11 -Less" I t h a n  ano the r .  B A S I C  proceeds  from l e f t  t o  r i g h t  u n t i l  i t  
reaches  t h e  end of t h e  s t r i n g s  o r  u n t i l  i t  d i s c o v e r s  an i n e q u a l i t y .  
I f  one s t r i n g  i s  s h o r t e r ,  BASIC adds spaces  t o  i t  u n t i l  both a r e  t h e  
same l e n g t h .  For example, i n  comparing AB t o  A B C D ,  BASIC w i l l  t r e a t  
AB a s  AB ( space)  ( s p a c e ) .  

1 .2 .3 .3  S t r i n g  Concatenat ion - BASIC recognizes  t h e  ampersand ( & )  a s  
an o pe ra to r  i n  s t r i n g  exp re s s ions .  The ampersand a l lows  you t o  
conca t ena t e  s t r i n g s  -- t h a t  i s ,  t o  j o i n  them t o g e t h e r .  For example: 

:1.0 LET A$--"BEAN' 
20 IFT  P*:::: " TOWN 
30 P R I N T  A$ & B$ 
99 END 

Thi s  program w i l l  cause  BASIC t o  d i s p l a y :  

You may use t h e  ampersand t o  conca tena te  s t r i n g s  wherever a  s t r i n g  i s  
l e g a l  -- with one excep t ion .  A conca tena ted  s t r i n g  v a r i a b l e  may no t  
appear t o  t h e  l e f t  of t h e  equa l  s i g n  i n  a  LET s ta tement .  Thus, t h i s  
s t a t emen t  i s  l e g a l :  

t h i s  s t a tement  i s  no t :  



OS/8 BASIC 

1.3 FORMATTING BASIC STATEMENTS 

Every BASIC program consists of a sequence of numbered lines, each 
containing one or more instructions called statements. 

The format of a typical single-statement line is 

(line number) keyword argument 

where the keyword is an instruction to BASIC and the argument is some 
element that BASIC can act upon. 

Here are some examples of single-statement lines. 

10 PRINT " H O O R A Y '  

A multistatement line is one that contains more than one 
keyword/argument combination. The format is 

(line number) STATEMENT~\STATEMENT~\STATEMENT~ 

For example: 

BASIC executes the statements in a multistatement line from left to 
right. The backslash -- like RETURN -- terminates a statement. 

The line number -- which may range from 1 to 99999 -- identifies the 
line and any statement or statements it contains; it also indicates a 
line's position in the sequence of operations set out in the program. 
Keep in mind the following features and rules when entering and 
numbering BASIC lines. 

You may enter lines in any order. The RUN command causes 
BASIC to sort all lines into numerical order before executing 
the program. 

You may add, delete, or shift lines at any time to modify your 
program. 

a You should number lines in increments of five or ten, in order 
to leave room for additional statements you may want to insert 
later. 

If your modified program contains consecutively numbered 
lines, making it difficult to insert further statements, you 
may renumber your program with the BASIC RESEQ program. The 
RESEQ program lets you specify a suitable increment between 
lines. 

The keyword -- the first element in the statement -- tells BASIC what 
it must do in order to successfully execute the instruction. The 
argument of the statement is the entity that BASIC acts upon. It may 
be a number, a string, an expression, a variable, or a line number. 
For example, in the single-statement lines above, the keyword PRINT 
tells BASIC to display the string HOORAY! on the screen, the keyword 
LET to assign the value 8 to the variable A, the keyword GOT0 to jump 
to line 90, and the keyword INPUT to receive a value from the terminal 
and assign it to the variable R$. 



OS/8 BASIC 

1.4 THE ASSIGNMENT STATEMENT -- LET 
The LET statement uses the equal sign (= )  to assign a value to a 
variable. 

The format is 

(line number) [LET] v = expression 

where 

v is a variable 

expression is a number, a string, a variable, or an 
arithmetic expression 

The LET statement is the only BASIC statement in which the keyword is 
optional. For example, these two lines 

will both cause BASIC to assign the value 5 to the variable A. 

The equal sign in a LET statement indicates replacement rather than 
equality. That is, the LET statement causes BASIC to evaluate the 
expression on the right of the equal sign and assign the value to the 
variable on the left, replacing its previous value. For example, the 
statement 

causes BASIC to add one to the value of K and store the result in the 
variable K. 

BASIC performs any mathematical operations and functions that you call 
for in a LET statement. In this statement 

BASIC sets the variable A equal to the value of C plus the square root 
of the variable B. 

This statement 

assigns a string to a string variable. 

The following statement causes BASIC to set element 3,2 in array A 
equal to element 1,4 in array B. 

1.5 THE COMMENT STATEMENT -- REMARK 
The REM statement lets you document your source program with notes and 
comments, for example: 



1.6 INPUT AND OUTPUT STATEMENTS 

BASIC provides you with three ways to supply a program with data: 

0 The INPUT statement lets you type in data while the program is 

y v u  insert data e The READ, DATA, and RESTORE statements let - 7 n 1 7  

into the program before you run it. 

to store data BASIC file statements make it possible for Ty-l i  

outside the main program and retrieve it under program 
control. 

This section describes only the first two methods. See Section 1.9 
for information on file input and output. 

The BASIC PRINT statement causes BASIC to display strings and the 
results of computations on the terminal. 

1.6.1 INPUT 

The INPUT statement allows you to enter data while the program is 
running. 

The format of the INPUT statement is 

(line number) INPUT xl, x2 ,... ,xn 
where xl through xn represent numeric variables or string variables. 
If the INPUT statement contains both numeric and string variables, you 
must enter the appropriate type of data in the proper seffuence, 
assigning numbers to numeric variables and data strings to string 
variables. 

For example, the following line 

requires a number, a string, and another number entered in that order. 

The INPUT statement causes BASIC to pause during the execution of the 
program, print a question mark ( ? ) ,  and wait for you to type in one 
value for each variable in the statement. Enter the values. 
separating them with commas, and press the RETURN key. If you press 
RETURN without typing in all the data requested, BASIC will display 
another question mark and await the rest of the data. If you provide 
more data than the statement requests, BASIC saves the remaining or 
unused data for use by the next INPUT statement. 

BASIC recognizes only the following characters as numeric data. 

digits 0 through 9 

the letter E (for use in floating-point numbers) 

. (first decimal point) 



OS/8 BASIC 

BASIC ignores leading spaces and treats all other characters as 
delimiters for separating numeric data. When BASIC encounters a 
character other than those specified above, it will assume that it has 
come to the end of the entry relating to the variable it is currently 
reading and will apply any character typed in after that to the next 
variable. TWO delimiters in succession signify that the data between 
delimiters is 0. 

For example, the following program requires five numbers: 

BASIC prints a question mark to request data. 

If, in response to the INPUT prompt, you type 

BASIC will assign values to variables in the following manner: 

BASIC recognizes all characters -- including quotation marks -- as 
string data and assumes a string length of 8 characters unless you 
have defined the string variable with a DIM statement. (See Section 
1.6.3.) Since it accepts all characters as string data, BASIC treats 
only the carriage return as the delimiter of a string. To terminate a 
data string, type the RETURN key. 

1.6.2 READ, DATA, and RESTORE 

The READ and DATA statements make it possible for you to include data 
to a program before you run it. During execution, BASIC assigns 
values listed in the DATA statement to the variables in the READ 
statement. READ and DATA statements occur only in combination with 
each other. RESTORE causes BASIC to reuse the values in a DATA 
statement. 

The format of the READ statement is 

(line number) READ xl, x2, ..., xn 
where xl through xn represent variable names separated by commas. 

The format of the DATA statement is 

(line number) DATA xl, x2, ..., xn 
where xl through xn represent values separated by commas. 



Like the INPUT statement, the READ statement must occur in the program 
before t he  point where the data is required. DATA statements normally 
appear at the bottom of the program before the END statement, where 
you can find them easily when you wish to change input data. 

BASIC handles the items in READ and DATA statements sequentially. 
That is, it assigns the first value in the DATA statement to the first 
variable in the READ statement, the second variable to the second 
value, and so on. 

A READ statement may contain more or fewer variables than there are 
values in one DATA statement. READ causes BASIC to search all 
available DATA statements in the order of their line numbers until it 
has found values for all variables. When it has assigned values to 
all of the variables in one READ statement, BASIC will hold the 
remaining values in the DATA statement until it comes to the next READ 
-4-  -4-*mm*+ o \-a LCIII-~ L . 
All three of these routines will instruct BASIC to set variable A 
equal to 1, variable B equal to 2, and variable C equal to 3. 

10 READ A r B r C  

+ 
4 

75 D A T A  1 9 . 2 7 3  

99 END 

10 READ A 
* 
30 READ B 9 C  
+ 
4 

.y c:. , ..., D A T A 1 9 2 7 3 
99 END 

A DATA statement may contain both string and numeric data. String 
data in a DATA list must always be enclosed by quotation marks. 

This program will cause BASIC to assign 5 to variable C, "AAA" to 
variable D$, 12 to variable E, and "BEER" to variable F$. 

The RESTORE statement makes it possible for you to use the same data 
more than once in a program. RESTORE instructs BASIC to reset the 
data pointer to the first value in the first DATA statement in the 
program. Since BASIC then proceeds to read through the values as 
though for the first time, you may use the same variable names on the 
second pass through the data. 



The following program reads a DATA list twice. 

BASIC displays 

1.6.3 DIMENSION 

The DIM statement lets you create a list or table of subscripted 
variables for storing data. (You can organize numeric data in both 
lists and tables, but BASIC stores strings in lists only.) DIM also 
defines the length of a string assigned to a string variable. 

To create a list -- a one-dimensional array -- of subscripted numeric 
variables, use the following format: 

(line number) DIM x(n) 

where 

is a numeric variable name. All subscripted variables 
in the list share the same variable name. 

specifies the number of numeric elements in the list. 
(Since BASIC assigns 0 as the subscript of the first 
variable, the number of elements in the list is n + 1.) 

For a table -- a two-dimensional array -- of subscripted numeric 
variables, use the form 

(line number) DIM x(n,m) 

where 

x is a numeric variable name 

n specifies the number of rows in the table. 
number of rows in the table is n + 1.) 

m specifies the number of columns. (m + 1 
number of columns.) 

For example, this DIM statement introduces a list of six 
numeric variables: 

:I. 0 D I M A ( 5 1 

(The actual 

equals the 

subscr ipted 

10 DIM A  (5) 

AIOI  \ A ( ! )  \A121 \ ~ 1 . 3 )  \ ~ ( 4 )  \ A151 \ 



The following statement describes a table of 24 numeric elements. 

1 0  D I M  A ( 3 ~ 5 )  

SIX COLUMNS 

The number of elements in a table is (n + l ) * ( m  + 1). 

To specify the length of a string, use the DIM statement in the 
following manner; 

(line number) DIM X$ (n) 

where 

X$ is a string variable 

n is the length of the string. A string may contain no 
more than 72 characters. All strings that exceed 8 
characters in length must be dimensioned with a DIM 
statement. 

To introduce a list of subscripted string variables, use the format 

(line number) DIM X$ (n,m) 

where 

X$ is a string variable name 

n specifies the number of strings in the list. (The 
number of strings is n + 1.) 

T, is the length of each strinq -- up to 72 characters 
For example, this DIM statement describes one string 12 characters 
long: 

This statement describes 4 strings, each 20 characters long: 

This program will fill variables from a DATA list: 

10 DIM D$(3~20) 
2 0  FOR Y::--0 TO 3 
3 0  READ D$(Y) 
40 NEXT Y 
5 0  FOR Z--0 T O  3 
60 PRINT D $ < Z )  
70 NEXT Z 
80 DATA " Z E R O a ~ e O N E " ~ a T W O " ~ ' T H R E E "  



OS/8 BASIC 

Keep in mind the following features and rules concerning the DIM 
statement: 

Arrays are limited in size only by the amount of available 
memory -- that is, space not used by the monitor or the 
program statements. 

Subscripts n and m must be integer numbers. They may not be 
variables. 

A variable may not appear in a program with subscripts higher 
than the ones you have described in the DIM statement. 

BASIC assumes a string length of 8 characters or less unless 
you define the string variable with a DIM statement. If you 
wish to assign a string that is more than 8 characters long, 
you must DIMension the string variable. 

BASIC will not accept two-dimensional string variables. 

BASIC assigns a subscript of 0 to the first element in every 
array. Therefore, the number of elements in a one-dimensional 
array is n + 1, and the number of elements in a 
two-dimensional array is (n + 1) * (m + 1) . 
You may define more than one array with a single DIM 
statement. For example, this statement dimensions both the 
one-dimensional array A and the two-dimensional array B. 

1.6.4 PRINT 

The PRINT statement lets you instruct BASIC to display the results of 
computations, comments, and the values of variables, or to plot the 
points of a graph on a terminal. 

The format of the PRINT statement is 

(line number) PRINT expression (s) 

where expressions are numbers, variables, strings, or arithmetic 
expressions separated by format control characters. Using the PRINT 
statement without expressions will output a blank line on the 
terminal. 

To output the result of a computation or the value of a variable at 
any point in the program, type the line number, PRINT, and the 
variable name or names separated by a format control character. BASIC 
will use the current value of the variables to evaluate any algebraic 
expression in a PRINT statement. Thus, the program 

will output the following values on the terminal : 



To print a message or comment on the screen, type the text, enclosed 
hi7 -2 ^ f i ~ - i + a + i n n  y u u b L . L ~ w a .  m a r k s i  a'.b.-. 2s t h e  e x p r e s s i o n  o f  2 PRINT s t a t e m e n t ;  Use PRINT 
message statements in combination with INPUT statements to specify the 
data to be entered. 

These lines in a program will produce the following output on the 
screen. 

PRINT statements may c o n t a i n  a c o m b i n a t i o n  of messages and numeric 
variables. This line 

will (assuming that T=354) cause the following to be output during 
execution of the program: 

TOTAL NUMBER O F  SHEEP = 3 5 4  

1.6.4.1 Printing Zones -- Format Control Characters - OS/8 BASIC 
divides a terminal line into five fixed zones (called print zones) of 
fourteen columns each; To output data in a five-zone format, separate 
the variables in the PRINT statement with commas. To output data in a 
single-space row, separate the variables with semicolons. 

The following program illustrates the use of control characters in 
PRINT statements: 

READY 

As this example illustrates, when you list more than five variables in 
a PRINT statement, BASIC automatically moves the sixth number to the 
beginning of the next line. 

1.6.4.2 Printing Numbers and Strings - BASIC prints all numbers 
(integer, decimal, and E-type) in the following format: 

sign number space 

where the sign is either minus ( - )  or blank and the number is always 
followed by a blank space. 



OS/8 BASIC 

BASICBASIC prints strings exactly as you type them with no leading or 
trailing spaces. (To print quotation marks, you must delimit them 
with a double pair.) 

For example: 

1.6.4.3 Printing with the TAB and PNT Functions - The TAB function 
allows you to position characters anywhere on the terminal line. You 
may use the TAB function only in combination with a PRINT statement. 

The format of the TAB function is 

TAB (X) 

where X is the position (from 1 to 72 columns available on the 
terminal) in which the next character will be displayed. 

Each time the TAB function appears in a PRINT statement, BASIC counts 
the positions from the beginning of the line, not from the current 
position of the printing head. For example, the TAB function in the 
following program causes BASIC to print the character "/I' at 24 
equally spaced positions across the line. 

If the argument X in the TAB function is less than the current 
position of the printing head, BASIC starts printing at the current 
position. If the argument is greater than 72 (the number of columns 
available in an output line), BASIC executes a carriage return and a 
line feed and then resumes printing at position 1. 

The PNT function allows you to perform special nonprinting actions on 
the terminal, such as ringing the buzzer, erasing the screen, moving 
the cursor, etc. 

The format of the PNT function is 

PNT (X) 

where the argument X represents the decimal value of the 7-bit ASCII 
character to be output. 

For example, to ring the buzzer on the terminal, type 



OS/8 BASIC 

1.7 CONTROL STATEMENTS 

During the execution of a program, BASIC ordinarily passes f r o m  one 
line to the next in ascending numerical order. BASIC control 
statements make it possible for you to alter the normal 
sequence -- either unconditionally or only when c e r t a i n  conditions are 
met. Thus, you can: 

repeat a set of statements 

skip statements 

stop and check values 

terminate a program 

This section describes the statements that allow you to change the 
normal sequence of statement execution. 

1.7.1 Uncondi t iona l  T r a n s f e r  -- GOT0 

The GOT0 (or GO TO) statement causes BASIC to jump to any line in the 
program that you specify. The GOTO statement sets no conditions. 

The format of the GOT0 statement is 

(line number) GOTO n 

where n is the number of the line to which BASIC will jump. 

When BASIC encounters a GOT0 statement, it jumps immediately to the 
line beginning with the number indicated. For example, this program 

will display 

1:: 1: F̂  S 
SECOND 

If you specify a nonexecutable statement (such as REM) in a GOT0 line, 
BASIC will proceed to the next executable statement. 

NOTE 

If you inadvertently create an infinite 
loop with a GOT0 statement, halt BASIC 
with the CTRL/C command. 



OS/8 BASIC 

1.7.2 Conditional Transfer -- IF GOT0 and IF THEN 
IF GOT0 and IF THEN statements use relational operators to test for a 
specified relationship between two variables, numbers, strings, or 
expressions. When the relational expression is true, BASIC executes 
the GOT0 instruction. When the IF statement is false, BASIC proceeds 
to the next line in the program. 

The  format of t h e  IF GOTO (or IF THEN) statement is 

(line number) IF vl relation v2 GOT0 x 

where 

vl and v2 represent variable names, numbers, strings, or 
expressions 

relation is any relational operator 

is the number of the line to which BASIC will jump 
if the relation is true 

This example 

10 LET A = 5  
20 IF A=:2 G O T O  99 
30 PRI N T  "NO' 
99 END 

will cause BASIC to display 

BASIC compares strings one alphanumeric character at a time, using 
ASCII code numbers t o  determine if one character is "greater" or 
'less" than another. BASIC proceeds from left to right until it 
reaches the ends of the strings or until it finds an inequality. If 
one string is longer than the other, BASIC adds spaces to the shorter 
string until both are the same length. For example, in comparing AB 
to a four-letter string, BASIC will treat AB as "AB (space) (space) ' I .  

1.7.3 Looping -- FOR, STEP, and NEXT 
Programs frequently require the repetition of some instruction or 
sequence of instructions. One way to achieve this is to write out the 
steps as many times as you wish BASIC to execute them. For example, 
this program 

will instruct BASIC to display HOORAY! in three lines on the 
terminal. 

A better way to achieve the same end is to write the PRINT statement 
once and instruct BASIC to run through it three times. This type of 
repetition, which requires BASIC to jump backward in the program and 
retrace its steps, is called looping. 



OS/8 BASIC 

To execute a loop in a program, BASIC must know two things: which 
statements to repeat, and how many times to repeat them. FOR and STEP 
statements let you supply this information. 

The format is 

(line number) FOR v=x TO y [STEP z j  

where 

STEP z 

is a variable name. It is the index of the loop, 
increased or decreased each time the loop is 
executed. 

is an expression (numerical value, variable name, 
or mathematical expression) indicating the initial 
value of the index -- that is, the value of v 
before the loop is executed the first time. 

is an expression indicating the terminal value of 
the index -- the value of v after the last 
execution of the loop. 

is an optional statement used to specify the 
increment. If you omit it, BASIC assumes a STEP 
value of 1. 

For example, this statement 

tells BASIC to repeat the loop as long as K is less than or equal to 
20. Since K is incremented by 2 after each execution, BASIC will run 
through the loop 10 times. 

The NEXT statement marks the end of a program loop. It occurs only in . 
combination with a FOR statement. 

The format of the NEXT statement is 

(line number) NEXT v 

where v is the index variable in the FOR statement. 

The NEXT statement causes BASIC to add the STEP value to the index (or 
to add 1 if the FOR statement contains no STEP value) and to check to 
see if the value of the index exceeds the terminal value. If it does, 
BASIC falls through the loop and executes the line following the NEXT 
statement. 

To cause BASIC to exit from a loop before the index has reached the 
terminal value, use an IF-THEN statement. BASIC can reenter only 
those loops that it has left before completion. 

NOTE 

Do not attempt to transfer control from 
a loop to a subroutine located above it 
in the program. Doing so may cause 
BASIC to execute the loop a wrong number 
of times. 



The fo l lowing  example shows one way t o  use a  FOR-NEXT loop  t o  produce 
t h e  same r e s u l t s  of t h e  HOORAY! program above. 

T h e  FOR s ta tement  t e l l s  BASIC t o  r e p e a t  t h e  l o o p  a s  long a s  K is l e s s  
than o r  equa l  t o  6. S ince  K is incremented by 2  a f t e r  each execu t i on ,  
BASIC w i l l  run through t h e  loop  t h r e e  t imes.  

1 . 7 . 3 . 1  Nested Loops - You may p l a c e  one o r  more loops  w i th in  a  loop  
provided t h a t  t h e  inner  loops  a r e  complete ly  con ta ined  by t h e  o u t e r  
and t h a t  no over lapp ing  of l oops  occurs .  p l ac ing  one loop  w i th in  
ano ther  is  c a l l e d  n e s t i n g .  Each nes ted  l oop  must have i t s  own FOR and 
NEXT s t a t emen t s  and must t e rmina t e  be fo r e  t h e  loop  t h a t  c o n t a i n s  i t .  

The fo l lowing  examples show l e g a l  and i l l e g a l  t ypes  of nes ted  loops :  

Legal Legal I l l e g a l  

10 FOR A = l  TO 10 10 FOR A = l  TO 10 10 FOR M = l  TO 10 
20 FOR B=2 TO 20 20 FOR B=2 TO 20 20 FOR N=2 TO 20 
30 NEXT B 30 NEXT B 30 NEXT M 
40 NEXT A 40 FOR C=3 TO 30 40 NEXT M 

50 FOR D = 4  TO 40 
60 FOR E=5 TO 50 
70 NEXT E 
80 NEXT D 
90 NEXT C 
95 NEXT A 

The fol lowing program c o n t a i n s  a  nes ted  loop:  

BASIC w i l l  execu te  t h e  loops  and d i s p l a y :  

Note t h a t  each execu t ion  of t h e  ou t e r  loop  causes  BASIC t o  run through 
t h e  inner  loop  t h r e e  t imes.  



OS/8 BASIC 

1.7.4 Stopping -- END and STOP 
Two statements -- END and STOP -- will cause BASIC to terminate the 
execution of a program and return control to the editor. 

The END statement informs the BASIC compiler that it has come to t h e  
last line in the program. Every BASIC program must end with an END 
statement. No program may contain more than one END statement. A 
STOP statement cannot take the place of the END statement. 

The format of the END statement is 

(line number) END 

which causes BASIC to return to the edit mode, display 

and await your next command. 

The STOP statement also terminates a running program, but unlike END, 
it may occur more than once in the same program. 

The format of the STOP statement is 

(line number) STOP 

The following program demonstrates the use of the STOP statement: 

The STOP statement here prevents BASIC from displaying EQUAL when A 
does not equal B. 

1.7.5 Jumping to Subroutines -- GOSUB and RETURN 
A subroutine is a sequence of statements that performs some operation 
required at more than one point in the program. Subroutines are 
generally placed at the end of the program, usually before any DATA 
lines and always before the END statement. 

Two statements -- GOSUB and RETURN -- cause BASIC to jump to a 
subroutine, execute it, and jump back to the point in the main program 
where it left off. GOSUB and RETURN occur only in combination with 
each other. 

The format of the GOSUB statement is 

(line number) GOSUB n 

where n is the number of the first line in the subroutine. 

When BASIC encounters a GOSUB, it records the number of the line 
immediately following it and jumps to the first line of the 
subroutine. 



The format of the RETURN statement is 

(line number) RETURN 

The RETURN statement always occupies the last line in the subroutine. 
RETURN causes BASIC to jump to the line following the last GOSUB 
statement it has executed. 

You may use the control statements described in this chapter to direct 
BASIC from one line to another within a subroutine or even to a line 
in another subroutine. 

You may also "nest" subroutines -- use one subroutine to call 
another -- up to ten levels. If you exceed the tenth level, BASIC 
prints 

where y represents the line number where the error occurred. 

The following sample program contains two simple subroutines: 

10 GOSUB 60 
.?0 PRINT n I 'M BACK" F R O M  1. u 
.%.. 

30 GOSUB 80 
40 P R I N T  " I ' M  BACK F R O M  2 "  
50 STOF:' 
60 F : ' R i m  "SUBROUTINE 1" 
70 RETURN 
80 PRINT "SUBROUTINE 2 "  
90 RETURN 
99 END 

The STOP statement prevents BASIC from "falling into" the subroutines 
and executing them after it has executed the PRINT statement in line 
40. The program will produce: 

1.8 FUNCTIONS 

Functions are special subroutines that perform frequently used 
operations on numbers and strings. 

The format of most functions is 

NNN (X) 

where 

NNN is a three-letter name 

is an argument enclosed in parentheses. The 
argument may be a number, a variable, an 
expression, or another function. 

Some functions require multiple arguments and take the form 



OS/8 BASIC 

Most functions compute a value based on the value of the argument or 
arguments involved. They are said to "return" this value. Fur 
example, SQR(Z) returns the square root of Z .  

Functions may return either strings or numbers. Functions that return 
character strinqs are distinguished from functions that return numbers 
by the dollar sign ( $ )  appended to their name. For example, the CHR$ 
function converts an ASCII code number to its equivalent character and 
returns the character. The ASC function converts a character to its 
code number. 

Unlike conventional subroutines, functions do not require GOSUB and 
RETURN statements. They produce their results "in place." For 
example, the following line will assign the variable A a value of 2: 

8 . 1  Numeric Funct ions  

BASIC provides numeric functions to perform standard mathematical 
operations. For example, you may find it necessary to find the sine 
of an angle. You can do this by looking it up in a table of sine 
values or by using the BASIC SIN function. 

BASIC provides the following trigonometric functions: 

Sine function (SIN) 

Cosine function (COS) 

Arctangent function (ATN) 

BASIC provides algebraic functions to find: 

the square root of a number (SQR) 

the value of e -- 2.71828 -- raised to any power (EXP) 

@ the natural logarithm of a number (LOG) 

the integral part of a number (INT) 

the absolute value of a number (ABS) 

0 a value based on the sign of a number (SGN). 

BASIC also includes a function -- RND -- that returns a random number. 
You can use this function when you are trying to simulate an 
unpredictable situation with a BASIC program. 

1.8.1.1 C a l c u l a t i n g  S i n e  -- SIN - The BASIC SIN function lets you 
calculate the sine of an angle specified in radians. The format is 

SIN (X) 

where 

x is a number, numeric variable, expression, or 
another function, representing the size of an 
angle in radians 



OS/8 BASIC 

For example, this program 

will display: 

1 . 8 . 1 . 2  C a l c u l a t i n g  C o s i n e  -- COS - The BASIC COS function lets you 
calculate the cosine of an angle specified in radians. The format is 

COS (X) 

where 

is a number, numeric variable, expression, or 
another function, representing the size of an 
angle in radians 

Thus, these lines 

will display 

1 .8 .1 .3  C a l c u l a t i n g  t h e  A r c t a n g e n t  -- ATN - The BASIC ATN function 
lets you calculate the angle (in radians) whose tangent is given as 
the argument of the function. 

The format is 

ATN (X) 

where 

is a number, variable, expression, or another 
function representing the tangent of an angle 

Thus, this two-line program 

will display 



OS/8 BASIC 

1.8.1.4 Calculating the Tangent - Although BASIC does not provide a 
.̂  L a I I I I L  -^-mew+ Â¥pnirÃˆ , . : nn you can find the tangent of an angle with the 
following trigonometric equation: 

sine (angle) 
L----.. ~~~~~~~~t (angle) = 

cos (angle) 

Translated into BASIC, this equation will read 

where T is the tangent and R is an angle expressed in radians. 

1.8 .1 .5  Finding the Square Root -- SQR - The BASIC SQR function 
computes the positive square root of an expression. The format is 

where 

is a number, variable, expression, or another 
function 

If the argument is negative, the absolute value of the number is used. 
For example, this program 

will display 

1.8.1.6 The Exponential Function -- EXP - The BASIC EXP function 
calculates the value of e raised to the X power, where e is equal to 
2.71828. That is, EXP(X) is equivalent to 2.71828**X. 

The format is 

EXP (X) 

where 

is a number, numeric variable, expression, or 
another function 

Thus, this program 

will display 



OS(8 BASIC 

1 8 . 1 7  Calculating the Natural Logarithm - LOG - The BASIC LOG 
function calculates the natural logarithm of X (to the base e). 

The format is 

LOG (X) 

where 

is a number, numeric variable, expression, or 
another function 

EXP and LOG perform opposite functions. That is the exponent x (the 
input in the EXP function) in the formula eAx=y is the logarithm of y 
to the base e (the output of the LOG function) in the formula x=log(e) 
Y- 

This BASIC formula demonstrates their relationship: 

LOG(EXP(X) ) = X 

1.8.1.8 The Integer Function -- INT - The BASIC INT function returns 
the value of the largest integer not greater than the argument. The 
format is 

INT (X) 

where 

X is a number, numeric variable, expression, or 
another function 

To round off a number to the nearest integer, specify IMT(X+.5). 

For example, this function 

I 0 :I: N 'r' < 3 .<I ,. 6 7 ) 

returns the value 34; 

these functions 

return the values 35 and 34; 

this function 

10 I N T  < - 1 4 + 3 7 )  

returns the value -15. 



OS/8 BASIC 

A B S  (X) 

where 

is a number, numeric variable, or numeric 
expression 

By mathematical definition, the absolute value of a number which 
represents its magnitude is always positive. The absolute value of a 
positive number is equal to the number; the absolute value of a 
negative number is equal to the number times -1. For example, this 
program; 

will display 

1.8.1.10 The Sign Function -- SGN - The S G N  function lets you 
determine if an expression is positive, negative, or equal to zero. 
The format is 

S G N  ( X )  

where 

is a number, numeric variable, expression, or 
another function 

If the argument is any positive number, the S G N  function will return a 
value of 1. If the argument is negative, S G N  returns -1. If it is 0, 
S G N  returns 0. For example, these lines 

will display 

because 

5>0,  
0=0, and 
-2<0. 

1.8.1.11 Random Numbers -- RND - A  random-number series is a series 
of numbers that are not related to each other in any way. You can use 
random numbers in a B A S I C  program to simulate a situation in which the 
outcome is not predictable -- the flip of a coin, for example, or the 
rolling of dice. 



OS/8 BASIC 

It is not possible to produce a series of truly random numbers on a 
computer since, given the same starting conditions, a computer always 
comes up with the same results. Instead, BASIC uses complex 
calculations to generate a series of numbers that seem unrelated. 
This is called a pseudo-random series. 

The BASIC RND function produces pseudo-random numbers between -- but 
no t  including -- 0 and 1. The format is 

RND (X) 

where 

is a dummy variable. Type the function just as it 
appears above. 

Each time BASIC encounters the RND function in a program, it produces 
a different decimal number. However, if you run the program again, 
BASIC will output the same set of numbers. To generate a different 
set of numbers with each execution, use the RANDOMIZE statement in 
your program. 

The format of the RANDOMIZE statement is 

(line number) RANDOMIZE 

The following routine will print a different series of random numbers 
each time you run it. (RANDOMIZE uses the value you enter to vary the 
output. ) 

1.8.2 S t r i n g  Funct ions  

BASIC string functions let you examine and modify strings and perform 
certain conversions between numbers and strings. Functions that 
return strings are distinguished from functions that return numbers by 
the dollar sign ( $ )  after their name. 

BASIC provides three functions that allow you to analyze and 
manipulate strings: 

0 LEN function -- determines the length of a string 
0 POS function -- searches for the position of a set of 

characters within a string 

SEG$ function -- copies a segment from a string 



Other functions enable you to convert strings to numbers and numbers 
to strings; 

ASC function -- converts a character to its ASCII code 
equivalent 

CHR? -- converts an ASCII code number to a character 

STR$ -- converts a number to its string representation 
Ã VAL -- converts a string representation of a number to a 

number 

1.8.2.1 Finding the Length of a S t r i n g  -- LEN - The LEN function 
returns the number of characters in a string. 

The format is 

where 

is a string, a string variable, or several 
concatenated strings and/or string variables 

For example, 

(1) This line: 

will display 

(2) This program: 

will display 

because 

'up," = 4 characters 
"DOWN, AND" = 10 characters 
"AROUND " = 6 characters 

Total 20 characters 

If a string has never been defined, it will have a length of 0. 

This program: 

will display 



OS/8 BASIC 

1 . 8 . 2 . 2  Finding a Substring -- POS - The BASIC POS f u n c t i o n  r e t u r n s  
t h e  l o c a t i o n  o f  a  s p e c i f i e d  g r o u p  o f  c h a r a c t e r s  i n  a  s t r i n g .  

The f o r m a t  is  

where  

X$ is t h e  s t r i n g  you want  t o  s e a r c h  

Y$ is t h e  s u b s t r i n g  you a r e  s e a r c h i n g  f o r  

is  t h e  p o s i t i o n  i n  t h e  s t r i n g  a t  which  you wan t  t o  
b e g i n  t h e  s e a r c h  

T h i s  f u n c t i o n  s e a r c h e s  X$ f o r  t h e  f i r s t  o c c u r r e n c e  o f  Y$. I t  b e g i n s  
t h e  s e a r c h  w i t h  t h e  Z t h  c h a r a c t e r  i n  X $ .  Depending  on  wha t  i t  f i n d s ,  
POS r e t u r n s  t h e  f o l l o w i n g  r e s u l t s .  

1. I f  i t  f i n d s  s u b s t r i n g  Y$, POS r e t u r n s  t h e  p o s i t i o n  o f  t h e  
f i r s t  c h a r a c t e r  i n  t h e  s e r i e s .  

2 .  I f  i t  f a i l s  t o  f i n d  Y$, POS r e t u r n s  a  0 .  

3 .  I f  Y$ is  a  n u l l  s t r i n g  ( c o n t a i n i n g  no c h a r a c t e r s ) ,  POS 
r e t u r n s  a  1. 

4 .  I f  X$ is  a  n u l l  s t r i n g ,  POS r e t u r n s  a  0 .  

NOTE 

I f  Z is l e s s  t h a n  0 o r  g r e a t e r  t h a n  t h e  
s t r i n g ,  BASIC p r i n t s  a n  e r r o r  mes sage  
and s t o p s  t h e  p rog ram.  

T h e s e  l i n e s  c a u s e  t h e  POS f u n c t i o n  t o  s t a r t  a t  t h e  s e v e n t h  c h a r a c t e r  
i n  t h e  s t r i n g  "ABCDEFGHIDEF" and  s e a r c h  f o r  t h e  s u b s t r i n g  "DEF1': 

POS r e t u r n s  1 0 .  (Change t h e  7 t o  a  1 i n  l i n e  30 and  POS w i l l  r e t u r n  a  
4 . )  

1 . 8 . 2 . 3  Displaying a Substring -- SEG$ - The SEG$ f u n c t i o n  s e a r c h e s  
f o r  a  s egmen t  -- a  s u b s t r i n g  -- o f  a  s t r i n g  and  r e t u r n s  it f o r  
d i s p l a y .  



OS/8 BASIC 

The format is 

where  

is t h e  s t r i n g  c o n t a i n i n g  t h e  s u b s t r i n g  you wan t  t o  
d i s p l a y .  X$ may b e  a  v a r i a b l e  o r  t h e  s t r i n g  
i t s e l f  - 
is t h e  p o s i t i o n  o f  t h e  f i r s t  character  i n  t h e  
s u b s t r i n g  

is t h e  p o s i t i o n  o f  t h e  l a s t  c h a r a c t e r  i n  t h e  
s u b s t r i n g  

SEG$  r e t u r n s  a  n u l l  s t r i n g  ( n o  characters)  i f ;  

Y is  g r e a t e r  t h a n  t h e  l e n g t h  o f  X 

Z is less t h a n  1 

Z is less  t h a n  Y 

I f  Y is  less t h a n  1, SEG$ s e t s  i t  t o  1. I f  Z is g r e a t e r  t h a n  t h e  
l e n g t h  o f  X$, SEG$ sets  it  e q u a l  t o  t h e  l e n g t h  o f  X$. 

T h e s e  l i n e s  

w i l l  d i s p l a y :  

1 . 8 . 2 . 4  Converting a Character to ASCII Code -- ASC - The ASC 
f u n c t i o n  c o n v e r t s  a  o n e - c h a r a c t e r  s t r i n g  t o  its A S C I I  code e q u i v a l e n t .  
The f o r m a t  i s  

ASC ( X )  

where  

X i s  a  o n e - c h a r a c t e r  s t r i n g  

ASC returns the e q u i v a l e n t  d e c i m a l  number f o r  t h e  a rgumen t .  T a b l e  1-1 
l i s t s  a l l  t h e  a l p h a n u m e r i c  c h a r a c t e r s  a v a i l a b l e  on  t h e  t e r m i n a l  and 
t h e i r  ASCII c o d e  numbers .  



OS/8 BASIC 

Table 1-1 
Alphanumeric Characters and Corresponding ASCII Code Numbers 

Character Decimal Character 

space) 
I 
I t  

# 
$ 
% 
& 
I 

( 
1 * 
+ 
I 

- 

/ 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

< - - 
> 
7 

Decimal 

1.8.2.5 Converting ASCII Code to a Character -- CHR$ - The CHR$ 
function converts a code number to its equivalent character. 

The format is 

CHR$ (XI 

where 

x is a number, a numeric expression, or a numeric 
variable 



OS/8 BASIC 

CHR$ r e t u r n s  t h e  e q u i v a l e n t  c h a r a c t e r  f o r  t h e  a rgument .  ( S e e  t h e  ASC 
f u n c t i o n  f o r  t h e  t a b l e  of decimal/character convers ions . )  

I f  t h e  a rgument  is g r e a t e r  t h a n  6 3 ,  d i v i d e  it by 6 4  and u s e  t h e  
r ema inde r  t o  s e a r c h  t h e  t a b l e .  

~ h u s ,  t h i s  l i n e :  

w i l l  display 

T h i s  l i n e :  

w i l l  d i s p l a y  

207/64 = 3 ,  w i t h  a  r ema inde r  o f  1 5  
77/64 = 1, w i t h  a  r ema inde r  o f  1 3  

Using  1 5  and 1 3  t o  s e a r c h  t h e  t a b l e  y i e l d s  t h e  l e t t e r s  "0" and "M". 

1.8 .2 .6  Converting Numbers from S t r i n g  to Numeric Format -- VAL - The 
VAL f u n c t i o n  c o n v e r t s  numbers i n  s t r i n g  form t o  numer i c  d a t a .  The 
f o r m a t  is 

where 

is a s t r i n g  made up  o f  t h o s e  v a l u e s  t h a t  BASIC 
a c c e p t s  a s  numer i c  d a t a .  These  a r e :  

d i g i t s  0 t h r o u g h  9 
+ o r  - s i g n  
t h e  l e t t e r  E 
l e a d i n g  s p a c e s  -- BASIC i g n o r e s  them 
t h e  f i r s t  d e c i m a l  p o i n t  (.) 

Keep i n  mind t h a t  BASIC d o e s  n o t  c o n s i d e r  numbers and numer i c  
e x p r e s s i o n s  i n  s t r i n g  form a s  numer i c  d a t a .  I t  w i l l  n o t  u s e  them i n  
c a l c u l a t i o n s  o r  a s  a rgumen t s  i n  m a t h e m a t i c a l  f u n c t i o n s  u n t i l  you 
c o n v e r t  them i n t o  numer i c  f o r m a t  w i t h  t h e  VAL f u n c t i o n .  

T h i s  program i n s t r u c t s  BASIC t o  r e a d  a  s t r i n g ,  c o n v e r t  i t  i n t o  numer i c  
form,  and m u l t i p l y  it by two: 

BASIC d i s p l a y s :  



1.8.2.7 Converting a Number to a String -- STR$ - The STR$ function 
converts numerics to strings. The format is 

where 

X is a numeric expression 

The STR$ function returns the string value of the expression exactly 
as BASIC would print it but without a leading or trailing space. Use 
the STR$ function when you want to print a number without a leading or 
trailing space and when you want to perform string operations or 
functions on a number. 

1.8.3 User-Defined Functions 

1.8.3.1 The FNa Function and the DEF Statement - In some programs, 
you may want to perform the same sequence of string or numeric 
operations more than once. As an aid in such cases, BASIC lets you 
define your sequence as a special function -- called a user-defined 
function -- that you can call for in the same way you would call for 
any string or numeric function that BASIC provides. 

The BASIC DEF statement lets you create user-defined functions. The 
format of the DEF statement is 

(line number) DEF FNa (list) = expression 

where 

(list) contains the dummy variable or variables that 
appear in your operation. The same variables must 
appear in the expression. 

expression is the operation you want BASIC to perform each 
time you call for the function. The operation may 
contain numbers, several variables, other 
functions, or mathematical expressions. 

For example, if you write a program in which you repeatedly use the 
operation eA-x2+5, you can introduce it as a user-defined function 
with this DEF statement: 

and then call for various values of the function -- FNE (.l) , 
FNE (3.45) , FNE (A+2) , etc. 

This statement: 

will cause the user-defined function in this line 

to return a 16. 



OS/8 BASIC 

If the function involves more than one variable, BASIC will identify . . them by their Tnmq p u o - i - t i ~ ~ .  For  example, this program 

will display 

BASIC takes the first value in the function (4) as "N" , because "N" 
appears first in the DBF s ta temen t .  It takes the second value (5) as 
"P", because "P" is in the second position. 

DEF FNH (NIP) = 2*P+N 

first position second position 

PRINT FNH (X , Y) 

You must introduce each user-defined function with a separate DEF 
statement, taking care to place each DEF statement before the first 
occurrence of the function it defines. For example, if you want to 
use a special function called FNB(X) in your program, you must first 
write a DEF statement with FNB as the parameter. You may define up to 
26 FN functions in t h e  same proqram (FNA,  FNB ..., FNZ). 

1.8.3.2 The UDEF Function Call and the USE Statement - OS/8 BASIC 
lets you add one or more user-coded assembly-language functions to a 
BASIC program and use them in the same way you would use any other 
function. For complete instructions to write and interface such 
functions, see Chapter 2. 

To specify a user-coded function in an OS/8 BASIC program, type 

line number UDEF function name('a,b,c) 

where 

function name consists of alphabetic characters only and has at 
least one argument (a dummy, if necessary) 

(a,b,c) are arguments. User-written assembly-language 
functions may contain up to four numeric and two 
string arguments. 

For example: 



Line 25 introduces the function PLT to OS/8 BASIC and indicates the 
number and type of arguments associated with it. In line 30 the 
function appears as any standard function might appear in a BASIC 
program. If the function requires an array, a USE statement 
identifying the array must precede the statement that calls the 
function. Thus: 

* 
20 L.ET Qz1.0 
22 USE S 
25 UDEF P L T ( X F Y Y Z )  

1.8.4 The Debugging Function -- TRC 
The TRC function causes BASIC to print the line numbers of statements 
in a program in the order that it executes them. This lets you follow 
the course of loops and subroutines and provides a useful tool for 
debugging a program. 

The format the 

where 

TRC function 

is any letter. It has no purpose except to occupy 
the position in the line. 

is 1 or 0. 1 turns the function on; 0 turns it 
off. 

When it comes upon a TRC(1) in a program, BASIC begins displaying the 
line number (enclosed by percent signs) of each statement it 
executes -- with the exception of the following types: DATA, DEF, 
DIM, END, GOTO, NEXT, RANDOMIZE, REM, and STOP. Encountering a TRC(0) 
will cause it to stop outputting line numbers and resume normal 
operation. 



For example, this program: 

60 T==TRC(11 
7 0  GOSUB 9 0  
8 0  GOTO 1 4 0  
9 0  PRINT "IN OUTER SUB" 
1 0 0  GOSUB 1 2 0  
1 1 0  RETURN 
1 2 0  PRINT  " I N  INNER SUB" 
130 RETURN 
1 4 0  T=TRC(O) 
1 5 0  END 

will display 

7. 70 7. 
7. 9 0  7: 
I N  OUTER SUB 

I N  INNER 
% 130 % 

1.8.5 Calling for the Date -- the DAT$ Function 
The DAT$ function returns the current system date. 

The format is 

where 

X is a dummy variable 

Enter this function exactly as it appears above. DAT$ returns an 
eight-character string in the form 

For example, these lines: 

will display 

07/20/77 

if that date was entered with the monitor DATE command. 

If you have not specified the date with the MONITOR date command, the 
function will return no characters. 



1 . 9  FILE STATEMENTS 

BASIC f i l e  s t a t e m e n t s  -- w h i c h  a r e  d i s t i n g u i s h e d  f rom o t h e r  BASIC 
s t a t e m e n t s  by t h e  number s i g n  ( # )  -- l e t  you  s t o r e  d a t a  o n  p e r i p h e r a l  
d e v i c e s  f o r  l a t e r  u s e  i n  a n y  BASIC p r o g r a m .  They  i n c l u d e :  

a FILE# D e s c r i b e s  t h e  f i l e ,  a s s i g n s  i t  a  c h a n n e l  number f rom 
1 t o  4 ( t h e  number o f  f i l e s  t h a t  BASIC c a n  h a n d l e  a t  
o n e  time) , a n d  o p e n s  i t .  

a INPUT# R e a d s  d a t a  f r o m  t h e  f i l e .  

a PRINT# Writes d a t a  o n  t h e  f i l e .  

a RESTORE# Resets t h e  p o i n t e r  t o  t h e  b e g i n n i n g  o f  t h e  f i l e .  

a CLOSE# C l o s e s  t h e  f i l e  a n d  removes  t h e  c h a n n e l  number .  

a I F  END# T e s t s  f o r  e n d - o f - f i l e .  

I n  m o s t  o p e r a t i o n s ,  you  o p e n  a  f i l e  (FILE#)  f o r  i n p u t  o r  o u t p u t ,  r e a d  
f r o m  i t  (INPUT#) o r  w r i t e  o n  it (PRINT#) , a n d  c l o s e  it (CLOSE#) . You 
may o p e n  o n l y  f o u r  f i l e s  a t  a  t i m e  -- e x c l u d i n g  t h e  t e r m i n a l ,  w h i c h  i s  
a l w a y s  o p e n  and  a v a i l a b l e  f o r  u s e .  However ,  t h e  a b i l i t y  t o  o p e n  a n d  
c l o s e  f i l e s  u n d e r  p r o g r a m  c o n t r o l  g i v e s  you  access t o  a n  u n l i m i t e d  
number o f  f i l e s .  T h a t  is ,  when you  c l o s e  a f i l e ,  you may r e a s s i g n  i t s  
c h a n n e l  number t o  a  n e w l y  o p e n e d  f i l e .  

BASIC t r e a t s  f i l e s  i n  t h e  same way i t  t r e a t s  t e r m i n a l  i n p u t  and  
o u t p u t .  The INPUT s t a t e m e n t  c a u s e s  BASIC t o  r e a d  a  v a l u e  t h a t  you 
e n t e r  o n  t h e  t e r m i n a l  a n d  a s s i g n  it  t o  a  v a r i a b l e ;  t h e  INPUT# 
s t a t e m e n t  c a u s e s  it t o  r e a d  a v a l u e  f rom a  f i l e .  The PRINT s t a t e m e n t  
i n s t r u c t s  BASIC t o  d i s p l a y  d a t a  o n  t h e  t e r m i n a l ;  t h e  PRINTS s t a t e m e n t  
t e l l s  it t o  w r i t e  d a t a  i n  a  f i l e .  

BASIC u s e s  two t y p e s  o f  f i l e :  s t r i n g  f i l e s  and  n u m e r i c  f i l e s .  You 
may w r i t e  numbers  i n t o  a  s t r i n g  f i l e  i n  b o t h  s t r i n g  and  n u m e r i c  
f o r m a t .  ~ u m e r i c  f i l e s ,  h o w e v e r ,  may c o n t a i n  n u m e r i c  d a t a  o n l y .  

1 . 9 . 1  F i l e  C o n t r o l  

You m u s t  o p e n  a  f i l e  w i t h  a  FILE# s t a t e m e n t  b e f o r e  you  c a n  r e a d  o r  
wr i te  a n y  d a t a .  You s h o u l d  c l o s e  a n y  f i l e s  t h a t  you o p e n  d u r i n g  t h e  
c o u r s e  o f  a  p r o g r a m  w i t h  a  CLOSER s t a t e m e n t .  The CLOSE# s t a t e m e n t  
c a n c e l s  t h e  c h a n n e l  number t h a t  you  h a v e  a s s i g n e d  w i t h  t h e  FILE# 
s t a t e m e n t ,  making t h e  c h a n n e l  a v a i l a b l e  t o  a n y  o t h e r  n e w l y  o p e n e d  
f i l e .  

1 . 9 . 1 . 1  Opening a F i l e  -- FILE# - The BASIC FILE# s t a t e m e n t  o p e n s  a  
f i l e  f o r  i n p u t  o r  o u t p u t ,  d e f i n e s  i t ,  a n d  a s s i g n s  a  c h a n n e l  number .  
An i n p u t  f i l e  is o n e  y o u  a r e  r e a d i n g  f r o m .  An o u t p u t  f i l e  is o n e  you 
a r e  w r i t i n g  t o .  



The format of the FILE# statement is 

(line number) FILE t#n: "filespec" 

where 

t is one of the following: 

(blank) for an input string file 
V for an output string file 
N for an input numeric file 
VN for an output numeric file 

is the channel number (1 througn 4) that you are 
assigning to the file. It can be a numeric 
variable. 

filespec" is an OS/8 device, file name, and extension. It 
must either be a string enclosed by uuotation 
marks or a string variable, 

You must include a channel number (n) in all FILE# statements. (The 
channel number of the terminal is always FILE#O.) 

For example, this statement describes the string file RXAl:DATA2.AS as 
file number 1 and opens it for output: 

This statement describes the numeric file M0NEY.W on RXAi as file 
number 2 and opens it for output: 

These statements describe the string file RXA1:TEST.AB as file number 
3 and open it for input: 

10 LET A % = " R X A l  :TEST t AF!"' 
15 F I L . E t 3 t  A %  

This statement describes the numeric file RXAl:FIL3.CD as file number 
4 and opens it for input: 

1.9.1.2 C l o s i n g  a F i l e  -- CLOSE# - The CLOSE# statement closes any 
file you specify and disassociates it from its channel number. This 
allows BASIC to reassiqn the number to another file. After you close 
a file, you cannot use it again until you reopen it. 

The format of the CLOSE# statement is 

(line number) CLOSE# n 

where 

is the channel number of the file to be closed (or 
a variable) 

You must close all output files in a program before instructing BASIC 
to execute an END, STOP, or CHAIN statement. If you do not close 
them, they will be lost. 



OS/8 BASIC 

I n  t h e  f o l l o w i n g  p r o g r a m ,  t h e  CLOSE# s t a t e m e n t  a l l o w s  BASIC t o  
r e a s s i g n  t h e  c h a n n e l  number o f  f i l e  SYS:TEST.XX t o  t h e  newly  o p e n e d  
f i l e  RXA1:FILD:DA: 

1 . 9 . 2  F i l e  1 / 0  

You u s e  BASIC f i l e s  i n  t h e  same way you u s e  t h e  t e r m i n a l  f o r  
s e q u e n t i a l  i n p u t  a n d  o u t p u t .  The  d i f f e r e n c e  is t h a t  f i l e s  a l l o w  you 
t o  m a n i p u l a t e  much more d a t a  i n  much less  t i m e  t h a n  t h e  t e r m i n a l .  

You c a n  o p e n  a f i l e  t o  s u p p l y  i n p u t  o r  t o  r e c e i v e  o u t p u t ,  b u t  you  
c a n n o t  o p e n  i t  t o  d o  b o t h  a t  t h e  same t i m e .  To u p d a t e  a n  e x i s t i n g  
f i l e ,  you m u s t  o p e n  i t  f o r  i n p u t ,  o p e n  a  new f i l e  f o r  o u t p u t ,  r e a d  t h e  
d a t a  f rom t h e  i n p u t  f i l e  a n d  wr i te  t h e  d a t a  i n c l u d i n g  a n y  c h a n g e s  you  
w i s h  t o  make o n  t h e  o u t p u t  f i l e .  

1 . 9 . 2 . 1  Reading Data  from a F i l e  -- INPUT* - The INPUT# s t a t e m e n t  
i n s t r u c t s  BASIC t o  r e a d  d a t a  f r o m  a f i l e  a n d  a s s i g n  v a l u e s  t o  
s p e c i f i e d  v a r i a b l e s .  BASIC r e a d s  f i l e  d a t a  s e r i a l l y .  T h i s  means  t h a t  
it m u s t  r e a d  t h r o u g h  a n  e n t i r e  l i s t  t o  g e t  a t  t h e  l a s t  item o f  d a t a .  

The f o r m a t  o f  t h e  INPUT# s t a t e m e n t  i s  

( l i n e  number)  I N P U T # n : v a r i a b l e s  

w h e r e  

is t h e  c h a n n e l  number o f  t h e  f i l e  you  a r e  r e a d i n g  
( o r  a  v a r i a b l e )  

v a r i a b l e s  is t h e  l i s t  o f  v a r i a b l e s - - s e p a r a t e d  by 
commas -- i n t o  w h i c h  BASIC w i l l  r e a d  d a t a  

The INPUT# s t a t e m e n t  a u t o m a t i c a l l y  s t e p s  t h r o u g h  t h e  f i l e  item by  i t e m  
t o  f i n d  v a l u e s  t o  s a t i s f y  i t s  v a r i a b l e s .  

I n  m o s t  o p e r a t i o n s ,  you  wri te  numbers  i n t o  n u m e r i c  f i l e s  a n d  s t r i n g s  
i n t o  s t r i n g  f i l e s  a n d  t h e n  r e a d  them back  i n t o  t h e  c o r r e s p o n d i n g  
v a r i a b l e s .  I f  you w i s h ,  h o w e v e r ,  you may w r i t e  numbers  i n t o  s t r i n g  
f i l e s  a n d  r e a d  them back  i n t o  e i t h e r  n u m e r i c  o r  s t r i n g  v a r i a b l e s ,  
d e p e n d i n g  on  how you w a n t  t o  u s e  them. I f  you a s s i g n  numbers  f rom a  
s t r i n g  f i l e  t o  s t r i n g  v a r i a b l e s ,  t h e y  w i l l  a p p e a r  i n  s t r i n g  f o r m  a n d  
b e  s u b j e c t  t o  t h e  same r u l e s  a s  o t h e r  s t r i n g s .  I f  you a s s i g n  numbers  
f rom a  s t r i n g  f i l e  t o  n u m e r i c  v a r i a b l e s ,  BASIC w i l l  c o n v e r t  them i n t o  
n u m e r i c  fo rm.  Keep i n  mind t h a t  s t r i n g  f i l e s  c o n t a i n  c a r r i a g e  r e t u r n s  
a n d  l i n e  f e e d s .  T h e s e  w i l l  a p p e a r  a s  z e r o s  i f  r e a d  i n t o  n u m e r i c  
v a r i a b l e s .  



r example, the following program instructs BASIC to write numbers 
to a string file and r e a d  them back as numeric d a t a .  The " C "  and 
variables in the INPUTS statement in line 80 receive the zeros 

nerated by the carriage return and the line feed. 

It will display 

1.9.2.2 Writing Data on a F i le  -- PRINT# - The PRINT# statement lets 
you write data on an output file. Its format is 

(line number) PRINTS n: expression 

where 

is the channel number or a variable representing 
the channel number 

expressions may be numerics or strings, depending on the type 
of output file you have opened in the FILE# 
statement 

If you open a string output file (PILEV#), 
the expressions may be string or numeric, 
separated by commas or semicolons. You 
may use the TAB and PNT functions when 
wrlting on string files. (See Section 
1.6.4.3.) 

If you open a numeric output file 
(FILEVN#), the expressions must be numbers 
or numeric variables, separated by commas 
or semicolons. 

When you use the PRINT# statement to write data into an output string 
file, BASIC interprets commas, semicolons, and RETURNS the same way it 
interprets them in PRINT statements. For example, 

10 PRINT ' A s p  "B" 
20 PRINT " C ' ;  "D"? 
30 PRINT ' E m  

will display 



OS/8 BASIC 

The following lines will cause the same display: 

When you use the PRINT# statement to write data into an output numeric 
file, BASIC converts commas and semicolons to spaces. The file will 
simply contain a "list" of numbers separated by spaces. For example, 
this program 

will display 

1.9.2 
the 
cause 

. 3  Resetting a F i l e  -- RESTORE* - The RESTORE# statement resets 
file back to the beginning so that the next INPUT# statement will 
BASIC to read the first item in the series. The format is 

(line number) RESTORE# n 

where 

is the channel number of the file to be reset or a 
variable representing the channel number 

If n is 0, BASIC resets the DATA list to the beginning. 



In the . . following program, RXAl:FILB.LM is a numeric input file 
containing t h e  numbers 1 through 3 .  These instructions: 

will display 

1.9.2.4 Checking f o r  End-of -F i le  -- t h e  I F  END# Statement - The IF 
END# statement lets you detect the end of a string file. The format 
is 

(line number) IF END# n THEN m 

where 

is the channel number of the file in question or a 
variable representing the number 

is the number of the line in the proqram to which 
BASIC will jump if it has reached the end of the 
file 

The IF END# statement works only on string files and must immediately 
follow the PRINT# or INPUT# statement for that file. 

- -. wnen you use the IF ESDI, statement, you a re  a s k i n g  BASIC to check if 
its last attempt to execute a PRINT# or INPUT# statement was 
successful. If it was unsuccessful -- if nothing was written or 
read -- BASIC jumps to line m. 

For example, in this program 



OS/8 BASIC 

t h e  l i n e s  w i l l  be  e x e c u t e d  i n  t h i s  s e q u e n c e  

s o  t h a t  t h e  d i s p l a y  w i l l  b e  

1 . 1 0  SEGMENTING PROGRAMS -- THE CHAIN STATEMENT 

FILE# s t a t e m e n t s  l e t  you m a n i p u l a t e  d a t a  f i l e s  unde r  p rogram c o n t r o l .  
The CHAIN s t a t e m e n t  ( u s e d  i n  c o n n e c t i o n  w i t h  t h e  SAVE command) l e t s  
you d o  t h e  same t h i n g  w i t h  f i l e s  t h a t  c o n t a i n  p rog rams .  

Wi th  t h e  SAVE command, you c a n  d i v i d e  a  l o n g  program i n t o  s h o r t e r  
s e g m e n t s  and t h e n  s t o r e  t h e  p i e c e s  i n  s e p a r a t e  f i l e s .  D u r i n g  program 
e x e c u t i o n ,  CHAIN s t a t e m e n t s  c a u s e  BASIC t o  r e t r i e v e  t h e  s e g m e n t s  one  
a f t e r  a n o t h e r  and  r u n  them t o g e t h e r  i n  a  c h a i n .  

The f o r m a t  o f  t h e  CHAIN s t a t e m e n t  is 

CHAIN " f i l e s p e c "  

whe re  

' ' f i l e s p e c "  i s  t h e  d e v i c e  and  f i l e  name -- e n c l o s e d  by 
q u o t a t i o n  marks  -- o f  t h e  program you want  t o  r u n  

When BASIC e n c o u n t e r s  a  C H A I N  s t a t e m e n t  i n  a  p rog ram,  it s t o p s  
e x e c u t i o n  t o  r e t r i e v e ,  c o m p i l e  ( i f  n e c e s s a r y ) ,  and r u n  t h e  p rog ram you 
have  c a l l e d  f o r .  A f t e r  BASIC h a s  r u n  a l l  t h e  p rog rams  i n  t h e  c h a i n ,  
t h e  workspace  and  t h e  BASIC.WS f i l e  w i l l  b o t h  c o n t a i n  t h e  p rog ram i t  
s t a r t e d  w i t h .  

S i n c e  BASIC removes  e a c h  p rog ram f rom c o r e  memory b e f o r e  r e t r i e v i n g  
t h e  n e x t  one  i n  t h e  c h a i n ,  you mus t  b e  s u r e  t o  CLOSE# a l l  d a t a  f i l e s  
i n  any  program c o n t a i n i n g  a  C H A I N  s t a t e m e n t .  I f  you d o  n o t ,  d a t a  w i l l  
b e  l o s t .  

P rog rams  f o r  c h a i n i n g  mus t  a l l  b e  t h e  same t y p e .  A BASIC s o u r c e  
p rog ram w i l l  c h a i n  o n l y  t o  a n o t h e r  BASIC s o u r c e  p rog ram,  and  a  memory 
image f i l e  ( i d e n t i f i e d  by t h e  .SV e x t e n s i o n  i n  t h e  f i l e  name) t o  
a n o t h e r  memory image f i l e .  



NOTE 

When c h a i n i n g  BASIC memory image f i l e s ,  
you must  p l a c e  t h e  program b e i n g  c h a i n e d  
t o  on SYS. T h i s  is  a  r e s t r i c t i o n  o f  t h e  
WE CHAIN  function. 

I n  t h e  f o l l o w i n g  example ,  d u r i n g  a  run  of  program PROGl.BA, t h e  C H A I N  
s t a t e m e n t  c a u s e s  BASIC t o  h a l t  e x e c u t i o n  t o  r e t r i e v e  and e x e c u t e  t h e  
program c a l l e d  CHAIN1.BA. T h e  CHAIN statement in this program, i n  
t u r n ,  c a u s e s  CHAIN2.BA t o  r u n ,  c o m p l e t i n g  t h e  s e r i e s .  

NEW CHAINl+BA 
READY 

READY 

NEW CHAIN24BA 

10 PRINT "SECOND LINK" 
99 END 

SAVE SYSI CHAIN2+BA 

READY 

NEW PROGl+BA 

10 PRINT "CHAIN STARTS HERE* 
20 CHAIN "SYSIClHAINl+BA" 
99 END 

CHAIN STARTS HE!:RE 
FIRST LINK 
SECOND 1.. INK 

I n  g e n e r a l ,  any d e p a r t u r e  from t h e s e  p r o c e d u r e s  w i l l  p roduce  a  CX 
e r r o r .  

1.11 BASIC COMMANDS 

BASIC commands l e t  you c r e a t e ,  modify ,  s t o r e ,  and r u n  programs under  
t h e  d i r e c t i o n  o f  t h e  BASIC e d i t o r .  To summon t h e  e d i t o r ,  t y p e  BASIC 
i n  r e s p o n s e  t o  t h e  OS/80 m o n i t o r  d o t .  The e d i t o r  w i l l  r e spond  w i t h  
t h e  message 

NEW OR OLD *-- 

i n d i c a t i n g  t h a t  it h a s  assumed c o n t r o l  o f  t h e  sys t em and r e s e r v e d  a  
s p e c i a l  a r e a  i n  memory -- c a l l e d  t h e  workspace  -- f o r  your  program. 
You may now t e l l  BASIC whe the r  you wish  t o  e n t e r  a  new program o r  c a l l  
f o r  one  t h a t  you have  p r e v i o u s l y  w r i t t e n  and s t o r e d  on a  p e r i p h e r a l  
d e v i c e .  



OS/8 BASIC 

1.11.1 Entering a New Program -- the NEW Command 
The NEW command clears the workspace and tells the editor the name of 
the program you are about to enter. 

The format is 

NEW filename [ .ex] 

where 

filename-ex is the name and extension of the new program you 
are about to enter. If the extension is omitted, 
BASIC calls it ".BA1'. 

If you strike the RETURN key immediately after typing NEW, BASIC 
clears the workspace and prompts with the message 

IÂ I I... E NAME --- .- 

You must now type the file name and extension and press the RETURN 
key. 

Thus, the following commands both instruct BASIC to clear the 
workspace and name a new program "TEST.BA": 

NEW TEST 
NEW TEST.BA 

You enter a BASIC program line by line, keeping in mind that you must: 

begin each line with a number. Line numbers may range from 1 
to 99999 and must contain no internal spaces or nonnumeric 
characters. 

a terminate each line with the RETURN key. 

If you make a typing error, you may correct it by striking the DELETE 
key once for each error you wish to erase. If you wish to delete the 
entire line, press the CTRL/U key command. 

1.11.2 Calling for an Old Program -- the OLD Command 
The OLD command instructs BASIC to clear the workspace, find a file on 
a peripheral device, and place it in the workspace. The format is 

OLD dev:filename[.ex] 

where 

dev: filename .ex is the device, file name, and extension of 
the program you are calling for. If you omit 
the extension, BASIC assumes " .BA1'. 

If you strike the RETURN key immediately after typing OLD, BASIC 
clears the workspace and prompts with the message 

You must now type the file name and extension and press the RETURN 
key. 



These two commands both clause BASIC to clear the workspace and bring 
.TF- L , - s ~ ~  ff .T - - i n t o  the workspace from RXA1: 

OL.D R X A l  t TEST BA 
01.- R X A l  t TEST 

1.11.3 Running a Program -- the RUN Command 
The RUN command instructs BASIC to display a header line (containing 
the file name and extension, BASIC version number, and the date) and 
execute the program in the workspace. The RUNNH command causes it to 
run the program without the header. 

The format is 

RUN 

RUNNH 

To run a program, BASIC first reserves space in memory for all arrays 
dimensioned in DIM statements, defines user functions in DEF 
statements, and initializes all numeric variables at zero and all 
string variables at null string. Then it begins execution at the 
lowest line number. 

If BASIC encounters no errors, it will complete execution and display 
any data you asked for in PRINT statements. When it has finished, it 
will signal 

READY 

NOTE 

The RUN and RUNNH commands also cause 
BASIC to store a copy of the program it 
is running in a file called BASIC.WS. 

If you neglect to save the program with a SAVE command or if for some 
reason you cannot retrieve it, call for OLD file BASIC.WS. Keep in 
mind that the program in BASIC.WS is always the last one you have run. 

1.11.4 Displaying a Program -- t h e  LIST Command 

The LIST command causes BASIC to print a header line (containing the 
file name and extension, BASIC version number, and date) and display 
the program currently in the workspace. The LISTNH command instructs 
BASIC to suppress the header. 



OS/8 BASIC 

The format is 

LIST [n] 

LISTNH [n] 

where 

n is a line number in the program 

If n is present, the LIST command will cause BASIC to display the line 
number n and all the lines following it in the program. If n is 
omitted, BASIC will display the entire program. 

To terminate a listing, type the CTRL/O key command. 

Use the LIST command when correcting or modifying the program in the 
workspace. For example, if BASIC informs you that an error exists in 
line 3 0 ,  type LIST 3 0  to see the line. 

When you have detected the error -- in this case the omission of a 
line number after GOT0 -- rewrite the entire line correctly and press 
the RETURN key. 

1.11.5 Storing a Program -- the SAVE Command 
The SAVE command causes BASIC to take the file currently in the 
workspace and store it on any device you specify. 

The format is 

SAVE [dev:filename.ex] 

where 

dev:filename.ex is the device, file name, and extension of 
the program you want to store. If you omit 
the device, BASIC stores the file on DSK:. 
If you omit the file name, BASIC uses the 
name you gave it in a NEW or OLD command. 

The SAVE command provides you with a way to list large programs on the 
line printer rather than the terminal. Type 

to list the contents of the workspace on the line printer. 



1.11.6 Renaming a Program -- the NAME Command 
The NAME command lets you rename the file currently in the workspace. 

The format is 

NAME filename.ex 

where 

filenamesex is the new name of the program 

Since this command changes only the name of the file in the 
workspace -- not the file itself -- you can use it to crea te  and save 
two similar versions of the same program. To do this: 

1. Read the program into the workspace with the OLD command. 

2. Rename the contents of the workspace. 

3. Make the changes. 

4. Save the new version under the new name. 

1.11.7 Erasing the Workspace -- the SCRATCH Command 
The SCRATCH command tells BASIC to erase everything from the 
workspace, leaving you a clean area in which to write. 

The format is 

The OLD and NEW commands also clean the workspace. Nevertheless, it 
is good programming practice to use the SCRATCH command before 
entering a new program or calling for an old one. 

1.11.8 Leaving Basic -- the BYE Command 
The BYE command dismisses the BASIC editor and returns control of the 
system to the OS/8 monitor. 

The format is 

BYE 

Never give the BYE command without first saving the program in the 
workspace. When you call BASIC again and respond to the NEW or OLD 
message, BASIC will erase the workspace, destroying the program. 



OS/8 BASIC 

1.11.9 Resequencing a Program -- Calling RESEQ 
After you have made extensive modifications in a program, you may find 
that some parts now contain consecutively numbered lines, making it 
difficult to insert additional statements where you may need them. 
The BASIC RESEQ program renumbers your program and lets you specify a 
suitable increment between lines. RESEQ automatically changes the 
line numbers in GOSUB and IF THEN statements to aqree with the 
renumbered program. 

Programs for RESEQuencinq must not exceed 350 lines. The lines must 
not exceed 80 characters. 

Here is an example of a typical resequencing operation: 

Command Meaning 

SAVE DSK I SAMPL-E , BA You save SAMPLE (which is the program 
you want to resequence). 

BASIC indicates it is ready to receive 
your next command. 

01 ... D DSK t RESEQ You call for program RESEQ. 

R E A D Y  BASIC is ready for your next command. 

RUNNH You tell BASIC to run RESEQ. 

FyILE'? DSI\ ; SAMPL..l+ BA RESEQ program asks for file name. You 
respond with device, name, and extension 
of program you want to renumber. 

RESEQ asks for a starting line number 
(START) and an increment between line 
numbers (STEP). You specify a starting 
number of 100 and an increment of 10. 

When RESEQ has finished renumbering your 
program, BASIC indicates that it is 
ready for your next command. 

OLD DSK t SAMPLE + BA You call back your program. 

RE:ADY BASIC is ready for your next command. 

You tell BASIC to display program SAMPLE 
on terminal. 

Don't worry if renumbering seems slow. This is a characteristic of 
the RESEQ program. 

1.11.10 Key Commands 

BASIC key commands let you delete characters and lines that you have 
typed, interrupt execution of BASIC programs, and control listings on 
the terminal. To type a CTRL command, hold down the CTRL key and 
press the appropriate letter. 



1.11.10.1 Correcting Typing and Format Errors -- DELETE, CTRL/U - To 
correct typing errors; press the DELETE key. Each time you strike the 
key, another character is deleted. 

Sometimes you may find it easier to delete an entire line rather than 
makinq corrections with a series of DELETES. TO erase an entire line, 
type CTRL/U. This key command -- which is equivalent to typing DELETE 
back to the beginning of the line -- erases the line, echoes 
'DELETED", and performs a line feed. 

1.11.10.2 Eliminating Program Lines -- RETURN - To delete a line from 
a BASIC program, type the line number and press the RETGRN key. This 
removes both the statement and the line number from the program. 

1.11.10.3 Interrupting Program Execution -- CTRL/C - To stop a 
program during execution, type CTRL/C. BASIC responds with READY, 
allowing you to correct or modify the program. 

NOTE 

If you type CTRL/C after the READY 
message appears, BASIC will return 
control to the OS/8 monitor. 

1.11.10.4 Controlling Program Listings on the Terminal -- CTRL/S, 
CTRL/Q, and CTRL/O - If your program exceeds a single display 
frame -- 24 lines -- you may wish to stop the scrolling caused by the 
LIST/LISTNH commands. 

The following key commands let you control listings. 

CTRL/S Suspends scrolling in the display frame. 

CTRL/Q Resumes scrolling. 

CTRL/O Causes BASIC to abort listing and signal with READY 
message. 





CHAPTER 2 

CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.1 INTRODUCTION 

Experienced programmers may write original routines and functions in 
assembly language and run them with BASIC programs. Such operations 
require knowledge of the BASIC run-time system (BRTS), since BRTS is 
the part of BASIC that executes all user-written programs, functions, 
and routines. .The following chapter, which includes a detailed 
description of BRTS, assumes that the reader is familiar with the 
OS/80 assembly language PALS. 

BASIC consists of five discrete parts: 

1. The BASIC editor, which enables you to create and edit source 
programs. When you type a RUN command, the editor opens a 
temporary file called BASIC.WS, stores the source program in 
the file, and chains to the compiler. 

2. The BASIC compiler, which translates the source program into 
a pseudo-code. 

3. The loader, which places the pseudo-code into memory along 
with the run-time system. 

4. The BASIC run-time system, which interprets pseudo-code and 
calls overlays into core memory as it needs them. 

5. The BRTS overlays, which consist mainly of BASIC functions. 
BRTS reserves one of these for user-written assembly-language 
functions and subroutines. 

The following chart lists the names of the files in the BASIC system 
and the file names of the programs each produces or uses during run 
time . 
BASIC Component File Name Associated File Use 

Editor BASIC. SV BASIC .WS source program storage 

Compiler BCOMP. SV BASIC .WS source program storage 
BASIC .TM compiled code storage 

Loader BLOAD . SV BASIC. TM compiled code storage 

BRTS BRTS . SV BASIC.AF overlays of functions, 
BASIC-SF if needed 
BASIC. FF 
BASIC .UF 

Note that these file names identify programs in the BASIC system. You 
must not use them to identify your own programs. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.2 THE B A S I C  RUN-TIME SYSTEM - BRTS 

The BASIC run-time system executes all user-written programs, 
including original assembly-language functions. The description in 
this chapter of the configuration of BRTS during execution uses the 
following conventions: 

Memory locations have symbolic names (always capitalized). 
You may obtain the actual value of these symbols from the 
symbol table for the version of BASIC you are using. 

The symbol table is for a non-EAE system. If the EAE overlay 
is used, some minor symbols will change. The major routine 
entry points, however, are the same in both systems. 

Variable names used in this chapter -- A, A(0,0), A $ ,  and 
A$(0) -- represent the general case. 
All references to "page 0" indicate BRTS page 0 (page 0, field 
0) 

All diagrams in this chapter locate the lowest memory address 
at the top. 

During execution, BRTS has the following configuration in memory. 

Field 0 

Field 1 

@- 

Field N 
(WHERE N = 

HIGHEST 
MEMORY 

FIELD IN THE 
MACHINE) 

INTERPRETER I 
03400 

OVERLAY AREA 
- 04600 

FLOATING POINT 
PACKAGE 

06677 
FILE TABLE 

07000 
OSl8 HANDLERS 

07600 
OSl8 RESIDENT 

10000 

FILE BUFFERS I 
PSEUDO CODE 

ARRAY SPACE 

DATA LIST 4 
SYMBOL TABLES 

N7400 0 R N 7600 
OSl8 RESIDENT 

Figure 2-1 BRTS Configuration 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.2.1 BRTS Symbol Tables 

BRTS reserves space in the highest field in memory for its four symbol 
tables, which it uses to locate variables during run time. These 
tables include the scalar table (for numeric variables such as A or 
B 3 ) ,  the scalar array table (for numeric arrays -- A ( l )  , B ( 3 , 4 )  ) , the 
string symbol table (A$, B2$) , and the string array table (B$ (2) ) . 
Location CDFIO of field 0 contains a CDF to the symbol table field. 

2.2.1.1 The Scalar Table - The scalar table, the highest table in 
memory, contains an entry for each numeric variable used in the 
program. Each entry consists of a three-word floating-point number. 
The table reserves a few extra entries for temporary results. 
Location SCSTRT in field 0 contains a pointer to the start of the 
scalar table. 

The Scalar Table 

Field 0 
I 1 

SCST RT 
POINTER TO 1 SCALAR TABLE 

Field X - 

2.2.1.2 The Array Symbol Table - The array symbol table consists of 
successive four-word entries. Each entry specifies the location and 
size of a numeric array used in the program and has the following 
format: 

Word 3 1 DIMENSION 1 I 

Word 1 

Word 4 1 DIMENSION 2 1 

POINTER TO A(O.0) 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

Word 1 of each entry is a 12-bit pointer to the location of 
the exponent word of the first element in the array. 

Word 2 is a CDF n where n is the field for the pointer in the 
first word. 

Word 3 is the first dimension of the array -- obtained by 
adding 1 to the M in a DIM A(M,N) statement, since the first 
subscript is always 0. 

Word 4 is the second dimension of the array. If the array is 
one-dimensional, the second dimension is 0. 

To locate the nth element in an array, BRTS performs the following 
calculation: 

Addr of A(M,N)=3*[M+(DIMl + 1)*N] + Addr of A(0,O) 

A pointer to the start of the array symbol table less one (for use in 
an index register) resides in field 0 at location ARSTRT. 

The Array Symbol Table 

POINTER TO ARRAY TABLE -1 

Field 0 

CDFIO CDF X I 

A(0,1! 

POINTER TO A(O.0) 

ARRAY SYMBOL 
CDF Y 

TABLE f i e l d  XI M+1 A(M,N) 

N+  1 

BRTS stores numeric arrays in memory as successive three-word entries 
with the first subscript varying the fastest and A(0,O) occupying the 
lowest address in memory. 

2.2.1.3 The String Symbol Table - The string symbol table contains 
successive three-word entries in the following format: 

Word 1 

Word 2 CDF FOR STRING 

Word 3 1 -MAX :OF CHARS IN STRING1 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

0 Word 1 is a 12-bit pointer to the count word of the string. 

e Word 2 in the entry is a CDF tor the count word. 

Word 3 is the maximum length of the string (in characters) 
stored as a two's complement negative number. (Each s t r i n g  is 
allocated INT( (n + 1) 2) +1 words, where n is the maximum length 
specified in a DIM statement, whether that many words are 
actually used or not. ) 

Note that the maximum number of characters in the string represents 
the amount of space allocated for the string. The amount of space 
actually used is represented by the count word, which BRTS stores with 
the string. 

Location SRSTRT in field 0 contains a pointer to the start of thp 
string symbol table (less one) . 

The String Symbol Table 

POINTER TO STRING SYMBOL 1 
Field 0 

CDFIO 7 1  

ENTRY 1 

STRING 
SYMBOL TABLE 

(Field XI  -MAX LENGTH 1) 
MAX LENGTH+I 

INT ( 
2 

STRING AS 
IF/e!d Y,' 

WORDS LONG 

2.1.4 The String Array Table - The string array table consists of 
nsecutive four-word entries in the following format. 

Word 2 CDF FOR A$(O) 

Word 1 

Word 4 DIMENSION OF A$(0) 

POINTER TO AS(0) 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

Word 1 contains a pointer to the count word of string A$(O). 

Word 2 contains a CDF for the count word pointer. 

Word 3 is a two's complement negative number that specifies 
the maximum length (in characters) of each element in the 
array. 

Word 4 indicates the size of the string array, obtained by 
adding 1 to M in the statement DIM A$(M,N) since the first 
element is always A$(O). A pointer to the start of the string 
array table less one resides in field 0 at location SASTRT. 

To locate the nth element of a string array, BRTS performs the 
following calculation: 

addr of A$ (N) =addr of A$ (0) + (INT (ABS (z) +1) /N+l) *N 

where 

Z = individual character length. 

The String Array Table 

POINTER TO START OF STRING ARRAY TABLE -1 
I 

0 
STRING ARRAY 

TAB L E (Field X )  

Field 0 

2.2.2 String Storage 

CDFIO 

ENTRY 

ENTRY 

CDF X 

COUNT I1 

STRING ARRAY 
AS(CM, N 
(Field Yi  

BRTS stores strings as 6-bit ASCII characters. The first word in each 
string is a character count -- a signed, two's complement number 
representing the actual number of characters in the string, not the 
number of words devoted to the string. BRTS fills the left half of 
each word first, padding out the unused characters with spaces. The 
minimum string is one character long. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

COUNT 

"BA" 

"S I" 

"C" 

COUNT 1 1 
COUNT FOR 

NEXT STRING 

COUNT 

1 ! 1 "BR" 

1 "TS" 

I COUNTFOR I NEXTSTRING 

2 . 3  The S t r i n g  Accumulator 

BRTS maintains a string accumulator (SAC) for all string operations. 
String operations leave their results in the SAC and use it as one of 
their operands. The SAC starts at location SAC in BRTS; it is 80 
words long and contains one 6-bit character per word. BRTS stores the 
length as a negative number in SACLEN and maintains a page 0 pointer 
(less one) to the start of the SAC at SACPTR. 

2.2.4 String Array Storage 

BRTS stores string arrays in memory as successive strings, with A$(0) 
occupying the lowest core address. BRTS allocates space for the 
maximum length possible, even though not all of the space may be used. 
The space is for the maximum length. 

COUNT 

I N T ( ~  ) 

COUNT 

WORDS WHERE N IS THE 
MAXIMUM LENGTH OF 
STRING SPECIFIED IN 
DIM STATEMENT 

COUNT 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

NOTE 

For  any  o f  t h e  above  d a t a  t y p e s ,  a  f i e l d  
bounda ry  may f a l l  anywhere  w i t h i n  a n y  
i n d i v i d u a l  i t e m .  I f  y o u r  r o u t i n e s  u s e  
s u c c e s s i v e  words  i n  any  d a t a  i t e m  t h e y  
mus t  check  f o r  a  f i e l d  bounda ry  w i t h i n  
t h a t  i t e m .  

2.2.5 The DATA List 

BRTS s t o r e s  t h e  DATA l i s t  ( c r e a t e d  by t h e  BASIC DATA s t a t e m e n t )  a s  
s e q u e n t i a l  i t e m s  i n  t h e  h i g h e s t  f i e l d  i n  memory. BRTS a l l o c a t e s  
s t r i n g s  a n  e v e n  number o f  words  and  a s s i g n s  a  c o u n t  word a s  a  p r e f i x .  

The DATA l i s t  a l w a y s  r e s i d e s  i n  t h e  h i g h e s t  memory f i e l d .  BRTS 
m a i n t a i n s  a  p a g e  0 ,  f i e l d  0  p o i n t e r  t o  t h e  s t a r t i n g  a d d r e s s  o f  t h e  
DATA l i s t  less o n e  a t  DLSTRT. L o c a t i o n  DLSTP c o n t a i n s  t h e  a d d r e s s  o f  
t h e  l a s t  word i n  t h e  l i s t .  

IN BASIC: 
DATA 1,2,"TH REEM,4 

IN CORE: 

POINTER TO DATA LIST -1 

PO INTER TO LAST WORD 
IN DATA LIST 

2.2.6 Array Space 

COUNT STRING 

Field N 

Field 0 

BRTS r e s e r v e s  s p a c e  f o r  a r r a y s  i n  t h e  h i g h e s t  memory f i e l d .  The 
bo t t om o f  t h e  a r r a y  s p a c e  ( l i n e  A i n  F i g u r e  2-1) c a n  e x c e e d  t h e  f i e l d  
bounda ry  and  p r o c e e d  i n t o  l o w e r  f i e l d s ,  b u t  t h i s  h a p p e n s  o n l y  i n  l a r g e  
p rog rams .  

, 
"THREE" 1 
4 

4 

2 

2000 

0000 

oooo 

7773 

24 

2 2 

0 5 

0 5 

l o  

40 

3 

2000 

0000 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2 . 2 . 7  C o m p i l e r  Pseudo-Code  

BRTS s e n d s  t h e  p s e u d o - c o d e  g e n e r a t e d  b y  t h e  BASIC c o m p i l e r  t o  t h e  
h i g h e s t  f i e l d  i n  memory.  N o t e  t h a t  i f  t h e  b o t t o m  o f  t h e  p s e u d o - c o d e  
e x t e n d s  b e l o w  l i n e  B  ( 1 2 0 0 0 )  i n  F i g u r e  2 -1 ,  t h e  f i l e  s p a c e  d i m i n i s h e s ,  
c a u s i n g  a l o s s  i n  r u n - t i m e  f i l e  c a p a b i l i t i e s .  A s  t h e  bottom of t h e  
p s e u d o - c o d e  a p p r o a c h e s  1 0 0 0 0 ,  t h e  number  o f  f i l e s  t h a t  y o u  may 
s i m u l t a n e o u s l y  o p e n  a t  r u n  t i m e  a p p r o a c h e s  z e r o .  ( E a c h  f i l e  o p e n e d  a t  
r u n  time r e q u i r e s  a t  l e a s t  4 0 0  w o r d s  o f  b u f f e r  s p a c e . )  

2 . 2 . 8  F i l e  B u f f e r  S p a c e  

BRTS r e s e r v e s  l o c a t i o n s  1 0 0 0 0 - 1 2 0 0 0  f o r  f i l e  b u f f e r  s p a c e .  I t  
a l l o c a t e s  b u f f e r s  a s  it  n e e d s  t h e m ,  s t a r t i n g  w i t h  t h e  l o w e s t  f r e e  
b u f f e r .  BRTS m a i n t a i n s  a map of c u r r e n t l y  a l l o c a t e d  b u f f e r s  c a l l e d  
BMAP o n  p a g e  0 .  B i t s  i n  t h e  map a r e  se t  i f  t h e  b u f f e r  is i n  u s e ,  a n d  
c l e a r e d  i f  t h e  b u f f e r  i s  f r e e .  B i t  11 r e p r e s e n t s  t h e  b u f f e r  f r o m  
1 0 0 0 0  t o  1 0 3 7 7 ,  b i t  1 0  f o r  1 0 4 0 0  t o  1 0 7 7 7 ,  b i t  9  f o r  1 1 0 0 0  t o  1 1 3 7 7 ,  
a n d  b i t  8  f o r  1 1 4 0 0  t o  1 1 7 7 7 .  I f  a n y  o f  t h e  b u f f e r s  a r e  n o t  a v a i l a b l e  
b e c a u s e  t h e  p s e u d o - c o d e  o r  v a r i a b l e  s p a c e  e x t e n d s  b e l o w  1 2 0 0 0 ,  BRTS 
sets t h e  c o r r e s p o n d i n g  BMAP b i t s  a t  r u n  time. 

BASIC f i l e s  h a v e  t h e  f o l l o w i n g  f o r m a t :  

N u m e r i c  f i l e s  -- s t o r e  d a t a  a s  c o n s e c u t i v e  3-word 
f l o a t i n g - p o i n t  n u m b e r s ,  8 5  t o  e a c h  256-word b l o c k .  T h e  l a s t  
word  i n  e a c h  b l o c k  i s  u n u s e d .  T h e r e  is n o  e n d - o f - f i l e  m a r k e r .  

ASCII  f i l e s  -- s t o r e  d a t a  i n  OS/8 ASCII  f o r m a t .  T h r e e  8 - b i t  
c h a r a c t e r s  a r e  p a c k e d  t o  e v e r y  t w o  w o r d s  i n  t h e  f o l l o w i n g  
m a n n e r  : 

1 HI ORDER CHAR 3 1 CHAR 1 I 
1 LO ORDER CHAR 3 1 CHAR 2 1 

T h e  e n d - o f - f i l e  i s  m a r k e d  w i t h  a  CTRL/Z c h a r a c t e r .  

2 . 2 . 9  D e v i c e  H a n d l e r  S p a c e  

BRTS r e s e r v e s  l o c a t i o n s  7000-7577  f o r  1 - p a g e  a n d  2 - p a g e  d e v i c e  
h a n d l e r s  and  m a i n t a i n s  a  map o f  t h e  3 p a g e s  a t  DMAP. B i t  11 
r e p r e s e n t s  p a g e  7 0 0 0 - 7 1 7 7 ,  b i t  1 0  r e p r e s e n t s  p a g e  7 2 0 0 - 7 3 7 7 ,  a n d  b i t  9 
p a g e  7400-7577 .  

A s s e m b l y - l a n g u a g e  f u n c t i o n s  i n  p r o g r a m s  t h a t  d o  n o t  r e q u i r e  m o r e  t h a n  
o n e  o r  two  f i l e s  o p e n  a t  a time may u s e  some o f  t h i s  h a n d l e r  a n d  f i l e  
b u f f e r  s p a c e  f o r  t h e i r  own p u r p o s e s .  You c a n  a l l o c a t e  t h i s  s p a c e  by 
s e t t i n g  a p p r o p r i a t e  b i t s  i n  BMAP a n d  DMAP. A f t e r  y o u  s e t  t h e  b i t s ,  
BRTS w i l l  n o t  u s e  t h e  s p a c e  i n d i c a t e d  i n  s u b s e q u e n t  FILE o p e r a t i o n s .  



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.2.10 The BRTS 1/0 Table 

BRTS maintains an 1/0 file table to keep track of the status of each 
of the four files that may be open simultaneously in a BASIC program. 
The table contains four 13-word entries, labeled FILE1, FILE2, FILE3, 
and FILE4, in that order. Each name corresponds to the number you 
specify in the file statement that opened the file, and each entry has 
the followinq format: 

HEADER WORD 
STARTING ADDRESS OF BUFFER (IN FIELD 1) 
CURRENT BLOCK IN BUFFER 
READ/WRITE POINTER INTO BUFFER 
HANDLER ENTRY POINT 
STARTING BLOCK NUMBER FOR FILE 
ACTUAL FILE LENGTH 
MAXIMUM FILE LENGTH 
POSITION OF PRINT HEAD (FOR COLUMN FORMAT- 
TING) 
FILE NAME 
FILE NAME 
FILE NAME 
FILE NAME 

The header word bits have significance as follows: 

Bit Positions Meaning 

0-3 OS/8 number for device 

4-5 Current character number for unpacking ASCII 
files 

6 0 if the current buffer load has n o t  been 
changed 
1 if current buffer load has been altered 

0 if device is file structured 
1 if device is read/write only 

0 if the handler is 1 page long 
1 if it is a 2 page handler 

0 if file is fixed length 
1 if variable length 

0 if more data in file 
1 if EOF has been seen 

0 if file numeric 
1 if file ASCII 

2.2.11 The BRTS Floating-point Package 

The floating-point package is permanently resident in memory and 
available for use by assembly language routines for floating-point 
calculations. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.2.11.1 The Floatinq-Point Accumulator - The floating-point 
accumulator, .  FAC; res ides  a t  locations E X P i  FiQRT2, 2nd LORD on na- Q 

r - Y L  

and has the standard PDP-8 23-bit floating-point format. 

SIGN OF 
E X P O N E N T  

EX? 

LORD 

I 
S I G N  OF 

MANTISSA 

~loating-point operations use the FAC in the same way that PDP-8 
machine-language instructions use the hardware accumulator. The FAC 
is one of the operands in every floating-point calculation and holds 
the result of all floating-point operations (with the exception of 
FPUT -- see below). 

.2.11.2 Floating-point Routines - BRTS provides the following 
loating-point routines which you may use as subroutines in a program 
For information on calling these rou t ines ;  see Section 2 . 3 . ) :  

Function Starting Address Operation 

ADD 
SUBTRACT 
MULTIPLY 
DIVIDE 
INVERSE SUBTRACT 
INVERSE DIVIDE 
LOAD FAC 
STORE FAC 

FFADD 
FFSUB 
FFMPY 
FFDIV 
FFSUBl 
FFDIV1 
FFGET 
FFPUT 

There are also four simple floating-point operations that operate on 
the FAC and are available to user subroutines. 

Function Starting Address Operat ion 

NEGATE 
NORMAL I Z E 
SQUARE 
CLEAR 

FFNEG FAC<-FAC 
FFNOR NORMALIZE<-FAC 
FFSQ FAC<-FAC*FAC 
FACCLR FAC<-0 

The functions are called with a JMS and return with the hardware AC=O. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2 . 2 . 1 2  BRTS Overlay Buffer 

BRTS a l l o t s  l o c a t i o n s  3400-4577  o f  f i e l d  0  a s  a n  o v e r l a y  a r e a ,  r e a d i n g  
i n  o v e r l a y s  a s  i t  n e e d s  t h e m .  T h e  o v e r l a y s ,  w h i c h  c o n s i s t  m a i n l y  o f  
f u n c t i o n s  i n f r e q u e n t l y  u s e d ,  a r e  o r g a n i z e d  i n  t h e  f o l l o w i n g  m a n n e r :  

BASIC.AF A r i t h m e t i c  F u n c t i o n s  

S I N ,  COS, ATN, EXP, F I X ,  FLOAT, I N T I  R N D ,  
EXPONENTIATION, SGN, SQR, LOG 

BASIC.SF S t r i n g  F u n c t i o n s  

ASC, CHR$, DAT$, LEN, POS, SEG$, STR$, VAL, E r r o r  
p r o c e s s i n g ,  TRC 

BASIC.FF F i l e  F u n c t i o n s  

CHAIN, CLOSE, F I L E ,  STOP 

BASIC.UF User F u n c t i o n  

BRTS r e s e r v e s  t h e  l a s t  o v e r l a y ,  BASIC.UF, f o r  u s e r - w r i t t e n  a s s e m b l y  
l a n g u a g e  r o u t i n e s .  E a c h  t i m e  y o u  c a l l  f o r  o n e  o f  t h e s e  r o u t i n e s ,  BRTS 
r e a d s  BASIC.UF i n t o  t h e  o v e r l a y  b u f f e r .  

2 . 3  CALLING FLOATING-POINT ROUTINES 

T h e r e  a r e  two  s e p a r a t e  c a l l i n g  s e q u e n c e s  f o r  f l o a t i n g - p o i n t  r o u t i n e s :  

Mode 1, w h i c h  y o u  u s e  when t h e  o p e r a n d  o f  t h e  r o u t i n e  i s  i n  
f i e l d  0  ( t h e  same f i e l d  a s  t h e  FPP)  . 
Mode 2 ,  w h i c h  y o u  u s e  when t h e  o p e r a n d  is i n  some o t h e r  f i e l d .  

T h e  c o n t e n t s  o f  t h e  h a r d w a r e  a c c u m u l a t o r  a t  t h e  time o f  e n t r y  a l s o  
d e t e r m i n e  t h e  mode o f  t h e  c a l l i n g  s e q u e n c e .  You may u s e  Mode 1 o n l y  
i f  t h e  a c c u m u l a t o r  i s  0 .  I f  t h e  AC is n o n - z e r o ,  y o u  m u s t  u s e  Mode 2 .  

You s e t  a s w i t c h  i n  t h e  c a l l i n g  s e q u e n c e  -- l o c a t i o n  FF -- t o  t e l l  t h e  
f l o a t i n g - p o i n t  p a c k a g e  w h i c h  mode t o  f o l l o w .  F o r  Mode 1, l e t  FF e q u a l  
z e r o ;  f o r  Mode 2 ,  n o n - z e r o .  

I n  a Mode 1 c a l l ,  t h e  a d d r e s s  o f  t h e  o p e r a n d  i m m e d i a t e l y  f o l l o w s  t h e  
JMS i n s t r u c t i o n .  T h u s :  

C I... A 
DCA F'F /SW ITCH FT----O FOR MODE: 1 
JMS I F:'OINTR /JUMP TO FLOATING-POINT ROUT I NE 
i OPERAND A1:iDR ) / 1 2 - B I T  ADDRESS OF OPERAND 

/'RETURNS HERE: 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

I n  a  Mode 2 c a l l ,  t h e  a d d r e s s  o f  t h e  o p e r a n d  is  i n  t h e  a c c u m u l a t o r .  
m e  f i e l d  of the nnnr The  CDF n instruction i n d i c a t e s  L L  i^ci-and. Fer  

e x a m p l e ,  

/FT SUITCH NOT EQUAL TO 0 FOR MODE 2 
,ilF TO FIELD OF OPERAND 

/ADDRESS OF OPERAND 
/JUMP TO FL-OATING-POINT R O U T I N E  
/THIS  L O C A T I O N  UNUSED 
/RETURNS HERE + 
.i#+DIiRESS OF FLOAT I NO--PC) I NT ROUT I NE: 
/ADDRESS OF OPERAND 

B o t h  modes r e t u r n  w i t h  a  c l e a r  AC a n d  t h e  d a t a  f i e l d  se t  t o  0 .  N o t e  
t h a t  t h e  r o u t i n e  d o e s  n o t  a l t e r  s w i t c h  FF. T h e r e f o r e ,  it is necessa ry  
t o  c h a n q e  i t  o n l y  when you  w a n t  t o  c h a n g e  modes ,  n o t  b e f o r e  e v e r y  
c a l l .  

B o t h  modes r e t u r n  t o  t h e  s e c o n d  i n s t r u c t i o n  f o l l o w i n g  t h e  JMS c a l l ,  
s k i p p i n g  t h e  word i m m e d i a t e l y  a f t e r  t h e  JMS. S i n c e  a  Mode 2 c a l l  
n e v e r  u s e s  t h i s  l o c a t i o n ,  you  may u s e  i t  a s  a  l o c a t i o n  f o r  s t o r i n g  
c o n s t a n t s  i n  Mode 2 o p e r a t i o n s .  

The FF s w i t c h  -- w h i c h  m i g h t  seem u n n e c e s s a r y  i n  m o s t  c a l l i n g  
s e q u e n c e s  -- makes  it p o s s i b l e  f o r  t h e  f l o a t i n g - p o i n t  p a c k a g e  t o  
o b t a i n  a n  o p e r a n d  f o r  l o c a t i o n  0  i n  a  f i e l d  o t h e r  t h a n  z e r o .  I f  you  
d i d  n o t  i n c l u d e  t h e  FF s w i t c h ,  t h e  FFP would  e x a m i n e  t h e  a c c u m u l a t o r ,  
f i n d  i t  e m p t y ,  a n d  u s e  t h e  a d d r e s s  i n  t h e  word f o l l o w i n g  t h e  c a l l ,  
s i n c e  i t  h a s  n o  way t o  t e l l  a n  e m p t y  AC f r o m  a n  AC c o n t a i n i n g  a n  
o p e r a n d  a d d r e s s  o f  0 .  The  FF s w i t c h ,  t h e n ,  s i m p l y  t e l l s  t h e  
f l o a t i n g - p o i n t  p a c k a g e  w h e t h e r  t h e  z e r o  means  "Mode-1 c a l l "  o r  
" o p e r a n d  a t  0 . "  

BRTS c o n t a i n s  P a g e  0  l i t e r a l s  u s e d  b y  t h e  FGET a n d  FPUT r o u t i n e s .  
T h e s e  P a g e  0  l i t e r a l s  c a n  b e  f o u n d  i n  t h e  BRTS s o u r c e  l i s t i n g .  P a g e  0  
l i t e r a l s  r e f e r e n c e  t h e  f o l l o w i n g  r o u t i n e s  ( F o r  more  i n f o r m a t i o n  o n  
P a g e  0  l i t e r a l s ,  r e f e r  t o  t h e  s e c t i o n  o n  BRTS s u b r o u t i n e s . ) :  

P a g e  Z e r o  L i n k  R o u t i n e  

FNEGL 
FNORL 
FCLR 

FFNEG 
FFNOR 
FACCLR 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

The following sample programs demonstrate uses of floating-point 
routines. 

1. This routine calculates xA2+2x+1. 

JMS I R3ETL 
x 
JMS I FMPYLK 
x 
JMS I FT-UTL.. 
Y 
JMS I R3ETL 
x 
JMS I FMPYLK 
TWO 
JMS I FADDLK 
ONE 
-IMS I FADDL..t< 
Y 

/OPERAND ADDRESS W..L 
/FOLLOW CALLS (MODE 1 )  
/L-INK I S  ON PAGE 0 

/L-OAD X AGAIN 

/RESULT NOW I N  FAC 

/L.INK TO Arm ROUTINE 
/L INK TO FLOATING MULTIPLY 
/FLOATING-POINT CONSTANT 
/ 2 + 0  

/FLOATING-POINT CONSTANT 
/:l t 0 

2. This routine adds five successive floating-point numbers 
starting at location 0 field 2. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.4 USING BRTS SUBROUTINES IN ASSEMBLY-LANGUAGE FUNCTIONS 

BRTS i n c l u d e s  s e v e r a l  s u b r o u t i n e s  t h a t  you  may u s e  i n  a s s e m b l y  
l a n g u a g e  f u n c t i o n s .  I n  t h e  f o l l o w i n g  d i s c u s s i o n ,  e a c h  s u b r o u t i n e  h a s  
a  s y m b o l i c  t a g  f o r  i t s  s t a r t i n g  a d d r e s s .  T h e s e  t a g s  c a n  b e  f o u n d  i n  
t h e  symbol  t a b l e .  Eany r o u t i n e s  a r e  now a d d r e s s e d  -Â¥Â¥'+' W - L  Ãˆ-L "--- c a y =  G 
l i t e r a l s  t h a t  c a n  b e  f o u n d  i n  t h e  BRTS s o u r c e  l i s t i n g .  N o t e  t h a t  
r e f e r e n c e s  t o  P a g e  0 p o i n t e r s  by name n o  l o n g e r  a p p l y .  The p u r p o s e  is 
t o  s h o r t e n  t h e  s i z e  o f  t h e  BRTS symbol  t a b l e .  

2 . 4 . 1  ARGPRE 

ARGPRE l o c a t e s  s c a l a r  v a r i a b l e s  i n  t h e  s c a l a r  t a b l e .  You c a n  u s e  i t  
t o  p a s s  a r g u m e n t s  t o  and  f r o m  a  u s e r  s u b r o u t i n e .  When you  c a l l  i t ,  
ARGPRE r e a d s  t h e  r i g h t m o s t  e i g h t  b i t s  (0-255 d e c i m a l )  o f  l o c a t i o n  
INSAV a s  t h e  p o s i t i o n  o f  t h e  item you w i s h  t o  l o c a t e  i n  t h e  a r r a y .  
F o r  e x a m p l e ,  i f  you p l a c e  a  2  i n  INSAV, ARGPRE w i l l  l o c a t e  t h e  t h i r d  
v a r i a b l e  i n  t h e  s c a l a r  t a b l e .  (The  f i r s t  e n t r y  is z e r o . )  On r e t u r n ,  
ARGPRE sets  t h e  d a t a  f i e l d  t o  t h e  f i e l d  o f  t h e  v a r i a b l e  a n d  l e a v e s  t h e  
l o c a t i o n  o f  t h e  e x p o n e n t  word o f  t h e  v a r i a b l e  i n  t h e  a c c u m u l a t o r .  To 
c a l l  ARGPRE, u s e  a  JMS i n s t r u c t i o n .  

F o r  e x a m p l e ,  t h e  f o l l o w i n g  a s s e m b l y - l a n g u a g e  s e q u e n c e  -- w h i c h  
i n c l u d e s  a  c a l l  t o  t h e  ARGPRE s u b r o u t i n e  -- l o a d s  t h e  t h i r d  v a r i a b l e  
i n  t h e  s c a l a r  t a b l e  i n t o  t h e  f l o a t i n g - p o i n t  a c c u m u l a t o r .  

i:; 1.- A 
TAD C 2  /WE WANT ENTRY # 3 ~  BUT 

/S INCE THE F'IRST ONE I S  O Y  
/LOAD INSANE: WITH 2 

/SET F F  SWITCH 
/CzAL-1.. ARGPRE 
/THE AC AND DATA F I E L D  
/ARE SE~TÃ SO T H I S  I S  A 
/MODE: 2 C A L L *  

2 . 4 . 2  XPUTCH 

XPUTCH r e a d s  a n  ASCII c h a r a c t e r  f r o m  t h e  a c c u m u l a t o r  a n d  l o a d s  i t  i n t o  
t h e  t e r m i n a l  r i n g  b u f f e r .  To u s e  XPUTCH, p l a c e  a n  ASCII c h a r a c t e r  i n  
t h e  r i g h t m o s t  e i g h t  b i t s  o f  t h e  a c c u m u l a t o r  a n d  c a l l  f o r  t h e  
s u b r o u t i n e  w i t h  a  JMS i n s t r u c t i o n .  

On r e t u r n ,  XPUTCH c l e a r s  t h e  a c c u m u l a t o r .  N o t e  t h a t  XPUTCH d o e s  n o t  
p r i n t  t h e  c h a r a c t e r ;  i t  s i m p l y  p u t s  t h e  c h a r a c t e r  i n  t h e  r i n g  b u f f e r .  

F o r  e x a m p l e ,  t h i s  s e q u e n c e  u s e s  XPUTCH t o  p l a c e  a  c a r r i a g e  r e t u r n / l i n e  
f e e d  c o m b i n a t i o n  i n t o  t h e  t e r m i n a l  b u f f e r :  



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.4.3 XPRINT 

S u b r o u t i n e  XPRINT p r i n t s  t h e  n e x t  c h a r a c t e r  i n  t h e  r i n g  b u f f e r .  I f  
t h e  r i n g  b u f f e r  c o n t a i n s  c h a r a c t e r s  w a i t i n g  t o  be  p r i n t e d ,  XPRINT 
r e t u r n s  t o  t h e  i n s t r u c t i o n  f o l l o w i n g  t h e  JMS t h a t  c a l l e d  i t .  I f  t h e  
b u f f e r  is empty ,  XPRINT s k i p s  t h e  i n s t r u c t i o n  i m m e d i a t e l y  f o l l o w i n g  
t h e  JMS. XPRINT w i l l  p r i n t  a  c h a r a c t e r  o n l y  i f  t h e  t e r m i n a l  i s  n o t  
b u s y ,  s o  t h a t  a  c a l l  t o  XPRINT means " p r i n t  a  c h a r a c t e r  i f  p o s s i b l e "  
r a t h e r  t h a n  " p r i n t  a  t e r m i n a l  c h a r a c t e r . "  

The c a l l  t o  XPRINT i n  t h e  f o l l o w i n g  example  k e e p s  t h e  t e r m i n a l  busy  
d u r i n g  a  compute-bound l o o p .  A t  t h e  end  o f  t h e  l o o p ,  XPRINT e m p t i e s  
t h e  r i n g  b u f f e r .  

I... OOP. , 

2 . 4 . 4  PSWAP 

Under normal  c o n d i t i o n s ,  BRTS r u n s  w i t h  t h e  OS/8 page  17600 p o r t i o n  o f  
t h e  r e s i d e n t  m o n i t o r  moved t o  t h e  h i g h e s t  page  o f  memory ( t h e  
s e c o n d - h i g h e s t  page  i n  a  TD8/E s y s t e m ) .  PSWAP l e t s  you r e s t o r e  t h i s  
page  t o  17600  p r i o r  t o  d o i n g  a n y  o p e r a t i o n s  w i t h  OS/8 and t h e n  swap i t  
back  up t o  h i g h  memory when you a r e  t h r o u g h .  No te  t h a t  t h i s  means you 
mus t  a l w a y s  u s e  PSWAP a n  e v e n  number o f  t i m e s .  

The f o l l o w i n g  s e q u e n c e  o f  c o d e  -- which d i r e c t s  t h e  USR i n  OS/8 t o  
p e r f o r m  a  l o o k u p  on  f i l e  BASIC.DA -- r e q u i r e s  two JMS c a l l s  t o  PSWAP. 

+ 

, 
* 
C I... A 
JMS I P l  -SWAP 
C I... A I A C  
G I F :I. 0 
JMS I K7700 
':> .... 
F' N A M E: 
0 
1-1 I... T 
SMS I P:I.SWAP 
+ 

9 

/ 'AC SHOUL..D BE: 0 ON CAL..L- 
./RE:STORE: OS/8 PAGE 17600 RESIDENT 
/'DEVICE # FOR SYS: I S  1 

/CAI.-L USR 
.,' L O  O K U P 
/PD:[NTE:R T O  F1L.E: NAME: 
/CONTAINS I...E:NGTti ON RETURN 
/ERROR RETURN 
/./SWAF:' O S / 8  RE:SIDE:NT BACK 
/ T O  HIGH CORE: 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2 . 4 . 5  UNSFIX 

UNSFIX f i x e s  a  p o s i t i v e ,  1 2 - b i t ,  m a g n i t u d e - o n l y  i n t e g e r  f r o m  t h e  
f l o a t i n g - p o i n t  a c c u m u l a t o r  a n d  r e t u r n s  w i t h  t h e  r e s u l t  i n  t h e  h a r d w a r e  
a c c u m u l a t o r .  UNSFIX d e s t r o y s  t h e  c o n t e n t s  o f  t h e  FAC. 

