
July 1979

- MULTI8 Release Notes -
MULTI8 V7A release notes. I

This document describes specific features of MULTI8 V7A. It is
primairily intended for V6 users and explains many features in terms
of the difference between the two versions. Related documents are the
MULTI8 Terminal Manual and the MULTI8 System Manual. These manuals
may be ordered from:

Westvries Computer Consulting B.V.
Rijksstraatweg 19, 1969 LB Heemskerk

The Netherlands

MULTI8 V7A incorporates about two years of further development that
started from V6. The single feature that has a mairf impact on system
performance is the virtual memory. Other changes are intended to
simplify 'the system generation procedure, increase the systems I

I
3 reliability and functionality. J

I

Virtual memory.

In V6 at any time there was just one background program resident in
memory. A swap always involved the complete memory of a virtual
machine, ie. 8K or 16K. If the system was configured for 16K

I backgrounds, it would always swap 16K, even if the user was running a
4K program. In contrast, V7A swaps only those fields of a background
that are realy used by the program. This greatly reduces the number
of field swaps. Also, V7A can swap a field that is needed into any
available field of the real machine. Thus portions of more than one
program can reside in memory together. This allows the system to work
(process) on one program while it is swapping another program. The _) 1
result is a considerable increase in cpu usage, thus inproved
throughput, and at the-same time reduced response times. Especially
users that had 16K backgrounds will notice the faster response, as
most primairy responses require only one or two fields of a program to
be resident. A further benefit of the virtual memory implementation
is that the restriction to 8K or 16K backgrounds is removed. The
system may be configured with anything from 8K to 32K backgrounds,
with the only consequence that larger virtual memories require a
larger swapfile. An occasional requirement to run a large program now 3
has little or no effect on the general system performance.

Terminal support.

A number of configuration
to addapt the system to
the possibility to insert

parameters have been introduced to allow you
specific types of terminals. We had already
a number of filler characters after a

specific character. New is the possibility to specify for each
terminal what code it uses for 'escape'. Some older terminals,
notably ASR33, send either 375 or 376, which for newer terminals are
legal characters in the lower case column. Now you can for each
terminal define its proper escape code. If the system recieves that
code, it translates it to the true ASCII escape, code 233, which is
properly handled by all software. To support the new RUBOUT protocol
implemented in OS/8 V3D, the terminal driver correctly decrements the
position counter for a backspace character. Also, you may specify
that for one or more terminals backspace (code 210) is translated to
any other single character code. Although it will generaly be more
convenient to set the terminal parameters at system generation time,

- MULTI8 Release Notes -
they can be changed on-line with simple commands to the CONTROL/B
task. To warn user's that are typing on video terminals in the case of
input buffer overflow, the terminal bell is rung for each character
that could notbe accomodated in the input buffer. In order to be
able to implement these features without increasing the memory
requirements, we had to drop the terminal papertape support (ie.
reader run is always enabled, you must stop the reader manually to
prevent buffer overflow).

' . '., ~. .
, ' ~ . . ~.

, ,~

. . . , . , ?&achedi. terminals. . .,, , . , .,
, ,. ., .~ . . ' ~ , . . .

,

A new mechanism was introduced that allows you to run more backgrounds
than there are terminals on the system. The system can be build with
up to 7 backgrounds, even if you have less terminals. The terminals
that are present, are connected one to one to the first so many
backgrounds. When the system is running, a user may 'hook' his
terminal to one of the unassigned backgrounds. His original
background remains active, ie. if it was executing a program (BATCH!),
it will continue to do so. Any terminal output from that background
will continue to appear on the user's terminal. Meanwhile, the user
has complete control over the new background. Whenever required, the
user may switch back to his original background. Any detached
background can be hooked on by any user. Terminal output is always
directed to the terminal that was last hooked on. Note that each
background requires its own disk area. ~qn6o dolr iw SB sSî '-:

I B S ' J O ~ ~ ~ w9'I s-- 03
[m i 3 ~ r i 3 a.,iadeye

Lineprinter support. ie s evert .-!szL~
"!"

Lineprinter support is enhanced by providing automatdd spooling
internal in the lineprinter driver, plus a number of configuration
parameters to specify the type of interface (LE8E, LS8E, KL8E or
DKCBAA), linewidth and character set.

Memory requirements.

