NANNNNNNNNNNNQ
O) (O) (O) (O)O) (O) (O) (O) (O) (O) (O)LO) (O

s
)
)
)

8.0.0.6.6.0/06.66 0066

FRED

clilgliltiall

DEC-12-FZFA-D
1lst Printing May 1970

Copyright G? 1970 by Digital Equipment Corporation

The material in this handbook, including but not
limited to instruction times and operating speeds,
is for information purposes and is subject to

change without notice.

The following are trademarks of Digital Equipment

Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL
DIGITAL COMPUTER LAB

For additional copies, order DEC-12-FZFA-D from Digital

Equipment Corporation, Program Library, Maynard,
Mass. 01754. Price $1.00

TABLE OF CONTENTS

Program Overview

Environment

Usage

Description of the Routines

4.1 GETFLD
4.2 READ
4.3 WRITE
4.4 LOOKUP
4.5 ENTER
4.6 REPLACE
4,7 FCF

4.8 DELETE
Flowcharts

[TN R TR 1 T T S Ny S I

e i
O o

1.0 PROGRAM OVERVIEW
FRED (File Replacement, Entry, and Deletion) 1is a set of PDP-12
subroutines for manipulation of LAP6-DIAL! indices.

There are four levels of routines, with provision for a routine
at any but the lowest level to call any routine of lower level.
There is no provision for reentrance or recursion, but the
routines are serially reusable (except for REPLACE, as explained
later).

Locations 2f to 27 contain DJR, JMP pairs to the entry points
of each major routine, so that the coding can be modified

without changing calls in external routines.

2.0 ENVIRONMENT

FRED occupies two tape blocks and, when in core, uses four LINC
memory blocks (20008
The routines are segment-independent, but must be loaded at a

words), including space for the index.

segment boundary. Thus memory addresses of 2000, 4000, 6000,
14000, etc., can be used, but 2400 or 3000 may not.

In this discussion, all locations are relative to the segment

into which FRED is loaded.

3.0 USAGE

3.1 The user's program must load FRED from a DIAL tape,

or assemble it with his program, at any memory address which is

a multiple of 2@@g@,. It may then be reused until it is overlaid.

3.2 Entry points for the routines of FRED start at location
2§ of the segment into which FRED is loaded, as follows:

2¢ - LOOKUP
22 - ENTER
24 - REPLACE
26 - DELETE
34 - READ

35 - WRITE

! LAP6-DIAL-is hereafter referred to as DIAL.

1

The COUNT must not be zero.

READ and WRITE are
LIF X
LDA I
RWPARM

JMP 38 (JMP 35)

RWPARM, Y\UNIT

BUFFER
BLOCKNO
COUNT

Return is to the instruction following the JMP

called as follows:

/SEGMENT INTO WHICH FRED IS LOADED

/LOAD AC WITH PARAMETER POINTER

/POINTER TO REAQ/WRITE PARAMETER LIST

/DO READ (WRITE)

/HIGH-ORDER THREE BITS FOR FIELD
/LOW-ORDER THREE BITS FOR TAPE UNIT
/12-BIT MEMORY ADDRESS OF DATA
/BLOCK NUMBER OF FIRST TAPE BLOCK
/NO. OF BLOCKS TO READ/WRITE

If AC Bit 1 is

#, RWPARM is taken from the caller's instruction segment if 1, the
gm

parameter list is in his data segment.

Note:

There is no check

for attempts by the user to write over LAP6-DIAL, nor is there a

check to prevent reading over FRED.

3.3

LOOKUP, ENTER, and DELETE are called as follows:
/SEGMENT WITH FRED

LIF X

LDA I

FDV

JMP 2@ (JMP 22, 26)

FDV, UNIT
TEXT "NAME???2?2"

/AC: POINTER TO FILE DESCRIPTOR VECTOR
/GO TO LOOKUP (ENTER, DELETE)

/LINC TAPE g-7

/FILE NAME, ENDING WITH 77'S
/TO FILL FOUR WORDS (8 CHARS)

2

TYPE /8823 FOR SOURCE, @@#g2 FOR BINARY

START /STARTING BLOCK NO. OF FILE:
/FILLED BY LOOKUP, ENTER, REPLACE,
OR DELETE

LEN /LENGTH OF FILE IN BLOCKS: FILLED IN

/BY LOOKUP, CALLER MUST SUPPLY IN
/ENTER-REPLACE, UNUSED BY DELETE

a) LOOKUP has two returnsj the first, immediately
following JMP 28, is taken if there is an error in the
parameter list, or the named file is not found. The second,
two words after JMP 2¢, is taken if the file is found, in-
dicating that the information in the file descriptor vector

is correct.

LIF X

LDA I

JMP LOOKUP /GO FIND THE FILE

JMP NOFIND /18T RETURN FILE DOESN'T EXIST
/COME HERE WHEN FILE IS FOUND

b) ENTER has three returns; The first is taken 1if

there already exists a file of the same name and type. The
second is taken on errors in parameter list or insufficient
space, either in file space or in the index. The third indicates

successful updating of the index.

LIF X /SEGMENT CONTAINING FRED

ILDA I /POINTER TO PARAMETER LIST

FDV

JMP ENTER /GO ENTER FILE IN INDEX

JMP EXISTS /1ST RETURN - FILE ALREADY EXISTS
JMP NOSPACE /2ND RETURN - NO SPACE FOR FILE

/COME HERE ON SUCCESSFUL COMPLETION
Note that the largest file which can ever be stored on a DIAL
tape is 310 blocks, because that is the length of the largest file area.

c) DELETE has only one return, immediately following the
JMP 26,

3.4 REPLACE may be called only immediately after a call to ENTER
which took the second return. The parameter list need not be
explicitly indicated - XEPLACE uses that from the preceding ENTER,
But the instruction field must be set again.