The r a n g e  o f  t h e  f i x e d  i n t e g e r  is  0-4095. Any a t t e m p t  t o  f i x  a  number 
l a r g e r  t h a n  4095  o r  a n e g a t i v e  number w i l l  p r o d u c e  a n  "FO" o r  "FM" 
e r r o r  m e s s a g e ,  r e s p e c t i v e l y .  To c a l l  UNSFIX, u s e  a JMS i n s t r u c t i o n .  

The f o l l o w i n g  c o d e  -- w h i c h  i n c l u d e s  a c a l l  t o  INFIX v i a  INTL -- u s e s  
t h e  FAC a s  a  c o u n t e r  f o r  t h e  number o f  times t o  r i n g  a  b e l l  o n  t h e  
t e r m i n a l .  

C 1.. A 
JMS I INTI.- / F I X  THE: F'AC TO 1 2 - B I T  INTEGER 
C I A  /NEGATE: THE INTEGER 
DCA COUNTR /AND STORE AS COUNT 

BEL-L-OP Y TAD K 2 0 7  /ASCII FCIR BELL.. 
.JMS I XPUT /PUT I N  R I N G  BUFFER 
1 3 ~  i;i]ijN'rK /RIGHT NUMBER YET'? 

JMP E{E!:Ll-OP /NO-RING ANOTHER BE:L..L 

2 . 4 . 6  STFIND 

D e p e n d i n g  o n  t h e  c o n t e n t s  o f  t h e  l i n k  b i t ,  STFIND l o c a t e s  a  s t r i n g  
v a r i a b l e  o r  t h e  f i r s t  e l e m e n t  i n  a  s t r i n g  a r r a y .  

I f  y o u  s e t  t h e  l i n k  t o  0 ,  STFIND a c c e p t s  t h e  r i g h t m o s t  e i g h t  
b i t s  o f  l o c a t i o n  INSAV a s  t h e  p o s i t i o n  o f  t h e  v a r i a b l e  you  
w i s h  t o  l o c a t e  i n  t h e  s t r i n g  symbol  t a b l e .  

a I f  you  s e t  t h e  l i n k  a t  n o n - z e r o ,  STFIND a c c e p t s  t h e  r i g h t m o s t  
f i v e  b i t s  i n  INSAV a s  a  p o s i t i o n  i n  t h e  s t r i n g  a r r a y  t a b l e .  

A f t e r  STFIND r e t u r n s ,  t h e  AC c o n t a i n s  a  CDF t o  t h e  f i e l d  o f  t h e  s t r i n g  
s p e c i f i e d ;  l o c a t i o n  STRPTR p o i n t s  t o  t h e  first word -- t h e  c o u n t  
word -- o f  t h e  s t r i n g ;  l o c a t i o n  STRMAX h o l d s  t h e  maximum l e n g t h  o f  
t h e  s t r i n g  a s  a  n e g a t i v e  number ;  a n d  STRCNT c o n t a i n s  t h e  a c t u a l  
number o f  c h a r a c t e r s  i n  t h e  s t r i n g  a s  a  n e g a t i v e  number .  STFIND is 
u s e d  m o s t  f r e q u e n t l y  t o  p a s s  a r g u m e n t s  t o  a n d  f r o m  u s e r  f u n c t i o n s .  

The f o l l o w i n g  s e q u e n c e  u s e s  STFIND t o  l o c a t e  s t r i n g  number s e v e n :  

'TAD /THE NUMBER I NG STARTS WITH 0 
111 i:; A I N S A V /SE:T UP STFIND POINTER 
(:; I... I... /Wf-;: WANT  SIMPLE^: STRING 
,JMS 11 S ~ ~ l : ~ I N L -  / C A L L  STF 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

T h i s  e x a m p l e  l o c a t e s  t h e  f i r s t  e l e m e n t  o f  s t r i n g  a r r a y  number  two :  

2 . 4 . 7  MPY 

MPY p e r f o r m s  a  1 2 - b y - 1 2 - b i t  m u l t i p l i c a t i o n .  I t  m u l t i p l i e s  t h e  
c o n t e n t s  o f  t h e  h a r d w a r e  a c c u m u l a t o r  b y  t h e  c o n t e n t s  o f  l o c a t i o n  TEMP3 
( b o t h  n u m b e r s  a r e  t r e a t e d  a s  1 2 - b i t  u n s i g n e d  i n t e g e r s ) .  On r e t u r n ,  
MPY s t o r e s  t h e  h i g h - o r d e r  b i t s  o f  t h e  r e s u l t  i n  TEMP6 a n d  t h e  
l o w - o r d e r  b i t s  i n  t h e  AC. 

2 . 4 . 8  DLREAD 

DLREAD p l a c e s  t h e  n e x t  word  i n  t h e  d a t a  l i s t  i n t o  t h e  a c c u m u l a t o r .  I f  
t h e  l i s t  c o n t a i n s  n o  m o r e  d a t a ,  a  DA e r r o r  m e s s a g e  r e s u l t s .  

T h e  f o l l o w i n g  s e q u e n c e  o f  i n s t r u c t i o n s  r e a d s  a  number  f r o m  a  DATA l i s t  
i n t o  t h e  h a r d w a r e  a c c u m u l a t o r :  

iX..A 
.IMS :I: Dl ... RE!:AI ... /READ EXPONENT WORD INTO AC 
r.1 A F x p  .. . /STORE-: IN F A C  
J M S  I DL .. REAI ... /READ H IGH MANTISSA FROM L..IST 
I:! (1: A W O R K:I ./STORE:: H I G H  MANTISSA WORD 
.!MS 1 1:11..REAL- .:'READ L-OW MANTISSA F3ROM L. IST 
DCA LORD :.'STOFO: I...OW MANTISSA WORD 
b 

I:! I.. I:Â¥ E:: A I... v 1:1 I... F? F A D 

2 . 4 . 9  ABSVAL 

ABSVAL d e t e r m i n e s  t h e  a b s o l u t e  v a l u e  o f  t h e  f l o a t i n g - p o i n t  
a c c u m u l a t o r .  I f  t h e  FAC is n e g a t i v e ,  ABSVAL n e g a t e s  i t  b e f o r e  r e t u r n .  
I f  t h e  FAC is p o s i t i v e ,  ABSVAL i s  t h e  e q u i v a l e n t  o f  a  NOP. 

2 . 5  P A S S I N G  ARGUMENTS TO THE USER FUNCTION 

You c a l l  f o r  a  u s e r  a s s e m b l y - l a n g u a g e  f u n c t i o n  w i t h  a  JMS. B e f o r e  
BRTS e x e c u t e s  t h e  i n s t r u c t i o n ,  i t  p l a c e s  t h e  f i r s t  n u m e r i c  a r g u m e n t  o f  
t h e  f u n c t i o n  i n  t h e  f l o a t i n g - p o i n t  a c c u m u l a t o r ,  t h e  s e c o n d  i n  e n t r y  0 
o f  t h e  s c a l a r  t a b l e ,  t h e  t h i r d  i n  e n t r y  1, a n d  s o  o n  t h r o u g h  t h e  l i s t  
o f  a r g u m e n t s .  I f  t h e  f u n c t i o n  u s e s  s t r i n g  a r g u m e n t s ,  BRTS p l a c e s  t h e  
f i r s t  i n  t h e  s t r i n g  a c c u m u l a t o r ,  t h e  s e c o n d  i n  e n t r y  z e r o  o f  t h e  
s t r i n g  t a b l e ,  t h e  t h i r d  i n  e n t r y  1, a n d  s o  o n .  The f u n c t i o n  o b t a i n s  
t h e s e  a r g u m e n t s  a s  i t  n e e d s  them by c a l l i n g  ARGPRE a n d  STFIND. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

L e g a l  v a l u e s  f o r  A$ a r e  s t r i n g s  b e g i n n i n g  w i t h  "Pi," f o r  "PLUS" and  
' M I "  f o r  "MINUS". Thus :  

/NOT "PLUSu-CHECK FOR MINUSn 
/OPER,$Tj--JN PL"S--INI.j- ARGRE 

/SCALAF< 0 
' F I N D  Y + X I S  AL-READY I N  FAC 
/X+ Y 
/ * r t i I s  L-Oi: SKIPPED BY FADD 
/DONE-RETURN WITH RE:SUL..T I N  FAC 
/F IRST  TWCI CHARS O F S S A  AAGIN 
/COMPAR TO MI 
./IS I T  " M I N U S m ?  
/NO-EiRROR 
/-YES-SET UP ARGPRE FOR ENTRY 0 
/ F I N D  Y + X I S  AL..READY I N  FAC 
../ X - y 
/ 'THIS 1-OG SKIPPED BY FSUB 
/RETURN WITH VAL-UE I N  FAC 

I f  t h e  f u n c t i o n  r e t u r n s  a  v a l u e ,  i t  s h o u l d  l e a v e  i t  i n  t h e  
f l o a t i n g - p o i n t  a c c u m u l a t o r .  The f u n c t i o n  r e t u r n s  w i t h  a  JMP I t h r o u g h  
t h e  e n t r y  p o i n t .  ( I f  you e n t e r  a  JMP t o  l o c a t i o n  I A  i n  BRTS, t h i s  
w i l l  g e n e r a t e  a  f a t a l  IA -- a n  i l l e g a l  a r g u m e n t . )  

2 . 5 . 1  Using the USE Statement 

I f  t h e  a s s emb ly - l anguage  f u n c t i o n  n e e d s  t o  know t h e  l o c a t i o n  o f  a n  
a r r a y  ( f o r  b u f f e r  s p a c e ,  m u l t i p l e  a rgumen t  p a s s i n g ,  a r r a y  a r g u m e n t ) ,  
you mus t  u s e  t h e  USE s t a t e m e n t .  The USE s t a t e m e n t  p l a c e s  t h e  o c t a l  
number f o r  t h e  a r r a y  s p e c i f i e d  i n t o  l o c a t i o n  USECON. By u s i n g  t h i s  
v a l u e  a s  a n  i n d e x  i n t o  t h e  a r r a y  symbol  t a b l e ,  t h e  f u n c t i o n  c a n  l o c a t e  
t h e  d a t a  i t  r e q u i r e s .  



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

For example, the hypothetical assembly-language function PLT requires 
a 100-word buffer. To assure allocation of this buffer when you use 
the PLT function in a BASIC program, you must create a 34-element 
array and identify it with a USE statement before calling the PLT 
function. Thus: 

The function PLT finds B as follows: 

/GET ENTRY NUMBER OF I3 
/MU[-TIPLY BY 4 (EACH ARRAY TABL.E E:NTRY 
/ I S  4 WORDS L.ONG) 
/MAKE POINTER I N T O  ARRAY TABLE 
'AND SAVE: I T  
./GET CDF TO SYMBOL. TABL..E: F I E L D  
' P U T  I N T O  1.. I N E  
,/CHANGE DF T O  SYMBOL TABLE F I E L D  
/GE:T POINTER TO B < 0 1 
./SAVE: FyOR 1-ATE:R 
/GET ARRAY D I M E N S I O N  1 

/GE:T ARRAY D I M E N S I O N  2 

Note that the USE statement simply passes an array entry number to the 
assembly-language function. The function must obtain all actual 
parameters from the array symbol table, using that entry number as an 
index. Note also that the arrays passed in such a fashion may reside 
almost anywhere in memory and that a field boundary may fall within 
the array. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2 .6  BRTS INPUT/OUTPUT 

BRTS d r i v e s  t h e  t e r m i n a l  a s y n c h r o n o u s l y  b y  m a i n t a i n i n g  a  4 0 - c h a r a c t e r  
t e r m i n a l  o u t p u t  r i n g  b u f f e r  a n d  r e g u l a r l y  c a l l i n g  s u b r o u t i n e  XPRINT. 
I t  o p e r a t e s  i n  t h e  f o l l o w i n g  manner :  

0 BRTS c a l l s  s u b r o u t i n e  XPUTCH, w h i c h  i n s e r t s  c h a r a c t e r s  i n t o  
t h e  t e r m i n a l  r i n g  b u f f e r .  I f  t h e  r i n g  b u f f e r  is f u l l ,  XPUTCH 
w a i t s  u n t i l  BRTS c a l l s  XPRINT t o  p r i n t  a  c h a r a c t e r ,  o p e n i n g  u p  
a  p l a c e .  

BRTS r e g u l a r l y  c a l l s  XPRINT ( a t  l e a s t  o n c e  e v e r y  
p s e u d o - i n s t r u c t i o n ) .  XPRINT w o r k s  i n  t h e  f o l l o w i n g  m a n n e r :  

0 I f  t h e  t e r m i n a l  f l a g  is n o t  s e t ,  XPRINT r e t u r n s .  

I f  t h e  f l a q  is se t ,  XPRINT c h e c k s  t h e  b u f f e r  f o r  more  
c h a r a c t e r s .  I f  i t  f i n d s  a  c h a r a c t e r ,  i t  p r i n t s  it 
( w i t h  a  TLS) a n d  r e t u r n s .  

I f  t h e  r i n g  b u f f e r  c o n t a i n s  c h a r a c t e r s  w a i t i n g  t o  b e  p r i n t e d ,  XPRINT 
r e t u r n s  t o  t h e  i n s t r u c t i o n  i m m e d i a t e l y  f o l l o w i n g  t h e  JMS t h a t  c a l l e d  
it. I f  t h e  r i n g  b u f f e r  is  e m p t y ,  XPRINT s k i p s  t h e  i n s t r u c t i o n  a f t e r  
t h e  JMS upon r e t u r n i n g .  T h i s  t e c h n i q u e  a l l o w s  BRTS t o  d o  o t h e r  t h i n g s  
f o r  m o s t  o f  t h e  o n e  h u n d r e d  m i l l i s e c o n d s  w i t h o u t  t u r n i n g  o n  t h e  
i n t e r r u p t  f a c i l i t y .  A l t h o u g h  t h i s  method  r e q u i r e s  p e r i o d i c  c a l l s  t o  
XPRINT, i t  s t i l l  c o n s u m e s  c o n s i d e r a b l y  less time t h a n  w a i t i n g  f o r  t h e  
t e r m i n a l  f l a g .  

A s s e m b l y  l a n g u a g e  f u n c t i o n s  may u s e  t h e  r i n g  b u f f e r  (BRTS e m p t i e s  i t  
b e f o r e  it c a l l s  t h e  f u n c t i o n ) ,  o r  t h e y  may p e r f o r m  s i m p l e  t e r m i n a l  1/0 
w i t h  TLS, TSF, a n d  JMP.-1, i n s t r u c t i o n s .  I f  a  f u n c t i o n  d o e s  n o t  u s e  
t h e  r i n g  b u f f e r ,  it m u s t  make s u r e  t h a t  t h e  t e r m i n a l  f l a g  is  se t  
b e f o r e  i t  r e t u r n s  t o  BRTS. 

N o t e  t h a t  a n  a s s e m b l y  l a n g u a g e  f u n c t i o n  d o e s  n o t  h a v e  t o  c a l l  XPRINT. 
I t  may p l a c e  a  c h a r a c t e r  i n  t h e  r i n g  b u f f e r  a n d  l e t  XPRINT t a k e  c a r e  
o f  i t  o n  i t s  n e x t  r e g u l a r  c a l l  f r o m  BRTS. 

2 .7  INTERFACING AN ASSEMBLY LANGUAGE FUNCTION TO BRTS 

You c a l l  a n  a s s e m b l y  l a n g u a g e  f u n c t i o n  t h e  same way you  c a l l  a n y  o t h e r  
s u b r o u t i n e  -- w i t h  a  JMS i n s t r u c t i o n .  The  JMS c a u s e s  BRTS t o  u s e  t h e  
s y m b o l i c  a d d r e s s  o f  t h e  f u n c t i o n  t o  l o o k  u p  i t s  a c t u a l  l o c a t i o n  i n  t h e  
u s e r  f u n c t i o n  t a b l e .  T h i s  t a b l e ,  w h i c h  b e g i n s  a t  1 5 6 0  i n  BRTS, 
c o n t a i n s  a b s o l u t e  p o i n t e r s  t o  t h e  s t a r t i n g  a d d r e s s  o f  e a c h  u s e r  
a s s e m b l y  l a n g u a g e  f u n c t i o n .  You m u s t  p l a c e  a l l  u s e r  f u n c t i o n s  b e t w e e n  
3400 a n d  4 5 7 7 ,  t h e  s p a c e  w h i c h  BRTS r e s e r v e s  f o r  t h e  u s e r  f u n c t i o n  
o v e r l a y ,  BASIC.UF. U s e r  f u n c t i o n s  m u s t  r e t u r n  t o  BRTS v i a  a  JMP I 
t h r o u g h  t h e i r  s t a r t i n g  a d d r e s s .  

To r u n  a  set  o f  u s e r  a s s e m b l y  l a n g u a g e  f u n c t i o n s  u n d e r  BRTS, you  m u s t  
p e r f o r m  t h e  f o l l o w i n g  o p e r a t i o n s :  

1. A s s e m b l e  a l l  t h e  u s e r  a s s e m b l y  l a n g u a g e  f u n c t i o n s  t o g e t h e r .  
You may i n c l u d e  u p  t o  s i x t e e n  f u n c t i o n s .  They  m u s t  f i t  
b e t w e e n  3400 a n d  4577 b u t  may r e s i d e  a n y w h e r e  w i t h i n  t h a t  
s p a c e .  



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2. Load the user functions into memory with the absolute loader 
(ABSLDR) and SAVE locations 3400-4577 as the file BASIC.UF, 
which is the user overlay. 

3. Modify the user function table in BRTS with ODT, entering 
absolute pointers for the starting addresses of the 
functions. All unmodified locations in the table contain a 
value of 240 octal. Replace this value with the starting 
address pointer. Start at location 1560 and enter the 
pointers in the same order in which the functions appear in 
the UDEF statement that defines them. 

This procedure interfaces two functions that start at 
locations 3400 and 3410 respectively. 

For example, the following package contains three assembly language 
functions: HI, PLT, and LO. You may define these in any order in the 
DEF statement as long as you remember to enter them in the same order 
in the user function table. 

To enter these three functions into the user function table, follow 
this procedure: 

where P P P P ,  HHHH, and LLLL represent octal starting addresses for PLT,  
HI, and LO respectively. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

BRTS sets up a one-to-one correspondence between the pointers at 1560 
and the function names in t h e  nnnn -L -L - - - -L  C A W  tL- r n - m b q m f i  

Uus^c a>-a>-ciiicn>- L U L  LLIC p a ~ n c i v - ) ~ .  

Therefore, the order of the pointers must correspond exactly to the 
order of the function definitions in UDEF. If you wish to use only 
the nth function in a given user package, you must still define n 
functions in the UDEF statement, although the first n-1 may be 
dummies. 

For example, consider a package of eight assembly language functions 
listed in the user function table in the ^ - I  L U L ~ ~ ~  l n Ã ‘ Ã ‘  LA,Y uLuer: 

ONE 
TWO 
THR 
FOU 
FIV 
SIX 
SEV 
EIG 

If you want to use only function ONE in a BASIC program, your UDEF 
statement will look like this: 

If you want to use only functions ONE and EIG, the UDEF might look 
like this: 

In this statement, DUA through DUF are dummy user function names that 
have no effect on the proqram at run time. They simply set up the 
right correspondence between names and pointers. 

The easiest and surest way to match up all function names and pointers 
correctly is to write a UDEF statement for every function in the 
package. 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

2.8 SOME GENERAL CONSIDERATIONS 

2.8.1 Routines Unusable by Assembly Language Functions 

Because the assembly language functions reside in the overlay buffer 
during execution, they cannot use any routines that reside in any of 
the other three overlays. These routines include: 

Routine Name Function 

FFATN 
FFCOS 
FFEXP 
EXPON 
INT 
FFLOG 
SGN 
FFSIN 
RND 
FROOT 
ASC 
CHR 
DATE 
LEN 
POS 
SEG 
STR 
VAL 
TRC 
CHAIN 
CLOSE 
OPENAF 
OPENAV 
OPENNF 
OPENNV 

\ 
J 

Arctangent Function 
Cosine Function 
Exponential Function (eAx) 
Power Function ( A " B )  
Signed integer Function 
Naperian log Function 
Sign Function 
Tr igonometr ic Sine Function 
Random Number generator 
Square root Function 
String Function ASC 
CHR$ Function 
DAT$ Function 
String length Function 
String search Function 
String segmenting Function 
STR$ Function 
VAL Function 
Trace Function 

File manipulation Routines 
) 

2.8.2 Using OS/8 

A carefully designed assembly language function -- one that protects 
all memory areas required by BRTS -- may use OS/8 without restriction. 
Once PSWAP has swapped the 17600 portion of the resident monitor out 
of high memory, the assembly-language function may call the User 
Service Routine and then locate, use, and close files at will. 

2.8.3 Using Device Driver and File Buffer Space 

If your BASIC program does not need full file capabilities, any 
assembly-language function in the program may use the driver space 
from 7000 to 7577 and the buffer space from 10000 to 17777. However, 
the function must check the bit maps and status words on page 0 before 
it uses any part of the space to make sure it is available. 

2.8.4 Using the Interrupt Facility 

OS/8 BASIC runs with the interrupt facility turned off. However, BRTS 
reserves locations 0-2 on page 0 for any assembly language function 



CREATING ASSEMBLY LANGUAGE FUNCTIONS 

t h a t  w i s h e s  t o  u s e  t h e  i n t e r r u p t .  B e f o r e  t u r n i n g  o n  t h e  i n t e r r u p t  
s y s t e m ,  a n  a s s e m b l y  l a n g u a g e  f u n c t i o n  m u s t  c l e a r  a l l  t h e  f l a g s  s e t  by  
t h e  OS/8 h a n d l e r s .  B e f o r e  r e t u r n i n g ,  t h e  f u n c t i o n  m u s t  t u r n  o f f  t h e  
i n t e r r u p t  and  s e t  t h e  TTY f l a g .  

2.8.5 Using Page 0 

The f o l l o w i n g  map shows  BRTS p a g e  0 u s a g e .  An a s s e m b l y  l a n g u a g e  
f u n c t i o n  may u s e  t h e  l o c a t i o n s  marked  w i t h  a n  a s t e r i s k  ( * )  w i t h o u t  
s a v i n g  t h e  c o n t e n t s .  

L o c a t  i o n s  Usage 

I n t e r r u p t  v e c t o r  
S y s t e m  p a r a m e t e r s  a n d  t e m p s  
I n d e x  r e g i s t e r s  
S y s t e m  p o i n t e r s  
Compiler-BRTS c o m m u n i c a t i o n  
S y s t e m  r e g i s t e r s  
F l o a t i n g - p o i n t  p a c k a g e  a r e a  
S y s t e m  r e g i s t e r s  
C o n s t a n t s  
L i n k s  t o  BRTS s u b r o u t i n e s  
1/0 T a b l e  p o i n t e r s  

Assembly  l a n g u a g e  f u n c t i o n s  may u s e  a n y  o f  t h e  p o i n t e r s  o r  c o n s t a n t s  
o n  p a g e  0 ,  b u t  t h e y  m u s t  b e  i n t a c t  when c o n t r o l  r e t u r n s  t o  BRTS. 





CHAPTER 3 

OPTIMIZING SYSTEM PERFORMANCE 

You may take advantage of several ways to speed up the time it 
to compile and run an OS/8 BASIC program. 

3.1 BYPASSING THE BASIC EDITOR 

Running a source program according to standard BASIC 
three-step process. You must: 

procedure 

takes 

is a 

1. Call the BASIC EDITOR 

2. Request the program with an OLD command 

3. Run the program with RUN command 

For a simpler and speedier method, bypass the BASIC editor and run the 
program directly with a COMPILE or EXECUTE monitor command. The 
format is 

COMPILE indev:file.BA 

where 

.BA is an extension indicating that the input file contains a 
BASIC source program. 

Summoned in this manner, OS/8 BASIC returns control to the Monitor 
rather than the BASIC editor when it has finished running the program. 

As a general rule, use the BASIC editor to: 

a create new programs or modify old ones 

a debug old programs 

and use COMPILE and EXECUTE to: 

a run existing programs 

a run BASIC programs in BATCH stream 

To run with a COMPILE or EXECUTE command, a BASIC source program must 
conform to the following rules: 

a It may contain no blank lines. 

a All statements must appear in the order that BASIC will 
execute them. 



OPTIMIZING SYSTEM PERFORMANCE 

I f  you i n t e n d  t o  r u n  you r  p rogram f rom t h e  Mon i to r  o n l y ,  you d o  n o t  
have  t o  b e g i n  e v e r y  l i n e  w i t h  a  l i n e  number.  Only  t h e  l i n e s  t h a t  you 
s p e c i f y  a s  d e s t i n a t i o n s  i n  I F ,  GOTO, and  GOSUB commands r e q u i r e  
number ing .  The f o l l o w i n g  example  c o n t a i n s  no u n n e c e s s a r y  l i n e  
numbers :  

Note  t h a t  t h e  BASIC e d i t o r  w i l l  n o t  a c c e p t  unnumbered l i n e s .  To w r i t e  
and  e n t e r  a  p rog ram w i t h o u t  number ing  e v e r y  l i n e ,  you mus t  u s e  t h e  
OS/8 E d i t o r  o r  TECO. E x p e r i e n c e d  u s e r s  w i l l  d i s c o v e r  t h a t  t h e s e  
e d i t o r s  p r o v i d e  many f e a t u r e s  n o t  a v a i l a b l e  f rom t h e  BASIC e d i t o r .  

3.2 PLACING BASIC OVERLAYS ON THE SYSTEM DEVICE 

DECtape u s e r s  c a n  improve  t h e  p e r f o r m a n c e  o f  t h e i r  s y s t e m  by f o l l o w i n g  
t h e s e  two p r o c e d u r e s :  

a Use a  DECtape d r i v e  o t h e r  t h a n  DTAO f o r  DSK. ( S e e  t h e  ASSIGN 
command. ) 

P l a c e  t h e  OS/8 BASIC s y s t e m  f i l e s  a s  c l o s e  t o g e t h e r  on t h e  SYS 
t a p e  a s  p o s s i b l e .  The b e s t  way is t o  make a  "BASIC t a p e "  
c o n t a i n i n g  o n l y  t h e  OS/8 s y s t e m ,  P I P ,  and  t h e  BASIC s y s t e m  
image f i l e s .  

Bo th  p r o c e d u r e s  s p e e d  up OS/8 BASIC by r e d u c i n g  t h e  t a p e  m o t i o n  
r e q u i r e d  f o r  o v e r l a y i n g  and  c o m p i l i n g .  

3.3 GROUPING FUNCTION CALLS IN BASIC PROGRAMS 

Most o f  t h e  BASIC f u n c t i o n s  and f i l e  o p e r a t i o n s  r e s i d e  i n  t h r e e  s y s t e m  
o v e r l a y s .  S i n c e  t h e  s y s t e m  o v e r l a y  d r i v e r  r e a d s  i n  a n  o v e r l a y  o n l y  i f  
t h e  f u n c t i o n  you c a l l  f o r  d o e s  n o t  r e s i d e  on  t h e  c u r r e n t l y  r e s i d e n t  
o v e r l a y ,  you c a n  r e d u c e  program e x e c u t i o n  t i m e  s i m p l y  by g r o u p i n g  
c a l l s  t o  f u n c t i o n s  t h a t  r e s i d e  on  t h e  same o v e r l a y .  For  example :  

T h i s  p rogram a c c e p t s  two s t r i n g s  t h a t  you e n t e r  a t  t h e  t e r m i n a l  and  
r e a d s  t h e  f i r s t  s i x  c h a r a c t e r s  o f  e a c h  a s  a  f i l e  name t o  open  a  BASIC 
f i l e .  To a c c o m p l i s h  t h i s ,  t h e  p rogram u s e s  t h e  SEG$ f u n c t i o n ,  a  f i l e  
s t a t e m e n t ,  t h e  SEG$ f u n c t i o n ,  and  t h e  f i l e  s t a t e m e n t  a g a i n .  S i n c e  
SEG$ and  t h e  f i l e  s t a t e m e n t  r e s i d e  on  d i f f e r e n t  o v e r l a y s ,  t h e  d r i v e r  
m u s t  p e r f o r m  f o u r  s e p a r a t e  o p e r a t i o n s .  The f o l l o w i n g  program p r o d u c e s  





OPTIMIZING SYSTEM PERFORMANCE 

I n d i c a t e s  t h e  h i g h e s t  f i e l d  t h a t  t h e  program w i l l  u s e  
( u p  t o  7 o c t a l ) .  F i e l d  n  mus t  f a l l  i n  t h e  r a n g e  l < n < m ,  
whe re  m is t h e  h i g h e s t  memory f i e l d  ( u p  t o  7 )  a v a i l a b l e  
on  t h e  h o s t  mach ine  -- t h a t  is ,  t h e  mach ine  on  wh ich  
t h e  p rog ram is w r i t t e n .  The h i g h e s t  memory f i e l d  o n  
t h e  t a r g e t  mach ine  -- t h e  mach ine  o n  which  t h e  p rog ram 
** :  1 1  
W L A J .  r u n  -- is n .  T h i s  may r e d u c e  c o n f i g u r a t i o n  
i n d e p e n d e n c e ,  s i n c e  t h e  r e s u l t i n g  memory image w i l l  not 
l o a d  c o r r e c t l y  o n  a  mach ine  w i t h  f ewe r  t h a n  n+1 memory 
f i e l d s .  I f  n  is  o m i t t e d ,  n = l .  I f  you s p e c i f y  n  l a r g e r  
t h a n  m ,  n=m is assumed.  

I n  BCOMP, t h e  /C o p t i o n  is used  i n  c o n j u n c t i o n  w i t h  t h e  
/K o p t i o n  t o  c r e a t e  a  f i l e  t h a t  c a n  be  c h a i n e d  t o  f rom 
a  non-BASIC f i l e .  Fo r  example :  

I n  BCOMP, t h e  /V o p t i o n  is  u s e d  t o  o b t a i n  t h e  c u r r e n t  
v e r s i o n  number o f  COMP, BLOAD, and  BRTS. Fo r  examp le :  

T h i s  c a u s e s  t h e  s y s t e m  t o  p r i n t  a t  t h e  c o n s o l e  t h e  
c u r r e n t  v e r s i o n  numbers  f o r  BCOMP, BLOAD, and  BRTS a s  
p a r t  o f  t h e  o u t p u t  o f  t h e  f i l e  b e i n g  c o m p i l e d .  

I n  t h e  a b s e n c e  o f  e r r o r  c o n d i t i o n s ,  t h e  c o m p i l e r  p o s t - p r o c e s s o r  
(BLOAD) w i l l  e x i t  t o  OS/8. A t  t h i s  time, t y p e :  

t o  c r e a t e  a n  e x e c u t a b l e  memory image.  A d d i t i o n a l  a r g u m e n t s  t o  t h e  
SAVE command mus t  n o t  be  s p e c i f i e d .  The memory image i s  e x e c u t e d  by 
t y p i n g :  

The f o l l o w i n g  e r r o r  m e s s a g e s  may o c c u r  d u r i n g  e x e c u t i o n  o f  a  BASIC 
memory-image f i l e :  

USER ERROR 1 AT nnnn 

One o f  t h e  f i l e s :  

BRTS . SV 
BASIC .AF 
BASIC. SF 
BASIC. FF 

was m i s s i n g  f rom t h e  s y s t e m  d e v i c e .  



OPTIMIZING SYSTEM PERFORMANCE 

USER ERROR 2 AT nnnn 

An attempt was made to load a memory-image file produced under 
option on a 12K TD8E system (without ROM). 

USER ERROR 3 AT nnnn 

Insufficient memory to load this core image file. 

When executing BASIC memory-image files on a DECtap 

the 

em I e syst 
following techniques will ensure minimuip. execution time: 

Follow the recommended procedure for grouping calls 

/N 

the 

to 
functions according to the overlay in which the function 
resides, to minimize overlaying at run time. 

Â Prepare  a system DECtape t h a t  conta ins  a l l  of t he  BASIC 
memory-image files, followed by: 

BRTS . SV 
BASIC.AF 
BASIC. FF 
BASIC.SF 
BASIC .UP (optional) 

The BASIC memory-image files should reside near the beginning of the 
DECtape. If chaining is employed, the least frequently run programs 
should appear first on the DECtape. 





CHAPTER 4 

OS/8 BASIC SYSTEM BUILD INSTRUCTIONS 

4 . 1  THE BASIC SYSTEM 

OS/8 BASIC is d i s t r i b u t e d  on  DECtape and  p a p e r  t a p e .  The DECtape 
v e r s i o n  c o n t a i n s  SAVE images  f o r  e a c h  o f  t h e  OS/8 BASIC s y s t e m  
p r o p o n e n t s  a s  w e l l  a s  b i n a r i e s .  The p a p e r  t a p e  d i s t r i b u t i o n  i n c l u d e s  
b i n a r i e s  f o r  e a c h  o f  t h e  s y s t e m  componen t s .  OS/8 BASIC c o m p r i s e s  t h e  
f o l l o w i n g  f i l e s .  

F i l e  

BASIC .SV 

Component 

E d i t o r  s a v e  image 

BCOMP . SV Compi l e r  s a v e  image 

BLOAD . SV Loade r  s a v e  image 

EABRTS . SV KE8/EAE v e r s i o n  o f  Run-time Sys t em s a v e  image 

O v e r l a y  f o r  KE8 /E  EAE 
(8/E w i t h  KE-8E-EAE) 

BRTS . SV Run-time Sys t em s a v e  image 

BASIC .AF A r i t h m e t i c  f u n c t i o n  o v e r l a y  

B A S I C  .SF S t r i n g  f u n c t i o n  o v e r l a y  

BASIC. FF F i l e  m a n i p u l a t i o n  o v e r l a y  

4 .2  MAKING SAVE IMAGES FROM BINARY FILES 

4 . 2 . 1  Non-EAE BASIC 

To c r e a t e  SAVE images  f o r  e a c h  o f  t h e  OS/8 BASIC b i n a r y  f i l e s ,  u s e  t h e  
f o l l o w i n g  b u i l d  p r o c e d u r e  f o r  OS/8 BASIC (non-EAE) . A l l  s y s t e m  
p rog rams  mus t  r e s i d e  o n  t h e  s y s t e m  d e v i c e  -- SYS:. 

1. For  t h e  E d i t o r :  

P A L  B A S I C  - 
+ L..OAD BAS I C: - 
+ S W E  S'fSIBASIC?3211 - 



OS/8 BASIC SYSTEM BUILD INSTRUCTIONS 

For t h e  Compiler: 

For t h e  Loader: 

For t h e  Run-time System: 

A t  t h i s  p o i n t ,  BASIC is ready t o  run. 

4.2.2 EAE BASIC 

Use t h e  fo l lowing  procedure  t o  c r e a t e  SAVE image f i l e s  f o r  OS/8 B A S I C  
E A E .  Note t h a t  a l l  system programs m u s t  r e s i d e  o n  t he  system 
dev ice  -- SYS:. 

For t h e  Ed i t o r :  

For t h e  Compiler: 

For t h e  Loader: 



OS/8 BASIC SYSTEM BUILD INSTRUCTIONS 

4. For the Run-time system: 

NOTE 

All BASIC system files must reside on 
the system device (SYS) . 

5. At this point, BASIC is ready to run. 

4.3 ASSEMBLING THE BASIC SOURCES 

The following instructions show how to assemble each of the BASIC 
sources with the PAL8 assembler. The descriptions represent OS/8 
keyboard commands. To assemble BASIC, you need a 12K machine. 

The BASIC source files include 

Name Component 

BASIC .PA Editor Source 
BCOMP . PA Compiler Source 
BLOAD . PA Loader Source 
BETS. PA a,-.* ~ u n - t  b-... i m g  system Source 

1. To assemble the editor: 

2. To assemble the compiler: 

3. To assemble the loader: 

4. The run-time system source is conditionalized for PDP-8/E 
with EAE. Assembly instructions for each of the supported 
configurations follow. 

To assemble for PDP-12, PDP-8, PDP-8/I or PDP-8/L, or PDP-8E without 
EAE, type the following command: 





CHAPTER 5 

LAB8/E FUNCTIONS FOR OS/8 BASIC 

The addition of LAB8/E functions to OS/8 BASIC enables the user to 
s o l v e  a range of real-time and pseudo-real-time problems u s i n g  a 
higher-level language. The benefits of approaching real-time problems 
using BASIC are numerous: a novice programmer can solve problems with 
little or no assembly language expertise; and in general, the 
programming effort required for specific problems is dramatically 
reduced. 

The approach taken for specifying each function was to maximize 
functional flexibility rather than to stress simplicity. Slaving the 
computer to external events is accomplished by recognizing Schmitt 
trigger firings. One of the design goals for the LAB8/E functions was 
to utilize memory efficiently for single precision and displayable 
data arrays. Another design goal was to incorporate a masking ability 
for the recognition of bit patterns when reading digital data. This 
feature allows easy conversion of decimal data into floating-point 
format when data is received from decimal devices interfaced to the 
LAB8/E1s digital input registers (DR8-E's). 

5.1 GENERAL DESCRIPTION 

This program contains a set of 12 functions which enable a user of 
OS/8 BASIC to utilize the following peripherals on a LAB8/E: A/D 
c o n v e r t e r ,  VC8-E d i s p l a y  - A - t ~ n i  LyllLn.i., 9x8-ES real-time clock, and DE8-FA 

12-channel buffered digital I/O. All functions, contained in an 
overlay called BASIC.UF, reside in the overlay area of BASIC 
(3400-4577), with the understanding that the entire set of functions 
is in core whenever a given function is in use. Each function is 
called by a suitable three-character name, followed by any necessary 
arguments. 

General regulations on arguments passed by the user functions in this 
package : 

All arguments must be within the following range: 

Hence, negative arguments (<0) will cause a fatal error, FM; 
and positive arguments greater than 4095 (>4095) will cause 
the fatal error, FO. Fatal errors terminate program execution 
and return the user to command mode. 

0 Additional restrictions to arguments will be stated, along 
with the discussion of each function, later on. Argument 
errors due to these added restrictions will cause the fatal 
error, IA (illegal argument) . 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

5.2 PREPARING BASIC FOR LAB8/E FUNCTIONS 

The Basic Run-Time System (BRTS) provides for one overlay area and 
divides a set of infrequently used functions into three separate 
overlays; namely, BASIC.AF, BASIC.SF and BASIC.FF. Since a logical 
need for user-written assembly language subroutines exists, a last 
overlay, BASIC.UF was reserved. It is this last overlay that contains 
the 12 functions for LAB8/E support. Since the subroutines of this 
last overlay are determined apart from BRTS, it is necessary that BRTS 
be given a list of core addresses for each of the user subroutines. 
It is critical that these links or addresses be specified in the same 
order that the UDEF statements will appear in the program that calls 
the functions. 

Before writing any program using these functions, it is absolutely 
necessary to modify BRTS. The following example illustrates how to do 
this. Notice that in the test programs at the end, the order in the 
UDEF statements is the same as the ordering of the addresses here. A 
list of the names of the functions associated with each address is 
specified to the right for the sake of clarity only. 

+ i3ET SYS B R T S + S V  - 
+ on - 

used for interrupts 

IN1 
PLY 
DLY 
DIS 
SAM 
CLK 
CLW 
ADC 
GET 
PUT 
DRI 
DRO 

Since many of BASIC's functions also reside in overlays, you should 
take care in using a function that may cause the current set of 
functions to be overlayed and useful information to be destroyed. For 
example, the user cannot calculate a set of cosine values and pass 
them to the PLY function to be stored, because COS resides in BASIC.AF 
overlay and PLY resides in BASIC.UF. 

5.3 DEFINITION OF LAB/8E SUPPORT FUNCTIONS 

Once you have modified BRTS to recognize the user function from the 
BASIC.UF overlay, you may write BASIC programs making use of these 
functions. If a program requires the use of the Nth function in the 
ordered list of links, the first (N-1) functions of the list must be 
defined by UDEF statements or a set of (N-1) dummy-named functions 
must precede the defining of the Nth function. For example, in 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

reference to the ordered list of functions in the previous section, if 
the A D C  function is t h e  only one t o  be used  in a particular BASIC 
program, the UDEF statements must be: 

However, in order to keep careless omissions to a minimum, you should 
always use the complete set of UDEF's each time you require one or 
more functions in a program. 

IN1 (N) 

The initialize function has a twofold purpose. Its main purpose is to 
locate the address of the array specified by BASIC's USE statement and 
retain that address until BASIC.UF is overlayed by one of the other 
three overlays. 

A secondary purpose is to set a pointer to the first location of the 
array. Consequently, you may use an array to store one set of data 
followed immediately by a second set of data, provided you call the 
IN1 function once only. This means that displayable data (10 bits), 
and fixed-point data (12 bits) may share the user array at the user's 
discretion. If, however, you again specify the IN1 function at the 
end of the first data run, you cause the first set of data to be 
overwritten by the second set of data. Hence, IN1 effectively zeros 
the array in this case. Whenever you want to use an array in 
conjunction with one or more of the functions in the BASIC.UF overlay, 
first dimension the array and then eventually employ the USE statement 
before the IN1 function can have meaning. For example: 

t 

USE A 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

The argument NI for INI, is a dummy argument and may be any integer; 
0, 1, 2, 0 . .  

Whenever the functions PLY, DIS, SAM, GET, and PUT are used, make sure 
that you have called the IN1 function at least once. When an array is 
given the dimension NI BASIC allocates (N+l) floating-point words of 
memory which is actually 3(N+1) single-memory locations. Thus, in the 
example above, BASIC allocates 4 floatinq-point words or 12 
single-memory locations for the array. Each data value deposited into 
the user's array by the user functions is a single-precision value 
(uses one memory word). 

PLY (Y) 

The purpose of the plot function is to enable a BASIC program to 
create y-data values and enter them into the user array sequentially, 
beginning with the first unused location of the array. Each 
floating-point value is fixed to a 10-bit single-precision value 
before it is put into the array. The range of the y-data values must 
be: 

This is easily accomplished by inserting a scaling factor. (Refer to 
line numbers 26 and 64 of the example program TESTOA-PG at the end of 
this chapter. ) 

The data in the user array can be displayed as it is being passed to 
the array (see DLY function) and/or be refreshed continuously once all 
values have been entered into the array (see DIS function). 

DLY (N) 

The delay function is used only in conjunction with the PLY function. 
-I- <- causes t h e  scope to be refreshed with the contents of the user 
array after each point is processed, so that the graphical progress of 
data can be observed. 

N is an integer such that 1<N<1024. It specifies the maximum number 
of points to be eventually displayed. Implied here is the fact that 
the display will contain only the first N points even if the arrays 
contain more than N points. 

DIS (SIE ,N ,X) 

You use the display function to set up parameters for the displaying 
of y-data stored in the user array. The display will begin with the 
desired starting point, S, of the array and display every Nth point 
while not exceeding the desired endpoint, E (where N = 1, 2, 3 , . . . ) .  

Depending on the value of XI the DIS function has two separate 
operations: 

Operation when X equals zero (X=O): Indication is given to the user 
overlay functions that a SAM function will be the next BASIC 
instruction. Consequently the parameters mentioned above are set up 
so that exactly one of the sampled channels can be displayed "on the 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

fly". To understand the use of the arguments S,E,N,X, it is necessary 
L- Ip"..... 
LU i~~~~ how the A I D  data is stored in the user array. For example, 
assume 100 samples/channel in each case: 

Array Case 1 
SAM CH#0 

Case 2 
SAM CH#3.4.5 

To display CASE1, once sampling begins: 

To display CH#4 of CASE2, once sampling begins: 

Operation when X is greater than zero (X>O): A user array of y-data 
is to be displayed immediately. The display is continually refreshed 
(no return to BASIC) until the operator types CTRL/N on the keyboard. 

Displayable y-data values are assumed to be 10-bit single-precision 
data words. 

The x-coordinate for each y-data value is determined by a DELTAX value 
found as follows: 

DELTAX = 1023/ [E-S)/N] 

Due to the outcome of DELTAX, the display may not always use the full 
width of the scope. However, the display is always centered. 

S>1; E>S; (E-S)/~<1023. At least one point must be displayed, and 
no more than 1024 points may be displayed. 

The sample function is used solely to set up parameters for subsequent 
sampling of the ADC's or for subsequent sampling of digital input 
registers (0,1,2), depending on the value of T. 

TASK 1 (T=O) : Sample the ADC's. 

C = First channel # to be sampled; 0<C<17(8). 

N = Number of consecutive channels to sample; l<N<(20(8)-C). 

P = Number of sample points/channel; P=0. 

TASK 2 (T=O): Sample digital input registers. 

C = First register # to be sampled; 0<C<2. 

N = Number of consecutive input registers to sample; 1<N<(3-C). 

P = Number of samples/register; P=0. 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

Anytime a SAM instruction is used to sample the ADC's, exactly one 
channel must be displayed on the fly. However, the sampling rate is 
not slowed down by this requirement. Hence a DIS function call must 
precede a SAM function call whenever TASK 1 is chosen. 

It is possible to display digital input data so long as only the least 
significant 10 bits will be displayed. However, this data cannot be 
displayed on the fly and can. only be displayed via the DIS functio~ 
once all data is in the array. 

CLK (R,O,S) 

The clock function sets up the clock to be used for A/D sampling, for 
digital input sampling, or as a simple timing device. 

R (rate) = desired frequency at which to run the clock 

Value of R Frequency 

External input 
100 HZ 
1K HZ 
10K HZ 
100K HZ 
1M HZ 

0 (overflow CNT) = number of clock ticks per interrupt with the clock 
running at the desired frequency, R. 0<0<4095. 

S (Schmitt trigger) (S=O) = Activate all Schmitt triggers and start 
the clock when any one of the three Schmitt triggers fires. (S=O) Do 
not activate any Schmitt triggers and start up the clock immediately. 

As mentioned above, this single clock function is used to set the 
clock for one of three separate tasks. 

TASK1: Sample the ADC's. 

The interrupts are turned on and the program waits in the display loop 
for a clock overflow, at which time the A/D channel(s) is (are) 
sampled. The display loop will display the data for the channel 
specified by the user in the DIS function. When all channels have 
been sampled the requested number of times, the CLK function returns 
to BASIC. 

When interrupts are turned on, the only possible valid interrupts can 
be caused by the keyboard or the clock. Hence, any other interrupt is 
an uncontrollable, spurious interrupt (faulty hardware) that will 
cause a HLT at location 4466. If this happens, do the following: 

1. Set SWITCH REGISTER to 4476 and press ADDR LOAD. 

2. Press the CLEAR and CONT switches to return to BASIC. 

3. Type CTRL/C to return to the OS/8 Monitor. 

 TASK^: Sample digital input registers. 

At each clock overflow, the digital input register(s) is (are) 
sampled. When all registers have been sampled the requested number of 
times, the CLK function returns to BASIC. 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

NOTE 

The sampled data from the ADC's or the 
digital input registers is stored 
sequentially in the user's array. 

TASKS: A simple timing device. 

The clock is set up and started (unless it is to be started when a 
Schmitt trigger fires) and then returns to BASIC, 

The following illustrates what sequence of instructions are needed for 
each task. 

DIM A(n) 
USE A 

W=INI (0) 
X=DIS (C,N,P,T) 
Y=SAM(C,N,P,o) 
Z=CLK (R,O,S) 

DIM A(n) 
USE A 

W=INI (0) 
Y=SAM (C,N,P,l) 
Z=CLK (R,O,S) 

CLW (N) 

After the clock has been set up by CLK as a simple timer, this clock 
wait function, when called, simply returns to BASIC whenever a clock 
overflow occurs, and/or whenever a Schmitt trigger fires, provided S 
was a non-zero argument in CLK. 

TT-A.., , .-nt,, .-n to BASIC, a number is returned to the caller indicating 
whether the return was due to a clock overflow, a Schmitt trigger, or 
a clock overflow and the firing of a Schmitt trigger simultaneously. 
The number also indicates whether one of the above conditions occurred 
before or after the CLW function was called. N is a dummy argument 
(N=0,1,2 ,...). 

The following table illustrates the various numbers returned. 

Case 1: Clock overflowed or a Schmitt trigger fired after CLW is 
called. 

Overflow Only Schmitt Trigger Only Simultaneously 

0 1 (Trigger 1 fired) -1 
2 (Trigger 2 fired) -2 
3 (Trigger 1 & 2 fired) -3 
4 (Trigger 4 fired) -4 
5 (Trigger 1 & 4 fired) -5 
6 (Trigger 2 & 4 fired) -6 
7 (Trigger 1,2 & 4 fired) -7 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

Case 2: Clock overflowed or a Schmitt trigger fired before CLW is 
called. 

Overflow Only Schmitt Trigger Only Simultaneously 

The TEST4A.PG and TEST5A.PG examples make use of the CLW function. 

The CLW function has many useful applications. For example, you may 
time subroutines by starting the clock with a specific rate and 
overflow count. After you call the subroutine and the subroutine is 
completed, call the CLW function to see if an immediate return is 
obtained. This timing is empirical in that you would keep changing 
the rate and/or overflow count until Case 2 occurred. As a second 
example, you may use Schmitt trigger firing to branch to a particular 
subroutine or to notify the program to proceed with specific tasks 
such as reading digital data or sampling an analog input. Thirdly, 
time-interval histograms and post-stimulus histograms are also 
possible (see TST20A.PG). 

ADC (N) 

This function is issued any time you wish to sample A/D channel N. 
The 10-bit data value is floated and returned to the caller for 
immediate examination. O<N<17(8). 

The BASIC statement W=ADC(3) asks that A/D channel # 3  be sampled and 
the floating-point value be assigned to W. 

The TEST5A.PG example illustrates one use of the ADC function. 

GET (M , L) 

You use this function to get one 12-bit word from the user array, mask 
out certain bits, and return the result as a floating-point number to 
the caller. 

L is Lth location of the user array. Hence, if an array has N 
single-precision words, L can take on meaningful values of 
1,2,3, ..., N. 

NOTE 

Although BASIC allows 0 to be a 
meaningful value in a dimension 
statement such as DIM A(0), you must 
remember that L always begins with 1, 
where 1 stands for the first single-word 
location of the array. Thus DIM A(0) 
specifies an array of one floating-point 
word (three one-word locations). 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

M is a masking number such that 0<M<4095. This floating-point number 
is converted to a 12-bit b i n a r y  number be tween 0 and It'll. Those b i t s  
that are zero will mask out or eliminate those bits in the array 
value. If M=0, then no masking is done and the 12 bit array value is 
returned intact. M=O and M=4095 have the same meaning. 

The BASIC statement Y=GET(15,2) gets the second word of the user 
array, masks out all bits except bits 8,9,10,11, and assigns the 
floating-point result to Y. Consequently, if an array is as follows: 

single prec WDl 5678 
single prec WD2 1234 Fl. pt. word 0 
single prec WD3 4455 

WD2 = 1234(8) = 001010011100(2) 
MASK = 15(10) = 17 (8) - 000000001111(2) 
The 12 bit value after masking is: 

000000001100 (2) = 12 (10) 
Hence, Y=12 

PUT (MIL) 

This function enables a floating-point number to be fixed to a single 
12-bit word and put into the user's array. 

L is Lth location of the user's array. For an array of N 
single-precision words, L can take on meaningful values of 
1,2,3 

M is the floating-point number to be fixed and stored in the array. 
0<M<4095. 

NOTE 

Both GET and PUT functions imply that a 
user's array must not exceed 4096 memory 
locations, because of the general 
restriction on any argument for these 
user functions. 

The BASIC statement Y=PUT(128,4) means fix 128 to 12 bits 
(000 010 000 OOO(2)) and put the value into the fourth word of the 
user array. TST15A.PGI TST16A.PGI TST17A.PG and TST18A.PG illustrate 
the use of functions GET and PUT. 

DRI (N) 

This function is issued any time you wish to sample a digital input 
register, N (0<N<2). The 12-bit digital value is returned to the user 
as a floating-point number. Basic statement: X=DRI(O) means that 
input register #0 is sampled and the floating-point result is assigned 
to X. 

DRO (M,N) 

This function is issued any time you wish to set the bits of a digital 
output register, N(O<N<2). The output register bits are set via the 
value of M (1<M<4095). If M=0, the output register is cleared; 
otherwise the bits of the register remain set. Hence, additional bits 
of the register can be set while maintaining those set earlier. 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

Basic statement: Z=DRO(9,1) means set bits 8 and 11 of output 
register #1 if not already set. 

TST13A.PG and TST15A.PG illustrate the use of the DRI and DRO 
functions. 

5.4 LAB8/E EXAMPLES 

The following set of BASIC programs illustrates a number of ways the 
user functions may be implemented. Each program has been kept as 
simple as possible. 

Note that for TST12A.PG, TST13A.PG and TST15A.PG a battery-powered 
black box was used to interact with the digital 1/0 registers. The 
box contained a set of 12 switches which could set any combination of 
bits for the digital input register; it also contains a row of 12 
lights lighted by the contents of the 12-bit digital output register. 
When running TST18A.PG, use the data from TST17A.PG. 



LAB8/E FUNCTIONS FOR OS/8 BASIC 



LAB8/E FUNCTIONS FOR OS/8 BASIC 



LAB8/E FUNCTIONS FOR OS/% BASIC 



>- 4 
iL 

2: 
a 
>- 
7 - 
ii 
0) 
+! 
1Ã‘ 

Q 
z 
<r 

U1 
IÃ 
L 

7-4 
0 
-5- 

iA 
c 

<r 
I-"! 
is 
c 
0- 
<Â 
iL 

a 
z 
d 

Â¥ 
? ': 
.4 

n i_! .-. 
x a z  



LAB%/E FUNCTIONS FOR OS/8 BASIC 

l;:lE:f:, .... . . . . . .  F'ROGRAM NAME : TST15A + PG 
: >  F< E: pj .... . . . . . . .  
T.3 UI:lKF :lINT(N) t F ' L . Y < Y ?  yDI-Y(M? Y D T S ( S Y E : ? N Y X ?  
A UDEF SAM ( C  Y N ~ I : : ' ~ . ~ )  ~ C L , , K < R Ã ˆ ~ Ã ˆ  yCI.-W(N) v f i D C ( N )  
5 IJ D E I:' G E T ( M I... 1 Ã 1':' [.! T ( M 9 1.. ) Y D R I ( N ) Y D Ft- i:l ( M Q N ) 
6 A < 3 4 2 )  
7 . p , 1: .,.H y -. ROUTN RETURNS 1.5 D I G I T S - 4  B:rTS.i'DIG I T 

8 REH - (MASKING) I T  FIF?ST OUTPUTS THE: DECIMAL. 
9 FiEM .- E:iJU:SV OF" THE: NUMBER 
10 USE A 
1 1 :.;< ::: :[ N :I: < o ! ,. 2 [.,I :::: D 1:i 1; ' :L ) 



LAB8/E FUNCTIONS FOR OS/8 BASIC 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

11. E E .-.. PROGRAM NAME T S T 1 9 A  + PG 
=i Fi; E.1 pj .... 
.%.. 

3 UDEF I N I ( N ?  yP1 ... Y ( Y I  yDLY(N? Ã ˆ D I S ( S Y E ~ Y N Y X  
4 UDEF S A M ( ~ : ; Y N ? P Y T ?  v~: ; l . . . l<~129i : ly~)  Y CI ... W(N) YAKIC(N)  

LIDEF Gi::T(My I...? ?F:'UT(M?L.? ?DF;:I (0 ~?DF?~:I(MÃˆN 
6 D I M  i + ( ' j & )  
I,') , P d : . ~  ........ I:? ...,A MPLE CHAN 0 50 TIMES;SYNC OFF ~CHMITT;  

1. 1 R E: M - :L 0 :I: N '1. E: R R 1.l p 'T S / S E: i:: ; &I t i  E: N i:) N E D :[ S P 1.. A Y T I 1.. L Â¥" N ; 
:I.? F<E:H .- Tt-IEN WR:LTE: OUT D A T A  Ti:] D T A I !  
>^0 .,.. U S ,  A 

1. liJ =: :I: N :I: ( 0 ) 
.'Â¥ .:.' u :::: 111 :[ : .I , I::' ., ..:.... . I  . . Q ,J <:I !J 11. f $ ) 
2 .L!. X :::: 2 ,?, p j  (0 !, ;I, :.:; ^) , () ) 
...:, : 
- CJ y ::: i:; I... l\ ( 3 ? :I. 0 4 :I. ) 
' Â ¥  p :::; 11 11: (:: ,' -1 " 1::. ' . . . . . . . . . .  , . ,.!'.) 7 :I. v 1 :' 
.-, C.', ,.: 7 :I: I... 1:; '.,I :I: :I. : IDS- 11. ? S A Pi + I:I A " 
........ ,w F (1 R 1 ::: 0 'T' (j 11, 6 
... -. , , .",j ..," ,3 :;! % . . i f :  11. A ( 
3 4  pJ1::y'T" . ....... .I: 
3 6 ,::: I... 9 5 1:: 1: 1. 
....... 
.Â¥>I.. F.;]::pj .... D:l:SPLA'f A PARAB[:)Lfi .... a..: ... 
,) .. ',,... .,' .,' : '% 3 " 0  . - . .Â¥ - . . ' iO . .  
j ,  : F U R N :::: .... ..:I 1:: .... 

c .,.. z... ,.! ! 0 2 '-! 
4 4 j' :::: ( N 5i< N ) / 6 2 c,'! + :I. 
/! ;' y :::: p 1 y 1: y j 

3 (? .., ... 

.<I 8 ::I: I:I I,.. y d l ,  ; 
c: .... i^ 1:': x '1 fi 
.-J I....' 'Â . 
; .- A. : v :::: 1: s ci, ? ^ 11. !, :I. y :I. ) 
1 :  I I:( 1;:: fi .... 

I , Kl:fqn D A T A  gi:l[:;K :I: i\! & DISPLAY AS BEF[:]RE: ... 

,.; 6 1::. -J I.., E N :B: :I, ; I' 'TA 11. : s A pi . D A 'I 
I:, Q :::: 0 'r (::I 11. 6 

î) .I: N p U T :fl: :I. " .' :I: ; s..,, . . . .  ,.I"['.. J 
: .', , < p E:: y 'r ;l 

,'. 4 LJ :: 1:  fi 11: ( 1:) ) . . . .  

, , . : :  1'1 :I: ( :I. s  ̂0 y l y :I. ) 
6 g  1::NIl . . . .  



LAB8/E FUNCTIONS FOR OS/8 BASIC 



LAB8/E FUNCTIONS FOR OS/8 BASIC 

5.5 GETTING ON THE AIR WITH BASIC 

DECtape u s e r s :  

T r a n s f e r  t h e  u s e r  o v e r l a y s ,  BASIC.UF, f rom t h e  DECtape p r o v i d e d  w i t h  
t h e  s o f t w a r e  k i t  t o  t h e  OS/8 s y s t e m  d e v i c e .  

P a p e r t a p e  u s e r s :  

Use t h e  ABSLDR t o  r e a d  i n t o  c o r e  t h e  u s e r  o v e r l a y s  t h a t  a r e  i n  b i n a r y  
f o r m a t  on  t h e  p a p e r  t a p e ,  p r o v i d e d  w i t h  t h e  s o f t w a r e  k i t .  Then c r e a t e  
a  s a v e  f i l e  on  t h e  s y s t e m  d e v i c e .  

5.6 LAB8/E FUNCTION SUMMARY 

T a b l e  5-1 
LAB8/E F u n c t i o n  Summary 

F u n c t i o n  

I N 1  ( N )  

E x p l a n a t i o n  

L o c a t e  t h e  a d d r e s s  o f  t h e  u s e r  a r r a y  and 

PLY ( Y )  

i n i t i a l i z e  a  p o i n t e r  t o  s t a r t  o f  t h e  a r r a y .  
N i s  a  dummy a r g u m e n t .  

Y-da ta  c r e a t e d  v i a  t h e  BASIC p rog ram i s  
d e p o s i t e d  i n t o  t h e  u s e r  a r r a y  s e q u e n t i a l l y .  
O < Y < . O  

( c o n t i n u e d  on n e x t  p a g e )  



LAB8/E FUNCTIONS FOR OS/8 BASIC 

Table 5-1 (Cont.) 
LAB8/E Function Summary 

Function 

DLY (N) 

SAM (C ,N , P  ,T) 

CLK (R,O,S) 

CLW (N) 

ADC (N) 

GET (M, L) 

PUT (M, L) 

DRN (N) 

DRO (M,N) 

Explanation 

Used in conjunction with PLY, the scope is 
refreshed with the contents of the user 
array after each point is processed. 
1<N<1024 and N specifies the maximum number 
of points to be eventually displayed. 

~eaning #1 (X=o). Set up parameters to 
display ADC data once sampling begins. 

Meaning # 2  (X=O). An array of y-data is to 
be displayed immediately. In both cases, 
the display begins with point S of the 
array, and every Nth point is displayed 
while not exceeding the desired point E. 

Used to set up parameters for subsequent 
sampling of the ADC's (T=0) or sampling of 
digital input registers (T=O). C is the 
first channel # or digital input register 
# N is the number of consecutive channels 
or registers to sample. P is the number of 
samples per channel or register. 

Set up the clock for A/D sampling, digital 
input sampling or for use as a simple 
timer. R is the desired rate, 0 is the 
overflow count, and S activates the Schmitt 
triggers. 

This function returns to the caller a 
number, indicating whether the clock 
overflowed or a Schmitt trigger fired and 
whether these occurred before or after CLW 
was called. 

This function is issued any time the user 
wishes to sample A/D channel N. 

A 12-bit number from the user array at 
location L is masked with the number M and 
returned to the caller. 

A floating-point number, M, is fixed to 12 
bits and stored in the user array at 
location L. 

This function is used any time the user 
wishes to sample a digital input register 
N. 

The bits of digital output register N are 
set via the value of M. 



Command 

BYE 

NAme 

NEW 

OLd 

RUNNH 

SAve 

Scratch 

SUMMARY OF BASIC EDITOR COMMANDS 

Function 

Exits from the editor and returns control to the 
monitor 

Displays the program statements in the workspace 
with a header 

Displays the program statements in the workspace, 
without a header 

Renames the program in the workspace 

Clears the workspace and tells the editor the name 
of the program the user is about to type 

Clears the workspace, finds a program on the disk, 
and puts in into the workspace 

Executes the program in the workspace, after 
displaying a header 

Executes the program in the workspace, without 
displaying a header 

Puts the program in the workspace on a disk 

Erases all statements from the workspace 





A i ^ l - ' t i ~ D i X  a 

SUMMARY OF BASIC STATEMENTS 

Statement Function 

CHAIN Executes another program 

Example: 40 CHAIN "SYS:PROG.BA1I 

CLOSE# Closes a file 

DATA 

DEF 

DIM 

END 

FILE# 

Sets up a list of values to be used by the READ 
statement 

Example: 240 DATA "FIRSTW,2,3 

Defines functions 

Example: 10 DEF FND (S) =S+5 

Describes a string and/or any subscripted 
var iables 

Example: 50 DIM B (3,5) ,D$ (3,72) 

Terminates program compilation and execution 

Example: 100 END 

Defines and opens a file 

Example: 20 FILEVN#2:"RXAl:DATA.NV" 

FOR-TO-STEP Describes program loops (used with NEXT) 

Example: 60 FOR X=l TO 10 STEP 2 

GOSUB Transfers control to a subroutine (used with 
RETURN) 

Example: 50 GOSUB 100 

Transfers control to another statement 

Example: 100 GOT0 50 



SUMMARY OF BASIC STATEMENTS 

IF END# 

INPUT 

INPUT# 

LET 

NEXT 

PRINT 

PRINT# 

RANDOM1 ZE 

READ 

REM 

RESTORE 

RESTORE # 

Tests the relationship between two variables, 
numbers, or expressions 

Example: 20 IF A=0 THEN 50 

Tests for the end of a string file 

Example: 60 IF END#3 THEN 100 

Accepts data from the terminal 

Example: 80 INPUT A,B,C 

Reads data from a file 

Example: 50 INPUT#l:A$ 

Assigns a value to a variable 

Example: 90 LET A$="XYZ" 

Indicates the end of a program loop (used with 
FOR) 

Example: 140 NEXT I 

Displays data on the screen 

Example: 200 PRINT A, "X" ; 6 

Writes data to a file 

Example: 180 PRINT#l:J 

Causes the RND function to produce a different set 
of numbers each time the program is run 

Example: 10 RANDOMIZE 

Sets variables equal to the values in DATA 
statements 

Example: 50 READ A$,B 

Inserts comments into the program 

Example: 30 REM COMPUTE EARNINGS 

Sets program READ statements back to the beginning 
of the DATA list 

Example: 85 RESTORE 

Resets a file pointer back to the beginning of 
that file 

Example: 130 RESTORE#3 



RETURN 

STOP 

UDEF 

USE 

SUMMARY OF BASIC STATEMENTS 

Returns control from a subroutine (used with 
GGSGB) 

Example: 115 RETURN 

Example: 40 STOP 

Defines the syntax of a call to a user-coded 
function 

Identifies lists and arrays referenced by a 
user-coded f u n c t i ~ ~  





APPENDIX C  

SUMMARY OF BASIC FUNCTIONS 

Command 

ASC (X$) 

ATN ( X )  

EXP ( X )  

INT ( X )  

F u n c t i o n  

R e t u r n s  t h e  a b s o l u t e  v a l u e  o f  a n  e x p r e s s i o n  

Example:  1 0  LET X=ABS ( -66)  

w i l l  a s s i g n  X a  v a l u e  o f  66 

C o n v e r t s  a  o n e - c h a r a c t e r  s t r i n g  t o  i t s  c o d e  number 

Example:  20 PRINT ASC("B1') w i l l  d i s p l a y  2  

C a l c u l a t e s  t h e  a n g l e  ( i n  r a d i a n s )  whose  t a n g e n t  i s  
g i v e n  a s  t h e  a r g u m e n t  

Example:  30 LET X=ATN ( .  5 7 7 3 5 )  

w i l l  a s s i g n  X a  v a l u e  o f  0 .523598  

C o n v e r t s  a  c o d e  number t o  i t s  e u u i v a l e n t  c h a r a c t e r  

Example:  40 PRINT C H R $ ( ~ )  w i l l  d i s p l a y  A 

R e t u r n s  t h e  c o s i n e  o f  a n  a n g l e  s p e c i f i e d  i n  
r a d i a n s  

w i l l  a s s i g n  Y a  v a l u e  o f  0 .707108  

R e t u r n s  t h e  c u r r e n t  s y s t e m  d a t e  

Example:  60 PRINT DAT$ ( X )  

w i l l  d i s p l a y  t h e  s y s t e m  d a t e ,  s u c h  a s  07/20/77 

C a l c u l a t e s  t h e  v a l u e  o f  e r a i s e d  t o  a  p o w e r ,  w h e r e  
e i s  e q u a l  t o  2 .71828  

Example:  30 I F  Y>EXP(1.5)  GOT0 70 

w i l l  g o  t o  l i n e  70 i f  Y i s  g r e a t e r  t h a n  4 .48169  

R e t u r n s  t h e  v a l u e  o f  t h e  n e a r e s t  i n t e g e r  n o t  
g r e a t e r  t h a n  t h e  a r g u m e n t  

Example:  60 LET X=INT(34 .67)  

w i l l  a s s i g n  X t h e  v a l u e  3 4  



SUMMARY OF BASIC  FUNCTIONS 

LOG ( X )  

PNT ( X )  

R e t u r n s  t h e  n u m b e r  o f  c h a r a c t e r s  i n  a  s t r i n g  

E x a m p l e :  1 0  PRINT LEN ("DOG1') 

w i l l  d i s p l a y  3  

C a l c u l a t e s  t h e  n a t u r a l  l o g a r i t h m  o f  t h e  a r g u m e n t  

E x a m p l e :  1 0  PRINT LOG(959)  

w i l l  d i s p l a y  6 . 8 6 5 8 9  

O u t p u t s  
c o n t r o l  

n o n p r  i n t i n g  c h a r a c t e r s  f o r  t e r m i n a l  

E x a m p l e :  5 0  PRINT P N T ( 1 3 )  

w i l l  move t h e  c u r s o r  t o  t h e  l e f t  m a r g i n  o f  t h e  
c u r r e n t  l i n e  

POS(X$ ,Y$ ,Z)  R e t u r n s  t h e  l o c a t i o n  o f  a s p e c i f i e d  g r o u p  o f  
c h a r a c t e r s  ( Y $ )  i n  a s t r i n g  (X$)  s t a r t i n g  a t  a  
c h a r a c t e r  p o s i t i o n  ( z )  

E x a m p l e :  6 0  LET V-POS ("ABCDBC" , "BC" , 4 )  

w i l l  a s s i g n  V a  v a l u e  o f  5  

RND ( X )  R e t u r n s  a  r a n d o m  n u m b e r  b e t w e e n  ( b u t  n o t  
i n c l u d i n g )  0  a n d  1 

E x a m p l e :  7 0  PRINT RND(X) 

w i l l  d i s p l a y  a  d e c i m a l  n u m b e r ,  s u c h  a s  0 . 3 6 1 5 7 2  

SEG$(X$ ,Y ,Z)  R e t u r n s  t h e  s e q u e n c e  o f  c h a r a c t e r s  i n  a  s t r i n g  
(X$)  b e t w e e n  t w o  p o s i t i o n s  i n  t h e  s t r i n g  ( X , Y )  

E x a m p l e  : 3 0  LET R$=SEG$ ("ABCDEF" , 2 , 4 )  

w i l l  a s s i g n  R$ a  v a l u e  o f  BCD 

SGN ( X )  

S I N  ( X )  

R e t u r n s  1 i f  t h e  a r g u m e n t  i s  p o s i t i v e ,  0  i f  i t  i s  
z e r o ,  a n d  -1 i f  i t  is  n e g a t i v e  

E x a m p l e :  2 0 0  PRINT 5*SGN(-6) 

w i l l  d i s p l a y  -5  

R e t u r n s  t h e  s i n e  o f  a n  a n g l e  s p e c i f i e d  i n  r a d i a n s  

E x a m p l e :  3 0  LET B = S I N ( 3 0 * 3 . 1 4 1 5 9 / 1 8 0 )  

w i l l  a s s i g n  B  a  v a l u e  o f  0 . 5  

R e t u r n s  t h e  p o s i t i v e  s q u a r e  r o o t  o f  a n  e x p r e s s i o n  

E x a m p l e :  40  PRINT S Q R ( 1 6 )  

w i l l  d i s p l a y  4  

C o n v e r t s  a n u m b e r  i n t o  a s t r i n g  

E x a m p l e :  1 2 0  PRINT S T R $ ( 1 . 7 6 1 1 1 1 2 4 )  

w i l l  d i s p l a y  t h e  s t r i n g  1 . 7 6 1 1 1  



TAB (X) 

TRC (1) 

SUMMARY OF BASIC FUNCTIONS 

Positions characters on a line 

Example: 70 PRINT "Aii ;TAB (5) ; "Bii 

will display A B 

Causes BASIC to display the line number of each 
statement in the program as it is executed 

Example: 10 V=TRC (1) 

will display the line number of each statement 
executed until a TRC(0) is encountered 

Converts a string t o  a number 

Example: 90 PRINT VAL("2.46111")*2 

will display 4.92222 





APPENDIX D 

BASIC ERROR MESSAGES 

D . I COMPILER ERROR MESSAGES 

The following error messages are generated by the BASIC compiler: 

ERROR IN CHAIN STATEMENT 
ERROR IN DEF STATEMENT 
ERROR IN DIM STATEMENT 
ERROR IN FILE NUMBER OR NAME 
INCORRECT FOR STATEMENT 
ERROR IN FUNCTION ARGS 
ERROR IN IF STATEMENT 
I/C ERROR 
MISSING EQUALS SIGN IN LET 
STATEMENT TOO LONG 
MULTIPLY DEFINED LINE NUMBER 
MISSING END STATEMENT 
OPERAND EXPECTED, NOT FOUND 
PARENTHESIS ERROR 
OPERAND OF MIXED TYPE 
NEXT STATEMENT WITHOUT FOR 
MISSING LINE NUMBER 
OUTPUT FILE ERROR 
PUSHDOWN STACK OVERFLOW 
STRING LITERAL TOO LONG 
BAD SUBSCRIPT OR FUNCTION ARG 
SYMBOL TABLE OVERFLOW 
SYSTEM INCOMPLETE 
PROGRAM TOO BIG 
TOO MUCH DATA IN PROGRAM 
TOO MANY CHARS IN STRING 
ERROR IN UDEF STATEMENT 
FOR STATEMENT WITHOUT NEXT 
UNDEFINED STATEMENT NUMBER 
USE STATEMENT ERROR 
CHARS AFTER END OF LINE 



BASIC ERROR MESSAGES 

D.2 RUN-TIME SYSTEM ERROR MESSAGES 

The following error messages are generated by the BASIC run-time 
system: 

BO 
CI 
CL 
cx 
D A 
DE 
DC 
DV 
EF 
EM 
EN 
FB 
FC 
FE 
FI 
FM 
FN 
FO 
GR 
GS 
I A 
IF 
IN 
10 
LM 
OE 
ov 
PA 
RE 
sc 
SL 
SR 
ST 
su 
sw 
VR 
WE 

NO MORE BUFFERS AVAILABLE 
IN CHAIN, DEVICE NOT FOUND 
IN CHAIN, FILE NOT FOUND 
CHAIN ERROR 
READING PAST END OF DATA 
DEVICE DRIVER ERROR 
NO MORE ROOM FOR DRIVERS 
ATTEMPT TO DIVIDE BY ZERO 
LOGICAL END OF FILE 
NEGATIVE NUMBER TO REAL POWER 
ENTER ERROR 
USING FILE ALREADY IN USE 
CLOSE ERROR 
FETCH ERROR 
CLOSING OR USING UNOPENED FILE 
FIXING NEGATIVE NUMBER 
ILLEGAL FILE NUMBER 
FIXING NUMBER>4095 
RETURN WITHOUT GOSUB 
TOO MANY NESTED GOSUBS 
ILLEGAL ARG IN UDEF 
ILLEGAL DEV:FILENAME 
INQUIRE FAILURE 
TTY INPUT BUFFER OVERFLOW 
TAKING LOG OF NEGATIVE NUMBER 
DRIVER ERROR WHILE OVERLAYING 
NUMERIC OR INPUT OVERFLOW 
ILLEGAL ARG IN POS 
READING PAST END OF FILE 
CONCATENATED STRING TOO LONG 
STRING TOO LONG OR UNDEFINED 
READING STRING FROM NUMERIC FILE 
STRING TRUNCATION ON INPUT 
SUBSCRIPT OUT OF RANGE 
WRITING STRING INTO NUMERIC FILE 
READING VARIABLE LENGTH FILE 
WRITING PAST END OF FILE 



INDEX 

Abso lu te  v a l u e  f u n c t i o n ,  1-29 
A d d i t i o n ,  1-7  
A r c t a n g e n t  f u n c t i o n ,  1-26 
A r i t h m e t i c  o p e r a t i o n s ,  1-7 
Ar rays ,  

numeric,  1-14 
s t r i n g ,  1-15 

Array symbol t a b l e ,  2-3 
ASCII. 

c h a r a c t e r  s e t ,  1-2, 1-34 
c o n v e r s i o n ,  1-33 
file fo rmat ,  1-42, 1-43 

Assembly language f u n c t i o n ,  2-1 
Assignment s t a t e m e n t s ,  1-10 

BASIC Run-Time System (BRTS) , 
2-2 t o  2-12 

b u f f e r  s t o r a g e ,  2-9 
f l o a t i n g  p o i n t  o p e r a t i o n s ,  

2-11, 2-12 to 2-18 
i n p u t / o u t p u t ,  2-21 
o v e r l a y s ,  2-12 
p a s s i n g  arguments t o  u s e r  

f u n c t i o n s ,  2-18 
symbol t a b l e  s t r u c t u r e ,  2-3 

t o  2-5 
sys tem components, 2-2 

B u i l d i n g  a  sys tem,  4-1 t o  4-3 
BYE command, 1-51 

C a l l i n g  BASIC, 1-48 
CHR$ f u n c t i o n ,  1-34 
CLOSER s t a t e m e n t ,  1-41 
Command, 

BYE, 1-51 
LIST, 1-49 
NAME, 1-51 
NEW, 1-48 
OLD, 1-48 
R U N ,  1-49 
SAVE, 1-50 
SCRATCH, 1-51 

Commands, key,  1-52 t o  1-53 
Compiler  o p t i o n s ,  3-3, 3-4 
C o n s t a n t s  , 

numeric,  1-3 
s t r i n g ,  1 - 4  

C o n t r o l  (CTRL) key commands, 
1-52 t o  1-53 

C o n t r o l  s t a t e m e n t s ,  1-19 t o  
1- 2  3  

Convers ion,  s t r i n g ,  1-33,  1-34 
Cosine  f u n c t i o n ,  1-26 

Data  f o r m a t s ,  1-17 
DATA s t a t e m e n t ,  1 - 1 2  
Debugging f u n c t i o n ,  1-38 
Decimal f o r m a t ,  1-3,  1-4 
DEF s t a t e m e n t ,  1-36 
Device d r i v e r  s t o r a g e ,  2-9 
D I M  s t a t e m e n t ,  1-14 t o  1-16 
~ i m e n s i o n i n g  s t r i n g s ,  1-15 
D i s t r i b u t i o n  media,  4-1 
D i v i s i o n ,  1-7 

E d i t o r ,  1-1 t o  1-3, 1-47 t o  
1-53 

END s t a t e m e n t ,  1-23 
E x p o n e n t i a l  f o r m a t ,  1-3 
E x p o n e n t i a l  f u n c t i o n ,  1-27 

F i l e s ,  
f o r m a t s ,  1-33 t o  1-44 
s t a t e m e n t s ,  1-40 t o  1-45 

F l o a t i n g - p o i n t  o p e r a t i o n s ,  2-12 
t o  2-18 

FOR s t a t e m e n t ,  1-20 
Format c o n t r o l  c h a r a c t e r s ,  1-17 
F u n c t i o n ,  

ABS, 1-29 
ASC,  1-33 
ATN, 1-26 
CHK$, 1-34 
COS, 1-26 
DAT$, 1-39 
EXP, 1-27 
INTI 1-28 
LEN, 1-31 
LOG, 1-28 
PNT, 1-18 
POS, 1-32 
RND,  1-29 
SEG$ , 1-3 2  
SGN, 1-29 
SIN, 1-25 
SQR, 1-27 
STR$, 1-36 
TAB, 1-18 
TRC, 1-38 
VAL, 1-35 

F u n c t i o n s ,  
a r i t h m e t i c ,  1-27 t o  1-29 
s t r i n g ,  1-30 t o  1-36 
t r i g o n o m e t r i c ,  1-25 t o  1-27 



INDEX (Cont .  ) 

GE.T f u n c t i o n ,  LAB8/E, 5-2 
G e t t i n g  on  t h e  a i r ,  5-5 
GOSUB s t a t e m e n t ,  1-23 
GOT0 s t a t e m e n t  , 1-19 

I F  END# s t a t e m e n t ,  1-45 
I F  GOT0 s t a t e m e n t ,  1-20 
IF  THEN s t a t e m e n t ,  1-20 
I n  c o r e  DATA l i s t ,  2-8 
I n i t i a l i z e  f u n c t i o n ,  LAB8/E1 

5- 2 
I n p u t / o u t p u t ,  

BASIC Run-Time System,  2-21 
s t a t e m e n t s ,  1-11 t o  1-18 

INPUT s t a t e m e n t ,  1-11 
INPUT# s t a t e m e n t ,  1-42 
INT f u n c t i o n ,  1-28 
I n t e g e r  f o r m a t ,  1-3 

LAB8/E f u n c t i o n s ,  
examples ,  5-10 t o  5-19 
f u n c t i o n  summary, 5- 19 
p r e p a r a t i o n ,  5-2 
s u p p o r t  f u n c t i o n s ,  5-2 

LE?: Â £ u n c t i o n  1 -31  
LET s t a t e m e n t ,  1-10 
LIST command, 1-49 
L i s t s ,  1-14 
Logar i thm f u n c t i o n ,  1-28 

Memory image f i l e s ,  3-3 
Memory l a y o u t ,  BRTS , 2-2 

NAME command, 1-51 
Nes ted  l o o p s ,  1-22 
Nes ted  s u b r o u t i n e s ,  1-23 
NEW command, 1-48 
NEXT s t a t e m e n t ,  1-20 
Numbers, 1-3,  1-4 
Numeric f i l e  f o r m a t ,  1-43 

OLD command, 1-48 
O p e r a t o r s ,  

a r i t h m e t i c ,  1-7 
r e l a t i o n a l ,  1-8 
s t r i n g ,  1-8 

O p t i o n s ,  c o m p i l e r ,  3-3, 3-4 
O v e r l a y s ,  BRTS, 2-12 

P l o t  f u n c t i o n ,  LAB8/E, 5-2 
PNT f u n c t i o n ,  1-18 
POS f u n c t i o n ,  1-32 
PRINT s t a t e m e n t ,  1-16 t o  1-18 
PRINT# s t a t e m e n t ,  1-43 
P r i o r i t y  o f  o p e r a t o r s ,  1-7,  

1- 8  
PUT f u n c t i o n ,  LAB8/E, 5-2 

Random number f u n c t i o n ,  1-30 
RANDOMIZE s t a t e m e n t ,  1-30 
READ s t a t e m e n t ,  1-12 
R e l a t i o n a l  o p e r a t o r s ,  1-8 
REMARK s t a t e m e n t ,  1-10 
RESEQ program, 1-52 
RESTORE s t a t e m e n t ,  1-12 
RESTORE# s t a t e m e n t ,  1 - 4 4  
RETURN s t a t e m e n t ,  1-23 
RUN command, 1-49 
Run-time sys t em,  2-2 t o  2-12 

SAVE command, 1-50 
S c a l a r  t a b l e ,  2-3 
S c r a t c h  command, 1-53 
SEG$ f u n c t i o n ,  1-32 
Semicolon,  u s e  o f ,  1-17 
S i g n  f u n c t i o n ,  1-29 
S i n e  f u n c t i o n ,  1-25 
S q u a r e  r o o t  f u n c t i o n ,  1-27 
S t a t e m e n t ,  

C H A I N ,  1-46 
CLOSE#, 1-41 
DATA, 1-12 
DEF, 1-36 
D I M ,  1-14 
END, 1-23 
FILE#, 1-40 
FOR-TO-STEP , 1-20 
GOSUB, 1-23 
GOTO, 1-19 
I F  END#, 1-45 
INPUT, 1-11 
INPUT#, 1-42 
LET, 1-10 
NEXT, 1-20 
PRINT, 1-16 
PRINT# , 1-43 
RANDOMIZE, 1-29 
READ, 1-12 
REM, 1-10 
RESTORE , 1- 1 2  
RESTORER , 1 - 4 4  
RETURN, 1-23 
STOP, 1-23 
UDEF, 1-37 
USE, 1-37 

Index- 2  



INDEX ( C e n t .  ) 

STOP s t a t e m e n t ,  1-23 
STR$ f u n c t i o n ,  1-36 
S t r i n g ,  

a r r a y  t a b l e ,  2-5 
c o n c a t e n a t i o n ,  1-8 
conven t ions ,  1-4 
hand l ing  f u n c t i o n s ,  1-30 t o  

1-36 
s t o r a g e ,  2-6 
symbol t a b l e ,  2-4 

S u b r o u t i n e s ,  1- 23 
S u b s c r i p t e d  v a r i a b l e s ,  1-6 
S u b t r a c t i o n ,  1-7 
System-build i n s t r u c t i o n s ,  4 - 1  

to 4-3 

.TAB f -inc tion, 1- 18 
TRC f u n c t i o n ,  1-38 

USE s t a t e m e n t ,  1-37 
User-defined f u n c t i o n s ,  1-36, 

1-37 

VAL f u n c t i o n ,  1-35 
V a r i a b l e s ,  

numeric , 1-5 
s t r i n g ,  1-5 
s u b s c r i p t e d ,  1-6 

T a b l e s ,  
s e e  Ar rays  

Index- 3 



FORTR IV 



CONTENTS 

CHAPTER 3 

CHAPTER 4 

THE FORTRAN COMPILER 

C o m p i l e r  E x a m p l e s  
C o m p i l e r  E r r o r  M e s s a g e s  

THE RALF ASSEMBLER 
RALF E x a m p l e s  
RALF A s s e m b l e r  E r r o r  M e s s a g e s  

THE LOADER 
L o a d e r  E x a m p l e s  
L o a d e r  E r r o r  M e s s a g e s  

FORTRAN I V  RUN-TIME SYSTEM ( F R T S )  
R u n - T i m e  S y s t e m  E r r o r  M e s s a g e s  

FORTRAN I V  SOURCE LANGUAGE 

CHARACTERS AND L I N E S  

THE FORTRAN CHARACTER SET 
ELEMENTS OF A  FORTRAN PROGRAM 

S t a t e m e n t s  
C o m m e n t s  

FORTRAN L I N E S  
U s i n g  a T e x t  E d i t o r  
S t a t e m e n t  L a b e l  F i e l d  
C o m m e n t  I n d i c a t o r  and C o m m e n t s  
C o n t i n u a t i o n  I n d i c a t o r  F i e l d  
S t a t e m e n t  F i e l d  
I d e n t i f i c a t i o n  F i e l d  

BLANK L I N E S  
L I N E  FORMAT SUMMARY 

FORTRAN STATEMENT COMPONENTS 

INTRODUCTION 
SYMBOLIC NAMES 
DATA TYPES 
CONSTANTS 

I n t e g e r  C o n s t a n t s  
R e a l  C o n s t a n t s  
D e c i m a l  R e a l  C o n s t a n t s  
E x p o n e n t i a l  R e a l  C o n s t a n t s  
D o u b l e - P r e c i s i o n  C o n s t a n t s  
C o m p l e x  C o n s t a n t s  
L o g i c a l  C o n s t a n t s  
O c t a l  C o n s t a n t s  
H o l l e r i t h  C o n s t a n t s  
A l p h a n u m e r i c  L i t e r a l s  

iii 



CONTENTS ( C o n t  . ) 

P a g e  

VARIABLES 
D a t a  T y p e  S p e c i f i c a t i o n  
D e f a u l t  D a t a  T y p e s  

ARRAYS 
A r r a y  D e c l a r a t i o n s  
A r r a y  S t o r a g e  
S u b s c r i p t s  
D a t a  T y p e  of an  A r r a y  
A r r a y  R e f e r e n c e  w i t h o u t  S u b s c r i p t s  
A d  j u s t a b l e  A r r a y s  

CHAPTER 5 EXPRESS IONS 

INTRODUCTION 
ARITHMETIC EXPRESSIONS 

R u l e s  f o r  W r i t i n g  A r i t h m e t i c  E x p r e s s i o n s  
E v a l u a t i o n  H i e r a r c h y  
D a t a  T y p e  o f  a n  A r i t h m e t i c  E x p r e s s i o n  

RELATIONAL EXPRESSIONS 
LOGICAL EXPRESSIONS 

L o g i c a l  E x p r e s s i o n  H i e r a r c h y  
USE OF PARENTHESES 

CHAPTER 6 ASSIGNMENT STATEMENTS 

INTRODUCTION 
ARITHMETIC ASSIGNMENT STATfiSXT 
LOGICAL ASSIGNMENT STATEMENT 

CHAPTER 7 S P E C I F I C A T I O N  STATEMENTS 

INTRODUCTION 
TYPE DECLARATION STATEMENTS 
DIMENSION STATEMENT 
EXTERNAL STATEMENT 
COMMON STATEMENT 

COMMON S t a t e m e n t s  w i t h  A r r a y  D e c l a r a t o r s  
EQUIVALENCE STATEMENT 

M a k i n g  A r r a y s  E q u i v a l e n t  
EQUIVALENCE and COMMON I n t e r a c t i o n  

CHAPTER 8 DATA STATEMENT AND BLOCK DATA SUBPROGRAMS 

DATA STATEMENT 
BLOCK DATA SUBPROGRAMS 

CHAPTER 9 CONTROL STATEMENTS 

INTRODUCTION 
GOT0 STATEMENTS 

U n c o n d i t i o n a l  GOT0 S t a t e m e n t  
C o m p u t e d  GOT0 
ASSIGN and A S S I G N e d  GOT0 S t a t e m e n t s  
ASSIGN S t a t e m e n t  
A S S I G N e d  GOT0 S t a t e m e n t  



CHAPTER 10 

CHAPTER 11 

CHAPTER 1 2  

I F  STATEMENTS 
A r i t h m e t i c  I F  S t a t e m e n t  
L o g i c a l  I F  S t a t e m e n t  

DO STATEMENT 
DO I t e r a t i o n  C o n t r o l  
N e s t e d  DO L o o p s  
C o n t r o l  T r a n s f e r s  i n  DO L o o p s  
E x t e n d e d  R a n g e  

CONTINUE STATEMENT 
PAUSE STATEMENT 
STOP STATEMENT 
END STATEMENT 

SUBPROGRAMS 

INTRODUCTION 
SUBPROGRAM ARGUMENTS 
USER-WRITTEN SUBPROGRAMS 

A r i t h m e t i c  S t a t e m e n t  F u n c t i o n s  ( A S F )  
FUNCTION S u b p r o g r a m s  
SUBROUTINE S u b p r o g r a m s  

CALL STATEMENT 
RETURN STATEMENT 
FORTRAN LIBRARY FUNCTIONS 

INPUT/OUTPUT STATEMENTS 

INTRODUCTION 
I n p u t / O u t p u t  D e v i c e s  and L o g i c a l  U n i t  
N u m b e r s  
FORMAT S p e c i f i e r s  
I n p u t / O u t p u t  R e c o r d s  

INPUT/OUTPUT L I S T S  
S i m p l e  L i s t s  
I m p l i e d  DO L i s t s  

INPUT/OUTPUT FORMS 
U n f o r m a t t e d  S e q u e n t i a l  I n p u t / O u t p u t  
F o r m a t t e d  S e q u e n t i a l  I n p u t / O u t p u t  
U n f o r m a t t e d  D i r e c t  A c c e s s  I n p u t / O u t p u t  

READ STATEMENTS 
U n f o r m a t t e d  S e q u e n t i a l  READ S t a t e m e n t  
F o r m a t t e d  S e q u e n t i a l  READ S t a t e m e n t  
CHKEOF S u b r o u t i n e  
U n f o r m a t t e d  D i r e c t  A c c e s s  READ S t a t e m e n t  

WRITE STATEMENTS 
U n f o r m a t t e d  S e q u e n t i a l  WRITE S t a t e m e n t  
F o r m a t t e d  S e q u e n t i a l  WRITE S t a t e m e n t  
U n f o r m a t t e d  D i r e c t  A c c e s s  WRITE S t a t e m e n t  

AUXILIARY INPUT/OUTPUT STATEMENTS 
BACKSPACE S t a t e m e n t  
DEFINE F I L E  S t a t e m e n t  
ENDFILE S t a t e m e n t  
REWIND S t a t e m e n t  

FORMAT STATEMENTS 



CONTENTS ( C o n t  . ) 

P a g e  

CHAPTER 1 3  

INTRODUCTION 
F I E L D  DESCRIPTORS 

I F i e l d  D e s c r i p t o r  
F  F i e l d  D e s c r i p t o r  
E  F i e l d  D e s c r i p t o r  
I n p u t  
O u t p u t  
D  F i e l d  D e s c r i p t o r  
I n p u t  
O u t p u t  
B  F i e l d  D e s c r i p t o r  
G  F i e l d  D e s c r i p t o r  
I n p u t  
O u t p u t  
L  F i e l d  D e s c r i p t o r  
I n p u t  
O u t p u t  
A  F i e l d  D e s c r i p t o r  
I n p u t  
O u t p u t  
H  F i e l d  D e s c r i p t o r  
A l p h a n u m e r i c  L i t e r a l s  
X  F i e l d  D e s c r i p t o r  
T  F i e l d  D e s c r i p t o r  
I n p u t  
O u t p u t  
$ D e s c r i p t o r  

COMPLEX DATA E D I T I N G  
SCALE FACTOR 
GROUPING AND GROUP REPEAT S P E C I F I C A T I O N S  
CARRIAGE CONTROL 
FORMAT S P E C I F I C A T I O N  SEPARATORS 

E x t e r n a l  F i e l d  Separators 
FORMAT CONTROL INTERACTION WITH 1/0 L I S T S  
SUMMARY OF RULES FOR FORMAT STATEMENTS 

G e n e r a l  
I n p u t  
O u t p u t  

FORTRAN I V  LIBRARY 

LIBRARY FUNCTIONS AND SUBROUTINES 
ABS 
ACOS 
ABD 
ADC 
AIMAC 
A I N T  
ALOG 
ALOG10 
AMAXO 
AMAX1 
AMINO 
AMIN 1 
AMOD 
A S  I N  



CONTENTS ( C e n t .  ) 

Page 

AT AN 
ATAN 2 
CABS 
ccos 
CEXP 
CGET 
CHKEOF 
CLOCK 
CLOG 
CLRPT 
CMPLX 
CONJG 
cos 
COSD 
COSH 
CPUT 
CSIN 
CSQRT 
DABS 
DATAN 
DATAN 2 
DATE 
DELE 
DCOS 
DEXP 
DIM 
DLOG 
DLOG10 
DMAX 1 
DMIN 1 
DMOD 
DSIGN 
DSIN 
DSQRT 
EXP 
EXTLVL 
FLOAT 
IABS 
I D I M  
I D I N T  
I F I X  
I N T  
I S I G N  
LSW 
MAX0 
MAX 1 
MIN 0 
M I N I  
MOD 
ONOB 
ONQ I 
PLOT 
PLOTR 
RCLOSE 
REAL 
REALTM 

vii 



CONTENTS ( C o n t  . ) 

P a g e  

CHAPTER 1 4  

CHAPTER 1 5  

INDEX 

FIGURE 4 - 1  
4-2 
7 - 1  
9 - 1  
9 - 2  
1 5 - 1  
1 5 - 2  

ROPEN 
RSW 
SCALE 
SIGN 
S I N  
SIND 
SNGL 
SINH 
SORT 
ssw 
SYNC 
TAN 
T AND 
TANH 
TIME 

PAPERTAPE LOADING INSTRUCTIONS 1 4 - 1  

FORTRAN I V  PLOTTER ROUTINES 1 5 - 1  

PLOTTER ROUTINES 
PLOTTER COMMANDS 

PLOTS 
XYPLOT 
FACTOR 
WHERE 
SYMBOL 
M u l t i p l e  C h a r a c t e r s  
S i n g l e  C h a r a c t e r s  
NUMBER 
PSCALE 
AXIS 
LINE 
PLEXIT 

IMPLEMENTING THE PLOTTER ROUTINES 
G e t t i n g  S t a r t e d  
A d d i n g  t he  P l o t t i n g  R o u t i n e s  
L o a d i n g  t h e  P l o t t e r  R o u t i n e s  f r o m  P a p e r  
T a p e  

FIGURES 

A r r a y  R e p r e s e n t a t i o n s  
A r r a y  S t o r a g e  
E q u i v a l e n c e  of A r r a y  S t o r a g e  
N e s t i n g  o f  DO L o o p s  
C o n t r o l  T r a n s f e r s  a n d  E x t e n d e d  R a n g e  
S p i r a l  P l o t t e r  E x a m p l e  
H i s t o g r a m  P l o t t e r  E x a m p l e  

viii 



P a g e  

TABLES 

TABLE 1-1 
1- 2  
1- 3 
1- 4  
1-5 
1- 6  
1 - 7  
1- 8 
2 - 1  
3-1 
3 - 2  
4 - 1  
4 - 2  
5-1 
5 - 2  
5-3 
5 - 4  
5-5 
5 - 6  
6 - 1  
9 - 1  
1 2 - 1  

S t a n d a r d  FORTRAN I V  F i l e  E x t e n s i o n s  
FORTRAN I V  C o m p i l e r  R u n - T i m e  O p t i o n s  
FORTRAN iV C o m p i l e r  E r r o r  M e s s a g e s  
RALF A s s e m b l e r  R u n - T i m e  O p t i o n s  
L o a d e r  R u n - T i m e  O p t i o n s  
L o a d e r  E r r o r  M e s s a g e s  
R u n - T i m e  S y s t e m  O p t i o n  S p e c i f i c a t i o n s  
R u n - T i m e  S y s t e m  E r r o r  M e s s a g e s  
FORTRAN S t a t e m e n t  C a t e g o r i e s  
FORTRAN S p e c i a l  C h a r a c t e r s  
F i e l d  S u m m a r y  
C l a s s e s  of S y m b o l i c  N a m e s  
FORTRAN Data T y p e s  
A r i t h m e t i c  O p e r a t o r s  
B a s e / E x p o n e n t  C o m b i n a t i o n s  
B i n a r y  O p e r a t o r  H i e r a r c h y  
R e l a t i o n a l  O p e r a t o r s  
L o g i c a l  O p e r a t o r s  
L o g i c a l  O p e r a t o r  H i e r a r c h y  
C o n v e r s i o n  R u l e s  f o r  A s s i g n m e n t  S t a t e m e n t s  
A r i t h m e t i c  I F  T r a n s f e r s  
E f f e c t  of D a t a  M a g n i t u d e  on G F o r m a t  
C o n v e r s i o n s  
C h a r a c t e r  S t o r a g e  
C a r r i a g e  C o n t r o l  C h a r a c t e r s  
F O R L I B  C a l l i n g  R e l a t i o n s h i p s  
F O R L I B  M u l t i p l e  E n t r y  P o i n t s  by S e c t i o n  
CLOCK S u b r o u t i n e  FUNCTN A r g u m e n t s  
FORTRAN I V  P l o t t e r  R o u t i n e s  
S p e c i a l  S y m b o l s  
R e g u l a r  C h a r a c t e r s  



CHAPTER 1 

SYSTEM OVERVIEW 

OS/8  FORTRAN I V  provides full standard ANSI FORTRAN I V  under the OS/8 
operating system. The FORTRAN IV package requires a minimum hardware 
environment consisting of a PDP-8 family processor with at least 8K of 
mainframe memory, a console terminal, and at least 96K of mass 
storage. The system is automatically self-expanding to employ a KE8-E 
Extended Arithmetic Element, FPP-12 Floating-point Processor, up to 
32K of mainframe memory, and any bulk storage or peripheral 1/0 
devices that may be present in the system. 

Although such factors as maximum program size and minimum execution 
time depend heavily on the hardware configuration on which any program 
is run, OS/8 FORTRAN IV affords the full capability of the FORTRAN IV 
language, even on a minimum configuration, subject only to the 
restriction that double-precision and complex number operations . . require an FPP-12 with extended precision option. The system is 
highly optimized with respect to memory requirements, and an overlay 
feature is included that permits programs requiring up to 300K of 
virtual storage to run on a PDP-8 or PDP-12. The library functions 
permit the user to access a number of laboratory peripherals, to 
evaluate a number of transcendental functions, to manipulate 
alphanumeric strings, and to output to a standard incremental plotter. 

A FORTRAN IV program written by the user is called a source program, 
to distinguish it from the various object programs generated by the 
OS/8 FORTRAN IV system. Source programs may be prepared off line on 
punched cards or low-speed paper tape; however, it is usually most 
convenient to prepare source programs on line by means of an editing 
program such as TECO or EDIT. The source file produced in this manner 
is an image of the corresponding punched-card file, with carriage 
return and line feed characters separating adjacent statements (that 
would otherwise appear on adjacent punched cards) and ASCII spaces or 
tabs entered in place of blank columns. Because of the close analogy 
between punched-card source files and other types of source files, the 
terns "character" and "column" are used interchangeably in this 
manual. 

Once a source program has been prepared, it is supplied as input to 
the FORTRAN IV compiler, which translates each FORTRAN statement into 
one or more RALF (Relocatable Assembly Language, Floating-point) 
statements and produces an output file containing an assembly language 
version of the source program, plus an optional annotated listing of 
the source. 

This is accomplished in three passes. System program F4.SV begins 
compilation by building a symbol table and generating intermediate 
code. F4 chains to PASS2.SV automatically, and PASS2 calls PASS20.SV 
to complete the translation into assembly language during compilation 
pass 2. If a source listing was requested, PASS20 chains to PASS3.SV 
automatically, and PASS3 generates the listing during pass 3. Like 
PASS2, PASS20 and PASS3 are never accessed directly by the user. 



SYSTEM OVERVIEW 

The R 
assem 
1.2 f 
RALF 
instr 

ALF 
bled 
or a 
ass 

ucti 

assembly language output produced by the compiler must be 
by system program RALF.SV, the RALF assembler. (See Section 
description of the RALF assembler.) During assembly, each 
embly language statement is translated into one or more 
ons for either the PDP-8 processor or the FPP; an output 

file is then created containing a relocatable binary version of the 
assembly language input. This is accomplished in two passes; a third 
pass is executed to generate an annotated listing of the assembly 
language input file, if requested. 

The relocatable binary file produced by the RALF assembler is a 
machine language version of a single program or subroutine. This 
file, called a RALF module, must be linked with its main program (if 
it is a subroutine) and with any other subroutines, including 
subroutines from the library (egg., FORLIB.RL) that it requires in 
order to execute. System program LOAD-SV, the OS/8 FORTRAN IV loader, 
accepts a list of RALF module specifications from the console terminal 
and builds a loader image file containing a relocated main program 
linked to relocated versions of all subroutines and library components 
that the mainline requires in order to execute. 

The loader image file is an executable core load, complete except for 
run-time 1/0 specifications. It may be stored on any mass storage 
(directory) device and executed whenever desired. The loader also 
produces an optional symbol map that indicates the core storage 
requirements of the linked and relocated program. The overlay feature 
of the loader permits certain segments of a program to be stored in 
the loader image file during execution and read into core memory only 
as needed, which effectively provides a tenfold increase in maximum 
program size. 

The loader image file produced by the loader is read and executed by 
system program FRTS.SV, the OS/8 FORTRAN IV run-time system, which 
also configures an 1/0 supervisor to handle any FORTRAN input or 
output in accordance with run-time I / O  specifications. This makes the 
full 1/0 device independence of the OS/8 operating system available to 
every FORTRAN IV program, and permits FORTRAN programs to be written 
without concern for, or even knowledge of, the hardware configuration 
on which they will be executed. The run-time system assigns 1/0 
device handlers to the 1/0 unit numbers referenced by the FORTRAN 
program, allocates I/O buffer space, and also diagnoses certain types 
of errors that occur when the loader image file is read into core. If 
no errors of this sort are encountered, the run-time system starts the 
FORTRAN program and monitors execution to check for run-time errors 
involving data I/O, numeric overflow, hardware malfunctions, and the 
like. Run-time errors are identified at the console terminal, and, 
when a run-time error occurs, the system also provides complete error 
traceback to identify the full sequence of FORTRAN statements that 
terminated in the error condition. 

The compiler, assembler, loader, and run-time system each accept 
standard OS/8 Command Decoder option specifications, as do most OS/8 
programs. The option specifications are alphanumeric characters which 
may be thought of as switches that, by their presence or absence, 
enable or disable certain program features and conventions. For 
example, specifying the /N option to the compiler suppresses 
compilation of internal sequence numbers, thereby reducing program 
memory requirements (at the cost of preventing full error traceback 
during execution). Thus, /N is one of the compiler run-time option 
specifications that may be requested to modify the usual compilation 
procedure. In this context, run time refers to the time at which the 
compiler, or other system program, is executed, rather than the time 
at which the FORTRAN program is executed. 





SYSTEM OVERVIEW 

It is also important to identify the types of input that must be 
supplied to each process listed above and the types of output that 
will be produced. The OS/8 FORTRAN IV system accepts user-generated 
FORTRAN source programs (supplied as input to the compiler) and 
user-written RALF assembly language files (supplied to the assembler) 
as input. It generates four types of output files: 

a RALF assembly lanquaqe files qenerated by the compiler and 
read as input by the assembler. Compiler output is 
functionally equivalent to user-written RALF language input. 

a Relocatable binary files generated by the assembler and read 
as input by the loader. 

a Loader image files generated by the loader and read as input 
by the run-time system. Once a program has been written and 
debugged, it may be stored as a loader image file and executed 
whenever required without the necessity for further 
compilation, assembly, or relocation. 

Optional listing files including the FORTRAN source listing 
produced by the compiler, the RALF language listing produced 
by the assembler, and a symbol map produced by the loader. 

In addition, the FORTRAN program itself usually reads and writes data 
files under the supervision of the run-time system; FORTRAN 1/0 files 
are treated separately in the section on the FORTRAN IV Run-Time 
System. 

Every FORTRAN source program thus generates up to three object files, 
aside from any I/O files that may be read or written during execution, 
and up to three listing files. System-generated files are most 
conveniently identified by assigning them the same file name as the 
s n n r r ' p  f r o m  w h i r - h  they w ~ r p  ? r n d n r - ~ d  a n d  a f i  1 p  p ~ t p n s i o n  t h a t  

identifies them by type. Table 1-1 lists the standard file extensions 
used to identify various types of source and system-generated files. 
The standard extensions are called default extensions because, when 
any output file name is specified with a null extension, the 
appropriate standard extension is appended by default. Thus, 
specifying file "PROG" or "PROG." to the RALF assembler, for example, 
causes the relocatable binary output from the assembly to be written 
on file "SYS:PROG.RL1' where "SYS:" is the default device when a file 
name is explicitly defined and ".RL1' is the default extension for 
relocatable binary files. Specifying a null file causes this output 
to be routed to file "DSK: FORTRN.RLt' where "DSK:" is the OS/8 
default device and "FORTRN" is the default output file name. For 
clarity, all examples in this chapter will use either null or default 
extensions, although the user may explicitly specify any extension 
desired. 

Table 1-1 
Standard FORTRAN IV File Extensions 

FORTRAN language source file. 
RALF assembly language file. 

Extension 

Relocatable binary (assembler output). 
Loader image. 
Listing or symbol map. 

File Type 

1 .TM System temporary file. Created by certain multipass 1 
programs and normally deleted automatically after 
use. 

1-4 



SYSTEM OVERVIEW 

This chapter assumes that the reader is familiar with the OS/8 
operating system; however! a l l  material h a s  besn presz~tsd in 2 
manner that requires minimal experience with O S i 8 .  Tne reaGer shoul6 
understand the use of the OS/8 Keyboard Monitor (although only the 
monitor R command is referenced here) and the OS/8 Command Decoder. 
In particularf notice tnat all Command E e c d e r  filel~ption 
specifications presented here are illustrated in a standard format 
that may not be the most convenient format for an experienced user's 
particular application. In additionf the Command Decoder provides 
file storage optimization featuresf which may be invsliiahls ifi aafiy 
applicationsF but which are not covered in this chapter. DECtape and 
LINCtape users will benefit from an understanding of the OS/8 file 
structuref so that they may assign 110 files in a manner that 
minimizes access time on tape-based systems. 

