
- MULTI8 System Manual -
3. System Tasks

This chapter contains two sections, one on internal system tasks and
one on external system tasks. The primary distinction between the two
is whether the task resides in memory or on disk. External tasks are
assembled separately and are loaded in the disk-resident tasks library
by the taskbuilder program (see section 6.2). Internal tasks are
assembled as a part of the monitor source and loaded and saved along
with Monitor. Because internal tasks have no diskaddress
(blocknumber), there is one word spare in their Task Control Block.
This word is often used to store the base address for reentrant tasks.
Consequently only internal tasks can be reentrant. Note that there is
no indication in the TCB whether the task is external or internal.
Internal tasks should never issue RELEASE or SWAPOUT requests.

In principle internal tasks can be assembled separately also.
However, the programmer has to specify where in memory the task must
be loaded and should update the various system tables (memory map,
task name table and task control block table).

For the majority of standard computer peripherals driver tasks have
been written that adhere to one common calling protocol. These tasks
are called 'blockdriverst, as they perform 1/0 in units of one or more
blocks. A block is a sequence of 256 (decimal) 12 bit words. The
blockdriver protocol supports direct addressable devices, but can also
be used for sequential access devices like papertape, etc.

Here is a sample call to some block driver task 'BD':

START, CDTOIF /SET CORRECT DATAFIELD
TAD (PARAMS /LOAD AC WITH POINTER TO PARAMETERS
JMS MONITOR

CALL
TNAME , '1B"100+11D&3777 /CALL THE TASK 'BD' (BLOCK DRIVER)

JMP BUSY /ERROR RETURN, TASK WAS BUSY
DCA. EVENT //TRANSFER IS INITIATED. AC HOLDS EVENT WHERE

//COMPLETION WILL BE SIGNALLED
CDTOIF /RESET DATAFIELD (!) /PERFORM OTHER OPERATIONS WHILE 1/0 PROCEEDS
JMS MONITOR

WAIT
EVENT, 0 /WILL GET EVENT NUMBER GOT FROM 'BD'

SZA /ERRORS IN TRANSFER ?
JMP ERROR /YES, AC CONTAINS ERROR CODE /NO, OPERATION COMPLETE

PARAMS, FUNCTION /WLL . LLL .FFF .UUU
BUFFER
BLOCKNO

BUSY, CLA I (!)
TAD TNAME /GET REQUEST PARAMETER
SMA CLA /WAS THE NAME FOUND ?
JMP NOTASK /NOT CHANGED, UNDEFINED TASK NAME
JMS MONITOR

STALL ... /WAIT A SUITABLE TIME
CLA CLL /CLEAR AC ! ! ! (AC=2 AFTER A STALL)

- MULTI8 System Manual -
JMP START /RETRY OPERATION

Note that the address of the transfer vector (PARAMS) should be
relocated in case this code is part of an external task!

Some blockdrivers (eg. KR, LP, PP, PR, PL) need a 'CLOSE' call after
the end of the file transfer in order to allow other tasks to call .
them. All blockdrivers accept the close call. A close call is a call
with AGO. Many blockdrivers will return immediatly, with the AC set
to -1. This value makes the following WAIT request a dummy.

3.1 Internal system tasks.

Internal system tasks are:

SY the system disk blockdriver task
TI the timer task
Tn terminal output handler for terminal n
Kn terminal input handler for terminal n
En central emulator for background n
In input reader for background n
On output writer for background n
DK VIRTUAL disk mapper

The central emulator, input reader and output writer tasks are
described in chapter 4.

SY is the driver task for the system disk. The source of SY is
contained in M2.PA. SY consists of two parts, the task-part and the
interrupt service routine. The task part is activated by a CALL from
another task, specifying the address of a three-word parameter block.
The taskpart will enter this pointer in a queue which is emptied by
the interrupt service routine. Both parts have one subroutine in
common, SYSDO, which is used to start a disk transfer.

On entry of the task-part the AC+DF is a pointer to the parameters:

Word 0: wll.111.fff.uuu=function word (r/w,length,field,unitnumber)
Word 1: memory address of buffer
Word 2: disk block number

All types of disks are addressed by 256 word blocks, starting with
block 0. The transfer length is snecified bv t; bits (00-771- " - < . , ,
indicating the number of half-blocks to transfer. A transferalways
starts at the beginning of a block.

System Tasks-2

- MULTI8 System Manual -
N O T E

A specified transfer length of 00 will result in a
4K transfer.

tr !

The internal queue contains two-word entries: i a ~ i o ' i

Word 0: fff.OOe.eee.eee fsfield of parameter block, e=event number
Word 1: aaa.aaa.aaa.aaa azaddress of parameter block

Through conditional assembly the interrupt service routine is adapted
to the type of disk device.

The timer task is RUN when the system starts and keeps running. It
uses one of the various types of clocks to implement the timeout
facility. TI consists of an interrupt service routine (located in
Ml.PA, immediately behind the skipchain) and a task-part (in M2.PA).
The interrupt part receives the primary hardware interrupts and counts
down to a rate of DGNTICK (normally 10Hz). At this rate SIGNALS are
sent to the TIMER event. The task-part is WAITing for these signals
and will scan the list of event flags (HRDLST). Entries in HRDLST are
two words each:

Word 0: if negative: - timeout count
Word 1: state (WAITING - FREE - INTERRUPTED - RESERVED).
If a certain entriesf word 0 is negative, it is incremented. In case
of overflow a SIGNAL is sent to that event number, with the TIMEOUT
code (=2) as status. When TC08 DECtape is part of the configuration,
TI will scan all tape drives every 5 seconds. Any drive that is found
to be off-line is marked in the tape table (TAPETB). This table keeps
track of the block number under the tapeheads and is used by the
DECtape emulator to determine whether to swap a usersf program or do a
direct transfer. If an entry in TAPETB is zero, the current tape
possition is unknown and the DECtape emulator will declare the
background inactive during the possibly long search. TAPETB is
maintained by the dectape driver task (DT), that uses TAPETB to
determine the optimum start direction for the tape drive.

Static electricity sometimes makes that the interrupt enable flipflop
of KL8E type terminal interfaces flops by accident. In that case the
terminal falls dead, unless the bit is flipped again. Therefore TI
will every 5 seconds set all terminal interrupt enable bits. In the
same way the lineprinter interrupt is periodically enabled. If the
LE8E interface senses an error-condition in the printer, it raises the
error flag that causes an interrupt. This flag however, is in fact a
level, dat can only be cleared by operator intervention. Therefore
the system has to disbale the lineprinter interrupts when the error
flag is set. To restart the printer after the error condition has
been removed, the interrupt has to be re-enabled, which is thus done
by TI. w ., ;, J ' Â ¥ - * , , ,

At each clock tick TI examines the status of the background BJOB
points to. If it is runnable, TI increments its (double precision)
account register at UACCNT.

System Tasks-3

- MULTI8 System Manual -

N O T E

This mechanism gives only an approximate measure of
the- cpu-time used by each background. All
foreground activity is charged to the running
background.

Both Tn and Kn come in two flavours, reentrant and non-reentrant. The
reentrant versions are about two times larger than the non-reentrant
versions, but can service a mixture of KL8E and KL8A interfaced
terminals. If more than one KL8E or an KL8A are present, the
reentrant version will assemble. Tn (actual task names are T I , T2,
etc.) is called with one ASCII character in the AC. This character
will be sent to the terminal. TABS are expanded to 1-8 spaces. A
number (TnFILL) of filler characters (NULL) may be sent after some
special character (TnCHAR), as specified in the configuration file.
On entry NULL-characters are ignored. BACKSPACE may be translated to
any suitable character as defined by the parameter TnBACK. On entry,
the most significant AC bit specifies whether Tn should RETURN or
EXIT. Foreground tasks should follow the following protocol when
using the Tn/Kn tasks:

Always start with outputing one or more characters. These characters
should have bit 0 set, to ensure that Tn will RETURN, so that no other
task can interrupt your output. Once you have got control over Tn,
you may do input via Kn. You have to supply the echo characters,
which should have bit 0 set too. Only the last output character of
your task should have bit 0 zero, to release the Tn task.

For reentrancy see at Tn. Kn (Kl, K2, etc.) is called to read a
character from the keyboard. On entry a negative AC is interpreted as
a timeout value. If no character is received within this time, the
value 4000 is returned. Incoming characters get their parity bit
forced on. A configuration-specified code (TnESCP) will be converted
to ESCAPE (233).

The task DK is only included in systems that use non-standard userdisk
allocation. Its function is to convert virtual disk requests to real
disk requests. DK does so, based on the contents of a table
describing the allocation of user disks. For each 'unit' of DK, this
table contains four parameters: the actaul driver task name (eg. SY),
the actual unit number, the offset of virtual block 0 and the length
of the virtual disk. DK checks that the request falls entirely inside
the allocated area and then passes a converted request to the proper
driver task.

System Tasks-4

- MULTI8 System Manual -

3.2 External System Tasks.

MULTI8 is furnrshed with a set of external system tasks. In this
section the purpose and use of these tasks will be described.

BE.TK (Background Errorprinter) is normally called by either the
keyboard input task (In) or the CONTROL/B task (CB). The
former is triggered by an emulation error (illegal
instruction, eg. HLT), the latter results from a Where-command
entered by the user when the terminal is in CONTROL/B mode.
On entry BE expects the AC to point to the dataarea of one of
the backgrounds. BE will print a status message on the
terminal belonging to that background. The format of the
message is:

PC=02727 ACsOOOOO DF=0 MQ=1563 GT=0 TRAPPED 6031

The message is preceded by a 'bellf character (CONTROL/G). BE
drops its output characters in the outputbuffer of the
relevant terminal by calling the routine FILLQ in the central
emulator (see section 4.2).