Although the performance and functionality of MULTI8 have been
increased considerably, its memory requirements have not. The
implementation of a new terminal buffering system contributes most to
this fact. In V6 each terminal had its own fixed buffer area. The
size of this area depended on the terminal speed. For a 1200 Baud
terminal a total of 400 words was considered the minimum. That means
1K of buffer space for a four terminal system. In practice, at any
moment only a small part of this space was used. In V7A a pool of 16
word bloks is maintained that is shared by all terminals. To prevent
one terminal from monopolizing the pool, no single queue can ever grow
beyond the size of the remaining pool. This technique allows smooth
operation of 4 terminals with only .5K of buffer space. In general,
this technique halves the systems terminal buffer requirements. sa2e.i

w n9va
Not only the resident part of the system has been reduced in size, the
requirements of the various external emulator tasks have been reduced
also. This has been accomplished by a refinement of the 'release
devices' mechanism. In V6 all the emulator tasks in the system were
RUN each time a user program returned to the keyboard monitor. This
made that all emulator tasks were resident most of the time. They
were generally programmed to exit with 'release' to prevent the
considerable overhead of loading the task for each keyboard monitor

- MULTI8 Release Notes -
entry in the system. In V7A emualtor tasks enter their name (or
rather task control block pointer) dynamically in the table of
emulators that are run when a user program is finnished. Thus only
emulator tasks that are realy active, either for the exitting user or
another user, are RUN.

The net result of these improvements is that you may run a system with
up to 7 terminals in an 8K-foreground configuration. On a 32K machine
this leaves 6 fields for background operation, which gives the system
sufficient space for smooth virtual memory operation. If you have
many peripherals on the system and/or need considerable foreground
space for realtime tasks, you may need to allocate 12K for the
foreground. It is, however, possible to temporarily lock one or more
fields of a background program in core so that they can be used as
buffer space for a foreground task.

Terminal speed.

A few remarks on the issue of terminal speed (Baud rate) are in place.
With the advent of modern video terminals, the traditional 110 Baud
terminal speed has been replaced by much higher rates. A temptation
exists to set the terminal speed as high as the hardware supports,
generally 9600 Baud. However, you should realize that this
essentially puls the chair from under the timesharing concept. The
rate at which computer systems can produce output is generally limited
to a few thousand characters per second. Especially timesharing
systems that implement a flexible character-oriented dialogue with the
user, have a significant amount of work to do for each character that
goes out. If you run your terminals at 9600 Baud (960 characters per
second), two or three active terminals will completely drain the cpu
resource. The system will not be able to keep the output buffers for
the terminals filled and the output will appear in bursts. This is
unpleasant to look at for the users. The system overhead is
increased, because the programs are rescheduled very quick, which
gives rise to increased swapping.

If you run your terminals at a medium speed (1200 or 2400 Baud is
suggested), the system will at most times be able to keep up with the
output. Characters appear on the screen as a smooth stream, which
gives the user the impression that he is beeing served continuously.
When the system has filled an output buffer, it can set that
background aside for several seconds to deal with other users. There
are but few situations that require a high transmission rate, eg. a
graphics terminal. Note that there are in fact different types of
terminals that give very different loads to the system. On one
extreme, a terminal used by inexperienced users to run some simple
standard programs or perform editing of small files, will only lightly
load the system. A PDP8 could easily handle 20 or more of these. On
the other hand, experienced programmers using complicated programs,
large files, screen editors, will at times ask for a faster machine,
even when they are the sole user! The latter type of user will
certainly complain if he has to share the machine with more then 3 or
4 colleagues.

Building procedure.

- MULTI8 Release Notes -
Much effort has been devoted to easy the building procedure. The many
sometimes akward command sequences one had to follow to build MULTI8
V6 have been replaced with a simple and consistent procedure. Many
things have been automated; the system automatically creates the file
that holds the task images (in fact, they are stored in an extension
of MULTI8.SV), the swapfile (SWPFIL.M8), origined at a track or
cylinder boundary. The device length table in PIP is automatically
updated to reflect the lengths of the user disks. Many of the former
configuration parameters are now assigned default values, eg. the
interrupt priorities, that will prove adequate for most installations.
At startup-time, all user disks are automatically initialized with a
fresh copy of OS/8.