The FORTRAN IV system of programs may be entered through the CCL 
commands COMPILE? EXECUTE? and LOAD* These commands are described in 
Sections 1.1 and 1.1.1 in this chapter. 

1.1 THE FORTRAN IV COMPILER 

The OS/8 FORTRAN I'd compiler accepts one FORTRAX source language 
program or subroutine as inputf examines each FORTRAN statement for 
validityf and produces as output a list of error diagnosticsf a RALF 
assembly language version of the source program, and an optional 
annotated source listing. A job containing one or more subroutines is 
run by compiling and assembling the main program and each subroutine 
separatelyf then combining them wlth the loader. F4 terminates a 
compilation by chaining to the RALF assembler automaticallyf unless it 
was requested to return to the Keyboard Monitor. The compiler is 
called by typing 

(terminated by a carriage return) in response to the dot generated .by 
the Keyboard Monitor. F4 may also be called via the CCL command 
COMPILE. The compiler replies by loading the OS/8 Command Decoderf 
which accepts and decodes a standard command line that designates 0 to 
3 output files? 1 to 9 input filesf and any run-time option 
specifications. The file/option specification command line is entered 

typing 

(terminated by a carriage return or altmode) in response to the 
asterisk generated by the Command Decoder where 
DEV:RALF.RAIDEV:LIST.LSf and DEV:MAP.LS are output files, RALF 
assembly source filef listing filef and loader symbol map filef 
respectively. The files DEV:IFl.FTf...lDEV:IF9.FT are input flies 1 
to 9. Options is a string of alphabetic charactersf enclosed in 
parenthesesf that designates any run-time options desired. The " " 

character may be used in place of the "<'I character to separate output 
file specifications from input file specifications. The parentheses 
may be omitted if each run-time option specification character is 
preceded by a "/" character. 

When any input file name is entered with a null extension, the 
compiler will search Â£o the indicated file name with an assumed 
extension of ".FT1'. If this is unsuccessfulf it will then search for 
the indicated file with a null extension. If the first output file 
RALF.RA is entered with a null extension, the compiler appends the 
default extension ".RA1'. If the second output file is a directory 



device file with a null extension, the compiler appends the default 
extension ".LSr'. Note that unless chaining to RALF, the first output 
file is always written onto the OS/8 system device; any user device 
specification entered for this file will be ignored when the /A option 
is specified. When there is more than one input file, all of the 
input files are assumed to contain a single FORTRAN program or 
subroutine. 

After accepting and decoding tne fiie/option speclflcation command, 
the compiler reads the input files in the order they were entered and 
then compiles each FORTRAN source statement until an END statement is 
encountered. Any text following the first END statement is ignored. 
The compiler then writes a RALF assembly language version of the 
source program onto the first output file, or onto file SYS:FORTRN.RA 
if no first output file was specified. It also copies an annotated 
source program listing onto the second output file; however, this 
listing is not produced unless a second output file was specifically 
defined. The third output file is not used by the compiler; it 
receives a loader symbol map only when chaining to the loader. 

An internal statement number (ISN) is assigned to each FORTRAN IV 
statement sequentially, in octal, beginning with ISN 2 at the first 
FORTRAN statement* When an error is encountered during compilation, 
the compiler prints a 2-character error code, followed by the ISN of 
the offending statement, on the console terminal during pass 2. An 
extended error message is printed below every erroneous statement in 
the listing, provided that a listing is produced. Certain errors 
cause an immediate return to the Keyboard Monitor, however, in which 
case the listing file is never produced. Table 1-3 lists the FORTRAN 
compiler error messages and describes the error condition indicated by 
each message. 

The compiler accepts five run-time option specifications, listed in 
Table 1-2, any combination of which may be requested by entering the 
z p p r ~ p r i a t e  a l p h a b ~ t i c  chsrscter(s) i n  t h e  Command gecoder Eile/'option 
specification line. Any run-time options recognized by the RALF 
assembler, the loader, or the run-time system may be entered along 
with the compiler options; they will be passed to the assembler 
automatically unless chaininq is suppressed (by an error condition or 
the A optionj, in which case-they wiil be ignoied. 

Table 1-2 
FORTRAN IV Compiler Run-Time Options 

I Option I Operat ion 

Return to the Keyboard Nonitor when compilation is 
conplete. If the A option is not requested, the compiler 
will automatically chain to the RALF assembler. 

Produce an annotated listing of the RALF assembly language 
output file* The listing is actually produced by the 
assembler; thus, the F option is only valid when chaining 
to RALF. The listing is routed to the same output file as 
the FORTRAN source listing. It will overwrite the FORTRAN 
listing if the second output file resides on a directory 
device. It will not be produced if a second output file 
was not specifically defined. 

(continued on next page) 



SYSTEM OVERVIEW 

[ option 
I I 

Operation 

Suppress compilation of ISNs. This reduces program memory 
requirements by two words per executable statement; 
however it also prevents f u l l  error traceback st rsn t i n e .  

Optimize cross-statement subscripting during compilation. 
This option should not be requested when any variable that 
appears in a subscript is modified either by referencing a 
variable equivalent to it or via a SUBROUTINE or FUNCTION 
call (whether as an argument or through COMMON). 

1.1.1 Campiler Examples 

Compile, assemble, load, and execute a FORTRAN IV source program: 

C~mpiles DSK:PRCIG.FT gr DSK:PR@G into 
DSI<:FORTRN.RA, assembles it into 
DSK:FORTRN.RL, links it into 
DSK:FORTRN.LD, then loads it into 
core and executes it. No listing 
files are produced. 

Compile any source program by calling F4 and specifying the file (or 
files) containing the source as input: 

Coiapiles DSK:PROG.FT ~r else 
DSK:PROG. into SYS:FORTRN.RA. The 
back-arrow is optional when there are 
no output file specifications. 

Compiles SYS:PROG.FT into 
SYS:FORTRN.RA under the N option. 

Obtain a source listing with error messages by specifying a listing 
output file as the second output file. In these examples, the first 
output file is a null file. 

Identical to the first of the two 
preceding examples, except that a 
listing is produced on the line 
printer. 

R 1:: Aj Compiles DTA2 : PROG . FT into 
- * 9 111 .y. (?, 11. 0 i.j .::: 1: .r {?, 2: $ !::I 1:: [] + 1:: ,.z. ,q .,I - SYS:FORTRN.RA and writes a source 

listing onto file DTA1:PROG.LS under 
the N option. 

Designate a specific output file to receive the compiler output by 
specifying it as the first output file: 

Compiles DSK:PROG.FT or else 
DSK:PROG. into SYS:PROG.RA. 



SYSTEM OVERVIEW 

1.1.2 Compiler Error Messages 

During compilation pass zI error messages are printed at the console 
terminal as a 2-character error message followed by the ISN of the 
erroneous statement. Typing CTRL/O at the terminal suppresses the 
printing of error messages. During optional pass 3! which requests a 
listingI an extended error message follows each erroneous statement on 
the listinq. Except where indicated in Table 1-3! errors located by  
the compiler do not halt processing. 

Table 1-3 
FORTRAN IV Compiler Error Messages 

Error 
Code Meaning 

More than six subroutine arguments are arrays. 
Bad ASSIGN statement. 
Bad dimensions (too big! or syntax) in DIMENSIONI COMMON! 
or type declaration. 
Illegal in BLOCK DATA program. 
Bad COMPLEX literal. 
Syntax error in COMMON statement. 
Bad syntax in DATA statement. 
Illegal statement as end of DO loop (i.e.! GO TOI another 
DO) . 
Bad DEFINE FILE statement. 
Hollerith field error in DATA statement. 
Data list and variable list are not same length. 
DO-end missing or incorrectly nested. This message is not 
printed during pass 3. It is followed by the statement 
number of the erroneous statement! rather than the ISN. 
Syntax error in DO or implied DO. 
DO loop parameter not integer or real. 
Syntax error in EXTERNAL statement. 
Syntax error in GO TO statement. 
Assigned or computed GO TO variable not integer or real. 
Hollerith field error. 
Error reading input file. (Control returns to the 
Keyboard Monitor.) 
Logical IF statement used with DO, DATA, INTEGER, etc. 
Argument of logical IF not type Logical. 
Input line too long! too many continuations. 
Misspelled keyword. 
Multiply defined line number. 
Mismatched parenthesis. 
Expected operand is missing. 
Plixed variable types (other than integer and real). 
Error writing output file. (Control returns to the 
Keyboard Monitor.) 
Illegal operator. 
Type / operator use illegal (e.g.! A.AND.B where A and / 
or B not typed Logical). 
Compiler stack overflow; statement too big and/or too 
many nested loops. 
Bad program header line. 
Nesting error in EQUIVALENCE statement. 
Syntax error in EQUIVALENCE statement. 
Attempt to redefine the dimensions of a variabls. 

(continued on next page) 



Error 
Code 

RT 
RW 
SF 
SN 
ss 
ST 

SY 

TD 
us 

VE 

1.2 THE 

The RALF 

Meaning 

Attempt to redefine the type of variable. 
Syntax error in READIWRITE statement. 
Bad arithmetic statement function* 
Illegal subroutine name in CALL. 
Error in subscript expressionr i.eOr wrong number, syntax. 
Compiler symbol table fullI program too big. (Causes an 
immediate return to the Keyboard Monitor.) 
System errorr i.eOr PASS2O.SV or PASS2.SV missingI or no 
room systnn f ~ r  ~ t ~ t p u t  f i l e *  (Causes a> immediate 
return to the Keyboard Monitor.) 
Bad syntax in type declaration statement. 
Gndefined statement number. This message is not printed 
during pass 3. It is followed by the statement number of 
the erroneous statementI rather than the ISN. 
Version error. One of the compiler programs is absent 
from SYS: or is present in the wrong version. 

RALF ASSEMBLER 

assembler accepts one RALF assembly language program or 
subroutine as input and produces a relocatable binary fileI called a 
RALF moduler as output. An optional annotated listing of the input 
file may also be produced. RALF terminates an assembly by returning 
to the Keyboaru Monitor unless it was requested to chain to the 
loader. 

A RALF module is composed of an external symbol dictionary (ESD table) 
and associated text. The ESD table lists all symbols defined in the 
RALF input fileI which may be sectionsr entry pointsr or externs. 
Each of these symbols is assigned a relative address to be used by the 
l o a d e r  when it r e l o c a t e s  t h e  r e l a t i v e  code by a s s i ~ n i n c j  absolute core 
addresses. The text produced by RALF is a relocatable binary version 
of the assembly language input file. All text addresses are relative 
to the ESD table symbols. 

A section can be thought of as a contiguous block of relocatable code 
having a definite beginning and endI which is temporarily assigned a 
relative starting address of 00000. A RALF file can have more than 
one section defined in its ESD table. For exampleI consider a 
subroutine containing a COMMON section assembled by RALF. Both COMMON 
and the subroutine itself are sections. An entry point is a location 
within a given section that is referenced by code in other sections. 
An extern is a section or entry point in some other module that is 
referenced within the module currently being assembled. 

Unless the A option is specified to the FORTRAN IV compilerr the RALF 
assembler is called automatically to assemble the output of a 
successful compilation. In this caser RALF reads the assembly 
language file just produced by the campiler as input and routes its 
outputI consisting of the assembled RALF module, to the first output 
file that was specified to the compiler. If this file had a null 
extensionI the default extension ".RL1' is supplied. If no first 
output file was specifiedr the module is written onto default file 
SYS:FORTRN.RL. 



SYSTEM OVERVIEW 

The RALF language output produced by the compiler is then deleted, and 
an annotated listing of the RALF assembly language input is written on 
the second output file specified to the compiler, provided that a 
second output file and the F option were both specified. This listing 
will overwrite the compiler source listing if the second output file 
is a directory device file. Note, however, that the RALF language 
listing is rarely required for most applications and should not be 
routinely requested. 

The RALF assembler might also be called separately to assemble the 
output of the compilation produced under the A option or to assemble a 
user-generated file written in RALF assembly language. This is 
accomplished by typing 

R R A I... 1:: - 

(terminated by a carriage return) in response to the dot generated by 
the Keyboard Monitor. RALF replies by loading the OS/8 Command 
Decoder, which accepts and decodes a standard command line that 
designates 0 to 3 output files, 1 to 9 input files, and any run-time 
option specifications. The format for a file/option specification 
command line is 

where 

DEV:RALF.RA is the relocatable binary RALF module 

DEV:LIST.LS is the annotated listing of RALF source 

DEV:MAP.LS is the loader symbol map 

DEV:IFl.RA, ..., DEV:IFg.RA 
are input files 1 to 9 

options is a string of alphabetic characters that 
designates any run-time options desired 

If any input file name is entered with a null extension, the assembler 
will search for the indicated file name with an assumed extension of 
".RAf'. If this is unsuccessful, it will then search for the indicated 
file with a null extension. If the first output file is entered with 
a null extension, the assembler appends the default extension ".RLw. 
If the second output file is a directory device file with a null 
extension, the assembler appends the default extension ".LS1'. 

When there is more than one input file, all of the input files are 
assumed to contain the assembly language source for a single RALF 
module. After accepting and decoding the file/option specification 
command, RALF reads the input files in the order they were entered and 
assembles every RALF language statement. RALF terminates the assembly 
by writing a relocatable binary version of the input program or 
subroutine onto the first output file, or onto file SYS:FORTRN.RL if 
no output files were specified. It also copies an annotated source 
listing and symbol table onto the second output file; however, this 
listing is not produced unless a second output file was specifically 
defined. The third output file is not used by the assembler; it 
receives a loader symbol map only when chaining to the loader. 

When an error is encountered during assembly, the assembler prints a 
2-character error code, followed by the label associated with the 
erroneous statement, on the console terminal during pass 2. Error 
codes are also appended to the listing, on a line by themselves 



SYSTEM OVERVIEW 

immediately preceding the statement to which they apply (except EG, 
- -L wnic-h follows the line in error). Certain errors cause an immediate 
return to the Keyboard Monitor, however, in which case the listing is 
never produced. RALF assembler error messages and the error condition 
indicated by each message are described in the RALF chapter of this 
manual. 

The assembler accepts the three run-time option specifications listed 
in Table 1-4, any combination of which may be requested by entering 
the appropriate alphabetic character(s) in the Command Decoder 
file/option specification line. Any options recognized by the loader 
or the run-time system may be entered along with the assembler 
options; they will be passed to the loader automatically unless 
chaining is suppressed (by an error condition or omission of t h e  L 
option specification), in which case they will be ignored. 

Table 1-4 
RALF Assembler Run-Time Options 

Opt ion Operation 

Chain to the loader when assembly is complete, and 
chain to the run-time system, following creation of a 
loader image file. 

Chain to the loader when assembly is complete. If 
the L option is not specified, RALF will return to 
the Keyboard Monitor upon completion. 

Suppress the RALF assembly language listing and 
produce only a symbol table. The T option is ignored 
by the assembler when a second input file was not 
specifically defined. When chaining- from the 
compiler, it is ignored unless the F option and a 
listing output file were both specified. 

The symbol table produced by RALF and appended to the RALF language 
listing includes: 

assembler version number 

system date 

0 listing page number 

number of errors encountered during assembly 

number of symbols defined in the program 

a number of absolute references encountered in FPP  instructions 

All symbols referenced during the assembly are then listed in 
alphabetical order, from left to right across the page. An alphabetic 
code follows certain classes of symbols and identifies them by type. 
The alphabetic codes are: 

C = symbol names a COMMON section 
F = symbol names a FIELD1 section 
S = symbol is the name of a section 
U = symbol is undefined 
X = symbol is external to this assembly 
Z = symbol names a COMMZ section 
8 = symbol names an $-mode section 



SYSTEM OVERVIEW 

If no alphabetic code is shown, the symbol is an ordinary address 
symbol. A numeric code is also printed after each symbol in the list. 
The numeric code indicates the relative octal value of the symbol 
except for the case of: 

c ,  F, st where the numeric code indicates the length of the 
Z, or 8 codes section or common block. 

U or X codes where 00000 indicates undefined or external 
symbols. 

1.2.1 RALF Examples 

When chaining from the compiler to the assembler, RALF deletes the 
compiler output after reading it as input. Thus: 

Produces RALF module SYS:FORTRN.RL 
and deletes compiler output file 
SYS:FORTRAN.RA. 

Produces RALF module SYS:PROG.V3 
and lists both the FORTRAN source 
and the RALF language compiler 
output on the line printer. 

R F4 Produces RALF module DTA2:OBJ.RL 
~ D A T A ~ : O B J Ã ˆ D T A  ~ L I S T < D T A ~ ~ P R O G < T F )  and writes a symbol map onto file - 

DTA1:LIST.LS. The FORTRAN source 
listing is overwritten and 
destroyed. 

When calling the assembler to assemble and relocate the output of a 
successful compilation produced under the A option or a user-written 
RALF language source, the procedure is closely analogous to that for 
running the compiler: 

Assembles DSK:PROG.RA or else 
DSK:PROG. into SYS:FORTRN.RL. 

Assembles DTA1:FILE.RA into 
SYS:FORTRN.RL and writes a listing 
on SYS:LIST.LS. 

1.2.2 RALF Assembler Error Messages 

Assembles DSK:RALF.RA into 
DTA1:TEMP.TM and writes a listing 
on the line printer. 

During assembly pass 2, error messages are printed at the console 
terminal as a 2-character error code followed by the label associated 
with the erroneous statement. If a listing was requested, error codes 
are printed during pass 3 on a line by themselves immediately 
preceding the statement to which they apply (except for EQ, which 
follows the line in error). RALF error messages are listed in the 
RALF chapter of this manual. 



SYSTEM OVERVIEW 

1.3 THE LOADER 

The O S / 8  FORTRAN Iv loader accepts up to 128 RALF modules as input and 
links the modules, along with any necessary library components, to 
form a loader image file that may be loaded and executed by the 
r u n - t i m e  system. This is accomplished by replacing the relative 
starting location (00000) of each section with an absolute core 
address. Absolute addresses are also assigned to all entry points 
defined in the input modules. Once all RALF modules and library 
components have been assigned to some portion of memory and linked; 
absolute addresses are assigned to the relocatable binary text and the 
externs. 

LII i i iL i i^  programs too The overlay feature of the loader facilitates r - " n n ' n -  
large to be contained in available memory. This makes it possible to 
run programs that require up to 300K words of storage in less than 32K 
of actual core memory. This is accomplished by dividing very large 
FORTRAN programs into a set of subroutines linked by one mainline. 
Unlike the subroutines, each of which has a section name by which it 
is called, the mainline does not have a name and is therefore assigned 
section name #MAIN by the system. An overlay scheme is then designed 
in such a way that the memory requirement of those subroutines that 
are core-resident at any given time does not exceed the available core 
memory. 

An overlay is a set of subroutine stored on a bulk storage device. 
When any subroutine in an overlay is called by the mainline or another 
subroutine, the entire overlay is read into core, where it generally 
replaces another overlay of equivalent size. 

Levels are variable-size portions of memory reserved for specific sets 
of overlays. OS/8 FORTRAN IV permits up to 8 levels, designated level 
0, level 1, and so on up to level 7. Level 0 is always present and 
always contains only one overlay,, called overlay MAIN, which always 
includes section #MAIN (the FORTRAN or RALF mainline) as well as all 
COMMON sections, 8-mode sections and library components. Additional 
subroutines may also reside in overlay MAIN; in fact, the entire 
program should be loaded into level 0 if there is sufficient core 
available. 

Levels 1 to 7 may each contain up to 16 overlays, only one of which is 
core-resident at any given time during program execution. if no 
subroutines are loaded into a given level, that level does not exist 
for the current execution and no memory is allocated to it. As 
execution begins, overlay MAIN is loaded into level 0 (where it 
remains throughout execution) and started at the entry point of 
section #MAIN. Other overlays are read into the block of memory 
reserved for their particular level whenever one of their constituent 
subroutines is called. As an overlay is read into a given level, it 
overwrites any other overlay that may have been resident in that 
level. Thus, no two overlays from the same level are ever 
core-resident simultaneously. 



SYSTEM OVERVIEW 

When section #MAIN or any subroutine calls another subroutine, the 
flow of execution from calling routine to called routine is referred 
to as part of a calling sequence. Every calling sequence begins with 
a call from section #MAIN and ends with a call to some subroutine that 
does not contain any further CALL statements. Calling sequences 
generally contain branches, and they may be very intricate. For 
example, assume that: 

Routine/Subroutine Contains Calls To 

mainline (#MAIN) SUB1, SUB2, SUB3 
SUB1 ALPHA, BETA 
SUB2 SUB3 
SUB3 
ALPHA 
BETA SUB2 

Then the calling sequences could be mapped as: 

When any subroutine CALL is executed, the system determines whether 
the overlay containing the called routine is core-resident and, if 
not, reads this overlay into its proper level in core, overwriting any 
overlay which was previously resident in that level. No such 
determination is possible for RETURN statements, however. For this 
reason, it is extremely important to ensure that, at the end of a 
calling sequence, all subroutines in the calling sequence are still 
core-resident. In other words, no subroutine may execute a CALL that 
will cause it, or any subroutine which called it, to be overlaid. In 
the previous example, if SUB1, SUB2 and SUB3 occupy separate overlays 
in level 1 while ALPHA and BETA reside in level 2, the calling 
sequence from #MAIN to SUB1 to BETA to SUB2 will cause a fatal error 
because SUB2 will overwrite SUB1 and prevent control from returninq to 
level 0. The FORTRAN system guardsagainst some errors of this type 
by enforcing the following rules: 

Subroutines in a given level cannot call other subroutines in 
the same level if the called subroutine is in a different 
overlay. 

Subroutines in high-numbered levels cannot call subroutines in 
lower-numbered levels unless the call is to level 0. (This 
convention is not enforced when the U option is specified to 
the run-time system.) 

These restrictions will not prevent fatal errors in all cases. In the 
preceding example, if subroutine BETA is placed in level 0 instead of 
level 1, the calling sequence from #MAIN to SUB1 to BETA to SUB2 still 
causes a fatal error, even though neither of the enforced conventions 
is violated. Thus, any overlay scheme must be designed with careful 
attention to calling sequences. 



SYSTEM OVERVIEW 

If the L or G option is specified to F4 or RALF, the loader is called 
- * - ^ - - - 4 - - ?  - - 1  1. -  t- w n l  nn - tn  t h e  n i - i t n t i t  / -ÃˆÂ a c ? i i ^ - Ã § n ^ a c ? c ? - F n  ~ ~ Q W J ~ ~ \ ~ ~  ~ U L U I ~ I - a l l y  I-u ~ c - i . u ~ a ~ c  <-nc W U L ~ U L  W L  u ~ U L L L O O ~ U ~  

chaining to the loader is via F4, the loader reacts in one of two 
ways. If the last Command Decoder file/option line terminated with a 
carriage return, it immediately fetches the Command Decoder and - - proceeds as though it had been called from the monitor, as described 
below. The only difference, in this case, is that certain loader or 
run-time system options may have been passed to the loader from RALF 
and cannot be suppressed at this point. Also, unless two different 
f are specified as output files, the loader automatically routes 
its loader image to the first output file specified to F4 or RALF at 
the start of the chain. Default extension ".LD" is assigned if this 
file had a null extension. If no output files were specified the 
loader routes its loader image to file SYS:FORTRAN.LD. The 
relocatable binary output produced by the assembler is deleted after 
it has been read as input. A loader symbol map is routed to the third 
output file specified at the start of the chain sequence, if any, or 
to the second output file, if any, specified to the loader as 
described below. When this is a directory device file with a null 
extension, the default extension lIeLSw is supplied. 

If the last file/option specification supplied to the Command Decoder 
was terminated with an ALTMODE character instead of a carriage return, 
the loader reacts differently when chained to from RALF. In this 
case, the loader assumes that the RALF module just produced is a 
stand-alone mainline that requires no subroutines (other than library 
components) in order to execute. The loader does not call the Command 
Decoder under these circumstances, since level 0 is the only level 
that will be defined. Output is produced exactly as described above, 
and the loader either returns to the Keyboard Monitor upon completion 
or, if a G option specification was previously entered, chains to the 
run-time system. 

The loader may be called separately, to link and relocate a set of 
previously assembled RALF modules. This is accomplished by typing 

(terminated by a carriage return) in response to the dot generated by 
the Keyboard Monitor. The loader replies by calling the OS/8 Command 
Decoder, which accepts and decodes one or more standard command lines, 
each of which designates 0 to 9 input files, 0 to 2 output files, and 
any run-time option specifications desired. The file/option 
specification line format is: 

where 

IMAGE-LD is the loader image output file 

MAP-LS is the loader symbol map output file 

DEV:PROGA.RL,. ..,DEV:PROGX.RL 
may be either relocatable binary RALF modules or a 
library file 

options is a string of alphabetic characters that designates 
any run-time options desired 

The loader accepts up to 128 input file specifications, one of which 
nay designate a library file to be used in place of the standard 
system library. The OS/8 Command Decoder, however, accepts a maximum 
of only 9 input file specifications per command line. Thus, after 



SYSTEM OVERVIEW 

each file/option command line is entered, the loader recalls the 
Command Decoder to accept another command line. This process 
continues until the / G  option is received or a line is terminated with 
an ALTMODE. Input file specifications should be entered in sequence, 
beginning with all RALF files to be loaded into level 0, followed by 
files for level 1 overlay 1, level 1 overlay 2, and so on until all 
level 1 overlays are filled. Level 2 overlays are then built in the 
same manner, using as many file/option specification lines as 
necessary. The process continues until all levels are filled. Each 
line may contain from 0 to 9 input file specifications; null lines 
will be ignored by the loader. 

At some point during this process, two output files and one library 
(input) file may also be specified. The loader image file built by 
the loader is routed to the first output file, which must reside on a 
directory device, or to file SYS:FORTRN.LD if no output files are 
specified. When the first output file has a null extension, the 
default extension ".LD1' is supplied. The loader symbol map is routed 
to the second output file, provided that a second file is specifically 
defined. If this is a directory device file with a null extension, 
the default extension ".LSr' is supplied. One library file may be 
specified as an input file, to be used in place of the standard system 
library. This must be a specially formatted file, prepared with LIBRA 
as described in Chapter 13 of this manual. In addition, it must be 
specified on a command line that contains no other input file names. 
This command line may appear anywhere in the file/option specification 
sequence and is identified by the presence of an L option 
specification. 

If more than one first output file, second output file, or library 
file is specified to the loader, only the last specification in each 
category is used. Previous specifications, including those supplied 
to F4 or RALF when chaining to the loader, are ignored. 

D,.,..-+ , < m e  '-/pL.Lon A-t: s p e c i f i c a t i o n s  a r e  u sed  t o  g r o u p  t h e  sequence of i n p u i  
files into discrete overlays, allocate overlays to certain levels, and 
identify the user-generated library file, if any. Table 1-5 lists the 
run-time options recognized by the loader and describes their use. 
The E and H options, recognized by the run-time system, may be entered 
on the same line as the G option when chaining to the run-time system. 

Table 1-5 
Loader Run-Time Options 

Option Operat ion 

Continue the current line of input on the next line 
of input. When specifying RALF files to the loader, 
there may be more than nine files that belong in a 
given overlay. Since the Command Decoder will not 
allow more than nine input files in one file/option 
specification line, the C option permits the 
additional files to be put on the following line. If 
the C option is not specified at the end of a line, 
the current overlay is closed when the terminating 
carriage return is received and subsequent input 
files are placed in a new overlay in the current 
level. An exception to this is level 0, which only 
contains one overlay. The presence of a C option 
specification is assumed on every line until level 0 
has been closed by an 0 specification. 

(continued on next page) 



SYSTEM OVERVIEW 

Table 1-5 (Cont.) 
Loader Run-Time Options 

- 

Opt ion Operation 

Treat the current line as the last line of input, and 
chain to the FORTRAN IV run-time system when finished. 

Accept the single input file specified on this line as 
an alternate library to be used in place of the system 
library, FORLIB.RL. 

Close the level that is currently open, and open the 
next sequential level for input. RALF files specified 
on subsequent lines are assigned to overlays in the new 
level until the new level is closed by the next 0 
specification (or the end of input). 

Include system symbols in the loader symbol map. 
System symbols are identified by an initial " # ' I  

character. This option is only valid when a symbol map 
output file was specifically defined. 

Ignore the rules governing subroutine calls between 
overlays. This option should only be used when 
subroutines making illegal calls will not be accessed 
during execution since, in general, any illegal 
subroutine call will cause u n p r e d i c t a b l e  b e h a v i o r  at 
run time. 

Input may be terminated by entering a G option specification on the 
last line and/or by terminating the last line with an ALTMODE 
character rather than a carriage return. If the G specification and 
the ALTMODE both appear, this indicates that the user has no 
file/option specification input for the run-time system and prevents 
the run-time system from calling the Command Decoder. 

1.3.1 Loader Examples 

The following sequence of Command Decoder specification lines 
illustrates the use of option specifications to allocate RALF files to 
particular overlays. 

+ R 1.. (:I AD Loader is called from Keyboard Monitor. 

Ã‡SY t F R O G  + LD 9 1-PT ? <FeROG ., R i  ... - Loader image file will be routed to 
SYS:PROG.LD while the symbol map is 
printed on the line printer. PROG.RL is 
placed in level 0 overlay MAIN. Since 
the presence of a C option specification 
is assumed on every line preceding the 
first 0 option specification, level 0 
overlay MAIN remains open. 

Place subroutines ALPHA and BETA in 
level 0 overlay MAIN. The presence of a 
C option specification is assumed. 



SYSTEM OVERVIEW 

Close level 0 and open level 1 overlay 
1. 

#<SUB4 + Rl ... r SUBS + RL. .V SUB6 + RL../i:: - 

Place SUB1, SUB2 and SUB3 in level 1 
overlay 1. Close overlay 1 and open 
overlay 2. 

Place SUB4, SUB5 and SUB6 in level 1 
overlay 2. Accept further input for 
this overlay on the next line. 

Place SUB7 in level 1 overlay 2. Close 
level 1 and open level 2 overlay 1. 

Place SUB8 in level 2 overlay 1. Close 
overlay 1 and open overlay 2. 

Place SUB9 in level 2 overlay 2. Close 
overlay 2 and open overlay 3. 

Use file DSK:LIB.RL in place of 
SYS:FORLIB.RL as the library file. In 
spite of its position in the 
specification list, any library 
components will be placed in level 0. 
The S option specification requests an 
augmented loader symbol map. 

Place SUB10 in level 2 overlay 3. Close 
level 2 and open level 3 overlay 1. 

Place SUB11 and SUB12 in level 3 overlay 
1. Close level 3, terminate input, and 
chain to the run-time system when 
finisned. 

This sequence of commands will provide the following overlay scheme: 

Level Overlay Contents 

0 VAIN PROG, ALPHA, BETA library subroutines 
1 1 SUB1, SUB2, SUB3 
1 2 SUB4, SUB5, SUB6, SUB7 
2 1 SUB8 
2 2 SUB9 
2 3 SUB10 
3 1 SUB11, SUB12 

Note that all of the input files except those containing SUB7, SUBS, 
and SUB12 are taken from device DSK:, the OS/8 default device. The 
left-angle bracket character is optional when a file/option 
specification line contains only input file specifications; it has 
been included here for clarity. Obviously, there are many other ways 
in which the sequence of file/option specifications shown above could 
have been entered to produce an identical result. 

Considerable foresight is required when designing an overlay scheme. 
Since an overlay may have to be read into core whenever one of its 
constituent subroutines is called, a great deal of useless 1/0 results 
from inefficient overlay design. The system does verify that an 
overlay is not already resident before reading it into core. 

Levels must be an integral number of system blocks (400 octal words in 
size) and big enough to accommodate the largest overlay they contain. 



SYSTEM OVERVIEW 

Ideally, then, the largest overlay in a level should occupy slightly 
less t h a n  some multiple of 4 0 0  (octal) words of storage, 2nd a l l  
overlays in a level should be nearly equal in size. For example, if 
level 1 contains three overlays requiring 300, 100, and 150 octal 
words of storage, respectively, then the two smaller overlays should 
be combined because level 1 will be 400 octal words long in any case, 
If the three overlays require 500, 100, and 150 octal words of 
storage, all three should be combined because level 1 will be 1000 
octal words long in any case. 

Frequently called subroutines should be kept core-resident whenever 
possible, perhaps by placing them in level 0 or in a level that 
contains rarely accessed overlays. Within the loader image file, 
subroutines are stored in the order in which they were specified to 
the loader. Thus, grouping frequently called subroutines into 
adjacent levels also speeds execution by reducing the access time 
required to read an overlay into core, particularly from DECtape and 
LINCtape. When running very large programs with many overlay levels, 
it may be desirable to make level 0 as small as possible, in spite of 
the resulting excess I / O .  This is accomplished by minimizing COMMON 
(which always occupies level 0 ) ,  dividing the mainline into a series 
of subroutines, and creating a new mainline that contains 
predominately CALL statements. Note, however, that all library 
subroutines will reside in level 0, regardless of the location of 
subroutines that call them. 

Any error recognized by the loader during generation of a loader image 
file results in an error message, printed on the console terminal, 
immediately following the input specification line that caused the 
error condition. Table 1-6 lists the loader error messages and 
describes the error condition indicated by each message. 

The optional loader symbol map lists all symbols defined in the loader 
image file and identifies each symbol by overlay, level, and memory 
address, as follows: 

SYMBOL.. V A L U E  L -VL  OVL-Y 

#MAI :N  10000 0 00 
1200.0 ::-Â :I. ST FREE L O C A T I O N  

L V L .  WL\ L E N G T H  

Following the alphabetical list of symbols, the loader prints the 
address of the first free memory location and the length, in octal 
words, of each overlay defined. This information is useful in 
optimizing memory requirements. 



SYSTEM OVERVIEW 

1.3.2 Loader Error Messages 

The loader prints error messages on the console terminal during 
generation of a loader image file. Except where indicated in Table 
1-6, loader errors are fatal. The loader returns control to the 
~ e ~ b o a r d  Monitor when a fatal error condition is encountered. 

Table 1-6 
Loader Error Messages 

Error Message 

BAD INPUT FILE 

BAD OUTPUT DEVICE 

ILLEGAL ORIGIN 

MIXED INPUT 

YULT SECT 

NO MAIN 

OVER CORE 

OVER IMAG 

OVER SYMB 

TOO MANY LEVELS 

Meaning 

An input file was not a RALF module. 

The loader image file device was not a 
directory device, or the symbol map file 
device was a read-only device. The entire 
line is ignored. 

A RALF routine tried to store data outside 
the bounds of its overlay. 

The L option was specified on a line that 
contained some file other than a library 
file. The library file (if any) is 
accepted. Any other input file 
specification is ignored. 

Any combination of entry point, COMMON 
section (with the exception of multiple 
COMMONS), or program section of the same 
name causes this error, except: the 
following: 

COMMON COMMZ FIELD1 

SECT OK OK OK 
SECT8 OK OK OK 
COMMON OK (Ms OK 
COMMZ (MS) OK (MS) 
FIELD1 OK (MS) OK 

No RALF module contained section #MAIN. 

The loader image requires more than 32K of 
core memory. 

Output file overflow in the loader image 
file. 

Symbol table overflow. More than 253 
(decimal) symbols in one FORTRAN job. 

The 0 option was specified more than seven 
times. 

(continued on next page) 



SYSTEM OVERVIEW 

Table 1-6 (Cont.) 
Loader Error Messages 

Error Message 

TOO MANY OVERLAYS 

TOO MANY RALF FILES 

EX 

ME 

Meaning 

More than 16 overlays were defined in the 
current level. 

More than 128 input files were specified, 

The symbol is referenced but not defined. 

Multiple Entry. The symbol has more than 
one definition. 

Multiple Section. A section has more than 
one definition. 

The symbol is referenced illegally. 
Generally this symbol is an overlay and is 
either referenced as data from another 
overlay (only CALL references are allowed) 
or called from the same or a higher-number 
overlay level, violating the overlay rules. 

The following FATAL error messages occur when the Loader is linking 
and relocating: 

SYSTEM ERROR 

LOADER I / O  ERROR 

and indicate an error detected by OS/8 while trying to perform a USR 
function. 

All errors identified during the loading procedure are followed by a 
line of the form: 

1 00 nnn 

where 

1 is the level in which the error occurred 

00 is the overlay in which the error occurred 

nnn is the module number, within the referenced overlay, that 
caused the error. 

Some errors (e.g., NO MAIN) are attributable to a single module, and 
the module numbers for this type of error are meaningless. 

1.4 FORTRAN IV RUN-TIME SYSTEM (FRTS) 

The OS/8 FORTRAN IV run-time system reads, loads, and executes a 
loader image file produced by the loader. It also configures a 
software 1/0 interface between the FORTRAN IV program and the OS/8 



SYSTEM OVERVIEW 

erating system, then monitors program execution to direct 1/0 
ocesses and identify certain types of run-time errors. The run-time 
stem is called automatically to load and execute the loader image 
le produced by the loader whenever the G option is specified to the 

loader. 

When chained to from F4, RALF, or LOAD, the run-time system reacts in 
one of two ways. If the last Command Decoder file/option line was 
terminated with a carriage return, it immediately fetches the Command 
Decoder and proceeds as though it had been called from the Keyboard 
Monitor, as described below. The only difference, in this case, is 
that certain run-time system options may have been passed to the 
run-time system from the loader and cannot be suppressed at this 
point. If the last file/option specification line supplied to the 
Command Decoder was terminated with an ALTMODE character instead of a 
carriage return, however, the loader assumes that no user input is 
required. The Command Decoder is not called. The loader image file 
just produced is read as input, and, unless the H option was 
previously specified, it is loaded and executed. 

The FORTRAN IV Run-Time System is able to accept file 1/0 
specifications. This allows the user to write a source program that 
refers to 1/0 devices as integer constants or variables. This program 
may be compiled, assembled, and loaded into an image file. The image 
file may be run any number of times, each time specifying different 
physical 1/0 devices. Thus logical unit 8 may refer in one run to the 
console terminal, in another run to a disk file, and in another run to 
a paper tape punch. 

These run-time specifications allow the FORTRAN program to use the 
OS/8 file-handling capabilities, to use any OS/8-supported 1/0 device, 
and potentially to use any 1/0 device for which an OS/8 device handler 
can be written. 

The following pages explain how the user gives the run-time system the 
connections between OS/8 device and file names and the FORTRAN logical 
unit numbers. 

FORTRAN IV programs are usually saved as loader image files and 
executed by calling the run-time system from the Keyboard Monitor to 
load and execute the saved loader image. This is accomplished by 
typing 

(terminated by a carriage return) in response to the dot generated by 
the Keyboard Monitor. The run-time system replies by calling the OS/8 
Command Decoder to accept one or more standard file/option 
specification lines. It recalls the Command Decoder after processing 
each line, until a line terminated by an ALTMODE character is 
received. 

The run-time system accepts two classes of Command Decoder file/option 
specifications. The first class specifies the load module to be 
executed; the second class specifies the run-time file assignment. 
When it is called from the Keyboard Monitor, the run-time system loads 
the Command Decoder to accept one input file name, perhaps followed by 
the E or H option specifications, described in Table 1-7. This 
information is not required when the loader chains to the run-time 
system because the loader image file just produced is automatically 
read as input, while the E and/or H options could have been specified 
to the loader along with the G specification that requested chaining. 



SYSTEM OVERVIEW 

Thus, the loader image input file to be executed must be identified on 
the first file/option specification line when FRTS is called from t h e  
Monitor, and must not be specified at all when the loader chains to 
FRTS. This Command Decoder line has the form: 

*DEv:  IMAGE. LD(options) 

where 1MAGE.LD is the loader image input file and "options" is E or H 
or both. If this line is terminated by an ALTMODE, the program is 
executed; if it is terminated with a carriage return, the Command 
Decoder is recalled to accept run-time file specifications. 

Once the loader image file to be executed has been identified, the 
run-time system recalls the Command Decoder to accept any FORTRAN I / O  
device specifications. Of the nine 1/0 unit numbers available under 
FORTRAN IV, four are initially assigned to FORTRAN internal device 
handlers by the system as follows: 

1/0 Unit Internal Handler Comments 

1 paper tape reader Single-character buffer 

2 paper tape punch Single-character buffer 

3 line printer LP8 and LS8E only; ring 
buffered 

4 console terminal Double-buffered output; single- 
character input 

The FORTRAN internal handlers listed above are not the same as the 
O S / 8  device handlers. The FORTRAN internal handlers are designed for 
ASCII text only and will not execute binary or core-image I/O. Also, 
FORTRAN internal handlers are interrupt-driven to execute foreground 
1/0 concurrently with background computation. 

FORTRAN internal device handlers may be assigned different unit 
numbers, in addition to those listed above, by typing 

where 

m is the I/O unit number (1 to 4) of one of the internal 
handlers listed above 

n is a different unit number (1 to 9) that is also to be 
assigned to that internal handler 

This specification causes all program references to logical unit n to 
perform 1/0 to device m in the preceding table. For example: 

/ 6=2  Assigns the FORTRAN internal paper tape punch handler as 
1/0 unit number 6, in addition to unit number 2. 

/1=2 Assigns 1/0 unit number 1 to the FORTRAN internal paper 
tape punch handler instead of the internal paper tape 
reader handler. 



SYSTEM OVERVIEW 

OS/8 device handlers for nondirectory devices may be assigned 1/0 unit 
numbers by typing 

DEV: /n 

where 

n is an 1/0 unit number (1 to 9) 

DEV: is the standard or assigned designation for any supported 
nondirectory device 

For example : 

LPT:/3 Specifies the OS/8 line printer handler to be used 
instead of the FORTRAN internal line printer handler, 
possibly because the line printer is not an LP08 or 
LS8E. 

Existing directory device files may be assigned I/O unit numbers by 
typing 

DEV: FILE. EX/n 

where 

n is an I/O unit number (1 to 9) 

DEV:FILE.EX is the standard OS/8 designation for an existing 
directory device file 

For example: 

ÃˆDTA : F O R I O + T M . / 2  Assigns unit number 2 to DECtape file - 
FORIO.TM rather than to the FORTRAN internal 
paper tape punch handler, where FORIO-TM is 
an existing file on DECtape unit 1. 

A directory device file that does not presently exist may be assigned 
a FORTRAN 1/0 unit number in the same manner by entering it as an 
output file on the specification line; however, only one such file 
may be created on any particular device. For example: 

*F:ORIO+TH-:::/Y Assigns unit number 9 to file DSK:FORIO.TM, which - 
has not been created at load time. 

In any case, only one device or file specification is permitted on 
each line, and no more than 6 directory device files may be created by 
the FORTRAN program. Excess files after the sixth are accepted and 
written, but they will not be closed. If a file created by the 
program has the same file name and extension as a pre-existing file, 
the old file is automatically deleted when the new file is closed. 

The Command Decoder "[n]" specification nay be used to optimize 
storage allocation when assigning files that do not yet exist, where n 
is a decimal number that indicates the maximum expected length of the 
file, in blocks. 

Each time a run-time 1/0 specification is terminated with a carriage 
return, the Command Decoder is recalled to accept another 
specification. When a specification is terminated with an ALTMODE, 
the program is run. 



Although existing files are specified as though they were input files 
3rd fiafiexistefit files sre specified as tha~cjh they were ~ c t p c t  Eiles, 
any file that has been assigned a unit number may be used for either 
input or output. The content of a nonexistent file is undefined until 
it-has been written by the program. 

Tzble 1-7 
Run-Time System Option Specifications 

Option Operation 

Halt after loading but before starting the programe 
Press the CONTinue switch on the processor to 
comezce e x e c ~ t i o ~ .  

Ignore the following run-time system errors, any one 
of which indicates that an error was detected earlier 
in the compilation/assembly/~oading process: 

a. Illegal subroutine call 
b. Reference to an extern in an overlay other 

than in the form "JSR EXTERN1' (i .e., CALL 
statement) 

c. Reference to an undefined symbol 

Any of the above may lead to unpredictable program 
behavior as, in general, some portion of the program 
will not be loaded or executed. 

Carriage control switch. The first character on 
every output line is processed as a carriage control 
character by all FORTRAN internal handlers and also 
by the OS/8 hard copy handlers TTY and LPT. The 
first character on every output line is processed as 
data, in the same manner as any other character, by 
all OS/8 handlers except TTY and LPT. Entering a C 
option specification on the command line that assigns 
32 I / G  w i t  ~ ~ n b e r  t~ 2 p ~ r t i c ~ l z r  hzzdler reverses 
the processing of carriage control characters for 
that device. Thus: 

TEMP ( 2C) 
assigns file DSK:TEMP. as 110 unit 2. The C option 
causes the first character of every output line to be 
processed as a carriage control character. If C were 
not specified, these characters would be processed as 
data 

/C/6=3 
assigns the FORTRAN internal line printer handler as 
110 unit 6, as well as unit 3. The first character 
of every line will be processed as a carriage control 
character on unit 3, and as a character of data on 
unit 6. 

The OS/8 FORTRAN IV run-time system executes with the PDP-8/E 
interrupt system enabled. OS/8 device handlers are not 
interrupt-driven; however, certain handlers may execute with the 
interrupt system enabled because the devices they control have 
interrupt-enable switches that the handlers do not set. FRTS allows 



SYSTEM OVERVIEW 

for this by running with the interrupt system enabled when driving 
handlers of this typeI and disabling the interrupt system when a 
handler that does not run under interrupts is loaded. Handlers that 
can run with the interrupt system enabled include: 

TC08 DECtape system handler and nonsystem handlers DTAO to DTA7 

RF08 system handler 

RK8 system handler and nonsystem handlers RKAO to RKA3 

RK8E system handler and nonsystem handlers RKAO to RKA3 and RKBO 
to RKB3 

Any FORTRAN internal handlers 

These OS/8 handlers do not permit interrupts from these devicesI but 
they do permit other devicesI e.gOI CLOCKI to interrupt the data 
transfer. Note that TD8E is absent from this list because the TD8E 
data transfer cannot be interrupted. 

The run-time system recognizes two classes of error conditions. 
Certain errors are diagnosed while the core-image file is being read 
from a storage device and loaded into core memory. Other errors may 
occur during execution of the FORTRAN program. Both classes of 
run-time errors are identified on the console terminal. Table 1-8 
lists the FRTS error messages and describes the error condition 
indicated by each message. The run-time system error traceback 
feature provides automatic printout of statement numbers corresponding 
to the sequence of executable statements that terminated in an error 
condition. At least one statement number is always printed. This 
number identifies the erroneous statement orI in certain casesI the 
last correct statement executed prior to the error. When a statement 
was compiled under the N optionI howeverI the system cannot generate 
meaningful statement numbers during traceback. When a statement is 
reached through any form of GOTOI the line number for traceback is not 
reset. Thus an error in such a line will give the number of the last 
executed line in the error traceback. 

The console terminal serves as FORTRAN 110 unit 4 for both input and 
output. Terminal input is automatically echoed on the console 
printer. In additionI the run-time system monitors the keyboard 
continually during execution of a FORTRAN program. Typing CTRL/C at 
any time causes an immediate return to the OS/8 Monitor. Typing 
CTRL/B branches to the system traceback routine and then exits to the 
monitor. This traceback routine causes a printoutI which is similar 
to the error traceback and includes the current subroutine, the line 
number in the next higher level subroutine from which it was calledI 
etc. This facilitates locating infinite loops when debugging a 
program. The following additional special characters are recognized 
by the console terminal handler and processed as shown: 

RUBOUT Deletes last character accepted. 

CTRL/U Deletes current line of input. 

CTRLII (Tabulation) Converted to appropriate number of spaces. 

CTRL/Z Signals end-of-file on input. 



SYSTEM OVERVIEW 

Tentative output files (that is, files created by the FORTRAN program) 
are closeCi automatically upon ~uccessEu1 cor,p ~ e ~ ~ o i - ,  o f  ------- p~ uy L a111 

execution provided that elther: 

1. An END FILE statement referencing the file was executed. [In 
this case FRTS assigns a E i l e  length equal to the a c t u a l  
length of the file-) 

2. The last operation performed on the file was a write 
operation. (in this case FRTS proceeds as t h o u g h  a n  EXE F I L E  
statement had been executed.) 

3 -  A DEFINE FILE statement referencing the file was executed but 
an END FILE statement was not executed. (In this case, upon 
completion of program execution, E'RTS assigns a file length 
equal to the length specified in the DEFINE FILE statement.) 

Execution of a REWIND statement does not close a tentative file, nor 
does it modify the tentative file length- 

1.4.1 Run-Time System Error Messages 

The run-time system generates two classes of error messages- Messages 
listed in Table 1-8 identify errors that may occur during execution of 
a FORTRAN program and errors that may be encountered when the run-time 
system is reading a loader image file into memory in preparation for 
execution, or accepting 110 unit specifications. Except where 
indicated, all run-tlme system errors cause full traceback and an 
immediate-return to the &nitor. Nonfatal errors cause partial 
traceback, sufficient to locate the error, and execution continues. 

Table 1-8 
Run-Time System Error Messages 

Error Yessage 

BAD ARG 

CAN'T READ IT! 

CAUTION - NO DP 

D-F. TOO BIG 

Meaning 

Illegal argument to library function. 

110 error on reading loader image file- 

The present hardware configuration does not 
include an FPP-12 Floating-point Processor 
with double-precision option. Execution 
continues; however, all double-precision 
operations default to real arithmetic (with 
unpredictable results), and all complex 
operations also produce unpredictable 
results. 

Product of number of records times number 
of blocks per record exceeds number of 
blocks in 4ile. Note that for a random 
access file the length in OS/8 blocks must 
be no less than the number of records times 
the integer but must be greater than the 
quotient of floating-point variables per 
record divided by 85- 

(continued on next page) 



SYSTEM OVERVIEW 

Table 1-8 (Cont.) 
Run-Time System Error Messages 

Error Message 

EOF ERROR 

FILE ERROR 

1 FPP ERROR 

1 INPUT ERROR 
I 1 110 ERROR 

1 MORE CORE REQUIRED 

NO DEFINE FILE 

NO NUMERIC SWITCH 

NOT A LOADER IMAGE 

OVERFLOW 

1 OVERLAY ERROR 

Meaning 

Attempt to divide by zero* The  resulti~cj 
quotient is set to zero and execution 
continues. 

End of file encountered on input* 

Any of: 

a. A file specified as an existing 
file was not found. 

b. A file specified as a nonexistent 
file would not fit on the 
designated device. 

c. More than one nonexistent file was 
specified on a single device. 

d o  File specification contained 'I*" 

as name or extension* 

Attempt to write outside file boundaries. 

Illegal syntax in FORMAT statement. 

Hardware error on FPP start-up. 

Illegal character received as input. 

Error in reading or writing a file; tried 
to read from an output device; or tried to 
write on an input device. 

The space required for the program, the 110 
device handlers, 110 buffers, and the 
resident Monitor exceeds the available 
core 

Direct access 110 attempted without a 
DEFINE FILE statement. 

The referenced FORTRAN 110 unit was not 
specified to the run-time system. 

The first input file specified to the 
run-time system was not a loader inage 
file. 

Result of a computation exceeds upper bound 
for that class of variable. The result is 
set equal to zero and execution continues. 
This error is detected only if an FFP is 
present 

Error while reading overlay. 

(continued on next page) 



SYSTEM OVERVIEW 

Error Message 

PARENS TOO DEEP 

SYSTEM DEVICE ERROR 

TOO MANY HANDLERS 

USER ERROR 

UNIT ERROR 

Meaning 

Parentheses nested too deeply in FORMAT 
statement. 

110 failure on the system device. 

Too many 110 device handlers are resident 
i n  ne i i i~ ry ,  ~r files have  bee^ d e f i n d  GR 

too many devices. 

Illegal subroutine call, or call to 
undefined subroutine. Execution continues 
only if the E option was requested. 

110 unit not assigned, or incapable of 
executing the requested operation. 







CHAPTER 2 

FORTRAN I V  S O U R C E  LANGUAGE 

A FORTRAN source program consists of statements using the language 
elements and the syntax described in this manual. A statement 
performs one of the following functions: 

Ã Causes operations such as multiplication, division, and 
branching to be carried out 

Specifies the type and format of data being processed 

Specifies the characteristics of the source program 

FORTRAN statements are composed of keywords (that is, words that the 
FORTRAN compiler recognizes) that you use with elements of the 
language set. These elements are constants, variables and 
expressions. There are two basic types of FORTRAN statements: 
executable and nonexecutable. 

Executable statements specify the action of the program; 
nonexecutable statements describe the characteristics and arrangement 
of data, editing information, statement functions, and subprograms 
that you may include in the program. The compilation of executable 
statements results in the creation of executable code. Nonexecutable 
statements provide information only to the compiler; they do not 
create executable code. 

The OS/8 FORTRAN IV language generally conforms to the specifications 
for American National Standard FORTRAN X3.9-1966. The following 
enhancements are included in OS/8 FORTRAN: 

You may use any arithmetic expression as an array subscript. 
If the expression is not of integer type, FORTRAN converts it 
to integer form. 

e You may use alphanumeric literals (character strings delimited 
by apostrophes or quotation marks) in place of Hollerith 
constants. 

The statement label list in an ASSIGNed GO TO statement is 
optional. 

The following Input/Output (I/O) statements have been added: 

DEFINE FILE Device-or iented 1/0 

READ (u'r) 
WRITE (u'r) Unformatted Direct Access 1/0 



FORTRAN IV SOURCE LANGUAGE 

You may use any arithmetic expression as the initial value, 
increment, or limit-parameter in the DO statement, or as the 
control parameter in the COMPUTED GO TO statement. 

0 OS/8 FORTRAN permits constants and expressions in the 1/0 
lists of WRITE statements. 

All FORTRAN statements are listed in Appendix B. 

All FORTRAN language elements, (constants, variables, and 
expressions), the character set from which you may form the language 
elements, and the rules governing their construction and use are 
described in Chapters 1 through 3. 

In this manual, the FORTRAN language statements are grouped into eight 
categories, each of which is described in a separate chapter. The 
name, definition, and chapter references for each statement category 
are given in Table 2-1. 

Table 2-1 
FORTRAN Statement Categories 

Chapter Category 

Assignment 
Statement 

Specification 
Statement 

DATA Statements 

Control Statements 

Subprogram 
Statements 

Input/Output 
Statements 

FORMAT Statements 

Function 

Assign values to named variables 
and array elements. 

Declare the properties of 
variables, arrays, and functions. 

Assign initial values to variables 
and a r r a y  elements. 

Determine order of execution of 
the object program and terminate 
its execution. 

Define functions and subroutines. 

Transfer data between internal 
storage and specified input/output 
devices. 

Specify formats for data on 
input/output. 

DOCUMENTATION CONVENTIONS 

The following symbols represent special nonprinting characters: 

Tab character (TAB key or <CTRL/I> key combination) 

Space character (SPACE bar) 



FORTRAN I V  SOURCE LANGUAGE 

SYNTAX CONVENTIONS 

rnL.i" --.....--l . . - a m  &La 
i n - L a  inanua-L UDCD LHC following conventions to describe FORTRAN 
statement syntax: 

9 Lower-csse wcrds  indicate b7alue substitution. The 
accompanying text describes the nature of the item you will 
substitute, e.g., integer variable, statement label, etc. 

Ã Double square brackets ( [ [  ] ]  ) enclose optional items. 

Ellipses ( . . . I  indicate that you may repeat the preceding item 
or bracketed group any number of times. 

For example, if the description is 

then all of the following are correct: 

CAL.1 T I M E R  
CALL INSPCT ( I Y J Y ~ + O )  
CAL..L REGIMES ( A )  

If a syntax definition is italicized or in a different type face, it 
is only for visual emphasis. 





CHAPTER 3 

CHARACTERS AND LINES 

3.1 THE FORTRAN CHARACTER SET 

The FORTRAN character set consists of: 

e The upper-case letters A through Z 

The numerals 0 through 9 

The special characters in Table 3-1 

Table 3-1 
FORTRAN Special Characters 

Character r Name 
Space 

Tab 

Equals 

Plus 

Minus 

Asterisk 

Slash 

Character Name 

Parentheses 

Comma 

Decimal Point 

Apostrophe 

Quote 

Dollar Sign 

You may type other printable characters such as %, and @ only as 
part of Hollerith constants, alphanumeric literals, or comments. 

3.2 ELEMENTS OF A FORTRAN PROGRAM 

A FORTRAN program consists of FORTRAN statements and optional 
comments. You group the statements into logical units called program 
units (a program unit being a sequence of statements which you 
terminate with an optional END statement). 

A program unit can be either a main program or a subprogram. One main 
program and possibly one or more subprograms form the executable 
program. 



CHARACTERS AND LINES 

3.2.1 Statements 

Statements are grouped into two general classes: executable and 
nonexecutable. Executable statements are the action statements of the 
program; nonexecutable statements describe data arrangement and data 
characteristics. Nonexecutable statements may also contain editing 
and data conversion information. 

A program consists of a series of statements, written one statement to 
a line. (A line is a string of up to 72 characters.) If a statement 
is too long to fit on one line, you may continue it on up to five 
additional lines (called continuation lines). (For further 
information, see Section 3.3.4, Continuation Indicator Field.) 

A statement can refer to another statement. FORTRAN refers to such a 
statement by an integer number (called a label) ranging from 1 to 
99999. Such a statement is most often referenced for the information 
it may contain or so that program execution can continue at that 
statement. 

3.2.2 Comments 

Comments are lines of text that document program action, indicate 
program sections and processes, and provide greater ease in reading 
the source program listing by identifying variables. 

The FORTRAN compiler ignores comments; the comments exist only so 
that you can document what the program is doing. 

3.3 FORTRAN LINES 

A FORTRAN line consists of four fields: 

1. Statement Label Field 

2. Continuation Indicator Field 

3. Statement Field 

4. Identification Field 

You may skip any of these fields when entering statements, but , 
for the identification field, the spaces allotted to each fie 

except 
Id must 

remain present. In the case of the identification field, you may type 
a carriage return before reaching it. 

Each printing space represents a single character. The following 
sections describe how to enter the source program and what information 
is contained in each field. 

3.3.1 Using a Text Editor 

When creating a source program with a text editor, you type the lines 
on a "character-per-column" basis. You may also use the <TAB> 
character to format lines. 



CHARACTERS AND LINES 

Many text editors and terminals advance the terminal print carriage to 
a predefined print --LA.?. wlleIl you t y p e  a - > .  This action, 
however, is not related to FORTRAN's interpretation of the <TAE> 
character. 

NOTE 

The FORTRAN system interprets a <TAB> as 
one character, not the number of 
characters (up to eight) that it will 
print. 

For example, you may format the following lines in either of the ways 
shown : 

C- INITIALIZE ARRAYS or C INITIALIZE ARRAYS 

- SEL(1)=111200022DO or SEL (1) =111200022DO 

where 

- represents a <TAB> 
represents a space character 

Use space characters in a FORTRAN statement to improve the legibility 
of a line. The compiler ignores all spaces in a statement field 
except those within a Hollerith constant or alphanumeric literal. 
Thus, GO TO and GOT0 are equivalent. 

The compiler also ignores a <TAB> in a statement field; it considers 
a <TAB> to be the same as a space. However, in the compiler-generated 
source listing, FORTRAN prints the character following the <TAB> at 
the next tab stop (located at columns 9,17,25,33, etc.). 

3.3.2 Statement Label Field 

A statement label is a number that FORTRAN uses to reference one 
statement from another statement. 

A statement label (sometimes also called a statement number) consists 
of from one to five decimal digits ranging from 1 through 99999. 
Place this label in the first five positions of a statement's first 
line. Any source program statement that is referenced by another 
statement must have a statement number. 

FORTRAN ignores spaces and leading zeros preceding the statement 
label, egg., FORTRAN interprets each of the following lines as 
statement label 105: 

An all-zero statement label is illegal. 

You may assign statement numbers in any order; however, each 
statement number must be unique in the program or subprogram. In 
contrast, a main program and a subprogram may contain identical 



CHARACTERS AND LINES 

statement numbers. In this case, FORTRAN understands that reference 
to these numbers means the numbers in the program unit in which the 
reference is made. 

You cannot label nonexecutable statements other than FORMAT 
statements. 

When you type a source program with a terminal, an initial <TAB> skips 
over the label and continuation field. 

3.3.3 Comment Indicator and Comments 

A comment indicator tells FORTRAN that the text on a line is a comment 
when you type the letter C in column one. The compiler will print the 
contents of that line in the source program listing; however, it 
ignores the line when it compiles the program. 

The following are restrictions on comments: 

All comment lines must begin with the letter C in column one. 

You cannot continue comment lines; consequently each comment 
line must begin with a C. 

Unlike other statements, the text of a comment can begin in 
the second space of a line. 

Comment lines must not intervene between a statement's initial 
line and its continuation line (or lines), or between 
successive continuation lines. 

3.3.4 Continuation Indicator Field 

A continuation indicator tells FORTRAN that the text on that line is 
part of the same statement as the preceding line. 

You must reserve colunn six of a FORTRAN line for the continuation 
indicator even if you do not type a continuation indicator. 

FORTRAN defines any character except a space in column 6 to be a 
continuation indicator. 

The following are rules for using continuation indicators: 

You may divide a statement into distinct lines at any point. 

You may precede the continuation indicator with space 
characters only; you may not precede it with a <TAB> as an 
initial <TAB> skips over the continuation field. 

The characters beginning in column seven of a continuation 
line are considered to follow the last character of the 
previous line as if there were no break at that point. 



CHARACTERS AND LINES 

You may enter no more than 5 continuation lines for one 
statement .  

You cannot continue comment lines. 

A comment line must not intervene between a statement's 
initial line and its continuation line (or lines), or between 
successive continuation lines. 

You cannot assign statement numbers to continuation lines. 

Statement Field 

Type the text of a FORTRAN statement in columns 7 through 72. A <TAB> 
may precede the statement field rather than spaces. Note that because 
the compiler ignores <TAB>s and spaces (except in Hollerith constants 
and alphanumeric literals), you can space the text of the statement 
for maximum legibility. 

3.3.6 Identification Field 

Type a sequence number or other such identifying information in 
columns 73-80 of any line in a FORTRAN program. FORTRAN ignores the 
characters in this field. 

NOTE 

The FORTRAN compiler ignores text in 
these positions. Moreover, FORTRAN does 
not print a warning message if you 
accidently type text in this field. 
This is sometimes the source of 
inexplicable errors. 

You might use this feature when typing 
punched card input. It is seldom used 
with terminals. 

3.4 BLANK LINES 

You may insert lines consisting only of blanks, <TAB>s, or no 
characters anywhere in your source program except immediately 
preceding a continuation line. You would use a blank line to improve 
the readability of a source listing; the FORTRAN compiler ignores 
them. 

3.5 LINE FORMAT SUMMARY 

The fields and the columns in which they may appear are listed in 
Table 3-2. 



CHARACTERS AND LINES 

Table 3-2 
Field Summary 

Field 

S t a t e m e n t  Label  

Column (s) 

Continuation Indicator 

Statement 

ihe following example shows the placement of fields (The numbers 
represent column numbers.): 

I 
1 through 5 

6 

7 through 72 

Identification 

DIMENSION A < 1 2 ~ ~ B ~ 1 0 r l O ~ l O ~ ~ C ~ 1 3 ~ l ~ 3 ~ ~ K ~ ~ 1 7 ~ 0 0 0 0 O O 0 l  
1 2 1 ~ 5 )  

1 0  READ ( 1 ~ 1 0 0 0 5 )  ( A Y B Y C P D )  0 0 0 0 0 0 0 2  
C THE DATA I S  STORED ON DECTAPE; USE THE FORTRAN RUN 03 
C TIME SYSTEM TO ASSIGN LISN 1 TO DTA:.;! 0 0 0 0 0 0 0 4  

CAL..L UF-'TiATE ( A Y D 1 0 0 0 0 0 0 0 5  
IF < + N O T +  END) GO m:) 1 0  0 0 0 0 0 0 0 6  

73 through 8 0  



CHAPTER 4 

FORTRAN STATEMENT COMPONENTS 

4.1 INTRODUCTION 

The elements of FORTRAN statements are: 

Ã Constants 

A constant is a fixed, self-describing value. 

e Variables 

A variable is a symbolic name that represents a stored value. 

0 Arrays 

An array is a group of variables that you may refer to 
individually or collectively. The individual values are 
called array elements. Use a symbolic name to refer to the 
array. 

0 Expressions 

An expression can be a constant, variable, array element, or 
function reference. It may also be a combination of those 
components and certain other elements (called operators). a 
by those components. The result of the computation is a 
single value. 

0 Function References 

A function reference is the name of a function (often followed 
by a list of arguments). After FORTRAN performs the 
computation indicated by the function definition, it 
substitutes the computed value in place of the function 
reference. 

4.2 SYMBOLIC NAMES 

You use symbolic names to identify certain entities within a FORTRAN 
program unit. Symbolic names consist of a combination of from one to 
six alphanumeric characters. If you use more than six characters in a 
symbolic name, FORTRAN reads only the first six. 

The first letter of a symbolic name must be a letter. The special 
characters listed in Table 3-1 may not appear in symbolic names. 



FORTRAN STATEMENT COMPONENTS 

Examples of valid and invalid symbolic names are: 

Valid Invalid 

NUMBER 5Q (Begins with a numeral) 
K9 B.4 (Contains a special character) 

Table 4-1 indicates the types of variables that FORTRAN identifies by 
symboi ic names. 

Except as specifically mentioned in this manual, you may not use the 
same symbolic name to identify more than one FORTRAN entity. 

Each variable indicated as "Typed" in Table 4-1 has a data type. The 
means of specifying the data type of a name are presented in Sections 
4.3 and 7.2. 

Within a subprogram, you may use symbolic names as dummy arguments. A 
dummy argument may represent a variable, array, array element, 
constant, expression, or subprogram. However, all subprograms must be 
uniquely named. 

Table 4-1 
Classes of Symbolic Names 

Entity 

Arrays 
Arithmetic statement functions 
Processor-defined functions 
FUNCTION subprograms 
SUBROUTINE subprograms 
Common blocks 

Typed 

Variables 

Block data subprograms I 

Yes 

4.3 DATA TYPES 

The data type of a FORTRAN element may be inherent in its construction 
or implied by convention; you nay also declare it explicitly. The 
data types available in FORTRAN, and their definitions, are listed in 
Table 4-2. 



FORTRAN STATEMENT COMPONENTS 

Data  Type 

INTEGER 

REAL 

DOUBLE PRECISION 

COMPLEX 

LOGICAL 

OCTAL 

Meaning 

A whole  number.  

A d e c i m a l  number;  i t  c a n  b e  a whole number, 
a  d e c i m a l  f r a c t i o n ,  o r  a  c o m b i n a t i o n  o f  t h e  
two. 

S i m i l a r  t o  r e a l ,  b u t  w i t h  a p p r o x i m a t e l y  
t w i c e  t h e  d e g r e e  o f  a c c u r a c y  i n  i t s  
r e p r e s e n t a t i o n .  

A p a i r  o f  r e a l  v a l u e s  t h a t  r e p r e s e n t s  a  
complex number;  t h e  f i r s t  r e p r e s e n t s  t h e  
r e a l  p a r t  o f  t h a t  number,  t h e  s e c o n d  
r e p r e s e n t s  t h e  i m a g i n a r y  p a r t .  

The l o g i c a l  v a l u e  " t r u e "  o r  " f a l s e " .  

An i n t e g e r  number i n  r a d i x  8 .  

An i m p o r t a n t  a t t r i b u t e  o f  e a c h  d a t a  t y p e  is  t h e  amount  o f  memory 
FORTRAN r e q u i r e s  t o  r e p r e s e n t  a  v a l u e  o f  t h a t  t y p e .  V a r i a t i o n s  on t h e  
b a s i c  t y p e s  a f f e c t  e i t h e r  t h e  a c c u r a c y  of  t h e  r e p r e s e n t e d  v a l u e  o r  t h e  
a l l o w e d  r a n g e  o f  v a l u e s .  

A " s t o r a g e  u n i t "  is  t h e  amount o f  s t o r a g e  OS/8 FORTRAN r e q u i r e s  t o  
s t o r e  a REAL, I N T E G E R ,  o r  LOGICAL v a l u e .  DOUBLE PRECISION and COMPLEX 
v a l u e s  occupy  two s t o r a g e  u n i t s .  I n  OS/8 FORTRAN, a  s t o r a g e  u n i t  
c o r r e s p o n d s  t o  3 words  o f  memory ( i . e . ,  36 b i t s ) .  

NOTE 

S e c t i o n  4.5.2 d i s c u s s e s  t h e  s t a n d a r d  
FORTRAN d e f a u l t s  f o r  REAL and INTEGER 
v a r i a b l e s .  

H o l l e r i t h  c o n s t a n t s  and a l p h a n u m e r i c  l i t e r a l s  h a v e  no d a t a  t y p e .  They 
assume t h e  d a t a  t y p e  o f  t h e  c o n t e x t  i n  which  t h e y  a p p e a r .  ( S e e  
S e c t i o n  4.4.7 f o r  d e t a i l s . )  

4.4 CONSTANTS 

A c o n s t a n t  r e p r e s e n t s  a  f i x e d  v a l u e ;  t h a t  i s ,  a  c o n s t a n t  c a n  
r e p r e s e n t  numer i c  v a l u e s ,  l o g i c a l  v a l u e s ,  o r  c h a r a c t e r  s t r i n g s .  

4 .4 .1  Integer Constants 

An i n t e g e r  c o n s t a n t  i s  a  whole  number w i t h  no d e c i m a l  p o i n t .  I t  may 
have  a  l e a d i n g  s i g n .  



FORTRAN STATEMENT COMPONENTS 

The format is: 

snn 

where 

nn is a stri ng of from 1 to 7 de 
s is an optional algebraic sign 

cimal digits 

In OS/8 FORTRAN, an integer constant is a whole signed or unsigned 
number that contains no more than seven decimal digits. Integer 
constants must fall within the range -2**23 to 2**23-1 (-8,388,608 to 
8,338,607). When you use integer constants as subscripts, FORTRAN 
uses them at modulo 2**12 (4,096 decimal). 

FORTRAN ignores leading zeros in integer constants. 

Precede a negative integer constant by a minus symbol. A plus symbol 
is optional before a positive number because FORTRAN assumes an 
unsigned constant to be positive; thus, +27 and 27 are identical. 

With the exception of a plus or minus sign, an integer constant cannot 
contain any character other than the numerals 0 through 9. 
Specifically, embedded commas and decimal points are not allowed. 

Examples : 

Valid Invalid 
Integer Constants Integer Constants 

99999999999 (Too large) 
3.14 (Embedded decimal point) 

32,767 (Embedded comma) 

4.4.2 R e a l  C o n s t a n t s  

There are two kinds of real constants: decimal and exponential. 

4.4.2.1 D e c i m a l  R e a l  C o n s t a n t s  - A decimal real constant is a string 
of decimal digits with a decimal point. It may have a leading sign. 

The format is: 

s.nn 
snn. nn 
snn. 

where 

nn is a string of numeric characters 
is a decimal point 

s is an optional algebraic sign 

Note that you do not always have to type a number following the 
decimal point, but you must always type the decimal point. The 
decimal point can appear anywhere in the digit string. 



FORTRAN STATEMENT COMPONENTS 

FORTRAN does not limit the number of digits in a decimal real 
constant, but only the leftmost six digits are significant. For 
example, in the constant 0.000012345678, all of the non-zero digits 
are significant (note that FORTRAN only stores 0.000012). However, in 
the constant 000507, the first three zeros are not significant. 

You must precede a negative constant with a minus sign. The plus sign 
is optional preceding a positive real constant. 

Except for algebraic s i g n s  and a decimal point, a real decimal 
constant cannot contain any character -other than the numerals 0 
through 9. 

Examples : 

Valid Invalid 
Real Constants - -- Real Constants 

1,234,567 (Embedded commas) 
879877399. (Too large) 
100 (Decimal point missing) 

4.4.2.2 Exponential Real Constants - An exponential real constant is 
a decimal real constant followed by a decimal exponent. 

The format is: 

where 

mm is an integer or real constant 
nn is a 1- to 3-digit integer constant 
E i n d i c a t e s  that the constant is an exponential real constant 
s is an algebraic sign 

An exponential real constant is a decimal number that you type in 
scientific notation, that is, in powers of 10. The number, nn, 
represents a power of 10 by which the preceding real or integer 
constant is to be multiplied (e.g., 1E6 represents the value 
1.0 x 10**6). The magnitude of a real constant cannot be smaller than 
lo**-615 nor greater than 10**615. 

A real constant occupies three words (i.e., six bytes) of storage. 
FORTRAN interprets this number as having a degree of precision 
slightly greater than seven decimal digits. 

In OS/8 FORTRAN, an exponential real constant need not contain a 
decimal point. 

A minus symbol must appear between the letter E and a negative 
exponent; a plus symbol is optional for a positive exponent. 

Except for algebraic signs, a decimal point, and the letter E, a real 
exponential constant cannot contain any character other than the 
numerals 0 through 9. However, you may omit the decimal point if the 
number does not have a fractional part. 



FORTRAN STATEMENT COMPONENTS 

Examples : 

Valid 
Real Constants 

Invalid 
Real Constants 

-47.E645 (Too large) 
325E-801 (Too small) 
5E3.2 (Decimal point misplaced) 

4.4.3 Double -Prec i s i on  C o n s t a n t s  

A double-precision constant is a real or integer constant which 
FORTRAN stores in twice as many locations as a real constant; it thus 
has extra significant digits. 

The format is: 

where 

nn is a 1- or 2-digit integer constant 
D designates a double-precision constant 
s is an optional algebraic sign 
mm is the double-precision number 

A double-precision number is a number that has twice the amount of 
storage allocated for it in memory as a real number. A 
double-precision constant occupies six words (72 bits) of PDP-8 
storage, and FORTRAN interprets it as a real number having a degree of 
precision approximately equal to 17 significant digits. FORTRAN does 
not limit the number of digits that precede the exponent, but only the 
leftmost I 7  digits are significant. 

Precede a negative double-precision constant by a minus symbol; a 
plus symbol is optional before a positive constant. Similarly, if the 
number is negative, a minus symbol must appear between the letter D 
and a negative exponent. You may omit the decimal point from a 
double-precision constant that does not have a fractional part. 

NOTE 

Double-precision arithmetic requires the 
presence of an FPP (Floating-point 
Processor) with an extended precision 
opt ion. 

The magnitude of a double-precision constant cannot be smaller than 
lo**-615, nor greater than 10**615. 

Examples : 



FORTRAN STATEMENT COMPONENTS 

4.4.4 Complex Constants 

A complex number is a number t h a t  has a real and an i m a g i n a r y  part. 

The foqmat is: 

where 

rc is a real constant 

A complex constant is a pair of single-precision real constants that 
you separate with a comma and enclose in parentheses. The first real 
constant represents the real part of that number and the second 
represents the imaginary part. You must type the parentheses and 
comma as they are part of the constant. The real and imaginary 
may each be signed. 

NOTE 

You can only do complex arithmetic on 
the FPP by using the extended precision 
logic. 

A complex constant occupies six consecutive words 
for each real constant. 

of storage, 

parts 

three 

Examples : 

4.4.5 Logical Constants 

A logical constant specifies a logical value, that is, "true" or 
"false". Therefore, the only two logical constants possible are: 

.TRUE. 

and 

. FALSE. 

NOTE 

You may abbreviate .TRUE. and .FALSE. 
as .T. and .F. 

You must type the delimiting periods as they are part of each 
constant. 

Only logical operators can operate on logical constants. 



FORTRAN STATEMENT COMPONENTS 

4 .4 .6  O c t a l  C o n s t a n t s  

An o c t a l  c o n s t a n t  is a  s t r i n g  o f  o c t a l  d i g i t s  (0-7 o n l y )  p r e c e d e d  by  
t h e  l e t t e r  0 .  

The f o r m a t  is: 

where  

num is a n  o c t a l  number 
0  i d e n t i f i e s  t h e  number a s  a n  O c t a l  c o n s t a n t  

You may u s e  a n  o c t a l  c o n s t a n t  o n l y  i n  DATA s t a t e m e n t s  t o  e n t e r  numbers  
i n  r a d i x  e i g h t .  An o c t a l  c o n s t a n t  may be  o f  a n y  l e n g t h ,  b u t  t h e  
FORTRAN c o m p i l e r  u s e s  o n l y  t h e  1 2  l ow-o rde r  d i g i t s .  

You g e n e r a l l y  u s e  o c t a l  c o n s t a n t s  t o  s e t  b i t s  f o r  mask ing  p u r p o s e s .  

Examples  : 

DATA JOB/01032/ 
DATA BASE /07777/  

NOTE 

The c h a r a c t e r  f o l l o w i n g  t h e  f i r s t  / i n  
e a c h  o f  t h e s e  e x a m p l e s  is  t h e  l e t t e r  0 ,  
n o t  a  z e r o .  

4 ; 4 . 7  Hollerith C o n s t a n t s  

A H o l l e r i t h  c o n s t a n t  i s  a  s t r i n g  o f  a l p h a n u m e r i c  a n d / o r  s p e c i a l  
c h a r a c t e r s  p r e c e d e d  by: (1) a  number t h a t  s t a t e s  how many c h a r a c t e r s  
a r e  i n  t h e  c o n s t a n t ,  and ( 2 )  t h e  l e t t e r  H. You may u s e  a n y  ASCII 
c h a r a c t e r  ( i n c l u d i n g  t h o s e  t h a t  a r e  n o t  p a r t  o f  t h e  FORTRAN c h a r a c t e r  
s e t ) .  

The f o r m a t  is: 

where  

n  i s  a n  u n s i g n e d ,  non -ze ro  i n t e g e r  c o n s t a n t  i n d i c a t i n g  t h e  
number o f  c h a r a c t e r s  i n  t h e  s t r i n g  ( i n c l u d i n g  s p a c e s  and 
t a b s )  

c  i s  a n y  ASCII c h a r a c t e r  
H i d e n t i f i e s  t h i s  a s  a  H o l l e r i t h  c o n s t a n t  

H o l l e r i t h  c o n s t a n t s  have  no d a t a  t y p e .  They assume t h e  d a t a  t y p e  o f  
t h e  c o n t e x t  i n  which  t h e y  a p p e a r .  

Examples  : 

V a l i d  I n v a l i d  
H o l l e r i t h  C o n s t a n t s  ~ o l l e r i t h  C o n s t a n t s  

l5HTODAY1S DATE IS :  3HABCD (Wrong number o f  c h a r a c t e r s ;  
1 13 t h i s  w i l l  b e  s t o r e d  a s  ABC.) 



FORTRAN STATEMENT COMPONENTS 

4.4.7.1 Alphanumeric Literals - An alphanumeric literal is a string 
of ASCII characters delimited by a p o s t r o p h e s  or quotation marks. 

The format is: 

ccc...c: 
ccc.. . C'l 

where 

c is a printable ASCII character; you must type both 
delimiting apostrophes or quotes. 

An Alphanumeric literal is an alternate form of Hollerith constant. 
As for ~ollerith constants, you may use any ASCII character (including 
those that are not part of the FORTRAN character set). 

Alphanumeric literals have no data type. They assume the data type of 
the context in which they appear. 

If you need to type an apostrophe within an alphanumeric literal, type 
it as two consecutive apostrophes. 

Examples : 

'CHANGE PRINTER PAPER TO PREPRINTED FORM NO. 721' 

- - 
You may use a quotation mark (I1) instead of an apostrophe. However, 
you may not mix quotation marks and apostrophes. Thus, the following 
literal is not allowed: 

A MIXED LITERAL' 

but you may type 

"THIS ISN'T A MIXED LITERAL" 

4.5 VARIABLES 

A variable is a symbolic name that FORTRAN associates with a storage 
location. (The FORTRAN compiler assigns the storage locations.) The 
value of the variable is the value currently stored in that location; 
you can only change that value by assigning a new value to the 
variable with an assignment statement. 

FORTRAN classifies variables by data type, in the same manner as 
constants. The data type of a variable indicates: 

The type of data it represents 

Its precision 

Its storage requirements 

You nay specify the data type of a variable either by type declaration 
statements (see Section 7.2), or by FORTRAN default typing rules 
(Section 4.5.2). 



FORTRAN STATEMENT COMPONENTS 

FORTRAN associates two or more variables with each other when each 
variable uses the same storage location; or, partially associates 
variables when part (but not all) of the storage which one variable 
uses is the same as part or all of the storage which another variable 
uses. You create associations and partial associations with: 

0 COMMON statements, 

EQUIVALENCE statements, and 

0 Actual and dummy arguments in subprogram references. 

A variable is defined if the storage with which it is associated 
contains a datum of the same type. You can define a variable prior to 
program execution by typing a DATA statement or during execution by 
means of assignment or input statements. 

Before you assign a value to a variable, it is an undefined variable, 
and you should not reference it except to assign a value to it. If 
you reference an undefined variable, an unknown value (garbage) will 
be obtained. 

If you associate variables of differing types with the same storage 
location, then defining the value of one variable (for example, by 
assignment) causes the value of the other variable to become not 
defined. 

4.5.1 Data Type Specification 

Declaration statements (Section 7.2) associate given variables with 
specified data types. For example: 

INTEGER VAKl 
DOUBLE PRECISION VAR2 

These statements indicate that FORTRAN will associate the integer 
variable VAR1 with a 3-word storage location and VAR2 with a 6-word 
double-precision storage location. 

You can explicitly declare the data type of a variable only once in a 
program unit. 

4.5.2 Default Data Types 

FORTRAN assumes all variables having names beginning with I, J ,  K, L, 
V ,  or N represent integer data; variables having names beginning with 
any other letter are real variables. For example: 

Real Variables 

ALPHA 

Integer Variables 

KOUNT 

BETA ITEM 

TOTAL NTOTAL 



FORTRAN STATEMENT COMPONENTS 

4.6 ARRAYS 

An array is a group of contiguous storage locations that you reference 
with a single symbolic name, the array name. You reference the 
individual storage locations, called array elements, by a subscript 
appended to the array name. 

An array can have from one to seven dimensions. 

The following FORTRAN statements establish arrays: 

Type declaration statements (Section 7.2) 

0 DIMENSION statements (Section 7.3) 

0 COMMON statements (Section 7.5) 

Each of these statements defines: 

Ã The name of the array 

0 The number of dimensions in the array 

a The number of elements in each dimension 

4.6.1 Array Declarations 

Use an array declaration to instruct FORTRAN to reserve storage for an 
array. 

The format is: 

where 

[[typ] ] is a data type declaration 
a is the array name 
d is a number specifying the number of elements in that 

part of the array 

An array is a group of variables that have the same symbolic name; 
you address the elements of the array by means of a subscript. 

Declare a variable to be an array by specifying the symbolic name that 
identifies the array within a program unit and indicates the 
properties of that array. The number of dimension declarators d 
indicates the number of dimensions in the array. The minimum number 
of dimensions is one and the maximum number is seven. 

You must declare the size (i.e., the number or elements) of an array 
in order to reserve the needed amount of locations in which to store 
the array. The value of a dimension declarator specifies the number 
of elements in that dimension. For example, a dimension declarator 
value of 50, as in TABLE(50), indicates that the dimension contains 50 
elements. The dimension declarators can be constant or variable. 



FORTRAN STATEMENT COMPONENTS 

The rules governing the dimensioning of arrays are as follows 
(characters enclosed within parentheses represent subscripted 
characters that must be either an integer variable or an integer 
constant) : 

In the equation 

L = length of the entire array 
n = total number of dimensions in the array 
M(i) = maximum subscript for each dimension in the array, where i 

specifies which dimension in the array is being referenced 

In the above equation, L must not exceed 4095 in any case. 

For example 

In the above equation, L must not exceed 2047 when transmitting 
arrays, individual arrays, elements, or subportions of an array to 
subprograms. 

For example 

The number of elements in an array is always equal to the product of 
the number of elements in each dimension. More specifically, the 
array IAB dimensioned as (3,4) has 24 elements (2 x 3 x 4 = 24) and 
takes 72 words of storage. Although FORTRAN stores arrays as a series 
of sequential storage locations, you may best visualize and reference 
arrays as if they were single- or multi-dimensional rectilinear 
matrices, dimensioned on a row, column, and plane basis. Thus, Figure 
4-1 represents a 3-row, 3-column, 2-plane array. 

3 ROWS 

3 COLUMNS 

Figure 4-1 Array Representation 

An array name can appear in only one declaration statement within a 
program unit. 

Use variable dimension declarations to define adjustable arrays (see 
Section 4 . 6 . 5 ) .  



FORTRAN STATEMENT COMPONENTS 

4.6.1.1 Array Storage (Order of Subscript Progression) - OS/8 FORTRAN 
always s t o r e s  arrays in memory as a linear sequence of values. Thus, 
FORTRAN stores a one-dimensional a r r a y  with its first element in the 
first storage location of the sequence and its last element in the 
last storage location. FORTRAN stores a multidimensional array such 
LL - L  

. c L L i i , y . 3 L  subscripts vary most rapidly. For example, in the L I I ~ L  the -^mnp+ 

array ARRAY(3,2,2) the progression is: 

ARRAY(1,1,1) 
ARRAY(2,1,1) 
ARRAY(3,1,1) 
ARRAY (1,2,1) 
ARRAY (2,2,1) 
ARRAY(3,2,1) 
ARRAY(1,1,2) 
ARRAY(2,1,2) 
ARRAY (3,1,2) 
ARRAY(1,2,2) 
ARRAY (2,2,2) 
ARRAY(3,2,2) 

This is called the "order of subscript progression". For example, 
consider the following array declarators and the arrays that they 
create: 

4 t Memory Positions 

Figure 4-2 Array Storage 

COS 11,3,31' 

COS (2,3,3)  
COS (3,3,31 

The arrows labeled "memory position" show the order in which FORTRAN 
stores information in memory. This order is critically important when 
you use an unsubscripted array name in a READ or WRITE statement 
because this is the order in which FORTRAN fills memory or prints 
data. 

25 
26 
27 

4.6 .2  Subscripts 

19 
20 

11 

A subscript is the means by which you address individual elements in 
an array. 

22 
23 

COS (1,1,3) 

COS (2,1,3) 

COS (2,1,2) 1 14 I COS (2 ,2 ,2)  i 17 1 COS (2,3,2j 

The format is: 

COS (1,2,3)  
COS (2,2,3) 

where 

16 ; COS (1,3,2)  

s is an integer subscript expression 

1 3  1 COS (1,2,2) 10  

1 1 8  1 COS (3,3,2) 

Use a subscript following the array to specify which element in the 
array FORTRAN will reference. 

COS ( I , ?  ,2)  

In any subscripted array reference, you must type one subscript 
expression for each dimension you define for that array (i.e., one for 
each dimension declaration). For example, you could use the following 

7 

8 
9 

4 COS (1,2,1) 
5 ;  COS (2,2,1) 
6 i C O S ( 3 , 2 , 1 )  

1 

2 ,  

COS (1,3,1) 

COS (2,3,1) 
COS(3,3,1)  

COS (1,1,1)  
COS (2,1,1) 

31COS(3 ,1 ,1 )  



FORTRAN STATEMENT COMPONENTS 

entry to refer to the element located in the first row, third column, 
second level of the array TEMP in Figure 4-2 (which is the element 
occupying memory position 16)- 

Note, however, that an array reference such as TEMP(l,3) would be 
illegal because the third subscript i s  n o t  indicated- 

Each subscript expression can be any valid integer expression. If the 
value of a subscript expression is not an integer, FORTRAN converts it 
to an integer before using it. 

A subscript can be a compound expression, that is, 

Subscript quantities may contain arithmetic expressions that 
involve addition, subtraction, multiplication, division, and 
exponentiation. For example, (I+J,K*5,L/2) and 
(1**3, (J/4+K) *L, 3) are valid subscripts- 

A subscript may contain function references- For example, 
TABLE(IABS(N)*KOUNT,2,3) is a valid array element identifier- 

Subscripts may contain nested array element identifiers as 
subscripts- For example, in the subscript 
(I(J(K(L)),M+N,ICOUNT), the first subscript quantity given is 
a nested, three-level subscript. 

4.6.3 Data Type o f  an Array 

Specify the data type of an array in the same way as the data type of 
a variable; that is, implicitly by the iaitial letter of  t h e  R ~ F R ~ ~  e r  
explicitly by a type declaration statement (see Section 7-21. 

All the values in an array are of the same data type- FORTRAN 
converts any value you assign to an array element to the data type of 
the array- For example, if you name an array in a DOUBLE PRECISION 
statement, the compiler allocates a 6-word storage location for each 
element of the array- When you assign a value to an element of  that 
array, FORTRAN converts it to double precision- 

4 - 6 - 4  Array References  Without S u b s c r i p t s  

In the following type declaration statements, you may type an array 
name without a subscript when you wish to use the entire array- 

COMMON statement 

DATA statement 

EQUIVALENCE statement 

FUNCTION statement 

SUBROUTINE statement 

CALL statement 

Input/Output statements 

Using unsuoscripted array names in any ~ t h e r  statenent is illegal. 



FORTRAN STATEMENT' COMPONENTS 

4.6.5 A d j u s t a b l e  Arrays 

Use an adjustable array in a subprogram so tnat tne subprogram c a n  
process arrays of different sizes. Do this by passing the bounds as 
well as the array name as subprogram arguments or dummy arguments. 

An adjustable array declarator, in contrast to a standard array 
d e ~ l a r a t o r ~  has variable dimension declarators (which are simply 
integer variables). Each dimension declarator must be either an 
integer constant or an integer Gummy argument. The  z r r a y  naiiie ziist 
also appear as a dummy argument. (Consequentlyf you may not use 
adjustable array declarators in main program units.) 

Upon entry to a subprogram containing adjustable array deciaratorsf 
FORTRAN associates each dummy argument in a dimension declarator with 
an integer actual argument. FORTRAN uses these values to form the 
a c t u s 1  array declaration* These integer variables determine the size 
of the adjustable array for that single execution of the subprogram. 

Yoi~ xust nat change the vzlges of the dummy adjustable array 
declarator argments within the subprogram. 

The effective size of the dummy array must be equal to or less than 
the actual size of the assaciated array. 

The function in the following example computes the sum of the elements 
of a two-dimensional array. Note the use of the integer variables M 
and N to control the iteration. 

Following are sample calls on SUM: 

If there are more dimensions in the adjustable array than in the array 
being passed to the subroutinef you must indicate a value of 1 for 
that dimension declaration. 





CHAPTER 5 

EXPRESSIONS 

5.1 INTRODUCTION 

An expression is a combination of elements that represents a single 
value. FORTRAN relates an element in an expression to another element 
in the same expression by operzitors and par2ntheses. The expression 
can be a single basic conponent, such as a constant or variable, or a 
combination of basic components with one or more operators. Operators 
specify computations to be performed (using the values of the basic 
componentsj to obtain a single value. 

Expressions can be classified as arithmetic, relational, or logical. 
Arithmetic expressions yield numeric values; relational and logical 
expressions produce logical values. 

5.2 ARITHMETIC EXPRESSIONS 

Form arithmetic expressions with arithmetic elements and arithmetic 
operators. The evaluation of such an expression yields a single 
numeric value. 

An arithmetic expression element may be any of the following: 

A numeric constant 

A numeric variable 

A numeric array element 

An arithnetic expression within parentheses 

An arithmetic function reference (functions and function 
references are discussed in Chapter 10) 

Arithmetic operators specify a computation that FORTRAN will perform 
using the values of arithmetic elements; they produce a numeric value 
as a result. The operators and their functions are listed in Table 
5-1. 



EXPRESSIONS 

Table 5-1 
Arithmetic Operators 

Operator + Function 

Exponentiation 

Multiplication 

Division 

Addition and unary plus 

Subtraction and unary minus 

The operators listed in Table 5-1 are called binary operators, because 
you would use each in conjunction with two elements* You can use the 
+ and - symbols as unary operators because, when you write them 
immediately preceding an arithmetic element, they indicate a positive 
or negative value. 

5.2-1 Rules for Writing Arithmetic Expressions 

Observe the following rules in structuring compound arithmetic 
expressions: 

An expressi~n cannot contain two adjacent and unseparated 
operators* For example, the expression A*/B is not permitted* 

You must include all operators; no operation is inplied. For 
example, the expression A(B) does not specify multiplication, 
although this is implied by standard algebraic notation. You 
must type A*(B) to obtain a multiplication of the elements. 

When you use exponentiation, the base quantity and its 
exponent may be of ditferent types. For example, the 
expression ABC**l3 involves a real base and an integer 
exponent. The permitted baselexponent type combinations and 
the type of the result of each combination are given in Table 
5-2. 

a You must assign a value to a variable or array element before 
you use it in an arithmetic expression* If you do not, the 
elements are undefined. 

Table 5-2 
BaselExponent Combinations 

BASE 

Integer 

Real 

EXPONENT 

Integer 

Yes 

Yes 

I Yes l 1 Complex 1 Yes 
i 

Rea 1 

No 

Yes 

Yes i Yes 1 No 
I 
I 

Double 

No 

Yes 

I 
No 1 No 

1 

Complex 

No 

No 

No 



EXPRESSIONS 

In addition, you can only exponentiate a negative element by an 
integer element; you cannot exponentiate an element h a v i n g  a value o f  
zero by another zero-value element. 

In any valid exponentiation, the result is of the same data type as 
the base element. The exception is a real base and a double-precision 
exponent; the result in this case is double precision. 

5.2.2 Evaluation Hierarchy 

FORTRAN evaluates arithmetic expressions in an order determined by a 
precedence it associates with each operator. The precedence of the 
operators is listed in Table 5-3. 

Table 5-3 
Binary Operator Evaluation Hierarchy 

Operator 

* * 

* and / 

+ and - 

- - 

Whenever two or more operators of 

Precedence 

First 

Second 

Third 

Fourth 

equal precedence (such 
appear, FORTRAN evaluates them from left to right. However, FORTRAN 
evaluates exponentiation from right to left. For example, A**B**C is 
evaluated as A**(B**C) where FORTRAN computes the parenthetical 
subexpression (B**C) first. 

5.2.3 Data Type of an Arithmetic Expression 

OS/8 FORTRAN determines the data type of an expression in the 
following ways: 

a Integer operations - FORTRAN performs integer operations on 
integer elements only. (When you use octal constants and 
logical entities in an arithmetic context, FORTRAN treats them 
as integers.) In integer a r i t h m e t i c ,  any fraction that results 
from a division is truncated, not rounded. For example, in 
integer arithmetic the value of the expression 

is zero, not one. 

a Real operations - FORTRAN performs real operations on real 
elements or a combination of real and integer elements. 
FORTRAN converts integer elements to real by giving each a 
fractional part equal to zero. It then evaluates the 

, expression using real arithmetic. Note, however, that in the 
statement Y = ( I / J ) * X ,  FORTRAN performs an integer division 
operation on I and J and then performs a real multiplication 
on the result and X. 



EXPRESSIONS 

You can relate complex expressions only with .EQ. and .NE, 
operators. Complex entities are equal only if both of their 
corresponding real and imaginary parts are equal. 

5.3 RELATIONAL EXPRESSIONS 

A relational expression consists of two arithmetic expressions 
that you separate by a relational operator. The value of the 
expression is either true or false, depending on whether or 
not the stated relationship exists. 

A relational operator tests for a relationship between two 
arithmetic expressions. These operators are listed in Table 

Table 5-4 
Relational Operators 

Operator 

1 .GT. 1 Greater than 

Relationship 

. LT. 

.LE. 

.EQ. 

. NE 

Less than 

Less than or equal to 

Equal to 

Not equal to 

The delimiting periods preceding and following a relational operator 
are part of the operator and must be present. 

. GE. 

In a relational expression, FORTRAN evaluates the arithmetic 
expressions first to obtain their values. It then compares those 
values to determine if the relationship stated by the operator exists. 
For example, the expression: 

Greater than or equal to 

tests the relationship, "The sum of the real variables APPLE and PEACH 
is greater than the sum of the real variables PEAR and ORANGE" If 
this relationship does exist, the value of the expression is true; if 
not, the expression is false. 

All relational operators have the same precedence. Thus, if two or 
more relational expressions appear within an expression, FORTRAN 
evaluates the relational operators from left to right. Note that 
arithmetic operators have a higher precedence than relational 
operators. 

Use parentheses to alter the evaluation of arithmetic expressions in a 
relational expression exactly as in any other arithmetic expression. 
However, as FORTRAN evaluates arithmetic operators before relational 
operators, it is unnecessary to enclose in parentheses an arithmetic 
expression preceding or following a relational operator. 



EXPRESSIONS 

5.4 L O G I C A L  E X P R E S S I O N S  

A logical expression may be a single logical element, or it may be a 
combination of logical elements and logical operators. A logical 
expression yields a single logical value, either true or false. 

A logical element can be any of the following: 

A logical constant 

A logical variable 

A logical array element 

Ã A r e l a t i o n a l  expression 

e A logical expression e n c l o s e d  in parentheses 

0 A loaical function reference (functions and function 
references are described in Chapter 10) 

The logical operators are listed in Table 5-5. 

Table 5-5 
Logical Operators 

Example 

NOT. A 

NOTE 

Meaning 

Logical conjunction. The expression is 
true if, and only if, both A and B are 
true. 

Logical disjunction (inclusive OR) . 
The expression is true if, and only iÂ£ 
either A or B, or both, is true. 

Logical exclusive OR. The expression 
is true i f  A is true and B is false, or 
vice versa. It is false if both 
elements have the same value. 

Logical equivalence. The expression is 
true if, and only if, both A and B have 
the same logical value, whether true or 
false. 

Logical negation. The expression is 
true if, and only if, A is false. 

A and B can be expressions or constants. 
I 
J 

You must type the delimiting periods of logical operators. 



EXPRESSIONS 

A logical expression, like an arithmetic expression, may consist of 
basic elements as in 

TVAL .AND. INDEX 
BOOL(M) .OR. K 0EQ. LIMIT 

(where BOOL is either a logical function with one argument or a 
one-dimensional logical array). 

You may enclose logical expressions within parentheses, for example, 

Note that these expressions evaluate differently; thus, if A is false 
and C is true, then the first yields a false value while the second 
yields a true one. 

5.4.1 Logical Operator Hierarchy 

A sunmary of all operators that may appear in a logical expression, 
and the order in which FORTRAN evaluates them is listed in Table 5-5. 

Table 5-5  
Logical Operator Hierarchy 

Operator 

* * 

* I /  

+I- 

Relational 
Operators 

.NOT. 

.4ND. 

.OR. 

Precedence 

First 

Second 

Third 

Fourth 

Fifth 

Sixth 

Seventh 

.XOR.,.EQV. 
b 

Eighth 



EXPRESSIONS 

5 . 5  USE OF PARENTHESES 

In an expression, FORTRAN evaluates first ail subexpressions you place 
within parentheses. When you nest parenthetic subexpressions (that 
is, one subexpression is contained within another) the most deeply 
nested subexpression is evaluated first, t h e  next most deeply nested 
subexpression is evaluated second, and so on, until FORTRAN computes 
the entire parenthetical expression. 

When you type more than one operation within a p a r e n t h e t i c a l  
subexpression, FORTRAN performs the required computations according to 
a hierarchy of operators (see Tables 5-4 and 5 - 6 ) .  

Parentheses do not imply multiplication. For example, ( A t B j  ( C t E )  is 
illegal. 

The following example illustrates a typical numeric expression using 
numeric operators and a function reference. This is the familiar 
formula for obtaining one of the roots of a quadratic equation. 

which might be coded 

Note how the parentheses affect the order or evaluation. Also note 
that one parentheses pair is required by the SORT Function. An 
example of the effect of parentheses is shown below (the numbers below 
the operators indicate the order in which FORTRAN performs the 
operations). 

Evaluation of expressions within parentheses takes place according to 
the normal order of precedence. 

Nonessential parentheses, such as those in the expression 

have no effect on the evaluation of the expression. 

The use of parentheses to specify the evaluation order is often 
important where evaluation orders that are algebraically equivalent 
might not be computationally equivalent when carried out on a 
computer. 

FORTRAN evaluates operators of equal rank from left to right. 





CEAP'i'ER 6 

ASSIGNMENT STATEMENTS 

6.1 INTRODUCTION 

Assignment statements evaluate expressions and assign their values to 
variables or elements in an array. 

There are three types of assignment statements: 

An arithmetic assignment statement 

A logical assignment statement 

An ASSIGN statement (see Section 9.2.3.1) 

6.2 ARITHMETIC ASSIGNMENT STATEMENT 

The arithmetic assignment statement assigns a numerical value to a 
variable or array element. 

The format is: 

where 

v is a variable or array element name 
e is an expression 

The arithmetic assignment statement assigns the value of the 
expression on the right of an equal sign to the variable or array 
element on the left of the equal sign. If you had previously assigned 
a value to the variable, an assignment statement replaces it with the 
value on the right side of the equal sign. 

Note that the equal sign does not mean "is equal to", as in 
mathematics. It means "is replaced by". Thus, the statement 

KOUNT = KOUNT + 1 

means, "Replace the current value of the integer variable KOUNT with 
the sum of that current value and the integer constant I". 

Although the symbolic.name to the left of the equal sign can be 
undefined, you must previously have assigned values to all symbolic 
references in an expression (i.e., the right side of the equal sign). 



ASSIGNMENT STATEMENTS 

An expression must yield a value that conforms to the requirements of 
the variable or array element to which you assign it. Thus, a real 
expression that produces a value greater than 8,338,608 is illegal if 
the entity on the left of the equal sign is an INTEGER variable. 

If the data type of the variable or array element on the left of the 
equal sign is the same as that of the expression on the right, FORTRAN 
assigns the value directly. If the data types are different, FORTRAN 
converts the value of the expression to the data type of the entity on 
the left of the equal sign before it is assigned. A summary of data 
conversions on assignment is shown in Table 6-1. 

Table 6-1 
Conversion Rules for Assignment Statements 

C~Conversion between integer and floating point 
D--Direct replacement 
n Ã ‘ Ã  ' l i -gh-o rde r  : p o r t i o n  o f  e x p r e s s i o n  used 
I--Set imaginary part to 0 
L--Set low-order part to 0 
N--Convert non-zero to 1.0 (logical truth) 
R--Real only (imaginary part set to 0) 
6--Use the first character in the literal and five characters 

following 

Valid Statements 

LITERAL 
CONSTANT 

D,6 

D,6 

~~6 

D,5 

N,G 

B E T A  = -~./(~.*x)+A*A/(~.*(X*X)) 

Invalid Statements 

DOUBLE 
PRECISION 

H,D 

H,c 

H,D,R,I 

D 

H,W 

COMPLEX 

R, D 

R,C 

D 

R,D,H,L 

R,N 

3.14 = A-B 

LOGICAL 
CONSTANT 

D 

D 

D,R,I 

D,H,L 

D 

IMTEGER 

D 

D 

D,R,I 

D,H,L 

N 

REAL 

D 

(Entity on the left must be a variable 
or array element.) 

i 
Integer 

1 1 complex 1 Double 
Precision 

-J = 1**4 (Entity on the left must not be signed.) 

C 

D,R,I 

D,H,L 

ALPHA = ((X+6)*B*B/(X-Y) (Left and right parentheses do not 
balance. ) 

1 Logical 



ASSIGNMENT STATEMENTS 

6.3 LOGICAL ASSIGNMENT STATEMENTS 

Use a logical assignment statement to assign a true or false value to 
a logical variable. 

ml^^ me format is: 

where 

v is a variable or array element of type logical 
e is a logical expression 

The logical assignment statement is similar to the arithmetic 
assignment statement, but it operates on logical data. The logical 
assignment statement evaluates the expression on the right side of an 
equal sign and assigns the resulting logical value, either true or 
false, to the variable or array element on the left. 

The variable or array element on the left of the equal sign must be of 
type LOGICAL; its value can be undefined before the assignment. 

You must have assigned values previously, either numeric or logical, 
to all symbolic references that appear in an expression. The 
expression must yield a logical value. 

Examples : 





CHAPTER 7 

SPECIFICATION STATEMENTS 

7.1 INTRODUCTION 

Specification statements in FORTRAN IV are nonexecutable statements 
that provide information necessary for the proper allocation and 
initialization o f  variables and names that you use in a program. 

7.2 TYPE DECLARATION STATEMENTS 

Type declaration statements explicitly define the data type of 
symbolic names. 

The format is: 

where 

typ is one of the following data type specifiers: 

LOGICAL 
INTEGER 
REAL 
DOUBLE PRECISION 
COMPLEX 

v is a typed variable or array 

A type declaration statement causes the specified symbolic names to 
have the specified data type; it overrides the data type implied by 
the initial letter of a symbolic name. 

A type declaration statement can define arrays by including array 
declarators (see Section 5.6.1) in the list. In each program unit, an 
array name can appear only once in an array declarator. Note, 
however, that 

is legal. 

Type declaration statements should precede all executable statements 
and all specification statements. You must precede the first use of 
any symbolic name with its declaration statement if you do not use the 
default type declaration. 

You can explicitly declare the data type of a symbolic name only once. 



SPECIFICATION STATEMENTS 

You must not label type declaration statements. The FORTRAN entities 
that you may type are: 

Arithmetic statement functions 
Arrays 
Functions 
Variables 

Examples : 

:f NTE:"GE:R COUNT MATRIX ( 4 9 4 1 9 SUM 
R E A L  MAN Y I ABS 
LOG I C A L  SUJ I TCH 

7.3 DIMENSION STATEMENT 

The DIMENSION statement defines the number of dimensions in an array 
and the number of elements in each dimension. 

The format is: 

DIMENSION a(d) [[,a(d). . . I ] . . .  

where 

a is the symbolic name of an array 
d is the dimension declarator 

Example : 

The DIMENSION statement allocates storage locations, one for each 
element in each dimension, for each array in the DIMENSION statement. 
You may declare any number of arrays in one dimension statement. Each 
storage location is 6 or 12 bytes in length as determined by the data 
type of the array. The amount of storage FORTRAN assigns to an array 
is equal to 6 or 12 times the product of all dimension declarators in 
the array declarator for that array. For example, 

defines ARRAY as having 16 real elements of 6 words each, and MATRIX 
as having 125 integer elements, also of 6 words each. 

You cannot declare more than 7 dimensions to an array. There is also 
a limit of 4095 elements to any array. Each size specification must 
be a non-zero positive integer constant. 

For further information concerning arrays and the storage of array 
elements, see Section 4.6. 

Array declarators can also appear in type declaration and COMMON 
statements; however, in each program unit, an array name can appear 
in only one array declarator. 



SPECIFICATION STATEMENTS 

You must not label DIMENSION statements. 

Examples : 

7.4 EXTERNAL STATEMENT 

m L  me EXTERNAL statement permits the use of external procedure names 

(functions, subroutines, and FORTRAN library functions) as arguments 
to other subprograms. 