BS.TK (the Background Scheduler) is described in section 4.7 .
CB.TK (the CONTROL/B command decoder) is part of the background

support package. When a background terminal is in CONTROL/B
state, the Input Reader task will assemble one line of input
from the keyboard. As soon as the CR is received, CB is
called, with the pointer to the backgrounds dataarea in the
AC. Now CB will read the line from the input buffer (through
the MTQ routine in the Central Emulator) and interpret the
command contained therein. The first character on the line
selects the command, and any octal digits found in the line
are assembled to one 12-bit value. Most of the commands
involve only modifications of background registers and are
done by CB itself, but the command WHERE requires eleborate
action and is thus passed to the task BE. The commands
recognized by CB are described in the MULTI8 Terminal Manual.

The BOOT and RESTORE commands require some further
explanation. BOOT and RESTORE both consist of reading some
code, prepared when the system was started, into virtual field
0 of the background. This code is then executed by the
background. Only the entrypoints for BOOT en RESTORE differ.

For BOOT, the program reads block 0 of the users1 disk and
therefrom initializes the resident OS/8. This insures that
all the settings that the user might have made (eg. SET TTY
SCOPE, OPEN DSK3) remain in effect over the bootstrap
operation.

In the case of RESTORE, a fresh copy of OS/8 is read from
DSKO: and copied to the usersf SYS:. The users1 channel table
is reset, and then an OPEN DSKO: is effected. Finally the
normal operations of BOOT are executed. This is sufficient to

System Tasks-5

- MULTI8 System Manual -
bring a virtual machine back in operation, even if itst memory
and disk contain pure garbage. During a RESTORE, the
directory on the userst disk is inspected. If it looks like a
non-system directory, it is destroyed, to prevent the user
from overwriting his monitor. When the system is started, all
terminals are RESTOREd.

CR.TK CR.TK is supplied as an alternative to KE/KR. CR is a
combined emulator/driver for the cardreader. Although it is
slightly slower than KE/KR, it has some advantages: because CR -
merely emulates the cardreader IOTts, the SET CDR 026/029
commands remain in effect. Further, the foreground memory
requirement of CR is one page less than the KE/KR pair. -
Modifications to CR can easily addapt it for marksensing cards
(replace the RCRA (6632) instructions by rcrb (6634)). Note
however, that the use of KE/KR avoids a nasty OS/8 problem
with Fortran IV and MINBOL programs; These language
processors shuffle around with handlers and may thereby lose
information from the cardbuffer in CDR:.

To install CR.TK, remove KE/KR, and delete a line from M5.PA.
In the table DEVLST: insert a slash before 'DEVICE CDR; 2030;
60' TO PREVENT THE REPLACEMENT OF CDR: BY A FAKEHANDLER ENTRY.

CD.TK (the foreground command decoder) is one of the first tasks
developed for the MULTI8 system. It gives the system manager
access to the foreground by enabling him to RUN, BREAK, STOP
and RESTART tasks. CD itself is RUN by the initialization
program. Once active, it will suspend itself with a
WAIT SWPOUT request, specifying event 0. Event zero is
reserved for this purpose and is signalled as soon as the
breakcharacter is entered on any keyboard connected to the
system. The breakcharacter is CONTROL/F by default, but can
be changed by specifying BRKCHRsXXX. When the breakcharacter
is typed, CD will receive a signal with the name of the
keyboard task belonging to that terminal in the AC. (Eg. if
the breakcharacter is entered on terminal 3, CD will get the
value "KA100+"3&3777 in the AC). This enables CD to 'talkt to
the terminal it was called from. CD starts with printing
'F,CR,LF,F> and next awaits one of the following commands:

F>R IT (Run the task IT)
F>B ABCDEFG (Set the break-bit for task AB)
F>S SP (Stop the task SP)
F>C SP (Continue (=RESTRT) the task SP)

Only the first letter of the command, and the first two
letters of the taskname are significant, so

F;: RUN STATUSDISPLAY

is legal too. The task receives the name of the keyboard task
in the AC. In that way a task like IT or MA is able to
communicate with the terminal it was called from. An illegal
command, taskname or other failure will result in

System Tasks-6

- MULTI8 System Manual -
After executing the command, CD will return to the WAIT SWPOUT
request and thus be sitting on the disk again. CD is mostly
used to RUN tasks like MAP and ODT in the process of debugging
new tasks. At most installations there will be no need for
the normal user to use or even know the breakcharacter.

DI.TK (the directory lookup task) can be used to perform a LOOKUP in
an OS/8 structured directory. DI should be called with the AC
and data field a pointer to a list with the following
structure:

I 1 S 1 00+11Y&3777 /NAME OF DEVICE DRIVER
1 /UNIT NUMBER
FILENAME MYFILE.XY /FILENAME IN STANDARD FORMAT

After return from DI, this list is changed to:

I1S 1 0O+l1Y&3777
1
LENGTH
0
BLOCK

/NAME OF DEVICE DRIVER
/UNIT NUMBER
/-LENGTH OF FILE

/FIRST BLOCKNUMBER OF FILE

At this point the datafield is equal to that before the call.
If the AC is non-zero, an error has occured (device busy, file
not found, etc).

DS.TK Is the emulator for the public disks. At some installations
it is required that certain disks (eg. RKA1 and RKB1) can be
read and writen by all users. The access to such disks is
governed by DS. DS will claim the device for the user that
starts using it and holds it as long as that users1 program
runs. This prevents problems with the directory. If you are
sure that the way these disks are used in your installation
avoids problems with multiple updates, you can change the task
source and define the symbol 'DANGER1. If DANGER is defined,
the task always EXITS, so that requests from different users
can be interleaved.

DT.TK (the TCOI/TC08/TD8E DECtape blockdriver) is a normal
blockdriver task, transferring blocks of data to and from the
DECtape. The one deviation of the blockdriver protocol is
that a transfer length of zero pages will not transfer 4K, but
zero words instead. This feature is used by the Tape Emulator
to position the tape before locking the background target
field in memory. For TC08 the event DTA should be
connectable. DT will automatically determine the correct
start direction. For TC08, a blocknumer with bit zero set
(4000-7777) makes DT to read 256 18-bit word blocks (as used
by PDP11, PDP9, PDP15 and PDPIO).

FE.TK (floppy emulator) handles 10 requests for the floppy disk
passed through the fakehandler. FE calls the floppy disk
block driver, RX. If the symbol DANGER is defined in the
source of FE, users can interleave requests tothe floppies.
This is the default mode. If DANGER is not defined, the
floppy disk system is claimed by the first user that uses it,

System Tasks-7

- MULTI8 System Manual -
just as is the case with the lineprinter.

GE.TK (Graphics Emulator) is the emulator for the XY8E or KLPLOT
plotter (see also at PL.TK). For XY8E, GE handles trapped
plotter IOT1s. It extracts the plotter direction and
pen-information and assembles 12-bit plotter words, 6 bits for
the step and a 6-bit repetition counter. These words are
packed in a 256-word buffer and sent to PL, the plotter
driver.

IT.TK (initialize time and date task) will be demonstrated by an
example:

F) R ITIME
TIME=9:12(CR) set system time hour:minutes
DATE=4/20/77(CR) set date month/day/year

If you do not want to change the current date, you can answer
the second question with Return. IT will automatically run on
terminal 1 when the system is started.

KE.TK (cardreader emulator) passes calls from the fakehandler to the
cardreader blockdriver (KR).

KR.TK (cardreader blockdriver) reads cards and converts the holerith
punch code to ASCII characeters. The characters are packed
into the user buffer. If an end-of-file card is read, a " Z is
placed in the buffer and the rest of the buffer is zeroed. If
the cardreader times out (eg. no more cards), KR hangs until
more cards are loaded. Only an end-of-file card stops KR.

LE.TK (the lineprinter emulator) is one of the most complicated task
in the system. There are two different ways to output to the
lineprinter, through the OS/8 lineprinter handler (which is
replaced by the fakehandler) and through direct lineprinter
IOTts. The latter is used eg. by the FORTRAN runtime package.
When a program issues its first lineprinter output, the
emulator task will determine what kind it is and adapt itself
to that mode of operation. Actually, the task contains two
pieces of code, one for emulating simple IOT's, and another
for transferring whole blocks at a time. When emulating IOTs,
the emulator will perform an EXIT and thus release the device
when a "7. is found in the datastream, or when it is called
with the link set, signalling that the background program has
read the Keyboard Monitor or the Command Decoder into its
memory. After initialization, only the first page of the task
contains code, the rest (2, 4 or 8 pages) is used to build
large buffers (one or two, depending on the specification in
the LE source. After filling the buffer, the lineprinter
blockdriver is called to transfer the data to the printer. If
LE is processing calls through the fakehandler, it treats Z
as end-of-buffer indicator. This is necessary for certain
existing application programs (eg. the MINBOL package) that
use this feature to send variable-length records to the
printer. Only a regular OS/8 close call (zero length) or a
CALL with the Link set do generate an end of file. If LE is
in IOT mode and a fakehandler call is made, it closes the
current file and returns to the central emulator with the

System Tasks-8

- MULTI8 System Manual -
trapped instruction in the AC. As the instruction (6000) has
a negative value, the central emulator will assume that this
is a 'replacement' for the original instruction, patch the
trapped instruction (which does not change anything in this
case) and than decrements the users1 PC. Then the background
program is started again. It will execute the same
instruction again, but now a fresh copy of LE is obtained,
which initializes itself to the new mode of operation. The
same method is used to switch from fakehandler calls to IOT
emulation. All this is to make it possible to run BATCH with
both the log and some program output going to the lineprinter.
Note that each mode of operation will start on a new page.