There are two returnSj the first is taken on error in calling
sequence or insufficient space. (This can never occur if the new
file is smaller than or equal to the old file). The second indi-

cates successful replacing of the old file entry.

LIF X /SEGMENT CONTAINING FRED
JMP REPLAC /ENTER FOUND A FILE OF SAME NAME
JMP NOSPAC /NO SPACE FOR NEW ONE

/COME HERE ON SUCCESSFUL REPLACE

If REPLACE is not able to find space for a new file, the
old file remains intact.

If the call to REPLACE is not immediately preceded by
a call to ENTER which returns indicating the file exists, the
machine will halt and FRED must be reloaded.

4.0 DESCRIPTION OF THE ROUTINES:

4.1 GETFLD: (Level @) called to obtain the address of the
the user's parameter list, which he placed in AC before the
call. AC is stored in PARAM (Beta 1l). The save field
buffer is read and stored at SAVFLD. Bit 1 of the para-
meter list is in the caller's data field, which is also
FRED's data field, and GETFLD returns.

If zero, the parameter list is in the caller's
instruction field. That field is then obtained
from SAVFLD and used to construct an LDF in-
struction at GTF@l@, which is executed to set
FRED's data field to the caller's instruction field.
Bit 1 is set in PARAM and GETFLD exits.

READ: (Level 1, entry point 3@). The return JMP
at @ is saved at RETURN (Beta 17). An RDC instruc-
tion is placed in RDWR (Beta 2), and READ jumps to
COMMOM. See WRITE.

WRITE: (Level 1, entry point 35). Return JMP is

saved at RETURN (Beta 17), and a WRC instruction is
moved to RDWR (Beta 2). From this point (COMMON),

READ and WRITE are the same routine. RET2 (Beta 16)

is set to 7777 to indicate that the call was from a

user outside this field. GETFLD is called to set up
PARAM (Beta 1) to point to the parameter list. The

next location, RWENT, is the entry point for internal
calls by higher lever routines, which must have per-
formed appropriate setup. The 8-mode field (High-order
3 bits of 15-bit address) is obtained from the parameter
list and stored at EXT for use in extended addressing.
The two high-order bits of the unit number are then
moved to Aclo—ll' with the low-order bit in Linc.

Tape extended operations are then set. The 12 low-order
bits of the memory address are obtained from the para-
meter list and stored at MEMADD. The low-order unit bit
is obtained from Link, combined with the READ or WRITE
instruction at RDWR, and stored at CMND The first
block number is obtained from the parameter list and
stored, following the command, at 10BLK.

The block count, also from the parameter list, is com-

plemented and stored at RDWR (Beta 2) as a loop control.

IOLOOP begins by setting the tape memory address register,

then updating the address at MEMADD. The READ or
WRITE instruction is executed, the block number is
incremented, and RDWR is incremented to test for
completion. If more I/0 remains, there is a jump
to IOLOOP. Otherwise, RET2 is tested to determine
whether the call was internal or external. If
internal (RET2# 7777), return is immediated. If
external, the user's fields are restored before re-

turning.

LOOKUP : (Level 2, entry point 2#) RET3 (Beta 15)
is set to 7777 to indicate external call. Internal
calls enter immediately following this point, at
LKP@g@@. Here, the return JMP is saved at RET2 (Beta
16), and GETFLD is called. PARAM (Beta 1) is saved
at PARM2 (Beta 3). The current instruction field is
obtained, and used to set the address into which the
index will be read. Parameters and return address
are set up for READ, which is then called at RWENT
to bring in the index. Upon return, the index is
checked for validity (5757 is first word). If
invalid, an empty index is built in core by storing
5757 in each word (from 1¢@g@ to 1777), and the error

return is taken.

At LKP@2@, the name in the user's parameter list is
compared with each name in the index until a match

is found or the end of the index is reached. 1In the
later event, the error return is taken. If a match is
found, the type code in the user's parameter list is
compared to 23 (S) and 02 (B). If neither, the error
return is taken. § causes a jump to WNTS; B Jjumps

to WNTB, which increments the pointer to the index
entry by two and flows into WNTS.

Here RET3 is tested for internal or external call; if
internal, RET2, the return JMP, is incremented to allow
the caller to distinguish between those cases in which
there was a successful name match, but no file of the
requested type, and those cases in which the name match
was unsuccessful. The starting block number of file

is then moved to the user's parameter list. The length
is then picked up and tested to see whether or not
there is a file of the requested type. If not, the
length will be 5757, and the error retumrn will be taken.
If the requested file exists, RET3 is tested to check
for external call. If external, the length is stored.
The return address is then incremented to indicate a
successful find, and LOOKUP jumps to ERRTN. There, RET3
is tested again. If the call is internal, return is
immediate. If external, LOOKUP restores the user's

fields before returning.

ENTER: (Level 3, Entry Point 22) Starting at NTR@@gF,
the return JMP is saved in RET3 (Beta 15). LOOKUP is
called at its internal entry point LKP@@@. Because this
is an internal call, there are three returns. The first,
indicating that there was no name match, jumps to NTR@24,
where MARK (Beta 1f) is set to 7777 to indicate no name
match, and flows to NTR@3@, which increments the return
address, there being no conflict with existing files.