The format is: 

EXTERNAL v[[,v]] . . . 
where 

v is the symbolic name of a subprogram or the name of a dummy 
argument associated with a subprogram 

Example : 

EXTERNAL.. SIN9 COSY ABS 

Any subprogram you use as an argument to another subprogram must 
appear in an EXTERNAL statement in the calling subprogram. Thus, the 
purpose of the EXTERNAL statement is to declare names to be subprogram 
names. This distinguishes the external name v from other variable or 
array names. 

The subprograms may be ones that you write or those that are part of 
the FORTRAN library. The EXTERNAL statement declares each name v to 
be the name of a procedure external to the program unit. Such a name 
can then appear as an actual argument to a subprogram. 

NOTE 

If you use a complete function reference 
(for example, a call to the SQRT 
external function) in a reference such 
as CALL SORT(A,SQRT(B),C), the function 
reference is a value (the square root of 
B) and you do not need to define it as 
an external statement. You would only 
have to define it if you were passing 
the function name , i.e., CALL 
SORT(AISQRTIC) e 

FORTRAN reserves the names you declare in an external statement 
throughout the compilation of the program; you cannot use them in any 
other declaration statement, with the exception of a type statement. 



SPECIFICATION STATEMENTS 

Example : 

Main Proqram Suboroqrams 

EXTERNAL SIN,COS,TAN 

. 
CALL TRIG (ANGLE ,SIN ,SINE) 

SUBROUTINE TRIG (X,F,Y) 
Y = F(X) 
RETURN 
END 

. 
CALL TRIG (ANGLE,COS,COSINE) . . FUNCTION TAN (X) 
CALL TRIG (ANGLE,TAN,TANGNT) TAN = SIN(X) / COS (X) . RETURN . END 

The CALL statements pass the name of a function to the subroutine 
TRIG. The function is subsequently invoked by the function reference 
F(X) in the second statement of TRIG. Thus, the second statement 
becomes in effect: 

depending upon which CALL statement invoked TRIG. The functions SIN 
and COS are examples of trigonometric functions supplied in the 
FORTRAN Lih-^ry. 

7.5 COMMON STATEMENT 

You use a COMMON statement so that a program and/or subprograms can 
share information. 

The format is: 

COMMON [ [  /[[cb]] / ] ]  nlist /[[cb]]/ nlist]]... 

where 

is a symbolic name or is blank. If the first cb is 
blank, you can omit the first pair of slashes 

nlist is a list of variable names, array names, and array 
declarators separated by commas 

Example : 

The COMMON statement enables you to establish storage that two or more 
programs and/or subprograms may share and to name the variables and 
arrays that will occupy the common storage. The use of common storage 
conserves storage and provides a means to implicitly transfer 
arguments between a calling program and a subprogram. The transfer is 
implicit because no actual tranferral takes place; instead, the 
program unit references the common storage area. 

FORTRAN determines the length of a COMMON block by the number of 
components and the amount of storage each component requires. COMMON 
blocks may be of any length, subject to the limitations of available 
memory. 



SPECIFICATION STATEMENTS 

After each common name cb, nlist lists the names of the variables and 
arrays that will occupy the common a r e a  cb. FORTRAN places the items 
for a common within common storage area in the order in which you list 
them in the COMMON statement or statements. 

Elements you place into common storage in one program unit should 
agree in data type with elements referenced in a second. This is 
because assignment of storage is on a storage unit-for-storage unit 
basis, not variable-for-variable. 

You may label COMMON storage areas or leave them blank (unlabeled). 
If you choose to label, type a symbolic name within slashes 
immediately before the list of items that will occupy the cb area. 

For example, the statement 

establishes two labeled common areas (AREA1 and AREA2). 

If you are declaring a common storage area to be blank common, then 
you may omit the double slashes ( / /  if and only if it is the first 
declaration of any common statement. Unlabeled common area is called 
"blank common". If the blank common declaration is not the first 
declaration in a COMMON statement, then the double slashes are 
mandatory. 

For example, the statement 

establishes one labeled area (AREA1) and one unlabeled common area. 

A given labeled common name may appear more than once in the same 
COMMON statement and in more than one COMMON statement within the same 
program or subprogram. 

During compilation of a source program, FORTRAN will bring together 
all items you list for each labeled and blank common area in the order 
in which the items appear in the source program statements. 

For example, the series of source program statements 

has the same effect as the single statement 

FORTRAN treats each labeled common area as a separate, specific 
storage area. You assign initial values to the contents of a common 
area -- that is, variables and arrays -- by DATA statements in a BLOCK 
DATA subprogram. Declarations of a given common area in different 
subprograms must contain the same number, size, and order of variables 
and arrays as the reference array. 



SPECIFICATION STATEMENTS 

Common block names must be unique with respect to all subroutine and 
function names. 

The largest definition of a given common area must be loaded first. 

Storage allocation for blocks of the same name begins at the same 
location for all program units FORTRAN executes together. For 
example, if a program contains 

COMMON A Y B Y C / R / X F Y Y Z  

as its first COMMON statement, and a subprogram has 

COMMON / R / U Y V Ã ˆ  / / D F E F F  

as its first COMMON statement, the values represented by X and U are 
stored in the same location. A similar correspondence holds for A and 
D in blank common. 

If one program unit references a part of a common block, then you must 
use dummy variables to establish the proper correspondence. For 
example, if you declare a common block to contain 

and a subprogram wishes to reference the storage location indicated by 
K, then you must declare a common block as in the following subprogram 

The declaration COMMON K in the subprogram would cause a 
correspondence between variable A in the main program and variable K 
in the subprogram. (Note that any other sequence of variable names 
would also be correct.) 

Instead of declaring each variable contained in the COMMON block, you 
may substitute a dummy array (provided that you are careful to match 
up proper storage lengths). For example, the following declaration 

(where DUMMY is an arbitrary variable name) is equivalent to the 
statement in the preceding example. 

7.5.1 COMMON Statements with Array Declarators 

You may also define an array in a COMMON statement. You may not 
otherwise subscript array names. Also, you cannot assign individual 
array elements to COMMON. 



SPECIFICATION STATEMENTS 

7 = 6  EQUIVALENCE STATEMENT 

You use an EQUIVALENCE statement to associate different variables with 
the same storage. 

EQUIVALENCE (nlist) [ [, (nlist) ] ] . . . 
where 

nlist is a list of variables and array elements, separated by 
commas. A t  least two components must be present in 
each list. 

Example : 

The EQUIVALENCE statement declares two or more entities to be 
associated (either totally or partially) with the same storage 
location. 

NOTE 

EQUIVALENCE associates different 
variable names with the same storage 
area i n  a program unit. COMMON may also 
associate different variable names with 
the same storage area, but it always 
makes the association between program 
units. 

The EQUIVALENCE statement causes FORTRAN to allocate the same storage 
locations for all the variables or array elements contained in one 
parenthesized list. Note that any REAL variable made equivalent to a 
DOUBLE PRECISION variable shares storage with the high-order word of 
that variable. Mixing of data types in this way is permissible. 
Also, multiple components of one data type can share the storage of a 
single component of a higher-ranked data type. For example, in the 
statement 

COMPLEX COMPL-X 
I:i:[ME:NS:LUN A R R A Y  ( 2  1 
EQUIVALENCE < COMPLX 9 ARRAY < 1 1 1 

the EQUIVALENCE statement causes the two elements of the array ARRAY 
to occupy the same storage as the complex variable COMPLX. In this 
example, ARRAY(1) shares storage with the real component of COMPLX 
while ARRAY(2) shares storage with the imaginary part. 

You can also use the EQUIVALENCE statement to equate variable names. 
For example, the statement 

E:Q1!1VALENCE ( FL -TLEN Y F L E N T H  9 F L I G H T  1 

causes FLTLEN, FLENTH, and FLIGHT to have the same value, provided 
they are also of the same data type. 



SPECIFICATION STATEMENTS 

An EQUIVALENCE statement in a subprogram must not contain dummy 
arguments. 

Examples : 

EQUIVALENCE (A9B)r ( B 9 C )  (has the same effect as EQUIVALENCE 
(A,B,C) 1 

7.6.1 Making Arrays Equivalent 

When you make an element of an array equivalent to an element of 
another array, the EQUIVALENCE statement also sets equivalences 
between other elements of the two arrays. Thus, if you make the first 
elements of two equal-sized arrays equivalent, both arrays share the 
same storage space. Moreover, if you make the third element of a 
five-element array equivalent to the first element of another array, 
the last three elements of the first array overlap the first three 
elements of the second array. 

The EQUIVALENCE statement must not attempt to assign the same storage 
location to two or more elements of the same array, nor to assign 
memory locations in any way that is inconsistent with the normal 
linear storage of array elements (e.g., making the first element of an 
array equivalent with the first element of another array, then 
attempting to set an equivalence between the second element of the 
first array and the sixth element of the other). 

In the EQUIVALENCE statement only, it is possible to identify an array 
element with a single subscript (i.e., the linear element number), 
even though you have defined one as being multidimensional. 

For example, the statements: 

result in the entire array TABLE sharing a portion of the storage 
space FORTRAN allocates to array TRIPLE as illustrated in Figure 7-1. 
In Figure 7-1, the elements with asterisks are those explicitly 
mentioned in the above EQUIVALENCE statement. 

Array Element 
Element Number 

Array TABLE I 
Array 
Element 

Element 
Number 

TABLE (1,l) 
TABLE(2,l) 
TABLE (1,2) 
TABLE(2,2) 

Figure 7-1 Equivalence of Array Storage 



SPECIFICATION STATEMENTS 

Figure 7-1 also illustrates that the two statements 

r e s u l t  i n  the same aliqnment of the two arrays. 

7.6.2 EQUIVALENCE and COMMON Interaction 

When you make components equivalent to entities in common, it can 
cause FORTRAN to extend the common block beyond its original 
boundaries. 

An EQUIVALENCE statement can only extend common beyond the last 
element of the p r e v i o u s l y  e s t a b l i s h e d  common block* It must not 
attempt to increase the size of common in such a way as to place the 
extended portion before the first element of existing common. For 
example : 

Leqal Extension of Common 

Existing Common Extended Portion 

Illegal Extension of Common 

DIMENSION A(4) ,B (6) A ( l )  A ( 2 )  A ( 3 1  A ( 4 )  
COMMON A 
EQUIVALENCE(A(2) ,B (3) ) B(1) B (2) B (3) B(4) B (5) B (6) 

Extended Existing Common Extended 
Portion Portion 

Figure 7-2 Legal and Illegal Common Extensions 

If you assign two components to the same or different common blocks, 
you must not make them equivalent to each other. 





DATA STATEMENTS AND BLOCK DATA SVBPRGGRAMS 

8.1 DATA STATEMENTS 

The DATA initialization statement permits tne assignmeri5 O C  initis1 
values to variables and array elements prior to program execution. 

The format is: 

DATA nlist/clist/[[ [[,]]nlist/clist/]]... 

where 

nlist is a list of one or more variable names, array names, 
or array element names separated by commas 

clist is a list of constants 

DATA A,B,C(3) ,C(7)/4.0,8.1,16.0,28.0/  

The DATA statement causes FORTRAN to assign the constant values in 
each clist to the entities in the preceding nlist. FORTRAN assigns 
values in a one-to-one manner in the order in which they appear, from 
left to right. 

When an unsubscripted array name appears in a DATA statement, FORTRAN 
assigns values to every element of that array. The associated 
constant list must therefore contain enough values to fill the array. 
FORTRAN fills array elements in the order of subscript progression 
(see Section 4 . 6 . 1 )  . 
When you assign Hollerith data to a variable or array element, the 
number of characters that you can assign depends on the data type of 
the component. If the number of characters in a H~llerith canstant Dr 
alphanumeric literal is less than the capacity of the variable or 
array element, the constant is padded on the right with spaces. If 
the number of characters in the constant is greater than the maximum 
number that the variable can hold, it ignores the rightmost excess 
characters. 



When you assign the same value to more than one item in nlistf you may 
use a repeat specificatione Write the repeat specification as N*D 
where N is an integer that specifies how many times the value of item 
D is to be used* For examplef a DATA specification0Â£/3*20 
specifies that the value 20 is to be assigned to the first three items 
named in the preceding list. Alsof the statement 

assigns the value 20 to the variables Mf Nf and L* The number of 
constants in a constant list must correspond exactly to the number of 
entities specified in the preceding name list* The data types of the 
data elements and their corresponding symbolic names must agree. 

FORTRAN IV converts the constant to the type of the variable being 
initialized. 

Example : 

The DATA statement assigns zero to all ten elements of array A, the 
value 7 to the variable BELL, and four asterisks to the real variable 
STARS* The 125-element arrayf Kf is initialized so that each of the 
five planes (i.eef the third dimension declarator) has a different 
value. 

When you initialize an arrayf you must initialize the entire array* 
Thusf the DATA statement in the example 

You could make the DATA statement of the example legal as follows: 

The values you assign with a DATA statement may also be assigned with 
a BLOCK DATA subprogram* Howeverf note that initial values for 
variables in COMMON storage may not be specified in subprograms that 
may be overlaid at execution time. I f  a subprogram will be overlaidf 
then you should only initialize these variables in a BLOCK DATA 
subprogram* (It is good programming practice to use BLOCK DATA 
subprograms to initialize only variables in COMMON storage*) 

8 - 2  BLOCK DATA SUBPROGRAM 

You use a BLOCK DATA to initialize variables you place into COMMON 
storage 

The format is: 

BLOCK DATA 

Use the BLOCK DATA subprogram to assign initial values to entities in 
comnon blocksf at the same time establishing and defining those 
blocks. The subprogram consists of a BLOCK DATA statement followed by 
a series o f  specification staternelts. 



DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS 

The statements FORTRAN allows in a BLOCK DATA subprogram are: 

The specification statements i n  the BLOCK DATA subprogram establish 
z ~ d  d e f i ~ e  CGEECR bl~cks, z s s i ~ ~  ~~zrizbles z ~ d  arral7s te these b l ccks ,  
and assign initial values to those components. 

A BLOCK DATA statement must be the first statement of a BLOCK DATA 
s ~ b p r ~ g r m .  YGG zast fiat lab21 the BLGCK DATA stat~aefit. 

A BLOCK DATA subprogram must not contain any executable statements. 

If you lnltlallze any entlty ln a common block in a BLOCK DATA 
subprogram, you must enter a complete set of specification statements 
to establish the entire block, even though some of the components in 
the block do not appear in a DATA statement. You can define initial 
values for more than one common area with the BLOCK DATA subprogram. 

Example : 





CHAPTER 9 

CONTROL S?hTSME?4?S 

PnQTDA%K n n r m a l l x 7  n v n , - ! ~ + f i c  c + - z + n - n n + c  :n +-ha n v d n v  i z  $:Ai:ph yo12 +:rite 
4. "',A L . ' & L .  , A " 4 . , , & L , A A I  L'.LbUbb" "LU Lb.%,b,'b" A,, L',b " L  UbL 

them. However, it is frequently desirable to change the normal 
program flow by transferring control to another section of the program 
or to a subprogram. Transfer of control from a given point in the 
program may occur every time that point is reached in the program 
flow, or may be based on a decision made at that point. 

Transfer of control, whether within a program unlt or to another 
program unit, is effected by control statements. These statements 
also govern iterative processing, suspension of program execution, and 
program termination. The types of control statements discussed in 
this chapter are: 

ASSIGN IF 
CONTINUE GO TO 
DO PAUSE 
END STOP 

A second kind of statement for transferring control, subprograms, 
discussed in Chapter 10. 

9.2 GOT0 STATEMENTS 

GOT0 statements transfer control within a program unit, either to 

is 

the 
same statement every time or to one of a set of statements, based on 
the value of an expression. 

The three types of GOT0 statements are: 

Unconditional 

e Computed 

a Assigned 

9.2'1 Unconditional GOT0 Statement 

This type of GOT0 statement transfers control to the same statement 
every time it is executed* 



CONTROL STATEMENTS 

The format is: 

where 

st is the label of an executable statement in the same program 
unit as the GOT0 statement 

Example : 

The unconditional GOT0 statement transfers control to the statement 
identified by the specified label. The statement label must identify 
an executable statement in the same program unit as the GOT0 
statement. 

Examples : 

(Invalid; the statement label is improperly 
formed.) 

9.2.2 Computed GOT0 Statement 

This type of GOT0 statement transfers control to a statement based on 
the value of an expression within the statement. 

The format is: 

GOT0 (slist) [[,]I e 

where 

slist is a list of one or more executable statement labels 
separated by commas 

I is an optional separator 
e is an integer expression the value of which falls 

within the range 1 to n (where n is the number of 
statement labels in slist) 

Example : 

Use the computed GOT0 to transfer control to one statement out of a 
list of statements. The computed GOT0 thus acts as a multidirectional 
switch. 

The computed GOT0 statement evaluates the integer expression e and 
then transfers control to the e'th statement label in slist. That is, 
if the list contains (30,20,30,40), and the value of e is 2, the GOTO 
statement transfers control to statement 20, and so on. 



CONTROL STATEMENTS 

You may include any number of statements in slist, but you must use 
each number as a label within the program. 

Examples : 

If the value of the expression is less than 1, or greater than the 
number of labels in the slist, unpredictable results occur; 

9 = 2 = 3  ASSIGN and ASSIGNed GOTO Statement 

9.2.3.1 ASSIGN Statement - You use the ASSIGN statement to assign a 
statement label to a variable name. 

The format is: 

ASSIGN st to v 

where 

st is the label of an executable statement in the same program 
unit as the ASSIGN statement 

v is an integer variable 

Example : 

Use the ASSIGN statement to associate a statement label with an 
integer variable. You can then use the variable as a transfer 
destination in a subsequent ASSIGNed GOT0 statement (see Section 
9.2.3.2). 

NOTE 

The statement number must be in the same 
program unit. 

The statement label st must not be the label of a FORMAT statement. 

The ASSIGN statement assigns the statement number to the variable in a 
manner similar to that of an arithmetic assignment statement, with one 
exception: the variable becomes defined for use as a statement label 
reference and becomes undefined as an integer variable. 

FORTRAN must execute an ASSIGN statement before the ASSIGNed GOT0 
statement in which it will use the assigned variable. The ASSIGN 
statement and the ASSIGNed GOT0 statement must occur in the same 
program unit. 

For example, the statement 

associates the variable NUMBER with the statement label 100. 



CONTROL STATEMENTS 

Arithmetic operations on the variable, as in the statement 

NUMBER -Â¥ NUMBER + 1 

then become invalid, because FORTRAN cannot alter a statement label. 
(This is because a statement refers to a location in memory and is not 
a number.) The statement 

disassociates NUMBER from statement 100, assigns it an integer value 
10, and returns it to its status as an integer variable. After you 
make such an assignment, you can no longer use it in an ASSIGNed GOT0 
statement. 

Examples : 

A S S I G N  250 TO ERROR (You must first define ERROR as an 
integer variable.) 

9.2.3.2 ASSIGNed GOT0 Statement - The ASSIGNed GOT0 transfers control 
to a statement that is represented by a variable. 

The format is: 

where  

v is an integer variable 
I is an optional separator 
slist (when present) is a list of one or more executable 

statement labels separated by commas 

Example : 

The ASSIGNed GOT0 statement transfers control to the statement whose 
label was most recently assigned to the variable v by an ASSIGN 
statement. 

The variable v must be of integer type. In addition, you must have 
previously assigned to it a statement label number with an ASSIGN 
statement (not an arithmetic assignment statement). 

The ASSIGNed GOT0 statement and its associated ASSIGN statement must 
reside in the same program unit. Also, statements to which FORTRAN 
transfers control must be executable statements in the same program 
unit. 

Examples : 



CONTROL STATEMENTS 

If the statement label value of v is not present in the list slist 
(and 2 list is specified), c o n t r o l  t r a n s f e r s  t o  the next executable 
statement following the ASSIGNed GOT0 statement. 

You must label the statement following 
an ASSIGNed GOTO; otherwise, FORTRAN 
can never execute that statement. 

9.3 IF STATEMENTS 

An IF statement causes a conditional control transfer or the 
mL.-.e,. conditional execution of a statement. 1 1 1 ~ ~ ~  are two t y p a s  of IF 

statements: 

Arithmetic IF statements 

Logical IF statements 

9.3.1 Arithmetic IF Statement 

You use the arithmetic IF as a three-way branching statement. The 
branching depends on whether the value of a n  expression is less than, 
equal to, or greater than zero. 

The format is: 

IF (e) stl, st2, st3 

where 

e is an arithmetic expression 
stl, st2, st3 are the labels of executable statements in the 

same program unit 

Example : 

Use the arithmetic IF statement for conditional control transÂ£ers 
This statement can transfer control to one of three statements, based 
on the value of an arithmetic expression. 

You may use logical expressions in arithnetic IF statements. In such 
a case, FORTRAN first converts the logical expression value to an 
integer. If you use a complex expression, FORTRAN only uses the real 
portion. 

Normal use of the arithmetic IF requires that all three labels, stl, 
st2, and st3, must be present. However, they need not reÂ£e to three 
different statements. If desired, one or two labels can refer to the 
same statement. 



CONTROL STATEMENTS 

OS/8 FORTRAN 
either one o 
condition is 

allows you to type less than three numbers. If you type 
r two numbers, control passes to the next statement when a 
not met (e.g., e is greater than zero). 

Example : 

I F  (ALPHA) 10 
STOP 

In this statement, control transfers to statement number 10 if ALPHA 
is negative. If ALPHA is positive or equal to zero, execution stops. 

The arithmetic IF statement first evaluates the expression in 
parentheses and then transfers control to one of the three statement 
labels that follow expression e. The values according to which 
FORTRAN makes the selection are listed in Table 9-1. 

Table 9-1 
Arithmetic IF Transfers 

1 If the Value Is: I Control passes To: 1 
Less than 0 

Equal to 0 

Label st1 

Label st2 

Examples : 

1 Greater than 0 

This statement transfers control to statement 50 if the real variable 
THETA is less than or equal to the real variable CHI. Control passes 
to statement 100 only if THETA is greater than CHI. 

Label st3 

This statement transfers control to statement 40 if the value of the 
integer variable NUMBER is even, and to statement 20 if it is odd. 

9.3.2 Logical IF Statement 

You use a logical IF statement for conditional execution of 
statements. 

The format is: 

IF (e) st 

where 

e is a logical expression 
st is a complete FORTRAN statement. The statement can be any 

executable statement except a DO statement or another 
logical IF statement. 

Example : 



CONTROL STATEMENTS 

FORTRAN bases the decision to execute the conditional statement on the 
value of  a  l o q i c a l  expression within the statement. 

The logical IF statement first evaluates the logical expression. If 
the value of the expression is true, FORTRAN transfers control to the 
execntahie statement vi-hh'in the I F  statement. If the v d n e  s f  the 
expression is false, control transfers to the next executable 
statement following the logical IF; in this case, FORTRAN does not 
execute statement st. 

Examples : 

9.4 DO STATEMENT 

You use the DO statement to execute a block of statements repeatedly. 

The format is: 

where 

st is the label of an executable statement that physically 
follows in the same program unit 

i is an unsubscripted real or integer variable 
el (the initial value of i) is an integer, real constant, or 

expression 
e2 (the terminal value of i) is an integer, real constant, or 

expression and must be greater than el 
e3 (the value by which i will be incremented each time it 

executes the statements in the range of the DO loops) is an 
integer, real constant, or expression 

Example : 

The DO statement causes FORTRAN to execute the statements in its range 
a specified number of times. 

The range of a DO statement is defined as the series of statements 
that follow the DO statement up to and including its specified 
terminal statement st; that is, the statements that follow the DO 
statement, up to and including the terminal statement, are in the 
range of the DO loop. 

The variable i is called the control (or index) variable of the DO and 
el, e2, e3 are the initial, terminal, and increment parameters 
respectively. 



CONTROL STATEMENTS 

The terminal statement of a DO loop is identified by the label st that 
appears in the DO statement. This terminal statement must not be a 
GOT0 statement, an arithmetic IF statement, a RETURN statement, a 
PAUSE statement, a STOP statement, or another DO statement. A logical 
IF statement is acceptable, provided it does not contain any of the 
above statements. 

The DO statement first evaluates the expressions el, e2, e3 to 
determine values for the initial, terminal, and increment parameters. 
FORTRAN then assigns the value of the initial parameter to the control 
variable. FORTRAN then repeatedly executes the statements in the 
range of the DO loop. 

The increment parameter must be positive and not zero; the value of 
the terminal parameter must not be less than that of the initial 
parameter. 

After each execution of the range of the DO loop, FORTRAN adds the 
increment value to the value of the index. It then compares the 
result to the terminal value. If the index value is not greater than 
the terminal value, FORTRAN reexecutes the range using the new value 
of the index i. 

The number of executions of the DO range, called the iteration count, 
is given by 

FORTRAN always executes the range of a DO statement at least once. 

9.4.1 DO Iteration Control 

You can terminate the execution of a DO by a statement within the 
range that transfers control outside the loop. When you transfer out 
of the DO loop's range, the control variable of the DO remains defined 
with its current value. 

When execution of a DO loop terminates, if other DO loops share the 
same terminal statement, control transfers outward to the next most 
enclosing DO loop in the DO nesting structure (Section 9.4.2). If no 
other DO loops share this terminal statement, or if this DO is the 
outermost DO, control transfers to the first executable statement 
following the terminal statement. 

You may alter the values of i, el, e2, and e3. If you alter the value 
of i,  the loop will not be executed the number of times that you 
originally specified. If you alter the values of the expressions, you 
do not affect the looping because FORTRAN "remembers" these values. 
The control variable i is available for reference as a variable within 
the range. 

The range of a DO loop can contain other DO statements, so long as 
those "nested" DO loops conform to certain requirements (see Section 
9.4.2). 



CONTROL STATEMENTS 

Examples : 

DO :1.00 K-:l ~ 5 0 ~ 2  (25 iterations, K=49 during final iteration) 

g 2 5 I I..,) ft z :k y 5 (5 iterations, IVAR=5  d u r i n g  f i n a l  iteration) 

DO NUMBEFt:=:SAO)^ f~nvalid; statement label missingj 

The last example illustrates a common clerical error. It i s  a valid 
arithmetic assignment statement in the FORTRAN language; i.e., 

9.4.2 Nested DO Loops 

A DO loop may contain one or more complete DO loops. The range of an 
inner-nested DO must lie completely within the range of the next outer 
loop. Nested loops may share the same terminal statement. 

Correctly Nested 
DO Loops 

. 
35 CONTINUE 

. 
45 CONTINUE 

Incorrectly Nested 
DO Loops 

. 
15 CONTINUE 

25 CONTINUE 

. 
30 CONTINUE 

Figure 9-1 Nesting of DO Loops 

In the correctly nested DO loops, note that the diagrammed lines do 
not cross. They do, however, share the same statement (45). In the 
incorrectly nested DO loops, the loop defined by DO 25 crosses the 
ranges of the other two DO loops. 

Note that you may nest loops to a depth of (at least) 10 levels. 

9.4.3 Control Transfers  i n  DO LOOPS 

Within a nested DO loop structure, you can transfer control from an 
inner loop t o  an outer loop. A transfer from an outer loop to an 
inner loop is illegal. 



CONTROL STATEMENTS 

If two or more nested DO loops share the same terminal statement, you 
can transfer control to that statement only from within the range of 
the innermost loop, that is, the terminal statement belongs solely to 
the innermost DO statement. Any other transfer to that statement 
constitutes a transfer from an outer loop to an inner loop because the 
shared statement is part of the range of the innermost loop. 

The following rules govern the transfer of program control f r o m  within 
the DO statements range or the ranges of nested DO statements. 

FORTRAN permits a transfer out of the range of any DO 
statement at any time. When such a transfer executes, the 
controlling DO statement's index variable retains its current 
value. 

FORTRAN permits a transfer into the range of a DO statement 
from within the range of any: DO loop; nested DO loop; or 
extended range loop (in which you leave the loop via a GOTO, 
execute statements elsewhere, and return to the original 
loop) . 

9.4.4 Extended Range 

A DO loop is said to have an extended range if it contains a control 
statement that transfers control out of the loop and if, after the 
execution of one or more statements, another control statement returns 
control back into the loop. In this way, FORTRAN extends the range of 
the loop to include all of the executable statements between the 
destination statement of the first transfer and the statement that 
returns control to the loop. 

Figure 9-2 illustrates valid and invalid control transfers, 

Valid Invalid 
Control Transfers Control Transfers 

50 
Extended 

Range 

. 
CONTINUE 

. 
CONTINUE 

. 
CONTINUE 

. 
CONTINUE . 
CONTINUE 

Figure 9-2 Control Transfers and Extended Range 

9 - 1 f l  



CONTROL STATEMENTS 

The following rules govern the use of a DO statement extended range. 

w The s t a t e m e n t  you wan t  t o  t r a n s f e r  o u t  o f  a n  e x t e n d e d  r a n g e  
operation must be within the most deeply nested DO statement 
that contains the location to which the return transfer is to 
be made. 

You may transfer into the range of a DO statement only from 
the extended range of that DO statement. 

0 You may not use another DO statement in the extended range of 
a DO statement. 

0 The extended range of a  DO s t a t e m e n t  c a n n o t  c h a n g e  t h e  i n d e x  
variable or indexing parameters of the DO statement. 

0 You may execute subprograms within an extended range. 

9.5 CONTINUE STATEMENT 

Insert a CONTINUE statement where you do not wish a statement to be 
executed. 

The format is: 

st CONTINUE 

where 

st is a statement label 

A CONTINUE statement is a statement that holds a place in the program 
without performing any operations. 

You may place CONTINUE statements anywhere in the source program 
without affecting the program sequence of execution. CONTINUE 
statements are commonly used as the last statement of a DO statement 
range in order to avoid ending with a GOTO, PAUSE, STOP, RETURN, 
arithmetic IF, another DO statement, or a logical IF statement 
containing one of the previous statements. 

Note that you also use a CONTINUE as a transfer point for a GOT0 
statement within the DO loop that is intended to begin another 
repetition of the loop. 

Example : 

In the following sequence, the labeled CONTINUE statement provides a 
legal termination for the range of the DO loop. 

DO 45 ITEM::=,. Y 1000 
STOCK-NVNTRY d T E M  1 
IT ( STOCK i EQ + TAL-1-Y ) GO TO 45 
: A I  .- I... UPDATE: ( s-rOc:t< TALLY 1 
IF ( I T E M  tEQ+ 1-ASTI GO TO 77 
CONTINUE 

+ 

WRITE: ( 4 Y 20 1 HEiADING 9 PAGELNCI 



CONTROL STATEMENTS 

9.6 PAUSE STATERENT 

You use the PAUSE statement to suspend program execution temporarily 
to give yourself time to perform some action. 

The format is: 

PAUSE [ [num] ] 

where 

num is an optional integer variable or expression containing one 
to five digits 

The PAUSE statement prints the display (if you have specified one) at 
your terminal, suspends program execution, and waits for you to type 
the RETURN key. This causes program execution to resume with the 
first executable statement following the PAUSE. 

Examples : 

PAUSE ' :I. 373 1. 

PAUSE ' MOUNT TAPE-: RE:EL #3 ' 

9.7 STOP STATEMENT 

You use the STOP statement to terminate program execution. 

The format is: 

STOP 

When the STOP statement terminates program execution, it returns 
control to the operating system. If you do not type a STOP statement, 
a "stopt' occurs when FORTRAN transfers control to an END statement in 
the main program unit. 

A C A L L  EXIT statement is equivalent to STOP and closes any temporary 
files at the last block written on the file. Control returns to the 
OS/8 monitor. 

Examples : 

9.8 END STATEMENT 

You mark the end of every program unit with an END statement, which 
must be the last source line of every program unit. 

The format is: 

END 

In a main program, if control reaches the END statement, execution of 
the program terminates; in a subprogram, a RETURN statement is 
implicitly executed. 



CONTROL STATEMENTS 

In the main program, END is equivalent to S T O P ;  in a subprogram, it 
is equivalent to R E T U R N .  

A program cannot reference an E N D  statement. 

Control returns to the OS/8 monitor after FORTRAN executes an END 
s t a t e m e n t .  

If you do not type an END statement as the last statement in your 
program; FORTRAN appends one, 





CHAPTER 10 

SUBPROGRAMS 

INTRODUCTIONS 

Procedures you use repeatedly in a program may be written once and 
then referenced each time you need the procedure. Procedures that you 
may reference are either internal (written and contained within the 
program in which they are referenced) or external (self-contained 
executable procedures that you may compile separately). The kinds of 
procedures that you may reference are: 

Arithmetic statement functions 

External functions 

e Subroutines 

Intrinsic functions (FORTRAN-defined functions) 

10.2 SUBPROGRAM ARGUMENTS 

Since you may reference subprograms at more than one point throughout 
a program, many of the values that the subprogram uses may change each 
time you call the subprogram. Dummy arguments in subprograms 
represent the actual values that the subprogram will use. The 
arguments are passed to the subprogram when FORTRAN transfers control 
to it. 

Functions and subroutines use dummy arguments to indicate the type of 
the actual arguments they represent and whether the actual arguments 
are variables, array elements, arrays, subroutine names, or the names 
of external functions. You must use each dummy argument within a 
subprogram as if it were a variable, array, array element, subroutine, 
or external function identifier. You enter dummy arguments in an 
"argument list" that you associate with the identifier assigned to the 
subprogram; actual arguments are normally given in an argument list 
that you associate with a call made to the subprogram. 

The position, number, and type of each dummy argument in a subprogram 
must agree with the position, number, and type of each argument in the 
argument list of the subprogram reference. 

Dummy arguments may be: 

Variables 

Array names 

Subroutine identifiers 

e Function identifiers 



SUBPROGRAMS 

When you reference a subprogram, FORTRAN replaces its dummy arguments 
with the corresponding actual arguments that you supply in the 
reference. All appearances of a dummy argument within a function or 
subroutine are related to the given actual arguments. Except for 
subroutine identifiers and literal constants, a valid association 
between dummy and actual arguments occurs only if both are of the same 
type; otherwise, the result of the subprogram will be unpredictable. 
Argument associations may be carried through more than one level of 
subprogram reference if a valid association is maintained through each 
level. The dummy/actual argument associations established when you 
reference a subprogram terminate when FORTRAN completes the operations 
defined in the subprogram. 

The following rules govern the use and form of dummy arguments. 

The number and type of the dummy arguments of a procedure must 
be the same as the number and type of the actual arguments 
given each time you reference the procedure. 

You may not use dummy argument names in EQUIVALENCE, DATA, or 
COMMON statements. 

You should provide a variable dummy argument with a variable, 
an array element identifier, an expression, or a constant as 
its corresponding argument. 

You should provide an array dummy argument with either an 
array name or an array element identifier as its corresponding 
actual argument. If the actual argument is an array, the 
length of the dummy array should be less than or equal to that 
of the actual array. FORTRAN associates each element of a 
dummy array directly with the corresponding elements of the 
actual array. 

You must provide a dummy argument representing an external 
function with an external function as its actual argument. 

You should give a dummy argument representing a subroutine 
identifier a subroutine name as its actual argument. 

You may define (or redefine) a dummy argument in a referenced 
subprogram only if its corresponding actual argument is a 
variable. If dummy arguments are array names, then you may 
redefine the elements of the array. 

10.3 USER-WRITTEN SUBPROGRAMS 

FORTRAN transfers control to a function by means of a function 
reference. It transfers control to a subroutine by a CALL statement. 
A function reference is the name of the function, together with its 
arguments, appearing in an expression. A function always returns a 
value to the calling program. Both functions and subroutines may 
return additional values via assignment to their arguments. A 
subprogram can reference other subprograms, but it cannot, either 
directly or indirectly, reference itself (that is, FORTRAN is not 
recursive). 



SUBPROGRAMS 

10.3.1 Arithmetic Statement Functions (ASF) 

You use an Arithmetic statement function to define a one-statement, 
self-contained computational procedure. 

.-"L m e  fo rmat  is: 

where 

nam is the name you assign to the ASF 
a is a dummy argument 
e is an expression 

Examples : 

An arithmetic statement function is similar in form to an arithmetic 
assignment statement. The appearance of a reference to the function 
within the same program unit causes FORTRAN to perform the computation 
and make the resulting value available to the expression in which the 
ASF reference appears. 

The expression e is an arithmetic expression that defines the 
computation to be performed by the ASF. 

You reference an ASF in the same manner as an external function. 

The format is: 

where 

nam is the name of the ASF 
a is an actual argument 

NOTE 

You must define all ASFs before you type 
any executable statements. 

When a reference to an arithmetic statement function appears in an 
expression, FORTRAN associates the values of the actual arguments with 
the dummy arguments in the ASP definition. FORTRAN then evaluates the 
expression in the defining statement and uses the resulting value to 
complete the evaluation of the expression containing the function 
reference. 

You specify the data type of an ASF either implicitly by the initial 
letter of the name or explicitly in a type declaration statement. 

Dummy arguments in an ASF definition only indicate the number, order, 
and data type of the actual arguments. You may use the same names to 
represent other entities elsewhere in the program unit. Note that 
with the exception of data type, FORTRAN does not associate 
declarative information (such as placement in COMMON or declaration as 
an array) with the ASF dummy arguments. Also, you cannot use the name 
of the ASF to represent any other entity within the same program unit. 



SUBPROGRAMS 

The expression in an ASF definition may contain function references. 

Any reference to an ASF must appear in the same program unit as the 
definition of that function. You cannot use an ASF name in an 
EXTERNAL statement. 

An ASF reference must appear as, or be part of, an expression; you 
must not use it as the left side of an assignment statement. 

Actual arguments must agree in number, order, and data type with their 
corresponding dummy arguments. You must assign values to actual 
arguments before the reference to the arithmetic statement function. 

Examples : 

Definitions 

( Invalid ; constant as dummy 
argument not permitted) 

ASF References 

(Definition) 

FINAL "-: A V G  < TE::ST:5 P T E S T 4  Ã L..AB2? (Invalid; data type of third 
argument does not agree with dummy 
argument) 

10.3.2 FUNCTION Subprogram 

A FUNCTION is an external computing procedure that returns a value. 
You use this value as an expression or as part of an expression. 

The format is: 

[ [typi I FUNCTION nam (a [ [ , a * .  .] 1 ) 

where 

typ is an optional data type specifier 
nam is a name of the function 
a is one of a maximum of six dummy arguments 

A FUNCTION subprogram is a program unit that consists of a FUNCTION 
statement followed by a series of statements that define a computing 
procedure. FORTRAN transfers control to a FUNCTION subprogram by a 
function reference and returns to the calling program unit when it 
encounters a RETURN statement. 



SUBPROGRAMS 

You must always specify at least one argument to a FUNCTION. You may 
specify other arguments explicitly or place them in COMMON. 

A FUNCTION subprogram returns a single value to the calling program 
unit by assigning that value to the function's name. FORTRAN 
determines the data type of the returned value by the function's name 
unless you have specified the data type. 

A function reference that transfers control to a FUNCTION subprogram 
has the form; 

where 

nam is the symbolic name of the function 
a is an actual argument 

When FORTRAN transfers control to a function subprogram, FORTRAN 
associates the values you supply through the actual arguments (if any) 
with the dummy arguments (if any) in the FUNCTION statement. FORTRAN 
then executes the statements in the subprogram. 

NOTE 

You may not pass an array to a 
subprogram if it contains more than 2047 
elements. You must implicitly pass 
larger arrays in COMMON. 

You must assign a value to the name of the function before FORTRAN 
executes a RETURN statement in that function. When FORTRAN returns 
control to the calling program unit, it makes the value you have 
assigned to the function's name available to the expression that 
contains the function reference; it then uses this value to complete 
the evaluation of the expression. 

NOTE 

You can store variables that a FUNCTION 
requires in COMMON rather than passing 
them explicitly. 

You may specify the type of a function name implicitly or explicitly 
in the FUNCTION or type declaration statement. 

The  FUNCTION statement must be the first statement of a function 
subprogram. You may not label a FUNCTION statement. 

A FUNCTION subprogram must not contain a SUBROUTINE statement, a BLOCK 
DATA statement, or a FUNCTION statement (other than the initial 
statement of the subprogram). A function may, however, call another 
function or subroutine so long as the call is not directly or 
indirectly recursive. 



SUBPROGRAMS 

10.3.3 SUBROUTINE Subprograms 

A SUBROUTINE is an external computing procedure that you may 
repeatedly call from a program or subprogram. 

The format is: 

SUBROUTINE R a m  [ [ (  [ [a[[,a] ] .. .] 1 )  1 ] 

where 

nam is the name of the subroutine 
a is a dummy argument 

A SUBROUTINE subprogram is a program unit that consists of a 
SUBROUTINE statement followed by a series of statements that define a 
computing procedure. FORTRAN transfers control to a SUBROUTINE 
subprogram by a CALL statement and returns to the calling program unit 
by a RETURN statement. 

When FORTRAN transfers control to a subroutine, it associates the 
values you supply with the actual arguments (if any) in the CALL 
statement with the corresponding dummy arguments (if any) in the 
SUBROUTINE statement. You may not specify more than six arguments in 
a subroutine call. FORTRAN then executes the statements in the 
subprogram. 

The SUBROUTINE statement must be the first statement of a subroutine; 
it must not have a statement label. 

A SUBROUTINE subprogram cannot contain a FUNCTION statement, a BLOCK 
DATA statement, or a SUBROUTINE statement (other than the initial 
statement of the subprogram). 

Example : 



SUBPROGRAMS 

The subroutine in this example computes the volume of a regular 
p~1yhedro5, givsn the nspiber of faces 2nd the J-enmth XI '-a- of one edge. 
uses a computed GOT0 statement to determine whether the polyhedron is 
a tetrahedron, cube, octahedron, dodecahedron, or icosahedron, and 
also to transfer control to the proper procedure for calculating the 
Ã ‘1 . - -  7 - k -  - . - - l ^ - i ~  - C  C- , -A-  A C  4 - k ~  l ^ ~ a i v  . 
l i n e  . -Lx. LllC: nuiiiuci. uJ- J-aLca ux. i-in; Uuth-ty IS 0 t h ~ ~  t h ~ n  1, 6, 8, 12 ,  
or 20, the subroutine transmits an error message to logical unit 4 as 
indicated in the WRITE statement. 

10.4 CALL STATEMENT 

The CALL statement causes the execution of a SUBROUTINE subprogram; 
it can also specify an argument list for use by the subroutine. 

where 

s is the name of a SUBROUTINE subprogram, a user-written 
assembly language routine, or a DEC-supplied system 
subroutine, or a dummy argument associated with one of the 
above 

a is an actual argument 

After the CALL statement has associated the values in the argument 
list (if the list is present) with the dummy arguments in the 
subroutine, it then transfers control to the first executable 
statement of the subroutine. 

The arguments in the CALL statement must agree in number, order, and 
data type with the dummy arguments in the subroutine definition. They 
can be variables, arrays, array elements, constants, expressions, 
alphanumeric literals, or subprogram names (if those names have been 
specified in an EXTERNAL statement, as described in Section 7.4). 
Note that an unsubscripted array name in the argument list refers to 
the entire array. 

Examples : 

10.5 RETURN STATEMENT 

You use the RETURN statement to return control from a subprogram unit 
to the calling program unit. 

The format is: 

RETURN 

When FORTRAN executes a RETURN statement in a FUNCTION subprogram, it 
returns control to the statement that contains the function reference. 
When FORTRAN executes a RETURN statement in a SUBROUTINE subprogram, 
it returns control to the first executable statement following the 
CALL statement that initiated execution of the subprogram. 



SUBPROGRAMS 

A RETURN statement must not appear in a main program unit. 

Example : 

10.6 FORTRAN LIBRARY FUNCTIONS 

The FORTRAN library functions are listed and described in Chapter 13. 
You write function references to FORTRAN library functions in the same 
form as function references to user-defined functions. For example, 

causes the absolute value of X-1 to be calculated, multiplied by the 
constant 3.14159, and assigned to the variable R. 

The data types of each library function and of the actual arguments 
are specified in Chapter 13. Arguments you pass to these functions 
may not be array names or subprogram names. 

Processor-defined function references are local to the program unit in 
which they occur and do not affect or preclude the use of the name for 
any other purpose in other program units. 



CHAPTER 11 

INPUT/OUTPUT STATEMENTS 

INTRODUCTION 

You specify input of data to a program by READ statements and output 
by WRITE statements. You use some form of these statements in 
conjunction with format specifications to control translation and 
editing of the data between internal representation and character 
(readable) form. 

Each READ or WRITE statement contains a reference to the logical unit 
to or from which data transfer is to take place. You may associate a 
logical unit to a device or file. 

READ and WRITE statements fall into the following three categories: 

Unformatted sequential 1/0 transmit binary data without 
translation. 

Formatted sequential 1/0 transmit character data using format 
specifications to control the translation of data to 
characters on output, and to internal form on input. 

Unformatted direct access 1/0 transmit binary data without 
translation to and from direct access files. 

To perform file management functions, you use auxiliary 1/0 
statements, REWIND and BACKSPACE perform file positioning. The 
ENDFILE statement writes a special record that will cause an 
end-of-file condition when read by a READ statement. The BACKSPACE 
statement repositions a file to the previous record. The DEFINE FILE 
statement declares a logical unit to be connected to a direct access 
file and specifies the characteristics of the file. 

11.1.1 Input/Output Devices and Logical Unit Numbers 

OS/8 FORTRAN uses the 1/0 services of the operating system and thus 
supports all peripheral devices that are supported by the operating 
system. 1/0 statements refer to 1/0 devices by means of logical unit 
numbers, which are integer constants or variables with a positive 
value. 

The default logical unit numbers are: 

1 Paper Tape Reader 
2 Paper Tape Punch 
3 Line Printer 
4 Terminal 

The logical unit number must be in the range 1 through 9. 



INPUT/OUTPUT STATEMENTS 

11.1.2 Format Specifiers 

You use format specifiers in formatted 1/0 statements. A format 
specifier is the statement label of a FORMAT statement. Chapter 12 
discusses FORMAT statements. 

11.1.3 Input/Output Record Transmission 

1/0 statements transmit data in terms of records. The amount of 
information that one record can contain, and the way in which records 
are separated, depend on the medium involved. 

For unformatted I/O, specify the amount of data that FORTRAN will 
transmit by an 1/0 statement. FORTRAN determines the amount of 
information it will transmit by the 1/0 statement and by 
specifications in the associated format specification. 

If an input statement requires only part of a record, you lose the 
excess portion of the record in transmission. In the case of 
formatted sequential input or output, you may transmit one or more 
additional records by a single 1/0 statement. 

An 1/0 list specifies the data items to be manipulated by the 
statement containing the list. The 1/0 list of an input or output 
statement contains the names of variables, arrays, and array elements 
whose values FORTRAN will transmit. In addition, the 1/0 list of an 
output statement can contain constants and expressions. 

The format is: 

where 

s is a simple list or an implied DO list 

The 1/0 statement assigns input values to, or outputs values from, the 
list elements in the order in which they appear, from left to right. 

11.2.1 Simple Lists 

A simple 1/0 list consists of a single variable, array, array element, 
constant, or expression. 

When an unsubscripted array name appears in an 1/0 list, a READ 
statement inputs enough data to fill every element of the array; a 
WRITE statement outputs all of the values contained in the array. 
Data transmission starts with the initial element of the array and 
proceeds in the order of subscript progression, with the leftmost 
subscript varying most rapidly. For example, if the unsubscripted 
name of a two-dimensional array defined as 

DIMENSION A R R A Y  ( 3 Ã 3 ) 

appears in a READ statement, that statement assigns values from the 
input record(s) to ARRAY(1,1), ARRAY(2,1), ARRAY(3,1), ARRAY(1,2), and 
so on, through ARRAY (3,3). 



If, in a READ statement, you input the individual subscripts for an 
a r r a y ,  you must i n p u t  the s u b s c r i p t s  be fo re  t h e i r  u s e  in the array, 
If, for example, FORTRAN executes the statement 

and the input record contains the values 

FORTRAN assigns the value 721.73 to ARRAY(1,3). FORTRAN assigns the 
first input value to J and the second to K, thereby establishing the 
actual subscript values for ARRAY(J,K). Variables that you use as 
subscripts in this way must appear to the left of their use in the 
array subscript. 

You may use any valid expression in an output statement 1/0 list. 
However, the expression must not cause FORTRAN to attempt further 1/0 
operations. A reference in an output statement 1/0 list expression to 
a FUNCTION subprogram that itself performs input/output is illegal. 

You must not include an expression in an input statement 1/0 list 
except as a subscript expression in an array reference. 

11.2.2 Implied DO Lists 

You use an implied DO list to specify iteration within an 1/0 list. 

The format is: 

(list, i=el,e2) 

where 

list is an 1/0 list 
i is a control variable definition 
e 1 is the initial value of i 
e2 is the terminal value of i 

When you use an implied DO list, you may transmit only part of an 
array, or transmit array elements in a sequence other than the order 
of subscript progression. The implied DO list functions as though it 
were a part of an I/O statement that resides in a DO loop. 

When you use nested implied DO lists, the first control variable 
definition is equivalent to the innermost DO of a set of nested loops, 
and therefore varies most rapidly. For example, the statement 

is similar to 

Since the inner DO loop is executed ten times for each iteration of 
the outer loop, the second subscript, L ,  advances from one through ten 
for each increment of the first subscript. This is the reverse of the 
order of subscript progression. 



INPUT/OUTPUT STATEMENTS 

The implied DO uses the control variable of the imaginary DO statement 
to specify which value or values are to be transmitted during each 
iteration of the loop. 

i ,  el, and e2 have the same form as that used in the DO statement. 
The rules for the control, initial, and terminal variables of an 
implied DO list are the same as those for the DO statement. Note, 
however, that an i m p l i e d  DO loop cannot use an increment parameter. 
The list may contain references to the control variable as long as the 
value of the control variable is not altered. There is no extended 
range for an implied DO list. 

Examples : 

FORTRAN transmits the entire list of the implied DO before the 
incrementation of the control variable. For example 

assigns input values to the elements of arrays P and Q in the order: 

When processing multidimensional arrays, you may use a combination of 
a fixed subscript and subscript or subscripts that varies according to 
an implied DO. For example 

assigns input values to BOX(1,l) through BOX(1,lO) and then terminates 
without affecting any other element of the array. 

It is also possible to output the value of the control variable 
directly, as in the statement 

which simply prints the integers one through twenty. 

11.3 INPUT/OUTPUT FORMS 

11.3.1 Unformatted Sequential Input/Output 

Unformatted input and output is data in internal (binary) format 
without conversion or editing. Use unformatted 1/0 statements when 
data output by a program is to be subsequently input by the same 
program (or a similar program). Unformatted 1/0 statements save 
execution time because they eliminate the data conversion process, 
preserve greater precision in the external data, and usually conserve 
file storage space. 



Q ) 3  ' l o  5-0-n" 
n-i- '  (Dmm ri- 

Â¥ 0) VtD 
? C I-'. 0. 

W 0 ) K  
(D ( D >  ua\I- ' .  
mrt- 0 son-so 
0 3Qi n- m 
' l r o I - ( / )  I- > 
(D P n -  t-"Q) 0 

0) 0) 3 
w o n -  n- a 

ft(Dm(D 0) 
3 0  3 (D n- 
(Do n-(D 0 )  0) 
'l 3-3 ( D M n -  

H0 .0  rt 3 Ul CD 
\ (D + 3  
0 <(-1-  3 u a  CD 

0) 'l (-1-3 3 
I-- P0) 0) 0) if 
h - H C  3 
0) PhCD 0) I-'. 
n- M 3  3 n- I-'. 

I-" 3- 3 
i - - q w r t  (D T3 
m o a m  n- C 

53 v m n -  
(/)en-(D (D I-'. 0) 
m s o 3 - X  (D 
n - > ( D O }  I- 
^- 2 0 0 0.0 
0) ' l r r  ' l m 3  
m 0. (D 
^ ( D  0 %  (D 0 

'l 
(D 

I - C  
I-'. 
0) 
n- 
I-". I-'. 

en M 

I-' 
H 0 
'.a 

I-'. 
rt- 

'l Q) 
3 rf 
0) 0 
n- 3 
I-'. ID 
0 3 
3 rt- 

M 
I-"' 

3 (-1- 
n- 0 
0 

OJ 
(D 0) 

c 
3 
m 
0 

z 
cu 
rr 
ft 
(0 
CL 

01 
(0 

ifl 
c 
(0 
3 
ft 
I-" 
cu 
I-' 



If you use an unformatted WRITE statement that does not contain an 1/0 
list, FORTRAN skips the next record. 

Examples : 

READ ( 1 )  FIELD19 FIE:L..D2 Read one record from logical unit 1; 
assign values to variables FIELD1 and 
FIELD2. 

READ (81 Advance logical unit 8 one record. 

11.4.2 Formatted Sequential READ Statement 

You use formatted sequential READ statements to transmit information 
in external format. 

The format is: 

READ (u,f) [[list]] 

where 

u is a logical unit number from 1 to 9 
f is a format statement number 
list i s a n  1/0 list 

When the formatted sequential READ statement transfers data from the 
indicated logical unit, FORTRAN converts transmitted characters to 
internal format as specified by the format specification. FORTRAN 
assigns the resulting values to the elements of the 1/0 list. 

If the FORMAT statement associated with a formatted input statement 
contains a Hollerith constant or alphanumeric literal, input data will 
be read and stored directly into the format specification. For 
example, the statements 

cause five characters to be read and stored in the Hollerith format 
descriptor. If the character string were HELLO, statement 100 would 
become 

:1.00 FORMAT ( 5titiEI ... I...O :! 

If there is no H field, the record is skipped. 

If the number of elements in the 1/0 list is less than the number of 
fields in the input record, the excess portion of the record is 
discarded. If the number of elements in the list exceeds the number 
of input fields, an error condition results unless the format 
specifications state that one or more additional records are to be 
read (see Section 12.8). 



INPUT/OUTPUT STATEMENTS 

If no 1/0 list is present, data transfer takes place between the 
record and the format specification. 

Examples : 

READ (5 Y 50) 
50 FPFihAT (25!-! PAGE HEADING GOES HERE1 

Read a record from 
l n q i c - a 1  g ~ i t  
A -  --...A 

1 
- I  

assign fields to 
ARRAY. 

Read 25 characters 
from logical unit 5; 
place them in the 
FORMAT statement. 

9.4.2.1 CHKEQF Subroutine - CEKEQF accepts one real, integer, or 
logical argument. After the next formatted READ operation, this 
argument will be set to a non-zero value if the logical end-of-file 
was encountered. Otherwise, it will be set to zero. 

Only use CHKEOF when reading one record from the logical unit. 

The following is an example of the use of CHKEOF: 

11.4.3 Unformatted Direct Access READ Statement 

You use an unforinatted direct access READ statement to transmit a 
y r 3  . ^ e  -I , .  or values to a direct access device in internal format. 

The format is: 

READ (u'r) [[list]] 

where 

u is a logical unit number from 1 to 9 
r is the record number 
list is an 1/0 list 

The unformatted direct access READ statement positions the input file 
to a specified record and transfers the fields in that record to the 
elements in the 1/0 list without translation. 

The logical unit number u may be an unsigned integer constant or a 
positive integer variable. The record number r may also be a 
variable. If there are more fields in the input record than elements 
in the 1/0 list, FORTRAN discards the excess portion of the record. 
If there is insufficient data in the record to satisfy the 
requirements of the 1/0 list, an error condition results. 



INPUT/OUTPUT STATEMENTS 

The unit number in the unformatted direct access READ statement must 
refer to a unit that you have previously defined for direct access 
processing in a DEFINE FILE statement. 

Examples : 

READ i :L7 :LQ)  L I ' S T d )  yL. . IST(8 )  Read record 10 of a file on logical 
unit 1; assign two INTEGER values 
to specified elements of array 
LIST. 

Read record 58 of a file on logical 
unit 4; assign five real values to 
array RHO. 

11.5 WRITE STATEMENTS 

11.5.1 Unformatted Sequential WRITE Statement 

You use an unformatted sequential WRITE statement to transmit values 
in their internal representation to a logical unit. 

The format is: 

WRITE (u) [ [list] ] 

where 

u is a logical unit number from 1 to 9 
list is an 11'0 list 

When the unformatted sequential WRITE statement transmits the values 
of the elements in the 1/0 list to the specified logical unit, it does 
so without translation, as one unformatted record. 

The logical unit specifier is an integer variable or an integer 
constant from 1 to 9. 

If an unformatted WRITE statement contains no 1/0 list, one null 
record is output to the specified unit. 

A record may hold 85 single-precision variables. If the list elements 
fill more than one record, FORTRAN writes successive records until the 
list is completed. Thus, if there are 100 variables on the list, 
FORTRAN uses two records; one record contains 85 variables and the 
second contains 15 variables. For example: 

will produce three records on logical unit 6, the first containing 
X(1) to X(85), the second X(86) to X(170), and the third X(171) to 
X(200). If the amount of data FORTRAN will transmit exceeds the 
record size, an error condition results. If the WRITE statement does 
not completely fill the record with data, FORTRAN zero fills the 
unused portion of the record. 



INPUT/OUTPUT STATEMENTS 

Examples : 

. , ,-.. ... - ,.- 
WKJ. IE. ( 1 )  i L I S T < K j  ~ K z i r 5 )  Output t h e  contents of elements 1 

through 5 of array LIST to logical 
unit 1. 

WRITE ( 4 1  write a null record on logical unit 4. 

11.5.2 Formatted Sequential WRITE Statements 

You use a formatted sequential WRITE statement to translate a value 
from its internal representation to character format and then transmit 
it to a logical unit. 

The format is: 

WRITE (u,f) [[list] ] 

where 

u is a logical unit number from 1 to 9 
f is a format statement number 
list is an 1/0 list 

When the formatted sequential WRITE statement transfers data to the 
specified logical unit, the I/O list specifies a sequence of values 
that FORTRAN converts to characters and positions as specified by a 
format specification. 

The logical unit specifier may be an integer variable. 

If no I / O  list is present, data transfer takes place entirely between 
the record and the format specification. 

The data FORTRAN transmits by a formatted sequential WRITE statement 
normally constitutes one formatted record. The format specification 
can, however, specify that additional records are to be written during 
the execution of that same WRITE statement. 

FORTRAN rounds numeric data output under format control during the 
conversion to external format. (If such data is subsequently input 
for additional calculations, loss of precision may result. In this 
case, unformatted output is preferable to formatted output.) 

The records FORTRAN transmits by a formatted WRITE statement must not 
exceed the length that the specified device can accept. For example, 
a line printer typically cannot print a record that is longer than 132 
characters. 

Examples : 

WRITE ( 6 9  650) (Output the contents of the 
6 5 0  FORMAT ( ' HEL-L-Or THERE' 1 FORMAT statement to logical 

unit 6.) 

WRITE < 1 ~ 9 5 )  A Y E ?  BEEE? CEE (Write one record of three 
9 5  FORMAT ( F 8 + 5 ~  F 8 + 5 ~  F 8 + 5 1  fields to logical unit 1.) 

YRITE: ( 1 ~ 9 5 0 )  AYE? KEEr CEE (Write three separate records 
950 FORMAT < f 8 + 5 )  of one field each to logical 

unit 1.) 



INPUT/OUTPUT STATEMENTS 

In the last example, format control arrives at the rightmost 
parenthesis of the FORMAT statement before all elements of the 1/0 
list have been output. Each time this occurs, FORTRAN terminates the 
current record and initiates a new record. Thus, FORTRAN writes three 
separate records (see Section 12.5). 

11.5.3 Unformatted Direct Access WRITE Statement 

You use an unformatted direct access WRITE statement to transmit a 
value in its internal representation to a specific record on a direct 
access device. 

The format is: 

WRITE (u'r) [[list]] 

where 

u is a logical unit number from 1 to 9 
r is the record number 
list is an 1/0 list 

When the unformatted direct access WRITE statement transmits the 
values of the elements in the 1/0 list to a particular record position 
on a direct access file, the data is written in internal format 
without translation. 

The 
numb 
reco 
fill 

logical unit specifier may be an integer variable. The record 
er r may be an unsigned integer constant or integer variable. A 
rd may hold 85 single-precision variables. If the list elements 
more than one record, FORTRAN writes successive records until the 

list is completed. Thus, if there are 100 variables on the list, 
FORTRAN uses two r e c o r d s ;  one r e c o r d  c o n t a i n s  8 5  v a r i a b l e s  and t h e  
second contains 15 variables. For example 

will produce three records on unit 6, the first containing X(1) to 
X(85), the second X(86) to X(170), and the third X(171) to X(200). If 
the amount of data FORTRAN will transmit exceeds the record size, an 
error condition results. If the WRITE statement does not completely 
fill the record with data, FORTRAN zero fills the unused portion of 
the record. 

Examples : 

LIJFi-ITE ( 2 ' 3 5 )  < N U H < K ) Y K : : : : : ~ Y I O )  (Output ten integer values to 
record 35 of the file connected to 
logical unit 2.) 

(Output the entire contents of 
ARRAY to the file connected to 
logical unit 3 into the record 
indicated by the value of J.) 



INPUT/OUTPUT STATEMENTS 

11.6 AUXILIARY INPUT/OUTPUT STATEMENTS 

YOU use statements in this category to perform file management 
functions. 

11.6.1 BACKSPACE Statement 

Use the BACKSPACE statement to reposition a file to 'Â¥' i-ue previous 
record accessed. 

The format is: 

BACKSPACE u 

where 

u is a logical unit number from 1 to 9 

When the BACKSPACE statement repositions a currently open sequential 
file back one record, it repositions it to the beginning of that 
record. On the execution of the next I/O statement for that unit, 
that record is available for processings 

The unit number must refer to a directory structured device (e.g., 
disk), and a file must be open on that device. If the file is 
positioned at the first record, FORTRAN ignores the BACKSPACE 
statement. 

Example : 

BACKSPACE: 4 (Reposition open file on logical unit 4 to 
beginning of the previous record.) 

11.6.2 DEFINE FILE Statement 

The DEFINE FILE statement establishes the size and structure of a file 
upon which FORTRAN will perform direct access I/O. 

The format is: 

DEFINE FILE u (m,n,U,v) [[,u(m,n,U,v)]] ... 
where 

u is an integer constant or variable that specifies the 
logical unit number 

in is an integer constant or variable that specifies the number 
of records in the file 

n is an integer constant or variable that specifies the 
length, in words, of each record 

U specifies that the file is unformatted (binary) and the 
letter U is the only acceptable entry in this position 

v is an integer variable, called the associated variable of 
the file 

Once you have specified the attributes of a direct access device by 
means of the DEFINE FILE, you should always specify them in the same 
manner. 



At the conclusion of each direct access 1/0 operation, FORTRAN assigns 
the record number of the next higher numbered record in the file to v. 

The DEFINE FILE statement specifies that a file containing m 
fixed-length records of n words each exists, or is to exist, on 
logical unit u. The records in the file are sequentially numbered 
from 1 through m. 

You must type the DEFINE FILE statement before the first direct access 
1/0 statement that refers to the specified file. 

The DEFINE FILE statement also establishes the integer variable v as 
the associated variable of the file. At the end of each direct access 
1/0 operation, the FORTRAN 1/0 system places in v the record number of 
the record immediately following the one just read or written. 
Because the associated variable always points to the next sequential 
record in the file (unless you redefine it by an assignment or input 
statement), you can use direct access 1/0 statements to perform 
sequential processing of the file. The logical unit number u cannot 
be passed as a dummy argument to a DEFINE FILE statement in a 
subroutine. 

In an overlay environment, or when more than one program unit 
processes the file, place the associated variable in a resident common 
block. 

Example : 

This statement specifies that logical unit 3 is to be connected to a 
file of 1000 fixed-length records, each record of which is 48 words 
long. The records are numbered sequentially from 1 through 1000 and 
are unformatted. After each direct access 1/0 operation on this file, 
the integer v a r i a b l e  NREC will c o n t a i n  the record number of the record 
immediately following the one just processed. 

11.6.3 ENDFILE Statement 

The ENDFILE statement writes an end-file record to the specified 
sequential unit. 

The format is: 

ENDFILE u 

where 

u is a logical unit number from 1 to 9 

When you use the ENDFILE statement to write an end-of-file mark on a 
directory structured device, note that you cannot write additional 
information to that device after the ENDFILE statement. 

You must write the ENDFILE statement to a formatted output file. 

No rewind occurs after this statement. 

Example : 

ENDFI'I ... Ei 2 (Output an end-file record to logical unit 2.) 



INPUT/OUTPUT STATEMENTS 

11.6.4 REWIND Statement 

The REWIND statement repositions a currently open sequential file to 
be repositioned to the beginning of the file. 

The fo rmat  i s ;  

REWIND u 

where 

u is a logical unit number from 1 to 9 

Use the REWIND statement to position a directory structured device to 
its first record. 

The unit number in the REWIND statement must refer to a directory 
structured device (e.g., disk), and a file must be open on that 
device. 

Example : 

R[:wINII 3 (Reposition logical unit 3 to beginning of currently 
open file.) 





CHAPTER 12 

FORMAT STATEMENTS 

12.1 INTRODUCTION 

FORMAT statements are nonexecutable statements used in conjunction 
with formatted 1/0 statements. The FORMAT statement describes the 
format in which FORTRAN transmits data fields, and the data conversion 
and editing needed to achieve that format. 

The FORMAT statement has the form: 

st FORMAT (glf lsl[ [Â£2s2 1.. . [ [fnqn] ] ) 
where 

f is a field descriptor, or a group of field descriptors 
enclosed in parentheses 

s is a field separator (either a comma or slash) 
q is zero or more slash ( / )  record terminators 
st is a mandatory statement number 

Including the parentheses is called the format specification. You 
must enclose the list in parentheses. A field descriptor in a format 
specification has the form: 

where 

r represents a repeat count that specifies that FORTRAN is to 
apply the field descriptor to r successive fields (If you 
omit the repeat count, FORTRAN assumes it to be 1.) 

c is a format code 
w is the field width 
d is the number of characters to the right of the decimal 

point, and should be less than w 

The terms r ,  w, and d must all be unsigned integer constants less than 
or equal to 255. 

The field separators are comma and slash. A slash has the additional 
function of being a record terminator. The field descriptors used in 
format specifications are as follows: 

e Integer: Iw 

o Logical: Lw 

Real, Double- 
Precision, Complex: Fw0dI Ew.d, Dw.d, Gw.dI Bw.d 

e Literal, Editing: Aw, nHI nP, nX, Tn, $, '...', / 



FORMAT STATEMENTS 

(In the alphanumeric and editing field descriptors, n specifies the 
number of characters or character positions.) 

YOU can precede the F, E, D, or G field descriptors by a scale factor 
of the form: 

where n is an optionally signed integer constant in the range -127 to 
+127. The scale factor specifies the number of positions the decimal 
point is to be scaled to the left or right. During data transmission, 
FORTRAN scans the format specification from left to right. FORTRAN 
then performs data conversion by correlating the values in the I/O 
list with the corresponding field descriptors. In the case of H field 
descriptors and alphanumeric literals, data transmission takes place 
entirely between the field descriptor and the external record. 

12.2 FIELD DESCRIPTORS 

The individual field descriptors that can appear in a format 
specification are described in detail in the following sections. The 
field descriptors ignore leading spaces in the external field but 
treat embedded and trailing spaces as zeros. 

12.2.1 I Field Descriptor 

The I field descriptor governs the translation of integer data. 

The format is: 

12.2.1.1 Input - The I field descriptor causes an input statement to 
read w characters from an external record. FORTRAN then assigns the 
character as an integer value to the corresponding integer element of 
the 1/0 list. The external data must be an integer; it must not 
contain a decimal point or exponent field. 

The I field descriptor interprets an all-blank field as a zero value. 

If the value of the external field exceeds the range of the 
corresponding integer list element, an error occurs. If the first 
non-blank character of the external field is a minus symbol, the I 
field descriptor causes the field to be stored as a negative value; 
FORTRAN treats a field preceded by a 
field, as a positive value. 

Examples : 

Format External Field 

plus symbol, or an unsigned 

Internal Representation 

2788 
-25 
312 

not permitted; error 
-87 (one is lost) 



FORMAT STATEMENTS 

12.2.1.2 Output - On output, the I field descriptor transmits the 
value of the corresponding integer I/@ list element, right justified, 
to an external field w characters in length. It also replaces any 
leading zeros with spaces. If the value does not fill the field, 
FORTRAN inserts leading spaces. If the value of the list element is 
neqative, the field will have a minus symbol as its leftmost non-blank 
character. Space must therefore be included in w for a minus symbol 
if you expect one to be output. FORTRAN suppresses plus symbols and 
you need not account for them in w. If w is too small to contain the 
output value, FORTRAN fills the entire external field with asterisks. 

Examples : 

Format Internal Value External Representation 

not permitted; error 

12.2.2 F Field Descriptor 

The F field descriptor specifies the data conversion and editing of 
real or double-precision values, or the real or imaginary parts of 
complex values. 

The format is: 

12.2.2.1 Input - On input, the F field descriptor causes FORTRAN to 
read w characters from the external record and to assign the 
characters as a real value to the corresponding I/O list element. If 
the first non-blank character of the external field is a minus sign, 
FORTRAN treats the field as a negative value; FORTRAN assumes a field 
preceded by a plus sign (or an unsigned field) to be positive. 
FORTRAN considers an all-blank field to have a value of zero. In all 
appearances of the F field descriptor, w must be greater than or equal 
to d+, where the extra character is the decimal point. 

If the field contains neither a decimal point nor an exponent, FORTRAN 
treats it as a real number of w digits, in which the rightmost d 
digits are to the right of the decimal point. If the field contains 
an explicit decimal point, the location of that decimal point 
overrides the location you specify in the field descriptor. If the 
field contains an exponent, FORTRAN uses the exponent to establish the 
magnitude of the value before it assigns the value to the list 
element. 

Examples : 

Format External Field Internal Representation 



FORMAT STATEMENTS 

12.2.2.2 Output - On output, the F field descriptor causes FORTRAN to 
round the value of the corresponding 1/0 list element to d decimal 
positions and to transmit an external field w characters in length, 
right justified. If the converted data consists of fewer than w 
characters, FORTRAN inserts leading spaces; if the data exceeds w 
characters, FORTRAN fills the entire field with asterisks. 

The f i e l d  width must be large enough to accommodate: (1) a minus 
sign, if you expect one to be output (FORTRAN suppresses plus signs); 
(2) at least one digit to the left of the decimal p0in.t; (3) the 
decimal point itself; and (4) d digits to the right of the decimal. 
For this reason, w should always be greater than or equal to (d+3). 

Examples : 

Format Internal Value External Representation 

12.2.3 E Field Descriptor 

The E field descriptor specifies the transmission of real or 
double-precision values in exponential format. 

The format is: 

12.2.3.1 Input - The E field descriptor causes an input statement to 
input w characters from an external record. It interprets and assigns 
that data in exactly the same way as the F field descriptor. 

Examples : 

Format External Field Internal Representation 

Note that in the last example the E field descriptor ignores the 
double-precision indicator D and treats it as though it were an E 
indicator. 

12.2.3.2 Output - The E field descriptor causes an output statement 
to transmit the value of the corresponding list element to an external 
field wcharacters in width, right justified. If the number of 
characters in the converted data is less than w, FORTRAN inserts 
leading spaces; if the number of characters exceeds w, FORTRAN fills 
the entire field with asterisks. The corresponding 1/0 list element 
must be of real, double-precision, or complex type. 



FORMAT STATEMENTS 

FORTRAN transmits data output under control of the E field 
in a standard form, consisting of 

a minus sign if the value is negative (plus 
suppressed) 

a zero 

a decimal point 

d digits to the right of the decimal 

a 3-character exponent of the form: 

E+nnn 

descriptor 

signs are 

where nn is a 2-digit integer constant 

The d digits to the right of the decimal point represent the entire 
value, scaled to a decimal fraction. 

Because w must be large enough to include a minus sign (if any are 
expected), a zero, a decimal point, and an exponent, in addition to d 
digits, w should always be equal to or greater than (d+7). 

Exampl es : 

Format Internal Value External Representation 

12.2.4 D Field Descriptor 

The D field descriptor specifies the transmission of real or 
double-precision values. 

The format is: 

12.2.4.1 Input - On input, the D field descriptor functions exactly 
like an E field descriptor, except that FORTRAN converts the input 
data and assigns it as a double-precision entity. 

Examples : 

Format External Field Internal Representation 



FORMAT STATEMENTS 

12.2.4.2 Output - On output, the effect of the D field descriptor is 
identical to that of the E field descriptor, except that FORTRAN uses 
the D exponent field indicator in place of the E indicator. 

Examples : 

Format Internal Value External Representation 

12.2.5 B Field Descriptor 

The 6 field descriptor is a convenient method for transmitting 
double-precision information. 

Internally, such a value is identical to a double-precision number. 
Upon output, the B acts like an F. On input, however, it acts like a 
D. 

12.2.6 G Field Descriptor 

The G field descriptor transmits real, double-precision, or complex 
data in a form that is in effect a combination of the F and E field 
descriptors. 

The format is: 

12.2.6.1 Input - On input, the G field descriptor functions 
identically like the F field descriptor. 

12.2.6.2 Output - On output, the G field descriptor causes FORTRAN to 
transmit the value of the corresponding 1/0 list element to an 
external field w characters in length, right justified. The form in 
which the value is output is a function of the magnitude of the value, 
as described in Table 12-1. 

Table 12-1 
Effect of Data Magnitude on G Format Conversions 

1 Data Magnitude 1 Effective Conversion 



FORMAT STATEMENTS 

The 4X field descriptor is inserted by the G field descriptor for 
values within its range; it means that four spaces are t o  f o l l o w  the 
n u m e r i c  data representation. 

The field width, w,  must include: 

1. space for a minus sign, if any are expected (plus signs are 
suppressed) 

2. at least one d i g i t  t o  the l e f t  o f  the decimal point 

3. the decimal point itself 

4.  d  digits to the right of the decimal 

5. (for values that are outside the effective range of the G 
field descriptor) a 4-character exponent 

Therefore, w should always be equal to or greater than (d+7). 

Examples : 

Format Internal Value External Representation 

For comparison, consider the following example of the same values 
output under the control of an equivalent F field descriptor. 

Format Internal Value External Representation 

12.2.7 L Field Descriptor 

The L field descriptor specifies the transmission of logical data. 

The format is: 



FORMAT STATEMENTS 

12.2.7.1 Input - The L field descriptor causes an input statement to 
read w characters from external record. If the first non-blank 
character of that field is the letter T or the string .T, FORTRAN 
assigns the value .TRUE. to the corresponding 1/0 list element. (The 
corresponding I/O list element must be of logical type.) If the first 
non-blank character of the field is the letter F or the string .F, or 
if the entire field is blank, FORTRAN assigns the value .FALSE. 
Any other value in the external field causes an error condition. 

12.2.7.2 Output - The L field descriptor causes an output statement 
to transmit either the letter T, if the value of the corresponding 
list element is .TRUE. or the letter F, if the value is .FALSE., to 
an external field w characters wide. The letter T or F is in the 
rightmost position of the field, preceded by (w-1) spaces. 

Examples : 

Format Internal Value External Representation 

. TRUE. . FALSE. 

12.2.8 A Field Descriptor 

The A field descriptor specifies the transmission of alphanumeric 
data. 

The format is: 

12.2.8.1 Input - On input, the A field descriptor causes w characters 
to be read from the external record and stored in ASCII format in the 
corresponding 1/0 list element. (The corresponding 1/0 list element 
may be of any data type.) The maximum number of characters that 
FORTRAN can store in a variable or array element depends on the data 
type of that element, as listed in Table 12-2. 

Table 12-2 
Character Storage 

! 
Logical 
Integer 
Real 
Double-Precision 

i Complex 

1/0 List 
Element 

Maximum Number 
of Characters 



FORMAT STATEMENTS 

If w is greater than the maximum number of characters that FORTRAN can 
store in the corresponding 110 list element, only the rightmost six or 
twelve characters (depending the data +vnn Lyf 'c  \JL. - ^  4-1"- Lnc ii3ri~k-ÃˆJ- o r  a r r a y  
element) are assigned to that entity; the leftmost excess characters 
are lost. If w is less than the number of characters that FORTRAN can 
store; it assigns w characters to the list element, left justified, 
and o d d s  t r a i l i n g  spaces to fill t h e  variable or array element. 

Examples : 

Format External Field Internal Representation 

A6 PAGE # 
A 6  PAGE # 
A12 PAGE # 

PAGE # (Integer] 
G E  # (Real) 
PAGE # (Double Precision) 

12.2.8.2 Output - On output, the A field descriptor causes FORTRAN to 
transmit the contents of the corresponding 1/0 list element to an 
external field w characters wide. If the list element contains fewer 
than w characters, the data appears in the field right justified with 
leading spaces. If the list element contains more than w characters, 
FORTRAN transmits only the leftmost w characters. 

Examples : 

Format Internal Value External Representation 

GEMS 
VOLTS 
AMPERES 

OHMS 
VOLTS 
AMPER 

12.2.9 H F i e l d  D e s c r i p t o r  

The format is: 

where 

n specifies the number of characters to be transmitted 
c is an ASCII character 

When the H field descriptor appears in a format specification, data 
transmission takes place between the external record and the field 
descriptor itself. 

The H field descriptor causes an input statement to read n characters 
from the external record and to place them in the field descriptor, 
with the first character appearing immediately after the letter H .  
FORTRAN replaces any characters that had been in the field descriptor 
prior to input by the input characters. 

The H field descriptor causes an output statement to transmit the n 
characters in the field descriptor following the letter H to the 
external record. An example of the use of H field descriptors for 
input and output follows: 



FORMAT STATEMENTS 

The WRITE statement transmits the characters from the H field 
descriptor in statement 100 to the user's terminal. The READ 
statement accepts the response from the keyboard, placing the input 
data in the H field descriptor in statement 200. The new characters 
replace the string TITLE GOES HERE; if you enter fewer than 20 
characters, FORTRAN fills the remainder of the H field descriptor with 
spaces to the right. 

12.2.9.1 Alphanumeric Literals - In an output statement, you may use 
an alphanumeric literal in place of an H field descriptor; both types 
of format specifiers function identically. However, you cannot use an 
alphanumeric literal on input. 

You write an apostrophe character within an alphanumeric literal as 
two apostrophes. For example: 

FORTRAN treats a pair of apostrophes used in this manner as a single 
character. 

12.2.10 X Field Descriptor 

The X field descriptor causes spaces to be skipped in a record. 

The format is: 

When used in an input statement, the spaces skipped as a result of the 
x field descriptor are represented by the next n characters in t h e  
input record. 

In an output statement, the X field descriptor causes n spaces to be 
transmitted to the external record. For example: 

The WRITE statement prints a record similar to: 

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT. 

where "nn" is the current value of the variable NPAGE. FORTRAN does 
not print the numeral 1 in the first H field descriptor, but instead 
uses it to advance the printer paper to the top of a new page. 
Printer carriage control is explained in Section 12.6. 



FORMAT STATEMENTS 

12.2.11 T Field Descriptor 

The T field descriptor is a tabulation specifier. 

The format is: 

where 

n indicates the character position of the external record. 
The value of n must be greater than or equal to one, but not 
greater than the number of characters allowed in the 
external record. 

12.2.11.1 Input - On input, the T field descriptor causes FORTRAN to 
position the external record to its nth character position. For 
example, if a READ statement inputs a record containing 

ABC XYZ 

under control of the FORMAT statement 

10 FORMAT ( T 7 9  A 3 y  T l  ? A 3 1  

the READ statement would input the characters XYZ first, then the 
characters ABC. 

12.2.11.2 Output - On output to devices other than the line printer 
or terminal, the T field descriptor states that subsequent data 
transfer is to begin at the nth character position of the external 
record. (For output to a printing device, data transfer begins at 
position n-1). This is because FORTRAN reserves the first position of 
a printed record for a carriage control character (see Section 12.6), 
which is never printed. 

Thus, the statements 

would cause the following line to be printed: 

Position 20 Position 50 

COLUMN 1 COLUMN 2 

12.2.12 $ Descriptor 

The dollar sign character ( $ )  appearing in a format specification 
modifies the carriage control specified by the first character of the 
record. The $ descriptor is intended primarily for interactive 1/0 
and causes the terminal print position to be left at the end of the 
written text (rather than returned to the left margin) so that a typed 
response will appear on the same line following the output. 



FORMAT STATEMENTS 

Example : 

A=5 
WRITE <4~100) A 
READ <4~200> B 

100 FORMAT < '  SAMPL-E N O + " Y  I12r ' IS: ' ~ $ 1  
200 FORMAT <A61 

WRITE <4~2001 B 
END 

This program outputs 

SAMPLE N O +  5 IS; RED 
R E 111 

12.3 COMPLEX DATA EDITING 

Since a complex value is an ordered pair of real values, input or 
output of a complex entity is governed by two real field descriptors, 
using any combination of the forms Fw.d, Ew.d, Dw.d, or Gw.d. 

12.3.1 Input 

On input, FORTRAN reads two successive fields and assigns them to a 
complex I/O list element as its real and imaginary parts, 
respectively. 

Examples : 

Format External Fields Internal Representation 

12.3.2 Output 

On output, FORTRAN transmits the constituent parts of a complex value 
under the control of repeated or successive field descriptors. 
Nothing intervenes between those parts unless explicitly stated by the 
format specification. 

Examples : 

Format Internal Values External Representation 

12.4 SCALE FACTOR 

Through the use of a scale factor, you can alter the location of the 
decimal point in real, double-precision, and complex values during 
input or output. 



FORMAT STATEMENTS 

The format is: 

where 

n is a signed or unsigned integer constant in the range -127 
to +127 specifying the number of positions the decimal point 
is to be moved to the right or left. 

You may place a scale factor anywhere in a format specificatio-n-y but 
it must precede the field descriptors with which it is to be 
associated. It has the forms: 

Data input under control of one of the above f i e l d  descriptors is 
multiplied by lo**-n before FORTRAN assigns it to the corresponding 
1/0 list element. For example, a 2P scale factor multiplies an input 
value by . 0 1 ,  moving the decimal point two places to the left; a - 2 ~  
scale factor multiplies an input value by 100, moving the decimal 
point two places to the right. If the external field contains an 
explicit exponent, however, the scale factor has no effect. 

Examples : 

Format External Field Internal Representation 

The effect of the scale factor on output depends on the type of field 
descriptor with which it is associated. For the F field descriptor, 
FORTRAN multiplies the value of the 1/0 list element by 10**N before 
it transmits it to the external record. Thus, a positive scale factor 
moves the decimal point to the right; a negative scale factor moves 
the decimal point to the left. 

FORTRAN adjusts values output under control of an E or D field 
descriptor with a scale factor by multiplying the basic real constant 
portion of each value by 10**N and subtracting n from the exponent. 
Thus a positive scale factor moves the decimal point to the right and 
decreases the exponent; a negative scale factor moves the decimal 
point to the left and increases the exponent. 

FORTRAN suspends the effect of the scale factor while the magnitude of 
the data to be output is within the effective range of the G field 
descriptor, since G supplies its own scaling function. The G field 
descriptor functions as an E field descriptor when the magnitude of 
the data value is outside its range; the effect of the scale factor 
is therefore the same as described for that field descriptor. 

Note that on input, and on output under control of an F field 
descriptor, a scale factor actually alters the magnitude of the data; 
otherwise, a scale factor attached to an E, D, or G field descriptor 
merely alters the form in which the data is transmitted. Note also 
that on input a positive scale factor moves the decimal point to the 
left and a negative scale factor moves the decimal point to the right, 
while on output the effect is just the reverse. 

If you do not attach a scale factor to a field descriptor, FORTRAN 
assumes a scale factor of zero. Once you specify a scale factor, 
however, it applies to all subsequent real and double-precision field 



FORMAT STATEMENTS 

descriptors in the same format specification, unless another scale 
factor appears. You may only reinstate a scale factor of zero by an 
explicit OP specification. 

Some examples of scale factor effect on output are: 

Format Internal Value External Representation 

12.5 GROUPING AND GROUP REPEAT SPECIFICATIONS 

You can apply any field descriptor (except H, T, P, or X) to a number 
of successive data fields by preceding that field descriptor with an 
unsigned integer constant, called a repeat count, that specifies the 
number of repetitions. For example, the statements 

and 

have the same effect. 

Similarly, you may repeatedly apply a group of field descriptors to 
data fields by enclosing those field descriptors in parentheses, with 
an unsigned integer constant, called a group repeat count, preceding 
the left parenthesis. For example: 

is equivalent to: 

You can enclose an H or X field descriptor, which could not otherwise 
be repeated, in parentheses. FORTRAN then treats it as a qroup repeat 
specification, thus allowing it to be repeated a desired number of 
times. 

If you omit a group repeat count, FORTRAN assumes it to be 1. 

12.6 CARRIAGE CONTROL 

FORTRAN never transmits the first character of a record to a printing 
device; instead, FORTRAN interprets this first character as a 
carriage control character. The FORTRAN 1/0 system recognizes certain 
characters for this purpose; these characters and their effects are 
shown in Table 12-3. 



FORMAT STATEMENTS 

s p a c e  

C h a r a c t e r  

0 ( z e r o )  

E f f e c t  

1 Advance o n e  l i n e  

1 Advance two l i n e s  

1 1 ( o n e )  1 Advance t o  t o p  o f  n e x t  page  
I 

+ ( p l u s )  i Do no= a d v a n c e  ( a l l o w s  o v e r p r i n t i n g )  

FORTRAN t r e a t s  a n y  c h a r a c t e r  o t h e r  t h a n  t h o s e  d e s c r i b e d  i n  T a b l e  12-3 
a s  t hough  i t  is  a  s p a c e ,  and d e l e t e s  i t  from t h e  p r i n t  l i n e .  

12 .7  FORMAT SPECIFICATION SEPARATORS 

I n  a f o r m a t  s p e c i f i c a t i o n  you g e n e r a l l y  s e p a r a t e  f i e l d  d e s c r i p t o r s  
f rom o n e  a n o t h e r  by commas. You may a l s o  u s e  t h e  s l a s h  ( / )  r e c o r d  
t e r m i n a t o r  t o  s e p a r a t e  f i e l d  d e s c r i p t o r s .  A s l a s h  c a u s e s  FORTRAN t o  
t e r m i n a t e  t h e  i n p u t  o r  o u t p u t  o f  t h e  c u r r e n t  r e c o r d  and  t o  i n i t i a t e  a 
new r e c o r d .  You may o m i t  t h e  comma when u s i n g  a  s l a s h .  A l s o ,  you 
need  n o t  t y p e  a comma a f t e r  a  H o l l e r i t h  c o n s t a n t .  

Example : 

is  e q u i v a l e n t  t o  

I t  is  p o s s i b l e  t o  b y p a s s  i n p u t  r e c o r d s  o r  t o  o u t p u t  b l a n k  r e c o r d s  by 
t h e  u s e  o f  m u l t i p l e  s l a s h e s .  I f  n  c o n s e c u t i v e  s l a s h e s  a p p e a r  be tween  
two f i e l d  d e s c r i p t o r s ,  t h e y  c a u s e  FORTRAN t o  s k i p  (n-1)  r e c o r d s  on 
i n p u t  o r  (n -1)  b l a n k  r e c o r d s  t o  be  o u t p u t .  (The f i r s t  s l a s h  
t e r m i n a t e s  t h e  c u r r e n t  r e c o r d ;  t h e  s e c o n d  s l a s h  t e r m i n a t e s  t h e  first 
s k i p p e d  o r  b l a n k  r e c o r d ,  and  s o  o n . )  I f  n  s l a s h e s  a p p e a r  a t  t h e  
b e g i n n i n g  o r  end o f  a  f o r m a t  s p e c i f i c a t i o n ,  however ,  t h e y  r e s u l t  i n  n  
s k i p p e d  o r  b l a n k  r e c o r d s ,  b e c a u s e  t h e  i n i t i a l  and t e r m i n a l  p a r e n t h e s e s  
o f  t h e  f o r m a t  s p e c i f i c a t i o n  a r e  t h e m s e l v e s  a  r e c o r d  i n i t i a t o r  and 
r e c o r d  t e r m i n a t o r ,  r e s p e c t i v e l y .  An example  o f  t h e  u s e  o f  m u l t i p l e  
r e c o r d  t e r m i n a t o r s  is: 

The above  s t a t e m e n t s  o u t p u t  t h e  Â£allowing 

Column 5 0 ,  t o p  o f  page  

H E A D I N G  L I N E  
( b l a n k  l i n e )  

SUBHEADING L I N E  
( b l a n k  l i n e )  
( b l a n k  l i n e )  



FORMAT STATEMENTS 

12.7.1 External Field Separators 

A field descriptor such as fw.d specifies that an input statement is 
to read w characters from the external record. If the data field in 
question contains fewer than w characters, the input statement would 
read some characters from the following field. To avoid this, you can 
pad the short field with leading zeros or spaces. Padding is 
unnecessary, however, if you terminate an input field containing fewer 
than w characters by a comma. The comma overrides the field 
descriptor's field width specification. This practice, called short 
field termination, is particularly useful when entering data from a 
terminal keyboard. You may also use it in conjunction with I, F, E, 
D, G, and L field descriptors. 

Examples : 

READ ( 6 ~ 1 0 0 )  I Y J Ã ˆ A Y  
100 FORMAT <216~,2F10+2)  

If the external record input by the above statements contains 

then the following assignments take place: 

Note that the physical end of the record also serves as a field 
terminator. Note also that the d part of a w.d specification is not 
affected, as illustrated by the assignment to B. 

You may only terminate fields of fewer than w characters by a comma. 
If you use a comma after a field of w characters or greater, FORTRAN 
will consider the comma to be part of the following field. 

Two successive commas, or a comma following a field of exactly w 
characters, constitutes a null (zero-length) field. Depending on the 
field descriptor in question, the resulting value assigned is 0, 0.0, 
ODO, or .FALSE.. 

You cannot use a comma to terminate a field that is to be read under 
control of an A, H, or alphanumeric literal field descriptor. If 
FORTRAN encounters the physical end of the record before it has read w 
characters, however, short field termination is accomplished and 
FORTRAN can assign the characters that were input. It also appends 
trailing spaces to fill the corresponding 1/0 list element or the 
field descriptor. 

12.8 FORMAT CONTROL INTERACTION WITH INPUT/OUTPUT LISTS 

FORTRAN initiates format control with the beginning of execution of a 
formatted 1/0 statement. The action of format control depends on 
information provided jointly by the next element of the 1/0 list (if 
one exists) and the next field descriptor of the FORMAT statement. 
FORTRAN interprets both the 1/0 list and the format specification from 
left to right. 



FORMAT STATEMENTS 

If the 1/0 statement contains an 1/0 list, at least one field 
descriptor of a t y p e  other than H, X, T, or P must exist In the foraat 
specification. Otherwise, an execution error occurs. 

When FORTRAN executes a formatted input statement, it reads one record 
from the specified unit and initiates format control; thereafter, 
additional records can be read as indicated by the format 
specification. Format control demands that a new record be input 
whenever a slash is encountered in the format specification, or when 
the rightmost parenthesis of the format specification is reached and 
additional I/O list elements remain. 

Each field descriptor of types I, F, E, D, G, L, and A corresponds to 
one element in the I/O list. No list element corresponds to an i i ,  X, 
P. T, or alphanumeric literal field descriptor. In the case of H and 
alphanumeric literal field descriptors, data transfer takes place 
directly between the external record and the format specification. 

When format control encounters an I, F, E ,  D, G, L, or A field 
descriptor, it determines if a corresponding element exists in the 1/0 
list. If so, format control transmits data, appropriately converted 
to or from external format, between the record and the list element, 
then proceeds to the next field descriptor (unless the current one is 

T f: to be repeated). L L  there is no corresponding list element, format 
control terminates. 

When FORTRAN reaches the rightmost parenthesis of the format 
specification, it determines whether or not there are more 1/0 list 
elements to be processed. If not, format control terminates.If 
additional list elements remain, however, FORTRAN terminates t h e  
current record and initiates a new one. Format control then reverts 
to the rightmost, top-level group repeat specification (the one whose 
left parenthesis matches the next-to-last right parenthesis of the 
format specification). If no group repeat specification exists in the 
format specification, format control returns to the initial left 
parenthesis of the format specification. Format control then 
continues from that point. 

12-9 SUMMARY OF RULES FOR FORMAT STATEMENTS 

The following is a summary of the rules pertaining to the construction 
and use of the FORMAT statement and its components, and to the 
construction of the external fields and records with which a format 
specification communicates. 

12.9.1 General 

You must always label a FORMAT statement. 

In a field descriptor such as rIw or nX, the terms r, w, and n 
must be unsigned integer constants greater than zero. You may 
omit the repeat count and field width specification. 

0 In a field descriptor such as Fw.d, the term d must be an 
unsigned integer constant. It must be present in F, E, D, and 
G field descriptors even if it is zero. The decimal point 
must also be present. The field width specification w must be 
greater than d. The specifications w and d must occur 
together or not at all. 



FORMAT STATEMENTS 

In a field descriptor such as nHcc...c, exactly n characters 
must be present following the H format code. Any ASCII 
character may appear in this field descriptor (an alphanumeric 
literal field descriptor follows the same rule). 

In a scale factor of the form nP, n must be a signed or 
unsigned integer constant in the range -127 to +127 inclusive. 
Use of the scale factor applies to F, E ,  D, and G field 
descriptors only. Once you specify a scale factor, it applies 
to all subsequent real or double-precision field descriptors 
in that format specification until another scale factor 
appears; FORTRAN requires an explicit OP specification to 
reinstate a scale factor of zero. 

FORTRAN does not permit a repeat count in H, X, T, or 
alphanumeric literal descriptors unless you enclose those 
field descriptors in parentheses and treat them as a group 
repeat specification. 

If an 1/0 list is present in the associated 1/0 statement, the 
format specification must contain at least one field 
descriptor of a type other than H, X, P, T, or alphanumeric 
literal. 

12.9.2 Input 

You must precede an external input field with a negative value 
by a minus symbol; you may optionally precede a positive 
value by a plus sign. 

An external field whose input conversion is governed by an I 
field descriptor must have the form of an integer constant; 
it cannot contain a decimal point or an exponent. 

An external field whose input conversion is governed by an F ,  
E, or G field descriptor must have the form of an integer 
constant or a real or double-precision constant; it can 
contain a decimal point and/or an E or D exponent field. 

If an external field contains a decimal point, the actual size 
of the fractional part of the field, as indicated by that 
decimal point, overrides the d specification of the 
corresponding real or double-precision field descriptor. 

If an external field contains an exponent, it causes the scale 
factor (if any) of the corresponding field descriptor to be 
inoperative for the conversion of that field. 

The field width specification must be large enough to 
accommodate, in addition to the numeric character string of 
the external field, any other characters that can be present 
(algebraic sign, decimal point, and/or exponent). 

A comma is the only character that is acceptable for use as an 
external field separator. You use it to terminate input of 
fields that are shorter than the number of characters 
expected, or to designate null (zero-length) fields. 



FORMAT STATEMENTS 

Output 

e A format specification must not demand the output of more 
characters than can be contained in the external record. (For 
example, a line printer record cannot contain more than 133 
characters, including the carriage control c h a r a c t e r . )  

e The field width specification w must be large enough to 
accommodate all the characters that FORTRAN may generate by 
the output conversion, including an algebraic sign, decimal 
point, and exponent. (The field width specification in an E 
field descriptor, for example, should be large enough to 
contain (d+7) characters. ) 

0 FORTRAN uses the first character of a record output to a line 
printer or terminal for carriage control; FORTRAN never 
prints it. The first character of such a record should be a 
space, 0,1,$, or +. FORTRAN treats any other character as a 
space and deletes it from the record. 





CHAPTER 13 

FORTRAN IV LIBRARY 

The OS/8 FORTRAN IV system contains a general purpose FORTRAN library 
FORLIB.RL, which may be extended and modified by the l i b r a r i a n  LIBRA. 
The library allows you to compute arithmetic and transcendental 
functions, use the complex and double-precision options of the FPP, 
read console switches, and interface with standard laboratory 
peripherals. 

You use the OS/8 FORTRAN librarian. LIBRA, to create and maintain 
libraries of RALF modules. The loader uses one such library, 
specified by the user, to resolve undefined external symbols. Each 
library contains a collection of RALF modules and a catalog, which 
lists the program section names and entry points defined in the 
modules, along with sufficient information for the loader to find 
them. 

LIBRA'S tasks are: to create libraries (and their catalogs) from 
user-specified sets of modules (RALF output files); to add new 
modules to existing libraries; to copy the contents of a library to a 
new library (with various options on selective deletion and 
replacement during the copy); and to list the catalogs of libraries. 

To call LIBRA, type 

in response to the dot generated by the Keyboard Monitor. LIBRA loads 
the OS/8 Command Decoder, which prints an asterisk at the left margin. 
In response to the Command Decoder's asterisk, type in the following 

The output device and name of the library to be created 
(LIBRA assigns the extension .RL unless one is specified). 
If no output file is specified, the default name FORLIB.RL is 
used and output is to the system device. 

The desired number of index blocks (decimal, maximum 255) 
enclosed in square brackets. LIBRA allocates two index 
blocks if no specification is given. 

The output device for the catalog listing when the library 
build is complete (preceded by a comma). If no device is 
specified, the listing is suppressed. 



FORTRAN IV LIBRARY 

4. The input files (RALF output modules) or libraries to be 
included in the library (preceded by a backarrow or left 
angle bracket). 

5. Options: 

/C to continue input specification on next line 
/I to make a decision on insertion of each entry point 

or section name 
/Z to replace an existing file of the same name by the 

new library 
/R to replace a module of the same name already in the 

library by a new input file 
= to allow extra blocks for library expansion 

The following lines may now be on the terminal: 

With the above command, you create a library named LIB1.RL on the 
system device containing the existing library, LIBO-RL, and the files 
R l ,  R2,..., R6. You allocate five blocks for the index; cause the 
catalog to be printed on the console terminal and 20 (octal) extra 
blocks reserved for future expansion. The /Z indicates that if a file 
already exists with the name LIBl.RL, the newly created library will 
replace it. 

If you wish to include more than nine modules, type /C to continue 
input specification on the next line. Note that you must specify the 
ll - t l  - option and the output device for the catalog listing on the last 
line (that is, the one without / C ) .  The /Z, if it is used, must 
appear on the first line. Thus: 

The library now contains the additional files R7, R8,..., Rll. You 
can specify the /I and /R options at any point in the command line; 
both /I and /R apply only to modules listed on the line in which they 
appear. 

To expand a previously created library, call LIBRA as usual. Specify 
the name of the old library file as the first output file, the catalog 
listing file, if desired, and then the modules or libraries to be 
added as input. Do not specify /Z. Thus: 

LIBRA adds the contents of ROUT and MOD to LIB1. If the old library 
file name does not exist, a new library is created using default 
options if necessary. Since LIBRA cannot change the size of the index 
or the room left for expansion at this time, it is useless to specify 
index blocks and expansion blocks. 



FORTRAN IV LIBRARY 

I f  by a d d i n g  a  module e n t r y  p o i n t  o r  s e c t i o n  name t o  a  l i b r a r y  you  
d u p l i c a t e  a name in  the l i b r a r y  catalog, LL- L L I C  U U ~ U - x b a  d. . -1 : - - tn  L C  l l a i i ~ c  IS n w ; m t n A  

^L J.l lL.CU 

on t h e  t e r m i n a l .  The name i n  t h e  c a t a l o g  c o n t i n u e s  t o  r e f e r  t o  t h e  
o r i g i n a l  modu le ,  u n l e s s :  

- - 1. Y O U  s p e c i f y  /R on a command l i n e .  The new module t h e n  
becomes a  l i b r a r y  f i l e  and  t h e  o l d  module o f  t h e  same name is  
d e l e t e d  ( u n l e s s  t h e r e  a r e  o t h e r  names f o r  t h e  o l d  module ,  i n  
which  c a s e  o n l y  t h e  d u p l i c a t e  name is  d e l e t e d ) .  For  example :  

c a u s e s  a n y  o f  t h e  i n p u t  modu le s  R l ,  R2, and  R3 t o  r e p l a c e  
e x i s t i n g  modules  i n  LiBO.RL w i t h  t h e  same e n t r y  p o i n t  o r  
s e c t i o n  name. 

2. You s p e c i f y  / I  on t h e  L I B R A  command l i n e .  I n p u t  f i l e  e n t r y  
p o i n t s  and s e c t i o n  names a r e  t h e n  l i s t e d  on  t h e  c o n s o l e  
t e r m i n a l .  I f  t h e  names d u p l i c a t e  names i n  t h e  c a t a l o g ,  t h e  
message  p r i n t e d  is: 

xxxx I S  DUPLICATE NAME; K E E P  O L D  OR NEW? 

whe re  xxxx is  a n  e n t r y  p o i n t  o r  s e c t i o n  name. You t h e n  t y p e  
OLD and a  RETURN ( o r  j u s t  a  RETURN o r  0  and  a  RETURN) t o  k e e p  
t h e  o l d  name; NEW and  a  RETURN ( o r  N and a  RETURN) t o  d e l e t e  
t h e  o l d  name and i n c l u d e  t h e  new. The q u e s t i o n  is  r e p e a t e d  
i f  you t y p e  a n y  o t h e r  c h a r a c t e r .  

I f  t h e  new names d o  n o t  a p p e a r  i n  t h e  c a t a l o g ,  t h e  message  
t y p e d  is:  

xxxx: INCLUDE? 

where  xxxx i s  t h e  new e n t r y  p o i n t  o r  s e c t i o n  name. 

Type YES and a  RETURN ( o r  j u s t  a  RETURN o r  Y and a  RETURN) t o  
i n c l u d e  t h e  name; NO and a  RETURN ( o r  N and a  RETURN) t o  
o m i t  i t .  The q u e s t i o n  i s  r e p e a t e d  i f  you t y p e  a n y  o t h e r  
c h a r a c t e r .  

You c a n  o b t a i n  a  c a t a l o g  l i s t i n g  a t  a n y  t i m e  by  o m i t t i n g  t h e  i n p u t  
f i l e  s p e c i f i c a t i o n  i n  t h e  c a l l  t o  L I B R A .  For  examp le :  

p r i n t s  t h e  c a t a l o g  o f  FORLIB on  t h e  l i n e  p r i n t e r .  L I B R A ' S  v e r s i o n  
number (Vxx) is o u t p u t  a s  p a r t  o f  t h e  c a t a l o g  h e a d i n g .  

E n t r y  p o i n t s a n d  s e c t i o n  names may b e  d e l e t e d  f rom t h e  c a t a l o g  by  
combin ing  t h e  / I  and / Z  o p t i o n s .  Each c a t a l o g  e n t r y  is l i s t e d  on  t h e  
c o n s o l e  t e r m i n a l  w i t h  t h e  message :  

name: INCLUDE? 

Type Y and RETURN t o  i n c l u d e  t h e  s e c t i o n  name o r  e n t r y  p o i n t ;  t y p e  N 
and RETURN t o  d e l e t e  i t .  I f  a l l  c a t a l o g  e n t r i e s  c o r r e s p o n d i n g  t o  a  
p a r t i c u l a r  module  a r e  d e l e t e d  f rom t h e  c a t a l o g  i n  t h i s  manner ,  t h e  
module is  d e l e t e d  from t h e  l i b r a r y  and t h e  message :  

MODULE IS DELETED 

is p r i n t e d  o n  t h e  c o n s o l e  t e r m i n a l .  



FORTRAN IV LIBRARY 

FORLIB-RL, the standard library supplied with the FORTRAN IV system, 
contains functions and subroutines that perform mathematical 
calculations and drive various peripheral devices. You may modify 
this library with LIBRA to fit the needs of your installation. 
Although at least one copy of the standard library should be 
maintained as a backup, it may be desirable to delete unwanted 
routines from FORLIB in order to reduce storage requirements. For 
example, you may delete double-precision routines if your installation 
does not include an FPP-12 with extended precision option. Take care 
not to delete subroutines that may be called by the various system 
programs or by other library routines that are not deleted. Table 
13-1 lists the library routines that execute calls to entry points in 
other routines; in general, when an entry in the right column of 
Table 13-1 is deleted, the corresponding entry in the left column may 
not be called. 

Table 13-1 
FORLIB Calling Relationships 

SYNC 
DISP 
EXPIR 
EXP3 
ALOG10 
cos 
TAN 
SIND 
COSD 
TAND 
A S I N  
ACOS 
ATAN 2 
SINH 
COSH 
TANH 

Section Name 

DISP, ONQI 
ONQB 
EXP3 
ALOG, EXP 
ALOG 
SIN 
SIN, COS 
SIN 
SIN 
TAN 
ATAIM, SQRT 

ATAN, SQRT 
ATAN 
EXP 
EXP 
SIMH, COSH 

Entry Point Called 

For example, to delete the entry points ABS, IABS, and LSW from the 
catalog, the proper command to LIBRA is: 

Respond with Y and a carriage return to all of the messages except: 

.TARS: INCLUDE? N 
A R S ;  INCL-UDE? N 
MODULE: IS DE:L..ETE:D 

t 

...SU? INCLUDE? N 
* 



FORTRAN IV LIBRARY 

The module containing ABS and IABS is deleted from the library because 
all of its section names and entry points have been deleted from the 
- - L - l - -  
L ~ L ~ J . u ~ .  Entry point LSW is deleted f r o m  the catalog, but the 
corresponding module remains in the library because other entry points 
are still present in the catalog. Table 13-2 lists the FORLIB entry 
points that are contained in modules with different section names. 

Table 13-2 
FQRLIE Multiple Entry Points by Section 

Section Name 

IABS 
SIGN 
AMINO 
AMAX 0 
DIM 
PLOT 
REALTM 
CHARS 
IFIX 
AMOD 
RSW 
ONQI 
SYNC 

Entry Points 

ABS 
ISIGN AMIN1, MINO, MINI 

AMAX1, MAXO, MAX1 
IDIM 
SCALE, CLRPLT, #DISP 
SAMPLE, ADB 
CGET, CPUT, CHAR 
AINT, INT 
MOD 
LSW, SSW, ROPEN, EXTLVL, RCLOSE 
ONQB 
CLOCK, TIME, #CLINT 

The catalog entries #FIX, #RFDV, #LTR, #EQ, #NE, #GE, #LE, #GT, #LT, 
#EXPIR, #CLINT, and #EXPI1 are used by the compiler and should not be 
deleted. 

13.1 LIBRARY FUNCTIONS AND SUBROUTINES 

Library functions and subroutines are called in the same manner as 
user-written functions and subroutines. The following section lists 
the library components that are available to FORTRAN programs and 
illustrates some calling sequences. Arguments must be of the correct 
number and type but need not have the same name as those shown in the 
examples. Routines that require LAB8/E or PDP-12 hardware are marked 
with an asterisk. Routines that will run on the FPP with 
extended-precision option are marked with two asterisks. You must not 
use either symbol in the actual FORTRAN program. Certain library 
routines are used by the FORTRAN system programs and are not available 
to a user's FORTRAN program. You can identify these routines by the 
initial "#" character in the entry point or section name; they are 
not listed in the following section. 

13.1.1 ABS (Single-Precision Absolute Value) 

ABS calculates the absolute value of a real variable by leaving the 
variable unchanged if it is positive (or zero) and negating the 
variable if it is negative. 



