
1
..-

n

+
I -

-

1

1871.

I

Copyright 1970
Digital Equipment Corporation

PDP is a registered trademark
of Digital Equipment Corporation.

FOREWORD
’The PDP-12 general purpose laboratory computer is a powerful partner to
research and developmental activities; especially for storing, collating,
combining, and analyzing laboratory data. It converses directly with the
laboratory user while experiments take place. It displays results in time
for him to vary experimental sequences based upon emerging results,
giving him the power for creative problem solving, not mere data shuffling.

The laboratory ’user also gets long-term instrumentation economy.
Economy and the ability to change data instrumentation tasks without
changing the instrument. Economy in the ability to expand (including the
size of the computer) by adding modules or options.

There is an investment to be made. Several weeks of diligent study of
co~pu te r fundamentals to start. But, the payoff is great. Dividends come
in terms of an entire career, and adding the computer discipline to your
own, and the ability to do more and better laboratory work.

Digital Equipment Corporation has played a pioneering role in developing
all purpose computers, particularly suited for the laboratory environment.
Thousands of DEC computers are being used a t universities, research
and development centers, industry, pure and applied research, and
physical, life, and behavioral sciences.

With development of the PDP-12, DEC has combined the features of three
successful general purpose computers - the LINC, developed under
Ptational Institutes of Health and NASA grants, the popular PDP-8, and
the LINC-8, into a single, complete data handling facility.

The PDP-12, described in this handbook, has become a standard in its
field. It is the most modern of a family of 12-bit machines, designed
specifically for the laboratory market place. It has the capability of utilizing
programs written for the LINC, PDP-8, and LINC-8 with relatively minor
modification.

Some of the programming excerpts used in this handbook are derived
from several works written by persons outside of DEC. “Programming
the LINC” LINC DE16, Section 2, Programming & Use, April 1965 by
Mary Allen Wilkes and Wesley A. Clark, Washington University, St. Louis,
Missouri. To the above individuals, as well as others, at the Computer
ReSearch Laboratory a t Washington University, the National Institutes of
Health, the National Aeronautics & Space Administration, and individual
DEC computer users, we are greatly indebted.

111

INTRODUCTION

INTRODUCTION TO LABORATORY COMPUTERS
Until approximately 1963-1964, the concept of having a computer for
use by researchers within the laboratory environment was almost unheard
of, except in very special cases. Both the physical size and the price of
such equipment was awesome, and it was highly unlikely that a single
researcher, or small group of researchers could put forth a strong enough
argument to justify the purchase of equipment that would cost several
hun’dred thousand dollars. A t that time, there was very little available,
if any, that had the characteristics so necessary of a laboratory environ-
ment which is the requirement for “hands-on, on-line, interactive com-
puting capability.”

The use of a computer in a laboratory, represented a unique departure
from the classical use of most computational equipment. In most cases,
data from experiments was acquired off-line and then prepared for entry
to the computer, typically via punched cards, paper tapes, or digital
magnetic tapes. When time on a central computer was available, the data
was analyzed by programs that had previously been prepared and finally
the results of the experiment were available to the researcher. Typically,
the “turnaround” time was a t best several hours, and a t worst several
days. The use of the computer for the researcher was beginning to prove
a valuable tool-in the data reduction and analysis of his work, but the time
required to give him the all important “feedback” about his experiment
was still much too long. The optimum situation would be where the
computer could be integrated into the experimental setup and the data
could be acquired on-line and analyzed in the laboratory, and eventually
feed back and control the experimental setup.

One of the early projects aimed a t developing such a computer was the
LINC program. LINC was a pseudonym for a Laboratory INstrument
Computer and was designed primarily to fulfill the needs of the life and
physical sciences researcher. The initial designs were aimed a t fulfilling
the following requirements:

1. Ease of interface to standard laboratory instrumentation, which
included both analog and digital signals.

2. CRT ,display - for both graphical and numerical data display and
results.

3. Auxiliary storage - for rapid access to both programs and data.
4. Ease of use - such that semi-skilled laboratory technicians

could operate the equipment and run the experiments.

The fulfillment of these requirements together with improvements in
the state of the art, and price/performance ratios were embodied in the
LINC, LINC-8, and eventually the PDP-12 as manufactured by Digital
Equipment Corporation. The present PDP-12 represents the third genera-
tion of this laboratory computer concept. As of mid-1970 there are over
600 such machines in use throughout the world in numerous laboratory
environments. .

V

.

. PDP-12 Programmed Data Processor System,
Functional Block Diagram

VI

HOW THE PDP-12 FULFILLS THE LABORATORY REQUIREMENTS
Inherent in the definition of a laboratory computer system is the term
“flexibility”. It is mandatory that the user isn’t required to change his
instrumhtation, but rather only experimental conditions. In this respect
the laboratory computer as a laboratory instrument is quite unique. Its
general purpose nature allows the user to reprogram it, handle a larger
range of ekperimental conditions and environments without physical
change to the hardware configuration.

“Flexibility” - The PDP-12 includes within its single central processor
two distinct operating modes, each with its own complete instruction
set. Like its predecessor, the LINC-8, the PDP-12 operates in one mode as
a LINC (Laboratory INstrument Computer) and in the other mode as a
PDP-8 computer - specifically a PDP-8/1. Both operating modes have
equal status, and the computer may be stopped and started in either
mode, and the programs may switch from one mode to the other a t will.
Computations in one mode are immediately available to programs operat-
ing in the other mode, plus onlyone set of processor registers are involved.

The basic memory capacity of the PDP-12 is 4096 (4K) 12 bit words and
can be expanded to 32,768 (32K) words of 1.6 rsecond core storage.

The input/output facilities are available to the two operating modes of
the PDP-12 in the following manner through LINC mode programming:

LINCtape - two tape transports controlled by a buffered subprocessor.
CRT Display - 6” x 9” screen, two intensification channels.

Analog lnputs - eight variable potentiometers, eight external inputs,
expandable to 24.

Relay Buffer - six relays for control of external equipment.

In addition to these, the PDP-12 is also equipped with a positive logic -
PDP-8/1 type input/output (I/O) bus, to which can be attached, all
PDP-8 peripherals and options such as a high-speed paper tape reader
and punch, as well as the standard ASR-33 Teletype.

Central Processor
The central processor contains all the logic and registers required to carry
out the functions of both operating modes of the PDP-12. The central
processor can best be described in terms of its active registers:

Accumulator (AC) 12 Bits - This register contains data being operated
upon. Its contents may be shifted or rotated right or left; incremented,
cleared, or complemented; stored in memory or added to the contents of
a memory register; anU logically or arithmetically compared with the con-
tents of any memory register. The AC holds the sum after an addition,
and part of the product after a multiptication. The AC is also involved in
the transfer of data to and from various other registers outside the
central processor.

Link (L) 1 Bit - The Link is an extension of the AC. When a carry occurs
out of bit 0 of the AC during a 2’s complement addition, the Link is
complemented. It may be set or cleared independently of the AC, and

~

VI I

may be included (or pot) in shifting and rotating operations performed
on the contents of the AC.

Multiplier Quotient (MQ) 12 Bits - This register is used as a second
arithmetic register for multiply and some rotate instructions. It is also
used for the extended Arithmetic Option (KE 12) functions.

Program Counter (PC) 12 Bits - This register contains the address of
the next instruction to be executed within the memory field selected by
the Instruction Field Register (see below). In PDP-8 mode, the PC acts
as a 12-bit counter; in LINC mode, it acts as a 10-bit counter.

Memory Address Register (MA) 12 Bits - This register contains the
address for memory references. Whenever a core memory location is
being accessed, either for reading or for writing, the MA contains the
address of that location.

Instruction Register (IR) 12 Bits - This register contains the coml)lete
binary code of the instruction being executed.

Memory Buffer (MB) 12 Bits - All information passing between memory
and any other register in the PDP-12 must go through the MemoryBuffer
Register, whether the transfer involves the central processor, an external
device, or another memory register.

Instruction Field Register (IF) 5 Bits - This register selects the memory
field containing the executable program. In LINC mode, it ip used to
designate one of up to thirty-two 1024-word segments. In PDP-8 mode,
the three high-order bits of the IF are used to designate one of up to
eight 4096-word fields.

Data Field Register (DF) Bits - This register selects the memory field
containing data to be indirectly accessed by the memory reference in-
structions of a program. The fields are specified in each mode in the
same way that the IF specifies the Instruction Field.

Memory
The principal unit of core memory is a module of 4096 (4K) 12-bit words.
Additional 4K banks may be added, to a total of eight, or 32,768 words.
Within each bank, the logical organization of memory depends on the
operating mode. In LINC mode, the bank is divided into four 1024-word
segments. A t any given time, only two of these segments are active: the
Instruction Field, which contains the executable program and the directly
accessed data; and the Data Field, which contains only indirectly accessed
data. Absolute addresses may be assigned and changed at will using the
IF and DF described above.

In the PDP-8 mode, the memory field, which is the size of a 4K module,
is divided into 32 pages of 128 words each. Within a single page, data
may be accessed directly; between pages, indirect addressing must be
used. If more than 4K of memory is provided, the IF and DF registers
specify the active fields.

Vlll

Operating Modes
The two operating modes, LINC and.PDP-8, are independent of each other,
though they may be combined and intermixed within a program. The
user can run programs from the alreadyexisting libraries for the PDP-8
family of computers including the LINC-8. Using the 1-0 Handler (PRO-
GOFOP simulator) program provided with the PDP-12 basic software, most
programs written for the LINC-8 can be run without modification. (Some
LINC-8 programs may require slight changes). A complete software sys-
tem designed for PDP-12 allows the programmer to assemble coding for
either or both modes in a single program.

LINC Mode - In this mode, the instruction set of the classic LINC com-
puter is implemented. In addition, several new provisions are available:

Extended Tape Addressing - This allows the programmer to transfer
information between LINCtape and any section of core, removing the
restriction to specific quarters of a given memory field. Other features
\ include:

1. Tape Interrupt - which connects the tape processor status to
the Program Interrupt.

2. No-pause - which permits the central processor to resume
operation after initiating a tape transfer without waiting for
com pletion .

3. Hold-motion - which allows a unit to remain in motion after
deselection.

I/O Bus Access - In LINC mode the user has immediate access to those
devices activated by LINC instructions A-D, DISPLAY, RELAYS, SENSE
LINES, and TAPE. Any device connected to the I /O bus may be directly
accessed from LINC mode programming by means of a special two-word
instruction, in which the second word enables the bus and initiates the
PDP-8 IOT timing chain. This second word is interpreted as a standard
PDP-8 IOT instruction. The program continues to operate in LINC mode.

Spechl Functions - The LINC programmer may, by setting certain
flipfllops: 1) change the size of characters displayed on the CRT; 2)
enable the program trap, which intercepts certain LINC instruction codes;
3) disable interrupts from the ASR-33; 4) speed the sampling of analog
inpub; and 5) clear the PDP-12 status by generating ar;l I / O preset pulse.

PDP4 Mode - In this mode, the user has available the entire PDP-8/1
instrudion'set.

Interaction Between Modes -The user may switch from one mode to the
other at will. In LINC mode, execution of the instruction PDP causes
the processor to change immediately to PDP-8 mode operation, and all
subsequent instructions are interpreted as PDP-8/1 instruction. To switch
from PDP-8 mode to LINC mode the IOT instruction LlNC is used.

lnput/Output F8cilItIes and Display
A8 can be seen from Figure 1-1, there are two main paths for the
transmislon of data from the central processor or memory to peripheral

IX

devices. One path, which is controlled by LINC mode programming, leads
to the CRT display, LINCtape, A-D converter, and relays. The other path,
which is the I / O bus, leads to the ASR-33 and to a large number of op-
tional devices, such as: plotters, high-speed tape and card readers, disk
storage, line printers, etc.

Display - The Cathode Ray Tube Display has a 58.5-square inch (6.5
x 9 inches) screen, on which individual points and whole characters may
be displayed. The unit has two intensification channels, controlled by
programming and by a switch on the dispiay. Characters are plotted on
a 4 point x 6 point matrix; a full character can be displayed with two
instructions. Provision is made for displaying two sizes of characters.

Data Terminal -The data terminal provides a flexible means of receiving
analog inputs and controlling the operation of external equipment not
directly interfaced to the PDP-12.

Analog Inputs - Sixteen analog inputs feed a 10-bit A-D converter. A
single LINC mode installation samples any of the 16 channels. A second
set of sixteen inputs with preamplifiers, can be added to the basic facility.

Eight of the inputs, taken from phone jacks mounted on the Data Terminal
Panel, are fed through preamplifiers to the converter. The remaining
eight are taken from continuously-variable, ten-turn potentiometers, which
are also mounted on the panel.

Relay Buffer - Six relays, mounted on the Data Terminal Panel, may be
switched by means of a LINC mode instruction. The relays may be used
to start and stop operations in external equipment. The status of the
relays can be read back into the AC.

Auxiliary Scope Connector - A Blue Ribbon connector mounted on the
Data Terminal Panel is wired to accept an auxiliary CRT for displaying
information also sent to the screen of the built-in scope.

Sense Lines
These 12 digital sense lines may be individually tested with a LINC
mode instruction.

LINCtape - The tape transports are controlled by a fully-buffered tape
processor; once initiated by the LINC program, tape operations can be
carried out independently of the central processor. Tapes normally are
written and read in standard LINCtape format, though non-standard
formats can be used. A special hardware option, TC12F, permits the use
of all DECtape formats. In addition to the basic LINCtape commands, the
PDP-12 also includes an Extended Operations facility, which allows,
among other features, the transmission of data between tape and any
program-defined area of memory, and the addition of TU55 or TU56
transports to a total of eight tape drives.

Input/Output (I/O) Bus - This connecting facility provides the control
and data transmission path between the central processor and any
peripheral devices that are attached to the bus. For some devices, such
as: paper tape readers and punches, line printers, and incremental plot-
ters, data is transferred via the accumulator (AC). Others, including

X

.magnetic tape and disk, use the three-cycle Data Break for direct memory
access. The I/O bus uses positive logic and accepts peripherals used
with 8 family of computers. The processor is prewired to accept the
following I /O bus options:

Extended Arithmetic Element (EAE), Type KE12

Programmable Real-time clock, Type KW12 A, B, or C

Incremental Pl'otter and control, Type XY12

TTY or Dataphone Interface, Type DP12

Many other devices can be added to the PDP-12 I/O bus with the inclu-
sion of the BA12 Peripheral Expander and the DW08 I/O and Bus Con-
verter. The Peripheral Expander allows the addition of high-speed paper
tape reader and punch, card reader, and optional communication inter-
faces. The Bus Converter provides for the addition of disk and IBM-
compatible magnetic .tape storage, and A/D and D/A converters and
associated multiplexers designed for the negative-logic PDP-8 I /O Bus.

KeyboardIPrinter (ASR-33) - An important means of direct cornmuni-
cation between the user and the operating program is the ASR-33 Key-
board/Printer, standard on all configurations of the PDP-12. The ASR-
33 is connected to the I/O bus, and can be accessed for input or output
by programs in either operating mode. The ASR-33 is equipped with paper
tape reader and punch; the reader and keyboard use the same input path
and instructions, while the printer and punch use the same output path
and instructions. The maximum transfer rate in either direction is 10
characters per second.

The ASR-33 has both full- and half-duplex capability. In full-duplex op-
eration, data may be transmitted in both directions simultaneously, with-
out interference. In half-duplex operation, data may be transmitted in
only one direction at a time.

XI

LAB COMPUTER HANDBOOK
TABLE OF CONTENTS

/

FOREWARD 'ill ..

lNTRODUCTlON ..)..
Introduction t o Laboratory Computers

How thq PDP-12 Fulfills the Labo'ratory Requirements

CHAPTER 1 BIOMEDICAL SYSTEMS :

Signal Averaging 1

Time Intewal Histograms
. .

Signal Editing and Frequency Analysis

Introduction ..I : 15

Hardware Description 16

Analytical Instrument Package.
Floating Point Processor

System Effects of AIP and FPP

12

CHAPTER 2 CHEMISTRY SYSTEMS-

. .

A&ytical Instrument Package Operating System

Multi-Instrument Data Acquisition System

'Displayoriented Research Analysis ,
. ,

. .Math Routines

Specific Applications. Software
I

, MAPTER 3' EDUCATIONAL SYSTEMS

Engineering Curriculum

Computers In the Schodl Laboratory .
&ASIC L .. ~
FORTRAN ..

* .

........................

-
. DIBOL- ..
FOCAL ; ...
FOCAL-12 ...

31

31

32

32

33

35

37

37

38

38

39

40

Xl l l

CHAPTER 4 INDUSTRIAL SYSTEMS

Analog Inputs

Digital inputs

Real-Time Clocks

Role of the Computer 71

CHAPTER 5 CLINICAL LABORATORY SYSTEMS

. . Introduction) 79

Function,al Description 79

Software 84

Hardware 88

CHAPTER 6 PHYSICS APPLICATIONS .

A Basic Program for Pulse Height Analysis

Constructing the Detailed Algorithm ...

93

95
. .

PHA-12 .. 99

CHAPTER 7 REAL TIME CLOCK

Kw12-A Real Time Interface .. 103

Clock Counter Register .. 104

Buffer-Preset Register .. 104

KWl2-B and KW12-C Fixed-interval Clocks : 116

CHAPTER 8 PDP-12 PROGRAMMING

Introduction 119

Using Keys and Switches

PDP-8 Mode Programming.

Operate Microinstructions ;.

Microprogramming

PDP-8 Mode Input/Output Programming

tnput/Output instructions .. 143

Programmi.ng the Teletype Unit .. 146

LINC Mode Instructions .. 152
' .

index Class Instructions .. 163

XIV

Index Registers ... 165

SET Instruction 169

Subroutine Techniques _ . . 187

Half-Word Instructions .. 184

Skip Class Instructions

Multiplication

Fast-Sample Mode :.... ... 203

LINC Scopes

Character Display

LINC Magnetic Tapes 204

Group Transfers 211

Tape Motion 213

Tape Format

Tape Motion Timing

Special Index Register Instructions 168

Analog Input :

Extended Tape Operations ..

LINK Data Field 223

PDP-8 Mode Extended Memory 229

LINC Mode Interrupt . _

Special Functions

Traps

CHAPTER 9 - PDP-12 SOFWARE

Introduction

System Concept

System Startup ,

System Build .(DIAL-MS only)

System Initialization (DIAL-MS only)_....

Using the .Assembler 247

. 245

Using the Editor 245

Character Set . . , 248

xv

Permanent Symbols
Operators and Special Characters .. 254

Pseudo Operators .. 255

Monitor Commands .. 255

ADCON

ADTAPE

CATACAL .. :.... 265

CONVERT 267

CREF12 268

DISPLAY ... 270

FRED

GENASYS

L8SIM : 275

.........................

........................... MARK 12 ...

MILDRED :

NMRSIM .; 281

PATCH 282

PIP ...

....................................

.............................. 287

SIGAVG 291

... . ,_ 292

.................................... ... 293

XVI

ory capacity, mass storage, and other peripherals may be in-
e field.

XVlll

ing-point processor increases the capability of the PDP-12 in
ming complicated calculations especially on large blocks of data.

CHAPTER 1
BIO-M ED1 CAL SYSTEMS

USE OF THE PDP-12 IN
ACQUISITION & ANALYSIS OF NEUROPHYSIOLOGICAL DATA

.SIGNAL AVERAGING
For many years the study of evoked responses in electrophysiological
research has been gaining in.importance. The variable nature of evoked
responses makes it difficult to obtain representative measurements from
any one response; sometimes it is even, impossible to determine visually
whether the presentation of the stimulus has in any way affected the
system. A common way to obtain stable measurements of responses in-
volves averaging of the individual's responses to the identical stimuli.
The advantages of averaging include being able to detect characteristic
deflections in the waveform of the average response where these deflec-
tions are not visually detectable-in any single response. Moreover, the
average yields more meaningful measurements than those obtained from
the individual response.

The PDP-1.2 offers a complete signal averaging program that enables the
user to utilize'the PDP-12 in the way he would a hardwired signal
averager, and yet retain the flexibility of a general purpose laboratory
computer.

Basically, the signal averaging program operates as follows:

The, evoked response is sampl.ed for a number of points following each
stimulus. Samples taken at the same delay after the stimulus onset, are
added, and their sum is stored. The PDP-12 utilizes two words for each
of these data points, thereby guaranteeing there will be no overflow even
after a possible 16,000 sweeps. After. the desired number of sweeps
(responses) has been added in this way, the average of the response is
given by the computed sum times an appropriate scale factor. Since
the coherent signal occurs in each response in the same way, whereas
the noise varies randomly about a mean of zero, the coherent signal
will tehd to reinforce itself.while the noise will decrease as more and more
of these responses are added. The overall effect of the averaging process is
the enhancement of the signal to noise ratio by approximately the square
root of the number of sweeps that are averaged.

-

TIME 'INTERVAL HISTOGRAMS
The time interval histogram generated and displayed by the PDP-12 has
become an important biomedical tool in the analysis of neuroelectric and
cardiovascular data. The poat-stimulus time histogram, for example, is
an effecti-ve means of revealing the response patterns elicited from single
nerve cells' by controlled stimuli. In neurological experiments, it provides
an estimate of the relative firing rates of a single unit in response to a
stimulus. In work done with gross electrodes, where the neuroelectric
data is acquired from many cells, time interval ,histograms can be used
to study the distribution of peak latencies from the on-set of the stimulus.

1

Another example of the value of the time interval histograms is in the
study of heart action. From the standpoint of the computer, cardiovascu-
lar research has much in common with neurophysiological research. The
basic data is often a time-voltage function produced by the system under
study. Perturbations and the rhythmic activity of the heart may be de-
tected and subjected to quantitative analysis by forming distributions of
inter-beat intervals derived from the ECG (Electrocardiogram).

The Time-Interval Histogram Program
The following program shows you how to use the PDP-12 in the LINC
mode of operation to accumulate the frequency distribution of time
between events (the occurrence of a pulse) and to continuously display
the distribution as an interval histogram.

When an acceptable pulse is detected, the PDP-12 records the event by
incrementing a location in its memory, called a “bin”. Each bin contains
the number of samples which occurred during the corresponding “time
interval”. The PDP-12 uses 512 bins to record the occurrence of up to
512 separate time intervals.

Suppose that we have a histogram with 4 horizontal graduates or bins of
1 millisecond intervals as shown.

I

BIN I BIN 2 BIN 3 BIN 4

A I

Four 1-Millisecond Interval Bins

When recording the time interval of pulses (events), for all pulse infervals
that occur between 0 and 1 milliseconds, a one will be added to bin 1;
for intervals of 1 to 2 milliseconds, a one will be added 20 bin 2, etc. If
a pulse train were monitored over a period of time, a histogram of the
pulse train would be as shown.

~ 0 . 9 ~ 1 . 6 4 0 . 9 ~ 2 . 5 ~ - ~ . § ~ ms ms mr 3.3 -4
mr mr m r

Pulse Train

2

Pulse Train Histogram
Since there are two 0.9-millisecond pulse intervals that fall within the 0
to 1 ms interval, a vertical bar length of two is recorded for bin 1. Simi-
larly, yertical bar lengths of 1, 2, and 1 are recorded for bins 2 through
4, respectively. The foregoing histogram provides a foundation for further
perusal of the histogram generating program developed for the PDP-12
programming example. We will retain the bin widths of 1 ms for this
exa m ple.

We will also use the KWl2A real-time clock to detect the event and
record the time interval. The clock contains a digital counter with input
detection circuits. An input event causes the contents of the counter to
be saved in a buffer register and sets a flip-flop to “flag” the occurrence
of an event. The program tests for the occurrence of the event and reads
the digital buffer register into the accumulator and resets the flip-flop and

. the digital counter to 0. The digital counter is then free to start counting
for the next event. Shown below is the clock initialization subroutine.

/CLOCK IN IT1 ALlZATlON

IWITI,

BEGIN,

K0003,
’ K4300,

K0100,

LDA
20
ESF ’

PDP
PMODE
CLA
CLAB
CLLR
TAD
TAD KO100
CLLR
CLA
TAD K4300
CLLR
CLA
TAD KO003
CLEN
CLSK
JMP BEGIN
LINC
LMODE
JMP GET
0003
4300
0100

SUBROUTINE

/I-0 PRESET

/GO TO -8 MODE

/

/SET UP 1KC RATE AND RESET TO ZERO MODE

/SET UP CHANNEL 3 ENABLE AND INTERRUPT

/SKIP ON EVENT FLAG

3

Now let us examine the data collection subroutine which will classify the
events into bins of 1 ms intervals. Our histogram will contain 512 bins,
hence a classification range of 0-511 ms. (Overflows stop the counter so
that al l intervals greater than 511 ms would increment bin 512 by 1 to
indicate the overflow condition.) We will refer to both the flow diagram
and subroutine listing for the explanation of the data collection subroutine,

ENTRY POINT FOR
DATA COLLECTION ROUTINE

HAS
EVENT

OCCURRED'

YES

READ AND
RESET CLOCK

SET UP LOCATION
TO BE INCREMENTED
BY ADDING CLOCK

READING (R) TO

1
I I INCREMENT

LO CAT10 N
I 400 + R I

Data Collection Subroutine

/DATA COLLECTION SUBROUTINE

LOOK, IOB
CLSK
JMP 0
IOB
CLSA
IOB
CLBA
ADD TEMP
STC BTEMP

LDA I

/ IS THERE AN EVENT
/NO, EXIT

/CLEAR INPUT EVENT

/YES, READ BUFFER
/SET UP ADDRESS FOR INCREMENTING
/TEMPORARILY STORE ADDRESS OF BIN TO

BE INCREMENTED
/PLACE 1 IN THE AC

4

1
ADM /INCREMENT APPROPRIATE BIN

BTEMP. 0 /ADDRESS OF BIN TO BE INCREMENTED
STORED HERE

JMP 0 /EXIT

CLSA=6135
CLSK=613 1
CLBA=6136
CLCA=6137

TEMP, 400

The KWl2A Clock is connected to the I /O bus. Thus, the first instruction
in the data collection subrout@e skips the next instruction if an event
occurred; if the event did not occur, the next instruction JMP is executed,
causing control to exit from this subroutine. Assuming an event occurs,
we go to the IOB /CLSA, IOB /CLDA instructions which read the external
clock and reset the flag so that we are prepared to start recording time
and to note the next interval. After the execution of the CLDA, the clock
reading is held in the accumulator. The next instruction, ADD TEMP, adds
400 to the accumulator which has the clock reading and then stores the
results into symbolic locations BTEMP. Let us digress a moment to see
the significance of this. ,

BIN 1 OR BIN 2 OR BIN 3 OR
LOCATION 400 LOCATION 40t LOCATION 402

BIN 512 OR
LOCATION 13778

If we let location 400 be the address of bin 1, and 401 bin 2, etc., then
by adding 400 to the clock reading and storing the results into symbolic
location BTEMP, location BTEMP contains the address of the appropri-
ate bin.

Going back to the subroutine, the next instructions add one to the
addressed bin and control exists. Hence, if the time-interval read from
the clock was 2.1 ms, then location BTEMP would address 402 or bin 3,
and bin 3 is incremented by one. Note that each entry into the data
collection subroutine processes on lyme event (if it occurs). If we connect
the subroutines so that we continually loop through the data collection
subroutine, we will accumulate data counts for those bins corresponding
to the number of pulse interval detections. For example, over a period
of time, 5 events of 3.5 ms were detected, then bin 4 (location 405), which
holds the 3-4 ms intervals, contains a 5.

Suppose we let the data collection subroutine collect data over a period
of time and then in some manner terminate the subroutine. We, in effect,

5

have our histogram stored in locations 400-13778. Now, we want to display
our histogram. The display subroutine will accomplish this.

Let us flrst examine ?he display initialization subroutine which sets up
the display subroutine. The SET I 1 and 400 instruction combination sets
index register 1 to a value of 400. Similarly, index register 3 is set to 0
so that the histogram display starts a t the left side of the CRT at a
horizontal coordinate of 000.

$?- ENTER
DISPLAY SUBROUTINE .

I I SUBTRACT 4
FROM VERT, I COORDINATE I

IS VERT
COORDINATE

POINT BELOW
LOW END

OF DISPLAY

1”” INCREMENT

I BIN POINTER
TO DISPLAY

NEXT BIN

HAVE ALL
BINS BEEN
DISPLAYED

INITIALIZATION ROUTINE

INITIALIZE
BIN POINTER
(SET INDEX

1 = 377)

DISPLAY
SUBROUTINE

I SET BIN I
I COUNTER =-IO00 I (512. DECIMAL)

I DIS PLAY
IN~TIALIZATION
SUBROUTINE

Display and Display Initialization Subroutines

6

/DISPLAY SUBROUTINE

START, LDA
VERT
DIS 3
ADA I

-4
STA

VERT
ADA I

377
APO I
JMP 0
LDA I 1

ADA I

-377
STA I

CLR
XSK I 3
XSK I 2
JMP 0

VERT, 0

/VERT, COUNT TO THE AC

/PLOT POINT
/SUBTRACT 4 FROM THE AC

/STORE VERYIV/CAL COORDINATE FOR NEXT
DISPLAY

/AC WILL BE NEG, IF NEXT DISPLAY IS BELOW
BOTTOM EDGE OF SCOPE

/SKIP IF ABOVE CASE IS TRUE
/NO, EXIT
/LOAD COUNT OF VERTICAL COORD, FOR NEXT

/BIN COUNTS DISPLAYED FROM BOTTOM OF
BIN

SCOPE

/AND STORE IN VERT

/CLEAR THE AC
/MOVE HORIZ. COORD.
/HAVE ALL BINS BEEN DlSPLAYEDi
/NO. EXIT

~ IDISPLAY INITIALIZATION ROUTINE
ADDR, SET I 1 /SET INITIAL TABLE ADDRESS
TABLE, 400 /DATA BEGINS IN 400

/SET COUNTER FOR 512 BINS SET I2
- 1000
SET I3 /SET HORIZ. COORD.
0
JMP 0 /EXIT

The display subroutine has been set up by the display initialization sub-
routine so that it starts with bin 1 or location 400. Upon entry into the
display subroutine a t symbolic location START, we load the accumulator
with the vertical coordinate of the first bin. The DIS 3 instruction is issued
to generate a display; the DIS 3 instruction takes the vertical coordinate
from the accumulator and horizontal coordinate from index register 3
which was initially set to equal 0, thus an intensified spot appears a t a
CRT horizontal coordinate of 000 with the vertical coordinate as specified
by the content of bin 1.

Next, we subtract 4 from the vertical coordinate. This causes the display
subroutine to skip 4 vertical CRT coordinate positions between points in
the vertical bar for each entry into the subroutine. This reduces the overall
display program time required to display a complete histogram. This is not
detrimental to the display since the bar appears to be continuous.

7

It should be noted that since the maximum vertical coordinate is 4-377
and the vertical coordinates of the histogram are obtained by incrementing
a memory location, if the data collection subroutine obtains a count in
excess of 777a for any bin, the display will show a full length line indepen-
dent of how much in excess the count in that bin was.
We next test to see if the complete bar of the histogram has been dis-
played. This is accomplished by adding 377 to the vertical coordinates.
If the vertical coordinate is in the interval -377 to 377, a negative num-
ber results from the addition (i.e., if the vertical coordinate is below the
bottom line, the result of the addition is negative). Therefore the APO i
senses for a positive accumulator; if positive, we exit from the subroutine
and re-enter'later to complete the present vertical bar. If negative, we have
completed the vertical bar and must go to the next bin to obtain the
vertical coordinate of that bin. This is accomplished by the LDA i 1 which
indexes (since i = 1) location 1 to a value of 401 (the second bin) and
then loads the accumulator with the content of 401, the vertical coordinate
of the second bin. This coordinate is stored in location #2B which is used
by display subroutine to obtain the vertical coordinate. We must now
increment the horizontal display coordinate; this is accomplished by the

8

XSK i 3 which increments location 3 (the horizontal coordinate). To test
for the end of th.e histogram the routine executes an XSK i 2 which adds
l . to location 2 skips the next instruction if bits 2 thru 11 of location 2
eq~al.1777~. If all bins have not been displayed, we will not skip; therefore,
we exit. If all bins have been displayed, location 2 (bits 2 thru 11) contains.
1777E and we skip the next instruction and enter the display initialization
routine to initialize the display routine so that we can redisplay.the
histogram.

We have not discussed the core initialization subroutine (Figure 16); This
subroutine serves to clear all bins in core memory so that a new histogram
may be accumulated and stored. This is accomplished by setting index
register 1 (memory location 1) to 377 and index register 2 to -1000.
(The octal number of bins in the histogram). The accumulator is cleared.
The STA i 1 instruction increments the content of index register 1 (the
first increment is to 400, the start of our histogram and then stores a zero
into the addressed location. We loop through this routine until the index
register 2 contains 1777; we then return to the main program.

We have now seen how to accumulate data for the histogram, display the
histogram, and initialize core storage for the data collection and histogram
disblay. Now we will combine all these subroutines with a main program
which calk for these routines under manual control of the sense switches.
(The sense switches are front panel controls which the program can sense
via the SNS instruction to change the programming sequence). After start-
ing, we enter subroutines that initialize the data collection and display
subroutines. Assuming sense switch 1 is in down position, we loop through
the “accumulate data” and “display” subroutines. This loop permits us
to accumulate data for this histogram, with an apparently concurrent
display of the generated histogram. When enough data has beenccollected,
we can terminate the data collection by setting sense switch 0 to the up
position. We can continue displaying the histogram ‘by leaving sense
switch 1 in the down position. When we want to generate a new histogram,
we set both sense switches 0 and 1 to the up position so that we enter
1H to clear out the old histogram from core memory and to initialize the
display subroutine. We then set sense switch 1 down and 0 down so that
we loop th.rough the “accumulate data” subroutine.

CORE I NlTlALlZATlON SU BROUTl N E

INIT, SET I 1 /INITIALIZE POINTER TO FIRST LOCATION
377 OF HISTOGRAM
SET I 2 /SET NUMBER OF BINS

CLR - /CLEAR ACCUMULATOR
- 1000 /1000e = 51210

LOOP, STA I 1 /CLEAR NEXT BIN
XSK I 2 /ADD 1 TO LOCATION 2; SKIP WHEN CON-

TENTS OF LOCATION 2 = 17778 (BITS 2

/JUMP BACKWARD TWO LOCATIONS (CON-
THROUGH 11)

TINUE CLEARING)

DISPLAY COUNTERS AND POINTERS

JMP LOOP

JMP MAIN /RETURN TO MAIN PROGRAM TO SETUP

.
9

ENTRY FOR Q CORE RETRACT

INITIALIZE
BIN POINTER
(SET INDEX
REG 4 = 377)

INITIALIZE
BIN COUNTER
(SET INDEX
REG 2 5 -777)

CLEAR
NEXT BIN

BINS BEEN
CLEARED
TEST IR2

Core fnitialization Subroutine

MAIN PROGRAM - TIME INTERVAL HISTOGRAM

CLEAR, JMP INlT
MAIN, JMP ADDR
GET, JMP LOOK
DEP, JMP START

SNS 0
JMP GET
SIS 1
JMP DlSP
JMP CLEAR

/CLEAR TABLES
/SET UP COUNTERS AND POINTERS
/GET DATA
/DISPLAY ONE DATA POINT
/SKIP IF SENSE SWITCH 0 IS UP
/GET NEXT POINT
/SKIP IF SENSE SWITCH 1 IS UP
/STATIC DiSPLAY SELECTED
/O AND 1 UP; RESTART .

10

_I
CLEAR

HISTOGRAM
DATA TABLE

4
INITIALIZE

SUBROUTINE

ACCUMULATE

DISPLAY
DATA

CLEAR
DATA TABLE?

AYES
Main Program

L

The PDP-12 signal averager program digitizes, displays, and averages up
to 4 channels of analog signals a t rates selectable from 55 to 4095 micro-
seconds per point per channel. The program is entirely core resident, and
the user can make on-line selections and adjustments in the sampling
rate, the number of sweeps, and the post-stimulus delay via PDP-12 key-
board and display scope. During the averaging operation, either the raw in-

11

put data or the averaged data is available for viewing on the CRT display,
and the user a t any time can switch between each of these waveforms by
typing on the keyboard. To facilitate easier viewing, the averaged data
can be contracted on the screen through the use of a keyboard com-
mand. The averaging process may be paused a t any time duringdhe opera-
tion and may be resumed thereafter.

When the averaging process has been completed (immediately after the
total number of sweeps has been taken,.up to 4095) it may be plotted
out on an XY recorder that has been connected to the extension scope
connector on the data terminal panel.
Also, upon completion of the average the data may be typed out on the
Teletype. One entire channel or selective portions of a channel may be
typed out through the use of appropriate keyboard command. If the
data is scaled by a factor equal to the N where N is the number of sweeps,
the typeout of data points will then be in millivolts calibrated as seen
a t the analog input. This is due to the fact that 2 raised to the scale
factor power would be equal to the number of sweeps. Additional sets of
sweeps can be added to the average already accumulated after a group
of sweeps has been completed.
The data resident in core, after completion of an average, may be stored
on LINC tape for future use and further analyses.

-

.SIGNAL EDITING AND FREQUENCY ANALYSIS
One of the major problems in demonstrating certain predominant features,
in physiological signals is that “text book” examples are quite infrequent.
Data must be laboriously searched for good examples of such phenomena.
As an example of how the PDP-12 can aid in such a problem, let us take
the case of study of electrosleep. Raw data can be collected by the pro-
gram ADTAPE. After collection, the data can be visually inspected (by
another program) for the desired features.

ADTAPE permits up to 16 A/D channels to be sampled consecutively.
One or two of the channels can be displayed on the CRT display a t any
time during sampling simply by typing the number of the channel on the
Teletype. Sampling rates up to 1KC and a maximum time per point of up
to 40 seconds are acceptable. The signal to begin or end sampling can
be given by means of a sense switch, external level, or clock channel. It
is also possible to begin sampling after a pre-determined delay from the
synchronizing signal and to terminate the sampling after a requested
number of points have been collected (up to a maximum of 10,000).
SAVE cr NON-SAVE modes provide the option of storing the data on
LINC tape. The entire setup procedure for this program utilizes inter-
action between the experimentor and the computer via the CRT display
and the keyboard in a question and answer format.

A t the conclusion of using the A/D Tape program, the EEG data we are
concerned with will have been stored away starting at a specified tape
block. At this time the program MAGSPY can be called down from the
system’s tape and used to visually scan the EEG data just acquired.

The MAGSPY program provides a “moving window” of the information
that has been stored on any of the LINC tape units. A starting block can

12

.be specified and the data in that block will be displayed on the CRT
- and can be scanned in the forward or backward direction under control

of a potentiometer on the data terminal panel.

The portions of the data containing the features of interest can be noted
by block # and then be referred to a t a later time for further analysis.

At this point, the user returns to the DIAL monitor and calls in the
frequency analysis program he wishes to use. An example of one of these
programs is FRQANA. FRQANA is a frequency analysis routine and per-
forms both the fou'rier and inverse-fourier transform on 512 data points.
It calculates the co-efficients of the sines and cosines for the real and
imaginary components as well as the co-efficients of the power spectrum.
These can be displayed on the CRT utilizing simple Teletype commands.

Having performed the frequency analysis of the information of interest,
the data can be either photographed or plotted on an XY analog or
incremental plotter. Comparisons may then be made and records
established. The resolution of the frequency analysis is approximately
the reciprocal of the time interval over which the data was sampled. For
example, if the EEG was sampled a t 256 points per second, a 512 sample
record would have taken two seconds to acquire and therefore the resolu-
tion would be approximately one-half Hertz.

The use of the new signal processing software presently available on the
PDP-12 will enhance the user's ability to do still more handling. The
reader is urged to scan Chapter 8 and to familiarize himself with the
software and how it can- be applied to his tasks.

13

The PDP-12 is the world’s best known laboratory computer system, it is
ideally suited to direct interfacing of analytical instruments and general
signal processing tasks.

14

CHAPTER 2
CHEMISTRY SYSTEMS

INTRODUCTION
The PDP-12 is a flexible laboratory instrument computer. It is ideally
suited for interfacing to analytical instrumentation. The functions
usually performed by adding various peripherals to a digital processor
are built into the basic PDP-12. Analog input and output, digital input
and output, and a scope-based operating system make this the.most
approachable computer for the scientist. Large libraries of programs and

'

spectra are easily manipulated with the unique LINCtape" system.

The PDP-l2/LDP (Laboratory Data Processor) is unrivaled in the research
laboratory for qualitative and quantitative analysis, simulations, reporting,
calculations, 'and automating instruments. The benefits accrued are
analysis speed, accuracy, instrument performance enhancement, and
record keeping. Interactively massaging data and adjusting parameters
result in more profitable research techniques. The cost of the in-laboratory
computer-based system is no more than a typical instrument's cost, while
it provides immediate benefits.

The outputs of instruments, from the computer's point of view, are gen-
erally very much alike, differing in only superficial ways. Virtually every
instrument creates some form of line spectrum where y = f(x). The only
real difference between a mass spectrometer and IR spectrophotometer is

.data rate. Consequently, one can design an instrument computer to be
completely general.

However, the data rate consideration divides instruments into two broad
categories: high and low speed. For example, a gas chromatograph/mass
spectrometer or a pulsed nuclear magnetic resonance spectrometer in-
strument would require that the computer be dedicated when running.
DIGITAL'S computer-based, analytical instrument packages are designed
to handle these basic application areas.

This comprehensive, computer-based system will handle the widest variety
Of laboratory instruments, without special interfacing. Typically, interfac-
ing will entail only signal conditioning units. These pre-engineered kits
allow the most straightforward connections and optimum system perform-
ance. -

PDP-12 systems are designed with the modular approach in mind. Adding
capacity and peripherals may be accomplished in the field. Software
systems are designed to incorporate all DEC peripherals.

The PDP-IP/LDP system will handle eight slow instruments; e.g., 4 G.C.,
2 I.R., 2 NMR, simultaneously and independently. Data is stored, in raw
form, directly on LINCtape for subsequent reduction and interactive
analyses. Alternatively, the system may be sequentially dedicated to a
very fast instrument such as a G.C.-mass spec. In this case, because of

*Addressable magnetic tape, each spool having a 128,000 or 229,000 word capacity
costing $15 or less.

' 15

the large quantities of generated data, some on-line data reduction takes
place before tape storage. Also, because of the routine, yet complex
series of operations, these programs have been written by DEC to handle
the complete analysis job automatically. So, the PDP-l2/LDP system may
be used as a roll around laboratory instrument computers to complement
every instrument in the laboratory. Or, several machines may be perma-
nently connected and used sequentially.

HARDWARE DESCRIPTION
General Configuration
PDP-12A LINC Computer-Based System includes:

cgntral processor
4K words core memory
409,600 words tape storage
17.8 x 22.9 cm CRT Display
up to 24 analog inputs - each has differential 'preamplifier
solid state multiplexer
2 analog outputs
12 digifal inputs
6 relay outputs

MC-12 Additional 4K Words Core Memory
KWl2A Real Time Clock includes:

400 kHz crystal
3 Schmidt trigger inputs

I

AIP-12 Analytical Instrument Package includes:
Choice of A/D converters
solid state multiplexer for 16 channels, differential inputs
amplifier per channel, selection of many ranges
6 digital instrument inputs 8 digits each)
BCD to binary converter
4 sample and hold circuits
direct memory access
up to 50 kHz data rate
data break multiplexer
100 nanosecond aperture time
50 megohm input impedance

FPP-12 Floating Point Processor includes:
extended addressing capability
speed increases of 10 to 15 times
simultaneity of calculation and data acquisition

This computer-based laboratory system is extremely powerful because it
is built with four separate processors: CPU, floating point processor, A/D
processor, and tape processor. This allows for many levels of simultaneity,
or overlapped I/O. For example, system software accepts data, smooths
it, stores it on tape, and displays the real time data on the scope
simultaneously. This is not possible in a system without individual mini-
processors.

16

AIP-12 - Analytical Instrument Package

The AIP-12 is the prime component of the PDP-lPIbDP system. It is a
versatile instrument input device coupled directly to the PDP-12’s core
memory. It also acts as the master unit for the FPP-12 in the system,
precluding the requirement for an external, separate multiplexer.

Choice of analog signal resolution is either 12 bits (1 part in 4096)
sufficient for NMR or spectrophotometers or 15 bits (1 part in 32764)
sufficient for mass spectrometers or gas chromatographs. Since each of
the 16 ?hannels are available with an individual, differential amplifier, the
connected instruments may have very different characteristics from one
another.

The PDP-l2/LDP has four separate sample-and-hold circuits, with 100
nano-seconds aperture time. It provides hard-wiring instrument priority
through the connectors supplied. Fast instruments may be sampled
at rates up to 50 kHz.

Input impedance is 50 megohms with 1000 to 1 common mode rejection
over the t8 volt input range. Standard differential input range is k 2
volts. Overloads of 2 3 5 volts are tolerated. Higher overloads are fused.

Plug-in receptacles are available for up to six separate digital instruments
each having eight digits. A BCD to binary converter is built in so that all
instrument inputs, analog or digital, look identical to the software, pro-
viding extreme versatility in data handling and manipulation. Levels on
these inputs are standard TTL (0 and 3 volts).

I

AIP-12 Instruction Set

630 1 SCH A channel select word is transferred from
the accumulator to registers in the AIP. The
accumulator is cleared. I f the channel ID
code f r o q the right half of the accumulator
is 01 or 10-17 (octal) the bits are decoded
to direct the data from a,subsequent LCH
instruction to the proper register. If the
ID code is 20-57 the S,B and E bits from
ACOO, 01 and 02 are executed. The S
bit, when set, directs data from the
addressed channel into an auxiliary core
storage area, rather than the main buffer.
The E bit, when set, enables external
synchronization pulses to trigger sampling
of the addressed channel.

6302 LCH Data from the accumulator is transferred
to the working register addressed by the
previous SCH or RCZ instruction. The
accumulator is cleared. If the previously
addressed channel was other than 01 or
10-17 no transfer occurs.

17

6305

6306

RCZ

SEF

6307 -- SBF

The number 2, contained in the right half
of the accumulator before executing this
instruction, is transferred to the channel
select register in the AIP. The contents of
the register in AIP addressed thereby is
echoed back into the accumulator. Chan-
nels consisting of two words will echo back
their second word if AC00=1. If channel
numbers greater than 37 are addressed by
this instruction, zeroes will be echoed back.
Note that when channels 10 or 12 are
addressed by this instruction, the true
current address is read back, rather than
the starting addresses of the core data
buffers as loaded by IOT instructions 6301
and 6302.

The next instruction is skipped when either
the nonexistent channel or lost data flags
are set and the status of the flags is placed
placed in AC01 and AC00 respectively. If
neither flag is set, the accumulator is
cleared.

The next instruction is skipped when any of
the four buffer flags are set and the status
of these flags is placed in AC00-AC03. If no
flags are set, the accumulator is cleared.
These flags indicate when segment bound-
aries are crossed in the main and auxiliary
core data buffers and when the end of
these buffers is reached. Each buffer re-
turns to its starting address automatically
upgn reaching its end.

List of Channel ID Codes (Octal)
00
01
02
10 Main buffer current address.
11 Main buffer word count.
12 Auxiliary buffer current address.
13 Auxiliary buffer word count.
14 Control word (data field, interrupt enable, etc.)
15-17 Up to three optional output registers for programmable

digital instruments.

40, 44, 50, 54: Analog channels assigned to first sample/hold amplifier,
41, 45, 51, 55: Analog channels assigned to second sample/hold ampli-

42, 46, 52, 56: Analog channels assigned to third sample/hold amplifier,
43, 47, 53, 57: Analog channels assigned to fourth sample/hold amplifler.

18

Output buffer of 13 or 15 bit ADC.
Q register (for comments or labels to data buffer).
Output of digital instrument multiplexer.

fier,

AIP-32 Differential Preamplifiers.
Input voltage range (standard):
Common mode input range:
Common mode rejection ratio (see note 1):
Gain stability:
Gain temperature coefficient:
Zero stability:
Zero temperature coefficient:
Noise (peak-to-peak, 99.9% confidence):
Slow rate:
Bandwidth (3 Ib down, small signal):
Input impedance:
Input current:

-c 2 volts * 8 volts
60 dB min * 0.02% per month
+0.01% per “C max. * 200 uV per month * 50 uV per “C max.
100 uV typical
O.lV/usec typical
100 kHz min.
500 Megohms min.
500 nA max.

NOTE
This applies for frequencies up to 100 Hz, source
resistance unbalance up to 500 ohms, and a
source resistance to ground of less than 1
megohm .

AIP Interface Connections.
Analog input connections to AIP are made by means of BNC con-
nectors for each channel. Digitar connections, both input and output,
are made with 42 pin Burndy MS series connectors. One of the BNC
connectors for each analog channel is for external synchronization Of
sampling. All of these connectors are mounted on a lOl/,” high rack
panel which can be in the front or rear of the equipment cabinet.

FPP - FLOATING POINT PROCESSOR
The floatingpoint processor increases the capability of the PDP-12 in
performing complicated calculations especially on large blocks of data.
The FPP12 performs floating point calculations more than two orders of
magnitude faster than a softwave floating point package. Double precision
calculations are performed as a subset of floating-point arithmetic. The
FPP12 addressing methods permit direct and indirect addressing of 32K
of memory without fixed page or field boundaries. The hardware allows
indexing over 4096 floating point or double precision numbers located
sequentially beginning at any point in memory.

The floating-point processor attaches to any DEC12 bit computer that has
a direct access to memory or data break facility. Similar to a disk, the
FPP12 is activated via PDP-8 mode IOTs. Once activated, the FPP12
receives instructions and stores results in core via the data break facility,
behaving very much as a parallel CPU. While operating, the FPP12 “steals”
an average of 50 percent of the available memory cycles.

Floating Point Number System
The term, floating point, implies a moveable binary point in a similar
manner to the moveable decimal point in scientific notation. An exponent
is used to keep track of the number of spaces the binary or decimal point
is moved.

19

Examples of scientific notation:

Examples of binary floating-point notation:
234 = 23.4 x 10’ = 2.34 x 10’

(1011) (101.1) x 21 = (10.11) x 22 = (1.011) x 23
(i . o i i) ~ 2 3 = o . i o i i ~ 2 ~ = o . o i o i i ~ 2 5

Note that in all cases of binary floating-point notation given above, there
are four significant bits. However, in the last example the mantissa which
multiplies the exponent contains six bits. Given a fixed number of bits,
it is desirable to adjust the exponent and the binary point to eliminate
leading zeroes to retain the maximum significance for a given fdrmat
length. The FPP12 normalizes or removes leading zeroes as the last step
in every floating-point arithmetic operation.
The floating-point data format used by the FPP12 is identical to the format
used by the PDP-8 floating point system (DEC-08-YQYB-D). As shown
below, there is a 12-bit signed 2’s complement exponent and a 24-bit
signed 2’s complement mantissa.

S EXPONENT

S MSW OF MANTISSA 1
I I 1
0 11

BINARY POINT

I LSW OF MANTISSA 1
0 11‘

The FPP12 carries al l calculations to 28 bits of preGision then rounds to
24 bits after normalization. After rounding, the results are rechecked for
proper normalization prior to completion of the instruction.

In fixed point arithmetic, a calculation which results in a number whose
magnitude cannot be expressed in 12 or 24 bits is an error. With the
FPP12, the number range is 2+2M7 to 2-’O’*. Exceeding the upper limit,
2”O”, causes the FPP12 to interrupt the PDP-12 CPU and set its exponent
overflow status bits. A calculation resulting in an exponent smaller than
2-m0 is an exponent underflow which normally causes a program inter-
rupt. The programmer has the option at initialization to request that the
underflow trap be ignored. In which case, the result of a calculation in
which underflow occurred is set to 0.

Double Precision
For those calculations where full 24-bit precision isn’t necessary and
where core space is of a premium, the FPP12 is used in flxed point double

20

precision mode. Each operand consists of a 24-bit signed 2’s complement
fraction as shown below. As with the floating-point mode, each calculation
is carried to 28 bits of precision and rounded to 24 bits. In this instance,
normalization isn’t performed allowing the occurrence of leading zeroes
which reduces the precision of subsequent calculations. The largest num-
bers that may be represented in double precision format are f 2’’ - 1
and 2”. Calculations producing numbers that exceed this range cause the
floating point processor to initiate a program interrupt with the fraction
overflow status bit set to a one.

Field Bits
P of Operand

Address

S I
O K I t

Field Bits Field Bits of
of Base Index Register Field Bits

Reg. Location ‘ of FPC

‘ BINARY POINT

P+1

Pt-2

12 23

Lower 12 bits of FPC

Lower 12 bits

Operation

The FPP12 is initialized and interrogated as to its status through PDP-8
mode IOTs. Once initialized, the FPP12 operates much like a central
processor fetching instructions and operands and storing results in
memory. Data breaks are generally requested as needed. However, the
usual number of breaks requested by the FPP12 is two per instruction
performed by the processor. This means that while the FPP12 is “stealing
cycles,”programs can be run simultaneously at slightly reduced speed.
Typically LINCtape, display, and other forms of I /O can be performed by
the PDP-12 while the floating-point processor is performing calculations.

P+3

P+4

Lower 12 bits of Base Reg

Lower 12 bits of operand address

’ P+5 Exponent of FAC

P+7 LSW of FAC t
QTE: APT address points to location P.

21

TABLE I
It should be noted that once initialized the FPP12 will execute pro-
grammed instructions until

1. an error condition occurs,
2. an exit instruction is reached,
3. an exit IOT is issued,
4. an I /O preset is issued by the PDP-CPU*,
5. the PDP-CPU encounters any type of halt.

Initialization
In order to execute the first instruction of any program the FPP12 must
have the following information:

1.
2.
3.

4.

The address of the first instruction (FPC)
The initial contents of the floating AC (FAC)
The core address of index register 0. (Index registers 1 through

OW
The base register which contains the core address of the first
location in the data block. (The data block consiSts of 128 thirty-
six bit words.)

8 are stored in the next 7 sequential 12 bit words.)

V h i s operation while the FPP-12 is running might necessitate a program reload.

To simplify initialization, the four parameters listed above are placed
in core in an active parameter table (APT), shown in TABLE 1, by the
CPU. Two initializing IOT’s are then issued to the FPP12. FPCOM
(6553) loads a command register and the most significant 3 bits of the
APT pointer. FPST (6555) loads the remaining 12 bits of the APT pointer
and starts the floating-point processor. Whenever the floating-point pro-
cessor performs an exit, the current values of the FPC, FAC, XO, base reg.,
and operand address are deposited in the APT to be used either for
restarting the FPP12 or for debugging.

A complete list of IOT’s, the command register, and the status register
is shown in the TABLES 2,3, and 4.

IOT List
FPINT 6551

FPHLT 6554

FPCOM 6553

FPICL 6552

FPST 6555

Skip on FPP “interrupt request” flag.

Halt the processor a t the end of the current instruc-
tion. Store active registers in core, set a status r e g
ister bit, and the “interrupt request” flag.

If the FPP is not running and the FPP “interrupt re.
quest flag” has been reset, set the command register
to the contents of the AC. The three least significant
bits of the AC set the fi,eld bits of the “Active Parameter
Table” address. If the FPP is running or the interrupt
request flag is set, the instruction is ignored.

Clear the FPP “interrupt request” flag.

If the FPP is not running and the FPP “interrupt request
flag” is reset, set the location of the “Active Parameter

22

Table” to the contents of the AC, initiate the FPP and
skip the next instruction. If the FPP is not running or
the FPP “interrupt request flag” has not been reset,
the instruction is ignored.

FPRST 6556 Read the FPP status register into the AC.

FPlST 6557 Skip on FPP “interrupt request” flag. If the skip is
granted, clear the flag and read the FPP status request
into the AC.

TABLE II
CP4 ACAfter Read Status Instruction
AC0 Double Precision Mode
AC1 Instruction Trap
AC2 C.P.U. Force Trap
AC3 Divide by Zero
AC4
AC5 Exponent Overflow
AC6 Exponent Underflow
AC7 7

fraction Overflow (double precision mode only)

Unused

AC10
AC1 1- Run

TABLE 111
The following data are transferred to the FPP by issuing the FPCOM
(load command register instruction 6553):
AC0 Select double precision mode
AC1
AC2 Enable memory protection
AC3 Enable interrupt
AC4
AC5
.AC6
AC7
AC8 Unused

2%) AC11

TABLE IV
Instruction Set and Detailed Programming Sp&

Methods for Memory Reference Instructions
The FPP-12 is capable of three modes of addressing for memory referenc-
ing instructions:

Exit of exponent underflow error

Do not store op address on exits
Do not store address of index registers on exits
Do not store address of indirect pointer list on exits
Do not store FAC of exits

Data field of “Active Parameter Table”

1. Double-word direct addressing
2. Single-word direct addressing
3. Single-word indirect addressing

A full indexing capability is available for both methods 1 and 3. The
determined address for memory referencing instructions indicates the

23

exponent in floating-point mode and generally directs to the most s i g
nificant word in double precision mode. The format for doubleword
addressing is shown below:

OP CODE I 0 + X ADDRESS

I ADDRESS II

OP CODE

C ‘ J

0 1 OFFSET

12

OP CODE

23
Example 1

1 1 + X OFFSET

If bit 4 is a 0, a double-word instruction is indicated. Setting bit 3 of
double-word instruction to a 1 indicates a memory referencing instruction.
A non-zero quantity in bits 6-8 causes the address contained in bits 9-23
to be modified by a specified index register. Setting bit 5 to a one
causes the specified index register to be incremental prior to use in
modification of the address. It should be’noted that index register zero
can be incremental and tested but is not used for address modification.

Single-Word Addressing Formats
The two single-word address formats utilize a data block that is
specified by a base address which is contained in the base register. The
data block contains 128 3-word locations. In double-precision mode, the
exponent of locations is igno’red on the data block.

Single word formats are distinguished by bit 4 being a one. Bit 3 is the
indirect indicator in a similar manner to PDP-& code. The single-word
direct address format example shown below the core address is equal
to the sum of the 7-bit offset times 3 plus the contents of the base
register.

Index Registers
Any core location may be used as an index register. Index register 0 is
determined by the 15-bit XO address. The XO address is initially set from
the active-parameter table, but may be altered by the MVX instruction.
Index register X is in core location XO + X where X = 0, 7.

Accessing successive data points in floating-point mode requires incre-
menting the operand address by (3)* for each new data point. In double-
precision mode, the proper increment is (2)8 for each new data point. To
account for the difference between the two modes, the selected index
register is multipled by 3 in floating-point mode or 2 in double-precision
mode before it is used as an address modifler.

Instruction Set
OPCODE MNEMONIC

0 FLDA
1 FADD

5 FADDM

2 FSUB

3 FDlV

4 FMUL

7 FMULM

6 FSTA

Program Ekamples

MEMORY REFERENCE INSTRUCTIONS
Load the FAC from the effective address.
Add the operand to the contents of FAC and
store the result in the FAC.
Add the operand to the contents of the FAC
and store the results in the dperand.
Subtract the operand from the contents of the
FAC and store the result in the FAC.
Divide the operand into the contents of the
FAC and store the results in the FAC.
Multiply the contents of the FAC by the oper-
and and store the result in the FAC.
Multiply the contents of the FAC by the oper-
and and store the results in memory.
Replace the operand'with the contents of the
FAC.

OCTAL
LOCATIO N MNEMONIC CODE

X FSUB A 2401 /subtract 1 from the
5432 /FAC

15432 A, 0001
2000
0000

-

X FSUB B 2205 /subtract 1 from the
1 FAC

Base Register + 5 B, 0001 -
2000
0000

FSUB C, 2 2421 /subtract 1 from the
5432 /FAC

X

15432 + 3 C', 0001
-(Index Reg 2) 2000

0000

25

Base Register + 3 5412
0132
6724

OP CODE 0 o +

26724

X ADDRESS

0001
2000

OP CODE 0 0 EXTENSION

.oooo

Special Instructions
The FPP-12 special instructions are similar in nature to the nonmemoty
referencing instructions for the PDP-8. The set of special instructions
includes conditional jumps, two types of subroutine calls, two types of
unconditional jumps, several index register operations, a number of
accumulator controls, two mode control instructions, and several opera-
tional instructions. Altogether, the special group has 26 defined instruc-
tions, five trapped instructions, and 14 undefined codes which don’t per-
form any operation. Special instructions which may consist of 1 or 2
12-bit words are denoted by zeros in bits 3 and 4 as shown below:

SPECIAL
F FORMAT 3

SPECIAL ’ FORMAT1

2
12 23

c I t

I li 0 2 3 4 5 8 9

Y

12 23

~ SPECIAL
FORMAT 2

0 2 3 4 5 8 9

26

SPECIAL FORMAT 1
OPCODE MNEMONIC

2 JXN The index register X is incremented if bit 5 =
1 and a jump is executed to the address con-
tained in bits 9-23 if index register X is non-
zero.

The JXN instruction is similar to the following sequence of PDP-8 instruc-
tions.

I sz
JMP TAG

The "instruction trap" status bit is set and
the FPP-12 exits causing a PDP interrupt. The
unindexed operand address is dumped into
the active parameter table.

3

5
6
7

Trapped
Instructions

' 4

SPECIAL FORMAT 2
OPCODE EXTENSION MNEMONIC

0 3 0 FSTAX The contents of the index reg-
ister specified by bits 9-11 are
replaced by the contents of bits

0 11 ADDX The contents of bits 12-23 are
added to the index register spec-
ified by bits 9-11.

0 12-17 NOP These codes are undefined
single-word instructions and
perform no operation.

Conditional Jumps - Jumps, if performed, are to the location specified
by bits 9-23 of the instruction.

12-23.

1 0 ~ JEQ Jump if the FAC = 0
1 1 JGE Jump if the FAC 0
Y 2 J LE Jump if the FAC < 0
1 3 JA Jump always
1 4 JNE Jump if the FAC =!= 0
1 5 J LT Jump if the FAC < 0
1 6 JGT Jump if the FAC > 0
1 7 JAL Jump if impossible to fix the

floating-point n urn ber contained
in the FAC; i.e., if the exponent
is greater tha,n (23)~ .

POINTER MOVES
1 10 SETX Set XO the location of index

register zero to the address con-
tained in bits 9-23 of the instruc-
tion.

1 11 SETB Set the base register to the ad-
dress contained in h t s 9-23.

I 27

SPECIAL FORMAT 2 - continued

SUBROUTINE CALLS
OP CODE EXTENSION MNEMONIC

1 13 JSR Jump and save return. The jump
is to the location specified in
bits 9-23 and the return is saved
on the 1st location of the data
block.

The JSR is used in writing re-entrant code as the return address is stored
in the user’s data block. A possible return from a re-entrant subroutine
is via the two instruction sequences as follows:

LDA 0 0200

JAC 0007

1 12 JSA

1 14-17 . NOP

SPECIAL FORMAT 3
INSTRUCTIONS

0 1 ALN

/Load AL with contents
/of 1st location of the data
/block
/Jump to the location
/specified by the
/least significant 15 bits
/of the AC mantissa
/JAC is a special
/Format 3 instruction
An unconditional jump is de-
posited in the address and ad-
dress + 1 where address is
specified by bits 9-23. The FPC
is set to address + 2.
These codes are single-word
NOP’s.

The mantissa of the FAC is
shifted until the FAC exponent
equals the contents of the index
register specified by bits 9-11.
If bits 9-11 are zero, the FAC is
aligned such that the exponent
= 2310.1 In fixed-point mode an
arithmetic shift is performed on
the FAC fraction. The number of
shifts is equal to the absolute
value of the contents of the
specified index register. If the
contents of the index register is
positive, shifting is towards the
least significant bit; otherwise
shifting is towards the most sig-
nificant bit. In fixed-point mode
the FAC exponent is not altered.

’Setting the exponent = (2311~ intergerizes or fixes the floating point number. The
JAL instruction tests to see if fixing is possible.

28

OPCODE EXTENSION
0 . 2

0 3

- 0 4-7

MNEMONIC
FLATX

FLDAX

NOP

OPERATE GROUP

The FAC is fixed and the least
significant 12 bits of the man-
tissa are loaded into the index
register specified by bits 9-11.
In fixed-point mode the least
significant 12 bits of the FAC
is loaded into the specified in-
dex register. The FAC is not
altered by the FLATX instruction.
The contents of the index r e g
ister specified by bits 9-11 are
loaded right justified into the
FAC mantissa. The FAC expo-
nent is loaded with (23)10 and
then the FAC is normalized.
This operation is typicallytermed
f loating a 12-bi t number. In
fixed-point mode the FAC is not
normalized.
These single-word instructions
perform no operation.

OP '

0 0
CODE EXTENSION

' 0 0

0 0

0 0

0 0

OP
CODE EXTENSION
. o 0

0 0
0 0

BITS
9-1
0

1

2

3

4

BITS
9- 1
5
6
7

MNEMONIC
FEXIT Dump active registers into

the active parameter table,
reset the FPP-12 run flip flop
to the 0 state, and interrupt
the PDP processor.

FPAUSE Wait for external synchroniz-
ing signal. This instruction is
designed to cooperate with
the AIP-12 option.

FCLA Zero the FAC mantissa and
exponent.

FNEG Form the two's complement
of the FAC mantissa.

FNORM Normalize the FAC. In fixed-
point mode FNORM i,s a NOP.

MNEMONIC
START F Start floating-point mode.
START D Start double-precision mode.
JAC Jump to the location speci-

fied by the least significant
15 bits of the FAC mantissa.

29

SYSTEM EFFECTS OF AIP AND FPP
Direct Memory Access Port Allocation
PDP-12 systems are built with two direct memory access ports. One is
permanently alloted to the LINCtape processor. For interfacing of more
than one additional data break device, a memory multiplexer is required
(DM04). However, in this computer-based system, the DM04 is not re-
quired because AIP-12 inctudes the multiplexer device for itself and FPP-
12. Should one desire an additional data break device the DM04 should
be added to the system. Higher priority is placed on data acquisition than
on calculation. Therefore, the AIP is given priority over the FPP-12.