From there, control flows into FSP@@F to find space for
the file. Subsequent processing is in common with REPLACE,
and is described below. The second return indicates that
the name was found, but not with the requested file type.
A pointer to the matching entry is saved at MARK, and
ENTER jumps to NTR@38 to increment the return JMP. The
third return from LOOKUP indicates that the named file
exists. A pointer to its index entry is saved at MARK,
ENTSW (Beta 11) is set to 1776 to allow a REPLACE to
follow, and the first return is taken by going to RTRNY.

REPLACE: (Level 3, entry point 24) starting at RPLPgg,
the return JMP is saved at RET3 (Beta 15), and ENTSW
(Beta 11) is tested for 1776 (indicating that ENTER found
a file conflict). Any other value indicates a user
error, and the program halts. The LDF instruction at
GTFP@1l@ is then moved into the instruction stream to again
set the data field appropriately for the user's parameter
list, the length field for this file in the index is set
to 5757 to eliminate the old file, and REPLACE jumps to
FSPPPP to find space for the file. From this point, pro-

cessing is in common with ENTER,

The search for file space is performed in two stepsi
first, a scan is made to find any suitable space in the
lower file area. The result, if any, is saved, then a
scan of the upper area is made. Because the index is
below the middle of the tape, the result of a successful
scan of the lower file area can be used to calculate an
upper limit for scannimg in the upper file area. Beyond
this limit, any suitable file space would not be used,
since the suitable space in the lower area is closer.
Conversely, any space found in the upper area before
reaching this limit must be closer to the index than the
space found in the lower area. Use of this algorithm
eliminates, therefore, the need to compare two possible
spaces for closeness to the index, and generally shortens

the scan of the upper file area.

Scanning itself is performed by the conflict-search routine,
FCT, as follows:

A tentative starting block (TRY) and the length of the
desired file (TRYLEN) are set up. Each non-empty index
entry is compared to TRY by subtracting its starting
block from TRY. If the result is negative, the file
specified by this index entry starts at or above TRY. If
adding TRYLEN still gives a negative result, the file
starts above the end of the tentative file, and there is

no conflict. The scan continues to the next index entry.

If there is a conflict, control is returned to the caller to

set a new TRY.

If subtracting the starting block from TRY yields a positive
result, TRY is above the file specified by this entry,

by the value of the result. In other words, AC contains

the distance between TRY and the file concerned. This dis-
tance 1s subtracted from the length of the file in guestion.
Here, a negative result implies no conflict, and the scan
continues with the next index entry. A positive result

represents a conflict, and control returns to the caller.

During the scan of the lower area, TRY moves downward (away
from the index). Each time a conflict is found, a new TRY
is calculated by subtracting TRYLEN from the starting block
of the file causing the conflict. This is the highest
possible starting block which will not cause a conflict
with this particular file. The conflict search routine

is called again, and the whole process repeated. Thug,the
maximum number of iterations is the number of files in the
lower file area. During the scan of the upper area, the
process is equivalent, except that TRY moves upward.

When a conflict is found, a new TRY is calculated as the

sum of the start and length of the file in conflict.
In detail, the search is performed as follows:

A SKIP-IF-NEGATIVE instruction (APO I) is moved to
FCF@58 in the conflict search routine to make it
ignore any files in the upper file area. A pointer to
the start block field of the user's parameter list

is saved at LP1 (Beta 8). The user's length request

is picked up, tested for validity (zero or negative
lengths cause a jump to RTRN@, indicating error), and
saved at TRYLEN. The length is then subtracted from
278, to give the block number of highest starting block

in the lower file area which could satisfy the regquest.

This value is in the AC at FSP@1l#, the beginning of the
search loop for the lower file area. It is tested to
assure that this starting block is positive (i.e., that it
is on the tape). If not, there is no space large enough
for the file in the lower area, and a jump FSP@2§ is
taken. If the starting block is positive, it is stored

at TRY, and the conflict search routine, FCF, is

called. Return is to a JMP FCF@3¢ if no file in the

index would overlap one which started at the block

number in TRY. If a conflict is found, the second return
is taken from FCF} in this case, TRYLEN is subtracted

from the starting block number of the file which conflicts
with TRY. This value is in the AC when FSP jumps to
FSPP1lP to make another search.

The code at FSP@2@ is entered, as described above, when

TRY goes negative before an acceptable space is found
indicating that there is insufficient continuous file space in
lower area for a file the size of TRYLEN. NFSW (Beta 12) is
set to zero to indicate this. The last block number on

the tape is subtracted from TRYLEN and stored at UPLIM

so that, UPLIM contains the complement of the highest

possible starting block which would permit a file of the
desired size to fit on the tape. FSP then jumps to

FSP@35 to scan the upper file area.

The code at FSP@3f is entered when FCF is unable to find

a file which overlaps with one starting at TRY, thus’

TRY contains the starting block number of a space in the

lower file area large enough to accomodate the desired file.
NPSW is set to 7777, indicating space was found in the

lower area. TRY is saved at SVTRY. The distance between this
space and the index is [346 - (TRY + TRYLEN - 1)].

The block as far from the index in the upper file area is this
number #347. The complement of the latter result is calcula-

ted and stored at UPLIM. Thus the search of the upper file

10

the

area can be stopped and considered unsuccessful if no
space can be found closer to the index than the space
already found in the lower area. At this point control
flows into FSP@35, and processing is the same whether

space was found in the lower area or not.