FORTRAN IV LIBRARY 

13.1.2 ACOS (Single-Precision Arc-Cosine Function) 

ACOS calculates and returns the primary arc-cosine (in radians) of a 
real argument less than or equal to 1.0 according to the relation: 

13.1.3 ADB* (Return Next Sample from Real-Time Sampling Buffer) 

ADB finds and returns the next sample in the range [-512, 5111 from 
the real-time sampling buffer. The following program illustrates how 
ADB may be used to sample 500 points from channel 3 and plot them on 
the scope: 

DIMENSION P L T B U F < ~ O O ) Ã ˆ D A T B L J F < ~ ~  
1 CAL.L CL-RPLT ( 4 0 0  Ã PL.TBUF ) 

CALL RE-:ALTH < DATBUF Ã 5 0  9 3 Ã 1 Ã 5 0 0  1 
CAL-L CL-OCK < 8 ~ 1 0 )  
DO 100  I = 1 ~ 5 0 0  

100 CALL PLOT< 1 Ã I / 3 8 4  + T A D B < X ) / ~ Q ~ ~  t + t 5 )  
READ(:L Ã 1 0 j Q  

10 FORMAT ( 1 2  1 
GO TO 1 
STOP 

END 

After finishing the plotting, the program waits for you to type the 
RETURN key, and then repeats the sampling-display process. Note that 
n n n T r n 8 1  
I - I L ~ ~ L L I ~ I  sets iip the sampling procedure, while CLOCK actually initiates 
the sampling. 

13.1.4 ADC* (Asynchronous Sampling) 

The ADC function accepts an integer argument in the range [0,15], 
assumed to be a channel number. It returns the current value of the 
referenced channel as a real number in the range [-1, 11. Sampling 
employs the fast SAM instruction for one or multiple channels. ADC 
may not be used in a program that also uses REALTM. The following 
program illustrates the use of the ADC function. 



FORTRAN IV LIBRARY 

13.1 .5  AIMAG** (Complex-to-Imaginary Conversion) 

AIMAG r e t u r n s  t h e  i m a g i n a r y  p a r t  o f  i t s  complex a rgumen t  a s  a  r e a l  
v a r i a b l e .  

13 .1 .6  AINT (Single Precision-Floating Point to Integer 

AINT is  a f l o a t i n g - p o i n t  t r u n c a t i o n  f u n c t i o n .  Given  a r e a l  a r g u m e n t ,  
i t  t r u n c a t e s  t h e  f r a c t i o n a l  p a r t  o f  t h e  a rgumen t  and  r e t u r n s  t h e  
i n t e g r a l  p a r t  a s  a n  i n t e g e r .  T h i s  i s  a c c o m p l i s h e d  by  t a k i n g  t h e  
a b s o l u t e  v a l u e  o f  t h e  a r g u m e n t ,  a l i g n i n g  and n o r m a l i z i n g  t h i s  r e s u l t ,  
t h e n  r e s t o r i n g  t h e  o r i g i n a l  s i g n .  AINT, IFIX, and INT p e r f o r m  
i d e n t i c a l  f u n c t i o n s .  

13 .1 .7  ALOG (Single-Precision Natural Logarithm) 

ALOG c a l c u l a t e s  and  r e t u r n s  t h e  n a t u r a l  ( N a p e r i a n )  l o g a r i t h m  o f  a  r e a l  
a rgumen t  g r e a t e r  t h a n  z e r o .  Any n e g a t i v e  o r  z e r o  a rgumen t  r e t u r n s  a n  
e r r o r  message  and  a  v a l u e  o f  0 .0 .  The a l g o r i t h m  used  i s  a n  e i g h t - t e r m  
T a y l o r  s e r i e s  a p p r o x i m a t i o n -  

13.1.8 ALOG10 (Single-Precision Common Logarithm) 

ALOG10 c a l c u l a t e s  and r e t u r n s  t h e  common ( b a s e  1 0 )  l o g a r i t h m  of a r e a l  
a rgumen t  g r e a t e r  t h a n  z e r o .  Any n e g a t i v e  o r  z e r o  a rgumen t  r e t u r n s  a n  
e r r o r  mes sage  and a  v a l u e  o f  0 .0 .  The c a l c u l a t i o n  i s  a c c o m p l i s h e d  by 
c a l l i n g  ALOG t o  compute  t h e  n a t u r a l  l o g a r i t h m  and e x e c u t i n g  a  change  
of  b a s e .  

13 .1 .9  AMAXO (Single-Precision Maximum Value) 

AMAXO a c c e p t s  a n  a r b i t r a r y  number o f  i n t e g e r  a r g u m e n t s  and  r e t u r n s  a  
r e a l  v a l u e  e q u a l  t o  t h e  l a r g e s t  o f  t h e  a r g u m e n t s .  

13 .1 .10  AMAX1 (Single-Precision Maximum Value) 

AMAX1 a c c e p t s  a n  a r b i t r a r y  number o f  r e a l  a r g u m e n t s  and  r e t u r n s  a  r e a l  
v a l u e  e q u a l  t o  t h e  l a r g e s t  o f  t h e  a r g u m e n t s .  

13 .1 .11  AMINO (Single-Precision Minimum Value) 

A M I N O  a c c e p t s  a n  a r b i t r a r y  number o f  i n t e g e r  a r g u m e n t s  and  r e t u r n s  a  
r e a l  v a l u e  e q u a l  t o  t h e  s m a l l e s t  o f  t h e  a r g u m e n t s .  

13 .1 .12  AMIN1 (Single-Precision Minimum Value) 

A M I N 1  a c c e p t s  a n  a r b i t r a r y  number o f  r e a l  a r g u m e n t s  and  r e t u r n s  a  r e a l  
v a l u e  e q u a l  t o  t h e  s m a l l e s t  o f  t h e  a r g u m e n t s .  



FORTRAN IV LIBRARY 

13.1 .13  AMOD (Single-Precision A Modulo B) 

AMOD a c c e p t s  two r e a l  a r g u m e n t s  and  r e t u r n s  a  r e a l  v a l u e  e q u a l  t o  t h e  
r e m a i n d e r  when t h e  f i r s t  a rgumen t  is  d i v i d e d  by  t h e  s e c o n d  a rgumen t .  
I f  t h e  s e c o n d  a rgumen t  is  n o t  s u f f i c i e n t l y  l a r g e  t o  p r e v e n t  o v e r f l o w ,  
a n  e r r o r  message  and a  v a l u e  o f  0.0 a r e  r e t u r n e d .  

13.1.14 ASIN (Single-Precision Arc-Sine) 

ASIN c a l c u l a t e s  and r e t u r n s  t h e  a r c - s i n e  ( i n  r a d i a n s )  o f  a  r e a l  
a rgumen t  i n  t h e  r a n g e  [ - I ,  11 a c c o r d i n g  t o  t h e  r e l a t i o n :  

I f  t h e  a rgumen t  f a l l s  o u t s i d e  t h e  r a n g e  [ - I ,  11, an  e r r o r  message  
r e s u l t s .  

13 .1 .15  ATAN (Single-Precision Arc-Tangent) 

ATAN c a l c u l a t e s  and  r e t u r n s  t h e  p r i m a r y  a r c - t a n g e n t  ( i n  r a d i a n s )  o f  a  
r e a l  a r g u m e n t .  The a rgumen t  is  f i r s t  r educed  a c c o r d i n g  t o  t h e  
r e l a t i o n s :  

The a r c - t a n g e n t  is  t h e n  computed by a  power s e r i e s  a p p r o x i m a t i o n .  

13 .1 .16  ATAN2 (Single-Precision Arc-Tangent of Two Arguments) 

ATAN2 a c c e p t s  two r e a l  a r g u m e n t s ,  one  o f  which i s  assumed t o  be  an  
a b s c i s s a  and  t h e  o t h e r  a n  o r d i n a t e .  I t  c a l c u l a t e s  t h e  a r c - t a n g e n t  o f  
t h e  q u o t i e n t  o f  t h e  f i r s t  a rgumen t  d i v i d e d  by t h e  s e c o n d  a r g u m e n t .  
T h i s  i s  a c c o m p l i s h e d  by  c a l l i n g  ATAN t o  f i n d  t h e  p r i n c i p a l  a r c - t a n g e n t  
o f  t h e  q u o t i e n t  and  t h e n  a d j u s t i n g  t h e  r e s u l t ,  d e p e n d i n g  upon t h e  
q u a d r a n t  i n  which a  p o i n t  d e f i n e d  by t h e  a r g u m e n t s  f a l l s ,  a c c o r d i n g  t o  
t h e  r e l a t i o n s :  

a rgumen t  i n  f i r s t  q u a d r a n t  a t a n 2  ( y ,  x )  = a t a n  ( y / x )  
a rgumen t  i n  s e c o n d  q u a d r a n t  a t a n 2  ( y ,  x )  = a t a n  ( y / x )  - 
a rgumen t  i n  t h i r d  q u a d r a n t  a t a n 2 ( y , x )  = a t a n  ( y / x )  - 
a rgumen t  i n  f o u r t h  q u a d r a n t  a t a n 2 ( y I x )  = a t a n ( y / x ) +  

13 .1 .17  CABS** (Complex Absolute Value) 

CABS a c c e p t s  a  complex a rgumen t  and  r e t u r n s  t h e  a b s o l u t e  v a l u e  o f  t h e  
a rgumen t  a s  a  r e a l  v a r i a b l e  d e f i n e d  by :  

C A B S  (X+iY) = SQRT (X**2+Y**2) 



FORTRAN IV LIBRARY 

13.1.18 CCOS** (Complex Cosine) 

CCOS accepts a complex argument and returns the cosine of the 
argument, a complex number defined by: 

CCOS (X+iYj = COS CX} *COSH (V} - i * m  *sINH ( y j  

13.1.19 CEXP** (Complex Exponential) 

CEXP accepts a complex argument and returns the exponential function 
of the argument, a complex variable defined by: 

CEXP(X+iY) = EXP(X) * (COS (Y) +i*SIN (Y) ) 

13.1.20 CGET (Character Get Subroutine) 

The calling sequence: 

CALL CGET (STRING,N,CHAR) 

causes the Nth character to be unpacked from STRING and stored in CHAR 
as a variable in the range Or 63, where STRING is a character string 
in A6 format. 

13.1.21 CHKEOF (Check for End-of-File Subroutine) 

CHKEOF accepts one real, integer, or logical argument. After the next 
formatted read operation, this argument will be set to non-zero if the 
logical end-of-file was encountered, or to 0 if the logical 
end-of-file was not encountered. The following is an example of the 
use of CHKEOF: 

13.1.22 CLOCK* (Initialize Clock Subroutine) 

The purpose of the CLOCK subroutine is to initialize certain features 
of the KW12A or DK8ES real-time clock. The calling sequence is: 

CALL CLOCK (FUNCTN, RATE) 

Depending upon the arguments FUNCTN and RATE, CLOCK can enable Schmitt 
triggers and clock-controlled A/D conversions, or run the clock at a 
variable rate. The clock is always run on interrupt. Both arguments 

be either integer, real, or logical in type. The first argument 
y:Tdicates a class of clock functions, and the second specifies a 
clock rate in Hertz. A common use of the clock routine occurs in 
conjunction with the REALTY subroutine. With one exception noted 



FORTRAN IV LIBRARY 

below, the clock routine is independent of hardware type. That is, a 
program employing the KW12A clock on a PDP-12 does not require 
modification to run on a PDP-8. The FUNCTN argument controls the 
enabling of all Schmitt triggers, clock-controlled A/D conversions, 
and clock rate or external input according to the scheme shown in 
Table 13-3. 

Table 13-3 
CLOCK Subroutine FUNCTN Arguments 

Value of 
FUNCTN Effect 

none, or enable clocked A/D conversion, more than one 
channel 

enable Schmitt trigger 1 

enable Schmitt trigger 2 

enable Schmitt trigger 3 

enable clocked A/D conversion, one channel 

enable the clock to run under external input 

Combinations of the conditions in Table 13-3 may be enabled by setting 
FUNCTN to a value equal to the sum of the values of the desired 
conditions. For example, to enable all Schmitt triggers, set FUNCTN=7 
(the sum of 4, 2, and 1); to enable clocked A/D conversion at an 
external rate, set FUNCTN=24, e t c .  If you do not specify a clock 
condition, the clock is disabled. Every call to CLOCK clears any 
functions that you may have enabled by previous calls to CLOCK and 
redefines clock conditions according to the new arguments. If the 
FUNCTN argument is out of range 

R(B) = base rate - maximum number in the set (100000, 10000, 
1000, 100) that satisfies the condition. R(B)/R(R)<4096 

If you specify an externally driven clock, RATE is interpreted as the 
number of external ticks between clock interrupts; it must be in the 
range [l, 40961. If the argument is outside this range, the interrupt 
rate will be arbitrary. The RATE argument is actually an overflow 
count, and the actual rate of the clock can be determined from: 

where RE is the rate of the external input and RA is the actual clock 
rate. The advantage of an externally driven clock is that it may run 
at an arbitrarily high rate; however, specifying too high a rate may 
hang up the FORTRAN system. The calling sequence to define an 
external clock for the KW12A differs from that of a call for the DW8ES 
in that the KW12A calling program must enable Schmitt trigger 1. You 
can obtain optional clock execution on a KW12A external clock when 
RATE=1. Note that the arguments for a KW12A external clock are 
sufficient to enable a D K 8 E S  external clock, but not vice versa. 



FORTRAN IV LIBRARY 

13.1 .23  CLOG** (Complex Natural Logarithm Function) 

CLOG c a l c u l a t e s  and r e t u r n s  t h e  n a t u r a l  l o g a r i t h m  o f  i t s  complex  
a r g u m e n t ,  a s  d e f i n e d  by  t h e  r e l a t i o n :  

13.1.24 CLRPT* (Clear Plot Subroutine) 

The c a l l i n g  s e q u e n c e :  

C A L L  CLRPLT (N,BUFFER) 

c l e a r s  t h e  c u r r e n t  p l o t ,  i f  a n y ,  and a s s i g n s  a n  N e l e m e n t  b u f f e r  
( d e s i g n a t e d  BUFFER) which w i l l  h o l d  3N,/2 p o i n t s  f o r  d i s p l a y .  The 
d i s p l a y  i s  a c t u a l l y  c r e a t e d  by  t h e  PLOT s u b r o u t i n e .  The v a r i a b l e  
BUFFER mus t  b e  a n  a r r a y  w i t h  a t  l e a s t  N e l e m e n t s .  

13 .1 .25  CMPLX** (Real-to-Complex Conversion Function) 

CMPLX a c c e p t s  two r e a l  a r g u m e n t s  and  r e t u r n s  a  complex  v a l u e  w i t h  r e a l  
p a r t  e q u a l  t o  t h e  f i r s t  a r g u m e n t  and i m a g i n a r y  p a r t  e q u a l  t o  t h e  
s econd  a r g u m e n t .  

13.1.26 CONJG** (Complex Conjugate Function) 

C O N J G  c a l c u l a t e s  and r e t u r n s  t h e  complex  c o n j u g a t e  o f  i t s  complex  
a rgumen t .  T h i s  i s  a c c o m p l i s h e d  by l e a v i n g  t h e  r e a l  p a r t  o f  t h e  
a rgumen t  unchanged and n e g a t i n g  t h e  i m a g i n a r y  p a r t .  

13 .1 .27  COS (Single-Precision Cosine Function) 

13.1.28 COSD (Single-Precision Cosine in Degrees) 

COSD c a l c u l a t e s  and r e t u r n s  t h e  c o s i n e  o f  a  r e a l  a rgumen t  ( i n  
d e g r e e s ) .  T h i s  is a c c o m p l i s h e d  by a d d i n g  90  t o  t h e  a r g u m e n t ,  
c o n v e r t i n g  t h e  r e s u l t  t o  r a d i a n s ,  and e x t r a c t i n g  t h e  s i n e .  



FORTRAN IV LIBRARY 

13.1 .29  COSH (Single-Precision Hyperbolic Cosine Function) 

COSH c a l c u l a t e s  and r e t u r n s  t h e  h y p e r b o l i c  c o s i n e  o f  a  r e a l  a rgumen t  
a c c o r d i n g  t o  t h e  r e l a t i o n :  

If 1x1 > 88.028 and 1x1 - loge2 < 88.028 
COSH(x) = EXP( 1x1 - log2) 

and a n  e r r o r  message  is  r e t u r n e d .  

13 .1 .30  CPUT (Character Put Subroutine) 

The c a l l i n g  s e q u e n c e :  

C A L L  CPUT (STRING ,N ,CHAR) 

c a u s e s  CPUT t o  i n s e r t  CHAR a s  t h e  Nth c h a r a c t e r  i n  STRING, where  
STRING is  a  c h a r a c t e r  s t r i n g  s t o r e d  i n  A 6  f o r m a t ,  and C H A R  is a  number 
i n  t h e  r a n g e  [O, 631 i n t e r p r e t e d  a s  a  c h a r a c t e r .  The f o l l o w i n g  
program i l l u s t r a t e s  t h e  u s e  o f  CGET and CPUT. 



FORTRAN IV LIBRARY 

13.1.31 CSIN** (Complex Sine Function) 

CSIN calculates and returns the sine of a complex argument according 
to the relation: 

13.1.32 CSQRT** (Complex Square Root Function) 

CSQRT calculates and returns the square root of a complex argument. 

13.1.33 DABS** (Double-Precision Absolute Value Function) 

DABS returns the absolute value of its double-precision argument by 
negating the argument if it is negative, or returning it intact if it 
is positive. 

13.1.34 DATAN** (Double-Precision Arc-Tangent Function) 

DATAN calculates and returns the primary arc-tangent of its 
double-precision argument. The argument is first reduced to the 
interval [O, ] with the identities: 

ATAN ( -X) = -ATAN (X) 

i f X> 1.0, ATAN (X) = r/2-ATAN ( 1/X) 

The arc-tangent is then calculated as a continued fraction 
approximation. 

13.1.35 DATAN2** (Double-Precision Arc-Tangent of Two Arguments) 

DATAN2 accepts two double-precision arguments, one of which is assumed 
to be an abscissa and the other an ordinate. It calculates the 
arc-tangent of the quotient of the first argument divided by the 
second argument. The result is then adjusted, depending upon the 
quadrant in which a point defined by the arguments falls, in the same 
manner as for the ATAN2 function. 

13.1.36 DATE (OS/8 Date Subroutine) 

DATE accepts three integer arguments, accesses the current OS/8 system 
date, and returns an integer from 1 to 12 corresponding to the current 
month as the first argument, an integer from 1 to 31 corresponding to 
the current day as the second argument, and an integer from 1970 to 
1977 corresponding to the current year as the third argument. 



FORTRAN IV LIBRARY 

13.1.37 DBLE** (Single-to-Double Precision Conversion) 

DBLE accepts a real argument and returns a double-precision value 
equal to the argument, filled out with zeros in the low-order three 
words. 

13.1.38 DCOS** (Double-Precision Cosine Function) 

DCOS calculates and returns the cosine of a double-precision argument 
(in radians). This is accomplished by adding PI/2 to the argument and 
passing this result to the DSIN function. 

13.1.39 DEXP** (Double-Precision Exponential Function) 

DEXP calculates and returns the exponential function of its 
double-precision argument by applying the method of Kogbetliantz (z 
Journal of Research and Development, April, 1957, pp 110-115). 

13.1.40 DIM (Single-Precision Positive Real Difference) 

DIM calculates and returns the positive difference of two real 
arguments. That is, if the first argument is larger than the second 
argument, DIM returns the difference between the arguments; if the 
first argument is less than or equal to the second argument, DIM 
returns 0.0. 

13.1.41 DLOG** (Double-Precision Natural Logarithm) 

DLOG calculates and returns the natural (Naperian) logarithm of its 
double-precision argument. This is accomplished by reducing the range 
of the argument through application of a method described bv Ralston 
and 
then 

Wilf in their text, Numerical lethods for Digital computers, 
performing a Taylor series expansion. 

13.1.42 DLOG10** (Double-Precision Common Logarithm) 

DLOG10 calculates and returns the common (base 10) logarithm of 
double-precision argument by extracting the natural logarithm 
executing a change of base. 

13.1.43 DMAXl** (Double-Precision Maximum Value) 

DMAX1 accepts an arbitrary number of double-precision 
returns the largest of the arguments. 

13.1.44 DMINl** (Double-Precision Minimum Value) 

DMIN1 accepts an arbitrary number of double-precision 
returns the smallest of the arguments. 

arguments 

arguments 

and 

its 
and 

and 

and 



FORTRAN IV LIBRARY 

13.1.45 DMOD** (Double-Precision A Modulo B Function) 

DMOD accepts two double-precision arguments and returns a 
double-precision value equal to the remainder when the first argument 
is divided by the second argument. If the second argument is not 
sufficiently larae to prevent overflow, an error message and a value 
of 0.0 are returned. 

13-1,46 DSIGN** [Double-Precision Transfer-of-Sign) 

DSIGN accepts two double-precision arguments, calculates the absolute 
value of the first argument, and returns this value if the second 
argument is positive (or zero), or the negative of this value if the 
second argument is negative. 

13.1.47 DSIN** (Double-Precision Sine Function) 

DSIN calculates and returns the sine of a double-precision argument 
(in radians). The argument is first reduced to the range [ O f  PI/2], 
and the sine is then calculated from a Taylor series approximation. 

13.1.48 DSQRT** (~ouble-Precision Square Root) 

DSQRT calculates and returns the (positive) square root of a positive 
double-precision argument. Any negative argument results in an error 
message. 

13.1.49 EXP (Single-Precision Exponential Function) 

EXP calculates and returns the exponential function of a real 
argument. The algorithm uses a numerical method after Kogbetliantz 
(IBM Journal of Research and Development, April, 1957, pp 110-115). 

13.1.50 EXTLVL* (Read PDP-12 External Level) 

EXTLVL accepts two integer, real, or logical arguments. The first 
argument is assumed to be a PDP-12 external-level number in the range 
[Of 121. If the referenced external level is at +3 volts (floating), 
the second argument is set equal to 0. If the referenced external 
level is at 0 volts (ground), the second argument is set equal to 1. 
If the first argument is outside the range [Of 121, the value returned 
in the second argument is unpredictable. If EXTLVL is called on a 
PDP-8, the second argument will always be set to zero. 

13.1.51 FLOAT (Integer-to-Floating Point Conversion) 

FLOAT accepts an integer argument and returns a real variable equal to 
the argument. 



FORTRAN IV LIBRARY 

13.1.52 IABS (Integer Absolute Value Function) 

IABS calculates and returns the absolute value of an integer variable 
by leaving the variable unchanged if it is positive (or zero), and 
negating the variable if it is negative. 

13.1.53 IDIM (Integer Positive Difference Function) 

IDIM calculates and returns the positive difference of two integer 
arguments. That is, if the first argument is larger than the second 
argument, IDIM returns the difference between the arguments; if the 
first argument is less than or equal to the second argument, IDIM 
returns a value of 0. 

13.1.54 IDINT (Double-Precision Integer Truncation) 

IDINT accepts a double-precision argument and returns the largest 
integer that is less than or equal to the argument. 

13.1.55 IFIX (Single-Precision Floating Point-to-Integer) 

IFIX is a floating-point truncation function. Given a real argument, 
it truncates the fractional part of the argument and returns the 
integral partGas an integer. IFIX, AINT, and INT perform the same 
function. 

13.1.56 INT (Single-Precision Floating Point-to-Integer) 

INT is a floating-point truncation function that performs the same 
function as AINT and IFIX. 

13.1.57 ISIGN (Integer Transfer of Sign Function) 

ISIGN accepts two integer arguments, calculates the absolute value of 
the first argument, and returns this value if the second argument is 
positive (or zero), or the negative of this value if the second 
argument is negative. 

13.1.58 LSW* (Read PDP-12 Left Switch Register) 

LSW accepts two real, integer or logical arguments. The first 
argument is assumed to be a PDP-12 left switch register switch number 
in the range [O, 111. Upon return, the second argument is set to the 
logical value of the referenced switch (either 0 or 1). If the first 
argument is outside the range [O, Ill, the result that will be 
returned in the second argument is unpredictable. If LSW is called on 
a PDP-8, a value of 0 is always returned. 



FORTRAN IV LIBRARY 

13.1.59 MAXO (Single-Precision Maximum Value) 

MAXO accepts an arbitrary number of integer arguments and returns an 
integer result equal to the largest of the arguments. 

13.1s60 MAX1 (Single-Precision Maximum Value) 

MAX1 accepts an arbitrary number of real arguments and returns an 
integer result equal to the largest of the arguments. 

13.1.61 MINO (Sinqle-Precision Minimum Value Function) 

MIND accepts an arbitrary number of integer arguments and 
integer value equal to the smallest of the arguments. 

13.1.62 MINI (Single-Precision Minimum Value Function) 

MINI accepts an arbitrary number of real arguments and 
integer value equal to the smallest of the arguments. 

returns 

returns 

13.1.63 MOD (Integer A Modulo B Function) 

MOD accepts two integer arguments and returns an integer value equal 
to the remainder when the first argument is divided by the second 
argument. If the second argument is not sufficiently large to prevent 
overflow, an error message and a value of 0 are returned. 

13.1.64 ONQB (Place Task on Background Job Chain) 

ONQB is a subroutine that you call from PDP-8 mode RALF code to place 
a PDP-8 mode task on the list of background tasks. These background 
tasks are executed in round-robin order whenever the PDP-8 processor 
has nothing to do (e.g., while waiting for terminal input). If FPP-12 
hardware is present, these background subroutines execute in parallel 
with the execution of the FORTRAN program by the FPP-12. You call 
ONQB by a sequence such as: 

JMSX XONQBt 1 
ADDR BRJOB 

EXTERN ONQB 
XONQI39 ADDR ONQB 

where BRJOB is the address of the background job, a subroutine that 
must obey all the conventions of ONQI. ONQB resides in field 1 and 
should only be called from field 1. 

13.1.65 ONQI (Place Interrupt Handler on Skip Chain) 

ONQI is a subroutine that you call from PDP-8 mode RALF code to put 
the interrupt handler of a device on the interrupt skip chain. When 
an interrupt is received by the PDP-8 processor, the processor checks 



FORTRAN IV LIBRARY 

each device on the skip chain, then the FPP, then the standard FORTRAN 
peripherals, e.g., the line printer. If a device with a handler on 
the skip chain causes the interrupt, the PDP-8 processor branches to 
the handler. You call ONQI by a sequence such as: 

JMSX XONQI 4.1 
IOT 
ADDR IHNDIR 

where IOT is the actual IOT code for the device skip-on-flag 
instruction and 1HNDLR is the address of the interrupt handler for 
this device. ONQI always resides in field 1 and must be called by 
PDP-8 mode RALF code in field 1 only. You enter the interrupt handler 
with the AC cleared and the data and instruction fields set to 1. It 
should return with these registers in the same state. You should not 
call ONQI more than once for any given IOT. 

13.1.66 PLOT* (Display Data on PDP-12 or LAB-8/E Scope) 

The calling sequence: 

CALL PLOT (M,X,Y) 

plots M points -- whose X coordinates are in the array X and whose Y 
coordinates are in the array Y -- into the plot buffer specified by 
the CLRPLT routine. A background task plots the contents of all 
points entered into the plot buffer on the scope whenever the PDP-8 
processor would otherwise be idle. When X is 1, X and Y are 
interpreted as scalars. The scope is scaled with (0,O) in the lower 
left corner and (1.3,l.O) in the upper right corner. You may alter 
these values by a call to SCALE. 

13.1.67 PLOTR* (Change Scope Buffer Values) 

The calling sequence: 

CALL PLOTR (M,X,Y,I) 

alters the M entries in the plot buffer beginning at the Ith entry; 
the new X coordinates are obtained from the array X and the new Y 
coordinates from the array Y. Calling this subroutine does not alter 
the number of points displayed by the background display task. 

13.1.68 RCLOSE* (Close a PDP-12 Relay) 

RCLOSE accepts an integer, real, or logical argument assumed to be a 
PDP-12 relay number in the range [O, 51 and closes the referenced 
relay. If the argument falls outside the specified range, the result 
is unpredictable. RCLOSE has no effect when called on a PDP-8. 

13.1.69 REAL** (Complex-to-Real Conversion Function) 

REAL accepts a complex argument and returns a real value equal to the 
real part of t h e  argument, 



FORTRAN IV LIBRARY 

13.1.70 REALTM* (Buffered/Clocked Sampling) 

CALL REALTM (BUFFER,LENGTH,CSTART,NCHANL,NPTS) 

where 

BUFFER is an a r r a y  t o  be used by REALTM. as a ring buffer 

LENGTH is the size of BUFFER 

CSTART IS 4-I.- 
Liic first channel to sample at each clock i n t e r r u p t  

(0-15) 

NCHANL is the number of channels to sample at each time step 
(If NCHANL = 1, then argument 1 of the call to CLOCK 
may specify clock-initiated A/D sampling (eight 
images). If NCHANL>l, then argument 1 of CLOCK CALL 
should not specify clock-initiated sampling. Fetching 
of the first sample will be initiated in the clock 
interrupt routines, or 50-100 s after the clock tick. 
The other samples are taken as soon as possible, about 
100-200 s later for each sample.) 

NPTS is the total number of samples to take 

Alqorithm and Comments 

The following program samples 500 points from channel 3 at 10 Hz and 
plots them on the scope: 

13.1.71 ROPEN* (Open a PDP-12 Relay) 

ROPEN accepts one integer, real, or logical argument, assumed to be a 
PDP-12 relay number in the range [Of 51, and opens the referenced 
relay. If the argument falls outside the specified range, the result 
is unpredictable. ROPEN has no effect when called on a PDP-8. 

13.1.72 RSW (Read Switch Register) 

RSW accepts two real, integer, or logical arguments. The first 
argument is assumed to be a switch register switch number in the range 
[Of 111. The second argument is set to the logical value of the 
referenced switch (right switch register on the PDP-12). If the first 
argument falls outside the range [Of 111, the result that will be 
returned in the second argument is unpredictable. 



FORTRAN IV LIBRARY 

13.1.73 SCALE* (Define Scale of Scope) 

SCALE defines the scope screen scaling for calls to PLOT. The calling 
sequence is: 

CALL SCALE (XLO,YLO,XHI,YHI) 

where 

XLO is the value at the left edge of the screen 
YLO is the value at the bottom of the screen 
XHI is the value at the right edge of the screen 
YHI is the value at the top of the screen 

If you never call SCALE, the assumed values are equivalent to: 

CALL SCALE (0,0,1.3,1.0) 

13.1.74 SIGN (Single-Precision Transfer-of-Sign) 

SIGN accepts two real arguments, calculates the absolute value of the 
first argument, and returns this value if the second argument is 
positive (or zero), or the negative of this value if the second 
argument is negative. 

13.1.75 SIN (Single-Precision Sine Function) 

SIN calculates and returns the sine of a real argument (in radians). 
The argument is reduced to the first quadrant, and the sine is then 
computed from a Taylor series expansion. 

13.1.76 SIND (Single-Precision Sine (Degrees) Function) 

SIND calculates and returns the sine of a real argument (in degrees). 
This is accomplished by converting the argument to radians and passing 
this value to the SIN function. 

13.1.77 SNGL** (Double-to-Single Precision Conversion) 

SNGL accepts a double-precision argument, truncates the low-order 
bits, and returns the resulting real value. 

13.1.78 SINH (Single-Precision Hyperbolic Sign) 

SINH calculates and returns the hyperbolic sine of a real argument 
according to the relations: 



FORTRAN IV LIBRARY 

13.1.79 SQRT (Single-Precision Square Root Function) 

SQRT c a l c u l a t e s  and  r e t u r n s  t h e  ( p o s i t i v e )  s q u a r e  r o o t  of a  positive 
real argument. Any negative argument results in an error message. 

13.1.80 SSW* (Read PDP-12 Sense Switch) 

SEW accepts t w ~  r e a l ,  izte~er, c r  lggical a r g m e ~ t s .  The first 
argument is assumed to be a PDP-12 sense switch number in the range 
[O, 51. The second argument is set to the logical value of the 
referenced sense switch. If SSW is called on a PDP-8, a value of zero 
is always  returned. If the first argument falls outside the range 
[Of 51, the result that will be returned in the second argument is 
generally unpredictable. The exception is the calling sequence: 

CALL SSW (14.RUA12) 

which returns RUA12=0 on a PDP-8 and RUA12=1 on a PDP-12. 

13,1.81 SYNC* (Read a Schmitt Trigger) 

SYNC determines whether a Schmitt trigger has been fired; you must 
not call SYNC unless you have called CLOCK at least once. SYNC 
accepts two real, integer, or logical arguments. The first argument 
is assumed to be a Schmitt trigger number in the range 11, 31. The 
second argument is set to one if the r e f e r e n c e d  Schmi t t  trigger has 
fired since the last time it was read, or to zero otherwise. The 
referenced Schmitt trigger is also reset to the not-fired, or zero, 
state. A call to CLOCK sets all triggers to the zero state, and any 
trigger that was not enabled by a call to CLOCK is always in the zero 
state. If the first argument falls outside the range [1, 31, an 
unpredictable result (either zero or one) is generally returned. If 
the first argument is zero, however, a value of zero is always 
returned. 

13.1.82 TAN (Single-Precision Tangent Function) 

TAN calculates and returns the tangent of a real argument (in 
radians). This is accomplished by computing the quotient of the sine 
of the argument divided by the cosine of the argument; thus, if the 
cosine of the argument is zero, an error message is returned. 

13.1.83 TAND (Single-precision Tangent, Degrees) 

TAND calculates and returns the tangent of a real argument (in 
degrees). This is accomplished by converting the argument to radians 
and passing the resulting value to the TAN routine. 

TANH (Single-Precision Hyperbolic Tangent) 13.1.84 

TANH ca lculates and returns the hyperbolic tangent of a real argument 
by computing the quotient of the hyperbolic sine of the argument 
divided by the hyperbolic cosine of the argument. 



FORTRAN IV LIBRARY 

13.1.85 TIME* (Read Time of Day) 

You may call TIME as a subroutine with one real or integer argument, 
or as a function with a dummy argument. It returns the elapsed time 
since the clock was started. This result will be in seconds unless 
the clock is running under external input, in which case it will be in 
external ticks, with the interval between ticks specified by the clock 
rate (see CLOCK). 



CHAPTER 1 4  

PAPER TAPE LOADING INSTRUCTIONS 

You may l o a d  t h e  FORTRAN IV s y s t e m  from paper  t ape  u s i n g  OS/8 EPIC. 
O f  t h e  n i n e  f i l e s  t h a t  make u p  t h e  s y s t e m ,  t h e  f o l l o w i n g  e i g h t  a r e  on  
s e p a r a t e  p a p e r  t a p e s .  

F4.SV RALF. SV 
PASS 2.  SV LOAD. SV 
PASS20 .SV FRTS. SV 
PASS3.SV L I B R A .  SV 

T h e s e  f i l e s  may be  r e a d  i n  a n y  o r d e r .  A f t e r  t h e s e  t a p e s  h a v e  b e e n  
r e a d ,  t h e  s i x  t a p e s  t h a t  c o m p r i s e  t h e  l i b r a r y  (FORLIB-RL) mus t  b e  r e a d  
i n  a s c e n d i n g  n u m e r i c a l  o r d e r .  A t y p i c a l  p r o c e d u r e  m i g h t  be :  

R EPIC 

* S Y S : < 

END O F  TAPE ENTER NEXT 
END O F  TAPE ENTER NEXT 
END O F  TAPE ENTER NEXT 
END O F  TAPE ENTER NEXT 
END O F  TAPE ENTER NEXT 
*"C 

Load OS/8 EPIC. 

D e s i g n a t e  t h e  d e v i c e  on  which  t h e  new 
FORTRAN I V  s y s t e m  w i l l  b e  b u i l t  and  
mount t h e  F4.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  PASS2.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  PASS20.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  PASS3.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  RALF.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  LOAD.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  FRTS.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  LIBRA.SV t a p e  i n  t h e  r e a d e r .  

Mount t h e  f i r s t  FORLIB.RL t a p e  i n  t h e  
r e a d e r .  

C o n t i n u e  t o  r e a d  t h e  s i x  FORLIB.RL 
p a p e r  t a p e s  i n  i n c r e a s i n g  n u m e r i c a l  
o r d e r .  



PAPER TAPE LOADING INSTRUCTIONS 

If you use a PDP-12 and create OS/8 FORTRAN IV systems from paper tape 
that require the real-time capabilities of this system, you must 
assemble the RALF modules containing REALTM, ADB, ADC, PLOT, CLRPLT, 
and SCALE and then add these modules to the system library. The 
routines you assemble and insert are contained on three paper tapes. 
A typical procedure might be as follows. 

Use OS/8 PIP to read the RALF 
modules, in ascending numerical 
order, onto temp.orary files. 

Assemble the temporary files under 
+ R  RALF RALF. 
*KIEV: FIL..E3 + R L < D E V t  FILE3 + R 



CHAPTER 1 5  

FORTRAN IV PLOTTER ROUTINES 

The X,Y plotter routines control an incremental plotter (Calcomp 563, 
565, or similar) for use with OS/8 FORTRAN IV. The routines permit 
the user to generate a wide variety of plotted information, including: 

a Labeled axes 

Textual data 

e Graphs from data arrays ( X  and Y ) ,  with optional scaling of 
either array and centered symbols denoting the location of a 
data point 

Variables from the FORTRAN IV program plotted in F format 

Individual point and vector plotting 

You also control: 

e Pen position (up or down) 

Origin of plotted information 

Scaling of any plot 

Rotation of text and axes 

Table 15-1 summarizes plotter routines and their functions. 

Table 15-1 
FORTRAN IV Plotter Routines 

PLOTS 

Name 

XYPLOT 

Function 

FACTOR 

WHERE 

Initializes all other plotter routines to your 
hardware configuration. 

Moves pen to specified X,Y location with pen in up or 
down position; permits origin control. 

Scales size of subsequent plotting data. 

Passes current position and factor to your program, 

(continued on next page) 



FORTRAN IV PLOTTER ROUTINES 

Table 15-1 (Cont.) 
FORTRAN IV Plotter Routines 

Name 

SYMBOL 

NUMBER 

PSCALE 

AXIS 

LINE 

PLEXIT 

Function 

Prints textual information (such as titles) at any 
angle and special symbols to indicate a data point. 

Prints each digit in a variable, including optional 
decimal point and truncation. 

Defines parameters for axis annotation and size of 
final plot for data array. 

Plots an axis, at any angle, including segment 
markings and title. 

Generates the graph of data in two arrays (X and Y). 

Terminates all plotting. 

The system must support any OS/8 FORTRAN IV configuration plus: XY/8e 
interface for PDP-8/E; or XY interface for PDP-12, 8, or 8/1; and an 
incremental plotter suitable for one of these interfaces. 

The system must have OS/8 (QFS8-A) and OS/8 FORTRAN IV (QF008-AB). 

15.1 PLOTTER OPERATION 

The plotter permits six basic functions: drum down (+X movement), 
drum up (-X movement), pen left (+Y movement), pen right (-Y 
movement), pen up, and pen down. Diagonal movement is accomplished by 
a combination of pen and drum motion. The plotting increment is a 
function of the plotter itself, generally -005 or -01 inches. Each 
line plotted is in this incremental unit. Hence upon very close 
examination vectors plotted at angles other than multiples of 45 
degrees may appear sightly nonlinear. This effect is unnoticeable at 
normal viewing distances from the plotter where all vectors appear 
smooth. If you request a vector that exceeds the physical width of 
the plotter, the pen will move to the physical limit and plot the 
remaining section at the margin. This may distort subsequent 
plotting, depending on your sequence of commands. Therefore, be sure 
the pen is either physically located in a useful position at the start 
of the plot, or use the plotting commands to monitor its position and 
prevent such problems. 

15.2 PLOTTER COMMANDS 



FORTRAN IV PLOTTER ROUTINES 

15.2.1 PLOTS 

You must call the routine PLOTS once at the start of each plotting 
program to initialize internal parameters to the current 
configuration. The call is: 

CALL PLOTS(X,Y) 

where 

X is the increment size of the plotter in inches; generally 
-01 or -005 inches 

Y is 0 if running on a PDP-8/~, 1 if running on a P D P - ~ / ~ ,  
PDP-8, or PDP-12 

PLOTS initializes the factor (for overall plot size) to 1 and clears 
old pen location and origin status. Note that although the plotter 
may actually move in inches, the code can cause it to behave as if it 
were millimeters (or any other unit) by including the proper 
conversion in the FORTRAN code. 

15.2.2 XYPLOT 

XYPLOT is the routine that actually causes pen and drum movements on 
the plotter. Routines such as NUMBER and AXIS eventually use XYPLOT. 
This routine is useful when a plot is to be generated one vector at a 
time by the user program (rather than saving an array, for example). 
It also controls the origin, defined as the logical point (0,O) for 
future plotting. 

The call is of the form: 

CALL XYPLOT (X,Y, I) 

where 

X f Y  is the X,Y coordinate in inches to which the pen is to move 
relative to the most recently established origin point 

I is an integer of the set (-3,-2,2,3) that controls pen 
position and establishes the origin point, as follows: 

If 1=2, the pen is down during the move. 
If 1=3, the pen is up during the move. 
If I is negative, the pen moves to point X,Y and this point 
is then established as the current origin point (0,O). (If 
a value outside this set is called, the pen defaults to 
down. ) 

For example: 

CALL XYPLOT(4,-2,-2) 

moves from the current position to 4,-2 with the pen down and 
establishes this location as the origin point (0,O). 

CALL XYPLOT (-7,3,3) 

moves the pen in the up position to -7,3. If these two commands are 
sequential, then this move would be -7 inches of X and + 3  of Y, from 
0,o to -7,3. 



FORTRAN IV PLOTTER ROUTINES 

No single vector can be plotted longer than 4095 plotting increments, 
or approximately 40.9 inches for a -01 increment plotter or 20.4 for a 
-005 increment plotter. 

15.2.3 FACTOR 

You can increase or reduce overall plot size by using the FACTOR 
routine. The call is: 

CALL FACTOR ( Z )  

where 

Z is the ratio of the desired plot size to the current size. 
This value is initialized by PLOTS to 1. Calling FACTOR 
with Z=l resets the plot to its initial size.Use the 
absolute value of Z. For example, to double the size oÂ the 
plot, use CALL FACTOR (2); to halve it, use CALL FACTOR 
(05). 

15.2.4 WHERE 

The WHERE routine passes three values to the user program: current X 
position, current Y position, and current factor. This routine is 
most commonly used to determine the current location of the pen in a 
long plotting sequence, or to calculate a delta X or Y value for the 
next step in a graph. 

The call is: 

C A L L  WHERE ( X , Y , Z )  

where 

X is set to the current X position 

Y is set to the current Y position 

Z is set to the current factor 

Consider the following example: 

When this program is run, the statement XVAL=-5YVAL=3 will be printed 
on device 4. 



FORTRAN IV PLOTTER ROUTINES 

15.2.5 SYMBOL 

The SYMBOL routine has two forms: 

0 Print any number of letters and symbols 

0 Print a single character 

The available character set for both forms is found in 

Table 15-2 
Special Symbols 

SYMBOL CODE SYMBOL CODE 11 SYMBOL CODE 

Tables 15-2 and 

Table 15-3 
Regular Characters 



FORTRAN IV PLOTTER ROUTINES 

15.2.5.1 Multiple Characters - You may combine any of the characters 
in Table 15-3, except pi, in any order to print titles, legends, 
labels or the like, using a multiple character call: 

CALL SYMBOL (X,Y,H,T,A,N) 

where 

X,Y is the coordinate in inches of the lower left corner of the 
first character to be printed 

H is the height in inches of each character (Because 
characters are considered to be on a 7x7 grid, a multiple of 
7 times the increment size is recommended (i.e., a minimum 
of .07 for .01 increment plotters and .035 for .005 
increment plotters). The actual plotting grid occupied by 
any character is 6x4; the remaining 1x3 is used for spacing 
between characters.) 

T is the text in A or Hollerith format 

A is the angle at which the text is to be printed and is 
specified in degrees from the X axis 

N is the number (positive integer) of characters to be plotted 
and must be greater than 0 and equal to or less than the 
number of characters in T 

For example: 

DIMENSION TEXT<2)  
DATA TEXT/'TEXT EXAMPLE'/ 
CALL P L O T S < ~ ~ ~ Ã ˆ ~  
CALL XYPL-OT ( 0 Ã 0 Ã -3 1 
CAL.L S Y M B O L ( ~ Ã ˆ ~ Ã ˆ ~ ~ ~ Ã ˆ T E X T Ã ˆ O  
CALL PLEXIT 
END 

will, on a non-PDP8/e machine with a .01 increment plotter, initialize 
the origin point at the current pen location, move from there to 1,1, 
and print the 12 characters in TEXT, namely TEXT EXAMPLE, in letters 
.21 inches high at 0 degrees from the X axis, i.e., parallel to the 
side of the plotter. 

The program above is equivalent to: 

CALL P L O T S ( t 0 1 y l )  
CALL XYPL-[IT ( O F  0 Ã -3 ) 
CALL S Y M B O L . ( ~ Ã ˆ S Ã ˆ ~ ~ ~ Ã ˆ S ~ H T  E X A M P L E Ã ˆ O P I ~  
CAL..L.. PLEXI  T 
END 

Note that the character pi can only be plotted by a single character 
command because it has no Hollerith representation. 



15o2m5o2 Single Characters - You can plot two types of 
cnaracters: 

Characters from the available character set listed in 
15-3 

0 Special symbols used to denote a data point (listed in 
15-21 

The use of special symbols differs from that of 
characters in that their starting and terminating point 
center of the characterf not the lower left corner. 
symbols occupy a 4x4 grid. 

The call is: 

C A L L  

where 

XfY 

single 

Table 

Table 

other 
is the 
These 

is the XfY coordinate of the lower left corner of a regular 
characterf including pif or the center for a special symbol 

is the height in inches of the symbol and should be 7 times 
the increment size for a regular character and 4 times the 
increment size for a special symbol (i.eOf .02 or .04 
minimum depending on the plotter) 

is in the range 1-63 for regular characters (Table 15-3) and 
100-117 for special symbols (Table 15-2) (If a nonacceptable 
value is usedf SYMBOL prints a space in its place.) 

is the angle in degrees from the X axis at which the 
character is printed 

is -1 if the pen is to be up during the move to X f Y  or -2 if 
the pen is to be down during the move to XfY 

For example: 

This will plot the letter A .35Im tall at 180 degrees to the X axis on 
a PDP-8/E. The pen will be up during the move from OfO to -Gf2# the 
lower left corner of the A. 

This will plot the first special character .2 inches tall centered at 
point lf4 at an angle of 270 degrees to the X axis on a non-PDP-8/E. 
You will be able to see the pen move from its current location to the 
start of the character (lf4). 



FORTRAN IV PLOTTER ROUTINES 

15-2-6 NUMBER 

The NUMBER routine facilitates handling internal format data (floating 
point)* It plots floating-point numbers in a format similar to 
FORTRAN IV F format* One number at a time is plotted using the call: 

CALL NUMBER (X,YfH,ZfA,N) 

where 

X,Y is the coordinate of the lower left corner of the first 
character of the number 

H is the height of each character, preferably 7 times 
increment size (each number is considered to occupy a 7x7 
grid) 

Z is the number to be plotted (It may be a real or integer 
number ) 

A is the angle to the X axis at which to plot the number 

N is an integer that controls the format of the number Z as 
follows : 

Value of N Result 

Z is truncated and plotted as an integer 
followed by a decimal point 

-1 Z is truncated and plotted as an integer 

=>1 N digits to the right of the decimal point 
are plotted- The number is rounded based on 
the value of the (N+l) th digit 

<-1 N-1 digits are truncated from the integer 
portion of the number- 

Note that the accuracy of the number printed cannot exceed 6 digits- 
However you may plot up to 19 digits with an expected loss of 
accuracy- If a bad digit is found in Z, that digit defaults to 0. 
For Z less than one a leading zero is included* For example: 

Statistically the above program will be plotted as follows: 

Starting Height Number 
Location (Inches) Plotted Ang 1 e 



If the number (Z) is out of range of the acceptable number of 
characters; irxluiiing rnings sign and decinal pointt the message: 

NUMBER O F  IlIGITS NOT 1-19 

is printed on the console device (unit 0 )  

15-2-7 PSCALE 

For many applications, the data to be p1ot.ted is scattered irregularly 
across the total range and in a manner not neatly related to unit 
(inch) increments- To permit plotting data in a finite 
(user-specified) length graph with labeled axis? invoke the PSCALE 
routine to establish two critical plotting parameters -- starting 
value and scaling increnent: 

The starting value can be positive or negative and a maximum or 
minimme It is the value printed at the starting axis annotation- 
The scaling increment is the delta value between succeeding axis 
annotations and is the number of data units per inch of plot, adjusted 
to 1,2,4,5 or 8 * 1 O n ~ -  

The starting value and the scaling increment are used by the AXIS and 
LINE routines to produce a properly annotated axis and a graph whose 
data includes all points in a user-specified length- PSCALE does no 
plotting; its use occurs in conjunction with AXIS and/or LINE- It is 
generally called twice -- once for X (abscissa) values and once for Y 
(ordinate) values- 

The call is: 

CALL 

where 

A is the array containing the data to be plotted (This array 
must have extra locations at the end in which PSCALE can 
store the starting value and scaling increment, as explained 
helow= 1 

L is thelength (integer) o f t h e a x i s  that the data is to 
cover (L must be greater than or equal to 1-1 

N is the number of data values in A to be considered (N must 
be greater than or equal to 1-1 

I is the increment between data values to be considered 

The first value examined when considering I is always A(l), 
the next is A(l+I)- If I is positive, the calculated 
starting value will be a minimum value- If I is negative, 
the calculated starting value will be a maximum, and the 
scaling increment will be negative- 



FORTRAN I V  PLOTTER ROUTINES 

The calculated starting value is stored at A(N*J+l); the scaling 
increment is stored at A(N*J+J+l) where J is the absolute value of I* 
Be sure to dimension A to a length sufficient to include these 
locations. Consider the data array ARRAY: 

Element Contents 

In the statement: 

CALL PSCALE (ARRAY,5,5,2) 

PSCALE will use ARRAY(l), ARRAY(3), ARRAY(5), ARRAY(7), and ARRAY(9) 
in determining the starting value and scaling increment* For the 
example above, the scaling increment is 2-0 and the starting value is 
0 . 
If an axis length of less than 1 is supplied, the message: 

is printed on device 0 -  If all elements of the data array are the 
same, the message: 

is printed. 

15.2.8 AXIS 

For most graphs, the presence of labeled axes adds significantly to 
interpreting the data* The AXIS routine draws an axis with labeled 
tic marks at one-inch intervals and a title or other 
parallel with and centered to the axis. 
separately for an X and a Y axis. 

You should determine the starting value 
discussed in PSCALE before calling AXIS* 

The call is: 

CALL AXIS (X,Y,T,N,L,A,F,D) 

where 

X,Y are the coordinates of the start of 
relative to the current origin* 

AXIS must 

and 

the 

scaling 

axis, 

annotation 
be called 

increment 

in inches, 
Often when two axes are 

required, X and Y are 0 for both calls* It is suggested 
that the physical origin of the axis be at least 1 / 2 "  in 
from any edge of the plotter, as annotation will require 
that space* This position becomes the new origin for 
subsequent plotting. 



FORTRAN IV PLOTTER ROUTINES 

T is the title in Hollerith format. It is printed -14 inches 
high (d2psfidsfit sxistifi9 adser=sp2cifi2d m l h t t ; m m  ~ L U L L A I ~ ~  G 5 m t - v ~ )  L ~ L L U L  a] 

anci centere6 along the axis. if the scaling increment is 
greater than 99 or less than .OII the notation *lo is added 
at the end of the title. 

N is the number of characters in the title (TI to be printed. 
Use the sign to specify on which side of the axis the tic 
marks and their labels are t~ be: positive means the 
positive (ca~iiterciockwise) si6e of  ths axisI i~scjstivz is 
the negative or clockwise side. Positive labeling is 
generally used for Y axes and negative for X axes. 

L is the length of the axis in inches. Xote that you should 
not allow this value to exceed the width of the plotter for 
an axis in that dlrectlon. The absolute value ,oi L 1s used. 

A is the angle in degrees at which the axis is to be drawn. X 
axes are generally at 0 and Y axes at 90. 

F is the starting value. You use it as the annotation for the 
first tic mark. The annotations include two significant 
places after the decimal point. This value may be 
determined by PSCALE or supplied by the user- If calculated 
by PSCALEv F must be the appropriate array element. I f  you 
choose to calculate your own starting value and scaling 
incrementI be aware that a tiny F and large D or large F and 
tiny D do not produce a meaningful graph. 

D isthescaling increment between tic mar^ annotatiorls. It 
may be determined by PSCALE or by the user. If calculated 
by PSCALEI D must be the appropriate array element. 

For best results axes should be drawn at n~ltiples of 45 degrees 
(including 0). AXIS uses the routine NUMBER. 

15.2.9 LINE 

You can combine pairs of data points in two arrays by LINE and plot 
them according to user-specified parameters. You can indicate points 
to be plotted by a special symbolv connecting them by a continuous 
line. LINE requires a starting value and scaling increment for each 
array such as those produced by PSCALE. 

The call to LINE is: 

CALL LINE (AIBI?J,IvLIJ) 

where 

A is the name of the array whose values are to be the abscissa 
values 

B is the name of the array whose values are to be the ordinate 
values 

(For A and BI the (N*I+l) th element must contain its 
starting value and the (N*I+I+l)th element must contain its 
scaling incrementI as supplied by the user or PSCALE.) 



FORTRAN IV PLOTTER ROUTINES 

N is the number of points in each array to be plotted (The 
same number of points is taken from each array.) 

I is the increment at which the data in A and B is collected, 
i.e., every Ith point is plotted (I must be greater than 0.) 

L determines the manner in which the line is plotted, as 
follows : 

If L is positive, each point is connected by a line and a 
special symbol is plotted at each point. 

If L is 0, each point is connected by a line, and no symbols 
are drawn. 

If L is negative, no connecting lines are plotted; each 
point is indicated by a special symbol. 

J is a value between 100 and 117 (see Table 15-2) indicating 
the special symbol to be used in the plot 

The pen should be located at the logical 0,O position of the graph 
when a call to LINE is issued. If the preceding plot operation was 
drawing an axis in the usual manner, the pen should be properly 
positioned. If I or N is less than or equal to 0, the LINE routine 
returns without plotting. 

15.2.10 PLEXIT 

In order to permit the plotting routines to finish completely, call 
the routine PLEXIT once when all plotting commands have been issued. 
PLEXIT does a final pen up operation. 

15.3 IMPLEMENTING THE PLOTTER ROUTINES 

15.3.1 Getting Started 

In order for the plotter to interface properly to OS/8 FORTRAN IV, you 
must make the following patch to the file FRTS.SV. It adds a clear 
plotter flag IOT to the run-time device initialization chain. The 
sequence is: 

/User types 4020 / Response 
/at terminal is 7000. 
/User types 6502 

Type CTRL/C to exit ODT 

Assumes FRTS.SV on SYS Device 



FORTRAN IV PLOTTER ROUTINES 

15.3.2 Adding the Plotting Routines 

The FORTRAN plotting routines are supplied as relocatable RALF ( . R L )  
modules that you can either add to the FORTRAN library (FORLIB-RL) or 
specify explicitly to the loader. To add the files to FORLIB.RL, the 
procedure is: 

You may then use PLOTLB by specifying it as a library to the loader or 
copy it using PIP so that no additional loader specifications are 
required. If you choose not to add the plotting modules to the 
library and prefer to specify them to the loader, it is suggested tha t  
only the modules required by the FORTRAN program be specified so as 
not to waste space. In general, it you are employing elaborate 
overlay schemes, you will not want plotting modules in your library, 
while if you have shorter programs, you will. 

The core requirements to the nearest hundredth location of the files 
are: 

XYPLOT 1000 locations in field 
1 and 700 elsewhere 
(includes FACTOR,PLOTS, 
WHERE, and PLEXIT) 

SYMBOL 500 
symbol table 700 (regular and special 

characters) 
NUMBER 1300 
PSCALE 1000 
AXIS 1500 (requires NUMBER) 
LINE 600 

Note that the routines PLOTS, XYPLOT, FACTOR, WHERE, PLEXIT, SYMBOL, 
and the symbol table, including the code in field one, are all loaded 
if any one of those routines is called. 

15.3.2.1 Loading the Plotter Routines from Paper Tape - If the 
relocatable plotter routines are supplied on paper tape, you must load 
them into mass storage using the program EPIC. Place each tape in the 
reader before typing the response to the asterisk. The sequence is: 

t R  EPIC 
* / # $ .  /~ount XYPLOT-RL 
* / Y  /Mount NUMBER-RL 
* / Y  /Mount AXIS.RL 
* / Y  /Mount PSCALE-RL 
* /Y  /Mount LINE-RL 
*"C 

After you have entered this sequence, the files are on device SYS. 



FORTRAN IV PLOTTER ROUTINES 

An example combining several of the commands is shown below. This 
program requests user input of text and then plots it as a spiral. 

The plotter output is shown in Figure 15-1. 



FORTRAN IV PLOTTER ROUTINES 

F i g u r e  15-1 S p i r a l  P l o t t e r  Example 

The n e x t  example p l o t s  a  h i s t o g r a m .  

The p l o t t e r  o u t p u t  is shown i n  F i g u r e  15-2 .  



MONTH 

F i g u r e  15-2  His togram P l o t t e r  Example 



Decimal 
Value 

ASCII 
Char- 
acter 

NUL 
SOH 
STX 
ETX 
EOT 
wun 
l^i. b! 

ACK 
BEL 
BS 
HT 
LF 
VT 
F F 
cs 
s 0 
s I 
DLE 
DC 1 
DC 2  
DC 3 
DC 4 
NAK 
SYN 
ETB 
CAN 
Em 
SUB 
ESC 
F S 
GS 
RS 
us 
SP 
1 

I, 

# 
$ 
% 
& 
I 

( 
1 * 

APPENDIX A 

ASCII CHARACTER SET 

Usage 

FILL character 

CTRL/C 

BELL 

Horizontal Tab 
Line Feed 
Vertical Tab 
Form Feed 
Carriage Retain 

CTRL/Z 
Escape* 

Space 

Apostrophe 

Decimal 
Value 

ASCII 
Char- 
acter Usage 

Comma 

Decimal 
Value 

ASCII 
Char- 
acter 

v 
w 
x 
Y 
z 

\ 
1 
- 

a 
b 
c 
d 
e 
f 
9 
h 
J. 

j 
k 
1 
m 
n 
0 

P 
Â 
r 
s 
t 
u 
v 
w 
x 
Y 
z 

I 
Q 

DEL 

Usage 

Backslash 

or 
or < 
Grave accent 

Vertical Line 

Tilde 
Rubout 

* ALTMODE (ASCII 125) or PREFIX (ASCII 1 2 6 )  keys which appear on some terminals are translated 
internally into ESCAPE. 





Statement 

APPENDIX B 

FORTRAN LANGUAGE SUMMARY 

Form 

Arithmetic t nam(al...)=x 
Statement 
Function 
Definition 

ASSIGN ASSIGN n TO v 

BACKSPACE BACKSPACE u 

BLOCK DATA BLOCK DATA 

CALL 

COMMON 

CONTINUE 

DATA 

CALL prog 
CALL prog ( a l e . . )  

Effect 

The value of expression b 
is assigned to the 
variable a. 

The value of expression x 
is assigned to f (al ...) 
after parameter 
substitution. 

Statement number n is 
assigned as the value of 
integer variable v for 
use in an assigned GOT0 
statement. 

Peripheral device u is 
backspaced one record. 

Identifies a block data 
subprogram. 

Invokes subroutine named 
proq.' supply arguments 
when required. 

COMMON/blockl/a,b../.. Variables (a , b I  . . . ) are 
assigned to a common 
block. 

CONTINUE No processing, target for 
transfers. 

DATA varlist/var/... Assigns initial or 
constant values to 
variables. 

DEFINE FILE DEFINE FILE 
a(b,c,U,v) 

DIMENSION DIMENSION array 
(vl.. . , v 7 )  

Describes a mass storage 
file for direct access 
I/O. 

Storage allocated 
according to dimensions 
specified for the array. 



FORTRAN LANGUAGE SUMMARY 

Form - 

DO st 1-elIe2,e3 

Statement Effect 

Statements following the 
DO up to statement st are 
iterated for values of 
integer variable i, 
starting at i = e l ,  
incrementing by e3, and 
terminating when i>e2. 

END END Cease program 
compilation; equivalent 
to STOP in main program 
or RETURN in subprogram. 

END FILE END FILE u Writes end-of-file 
character in file u. 

EQUIVALENCE EQUIVALENCE 
(vl,v2,. . . I )  

Identifies same storage 
location for variables 
within parentheses. 

EXTERNAL EXTERNAL subprogram Declares a subprogram for 
use by other subprograms. 

FORMAT FORMAT 
(speclIspec2,.../...) 

Specifies conversions 
between internal and 
external representations 
of data. 

FUNCTION 

GO TO 

FUNCTION name (dl , ... ). Indicates an external 
function definition. 

Transfers control to: 
(1) statement n 
(2) to statement nl if 

e=l, to statement nk 
if e=k. 

(1) GO TO n 
(2) GO TO (nl ,... nk),e 

(3) GO TO v 
GO TO v,(nl ,... nk) (3) transfers control to 

state-number assigned 
to v optionally 
checking that v is 
assigned one of the 
labels nl,...nk. 

IF(arith expr)nlIn2,n3 

IF(logica1 expr) st 

Transfers control to nl 

Executes statement if 
expression has a value 
.TRUE., otherwise 
executes the next 
statement. 

Logical 
Assignment 

v=e 

PAUSE [num] 

Value of expression E is 
assigned to variable V. 

PAUSE Program execution 
interrupted and number 
printed, if given. 



FORTRAN LANGUAGE SUMMARY 

Statement 

READ 

RETURN 

REWIND 

STOP 

Form 

READ(u,f) list 
READ(u,f) 
READ(u) list 
READ(alr) list 

REWIND u 

STOP 

Effect 

Reads a record from a 
a peripheral device 
accordinq to 
specifications given in 
the argument of the 
statement. 

Returns control f r o m  a 
subprogram to the 
calling program. 

Repositions designated 
unit to the beginning of 
t h e  f 

Terminate program 
execution. 

SUBROUTINE SUBROUTINE nam[(al . . . ) I  Declares name to be a 
subroutine subprogram; 
al,..., 
if supplied are dummy 
arguments. 

WRITE WRITE(u,f) list 
WRITE(u,f) 
WRITE (u) list 
WRITE(alr) list 

Writes a record to a 
peripheral device 
according to 
specifications given in 
the arguments of the 
statement. 

Operators within each type are shown in order of descending 
precedence. 

Operator Operand 

Arithmetic Type 

**  exponentiation 
* multiplication 
/ division 
+ addition 
- subtraction 

Relational Type 

.GT. greater than 

.GE. greater than or 

.LT. less than 

.LEO less than or 
equal to 

.EQ. equal to 

.NE.  not equal to 

arithmetic or logical constants, 
variables, and expressions 

arithmetic or logical constants, 
variables, and expressions (all 
relational operators have equal 
priority) 



FORTRAN LANGUAGE SUMMARY 

Operator Operand 

Logical Type 

.NOT. .NOT.A is true logical constants, variables, and 
if and only if expressions 
A is false 

.AND. A.AND.B is true 
if and only if 
A and B are true 

.OR. A.0R.B is true 
if and only if 
either A or B 
is true. 

.EQV. A.EQV.B is true (equal precedence with .XOR.) 
if and only if 
A and B are both 
true or A and B 
are both false. 

.XOR. A.XOR.B is true (equal precedence with .EQV.) 
if and only if 
A is true and B 
is false or B is 
true and A is 
false 





INDEX (Cont . ) 

.NE. r e l a t i o n a l  o p e r a t o r ,  5-4 R e l a t i o n a l  o p e r a t o r s ,  5-4 
Nes ted  DO l o o p s ,  9-9 R e l o c a t a b l e  b i n a r y  f i l e s ,  1-10 

RETURN statement, 10-7 
REWIND s t a t e m e n t ,  11-13 

O c t a l  constants" ,  4 - 8  
O p e r a t o r s ,  

a r i t h m e t i c ,  5-1 
l o g i c a l ,  5-5 
r e l a t i o n a l ,  5-4 

O p t i o n s ,  
c o m p i l e r ,  1-6 
l o a d e r ,  1-16 
run- t ime,  1-25 

.OR. l o g i c a l  o p e r a t o r ,  5-5 
Outpu t  f i l e s ,  1-4 

assemble r ,  1-10 
compi le r  , 1- 5 
l o a d e r ,  1-15 

S c a l e  f a c t o r s ,  12-12 
SIN f u n c t i o n ,  13-20 
SQRT f u n c t i o n ,  13-21 
STOP s t a t e m e n t ,  9-12 
SUBROUTINE s t a t e m e n t ,  10-6 
S u b s c r i p t s ,  4-13 
Symbol map, 1-2, 1-15, 1-19 

TAN f u n c t i o n ,  13-21 
.TRUE. l o g i c a l  v a l u e ,  4-7 

Over l a y s ,  1- 13  

V a r i a b l e s ,  4-9, 4-10 

PAUSE s t a t e m e n t ,  9-12 

WRITE s t a t e m e n t s ,  11-8, 11-10 

RALF a s s e m b l e r ,  1-9 t o  1-12 
READ s t a t e m e n t s ,  11-5 t o  11-7 
Rea l  c o n s t a n t s ,  4-4 .XOR.  l o g i c a l  o p e r a t o r ,  5-5 

Index- 2  





CONTENTS 

Page 

INTRODUCTION 
CALLING AND USING PAL8 
PAL8 OPTIONS 

Examples of S p e c i f i c a t i o n  S t r i n g s  
RESTARTING AND TERMINATING PAL8 
CHARACTER SET 
STATEMENTS 

Labels  
I n s t r u c t i o n s  
Operands 
Comments 

FORMAT EFFECTORS 
Form Feed 
T a b u l a t i o n s  
S ta tement  Termina tors  

NUMBERS 
SYMBOLS 

Permanent Symbols 
User-Defined Symbols 
Cur ren t  Loca t ion  Counter 
Symbol Table  
Direct Assignment S ta tements  
Symbolic I n s t r u c t i o n s  
Symbolic Operands 
I n t e r n a l  Symbol Represen t a t i on  f o r  PAL8 

EXPRESSIONS 
Opera to r s  
S p e c i a l  Cha rac t e r s  

INSTRUCTIONS 
Memory Reference I n s t r u c t i o n s  
I n d i r e c t  Addressing 
~ i c r o i n s t r u c t i o n s  
Opera te  M i c r o i n s t r u c t i o n s  
Input /Output  T r a n s f e r  M i c r o i n s t r u c t i o n s  
Autoindexing 

PSEUDO-OPERATORS 
I n d i r e c t  and Page Zero Addressing 
Radix Con t ro l  
Extended Memory 
End-of-File 
R e s e t t i n g  t h e  Loca t ion  Counter 
En te r ing  Tex t  S t r i n g s  
Suppress ing  t h e  L i s t i n g  
Reserving Memory 
Cond i t i ona l  Assembly pseudo-Operators 
U s e  of Cond i t i ona l s  
C o n t r o l l i n g  Binary  Output  
C o n t r o l l i n g  Page Format 
T y p e s e t t i n g  Pseudo-Operator 
C a l l i n g  0S/8 U s e r  S e r v i c e  Routine 

iii 



CONTENTS (Cont . ) 

INDEX 

Relocation Pseudo-Op 
Altering the Permanent Symbol Table 

LINK GENERATION AND STORAGE 
CODING PRACTICES 
PROGRAM PREPARATION AND ASSEMBLER OUTPUT 
ABSOLUTE BINARY LOADER 
Calling and Using ABSLDR 
ABSLDR Options 
Examples of Input Lines 
Notes on Using ABSLDR Correctly 
ABSLDR Error Messages 

TERMINATING ASSEMBLY 
PAL8 ERROR CONDITIONS 
PAL8 PERMANENT SYMBOL TABLE 

FIGURE 1 Memory Reference Bit Instructions 
2 Group 1 Operate Microinstruction Bit Assignments 
3 Group 2 Operate Microinstruction Bit Assignments 
4 Group 3 Operate Microinstruction Bit Assignments 

TABLE 1 PALS Run-Time Options 
2 Use of Operators 
3 ABSLDR Options 
4 ABSLDR Error Messages 
5 PAL8 Error Codes 

Page 

FIGURES 

TABLES 



1.0 INTRODUCTION 

PAL8 is an 8K, two-pass assembler designed to run under the OS/8 
Operating System. Pass 1 reads the input file and sets up the symbol 
table. Pass 2 reads the input file and uses the symbol table created 
in pass 1 to generate the binary (object) file. The binary file is an 
absolute binary tape you may load into core with the Absolute Loader 
or Binary Loader. As an optional third pass, a side-by-side octal and 
symbolic listing and the symbol table are output. (Using the options 
available, the three passes may be automatically executed. However, 
if the source file is to be read from the paper tape reader, you must 
reload the tape for each pass.) You can use the listing file as an 
input to the Cross Reference Program (CREF), and you can request the 
symbol table to be in a form suitable for input to DDT. If you 
specify a listing file, but not a binary file or /L or /G  option, PAL8 
does not execute pass 2, but goes directly from pass 1 to 
pass 3. 

PALS has pseudo-ops and options not available in the other PDP-8 
assemblers and can handle 1/0 from any OS/8 device that handles ASCII 
text. It is loaded and saved by way of the OS/8 Monitor and Absolute 
Loader. It will accept input generated by the Editor and will 
generate output acceptable to the Absolute Loader and CREF. 

2.0 CALLING AND USING PAL8 

Call PAL8 from the system device by typing: 

in response to the Keyboard Monitor dot. The system replies by 
activating the Command Decoder, which in turn prints an asterisk ( * )  
in the left margin of the teleprinter paper. At this point enter a 
command string that indicates the binary and listing output devices 
and file names, the input devices and file names, and any options you 
select. You may specify 1 to 9 input files. The format of the 
command string is: 

If you omit the extension to the file name, PAL8 assumes the following 
extensions: 

.PA for input file 

.BN for binary output file 

.LS for listing output file 

.TM for intermediate CREF file (if you specified the /C option) 

A null output file indicates that PAL8 is not to generate an output 
file of that type. For example, to assemble, load, and run a PAL8 
program named PROGRM that is stored on DECtape unit 1, type: 

After the assembly, PAL8 will load and run the program with the 
starting address assumed to be location 0200 in field 0, and store the 
binary on the system device as BIN.BN. 

The assembler prints any error messages encountered in the program on 
the teleprinter. Typing CTRL/O at the keyboard during an assembly 
will suppress the printing of error messages on the teleprinter; 
however, the assembler still prints messages in the output file, and 
they appear immediately before the line that is in error. 



3.0 PAL8 OPTIONS 

Table 1 lists the options available in PAL8 that can be indicated in 
the command string typed to the Command Decoder. 

When you specify the /L or /G option, you can also include any option 
to the Absolute Loader in the 1/0 specification line for PALS, such as 
= starting address option. If you do not specify an address, 
execution begins at 200. If no binary output file is specified with 
/L or /G a temporary file, PAL8BN.TMI is created and loaded. 

Opt ion 

Table 1 
PALS Run-~ime Options 

Meaning 

Make the operator ! a 6-bit left shift instead of an 
inclusive OR. (A!B equals A"100+~) 

Chain to SYS:CREP.SV after assembly. The second 
output file specified is the output file passed to 
CREF. The third output file is where PALS generates 
its output. If you give no third output file, 
SYSsCREFLS.3.M is assumed. The /C option supersedes 
the /G and /L options if specified in the same 
command string. 

Generate a DDT-compatible symbol table (applicable 
only if a listing file is specified). 

Enable error messages if PAL8 generates a link. The 
LG error message would also be generated. 

Disable extra zero fill in TEXT pseudo-op. If the 
text in the TEXT pseudo-op contains an even number of 
characters, no word of zeroes will be added to the 
end. 

Call the Absolute Loader, load the binary file, and 
begin execution at the indicated starting address. 
If no starting address is indicated, start at 200. 

Generate nonpaginated output. Header, page numbers, 
and page format are suppressed (applicable only if a 
listing file is specified). 

Do not list lines containing code in conditional 
brackets that is conditionalized out. 

Causes systems containing 12K or more of core to use 
field(s) 2 and up as symbol table storage. 

Call the Absolute Loader at the end of the assembly 
and load the binary file (applicable only if a binary 
file was spec if ied) . 
Generate the symbol table, but not the listing 
(applicable only if a listing file is specified; the 
/H option is assumed). 

(continued on next page) 



Table 1 (Cont.) 
PAL8 Run-Time Options 

Option Meaning 

Disable origining to 200 after pseudo-op. The origin 
retains the status it had before the FIELD pseudo-op. 

Omit the symbol table normally generated with the 
listing (applicable only if a listing file is 
specified) . 
Output a carriage return/line feed in place of the 
form feed character(s) in the program (applicable 
only if a listing file is specified). 

Do not remember the number of literals that were 
previously stored on a page after origining off page 
and then back on again. 

3.1 Examples of Specification Strings 

Example 1: 

The lines in example 1 command PAL8 to load the assembler from the 
system device and assemble the program SOURCE.PA (or SOURCE). PAL8 
puts the binary output of the assembly onto the paper tape punch and 
the listing and symbol table onto the line printer. 

Example 2: 

The second line of example 2 commands PAL8 to assemble PROG.PA (or 
PROG), putting the listing only into the file LISTIN.LS on the default 
device DSK. PAL8 does not generate a binary output nor a symbol 
table. 

Example 3: 

The specification line of example 3 assembles INPUT.XY, putting the 
binary output into a file named BIN.BN. It then calls the Absolute 
Loader, which loads the file BIN.BN and starts it at 600. (The equal 
sign preceding the 600 (=600) is an option to the Absolute Loader 
specifying the starting address.) 

Example 4: 

The lines of example 4 will assemble the file PROG from device DTAl to 
check for errors, which are listed on the teleprinter. There are no 
output files. 



4.0 RESTARTING AND TERMINATING PAL8 

PAL8 may only be restarted if the Command Decoder has not been 
dismissed. For example: 

If you attempt a restart after you have dismissed the Command Decoder, 
PAL8 types NO!! and returns control to the Keyboard Monitor. You 
must call PAL8 for each assembly. 

5.0 CHARACTER SET 

The following characters are acceptable as input to PALS: 

8 Alphabetic characters: A through Z 

Numeric characters: 0 through 9 

Characters described in following sections as special 
characters and operators 

0 Characters that are ignored during assembly, such as LINE 
FEED, FORM FEED, TAB, and RUBOUT 

All other characters are illegal (except when used in a comment) and 
cause PAL8 to print the error message: 

1C nnnn 

during pass 1; nnnn represents the location where the illegal 
character occurred. (As assembly proceeds, each instruction is 
assigned a location determined by the current location counter, 
described in Section 9.3. When an illegal character or any other 
error is encountered during assembly, the value of the current 
location counter is returned in the error message.) Illegal characters 
do not generally cause assembly to halt. If an illegal character 
occurs in the middle of a symbol, the symbol is terminated at that 
point. 

6.0 STATEMENTS 

PAL8 source programs are usually prepared on the console terminal 
(using the OS/8 EDITOR or TECO) as a sequence of statements. Each 
statement is written on a single line and is terminated by typing the 
RETURN key. There are four types of elements in a PAL8 statement you 
can identify by the order of their appearance in the statement and by 
the separating (or delimiting) character that follows or precedes the 
element. These are: 

label 

instruction 

operand 



A statement must contain at least one of these elements and may 
contain all. four types. The assembler interprets and processes the 
statements, generating one or more binary instructions or data words, 
or performing an assembly process. 

6.1 Labels 

A label is the symbolic name you create to identify the location of a 
statement in the program. If you are using a label, it must appear 
first in a statement. It must begin with an alphabetic character, 
contain only alphanumeric characters, and be terminated by a comma. 
There must be no intervening spaces between any of the characters and 
the comma. 

6.2 Instructions 

An instruction may be one or more of the mnemonic machine instructions 
or it may be a pseudo-operation that directs assembly processing (see 
Section 12.0 for a description of assembly pseudo-ops). Terminate 
instructions with one or more spaces (or tabs if an operand follows) 
or with a semicolon, slash, or carriage return. 

6.3 Operands 

Operands are the octal or symbolic addresses of an assembly language 
instruction or the argument of a pseudo-operator, and can be any 
expression. In each case, interpretation of an operand depends upon 
the instruction or the pseudo-op. Terminate operands with a 
semicolon, slash, or carriage return. 

6.4 Comments 

You may add notes or comments to a statement by separating them from 
the remainder of the line with a slash. Such comments do not affect 
assembly processing or program execution but are useful in the program 
listing for later analysis or debugging. The assembler ignores 
everything from the slash to the next carriage return. 

It is possible to have only a carriage return on a line, resulting in 
a blank line in the final listing. PAL8 gives no error message. 

7.0 FORMAT EFFECTORS 

The following characters are useful in controlling the format of an 
assembly listing. They allow you to produce a neat, readable listing 
by providing a means of spacing through the program. 

7.1 Form Feed 

The form feed code causes the assembler to output blank lines in order 
to skip to a new page in the output listing during pass 3. This is 
useful in creating a page-by-page listing. Generate the form feed by 
typing a CTRL/L on the console terminal. 

5 



7.2 Tabulations 

You use tabulations in the body of a source program to separate fields 
into columns. For example, a line written: 

GO, TAD TOTAL/MAIN LOOP 

is more readable if you insert tabs to form: 

GO, TAD TOTAL /MAIN LOOP 

7.3 Statement Terminators 

Use the RETURN key to terminate a statement and cause a carriage 
return/line feed combination to occur in the listing. You may also 
use the semicolon (;) as a statement terminator. It is considered 
identical to a carriage return except that it will not terminate a 
comment. For example: 

TAD A /THIS IS A COMMENT; TAD B 

The entire expression between the slash and the carriage return is 
considered a comment. Thus in this case the assembler ignores the TAD 
B. If, for example, you wish to write a sequence of instructions to 
rotate the contents of the accumulator and link six places to the 
right, it might look like the following: 

RTR 
RTR 
RTR 

However, you can alternatively place all three instructions on a 
single line by separating them with the special character semicolon 
and terminating the entire line with a carriage return. You can then 
write the above sequence of instructions: 

NOTE 

If you desire an OS/8 CREF listing, 
there are certain restrictions on the 
use of semicolons. Refer to TBS. 

These multistatement lines are particularly useful when setting aside 
a section of data storage for use during processing. For example, you 
could reserve a four-word cleared block by specifying either of the 
following: 

LIST, 0 ; 0; 0 ; 0 

LIST, 0 
0 
0 
0 



YOU may use either format to input data words (data words may be in 
the form of numbers, symbols, or expressions, explained in the 
following sections). Each of the following lines generates one 
storage word in the object program: 

DATA, 7 7 7 7 
A+C-B 
s 
123+B2 

8.0 NUMBERS 

Any sequence of digits delimited by either a SPACE, TAB, semicolon, or 
carriage return forms a number. PAL8 initially interprets numbers in 
octal (base 8). You can change to decimal using a special 
pseudo-operator (explained in Section 12.0). You use numbers in 
conjunction with symbols to form expressions. 

9.0 SYMBOLS 

A symbol is a string of alphanumeric characters beginning with a 
letter and delimited by a nonalphanumeric character. Although a 
symbol may be any length, PAL8 recognizes only the first six 
characters. Since PAL8 ignores additional characters, symbols that 
are identical in their first six characters are considered identical. 

9.1 Permanent Symbols 

The assembler contains a table (called its permanent symbol table) 
that lists the symbols for all PDP-8 pseudo-op codes, memory reference 
instructions, operate and IOT (input/output transfer) instructions. 
These instructions are symbols that PAL8 has defined permanently and 
need no further definition by you; they are summarized in Section 
19.0. For example: 

HLT This is a symbolic instruction to which the assembler 
has assigned the value 7402 and stored in its permanent 
symbol table. 

9.2 User-Defined Symbols 

All symbols the assembler has not defined (and represented in its 
permanent symbol table) you must define within the source program. 

You may use a symbol as a statement label, in which case PAL8 assigns 
it a value equal to the current location counter. It is called a 
symbolic address and you can use it as an operand or as a reference to 
an instruction. You may not use permanent symbols (instructions, 
special characters, and pseudo-ops) as symbolic addr.esses. The 
following are examples of legal symbolic addresses: 

ADDR , 
TOTAL, 
SUM, 
A1 , 



The following are illegal symbolic addresses: 

AD>M (contains an illegal character) 
7ABC , (first character must be alphabetic) 
LA BEL, (must not contain imbedded spaces) 
D+TAG , (contains a nonalphanumeric character) 
LABEL , (must be terminated by a comma with no intervening 

spaces) 

9.3 Current Location Counter 

As PAL8 processes source statements, it assigns consecutive memory 
addresses to the instructions and data words of the object program. 

The current location counter contains the address where PAL8 will 
assemble the next word of object code. It is automatically 
incremented each time PAL8 assigns a memory location. A statement 
that generates a single object program storage word increments the 
location counter by one. Another statement might generate six storage 
words, incrementing the location counter by six. 

You set or reset the location counter by typing an asterisk followed 
by the octal absolute address value where the next program word is to 
be stored. If you do not set the origin, PAL8 begins assigning 
addresses at location 200. 

/ S E T  CURRENT 1-OCATION COUNTER T O  300 

PAL8 assigns the symbol TAG (in the preceding example) a value of 
0300, the symbol B a value of 0302, and the symbol A a value of 0303. 
If you define a symbol more than once in this manner, the assembler 
will print the illegal definition diagnostic: 

ID address 

where address is the value of the location counter at the second 
occurrence of the symbol definition. PAL8 does not redefine the 
symbol. 

(For an explanation of diagnostic messages refer to Section 18.0 on 
PAL8 Error Conditions.) For example: 



The symbol START would have a value of 0300, the symbol CONTIN would 
have a value of 0302, the symbol A would have a value of 0304, the 
symbol COUNTER (considered COUNTE by the assembler) would have a value 
of 0305. When the assembler processed the next line it would print 
(during pass 1) : 

I D  C O U N T E t 0 0 0 1  

Since PAL8 uses the first pass to define all symbols, the assembler 
will print a diagnostic during pass 2 if you make reference to an 
undefined symbol. For example: 

$7170 - 
A Ã T A D  C 

CL.A CMA 
HL..T 
JMP A 1  

(:; ? 0 

This would produce the undefined symbol diagnostic: 

9.4 Symbol Table 

Initially, the assembler's symbol table contains the mnemonic op-codes 
of the machine instructions and the assembler pseudo-op codes; this 
is its permanent symbol table. As the assembler processes the source 
program, PAL8 adds to the symbol table user-defined symbols along with 
their binary values. It lists the symbol table in alphabetical order 
at the end of pass 3. 

During pass 1, if the symbol table is full (in other words, there is 
no more memory space in which to store symbols and their associated 
values), PAL8 prints the diagnostic that indicates this condition: 

SE address 

and returns control to the OS/8 Monitor. If the system contains more 
than 8K of memory, you may choose the /K option with the Run command, 
or you may use more address arithmetic to reduce the number of 
symbols. It is also possible to segment a program and assemble the 
segments separately, taking care to generate proper links between the 
segments (see Section 13.0 for link generation and storage). PALS'S 
symbol capacity is 992 symbols. The permanent symbol table contains 
24 pseudo-operations and 71 symbols, leaving space for 897 possible 
user-defined symbols. Each additional 4K allows 992 new symbols. 

Instructions concerning altering the permanent symbol table appear in 
Section 12.16 if you wish to add instructions more suitable to your 
programming needs. 

9.5 Direct Assignment Statements 

You may insert new symbols with their assigned values directly into 
the symbol table by using a direct assignment statement in the form: 



VALUE may be a number or an expression. No spaces or tabs may appear 
between the symbol to the left of the equal sign and the equal sign 
itself. The following are examples of direct assignment statements: 

You should have already defined all symbols to the right of the equal 
sign. The symbol to the left of the equal sign is subject to the same 
restrictions as a symbolic address, and PAL8 stores its associated 
value in your symbol table. The use of the equal sign does not 
increment the location counter; it is, rather, an instruction to the 
assembler. 

A direct assignment statement may also equate a new symbol to the 
value assigned to a previously defined symbol. For example: 

PAL8 enters the new symbol, GAMMA, into your symbol table with the 
value 17. You may change the value assigned to a symbol as follows: 

The second line of code shown changes the value assigned to ALPHA from 
5 to 7. 

You may use symbols defined by use of the equal sign in any valid 
expression. For example: 

If the symbol to the left of the equal sign is in the permanent symbol 
table, PAL8 will print the redefinition diagnostic: 

RD address 

as a warning, where address is the value of the location counter at 
the point of redefinition. PALS will store the new value in the 
symbol table; for example: 

will cause the diagnostic: 

Whenever you use CLA after this point, it will have the value 7600. 



9.6 Symbolic Instructions 

Symbols you use as instructions must be predefined by the assembler or 
defined in the assembly by the programmer. If a statement has no 
label, the instructions may appear first in the statement and must be 
terminated by a space, tab, semicolon, slash, or carriage return. The 
following are examples of legal instructions: 

TAD (a mnemonic machine instruction) 
PAGE (an assembler pseudo-op) 
ZIP (an instruction defined by the user) 

9.7 Symbolic Operands 

Symbols used as operands normally have a value you have defined. The 
assembler allows symbolic references to instructions or data defined 
elsewhere in the program. Operands may be numbers or expressions. 
For example: 

TOTAL, TAD ACI + TAG 

A two's complement add the values of the two symbols ACI and TAG (that 
you have already defined; see Section 10.1). This value is then used 
as the address of the operand. 

9.8 Internal Symbol Representation for PAL8 

Each permanent and user-defined symbol occupies four words in the 
symbol table storage area. A PDP-8 instruction has an operation code 
of three bits as well as an indirect bit, a page bit, and seven 
address bits. The PAL8 assembler distinguishes between pseudo-ops, 
memory reference instructions, other permanent symbols, and 
user-defined symbols in the symbol table. 

10.0 EXPRESSIONS 

The combination of symbols, numbers, and certain characters called 
operators, which cause a system to perform specific arithmetic 
operations, form expressions. Either a comma, carriage return, or 
semicolon terminates an expression. 

10.1 Operators 

There are seven characters in PAL8 that act as operators: 

% 
I 

& 
Space 
(or TAB) 

Two's complement addition 
Two's complement subtraction 
Multiplication (unsigned, 12-bit) 
Division (unsigned, 12-bit) 
Boolean inclusive OR 
Boolean AND 
Treated as a Boolean inclusive OR except in 
a memory reference instruction 



Two's complement addition and subtraction appear in detail in Chapter 
1 of Introduction to Programming. Refer to that handbook if you want 
more information. PAL8 makes no checks for overflow during assembly, 
and any overflow bits are lost from the high-order end. For example: 

7755+24 will give a result of 1 

You may use the operators + and - freely as prefix operators. PAL8 
performs multiplication by repeated addition. It makes no checks for 
sign or overflow. All 12 bits of each factor are considered as 
magnitude. For example: 

30002 will give a result of 6000 

PAL8 performs division by repeated subtraction. The number of 
subtractions PAL8 performs is the quotient. The remainder is not 
saved and no checks are made for sign. Division by 0 will arbitrarily 
yield a result of 0. For example: 

7000%1000 will yield a result of 7 

You could write this as: 

In this case you might expect the answer to be -1 (7777); but because 
all 12 bits are considered as magnitude, the result is still 7. 

Use of the multiplication and division operators requires an attention 
to sign on your part beyond what is required for simple addition and 
subtraction. Table 2 contains examples of operators. 

The ! operator causes PAL8 to perform a Boolean inclusive OR bit by 
bit between the left-hand term and the right-hand term. (The 
inclusive OR is explained in Chapter 1 of Introduction to 
Programming.) There is an option you can give to the assembler to have 
! interpreted as a 6-bit left shift of the left term prior to the 
inclusive OR of the right. According to this interpretation: 

if A=l and B=2 
then A!B=0102 

Table 2 
Use of Operators 

Optional Form 

7000 or -1000 

7777 or -1 
-1000%1000 



Under normal conditions A!B would be 0003. The & operator causes 
PAL8 to perform a Boolean AND bit by bit between the left and right 
values. The operation is the same as the memory reference 
instruction AND indicates. 

SPACE has special significance depending on the context in which you 
use it. when the symbol preceding the space is not a memory 
reference instruction as in the following example: 

SMA CLA 

it causes PAL8 to perform an inclusive OR between the terms of the 
expression. In this case, SMA=7500 and CLA=7600. The expression 
SMA CLA is assembled as 7700. When you use SPACE following 
pseudo-operators it merely delimits the symbol. When you use it 
after memory reference operators it also signals the assembler that 
a memory reference instruction must be assembled. 

User-defined symbols are treated as operate instructions. For 
example : 

A=333 
*222 

B, CLA 

Possible expressions and their values follow, using the symbols just 
defined. Notice that the assembler reduces each expression to one 
four-digit (octal) word: 

A 
B 
A+B 
A-B 
-A 
1-B 
B-1 
A!B 
-71 

0333 
0222 
0555 
0111 
7445 
7557 . 
0221 
0333 (an inclusive OR is performed) 
7707 

If you are loading the information generated, the current location 
counter is incremented. For example: 

produces three words of information; the current location counter 
is incremented after each expression. The statement: 

HLT=HLT CLA 

produces no information to be loaded (it produces an association in 
the symbol table) and hence does not increment the current location 
counter. 

*4721 
TEMP, 
TEM2, 0 

The location counter is not incremented after the line TEMP,; the 
two symbols TEMP and TEM2 are assigned the same value, in this case 
4721. 

Since a PDP-8 instruction has an operation code of three bits as 
well as an indirect bit, a page bit, and seven address bits, the 
assembler must combine memory reference instructions somewhat 



differently from the way in which it combines operate or IOT 
instructions. The assembler differentiates between the symbols in 
its permanent symbol table and user-defined symbols. PAL8 uses the 
following symbols as memory reference instructions: 

AND 0000 Logical AND 
TAD 1000 Two's complement addition 
IS2 2000 Increment and skip if zero 
DCA 3000 Deposit and clear accumulator 
JMS 4000 Jump to subroutine 
JMP 5000 Jump 

When the assembler has processed one of these symbols, the space 
following it acts as an address field delimiter. 

A has the value 4101, JMP has the value 5000, and the space acts as 
a field delimiter. These symbols are represented as follows: 

A 100 001 000 001 
JMP 101 000 000 000 

The seven address bits of A are taken, e.g.: 

PAL8 tests the remaining bits of the address to see if they are 
zeros (page zero reference); if they are not, the current page bit 
is set: 

PAL8 then ORS the operation code into the JMP expression to form: 

or; more concisely in octal: 

5301 

In addition to performing the above tests, PAL8 compares the page 
bits of the address field with the page bits of the current location 
counter. If the page bits of the address field are nonzero and do 
not equal the page bits of the current location counter, an 
out-of-page reference is being attempted and the assembler will take 
action as described in the section on link generation and storage 
(Section 13.0) . 

10.2 Special Characters 

In addition to the operators described in the previous section, PAL8 
recognizes several special characters that serve specific functions 
in the assembly process. These characters are: 

equal sign 
comma 
asterisk 
dot 
double quote 



parentheses 
square brackets 
slash 
semicolon 
angle brackets 
dollar sign 

The equal sign, comma, asterisk, slash, and semicolon have been 
previously described. The remainder will be described next. 

The special character dot ( . )  always has a value equal to the value of 
the current location counter. You may use it as any integer or symbol 
(except to the left of an equal sign); you must precede it by a space 
when you use it as an operand. For example: 

*200 
w 

JMP Ãˆt 

is equivalent to JMP 0202. Also, 

will produce in location 0300 the quantity 2700. Consider: 

The second line (CALL=JMS I.) does not increment the current location 
counter; therefore, PAL8 places 0027 in location 2200 and places CALL 
in your symbol table with an associated value of 4600 (the octal 
equivalent of JMS I). 

If you precede a single character by a double quote ( ' I ) ,  PAL8 uses the 
8-bit value of ASCII code for the character rather than interpreting 
the character as a symbol (ASCII codes are listed in Appendix A). For 
example : 

CLA 
TAD ( "A 

The constant 0301 is placed in the accumulator. The code: 

. /DOUBLE QUOTE AND DOT 

will be assembled as 0256. The character must not be a carriage 
return or one of the characters that is ignored on input (discussed at 
the end of this section). 

Left and right parentheses 0 enclose a current page literal (closing 
member is optional) . 

*ZOO - 
* 
CLA 
TAD INDEX 
TAD (2) 
DCA INDEX 
* 



The left parenthesis is a signal to the assembler that the expression 
following is to be evaluated and assigned a word in the constants 
table of the current page. This is the same table in which PAL8 
stores the indirect address linkages. In the above example, the 
quantity 2 is stored in a word in the linkage and literals list 
beginning at the top of the current memory page. The instruction in 
which the literal appears is encoded with an address referring to the 
address of the literal. PAL8 assigns a literal to storage the first 
time it encounters it; subsequent reference to that literal from the 
current page is made to the same register. The use of literals frees 
symbol storage space for variables and makes programs more readable. 

If you wish to assign literals to page zero rather than to the current 
page, use square brackets, [ I ,  in place of parentheses. This enables 
you to reference a single literal from any page of memory. For 
example : 

*zoo - 
TAD C21 

*ZOO - 
TAD C21 
* 
* 

The closing member is optional. Literals may take the following 
forms: constant term, variable term, instruction, expression, or 
another literal. 

NOTE 

You can nest literals; for example: 

*zoo - 
TAD (TAD (30 

You may continue this type of nesting in 
some cases to as many as six levels, 
depending on the number of other 
literals on the page and the complexity 
of the expressions within the nest. If 
you reach the limits of the assembler, 
the error messages BE (too many levels 
of nesting) or PE (too many literals) 
will result. 

Use angle brackets as conditional delimiters. The code enclosed in 
the angle brackets is to be assembled or ignored contingent upon the 
definition of the symbol or value of the expression within the angle 
brackets. (Use the IFDEF, IFNDEF, IFZERO, and IFNZRO pseudo-operators 
with angle brackets. These are described in Section 12.0.) 

NOTE 

If your program has conditionals, avoid 
using angle brackets. The brackets may 
be interpreted as beginning or 
terminating the conditional. 



The dollar sign character ( $ )  is optional at the end of a program and 
is interpreted as an unconditional end-of-pass. It may however occur 
in a text string, comment or " term, in which case it is interpreted 
in the same manner as any other character. 

The assembler handles the following characters for the pass 3 listing, 
but they are otherwise ignored: 

FORM FEED Used to skip to a new page 
LINE FEED Used to create a line spacing without causing a 

carriage return 
RUBOUT Used by the EDITOR to allow corrections in the input 

file 

Nonprinting characters include: 

SPACE 
TAB 
RETURN 

11.0 INSTRUCTIONS 

There are two basic groups of instructions: memory reference 
instructions and microinstructions. Memory reference instructions 
require an operand; microinstructions do not. 

11.1 Memory Reference Instructions 

In PDP-8 computers, some instructions require a reference to memory. 
These instructions are called memory reference instructions and take 
the following format: 

CONTAINS A1 TO 
SPECIFY GROUP 3 

KE8-E EXTENDED ARITHMETIC ELEMENT 
CONTAINS A1 TO SPECIFY GROUP 3 

Figure 1 Memory Reference Bit Instructions 

Bits 0 through 2 contain the operation code of the instruction PAL8 is 
to perform. Bit 3 tells the computer if the instruction is indirect. 
Bit 4 tells the computer if the instruction is referencing the current 
page or page zero. This leaves bits 5 through 11 (7 bits) to specify 
an address. These 7 bits can specify 200 octal (128 decimal) 
locations; the page bit increases accessible locations to 400 octal 
or 256 decimal. A list of the memory reference instructions and their 
codes is given in Section 19.0. 



In PALS a memory reference instruction must be followed by a space(s) 
or tab(s), an optional I or Z designation, and any valid expression. 
It may be defined with the FIXMRI instruction (see Section 12.16, 
Altering the Permanent Symbol Table). You may define permanent 
symbols using the FIXTAB instruction and use them in address fields as 
follows: 

A=1234 
FIXTAB 
TAD A 

11.2 Indirect Addressing 

When the character I appears in a statement between a memory reference 
instruction and an operand, PAL8 interprets the operand as the address 
(or location) containing the address of the operand you are using in 
the current statement. Consider: 

TAD 40 

which is a direct address statement, where 40 is the location on page 
zero containing the quantity to be added to the accumulator. You may 
make direct reference to locations on the current page and page zero. 
For compatibility with older paper tape assemblers the symbol Z is 
also accepted as a way of indicating a page zero reference, as 
follows: 

TAD Z 40 

This is an optional notation, not differing in effect from the 
previous example. Thus, if location 40 contains 0432, then 0432 is 
added to the accumulator. Now consider: 

TAD I 40 

This is an indirect address statement, where 40 is the address of the 
location containing the quantity to be added to the accumulator. 
Thus, if location 40 contains 0432, and location 432 contains 0456, 
then 456 is added to the accumulator. 

NOTE 

Because the letter I indicates indirect 
addressing, do not use it as a variable. 
Likewise you should never use the letter 
Z as a variable because it is sometimes 
used to indicate a page zero reference. 

11.3 Microinstructions 

Microinstructions are divided into two groups: operate instructions 
and Input/Output Transfer (IOT) microinstructions. Operate 
microinstructions are further subdivided into Group 1, Group 2, and 
Group 3 designations. 



PAL 8 

NOTE 

If you mistakenly specify an illegal 
combination of microinstructions, the 
assembler will perform an inclusive OR 
between them; for example: 

CLL SKP is interpreted as SPA 
(7100) (7410) (7510) 

11.3.1 Operate Microinstructions - Within the operate group, there 
are three groups of microinstructions that you cannot mix. Group 1 
microinstructions perform clear, complement, rotate, and increment 
operations; they are designated by a cleared bit 3 of the machine 
instruction word. 

ROTATE AC AND L RIGH 

ROTATE AC AND L LEFT 

ROTATE 1 POSITION IF  A 0, 2 POSITIONS IF  A 1 
(BSW IF BITS 8, 9 ARE 0) 

LOGICAL SEQUENCE: 1 - CLA, CLL 2 - CMA, CML 
3 - IAC 4 - RAR, RAL, RTR, RTL, BSW 

Figure 2 Group 1 Operate Microinstruction Bit Assignments 

Group 2 microinstructions first check the contents of the accumulator 
and link; then, based on the check, they either continue to the next 
instruction or skip it. You can identify Group 2 microinstructions by 
a set bit 3 and a cleared bit 11 of the machine instruction word. 

REVERSE SKIP SENSING OF BITS 5,6, 7 IF SET 

LOGICAL SEQUENCE- 1 (BIT 8 IS 0) - SMA OR SZA OR SNL 
(BIT 8 IS 1) - SPA AND SNA AND SZL 

2 - CLA 
3 - OSR, HLT 

Figure 3 Group 2 Operate Microinstruction Bit Assignments 

Group 3 microinstructions reference the MQ register. You can 
distinguish them from Group 2 instructions because bits 3 and 11 are 
set. The other bits are part of a hardware arithmetic option. 



INDIRECT 
ADDRESSIN 
MEMORY PAGE 

Figure 4 Group 3 Operate Microinstruction Bit Assignments 

You cannot combine Group 1 and Group 2 microinstructions since bit 3 
determines either one or the other. Within Group 2, there are two 
groups of skip instructions. You can refer to them as the OR group 
and the AND group. 

OR Group AND Group 

SMA SPA 
SZA SNA 
SNL SZL 

The OR group is designated by a cleared bit 8, and the AND group by a 
set bit 8. You cannot combine OR and AND group instructions since bit 
8 determines either one or the other. 

If you do combine skip instructions, it is important to note the 
conditions under which a skip may occur. 

OR Group--If you have combined these skips in a statement, the 
inclusive OR of the conditions determines the skip. For 
example : 

SZA SNL 

The next statement is skipped if the accumulator contains 
0000, or the link is a 1, or both. 

AND Group--If you have combined the skips in a statement, the 
logical AND of the conditions determines the skip. For 
example : 

SNA SZL 

The next statement is skipped only if the accumulator differs 
from 0000 and the link is 0. 

11.3.2 Input/Output Transfer Microinstructions - If you want to 
initiate operation of peripheral equipment and effect an information 
transfer between the central processor and the input/output device(s) - - that is, between the console terminal and the line printer -- use 
1/0 transfer microinstructions. 



11.4 Autoindexing 

If you are processing large amounts of data, you will find that 
interpage references are often necessary for obtaining operands. The 
PDP-8 computers have facilities to make it easy for you to address 
this data. When one of the absolute locations from 10 to 17 (octal) 
is indirectly addressed, the contents of the location is incremented 
before it is used as an address and the incremented number is left in 
the location. This allows you to address consecutive memory locations 
using a minimum of statements. You must remember that initially you 
must set these locations (10 to 17 on page 0) to one less than the 
first desired address. Because of their characteristics, these 
locations are called autoindex registers. No incrementation takes 
place when you address locations 10 to 17 directly. For example, if 
the instruction to be executed next is in location 300 and the data to 
be referenced is on the page starting at location 5000, use autoindex 
register 10 to address the data as follows: 

0276 1377 TADC4777 /=5000-1 
0277 3010 DCA 10 /SET UP AUTO INDEX 
0300 1.410 TAD110 /INCREMENT TO 5000 

+ /BEFORE USE A N  AN 
Ã ADDRESS 

When the instruction in location 300 is executed, the contents of 
location 10 will be incremented to 5000 and the contents of location 
5000 will be added to the contents of the accumulator. When the 
instruction TAD I 10 is executed again, the contents of location 5001 
will be added to the accumulator, and so on. 

12.0 PSEUDO-OPERATORS 

You may use pseudo-operators to direct the assembler to perform 
certain tasks or to interpret subsequent coding in a certain manner. 
Some pseudo-ops generate storage words in the object program, other 
pseudo-ops tell the assembler how to proceed with the assembly. 
Pseudo-ops are maintained in the permanent symbol table. The function 
of each PAL8 pseudo-op follows. 

12.1 Indirect and Page Zero Addressing 

Use the pseudo-operators I and Z to specify the type of addressing to 
be performed. These were discussed in Section 11.2. 

12.2 Radix Control 

Numbers used in a source program are initially considered to be octal. 
However, you may change or alternate the radix interpretation by using 
the pseudo-operators DECIMAL and OCTAL. The DECIMAL pseudo-op 
interprets all following numbers as decimal until the occurrence of 
the pseudo-op OCTAL. The OCTAL pseudo-op resets the radix to its 
original octal base. 



12.3 Extended Memory 

The pseudo-op FIELD instructs the assembler to output a field setting 
so that it may recognize more than one memory field. This field 
setting is output during pass 2 and is recognized by the Absolute 
Loader, which loads all subsequent information into the field 
specified by the expression. The form is: 

FIELDn 

where n is either an integer, a previously defined symbol, or an 
expression within the range 0 to 7. 

This field setting is output on the binary file during pass 2, 
followed by an origin setting of 200. As it is executed, the Absolute 
Loader reads this word and then begins loading information into the 
new field. 

The assembler never remembers the field setting in binary, and no 
initial field setting is output. However, it appears as the 
high-order digit of the Location Counter on the listing. A binary 
file produced without field settings will be loaded into field 0 when 
using the ABSLDR. 

You may use a symbol in one field to reference the same location in 
any other field. Use of the CDF and CIF instructions determines the 
field to which it refers. (If you are unfamiliar with the IOT's but 
wish to use them, refer to the PDP/8E Small Computer Handbook and 
experiment with several short test programs to learn their effect.) 
You must use CDF and CIF instructions prior to any instruction 
referencing a location outside the current field, as shown in the 
following example: 



When you use FIELD, the assembler follows the new FIELD setting with 

- an origin at location 200. For this reason, if you want to assemble 
code at location 400 in field 1 type: 

F IELD 1 /CORREC:T E:XAMPLE: 
*400 - 

The following is incorrect and will not generate the desired code: 

Specifying the /O option to PAL8 inhibits the origin to 200 after a 
FIELD pseudo-op. 

PAUSE signals the assembler to stop processing the file being read. 
You should use a PAUSE only at the physical end of a file and with two 
or more segments of one program. When the assembler reaches a PAUSE 
statement, it ignores the remainder of the file and continues 
processing the next input file. In such a case PAUSE must be present 
or a PH error will occur. The PAUSE pseudo-op is present mainly for 
compatibility with paper tape assemblers, and its use is optional. 

12.5 Resetting the Location Counter 

The PAGE n pseudo-op resets the location counter to the first address 
of page n, where n is either an integer, a previously defined symbol, 
or a symbolic expression, whose terms have been defined previously and 
whose value is from 0 to 37 inclusive. If you do not specify n, the 
location counter is reset to the next logical page of memory. For 
example : 

PAGE 2 sets the location counter to 00400 
PAGE 6 sets the location counter to 01400 

If you use the pseudo-op without an argument, the current location 
counter, if at the first location of a page, will not move. In the 
following example, the code TAD B is assembled into location 00400: 

*377 - 
JMP . - 3  

PAGE 
TAD I3 

If you give several consecutive PAGE pseudo-ops, the first will cause 
the current location counter to be reset as specified. The rest of 
the PAGE pseudo-ops will be ignored. 

12.6 Entering Text Strings 

The TEXT pseudo-op allows you to enter a string of text characters as 
data and store in 6-bit ASCII. To do this, use the pseudo-op TEXT 
followed by a space or spaces, a delimiting character (which must be a 
printing character), the string of text, and the same delimiting 
character. Following the last character, a 6-bit zero is inserted as 
a stop code. For example: 

TAG, TEXT/123*/ 



The string would be stored as: 

The /F option inhibits the generation of the extra 6-bit zero 
character. 

12.7 Suppressing the Listing 

Those portions of the source program enclosed by XLIST pseudo-ops will 
not appear in the listing file; but the code will still be assembled. 

You may use two XLIST pseudo-ops to enclose the code to be suppressed. 
The first XLIST, with no argument, will suppress the listing, and the 
second XLIST will resume it. XLIST may also be used with an 
expression as an argument; a listing will be inhibited if the 
expression is not equal to zero, or allowed if the expression is equal 
to zero. XLIST pseudo-ops never appear in the assembly listing. 

12.8 Reserving Memory 

ZBLOCK instructs the assembler to reserve n words of memory containing 
zeroes, starting at the word indicated by the current location 
counter. It is of the form: 

ZBLOCK n 

For example: 

ZBLOCK 40 

causes the assembler to reserve 40 (octal) words. The n may be an 
expression. If n=0, no locations are reserved. 