LI.TK (the line input task) is used to read a line from one of the
terminals (by foreground tasks). LI is called with in the AC
and datafield a pointer to a linebuffer. On return, the
datafield is still the same. The AC is zero, unless the input
was terminated by an illegal control character (eg. * Z) . The
linebuffer consists of a two-word header followed by the
buffer itself:

'1K"100+112&3777 /NAME OF INPUT HANDLER
-40 /MINUS BUFFER LENGTH
ZBLOCK 40 /THE BUFFER

LI may also be used to output a line, possibly followed by
input. Any characters in the linebuffer will be output by LI
before input is solicited. The output string must end with a
null. If the last character of the output string is CR (215),
then no input is requested. During input RUBOUT (delete a
character), CONTROL/U (delete line) and LINEFEED (retype line)
are effective. The input line may be terminated by CR or
ESCAPE. The input is placed in the linebuffer, starting at
the first word after the header, one character per word.

LP.TK (the lineprinter blockdriver) is functionally equivalent to
the OS/8 lineprinter handler. The value of the symbol LP8E
determines the maximum line width (bit 2-10), whether the
printer can handle lower case characters (bit 01, whether it
is an LS8E (bit I), KL8E (bit 3) or DKC8AA (bit 1 1) control
(which have sligthly different instructions). If spooling is
selected (bit 2=0, the normal mode), LP transfers all data to
the file SPOOL.LP on DSKO: (actually, the device and unit
number can be changed by assignments in the source of LP). If
the lookup of SPOOL.LP (through DI) fails, LP generates a
fatal error, which is passed by LE as either a handler error
(through the fakehandler), or an emulation error (with
TRAPPED1 6666, the lineprinter IOT). Within the body of LP
is code for a second task, that reads the data from the
spoolfile and transfers it to the printer. TABS are expanded,
and ESCAPE is translated to I$'. If a line overflows the
printer width, a CRLF is inserted. To conserve some of the
earths tree population the ouput of empty pages is prevented.

MA.TK (the memory map printer) may be RUN from any MULTI8 terminal
(through CD). It will display the actual foreground memory
map. Entries labeled $$ are pages occupied by Monitor, AB is

System Tasks-9

- MULTI8 System Manual -
task AB, -AB is RELEASed by task AB, ((is a buffer page (not
the last page of a buffer), (1 is the last page of a buffer, . is a free page.

F> R MAP
0 $$ $$ $$ $$ $$ $$ BS BS BS BS -TE -DT -DT MA $ $
1 $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ $$ LE LE LE L i LP
1 LP LP -A0 -PE -PE -PE ((() ((() .. $$

This i s a map of a system in which 8K is assigned for the
foreground. The numbers at the beginning of the line denote
the field number. Each line is 2K. Note that all tasks are
allocated towards the beginning of the map. Note also that
most of the space is free or released.

ME.TK (Magtape Emulator) interfaces the fakehandler with MT, the
magtape driver. Magtape is a complicated device, with many
uncommon features and commands, eg. rewind, backspace, skip,
etc. In OS/8 these commands have been implemented as special
function calls to the handler (MTAn:). However, one function
has not been implemented this way, the setting of parity and
density. The normal mode for OS/8 is so called dump format, 6
bits per frame, both for 7 track and 9 track tape. To change
the parity and density setting (as eg. MCPIP does) the OS/8
handler is patched after it is fetched in core. It will be
clear that this procedure is impossible with the fakehandler.
Unfortunately, MCPIP never considers whether it has got the
true handler (as it should do for RTS/8 as well). So we can
not support MCPIP.

ME passes the arguments of the OS/8 fake handler call to MT,
after slightly repacking them: if it is a special function
call (length is O), the function bits are moved to bit 6-8 of
the function word (normally the field bits), and the unit
number goes in bits 9-11. This is necessary to conform to the
3-word format of the MULTI8 blockdriver protocol. As a
consequence, special function 6 (read/write a record with
specified length) is not supported, as there is no place to
put the field of the users' buffer. Also ME makes a decision
whether to set the background inactive, based on the function
to be performed. L.L."L. ~ a - .. -

:;-JSÂ¥ 'f-^tS':-.!
' > 7 . , < " . , ".-.a ,>&, ..?".

MT.TK (the magtape driver) is largely e uivalent to the 0S/8 magtape
handler MTA:. Both the older T ~ 5 8 (and the compatible DATUM
controler) and the TM8E are supported.

OD.TK (the foreground ODT task) is RUN through CD. First it calls
the password task (PA), as OD opens the way to any system
crash you can imagine. Then you may inspect and alter any
memory location:

F>R ODT

PASSWORD: OK! (password is not echoed)

(select field 7)
(examine location 200, field 7)
(examine 300, close and open next)

System Tasks-10

- MULTI8 System Manual -
0301 2314(LF) (close and open next)
0302 1233 1234(CR) (deposit 1234 and close)
E (exit)

Note.that the initial field selection is field O!

PA.TK (the password task) is called with the name of a keyboard
driver task in the AC. PA will ask for the password and check
it. It returns with the AC unaltered and the Link set if
password wrong, cleared if password correct. The password
characters are not echoed. As distributed, the password is
SESAM(CR1.

PE.TK (the punch emulator) is nearly identical to the lineprinter
emulator (LE) in character mode. It does however, not test
for Z .

PL.TK is the (spooled) plotter driver. This task takes blockdriver
calls and writes the plotter data into the file SPOOL.PL. PL
contains a slave-task that will read the file and send the
plotter commands to the XY8E. Only unencoded plotters are
supported. The diskfile may by on the system disk or any
other random access device (see task source). If the file is
not found, PL passes an handler error to GE, which will cause
an emulation error.

PL conditionally supports a RICOH GP-10, a small drumplotter
that can be interfaced through an KL8E interface. This is a
rather neat and cheap plotting device, which is well supported
by GE/PL. For instance, each picture will be headed with a
date and time stamp, and ended with a message. The input side
of the KL8E interface can, after a simple modification, be
used to connect a 'picture abort' switch, which will suppress
unwanted output, without disturbing further pictures that
might be in the spoolfile already. Contact Westvries for more
information on the device.

PP.TK (the papertape punch blockdriver)

PR.TK (the papertape reader blockdriver)

RE.TK (the reader emulator task) emulates the normal papertape
reader IOT's. To speed up processing, the RSF instruction is
patched with a SKP in order to reduce the number of program
traps. When the end of tape is reached (detected by a reader
timeout) the SKP is replaced by a HOP. Most reader routines
have an internal timeout mechanism that loops a large (eg.
4096) number of times along an RSF instruction. Because of
the emulation, such loops tend to last rather long. By
patching the RSF with NOP, execution of the timeout loop is
speeded up considerably. If the same reader routine is to be
used to read another tape, the RSF must be reinserted by the
program.

RX.TK (flopy disk driver) handles RX01, RX02 and RX04 type drives.
It operates in standard 12bit mode, following OS/8 interleave

System Tasks-11

- MULTI8 System Manual -
conventions. The type of operation is dynamically determined
by the drive hardware and the formatting of the media in the
drive.

(timesharing status printer) gives a life display of the
activities of the virtual machines and the actual use of the
background memory. ST is invoked with:

CORE BGI BG2 BG3 BG4 BG5 BG6 BG7
153533 F2H 038 "B EDT RUL KB IOL

the second line will be continually rewriten (overprinted).
The first six possitions denote the up to six background
fields (ie. field 2-7 of the machine). Each digit specifies
the number of the background that currently owns the
corresponding field. Then the status of each background is
given in two or three characters. The following possibilities
exist:

BYE
0.38
TEC
EDT
KB
IOH
IOL
"B
RUH
RUL
FnH
F nL
HLT

loged out.
waiting in the keyboard monitor for a new command.
waiting for input in TECO.
waiting for input in EDIT.
waiting for terminal input.
waiting for 10, high priority (LONG is clear).
waiting for 10, low priority (LONG is set).
terminal is in CONTROL/B mode.
executing, high priority (LONG is clear).
executing, low priority (LONG is set).
waiting for field n, high priority (LONG is clear)
waiting for field n, low priority (LONG is set).
processing an emulation or swap error.

After writing the status line, ST tests its break flag. So
you can stop the display with:

Also, if the output handler is busy, ST loops for
approximately 1 second, and then gives up. So if you call CD
(by typing CONTROL/F) on the terminal where ST runs, and then
wait for 1 second, ST will have terminated.

(the talk task) is run with giant IOT 4. It expects a TALK n
xxxxxxx, command at location 01000 in the virtual memory (the
OS/8 ,keyboard monitor input buffer resides there) and sends
the message to the named terminal, or to all terminals if n=0.
If a terminal is claimed by another foreground task, TA will
timeout and abort the message.