Ancillary Hardware Considerations
Because of the great number of peripherals for PDP-8 and PDP-12 com-
puters, the codes used to address devices sometimes conflict. Rarely
will a single installation utilize every code. In cases of conflict in equip-
ment purchased from Digital as part of the PDP-12KDP system, the
device codes will be modified to alleviate conflicts.

SOFTWARE DESCRIPTION
Overall Philosophy
A computer-based laboratory instrument computer must be a unified
hardware/software package in which the operating system ties all the
hardware together and provides the user with a convenient, applications-
oriented language. Analytical Instrument Package Operating System pro-
vides these capabilities.

Monitored and controlled by AIPOS are various categories of programs.
All of these programs utilize AIPOS for their input/output requirements,
thus unifying the components of the system. Data acquisition, data
manipulation, and displayoriented analyses are the other integrated sec-
tions of software.

PDP-12/LDP is designed for ease of use by laboratory researchers, yet
retains total flexibility for experimenting with various data handling tech-
niques. Data acquisition, where data rates permit, places all raw data on
tape for permanent storage. In this manner, it may be manipulated in
countless ways while the original source remains untouched.

Long series of digits which usually characterize computers are psycho-
logically difficult to relate to results usually perceived in line spectrum
form. It is for this reason that the PDP-lP/LDP is totally scope oriented.
First-line output is fast and in familiar format. From this presentation,
one easily selects his final reporting medium which may be teletypewriter,
punched tape, chart recorder, line printer, plotter, or magnetic tape.

A further consideration is the. real-time environment of the laboratory
instrument computer. Languages such as FORTRAN, although convenient,
require off-line compiling; which dedicates the system to program prepa-
ration. AIPOS and FOCAL-12 (which is used as a part of AIPOS) are real-
time, high-level, interpretive languages. This means that as a command
is given, it is executed immediately. Also modification is done in real
time. Although many applications programs are supplied, almost every-

30

one wants to do something a little bit differently. Only a red-time, English-
like language like FOCAL-12 can make this job easy.

Analytical Instrument Package Operating System
The operating system is a monitor, loader, interrupt handler, several I/O
handlers, directory system, converter, system builder, job control, ,and
system tester. AIPOS utilizes LINCtapes marked with 1600 blocks as
opposed to the standard 1000-block DIAL tapes. Conversions are facili-
tated through AIPOS.
The operating system has a syntax which allows identical communica-
tion throughout all programs. Its complete format is:

SN FUNIT FUNCTION OUNIT: OUTFIL. EXT. =
IUNIT: INFIL. EXT, PARAMETERS
SN - Statement number
FUN IT: - Specifies storage unit from which function

FUNCTION - Name of binary program to be loaded
OUNIT: - Output storage unit
OUTFILE. EXT. - Specifies file name and extension for output
IUNIT - Input storage unit
INFILE. EXT. - Specifies file name and extension for input
Parameters: - Used to define non-default conditions

This very general statement simplifies in many cases to one of the two
following formats:

will be loaded

1) FUNCTION: UNIT:FILE.EXT=UNIT:FILE.EXT
2) ‘FUNCTION; PARAMETERS

Typical commands would look like:

which says, as statement 1.5 load the fast Fourier transform program
from LINCtape unit 0 and operate on the raw NMR data on LINCtape
ynit 1 (called NMR23R) and store the result on LINCtape unit 1 calling
it NMR23F.

The system builder, within AIPOS, will initialize the file structures on
available peripherals and support the use of a specific configuration.

1.5 LT0:FFT LTl:NMR23F = LTl:NMR23R

MIDAS - Multi-Instrument Data Acquisition System
This system, operating under AIPOS control, will independently acquire
data from up to 8 instruments simultaneously with a total aggregate
data rate of 1000 points per second.

Intermixing connected instruments such as continuous wave NMR, spec-
trophotometers, gas chromatographs is the forte of MIDAS. Instruments
may be time dependent, or not. The three modes of operations,accept
y inputs as analog voltages or BCD inputs. Values of X are accepted
as inputs from shaft encoders, clocks, or oscillators, and analog voltages.

Raw data is directly stored on tape, and file size (number of data points)
is virtually unlimited. Instruments may be initialized, started, stopped,
paused, and inputs observed; all independently of other instruments or
users.

31

Data files are stored with experiment name, run number, date and time,
and run parameters for future reference. Connections are made so that
the computer-based system is totally enslaved to each of the connected
instruments.

A simulation mode allows ease of initialization an4 optimization of instru-
ment parameters.

DORA and DISPLAY - Display-Oriented Research Analysis
These are the common display routines which all AIPOS software utilize.
DISPLAY is an abbreviated version of DORA when al l of DORA’S power
is not required. This package displays multiple files with cursors and
decimal X-Y coordinates. Outputs are to TTY, X-Y recorder, and bulk storage
units.

Command structure, handled by AIPOS, allows dual or single, split screen
or overlapped selectable display of named, stored spectra. Calibration
of X-Y readout is allowed. Included features are:

1. Horizontal and vertical displacements
2. Moving tape windows
3.
4. Polarity change
5. X-Y recorder output

Two cursors moving in x and y directions

6. Save cursor value c

A typical use of DORA is to display an entire spectrum on the lower half
of the scope at reduced resolution, while using the moving window feature
to examine regions of interest a t full resolution on the upper half.

DORA, used by all other programs, truly makes this computer-based
laboratory instrument computer display oriented and easy to use. Using
the front panel knobs to adjust data arrays for stripping or comparison,
the PDP-lP/LDP is analogous to a fast, powerful, dual-spectra slide rule.

Math Routines - Binary Programs for Data Manipulation
This class of programs, from a user point of view, is really the system’s
heart. These common functions, used in various combinations, are re-
quired for handling spectra of every description. The list put forth here is
current as of October, 1970; it will be updated continually.

1. Calibrator
It allows, through scope interaction, calibration of known
and unknown spectra to absolute values through the use
of up to 4 internal standard or reference peaks using the
method of local slopes. Spectra need be calibrated only
once and stored for future use.

a. Add spectra
b. Subtract spectra

2. Binary Commands - Dual Spectra Commands

3. Unary Commands - Single Spectra Commands
(Performed on either displayed spectrum.)

a. Scale
b. Offset

32

c. Differentiate
d. Normalize
e. Smooth
f. Strip peak
g. Integrate entire spectrum
h. Integrate between cursors
i. Baseline strip/add to spectrum
j. Baseline strip between cursors
k. Save results

4. Smooth - Least Squares
Real time, on-line smoothing of noisy data is accomplished
with output to tape.

a. Multiscan, on line averaging.
b. Moving window averaging.

This program progresses from the specified data array to
the Fourier Transform, inverse Fourier Transform, or real,
and imaginary spectra. Output is to tape, scope, and re-
corder. This program will handle up to 16,000 data points.

Auto and cross correlation of named files is carried out
automatically with output to scope, tapes, and recorder.

5. Averaging

6. Fourier Transform

7. Correlation

Specific Applications Software
Due to the unique requirements of certain analytical instruments, Digital
Equipment Corporation supplies dedicated packages for CW and pulsed
NMR, high-resolution M.S., low-resolution M.S., and gas chromatography.
This software can run sequentially with AIPOS.

1. Gas Chromatography
This is a research-oriented system which will handle eight
G.C.’s automatically and progress from raw input to r e
porting of corrected concentration without operator inter-

. vention. Data is, of course, then available for further
manipulation through the AIPOS system.

This software includes scope-oriented initialization and
baseline correction using software thresholding. Centroid
times are calculated and mass numbers computed to 1
to 2 millimass numbers. Tabular output is to Teletype, and
line plot to recorder.

A unified program handles raw data from a G.C. - M.S.
instrument and accepts data at 20 kHz while picking peaks
in real time. A mass marker or Hall effect probe on the
instrument is required. Output is to scope TTY, and re-
corder. Spectra are reported as normalized to most intense
peak or total ion current.

2. . High Resolution Mass Spectroscopy

.

3. Low-Resolution Mass Spectroscopy

33

4. Pulsed NMR I
This package, having been designed for I3C work, handles
IH, and IpF with ease. Over sweep widths of 6000 Hz,
resolution of 0.35 Hz, is obtained. Multisweep averaging,
Fourier transformation, and reporting are included. Spin
simulation and curve fltting routines are used in CW as

Many other specific applications programs are available through both
DECUS and the DEC Program Library.

High-Level Languages
BASIC, FOCAL, FOCAL-12, and FORTRAN are supplied with the system
affording powerful computational facility. See the FOCAL-12 section for
a detailed description of this powerful language.

weri as PNMR.

34

CHAPTER 3
EDUCATIONAL SYSTEMS

A presidential commission recently reported that “undergraduate educa-
tion, without adequate computer education is deficient education”. As
computers have found wider application in science, industry, government,
and the professions; today’s student must be given the opportunity to
learn about the use of computers irregardless of his speciality.

The graduate engineer, scientist, or technician will encounter the com-
puter in his professional life not simply as a computational aid, but as

- a n integral part of an industrial system or scientific experiment. Small
computers are performing functions such as computerized process con-
trol, systems, monitoring, data acquisition, and on-line data reduction.
These applications will require a thorough understanding of the computer
as a tool. Students must understand the techniques required to incor-
porate the computer into a total system.

The PDP-12 laboratory Computer System is uniquely configured to educate
students in computer technology, programming and computer applica-
tions. The PDP-12 serves as a complete educational computer system.
The many standard peripherals of the PDP-12 help make it exceedingly
useful for teaching concepts of computer technology and systems design.
In one compact package, the instructor and student have immediate
access to a complete stand-alone computer system. The standard periph-
erals of the PDP-12 allow it to be used as a microcosm system repre-
senting a l l computers. These peripherals include magnetic tape, an
analogto-digital converter, a CRT display, programmable relay outputs,
and external sense line inputs. These devices are required elements in
a comprehensive computer technology curriculum.

The PDP-12 serves as a total educational computer lending itself to many
areas of student instruction.

Programming for simulation and problem solving
Computer systems and hardware familiarization
Logic design and interfacing techniques
Laboratory applications in physics, chemistry, biology and psy-
chology.

The PDP-12 is an approachable computer. Student “hands-on” interaction
is encouraged by the easy-to-use nature of the system. The “hands-on”
approaeh has the advantage of acquainting the student by experience with
the operations of the computer. Practical computer concepts can be
studied in detail including hardware/software efficiency, control timing
and systems synchronization.

ENGINEER1 NG CU RRlCU LUM
’Knowledge of the techniques required to integrate a computer into large
industrial and scientific systems is crucial for today’s chemical, nuclear
and process engineers and scientists. Computers to be used as process
controllers and monitors must be properly interfaced into the total system.
This is accomplished through the use of uniquelydesigned logic circuits.

35

Integrated circuit technology allows for state-of-the-art circuit fabrication
by students who are not necessarily electrical engineers, but who have
an understanding of basic logic.

A complete curriculum for teaching logic design and computer interfacing
is available for use with the PDP-12. Developed at a leading technical
university, a complete course textbook and laboratory guide is available.
It features details of many student-proven logic design experiments using
integrated circuitry. The text is entitled Experiments in Logic Design and
Computer Interfacing.

Laboratory exercises include the design and fabrication of working com-
puter interfaces. Experiments are built around the H309-A option which
makes the input-output lines of the PDP-12 immediately available to the
student via simple connectors.

Type H309 I / O Bus access option allows for quick and easy access to
the input/output Bus lines of the PDP-12 computer. It was designed for
researchers, students, and engineers who must design and quickly inter-
face logic devices and peripherals. The I / O access option extends the
entire I /O Bus and external sense lines to the front of the system cabinet
via six thirtysix pin connector blocks. These terminals mate with standard
DEC M903 or M904 cable connectors.

A standard feature of the option is a regulated +5 volt power supply
delivering sufficient current to drive approximately 50 to 100 standard
integrated circuits. Over-current and over-voltage protection is provided
When maximum limits are exceeded, power shutdown occurs, the current
level drops to zero, and an overload condition indicator is displayed. The
regulator circuit can be reset by operating the power supply onlofflreset
switch.

Power supply characteristics:
D.C. Voltage:
Maximum current: 3 amperes
Shutdown time: 10 milliseconds (approx.)

+5 volts t 5%

Shutdown occurs when maximum electrical limits are exceeded. All
interface connections to the PDP-12 can be made at the assigned
module receptacle connectors on the I / O access panel. The module
receptacles and assigned use for interface signal connectors are:

RECEPTACLE USE
N13 Sense Lines
N 14
N15 MB Outputs
N 16
N17 Data break address inputs
N18 Data break data inputs

AC, IOP timing outputs

AC, Skip, interrupt request inputs

Laboratory kits (type H311 Logic Design Laboratory) are also available
for the curriculum. They contain the W979 breadboarding module card,
IC sockets, and wire-wrapping tools. These “carry along laboratories”
permit the student to do his own designing and wiring independently.

36

Once he has fabricated his logic card, each student tests his circuit on
a PDP-12 utilizing the H309 front panel I /O bus connector system. The
student writes his checkout program in machine language and observes
the operation of his circuit on an oscilloscope.

Experience has shown that non-EE students successfully learn how to
design logic and interfacing systems in a matter of weeks.

COMPUTERS IN THE SCHOOL LABORATORY
As the previous sections implied, the computer is fast becoming a
standard tool in the laboratory environment. Laboratory computer systems
speed up the process of obtaining data from analytical instruments and
reduce the number of errors. Computers perform a more thorough and
accurate analysis than is possible when computations are done manually.

' For the school, the PDP-12 is an ideal system on which to train students
in laboratory computer applications. The PDP-12 helps eliminate the need
for complex special interfaces to several types of analytical instruments.
The analogto-digital converter of the PDP-12 is used to input instrumenta-
tion signals. Its relay outputs are for instrument control or range switching.
The cathode ray tube display, with its graphic and alphanumeric capability,
allows for the effective presentation of experimental data and results.
Simple operating instructions make the PDP-12 easy to use, even by the
unskilled operator.

The PDP-12 is easily interfaced to analytical instruments typically found
in school laboratories:

Spectrophotometers
Infra-red
U Itra-violet
Colorimeter
Raman

Mass Spectrometers
Gas Chromatographs (high level)
Nuclear Magnetic Resonance
Polarographs
Differential Thermal Analysis
PH Meter
Electron Spin Resonance
Auto Analyzers

STUDENT PROGRAMMING
The PDP-12 has a complete selection of programming larrguages in addi-
tion to its powerful machine language instruction set. These languages
include BASIC, FORTRAN, FOCAL, FOCAL-12 and DIBOL.

@ASIC
The BASIC language is composed of easyto-learn English statements and
mathematical expressions. Digital's BASIC is a modified version of the very
popular elementary algebraic language developed a t Dartmount College.

37

BASIC allows even beginners to use the computer in a few hours. Com-
mands are simple English words and mathematical expressions.

10 print “enter the sides of the right triangle”
20 input A,B
30 l e t C=SQR (A + 2 + B f 2)
40 print “the hypotenuse is” C
50 end

PDP-12 BASIC supports a mark sense card reader for Batch processing
and/or the Teletype for on-line problem solving. Program file storage is
handled by LINCtape magnetic tape and/or magnetic disk.

FORTRAN Compiler (4K)
The 4K FORTRAN Compiler lets the user express problems in a potpourri I
of English words and mathmetical statements. It reduces the time needed
for program preparation and enables the user with little knowledge of
the computer’s organization and operating language to write effective
programs. FORTRAN language consists of four general types of state-
ments: arithmetic logic, control, and input/output. FORTRAN functions
include addition, subtraction, multiplication, division, sine, cosne, arc-
tangent, square root, natural logarithm, and exponentiation.

FORTRAN Compiler (8K)
The FORTRAN 8K system features USA Standard FORTRAN syntax; sub-
routines; two levels of subscripting; function subprogram; input/output
supervisor; relocatable output loaded by the Linking Loader; COMMON
statements; I, F, E, A, X and H format speciflcations; and arithmetic and
trigonometric library subroutines. It consists of the twopass FORTRAN
Compiler, Linking Loader, Run-Time Monitor, and a library of sub-pro-
grams.

The FORTRAN 8K Compiler translates a source program into a symbolic
language and then the symbolic version of the program is translated into
relocatable binary code, the language of the computer. The binary code
is then reloaded into the computer for running of the program.

Business ProgrammingDIBOL
DIBOL (Digital Equipment Corporation Business-Oriented Language) is a
complete business-oriented software system. It allows the programmer to
produce complete business applications on the PDP-12 computer. Schools
and university departments can use the DIBOL software system as the
means for writing their own EDP management/accounting procedures.
The small school can use the power of the PDP-12 computer efficiently
and economically to teach and construct programs for billing, accounts
receivable, inventory control, payroll, and general ledger.

The DIBOL software system contains:
,

1. DIBOL language
2. Data management system to provide automatic input, sorting,

and file maintenance.
3. Monitor to tie the various subsystems together

38

FOCAL
FOCAL is a conversational language developed by Digital for its family
of small computers. If a problem can be stated in the English language,
it can just as easily be programmed in FOCAL.

Sitting a t the teletype simply type
FOR ADDITION SUBTRACTION
MULTIPLICATION AND DIVISION

4.747/ 1.558
USER: TYPE 25.38 + 12.479 - 4.629'

FOCAL = 23.7551'

USER: TYPE FSlN (1.57) + FCOS (.l* 1.47)
FOCAL: = 1.9892"

USER: TYPE FSQT (21.56)
FOCAL: = 4.6433"

.FOR EXPONENTIATION
USER: TYPE 25 2
FOCAL = 625.00002"

TO COMPUTE 300 FACTORIAL
USER: SET A=l

TYPE %, A

FOR SINE AND COSINE IN RADIANS

FOR SQUARE ROOT

FOR 1 = l.OOO;,SETA = A * l

FOCAL: = 0.306051E + 615'
Unlike any other language FOCAL features 14 functions automatic
error tracing and character editing.

Multi-User Segments
FOCAL can be shared simultaneously by more than one user by parcelling
computer time among the various users. Such a system, referred to as
minitime-sharing, permits one computer to serve several persons, allowing
each user to feel he has the system all to himself. No detectable delays
occur under normal operating conditions. With a very heavy workload,
some users may detect only a slight delay, less than a second, in response
to their commands to FOCAL. The two multi-user systems associated with
FOCAL'are detailed below.

QUAD (FOUR-USER FOCAL)
QUAD permits from one to four persons to use FOCAL simultaneously
on an 8K PDP-12 computer. Up to four Teletype consoles and a p
proprfate communicating units are required.

.LIBRA allows up to seven persons to use FOCAL efficiently on one
8K PDP-12 computer. LIBRA requires, in addition to from one to
seven Teletype consoles, appropriate PTO8's or DC02's, and a t least
one disk (RF08 or DF32). There are two versions of LIBRA available,
depending on the user's disk system, i.e. RF08 or DF32 version.
A disk initialization routine, DISKIN, prepares the disk for use by

LIBRA (SEVEN-USER FOCAL)

39

LIBRA. With LIBRA, user programs can be saved, retrieved, or deleted
from the disk by library capabilities, i.e., each program is assigned
a name by the user, and a threeword command tells LIBRA what
to do with that program. In all cases, the name of a program must
be one to four characters. A directory of saved (stored) user pro-
grams can also be listed by LIBRA.

FOCAL 12
FOCAL-12 is a version of the FOCAL language designed to take advantage
of the features of the PDP-12 computer. FOCAL-12 allows the user to
quickly program simple data acquisition and reduction tasks, without
using machine language, and in addition, analyze previously generated
data stored on the LINCtape. FOCAL-12 will utilize all standard PDP-12
peripherals, including LINCtape, CRT display, and A-D converter. Refer
to the FOCAL-12 section of this book for details.

Time-sharing
The unparalleled Educational Application of the PDP-12 is further demon-
strated by its time-sharing capability. TSS/12 is complete time-sharing
hardware/software package allowing up to sixteen simultaneous users
in multi-language operation. Built around a powerful field-proven time-
sharing monitor, TSS/l2 includes three higher-level languages, a full
PDP-8 assembly language package, and several important utility programs.

Individual users may select the language best suited to his problem.
Different users with different language preferences may utilize the system
simultaneously. Available languages include BASIC, FOCAL@, FORTRAN-D,
PAL-D, and-the utility program.

The azsembty language capability is especially important. Advanced or
specialized users are not bound by the constraints of higher-level lan-
guages. Science and engineering students (who will encounter mini-
computers on the job) can be exposed to actual machine programming.
Beginning computer students get a quick look a t how a computer really
works. Systems programmers may add library programs, even whole new
language processors. In addition to the standard PDP-8 assembly instruc-
tions, a number of input-output instructions have been added. These
instructions allow the user‘s program to control the PDP-12’s analog to
Digital converter, relay register, and display scope. The list of the addi-
tional IOT’s is given below.

MNEMONIC OCTAL

6144

CODE CODE FUNCTION

SRLY Set and read relay register. I f the AC is
positive, the relay register is set from AC

. bits 6-11. If the AC is negative, the
current relay register is read into the
AC. For both cases (positive or negative
AC) the AC has the state of relays on
return from this IOT.

SADC 6145 Sample the specified A-D channel. The
AC contains the channel you want to

40

DISP

DISC

6146

‘ 6147

sample. On return, the AC contains the
value of the channel.

Display points. This IOT enables the
user to display a string of points on the
scope. The AC contains a pointer to a
core list. The first word of this list con-
tains the number of pairs of X-Y points
you want to display. Bits 2-11 of the AC
are used. Up to 1777a points may be
displayed. The remainder of the list
contains the actual X-Y points to be
displayed. The AC is not changed upon
return from this IOT.

Display characters. This IOT is similar to
DlSP except that it displays characters
instead of points. The AC points to a
5 word list. The first word on this list
is the number of characters to be dis-
played. Only bits 6-11 determine this so
up to 63 characters may be displayed.
The second word contains the character
size for the extended functions register.
If bit 4 is a zero, half size is used, if bit
4 is a one, full size characters are used.
The remainder of the word is ignored.
Words 3 and 4 contain the starting X
and Y values of the characters to be
displayed. Word 5 contains a pointer to
the character string. The character string
is 6 bit ASCII, packed two words to a
character. All 64 characters are printing
characters. There are no control char-
acters. Thus Code 43 is a # and Code
00 is a @. No check is made for wrap
around on the scope.

These peripheral controlling input-output instructions are designed to
allow-the programmer to code and debug his program in the time-shared
environment. When he is ready to run the program “stand alone” for his
application, the input-output instructions may be replaced with predefined
subroutine calls to peripheral routines.

FOCAL 12
FOCAL-12 is a highly-interactive, interpreter-level language designed for
rapid communication between man and machine. It gives students, en-
gineers, and scientists high-level language control of the AD-12 analog
to-digital converter, KW12-A real-time clock, VR12 display LINCtape, and
disk files. Simple data acquisition and reduction tasks may be quickly
Programmed ilsing FOCAL12. Data may be saved on magnetic tape or
disk and later retrieved for processing.

41

FOCAL-12 operates in an on-line, conversational mode and is programmed
through the use of short,’ easyto-learn, imperative English statements.

FOCAL-12 makes fast and efficient use of the total system capability of
a PDP-12 computer equipped with 8K of core memory.

Getting Started in Programming
This is the starting point for learning how to solve numerical problems
using FOCAL-12 (Formulating On-line Caluculations in Algebraic Language
on the PDP-12 computer).

-

Loading FOCAL-12
The FOCAL-12 system is provided on a standard LINCtape and is stored
under the aegis of the LAP6-DIAL Operating System. FOCAL-12 may be
started by loading the LAP6-DIAL System, typing a linefeed key followed
by: LO FOCAL-12, unit.
FOCAL-12 begins by typing an asterisk on the Teletype which indicates
that it is ready to accept commands.

FOCAL-12 is called a conversational language because the system reacts
immediately to the things that you do.

Communicating with the PDP-12
If you press down on the Control (marked CTRL) key and at the same
time press on the C key, FOCAL-12 will respond with “?Ol.OO*”. The
“?Ol.OO” is a coded message from FOCAL-12 meaning the FOCAL-12 pro-
gram is loaded into the computer. To help you decipher other coded
messages, we have included a list of codes, and the meaning of each,
in the back of this chapter. Generally speaking, if you write a comma d
which FOCAL-12 cannot interpret, or if you break any of programmi g
rules for writing FOCAL-12 statements, you will get a coded error messa I .
FOCAL-12 programs can be created on the VR12 Display Scope or on the
Teletype. The Teletype is automaticallyselectecf firstwhen FOCAL-12 starts.
To utilize the scope, type the following command: *OUTPUT SCOPE or
8 0 s
The text on the scope can always be cleared by the command *OUTPUT
ERASE or *O E
Return to the Teletype is accomplished by use of the command *OUT-
PUTTELETYPE or * O T

High-speed Calculations Using the Type Command
You only need to learn one FOCAL-12 command, TYPE (abbreviated T),
calculations such as the following: -

103 x - 3 + 21-2
10

To do this in FOCAL, you type:
* o s
*T l e t 3 *3/1Gl + ? I - ?
= 319.@@@@ * 0 . c

(and after you press the RETURN
key, FOCAL computes this result.
Every line must end with a RETURN.)

42

This example shows the arithmetic operations performed by FOCAL. These
are done from left to right except that exponentiation () is done first,
then multiplication (*), then division (/), and then addition (+) or sub-
traction (-).

This means that:

6 + 6*2 (which is 18 because multiplication
is done before addition)

IS NOT (6 + 6) *P (which is 24)

Enclosures
To make sure that the computer performs these operations in the order
you want, you can place them inside parenthesis marks. When the com-
puter sees an expression enclosed in parentheses, it does that first. If
the statement includes parentheses with parentheses (nesting) it com-
putes the innermost first.

7+<6/3) - <St?) *3
In this example, the computer flrst computes the values of the expres-
sions enclosed in parentheses: (6 /3) is 2, and (54 2) is 25. Then 7 + 2
- 2 5 ’ 3 ~ - 66.oooO.

You can also use square brackets, [and], and angle brackets, < and >.
to enclose expressions. All of these enclosure symbols are evaluated
equally, but the innermost will always be done first. They must always be
used in pairs. The [and] enclosures are typed using SHIFT/K and SHIFT/
M, respectively.

Another Command: Set
This useful command tells FOCAL-12 “store this symbol and its numerical
value. When I use this symbol in an expresion, insert the numerical value.”

*SET PI=3.1d1159; SET E=:!.71RPR; SFT P=9*1?739
Symbols may consist of one or two alphanumeric characters. The first
character-must be a letter, but must not be the letter F.
Just for practice, let’s use FOCAL-12 to calculate the volume of a sphere
which has a radius of 9.12739. (We’re going to use two of the symbols
we have just defined in the SET commands above.)

The formula is V = - r r 3

which we can type like this:

Ft3*PI*4/3

You might be interested in running a timing test to show how long it takes
to do such calculations by hand, with a calculator, and with FOCAL-12.

The Talking Computer
To make the output of your program absolutely clear to other people, it

43

4
3

is sometimes useful to give FOCAL-12 certain messages or column head-
ings. We call these character strings. These messages are enclosed in
quotation marks.
*SET E=8*71PPU
*SFT P I 1 3 0 14159
*TYPE "PI TIMES E" PI*E
and FOCAL-12 types out

P I TIMES E = P . 5 3 9 7 *

You are not allowed to use the carriage return, line feed or leader-trailer
characters in these character strings. But you can tell FOCAL-12 to do a
carriage return/line feed by inserting a n exclamation mark (!). You can
get a carriage return by inserting a number sign (#).

Spaces can be used in character strings as needed.

Command Strings '

More than one command can be combined on a single line with up to
50 characters per line on the display, and 72 on the Teletype. Each com-
mand must be separated by a semicolon.

5 7 9 . 5 7 P @ *

FOR Command
This command is used for convenience in setting up program loops and
iterations. The general format is

* S A = 1 ? 3 * 1P;S P - 4 5 6 . 4 5 ; T P + F

*FOR P=Rs Cs D; (COMMAND)

The identifier A is initialized to the value B, then the command following
the semicolon is executed. When the command has been executed, the
value of A is incremented by C and compared to the value of D. If A is
less than or equal to D, the command after the semicolon is executed
again. This process is repeated until A is greater than D, at which time
FOCAL-12 goes to the next sequential line.

The identifier A must be a single variable. B, C, and D may be either
expressions, variables, or numbers. If the coma and value C are omitted,
it is asumed that the increment is one. If C, D is omitted, it is handled like
a SET statement and no iteration is performed.

The FOR command is used for performing repetitive calculations as is
shown below:

44

Display Graphics
Points may be plotted and maintained on the PDP-12 display by utilizing
the function “FDlS (X, Y).” “X” is the horizontal coordinate and “Y”
is the vertical coordinate of the displayed point.

The range for “X” is from 0 to 1.38. The range for “Y” is from 0 to 1.00.
Point (0,O) is at the lower right-hand corner.

“X“
Points displayed remain until cleared by the “OUTPUT CLEAR” (0 C)
command.

To plot a horizontal line (multiple points) in the middle of the scope:

*FOP I = Qr.Plrl.36i SE,T A = F C I S C I r . 5)

To plot a vertical line down the center of the display:

*FOR I t ? r o Q l r l ; SFT A = F D J S < . 6 9 r I)

A diagonal line is generated by:

*FOR I = n r . t ? l r l ; SET A = FDISCIrI)

Slow Plotting
The command “OUTPUT DELAY” (0 D) causes the scope to be refreshed
once. Although this costs a delay in computation, it allows the user to
see his graphics program “grow” on the display. Added to the above
programs, the “OUTPUT DELAY” command will cause the partial lines to
be displayed as new points are being generated one a t a time.

*FOR I = C l ~ . t ? I t l i SET A FDISCIDI)~OUTPUT DELAY

Keeping Track of the Decimal Point
FOCAL-12 results are accurate to six significant digits. As we have shown
in the examples so far, FOCAL-12 assumes a t the start that you want to
see your results with 4 digits (or spaces) to the left of the decimal point
and 4 digits to the right of the decimal point. This is called fixed-point
notation.

You can change the output format within a TYPE statement by typing
‘‘%x.y” where x is the total number of digits to be output, and y is the
number of digits to the right of the decimal point. Both x and y are positive
integers equal to or less than 31. If y is a single digit, it must be pre-
ceded by 0. For example, %6.02 indicates four digits to the left and two
to the right of the decimal point.

45

If your results exceed the format you have specified, FOCAL-12 gives you
results in floating-point format, like this: .
= - +O.XX>rXXXE 2 Z ..
where Z is an exponent of 10.

To switch to floating-point, you include a percent sign (yo) followed by a
comma, in a TYPE command.

*TYPE X I 1 1
=@* 1 1 0 @ 0 0 E + @ 2 * .
which is 0.11 times loz, or 11. The largest number that FOCAL-12 can
handle is + 0.999999 + 615, and thhe smallest is -0.999999 E + 615.

Correcting Mistakes
If you should strike the wrong key, you can delete it by striking the
RUBOUT key. Each time you strike RUBOUT, another previously typed
character will be deleted. When you strike RUBOUT, FOCAL-12 echoes
back a backslash (/) to tell you how many characters you deleted.

Summary
Previously you have learned how one FOCAL-12 command TYPE, is used
to evaluate expressions, to type out character strings enclosed in quotes,
and to use symbols (defined in SET commands) in expressions.

In the following paragraphs you will learn the other commands, and the
use of line numbers to write a sequence of FOCAL-12 statements. As you
learn these techniques, you will be advancing rapidly in the art of com-
puter programming.

SEQUENTIAL COMMANDS
Indirect Commands

Up to this point, only commands which are executed immediately by
FOCAL have been discussed. If a Teletype line is prefixed by a line
number, that line is not executed immediately; instead, it is stored in the
computer’s memory for later execution, usually as part of a sequence of
commands.

Line numbers must be in the range from 1.01 to 31.99. The numbers
1.00, 2.00, etc., are illegal line numbers; they are used to identify the
entire ,group. The number to the left of the point is called the group
number; the number to the right is called the step number.

* l e 3 SET P=2

Indirect commands are executed by typing GO, GOTO, or DO commands
. which may be direct or indirect.

GO Command
The GO command causes FOCAL-12 to go to the lowest numbered line
to begin executing the program. If the user types a direct GO command

46

* i . i SET ~ = i

* 1 * 5 TYPE: X l r A+A

after the indirect commands in the example above, FOCAL-12 will carry
out the command at line 1.1, and then the others, sequentially.

*GO
= 3*

The GOTO command causes FOCAL-12 to transfer control to a specific line
in the indirect program. It must be followed by a specific line number.
After executing the command at the specified line, FOCAL-12 continues
to the next higher line. The GOTO causes a program branch; we have
jumped from one sequence of lines to another. Sometimes we merely
jump back and repeat a sequence of commands. This technique of re-
peating sequences is called iteration, and it is often used by experienced
computer programmers.

GOTO 1 - 3
= 2*

DO Command
The DO command is used to transfer control to a specified step, or group
of steps, and then return automatically to the command following the
DO command. I

* l e 1 S E T P .31; S E T R = 2
* l o 2 TYPE "STARTINL;"
* l o 3 Do 3.2
2 1 TYPE ** F I N I S H E D "
*3*1 S E T 4 ~ 3 ; S E T B = 4
* 3 * P TYPE X l r A + B
*GO
STARTING= 3 F I N I S H E D = 7*

If a DO command is written without an argument, FOCAL-12 executes the
entire indirect program.

* 1 * 1 S E T A = l
* l o 3 S E T R = P
* l o 5 TYPE X l r A + B
*Do

The following example causes a programming loop, which could be termi-
nated by inserting line 1.5 QUIT, see below.

* l * l . S E T A = l
*1.2 TYPE A
* l e 3 W 2.R
* l e 4 TYPE " F I N I S H E C "

*28 1 SET A=A- 1
*e92 TYPE A

47

DO commands cause specified portions of the indirect program to be
executed as closed subroutines. These subroutines may also be terminated
by a RETURN command, explained below.

RETURN Command
The RETURN command is used to exit from a DO subroutine. When a
RETURN command is encountered during execution of a DO subroutine,
the program exits from its subroutine status and returns to the com-
mand following the DO command that initiated the subroutine status.

QUIT Command
A QUIT command causes the program to halt and return control to
the user. FOCAL-12 types an asterisk and the user may type another
command.

COMMENT Command
Beginning a command string with the letter C will cause the remainder of
that line to be ignored so that comments may be inserted into the pro-
gram. Such lines will be skipped over when the program is executed, but
will be typed out by a WRITE command.

WRITE Command
The WRITE command without an argument can be used to cause FOCAL-12
to print out the entire indirect program, allowing the user to visually check
it for errors.

A group of line numbers, or specific line, may be typed out with the
WRITE command using arguments, as shown below.

* 7 * 9 7 WRITE 2 . F (FOCAL-12 types all group 2 lines)
*7 *98 WRITE 2.1 (FOCAL-12 types line 2.1)
* 7 * 9 9 WRITE (FOCAL-12 types all numbered lines) * <
More about Symbols
The value of a symbolic name or identifier is not changed until the expres-
sion to the right of the equal sign is evaluated by FOCAL-12. Therefore,
before it is evaluated, the value of a symbolic name or identifier can be
changed by retyping the identifier and giving it a new value.

SET Al=3?
*SET Al=A1+1
*TYPE X P s A1

1 PI* - -
NOTE

Symbolic names or identifiers must not begin
with the letter F (see section on mathematical
functions).

The user may request FOCAL-12 to type out all of the user defined
identifiers, in the order of definition, by typing a dollar sign ($) after a
TYPE command. .
*TYPF X6.Ci5,S

The user's symbol table is typed out like this

If an identifier consists of only one letter, an @ is inserted as a second
character in the symbol table printout, as shown in the example above.
An identifier may be longer than two characters, but only the first two
will be recognized by FOCAL12 and thus stored in the symbol table.
Notice that for numbers with more than one integer part, the output for-
mat operator %6.05 is ignored so that the whole number can be printed.

Subscripted Variables
FOCAL-12 always allows identiflers, or variables symbols, to be further
identified by subscripts (range 22047) which are enclosed in parentheses
immediately following the identifier. A subscript may also be an expression:

*SET A 1 (1+3*5)=2-71; SE.T Xl(K+3*J)=2.79

The ability of FOCAL-12 to compute subscripts is especially useful in
generating arrays for complex programming problems.

When FOCAL-12 types out symbol subscripts, only two digits are shown
in the range 00-99. Despite this, subscripts up to t2047 may be used in
calculations.

ERROR DETECTION IN INDIRECT STATEMENTS
When an error occurs in an indirect statement, the error message is
typed out when the statement is encountered during program execution.
In addition to the error code, FOCAL-12 types the line number containing
the error, as shown in the following example.

*l.lB SET A=2; TYPE " A " r A r !
* 1 * 2 @ SET R = 4 ; TYPE "R">Fb!
*1.3R-GOTO l a m 1
* 1 . 4 ~ 1 TYPE * * f i + ~ * * . e+F
*GO
A= 2.C1nnn
R= 4-nno8
?p13.P)5 @ ,O1.3P *
FOCAL-12 executes lines 1.1 and 1.2 and then recognizes that line 1.3 is
an illegal command. Therefore it issued the error message to show you
that an illegal command was used.

To pinpoint an error in line 3.3, for example, type "DO 3.3?" and the
program will be traced until the error is found.

49

CORRECTIONS
If the user types the wrong character, or several wrong characters, he can
used the RUBOUT key as we have explained previously, which echoes
a backslash (/) for each RUBOUT typed, to erase one character to the
left each time the RUBOUT key is depressed. For example,

*ERASE ALL
* 1 1 P I T Y P E X-Y
el*:! S E T S = 1 3 / / / / X = 1 3
*WRITE
C-FOCALD 1969

p I 1 . 1 G l TYPE X-Y
Gl102pI SET Y=13
The left arrow (e) erases everything which appears to its left on the
same line.
*WRITE
C-FOCALD 1 9 6 9

Gll.10 TYPE X-Y
P l m B P S E T X - 1 3 *
A line can be corrected by retyping the line number and typing the new
command.

* l y e 9 9 S E T C 9 (N + . 3) 15 *
is replaced by typing

* 1 4 * 9 9 TYPE C9/Z5-:!
*WRITE 14-99
14.99 TYPE C 9 / 7 . 5 - 2 *
ERASE Command
A line or group of lines may be deleted by using the ERASE command
with an argument. For example, to delete line 2.21, the user types

*ERASE 2-21 *
To delete all of the lines in group 2, the user types

*ERASE 2.0
1

Used alone, without an argument, the ERASE command causes FOCAL-12
to erase the user's symbols. Since FOCAL-12 may not zero memory when
loaded, it is good practice to ERASE ALL before starting a new program.

50

Typing WRITE after making corrections causes FOCAL-12 to print the
indirect program as altered. This is useful for checking commands and
for obtaining a “clean” program printout.

ASK Command
The ASK command is normally used in indirect commands to allow the
user to input data at specific points during the execution of his program.
The ASK command is written in the form

*11.99 PSK X9Y97 *
When line 11.99 is encountered by FOCAL-12, it types a colon (:). The user
then types a value in any format for the first identifier, followed by a
terminator.’ FOCAL-12 then types another colon and the user types a
value for the second identifier. This continues until all the identifiers or
variables in the ASK statment have been given values,

*I1099 ASK X s Y 9 7
*L‘Q 11.99
: 5:4: 3*

where the user typed 5, 4, and 3 as the values, respectively, for X, Y,
and 2.
FOCAL-12 recognizes the value when its terminator is typed. Therefore, a
value can be changed but only before typing its terminator. This is done
by typing a left arrow (e) immediately after the value, and then typing
the correct value followed by its terminator. This is the exception to the
use of the left arrow, as explained in the previous section on corrections.

The ALT MODE key, when used as a terminator, is nonspacing and leaves
the previously defined variable unchanged, as shown below.

*SET P = 5
*ASK P
: 1?3*
*TYPE P
= 5.p*

(user depressed the ALT MODE key
after typing 123)

ALT MODE is frequently used when the user does not wish to change the
value of one or more identifiers in an ASK command.

*11099 P S K Y s Y s T
*DO 11.99
: 5. : L I S : 3. *
:RI::lPI*
*TYPE Y r Y s Z

*ro 11-99 (User did not wish to enter new value
for Y, so he typed ALT MODE in
response to second colon.)

= P= I l X 1 P*

’Terminators are space, comma, ALT MODE, and RETURN keys.

51

A text string may be included in an ASK statement.by enclosing the
string in quotation marks, just as in the TYPE command.

* l . I p l ASH "HOW MANY A F P L E S L O YOL H A L E ? " P P F L E S
*f 'O 1.10
POW MPNY APPLES PO YOU HALE?:?5 *
The identifier AP (FOCAL-I2 recognizes the first two characters only) now
has the value 25.

IF' Command
In order to transfer control after a comparison, FOCAL-12 contains a
conditional IF statement. The normal form of the IF statement consists
of the word IF, a space, a parenthesized expression or variable, and the
three line numbers separated by commas. The expression is evaluated,
and the program transfers control to the first line number if the expres-
sion is less than zero, to the second line number if the expression has a
value of zero, or to the third line number if the value of the expression
is greater than zero. The IF expression or variable must be enclosed in
parentheses.

The program below transfers control to line number 2.10, 2.30, or 2.50,
according to the value of the expression in the IFstatement.

*? - 1 TYPF "LFSS THAN ZE'RO"; n U I T
* P o 3 TYPE "EDUAL TO ZE,RO"i O U I T
* 2 * 5 TYPE: "GTrEATE:P THAN I.E.RO"; O U I T
+ I F (25-25)2. I r 2 . 3 ~ 2.5
E.RUAL TO ZERO*

The IF statement may be shortened by terminating it with a semicolon or
carriage return after the first or second line number. If a semicolon
follows the first line number, the expression is tested and control is trans-
ferred to that line if the expression is less than zero. If the expression is
not less than zero, the program continues with the next statement.

* ? e ? @ I F o() 1.6; TYFF "0" *
In the above example, when line 2.20 is executed, if X is less than zero,
control is transferred to line 1.8. If not, Q is typed out.

* 3 * 1 9 I F (F) 1 . P J 1 . 9

* *3-?@ TYPE A

I
In this example, if B is less than zero, control goes to line 1.8, if B is
equal to zero, control goes to line 1.9. I f B is greater than zero, control
goes to the next statement, which in this case is line 3.20, and the value
of B is typed out.

52

If a GOTO or an IF command is executed within a DO subroutine, two
actions are possible:

1. If a GOTO or IF command transfers to a line inside the DO
group, the remaining command in that group will be executed
as in any subroutine before returning to the command following
the DO.

2. If transfer is to a line outside the DO group, that line is executed
and control is returned to the command following the DO; unless
that line contains another GOTO or IF.

*EPPSE ALL
* l a 1 T v P E "P"; S E T Xz-1 ; LO 3.1; f Y F E "I";' LO ?
*1.? PO ? *
* ? . I TYPF "6"
* ? a ? I F < X) ? * 5 J ? . 6 D ? * 7
*?a 5 TYPE "H"
*?.e TYPE "I"
* ? e 7 TYPF "J"
*?.P TYPE "K"
*?.9 TYPE' X?.FIID X i TYPE " 'I; S E T X = X + l . *
3 1 TYPE "B"; GOTO 5.1; TYPE "F" *
* 5 * 1 TYPE "C"
* S a ? TYPF. "E"
*5.3 TYPF "L"
*GO

(FOCAL-12 types the answer)

PFCDGHIJHr-1 .Ci G I J H = @ e @ G J X = 1.0 RCEL*

MODIFY Command
Frequently, only a few characters in a particular line require changing.
To facilitate this job, and to eliminate the need to retype the entire line,
the FOCAL-12 programmer may use the MODIFY command. Thus, in order
to modify the characters in line 5.41, the user types MODIFY 5.41. This
command is terminated by a carriage return, whereupon the program
waits for the user to type that character in the position in which he wishes
to make changes or additions. This character is not printed. After he has
typed the search character, the program types out the contents of that
line until the search character is typed.

A t this point, the user has seven options:

1. Type in new characters in addition to the ones that have already
been typed out.

2. Type a form feed (CTRL/L); this will cause the search to pro-
ceed to the next occurrence, if any, of the search character.

r

53

3. Type a CTRL/BELL; this allows the user to change the search
character just as he did when first beginning to use the MODIFY
command.

4. Use the RUBOUT key to delete one character to the left each
time RUBOUT is depressed.

5. Type a left arrow (e) to delete the line over to the left margin.

6. Type a carriage return to terminate the line at that point, remov-
ing the text to the right.

7. Type a LINE FEED to save the remainder of the line.

The ERASE ALL and MODIFY commands are generally used only in im-
mediate mode because they return to command mode upon completion.

During command input, the left arrow will delete the line numbers as
well as the text if the lef t arrow is the rightmost character on the line.

Notice the errors in line 7.01 below.

7(?1 JACK ANI) PILL WINT UP THE HRLL
*MODIFY 7 * P 1
JACK PND F/JILL WWENT UP THE HA/ILL
*WRITF 7.P1
07*t l I JACK ANI? JILL WFNT UP THE' HILL *
To modify line 7.01, a B was typed by the user to indicate the character
to be changed. FOCAL-12 stopped typing when it encountered the search
character, B. The user typed the RUBOUT key to delete the B, and then
typed the correct letter J. He then typed the CJRL/BELL keys followed by
the 3, the next character to be changed. The RUBOUT deleted the 3
character, and the user typed an E. Again a search was made for an A
character. This was changed to 1. A LINE FEED was typed to save the
remainder of the line.

Caution
When any text editing is finished, the values in the user's symbol table
are reset to zero. Therefore, if the user defines his symbols in direct state-
ments and then uses a MODIFY command, the values of his symbols are
erased and must be redefined.

However, if the user defines his symbols by means of indirect statements
prior to using a MODIFY command, the values will not be erased because
these symbols are not'entered in the symbol table until the statements
defining them are executed.

Notice in the example below that the values of A and B were set using
direct statements. The use of the MODIFY command reset their values
to zero and listed them after the defined symbols.

54

* EFP SE PLL
* S F T A = l
* S F T R=P
* 1 * 1 S E T C=3
* l e ? SET D=4
* l a 3 TYFE A+A+C+C; TYPE !; TYFE S
*MODIFY 1 . 1
SE7 c=3/5
*GO
= 9.08
C @ < P o > = 5 - C Q
DQ<@Q)= B . P P
A@(F)PI)= P.@P
R@(0P)= Q - @ 8 *
USING THE TRACE FEATURE
The trace feature is useful in checking an operating program; those parts
of the program which the user has enclosed in question marks will be
printed out as they are executed.

*ERASE ALL
* l e 1 S E T A = l
* l e 2 SET E = 5
* l e 3 S E T C - 3 * 1 4 TYPE Z 2 r ?A+F-C?r !
* l a 5 TYPE ?R+A/C?r !
* l o 6 T Y P F ? B - C I A ?
*GO
A+R-C= 3
A+A/C= 5
B-C/A= 2*

In the following example, parts of 3 lines are printed.

When only one ? is inserted, the trace feature becomes operative as
FOCAL-12 encounters the ? during execution, and the program is printed
out from that point until another ? is encountered. The program may loop
through the same ? until an error is encountered (execution stops and an
error message is typed), or until program completion.

*FFPSE ALL
* l a 1 ? S E T A=QIF; TYPE X 3 r A !
* l e 2 FOF B = l ~ l ~ 4 ; TYPE. B+A!
*GO
SEI’ A = B F I TYPF X ~ J A !
= PlFOF R = l r I D & ; TYPE R+A!
= 1 TYPE R+A!
= 2 TYPE R+A!
= 3 TYPF F + A !
= 4*

,

c 55

In this example, FOCAL-12 encountered the ? as it entered line 1.1 and
traced the entire program.

MATHEMATICAL FUNCTIONS
The functions are provided to improve and simplify arithmetic capabilities
and to give potential for expansion to additional input/output devices.
A standard function call consists of four (or fewer) letters beginning with
the letter F and followed by a parenthetical expression.

F SGN (b-D* 2)

There are three basic types of functions: simple, extended, and I/O. The
first type consists of integer part, sign part, absolute value and square
root functions.

In the second type, the extended arithmetic functions, are loaded at the
option of the user. They compute logarithms, exponentials, arctangents,
sines, and cosines.

The input/output functions are the third
tistical random number generator (FRAN)
.9. There are also functions available to
digital converters.

Plotting Mathematical Functions
The following program uses the FSlN and
on the scope.

I

* l . I v) SFT A = - 5 ; SFT A = - 5

*I.RF SET C -3; SET D = - 3

type. These include a nonsta-
whose values range from .5 to
control scopes and analogto-

FCOS functions to plot a circle

*1*3P FOP I = O r * 0 4 , 6 * 2 5 i S E 7 P = FDIS(P+C*FSINCI)rR+C*FC~S(I))

Changing the value A will cause the circle to be moved to the right or left.
The value B locates the vertical position of the circle.

Modifying the values C and D changes the horizontal and vertical displace-
ment of the points. If only one is changed, an ellipse will be plotted.
Changing both equally will cause the overall size of the circle to be
different.

Analog-to-Digital Conversion
The analog-to-digital converter is programmed through use of the FADC(X)
function where X is the input channel selected.

Thus, the program

*SET FI = FAPC (1) ; TYPF B

will print the digitized value of the signal on analog channel 1.

?he short program below will take 100 data points from analog channel
four and display the points on the scope.

*F X I l r o b l r l t SET A F D I S (XsFADC(4))i 0 0

56

h 88 O h

2s tt Z o m hh ,h 8 t m z 0 w U I U I U I :

22 ~ o a j 8 f + Q g g -+ + ??."NN*M
0 Z M M r l 2 2 k k \ \ \ \ v) * r l
Z ~ V l V l V ? v v V I V I k k k k V I " V I h V V L h V h V z YY'L 'L k 'L LYLLLLL'LL4 Lkk nrLLvLY L

___ - - - --vvvv-v- VI-- vv-v- v
VIVIVI VI VI VI VIVIVIVIV VVIV I v V V V I - VIVIVIVI VI
0 0 0 rl M 0 0000000M0 0 0 4 10000 0

z
0

h

w U
z
E
\
M

2

::
v z . -

\

U

2

I
h

7
5
s
t
0

57

Data Storage and Retrieval
As part of the data collection and reduction task, the typical user will
collect data and store it on LINCtape or disk. FOCAL-12 will access such
data either as named binary files* under the DIAL system; or by absolute
block number addressing, where the location of the data is the users
responsibility. The data set may be in any of these data formats - un-
signed 1 word integers, signed 2 word fractions, has been “opened”
(see section 3.2) any element of the data array may be addressed as a
subscripted variable and the actual tape/disk operations are invisible
to the program. Each block in the file will contain 256 integers or 128
fractions or 85 floating point numbers (the last word of the block is
unused).

Library Make
When a set of data is to be saved in a file, the file must already be de-
fined in the DIAL filing system. Such a file may be created by using the
LIBRARY MAKE command

where “length” is the number of blocks required to hold the data**;
“name” is the name to be assigned to the file for the DIAL index; anct
”unit” is the appropriate device unit number, as defined in DIAL-MS:

L M, length, name, unit

D e V k e
8 LINCtapes
4 RS08 disks
1st RK08 disk
2nd RK8 disk
3rd RK8 disk
4th RK8 disk
Thus L M, 19, DATA, 0

DEVICE UNIT NUMBER
0-7
10-17
10-15
20-25
30-35
40-45

would create a 19 block file on tape 0, naming it, DATA.

Library Open
Before an array on tape or disk can be utilized by a FOCAL-12 program,
it must be “opened” via the LIBRARY OPEN command

where “file number” is specified as Fn, where O l n 2 7 : “format” is F
for floating point, S for signed 2 word fraction, of U for unsigned 1 word
integer; “name” is either the DIAL file name; “block number” typed as
#number, is the starting block number; and “unit” is the device unit
number.

The function of the OPEN command is then to associate a file number,
Fn, with a data array on tape or disk and to define the type of data.
For example,

declares an array of floating point numbers in a file named DATA, on
tape unit 1, is to be referred to as file number F1. Any piece of data in

**The number of blocks can be estimated using the constant 256 words/

L 0, file number, format, name, unit

L 0, F1, F, DATA, 1

*To those familiar with DIAL formats, there is no “header” block

58

the array may now be accessed using the standard FOCAL subscripting
procedure. For example,

1.01
1.02
1.03
1.04 Q

would create a one block file named DATA on tape 0; clear the array of
unsigned integers to 0’s; and quit.

Similarly

1.01
1.02
1.03 Q

would set blocks 100 and 101 of tape 0 to all 0’s and quit.

Library Close
Open data files are “closed” with the LIBRARY CLOSE command in the
form

For example,

1.01
1.02
1.03
1.04
1.05
1.06 Q
would
-create a file on unit 1 that is 19 blocks long called “COPY”.
-copy 1200 floating point numbers from file ORIG of LINCtape 0 to
LINCtape 1 file copy.
-QUIT after closing both files.

L M, 1, DATA, 0
L 0, F2, U, DATA, 0
F I = 0,255;s F2 (I) = 0

L 0, F2, U, #loo, 0
F I = 0,511;s F2 (I) = 0

L C, file number

L M, 19, COPY, 1
L 0, F1, F, COPY, 1
L 0, F2, F, ORIG, 0
F I = 1, 1200;s F1 (I) = F2 (I)
L C, F1; L C, F2

LIBRARY SAVE
FOCAL-12 programs may be saved on LINCtape or disk for later use. The
LIBRARY SAVE command is used to store the current (just edited)
FOCAL- 12 program:

L S, name, unit

where “name” is the binary file name to be inserted in the DIAL index
and “unit” is device unit number.
For example,

L S, $NEWPRGM, 7

would save the program (text and variables) just typed in as a binary file,
named $NEWPRGM, on tape unit 7. Since the program is saved just as
a binary DIAL program, and listed as such in the DIAL index, it is sug-

59

gested that FOCAL-12 programs be filed under some standard notation,
such as dollar sign for the first character. Note that a copy of the program
just saved remains in core after an L S command and may be executed
using the GO command.

LIBRARY LOAD
A FOCAL-12 program that has been saved by a LIBRARY SAVE command
can be retrieved from the tape or disk by a LIBRARY LOAD command in
the format:

L L, name, unit

where “name” and “unit” are as previously described in 4.1. For example,

L L, $NEWPRGM, 0

would retrieve the program saved in the example in section 4.1 (assuming
the tape had been put on transport 0). Once loading is complete, FOCAL-12
prints an asterisk to indicate editing may continue or the program may
be started.

LIBRARY GO
A FOCAL-12 program that has been saved by a LIBRARY SAVE command
can be retrieved from a DIAL binary file on tape or disk and started auto-
matically by a LIBRARY (load and) GO command in the format

L G, name, unit

where “name” and “unit” are as specified for LIBRARY LOAD. For
example,

would not only load the program, $NEWPRGM, into memory, but would
start it automatically.
Note that this feature can be used in conjunction with FOCAL-12’s data
file handling to enable the operation of large programs by “segmenting”
or “chaining”. For example, one segment could set up an experiment,
acquire data, store it into a file, and load and start a second segment
using the LIBRARY GO command:

1.05 L M, 10, DATA,O
1.10 L 0, FO, U, DATA, 0

L G , $NEWPRGM, 0

,

2.75 L G, $2NDSGMT, 0

The second segment could than process the data, put up a display af
results, etc.

1.05 L 0, FO, U, DATA, 0

60

The processing of the “L G” command requires the use of a portion of
the display buffer; however, up to approximately 450 points may be
retained. If the display is to be cleared, of course, the second segment
should merely start with an “0 C” command.

OUTPUT INTERVAL
The KWl2A Clock can be used by FOCAL-12 for user specified interval
timing, permitting a delay of known duration to elapse between events.
This interval is established by the 0 I command

0 I, N

where n, which may be an expression, is the length of the interval in
seconds, with .01 n 40.95. Thus an interval of 2 seconds is specified by

0 I, 2
In this case, FOWL-12 would start the clock such that it would “tick”
at 2 second intervals. If an 0 I command is now issued without an
argument, FOCAL-12 will delay the program until the next tic (up to 2
seconds), thereby synchronizing the program with the real time clock.
The following program averages A/D channel 1 samples taken once per
second for 20 seconds.

1.01
1.02
1.03 T A/20,!
1.04 Q

0 I , 1; S A = 0
F I = 1,20; SA = A f FADC (1); 0 I

ADDITIONAL FUNCTIONS
An overlay to FOCAL-12 allows for the programmed control of the PDP-12
console switches, relay register, and external sense lines. The generalized
format is FX(n) where n has the following values:

0-5 Sense Switches 0-5 = 0 if off -
= 1 i f down

6 Left Console Switches
7 Right Console Switches

10-15 Status of Relays 0-5 0 = Open

20-25 Open Relay 0-5
30-35 Close Relay 0-5
40-55

1 = Closed

Status of External Sense Lines 0 = Low
1 = High

Programming Techniques
To decrease program length, maximize available core area, and assist in
preparing complex routines, the experienced programmer can implement
the following suggestions:

1. All commands can be abbreviated to.their first letter.

2. A string of commands, except WRITE, RETURN, MODIFY, QUIT,
T $, and ERASE, can be combined on one line (up to 72 char-
acters), with each command separated by a semicolon.

61

3. When creating a lengthy program, it is a good programming
practice to leave free line numbers scattered throughout the body
of the program. This will permit insertion of additional commands
without complicated referencing routines. Remember that pro-
grams are executed sequentially by line number; consequently, an
addition to the program placed physically a t the end will be
executed in turn. Line numbers must be in the range 1.01 to
31.99.

4. Some programs may require a keyboard response of YES or NO
to a question asked during program execution. The answer typed
to the question determines the next command to be executed
(for example, in the initial dialogue). For this purpose, alpha-
numeric numbers are used in an IF statement to direct the
execution.

* l o 1 TYPE "DO YOU WANT A L I N E ? " J ! * 1 . P ASK "TYPE YES OR NO"JANSJ !
* 1 . 3 IF' < A N S - R Y E S) 2 * 1 * 2 . ? r P . 1 *
* 2 . 1 Q U I T

* s o 3 GOT0 1.1
*GO
DO YOU WANT A L I N E ?
TYPE YES OR N0:YES

TYPE a * - - - - - - - - - - - - - - "* !

DO YOU WANT A L I N E ?
TYPE YES OF N0:NO

*

If the user types the answer YES, the identifier ANS is given the
alphanumeric value of YES. When the IF statement is executed,
the parenthetical expression ANS-OYES equals zero, and the
command at line 2.2 is executed. If the user types YES in'answer
to the ASK question, then when its alphanumeric value is sub-
stituted in the parenthetical expression, the expression will not
equal zero and line 2.1 will be executed. Note that for YES/NO
responses, the sign of the parenthetical expression is irrelevant;
only its zero or non-zero value is of interest.

5. To avoid filling storage with the push-down list during long
routines, it is helpful to limit the number of levels of .nested
expressions in a command. Use of abbreviations and limited
number of variable names will maximize storage space. An FCOM
function to increase variable storage is explained in DEC-08-
xJyA-D, FOCAL-71 System User's Guide.

62

SUMMARY OF COMMANDS

FOCAL12 Command Summary

COM- ABBREVI- EXAMPLE
MAND ATION
ASK A

OF FORM
ASK X, Y, 2

COMMENT C

CONTI NU E C
DO D

ERASE

FOR .

GO

GO ?

GOT0

IF

E

F

G

G ?

G

I

COMMENT

c
DO 4.1

DO 4.0
DO ALL

ERASE
ERASE 2.0

ERASE 2.1
ERASE ALL

For i x,y,z;
(commands)
FOR i x,z;
(commands)

GO

GO ?

GOTO 3.4

IF (X) Ln, Ln, Ln
IF (X) Ln, Ln;
(commands)
IF (X) Ln;
(commands)

EXPLANATION
FOCAL types a colon for each
variable; the user types a value
to define each variable.
If a line begins with the Letter C.
the remainder of the line will be
ignored.
Dummy lines
Execute line 4.1; return to
command following DO
command
Execute all group 4 lines.
Return to command following
DO command, or when a
RETURN is encountered.
Erases the symbol table.
Erases al l group 2 lines.
Deletes line 2.1.
Deletes all user input.
Where the command following
is executed a t each new value.
x initial value of i
y value added to i until i is
greater than z.
Starts indirect program a t lowest
numbered line number.
Starts a t lowest numbered line
number and traces entire
indirect program until another ?
is encountered, until an error
is encountered, or until
completion of program.
Starts indirect program
(transfers control to line 3.4).
Must have argument.
Where X is a defined identifier,
a value, or an expression, followed
by one to three line numbers.
If X is less than zero, control is
transferred to the flrst line
number, if X is equal to zero,

,

63

MODIFY M

QUIT Q
RETURN R

SET S

TYPE T

WRITE W

OUTPUT SCOPE

OUTPUT TELETYPE

OUTPUT DELAY

OUTPUT CLEAR

OUTPUT ERASE

LIBRARY MAKE

MODIFY 1.15

QUIT
RETURN

SET A = 5/B*C;

TYPE A + B - C;

TYPE A - B, WE;

TYPE ”TEXT
STRING”

WRITE
WRITE ALL
WRITE 1.0

WRITE 1.1
o s

O T

O D

o c

O E

L M

o s

O T

O D

o c

O E

I
control is to the second line
number.
If X is greater than zero, control
is to the third line number.
Enables editing of any character
on line 1,15 (see below).
Returns control to the user.
Terminates DO subroutines,
returning to the original
sequence.

Defines identifiers in the
symbol table.
Evaluates expression and types
out = and result in current
output format.
Computes and types each
expression separated by
commas.
Types text. May be followed by !
to generate carriage return-line
feed, or # to generate carriage
return.
FOCAL-12 types out the entire
indirect program.
FOCAL-12 types out all group 1
lines.
FOCAL-12 types out line 1.1.
All “Teletype” output is
diverted to the display
scope. Includes Teletype
echo, output from TYPE
and WRITE commands,
error diagnostics, etc.

Negates output scope
command.

Interrupt computation to
refresh the display scope.

The display scope is cleared
of all points and characters.

Clears the display scope of all
alphanumeric characters.

L M, length, name, unit
Create a data file:
. length = Number of blocks

(256 words/block)

64

LIBRARY OPEN

LIBRARY CLOSE L C

LIBRARY SAVE L S

LIBRARY LOAD L L

LIBRARY GO L G

name = File name for -
LAPGDIAL index
(8 characters
maximum)

LINCtapes = 0-7
Disk = 10-17

unit = Device selection:

L 0, file number, format, name, unit
Activate a data file created by
the LIBRARY MAKE command.

file Number = FO-F7
format F = Floating Point

S = Signed 2-word
fraction

U = Unsigned 1-
word integer

name = File name as
as used in
LIBRARY
MAKE
command

unit = Device
selection

L C, file number
Deactive a file previously
opened by the LIBRARY
OPEN command.

Save the current FOCAL12
program under the specified
file name on the uniit selected.

Load the saved FOCAL12
program from the unit
selected. New program
replaces old.

Load and automatically start
the selected FOCAL12
program.

L S, name, unit

L L, name, unit

L G, name, unit

FOCAL12 Operations and Their Symbols

Mathematical operations:

Exponentiation
Multiplication

4 *
I Division + Addition

Subtraction -

65

L

Control Characters:
% Output format delimiter
I .
Carriage return
$ Type symbol table contents
0 Parentheses
I 1 Square brackets
< > Angle brackets
,I I, Quotation marks
? ? Question marks
?: Asterisk

Carriage return and line feed

(mathematics)

(text string)
(trace feature)
(high-speed reader input)

FOCAL42’s Functions
FCOS()

FSQT() Square Root FATN()
FABS() Absolute Value FLOG()
FSGN() Sign Part of the

Expression FDlS()
FITR() Integer Part of the FADC()

Expression
FRAN() A Random number

Generator FNEW()
FEXP() Natural Base to the

Power FCOM()
FSIN() Sine

Cosine
Arctangent
Naperian Log

Scope Functions
Analog to Digital Input
Function

User Function

Storage Function

66

CHAPTER 4
INDUSTRIAL SYSTEMS

Industrial laboratories have many missions. In some, there is a great deal
of basic research being done. In others applied research and product
development takes place. Still other laboratories are engaged in product
evaluation, product test and quality control. Metrology laboratories and
Standards Laboratories are also found in the industrial environment.

Such laboratories have many things in common despite the diversity of
the missions being accomplished. First of all, the laboratory personnel
are in general highly intelligent, well qualified people, usually quite con-
versant with a number of skills. They have typically used computers in
their problem solving, and in many environments the computer forms a
part of the laboratory itself. The different levels of motivation inherent in

.such laboratory workers means that they are typically quite willing to
innovate.
Industrial laboratory researchers have a common mission and a com-
mon goal - the achievement of meaningful research. The name or label
that this research bears is not as important as its accomplishments. It
is not surprising then that in all such laboratories the general purpose
digital computer has been recognized as a means of assisting and achiev-
ing these goals.
The tools of the trade of the industrial researcher range from quite
sophisticated chemical or mechanical instruments through strain gages,
thermocouples, accelerometers, proximity detectors down to the simplest
of limit switches, lights, etc. In many cases these transducers have been
tied together in a systematic approach to data acquisition using analog
or digital logic. It is also quite common to find the integrating digital
voltmeter as a tool of the industrial researcher, converting analog signals
to digital information for further processing.

In general, the computer in the laboratory can perform many tasks. It can
be used for data acquisition and data logging. It can perform process
monitoring and control. The computer is commonly used as a means of
displaying data after acquisition. It can also store and retrieve the data.
Data reduction is often required and this can take place in one of two
ways: either the data can be pre-processed, then transmitted to a central
computer or the data can be fully processed in the laboratory, eliminating
the requirement for further processing outside the laboratory environment.
The computer can also be used to format, file, and catalog data for subse-
quent use at some later point in time. The data which has been acquired,
stored and processed is frequently required for outputting in some report
format or in graphic form.

There are many questions which must be a'nswered before a speciflc
computer system can be installed in a laboratory. The first item of in-
terest is the number of variables or signals in which the researcher is
interested. Aside from the number of signals that he is interested in
acquiring, he must also specify the rate a t which these signals are to be
sampled, the duration of time over which he wishes to sample this infor-
mation, and the source of the information as well as the environment.