12.9 Conditional Assembly Pseudo-Operators 

The IFDEF pseudo-op takes the form: 

IFDEF symbol <source code> 

If you have previously defined the symbol indicated, the code 
contained in the angle brackets is assembled. If you have not defined 
the symbol, this code is ignored. You may contain any number of 
statements or lines of code in the angle brackets. The format of the 
IFDEF statement requires a single space before and after the symbol. 

The IFNDEF pseudo-op is similar in form to IFDEF and is expressed: 

IFNDEF symbol <source code> 

If the symbol indicated has not been previously defined, the source 
code in angle brackets is assembled. If the symbol is defined, the 
code in the angle brackets is ignored. 



The IFZERO pseudo-op is of the form: 

IFZERO expression <source code> 

If the evaluated (arithmetic or logical) expresssion is equal to zero, 
the code within the angle brackets is assembled. If the expression is 
non-zero, the code is ignored. You may contain any number of 
statements or lines of code in the angle brackets. The expression may 
not contain any imbedded spaces and must have a single space preceding 
and following it. IFNZRO is similar in form to the IFZERO pseudo-op 
and is expressed: 

IFNZRO expression <source code> 

If the evaluated (arithmetic or logical) expression is not equal to 
zero, the source code within the angle brackets is assembled. If the 
expression is equal to zero, this code is ignored. You can nest 
pseudo-ops, for example: 

IFDEF SYM <IFNZRO X2 <...> > 

In order to include or delete statements, PAL8 evaluates the outermost 
pseudo-op first. 

IFZERO A< 

(code) 

12.10 Use of Conditionals 

You can construct useful pseudo-ops such as IFNEG and IFPOS as in the 
following example: 

IFNEG expression <statements> (assemble statements 
if expression is 
negative) 

can be written as: 

IFNZRO expressions &4000 <statements> 

while its complement 

IFPOS expression <statements> 

can be implemented by writing: 

IFZERO expression &4000 <statements> 

To prevent PAL8 from printing nonsatisfied condition assembly 
statements in the listing, use the following solution, employing 
complementary conditionals: 

IFNDEF LTAPE <XLIST> 
IFDEF LTAPE < 

HERE 
GOES 
THE 
CODE> 

IFNDEF LTAPE <XLIST> 



PAL8 

12.11 Controlling Binary Output 

NOPUNCH causes the assembler to cease binary output but continue 
assembling code. It is ignored except during pass 2. 

ENPUNCH causes the assembler to resume binary output after NOPUNCH; 
it is ignored except during pass 2. For example, you might use these 
two pseudo-ops when several programs share the same data on page zero. 
When these programs are to be loaded and executed together, only one 
page zero need be output. 

12.12 Controlling Page Format 

The EJECT pseudo-op causes the listing to jump to the top of the next 
page. A page eject is done automatically every 55 lines; EJECT is 
useful if you want more frequent paging. If you follow this pseudo-op 
with a string of characters, the first 50 (octal) characters of that 
string will be used as a new header line. 

12.13 Typesetting Pseudo-Operator 

Use DTORG in typesetting to output a two-frame DECtape block number 
(four digits) in the binary tape. The form of this pseudo-op is as 
follows : 

DTORG expression 

The first frame on the binary tape includes channels 7 and 8 punched 
(in the same manner as a FIELD setting) as a signal to a special 
typesetting loader that it is to load the following data into DECtape 
block n. The DTORG setting is added into the checksum, unlike the 
FIELD setting, which is not included. Do not use DTORG and FIELD in 
the same program. 

12.14 Calling OS/8 User Service Routine 

You may use the pseudo-operators DEVICE and FILENAME by issuing calls 
to the OS/8 User Service Routine, but they have no other meaning to 
the assembler. The form for these pseudo-ops is: 

DEVICE name 
FILENAME name.extension 

When you use DEVICE, the name can be from 1 to 4 alphanumeric 
characters. These are trimmed to 6-bit ASCII and packed into 2 words, 
filled in with zeroes on the right if necessary. With FILENAME 
(FILENA is also acceptable) the name (or name.extension) may be from 1 
to 6 alphanumeric characters, and the optional extension may be 1 or 2 
characters. The characters are trimmed to 6-bit ASCII and packed 2 to 
a word. Three words are allocated for the filename, filled with 



zeroes on the right if fewer than 6 characters are specified, followed 
by one word for the extension. For example: 

L, FILENAME ABC.DA 

is equivalent to the following coding: 

12.15 Relocation Pseudo-Op 

At some point, you may want to assemble code at a given location and 
then move it to another location for execution. This may result in 
errors unless the relocated code is assembled in such a way that the 
assembler assigns to symbols their execution-time addresses rather 
than their load-time addresses. The RELOC pseudo-op establishes a 
virtual location counter without altering the actual location counter. 

/Â¥-- The line: 

RELOC expr 

sets the virtual location counter to expr. The line: 

RELOC 

sets the virtual location counter equal to the actual location counter 
and terminates the relocation section. 

Example : 

0400 *400 
2000 RELOC2000 

02000* 1377 CODE, TAD (CODE 
02001* 3005 DCA5 
02177* 2000 PAGE 

0600 RELOC 

The location marked CODE is loaded into location 400, but the 
assembler treats it as if it were loading into location 2000. The 
asterisks after the location values indicate that the virtual and the 
actual location counters differ for that line of code. RELOC always 
causes current page literals to be dumped. 

12.16 Altering the Permanent Symbol Table 

PAL8 contains a table of symbol definitions for the PDP-8 and OS/8 
peripheral devices. These are symbols (such as TAD, DCA, and CLA) 
that are used in most PDP-8 programs. This table is the permanent 
symbol table for PALS. 

If you purchase one or more optional devices whose instruction set is 
not defined among the permanent symbols (for example, EAE or an A/D 
converter), you should add the necessary symbol definitions to the 
permanent symbol table in every program you assemble. 



PALS 

Conversely, if you need more space for user-defined symbols, you would 
probably want to delete all definitions except the ones used in your 
program. For such purposes, PAL8 has three pseudo-ops you can use to 
alter the permanent symbol table. The assembler recognizes these 
pseudo-ops only during pass 1. During either pass 2 or pass 3 they 
are ignored and have no effect. 

EXPUNGE deletes the entire permanent symbol table, except pseudo-ops. 

FIXTAB appends all presently defined symbols to the permanent symbol 
table. All symbols defined before the occurrence of FIXTAB become 
part of the permanent symbol table for the current assembly. 

To append the following instructions to the symbol table, generate an 
ASCII file called SYM.PA containing: 

MUY=7405 /MULTIPLY 
DVI=7407 /DIVIDE 
CLSK=6131 /SKIP ON CLOCK INTERRUPT 
FIXTAB /SO THAT THESE WON'T BE 

/PRINTED IN THE SYMBOL TABLE 

You then enter the ASCII file in PALS'S input designation. You may 
also place the definitions at the beginning of the source file. This 
eliminates the need to load an extra file. Each time you load the 
assembler, PAL8 restores its permanent symbol table. 

The third pseudo-op used to alter the permanent symbol table in PAL8 
is FIXMRI. You use FIXMRI to define a memory reference instruction, 
and it is of the form: 

FIXMRI name=value 

Follow the letters FIXMRI with one space, the symbol for the 
instruction to be defined, an equal sign, and the value of the symbol. 
The symbol will be defined and stored in the symbol table as a memory 
reference instruction. You must repeat the pseudo-op for each memory 
reference instruction you are defining. For example: 

EXPUNGE 
FIXMRI TAD=1000 
FIXMRI DCA=3000 
CLA=7200 
FIXTAB 

When the preceding program segment is read into the assembler during 
pass 1, PAL8 deletes all symbol definitions and adds the three symbols 
listed to the permanent symbol table. Notice that CLA is not a memory 
reference instruction. You can perform this process to alter the 
assembler's symbol table so that it contains only those symbols used 
at a given installation or by a given program. This may increase the 
assembler's capacity for user-defined symbols in the program. 



13.0 LINK GENERATION AND STORAGE 

In addition to handling symbolic addressing on the current page of 
memory, PAL8 automatically generates links for off-page references. 
If your program makes reference to an address not on the page where an 
instruction is located, the assembler sets the indirect bit (bit 3) 
and an indirect address linkage will be generated on the current 
memory page. If the off-page reference is already an indirect one, 
the error diagnostic I1 (illegal indirect) will be generated. For 
example : 

In the example above, the assembler will recognize that the register 
labeled A is not on the current page (in this case 2600 to 2777) and 
will generate a link to it as follows: 

1. In location 2600 the assembler will place the word 5777, 
which is equivalent to JMP I 2777. 

2. In address 2777 (the last available location on the current 
page) the assembler will place the word 2117 (the actual 
address of A). 

During pass 3, an apostrophe ( ' 1  will follow the octal code for the 
instruction to indicate that a link was generated. 

Although the assembler will recognize and generate an indirect address 
linkage when necessary, you may indicate an explicit indirect address 
by the pseudo-op I. The assembler cannot generate a link for an 
instruction that is already specified as being an indirect reference. 
In this case, the assembler will print the error message I1 (illegal 
indirect) . For example: 

The above coding will not work because A is not defined on the page 
where JMP I A is attempted, and the indirect bit is already set. 

Literals and links are stored on each page starting at page address 
177 (relative) and extending toward page address 0 (relative). 
Whenever the origin is then set to another page, the " literal buffer 
for the current page is output. This does not affect later execution. 
Except for page zero, where there is room for 160 (octal) literals and 
links, each page of memory has room for 100 (octal) literals. 
Literals and links are stored only as far down as the highest 
instruction on the page. Further attempts to define literals will 
result in a PE (page exceeded) or ZE (page zero exceeded) error 
message. 



14.0 CODING PRACTICES 

A n e a t  p r i n t o u t  ( o r  p rog ram l i s t i n g ,  a s  it is u s u a l l y  c a l l e d )  makes 
s u b s e q u e n t  e d i t i n g ,  d e b u g g i n g ,  and i n t e r p r e t a t i o n  much e a s i e r  t h a n  
c o d i n g  l a i d  o u t  i n  a  h a p h a z a r d  f a s h i o n .  The c o d i n g  p r a c t i c e s  l i s t e d  
be low a r e  i n  g e n e r a l  u s e  and  w i l l  r e s u l t  i n  a r e a d a b l e ,  o r d e r l y  
l i s t i n g .  

A t i t l e  comment b e g i n s  w i t h  a  s l a s h  a t . t h e  l e f t  m a r g i n .  

Pseudo-ops  may b e g i n  a t  t h e  l e f t  m a r g i n .  However, t h e y  a r e  
o f t e n  i n d e n t e d  o n e  t a b  s t o p  t o  l i n e  up  w i t h  t h e  e x e c u t a b l e  
i n s t r u c t i o n s .  

A d d r e s s  l a b e l s  b e g i n  a t  t h e  l e f t  m a r g i n .  They  a r e  s e p a r a t e d  
f rom s u c c e e d i n g  f i e l d s  by a  t a b  s t o p .  

I n s t r u c t i o n s ,  w h e t h e r  o r  n o t  t h e y  a r e  p r e c e d e d  by a  l a b e l  
f i e l d ,  a r e  i n d e n t e d  o n e  t a b  s t o p .  

A comment is s e p a r a t e d  f rom t h e  p r e c e d i n g  f i e l d  by one  o r  two 
t a b s  ( a s  r e q u i r e d )  and a  s l a s h ;  i f  t h e  comment o c c u p i e s  t h e  
who le  l i n e  it u s u a l l y  b e g i n s  w i t h  a  s l a s h  a t  t h e  l e f t  m a r g i n .  

1 5 . 0  PROGRAM PREPARATION AND ASSEMBLER OUTPUT 

The  f o l l o w i n g  p rog ram was g e n e r a t e d  u s i n g  t h e  OS/8 EDITOR and was 
a s s e m b l e d  w i t h  PALS. 

/SAMPLE PAL..8 PROGRAM 
/GETS INPUT FROM KBDÃˆHAL..T WHEN " E '  I S  TYPED 

*zoo - 
BEGIN? KCX 

KSF' 
JMP - 1 / W A I T  FOR FLA13 
KRB /READ I N  CHARACTER 
TAD < - ' E  
SNA C L A  / I S  I T  E? 
ti 1- ,r 
..IMP BI- IGINtl  

/END O F  EXAMPL..E 
<li 

The p rog ram c o n s i s t s  o f  s t a t e m e n t s  and pseudo-ops  and is t e r m i n a t e d  by 
t h e  d o l l a r  s i g n  ( $ ) .  I f  t h e  p rog ram i s  l a r g e ,  you c a n  segmen t  it by 
p l a c i n g  i t  i n t o  s e v e r a l  f i l e s ;  t h i s  o f t e n  f a c i l i t a t e s  t h e  e d i t i n g  o f  
t h e  s o u r c e  p rog ram s i n c e  e a c h  s e c t i o n  w i l l  b e  s m a l l e r .  

The a s s e m b l e r  i n i t i a l l y  se ts  t h e  c u r r e n t  l o c a t i o n  c o u n t e r  t o  0200.  
T h i s  c o u n t e r  is  reset  whenever  t h e  a s t e r i s k  ( * )  is  p r o c e s s e d .  

The a s s e m b l e r  r e a d s  t h e  s o u r c e  f i l e  f o r  p a s s  1 and d e f i n e s  a l l  symbo l s  
u s e d .  D u r i n g  p a s s  2 ,  t h e  a s s e m b l e r  r e a d s  t h e  s o u r c e  f i l e  and 
g e n e r a t e s  t h e  b i n a r y  c o d e  u s i n g  t h e  symbol t a b l e  e q u i v a l e n c e s  d e f i n e d  
d u r i n g  p a s s  1. You may l o a d  t h e  b i n a r y  f i l e  t h a t  is o u t p u t  w i t h  t h e  
Load command. T h i s  b i n a r y  f i l e  c o n s i s t s  o f  a n  o r i g i n  s e t t i n g  and  d a t a  
words .  



During p a s s  3 ,  t h e  assemble r  r e a d s  t h e  s o u r c e  f i l e  and g e n e r a t e s  t h e  
code from t h e  s o u r c e  s t a t e m e n t s .  The assembly l i s t i n g  is o u t p u t  i n  
ASCII code.  I t  c o n s i s t s  of t h e  c u r r e n t  l o c a t i o n  c o u n t e r ,  t h e  
g e n e r a t e d  code i n  o c t a l ,  and t h e  s o u r c e  s t a t e m e n t .  Unless  you have 
chosen o p t i o n s  t o  suppress pag ing  or t o  change t h e  h e a d e r ,  t h e  f i r s t  
50 ( o c t a l )  c h a r a c t e r s  o f  the f i r s t  l i n e  of t h e  s o u r c e  program w i l l  be 
used a s  a heading f o r  each page, fo l lowed  by t h e  assemble r  v e r s i o n  
number, t h e  d a t e  and t h e  l i s t i n g  page number. The 5 - d i g i t  f i r s t  
column i s  t h e  f i e l d  number and & d i g i t  o c t a l  a d d r e s s  ( c u r r e n t  l o c a t i o n  
c o u n t e r ) ;  t h e  4 - d i g i t  second column is the assembled o b j e c t  code.  
PAL8 p r i n t s  t h e  symbol t a b l e  a t  t h e  end of t h e  p a s s .  The p a s s  3 
o u t p u t  is: 

/SAMPL..E PA1 ... 8 P R O G R A M  

/SAMPL..E P A L S  PROGRAM 
/GETS INPUT FROM KBI:IÃ HALTS WHEN 'E T I ' S  TYPED 

0200 8200 
6032 B E O I N n  K C C  
6 0 3 1 .  K S F  
5201 JMF' * -1 / W A I T  FOR FL..AG 
6036 K R B  /RETAD T N  C H A R A C T E R  
11 '377 TAD t -'E 
7650 S N A  C I A  /IS I T  E'f 
7402 HI.. T 
aaoi. JMP BEGIN+I 

/END OF EXAMPL-E: 
7473 

Ã 

/ S A M P L E  PALE1 P R O G R A M  

16.0 ABSOLUTE BINARY LOADER 

The Abso lu te  Binary  Loader is used t o  l o a d  t h e  b i n a r y  o u t p u t  c r e a t e d  
by t h e  PAL8 assemble r .  I n p u t  f i l e s  a r e  loaded  a c c o r d i n g  t o  t h e  
o p t i o n s  d i s c u s s e d  i n  t h i s  s e c t i o n ,  and a  c o r e  c o n t r o l  b lock is  
c o n s t r u c t e d  ( s e e  the OS/8 System Refe rence  Manual, S e c t i o n  3 .28,  
c o n c e r n i n g  t h e  GET command). The s t a n d a r d  i n p u t  d e v i c e s  a r e  t h e  paper  
t a p e  r e a d e r ,  DECtape, LINCtape, t h e  d e f a u l t  s t o r a g e  d e v i c e  (DSK:), and 
SYS:,  which r e p r e s e n t s  t h e  sys tem d e v i c e .  You may use  any o t h e r  
d e v i c e  a s  an i n p u t  d e v i c e  i f  it can c o n t a i n  a b s o l u t e  b i n a r y  f i l e s  and 
i f  a  d e v i c e  h a n d l e r  e x i s t s .  The t e r m i n a l  (TTY:) shou ld  n o t  be used ,  
a s  t h e  b i n a r y  code may seem l i k e  c o n t r o l  c h a r a c t e r s  t o  t h e  TTY 
h a n d l e r .  

1 6 . 1  C a l l i n g  and Using ABSLDR 

ABSLDR normal ly  a c c e p t s  a b s o l u t e  b i n a r y  f i l e s  (you m u s t  l o a d  
r e l o c a t a b l e  f i l e s  w i t h  t h e  L ink ing  L o a d e r ) ;  however, you can  l o a d  
s a v e  (.SV) fo rmat  f i l e s  w i t h  ABSLDR p r o v i d i n g  you use  t h e  /I op t ion .  
I f  you t y p e  no e x t e n s i o n  t o  t h e  i n p u t  f i l e  name, ABSLDR assumes t h e  
.BN e x t e n s i o n .  Up t o  n i n e  i n p u t  f i l e s  a r e  a l lowed ,  b u t  i f  more t h a n  
one program is p r e s e n t  i n  a  f i l e ,  o n l y  t h e  f i r s t  program is loaded  
u n l e s s  you use  t h e  /S o p t i o n .  ( T h i s  f e a t u r e  a l l o w s  ABSLDR t o  i g n o r e  
any ' n o i s e  c h a r a c t e r s '  t h a t  might  be caused by r e a d i n g  o v e r  t h e  end o f  
a  paper  t a p e . )  



You call the Absolute Binary Loader from the system device by typing: 

R ABSLDR 

in response to the dot printed by the Keyboard Monitor. The system 
responds by printing an asterisk at the left margin. The user then 
types an input line to ABSLDR, indicating input files and any options 
desired. ABSLDR does not recognize any output files, since the 
purpose of the loader is to load and optionally start binary output 
files. The format of the output line is: 

*DEV: INPUT.EX/ (Opt ions) 

When you type the RETURN key at the end of an input specification 
line, you signal the loader that more input is to be given on the next 
line. If the ALT MODE key is used as a line terminator, no more input 
is expected, the Command Decoder is not recalled, and control returns 
to the Keyboard Monitor. For example: 

The preceding lines cause FILE1, FILE2, FILES, and FILE4 to be loaded 
at their absolute locations in core from DECtape 1. A file will then 
be read from the paper tape reader. The $ character is printed by the 
ALT MODE key, which indicates a return to the Keyboard Monitor. 

NOTE 

If the /G option (load and begin 
execution) is specified, control always 
passes to the program just loaded, 
regardless of which line terminator was 
typed. 

When ABSLDR has completed loading and control has returned to the 
Keyboard Monitor, the program loaded may not be physically in core at 
that moment. ABSLDR utilizes system scratch blocks to store those 
locations that would overlay various parts of the Monitor. To examine 
core locations after using ABSLDR, use ODT (see OS/8 Reference Manual 
for instructions detailing the use of ODT). 

16.1.1 ABSLDR Options - The various options accepted by ABSLDR are 
described in Table 3. 

Table 3 
ABSLDR Options 

/ 8 Used when locations 0-1777 of field 0 are not being 
used by the program. Eliminates e x t r a  DECtape 
motions to save these locations, hence saves time. 
See the OS/8 Software Support Manual for details of 
Job Status Word. 

Id 1 are not to 



Table 3 (Cont.) 
ABSLDR Options 

Meaning 

Treats the input f ile(s) as a core image file to be 
overlaid with the input of succeeding lines. (If yo 
do not use this option in the first command line, yo 
can only use it by recalling ABSLDR from the Keyboar 
Monitor level.) You can use the /I option to mak 
patches to a program you have already saved withou 
reassembling the entire program. 

Resets internal core map of ABSLDR to appear as 
though nothing has been loaded into core. 

Loads all binary programs in the specified input 
file(s) (instead of loading only the first program in 
each file, which is normally done). The options /S 
and /I operate on a line-at-a-time basis. Each 
successive command line must have the option 
respecified if it is required. For example: 

These command strings instruct ABSLDR to take three 
files from PTR (loading all binary programs in each 
file) and three files from DTAl (loading only the 
first binary program in each file). The /S option is 
not implemented on the second line. 

Sets bit 3 of the Job Status Word (location 07746) 
and prevents the Keyboard Monitor from reading a 
fresh version of the BATCH monitor into core every 
time the monitor level is reentered from the program 
level. You can use this option with system programs 
that never use more than 8K of core (PIP, FORTRAN 11, 
SABR). You should not use the /P option with any 
program that occupies or modifies core above field 1 
(see the BATCH chapter in the OS/8 System Reference 
Manual for further information). 

Starts program execution once the loading procedure 
is finished, Normally, control returns either to the 
Monitor or Command Decoder (depending on the 
terminator key). If /G is specified, control is 
given to the program just loaded. The starting 
address is assumed to be 200 unless specified in the 
input string. Control stays with your program until 
it is released to the Monitor from within the 
program. No automatic return to Monitor or the 
Command Decoder occurs. 

Forces loading of all files specified on this input 
line into field n (where n is an octal integer). 

Sets the starting address o f  the program in core to 
n, where n is a 5-digit octal integer. ABSLDR 
inserts a starting address of 0200 in field 0 if you 
do not indicate any other address. Specifying 0 as a 
starting address is equivalent to not specifying a 
starting address, thus ABSLDR would insert a starting 
address of 0200. 



16.1.2 Examples of Input Lines 

Example 1: 

The preceding commands load the core image file PROG.SV and then 
overlay part of that program file with a binary patch from DTA1. 
Control then returns to Monitor, at which time you save the patched 
program on the system device. 

When you use the /I option, the loader ignores the starting address 
and Job Status Word of the core image being loaded. You must specify 
the starting address and contents of the Job Status Word (unless the 
starting address is 200 in field 0, in which case it need not be 
specified) . 
Example 2: 

In example 2, you overlay PIP with a binary patch that will not change 
its starting parameters. You could also accomplish this by using an 
explicit SAVE: 

.I? ABSLDR - *P'I'P + SV/'l' - 
*F:-'I R : t 
.SAVE: SYS PIP;13000=6003 - 
Example 3: 

One binary tape is loaded from the paper tape reader. The program 
does not use areas 00000-01777 and 10000-11777 of core. The starting 
address of the program is considered to be 00200; control transfers 
to your program. 

16.2 Notes on Using ABSLDR Correctly 

ABSLDR is a complex program that, when used incorrectly, can give 
unrecoverable errors. Points to remember when using ABSLDR are: 

If you specify an erroneous starting address, control will 
pass to that address, however random it may be. Thus, 
specifying a starting address in nonexistent memory, for 
example, will very likely produce erroneous results and should 
not be attempted. 

DO not try to load a program into nonexistent memory. 



Do not use old versions of ABSLDR with a new monitor. 

Do not use new versions of ABSLDR with old monitors. 

16.3 ABSLDR Error Messages 

Table 4 lists the error messages output by ABSLDR. In each case, 
control returns to the Command Decoder; you may then repeat the 
entire procedure, resetting the loader (with the /R option) and using 
different inputs. 

Table 4 
ABSLDR Error Messages 

ABSLDR ignores programs that load into 07600 or 17600. No 
error is generated, but these locations are never loaded. (It 
is a good idea not to use 7600 in any field.) 

BAD CHECKSUM, File number n of the input file list has 
FILE # n a checksum error. 

as file number n of the input file list, or 
a non-core image with /I option. 

10 ERROR FILE # n An 1/0 error has occurred in input file 
number n. 

No input file was found on the designated 

17.0 TERMINATING ASSEMBLY 

PAL8 will terminate assembly and return to the Monitor under any of 
the following conditions: 

Normal exit: The end of the source program was reached on 
pass 2 (or pass 3 if a listing is being generated). 

Fatal error: One of the following error conditions was found 
and flagged (see Table 5) : 

BE DE D F PH SE 

CTRL/C: If you typed it, control returns to the Monitor. 

18.0 PAL8 ERROR CONDITIONS 

PAL8 will detect and flag error conditions and generate error messages 
on the console terminal. The format of the error message is: 

CODE address 



where code is a two-letter code that specifies the type of error, and 
address is either the absolute octal address where the error occurred 
or the address of the error relative to the last symbolic label (if 
there was one) on the current page. For example, because % is an 
illegal character, the following code: 

BEG, TAD LBL 
%TAD LBL 

would produce the error message: 

The pass 3 listing outputs error messages as two-character messages on 
the line just prior to the line where the error occurred. The 
followina table lists the PAL8 error codes. Those labeled Fatal Error 
are followed immediately by an effective CTRL/C. 

Table 5 
PAL8 Error Codes 

Error Code Meaning 

Two PAL8 internal tables have overlapped. You can 
usually correct this situation by decreasing the 
level of literal nesting or the number of current 
page literals used prior to this point on the page. 
Fatal error: assembly cannot continue. 

Chain-to-CREF error. CREF.SV was not found on SYS:. 

Device error. An error was detected when trying to 
read or write a device. Fatal error: assembly 
cannot continue. 

Device full. Fatal error: assembly cannot continue. 

Illegal character. The character is ignored and the 
assembly is continued. 

Illegal redefinition of a symbol. An attempt was 
made to give a previous symbol a new value by means 
other than the equal sign. The symbol is not 
redefined. 

Illegal equals. An attempt was made to equate a 
variable to an expression containing an undefined 
term. The variable remains undefined. 

Illegal indirect. An off-page reference was made; a 
link could not be generated because the indirect bit 
was already set. 

Illegal pseudo-op. A pseudo-op was used in the wrong 
context or with incorrect syntax. 

Illegal page zero reference. The pseudo-op Z was 
found in an instruction that did not refer to page 
zero. The Z is ignored. 

(continued on next page) 



Table 5 (Cant.) 
PAL8 Error Codes 

Error Code Meaning 

The /L or /G options have been specified and the 
Absolute Loader is not present on the system. 

Link generated. This code is printed only if the /E 
option was specified to PALS. 

Current non-zero page exceeded. An attempt was made 
to : 

1. Override a literal with an instruction. 

2. Override an instruction with a literal. 

3. Use more literals than the assembler allows on 
that page. 

You can correct a PE situation by decreasing either 
the number of literals on the page or the number of 
instructions on the page. 

Phase error. A conditional assembly bracket is still 
in effect at the end of the input stream. This is 
caused by nonmatching angle bracket ( <  > )  characters 
in the source file. 

Redefinition. A permanent symbol has been defined 
with =. The new and old definitions do not match. 
The redefinition is allowed. 

Symbol table exceeded. Too many symbols have been 
defined for the amount of memory available. Fatal 
error: assembly cannot continue. 

Undefined origin. An undefined symbol has occurred 
in an origin statement. 

Undefined symbol. A symbol has been processed during 
pass 2 that was not defined before the end of pass 1. 

Page 0 exceeded. This is the same as PE except with 
reference to page 0. 

19.0 PAL8 PERMANENT SYMBOL TABLE 

The following are the most commonly used elements of the PDP-8 
instruction set; they are found in the permanent symbol table within 
the PAL8 Assembler. For additional information on these instructions, 
and for a description of the symbols used when programming other 
optional devices, see The Small Computer Handbook, available from the 
DIGITAL Software Distribution Center. (All times are in microseconds 
and representative of the PDP-8/E.) 



Mnemonic Code - 
Memory Reference Instructions 

Operation 

AND 
TAD 
IS2 
DCA 
JMS 
JMP 
I OT 
OPR 

Group 1 

NOP 
I AC 
BSW 
RAL 
RTL 
RAR 
RTR 
C ML 
CMA 
CL L 
CL A 

Operate 

Time - 

Logical AND 2.6 
Two's complement add 2.6 
Increment and skip if zero 2.6 
Deposit and clear AC 2.6 
Jump to subroutine 2.6 
Jump 1.2 
In/Out transfer - 
Operate 1.2 

Microinstructions (1 cycle = 1.2 microseconds) 

No operation 
Increment AC 
Byte swap 
Rotate AC and link left one 
Rotate AC and link left two 
Rotate AC and link right one 
Rotate AC and link right two 
Complement the link 
Complement the AC 
Clear link 
Clear AC 

Group 2 Operate Microinstructions (1 cycle) 

HLT 
0s R 
SKP 
SNL 
SZL 
S ZA 
SNA 
SMA 
SPA 

Halts the computer 3 
Inclusive OR SR with AC 3 
Skip unconditionally 1 
Skip on non-zero link 1 
Skip on zero link 1 
Skip on zero AC 1 
Skip on non-zero AC 1 
Skip on minus AC 1 
Skip on positive AC (zero is 
positive) 1 

Group 3 Operate Microinstructions 

MQA 7501 Multiplier Quotient OR into AC 
MQL 7421 Load Multiplier Quotient 
SWP 7521 Swap AC and Multiplier Quotient 

Combined Operate Microinstructions 

CIA 7041 Complement and increment AC 2.3 
STL 7120 Set link to 1 1.2 
GLK 7204 Get link (put link in AC, 

bit 11) 1.4 
S TA 7240 Set AC to -1 2.0 
LAS 7604 Load AC with SR 2.3 

Internal IOT Microinstructions 

SKON 6000 Skip with interrupts on and turn 
them off 

I ON 6 0 0 1 Turn interrupt processor on 1.2 
IOF 6 0 0 2 Turn interrupt processor off 1.2 
GTF 6004 Get flags 
RTF 6005 Restore flag, ION 
SGT 6006 Skip if "Greater Than" flag is set 
CAP 6007 Clear all flags 



Mnemonic Code Operation 

Keyboard/Reader (1 cycle) 

Time - 

KCF 6030 Clear keyboard flags 
KSF 6031 Skip on keyboard/reader flag 1.2 
KCC 6032 Clear keyboard/reader flag and 

AC; set reader run 1.2 
KRS 6034 Read keyboard/reader buffer 

(static) 1.2 
K I E 6 0 3 5 Set/clear interrupt enable 
KRB 6036 Clear AC, read keyboard buffer 

(dynamic) , clear keyboard flags 1.2 

Teleprinter/Punch (1 cycle) 

TFL 6040 Set teleprinter flag 
TSF 6041 Skip on teleprinter/punch flag 1.2 
TCF 6042 Clear teleprinter/punch flag 1.2 
TPC 6044 Load teleprinter/punch and 

print 1.2 
TSK 6045 Skip on keyboard or teleprinter 

flag 1.2 
TLS 6046 Load teleprinter/punch, print, 

and clear teleprinter/punch flag 1.2 

High-speed Perf orated Tape Reader 

RPE 6010 Set Reader/Punch inter- 
rupt enable 1.2 

RSF 6 0 11 Skip if reader flag=l 1.2 
RRB 6012 Read reader buffer and clear 

flag 1.2 
RFC 6014 Clear flag and buffer and fetch 

character 1.2 

High-speed Perforated Tape Punch 

PCE 6020 Clear Reader/Punch interrupt 
enable 1.2 

PS F 6021 Skip if punch flag=l 1.2 
PC F 6022 Clear flag and buffer 1.2 
PPC 6024 Load buffer and punch character 1.2 
PLS 6026 Clear flag and buffer, load buffer 

and punch character 1.2 



INDEX 

Absolute Binary Loader (ABSLDR), 
31 to 35 

correct use, 31 
error messages, 35 
options, 32 

Addition, 11 
Addresses, 7, 21 
AND, Boolean, 11 
AND group skip instructions, 

2 0 
Angle bracket ( < ) ,  usage, 16 
Arithmetic operations, 11 to 12 
Assembly termination, 35 
Asterisk ( * )  usage, 
ABSLDR response, 32 

Autoindexing, 21 

IFDEF pseudo-OP, 24 
IFNDEF pseudo-OP, 24 
IFNZRO pseudo-OP, 25 
IFZERO pseudo-op, 25 
Indirect addressing, 21 
Instructions, 17 to 21 
Internal symbol representation, 

11 

Labels, 5 
Link generation and storage, 

2 9 
Listing suppression, 24 
Literals, 15, 16 
Location counter, resetting, 

2 3 

Binary output control, 26 

Memory reference instructions, 
7 7 

Characters, 4 
special, 14 

Coding practices, 30 
Conditional assembly pseudo- 

operators, 24 
Current location counter, 8 

Division, 11 to 12 
DOT ( . )  character, 15 
Double quote (I1) character, 15 
DTORG pseudo-OP, 26 

J. 1 

Memory reservation, 24 
Microinstructions, 18 to 20 
Multiplication, 11, 12 
Multistatement lines, 6 

Nested literals, 16 
Nested pseudo-ops, 25 
NOPUNCH pseudo-op, 26 
Numbers, 7 

Off-page references, PALS, 
2 9 

End of file, 23 
Error conditions, 
PAL8, 35 to 37 

Error messages, 
ABSLDR, 35 

EXPUNGE pseudo-op, 27, 28 
Extended memory, 22 

FIXMRI pseudo-OP, 28 
FIXTAB pseudo-op, 28 
Formats, 
assembly listing, 5 to 7 

Form feed, 5 

Operators, 11 to 13 
Options, 
ABSLDR, 32 
PALS, 2 

OR, Boolean inclusive, 11, 12 
OR group skip instructions, 

2 0 
Output control, 26 

Page zero addressing, 21 
Parentheses, 15 
Permanent symbols, 7 
Permanent symbol table, 37 



INDEX (Cont. ) 

Program assembly, 30 
Pseudo-operators, 21 to 28 
PAL8 conditional, 24 
PAL8 nested, 25 

Radix control, 21 
RELOC pseudo-op (relocation) , 

2 7 
Reserving memory, 24 
Restarting, 4 
RETURN key, 6 

Semicolon use, 6 
Skip instructions, 20 
Slash ( / ) ,  5 
Space character, 13 
Specification strings, 3 
Square brackets ( [ I )  characters, 

16 
Statement label, 5 
Statements, 4, 5 

Statement terminators, 6 
Subtraction, 11 
Suppression of listing, 24 
Symbolic address, 7 
Symbolic instructions, 11 
Symbolic operands, 11 
Symbols, 7 to 11 
Symbol table, 9 

Tabulations, 6 
Terminating, 4 
Termination of assembly, 35 
Terminators, 6 
Text strings, 23 
Two's complement addition and 

subtraction, 12 
Typeset pseudo-operator, 26 

User-defined symbols, 7 
User service routine, 
called by PALS, 26 



FORTRAN II 



CONTENTS 

P a g e  

INTRODUCTION 
C a l l i n g  and U s i n g  t he  O S / 8  FORTRAN C o m p i l e r  
FORTRAN O p t i o n s  
E x a m p l e  P r o g r a m  
E x a m p l e s  of FORTRAN 1/0 S p e c i f i c a t i o n  C o m m a n d s  
U s i n g  FORTRAN or  SABR w i t h  t h e  I n t e r r u p t  O n  
U s i n g  P A L S  w i t h  SABR or  FORTRAN 
FORTRAN D a t a  F i l e s  

FORTRAN I1 SOURCE LANGUAGE 
C h a r a c t e r  S e t  
FORTRAN C o n s t a n t s  
I n t ege r  C o n s t a n t s  
R e a l  C o n s t a n t s  
H o l l e r i t h  C o n s t a n t s  
FORTRAN V a r i a b l e s  
I n t ege r  V a r i a b l e s  
R e a l  V a r i a b l e s  
S c a l a r  V a r i a b l e s  
A r r a y  V a r i a b l e s  
S u b s c r i p t i n g  
E x p r e s s i o n s  

FORTRAN STATEMENTS 
L i n e  C o n t i n u a t i o n  D e s i g n a t o r  
C o m m e n t s  
A r i t h m e t i c  S t a t e m e n t s  
I n p u t / O u t p u t  S t a t e m e n t s  
D a t a  T r a n s m i s s i o n  S t a t e m e n t s  
READ S t a t e m e n t  
WRITE S t a t e m e n t  
FORMAT S t a t e m e n t  
N u m e r i c  F i e l d s  
N u m e r i c  I n p u t  C o n v e r s i o n  
A l p h a n u m e r i c  F i e l d s  
H o l l e r i t h  C o n v e r s i o n  
B l a n k  or  S k i p  F i e l d s  
M i x e d  F i e l d s  
R e p e t i t i o n  of F i e l d s  
R e p e t i t i o n  of G r o u p s  
M u l t i p l e  R e c o r d  F o r m a t s  
C o n t r o l  S t a t e m e n t s  
GO TO S t a t e m e n t  
U n c o n d i t i o n a l  GO T O  
C o m p u t e d  GO T O  
I F  S t a t e m e n t  
DO S t a t e m e n t  
CONTINUE S t a t e m e n t  
PAUSE,  S T O P ,  and END Statements 
P a u s e  S t a t e m e n t  
S t o p  S t a t e m e n t  
E n d  S t a t e m e n t  

iii 



CONTENTS ( C o n t  . ) 

P a g e  

Spec i f i ca t ion  Statements 
COMMON S t a t e m e n t  
DIMENSION S t a t e m e n t  
EQUIVALENCE S t a t e m e n t  
S u b p r o g r a m  S t a t e m e n t s  
F u n c t i o n s  
S u b r o u t i n e s  
CALL S t a t e m e n t  
RETURN S t a t e m e n t  

FUNCTION LIBRARY 
FLOATING P O I N T  ARITHMETIC 
DEVICE INDEPENDENT 1/0 AND CHAINING 

T h e  I O P E N  S u b r o u t i n e  
T h e  OOPEN S u b r o u t i n e  
T h e  OCLOSE S u b r o u t i n e  
T h e  CHAIN S u b r o u t i n e  
T h e  E X I T  S u b r o u t i n e  

DECTAPE 1/0 ROUTINES 
O S / 8  FORTRAN LIBRARY SUBROUTINES 
MIXING SABR AND FORTRAN STATEMENTS 
S I Z E  O F  A  FORTRAN PROGRAM 
FORTRAN STATEMENT SUMMARY 
FORTRAN ERROR MESSAGES 

C o m p i l e r  E r r o r  M e s s a g e s  
L i b r a r y  E r r o r  M e s s a g e s  

INDEX 

TABLES 

TABLE 1 FORTRAN O p t i o n s  
2 D e v i c e  D e s i g n a t i o n s  
3 N u m e r i c  F i e l d  C o d e s  
4 FORTRAN F u n c t i o n  L i b r a r y  
5 FORTRAN I1 L i b r a r y  S u b r o u t i n e s  
6 FORTRAN L a n g u a g e  S u m m a r y  
7 FORTRAN L i b r a r y  E r r o r  M e s s a g e s  

I ndex -  1 





FORTRAN I1 

T a b l e  1 
FORTRAN O p t i o n s  

O p t  i o n  

/G 

- - 

Meaning  

L o a d s  a n d  e x e c u t e s  t h e  f i l e .  T h e  L i n k i n g  L o a d e r  i s  
c a l l e d ,  a n d  t h e  b i n a r y  o u t p u t  f i l e  is l o a d e d  a n d  
e x e c u t e d .  ( I f  a b i n a r y  f i l e  is n o t  s p e c i f i e d ,  a  
t e m p o r a r y  f i l e  named FORTRL.TM is c r e a t e d  a n d  s t o r e d  
o n  t h e  f i l e  d e v i c e .  T h i s  f i l e  is l o a d e d  i n t o  c o r e  
a n d  t h e n  d e l e t e d  f r o m  t h e  f i l e  d e v i c e . )  I f  a  s t a r t i n g  
a d d r e s s  is n o t  s p e c i f i e d  ( u s i n g  t h e  o p t i o n s  d e s c r i b e d  
u n d e r  t h e  L i n k i n g  L o a d e r )  , c o n t r o l  i s  s e n t  t o  t h e  
p r o g r a m  e n t r y  p o i n t  M A I N  ( t h e  FORTRAN c o m p i l e r  g i v e s  
t h i s  name a u t o m a t i c a l l y  t o  t h e  m a i n  p r o g r a m ) .  

K e e p s  t h e  f i l e  FORTRAN.TM a s  a  p e r m a n e n t  f i l e .  The 
FORTRAN c o m p i l e r  p r o d u c e s  a n  o u t p u t  f i l e  named 
FORTRN.TM o n  t h e  s y s t e m  d e v i c e .  T h i s  f i l e ,  t h e  
FORTRAN s o u r c e  p r o g r a m  c o n v e r t e d  i n t o  SABR a s s e m b l y  
l a n g u a g e ,  s e r v e s  a s  i n p u t  t o  t h e  8 K  SABR a s s e m b l e r ,  
w h i c h  is  a u t o m a t i c a l l y  c a l l e d  b y  t h e  c o m p i l e r .  The  
f i l e  FORTRAN.TM is t h e n  d e l e t e d  u n l e s s  t h e  /K o p t i o n  
h a s  b e e n  s p e c i f i e d .  T h e  /K o p t i o n  s a v e s  t h e  f i l e  a s  
a p e r m a n e n t  f i l e ,  a l l o w i n g  f u t u r e  e d i t i n g  a n d  
a s s e m b l i n g .  

L o a d s  b u t  d o e s  n o t  s t a r t  e x e c u t i o n .  C a l l s  t h e  
L i n k i n g  L o a d e r  a t  t h e  e n d  o f  t h e  a s s e m b l y  a n d  l o a d s  
t h e  s p e c i f i e d  b i n a r y  f i l e .  ( I f  a  b i n a r y  o u t p u t  f i l e  
is n o t  s p e c i f i e d ,  t h e n  t h e  t e m p o r a r y  f i l e  FORTRL.TM 
is l o a d e d  i n t o  c o r e  a n d  d e l e t e d  f r o m  t h e  f i l e  
d e v i c e . )  When u s i n g  t h e  /L o p t i o n ,  you  c a n  t e r m i n a t e  
t h e  command s t r i n g  b y  t y p i n g  e i t h e r  a n  ALT MODE o r  a  
c a r r i a g e  r e t u r n .  I f  you  t y p e  ALT MODE, t h e  L o a d e r  
r e t u r n s  t o  t h e  K e y b o a r d  M o n i t o r  w i t h  a  c o r e  image  i n  
c o r e ;  t y p i n g  t h e  RETURN k e y  i n s t r u c t s  t h e  L o a d e r  t o  
a s k  f o r  more  i n p u t .  

1 . 1 . 2  Example Program - The f o l l o w i n g  e x a m p l e  i l l u s t r a t e s  t h e  e a s e  
w i t h  w h i c h  a  FORTRAN p r o g r a m  c a n  b e  e x e c u t e d  u n d e r  OS/8. The p r o g r a m  
TEST h a s  b e e n  c r e a t e d  w i t h  t h e  S y m b o l i c  E d i t o r  a n d  s a v e d  o n  d e v i c e  
SYS: 

C FORTRAN DEMO 'TEST '  
C COMPUTE: AND PRINT  POWERS C l F 3 W i : l  



FORTRAN I1 

The following commands load and execute TEST; execution is automatic 
with t he  / G  o p t i o n :  

POWERS O F  T U I O t + E X A M P L E  PROGRAM 

FORTRAN assembles one main program or subroutine per call. To run a 
job with multiple subprograms, compile each routine separately and 
combine them with the Linking Loader. 

Typing a CTRL/C (^c) at run time during a non-compute bound job will 
return control to the Keyboard Monitor. Typing .ST at this point will 
restart the user's FORTRAN program. If you type "C when compiling a 
program, FORTRAN will have to be recalled. 

1.1.3 Examples of FORTRAN 1/0 Specification Commands 

Example 1: 

The input file TEST.FT (or TEST) on DTAl is compiled, the output 
stored in FORTRN.TM on the system device, and SABR is called. SABR 
uses FORTRN.TM as input and outputs the assembled file into FORTRL.TM, 
deleting the old FORTRN.TM. Because the / G  option is specified, the 
Linking Loader then loads FORTRL.TM and the Library Subroutines, 
deletes FORTRL.TM upon loading, and sends control to the entry point 
MAIN. 

Example 2: 

+ R  F O R T  
*MATRIX-:::MATRIX + AB/G/U - 

The input file MATRIX-AB on DSK is compiled and the output stored in 
SYS:FORTRN.TM. SABR is called and assembles SYS:FORTRN.TM, putting 
the relocatable binary output into DSK:MATRIX.RL and deleting the file 
FORTRN.MT. Because the / G  option is specified, the Linking Loader 
then loads MATRIX.RL and the Library Subroutines, and then prints on 
the teleprinter (via /U) a list of undefined external symbols and a 
count of the unused pages in each memory field. 



FORTRAN I1 

Example 3 :  

The FORTRAN Compi l e r  c o m p i l e s  and  SABR a s s e m b l e s  t h e  f i l e  DSK:INPUT.FT 
(or  I N P U T ) ,  o u t p u t t i n g  t h e  b i n a r y  f i l e  a s  SYS:FORTRL.TM. The L i n k i n g  
Loade r  is  a u t o m a t i c a l l y  c a l l e d  ( /L)  t o  l o a d  SYS:FORTRL.TM i n t o  c o r e  
and  d e l e t e  t h a t  f i l e  f rom SYS. The L i n k i n g  Loade r  p u t s  a  f u l l  l o a d i n g  
map o n  t h e  LPT d e v i c e  ( / M ) .  The Loade r  t h e n  a s k s  f o r  a n o t h e r  command 
s t r i n g .  I f  you t e r m i n a t e  t h e  l i n e  w i t h  t h e  ALT MODE key i n s t e a d  o f  
t h e  RETURN key ,  c o n t r o l  is r e t u r n e d  t o  t h e  Keyboard Mon i to r  a f t e r  
l o a d i n g .  

Example 4 :  

The s u b r o u t i n e s  and t h e  M A I N  p rogram a r e  e a c h  c o m p i l e d  s e p a r a t e l y ,  and 
t h e  M A I N  p rogram is  l o a d e d  b u t  n o t  e x e c u t e d  ( a s  t h e  /L o p t i o n  
i n d i c a t e s ) .  The L i n k i n g  L o a d e r ,  c a l l e d  a t  t h e  end o f  t h e  a s s e m b l y ,  
w a i t s  f o r  more i n p u t .  The / G  o p t i o n  l o a d s  t h e  FORTRAN L i b r a r y  
S u b r o u t i n e s  and i n i t i a t e s  e x e c u t i o n  o f  t h e  M A I N  p rogram.  

Example 5: 

The f i l e  SOURCE on DTA5 is c o m p i l e d ,  a s s e m b l e d ,  and l o a d e d  b u t  n o t  
e x e c u t e d .  

Example 6 :  

I f  you have  a  DECtape s y s t e m ,  k e e p i n g  t h e  s o u r c e  p rog ram on  a 
non-sys tem DECtape and  p u t t i n g  t h e  b i n a r y  on a  non-sys tem DECtape 
g i v e s  t h e  b e s t  p o s s i b l e  r e s u l t s  i n  t e r m s  o f  m i n i m i z i n g  t a p e  m o t i o n .  
The f i l e  PROG i s  l o a d e d  and  e x e c u t e d .  The b i n a r y  i s  s t o r e d  on  DTA1 
unde r  t h e  name PROG.RL, and  t h e  symbol  t a b l e ,  t h e  map o f  t h e  l o a d e d  
p r o g r a m ,  and t h e  c o u n t  o f  t h e  f r e e  p a g e s  i n  e a c h  f i e l d  a r e  punched  
o n t o  p a p e r  t a p e .  

I n  DECtape s y s t e m s ,  you c a n  e l i m i n a t e  e x c e s s i v e  DECtape m o t i o n  by 
s t o r i n g  LIB8.RL on  a  non-sys tem t a p e .  S p e c i f y  t o  t h e  l o a d e r :  



FORTRAN I1 

1.2 Using FORTRAN or SABR with the Interrupt On 

SABR code can be run with the interrupt on, provided you have your own 
interrupt-handling code. That code, which is executed when the 
interrupt is off, must not call any of the SABR subroutines and must 
be independent of all SABR o r  library subroutines and linkage 
subroutines. With the interrupt on, do not call exit routines or do 
any generalized (device-independent) I/O, unless those routines are 
modified to make allowances for interrupts. 

1.3 Usin9 PAL8 with SABR or FORTRAN 

PALS subroutines can be called from a SABR or FORTRAN program. You 
should build a core image of the running FORTRAN or SABR program and 
r e t u r n  to the Keyboard Monitor by t y p i n g  $ (ALT MODE key) on the last 
Linking Loader Command. Then save the core image. You can use the 
core image file (.SV) as input to the Absolute Loader (ABSLDR) with 
the /I option, followed by the binary of the PALS routine, for 
example : 

The above calls the Absolute Loader, loads the core image CHAIN2.SV 
and then merges the PALSUB.BN program with it. Execution starts at 
location 200 and, when completed, the system returns to the Keyboard 
Monitor for further instructions. 

1.4 FORTRAN Data Files 

When doing FORTRAN output onto DECtape or disk into a file which is to 
be read only as a data file by another FORTRAN program, you can save 
significant time by using the A6 format to output floating-point 
variables and the A2 format to output integer values. The same format 
specifications must be used when the data is read. The data file is 
i t  .an ASCII file and s h o u l d  not be edited with EDIT. The file should 
only be moved by PIP in image mode (/I option) . 
Observe the following caution concerning programs which may have been 
written and compiled with a previous version of OS/8 FORTRAN. 

CAUTION 

A FORTRAN compiler and its corresponding 
Library constitute an interlocking set 
of programs. No user should attempt to 
compile a program under OS/8 and load it 
with the paper tape FORTRAN, or vice 
versa. Similarly, programs developed 
with the current FORTRAN compiler should 
not be run under an old FORTRAN system. 



FORTRAN I1 

2.0 FORTRAN I1 SOURCE LANGUAGE 

2.1 Character Set 

The following characters are used in the FORTRAN language. 

(Appendix A lists the octal and decimal representations of the FORTRAN 
character set. ) 

1. The alphabetic characters, A through Z. 

2. The numeric characters, 0 through 9. 

3. The special characters. (Of these, 
! $ % & # : ? < > '̂  [ I  \ must appear 

statement or Hollerith constants.) 

the characters 
inside FORMAT 

2.2 FORTRAN Constants 

Constants are self-defining numeric values appearing in source 
statements and are of three types: integer, real, and Hollerith. 

2.2.1 Integer Constants - An integer (fixed point) constant is 
represented by a digit string of from one to four decimal digits, 
written with an optional sign and without a decimal point. An integer 
constant must fall within the range -2047 to +2047, for example: 

4 7 
+4 7 (+ sign is optional) 
-2 
0434 (leading zeros are ignored) 
0 (zero) 

2.2.2 Real Constants - A real constant is represented by a digit 
string, an explicit decimal point, an optional sign, and possibly an 
integer exponent to denote a power of ten (7.2 x 10-3 is written 
7.2E+03). A real constant may consist of any number of digits but 
only the leftmost eight digits appear in the compiled program. Real 
constants must fall within the range of + 1.7x10n38. 



FORTRAN 11 

2.2.3 Hollerith Constants - A Hollerith constant is a string of up to 
6 characters (including blanks) enclosed in single quotes. L a  a 
Hollerith constant is treated like a real constant, except that it 
cannot be used in arithmetic expressions other than for simple 
equivalence (A=B). Any character except the quote character itself 
can be used in a Hollerith constant, for example: 

MOM 
A+B=C 
5 & 10' 

2.3 FORTRAN Variables 

A variable is a named quantity whose value may change during execution 
of a program. Variables are specified by name and type. The name of 
a variable consists of one or more alphanumeric characters, the first 
of which must be alphabetic. Although any number of characters may be 
used to make up the variable name, only the first five characters are 
interpreted as defining the name; the rest are ignored. For example, 
DELTAX, DELTAY, and DELTA all represent the same variable name. 

The 
let 
ind 

type of variable (integer or real) is determined by the first 
ter of the variable name. A first letter of I, J, K, L, M, or N 
icates an integer variable, and any other first letter indicates a 

real variable. Variables of either type may be either scalar or array 
variables. A variable is an array variable if it first appears in a 
DIMENSION statement. 

2.3.1 Integer Variables - The name of an integer variable must begin 
with an I, J, K, L, M, or N. An integer variable undergoes arithmetic 
calculations with automatic truncation of any ' fractional part. For 
example, if the current value of K is 5 and the current value of J is 
9, J/K would yield 1 as a result. 

Integer variables may be converted to real variables by the function 
FLOAT (see Function Calls) or by an arithmetic statement (see 
Arithmetic Statements). Integer variables must fall within the range 
-2047 to +2047. 

Integer arithmetic operations do not check for overflow. For example, 
the sum 2047+2047 will yield a result of -2. For more information 
refer to any text on binary arithmetic. 

2.3.2 Real Variables - A real variable name begins with an alphabetic 
character other than I, J ,  K, L, M, or N. Real variables may be 
converted to integer variables by the function IFIX (see Section 
3.7.2.3) or by an arithmetic statement. Real variables undergo no 
truncation in arithmetic calculations. 

2.3.3 Scalar Variables - A scalar variable may be either integer or 
real and represents a single quantity. Examples are as follows: 

LM 
A 
G2 
TOTAL 
J 



FORTRAN I1 

2.3.4 Array Variables - An array (subscripted) variable represents a 
single element of a one- or two-dimensional array of quantities. The 
array element is denoted by the array name followed by a subscript 
list enclosed in parentheses. The subscript list may be any integer 
expression or two integer expressions separated by a comma. The 
expressions may be arithmetic combinations of integer variables and 
integer constants. Each expression represents a subscript, and the 
values of the expressions determine the referenced a r r a y  element. For 
example, the row vector A(i) would be represented by the subscripted 
variable A(I), and the element in the second column of the first row 
of the matrix A would be represented by A (1,2). 

Examples of one-dimensional arrays are: 

Y (1) 
PORT (K) 

An example of a two-dimensional array is: 

Any array must appear in a DIMENSION statement prior to its first 
appearance in an executable statement. The DIMENSION statement 
specifies the number of elements in the array. 

Arrays are stored in increasing storage locations with the first 
subscript varying most rapidly (see Storage Allocation). The 
two-dimensional array B (J,K) is stored in the following order: 

2.3.5 Subscripting - Since excessive subscripting tends to use core 
memory inefficiently, subscripted variables should be used 
judiciously. For example, the statement: 

if rewritten as follows would save considerable core memory: 

2.4 Expressions 

An expression is a sequence of constants, variables, and function 
references separated by arithmetic operators and parentheses in 
accordance with mathematical convention and the rules given below. 

Without parentheses, algebraic operations are performed in the 
following descending order: 

* * exponentiation 
- unary negation 
* and / multiplication and division 
+ and - addition and subtraction - - equals or replacement sign 



FORTRAN II 

Parentheses are used to change the order of precedence. An operation 
enclosed in parentheses is performed before its result is used in 
other operations. In the case of operations of equal priority, the 
calculations are performed from left to right. 

Integers and real numbers may be raised to either integer or real 
powers. An expression of the form: 

means A^B and is real unless both A and B are integers. Exponential 
(enx) and natural logarithmic (log (e) (x) ) functions are supplied as 
subprograms and are explained later. 

Excluding * *  (exponentiation), no two arithmetic operators may appear 
in sequence unless the second is a unary plus or minus. 

The mode (or type) of an expression may be either integer or real and 
is determined by its constituents. Variable modes may not be mixed in 
an expression with the following exceptions; 

1. A real variable may be raised to an integer power: 

2. Mode may be altered by using the functions IFIX and FLOAT 
(see Function Calls) : 

A*FLOAT (I) 

The I in example 2 above, indicates an integer variable; it is 
changed to real (in floating point format) by the FLOAT function. 

Zero raised to a power of zero yields a result of 1. Zero raised to 
any other power yields a zero result. Numbers are raised to integer 
powers by repetitive multiplication. Numbers are raised to floating 
point powers by calling the EXP and ALOG functions. A negative number 
raised to a floating point power does not cause an error message but 
uses the absolute value. Thus, the expression (-3.0)**3.0 yields a 
result of +27. 

An arithmetic expression may be enclosed in parentheses and be 
considered a basic element. 

IFIX (X+Y) /2 
(ZETA) 
(COS (SIN (PI*EM) +X) ) 

An arithmetic expression may consist of a single 
variable, or function call), for example: 

2.71828 
Z ( N )  
TAN (THETA) 

Compound arithmetic expressions may be formed 
operators to combine basic elements, for example: 

element 

using 

(constant, 

arithmetic 

x+3. 
TOTAL/A 
TAN (PI*EM) 



FORTRAN I1 

Expressions preceded by a + or a - sign are also arithmetic 
expressions, for example: 

As an example of a typical arithmetic expression using arithmetic 
operators and a function call, consider the expression for the largest 
root of the general quadratic equation: 

This expression is coded as: 

3.0 FORTRAN STATEMENTS 

A FORTRAN source program consists of a series of statements, each of 
which must start on a separate line. Any FORTRAN statement may appear 
in the statement field (columns 7 through 72) and may be preceded by a 
positive number, called a statement number, of from 1 to 4 digits. 
This statement number serves as an address label and is used when 
referencing the statement. Statement numbers are coded in columns 1 
through 5 of the 72-column line. Statement numbers need not appear in 
sequential order, but no two statements should have the same number. 
Statement numbers are limited to a value of 2047 or less. 

When you are using the Symbolic Editor to create the source program, 
typing a CTRL/TAB (generated by holding down the CTRL key and pressing 
the TAB key) causes a jump over the statement number columns and into 
the statement field. Except for data within a Hollerith field (see 
Input/Output Statements, Section 3.4), spaces are ignored by the 
compiler. You may use spaces freely, however, to make the program 
listing more readable and to organize data into columns. 

3.1 Line Continuation Designator 

Statements too long for the statement field of a single terminal line 
may be continued on the next line. The continued portion must not be 
given a line number, but must have an alphanumeric character other 
than 0 in column 6. If you use the Symbolic Editor, you may type a 
CTRL/TAB followed by a digit from 1 to 9 before continuing the line. 
The continuation character is not treated as part of the statement. 

For example, using spaces, a continued statement would look as 
follows; 

WRITE ( 3 ~ 3 0 )  
30 FORMAT CI. x Q '.THE F-"UI ... LOWING D A T A  IS GROUPE::D INTO TtiFtEE 

1 PARTS UNDER THE HEADINGS Xv Y Y  AND Z * ' )  



FORTRAN II 

Using tabs, the same statement would be typed: 

URITE (3 .301 
30 FORMAT ( 1 x 9  'THE FOL-LOUING DATA I S  GROUPED INTO THREE 

1 PARTS UNDER THE HEADINGS X ,  Y Y  AND Z.̂  1 

There is no limit to the number of continuation lines which may 
appear. However, one restriction is that an implied DO loop must not 
be broken but must be on one line. For ease in program correction, it 
is recommended that continuation lines be minimized. 

3.2 Comments 

The letter C in column 1 of a line designates that line as a comment 
line; A comment appears in a program listing but has no effect on 
program compilation. Any number of comment lines may appear in a 
given program, and comments that are too long for one line may be 
continued by placing a C in the first column of the next line. A 
comment line may not appear between another line and its continuation. 

FORTRAN statements are of five types: 

1. Arithmetic, defining calculations to be performed; 

2. Input/Output, directing communication between the program and 
input/output devices; . 

3. Control, governing the sequence of execution of statements 
within a program; 

4. Specification, describing the form and content of data within 
the program; 

5. Subprogram, defining the form and occurrence of subprograms 
and subroutines. 

Each of these five types is explained in the following paragraphs. 

3.3 Arithmetic Statements 

Constants and variables, identified as to type and connected by 
logical and arithmetic operators, form expressions; one or more 
expressions form an arithmetic statement. Arithmetic statements are 
of the general form: 

where V is a variable name (subscripted or nonsubscripted), E is an 
expression, and = is a replacement operator. The arithmetic statement 
causes the FORTRAN object program to evaluate the expression E and 
assign the resultant value to the variable V. Note that = signifies 
replacement, not equality. Thus, expressions of the form: 



FORTRAN I1 

are quite meaningful and indicate that the value of the variable A is 
to be changed, for example: 

The expression value is made to agree in type with the variable before 
replacement occurs. In the statement: 

since META is an integer and the expression is real, the expression 
value is truncated to an integer before assignment to META. 

3.4 Input/Output Statements 

Input/output (I/O) statements are used to control the transfer of data 
between computer memory and peripheral devices and to specify the 
format of the output data. 1/0 statements may be divided into two 
categories: 

1. Data transmission statements, READ and WRITE, specify 
transmission of data between computer memory and 1/0 devices. 

2. Nonexecutable FORMAT statements enable conversion between 
internal data (within core memory) and external data. 

3.4.1 Data Transmission Statements - The two data transmission 
statements, READ and WRITE, accomplish input/output transfer of data 
listed in a FORMAT statement. The two statements are of the form: 

READ (unit, format) 1/0 list 
WRITE (unit, format) 1/0 list 

where unit is a device designation which can be an integer constant or 
an integer variable, format is a FORMAT statement line number, and the 
1/0 list is a list specifying the order of transmission of the 
variable values. During input, the new values of listed variables may 
be used in subscript or control expressions for variables appearing 
later in the list. For example: 

reads a new value of L and uses this value in the subscripts of A and 
B ;  where 2 is the device designation code, and 1000 is a FORMAT 
statement number. 

element in an 1/0 list can take one of the following forms: 

1. Arithmetic expression: expressions more complicated than a 
single variable (which can be subscripted) are meaningless in 
an input operation. 



FORTRAN I1 

2. The name of an array (1 or 2 dimensional) : this indicates 
fchsfc every  eiemenfc of the s r r s x ~  is to be t r ~ ~ ~ , ~ ~ e / ^ .  
Elements are transmitted in the order in which they are 
stored in core. 

DIMENSION A(292) 
READ (19100) A 

reads: 

repeat the list elements (s(n)) with the value of i being 
equal to m(l) through m(2) having an optional step value of 
m(3). The m's are integer constants or variables, i is an 
integer variable, and s(1)-s(n) are the 1/0 list elements 
(possibly including an implied DO loop). For example: 

will output the values: 

When using implied DO loops, remember that the entire implied 
DO loop must be on the same input line or card. An implied 
DO loop cannot be continued onto the next line with a 
continuation character. 

If no 1/0 list is specified for a WRITE statement, then information is 
read directly from the specified FORMAT statement and written on the 
device designated. 

Eats appears 3~ extsrval  ice i v  t k n  C n - m  n C  ---fivd- 
L C  LUJ-111 U L  1.CLULUO. 

/ m u Â ¥  f 
{LIILO 

should not be confused with the OS/8 record, which is equal to 256(10) 
words (2 DECtape blocks with the 129th word of each block ignored.)) 
All information appearing on input is grouped into records. On output 
to the printer a record is one line. The amount of information 
contained in each ASCII record is specified by the FORMAT statement 
and the 1/0 list. 

Each execution of an 1/0 statement initiates the transmission of a new 
d a t a  r e c o r d ;  Thus, the statement: 

is not necessarily equivalent to the statements below, where 100 is 
the FORMAT statement referenced: 



FORTRAN I1 

In the second case, at least three separate records are required, 
whereas the single statement 

READ FIRST, SECOND, THIRD 

may require one, two, three, or more records, depending upon FORMAT 
statement f. 

If an 1/0 statement requests less than a full record of information, 
the unrequested part of the record is lost and cannot be recovered by 
another 1/0 statement without repositioning the record. 

If an 1/0 list requires more than one ASCII record of information, 
successive records are read. 

3.4.1.1 READ Statement - The READ statement specifies transfer of 
information from a selected input device to internal memory, 
corresponding to a list of named variables, arrays or array elements. 
The READ statement assumes the following form: 

READ (d, f) list 

where d is a device designation which may be an integer constant or an 
integer variable, f is a FORMAT statement line number, and list is a 
list of variables whose values are to be input. 

The READ statement causes ASCII information to be read from the device 
designated and stored in memory as values of the variables in the 
list. The data is converted to internal form as specified by the 
referenced FORMAT statement, for example: 

3.4.1.2 WRITE Statement - The WRITE statement specifies transfer of 
information from the computer to a specified output device. The WRITE 
statement assumes one of the following forms: 

WRITE (d, f) list 
WRITE (d, f) 

where d is a device designation (integer constant or integer 
variable), f is a FORMAT statement line number, and list is a list of 
variables to be output. 

The WRITE statement followed by a list causes the values of the 
variables in the list to be read from memory and written on the 
designated device in ASCII form. The data is converted to external 
form as specified by the designated FORMAT statement. 

The WRITE statement without a list causes information (generally 
Hollerith type) to be read directly from the specified format and 
written on the designated device in ASCII form. 

The 1/0 device designations used in the READ and WRITE statements are 
described in Table 2. 



FORTRAN II 

Table 2 
Device Desi~nations 

1 Device Code 1 Input Designation 1 Output Designation 1 
I I 

! 1 , Teletype keyboard or 1 Teleprinter 

*(See Device Independent 1/0 and Chaining) 

1 low-speed reader 
High-speed reader High-speed punch 1 Card reader (CR8/I) 1 Line printer (LP08) 

If using device code 4, the /I or / O  option to the Linking Loader must 
be given. If the assignable device is a two-page handler, the /H 
option must be given also. 

Assignable device* 

Device code 3 is assigned to the card reader (for all READ 
statements), and the line printer (for all WRITE statements). The 
card reader uses a two-page device handler, which is too large to be 
used with the device independent 1/0 feature (device code 4). 
Therefore, the card reader has its own device code. 

Assignable device* 

The line printer is a separate output device because it can require 
special formatting, such as inserting a Form Feed to skip to the top 
of a page. The contents of the first column of any line is a control 
character. These control characters are never printed. They are as 
follows: 

Character in Column 1 

space 
0 
1 

211 others 

Resulting Spacing 

single space 
double space 
skip to top of 
next page (Form 
Feed) 
single space 

3.4.2 FORMAT Statement - The nonexecutable FORMAT statement specifies 
the form and arrangement of data on the selected external. device. 
FORMAT statements are of the form: 

m FORMAT (S (1) S (2) , . . .S (n) ) 
where m is a statement number and each S is a data field 
specification. Both numeric and alphanumeric field specifications may 
appear in a FORMAT statement. The FORMAT statement also provides for 
handling multiple record formats, skipping characters, space 
insertion, and repetition. 

FORMAT statements may be placed anywhere in the source program. 
Unless the FORMAT statement contains only alphanumeric data for direct 
1/0 transmission, it will be used in conjunction with the list of a 
data transmission statement. 



FORTRAN I1 

During transmission of data, the object program scans the designated 
FORMAT statement; if a specification for a numeric field is present, 
and the data transmission statement contains items remaining to be 
transmitted, transmission takes place according to the specification. 
This process ceases and execution of the data transmission statement 
is terminated as soon as all specified items have been transmitted. 
The FORMAT statement may contain specifications for more items than 
are indicated by the data transmission statement. The FORMAT 
statement may also contain specifications for fewer items than are 
indicated by the data transmission statement, in which case format 
control reverts to the rightmost left parenthesis in the FORMAT 
statement. If an input list requires more characters than the input 
device supplies for a given record, blanks are inserted. 

3.4.2.1 N u m e r i c  F i e l d s  - Numeric field specification codes and the 
corresponding internal and external forms of the numbers are listed in 
Table 3. 

Table 3 
Numeric Field Codes 

Binary floating point Decimal floating point 
with E exponents: 
0.324E+10 

Conversion 
Code 

Binary floating point 1 Decimal floating point 
I i with no exponent: 283.75 

Internal Form 

Conversions are specified by the form: 

External Form 

I 

where r is a repetition count, E, F, and I designate the conversion 
code, w is an integer specifying the field width, and d is an integer 
specifying the number of decimal places to the right of the decimal 
point. For E and F input, the position of the decimal point in the 
external field takes precedence over the value of d. For example: 

could be used to output the line 

Binary integer 

on the output listing. 

Decimal integer: 79 

The field width should always be large enough to include the decimal 
point, sign, and exponent (plus a leading zero in OS/8 FORTRAN). In 
all numeric field conversions, if the field width is not large enough 
to accommodate the converted number, asterisks will be printed; the 
number is always right-justified in the field. 



FORTRAN II 

3.4.2.2 Numeric I n p u t  C o n v e r s i o n  - I n  g e n e r a l ,  numer ic  i n p u t  
c o n v e r s i o n  is compatible w i t h  most o t h e r  FORTRAN p r o c e s s o r s ;  A few 
e x c e p t i o n s  a r e  l i s t e d  below: 

B lanks  a r e  i g n o r e d  e x c e p t  t o  d e t e r m i n e  i n  which f i e l d  d i g i t s  
f a l l .  Thus ,  numbers a r e  t r e a t e d  a s  i t  t h e y  a r e  
r i g h t - j u s t i f i e d  w i t h i n  a  f i e l d .  I n  an  F5.2 f o r m a t ,  t h e  
f o l l o w i n g :  

a r e  r e a d  a s  t h e  number 0.12 (where  ' b i  r e p r e s e n t s  a  b l a n k  
s p a c e )  . 
A n u l l  l i n e  d e l i m i t e d  by two c a r r i a q e  r e t u r n / l i n e  f e e d  
(CR/LF) c o m b i n a t i o n s  is  t r e a t e d  a s  a  l i n e  o f  b l a n k s ,  and 
b l a n k s  a r e  appended t o  t h e  r i g h t  o f  a  l i n e  ( i f  n e c e s s a r y )  t o  
f i l l  o u t  a FORMAT s t a t e m e n t .  Thus: 

a r e  i d e n t i c a l  under  a n  F5.2 f o r m a t .  I f  a n  e n t i r e  l i n e  is 
b l a n k ,  numer ic  d a t a  from t h a t  l i n e  is  r e a d  a s  z e r o s .  

No d i s t i n c t i o n  is made be tween E and F  f o r m a t  on i n p u t .  
Thus: 

a r e  a l l  r e a d  i d e n t i c a l l y  under  e i t h e r  an  F5.2 o r  E5.2 f o r m a t .  

Alphanumer ic  F i e l d s  - Alphanumer ic  d a t a  c a n  be  t r a n s m i t t e d  i n  
a  manner s i m i l a r  t o  numer ic  d a t a  by u s e  o f  t h e  form 

where r  is  a  r e p e t i t i o n  c o u n t ,  A i s  t h e  c o n t r o l  c h a r a c t e r ,  and w is  
t h e  number o f  c h a r a c t e r s  i n  t h e  f i e l d .  Alphanumer ic  c h a r a c t e r s  a r e  
t r a n s m i t t e d  a s  t h e  v a l u e  o f  a  v a r i a b l e  i n  an  1/0 l i s t ;  t h e  v a r i a b l e  
may be  e i t h e r  i n t e g e r  o r  r e a l .  

Al though w may have  any v a l u e ,  t h e  number o f  c h a r a c t e r s  t r a n s m i t t e d  i s  
l i m i t e d  by t h e  maximum number o f  c h a r a c t e r s  which c a n  be  s t o r e d  i n  t h e  
s p a c e  a l l o t t e d  f o r  t h e  v a r i a b l e .  T h i s  maximum depends  upon t h e  
v a r i a b l e  t y p e ;  f o r  a  r e a l  v a r i a b l e  t h e  maximum is s i x  c h a r a c t e r s ,  f o r  
an  i n t e g e r  v a r i a b l e  t h e  maximum i s  two c h a r a c t e r s .  The c h a r a c t e r s  a r e  
s t o r e d  i n  s t r i p p e d  ASCII f o r m a t .  I f  n o t  enough d a t a  is s u p p l i e d  a s  
i n p u t  t o  t h e  v a r i a b l e s ,  t h e  d a t a  i s  padded w i t h  b l a n k s  on t h e  r i g h t ,  
f o r  example:  



FORTRAN I1 

If you now type: 

followed by a carriage return, the variables will have the following 
values: 

Variable Decimal Octal ASCII 

1 
2 
3  
A 
B 
c 

blank 
blank 

If the above had been read in the 4A2 format, the values would be as 
follows: 

Variable Decimal Octal ASCII 

1 2  
3 A 
B C 
blanks 

blanks 

Consider a second example: 

READ < 11. Y 20 ) AL..PHA 
20 FORMAT ( 4 6 )  

If you type: 

and a carriage return, the octal value of ALPHA is: 

NOTE 

The numeric value of alphanumeric 
characters stored in floating point 
variables is generally not meaningful. 

3 .4 .2 .4  Hollerith Conversion - Alphanumeric data may be transmitted 
directly from the FORMAT statement by using Hollerith (H) conversion. 
H-conversion format is normally referenced by WRITE statements only. 

In H-conversion, the alphanumeric string is specified by the form 

where H is the control character and n is the number of characters in 
the string, including blanks. For example, the following statement 
can be used to print PROGRAM COMPLETE on the output listing. 



FORTRAN II 

A Hollerith string may consist of any characters capable of 
r e p r e s e n t a t i o n  in the processor. The space character is a valid and 
significant character in a Hollerith string. 

An attempt to use H format specifications with a READ statement will 
cause characters from the format field to be either printed or 
punched. This feature provides a simple way of identifying data that 
is to be read from the Teletype keyboard. For example, the following 
instructions: 

cause A = and B = to be printed out before the data is read. 

By merely enclosing the alphanumeric data in single, quotes, you can 
+ - ~ I Q T T Q  + h a  camo YQCII"! a a  i n  M - r ~ i n w o r c i n n *  92 inp~t, the ~harrci-ers U b L , L L " L  L L Z L  " U 2 , t L  A b - u A b  w u  & A *  .a v w a . " b -  ---.*, 

between the single quotes are typed as output characters, and on 
output, the characters between the single quotes (including blanks) 
are written as part of the output data. For example, when referred to 
from a WRITE statement: 

causes PROGRAM COMPLETE to be printed. This method eliminates the 
need to count characters. 

3.4 .2 .5  Blank o r  S k i p  F i e l d s  - Blanks can be introduced into an 
output record or characters skipped on an input record by use of the 
nX specification. The number n indicates the number of blanks or 
characters skipped and must be greater than zero. For example: 

can be used to output the line: 

STEP 28 

3.4 .2 .6  Mixed F i e l d s  - A Hollerith format field may be placed among 
other fields of the format. The statement: 

can be used to output the line: 

The separating comma may be omitted after a Hollerith format field, as 
shown above. 

3 .4 .2 .7  R e p e t i t i o n  of F i e l d s  - Repetition of a field specification 
may be specified by preceding the control character E, F ,  or I by an 
unsigned integer giving the number of repetitions desired. The 
statement: 

is equivalent to: 



FORTRAN I1 

3.4.2.8 Repetition of Groups - A group of field specifications may be 
repeated by enclosing the group in parentheses and preceding the whole 
with the repetition number. 

For example: 

F O R M A T ( 2 1 8 ~ 2 ( E . 1 . 5 + 5 ~ 2 F 8 + 3 ) )  

is equivalent to: 

F O R M A T ( ~ ~ ~ Y E : I . ~ + ~ Y ~ F ' ~ + Â ¥ ! Y E : L ~ + ~ Ã ˆ ~ F ~ +  

3.4.2.9 Multiple Record Formats - To handle a group of output records 
where different records have different field specifications, a slash 
is used to indicate a new record. For example, the statement: 

is equivalent to: 

F O R M A T ( 3 1 8 )  

for the first record and 

for the second record. 

The separating comma may be omitted when a slash is used. When n 
slashes appear at the end or beginning of a format, n blank records 
may be written on output (producing a CR/LF for each record) or 
iqnored on input. When n slashes appear in the middle of a format, 
n-1 blank records are written or n-1 records skipped. Both the slash 
and the closing parenthesis at the end of the format indicate the 
termination of a record. If the list of an 1/0 statement dictates 
that transmission of data is to continue after the closing parenthesis 
of the format is reached, the format is repeated from the last open 
parenthesis of level one or zero. Thus, the statement: 

causes the format: 

to be used on the first record, and the format: 

to be used on succeeding records. 

As a further example, consider the statement: 

The first record has the format: 

and successive records have the format: 



FORTRAN I1 

3.5 Control Statements 

The control statements GO TO, IF, DO, PAUSE, STOF, and END alter the 
sequence of statement execution, temporarily or permanently halt 
program execution, and stop compilation. 

3.5.1 GO TO Statement - The GO TO statement has two forms: 
unconditional and computed. 

3.5.1.1 Unconditional GO TO - Unconditional GO TO statements are of 
the form: 

where n is the number of an executable statement. Control is 
transferred to the statement numbered n. 

3.5.1.2 Computed GO TO - Computed GO TO statements have the form: 

where n(1) , n(2), . . . , n(k) are statement numbers and J is a 
nonsubscripted integer variable. This statement transfers control to 
the statement numbered n (1) , n (2) . . . , n (k) if J has the value 1, 
2, ..., k ,  respectively. The index (J in the above example) of a 
computed GO TO statement must never be zero or greater than the number 
of statement numbers in the list (in the example above, not greater 
than k). For example, in the statement: 

the variable K acts as a switch, causing a transfer to statement 20 if 
K = 1, to statement 10 if K = 2, or to statement 5 if K = 3. 

3.5.2 IF Statement - Numerical IF statements are of the form: 

IF (expression) n (1) , n (2) , n (3) 

where n(l), n(2), n(3) are statement numbers. This statement 
transfers control to the statement numbered n(1) , n(2) , n (3) if the 
value of the numeric expression is less than, equal to, or greater 
than zero, respectively. The expression may be a simple variable or 
an arithmetic expression. 

3.5.3 DO Statement - The DO statement simplifies the coding of 
iterative procedures. DO statements are of the form: 

where n is a statement number, i is a scalar integer variable, and 
m(1) , m(2) , m(3) are integer constants or nonsubscripted integer 
variables. If m(3) is not specified, it is understood to be 1. 



FORTRAN I1 

The DO statement causes the statements which follow, up to and 
including the statement numbered n, to be executed repeatedly. This 
group of statements is called the range of the DO statement. In the 
example above, the integer variable i is called the index, the values 
of m(1) , m(2), m(3) are, respectively, the initial, terminal, and 
increment values of the index, for example: 

The index is incremented and tested before the range of the DO is 
executed. After the last execution of the range, control passes to 
the statement immediately following the terminal statement in what is 
called a normal exit. An exit may also occur by a transfer out of the 
range taking place before the loop has been executed the total number 
of times specified in the DO statement. 

DO loops may be nested, or contained within one another, provided the 
range of each contained loop is entirely within the range of the 
containing DO statement. Nested DO loops may contain the same 
terminal statement, however. A transfer into a DO loop from outside 
the range is not allowed. 

Within the range of a DO STATEMENT, the index is available for use as 
an ordinary variable. After a transfer from within the range, the 
index retains its current value and is available for use as a 
variable.* The values of the initial, terminal, and increment 
variables for the index and the index of the DO loop may not be 
altered within the range of the DO statement. 

The last statement of a DO loop must be executable, and must not be an 
IF, GO TO or DO statement. 

3.5.4 CONTINUE Statement - This is a dummy statement, used primarily 
as a target for transfers, particularly as the last statement in the 
range of a DO statement. For example, in the sequence: 

CONTINUE 

a positive value of X(K) begins another execution of the range. The 
CONTINUE provides a target address for the IF statement and ends the 
range of the DO statement. 

--------------- 
* After a normal exit from a DO loop, the index of the DO statement 
has the value of the index for the final time through the loop plus 
whatever increment was assigned. For example: 

after a normal exit the value of the index is 6. However, it is good 
programming practice to avoid using the index as a variable following 
a normal exit until the index has been redefined, as according to ANSI 
FORTRAN Standards the value is undefined. 



FORTRAN 11 

3.5.5 PAUSE, STOP, and END Statements - The PAUSE and STOP statements 
affect FORTRAN object program operation; the END statement affects 
assembler operation only. 

3.5.5.1 Pause Statement - The PAUSE statement enables the program to 
incorporate operator activity into the sequence of automatic'events. 
The PAUSE statement assumes one of two forms: 

PAUSE 
PAUSE n 

where n is an unsigned decimal number. 

Execution of the PAUSE statement causes the octal equivalent of the 
decimal number n to be displayed in the accumulator on the user's 
console. Program execution may be resumed (at the next executable 
statement) by depressing the CONTinue key on the console. 

In some cases the PAUSE statement may be used to give the operator a 
chance to change data tapes or to remove a tape from the punch. When 
this is done, follow the PAUSE statement with a call to the OPEN 
subroutine. The subroutine initializes the 1/0 devices and sets 
hardware flags that may have been cleared by pressing the tape feed 
button, for example: 

PAUSE 
C A L L  OPEN 

NOTE 

The CALL OPEN statement in OS/8 FORTRAN 
also resets all 1/0 on unit 4, the 
assignable channel. Any further READS 
or WRITES on unit 4 without an 
intervening IOPEN or OOPEN will print an 
error message and abort. 

3.5.5.2 Stop Statement - The STOP statement has the form: 

STOP 

It terminates program execution. STOP may occur several times within 
a single program to indicate alternate points at which execution may 
cease. Program control is either directed to a STOP statement or 
transferred around it. 

3.5.5.3 End Statement - The END statement is of the form: 

END 

It signals the compiler to terminate compilation. The END statement 
must be the last statement of every program. (In OS/8 FORTRAN, the 
END statement generates a STOP statement as well.) 



FORTRAN I1 

3.6 Specification Statements 

Specification statements allocate storage and furnish information 
about variables and constants to the compiler. The specification 
statements are COMMON, DIMENSION, and EQUIVALENCE. When used, they 
must appear in the program prior to any executable statement. 

3.6.1 COMMON Statement - The COMMON statement causes specified 
variables or arrays to be stored in an area available to other 
programs. By means of COMMON statements, the data of a main program 
and/or the data of its subprograms may share a common storage area. 
Varibles in COMMON statements are assigned to locations in ascending 
order in field 1 beginning at location 200 storage allocation. The 
COMMON statement has the general form: 

COMMON v (1) , v(2) , . . . , v (n) 
where v is a variable name. 

3.6.2 DIMENSION Statement - The DIMENSION statement is used to 
declare array identifiers and to specify the number and bounds of the 
array subscripts. The information supplied in a DIMENSION statement 
is required for the allocation of memory for arrays. Any number of 
arrays may be declared in a single DIMENSION statement. The DIMENSION 
statement has the form: 

DIMENSION s (1) , s (2) , . . . , s (n) 
where s is an array specification. For example: 

Dimension statements are used for the purpose of reserving sufficient 
storage space for anticipated data; it is the user's responsibility 
to see that his subscripting does not conflict with the DIMENSION 
statement declarations. For example: 

The above statements would assemble without error; at run time I(8) 
would be set equal to 2 and K(2) would be set equal to 3. 

NOTE 

When variables in common storage are 
dimensioned, the COMMON statement must 
appear before the DIMENSION statement. 

3.6.3 EQUIVALENCE Statement - The EQUIVALENCE statement causes more 
than one variable within a given program to share the same storage 
location. This is useful when the programmer desires to conserve 
storage space. The form of the statement is: 

EQUIVALENCE (v(l), v(2) .. . )  ,. .. 



FORTRAN II 

where v represents a variable name. The inclusion of two or more 
variables within the parenthetical l is t  i n d i c a t e s  t h a t  these v a r i a b l e s  
are to share the same memory location and thus have the same value, 
for example: 

The variables RED and BLUE are now of equal value. The subscripts of 
array variables must be integer constants, for example: 

Because of core memory restrictions within the compiler, variables 
cannot appear in EQUIVALENCE statements more than once. The following 
statement is valid: 

The following statement would not compile correctly: 

Variables may not appear in both EQUIVALENCE and COMMON statements. 

3.7 Subprogram Statements 

External subprograms, defined separately from the programs that call 
them, are complete programs which conform to all t h e  rules of FORTRAN 
programs. They are compiled as closed subroutines; that is, they 
appear only once in core memory regardless of the number of times they 
are used. External subprograms are defined by means of the statements 
FUNCTION and SUBROUTINE. Functions and subroutines must be compiled 
independently of the main program and then loaded together with the 
main program by the Linking Loader. 

NOTE 

Care should be exercised when naming a 
subprogram or subroutine. It must not 
have the same name as any of the FORTRAN 
library functions or subroutines, or 
assembler mnemonics or pseudo-ops, as 
errors are likely to result. The 
Library Functions are listed in this 
chapter, and the symbol table for the 
SABR Assembler is listed in Appendix C. 

Subprogram definition statements may optionally contain dummy 
arguments representing the arguments of the subprogram. They are used 
as ordinary identifiers within the subprogram and are replaced by the 
actual arguments when the subprogram is executed. 

3.7.1 Functions - A function is called from an arithmetic expression 
within the main program and returns a single numeric value. A 
function begins with a FUNCTION statement and ends with an END 
statement. It returns control to the calling program by means of one 
or more RETURN statements. The FUNCTION statement has the form: 

FUNCTION identifier (a(l), a ( 2 )  ..., a(n)) 



FORTRAN I1 

where FUNCTION (or FUNC) declares that the program which follows is a 
function subprogram, and identifier is the name of the function being 
defined. The identifier must appear as a scalar variable and be 
assigned a value during execution of the subprogram. This value is 
the function's value. 

Arguments appearing in the list enclosed in parentheses are dummy 
arguments representing the function arguments. A function must have 
at least one dummy argument. The arguments must agree in number, 
order and type with the actual arguments used in the calling program. 
Function subprograms may be called with expressions and array names as 
arguments. The corresponding dummy arguments in the FUNCTION 
statement would then be scalar and array identifiers, respectively. 
Those representing array names must appear within the subprogram in a 
DIMENSION statement. Dimensions must be indicated as constants and 
should be smaller than or equal to the dimensions of the corresponding 
arrays in the calling program. Dummy arguments to FUNCTION cannot 
appear in COMMON or EQUIVALENCE statements within the function 
subprogram. 

A function should not modify any arguments which appear in the FORTRAN 
arithmetic expression calling the function. The only FORTRAN 
statements not allowed in a function are SUBROUTINE and other FUNCTION 
statements. 

The type of function is determined by the first letter of the 
identifier used to name the function, in the same way as variable 
names. 

The following short example calculates the gross salary of an 
individual on the basis of the number of hours he has worked (TIME) 
and his hourly wage (RATE). The function calculates time and a half 
for overtime beyond 40 hours. The function name is SUM. 

Depending upon which path the program takes, control will return to 
the main program at one of the two RETURN statements with the answer. 
Assume that the main program is set up with a statement to read the 
employee's weekly record from a list of information prepared on the 
high-speed reader: 

This statement reads the person's name, number, department numer, time 
worked, and hourly wage. The main program then calculates the 
person's gross pay with a statement such as the following: 

and goes on to calculate withholdings and other payments. 



FORTRAN 11 

3.7.2 Subroutines - A subroutine is called by the main program via a 
CALL statement. A subroutine may return several or no values. It 
begins with a SUBROUTINE statement and returns control to the calling 
program by means of one or more RETURN statements. The SUBROUTINE 
statement has the form: 

SUBROUTINE identifier (a (1) , a (2) . . . a (n) ) 
where SUBROUTINE declares the program which follows to be a subroutine 
and the identifier is the subroutine name. The arguments in the list 
enclosed in parentheses are dummy arguments representing the arguments 
of the subroutine. The dummy arguments must agree in number, order, 
and type with the actual arguments, if any, used by the calling 
program. 

Subroutines may have expressions and array names as arguments. The 
dummy arguments may appear as scalar or array identifiers. Dummy 
identifiers which represent array names must be dimensioned within the 
subprogram by a DIMENSION statement. The dummy arguments must not 
appear in an EQUIVALENCE or COMMON statement in the subroutine. 

A subroutine may use one or more of its dummy identifiers to represent 
results. The subprogram name is not used for the return of results. - - 
A subroutine subprogram need not have any arguments, or it may use 
arguments to return numbers to the calling program. Subroutines are 
generally used when the result of a subprogram is not a single value. 

Examples of SUBROUTINE statements are as follows: 

The only FORTRAN statements not allowed in a subroutine are FUNCTION 
and other SUBROUTINE statements. 

The following short subroutine takes two integer numbers from the main 
program and exchanges their values. If this exchange of values is to 
be done at several points in the main program, it is a procedure best 
performed by a subroutine. 

The calling statement for this subroutine might look as follows: 

where the values for the variables M and N are to be exchanged. 

3.7.2.1 CALL Statement - The CALL statement assumes one of two forms: 

CALL identifier 
CALL identifier (a(l) , a(2). . . , a(n)) 

The CALL statement is used to transfer control to a subroutine. The 
identifier is the subroutine name. 



FORTRAN I1 

The arguments (indicated by a(1) , through a(n) ) may be expressions or 
array identifiers. Arguments may be of any type, but must agree in 
number, order, type, and array size with the corresponding arguments 
in the SUBROUTINE statement of the called subroutine. Unlike a 
function, a subroutine may produce more than one value and cannot be 
referred to as a basic element in an expression. 

A subroutine may use one or more of its arguments to return results to 
the calling program. If no arguments at all are required, the first 
form is used, for example: 

CAL..L.. E X I T  
CALL TEST (VAL-UE 9 123 Ã 2 7 5 )  

The identifier used to name the subroutine is not assigned a type and 
has no relation to the types of the arguments. Arguments which are 
constants or formed as expressions must not be modified by the 
subroutine. 

3 . 7 . 2 . 2  RETURN Statement - The RETURN statement has the form: 
RETURN 

This statement returns control from a subroutine to the calling 
program. Each subroutine must contain at least one RETURN statement. 
Normally, the last statement executed in a subprogram is a RETURN 
statement; however, any number of RETURN statements may appear in a 
subroutine. The RETURN statement may not be used in a main program. 

4 . 0  FUNCTION LIBRARY 

The standard FORTRAN library contains built-in functions, including 
user-defined functions and subroutines. 

Table 4 lists the built-in functions. These are open subroutines: 
they are incorporated into the compiled program each time the source 
program names them. 

Functions and subroutines are closed routines; their coding appears 
only once in the compiled program. These routines are entered from 
various points in a program through jump-type linkages. 

Function calls are provided to facilitate the evaluation of functions 
such as sine, cosine, and square root. A function acts upon one or 
morequantities (arguments) to produce a single quantity called the 
function value. A function call may be used in place of a variable 
name in any arithmetic expression. 

Function calls are denoted by the identifier which names the function 
(that is, SIN, COS, etc.) followed by an argument enclosed in 
parentheses as shown below: 

IDENT (ARG ,ARG, . . . ,ARG) 
where IDENT is the identifying function name and ARG is an argument 
which may be any expression. A function call is evaluated before the 
expression in which it is contained. 



FORTRAN XI 

NOTE 

F u n c t i o n  

ABS ( X I  
IABS ( x )  

FLOAT ( x  ) 

I F I X  ( x )  

IREM(0) 

IREM ( x / y )  

EXP ( x )  
ALOG ( x )  

SIN ( x )  

COS ( x )  

TAN ( x )  

ATAN ( x )  

SQRT ( x )  

IRDSW ( 0 )  

A FORTRAN c o m p i l e r  a n d  i t s  c o r r e s p o n d i n g  
L i b r a r y  c o n s t i t u t e  a n  i n t e r l o c k i n g  se t  
o f  p r o g r a m s .  No u s e r  s h o u l d  a t t e m p t  t o  
compile a program under OS/8 and load i t  
w i t h  t h e  p a p e r  t a p e  FORTRAN, o r  v i c e  
v e r s a .  S i m i l a r l y ,  p r o g r a m s  d e v e l o p e d  
w i t h  t h e  c u r r e n t  FORTRAN c o m p i l e r  s h o u l d  
n o t  b e  r u n  u n d e r  a n  o l d  FORTRAN s y s t e m .  

T a b l e  4 
FORTRAN F u n c t i o n  L i b r a r y  

D e f i n i t i o n  

t h e  a b s o l u t e  v a l u e  o f  x  
t h e  a b s o l u t e  v a l u e  o f  x  

c o n v e r t  x  f r o m  i n t e g e r  t o  r ea l  
f o r m a t  
c o n v e r t  x  f r o m  r e a l  t o  i n t e g e r  
f o r m a t  

r e m a i n d e r  o f  l a s t  i n t e g e r  d i v i d e  
i s  r e t u r n e d  
r e m a i n d e r  o f  x /y  i s  r e t u r n e d  

e x p o n e n t i a l  o f  x ,  e n x  
n a t u r a l  l o g a r i t h m  o f  x ,  1 0 g ( e ) " x  

s i n e  o f  x ,  w h e r e  x  i s  g i v e n  i n  
r a d i a n s  
c o s i n e  o f  x ,  w h e r e  x  i s  g i v e n  i n  
r a d i a n s  
t a n g e n t  o f  x ,  w h e r e  x  is  g i v e n  i n  
r a ( 3 i  anc 
A... --..- 
a r c  t a n g e n t  o f  x ,  w h e r e  x  is  g i v e n  
i n  r a d i a n s  

s q u a r e  r o o t  o f  x  is  r e t u r n e d  

r e a d  t h e  c o n s o l e  s w i t c h  r e g i s t e r ,  
r e t u r n i n g  a  d e c i m a l  e q u i v a l e n t  
o f  t h e  o c t a l  i n t e g e r  i n  t h e  
s w i t c h  r e g i s t e r .  T h e  s w i t c h  
r e g i s t e r  c a n  b e  s e t  b e f o r e  
e x e c u t i n g  t h e  FORTRAN p r o g r a m  
o r ,  u s i n g  t h e  PAUSE s t a t e m e n t ,  
d u r i n g  e x e c u t i o n .  

5 . 0  FLOATING POINT ARITHMETIC 

'TyTif 
s f  Argument  

real  
i n t e g e r  

i n t e g e r  

r e a l  

i n t e g e r  

i n t e g e r  

r e a l  
r e a l  

r e a l  

r ea l  

r e a l  

r e a l  

r e a l  

i n t e g e r  

I n  g e n e r a l ,  f l o a t i n g  p o i n t  a r i t h m e t i c  c a l c u l a t i o n s  a r e  a c c u r a t e  t o  
s e v e n  d i g i t s  w i t h  t h e  e i g h t h  d i g i t  b e i n g  q u e s t i o n a b l e .  S u b s e q u e n t  
d i g i t s  a r e  n o t  s i g n i f i c a n t  e v e n  t h o u g h  s e v e r a l  may b e  t y p e d  t o  s a t i s f y  
a  f i e l d  w i d t h  r e q u i r e m e n t .  W i t h  t h e  e x c e p t i o n  o f  t h e  a r c t a n g e n t  
f u n c t i o n ,  w h i c h  is  a c c u r a t e  t o  s e v e n  p l a c e s  o v e r  t h e  e n t i r e  r a n g e ,  t h e  
r e s u l t s  o f  f u n c t i o n  o p e r a t i o n s  a r e  a c c u r a t e  t o  s i x  d e c i m a l  p l a c e s .  



FORTRAN I1 

The floating point arithmetic routines check for both overflow and 
underflow. Overflow will cause the OVFL error message to be printed, 
and program execution will be terminated. Underflow is detected but 
will not cause an error message. The arithmetic operation involved 
will yield a zero result. 

6.0 DEVICE INDEPENDENT 1/0 AND CHAINING 

OS/8 FORTRAN provides for device-independent, file-oriented, formatted 
1/0 through use of the device number 4 in the READ and WRITE 
statements and several utility subroutines. These are described 
below. 

6.1 The IOPEN Subroutine 

The subroutine IOPEN prepares the system to accept input from a 
specified device when device code 4 is used in a READ statement. 
IOPEN takes two arguments which are interpreted as Hollerith strings. 
After a 

CALL IOPEN (A, B) 

any READ statement reading from device 4 will read from the file 
specified by B (which must have the extension .DA) on the device 
specified by A. For example, the following statement will prepare for 
input from the file DTA5:INPUT.DA. 

CALL.. IOPEN ( 'DTA5' Ã ' INPUT' 1 

The following statement will prepare for input from the device Fl, 
which, in this case, is a non-file-structured device. 

CALL.. I O P E N { ' F I . ' Ã ˆ O  

If the file and device names are input via READ statements which use A 
format in their FORMAT statements, then A6 format must be used. The 
sign @, rather than spaces, should be used to fill in empty 
characters. For example, the following statements are contained in a 
program: 

WRITE ( 1 ~ 2 0 1  
20 FORMAT C E:NTE:R FILE: NAME: -' 1 

READ ( 1 ? 22 1 F%NAME: 
'1) 'Â¥ 
a- - F-DMAT < A 6 1  

C A I  ... I... I 0 F:' E:" N < ' D S K '. $ F NAME ) 

The Teletype prints: 

ENTER FIL..E NAME: 

The user responds: 



FORTRAN XI 

6.2 The OOPEN Subroutine 

The subroutine OOPEN prepares the system to send output to a specified 
device when device code 4 is used in a WRITE statement. The arguments 
of OOPEN are treated like those of IOPEN. Future WRITE statements 
using device 4 write on the device and file specified in the call to 
OOPEN. An error message is printed if the program has previously 
issued a CALL OOPEN without issuing a subseauent CALL OCLOSE. For 
example, the following statement prepares device 4 to output on device 
PTP . 

The following statement prepares device 4 to output to the file 
SYS:LADE.DA. 

6.3 The OCLOSE Subroutine 

The subroutine OCLOSE is called with no arguments. Its function is to 
terminate output on the output file opened by OOPEN. If OCLOSE is not 
called after a file has been written, that output file will never 
exist on the specified device. 

6.4 The CHAIN Subroutine 

A call to the subroutine CHAIN terminates execution of the calling 
program and starts execution of the core image on the system device as 
specified by the argument to CHAIN. Variables in common storage are 
not disturbed. For example, the following statement: 

causes the file SYS:PROG2.SV to be loaded and started. Notice that 
PROG2 must be compiled and stored on the system device as a core image 
(.SV) file in order to be successfully accessed. 

6.5 The EXIT Subroutine 

To return to the Keyboard Monitor from a FORTRAN program, use the EXIT 
subroutine as follows: 

CALL.. E X I T  

7.0 DECTAPE 1/0 ROUTINES 

RTAPE (read tape) and WTAPE (write tape) are the DECtape read and 
write subprograms for the 8K FORTRAN and 8K SABR systems. For the 
paper tape FORTRAN system, these subprograms are furnished on one 
relocatable binary-coded paper tape which must be loaded by the 8K 
Linking Loader into field 0, where the subprograms occupy one page of 
core. 



FORTRAN I1 

RTAPE and WTAPE allow the user to read and write any amount of 
core-image data onto DECtape in absolute, non-file-structured data 
blocks. Many such data blocks may be stored on a single tape, and a 
block may be from 1 to 4096 words in length. 

RTAPE and WTAPE may be called with standard, explicit CALL statements 
in any 8K FORTRAN or SABR program. Each subprogram requires four 
arguments separated by commas. The arguments are the same for both 
subprograms and are formatted in the same manner. They specify the 
following: 

1. DECtape unit number (from 0 to 7) 

2. Number of the DECtape block at which transfer is to start. 
The user may direct the DECtape service routine to begin 
searching for the specified block in the forward direction 
rather than the usual backward direction by making this 
argument the two's complement of the block number. For 
additional information on this and other features, refer to 
the DECtape Programmer's Reference Manual (DEC-08-SUCO-D). 

3. Number of words to be transferred (1<N<4096). 

4. Core address at which the transfer is to start. 

The general form is: 

CALL RTAPE (n (1) , n (2) , n (3) , n(4) ) 

where n(1) is the DECtape unit number, n(2) is the block number, n(3) 
is the number of words to be transferred, and n(4) is the starting 
address. 

In 8K FORTRAN, a CALL statement to RTAPE could be written in the 
following format (arguments are taken as decimal numbers): 

In this example, LOCA may or may not be in common. 

As a typical example of the use of RTAPE and WTAPE, assume that you 
want to store the four arrays A, B, C, and D on a tape with word 
lengths of 2000, 400, 400, and 20 respectively. 

Since PDP-8 DECtape is formatted with 1474 blocks (numbered 0-2701 
octal) of 129 words each (for a total of 190,146 words), A, B, C, and 
D will require 16, 4, 4, and 1 blocks respectively. 

The block numbers used by RTAPE and WTAPE should not be confused with 
the record numbers used by OS/8. An OS/8 record is 256 words--roughly 
twice the size of a DECtape block. An RTAPE or WTAPE record number is 
exactly twice the corresponding OS/8 record number. For example, to 
read the first segment of the OS/8 directory on DECtape # 5 ,  the 
statements: 

would read Block 2 (OS/8 Block 1) of DECtape 5. 



FORTRAN I1 

Each a r r a y  must  be  s t o r e d  b e g i n n i n g  a t  t h e  s t a r t  o f  some DECtape 
block; T h e  u s e r  may wri te  these a r rays  on t a n 0  srÃ a s  f o l l o w s :  

YOU may a l s o  r e a d  o r  w r i t e  a  l a r g e  a r r a y  i n  s e c t i o n s  by s p e c i f y i n g  
o n l y  one  DECtape b lock  (129 words)  a t  a  time. For  example ,  B c o u l d  be  
read back i n t o  core a s  f o l l o w s :  

As shown above ,  it is p o s s i b l e  to read or  write less than 129  words 
s t a r t i n g  a t  t h e  b e g i n n i n g  of  a  DECtape b l o c k .  I t  is  i m p o s s i b l e ,  
however,  t o  r e a d  o r  w r i t e  s t a r t i n g  i n  t h e  m i d d l e  o f  a  b l o c k .  For  
example,  t h e  l a s t  1 0  words o f  a  DECtape b lock  may n o t  b e  r e a d  w i t h o u t  
r e a d i n g  t h e  f i r s t  119 words a s  w e l l .  

A DECtape r e a d  o r  w r i t e  is n o r m a l l y  i n i t i a t e d  w i t h  a  backward s e a r c h  
f o r  t h e  d e s i r e d  b lock  number. To s a v e  s e a r c h i n g  time, you may r e q u e s t  
RTAPE o r  WTAPE t o  s t a r t  t h e  b l o c k  number s e a r c h  i n  t h e  fo rward  
d i r e c t i o n .  T h i s  is  done by s p e c i f y i n g  t h e  n e g a t i v e  o f  t h e  b l o c k  
number. Use t h i s  method o n l y  i f  t h e  number o f  t h e  n e x t  b l o c k  t o  b e  
r e f e r e n c e d  is a t  l e a s t  t e n  b l o c k  numbers g r e a t e r  t h a n  t h e  l a s t  b l o c k  
number used .  For example ,  i f  you have  j u s t  r e a d  a r r a y  A and now w a n t  
a r r a y  D ,  you may w r i t e :  

CALL RTAPE: ( 0  Y 1 Ã 2000 Y A 1 
CALL RTAPE ( 0  P "-27 Y 20 9 D 1 

The f o l l o w i n g  s e c t i o n  o f  a  program d e m o n s t r a t e s  t h e  u s e  o f  DECtape 
I/O. Assume t h a t  v a l u e s  a r e  a l r e a d y  p r e s e n t  on  t h e  DECtape. 

DIMENSION DATA<5001 
+ 
+ 

8.0 OS/8 FORTRAN LIBRARY SUBROUTINES 

T a b l e  5 c o n t a i n s  a  summary o f  t h e  OS/8 FORTRAN l i b r a r y  s u b r o u t i n e s .  
T h i s  l i s t  d e s c r i b e s  t h e  r o u t i n e s ,  t h e i r  f u n c t i o n s ,  and o t h e r  r o u t i n e s  
which must  be  p r e s e n t  i f  t h e  l i b r a r y  r o u t i n e s  a r e  t o  be  used .  The 
s u b r o u t i n e  names l i s t e d  a r e  t h e  f i l e s  which compr i se  OS/8 S o u r c e  
DECtape 3 ( a v a i l a b l e  from t h e  S o f t w a r e  D i s t r i b u t i o n  C e n t e r  upon 
r e q u e s t ) .  



FORTRAN I1 

Subroutine 
Name 

I OH 

FLOAT 

UTILTY 

POWERS 

INTEGR 

TRIG 

AT AN 

SORT 

Table 5 
FORTRAN I1 Library Subroutines 

Entry 
Points, 

or Defined 
External 
Symbols 

' READ ' 
'WRITE ' 
IOH' 

' FAD ' 
FSB' 
' FMP ' 
FDV' 
STO' 
' FLOT ' 
' FLOAT ' 
'FIX' 
' IFIX ' 
IFAD' 
ISTO' 
ABS ' 
CHS' 

'OPEN ' 
GENIO' 
'EXIT' 
' ERROR ' 
CKIO' 

IFPOW' 
' FFPOW ' 
EXP' 
ALOG' 

' IREM ' 
' TABS ' 
DIV' 
MPY ' 
' IRDSW ' 
' CLEAR ' 
' SUBSC ' 

'SIN' 
COS' 
' TAN ' 

' ATAN ' 

' SQRT ' 

Routines 
That are 

Pre- 
requisites 

FLOAT 
UTILTY 
INTEGR 

UTILTY 

INTEGR 

FLOAT 
UTILTY 
I POWRS 
INTEGR 

UTILTY 

FLOAT 

FLOAT 

FLOAT 
UTILTY 

Core 
Require- 
ments 
(Pages) 

Function the 
Routine 

Performs 

Handles Input 
and Output 
Conversion 

Floating 
Point Arith- 
metic Package 

FORTRAN De- 
vice Routines, 
Error Exit, 
Normal Exit 

Handles Num- 
bers to 
Floating 
Powers 

Integer Math 
Package 

Handles Sine , 
Cosine, and 
Tangent 

Handles Arc- 
tangents 

Handles Square 
Roots 

(continued on next page) 



FORTRAN I1 

Subroutine 
Name 

I POWRS 

IOPEN 

RWTAPE 

Entry 
D n i n 4 - c -  
A W A A L L U  f 

or Defined 
External 
Symbols 

IIP0W1 
FIPOW' 

IOPEN 
1 Onpti'M 1 

OCLOS 
CHAIN' 

RTAPE ' 
WTAPE 

D n n 4 -  i n a c  
L \ W U  L A L L b U  

That are 
Pre- 

requisites 

FLOAT 
INTEGR 

UTILTY 

UTILTY 

Function the 
Routine 

Performs 

Handles Num- 
bers to Integer 
Powers 

OS/8 Device- 
Independent 
I/O, and 
Chaining 
Routines 

OS/8 Indepen- 
dent DECtape 
1/0 Routines 

9.0 MIXING SABR AND FORTRAN STATEMENTS 

An S in column 1 of an input line means that the line has SABR code. 
This feature is very useful for performing instructions which are 
undefined in the FORTRAN language. For example: 

This section of code will form the logical AND of M(1) through M(10) 
in the variable J. 