A SKIP-~IF-POSITIVE instruction (APO) is moved to FCF@58,
to cause files in the lower area to be ignored during
the conflict search. The AC is initialized to 47§,
the first block of the upper area, and the upper area
scan is begun at FSP@4g. The AC is stored at TRY,
then added to UPLIM. If the result is positive, TRY
is too large to be useful because it represents the
starting block of a file which would run off the end
of the tape, or it is farther from the index than the
space found in the lower area. A jump is therefore
taken to FSP@58, which tests NFSW for a find in the
lower area. If none, there is no space, and an error
return is taken via RTRNg. If NFSW is set, however,
the starting block at SVTRY is restored to TRY, and
control flows to FSP@g6fd.

If the sum of TRY and UPLIM was negative or zero (zero
result will always be negative), FCF is called to
search for a conflict. On finding one, the sum of

the starting block and the length of the conflicting
file is taken as the next TRY, and FSP jumps to

FSP@4g to begin another scan. If no conflict is found,
however, before TRY exceeds the absolute value of
UPLIM, TRY represents the best starting block for

the new file, and FSP jumps to FSPZ6d.

At this point, MARK (Beta 1#) is tested to determine
whether an index entry with the desired name already
exists. If so, control transfers to FSP1gg. If not,
the index is scanned for an entry containing 5757 in
the name field, indicating it is empty. If no empty

entry is found, an error return is taken via RTPN{.

11

If an empty entry is found, the file name from the user's
parameter list is moved in. The user's type specification
(S or B) is examined, and the start and length pointers
for the other file type are filled with 5757. Control
flows to FSPl@@, where the starting block and length

are stored in the index, and the starting block is

stored in the user's parameter list.

The write code, parameter pointer, and return jump are
setup for re-writing the index. The I/0 handler is
called via its internal entry point RWENT. The return
address is incremented to indicate successful completion,

the user's fields restored, and control is returned.

FCF: (Level 2, no external entry point) FCF is
the conflict search routine. Given a starting block,
TRY, and a length, TRYLEN, its task is to scan the index
for a file one or more of whose blocks is in the range
from TRY to (TRY + TRYLEN - 1). If it should find such

a file, pointers to the starting block and length are
returned in XPNT and XPNT2, respectively, and control

is returned to (P+2), where P is the address of the
calling jump. If no conflict is found, control is
returned to (P+1).

Upon entry at FCF@@@, the return jump is saved at

RET2 and XPNT (Beta 4) is initialized to point to

the first index entry. Control flows to FCF@lg,

where XPNT is incremented and tested for end-ovf-index.
If the end has been reached,there is no conflict and
control returns to the caller via RET2. If the end has
not been reached, bit 9 of XPNT is tested to determine
whether XPNT is pointing to a file name or the start
and length area of the entry. In the latter case,
control transfers to FCF@4g. 1In the former, the

name is compared to 5757. If equal, the entry is
empty, so XPNT is incremented by 6, and the loop

is entered again at FCF@glgd.

12

If the name is not empty, XPNT is incremented by 4, to
address the source-file pointers, and control flows into
FCF@4@g. FCF@50 having been set to an APO, or APO I
instruction, the start block is compared to the index
TBLK to determine whether the file is in the wrong

area for this scan. If it is the wrong area, the

loop is re-entered at FCF@Pl@g. This check, it should

be noted, is unnecessary, but was included to speed

the scan. Thirteen octal words can be saved by

its elimination if space becomes tight,

XPNT2 is set to address the length field, which is tested
for validity. If negative, there is no file of that
type, and the loop is re-~entered at FCF@lg. If the
length is positive, the starting block is subtracted

from TRY. If the result is negative or zero, TRY is
below the start of this file by complement of AC, and
control transfers to FCF@6F. If the result is positiv%
TRY is above the start of this file by the contents of AC.
Subtracting this value from the file length gives a
positive result if there is a conflict, a negative or
zero result if none. If there is a conflict, it is
returned to the caller via FCF@78. If not, the scan

is resumed at FCFgld.

The code at FCF@6g is entered when TRY is below the start
of this file. TRYLEN is added to the complement of

the block difference. A negative or zero result implies
no conflict, and the scan continues at FCF@l@. A positive
result is a conflict, so control flows into FCF@7¢, which

increments RET2 and jumps to it.

13

DELETE: (Level 3, Entry Point 26). Beginning at DELQZgg,

the return jump is saved at RET3 (Beta 15). LOOKUP is then
called via the internal entry point LKP@@F to find the

name and file to be deleted. On each of the alternate returns,
a JMP RTRN@Z is taken, since it is unnecessary to delete a file
which doesn't exist. On the third return, the start and
length words for this file are filled with 5757 to eliminate
the file. Bit 1§ of the address of the length word is comple-
mented to give the address of the length word for the other
file type; that is, if a source file is being deleted,

the low order digit of the address of its length word is 5.
Complementing pit 1 gives 7, the address of the binary length.
The length of the other type file is tested to determine
whether such a file exists. If it is positive, a jump is taken
to DELglg. If negative)there is no file of the other type,

so the name area of the index entry is set to 5757. At

DEL@1f, the write code, return jump, and parameter pointers
are set up, and the I/O handler is called at RWENT to

rewrite the index.

FLOW CHARTS

14

ENTER

[NTREgY
LOOKUP
NAME
—YES

NTR@20

CLEAR

POINTERS

NTRI3F [«

FOUND

TYPE
?

