
TSS/8 SYSTEM MANAGER’S GUIDE
FOR THE PDP-8/1
TIME-SHARING SYSTEM

DIGITAL EQUIPMENT CORPORATION MAYNARD, MASSACHUSETTS

1st Edition, August 1970
2nd Printing, July 1971

a

Copyright 0 1970, 1971 by Digital Equipment Corporation

The material in this manual is for informa-
tion purposes and is mbject to change wth-
out notice.

The following are trademarks of Digital Equipment
Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

CONTENTS

Page

PART ONE OPERATING TSS/8

CHAPTER 1 INTRODUCTION

1 . 1 Use of This Manual

1.2 Planning a TSS/8 Installation

1.2.1 Size

1.2.2 Power Requirements

1.2.3 Teletypes, Dataphones, and Cables

1.2.4 Environment

CHAPTER 2 BUILDING A TSS/8 SYSTEM

2.1

2.1.1

2.1.2

2.2

2.3

2.4

2.4.1

2.4.2

2.4.3

2.5

2.6

Initializing the System

Read-In Mode (RIM) Loader

Binary (BIN) Loader

Loading Monitor

Refreshing the Disk and Starting the System

Building the System Library

Logging In

Loading System Programs from Paper Tape with PIP

Loading System Programs from DECtape with COPY

Defining Account Numbers and Passwords

General Instructions for Dumping Disks to DECtape

CHAPTER 3 OPERATING THE TSS/8 SYSTEM

3.1

3.2

3.3

3.4

3.5

3.6

3.7

3.8

3.9

Loading the System

Starting System

Restarting the System

System Backup

Passwords and Accounting

Maintaining the System Library

Assignable Devices

Controlling Disk Usage

Controlling System Users

1-1

1-1

1-1

1-2

1-2

1-2

2-1

2-2

2-4

2-4

2-9

2-1 1

2-1 1

2-12

2-13

2-14

2-17

3-1

3-2

3-2

3-2

3-3

3-4

3-5

3-5

3-6

...
I l l

CONTENTS (Cont)

Page

3.10

3.11

Communicating With Usen

Special IOTs

CHAPTER 4 MODIFYING TSS/8

4.1 Modifying System Library Programs

4.2 Modifying TSS/8 Monitor

4.3 Control ling Monitor Execution

PART TWO TSS/8 MONITOR

CHAPTER 5 INTRODUCTION AND BASIC EXECUTION OF USER
PROGRAMS

5.1

5.2

5.3

5.4

5.5

Introduction

An Outline of the System

Sharing Time

Some Definitions

Talking to the User Program

CHAPTER 6 MONITOR: A M O R E DETAILED LOOK

6.1 Monitor as Interrupt Handler

6.2 I/O Wait Condition

6.3 Other Parts of Monitor

6.4 The Monitor Data Base

CHAPTER 7 SYSTEM STORAGE AND COMMUNICATION

7.1

7.2

7.3

7.4

7.5

7.6

Talking to the System

Disk Storage and Files

Talking to the Disk: The File Phantom

Disk Transfers

Assignable Devices

Error Handling

3-7

3-8

4-1

4-1

4-4

5-1

5-1

5-3

5-8

5-9

6-1

6-4

6-6

6-6

7-1

7-4

7-6

7-9

7-9

7-1 1

I V

CONTENTS (Cont)

Page

CHAPTER 8 DETAILS OF MONITOR'S DATA BASE

8.1

8.2

8.3

8.4

8.5

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

Figure No.

1-1

2-1

2-2

2-3

2-4

2-5

5- 1

8- 1

8-2

8-3

8-4

8-5

Input/Output Data Base

User Program Status

Monitor Scheduling Data Base

Disk File Data Base

File Phantom Data Base

TSS/8 CHARACTER SET

BUILDING A TSS/8 SYSTEM FROM PAPER TAPE

BUILDING A TSS/8 SYSTEM FROM DECtape

TSS/8 HARDWARE CONFIGURATIONS

REQUIRED MODIFICATIONS

ILLUSTRATIONS

Title Art No.

Typical TSS/8 Installation

Loading the RIM Loader

Checking the RIM Loader

Loading the B I N Loader

Loading and Starting TSS/8
BUILD or TSS/8 INIT

Calling and Starting INIT

16K TSS/8Configured for 16
Users

Relationship of Tables, DDBs,
a d Buffers

DEVTBL

Teletype Device Data Block

Teletype Character Buffer

Device Data Block - Reader

08-0540

08-054 1

08-0542

08-0543

08-0544

08-0545

08-0548

08-0549

08-0550

08-055 1

08-0552

08-0553

8-1

8-4

8-9

8-10

8-1 1

A- 1

B-1

c-1

D-1

E-1

Page

1-3

2-3

2-4

2-5

2-5

2-17

5-4

8-1

8-2

8-3

8-4

8-5

V

Figure No.

8-6
8-7
8-8
8-9
8-1Oa
8-lob
8-1Oc
8-1 1
8-12
8-13
8-14
8-15
8-16
8-17
8-18
8-19

Table Number

2-1

ILLUSTRATIONS (Con,)

Title

Device Data Block - Punch

Device Data Block - DECtape

Job Status Information

Job Status Blocks

STR0

STR1

STR2

File Retrieval Information Block

ReadNrite File Parameter

CORTBL

PRGTBL

DSUTEL

File Directories

Storage Allocation Table

FIP Tables

UFD Retrieval Data

TABLES

Title

Art No.

08-0554
08-0555
08-0556
08-0557
08-0558
08-0558
08-0558
08-0559
08-0560
08-0561

08-0562
08-0563

08-0565

08-0565
08-0566

08-0582

Page

8-5
8-5
8-6
8-6
8-7
8-7
8-7
8-8
8-8
8-8
8-10
8-10
8-1 1
8-12
8-12
8-13

Page

RIM Loader Program (High-speed version) 2-2

.
v i

Preface

This Guide i s intended for the TSS/8 System Manager - the person responsible for

operating and maintaining the TSS/8 software system. The Guide describes how to

load and to build the Monitor, how to build a library of system programs, how to de-

fine account numbers and passwords, how to copy the newly built system onto DEC-

tape, haw to maintain the system, and much more.

This information i s not required by the TSS/8 user. In fact, the TSS/8 user should

not have access to this Guide without the System Manager's consent.

Part One describes the operation of a TSS/8 system. Chapter 1 introduces the Guide

and the System. Chapter 2 explains i n depth haw to build a complete, operational

TSS/8 software system. First familiarize yourself wi th system building and then refer

to the summary in Appendix B. Chapter 3 describes haw to maintain an operational

system - the system library, user files, account numbers, passwords, etc. Chapter 4

describes methods for modifying the TSS/8 Monitor.

Part TWO contains a description of the actual TSS/8 Monitor and haw i t i s used to

service multiple users simultaneously. It also describes the Monitor's internal tables.

This information i s useful to installations where Monitor w i l l be modified.

Decimal numbers are used throughout this document except where indicated - 101 l8

i s octal, 101 1 i s binary, 101 1 i s decimal. 2

vi i

Part One

Operating TSS/8

Chapter 1
Introduction

1.1 USE OF THIS MANUAL

Th is Guide describes those aspects of the TSS/8 system which are of interest only to the System

Manager, the person responsible for managing and/or operating the TSS/8 system. This Guide i s a

companion piece to the Chapter on TSS/8 in Introduction to Programming 1970 which describes i n

detail the operation of the system and its many features available to the on-line TSS/8 user.

The TSS/8 system consists of a comprehensive collection of system software (computer programs) and a

system hardware configuration (computer and peripherals). TSS/8 i s available in the various hardware

configuration shown in Appendix D. The system software supplied w i th a configuration i s tailored

specifically for that configuration. Monitor, however, i s structured SO that standard loading and

operating procedures apply for all configurations; these procedures are explained in this Guide.

1.2 PLANNING A TSS/8 INSTALLATION

TSS/8 i s a compact time-sharing system that does not require the refined environment of a big com-

puter. Typically, TSS/8's are installed i n the location where they w i l l be used - a classroom or

small computer lab. The following sections provide the information needed to plan the installation.

1 .2.1 Hardware Requirements

TSS/8 systems are made up of standard DEC cabinets. These are 71-7/16 inches high, 21-1 1/16

inches wide, and 30 inches deep. TSS/8 systems range from two to six of these cabinets. A small

system with one or two disks, 12-16K of core, the PT08 Teletype @ interfacing, and no DECtape,

fits in two cabinets. A third or fourth disk requires an extra cabinet. DECtapes require a cabinet.

I f the DC08 communications equipment i s used, it i s housed in its own cabinet. Adding the 689

Dataphone@ control option to the DC08 adds still another cabinet. Average TSS/8% are three to

four cabinets

-

@Teletype i s a registered trademark of the Teletype Corporation; Dataphone i s a registered trademark
of Bell Telephone Corporation.

1-1

1.2.2 Power Requirements

A TSS/8 installation requires two, and possibly three, 30-amp power outlets which wi l l accept Hubbell

three-prong twist-lock plugs. Al l power cords are 25 feet long.

NOTE

Outlets for 50-cycle power should be 20 amps.

The first cord services the processor and options except for the disk. For al l but the largest TSS/& t h i s

cord wil l service the processor and all such options. For large systems, where total power requirements

for these items exceed 30 amps, a second cord i s required. This power, whether from one cord or two,

i s controlled by the power on/off switch on the computer console.

The system disk, or disks, i s always powered by a separate cord since it should never be shut down,

even when the rest of the system i s turned off.

a

1.2.3 Teletypes, Dataphones, and Cables

Although the TSS/8 hardware itself i s a single unit, installations wi l l have either terminals or Data-

phones located nearby. These must be physically cabled to the machine. Normally, a l l Dataphones

wi l l be together; hence they wi l l require common cable lengths. (For PTO8 systems, the Dataphone

cable i s the PTO8F, for DC08Bs it i s the BCOlC-25, for 689s i t i s the 689LM.) These cables wi l l be

25 feet long unless specially ordered. Local Teletypes, i.e., those in the computer room hard-wired

to the machine, may require varying cable lengths depending on how they are placed around the room.

Teletype cables are 12 feet long unless specially ordered. (Local Teletypes plug into PTO8s or into

DCO8Bs.) To be sure that al l cables are of appropriate length, a map of the installation should be

made. A typical installation i s shown in Figure 1-1.

1.2.4 Environment

I t i s suggested that TSS/8 be installed i n an environment where the temperature and humidity can be

controlled. TSS/8 does not require a formal computer room, but i t should not be subjected to rapid

changes in temperature or humidity. ttcessive dust or smoke should always be avoided.

1-2

0
a DATA 0 PHONES 0

CONSOLE
TELETYPE

a

0 o n
0

LOCAL 0 TELETYPE

08-05 4 0

Figure 1 - 1 Typical TSS/8 Installation

1-3

Chapter 2
Building a TSS/8 System

Building a TSS/8 software system takes five steps:

1.

2. Refreshing the disk.

3.

4.

5.

Loading Monitor onto the disk.

Building the system program library.

Defining account numbers and passwords.

Dumping the newly built system to DECtape.

Steps 1, 2, and 4 are identical for all TSS/8 systems. Step 5 i s done only for systems which include

DECtape. Step 3 i s done in one of two ways, depending on whether DECtape i s available.

a. If the system does not include DECtape, all TSS/8 software i s distributed on paper tape.
These tapes include a copy of TSS/8 BUILD, five (5) Monitor tapes, a copy of XDDT,
and a copy of TSS/8 PIP. These tapes are all B I N format tapes. In addition, the System
Library Programs are distributed as SAVE format paper tapes. TSS/8 BUILD i s used to load
the rest of the B I N format tapes (as explained in this manual). PIP i s used to load the
SAVE f m a t tapes.

of PIP, a copy of COPY, i n B I N format, i s included: The System Library Program are
distributed on a single TSS/8 format DECtape.

b. I f the system does include DECtape, only the B I N format tapes are distributed. Instead

The description of step 3 i n this chapter i s divided into two parts. Follow the section which applies

to your configuration.

The program TSS/8 BUILD tells what to do to build the Monitor (Step 1). Then, i f specified, the re-

maining four steps that build a complete system are printed as instructions. A complete printout of the

TSS/8 BUILD dialogue i s i n Appendices B and C.

2.1 INITIALIZING THE SYSTEM

Before using the computer system, all units should be initialized; that is, all switches and controls

should be set as specified below.

1. Main power cord i s properly plugged in.

2- 1

2.

3.

4.

5.

6.

7.

8.

9.

Teletype i s turned ON.

Low-speed punch i s OFF.

Low-speed reader i s set to FREE.

Computer POWER key i s ON.

PANEL LOCK i s unlocked.

Console switches are set to DF = OOO
SING STEP and SING I N S T are not set.

High-speed punch i s OFF.

DECtape REMOTE lamps are OFF.

IF = OOO SR = oo00

The system i s now initialized and ready for the RIM Loader to be loaded into core using the PDP-8/1

console switches.

2.1 .1 Read-In Mode (RIM) Loader

When a computer i n the PDP-8 family i s first received, its core memory i s completely demagnetized.

The computer "knows" absolutely nothing, not even how to receive input.

The RIM Loader, the first program loaded into the computer, i s loaded using the console switches.

The RIM Loader instructs the computer to receive and store, in core, data punched on paper tape in

RIM-coded format. Table 2-1 contains the RIM Loader Program.

The procedure for loading (toggling) the RIM Loader into core i s illustrated in Figure 2-1. Once RIM

has been loaded, a good programming practice i s to verify that all instructions have been stored

properly. Figure 2-2 illustrates how to ver i9 storage as well as how to correct an incorrectly stored

instruction.

Tab1 e 2- 1
RIM Loader Program (High-speed version)

Location Instruction Location Instruction-

7756
7757
7760
776 1
7762
7763
7764
7765
7766

6014
601 1
5357
6016
7106
7006
7510
5374
7006

7767
7770
7771
7772
7773
7774
7775
7776

6011
5367
6016
7420
3776
3376
5357
m

2-2

Set SR.007756

Depress
LOAD ADD

1 Yes

See Table 2 -I Instruction

Depress DEP

G Depress DEP

c1-) RIM I s Loaded

08-0541

Figure 2-1 Loading the RIM Louder

2-3

Set SR ~007756 <
Depress

LOAD ADD

See Table 2-1

No __

E I k z l - Deprrss DEP

Inst ructian

No r-

Figure 2-2 Checking the RIM Loader

2.1.2 Binary (BIN) Loader

The BIN Loader is a short utility program which, when in core, instructs the computer to read binary-

coded data punched on paper tape and to store data i n core memory. BIN i s used to load the TSS/8

BUILD program and INIT program (Chapter 3).

BIN i s furnished an punched paper tape in RIM-coded format. Therefore, RIM must be i n core before

B IN can be loaded. Figure 2-3 illustrates the steps necessary to properly load BIN.

2.2 LOADING MONITOR

After initializing the computer and loading the RIM and BIN loaders, you should load and use the

TSS/8 BUILD program to load the Monitor subprograms. Monitor i s composed of seven subprograms

supplied on binary-coded paper tape and identified as l i s t e d below.

1. S I System Interpreter

2. FIP File Phantom

3. XDDT Debugging Utility

4. INIT Initial izer

2-4

5. TS8 Field 0 Resident Monitor

6. TS8II Field 1 Resident Monitor

7A. PIP Peripheral Interchange Program*

78. COPY DECtape Copy Program**

BUILD is used to load each of these subprograms into core and then to transfer each onto the disk.

BUILD i s loaded into core using the B I N Loader as illustrated in Figure 2-4.

And Stops At

(->
08-0543

Figure 2-3 Loading the B I N Loader

*If system does not include DECtape.
**If system includes DECtape.

I Set SR.007777 I + Depress Load Add

I S a l SR.3777 I

_ _ _ _ _ _ _ TSS/8 Build or I TSS/8 lNiT

And Stops At
Trailer Code

1

Bulld= 0200
Starting Address INlT = 4200

!Depress LOAD ADD1

08-0144

Figure 2-4 Loading and Starting

TSS/8 BUILD or TSS/8 INIT

2-5

When BUILD i s started (at location 0200 as illustrated on Page 2-5) i t wil l begin its

d io I ogue by printing :

TSS/8 BUILD--(REVISED 2/15/70)

IS DISK AN RS08? (Y IF RS08- N IF DF32): y
DOES THE SYSTEM IKCLUDF DFCTPPF? (Y OR N): h'

Reply by typing Y (for p) or N (for no) and then terminate each line by typing the RETURN
key.

NOTE

All lines are teninated with the RETURN key,
unless otherwise specified.

After you type a reply, Monitor prints the following:

YOU SHOULD HAVE THE FOLLOWING BIN FORMAT PAPER TAPES:

1) SI e.. TSS/8 SYSTEM INTERPRETOR
2) FIP e - . TSS/8 FILE PHANTOM
3) XDDT TSS/8 DEBUGGING UTILITY
4) INIT TSS/8 INITIALIZRR
5) T S 8 * * * FIELD 0 RESIDENT MONITOR
6) TS8II 0 - FIELD 1 RESIDENT MONITOR
7A)PIP * * * PERIPHERAL INTERCHANGE PROGRAM *** IF NO DECTAPE ***
7B)COPY * - * DECTAPE COPY PROGRAM *** IF DECTAPE ***
THE BUILDING PROCESS IS DONE IN FIVE STEPS

1 . LOADING MONITOR ONTO THE DISK
2. REFRESHING THE DISK
3- BUILDING UP THE SYSTEM LIBRARY
4- BUILDING UP THE FILE OF VALID PASSWORDS
5 . DUMPING THE SYSTEM TO DECTAPE

(IF DECTAPE IS ON THE SYSTEM.)

ONLY THE FIRST STEP IS DONE UNDER THE CONTROL OF TSS/8 BUILD.
STEP 2 IS DONE UNDER CONTROL OF INIT. STEPS 3 AND 4
ARE DONE WHILE THE TIME-SHARING SYSTEM IS ON-LINE- STEP 5
IS DONE BY STOPPING THE SYSTEM AND RECALLING INIT-

STEP ONE - - -

AS EACH TAPE NAME IS TYPED OUT, MOUNT THE CORRESPONDING TAPE IN
THF HIGH SPEED READER AND TYPE CARRAIGE RETURN.

IF, FOR SOME REASON, A TAPE IS INCORRECTLY READ,
BUILD WILL TYPE * ? ' ARD REQUEST THE SkME TAPE: AGAIN-

SI :

2-6

NOTE

To hasten the building process, you may suppress
dialogue by starting BUILD at 201 instead of 200.

BUILD i s now waiting for the SI (System Interpreter) tape to be placed in the high-speed, paper-tape

reader.

Paper tapes are hand-placed in the high-speed reader as explained below (see Introduction to Pro-

gramming, Chapter 4, for complete details).

1 . Place the paper tape in the right-hand bin so that the beginning of the tape wi l l pass over
the sensors first.

Place several folds of leader tape in the left-hand bin with the tape passing under the tape
retainer cover.

Close the retainer cover over the tape so that the feed holes are engaged in the teeth of
the sprocket wheel.

Advance the tape until leader code* i s directly over the sensors.

2.

3.

4.

Once the paper tape has been properly placed in the reader with leader code directly over the sensors,

type the RETURN key, and the paper tape wil l pass through the reader and stop at the beginning of

trailer code. BUILD ensures that the data on the tape has been correctly received, i.e., that the

program i s complete, and that no data has been lost during the read in. If the data was not read in

correctly, BUILD prints a question mark (?) and the name of the incorrect program (in this case SI),
and waits for the same tape to be loaded again. For example, i f the SI tape had not been correctly

read in, the following would have been printed on your console.

SI:
? SI:

When the tape i s read in properly, BUILD prints the name of the next tape to be placed in the high-

speed reader. For example: BUILD prints

SI:
F I P :

and then waits for the FIP tape to be placed in the reader and the RETURN key to be typed, exactly

as when loading the S I tape. When FIP i s correctly loaded, BUILD prints XDDT: and waits for the

*See Introduction to Programming 1970

2-7

XDDT tape to be placed in the reader and the RETURN key to be typed. This process continues until

all Monitor subprogram tapes have been loaded. Then BUILD asks if an explanation of step 2 i s

required.

If al l Monitor subprograms had been loaded without difficulty, the printout on the console would ap-

peur os shown below, starting w i th STEP ONE --

STEP O N E - - -
A S E A C H T A P E NAME I S T Y P E D OUT, M O U N T T H E C O R R E S P O N D I N G T A P E I N
T H E H I G H S P E E D R E A D E R A N D T Y P E C A R F i I f i G E R E T U R N .

S I :
F I P :
X D D T :
I N I T :
TS8:
T S 8 I I :
P I P :

E X P L A I N STEP 2? (Y O R N) :

Monitor i s now built and loaded onto the disk. BUILD w i l l continue to print the dialogue explaining

the remaining steps of building a complete TSS/8 system. However, BUILD does not interact w i t h the

operator in performing the remaining steps as i t did when building Monitor.

I f you want BUILD to print the dialogue for step 2, type Y and the RETURN key. I f you do not want

the step 2 dialogue, type N and the RETURN key. BUILD w i l l omit explaining step 2 and respond w i th

E X P L A I N STEP 3? (Y O R N) :

to which you type Y or N, as w i th step 2 above. This sequence w i l l confinue until you reply to

E X P L A I N STEP 5 ? (Y O R N) :

If you reply w i th Y to the above, BUILD wil l explain the process of step 5. When it has completed

execution, the builder types:

E N D O F TSS/8 B U I L D

It then lwds and starts the initializer program, INIT, which prints:

L O A D , D U M P , R E F R E S H , S T A R T ?

2-8

.
and waits for you to specify which of the four operations you intend to perform, as explained i n the

following sections.

2.3 REFRESHING THE DISK AND STARTING THE SYSTEM

This section on refreshing only applies to systems which have just been built on the disk with TSS/8

BUILD.

After Monitor has been built, the next step i s to refresh the disk, i .e., to clear the disk of all data

except Monitor so that a new system can be constructed.

The first 20K of disk storage i s used to hold an image of Monitor. The next portion of disk for user

program swapping area - each simultaneous user on the system has a 4K swap area on the disk which

holds his active program while i t i s not i n core. Thus, for a lbuser system, there i s 64K of disk

dedicated to swap area. All disk storage above the swap area and any additional disks in the system

are available for on-line storage of system and user programs (files), and fi le and system directories,

thus al l this data i s deleted during refresh time.

Monitor's ini tializer (INIT) subprogram i s used to refresh the disk. BUILD transfers control to INIT

upon completion of its dialogue SO that I N I T automatically prints:

LOAD, DUMP9 REFRESH9 START?

and waits for you to specify the desired operation. In this case, type the word REFRESH and then the

RETURN key. (The other three operations are explained later.)

TO ensure that you don't refresh the disk accidently, I N I T wil l print REFRESH? and wait for you to

type YES or NO. If NO, I N I T wil l ignore your request to refresh and repeat LOAD, DUMP, REFRESH,

START and wait for another operation to be specified. I f YES, INIT prints its query for you to assign

the new system and library passwords. Refreshing the disk deletes all valid passwords, even the system

and library passwords. Therefore, to allow system files to be built up again, these two special pass-

words must be defined at this time. The first i s the system password (INIT automatically assigns i t to

account number OOO1) which allows access to accounting information and allows user passwords to be

defined. The second i s the library password (INIT automatically assigns i t to account number 0002)

which allows access to the system program library. These two passwords should be known only to you,

unless you wish to provide them to others, e.g., the system operator.

The system and library passwords must be made up of four alphanumerics. After specifying the passwords,

your printout to t h i s point might appear as follows.

2-9

L O A D , D U M P , R E F R E S H , S T A R T ? R E F R E S H
R E F R E S H ? Y E S
S Y S T E M P A S S W O R D ? TSS8
L I R R A R Y P A S S W O R D ? L B R Y

L O A D , DlJlYlP, R E F R E S H , S T A R T ?