A special program is supplied that interactively determines the system
parameters and generates suitable parameter- and batch-files. Also,
the taskbuilder (which is now part of the initialization code) is able
to apply patches to system tables, based on information in the binary
task files. This removes the need to edit the monitor source files in
most of the cases, even for user-added tasks and devices.

Reliability

The system is protected against spurious interrupts that can not be
cleared by the normal code in the skipchain. If the system loops more
than 4096 times through the skipchain, it enters a wait-loop for
approximately one second and then resets the machine (Clear All Flags
instruction). After reenabling the system clock, it tries to resume
processing, which may succeed or not, depending on many factors, such
as what peripherals were running when the fault occured.

The machines memory size is dynamically determined at startup time.
In fact if the foreground fields plus the first background field are
present, the system automatically excludes fields that are missing,
eg. because of a memory failure. If a memory failure occurs, stop the
system, remove the defective memory, insure that the field 0 to 3 (4
for 12K foreground systems) are present, and start the system up
again. It will run as long as 3 background fields are operable.

Converting user tasks.

The new version of the MULTI8 System Manual describes the new
protocols inplemented in V7A. Here we give a list of modifications
that must be made to tasks written by current users of V6.

- The second word of the Task Header (the task length and connect
information) may NOT be used as a scratch location; its contents must
be preserved to allow the system to properly execute the RELEASE and
SWPOUT functions.

- If bit 5 of the task length word is set, the task is RUN when the
system starts. The RUNTAB in the powerup code has been removed.

- Driver tasks must be prepared to handle a close call. A close call
is identified by the fact that the AC is zero (for a normal call, the
AC contains a pointer to the request paramaters). One way to handle
close calls is:

- MULTI8 Release Notes -

SNA /CLOSE CALL ?
JMP CLOSE /YES

CLOSE,, ACM1
JMS MONITOR

ETURN EVENTNUMBER -1
.. ~

' t . , EXIT SWPC
--:li:!;;,-i~.

Note that a negative event number, when used in a WAIT, results in an
immediate return, with the AC set to the complement of 'the event
number.

- The subroutine RESERV has been replaced by a monitor function
RESERV. This function may be combined with RETURN and its options.
In blockdrivers the following sequence is very usefull:

,, . a , ' : " , . , . , . . 7, , :, . . .= .,. . L

: c
,-;, ~ ,,,,, .,.,.> . : ,; >.., .i. , ? <.*.,.',." :*,.. i

JMS MONITOR
RESERV RETURN CONTINUE

DCA EVENT /THE EVENT WHERE WE WILL SIGHAL COMPLETION.
/LINK AND DATAFIELD ARE PRESERVED

In one monitor call this reserves an event, returns that event number
to the calling task, and delivers the event number to the driver task
as well.

- KILL has been replaced by BREAK. If you had tasks that could only
be stopped by KILL, you have to convert them. These tasks should
periodically execute
' " ,' %

;, ~, 0 . . ., t , j .' : /O=TEST MY OWN BREAK FLAG
. c JMP STOP /FLAG WAS SET, DO SOMETHING...
. , ;;a. /FLAG WAS NOT SET, CONTINUE

- The foreground break character has been changed to CONTROL/F
(formerly CONTROL/SHIFT/L or CONTROL/BACKSLASH).

- Tasks that needed modifications to system tables can have 'these
modifications done at task-build time. A task may be preceded by a
so-called task preamble. It consists of one or more patch-groups.
Each patch-group has the following form:

x 0 /MUST BE HERE FOR EACH PATCH GROUP
CDF 10 /FIELD WHERE PATCH MUST BE MADE,;;.
EMTAB+33 /ADDRESS TO BE PATCHED ,
"Q"IOO+"Q&3777 /VALUE TO STORE

:.
. > ,

In the example, the task name QQ has been stored in the 33rd location
of the trapped IOT dispatch table. Any location can be patched by
this methods.