Notice that whenever a FORTRAN variable is used in a SABR statement, 
the variable name is preceded by a backslash ( \ ) .  FORTRAN line 
numbers  referenced in SABR statements are also preceded by a backslash 
for identification purposes. (A backslash is produced by typing a 
SHIFT/L. ) 

Information on calling subroutines which are written in SABR assembly 
language from a FORTRAN program may be found in the description of 
SABR in this manual. 



FORTRAN 11 

10.0 SIZE OF A FORTRAN PROGRAM 

The maximum size of any FORTRAN program is 36 octal or 30 decimal 
pages of code. 

OS/8 can run FORTRAN programs in 8 to 32K of core. However, no one 
program or subprogram can be longer than 4K. 

You can estimate the size of your program as follows. Take the amount 
of core available on the system (at least 8K) and from it subtract 4K 
for the linkage subroutines, external symbol table, and I/O, math, 
error, and utility subroutines. From the remainder subtract the 
amount of storage required for data. The remaining space can be used 
to hold FORTRAN coding, at the rate of 50-70 FORTRAN statements per 1K 
of core. 

One way to have a longer FORTRAN program in core than is usually 
possible is to divide a FORTRAN program into three chained segments: 

Segment l ~ i n p u t s  data into common storage 
Segment 2--FORTRAN program for data processing 
Segment 3--does output to desired device(s) 

Chaining segments gives two space advantages : 

1. The entire program does not have to fit into available core, 
only the largest segment. 

2. If no 1/0 statements are used in the middle (computational) 
segment, the 1/0 conversion routines will not be loaded with 
that segment. Since these routines occupy over 1100 decimal 
words, this chaining technique allows the computational 
segment to be from 50 to 80 statements longer than a similar 
program containing I/O statements. 

When chaining to a subroutine, make certain you have compiled, loaded, 
and saved a complete runnable main program on the system device. This 
program is brought into core by the FORTRAN CHAIN subroutine. 

11.0 FORTRAN STATEMENT SUMMARY 

A summary of the statements available under OS/8 FORTRAN follows. 

Table 6 
FORTRAN Language Summary 

Statement Definition 

Arithmetic Statements 

1 Control Statements 

v is a variable (scalar or array); 
e is an expression. 

Transfer control to the statement 
numbered n. 

(continued on next page) 



FORTRAN I1 

Table 6 (Cont.) 
FORTPAN Language Summary 

Statement 

c control Statements (Cont. ) 
n / i l \ i  SOTO (n(l) ,n(2) ,... ,aA,Al 

CONTINUE 

PAUSE 
PAUSE n 

STOP 

END 

Input/Output Statements 

FORMAT (s (1) ,s (2) , . . . , s (n) ) 

there n (1) -n ( i )  are statement 
[umbers and j is a scalar integer 
~ariable. This statement transfers 
!ontrol to the jAth member of the 
e r i e s  of n ( i )  a 

his statement transfers contro1 t<e 
:he statement numbered n (1) ,n (2) , 
>r n ( 3 )  if the value of the numeric 
ixpression is less than, equal to, 
)r greater than zero, respectively. 
:he expression can be simple or 
;omplex . 
repeat execution through statement 

I beginning with i=m(l) , 
incrementing by m(3), while i is 
Less than or equal to m(2) . If 
n ( 3 )  is omitted, it is assumed to 
ae 1. m's and i's cannot be 
subscripted= m's can be either 
integer numbers or integer 
~ a r  iables; i is an integer 
variable. 

3ummy statement, used primarily as 
a target for transfers, 
particularly the last statement in 
the range of a DO loop. A DO loop 
need not end with a CONTINUE 
statement. 

Temporarily suspend sxecution. 
The octal equivalent of the decimal 
number n is displayed in the 
accumulator. Program execution can 
be resumed by following the 
statement with a call to the OPEN 

Terminate execution. 

Terminate compilation; must be the 
last statement in a program. 

Where S (1)-S (n) are data field 
specifications, this statement is 
used with either a READ or WRITE 
statement. 

(continued on next page) 



FORTRAN XI 

Table 6 (Cont.) 
FORTRAN Language Summary 

Statement 

Input/Output Statements 
1 (Cont.) 

READ (u,f) list 

Specification Statements 

COMMON v(l) ,v(2), . . . ,v(n) 

1 DIMENSION a(1) ,a(2) , . . . ,a (n) 

1 Subprogram Statements 

Definition 

Where u is a device designation 
(integer constant or integer 
variable) , f is a FORMAT statement 
number, and list is a list of 
variables. 

Where u is a device designation 
(integer constant or integer 
variable), f is a format statement 
number, and list is a list of 
variables. 

Specified variables or arrays are 
stored in an area available to 
other programs. 

Used to declare variable names to 
be array names and specify the 
number and bounds of each one and 
two dimensional array. 

I-nL J - ~ e  inclusion of two or more 
variable or array names in a 
parenthetical list indicates that 
the quantities in the list are to 
share the same memory location and 
hence have the same value. 
Subscripts of array variables must 
be integer constants. Names must 
not appear in both EQUIVALENCE and 
COMMON statements. 

Declares the program which follows 
to be a function subprogram. v is 
the name of the function being 
defined. v must appear as a scalar 
variable and be assigned a value 
during execution of the subprogram. 

Declares the program which follows 
to be a subroutine subprogram. The 
arguments in the list(s) are dummy 
arguments representing the 
arguments of the subprogram. Dummy 
arguments must agree in number, 
order, and type with the arguments 
used by the calling program. 

(continued on next page) 



FORTRAN I1 

Table 6 (Cont.) 
FORTRAN L a n g u a g e  S u m m a r y  

Statement 

Subprogram Statements 
(Cont. ) 

CALL v 
CALL v (a (1) ,a (2) , . . . ,a (n) ) 

RETURN 

Definition 

Statement used to transfer control 
to a subroutine subprogram. v is 
the subroutine name in the 
SUBR~UTINE statement. The 
arguments can be of any type, but 
must agree in number, order, type 
and array size with the arguments 
in the SUBROUTINE statement. One 
or more of the arguments can be 
used to return results to the 
calling program. For example: 

CALL EXIT 

CALL TEXT 

CALL TECK ('MAS1,3) 

Returns control from a subprogram 
to the calling program. Each 
subprogram must contain at least 
one RETURN statement. RETURN 
cannot be used in the main program. 

12.0 FORTRAN ERROR MESSAGES 

12.1 Compiler Error Messages 

The following OS/8 FORTRAN Compiler error messages are 
self-explanatory. 

ARITHMETIC EXPRESSION TOO COMPLEX 
EXCESSIVE SUBSCRIPTS 
ILLEGAL ARITHMETIC EXPRESSION 
ILLEGAL CONSTANT 
ILLEGAL CONTINUATION 
ILLEGAL EQUIVALENCING 
ILLEGAL OR EXCESSIVE DO NESTING 
ILLEGAL STATEMENT 
ILLEGAL STATEMENT NUMBER 
ILLEGAL VARIABLE 
MIXED MODE EXPRESSION 
SYMBOL TABLE EXCEEDED 
SYNTAX ERROR (usually indicates illegal punctuation) 
SUBR. OR FUNCT. STMT. NOT FIRST 



FORTRAN I1 

In addition, OS/8 FORTRAN 'contains the following error messages: 

Messaqe Explanation 
- -- 

COMPILER MALFUNCTION 

10 

NO END STATEMENT 

NO ROOM FOR OUTPUT 

SABR.SV NOT FOUND 

The meaning of this message has been extended 
to cover various unlikely Monitor errors. 

A device handler has signalled an 1/0 error. 

The input to the Compiler has been exhausted. 

The file FORTRN.TM cannot fit on the system 
device. 

The SABR assembler is not present on the 
system device. 

12.2 Library Error Messages 

During execution, the various library programs check for certain 
errors and print error messages in the form: 

XXXX ERROR AT LOC NNNNN 

where XXXX is the error code and NNNNN is the location of the error. 

Table 7 
FORTRAN Library Error Messages 

Error Code Meaning 

The following errors are fatal and cause a return to the Keyboard 
Monitor: 

ALOG Attempt to compute log of negative number. 

IOER One of the following has occurred: 

1. Device-independent input or output attempted 
without /I or /O options, or user attempted 
to specify a device requiring a two-page 
handler for device-independent 1/0 without 
using the /H option 

2. Bad arguments to IOPEN or OOPEN 

3. Transmission error while doing 1/0 

CHER File specified as argument to CHAIN not found on 
system device. 

FMTl Invalid Format statement. 

(continued on next page) 



FORTRAN 11 

Table 7 (Cont.) 
FORTRAN Library Error Messages 

Error Code Meaning 

The following input errors are fatal unless input is coming from 
the Teletype, in which case the entire READ statement is tried 
again: 

FMT2 Illegal character in I format. 

FMT 3 Illegal character in F or E format. 

The following errors do not terminate execution of the user's 
program. 

DIVZ Division by zero--very large number is returned. 

EXP Argument to EXP too large~very large number is 
returned. 

OVFL Floating point o~erflow--~ Jery large number is 
returned. 

FLPW Negative number raised to floating point 
power--absolute value taken. 

SQRT Attempt to take square root of negative 
number~absolute value used. 

FIX Attempt to fix a number >2047; 2047 is returned. 

In addition, the error message: 

USER ERROR 1 AT XXXX 

means that you have tried to reference an entry point of a program 
which was not loaded, or possibly that you failed to define a 
subscripted variable in a DIMENSION statement. XXXX has no meaning. 

To pinpoint the location of a library program execution error, proceed 
as follows. 

1. Determine, from the storage map, the next lowest numbered 
location (external symbol) which is the entry point of the 
program or subprogram containing the error. 

2. Subtract, in octal, the entry point location of the program 
or subprogram containing the error from the location of the 
error indicated in the error message. 

3. From the assembly symbol table, determine the relative 
address of the external symbol found in step 1 and add that 
relative address to the result of step 2. 

4. The sum of step 3 is the relative address of the error, which 
can then be compared with the relative addresses of the 
numbered statements in the program. 

Undefined statement numbers are not detected until the assembly phase, 
at which time a U error message is given. (Refer to the list of SABR 
error messages.) 





I N D E X  

ABS function, 29 
ALOG function, 29 
Alphanumeric field 

specifications, 17 
Arguments, 

dummy, 25 
Arithmetic expressions, 8 to 10 
Arithmetic operations, floating 

point, 29 
Arithmetic statements, 11 
Arrays, 8, 24 
ASCII, 

stripped format, 17 
ATAN function, 29 
ATAN, library subroutine, 34 

Block number, 32 

CALL statement, 27 
CALL OPEN statement, 23 
Chaining, 30 
Characters, 6 
Closed subroutines, 25 
Codes, numeric field, 16 
Comments, 11 
COMMON statement, 24 
Compiler, 
error messages, 39 
loading and operating; 1 

Computed GOTO, 21 
Conserving storage space, 24 
Constants, 6, 7 
CONTINUE statement, 22 
Control statements, 15, 18 
Conversion, 
FORTRAN H Hollerith, 18 

COS function, 29 

Data, 
blocks, 32 
files, 5 
statement, 12 

DECtape 1/0 routines, 31 
Device designations, 15 
Device independent 1/0 and 

chaining, 30 to 33 
DIMENSION statement, 24 
DO loops, implied, 13 
DO statement, 21 
Dummy arguments, 25 
Dummy statement, 22 

END statement, 23 
EQUIVALENCE statement, 24 
Error messaqes, 39, 40 
EXIT subroutine, 31 
EXP function, 29 
Expressions, 8, 9 
External subprograms, 25 

Fields, 
alphanumeric, 17 
mixed, 19 
numeric, 16 
repetition of, 19 
skip, 1 9  

Floating point arithmetic, 29 
FLOAT, 

function, 29 
library subroutine, 34 

FORMAT statement, 15 
Functions, 29 
FUNCTION statements, 25 

GOT0 statement, 21 

Hollerith, 
constants, 7 
conversion, 18 
strings, 30 

IABS , 
function, 29 

IF statement, 21 
IFIX subroutine, 29 
Implied DO loops, 13 
Increment values, 22 
Index, 21, 22 
Initial value, 22 
Input/output list, 13 
Input/output statements, 12 
Integer constants, 7 
Integer variables, 7 
INTEGR Library subroutine, 34 
IOH Library subroutine, 34 
IOPEN Library subroutine, 35 
IPOWRS Library subroutine, 35 
IRDSW function, 29 
I R E M  function, 29 
IRFM function, 29 

Index- 1 



INDEX (Cont . ) 

Library, 
error messages, 40 
functions, 29 
subroutines, 34, 35 

Line continuation designator, 
10 

Maximum size of a FORTRAN 
program, 36 

Mixed fields, 19 
Mixing SABR and FORTRAN 

statements, 36 
Multiple record formats, 20 

Numeric fields, 16 
input conversion, 17 

OCLOSE subroutine, 31 
OOPEN subroutine, 31 
Overflow, 29 

Parentheses, 8. 9 
PAUSE, 23 
POWERS Library subroutine, 34 

Range, 
integer constants, 6 
integer variables, 6 
real constants, 6 

READ statement, 14 
Record formats, 13 
Repetition, 
of fields, 19 
of groups, 20 

Replacement operator, 8 
RETURN statement, 28 
RWTAPE Library subroutine, 35 

SABR assembler, 
mixing SABR and FORTRAN I1 

statement, 35 
Scalar variables, 7 
SIN function, 29 
Size of a FORTRAN I1 program, 

3 6 
Skip fields, 19 

Slash ( / )  , 20 
Source program, 2 
Specification statements, 24 
SQRT function, 29 
SQRT library function, 34 
Statement numbers, 10 
Statement, 

arithmetic, 11 
control, 21, 23 
data transmission, 12 
input/output, 12 to 20 
mixing SABR and FORTRAN 11, 

3 5 
Statements, 
CALL, 22 
CALL OPEN, 23 
COMMON, 24 
CONTINUE, 22 
DIMENSION, 24 
DO, 21 
END, 23 
EQUIVALENCE, 2 4 
FORMAT, 15 
FUNCTION, 25 
GO TO, 21 
IF, 21 
PAUSE, 23 
READ, 14 
RETURN, 28 
STOP, 23 
SUBROUTINE, 27 
WRITE, 14 

Statement types, 11 
STOP statement, 23 
Storage, 
conserving space, 24 

Strings, Hollerith, 30 
Stripped ASCII format, 17 
Subprogram statements, 25 
Subroutine, 
chaining, 30 
closed, 25 
library, 33 
subprograms, 2 7 

Subroutines, 
CHAIN, 37 
EXIT, 31 
IOPEN, 30 
OCLOSE, 31 
OOPEN, 31 

SUBROUTINE statement, 27 
Subscripted variables, 8 
Subscript list, 8 

Tabs, 10 
TAN function, 29 
 runc cation, 7 



Underflow: 29 
UTILITY library subroutine, 34 

Variables, 
zrrz17, E 
integer, 7 
real, 7 

Variables (Cont. ) , 
scalar, 7 
subscripted, 8 

-WRITE statement, 14 
WTAPE routine, 32 







CONTENTS 

P a g e  

INTRODUCTION 
--- ----- -- -------..-.-- 
HAKDWAKfi &UU LJ<Â£~MÂ£;N 

STATEMENT SYNTAX 
L a b e l s  
I n s t r u c t i o n s  
E x p r e s s i o n s  
C o m m e n t s  

ARITHMETIC AND LOGICAL OPERATIONS 
PDP-8 OPERATION CODES 
PDP-8 MODE ADDRESSING 
F P P  OPERATION CODES 

D a t a  R e f e r e n c e  I n s t r u c t i o n s  
D o u b l e - W o r d  R e f e r e n c e  I n s t r u c t i o n  F o r m a t  
Single-Word D i r e c t  R e f e r e n c e  I n s t r u c t i o n  F o r m a t  
S i n g l e - W o r d  Indirect R e f e r e n c e  I n s t r u c t i o n  F o r m a t  
Special F o r m a t  Instructions 
Special F o r m a t  1 I n s t r u c t i o n s :  J u m p  on C o u n t  + T r a p  
S p e c i a l  F o r m a t  2 I n s t r u c t i o n s  
L o a d  Index and A d d  Index 
C o n d i t i o n a l  J u m p s  
P o i n t e r  M o v e s  
Special F o r m a t  3 I n s t r u c t i o n s  
N o r m a l i z e  
O p e r a t e  

F P P  MODE ADDRESSING 
LITERALS 
LINKS 
DATA S P E C I F I C A T I O N  
PSEUDO-OPERATORS 

ADDR 
BASE n 
COMMON 
COMMZ 
DECIMAL 
DPCHK 
E n 
END 
ENTRY 
EQUATE (=) 
EXTERN 
F  n 
F I E L D 1  
I F n n n  ( C o n d i t i o n a l  A s s e m b l y )  
INDEX n 
L I S T O F  
LISTON 
OCTAL 
ORG expr 
PAGE 
REPEAT n 

iii 



CONTENTS ( C o n t  . ) 

P a g e  

INDEX 

TABLE 1 
2 
3 

FIGURE 1 

S n 
SECT 
SECT8 
TEXT 
ZBLOCK n 

REFERENCING MEMORY 
RALF FEATURES 

C o r e  A l l o c a t i o n  
RALF P r o g r a m m i n g  N o t e s  
U s i n g  t h e  A s s e m b l e r  
E r r o r  M e s s a g e s  
FLAP/RALF P s e u d o - o p e r a t o r s  

TABLES 

PDP-8 O p e r a t i o n  C o d e s  
FLAP/RALF E r r o r  C o d e s  
FLAP/RALF P s e u d o - O p e r a t o r s  

FIGURES 

AMOD R o u t i n e  



1.0 INTRODUCTION 

FLAP and RALF are assemblers that translate PDP-8 or PDP-12 processor 
and floating point processor (FPP) operation codes in a source program 
into binary codes in two or three passes. 

The first pass assigns numeric values to the symbols and places them 
in the symbol table, the second pass generates the binary coding, and 
the third pass generates the program listing. 

FLAP/RALF is used to assemble programs using the FPP instructions and 
capabilities. These programs can calculate numeric values as 12-bit 
integers, 15-bit integers, 24-bit double precision fractions, 3-word 
floating point values, or 6-word extended-precision floating-point 

- - 

values. Refer to the FPP User's Guide. DEC-12-GQZA-D. for d e t a i l e d  
information on the floating point processor and its instruction set. 

FLAP can run on an OS/8 System with a floating point processor (FPP) 
without any other supporting programs. It generates absolute binary 
output which is legal input to the OS/8 Absolute Loader (ABSLDR) a 
RALF, an extension of FLAP, is part of the OS/8 FORTRAN IV System. It 
accepts assembly language files and FORTRAN compiler output, and it 
generates relocatable binary modules that can be loaded by the 
relocatable loader LOAD (also part of the OS/8 FORTRAN IV System). 

The following sections describe the syntax, instruction formats, 
addressing modes, and pseudo-operators in the assemblers. The special 
features of RALF involving relocatable assembly are described in 
Section 14. 

2.0 HARDWARE REQUIREMENTS 

The minimum hardware configuration for FLAP is a PDP-8 or PDP-12 with 
a floating point processor (FPP). The minimum hardware configuration 
for RALF is a PDP-8 or PDP-12 OS/8 System. 

3 . 0  STATEMENT SYNTAX 

A source program is a sequence of coding statements in the general 
format: 

Labe1,instruction (space)expression (space)/ comment 

A physical line of coding may be up to 127-characters long and is 
terminated by a carriage return. You may use a semicolon in a line of 
code (except in the comment field) to terminate a logical s t a t e m e n t ^  
permitting you to type several statements on a single line. However, 
a set of logical statements separated by semicolons must not exceed 
the 127-character limit. 

A space is required in a statement: 

a after an instruction mnemonic 

before a slash ( / )  used to indicate a comment 

a as an OR operator 

Multiple spaces or tabs are equivalent to a single space. These 
characters are optional after the comma defining a label, after the = 
sign that sets a value, and before a statement. 



3.1 Labels 

You can indicate a statement label by preceding that statement with a 
user-defined symbol followed by a comma. This format assigns the 
current value of the location counter to the label. 

3.2 Instructions 

An instruction may be a PDP-8 operation code, an FPP12 operation code, 
a FLAP pseudo-operator, or a RALF pseudo-operator. 

3.3 Expressions 

An expression can contain: 

A user-defined symbol (equated symbol or label). 

The symbol ".", which has a value equal to the current 
location counter. 

A numeric constant. 

0 Two or more of the above, combined by operators. 

FPP and PDP-8 instructions are illegal symbols in expressions. User 
symbols can be 1 to 6 alphanumeric characters in length and must start 
with a # or an alphabetic character. Any additional characters are 
ignored. Thus, the symbols: 

are acceptable, but in the symbol: 

only the first six characters are stored as the symbol name. In this 
case, all characters after ASYMBO are ignored. You may define up to 
500 symbols in an assembly. 

All integer expressions are computed in 15-bit 2's complement 
arithmetic and then truncated if necessary (15 bits for 2-word FPP 
memory reference instructions and 12 bits for expressions). The 
following are examples of legal integer (address) expressions: 

The radix pseudo-ops OCTAL and DECIMAL control the interpretation of 
numbers used in expressions. Decimal numbers larger than 32,767 and 
octal numbers larger than 77777 will be incorrectly converted and will 
cause the NE error. (Error messages are listed in Section 14.4.) 



3.4 Comments 

A comment is a note you add at the end of a line of code, usually tc 
indicate the logical sequence of the program. Type a slash ( I ) ,  
preceded by one or more spaces or tabs, to specify the start of a 
comment. Comments must not contain anqle brackets. 

4.6 ARITHMETIC AND LOGICAL OPERATIONS 

The FLAP/RALF operators and their functions in combining numbers or 
symbols to form expressions are as follows. 

Operator Function 

+ 2 ' s  complement addition 
- 2's complement subtraction 
* mu1 t ipl icat ion 
I division 

space or tab inclusive OR used to separate 
two instructions 

I inclusive OR 
11 precedes afi ASCII c~nstant; for exznpls, 

"A has the octal value 301 

Expressions are evaluated from left to right. They may not contain 
floating point constants. 

5.0 PDP-8 OPERATION CODES 

?Dl?-8 operation codes are legal defined mnemonics for use with 
FLAP/RALF. Table 1 lists the mnemonic, octal value, and operation of 
each PDP-8 operation code. PDP-8 code must be executed by the PDP-8 
or PDP-12 processor. Assembler statements using these codes are coded 
(or executed) in PDP-8 mode. 

Table 1 
PDP-8 Operation Codes 

1 Mnemonic Octal Operation I 
Memory Reference Instructions 

AND 0000 
TAD 1000 
ISZ 2000 
DC A 3000 
JMS 4000 
JMP 5000 

Logical AND 
2's complement add 
Increment and skip if zero 
Deposit and clear AC 
Jump to subroutine 
Jump 

(continued on next page) 



Table 1 (Cont.) 
PDP-8 Operation Codes 

- - - -- - -- 

Mnemonic Octal Operat ion 

Group 1 Operate Microinstructions 

NOP 
CLA 
CLL 
CMA 
CML 
RAR 

RAL 
RTR 

RTL 
IAC 

Group 2  Operate Microinstructions 

SMA 
SZA 
SPA 
SNA 
SNL 
SZL 
SKP 
OSR 

HLT 7 4 0 2  

Combined Microinstructions 

CIA 
LAS 

IOT Microinstructions 
KeyboardlReader 

KSF 6 0 3 1  

KCC 6 0 3 2  

KRS 6 0 3 4  
KRB 6 0 3 6  

TSF 6 0 4 1  

TCF 6 0 4 2  

TPC 6 0 4 4  

TLS 6 0  4  6 

No operation 
Clear AC 
Clear link 
Complement AC 
Complement link 
Rotate AC and link right 
one 
Rotate AC and link left one 
Rotate AC and link right 
two 
Rotate AC and link left two 
Increment AC 

Skip on minus AC 
Skip on zero AC 
Skip on positive AC 
Skip on non-zero AC 
Skip on non-zero link 
Skip on zero link 
Skip 
Inclusive OR switch 
register with AC 
Halt 

CMA IAC 
CLA OSR 

Skip if keyboardlreader 
flag=l 
Clear AC and 
keyboardlreader flag 
Read keyboardlreader buffer 
Clear AC and read keyboard 
buffer and clear 
keyboard flag 

Skip if teleprinter/punch 
flag=l 
Clear teleprinter/punch 
flag 
Load teleprinter/punch 
bufferl select and 
print 
Load teleprinter/punch 
bufferl select and 
printl and clear 
teleprinter/punch flag 

(continued on next page) 

4 



Table 1 (Cont. ) 
PDP-8 Gperatiofi C d e s  

1 Mnemonic Octal Operation 

Program Interrupt 

ION 6001 
I G F  6GG2 

Extended Memory (Type MC8/1) 

CDF 62nI 
CIF 62n2 
RDF 6214 
RIF 6224 

RMF 
RIB 

Change to data field n 
Change to instruction n 
Read data field lnto AC 
Read instruction field into 
AC 
Restore memory field 
Read interrupt 

6.0 PDP-8 MODE ADDRESSIKG 

In PDP-8 Moder addressing is specified by the contents of the Memory 
Reference Instruction modified by the Data Field and Instruction Field 
Registers. Direct addressingr specified by bit 3=Or causes reference 
to the address given in bits 5-11 in page 0 of the current field if 
bit 4=Or or to tne current page if bit 4=i. indirect addressingr 
specified by bit 3=lr causes reference to the indirect address 
contained in the location specified by bits 4-llr used as above. The 
indirect address for ANDrTADrISZr and DCA refers not to the current 
f i e l d  b ~ t  to the field s~ecified in the Dzta Field Recjister. The ZFlP 
and JMS instructions refer to locations in the field specified in the 
Instruction Field Register. 

The Data Field Register and the Instruction Field Register are 
originally set through the console switches; howeverr the registers 
can be set under program control by means of the CIF and CDF 
instructions. The CIF instruction sets the Instruction Field Buffer 
to the specified field. The CDF instruction changes the Data Field 
Register immediately. Other instructions allow the program to readr 
saver and restore the Data Field and Instruction Field Registers. 
Completion of execution of a JMP or JMS instruction sets the 
Instruction Field Register to the contents of the Instruction Field 
Buffer. This procedure permits a program to choose a new fieldr then 
execute a jump from the current field to an address in the new field. 

The character % appended to the end of a memory reference instruction 
lndlcates lndirect addresslngr and the character Z indicates a page 0 
reference: 

CURRENT PAGE PAGE ZERO 

DIRECT INDIRECT DIRECT INDIRECT 

TAD A TAD% A TAD2 A TADZ% A 

DCA B DCA% B DCAZ B DCAZ% B 

Do not insert spaces between Memory Reference Instructions and either 
the Z or % character. Also the Z must always precede the % when both 
are used. 



7.0 FPP OPERATION CODES 

The Floating Point Processor recognizes three forms of Data Reference 
Instructionsr which are analogous to the Memory Reference 
Instructionsr and three Special Format instruction forms, which are 
analogous to the Operate Micro-Instructions. 

7.1 Data Reference Instructions 

Data Reference Instructions cause transfer between memory and the 
floating point accumulatorr a 36-bit register in the FPP. The 
transfer may be 36 bits of floating point data or 2 4  bits of 
double-precision fixed-point fraction datar depending upon where 
STARTF or STARTD was most recently executed. In the fixed point mode, 
the last 2 4  bits of the FAC or memory are usedr and the exponent is 
unchanged. 

The descriptions of the instructions contain the following 
conventional symbols: 

contents of enclosed quantity 
floating accumulator 
a variable multiplier 
=2 in Double Precision Mode 
= 3  in Floating Point Mode 
an indexing variable 
X=O do not index 
15X5.7r use specified index register 
origin of index registers 
address computed 
an increment bit 
=Or no incrementing 
=if increment before uslng lndex 
symbol to avoid indexing 
x=o &x) =o 

The op codesr mnemonics, and data functions are: 

Op Code Mnemonic 

FLDA 
FADD 
FSUB 
FDIV 
FMUL 
FADDM 
FSTA 
FMULM 

Data Function 

C (Y)+FAC 
C(Y) + C(FAC)+FAC 
C(FAC) - C(Y)+C FAC 
c (FAC) /c (Y)+FAC 
C(FAC * C(Y)+FAC 
C(Y) + C(FAC)+Y 
C (FAC)+Y 
C (FAC) * C (Y)+Y 

You can use all eight of the Data Reference Instructions in any of the 
three forms. The three forms for Data Reference Instructions follow. 



7.1 .1  Double-Word Reference Instruction Format 

ADDRESS 
I ! I ! I I I . I 

DOUBLE-WORD D A T A  REFERENCE INSTRUCTIONS 

Y = C ( b i t s  9-23) + M * ( C  ( X  + X O )  + C ( b i t  5 )  ) * S(X) 

? = l e 2  Shgle-Word Direct Reference Instructim Format 

SINGLE-WORD DIRECT REFERENCE 

Y = C(base  r e g i s t e r )  + 3  * ( o f f s e t )  

7.1.3 Single-Word Indirect Reference Instruction Format 

SINGLE-WORD INDIRECT REFERENCE 

Y = C ( b i t s  21-36 of C ( ( b a s e  r e g i s t e r )  + 3  * o f f s e t ) )  
+ (M) * ( C ( X  + X O )  + C ( b i t  5 ) )  *  XI 

~ ( X J  = 1 i f  X # 0 and 0 i f  X = 0 
M = 2  i f  f i x e d - p o i n t  mode 
M = 3  i f  f l o a t i n g - p o i n t  mode 



7.2 Special Format Instructions 

7.2.1 Special Format 1 Instructions: Jump on Count + Trap 

Op Code Mnemonic Function 

JXN If index register X is nonzero, the index 
register X is incremented if bit 5=1 and 
a jump is executed to the address 
contained in bits 9-23. 

The instruction-trap status bit is set 
and the FPP12 exits, causing a PDP 
interrupt. The unindexed operand address 
is dumped into the APT. 

The trap instructions with op codes 3 and 4 are assigned a special 
meaning by RALF. Their mnemonics are TRAP3 and TRAP4 respectively. 
TRAP3 acts as a JMP to PDP-8 Mode; TRAP4 acts as a JMS to PDP-8 Mode. 
See the FORTRAN IV Software Support Manual for details. 

ADDRESS 
I I 1 1 1 I I I I I I 

SPECIAL FORMAT 1 

0 2 3 4 5 6  8 9 11 

7.2.2 Special Format 2 Instructions 

OP CODE 
1 I 

7.2.2.1 Load Index and Add Index 

Op Code Extension Mnemonic Function 

17 23 

O O +  

0 10 LDX The contents of the index register 
specified by the bits 9-11 are 
replaced by the contents of bits 
12-23. 

0 11 ADDX The contents of bits 12-23 are 
added to the index register 
specified by bits 9-11. 

X 
1 1 

ADDRESS 
I I 



FLAP/RALF 

7.2.2.2 Conditional Jumps - Jumps are to the location specified by 

Op Code Extension Mnemonic 

JEQ 
JUE 
JLE 
J A 
JNE 
JLT 
JGT 
JAL 

Function 

Jump if FAC=0 
Jump if FACZO 
Jump if FAC10 
Jump always 
Jump if FAC # 0 
Jump if FAC<O 
Jump if FhC>O 
Jump if impossible to fix the 
f h a t i ~ g p i ~ t  nu~nber' r'~ntair^ei^ 
in the FAC; that is, if the 
exponent is g r e a t e r  than 
2310. 

7.2.2.3 Pointer Moves 

Op Code Extension Mnemonic Function 

1 10 SETX Set XO to the address contained 
in bits- 9-23 of the 
instructions. 

SETB 

J S R  

JSA 

Set the base register to the 
address  contained in bits 9-23. 

Jump and save return. Jump to 
the location specified in bits 
9-23, and save the return in 
bits 21-35 of the first entry of 
the base page. 

An unconditional jump to the 
current address +2 is deposited 
in the address and address+l, 
where address is specified by 
bits 9-23. 'me f ' p ~  is set t o  
address+2. 

SPECIAL FORMAT 2 

0 2 3 4 5  8 9 11 

F 
I I 

EXTENSION 
1 I I 

0 OP CODE 
I I 

0 



FLAP/RALF 

7.2.3 Special Format 3 Instructions 

7.2.3.1 Normalize 

Op Code Extension Mnemonic Function 

ALN The mantissa of the PAC is 
shifted until the FAC exponent 
equals the contents of the index 
register specified by bits 9-11. 
If bits 9-11 are zero, the FAC 
is aligned so that the exponent 
- - 2310- Setting the 
exponent = 23 fixes the 
floating-point number. The JAL 
instruction tests to see if 
fixing is possible. In 
double-precision mode, an 
arithmetic shift is performed on 
the FAC fraction. The number of 
shifts is equal to the absolute 
value of the contents of the 
specified index register. The 
direction of shift depends on 
the sign of the index register 
contents. A positive sign 
indicates a shift toward the 
least significant bit, while a 
negative sign indicates a shift 
toward the most significant bit. 
The FAC exponent is not altered 
by the ALN instruction in 
double-precision mode. 

ATX The contents of the FAC are 
fixed and the least significant 
12 bits of the mantissa are 
loaded into the index register 
specified by bits 9-11. In 
double-precision mode the least 
significant 12 bits of the FAC 
are loaded into the specified 
index register. The FAC itself 
is not altered by the FATX 
instruction. 

XTA The contents of the index 
register specified by bits 9-11 
are loaded r ight-justif ied into 
the FAC mantissa. The FAC 
exponent is loaded with 2310 
and then FAC is normalized. 
This operation is typically 
termed floating a 12-bit number. 
In double-precision mode, the 
FAC is not normalized. 

NOP The single-word instruction 
performs no operation. 

5-7 These codes are reserved for 
12-17 reserved instruction set expansion and 
14-17 should not be used. 



7.2.3.2 Operate 

Op Code Extension Bits 9-11 Mnemonic function 

0 FEXIT Dump active registers 
into the APT, reset 
the FPP RUN flip-flop 
to the 0 state, and 
interrupt the PDP-8 
- - A m -  pi. ULcSsor . 

FPAUSE Wait for synchronizing 
signal. IOT FFST 
(6555) will restart 
the instruction 
following FPAUSE. 

FCLA Zero the FAC mantissa 
and exponent. 

FNEG Complement F AC 
mantissa. This 
instruction produces 
the true negative, not 
the bit-by-bit 
complement. 

FNORM Normalize the FAC. In 
double-precision mode 
FNORM is a NOP.  

STARTF Start floating-point 
mode. 

STARTD Start double-precision 
mode. 

J AC Jump to the location 
specified by the least 
significant 15 bits of 
the FAC mantissa. 

8.0 FPP MODE ADDRESSING 

0 2 3 4 5  8 9 11 

The FLAP/RALF assembler can interact with and effectively use the 
rather complex addressing scheme of the FPP. This addressing scheme 
allows the FPP to access a full 32k words of core through 15-bit 
addresses. It also allows the FPP to access a movable base page 
through 7-bit addresses. The FPP can also use 2 or 3 bits to specify 
an index register from a movable set that can modify the address. The 
FORTRAN compiler makes extensive use of this addressing freedom, 
particularly in the subroutine calls. 

F EXTENSION OP CODE . I I I I I 

0 
I I 

0 

SPECIAL FORMAT 3 



The base page is a block of 128 floating point variables, or 384 
12-bit words. The Special Format 2 instruction SETB (see Section 7) 
gives the FPP the origin of the base page. You can use the pseudo-op 
BASE to pass the base page origin to the FLAP/RALF assembler. The 
origin of the base page may be changed as often as necessary. The 
first 8 locations of the base page serve as a pointer to memory. 

The index registers are a block of seven 12-bit words in memory. The 
Special Format 2 instruction SETX gives the FPP the origin of the 
index registers. You may change the locations used for the index 
registers as often as necessary. 

The three forms of Data Reference Instructions (see Section 7) compute 
the address of the data referenced in three different ways. The line 
of print below the diagram of each instruction shows symbolically how 
each address is computed. The address computation for the first form 
(double-word data) begins with the 15-bit address in bits 9-23 of the 
instruction. If X (bits 6-8) is zero, this is the address used. If X 
is nonzero, the contents of the specified memory location, X+XO (where 
XO is the beginning of the index registers, set by SETX), is used as 
an index. If bit 5 of the instruction is equal to one, the index 
value is incremented by one. The index value remains incremented 
after the instruction is completed. The resulting index value is 
multiplied by either two or three, depending upon whether the FPP is 
in Double Precision Fixed Point Mode (STARTD) or Floating Point Mode 
(STARTF). This index is then added to the original address (bits 
9-23) to form the address used. 

The second data reference form (single-word direct) is used to address 
the locations on the base page. The contents of bits 5-11 of the 
instruction are multiplied by three and added to the origin of the 
base page, set by the SETB instruction. 

Note tnat the offset on the base page always assumes Floating Point 
(3-word) variables. It is wise to prevent use of the base page for 
storage of double-precision fixed-point variables or instructions. 

The third form of data reference instruction (single-word indirect) 
provides an indirect or indexed indirect mode of address. The offset, 
bits 9-11 of the instruction, are multiplied by three and added to the 
origin of the base page, to give the address of a 3-word variable. 
The last 15 bits of this word are used for the address of the data. 
This address may be modified by the index register exactly the same as 
in the first form. 

The FLAP/RALF Assembler will choose the form of the data reference 
instruction that is generated. The second form (single-word direct) 
is used instead of the first form (double-word direct) whenever the 
data lies on the base page; no indexing is involved. The indirect 
form is used whenever indirect addressing is called for by a % symbol 
in the assembler source statement. 

9.0 LITERALS 

Only FLAP allows literals in PDP-8 code. If you start an expression 
in a PDP-8 memory reference instruction with a left parenthesis or a 
square bracket (as explained below), the value after it is taken 
"literally" by FLAP. Therefore, you do not need to specify an address 
or label that contains the value. Internally the value of the literal 
expression is the address of the word generated by FLAP that contains 
the evaluated expression. 



I f  the expression s t a r t s  with a  l e f t  parenthes is ,  ( ,  then the l i t e r a l  
is placed a t  t h e  end of the current  page. I f  it s t a r t s  w i t h  a  l e f t  
bracket,  [ ,  the l i t e r a l  is placed a t  the end of page 0 .  L i t e r a l  
t ab les  are  b u i l t  backwards from the end of the page so t h a t  the  most 
recent ly  defined l i t e r a l  has the lowest core address. 

I f  the o r ig in  i s  changed t o  a  new page, the previous page's l i t e r a l s  
are output and the l i t e r a l  t ab le  is  rese t .  I f  the origin is r e s e t  t o  
a  previous page t h a t  contained l i t e r a l s ,  those l i t e r a l s  may be 
overlaid by any new l i t e r a l s .  The previou,siy defined l i t e r a l s  w i l l  
not be avai lable  for  reference. For t h i s  reason, it  i s  bes t  t o  
complete a l l  coding on any non-zero page before moving t o  another. 

I f  the f i e l d  is changed, the l i t e r a l s  on page 0 of the previous f i e l d  
are  output ,  and the page 0 l i t e r a l  t ab le  is  r e s e t .  For t h i s  reason, 
i t  is best  t o  complete a l l  coding i n  any one f i e l d  before moving t o  
another 

Because locat ions  0-17 a re  general ly used for  in te r rup t s  and autoindex 
r e g i s t e r s ,  only 1 1 2 ( 1 0 )  (160(8) )  l i t e r a l  may be on page 0 .  

The following examples i l l u s t r a t e  the use of l i t e r a l  expressions with 
memory reference ins t ruc t ions .  

TAD (POINTER generates a  l i t e r a l  w i t h  the lower 1 2  b i t s  of the 
address of POINTER a t  the end of the current  page. 

TAD [ l o  generates a  l i t e r a l  containing 0 0 1 0  a t  the end of 
page 0 .  

The l e f t  bracket,  [ ,  is  typed as  a  SHIFT/K on an ASR-33. 

L i t e r a l s  may not be nested, for  example, a s  in the expression: 

TAD (TAD [ I0  

1 0 . 0  LINKS 

Links are  ~ e n e r a t e d  only by the FLAP assembler. I f  a  PDP-8 memory 
reference is made t o  an address t h a t  is not on the same page a s  the 
ins t ruc t ion ,  FLAP c rea tes  an ind i rec t  address linkage on the current  
page. The address can, therefore ,  be accessed during the second pass 
of the Assembler. For example, the coding: 

PAGE 
A ?  1025 



is equivalent to 

ORG 200 
00200 1777 TAD I X 

All instructions generating links are flagged in the listing with an 
apostrophe ( ' )  following the generated code. The total number of 
links is printed at the completion of assembly. 

11.0 DATA SPECIFICATION 

A logical line of code may consist of only an expression. Such 
expressions can function as flags, pointers, constants, or symbols. 
If the expression is larger than 12 bits, it will be truncated to 12 
bits. 

12.0 PSEUDO-OPERATORS 

A pseudo-operator is a defined mnemonic code you include in the source 
program as a logical line to control some functions of the assembler. 
Binary code may or may not be generated by a pseudo-op, depending on 
its function. The FLAP/RALF pseudo-ops and their functions follow. 

12.1 ADDR 

Generates a two-word address corresponding to the value of the 
argument. 

12.2 BASE n 

Places the location of the base page, n, in FLAP/RALF base register 
for use in calculating single-word addresses. The argument, n, is an 
expression denoting a 15-bit address. The expression may not contain 
any symbols that are defined after the BASE pseudo-op occurs. An 
example of correct sequence follows. 

If no BASE pseudo-op is included, all FPP memory reference 
instructions will be 2 words. Refer to descriptions on FPP addressing 
(Section 8) and on referencing memory (Section 13) . 



1 2 . 3  COMMON 

C a u s e s  t h e  a s s e m b l e r  t o  e n t e r  t h e  COMMON s e c t i o n  whose  name f o l l o w s  
t h e  pseudo-op .  S u b s e q u e n t  o u t p u t  is  p l a c e d  i n  t h e  named COMMON 
s e c t i o n  u n t i l  a n o t h e r  s e c t i o n  d e f i n i n g  p s e u d o - o p  is e n c o u n t e r e d .  

1 2 . 4  COMMZ 

D e f i n e s  F i e l d  1 8-mode p a g e  Q s e c t i o n .  Used t o  g i v e  PDP-8 page 0 
s e c t i o n  f o r  t h e  L o a d e r .  

1 2 . 5  DECIMAL 

A l l  i n t e g e r s  w h i c h  f o l l o w  a r e  a s s u m e d  t o  b e  i n  d e c i m a l  r a d i x .  

1 2 . 6  DPCHK 

I n d i c a t e s  t h a t  t h e  c u r r e n t  m o d u l e  r e q u i r e s  d o u b l e  p r e c i s i o n  h a r d w a r e  
i n  o r d e r  t o  e x e c u t e .  

G e n e r a t e s  a  6-word e x t e n d e d  p r e c i s i o n  f l o a t i n g  p o i n t  c o n s t a n t  w i t h  
v a l u e  n .  You may w r i t e  t h e  a r g u m e n t  n  e i t h e r  a s  a  d e c i m a l  f l o a t i n g  
p o i n t  number o r  i n  s t a n d a r d  e x p o n e n t i a l  f o r m a t .  

1 2 . 8  END 

T e r m i n a t e s  i n p u t .  ( T h i s  p s e u d o - o p  is  o p t i o n a l ;  i t  i s  n e v e r  p r i n t e d  
o n  t h e  l i s t i n g . )  

1 2 . 9  ENTRY 

D e f i n e s  p r o g r a m  e n t r y  p o i n t .  You c a n  u s e  t h e  symbol  whose  name 
f o l l o w s  t h e  ENTRY p s e u d o - o p  a s  a n  e x t e r n a l  s y m b o l  b y  o t h e r  p r o g r a m s .  
M u l t i p l e  e n t r y  p o i n t s  w i t h  t h e  same name a r e  a c c e p t e d  b y  t h e  a s s e m b l e r  
b u t  c a u s e  a n  e r r o r  f r o m  t h e  l o a d e r .  

1 2 . 1 0  EQUATE (=) 

The symbol  t o  t h e  l e f t  o f  t h e  = i s  a s s i g n e d  t h e  v a l u e  o f  t h e  
e x p r e s s i o n  t o  t h e  r i g h t  o f  i t .  

1 2 . 1 1  EXTERN 

D e f i n e s  t h e  symbol  f o l l o w i n g  t h i s  pseudo-op  t o  b e  e x t e r n a l  t o  t h i s  
a s s e m b l y .  



Generates a 3-word floating point constant with value n. You may 
write the argument n as a decimal floating point number; for example, 
2.0; or in standard exponential format, 2E10. In standard 
exponential format, 2E10 is equal to 2 x 10'10. 

Defines FIELD1 8-mode section. Used to give field 1 name 
for the Loader. 

12.14 IFnnn (Conditional Assembly) 

FLAP/RALF have ten conditional pseudo-ops. Four of them 
argument expression: 

of section 

require an 

Pseudo-op Function 

IFZERO n < 
IFNZRO n < 
IFPOS n < 
IFNEG n < 

assemble if n is zero 
assemble if n is not zero 
assemble if n is positive 
assemble if n is negative 

conditional 
fulfills the 

where n is an integer expression. For each of the above 
pseudo-ops, the expression n is evaluated and, if it 
conditions of the pseudo-op (for example, n equals zero for IFZERO), 
the subsequent coding is assembled. If the condition is not met, the 
subsequent coding is ignored until a matching > is encountered. 
Assembly is continued after the >. 
The fifth and sixth pseudo-ops are used as follows: 

IFREF symbol < 

IFNDEF symbol < 

The se- venth th 

IFSW n < 

IFNSW n < 

rough te 

assemble if symbol was previously defined or 
referenced. 

where symbol may be defined or undefined. 
When an IFREF statement is encountered, 
subsequent coding is assembled if the symbol 
after the pseudo-op has been defined or 
referenced in a previous statement. The use 
of a symbol with an IFREF pseudo-op or in a 
statement that was skipped during assembly 
because the condition required by a preceding 
conditional pseudo-op was not met does not 
constitute a reference to the symbol. If the 
symbol has not been previously defined or 
referenced, assembly is continued after the 
matching > is found. 

nth pseudo-ops are: 

assemble the enclosed code if the switch n was 
set in the input/output file specification to 
the command decoder, that is, /n or (n). 

assemble the enclosed code if the switch n was 
not set. 



IFFLAP < assemble the enclosed code if the assembler is 
FLAP. This pseudo-op is intended- for use in 
programs which maybe assembled either by RALF 
or by FLAP. 

do not assemble the enclosed code i t  
assembler is FLAP. 

Conditionals may be nested. A possible nested conditional is 

Use of some of the conditional assembly pseudo-ops is illustrated 
the next example. 

NO EFi:RORS 
2 SYMBOL..SY NO L I N K S  

the 

in 

12.15 INDEX n 

Sets the location of the first FPP index register to n. 

12.16 LISTOF 

Continues assembly but inhibits further listing. There is no effect 
on the first two passes or if the listing is currently inhibited. 
This pseudo-op never appears in the listing. 

12.17 LISTON 

Ceases to inhibit the listing. There is no effect on the first two 
passes if the listing is not currently inhibited. 



1 2 . 1 8  OCTAL 

A l l  i n t e g e r s  w h i c h  f o l l o w  a r e  a s s u m e d  t o  b e  i n  o c t a l  r a d i x .  T h e  
d i g i t s  8  a n d  9  a re  f l a g g e d  i f  t h e y  o c c u r  i n  o c t a l  r a d i x .  T h e  r a d i x  i s  
i n i t i a l l y  s e t  t o  o c t a l  b y  FLAP. 

1 2 . 1 9  ORG expr 

A s s i g n s  t h e  c u r r e n t  l o c a t i o n  c o u n t e r  t h e  v a l u e  o f  t h e  l o w e r  1 5  b i t s  o f  
t h e  a d d r e s s  e x p r e s s i o n  e x p r .  T h e  e x p r e s s i o n  s h o u l d  c o n t a i n  o n l y  
s y m b o l s  w h i c h  h a v e  p r e v i o u s l y  b e e n  d e f i n e d .  F o r  e x a m p l e ,  t o  s e t  t h e  
o r i g i n  a t  l o c a t i o n  400  o f  f i e l d  1, t h e  p s e u d o - o p  u s e d  is  ORG 1 0 4 0 0 .  

I f  t h e  ORG p s e u d o - o p  is o m i t t e d ,  a n  o r i g i n  o f  200 i n  f i e l d  0  i s  
a s s u m e d ,  b u t  t h e  o r i g i n  s e t t i n g  is  n o t  i n c l u d e d  i n  t h e  b i n a r y  o u t p u t  
f i l e .  F o r  u s e f u l  r e s u l t s ,  y o u r  p r o g r a m  m u s t  b e g i n  w i t h  a n  ORG 
p s e u d o - o p .  

1 2 . 2 0  PAGE 

S e t s  t h e  c u r r e n t  l o c a t i o n  c o u n t e r  t o  t h e  b e g i n n i n g  o f  t h e  n e x t  c o r e  
p a g e .  T h i s  p s e u d o - o p  is n o t  i n  t h e  RALF a s s e m b l e r .  

1 2 . 2 1  REPEAT n 

A s s e m b l e  t h e  f o l l o w i n g  l i n e  n  times. 

G e n e r a t e s  a  1-word c o n s t a n t  w i t h  v a l u e  n .  RALF d o e s  n o t  s u p p o r t  t h i s  
p s e u d o - o p .  

1 2 . 2 3  SECT 

D e f i n e s  p r o g r a m  s e c t i o n ,  u s e d  a t  t h e  b e g i n n i n g  o f  s u b p r o g r a m s  t o  g i v e  
t h e  name o f  s e c t i o n  f o r  t h e  L o a d e r .  F o r  e x a m p l e :  

SECT SUBROU 
J A START 
BASE 

BO, F  0 .  
e t c .  

D e f i n e s  8-mode p r o g r a m  s e c t i o n .  Used a t  t h e  b e g i n n i n g  o f  8-mode 
s u b p r o g r a m s .  



12.25 TEXT 

Enters a string of text. The pseudo-op TEXT is followed by a space or 
tab, a delimiting character, a string of text, and the same delimiting 
character, issued in that order. The first printing character after 
TEXT i s  t h e  d e l i m i t e r ,  and t h e  t e x t  s t r i n g  i s  a l l  t h e  c h a r a c t e r s  t h a t  
follow it until the next occurrence of the delimiter or a carriage 
return. The characters space, tab,,, and / cannot be delimiters. For 
example : 

TEXT % EATA % 

causes the word DATA to be printed with the code at assembly time as: 

12.26 ZBLOCK n 

Assembles a block of n words containing 0. 

13.0 REFERENCING MEMORY 

A PDP-8 computer with an FPP is basically a 32K machine. All of this 
memory may be referenced through the 15-bit address field provided by 
the 2-word memory reference instructions. When it is necessary to 
conserve memory, the base page and the short form (1 word) of the 
memory reference instructions can be used. Those instructions that 
have a floating point operand can use this short form: 

FADD FDIV FMUL FSTA 
FADDM FLDA FMULM FSUB 

The base page is a movable page 0 that you assign. To determine the 
location referred to by the operand of the single word instruction, 
m l . ~  l l u  t 1- A^LY n~ T T  t h e  disPlaceFte2t  f i e l d  ( a d d r e s s  e x p r e s s i ~ ~ )  by 3 s ~ d  sdd  i t  
to the contents of the base register. Thus, when you use the single 
word form of the instruction, you can reference any location within 
128*3 locations of the base register. (Only 128*3 locations can be 
accessed because the displacement field has only 7 bits.) The location 
of the base page (via BASE) and the operands (via ORG = etc.) must be 
defined in the coding before the FPP instruction. Then the short form 
of the instruction will be executed unless the suffix # is added, 
forcing the long (2 word) form. 

RALF code that includes forward reference to the base page should 
employ pseudo-ops # and ' as the first character of the symbol; this 
permits RALF to generate symbols that do not conflict with 
programmer-generated symbols that are also on the base page. The # 
pseudo-op can be used following FPP memory reference instructions to 
indicate use of the 2-word form of the instruction. Likewise, the ' 
pseudo-op indicates use of the single-word direct form of the 
instruction. 



Consider the following example of the BASE pseudo-op: 

ORG 200 
A ? F 2.0 

BASE 200 
SETB 200 

FLDA A 
FADD B 
FMUL. C 
FSTA D 

This same program can be written with a subroutine: 

SETB 200 

1iL.r 
BASE 0 

00400 0000 SUBF< F 010 /L.E:AVE 2 WORDS FOR JSA  
0040.1. 0000 
00402 0200 FL.I:iA 0 /' A 
00403 120:l. FADD 3 / B 
00404 4202 FMUL 6 ./ C 
00405 6203 FSTA 1.1 /D 
00406 1030 J A  SUBR /'.-.-.RETURN--..- 

00407 0400 

This routine performs the same operation as the first one. The values 
0, 3, 6, and 11 are used with BASE 0 so that the assembler generates 
the correct 1-word instructions. 



14.0 RALF FEATURES 

T TL RALF symbols may be a b s o l u t e ,  r e l o c a t a b l e ,  or  e x t e r n a l ,  v ^ ~ e n  a 
r e l o c a t a b l e  symbol appears  i n  an assembled va lue ,  an i n d i c a t o r  is  
p laced  i n  t h e  b ina ry  ou tpu t  f i l e  s o  t h a t  t h e  r e l o c a t i n g  l o a d e r  (LOAD) 
w i l l  add t h e  base  l oad ing  add re s s  of t h e  assembled v a l u e  t o  a r r i v e  a t  
t h e  va lue  t o  be loaded.  I f  an e x t e r n a l  symbol appears ,  t h e  l oade r  
w i l l  look up t he  name of t h e  symbol i n  i ts  symbol t a b l e  and s u b s t i t u t e  
t h e  va lue  found t h e r e  f o r  t h e  symbol. The l oade r  symbol t a b l e  
c o n t a i n s  a l l  symbols de f i ned  by t h e  SECT, SECTS, FIELEI, COMMON, C Q M M Z  
and ENTRY pseudo-ops of RALF. Express ions  us ing both a b s o l u t e  and 
r e l o c a t a b l e  terms a r e  eva lua t ed  a s  f o l l ows  (where "op" i s  one of t h e  
s e t  [ + - * / & ! I  and "op l"  is  one of t h e  s e t  [ * / & ! I ) :  

Express ion Evaluated 

numeric c o n s t a n t  
l a b e l  

a b s o l u t e  op a b s o l u t e  
r e l o c a t a b l e  + a b s o l u t e  

r e l o c a t a b l e  - r e l o c a t a b l e  

ab so lu t e  - r e l o c a t a b l e  
express ion  op l  r e l o c a t a b l e  
r e l o c a t a b l e  o p l  express ion  

abso lu t e  
r e l o c a t a b l e  

ab so lu t e  
r e l o c a t a b l e  

a b s o l u t e  
r e l o c a t a b l e  

ERROR 
ERROR 
ERROR 

RALF code is d iv ided  i n t o  s e c t i o n s ;  each s e c t i o n  i s  a  s e p a r a t e l y  
l oadab l e  e n t r y  w i th in  t h e  assembly. These s e c t i o n s  a r e  de f i ned  v i a  
one of t h e  f i v e  pseudo-ops: SECT, SECTS, FIELD1, COMMON and COMMZ. 
Sec t i on  names a r e  placed i n  t h e  E x t e r n a l  Symbol D ic t i ona ry  ( E S D ) ,  
which is  used by t h e  r e l o c a t i n g  l oade r  t o  b u i l d  i t s  symbol t a b l e .  The 
pseudo-ops ENTRY and EXTERN a l low RALF programs t o  i n s e r t  o t h e r  
symbols i n t o  t h e  ESD and t o  r e f e r  t o  t h e s e  symbols i n  o t h e r  RALF 
programs a t  load  t ime.  Table  3 (Sec t i on  1 4 . 5 )  l i s t s  t h e  RALF 
pseudo-ops and t h e i r  meanings. 

1 4 . 1  Core Allocation 

I f  you p l an  t o  l i n k  RALF modules con t a in ing  PDP-8 mode code,  you m u s t  
be aware of t h e  co r e  a l l o c a t i o n  a lgor i thm of t h e  l oade r .  f i v e  RALF 
pseudo-ops may be used t o  s p e c i f y  a  s e c t i o n :  SECT, COMMON, SECTS, 
FIELDl, and COMMZ. These s e c t i o n s  a r e  loaded independent ly  by t h e  
l o a d e r ,  inc lud ing  t hose  i n  t h e  same RALF module. SECT is used t o  
begin a  s e c t i o n  of RALF code t h a t  can be loaded i n t o  any l e v e l  and 
ove r l ay  and anywhere i n  f i e l d  1 and above. COMMON i s  used t o  begin a  
s e c t i o n  wi th  a  g iven  name a v a i l a b l e  t o  COMMON s t a t emen t s  i n  FORTRAN or  
o t h e r  RALF modules. SECTS is used t o  begin a  s e c t i o n  of RALF code 
t h a t  i s  loaded i n t o  l e v e l  MAIN and is  r equ i r ed  t o  begin and end on a  
page boundary. FIELD1 is used t o  begin a  s e c t i o n  s u b j e c t  t o  a l l  t h e  
r e s t r i c t i o n s  of SECT8 and i n  a d d i t i o n  m u s t  be loaded i n t o  f i e l d  1. 
COMMZ i s  used t o  begin a  s e c t i o n  s u b j e c t  t o  a l l  t h e  r e s t r i c t i o n s  of 
FIELD1 and must be loaded i n t o  page 0 .  

The f i r s t  COMMZ s e c t i o n  encountered i s  fo rced  t o  begin a t  l o c a t i o n  
10000, t hus  enab l ing  a  page 0 i n  f i e l d  1. COMMZ s e c t i o n s  of t h e  same 
name a r e  handled l i k e  COMMON s e c t i o n s  of t h e  same name ( t h a t  i s ,  they  
a r e  combined i n t o  one common s e c t i o n ) .  Th i s  f e a t u r e  a l lows  8-mode 



c o d e  i n  d i f f e r e n t  m o d u l e s  t o  s h a r e  p a g e  0 ,  p r o v i d e d  t h a t  t h e  m o d u l e s  
d o  n o t  d e s t r o y  e a c h  o t h e r ' s  p a g e  0 a l l o c a t i o n s .  I n  t h e  f o l l o w i n g  
e x a m p l e ,  two  m o d u l e s  s h a r e  p a g e  0 ,  w i t h  t h e  f i r s t  u s i n g  l o c a t i o n s  0-17 
a n d  t h e  s e c o n d  u s i n g  l o c a t i o n s  20-37: 

P I ,  
P2, 
KSUBA1 I 
KSUBA2, 

LASTA , 

FIELD1 

p 3  I 
P4 I 
KSUBB I 

LASTB 
F I E L D 1  

The  
b e e  
t o  
Â£0 

/Module A 
COMMZ SHARE 
1 
2 
SUBA1 
SUBA2 

/ S h o u l d  n o t  g o  o v e r  
/20 l o c a t i o n s  

TADZ P I  
JMSZ% KSUBA1 

/MODULE B 
COMMZ SHARE 
ORG .+20 /ORG p a s t  m o d u l e  A ' s  

/Page  0 

3 
4 
SUBB 

-2 
R 
TADZ P3 

two COMMZ s e c t i o n s  w i l l  b e  p u t  o n  t o p  o f  o n e  a n o t h e r ;  h o w e v e r ,  
a u s e  o f  t h e  ORG .+20 i n  m o d u l e  BI t h e y  w i l l  e f f e c t i v e l y  r e s i d e  b a c k  
b a c k .  When t h e  image is l o a d e d ,  t h e  COMMZ s e c t i o n s  w i l l  l o o k  a s  
l o w s :  

LOC CONTENTS 

1 0017  -1 
1 0020 3 

2 1  4 
22 SUBB 



I f  module A is t o  r e f e r e n c e  module B ' s  page  0 ,  t h e  p r o c e d u r e  is: 

A l t e r n a t e l y ,  a d u p l i c a t e  of t h e  s o u r c e  code  f o r  COMMZ SHARE may b e  
i n c l u d e d  i n  module B. Modules t h a t  a r e  u s i n g  t h e  same COMMZ s e c t i o n  
must  be  aware  of  how it is d i v i d e d  up. A l though  COMMZ SHARE t a k e s  
o n l y  40 l o c a t i o n s ,  t h e  l o a d e r  a l l o c a t e s  a  f u l l  200 l o c a t i o n s  t o  it. 
A l l  %-mode s e c t i o n  c o r e  a l l o c a t i o n s  a r e  a l w a y s  rounded up  s o  t h a t  t h e y  
t e r m i n a t e  on  a  page  boundary .  I f  COMMZ s e c t i o n s  o f  d i f f e r e n t  names 
e x i s t ,  t h e y  a r e  a c c e p t e d  by t h e  l o a d e r  and i n s e r t e d  i n t o  f i e l d  1, bit 
o n l y  o n e  COMMZ is t h e  r e a l  p a g e  0.  I n  g e n e r a l ,  it is unwise  t o  have  
more than 1 COMMZ s e c t i o n  name, 

-rc LL.--- J.L L i i c L e  is more 4-1"'" nnn YnMM9 n e n 1 4 n  
Liian un<= p63Guuu-op in a module,  t hey  a re  

s t a c k e d  one  beh ind  t h e  o t h e r ,  b u t  t h e r e  is no way o f  s p e c i f y i n g  which  
<Â¥Â¥Â¥<">Ãˆ Ã‘..̂i--;̂....̂ one  s t a r t s  a t  abso lu t e  l o c a t i o n  0 o f  f i e l d  1. Luriri^i ~ C L L L V I I ~  a r e  

a l l o c a t e d  by t h e  l o a d e r  b e f o r e  FIELD1 s e c t i o n s .  

I f  you i n t e n d  t o  w r i t e  8-mode code  t h a t  w i l l  e x e c u t e  i n  c o n j u n c t i o n  
w i t h  c e r t a i n  8-mode l i b r a r y  r o u t i n e s ,  n o t e  t h a t  t h e  l a y o u t  o f  PDP-8 
FIELD1 #PAGE 0  is: 

LOCATION USE 
7 

0-1 Temps f o r  any  n o n - i n t e r r u p t  time r o u t i n e .  
2-13 User  l o c a t i o n s .  

14-157 System l o c a t i o n s .  
160-177 User locations. 

1. Do n o t  d e f i n e  any  COMMZ s e c t i o n s  o t h e r  t h a n  t h e  sys t em COMMZ 
which is #PAGEO. 

2. I f  t h e  sys t em page  0  is d e s i r e d ,  i t  w i l l  b e  p u l l e d  i n  from 
t h e  l i b r a r y  i f  EXTERN #DISP a p p e a r s  i n  t h e  code .  

3 .  Do n o t  u s e  any  p a r t  o f  page  0  r e s e r v e d  f o r  t h e  sys t em.  

FIELD1 s e c t i o n s  a r e  i d e n t i c a l  t o  COMMZ s e c t i o n s  i n  most  r e s p e c t s .  
Memory f o r  FIELD1 s e c t i o n s  is  a l l o c a t e d  a f t e r  COMMZ s e c t i o n s ,  
however, and FIELD1 s e c t i o n s  a r e  combined w i t h  FORTRAN COMMON 
s e c t i o n s  o f  t h e  same name a s  w e l l  a s  o t h e r  FIELD1 s e c t i o n s  o f  t h e  
same name. The f i r s t  d i f f e r e n c e  e n s u r e s  t h a t  COMMZ w i l l  b e  a l l o c a t e d  
page  0  s t o r a g e  even  i n  t h e  p r e s e n c e  o f  FIELD1 s e c t i o n s .  The second  
a l l o w s  PDP-8 code  t o  be  l o a d e d  i n t o  COMMON, making i t  p o s s i b l e  t o  
l o a d  i n i t i a l i z a t i o n  code  i n t o  d a t a  b u f f e r s .  Two FIELD1 s e c t i o n s  w i t h  
t h e  same name may be  combined i n  t h e  same manner a s  two COMMZ 
s e c t  i o n s .  

The p r i m a r y  p u r p o s e  o f  COMMZ is t o  p r o v i d e  a  PDP-8 page  0;  t h e  
p r i m a r y  p u r p o s e  o f  FIELD1 is t o  e n s u r e  t h a t  8-mode code  w i l l  b e  
l o a d e d  i n t o  f i e l d  1 and t h a t  g e n e r a t i n g  CIF CDF i n s t r u c t i o n s  i n - l i n e  
is n o t  n e c e s s a r y .  SECT8 s e c t i o n s  may n o t  b e  combined i n  t h e  manner 
o f  a  COMMON and a r e  n o t  e n s u r e d  o f  b e i n g  p l a c e d  i n t o  f i e l d  1. 



A s e c t i o n  b e g i n s  when a  p s e u d o - o p  w i t h  i t s  name f i r s t  a p p e a r s .  A 
SECTS s e c t i o n  is n o t  c o m b i n e d  w i t h  a n o t h e r  o f  t h e  same name i n  
a n o t h e r  RALF m o d u l e .  However ,  t h e  s e c o n d  u s e  o f  t h e  same name i n  t h e  
same m o d u l e  c o n t i n u e s  a  s e c t i o n .  F o r  e x a m p l e :  

SECT8 PARTA 

SECT8 PARTB 

SECT8 PARTA 

The s e c o n d  m e n t i o n  o f  PARTA i n  t h e  same m o d u l e  c o n t i n u e s  t h e  s o u r c e  
w h e r e  t h e  f i r s t  m e n t i o n  o f  PARTA e n d e d .  ( E a c h  s e c t i o n  h a s  a l o c a t i o n  
c o u n t e r .  ) 

An 8-mode s e c t i o n  d o e s  n o t  h a v e  t o  b e  l e s s  t h a n  a p a g e  i n  l e n g t h ;  
h o w e v e r ,  you  s h o u l d  b e  a w a r e  t h a t  a  SECT8 s e c t i o n  t h a t  e x c e e d s  o n e  
p a g e  may b e  l o a d e d  a c r o s s  a  f i e l d  b o u n d a r y  a n d  c o u l d  t h e r e b y  p r o d u c e  
d i s a s t r o u s  r e s u l t s  a t  e x e c u t i o n  time. F o r  t h i s  r e a s o n ,  i t  is 
g e n e r a l l y  u n w i s e  t o  c r o s s  p a g e s  i n  SECTS c o d e .  T h i s  s i t u a t i o n  w i l l  
n e v e r  o c c u r  o n  a n  8K c o n f i g u r a t i o n .  I f  t h e  t o t a l  amount  o f  COMMZ a n d  
FIELD1 c o d e  e x c e e d s  4K, t h e  l o a d e r  g e n e r a t e s  a n  OVER CORE m e s s a g e .  
The l o a d e r  g e n e r a t e s  a n  MS e r r o r  f o r  a n y  o f  t h e  f o l l o w i n g :  

1. A COMMZ s e c t i o n  name is i d e n t i c a l  t o  some e n t r y  p o i n t  o r  some 
non-COMMZ s e c t i o n  name. 

2 .  A FIELD1 s e c t i o n  name is i d e n t i c a l  t o  some e n t r y  p o i n t  o r  a  
SECT, SECT8 o r  COMMZ s e c t i o n  name. 

3 .  A SECTS s e c t i o n  name is i d e n t i c a l  to an e n t r y  p o i n t  o r  some 
o t h e r  s e c t i o n  name. 

COMMZ s e c t i o n s ,  l i k e  FORTRAN COMMONS, a r e  n e v e r  e n t e r e d  i n  t h e  l i b r a r y  
c a t a l o g .  

1 4 . 2  RALF Programming Notes 

The b e s t  m e a n s  o f  c r e a t i n g  RALF m o d u l e s  t h a t  c a n  b e  c a l l e d  f r o m  
FORTRAN p r o g r a m s  i s  t o  wr i te  a  s k e l e t o n  FORTRAN s u b r o u t i n e .  You 
s h o u l d  w r i t e  t h e  s u b r o u t i n e  s o  t h a t  i t  c a n  b e  c a l l e d  w i t h  t h e  same 
" c a l l "  s t a t e m e n t  t o  b e  u s e d  f o r  t h e  RALF s u b r o u t i n e .  T h i s  FORTRAN 
s u b r o u t i n e  is t h e n  c o m p i l e d  w i t h  t h e  RALF o u t p u t  s e n t  t o  a  m a s s  
s t o r a g e  f i l e .  T h i s  f i l e  may b e  m o d i f i e d  u s i n g  EDIT o r  TECO t o  c r e a t e  
t h e  d e s i r e d  m o d u l e .  



The a d d r e s s  pseudo-op  (ADDR) w h i c h  g e n e r a t e s  a two-word r e l o c a t a b l e  
1 5 - b i t  address  ( t h a t  is, JA TAG w i t h o u t  u s e  of JA) m i g h t  p r o v e  u s e f u l  
i n  8-mode r o u t i n e s .  The  f o l l o w i n g  e x a m p l e  d e m o n s t r a t e s  a way i n  w h i c h  
a n  8-mode r o u t i n e  i n  o n e  RALF m o d u l e  c a l l s  a n  8-mode r o u t i n e  i n  
a n o t h e r  m o d u l e .  

EXTERN SUB 

RIF 
TAD 
DC A 
u 
TAD 
RTL 
RAL 
TAD 
DCA 
0 

JMS % 

KSUB , ADDR 

ACDF 
. + 1  

KSUB 
CLL 

ACIF . +1 

KSUB+l 

SUB 

/ S e t  DF t o  c u r r e n t  
/ I F  f o r  r e t u r n  

/CDF X 
/Make a CIF  f r o m  
/ F i e l d  b i t s  

/CIF t o  f i e l d  
/ C o n t a i n i n g  SUB 

/Pseudo-op  t o  
/ G e n e r a t e  15  b i t  
/ADDR o f  s u b r o u t i n e  
/SUB 

ADCF, CDF 
ACIF, CIF  

I n  g e n e r a l  t h e  a d d r e s s  p s e u d o - o p  c a n  b e  u s e d  t o  s u p p l y  a n  8-mode 
s e c t i o n  w i t h  a n  a r g u m e n t  o r  p o i n t e r  e x t e r n a l  t o  t h e  s e c t i o n .  

FPP a n d  8-mode c o d e  may b e  c o m b i n e d  i n  a n y  RALF s e c t i o n .  PDP-8 mode 
r o u t i n e s  m u s t  b e  c a l l e d  i n  FPP mode by e i t h e r :  

TRAP3 SUB 
o r  TRAP 4 SUB 

A TRAP3 SUB c a u s e s  FRTS t o  g e n e r a t e  a JMP SUB w i t h  i n t e r r u p t s  o n  a n d  
t h e  FPP h a r d w a r e  ( i f  a n y )  h a l t e d .  TRAP4 g e n e r a t e s  a JMS SUB u n d e r  t h e  
same c o n d i t i o n s .  The  r e t u r n  f r o m  TRAP4 is: 

CDF CIF 0 
JMP% SUB 

The r e t u r n  f r o m  TRAP3 is: 

CDF CIF  0 
JMP% RETURN+l 

EXTERN #RETRN 
RETURN, ADDR #RETRN 

I t  is n o t  p o s s i b l e  t o  c a l l  PDP-8 mode s u b r o u t i n e s  f r o m  FORTRAN. A 
RALF s u b r o u t i n e  c a l l e d  f r o m  FORTRAN w i l l  b e  e n t e r e d  i n  FPP-mode; it 
may b r a n c h  i n t o  PDP-8 mode c o d e  u s i n g  a TRAP3 or  TRAP4. 



Communication between FPP and 8-mode routines is best done at the FPP 
level because the FPP mode gives you greater flexibility in both 
addressing and relocation. The following routine demonstrates how to 
pass an argument to, and retrieve an argument from, an 8-mode routine: 

EXTERN SUB 
EXTERN SUBIN 
EXTERN SUBOUT 

FLDA X /Arg for SUB 
FSTA SUBIN 
TRAP4 SUB /Call SUB 
FLDA SUBOUT /Get result 
FSTA Y 

If the 8-mode routine SUB were in the same module as the FPP routine, 
the EXTERNs would not be necessary. In practice it is common to put 
in the same section FPP and 8-mode routines that communicate with one 
another. A number of techniques can be used to pass arguments. For 
example, an FPP routine could move the index registers to an 8-mode 
section and pass single precision arguments via ATX. 

Because 8-mode routines are commonly used in conjunction with FPP code 
(generated by the compiler), the 8-mode programmer should be familiar 
with OS/8 FORTRAN IV subroutine calling conventions. The general code 
for a subroutine call is a JSR, followed by a JA around a list of 
arguments, followed by a list of pointers to the arguments. The FPP 
code for the statement: 

CALL SUB (X ,Y , 2 )  

would be 

EXTERN SUB 
JSR SUB 
J A BYARG 
J A X 
J A Y 
J A Z 

BYARG , 

The general format of every subroutine obeys the following scheme: 

RTN , 

BSUB, 

GOBAK , 

SECT SUB 
JA #ST /Jump to start of 

/Routine 
TEXT +SUB+ /Needed for 

/Trace back 
SETX XSUB /Reset SUB'S index 
SETB BSUB /And base page 
FNOP /Start of base page 
J A 

ORG BSUB+30 /Restart for SUB 
FN0P:JA RTN 
FNOP : JA. /Return to 

/Calling program 



Location 0000 of the calling routine's base page points to the list of 
arguments, if any, and may be used by the called subroutine provided 
J- 1- m a t  it is not modified. Location 0003 of t he  calling routine's base 
page is free for use by the called subroutine. Location 0030  of the 
calling routine's base page contains the address where execution is to 
continue upon exit from the subroutine so that a subroutine should not 
return from a JSR c a l l  v i a  l o c a t i o n  0 of t h e  c a l l i n g  r o u t i n e :  

CORRECT 
FLDA 30 
JAC 

INCORRECT 
FLDA 0 
JAC 

This return allows the calling routine to reset its own index 
registers and base page before continuing in-line execution. Genera l  
initialization code for a subroutine 

SECT SUB 
J A #ST 

BASE 0 
STARTD /SO only 

/Will be 
FLDA 
FSTA 
FLDA 
SETX 
SETB 
BASE 
INDEX 
FSTA 

would be: 

2 words 
picked 

30 /Get return JA 
GOBAK /Save it 
0 /Get pointer to 
XSUB /Set SUB'S XR 
BSUB /Set SUB'S' Base 
BSUB 
XSUB 
BSUBX /Store pointer 

UP 

list 

/somewhere on Base 

. 
STARTF /Set F mode before 
J A GOBAK /Return 

The preceding code can be optimized for routines that do not require 
full generality. The JA #ST around the base page code is a 
convenience which may be omitted. The three words of text are 
necessary only for error traceback and may also be omitted. If the 
subroutine is not going to call any general subroutines, the SETX and 
SETB instructions at location RTN and the JA RTN at location 0030  are 
not necessary. If the subroutine does not require a base page, the 
SETB instruction is not necessary in subroutine initialization; 
similar remarks apply to index registers. If neither base page nor 
index registers are modified by the subroutine, the return sequence: 

FLDA 0 
JAC 

is also legal. In a subroutine call, the JA around the list of \ 

arguments is unnecessary when there &re no arguments. A RALF listing 
of a FORTRAN source will provide a good reference of general FPP 
coding conventions. 

The AMOD routine is listed in Figure 1 to illustrate an application of 
the formal calling sequence. It also includes an error condition 
check and picks up two arguments. When called from FORTRAN, the code 
is AMOD (X,Y). 

If a PDP-8 mode subroutine is longer than one page and values are to 
be passed across page boundaries, the address pseudo-op, ADDR, is 



required. The format is: 

A V A R l ,  ADDR VAR1  

/ 
/ A M O D  
/ ................ 
/ 
/SUBROUTINE AMOD<XÃˆY 

SECT AMOD /SECTION NAME (REAL NUMBERS) 
ENTRY MOD /ENTRY POINT NAME (INTEGERS) 
J A #AMOK1 /JUMP TO START OF ROUTINE 
TEXT +AMOH t /FOR ERROR TRACE BACK 

AMODXR F SETX XRAMOD /SET INDEX REGISTERS 
SETB BPAMOD /ASSIGN BASE PAGE 

BPAMODÃ F 0 + 0  /BASE PAGE 
XRAMODY F 0.0 /INDEX REGS. 
AMODXP F 0.0 /TEMP STORAGE 

ORG 10*3+BPAMOD /RETURN SEQUENCE 
FNOP 
J A AMODXR 
0 

AMDRTN Y JA  + /EX IT  
EXTERN #ARGER 

AMODER Y TRAP4 *ARGER /PRINT AN ERROR MESSAGE 
FCL.A /EX IT  WITH FAC=0 
J A AMDRTN 
BASE 0 /STAY ON CALLER'S BASE PG 

/LONG ENOUGH TO GET RETURN ADDRESS 
MOD Y /START OF INTEGER ROUTINE SAME AS 
:ÃˆAMO P START11 /START OF REAL. MUM* ROUTINE 

FL.DA 10*3 /GET RETURN JUMP 
FSTA AMDRTN /SAVE I N  THIS  PROGRAM 
FLDA 0 SE.rX /GET POINTER TO PASSED ARG 

XRAMOH /ASSIGN MOD'S INDEX REGS 
SETB BPAMOD /AND I T S  BASE PAGE 
BASE BPAMOD 
1- D x I f l  
FsarA BF'AMDKI 
' 1  ...DA; BF^AMOD Y 3. /ADDR OF X 
FSTA AMODX 
FI  ... DAX E:F:'AMOIl Ã .I. + /ADDR OF Y 
F--STA BPAMOD 
sTAR'1.F" 
FL..DAX BPAMOD /GET Y 
J E (2 AMODER /Y=0 I S  ERROR 
J i; T . t3 
FNEG /ABS VALUE: 
FSTA BPAMOl'I 
FrL.DAX AMODX /GET X 
J G T  + +5 
I "  M E: i3 /ABS VAL.UE: 
1- D X 0 Y 1 /NOTE: SIGN 
FSTA AMODX /SAV I N  A TEMPORARY 
F-' D I V B F:' A M 0 1:i /I:UVIDE BY Y 
J A I... AMODER /TOO B I G *  
A I... N 0 ./'F-'IX I T  UF" NOW+ 
FNilRM 
FhUL RPAMO1:l ./MULTIPL..Y I T  + 
FNF:G /NEGATE: I T  + 

F'ADD AMO1:lX /AND ADD I N  X +  
J X N AMY 1 ./CHECK SI C7N 
FiqE(2 

,..I A AMDRTN ./' D O N E: 

F i g u r e  1 AMOD R o u t i n e  



This generates a two-word (15 bit) reference to the proper location on 
another paqe, here VAR1. For example, to pass a value to VAR1, 
possible code is: 

00124 1244 TAD VAR2 /Value on this page 
00125 3 7 5 7  DCA% AVARl+l /Pass through 1 2 - b i t  

/locat ion 
00156 0000 AVAR1,ADDR VARl /Field and 
00157 0322 /location of VAR1 

If it is doubtful that the effective address is in the current data 
field-,, it is necessary to create a CDF instruction to the proper 
field. In the above example, suitable code to add to specify the data 
f i e l d  is: 

TAD AVAR1 
RTL 
RAL 
TAD (6201 
DCA .+1 
0 

/Get field bits 
/Rotate to bits 6-8 

/Add a CDF 
/Deposit in line 
/Execute CDFn 

If the subroutine includes an off-page reference to another RALF 
module (for example, in FORLIB), you can address it by using an EXTERN 
with an ADDR pseudo-op. For example, in the display program, a 
reference to the non-interrupt task subroutine ONQB is coded as 

EXTERN 
ONQBX ADDR 

ONQB 
ONQB 

and is called by 

JMS % ONQBX+l 

No field change instruction is necessary here, because both library 
modules are defined by field 1 pseudo-op's, and so are both in the 
same field. 

RALF does not recognize LINC instruction or PDP-8 laboratory device 
instructions. You can include such instructions in the subroutine by 
defining them with equate statements in the program. 

For example, adding the statements: 

PDP = 2 
LINC = 6141 
DIS = 140 

takes care of all instructions for coding the PDP-12 display 
subroutine. 

When you are writing a routine that ic going to be longer than a page, 
it can be useful to have a non-fixed origin in order not to waste core 
and to facilitate modification of the code. A statement such as 

IFPOS .-SECNAM&177-K<ORG 
.-SECNAM&7600+200+SECNAM> 

will start a new page only if the value [current location less section 
name] is greater than some K (start of section has a relative value of 
0) where K symbol <177 and is the relative location on the current 



p a g e  b e f o r e  wh ich  a  new p a g e  s h o u l d  b e  s t a r t e d .  The ORG s t a t e m e n t  
i n c l u d e s  a n  AND mask o f  7600 t o  p e r s e r v e  t h e  c u r r e n t  page .  When i t  is 
added  t o  200 f o r  t h e  n e x t  page  and  t h e  s e c t i o n  name, t h e  new o r i g i n  is 
se t .  

When you  a r e  c a l c u l a t i n g  d i r e c t l y  i n  a  modu le ,  t h e  f o l l o w i n g  r u l e s  
a p p l y  t o  r e l a t i v e  and  a b s o l u t e  v a l u e s .  

r e l a t i v e  - r e l a t i v e  = a b s o l u t e  
a b s o l u t e  + r e l a t i v e  = r e l a t i v e  
OR ( ! )  , AND ( & )  and  ADD (+) o f  r e l a t i v e  symbo l s  

g e n e r a t e  t h e  RALF e r r o r  mes sage  RE. 

When you a r e  p a s s i n g  a r g u m e n t s  ( s i n g l e  p r e c i s i o n )  f rom FPP c o d e  t o  PDP 
c o d e ,  u s i n g  t h e  i n d e x  r e g i s t e r s  is  v e r y  e f f i c i e n t .  For  e x a m p l e ,  

FLDA% 
SETX 

ATX 

TRAP4 

. 
0 . 

TAD 

0 

ARG1 / G e t  a rgumen t  i n  FPP mode 
MODE8 /Change i n d e x  r e g i s t e r s  s o  XRO is 

/ A t  MODE8 
MODE8 /Save a rgumen t  

SUB8 /Go t o  PDP-8 r o u t i n e  

/PDP-8 r o u t i n e  

MODE8 /Get  a rgumen t  

/ I n d e x  r e g i s t e r s  set  h e r e  

The s o u r c e  o f  FORTRAN L i b r a r y  is t h e  b e s t  c o l l e c t i o n  a v a i l a b l e  o f  
u s e f u l  c o d i n g  t e c h n i q u e s  i n  RALF. Working example s  i n c l u d e  s u b r o u t i n e  
l i n k a g e ,  8-mode t r a p  s e q u e n c e s ,  backg round  t a s k  i n c l u s i o n ,  i n t e r r u p t  
h a n d l i n g ,  l a b o r a t o r y  p e r i p h e r a l  i n t e r f a c i n g ,  and m a t h e m a t i c a l  
c a l c u l a t i o n .  

1 4 . 3  Using the Assembler 

To r u n  FLAP/RALF a s  a  s t a n d a r d  OS/8 p rog ram,  t y p e :  

. R  FLAP ( o r  RALF) 
* b i n a r y , l i s t i n g <  i n p u t l , i n p u t 2 ,  ... 

B i n a r y  is  t h e  b i n a r y  o u t p u t  f i l e  ( d e f a u l t  e x t e n s i o n  . R I ) .  L i s t i n g  i s  
t h e  l i s t i n g  o u t p u t  f i l e  ( d e f a u l t  e x t e n s i o n  . L S ) .  I n p u t l ,  i n p u t 2 ,  e t c .  
a r e  up  t o  9 s o u r c e  i n p u t  f i l e s ,  ( d e f a u l t  e x t e n s i o n s  . R A ) .  The s o u r c e  
f i l e s  mus t  c o n t a i n  o n l y  o n e  FLAP/RALF s o u r c e  module ( t h a t  i s ,  one  END 
s t a t e m e n t ) .  



All error messages and the line that caused the error are printed on 
LL- L Lerminal during pass 1 ,  ~ i ' t h n ~ ~ t  

w L  affecting the binary output file. 
You may inhibit this output by typing CTRL/O. The error messages are 
also printed above the error line on the listing. FLAP/RALF error 
codes a r e  listed in the next section. 

You may abort assembly by typing CTRL/C. Each page of a FLAP/RALF 
listing has a one line header in the form: 

FLAP (or RALF) V nn mo da, yrPAGEr 

where nn is the assembler version number, mo da, yr is the date, and r 
is the  page number. 

-2,'- .- -ess t h e  listing file and xuu may use the /S option, in FLAP, to 
generate only the symbol map on pass 3. If no listing file is 
specified, the option is ignored. The /T o p t i o n  performs the same 
function in RALF. 

14.4 Error Messages 

During pass 2, error messsages are printed at the terminal as they 
occur. They are followed by the statement in which the error 
occur red. 

During pass 3, error codes are printed in the listing immediately 
preceding t h e  line in which the error occurred, except the EG message; 
which is printed after the line. If the line of code includes 
statements terminated by a semicolon, then the error message for a 
statement precedes the printing of its octal value on the next line. 

A fatal error caused an immediate return to the OS/8 monitor after the 
message is printed. Table 2 lists the error codes and their meanings. 

Error Code 

Table 2 
FLAP/RALF Error Codes 

- 

Meaning 

Illegal equate. The symbol had been defined 
previously. 

Illegal index register specification. 

Bad expression. Something in the expression is 
incorrect or the expression is not valid in this 
context. 

An attempt was made in an expression evaluation to 
divide by zero. 

The preceding line contains extra code which could 
not be used by the assembler. 

External symbol error. (RALF only) 

(continued on next page) 



Table 2 (Cont.) 
FLAP/RALF Error Codes 

Error Code Meaning 

An error has occurred in the FPP or software 
floating conversion routines. This could be due to 
an attempt to convert an excessively large or small 
number, or an internal error in the assembler 
occur red. 

A syntax error was encountered in a floating point 
or extended precision constant. 

The symbol or expression in a conditional is 
improperly used, or left angle bracket is missing. 
The conditional pseudo-op is ignored. 

An entry point has not been defined, or is absolute, 
or is also defined as a common, section, or 
external. (RALF only) 

A literal was used in an instruction which cannot 
accept one. (FLAP only) 

Input/output error (fatal error). 

Invalid reference in a PDP-8 instruction. 

An index register was specified for an instruction 
which cannot accept one. 

The line is longer than 127 characters. The first 
127 characters are assembled and listed. 

The tag on the line has been previously encountered 
at another location or has been used in a context 
requiring an absolute expression. 

Number error. A number out of range was specified 
or an 8 or 9 occurred in octal radix. 

Page overflow. Literals and instructions have been 
overlapped. (FLAP only) 

Relocatability error. A relocatable expression has 
been used in context requiring an absolute 
expression. (RALF only) 

User symbol table overflow (fatal error). 

Undefined symbol in an expression. 

External symbol table overflow. Control returns to 
the OS/8 Keyboard Monitor. (RALF only) 



14.5 FLAP/RALF Pseudo-operators 

Table 3 lists and describes the FLAP/RALF pseudo-ops. 

Table 3 
FLAP/RALF Pseudo-Operators 

ADDR 

COMMON name 

COMMZ name 

DECIMAL 

E xxx 

END 

ENPUNC 

ENTRY name 

EXTERN name 

F xxx 

FIELD1 name 

IFFLAP 

IFNDEF n 

IFNEG n 

IFNSW n 

Meaning 
- 

Place the 15-bit address of the symbol into 
two words of core at the current position 
of the location counter. 

A c c i r r n  
AauuA..J. .  base r e g i s t e r  f o r  1-word 
instructions. 

Causes the assembler to enter the common 
section whose name follows the pseudo-op. 

Define name as a special common sect ion 
restricted to load into page 0 of field 1. 

Set radix for integer conversion to 
decimal . 
Generate 6-word extended precision floating 
point constant. 

End of input. 

Re-enable binary output (FLAP only). 

Insert name into the ESD as an entry point. 
The symbol name must be defined as a 
relocatable symbol in the current assembly. 

Insert name into the ESD as an external 
reference;  The symbol name must not be 
defined in the current assembly. 

Generate 3-word floating point constant. 

Similar to SECTS, but this section is 
restricted to load into field 1 only. 

Assemble is the assembler if FLAP. 

Assemble is n is not defined. 

Assemble if n is negative. 

Assemble if switch n was not set in Command 
Decoder input. 

(continued on next page) 



Table 3 (Cont. ) 
FLAP/RALF Pseudo-Operators 

IFNZRO ii 

IFPOS n 

IFRALF 

IFREF symbol 

IFSW n 

IFZERO n 

INDEX n 

LISTOF 

OCTAL 

ORG expr 

PAGE 

REPEAT n 

s xxx 

SECT name 

TEXT 

ZBLOCK n 

- - 

Meaning 

Assemble if n is not zero. 

Assemble if n is positive. 

Assemble if the assembler if RALF. 

Assemble if symbol has already been defined 
or referenced. 

Assemble if symbol was set in Command 
Decoder input. 

Assemble if n is zero. 

Assign index register location. 

Inhibit program listing. 

Set radix for integer conversion to octal. 

Set current location counter to lower 15 
bits of expr. 

Set current location counter to the 
beginning of next core page (FLAP only) . 
Repeat next line n times. 

Generate 1-word constant (FLAP only). 

Define name as a section and begin that 
section. Subsequent SECT name commands 
will resume the section wherever it left 
off. 

Similar to SECT, but this section is 
restricted to load in level MAIN, on a 
200(8) word boundary. SECT8 is used to 
define sections that contain PDP-8 mode 
code. 

Assemble the text between delimiters as 
packed 6-bit ASCII characters. 

Assemble n words containing 0. 

Equate symbol on left of = to value of 
expression on right. 



INDEX 

Addressing, 
in -b^P mode, 11 
in PDP-8 mode, 5 

Arithmetic operations, 3 

Base page, 
FPP, 12, 19 

Bracket ( [ )  used in PDP-8 
expression (FLAP), 13 

Comments, 3 

Data, 
specification,, FLAP, 14 

Error messages, 31 
Expressions, 2 

FPP mode addressing, 11 
FPP operation codes, 6 to 11 

Hardware configuration, 1 

Indirect addressing, 5 
Instructions, 2 

Labels, 2 
Links, FLAP, 13 
Logical operations, 3 

Memory, FPP, 11 

Operations, 
arithmetic and logicaly 3 

Page 0 reference, 5 
PDP-8 mode addressing, 5 
PDP-8 operation codes, 3 
Pseudo-operators, 
FLAP, 14 to 19 
FLAP/RALF, 3 3  

RALF assembler, 
subroutines, 24 

Semicolon use, 1 
Slash ( / I ,  1 
Space character, 1 
Statement syntax, 1 
Subroutines, 24 

Tabs, 1 

Z character, 5 

Index- 1 



SABR 



CONTENTS 

P a g e  

INTRODUCTION 
C a l l i n g  and Using OS/8 SABR 
OS/8  - SABR O p t i o n s  
~ x a m p l e s  of OS/8 SABR I / O  Specification Commands 

THE CHARACTER S E T  
A l p h a b e  t i c  
N u m e r i c  
S p e c i a l  C h a r a c t e r s  

STATEMENTS 
L a b e  1s 
O p e r a t o r s  
O p e r a n d s  
C o n s t a n t s  
N u m e r i c  C o n s t a n t s  
A S C I I  C o n s t a n t s  
Literals 
P a r a m e t e r s  
S y m b o l s  
C o m m e n t s  

INCREMENTING OPERANDS 
PSEUDO-OPERATORS 

A s s e m b l y  C o n t r o l  
S y m b o l  D e f i n i t i o n  
D a t a  G e n e r a t i n g  

SUBROUTINES 
CALL and ARG 
ENTRY and RETRN 
E x a m p l e  
P a s s i n g  S u b r o u t i n e  A r g u m e n t s  

SABR OPERATING CHARACTERISTICS 
P a g e - b y - P a g e  A s s e m b l y  
P a g e  F o r m a t  
P a g e  E s c a p e s  
M u l t i p l e  Word I n s t r u c t i o n s  
R u n - T i m e  L i n k a g e  R o u t i n e s  
S k i p  I n s t r u c t i o n s  
P r o g r a m  Addresses 
T h e  S y m b o l  T a b l e  

THE SUBPROGRAM LIBRARY 
Inpu t / O u t p u t  
F l o a t i n g  P o i n t  A r i t h m e t i c  
I n t ege r  A r i t h m e t i c  
S u b s c r i p t i n g  
F u n c t i o n s  
U t i l i t y  R o u t i n e s  
D E C t a p e  1/0 R o u t i n e s  

THE BINARY OUTPUT TAPE 
L o a d e r  R e l o c a t i o n  C o d e s  

SAMPLE ASSEMBLY L I S T I N G S  

iii 



CONTENTS ( C o n t  . ) 

P a g e  

APPENDIX 

INDEX 

SABR PROGRAMMING NOTES 
O p t i m i z i n g  SABR Code 
C a l l i n g  t h e  OS/8  USR and D e v i c e  H a n d l e r s  

SABR ERRORS 
LINKING LOADER 

C a l l i n g  and U s i n g  t h e  L i n k i n g  L o a d e r  
L i n k i n g  L o a d e r  O p t i o n s  
E x a m p l e s  of 1/0 Command  S t r i n g s  
L i n k i n g  L o a d e r  E r r o r  M e s s a g e s  

LIBRARY SETUP (LIBSET) 
C a l l i n g  and U s i n g  L I B S E T  
L I B S E T  O p t i o n s  
E x a m p l e s  of L I B S E T  U s a g e  
S u b r o u t i n e  N a m e s  
S e q u e n c e  for L o a d i n g  Subrou t ines  
L I B S E T  E r r o r  M e s s a g e s  

LIBRARY PROGRAMS 
DEMONSTRATION PROGRAM USING LIBRARY ROUTINES 

SABR INSTRUCTION CODES AND PSEUDO-OPERATORS 

TABLES 

TABLE 1 SABR Options 
2 SABR P s e u d o - O p e r a t o r s  
3 SABR E r r o r  C o d e s  
4 L i n k i n g  L o a d e r  O p t i o n s  
5 L i n k i n g  L o a d e r  E r r o r  M e s s a g e s  
6 L I B S E T  E r r o r  M e s s a g e s  
7 L i b r a r y  E r r o r  M e s s a g e s  



SABR 

1.0 INTRODUCTION 

You can use the OS/8 SABR assembler as the automatic second pass of 
the FORTRAN compiler, call it separately to do assemblies of FORTRAN 
compiled files, or use it as an independent assembler with its own 
assembly language. In addition, you may use SABR statements in an 
OS/8 FORTRAN program, expanding the capabilities of the FORTRAN 
language. 

1.1 Calling and Using OS/8 SABR 

Unless otherwise specified, OS/8 calls the SABR assembler 
automatically to assemble the output of a FORTRAN compilation. A t  
other times you can call SABR by typing: 

R SABR 

in response to the Keyboard Monitor dot. When the Command Decoder 
prints an asterisk in the left margin, type the appropriate device 
assignations, 1/0 files, and any of the acceptable options. 

The line to the Command Decoder consists of 0 to 3 output device and 
file designations, 1 to 9 input device and file designations, and the 
desired option(s) . The form is: 

*BINARY ,LISTING ,MAP<INPUT FILE (S) /OPTION (S) 

where BINARY represents the binary output, LISTING the listing output, 
and MAP the Linking Loader loading map input. Unless you indicate 
alternate extensions, SABR assumes the following extensions: 

File Type Extens ion 

input file 
binary output 
listing output 

If you do not indicate a binary output file, SABR will not generate a 
binary output. However, if you specify the /L or /G option, SABR will 
generate a binary file under the assigned name SYS:FORTRL.TM. 

1.1.1 OS/8 SABR Options - The options you can include in a command 
string to OS/8 SABR are listed in Table 1. 



SABR 

Table 1 
SABR Options 

Option Meaning 

Indicates that the input file is an 8K FORTRAN output 
file. 

Calls the Linking Loader, loads the program into core 
and begins execution. If a binary output file is not 
specified, then FORTRL.TM is loaded into core and 
deleted from the file device. If a starting address 
is not specified (using the options to the Linking 
Loader), control is sent to the program entry point 
MAIN (the FORTRAN compiler gives this name 
automatically to the main program). 

Calls the Linking Loader at the end of the assembly 
and loads the specified binary file. If a binary 
output file is not specified, then the temporary file 
FORTRL-TM is loaded into core and deleted from the 
file device. The Loader then either returns to the 
Keyboard Monitor with a core image or asks for more 
input, depending on whether an ALT MODE or RETURN key 
has terminated the input line. 

Outputs the symbol table but not the rest of the 
listing (applicable only if a listing file is 
specified) . 
Omits the symbol table from the listing (applicable 
only if a listing file is specified). 

When you specify the /L or /G option, you can include any options to 
the Linking Loader (described in Section 13, Linking Loader) in the 
command string for SABR. You cannot include the /L (Library) option 
of the Linking Loader, since it would conflict with the SABR /L 
option. 

NOTE 

The FORTRAN compiler automatically 
generates an entry point named MAIN 
whose address is the beginning of the 
program. When writing a main program in 
SABR, specify the entry point MAIN with 
the entry pseudo-op in order to 
symbolically specify the starting 
address to the Linking Loader. 
(Otherwise you must specify the starting 
address to the Loader as a five digit 
address. ) 



SABR 

1.1.2 Examples of OS/8 SABR 1/0 Specification Commands 

Example I: 

DSK:FORTRN.TM is assembled as a FORTRAN output file and the 
relocatable binary is loaded and started at the entry point MAIN. 

Example 2: 

2.0 THE CHARACTER SET 

2.1 Alphabetic 

In addition to the letters A through Z, SABR considers the following 
to be alphabetic: 

[ left bracket 
] right bracket 
\ back slash 
A 

up arrow 

2.2 Numeric 

SABR recognizes the numbers 0 to 9. 

2.3 Special Characters 

The following printing and non-printing characters are legal: 

Comma 
Slash 
Left parenthesis 
Quote 
Minus sign 
Number sign 

RETURN 
(carriage return) 
Semicolon 
LINE FEED 
FORM FEED 
SPACE 

TAB 
RUBOUT 

delimits a symbolic address label 
indicates start of a comment 
indicates a literal 
precedes an ASCII constant 
negates a constant 
increases value of preceding symbol 
by one 
terminates a statement 

terminates an instruct ion 
ignored 
ignored 
separates and delimits items on the 
statement line 
same as space 
ignored 



SABR 

All other characters are illegal except when used as ASCII constants 
following a quote (I1), or used in comments or text strings. All legal 
and illegal characters, used in ways different from the above, cause 
SABR to print the error message C (Illegal Character). 

STATEMENTS 

SABR symbolic programs are a sequence of statements usually prepared 
on the terminal, on-line, with the aid of the Symbolic Editor program. 
SABR statements are virtually format free. You terminate each 
statement by typing the RETURN key. (The Editor automatically 
provides a line feed.) You can type two or more statements on the same 
line, using the semicolon as a separator. 

You compose a statement line using one or all of the following 
elements: label, operator, operand and comment -- all separated by 
spaces or tabs (labels require a following comma). You can identify 
the types of elements in a statement by the order of appearance in the 
line and by the separating or delimiting character that follows or 
precedes the element. 

Write statements in the general form: 

label, operator operand /comment (preceded by slash) 

SABR generates one or more machine instructions or data words for each 
source statement. 

An input line may be up to 72(10) characters long, including spaces 
and tabs. Any characters beyond this limit are ignored. 

The RETURN key 
You may use 
terminating a 1 
instructions t 
(L) six places 

(CR/LF) is bot 
t h e  semicolon 
ine. If, for 
o rotate the 
to the right, 

h an i 
to 

exampl 
conten 
your i 

nstru 
termi 
e, YO 
t s  of 
nstru 

ction 
nate 
u wan 
the 

ction 

and a line 
an instruc 
t to write a 
accumulator 
s might look 

termin 
tion wi 
sequenc 
(AC) and 
like th 

ator. 
thout 
e of 
link 
is: 

You may place all three RTR's on a single line, separating each RTR 
with a semicolon and terminating the line with the RETURN key. You 
could then write the preceding sequence of instructions: 

This format is particularly useful when creating a list of data: 

You may use null lines to format program listings. A null line is a 
line containing only a carriage return and possibly spaces or tabs. 
Such lines appear as blank lines in the program listing. 



S ABR 

3.1 Labels 

A label is a symbolic name or location tag you created to identify the 
address of a statement in the program. You can make subsequent 
references to the statement by referencing the label. If present, the 
label is written first in a statement and terminated with a comma. 

0200 0000 SAVE Y 0 
0201 1200, ABC? TAD SAVE 

SAVE and ABC are labels referencing the statements in location 0200 
and 0201, respectively. 

3.2 Operators 

An operator is a symbol or code that indicates an action or operation 
to be performed, and may be one of the following: 

1. A direct or indirect memory reference instruction 

2. An operate or IOT microinstruction 

3. A pseudo-operator 

All SABR operators, microinstructions and memory reference 
instructions are summarized in the Appendix. 

3.3 Operands 

An operand represents that part of the statement that is manipulated 
or operated upon, and may be a numeric constant, a literal or a 
user-defined address symbol. 

In the example last given, SAVE represents an operand. 

3.3.1 Constants - Constants are data used but not changed by a 
program. They are of two types: numeric and ASCII. ASCII constants 
are used only as parameters. You may use numeric constants as 
parameters or as operand addresses, for example: 

0200 14:1.2 TAD I 12 

SABR treats constant operand addresses as absolute addresses, just as 
a symbol defined by an ABSYM statement (see Section 5.2, Symbol 
Definition). References to them are not generally relocatable; 
therefore, use them only with great care. The primary use of constant 
operand addresses is to reference locations on page 0. All constant 
operand addresses are assumed to be in the field into which the 
Linking Loader loads the program. 

Constants may not be added to or subtracted from each other or from 
symbols. 



SABR 

3.3.1.1 Numeric Constants - A numeric constant consists of a single 
string of from one to four digits. You may precede it with a minus 
sign ( - )  to negate the constant. The digit string will be interpreted 
as either octal or decimal according to the latest permanent mode 
setting by an OCTAL or DECIM pseudo-operator (explained under Assembly 
Control). Octal mode is assumed at the beginning of assembly. The 
digits 8 and 9 must not appear in an octal string. 

3.3.1.2 ASCII Constants - You may create eight-bit ASCII values as 
constants by typing the ASCII character immediately following a double 
quotation mark (I1). You may use a minus sign to negate an alphabetic 
constant. The minus sign must precede the quotation mark. 

0200 0273 A Y 
a 

0201 7477 - " A  / -301 
0202 0207 /BELL FOLLOWS 

The following are illegal as alphabetic constants: carriage return, 
line feed, form feed and rubout. 

3.3.2 Literals - A literal is a numeric or ASCII constant preceded by 
a left parenthesis. The use of literals provides a special and 
convenient way of generating constant data in a program. The value of 
the literal will be assembled in a table near the end of the core page 
on which the instruction referencing it is assembled. The instruction 
itself will be assembled as an appropriate reference to the location 
where the numeric value of the literal is assembled. Literals are 
normally used by TAD and AND instructions, as in the following 
examples: 

0200 0-5'6 A 7 AND (777 
0201 1375 TAD (-50 
0202 1374 T A D  ("C 

The numeric conversion mode is initially set to octal, but is 
controllable with the DECIM and OCTAL pseudo-operators. You can 
change this mode on a local basis by inserting a D (decimal) or a K 
(octal) between the left parenthesis and the constant, for example: 

(D32 becomes 0040 (octal) 
(K-32 becomes 7746 (octal) 

This usage is confined only to the statement in which it is found and 
does not alter the prevailing conversion mode. 



SABR 

You may also use a literal as a parameter (that is, with no operator). 
In  t h i s  case t h e  numeric value of t h e  literal is assembled as usual in 
the literal table near the end of the core page currently being 
assembled, and a relocatable pointer to the address of the literal is 
assembled in the location where the literal parameter appeared. 

This feature is intended primarily for use in passing external 
subroutine arguments with the ARC pseudo-operator, which is explained 
in greater detail in Section 5. 

3.3.3 Parameters - A parameter is generally either a numeric 
constant, a literal or a user-defined address symbol, which is 
intended to represent data rather than serve as an instruction. It 
appears as an operand in a statement line containing no operator. (An 
exception to this is a parameter used in conjunction with the ARG 
pseudo-operator, explained in Section 6 ,  Subroutines.) In the 
following example, 200 and -320, M, and PGOADR all represent 
parameters. 

3.3.4 Symbols - Symbols are composed of legal alphanumeric characters 
and are delimited by a non-alphanumeric character. There are two 
major types of symbols: permanent, and user-defined. 

Permanent Symbols 
Permanent symbols are predefined and maintained in SABR's permanent 
symbol table. They include all of the basic instructions and 
pseudo-operators in Appendix C. You may use these symbols without 
prior definition by you. 

User-Defined Symbols 
A user-defined symbol is a string of from one to six legal 
alphanumeric characters delimited by a non-alphanumeric character. 
User-defined symbols must conform to the following rules: 

The characters must be legal alphanumerics -- 

ABCD ... XYZ,[]\" and 0123456789. 

The first character must be alphabetic. 

Only the first six characters are meaningful. A symbol such 
as INTEGER would be interpreted as INTEGE. Since the symbols 
GEORGE1 and GEORGE2 differ only in the seventh character, 
they would be treated as the same symbol: GEORGE. 

A user-defined symbol cannot be the same as any of the 
pre-defined permanent symbols. 

A user-defined symbol need be defined only once. Subsequent 
definitions will be ineffective and will cause SABR to type 
the error message M (Multiple Definition). 



SABR 

A symbol is defined when it appears as a symbolic address label or 
when it appears in an ABSYM, COMMN, OPDEF or SKPDF statement (see 
Section 5, Pseudo-Operators). No more than 64 different user-defined 
symbols may occur on any one core page. 

Equivalent Symbols 
When an address label appears alone on a line -- with no instruction 
or parameter -- the label is assigned the value of the next address 
assembled. 

TAG1 and TAG2 are equivalent symbols in that they are assigned the 
same value. Therefore, a TAD TAG1 will reference the data at TAG2. 
TAGS, however, is not equivalent to TAG2. TAG3 would be defined as 1 
greater than TAG2. 

3.4 Comments 

You may add notes to a statement by preceding them with a slash mark. 
Such comments do not affect assembly or program execution but are 
useful in interpreting the program listing for later analysis and 
debugging. Entire lines of comments may be present in the program. 

None of the special characters or symbols have significance when they 
appear in a comment. 