This time you should answer by typing START, and INIT w i l l print

L O G I N M E S S A G E ?

Your reply should be Y (for yes) or N (for no), depending on whether you want to huve a message

printed on each console whenever i t i s logged in. The message may be a greeting, caution, special

instruction, or anything else you desire as long as the message has no more than 128 characters

(counting spaces).

When you reply by typing N, INIT wi l l print its next query, LOAD EXEC DDT?. However, when

your reply i s Y, INIT wil l respond w i th

E N D W I T H A L T MODE:

and position the console paper so that your message can be typed on the next line. After typing the

message, you should end by typing the ALT MODE key. (ALT MODE i s labeled ESC on some Tele-

types.) Your printout to this point and an example message would appear as shwn below.

L O A D , D U M P , R E F R E S H , S T A R T ? S T Q R T
L O G I N M E S S A G E ? Y
E N D W I T H A L T M O D E :
C O N S R A T ' J L A T I O N S . Y 9 U A R E NOW O N - L I N E W I T H TSS/8*

R E P O R T A N Y P R O B L F M S TO T H E S Y S T E M S U P E R V I S O R * !5
L O A D E X E C D D T ?

When you type the ALT MODE key at the end of your message a dollar sign ($) w i l l be printed as

shown above. INIT then prints its next query, asking i f you plan to I w d the XDDT program to de-

bug or modify Monitor (explained in Chapter 4). You should answer w i th N (for no).

The next query asks you to specify the number of core fields available for user programs. Remember

that fields 0 and 1 are reserved for Monitor. Therefore, the total number of core fields in the con-

figuration minus two should be your reply. For example, for a 16K (4 core fields) configuration

your reply would be 2. INIT then prints:

EnONTH - DA Y - Y E A R ?

2-1 0

and waits for the response of the current month, day, and year separated with colons. Next, I N I T

asks HR:MIN - You answer with the time of day expressed in military time using a 24-hour clock.

separate the hour and minutes with a colon. For example, 9:45 a.m. i s entered 9:&, 1:30 p.m. i s

13:30, 9:45 p.m. i s 21:45, and 12 o'clock midnight i s 24:OO.

Your printout to t h i s point of step 2 might appear as follows.

LOAD> DUMP> REFRESH> START? START
LOGIh NESSAGE? Y
END WITH ALT NODE:
CONGRATULATIONS. YOlJ ARE NC)W ON-LINE WITH TSS/8*

REPORT AhY PROBLEWS TO THE SYSTEM SUPERVISOR. !L
LOUD EXEC DDT? N
USER FIELDS - 2
MONTH-DAY-YEAR: 9 : 3 8 : 6 3
HR:MIN - 23:23

After entering the time of day and terminating the line with the RETURN key, I N I T transfers control

to Monitor. TSS/8 i s now on-line.

2.4 BUILDING THE SYSTEM LIBRARY

Building up the system library is done while the system is on-line, i .e., operational and running. You

should now log in with the system library account number and password and use the PIP (or COPY) sub-

program to load system programs from paper tape via the high-speed reader (or DECtape) onto the disk.

2.4.1 Logging In

Any system console may be used when logging in. Set the console LINE-OFF-LOCAL switch to LINE,

then type the RETURN key. Monitor wi l l print a dot (period) at the left margin of the console paper.

You should Log in with account number 0002 and the library password specified during refresh time.

The command LOGIN and account number and password wi l l not echo (print) on the console paper i f

valid. Hower, i f they are invalid (not defined), Monitor wi l l echo exactly what was typed, followed

by a question mark and then by another dot; for example, when you make a typing error when logging

in.

When the login i s accomplished, Monitor prints the version number of the TSS/8 Monitor being used,

the job number assigned to you when logging in, the number of the console being used, and the current

time of day. (These entries are fully explained in the Time-sharing System User's Guide.)

2-1 1

The login message i s printed next, followed by Monitor's dot indicating that the building session has

been successful to this point. For example:

T S S / 8 * 2 1 C JOB 01 Ki30 23:23:07
C O N G R A T U L A T I O N S . Y O U A 2 E N O 9 O N - L I N E W I T H TSS/8

R E P O R T A N Y P R O B L E M S TO T H E S Y S T E M S U P E R V I S O R .

Note that the LOGIN command, account number, and password i s not printed on the console.

2.4.2 Loading System Programs from Paper Tape w i th PIP

TSS/8 PIP i s used to load DEC-supplied system program paper tapes (BASIC, FOCAL, EDIT, CAT, PIP,

LOADER, etc.) and any other program of general use to TSS/8 users. TSS/8 PIP was lwded as one of

Monitor's seven subprograms. PIP i s brought from the disk into core and started by typing START 0

(start execution at core location zero) in response to Monitor's dot. START i s the first Monitor com-

mand to be used. Command lines as well as all input to PIP are always terminated by typing the

RETURN key.

When started, PIP prints INPUT: and waits for you to specify input. Now type the RETURN key to

indicate that input i s to be from paper tape. When PIP prints OUTPUT: you place the system program

tape in the high-speed reader (with leader code directly over the sensing holes) and then type the fi le

name of the program being lwded. TSS/8 users wil l use the fi le name to request the program. For

example, if BASIC i s being loaded, the printout would appear as follows:

* S T A R T 0

I N P U T :
OILITPUT : B A SI C
O P T I 3 N :

Your reply to OPTION: should always be S (and the RETURN key) when loading programs into the

system library. The S denotes thut the incoming program i s coded in TSS/8's SAVE format.

Monitor uses the SAVE format primarily for loading and backing up system library files (see Sections

3.4 and 3.6).

When the OPTION: line i s terminated, the program tape begins to pass through the reader and stops

at the trailer code. I f a program i s not correctly received, PIP prints "LOAD ERROR", and repeats

its request for INPUT:

2-12

I N P U T :
0 1 J T P U T : BA S I C
O P T I 0 N : S
L O A D E R R O R

I N P i J T :

When PIP prints INPUT: without the error messuge, you should load the next system program tape.

Your response to OUTPUT: i s the name of the program being loaded.

When all system programs have been loaded, you should reply to the last INPUT: by typing CTRL/B

and then the S key to return control to Monitor. Monitor then prints a dot and waits for a command.

Some installations may not choose to load all System Library Programs. However, one program,

LOGOUT, must be loaded on al l systems.

Once the library has been loaded with al l desired programs, log out. Until you need to change the

contents of the system library, you need not log i n with the library password again. See Appendix B for

a complete example.

2.4.3 Loading System Programs from DECtape with COPY

TSS/8 COPY i s used to load the DEC-supplied system program from the System Library DECtape. This

tape includes al l TSS/8 System Library Programs (BASIC, FOCAL, EDIT, CAT, etc.) along with a

number of sample and demonstration programs which may be useful in testing and exercising the system.

COPY has been loaded during step 1. To use it, type

- S T A R T 0

which commands TSS/8 to bring COPY in and start it. START i s the first Monitor command to be used.

Command lines as well as all input to COPY are always terminated by typing the RETURN key. At the

same time, mount the TSS/8 DECtape on tape unit zero (0). Make sure it i s in the on-line (REMOTE)

mode.

When started, COPY prints OPTION- and waits to be told what to do. Type LIST to obtain a listing

of all programs on the tape. COPY then responds DEVICE-. Type DO to indicate where the tape i s

mounted. The whole process wi l l appear on the Teletype as follows:

. S T A R T Q)

O P T I O h - L I S T
D E V I C E - D 9

642- F R E E B L O C K S

N 4 M E S I Z E D A T E
PASIC: .sav 6 6 ~ - M A R - ~ Q
F O C A L .S r \V 32 1 2 - M A R - 7 Q
C O P Y . S A V 20 3 - M A R - 7 0
E D I T *SAV 1 4 2 - N A R - 7 9
etc.

2-1 3

COPY continues to l i s t f i le names.

After printing al l f i le names, COPY again prints OPTION-. The exact contents of the System Library

DECtape may change as updates are made. In al l cases the directory w i l l start w i t h files whose names

are followed by a period and SAV (.SAN. This i s the f i le extension which indicates the type of file.

The files w i th an extension of SAV are the System Library Programs. They are to be lwded on every

system. Installations may also wish to load some of the sample programs.

To load a file, type COPY in response to OPTION-. COPY wi l l then print INPUT-. Respond w i th

DO: followed by the fi le name. For example: D0:BASIC. Do not include the f i le extensions. Just

type the fi le name. COPY wi l l respond w i t h OUTPUT-. Again type the f i le name. COPY w i l l load

the file from the DECtape. For example:

-

OP T I O N - COP Y
INPLJT - D @ : B A S I C
OUTPUT - B A S I C

OPTION -

Continue this process until a l l desired files are loaded. Some installations may not choose to load al l

System Library Programs. However, one program, LOGOUT, must be loaded. When done, respond

to OPTION- with EXIT. The System Library i s now loaded. To complete t h i s step, type LOGOUT.

OPTION- EXIT
t as
- L O G O U T

See Appendix C for a complete example.

2.5 DEFINING ACCOUNT NUMBERS AND PASSWORDS

At this stage of the system building process there are only two passwords defined: the system and

library passwords. To open the system up for TSS/8 users, more passwords must be defined. Each

such password i s actually two elements: an account number (1-4 octal digits) and a password (1-4

characters). Diffemnt users may have the same password, but each must have a unique account

number.

The password i s the user's private identity and i s used only for logging into the system. TSS/8 w i l l

not let a user access the system unless he types in a valid account number and pasword. Users should

not divulge their password to other users. The account number i s the user's public identity and i s

2-14

generally not kept secret. The account number i s important because i t identifies a user's disk library.

For each account number, TSS/8 maintains a library of saved files. Each such library i s independent

of a l l others. A user may only create files in his own library, i.e., the library associated with the

account number and password used to log in. Once he has created them, he may decide whether other

users may use these files, or change them.

The accwnt number i s actually two numbers, a project number and a programmer number. Account

number 5440 i s actually project number 54, programmer number 40. Account number 102 i s project

number 1, programmer number 2. For this reason, account numbers may be specified as two numbers

separated by commas (i .e., 1,2) as well as a single number (102). Users may specify that a l l other

users may share their files, only users whose project number i s the same, or no other users at all*.

Therefore, in defining new account numbers it i s useful to group users into projects, giving them ac-

count numbers which have a common project number.

The library account number (2 or 0,2) i s no different from any other account number. Users logged in

as account number 2 may use TSS/8 just as any other user would. The one thing that makes it special

i s that the R command automatically fetches the specified program from the library of account number 2.
In this way users may get programs from this library without knowing specifically its account number.

The reason the library password i s kept secret i s to prevent users other than the system manager from

altering its contents.

The system account number (1 or 0,l) i s privileged. When logged in with this account number and,

password, the user has access to several unique capabilities, such as defining new passwords. There

are other capabilities available only to the system account number which are discussed later i n this

manual. I t is, therefore, quite important that the system password remain secret.

LOGID i s the program used to create new account number, password combinations. It is only usable

by a user logged in with the system password. Therefore, the next step i n the system building process

i s to log i n with th i s password (the account number i s 1).

LOGID i s then called by typing:

* R LOGID

LOGID prints opening instructions, then an asterisk, and waits for you to specify the user's account

number and password separated by a space. As usual, terminate the line with the RETURN key. After

entering the combination, LOGID prints an asterisk and waits for another user account number-psword

combination.

*Chapter 10 of Introduction to Programming 1970 describes this capability in detail.

2-15

If, when entering a combination, you realize that you have made an error (typo or whatever) you need

only type the RUBOUT key and that line wil l be ignored. LOGID will print a question mark and an-

other asterisk so that you may enter the correct combination.

When all desired account numbers and passwords have been defined, you should type CTRL/B and

then S. To complete this step, type LOGOUT. For example:

* R L O G I D

T S S / ~ A C C O U N T M A I N T E N A N C F - -
* A C C ' T # < S P A C E > P A S S W O R D < R E T U R Y TO O P E N / C H A N G E , A L T M O D E TO C L O S E >

* 732 T O U R
* 1215 J O H N
* 1'766 H A R O
* 10'19 OTTO
* t R S
. L O G O U T

2.6 DUMPING THE SYSTEM TO DECtape

NOTE

For simplicity, these instructions assume a system w i t h one
disk and at leas t two DECtapes. For other system config-
urations, see the general instructions i n Section 2.7.

To dump the newly completed system onto DECtape, restart INIT at location 4200 of field 0 as illus-

trated i n Figure 2-5. When INIT i s started i t prints:

L O A D , DUI'lP, R E F R F S H , S T A R T ?

You should now mount DECtapes on units 1 and 2. Then set units 1 and 2 to WRITE ENABLE (see

Introduction To Programming for complete instructions). Then type DUMP. INIT will copy an image

of the entire system onto the DECtapes.
-___s________-

When INIT again prints:

L O A D , DUMP, R E F R E S H , S T A R T ?

the entire system has been copied. Remove the DECtapes from the spindles and write some identifica-

tion on the DECtape spoo ls before filing them. To make the system available for use again, respond

by typing START and complete the system startup procedure.

2-16

I Depress LOAD ADD I

Figure 2-3 = I L
p p r e s s START 1

Load INlT

Prints L.OA0

08-0545

Figure 2-5 Calling and Starting I N I T

2.7 GENERAL INSTRUCTIONS FOR DUMPING DISKS TO DECTAPE

The contents of an RS08 disk (256K words) wi l l not quite fit on a single DECtape (200K words). Part

of a second tape i s required. In general:

DECtapes
~ ~ _ _ Disks

1 2
2 3
3 5
4 6

Thus, for a one-disk system, the LOAD and DUMP process requires two tapes. Loading and dumping

always proceeds os follows: The DECtape selected as unit one (1) i s used first, then DECtape 2, then,

i f necessary, units 3, 4, 5, and 6. If the system includes as many DECtape drives as are indicated in

the table above, setting up for a LOAD or DUMP is very simple. Select consecutive units, starting

with unit 1 and mount the appropriate DECtapes. The LOAD or DUMP routine wi l l access them in

order.

If there are not os many tape units as there are DECtapes to be loaded or dumped, i t i s necessary to

use them more than once. The LOAD and DUMP routines work as follows: they use DECtape 1, then

Id for DECtape 2. If they find it available (i.e., a DECtape unit has been selected os unit 2) the

transfer continues on this unit. Then, i f a third DECtape i s needed, the routines look for unit 3 . I f

at any point a unit i s sought but not found, the routines wait for i t to be selected. Therefore, i t i s

2-17

possible to load the first tape of the system on unit one, dismount the tape, place the second tape on

the =me DECtape unit, w i t ch i t to unit two, and have the load continue automatically at that point.

The following procedure w i l l dump the contents of two disks on a system with two DECtape drives.

(Assume that the system has just typed out LOAD DUMP START 6 R REFRESH?) First set the DECtapes

to units 1 and 2 and write enable. Mount two scratch tapes on these units labeled TAPE ONE and

TAPE TWO. Now type DUMP. The system wi l l completely write DECtape 1, then automatically go

on to DECtape 2. At this point, switch DECtape 1 to LOCAL and rewind it. Now mount a third

DECtape on this unit, labeled TAPE THREE, set the unit select to three, and their, as the last step,

switch the unit to REMOTE. Normally, this procedure can be done in the time it takes for the system

to write DECtape 2. It w i l l then go on immediately to write DECtape 3. However, there i s no need

to hurry. If unit 3 i s not ready when i t i s needed, the system w i l l wait for it. The same procedure i s

followed for a LOAD.

This same general procedure i s followed for any system where there are not enough DECtapes to select

them a l l simultaneously.

2-18

Chapter 3
Operating the TSS/8 System

TSS/8 wi l l function with a minimum of operator control. In a typical installation, the operation

might consist of a morning startup, a system dump at night, and occasional type-outs of accounting

information. In addition, you may need to clean out old disk files occasionally to prevent the disk

f i le storage from being exhausted. If remote users wish to make use of the assignable devices

(Section 3.7), an operator wi l l be needed to mount DECtapes and paper tapes. Finally, there wil l

be the normal system updating - adding and deleting account numbers and perhaps adding new programs

to the system library.

NOTE

For simplicity, these instructions assume a system with one
disk and at least two DECtapes. For other system config-
urations, see the general instructions in Section 2.7.

3.1 LOADING THE SYSTEM

For an installation without DECtape, loading the system i s the same as that of building, described i n

Chapter 2. For an installation with the system copies on DECtape, loading i s a simple matter of call-

ing I N I T and reading in the system from DECtapes. I N I T i s the one paper tape which i s used contin-

uously even after the system has been built.

Using the Binary Loader (Figure 2-3), load I N I T into core field zero (see Figure 2-4) and start at

location 4200. When started, I N I T prints

L O A D , D'JI"IPr R E F R E S F ' > S T 4 R T ?

You should now mount on units 1 and 2 the DECtapes on which the system was copied, and then type

LOAD. The tapes wil l spin as the system i s being loaded into the configuration. (If the system in-

cludes multiple disks, there wil l be more than two tapes.) When the system i s completely loaded,

I N I T wi l l again print.

L O A D , D U M P , R F F R E S S H , S T A R T ?

3- 1

Landing the system i s just that simple once i t has been dumped onto DECtapes.

3.2 STARTING SYSTEM

If the system i s to be started after lwding i t from DECtape, reply to I N I T ' s option query

LOA01 DlJlYPt REFRFSHt START?

by typing START and replying to the startup queries as explained in Section 2.3.

When INIT i s not in core, INIT must be lwded from paper tape using the Binary Loader (Figure 2-4)

and start at location 4200.

In either case, you should specify the START option and reply to the startup queries as you did in

Section 2.3. When the HR:MIN? query has been answered, type the RETURN key to transfer control

to Monitor.

3.3 RESTARTING THE SYSTEM

The TSS/8 INIT program i s used to perform all system starts and restarts. It always begins its execution

bY typing:

LOAD, DUMPt REFRESH, START?

During normal system operation, INIT i s stored on the disk. To bring i t into core, stop the system and

start at location 4200 of field zero. This executes a special I w d routine in field zero resident Monitor

which reads INIT in from the disk and starts it running. If TSS/8 (and hence the Iwd routine) i s not

in core, it i s necessary to I w d the paper tape of INIT by means of the B I N Locider. (See Sections

2.1.1 and 2.1.2 for details.) Once INIT i s in core, start i t at location 4200.

3.4 SYSTEM BACKUP

Since TSS/8 on-line files change from day to day, you should maintain system backups on DECtapes.

To save the state of the system, first check, using SYSTAT, that all users are logged out. It i s im-

perative that al l users be logged out when the system i s stopped for dumping. Depress STOP and start
I

at location 4200 in field zero.

When INIT prints i ts option query

LOA9, DUMP, REFRKSH, START?

3-2

mount two scratch (empty) DECtapes, one on unit 1 and the other on unit 2, and set for WRITE

ENABLE. Now type DUMP, and the entire system, including al l user files, wi l l be loaded onto the

DECtapes. You can restore the system to this state at any time by using IN IT ' s LOAD option.

NOTE

For simplicity, these instructions assume a system with one
disk and at least two DECtapes. For other configurations,
see the general instructions in Section 2.7.

You may decide to perform a dump each night and to restore the system the next morning so that should

a fatal malfunction occur, you can restore the system.

3.5 PASSWORDS AND ACCOUNTING

When the system was first built, a number of passwords were defined. As the system i s used, you wi l l

need to add and change passwords and obtain records of system usage. These functions are possible

only when you log i n using the system password.

LOGID i s used to update the file of valid passwords. To use it, type

- R L O G I D

LOGID prints an asterisk to indicate that it i s ready to accept input. Type the account number (1 to

4 octal digits), a single space, and the password (1 to 4 alphanumerics). To define the password

(open the account) close the line by typihg the RETURN key. To delete the password (close out the

account) type the account number and password as above, but terminate the line with the ALT MODE

key (ESC key on some Teletypes). The account number and password wi l l be deleted, and any files

i n that user's library wi l l be deleted. LOGID wi l l print DELETED and another asterisk.

I t i s also possible to change the password for a given account number. To do so, type in the account

number and password and close with the RETURN key. When LOGID requests it, type in the new

password.

.R L O G I D

TSS/8 A C C O U N T M A I N T E N A N C E --
* A C C ' T # < S P A C E > P A S S W O R D < R E T U R N T O O ; E N / C H A N G E > A L T PIODE T O C L O S E >

* 1215 J O H N $ D E L E T E D
* 1 B 6 6 H A R Q

* 1 5 1 7 L U T H
C H A N C E P A S S W O R D T O : WILL

* TBS
- L O G O U T

3-3

The System Library Program, CAT, i s used to obtain system accounting information. CAT i s a dual-

purpose program: when called by a regular TSS/8 user, i t prints the contents of his library. When

used by the system manager, logged in under the system password, i t prints a report of the accounting

information for each user. This report consists of the accumulated time (in hours, minutes, and

seconds) for central processor usage and connect time as well as the number of disk segments currently

being used. This accounting information i s continually being updated by TSS/8 Monitor.

System accounts may be obtained at any time. However, eventually the system manager wi l l wish to

record the accumulated usage and reset the accounting clocks to zero. Most systems w i l l do th i s Once

a day. (TSS/8 can accumulate about a week of heavy usage before the clocks overflow.) At the end

of each accounting, CAT asks i f the manager wishes to reset the clocks. I f not, respond NO or type

the RETURN key. To reset the clocks, type YES. The --~.. accounting ~_I._.- clocks should not -~ be reset while

other users are on the system. - _ _ _ ~ -
NOTE

Logging in with the system password gives the user complete
control over the system files and directories, including the
ability to change (or destroy) them. Therefore, the password
must be used with caution. CAT and LOGID are the only
programs which should be used while logged in this way. Run-
ning other programs, such as BASIC, may alter critical files.
Be sure to log out after running CAT or LOGID to prevent this
possibility.

3.6 MAINTAINING THE SYSTEM LIBRARY

Generolly, once the system library has been built there i s no need to alter it. If you wish to add pro-

grams to the library, log in using the library account number and password and then use PIP, or COPY

to load the programs into the library. To I w d new versions of DEC-supplied system programs, use PIP

or COPY just as when building the library (see Section 2.4.2).

DEC-supplied system programs are TSS/8 binary programs stored in SAVE format. The system library i s

not restricted to just this One format. A user's BASIC, FOCAL, or FORTRAN program or other f i le of

interest to many users may and should be made available from the system library.

3-4

3.7 ASSIGNABLE DEVICES

The assignable devices (reader, punch, or DECtape) are among the most powerful features of TSS/8.

For consoles physically near the configuration, there i s no problem in accessing these devices; each

user handles his awn paper tapes or DECtapes. If the user i s remote from the configuration, an on-site

operator must be present to handle the user's tapes or DECtapes. The on-site system operator should

maintain a library of DECtapes for a l l users. When a user wishes to have one of his tapes mounted,

he communicates with the system operator via the TALK command. For example, he might type

- T 4 L K OF'S MOIJNT D E C T A P E #1982 O N U N I T 3

This message, together with the number of the console on which the message was typed, i s printed on

the system operator's master console. The operator may then use the same TALK command to acknowl-

edge the request and to indicate that the tape has been mounted. The TALK command may be used to

call any console. A remote user may request any local user to help him mount and dismount DECtapes

or paper tapes. See Chapter 10 of Introduction to Programming 1970 for more information.

3.8 CONTROLLING DISK USAGE

I t wi l l always be necessary to monitor disk usage to prevent the disk from fill ing up. The system ac-

counting routine (CAT) provides a convenient method of checking orl disk usage. For each account

number/password, CAT lists the number of disk segments. If a single user has a disproportionate

amount of disk, the system manager may then l i s t his directory to see what has been stored. To do this,

type R CAT:L instead of just R CAT. CAT wi l l ask for the account number of the user whose directory

i s to be listed. Only the system manager may l i s t another user's directory.