67

If he is also interested in controlling an experiment or transducers, the
user must specify the type of control that he wants to achieve; simple on-
off control, proportional control or some other means of control. This will
determine the kinds of interfacing devices required by the cbmputer.

When data is being acquired, the amount of data which must be stored
will determine the amount of bulk storage necessary. If data is to be
acquired over long periods of time at other than extremely low data rates,
the amount of bulk storage required can be considerable. If on the other
hand most of the data is processed and examined by the researcher, the
amount of bulk storage can be considerably reduced.

In keeping with the philosophy of reducing the amount of unnecessary
information resulting from the experiment, the computer can successfully
cut-down on the amount of information that the researcher must examine
to determine the result of his work. By doing extensive processing and
reduction of data, the computer can cut to a bare minimum the number
of variables which must be examined in order to arrive a t a conclusion
about one’s research. This serves to keep the researcher intimately
involved with.what he is doing, and should minimize the possibility of
useless data being recorded or taking up valuable storage space in the
system.

In addition to the data acquired from an experimental set up, it is often
necessary to store textual information explaining the data. Aside from the
title of experiment or test, it states the experimental conditions and the
significant parameters not being directly monitored. Many times the user
would like to insert a considerable number of comments regarding what
he feels to be the significance of a particular experimental run. These
comments can also be categorized as parameters for cataloged file
retrieval - hence the importance of being able to store many different
kinds of information, a capability which the digital computer lends itself
to easily.

The computer has become a useful tool in laboratories throughout the
world because it can reduce tedium, not create it. Reports, previously
drudgery, can easily be done using conversational languages and higher
level languages such as FOCAL-12. Graphic output is possible using pro-
grams Created for such purposes. The PDP-12 has two programs available
for such output - CATACAL (with an analog plotter), or GRAPHA which
uses a digital incremental plotter, (available from Digital Equipment
Corporation). Both of these programs, when used on the PDP-12 make
use of the VR12 display, permitting a preview of the graphic data before
it is plotted, eliminating unwanted outputs.

The difficulty involved in using general purpose computers in the labora-
tory generally arises from the fact that the “real-world” is analog in nature
while the general purpose computer is a digital device. The interrelation-
ship between the “real-world’’ and the computer is not then a trivial
matter.

Most instruments, for example, have analog voltages as outputs. Only
recently have instrument manufacturers begun the practice of imple-

.

68

menting various coded binary outputs to improve the facility of interfac-
ing their instruments with computers. Transducers are generally analog
devices, although some piezoelectric devices with digital outputs are
presently available, partjcularly pressure-sensing transducers.

By way of contrast, monitoring of events implies utilizing limit switches
or other similar devices which can be treated in a digital fashion and con-
sequently are not too difficult to interface to the computer, The same thing
applies to the integrating digital voltmeter, a voltage to frequency con-
verter producing a digital output corresponding to an analog input.

As far as the digital computer is concerned it normally accepts binary,
binary coded decimal, octal or other alphanumeric inputs. In all but the
binary case, the input requires some kind of code conversion via a com-
puter program before it can be easily used.

In addition to the direct binary and coded binary inputs which the com-
puter will accept, it is possible to use various analog-to-digital techniques
to produce a binary number which is proportional to the amplitude of an
analog voltage. A great deal of work has been done in this area over the
last several years and many A/D devices are now available a t reasonable
prices.

The PDP-l2A, recognizing its role as a laboratory computer, includes as
one of its standard input devices the AD12 a 16 channel multiplexed
analog-to-digital converter. This device is unique in that it is controlled
by a one computer word instruction. This sample instruction (SAM) makes
it very easy to use the A to D converter on the PDP-12. In addition to the
AD12, many other standard A to D converters are available for use on
the PDP-12. This permits the selection of the conversion devices most
appropriate for the problem being undertaken.

The laboratory often requires computer outputs for device control, and
these must be compatible with the lab environment. This means that the
computer must provide both analog and digital outputs. Digital outputs,
in the form of binary or coded binary words or relay closures, are easily
provided on the PDP-12. The analog outputs from a computer come from
a digital-to-analog converter which is similar in concept but opposite in
function to the A to D converter. Such a device takes a binary number
and produces an output voltage proportional to that number. Both forms
of output have their uses and computers in the laboratory environment
utilize both of them.

The marriage of the Laboratory and the Computer poses a problem
within the industrial environment. This is the same problem that arises
whenever one interfaces a computer to the analog world. These problems
have been overcome in our many installations throughout the world,
and the experience that DEC has gained in solving them can be brought
to bear on new installations in the future. Of special interest in the labor-
atory is the ability of the computer to be used for data acquisition.

The high speed, accuracy and data handling flexibility of digital computer
systems can lead to data gathering techniqes beyond the ability of simple
displays and recorders. Once process variables are converted to digital

69

form; a l l the resources of automatic digital data processing may be ap-
plied to the task, from a simple strip printout to sophisticated data
reduction and correlation resulting in a labeled and tabulated printout.
Data acquisition applications range from a single-channel A/D con-
verter measuring slowchanging data once per minute to an automatically
sequenced multi-channel system that scales inputs, performs limit checks
and logical decisions, and formats data for recording on magnetic or
punched tape.

The basic elements of a computerized data acquisition system are
illustrated.

r---- 1
1-1

dL-

I
I

I
I

LIMIT SWITCHES,
SAFETY VANE
SWITCHES, ETC.

-I-
I
I

ANALOG
INPUTS
I

MULTIPLEXED

CONVERTER CO ND(T 0 N I N G

DIGITAL -
DIGITAL

CLOCK CONMTlONlNG

COMPUTER DISPLAY SYSTEM I
U O C K

Data Acquisition System

ANALOG INPUTS
Process sensors such as thermocouples, potentiometers, strain gauges
and flow meters convert physical events or quantities to proportionally-
varying electrical signals. These signals must be converted to digital
numbers acceptable to a data processor.

Signal conditioning may be required for impedance matching, to suppty
excitation voltage for passive transducers, to provide amplification for
low-level signals, or to transmit signals over long line.

Multiplexing is required to time-share the A/D converter when many in-
puts must be scanned. The type of analog-digital converter and multi-
plexer combination can determine whether signal conditioning is needed.
Multiplexer-converters that use solid state switching operate at the
highest scanning rates but require high level input signals. A converter
system that uses guarded three-wire multiplexing and differential ampli-
fication, or one using a voltage-to-frequency conversion method, will often
accept low-level signals from strain gauges or thermocouples without
conditioning.

-TAL INPUTS
In addition to converted analog inputs, the computer can accept digital
of contact-closure information. Process-related on-off signals such as
alarms, limit indications, and selector switch settings can then be cor-
related with the analog data. Direct digital transducers such as turbine

70

flow meters and digital shaft position encoders interface to digital input
channels without the intermediate A / D conversion.

Digital inputs may need signal conditioning to match the computer‘s
logic levels. Excitation voltage may be needed for contacts. Pulses must
be retained long enough for the computer to sample them.

A few digital inputs are simply gated into the computer a t programmed
intervals. Computing time is saved if the digital input system interrupts
the computer and requests read-in only when the data changes, or when
an external “read” request occurs. .
When the number of input lines exceeds the computer word length, a
scanning technique must be used. The digital input channel connects
a group (12, 18, or 36 lines) of digital signals to the computer input
lines, then connects the next group of signals to the same input lines,
and so on. Systems of this type can be expanded to handle thousands
of inputs. Input groups can be selected by the computer program, or the
scanner can sequence from group to group automatically, interrupting
the computer when each group is ready to be sampled.

REAL-TIME CLOCKS
A special variety of digital input is the real-time clock. The simplest type
generates timing pulses than can cause a computer interrupt; an internal
computer memory location counts elapsed time. The clock source can
be either a multivibrator or the 60 Hz power line. Another type, a
preset interval timer, is set up by the computer and enabled to count.
When the count qua ls a preset value, an interrupt is generated. The
third type is a true elapsed-time counter that can be set to zero, then
read at any time by the computer.

ROLE OF THE COMPUTER

Data Handling:
Once-the inputs are brought into computer memory, the data can be
verified, manipulated, formatted, printed out, and displayed in a variety
of ways. The arbitrary voltage or frequency readings from the A/D con-
verter cah be compared against limits and converted to meaningful en-
gineering units (3.26 millivolts from one sensor may correspond to + 132”
F; from another sensor, the same voltage might signify “84 gallons per
minute”). Standard data handling programming can be used to sort the
data, arrange related data in labeled columns, add the time of reading,
and initate print-out by highsspeed printer or CRT display. Formatted
data can be accumulated by drum or disc mass-storage, then transferred
to magnetic tape for later analysis at an off-site data processing center.
Through communication links, data can be transferred to remote proces-
sors as it is collected. Operators can select blocks of data for display,
or adjust conversion factors, by simple keyboard input requests.

Functions that can be performed by the computer in a data acquisition
system are summarized below.

71

Input Data Scanning:
Control the A/D converter, multiplexer, and digital line scanners
Control variable-gain scaling amplifiers preceding the A/D converter
Modify the scanning sequence based upon either the input data, or
operator command or both
Maintain time of day without the need for an elaborate clock
Count pulses, measure periods and frequencies of recurrent digital inputs

Data Formatting:
Linearize transducer outputs
Correct transducer outputs for zero offset effects
Convert raw data to physical units
Check converted data against upper and lower limits for out-of-tolerance
conditions; alarm monitoring, faulty transducer detection
Perform signal averaging, integration, and filtering
Perform logical checks on the data

Calibrating, Failure Detection:
Calibrate analogto digital converters by measuring voltage standards
Detect equipment failures in the operating system

Storage, Display, Printout:
Control recording, printout, display devices
Communicate with an operator and present data via printers, X-Y plotters,
meters, lights, etc. for best operator comprehension
Maintain data files for an on-demand inspection by an operator
Assemble pre-processed data for visual display, recording, or off-line data
reduction
Provide "quick-look'' results for processes which are of finite time dura-
tion after the run is done
Retransmit data over long lines to a remote computer

Operator Aids:
Even without any hardware control links back to the process, a computer-
based data acquisition system provides information that will contribute
to increased production or process efficiency.

Overall process monitoring can be assisted by a cathode ray tube display
system controlled by the computer. CRT displays can be programmed to
select stored data and display it in the best form for quick operator com-
prehension. The equivalent of many process-flow chart graphic display
panels can be stored in computer mass memory, updated a5 new infor-
mation is acquired, and displayed when the operator requests.

Oscilloscope-type traces can be presented, prepared from information
collected over time scales of seconds, minutes or days. Simultaneous
values of many variables can be compared. Points on curves can be
selected by light pen and numerical values printed out on demand. Used
in this mode, a cathode ray tube display functions like a strip-chart
recorder, except that it is not a permanent record of the variables being
examined. Magnetic core and tape or drum memory form the more per-

72

manent record, while the display selects only what the operator needs a t
the moment. Guided by such displays, a central operator can provide
essential supervisory control during critical periods such as startup.

Computation:
The ability of the computer to compute, as well as sort and display infor-
mation, contributes to effective control. Even when the task is basically
data gathering, collected data can be analyzed to relate performance to
variations in raw materials, equipment design, and ambient conditions.
Mathematical models of the process and the applied control techniques
can be verified by experiment, and refined to predict the effect of impor-
tan t variables.

Management Aids:
Management aids are another important by-product of computer-based
data acquisition. Used off-line, the computer can process production
statistics and perform other relatively routine operations. Management
can improve decision making and operational control by establishing a
detailed process information system. The computer can provide infor-
mation for: financial planning; production planning, production schedul-
ing and operational control, and accounting information.

The PDP-12 provides a unique solution to the general problem of using
computers in the laboratory. It is unique because it is not a “Bare-bones
processor” with various devices tacked on to it, but is rather a complete,
integrated computer system. This system consists of a powerful central
processor capable of executing two complete order codes (i.e. instruction
sets) and:

4096 12-bit words of 1.6 ps Core Memory, expandable to 32,768
words
Direct Memory Access Channel
Hardware Signed Multiply Instruction (9ps)
15 Auto-index Registers
6 Sense Switches
TC12 LINCtape Automatic Control fully buffered, DMA Transfer
1TU56 Dual Magnetic Tape Transport, expandable to 4 Dual Trans-
ports
VC12 LlNCscope Control and Character Buffer, 2 Intensification
Channels, 2 sized characters
’VR12 7” x 9” CRT Display
AD12 Analog-to Digital converter and multiplexer, 16 Channels
(8 knobs, 8 phone jacks), expandable to 32 Channels, 10-bit accuracy,
Sample and Hold, Differential
Preamplifiers, 5OkHz conversion rate * 1 volt input
DR12 6 Programmable SPDT Relays
Data Terminal Panel
ASR33 Teletypewriter, 10 Char/Sec Paper Tape Reader and Punch
12 Sense Line Inputs
30” Freestanding Cabinet
Console> Table.

73 I

Most important for the researcher or laboratory user is the software
\available to make the COMpUter system useful. Whether this is written
by the user or by the computer manufacturer, it should incorporate the
same systems approach that is encountered in the hardware system. In
the case of the PDP-12 the hardware system supporting the software is
a more complete system and consequently the software can have more
powerful modules.

For example, one module might be written to sample data, digitize it,
store it in core memory, display the stored data, perform some simple
computation, transfer the data to tape or some other form of bulk storage
and retrieve it at will during subsequent operations. Each of these func-
tions can be treated via an individual “module” in the software and con-
sequently a t any point one of the functions may be omitted and the
subsequent one substituted for it. For example, if the data coming in is
of a known format it may only be necessary to sample, digitize and write
the data on magnetic tape. Only after a known quantity of information is
present would it be necessary to retrieve the data for examination and
comparison, let us say with previously acquired data, for example.

Another example of a modular program might be to sample data, compare
it with a previously acquired file, check for acceptability of the acquired
data which is subsequently either stored or discarded. The program
should provide for transfer to some bulk storage medium, averaging of
successive acquired files and similar functions. Again, all these functions
would be modular to the extent that after a specific function is performed
the user could jump to another, “non-sequential” function if he desired.

In addition to data acquisition and file comparison, programs have been
written and are available to carry out extensive processing of acquired
signals, such as frequency analysis correlation and convolutions. Both
Fast Fourier Transform and a more conventional Fourier Analysis program
are available for use on the PDP-12. Auto- and Cross-correlation programs
and convolution programs have been written and used extensively.

In most cases the results of such signal processing would be available
via the VR12 CRT display or the teletype. Hard copy output might also
be achieved using either a digital incremental plotter or an analog re-
cordet.

In the case of the PDP-12, software can easily be written by the end user
with the powerful DIAL operating system. This operating system provides
a highly interactive and easy method for program preparation. It enables
the user to take advantage of the presence of all the PDP-12 system
devices, supported a t the level of the basic instruction set. These system
devices, all available on the PDP-12A systems, encompass all the com-
monly required “options” required in the industrial laboratory environ-
ment.

The analogto-digital converter, AD12, provided with the PDP-12 is a
16 channel multiplexed A to D converter with sample and hold, overload
protection and differential input. The normal input voltage is + 1 volt
full scale. It is possible to specify other input voltages, provided at

74

the request of the user. The addition of the AM12/AG12 expands the
converter. to 32 channels, of which 24 are available for external inputs.
It is also possible to further expand the AD12 to a full complement of
128 channels. This is a special feature available by directly contacting
PDP-12 engineering.

To accept signals from low level transducers such as thermocouples
or strain gauges, it may be necessary for the laboratory user to introduce
some means of signal conditioning. This signal conditioning equipment
is best provided by the user himself, who is most aware of the charac-
teristics of the equipment which he has in his laboratory.

The relay output on the PDP-12 provides six discrete relay closures
capable of carrying 1 amp at 110 volts or 3 amps at 28 volts DC. These
relays are supported in software and can be used to turn instruments
on and off, raise and lower recorder pins, or set alarm signals in the
laboratory. This relay output may also be expanded to provide more
closures if required.

There are also 12 sense line inputs available on the PDP-12. These sense
line inputs accept logic level signals and can be sensed under program
control as a means of determining status of external events.

The digital-to-analog converters which drive the VR12 display are brought
out through a connector on the front panel of the PDP-12, providing two
analog signals which can be used to drive another display, energize an
analog plotter or to perform selected control functions. These voltages
are controllable via a single instruction. The DIS (Display a point) instruc-
tion.

The PDP-12A system provides a quarter of a million words of bulk storage
capacity. This bulk storage, block addressable LINCtape, acts as a linear
extension of core memory - a slow disc file, so to speak. The TC12, a
fully buffered controller, permits the operation of the tape units in an
overlapped mode. It is possible to add an additional 6 tapes units, with
a minimum capacity of over 1.6 million words of storage when one uses
extended tape addressing.

The VR12, an interactive point plotting display is also a part of the
standard PDP-12A system. This display enables the viewing of acquired
data and also permits text display. The DIAL operating system takes
advantage of this display, for example, to permit text editing and text
preparation in a very unique way.

The VR12 is a 7" x 9" scope with a 9-bit resolution in both the horizontal
and vertical directions. This display, an integral part of the system,
enhances the interactive natural of the PDP-12 and enhances user
familiarity with the machine.

In addition to the system devices normally supplied with the PDP-12,
many additional peripheral devices are available. Over and above the
variety of the analogto-digital and digital-to-analog converters previously
mentioned, it is also possible to add disc files, additional LINCtapes
units, industry compatible tape units, line printers, alphanumeric terminals

75

and various other devices. This provides the flexibility and variety neces-
sary to solve a specific problem.

Of special interest to the laboratory users are two unique new devices
specifically developed for this environment. The first is a data break
controller for enhancing and simplifying data acquisition. The second, a
floating point processor, provides a fully buffered device for floating point
computations. This peripheral processor reduces computation time con-
siderably and enables total data reduction to take place within the labora-
tory itself, rather than relying on the computer center.

The data break controller, described in much more detail elsewhere in
this handbook provides the capability of using 12-bit f sign, 14 bit +
sign,A to D converters,via four independent sample and hold circuits. It is
a data break device and runs in parallel with center processor operation.
The utility of this device is greatly enhanced by the availability of applica-
tions software, provided at no charge, written specifically for this device.
The availability of applications software permits immediate use of the
computer within the laboratory environment.

The floating point processor, another new peripheral device for the
PDP-12, is fully buffered and shares the PDP-12 memory with the CPU,
running in an overlapped mode using cycle stealing. The power of its
instruction set is enhanced by the availability of an Assembler to permit
user programs to be written quite simply. In addition, several applications
programs described elsewhere in this handbook are available for end user
convenience.

The PDP-12 with the data break controller and peripheral processor pro-
vides the laboratory user the total computer capability that he requires.
Analog and digital information is easily acquired from or transmitted to
the outside world. Data is easily stored on the LINCtape units provided
with this system. Computation and data reduction is facilitated using the
extremely powerful floating point processor, Information is easily reviewed
using the PDP-12 CRT display. And all these peripheral devices are sup-
ported with an extremely flexible and powerful instruction set and oper-
ating system.

The Dial programming development system, an outstanding “tool” of the
PDP-12, is described in much greater detail elsewhere in this handbook.
The human engineering inherent in this system is the result of Dial being
polished and perfected over many years.

Loading the operating system is dc ie easily by reading information from
the tape blocks through a cornmatid set into the console switches. Much
use is made of the CRT for displaying text and other alphanumeric
information.

In addition to the DIAL operating system. FORTRAN, BASIC and FOCAL
may also be used in the PDP-12. Of particular interest is the availability of
PS/8, an operating system developed on the PDP-8 but which can be run
on the PDP-12. This operating system features device independent opera-
tion, and LINCtape may be used as the system device. More information

76

regarding this system is available in the DEC handbook "Programming
Languages".

An extremely valuable tool to the laboratory use is FOCAL-12. The inter-
pretive compiler, described in great detail elsewhere in this handbook,
offers ease of programming without sacrificing computer power. The fact
that FOCAL-12 can execute LINC instructions as well as the PDP-8 subset
means that the LINC devices, such as the A to D converter and display,
may be used in FOCAL programming. Thus the interactive characteristics
of the POP-12 are retained and the ease of using FOCAL is enhanced.

If a specific problem requires more specialized and sophisticated software
than what can be achieved by modifying applications software provided
with the computer or by the user writing his own programs, it is possible
to contract with DEC's Software Group and have them write specific, well
defined programs for particular needs. If such an approach is thought
desireable, DEC is more than willing to assist the end user in writing
specifications for such programs.

An example of a simple program to acquire data from an K to D channel,
store the data on LINCtape and retrieve the data for subsequent display
on the VR12 will illustrate how simply the PDP-12 can be programmed
for data acquisition, storage and display.

* 29
LDA I
1 0 0 / S E T AC5 =- 1
ESF /SET FAST SAM
S E T I 6 /SET NO. OF P T S TO S A h
-408
S E T I 7 /TABLE LOC. OF DATA
7 7 7
SAM 1 0 / S E T U P MPX CHAN 1 0
SAM 1 0 /GET DATA P T
S T A I 7 /SAVE DATA P T
XSK I 6 / 4 0 0 < g) P T S YET?
JMP. -3 /NO
WRC
2759 /WRITE DATA TO RLK 750

777
S E T I 6 /NO OF P T S TO D I S P
-400
S E T I 5 /HOR 1 2 P O S OF F I R S T DATA
177 I. / P T TO D I S P L A Y
LDA r.1 /GET DATA PT
D I S 1 - 5 /DISPLAY, I T
XSK I 6 /DOME?
JMP. -3 /NO
JMP DISS? /YES D I S P L A Y AGAIN.

.

D I S S T D S E T I 7 /RESET TABLE PTR

All of these functions are initiated via simple Teletype commands and/or
responses to Teletype inquiries.

77

-
The above two exampies show how simple it is to acquire, store and
display data. The second example illustrates the ease of using the appli-
cations programs available with the PDP-12. The first illustrates the
inherent power of the instruction set when the computer is being used
for such tasks. In either case, the end results is the same and the objec-
tives of the user are achieved.

I f available applications programs do not meet user needs, those which
are provided are easily modified using the DIAL operating system. Such
modifications provide the user with an extremely powerful and flexible
means of programming his computer without having to start from scratch
in every case.

Beside data acquisition, storage and display, the ability of the PDP-12 to
do extensive signal processing with the addition of the FPP floating point
processor makes this truly the complete laboratory system. No longer
is it necessary to take pre-processed data to the computer center for
further computation. In the event, however, that such further computation
is required it is possible to interface the PDP-12 to other DEC machines
such as PDP-15’s or PDP-10’s which are powerful and easy to use com-
puter systems for data processing. Such hierarchies of computers provide
the best of both worlds - the total independence of the individual user
and the extreme power and flexibility of a large central processor. What-
ever your needs are in the terms of computers, DEC has a solution to
your problem.

78

CLINICAL LABORATORY SYSTEMS
INTRODUCTION
Working closely with leading universities and hospitals, DEC recognized
the need to develop a computer-based clinical laboratory system for
physicians and technologists, already overburdened with an overwhelming
amount of data being generated by ever increasing work loads. DEC
responded to this need through a corporate commitment to develop a
total system for the clinical laboratory based on considerations and
suggestions from the users themselves.

The Clinical Laboratory System (Clinical Lab-12) has been developed and
proved in phases. The initial work on the data acquisition portion of the
system was performed by the university of Wisconsin Clinical Laboratory.
A Monitor Control System and a Patient File System have been added to
the LABCOM (LABoratory aided by COMputer) System, developed by the
University of Wisconsin.

The development of the Clinical Lab-12 System has been a cooperative
project between Digital Equipment Corporation, the University of Wis-
consin, and several other institutions and hospitals.

FUNCTIONAL DECRIPTION OF THE CLINICAL LAB-12 SYSTEM

Operational Description
Clinical Lab-12 is a real-time, on-line, multi-terminal computer system that
provides the clinical laboratory with an economical means of dealing with
the problems of data collection, reduction, and analysis. Clinical Lab-12
monitors laboratory instruments, processes and analyzes data from these
instruments, provides a summary patient file, and produces easy-to-read
reports. The system is run by the existing staff of laboratory technicians
using a conversational language (English) while reducing the errors in-
herent from manually logging data, producing AutoAnalyzerB “spin”
sheets, and reporting test results.

All six interactive Teletypes@ in the Clinical Laboratory System provide
concurrent access (in real-time) to the computer with a special-purpose
time-sharing monitor program. Under control of the monitor, the system
programs share the same data files while concurrently carrying out the
functions of the system. For example, while a technician is entering test
requisitions a t a given Teletype, another technician at a different Teletype
can be simultaneously requesting work sheets: a t the same time, the
remaining Teletypes can be used for other operations in the system. This
time-sharing principle on which Clinical Lab-12 operates enables each
remotely located Teletype to function much like a singleuser system.

The functions of the clinical laboratory are aided by several Clinical Lab-12
programs. These programs include: Requisition Entry: Work Sheet Genera-

@AutoAnalyzer is a registered trademark of Technicon Corporation.

@Teletype is a registered trademark of Teletype Corporation.

79

tion; Set-Up Analysis; Accession Number Entry; Summary Print, containing
a number of options; Administrative Update; Test Update; and Delete
Data.

COMPUTER-AUTOANALYZER INTERACTION
Operating procedures for laboratory equipment a t a particular hospital
will not have to be radically changed when Clinical Lab-12 is installed.
The system was designed within the clinical laboratory environment; there-
fore, its introduction into a hospital does not result in a traumatic change.
On the contrary, Clinical Lab-12 ensures a smooth transition to a com-
puter-assisted system.

Typical Test Processing Sequence
ORDERING (Requisitions for) TESTS
As in most medical institutions, laboratory analyses on a given patient
will be ordered at the request of the attending physician. The body fluid
3amplq (usually blood) will be drawn by an authorized hospital staff
member (Intern, resident, blood bank technician, etc.) and then forwarded 1
to the laboratory with a work requisition indicating the tests to be per-
formed.

REQUISITION ENTRY INTO COMPUTER
At the laboratory test requisition station, several procedures are performed
on the sample. Accession (test) numbers are assigned and attached to
the test requisition form and the sample. The numbered sample t&es are
then ready for centrifuging.

The patient’s hospital number, the sample test number, and normal
laboratory designations (i.e., BS, BUN, NA, K, CL, CO,, BlLl [RUBIN],
AMY [LASE], SGOT, SGPT, LDH, etc.) for desired tests are entered into
the computer by means of a Teletype. A card reader can also be used
as a means of requisition input to the computer.

Data Collection and Processing
In actual operation the computer monitors the operation of each auto-
mated test instrument to collect information from all known (standards
and controls) and unknown (patient) samples. On completion and verifi-
cation of the accuracy of the test run, this information is placed in the
patient’s file on the disk. If this is the only test result, or the last one’
needed to complete the patient’s file that day, an automatic summary
printout will be generated on the line printer for the last n number of
days (where n is the number of days tests were requested on the patient).
If automatic printouts are not immediately desired, they can be requested
at the end of the day. From the information on the disk, the computer
can generate Patient Summary, Billing, and Ward Reports.

Entering Patients to the File

I

a. The Patient Summary Report is generated by the computer from ‘ information stored on the disk and provides the hospital medical
staff with a survey of the majority of laboratory investigations on
a given patient. Other summary report formats are available,
which print the various tests across the page and vertically list

80

the time and date. This type of summary format can be tailored
to many different user demands.

b. The Billing Report enables the laboratory to present the adminis-
strative staff with a list of the tests performed and a cost for
each with a total on a daily basis. An eighthcharacter code can
be substituted for the cost if desired. This is another of the
system-build features that create a powerful and flexible Clinical
Lab-12 System.

c. The Ward (I&e&m) Report can be called at any time for the
latest status rep& on al l patients having laboratory work per-
formed that day. The report is printed by ward and room number
and lists all tests requested that day, their results if complete
or comments if incomplete.

Laboratory Programs
The Clinical Lab-12 System uses a number of DEC developed and main-
tained programs for the clinical laboratory. Each program provides the
user with a computerized function corresponding to a work function
currently performed by a technician in the noncomputerized laboratory.

The following, easy-to-use programs correspond to laboratory functions
and may be called into the computer from any free Teletype. All programs
use a conversational computer language (English) designed to assist
technologists in communicating with the computer programs.

REQUISITION ENTRY
Information from the doctor’s test request form is entered into the com-
puter using the requisition entry routine from any free Teletype or remote
display scope. .

PATIENT SUMMARY REPORT SAMPLE DIGITAL EQUIPMENT CORPORATION

..-I ”..‘ ..,*.I ” .U .,. .. “s .*.. I.. .,..
nrnntw. NILPH S (I $ b b 111 717-C 6 7

-
Patient Summary Report

81

[WAYNE SALLY G 2 8 6 2 1 8 3 3€/341 DATE 03/6321

ELECTROLYTE UNIT 15.00
DIFFERENTIAL CNT 7.00
VITAMIN A 13.08

.ELECTROLYTE UNIT 15.00
CHEMISTRY SUUVEY 11.00
CBC 1.50
DIFFERENTIAL CNT 1.00 -----

TOTAL 81-56?

Billing Report

WARD REPORT 03 /@2/70 12818 PM

M C 0

1229

I230

123e

105

105

1340

1340

'1348

1349

TECH

12
1 2

12
J2
12
12
12
12
12

12
12
12
12

4
4
4

4
4
4
4
4
4
4

14

14

14

14

MM€
WYNE SALLY G

PAT. 0 N.S./RDDM Y
9682103 3E/341

TEST

GLUCOSE (FASTING)
ORE NITROGEN 4

&LOR IDE
CO2 CONTENT
PH
P C 0 2
OSMOLALITY

PROTEIN UNIT
TOTAL PROTEIN
ALBUMIN
GLOBULIN
A/G

CBC
HEMOGLOBIN
HEMOCR I T
lJS?
DIFFERENTIAL CNT .

BANDS
SEGS
LYMPS
MONO
EOS
BAS0
DESCRIPTION

GLUCOSE

CALCIUM

PHOSPHORUS

URIC ACID

RESULT

92 MG/I0BML
23 MG/100ML

136- MEQ/L,
4.1 MEP/L
110 MEQ/L
22 MEWL

7.1
46 MI4 HG

24.1 MOSH

INCOMPL.
1.9 GMX
INCOMPL.
INCOMPL.

13.4 M M

! 5 , * n.c'-'..1!?-
42 %

6 %
10 %
26 X
6 %
2 %
3 %
0 %

142 MG/IBIBML

INCOMPL.

INCOMPL.

I NCOMPL.

,, _.

T [ME

I t20A
7 t 2 0 A

' 1 1 2 0 A

9 t 0 0 A

9 t 0 0 A

9 t OOA

l l t l 0 A

1I: lBA

l l t l e A

l l t l 0 A

R~PORTING ?'INISHE0 , TTY IS CREC'

Ward (Interim) Report

82

WORK SHEET GENERATOR
The technician selects this program and requests that work sheets be
generated and printed. The work sheets are generated from the test
requisition data and are typed on the requesting Teletype or on the line
,printer. The work sheets list the work to be done during the day, cate-
gorized by test type.

SET-UP ANALYSIS
This program is called to inform the computer of the type of tests, number
of cups to be run, and the Teletype to be used for each printout. After
the computer has been informed of the above parameters, the technologist
is free to start the data acquisitiqn process when she is ready. The com-
puter will be waiting to sense any channels that have been set up previous
to the start of any data acquisition.

ACCESSION NUMBER ENTR,Y
With conversational communication through a Teletype, this program
enables positive sample identification by crosschecking the accession
number of the test sample against the patient's name. A t this time, the
technologist can accept, reject, or modify the test results, in accordance
with the prescribed laboratory procedures. The test results must be verified
and accepted by the technologist before this program stores the test
results in the patient's file. This program validates the test results collected
during the data acquisition process.

SUMMARY PRINT
This program can be called from any Teletype to carry out any of the
following functions:

a.

b.

C.

d.

e.

f.

Print a Patient Summary Report on the line printer.

Print a Summary Report for every patient in the file on the line
printer. (Reports are sequenced by patient number.)

Print an End-of-Day Report - a line printer listing, containing
a summary report of all patients with incomplete tests. (Reports
are sequenced by patient number.)

Print an Inquiry Report - a Teletype listing, containing the
requested tests for a particular patient for a specified day.

Print a Ward Interim Report - a line printer listing, containing
tests for the current day for all patients in the file. (Reports are
sequenced by nursing station and room number.)

Print a Billing Repurt - a line printer listing containing all the
requested tests with the charge for each test. (Billing reports
are sequenced by patient number.)

.

In addition to generating the above reports on request, the Summary Print
Program automatically generates a Summary Report (the same as a.
above) when, on a given day, al l the requested tests for a patient have
been completed. If this automatic summary print method is not desired,

83

it can be suppressed and the summary reports will be printed a t any time
during the day when requested by the laboratory personnel.

ADMINISTRATIVE UPDATE
As patients are admitted to the hospital each day, this program is called
to add patients to the file. This program is also used to modify adminis-
trative data (e.g., room number change, etc.) in a patient's file. These
functions are accomplished from a Teletype or Cathode Ray Tube (CRT)
using conversational language to communicate to the program the neces-
sary changes to update the patient file.

For normal test requisitions, the system must have the patient's name,
room number, and other pertinent information on file. For emergency
cases, provisions are made within the program to request laboratory tests
without this information.

TEST UPDATE
Test results from instruments not interfaced to the computer are entered
manually. This is accomplished by calling the Test Update Program and
manually typing the test results into the computer via the Teletype or
display scope. This program is also used to examine and modify test
results already stored in the patient file.

DELETE DATA
The Delete Data Program is used to remove patient data from the active
patient file on the disk when the patient is released from the hospital.
This program is also used to delete test data from a patient's file without
deleting his administrative data.

CLINICAL LAB-12 SOFTWARE

System software
Clinical Lab-12 software consists of three major segments:

a. Monitor System

b. On-Line Data Acquisition System

c. Patient File System

kctrerne care has been taken to build an error-detection/recovery capa-
buiw into the programs. This dual capability is accomplished primarily
by editing features that give the user an easy-to-use format to correct
etTOn by responding YES when the program requests changes via the
Teletype. In addition, various routines in the programs conduct certain
mi detection tests. If the program determines that the information
bntered is improperly formatted, the computer notifies the user by an
appropriate error message.

84

L

MONITOR SYSTEM
Monitor System software coordinates the operation of the, On-Line Data
Acquisition System and the Patient File System. Events in the Monitor
System are controlled by monitor system software, a program residing in
core. Monitor software controls all interrupts in the system, processes all
input/output requests from peripheral devices, and allows multiple-user
access to the system almost simultaneously by means of a simple round-
robin queue schedule.

ON-LINE DATA ACQUISITION SYSTEM
The On-Line Data Acquisition System gathers data from automated iabora-
tory instruments and sets up and maintains a file on the disk for each
instrument channel (up to 24) and all the test information in that channel.
Digital inputs are handled in the same manner.

LABMON (LABoratory MONitor), the primary program for this system,
scans the test instrument channels and determines the status of each
channel a t 1 second intervals.

When the core buffers are filled with data from the laboratory test instru-
mentation, LABMON requests the Auto-Sort Program to perform the neces-
sary calculations and t Q transfer the results to the Disk Memory System.
After verification of each test result in the channel storage area, results
are placed in the patient file and are available for report generation, u p
dating, deletion, etc., and can be retrieved on demand a t any laboratory
terminal.

PATIENT FILE SYSTEM
The Patient File System establishes and maintains a central patient file.
A variety of reports are generated by the system, either automatically or
when requested by the user. .

The programs in the Patient File System generally are operated under the
user’s direction at one of the six Teletypes/CRT terminals that can be
used in the system; however, the Summary Print Program is activated
by the Monitor System when al l of the tests requested for a particular
patient, on a given day, have been completed. The capability for 12
independent user Teletypes/CRT terminals will be available by November
1970.

Additional Systems
Two other unique components of the Clinical Lab-12 software are the
Disk Storage System and the System Build Facility.

DISK STORAGE SYSTEM
The Disk Storage System provides random access storage for data and
programs. Programs stored on the disk are immediately available when
needed to perform system and user-requested functions. Minimum disk
storage capacity is 524,288 12-bit words.

85

SYSTEM PROGRAMS
(49,920 WORDS)

AUTOSORT EXPAMION

LABMON DATA IONS

GRAM TABLE
PATIENT TEST (24,570woRDs) (512 WORDS)

(Sen. xx) WORDS) TEST IMNTIFICATION
E (9.6t6WORDS)

SCHEWLE ~ S (t 2 , B o o w o R D s)
IRECTORY (750owoRDs)

PATIENT IDENTIFICATION
FILE (15.ooO WORDS1

REQUISITION INDEX
(~0,oOOM)RDs) I I L

TDTAL DISK STORAGE:
524,288 (2-811 WORDS

Disk Allocation

SYSTEM BUILD FACILITY
The System Build Facility of Clinical Lab-12 enables non-programmer
personnel to tailor the system to the needs of a particular clinical labora-
tory. Full (English) test names, abbreviated test names, and costs can be
defined for an individual test or groups of tests. In addition, test units
and various English comments can be defined to identify individual test
results. When changes are required, the data for both the individual tests
and groups of tests can be updated, off-line, by non-programmer per-
sonnel using modify, add, or delete procedures provided by the System
Build Facility. Another feature of this facility is the amount of added
control that each laboratory has over test order on summary printouts.

Clinical Lab-12 Programs
1. MONITOR SUBSYSTEM

A. Line Printer I /O Handler
B. Magnetic Tape I/O Handler
C. Disk I /O Handler (File Oriented)
D. Teletype I /O Handler
E. Interrupt Processing
F. Job and Queue Control
G. Program Loading

11. STARTUP

111. SYSTEM BUILDER

86

IV. PATIENT FILE SYSTEM
A. Administrative Update (AD)
B. Requisition Entry (RE)
C. Work Sheet Generator (WO)
D. Master Work Sheet (MA)
E. Accession Number Entry (AC)
F. Cleanup Routine (CL)
G. Update Test Results (TE)
H. Patient File System Update - Patient Summary Printouts (SU)
I . System Inquiry Program (IN)
J. Delete Data (DE
K. Billing Routine ,6)

M. Daily Test Census (DA)

A. Set-up Analysis (SE)
B. Laboratory Monitor (LABMON)
C. Real-Time Result Calculations
D. Diagnostic Printouts
E. Calculations (Manual)
F. Display Channels (DI)

L. Control/Schedu /P Block Generator (CS)

V. ON-LINE SUBSYSTEM

Central Processing Unit (CPU)
The CPU, a PDP-12 with an 8192-word core memory, performs the
mathematical calculations, data formatting, and other processing func-
tions of the Clinical Lab-12. It also controls the operation of the peripheral
equipment in the system.

The PDP-12 has two distinct operating modes within its single proces-
sor. Each of these modes has its own instruction set. In addition,
the system has flexible I/O capability that enables numerous peripheral
devices to be easily interfaced with it.

Clinical Lab-12 CPU features:
8192-word, 12-bit core memory with 1.6-ps cycle time
Full power processor prewired for the addition of a large number
of options and peripherals
Lowcost core memory expansion to 32,768 words, low-cost mass
storage with DECdisks, and I 6 M - compatible synchronous and
incremental magnetic tape
Single- and three-cycle direct memory data break facilities,
standard
A l l active registers continually displayed
Signed multiple instruction, standard
Fifteen auto-index registers, standard
LINC feature to facilitate multiple-precision arithmetic
Two's and one's complement arithmetic
24-bit console switch register
Six sense switches
Complete with 30-inch free-standing cabinet, console table, Model
ASR-35 teleprinter including paper-tape reader and punch

87 *

0 Twelve digital-sense line inputs, standard
0 Six single-pole, double-throw relay outputs
0 A/D converter

Two LINC tapes, standard
0 Oscilloscope for conversational language

Disk Memory System
The Clinical Lab-12 Disk Memory System provides rapid, economical,
random-access bulk storage for the system files and programs. Random-
access bulk storage enables the Clinical Lab-12 to react rapidly to the
needs of data acquisition and retrieval. Proper use of a disk allows the
user to collect data, enter manual input, and obtain printouts simultane-
ously, thereby avoiding the long delays that are encountered in a tape-
based system. In operation, the Disk Memory System serves as an exten-
sion of the computer’s core memory.

Basically, the Disk Memory System consists of one RF08 Control Unit
and two RS08 Disks. This combination provides 524,288 words of storage.
Storage capacity af the system ‘can be expanded by adding dieks to the
control unit. The maximum capacity of the system is 1,048,576 (12-bit)
words. The capacity is adequate to handle 1750 patients, assuming an
average of 80 laboratory tests per patient stay.
The RF08 Disk System is used for “swapping” when information must
be accessed in a very short time. In the event of additional requirements
for mass storage, DEC can provide disk packs with a storage capacity in
excess of 10 million words.

’

CLINICAL LAB-12 HARDWARE l\, Q
CAR0 READER

ANALOG
INPUT FROM
AUTOMATED
TEST
INSTRUMENTS

DIGITAL INWT FROM
AUTOMATED TEST
INSTRUMENTS System Hardware Configuration

88

Cathode Ray Tube (CRT) Display System
The Cathode Ray Tube (CRT) Display System allows the user to interact
with the system by responding to queries displayed on the screen. Use
of a conversational language eliminates the need for the technologist to
acquire programming experience .to operate the system. A very bright
phosphor is used to allow viewing under normal ambient lighting con-
ditions.

Linc Tape System
The two mainYunctions of the LINC Tape System are off-line storage and
initial loading of the programs into the system.
The basic LINC Tape System consists of two Transports, controlled by
a fully buffered tape control. A single ten-channel tape head serves for
reading and writing. Information is redundantly recorded in two nonad-
jacent channels. The redundant recording feature of the LINC Tape System
virtually eliminates the possibility of information being lost.

Teletype Units
Up to six Teletype units (generally, one 35 ASR and five KSR), placed in
strategic locations throughout the laboratory for concurrent communica-
tion with the central processor, can be used in Clinical Lab-12. (Expansion
of this capability is underway.) Remote CRTs can be used in place of
Teletypes.

CRT Display Terminal
This remote display terminal has its own memory buffer and is Teletype
compatible. It can be used for many functions in the laboratory, especially
for inquiring about the status of a particular patient, admission, or requi-
sition entry.

The speed of this terminal is variable from 10 characters per second up
to 120 characters per second in the Clinical Lab-12 System. The CRT
Display Terminal can also be easily interfaced with ~ the normal communi-
cation circuits for long distance transmission.

Line Printer
A line printer is the output device for the ward reports, billing reports,
summary reports, and others generated by Clinical Lab-12. The increased
speed of the line printer (up to 300 lines per minute, up to 132 characters
per line) ensures the timely generation of reports by nursing; medical, and
administrative personnel.

Another helpful feature of the line printer is that the 132 column line width
of the printer allows for up to seven days of data to be printed on a single
summary report sheet. This provides the physician with a convenient
record for easy review of information.

Card Reader and Control
A card reader is optional in the system and can be used as an input device
to request tests; read cards with punched hole.or mark sense information
from nonautomated test stations; and perform a variety of functions
normally performed by a Teletype (TTY) or oscilloscope.

89

The CR12 Card Reader and Control Unit is presently offered. This unit
reads 12-row, 80-column punched cards at a nominal rate of 200 cards
per minute. Cards are read by column, beginning with column 1. Data in
a card column is photo-electrically sensed.

In addition to the CR12, DEC is planning to incorporate a Mark/Sense
Card Reader in the system. This unit will be capable of reading pencil
check marks on preprinted request forms filled out by hospital personnel.
This capability eliminates the intermediate step of copying or punching
and, thereby reduces the possibility of errors and enhances input effi-
ciency.

Laboratory Instrument Analog Interface
The PDP-12 Computer has provisions for eight active analog channels
in the minimum configuration. This can be expanded to 24 channels by
adding the AM12 and A12 Expander Unit. Typically, an SMA12 requires
one channel, a singlechannel analyzer (one) and a dual-channel analyzer
(two), etc. Clinical Laboratory interface information consists of the follow-
ing:

AGL2 - This is the special 1943 Panel that has power supply
cable connectors and is prewired to accommodate up to 24
preamplifiers that handle the 22-wire cable from an H305.

0 H304 - Terminal Box - This is the small module that attaches
with nylon fasteners to the side of the Bristol Recorder. The H304
contains switches, potentiometers, cable connectors, etc. One
side attaches directly to the potentiometer on the shaft of the
recorder, the other end goes to the eight-channel distribution box.

H305 - Eight-Channel Distribution Box - This box can be
located strategically in various sections of the laboratory to cut
down on cabling costs and to give more flexibility to the system.

0 BCL2-A - Eight-Channel Trunk Cable - This 22-wire cable is
used to connect from AGL2 (in computer) to the H305 (8-channel
distribution box).

0 BCLP-B - Single-Channel Data Cable - This 3-wire cable con-
nects H304 (on side of Bristol Recorder) to H305 (8-channel
distribution box).

0 XLOl - Bristol Recorder Interface Kit - This single-channel kit
contains parts, wires, brackets, etc., to connect to shaft of the
Bristol Recorder and electrical connection to the H304. (This is
part of the H304 and is not ordered separately.)

H307 - Pulsed Output Converter - This converter is required
for SMA12 series, in addition to H304.

0 A209 - Analog Pre-amp (A202 with 0 + 2V input) - this is
a modification of the A202 to allow input signals between 0 and
+2v.

90 F

I I
I
I

u p m EIGHT
RECORDERS +-
FROM ONE
H305

u p m EIGHT
RECORMRS ---{Tk-----
FRwl ONE HZOS

r-

Clinical Lab Interface

AM12
K W f L

iFG PDP42

Laboratory Instrument DigRal Interface
DEC will make available a general digital interface for many of the
existing laboratory instruments that output digital signals instead of
analog signals. At present there is an interface for the Robot Chemist
and the Coulter "S" Counter. Depending on the methods employed in
the laboratory, the existing programs can be used with the Coulter "S".
Other digital input routines are in the process of being developed.

Manual Entry Console
DEC will make available a manual entry console with two-way communi-
cation to the computer for laboratory use. The objectives are compactness,
flexibility, modularity, and low cost. The manual entry console will be
under program control from the computer.

Communication Systems
Communications between two computers, or between a computer and
a remote terminal, are normally handled by a Dataphond in Clinical
Lab-12. This Dataphone provides a serial data transmission over standard
voicegrade telephone lines. The Dataphone interface is provided by DEC
in the form of the DP12, while the modem itself is supplied by the tele-
phone company.

@Dataphone is a registered trademark of the A. 1. & T. Company.

ai

Major applications of the PDP-12 are in biomedicine, psychology, chem-
istry, and physics research. In institutional and industrial laboratories,
the PDP-12 performs such functions as experiment control, data acquisi-
tion, and data manipulation.

92

The problem of pulse height analysis is basic to the physicist. With this
example, we will demonstrate the computer's ability to rapidly sense an
analyze large numbers of events in real time. In this example, the pulses t
be analyzed are generated by a charged-particle or gamma-ray detector
that produces a stream of pulses proportional to the energies of the par-
ticles intercepted by the detector If we write a computer program to so
and count the resulting pulses according to height, and then display the
result, we will obtain the radioactive spectrum of the source.

An Oscilloscope Photograph that Shows the Number of Nuclear Particles
as a Function of Energy.

The first step in setting up the experiment is to construct a basic algorithm
for the required computer program. The computer continuously monitors
the detector, waiting for output pulses. When a particle is detected, the
program notes the amplitude of the resulting output pulse. The particle is
then counted by incrementing a location in memory used to record the
number of detected particles within that particular energy level. When a
statistically significant number of particles are counted, the results are
displayed on the oscilloscope.

93

START 0
WAIT FOR NEXT

DETECTOR PULSE

NOTE HEIGHT OF
DETECTOR PULSE

I I

COUNT PARTICLE
BY INCREMENTING

LOCATION .IN MEMORY
CORRESPONDING TO

ENERGY OF
INCIDENT PARTICLE

RESULTS

Basic Algorithm for Pulse Height Analysis Experiment.

The algorithm shown above becomes somewhat unsatisfactory when we
consider that we are requiring computers capable of some 30,000 to
300,000 instructions a minute to wait for a detector that outputs pulses
at irregular intervals. Could not this wasted time be put to better use?
Say, to produce a continuous, dynamic display of the energy spectrum.
The answer is yes -we need only connect the analog-to-digital converter
to the computer interrupt line. Then, whenever a particle is detected, the
computer program will be interrupted. The interruption is a signal to the
program that the arialogto-digital converter should be read and the ap-
propriate memory register incremented. A t all other times, the program
generates a continuous display of the radioactive source’s energy spec.
trum.

The computer responds to the interrupting signal as follows:
1.
2.

the computer concludes the instruction being executed;
the location of the instruction that would normally be executed
next by the main program (that is, the contents of the program
counter) is stored in memory location 0;
the computer takes its next instruction from memory location 1. 3.

94

Thus, the first instruction of any program responding to an interrupt sig-
nal must be placed in location 1. The interrupt-servicing program should
also save the contents of the accumulator and any other active register
that is to be used by the interrupt program before issuing any instruc-
tions that alter the contents of these registers. When the interrupt-
servicing program is complete, the original contents of the accumulator
must be restored, and an indirect jump through location 0 (JMP 1'0)
must be made to return control to the main routine a t the point. where
the interruption occurred.

The figure below illustrates the equipment needed for the experiment.
The particle detector generates a voltage proportional to the energy of the
incident particle; -this is converted to a binary number by the analogto-
digital conve.rters. Conversely, two digital-to-analog converters are used
to drive the X and Y deflection amplifiers of the display oscilloscope.

-b
FLAG

0
PDP-8

COMPUTER
RESET .

DUAL
ANALOG

TO
DIGITAL

CONVERTER 0
40% WORDS
OF MEMORY

12 DATA LINES

-b -

PHOTOMULTIPLIER a
DETECTORS

OSCILLOSCOPE
DISPLAY

DATA A h
CONTROL
LINES + 0

*

L

DATA AN0
CONTROL I LINES

ASR- 33

TAPE ' KEY-
PUNCH 'BOARD /

READER I PRINTER

Block Diagram of Pulse Height Analysis Experiment.

CONSTRUCTING THE DETAILED ALGORITHM
The pulse height analysis program, then, will consist of two separate and
distinct routines the display routine to provide the dynamic display, and
the interrupt routine, which periodically interrupts the display routine
to store new data. The flow charts for these routines are shown below.

Note that the display program consists of twg phases: the value initiation
phase, and the display phase. In the initial phase, the table of memory
locations used by the program to count the incident particles is cleared.
In the display phase, the number of particles are displayed on the scope
as a function of energy.

95

,

START

I TURN OFF INTERRUPT,
CLEAR ACCUMULATOR

2 GET ADDRESS OF FIRST

I LYLOCI I * USING POINTER. CLEAR

I
- , .--

NEXT REG~TER/COUNTER I IN TABLE OF COUNTERS
I I
INCY 4

INITIALIZATION
' PHASE

1 INCREMENT POINTER
YLOC" TO POINT TO I NEXT REGISTER /COUNTER

.EARED1

Display

DISPLAY
PHASE

DISPLAY NEXT
ENERGY RANGE IN
TABLE ON X-AXIS

I DISPLAY
CORRESPONDING I Y-VALUE USING I YLOC POINTER I

INCREMENT X TO
OBTAIN NEXT

ENERGY LEVEL

COMPE

COMPARE

X = MEMAX

SET X TO ZERO

Routine.

96

INTERRUPT

I. CLEAR ACCUMULATOR
2 RESTORE SAVED CON-

3 TURN INTERRUPT ON
4. RETURN TO DISPLAY

TENTS OF ACCUMULATOR

PROGRAM -

I. SAVE CONTENTS OF
ACCUMULATOR I 2. GET LOCATION OF
FIRST COUNTER (IN11
FROM MEMORY: ADD

Interrupt Routine.

As a first step in clearing the table of particle-counting registers, we load
the accumulator with the address of the first counter within the table
and store this address in symbolic location YLOC. YLOC can then be
used as a "pointer" to enable clearing of the first counter, as follows:

CLA /CLEAR AC
TAD IN1
DCA Y LOC /STORE FOR USE AS POINTER
CLA /CLEAR AC
DCA I YLOC /CLEAR COUNTER

/GET ADDRESS OF FIRST COUNTER

Similarly, by incrementing YLOC, we can clear the next counter in the
table, and so on until all the counters are cleared.

The routine for displaying counter contents is equally simple: for each
discrete energy level (X-axis position) the contents of the corresponding
counter are displayed on the Y-axis, proceeding from the lowest selected
energy level to the highest in a continuous, interruptible loop.

97

The task of the interrupt rsutine is to count each particle by increment-
ing the appropriate memory register. The simplest way to accomplish
this is to let the pulse amplitude itself specify the address of the
appropriate memory register. Thus, the address of the first counter
(symbolic location INI) is added to the binary value of the pulse ampli-
tude, and the sum is used as a pointer to locate and increment the
desired register. The interrupt routine compares the resultant counter
contents with an arbitrary maximum (full-scale) value - in this case,
1023.

The coding of the complete program - interrupt routine and main
routine - is shown below. Labels appended to boxes on the flow
charts correspond to symbolic location names within the program to
simplify the task of keying the flow of charts to the program.

Complete Pulse Height Analysis Program

PULSE HEIGHT ANALYSIS PROGRAM

(E).
/RECORDING NUMBER OF PARTICLES (P) AS A FUNCTION OF ENERGY

/PLOTTING NUMBER OF PARTICLES (Y AXIS) VS. ENERGY (X AXIS).
/DATA INPUT WRITING.

DCA STORE
ADRR
TAD IN1

DCA TEMP

ISZ I TEMP
JMP RESET
HLT

/RESET AND RETURN
RESET CLA

TAD STORE
ION
JMP I O

/CLEAR ROUTINE
START, IOF

CLA
TAD IN1
DCA YLOC

/CLEAR REGISTERS
CLEAR CLA

/ADVANCE ADDRESS
INCY TAD YLOC

IAC
DCA YLOC

DCA I YLOC

/SAVE ACCU MU LATOR.
/READ ENERGY FROM ADC INTO AC.
/OBTAIN P LOCATION BY ADDING.
/ADDRESS OF FIRST COUNTER.
/STORE P LOCATION FOR INDIRECT
ADDRESSING.

/CLEAR AND
/RESTORE AC.
/TURN ON INTERRUPT.
/RETURN TO DISPLAY.

/TURN OFF INTERRUPT.
/CLEAR AC.
/GET ADDRESS OF FIRST COUNTER.
/DEPOSIT FOR INDIRECT ADDRESSING.

/CLEAR AC.
/CLEAR COUNTER

/READ ADDRESS.
/INCREMENT ADDRESS.
/DEPOSIT ADDRESS FOR NEXT LOOP.

98

./CHECK FOR COMPLETION AND LOOP OR ADVANCE
ENDAD TAD YLOC /READ ADDRESS.

TAD MMAX

SZA /IS IT ZERO?
JMP CLEAR
ION

/DISPLAY ROUT1 NE
BEGIN, CLA

TAD INI

DCA YLOC
TAD I YLOC
LINC /GO TO LINC MODE.
L MODE
DIS I X

P MODE

/SUBTRACT MAXIMUM VALUE OF Y
LOCATION.

/IF NO, CLEAR NEXT COUNTER.
/IF YES, TURN ON INTERRUPT.

/COMPUTE Y LOCATION FOR INDIRECT
ADDRESSING.

/READ # OF PARTICLES.

/DISPLAY AND INCREMENT X.
PDP /GO TO 8-MODE.

/CHECK FOR FULL SCALE
COMPE TAD X /READ NEW ENERGY.

TAD MEMAX /SUBTRACT E. MAXIMUM.
SZA /IS IT ZERO?
JMP BEGIN
DCA X
JMP BEGIN

/IF NO DISPLAY NEXT POlkT.
/IF YES, SET ENERGY = 0
/JUMP TO DISPLAY FIRST POINT

\

/LIST OF CONSTANTS
STORE, 0 /STORAGE REGISTER FOR AC DURING

IN1 1000 /LOCATION OF INITIAL DATA REGISTER.
TEMP, 0 /TEMP. STORAGE FOR ADDRESS OF P.
MFS, -1023 /MINUS FULL SCALE.
YLOC, 0 /TEMP. STORAGE FOR ADDRESS OF Y.
MMAX, -2024 /MINUS (MAXIMUM Y LOCATION +1)
X, 0 /X
MEMAY, -1024 /MINUS (E MAXIMUM +1)

PHA DISPLAY ROUTINE
BEGIN, CLA

/INPUT ROUTINE.

TAD IN1
DCA YLOC
TAD I YLOC
L MODE
LINC /Go to LINC mode
DIS I X
PDP /Go to 8-mode
P MODE

/Compute Y location for indirect addressing

/Read #t of particles

/Display and increment X

PHA-12
Digital Equipment Corporation presently offers prepackaged PDP-12 com-
puter systems with standard applications software to perform the task

99

of Pulse Height Analysis. These systems are designated PHA-12 (4K)
and PHA-12 (8K). They combine a Pulse Height Analyzer with the balance
and flexibility of an interactive, general purpose computer system. With
the sophisticated physics software routines supplied by DEC, PHA-12
systems will accumulate, store, display, and analyze energy spectra and
record the results of a variety of applicable devices. 4

PHA-12 (8K) ANALYZER CHARACTERISTICS:
In the PHA-12 (8K) system, data catlection is via AC mode through the
NK04-A’ interface in either single br dual parameter. The PDP-12 (8K)
used in this system has 8K of core memory and a 1.6 microsecond
memory cycle time.

Four PHA-12 (8K) programs are presently available:

1.

2.

3.

4.

A single parameter program which stores data in one 4096-
channel data region. Up to 262,144 counts per channel are
allowed via a one and one half precision storage routine. The
piogram will display successive 1024-channel subsets of the
entire data region.

A dual parameter program which stores spectra in a 64 x 64
channel data region with up to 262,144 counts per channel.

An off-line peak location and listing program.

An off-line program to output binary data onto industty-com-
patible incremental magnetic tape.

Programs l., 2, and 3 will write out spectra on paper tape or LINCtape.
In addition, programs 1 and 2 outlined for PHA-12 (4K) are fully com-
patible with a PHA-12 (8K) system and is furnished as standard applica-
tions software.

PHA-12 (4K) ANALYZER CHARACTERISTICS
With the PHA-12 (4K), data may be accumulated in single or dual para-
meter through the NK04-A nuclear interface. Data collection proceeds
in AC mode directly from the ADC’s to the PDP-12’s accumulator. The
PHA software then stores the data directly in core memory. The PDP-12
used in this system has 4K of memory, a fast memory cycle time of 1.6
microseconds, and also includes extended arithmetic element (EAE) for
fast multiply and divide operations.

The PHA software will write out spectra on either papertape or LINCtape.
The following six programs are provided:

A single parameter program which stores data in single preci-
scion in one of two 1024-channel data regions. Either of the two
regions may be displayed, and one region’s spectrum may be
subtracted from the other spectrum. Up to 4096 counts per
channel are accepted.

A single parameter program which stores data in- a single 1024-
channel data region. The other 1024 word memory space is

1.

2.

100

used for storing counts in double precision, permitting up to
16,777,216 counts per channel.

A single parameter program which stores data in one of two
1024-channel data regions. Either of the two regions may be
displayed, and one region’s spectrum may be subtracted from
the other spectrum. Up to 1,098,578 counts per channel are
accepted in square root storage mode. The square root routine
is a statistical storage technique which can reflect a very large
number of counts which avoiding the core memory space r e
quirements of double precision.

A dual parameter program which stores spectra in a 64 x 64
channel data region with up to 4096 counts per channel.

A dual parameter program which stores spectra in a 64 x 44
channel data region with up to 66,536 counts per channel in
square root storage mode.

An off-line peak location and listing program.

3.

4.

5.

6.

Although the extended arithmetic element is standard with the PHA-12
systems, you may purchase a PHA-12 configuration without EAE, in
which case Programs 3 and 5 utilizing the square root storage mode
would be inoperable.

PHA-12 (8K) & (4K) PULSE HEIGHT ANALYSIS PROGRAMS

Single Parameter:

DATA TAKING
1. Enable data taking.
2. Disable data taking.
3. Set live time clQck a t console.

DISPLAY
1.

2.
3.

Display (a given) data region with specified lower and upper
markers.
Expand the display between the markers.
Set full scale of display with console switches.

MAN1 PU LATION
1. Zero (a given) data region.
2. Integrate data between markers.
3. Subtract one data region from the other and store in another

specified region.

DATA INPUT/OUTPUT
1.
2.
3.

Write out channels between the markers on TTY.
Punch out channels between the markers in binary.
Utilize DECtape as a data storage medium with ability to write
files. \

101

Dual Parameter:

DATA TAK I NG
1.
2.
3.

Enable data taking from both ADC’s.
Disable data taking from both ADC’s.
Set live time clock a t console.

DISPLAY
1.
2.
3.
4.
5.
6.
7.
8.

Display twinkle box.
Display isometric matrix.
Display differential contours.
Modify contour levels.
Set and modify horizontal and vertical markers.
Display horizontal and vertical slices.
Reverse axis.
Set full scale of display.

MANIPULATION
. 1. Zero data region.

DATA INPUT/OUTPUT
1.
2.
3. Utilize DECtape as a data storage medium with ability to

Punch data area in binary.
Write out slices of data area on TTY.

write files.

102

CHAPTER 7
REAL TIME CLOCK

The family of KW12 real time clock ts of the Real Time Interface,
(type KW12-A, and two Fixed ocks, (KW12-B and KW12.C.
These clocks are designed to c e range of programming and
research requirements by filling a need for d j f fer id degrees of flexibility.

The KW12-A. for instance, can be used to:

1. Synchwize actions taken wittiin a computer program with
external events;

2. Measure time intervals between events;

3. Meaeure intervals between an initial event and responses to it;

4. CwnZ external events and/or

5. Provide program interrupts a t -ram selectable intervals from
2.5 psec to over 40 sec by using count pulses provided by a
400kHz crystal clock at any of five frequencies from lOOHz
to 400kHz.

The KW12-B also provides a means of having the clock cause program
interrupts. The intervals at which it interrupts, rather than being program
selectable, are determined by an RC oscillator whose frequency may be
varied within the range from 175Hz to 5OkHz by physically resetting the
desired frequency using an oscilloscope and changing one inter-connection
if necessary.

The KWl2-C, like the KW12-B, also provides program interrupt capability
but uses a single fixed frequency crystal oscillator in place of the
KW12-B’s variable RC oscillator to provide the time base for determin-
ing the intervals at which it can interrupt. The frequencies available are
in the range of 5kHz to 5OkHz and must be specified in advance by the
customer.

KWlP-A REAL TJYE INTERFACE
The KW12-A is a highly flexible pre-wired PDP-12 option, featuring an
Input Control Panel, a 400kHz crystal clock and five 12-bit registers for
controlling/monitoring the operation of the clock. The five program
selectable count pulse rates (i.e. time bases) derived from the 4OOkHz
crystal clock are: 400kHz, 100kHz, lOkHz, lkHz, and 100Hz. Each of
the count pulses increment one of the KW12-A’s 12-bit registers, the Clock
Counter Register. This same counter register can also be incremented by
an external signal. (See discussion of Input Control Panel)

103

12 BIT CLOCK COUNTER rPEOlSTER -

100KHz

CLOCK COUNTER REGISTER
The Clock Counter Register is one of the five 12-bit registers in the
KWIP-A which are accessible to the program. Each generated pulse
causes the Clock Counter to be incremented by 1. The counter increments
up to 77778 and then “overflows” on the next pulse, causing the “over-
flow flip flop” or flag to be set to 1. The overflow flag being set is pro-
gram detectable and can be sensed by a program interrupt, a skip in-
struction and/or a read status instruction. The contents of the clock
counter a t any given point may be determined by an 8-mode IOT (CLCA)
which puts the contents of the Clock Counter into the AC via the Buffer-
Preset Register. The contents of the Clock Counter Register may also
be set by the user via the Buffer-Preset Register and the Clock Control
Register.

The 12-bit Buffer-Preset is the link between the processor accumulator,
AC, and the clock counter. It is used, in executing the CLCA IOT, to read
the contents of the Clock Counter Register into the AC. It is also used to
buffer the current count in the clock counter at the occurrence of each
event when the clock is running in mode 2 or 6. This coun? is then made
available to the program by the 8-mode IOT CLBA which reads the Buffer-
Preset Register into the AC. Another use is made of this register in holding
the number to be transferred into the Clock Counter each time the counter
overflows. The number is placed in the Buffer-Preset Register from the AC
by the 8-mode IOT CLAB. This allows the counter to be set to some desired
starting value from which it can count up to overflow thus giving the pro-
gram greater control over “how long” it will take to cause overflow, i.e.,
how many counts or pulses are needed.

BUFFER-PRESET REGISTER

I AC 1

104

CLOCK CONTROL REGISTER
The Clock Control Register is the 12-bit register used to determine the
“what, when and how” ofthe clock.

0 1 2 ’ 3 4 5

SIMULATE INPUT ON CHANNEL 1

SIMULATE SIMULATE INPUT INPUT ON ON CHANNEL CHANNEL 2 3 I>
Clock Control Register

The counting rate and mode of operation are specified by settings of the
Clock Control Register. Simulated inputs (generally used for diagnostic
programming) can also be indicated with this Register. The Clock Control
Register is loaded from the AC by issuing the 8-mode IOT CLLR.

Rate Selection
Bits 0-2 of the clock control register can be considered the “iount rate
register” which is used to indicate one of the various counting rates.

CONTENTS OF FREQUENCY OF
BITS 0-2 COUNT PULSES

000 stop
001 400kHz
010 lOOkHz
01 1 lOkHz
100 1 kHz
010 lOOHZ
110 External event: (i.e. Use pulses gen-

erated on Input Channel 1 to incre-
ment Clock Counter)

111 Stop (i.e. no pulses)

NOTE
When the events occurring on Input Channel 1
(see Input Control Panel) are used as the time
base for the counter, the Channel 1 Event flag
(see discussion of Clock Status Register) is auto-
matically cleared and Channel 1 lnterupt Enable
would generally be left off (i.e., bit 6 of Clock
Enable Register set to 0).