(the DECtape emulator) forms the interface between the Central
Emulator and the DECtape handler (TC08 or TD8E). Main feature
of TE is that it determines whether to deactivate the
background or not, dependent on the distance between the
target block and the current tape possition. To this end DT
maintahs a table with for each dectape unit its approximate

-
System Tasks-12

- - - -

- MULTI8 System Manual -
p o s s i t i o n (TAPETB i n t h e m o n i t o r d a t a a r e a) . If t h e
t a r g e t b l o c k is more t h a n 50 (o c t a l) b l o c k s from t h e c u r r e n t
p o s s i t i o n o r t h e t a p e p o s s i t i o n is unknown (s e e a t T I , s e c t i o n
3 . 1) , t h e background is s e t INACTIVE (and p o s s i b l y swapped o u t
by t h e Background S c h e d u l e r) . TE w i l l d i r e c t DT t o pe r fo rm a
s e a r c h - o n l y t o t h e t a r g e t block-4. Next t h e background
program is r e q u e s t e d i n memory and t h e a c t u a l t r a n s f e r is
pe r fo rmed .

System Tasks-13

- MULTI8 System Manual -
4. Timesharing

The utility of the system is greatly extended by the timesharing
background facility. This implements a number of virtual machines on
which independe'nt copies of the OS/8 system may be run. In this way
the system may become a multi-project computer, providing a
sufficiently general environment for almost any type of usage.

The timesharing subsystem is based on the DIGICOS Memory Management
Uni; (MMU). This device can be programmed to trap each IOT, HLT or
OSR when the cpu is in User Mode. As CDF, CIF and combinations
thereof are in the IOT class, programs can effectively be denied
access to parts of the machine reserved for other users or the system.
Relocation hardware in the MMU allows user programs to be run in any
combination of memory fields. IOT trapping can be disabled
selectively, which means that dynamically fieldchange instructions to
specific fields can be enabled on disabled. These functions of the
MMU are extensively used by the virtual memory system.

4.1 Introduction

In this section emphasis will be on the global structure of the
timesharing subsystem. Main components of the timesharing system are:

- the Central Emulator; receives traps and emulates instuctions.
- the Input Reader; listens to the terminal input.
- the Output Writer; writes output to the terminal
- the emulator tasks (DECtape, lineprinter, reader/punch, etc.) - utility tasks (error printer, CONTROL/B command interpreter). - the Background Scheduler task.
- the background dataarea; a set of tables, common to all these tasks.
General flow of control:

An IOT instruction is executed in the background (in usermode). This
results in a trap interrupt, that starts the Central Emulator task,
which determines the type of the trapped instruction and either
branches to a local emulator routine or CALLS an external emulator
task. In the latter case this task will eventually return control to
the Central Emulator, who will continue the program executing in the
background.

Characters typed at the terminal are read by the Input Reader (In) and
stored in the ,input buffer. Output characters generated by the users
program are p,ut in the output buffer and eventually sent to the
terminal by the Output Writer (On).

Independent of these, the Background Scheduler will now and then
remove one of the currently running programs and install one of the
other backgrounds. The Background Scheduler and the emulator tasks
communiiate via the stitus words of the backgrounds and timing SIGNALS
sent forth and back. The system dispatcher insures that only
backgrounds with a val d status (eg. in memory, not being emulated,
etc.) are granted cpu-time. -

- MULTI8 System Manual -

The parts of the timesharing subsystem communicate mainly through the
background data tables. Each background is described by a set of
variables with.a standard layout. Thus a background may be identified
by a pointer to these variables.

/BACKGROUND DATA TABLE FOR BACKGROUND 1.

E.. , , RELOC 0 /ALL FOLLOWING SYMBOLS ARE RELATIVE

USTA
UMQ ,
use,

UPC,
UFLD

T"ACTIVE+ONDISK /STATUS WORD
/USERS MEMORY QUOTIENT REGISTER
/MSS.SSS.FFF.XXX: A/B MODE,
/STEPCOUNTER AND LOCKED FIELD

u I /USERS CURRENT PROGRAM COUNTER
0 /LGX.XXU.III.FFF: LINK, GREATER-THAN,

/USER MODE. VIRTUAL INSTRUCTION & DATAFIELD
UAC,
UINST, u
usw, 0
1. IP, 0
I ZBLOCK 3
UBUFIN, o

BGlIN+l * ; d
BGlIN+l ,;i-t;

UBUFOUT , 0
BG 1 OUT+ 1
BG 1 OUT+ 1

UWRTR. KHOBG1+4 -

UCUR, EMBGI+tÃ
UCHNLO, I'D 1 OO+"K&3777
UNUMB, 4511

"3-1 OO+"Y&3777
6500
ZBLOCK 4

UECHO, 0
UFLDO. ZBLOCK BGCORE
UCHAR; o
UKB . KlTCBP+O
UTTY , T ITCBP+O
UCOUNT, 0
USLOT, MAXSLOT+l
UACCNT, ZBLOCK 2

UNEXT, BG2
UEND;: .

RELOC

/USERS CURRENT ACCUMULATOR
/LAST TRAPPED INSTRUCTION
/USERS SWITCH REGISTER (VIRTUAL)
/SCRATCH LOCATION
/TRANSFER VECTOR
/COUNTER OF INPUT BUFFER
/READ POINTER
/WRITE POINTER
/COUNTER OF OUTPUT BUFFER
/READ POINTER
/WRITE POINTER
/TCBP OF OUTPUT WRITER
/TCBP OF EMULATOR
/DRIVER FOR USER'S SYS:
/FILE STRUCTURED. DEVICE TYPE 51. UNIT 1 . --- - -

/ENTRY FOR DSKO:
/READ ONLY, OS/8 SYSTEM, UNIT 0
/CHANNEL 2-3
/ECHO FLAG, 4000=NO ECHO
/TABLE OF REAL FIELDS, O=NOT-RESIDENT
/THE CURRENT INPUT CHARACTER - -

/TCBP OF INPUT TASK
/TCBP OF OUTPUT HANDLER
/COUNTER FOR 'BS'
/WAIT-FOR-BG-IN-CORE SLOT
/LOWORDER, HIGHORDER CPU USAGE
/IN UNITS OF DGNTICK
/POINTER TO NEXT BG
/END FOR THIS BG
/END OF RELATIVE DEFINITIONS

'. . ;;r , , + hi:': J': 8 xr:..ic

Note that the UNEXT pointers form a ringstructure; UNEXT of the last
bg points to BG1. i
Layout of the status word (USTAT):

Bit ,. , 0 : INACTIVE; If set the backgro
, eg. waiting for I/O.

? ~

i ' . . >... ':' .: :, ~ : z , l ,

- MULTI8 System Manual -

B i t 1: EMULATE; i f s e t , t h e background is a c t i v e l y b e i n g e m u l a t e d .
Its l o c k - f i e l d (i e . t h e i n s t r u c t i o n f i e l d , o r t h e l a s t f i e l d
b r o u g h t i n t o memory by a n ' i n c o r e ' r e q u e s t) may n o t be swapped
o u t o f memory.

B i t 2: BGSTOP; S e t by t h e i n p u t r e a d e r when t h e background e n t e r s
CONTROL/B mode.

B i t 3: ONDISK; S e t when t h e backgrounds i n s t r u c t i o n o r d a t a f i e l d
are n o t i n memory. T h i s b i t is o n l y changed by t h e background .
s c h e d u l e r .

B i t 4: LONG; S e t by t h e background s c h e d u l e r when t h e background h a s
e x p i r e d a s h o r t s l i c e . C l e a r e d by some e m u l a t o r s t o r a i s e
background p r i o r i t y a f t e r 1 / 0 c o m p l e t i o n . I n c e r t a i n c a s e s
t h e Background S c h e d u l e r w i l l g i v e p r e c e d e n c e t o backgrounds
w i t h LONG=O.

B i t 5: I N C O R E ; T h i s b i t is s e t by some e m u l a t o r s and r e q u e s t s t h e
background s c h e d u l e r t o s e n d a s i g n a l when t h e r e q u e s t e d f i e l d
is i n memory. It is t h e n c l e a r e d by t h e background s c h e d u l e r .

B i t 5-8 INCFLD; a l o n g w i t h t h e INCORE b i t , t h e s e b i t s a r e set t o t h e
v i r t u a l f i e l d number r e q u e s t e d by t h e e m u l a t o r .

B i t 9: (r e s e r v e d)

B i t 10: BGERR; S e t by t h e c e n t r a l e m u l a t o r when a n i l l e g a l
i n s t r u c t i o n is e n c o u n t e r e d . T r i g g e r s t h e i n p u t r e a d e r t o c a l l
t h e background e r r o r p r i n t e r and e n t e r CONTROL/B mode.
C l e a r e d by t h e i n p u t r e a d e r .

?it 11: SWPERR; S e t by t h e background s c h e d u l e r i n c a s e o f a n
u n r e c o v e r a b l e d i s k e r r o r d u r i n g swapping . T r i g g e r s t h e i n p u t
r e a d e r t o c a l l t h e background e r r o r p r i n t e r and e n t e r
CONTROL/B mode. C l e a r e d by t h e i n p u t r e a d e r .

The f o l l o w i n g is a r e a l i s t i c s e q u e n c e o f s t a t e s . Suppose a background
i s i d l e , w a i t i n g i n t h e OS/8 Keyboard M o n i t o r f o r t h e u s e r t o e n t e r a
command. T h a t means t h e background program h a s e x e c u t e d a KSF
i n s t r u c t i o n , which is a n a l i z e d by t h e c e n t r a l e m u l a t o r . S t a t e :
EMULATE. I f t h e keyboard i n p u t b u f f e r happens t o be empty , t h e
e m u l a t o r d e c i d e s t o make t h e background i n a c t i v e . S t a t e : I N A C T I V E ,
not-EMULATE, not-ONDISK. Next t h e background s c h e d u l e r comes a l o n g
and f i n d s meaoqy o c c u p i e d by a n i n a c t i v e job . If t h e r e a r e o t h e r j o b s
t h a t c a n p r o o e e d , t h e background s c h e d u l e r w i l l swap t h e s e f o r t h e
r e s i d e n t f i e l d s o f o u r j ob . J u s t b e f o r e w r i t i n g a f i e l d t o d i s k BS
w i l l a d j u s t t h e ONDISK b i t o f o u r bg.