I J S F R N U M B E R - 5448

D I S K F I L E S F O R U S E R 54>4%) ON I - J U N - 7 B

NAME S I Z E P R O T D A T E
R T Y P F . B I N 1 1 2 l - J l J N - 7 Q
P E A C E . B A S 1 4 1 2 ~ - J U N - ~ B

T O T 4 L D I S K S F G N E N T S : 1 5

IJSER N U M B E R - t E \ S
* L O G O U T

3-5

If i t becomes necessary to delete some files for a user, the system manager may log in w i t h that user's

password and delete them. The LOGID program also provides a convenient way of deleting a l l of a

user's files without having to log in under his password. To do so, delete the password, thereby de-

leting al l his files. When this has been done, redefine the password.

The actual means of controlling disk storage wi l l depend on the particular installation. Some installa-

tions may keep DECtape copies of deleted files; others w i l l simply delete them. Some installations

w i l l have regularly scheduled times when the disk w i l l be cleared.

3.9 CONTROLLING SYSTEM USERS

The system manager has complete control over on-line users. If necessary, he may interrupt or even

log out a user. For example, a user may forget (or refuse) to release a device which i s needed by an-

other user. The system manager may force its release w i t h the FORCE command;

FORCE keybwrd number command

The FORCE command allows the system manager (logged in under the system password) to connect to

any other Teletype long enough to issue a command. For example, i f the user sitting at keybwrd 110

has the reader and w i l l not release it, the system manager may type I

. F O 3 C E 163 R E L E A S E R

RELEASE R w i l l be printed on the user's console (just as though the user had typed it) and the reader

w i l I be released.

The FORCE command works exactly like typing on the affected console. Commands entered by FORCE

are treated as Monitor commands only i f that console i s i n Monitor mode. The user at his own console

makes use of the CTRL/B (echoed tB) to put the console in Monitor mode. Within a FORCE command,

t (SHIFT/N) i s used to mean CTRL/B. For example, the above command could by typed

. F O R C E 10 * S ; R F L E A S E R

The tS (SHIFT/N followed by S) acts just l ike tBS (CTRL/B followed by S) and assures that whatever

the user at console 10 i s doing i s terminated, allowing the RELEASE command to be executed. In

general, when forcing a Monitor command, precede i t by tS; (SHITT/N followed by S and semicolon)

as shown above.

3-6

Only the actual command (FORCE) and the keyboard number need to be properly formatted for the

command to be considered valid. If they are not correct, Monitor wi l l return an error message to

the console which issued the command. For example,

. F O R C E 9 t S ; R E L E A S E R
F O R C E 9 * S ; R E L E A S E R ?

Monitor requires that keyboard numbers be octal numbers. I f the rest of the command, i.e., the part

to be forced, i s invalid, the command i s executed anyway. No error message i s typed back. However,

when Monitor attempts to execute the command for that console, i t detects the error and prints an error

on the console being forced, not the console which issued the FORCE command. For example, -

. F O R C E I @ t S ; R L E A S E R

The job connected w i th keyboard 10 i s stopped, but the reader i s not released. The following message

i s printed on console 10:

t P S ; R L E U S E R

R L E A S E R ?

FORCE may be used for input to system programs as well as commands to Monitor. For example, the

following sequence of commands would log in a user at console 7, call BASIC, load a BASIC program

ABC from the System Library, execute it, then log out.

. F O R C E 7 ? L O G I N 57 XXX

. F O R C E 7 tR B A S I C

. F O R C E 7 O L D

. F O R C E 7 A R C *
- F O R C E 7 RUN
. F O R C E 7 BYE
. F O R C E 7 ? L O G O U T

FORCE may be used only by a user logged in with the system password.

3.10 COMMUNICATING WITH USERS

Normally, the system manoger communicates with users via the normal TALK command. However,

there are times when it i s necessary to send a message to all users. The BROADCAST command i s used

for this purpose. BROADCAST may only be used when logged in with the system password:

3-7

.BROADCAST MESSAGE

The message indicated is sent to all Teletypes unconditionally. Active Teletypes aie interrupted.

For example,

.BROADCAST THE SYSTEM WILL BE SHUT DOWN IN 5 MINUTES

wil l cause the following message to be printed on all consoles:

*** THE SYSTEM WILL BE SHUT DOWN IN 5 MINUTES

3.1 1 SPECIAL IOTs

Chapter 10 of Introduction to Programming 1970 documents h e IOTs which are available to programs

running under TSS/8. In addition, here are two special purpose IOTs. Since they are not useful to

ordinary users hey are documented here.

- _ _ ~

PEEK Octal Code: 6423

PEEK allows a user program to examine Monitor core fields zero and one. It i s used by the SYSTAT

program to determine the status of individual users. PEEK i s also used by LOGOUT.

To use PEEK, load the accumulator with a pointer to a four-word block where:

Word 1 = Monitor field i n bits 6-8

2 = Starting Monitor address

3 = Starting user address

4 = Two's complement of number of words to transfer.

LOGOUT Octal Code: 6615

LOGOUT logs a user off of TSS/8. All assigned devices are released and the usei's Teletype be-

comes inactive. LOGOUT i s used as the last instruction of the System Library Program LOGOUT.

To use LOGOUT, load the AC with the job number of this job.

There i s an alternate use of LOGOUT. Load the AC with 0 . LOGOUT then returns the number of

jobs logged in with the same account number as the job executing the LOGOUT IOT. The job i s not

logged off the system.

3-8

Chapter 4
Modifying TSS/8

The information i n this chapter i s not necessary to operate TSS/8. Most system managers w i l l use the

TSS/8 software exactly as i t i s supplied. Other users, however, w i l l want to make minor modifications

or, in some instances, major system changes. This chapter describes the tools available for making

such changes.

4.1 MODINING SYSTEM LIBRARY PROGRAMS

Modifying library programs i s an on-line process. Users who are familiar w i th TSS/8's advanced

Monitor commands w i l l find it a straight forward procedure. Log in wi th the library password, load

the program into core, deposit the patches, then save the program again. For example, a user may

wish to modify EDIT so that it considers every sixth character position to be a tab stop. The process

i s as follows for the 1970 version of TSS/8 EDIT:

. L O A D E D I T

. D E P O S I T 2 7772

. S A V E E D I T - L O G O r l T

EDIT will now be changed on the disk. If the system includes DECtape, dump the whole system so that

the changed version w i l l be captured on the backup tape. If the system does not include DECtape,

but does have a high-speed punch, a new SAVE format paper tape should be punched wi th PIP. Other-

wise, the change must be made every time the system i s built.

Other System Library Programs may be modified i n a similar manner.

4.2 MODINING TSS/8 MONITOR

A formal procedure exists for making patches to Monitor. In order to understand how this procedure

works, i t i s necessary to understand how TSS/8 i s stored on the disk. The five pieces of Monitor (SI,
FIP, INIT, TS8, TS8II) are kept on the first 20K of the disk. Their respective disk addresses are

6 1

SI OOOOO-07777

FIP 10000-17777

INIT 20000-27777

TS8 30000-37777

TS8II 40000-47777

Although the third section is referred to as INIT, i t i s actually made up of three programs: the TSS/8

initializer, a debugging routine (XDDT), and a disk patch routine (DISKLOOK). To patch the system,

i t i s necessary to bring these routines into core. TO do so, stop the system and start at 4200. INIT i s

brought in and prints LOAD, DUMP, REFRESH, START? At this point the layout of core and disk i s

as follows:

HIGHEST
CORE FIELD

FIELD 1
FIELD 0

CORE STORAGE

n SWAP and F I L E

T S I I I

DISK STORAGE

08-0546

Within INIT, the three programs are positioned as follaws:

I INlTlALlZER I
[- DISKLOOK 1

7600

4400

777

200

08-0547

4-2

Starting at 4200 always brings INIT (plus XDDT and DISKLOOK) into the highest core field i n the

system. Thus, i t w i l l come into different fields for different systems.

When INIT comes in, i t prints LOAD, DUMP, REFRESH, START? To start the patching procedure,

type XDDT. This wi l l start the XDDT program. XDDT i s a powerful debugging tool which i s avail-

able through DECUS (order DECUS 8-127). It allows the user to control execution of his program

while debugging it. (A complete description of XDDT i s available from DECUS.) Before doing any-

thing, XDDT needs to know what core field i t i s in. To provide this information, type the core field

number (the highest one on the system, followed by a number sign ff)). Thus, for a 16K system, type:

At this time the data field lights should equal the instruction field lights. Now use XDDT to transfer

control to DISKLOOK by typing:

200'

DISKLOOK i s naw running, allawing the user to examine and modify single disk registers. To examine

a register, type its address (in octal) followed by a colon. DISKLOOK w i l l print the present content

of that register on the disk and wait for a new value to be typed. Enter the new value by typing 1 to

4 octal digits. Type the RETURN key to close the line. If a register has been opened but need not be

changed, type the RETURN key. To automatically open the next sequential register, type the LINE

FEED key instead of RETURN. Remember that disk locations are actually 5-digit addresses. For ex-

ample, location 2104 in TS8 is stored i n disk location 32104. Location 10 in FIP i s 10010, etc.

When all desired patches have been made, type CTRL/X to return to XDDT. To restart the system from

XDDT, type

4200'

An example of the usage of DISKLOOK:

LOAD> Dil>"IP> REFRESH> START? XDDT
34r
290 '
426Bl : 7904 5254
6 lnD: 6 6 3 6 1220

4-3

21241 : 03B0 320
21250: 0310 330

CTRL/X typed by user 4296 '
L O A D , DUMPS REFRESH, START?

Location 2601 i n TS8II i s changed from a NOP to a JMP. This change allows the system manager to

examine selected Monitor registers by entering an address i n the switches. If t h i s patch i s made, user

programs may not use EAE instructions. The pointer i n location 4465 of SI i s changed to point to an

error return. This patch disables the TALK command. Finally, locations 1241 and 1250 of INIT are

changed. This patch changes the device code of a PTO8 from 30, 31 to 32, 33. (Note, the exact

locations may differ i n future Monitors. These examples are for illustration only.)

All changes to Monitor are made on the disk. In this way they wi l l become effective at the next

startup. Starting the system brings TS8 and TS8II into core from the disk. SI and FIP are swapped in

by the system as needed. The exception i s INIT. Since i t i s already i n core when the patching i s

done, the core image, rather than the disk image wil l be used to start the system. Therefore, patches

made to INIT wil l not take effect immediately. To get the patched INIT, it i s necessary to start the

system, then stop it and start at 4200 of field zero, thus booting i n the disk copy of INIT.

Once patched, the system should, of course, be dumped to DECtape to preserve the patches. Systems

without DECtape must be repatched every time they are built.

4.3 CONTROLLING MONITOR EXECUTION

The XDDT program i s very useful for testing any modifications to Monitor. (Information on XDDT i s

available from DECUS, order number 8-127) XDDT i s always i n core with INIT. Thus, i t i s possible

to use that XDDT. When h e system i s started up, specify one fewer user fields to protect XDDT. If

the core field i s not available, you rnay request EXEC DDT. EXEC DDT i s XDDT loaded into Monitor's

buffer area i n field one. Th is restricts Monitor's capacity to three to four simultaneous users, but

otherwise does not affect it.

In either case, the starting address i s 7000 i n the appropriate field. Once Monitor i s running, you

rnay stop i t and start XDDT only while Monitor i s running the null job. You rnay then restart Monitor

at location 4201. If you stop Monitor outside of the null job, press CONTINUE and try again. Never

stop the system i f a device i s active.

--

4-4

Part Two

TSS/8 Monitor

Chapter 5
Introduction and Basic Execution of User Programs

5.1 INTRODUCTiON

Although it is not necessary to successfully operate TSS/8, knowing how TSS/8 Monitor words can be

helpful to managers. This section provides a brief overview of the major system components and how

they interact. It i s assumed that the user i s familiar with assembly language programming i n general

and PAL-I11 in particular. Also the reader should have a detailed knowledge of how to use TSS/8 at

the assembly language level and be familiar wi th software systems.

de. i-5

Some users wi l l want to modify Monitor. For this reason a listing of Monitor i s provided to each in-

stallation. Careful study of this listing should precede any attempts to change the code. (Comments

in the listings w i l l aid this study.) For users who are considering system modifications, this section

w i l l serve as an introduction to the listings.

5.2 AN OUTLINE OF THE SYSTEM

The basic design goal for TSS/8 was to provide each of 16 (or more) simultaneous users with the c a p -

bility of a 4K PDP-8. TSS/8 users should be able to write programs for the system which look just like

those written for a stand-alone machine. Gtisting programs should be able to be run without significant

modification, the differences being l im i ted to what i s necessary to make the program run efficiently

in a time-sharing environment. These programs should be executed directly by the processor rather

than being interpreted. In addition, TSS/8 would give the user convenient access to a disk. Disk

storage would be available to al l users on a first-come-first-served basis . Finally, the system should

make other I/O devices available to the user on an exclusive basis. Thus, a DECtape could be as-

signed to a user for as long as he needs it, then be released for use by other users.

The TSS/8 system which does all this based on a PDP-8 or PDP-8/1 wi th extended memory. The first

8K of core holds a resident Monitor program used to control the system. Additional fields (hom 1-6)

are used to hold user programs, one user to each 4K field. To allow Monitor to control the execution

of the user programs, a processor modification, the KT8/I, i s added to all TSS/8s. T h i s modification

5- 1

defines a new one-bit state register, the User Mode bit. When this bit i s cleared, the modification

i s disabled and the system i s said to be i n Exec mode. (The bi t i s cleared by the load address key;

therefore, its presence does not affect other programs which may be run on the system on a stand-alone

basis.) As long as the bit is disabled, the processor operates exactly l ike any other PDP-8. When

the user mode bit i s set (by an IOT), the time-sharing hardware i s enabled. This hardware inspects

each instruction as i t i s fetched from core for execution. If i t is an IOT instruction (6XXX) or a HLT

(7402) or an OSR (7404), execution i s inhibited. Instead, a flag, the User IOT flag, i s set. This

flag i s connected to the interrupt bus. Thus, when the processor i s i n User mode, any attempt to ex-

ecute these privileged instructions i s prohibited, and control goes, via the interrupt, to field zero

where Monitor i s resident. All other instructions execute normally. See Appendix E for more detail.

Monitor uses t h i s hardware modification to control the running of user programs. It always runs i n

Exec mode. However, when i t starts up a user program which resides i n one of the upper core fields,

i t first sets the Data and Instruction fields to that field, then puts the processor i n User mode. Only

then does i t iump to the user program. At this point, i t i s guaranteed that execution of the user pro-

gram wi l l not affect any other core field. The only way to do that would be to execute an IOT, which

traps back to Monitor. TSS/8 systems also include a real-time clock to assure that control wi l l even-

tually return to Monitor even i f the user program does not execute an IOT.

Although all IOT's are trapped, they are by no means illegal. In fact, one of Monitor's most important

functions i s to execute the valid user IOT's. It does this by simulating them in the software, then re-

turning control to the program (which never knows that the IOT wasn't executed by the hardware). In-

valid IOT's are ignored.

TSS/8 i s designed to accommodate more users than wil l fit into core simultaneously. Therefore, it

requires an external storage device for those users not i n core. The high-speed RS08 disk i s used for

this purpose. Each on-line user has a dedicated 4K area on the disk where his program i s stored when

i t i s not i n core. Programs are swapped in and out of core as needed for execution. The disk also

contains three nonresident portions of Monitor. These are infrequently used routines which are brought

into core only when needed. The remainder of the disk i s made available to the users for on-line

storage.

All TSS/8% must also have interfacing for multiple Teletypes. Depending on the number of terminals

i n the system, one of a variety of interfaces may be used. Typically, PTO8's are used for very small

systems, DCO8's for all others.

5-2

These are the primary elements of the system: 1) a modified PDP-8 or 8/I wi th extended memory,

2) a disk and controller, and 3) interfacing for multiple Teletypes. In addition systems may have

high-speed, paper-tape equipment and DECtape.

5.3 SHARING TIME

The most fundamental job of a time-sharing monitor i s the sequential execution (generally for short

bursts, or quanta, of time) of a number of user programs. This implies that Monitor has available to

it a place where a user program can be brought in order to execute it, and a place to put user pro-

grams when they are not being run. TSS/8 reserves one or more core fields within the PDP-8/1 as

areas in which to execute user programs. A user program, and hence a user area, i s 4K words long.

TSS/8 may have from 1 to 6 user areas, depending on the amount of core available. Similarly, TSS/8

reserves a portion of its disk as a place in which to keep programs which are not being executed.

These "swap areas" are also 4K each. The number of user cores i s not necessarily dependent on the

number of simultaneous users. Monitor simply uses as many as i t has available. The number of swap

areas, on the other hand, i s directly related to the number of simultaneous users for which the system

i s configured. There i s one dedicated 4K swap area on the disk for each simultaneous user.

User programs are executed by TSS/8 by bringing them into a user core from their swap area, executing

them, then returning them to their swap area on the disk, so that the next user program may be brought

in. User programs may be brought into any available user core, but when they are swapped out, they

always return to their assigned swap area on the disk.

TSS/8's swapping algorithm may be best illustrated by assuming a very simplified situation. TSS/8 has

a number of user programs running within it; each is doing hard compute, none i s engaged in any input/

output. Monitor first decides which user to run next. It chooses the user who has waited to run the

longest. It schedules this user to be brought into a user core. However, i t can only bring this user

into a user core which is unoccupied. Therefore, it must empty one by swapping its present inhabitant

(another user program) out. Before doing this, Monitor saves the running state of the program to be

swapped out. This information, the AC, PC, LK, MQ, and SC i s stored i n Monitor core. It then

writes the user program (whose state i s saved) out onto its respective swap area. Now the user program

selected to run next may be brought into core. Once i t i s in, its run state i s restored (the AC, PC,

LK, MQ, and SC of each user i s stored in Monitor when they cre stopped running) and the program i s

started up. This procedure i s continued as long as the user programs need to run.

Obviously, Monitor has to maintain status information about each user program, whether i t i s in core

or not. Indeed, i t must maintain more information than just a user program's run state. It must main-

tain all the information i t needs in order to decide i f a user program needs to be run or not. In actual

5-3

RESIDENT
MONITOR

CORE

MONITOR
IMAGE
(20K)

DISK STORAGE

08-0548

Figure 5-1 16K TSS/8 Configured for 16 Users.

operation, most of this status information deals with the state of a user program's input and output.

In our simplified case, where no user i s doing any I/O, the only information that needs to be main-

tained i s whether he i s done or not. If a user program completes its run, Monitor remembers this fact.

The program i s swapped out and stays out. If a program does not complete i t s run at the time when it

must be swapped out to allow another user to run, it i s remembered to be s t i l l runnable. When its turn

comes up ogain, this user wil l be swapped in to run some more.

The process of deciding which user to run next (scheduling) i s an important function of the Monitor.

The scheduling algorithm of TSS/8 Monitor i s t'rwnd-rObinlt. Monitor cyclically scans a table which

contains the status information for each user. If the user being checked by Monitor does not have to

be run (is not runnable) he i s skipped and Monitor goes on to loo& at the next user. When it finds a

user who needs to be run, it goes through the process of swapping out a user who has just been run but

who i s s t i l l i n core in order to free up a core field. It then brings i n the user who was selected to be

run, starts him up and allows him to run for a fixed time quanta. At the end of this time quanta (as

indicated by a clock interrupt) Monitor goes on to the next user to see i f he i s runnable. When i t has
looked at all the users, the Monitor schedular returns to look at the first job again. It then continues

to cycle through the table of users.

5-4

In a system wi th a single user field, the scheduling algorithm i s just that simple. The previous user

must always be swapped out to make room for the next. Once a user i s brought i n and started up,

there can be no further scheduling activity until he has completed his quanta, or time slice. Similarly,

once the user i n core has started to be swapped out, the system must wait until the next user i s com-

pletely swapped in before i t can do anything. (A user program may only be run when i t i s completely

i n core.) The only special scheduling case for a one-core system comes when only one user program

i s active i n the system. User programs are not automatically swapped out when they complete a time

slice. They are only swapped out when another user program must be brought into core to be run.

On the other hand, when the schedular decides that a given user should be run, i t does not blindly

swap i t in. It first checks to see i f i t i s already i n core. Thus, i f only one user program i s running,

no swapping takes place. When the program has been run for a quanta, its run state i s saved but it i s

not swapped out. The schedular scans through the table of user programs looking for one to run. Since

no other program needs to be run, i t gets right back to the program just run as the proper one to run

next. Finding this program s t i l l i n core, schedular simply restores its state and restarts it. Thus, ex-

cept for these periodic checks, the lone user job runs continuously.

The scheduling gets more complicated, and more efficient, when there i s more than one user core

available. The schedular maintains, besides i t s table of all user jobs, a table of al l user j o b s which

are in user cores. (A job may be i n core, on the disk, or halfway in between when i t i s being swapped.)

It actually scans the former table to decide who to swap next and the latter table to determine what to

do i n the meantime (while i t i s waiting for the swap to be complete). The swapping, once set up,

happens asynchronously with respect to the scheduling. Once i t has set up the swap, Monitor always

goes to its table of in-core programs looking for one to work on. When a user program i s scheduled to

be swapped out, i t disappears from the l i s t of in-core programs. Eventually, the program scheduled to

be swapped in next i s brought in. It then appears in the table of in-core programs and i s subsequently

run.

In the case of a system wi th two user fields (16K system) the table of in-core programs has two entries.

Entry one indicates which, i f any, user program i s i n field 2; entry two indicates which i s i n field 3.

In actual operation, there wi l l seldom be user programs in both core fields at once. In a two-user-

field system (again assuming our case of several running, compute-bound user programs) one field w i l l

always be swapping while a program i s running i n the other. This i s because the quantum of time that

a user program i s allowed to run i s (roughly) equal to the time i t takes to do a swap (a write followed

by a read). It works out as follows.

A user who has just been run i s scheduled to be swapped out. In the table of in-core programs, he i s

marked as no longer i n core. The schedular then goes to see i f there i s anyone i n core to be run. The

5-5

only candidate i s the other user core. If the timing i s right, a user program wil l just have finished

being swapped in. Schedular then sets up and runs it. (Note that i f th is swap i s not completed until

after the second swap was started, Monitor must wait for i t to cane in. This situation would occur i f

a transient error delayed the swap. On the other hand, if latencies on the disk were minimal, the

swap might be completed before the other program completed its run quanta. In general, however,

these two events wi l l be almost simultaneous.) At this point, a user program has been started at about

the same time another one i s to be swapped out. At the end of its run quanta, the swap should be

complete and a new program in and ready to run.

Thus, at any given time, one of the user cores i s being swapped while a user program i s being run in

the other. The data break capability of theaPDP-8/I allows these two operations to occur simultaneously.

Cycles are stolen from the running program to allow transfers to occur i n the other field. There i s (in

theory) no time lapse between the running of user programs. The next one i s always ready at the time

the user program being run finishes its time slice. Using the stcmdard time slice of 200 milliseconds,

this allows five users a second to be run. This situation i s i n strong contrast to the situation with a

single-user ccxe. Again assuming a 200-millisecond time slice, only half as many users may be run i n

the same time. This i s because the system cannot run one user while swapping another. During the

200 millisecond swap time, the system must simply wait for the swap to be completed. In the one-user

core system, swaps and runs alternate; i n a two-user core system they are simultaneous. It i s a fore-

ground-background operation.

Schedular depends on various interrupts to keep this process going. Specifically, the scheduling i s

driven by the clock and disk completion interrupts. After every successful swap and after every third

clock interrupt (i .e., 50 milliseconds) the schedular i s run. If schedular i s run because of a clock

interrupt, i t checks to see i f t h i s i s the fourth such clock interrupt i t has seen since i t started to run

the user i t i s presently running. If not, then this user has not been given his full quantum of run time.

He i s therefore restarted. When the fourth schedular clock call occurs, indicating that the user pro-

gram has run for a full 200 milliseconds, i t i s marked as having been run. Schedular then looks through

its table of in-core user programs until i t finds one to run. If no other programs are i n core, i t sees if

a swap i s i n progress. If one is, schedular knows that eventually a new user program wil l come into

core. It goes back and runs the same program. Eventually, the program being swapped wil l come in

and be run. Even i f there i s another program i n core, schedular checks to see if a swap i s i n progress.