NO

YES

SAVE
POINTERS
ALLOW

NTR@1@ | REPLACE]

SAVE

POINTERS

REPLACE
RPLAGP

REPLACE
,JJ.OWED
~_ ?

| ,,_113_EL¢ 19
N

T
YES HE

CLEAR OLD
INDEX
ENTRY

SCAN INDEX
FOR
FILE SPACE

15

FSP1gg

FSP@6d

SCAN FOR

ENTRY

YES

-]

¢«
STORE
STARTING
BLOCK

& LEN

RE-WRITE
INDEX

L

RETURN{
1

D ()

YES EMPTY INDEX

INITIALIZE‘

le

DELETE

DELZ@g

LOOKUP
NAME

YE
RETURN I
STORE 5757
IN FILE
NTRY

FILE OF
QTHER TYP

STORE 5757
IN
NAME

CELF1g

REWRITE
INDEX

RTRN@

RETURN

LOOKUP

READ
INDEX

YES BUILD EMPTY]
INDEX (5757

——— LKP030

“1

&NCR INDEX POINTEE“]

END
OF _YES _ __
INDEX] ERRTN
NO {'RETERN

COMPARE FIRST WORD

JF REQUESTED FILE

TO FIRST WORD INDEX

ETLE NAME

NO

EQUAL
?

l YES

INIT SECONDARY
POINTERS FDV,
XPNT2

l

SET LOOP COUNT
= 3

@—*‘-5 ' LKP@50

COMPARE NEXT
WORDS

@

17

WNTS
POINT TO
SOURCE
YES » POINTERS
WNTB
POINT TO
NO BINARY
POINTERS
=
ERRTN |<—
RETURN
)

UPDATE
USER'S
FDV

RETURN

18

INDEX

DELETE 1,2,14
ENTER 1,2,3,7
Entry Points 1
Environment 1

FCF 12
Flowcharts 15
GETFLD 4
Introduction 1
Loading FRED 1
LOOKUP 1,2,3,6
Memory Addresses 1

READ 1,5
REPLACE 1,4,8
Usage

I
tn

WRITE

pope
P21
poe2
aee3
2804
B o5
2oo6
eea7
ge10
gg11
2812
2813
ga14
pB15
gaie
2817
0820
PR21
Po22
9823
po24
pg2s
2026
2827
PB30
20931
2832
P2 33
834
B
/)
L7
9040
2341
@242
2043
2044
6245
8046
2047
P52
9851
2252
Pe53
o054
2255

oe2e
P21
po22
pB23
pR24
2825
2026
27

2006
6142
22026
6321
2806
6303
peo6
6641

[\
[

NN NN NN N %

NN,

NN N

NN N NN

FRED -- FILE REPLACEMENT, ENTRY, AND DELETION

MAR 19, 1970

BETA REGISTER DEFINITIONS
(13 AND 14 ARE UNUSED)

PARAM=1
ROWR=2
FOV=2
PARMZ2=3
XPNT=4
XPNT2=5
LP1=6
LP2=7
MARK=12
ENTSW=11
NFSW=12
RET3=15
RET2=16
RETURN=17

LOAD ADDRESS OF DIAL INDEX -- DO NOT MODIFY:

INDEX=1000

PDP-8 MODE INSTRUCTIONS FOR USE AFTER 10B

LRMF=6244
LRIB=6234
LRIF=6224

ENTRY POINTS FOR MAJOR ROUTINES OF FRED

DJR

JMP LOOKUP
DJR

JMP NTRODQO
DJR

JMP RPLOOQ
DJUR

JMP DEL OGO
EJECT

RAMIFICATIONS ARE OVERWHELHMING

P56
2857
2060
2061
2062
2063
2064
0065
2066
2867
207¢
2971
2072
pe73
@074
pB75
2076
o877
0100
3101
2122
2103
2104
2105
2106
2107
2110
2111
9112
2113
2114
9115
2116
2117
0129
P12t
g122
9123
g124
9125
8126
9127
2130
2131
2132
2133
2134
2135
2136
2137
2140
?141
@142
2143
9144
2145
2146
8147
2159
2151
2152

7a3e
2031
7B32
2833
B34
n235
z2e 3¢
2237
26402
2241
2342
pR43
ggpad
pgas
prasé
ze4a7
Re5¢
gl
2452
A253
/354
[QFA]
QesS6
was7
2260
b6l
2262
©263
2064
e265
2066
2a67
ag70
2071
Ba72
2273
9g74
2075
2076
a077
21020
2101
2102
2123
2104
p105
2106

@357
23a0
3062
2700
6041
4857
2992
2062
2704
2876
7777
6116
1221
2306
1349
BA54
2266
1560
7774
1620
2228
BAg1
10221
40472
2264
1600
2a@2
47277
10621
4100
1821
2017
42p2
1220
2402
2323
1129
vapo
4072
2700
2200
1229
n0Q1
1149
2129
az222
6071

1/
2/
3/

TDNNN NSNS NN NNNNN

EAD,

WRITE,

COMMON ,

RWENT,

EXT,

10L0OOP,
MEMADD,

CMND »
10BLK,

READ / WRITE

@/ FIELD (3 BITS)

/

ENTERED IN LINC MODE,
[F 8IT 1 1S ZERO,
IF ONE,

PARAMETERS ARE IN THE CALLERS
PARAMETERS ARE IN HIS DATA FIELD.
PARAMETER LIST AS FOLLOWS --

MEMORY ADDRESS

FIRST BLOCK NUMBER
NUMBER OF BLOCKS

SET
2
SET
7¢0
JMP
SET
)
SeT
704
SET
7777
JMP GETFLD
LDA PARAM
ROR 6

STH

EXT

ROL I 6
BCL I

7774

BSE I

eo20

AXO

LDA 1 PARAM
STC MEMADD
ROL 1 4
BSE

ROWR

STC CMND
LDA | PARAM
STC 10BLK
LDA I PARAM
CoM

STC RDWR
LDA 1

2

TMA

ADA 1

400

STC MEMAODD
RDC

2

LDA I

1

ADM

10BLK

XSK I RDWR
JMP 10LOOP
EJECT

RETURN
I RDWR

COMMON
RETURN

1 ROWR

I RET2

/

/

~

NN NN NN NN
.