After some t i m e t h e u s e r e n t e r s a command. T h i s is r e c e i v e d by t h e
I n p u t Reade r , s t o r e d i n t h e b u f f e r , and t h e n t h e c e n t r a l e m u l a t o r ,
which had HALTed, i s R U N by t h e I n p u t R e a d e r . The C e n t r a l Emula to r
w i l l p u t t h e f i r s t i n p u t c h a r a c t e r i n t h e u s e r s A C , change t h e bg
s t a t u s t o non-INACTIVE, non-EMULATE, and SIGNAL t h e Background
S c h e d u l e r t h a t a n o t h e r j o b is compet ing f o r e x e c u t i o n . A l s o , t h e
emulatol- h a s c l e a r e d t h e LONG b i t , t o show t h a t t h i s is a n i n t e r a c t i v e

- MULTI8 System Manual -
job and quick response is desired. At some later moment BS will bring
our job in memory and reset the ONDISK bit. Now the entire statusword
is zero, and the dispatcher will start executing the background as
soon as no foreground tasks are available to be run.

Suppose that the command entered by the user takes a very long time to
execute:. After about half a second the BS will notice that our job
has consumed its 'short slice1, and set the LONG bit in the status
word. If other non-LONG jobs are waiting then, they will receive the
cpu now, otherwise our job enters its first 'long slice', which lasts
for about 5 seconds. If during this time another job becomes active
with its LONGbit reset, it will preempt our job. If there are only
LONG jobs in the system, then the BS will switch every 5 seconds. A
switch may or may not give rise to swapping, depending on the number
of fields needed by the round programs, and the number
available in the machine. .,7L.<j (-.c.8 , :t:.,::,:- . .. :.- ./', +.:?

! ondisk ! inactive +
! ! ! ondisk !
I-----------! !-----------! ,.

! ondisk + ! - < - /
(1): : (2) ! incore

!-----------!

v v
!-----------! (3) !-----------! (5) !-----------!
! executing ! -------- > ! emulate ! ---------)> ! inactive !
! I / Â ¥ -------- ! <--------- ! !

I-----------! (6) !-----------!

(1) swap in
(2) swapout
(3) trap
(4) end of emulation
(5) wait for 1/0
(6) I/O completed

(7) swapout
(8) swapin request from emulator ,

(9) swapin completed ,..I . .

(10) 1/0 completed . , ' . , . . .,
(1 1) end of emulation '

. . , : .

Fig. 4-1. Background State Transition Diagram. . . . :. ' . .. ,
.~ . "

A . ,

When our job wants to transfer some information to DECtape it executes
instructions resulting in a trapped IOT that tells the Central
Emulator that a DECtape transfer is to be made. DECtape transfers are
handled by the Tape Emulator task, TE. TE is called by the central
emulator, with a pointer to the first word of the dataarea of our bg
in the AC. At that moment the status of our bg is EMULATE. As the
DECtape search is likely to take quite some time, the Tape Emulator
will decide to make our job INACTIVE during the time that the DECtape
unit is positioning the tape. So it changes our status to INACTIVE,
not-EMULATE, and SIGNALS the BS that memory is potentially free.
Whether or not our job is swapped out depends on the activity of other
jobs in the system, and is entirely under control of the Background
Scheduler. Meanwhile the Tape Emulator will position the tape
(through the DECtape driver). However, the actual datatransfer should

- MULTI8 System Manual -
take place between the tape and the users memory (by databreak), so
the buffer field should be in memory. When the tape is properly
positioned, the Tape Emulator changes the statusof our bg to INCORE
(plus the virtual field needed in bit 6-8), resets the LONG bit (the
tape is at full speed approaching the desired block, so we want it
fast) and SIGNAL the Background Scheduler. This wakes up BS, who will
discover the INCORE request bit and, conditions permitting, will bring
the requested field in memory. Meanwhile the Tape Emulator is WAITing
at the private eventflag of our bg. As soon as the swap is completed,
the BS will reset ONDISK and INCORE, set EMULATE and SIGNAL that the
field is in memory now. Along with this signal BS passes the number
of the field where the buffer field has been loaded. The signal wakes -
up the Tape Emulator, which directs the DECtape driver to perform the
transfer. During the transfer the status of the bg is EMULATE, which
will prevent BS to remove the buffer field from core. After
completion of the 1/0 operation the Tape Emulator EXITS to the Central
Emulator, which clears the EMULATE bit in the status. Now the bg can
be continued by the dispatcher.

So we see that the timesharing system is build from a number of loosly
coupled, independent tasks, that synchronize and communicate through
SIGNALS and the various bits in the status registers. Thereby the
emulators have to deal with only one bg at a time, while the
Background Scheduler is resposible for all scheduling decisions.
Finally the dispatcher will execute whatever bg is in memory, if its
status permits so (all bits except LONG must be zero).

Note that the signals sent to the BS are merely to wake it up. The
only information extracted from the signal by BS is whether it was a
timeout or not. BS will analize the total situation each time again.

4.2 Central Emulator

From the discussion at the end of the previous section, it will be
d e a r which position the Central Emulator takes among the other
components of the timesharing subsystem. In this section we will go
into the details of the internal logic of the Central Emuator.

The Central Emulator (En) is an internal task, or in fact a set of
internal tasks that share a single reentrant code-image. There is one
incarnation for every bg in the system. En receives the primairy trap
interrupts and emulates most of the trapped instructions. The less
frequently occuring traps are handled by emulator tasks. One reason
to have traps handled by separate task is that such a task acts as a
resource allocator. After the first use of eg. the lineprinter (ie.
after the first lineprinter IOT) the lineprinter emulator task is
reserved for the central emulator that called it. From that moment on
other users can't reach it, because their En has a different TCBP and
will thus get an errorreturn when it tries to call the lineprinter
emulator. Only after the complete file has been transferred to the
printer the printer emulator will eleviate the reservation by using
EXIT instead of RETURN. Thereafter it can be called by any other En
again. Emulator tasks using this mechanism are LE, RE, PE and any
other emulators that handle a strictly single user device.

-

- MULTI8 System Manual -

When a trap interrupt is detected in the skipchain, control is
transferred to TRAPINT in the En. First the interrupt flag is
cleared, then the trapped instruction is retrieved from the user's
memory. The bg state is saved (routine RSAVE) and CURTSK is set up to
show that En (our one !) is running. Next the interrupt system is
enabled. The status of our bg is set to EMULATE. The type of
instruction is determined by indexing EMTAB with the device code (bit
3-8 of the instruction). EMTAB contains one entry for each device
code, with the following encoding:

Zero no operation, ignore this instruction , h c

Positive name of task that will handle this instruction qG:*
Negative negative of offset of routine within En 19 - ,,a,,,.

-4 a -d

If we find a taskname in the table, that task will be called with the
current value of BJOB in the AC. The taskname is first compared to
the name of the task that was called the last time; if they are equal,
the CALL request will still contain the TCBP of that task. Otherwise,
the name is copied into the CALL request (this avoids repeated lookup
of the same taskname). U Q B I !$IS"' -++.t("Â¥(

0qqAa ' iî St̂ &:w3Â¥1
Special action is necessary in case the CALL request returns on its
errorreturn. This may imply that the required emulator task is
currently reserved for another user, and so we have to wait till it
becomes free again. During this waiting time we should release the bg
memory area and thus the status is changed to INACTIVE. Now our CE
enters a loop that tests whether the emulator task is free every half
second. This test can be made quickly and efficiently, as we have the
TCBP of the task from the failing CALL request. As soon as our task
becomes available, we will request our instruction field in core (set
INCORE, signal BS, WAIT at USLOT) and return to the original CALL
request. When the emulator task is called, there is no indication
left that we had to wait for it.

As you will have noticed, there is no explicit queueing of users for a
shared device. As long as one user has control over a device (in
fact: over its emulator), the other users are looping until it becomes
free. Which of the waiters gets the device first is entirely
undefined. Although this is a very simple mechanism, it provides for
the user who does not want to wait and breaks his program with the
CONTROL/B key. It is expected that direct communication among
terminal users will prevent serious problems in devicesharing.

The Memory Management Unit (MMU).

Version V6B and later support the Memory Management Unit, a device
developed by DIGICOS b.v to specifications of the MULTI8 development
team. In this section we will outline the function of the MMU and
detail its integration in the MULTI8 software.

The MMU consists of one quad Omnibus module. It replaces the normal
memory extension control (KM~E/KM~A), implementingtwo new functions,
selective trapping of IOT's relocation.

,.. , . . I , :', < > .. #

~ . , . . . <

- MULTI8 System Manual -
Selective trapping (or 'untrapping1) provides the capability to select
by software which IOT1s should be trapped if executed in User Mode and
which not. So software may (by loading certain registers in the MMU)
specify that eg. the CDF/CIF 30 instructions are not to be trapped.
This makes itpossible to dynamically control the access of user
programs to various memory fields. CDF/CIF instructions that are
untrapped, and RDF and RIF are executed by the hardware, without the
(large) emulation overhead. This means that the larger part of the
emulation overhead normally experienced in foreground/background
operation is eliminated.