If one is, i t simply starts up the next resident user program and runs it.

Whenever schedular finds that no swapping i s going on, i t checks to see if a swap i s necessary. A swap

i s necessary i f a user program which needs to be run i s out on the disk. Thus, when schedular finds

that no swapping i s going on, i t checks its table of user programs to see i f i t can find a runnable,

5-6

swapped-out user program. I f i t finds one, i t schedules t h i s program to be swapped in. (Generally,

this means swapping someone else out.) Once i t has set up the swap (if one i s called for) schedular

finds the next resident user program and starts i t up. (Note: the check for swapping activity actually

occurs every 50 milliseconds to make sure that the swapping rate i s kept up.)

A swap i s scheduled by putting a swap request i n the disk queue. If the disk i s active at the time the

swap i s scheduled, i t i s not initiated immediately. However, i f the disk i s inactive, the transfer i s

initiated (by setting up and executing a DMAR or DMAW) immediately. Either way, the user program

to be swapped i s removed from the table of in-core users. I t i s considered to be no longer in core at

the time i t i s scheduled to be swapped, even though i t may not actually be written out until some time

later.

Every time the disk completion interrupt occurs, the schedular i s run to see if there are any swap re-

quests pending i n the disk queue. If there are, the next one i s started immediately. I f the disk trans-

fer just completed was a swap in, meaning a new user program is now in core, the table of in-core

programs i s updated to reflect the new arrival.

Thus, the scheduling process consists of two asynchronous processes. Disk handlers, running off the

interrupt, are continually swapping users in and out of core areas. As they do this, they update a

table which indicates which user programs are i n user cores. These routines work on a queue of disk

requests. As soon as a transfer i s complete, as indicated by a disk completion flag, the disk routines

immediately start the next transfer on the queue. While the disk handlers are processing the requests

on the disk queue, other schedular routines are deciding what swaps, i f any, to do next. Once they

have made that decision, and queued the appropriate disk request, they scan the table of in-core user

programs, in order to select the next user program to be run. This table is updated by the disk-swap-

handling part of the schedular. Thus, a user program which schedular selects to be swapped in wil l

eventually be swapped into a core and hence appear i n the table of in-core user programs. Schedular,

scanning this table looking for a resident job to run, wi l l find i t and run it.

I t i s important to system efficiency that, at the time schedular goes to the table of in-core users to

look for someone to run, that i t find someone. If i t doesn't, schedular schedules a nonjob, the "null

job" to be run. This null job is run until a valid user program comes into core. (The null job i s a

tight loop in Monitor core which increments the accumulator. It does not take up a user core; i t i s

not swapped.) Clearly, in a one-user core configuration, the system spends a great deal of time in the

null job. From the time a swap i s initiated until i t i s completed, Monitor can do nothing but run null

job. In a two-user core system, the efficiency i s much greater. The background swapping assures that

a new user program wil l be i n core about the time the currently active program finishes its time slice.

More than two user cores v i r twl ly assure that time wi l l not be wasted running the null job.

5-7

The previous discussion of scheduling i s based on some radically simplified assumptions. We assumed

a steady number of compute-only jobs. With a more normal mix of programs, scheduling becomes much

more complex. User programs are being continually started and programs are being continually started

and halted. Those that are running may need to be interrupted for input/output. All this increases

the complexity of the scheduling. How these additional complexities are handled i s discussed further

on i n this manual.

5.4 SOME DEFINITIONS

In the preceding discussion, we have referred to the programs running i n TSS/8 as "user programs".

In fact, i n the system documentation, they are referred to as "jobs". Job i n this sense means something

slightly different than user program. It also means something different than "job" as i t i s used i n batch

processing systems such as the IBM 7094.

A job i n TSS/8 i s the capacity, or capability to run a program. A user, when he logs in, i s assigned

a job. He keeps this job, which has an associated job number, until he logs out. A 16-user system

i s thus a l b j o b system. At startup, it has a pool of 16 available jobs which it assigns to individual

users as they log in. Once i t has assigned all its available jobs, Monitor cannot accept more users

until one logs out and releases his job.

The distinction between a job and a user program i s clearest right after lagging in. The just-logged-

i n user h a s a job. He has been assigned a Teletype with which to intercommunicate and a 4K swap

track i n which to store his program. However, as yet he has no user program. In short, the job i s not

the program, i t i s the capability to run a program.

Once logged in, users are known to the system only by their job numbers. Monitor simply schedules

and runs jobs. The job numbers for a 16-user system are 1 through 16. The null job i s assigned job

number zero. Users who are trying to log in are assigned job numbers (since a job number i s required

internally even to get through the login procedure). I f the login i s successful, the user retains his job

number; if i t i s not, he i s forgotten.

Monitor maintains a table, JOBTBL, which indicates the status of each job. It has a one-word entry

for each possible job. If the job i s unassigned, this word i s zeroed. While the job i s defined, its

word i n JOBTBL contains a pointer to the complete status information for this job. Monitor also

maintains a table of in-core jobs. This table i s called CORTBL. It i s made up of a one-word entry

for each available user core. Each entry contains the job number (and some other status bits) of the

job which occupies that particular core. Finally, there is a single register, JOB, which indicates

which job i s being run at a given moment. JOB i s updated at the end of a job time slice, CORTBL i s

updated with each swap; JOBTBL is updated on log-in and log-out.

5- 8

5.5 TALKING TO THE USER PROGRAM

The preceding discussion was limited to compute-bound iobs, those that do no input or output.

Obviously, this situation i s rare. M o s t user jobs do a great deal of console I/O. For Monitor to

process this console I/O, i t must solve a number of immediate problems. First, i t must be able to

handle multiple consoles. This i s largely a hardware problem, solved by PTO8's or the DC08 hard-

ware. Al l TSS/8 configurations have one or the other, thereby allowing the system to input characters

from any given console and output them to any console. However, i t must also keep track of which

console i s which, and which characters came from which console. User programs on TSS/8 are regular

PDP-8 programs; as such they input characters from "the" console and output them to "the" console.

In a stand-alone system, which has only one console, there i s no ambiguity. In a TSS/8 system, where

many iobs are each outputting to "the" console, the potential for confusion i s considerable. The TSS/8

Monitor must maintain a table telling which console belongs to which job. Thus, when a job does con-

sole I/O, Monitor knows the individual console involved.

These are the immediate problems which Monitor must solve. However, in order to be useful, i t must

also be efficient. Normally, a PDP-8 program which i s doing I/O spends virtually all its time waiting

for the device. It i s Monitor's responsibility to recover this time and use i t to run another job.

Finally, Monitor should smooth out the I/O. TSS/8 i s a swapping system; user programs are i n core

only for short bursts, then they are swapped out to the disk. If a user program can only output when

i t i s in core, i t ' s typeout would cane in choppy bursts. Input would be worse s t i l l . I f a user could

only input when his program happened to be in core, he would never get any input done.

This problem of smoothing out I/O i s solved by maintaining buffers within Monitor. There i s a Tele-

type input buffer and an output buffer for each job i n Monitor. On input, as characters are received

from the console, they are put in the console input buffer for the job which i s associated with that

console. Thus, the program which i s to receive these characters need not be i n core. The same i s

true of output. Characters are taken from a job's console output buffer and sent to his teleprinter

whether the associated job i s i n core or not.

This console character handler may be thought of as the asynchronous part (asynchronous in the sense

that i t happens independently of the running of individual user programs). Each user's input and output

buffers are being filled and emptied (by Monitor) whether the user's program i s i n core or not. It i s

essentially an overhead function. A l i t t le bit of processor time i s stolen from whatever program i s

currently running and used to keep up the I/O for all active users.

This regularly scheduled (every 90 milliseconds) Teletype handler solves the problem of shuttling char-

acters between console and buffers. There remains the problem of passing them between these buffers

5-9

and actual user programs. This character passing occurs via the TSS/8 hardware trapping capability.

On input, the key instruction i s KRB, the keyboard r e d IOT. A user program, when it wants to input

a character, executes this KRB. The hardware modification causes a trap to Monitor, preventing hard-

ware execution of the instruction. Monitor, on identifying the trapped IOT as a KRB, gets a character

from the input buffer which corresponds to this iob, puts it i n the accumulator, and returns to the user

program at the instruction following the KRB. The user program need never know that the KRB was

simulated. I t acts exactly as i t does on a stand-alone PDP-8. The same procedure applies to output.

Execution of a TLS i s prevented by the hardware; a trap to Monitor occurs instead. Once it has iden-

tified the trapped IOT as a TLS, Monitor takes whatever was in the accumulator at the time of the

trap and puts i t i n the appropriate output buffer. Once again, the IOT h a s been precisely simulated.

(The asynchronous Teletype routine assure that characters placed in the output buffer are typed out

eventually.)

However, the ability to simulate KRB and TLS i s only half the battle. There remain al l the timing and

synchronization problems which are normally solved by the skip IOT's: KSF and TSF. In a stand-alone

PDP-8, KSF means '% there a character i n the input buffer?" In TSS/8 the one-character hardware

keyboard buffer i s effectively replaced by a multicharacter software input buffer. Thus, i n TSS/8,

KSF means, "Are there any characters i n the input buffer?" KSF, being an IOT, traps from a user

program. Monitor, upon identifying the trapped IOT as a KSF, checks that user's input buffer. If

there are any characters in it, Monitor simulates a skip by returning to the instruction i n the user pro-

gram which i s two registers beyond the KSF. Similarly, on output, TSF asks, "Is the output buffer

completely full?" I f i t i s not, Monitor simulates the TSF by causing a skip i n a user's program.

This arrangement allows for efficient user program I/O. It allows many characters to be passed be-

tween a user program and Monitor quickly. In a stand-alone system, it i s impossible to input charac-

ters at more than 10 cps, the Teletype speed. Under TSS/8, many KRB's or TLS's may be executed i n

a hundred milliseconds. For example, consider the following typical sequence of code:

LOOP, TAD I AX /AUTOINDEX
TLS
TSF
JMP 0 - 1
CLA
JMP LOOP

5-10

The first TLS puts a character in the output buffer but (assuming i t i s empty to start with), does not fill

it. Therefore, the first execution of the TSFskips and causes an immediate loop back for another TLS.

In this manner, a whole series of characters may be output in a few milliseconds. (By output, we

mean moved to the output buffer. It may be many seconds before the asynchronous Teletype handlers

get them all typed out. This, however, is of no concern to the user program.) Similarly, i f there are

many characters waiting i n the input buffer, they could all be picked up at the same time by a KRB

loop in a user program.

If the timing of these functions can be manipulated favorably, the system can handle input and output

efficiently. The object i s to separate the character I/O from the waiting. Rather than waiting 1/10

of a second between each character, put out 80 or 90 characters at once, then wait 8 or 9 seconds.

By bundling the I/O wait times into usable amounts, like 8 or 9 seconds, Monitor can use them to run

other jobs. This timing i s handled partly by the schedular and partly by the routines which handle

KSF's and TSF's. I t i s important that the user never hang in a KSF; JMP .-1 or TSF; JMP .-1 loop as

he does on a stand-alone system. This i s the code normally used to wait until more I/O can be done.

On TSS/8, these waits are 8 to 9 seconds. The user job cannot be left to waste processor time in this

loop. Therefore, when Monitor detects a KSF or TSF which i s false (;.e., the program must wait for

the device) i t stops the program just as i t would have if the time slice were up. The state of the pro-

gram i s saved. However, the program i s stopped in a special way. I t i s marked as not runnable and

the reason i t i s not runnable (it i s waiting for input or output) i s remembered. Since i t i s not runnable,

i t i s dropped from the run queue and, when schedular comes to i t the next time, i t wi l l not be run.

However, Monitor continues to keep track of the state of the I/O. At the time when the device being

waited for i s again available (about 8 seconds later for the Teletype), Monitor changes the job's state

back to being runnable. Now the next time the schedular looks at this job, i t w i l l run it. The job

w i l l be started up right where i t left off (at the skip instructions) but this time the skip w i l l be true,

allowing the program to continue. Thus, by trapping the skip IOT, Monitor has salvaged the wait

time from a job and used i t to run other jobs.

In order to make the running of user programs even more efficient, Monitor exercises control over the

keyboard and teleprinter flags. These flags are part of the status information for each user. The object

i s to turn the flag on, thus starting up the user program only when i t i s possible to process many char-

acters. On input, this i s done by setting up a "break mask". This break mask tells Monitor what char-

acters are important delimiters. For example, BASIC-8 considers carriage return and rubout to be de-

limiters. When BASIC-8 i s ready for keyboard input, i t executes a KSF to see i f there i s any. Typi-

cally, there i s not. (The user has not yet started to type in the next line in his program.) Therefore,

this user i s put in the I/O wait state and is marked as not runnable. He stays i n this state until a de-

limiter appears. His keyboard flag i s then set, he i s returned to the runnable state, i s scheduled, and

5-1 1

run. As soon as the program starts up, it executes KRB's to read input characters. BASIC-8 can thus

process a whole line of input i n a single, 200.millisecond time slice. Since this line probably too&

several seconds to input, this user i s actually taking up very l i t t le of the system's time. The same

situation applies to output. As the program outputs characters, these characters are placed in his out-

put buffer. As long as i t doesn't f i l l the buffer, the program i s allawed to continue running. However,

when the buffer does fill, this clears the program's teleprinter flag, thus suspending execution of the

program (it moves into I/O wait). As characters from this buffer are subsequently typed out, ending

the bufferfull condition, the teleprinter flag i s kept down. I t i s held down and the user kept i n the

nonrunnable state until the buffer i s almost emptied. At this point, the program i s restarted so that i t

can put more characters into the output buffer, thus keeping up continuous output. Programs like

BASIC-8 can f i l l an 80-character output buffer i n 1 to 2 time slices. Therefore input, like output,

i s accomplished without substantial processor time.

Thus, i t i s the combination of the two parts of the I/O handlers; those which are driven by IOT traps

and hence operated synchronously with respect to the user program, and those which are driven by

clock interrupts (every 90 milliseconds) and hence asynchronously with respect to user programs which

accomplish I/O. The common communications areas for these two routines are the console input-

output buffers and their associated flags. The problem of efficient scheduling i s solved by prudent

manipulation of these flags. On input, this i s done by means of the delimiter, or break mask. On

output, i t i s done by detecting buffer-fvll and buffer-almost-empty conditions.

5-12

Chapter 6
Monitor: A More Detailed Look

So far, we have reviewed some of the operations of TSS/8 Monitor and how i t responds to various

simplified situations. This chapter diicusses these operations i n greater detail: the various subsystems

within Monitor, the full scheduling algorithm, and the data base.

6.1 MONITOR AS INTERRUPT HANDLER

The fundamental task of the time-sharing system i s to run user programs. Time spent running Monitor i s

nonproductive overhead. Therefore, Monitor must restrict its activities to the minimum time necessary

to keep the flow of user jobs going smoothly. In order to meet this goal of minimal overhead, TSS/8

Monitor i s used as an interrupt processor only. Monitor i s never run except in response to an interrupt.

The interrupt trap address i n field 0, location 1, i s i ts only entry point. It always exits by dismissing

the interrupt. When i t completes the handling of an interrupt, Monitor dismisses back to the user job.

The job i s allowed to run until the next interrupt; this being the only way which Monitor can regain

control once a user iob has been started. Since the "steady state" of the system is the running of a

user job, the interrupt handling technique assures that the system w i l l be doing that as much of the

time as possible.

Interrupts to Monitor are divided into three levels: level 0, level 1, and level 2. The clock is the

only level 0 interrupt. The workings of the clock routines are dependent on the TSS/8 configuration.

With a PT08 system, there w i l l be a line frequency clock. With a DC08, there w i l l be just the DC08

baud clock. This clock then serves both as the system clock and the signal to enter the DC08 service

routines. Monitor does not take action on every clock interrupt. It waits for 50-millisecond intervals

(3 ticks of a line frequency clock - many ticks of a DC08 clock). Thus, when the clock interrupt oc-

curs, the clock interrupt handler simply increments a counter to see i f 50 milliseconds have elapsed.

If not, the interrupt i s dismissed. (On a DC08 system, the DC08 service routines are run to scan the

lines for incoming characters and to keep up output.) The level 0 clock interrupt i s just that simple.

Only at 50-millisecond intervals does i t involve more Monitor processing. In this case, it i s treated

as a level 2 interrupt. Level 0 has its own register save area and hence may interrupt any other

process.

6-1

The level-1 interrupts are the device interrupts; reader, punch, disk, DECtape, etc. If the system

has P T B , the console teletype interrupts are also level 1. In the case of the papertape reader and

punch, the interrupt processing generally consists of transferring a character between the device and

a Monitor character buffer. DECtape and disk error flags are also disposed of immediately; the trans-

fer i s retried. In all these cases, the interrupt i s dismissed immediately.

Since they are all brief, none of the interrupt processors above reenable the interrupt before dis-

missing. Therefore, they have no problems in protecting thwelves ogainst being reinterrupted. This

i s not the case with any of the other interrupt processors. These, which are considered to be level-2

interrupts, reenable the interrupt before they start processing. The level-2 interrupts may be best

characterized as those which take a long time to process. The level-2 interrupts consist of the 50-
millisecond clock, a reader character which f i l l s the buffer, a punch character which empties the

punch buffer, a disk or DECtape completion flag, or a trapped user IOT interrupt. Level-0 and level-1

interrupt handlers take up a miniscule amount of code. Therefore, Monitor may be thought of as a

large level-2 interrupt processor.

Since level-2 interrupts are serviced with the interrupt reenabled, there i s the possibility that they

themselves may be reinterrupted. Level-0 and level-1 interrupts present no problem. The level-2

interrupt code does its awn register saves (AC, PC, LK, and location 0) to assure that interrupts from

the other levels do not interfere. A second level-2 interrupt, on the other hagd, causes problems. I t

makes no sense to suspend the handling of one level-2 interrupt to go off and start on another. There-

fore, Monitor checks for, and prevents, this situation. Whenever a level-2 interrupt i s detected,

Monitor checks to see whether i t was a user mode program which was interrupted. (The state of the

user mode bit i s automatically saved when an interrupt occurs.) If the processor was interrupted out

of the user mode, indicating that a user program was running at the time of the interrupt, then i t i s

permissible to process the level-2 interrupt. Monitor proceeds to do so. If, on the other hand, the

processor interrupted out of exec mode, this means Monitor was in the process of handling a previous

level-2 interrupt (the only condition under which an interrupt out of exec mode could occur). In th i s

case, processing of the new level-2 interrupt i s deferred. I t i s placed on the level-2 queue. Entries

i n the level-2 queue are addresses of the routines to handle the specific interrupt. Once th i s is done,

the interrupt i s dismissed, since it w i l l dismiss back to a location within Monitor. At the completion

of each level-2 interrupt, Monitor checks this level-2 queue. I f i t i s empty, i t dismisses back to the

user program. I f it i s not, Monitor i s reentered to process the next request on the queue. Only when

the backlog on level-2 queue i s exhausted does an exit from Monitor occur.

In the case of 50-millisecond clock interrupts, the level-2 handlers save the whole state of the user

job in his job status registers. When finally dismissing this interrupt, the saved state of the job whose

6-2

number i s i n core register JOB i s restored. If, in the meantime, schedular has changed the contents

of JOB, i t w i l l i n fact be a new job which i s started up. Thus, even the system scheduling i s accom-

plished by means of the interrupt handlers.

I t i s important to keep this concept of Monitor as interrupt handler i n mind since the system i s incom-

prehensible when viewed in any other light. Al l actions by Monitor may eventually be traced to some

interrupt. Swapping occurs i n response to a disk completion flag. When the disk completion i s de-

tected, Monitor, via a level-2 interrupt, looks to see what the next swap should be and, having found

it, initiates it. Scheduling occurs as a response to the 50-millisecond clock level-2 interrupt. If i t

i s the fourth such interrupt since a user job has been started, Monitor lo&s for a new job to run. Even

in the interim level-2 clock interrupts, Monitor tries to do some advance scheduling. If there i s no

swapping going on, i t sees i f i t should start some. Thus, while a job i s running, schedular tries to get

the next job ready, 50 that i t may be started up immediately after the current job completes its time

slice. When a job does complete i t s time slice, schedular's task i s set up and start the next one.

I/O i s also maintained as a function of the clock interrupt. Every 90 milliseconds a Teletype I/O
level-2 interrupt i s processed. At this time, all input characters (typed within the last 90 milliseconds

and now sitting i n the PT08 or DC08 service input buffers) are gathered up and placed in the appro-

priate job's multicharacter input buffer. Output characters are also passed from Monitor output buffers

to Teletype buffers at this time.

All interaction between the jobs and the system take place through the medium of the IOT traps. The

schedular i s heavily dependent on the state of each job's input and output. For now, we w i l l just

look at the IOT trap handling i n general, indicating how various classes of IOTs are handled.

Once i t has identified an IOT trap interrupt, Monitor tries to identify the IOT that caused it. At the

time of the interrupt, the X , which i s stored in location 0, i s set at the address following the IOT.

This pointer i s backed up and the IOT i s fetched from the user's core. This IOT i s then tested against

a dispatch table of all valid IOTs. If the trapped IOT i s found, Monitor dispatches to the appropriate

routine. If i t i s not, the IOT i s undefined. Control i s returned to the user program. The IOT i s

treated as a NOP.

Some valid trapped instructions do not return to the user program at all. HLT i s the obvious example.

HLT means, quite specifically, do not return control to the program. Control of this job passes to the

system (how this all operates i s discussed in the next section). Other IOT always cause control to be

returned to the user program immediately. Among these are all the "phony" IOTs such as TOD, USE,
etc., which have nothing to do wi th the actual input/output. IOTs, as they are used by programs

running under TSS/8 do not necessarily mean instructions used to drive I/O devices. They are actually

6-3

instructions which allow a job to talk to the outside world, whether i t be a peripheral or just TSS/8

Monitor. Those IOTs which communicate just with Monitor return to the user progrum immediately.

The IOTs which correspond to the actual devices, such as the Teletype IOTs, may or may not return

to the user program immediately. A KSF or TSF which is true, i.e., the keyboard has one or more

characters in it, or the teleprinter buffer i s not yet full, allow control to be returned immediately to

the user program (with the skip simulated). Similarly, a KRB which successfully gets a character and

a TLS which does not fill the output buffer allow control to be returned to the user program. In these

cases, the user program w i l l be able to do more useful running. After a true KSF, the program can do

a KRB to pick up the character. After the KRB, it can process the character, then look for more input.

Similarly, after a true TSF, the user program can do its next TLS. If the TLS does not fill the buffer,

i t can continue processing, or outputting.

.

6.2 I/O WAIT CONDITION

The user program i s only allowed to run again after one of these IOT's if i t is free to do some useful

work. In the opposite cases, where the output buffer i s full or the input buffer empty, there i s no

expectation that the user program can continue processing. I t i s an I/O wait state i f i t i s looking

for input which isn't there (false KSF or unsuccessful KRB) or trying to output where there isn't any

room (false TSF). On a stand-alone PDP-8, the program goes into a wait loop until i t can do more

I/O. Under TSS/8, user programs which must wait for I/O are not allowed to loop. They are stopped

until the wait condition has ended. (Note that this prohibits programs from overlapping I/O and pro-

cessing within themselves. Time spent in I/O wait i s used to run other jobs rather than the job which

i s in the I/O wait. Note also that the wait condition does not occur on a characterby-character

basis. All I/O i s done on a buffer-by-buffer basis to allow programs to keep up full I/O rates, even

though they spend much of their time in I/O wait states.) Al l other user job I/O i s handled in a

manner analogous to that of the Teletype. In all cases, buffers of characters are passed between

Monitor and user programs. The programs go into an I/O wait until Monitor has successfully completed

the transfer of that buffer.