Also note, the clock counter is incremented one
count each time an I/O Preset is performed
whether manually or under program control.
Mode Selection
Bits 3-5 of the Clock Control Register can be con-
sidered the “Mode Control Register” which is
used to determine the method by which the clock
operates.

E

105

CONTENTS OF

000
BITS 3-5 ' MODE OF CLOCK OPERATION

Free Run - the counter is .incremented a t the rate in-
dicated in bits 0-2 of the Control Register.

Counting goes from 0 to 7777, and then overflows and
starts counting from 0 again. Overflow, therefore, occurs
every 409610 counts (or every '4096 x counting rate'
cycles.)

The overflow flag remains set until the 8-mode IOT CLSA
(6135) is issued causing it to be cleared.

001

O O O O 4 7 7 7 7 d O V E R F L O W 2
Present Time - as in mode 0, the counter is incremented
a t the rate indicated in bits 0-2.

Each time overflow occurs, however, the contents of the
Buffer-Preset Register are transferred automatically to the
Counter which then continues counting up from that
value. The Buffer-Preset Register is usually set to the
negative (2's complement) value of the number of counts
desired before overflow. In this mode, the user has not
only determined the rate of counting but also the number
of counts before overflow, thus allowing him two dimen-
sions in selecting the time intervals between overflow.
In this mode, as in mode 0, the overflow remains set
until a CLSA is issued.

When the mdde is changed from 000 to 001, (or 100 to
101, see below), the clock counter is zeroed.

-7777-0VERFLOW
INITIAL COUNT

ON ISSUING <
A CLAB

INSTRUCTION

NOTE
In order to avoid having the first overflow occur
at an undertermined time, the following pro-
cedure should be used to start things off

106

CLA

CLA8

CLLR

TAD KO100
CLLR

CLSA

CLA
TAD NUM

CLAB

CLA
TAD KO200
CLLR

/Clear the accumulator.
/Load the Buffet-Preset Register with 0 (i.e., clear it)
/Load the Clock Control Register with Rate=Stop (000)

/Pick up constant=0100

/Load Clock Control Register with Rate=Stop and Mode=
1. This will cause the clock counter to be cleared (i.e.,
set to 0000). If the counter happened to be 7777 when
the mode was changed from 0 to 1, clearing it would
cause overflow. The Buffer-Preset Register was cleared
above since in mode 1 overflow causes the Buffer-Preset
Register to go to the clock counter.

/Clear Clock Status (of which the overflow flag is a part)
since overflow may have been caused by clearing the
counter.

and Mode=O

/Clear the AC and

/Pick up the negative 2's complement of the number of

/Load the Buffer-Preset Register with that number.

/Clear the AC and
/Pick up constant=0200

/Load Clock Control with Rate=lOOHr (101) and Mode=
1. The rate (bit 0-2) can obviously be any other available
rate, lOOHz is merely an example.

counts desired before overflow.

The clock is now running at 100Hz. After the predetermined number of
counts will overflow and "NUM" will automatically be reset into the
counter to repeat the cycle.

The overflow flag should be cleared with CLSA each time overflow occurs .
in order for every overflow to be program detectable.

010 Time Base from initial event - as in modes 0 and 1, the
clock counter is incremented at the rate indicated by
bits 0-2.

On each occurrence of an Input event on a selected input
channel (see Clock Enable Register), the contents of the
clock counter are automatically transferred to the Buffer-
Preset Register and the counter continues to count.

107

INITIAL

This mode is useful for determining the total elapsed time
between some initial event (a stimulus possibly) and
subsequent events which might be caused by it (muscle
reactions). In using Mode 2, the Clock Status Register
is used in conjunction with the Clock Enable Register to
detect the occurrence of the input events. Each time such
an event is recognized, the contents of the Buffer-Preset
Register can be picked up by the program and stored
away or processed as the user wishes.

I

A poststimulus histogram (PST) could be generated in
this fashion. A stimulus could be issued to a subject and
the clock started. Then the elapsed time to succeeding
neuron firings (Le., input events) could be determined by
saving the time counts which were transferred from the
counter to the Buffer-Preset on each firing.

011 Time Base between two events - as in modes 0, 1 and 2,
the clock counter is incremented a t the rate indicated
by bits 0-2.

On each occurrence of an Input event on a selected input
channel (see Clock Enable Register), the contents of the
clock counter are automatically transferred to the Buffer-
Preset Register. This is identical to mode 2 so far.

Here is where mode 2 and mode 3 differ. In mode 2(010)
the clock counter continues to count after the transfer
no matter on which of the. three input channels the event
occurred. In mode 3(011) the clock counter continues to
count after the transfer only if the event occurred on input
channel 1 or input channel 2. If the event occurred on
input channel 3, the clock counter is cleared after being
transferred to the Buffer-Preset Register; counting then
continues from 0 a t the specified rate.

108

INITIAL
EVENT

START t--- CP-
I

EVENT ON
CHANNEL 1

I

I EVENT ON
CHANNEL 2 CHANNEL 3

100
101
110
111

L EVENT ON ------ ETC.

CHANNEL 2 .
COUNTER TO
BUFFER - T=O+n4

.
This mode might be used to measure elapsed time from
event to event by resetting the counter after each event.
It is also useful for restarting the counter after one kind
of external event but not after other. For instance, look
back to the PST example under mode 2. If the stimulus
signal was connected to external input channel 3 (see
discussion of Input Control Panel, and the neuron firings to
channels 1 81 2, each new stimulus would clear the clock
counter while each neuron firing would give total elapsed
time from its own stimulus.

1ST STIMULAS 2ND STIMULAS

Modes 4(100), 5(101), 6(110), and 7(111) are identical
to modes O(OOO), 1(001), 2(010), and 3(011) respec-
tively with this exception: when Clock Control Register
bit 3 (i.e., mode control bit 0) is set to a 1 and the A/D
control also has FAST SAMPLE enabled (see Special Func-
tion Register), the occurrence of overflow in the clock
counter or the occurrence of an external event on a se-
lected Input channel (see Clock Enable Register and Input
Control Panel) causes the A/D converter to initiate a con-

109

version on whatever A/D channel was last sampled by
a SAM instruction (see A/D Converter). In these four
modes, the analog to digital conversions take place under
the automatic timing control of the clock. They are trigger-
ed by (and only by) the clock control overflow or an ex-
ternal event on a selected Input Channel; the SAMn
instruction, which would then be given on program de-
tection of this overflow or external event, reads the result
of the previous conversion (that caused by the clock
overflow or external event) and sets the channel number
for the next conversion (the one which will occur on the
next clock overflow or external event). The SAMn itself
does not under these conditions (mode 4-7 and FAST
SAMPLE function enabled) cause an A/D conversion.

Simulated Inputs
Generally, bits (0-5) of the Clock Control Register are the only bits with
which the average programmer is concerned. Bits 6, 8, and 10 are not
used at all and bits 7, 9, and 11 are generally used only for diagnostic
purposes. If Bit 7 is set to a 1 and the counting rate is set to 110, (ex-
ternal event), then each time a CLLR is issued, an event on channel 1
is simulated (i.e., the event bit in the clock status register is set, etc.).
The same happens for bit 9 or 11.

CLOCK ENABLE
The Clock Enable Register is the 12 bit register that determines the
"who" of the clock, just as the clock control determines the "what,
when and how".

t I I I I I I --Em-- WENT ON cH/\"EL 3
I I I I 1 I ENABLEI INPUT CHANNEL^

LENABLE ~TERRWT UPON I I I I EVENT ON CHANNEL 2

I ENABLE INTERRUPT UPON
EVENT ON CHANNEL 1

-ENABLE INTERRUPT WHEN OVER- I FLOW FLAG SET TO 1
INaUSIM OR CLOCK BUFFER INTO
UOCK COUNTER IF MODEtSEE
UOCK CONTROL) IS 1 (000 OR
S(100

T USED

The Clock Enable Register determines basically four things:

1. Which, i f any, of the three External Input Channels (see Input
Control Panel) will be considered active (i.e., selected) at any
particular point.

110

2. Whether the selected input channels will be able to cause a
program interrupt each time an external event occurs or merely
set the appropriate bit in the Status Register (see Clock Status

. Register).

3. Whether the occurrence of overflow in the clock counter will be
able to cause a program interrupt each time the overflow flag
is set or merely set the appropriate bit in the Status Register.

4. If the Buffer-Preset should be transferred to the clock counter
when the CLEN IOT is given. This is generally used in conjunction
with Mode 1 or 5 (Preset Time) to set up the counter initially
before starting the clock running (see note under Clock Control
Register Mode 1).

The Clock Enable Register is loaded from the AC when the 8 mode IOT
CLEN is issued. The conditions enabled for any channel determine what
action must be taken to detect an event.

For example, if bit 7=1 and bit 6=0, any events which occur on Input
Channel 1 can be detected only by continually checking for the appro-
priate bit in the Clock Status Register to be set to 1. If, however, bit 7=1
(Enable Channel 1) and bit 6=1 also (Enable Interrupt on Channel 1):
then an event occurring on Input Channel 1 will cause a Program Interrupt
as well as setting the appropriate Status Register bit.

NOTE
The Program Interrupt facility must have been
enabled by issuing an ION (6001) before an
actual Program Interrupt can occur. If an ION
has not been issued, Enabling Interrupt on an
Input Channel or on Overflow will still cause the
clock flag to be set to 1, but the program will not
trap to 0 (or 140 if Linc mode). The clock flag
can be checked, like any other device flag, with a
skip on flag=l instruction CLSK.

Bit 4 of the Clock Enable Register is a little bit different in that setting it
to 1 doesn’t enable the possibility of something happening later on, but
rather enables the user to put into the clock counter a predetermined
value which he placed in the Buffer Preset Register with IOT CLAB. With
Bit 4=1, the Buffer Preset Register is inclusively OR’ed into the clock
counter when the CLEN IOT is given.

.,

CLOCK STATUS REGISTER
The Clock Status Register is the last of five 12 bit program accessable
registers associated with the KW12-A. It is essentially the “who done it”
register of the clock.

111

6 1 8 9 1 0 1 1

EVENT ON INPUT W N N E L 3
-PRE-EVENT ON INPUT CHANNEL 3
-EVENT ON INPUT CHANNEL 2
-PRE-EVENT ON INPUT CHANNEL 2
-EVENT ON INPUT CHANNEL 1
PRE-EVENT ON INPUT CHANNEL I
NOT USED
OVERFLOW FLIP FLOP (FLAG)

The Clock Status Register records “what has happened and where” upon
its occurrence. The program can check this register by giving a CLSA IOT
and then take the appropriate action. Each time a CLSA is issued, reading
the clock status into the AC, the bits of the clock status which had been
set are cleared. This simplifies the programming somewhat by ensuring
that only one occurrence of any event will be transferred to the program.

Bit 0 is set to a 1 whenever overflow occurs in the clock counter (i.e.,
whenever the clock counter goes from 7777 to 0). If Clock Enable Register
bit 5 is set to 1 when overflow occurs, a program interrupt will occur, but
this bit will still be set to 1 in order to identify what caused the interrupt.

b i ts 1-5 are not used.

Bits 6-11 record the occurrence of an event on a specific selected Input
Channel. If more than one event occurs before this register is read,
another bit is set on its channel, indicating an event overlap condition. If
the second event occurred on the same Input channel as the first event
then the “pre-event” bit for that channel will be set as well as the event bit
which will remain set. All bits set in the Clock Status Register stay set
until a CLSA instruction is issued. The only exception to this is if Input
Channel 1 is being used for clock timing rate (i.e., rate 110). If so,
Channel 1 Event flag (bit 7) is automatically cleared.

INPUT CONTROL PANEL
We have done a lot of talking about external events and External Input
Channels without explaining too much about the Input Channels them-
selves or about what determines an event. Let us now turn to the Input
Control Panel which is mounted in the main frame of the PDP-12 behind
the vertical green door to the left of the console. It is labeled “KW12
Clock Control” in white printing and has three white outlined boxes d e
heated on it, each with a similar set of controls. Each box represents
one input channel to which an external signal may be connected. Within
each box there are two phone jacks, marked “jnput #” and “output #”
and two rotating control knobs marked “source” and “threshold.” The
input jack and the output jack for each channel are jumpered together
to provide “daisy chaining” from one input to another or to an A/D con-
verter, etc. By connecting an external signal from a laboratory instrument
via the phone jack to one of these input channels, certain occurrences in

112

that signal can be used to drive the clock. Each input channel consists of
an input Schmitt trigger with a pulse generator five flip-flops, and associ-
ated control gating. The Schmitt trigger is governed by the settings of the

KW12 CLOCK CONTROL

LINE SOURCE THRESHOLt
INWTI FREP.7

+ - e-

OUTPUT 3

@
“source” and “threshold” controls. A voltage between +5 and -5 is
coarsely selected by setting the threshold knob to the far right for f5,
far left for -5, or a t some point in between. The slope, either positive
going or negative going, is then chosen by setting the source knob to
either the + or - stop on the dial. A t this point, each time the external
signal crosses the preset voltage in the indicated direction, the Schmitt
trigger will fire, causing a pulse to be generated. This is the pulse which
we have been speaking of as an event. Events occurring on Channel 1
can be used to supply the timing pulses if clock rate 6(110) is chosen.

* IF THRESHOLD WAS SET TO +4 VOLTS AND

A PULSE GENERATED WHILE THE X
DOES NOT. EVEN THOUGH THE THRESHOLD
WAS CROSSED, THE SECOND CONDITION OF
SLOPE WAS NOT SATlSlFlED AND SO A
PULSE WAS NOT REQUIRED.

SOURCE TO +, THEN THE 3c’s INDICATES POSITIVE
DOING

-7 NEGATIVE
GOING

113

You will note there is one more stop on the source knob which says
LINE FREQ. Setting the source knob to this stop causes the power line
wave form to act as the external signal rather than supplying an actual
signal from a laboratory instrument. To use line frequency to drive the
clock, an input jack is obviously not needed.

Note that external input channels, while physically located on the Input
Control Panel, are selected under program control by setting the appro-
priate bits in the Clock Enable Register. The voltage threshold and signal
slope are, however, selected via the controls of the panel.

Summary of KW12-A Real Time Interface Instructions
The KW12-A is controlled by PDP-12 IOT instructions. These instructions
can be used from either 8 or LINC mode. Execution time for the IOTs is
4.25~s when in 8 mode and 5 . 9 ~ s when in LINC mode (including IOB).

CLSK Skip on Clock Interrupt
Octal Code: 6131
Event Time: 1
Execution Time: 4 . 2 5 ~
Operation: Skip if clock interrupt condition exists (Le., clock

flag=l).
The interrupt conditions are as follows:

a. Enable Event 1 Interrupt (1) and Event 1 (1).
b. Enable Event 2 Interrupt (1) and Event 2 (1).
c. Enable Event 3 Interrupt (1) and Event 3 (1).
d. Enable Overflow Interrupt (1) and Overflow

(1).

CLCA Counter to AC
Octal Code: 6137
Event Time: 1, 2, 3
Execution Time: 4 . 2 5 ~
Operation: The AC is cleared and the contents of the Clock

Counter are transferred via the Buffer-Preset Reg
ister into the AC.

Buffer Preset Register to AC CLBA
Octal Code: 6136
Event Ti me: 2, 3
Execution Time: 4 . 2 5 ~
Operation:

CLAB
Octal Code: 6133
Event Time: 2
Execution Time: 4 . 2 5 ~
Operation:

The AC is cleared and the contents -of the Clock
Buffer Preset Register are transferred into the AC.

AC to Buffer Preset Register

Transfer AC to Buffer Preset Register. The previous
contents of the Buffer Preset Register are lost and
the AC is unchanged.

114

CLEN Load Clock Enable Register
Octal Code: 6134
Event Time: 3
Execution Tim& 4 . 2 5 ~ ~
Operation: The contents of the AC are transferred to the Clock

Enable Register. The function of each bit is given
below:

3 4 5 6 7 B

ENABLE INPUT CHANNEL 3

ENABLE INTERRUPT ON
CHANNEL 3

ENABLE INPUT CHANNEL 2

ENABLE INTERRUPT ON
CHANNEL 2

ENABLE INPUT CHANNEL 1

ENABLE INTERRUPT ON
CHANNEL I

ENABLE INTERRUPT WHEN
OVERFUIW (1 1
INCLUSIVE OR CLOCK BUFFER
INTO COUNTER IF MoDE=OO1
OR 101

9 (0 I 1

I NOT USED

CLLR Load Clock Control Register
Octal Code: 6132
Event Time: 2
Execution time: 4 . 2 5 ~ ~
Operation: The contents of the AC are transferred to the clock

control register. Three bits are used to provide sim.
ulated data input to each of the three Event input
channels. The AC is unchanged.

-

SIMULATE INPUT
TO CHANNEL 2

NOT USED

SIMULATE INPUT
TO CHANNEL 1

NOT USED

MODE CONTROL

COUNT RATE

CLSA Clock Status to AC
Octal Code: 6135

115

Event Time: 1, 3
Execution Time: 4 . 2 5 ~ ~
Operation: This instruction interrogates the Clock Input and

pverflow Status flip-flops. The clock status infor-
mation is inclusive ORed into the AC. Then the
clock status and overflow bits which are set are
cleared. This ensures that only one occurrence of
an Event will be transferred to the program.

6 7 8 9 4 0 1 1

PRE-EVENT 3

EVENT 3

PRE-EVENT 2

EVENT 2

PRE-EVENT 1

EVENT 1

NOT USED

OVERFLOW FLIP-FLOP

KW2-B AND KW12-C FIXED-INTERVAL CLOCKS
The KW12-B provides a means of interrupting the Central Processor at
intervals determined by a variable RC Oscillator. The KW12-C is similar to
the KW12-B except that the RC oscillator is replaced by a crystal oscillator
with a single fixed frequency. The KW12-B or KWl2-C may be turned off
under program control. However, variations in frequency require physically
altering or changing the oscillator.

Summary of Instruction Set
The KWl2-B and KWl2-C are controlled by IOT instructions. These in-
structions can be used from either mode. Execution time for the Simple
Clock IOTs is 4 .25~s when in 8 mode and 5 . 9 ~ when in LINC mode
(including IOB).

CSOF Skip on Clock Flag
Octal Code: 6131
Execution Time: 4 . 2 5 ~ ~
Operation:

CTOC Turn Off Clock
Octal Code: 6132
Execution Time: 4 . 2 5 ~ ~
0 pera t i o n :

Skip if clock flag is set.

Turn off the clock, clear the clock, flag, and disable
the clock interrupt. I/O preset issued either man-
ually or under program control also performs these
operations.

116

CTON Turn On Clock
Octal Code: 6134
Execution Time: 4 .25~s
Operation:

CRUN Clock Running
Octal Code: 6135
Execution Time: 4 . 2 5 ~ ~

Operation:

Turn on the clock and clear the flag.

Turn on the clock, enable the clock interrupt, clear
the clock flag, skip i f the clock flag was set when
the instruction was issued.

I

Frequency Range
KWlP-B The KWl2-B uses the M401 variable clock in slot F18 for a

time base. The frequency may be varied within a range by
adjusting a potentiometer on the module. Five frequency
ranges are available. The KWl2-B is nominally set to the
1.75 kHz-to-17.5 kHz frequency range by jumpering F18N2
to F18T2. Other frequency ranges may be achieved by re-
moving the jumper from F18T2 and attaching as shown
below. The exact frequency may be checked by observing
the signal on F18D2 with an oscilloscope.

FREQUENCY RANGE INTERCONNECTIONS REQUIRED
17.5kHz to 50kHz
1.75kHz to 17.5kHz
175Hz to 1.75kHz

The KW12-C uses the M405 crystal clock in slot F18 for a
time base, The frequencies are fixed by a series resonant
crystal oscillator t o obtain a frequency stability of .01 percent
of the specified value between 0°C and 4-55"C. The fre.
quencies available are in the range of 5kHz and must be
specified in advance by the customer.

F18N2 - F18S2

F18N2 - F18P2
F18N2 - F18T2 (nominal setting)

KW12-C

t
117

118

CHAPTER 8
PDP- 12 PROGRAMMING

INTRODUCTION
The PDP-12 computer operates in either of two modes: “LINC mode”
or “PDP-8 mode”. Because of the BiModal Nature of the PDP-12, it
uses the software available for both the family-of-eight and the LINC
computers as well as having two powerful instruction sets to work from
when writing original programs.

Use of Existing Software
Software packages developed for familyof-eight computer are run without
modification on the PDP-12. This provides the user with powerful p r o
grams such as the many mathematical routines that would otherwise
have to be written from the beginning. Most of the programs written on
the LINC-8 can be run directly on the PDP-12 using the I/O handler
(LINC-8 simulator) provided with the PDP-12 basic software.

Control Console
Understanding and using the Control Console in a small or medium scale
computer is the first step in learning to use the system.

The preceding page shows the PDP-12 Console. Note the location of all
switches and indicated register.

Main Registers
Accumulator (AC) 12 Bits This register contains data being operated

upon: Its contents may be shifted or ro-
tated right or left; incremented, cleared,
or complemented; stored in memory or
added to the contents of a memory reg
ister; and logically or arit$metically com-
pared with the contents of any memory
register. The AC holds the sum after an
addition, and part of the product after a
multiplication. The AC is also involved in
the transfer of data to and from various
other registers outside the central proces-
sor.

Link (L) 1 Bit The Link is an extension of the AC. When
a carry occurs out of bit 0 of the AC during
a 2’s complement addition, the Link is
complemented. It may be set or cleared
independently of the AC, and may be in-
cluded (or not) in shifting and rotating op-
erations pet‘formed on the contents OT the
AC.

119

Multiplier Quotient
(MQ) 12 Bits

Program Counter
(PC) 12 Bits

This register is used as a second arith-
metic register for multiply and some rotate
instructions. It is also used for extended
Arithmetic Option (KE12) functions.

This register contains the address of the
Next instruction to be executed within the
memory field selected by the Instruction
Field Register (see below). In PDP-8 mode,
the PC acts as a 12-bit counter; in LINC
mode, it acts as a 10-bit counter.

Memory Address
Register (MA)

12 Bits

This register contains the address for mem-
ory references. Whenever a core memory
location is being accessed, either for read-
ing or for writing, the MA contains the ad-
dress of that location.

Instruction Register This register contains the complete binary
code of the instruction being executed.

Memory Buffer All information passing between memory
and any other register in the PDP-12 must
go through the Memory Buffer Register,
whether the transfer involves the central
processor, an external device, or another
memory register.

(IR) 12 Bits

- (MB) 12 Bits

Major State Generator
The Major State Generator establishes the proper states in sequence for
the instruction currently being executed. One or more major states are
entered serially to execute each programmed instruction. During a Fetch
State, an instruction is loaded from core memory a t the addrdss specified
by the Memory Address Register into the memory buffer and the in-
struction register. The Defer State is used in conjunction with indirect
addressing as discussed. in detail under "Indirect Addressing" later in
the chapter.

During the Execute State, the instruction in the Instruction Register is
performed on the assigned data.

Instruction Field This register selects the memory field con-
taining the executable program. In LINC
mode, it is used to designate one of up to
thirty-two 1024-word segments In PDP-8
mode, the three high-order bits of the IF
are used to designate one of up to eight
4096-word fields.

Register (IF) 5 Bits

Data Field Register
(DF) 5 Bits

This register selects memory field con-
taining data to be indirectly accessed by
the memory reference instructions of a
program. The fields are specified in each
mode in the same way that the IF specifies
the Instruction Field.

120

Console with all keys in zero position.

r

The LSW is a 12 bit register located on the left side of the Control Con-
sole. The LSW can be accessed by the central processor while in the
LINC Mode. This register is also used by the Fill and Exam keys as ad-
dress switches and by the DO key as the first word of an instruction.

Right Switch Register (RSW)
The RSW is a 12 bit register located on the right side - of the Control
Console. The RSW can be used to load information for transfer into the
Memory Buffer as data to be stored in core memory by means of the fill
step switch. The RSW can also be accessed by the central process when
in either Linc or 8-mode. Twelve bit words can be entered into memory
by the used of the fill and fill step keys.

Fill
The fill key allows the entering of the 12 bit words into specific memory
locations. The address of the memory location to be filled is placed in the
Left Switch Register. The data is placed in the Right Switch Register.
Depressing the Fill Key executes the fill operation. Upon completion of
the fill function, the MA register will display the Address of the memory
location, just filled and the MB register will display the data just entered
in that location.

121

Fill Step
The Fill Step Operation is in two steps:
Step 1. - Enter a data word into the current core memory location shown
in the M.A. register by putting the word in the Right Switch Register and
depressing the Fill Step key. The M.A. will show no change. The M.B. will
display the word just entered into the memory location specified by
the M.A.

Step 2. -Releasing the Fill Step Key will add one to the M.A. register
changing the memory location addressed to MA + 1. The M.B. will show
the contents of the new, incremented memory location.

NOTE
The Fill Step Key uses the current M.A. address
to signify the location to be filled. To fill into a
memory location other than the one currently
addressed, use the Fill Key.

Once words have been stored in memory it is usually the practice to go
back and make sure that everything has been entered properly before
starting the program. The keys that allow an examination of memory are
the exam and step exam keys.

Exam
The Exam key allows the examining of a memory location whose address
is specified by the Left Switch Register. Depressing the Exam key executes
the examine operation, the address examined will be displayed in the
M.A. Register and the contents of that location will be displayed in the
M.B. Register.

Step Exam
The Step Exam Key allows the examination of successive memory loca-
tion. When the Step Exam Key is depressed, the M.A. is indexed by one
and the contents of the New M.A. is displayed in the M.B. Register.

NOTE
The Step Exam Key uses the Current M.A. + 1
for addresses. To examine other addresses, use
the Exam Key.

Once a program has been loaded and examined, it is ready to be run.

Mode Key
The Mode Key operates in conjunction with the I / O Preset Key. It allows
the PDP-12 to initialize as either a PDP-8 / / or LINC.

I /O Preset
I/O Preset clears the link, AC, and MQ, performs a general initialization
of the PDP-12 central processor and al l I / O connected to the system.

start 20
Depressing Start 20 will start the computer in automatic run at 8-mode
absolute location 20 or LINC Mode location 20 relative to current LINC
lnstruction Field.

122

start400 .
The PDP-12 will enter automatic run an 8-mode absolute location 400 or
LINC Mode location 400 relative to current LlNC lnstruction Field.

start LSW
The PDP-12 will enter automatic run’at the absolute 15 bit location
specified by the Left Switch Register and the three bit lnstruction Field
Register.
Single Step Key
When the Single Step is enabled the PDP-12 wil halt a t the end of the
current major state of the current instruction. Depressing the Continue
Key will allow the computer to execute one more major state before com-
ing to a halt. Thus, a program can be followed, one major state a t a
time to completion. This is a tremendous aid, since it allows inspection
of al l main registers as the program progresses to completion and errors
in programming can be easily pinpointed.

Stop Key
Operation of the Stop Key halts the computer a t the end of the current
instruction.

Continue
Continue sets the central processor into automatic run without modifying
any active registers. This allows a program that has been stopped with
the Single Step Key or Stop Key to resume operation with all registers
and conditions undisturbed. The Continue Key can be used in conjunction
with the stop key to allow manual progression through a program one
instruction a t a time.

Fetch Stop
The computer will halt when the address of the word accessed during
the FETCH CYCLE matches the address in the Left Switch.

Execute Stop
The computer will halt when the address of a word accessed in any cycle
except Fetch matches the address in the Left Switches.

NOTE
Depressing Continue after either a Fetch Stop or
Execute Stop will allow the program to continue
automatically, until the Fetch Stop or Execute
Stop condition is again qualified, a t which time
the computer will again halt.

Auto
The Auto Key activates an “Automatic Button Pusher” that works in
conjunction with a number of keys on the console. The speed a t which
the “Button Pushing” is done is determined by the Coarse and Fine
controls on the data terminal behind the door.
Auto wit‘h Fill Step
Allows the filling of sequential memory locations without having to con-
tinually press Fill Step.

.

123

Auto with Step Exam
Examining of sequential memory locations can be performed with this

Auto with Single Step and Continue
Allows progress through a program one cycle at a time at atspeed de-
termined by the coarse and fine adjustments for auto.

In the 8-mode of operation, the PDP-12 takes on the internal configura-
tion of a PDP-81. A block diagram of this configuration is shown below.

. operation.

PDP-8 MODE PROGRAMMING

0 1 2 3 4 5 6 7 8 9 1 0 1 1

- - -
1 c

-e

MEMORY
PROGRAM ADDRESS
COUNTER REGISTER

ACCUMULATOR

TELENPE

MEMORY
BUFFEQ.

REGISTER

I

REGISTER

GENERAlDR

096-WORD

MEMORY

Block Diagram of 8-Mode

The standard set of instructions for the 8 mode includes eight basic in-
structions. The first six of these are called the Memory Reference In-
structions (M.R.I .) the format of an M.R.I. is shown below.

The three most significant bits (0, 1, 2) determine which of the eight
basic instructions are to be performed.

124

The six memory reference instructions are listed below with their mnem-
onic and octal equivalents as well as their memory cycle times.

Instruction
Logical AND AND Onnn 2
Two’s Complement Add TAD lnnn 2 .
Deposit and Clear the Accumulator DCA 3nnn 2
Jump JMP 5nnn , 1
Increment and Skip if Zero I sz 2nnn 2
Jump to Subroutine JMS 4nnn 2

The remaining nine bits are used to address the operand of the in-
struction. However, a full twelve bits are needed to address the 4096
(10,000 octal) locations that are contained in memory. To make the
best use of the available nine bits, the 8 mode utilizes a logical division
of memory into sections (pages) of 200[81 LOCATIONS each as shown
in the following table.

Octal Memory
Mnemonic’ Value Cycles’ -

Page Memory
Locations Page Memory

Locations

0 ’
1
2
3
4
5
6
7
10
11
12
13
14
15
16
17

0- 177
200-377
400-577
600-777
1000-1177
1200- 1377
1400-1577
1600-1777
2000-2 177
2200-2377
2400-2577
2600-2777
3000-3177
3200-3377
3400-3577
3600-3777

20
21
22
23
24
25
26
27
30
31
32
33
34
35
36
37

4000-41 77
4200-4377
4400-4577
4600-4777
5000-5 177
5200-5377
5400-5577
5600-5777
6000-6177
6200-6377
6400-6577
6600-6777
7000-71 77
7200-7377
7400-7577
7600-7777

Notice that a new page starts every’20Oel locations.

Since there are 2008 locations on a page and seven bits can represent
2OOs different numbers, seven bits (5 through 11 of the MRI) are used
to specify the page address. Before discussing the use of the page ad-
dressing convention by an MRI, it should be emphasized that memory
does not contain any physical page separations. The computer recog-
nizes only absolute addresses and does not know what page it is on, or
when it enters a different page. But, as will be seen, page addressing
allows the programmer to reference all of the 4,09610 locations of memory
using only the nine available bits of an MRI. The format of an MRI is
shown below.

125

OPERAND
BIT w
POSITION 0 I 2 3 4 5 6 7 8 9 IO II

EACH BIT IS
EITHER 0
OR I

ADDRESS MODE BIT CURRENT PAGE OR PAGE 0 BIT
0: DIRECT ADDRESSING

I : INDIRECT ADDRESSING
0: PAGE 0
I : CURRENT PAGE

Format of a Memory Reference Instruction

As previously stated, bits 0 through 2 are the operation code for the
MRI. Bits 5 through 11 identify a specific location on a given page, but
they do not identify the page itself. The page is specified by bit 4, often
called the current page or page 0 bit. If bit 4 is a 0, the page address is
interpreted as a location on page 0. If bit 4 is a 1, the page address
specified is interpreted to be on the current page (the page on which
the MRI itself is stored). For example, if bits 5 through 11 represect
123. and bit 4 is a 0, the location referenced is absolute address 1238.
However, if bit 4 is a 1 and the current instruction is in a core memory
location whose absolute address is between 4,60O1 and 4,7778, the page
address 123, designates the absolute address 4,7231. Note that, as
shown in the following example, this characteristic of page addressing
results in the octal coding for two TAD instructions on different memory
pages being identical when their operands reference the same relative
location (page address) bn their respective pages.

I Content 1
Location

200

400

Mnemonic Octal Explanation

TAD 250 1250 TAD 250 and TAD 450 both
mean add the contents of loca-
tion 50 on the current page

TAD 450 1250 (bit 4=1) to the accumulator.

those on the current page. This section describes the method for ad-
dressing the other 74OOs memory locations. Bit 3 of an MRI designates the
address mode. When bit 3 is a 0, the operand is a direct address. When
bit 3 is a 1, the operand is an indirect address. An indirect address
(pointer address) identifies the location that contains the desired address
(effective address). To address a location that is not directly addressable,
the absolute address of the desired location is stored in one of the 4OOs
directly addressable locations (pointer address); the pointer address is
written as the operand of the MRI; and the letter I is written between the
mnemonic and the operand. (During assembly, the presence of the I re-
sults in bit 3 of the MRI being set to 1.) Upon execution, the MRI will
operate on the contents of the location identified by the address con-
tained in the pointer location.
The two examples shown illustrate the difference between direct address-
ing add indirect addressing. The first example shows a TAD instruction
that uses direct addressing to get data stored on page 0 in location 50;
the second is a TAD instruction that uses indirect addressing, with a
pointer on page 0 in location 50, to obtain data stored in location 1275.
(When references are made to them from various pages, constants and
pointer addresses can be stored on page 0 to avoid the necessity of
storing them on each applicable page.) The octal value 1050, in the first
example, represents direct addre'ssing (bit 3 = 0); the octal value 1450,
in the second example, represents indirect addressing (bit 3 = 1). Both
examples assume that the accumulator has previously been cleared.

Location Content
200 TAD 50 (TAD 50= 1050s)

'Address
:\Instruction

Y-Data (Number) To.Be Acted Upon By
Instruction Address

1275 20 ~ (Content of location 1275 is not used in
the execution of the instruction in loca-
tion 200.)

NOTE
AC = 1275 after executing the instruction in
location 200.

Location Cantent
200 TAD I 50\(TAD I 50 = 14508)

~ ~ ~ ~ a ~ ~ ~ ~ r e c t Addressing
Instruction

?-Effective Address
Pointer Address

\Data (Number) To Be Acted Upon By
Instruction
Effective Address I

127

NOTE .
. AC = 1275 after executing the instruction in

location 200.
Comparison of Direct and Indirect Addressing

The following three examples illustrate some additional ways in which
indirect addresing can be used. As shown in example 1, indirect ad-
dressing makes it possiblc. to transfer program control off page 0 (to
any desired memory location). (Similarly, indirect addressing makes it
possible for other memory reference instructions to address any of the
4,0%1p memory locations.) Example 2 shows a DCA instruction that
uses indirect addressing with a pointer on the current page. The pointer
in this case designates a location off the current page (location 227) in
which the data is to be stored. (A pointer address is normally stored on
the current page when al l references to the designated location are from
the current page.) Indirect addressing provides the means for returning
to a main program from a subroutine, as shown in example 3. Indirect
addressing is also effectively used in manipulating tables of data as de-
scribed and illustrqted in conjunction with autoindexing.

EXAMPLE 1

Location Content
75 JMP I 100 (JMP I 100 = 5500,)

\Pointer Address
Designates Indirect Addressing
Instruction

6000 \

-Next ..

:oo\ Effective Address
Pointer Address

Instruction To Be Executed
6000

Effective Address

NOTE
Execution of the instruction in location 75 causes
program control to be transferred to location
6000, and the next instruction to be executed
is the DCA 6100 instruction. -

EXAMPLE 2
Location Content
450 DCA I 577 (DCA I 577 = 3777s) . Pointer Address

\Designates Indirect Addressing
Instruction

Effective Address
Pointer Address

\Data (Number) Stored By Instruction
Effective Address

128

NOTE
Execution of the instruction in location 450
causes the contents of the accumulator to be
stored in location 227.

AND (Onnnc)
The AND instruction causes a bit-bybit Boolean AND operation between
the contents of the accumulator and the data word specified by the in-
struction. The result is left in the accumulator as illustrated below.

~ 1 1 0 0 0 1 1 1 0 0 0

t 1 1 1 I t 1 1 1 I 0 1

TAD (lnnna)
The TAD instruction performs a binary addition between the specified
data word and the contents of the accumulator, leaving the result of the
addition in the accumulator. If a carry out of the most significant bit of
the accumulator should occur, the state of the link bit is complemented.
The add instruction is called a Two’s Complement Add to remind the
programmer that negative numbers must be expressed as the two’s com-
plement of the positive value. The following figure illustrates the op-
eration of the TAD instruction.

DATA WORD: -3

LINK I 0 I 0 I 0 I 0 I 0 I 0 I 0 I 0 [0 I 0 I t 1 01 AC(RESULT):+ 2

The following points should be remembered when using the TAD in-
struction:

1. Negative numbers must be expressed as a two’s complement of
the positive value of the number:

129

2. A carry.out of the accumulator will complement the link; and
3. The data word in the referenced location is not affected.

DCA (3nnn8)
The DCA instruction stores the contents of the AC in the referenced lo-
cation, destroying the original contents of the location. The AC is then set
to al l zeroes. The following example shows the contents of the accumu-
lator, link, and location 225 before and after executing the instruction
DCA 225.

DCA 225
AC

Before Execution 1234 1 7654
After Execution 0000 1 1234

The following facts should be kept in mind when using the DCA in-
struction:

Link LOC. 225 - -

. 1. The state of the link bit is not altered;
2. The AC is cleared; and
3. The original contents of the addressed location are replaced by

the value of the AC.

The program below adds thg contents of tocations 4712 and location 274
together in the accumulator and stores the results In memory location 50.

- Memorv Address Instruction Code Effect

Start 200 CLA 7200 Clears AC
201 TAD 274 1274 Location 274 contains first

number to be brought into
the AC

202 TAD I377 1777 Location 377 contains ad-
dress of word to be added
to AC.

203 DCA50 050 Results is stored in AC

274 XXXX XXXX First number to be added to
AC.

377 4712 4712 Address of 2nd number to
be added to AC.

JMP (5nnn.)
The JMP instruction loads the effective address of the instruction into
the program counter, thereby changing the program sequence since the
PC specifies the next instruction to be performed. In the following ex-
ample, execution of the instruction in location 250 (JMP 300) causes the
program to jump over the instructions in locations 251 through 277 and
immediately transfer control to the instruction in location 300.

130

, , Location Content

250 JMP 300 (This instruction transfers program
control to location 300.)

300 DCA 330

NOTE
The JMP instruction does not affect the contents
of the AC or link.

ISZ (2nnnt)
The ISZ instruction adds a 1 to the referenced data word and then ex-
amines the result of the addition. If a zero result occurs, the instruction
following the ISZ is skipped. If the result is not zero, the instruction fol-
lowing the ISZ is performed. In either case, the result of the addition
replaces the original data word in memory. The example in Figure 2-2
illustrates one method of adding the contents of a given location to the
AC a specified number of times (multiplying) by using an ISZ instruction
to increment a tally. The effect of this example is to multiply the contents
of location 275 by 2. (To add the contents of a given location to the AC
twice, using the ISZ loop requires more instructions than merely repeating
the TAD instruction. However, when adding the contents four or more
times, use of the ISZ loop requires fewer instructions.) In the first pass
of the example, execution of ISZ 250 increments the contents of location
250 from 7776 to 7777 and then transfers control to the following instruc-
tion (JMP 200). In the second pass, execution of ISZ 250 increments
the contents of location 250 from 7777 to 0000 and transfers control'
to the instructiorrin location 203, skipping over location 202.

CODING FOR ISZ LOOP

Location

200
201
202
203

250

275
276

Content

TAD 275
ISZ 250
JMP 200
DCA 276

7776

0100
0000

131

SEQUENCE OF,EXECUTION FOR ISZ LOOP

Content After Instruction Execution
Location Content AC 250 275 276 - - - -
FIRST PASS
200 TAD 275 0100 7776 0100 0000
201 ISZ 250 0100 7777 0100 0000
202 JMP 200 0100 7777 0100 0000

SECOND PASS
200 TAD 275 0200 ~ 7777 0100 0000
201 ISZ 250 0200 0000 0100 0000
202 JMP 200 (Skipped during second pass)
203 DCA 276 0000 0000 0100 0200

ISZ Instruction Incrementing a Tally

The following points should be kept in mind when using the ISZ in-
struction:

1. The contents of the AC and link are not disturbed;
3. The original word is replaced in main memory by the incre

mented value;
3. When using the ISZ for looping a specified number of times,

the tally must be set to the negative of the desired number; and
4. The ISZ performs the incrementation first and then checks for

a zero result.

JMS (4nnns) \

-A program written to perform a specific operation often includes sets
of instructions which perform intermediate tasks. These intermediate
tasks may be finding a square root, or typing a character on a keyboard.
Such operations are often performed many times in the running of one
program and may be coded as subroutines. To eliminate the need of
writing the complete set of instructions each time the operation must be
performed, the JMS (jump to subroutine) instruction is used. The JMS
instruction stores a pointer address in the first location of the subroutine
and transfers control to the second location of the subroutine. After the
subroutine is executed, the pointer address identifies the next instruc-
tion to be executed. Thus, the programmer has a t his disposal a simple
means of exiting from the normat flow of his program to perform an
intermediate task and a means of return to the correct location upon
cwplet ion of the task. (This return is accomplished using indirect ad-
dressing, which is discussed later in this chapter.) The following example
illustrates the action of the JMS instruction.

Location Content

PROGRAM
200 JMS 350 (This instruction stores 0201 in loca-

tion 350 and transfers program control
to location 351.)

I

132

201 DCA 270 (This instruction stores the contents of
the AC in location 270 upon return
from the subroutine.)

SUBROUTINE

350 0000 (This location is assumed to have an
initial value of 0000; after JMS 350 is
executed, it is 0201.)

351 iii (First instruction of subroutine)

375 JMP I 350 (Last instruction of subroutine)
/

The following should be kept in mind when using the JMS:
1. The value of the PC (the address of the JMS instruction +1)

is always stored in the first location of the subroutine, replacing
the original cohtents;

2. Program control is always transferred to the location designated
by the operand $1 (second location of the subroutine);

3. The normal return from a subroutine is made by using an in-
direct JMP to the first location of the subroutine (JMP I 350
in the above example); (Indirect addressing, as discussed later
in this chapter, effectively transfers control to location 201.);

4. When the results of the subroutine processing are contained in
the AC and are-to be used in the main program, they must be
stored upon return from the subroutine before further calcula-
tions are performed. (In the above example, the results of the
subroutine processing are stored in location 270.)

OPERATE MICROINSTRUCTIONS
The operate instructions (octal operation code 7 7) allow the pro-
grammer to manipulate and/or test the data that is located in the ac-
cumulator and link bit. A large number of different instructions are
possible with one operation code because the operand bitsare not needed
to specify an address as they are in an MRI and can be used to specify
different instructions. The operate instructions are separated into two
groups: Group 1, which contains manipulation instructions, and Group 2,
which is primarily concerned With testing operations. Group 1 instruc-
tions are discussed first.

Group 1 Microinstructions
The Group 1 microinstructions manipulate the contents of the a'ccu-
mulator and link. These instructions are microprogrammable; that is,
they can be combined to perform specialized operations with other Group
1 instructions.

133

0 1 2 3 4 5 6 7 8 9 10 11 I 1 [1 I 1 I 0 I C L A I C L L I C M A [C M L I R A R I R I L ~ I A C I

-I-/ OPERATION
t

0 : ROTATE ONE PLACE
CODE ZERO SPECIFIES 1 : ROTATE TWO PLACES

GROUP 1

The preceding diagram illustrates the manner in which a PDP-8 instruc-
tion word is interpreted when it is used to represent a Group- 1 operate
microinstruction. As previously mentioned, 7* is the operation code for
operate microinstructions; therefore, bits 0 through 2 are all 1’s. Since
a reference to core memory is not necessary for the operation of micro-
instructions, bits 3 through 11 are not used to reference an address. Bit
3 contains a 0 to signify that this is a Group 1 instruction, and the re-
maining bits are used to specify the operations to be performed by the
instruction. The operation of each individual instruction specified by these
bits is described below.

CLA

CLL
CMA

CML

RAR

Clear the accumulator. If bit 4 is a 1, the instruction sets
the accumulator to all zeroes.
Clear the link. If bit 5 is a 1, the link bit is set to 0.
Complement the accumulator. If bit 6 is a 1, the accumu-
lator is set to the 1’s complement of its original value; that
is, all 1’s become Us, and all 0’s become 1’s.
Complement the link. If bit 7 is a 1, the state of the link bit
is preserved.
Rotate the accumulator and link right. If bit 8 is a 1 and b i t
10 is a 0, the’instmction treats the AC and L as a closed
loop and shifts all bits in the loop one position to the right.
This operation is illustrated by the following diagram.

RTR Rotate the accumulator and link twice right. If bit 8 is a 1
and bit 10 is also a 1, a shift of two places to the right is
executed. Both the RAR and RTR instructions use what is
commonly called a..circular shift, meaning that any bit
rotated off one end of the accumulator will reappear a t the,
other end. This operation is illustrated below.

134

L AC

RAL

RTL

IAC

NOP

BEFORE
RTR

AFTER
RTR

Rotate the accumulator and link left. If bit 9 is a 1 and bit
10 is a 0, this instruction treats the AC and L as a closed
loop and shifts all bits in the loop one position to the left,
performing a circular shift to the left.
Rotate the accumulator and link twice left. If bit 9 is a 1
and bit 10 is a 1 also, the instruction rotates each bit two
positions to the left. (The RAL and RTL microinstructions
shift the bits in the reverse direction of that directed by the
RAR and RTR microinstructions.)
lncrement the accumulator. When bit 11 is a 1, the con-
tents of the AC is increased by 1.
No operation. If bits 0 through 2 contain operation code
7*, and the remaining bits contain zeros, no operation is
performed and program control is transferred to the next
instruction in sequence.

A summary of Group 1 instructions, including their octal forms, is given
below.

Mnemonic' Octal' Operation Sequence3
NOP 7000 No operation -
CLA 7200 Clear AC 1
CLL 7100 Clear link bit 1
CMA 7040 Complement AC 2
CML 7020 Complement link bit 2
RAR 7010 Rotate AC and L right one position 4
RAL 7004 Rotate AC and L left one position 4
RTR 7012 Rotate AC and L right two positions 4
RTL 7006 Rotate AC and L left two positions 4
IAC 7001 lncrement AC 3

-

'Mnemonic code is meaningful to and translated by an assembler into binary
code.
'Octal numbers conveniently represent binary instructions.
Sequence numbers indicate the order in which the operations are performed.

Group 2 Microinstrhtions
Group 2 operate microinstructions are often referred to as the "skip
microinstructions" because they enable the programmer to perform
tests on the accumulator and link and to skip the next instruction de-
pending upon the results of the test. They are usually followed in a pro-
gram by a JMP (or possibly a JMS) instruction. A skip instruction causes
the computer to check for a specific condition, and, if it is present, to skip

135

-

the next instruction. If the condition were not present, the next instruction
would be executed.

0 1 2 3 4 5 6 7 8 9 10 11

DETERMINES THE CONTAINS A 0
ACTION SPECIFIED

CONTAINS A 1 BY BITS 5.6, a 7

GROUP 2 REVERSE SENSING BIT
0 : SMA, SZA ,EL SNL ARE ENABLED (SKIPS ARE

INCWSIMLY "0R"ED TOGETHER)
I : SPA, SNA,& SZL ARE ENABLED(SK1PS ARE

"ANd'ED TOGETHER)(UNCONDlTlONAL SKIP
WHEN BITS 5.6. a 7 ARE 0's)

The available instructions are selected by bit assignment as shown in
the above diagram. The operation of each individual instruction speci-
fied by these bits is described below.

CLA

SMA

SPA

SZA

SNA

SNL

SZL

SKP

OSR

.

Clear the accumulator. If bit 4 is a 1, the instruction sets
the accumulator to all zeros.
Skip on minus accumulator. If bit 5 is a 1 and bit 8 is a 0,
the next instruction is skipped if the accumulator is less
than zero. (bit 0 = 1)
Skip on positive accumulator. If bit 5 is a 1 and bit 8 is a
1, the next instruction is skipped if the accumulator is
greater than or equal to zero. (bit 0 = 0)
Skip on zero accumulator. If bit 6 is a 1 and bit 8 is a
0, the next instruction is skipped if the accumulator is
zero.
Skip on nonzero accumulator. If bit 6 is a 1 and bit 8 is a
1 also, the next instruction is skipped if the accumulator
is not zero.
Skip on nonzero link. If bit 7 is a 1 and bit 8 is a 0, the
next instruction is skipped when the link bit is a 1.
Skip on zero link. If bit 7 is a 1 and bit 8 is a 1, the next
instruction is skipped when the link bit is a 0.
Unconditional skip. If bit 8 is a 1 and bit 5, 6 and 7 are
all zeros, the next instruction is skipped. (Bit 8 is a reverse
sensing bit whep bits 5, 6 or 7 are used - see SMA,
SPA, SZA, SNA, SNL, and SZL above.)
Inc!usive OR of switch register with AG. If bit 9 is a 1, an
inclusive OR operation is performed between the content
of the accumulator and the console switch register. In
short, the inclusive OR operation consists of the com-
parison of the corresponding bit positions of the two
numbers and the insertion of a 1 in the result if a 1
appears in the corresponding bit position in either number.
The action of the instruction is illustrated below.

136

1

HLT Halt. If bit 10 is a 1, the computer will stop a t the conclu-
sion of the current machine cycle.

A summary of Group 2 instructions, including their octal representation,
is given in the following table.

0 0 1 0 1 0 0 0 1 1 0 SWITCHREGISTEA

Mnemonic Octal

CLA 7600
SMA 7500
SPA 7510

-

SZA 7440
SNA 7450
SNL 7420
sz L 7430
SKP 7410
OSR 7404

H LT 7402

MICROPROGRAMMING

0 pe rat i o n

Clear the accumulator
Skip on minus accumulator
Skip on positive accumulator

Skip on zero ac,cumulator
Skip on nonzero accumulator
Skip on nonzero link
Skip on zero link
Skip unconditionally
Inclusive OR, switch register

with AC
Halts the program

(or AC = 0)

Sequence

2
1
1

1
1
1
1
1
3

3

Because PDP-8 instruction2 of Group 1 and Group 2 are determined by
bit assignment, these instructions may be combined, or microprogram-
rned, to form new instructions enabling the computer to do more oper-
ations in less time.

Combining Microinstructions
The programmer should make certain that the program clears the ac-
cumulator and link before any arithmetic operations are performed. To
perform this task, the program might include the following instructions
(given in both octal and mnemonic form).

CLA
CLL

7200 (octal)
7100 (octal)

However, when the Group 1 instruction format is analyzed, the following
is observed.

137

L

I I I 0 CLA CLL 1
‘ODE \ MUST BE A I TO SPECIFY CLA

MUST BE A 0 TO SPECIFY GROUP I

Since the CLA and the CLL instructions occupy separate bit positions,
they may be expressed in the same instruction, thus combining the two
operations into one instruction. This instruction would be written as
follows.

CLA CLL 7300 (octal)

In this manner, many operate microinstructions can be combined making
the execution of the program much more efficient. The assembler for the
PDP-8 will combine the instructions properly when they are written as
above, that is, on the same coding line, and separated by a space.

Illegal Combinations r

Microprogramming, although very efficient, can also be troublesome for
the new programmer. There are many violations of coding which are
not executable.

One rule to remember is: “If you can’t code it, the computer can’t do it.”
In other words, the programmer could write a string of mnemonic micro-
instructions, but unless these microinstructions can be coded correctly
in octal representation, they cannot be performed. To illustrate this fact,
suppose the programmer would like to complement the accumulator
(CMA), complement the link (CML), and then skip on a nonzero link
(SNL). He could write the following.

CMA CML SNL

These instructions require the following bit assignments.

0 1 2 3 4 ‘ 5 6 7 8 9 1011
CMA

CML

SNL

t 1 t o I I I 1 1 - 1 I I I

The three microinstructions cannot be combined in one instruction be
cause bit 3 is required to be a 0 and a 1 simultaneously. Therefore, na

138

instructions may be used which combine Group 1 and Group 2 micro
instructions because bit 3 usage is not compatible. The CMA and CML
can, however, be combined because their bit assignments are compatible.
The combination would be as follows.

CMA CML 7060 (octal)

To perform the original set of three operations, two instructions are
needed.

CMA CML
SNL

7060 (octal)
7420 (octal)

Because Group 1 and Group 2 microinstructions cannot be combined,
the commonly used microinstruction CLA is a member of both groups.
Clearing the AC is often required in a program and it is very convenient
to be able to microprogram the CLA with the members of both groups.

The problem of bit assignment also arises when some instructions within
a group are combined. For example, in Group 1 the rotate instructions
specify the number of places to be rotated by the state of bit 10. If bit
10 is a 0, rotate one place; i f bit 10 is a 1, rotate two places. Thus, the
instruction RAL can not be combined with RTL because bit 10 would be
required to have two different values at once. If the programmer wishes
to rotate right three places, he must use two separate instructions.

RAR
RTR

7010 (octal)
7012 (octal)

Although he can write the instruction “RAR RTR”, it cannot be correctly
converted to octal by the assembler because of the conflict in bit 10;
therefore, it is illegal.

Combining Skip Microlnstructions
Group 2 operate microinstructions use bit 8 to determine the instruction
specified by bits 5, 6, and 7 as previously described. If bit 8 is a 0, the
instructions SMA, SZA, and SNL are specified. If bit 8 is a 1. the instruc-
tions SPA, SNA, and SZL are specified. Thus, SMA cannot be combined
with SZL because of the opposite values of bit 8. The skip condition for
combined microinstructions is established by the skip conditions of the
individual microinstructions.

If bit 8 is a 0, the instruction skips on the logical OR of the conditions
specified by the separate microinstructions. The next instruction is skip
ped if any of the stated conditions exist. For example, the combined
microinstruction SMA SNL will skip under the following conditions:

1. The accumulator is negative, the link is zero.
2. The link is nonzero, the accumulator is not negative.
3. The accumulator is negative and the link is nonzero.

OR GROUP - SMA OR SZA OR SNL

\

(It will not skip if all conditions fail.) This manner of combining the test
conditions is described as the logical OR of the conditions.

A value of bit 8 = 1 specifies the group of microinstructions SPA, SNA,
and SZL which combine to form instructions which act according to the

139

AND GROUP - SPA AND SNA AND SZL

logical AND of the conditions. In other words, the next instruction is
skipped only if a l l conditions are satisfied. For example, the instruction
SPA SZL will cause a skip of the next instruction only if the accumulator
is positive and the link is zero. (It will not skip if either of the con-
ditions fail.)

NOTES
1. The programmer is not able to specify the

manner of combination. The SMA, SZA, SNL
conditions are always combined by the logical
OR, and the SPA, SNA, SZL conditions are
always joined by a logical AND.

2. Since the SPA microinstruction will skip on
either a positive or a zero accumulator, to
skip on a strictly (positive, nonzero) accumu-
lator the combined microinstruction SPA
SNA is used.

Order of Execution of Combined Microinstructions
The combined microinstructions are performed by the computer in a very
definite. sequence. When written separately, the order of execution of
the instructions is the order in which they are encountered in the pro-
gram. In writing a combined instruction of Group 1 or Group 2 micro-
instructions, ihe order written has no bearing upon the order of execution.
This should be clear, because the combined instruction is a 12-bit binary
number with certain bits set to a value of 1. The order in which the bits
are set to 1 has no bearing on the final execution of the whole binary
word.

The definite sequence, however, varies between members of the PDP-8
computer family. The sequence given here applies to the PDP-8/1 and
PDP-8/L. The applicable information for other members of the PDP-8
family is given in the Appendix. The order of execution for PDP-8/1 and
PDP-8/L microinstructions is as follows.

GROUP 1

Event 1

Event 2

Event 3

Event 4

CLA, CLL - Clear the accumulator and/or clear the link
are the first actions performed. They are effectively per-
formed simultaneously and yet independently.
CMA, CML - Complement the accumulator and/or com-
plement the link. These operations are also effectively
performed simultaneously and independently.
IAC - Increment the accumulator. This operation is per-
formed third allowing a number in the AC to be comple-
mented and then incremented by 1, thereby forming the
two’s complement, or negative, of the number.
RAR, RAL, RTR, RTL - The rotate instructions are per-
formed last in sequence. Because of the bit assignment
previously discussed, only one of the four operations may
be performed in each combined instruction.

140

GROUP 2
Event 1 Either SMA or SZA or SNL when bit 8 is a 0. Both SPA

. and SNA and SZL when bit 8 is a 1. Combined micro-
instructions specifying a skip test are performed first. The
microinstructions are combined to form one specific test,
therefore, skip instructions are effectively performed
simultaneously.
Because of bit 8, only members of one skip group may be
combined in an instruction.
The actual skip however, will not occur until a l l other
directives of the group 2 instruction are performed.

Event 2 CLA - Clear the accumulator. This instruction is per-
formed second in sequence thus allowing different arith-
metic operations to be performed after testing (see Event
1) without the necessity of clearing the accumulator with
a separate instruction before some subsequent arithmetic
operation.

Event 3 OSR - Inclusive OR between the switch register and the
AC. This instruction is performed third in sequence, al-
lowing the AC to be cleared first, and then loaded from
the switch register.

Event 4 HLT - The HLT is performed last to allow any other
operations to be concluded before the program stops.

This is the order in which all combined instructions are performed. In
order to perform operations in a different order, the instructions must
be written separately as shown in the following example. One might
think that the following combined microinstruction would clear the ac-
cumulator, perform an inclusive OR between the SR and the AC, and
then skip on a nonzero accumulator.

CLA OSR SNA

However, the instruction would not perform in that proper manner, be-
cause the SNA would be executed first. In order to perform the skip last,
the instructions must be separated as follows.

CLA OSR
SNA

Microprogramming requires that the programmer carefully code mne-
rnonics legally so that the instruction does in fact do what he desires it
to do. The sequence in which the operations are performed and the legality
of combinations is crucial to PDP-8 programming.

The following is a list of commonly used combined microinstructions,
some of which have been assigned a separate mnemonic.

Instruction ExDlanation

- CLA CLL Clear the accumulator and link.
CIA CMA IAC Complement and increment the accumulator.

(Sets the accumulator equal to its own nega-
tive.)

141

LAS CLA OSR Load accumulator from switches
(Loads the accumulator with the value of the

switch register.)
STL CLL CML Set the link (to a 1).
- CLA IAC Sets the accumulator to a 1.
STA CLA CMA Sets the accumulator to a -1.

In summary, the basic rules for combining operate microinstructions ?re
given below.

1. Group 1 and Group 2 microinstructions cannot be combined.
2. Rotate microinstructions (Group 1) cannot be combined with

each other.
3. OR Group (SMA, SZA, or SNL) microinstructions cannot be

combined with AND Group (SPA, SNA, or SZL) microinstructions.
4. OR Group microinstructions are combined as the logical OR

of their respective skip conditions. AND Group microinstructions
are combined as the logical AND of their respective skip con-
ditions.

5. Order of execution for combined instructions (PDP-8/1 and
PDP-8/L only) is listed below.

Group 1 Group 2
1. CLA, CLL 1. SMA/SZA/SNL or

2. CMA,CML 2. CLA
3. IAC 3. OSR
4. RAR, RAL, RTR, RTL 4. HLT

SPAISNAISZL

PDP-8 MODE INPUT/OUTPUT PROGRAMMING
Being able to program a computer to do calculations is of little use if
there is no way of getting the results of calculations from the machine.
Likewise, the programmer often must supply the computer with informa-
tion to be processed. A programmer must be provided with the means to
transfer information between the computer and the peripheral devices
that supply input or that serve as a means of output.

Before a transfer of information can be executed, a control function must
be supplied to specify when the exchange will occur, with what peripheral
device the exchange will occur, and where in core storage the information
will be stored (or obtained from). In general, this control function may
be served by either the PDP-8 or the peripheral device itself.

There are three basic methods for the transfer of information between
inputloutput (I/O) devices and the PDP-12. The first two methods pro-
vide for computer control over the transfer. One method is programmed
transfer, in which instructions are included a t some point in the program
to accept or transmit information. Thus, programmed transfers are pro-
gram initiated and are under program control.

Information may also be transferred through program interrupt, a stan-
dard feature of the PDP-8 computer family that provides for devices to
signal the PDP-12 when they are ready to transfer information; the pro-

142

gram will then interrupt its normal flow and jump to a routine to process
the information, after which it will return to the point in the main program
a t which it was interrupted. Thus, program interrupt transfers are device
initiated but are under program control.

These first two methods (i.e., programmed transfers and program in-
terrupt) use the accumulator as the buffer, or storage area in the com-
puter, for a l l data transfers. Therefore, only one 12-bit word of input or
output .may be transferred a t one time by a programmed transfer, or by
program interrupt.

The third method of information transfer is data break, standard for the
PDP-12 computer. Data break is essentially device controlled and allows
for direct exchange of large quantities of information between the device
and the PDP-8 memory. It differs from the previous two types of transfer
in that there are no program instructions to handle the transfer and the
accumulator is not used as a buffer. Data break transfers are device
initiated and device controlled.

INPUT/OUTPUT INSTRUCTIONS
As the name implies, programmed transfers of information are accorn-
plished with a set of program instructions. The instructions are similar
to the operate microinstructions in that there is no need to specify an
address in memory. The operation code 68 is used to specify an input/
output transfer (IOT) instruction. All programmed transfers are between
the acpumulator and the device. Since many different devices could be
connected to one computer and each device may a t some time transfer
information, the instruction must identify the proper device for each
transfer. The instruction must also specify the exact nature of the func-
tion to be performed.

IOT Instruction Format
An IOT instruction is a 12-bit word that is in the following format. The
first three bits represent the operation code 6*. The remaining nine bits
may be either binary 0’s or 1’s.

0 1 2 3 4 5 6 7 8 9 IO (1 ---
OPERATION DEVICE SELECTION OPERATION

CODE CODE SPECIFICATION
BITS

The IOT Instruction

The IOT instruction is divided into three parts: operation code, device
selection code, and operation specification bits.

Device Selection
The device selection code is transmitted to all peripheral equipment
whenever the IOT instruction is executed. A device selector within each

. 143 -

peripheral device monitors the device codes. When the device selector
recognizes a device code as the device's assigned code, the device re-
ceives the last three bits of the instruction. Each of the last three bits
specifies an action associated with the device. When one of the last three
bits is set to a 1, the specified action is performed. Since there are three
bits, only three different actions can b& specified for each device code, al-
though microprogramming is possible. When more instructions are nec-
essary for a given device, more than one code is assigned to the device.

Checking Ready Status
Because there is a great difference in the processing speed of a computer
and the speed of most peripheral devices, the computer must check the
readiness of a device before any transfer of information is performed.
The input device must signal the computer that it has completely as-
sembled the information and is now ready to transfer the information to
the computer memory. The output device must signal its readiness to
accept the next piece of information from the computer. Without such
signals, the computer would input and output information a t a faster rate
than the device could process it and some information would be lost.

To prevent any loss of information, the computer program checks the
ready status of the transmitting or receiving device as part of preparing
for a normal data transfer. The ready status is usually checked with a skip
instruction such that if the device is ready, the following instruction is
skipped. The ready status is signaled through a system of flags, which
are 1-bit registers within the device. All I/O devices have a device
flag which is set to a 1 whenathe device is ready; that is, when it can
be used (if it IS an output device), or when it has information (if is
an input device). If the flag is cleared (set to 0), the device is busy.
If a program initiates a device action, the flag associated with that device
will be set to a 1 when the device action is completed.

Instruction U s e s
In general, for each device there are three instructions:

1. An instruction to transfer information and operate the device.
2. An instruction to test the ready status of the device and skip

on the ready (or not-ready) status of the device.
3. An instruction to clear the device flag.

The above instructions may be microprogrammed. In particular, the in-
structions to clear the flag and to operate the device often are combined.

The specific instructions for devices are given in the following sections.
The Teletype unit is described in depth to explain the fundamentals of
programming data transfers. The general techniques developed for the
Teletype unit may be extended to handle other'devices.

ASCII Code
The ASCII (U.S.A. Standard Code for Information Interchange) is p r e
sented below. Many of the programs written in this chapter use this
code to transmit information to the PDP-12. The fact that the ASCII code
for the octal digits 0 through 7 is the sum of that digit plus 26OS should
be observed.

144

THE 8-BIT ASCII’ CODE

Character 8-Bit
Octal Character 8-bit

Octal
.

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R
S
T
U
V
W
X
Y
2
0
1
2
3
4
5
6
7
8
9 .

301
302
303
304
305
306
307
310
311
312
313
314
315
316
317
320
32 1
322
323
324
325
326
327
330
33 1
332
260
261
262
263
264
265
266
267
270
27 1

<
>
?

@
c
\
1
,r

- -

t

Leader/Trailer
LINE FEED

Carriage RETURN
SPACE

RUBOUT
Blank
BELL
TAB

FORM

241
242
243 .

244
245
246
247
250
25 1
252
253
254
255
256
257
272
273
274
275
276
277
300
333
334
335
336
337
a200
212
215
240

. 377
000
207
“211
214

’An abbreviation for USA Standard Code for Information Interchange.

145

PROGRAMMING THE TELETYPE UNIT
One of the most common I/O devices is the Teletype unit, which con.
tains a keyboard, printer, paper tape reader, and paper tape punch.

The following is a diagram of how the teletype is connected to the PDP-12.

~ 1 0 0 0 0 0 1 1

KEYBOARD T T I

1 1 1 1 1 1 1
READER

u 1-
TELEPRINTER

TTO

The Teletype unit can use either the keyboard or the paper tape reader
to input information to the computer and can use either the printer or
the paper tape punch to accept output information from the computer.
The Teleype unit is therefore assigned two device codes.