, .. , . , . . . , :. b63,isqoqq :;Â¥; 2 ~ ~ 8 : s'.-i

- Emulator tasks are no longer permanently entered in ASEMTB, the
table of emulator tasks that are RUN when a user enters the OS/8 KBM
or CD. Emulator tasks that work for more than one call for a single
user must enter their name (or, more efficiently, their TCBP) in

- MULTI8-Release Notes -
ASEMTB dynamically. The following code could be used for this task:

TAD (ASEMTB-1 /SETUP ADDRESS OF BEGIN OF ASEMTB
DCA AUTO10 /FOR A SCAN TO FIND AN EMPTY ENTRY
CDF 10' //ASEMTB, LIKE ALL BG STUFF, IS IN FIELD 1

LOOP, TAD I AUTO10 //FETCH AN ENTRY
SZA CLA //IS IT EMPTY (ZERO) ?
JMP LOOP //NO, TRY NEXT ONE
TAD AUTO10 //YES, GET ITS ADDRESS
DCA ENTRY //AND STORE IT IN THE TASK
CDF 0 , //CURTSK IS IN FIELD 0
TAD I (CURTSK //GET TCBP OF RUNNING TASK (THAT'S ME!)
CDF 10 //BACK TO FIELD 1
DCA I ENTRY //AND STORE IT IN ASEMTB

ASEMTB has been dimensioned so larue (16 locations)bthat a free entrv
will always exist (16 emulator tasks must be active to fill it). ~ o t e
that the task mav not RELEASE or SWTOTIT without first clearing its
ASEMTB entry. So when the emulator is finnished (eg. at end-of-file),
it should perform

CDF 10 //ASEMTB IS IN FIELD 1, YOU KNOW
CLA //IF NECESSARY
DCA I ENTRY //ZERO MY ASEMTB ENTRY

- When the user enters the OS/8 KBM or CD, his emulator task that have
entered their name or TCBP in ASEMTB are RUN, but not with AC=O, but
with L=1. The AC will always point to the BG1s data area in field 1.
This makes it possible for one emulator task to be active for several
BGs, and still receive control when a user leaves his program. For
example, the task might control access to a common data base, and have
a list of locked record numbers for each active user. The new
protocol allows such a task to unlock all records that were in use by
a user who terminated his program.

- On return from an emulator task, the AC signals three different
things. As always, a zero AC signals 'no problem1, and the background
program will be continued. A positive AC signals that some emulation
error occured, and will bring the background in CONTROL/B mode, with
its current state displayed. A negative AC is interpreted as being an
instruction that should replace (be patched over) the trapped
instruction in the background program. The Central Emulator will
apply the patch, backup the user's program counter and continue the
background.

- The virtual memory system has several consequences for emulator
tasks that deal with the background memory, eg. to obtain parameters,
return values, or perform 1/0 to or from the user's memory. When an
emulator task is entered (with Link=O, eg. not the release RUN), the
BG instruction field is known to be in memory. The field where it is
loaded is obtained by the following code:

TAD XXBASE /ASUME WE HAD STORED THE ENTRY AC HERE
TAD (UFLDS /ADDRESS USER'S FIELDS WORD
CDF 10 //ALL USER DATA IS IN FIELD 1
JMS DEFER //GET USER'S FIELDS WORD
AND C70 //EXTRACT HIS (VIRTUAL) INSTRUCTION FIELD
CLL RTR //MOVE IT TO BITS 9-11

- MULTI8 Release Notes -
RAR / / . .

TAD (UFLDO //START OF FIELD TABLE IN USER DATA
TAD XXBASE / /
JMS DEFER //THIS GETS THE REAL FIELD NUMBER IN 6-8
TAD C.6201 //MAKE A CDF

As long as the user's state remains EMULATE, his instruction field
will remain in place. But after the BG has been INACTIVE, you must
request it into memory again before using it. This is also true for
any other field,that you may require. The logic of emulator tasks can
thus be simplified by insuring that all parameters are in the

field, ie. the field where the trapped instruction

field into memory, use the following code:

instruction
resides.

To request a

CDF
TAD
AND

10 //YOU KNOW WHY!
I XXBASE //GET USER STATUS
(-INACTIVE-EMULATE-1 //CLEAR INACTIVE AND EMULATE

//(ADD '-LONGf TO GET IT FASTER)
TAD (INCORE //SET INCORE REQUEST
TAD XFLD //ADD VIRTUAL FIELD NEEDED IN BITS 6-8
DCA I XXBASE //THAT'S HIS NEW STATE
JMS MONITOR //SIGNAL BACKGROUND SCHEDULER TO LOOK AT IT

SIGNAL
BSSLOT / /

TAD XXBASE //NOW GET PRIVATE EVENT OF THIS USER
TAD (USLOT / /
JMS DEFER //THIS GIVES US THE EVENT
DCA .+3 //STORE IT IN THE WAIT REQUEST
JMS MONITOR //WAIT TILL BS TELLS US THAT THE FIELD

WAIT //IS IN MEMORY. AND WHERE IT IS
0 //(GETS USLOT)

TAD C6201 //AH! AC CONTAINS REAL FIELD NUMBER ! //NOW WE GOT A CDF TO THE REQUESTED FIELD

At this point the state of your BG is EMULATE again, which insures
that the field just brought into memory will stay there.