Scheduling i s highly dependent on the state of the I/O. Therefore, the IOT trap handlers keep a status

register (the "wait mask") to indicate what I/O device the user i s waiting for. The mask, which cor-

responds exactly to the user's status register (STR1 and STW), has a dummy bit, the "job i s not waiting"

bit that i s set when the user program is not in an I/O wait. Whenever an IOT trap occurs and the user

i s to be stopped, the bit corresponding to the device which he i s waiting for i s set. Thus, i f the user

program executes a KSF when its input buffer i s empty, the bit in the wait mask which corresponds to

the keyboard flag i s set. The user i s not restarted and control goes to schedular so that another user

6-4

may be run. Thus, whenever a user is in an I/O wait, a single bit in the wait mask indicates the

device i t i s waiting for. (Some transfers, such as f i le reads and writes, always put the user into a

wait state. Others, like the console do so only when a buffer f i l l s .)

The schedular makes use of the wait mask to decide which jobs need to be run. First, for each user,

schedular keeps a run bit i n the job status register. A user's run bit i s on i f he has a program in pro-

gress. The run bit i s set when the user starts his program. I t remains set until the program i s halted.

Those users whose run bits are not set are never scheduled to be run. Among those jobs whose run bits

are set, only those which are not i n an I/O wait are actually scheduled to be run.

In deciding what user to run next, schedular scans through the list of active jobs looking for one

whose run bit i s set. Finding such a job, i t sees i f the wait musk ANDed wi th the job status f lags ,

i s nonzero. I f i t is, the job i s runnable and is scheduled to be run. (Note: i f the job i s not in I/O

wait, the dummy bit, the "job i s not waiting" bit, i s set to assure that the job w i l l be runnable.) If

the job i s in an I/O wait, the wait mask ANDed wi th the status bits w i l l be zero. Only one bit in

the wait mask w i l l be set - the bit corresponding to the flag which the job i s waiting for. T h i s flag

i s zero at the time the wait mask bit i s set (otherwise, the job would not be in an I/O wait). In this

way, jobs which are in an I/O wait are prevented from being scheduled.

A job breaks out of an I/O wait when the flag corresponding to the bit in the wait mask comes on.

For example, assume that a job i s waiting for the keyboard. Eventually, the user w i l l type a delimiter

on the keyboard. This w i l l cause the delimiter bit to be set. The next time schedular checks this

user's status, the wait mask ANDed wi th the status bits w i l l be nonzero. The job i s then runnable

again. In general, flags are cleared by IOT trap-handling routines. Clearing a flag means a wait

condition; at the same time a flag i s cleared, the corresponding bit i n the wait mask is set. Flags are

generally reset by level-1 interrupts, i.e., those that do the data transfers. They are detected by the

level-2 schedular when i t looks for the next runnable job.

This mode of operation characterizes the whole Monitor. Monitor i s made up of a number of asyn-

chronous elements which communicate via status registers and request queues. Schedular, which i s the

heart of Monitor, i s guaranteed to be run every 50 milliseconds. Therefore, i t i s not necessary for

another routine, such as the disk handlers, to jump directly to the schedular in order to indicate that

a swap i s complete. Al l that the disk routines need to do is set the appropriate status bit to indicate

the new system status. The next time the schedular i s run, i t w i l l find this updated status and w i l l act

accordingly. Similarly, if the schedular decides that a swap i s needed, i t may simply queue this re-

quest if the disk i s active. When the completion flag for the present transfer i s processed, the disk

queue w i l l be checked and the queued transfer initiated. However, i f there i s no disk transfer in pro-

gress when the schedular decides to do a swap, i t cannot just queue the request. In this case, the

schedular itself must initiate the transfer.

6-5

6.3 OTHER PARTS OFMONITOR

The Monitor code which performs the functions discussed so far i s permanently resident in field zero

while TSS/8 i s operating. Field zero contains almost al l the resident code. Monitor also occupies

field one. About 1K of field one i s used for code, most of i t for device handlers. The remainder i s

for tables and buffers. Nearly al l of the resident Monitor data base i s in field one.

In addition, there are three nonresident sections of Monitor code. They are the System Interpreter (SI),
the file handler (FIP), and the error handler (ERP). These are the routines which are not frequently

used and hence do not need to be'core resident. RP i s a 4K block of code which resides in the second

4K block of the disk (disk locations 10000-17777). SI and ERP together make up a 4K block of code

which resides at the bottom of the disk (disk locations 0-7777). When needed, these routines are

brought into field two for exedution. They do not overlay resident Monitor; they go into the first user

fields. In fact, schedular sets them up so that they look just like a user program. They run in the

place of the user program which called them. For this reason, they are referred to as "phantom."

(FIP = File Phantom, ERP = Error Phantom.) They are not, however, identical to mer programs be-

cause they are run in exec mode. This means they may read and write physical disk segments (in the

case of FIP) and get at field 0 and 1 data and subroutines.

6.4 THE MONITOR DATA BASE

Some mention has been made of the tables and buffers used by Monitor. Diagrams of these tables may

be found at the end of t h i s manual. These should be referred to as specific tables are mentioned. A

brief discussion of the tables follows.

Monitor does a great deal of dynamic storage assignment. I t makes use of a pool of &word blocks

known as the free l ist. At system startup, the unused area in field 1 i s divided into these 8-word

blocks and linked together by a l i s t structure. The first word in each block i s a pointer to the next

block. The last block contains a zero pointer. A fixed core register, FRELST, always contains a

pointer to the top of free list; a second register, FRECNT, indicates the number of available free core

blocks. This free core i s used by Monitor for a variety of purposes. Teletype buffers are made up of

linked blocks of free core; device and job status information i s also stored in free core. Free core i s

also used for temporary scratch storage in a number of instances.

The device handlers for Teletypes and the assignable devices make extensive use of free core. Both

are based on a single, fixed-length table of devices, DEVTBL. DEVTBL contains a one-word entry for

each system device (a console counts as two devices: keyboard and teleprinter). If the device i s un-

used, the entry i s zero. If i t i s active, the entry contains a pointer to a block of free core knawn a~

the device data block (DDB). This block contains the status information for that device. In addition,

6-6

there i s a buffer for each device. In the case of the assignable devices, this buffer i s a fixed,

dedicated, core buffer. In the case of Teletypes, the buffers are dynamically allocated from free

core. As characters come in from the keyboard and are put in the buffers they are put into &word

blocks of free core. As one block f i l l s up, another i s fetched from free core and linked to it. As

characters are fetched from the buffer and passed to the user program (via trapped KRB's), blocks at

the other end of the buffer are emptied and returned to free core. Within the DDB are pointers to

the head of the buffer (the "fill pointer"), which indicates where the next character to be put into

the buffer is to go and to the tail of the buffer (the "empty pointer") which indicates the next char-

acter to be pulled out of the buffer. Input buffers and output buffers work the same way.

This console input and output operate independently from the rest of the system. As characters come

in, they are put in input buffers (up to 80 characters). If the character is one designated as a delimiter,

the user% keyboard status bit i s set. As characters appear in the output buffer, they are typed. Buf-

fers expand and shrink to meet the needs of the moment. This i s the l i m i t of the responsibility of the

Teletype handlers. They merely pass characters and adjust the appropriate flags.

Just as each active console i s marked in DEVTBL, so each active job is marked in a iob status table,

JOBTBL, which is a fixed table wi th a one-word entry for each possible system job. Nonexistent jobs

are marked by zero entries. Existing jobs have an entry which i s a pointer to an assigned free-core

block which i s i t s first job status block. Each job actually has several blocks of status information, al l

linked together. In these status blocks are kept al l information about this job's running state. If there

are open files, blocks containing their status also exist.

Finally, there are tables Monitor keeps which indicate the status of ihe system. CORTBL, which

indicates where jobs are in user cores, i s the most important of these.

6-7

Chapter 7
System Storage and Communication

7.1 TALKING TO THE SYSTEM

up until now, we have assumed that jobs running i n the system either did no I/O or simply did console

I/O. In doing this console I/O, characters were p a s s e d in a manner analogous to a stand-alone

PDP-8. No mention was made of how the program was started up in the first place, much less how i t

was loaded and otherwise controlled. These are functions which, on a stand-alone machine, are not

performed through the Teletype at al l - they are done through the switches on the console. When

talking to TSS/8, however, there i s only one physical device, the user's Teletype, through which to

perform these two kinds of communication: communicating with the TSS/8 system and communicating

wi th a user program running os a job within that system.

TSS/8 makes a careful distinction between these two modes. A user i s always uniquely in one mode

or the other, depending on the state of his job. Whenever a user starts executing a program, his con-

sole i s put in program communication mode. It stays in that mode until the program i s interrupted or

terminated. If the program i s terminated, the console automatically returns to system communication

mode. It is also possible to make one-shot inputs to the system without halting the user program.

In order to minimize confusion, TSS/8 has some conventions to distinguish between system and user

mode. The system always types a period (.) at the margin to indicate that a Teletype i s in system mode

and that the system i s ready to accept a new command. The control B (B wi th the control key depressed,

abbreviated to a tB in al l TSS/8 documentation) character tells the system that, regardless of the mode

the Teletype i s in, the characters following the tB are to be treated as though the Teletype were in

system mode. Thus, even i f the Teletype i s in user program mode, al l characters following a tB, up

to the next carriage return, are input to the system.

When the user walks up to a TSS/8 console, he finds i t i n system mode. If he types carriage return,

thereby entering a null command, TSS/8 responds wi th a period at the margin. The user may then type

a command to the system. At this point, the Teletype is actually in a special system mode - i t i s

logged out. This means 1) input i s not echoed to the teleprinter, and 2) only two commands, LOGIN

7- 1

and TIME are considered valid. The system w i l l call all other commands illegal. Thus, the first thing

a user does i s type a LOGIN command, which consists of the command LOGIN followed by an account

number and a password. I f the account number and password are valid, the user i s logged in. His

Teletype remains in the system mode, but his input i s now duplexed and all system commands are now

valid. (If the login i s invalid, he remains in the unlogged in system mode and must try again.)

The user remains in the system mode until he types a command which causes a program to be started for

him. He does this by means d the START command which takes an octal address as an argument. (He

may also start a program with an R or RUN command.) The START command both stark the program

and pub the Teletype in user program mode.

Once a program has been started, there are two ways to stop it, thereby returning the console to sys-

tem communication mode. One i s for the program to execute a HLT. This stops the program. The

other way i s to type an S (for STOP) command to the system. However, since the Teletype i s in user

program mode, i t i s necessary to preface t h i s S by a tB in order to get the attention of the system.

Notice that by typing tB while a program i s running, any command may be entered to the system.

Only S, however, w i l l send the Teletype back to system mode. For the others, the program w i l l con-

tinue to run and hence the Teletype w i l l return to user program mode.

So far we have only talked about three Monitor commands: START, STOP, and LOGIN. There are,

however, a great many more. (They are described in the TSS/8 System User's Guide.)

The set of commands enumerated there i s designed to give the user convenient and comprehensive con-

trol over his program. He may do debugging tasks with commands such as EXAMINE and DEPOSIT.

He may store and retrieve programs by SAVES, LOADS, and RUNS, he may control additional periph-

erals by means of ASSIGNS and RELEASES, etc.

The handling of al l these system commands i s accomplished by means of a nonresident system phantom

called the System Interpreter. SI'S task i s to scan and interpret system input strings and either execute

them directly or reduce them to a concise coded form to be executed by another part of TSS/8 Monitor.

I t i s called by the Teletype handlers (part of resident Monitor) whenever a system command (often re-

ferred to in the documentation as an SI string) i s input.

Characters being input to the System Interpreter are handled by the Teletype input routines exactly as

are characters being input to a user program. In either case they are placed in the multicharacter

Teletype input buffer until a delimiter i s detected. (Delimiters for SI strings are CR, LF, and RO.)

I t i s only when the delimiter i s seen that the two types of input strings are treated differently. In the

one case, the characters are passed to the user program; in the other, they are passed to SI.

7-2

A bit in the input Device Data Block, the "route characters to SI" bit i s used to remember that an

input string i s actually an SI string. This bit i s always set when the Teletype i s in system mode. I t i s

also set whenever a tB i s input. A command to start running a user program clears the bit.

If the ''route Characters to SI" bit i s set, input characters are checked against the System Interpreter

delimiter mask (carriage return, line feed, and rubout). I f the input character i s a delimiter, a second

DDB bit, the "SI command delimited" bit i s set. Also, a schedular register, COMCNT, i s incremented.

COMCNT, at any given instant, reflects the number of users who have typed in a whole command to

the system and are waiting for a response. Schedular checks COMCNT every time i t runs. As long as

i t i s zero, everything i s up to date. However, if COMCNT >O, this means that someone has an SI
string waiting. In this case, the System Interpreter i s scheduled to be swapped in and run. I t i s brought

into field two and started up just as any other user program. The principal difference i s that SI, being

a system phantom, i s run i n exec mode. This means it can execute IOTs without trapping back to field

zero. Specifically, i t may do a CDF into Monitor core in order to inspect the DDBs. When i t finds

an "S I command delimited" bit set, SI knows who called it.

Once i t has found who called it, SI reads the command string to find out what the basic command is.

SI has a dispatch table for al l valid commands. For commands which take arguments, the string i s

scanned to pick these up. I f an error i s detected anywhere along the line, SI exits back to Monitor

after typing an error message back to the user. If the command i s valid, SI must decide what to do

wi th it. S I i s capable of executing many commands on its own. For the rest, i t calls for help. For

all f i le operations, it must call s t i l l another nonresident subsystem, the File Phantom. For these

commands, S I reduces the input string to a concise command code which i s then passed on to the ap-

propriate portion of Monitor.

SI itself i s essentially reenkant. I t gets its input, the command string, from Monitor core, operates

on it, and puts any output, either a response string to the teleprinter or a concise command to be

executed by some other part of the system, back into Monitor core. SI may be thought of as the

interface between the user and the system. It allows the user to enter commands in a simple format.

These input strings are translated by SI into a form which the rest of the system can understand. It

resides on the disk and i s called in to perform this interpretation and translation function whenever a

user requires it.

7-3

7.2 DISK STORAGE AND FILES

Up to naw, we have mentioned the TSS/8 disk only in its capacity as a swapping device. For each

iob, there i s a dedicated 4K area on the disk i n which i t i s stored when it i s swapped out. This i s not,

however, the only way in which the disk i s used. The low-order tracks of the first disk are used to hold

an image of the system. 0-7777 contains the System Interpreter Phantom. 1OOW-17777 contains the

File Phantom, part of which i s tables and part of which i s code. The entire 4K of FIP i s brought in

whenever i t i s called. If FIP updates any of its tables, these are written back out to their place with-

in the disk imoge. SI, which contains no internal tables, i s never written back after i t i s called. The

next 4K of the disk contains an image of the system Initializer. It i s brought i n only at system startup

time, i t i s not used while the system i s up. It is kept on the disk to allow for easy system restarts. The

next 8K i s used to hold an image of resident Monitor. I t i s brought into fields zero and one by the

initializer at system startup time. It i s not accessed by the running system. Like the image of INIT,

i t i s kept on the disk to allow rapid recovery from crashes.

The area of the disk immediately above the system image i s used for the swap areas. There i s a 4K for

each possible system job. (A 16 user system thus uses 64K of the disk for swap tracks. This plus the

20K of system imoge totals 84K of disk which i s taken for system usage.)

All remaining space on the disk i s devoted to on-line file storage. If the system has more than one

disk, the additional surfaces are completely devoted to f i l e storage. The file area i s allocated in

256 word segments.

TSS/8 provides users and user programs with the capability of setting up files in this area of the disk

and of reading and writing them. These files may be of arbitrary size; they are, however, made up

of an integral number of disk segments. The user may create a file. Creating a f i le reserves a segment

of file space on the disk and associates with i t the symbolic name specified in the create command.

The user may open this file, thereby allowing i t to be manipulated. He may extend the f i l e a given

number of segments, thereby reserving more segments of disk for the file. Extending a file tacks the

new segments onto the "end" of the already allocated segments. Reducing a f i le returns one or more

segments from those reserved f o r this f i le to the pool of available segments. He may also rename a

file. These four basic functions of creating, extending, renaming, and reducing (deleting i s accom-

plished by reducing a file until there i s nothing left) have nothing to do wi th the contents of the file.

They merely define and reserve a certain amount of space on the disk.

As far as the user i s concerned, these segments are contiguous. He addresses, and therefore manipu-

lates, the file as though i t were one big long disk area. The actual size of the file, as determined by

creates, extends, and reduces, i s important only in that a user cannot write off the end of his file.

. 7-4

The file itself i s considered to be made up of 12-bit data words. There are no control words in the

file; al l the space within a file which a user has defined for himself i s available to him for program

storage. The user addresses a file by internal file number and an address within that file. The first

word of the f i le has address zero. Using this f i le address, the user may transfer data between a

selected part of his 4K core area and the addressed point i n his file. Although only 4K may be trans-

ferred between core and a f i le in one transfer, the size of f i les is by no means l im i ted to 4K. 18 bits

are allocated for disk file addressing. It i s worth noting that there i s no distinction made between

types of files. All files are made up of 12-bit data words whether these 12-bit words contain single

ASCII characters (or, indeed, characters of any other code), pairs of trimmed characters, numbers,

or whatever, i s immaterial to the system as a whole. How the data of a given file i s interpreted by

a program is, of course, what matters.

The fact that segments of a file appear to the user to be contiguous is, of course, an illusion. Disk

segments are, in fact, allocated at random. TSS/8 maintains directories in order to remember which

segments are allocated to which files. As mentioned above, the actual segments which make up a

disk f i le are pure data area. Segments of a f i le are not chained together; there are no header words

attached to a segment.

For each user TSS/8 maintains a User File Directory (UFD) which holds the names of al l files which a

given user i s maintaining and the disk segments of which it i s comprised. (Note: The diagrams at the

end of this manual w i l l help in understanding the TSS/8 file structure.) The UFD i s divided into 8-

word entries. For each f i le there i s a single file name entry. The first three words contain the file

name (6 characters packed in TSS/8 internal format).

Words 4-6 contain information about this file. Words 3 contains a pointer to the next name block in

this user's UFD. This pointer i s used to chain through the UFD name blocks. The final word of the

name block (Word 7) contains a pointer to a File Retrieval Information Block. Each name block i s

associated w i th i t one or more of these retrieval blocks. They are also 8-word blocks and are in-

terspersed wi th the name blocks i n the UFD file (hence the need to chain the name blocks). The first

word of the retrieval block i s a pointer to the next retrieval block for this file (or zero i f this i s the

final block). The next seven words contain a l i s t of segment numbers of the segments which comprise

the file. The f i le i s considered to run from the first segment in the file to the last. (A zero segment

number terminates the list.) The algorithm for associating addresses within a file (the means by which

a user addresses his file) and physical disk addresses (the system's ways of addressing) i s straight-

forward. The f i le address i s divided by the segment size. The quotient i s the logical file segment

number. Counting down the file retrieval block's l i s t of segment numbers to this number yields the

physical segment number. (If the l i s t runs out too soon, the user has run off the end of his file.)

7-5

In the actual implementation, the UFDs are themselves files. They are made up of disk segments

just like any other file. (The 8-word blocks into which the UFDs are divided are merely a software

division.) In order to keep track of these UFD files, there i s s t i l l another directory, the Master File

Directory. In format, i t i s virtually identical to a UFD. I t i s broken down into 8-word name and

retrieval information blocks. The 3-word names in the name block are, however, login IDS rather

then f i l e names. The first word contains the account number as a 12-bit binary number, the next two

words contain the four character password, packed in internal code. Taken altogether, these three

words constitute the "name" of the UFD. (The MFD is, of course, also used at login to see i f the

account number and password are valid.) The f i le retrieval information block linked to the name

block (in the case of the MFD, only one retrieval block per UFD i s allowed) contains the segment

numbers of the segments which make up the UFD for the user.

~ - __ I--__--.-

To complete the symmetry, the MFD i s in turn a disk f i le made up of segments. It, however, always

starts wi th segment 1.

The MFD and UFDs take care of the problem of allocated disk segments. There i s one further table,

the Storage Allocation Table (SAT), which keeps track of unallocated segments. SAT i s a bit table

which i s set up when the system is refreshed. I t contains a bit for each segment . . .the bit i s cleared

i f the corresponding segment is available, i t i s set i f that segment i s allocated. All requests for disk

segments get them from the SAT table routines. Similarly, no longer needed segments are returned

to the SAT. For example, i f a f i le is to be extended a segment, the SAT routines are called. They

return with the number of an available segment, which i s added to the l i s t of segments in the retrieval

blocks for that f i le. Files are reduced by deleting the last segment number or numbers from the l i s t

and clearing the corresponding bit(s) in the SAT table.

7.3 TALKING TO THE DISK: THE FILE PHANTOM

Most of the tasks described in Section 7.2 are accomplished by a second nonresident section of Monitor,

The File Phantom (FIP). FIP handles al l disk manipulations except actual reads and writes. Like the

System Interpreter, i t resides on the disk. It is called by Monitor to perform functions which cannot be

handled by resident routine. All tables relating to the disk files are kept within the 4K which FIP

occupies. They are swapped in wi th FIP whenever i t i s called. Whenever they are updated, the

tables are immediately written back to the disk by FIP. In this way, the disk always contains al l in-

formation about itself. The disk i s thus protected against loss in most system crashes.

FIP's primary task i s to do the f i l e handling. It maintains the UFDs, the MFD, and the SAT. It per-

forms al l the needed searches of these tables. I t executes the basic f i le commands of CREATE, EXTEND,

7-6

REDUCE, and RENAME as discussed above. They all happen independently of resident Monitor; they

result in changing the status of the disk only. PROTECT i s similar. I t allows the protection code on

a f i le to be altered but nothing more. OPEN and CLOSE, however, are somewhat different in nature.

OPEN and CLOSE do not alter the disk in any way; they simply establish a link between resident

Monitor and a disk file. (The fact that OPEN and CLOSE do not affect the disk i s important. Newly

created files exist even if they have not yet been closed out.) Each job may have up to four files

open simultaneously. There are four registers in the last job status block which record the status of

these four internal files. I f there i s no f i le open on an internal file number, i ts corresponding job

status block word i s zero. (See diagrams of job status blocks.) When a f i le OPEN command i s given,

FIP sek up a new status block in free core. This block i s used to hold pertinent information about the

open file. A pointer to this file information block, which remains set up as long as the file i s open,

i s placed in the job status block register for this internal file. At the same time, FIP sets up a second

block i n free core for this file. This block, the f i le window, contains one of the f i le retrieval infor-

mation blocks from the UFD. At the time of the OPEN, the first file retrieval information block i s

put in the window. At the same time, the fact that this i s the first window i s recorded in a register of

the f i le information block. Once all this i s done, the OPEN i s complete. CLOSE merely dismantles

al l this and zeroes the register in the last job status block which corresponds to this open f i le. Open-

ing a f i le automatically closes any f i le which was open on that internal file at the time.

CREATE i s the only f i le command wh:ch does not have to be preceded by an OPEN. Al l other f i le

commands operate on internal file numbers rather than f i le names. In the case of EXTEND, REDUCE,

and PROTECT, this i s to allaw for file protection. The file protection apparatus i s part of the OPEN

routines. Files which are read-protected against a user cannot be opened by him. I f a user i s allowed

to read but not write, he i s allowed to open but a write-protected bit i s set in his f i le information

block in free core. EXTEND and REDUCE are considered to be the same as writing. They are pro-

hibited i f write-protect i s indicated. The PROTECT command, which sets these various modes of

protection, i s illegal except for the f i le owner. Finally, there i s an implied protect on files which

are open to more than one user. If a file to be opened i s already open to another user, i t i s write-

protected to prevent confusion.

RRLE and WFILE, the f i le read and write commands, require the f i le to be open, because they need

the information i n the open file information blocks. RFILEs and WFILEs do not, in general, require

FIP to be called. Resident Monitor attempts to execute them itself. It takes the file address given

as a parameter to the command and compares it against the state of that file's window. It sees i f the

segments in the window correspond to the part of the file involved. If so, i t goes ahead and executes

the transfer. (Note, that i f i t i s a write, the write-protect bit in the file information block i s

7-7

checked first.) I f the window is not properly set, resident Monitor calls FIP to move the window so

that i t i s looking at the specified part of the file. FIP then returns to Monitor so that i t can do the

transfer.