NN NN N

NN N N NN N NN NNNNN N

WITH AC CONTAINING PQINTER

UNTT
(12 BITS)

NN N N

SAVE RETURN ADDRESS
INDICATE READ OPERATION

GO TO COMMON PROCESSING
SAVE RETURN

INDICATE WRITE OPERATIQN
SET CODE FOR USER CALL

SETUP TO ADDRESS PARAMETERS
GET FIRST WORD OF PARAMETERS
MOVE BANK NO TG RIGHT HALF

HOLD FOR EXTENDED ADDRESSING

RESTORE UNIT BITS RIGHT

KEEP TWO HIGH-ORDER BITS FOR
. PLUS LOW-ORDER IN LINK

SET HIGH-ORDER UNIT BITS FOR

SET EXTENDED OPERATIONS BITS
GET MEMORY ADDR FROM PARAMS
HOLD FOR TAPE USE

GET UNIT BIT INTO POSITION

SET DESIRED READ/WRITE QP CODE
SET READ/WRITE INSTRUCTION

GET START BLOCK NUMBER

SET APPOROPRIATELY

BLOCK COUNT,..

«+ MADE NEGATIVE

STORE IN INDEX

GET MEMORY ADDRESS FOR DATA
ADDRESS FOR NEXT BLOCK

TELL THE TAPE WHERE

UPDATE ADDRESS

BY BLOCK LENGTH

STORE NEW ADDR

MODIFIED FOR DESIRED OPERATION
BLOCK NUMBER WANTED

GET CONSTANT 1

UPDATE BLOCK NUMBER

SKIP IF END OF OPERATION
ELSE CONTINUE

TO PARAMETER L1977,
INSTRUCTTION FTELT.

AXO

AXO

P153
9154
155
156
0157
0160
2161
162
0163
D164
@165
@166
ple7
a17e
2171
g172
2173
2174
2175
@176
2177
2200
6201
p202
2203
D204
p2es5
8286
02087
g210
g211
212
P213
214
g215
216
p217
2220
221
0222

g1@7
21192
o111
2112
2113
2114
2115

g116
8117
@122
p121
122
123
2124
@125
0126
@127
2130
2131
4132
2133
134
135
7136
01387
P14
2141

216
6017
2500
6244
2240
2017
6000

1622
4020
8262
v3g2
4001
4211
2500
6234
B3B3
0452
0245
1568
7740
1620
2640
4140
2452
60060
0640
6200

/
/ I0 IS COMPLETE -- RETURN TO CALLER
/
XSK RET2 / SKIP IF USER CALL
JMP RETURN / RETURN NOW IF INTERNAL CALL
108
LRMF / RESTORE TO DESIRED STATUS
SET @ / RESTORE RETURN UMP
RETURN
JMP 2 / GO TO CALLER
/
/
/
/ GETFLD -- GET CALLERS FIELDS AND PARAMETERS
/
/ ENTERED IN LINC MODE, WITH 1P~BIT PARAMETER PQINTER
/ RETURN WITH INDIRECT POINTER IN LOCATION 1 TO
/ DATA FIELD CONTAINING PARAMETERS.
/
GETFLD, BSE I / SET BIT @ (SOON BECOMES BIT 1)
4000
ROL I 2 / BIT 1 TO LINK
ROR 2 / RESTORE 2-11, SET BIT 1
STC PARAM / HOLD AC CONTENTS
STC ENTSHW / CLEAR ENTSW
108
LRIB
ROR 3 / INST FLD TO AC 7-11
LZE / SKIP IF PARMS IN INST FLD
ROL 5 / DF T0 AC 7-11
BCL I / DROP QOTHER BITS
7748
BSE I / BUILD LDF INST
LOF
STC GTF@19 / SAVE 1T
LZE / 1S DF ALREADY SET?
JMP @ / YES
GTF@108, LOF / NO - SET IT
JMP @ / RETURN TO CALLER
EJECT

IN AC.

8223
p224
g225
226
p227
0230
p231
232
p233
@234
9235
8236
p237
240
241
242
2243
6244
245
246
2247
9250
251
@252
@253
8254
2255
256
@257
p260
@261
0262
9263
0264
2265
#266
2267
p279
g271
Bai2
p273
8274
275
8276
2277
2300
2301
83022
B333
P304
2385
2306
p387
831
g311
8312
p313
2314
8315
2316
2317
0320
p321

142
n143
P144
@145
B146

147
9150
9151
@152
2153
154
2155
#156
@157
7160
2161
0162
2163
164
2165
166
@167
2170
o171
g172
B173
P174
8175
@176
2177
pede
2201
2202

0203
g204
2205
2296
#2287
2210
g211
2212

8075
7777
Pa56
2000
6116

0043
20091
102¢
p201
2500
6224
2243
1340
83080
6243
1560
9777
16083
4277
P062
2700
P77
6174
ves1
@277
6044
2064
1000
1004
1460
5757
Y467
6213

10220
5757
1044
8224
6205
1944
2223
6252

/

/

/

/

/

/

/ B/
/ 1/
/ 2/
/ 3/
/ 4/
/ 5/
/ 6/
/ 7/
/

L

00KUP

LKPOOD

/
/
/

LKP@Z10

LOOKUP - FIND NAMED FILE IN DIAL INDEX

ENTERED IN LINC MODE WITH ADDRESS OF A PARAMETER

LIST IN AC.