- With some simple equates in the configuration file you can included
extra entries in the skipchain with customized code for vour net . -
device. As an example, you could make the following equates for an
extra KL8E:

UDEV 1 =420 /DEFINE SYMBOL 'UDEVl', AND GIVE IT THE
/VALUE OF THE DEVICE CODE.

SKPDVl=6001+UDEVl /THIS IS THE SKIP-IOT
CLRDV1=6002+UDEVl /THIS IS THE CLERA-FLAG IOT

these definitions (in CONFIG.PA) result in the following entry in the
system's skipchain:

xDEVln4+INT ///EVENT NUMBER IS fDEVl'
SKPDV 1 ///YOUR DEFINED SKIP-IOT
JMP .+'< / / /

~ ~- . . .
CLRDV 1 ///YOUR DEFINED CLEAR-FLAG IOT
JMS I ZHRDINT ///SIGNAL EVENT FOR 'DEVlf

- MULTI8 Release Notes -
You can use this entry in your tasks either by connecting to it, or
with a simple

JMS MONITOR
WAIT
DEV 1

Four of these dummy entries have been included in the system code,
UDEVI, UDEV2, UDEV3 and UDEVU, with their corresponding SKPDVn, CLRDVn
and DEVn. The first pair if the dummy entries (UDEVI and UDEV2) are
located at the very beginning of the skipchain, and thus have the
highest interrupt service priority. UDEV3 and UDEV4 have medium
priority.

Disk configuration.

The idea of 'virtual disk files', as used in MULTI8 V6, has been
abandoned. It had only restricted aplicability and introduced extra
problems, eg. all disk drives known to OS/8 had to be online for a
MULTI8 startup.

Now that MULTI8 V7A initializes user disk automatically it is not
longer necessary to have access to user disks from OS/~. This makes
it possible to use a more general scheme for user disk allocation.

The default allocation on a RK8E or equivalent system is as follows-

DSKOsRKAO
DSK 1 =RKBO
DSK2=RKA1
DSK3=RKBI

If one or more of the generic names (eg. RKA2) exist in the OS/8
configuration used when MULTI8 is started, this (these) disk(s) will
be accessible under these names for all users. They are called
'public disks', and can be used for common file storage, as user
mountable data disk, etc.

You can change the default disk layout by defining parameters in
CONFIG.PA. In fact, for each user disk there are four parameters that
define where that disk area is located and how large it is:

USYSn
UNITn
FROMn
SIZEn

name of device driver, default =1'S*100+'1Y&3777.
unit number, default =n.
starting block number. default =0.
length of user area, default =size of system disk,
eg. 6260 for RK8E.

As an example, the following definitions will devide RKBO in to carts
for user 1 and 2. User 1 gets the largest area, 4000 (octal) blocks.
User 2 gets the remainder, 6260-4000=2260 blocks. I

(USYSI, UNIT1 and FROM1 are default)
(to locate DSK2 on RKBO instead of RKAI)
(start where DSKI ends)
(length that remains for DSK2)

v - MULTI8 Release Notes -

to complete the example, assume that this is a 2-drive RK8E system (2
RK05J or a single RK05F). Assume that the second drive (platter)
should be used for common file storage. Generate an OS/8 system (with
BUILD.SV) with the following devices:

- v& i i ~ p i - i : , t n s y~asisb se~ri3 ' i o r ! ~ c ? ! SYS, RKA1, RKB1, TTY, LPT, etc... 7 t - b , C V ~ C U b-ns EVEOU ,SV..;GU rv; , t I
h <iirt.1 f i f e e r i s Â t'l nv3c r, I

Note that RKBO is left out. In .generalF you should delete' the OS/8
devices that coincide with the user disk areas, to prevent inadvertent
access to user disk area's. .- y, .,. + - A ...;, - - * , .-- ---..-...*- " W . , " , <> - -. .' .L 2. ' -. (.a4 ,Oi-.% I

I