The selective trapping function would be of little use without the .
secsnd function of the MMU; field relocation. The MMU contains a 8x3
bit relocation memory (RAM) that can be loaded by suitable IOT1s.
When the processor is in User Mode each memory reference by the
processor is relocated by the MMU. Recall that the extended memory
address for processor cycles is developed by the Memory Extension
Control (either form the Intruction Field Register or from the Data
Field Register). During relocation this (virtual or processor)
extended memory address is used to select a (+bit) word in the
Relocation Register, giving the real or bus extended memory address.
Example: the cpu performs a Fetch cycle to read the next instruction
from memory. Suppose the Instruction field register contains 001
(base 2), so our program is in virtual field 1. The contents of the
Instruction field register are used to address the Relocation
register. This register may contain any value eg. 101. This value is
gated to the Omnibus EMA lines, and the instruction is actually
fetched from field 5. In this way a program running in usermode may
be run in any set of fields just by loading the Relocation Register
with the corresponding values.

Paging

When a user program is ready to run, the background scheduler will
first assure that both its instruction and datafield are in memory.
Then the program is started, with only the CDF/CIF to the loaded
fields untrapped. Thus the program can run full speed, until it
executes a CDF/CIF to a non-resident field. This instruction will be
trapped. Such an event is customarily called a 'page-fault'. The
central emulator, receiving the trap interrupt, will request the
target field INCORE. BS will determine if and where the new field can
be loaded. After reading it into memory, BS will adjust the field
table of our background to show that the new field is present. When
our bg is later elected for execution by the dispatcher, the MMU is
instructed to untrap the CDF/CIF to the now resident field. The
relocation 'map is adjusted. Also, the central emulator has
decremented our program counter, with the effect that the trapped
CDF/CIF is executed again. However, this time the instruction is not
trapped and our program can proceed.

Instruction set

The MMU executes all instructions of the standard Memory Extension
Control plus the following set:

6205 RT-1 Read Trap Register; Jam-loads the AC with the contents of
the- Trap Register. The Trap Register contains the

- MULTI8 System Manual -
instruction that was last trapped by the MMU.

6235 LTM LOAD Trap Memory; Loads bit a - 1 1]of the. AC in the trap/untrap
memory addressed by AC bits 3-8, e.g if AC=230 then the
IOT's with device code 23 (CDF 30, CIF 30 and CDF CIF 30)
will be trapped, if AC=231 these IOT's will NOT be trapped.
The AC is cleared.

6245 LRM Load Relocation Memory. AC 6-8 contains the real address
(to become the contents of one word of the Relocation
Memory), AC 9-11 contains the virtual address (used to
address to Relocation Memory). The AC is cleared.

6265 SMME Set Memory Management Enable.

6275 CMME Clear Memory Management Enable. If disabled the MMU is
fully compatibel with the normal Memory Extension Control.
The MMU is also disabled by pressing the Load Extended
Address key/button on the front panel.

6215 SKME Skip if Memory Management enabled.

6225 SKMM Skip if Memory Management available.

Terminal output

Terminal output instructions are quite easily handled. TLS and TPC
will transfer the character contained in the users AC to the output
buffer of the user's terminal. In addition the users Output Writer
task is RUN to ensure that the characters are output indeed. The TSF
instruction is always replaced by a skip; when the output buffer is
full, the emulator will make the bg inactive at the first TLS or TPC
that would overflow the buffer. In that case the central emulator
enters another loop where it tests the counter of the output buffer.
As soon as there are less than 24 characters in the buffer, the bg is
made active again. This avoids a delay in the typing at the end of
the buffer, while retaining the profit of executing other programs
during slow terminal output processing.

Each output character comming from the background is compared to
UCHAR, the last input character accepted by the user's program. If
they match, the output character is dropped as it probably is the echo
for the input. Special care is taken if UCHAR is TAB (211): any
sequence of SPACE characters comming from the background is
suppressed. Also CR gets special attention: if CR is identified as
echo, UCHAR is set to LF because the Input Reader has already supplied
a LF to the terminal.

The buffers used to hold terminal input and output characters have a
standard layout and are always handled through a set of general
routines: FILLQ, MTQ, GETQ, CLEARQ. All these routines accept one
parameter, which is the offset from BASE of the buffer descriptor.

JMS I (CLEARQ /RESET THE USER'S INPUT BUFFER
UBUFIN /

- MULTI8 System Manual -

FILLQ and MTQ are crossfield callable. They should be called with
datafield=instructionfield. The parameter is added to the value of
BASE in the callers field.

The buffers are build in a shared pool, consisting of 16-word blocks.
Each buffer is rooted in a 3-word descriptor of the following format:

COUNT, 0 /NUMBER OF CHARACTERS ACTUALLY IN THE BUFFER
HEAD, BUF+I /POINTER TO FIRST CHARACTER IN THE BUFFER
TAIL, BUF+I /POINTER TO LAST CHARACTER IN THE BUFFER

The first word of each 16-word block is used to link the blocks
together. Thus in a filled buffer each block contains a pointer plus
up to 15 characters. At any moment each buffer has at least one block
allocated. More blocks can be hooked to a buffer from the chain of
free blocks. When all characters have been read out of a block, it is
returned to the free chain, unless it was the last block in the
buffer. A counter is maintained of the number of free places in the
free chain. When a new block has to be allocated, this count is
compared with the counter of the requesting buffer. No block is
allocated if the buffer already contains more characters then are
still available. This prevents that the pool is monopolized by one or
a few buffers.

Terminal input

The processing of terminal input instructions is rather complicated.
Most of it is described in the section on the Input Reader. Notice d

that a strategy has to be determined to decide when the user's program
expects to see a new character, and when it expects to see the same
input character again. MULTI8 assumes that a character is completely
read as soon as the program executes a KCC instruction. This is in
correspondence with the fact that KCC will normally step the terminal
reader in case of papertape input. KSF signals the emulator that the
program wants to know if there is an input character. If there are
characters in the inputbuffer, KSF is made to skip (by incrementing
the user's stored programcounter). If the inputbuffer is empty, the
instruction right after the KSF is considered. If it is a JMP . - I ,
the background is set INACTIVE. The Back~round Scheduler is SIGNALed . - .- - -
and the central Emulator HALTS. When new input has arived, it will be
RUN by the Input Reader.

Because the Input Reader has already echoed most of the input
characters, the emulator has to strip the echo supplied by the
background program. This is accomplished by comparing each output
character with the last character read. So with each emulated KRB,
KCF or KCC the inputcharacter is copied in UCHAR, where it is later
compared with output characters.

I!;;<

SM8 (Skip on MULTI~)
In certain cases it is desirable to test whether the program runs in
the MULTI8 background or not. Therefore the SINT instruction (6254)
is emulated as a SKP.

- MULTI8 System Manual c'

- - " A -

To facilit'BStte asbmmunication between backgroun&&rogram~&~d foreground
tasks, a s'petrial IOT has been assigned that calf-be used@.@ perform all
kinds of special functions. When a 6770 instruction is (trapped, the
contents of the user's AC is used as an index in G1GATB':a table with
the same encoding as EMTAB. Any task that is named there will be
called as a normal emulator task (eg. with a pointer to the user's
dataarea in AC and datafield). Standard functions are:

0 Read time of day into AC; hhh.hhh.mmm.mmm > arid. d d l w ~??ri31:l'i
1 get terminal number in AC; OOOn in ~ o ' t ,Â¥^ajnIiqaflt sd.? 79'3
2 disable keyboard echo >lz.ib s l l d u q 703 ? , (T-OAXH)
3 enable keyboard echo o ?-iuJc? *r.iT. bav-19~9'1 s.1 T y ~ t n 3 .(:Hd3j
4 invoke TALK task
5 used for OPEN/CLOSE
6 stall program for n seconds.
7 Reset user's account register.
10 Read user's account registers in AC and MQ.
11-17 Reserved for system
20+ user assignable

The Handler Call.

The 6000 instruction has been reserved for the fakehandler to pass
request parameters to the foreground. The following protocol is used:

TAD (0OO.OOO.DDD.UUU /GET DEVICE AND UNITNUMBER
6 0 0 0 /TRAP ! - - - -
JMP .+4 /JUMP OVER THE PARAMETERS

FUNCTION /FUNCTION WORD (COPY OF OS/8 HANDLER CALL)
BUFFER /BUFFER ADDRESS(C0PY OF OS/8 HANDLER CALL)
BLOCK /BLOCKNUMBER (COPY OF OS/8 HANDLER CALL)

SZA /ERROR ?
JMP ERROR /HARD DEVICE ERROR OCCURED n luU3. ic . r . : 911

-> .3 ,\ - i ~ r i ' i . 2.2 JY!
The device number (bit 6-8 of the user's AC) is an index in HNDTAB
which - again - has the same encoding as EMTAB.

Timesharing- 10

- MULTI8 System Manual -
Entry 0 is for the so called 'channels1. Each user has available 4
channels, numbered 0-3. Channels give access to disk-like device.
Channel 0 is the user's SYS:. All requests passing through this
channel are checked to see if the background is loading its Keyboard
Monitor or Command Decoder. In that case the routine EMREL(ease) is
executed, which RUNS all emulators named in ASEMTB (Assignable
EMulators TaBle) with Linksl. If this background had any of these
emulators, they will finish their tasks and EXIT. This mechanism
insures that a background releases all its devices at the end of each
program or program step. An exception is made for backgrounds that
execute in BATCH mode (as indicated by the contents of virtual 07777);
a batch is considered one (large) program. Further the routine EMREL .
copies the system date (which is updated automatically at 24:OO) in
the OS/8 date word. Next the virtual disk unitnumber belonging to
this terminal is extracted from the dataarea and the request is passed
to SY or DK, depending on user disk allocation.