UNIT NUMBER /
FILE NAME /
CONTD /
CONTD /
CONTD
TYPE (S OR B)/
STARTING BLOCK
NO OF BLOCKS /

~

» SET 1 RET3
7777

+» SET RET2
@

JMP GETFLOD
READ THE INDEX

SET PARM2

PARAM

LDA I

1

10B

LRIF

ROL 3

STH

XPARM+1

ROL 3

BCL I

0777

BSE PARMZ

STC XPARM

SET 1 RDWR

700

SET I RETURN

JMP LKP@10

SET 1 PARAM

XPARM

JMP RWENT
s+ SET 1T XPNT

INDEX

LDA XPNT

SAE I

5757

SKP

JMP LKP228

THERE 1S NO INDEX

LOA I

5757

STA XPNT
XSK I XPNT
JMP -2

STA XPNT
XSK I PARM2
JMP ERRTN
EJECT

/ INDICATE EXTERNAL CALL
/ SAVE RETURN JMP

/ SETUP PARAMETER POINTER

/ MOVE PARAMETER POINTER TO ALT AREA

/ INIT AC

/ GET INSTRUCTION FIELD
/ MOVE FIELD NO TO RIGHT HALFWORD
/ STORE DATA ADDRESS FOR INDEX READ

/ BANK NO TO BITS 0-2
/ DROP ALL BUT BANK NO

/ COMBINE WITH UNIT NO
/ STORE INTO PARAMETER LIST
/ SETUP READ CODE

/ SETUP RETURN JMP FROM READ
/ INST MOVED FOR LATER USE
/ SETUP PARAMETER POINTER

/ GO TO READ INDEX
/ GET FIRST WORD OF INDEX

/ SKIP IF VALID FOR INDEX
/ FIRST WORD OF INDEX

/ NOT AN INDEX -- BUILD ONE
/ INDEX IS OK -- GO TO NAME S5SCAN
-- CREATE ONE

/ GET FILLER WORD

/ STORE IN NEXT INDEX WORD

/ INCREMENT AND TEST FOR END
/ ZAP ANOTHER

/ ZAP LAST WORD

/ MAKE PARM2 LOOK LIKE WE SOUGHT MATCH

/ RETURN NO FIND

322
8323
2324
9325
8326
8327
0330
9331
8332
B33c
2334
2335
2336
0337
2340
0341
8342
0343
0344
8345
P346
@347
B350
B351
8352
2353
8354
B355
g356
8357
8360
361
8362
p363
364
3365
p366
2367
23792
g371
B372
0373
8374
2375
B376
8377
2400
2421

n213
r214
2215
#2116
4217
He2d
e 21
222
g223
2224
2225
2226
w227
0234
we3l1
p232
P233
p234
2235
2236
p237
9240
@241
@242

243
B244
B245
246
p247
@250
251

@252
8253
@254
8255
8256
@257
g26@

1223
4226
1220
2237
1140
avas
0204
2467
6252
1624
1460
2000
6215
2245
hap4
P042
0PB3
2267
7774
1422
1465
6215
n227
6236

1022
1429
2300
6263
1420
2200
6261

@215
6016
0040
pR16
2500
6244
60020

/
/ SCAN INDEX FOR NAME
/
L

KP@2@, LDA I PARMZ
STC WORD1
LKPZ33, LOA I
7
ADM
XPNT
XSK XPNT
SKP
JMP ERRTN
LDA I XPNT
SAE 1
WORD1, 7
JMP LKPB32
SET XPNT2
XPNT
SET FDV
PARMZ
SET I LP2
-3
LKP@5@8, LDA 1 FDV
SAE 1T XPNT2
JMP LKPR3Q
XSK 1 LP2
JMP LKPB50

IF WE GET HERE,

NN N

LDA I FDV
SHD I
2300

JMP WNTS
SHD 1
n200

JMP WNTB

RRTN, XSK RET3
JMP RET2
SET @
RET2
108
LRMF
JMP @
EJECT

~

NN N NN

~ NN N

NNN N

GET FIRST WORD OF NAME
SAVE AT COMPARE INST
CONSTANT 7

ADD IT TO INDEX POINTER

TEST FOR END OF INDEX

SKIP NOT END

OTHERWISE RETURN NO SUCCESS

GET A WORD OF INDEX NAME

SKIP QUT OF LOOP IF FIRST WORDS EQUAL

LOOP IF NOT EQUAL

FIRST WORDS EQUAL

START FINAL COMPARE

POINT TEMPORARY FDV INDEX

SET LOOP COUNTER

GET NEXT TWO CHARS

COMPARE TO THOSE IN INDEX ENTRY
UNEQUAL - RETURN TO SEARCH LOOP
LOOP TO COMPARE ENTIRE NAME

WEVE FOUND THE NAME

/

/
/
/

PICK UP SOURCE/BINARY CODE
IS THE CODE S?