FIP i s called whenever Monitor discovers a request that i t cannot handle. Before calling, i t must set

up the appropriate command and parameters so that RP w i l l know what to do. This command i s always

in the form of an IOT; one of the TSS/8 IOT's. If parameters are involved, they are passed in pre-

cisely the format that they are specified for the IOT itself. Thus, CREATE takes three words of param-

eters, OPEN 5, etc.

Whatever the IOT, i t and al l i ts parameters are placed in a block of free core. A pointer to this block

i s placed in the job status block register referred to as JOBLNK. RP i s then called. If i t i s to return

parameters, i t does so in this same block. As soon as the block i s no longer needed, i t i s returned to

free core. Some IOTs do not take parameters. The AC itself i s the only parameter. In this case, no

IOT Parameter Block i s needed. The IOT itself goes into JOBLNK: (The AC itself is, of course,

stored in another job status block.)

FIP maintains the Storage Address Table (SAT) which i s located in the high end of FIP's 4K. Whenever

the SAT i s changed (a segment i s allocated or deallocated), i t i s written back to the disk so that the

next time FIP i s brought in, an updated version of the SAT w i l l come in with it. The SAT i s the only

permanent table that FIP maintains. I t i s never changed by a system restart. (Refreshing, of course,

clears the SAT.) All other tables and data areas maintained within FIP are kept only as long as in-

dividual users are logged in. They are cleured on a system restart.

FIP handles al l the operrf i le information which i s linked into job status blocks. These are set up on

an OPEN, cleared out on a CLOSE, and suitably updated whenever a fi le i s changed. RP also main-

tains some internal tables which make its operation more efficient. For example, when a user logs in,

FIP opens that user's UFD. I t gets the retrieval information block from the MFD and stores i t in a table.

By doing this, FIP doesn't have to scan the MFD every time i t wants to find a UFD. FIP also remem-

bers how many users are logged in under this account number or are using a f i le belonging to the ac-

count.

Finally, FIP does al l updating of the directories, the MFD and UFD's. I t has a 256-word buffer into

which i t can read directory segments. FIP scans directories by reading them in one segment at a time

until the desired engl i s found. If i t i s changed, th i s segment i s then written back out to the disk.

I f the directory i s extended or reduced, RP updates the appropriate retrieval information block i n the

MFD.

See the diagram section for a more detailed discussion of the FIP tables.

7-8

7.4 DISK TRANSFERS

Al l disk transfers, whether they are swaps, user program I/O requests, or FIP table or directory

transfers, are handled by a common disk routine. Al l disk transfers go between user fields; resident

Monitor never does transfers into field 0 or 1 . The common disk routine takes a standard set of param-

eters which are stored in a block of free core. They are: direction of the transfer, the field involved,

the disk address (physical), the core address, the number of words to be transferred, and the address of

the routine to go to when the transfer has been completed. The disk routine sets up the transfer, does

it, and then dispatches. If i t tries three times and fails, i t dispatches to an error handler instead.

Since requests to do disk transfers can pile up, there needs to be some place to queue them. In +he

case of swaps, there i s a single register SWREQ. If i t i s zero, no swap i s pending. I f i t i s nonzero,

i t points to a parameter block for the next swap, in or out. Swaps get first priority. When the current

transfer i s done, t h i s swap w i l l be done next.

All other transfer requests are held in DSUTBL (often referred to as the disk queue). DSUTBL has a

four-word entry for each core field. A nonzero entry indicates that a transfer i s pending for that core

field. (The entry points to the parameter block.) Within the four-word entry, each word corresponds

to an open file. Thus, i f the job i n field 3 wishes to read open f i le 2, i t executes an RFILE. Resident

monitor uses the retrieval window for that f i le (calling FIP to move i t i f necessary) to figure out the

physical disk address, builds a parameter block in free core, and puts a pointer to i t in the third word

of the DSUTBL entry for field 3. The program i s then put into the wait state until the transfer i s com-

plete. It is, however, prevented from being swapped while this transfer i s taking place. This i s done

by setting the LOCK bit in CORTBL to lock the user into core. This bit i s cleared when the transfer

i s completed. (Disk transfers, which are not buffered in Monitor core, are the only I/O operations

which require that the program remain in core.) Even FIP, when doing directory transfen i n and out

of i t s own area, or writing out its internal tables, uses the DSUTBL device for queuing requests.

7.5 ASSIGNABLE DEVICES

All TSS/8 systems include a high-speed, paper-tape reader. Some include a high-speed punch and/or

DECtape. These devices comprise the assignable devices for the system. They may be used exclusively

by individual on-line users.

Assignable device handling breaks down into three sections: assigning and releasing the devices, a

device handler, and code to pass data between Monitor buffers and the user program. Assignable de-

vices have their slots in DNTBL just as the Teletypes do - the last 10 registers correspond to reader

punch and DECtapes 0 through 7. If the device i s not assigned, the corresponding register in DEVTBL

7-9

contains zero. When a user requests a device (and i t i s available) a Device Data Block i s set up and

linked into DEVTBL. Within the DDB, i s stored the number of the job which now owns the device.

Whenever a reference i s made to this device, the referencing job i s checked against this job number

to assure that i t i s the right one. No error checking i s done at assignment time. Thus, a l l eight

DECtapes could be assigned even though only two transports exist. When a user releases the device

ogain, the DDB is freed up and a zero i s returned to the DEVTBL entry. Also, the amount of time

that the device was assigned i s added to the user's device time., In this way, use of assignable de-

vices is reflected in the accounting information.

All assignable devices have fixed, one-page buffers in Monitor core (the DECtape buffers are actually

129 words). They are too fast to use the linked free-core buffers used for Teletype I/O, but they are

too slow to hold the user in core and transfer directly into the user field as i s done with the disk.

When the device i s started up, i t remains active until the buffer i s completely filled, then stopped

until i t i s completely emptied (or vice versa for output). No attempt to double-buffer i s made.

For example, the paper-tape reader i s activated by a RRB IOT., Finding the buffer empty, Monitor

puts the user job into an I/O wait state, clearing its reader flag and setting the corresponding bit i n

the wait mask. It then sets up the reader service routine to read 128 Characters into the reader buffer.

When the buffer has been duly filled, the user's reader flag i s reset, making him runnable ogain. The

program then executes successive RRB IOT's to pick up individual characters. When the buffer empties

again, the process repeats. The user may initialize a read, and clear the buffer by executing an RFC

instruction.

Operation of the high-speed punch i s very similar. The running program passes characters to Monitor,

via trapped PLS instructions. These go into the punch buffer. If the buffer fills, the job goes into the

wait state until i t i s emptied ogain. One difference i s that punching i s begun whenever any charac-

ters are in the output buffer. Monitor does not wait for the buffer to fill. Thus, a user program may

overlap execution with punching as long as the buffer doesn't fill.

DECtape handling i s similar. DDL are set up when they are assigned and returned when released.

Since there are eight possible DECtapes, Monitor reserves eight words in DEVTBL. DECtapes are the

only read/write devices in the system (except, of course, for the disk). The same DDL and buffers

are used for reads as for writes. Since the DECtape controller allaws access to only one transport at a

time, there i s no point in having a Monitor buffer for each one. In fact, there are two, regardless of

the number of units. At the time a user program requests a transfer, Monitor assigns one of the two

buffers to be used for that transfer. The job i s then put into the wait state until the DECtape block i s

found and the transfer made. At this point, the buffer i s available to another job. Thus, i f more than

two DECtapes are active, the jobs compete for the two buffers.

7-10

Althargh these are the only peripheral devices supported by TSS/8 Monitor, they provide a good

model for users who may wish to incorporate their own special devices. In al l cases, three software

modules are involved: one to handle device assignment, one to handle data transfers between the

user program and Monitor, and one to do the actual device handling. Space in Monitor i s available

but not i n large quantities. Therefore, high-speed devices are probably inappropriate. There simply

isn't room for a buffer big enough to keep up the data rates.

7.6 ERROR HANDLING

TSS/8 Monitor allows the user program a great deal of freedom in the way i t utilizes system resources.

Therefore, system error checking i s kept to a minimum. Any job i s free to do anything which does not

affect another job, or the system as a whole. For example, a program may wipe itself out without in-

terference from the system.

The first level of error handling comes when a user program requests Monitor to do something i t cannot

do, for example, opening a file that does not exist, or reading from an internal f i le number for which

no file i s open. For al l such logical errors, Monitor returns an error code to the user program. (See

the System User's Guide.) Not al l of these errors are simple logic problems. For example, trying to

create or extend a file when the disk i s full returns an error. Running the same program some other

time war ld give no error. Another nonlogic error i s the parity error or directory error on a f i le read

or write. This i s the result of a physical malfunction of the disk. A transfer error occurred either

within the f i le itself or within one of Monitor's directories.

The second level of error handling comes when a user program requests something which Monitor can-

not do. For example, it requests service from the high-speed reader when someone else owns it, or

when i t i s assigned properly, but there i s no tape in it. Another example i s a physical disk error when

trying to swap this job in or out. In these cases, it i s impossible for these jobs to continue. Therefore,

Monitor terminates them, typing out an error message and the state of the active registen. User pro-

grams may, however, request that they be allowed to handle such problems. They do this by executing

an SEA command, which gives Monitor an address to jump to when such an error occurs. This routine

i s responsible for finding out what the error was (the error code i s in job status word 1 where i t may be

fetched by a CKS IOT), and responding to it.

Monitor also does internal error checking which i s not apparent to the user. Al l disk transfers are tried

three times. Only after the third try i s a disk transfer error actually reported. When i t starts up the

reader or punch, Monitor puts a timer on them. I f there is no interrupt from the device within a certain

amount of time, Monitor signals a hung device.

7-1 1

Chapter 8
Details of Monitor’s Data Base

8.1 INPUT/OUTPUT DATA BASE

All I/O, except for the disk, i s controlled from a single, fixed-length table, DEVTBL. Actual data

about the status of each device i s held in a Device Data Block (DDB). DD& are dynamically assigned

blocks of free core. The actual data to be transferred i s contained in buffers. In the case of Teletype

I/O, these buffers are dynamically assigned blocks of free core. One to eight (linked) blocks of free

core make up a Teletype buffer. Teletypes are considered to be two devices, a keyboard and a tele-

printer. Each has a DDB, and each has i t s own buffer. The assignable devices, which have higher

data rates, do not use dynamic core buffers. They have fixed, one-page (129 words for DECtape)

buffers in Monitor core.

DEVTBL DEVICE DATA BLOCK CHAR BUFFER

EMPTY POINTER

CHAR BUFFER
DEVICE DATA BLOCK

CHAR BUFFER

00-0519

Figure 8-1 Relationship of Tables, DD&, and Buffers

8-1

DEVTBL - - - - 11 KEYBOARD

TELEPRINTER 00

KEYBOARD
TELEPRINTER 01

I KEYBOARD n I TELEPRINTER n

DEVTBE - - - - PTR. TO READER DDB

DTA 3

I D T A 4 I

DEVDMB- - - - DTA 'I

08-0550

Figure 8-2 DEWBL

The tables, DDBs, and buffers are linked together by pointers. D M B L is, i n fact, a table of pointers.

If a device i s inactive (a Teletype not logged in or other devices not assigned) the corresponding table

entry i s zero. If the device i s in use, the table entry i s Q pointer to its DDB. The DDB for each de-

vice also contains pointers, the fill and the empty pointer. The fill pointer points to where the next

character to be put into the buffer should go; i t points to the ''head" of the buffer. The empty pointer

points to the next character to be taken from the buffer.. Each buffer block contains in its first word a

pointer to the next block. The last block i n the buffer contains a zero pointer.

DEWBL i s set up with the Teletype entries first, then the entries for the reader and punch, then three

unused entries, then eight entries for DECtape, and finally a 7777 terminator. The number of entries

for Teletypes, and hence the size of the table, i s dependent on the configuration parameter NULINE,

8-2

0

1

2

3

4

5

6

7

UNIT#

1
BREAK MASK

TIME AT ASSIGNMENT

FILL POINTER

FILL COUNT

. EMPTY POINTER

. EMPTY COUNT

08-0551

Figure 8-3 Teletype Device Data Block

the number of terminals. DEVTBE marks the beginning of the assignable device section of DEVTBL,

which always contains 13 entries even though al l these devices may not be included in the system.

(At initialization, al l slots in DEVTBL which correspond to nonexistent devices are filled with dummy

pointers to prevent assignment .)

Device Data Blocks are always &word blocks assigned from free core. Bits 7 through 11 of word zero

contain the unit number, bits 7 through 11 of word 1 contain the number of the job which Owns that

device, and word 3 contains the time at which the device became active. This 12-bit time i s taken

from bits 3 through 11 of CLK2, bits 0 through 2 of CLKl .
B i t 0 of word zero i s a zero i f the device i s a Teletype, otherwise i t i s a 1. The use of the remainder

of the DDB depends on the particular device.

The status bits i n word zero of the Teletype DDB are used in the keyboard DDB only. The DXON bit

i s set when a buffer i s almost full and hence an XOF must be sent. When the buffer i s emptied, XON

must be sent. DSI i s set to indicate that the keyboard i s in Monitor mode. DUP i s set to indicate that

the Teletype i s i n duplex mode; SICOM when set, indicates that the user has just typed a delimiter to

a keyboard str ing. The Break Mask, or delimiter mask, i s the value specified by the last KSB IOT.

The fill pointer points to the leading block of the buffer. The fill count i s the character position (in

2s complement) within that block. The same i s true for the empty counter and empty pointer. If no

buffer exists, the pointers are zero.

8-3

08-0552

Figure 8-4 Teletype Character Buffer

Teletype characters are packed 10 characters to a block. Characters 1 through 7 go in bits 4 through

11 of words 1 through 7. Characters 8, 9, and 10 are split and packed into the high-order bits of words

1 through 6. Bits 0 through 3 of word 7 are unused.

The DDBe for the assignable devices exist for as long as the device i s assigned. T h y have bit 0 of

word 0 set. B i t 1 of word 0 i s set when the device i s active (initialized).

If a user program IOT or an S I command requires FIP to be called, an IOT parameter block i s set up

to hold the IOT and its parameters. A pointer to this block goes into JOBLNK. If a FIP IOT i s to be

executed which requires no parameters, the IOT itself goes into JOBLNK. No IOT parameter block

i s set up.

8.2 USER PROGRAM STATUS

All job status information i s based on a single, fixed-length table in Monitor core, JOBTBL. - JOBTBL

has a one-word entry for each possible job. If the job does not exist, i.e., no one i s logged in on

that job, the corresponding entry in JOBTBL i s zero. If that job does exist, the entry contains a

pointer to the first of three (linked) Job Status Blocks. These contain complete information about the

running state of that job. For each file which i s open to that iob, there are two additional blocks,

one of which contains information about the file, the other of which indicates where i t i s on thedisk.

While a f i le transfer i s in progress, s t i l l another block exists which contains parameters for the trans-

fers. Finally, when executing an IOT which requires a RP call, a block may be set up to pass the

parameters.

8-4

n n n

m
0

0

P

0
n n

m
0

I

Y

8 -
m

Q)
0 .-
6
'0
I
a0

8-5

STATUS STATUS
BLOCK BLOCK

JOB 2

JOB 3

JOB TBL

I --

PARAMETER
BLOCK

RETRIEVAL
INFOR
BLOCK

l L
J

08-0556

Figure 8-8 Job Status Information

The three job status blocks exist for al l jobs. They contain the saved state for the job, AC, PC, LK,

MQ, and SC. They also contain the status of the job's I/O. This information i s stored in bits of the

three status words: STRO, STRl , and STR2.

STRO contains status bits which are not directly associated with I/O. STRl and STR2 contain bits

which may be considered flags. They are set and cleared according to whether the associated device

i s ready or not ready. The two words of the wait mask STRl and sTR2. When a job i s waiting for a

device, a single bit i n the wait mask, corresponding to the device bit i n STRl and STR2, i s set.

0 F-- JOBSTS (S T R 0 1

' I STR 1 I

2F 3 WAIT MASK 1

6

10 F Y SWITCH REG

1 1 I PC

13

15 SC J

::1;.;.;.1
FILE 0 CONTROL

20 ~ T R O L 1
21 FILE 2 CONTROL

22 1 FILE 3 CONTROL 1
23 DECTAPE STATUS B

08-0557

Figure 8-9 Job Statu5 Blocks

8-6

E W O R ENABLE

-
0

1

2

3

4

5

6

7

8

9

10

1 1

-
-

-
-

-
-

-
-
-

SYSTEM
ERROR
CODE

TIMER

FILE 0

FILE t

F I L E 2

FILE 3

DELIMITER

TELETYPE

READER

PUNCH

ERROR DECTAPE ERROR

DUMMY WAIT DECTAPE DONE

TAPE CONTROL
T

STR 0

08-0558

Figure 8-100 STR0 Figure &lob STR1 Figure8-10c STR2

Within Job Status Block 2 are four registers which correspond to the four possible internal files. If a

register i s zero, no f i le i s open on that internal file. When the file i s opened, a f i le control block

i s set up and a pointer to i t i s put in Job Status Block 2. At the same time, the first 8-word File

Retrieval Information Block for that block i s fetched from the UFD and i s set up in another block of

free core. Referred to as the f i le window, this retrieval block i s used to calculate addresses far file

reads and writes. If a part of the file i s being accessed which does not correspond to this window,

FIP i s called to move the window to the appropriate area. Word 1 of fhe control block remembers

which retrieval information block i s i n the retrieval window.

When a user program executes an RFILE or WFILE, the transfer parameters (word count and f i le address)

are stored in the file control block. The file address i s an address within the logical file. The address

of the transfer parameters in the user program i s also saved. Then, using the f i le window, the logical

file address i s reduced to a physical disk address. A parameter block i s set up which contains these.

physical addresses. A pointer to where in Monitor to go when the transfer i s complete i s also stored.

This block i s also linked into the disk queue (DSUTBL).

8-7

ADDRESS

FILE ADDRESS

-WORD COUN

ADDRESS OF
PARAMETERS

~ - - _ - _ - - - -
--

POINTER TO NEXT
WINDOW IN UFD

0.9-0559

Figure 8-1 1 File Retrieval Information Block

-___I-

K EXTENDED A

__.----

1 -I---

LEVEL 2 I- COMPLETION ADD t- 7
ADDRESS OF FILE

Figure 8-12 Readhrite File Parameter

CORTBL
FIELD 1

FIELD 2

FIELD 3

FIELD 4

F I E L D 5

F I E L D 6

F I E L D 7

.
Figure 8-13 CORTBL

8-8

CLKTBL i s used to execute the STM instruction. I t has a one-word entry for each job. I f that job i s

not waiting out on STM, its entry i s zero. If i t is, the entry contains the number of seconds left to

wait (in 2s complement). When the counter goes to zero, the timer flag for that job i s set.

The W T B L table has a one-word entry for each possible system job. Each entry contains the number

of the Teletype associated with that job.

8.3 MONITOR SCHEDULING DATA BASE

DEVTBL, JOBTBL, and their related status blocks maintain some of TSS/8's status information relating

to individual jobs. Monitor also maintains some of its own tables. These are used primarily to do

scheduling.

CORTBL contains the status of the user fields. I t i s a seven-word table in Monitor core, each word

corresponding to a core field. Within each entry, bits 7 through 11 contain the job number of the job

which occupies that field. If the field i s empty, a zero i s stored there. If the job that occupies a

field i s not completely there, bit 0 i s set to indicate a swap in progress. A job i s considered to be in

a field from the time i t i s scheduled to be swapped in until the time i t i s completely swapped out.

Bit 1 i s set i f the job in that core field cannot be swapped out. This i s the case while a disk transfer

i s pending for that field. B i t 2 i s set i f the job in that field h a s not been run. I t cannot be swapped

out until i t has been run. RP and S I are called phantoms in the sense that they run in place of a

user job. Therefore, when either i s running, the calling job number i s stored in CORTBL. Bits 3 or

4 i s set to remember that i t i s actually a phantom. Phantoms can run only i n field 2. CORTBL has an

entry for every core field but field 0, whether i t i s available or not. At startup time, Monitor's

fields and nonexistent fields have their lock bits set to prevent their use.

PRGTBL maintains information on what program each user i s running. I t has a three-word entry for

each possible job. When a user types a LOAD or RUN command, the f i le name (one to six characters

packed in internal format) i s stored in PRGTBL. This information i s used solely by TSS/8 SYSTAT.

DSUTBL i s the disk request queue. It contains a four-word entry for each core field in the system.

A 7777 word terminates DSUTBL. Within each four-word entry there i s a register for each of the four

possible files open to the user currently in that core field. If the entry i s zero, there i s no f i le transfer

pending for that internal f i le for that user in that core field. If the entry i s nonzero, i t i s a pointer

to a parameter block (the RFILWRLE parameter block) which describes the transfer that i s to take

place. A pointer, DSKPTR, cycles through DSUTBL looking for transfers to be done.

8-9

8.4 DISK FILE DATA BASE

For each TSS/8 account number there i s a separate disk file library, which contains named files.

Controlling this library i s the User File Directory which contains, for each file, the f i le name (and

some associated information) and information about where the file may be found. The name i s in an

8-word name block; the retrieval information i s i n one or more 8-word file retrieval information blocks.

The UFD itself i s stored in disk segments, up to a maximum of seven.

The first 8-word block of the UFD i s a dummy block. It contains al l zeros except for a pointer to the

next block.

The MFD i s identical in form to a UFD. The only difference i s in the contents of the name block.

Where the UFD has six f i le name characters packed into three words, the MFD has the account number

in the first word, then two words of password. Altogether, these three words are the name of the

associated U FD .

SECONDS

Figure 8-14

DSUTBL

CONSOLE# JOB 2

TTYTBL

08-0552

PRGT BL

ENTRIES FOR
F IELD 0

ENTRIES FOR
F IELD 1

ENTRIES FOR
FIELD N

END OF LIST

DSUTBL

00-0563

Figure 8-15 DSUTBL

8-10

FILE NAME

Ptr to next name Block I Ext I Protection 1
File Size

Date of Creation

DUMMY BLOCK

NAME BLOCK

Fl
System Password

I I

I I System Password

I Ptr to next name block I

t I 12 1
CPU lime used

Device time used I
Ptr to retrieval block

I Ptr to next Retrnvo: Block

INFORMATION FILE RETRIEVAL BLOCK IF]
U

MFD

u
UFD

08-0564

Figure 8-16 File Directories

8.5 FILE PHANTOM DATA BASE

The primary data base of the File Phantom i s the directories, the MFD and UFDs. Although they may

be accessed as files by a user logged in with the system password, these directories are normally used

only by FIP. In addition, to keep track of disk usage, FIP maintains a Storage Allocation Table (SAT).

The SAT i s a bit map of the disk f i le space. The 12 bits i n each SAT word correspond to 12 disk seg-

ments, 1 if the segment i s used, 0 if i t i s available. At refresh time INIT sets all bits which corre-

spond to nonexistent disk to 1s. The SAT i s located at the top of FIP's 4K. It i s therefore swapped

into core with FIP. I f the SAT i s updated, i t i s written back to the disk. Below the SAT are two

registers, SATCNT and SATBOT which record the number of free disk segments and the place within

the SAT where segments are currently being allocated.

FIP also maintains same convenience tables within its awn 4K area. These tables allow FIP to get

at frequently used information quickly. For example, when a user logs in, the retrieval block, which

indicates where his UFD i s located, i s fetched from the MFD and stored in a table. FIP need not then

scan the MFD for this user every time he opens a file.