Each background has an 8-word table that describes the actual device
open on each of its four channels. Thus each channel is described by
a two-word entry, one word for the name of the handler task (eg. SY),
and one word that contains a read-only bit (bit O), the OS/8 device
type (bits 3-8) and the unit number (bits 9-11). As said, channel 0
is the background's SYS:. Channel 1 is generally opened to DSKO:, the
system disk where the CUSPS reside. Channels 2 and 3 can be assigned
by OPEN statements from the background, and deassigned with CLOSE.

Further with the encoding of HNDTAB. Entry 1 is for the DECtapes, 2
for the lineprinter, 3 for magtapes (MTAO-7), 4 for floppy disks
(RXAO-7), 5 for public disks (RKBO-RKB3) and 6 is for the cardreader
(CDR:). Entry 7 is reserved for future expansion.

4.3 Terminal Input Reader.

The Input Reader (In) has a number of important functions. It is the
direct representative of the user and defines the extend to which he
can control the system. Unlike emulator tasks, the Input Reader is
synchronized with the user, rather than with the user's program.

Basically the Input Reader accepts characters from the keyboard
handler and stores them in the user's input buffer. If the
inputcharater is CONTROL/S (XOFF), the Input Reader will STOP the
Output Writer; If the input character is CONTROL/Q (XON)), the Output
Writer is RESTRTedO. If the inputcharacter is CONTROL/O or CONTROL/C,
both the inputand output buffers are cleared before the character is
stored. This insures that the program will see the break character
and that the user gets immediate response.

If the inputcharacter is CONTROL/B, the status of the background is
set to BGSTOP, which implies that the terminal is in CONTROL/B mode
now. The inputbuffer is cleared and further input is collected until
the next CR. Then the CONTROL/B task (CB) is called that interprets
the command line. CB may return with AC=-1, 0 or +l. - 1 Means - - - - -
O) To avoid confusion when users inadvertently type "S, the Output
Writer is also RESTRTed by "B, C and 0 .

- MULTI8 System Manual -
* command

Error, 0 means continue background execution, +1 means stay in
CONTROL/B mode and read another command.

Another function of the Input Reader is to RUN the Central Emulator
when it has HALTed for lack of input characters. Of course, the
Central Emulator could be RUN each time a character was stored in the
input buffer, but that would imply that the background is awaked for
each input character and a very high swapping rate would result.
Therefore a rather peculiar algorithm has been devised that assembles
input characters until a complete command has been entered. Because
the Input Reader has no idea of the command syntax that the current
background program uses, it makes a guess according to the following
rules :

1) input characters are classified as non-printing or printing
characters. ESC and TAB are considered printing characters.

2) printing characters are stored in the input buffer and the Central
Emulator is not activated.

3) non-printing characters are stored in the buffer and the Central
Emulator is RUN (eg. after CR, LF, RUBOUT, etc.)

4) when no new input character is received within a short time while
there are some characters in the input buffer, the Central Emulator
is RUN (eg. when the user types a "/Iq to ODT). This insures that
the system will respond by the time the user starts waiting for it.

The length of "a short time" is a function of the number of characters
already in the inputbuffer; the more characters have been entered, the
longer the system waits before starting the background program. In
this way a fairly good distinction is made between short interactive
commands (ODT, EDIT) and normal line-oriented commands.

Another function of the Input Reader is to echo printing input
characters to give the user the impression that his program is
actually running. ESC is echoed as "$It, and CR gets a LF appended.
TAB is echoed as it is (and is expanded by the output handler). Other
control characters are not echoed. By setting bit 0 of these
characters in the input buffer, the suppression of the users echo is
prevented for these characters (UCHAR will not match with the
program's echo).

For some programs it is desirable to inhibit terminal echo, eg. a
display-oriented editor. Keyboard echo is disabled by executing the
GIANT IOT with AC=2. Echo can be enabled with AC=3. The echo is
automatically restored at the end of the program (by EMREL) and when
the terminal enters CONTROL/B mode. In the latter case the original
echo mode is restored when the program is resumed. When the echo is
suppressed by this mechanism, all characters are flagged as not-echoed
in the input buffer (bit 0=1) so that any echo from the background
program will get through. Also, all characters are treated as control
characters and thus immediatly activate the background program.

- MULTI8 System Manual -
4.4 Terminal Output Writer.

The function of the Terminal Output Writer task (On) is very simple.
It reads characters from the bg output buffer and sends them to the
user's terminal' output handler (Tn). Thereby bit 0 of the AC is
always cleared to allow foreground tasks to interrupt background
output. When the output buffer is empty, the output writer HALTS. It
should be RUN again when a new character is put in the output buffer.

To support the CONTROL/S and CONTROL/Q functions that temporarily
stop/start terminal output, the output writer is STOPped and RESTRTed
by the input reader.

4.5 Emulator Tasks.

This section will not give details on all external emulator tasks.
Instead it will describe the protocol defined between the emulator
tasks, the central emulators and the Background Scheduler. It may be
helpful to refer to the bg statediagram in fig. 4-1. Individual
emulator tasks are described in the section on external system tasks
(3.2).

When an IOT instruction is trapped, the device code is used to index
EMTAB. EMTAB may contain a positive value, in which case it is the
name of an emulator task that is subsequently called by the central
emulator. At that point the AC contains the address of the bg
dataarea of the bg involved, the Link=O and the datafield is 1. The
bg is in the state EMULATE and its instruction field is locked in
core. The trapped instruction can be found in UINST, the users AC in
UAC, his PC in UPC, etc. Note that the symbols UAC, UPC, etc are
defined as offsets relative to the begin of the bg's dataarea, eg.
UPC= 3.

If the action to be performed b the emulator task can be done quick
(eg. less than 1 or 2 seconds ? , the task need not alter the state of
the bg. If the function takes more time, it is worthwile to set the
bg INACTIVE so that our bg may be removed from memory. If an
emulation error (eg. illegal instruction) has occured, the task should
RETURN or EXIT with a positive, non-zero AC; This will generate an
error display (PC=...(EMULATION ERROR)) and bring the terminal in
CONTROL/B mode.

In most cases an emulator task manages a resource, eg. a device. The
resource scheduling is also implemented in the emulator task. As long
as an emulator task is executing for one user, no other program can
call it. Also, if an emulator, after a CALL from one user, returns
with RETURN (instead of EXIT) the emulator can only be called later by
the same user. This makes it possible to handle a series of requests
from one user without intervening calls from other backgrounds.

Of course, each emulator will eventually EXIT. This can be done after
some suitable signal from the background that is served, eg.
end-of-file in an output file, or from the device driver called by the
emulator, eg. end-of-file from an input device. In any case care milst
be taken thqt the emulator eventually EXITS, even if the background

- MULTI8 System Manual -
program is aborted without sending an end-of-file or reading to the
end of the input medium. To this end each emulator can be called (RUN
actually) when a background enters the OS/8 keyboard monitor or
command decoder. To be RUN, the emulator task should enter its name
or task control block pointer in the table ASEMTB, located in field 1.
ASEMTB is a table, initially filled with zeros, long enough to contain
the worstcase combination of active emulator tasks. After the first
call, an emulator task should search a free (=0) entry in ASEMTB and
enter its own name. If a background later enters OS/8, all tasks
listed in ASEMTB are RUN. Of course, only the tasks actually 'owned'
by this background receive the RUN request. The distinction between
this RUN and a regular CALL is in the Link, which is set for the RUN.
Note that the emulator task has to remember in which entry of ASEMTB
it did store its name, and that, before EXITing, it must zero this
entry again. Failure to do so will result in slowly filling ASEMTB
and leads to unpredictable results. In the emulator tasks supplied
with the system many coding examples can be found. The following code
could be used to setup ASEMTB: VfcuJ A & ~ - + h l J / + . % M -

TAD (ASEMTB-1 /SETUP ADDRESS OF BEGIN OF ASEMTB
DCA AUTO10 /FOR A SCAN TO FIND AN EMPTY ENTRY
CDF 10 //ASEMTB, LIKE ALL BG STUFF, IS IN FIELD

LOOP, TAD I AUTO10 //FETCH AN ENTRY
SZA CLA //IS IT EMPTY (ZERO) ? o-T?!^ t
JMP LOOP //NO, TRY NEXT ONE

TAD AUTO10 //YES, GET IT'S ADDRESS
DCA ENTRY //AND STORE IT IN THE TASK
CDF 0 //CURTSK IS IN FIELD 0
TAD I (CURTSK //GET TCBP OF RUNNING TASK (THAT'S ME!)
CDF 10 //BACK TO FIELD 1
DCA I ENTRY //AND STORE IT IN ASEMTB 0s ,TI/-

(
ASEMTB has been dimensioned so large (16 locations) that a free entry
will always exist (16 emulator tasks must be active to fill it). Note
that the task may not RELEASE or SWPOUT without first clearing it's
ASEMTB entry. So when the s finnished (eg. at end-of-file),
it should perform 'L.

CDF 10 FIELD 1 , YOU KNOW f^Xf fit}? 6'-
CLA
DCA I ENTRY

On return from an emulator task, the &-signals one of three different
things. As always, a zero AC signals 'no problem', and the background
program will be continued. A positive AC signals that some emulation
error occured, and will bring the background in CONTROL/B mode, with
its current state displayed. A negative AC is interpreted as being an
instruction that should replace (be patched over) the trapped
instruction in the background program. The Central Emulator will
apply the patch, backup the user's program counter and continue the
background.