Teletype Input/Output Transfer Instructions
Functioning as an input device, the keyboard/reader is assigned the de-
vice code 03,, and functioning as an output device, the printer/punch
is assigned the device code 04,.
KEYBOARD/READER INSTRUCTIONS
The instruction format for the keyboard/reader is shown below. The
mnemonic instructions generated by bits 9, 10, and 11 are noted. The
sequence in which the mnemonic instructions are executed when micro-
programmed is noted below.

--
WERATION DEVICE CODE

KCC
CODE 3 - KRS

Teletype Keyboard/Reader Instructions

146

Effect - Octa I - Sequence Mnemonic

1 KSF 6031 Skip the next instruction when
the keyboard buffer register is
loaded with an ASCII symbol
(causing the keyboard flag to
be raised).

2 KCC 6032 Clear AC, clear keyboard flag.
3 1 KRS 6034 Transfer the contents of the

keyboard buffer into the AC.
23 KRB 6036 Transfer the contents of the

keyboard buffer into the AC,
clear the keyboard flpg.

The fourth instruction (KRB) is a microprogrammed combination of the
mnemonics KCC and KRS. If the paper tape reader is loaded with a paper
tape and switch to START, the KRB instruction accepts one character
from the reader.

A program using the above instructions to read in one ASCII character
from the keyboard or paper tape reader is shown below. Note that this
program does not type the character on the teleprinter, it merely stores
the ASCII code for the character in the location STORE.

e200
INPUT, KCC /CLEAR KEYBOARD FLAG

JMS LlSN
DAC STORE
HLT

KSF /SKIP ON KEYBOARD FLAG
JMP .-1
KRB /READ KEYBOARD BUFFER
JMP I LlSN

LISN, 0

STORE, 0
$

Coding to Accept One ASCII Character

The main program begins with KCC. In general, the main program should
begin by clearing the flags of all devices to be used later in the program.
If the above program is started a t location 200, it will proceed to the
KSF, JMP .-1 loop, and stay in this loop endlessly until a key on the
Teletype unit is pressed or a paper tape is loaded into the reader. When
the ASCII code for the character is assembled in the keyboard/reader
buffer register, the flag will be set to a 1 and the program will skip out of
the loop. The contents of the buffer wit1 be transferred into the accumu-
lator, and the buffer and flag will be cleared.

PRINTER/PUNCH INSTRUCTIONS
The instruction format for the Teletype printer/punch IOT instructions
is given below. The mnemonic instructions generated by pits 9, 10, and
11 are discussed on the following page.

147

r i o o o o t . o o --
OPERATION DEVICE CODE

CODE 4

TPC

Sequence

1

2
3

2,3

Teletype Printer/Punch Instructions

Effect - Mnemonic Octal -
TSF 6041 Skip the next instruction if the

TCF 6042 Clear the printer flag.
TPC 6044 Load the printer buffer register

with the contents of the AC, se-
lect and print the character.
(The flag is raised when the

TLS 6046 Clear the printer flag, transfer
the contents of the AC into the
printer buffer register, select
and print the character. (The
flag is raised when the action
is completed.)

printer flag is set to 1.

action is completed.) I

The last instruction is a microprogrammed combination of TPC and TCF,
such that the flag is cleared, the character is printed, and then the flag
is again raised. Whenever the paper tape punch is turned on, the char-
acter is punched on paper tape as well as printed on the teleprinter.

The chart below illustrates a program to print out one ASCII character
which is held in a memory location.

0200
OUTPUT, CLA CLL

TLS
TAD HOLD .
JMS TYPE
H LT

TSF /SKIP ON TELEPRINTER FLAG
JMP .-1
TLS /PRINT THE CHARACTER
CLA CLL
JMP I TYPE

TYPE, 0

HOLD, 0
$

Coding to Print One ASCII Character

148

The program shown above begins by clearing the accumulator and execu-
ting a TLS instruction (which has the effect of clearing the printer buffer),
after which the printer flag will be set, thereby signifying readiness to
accept a character. If the initial TLS instruction were not executed, the
flag would not be raised (the START key clears al l flags), and the program
would remain in the +SF, JMP .- 1 loop endlessly. In the previous case,
however, the program uses the printer with a cleared accumulator such
tHat no character is printed. However, the flag is set when this action is
complete enabling the printing of meaningful information in the TYPE
subroutine. The TYPE subroutine clears the accumulator since the TLS
instruction does not. It is advisable to clear the accumulator after any
subroutine unless meaningful data is contained in it.

Format Routines
Input and output routines are very often written in the form of sub-
routines, as the TYPE subroutine in the previous example. The example
shown below is a carriage return/line feed subroutine that calls the
TYPE subroutine to execute a carriage return and line feed on the printer,
thus advancing to a new line for the printing of information.

4 , , l . * r '

CRLF, 0
TAD K215
JM'S TYPE
TAD K212
JMS TYPE
JMP I CRLF

K215, 215 /ASCII FOR CARRIAGE RETURN
K212, 212 /ASCII CODE FOR A LINE FEED
TYPE, 0

TSF

TLS
CLA CLL
JMP I TYPE

JMP .-1

Carriage Return/Line Feed Subroutine

Subroutines similar to the one shown above could be written to tab space
the carriage a given number of spaces, or to ring the bell of Teletype
Model ASR 33 by using the respective codes for these nonprinting charac-
ters. Such subroutines, if commonly used in a program, should be placed
on page 0 (or else a pointer word to the subroutine should be placed
on page zero) to facilitate reaching the routine from all memory locations.

Text Routines
The examples shown betow may be expanded to accept and type more
than one character. Figures on the following page illustrate one expan-
sion. These two programs are compatible in that the characters accepted
by the first program are typed out by running the second program. The
program to accept characters will continue to accept character input
until a dollar sign ($) is struck on the keyboard, a t which time the pro-
gram will store all zeros in the next location and then halt. The program

149

will type the characters whose ASCII code was stored by the first program.
The second program will halt when a location with contents equal to zero
is reached. Both programs use locations beginning with 2000 as the
buffer for the storage of ASCII characters. The following flowcharts in-
troduce the techniques used in the program coding.

(-)

.

CHARACTER
IN BUFFER

4
RIM THE

CHARACTER

i START
INCREASE THE

BUFFER POINTER A
EXECUTE TLS

To CLEAR BUFFER
AND SET FLAG

4

4

A i

SET BUFFER
FaNTm To

FIRST LOCATION

STORE ZEROS RETURN
OVER '$" CARRIAGE

HALT

HALT

INCREASE
BUFFER WINTER

150

*5000 .
STARTS C L A C L L

T A C R U F F
. T C A R U P E P T

L I S N r KSF
JMP e - 1
KRB
TL S
CCA I B U F F P T
TAD I F I ! b F P T
T A D MDOLPP
S N A *
JMP PONE
I S Z F U F F P T
JMP L I S N

DCA I F I l F F P T
H L T

N N E r C L A C L L

-
B U F F D 261@@
A U F F P T I 0

' M D O L A R s
s .'

S T A F T ,

CHRTYPI

C R L F s

TYPE,

RUFF,
AULFPT.
K R 1 5 r
K P l R s

7530

CLA CLL
TLS
TAD P U F F
LCA F U F F P T
JMS CRLF
TAD I R U F F P T
SNA
H L T
JMS TYPE
I S Z R U F F P T
JMP CHRTYP
b
TAD K P 1 5
JMS TYPE
TAD K P l ?
JMS T Y P F
JMP I C R L b
e
T S F
JMP. . - 1
TL S
CLA
JMP I TYPE

0
21 5 -
P I P

P e w

/ S E T U P F U E F E F S P A C E .

/ K E Y F O A F L S T R I C K YFT?
/NO: C H E C K A G A I N .
/ Y E S : F E P L C H A F A C I F P .
/ A C K N O W L E D G E I T ON P F I N T E R .
/ S T O F F C H P F P C T E R .
/ C H E C K F O R T E F N I I 8 A L I.

/ C H A R A C T E F I S A P.
/ C H P P P C T P R I S ,NOT A $ 0

/ G E T P N O T H F R C H A R A C T E F .
/ S T O P E 61 I N LPST L O C A T I O N .

/ T L S TO S E T P F I N T E R FLAG.
/ S E T U P P U F F E R SPACE.

/RE 7 UFN CAFR IAGE
/ O F T A CHPFACTER.
/ I S I T PLL ZEPOS?
/YES: S T O P .
/NO: TYPE OUT T H E CHARACTEF.
/ I N C F E M E N T B U F F E R P O I N T E R . .
/ T Y P E ANOTHER CHAFACTER.
/ C A R R J P G E RETURN & L I N L FEED.
ITYFI CP J-IRST.

/ T Y P € LINE F E E f .

/ S U R R O U T I N E TO TYPE CHARACTER..

/NO: CHECK AGAIN.
/YFS: TYPE. CHARACTER..'
/CLE,AP A S C I I FROM AC. , .

I P R I N T F F FE.AEY YE,T? , , :

151

The program to print characters m a i be specialized to print a specific
word. The example is a subroutine which uses autoindex registers in place
of the ISZ instruction. The subroutine types "HELLO!"

H F L L O s

NEYTs

TYPE:*

R
CLA CLL
TLS
TAD CHARAC
DCA IF1
TAD M 6
DCA COUNT
TPI? I IF1
&IS T Y P E
ISZ COUNT
JMP NEXT
JMP I H E L L O
R
T S F
r n P .-1
TLS
CLA
a P 1 TYPE

CHAFACI
310
3Q 5
314
314
317
P4 1

MhI -6
COUNT* P
1 ~ 1 5 1 ~

/HF,LLO SIJRFOUT I N F.

/TCS TO S L T P R 1 N T I . P FLAU.
/ S E T UP INOEX REGISTER
IFOF GF:TTING CHARPCTZiRS.
/ S E T UP COUNTER FOR
/ T Y P I N G CHARACTE:FS
/GT:?' A CHAFACTERe
/TYPE. I f -
/DO+JE YE:T?
/NO: T Y P E AN0THL.R.
/YES: P F T U F N TO MAIN P F O W A M .
I T Y P I ' S U B R O U T I N E

/USED PS I N I T I A L VALUE OF I R 1
/H
/E.
/L
/L
/O
/!

LINC MODE INSTRUCTIONS

Simple Instructions
LINC mode instructions themselves are encoded as binary numbers and
held in various registers. The simplest of these instructions, namely those
which operate only on the accumulator, are described first with reference
to the LEFT SWITCHES.

Raising the DO lever (DO means "do toggle instruction") causes the
PDP-12 to execute the instruction whose binary code number is held in
thg LEFi SWITCHES. The PDP-12 then halts. For example, if the LEFT

152

SWITCHES are set to the code number for the instruction CLEAR, which
happens to be OOll,, and the DO lever is then momentarily depressed,
the accumulator lights all go out as does the LINK bit light, so that
C(ACC) = 0, and C(L) = 0. In setting a switch, down corresponds to 1.

Briefly: If C(LEFT SWITCHES) = O l l l , , DO has the effect WC(ACC) and
o-)C(L). (Read “0 replaces the contents of the accumulator.” etc.)

Clear (or CLR) is an instruction of the class known as miscellaneous
instruction. A second miscellaneous class inktruction, COM (comple-
ment). with the code number 00178, directs the LINC to complement the
contents of the accumulator and therefore has the effect C(ACC)+
C(ACC). (Read: “the complement of the contents of the accumulator re-
places the contents of the accumufator.”)

Two other instructions of this class transfer information between the
accumulator and the relay register. The relay register, displayed on the
control console, operates six relays which can be used to control or run
external equipment. An instruction with the code 00148, called ATR
(accumulator to relay), directs the LINC to transfer the contents of the
right half of the accumulator, i.e., the rightmost six bits, into the relay
register. The accumulator itself is not changed when the instruction is
executed. Another instruction, called RTA (relay to accumulator), 0015@,
causes the LINC to clear the accumulator and then transfer the contents
of the relay register into the right half of the accumulator. In this case
the relay register is not changed and the left half .of the accumulator
remains cleared (Le., contains 0’s).

Another instruction called RSW (right switches), 05168, directs the PDP-12
to copy the contents of the RIGHT SWITCHES into the accumulator. By
setting the LEFT SWITCHES to 05168, the RIGHT SWITCHES to whatever
value wanted in the accumulator, and then momentarily depressing the
DO tever, the operator can change the contents of the accumulator to

153

any desired new value. The drawing shows how the switches should be set
to put the number 64518 into the accumulator:

Effect of rotating
right 1 place

Before 000 000 011 001
After 100 000 001 100
Before 111 111 100 110
After 011 111 110 011

Shifting
After a number has been put into the accumulator it can be repositioned
(shifted) to the right or left. There are two ways of shifting: rotation, in
which the end-elements of the accumulator are connected together to
form a closed ring, and scaling, in which the end-elements are not so
connected.

Effect of scaling
right 1 place

000 000 011 001 = f25 (decimal)
000 000 001 100 =+12
111 111 100 110 = -25(decimal)
111 111 110 011 = -12

0

ROTATI ON
n 9 I I H I I k-4 I I H I I , +

I I 1 1 . 1 I I I q
MQ

Examples of shifts of one place:

Note that, in scaling, bits are lost to the right, which amounts to an error
of rounding off the original sign is preserved in the sign bit and replicated
in the bit positions to the right of the sign bit. This has the effect of re-
ducing the size of the number by powers of two (analogous to moving the
decimal point in decimal calculations).

The PDP-12 LINC mode has three instructions, called the shift class in-
structions, which shift the contents of the accumulator: rotate right,
rotate left, and scale right. Unlike'the simple instructions considered so
far, the code number for a shift class instruction includes a variable
element which specifies the number of places to shift. For example, write
ROL n (rotate the contents of the accumulator n places to the left), where
n can be any number from 0-17*.

As a further variation of the shift class instructions, the link bit can be
adjoined to the accumulator during rotation to form a 13-bit ring as shown
below, or to bit 11 of the accumulator during scaling to preserve the low
order bit scaled out of the accumulator:

The code number of a shift class instruction, e.g., rotate left, therefore
includes the.number of places to shift and an indication of whether or not
to include the link bit. Use the full expression ROL I n, which has the
octal coding:

r=o:ACc ONLY
I = l : LINK ACC r(

ROL I N 0240+201 + n

t NUMBER OF PLACES TO SHIFT
.,I71 (" =O,I,

so that, for example, rotate ACC left 3 places has the code 0243, and
rotate ACC with link left 7 places has the code 0267. Note the corres-
pondence between the code terms and bit positions of the binary coded
instruction as it appears, for example, in the LEFT SWITCHES:

155

Similar coding is used with ROR I N (rotate right), 300 + 201 f N, and
SCR I N (scale right), 340 + 201 + N.

LINC Mode Memory and Memory Reference Instructions
Before proceeding to other instructions, it is necessary to introduce the
LINC Mode memory. This memory is to be regarded as a set of 102410
registers each holding 12.bit binary numbers in the manner of the
accumulator. These memory registers are numbered 0, 1, , 102310, or
0, 1, 1777,, and reference is made to “contents of register, C(3), “the
contents of register X,” C(X), etc., referring to “3” and “X” as memory
address.

The memory actually consists of a remotely-located array of magnetic
storage elements with related electronics, but for introductory purposes
view of terms of two registers of lights, namely the memory address reg-
ister and the memory buffer register:

By using the?se two registers in conjunction with the LEFT SWITCHES
it is possible to find out what values the memory registers contain. For
example, to find the contents of register 3, set the LEFT SWITCHES to
memory address 0003 and then operate the key labeled EXAM. As 0003
appears in the memory address register, the contents of register 3 appear
in the memory buffer register. By setting the LEFT SWITCHES to a mem-
ory address register, the contents of register 3 appear in the memory
buffer register. By setting the LEFT SWITCHES to a memory address and
pushing EXAM, the contents of any register in the LINC memory may
be examined.

The contents of any selected memory register may be changed by using
both the LEFT and RIGHT SWITCHES and the key marked FILL. For ex-
ample to make the memory register whose address is 700 contain -1
(i.e., 7776,) set memory address 0700 into the LEFT SWITCHES. Set the
RIGHT SWITCHES to 7776 and operate the FILL key. A 0700 appears in
the memory address register and 7776 appears in the memory buffer
register, indicating that the contents of the register 700 are now 7776.
What ever value register 700 may have contained before FILL was pushed
is lost, and the new value takes its place. In this way any register in the
LINK MODE memory can be filled with a new number.

None of the mode instructions make explicit reference to the memory
address register or memory buffer register; rather, in referring to memory
register X, an instruction may direct the PDP-12 implicitly to put the
address X into the memory address register and the contents of register
X, C(X), into the memory buffer register.

The Store-Clear Instruction (400 + X)
Now it is possible to describe the first of the memory reference instruc.
tions, STC X(store-clear X), which has the code number 4000 + X, where
O<X<1777, .(From nowon onlyoctal numberswill be used for addresses.)
Execution of STC X has two effects: 1. the contents of the accumulator
are copied into memory register X, C(ACC)+C(X), and 2) the accumu-
lator is then cleared, mC(ACC). (The link bit is not cleared.) Thus, for
example, if C(ACC) = 0503 and C(671) = 2345, and the code number

156

for STC 671, i.e., 4671, is set into the LEFT SWITCHES, depressing the
’ DO switch puts 0 into the accumulator and 0503 into register 671. The
original contents of register 671 are lost.

It will be clear that the memory can be fllled with new numbers a t any
time either by using the FILL key and the switches, or by loading the ac-
cumulator from the RIGHT SWITCHES with the RSW instruction and the
DO switch and then storing the accumulator contents with the STC X
instruction and the DO switch.

The ADD Instruction and Binary Addition (2OOO + X)
STC is one of three full-address class instructions. Another instruction
in this class, ADD X, has the code number 2000 + X where O<X<1777.
Execution of ADD X has the effect of adding the contents of the accumu-
lator, i.e., C(X)+C(ACC)-)C(ACC). If the accumulator is first cleared,
ADD X has the effect of merely copying to the accumulator the contents of
memory register X, Le., C(X)+C(ACC). In any case, the contents of
memory register X are unaffected by the instruction.

The addition itself takes place in the binary system, within the limitations
of the 12-bit registers. The basic rules for binary addition are simple:
0 + 0 = 0; 1 + 0 = 1; 1 + 1 = 10 (i.e., zero, with one to carry). A
carry arising from the leftmost column (end-carry) is brought around and
added into the rightmost column (end-around carry). Some examples
(begin a t the rightmost column as in decimal addition):

0 0 4 1 1 1 010 001 1 1 1 1 0 0 010 . 014
ax, 010 1 1 1 0 0 1 0 0 4 010 010 OOO

010 010 011 01O(SuM) ax, 1 4 0 100 011
11 11f 1 1~CARRIEs) 1 1 1 1

C t (END-ARCUN)
W R I E S - - - - 11 CARRY)

ooo 110 1 0 0 1OO(SUM)

The reader should try some examples of his own. Verify the fact that
adding a number to itself with end-around carry is equivalent to rotating
left one place. With signed-integer interpretation, some other examples
a re:

ooo ooo ooo 1 0 1 * + 5
111 1 1 1 1 1 1 100 .-3
1 1 1 111 1 1 1

(-l ooo ooo ooo 0 0 1

1
ooo ooo ooo 0 1 0 .+2

114 1 1 1 1 1 1 010 .+5
1 1 1 111 1 1 1 1 w .-3

1 1 1 1 1 1 1 1 0 140
bl

1 1 1 1 1 1 1 1 1

Ill 1 1 1 1 1 0 1 1 1 *-B(DECIWLl

It can be seen that subtraction of the number N is accomplished by
addition of the complement of N. Of course, if either the sum or dif-
ference is too large for the accumulatbr to hold, the result of the addition
may not be quite the desired number. For example, adding 1 tuthe largest

157

positive integer in this system (+3777J results in the largest negative
integer (-3777,). This is sometimes called overflowing the capacity of
the accumulator.

.

Instruction Location Register
It is clear that the code numbers of a series of different instructions can
be stored in consecutive memory registers. The PDP-12 is designed to
execute this stored program of instruction by returning and carrying out
each instruction in sequence, using a register called the program counter,
to hold the address of the next instruction to be executed. Using the FILL
key and the LEFT and RIGHT SWITCHES already discussed can, for ex-
ample, put into memory registers 20-24 the code numbers for a series of
instructions with which divide by 8 the number held in memory register
30 and store the result in memory register 1:

Memory
Address Memory Buffer Effect

Start + 20 CLR 0111 Clear the accumulator

30 to the accumulator.

to divide by 8.

21 ADD30 2030 Add the contents of register

22 SCR3 034 Scale C(ACC) right 3 places

23 STC1 4031 Store in register 1.
24 HLT 0000 Halt the computer.
30 N N Number to be divided by 8.
31 N/8 N/8 Result.

Simple Sequence of Instructions

Use the FILL Key and the LEFT and RIGHT SWITCHES to put the code
numbers for the instructions into memory registers 20-24 and the num-
ber to be divided into register 30. Operating the console keys labeled IO
Preset and START 20 directs the PDP-12 to begin executing instructions
LINC Mode memory register 20. That is, the value 20 replaces the con-.
tents of the instruction register. As each instruction of the stored pro-
gram is executed, the instruction location register is increased by 1,
C(P) + l+C(P). When the instruction location register contains 24,
the computer encounters the instruction HLT, code 0000, which halts
the machine. To run the program again, merely operate IO Preset and
START 20 key. (The code numbers for the instructions stay in memory
registers 20-24 unless they are deliberately changed.)

The Jump Instruction (6000 + X)
The last full-address instruction, JMP X, code 6000 f X, has the effect
of setting the instruction location register to the value X; X+C(P). That
is, the PDP-12, instead of increasing the contents of the instruction loca-
tion register by one and executing the next instruction in sequence, is
directed by the JMP instruction to get its next instruction from memory
register X. In the above example having a JUMP to 20 instruction, code
6020, in memory register 24 (in place of HLT) would cause the computer
to repeat the program endlessly. If the program were started with the IO
Preset and START 20 switch, the instruction location register (P) would

158

hold the succession of values: 20, 21, 22, 23, 24, 20, 21, etc. (Later
instructions will be introduced which increase C(P) by extra amounts,
causing it to skip.)

JMP X has one further effect: if JMP 20, 6020, is held in memory register
24, then its execution causes the code for JMP 25 to replace the con-
tents of register 0; i.e., 6025+C(O). More generally, if JMP is in any
memory register p, 0 5 ~ 5 1 7 7 7 , then its execution causes JMP p +
l+C(O).

~ ~~ ~~ -
Memory
Address Memory Buffer

~

Effect
0 JMP p f l 6000 + P+l

+P JMP X 6000 + X X C(P), and JMP p+1 C(0).
, P+lI.

x L- Next instruction.

This JMP p+l code replaces the contents of register O every time a JMP
X instruction is executed unless X=O, in which case the contents of 0
are not changed. Use of memory register 0 in this way is relevant to a
programming technique involving subroutines which is described later.

The following programming example illustrates many of the features
described so far. It finds one-fourth of the difference between two num-
bers NI and N2, which are located in registers 201 and 202, and leaves
the result in register 203 and in the accumulator, After filling consecutive
memory registers 175-210 with the appropriate code and data numbers,
the program must be started a t memory register 175. Since there is no
START 175 key on the console, this is done by setting the LEFT SWITCHES
to 4175 and operating the console keys labeled IO Preset and Stah LS

-(start RIGHT SWITCHES).
+,

~~

Memory
Address Memory Buffer Effect

Start +175 CLR 0011 m C (A C C) .
176 ADD210 2201 N,+C(ACC).
177 COM 0017 Forms - NI -
200 JMP 204 6204 Jumps around data; 204-)C(P),

and JMP 201*C(O).

202 Data and result.
203 (NrNi)/4 (NrNi)/4
204 ADD 202 2202 (Nr N t)+C(ACC).
205 SCR2 0342 Divides by 4.
206 STC203 4203 Stores result in 203;+C(ACC).

207 ADD 203 2203 Recovers result in ACC.
210 HLT 0000 Halts the LINC.

C(203);+0 C(ACC).

Simple Sequence Using the Jump Instruction

.
159

In executing this program, the instruction location register holds the
succession of numbers: 175, 176, 177. 200, 204, 205, 206, 207, 210.

Address Modification and Program Loops
Frequently a program of instructions must deal with a large set of num-
bers rather than just one or two. For example, suppose one wishes to
add 100a numbers and that the numbers are stored in the memory in
registers 1000-1077. The sum is to go into memory registers 1100. It
is possible, of course, to write out al l the instructions necessary to do this.

Memory
Address Memory Buffer Effect

* 20 CLR i 0011 0 C(ACC); 0 C&). .
21 ADD- 1000 3000 Add 1st number.
22 ADD 1001 3001 Add 2nd number.
23 ADD 1002 3002 Add 3rd number.
24 ADD 1003 3003 Add 4th number.

etc. efc. etc.

But it is easy to see that the program would be more than loos registers
long. A more complex, but considerably shorter, program can be written
using a programming technique known as address modification. In this
case the computer first executes an ADD 1000 instruction; the program
then adds one to the ADD instruction itself and restores it, so that it is now
ADD 1001. The program then jumps back to the location containing the
ADD instruction and the computer repeats the entire process, this time
executing an ADD 1001 instruction. In short, the program is written so
that it changes its own instructions while running.

The process might be diagrammed:

THE ADD

This technique introduces the additional problem of deciding when all
100 numbers have been summed and halting the computer. In this con-

160
-

text a new instruction AZE (accumulator zero), code, should be intro-
duced. This is one of a class of instructions known as skip instructions;
It directs the PDP-12 to skip the instruction in the next memory register
when C(ACC) = k O(O000, or 7777*). If C(ACC) + 0, the computer does
not skip. For example, if C(ACC) = 7777, and one writes:

Memory Address Memory Buffer

0450 AZE-- 1 P
I -

-+J - - P + 1
P + 2

the computer takes the next instruction from p + 2. That is, when the
AZE instruction in register p is executed, p + 2 replaces the contents of
the instruction a t p + 1. If C(ACC) $: 0, then p f l+C(P) and the
computer executes the next instruction in sequence as usual.

The following example sums the numbers in memory registers 1000-1077
and puts the sum into memory -register 1100, using address modiflcation
and the AZE instruction to decide when to halt the computer. (Square
brackets indicate whose contents change while the program is running.)

Memory
Address Memorv Buffer Effect

0001 Constants used by program.
12 -(ADD 1100) 4677 30001 10 ADD1000
11 1

Start + 20
21
22
23

24
25

26

27
30

31

32
33
34

35

36

Code for ADD 1000-)C(25).
CLR
ADD 10
STC 25
STC 1100 5100 0-)C(lOO), for accumulating

F $ k X) and add C(X) to

i ADD 1100 3100 Sum so far + C(ACC)+

STC 1100 5100 Sum so far C(1100).
ADD 25 X instruction in register

ADD 11 and replace

STC 25
ADD 25 2025 C(25)+C(12) C(ACC).
ADD 12 2012 If C(25) = ADD 1100, the

C(ACC) = 7777.
Skip to register 37 if C(ACC)
= 7777. ' 6024 If not, return and add next b num.

C(ACC).

in register 25.

0450
--1 AZE-

JMP 24

161

Memory
Address Memory Buffer Effect

37 HLT-= 0000 When C(ACC) = 7777, all
numbers have been sum-
med. Halt the computer.

1000 NI
1001 N,

1076 Nn
Numbers to be summed.

l y I O 0

1077 Nioo : . . (Sum ![lI 1100 (Sum)

Summing a Set of Numbers Using Address Modification.

The instructions at locations 20-22 initially set the contents of memory
register 25 to the code for ADD 1000. At the end of the program, register
25 will contain 3100, the code for ADD 1100. Adding (in registers 33 and
34) C(25) to C(12), which contains the complement of the code for ADD
1100, results in the sum 7777 only when the program has finished sum-
ming a l l 100, numbers. This repeating sequence of instructions is called
a loop, and instructions such as AZE can be used to control the number
of times a loop is repeated. In this example the instructions in locations
24-36 will be executed 100, times before the computer halts.

The following program scans the contents of memory registers 400
through 450 looking for registers which do not contain zero. Any non-zero
entry is moved to a new table beginning a t location 500; this has the
effect of packing the numbers so that no registers in the table contain
zero. When the program halts, the accumulator contains the number of
non-zero entries.

Memory
Address Memory Buffer Effect

4 ADD400 24003

Constants used by the pro-
5 STC500
6 1
7 -(ADD 451) 5326 gram.

10 -(STC500) 3277

Start+100 CLR
101 ADD4 Code for ADD 400 C(106).
102 STC106 4106
103 ADD5 2005

~ ~-
104 STC112
105pCLR 001 1

4112 1 Code for STC 500 C(112).

(ADD 400) (2000#K) C(X) C(ACC).
0450 If C(ACC) = 0, skip to loca-

7. tion 111.

162

Memory
Address Memory Buffer

121
122

123

125

124

Effect

C(106)fC(7) C(ACC). If
2106) 2007 C(106) = ADD 451, thert

C(ACC) = 7777.
0450 If C(ACC) = 7777, skip to

2112 If C(ACC) = 7777, then
number of non-zero entries
C(ACC) and computer halts.

JMP105 6105 If not, return to examine

/ location 125.

ADD106
ADD7

AZE

ADD 112

Packing a Set of Numbers

A t the end of the program, register 106 contains the code for ADD 451,
and al l numbers in the table have been examined. If, say, 6 entries were
found to be non-zero, registers 500-505 will contain the non-zero entries,
and register 112 will contain the code for STC 506. Therefore by adding
C(112) to the complement of the code for STC 500 (in registers 125-126
above, the accumulator is left containing 6, the number of non-zero
entries.

INDEX CLASS INSTRUCTIONS I

Indirect Addressing
The largest class of LINC Mode instructions, index class, addresses the
memory in a somewhat involved manner. The instructions ADD X, STC X,
and JMP X are called full address instructions because the 10-bit address
X, O_<X21777, can address directly any register in the 2000a register
memory. The index class instructions, however, have only 4 bits reserved
for an address, and can therefore address only memory registers 1,-17,.
The instruction ADA I p (add to accumulator), l l O O a -I- 201 + p, is
typical of the index class:

163

I=O o t 1

Memory register p should. be thought of as containing a memory address,
X, in the rightmost 10 bits,

J
Y

X

and X(p) , as meaning the right 10-bit address part of register p. The
leftmost bit can have any value, and, for the present, bit 1 must be 0.
In addressing memory register p, an index class instruction tells the
computer where to find the memory address to be used in executing the
instruction. This is called indirect addressing.

For example, to add the value 35 to the contents of the accumulator,
with 35 held in memory register 270, use the ADA instruction in the
following manner:

Memory
Address Memory Buffer Effect

0270 Address of register containing 35. v \ - -OT70 .’ *
- I

. 627Ox,O035 0035

P A& l lbO+p C(270) + C(ACC) C(ACC).

Note that the ADA instruction does not tell the computer directly where
to find the number 35; it tells the computer instead where to find the
address of the memory register which contains 35. By using memory
registers 1-17 in this way, the index class instructions can refer to any
register in the memory.

Two other index class instruction, LDA I p ([oad accumulator), and
STA I p (store accumulator), are used in the following program which
adds the contents of memory register 100 to the cqntents of register 101
and stores the result in 102. The LDA I p instruction, code 100 + 201 +
p, clears the accumulator and copies into it the contents of the specified
memory registers. STA I p, code 1040 f 201 + p, stores the contents of

164

the accumulator in the specified memory register: it does not, however,
clear the accumulator. Addition with ADA uses 12-bit end-around carry
arithmetic.

Memory
Address Memory Buffer Effect

10 XI 0100 Address of N,.
11 x, 0101 Address of N,.
12 x 0102 Address of (Nd-N,).

t start + 30 LDA 10 1010 NI, i.e., C(lOO), C(ACC).
31 ADA11 1111 N,, i.e. C(101), +C(ACC) C(ACC).
32 STA12 1052 NifNz C(102)
33 HLT 0000

100 Ni -
101 NI -
102 (Ni+Nz) (4

Indirect Add ressi ng

INDEX REGISTERS AND INDEXING
When I is used with an index class instruction, that is, when I=1, the
computer is directed to add 1 to the X part of memory register p before
it is used to address the memory. This process is called indexing, and
registers 1-17 are frequently referred to as index registers. In the example
below, -6 is loaded into the accumulator after index register p is indexed
from 1432 to 1433 by the LDA I B instruction.

Memory
Address Memory Buffer Effect

+ P

1432
1433

(XI (1432) Address minus 1 of register
containing 7771.

LDA I p 1020+p X+l, i.e.. 1433,-)C(p), and
C(1433)-)C(ACC).

- -
-6 7771

When the LDA p instruction is executed, the value X(p)+l replaces the
address pait of register p (the leftmost 2 bits of register p are unaffected).
This new value, 1433, is now used to address the memory. Note that if
the LDA instruction a t p were repeated, it would deal with the contents
of the register 1434, then 1435, etc. Utility of index registers in scanning
tables of numbers should be obvious.

165

Indexing involves only 10-bit numbers, and does not involve end-around
carry. Therefore the address following 1777 is 0000. (The same kind of
indexing takes place in the instruction location register, which counts
from 1777 to 0000.)

The following example using indexing introduces another class instruc-
tion, SAE I p (skip if accumulator equals), 1440 +201+p. This in-
struction causes the LINC to skip one register in the sequence of
programmed instructions when the contents of the accumulator exactly
match the contents of the specified memory register. If there is no match,
the computer goes to the next register in sequence as usual. The program
example clears (stores 0000) in the set of memory registers 1400-1777;

- th SAE instruction is used in decide whether the last 0000 has been
stored.

Memory
Address Memory Buffer Effect

3 (XI

4 356

350 CLR
Start + 351 STA I 3

352 ADD3
353 SAE4
354 JMP350

355 HLT
356 1777

(1377)

0356

001 1
1063

2003
1444
6350

0000
1777

Initial address minus 1 for the
STA instruction.
Address of test number.

Clear the accumulator.
Index the contents of register;
store C(ACC) in the memory
register whose address=)(().
C(3) C(ACC).
Skip to 0355 if C(ACC)=C(356).
If not, return to store 0000 in
next register.
Halt the computer.

Example - Indexing to Clear a Set of Registers

When the program halts at register 355, register 3 will contain 1777. The
SAE instruction is used here (as4he AZE instruction was used in earlier
examples) to decide when to stop the computer. The instructions in
registers 350-354, the loop, are executed 4001 times before the program
halts. A 0 is first stored in register 1400, next in 1401, etc.

Another program scans the memory to see i f a particular number, Q, ap-
pears in any memory register 0-1777. Q is to be set in the Right Switches,
and the address of any register containing Q is to be left in the ac-
cumulator.

Memory
Address Memory Buffer Effect

17 (XI (-) Address of register whose con-
tents are to be compared with
RlGHT SWITCH.

166

Memory
Address Memory Buffer Effect

Start + 20 RSW 0516 C(RS) C(ACC).
21 SAE I 1 7 1477 Index register 17, and com-

22 JMP21 I 6021 If not equal, return or next

24 ADD 17 ..’.> If equal, clear ACC, copy ad-
25 HLT 0000 dress of register containing Q

r-- --1, pare C(ACC) with C(X).

I test.
23 CLR--J 0011

into ACC, and halt.

Memory Scanning

If no memory register 0-1777 contains the number Q, the program will
run endlessly. The location of the first register to be tested depends on
the initial contents of index register 17.
An index class instruction, ADM I p, (add to Memory), code 1140 +
201 + p, adds the contents of the specified memory register to C(ACC),
using 12-bit end-around carry arithmetic (as ADD or ADA). The results
is left, however, not only in the accumulator but in the specified memory
register as well. The bit clear instruction, BCL I p, code 1540 + 201 + p,
is one of three index class instructions which performs a so-called
“logical” operation. BCL is used to clear selected bits of the accumulator
is set to 0.
In the folowing program two sets of numbers are summed term by term.
The first set of numbers, each 6 bits long, is in registers 500-577, bits
6-11; bits 0-5 contain unwanted information. The second set of numbers
is in registers 600-677, and the sums replace the contents of registers
600-677.

Memory
Address Memory Buffer Effect

3 (XI (0477) Initial address minus 1 of first

4 0410 0410 Address of BCL pattern.
5 ow (0577) Initial address minus 1 of sec-

ond set.
6 0411 0411 Address of test number for

halting.

set.

Start + 400 LDA I 3 1023 Index X(3) and load number

401 BCL4 1544 Clear the left 6 bits of the ACC.
402 ADM I 5 1165 Lndex X(5). Add number from

second set to C(ACC), and re-
place in memory.

from flrst set into AC.

403 CLR 001 1
404 ADD3 2003 Check to see if finished.

1446 405 SAEh_-
1 I 167

Memory
Address Memory Buffer Effect

406f JMP400 l' 6400 C(3)f C(411), i.e., #0577.
407 HLT- --I 0000 C(3)=0577; halt the program.
410 7700 7700 BCL pattern for clearing left

411 0577 0577 Test number for halting.
half of ACC.

Summing Sets of Numbers Term by Term

Logic Instructions
The three logic instructions, BCL I p, BSE I p, and BCO I ,f3, are best
understood by studying the following examples. These instructions affect
only the accumulator; the memory register M containing the bit pattern
is unchanged.

BCL I p bit clear code 1540 + 201 + p
Clear corresponding bits of the accumulators:

If C(M) =010 101 010 101
and C(ACC) =111 111 000 000
then C(ACC) =lo1 010 000 000

BSE I p bit set

Set to 1 corresponding bits of the accumulator:

code: 1600 + 201 + p

If C(M) =010 101 010 101
and C(ACC) =111 111 000 O W
then C(ACC) =111 111 010 101

BCO I p bit complement code: 1640 + 201 .+
Complement corresponding bits of the accumulator:

If C(M) =010 101 010 101
and C(ACC) =111 111 000 000
then C(ACC) =lo1 010 010 101

These instructions have a variety of applications, some of which will be
demonstrated later.

SPECIAL INDEX REGISTER INSTRUCTlONS
Before continuing with the index class, two special instructions which
facilitate programming with the index class instructions will be intro-
duced. These instructions do not use the index registers to hold memory
addresses; rather they deal with the index registers and are used to
change or examine the contents of an index register.

The Index and Skip Instruction
The index and skip instruction XSK I LY, refers to registers 0-17 (0 a 17.).
It tests to see whether the address part of register a has its maximum
value, i.e., 1777, and directs the LINC to skip the next register in,the
instruction sequence if 1777 is found. It will also, when I=1, index the

168

I

fl

address part (X) of register a by 1. Like the index class instruction, XSK
indexes register a before examing it, and it indexes from 1777-0000
without affecting the leftmost 2 bits. These 2 bits can therefore have
any value. In particular, both can be set to the value 1 and XSK I can
assumed to have the effect of skipping the next instruction when it finds
the number 7777, (-0), in register a. Now it is easy to see how to ex-
ecute any given sequence of instructions exactly n times, where n 1777
(octal):

- n STORED IN REGISTER
-n

, sTARTA GIVEN SEQUENCE 1 LOF INSTRUCTIONS I
I GIVEN SEQUENCE HELD IN

REGISTER X , X +1, ETC. I -x:;j
[INDEX AND TEST. AFTER 1 ST
I PASS C(a)=-n+i,AFTER 2ND

I C(a)=-n+n =-0 SO SKIP OVER ,

HLT- - - J

JMP X I PASS C(a)=nt2.AFTER n PASSES

THE JMP X INSTRUCTION Et HALT.

For example, to store the contents of the accumulator in registers 350-
357, using registers 6 to count, the following short program can be
written.

Memory
Address Memory Buffer Effect

5 (XI (0347) Initial address minus 1 for STA

6 (-10) (7767) -n, where n = number of
instruction.

times to store C(ACC).

C(ACC).

X(6) = 1777.

Start + 200 STA I 5 1065 Index register 5 and store

201 XSK1 6 0226 Index register 6 and test for

202 JMP 200 6200 X(6) * 1777, return.
203 HLT 0000 X(6) = 1777, halt.

*cf. 0, 1 <a <17, which does not refer to register 0.

Index Registers Used as Counters

THE SET INSTRUCTION
The second special instruction which is often used with the index class
instruction is SET I (Y, code 40 + 201 + O(where (Y again refers directly
to the first 201 memory registers, 0 5 (Y 5 17. In some of the examples
presented earlier, the contents of index registers are changed, either as
counter values or as memory addresses, while the program is running.
Therefore, in order to return the program, the index registers must be
reset to their initial values.

169

The SET instruction directs the LINC to set register (Y to the value in any
specified memory register. It is different from the instruction so far
presented in that the instruction itself always occupies two consecutive
memory registers, say p and p + 1:

Memory Address Memory Buffer

P SET I 40f201 +a
C C
- - P + 1

P + 2

The computer automatically skips over the second register of the pair,
p + 1; that is the contents of p + 1 are not interpreted as the next in-
struction. The next instruction after SET is always taken from p + 2.
The I-bit in. the SET instruction does not control indexing. Instead, it tells
the LINC how to interpret the contents of register p + 1. When I = 0, the
LINC is directed to interpret C(p + 1) as the memory address for locating
the value which will replace C(a). That is-register p + 1 is thought of as
containing X,

Memory
Address Memory Buffer Effect

10 (N) (-1

SET 10 0050 C(X), i.e., N,+C(10).
X X

+i
P + 1

x N N

and the contents of register X replace the contents of 10, C(X)+C(lO).
In this case X is the rightmost 10 bits, the address part, of register p + 1;
the leftmost bit of C(p + 1) may have any value and, for the present,
bit 10 must be 0.

In the second case, when I=1, the LINC is directed to interpret C(p + 1)
as the value which replaces C(a). Thus, below, C(p + 1) C(5):

~ ~~

Memory
Address Memory Buffer Effect

5 (N) -(--I

SET I 5 0065 C p + l), i.e., N. C(5).
N N

+ P
P + 1

170

-The following program scans 100, memory registers looking for a value
which matches C(ACC). It halts with the location of the matching register
in the accumulator if a match is found, or with -0 in the accumulator
if a match is not found. The numbers to be scanned are in registers
1000-1077.

Memory
Address Memory Buffer Effect

3 (-100) (7677)
4 (X) (0777)

Start + 400 SET I 3 0063
401 -100 7677
402 SET14 0064
403 777 0777

1464

2004

0000
0223

I

0017
413 CLR+---J 0011
414 HLT

415 HLT 0000

-(number of registers to scan).
Scanning address.

C(401), i.e., -1OO,+C(3).

C(403), i.e., 777,+C(4).

Index X(4) and compare C(X)
with C(ACC).
C(ACC) # C(X), jump to 411.

C(ACC) = C(X), copy location
of matching register into ACC
and halt.

Index register 3 and test for
X(3) = 1777.
X(3) += 1777, return.

X(3) = 1777; all numbers have
been scanned so -WC(ACC)
and halt.

Setting Initial Index Register Values

The two SET instructions are executed once every time the program is
started a t 400; initially registers 3 and 4 may contain any value since the
program itself sets them to the correct values.

Suppose the programmer had wanted to SET two index registers to the
same value, say - 100. He could write either:

Memory
Address Memory Buffer Effect

~

11 (-100) (7677)
12 (- 100) (7677)

*-+ 20 SET I 11 0071 C(21), i.e., -lOO,+C(ll).

171

Memory
Address Memory Buffer tffect

21 - 100 7677
22 SET 12 0052 C(21), i.e., -1OO,+C(12).
23 21 0021

or:

Memorv
Address Memory Buffer Effect

20 SET I 11 0071 C(21). i.e.. -lOO,+C(ll). . ,
21 -100 7677
22 SET 12 0052 C(11), i.e., -1OO,+C(12).
23 11 001 1

The programmer could also, of course, have written SET I 12 in register
22 with -100 in register 23, but there are applications appropriate to
each form.

INDEX CLASS INSTRUCTIONS II

Double Register Forms
The index class instruction have been thought of as addressing an index
register p,l_<p<17, which contains a memory address X to be used by
the instruction. They have been presented as single register instructions
(unlike SET). However, when an index class instruction is written with
p=O, it becomes a double register instruction like SET, whose operand
address depends on I and p f l . These two interpretations are shown
for STA.

Case: I=O, p=O

Memory
Address Memory Buffer

~~

Effect

450 STA I 1040 i- 20(0) + 0 C(ACC)+C1330) . .
45 1 330 0330

.

When I=O, the LINC is directed to use C(p + l), i.e., C(451) as the
memory address at which to store C(ACC). The leftmost bit of C(p f 1)
may have any value, and, for the present, bit 1 must be 0.
Case: I=O, p=O

Memory Memory
Address Buffer Effect

450 STA I 1060 C(ACC)+C9451)
451 (-) (-)

When I=1, the LINC is directed to use p + 1, i.e., 451, directly as the
memory address, and the contents of the accumulator are stored in 451.
Note that when p=O in an index class instruction, it does not refer to

172

Case

1

2

3

4

Start

I,B Example Form Comments

1=0 LDA I p Single Register p holds operand

I=1 LDA/ Single First, index register B by 1.
Then, register p holds oper-
and address.

1=0 LDA Double Second register holds oper-
p = o x Register and address.

I=1 LDA1 Double Second register hold oper-
p=O N Register and.

P*O Register address.

Register P*O

14 (XI
15 (-n)
30 SET1 14

31 1347
32 SET1 15
33 -100
34 CLR
35 STC51

(-)
(-)

0074

1347
0075

0011 Clear CTR; o+C951).
405 76771 1
1020 C(37), Le., -T-)C(ACC).
-T
1134

1560
6777

Address of register to be tested.
-(number of registers to test.)
Set index register 14 to initial
address minus 1.

SET index register 15 to -100.

Index the address in register 14
and form c(X) -T in ACC.
Clear all but the sign in ACC;
C(42=the bit pattern for clear-
ing. Then if C(X)>T, C(ACC)
= 0000 but if C(X)<T, C(ACC)
= 40000.

173

Memory
Address Memorv Buffer Effect

1460 Does C(ACC) = C(44)? If so,
0000 skip to 46.
6052

0001
1160 C(ACC)+C(51). i.e., N,-)C(51)

Index register 15 and test for

If not, C(X)<T. Jump to 52.
1020 If so, C(X)>T; l+C(ACC).

a nd+C(ACC).

0235
1

I
I check next register.

7777 C(15)* 7777. Return to

54 HLT--J 0000 C(15)= 7777, therefore halt.
C(CTR) i.e., C(51), left in ACC.

Scanning for Values Exceeding a Threshold

Note that since the SAE instruction in locations 43 and 44 is written as a
double register instruction, the LINC skips to location 46 (not 45) when
the skip condition is satisfied. The next instruction in sequence is, in this
case, at location 45.

Note also that if a double register instruction is written following a skip
instruction such as XSK, the LINC mode tries to interpret the second
register as an instruction:

Memory
Address Memory Buffer Effect

c

P
P f
P +

XSK IJ
1 L T r I -7
2 3-c---I

Go to p + 1 when X(p) * 1777.
Go to p f 2 when X(p) = 1777.

Since the XSK instruction sometimes directs the LINC to skip to P + 2,
care must be taken to make sure that the LINC does not skip or jump to
the second register of a double register instruction.

It is interesting to compare the above statement of the program made in
rather detailed machine language with the following compact but entirely
adequate restatement:

1. mC(CTR) .
2. If C(X)>T then C(CTR) + 1 C(CTR), for X = 1350, 1351, . . .

1447.
3. C(CTR)+C(ACC).
4. HALT

1 74

Multiple Length Arithmetic
An index class instruction, LAM I p (link add to memory), code 1200 +
201 4- p, makes arithmetic possible with numbers which are more than
12 bits long. Using LAM, one can work with 24-bit numbers for example,
using 2 memory registers to hold right and left halves. It should be re-
membered that addition with ADD, ADA, or ADM always involves end-
around carry. With LAM, however, a carry from bit 0 of the accumulator
during addition is saved in the link bit; it is not added to bit 11 of the
accumulator. This carry, then, could be added to the low-order bit of
another number, providing a carry linkage between right and left halves
of a 24-bit number. For simplicity, the illustration uses 3-bit registers;
the principles are the same for 12 bits:

I LINK I ACC
I I

I I
I I
I I -

- 1 I

I I I1 - - I7 - -11 I l
NEXT END-CARRY

ADOITION WITH LAM

If, for example, the number in this 3-bit accumulator is 7 (a l l 1's) and
C(L) = 0, and 1 is added with LAM, the link bit and accumulator will
then look like:

ACC

Furthermore, LAM is an add-to-memory instruction, so that the memory
register to which the LAM instruction refers will now contain 0 (as does
the accumulator).

In addition to saving the carry in the link bit the LAM instruction also
adds the contents of the link bit to the low order bit of the accumulator.
That is, if, when the LAM instruction is executed C(L) = 1, then 1 is
added to C(ACC). Using the result pictured above, add 2, where 2 is the
contents of some memory register M:

L ACC M
GIVEN: 1 OOO 010

Using LAM; the LINC is directed first to add C(L) to C(ACC), giving:

L ACC M
0 0 0 1 040

175

There is no end-carry this operation, so the link bit is cleared. The LINC
then adds C(ACC) to C(M), giving:

L ACC M

0 O f 1 011

which replaces both C(ACC) and C(M). Again there is no end-carry so
the link bit is left unchanged.

The operation of LAM may be summarized:

1. C(L) + C(ACC)+C(ACC).
2. End-carry-)C(L). I f no end-carry, W C (L) .
3. C(ACC) f C(M)+C(ACC), and+C(M).
4. End-carry-)C(L). If no end-carry, the link bit is left unchanged.

As an example of double length arithmetic, postulate 2 numbers, NI and
Nz, each 6 bits long, which occupy a total of four 3-bit memory registers
MI through M,:

M2 MI

M4 M3
000 I 1 1 N1 =+7

101 00 1 N2 =-26

The sum (octal) of f7 and -26 is -17. Using the LAM instruction to
get this:

1. Clear the link bit.
2. Add C(MI) to C(M,) with LAM, saving any carry in the link bit.

This sums the right halves of NI and N,.
3. Add C(MJ to C(M,) with LAM, which also adds in any carry from

step 2. This sums the left halves of NI and Nz. Any new carry
again replaces C(L).

-
I f 1 N1 000

101 00 1 N2

N1 + N2'-17

2ND ? LAM IST P LAM
NO END-CARRY END- CARRY

176

Note that only the first LAM produced an end-carry.
To complete the illustration, consider a case in which the final carry
appears in the link bit, as in the addition of +12 and -2.

001 010 +f2
101 - 2 1 1 1 -

000 a 1 1 1 El
.I

2ND LAM 1ST LAM
END-CARRY NO END CARRY

whose sum, in 1’s complement notation is OOl/OOO, or +lo,, but which
with LAM results in +7 and an end-carry in the link bit. Since 1’s com-
plement representation depends on end-around carry, some extra pro-
gramming must be done to restore to a true 1’s complement number.
This is, of course, the equivalent of adding 1 to the 2-register result. As-
suming that the result is in MI and M,

MI
111-

L M2
4 000

again the use of the LAM instruction. First clear the accumulator without
clearing the link bit (this can be done with an STC instruction). Then
execute LAM with C(MI) which gives

L M2 M(
I 000 111

producing a new end-carry in the link bit. Again clear the accumulator
(but not the link bit) and execute LAM with C(M1) which gives

L ACC M2
0 001 001

The result in Mt and MI now looks like:

MI
000 =4O(OCTAL)

M2
001

It should be clear to the reader that adding in a final end-carry as an end-
carry cannot itself give rise to a new flnal end-carry.

177

The following program illustrates the technique of double length arith-
metic with tables of numbers; similar techniques would be used for other
multiples of 12. Assume that loos 24-bit numbers, No, N I , . . . Nn, are to
be added term by term to loos numbers, Ro, RI, . . . Rn, so that NO 4- '
Ro =So, NI f RI = SI, etc. All numbers occupy 2 registers: the left halves
of No, NI, . . . N7, are in registers 100-177, the right halves in 200-277.
The left halves of Ro, RI, . . . R7, are in 1000=1077, the right halves in
. 1100-1177. The left halves of the sums, So, SI, . . . Sn, replace the con-

tents of 1000-1077, the right halves replace the contents of 1100-1177.

Memory
Address Memorv Buffer Effect

10
11
12
13
14

377
-t 400

40 1
402
403
404
405
406
407
410

41 1
412
413
414

415
416

417

420

42 1
422

I

(XI)
(XI)
(X3)
(X4)

(-n) .

(-1
SET I 10
77
SET I 11
177
SET I 12
777
SET I 13
1077
SET I 14

- 100

LDA I 11
LAM I13

*CLR

LDA I 10
LAM I12

STC 377

LAM 13

STC 377
LAM 12

. ,
(-1
(-1
(-1
(-1
(-1

(-1

Set index registers to initial ad-
dresses minus 1 for the 4 tables.

0072
0777
0073
1077
0074

7677
001 1
1031
1233

1030
1232

4377

1213

4377
1212

Set index register 14 as a counter
for 100 loop repetitions.

O+C(ACC); o-)C(L).
Right half of NI-)C(ACC).
Righ half of Nlfright half of R-)
C(ACC), and + right half of RI,
End-carry+C(L).
Left half of NI-)C(ACC).
C(L) f C(ACC) + left half of RI
+C(ACC), and-)Left half of RI.
End carry.)C(L).
Clear accumulator by storing in 377.
Do not clear link bit.
C(L) + right half of Sl-)C(ACC),
& right half of S. End-car-C(L).
Clear accumulator.
C(L) + left half as Sl+C(ACC),
and left half of SI.

1 78

Memory
Address Memory Buffer Effect

423 Z X S K I L 4 - 0234 Index 14 and test for 7777.
424 JMP 412 3 6412 C(14)+ 7777, return to form next

I sum.
425 HLT+- - 0000 C(14) =7777, so halt.

Summing Sets of Double Length Numbers
Term by Term

The instructions in locations 412-416 produce an initial 24-bit sum leaving
any final carry in the link bit. The instructions in locations 417-422 then
complete the sum by-addng in the final end-carry. The link bit always
contains 0 after the computer executes the last LAM in location 422.
Register 377 is used simply as a “garbage” register so that the accumu-
lator can be cleared without clearing the link bit.

MULTIPLICATION

Another index class instruction which needs special explanation is MUL
I p (multiply), code 1240 201 + p. This instruction directs the LINC
mode to multiply C(ACC) by the contents of the specified memory reg-
ister, and to leave the result in the accumulator. The multiplier and multi-
plicand are treated as signed 11-bit 1’s complement numbers, and the
sign of the product is left in both the accumulator (bit 0) and the link bit.
The LINC may be directed to treat both numbers either as integers or
fractions; it may not, however, be directed to mix a fraction with an in-
teger. The leftmost bit (bit 0) of register p is used to specify the form of
the numbers.

When bit 0 of register p contains 0, the numbers are treated as integers;
that is, the binary points are assumed to be the right of bit 11 of the ac-
cumulator and the ‘specified memory register. Given C(ACC) = -10,
C(p)=400 (bit 0 of register p=O), and C(400) = 4-2, the instruction
MUL p leaves -20 in the accumulator, and 1 in the link bit. Overflow is,
of course, possible when the product exceeds +3777. Multiplying f3777
by $2, for example, produces,+3776 in the accumulator; note that the
sign of the product is correct, and that the overflow effectively occurred
from bit 1, not from bit 0.

When bit 0 of register p contains 1, the LINC treats the numbers as
fractions; that is, the binary point is assumed to be to the right of the
sign bit (between bit 0 and bit 1) of the accumulator and the specified
memory register. Given C(ACC)=+.2 C(p) = 5120 (bit 0 of register
p=1), and C(1120=+.32, execution of MUL p leaves $064 in the
accumulator and 0 in the link bit.

When the LINC multiplies two 11-bit signed numbers, a 22-bit product is
formed. For integers the rightmost. or least significant, 11 bits of this
product are left with the proper sign in the accumulator, and fqr fractions

179

the most significant 1.1 bits of the product are left with the proper sign
in the accumulator. If, for example,

C(ACC) =
BINARY POINTS BINARY POINTS

1 r INTEGERS
AND FOR FRACTIONS

ooooIooo0o00
C(M) =

then C(ACC) can be thought of as either +.3s or +1400,, and C(M) can
be thought of as either +.04s or +20Oa. The 22-bit product of these
numbers looks like:

.ooo 001 IO0 0 00 000 000 000. -
0.

-
.OI4

and if bit 0 of register p contains 1, the most significant 11 bits with the
proper sign are left in the accumulator:

C(ACC) = 0.000 0 0 1 IO0 00 uuu
(+ .3)x(+0.4) = +.O f 4

Had bit 0 of register p contained 0, the accumulator would be left with
+O as the result of multiplying (1400) x (200). It is the programmer’s
responsibility to avoid integer overflow by programming checks on his
data and/or by scaling the values to a workable size.

Use of bit 0 of register p is new to the concept of index registers and
should be noted in connection with the‘ four memory addressing alter-
natives which index class instructions employ. When p+O then bit 0 of
C(p), that is, bit 0 of the register which contains the memory address,
is used. The same is true when I = 0 and p=O, as in:

Memorv Address Memorv Buffer

P MUL 1240
D C 1 h. x 4000h-i-X

~ ~~ ~~ ~~~ ~

That is, bit 0 of C(p + l), the register containing the memory address,
is used. This bit is sometimes called the h-bit, whether in an index register
or in register p + 1. When, however, l=1 and p=o, it will be recalled that
p + 1 is itself the memory address:

Memorv Address Memorv Buffer < <

P MUL I 1240
P + 1 N N

There isn’t any memory register which actually contains the memory ad-
dress, and therefore there is no h-bit. The computer always assumes in
this case that H=O. and the operands are treated as integers.
In the following program, registers 1200-1377 contain a table of frac-
tions whose values are in the range k.0176, that is, whose most signifi-
cant five bits after the sign (bits 1-5) duplicate the sign. Each number

180

is to be multiplied by a constant, -.62, and the products stored at loca-
tions 1000-1177. To retain significance, the values, are first shifted left
5 places.

Memory
Address Memory Buffer Effect

6 (XI) (-1
7 (X l) (->

10 (-n) (--)

+ 500 SET I 6
50 1 1177
502 SET I 7

503 777
504 SET I 10
505 - 200
506 LDA I 6

511 4000+516
STA I 7

513
JMP 506 514

515 HLT- - -I
516 - .62

0066
1177
0067

0777
0070
7577
1026
0245
1240

4516
1067
0230
6506
0000
4677

Initial address minus 1 of table
of fractions+C(6).
Initial address minus 1 for STA
i nstruction+C(7).

- n+C(10).

Fraction+C(ACC).
C(ACC).26-)C(ACC).
Multiply, as fractions, C(ACC)
by C(516).

Store product.

If not finished, return.
If finished, halt.

Multiplying a Set of Fractions by a Constant

The ROL instruction a t location 507 rotates 0's or 1's. depending on the
sign, into the low-order 5 bits of the acumulator. Since this amounts to a
scale left operation, it introduces no new information which might in-
fluence the product. The reader should also note that the original iralues
remain unchanged a t locations 1200-1377.
Another example demonstrates the techniques of saving both halves of
the product. Fifty (octal) numbers, stored at locations 1000-1047, are
to be multiplied by a constant, +1633. The left halves of the products
(the most significant halves) are to be saved a t locations 1100~1147; the
right halves (the least significant halves) a t locations 1200-1247.

Memory
Address Memory Buffer Effect

(1077) Addresses of products!

(0777) 3 tion and integer.

3 (XI)
4 (Xl) (1177)
5 (4000fX3) (4777) Addresses of multiplier as frac-
6 (X3)
7 (en) (7727) Counter.

181

1412
1413

1414
1415
1416
1417
1420
1421
1422
1423

1424
1425
1426

1427
1430

Multiplication Retaining 22-Bit Products

The instructions at location 1415, 1420-1421, and 1427 have the effect
of making two halves of the product contiguous; the sign bit value of the
right half is replaced by the low-order bit value of the left half, so that
the product may be subsequently treated as a true double length number.
Through the use of another instruction, QAC it is possible to do a double
precision multiplication using only one MUL instruction. When the LINC
mode performs a multiplication, it uses three basic registers: The ac-
cumulator for the multiplicand, the memory buffer register for the mul-
tiplier, and the MQ register for partial containment of the initial 22-bit
plus sign answer. The LINC then decides if the multiplication was frac-
tional or integer and puts into the accumulator the correct half of the
answer properly signed. In a fractional multiply, the most significant bits

182

Form left half of product, in ac-
cumulator.

4 DA I
1633

MUL I 5 1265
SCR I 1 0361 C(bit 11 of ACC)+C(L).
STA I 1063 Store left half of product,.
STC 1434 5434 O+C(ACC).
ROR I 1 0321 C(L)+C bit 0 of ACC).
STC 1427 5427 4000 or OOOO+C(1427).
ADD 141
MUL I 6

BCL 1
4000
BSE I

Form right half of product; in
accumulator.
Clear bit 0 of right half.

4000
1620 C(bit 11 of left half)+C(bit 0 of

right half).
(-) (-1
STA I 4 1064 Store right half of product.

of the product are found in the accumulator: however, the low-order
portion of the product is not lost but is still in the MQ register as an
unsigned number. By executing a MQ to AC instruction, QAC (MSC 005).
Code 0005, the accumulator is cleared, and the contents of the MQ
register are copied into bits 1-11 of the accumulator. Bit 0 is always o
and the number is unsigned. However, the link contains the sign of the
product so that, if necessary, the low-order portion of the product may
be complemented.

Since bit 0 of the low-order portion does not contain a significant bit
after a QAC instruction (unless the product was 3777 or less), it is useful
to transfer bit 11 of the m o d significant portion of the product into bits
0 of the low-order portion. The following example multiplies the number
in the LEFT SWITCHES by the number in the RIGHT SWITCHES and stores
the double precision product in memory into two consecutive locations.

Memory
Address Memorv Buffer Effect

100 (XI) (C(R.S.)) Contents of RIGHT SWITCHES
101 (Xd (H.O.P.)
102 (X,) (L.O.P.)

Start+400 RSW 0516
401 STC100 4100
402 LSW 0517
403 MUL 1240

404 (4000+0100) 4100
405 STC 101 4101

406 ZTA 0005
407 LZE 0452
410 COM 0017
411 STC 102 4102

412 ADD101 2101
413 ROR1 1 0321

414 STC101 4101
415 ADD102 2102
416 R O L l 0241
417 ROR1 1 0321

420 STC102 4102
421 HLT 0000

High order product
Low order product

Read RIGHT SWITCHES into A
Store into location 100
Read LEFT SWITCHES into A
Multiply (fractional) C(p f 1)
by C(A)

Store high order product into
location l o f
C(Z)+C(A)
Was product positive?
No, complement A
Store low order product in
location 102
Get back high order product
Rotate bit 11 into link (sign
bit) into bit 0.
Store into 101
Get low order product
Rotate bit 0 into bit 11
Rotate link into bit 0, bit 11
into link
Store into 102

Multiplication for 22 Bit-Product Using ZTA
There are two remaning index class instructions, SR0 I p (skip rotate)
and DSC I p (display character), which is discussed later in connection
with programming the oscilloscope display.

183

HALF-WORD INSTRUCTIONS
The LINC mode has 3 instructions which deal with 6-bit numbers or half-
words (word is another term for contents of a register). These instructions
use the index registers and have the same four addressing variations as
the index class, but specify in addition either the left or right half of the
contents of memory register X as the operand. Think of LH(X) as mean-
ing the contents of the left 6 bits of register X, and RH X), meaning the
contents of the right 6 bits. Then it is possible to think of C(X)=LH/RH,
or C(X)=100LH + RH.

Half-word instructions always use the right. half of the accumulator. The
load half instruction, .LDH I p, code 1 00 f 201 f p, clears the accum-
ulator and copies the specified half-word into the right half of the ac-
cumulator; which half of C(X) to use is specified by bit 0, the h-bit, of
register p.

When h=O, LH(X), RH(ACC). When h=l, RH(X) RH (ACC).

Memory
Address Memory Buffer Effect

P h. K 4000h $- X h=l.

P LDH p 1300$ p RH(X)-)RH(ACC) and
O+LH (ACC).

X LH/RH lOOLH + RH C(X) unchanged.

The same interpretation of the h-bit applies when I = 0 and p = 0, i.e.,
when the instructions occupies two registers:

Memory
Address Memorv Buffer Effect

40 LDH 1300 Since h = 1, RH(500),i.e.,
76,-)RH (ACC).
O+LH(ACC).

41 1,500 4,500

500 32/76. 3276

If register 41 contained 500, i.e., h=O, then LH(500), or 32, would re-
place RH(ACC).

The store half instruction, STH I p, code 1340 + 201 + p, stores the
right half of C(ACC) in the specified half of memory register X. C(ACC)

184

and other half memory register X are unaffected. To illustrate the case of
I=1 and p=O, write:

~ ~ ~ ~~~ ~ ~ ~ ~~

Memory
Address Memory Buffer Effect

1000 STH I ' 1360 RH(ACC)*LH(1001)
1001 6015 6015

This case, it will be remembered, uses p+1 itself as the memory address.
Since there is no h-bit, the computer assumes that h=O, and therefore
the left half of C(1001) is affected. If, for example, C(ACC) = 5017,
17 replaces LH(1001), and the contents of register 1001 become 1715.

SHD I p (skip if half difiers), code 1400 + 201 + p, causes the LINC
to skip one memory register in the program sequence when the right half
of the accumulator does not match the specified half of memory register
X. When it does match, the computer goes to the next Memory register
in sequence for the next instruction. Neither C(ACC) nor C(X) is affected
by the instruction. (If C(ACC) = 4371, and the programmer writes:

Memory
Address Memory Buffer Effect

376 7152 7152 Skip to 402 if RH(376) *
+ 377 SHD 1400 RH (ACC).

--I - 400
40 1 -
402 -,J -

4376 4376 - -

The computer skips because RH(376), i.e., 52, =+= RH(ACC), or 71. Had he
written 376 in location 400, that is, h=O, RH(ACC) would equal LH(376)
and the computer would not skip.