JOBTAB contains a one-word entry for each possible system job. If no one i s logged in for that job,

the entry i s zero. If there i s a user logged in, his account number i s stored. (Do not confuse FIP's

JOBTAB with resident Monitor's JOBTBL-)

8-1 1

JOB I

JOB 2

JOB n

SATCNT

SATBOT

7777
08-0565

Figure 8-17 Storage Allocation Table

0

ACCOUNT NUMBER
~

ACCOUNT NUMBER

,

ACCOUNT NUMBER

JOB TBL

INTO RETTBL

ADDRESS IN U F D

Figure 8-18 FIP Tables

ENTTBL contains an eight-word block for each possible system job. Within these eight words are four

two-word entries, one for each possible open fi le for that job. If the entry i s zero, the fi le i s not

open. If the f i le i s open, the first word points to the entry in RETTBL for this file. The second word

points to the location within the user's UFD where the File Retrieval Information Blocks for t h i s f i le

begin.

UFDTBL and RETTBL work together to maintain retrieval information for al l UFDs which are in use

within the system. A UFD i s in use if one or more users are logged in with that account or if a user

8-1 2

has opened a f i le from the library of another user. There i s only one entry in UFDTBL and RETTBL for

each UFD, even if more than one user is using it.

UFDTBL i s a table of two-word entries. The first i s the account number of the UFD which i s open,

the second i s the number of USeK who have access to it. (This number i s decremented each time a

user stops using that UFD. If the count goes to zero, the entry i s removed from UFDTBL and RETTBL.)

The access count i s in 2s complement form.

RETTBL contains the File Retrieval Information Block for the UFD which corresponds to the account

number in UFDTBL. There are no pointers between the two tables. Corresponding entries correspond

positionally. The number of entries in these tables i s at least the number of on-line users. The num-

ber of additional entries depends on the amount of f i le sharing going on. For instance, the library

UFD i s invariably open to several Users.

UFDTBL and RETTBL are initialized to have the system account (#l) open as the first entry with an

access count of 1 (actually -1). This allows RP to get at the MFD while processing a LOGIN

request.

Al l RP tables except the SAT are cleared at system startup time. SAT i s cleared at refresh time.

-
000 1

77 77

ACCOUNT# OF UFD
~~

-NUMBER OF ACCESSES

ACCOUNT # OF UFD

UFDTBL

SEGMENT Y

I 0

SEGMENT # r :
a

RETTBL

UFD RETRIEVAL
BLOCK FROM MFD

08 -0582

Figure 8-19 UFD Retrieval Data

8-13

Appendix A
TSS/8 Character Set

TSS/8 accepts 8-bit ASCII characten only. ASCII i s an abbreviation for USA Standard Code for

Information Interchange. The acceptable characters and their 6- and 8-bit octal equivalents are

l i s t e d below.

Cheac ter

Space
!
II

I
%
8
I

(
)

+
I -
i
0
1
2
3
4
5
6
7

6-Bi t*
Octal

00
01
02
03
04
05
06
07

10
11
12
13
14
15
16
17

20
21
22
23
24
25
26
27

-
8-Bit
Octal

240
241
242
243
244
245
246
247

250
25 1
252
253
254
255
256
257

260
261
262
263
264
265
266
267

- Character

@
A
B
C
D
E
F
G

H
I
J
K
L
M
N
0

P
Q
R
S
T
U
V
W

6-Bi t*
Octal

40
41
42
43
44
45
46
47

50
51
52
53
54
55
56
57

60
61
62
63
64
65
66
67

8-b1 t
Octal

300
301
302
303
304
305
306
307

310
31 1
312
313
314
315
31 6
317

320
32 1
322
323
324
325
326
327

* Used to store passwords and filenames only.

A- 1

Character

8
9

I

<

>
?

6-Bit*
Octal

30
31
32
33
34
35
36
37

8-Bit
Octal

270
271
272
273
274
275
276
277

6-Bitf
Character Octal

X 70
Y 71
Z 72
c 73
\ 74 -
1 75
t 76

0. 77

8-Bit
Octal
c_

330
33 1
332
333
334
335
336
337

Used to store passwords and filenames only.

A-2

Appendix B
Building a TSS/8 System from Paper Tape

Load TSS/8 BUILD using the Binary Loader and start at location 0200, as illustrated in Figure 2.4.

TSS/8 BUILD--(REVISED 2/15/74)

IS DISK AN RS08? (Y IF RSB8. N IF DF32): Y
DOES THE SYTEM INCLIJDE DECT4PE? (Y OR N): N

YOlJ SHOULD HAVE THE FOLLOWING BIN FORMAT PAPER TAPES:

1) SI * * - TSS/8 SYSTEM INTERPRETER
2) FIP TSS/8 FILE PHANTOM
3) XDDT . * e TSS/8 DEBUGGING IJTILITY
4) INIT ... TSS/8 INITIALIZFR
5) TS8 * * e FIELD 0 RESIDENT MONITOR
6) TS8II .. FIELD 1 RESIDENT MONITOR
7A)PI? . - e PERIPHERAL INTERCHANGE PROGR4M *** IF NO DECTAPE ***
7E)COPY * * e DECTAPE COPY PROGRAM *** IF DECTAPE ***
THE BUILDING PR3CESS Is DONE IN FIVE STEPS
1 . LOADING MONITOR ONTO THE DISK
2. REFRESHING THE DISK
3. BUILDING U? THE SYSTEM LIBRARY
4. BUILDING UP THE FILE OF VALID PASSWORDS
5 . DUMPING THE SfSTEM TO DECTAPE

(IF DECT4PE IS ON THE SYSTEM-)

OVLY THE FIRST STEP IS DONE UYDER THE CONTROL OF TSS/8 BUILD.
STEP 2 IS DONE UNDER CONTROL OF INIT. STEPS 3 AND 4
ARE DONE b!HILE THE TIME-SHARING SYSTEM IS ON-LINE. STEP 5
IS DONE BY STOPPING THE SYSTEM AND RECALLING INIT-

STEP ONE - - -

4s EACH T4PE NAME IS TYPED OUT> MOUNT THE CORRESPONDING TAPE IN
THE HIGH SPEED READER AND TYPE CARFIRGE RETURN-

SI :
FIP :
XDDT:
INIT:
TSB :
TSE1 I :
PIP:
EXPLAIN STEP 2? (Y OR N): Y
REFRESHING THE TSS/8 SYSTEM DELETES ALL FILES,
ACCOUNT NUIV~BERSJ AND DIRECTORIES FROM THE DISK.

B-1

T H E N TWO P A S S W O R D S , T H E S Y S T E M P A S S W O R D (A L W A Y S
A C C O U N T N U M B E R O N E) A N D T H E L I B R A R Y P A S S W O R D (A L W A Y S A C C O U N T
N U N B E R T W O) A R E D E F I N E D . T H E S E P A S S W O R D S MAY B E ANY C O M B I N A T I O N
O F 4 C H A R A C T E R S .

T H E P R O C E D U R E I S A S F O L L O W S :
N O T E : A L L U S E R R E S P O N S E S A R E B R A C K E T E D H E R E B Y <> F O R C L A R I T Y

D O N O T I N C L U D E O R > I N T H E A C T U A L R E S P O N S E S

L O A D , D U M P S R E F R E S H , S T 4 R T ? < R E F R E S H >
R E F R E S H ? < Y E S >
S Y S T E M P A S S W O R D ? < M A G I >
L I e R A R Y P A S S W O R D ? < L I B R >

L O A D , D U M P S R E F R E S H , S T A R T ? < S T A R T >
L O G I N MESSAGE? < N O >
L O A D E X E C D D T ? < N O >
O F U S E R F I E L D S ? < - >
M O N T H - D A Y - Y E A R ?
HOLIR-DAY? <23:56>

A S P A R T O F T H E I N I T I A L I Z A T I O N P R O C E S S S TSS/8 A S K S HOW MANY

O F C O R E F I E L D S O N T H E S Y S T E M M I N U S TWO (F O R R E S I D E N T M O N I T O R)

<12 : 24 : 84>

U S E R F I E L D S A R E T O B E U S E D - F O R N O R M A L R U N N I N G , T H I S I S T H E N U M B E R

T H U S , F O R A 1 6 K TSS/8> R E S P O N D W I T H T H E N U M B E R 2

A S S O O N A S T H E TIME O F DAY H A S B E E N E N T E R E D , THE S Y S T E M I S U P
A N D R U N N I N G . T H I S C O M P L E T E S STEP T W O -

E X P L A I N STEP 3? (Y O R N) : Y
TSS/8 S Y S T E M L I B R 4 R Y P R O G R 4 M S A R E D I S T R I B U T E D O N S P E C I A L S A V E
F O R M 4 T P A P E R T A P E S . S A V E F O R M A T T A P E S A R E
R E A D (A N D P U N C H E D) O N L Y B Y TSS/8 P I P -

P I P H A S B E E N P R E - L O A D E D D U R I N G STEP 1 - T O U S E I T T O L O A D
T H E L I B R A R Y P R O G R A M S , L O G I N WITH T H E P A S S W O R D Y O U D E F I N E D
F O R T H E L I B R 4 R Y (T H E A C C O U N T N U M B E R I S T W O .) T O S T A R T P I P
T Y P E :

* < S T A R T 0 >

P I P R E S P O N D S B Y T Y P I N G ' I N P U T : ' R E S P O N D B Y T Y P I N G T H E
R E T U R N K E Y . WHEN P I P R E Q U E S T S O U T P U T , T Y P E I N T H E NAME
O F T H E P R O G R 4 M B E I N G L 0 4 D E D A N D M O U N T I T I N T H E H I G H S P E E D
R E A D E R - WHEN P I P R E Q U E S T S O P T I O N , T Y P E T H E L E T T E R S T O I N D I C A T E A
S 4 V E F O R M A T T A P E - P I P WILL T H E N R E A D I N T H E T A P E A N D R E Q U E S T
M O R E I N P U T - E X A M P L E :

I N P U T : < C R >
O U T P U T : < F O C A L >
O P T I O N : <S>

I N P U T :

8-2

REPEAT UNTIL ALL DESIRED PROGR4MS HAVE BEEN LOADED- REMEMBER
TO L04D PIP ITSELF. WHEN DONE, YOU MAY RUN CAT TO VERIFY
THAT ALL PROGRAMS HAVE BEEN PROPERLY LOADED- THEN TYPE CTRL/B AND S
AND THEN LOGOUT* THIS COVPLETES STEP 3 -

NOTE: S4VE FORMAT TAPES INCLUDE A CHECKSUM* IF PIP DETECTS A
CHFCKSIJM ERROR, IT WILL TYPE 'LO4D ERROR'.

EXPLAIN STEP 4? (Y OR N): Y
P4SSWORDS M4Y ONLY BE DEFINED BY A USER WHO IS LOGGED IN WITH THE
SYSTEM PASSWORD. THIS IS THE PASSWORD DEFINED IN STEP 2. LOG IN USING
THIS PASSWORD. (THE ACCOUNT NUMBER IS 1) -

THE LIBRARY PROGRAM 'LOGID' IS USED TO DEFINE NEW ACCOUNT
NUMBER/PASSWORDS. IT SHOULD HAVE BEEN LOADED INTO THE LIBRARY DURING
STEP 3 . TO USE IT, TYPE

W4IT FOR LOGID TO TYPE AN ASTERISK(*)* TO DEFINE NEW PASSWORDS,
TYPE THE ACCOUNT NUMBER (1 TO 4 OCTAL DIGITS), A SINGLE
SPACE, 4ND THE PASSWORD (1 TO 4 ALPHANUMERICS), THEN THE RETUaN
KEY- WAIT FOR THE NEXT ASTERISK BEFORE ENTERING THE NEXT LINE.
WHEN ALL DESIRED ACCOUNT NUMBERS HAVE BEEN DEFINED9 TYPE
CTRL/B 4ND S AND THEN LOG OUT* THIS COMPLETES STEP 4.

NOTE: IF YOIJ MAKE A TYPING MISTAKE, TYPE THE RUBOUT KEY. THIS DELETES
THE LINE BEING ENTERED* TO DELETE AN ALREADY DEFINED
PASSWORD, TYPE IT IN AGAIN, BUT TERMINATE WITH ALTMODE
INSTEAD OF THE RETURN KEY* EX4MPLE:

.R LOGID

TSS/8 ACCOUNT MAINTENANCE--

* 4CCT #<SPACE>PASSWORD <RETURN TO OPEN/CHANGE, ALT MODE TO CLOSE>
* 1Cl DEMO
* 277 XYZ
f t R S
*LOGOUT

EXPLAIN STEP 5 ? (Y OR N): N

END OF TSS/8 BUILD

LOAD, DUKPJ REFRESH9 START? REFRESH
REFRESH? YES
SYSTEM PASSW3RD? TSS8
LIBRARY PASSWORD? LRRY

LOAD9 DUMP9 REFRESH, START? START
LOGIN MESSAGE? NO
LOAD EXEC DDT? NO
USER FIELDS - 2
MONTH-DAY-YEAR:
HR:MIN - 10:14

6 : 3 : 70

B-3

T S S l 8 . 2 1 C JOP 01 K0B 10: 14: 1 7
YOUR MESS4GE IN T H I S SPACE

.START B

INPUT:
OlJTP 1)T : FOCAL
OP T I O N : S

INPIJT :
OUTPUT : R A S I C
OP T I ON : S

INPUT:
OUTP U T : PA LD
OPT I O N : S

INPUT:
0UTPUT:EDIT
OF'TION: S

INPUT:

OP T I O N : S
011 T? U T : FORT

INPUT:
OUTPUT: FDCOMP
OPTI O N : S

INPUT:
OUTPUT: FOSL
OPTION: S

INPIJT:
0UTPUT:FOSSIL
OPT I O N : S

INPUT:
OUTPUT: LOGOUT
0PTION:S

INPUT :
OUTPUT: CAT
OPTI ON : S

INPUT:
OUT? U T : P I P
OPT I O N : S

INPUT:
OUTPUT: SYSTAT
OPT I ON : S

INPUT:
OUTPUT: L04DER
OPTI0N:S

8-4

INPUT:
0UTPUT:ODTHI
OPT I ON : S

INPUT:
OUTPUT : LOG I D
OPT1 ON : S

INPUT: t B S
*R CAT
DISK FILES F03 USER 092 ON 3-JUN-7a

N4ME
FOCAL
R4SIC
PALD
EDIT
FORT
FDCOMP
FOSL
FOSSIL
LOGOUT
CAT
PIP
SYSTAT
LO4 DER
ODTH I
LOG ID

SIZE PROT
16 12
3 3 12
16 12
7 12
7 12
16 12
7 12
10 12
6 12
5 12
10 12
5 12
4 12
2 12
2 12

D4TE
3-JUN- 70
3-JUN- 78
3-JUN-73
3-JUN- 78
3 -JUN - 70
3 - JUN - 78
3-JUN-70
3 -JUN - 7a
3 -JUN- 70
3-JUN-7Zl
3 - JUN - 7B
3 - JUN - 70
3-JUN- 70
3-JUN -70
3-JUN-78

TOTAL DISK SEGMENTS: 146

t PS - LOGOIJT
JOB 1 , USER C 0 ~ 2 3 LOGGED OFF K00 AT 10:44:27 ON 3 JUN 70
RUNTIME 00:01 :09 (1 1 CPU UNITS)
EL4PSED TIME 00 :27: 18

TSS/8*21C J O B 01 K00 10:46:1 1

YOIJR MESSAGE IN THIS SPACE

*R LOGID

TSS/8 ACCOUNT MAINTEN4NCE - -
* 4CC'T # <SPACE> PASSWORD <RETURN TO OPENICH4NGE9 ALT MODE TO CLOSE>

* 1@66 H4RQ
* 1215 JOHN
* 732 TOUR
* t B S
*LOGOUT

JOB 1 J USER C 0, 1 1 LOGGED OFF K00 AT 10:47:58 ON 3 JUN 70
RIJNTIME 00:00:00 (0. CPU UNITS)
EL4PSED TIME 00 :01 : 42

B-5

Appendix C
Building a TSS/8 System from DECtape

TSS/8 BUILD--<REVISED 211 5/78 1

IS DISK AN RS08? (Y IF RS08- N IF DF32): Y
DOES THE SYTEM INCLUDE DECTAPE? (Y OR N): Y

YOlJ SHOULD HAVE THE FOLLOWING PIN FORMAT PAPER TAPES:

1) SI * * * TSS/8 SYSTEM INTERPRETER
P) FIP - 0 - TSS/8 FILE PHANTOM
3) XDDT * * . TSS/8 DEBUGGING UTILITY
4) INIT TSS/8 INITIALIZER
5) TS8 - - a FIELD 0 RESIDENT MONITOR
6) TS8II- FIELD 1 RESIDENT MONITOR
7A)PIP * a * PERIPHERAL INTERCHANGE PROGRAM * * * IF NO DECTAPE * * *
7B)COPY * * * DECTAPE COPY PROGRAM * * * IF DECTAPE ***
ThE BUILDING PROCESS IS DONE IN FIVE STEPS

1 . L04DING MONITOR ONTO THE DISK
2. REFRESHING THE DISK
3- BUILDING UP THE SYSTEM LIBRARY
4- PUILDING UP THE FILE OF VALID PASSWORDS
5 - DUMPING THE SYSTEM TO DECTAPE

(IF DECTAPE IS ON THE SYSTEM.)

ONLY THE FIRST STEP IS DONE UNDER THE CONTROL OF TSS/8 B
STEP 2 IS DONE UNDER CONTROL OF INIT- STEPS 3 AND 4
ARE DONE WHILE THE TIME-SHARING SYSTEM IS ON-LINE. STEP 5
IS DONE BY STOPPING THE SYSTEM AND RECALLING INIT.

D.

STEP ONE - - -

AS EACH TAPE N4ME IS TYPED OUT> MOUNT THE CORRESPONDING TAPE IN
THE HIGH SPEED READER AND TYPE CARRAIGE RETURN-

SI :
FIP :
XDDT :
INIT:
TS8:
TS8I I :
COPY:

EXPLAIN STEP 2? (Y OR N): Y
REFRESHING THE TSS/8 SYSTEM DELETES ALL FILES,
ACCOUNT NUMBERS, AND DIRECTORIES FROM THE DISK.

c-l

THEN TWO PASSWORDS> THE SYSTEM PASSWORD(ALW4YS

NUMBER TWO) ARE DEFINED. THESE PASSWORDS MAY BE ANY COMBINATION
ACCOUNT NUMBER ONE) AND THE LIBRARY PASSWORD (PLWAYS ACCOUNT

i- OF 4 CHARACTERS-
THE PROCEDURE IS AS FOLLOWS:
NOTE: ALL USER RESPONSES ARE BRACKETED HERE BY <> FOR CLARITY

DO NOT INCLUDE OR > IN THE ACTUAL RESPONSES

LOAD> DUMP, REFRESH, START? <REFRESH>
REFRESH? <YES>
SYSTEM PASSWORD? <MAGI>
LIPRARY PASSWORD? <LIBR>

L04D> DUMP> REFRESH> START? <START>
LOGIN MESSAGE? <NO=-
LOAD EXEC DDT? <NO>
OF USER FIELDS? e->
MONTH - DAY - YEAR?
HOUR-DAY? <23:56>

< 1 2 : 2 4 : 8 42

AS PART OF THE INITI4LIZATION PROCESS> TSS/8 ASKS HOW MANY
USER FIELDS ARE TO BE USED- FOR NORMAL RNINGI THIS IS THE NUMBER
OF CORE FIELDS ON THE SYSTEM MINUS TWO (FOR RESIDENT MONITOR)
THUS> FOR A 16K TSS/8, RESPOND WITH THE NUMBER 2

AS SOON AS THE TIME OF DAY HAS BEEN ENTERED> THE SYSTEM IS UP
AND RUNNING. THIS COMPLETES STEP TWO.

EXPL4IN STEP 3? CY OR N): Y
TSS/8 SYSTEM LIBRARY PROGRAMS ARE DISTRIBUTED ON A SYSTEM LIBRARY
DECTAPE- THEY ARE LOADED INTO THE LIBRARY BY THE PROGRAM 'COPY'

COPY HAS BEEN PRE-LOADED DURING STEP 1. TO USE IT> LOG IN WITH THE
PASSWORD YOU DEFINED FOR THE LIBRARY (THE ACCOUNT NUMBER IS 2.1
MOUNT THE LIPRARY DECTAPE ON UNIT ZERO.
TO START COPY, TYPE:

COPY RESPONDS BY TYPING 'OPTION-'. TYPE <LIST>* COPY THEN
ASKS FOR 'DEVICE-'. TYPE <D0>. COPY WILL TYPE OUT THE NAMES
OF THE FILES ON THE TAPE- THE FIRST FILES ON THE TAPE> THE ONES WITH
4 FILE EXTENSION OF '-SAV' ARE THE SYSTEM LIBRARY PROGRAMS-
(BASIC-SAVI FOCAL-SAV, ETC-) THESE ARE THE FILES TO BE LOADED-
(YOU MAY ALSO WANT TO LOAD SOME OF THE OTHER DEMONSTRATION PROGRAMS
ON THE TAPE.)

WHEN COPY AGAIN TYPES 'OPTION-'> TYPE <COPY>. WHEN I T
REQUESTS 'INPUT-', TYPE <D0:NAME> WHERE N4ME IS THE
NAME OF ONE OF THE LIBRARY PROGRAMS- WHEN COPY REQUESTS
'OUTPUT-', TYPE THIS NAME AGAIN. THE FILE WILL THEN
BE LOADED AND COPY WILL AGAIN TYPE 'OPTION-'.-EXAMPLE:

OPT1 ON-<COPY>
I NPUT- <D0 : BA S I C>
OUTPUT - <PA S I C>

OP T I ON -

REPEAT UNTIL ALL PROGRAMS HAVE BEEN LOADED- REMEMBER TO LOAD
COPY ITSELF- WHEN DONE> TYPE CTRL/B AND S- THEN TYPE
<LOGOUT>
THIS COMPLETES STEP 3

c-2

E X P L A I N STEP 4? CY O R N) : Y
P A S S W O R D S MAY O N L Y B E D E F I N E D B Y A U S E R WHO I S L O G G E D I N WITh T H E
S Y S T E M P A S S W O R D . T H I S I S T H E P A S S W O R D D E F I N E D I N STEP 2 - L O G I N U S I N G
T H I S P A S S W O R D . (T H E A C C O U N T N U M B E R I S 1) .