/THIS IS A COMMENT LINE. 
/THIS ALSO. TAD;CALL;#"-2C+=! 
A, TAD SAVE /SLASH STARTS COMMENT 

4.0 INCREMENTING OPERANDS 

Because SABR is a one-pass assembler and also because it sometimes 
generates more than one machine instruction for a single user 
instruction, operand arithmetic is impossible. Statements of the 
following form are illegal: 

TAD TAG+3 
TAD LIST-LIST2 
JMP .+6 

However, by appending a number sign to an operand you can reference a 
location exactly one greater than the location of the operand (the 
next sequential location): TAD LOC# is equivalent to the PAL language 
statement TAD LOC+l. 

0200 0020 1- m 20 
0201 0030 30 
0202 1200 START? TAD LOG /GET 20 
0203 1201 TAD LOC# /GET 30 

PAGE 
0400 0200 A Y LOG 
0401 0201 B Y  L. Cl C :k 

In assembling #-type references, SABR does not attempt to determine if 
multiple machine code words are generated at the symbolic address 
referenced. 



SABR 

4 

TAD (7500 /SMA 
nra  ... -. START# 

In the preceding example, an attempt was made to change the NOP 
instruction to an SMA. However, this is not possible because TAD I 
LOC will be assembled as three machine code words; if START is at 
0200, the NOP will be at 0203. The SMA will be inserted at 0201, thus 
destroying the second word of the TAD I LOC execution. 

To avoid this error, you should carefully examine the assembly listing 
before attempting to modify a program with #-type references. In the 
previous example the proper sequence is: 

0202 4067 START9 TAD I LOC 
0203 0200 01 
0204 1407 
0205 7000 VAR 9 NOP 
0206 1377 TAD (7500 
0207 3205 DCA VAR 
0377 7500 

The #-sign feature is intended primarily for manipulating DUMMY 
variables when picking up arguments from external subroutines and 
returning from external subroutines (see Section 6.4, Passing 
Subroutine Arguments). 

5.0 PSEUDO-OPERATORS 

Table 2 lists the pseudo-operators available in SABR, whether used as 
a free-standing assembler or in conjunction with the FORTRAN compiler. 
The pseudo-operators are categorized and explained in the paragraphs 
following the table. 

Table 2 
SABR Pseudo-Operators 

ABSYM 

Mnemonic Code 

ARG 

Operation 

Direct absolute symbol definition, used to 
indicate an absolute core address. For example: 

I ABsYM TEM 177 
/PAGE ZERO ADDRESS 

Argument for subroutine call, indicating a value 
to be transmitted, one value per ARG statement. 
Used only with CALL. For example: 

N1, ARG (50 
N2, ARG LOCATN 

(continued on next page) 



S ABR 

Table 2 (Cont.) 
SABR Pseudo-Operators 

Mnemonic Code 

BLOCK 

CALL 

COMMN 

CPAGE 

DECIM 

DUMMY 

EAP 

END 

ENTRY 

FORTR 

Operation 

Reserve storage block; reserves n words of core 
by placing zeros in them. For example: 

BLOCK 200 /RESERVE 300 
BLOCK 100 / (OCTAL) LOCATIONS 

Call external subroutine. For example: 

CALL 2 I SUBR 

where 2 is the number of arguments to be passed 
and SUBR is the subroutine name. 

Common storage definition, used to name 
locations in field 1 as externals to be 
referenced by any program. For example: 

A r COMMN 20 /20 WORDS IN COMMON 

Check if page will hold data, followed by the 
number of words of code which must be kept 
together in a unit on a page. That number of 
words following the CPAGE will be assembled as a 
unit on the next available core page. 

Decimal conversion, numeric conversion 
interprets all numbers input as being decimal 
numbers. 

Dummy argument definition, used in passing 
arguments to and from subroutines. DUMMY 
variables are defined in the subprograms which 
reference them. For example: 

ENTRY A1 
DUMMY X 
DUMMY Y 

Enter automatic paging mode,, restore automatic 
paging (see LAP) . 
End of program or subprogram. 

Define program entry point, used at beginning of 
subprograms to give name of entry point for the 
Linking Loader. For example: 

ENTRY SUBROU 
SUBROU, BLOCK 2 

Assemble FORTRAN tape. 

(continued on next page) 



SABR 

Table 2 (Cont.) 
SABR Pseudo-Uperators 

Mnemonic Code 

I 

IF 

LAP 

OCTAL 

OPDEF 

PAGE 

PAUSE 

REORG 

RETRN 

SKPDF 

operation 

Symbolic representation for indirect addressing. 
For example: 

DCA I ADD 

Conditional assembly, of form: 

IF NAME, 7 

I f  t h e  symbol NAME has been nr~viouslv defined. 
the statement has no effect. If ~ A M E  is not 
defined, the next 7 symbolic instructions are 
not assembled. 

Leave automatic paging. Assembler is initially 
set for automatic jumps to the next core page 
r..k n m w i i c i i  the current page is full (or upon REORG or 
PAGE statements). This feature can be 
suppressed with LAP. 

Octal conversion, numeric conversion is 
originally set to octal and can be changed back 
to octal after a DECIM pseudo-op has been used. 

Define non-skip operator. For example: 

OPDEF DTRA 6761 

Terminate current page, begin assembly of 
succeeding instructions on next core page. 

Pause for next tape, designed to allow large 
source tapes to be broken into several smaller 
segments. Assembly is continued by pressing the 
CONT switch. 

Terminate page and reset origin; origin 
settings are always to the first address of a 
page. For example: 

REORG 1000 

Return from external subroutine, the name of the 
subroutine being left must be specified. Before 
the RETRN statement is used, the pointer in the 
second word of the subprogram entry must be 
incremented to the point following all arguments 
in the calling program (after the CALL 
statement). 

Define skip-type operator. For example: 

SKPDF DTSF 6771 

(continued on next page) 



SABR 

Table 2 (Cont.) 
SABR Pseudo-Operators 

Mnemonic Code 

TEXT 

ACH 

ACM 

ACL 

Operation 

T e x t  string similar to BLOCK, except that the 
argument is a text string. Characters are 
stored in six-bit stripped ASCII with a printing 
character used to delimit the string. For 
example : 

TAG, TEXT /123*/ 

the string would be stored as: 

Odd characters are filled with zeros on the 
right. 

The floating-point accumulator (in field 
1) - 

High-order word. 

Middle word. 

Low-order word. 

5.1 Assembly Control 

END Every program or subprogram to be assembled must 
contain the END pseudo-op as its last line. If you do 
not meet this requirement, an error message ( E )  is 
given. 

PAUSE The PAUSE pseudo-op causes assembly to halt and is 
designed to allow you to break up a large source tape 
into several smaller segments. To do this, you need 
only place a PAUSE statement at the end of each section 
of your source program except the last. Each of these 
sections of the program is then output as an individual 
tape. When assembly halts at a PAUSE, remove the 
source tape just read from the reader and insert the 
next one. You may then continue assembly by pressing 
the CONTinue switch. 

WARNING 

The PAUSE pseudo-op is designed 
specifically for use at the end of 
partial tapes and should not be used 
otherwise. 



SABR 

LAP 

EAP 

PAGE 

The reason for this is that the reader routine may have 
"-->a data from t h e  paper tape  i n t o  its bu t t e r  t h a t  is 
actually beyond the PAUSE statement. Consequently, 
when you press CONTinue after the PAUSE is found by the 
line interpreting routine, the entire content of the 
reader buffer following the PAUSE is destroyed, and the 
next tape begins reading into a fresh buffer. Thus, if 
there is any meaningful data on the tape beyond the 
PAUSE statement, it will be lost. 

Initially the numeric conversion mode is set for octal 
conversion. However, if you wish, you may change it to 
decimal by use of the D E C I M  pseudo-ope 

If the numeric conversion mode has been set to decimal, 
you may change it back to octal by using the OCTAL 
pseudo-op. 

No matter which conversion mode has been permanently 
set, it may always be changed locally for literals by 
use of the (D or (K syntax described earlier, for 
example : 

0200 0320 STARTY 320 
DEE I M 

0201 0500 320 
0202 0377  01 < K320 
0203 1000 512 

OCTAL  
0204 0512 5 12 
0205 0376 01 <D512 
0206 0320 3520 

END 

The assembler is initially set for automatic generation 
of jumps to the next core page when the page being 
assembled fills up (Page Escapes), or when PAGE or 
REORG pseudo-ops are encountered. This feature may be 
suppressed by use of the LAP (Leave Automatic Paging) 
pseudo-op. 

If you have previously suppressed the automatic paging 
feature, you may restore it to operation by using the 
EAP (Enter Automatic Paging) pseudo-op. 

The PAGE pseudo-op causes the current core page to be 
assembled as is. Assembly of succeeding instructions 
will begin on the next core page. No argument is 
required. 



SABR 

REORG The REORG pseudo-op  is s i m i l a r  t o  t h e  PAGE pseudo-op ,  
e x c e p t  t h a t  y o u  m u s t  g i v e  a  n u m e r i c a l  a r g u m e n t  
s p e c i f y i n g  t h e  r e l a t i v e  l o c a t i o n  w i t h i n  t h e  s u b p r o g r a m  
w h e r e  a s s e m b l y  o f  s u c c e e d i n g  i n s t r u c t i o n s  is  t o  b e g i n .  
You may n o t  g i v e  a REORG b e l o w  200 .  A REORG s h o u l d  
a l w a y s  b e  t o  t h e  f i r s t  a d d r e s s  o f  a p a g e ,  it w i l l  b e  
c o n v e r t e d  t o  t h e  f i r s t  a d d r e s s  o f  t h e  p a g e  i t  is o n .  

0 2 0 0  7 2 0 0  STARTY CLA 
PAGE 

0 4 0 0  7 0 4 0  CM A 
REORG 1000 

1 0 0 0  7 0 4 1  C I A  

CPAGE The CPAGE pseudo-op  f o l l o w e d  by  a  n u m e r i c a l  a r g u m e n t  N 
s p e c i f i e s  t h a t  t h e  f o l l o w i n g  N w o r d s  o f  c o d e  m u s t  b e  
k e p t  t o g e t h e r  i n  a  s i n g l e  u n i t  a n d  n o t  b e  s p l i t  u p  by  
p a g e  e s c a p e s  a n d  l i t e r a l  t a b l e s .  I f  t h e  N w o r d s  o f  
c o d e  w i l l  n o t  f i t  o n  t h e  c u r r e n t  p a g e  o f  c o d e ,  t h e  
c u r r e n t  p a g e  is a s s e m b l e d  a s  i f  a  PAGE pseudo-op  had  
b e e n  e n c o u n t e r e d .  The  N w o r d s  o f  c o d e  w i l l  t h e n  b e  
a s s e m b l e d  a s  a  u n i t  o n  t h e  n e x t  c o r e  p a g e .  An e x a m p l e  
f o l l o w s .  

CPAGE n o r m a l l y  s p e c i f i e s  a  d a t a  a r e a .  However ,  i f  
t h e s e  N w o r d s  a r e  i n s t r u c t i o n s ,  f o r  e x a m p l e ,  a  CALL 
w i t h  a r g u m e n t s ,  you  m u s t  c o u n t  t h e  e x t r a  m a c h i n e  
i n s t r u c t i o n s  t h a t  SABR m u s t  i n s e r t .  

NOTE 

N m u s t  b e  less  t h a n  o r  e q u a l  t o  200 
( o c t a l )  i n  n o n a u t o m a t i c  p a g i n g  mode o r  
less t h a n  o r  e q u a l  t o  1 7 6  o c t a l  i n  
a u t o m a t i c  p a g i n g  mode. 

0 2 0 0  7200 START7 CLA 
L-AP / I N H I B I T  PAGE ESCAPE 
CPAGE 2 0 0  /CIL..OSES THE 

0 4 0 0  0 0 0 0  NAME:! /CURRENT PAGE 
0 4 0 1  0 0 0 0  NAME-2 /AND ASSEMBL-ES 

/THE NEXT PAGE 

Use t h e  c o n d i t i o n a l  p s e u d o - o p ,  I F ,  w i t h  t h e  f o l l o w i n g  
s y n t a x :  

The a c t i o n  o f  t h e  pseudo-op  i n  t h i s  c a s e  is t o  f i r s t  
d e t e r m i n e  w h e t h e r  t h e  symbol  NAME h a s  b e e n  p r e v i o u s l y  
d e f i n e d .  I f  NAME is d e f i n e d ,  t h e  pseudo-op  h a s  no  
e f f e c t .  I f  NAME is  n o t  d e f i n e d ,  t h e  n e x t  s e v e n  
s y m b o l i c  i n s t r u c t i o n s  ( n o t  c o u n t i n g  n u l l  l i n e s  a n d  
comment l i n e s )  w i l l  b e  t r e a t e d  a s  comments and  n o t  
a s s e m b l e d .  



/ABSYM NAME 1 7 6  
-. .... ,.THE NEXT LINE 
L I -  NAMEÃ 2 -. 

CLL RTL /TO BE ASSEMBLED 
R AL / W I L . . L  BE " D C A  LOG " 

/ I F  THE: SLASH BEFORE "ABSYM NAME 1 7 6 "  
/IS REMOVEDY THE "CL.1 R T L "  AND "RAL-' 
/l>m-L BE: ASSEMBLED* 

Normally the symbol referenced by an IF statement 
should be either an undefined symbol or a symbol 
d e f i n e d  by an ABSYM statement. If this is done, the 
situation mentioned below cannot occur. 

WARNING 

In a situation such 
special restriction 

as the following, 
appl ies. 

The restriction is that if the line NAME, 0 happens to 
occur on the same core page of instructions as the IF 
statement, then NAME will not have been previously 
defined when the IF statement is encountered, even 
though it is before the IF statement. On the first 
pass (though not in the listing pass) the three lines 
after the IF statement will not be assembled. The 
reason for this is that location labels cannot be 
defined until the page on which they occur is assembled 
as a unit. 

5.2 Symbol Definition 

ABSYM You may name an absolute core address using the ABSYM 
pseudo-op. This address must be in the same core field 
as the subprogram in which it is defined. The most 
common use of this pseudo-op is for naming page zero 
addresses not used by the operating system. These 
addresses are listed under Linkage Routine Locations. 

OPDEF Operation codes not already included in the symbol 
SKPDF table may be defined by use of the OPDEF or SKPDF 

pseudo-ops. You must define non-skip instructions with 
the OPDEF pseudo-op and define skip-type instructions 
with the SKPDF pseudo-op. 



SABR 

Examples of ABSYM, OPDEF and SKPDF syntax: 

0 1 7 7  ABSYM TEM 1 7 7  /PAGE 0 ADDRESSES 
0 0 1 0  ABSYM AX 10 
6 7 6 1  OPDEF DTRA 6 7 6 1  /NON-SKIP INSTR,  
6 7 7 1  SKPDF DTSF 6 7 7 1  /SKIP-TYPE INSTR, 
7 5 4 0  SKPDF SMZ 7 5 4 0  

NOTE 

You must make ABSYM, OPDEF and SKPDF 
definitions before you use them in the 
program. 

COMMN You use the COMMN pseudo-op to name locations in field 
1 as externals so that they may be referenced by any 
program. If you use any COMMN statements, they must 
occur at the beginning of the source, before everything 
else, including the ENTRY statement. Common storage is 
always in field 1 and is allocated from location 0200 
upwards. Since the top page of field 1 is reserved, 
you may define no more than 3840(10) words of common 
storage. 

A COMMN statement normally takes a symbolic address 
label, since storage is being allocated. However, you 
may allocate common storage without an address label. 

A COMMN statement always takes a numerical argument 
that specifies how many words of common storage are to 
be allocated; however, a 0 argument is allowed. A 
COMMON statement with 0 argument allocates no common 
storage; it merely defines t h e  given location symbol 
at the next free common location. 

The syntax of the COMMN statement is as follows: 

0 2 0 0  A 9 COMMN 20 
0 2 2 0  Kf COMMN 1 0  
0 2 3 0  CIOMMN 3 0 0  
0530 Cr COMMN 0 
0 5 3 0  Dr DOMMN 1 0  

ENTRY sUBRu.r 

In this example 20 words of common storage are 
allocated from 0200 to 0217, and A is defined at 
location 0200. Then, 10 words are allocated from 0220 
to 0227, and B is defined at 0220. Notice that if A is 
actually a 30 word array, this example equates B(l) 
with A(21) . 
The example continues by allocating common storage from 
0230 to 0527 with no name being assigned to this block. 
Then 10 words are allocated from 0530 to 0537 with both 
C and D being defined at 0530. 



5 . 3  Data Generating 

BLOCK The BLOCK pseudo-op g i v e n  w i t h  a  n u m e r i c a l  a rgumen t  N 
w i l l  r e s e r v e  N words o f  c o r e  by p l a c i n g  z e r o s  i n  them. 
T h i s  pseudo-op c r e a t e s  b i n a r y  o u t p u t ,  and t h u s  may have  
a  s y m b o l i c  a d d r e s s  l a b e l .  

B e f o r e  t h e  N l o c a t i o n s  a r e  r e s e r v e d ,  a  check  is made t o  
see i f  enough s p a c e  is a v a i l a b l e  f o r  them on  t h e  
c u r r e n t  c o r e  page .  I f  n o t ,  this page  is assembled and  
t h e  N l o c a t i o n s  a r e  r e s e r v e d  on  t h e  n e x t  c o r e  page .  
The a c t i o n  h e r e  is s i m i l a r  t o  t h a t  o f  t h e  CPAGE 
pseudo-op. S i m i l a r  r e s t r i c t i o n s  on  t h e  a rgument  a p p l y .  

/EXAMPLE OF HOW LARGE BLOCK STORAGE 
/MAY BE ACHIEVED WITHIN A SUBPROGRAM AREA 

LAP / I N H I B I T  PAGE ESCAPES 
BLOCK 200 /RESERVE 500 
BLOCK 200 ,/(OCTAL 1 LOCATIONS 
BLOCK 100 
E AP /RESUME NORMAL CODING 

A s  a  s p e c i a l  u s e ,  i f  you u s e  t h e  BLOCK pseudo-op w i t h  a  
l o c a t i o n  l a b e l  b u t  w i t h  no argument  o r  a  z e r o  a rgumen t ,  
no code  z e r o s  a r e  a s sembled ;  i n s t e a d ,  t h e  s y m b o l i c  
a d d r e s s  l a b e l  is made e q u i v a l e n t  t o  t h e  n e x t  r e l a t i v e  
c o r e  l o c a t i o n  a s sembled .  ( T h i s  u s a g e  is  e q u i v a l e n t  t o  
u s i n g  a s y m b o l i c  a d d r e s s  l a b e l  w i t h  no i n s t r u c t i o n  on  
t h e  same l i n e .  j 

NAME19 BLOCK 
NAMEZ29 BLOCK 0 
NAME3 Y 

0203 0000 N A M E ~ Y  BL..OCK 2 
0204 0000 

/THREE ZEROS 
/WITH " L I S T "  
/DEFINED AT THE 
/F IRST L.OCATION 
/DEFINES NAME1: 
/NAME2=NAME3= 
/NAME4 

TEXT You u s e  t h e  TEXT pseudo-op t o  o b t a i n  packed  s i x - b i t  
ASCII t e x t  s t r i n g s .  I t s  f u n c t i o n  and u s e  a r e  a l m o s t  
e x a c t l y  t h e  same a s  f o r  t h e  BLOCK pseudo-op e x c e p t  t h a t  
i n s t e a d  o f  a  n u m e r i c a l  a rgumen t ,  t h e  a rgument  i s  a  t e x t  
s t r i n g .  I n  p a r t i c u l a r ,  t h i s  pseudo-op makes a  check  t o  
be s u r e  t h a t  t h e  t e x t  s t r i n g  w i l l  f i t  on  t h e  c u r r e n t  
page w i t h o u t  b e i n g  i n t e r r u p t e d  by l i t e r a l s ,  e t c .  

You must  p u t  t h e  t e x t  s t r i n g  a rgument  on  t h e  same l i n e  
a s  t h e  TEXT pseudo-op. Any p r i n t i n g  c h a r a c t e r  may b e  
used  t o  d e l i n e a t e  t h e  t e x t  s t r i n g .  T h i s  c h a r a c t e r  must  
a p p e a r  a t  b o t h  t h e  b e g i n n i n g  and  t h e  end o f  t h e  s t r i n g .  
C a r r i a g e  r e t u r n ,  l i n e  f e e d  and form f e e d  a r e  i l l e g a l  
c h a r a c t e r s  w i t h i n  a  t e x t  s t r i n g  ( o r  a s  d e l i n e a t o r s ) .  
A l l  c h a r a c t e r s  i n  t h e  s t r i n g  a r e  s t o r e d  i n  s i m p l e  
s t r i p p e d  s i x - b i t  form. Thus ,  a  t a b  c h a r a c t e r  (ASCII 



SABR 

2 1 1 )  w i l l  b e  s t o r e d  a s  a n  11, w h i c h  is e q u i v a l e n t  t o  
t h e  c o d i n g  f o r  t h e  l e t t e r  I. I n  g e n e r a l ,  you  s h o u l d  
n o t  u s e  c h a r a c t e r s  o u t s i d e  t h e  A S C I I  r a n g e  o f  240-337 .  

2 4 0 5  TAG Y TEXT /TEXT EXAMPLE 123* ;? /  
3 0 2 4  
4 0 0 5  
3001 
1 5 2 0  
1 4 0 5  
4 0 6 1  
6 2 6 3  
5273 
7 7 0 0  

6.0 SUBROUTINES 

A s u b r o u t i n e  is a  s u b p r o g r a m  t h a t  p e r f o r m s  a  s p e c i f i c  o p e r a t i o n  a n d  is  
g e n e r a l l y  d e s i g n e d  s o  t h a t  it c a n  b e  u s e d  more t h a n  o n c e  o r  by  more 
t h a n  o n e  p r o g r a m .  D i r e c t i o n  o f  f l o w  g o e s  f rom t h e  m a i n ,  o r  c a l l i n g ,  
p r o g r a m  t o  t h e  s u b r o u t i n e ,  w h e r e  t h e  a c t i o n  is p e r f o r m e d .  T h i s  is 
f o l l o w e d  by  a  r e t u r n  back  t o  t h e  a d d r e s s  t h a t  f o l l o w s  t h e  s u b r o u t i n e  
c a l l  i n  t h e  m a i n  p r o g r a m .  

I n t e r n a l  s u b r o u t i n e s  are  t h o s e  s u b r o u t i n e s  t h a t  c a n  o n l y  b e  c a l l e d  
f r o m  w i t h i n  a  p r o g r a m .  You u s e  t h i s  t y p e  o f  s u b r o u t i n e  e x t e n s i v e l y  i n  
n e a r l y  a l l  PDP-8 p r o g r a m s ,  a n d  you  h a n d l e  it t h r o u g h  t h e  u s e  o f  t h e  
JMS, JMS I ,  a n d  JMP I i n s t r u c t i o n s .  An e x a m p l e  o f  a n  i n t e r n a l  
s u b r o u t i n e  c a l l  f o l l o w s :  

0200 7300  STARTY CLA CLL 
0201 1204 TAD N 
0202 4206 JMS TWO 

0203  3205 DCA HE-ISLT 

0204 000.1. N Ã 1 
0205 0000 RE-: S I... T T 0 

/GET NUMBER I N  AC 
/TRANSFER TO SUB- 
./ROUTINE: 
/STORE: NUMBER 
/ (CONTROL RETURNS 
./HERE 1 

/ROTATE: L..EFTT AND 
/MUL.TIPL.Y BY 2 
/CHECK FOR O'JERFL..OW 

The m a i n  p r o g r a m  p i c k s  u p  a  number ( N )  and  jumps t o  t h e  s u b r o u t i n e  
(TWO) w h e r e  N is  m u l t i p l i e d  by two.  A c h e c k  is made,  a n d  i f  t h e r e  is 
no o v e r f l o w ,  c o n t r o l  r e t u r n s  t o  t h e  m a i n  p r o g r a m  t h r o u g h  t h e  a d d r e s s  
s t o r e d  a t  t h e  l o c a t i o n  TWO. 



SABR 

External subroutines are distinguished from internal subroutines in 
that they may be called by a program that has been compiled, o r  
assembled, without any knowledge of where the subroutine will be 
located in core memory. Thus, you must load external subroutines with 
a relocatable linking loader. This makes it possible for you to build 
a library of frequently used programs and subroutines that you can 
combine in various configurations. This also eliminates the need to 
reassemble, or recompile, each individual program when you make a 
minor change in the system. 

A call to an external subroutine can be illustrated using the 
following FORTRAN programs: 

(Calling Program) 

(Subroutine) 

NOTE 

Exercise care when naming a function or 
subroutine. It must not have the same 
name as any of the assembler mnemonics 
or pseudo-ops or FORTRAN/SABR library 
functions or subroutines, as errors are 
likely to result. The symbol table for 
SABR Assembler is listed in Appendix C, 
and the library functions are described 
in the section The Subprogram Library. 

Any time a subroutine is called, it must have data to process. This 
data is contained in parameters in the calling program, which are then 
passed to the subroutine. The data is picked up by the subroutine 
where it is referred to as arguments. (The subroutine actually picks 
up the arguments by a series of TAD I's, and one final TAD I for an 
integer argument, or by a call to the IFAD subroutine if a floating 
point argument. This is illustrated in the section entitled SABR 
Programming Notes.) SABR has special pseudo-operators that facilitate 
the passing/handling of arguments. Each will be explained in turn. 

6.1 CALL and ARG 

The CALL pseudo-op is used by the main program to transfer control to 
the subroutine and is of the form: 

CALL n ,NAME 

where n represents a one or two-digit number (62(10) maximum) 
indicating the number of parameters to be passed to the subroutine. 
NAME (separated from n by a comma) represents the symbolic name of the 
subroutine entry point. 



SABR 

The Assembler must know the number of parameters that follow the call 
so that enough room on the current page can be allowed. The CALL 
pseudo-op and its corresponding parameters must always be coded on the 
same memory page; that is, there must be no intervening page escapes. 
(Page format and page escapes are discussed later in the chapter.) 

You use the ARG pseudo-op only in conjunction with CALL, and it 
consists of the symbol ARG, followed by one of the parameters 
(referred to as arguments in the subroutine) to be passed. You must 
code one ARG statement for each parameter. 

In the previous FORTRAN example, the main program (or it may have been 
a subroutine) called a subroutine named TWO, and supplied one 
argument: 

SABR actually assembles the above instructions as follows (you may 
wish to consult the section concerning the Loader Relocation Codes): 

0200 0000 I F A R M Y  BL-OCK 1 

CALL 1 F T W O  

A R G  I F ' A R M  

END 

6.2 ENTRY and RETRN 

In the subroutine, the ENTRY statement must occur before the name of 
the entry point appears as a symbolic address label. The actual entry 
location must be a two-word reserved space so that both the return 
address and field can be saved when the routine is called. Execution 
of the subroutine begins at the first location following the two-word 
ENTRY block. For example, the TWO subroutine mentioned in the 
previous example would begin as follows: 

ENTRY TWO 
0200 0000 TWQ Y BL..OCK 2 
0201 0000 

RETRN T W O  

E N 1:l 



SABR 

When a subroutine 
Linkage Routine 
- - - - m e -  - n n ..-- m 
aoouurco that t h e  
the first word 

is referenced in a 
LINK executes the 
entry point to t h e  r o  
of this block it 

CALL statement, the Run-Time 
transfer to the subroutine. It 

= t i n e  i s  a two-word block. Into 
places a CDE' instruction which 

specifies the field of the calling program. In the second word it 
places the address from which the CALL occurred. (This is analogous 
to the  operation of the JMS instruction.) In the previous example, if 
the MAIN program had been in field 0, a 6201 would have been deposited 
in the location at TWO, and a 0210 at TWO #. 

The RETRN statement allows you to return to the calling program from 
the subroutine. You must specify the name of the subroutine being 
returned from the RETRN statement so that the Return Linkage Routine 
can determine the action required,, and also so that a subroutine may 
have differently named ENTRY points. (This is analogous to the 
operation of a JMP I instruction.) 

- -. wnen a subroutine is entered, the second word of the entry name block 
contains the address of the argument or next instruction that 
immediately follows the subroutine call in the calling program. It is 
to this address that control returns. 

6 . 3  Example 

Suppose you want to write a long main program, MAIN, which uses two 
major subroutines, Sl and S2. Sl requires two arguments and S2 one 
argument. Write MAIN, Sl, and S2 as three separate programs in the 
following manner: 

ENTRY M A I N  
MAIN?  C L A  /START OF M A I N  

+ 
4 

C A L L  2 r S 1  
ARG X 
ARG Y 
C A L L  1 r S 2  
ARG z 

+ 
END 

ENTRY S3. 
Sl Y BL..OCK 2 

* 
+ 

RETRN S l  
END 

ENTRY S 2  
$2 .Ã BLOCK 2 



SABR 

Sl could also contain calls to S2, or S2 calls to Sl. Each of these 
programs is independently assembled with SABR and loaded with the 
Linking Loader. During the loading process, all of the proper 
addresses will be saved in tables so that when you begin execution of 
MAIN, the Run-Time Linkage Routines (see Section 7 - 3 )  , which were 
automatically loaded, will be able to execute the proper reference. 
Thus, MAIN will be able to pass data to and receive it from Sl and S2. 

A useful procedure in SABR programming is to provide an ENTRY point 
named MAIN in the main program at the address where execution is to 
begin. This assures you that the starting address of the program will 
appear in the Linking Loader's symbol print-out where it may be easily 
referenced. If using OS/8, execution will begin at this address 
automatically, eliminating the need to specify a 5-digit starting 
address. 

6.4 Passing Subroutine Arguments 

Use a DUMMY pseudo-op in SABR to define a two word block that contains 
an argument address. 

The format is 

DUMMY 

You use indirect instructions to pass arguments to and from 
subroutines through these DUMMY variables. If a DUMMY variable is 
referenced indirectly, it causes a CALL to the DUMMY Variable Run-Time 
Linkage Routine (see Section 7.3, Run-Time Linkage Routines), which 
assumes that the DUMMY variable is a two-word reserved space where the 
first word is a 62N1 (CDF N) (N representing the field of the address 
to be referenced) and that the second word contains a 12-bit address. 

As an example, consider the FORTRAN subroutine TWO, shown earlier. 
You could write this in SABR as follows (you may wish to refer to the 
section concerning the Subprogram Library): 

DUMMY IARG 
IARGY BL-OCIK 2 

TAD I TWO 

INC TWO# 
DCA IARG 
TAD I TWO 

TAD I I A R G  

/DEFINE THE 
/ENTRY PT + USE:I:i 
/TO PICK UP ARG, 

/ENTRY POINT 

/GET ARG ADDRESS 

/GET ARGUMENT 

/INTO A C  
/ADD I T  AGAIN 



SABR 

/CALLING PROGRAM 
rir--r ciu r 1.11-1 nL I nit I WLJ 

END 

A second example may be one in which you have written a FORTRAN 
program that contains a call to a SABR subroutine ADD: 

The FORTRAN program is compiled and the resulting SABR code translates 
the subroutine call as follows: 

4333 CAL..L. 3 9 ADD 
0305 06 
620 05 ,$R[:j A 
0200 01 
&20:1. (75 ARG N 
0 2 0 3 0 :I: 
62131 65 AF<(3 C 
020.4 01 

The CALL statement defines 3 parameters -- A, N ,  and C -- and the 
subroutine name ADD. The subroutine itself would appear as follows 
(the DUMMY variables X, K ,  and Z facilitate the passing of the 
arguments to and from the subroutine): 

/CALLED B Y ?  CALL ADD ( X P K Y Z )  

X ?  

K Ã 

Zr 

XPNT 9 

PNTR F 
CNTR 9 

ADD 7 

A 1  Ã 

ENTRY ADD 
DUMMY X 

DUMMY Z 
BLOCK 2 

BLOCK 2 

BLOCK 2 

x 
0 
0 
BLOCK 2 /ENTRY POINT 

TAD XPNT 
DCA PNTR 
T A D  ( - 6  
DCA CNTR 
T A D  I ADD 

I N C  ADD# 
DCA I PNTR 



SABR 

I S Z  CNTR 
JMP A1 
TAD I K /GE:T 2ND ARG 

C4L.L 1 Ã ISTO /RETURN RESULT 

ARG Z 

You may use the COMMN pseudo-op to specify variables as externals so 
that they may be referenced by any program. This pseudo-op has been 
explained under Symbol Definition; an example of its usage is 
included here. 

0000 CSQR r 
0000 
4033 
0102 06 
621 1 
0200 
4033 
0103 06 
6211 
0200 
4033 
0104 06 
6211 
0200 
4040 
0001 06 

COMMN 3 

ENTRY CSQR 
BLOCK 2 

CALL 1 ?FAD 

CALL l r F W  

ARG C 

CAL-L 1 r STO 

ARG C 

RETRN CSQR 

/RESERVES COMMON 
/STORAGE 
/DEFINES ENTRY P T +  
/ACTUAL ENTRY POINT 

/GET THE ARGUMENT 

/REPLACE WITH RESUL-T 

This subroutine computes the square of a variable C. C resides in 
field 1 in common storage where it can be referenced by any calling 
program through argument passing. The above is equivalent to the 
FORTRAN subroutine: 

SUBROUTINE CSQR 
COMMON C 
c=c*c 
RETURN 
END 



SABR 

7.Q SABR OPERATING CHARACTERISTICS 

7.1 page-by-Page Assembly 

SABR assembles page-by-page rather than one instruction at a time. To 
accomplish this it builds various tables as it reads instructions. 
When a full page of instructions has been collected (counting 
literals, off-paqe pointers and multiple word instructions) the page 
is assembled and punched. Several pseudo-operators are available to - 
control page assembly- 

7.1.1 Page Format 

A normal assembled page of code is formatted as 

xooo 

X377 

ASSEMBLED 1 
INSTRUCTIONS I 

JUMP TO 1 PAGE ESCAPE 

1 LITERALS I 
OFF-PAGE 
POINTERS AND 1 

PAGE ESCAPE 1 

follows: 

Literals and off-page pointers are intermingled 
end of the page. 

7.1.2 Page Escapes 

SABR is normally in automatic paging mode; 
connects each assembled core page to the next by an appropriate jump. 
This is called a page escape. For the last page of code, SABR leaves 
the Automatic Paging Mode and issues no page escape. The Leave 
Automatic Paging (LAP) pseudo-operator turns off the automatic paging 
mode. EAP (Enter Automatic Paging) turns it back on. 

in the table at the 

in this mode, SABR 

Two types of page escape may be generated. The type generated depends 
on whether or not the last instruction is a skip. If the last 
instruction on the page is not a skip, the page escape is as follows: 

last instruction (non-skip) 
5377 (JMP to xl77) 
literals 
and 
off -page 
pointers 

xl77/NOP 



S ABR 

I f  t h e  l a s t  i n s t r u c t i o n  o n  t h e  p a g e  is a  s k i p ,  t h e  page  e s c a p e  t a k e s  
f o u r  words ,  a s  f o l l o w s :  

l a s t  i n s t r u c t i o n  ( a  s k i p )  
5376 (JMP t o  x l 7 6 )  
5377 (JMP t o  x l 7 7 )  
l i t e r a l s  
e tc .  

xl76/SKP 
x177/SKP 

7.2 Multiple Word Instructions 

C e r t a i n  i n s t r u c t i o n s  i n  t h e  s o u r c e  p rog ram r e q u i r e  SABR t o  a s s e m b l e  
more t h a n  o n e  mach ine  l a n g u a g e  i n s t r u c t i o n  ( f o r  e x a m p l e ,  o f f - p a g e  
i n d i r e c t  r e f e r e n c e s  and  i n d i r e c t  r e f e r e n c e s  whe re  a  d a t a  f i e l d  
r e s e t t i n g  may b e  r e q u i r e d ) .  I n  t h e  l i s t i n g ,  t h e  s o u r c e  i n s t r u c t i o n  
w i l l  a p p e a r  b e s i d e  t h e  f i r s t  o f  t h e  a s s e m b l e d  b i n a r y  words .  

A d i f f i c u l t y  a r i s e s  when a m u l t i p l e  word i n s t r u c t i o n  f o l l o w s  a s k i p  
i n s t r u c t i o n .  You s h o u l d  be  a w a r e  t h a t  e x t r a  i n s t r u c t i o n s  a r e  
a u t o m a t i c a l l y  a s s e m b l e d  t o  e f f e c t  t h e  s k i p  c o r r e c t l y .  

7 . 3  Run-Time Linkage Routines 

T h e s e  r o u t i n e s ,  which  a r e  l o a d e d  by t h e  L i n k i n g  L o a d e r ,  p e r f o r m  t h e i r  
t a s k s  a u t o m a t i c a l l y  when c e r t a i n  pseudo-ops  o r  c o d i n g  s e q u e n c e s  a r e  
e n c o u n t e r e d  i n  you r  p rog ram.  You need  knowledge o f  them o n l y  t o  
b e t t e r  u n d e r s t a n d  t h e  program l i s t i n g .  ( R e f e r  t o  S e c t i o n  9 . 1 ,  Loade r  
R e l o c a t i o n  Codes . )  

T h e r e  a r e  s e v e n  l i n k a g e  r o u t i n e s :  

1. Change d a t a  f i e l d  t o  c u r r e n t  and  s k i p  

2 .  Change d a t a  f i e l d  t o  1 (common) and  s k i p  

3 .  Off -page  i n d i r e c t  r e f e r e n c e  l i n k a g e  

4 .  Of f -bank  (common) i n d i r e c t  r e f e r e n c e  l i n k a g e  

5 .  Dummy v a r i a b l e  i n d i r e c t  r e f e r e n c e  l i n k a g e  

6 .  S u b r o u t i n e  c a l l  l i n k a g e  

7 .  S u b r o u t i n e  r e t u r n  l i n k a g e  

CDFSKP 

CDZSKP 

OPISUB 

OBISUB 

DUMSUB 

LINK 

RTN 

T h e  i n d i v i d u a l  l i n k a g e  r o u t i n e s  f u n c t i o n  a s  f o l l o w s :  

1. CDFSKP is c a l l e d  when a  d i r e c t  o f f - p a g e  memory r e f e r e n c e  
f o l l o w s  a s k i p - t y p e  i n s t r u c t i o n  r e q u i r i n g  t h e  d a t a  f i e l d  t o  
b e  r e s e t  t o  t h e  c u r r e n t  f i e l d .  

Assembled  
Program Code 

S Z A  
DCA LOC 

Meaning 

c a l l  CDFSKP 
SKP i n  c a s e  AC = 0 a t  .-2 e x e c u t e  
t h e  DCA v i a  a  p o i n t e r  n e a r  t h e  end  
o f  t h e  p a g e .  



2. CDZSKP is called when a direct memory reference is made to a 
location in common (which is always in Field 1). The action 
of CDZSKP is the same as that of CDFSKP except that it always 
executes a CDF 10 instead of a CDF current (see Loader 
Relocation Codes) . 

Assembled 
Program Code - Meaning 

SZA 7440 
DCA CLOC 4051 call CDZSKP 

7410 SKP in case AC = 0 at .-2 execute 
3776 the DCA via a pointer near the end 

of the page. 

3. OPISUB is called when there is an indirect reference to an 
off-page location. 

Assembled 
Program Code - Meaning 

DCA I PTR 4062 call OPISUB 
0300 01 relative address of PTR 
3407 execute the DCA I via 0007 

4. OBISUB is called when there is an indirect reference to a 
location in common storage. In such a case it is assumed 
that the location in common which is being indirectly 
referenced points to some location that is also in common. 

Assembled 
Program Code Meaning 

DCA I CPTR 4055 c a l l  OBISUB 
1000 address of CPTR in Field 1 
3407 execute the DCA I via 0007 

5. DUMSUB is called when there is an indirect reference to a 
DUMMY variable. In such a case, DUMSUB assumes that the 
DUMMY variable is a two-word vector in which the first word 
is a 62N1, where N = the field of the address to be 
referenced, and the second word is the actual address to be 
referenced. 

Assembled 
Program Code Meaning 

DCA I DMVR 4067 call DUMSUB 
0300 01 relative address of DMVR 
3407 execute DCA I via pointer in 

location 0007 



SABR 

6. LINK is called to exeucute the linkage required by a CALL 
statement in your program. When a CALL statement is used, it 
is assumed that the entry point of the subprogram is named in 
the CALL and that this entry point is a two-bit word, free 
block followed by the executable code of the subprogram. 
LINK leaves the return address for the CALL in these two 
words in the same format as a DUMMY variable. 

Assembled 
Program Code Meaning 

CALL 2, SUBR 4033 call LINK 
0205 06 code word 

ARG X 62M1 X resides in field M 
0300 01 relative address of X 
ARG C 6211 C is in common 
1007 absolute address of C 

7. RTN is called to execute the linkage by a RETRN statement 
in the user's program. 

Assembled 
Program Code Meanina 

RETRN SUBR 4040 call RTN 
0005 06 number of the subrprogram being 

returned from (SUBR) 

7.4 Skip Instructions 

In page escapes and multiple word instructions, you must distinguish 
skip-type instructions f r o m  non-skip instructions. For this reason  
both ISZ and INC are included in the type permanent symbol table. ISZ 
is considered to be a skip instruction and INC is not. INC should be 
used to conserve space when you desire to increment a memory word 
without the possibility of a skip. 

The first example below shows the code that is assembled for an 
indirect reference to an off-page location following an INC 
instruction. The second example shows the same code following an ISZ 
instruction. 

Example 1: 

Example 2: 

I:SZ COUNTR 0220 2376 
T A D  I LOC2 0221 7410 / S K I P  T O  E X E C U T I O N  

0222 5226 /JUMP OVER E X E C U T I O N  
0223 4062 
0224 0520 01 / O F 7 ,  PAGE: I N D I R E : C T  E X E C U T I O N  
,') a:) '11 1:; . 1407 

You must use a special pseudo-operator, SKPDF, to define skip 
instructions used in source programs but not included in the permanent 
symbol table, for example: 



SABR 

7.5 Program Addresses 

Since each assembly is relocatable, the addresses specified by SABR 
always begin at 0200, and all other addresses are relative to this 
address. A t  l o a d i n g  time, the Linking Loader will properly adjust all 
addresses. For example, if 0200 and l00u are the relative addresses 
of A and B, respectively, and if A is loaded at 2000, then B will be 
loaded at 2000 + (1000-0200) or 2600. 

You must arrange all programs SABR will assemble to fit into one field 
of memory, not counting page 0 of the field, or the top page (7600  - 
7777). If a program is too large to fit into one field, split it into 
several subprograms. 

Explicit CDF or CIF instructions are not needed by SABR programs 
because of the availability of external subroutine calling and common 
storage. Explicit CDF or CIF instructions cannot be assembled 
properly. 

7.6 T h e  Symbol T a b l e  

Entries in the symbol table are variable in length. A one- or 
two-character symbol requires three symbol table words. A three- or 
four-character symbol requires four words, and a five- or 
six-character symbol, five words. Thus, for long programs it may be 
to your advantage to use short symbols whenever possible. 

The symbol table, not counting permanent symbols, contains 2644(10) 
words of storage. However, this space must be shared when there are 
unresolved forward and external references temporarily stored as 
two-word entries. 

If we may assume that a program being assembled never has more than 
100(10) of these unresolved references at any one time, this leaves 
2464(10) words of storage for symbols. Using an average of four words 
per symbol, this allows room for 616(10) symbols. 

The OS/8 version of SABR has a smaller space for symbol tables, 
leaving 1364(10) words of storage, or 1 6 2 0 ( 1 0 j  if used as the second 
pass of FORTRAN 11. 

Symbol table overflow is a fatal condition that generates the error 
message S. 

Symbols are listed in alphabetic order at the end of assembly pass 1 
with their relative addresses beside them. The following flags are 
added to denote special types of symbols: 

ABS The address referenced by this symbol is absolute. 

COM The address is in common. 

OP The symbol is an operator. 



SABR 

EXT 

UNDF 

The symbol is an external one and may or may not be 
defined within this program. If not defined, there is 
no difficulty; it is defined in another program. 

The symbol is not an external symbol and has not been 
defined in the program. This is a programmer error. 
No earlier diagnostic can be given because it is not 
known that the symbol is undefined until t h e  end of 
pass 1. A location is reserved for the undefined 
symbol, but nothing is placed in it. 

8.0 THE SUBPROGRAM LIBRARY 

The Library is a set of subprograms that may be called by any 
FORTRAN/SABR program. These subprograms are automatically loaded with 
the OS/8 FORTRAN/SABR system; in the paper tape system they are 
provided on two relocatable binary paper tapes with part 1 containing 
those subprograms used by almost every FORTRAN/SABR program. This 
allows you to load only those routines which your program makes use 
of, thus conserving symbol space. 

Many of the subprograms reference the Floating-point Accumulator 
located at ACH, ACM, ACL (20,21,22 of field 1). The OS/8 Subprogram 
Library is summarized in the description of FORTRAN 11. The 
organization of the library programs, as they are provided in the 
paper tape system, is as follows. Descriptions of the programs follow 
the listing. 

Part 1. 

Part 2. 

"IOH" contains 
" FLOAT" contains 

INTEGER" contains 

"UTILITY" contains 

I' ERROR" contains 

"SUBSC" contains 
'POWERS" contains 

'SQRT " contains 
"TRIG" contains 
'ATAN " contains 

READ is called to initialize the 
WRITE is called to initialize 
IOH is called for each item to be 

IOH, READ, WRITE 
FAD, FSB, FMP, FDV, STO, 
FLOT, FLOAT, FIX, IFIX, 
IFAD, ISTO, CHS, CLEAR 
IREM, ABS, IABS, DIV, 
MPY, IRDSW 
TTYIN, TTYOUT, HSIN, 
HSOUT, OPEN, CKIO 
SETERR, CLRERR, ERROR 

SUBSC 
IIPOW, IFPOW, FIPOW, 
FFPOW, EXP, ALOG 
SQRT 
SIN, COS, TAN 
ATAN 

1/0 handler before reading data. 
the 1/0 handler before writing data. 
read or written. IOH must also be 

called with a zero argument to terminate an input-output sequence. 



Before any of the programs are called, the floating-point accumulator 
must be set to zero. 

CALL 

ARC; 

ARG 

000 

CALL 

ARG 

CALL 

ARG 

000 

000 

CALL 

ARG 

000 

CALL 

ARG 

ARG 

2, READ 

!n 

f a  

1, IOH 

data 1 

1, IOH 

data 2 

1, IOH 

0 

in=DEVICE NUMBER 

/fa=ADDR OF FORMAT 

/data 1=ADDR OF HIGH 
/ORDER WORD OF 
/FLOATING POINT 
/NUMBER 

/TERMINATES READ 

2, WRITE /INITIALIZES WRITE 

( n  

fa 

The following device numbers are currently implemented: 

1 (Teletype keyboard/pr inter) 
2 (High-speed reader/punch) 
3 (Card reader/line printer) 
4 (Assignable device) 

8.2 Floating Point Arithmetic 

FAD is called to add the argument to the floating-point accumulator. 

CALL 1, FAD 
ARG addres 

FSB is called to subtract the argument from the floating-point 
accumulator. 

CALL 1, FSB 
ARC addres 



FMP is called to multiply the floating-point accumulator by the 
argument. 

CALL 1, FMP 
ARG addres 

FDV is called to divide the floating-point accumulator by the 
argument. 

CALL 1, FDV 
ARG addres 

CHS is called to change the sign of the floating-point accumulator. 

CALL 0, CHS 

All of the preceding programs leave the result in the floating-point 
accumulator. The address of the high-order word of the floating-point 
number is "addres". 

ST0 is called to store the contents of the floating-point accumulator 
in the argument address. The floating-point accumulator is cleared. 

CALL 1, ST0 
ARG storag /storag=ADDRESS WHERE 

/RESULT IS TO BE PUT 

IFAD is called to execute an indirect floating-point add to the 
floating-point accumulator. 

CALL 1, IFAD 
ARG Ptr /ptr=2 WORD POINTER 

/TO HIGH ORDER 
/ADDRESS OF FLOATING 
/POINT ARGUMENT 

ISTO is called to execute an indirect floating-point store. 

CALL 1, ISTO 
ARG Ptr 

CLEAR is called to clear the floating-point accumulator. The AC is 
unchanged. 

CALL 0, CLEAR 

FLOAT and PLOT are called to convert the integer contained in the AC 
(processor accumulator) to a floating-point number and store it in the 
floating-point accumulator. 

CALL 1, FLOAT 
CALL 0, PLOT or 

ARG addr 

IFIX and FIX are called to convert the number in the floating-point 
accumulator to a 12-bit signed integer and leave the result in the AC. 

CALL 1, IFIX 
CALL 0, FIX or 

ARG addr 

ABS leaves the absolute value of the floating-point number at "addr" 
in the floating-point accumulator. 

CALL 1, ABS 
ARG addr 



SABR 

8.3 Integer Arithmetic 

CALL 1.- MPY 
ARG addr 

DIV is c a l l e d  t o  d i v i d e  t h e  i n t e g e r  c o n t a i n e d  i n  t h e  AC by t h e  i n t e g e r  
con ta ined  i n  " a d d r . "  The r e s u l t  is l e f t  i n  t h e  AC. 

CALL 1, DIV 
ARG add r  

IREM l e a v e s  t h e  r ema inde r  f rom t h e  l a s t  e x e c u t e d  i n t e g e r  d i v i d e  i n  t h e  
AC . 

CALL 1, IREM 
ARG 0  

(The argument  is i g n o r e d . )  

IABS l e a v e s  t h e  a b s o l u t e  v a l u e  o f  t h e  i n t e g e r  c o n t a i n e d  i n  " a d d r "  i n  
t h e  AC. 

CALL 1, IABS 
ARG a d d r  

IRDSW r e a d s  t h e  v a l u e  se t  i n  t h e  c o n s o l e  s w i t c h  r e g i s t e r  i n t o  t h e  AC. 

CALL 0 ,  IRDSW 

8.4 Subscripting 

SUBSC, is c a l l e d  t o  compute t h e  a d d r e s s  o f  a  s u b s c r i p t e d  v a r i a b l e ,  c a n  
be u sed  f o r  d o u b l y  o r  s i n g l y  s u b s c r i p t e d  a r r a y s .  On e n t r y ,  t h e  AC 
s h o u l d  be  n e g a t i v e  f o r  f l o a t i n g - p o i n t  v a r i a b l e s  -- any n e g a t i v e  number 
f o r  s i n g l y  s u b s c r i p t e d  v a r i a b l e s ,  and 1 ' s  complement o f  t h e  f i r s t  
d imens ion  f o r  d o u b l y  s u b s c r i p t e d  v a r i a b l e s .  Fo r  d o u b l y  s u b s c r i p t e d  
i n t e g e r  v a r i a b l e s ,  t h e  AC m u s t  be the first dimension. 

The g e n e r a l  c a l l i n g  s e q u e n c e  f o r  SUBSC is a s  f o l l o w s :  

TAD (M 

CMA 

2 r SUBSC 
CALL 

3 r SUBSC 
ARG J 
ARG I 
ARG BASE 
L O C A  

/1ST DIMENSION (USED ONL-Y 
/ I F  2 DIMENSIONS)  
/USED ONLY I F  ARRAY I S  
/FLOATING POINT  
/SINGL.E SUBSCRIPT 

/DOUBL-E SUBSCRIPT 
/2ND DIMENSION 
/1ST DIMENSION 
/BASE ADDRESS OF ARRAY 
/ADDRESS OF TWO UORD DUMMY 
/ADDRESS L.OCATION 



SABR 

For example, to load the 1,Jth element of a floating-point array whose 
dimensions are 5 by 7: 

TAD (5 
CMA /DIMENSIONS ARE 5 BY 7 
CAL-1.. 3 Y SlJBSC 
ARG J /ADDRESS OF 2ND SUBSCRIPT 
ARG I /ADDRE:SS OF 1 S T  SUBSCRIPT 
ARG ARRAY /BASE ADDRESS OF ARRAY 
LOG /MUST BE A DUMMY VARIABLE 
CALL 1 Y :[FAD 
ARG L..OG 

8 . 5  Functions 

SQRT leaves the square root of the floating-point number at "addr" in 
the floating-point accumulator. 

CALL 1, SQRT 
ARG add r 

SIN, COS, TAN leave the specified function of the floating-point 
argument at "addr" in the floating-point accumulator. 

CALL 1, SIN 
ARG addr 

ATAN leaves the arctangent of the floating-point number at "addr" in 
the floating-point accumulator. 

CALL 1, ATAN 
ARG addr 

ALOG leaves the natural logarithm of the floating-point number at 
"addr" in the floating-point accumulator. 

CALL 1, ALOG 
ARG addr 

EXP raises "e" to the power specified by the floating-point number at 
'addr" and leaves the result in the floating-point accumulator. 

CALL 1, EXP 
ARG addr 

All of these subprograms require that the floating-point accumulator 
be set to zero before they are called. 



The POWER routines (IIPOW, IFPOW, FIPOW, FFPOW) are called by FORTRAN 
to implement exponentiation. The first operand is in the AC 
(floating-point or processor depending on mode), and the address of 
the second is an argument. The address of the result is in the 
appropriate AC upon return. 

CALL 
ARG 

MODE OF 
FUNCTION OPERAND 1 
NAME (BASE) 

MODE OF 
OPERAND 2 
(EXPONENT) 

IIPOW INTEGER INTEGER 
IFPOW INTEGER FLOATING POINT 
FIPOW FLOATING POINT INTEGER 
FFPOW FLOATING POINT FLOATING POINT 

2; FFPOW 
addr 2 /ADDRESS OF OPERAND 2 

MODE OF 
RESULT 

INTEGER 
FLOATING POINT 
FLOATING POINT 
FLOATING POINT 

8.6 U t i l i t y  R o u t i n e s  

OPEN is called at the beginning of every FORTRAN program to start the 
high-speed reader/punch and teleprinter, and to initialize the 1/0 
routines for device code 4 if using the OS/8 FORTRAN/SABR system. The 
form is: 

CALL 0 ,OPEN 

When an error is encountered in a program, the ERROR routine is 
called. The program passes to the ERROR routine the address of the 
error message to be printed. The format of the error message is 4 
characters in stripped ASCII and packed into 2 words: 

CAL..L. I Y ERROR 
ARG X Y 2  

When control passes to the ERROR routine, the parameters passed are 
picked up. In the case above, the parameters are as follows: 

ARG XYZ 

where N is the field that XYZ is in, and 2343 is the address of XYZ. 
The ERROR routine then prints the message at location 2343 plus a 
5-digit address which is 2 greater than 2343. 



SABR 

Since XYZ is 2 locations before ABC, the address printed will b e  the 
address of ABC. 

The error message is usually placed just before the entry point of the 
routine in which the error was detected -- thus the address printed by 
ERROR will be the address of the entry point. This provides a 
convenience to you since the entry point will appear in the Loader 
Map. 

CKIO is a subroutine which waits for the TTY flag to be set. It is 
called by the OS/8 EXIT subroutine to eliminate the possibility of a 
garbled TTY output. You may use it in FORTRAN for possible expansion 
with interrupts, and is of the form: 

CALL 0,CKIO 

The following subroutines -- IOPEN, OOPEN, OCLOSE, CHAIN, EXIT, and 
GENIO -- are used by the OS/8 FORTRAN/SABR Operating System for 
device-independent 1/0 and chaining. 

8 . 7  D E C t a p e  1/0 R o u t i n e s  

RTAPE and WTAPE (read and write tape) are the DECtape read and write 
subprograms for the 8K FORTRAN and 8K SABR systems. The subprograms 
are furnished on one relocatable binary-coded paper tape that must be 
loaded into field 0 by the 8K Linking Loader, where they occupy one 
page of core. 

RTAPE and WTAPE allow you to read and write any amount of core-image 
data onto DECtape in absolute, non-file-structured data blocks. Many 
such data blocks may be stored on a single tape, and a block may be 
from 1 to 4096 words in length. 

RTAPE and WTAPE are subprograms that may be called with standard, 
explicit CALL statements in any 8K FORTRAN or SABR program. Each 
subprogram requires four arguments separated by commas. The arguments 
are the same for both subprograms and are formatted in the same 
manner. They specify the following: 

DECtape unit number (from 0 to 7) . 
Number of the DECtape block at which transfer is to start. 
You may direct the DECtape service routine to begin searching 
for the specified block in the forward direction, rather than 
the usual backward direction, by making this argument the 
two's complement of the block number. 

Number of words to be transferred (l<N<4096). 

Core address at which the transfer is to start. 



SABR 

DECtape 1/0 Routines for the FORTRAN I1 system are explained in the 
description of FORTRAN 11. T-  L n  O V  urv C R  ofiBz, LL- m r r  -L-L----L- L- n r n n n n  

LLIC ^nub ai,ai-eii!em,s cu n i r t r n  
and WTAPE are written in the following format (arguments may be either 
octal or decimal numbers) : 

CALL ~ F U T A P E  /WOULD BE SAME FOR RTAPE 
ARG (6 /DATA UNIT  NUMBER 
ARG (200 /STARTING BLOCK NUMBER 

/ I N  OCTAL 
ARG (604 /UORDS TO BE TRANSFERRED 

/ I N  OCTAL 
ARG LOCB /CORE ADDRESSP START OF 

/TRANSFER 

In these examples, LOCA and LOCB may or may not be in common. 

As a typical example of the use of RTAPE and WTAPE, assume that you 
want to store the four arrays A, B, C, and D on a tape with word 
lengths of 2000, 400, 400, and 20 respectively. Since PDP-8 DECtape 
is formatted with 1474 blocks (numbered 0-2701 octal) of 129 words 
each (for a total of 190,146 words), A, B, C, and D will require 16, 
4, 4, and I blocks respectively. (Do not confuse the block numbers 
used by RTAPE and WTAPE with the record numbers used by OS/8. An OS/8 
record is 256 words -- roughly twice the size of a DECtape block.) 
Each array must start at the beginning of some DECtape block. You may 
write these arrays on tape as follows: 

You may also read or write a large array in sections by specifying 
only one DECtape block (129 words) at a time. For example, B could be 
read back into core as follows: 

As shown above, it is possible to read or write less than 129 words by 
starting at the beginning of a DECtape block. It is impossible, 
however, to read or write starting in the middle of a block. For 
example, the last 10 words of a DECtape block may not be read without 
reading the first 119 words as well. 

A DECtape read or write is normally initiated with a backward search 
for the desired block number. To save searching time, you may request 
RTAPE or WTAPE to start the block number search in the forward 
direction. This is done by specifying the negative of the block 
number. This should be used only if the number of the next block to 
be referenced is at least ten block numbers greater than the last 
block number used. For example, if you have just read array A and now 
want array D, you may write: 



SABR 

9.0 THE BINARY OUTPUT TAPE 

SABR outputs each machine instruction on binary output tape as a 
16-bit word contained in two 8-bit frames of paper tape. The first 
four bits contain the relocation code used by the Linking Loader to 
determine how to load the data word. The last 12 bits contain the 
data word itself. 

I LOW ORDER OF DATA WORD SECOND FRAME 
I I I I 1 8 I 

RELOCATION CODE . I . 

The assembled binary tape is preceded and followed by leader/trailer 
code (code 200). The checksum is contained in the last two frames of 
tape before the trailer code. It appears as a normal 16-bit word, as 
shown below. 

HIGH ORDER OF 
DATA WORD 

FIRST FRAME 
rn . I I 

I LOW ORDER OF DATA WORD SECOND FRAME 
I 1 I 1 I 1 I 

I I I 

1 0 0 0  
I a . 

All assembled programs have a relative origin of 0200. 

I I I 
HIGH ORDER OF 

CHECKSUM 
FIRST FRAME 

a 

9.1 Loader Relocation Codes 

I a I 1 I 

The four-bit relocation codes issued by SABR for use by the Linking 
Loader are explained below. The codes are given in octal. 

00 Absolute Load the data word at the current loading 
address. No change is required. 

JMP LOC /WHERE LOC IS 
/AT 0077 (OF 
/CURRENT PAGE) 

S imple Add the relocation constant to the word 
Relocation before loading it. (The relocation 

constant is 200 less than the actual 
address where the first word of the 
program is loaded.) Items with this code 
are always program addresses. 

In the above example, LOC2 is at relative 
address 0520. If the first word of the 
program (relative address 0200) is loaded 
at 1000, then the actual address of A is 
1176, and location 1176 will be loaded 
with the value 1320, which will be the 
actual address of LOC2 when loaded. 



External 
Symbol 
Definition* 

Re-or ig in* 

CDF 
Current 

The data word is the relative address of 
an e n t r y  point. B e f o r e  e n t e r i n g  t h i s  
definition in the Linkage Tables so that 
the symbol may be referenced by other 
programs at run-time, the Linking Loader 
must add the relocation constant to ite 
The six frames of paper tape following the 
two-frame definition are the stripped 
ASCII code for the symbol. 

r 03 1 ADDRESS 1 

1 SPACE 1 
1 SPACE 1 

Change the current loading address to the 
value specified by the data word plus the 
relocation constant. 

The data word is always a 6201 (CDF) 
instruction, which has been generated 
automatically by SABR. The code 05 
indicates to the Linking Loader that the . - 
number of the field currently being loaded 
into must be inserted in bits 6-8 before 
loading. 

TAD LOC2 
/WHERE LOC2 IS 
/OFF PAGE SO 
/THAT THE TAD 
/INSTR. MUST BE 
/INDIRECT 

If the program containing this code is 
being loaded into field 4, relative 
location 0300  will be loaded with 6241. 

Such an instruction is referred to in this 
document as CDF Current. It is generated 
automatically by SABR when a direct 
reference instruction must be assembled as 
an indirect, and there is the possibility 
that the current data field setting is 
different from the field where the 
indirect reference occurs. 

* Does not appear in assembly listings 

39  



S ABR 

Subroutine The data word is a special constant 
Linkage enabling the Linking Loader to perform the 
Code necessary linking for an external 

subroutine call (compare with CALL 
Pseudo-op). The structure of the data 
word is shown below. 

I 

Before the 12-bit, two-part code word is 
loaded into memory, a global external 
number will be substituted for the local 
external symbol number in the right half 
of the data word. 

BITS 0 - 5 

NUMBER OF ARGUMENTS 
FOLLOWING THE CALL 

0200 4033 CALL 3 ,SUB 
0201 0307 06 

ARG X 
ARG Y 
ARG Z 

BITS 6 - 11 

LOCAL PROGRAM 
NUMBER ASSIGNED TO 
THE EXTERNAL SUB- 
ROUTINE BEING 
CALLED 

Here, SUB has been assigned the local 
number 06 during assembly. At loading 
time this number will be changed to the 
global number (for example, 23) t h a t  is 
assigned to SUB. In this example, 0323 
would actually be loaded at relative 
address 0201. 

Leader/Trailer* 
and This code represents normal leader/ 
Checksum trailer. The checksum is contained in the 

last two frames of paper tape preceding 
the trailer code. 

High Common* The data word is the highest location in 
Field 1 assigned to common storage by the 
program. This item will occur exactly 
once in every binary tape and it must be 
the first word after the leader. If no 
common storage has been allocated in the 
program, the data word will be 0177. 

* Does not appear in assembly listings 



SABR 

Transfer* Signifies that reference to an external 
T 7 ~ m 4 - n r  
v C L L u A  symbol occurs in the assembled program. 

The 12-bit data word is meaningless. The 
next six frames contain- the ASCII code for 
the symbol. 

The Linking Loader uses this definition to 
create a transfer table, whereby local 
external symbol numbers assigned during 
assembly of this particular program can be 
changed to t h e  global external symbol 
number when several programs are being 
loaded. 

The following examples illustrate many of the features and formats of 
the SABR ~ssembler. 

When a multiple-word instruction occurs, the actual instruction 
is typed beside the first instruction. 

0650 6 2 0 1  05 L . O C ~ Ã  J M P  NAME /OFF PAGE 
0 6 5 1  5774 
0652 7 1 0 6  CLL  RTL Ã RTL" Ã RTL 
0653 7006 
0654 7006 

When an erroneous instruction occurs, the error flag appears in 
address field. The instruction is not assembled. 

The page escape and literal and off-page pointer table are typed 
nothing except the correct address, value and loader code. 

1 ine 

the 

with 

0770 7006 83 Ã ! ?T I  
0771 7500 SMA 
0772 5376 
0773 5377 
0774 0200 01 
0775 0020 
0776 7 4 1 0  /SKP TO 1ST LOG+-  

/NEXT PAGE (AC I S  
/NOT MINUS) 
/SKP TO 2ND LOC4- 
/NEXT PAGE <AC I S  
/MINUS) 

Locations 0772, 0773, 0776 and 0777 make up the page escape since the 
last instruction is a skip instruction (SMA). Refer to Section 7.1.2, 
Page Escapes. 

The following program has been assembled and listed. It cannot be run 
without first debugging and editing it. 

* Does not appear in assembly listings 

41 



SABR 

During the first pass, SABR outputs the binary tape and prints error 
messages as they occur. In this case, none of the errors are fatal, 
and assembly continues. The symbol table is printed, and undefined 
symbols, external symbols, or any other special types of symbols that 
cannot be determined until the end of the pass are flagged in the 
symbol table. 

The optional second pass of the Assembler produces a listinq. The 
4-digit first column contains the octal address, while the second 
column contains the octal code for each line of instructions. Errors 
are also printed during the listing pass at the line in which they 
occur. Error codes are described in Section 12. 

The reader is also referred to Section 16, Demonstration Program Using 
Library Routines. 

C AT PUNCH 4 -0003  

/PROGRAM T O  PUNCH R I M  FORMAT PAPER TAPES 

/TAPE ( 2 0 0  CODE) 
TAD ( -32  / 3 2  LOCAT I (INS 
DCA COUNT 
OCTAL. 

STARTY TAD ORE 
CL-L C:ML RTR ; RTR ? RTR 

AND (177 
JMS PUNCH /F:'UNCti LEADING 
TAD ORG / D I G I T S  O F  ADDRESS 
AND ( 1 7 7  /PUNCH SELCOND 
JMS PUNCH /DIGITS OF ADDRESS 
TAD I ORG /NOW PUNCH CC1NTE:NTS 
CLI ... RTR? R T R ?  RTR /OF THAT LOCATION 



ISZ COUNT 
JMP START 
CAL-L 1 T TYPE: 

........ ..- .... ... .. "... . ..,. 
/ h ' U I N  ! ! 4J NkX l 

/CORE L-OCATION 
/DONE YET? 
/NO ,..yFsT .T.fPE  ME'..,.â€˜^,.,. 

.>. bbHUI" 

MESG Y TEXT "TAPE PUNCHED + ENTER O R I G I N '  S CONT * " 

/'32 FRAMES OF 
.jL..E:ADER./*TRAILER 
/2PUNCH I T  
/DONE2? 
/NO 
/'RETURN 

/PUNC:H 
/WAIT FOR FL-AG 

END 



SABR 

11.0 SABR PROGFWMMING NOTES 

11.1 Optimizing SABR Code 

Generally two types of proqrammers will ~ s e  the SAER Assmbler: those  
who like the convenience of a page-boundary-independent code and need 
not be concerned with program sizeI and those who need a relocatable 
assembler but are still location conscious. These optimizing hints 
are directed to the latter user. 

One way to circumvent the cost of non-paged code is to make use of the 
LAP (Leave Automatic Paging) pseudo-op and the PAGE pseudo-op to force 
paging where needed. This saves 2 to 4 instructions per page by 
elimination of the page escape. In additionI the fact that the 
program must be properly segmented may save a considerable amount. 

Extra core may be reduced by eliminating the CDF instructions which 
SABR inserts into a program. This is done by using "fake indirectsl'* 
~efine the following op codes: 

These codes correspond to the PDP-8 memory reference instructions but 
they include an indirect bit. The difference can best be illustrated 
by an example. If X is off-pageI the sequence: 

LABEL, SZA 
DCA X 

is assembled by SABR into: 

LABEL I SZA 
JMS 45 
SKP 
DCA I (X) 

or four instructions and one literal. 

The sequence: 

LABELI SZA 
DCAI PX 

assembles into three instructions for a saving of 40 percent. 
HoweverI you must be sure that the data field will be correct when the 
code at LABEL is encountered* Also note that SABR assumes that the 
Data Field is equal to the Instruction Field after a JMS instructionI 
so subroutine returns should not use the JMP I op code. 



This is the method the FORTRAN compiler uses, and although it is 
standard, it is Z ~ S G  the s l a w s t .  This cede requires 19  words of core 
and takes several hundred microseconds to execute. 

The fastest way to pick up arguments within a SABR-coded external 
s~brouti~e is as follows (this method takes approximately one fifth of 
the time of the previous method and four locations fewer): 

To pick up multiple arguments, you can make the locations from Xl to 
X2+1 inclusive into a subroutine. 



SABR 

11.2 C a l l i n g  the OS/8  USR a n d  Device H a n d l e r s  

One important point to remember is that any code which calls the USR 
must not reside in locations 10000 to 11777. ThereforeI any SABR 
routine which calls the USR must be loaded into a field other than 
field 1 or above location 2000 in field 1. To call the USR from SABR 
use the sequence: 

To call a device handler from SABR, use the sequence: 

12.0 SABR ERRORS 

In case of errorI SABR prints error codes in the address field of the 
instruction line. Table 3 lists SABR error codes and their n ~ e a ~ i ~ g s .  

Table 3 
SABR Error Codes 

, Too many or too few ARG statements follow a call 
statement. 

An illegal character appears on the line. 

A device handler has returned a fatal condition. 

/L or /G option was indicatedI but the L0ADER.SV file 
does not exist on the system device. 

A symbol is multiply defined. Listing of programs 
with multiple definitions have unmarked errors. 

Error Code 

(continued on next page) 

Meaning 



Table 3 (Cont.) 
SABR Errar Codes 

Error Code 
-- 

I 

E 

s 

u 

UNDF 

Meaning 

An illegal syntax has been used7 (as one of the 
following) : 

l *  a pseudo-op with improper arguments, 
2. a quote mark with no argument, 
3. a non-terminated text string, 
4. an improper address, 
5. an illegal combination of 

micro-instructions. 

There is no END statement. 

E i t h e r  the symbol table has av~rflcwed, conrnofi 
storage has been exhausted, more than 64 different 
user-defined symbols occurred in a core page, or more 
than 64 external symbols have been declared. Could 
also indicate a systm error such as cverflawed 
output file. 

No symbol table is being produced, but there is at 
least one undefined symbol in the program. 

Undefined symbol, printed in the symbol table 
listing. 

13.0 LINKING LOADER 

The Linking Loader is the system program used to load and link your 
program and subprograms in memory. It can be called automatically to 
load or load and start a FORTRAN or SABR program, or called 
independently to load or load and start a relocatable binary file 
s t o r e d  on a device. Capable of loading programs over itself, SABR has 
options which allow you to obtain storage map listings of core 
availability. 

The Linking Loader can search program libraries for subroutines which 
are referenced by the program in core and load those subroutines 
needed. (A library is a collection of relocatable subroutines -- 
FORTRAN or SABR output -- with a directory at the beginning to 
facilitate searching.) Any library can be searched by using the /L 
option to the Loader, but the system library, LIB8.RL, is searched 
automatically just before the Loader completes the building of a core 
image of your program. If LIB8.RL is not on the system device, there 
is no automatic library search. (The system program LIBSET allows you 
to build your own subroutine library.) 



The Linking Loader can load any number of user and library programs 
into any field of memory. Several programs are usually loaded into 
each field. Because of the space reserved for the Linkage Routines, 
the available space in field 0 is three pages smaller than in all 
other fields. 

Any common storage reserved by the programs being loaded is allocated 
in field 1 from location 200 upwards. The space reserved for common 
storage is subtracted from the available loading area in field 1. The 
program reserving the largest amount of common storage must be loaded 
first. 

The Run-Time Linkage Routines necessary to execute SABR programs are 
automatically loaded into the required areas of every field by the 
Linking Loader as part of its initialization. You need to know which 
areas of core these routines occupy. 

13.1 C a l l i n g  and Using t h e  Linking Loader 

You can automatically call the Linking Loader following assembly of 
either a SABR program or a SABR-assembled FORTRAN program by use of 
the /L or /G option. For details on automatic calling of the Linking 
LoaderI see the description of FORTRAN 11. 

When you want to call the Linking Loader to load or load and start a 
relocatable binary fileI issue the command: 

R LOADER 

in response to the Keyboard Monitor dot. The Command Decoder replies 
by printing an asterisk in the left margin; you can then indicate 
input and output files and options. Zero to 1 output files and l to 9 
i n p ~ t  f i l e s  a re  possible. Cnly cne b i n z r y  program per f i l e  is 
permitted. The assumed extension for input files is .RL. The output 
fileI if indicated, is used to hold a map of the loaded program. 

You can either specify all options and operations to be performed on 
one line or to have various operations performed individually. Where 
all options are being specified at one timeI the line to the Command 
Decoder contains the complete instructions for the Linking Loader. If 
operations are to be done individuallyI you can type a commandI enter 
it with the RETURN key, and that command will be executedI with 
another command expected when the first is completed. To indicate the 
last command, type an ALT MODE characterI or end the last command with 
a / G  option to start the program. 

13.1.1 Linking Loader Options - The options to the Linking Loader are 
listed and explained in Table 4. 



SABR 

Table 4 
Linking Loader Options 

Opt ion 

-- - 

Meaning 

A program doing device-independent input is to be 
loaded. (This feature costs the user 3 pages of 
core. 1 

A program doing device-independent output is to be 
loaded. (This feature costs the user 3 pages of 
core. ) 

If both /I and /O are indicated, 5 pages of core are 
used to handle deviice-independent I/O. 

/I and /0, if used, must be given before or on the 
first input line specifying files to be loaded. For 
example : 

is acceptable, but 

*INPUT 
*/0 FILES 

is not legal and will generate an error message, 

A program doing device-independent 1/0 requires 
two-page device handlers at run-time. (This feature 
costs you one additional page if you are doing just 
input or output, and two additional pages if you are 
doing input and output. 

If /I, /0, and /H are indicated, 8 pages of core are 
used to handle device-independent I/O. /H, IF used, 
must be indicated on or before the first line 
containing /I or /0, and is meaningless without /I or 
/O also being specified. 

Start the program after processing the rest of the 
command string. Execution starts at the symbol MAIN 
unless otherwise indicated. 

Specifies the starting address of the program if 
other than the entry point MAIN; n is an octal 
number up to 5 digits long. 

(continued on next page) 



SABR 

Table  4 (Cont.)  
Linking Loader Opt ions  

Opt ion  

- - 

Meaning 

Output a  map of t h e  loaded programs onto the o u t p u t  
f i l e  s p e c i f i e d ,  fo l lowed by a  coun t  of t h e  f r e e  pages  
i n  each f i e l d .  I f  no o u t p u t  is  s p e c i f i e d ,  t h e  map is 
p u t  o n t o  t h e  t e l e p r i n t e r .  The assumed e x t e n s i o n  f o r  
map o u t p u t  f i l e  is .MP. The map is p r i n t e d  a f t e r  t h e  
r e s t  of t h e  command l i n e  is processed .  

S i m i l a r  t o  / M ,  b u t  o n l y  o u t p u t s  undefined symbols. 

S i m i l a r  t o  /M, b u t  o n l y  o u t p u t s  count  of  f r e e  pages  
i n  each f i e l d .  

Search  through t h e  a v a i l a b l e  f i e l d s  s t a r t i n g  a t  f i e l d  
n  f o r  space  l a r g e  enough t o  hold  each i n p u t  f i l e ;  n  
is  an i n t e g e r  i n  t h e  range 0  t o  7 ,  i n c l u s i v e .  Only 
one b i n a r y  program can be i n  each i n p u t  f i l e .  I f  n  
is  n o t  s p e c i f i e d ,  t h e  Loader s t a r t s  look ing  a t  f i e l d  
0. 

R e s t a r t  l o a d i n g  p r o c e s s  ( f o r g e t  a l l  p r e v i o u s l y  loaded 
p rograms) .  T h i s  command is e q u i v a l e n t  t o  r e s t a r t i n g  
t h e  Linking Loader ,  b u t  is  much f a s t e r  f o r  DECtape 
systems s i n c e  no t a p e  motion is  involved.  

Load t h e  f i r s t  i n p u t  f i l e  a s  a  l i b r a r y  f i l e  (Loader 
e x p e c t s  a  L i b r a r y  D i r e c t o r y  a s  t h e  f i r s t  block of t h e  
f i l e ) .  A l l  o t h e r  i n p u t  f i l e s  on t h e  l i n e  a r e  
ignored.  

The Core A v a i l a b i l i t y  o p t i o n  (/P) c a u s e s  t h e  number of f r e e  pages  of 
memory i n  every  f i e l d  of memory t o  be p r i n t e d  i n  a  l i s t  on t h e  
t e l e p r i n t e r .  For example, i f  you have a  16K c o n f i g u r a t i o n ,  a l i s t  
l i k e  t h e  fo l lowing  might be p r i n t e d :  

0002 (number of f r e e  pages  i n  f i e l d  0)  
0010 (number of f r e e  pages  i n  f i e l d  1) 
0030 (number of f r e e  pages  i n  f i e l d  2 )  
0036 (number of f r e e  pages  i n  f i e l d  3)  

The number of pages  i n i t i a l l y  a v a i l a b l e  i n  f i e l d  0  i s  0033 and i n  a l l  
o t h e r  f i e l d s  i s  0036. 



The S t o r a g e  Map o p t i o n  ( / M )  , when s e l e c t e d ,  c a u s e s  a  l i s t  of a l l  
program e n t r y  p o i n t s  t o  be p r i n t e d  a long  wi th  t h e  a c t u a l  a d d r e s s  a t  
which they  have been loaded.  En t ry  p o i n t s  of programs t h a t  have been 
c a l l e d  b u t  t h a t  have n o t  been loaded a r e  a l s o  l i s t e d  a long  wi th  U f l a g  
f o r  "undef ined" .  Such f l a g g e d  programs must be loaded b e f o r e  
e x e c u t i o n  of your programs a r e  p o s s i b l e .  The c o r e  a v a i l a b i l i t y  l i s t  
is a u t o m a t i c a l l y  appended t o  t h e  s t o r a g e  map. A sample is shown below 
f o r  an 8K machine: 

13.1.2 Examples of 1/0 Command Strings - Examples of p o s s i b l e  i n p u t  
command s t r i n g s  fo l low.  

T h i s  s t r i n g  l o a d s  DSK:PROG.RL, DTA2:SUBl.RLr DTA2:SUB2. R L ,  l o a d s  any 
necessa ry  l i b r a r y  r o u t i n e s  r e q u e s t e d ,  and s t a r t s  t h e  program a t  t h e  
e n t r y  p o i n t  M A I N .  The same p r o c e s s  could  have been done a s  fo l lows :  

Load DSK:PROG.RL; 

Get a  l i s t  of undef ined symbols on t h e  t e l e p r i n t e r ;  

(Symbols go h e r e )  



S ABR 

Load DTA2:SUBRl.RL,SUB2.RL; 

*LPT:/M<$ 

Put loading map on the line printer, load the binary of any 
library routines requested by the program, and exit ( $  is printed 
by the ALT MODE key) ; 

.SAVE DTA2 FORTPG 

Save the core image on DTA2 as FORTPG.SV; 

Start the core image at its starting address (entry point MAIN in 
this case). 

. START 

13.2 Linking Loader Error Messages 

The Linking Loader outputs error messages in the form 

ERROR nnnn 

where nnnn represents a 4-digit error code. Table 5 lists the error 
codes and their meanings. 

Table 5 
Linking Loader Error Messages 

- - 

Error Code Meaning 

/I or /O specified too late. 

Symbol table overflow; more than 64 subprogram 
names. 

Program will not fit into core. 

Program with largest common storage area was not 
loaded first. 

Checksum error in input tape. 

Illegal relocation code. 

An output error has occur red. 

An input error has occurred (either a physical 
device error, or an attempt was made to read from a 
write-only device such as LPT:). 

No starting address has been specified and there is 
no entry point named MAIN. 

An error occurred while the Loader attempted to load 
a device handler. 

I/O error on system device. 



SABR 

14.0 LIBRARY SETUP (LIBSET) 

LIBSET, the FORTRAN Library Setup program, creates a library of 
subroutines from the relocatable binary output of SABR. These library 
files can be quickly and effectively scanned by the Linking Loader, 
thus saving a great deal of the time involved in loading frequently 
used subroutines. (Refer to the section concerning the Linking Loader 
for information pertaining to relocatable library files: automatic 
loading of the LIB8.RL file, and the /L option.) 

14.1 C a l l i n g  and Using LIBSET 

To call LIBSET from the system device, type 

R LIBSET 

in response to the Keyboard Monitor dot. The Command Decoder then 
prints an asterisk in the left margin of the teleprinter paper and 
waits to receive a line of input. The general form of input required 
to build a library file is: 

*DEV:OUTPUT FILE<DEV:INPUT FILE(S) 
* (additional input files) $ 

No more than nine input files are allowed on any one line, but several 
input lines can be entered. The last input line must end with your 
typing the ALT MODE key (which echoes as $ ) .  Only the first line can 
contain an output file. If no output file is specified, a file named 
LIB8.RL is created on the system device. The assumed extension for 
both input and output files is .RL. 

NOTE 

Files output from LIBSET are in a 
special relocatable library format and 
must not be copied with the /B option in 
PIP. Instead, they should be copied by 
PIP in image (/I) mode. 

14.1.1 LIBSET Options - Only one option is allowed in the use of 
LIBSET, and this is described below: 

Option Meaning 

/s The /S option means that all input files on a line are to 
be regarded as containing more than one relocatable 
binary file. (This is analogous to the /S option in 
ABSLDR. ) 

NOTE 

If / S  is used on a line that contains no 
input files, input from PTR: is 
assumed. 



SABR 

1 4 . 1 . 2  Examples of LIBSET Usage 

Example 1: 

T h i s  e x a m p l e  c r e a t e s  a r e l o c a t a b l e  l i b r a r y  f i l e  o n  DTA2 named SUBS.RL. 
T h i s  l i b r a r y  w i l l  c o n t a i n  s i x  FORTRAN ( o r  SABR) s u b r o u t i n e s  b u i l t  b y  
c o m b i n i n g  t h e  r e l o c a t a b l e  b i n a r y  f i l e  SUBl.RL, SUB2.RL, a n d  SUB3.RL 
f r o m  DTA1 t o g e t h e r  w i t h  o n e  r e l o c a t a b l e  b i n a r y  p a p e r  t a p e  ( n o t e  t h e  A 

p r i n t e d  by  OS/8 b e f o r e  l o a d i n g  f r o m  PTR:) a n d  t h e  f i l e s  FUNC1.RL a n d  
FUNC2.V5 f r o m  t h e  s y s t e m  d e v i c e .  

Example 2: 

S i n c e  n o  o u t p u t  f i l e  was s p e c i f i e d ,  t h i s  e x a m p l e  c r e a t e s  a  r e l o c a t a b l e  
l i b r a r y  f i l e  LIB8.RL o n  t h e  s y s t e m  d e v i c e .  T h i s  p r o d u c e s  a  new 
FORTRAN l i b r a r y  i n c l u d i n g  t h e  s u b r o u t i n e s  c o n t a i n e d  i n  t h e  f i l e s  ASIN 
and  ACOS o n  d e v i c e  DSK, a n d  s e v e r a l  s u b r o u t i n e s  combined  o n  a  s i n g l e  
p a p e r  t a p e  l o a d e d  f r o m  t h e  h i g h - s p e e d  r e a d e r .  

1 4 . 2  Subroutine Names 

I t  is  i m p o r t a n t  t o  d i s t i n g u i s h  b e t w e e n  t h e  OS/8 f i l e  name o f  a  
r e l o c a t a b l e  b i n a r y  p r o g r a m  a n d  i t s  a s s i g n e d  E n t r y  P o i n t  name. The  
f i l e  name h a s  meaning  o n l y  t o  t h e  Command D e c o d e r ;  t h e  E n t r y  P o i n t  
name ( o r  names)  a r e  t h e  t r u e  s u b r o u t i n e  names t h a t  a r e  m e a n i n g f u l  t o  
t h e  L o a d e r .  

F u r t h e r  d e t a i l s  o n  t h e  f o r m a t  o f  r e l o c a t a b l e  b i n a r y  f i l e s  a n d  
r e l o c a t a b l e  l i b r a r y  f i l e s  c a n  b e  f o u n d  i n  t h e  OS/8 S o f t w a r e  S u p p o r t  
Manual (DEC-S8-OSSMA-A-D). 

1 4 . 3  Sequence for Loading Subroutines 

LIBSET c a n  combine  f i l e s  i n  a n y  s e q u e n c e  t o  f o r m  a  r e l o c a t a b l e  l i b r a r y  
f i l e .  However ,  t h e  s u b r o u t i n e s  i n  a n y  s i n g l e  l i b r a r y  a r e  l o a d e d  by 
t h e  L o a d e r  i n  t h e  o r d e r  i n  w h i c h  t h e y  w e r e  o r i g i n a l l y  s p e c i f i e d  t o  
LIBSET. T h e r e f o r e ,  it is i m p o r t a n t  t o  make s u r e  t h a t  s u b r o u t i n e s  a r e  
s p e c i f i e d  i n  o r d e r  o f  s i z e ,  w i t h  t h e  l a r g e s t  s u b r o u t i n e  b e i n g  l o a d e d  
f i r s t .  I f  t h i s  i s  n o t  d o n e ,  c a s e s  c a n  o c c u r  i n  w h i c h  i n s u f f i c i e n t  
c o r e  is  a v a i l a b l e  i n  a n y  s i n g l e  f i e l d  t o  l o a d  a  s u b r o u t i n e ,  w h e r e a s  
s p a c e  would h a v e  b e e n  a v a i l a b l e  i f  t h e  s u b r o u t i n e  had  b e e n  l o a d e d  
e a r l i e r .  

1 4 . 4  LIBSET Error Messages 

A l l  e r r o r s  a r e  f a t a l .  LIBSET r e c a l l s  t h e  Keyboard  M o n i t o r  upon 
e n c o u n t e r i n g  a n  e r r o r  c o n d i t i o n  a n d  m u s t  b e  r e c a l l e d  i n  o r d e r  t o  e n t e r  
a n o t h e r  command s t r i n g .  ( S e e  T a b l e  6 . )  



SABR 

Error Message 1 1 
I I 

Meaning I 

BAD FORMAT OR 
CHECKSUM-- 
TRY AGAIN 

ERROR WHILE WRITING 
OUTPUT FILE 

INPUT ERROR 

LIBRARY DIRECTORY 
OVERFLOW 

Error in reading relocatable binary file. 

Fatal output error occurred. 

Parity error on input. 

v,-.e J.ww -..,.-- many subroutines were specified. Every 
subroutine name in the input file requires 
four words, and every relocatable binary 
file read requires two words. If the total 
number of words exceeds 250, the library 
must be split into two separate files. 

15.0 LIBRARY PROGRAMS 

During execution, the Library programs check for errors and type out 
error messages in the form: 

XXXX ERROR AT LOC NNNN 

where XXXX specifies the type of error, and NNNN is the location of 
the error. When an error is encountered, execution stops, and the 
error must be corrected. 

When multiple error messages are typed, the location of the last error 
message is relevant to the user program. The other error messages are 
relevant to subprograms called by the statement at the relevant - 
location. (See Table 7.) 

Table 7 
Library Error Messages 

Error Message 

ALOG 
ATAN 
DIVZ 
EXP 
FIPW 
FMT1 
FMT2 
FMT3 
FMT4 
FMT5 
FLPW 
FPNT 

SORT 

Explanation 

Attempt to compute log of negative number 
Result exceeds capacity of computer 
Attempt to divide by 0 
Result exceeds capacity of computer 
Error in raising a number to a power 
Multiple decimal points 
E or . in integer 
Illegal character in I, E, or F field 
Multiple minus signs 
Invalid FORMAT statement 
Negative number raised to floating power 
Floating-point error; may be caused by division 
by zero; floating-point overflow; attempt to 
fix too large a number. 
Attempt to take root of a negative number 



SABR 

OS/8 includes, in addition, the error message: 

USER ERROR 1 AT 0 0 5 3 7  

which means that you tried to reference an entry point of a program 
that was not loaded. 

To p i n p o i n t  t h e  location of a Library execution error, proceed as 
follows. 

1. From the Storage Map, determine the next lowest numbered 
location (external symbol) which is the entry point of the 
program or subprogram containing the error. 

2. Subtract in octal the entry point location of the program or 
subroutine containing the error from the LOC of the error in 
the error message. 

3 .  From the assembly symbol table, determine the relative 
address of the external symbol found in step 1 and add that 
relative address to the result of step 2. 

4. The sum of step 3  is the relative address of the error, which 
can then be compared with the relative addresses of the 
numbered statements in the program. 

1 6 . 0  DEMONSTRATION PROGRAM USING LIBRARY ROUTINES 

The following demonstration program is a SABR program showing the use 
of the library routines. The program was written to add two integer 
numbers, convert the result into floating-point, and type the result 
in both integer and floating-point format. The source program was 
written using the Symbolic Editor, assembled with SABR, and loaded 
with the Linking Loader, under the OS/8 Operating System. 

A 
B 
c 
D 
FLOAT 
FORMT 
IOH 
N 
OPEN 
START 
ST0 
WRITE 

4033 START v 
0002 06 

ENTRY START 

CALL Or OPEN / I N I T I A L I Z E  

/ I / O  DEVICES 
TAD A /COMPUTE C=A+B 
TAD B 
DCA C 
CALL 1 r FLOAT /CONVERT TO 

/FLOATING POINT 
ARG Cl 



ARG Ii 

CALL ~ Ã ˆ W R I T  

ARG N 

ARG FORMT 

CALL 1rIOH 

ARG C 

CALL 19IOH 

ARG I1 

CALL 19IOH 

ARG 0 

HLT 

I T  I n  UAII~II cro 
/ .Lf U I l r i l T A . ' L l k - n  

/DEVICE NUMBER 

/l=TELETYPE 
/FORMAT SPECI- 

/FIGATION 
/TYPE INTEGER 

/MI IMRFR . -. .---.. 

/TYPE FLOATING 

/POINT NUMBER 

/COMPLETE THE I/O 

N ? 1 
A ? 2 
B? 2 
C 9 0 
II Ã BLOCK 3 

END 

The binary tape produced by the assembly was then run using OS/8 with 
the following results: 

THE ANSWERS ARE 4 4 + 0 0  





SABR 

APPENDIX 

SABR INSTRUCTION CODES AND PSEUDO-OPERATORS 

The following are the elements of the PDP-8 instruction set found in 
the SABR permanent symbol table. These instructions are already 
defined within the computer. For additional information on these 
instructions and for a description of the symbols used when 
programming other, optional, 1/0 devices, see the Small Computer 
Handbook, available from the DEC Software Distribution Center. 

~nemonic Code 

INSTRUCTION CODES 

Operat ion 

Memory Reference Instructions 

AND 0000 Logical AND 
TAD 1000 Two's complement add 
ISZ 2000 Increment and skip if zero 
INC 2000 Nonskip ISZ 
DCA 3000 Deposit and clear AC 
JMS 4000 Jumpto subroutine 
JMP 5000 Jump 

Mnemonic Code Operation 

Group 1 Operate Microinstructions (1 cycle**) 

NOP 
IAC 
RAL 
RTL 
RAR 
RTR 
CML 
CMA 
CLL 
CLA 

No operation 
Increment AC 
Rotate AC and link left one 
Rotate AC and link left two 
Rotate AC and link right one 
Rotate AC and link right two 
Complemented 1 ink 
Complement AC 
Clear link 
Clear AC 

* Times are representative of the PDP-8/E. 

Time (mn sec.jX 

Sequence 

* *  1 cycle is equal to 1.2 microseconds. 

A-1 



SABR 

Group 2 Operate Microinstructions (1 cycle) 

HLT 
OSR 
SKP 
SNL 
SZL 
SZA 
SNA 
SMA 
SPA 

Halts the computer 3 
Inclusive OR SR with AC 3 
Skip unconditionally 1 
Skip on nonzero link 1 
Skip on zero link 1 
Skip on zero AC 1 
Skip on nonzero AC 1 
Skip on minus AC 1 
Skip on positive AC (zero is positive 1 

Combined Operate Microinstructions 

CIA 7041 Complement and increment AC 
STL 7120 Sent link to 1 
STA 7240 Set AC to -1 

Internal IOT Microinstructions 

ION 6001 Turn interrupt processor on 
IOF 6002 Disable interrupt processor 

Keyboard/Reader (1 cycle) 

KSF 6031 Skip on keyboard/reader flag 
KRB 6036 Clear AC, read keyboard buffer 

(dynamic), clear keyboard flags 

Teleprinter/Punch (1 cycle) 

TSF 6041 Skip on teleprinter/punch flag 
TLS 6046 Load teleprinter/punch, print, and clear 

teleprinter/punch flag 

High Speed Reader -- Type PR8/E (1 cycle) 

RS F 6011 Skip on reader flag 
RRB 6012 Read reader buffer and clear reader flag 
RFC 6014 Clear flag and buffer and fetch 

character 

High Speed Punch -- Type PP8/E (1 cycle) 

PSF 6021 Skip on punch flag 
PLS 6026 Clear flag and buffer, load buffer and 

punch character 



SABR 

The following is a list of the SABR assembler pseudo-operators. 

ABSYM 
A ~ H  
ACM 
ACL 
ARC 
BLOCK 
CALL 
COMMN 
CPAGE 
DECIM 
DUMMY 
EAP 
END 
ENTRY 
FORTR 
I 
IF 
LAP 
OCTAL 
OPDEF 
PAGE 
PAUSE 
REORG 
RETRN 
SKPDF 
TEXT 





INDEX 

ABS floating point routine, 32 
Absolute relocation address, 38 
ABSYM pseudo-op, 9, 15 
Addresses of operands, 5 
ALOG function, 34 
Alphabetic characters, 3 
ARG pseudo-op, 9, 19 
Arithmetic operations, 31, 33  
Arrays, 33 
7kmm-i-T 
AaL-LJL , 
constants, 6 
text strings, 6 

Assembly, 25 
Automatic paging mode, 25 

Binary output tape, 38 
BLOCK pseudo-op, 10, 17 

CALL pseudo-op, 10, 19 
CDF current, 39 
CDFSKP linkage routine, 26 
CDZSKP linkage routine, 27 
CHAIN utility routine, 35 
Characters, 3 
Checksum, 40 
CHS subprogram, 32 
CK10 utility routine, 35 
Codes, 
leader/trailer,- 40 
loader relocation, 40 

Constants, 5 
Conversion 6, 13 
CPAGE pseudo-op, 10, 14 

Data, 
generation, 17 
word, 38 

D (decimal) conversion, 6 
DECIM pseudo-op, 13 
DECtape 1/0 routines, 36 
Definition of symbols, 7 
Device handlers, 46 
DIV, 33 
Double quote character ( I 1 )  , 6 
DUMMY pseudo-op, 22 
Dummy variables, 22 
DUMSUB linkage routine, 27 

EAP pseudo-op, 10, 13 
END pseudo-op, 10, 12 
ENTRY statement, 20 
Error messages, 46 
SABR library, 55 

ERROR utility routine, 35 
EXIT utility routine, 35 
EXP function; 34 
Exponentiation, 34 
Exte rna l  s-&routines, 18 
Externals, 16 

FDV (floating point division), 
32 

FIVSA pass assembly, 42 
FLOAT, 32 
Floating point arithmetic, 31 
FMP, 32 
FSB, 31 
Functions, 34  

High common, 40 

IABS, 33 
IF pseudo-op, 14 
IFIX, 32 
Incrementing operands, 8 
I,%, 3 c  

Labels, 5 
LAP pseudo-op, 11, 13 
Leader/trailer code, 40 
Library, 53 
Linkage routines, 26 
Loader relocation code, 38 
Logarithm, natural, 34 

MPY, 33 
Multiple word instructions, 26 

Natural logarithm function, 34 
Null lines, 5 

Index- 1 



INDEX (Cont . ) 

Number sign ( # )  , 9 
Numeric, 
characters, 3 
constants, 6 

OBISUB linkage routines, 27 
OCLOSE utility routine, 36 
OCTAL pseudo-op, 11, 13 
OPDEF pseudo-op, 11, 15 
Operands, 5 
Operators, 5 
Optimizing code, 44 

Page-by-page assembly, 25 
Page format, 25 
PAGE pseudo-op, 11, 13 
Paging mode, automatic, 25 
Parameters, 7 
Passing subroutine arguments, 

22 
PAUSE pseudo-op, 11, 12 
Permanent symbols, 7 
Program addresses, 29 
Pseudo-operators, 9 to 17 

READ statement, 30 
REOKG pseudo-op, 11, 14 
Re-origin, 39 
Reserving words of memory, 17 
RETRN, 20 
RETURN key, 4 

Simple relocation, 38 
Special characters, 3 
SQRT function, 34 
Statements, 4 to 8 
STO, 32 
Storage, common, 17 
Subprogram library, 30 to 37 
SUBSC, 33 
Subscripted variables, 33 
Symbol definition, 15 
Symbol Table, 29 
Symbols, 7 

TEXT pseudo-op, 17 
Text strings, packed in 6-bit 

ASCII, 17 
Transfer vector, 40 
Two-word block, 20 
Two-word vector, 27 

User-defined symbols, 7 
USR and device handler, 46 
Utility routines, 35 

Variables, 33 

WRITE function, 30 
WTAPE routine, 36 



OS/8 
Language Reference Manual 
AA-H 6 0 9A-TA 

READER' S COMMENTS 

NOTE: This  form is  f o r  document comments only. DIGITAL will 
use comments submitted on t h i s  form a t  t h e  company's 
d i s c r e t i o n .  i f  you r e q u i r e  a w r i t t e n  r ep ly  and are 
e l i g i b l e  t o  r ece ive  one under Software Performance 
Report (SPR) s e rv i ce ,  submit your comments on an SPR 
  CAT.. 

Did you f i n d  t h i s  manual understandable,  usable ,  and well-organized? 
Please make suggest ions for improvement. 

Did you f i n d  e r r o r s  i n  t h i s  manual? If so ,  s p e c i f y  t h e  e r r o r  and t h e  
page number. 

P lease  i n d i c a t e  t h e  type of reader  t h a t  you most nea r ly  represent .  

Assembly language programmer 

I"") Higher- l e v e l  language programmer 

Occasional programmer (experienced) 

[Ã‘ User with l i t t l e  programming experience 

I"") S tudent  programmer 

Other (p l ease  spec i fy )  

Name Date 

Organizat ion 

S t r e e t  

Ci ty  S t a t e  Zip Code 
o r  

Country 



I 

I 
I 

- - -  DoNot Tear - Fold Here and Tape - - - - - - - - - - - - - - - - - - - - I  

BUSINESS REPLY MAIL 
FIRST CLASS PERMIT N0.33 MAYNARD MASS. 

POSTAGE WILL BE PAID BY ADDRESSEE 

RT/C SOFTWARE PUBLICATIONS ML 5-5/E45 

DIGITAL EQUIPMENT CORPORATION 

146 MAIN STREET 

MAYNARD, MASSACHUSETTS 01754 

No Postage 
Necessary 

i f  Mailed in the 
United States 


	000
	001
	002
	003
	004
	005
	1_001_BASIC
	1_003
	1_004
	1_005
	1_006
	1_1-01
	1_1-02
	1_1-03
	1_1-04
	1_1-05
	1_1-06
	1_1-07
	1_1-08
	1_1-09
	1_1-10
	1_1-11
	1_1-12
	1_1-13
	1_1-14
	1_1-15
	1_1-16
	1_1-17
	1_1-18
	1_1-19
	1_1-20
	1_1-21
	1_1-22
	1_1-23
	1_1-24
	1_1-25
	1_1-26
	1_1-27
	1_1-28
	1_1-29
	1_1-30
	1_1-31
	1_1-32
	1_1-33
	1_1-34
	1_1-35
	1_1-36
	1_1-37
	1_1-38
	1_1-39
	1_1-40
	1_1-41
	1_1-42
	1_1-43
	1_1-44
	1_1-45
	1_1-46
	1_1-47
	1_1-48
	1_1-49
	1_1-50
	1_1-51
	1_1-52
	1_1-53
	1_1-54
	1_2-01
	1_2-02
	1_2-03
	1_2-04
	1_2-05
	1_2-06
	1_2-07
	1_2-08
	1_2-09
	1_2-10
	1_2-11
	1_2-12
	1_2-13
	1_2-14
	1_2-15
	1_2-16
	1_2-17
	1_2-18
	1_2-19
	1_2-20
	1_2-21
	1_2-22
	1_2-23
	1_2-24
	1_2-25
	1_2-26
	1_3-01
	1_3-02
	1_3-03
	1_3-04
	1_3-05
	1_3-06
	1_4-01
	1_4-02
	1_4-03
	1_4-04
	1_5-01
	1_5-02
	1_5-03
	1_5-04
	1_5-05
	1_5-06
	1_5-07
	1_5-08
	1_5-09
	1_5-10
	1_5-11
	1_5-12
	1_5-13
	1_5-14
	1_5-15
	1_5-16
	1_5-17
	1_5-18
	1_5-19
	1_5-20
	1_A-01
	1_A-02
	1_B-01
	1_B-02
	1_B-03
	1_B-04
	1_C-01
	1_C-02
	1_C-03
	1_C-04
	1_D-01
	1_D-02
	1_Index-1
	1_Index-2
	1_Index-4
	2_001_FORTRAN_IV
	2_003
	2_004
	2_005
	2_006
	2_007
	2_008
	2_009
	2_01-01
	2_01-02
	2_01-03
	2_01-04
	2_01-05
	2_01-06
	2_01-07
	2_01-08
	2_01-09
	2_01-10
	2_01-11
	2_01-12
	2_01-13
	2_01-14
	2_01-15
	2_01-16
	2_01-17
	2_01-18
	2_01-19
	2_01-20
	2_01-21
	2_01-22
	2_01-23
	2_01-24
	2_01-25
	2_01-26
	2_01-27
	2_01-28
	2_01-29
	2_01-30
	2_010
	2_02-01
	2_02-02
	2_02-03
	2_02-04
	2_03-01
	2_03-02
	2_03-03
	2_03-04
	2_03-05
	2_03-06
	2_04-01
	2_04-02
	2_04-03
	2_04-04
	2_04-05
	2_04-06
	2_04-07
	2_04-08
	2_04-09
	2_04-10
	2_04-11
	2_04-12
	2_04-13
	2_04-14
	2_04-15
	2_04-16
	2_05-01
	2_05-02
	2_05-03
	2_05-04
	2_05-05
	2_05-06
	2_05-07
	2_05-08
	2_06-01
	2_06-02
	2_06-03
	2_06-04
	2_07-01
	2_07-02
	2_07-03
	2_07-04
	2_07-05
	2_07-06
	2_07-07
	2_07-08
	2_07-09
	2_07-10
	2_08-01
	2_08-02
	2_08-03
	2_08-04
	2_09-01
	2_09-02
	2_09-03
	2_09-04
	2_09-05
	2_09-06
	2_09-07
	2_09-08
	2_09-09
	2_09-10
	2_09-11
	2_09-12
	2_09-13
	2_09-14
	2_10-01
	2_10-02
	2_10-03
	2_10-04
	2_10-05
	2_10-06
	2_10-07
	2_10-08
	2_11-01
	2_11-02
	2_11-03
	2_11-04
	2_11-05
	2_11-06
	2_11-07
	2_11-08
	2_11-09
	2_11-10
	2_11-11
	2_11-12
	2_11-13
	2_11-14
	2_12-01
	2_12-02
	2_12-03
	2_12-04
	2_12-05
	2_12-06
	2_12-07
	2_12-08
	2_12-09
	2_12-10
	2_12-11
	2_12-12
	2_12-13
	2_12-14
	2_12-15
	2_12-16
	2_12-17
	2_12-18
	2_12-19
	2_12-20
	2_13-01
	2_13-02
	2_13-03
	2_13-04
	2_13-05
	2_13-06
	2_13-07
	2_13-08
	2_13-09
	2_13-10
	2_13-11
	2_13-12
	2_13-13
	2_13-14
	2_13-15
	2_13-16
	2_13-17
	2_13-18
	2_13-19
	2_13-20
	2_13-21
	2_13-22
	2_14-01
	2_14-02
	2_15-01
	2_15-02
	2_15-03
	2_15-04
	2_15-05
	2_15-06
	2_15-07
	2_15-08
	2_15-09
	2_15-10
	2_15-11
	2_15-12
	2_15-13
	2_15-14
	2_15-15
	2_15-16
	2_A-01
	2_A-02
	2_B-1
	2_B-2
	2_B-3
	2_B-4
	2_Index-1
	2_Index-2
	3_001_PAL8
	3_003
	3_004
	3_01
	3_02
	3_03
	3_04
	3_05
	3_06
	3_07
	3_08
	3_09
	3_10
	3_11
	3_12
	3_13
	3_14
	3_15
	3_16
	3_17
	3_18
	3_19
	3_20
	3_21
	3_22
	3_23
	3_24
	3_25
	3_26
	3_27
	3_28
	3_29
	3_30
	3_31
	3_32
	3_33
	3_34
	3_35
	3_36
	3_37
	3_38
	3_39
	3_Index-1
	Untitled
	4_001_FORTRANII
	4_003
	4_004
	4_01
	4_02
	4_03
	4_04
	4_05
	4_06
	4_07
	4_08
	4_09
	4_10
	4_11
	4_12
	4_13
	4_14
	4_15
	4_16
	4_17
	4_18
	4_19
	4_20
	4_21
	4_22
	4_23
	4_24
	4_25
	4_26
	4_27
	4_28
	4_29
	4_30
	4_31
	4_32
	4_33
	4_34
	4_35
	4_36
	4_37
	4_38
	4_39
	4_40
	4_41
	4_42
	4_Index-1
	4_Index-2
	4_Index-3
	4_Index-4
	5_001_FLAP%2fRALF
	5_003
	5_004
	5_01
	5_02
	5_03
	5_04
	5_05
	5_06
	5_07
	5_08
	5_09
	5_10
	5_11
	5_12
	5_13
	5_14
	5_15
	5_16
	5_17
	5_18
	5_19
	5_20
	5_21
	5_22
	5_23
	5_24
	5_25
	5_26
	5_27
	5_28
	5_29
	5_30
	5_31
	5_32
	5_33
	5_34
	5_Index-1
	6_001_SABR
	6_003
	6_004
	6_01
	6_02
	6_03
	6_04
	6_05
	6_06
	6_07
	6_08
	6_09
	6_10
	6_11
	6_12
	6_13
	6_14
	6_15
	6_16
	6_17
	6_18
	6_19
	6_20
	6_21
	6_22
	6_23
	6_24
	6_25
	6_26
	6_27
	6_28
	6_29
	6_30
	6_31
	6_32
	6_33
	6_34
	6_35
	6_36
	6_37
	6_38
	6_39
	6_40
	6_41
	6_42
	6_43
	6_44
	6_45
	6_46
	6_47
	6_48
	6_49
	6_50
	6_51
	6_52
	6_53
	6_54
	6_55
	6_56
	6_57
	6_58
	6_A-1
	6_A-2
	6_A-3
	6_A-4
	Index-1
	Index-2
	replyA
	replyB