The virtual memory system has several consequences for emulator tasks
that deal with the background memory, eg. to obtain parameters, return
values, or perform 1/0 to or from the user's memory. When an emulator
task is entered (with LinkzO, eg. not the release RUN), the BG
instruction field
loaded is obtained

-

is known to be in memory. The field where it is
by the following code:

MULTI8 System Manual -

TAD XXBASE
TAD (UFLDS
CDF 10
JMS DEFER
AND C70
CLL RTR
RAR
TAD (UFLDO
TAD XXBASE
JMS DEFER
TAD C6201

/ASUME WE HAD STORED THE ENTRY AC HERE
/ADDRESS USER'S FIELDS WORD
//ALL USER DATA IS IN FIELD 1
//GET USER'S FIELDS WORD
//EXTRACT HIS (VIRTUAL) INSTRUCTION FIELD
//MOVE IT TO BITS 9-11
/ /
//START OF FIELD TABLE IN USER DATA
/ /
//THIS GETS THE REAL FIELD NUMBER IN 6-8
//MAKE A CDF
/ USE IT TO ADDRESS USER'S INSTRUCTION FIELD

As long as the user's state is EMULATE, his instruction field will
remain in place. But after the BG has been INACTIVE, you must request
it into memory again before using it. This is also true for any other
field that you may require. The logic of emulator tasks can thus be
simplified by insuring that all parameters they need are always in the
instruction field, ie. the field where the trapped instruction
resides.

To request a background field into memory, use the following code:

CDF 10 //ACCESS BACKGROUND DATA TABLES
TAD I XXBASE //GET USER STATUS
AND (-INACTIVE-EMULATE-1 //CLEAR INACTIVE AND EMULATE

//(ADD '-LONGf TO GET IT FASTER)
TAD (INCORE //SET INCORE REQUEST
TAD XFLD //ADD VIRTUAL FIELD NEEDED IN BITS 6-8
DCA I XXBASE //THAT'S. HIS NEW STATE
JMS MONITOR //SIGNAL BACKGROUND SCHEDULER TO LOOK AT IT

SIGNAL / /
BSSLOT / /

TAD XXBASE //NOW GET PRIVATE EVENT OF THIS USER
TAD (USLOT / /
JMS DEFER //THIS GIVES US THE EVENT NUMBER
DCA .+3 //STORE IT IN THE WAIT REQUEST
JMS MONITOR //WAIT TILL BS TELLS US THAT THE FIELD

WAIT //IS IN MEMORY, AND WHERE IT IS
0 //(GETS USLOT)

TAD C6201 //AH! AC CONTAINS REAL FIELD NUMBER ! //NOW WE GOT A CDF TO THE REQUESTED FIELD

At this point the state of your BG is EMULATE again, which insures
that the field just brought into memory will stay there.

4.6 Special Functions.

The special functions of the background support system are performed
by two external tasks, in co-operation with the Input Reader. When a A

terminal enters CONTROL/B mode, the Input Reader will assemble one
command line. After receipt of Carriage Return, it CALLS the
CONTROL'B task (CB), that will analyze the command. Most commands are

- MULTI8 System Manual -
performed by CB itself (eg. setting the user's switch register), but
the WHERE command is executed by BE (see section 3.2).

4.7 The Background Scheduler.

It is the function of the Background Scheduler (BS) to decided which
background job will be in memory at each moment. BS implements a
two-level round-robin system, with level 0 having preemptive priority
over level 1. The timeslice used for level 0 (short slice) is about
.5 seconds, the long slice (used for level 1) is 5 seconds. New jobs
enter at level 0. After their short slice they are moved to level 1
where they are inserted in front 'of the queue (to avoid extra
swapping). In fact no real queues are maintained, but use is made of
the fixed ring-structure formed by the UNEXT pointers. Whether a job
is at level 0 or at level 1 is defined by the LONG bit in its status
word.

Normally BS sits in a WAIT for its own dedicated event BSSLOT. It may
be awaked either by a timeout (BS issues a timeout value of 1 system
tick) or by a SIGNAL from one of the emulator tasks.

If it is a timeout (AC=2), BS will update the running job's, counter,
that was setup for the current timeslice. If the counter .overflows,
BS has to analize the current situation.

If the bg who's slice has just expired was a LONG (level 1) job, BS
will search for a new job to run, first a non-LONG job or else a LONG
bg. The last candidate considered is the same job again. If it was a
short slice that has now expired, BS will check if there are other
non-LONG jobs waiting. If not, the current bg will immediately get
its first long slice.

,

If BS is awaked by a SIGNAL from an emulator task, it will first lpok
for an INCORE request of the current level 0 job. If there is such a
request, it will be serviced and the slice is continued. If no INCORE
request is pending, BS will only check whether the current bg is still
able to proceed. If not, BS will scan the backgrounds for a new
candidate, either a non-LONG job or a LONG job.

Each time a new bg is elected, BS checks if its instruction and
datafield are in memory. If not, BS will will attempt to load the
missing fields. If none of the resident fields can be swapped out, BS
sets a flag (BSFLAG) for the Central Emulator, who will send a SIGNAL
as soon as the current emulation is finished.

The crucial element in the background scheduler is the algorithm that
decides which of the currently resident fields should be replaced by a
requested field. The implemented algorithm is very complex, to be
honest, I'm not sure that I understand it myself. The structure of
the algorithm is that each of the available fields is tested to see if
it meets a certain condition. If one does, that one will be swapped.
If none of the resident fields meets the first criterium, a new scan
is started with a new, weaker, criterium. This process is repeated
for 6 successively weaker tests. The policy decission is in the
choice of the different tests.

- MULTI8 System Manual -

Appar t f rom t h e t r i v i a l t e s t 0 (f i e l d n o t y e t o c c u p i e d) , t h e f i r s t
t e s t w i l l s e l e c t a f i e l d who's p r e s e n t owner i s b locked (INACTIVE,
BGSTOP, BGERR o r SWPERR s e t b u t EMULATE c l e a r ; But t h e f i e l d may n o t
be t h e owner ' s c u r r e n t i n s t r u c t i o n - o r d a t a - f i e l d . The second t e s t is -
e q u a l t o t h e f i r s t t e s t , b u t now t h e f i e l d may be i t s i n s t r u c t i o n o r -1
d a t a f i e l d . The p r e f f e r e n c e t o n o n - i n s t r u c t i o n - o r d a t a - f i e l d s s e e k s
t o minimize t h e chance t h e t h e p r e s e n t l y b locked bg w i l l p a g e f a u l t
immedia t ly a f t e r a c t i v a t i o n .

T e s t 3 and t e s t 4 a g a i n d i f f e r o n l y i n t h e I- o r D - f i e l d c r i t e r i u m .
Both a c c e p t f i e l d s owned by backgrounds n o t c u r r e n t l y i n e m u l a t i o n .
How'ver, t h e f i e l d may no be owned by t h e p r e s e n t r e q u e s t o r . T e s t 5
c a n be p a s s e d by a n y f i e l d t h a t is n o t l o c k e d and n o t owned by t h e .
r e q u e s t o r . F i n a l l y t e s t 6 l o o k s f o r a n y f i e l d t h a t is n o t l o c k e d o r
t h e owners I- o r D - f i e l d . Note t h a t when we come t o t e s t 6 , a l l
non-locked f i e l d s must be my own f i e l d s , s o t e s t 6 l e t s a background
exchange i ts own f i e l d s . C l e a r l y i t is u s e l e s s t o swap o n e s own
i n s t r u c t i o n - o r d a t a - f i e l d o u t because t h a t b l o c k s a n y f u t h e r
e x e c u t i o n .

c! ,;E3V& bs:..'t..3ibab n
The s c a n n i n g o f f i e l d s a lways s t a r t s w i t h t h e f i e l d p a s t t h e l a s t
s e l e c t e d o n e , s o t h a t s e v e r a l f i e l d s f a l l i n g i n t h e same c a l s s (i e .
p a s s i n g t h e same t e s t) w i l l be s e l e c t e d i n round- rob in f a s s i o n . A
f u r t h e r r e f i n e m e n t is t h a t , a f t e r t h e i n i t i a l swap-in o f I-, D - f i e l d
and one o t h e r f i e l d i n c a s e o f a pend ing I N C O R E r e q u e s t , o n l y t h e j o b
w i t h t h e h i g h e s t p r i o r i t y i n c o r e gets i ts o a e e f a u l t s s e r v i c e d . So i f
b o t h a n i n t e r a c t i v e and a c o m ~ u t e b o u n d j o b a r e r e s i d e n t , t h e
i n t e r - c a t i v e j o b can r e q u e s t f i e l d s a t t h e e x p e n s e o f t h e computebound
j o b , b u t n o t v i c e - v e r s a . Note however , t h a t a s soon a s t h e
i n t e r a c a t i v e Jo.bs.. &,eco&,es, .i.& ac$.i.~e, t h e computebound j o b c a n r e g a i n i t s
s p a c e . <, - . ,$.,, .+ ,a L : .;r,~s;!c. 1.1:~

; , : s.r : .,.. .< > . " L > - - , , e.

The a c t u a l swapping o f background f i e l d s is per formed i n chunks o f 4K,
f i r s t w r i t i n g a l l t h e o l d c o n t e n t s t o d i s k , t h e n r e a d i n g t h e new f i e l d
i n t o memory.