T H E L I P R A R Y P R O G R A M ' L O G I D ' I S U S E D T O D E F I N E NEW A C C O U N T
N U M R E R / P A S S k O R D S * I T S H O U L D h A V E B E E N L O A D E D I N T O THE L I e R A R Y D U R I N G
STEP 3 . T O U S E I T , T Y P E

W A I T F O R L O G I D T O T Y P E A N A S T E R I S K (*) - T O D E F I N E NEW P A S S W O R D S ,
T Y P E T H E A C C O U N T N U M B E R (1 T O 4 O C T A L D I G I T S) > A S I N G L E
S P A C E , A N D T H E P A S S W O R D (1 T O 4 A L P H A N U M E R I C S) > T H E N T H E R E T U R N
K F Y . W A I T F O R T H E N E X T A S T E R I S K B E F O R E E N T E R I N G T H E N E X T L I N E -
WHEN A L L D E S I R E D A C C O U N T N U M B E R S h A V E B E E N D E F I N E D , T Y P E
C T R L / R A N D S A N D T H E N L O G O U T . T H I S C O M P L E T E S STEP 4 -

N O T E : I F Y O U MAKE A T Y P I N G M I S T A K E , T Y P E T H E R U B O U T K E Y . T H I S D E L E T E S
T H E L I N E B E I N G E N T E R E D - T O D E L E T E A N A L R E A D Y D E F I N E D
P A S S W O R D , T Y P E I T I N A G A I N J B U T T E R M I N A T E W I T H A L T M O D E
I N S T E A D O F T h E R E T U R N K E Y . E X A M P L E :

- R L O G I D

TSS/8 A C C O U N T M A I N T E N A N C E - -

* A C C T # < S P A C E > P A S S W O R D < R E T U R N T O O P E N / C H A N G E J A L T MODE T O C L O S E >

* 1P) DEMO
* 2 7 7 X Y Z
* tBS
- L O G O U T

E X P L A I N STEP S? C Y OR N) : y
T O DUMP T H E WHOLE S Y S T E M T O D E C T A P E C S) , S T O P T H E S Y S T E N (M A K E
S U R E T H A T A L L U S E R S A R E L O G G E D O U T .) L O A D A D D R E S S 4200
(F I E L D Z E R O) A N D S T A R T - S T A R T I N G A T 4200 B O O T S A C O P Y O F T H E I N I T -
I A L I Z E R I N T O A H I G H C O R E F I E L D . I T R E S P O N D S BY T Y P I N G
' L O A D J DUMP > R E F R E S H , S T A R T ? '

MOUNT D E C T A P E S O N U N I T S O N E A N D TWO A N D W R I T E E N A B L E - (I F D F 3 2 ' S
A R E U S E D > O N L Y O N E T A P E (O N U N I T 1) I S N E E D E D - NOW R E S P O N D
' D U M P ' . T H E E N T I R E S T A T E O F T H E S Y S T E M WILL B E S A V E D ON D E C T A P E C S)
I N I T WILL A G A I N T Y P E ' L O A D J D U M P , R E F R E S H , S T A R T ? '

E N D O F TSS/8 B U I L D - -
L O A D , D U M P , R E F R E S H , S T A R T ? R E F R E S H
R E F R E S H ? Y E S
S Y S T E M P A S S W O R D ? TSS8
L I P R A R Y P A S S W O R D ? L P R Y

L O A D , D U M P , R E F R E S H , S T A R T ? S T A R T
L O G I N M E S S A G E ? N O
L O A D E X E C D D T ? N O
U S E R F I E L D S - 2
M O N T H - D A Y - Y E A R : 6:3:70
H R : M I N 12:03

c -3

TSS/8 2 1 C J O B 0 1 K 0 0 12:03: 1 4
YOUR M E S S A G E I N T H I S S P A C E
. S T A R T 0

O P T I O N - L I S T
D E V I C E - D 0

642. F R E E B L O C K S

NAME S I Z E
B A S I C . S A V 66
FnCAL - 5 A V 32
C O P Y . S A V 20
E D I T . S A V 1 4
PIP . S P V 20
S Y S T A T - S A V 1 0
W G O U T . S A V 1 2
C A T . S P V 1 0
L O A D E R - S A V 8
F n R T . S A V 12
FnSL .SAV 14
F D C n M P . SkV 32
F n S S I L - S A V 20
PAL0 * S A V 32
O D T H I * S A V 4
C A T L O G - B A S 26
L O G I D . S A V 6
P L O T . F C L 2
B A N D I T - E A S 1 4
B L K J A C - B A S 32
BUNNY * A S C 56
CI?APS = E A S 1 2
E V E N . E A S 1 6
F I L K S . B A S 16
F S P I E L - B A S 8
F T B A L L E A S 28
G O L F . B A S 24
H O S S R * B A S 2pI
N E L S O N e B A S 4
N I M . B A S 22
R n U L E T - B A S 26
S P R R T S - B A S 22
T I C T A C - B A S 10
C n N V E R - B A S 6
F A C T . B A S 6
F A C T A L B A S 30
FIE0 . B A S 6
I N V E R T . E A S 24
M A G I C * B A S 6
P R I M E . B A S 8
I N T E R . B A S 4
P E A C E -EAS 14
P E A C E 2 E A S 10
S G O O P Y B A S 1 2
W D G A K E - A S C 1 0
DATA . A S C 8
M A T R I X * P . S C 6
T Y P E . A S C 10
H A M U R A - F C L 10

D A T E
2 - M A R - 70

1 2 - M A R - 7 0
3 - M A R - 70
2 - K A R - 70
2 - M A R - 78
2 - M A R - 70
2 - M A R - 70
2 - M A R - 70
8 - M A R - 70
2 - M A R - 70
2 - M A R - 70
2 - M A R - 70
2 - M A R - 70
2 - M A R - 70
2 - M A R - 70
3 - M A R - 70
2 - M A R - 7 0
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 7 0
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 7 0
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70
3 - M A R - 70

c-4

O P T I O N - C O P Y
I N P I J T - D O : P 4 S I C
01 I T P I J T - R A S I C

O P T I O N - C O P Y
I N P U T - DO : F O C A L
O I J T P U T - F O C A L

O P T I O N - C O P Y
I N P I I T - DO : C O P Y
O I J T P U T - C O P Y

O P T I O N - C O P Y
I N P U T - D O : E D I T
O I J T P U T - E D 1 T

O P T I O N - C O P Y
I N P U T - D O : P I P
O U T P U T - P I P

O P T I O N - C O P Y
I N P U T - DPI : S Y S T A T
O U T P I J T - S Y S T A T

O P T I O N - C O P Y
I N P U T - DPI : L O G O U T
O U T P U T - L O G O U T

O P T I O N - C O P Y
I N P U T - DC3 : C A T
O I J T P U T - C A T

O P T I O N - C O P Y
I N P U T - DO : L O A D E R
O U T P U T - L O A D E R
O P T I O N - C O P Y
I N P I J T - D O : F O R T
O I J T P l J T - F O R T
O P T I O N - C O P Y
I N P U T - D 0 : F O S L
O U T P U T - F O S L
O P T I O N - C O P Y
I N P U T - DPI : FDCOlVrP
O I I T P U T - F D C O M P

O P T I O N - C O P Y
I N P U T - D O : F O S S I L
O I J T P I J T - F O S S I L

O P T I O N - C O P Y
I N P U T - DPI : P A L D
O I J T P U T - P A L D

O P T I O N - C O P Y
I N P U T - DPI : O D T H I
O I J T P U T - O D T H I

O P T I O N - C O P Y
I N P U T - DO : L O G I D
O U T P U T - L O G I D

O P T I O N - L I S T
DFV I C E -

c -5

NAN E SIZE PFCT
BASIC =SAV 33 12
FnCAL *SAV 1 6 12
COPY *SAV 1c1 12
EDIT .SAL' 7 1 2
P I F *SAV 10 1 2
SYSTAT-SPV 5 1 2
LnGnUT-SAV 6 12
CAT .SPV 5 1 2
LOADEh-SPV 4 1 2
FORT -SAV 6 12
FnSL *SAV 7 1 2
FDCOMP- SAV 1 6 1 2
rnSSIL .SPV 10 12
PkLD *SPV 16 1 2
ODTHI -SAV 2 1 2
LnGID *SAV 3 1 2

DATE
3- JIK- 7 6
3- JUK- 7G?
3-u ' IJN- 7G?
3- L11N- 7Gl

3-J11\-74)
3- J r l N - 74)
3 - J J h - 7 0
3- J I l N - 7G?
3- LUN- 7 6
3- &!N- 7 0
3- J L ' K - 7 0
3- J U N - 7 0
3- J U N - 7 0
3- dL'N- 7 0
3- J J N - 7 0

3 - d ~ ' ~ - 75,

TOTAL DISK SEGMENTS: 156
OPTInK- EXIT
TBS

LOGOIJT

JOP l r USER C Glt 21 LOGGED OFF K00 A T 1 2 : 1 7 : 3 1 O N 3 J U N 70
RUNTIME 0G?:OG?:2c1 (3 . CPU UNITS)
FLAPSFD TIMF G?@ : 1 4 : 46

TSS/8 -21 C JOP 01 K@G? 1 2 : 1 7 : 5 6

Y O U R MFSSAGE IN THIS SPACE

* R LOGID

TSS/8 ACCOUNT VAINTENANCE - -

* A C C ' T # <SPACF> PASSUORD < R E T U R N TO OPENlCHANGEt ALT MODE TO CLOSE>

* 1?15 J O H N
* 1G?66 H A R O
* lG?G?G? O T T O
* tPS
S L O G O U T

J O R I t USFR C m t 1 3 LOGGED OFF K00 AT 1 2 : 1 8 : 4 8 O N 3 J U N 74)
RIJNTIMF G?Cl :@Gl :G?G? ('3- CPU UNITS)
ELAPSED TIME c1B :G?l : 33

LOADt DIJMPt RFFRESH9 START? DUWP

L04Dt DUVPt RFFRFSHt START?

C-6

Appendix D
TSS/8 Hardware Configurations

Simultaneous Users

PDP-8/I-D and ASR33 (negative bus)

MC8/IA Memory Control +4K

MM8/IA 4K Memory

MM8/IB 8K Memory

RF08 Disk Control

RS08 Disk

KT8/I Time-share Modification

PV8I Paper Tape Reader

PC/8I Reader-Punch

KW8/IA Clock

PT08B Teletype Interface

PT08C Dual Interface

PT08F Modem Adapter

DL8/I Data Line Adapter

DC08A Line Multiplexer

M750 Dual Interface

DC08B Adapter Panel

BC01C-25 Modem Adapter

DW08B Positive Bus

689-AG Modem Interface

689-LM Modem Adapter

*

4 8 16 24

1 1 1 1 1 1 1

1 1 1 1 1 1 1

1

1 1 1 2 3 3

1 1 1 1 1 1 1

1 1 2 2 3 4 4

1 1 1 1 1 1 1

1 1

1 1 1 1 1

1

1

1

4

1 1

1 1

4 4

1 1

8 16

1 1

1 1 1 1

1 1 1 1

8 8 8 12

1 1 1 1

16

1 1 1 1

1 1

16 24

D- 1

DMOl Mu1 tiplexer

TCOl DECtape Control

TU55 DECtape Transport

H961A Cabinet

TSS/8 Software Set

1 1 1 1

1 1 1 1

2 2 4 6

1 1. 1 2 2 3 3

Appendix E
Required Modifications

The PDP-8/1 or PDP-8 computer must have the following KT08/I timesharing modifications to be

used in a TSS/8 system.

a. USER FLAG REGISTER (UF) - UF i s a 1-bit register that specifies Monitor (UF=O)
or user (UF=l) mode. In Monitor mode al l instructions are legal; in user mode
HALT, OSR, and IOT instructions are trapped via the program interrupt system.
UF i s cleared by the LOAD ADDress switch .
SAVE FIELD REGISTER EXTENSION (SF6) -When a program interrupt occurs,
t h i s bit i s cleared and then loaded from the UF.

USER BUFFER REGISTER (US) - The UB serves as a l-bit input buffer for the UF.
Al l transfers into the UF are made through the UB, except transfers from the
computer console switches. The Change User Flag (CUF) instruction loads the
UB with the value contained in the Memory Buffer (MB). The Restore Memory
Field (RMF) instruction transfers the contents of SF6 into the UB to restore the
UF to the condition that existed prior to a program interrupt. The UF i s cleared
by the LOAD ADDress switch .

b.

c.

The following machine instructions have been changed to operate as indicated.

a. Name and Mnemonic: CHANGE USER FLAG (CUF)

Octal Codes: 6264 and 6274
Execution Time: 1.5 ps
Operation:

Symbol : MB8 -UB

6264 sets the UF to 0; 6274 sets the UF to 1. The next JMP or
JMS instruction causes the appropriate mode to be entered.

b. Name and Mnemonic: SKIP ON USER IOT (SKIOT)

Octal Code: 6254
Execution Time: 1.5 ps
Operation: HALT, OSR, and IOTs when executed with UF 4, sets the

user IOT (UIOT) flag and, i f the program interrupt i s enabled,
causes an interrupt.

c. Name and Mnemonic: CLEAR USER IOT (CIOT)

Octal Code: 6204
Execution Time: 1.5 ps
Operation:
Symbol: 0 - UIOT

Clears the user IOT (UIOT) flag.

E- 1

d. Name and Mnemonic: READ INTERRUPT BUFFER (RIB)

Octal Code: 6234
Execution Time: 1.5 ps
Operation: The contents of h e Instruction Field, Data Field, and User

Flag held in h e Save Field Register during a program interrupt
are transferred into bits 6 hrough 8, 9 through 11, and 5,
respectively.

SFO-2 - AC6-8, SF3-5 - AC9-11, SF6 - AC5 SymboI~:

e. Name and Mnemonic: RESTORE MEMORY FIELD (RMF)

Octal Code: 6244
Execution Time: 1.5 ps
Operation: This instruction i s used upon exit from the program interrupt

subroutine in another field. The Instruction Field, Data Field,
and User Flag h a t were interrupted by he subroutine are
restored by transferring the contents of he Save Field Register
into the Instruction Buffer and Data Field Reg is te rs and the
User Buffer.
SFO-2 - IB, SF3-5 * DF, SF6 - UB Symbols:

E-2

INDEX

A

Account numbers, 2-14
Accounting, 3-3
ASCII Character Set , A-1
Assignable devices, 3-5, 7-9 to 7-1 1

B

Backup for system, 3-2
Binary Loader, 2-4

how to use, 2-5
how to load, 2-5

BROADCAST command, 3-7

Building TSS/8, 2-1
BUILT, 2-5 to 2-1 1

from paper tape, B-1
from DECtape, C-1

C

Cabinets, 1-1
CAT, 3-4
Character buffers, 8-1
CLOSE command, 7-7
Control of

disk usage, 3-5
users, 3-6

COMCNT register, 7-3
Communication

with system, 7-1
with users, 3-7

COPY, 2-13
CORTBL table, 5-8, 6-7, 7-9, 8-8
CREATE command, 7-6
CTRL/B, 7-1
CTR@S, 7-2

D

Data Base, 6-6, 8-1
Dataphone (689) control, 1-1 , 1-2
DC08 communications equipment,

DDB, see Device Data Block
Device Data Block, 6-6, 7-3, 8-1

1-1, 1-2

TTY, 8-3
reader, 8-5
punch, 8-5
DECtape, 8-5

Device handlers, tables, 6-6
Devices, assignable, 3-5, 7-9 to 7-1 1

DEVTBL table, 6-7, 7-9, 8-1, 8-2
DECtape, 2-1, 2-5, 7-10

loading from, 2-13
dumping system, 2-16, 2-17, 2-18
DDB, 8-5
backup, 3-2
starting from, 3-2

controlling wage, 3-5
file data base, 8-10
storage, user programs on4 i ne, 7-4
f i le area, 7-4
transfers, 7-9

DIS KLOO K, 4-3
DSUTBL table, 7-9
Dumping System to DECtape, 2-16

Disk,

E

Environment , 1-2
ENTTBL, 8-12
Equipment, see Hardware
Error handler, (ERP), 6-6, 7-11
EXTEND command, 7-7

F

File Handler (Phantom), FIP, 6-6, 7-4,
7-6 to 7-8,

data base , 8-1 1
tables, 8-12

File directories, 8-1 1
File retrieval information block, 8-8
Files, user, 7-4, 7-5
FORCE command, 3-6, 3-7

H

Hardware configurations, D-1
requirements , 1 - 1
typical installation, 1-3

High-speed punch, 7-10

I

INIT, 2-17, 3-1, 3-2, 4-2, 4-3
Initialization, 2-1
Interrupt Handler, 6-1

levels of interrupts, 6-1

buffers, 5-9
I/O, 5-9

INDEX (Cont)

timing, 5-10
flags, 5-11
clock interrupt, 6-2
console, 6-7

I/O wait condition, 6-4, 6-5
IOT traps, 5-1 1, 6-3

J

Job, definition, 5-8
Job numbers, 5-8
Job status blocks, 8-6
Job status information, 8-6
JOBTBL table, 5-8, 6-7, 8-12

L

Library Password, 2-9, 2-10
Looding Monitor, 2-4 to 2-8
Loading the System, 3-1
Logging in, system manager, 2-11
LOGID, 2-15, 3-3, 3-6
LOGIN message, 2-10
LOGOUT IOT, 3-8

M

Master File Directory (MFD), 7-6, 8-1 1
MFD, see Master File Directory
Modifying TSS/8, 4-1
Monitor

data base, 6-6
execution control, 4-4
loading, 2-4, 2-6
modifying, 4-1
tables, 6-6

0
OPEN command, 7-7
Operating TSS/8, 3-1

P

Paper tape reader, 7-10
Passwords

and accounting, 3-3
defining user, 2-4
library, 2-9 to 2-10
system, 2-9 to 2-10

PEEK IOT, 3-8

PIP, 2-12
Power requirements, 1-2
PROTECT command, 7-7
PT08 interface, 1-1, 1-2

R

Readmrite File parameters, 8-8
REDUCE command, 7-7
Refreshing disk, 2-9
RENAME command, 7-7
Required modification, E-1
Restarting the system, 3-2
RETTBLE table, 8-13
RFILE command, 7-7
RIM Loader, 2-2

haw to load, 2-3
checking, 2-4

5

Schedular data base
PRGTBL, 8-9, 8-10
DSUTBL, 8-9, 8-10

Scheduling, 5-3 to 5-8
wait mask, 6-5

Starting the system, 2-9, 3-2
STOP command, 7-2
Storage allocation table, 8-12
STRO, 8-7
STR1 , 8-7
STR2, 8-7
System

building, 2-8
starting, 2-9, 3-2
restarting, 3-2
backup, 3-2
outline, 5-1
password, 2-9, 2-10
mode, 7-1

loading from paper tape, 2-12
loading from DECtape, 2-13
maintenance, 3-4
modifying programs, 4-1

System library, 2-12

System Interpreter, 7-2, 7-4, 6-6
SWREQ register, 7-9

T
Teletype Character buffer, 8-4
Time-sharing, 5-3

INDEX (Cont)

U

UFD, see User file directory
UFDTBL table, 8-13
User file directory, 7-5, 8-1 1, 8-13
User program, definition, 5-8
User program status, 8-4

W

WFILE command, 7-7

X

XDDT, 4-4

READER’S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its publi-
cations. To do this effectively we need user feedback - your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?
- -

How can this manual be improved?

Other comments?

I

Please describe your position.

Name Organization

Street Department

City State Zip or Country -

I

,

I
I

Do Not Tear -Fold Here and Staple - - - - - - - - - - - - - - - -_ - - - - - -_ - -

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES
-

Postage will be paid by.

Digital Equipment Corporation
Software Information Services
1 4 6 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

I
t

I
6

I
I
I
I
I ,
I
I
t

I
I
I

I
I
I
I

,

1

I

HOW TO OBTAIN SOFNARE INFORMATiON

Announcements of new and revised software, as well as programming notes, software problems, and documen-
tation corrections are published by Software Information Service in the following newsletters:

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/15 Family

These newsletters contain information to update the cumulative

Software Performance Summary for the PDP-8 Famm
Software Performance Summary for the PDP-9/15 Family

The appropriate edition of the Software Performance Summary is included in each basic software kit for new
customers. Additional copies may be requested without charge.

Any questions or problems on the articles contained in these publications or concerning the use of Digital’s soft-
ware should be reported to the Software Specialist or Sales Engineer at the nearest Digital office.

New and revised software and manuals, and current issues of the Software Performance Summary are available
from the Program Library. To place an order, please contact your local Digital office or write to:

Program Library
Digital Equipment Corporation
14.6 Main Street, Bldg. 1-2
Maynard, Massachusetts 01754

#en ordering, include the code number and a brief description of the program or manual requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a catalog of available
programs as well as the DECUSCOPE magazine for its members and non-members who request it. For further
information, please write to:

DECUS
Digital Equipment Corporation
14.6 Main Street
Maynard, Massachusetts 01754

Please complete the return postcard below if you would like to receive Digital’s newsletters.

,

Send 0 Digital Software News for the PDP-8 Family, or
0 Digital Software News for the PDP-9/15 Family

To Name

CompmyName - --
____-__ Address

(zip code)

My computer is a 0 PDP-81 0 PDP-1 2 0 PDP-9
0 PDP-8L 0 LINC-8 0 PDP- 1 5
0 PDP-8s 0 Other

HOW TO OBTAIN SOFIWARE INFORMATION

I

I
I
I
I

I

I
I

I
I
I
I

I

I
I

I
I

I
‘ I

I

I

I

I

I
I

I
I
I
I
I
I
I

1
I
I
I

I
\ I

I
I

I

Announcements of new and revised software, as well as programming notes, software problems, and documen-
tation corrections are published by Software Information Service in the following newsletters:

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/15 Family

These newsletters contain information to update the cumulative

Software Performance Summary for the PDP-8 Family
Software Performance Summary for the PDP-9/15 Family

The appropriate edition of the Software Performance Summary is included in each basic software kit for new
customers. Additional copies may be requested without charge.

Any questions or problems on the articles contained in these publications or concerning the use of Digital’s soft-
ware should be reported to the Software Specialist or Sales Engineer at the nearest Digital office.

New and revised software and manuals, and current issues of the Software Performance Summary are available
from the Program Library. To place an order, please contact your local Digital office or write to:

Program Library
Digital Equipment Corporation
146 Main Street, Bldg. 1-2
Maynard, Massachusetts 01754

When ordering, include the code number and a brief description of the program or manual requested.

Digital Equipment Computer Users Society (DECUS) maintains a user library and publishes a catalog of available
programs as well as the DECUSCOPE magazine for its members and non-members who request it. For further
information, please write to:

DECUS
Digital Equipment Corporation
146 Main Street
Maynard, Massachusetts 01754

Please complete the return postcard below if you would like to receive Digital’s newsletters.

Send 0 Digital Software News for the PDP-8 Family, or
0 Digital Software News for the PDP-9/15 Family

To Name
Company Name

Address - -
(zip code)

My computer is a 0 PDP-81 0 PDP-12 0 PDP-9
0 PDP-8L 0 LINC-8 0 PDP-I5
0 PDP-8s 0 Other -

	1.1 Use of This Manual
	1.2 Planning a TSS/8 Installation
	1.2.1 Size
	1.2.2 Power Requirements
	1.2.3 Teletypes Dataphones and Cables
	1.2.4 Environment
	Initializing the System
	Read-In Mode (RIM) Loader
	Binary (BIN) Loader
	Loading Monitor
	Refreshing the Disk and Starting the System
	Building the System Library
	Logging In
	Loading System Programs from Paper Tape with PIP
	Loading System Programs from DECtape with COPY
	Defining Account Numbers and Passwords
	General Instructions for Dumping Disks to DECtape
	Loading the System
	Starting System
	Restarting the System
	System Backup
	Passwords and Accounting
	Maintaining the System Library
	Assignable Devices
	Controlling Disk Usage
	Controlling System Users
	Communicating With Usen
	Special IOTs
	4.3 Control ling Monitor Execution
	Introduction
	An Outline of the System
	Sharing Time
	Some Definitions
	Talking to the User Program
	6.1 Monitor as Interrupt Handler
	6.2 I/O Wait Condition
	6.3 Other Parts of Monitor
	6.4 The Monitor Data Base
	Talking to the System
	Disk Storage and Files
	Talking to the Disk: The File Phantom
	Disk Transfers
	Assignable Devices
	Error Handling
	Input/Output Data Base
	User Program Status
	Monitor Scheduling Data Base
	Disk File Data Base
	File Phantom Data Base
	TSS/8 CHARACTER SET
	BUILDING A TSS/8 SYSTEM FROM PAPER TAPE
	TSS/8 HARDWARE CONFIGURATIONS
	REQUIRED MODIFICATIONS
	Typical TSS/8 Installation08-0540
	Loading the RIM Loader08-0541
	Checking the RIM Loader08-0542
	Loading the BIN Loader08-0543
	BUILD or TSS/8 INIT08-0544
	Calling and Starting INIT08-0545
	Users08-0548

	Buffers08-0549
	DEVTBL08-0550
	Teletype Device Data Block08-0551
	Teletype Character Buffer08-0552
	Device Data Block - Reader08-0553
	Device Data Block - Punch08-0554
	Device Data Block - DECtape08-0555
	Job Status Information08-0556
	Job Status Blocks08-0557
	STR008-0558
	STR108-0558
	STR208-0558
	File Retrieval Information Block08-0559
	ReadNrite File Parameter08-0560
	CORTBL08-0561
	File Directories08-0565
	Storage Allocation Table08-0565
	FIP Tables08-0566
	RIM Loader Program (High-speed version)