When p=O, and when I=1, the half-word class instructions cause the
LINC to index the contents of memory register p, but in a more complex
way than that used by the index class instructions. In order to have half-
word indexing refer to consecutive half-words, the computer adds 4000
to C(p) with end-around carry. This has effect of complementing h(p)
every time register p is indexed, and stepping X(p) every other time.
Suppose, for example, that the instruction is LDH 13, and that register 3
initially contains 4377, that is, it points to the right half of register 377.
The computer flrst adds 4000 to C(3):

4377
4000 Index H(3)
0377

1 End-around carry
0400 New C(3) = 0,400

which leaves h=O.and X=400; C(3) now points to the left half of register
400. The computer therefore loads the accumulator from LH(400). Re-
peating the instruction, C(3) is indexed to 4400 and the accumulator is

185

Original C(3) = 1, 77

-

__.

-

loaded from RH(400). Continuing register would contain the following
succession of values or half-word references:

4400 : RH (400)
0401 : LH (401)
4401 : RH (401)
0402 : LH (402)
4402 : RH (402)
0403 : LH (403)
etc. etc.

Since the half-word indexing occurs before the contents of register p are
used to address the memory, the memory address, when I = 1, can be
described as

where h represents the indexed value of h, and Xth represents the indexed
value of X. The succession of values which appear in register p can
be written:

-
h Xth

h. Xth

L X + O
O , X + l
L X + 1
o , x + 2
1 , x + 2
etc.

The four address variations for half-word class instructions are sum-
marized in the following table.

HALF-WORD CLASS ADDRESS VARIATIONS

Case I P Example Form Comments

1 1=0 LDHp Single Register p holds half-
P * O Register word operand address.

2 I = 1 LDH I p Single First, index register p
P * O Register by 4000 with end-

around carry.
Then, register p holds
half-word operand
address.

3 1 = 0 LDH Double Second register holds
p = O h,X Register half-word operand

address.

4 I = 1 LDH I Double Left half of second
p = O LH/RH Register register holds half-

word operand.

For h = 0, the operand5 held in the left half of the specified memory
register. For h = 1, the operand is held in the right of the specified
memory register.

186

The following program will take a table or
pack them into a table as signed six bit numbers.

twelve bit numbers and

Memory
Address Instruction Code Effect

Start + 20
21
22
23

24
25
26
27

30
31

32
33

CLR
SET I 5
777
SET I6

4477
SET I7
- 100
LDA I 5

SCR 6
STH I6

XSK I7
JMP 27

001 1
0065
0777
0066

4477
0067
7677
1025

0346
1340

0227
6027

Clear the Accumulator.
Initialize the location 5 to the
location-1, of the 12 bit table.
SET half-word pointer to right
side.
(h=l) of location 477.
Set counter to -100.

Get, twelve bit number out ,of
table.
Scale to 6 bits.
h-index location t and store
data in half-word table.
Done 100 words yet?
No, get next word.

34 HLT 0000 Yes. Stop program.

SUBROUTINE TECHNIQUES
Before describing the remaining instructions, some mention should be
made of the technique of writing subroutines. Frequently a program has
to execute the same set of instructions a t several different places in the
program sequence. In this case it is an inefficient use of memory registers
to write out the same set of instructions each time it is needed. It is more
desirable to write the instructions once as a separate, or “sub”, routine to
which the program can jump whenever these instructions are to be ex-
ecuted. Once the instructions in the subroutines have been executed,
the subroutine should return control (jump back) to the main program.

For example, suppose that in two different places in a program we must
execute the same set of arithmetic operations. Visualize the general struc-
ture of such a program as follows:

Main Program

Memorv Address Memow Buffer

Main
Program
Instructions

\

JMP 1000 * Jump out to subroutine
Continue f Return from subroutine
Main
Program

187

I Start + 100

150
151

.
Memory Address Memory Buffer + Instructions

JMP 1000 + Jump out to subroutine 200
201 Continue f Return from subroutine I

Subroutine

Memory Address Memory Buffer

Arithmetic
Operations 1 Enter

Subroutine + 1000 Subroutine
Instructions

JMP M-Return to main program
t

1020

It appears from this example that jumping to the subroutine from the
main program (at locations 150 and 200) is straightforward. The sub-
routine must be able to return control to the main program, however,
reentering it a t a different place each time the subroutine is finished.
That is, the JMP instruction at location 1020 must be changed so that the
first time the subroutine is used it will return to the main program via a
JMP 151 and the second time via a JMP 201.

It will be remembered that every time the computer executes a JMP
instruction (other than JMP 0) a t any location p, the instruction JMP
p f 1 replaces the contents of register 0. Thus, when JMP 1000 is ex-
ecuted a t location 150, a JMP is automatically stored in register 0, saving
the return point for the subroutine. The subroutine might retrieve this
information in the following way:

Subroutine

Memorv Address Memorv Buffer Effect

Enter
Subroutine + 1000 LDA C(O)+C(ACC); i.e., JMP

p + l+C(ACC).
1001 0
1002 STC1020 C(ACC)+C(1020).

Execute arithmetic operation
1020 (JMP J p + 1) Return to main program.

A simple JMP 0 in location 1020 clearly suffices when the subroutine
does not, during its execution, destroy the contents of register 0. In this
case, the instructions in locations 1000-1002 would be unnecessary.

A problem arises in the above example when the subroutine is not free
to use the accumulator to retrieve the return point. Another method,
using the SET instruction, is possible when there is an available p register.

188

Memow Address Memow Buffer Effect

Enter
Subroutine + 1000 SET 10 C(O)+C(lO) i.e., JMP p -/- 1

is saved in a free p register.

Execute arithmetic operations;
the accumulator has not been
disturbed. Return to main pro-

1020 JMP 10 gram by jumping to register
10.

1001 0

A third possibility is the use of the “LINC” instruction “DJR”.

Disable the storing of the return jump (JMP PC) in memory location zero
for the next “JMP” instruction.
The example below shows the use of a DJR instruction in a subroutine

. DJR-0006.

Memory Address Instruction

Enter 1000
Subroutine

1050 DJR Inhibit saving PC in location 0

1051 APO Is AC Positive.
1052 JMP1035 No, go back to 1035. Do not

1053 JMP0 JMP to LOC 0 to return to

on next JMP instruction.

save PC in LOC 0.

main program.

THE SKIP CLASS INSTRUCTIONS
Instructions belonging to the skip class test various conditions of the
accumulator, the keyboard, the tapes, and the external level lines of the
data terminal module. Coding for these instructions includes the con-
dition or level line to be checked and an option to skip or met skip when
the condition is not or the external level is negative.

SNS1 c: CONDITION

SNS O s c s 1 7

440 + 201 + c t t
I
I OR

4 SXL i n:
440 + 201 +n

SXL 0 n 17

LEVEL LINE NUMBER

i S O : SKIP ONLY IF CONDITION
c IS MET OR LEVEL n
IS NEGATIVE

SKIP ONLY IF CONDITION
c IS NOT MET OR L M L
n IS NOT NEGATIVE

189

In these instructions the I-bit can be used to invert the skip decision.
When I=O, the computer skips the next register in the instruction se-
quence when the condition is met or external level is negative. However,
when I=1, the computer skips when the condition is not met or the
external level is not negative. Otherwise the computer always goes to
the next register in the sequence.

The four situations which may arise are summarized in the following
table. The skip class instruction is assumed to be in register p.

BRANCHING IN SKIP CLASS INSTRUCTIONS

i Condition met or level negative? Location of next instruction.

0 yes P f 2 (skip)

0 no P + 1
1 ves 0 + 1

~

1 no P f 2 (skip)

SNS IX instructions test 16 conditions, which, because of their variety, are
described with different 3-letter expressions. Thus the AZE I instruction
already presented is the same as SNS I 10. Another instruction, APO I,
synonymous with SNS I 11, checks to see whether the accumulator is
positive (bit 0 = 0):

Memory
Address Memorv Buffer Effect

P AF2- - 4004-11 If C(bit 11 of ACC) = 0, go to
P f l ----I - p4-2 for the next instruction:
P f 2 - --J - if C(bit 11 of ACC) = 1, go to

P f l .

Case i=l

Memory
Address Memory Buffer Effect

APO I 400f20fl l If C(bit 11 of ACC) = 1, go to
---=I - p4-2 for the next instruction;
-+-I if C(bit 11 of ACC) = 0, go to

--- P

- P 4 - 1
P s . 2

P f l .

Other SNS variations which whether C(l) = 0, (LZE I, code 452 f 201,
which is synonymous with SN8 I 2) or whether one of the 6 sense switches
on the console is up (SNS I 0, SNS I 1, . . . , SNS I 5) SNS 16 is coded
as the special instruction “SKP” (on-conditional skip)

The SKL I n instruct (skip on negative external level) checks for the pres-
ence of a -3v level on external line n, 0 < n < 13, at the data terminal‘
module. It is often used with the operate instruction, discussed in the
next section, to help synchronize the LINC mode with external equipment.

190

.The skip instruction KST I (key struck), code 415 + 201, checks whether
a keyboard key has been struck. SKT I is synonymous with SXL I 15.

To illustrate the use of these instructions, the following program counts
the signal peaks above a certain threshold, loon’ for a set of 1000,
samples appearing on input line 13. The number of peaks exceeding the
threshold will be left in the accumulator.

Memory
Address Memorv Buffer Effect

7 C-nl C - I Counter for 1000 samples.
10 Cnl c-I Counter for number above 100,.

.
+ 1500 SET I 7 0677 Set register 7 to count 1000

samples.
1501 - 1000 6777
1502 SET I 10 0070 Clear register 10 to count peaks.
1503 0 0000
1504 SAM 13 Sample input line 13 and

subtract 100 from the sample

1507 ----- 0471 Is the accumulator positive?
1510 XSK I 10 1 0230 If so, the value was above 100;

add 1 to the counter.
If not, skip the instruction in
location 1510.
Index register 7 and test.

taken, return.

I
I
I

XSK 1 7 c J 0227 --- - 1511
1512 JMP 1 5 0 4 1 7504 If 1000 samples have not been

1513 IDA- - 1 1000 If 1000 samples have been
1514 10 0 0 1 3 taken, put the number of those
1515 HLT 0000 above 100 into the accumulator

I

and halt.

counting samples exceeding a threshold

THE LINC SCOPES AND THE DISPLAY INSTRUCTIONS
The PDP-12 has a cathode ray tube display device called the VR-12,
which is capable of presenting an array of 51210 by 51210. spots
(1000, by 1000n). Special instruction, DIS I a (display), code 140 + 201 + a, monentarity produces a bright sopt at one point in this array. The
horizontal (H) and vertical (V) coordinates are specified in the accumu-
lator and in a. The vertical coordinate, -377n 2 V 5 +377,, is held in the
accumulator during a DIS I a instruction; the horizontal coordinate, 0 2 H

191

< 7771, is held in register a, 0 5 a 5 17. The spot in the lower left corner
of the array has the coordinates (0, -377):

(0, + 377l
I -

(0.01

(0, - - 3771

S W R E ARRAY.6"x 9". OF
IO008 x 10008 POINTS.

I v
i

(777,+377) -

(777.0) -

(777,- 377) -

The coordinates are held in the rightmost 9 bits of register a and the
accumulator,

SIGN

Accm m. u n C I n
I

UNUSED

so that if C(ACC) = 641, Le. - 136, and C(5) = 430, DIS 5 causes a spot
to be intensified at (430, -136) on the scope, Both channels are posi-
tioned a t the same time. The production of a bright spot on either channel
depends upon the state of the leftmost bit (the H-bit) of register a and
an external channel selector located on the face of the display scope. If
h=O, then the spot is produced via display channel 1 0; if h=l, then
the spot is produced via display channel 1. The scope may be manually
set to intensify channel 1 0, channel 1, or both. The I-bit in DIS I a is used
in the usual way to specify whether to index the right 10 bits of register
a before brightening the spot. This indexing, of course, also increases the
horizontal coordinate by one. To illustrate, the following program will'
display a continuous horizontal line through the middle.

192

Memory
Address Memorv Buffer Effect

5 10, HI [-] Horizontal coordinate and channel
selection.

+ 20 SET i 5 0065 Set 5 to channel 0 and horizontal
coordinate = 0.

21 0 0000
22 CLR 0011 Vertical coordinate = m C (A C C) .

DIS i 5 0165 Index H (actually index entire right-
most 10 bits) and display. Repeat
endlessly.

24 23 r JMP 23 6023

Horizontal Line Scope Display

Another example displays as a curve the values found in a set of con-
secutive registers, 1400-1777. The vertical coordinates are the most
signficant 9 bits of each value. Since these are only 40O8 points to display,
the curve will be positioned in the middle of the scope. Channel 1 is used.

Memory
Address Memory Buffer Effect

[-] Address of vertical coordinates.
[4000+ H] C han ne1 select and horizonta I

10 1x1
11 HI

coordinate.

+ 300 -SET i 10 0070 Set 10 to beginning address

301 f 1377
302

303
304

305
306

307
310

311

minus 1.
1377

SETi 11 0071

1177 4177
1030

0343
DIS i 11 0171

0210 1 [6304 I I , J M P 3 0 0 1 6300

Set 11 to select channel 1 and
to begin curve H = 200.

Load ACC with value and scale
right 3 places to position it as
vertical coordinate.

Index the H coordinate and
display.
Check to see if X(10) = 1777.
If 4008 points have not been
displayed, return to get next
point.
If X (l 0 = 1777, return to
reDeat entire disDlav.

Curve Display of a Table of Numbers

193

CHARACTER DISPLAY
Display scopes are frequently used to display characters, for examples
keyboard characters, as well as data curves. Character display is some
what more complicated since the point pattern must be carefully worked
out in conjunction with the vertical and horizontal coordinates for each
point. For example, to display the letter A, the array of the scope might
look like:

FIRST SECOND
WORD I WORD

where the shaded areas of figure a represent point which are inten-
sified, and the white areas points not intensified; the total area repre-
sented is 6 vertical positions by 4 horizontal positions. If, for example,
the lower left point has the coordinates (400,O). then the upper right
point has the coordinates (403,5).

The programmer could, or course, store the H and V coordinates for
every intensified point of the character in a table in the memory, but the
letter A alone, for instance, would require 3210 registers to hold both
coordinates for al l the points which are intensified. Instead he arbitarily
decides upon a scope format, say 4 x 6, and makes up a pattern word
in which 1’s points to be intensified and 0’s points which are not intensi-
fied. To specify a 4 x 6 pattern of 24 bits requires 2 memory registers.

194

For efficiency of programming, the points are displayed in the order shown
numerically in figure b, i.e., from lower left to upper right, column by
column. Examining bit 11 of the pattern word first, bit 10 next, bit 9, etc.,
the pattern word for the left half of the letter A (the left two columns)
looks like:

0 1 2 3 4 5 6 7 8 9 10 I1

the pattern word for the right half of the letter looks like:

0 1 2 3 4 5 6 7 8 9 IO I1

An index class instruction, S R 0 I B (skip rotate), code 1500 f 201 -/- B,
facilitates character display with the kinds of pattern words described
above. SR0 i B directs the LINC to skip the next register in the instruction
sequence when bit 11 of the specified memory register contains 0. If
bit 11 contains 1, the computer does not skip. In either case, however,
after examining bit 11, the contents of the specified memory register are
rotated 1 place to the right. Therefore, repeating the SR0 instruction (with
reference to the same memory register) has the effect of examining first
bit 11, then bit 10, bit 9, etc. Executing the SR0 instruction twelve times,
of course, restores the memory word to its original configuration.

The following example repeatedly displays the letter A in the middle of
the scope, using register 7 to hold the address of the first pattern word
and register 6 to hold the H coordinate. Since 4 x 6 contiguous points
on the scope array define an area too small to be readable, a delta of 4
is used to space the points, so that i f the first point is intensfied a t c o
ordinates (370, 0) the second point will be at (370, a), the 7th point at
(370, 0) etc. (This produces characters approximately 0.5 cm high).

Memory
Address Memory Buffer Effect

6 10, HI [-I Channel selection and H coordinate.
7 [XI [- J Address of pattern word.

0066 Set H coordinate = 370 for lower

0370
left point. Select channel 0.

62 SET I7 0067 Set 7 to address of first half of
pattern.

195

Memory
Address Memory Buffer Effect

63
64

65
66

67

70
71

72
73

74
75
76
77
1 O(

10:
10:

1 0:

104

1 O!
lo(

10:

LDA 1-J
4
ADM
6
SR0 I

0110
1020

7767
1507

0146

2075
1520

3737
6066

Initial V coordinate = -1-C
(ACC) .
Skip to location 70 if bit of pattern
word is 0. Rotate the pattern word
1 place to right.
If bit 11 of pattern word was 1,
display one point.
Add 4 to V coordinate in ACC.
Skip to location 74 when 6 bits of
pattern word have been examined.
Rotate C(72) 1 place to right.

Return to examine next bit of pat-
tern word when bit 0 of C(72) = 1.
When bit 11 of C(72)=0, 6 points
have been examined. Increase H
coordinate by 4 to do next column. 0006

1520 Check to see i f 2 columns have
been displayed. Rotate C(101) 1
place to right.

2525
6064 Two columns have not been dis-

played; return to do next column.
0227 Two columns have been displayed;

index address of the pattern word.
1520 Skip to 107 is both halves of pat-

tern have been displayed.
2525
6064 Return to display 2nd half of pat-

tern.
JMP 60 6060 Entire pattern has been displayed

once. Return and repeat.

4477] Pattern words for letter A. 110 4477
111 7744 7744

Character Display of the Letter A

The SR0 instructions a t locations 71, 100, and 104 determine when 1
columns, and 4 columns have been displayed. After each column the
H coordinate is increased by 4 and the V coordinate reset to -10. After
2 columns the address of the pattern wordjs indexed by one, and after 4
columns the entire process is repeated. DSC I B (display character), code
1740 + 201 f B, is the last of the index class instructions; it directs the
LINC to display the contents of one pattern word, or 2 columns of points.
Register B holes the address of the pattern word and the I-bit is used
in the usual way to index X (B). The points are displayed in the format

196

described above, i.e., 2 columns of 6 points each with a delta of 4 between
points. The pattern word is examined from right to left beginning with
bit 11 and points are plotted from lower left to upper right, as above.

When executing a DSC instruction the computer always takes the H co-
ordinate and channel selection from register 1. The delta of 4 if auto-
matically added to X (1) every time a new column is begun; furthermore,
this indexing is done before the flrst column is displayed, so that if
register 1 initially contains 0364, the first column is displayed at H =
370, the second at H = 374, and register 1 contains 0374 a t the end of
the instruction.

The vertical coordinate is, as usual, taken from the accumulator, and
again + 4 is automatically added to C(ACC) between points. The right-
most 5 bits (bits 7-11) of the accumulator are always cleared at the be-
ginning of a DSC instruction, so that if initially C(ACC) = + 273, the first
point will be displayed at V -240, the second at V -244, etc. Characters
can therefore be displayed using the DSC instruction only at vertical
spacing of 40 on the scope, e.g., a t initial vertical coordinates equal to
-77, -37, 0, +40, $.loo, etc. The rightmost 5 bits of the accumulator
always contain 301 at the end of a DSC instruction, so that if the initial
C(ACC) = +273, the initial V equals +240 and C(ACC) equals +270
at the end of the instruction.

To display a character defined by a 4 x 6 pattern two DSC instructions are
needed. The following example repeatedly displays the letter A in the
middle of the scope, just as the program on page 48 (example 20) does,
but with greater efficiency usiog the DSC instruction. Since an initial V =
-10 is not possible with DSC, the program uses V=O.

Memory
Address Memory Buffer Effect

7 [X I

-60 CLR

c-I

1-1

001 1
0061

0364
0067

01 10
1747

Channel selection and H coordinate.

Address of pattern word.

Initial V = 0 + C(ACC).
Set 1 to initial H coordinate minus 4,
and select channel 0.

Set 7 to address of first half of
pattern.

Display, using 1st pattern word, the
left 2 columns of the letter A, at
initial coordinates of (370, 0).

197

Memory
Address Memory Buffer Effect

1767 Index address of pattern word, X(7),
and display right 2 columns of the
letter A at initial coordinates of
(400, 0).

6061 Return and repeat.

Pattern words for letter A. 4477
111 7744 7744

Character Display of the Letter A using DSC

After the first DSC instruction (at location 65), C (1) = 374 and C (ACC)
= 30. After second DSC instruction, C (1) = 0404, C (7) = 0111, and
C (ACC) = 30. C (110) and C (111) are unchanged. By adding more
pattern words a t locations 112 and following locations, and repeating
the DSC 17 instruction, it is possible to display an entire rowof characters.

The following program repeatedly displays a row of six digits. The pattern
words for the characters 0-9 are located in a table beginning at 1000; i.e.,
the pattern words for the character 0 are at 1000 and 1001, for the
character 1 at 1002 and 1003, etc. Keyboard codes for the characters
to be displayed are located in a haf-word table from 1400-1402 i.e., the
first code value is LH (1400), the second RH (1400), etc. The program
computes the address of the first pattern word for each character as it is
retrieved from the table at 1400.

Memory
Adtlress Memory Buffer .Effect

1 CL H I [-I Channel selection and H coordinate.
2 C-nl [-] Counter for number of characters.
3 Eh, XI [-I Address of keyboard code values.
4 EX1 , [-] Address of pattern word.

+20

24

25 1344

0062

7771
0063

5377
0061 Set 1 to initial H coordinate minus

4344
1323

Set 2 to count number of characters
displayed.

Set 3 for loading code values begin-
ning at LH (1400).

4, and select channel 1.

Half-word index register 3 and put
code value into accumulator.

198

43 L

Memory Buffer Effect

I
JMP26 I6026
JMP 20+J 6020

ROL 1 0241 2Y

30
31
32

33

34
35
36
37

40
41

42

ADA I 1120
1000 1000
STC 4 4004

DSC 4 1744

DSC I 4 1764
LDA I 1020
4 0004
ADM. 1140

1 0001
0222 XSK I 2

1 ----
I
I

Compute address of pattern word by
multiplying code value by 2 and add-
ing beginning address of pattern
table.

Address of pattern word + C (4);
0 + C (ACC).
Display character at initial V = 0,
and initial H = C (1) + 4.

Increase H by 4 to provide space
between characters.

Index X (2) and check to see if six
characters have been displayed. If
not, return to get next character. If
so, return to repeat entire display.

Displaying a Row of Characters

Suppose, for example, that one of the six code values is 07. The pattern
words for the character 7 are at locations 1016 and 1017. Multiplying
the code value 07 by 2 (7 x 2 = 16*) and adding the beginning address
of the pattern table (16 + 1000 = 1016) gives us the address of the
first pattern word for the character 7. It should be clear that pattern
words for all the keyboard characters could be added to the pattern
table; by Organizing the pattern table to correspond to the ordering of
the keyboard code values, the same technique of “table look-up’’ using
the code values to locate the pattern could be used to display any char-
acters on the keyboard.”

Half Size Characters
The previous discussion on display characters gave the parameters for full
size characters. Bit 4 of the special functions register controls the
character size. This bit is normally set to a one to provide full size.
However, by clearing bit 4 of the special functions register, half size
characters can be displayed. The only difference in displaying half size
characters is the calculations required in determining where to place the
characters on the display.

Instead of a delta of 4 between points, a delta of 2 is used. Each char-
acters (2 x 6 pattern) is therefore, only 14 points high and 4 points wide.

The line spacing for a half size character is twenty points, and the in-
crementing of memory location 1 is by +2.

199

ANALOG INPUT AND THE SAMPLE INSTRUCTION
The AD12 Analog-Digital Converter provides for easy program access to a
basic 16-input converter with a full 10-bit conversion range (-777* to

Inputs
Eight channels are enternal inputs via phone jacks. Input range is * 1
volt and feed through preamplifiers to the converter. Other input ranges
of 0 to 4-2 volts, -5 to +5 volts, and -10 to + l O volts are available
as a low-cost option.

The other eight channels are controlled by continuously variable knobs.
The converter is sensitive to the middle seven turns of these ten-turn,
lock-to-lock knobs. They can be used to establish parameters, set thres-
hold levels., etc.
Functional Diagram

+777).

-
MULTIPLEXOR SAMPLE AND

HOLD
- -

- -
_I - - -

INPUTS
10-17

10-BIT -
i

-
SAMPLE

AND
HOLD
- -

MULTIPLEXOR - -
_I - - -

-AC% 10-BIT

i

The input knobs are numbered 0-7, and the injut jacks are numbered
10-17.

Sample Instruction
The LINC-mode instruction SAM N (where N O<N<17), is used to select
the input channel and initiate the conversion.

Normal Mode
In Normal Mode, when the SAM instruction is issued, the input channel
is selected and sampled. Then the signal is converted and upon com-
pletion of the conversion process, the contents of the converter buffer
is transferred to A L I . The sign bit is placed in AC 0-2. The entire oper-
ation takes 18.2~s. During the time, the PDP-12 processor simply waits
for the completion of the SAM operation.

The below example illustrates one of the uses of the potentiometers.
This program plots the contents of a 512,0 word segment of memory
registers 0-1777. Location of the segment is selected by rotating knob 5,
whose value is used to determine the address a t which to begin the
display. As the viewer rotates the knob, the display effectively moves back
and forth across the memory.

200

.
Memory
Address Memory Buffer Effect

21
22
23
24
25
26

- .

+ 2o rsET I l3
4777
SAM 5
ADA I
400
ROL 1
STC 12

27
30
31

32

33
34

*LDA1 12
SCR 3
DIS I 13

XSK 13

-JMP 27
-JMP 20-

[-I For channel selection, H coordinate,
and counter.

0073

4777

Set register 13 to select channel 1
and to begin displaying a t H = 0.

Sample knob 5, add 400 to make the
value positive, rotate left 1 place to
produce an address for display, and
store in register 12.

Index the address of the vertical co-
ordinate, and put the coordinate into
the ACC. Position it for display, index
the H coordinate and display.
Check to see whether 510,0 points
have been displayed.
(X(13) = 1777?).
If not, return to display next point.

,If so, return to reset counter and get
new address from knob 5.

4012

0213

6027
6020

Moving Window Display under Knob Control

A t locations 23-25, a memory address is computed for the first vertical
coordinate by adding 400 to the sample value. This leaves the value in
the range +1 to + 777; it is then rotated left 1 place to produce an
initial address in the range 2-1776 for the display.

A second example illustrates the technique of accumulating a frequency
distribution of sampled signal amplitudes appearing on line 12, and
displayiig it simultaneously as a histogram. The distribution is compiled
in a table at locations 1401-1777, and the sample values themselves from
the addresses for table entry. Registers 1401-1777 are initially set to
-377 so that the histogram will be from the bottom of the scope.

Note, a t locations 104 and 105, because of using memory registers
1401-1777, the same index register (register 2) may be interpreted both
as address (location 104) and counter (location 105). A separate counter
is not needed because the final address (1777) will serve as the basis
of the skip decision for the XSK instruction. The same is true at location
124 and 134.

201

Memory
Address Memory Buffer Effect

2 [XI [-I Address of vertical coordinates.
3 LO, H] [-I Channel selection and H coordinate.

113
114
115
116
117
120
121
122
123
124

125

100 SET12 0062
101 1400 1400
102 LDA1 1020
103 -377 7400
104 -STA’ I 2 1062

+SAM 12 Sample input line 12.

Add 1400+200 to the sample value

the event and store.

Add 1 to the contents of the register
just located by the sample value to
record the event.

SCR 1
ADA1
1600
STC123

Index register 2 and put a histogram
value in the accumulator.

LAD1
1
ADM
[-I
LDA1 2

DIS I 3 0163 Index the H coordinate and display.

to form an address for recording

1022

0202
106 lo5_xS_Kz-- JMP104 -I 6104
107 r S E T I 2 -1 0062

135
136

Initial routine to set registers
1401-1777 to -377.

1 whether 377 values have been

I displayed. (X(2) = 1777?).

JMP 107--’ 6107 If so, return to reset vertical
. JMP 113 I 6113 If not, return to get next sample.

Set register 2 to initial address
minus one of vertical coordinates.

Set register 3 to select channel 0

1121 200
. and begin display a t H=201.

0200

202

F~T-SAMPLE MODE
In Fast-Sample Mode, the PDP-12 processor is allowed to proceed while
the called for conversion operations is in program. The conversion still
requires 1 8 . 2 ~ ~ ~ but the order of events is changed. When the special
function fast sample is enabled and a SAM N instruction is issued, the
contents of the converter buffer is transferred to the accumulator first
(total time 1.6 cs). The program then continues, and concurrently, a new
sample and conversion is initiated on channel N. The results will not be
sent to the accumulator until the execution of the next SAM instruction.
This permits the program to handle incoming data as new data is being
converted.

Fast-Sample Mode is initiated by setting bit 5 of the special function
register to a one.

LDA I

ESF /ENABLE FAST SAMPLE FUNCTION
01 00 /SET AC5=1

I In either mode the maximum conversion rate is 18.2 ps per sample but
fast sample doesn't hold up the CP while waiting for the conversion.

Below is an example that will sample 1000 data points and save them.
~~ ~ ~~~ ~~ -~

3 Memory
Address Instructions Code Effect

20
21
22
23
24
25
26
27

SET I 5
- 1000
SET I 6
777
SAM 15
STA I 6

65
6777
66
777
115
1066
0225
6024

Set register t to -io00 to
count no. of samples
Set register 6 to point to be-
ginning of table
Sample channel 15
Store data in table
Count No. of samples
Not done, sample another
channel

The normal operation the sampling frequency of the above program
would be z 1/2912xlOd sec, or z 34 KC.

If the fast sample mode is initiated, however, the time would be reduced
to 1/18.2x104 sec or about 54 KC. because the computer would not
pause for the conversion sequence of the SAM instruction and the "JMP
24" instruction would be executed before the previous SAM would have
finished. The computer now must wait only for the previous SAM to be

r completed.

203

LINC MAGNETIC TAPES

Dual DECtape Transport
\

Any magnetic tape instruction may refer to either the tape or unit 0 or
the tape on unit 1; which unit to use is specified by the instruction itself;
only one unit, however, is ever used at one time.

In the PDP-12, handling of magnetic tape and its instructions is done
entirely by the computer hardware. This hardware is referred to as the
TC-12.

A LINCtape can hold 131,072, 12-bit words of information, or the equiva-
lent of 12810 full LINC memories. It is divided into 51210 smaller segments
known as blocks, each of which contains 25610 12-bit words, a size equal
to one-quarter of LINC memory. Blocks are identified on any tape by
block numbers, 0-777*; magnetic tape instructions specify which block
to use by referring to its block number. A block number (BN) on the tape
permanently occupies a 12-bit space preceding the 256 words of the
block itself:

BLOCK BLOCK
NUMBER

t
WORD

256
WORDS

There are otherspecial words on the tape, serving other functions, which
complete the tape format. Before describing these, however, look more
specifically at one of the magnetic tape instructions, RDE I u (read tam]

204

Block Transfers and Checking
Read tape is one of six magnetic tape instructions which copy information
wither from the tape into the LINC memory (reading), or from the
memory onto the tape (writing). These are generally called block transfer
instructions because they transfer one or more blocks of igformation
between the tape and the Memory:

All magnetic tape instructions are double register instructions. RDE,
typical of a block transfer instruction, is written:

Memory
Address

Memory
Buffer

P RDE1 n
, P + 1 MBLK/TBLK 702 + 201 + 101.1

1000 MBLK $- TBLK 3 bits/9 bits

The first register of the instruction has two special bits. The u-bit (bit 8)
selects the tape unit: when u = 0, the tape on unit 0 is used; when u = 1,
the tape on unit 1 is used. Magnetic tape instructions require that the
tape on the selected unit move a t a speed of approximately 80 ips. There-
fore, i f the tape is not moving when the computer encounters a magnetic
tape instruction, tape motion is started automatically and the tape con-
trol waits until the tape has reached the required speed before continuing
with the instruction.

The I-bit (bit 7) specifies the motion of the tape after the instruction is
executed. If I = 0, the tape will stop; if I = 1, it will continue to move
a t 80 ips. It is sometime more efficient to let the tape continue to move,
as, perhaps, to execute several magnetic tape instructions ib succession.
If it stops, it is necessary to wait for it to start again at the beginning of
the next tape instruction. Examples of this will be given later.

In the second register of the RDE instruction, the rightmost 9 bits hold
the requested block number, BN; that is, they tell the computer which
block on the tape to read into the memory. The left 3 bits hold the
Memory Block number, MBLK,which refers to the memory. MBLK specifles
which Memory Block of memory to use in the transfer. The Memory Blocks

205

of the LINC memory are numbered 0-7, and refer to the memory registers
as follows:

Memory Memow Registers

BN

Block- (octal)

I BLOCK cs

0 0-377
400-777

1000-1377
1400- 1777
2000-2377
2400-2777
3000-3377

7 3400-3777

Suppose, for example, the programmer wishes to transfer data stored on
tape into memory registers 1000-1377. The data is in block 267 and the
tape mounted on unit 1.

Memory Memory
Address Buffer Effect

+200 RDEu 0712 Saect unit 1; C (Tape block 267)
201 2/267 1000 x 2 C (Memory Block 2).

f 267

1
WRO

256
WORDS

I
WORD

The checksum, a feature common to many tape systems, checks the
accuracy of the transfer of information to and from the tape. On a LINC
tape, the checksum is the 2’s complement of the sum of the 256 words
in the block. Such a number is formed during the execution of another
block transfer instruction, WRI I u (write tape). This instruction writes
the contents of the specified memory block in the specifled block of the
selected tape:

Memory
Address

Memory
Buffer

P WRI I u 706 + 201 f 1Ou
P f l MBLK/TBLK 1000 MBLK f TBLK

206

During the transfer the words being written on the tape are added
together without end-around carry in the accumulator. This sum is then
2’s complemented and written in the CS space following the block on the
tape. After the operation the checksum is left in the accumulator and
the computer goes to p + 2 for the next LINC instruction. MBLK, TBLK,
I, and u are all interpreted as for RDE.
One means of checking the accuracy of the transfer is to form a new sum
and compare it to the checksum on the tape. This happens during RDE;
the 256 words from the block on the tape are added together without
end-around carry in the accumulator while they are being transferred
to the memory. This uncomplemented sum is called the data sum. The
checksum from the tape is then added to this data sum and the result,
called the transfer check, is left in the accumulator. If the information
has been transferred correctly, the transfer check will equal - 0 (7777):
the block “checks”. Thus, by examining the accumulator after an RDE
instruction, the programmer can tell if the block was transferred cor-
rectly. The following sequence of instructions does this and reads block
500 again if it does not check:

Memory Memory
Address Buffer Effect

+300 0702 Read block 500, uni t 0, into
memory block 3. Leave the transfer
check in the accumulator and stop
the tape.

301 302 - ~ ~ ~ 1 1460 Skip to location 305 if C (ACC) =
777, i.e., i f the block checks. If C
(ACC) +7777, return to read the
block again.

7777 303
304 JMP300 6300
305

3/500 3500

- -

The remaining block transfer instructions check transfer automatically.
RDC I u (read and check), does in one instruction exactly what the above
sequence of instruction does. That is, it reads the specified block of the
selected tape into the specified quarter of memory and forms the transfer
check*does not equal 7777, the instruction is repeated (the block is
reread, etc.). When the block is read correctly, 7777 is left in the ac-
cumulator and the computer goes on to the next LINC instruction a t
p + 2. The RDC instruction is written:

Memory
Address

~~~ 

Memory 
Buffer 

P RDC I u 700 + 201 + 1ou 
P + 1  MBLK/TBLK 1000 MBLK f TBLK 

207 



One of the most frequent uses of instruction which read the tape is to 
put LINC programs stored on tape into. the memory. Suppose the pro- 
grammer is given a tape, for example, which has in block 300 a program 
he wants to run. The program is loo1 registers long, starting in register 
1250. He can mount the tape on either unit and then set and execute 
RDE or RDC in the LEFT and RIGHT SWITCHES. If he uses RDE, he 
should look a t  the ACCUMULATOR lights after the transfer to make sure 
the transfer check = 7777. When double register instructions are set in 
the toggle switches, the first word is set in the LEFT SWITCHES, and the 
second in the RIGHT SWITCHES. If the tape is on unit 1, to use RDC the 
toggle switches should be set as follows: 

Console 
Location Contents 

LEFT SWITCHES RDC u 0710 
RIGHT SWITCHES 21300 2300 

_ _ _ _ _ _  ~~ ~~~ ~~ 

MBLK = 2 because the program in block 300 must be stored in memory 
registers 1250-1347, which are located in MBLK 2. Depressing the DO 
Key will cause the PDP-12 LINC mode to read the block into the proper 
Memory Block and check it. Start at  5250 from the console, using I / O  
Preset, Start LS. 

The remaining block transfer instructions will be described later. 

A non-transfer instruction, CHK I u (check tape), makes it possible to  
check a block without desroying information in the memory. This instruc- 
tion does exactly what RDE does, except that the information is not trans. 
ferred into the memory; that is, it reads the specified block into the 
accumulator only, forms the data sum, adds it to the checksum from the 
tape, and leaves the result, the transfer check, in the accumulator. Since 
this is a non-transfer instruction, MBLK is ignored by the computer. 
Otherwise this instruction is written as are the other instructions: 

Memory Memory 
Address Buffer 

P CHK I u 707 + 201 f 1Ou 
D + l  TBLK TBLK 

~ 

The following program checks sequentially all the blocks on the tape on 
unit 0. The program starts a t  location 200. If a block does not check, 
the program puts its block number into the accumulator and halts at 
location 221. To continue checking, reenter the program a t  location 207. 
The program will halt a t  location 216 when it has checked the entire tape. 

Memory Memory 
Address Buffer Effect 

Sta+200 CLR 00117 Store 0 in register 203 as first 
block number. 
Check the block specified in reg 
ister 203; transfer check C (ACC); 
the tape continues to move. 

208 



Memow Memory 
Address Buffer Effect 

203f TBLK- (-1 
204 

205 
206 

Reente-207 
210 

211 212 I 

SAE I 1460 If the transfer check = -0, skip 

7777 7777 
to location 207. 

JMP 217 6217 If the block does not check, jump 
to location 217. 

Add 1 to the block number in r e g  
ister 203, and leave the sum in 
the accumulator. 0203 

LDA I 
1 
ADM 
203 

213 
214 
215 

SAE I 1460- 
If all blocks have been checked, 
skip to location 215. Otherwise 
return to check next block. 1000 
Load the block number of the 
block which failed into the ac- 

0203 1 220 203 
221 HLT oooo cumulator, and halt. 

Simple Check of an Entire Tape 
A block transfer instruction, WRC I u, (write and check), combines the 
operations of the instructions WRI and CHK, and, like read - and - 
check, repeats the entire process if the check fails. That is, WRC 
writes the contents of the specified memory block in the specified tape 
block, forms the checksum in the accumulator and writes the checksum 
onto the tape. It then checks the tape block just written. If the resulting 
transfer check does not equal -0, the tape block is rewritten and re- 
checked. When the tape block checks, 7777 is left in the accumulator 
and the computer goes on to  the next LINC instruction at p + 2. WRC 
is written: 

Memory Memory 
Address Buffer 

WRC I u 704 f 201 + 101.1 P 
D - k l  MBLK + TBLK 1OOOMBLK f TBLK 

This write-and-check process may be diagrammed: ;*, 
THE ADD 

INSTRUCTON 

SUMMED 

209 



The following sequence illustrates the use of some of the tape block trans. 
fer instructions. Since the UNC mode memory is small, a program must 
frequently be divided into sections which will fit into tape blocks, and 
the sections read into the memory as needed. This example saves (writes) 
the contents of Memory Blocks 2 of memory (registers 1000-1377) on 
the tape. It then reads a program section from the tape into memory 
blocks 1, 2, 3 (register 400-1777) and jumps to location 400 to begin 
the new section of the program. Assume that the tape is on unit 0. 
Memory Block 2 will be saved in tape block 50; the program to be read 
from the tape is in blocks 201-203: 

Memory Memory 
Address Buffer Effect 
+loo WRC1 0723 C (quarter 2) + C (block 50); trans- 

fer is checked, and the tape con- 
tinues to move. 

101 2050 2050 
RDC I C (block 201) +C (MBLK l),  and 

C (block 202) C (MBLK 2); trans- 
fers are checked and the tape 1 04 RDC I 0720 

105 2/202 2202 continues to move. 
106 RDC 0720 C (block 203) +C (MBLK 3); trans- 

fer is checked and the tape stops. 
107 3/203 3202 
110 ~ : : ; 4 0 0  6400 Jump to the new section. 

103 102 1/201 E) 

400 (-1 

Dividing Large Programs Between Tape and Memory 

A t  the end of the above sequence, the contents of memory registers 
400-1777 and tape block 50 have been altered. 

Another program repeatedly fllls memory block 3 with samples from 
input line 14 and writes the data in consecutive blocks on tape beginning 
a t  block 200. The number of blocks of data to collect and save is specified 
by the setting of the RIGHT SWITCHES. When the requested number 
has been written, the program saves itself in block 177 and halts. The 
tape is on unit 1. 

Memory Memory 
Address Buffer Effect 

10 (X) (e) Memory address for storing 
samples. 

11 (--n) (-1 Counter. 

C(RIGHT SWITCHES) C(ACC). 2:;) Complement the number and store 
+ 1000 RSW 

1001 COM 
1002 STC 11 4011 in registet 11. 

210 



1003 

1004 
1005 
1006 
1007 
1010 
101 1 

1012 
1013 

1014 1015 
1016 
1017 

1020 

GROUP TRANSFERS 
Two other blocks instructions, similar to RDC and WRC, permit a program 
to transfer as many as 8 blocks of information with one instruction. These 
are called the group transfer instructions; they transfer information be- 
tween consecutive quarters of the memory and a group of consecutive 
blocks on the tape. Suppose, for example, that we want to read 3 blocks 
from the tape into memory blocks 1, 2 and 3. The 3 tape blocks are 51, 
52, and 53. Using the imtruction RCG I u(read and check group), write: 

Memory Address Memory Buffer 
P RCG I u 701 + 201 + 1Ou 

The first register specifies the instruction, the tape unit, and the tape 
motion as usual. The second register, however, is interpreted somewhat 
differently. It uses TBLK to select the first block of the group. In addition, 
the rightmost 3 bits of TBLK specify also the first memory block of the 
group. That is, block 51 will be read into memory block 1, (block 127 

21 1 

P f l  2051 2051 

- SET I 10 0070 Set register 10 to store samples 
beginning a t  1400. 

1377 1377 
SAM 14 Sample input line 14, store value 

and repeat 400, samples have 
been taken. I 1:5 ii!;} 

JMP 10 I 7005 
WRC u+ - J 0714 When MBLK 3 is full, write it on 

take and check the tape stops. 
(3/200) (-) 

X S K U  - - 

LDA 1 

ADM 1 
1012 1012 
XSK I l l  0231 Index the counter and skip i f  the 

JMP 1003 I 7003 If not, return. 

""} 1140 Add 1 to the TBLK in register 1012. 

1 requested number has been 
collected. I 



would be read into memory block 7, etc.). The leftmost 3 bits (usually 
MBLK) are used to specify the number of additional tape blocks to  trans- 
fer. In the above example tape block 51 is read into memory block 1, 
and 2 additional tape blocks are transferred: Tape block 52 into memory 
block 2( and tape block 53 into memory block). 

The format of WCG I u (write and check group) is the same as for 
RCG: 

~ 

Memory 
Address Memory Buffer 

P WCG I u 705 + 201 + 1Ou 
P f l  3/300 3300 

The computer interprets the above example as: write and check MBLK 0 
in tape block 300, and make 3 additional consecutive transfers: MBKL 1 
into tape block 301, MBKL 2 into tape block 302, and MBKL 3 into tape 
block 303. When the leftmost 3 bits are 0, i.e., 0 additional transfers, the 
WCG instruction is like the WRC.instruction in that only 1 block is trans- 
ferred. 

The second word of a group transfer instruction may be diagrammed: 

0 1 2  

INITIAL 
MEMORY QRTR u 

3 4 5  6 7 8  9 10 11 

P + 1 m  c m  m m u. 
9 OF ADDIJIONAL 

TRANSFERS 

- 
INITIAL BLOCK NUMBER NO. 

RCG and WCG always operate on consecutive memory blocks and tape 
blocks. Specifying 3 additional when the initial tape blocks is, say, 336, 
will transfer information between tape blocks 336, 337, 340, and 341, 
and memory blocks 6, 7, 0, and 1; that is, MBKL 0 succeeds, MBLK 7. The 
transfer are always checked; when a transfer does not check, the instrub 
tion is repeated starting with the first block. With WCG, all the tape 
blocks and their checksums are first written and then all are checked. If 
any block fails to check, the blocks are rewritten starting with the first 
block and then all blocks are checked again. As with RDC and WRC, group 
transfer instructions leave - 0 in the accumulator and go to p + 2 far 
the next LINC instruction. 

Using RCG instead of RDC, the program example on page 210 can 
be written more efficiently: 

212 



Memory Memory . 
Address Buffer Effect 

-)lo0 WRC I 0724 C(quarter 2) C(block 50); transfer 
is checked and tape continues to 
move. 

101 2/50 2050 
102 RCG 0701 Read blocks 201-203 into MBLKS 

1-3; check the transfers and stop 
the tape. 

103 2/201 220 1 
104 JMP 400 6400 Jump to the new section. 

Tape and Memory Exchange with Group Transfer 

Tape Motion and the Move Toward Block Instruction 
When the tape control (TC-12) is searching the tape for a required block, 
it looks a t  each block number in turn until it finds the corect one. Since 
the tape may be positioned anywhere when the search is begun, it must be 
able to move either forward or backward to flnd the block. 
Forward means moving from the low block numbers to the high numbers; 
physically the tape moves onto the lefthand reel. 

FORWARD BACKWARD 

Backwards means moving from the high numbers to the low; the tape 
moves onto the righthand reel. 

When searching for a requested block, the TC-12 decides whether the tape 
must move forward or backward by subtracting each block number it finds 
from the requested number, and using the sign of the result to determine 
the direction of motion. If the difference is positive, the search continues 
in the forward direction; if negative, it continues in the backward direction. 
This may, of course, mean that the tape has to reverse direction in order 
to find the required block. 

Suppose, for example, that the TC-12 is instructed to read block 50, and 
that the tape is presently moving forward just below block 75. The next 
block number found will be 75. The result of subtracting 75 from 50 is 
-25, which indicates not only that the tape is 25 blocks away from block 
50, but also that block 50 is below the present tape position. The tape will 
reverse its diLection and go backward. 

213 



To facilitate searching in the backward direction a special word called a 
backward block number, BN, follows the checksum for each block. 

BN BLOCK 
c 
BN CS 

1 
USED 

When searching in the forward direction, the TC-12 looks a t  forward block 
numbers, BN; when searching in the backward direction, it looks at back- 
ward block numbers, BN. In either direction, each block number found 
is subtracted in turn from the requested number, and the direction reverse 
as necessary, until the result of the subtraction is -0 in the forward 
direction. Transfers and checks are made only in the forward direction. 

Thus, in the above example, the tape will continue to move in the backward 
direction until the result of the subtraction is positive i.e., until the BN for 
block 47 is found and subtracted from 50. indicating that the tape is now 
below block 50. A t  the second block below the direction will be reversed; 
the computer will find 50 as a forward block number, BN, and the transfer 
will be made. 

For all magnetic tape instructions, if the tape is not moving when the in- 
struction is encountered, the computer starts the tape in the forward direc- 
tion and waits until it is moving a t  the required speed before reading a 
forward block number, BN, and reversing direction i f  necessary. If the tape 
is in motion, however, (including coasting to a stop), the TC-12 does not 
change direction until block nymber comparison requires it. 

For all tape transfer or check instruction with I = 1, the tape continues 
to move forward after the instruction is executed. 

For al l  magnetic tape instruction stops are made in the backward direction. 
For transfer or check instructions this means that the tape always reverses 
before stopping. Furthermore, the tape then stops below the last block 
involved in the instruction, so that when the tape is restarted, this block 
will be the first one found. This reduces delay in programs which make 
repeated references to the same block. 

The last magnetic tape instruction illustrates some to the tape motion 
characteristics. MTB I u (move toward block) is written: 

Memory Memory 
Address Buffer 

P MTB I u 703 + 201+ 1Ou 
P+ 1 TBLK TBLK 

As in the other magnetic tape instruction, the u-bit selects the tape unit. 
The tape motion bit (the I-bit) and the second register, however, are inter. 
preted somewhat differently. MTB directs the TC-12 to subtract the next 
block number it finds on the tape from the number specified in the second 
word of the instruction, and leave the result in the PDP-12 ac6umulator. 

214 



MBLK is ignored during execution of MTB. For example, i f  the block num- 
ber in the second register of the instruction is 0, and if the tape is just 
below block 20 and moving forward, then -20, or 7757, will be left in 
the accumulator. The,MTB instruction can thus be used to find out where 
the tape is at any particular time. 

When I = 0, the tape is stopped as usual after the instruction is executed. 
When I = 1, however, the tape is left moving toward the specified block. 
The result of the subtraction is left in the accumulator, and the tape direc- 
tion is reversed if necessary as the computer goes on to the next instruc- 
tion. MBT I does not actually flnd the block; it merely orients the tape 
motion toward it. 

The initial direction of motion and possible reversal are determined for 
MTB just as they are for all other magnetic tape instruction, as described 
above. Note, however, that since MTB I makes no further corrections to 
the direction of motion, the specified block may eventually be passed. 

The move-toward-block instruction serves not only to identify tape posi- 
tion, but also to save time. If, for example, a program must read block 
700, and then, a t  some later time, write in block 50, it is efficient to have 
the tape move toward block 50 in the interim while the program continues 
to run: 

Memory Memory 
Address Buffer Effect 

+loo RDC I 

101 3/700 
102 MTB I 

103 50 

300 WR1 

30 1 50 

0720 

3700 
0723 

C(block 700) + C (MBLK 3); tape 
moves forward 

C(103)-next TBLK + C (ACC); 
tape reverses and moves backward 
toward block 50. 
Tape continues to move backward 
while program continues. 

C (MBLK 0) + C (block 50); tape 
0706 stops. * 

0050 

In this example it would be inefficient to stop the tape (I=O) with the 
RDC instruction at location 100 or to let it continue to move forward 
until block 50 is called for. Although the number left in the accumulator 
after executing the MTB a t  location 102 may not be of interest, the MTB 
does reverse the tape. Then, when block 50 is called for, the delay in 
finding it will not be so long. 

Tape Format 
Certain other facts about the tape format should be mentioned. Other 
special words on the tape are shown: 

215 



512 BLOCK ZONES 
A r 

B N G  BLOCK 
c INTER 

cs BLOCK 
B N . Z M  

At  each end of the tape is an area called end zone which provides physical 
protection for the rest of the tape. When a tape which has been left mov- 
ing as the resylt of executing a tape instruction with 1=1 reaches an end 
zone, the tape stops automatically. (This prevents the tape from being 
pulled off the reel). Words marked C and G above do not generally 
concern the programmer except insofar as they affect tape timing. The 
TC-12 uses words marked C to insure that the tape writers are turned off 
following a write instruction. Words marked G, called guard words, protect 
the forward and backward blocks numbers when the write curent is turned 
on and off. 

Inter-block zones are spaces between the block areas which can be sensed 
by the skip class instruction, IBZ I, when either tape is moving either 
forward or backward. The purpose of such sensing is to make program- 
med block searching more efficient. For example, suppose that some- 
where in a program block 500 must be read into MBLK 2; assume it does 
not matter when as long it is before the program gets to the instructions 
beginning a t  location 650. The following illustration uses a sub-routine 
to check the position of the tape and execute the read instruction if the 
tape is within 2 blocks of block 500. If the tape is not in an inter-block 
zone, the main program continues without having to wait for a block 
number to appear. For purposes of simplicity, assume that the tape (on 
unit 0) is moving. The program begins at  location 400 and the sub- 
routine a t  location 200. 

Note that the following example works only if the tape is stopped by the 
RDC instruction in register 32. If the tape is not stopped here, subse- 
quent jumps to the subroutine may continue to find the tape a t  the inter- 
block zone dlocations 20-22) and block 500 may be read repeatedly. The 
test with the APO instruction a t  location 646, which signifies if the trans 
fer has been made or not, is necessary to guarantee that the transfer will 
occur before location 650. At this point, if the transfer has not been 
made, the JMP 2 a t  location 647 will be executed. 

216 



Memory Memory 
Address Buffer Effect 

20 

21 

22 

23 
24 
25 
26 
27 
30 
31 

32 

33 
34 

35 

+400 
401 
402 

500 

600 

644 

645 
646 

647 

650 

. IBZ 0453 
-1 -- 

JMP 0 I 6000 
I - 

MTB I+ J 0723 

t t  
500 0500 

-eo- - 0451 
COM 1 0 0 1 7  
ADA IC 1 1120 
-2 7775 
APO I 0471 
JMP 0 6000 

RDC 0700 
- 

- JMP 0 6000/ 

STC645 4645 
JMP20 6020 

CLR 

JMP20 6 0 2 0 7  
-v t 

x 6 1 2 0  !) 
J -7 .c 

LDA I 1020 

JMP 32 ~ i 6032 

1 

Enter subroutine and sense tape po- 
sition. 
Return if tape is not an inter-block 
zone. 
If it is, subtract BN or BN from 500. 
Tape continues to move forward 
block 500. 

Is result positive? 
If negative, complement it. 
Add -2 to see if tape is within 2 
blocks of block 500. 
Is result positive? 
If result is positive, return to main 
program. 
If negative, tape is within 2 blocks 
of block 500. Make the transfer and 
stop the tape. 

Store the transfer check = -0 lo- 
cation 645 to indicate transfer had 
been made, and return. 

Store positive 0 in location 645 to 
indicate transfer has not been made. 

Jump to subroutine at these points; 
return to p f 1 and continue with 
main program. 
Put test number (either 0000 or 
7777) into accumulator. 

Skip to location 650 if the transfer 
has been made; C (ACC) = 7777). 
If not, jump to subroutine to make 
transfer, and return to location 650. 

Block Search Subroutine 

Tape Motion Timing 
When a tape is moving at a rate of 80 ips, it takes approximately 3.2 msec. 

217 



to move from one forward block number to the next, or 120 usec per 
word. The following table summarizes some of the timing factors: 

~ 

LINC TAPE MOTION TIME 
Start (from no motion to 80 ips) 

Stop (from 8 ips to no motion) 

Reverse Direction '(from 80 ips 
to 80 iDs on new unit) 

0.1 sec 

0.1 sec 

0.2 sec 

Change Unit (from no motion 
to 80 ips on new unit) 0.1 sec 

BN to BN (at 80 ips) 3.2 msec 

End Zone to End Zone 
(at 80 ips) 16 sec 

Some methods of using the tape instructions efficiently become obvious 
from the above table. Generally speaking, tape instruction should be 
organized around a minimum number of tapes and a minimum amount 
of tape travel time. When dealing with only one tape unit, it is usually 
efficient to use consecutive or nearly consecutive blocks in order to 
reduce the travel time between blocks. 

It is also efficient to request lower-numbered blocks before higher- 
numbered, avoiding unnecessary reversals. The write-and-check instruc- 
tion, requiring two reversals, is thus costly. It first must find and write 
fn the block in the forward direction; the tape must reverse and go 
backward until it is below, and then reverse a second time and go for- 
ward to find and check the block: - 

REQUESTED BLOCK WRITE 

FIND d WRITE FORWARD k t  
r, -I BIN \ 

REVERSE 
BACKWARD FIND I A r-1 BIN v 1 

.- 

Because of these reversals it is sometimes more efficient to use two tape 
instructions, WR1 followed by CHK, than to use WRC. This is true, for 
example, when more than one block must be written and checked. For 
example, write quarters 1, 2, and 3 in blocks 100, 101, and 102, and 
check the transfers: using WRC, this would take a minimum of six 
reversals. The following sequence requires a minimum of two reversals: 

218 



Memory 
', Address 

Memory 
Buffer Effect 

Put the BN of the first block to 
be checked in register 32. 

+20m 
21 
22 STC 32 

' 23 WRI I 0726 
24 Write consecutive blocks can the 

tape on unit 0 and leave the tape 
moving forward after each trans- 

27 fer. 

30 
31 CHK I 0720 Check the blocks, beginning with 

32 (TBLK) 
btock 100. 

33 
34 
35 

36 
37 
40 
41 
42 
43 
44 

If a block does not check, repeat 
entire process. 

JMP 20 

LDAI-A 1020 

1103 

1 
ADM 
32 
SAE I 
1103 
JMP31 7 6031 

Add 1 to the BN in register 2. 
If the result 8110, not all have 
been checked. Return and check 
the next block. -- - - 

45 MTB---i 0703 When all have checked, execute 
46 0 0000) move toward -block to stop the 
47 HLT 0000 tape, and halt. 

In this example the two reversals will occur the first time the CHK in- 
struction at  location 31  is executed. Other reversals may be necessary 
when the computer initially searches for block 100, and when a block 
does not check, but careful handling of the tape instructions can reduce 
some of these delays. It should be noted that there are 9 words on the 
tape bet&een any CS and the next BN in the forward direction. When 
the tape is moving at  speed, it takes 1080 usec to move over these 9 
words. Thus the program has time to execute several instructions between 
consecutive blocks, i.e., therefore the next TBLK appears. In the above 
example, then, there is no danger that the next block will be passed while 
the instructions a t  locations 33-44 are being executed. 

EXTENDED TAPE OPERATIONS 
The TC-12 (tape control) for the PDP-12 has been developed as sub- 
processor so that it may act independent of the central processor. To 
use the TC-12 most efficiently, the tape control can be programmed in 
its extended mode. The extended operations buffer register controls the 
extended mode. This register is shown below. 

219 



0 1  2 3 4 5 6 7 8 9 1 0 1 1  

;DO NOT PAUSE DURING I I I I  EXECUTION 
ENABLE EXTENDED 
ADDRESS MODE 
MAINTENANCE MODE 

I '  ENABLE TAPE 
INTERRUPT 

I I MARK CONDITIONS 
I EXTENDED MEMORY 

ADDRESS 
Extended Operations Buffer Bit Assignments 

The Extended Operations buffer is controlled by two LINC instructions; 
XOA and AXO. 

XOA - 0021 Extended tape operations buffer to the AC. 

AXO-0001 AC to Extended tape operations buffer. 

XOA is issued when it is necessary to interrogate the buffer to find out 
what entended conditions are present. A X 0  is issued when the extended 
operations buffer is to be loaded from the accumulator. 

No Pause 
Setting bit 8 of the extended operations buffer will allow the TC-12 to 
execute subsequent tape instructions without forcing the central processor 
into pause (wait for the tape instruction to be completed.) Programming 
can now continue while a tape operation is in process. The checksum 
calculated from a tape operation is not transferred to  the AC because 
it would destroy any calculations in progress. The checksum can be 
retrieved however, by issuing the instruction TAC. 

TAC 1 - 003 tape accumulator to AC. 

Extended Addressing 
The Extended Addressing mode allows the TC-12 to transfer information 
from tape to memory or vice versa without regards to specific memory 
blocks. The transfer can be accomplished to or from any section of avail- 
able memory without changing fields. The TMA (tape memory address) 
register is used in extended addressing to determine the initial location 
used in the tape transfer. The TMA register is loaded from the AC with the 
LINC instruction TMA. 

TMA-0023 load the tape memory address with the contents of the AC. 

To determine when a tape instruction has been completed the instruction 
STD may be issued. 

STD-0416 is the LINC instruction to  skip on a tape done. 

220 



The tape done flag is up (set to a 1) whenever a tape instruction is not 
in progress. STD, therefore, tests for an IDLE condition within the tape 
control. If used AFTER a tape instruction is issued, STD can indicate a 
tape completion. The example below shows a tape instruction using no 
pause. 

Memory 
Address Instruction Code Effect 

125 LDA I 
126 10 
127 AX0 
130 RDC 
131 3250 

157 

161 
162 TAC 
163 AZE 

165 

167 

1620 
0010 
0001 
0700 
3250 

416 
1 6157 

001 1 
0003 
0450 
6XXX 
416 
6XXX 

Set AC bit 8= 1 (No Pause). 

Set No Pause. 
Read tape block #250. 
tnto Memory block #3. 
Do not pause to complete tape in- 
struction. (Computer program 
continues) 

Has tape instruction been completed? 
No, do not go on until it has. 
Yes, Read tape accumulator into AC. 

Is AC = O? 
No, error in the tape operation. 
IS AC = -o? 
No, error in tape operation. 
Tape checksum = 7777. Memory 
Block #3 may now be used. 

Bits 0, 1, and 2 of the extended operations buffer are used to determine 
what 4K field the initial address is in. Only Non-Group instructions can 
be used with extended addressing. The example below reads tape block 
475 into locations 4712 + 5311 of field 7 in a 32K PDP-12. 

Memory 
Address Instruction Code Effect 

27 
30 
31 

32 
33 
34 
35 
36 

175 

LDA I 
7036 
AX0 

LDA I 
4712 
TMA 
RDC 
475 

STD 

1020 
7030 
0001 

1020 
4712 
0023 
0700 
0475 

0416 

SetACbitsO, 1,2t0111~~, 

Set. Extended Memory Address to 718) 
Set Extended Addressing and no pause. 
Load AC with first address in core. 

Load TMA with initial address. 
Read Tape Block #475 into Locations 
previously specified. 

* Set AC bits 7,8 to 1 1tz) 

Has tape command been completed 
yet? 

221 



Memory 
Address Instruction Code Effect 

176 JMP. -1 6175 No, wait. 
177 Yes, Data can now be used. 

Hold Unit Motion 
Setting hold motion allows the maintaining of tape motion in units not 
currently selected. The procedure for multipie unit movement is to set bit 
9 of the extended operations buffer, start a tape unit moving by issuing 
a tape instruction with the “ I ”  bit set (Keep unit in motion a t  end of tape 
instruction) and issue a second tape command to a different unit. The 
first unit will remain in motion even though it is no longer selected. An 
example of this procedure is given below: 

Memory 
Address Instruction Code Effect 

27 
30 
31 
32 

33 
34 
35 

36 
37 
40 
41 
42 

LDA I 
0004 
AX0 
MTB I 

200 
RDC U 
2/373 

CLR 
A X 0  
RDE 
1 /200 

4 
1020 
0001 
0723 

200 
0700 
2373 

001 1 
000 1 
0702 
1200 

Set AC bit 9 to A “1”. 

Set Hold Unit Motion. 
Move toward tape block #200 (tape 
unit 0). 
Keeping tape in motion (tape unit 1). 
Read tape block 8373 (tape unit 1) 
into memory block #2 (tape unit 0 is 
still moving, tape unit 1 stops a t  end 
of RDC instructions. 
Clear accumulator. 
Clear hold until motion. 
Read tape block #200 into memory. 
Block #l (tape un i t0  stops at end of 
of RDE instruction). 

Extended Units 
The TC-12 can control as many as eight TU56 Dual DECtapes transports 
(each individually selected as tape unit 0 + 7). Within the TC-12 is a 
3 bit unit select register. The two most significant bits of this register 
are controlled by bits 10 and 11 of the Extended Operation buffer. The 
least significant bit is controlled by the “U” bit of the tape instruction 

222 



itself. 1. E. to select tape unit 5 for reading a clock of tape the following 
instructions would be given: 

Memory 
Address Instruction Code Effect 

40 LDA I 1020 Set AC bit 10 = 1 
41 0002 0002 
42 AX0  0001 Set bit 10 of Extended OP Buffer 

’ 43 RDC U 0710 Read Block No. 320 (Tape Unit 5) 
4320 4320 into memory block 4 

Maintenance Mode 
Setting bit 6 of the extended operations buffer enables the maintenance 
mode which allows complete control over every operation within the tape 

Mark Condition 
.The timing and mark track writers can be switched on if bit 4 of the 
extended operations buffer is set to a “1” while the Mark Key is being 
held down on the front console. This is used only when running a pro- 
gram which will format a blank Linc tape. 

Enable Tape Interrupt 
The tape done flag can be switched on to the interrupt line by setting 
bit 5 of the extend operations buffer. This allows monitoring of the tape 
status independent of the main program. 

LINK DATA FIELD 
The LINC has been presented as having a single 12-bit, 102410 word 
memory. A second addressable memory provides another 102410, or 20000 
12-bit words. This second memory is addressable for data storage and 
retrieval; it can not, however, be used to hold running programs. 

Bit 1 of a register containing a memory address, e.i., a p register, is 
designated as the memory select bit. When this bit is 1, the second 
memory is addressed: 

subprocessor. (Refer to Users System Reference Manual Section ) 

B 010 oO0o0O 000 - 
MEMORY SELECT BIT f X 

The addresses for the second memory may then be thought of as 2000 
f X, where O< X < 1777, as usual. 

More simply it is referred to as memory registers 2000-37770. While 
this scheme makes the memory address of the two memories con- 
tinuous, they can not always be treated as such by the programmer. The 
memory address register, using only 10 bits, prohibits using the second 
memory to hold running programs, the next sequential instruction loca- 
tion after 1777 is always 0. Moreover, the full-address class instructions 
can address only registers 0-1777. 

223 



P 

P + l  

Memory Address Memory Contents 

3 (2000 + X) (-) 
40 SET I 3  0063 

LDA 

2133 

41 
42 

3777 
LDA I 3  

3777 
1023 

43 JMP 42 6042 

In this example register 3 will contain the succession of values: 3777, 
2000, 2001, . . . . 3777, 2000, etc., repeatedly scanning the second mem- 
ory. In order for the first execution of the LDA instruction at location 42 
to index register 3 to 2000, register 3 must be set initiatly to 2777, i.e., 
X(3) = 1777 and memory select bits = 1. 

For many purposes this indexing scheme presents no disadvantages. 
Often, however, one would like to use both memories, for example to 
collect a large number of data samples. The following program fills mem- 
ory registers 400-3777 with sample values of the signal on input line 10. 
The sample-and-stored part of the program is written as a subroutine 
(locations 31-40), and the sample rate is controlled by an SXL I N 
instruction: 

Memory Memory 
Address Contents Effect 

7 
10 
20 
21 

22 
23 

24 
25 . 

(-) 
(JMP X) 
SET I 7  
377 

JMP 31  
SET I 7 

3777 
JMP 31 

(-) 
(-1 

0067 
0377 

603 1 
0067 

3777 
603 1 

For memory address. 
For return point. 

Set 7 to initial address minus 1 
and jump to subroutine. 

Return from subroutine; set 7 to 
initial address minus 1 for sec. 
memory, and jump to subroutine. 

Return from subroutine; write 
memory quarters 1 through 7 in 
blocks 31-37 and halt. 

224 



Memory Memory 
Address Contents Effect 

26 WCG 0705 
27 603 1 603 1 
30 HLT 0000 
31 SET 10 0050 Enter subroutine and save return 

32 0 0000 
33 SXL I 1  0521 Pa'use until restart signal appears 

point in register 10. 

on external level line 1. 
34 JMP. -1 

01'0 
36 STA I 7  1067 

Sample input on line 10 and store. 35 SAM io- 
37 XSK 7 0207 If X(7) = 1777, return to get next 

40 JMP33 6033 
41 JMP 10 6010 When X(7) + 1777, return to main 

sample. 

program via register 10. 

Indexing Across Memory Boundaries 

Changing Memory Fields 
In actuality there are more than 204810 words in the PDP-12 computer. The 
basic PDP-12 contains 409610 words with the capacity of expansion up to 
32,7681~ words. From the LINC point of view, it is best to envision this 
32K as 32 1K segments numbered from OOs to 37a (we will call these 1K 
segments LINC Memory Banks in this discusion). Normally, LINC mode 
programs reside in LINC Instruction Field 2 (instructions) and LINC data 
field 3 (data - see previous discussion). It is possible, however, to 
change this if such a condition is found desirable. 

15 BIT 
ABSOLUTE ADDRESSES 

E si:: 1 BASIC 

04000 TO 09777 NORMAL LIF PDP-12 
06000 m 07777 038 NORMAL LDF 

1omm 11777 040 

MEMORY OF 

1ST 4 K  12000 TO 13777 } 
14000 TO 15777 EXPANSION 

zoo00 'bowTo17777 TO 21777 

220W TO 23777 

7 M  4K 
EXPbNSION 

Moo0 TO 71 777 

72000 TO 73777 350 

74000 TO 75777 

76000 TO 77777 37e 

DIAGRAMMATIC REPRESENTATION OF PDP42 MEMORY 

Diagramatic Representation of PDP-12 Memory 

225 



An example of such a condition would be a program that requires more 
than 1024,@ data words to be in computer memory a t  one time. A decision 
is made to store the data in field 1 and field 3. The programming tech- 
nique discussed will occupy field 2 (where it normally is) and the double 
memory programming technique discussed previously will be used to 
access this data. The accessing of the data in field 3 is no problem as 
field 3 is the “normal LINC Data Field.” However, when it is.desired to 
access the data in field 1 the “number” .of the LINC Data Field must be 
changed. This is accomplished by executing the instruction LDF N (640 
f N), change LINC Data Field to N. After this instruction is executed, all 
references to LINC Data Field will be to this memory fleld (1 in our 
example) until it IS changed by another LDF N. 

Another example of when it is desirable to change memory fields is if 
a program were too large to occupy one memory field. It is sometimes 
desirable to store a frequently used subroutine in a different memory 
field. Again, let us use memory field 1, this time to hold the subroutine. 
The main program is in memory field 2; the data, in field 3. To change 
memory field and transfer the control of a program, the instruction LIF N 
(600 + N), change LINC Instruction Field to “N” is given. Upon execut- 
ing the next JMP X (X + 0). control will be transferred to location X of 
field N (1 on our example) and JMP p + 1 will be stored in location 0 of 
the new memory bank. To exit field 1 to the original program in field 2, 
LIF 2 instruction is given, followed by a JMP 0. 

‘ i r  

THE RESULTS OF LIF/JMP X # O  

0 

500 
501 

BANK.2 
c 

0 
+ 20 
- 

2000 

BANK= 1 

JMP 502 - 
- 
- 
- 

0 

0 

0 

LIF 2 
JMP0 - 

The LINC Data Field bank number is not affected by the LIF instruction 
(nor is it directly affected by the JMP X). 

226 



THIS SHQWS THE ACTION OF LIF/JMPCO ON THE €XTENDED MEMORY LOGIC 

I I  I I I I I I l l l  SF 

t 
LIF 'N 

THIS SHOWS THE ACTION OF LDF N ON THE EXTENDED MEMORY LOOC 

I 
LIF N 

The contents of the Memory Field Registers can be manipulated by using 
the following IOB/IOT pairs. 

IOB 
RIF Read Instruction Field 

Octal code: 0500 6224 
Execution time: 
Operation: 

5.9 psec, including IOB 
The contents of the Instruction Field Register are 
placed in bits 6-10 of the AC. The remaining AC bits 
are unaffected and the contents of the IF are un- 
changed. 

106 
RDF Read Data Field 

Octal code: 0500 6214 
Execution time: 
Operation: 

5.9 psec, including IOB 
The contents of the Data Field Register are placed 
in bits 6-10 of the AC. The remaining AC bits are 
unaffected, and the contents of the DF are not 
changed. 

227 



INST. FIELD 
BUFFER 

ACCUMULATOR 

Data Path: 18, IF, DF, and AC. 

IOB 
RMF Restore Memory Fields 

Octal code: 0500 6244 
Execution time: 
Operation: 

5.9 psec, including IOB 
The contents of bits 5-9 of the SF are placed in the 
Data Field Register, and the contents of bits 0-4 
of the SF are placed in the Instruction Field Buffer. 
A t  the next occurrence of a JMP Y instruction 
(Y * 0000), the confents of the IB are transferred 
to the IF, effecting a return to the proper field after 
servicing an interrupt request. The data transfer path 
is shown in Figure 3-11. 

IOB 
RIB Read Interrupt Buffer 

Octal code: 0500 6234 
Execution time: 5.9 psec, including IOB 
Operation: The contents of the Interrupt Buffer (Save Field 

Register) are OR’ed into bits 0-1 and 4-11 of the 
AC, as shown in Figure 3-10. Bits 2 and 3 of the 
AC, and the contents of the SF are unchanged. 

RIB is most commonly used immediately after a change of instruction 
field or a program trap, to save the record of the origin fields while the 
Program Interrupt is inhibited. (The first JMP instruction executed after 
a trap or change of instruction field restore the Interrupt; .a wa i t i g t  
request would destroy the contents of the Save Field Register.) 

228 



INSTRUCTION FIELD 

LA DATA FIELD REGISTER 

0 I 2 

J 
Y 

t IB -1 0 

J 

3 4 5 6 7 8 9 I 0 4 1  

LINC-6141 
The instruction LINC is a PDP-8 command. When issued the central pro- 
cessor immediately switches modes and begins interpreting the following 
codes as LINC commands. 

Memory 
Address Instruction Code Effect 

4126 DCA 50 3050 Save last AC in location 50 
4127 LINC 6141 Change to LINC mode 
(4300) 300 LDA I 1020 Load the AC with the con- 
(4301 301 3417 3417 tents of the next mem. lo- 

cation. 

PDP-OW2 
The instruction PDP is a LINC COMMAND directing the PDP-12 to switch 
to PDP-8 mode. The effect is immediate and the following location are 
interpreted as PDP-8 commands. 

Memory 
Address Instructions Code Effect 

(40271 27 STC 250 4250 Store Dartial AC in loc. 250 
(4030j 30 PDP 0002 Switch to PDP-8 mode oper- 

403 1 TAD 50 1050 Put first no in AC 
ation 

PDP-8 MODE EXTENDED MEMORY 
When additional 4096-word memory banks are attached to the PDP-12, 

229 



the Memory Extension Control provides access to the additional storage, 
both for programs and data. The registers of the Control are already built 
into the PDP-12; they are described in Chapter8 p.225 in relation to  LINC 
mode memory control. In PDP-8 mode, the functions of these registers 
are the same, but only a portion of each register is used. The Instruction 
Field (IF), Data Field (DF), and Instruction Field Buffer (le) registers 
are each three bits long; the two low-order bits.of the 5-bit total pertain 
only to LINC memory fields. The Save Field register (Interrupt Buffer) is 
only six bits long; in this case, the four high-order bits are unused. 

Registers 
INSTRUCTION FIELD REGISTER (IF), 3 BITS 
These three bits serve as an extension of the PC for determining the 4096- 
word field from which executable instructions are to be taken. All direct 
memory references are made to  registers in the Instruction Field, with 
one exception, all JMP and JMS instructions, whether direct or indirect, 
are registers within the Instruction Field. The exception is the first JMP 
or JMS executed after a CIF instruction is given. This causes the field to  
change. 

DATA FIELD REGISTER (DF), BITS 
These three bits serve as an extension of the Memory Address register 
for determining which memory bank contains the operands to be accessed 
by indirect (only) memory references. The Data Field and Instruction 
Field may be set to the same bank. 

INSTRUCTION FIELD BUFFER (le), 3 BITS 
This serves as an input buffer for the IF. Except for a direct transfer from 
the console switches, all transfers into the IF must pass through the IB. 
When a CIF or RMF instruction IS executed, information going to  the IF 
is first placed in the IB. At the next occurrence of a JMP or JMS, the 
contents of the IB are transferred to the Instruction Field register, and 
programming continues in the new field, starting in the target register 
of the jump. 

SAVE FIELD REGISTER (SF), 6 BITS 
Also called the Interrupt Buffer. When a program interrupt occurs the 
contents of the IF and DF are stored in the Save Field register, as shown 
in figure below. After the interrupt has been serviced, an RMF instruction 
will cause the contents of the SF to  be restored to the DF and IB. The 
SF can be examined by using the RIB instruction. 

230 
\ 



BREAK FIELD REGISTER (BF), 3 BITS 
When an external device requires extended memory for the transfer of 
data using the Data Break Facility the contents of the BF specify the 
memory bank to  be accessed. The use of the register is described in 
detail in Chapter 

Instructions 
All Entended Memory IOT instructions 4.3 microseconds for execution. 

CDF Change Data Field 

Octal code: 
Operation: 

62 N1, 0 < N 2 7 
The quantity N is transferred to the Data Field register. 
All subsequent indirect memory references by AND, TAD, 
ISZ and DCA are to the new field. 

CIF Change Instruction Field 

Octal code: 
Operation: 

62 N2, 0 5 N 2 7 
The quantity “N” is transferred to the Instruction Field 
Buffer. A t  the occurrence of the next subsequent JMP or 
JMS instruction, whether direct or indirect, the contents 
of the IB are transferred to the IF. The effective address 
of the jump is placed in the PC, and the program con- 
tinues from that address in the new Instruction Field. 

In both CIF and CDF, the number N occupies bits 6-8 of the instruction 
code. 

RDF Read Data Field 

Octal code: 6214 
Operation: The contents of the Data Field register are placed in bits 

6, 7, and 8 of the AC. The other bits of the AC are unaf- 
I fected. 

RIF Read Instruction Field 

Octal code: 6224 
Operation: The contents of the Data Field register are placed in bits 

6, 7, and 8 of the AC. The other bits of the AC are unaf- 
fected. 

RIB Read Interrupt Buffer 

Octal code: 6234 
Operation: The contents of the Save Field register (interrupt buffer) 

are transferred to  the AC, as follows: Bits 0-2 (IF) are 
placed in AC6.*; bits 3-5 (DF) are placed in ACW. 

RMF Restore Memory Field 

Octal code: 6244 
Operation: The contents of the Save Field are placed in the Instruc- 

tion Field Buffer and DF as follows: Bits 0-2 (original In- 
struction Field) are transferred to the Bits 3-5 (original 

23 1 



’ Data Field) are restored to the Data Field register. This 
instruction is used to restore the Memory Field registers 
after a program interrupt has been serviced. Normally, the 
next instruction after the RMF would be JMP I 0; the 
address of the interrupted program, stored in register 0000 
of bank 0, is placed in the PC, and the contents of the IB 
are placed in the Instruction Field register: the program 
thus returns to the main program with the Memory Fields 
restored to their original values. 

PDP-12 PROGRAM INTERRUPT 
Monitoring I/O peripheral without dedicating the central processor to 
this task is a necessary part of efficient computer programming. 

The PDP-12 program interrupt structure allows continuous monitoring 
of device flags independent of the main program, table is a partial 
listing of various device flags connected to the interrupt line. 

The interrupt structure is enabled with the PDP-8 I/O command ION. 

Enable program interrupt. When the interrupt structure is enabled the 
-setting of any device flag hooked up to the interrupt line signals the in- 
terrupt hardware and a specific set of logic operations go into effect. 

ION-6001 

PDP-8 MODE INTERRUPT 

Device Device Flag Comment 
Teletype Keyboard Can be switcher on or off the 

Teleprinter interrupt line 
LINCtape Tape Done 

High Speed Reader Flag Tied to Interrupt Line 

High Speed Punch Flag Tied to Interrupt 

KW-12 Clock overflow Overflow flag and channel flags 

DF3 2 event 

Can be switched on or off the Interrupt 
Line 

Reader 

Punch 

or channel tied toget her 

Errors and Data 
Completion Flags 

All tied together to interrupts 

Table partial listings of I /O connected to Interrupt Line 

If the PDP-12 is in the PDP-8 mode when an interrupt occurs, the fol- 
lowing logic operations are performed: 

1. The central processor enters the Interrupt Major State a t  the end 
of the current PDP-8 instruction. 

2. The Save Field Register is loaded with the contents of the current 
instruction field and data field registers. 

3. The Instruction Field and Data Field Registers are set to zero. 
4. The Program Counter is stored in absolute memory location 0. 

232 



5. The Next PDP-8 Programmed Instruction is taken from Absolute 

6. The Interrupt Structure is Turned off .  
1 Location 1. 

The PDP-8 mode interrupt, as can be seen in the above steps, interrupts 
the main program and; diverts the central processor to a specific section 
of memory; where a program capable of handling the I/O devices resides. 

LINC MODE INTERRUPT 
If the PDP-12 is in the LINC Mode, the Interrupt hardware diverts the 
computer to a different section of memory. The logic operations are as 
fallows: 

1. The central processor enters the Interrupt Major State at the End 
of the current LINC instruction. 

2. The Save Field Register is loaded with the current contents of the 
Current instruction field and Data Field Registers/ 

3. The Instruction Field and Sata Field Registers are set to zero. 
,4. The Program Counter is stored in absolute memory location 40. 
5. The Interrupt Structure is Turned Off. 
6. The Next LINC instruction is taken from the Absolute Location 41. 

Once the interrupt has occurred and control has been transferred to 
either location 1 (PDP-8 mode) or location 41 (LINC mode), it is up to the 
program to determine what to do next. 

The following example shows a basic outline of an interrupt handler. 

, 

ENTER HERE FROMA 
LINC INTERRUPT 

ENTER HERE FROM A 
PDP-8 INTERRUPT 0. + 

I, 
I 

SAVE AC I 
I 

1 
SAVE LINK 

I 

EXIT TO INTERRUPT 
SERVICE ROUTINE 

?-I SAVE AC 6 SAVE LINK 

b SAVE MQ 

1 

SAVE RETURN 

EXIT TO INTERRUPT 
SERVlCEROUTlNE 

233 



ENTER HERE FROM INTERRUPT 
SERVlE ROUTINE IF 
INTERRUPT OCCURRED IN , .MODEI 

RESTORE LINK Q 
I RESTORE AC I 

RETURN TO 
MAIN PROGRAM 

. 

- .  

ENTER HERE FROM INTERRUPT 
SERVICE ROUTINE IF 

3 INTERRUPT OCCURRED IN 
LINC MODE Q 

RESTORE MQ 0 
RESTORE LINK 

RESTORE AC 

MEMORY FIELDS 

RETURN TO 6 MAIN PROGRAM 

234 



I 
I 

RETURN TO LINC OR 

235 



BASIC INTERUPT HANDLER 

Pmode 
*0 , 
0 /PC saved h e r e  

JMP m8 /GO to  PDP-8 Entrance 

* 100 
EN8, DCA ACSAVE /SAVE AC 

RAR / L I N K ’ t o  AC b i t  11 
DCA LSAVE /SAVE L I N K  
JMS INSERV / GO t o  i n t e r r u p t  s e r v i c e  Routine 
‘TAD LSAVE / Return h e r e  from i n t e r r u p t  s e r v i c e  rout ine 
RAL /Restore LINK 
TAD ACSAVE /Restore AC 

I O N  /Turn i n t e r r u p t s  on a g a i n  
JMP I 0  

RMF /Restore the memory f i e l d s  

)Go back to  main program 
/ 
/ 
/ 

*40 
Lanode 
0 /PC saved here 
STC ACSAVE / S A V E A C  
ROL I 1 /L INK T O  AC 
STC LSAVE /SAVE L I N K  
OAC /MQ 0 10 t o  AC 1 -D 11 
ROL 1 / A C  1 -D 11 to A C 0  + 10 
QLZ / MQ11-07 
ADD W E  
STC MQSAVE 
LDA 
40 
BSE I 

STC JMRTN 
PDP 

JMS INSERV 
LINC 
M O D E  
L D A I  

ROR I 1 
L D A I  

ROR 14 
L D A 1  

I O B  
RMF 

6000 

pride 

LSAVE, 0 

HQSAVE, 0 

ACSAVE 0 

/NO, ADD ONE TO AC 
/ Y E S ,  MQ NOW RESTORED I N  AC,  SAVE MQ 
/GET P C  
/ INTO AC 
/BUILD A RETURN “ J M P “  INSTRUCTION 

/SAVE RETURN JUMP 
/CHANGE T O  A PDP-8  

/GO T O  INTERRUPT SERVICE ROUTINE 
/RETURN HERE I F  INTERRUPT 
/OCCURRED I N  LINC MODD AND CHANGE BACK T O  LINC 
/GET L I N K  I N T O  AC TO 
/RESTORE I T  
/RESTORE L I N K  
/GET MQ I N T O  AC 

/RESTORE MQ 

/RESOTE AC 

/RESTORE MEMORY F I E L D S  

236 



I OB 
ION /TURN INTERRUPTS BACK ON 

MRTM, 0 /RETURN "JMP" RESIDES HERE TO GO BACK TO THE MAIN PROGRAM 

0 1 2 3 4 5 6 7  

\ 

PMODE 
INSERV, B /PC SAVED HERE TO RETURN TO 

/ PROPER E C I T  SECTION 
CLSK /KW-12 INTERRUPTS 
SKP /NO, TRY NEXT FLAG 
JMP CLKSER / Y E S ,  SERVICE CLOCK 
DFSE / D I S K  ERROR? 
'KP /NO, GO ON 
JMP ERROR / Y E S ,  ERROR CONDITION 
DFSC /DATA CONPLRTION FLAG ? 
SRP /NO, TRY NEXT F I A G  
JMP DSCSER A E S ,  SERVICE D I S C  
L I N C  / CHANGE TO LINC MODE 
LONODE 
D J R  
STD /TAP COMPLETE FLAG? 
SKP / BO. TRY NEXT FLAG 
JMP TAPSER/ YES,  SERVICE TAPE 

/ I N H I B I T  STOIPfNG PC I N  UX: fl ( will destroy PDP-8  Exit) 

JUG ERROR / N O ,  FLRGS, SPURIOUS INTERRUPT 
JMP I I I S E R V  / COME BACK HERE FRCM DEVICE SERVICE AND GO BACK T O  

PROPER E X I T  ROUTING. 



SFA - 0024 
Special Functions Register to A.C. (inclusive OR). The special functions 
provided are: 

1. Instruction trap enable 
2. Tape trap enable 
3. Character size 
4. Fast sample 
5. Disable teletype interrupt 

Interrupt requests form the ASR-33 keyboard interrupt or printer 
are inhibited. No program interrupt will be produced, even if the 
interrupt facility has been enabled and either keyboard or printer 
flags have been set, 

If this bit is set when the enabling instruction (ESF) is executed, 
an I /O preset pulse is generated which clears all device flags, 
disables the Interrupt, clears the Tape Extended Operations 
Buffer, and generates the TAPE PRESET pulse. The effect is the 
same as if the I /O PRESET key on the Operator’s Console were 
passed, except that the active registers of the Central Processor 
are not affected, and the system contihues to operate with , 

RUN on. 
Other Special Functions are cleared, or in case of Character Sizes, 
reset to 1. 

6. Generate I /O Preset. 

Tape Traps 
The tape instructions (codes 700 - 737) can be made to trap rather 
than activate the LINC tape control, by setting “tape trap enable” (bit 3 
of the special functions register) along with “instruction trap”. With both 
of these conditions set, tape instructions encountered will not perform 
LINCtape instructions, instead they will be trapped to location 140 where 
a ”trap handler” program would decide what to do with these instructions. 

The tape trap feature coul,d be used, for instance, if a programmer had 
written a trap handler program for a drum memory system that would 
make it look like a LINCtape and could be used with LINCtape instructions. 
No further programming of the drum memory would be required because 
all a user would have to do to operate with the drum would be to enable 
“tape trap” and “instruction trap”, and issue tape instructions, the trap 
handler program would take care of the drum memory. 

Instruction Trap 
When the instruction trap bit (bit 2) of the special functions register is set 
to a “1” the OPERATE, EXECUTE, and UNDEFINED instruction will per- 
form a trap if their codes are encountered in a program sequence. 
A trap operation is similar to a program interrupt in that it starts a 
sequence of logical operations that transfers control to another section 
of memory. The logic operations that are executed are as follows: 

1. The central procesor enters the Interrupt Major State at‘the end 
of the Current Instruction (in this case it is the trap instruction 
itself). 

2. The Save Field Register is loaded with the contents of the Current 
fnstruction field and data field registers. 

238 



3. The instruction and data field registers are set to zero. 
4. The program counter is stored in absolute location 140. 
5. The interrupt structure is NOT turned off (if it was on it will stay 

on). Instead, interrupts are inhibited from occurring for the next 
two JMP instructions. 

6. The next instruction in the program sequence is taken from 
location 141. 

It is now up to the programmer to determine what to do once a trap 
has occurred. 

An example of instruction traps is shown below where an instruction to 
decrement the accumulator is to be simulated: 

Memory 
Address Instruction Code Effect 

start e 2 0  CLR 001 1 Clear the accumulator 
21 LDA I 1020 Set AC bit 2 = 1 
22 1000 1000 
23 ESF OOO4 Set “instruction trap” 
24 LDA I 1050 Load the AC with 
25 50 0050 5018) 
26 DEC 0510 Decrement the accumulator 

L- 

(Computer will trap here) 

The trap handler for the above program would look like this: 

_ _  ._ 
0141 STC ACSAVE 
0142 ROL I 1  
0143 STC LSAVE 
0144 LDA 
0145 140 
0146 ADA I 
0147 -1 
0150 STC. 4-3 
0152 PDP 
0153 TAD 14-1 
0154 
0156 LINC 
0157 SAE I 
0160 0510 
0161 JMP 167 
0162 LDA 
0163 AC SAVE 
0164 ADA I 

4xxx 
0261 
4xxx 
1000 
0140 
1120 
7776 
4154 
0002 
1754 

6141 
1460 
0510 
6167 
1000 
xxxx 
1120 

Memory 
Address Instruction Code Effect 

014.0 PC saved here 
SAVE AC 
LINK to AC 
SAVE LINK 
BRING PC INTO 
AC 
SUBTRACT “1” FROM PC 

STORE PC-1 AS lNDlRECT REFERENCE 
CHANGE TO PDP-8 
GET CODE THAT PRODUCED TRAP 

CHANGE BACK TO LINK 
IS CODE DEFINED? 

NO, GO BACK IMMEDIATELY (NOP) 
YES, SIMULATE DECREMENTING 
THE AC BY GElTlNG AC SAVE 
AND ADDING “-1” TO IT 

239 



~ ~~ 

Memory 
Address Instruction Code Effect 

0165 -1 7776 
0166 STC ACSAVE 4xxx SAVE AC BACK IN AC SAVE 
0167 LDA 1000 
0170 140 0140 SET UP THE 
0171 BSE I 1620 RETURN JUMP 
0172 6000 6000 
0173 STC J M RTN 4203 
0174 LDA 1000 
0175 LSAVE xxxx RESTORE LINK 
0176 ROR I 1 0321 
0177 LDA 1000 
0200 AC SAVE xxxx 
0201 IOB 0500 RESTORE MEMORY FIELDS 
0202 RMF 6244 
0203 . JMRTN, xxxx GO BACK TO MAIN PROGRAM 

- 
TRAPS 
There are many codes still unused as instructions in the LINC mode of 
operation. Rather than let these codes perform “NOP’ thereby losing 
their potential use, these instructions can be “trapped” into a specific 
section of memory for decoding and software simulation. 

The codes that have the ability to be trapped are: 

501-515, 521-525 Operate 
740+ 777 Execute 
54- 577 Undefined 

1700 + 1737 Undeflned 
700 + 737 LINCtape instructions (special case) 

240 



CHAPTER 9 
PDP-12 SOFTWARE 

LAP6-DIAL 
Introduction 
LAP6-DIAL (hereafter referred to as DIAL for brevity) provides the PDP-12 
user with a keyboard operating system that includes editing, assembling, 
and file handling capabilities. An interactive CRT display permits quick 
user response; a file index and peripheral device interchange program 
facilitate file manipulation. 

The DIAL system is provided to the user on LINCtape.' These DIAL tapes, 
distributed by the DEC Program Library, contain two versions of DIAL: 
DIAL-V2 for 4K tape systems, and DIAL-MS for 8K and larger systems, 
particularly those using disks. Both versions of DIAL have the same 
fundamental system design; the main difference is the amount of available 
storage space and speed of accessing it on disk rather than tape. 

LAP6-DIAL is an editor, filing system and assembler for use with the 
PDP-12 computer. The Editor and filing portion are derived from the 
basic LINC program LAP6' by Mary Allen Wilkes of Washington University. 
The assembly portion is derived from several programs used for the 
PDP-8 computer including PAL-D2. 

The Digital Equipment Corporation wishes to express to the author, Mary 
Allen Wilkes (Clark), and the Computer Research Laboratory of Washington 
University, St. Louis, Missouri, its appreciation for the development set 
forth in LAP6 as well as its thanks for permission to use parts of the 
LAP6 program. 

System Concepts 
A DIAL tape contains: 

1. A reserved area occupied by DIAL. 
2. A working area for temporary storage of user files. 
3. A file area for permanent storage of user files. 

The DIAL area of the tape contains the DIAL Monitor, Editor, Assembler, 
Utility routines, and a file index. User programs are saved as named 
files in the file area of the system tape(s) and/or disk(s). 

A LINCtape containing DIAL must be designated as the system tape and 
assigned to tape transport 0. Most DIAL operations may be performed 
with only one LINCtape containing DIAL, but some procedures in DIAL-V2, 
such as assembling programs, require another tape on unit 1. Most 
efficient operation is achieved when both tapes contain DIAL systems. 
When the RK8 or RF08 disk is available, DIAL-MS operations are carried 
out using the disk only. 

~ 

'A LINCtape contains 51210 blocks of 256 12-bit words each. 
A. Wilkes, LAP6 Handbook, Computer Research Laboratory Tech. Rep. No. 2, 

Washinnton Universitv. St. Louis. May 1. 1967. 
'PAL-D &sembler Programmer's Reference Manual DEC-DE-ASAA-D. . 

241 



When the system is started, it automatically enters the text mode. 
A source program may then be typed into the source working area, 
character by character, via the Teletype keyboard in a symbolic language 
composed of PDP-8 and LINC mode instructions. The source program is 
displayed on the scope as it is entered and can then be altered with the 
Editor, stored as a named file, displayed on the scope or printed on the 
Teletype. About 400 characters can be displayed at a time on the scope. 
A line number (1-777s) is automatically assigned by DIAL and appears to 
the left of each line on the scope to indicate the sequential location of 
that line in the source program. From 1 to 17e lines can be displayed at 
a time on the scope, as determined by the setting of the knob for A/D 
channel 7 which maintains an approximately constant number of lines on 
the scope. 

As the program is typed in, it is placed in an input buffer in core. As the 
input buffer is filled, the text is written out to the source working area on 
tape or disk. 

Every source display has a current line number. By definition, it is the 
last line number on the display. The current line is noted by an indicator 
(2 dashes) on the right-hand side of the scope. Each time a carriage 
return is typed to terminate a source line, the next sequential line number 
appears on the scope. 

The display may be thought of as a window which may be moved anywhere 
in the working area. Its position is located according to the last line on 
the display - “the current line”. Therefore, to “move the window”, the 
user requests a new current line using either of the following methods: 

a. Type +L where L+1 is the number of the line to be the new 
current line. (The right arrow indicates pressing the LINE FEED 
key and means press the RETURN key.) The display will now be 
positioned with line L as the last line displayed. 

b. Type ALTMODE and then one of the following keys: 

Key Action 

1 

2 

Q 
W 

reposition the display forward one frame 

reposition the display forward one line 

reposition the display backward one frame 

reposition the display backward one line 

These ALTMODE key combinations must be typed as the first characters 
on a new line. A frame is defined as the number of lines currently on 
the display, as set by the A/D knob for channel 7. 

The DIAL system is file oriented. A program, either source or binary, is 
saved as a file in contiguous blocks of tape (disk)in the file area, in blocks 
0 through 267 and 470 through 777. Every tape contains a file index in 
blocks 346 and 347 for the binary and/or source programs on that tape., 
File names, starting block, and length in blocks are recorded in the indh. 
When 9 file is entered, the user gives it a name which must be 1 to 8 

242 



displayable keyboard characters* in length, of which a t  least one character 
is non-numeric. A full index can accommodate 63 different names; how- 
ever, any name in the index can describe both a source and a binary 
program, thereby doubling the number of possible flle entries to 126. 

When a file is being saved, the unused file space nearest the index within 
the file area that is large enough to contain the file being saved is the 
next area used. Thus, the location of entries on the tape can be controlled 
by their order of filing. To minimize tape movement, the most frequently 
used files should be placed nearest to the index. 

FEATURES OF DIAL42 AND DIAL-MS 
In addition to the basic system structure just detailed, the following are 
the unique features of each version of DIAL. 

PIAL-V2 
1. Overlapped tape I /O to accept user input during a tape read 

or write operation. (When DIAL-MS is run on tape, input is not 
accepted while the tape is moving; using disk this is not 
noticeable). 

2. 4K system. 

DIAL-MS 
1. Fully integrated tape-disk system with mass storage support for 

1 or 2 DF32 disks, 1 to 4 RS08 disks or 1 RK08 disk. 
2. Editor commands to clear the binary working area and to merge 

binary files, thus speeding assembling and debugging by facili- 
tating the use of subroutines. 

3. I /O routines to read, write, or move data. 
4. Increased Assembler facilities for processing large programs and 

generating cross reference listings. 
5. 8K system. 

SYSTEM STARTUP 
The following procedure is performed to start DIAL. For DIAL-MS, it is 
assumed that the rape and disk have been initialized (see below) so that 
the DIAL-MS system loaded from tape is aware of available disks and will 
use them appropriately. 

1. Mount DIAL tape on tape unit 0. 
2. Mount another LINCtape scratch on unit 1. 
3. Set scope channel knob to position 1 & 2. 
4. Set the swicthes of both tape units to  REMOTE and WRITE 

ENABLE. 
5. Set all disk units to WRITE ENABLE. A single DF32 disk must 

be set to 0; a second DF32, if present, must be set to 1. 
6. Set the mode switch to LINC mode and press I /O PRESET. 
7. Set the Left Switches to 0701 and the Right Switches to 7300 

by pushing down the front part of the switches indicated by 

'The characters slash, questioh mark, and comma should not be used. Only spaces 
in the middle or at the end are considered to be part of the name; leading spaces 
are ignored. 

243 



and pushing down the back part of those indicated by 
following diagram. 
Left Switches Right Switches 

8. Press the DO key. 
9. Press the START 20 key when the tape has stopped spinning. 

The version of DIAL on the tape is started and ready for any DIAL 
operation. 

in the 

SYSTEM BUILD (for DIAL-MS only) 
The following System Build procedure must be executed when DIAL-MS 
is to  be used in order to “build” a DIAL-MS tape. Part of the procedure 
is running the program GENASYS, provided on the system tape. 

1. Start the system by the system startup procedure. 
2. T y p e L O  GENASYS, 0 

for DIAL-MS on the system configuration. 
3. After the message 

TAPE UNIT CONTAINING GENASYS: 
is printed, type 0. 

4. GENASYS then asks 

to load GENASYS to specialize a tape 

TAPE UNIT FOR DIAL-MS: 
Type an octal digit to indicate the tape unit on which DIAL-MS 
is to be built. If the reply is not 0, GENASYS ’returns to DIAL 
and user input will be accepted. If the reply is 0, another mes- 
sage is printed on the Teletype: 

~ 

PRESS CONTINUE TO INITIALIZE DIAL-MS 
Press the CONTinue key. The last message is 
WHEN EDITOR DISPLAY APPEARS, TYPE (LINE FEED) EX 
(RETURN) 
After the message is printed, GENASYS initializes DIAL-MS. 
When that is done, the Editor display appears. Type EX and then 
press CONTinue. DIAL-MS is ready to accept user input. 

The following error conditions can occur. 

1. If GENASYS is not able to find 8K of core, the following message 
is printed. 

GENASYS returns to WAL-V2. 
2. If GENASYS is not able to find one of the four binary files needed 

to build DIAL-MS, the following message is printed: 

GENASYS. 
where x is a digit, 1 to 4. Continue at step 4 above. 

3. If one of the binary files is the wrong length, the following mes- 
sage is printed: 

where x is a digit, 1 to 4. 

THIS MACHINE HAS ONLY 4K, DIAL-MS REQUIRES 8K. 

THIS TAPE DOES NOT CONTAIN BINARY DIAL-MSX NEEDED FOR 

LENGTH ERROR IN DIAL-MSX. 

244 



SYSTEM INITIALIZATION 
A system using DIAL-MS must be initialized. This procedure causes: 

a. the initial tape to modify itself to become a startup tape by 
building a set of I / O  routines for handling the user’s particular 
disk configuration. 

b. the initialization routine fo copy the DIAL-MS system area (blocks 
270 to 345 and 350 to 467) from tape 0 into the appropriate 
area on the disk. 

System Initialization may be automatically carried out by GENASYS (by 
a reply of 0 in step 4) or may be performed when the equipment con- 
figuration changes, the contents of the disk are lost for any reason, or 
GENASYS does not perform the procedure. The procedure is: 

1. 
2., 

3. 
4. 

5. 

6. 

7. 

8. 
9. 

10. 

11. 

12. 

Mount the DIAL-MS tape on tape unit 0. 
Mount another LINCtape on unit 1 (required if configura- 
tion has no disk or only one DF32 disk). 
Set the scope channel knob to the position 1 & 2. 
Set the switches of both tape units to REMOTE and set unit 
0 to  WRITE ENABLE. 
Set all disk unfts to WRITE ENABLE. A single DF32 disk unit 
must be set to 0. A second DF32, if present, must be set to 1. 
Set the mode switch to LINC mode and press the I /O PRESET 
key. 
Set the Left Switches to 0701 and the Right Switches to 7310 
by pushing down the front part of the switches indicated by 

and pushing down the back part of those indicated by 
in the following diagram. 

ttt iii tft ni  - 
Left Switches 

111 tll ttt ttt 
Right Switches - 

Press the DO key. 
When the tape has stopped spinning, press the START 20 key. 
Type EX) when part of the DIAL-MS program appears on 
the display in order to preserve the DIAL-MS pointers. Press 
CONTinue. 
Set A/D knob 3 all the way to the right. A DIAL command may 
now be issued. 
If PIP is to be used, refer to that section of the handbook. 

At the completion of this operation, the tape on unit 0 has been modified 
for the user’s particular configuration. It may be copied with the auxiliary 
“S“ option of PIP if multiple copies are needed. The initialization pro- 
cedure may be repeated a t  any time, but it is necessary only when the 
DIAL-MS system on the disk is lost or when the configuration changes. 

Using The Editor 
DIAL provides a powerful and flexible character Editor which is used in 
text mode to: 

1. add or delete a single character 
2. add or delete a text line 

245 



3. delete the current line . 
4. delete an entire.portion of the display 
5. add text at any location in the program 

The Editor is controlled by a cursor that appears on the scope with the 
text as an inverted T (I). The cursdr moves in its own alley below a line 
of text. The location of the cursor is a t  the current character: all editing 
operations occur at  the current character. The exact location of the cursor 
is determined by the setting of A/D knob 3. That setting controls how 
many spaces back from the last character on the scope the cursor is to 
be placed. At any time, the location of the cursor may be changed by 
simply turning A/D knob 3. Rotating the knob clockwise moves the cursor 
to the right: rotating the knob counterclockwise moves the cursor to the 
left. For normal input of data, A/D knob 3 is initially rotated all the way 
to the right. 

(For a PDP-12-8 system without an AD12 and multiplexer, the Right and 
Left Switches are used instead of A/D knobs 7 and 3 respectively. The 
setting of Right Switches 8-11 determines the maximum number of lines 
displayed. The Left Switches can be set to values from 1 to 2047 to 
determine the position of the cursor. The value of the Left Switches 
locates the cursor that many characters from the end of the text.) 

The Editor can be used to perform the following operation by the indicated 
sequence. 

To: Do: 

delete a single 
character 

insert a single 
character 

Locate cursor under that charac- 
ter. Press RUBOUT. 

Locate cursor under the charac- 
ter  t o  precede the additional 
character. Type the character. 

insert a new line 

delete the current line 

delete the section 
ofthecodetotheleft(right) 
of the cursor 

Issue a line call for line L-1 then 
type line L as the current line. 
Type ALTMODE and D. (Location 
of cursor is immaterial.) 

Locate cursor under the last (first) 
character of text to be deleted. 
That character and all those to its 
left (right) seen on the display are 
then deleted by typing ALTMODE 
and L (R). 

delete a large section 
of code 

Turn knob 7 all the way to the 
right to maximize display size. 
Type a line call so that the last 
line to be deleted is the current 
line. Type ALTMODE and L as 
needed until the flrst line of the 
section of code to be deleted a p  

246 



pears on the scope. Type ALT- 
MODE and D to delete the program 
through that line. 

When a new line is typed in as the current line of displayed text, it is 
automatically formatted by the Editor. Each text line is considered to be 
composed of three fields; each field in a line has a number of displayable 
spaces designated to it by DIAL. Of forty spaces available, the first eight 
spaces are provided for the tag field, the next sixteen for the instruction 
field, and the last 16 for the comment field, as follows: 

A horizontal tab takes'eight scope space;, thus permitting five tabs per 
line. When a new line is encountered, the first characters are displayed 
in the instruction field, unless the first character was a slash. If a comma 
is then typed, the preceding characters are moved to the tag field and 
subsequent input is displayed starting a t  the instruction field. If a slash 
is encountered as any character but the first one on a line, it is positioned 
in the comment field along with the characters typed after it and before 
a carriage RETURN. If a slash is the first character of a line, it is displayed 
in the tag field. Consider the following user input: 

DISPLAYED IN FIELD 

KEYS TYPED TAG INSTRUCTION COMMENT 

/L /L  

P/L P /L 

P,/L p, I L  

P tab /L P /L 

Assembling 
The DIAL Assembler processes a DIAL source program by translating 
PDP-8 and LINC mode mnemonic operations codes into' binary codes 
for corresponding machine instructions, relating symbols to their numeric 
values, assigning absolute core addresses for data and instructions and 
listing the program with error messages. 
There are four fields in a DIAL statement: they are identified by the 
order of appearance in the statement, and by the separating or delimiting, 
character which follows or precedes the field. Statements are written in 
the general form: 

A statement must contain at least one of these fields and may contain 
all four. 

label, operator operand/comment 

1. Labels 
A label is the symbolic name used in the source program to 
identify the position of the statement in the program. If present, 
the label is written first in a statement and terminated by a 
comma. 

247 



2. Operators 
An operator may be one of the mnemonic machine instruction 
codes or pseudo-op codes which direct assembly processing. 
Operators are terminated with a space if an operand follows, or 
with a semicolon, slash, or carriage return i f  no operand follow. 

Operands are usually the symbolic address of the data to  be 
accessed when an instruction is executed, or the input data or 
arguments of a pseudo-op. In each case, interpretation of op- 
erands in a statement depends on the statement operator. 
Operands are terminated by a carriage return, semicolon, or 
slash. 

4. Comments 
The programmer may add notes to a statement following a 
slash character. Such comments do not affect assembly pro- 
cessing or program execution, but are useful in the program 
listing for later analaysis or debugging. 

3. Operands 

There are two main groups of symbols. 

1. Permanent Symbols 
The assembler has in its permanent symbol table definitions of 
its operation codes, operate commands, and many input/output 
transfer (IOT) microinstructions. Any symbol in the Assembler's 
permanent symbols may be used without prior definition by the 
user. 

User-defined symbols, to be used as statement labels, operators, 
or operands, are composed according to the following rules: 

2. User-defined Symbols 

a. The character must be alphabetic (A-2) or numeric (0-9). 
b. The first character must be alphabetic. Leading numeric cnar- 

c. Only the flrst six legal characters of any symbol are meaning 

d. The Assembler assigns values according to the following rules: 

acters are ignored. 

ful to the Assembler; the remainder, if any, are ignored. 

Used After 
LMODE PMODE 

Defined LMODE 10 bits' 12 bits 
after PMODE 12 bits 12 bits 

e. The maximum number of symbols is 895. 
Symbols are used in three ways. 

1. To label an instruction or data word at any point in the 
program, the symbol must appear first in the statement and 
must be immediately followed by a comma. 

248 



2. As an operator, the symbol must be predefined by the 
Assembler or by the programmer. 

3. Symbols used as operands should have a value defined by 
, the user. This value may be symbolic references to previously 

defined labels where the arguments to be used by this in- 
struction are to be found, or may be constants or character 
strings. 
For an example definition of the syntax, see the LAP6-DIAL 
Programmers Reference Manual (DEC-12-SE 2D-D). 

CHARACTER SET 

Keyboard 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 

R 
S 
T 
U 
V 
W 
X 
Y 
2 
[ (SHIFT/K) 
/ (SHIFT/L) 
1 (SHIR/M) 
4 

Q 

+ 
SPACE 

a !  

# 
$ 
% 
& 

,. 

External 
(ASCII) 

301 
302 
303 
304 
305 
306 
307 
310 
311 
312 
313 
314 
315 
316 
317 
320 
321 
322 
323 
324 
325 
326 
327 
330 
33 1 
332 
333 
334 
335 
336 
337 
240 
241 
242 
243 
244 
245 
246 

249 . 

Internal 
1 
2 
3 
4 
5 
6 
7 

10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31  
32 
33 
34 
35 
36 
Illegal (not displayed) 
40 
41 
42 
Illegal (not displayed) 
44 
45 
46 



( 
1 

+ * 

- 

i 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

P < 
> 
? 

@ 
LINE FEED 
RETURN 
ALTMODE 
RUBOUT 
CONTROL/I (TAB) 

PERMANENT SYMBOLS 

- - 

247 
250 
251 
252 
253 
254 
255 
256 
257 
260 
261 
262 
263 
264 
265 
266 
267 
270 
271 
272 
273 
274 
275 
276 
277 
300 
212 
215 
375 
377 
21 1 

Illegal (not displayed). 
50 
51 
52 
53 
54 
55 
56 

. 57 
60 
61 I 

62 
63 
64 
65 
66 $ 

67 
70 
71 
72 
73 
74 
75 
76 
77 
Illegal (not displayed) 
37 
43 (not displayed) 
None (not displayed) 
None (not displayed) 
47 (not displayed) 

LINC SYMBOLS 

Mnemonic Octal Operation 

ADD 
ADD 2000 add memory to A (full address) 
ADA 1100 add memory to A (index) 
ADM 1140 add A to memory (sum also in A) 
LAM 1200 add link and A to memory (sum also in A) 

MULTIPLY 
MUL 1240 signed multiply 

LOAD 
LDA 1000 load A, full register 
LDH 1300 load A, half register 

250 



Mnemonic 

STC 
STA 
STH 

ROL N 
ROR N 
SCR N 

HLT 
NOP 
CLR 
SET 
JMP 
QAC 

BCL 
BSE 
BCO 

COM 

SAE 
SHD 

SNS N 
SKP 
AZE 
APO 
LZE 
FLO 
QU 
SXL N 
KST 
SR0 

XSK 

STD 

Octal Operation 

STORE 

4000 
1040 store A (index class) 
1340 store half A ’ 

store and clear A (full address) 

S H I FT/ ROTATE 

0240 rotate left N places 
0300 rotate right “N places 
0340 . scale right N places 

OPERATE 

0000 halt 
0016 no operation 
001 1 clear AC and LINC 
0040 set register N to contents of register Y 
6000 jump to register Y 
0005 MQ transfer to AC 

LOGICAL OPERATIONS 

1540 bit clear (any combination of 12-bits) 
1600 bit set (any combination of 12-bits) 
1640 bit complement (any combination of 12- 

bits) 
0017 complement AC 

SKIP 

1440 
1400 

0440+N 
0056 
0450 
045 1 
0452 
0454 
0455 
0400+N 
0415 
1500 

0200 

0416 

Skip next instruction if: 
A equals memory register Y 
right half AC unequal to specified half of 
memory register Y 
SENSE switch N is set 
unconditional skip 
AC equals 0000 or 7777 
AC contains positive number 
link bit equals 0 
add overflow is set 
bit 11 of Z register equals 0 
external level N is preset 
keyboard has been struck 
rotate memory register right one place: 
then if bit 0 of Y equals 0, skip next in- 
struction 
contents of Y equal 1777; index memory 
register if I bit set 
tape instruction completed 

251 



Mnemonic Octal Operation 

ATR 
RTA 
SAM N 
DIS 
DSC 

PDP 
RSW 
LSW 
IOB 

LIF 
LDF 

RDE 
RDC 
RCG 
WRI 
WRC 
WCG 
CHK 
MTB 
XOH 

ESF 
TAC 
TMA 
AX0 
DJR 
MSC 
SFA 

INPUT/OUTPUT 
0014 AC to relay buffer 
0015 relay buffer to AC 
0100+N sample analog channel N 
0140 display point on oscilloscope 
1740 display character on oscilloscope 

0002 change to PDP-8 mode 
0516 
0517 
0500 I/O bus enable 

(2 x 6 matrix) 

RIGHT SWITCH register to AC 
LEFT SWITCH register to AC 

MEMORY 
0600 cha;lge instruction field 
0640 change data field 

LINC TAPE 
0702 read one block into memory 
0700 read and check one block 
6701 read and check N consecutive 
0706 write one block on tape 
0704 write and check one block 
0705 write and check N blocks 
0707 check one block of tape 
0703 move tape toward selected block 
002 1 extended tape operations buffer to AC 

EXTENDED OPERATIONS 
0004 enable special functions 
0003 tape control Fegister to AC 
0023 AC to tape control register 
000 1 A to extended operations buffer 
0006 disable Jump Return Save 
0000 miscellaneous 
0024 special functions to AC 

PDP-8 SYMBOLS 

MEMORY REFERENCE INSTRUCTIONS 
AND 0000 logical AND 
TAD 1000 2s complement add 
I sz 2000 increment & skip if zero 
DCA 3001) deposit & clear AC 
JMS 4000 jump to subroutine 
JMP 5000 jump 

GROUP 1 OPERATE MICROINSTRUCTIONS 
NOP 7000 no operation 
IAC 7001 increment AC 

252 



Mnemonic 

RAL 
RTL 
RAR 
RTR 
CML 
CMA 
CLL 
CLA 

Octal 

7004 
7006 
7010 
7012 
7020 
7040 
7100 
7200 

Operation 

rotate AC & link left one 
rotate AC & link left two 
rotate AC & linK right one 
rotate AC & link right two 
complement link 
complement AC 
clear link 
clear AC 

GROUP 2 OPERATE MICROINSTRUCTIONS 
HLT 7402 halts the computer 
OSR 7404 inclusive OR switch register with AC 
SKP 7410 skip unconditionally 
SNL 7420 skip on nonzero link 
SZL 7430 skip on zero link . 
SZA s 7440 skip on zero AC 
SNA 7450 skip on nonzero AC 
SMA 7500 skip on minus AC 
SPA 7510 skip on plus AC (zero is positive) 

COMBINED OPERATE MICROINSTRUCTIONS 
CIA 7041 complement & increment AC 
STL 7120 set link to 1 
GLK. get link ( put link in AC, bit 11) 
STA 7240 set AC = -1 
LAS 7604 load AC with switch register 

7204 

IOT MICROINSTRUCTIONS 

Program Interrupt 
ION 6001 turn interrupt on 
IOF 6002 turn interrupt off 

Keyboard / Reader 
KSF 603 1 skip if keyboard/reader flag = 1 
KCC 6032 clear AC & keyboard/reader flag 
KRS 6034 read keyboard / reader buffer 
KRB 6036 clear AC & read keyboard buffer & clear 

keyboard flag 

Teleprinter/Punch 
TSF 6041 skip if teleprinter/punch flag = 1 
TCF 6042 clear teleprinter/punch flag 
TPC 6044 load teleprinter/punch buffer, select 

TLS 6046 load teleprinter/punch buffer, select 
& print 

& print, and clear teleprinter/punch flag 

253 



Mnemonic Octal Operation 

Clock 
CLSK 61'31 skip on clock interrupt 
CLLR 6132 load clock control register 1 
CLAB 6133 AC to buffer preset register 
CLEN 6134 load clock control register 
CLSA 6135 clock status to AC 
CLBA 6136 buffer preset register to AC 
CLCA 6137 counter to AC 

Extended Memory (Type MC8/1) 

CDF 62n l  change to data field n 
CIF 62n2 change to instruction field n 
RDF 62n4 read data field into AC 
RIF 6224 read instruction field into AC 
RMF 6244 restore memory field 
RIB 6234 restore instruction field 

Processor Mode Change 

LINC 6141 change to LINC mode processing 

OPERATORS AND SPECIAL CHARACTERS 

Char Mode Operation 

* 

- __ 

+ 
- . 
/ 
U 
I 

SPACE 
& 
! 
\ 

Assign symbolic address 
Origin - dependent on mode (LINC 
or PDP-8) 
Define parameters 
Combine symbols or number? 
Combine symbols or numbers 
Has value of current location counter 
Comment 
Add lo1 to instruction 
Add 201 to instruction 
Add 4008 to instruction 
Terminate coding line 
IOR 
Logical AND 
Logical IOR 
Operator x\Y = lOOOd(+Y 
where x is a single octal digit and y is any 
expression 

254 



PSEUDO-OPERATORS 

Pseudo-op 

ASMIFM n 
ASMIFN n 
ASMIFZ n 
ASMSKP n 
DECIMAL 
EJECT 

FIELD n 
I 
LIST 
LISTAPE n 

LMODE 

LODSYM 
NOLIST 
OCTAL 
PAGE n 

PMODE 

SAVSYM n 

SEGMNT n 

TEXT 
Z 

Operation 

Assemble if n is negative 
Assemble if n * 0 
Assemble if n = 0 
Continue assembly after n lines 
Set. decimal radix for integer input 
Print next line a t  top of next page of line 
printer 
Defines each 4K of memory; n = 0 or 1 
Indirect addressing 
Negate NOLIST condition 
Preserve header block if n is negative. 
List on unit n if n is positive 
Causes subsequent coding to be interpreted 
as LINC instructions 
Load saved symbol table 
Inhibit octal-symbolic listing 
Set octal radix for integer input 
Start new page at  n 200. If no parameter, 
start a t  next page 

Causes subsequent coding to be interpreted 
as PDP-8 instructions 
Save symbol table for later assembly (n = 1 
or 2) 
Start new segment at n 2000. If no 
parameter, start at  next segment 
( O ( n G 7 )  . 
Pack two 6-bit words per cell 
Page zero reference 

(0 < n < 408) 

MONITOR COMMANDS 
The DIAL system programs are requested through DIAL Monitor com- 
mands which cause DIAL to enter command mode. To issue a command: 

1. Press the line feed key on the Teletype and observe the right 
arrow in lower left corner of the scope. 

2. Type the command in the proper format. 
3. Press the return key. 

Improperly formatted. or misspelled commands are ignored and auto- 
matically erased from the scope. 

The Monitor commands are listed in the table below and described in 
detail later in.the handbook. Items in parentheses are optional; note that 
if the file name is omitted, the user's program that was most recently 
manipulated is used. If no unit is specified: unit 0 is assumed. The unit 

255 



number required in DIAL commands can be between 0 and 7 for DIAL- 
V2 and between 0 and 17 for DIAL-MS, as follows: 

DEVICE 
ACCEPTABLE 

UNIT NUMBERS LOGICAL DISK UNITS 

DIAL42 and 
DIAL-MS: 

1 to  8 LINCtapes 0-7 

DIAL-MS only: 
1 RS08 disk 10-1 1 0- 1 
2 RS08 disks 10-13 0-3 \ 

3 RS08 disks 10-15 0-5 
4 RS08 disks 10-17 0-7 
1 RKO8,disk 10-15 0-5 

Each RS08 or RK08 disk is considered to be broken into smaller logical 
disks, each with its own directory. A logical unit is the equivalent of one 
LINCtape, 1000a blocks; thus, one RS08 disk is said to be made up of 
two logical disk units. When issuing a DIAL command, the logical disk 
unit is addressed by an acceptable unit number. Note that DF32 disks 
cannot be addressed; they are used only to hold DIAL-MS and the source 
and binary working areas. 

All DIAL commands are issued in the form 
+COMMAND 

Corn ma nd Function 
AS (N, U) Assemble 
LI (L, L) (N, U) Assemble and List 
QL (L, L) (N, U) Assemble and Quick List 
LO (N, U) Load Binary 
SB N, U (,MI (FA) Save Binary 
AB (A, LF,]) N, U Add Binary 
SP N, U Save Program (Source) 
AP (L, L) N, U or B, U Add Program (Source) 
Ps (L,) (LA (N. U) Print Source 
DX (,U) Display Index 
px (,U) Print Index 
CL Clear Working Area 
ZE Zero Binary Working Area 
PI Peripheral Interchange 
EX Exit 
MC X (Y), U 

Legend: 
( ) indicates an optional parameter 
N = File Name 
U = Tape (0-7) or Disk (10-17) Unit 
L = Line Number 
M = Mode (L for LINC or P for PDP-8) 
A =Address 

User’s Monitor Command 

256 



F = Field (0 or 1) . B = Tape Block Number 
X u )  = Characters in Accumulator + = Line Feed 

$. = Carriage Return 

Assemble Program 

AS (NAME, UNIT) 
NAME = name of filed program to be assembled 
UNIT = tape or disk unit on which named file is to be found (0-17) 

The Monitor -command AS performs an assembly of the NAMEd source 
file on the specified UNIT. If no NAME is given, the source program in 
the working area on unit 0 is assembled. With the command AS, an as- 
sembly listing is not produced, but error messages with line numbers and 
a tag table are printed. 

List 

The LIST command performs the same functions as the ASSEMBLE_ com- 
mand but also generates an octal-symbolic listing on the Assembler output 
device (Teletype or line printer). 

Quick List 

The QUICK LIST command performs the same functions as the LIST 
command, but its listing does not include line numbers and comments 
and tabs are printed as spaces, thereby greatly decreasing the time r e  
quired to obtain a listing. 

Load Binary 

QL(LINE NUMBERl, LINE NUMBER2,) (NAME, UNIT) 

LI(LINE NUMBERl, LINE NUMBER2,) (NAME, UNIT) 

LO (NAME, UNIT) 
NAME = name of binaryflle to be loaded 
UNIT = unit from which file is to be loaded 

If NAME is not specified, the program is loaded from the binary working 
area and the loader halts (at location 7774 for DIAL42 and at 7775 for 
DIAL-MS). If NAME is specified, but the designated program is not self- 
starting, the program is loaded and the loader halts as above. If the 
NAMEd program is self-starting, the loader will start the program after 
loading 

Save Binary 
SB NAME, UNIT (,MODE) (ADDRESS) 
NAME = name to be assigned to saved binary file 
UNIT = unit on which binary is to be saved 
MODE = L if program is to start in LINC mode 

ADDRESS = starting address (5 digits) 
P i f  program is to start in PDP-8 mode 

257 



The binary program most recently assembled with an AS, LI, or QL com- 
mand can be saved with the SAVE BINARY command as file NAME on 
the specified UNIT. Two tapes are required for this operation when using 
DIAL-V2. 

The SAVE BINARY command has a load and go option so that-when a 
program is loaded into memory with the LOAD BINARY command, it will 
automatically be started. To use this option, the program mode must be 
specified. The standard starting addresses, which need not be specified, 
are 04020 if LINCmode, 00200 if PDP-8 mode. If the program is to be 
started elsewhere, a full five digit address must be specified. The data 
field is always set to three when the program is started. 

If the SAVE BINARY command is terminated after UNIT with a carriage, 
the loader will halt after loading the program. 

Add Binary (DIAL-MS only) 
AB (ADDR, [FIELD,]) NAME, UNIT 
ADDR = 4 digit (12-bit) address 
FIELD = fleld number (0 or 1) 
NAME = name of a binary file on UNIT 
UNIT = unit on which file NAME may be found (0-17) 

The binary file NAME is copied to the binary working area, omitting zeros. 
Typically, ADD BINARY will be used without specifying address and field, 
to combine standard subroutines with user written main programs. Many 
subroutines can thus be combined with the user’s program, without 
necessitating reassemblihg each program. The result may be saved, with 
SAVE BINARY, as if the whole had been assembled together. 

Note that, in general, for ADD BINARY to function properly it must be 
used in conjunction with the ZERO command. ZERO should always be 
used before assembling a program whose binary may later be “added”, 
and before adding a binary or binaries to the working area. 

Advanced users may want to use the address and field parameters to 
specify a new core location for the binary field. If address and field are 
not specified (or both are zero), it will be moved to its assembled address. 
If address is specified and field is not, it will be .moved to address in field 
0. Field can not be specified without address. No address adjustment 
within the assembled code is performed. 

If address and field are specified such that any portion of the binary file 
would be moved to an address about 20000 (Le., in the field 2 or higher), 
that portion of the file will be ignored. 

A binary may not be moved to field 0, location 0, because this is the 
condition recognized as no relocation. 

No address adjustment is performed by ADD BINARY when a binary is, 
relocated. It is thus necessary that a program which is to be moved in- 
clude self-relocating code, so that it can determine its location at execu- 
tion time. 

- 

258 



Save Program 
SP NAME, UNIT 
NAME = name to be assigned to saved program in file 
UNIT = unit to contain the NAMEd program 

DIAL saves the source program by NAME in one file on the UNIT specified. 
When saving a program, return may be typed a t  any time. This will in- 
terrupt the command and return to the source display, with no effect 
since DIAL has not updated the index. 

Add Program 
AP BN, UNIT 
AP (LN1, LN2) NAME UNIT 
BN = first block number of source program 
NAME = name of filed program 
UNIT = unit on which program is located 

To add DIAL source to the current source a t  the current line in the source 
working area, or to call a previously stored source program into the 
working area for editing, the ADD PROGRAM command requires specifying 
only its starting block number, BN, or its NAME. Two line numbers may 
be specified to add that portion of the NAMEd program to the current 
source. 

Print Source 
PS (LINE NUMBERI,) (LINE NUMBER2,) 
NAME = name of file to be printed 
UNIT = unit on which named file is to located 
LNI = starting line number 
fLN2 =terminating line number 

The NAMEd source program is printed on the Teletype from the speci- 
fied UNIT. The source currently in the working area is printed when no 
NAME and/or UNIT are designed. If two line numbers are specified, that 
portion of the NAMEd file will be printed. 

Line numbers, i f  specifled, provide inclusive bounds for the printout. 
When only one line number is specified, it is assumed to be the start 
of the printout and the rest of the source on unit 1 is printed. 

Display Index 

' 

The tape file index of the specified UNIT is displayed on the scope by 
the command DX. For each program on the tape, its name, source and/or 
binary, starting block number, and length in blocks is indicated. To view 
the entire index, use the following keys to modify the display. A frame 
is the number of  lines defined by the setting of A/D knob 7. 

- 
DX (,UNIT)) 
UNIT = unit whose index is to be displayed 

Key Action 
1 Forward one frame 
2 Forward one entry 
Q 
W 

Backward one frame 
Backward one entry 

259 



Print index 

'. PX (,UNIT)) 
UNIT = unit whose index is to be printed 

The command PX prints out the contents of the specified index on the 
Teletype. Press RETURN at any time to stop the printout and to return 
to the source display. 

Clear 
\ CL 

The source working area on tape unit 0 can be cleared by using the 
command CL. DIAL remains in core and is restarted with a clean buffer 
area. 

Zero (DIAL-MS only) 
The ZERO command fills the entire binary working area with zeros and 
clears the block map, guaranteeing that any location not used in a sub- 
sequent assembly will be zero. 

There are three major application of the ZERO command: 

a. 0000 is HLT in LINC mode. Therefore, filling the binary working 
area with zero is equivalent to filling unused-core locations with 
HLT. Thus, a program being tested will halt if it jumps to an 
unused location. 

b. The paper tape output option in PIP, DZ, when combined with 
the ZERO command, allows the user to assemble and punch 
short patches to binar)r programs, with the resulting tape only 
as long as the patch. 

c. The ADD BINARY command depends on the use of the ZERO 
command in two instances: 

1. Before assembly of-a program which will be save and later 
added. 

2. Before a group of ADD BINARY commands, the ZERO com- 
mand is required because ADD BINARY does not copy zeros 
from the file in the working area. This is done to enable the 
user to make effective patches and overlays easily. 

PIP 
PI 

This Monitor Command IS provided to facilitate the loading of the Peri- 
pheral Interchange Program from the system unit: it is equivalent to 
LO PIP.0 for tape systems, to LO PIP,lO for users with a disk unit 
10. Note that PIP is not included in the DIAL area and therefore must be 
loaded ontq unit 10 by the user who wants to use this command. To 
implement the facility, perform the following steps after the system In- 
itialization procedure described previously: 

1. Type +LO PIP,O. 

2. Respond to the PIP displays with A U LO RO in that order. 

260 I 



. 
Exit 

The EXIT command completes the updating of the source working area 
from the memory buffers, thus assuring the user of leaving DIAL without 
losing the current source program in the working area. An EXIT command 
should be issued when concluding an editing session with the PDP-12. 
After EX DIAL halts. Prgss the CONTinue console switch to return to 
DIAL. The program that was in the working area when the EXIT command 
was issued is still there and any legal DIAL operation can now be per- 
formed. 

User’s Monitor Command 
MC X (Y), UNIT 
XY 

UNIT = unit t o  be read 

I 

EX 

= argument(s) to be passed by the Editor to  a user program 
via the AC (argument Y is optional) 

The USER’S MONITOR command allows access to  the free blocks of a 
DIAL tape. When the MC command is issued, block 270 of the UNIT is 
read into core locations 4000-4377; the arguments XY are placed in the 
AC and the Editor turns program control over to the initial free block of 
code at  location 4020 in LMODE. 

ADCON 

(DEC- 12-U W2A- D) 
. 

Description 
ADCON converts the segmented data collected by ADTAPE onto a for- 
matted LINCtape in contiguous blocks by channel number. Any or all 
of the A/D channels sampled by ADTAPE can be converted. ADCON re- 
quires user replies to  six scope messages concerning the location of the 
stored data, the location where the contiguous data is to  be placed, and 
that data channels to  be so transferred. All channels stored, starting with 
the indicated location, can be converted or just specific channels may be 
moved with ADCON. As each requested channel is converted, its channel 
number and starting block number and length in blocks on the formatted 
LINCtape are printed on the Teletype. When one series of data has been 
converted, a display provides the options of continuing with the program 
and another set of data or leaving ADCON. 

Minimum hardware 
PDP-12A 

Library Distribution 
Source file .on DIAL tape DEC-lP-SE4A-LJ0, binary file on paper tape 
DEC-12-UW2A-PB. Described in document DEC-12-UW2AD. 

Operating Instructions 
Load ADCON by the command 

LO ADCON, u 
where u is the unit containing the program. 

261 



The series of messages is: 

3. 

. 

TRANSFER LOCATION 7 
STARTING TBLK- - - I 

1. 
DATA FROM THE DATA TAPE IS 
TRANSFERRED TO A NEW TAPE 
IN CONTIGUOUS BLOCKS. I M P E  C TO CONTINUE - . 1 

1 w 
LOCATION OF DATA TO BE 
TRANSFERRED 

UNIT- I 
b 

I CREATE FILES FOR 1 

I CHANNEL NUMBER - - 
TYPE A FOR ALL CHANNELS I SAMPLED 4. 

TYPE C WHEN FINISHED 
SELECTIONS ’ I 

I 

4 
I CAUTION 1 

I IF UNIT0 IS USED TO COLLECT 
5. CONTIGUOUS DATA,REMOM DIAL 

I TYPE T TO BEGIN TRANSFER - I 
I 

EXIT Tb PART 2 

TRANSFERRED 
TYPE R FOR ANOTHER JOB 
TYPE H TO HLT 

6. 

Example -- 
Assume ADTAPE had collected 201 blocks of data from the 810 channels 
numbered 3 through 128 and the data from channels 3, 5, and 10 are 
to be converted onto a formatted LINCtape beginning a t  block 10. The 
following printout would be on the Teletype when all conversions are 
completed. 

CHAN STBLK NB 
3 10 2 
5 12 2 
10 14 2 

262 



ADTAPE 
(DEC- 12- U W2A-D) 

I 

Description 
ADTAPE consecutively samples and stores data from 1 to 16 A/D chan- 
nels and can display 1 or 2 channels during sampling. Sampling rates may 
be as high a6 1000 points/second and the time range can be from 1 milli- 
second/point to 40 seconds/point. Through a series of “question and 
answer” displays on the scope during initialization, the user specifies all 
experimental parameters, including channels to  be sampled, sync and 
terminating pulses, sampling rate, and data storage lodtion. The sync 
pulse can be on a sense switch external level or clock channel: the termi- 
nating pulse can be on any of the same devices or after a specified number 
of points have been collected. In addition, standard experiments can be 
defined and their parameters called from tape when required, eliminating 
respecification of the same values before each run. 

When initialization is completed, ADTAPE enters visual mode and waits 
for the sync pulse to start the experiment. Data can be displayed on the 
scope as it is acquired during visual mode. A simple command causes 
ADTAPE to enter store mode so that the data will be stored on tape as 
well as displayed on the scope while it is being sampled. Pause mode 
can be called to stop temporarily sampling and writing on tape. 
The end of the experiment is noted by a message printed on the Teletype. 
If the end of tape is reached before the terminating pulse has been re- 
ceived, that condition is also indicated by a printed message. 

Minimum Hardware 

Library Distribution 
Source and binary files on DIAL tape DEC-12-SE4A-UO, binary file on 
paper tape DEC-12-UW2A-PB. Described in document DEC-12-UW2A-D. 

Operating Instructions 
Call‘the program from tape by a load command, e.g., 

PDP-12A 

+LO ADTAPE, 1) 

263 



The sequence of messages to specify parameters is as follows. 

._ :, 

STANDARD EXPERIMENT? NEW START TBLK 
IF NO, TYPE N 
IF YES, TYPE Y 
REPLY 

IFN0,TYPE.N . ,  j , j .  & 
IF YES,TYPE Y 
REPLY- 

PARAMETER LOCATION 
TBLK :NO, - L 
UNIT - 

STARTING TBLK- - - 
RATE - - - 1 U OR M OR S ?  

I DELAY- - -% RATE I 
I 

I SYNC ON: I 
I .  SENSE WITCH N 
2. EXTERNAL LEVEL N 
3. CLOCK CHANNEL N I CODE - 

9 1 

SAVE PARAMETERS? 

IF YES.TYPE Y 
REPLY- 

11 
TBLK LOCATION 7 
TBLK NO - - - 
UNIT- 

- 
TYPE C TO CONTINUE 

264 



CATACAL 

(DEC-12-UWIA-D) 

Description 
CATACAL is a box-car averager for data acquisition a t  rates from 35 
seconds/point to 250 microseconds/point. Any analytical instrument or 
experiment supplying data within those limits can be interpreted easily 
and quickly using CATACAL's many facilities. 

Initially, CATACAL accepts analog data from the interfaced analytical 
instruments, averages the information, and displays the averaged data 
on the PDP-12 oscilloscope. The scientist can then interpret the data 
as required by his experiment in seconds using any of CATACAL's data 
handling commands. Thus, a sloping baseline can be aligned, a spectrum 
can be scaled, many integrations can be performed, and two spectra can 
be compared simultaneously, each operation requiring only a single 
command. 

Minimum Hardware 
PDP-12A computer with 8K of core memory and KWl2A clock. An X-Y 
Analog Recorder is recommended for hard copy. The program does not 
require, but will support, a high speed reader/punch. 

Library Distribution 
CATACAL is supplied in two versions - CATACAL and CATACALE. The 
only difference between the two is that the latter version uses EAE (Ex- 
tended Arithmetic Element) for greater calculating speed. The binary for 
CATACAL is on DIAL tape DEC-12-SE2D-UD; CATACALE on DEC-12-SESA- 
UO. The sources are on DIAL tape DEC-12-SMA-UO. Described in docu- 
ment DEC- 124 WIA- D) 

Operating Instructions 
After a numeric value has been typed in response to a command, any 
character except 0 to 9, E, o r .  will terminate input for that entry. A space 
is recommended as the terminator. (Pressing RETURN does not auto- 
matically generate a LINE FEED.) In response to questions, only Y or N 
are acceptable answers. Any other response generates a question mark 
on the Teletype and is ignored. No terminator is required after a Y or N 
response. 

In all cases, striking RUBOUT before a terminator will delete all input up 
to the preceding terminator to allow the correct value to be entered. A 
RUBOUT during decimal input echoes as an exclamation mark and during 
octal input as a question mark on the Teletype. 

If, during scope display, a command unacceptable to CATACAL is typed, 
a ? is printed on the Teletype and the program returns to the same scope 
display. 

If an operation must be halted immediately, press the console STOP 
switch. This should not be used haphazardly; if arrays were being modi- 
fied the data will be lost. Routines requiring input parameters or initial 
dialogue can be halted during that stage and before the input is com. 

265 



plete. To restart CATACAL after an emergency stop, set the MODE switch 
to 8 mode, set STOP switch to run position, and press I /O PRESET and 
then the START 400 key. A new CATACAL command can be issued when 
the display is restarted. If the START 20 key is pressed instead of 
START 400, the program starts a t  the beginning. 

Command Summary 
At  least the flcst two characters of a command must be typed before 
colon is typed. 

INPUT-OUTPUT COMMANDS 
TAPE:, Read or write LINCtape 
AVERAGE: 
PAPERTAPE: 
OUTPUT Print/punch paper tape 
PLOT: 

Accept time averaged analog data 
Input data from paper tape or keyboard 

Plot data on X-Y analog recorder 

PROCESSING COMMANDS 

CALCULATE: 
ALTER: 
COPY: 
XINVERT 
YINVERT 
SCALE: 
MULTIPLY: 
SMOOTH: 
CURSORS: 
INTEGRATE: 

STRIP: 

DERIVATIVE: 
SUBTRACT: 
ADD: 
SWAP 
SQUEEZE: 

Calculate Lorentzian and/or Gaussian spectrum 
Alter parameters input by previous CALCULATE command 
Copy CDC into NDC 
Invert X axis 
Invert Y axis . .  
Scale to range of 0-1000 
Scale to arbitrary range 
Apply eleven point digital filter 
Set up two cuisors on scope 
Integrate between cursors or running integration (pre- 
ceded by CURSOR command) 
Strip out data or baseline (preceded by CURSOR com- 
mand) 
Form differences (derivatives) 
Subtract CDC from NDC; results in CDC 
Add NDC to CDC; results in CDC 
Swap CDC and NDC 
Average adjacent points of displayed channels 

SPECIAL COMMANDS 

MODIFY: ODT-like core modifier 
TIM E: 
RESTART Restart program 
DIAL: Exit to DIAL Editor 

Set machine cycle time constant to calibrate AVERAGER 

CDC = currently displayed channel 
NDC = non-disptayed channel . 

266 



CONVERT 

(DEC-1 2-ESY 6-D) 

Description 
Program CONVERT will perform the major tasks in translating a LAP6 or 
LAP6-3L source stored on a LINC tape to  a suitable source for utilization 
by the DIAL system on the PDP-12. 

Minimum Hardware 
1 0  ~c ,"li, I I 

PDP- 128 

Library Distribution: 
Source file on DIAL tape distribution DEC.12-SE2D-UO; binary file on DIAL 
tape DEC-12-SE3B-UO. 

Operating Instructions 

1. 

2. 

3. 

~ 4. 

Call program CONVERT by typing: 

+ LO CONVERT, O $  

Complete the questionnaire seen OJI the scope by inserting the 
starting Block Number of the program to be converted. Press 
the LINEFEED key upon completion. 

Upon completion of the program, CONVERT rewinds the LAP6 
tape on Unit 1, types out a message warning the user to remove 
the LAP6 tape from unit 1 and to type: 

+ AP 370, 0% 

The user now has two alternative procedures: 

Choice 1 - if more than one program will be translated, leave 
the LA% tape on unit 1, type: 

+ SP name, O $  

and file the source program ("name" is an eight-character name 
selected by the user). Then issue a: 

+ LO CONVERT, O$ 

to translate another source program. 

Choice 2- Replace the LAP6 tape on unit 1 with a DIAL system tape, 
and proceed. 

WARNING 

If a Li or AS command is issued without rernov- 
ing your LAP6 tape, the assembled binary will 
overlay filed programs on the LAP6 tape. 

267 



CREF12 

(DEC-12-FRZA-D) 

Description 
In many situations of assembling, debugging, and modifying programs, 
a cross-reference listing of user-defined symbols is an invaluable aid to 
the programmer. CREF12 provides an alphabetical listing of all such 
symbols in the prugrarn with the value of each, the line number a t  which 
it was defined, and the line numbers at  which references to it are made. 
Thus, the programmer can easily identify the various places in a program 
where a tagged location or equated symbol is used. Thoughtful examina- 
tion of the cross-reference listing greatly simplifies debugging e.g. by 
indicating conflict in use of a temporary or an unintended recursion loop. 
Similiarly, code optimization is facilitated because unused locations and 
subroutines, as well as temporaries that can be used by more than one 
routine, can be easily noted. 

Minimum Hardware 
PDP-12A or B with 8K of core memory. 

Library Distribution 
Binary file on DIAL tape (DEC-12-SESB--0). Described in CREF12 docu- 
ment, DEC-12-FRZA-D. 

Operating Instructions 
To use CREF12, insert a LISTAPE n pseudo-op a t  the end of the program 
of interest, where n is an expression whose value is between 0 and 17, 
and is taken as the unit number of a scratch tape (0-7) or disk (10-17) 
on which the listing will be produced. This information is written on the 
specified unit starting a t  block 0. Thus unit n should be either e scratch 
tape ar logical disk devoted to scratch work. 

Set all Sense Switches equal to 1 and assemble the program with a LIST 
command. Then load CREF12 by typing + LO CREF12, 0 . Answer the 
message UNIT ## ? with the unit on which the listing was.written. The 
second message, LISTING [Y or N]?, asks if the full assembly listing is 
desired with the cross-reference. 

Two error conditions can arise when using CREF12’. 

’ 

BAD INPUT 
CORE OVERFLOWED AT LINE NO. xxxx 

268 



Example 

0000 
,seprl' .- * > '  
0002 , 
0003 
0004 
0005 
0006 
0007 
0010 
001 1 
0012 
0013 
0014 
0015 
0016 
0017 
0080 4020 
0021 4021 
0022 
0083 
0024 4022 
0025 46123 
0026 4024 
0027 4025 
0030 
0031 
R038 
0033 4026 
0034 4027 
0035 4030 
0036 
0037 4031 
0040 4032 . 0041 4033 
0042 4034 
0043 4035 
0044 4036 
0045 4037 
8046 4040 
0047 4041 
0050 4042 
0051 4043 
0052 4044 
8053 4045 
0054 4046 
0055 
0056 4047 
0057 
0060 

/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 
/ 

0000 MOVE. 
1620 

3240 
2220 
1620 
 RIB 

2220 
1620 
3242 

2220 
1620 
301 1 
2220 
704 1 
3247 
2220 
0000 MVLOOP. 
1410 
0000 
341 1 
2247 
5240 
'5620 

0000 TEMPI 
/ 

/ 

. 

SUBROUTINE TO MOVE DATA ACROSS FIELDS. 
CALLING SEQUENCE IS: 

JMS MOVE 
CDF /FROM FIELD 
FADDR /FROM ADDRESS 
CDF /TO FIELD 
TADDR /TO ADDRESS 
LEN /NO OF WORDS TO MOVE 

0 
TAD I MOVE /THIS APPEARS IN CREF AS 

/A REFERENCE TO MOVE, NOT 
/THE DATA PICKED UP 

DCA MVLOOP 
ISZ MOVE 
TAD I MOVE 
DCA 10 /THIS REFERENCE WILL NOT 

/APPEAR IN THE CREF, 
/BECAUSE IT IS ABSOLUTE 

ISZ 
TAD I 
DCA 

ISZ 
TAD I 
DCA 
I sz 
CIA 
DCA 
ISZ 
0 
TAD I 

/RATHER THAN SYHEOLIC 
HOVE 
MOVE 
MVLOOP+O/THIS APPEARS AS 

MOVE 
MOVE 
1 1  
MOVE 

TEMP 
MOVE 

10 

/A REFERENCE TO MVLOOP 

/CDF GOES HERE 

0 /CDF GOES HERE 
DCA I 1 1  
I sz TEMP 
m W O P  
mI HOVE 

0 

LISTAPE 12 

SYMBOL VALUE DEF REFERENCES 
MOVE 4020 0020 0021 0025 0026 0033 0034 0037 0040 0042 0045 0054 
MVLOOP 4040 0046 0024 0035 0853 
TEMP 4047 0056 0044 B058 

269 



MSPLAY 

(DEC-12-FLSA-D) 

bscript ion 
DISPLAY enables a data display facility for those routines which do not 
require complex display processing or cannot sacrifice the core for such 
a display. ThR routipe displays any cpntiguoNs section of core via a mouins 
window, with a cursor and octal read out of cursor positions to facilitate 
operator interaction. 

Mlnimum Hardware 
A PDP-12A. 

Ubrary Distribution 
Source and binary file on DIAL tape, DEC-12-SESE-UO. Described in 
document DEW 12-FLSA-D. 

Operating Instructions 

INITIAL CALL 
JMS I KIDORA 

FIELD 
CORE LOCATION 
FIELD 
CORE LOCATION 
Y OFFSET 
Y SCALE FACTOR 

KIDORA, IDORA 

REFRESH CALL 

JMS I KRDORA 

KRDORA, RDORA 

The refresh call displays 1000, points, sets arguments for the next refresh 
and returns to the location following the call in PDP-8 mode with the 
accumulator cleared and the data field unchanged. Note that the initial 
call to DISPLAY must be to IDORA; RDORA adways refreshes the buffer 
specified by the last call to IDORA. 

OPERATOR INTERACTION 
The operator controls the position of the window with knob 0: clockwise 
motion moves the window to the "right" or towards the end of the buffer; 
counter-clockwise, to the left. The midpoint reading on knob 0 causes the 
motion to stop. 

270 



Knobs 1 and 5 and Sense Switch (SSW) 5 control the cursor (an intensi- 
fied dot). Depending on the setting of SSW5, the cursor may either move 
along the curve or be displayed independently. When SSW 5 = 0, the 
cursor moves along the curve and its position is controlled with knob 1: 
When knob 1 is turned to its furthermost clockwise position, the cursor 
sits upon the rightmost scope point; when knob 1 is positioned to its 
furthermost counter-clockwise position, the cursor sits on the leftmost 
scope point; intervening knob positions yield intervening cursor positions. 
When SSWS I ,  the cursor is displayed independently of the curve. Fo’r 
this case, knob 1 controls the horizontal coordinate and knob 5 the 
vertical coordinate. Horizontal displacement of the cursor via knob 1 is 
identical t o  that described above. When knob 5 is a t  its furthermost 
clockwise position, the cursor is displayed a t  the top of the scope. When 
knob 5 is a t  its furthermost counter-clockwise position, the cursor is 
displayed a t  the bottom of the scope. 

Associated with the cursor are four octal words displayed in the top left 
corner of the scope, one beneath the other.* The first two words are the 
absolute 15-bit core address of the cursor point. Thethird word is the 
contents of the displayed core address, i.e., the actual 12-bit value in the 
data buffer of the data word that corresponds to the cursor point. The’ 
fourth word is the scope Y coordinate of the cursor point and is a relative 
value and depends upon the Y scale factor and Y offset. If the data had 
been scaled to nine bits prior to display, the fourth word or Y coordinate 
would range from 0001 to 10008, where 0001 corresponds to the bottom 
of the scope and 1000 corresponds to the top. 

To facilitate interaction with the calling program, the four displayed words 
described above are maintained in page 0 and may be accessed after the 
refresh return. 

TAG CONTENTS 
XCURHI 
XCURLO 

CORVAL Contents of memory 
YCUR Relative Y display coordinate 

Fifteen bit address of the point 
in memory references by the 
cursor 

FRED 

Description 
FRED (File Replacement, Entry, and Deletion) is a set of PDP-12 sub- 
routines for manipulation of DIAL indices. 

FRED occupies two tape blocks and, when in core, uses four LINC memory 
blocks (2000. words), including space for the index. The routines are 
segment-independent, but must be loaded at a segment boundary. 

Minimum Hardware 
PDP-lSB 

*The character size of the display depends upon the setting of fhe special functions 

(DEC-1 2-FZFA-D) 

register at the time the display is refreshed. 

27 1 



Library Distribution 
Source and binary are on DIAL tape DEC-12-SE3B-UO. Described in docu- 
ment DEC-12-F2FA-D. 

Operating Instructions 
In this discussion, all locations are relative to the segment into which 
FRED is loaded. The user’s program must load FRED from a DIAL tape, 
or assemble it with his program, at any memory address which is a 
multiple of 2000,. It may then be reused until it is overlaid; 

Entry points for the routines of FRED start at location 20 of the segment 
into which FRED is loaded, as follows: 

20 - LOOKUP 
2E - ENTER 

86 - DELETE 

30 - READ 

35 - VRITE 

READ and WRITE are called as follows: 

L I F  X ISEBUENT INTO WHICH FRED I S  LOADED 

LDA I /LOAD AC VITH PARAWETER POINTER 

RVPARM /POINTER TO READ/VRITE PARAWETER L I S T  

JMP 30 C M  35) /DO READ CURITE) . 

RVPARW, Y/UNIT /HIOH-ORDER THREE BITS FOR FIELD 

/LOW-ORDER THREE B I T S  FOR TAPE W I T  

BUFFER / IB-BIT MHORY ADDRESS OF DATA 

BLOCKNO /BLOCK NWBER OF FIRST TAPE BLOCK 

COUNT /NO. OF BLOCKS TO READ/VRITE 

The COUNT must not be zero. 

Return is to the instruction following the JMP. tf AC Bit 1 is 0, RWPARM 
is taken from the caller’s instruction segment; if 1, the parameter list is 
in his data segment. Note: There is no check for attempts by the user to 
write over DIAL, nor is there a check to prevent reading over FRED. 

272 



LOOKUP, ENTER, and DELETE are called as follows: 
L IF  X /SEGMENT WITH FRED 

LDA I /AC: POINTER TO FILE DESCRIPTOR VECTOR 

FDV /GO TO LOOKUP CENTER, DELETE) 

JMP 20 <JMP 22s 2 6 >  

FDV, UNIT /LINC TAPE 0-7 

TEXT "NAME????" /FILE NAME. ENDING WITH 77.5 

/TO FILL FOUR WORDS ( 8  CHARS, ' 

TYPE /0023 FOR SOURCE, 0002 FOR BINARY 

START /STARTING BLOCK NO. O F  FILE: 
/FILLED B Y  LOOKUPI ENTER, REPLACE, 
OR DELETE 

LEN /LENGTH OF FILE I N  BLOCKS: FILLED I N  
/BY LOOKUPI CALLER MUST SUPPLY I N  
/ENTER-REPLACE, UNUSED BY DELETE 

a) LOOKUP has two returns; the first, immediately following JMP 
20, is taken if there is an error in the parameter list, or the named file 
is not found. The second, two words after JMP 20, is taken i f  the file is 
found, indicating that the ' information in the file descriptor vector is 
correct. 
LIF X 

LDA I 

JMP LOOXUP /GO FIND THE FILL 

JMP UOFIND / 1 S f  RETURN F1LE.DOESN.T EXIST 
/COME HERE WEN FILE IS FOUND 

b) ENTER has three returns; the first is taken if there already exists 
a file of .the same name and type. The second is taken on errors in 
parameter list or insufficient space, either in the file or in the index. 
The third indicates successful updating of the index. 
L IF  X /SEGSENT CONTAINING FRRD 
LDA I /POINTER TO PARAMETER L I S T  
FDV 

JMP ENTER /GO ENTER FILE I N  INDEX 

JMP EXISTS /1ST RETURN - FILE ALREADY E X I S T S  * 

JMP NOSPACE /BND RETURN - NO SPACE FOR FILE 
/COME HERE ON SUCCESSFUL COMPLETION 

c) DELETE has only one return, immediately following the JMP 26. 
REPLACE may be called only immediately after a call to ENTER which 
took the second return. The parameter list need not be explicitly indicated 
- REPLACE uses that from the preceding ENTER, but the instruction 
field must be set again. 

There are two returns; the first is taken on error in calling sequence or 
insufficient space. (This can never occur if the new file is smaller than OF 

273 



equal to the old file). The second indicates successful replacing of the 
old file entry. 
L I F  X /SEGMENT CONTAINING FRED 

JMP REPLAC 

JMP NOSPAC 

/ENTER FOUND A F I L E  OF SAME NAME 

/NO SPACE FOR NEW ONE 
/COME HERE ON SUCCESSFUL REPLACE 

If REPLACE is not able to find space for a new file, the old file remains 
intact. 

If the call to REPLACE is not immediately preceded by a call to ENTER 
which returns indicating the file exists, the machine will halt and FRED 
must be reloaded. 

GENASYS 
(SEE LAP6-DIAL MANUAL) 

Description 
To facilitate 'distribution, the DIAL LINCtape provided by the Digital 
Program Library contains DIAL-V2. For users with 8K (or larger) c0.n- 
figurations, DIAL-MS is easily generated by running GENASYS just once 
to create DIAL-MS on the tape. Only two questions are asked, one to 
locate the tape unit containing the GENASYS files and one to  specify the 
tape unit where DIAL-MS is to be built. The DIAL-MS system is customized 
for the configuration on which it is created, implementing a l l  interfaced 
disks (DF32, RS08, and RK08) for faster processing. 

GENASYS uses four short files, DIAL-MS1 through DIALlMS4. 

Minimum Hardware 
PDP-12B with 8K of core memory. 

Library Distribution 
Binary file on DIAL tape DEC-12-SE2D-UO. Described in detail in LAP6- 
DIAL Programmer's Reference Manual, DEC.12-SE2D-D. 

Operating Instructions 
Load GENASYS bythe DIAL command. 
+LO GENASYS, 0 $. 

The following messages are printed and require user answers: 
TAPE [ I N I T  C O N T A I G I N G  GENASYS: 

TAPE UNIT FOR J)IAL-MS 

PRESS CONTINUE TO INJITIALI7.E DIAL-MS 

VYEN EDITOR DISPLAY APPELIQSI TYPE (LINEFEED) EX (RETURN) 

The first two messages are best answered by a reply of 0, causing DIAL- 
MS to  be initialized for immediate use. 

274 



The following error messages can be printed: 

THIS MACHINE HAS ONLY 4x1 DIAL-MS REOUIRES 8K 

THIS TAPE DOES NOT CONTAIN BINARY DIAL-MSX NEEDED 
FOR GENASYS (WHERE X = 1 TO 4) 

LENQTH ERROR IN DIAL-MSX , I !  

L8SIM 
(DEC-1 2-SI1 B-D) 

Description 
The LINC-8 Simulator Trap Processor handles Teletype input and output 
for LINC-8 and classic LINC programs when they are run on the PDP-12. 
It must be loaded into the PDP-12 core memory with any LINC-8 or clas- 
sic LINC program which uses the keyboard, or any classic LINC program 
which uses Teleprinter, in order for that program to run on the PDP-12. 

The trap processor operates by using the PDP-12 Instruction Trap Facility 
to detect execution of either of the two LINC-8 Teletype input/output 
instructions by the user's program. It responds to user's execution of a 
Teletype instruction by executing coding to  simulate the instruction's 
LINC-8 or classic LINC effect. After simulation of the instruction, the 
trap procesor returns control to the user program. 

An important limitation of the trap processor is that it is not interruptible. 
It may not be operated when the PDP-12 Program Interrupt is enabled. 

Minimum Hardware 

Library Distribution 
Source file on DIAL tape DEC-12-SE2D-UO. Described in document DEC- 

Operating Instructions 
Load the program into memory, the computer will halt. Press I /O Preset, 
and then START 400. The program will turn on the instruction Trap Enable 
Flip-Flop and halt with the Instruction Field set to 2 and the Data Field 
set to 3.Verify that the Instruction Trap Enable Flip-Flop is on by observing 
the console TRAP indicator. This indicator should be lit. If it is not, some 
kind of error has occurred. The error may be either a machine error or 
an operator error. Reload the trap processor and try again. 

Now read in the user program. If the program is located on some spe- 
cific block(s) of a LINCtape, mount the tape on either transport and 
execute an appropriate tape instruction from the console as if the machine 
were a LINC or a LINC-8. If the user program is a named flle on a LAP-3L 
or GUIDE tape, mount the tape on unit 0, set the LOCAL-OFF-REMOTE 
switch to REMOTE and press CONT. GUIDE or LAP6-3L' will be loaded, 
and the user program may be recalled using the usual GUIDE or LAP6 
program loading procedure. 

PDP- 12 B 

12-SIlB-D. 

275 



If the user program IS on paper tape, read it in and start it using the 
usual paper tape loading and starting procedures, as described in the 
Binary Loader operating iinstructions, DEC-08-LBAA-D. 

Switch the processor mode to the PDP8 mode by executing the PDP 
instruction (octal: 0002) before using the Binary Loader. Mode changing 
through use of I/O Preset in conjunction with the console Mode key 
should be averded because I/O Preset clears the Instruction,Trap Enable 
Flip-Flop. 

To automatically load and start a LINC-8 GUIDE or LAP-3L tape along 
with the trap processor, load the trap processor from the DIAL tape as 
directed above, and then press I /O PRESET, START 20, rather than I/O 
PRESET, START 400. A GUIDE or LAP-3L system will be read in from unit 0 
and started. 

This procedure duplicates the “START 400” procedure given above, with 
the exception that the computer does not halt between the trap processor 
initialization and the loading and starting of the GUIDE or LAP9L system. 

If the Instruction Trap Enable Flip-Flop has been cleared, it may be set 
again (providing the trap processor has been loaded into core as directed 
above) by starting a t  location 400 in memory segment 0 (absoluteaddress 
00400). Note that the START 400 key may not be used for this unless 
the hstruction Field (IF) is set of 0 because START 400 takes the high 
order 5 bits of the starting address from the IF. Set 0400 into the Left 
Switches and use START LS, rather than START 400. Use of this entry 
point sets the Trap Enable FlipFlop and halts the computer. (Setting of the 
Trap Enable FlipdFlop may be confirmed by observing the console TRAP 
indicator.) Pressing continue after the computer has halted causes a 
transfer to location 400 in memory segment 2 (absolute address 04400), 
with the Data Field set to 3. . 

MAGSPY 
(DEC-12-UZSA-D) 

Description 
This program provides a moving window for scanning data stored on a 
LINCtape. The data is scanned on the PDP-12 scope a t  a rate determined 
by the setting of the A/D knob. The data can be interpreted as waveforms 
or as packed ASCII characters. 

Minimum Hardware 
PDP- 12A 

Library Distribution 
The source is on DIAL tape DEC-12-SE2D-UO; the binary, on DIAL tape 
DEC-12-SE3B-UO. 

‘LINC.6 and LINC wers will recall that the GUIDE program starting procedure 
may be used with either GUIDE or LAP6.3L. 

276 



Operating Instructions 
The program briefly displays the title then proceeds to  the initial option 
questionaire. The user may choose one of three options (RUBOUT will 
erase the previously typed character: LINE FEED will execute the desired 
option). 

EXPLANATION SLIDE (Option 1): 
Selection of option one displays the various switch settings and waits for 
the operator to type a LINE FEED or RETURN indicating that he has read 
the displayed slide. 

BLOCK/UNIT QUESTIONNAIRE (Option 2): 
Type in the starting tape Block Number (BN), which may be 0 to 777. 
Leading zeros are not required so that BN 7 may be typed by: 7), 07). 
or 007). Upon observing the correct BN on the scope, press the RETURN 
key. 

Type in the tape drive number which may be 0 through 7. If the correct 
entry is observed on the scope, type LINE FEED to  begin displaying tape 
blocks. (This is QANDA - see Document DEC-12-FISA-D for operational 
details.) 

CALL DIAL (Option 3): 
This option recalls the DIAL system into core. 

SUM MARY 0 F ACTIONS: 
Procedure Action 
swo= 1 
swo = 0 
sw1= 0 
sw1= 1 
A/D knob 7 
A/D knob 7 

Display data as waveforms. 
Display data as packed-ASCII Source. 
Display data as small text if SWO = 0. 
Display data as large text if SWO = 0. 
Move toward the beginning of the tape. 
Move toward the end of the tape. 

MARK12 
(DEC-12-Y ITA-D) 

Description 
To implement the block addressable feature of LINCtape, the tape must 
first be marked with timing (numbers of words per block) and block 
numbers. The MARK12 program writes these values onto the tape so that 
the PDP-12 hardware can read or write on any block. In addition, MARK12 
writes a data test pattern onto each block of tape and reads it back to 
insure that there are no defects in the tape. 

Two marking formats are available - 1000, blocks of 400. words each 
(used for DIAL) and 2702, blocks of 2018 words each. The actual marking 
procedure is accomplished by a subroutine so that a unique format can 
easily be created by the user. 

Minimum Hardware 
PDP-12 

277 



Library Distribution 
Source and binary files on DIAL tape DEC-12-SEPD-UO, described in 
document DEC-12-YITA-D. 

Operating InstruMions 
MARK12 operates through a series of scope messages. After loading the 
program by issuing the command +LO MARK12, 0 , the following dis- 
play appears. 

MARK12 

THIS  P R O G R W  WILL FORMAT AND CHECK LINC TAPES FOR 

THE PDP-12 

SEL T OPTIOW AND PRESS LINE FEED ON THE CONSOLE 

TELETYPE: 

SELECT 

Fc 

1 STD. LINC FQRMAT 

P 129 WORD FORMAT 

Reply by typing 1 or P and pressing LINE FEED. The next message is: 
MOUNT TAPE TO BE 

MARKED ON THE RIGHT 

REEL bF UNIT 1 
PLACE UNIT I IN 

REMOTE WlTH 

WRITE ENABLED, THEN 

PRESS THE MARK SWITCH i 
After the proper response the tape will be marked. One of the following 
displays will appear: 

GOO0 TAPE 

ALLOW HARKED TAPE TO REWIND 

THEN SELECT OPTION AND TYPE 

LINE FEED ON THE TELETYPE 

SELECT 

1 MARK ANOTHER TAPE 

2 RESTART DIAL 

TAPE CHECK FAILED 

SELECT 

I MARK ANOTHER TAPE 

2 RESTART DIAL 

If the "failed" message appears, the tape should not be used. 

278 



MILDRED 
(DEC-12-FZDA-D) 

Description 

MILDRED (Multiple Index Lookup, Deletion, Replacement and Entry: Disk) 
,is a set of PDP-12 subroutines for manipulation of DIAL-V2/DIAL-MS 
indices. 
There are four levels of routines, with provision for a routine a t  any but 
the lowest level to call any routine of lower level. There is no provision 
for reentrance or recursion, but the routines are serially reusable (except 
for REPLACE, as explained later). 
Locations 20 to 27 contain DJR, JMP pairs to the entry points of each 
major routine, so that the coding can be modified without changing calls 
in external routines. 
MILDRED occupies two tape blocks ana, when in core, uses four LINC 
memory blocks (2000, words), including space for the index. The routines 
are segment-independent, but must be loaded at a segment boundary. 
MILDRED requires that the DIAL-MS I/O routines (blocks 322 and 323 
of DIAL) reside in field 1, 7600-7777. 

Minimum Hardware 
PDP-12B, normally with RS08 or RK8disk. 

Operating Instructions 
The user’s program must load MILDRED from a DfAL tape. or assemble 
it with his program, at  any memory address which is a multiple of 20W. 
It may then be reused until it overlaid. 

Entry points for the routines of MILDRED start at location 20 of the seg 
ment into which MILDRED is loaded, as follows: 

LDF 7 
FDC 
6 / 3 2 2  
RDC 
71323 

These facilities are exactly analogous to the FRED facilities. 
To read or write, the DIAL-MS I /O routines are used. 

The DIAL-MS routines occupy blocks 322 and 323 of LINCtape 0 and may 
be loaded into locations 7000 through 777 of any field. A sequence to 
load the routines into locations 7000-7777 of field 1 follows. 

279 



Each of the three DIAL-MS routines, READ, WRITE, and MOVE, is called 
in the same manner. A typical call is: 

CDF N 
CIF M 
JMS ROUTINE 
ARGUMENTS 

2 ) -  

The CDF instruction sets the data field to the present instruction field 
so the routines know to which field t o  return. (If the data field is already 
set t o  the instruction field, this statement is not needed.) The CIF in- 
struction sets the instruction field to the field of the routines. (If the 
routines are in the same field as the calling program, this statement may 
be removed.) The JMS (or JMS I) is the call. 

READ and WRITE Routines. 
The READ and WRITE routines are called in the same manner, as: 

JMS READ 
POINTER 

/RETURN IS HERE 

POINTER points to the following: 

POINTER, UNIT NO 
CORELOC 
START 
BLOCKS 

UNIT NO is the logical unit number of the I /O device for the READ or 
WRITE. CORELOC is the first location of transfer divided by 400; thus 
13 refers to location 5400. START is the starting block number of the 
transfer. BLOCKS is the number of blocks to transfer. 

A program t o  read in eight blocks from block 30 on disk 0 into location 
0 is as follows: 

* S I 0  
LINC 
LMODE 
LDF I 
RDC 
61322, 
RDC 
1 / 3 2 3  
CLR 
PDP 
PMODE 
CDF m 
CIF 19 
JMS I PREAD 
PI 
HLT 

PI.I~ 
0 ,  
3m 

/UNIT NO. 
/CORE LOC. 
/TBLK 
/NO. BLOCKS II 

PREAD, READ 

280 



MOVE Routine 
The MOVE routine transfers core locations from one area of core to 
another, as: 

JMS. MOVE 
CDF FROMF 
FRO@% 
CDF TOF 
TOL 
WORDS 

/RETURN IS HERE 

FROMF is the “from” field, FROML is the first “from” location, TOF 
is the “to” field, and TOL is the first “to” location. WORDS is the number 
of words to be transferred. 

The MOVE entry point is at 7200, the READ is at 7774, and WRITE is 
at 7775. 

NMRSIM 
(DEC-1 2-UW5A-D) 

Description 
NMRSIM(E)* is designed to calculate theoretical spectra of compounds 
containing nuclei of spin one-half, including hydrogen, fluorine, and 
carbon-13. Chemical shifts for each nucleus and coupling constants be- 
tween nuclei are input from the Teletype. Calculated line spectra are 
displayed on the VR12 scope. Twenty-five calibration points are displayed 
across the X axis. Output is to LINCtape and high- or low-speed paper 
tape punch, as well as to the Teletype. NMRSIM has options that allow 
varying all the parameters as well as offsets for enchancement of resolu- 
tion. Chemical shifts and coupling constants may be adjusted continuously 
until the displayed theoretical spectrum is acceptable. Spectra may be 
read back and displayed from LINCtape or paper tape; several spectra 
may be merged in this mode of operation, thereby allowing the simulation 
of large spin systems or mixtures of compounds. 

Minimum Hardware 
PDP-12A with 8K core memory and KWl2A clock. 

Library Distribution 
The binary for NMRSIM is on DIAL tape DEC-12-SE4A-UO; the binary for 
NMRSIME is on DEC-12-SEBB-UO. The source is on DIAL tape DEC-12- 
SE4A-UO. The program is described in document DEC-12-UWSA-D. 

Operating Instructions 
After the program is loaded, it prints a series of messages on the Tele- 
type to Specialize the parameters for the experiment. The user types 
a reply to each message and terminates the response by pressing the 
RETURN key. If an illegal response Is typed, a ? is printed on the Teletype 
and the message is  repeate’d. 

*NMRSlME utilizes the EAE option for the PDP-12. 

281 



The RUBOUT key can be used to erase incorrectly typed characters before 
a terminator is typed. The messages are listed below with their acceptable 
responses. 

“COMMENTS” - Text of titles, descriptions, etc. 
Terminated with CTRL/A 

“WANT PAPER TAPE I/O” -Answer Y or N 

“NUMBER OF SPINS” - 1 thru 6 accepted 

“OFFSET &WIDTH” - define scope display 
OFFSET is value of first point q d  WIDTH is range in Hz 

. ,, : , 

“CHEMICAL SHIFTS” - 1-6 values i n  Hz 

“COUPLING CONSTANTS” - enter values in Hz, in order JI,, 
JII, . . . . . JIN, J a  . . . . J n . 1 ,  n 

“BLOCK, U” - starting block and LINCtape unit to store data 

SPECTRUM MODIFICATION & CONTROL COMMANDS 
When displaying a spectrum, the Teletype will accept the following 
commands. 

R-Restart 
Calculate complete new spectrum 

C - Coupline Constants 
Recalculate spectrum with new set of coupling constants 

0 - Offset’& Width 
Allows any portion of the spectrum to be displayed 

D - DIAL 
Exit t o  LAP6-DIAL operating system 

L - List 
List energy and intensity of calculated transitions, either all transitions 
or only those in disphy. 

P - Punch 
Punch spectrum on high speed reader/punch 

PATCH . 

(DEC-1 2-Y U2A-D) 

Description 
PATCH allows the user to modify any location in any tape block on tape 
unit 1, thereby providing a quick method for making small patches to 
binary files. PATCH interacts with the user by a series of questions and 
answers in order to specify the tape block and location t o  be modified. 
The present contents of that location are printed and the new value is 
then typed. 

Minimum Hardware 
PDP-12B 

282 



Library Distribution 
Source file on DIAL tape DEC-12-SEBD-UO, binary file on paper tape 
DEC-12-YU2A-PB. Described in document DEC-12-YU2A-D. 

Operating Instructions 
The tape to be modified must be on tape unit 1. The tape containing 
PATCH should be on unit 0 and is loaded by the command: 

+do  PATCH.@) 

RATCH is a load and go program so the first message is displayed im- 
mediately after the program is 1-oaded. 

'Sense Switch 0 is operable: raising it causes a return to DIAL. Therefore, 
be sure Sense Switch 0 is down before loading PATCH. 

PIP 
(SEE LAP-6-DIAL MANUAL; DEC-12-SE2D-D.) 

Description 
PIP, the Peripheral Interchange Program, is a DIAL system program that 
provides a flexible means for transferring data between peripheral devices, 
including LINCtape, Teletype and high speed paper tape reader/punch, line 
printer, card reader, and RS08 and RK08 disks. Symbolic and binaryfiles, as 
well as absolute data, can be processed via PIP. PIP also has the facilities 
to  make more than one copy at a time of a tape or disk, to copy just the 
DIAL area of a tape and to rewind and unload tapes. The I/O devices 
are monitored by PIP during a transfer; if an error occurs, three options 
are available to  the user. The operation can be retried, the error can be 
bypassed (e.g., a bad area on tape), or the error can be ignored. 

A brief series of scope mesages permit the user to specify the exact data 
transfer operation whiCh is then performed immediately after answering 
the last display. 

Minimum Hardware 
None 

Library Distribution 
Binary file on DIAL tape DEC-12-SE2D-UO. Described in DIAL manual, 

Operating Instructions 
The first scope message is: 

DEC.12-SE2D-D. 

PIP OPTlONS 

A---AUXILIARY YODE 
E---BINARY MODE 
S---SOURCE MODE 

283 



Type the appropriate abbreviation and press RETURN. 

If source or binary input was chosen, the second display is: 

INPIJT DEVICE 
. C---CARD READER 
H---HIGH SPEED READER 
L---LINC TAPE 
f?---RSO8JRKO8 DISK 
T---TELETYPE . 
Acceptable responses are: 

Device Response Meaning 
card reader C read columns 1 - 110, 

Caa; THRU, bb read columns aa-bb 

high speed H read tape and don’t start p r o  
reader gram 

H; P (or L) read tape and start program 
a t  loc. 200 in PDP-8 mode (or 
loc. 4020 in LINC mode) 

tape must 
be terminated 
by CTRL/Z) 

H1; P addr read tape and start program in 
field 1 in PDP-8 mode a t  loca- 
tion “addr” 

LINCtape Ln; name read file “name” from tape 
unit n 

disk Rn; name read file “name” from logical 
disk unit n 

Teletype same as high speed reader, but use T 
instead of H in response. 

The output device message is displayed next. 

OIJTPIIT DEVICE 

H--- HIGHSPEED PIJNCH 
1, - - -L I NC TAP E 
p--- LINC PRINTER 
R - - -RSO R 3 RKO R D I SK 
T--- TELETYPE 

Acceptable ‘responses are: 

Device Response Meaning 

high speed punch H Punch the f i le on the  high 
speed punch 

Punch the f i l e  on the  high 
speed punch, but don’t punch 
zeros 

H; DZ 

284 



LINCtape Ln; name Write file “name” on tape unit 

line printer P Print file on printer 

disk Rn; name Write file “name” on logical 
disk n 

Teletype T Punch the file on~the low speed 
punch 
Punch the file on the low speed 
punch, but don’t punch zeros 

If auxiliary mode was chosen in the first display, the second mes- 
sage is: 

n 

- 

T; DZ 

OPTIONS 

C---COPY SPECIFIED BLOCKS 
D---DUPLICATE TAPE 0 ONTO 1 
S---COPY SYSTEM 
U---COPY IINIT 

I 

Reply as follows: 

Option Response Meaning 

duplicate tape D Copy tape on unit 0 onto tape 
on unit 1 

Copy tape on unit 0 on tape 
units 1 through n 

Dn 

Options C, S, and U display the source and binary mode input and 
output device messages and must be answered as follaws: 

copy blocks Dn; fb, nb Copy nb blocks starting a t  
block fb from tape (L) or disk 
(D) unit n 

Place file on disk (D) or tape 
(L) unit n starting a t  block fb 

copy system Dn Copy blocks 300-345 and 350- 
370 from disk (D) or tape (L) 
unit n . 

Write them on disk (D) or tape 

in put file 

Ln; fb, nb 

output file 
Dn; fb 
Ln; fb 

input file 

Ln 

output file 
Dn 
Ln (L) unit n 

input file 

285 



copy unit 

L \ ~ A E ~ M A T  
DECTAPE 

Dn 
Ln 4L) unit n 

output file 
Dn 
Ln (L) unit n 

Copy tape on disk (D) or tape 

Write tape on disk (D) or tape 

0 4 2 3 4 5 6 7 8 9 10 11 

2 5 0 11 1 4 7 10 0 3 6 9 
* 

PRTCl2-F 
(DEC-12-Y IYA-D) , 

e. The “mark track” on LINCtape is 4-bit oriented and on DECtape 
is 8-bit oriented. The TC12-F hardware has a special window 
register, but only the “block mark” (BM) is decoded. Data flags, 
bit shuffling, and the computation and verification of the check- 
sum are all done with software. 

Minimum Hamare 
PDP-12B with PRTCl2-F option 

Library Distribution 
The source is on DIAL tape DEC-12-SE2D-40; the binary, on DIAL tape 
DEC-12-SE3B-UO. Described in document DEC-12-YIYA-D. 

Operating Instructions 
After it is loaded, the program displays an introduction followed by three 
sets of questions for the user to define the operation. 

The first display is an introduction to the program. Press the LINE !TED 
or RETURN key to display the second message. 

The READ questionnaire is displayed next. 

286 



R E A D  B L O C K S  
T A P E  FORMAT U N I T  
S T A R T I N G  W I T H  BLOCK 
FORMAT A -- P D P - 8  8 B 1  WORDS/BLOCK 
FORMAT B -- P D P - 1 2  4CICI WORDS/BLOCK 
FORMAT C -- OTHER ( P D P - 9 r  10r  15r  W I T H  60Q I2-BIT 

WORDS / BLOC K 1 

_ _  ” 

Type in each value followed by a carriage RETURN and then press LINE 
FEED to advance to the next display. 

The WRITE questionnaire must be answered. 

W R I T E  T H E  R E S U L T  
I N  T A P E  FORMAT ON U N I T  
S T A R T I N G  A T  BLOCK 
FORMAT’A -- P D P - 8  201 WORDS/BLOCK 
FORMAT B -- P D P - 1 2  40cI WORDS/BLOCK 
FORMAT C -- OTHER c p D P - 9 ~  181 1 5 r  W I T H  6@0 1 2 - B I T  

WORDS/BLOC K 

Again, type the correct values, each followed by a carriage RETURN. 
Press LINE FEED when completed t o  display the last message. 

Respond to the PARITY questionnaire: 

C H E C K  P A R I T Y -  
B S P E C I F I E S  NO 
1 S P E C I F I E S  Y E S  

Type 0 or 1 and press LINE FEED. The requested operation is performed. 
(Be sure sufficient tape has been wound on t h  take-up reels before press- 
ing line feed.) 

QANDA 
) 

(DEC-1 2-FI SA-D) 

Description 
QANDA is a PDP-12 subroutine written in LINC mode which allows a user 
to display textual information on the scope, ask questions of the viewer, 
allow editing of the input, and receive responses thereto. 

Minimum Hardware 
PDP-12 

Library Distribution 
The source and binary are on DiAL tape DEC-12-SE3B-UO. Described in 
document DEC- 12- FISA- D. 

287 



Operating Instructions 
The subroutine is called by the following format: 

JMP QAlNlT 
TXTSTR /POINTER TO TEXT STRING 

(HALF WORD ADDRESS) 

(HALF WORD ADDRESS) 

.+1 

.+2 ANSWER ' /POINTER TO ANSWER BUFFER 

.+3 REFRESH return 

.+4 DONE return 

The calling sequence must be in LINC mode. 

A JMP to QAlNlT will initialize the subroutine and fill 
the answer buffer with the underline character ( ). The 
subroutine must be initialized at  least once. QAlNlT is 
located a t  the relative address 0 with respect to the 
beginning of the routine. 

Points to the first character of the textual information 
to be displayed on the scope. 

.+l 

Characters in the text string which have special meaning are: 

Character Code Meaning 

RETURN End of a line of display. Place next charac- 
ter on next line. 

< 74 Interpret the decimal number immediately 
following < as the number of characters 
in the question field (range 1-9). 

43 

1 34 End of text string. 

F 06 Treated as a special character only i f  it 
appears a t  the beginning of a line. If 
present, the entire line will be displayed in 
full-size character format. F will not appear 
on the scope. 

H 10 Treated as a special character only if it 
appears a t  the beginning of a line. I f  
present, the entire line will be displayed in 
half-size character format. H will not ap- 
pear on the scope. If neither F nor H is 
present at  the beginning of a line, half-size 
is assumed, and the first character of the 
line will appear on the scope. Intermixing 
of half and full-size characters between 
lines is legal. 

The 6-bit character string must conform to the character set accepted 
by DIAL. 

288 



Points to the first character of the answer buffer. The answer buffer need 
’ not be set up in any special way; it must be in length at least the number 

of half words equal to the sum of the number of characters in each ques- 
tion field plus one for each question field plus one. 

Upon entry, QANDA will initialize the answer buffer. All characters in 
each answer field are initialized to the underline character (00). Code 74 
precedes each answer field. Code 34 is the terminator. These codes are 
placed in the answer buffer,by QANDA upon initialization. 

Characters, as they are received by QANDA from the Teletype, replace 
code 00 from left to right in each answer field. 

Conditions will always be such that the presence of a null value (00) in an 
answer field will guarantee that all remaining characters in that field will 
be set to 00. Note that an all-null field is possible. 

If the responses to questions are dealt with as received, the same answer 
buffer may be used with various text strings in sundry calls to QANDA, 
since it will be initialized by QANDA upon each initialization entry; the 
area reserved must, of course, be of sufficient length to accommodate 
the requirement among the text strings. 

, 

‘.+3 

QANDA will refresh the scope once and then wiI1,return to this address, 
provided a LINE FEED has not been typed. This return is provided so that 
the calling program may periodically check external conditions: e.g., a 
sense switch may be checked or the program may display a mesSage 
while awaiting completion of a tape instruction which it may check follow- 
ing each refresh. Examining a partial answer buffer, however, is not 
recommended, because the answer buffer can be edited a t  any time by 
the typist. 

To maintain the display on the scope, QANDA has anothei entry point, 
QARFSH, which will not re-initialize the answer buffer. QANDA must be 
entered at this point each time it is to be refreshed. It is located a t  the 
relative address QAlNlT 4- 53. 

QANDA will always return to .+3 or .+4 following the instruction JMP 
QAlNlT, regardless of the address of the instruction JMP QARFSH. A 
common situation is to place the instruction JMP QARFSH at .f3 follow 
ing JMP QAINIT. 

.+4 

QANDA will return to this location only if either 

1. LINE FEED is struck, or 
2. RETURN is struck and no question fields exists. 

A return to this address signals that the typist has completed his input. 

INPUT 
Input is received from the Teletype keyboard. Legal keyboard characters 

289 



are converted to their 6-bit equivalent and displayed on the scope. The - following input characters are not displayed, but are treated as special 
characters. 

Character Code Meaning 

\ 34 lngnored on input. 

36 The scop,e display is, reinitialkeg. ell 
answer'fields are reinitiaked to the un- 
derline character (-). 

RUBOUT 37 A cursor will always appear on the scope 
in front of the next character to be typed 
(unless there are no question fields). 

Typing RUBOUT will delete the charac- 
ter preceding the cursor and will move 
all characters following the cursor one 
character to the left, unless the cursor 
is initially at  the beginning of a question 
field. 

.., ALT MODE 

RETURN 43 The cursor is moved to the beginning of 
the next question field. I f  the'cursor is 
currently in the last field, it will be 
moved to the beginning of the first field 
when RETURN is typed. 

If there are no question fields, RETURN 
will have the same effect as LINE FEED. 

LINE FEED 45 Causes QANDA to exist to the "DONE" 
return. 

TAB 47 Ignored on input. 

< 74 Moves the cursor left one position. Sub- 
sequent typing of another legal char- 
acter will cause the present character on 
the scope to the right of the cursor to 
be replaced by the character just typed. 

> 76 Moves the cursor right one position un- 
less that character is the underline char- 
acter (-). 

OUTPUT 
Al l  output is to the scope, as described above. 

QANDA is written in LINC code. Along with the keyboard input subroutine, 
GETKBD, it occupies two blocks (512 words) of binary LINCtape. It may 
be assembled with the calling program by adding the source to the pro- 
gram. If this is done, remove '1000 a t  the beginning of the subroutine. 
It may also be called by reading the binary of the program into LINC 
location 1000 (memory blocks 2 and 3) and executing an effective JMP 
1000 and JMP 1053 to refresh. Two blacks of the binary must be read 
into core memory. 

- 

290 



SIGAVG 
(DEC-12-UZl A-D) 

Description 
SIGAVG is a multisweep signal averager that extracts an analog signal 
from a high noise external environment and displays the signal on the 
scope. Sampling rates can vary from 55 to 4095 microseconds/point/ 
instrumerit for up to-5 insfqments. Up to 4096 sweeps can be taken; 
the value of the sweeps, the sampling rate, and the delay after sync can 
be altered during data acquisition. In addition, the SIGAVG source can be 
modified by the user to customize the program to his particular needs. 

Minimum Hardware 
PDP-12A with KWl2A clock. 

Library Distribution 
Source file on DIAL tape DEC-12-SE2D-UO and binary files on tape DEC- 
12-SE4A-UO. Described in document DEC-12-UZlA-D. 

Operating Instructions 
Choose the appropriate version of  SIGAVG to suit the instrument from 
the following chart: 

Name # Channels Data Points 
SlGAVGl 1 1000 
SIGAVG2 2 500 
SIGAVG3 4 250 

Use the name of the program in that chart in the command 

LO NAME.UNI'C 

where unit is the tape unit with the SIGAVG binaries. The following mes- 
sages are printed and must be answered with values in the indicated 
ranges. 

message acceptable values * 
R: (sampling rate) 55 - 4095 (microseconds) 
N: (no. of sweeps) 1 - 4096 (sweeps) 
D: (delay after sync) (times clock rate) 

The following Teletype commands can be issued. 

CTRL/A Initialize averaging parameters 

CTRL/D Restart DIAL 

CTRL/Q Quit current operation. 

CTRL/R Rerun the last average. - 

CTRL/Z Zero out all previous results. 



Carriage ’ Argument terminator. 
RETURN Commence averaging. 

Position plotter pen. 
Commence plotting. 

Pause averaging and start view 
input mode (same as carriage 
RETURN in plot mode). 

Contract averaged data by a 
power of two. 

LINE FEED 

C 

P Enter Plot mode 
Terminate Plot mode 

T Type out average. 

V Switch from view input to 
view average or vice versa. 

X Expand averaged data by a 
power of two. 

W Write on LINCtape. 

SINPRE 
(DEC- 12-UW4A-D) 

Description 

SINPRE converts a double precision file, such as that from the Signal 
Averager program, into a single precision file by scaling the double p r e  
cision file to 28 bits (scope limits). The single precision file can be 
created on the same LINCtape as the original double precision file; 
internal checks in SINPRE prevent the new file from oveiwriting the old 
file. The conversion operation is specified by replying to  2 scope mes- 
sages, one to locate the double precision file and the other to determine 
the location of the single preci.sion file. 

Minimum Hardware 
PDP-12B. 

Library Distribution 

Source file on DIAL tape DEC-12-SE2D-UO, binary file on DEC-12-SE4A-. 
UO. Described in DEC-12-UW4A-D. 

Operating Instructions 

The following are the messages displayed by SINPRE requiring a response. 

292 



SINPRE 

CONVERT A DOUBLE PRECIS ION FILE TO 

A S I N a E  PRECISION FILE 

T.WE C TO C O N T I W E  - 
DOUBLE PRECISION FXLE 

SNOL PRECISION FKE 

FIRST BLOCK --- 
VNlT - 
F I R S T  BLOCK --- 
LAST BLOCK --- 
UNIT - 
MOUNT TAPES 

01 PROPER UNlTS 

TYPE C TO CONVERT - 
REpUESTED DATA 

HAS BEEN CONVERTED 

TYPE R FOR ANOTHER J0B 

REPLY - 
TISA 
(DEC-12-UW3A-D) 

Description 
TISA (time independent spectrum acquisition) acquires asynchronous 
(or synchronous) data simultaneously from 1 to 5 interfaced instruments 
that transmit X-Y data at rates that do not exceed 2 milliseconds/point. 
Asynchronous data can be acquired via potentiometers or shaft encoders, 
such that one input transmits X-axis data (independent variable) and 
the other transmits Y-axis data (dependent variable). The X coordinate 
can be arbitrarily defined by the user; thus, for example, the data points 
in an acquired spectrum can be made to  correspond to  wave numbers. 
Acquired data is displayed on the scope and stored on LINCtape. The 
moving window display is controlled by A/D channel knobs 0 and 4 and 
includes a cursor with X-Y decimal readout. For a 32K machine, TISA 
can acquire 29,184 data points. 

Once started, TtSA is in setup mode, during which the user can tailor 
the program to his experimental requirements by specifying such para- 
meters as the number of points to acquire and the sampling frequency 
of each instrument. In addition, frequently used parameter sequences 
can be saved on LINCtape and then specified by tape location. 

Minimum Hardware 
PDP-12B with KWl2A clock. 

293 



Library Distribution 
Binary file on DIAL tape DEC-12-SESA-UO, paper tape DEC-12-UW3A-PB. 
Described in  DEC-12-UW3A-D. 

Operating Instructions 
After loading (+LO TISA, unit$.), TISA is in setup mode and requests 
experimental parameters by the following messages. 

- r PARAMETER INPUT 
DO- 
1. LINCTAPE 
2. KEYBOARD 

1. MORE INSTRUMENTS 
2. START 

READ TBLK- 
UNIT- 1 

Setting Sense Switch 0 = 1 will erase all previous parameter input and 
initialize setup mode. After the parameters have been specified and data 
is being acquired, TISA is in A/D mode. When no data is being acquired, 
TISA is in pause mode. The following commands are operable. 

A/D MODE 
CTRL/H Halt all instruments 
Hn Halt instrument n 
P Polarize (invert) display 
F Freeze (half) display 
D Return to  DIAL 

PAUSE MODE 
Gn Go instrument n 
S Enter Setup mode 
W 
C Load CATACAL 
M Load MAGSPY 
L Load program from tape 
P Polarize (invert) display 
F Freeze (halt) display 
D Return to  DIAL 

Write data buffers on LINCtape 

INSTRUMENT K IS- 
(1 =ANALOG 
2 =ENCODED) 
STARTING POINT = f--)-H 
TOTAL POINTS = -c-f-+-$- 
SAMPLING 
FREQUENCY = -H 

294 



Bio.Mediial Sy$tems .............. 
Frequency Analysis ............. 
Signal Averaging .................. 
Signal Editing ... 
Time Interval Hi 
Chemistry Syste 
AIP-12 ..................... 
AlPOS .................................... 
Direct Memory Access .......... 

D o u m  Precision .................. 
Floating Point Number 

System .......... ......... 
Floating Point Processor ...... 
Gas Chromatography ............ 
Index Registers 
Mass Spectrosc 
Math Routines ...................... 
Memory Reference 

MIDAS ..................................... 
Pulsed NMR .......................... 
Single-word addressing 
Educational Systems ............ 
Analog-to-Digital Conversion . . 

BASIC .................................... 
COMMENT Command ............ 

Instructions 

ASK Command .......... 

Display Graphics .................. 
DO Command .. 
Engineering Curriculum ........ 
ERASE Command .................. 
Error Detection ....... 
FOCAL .......... 
FOCAL-12 .............................. 
FOCAL-12 Command 

Summary ............................ 

1 FOCAL-12 Operations .. 
12 FOR Command ...................... 
1 FORTRAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  

12 GO Command 
1 IF Command .. ........... 

15 Indirect Commands .............. 
19 Library GO .. ............. 
30 Library LOAD .. ... 
30 Library MAKE ........................ 
32 Library SAVE 
32 Logic Design Laboratory ...... 
20 Loading FOCAL-12 ................ 

Mathematical Functions 
19 MODIFY Command ................ 
19 Multi-User Segments .. 
33 Output Interval . 
25 Programming Techniques .... 
33 QUIT Command ...... 
32 RETURN Command 

23 SET Command 
31 Slow Plotting 

Sequential Commands ............ 

34 Student Programming ......... ~ 

24 Talking Computer ...... 
35 'Timesharing ............ 
56 Trace Features ...................... 
51 WRITE Command .................. 
37 Industrial Systems 
48 AD12 ...................... 
50 Analog Inputs ........................ 
38 Calibrating ........... 
45 Computation .............. 

....... 

47 Data Formatting .................... 
35 Data .Handling ...................... 
50 Digital Inputs 
49 Failure Detection 
39 Input Data Scanning ............ 
-40 Management A 

63 VR12 ...................................... 
Operator Aids 

295 

65 
44 
38 
46 
54 
46 
60 
60 
58 
59 
36 
42 
56 
53 
39 
61 
61 
48 
48 
46 
43 
45 
37 
43 
40 
55 
48 
67 
74 
70 
72 
73 
72 
71 
70 
72 
72 
73 
72 
75 



Clinicat bboratory -ern .. 79 
Accession Number Entry . . . . . . .  83 
Administration Update .......... 84 
Card Reader and Control ...... 89 
Central Processing Unit 

n. ical LAB-12 ............. 
nical LAB-12 Hardwa 

Clinical’LAB-12 Software ...... 84 
Communications Systems 91 
Computer-Autoanalyzer 

Interaction .... 
CRT Display System 
CRT Display Ter 
Data Collection 
Delete Data 84 
Disk Memory System 88 
Disk Storage System ............ 85 
LABMON ............ ................. a5 
Laboratory Instrument 

Analog Interface ................ 90 
Laboratory Instrument 

Laboratory Programs ............ 81 

Line . Printer ........ 
Manual Entry Con 
Monitor System . ........ 85 
On-Line Data Acquisition 

System .............................. 85 
Ordering Tests 
Patient File System 
Requisition Entry .................. 80 
Set-Up Analysis .................... 83 

Digital Interface .. 91 

LINCtape System .... 

Summary Print ..... 
Test Update ... 
Work Sheet Generator .......... 83 
Physics Applications . . 
Algorithm .............................. 95 
Dual Parameter ... 

Real-Time Clock .................... 103 
Buffer-Preset Register . ... 104 . 
Clock Control Register .......... 1q5 
Clock Counter Register ........ 104 
Clock Enable ............ 

k Status Regi 
t Control Pane 

KW12-A .................. 103 
KWl2-A Instructions . 
KWl2-B ....................... 

Real Time Interface .............. 103 
Simulated Inputs . .... 110 
PDP-12 Programming .......... 119 
1’s Complement Binary 

....................... 157 
............ 157 

Address Modification ............ 160 
AND .. 
ASCII Code ........ 
Basic lnterrup 
Break Field Register .............. 231 
Block Transfers and 

Checking ............................ 207 
Changing Memory Fields ........ 225 

Checking Ready Status ........ 144 

Microinstructions .............. 133 
............................ ‘123 

Control Console .................... 119 
Data. Field Register ................ 230 

............................ 130 DCA 
Device Selection .................... ia 
Display Instructions .............. 191 
Double Register Forms ........ 172 
Enable Tape Interrupt ............ 223 
Exam ...................................... 122 

Extended Addressing ............ 220 

Character Display ......... 194 

Combining . 

~ 

Execute Stop ............. .......... 123 

Extended Tape Operations .... 219 

296 



- 
Extended Units .................... 222' 
Fast.-Sample Mode ................ 203 
Fetch Stop ............. 
Fill .................... 

.......................... 122 
ines .................. 149 

(;r.&p Transfers .... 
Half Size Characters 
Half-word Instructions .......... 184 
Hold Unit Motion .. 22 1 
Horizontal Line Xope 

Display .............................. 193 
Illegal Combinations .............. 138 
Index and Skip Instructions .. 168 
Index Class Instructions ...... 163 
Index Registers 
Indirect Addressi 
Indirect Addressing 
Input/Output Instructions . . . .  143 
Instruction Field Buffer ........ 230 
Instruction Field Register ...... 230 
Instruction Location 

Register ............................ 158 
Instruction Trap .................... 238 
Instruction Uses ._.. ..... 144 
I,/O Preset ............................ 122 
IOT Instruction Format ........ 143 

Jump Instruction 
Keyboard / Reader 

Instructions ...................... 146 
Left Switch Register .............. 121 
LINC - 6141 .......... 229 
LINC Mode Interrupt .............. 233 
LINC Mode Instructions ........ 152 
LINC Mode ,Memory .._. 156 
LINC Scopes ........................ 191 
LINK Data Field ........... 
Logic Instructions ... 
Main Registers ......... 

Maintenance Mode ................ 223 
Major State Generator ............ 120 
Mark Condition. .__  
Memory Reference 

Microprogramming ... 
Mode Key ....... 
Move Toward Block 

Instruction ........................ 213 
Multiple Length 

Arithmetic ..... 
Multiplication ............ 
No Pause ......... 
Normal Mode ......................... 200 
Operate Microinstructions 
PDP-8 Mode Extended Memory 229 
PDP-8 Mode Interrupt ............. 232 
PDP-8 Mode Programming ...... 124 
PDP- 12 Program, Interrupt 
Printer/Punch Instruction 
Program Loops ............... 
Programming the 

Teletype Unit . .............. 146 
Processor Mode Changes .._.._ 229 
Right Switch Register ............ 121 
Sample Instruction ................ 200 
Save Field Register ......... 
SET Instruction ....... 

Single Step Key ........ 
Skip Class Instructions .......... 189 
Special Index 

Register lnstr 
Start 20 .......................... 
Start 400 ........ 

.............. 123 
Step Exam ...... 
Stop Key ................................ 123 
Store-Clear Instructions , . , . 
Subroutine Techniques .......... 187 
TAD ................ .................... 129 
Tape Format .......................... 215 

Instructions ...................... 156 

297 



Tape Motion .......................... 213 
Tape Motion Timin 

Transfer Instructions . 146 
Text Routines ........................ 149 
Traps ... ............. 238 
PDP-12 are .................... 241 
ADCON .................................. 261 
Add Binary ............................ 258 
Add Program 
ADTAPE .......... 
Assemble Program 
Assembling ............................ 247 

............................ 265 
................ 260 

Comments ............................ 248 
CONVERT ................ 
CREF12 .................................. 268 
DIAL Editor .. ..... 1 ....... 245 
DIAL-MS ................................ 243 
DIAL-V2 .................................. 243 

........................ 259 
Exit ........................................ 261 

..................... 274 
L8SIM _ ............................... 
Labels .. ........................ 247 
LAP-6 DIAL ............................ 241 
LINC Symbols ........................ 250 

. List ........................................ 257 

Load Binary ............................ 257 
.................... 276 

MARK 12 .............................. 277 
MILDRED .............................. 279 
Monitor Commands .............. 255 

......................... 281 

......................... 248 
operators ............................... 248 
Operators and 

PATCH .................................. 282 
PDP-8 Symbols ..... 
Permanent Symbols .............. 250 
PIP ............................. ;: ... 260, 283 
Print Index ............................. 260. 
Print Source .......................... 259 

Pseudo Operators .................. 255 

Special Characters .. 

PRTC12-F .............................. 286 

QANDA .................................. 287 
Quick List .............................. 257 
Save Binary .......................... 257 
Save Program ......................... 259 
SIGAVG .................................. 291~ 

....................... 292' 
SYSTEM BUILD ...................... 244 
System Concepts .................. 241 
SYSTEM INITIALIZATION ...... 245 
SYSTEM STARTUP ................ 243 
TISA . ................... 293 
User's Monitor Command .... 261 
Zero ........................................ 260 

298 



I 

.___ 

---1 

l- 

’ 1  


	Signal Averaging
	Signal Editing and Frequency Analysis
	Introduction I :
	Hardware Description
	A&ytical Instrument Package Operating System
	Multi-Instrument Data Acquisition System
	'Displayoriented Research Analysis
	Math Routines
	Specific Applications Software
	Engineering Curriculum
	Computers In the Schodl Laboratory
	FORTRAN
	FOCAL ;
	FOCAL-12
	Role of the Computer
	Introduction
	Function,al Description
	Software
	Hardware
	A Basic Program for Pulse Height Analysis
	Constructing the Detailed Algorithm
	PHA-12
	Kw12-A Real Time Interface
	Clock Counter Register
	Buffer-Preset Register
	KWl2-B and KW12-C Fixed-interval Clocks :
	Introduction
	tnput/Output instructions
	Programmi.ng the Teletype Unit
	LINC Mode Instructions
	index Class Instructions

	Index Registers
	Special Index Register Instructions
	SET Instruction
	Subroutine Techniques
	Half-Word Instructions
	Fast-Sample Mode
	LINC Magnetic Tapes
	Group Transfers
	Tape Motion
	LINK Data Field
	PDP-8 Mode Extended Memory
	System Initialization (DIAL-MS only)
	Using the Editor
	Using the Assembler
	Character Set
	Operators and Special Characters
	Pseudo Operators
	Monitor Commands
	CATACAL
	CONVERT
	CREF12
	DISPLAY
	L8SIM :
	NMRSIM
	PATCH
	SIGAVG
	LINE FEED
	Carriage RETURN
	SPACE
	BELL
	FORM

	SPACE