YES - GIVE HIM SOURCE
IS THE CODE B?

YES ~ GIVE HIM BINARY

COME HERE ON DETECTING ERROR., OR UNSUCCESSFUL FIND

TEST FOR INTERNAL CALL
RETURN NOW IF INTERNAL
MOVE IN RETURN JMP

/RETURN TO CALLER

2402
2403
p4p4
2485
p4g6
p407
2419
p411
P412
2413
P414
2415
p4a16
2417
2420
P421
g422
g423
pa24
@425
p4z26
8427
g430
2431
3432

g261
p262
263
p264
2265
B266
8267
P277
9271
8272
0273
0274
2275
2276

0277
n3ang
72301
B382

0225
0225
@215
236
1225
1862
1025
2451
6252
2215
P467
1962
2236
6252

0220
1038
p346
2002

/
/ WEVE FOUND WHAT HE WANTS -~ GIVE IT HIM
/
W

NTB, XSK I XPNT2
XSK 1 XPNT2

WNTS, XSK RET3
XSK 1 RETZ2
LDA 1 XPNT2
STA 1 FDV
LDA I XPNT2
APO
JMP ERRTN
XSK RET3
SKP
STA 1 FDV
XSK 1 RET2
JMP ERRTN

/
/
/
XPARM, 2
INDEX
346
2
EJECT

/

CANT SKIP, BUT THIS ...

/...FAKES OUT THE POINTER

/

IF INTERNAL CALL...

/.,.SETUP FOR THREE RETURNS

NN NNN N

NN NN

GET STARTING BLOCK NO FROM INDEX
STORE IN CALLERS PARAMETER LIST
GET NO OF BLOCKS

SKIP IF DESIRED DATA EXISTS
RETURN ERROR IF NO FILE

DONT STORE RESULT IF INTERNAL

RETURN NO OF BLOCKS
INCREMENT JUMP RETURN ADDRESS
NOT REALLY AN ERROR

PARAMETERS TO READ ROUTINE

FIELD AND UNIT
DATA ADDRESS
BLOCK NUMBER
BLOCK COUNT

2433
0434
2435
2436
0437
0440
9441
0442
0443
0444
2445
9446
0447
2450
2451
2452
2453
2454
2455
2456
2457
2460
p461
0462
8463
pas4
2465
2466
p467
0470
3471
2472
0473
p474
2475
0476
2477
2509
2501
2502
8503
p504
2585
2526
2507
2510
2511
2512
8513
0514
2515
8516
2517
2520
8521
9522
8523
8524
8525
526
8527
2538

2383
2304
a3es
n306
2307
2312
£311
L3112
7319
Lslé
£i1e
(1€
)

Lley

321
g3ze
9323
2324
8325

2326
2327
2330
2331
2332
333
334

2335
P336
2337
g34@
2341

8342
@343
2344

2055
0000
2231
0008
n211
6306
1000
0140
4314
veen
1020
5757
1045
6345

2255
2000
6144
6342
6335

1020
7775
2285
4012
071
1776
6543

1020
7775
2295
4010
6344

o079
7777
8235

/
/ REPLACE -- REPLACE A NAMED ENTRY IN DIAL INDEX
; .
/ ENTERED IN LINC MODE AFTER CALLING ENTER.
/ MAY BE CALLED ONLY IMMEDIATELY AFTER ENTER HAS RETURNED TO P+1,
/ INDICATING THAT A FILE OF THE PROPOSED NAME AND TYPE ALREADY EXISTS,
/
RPLOGD, SET RET3 / SAVE RETURN
)
XSK I ENTSW / TEST FOR NAME FOUND, SET "REPLACE"
RPLB1G, HLT / ILLEGAL SEQUENCE -~ STOP
XSK ENTSW / TEST FOR CONTINUE AFTER HALT
JMP RPLO19 / BAD BOY -- STOP AGAIN
LDA / PICK UP LDF INSTRUCTION
GTFR210
STC .+1
2 / BECOMES AN LOF INSTRUCTION
LDA I / ZAP LENGTH FIELD OF THIS FILE
5757
STA XPNT2
JMP FSP@RO / ALL LOOKS GOOD -- DO YOUR THING
, .
/ ENTER -~ ADD A NAMED ENTRY TO DIAL INDEX
/
/ ENTERED IN LINC MODE WITH AC POINTING TO A PARAMETER LIST
/ IDENTICAL TO THAT FOR LOOKUP, EXCEPT THAT THE FILE-LENGTH
/ FIELD IS FILLED BY THE USER.
/
/ RETURN IMMEDIATELY FOLLOWING THE JMP (P+1) IF THE FILE ALREADY EXISTS.
/ RETURN 70 P+2 IF THERE 1S NO ROOM FOR THE FILE.
/ RETURN TQ P+3 IF OPERATION COMPLETE (DIAL INDFX HAS BEEN UPDATED).
/
NTRQ@Q., SET RET3 / SAVE RETURN
2
JMP LKPOO@ / LOOKUP NAME IN INDEX
JMP NTRE20 / THIS NAME IS NOT IN INDEX
JMP NTRZ19 / NAME IS IN INDEX, BUT NOT WITH THIS TYPE
/
/ WE FOUND A FILE OF THIS NAME AND TYPE
/
LA I / GET CONSTANT -2
-2
ADD XPNT2 / POINT TO POINTER AREA - 2
STC MARK / SAVE POINTER FOR REPLACE
SET I ENTSH / INDICATE READY-FOR-REPLACE
1776
JMP RTRNQ@ / GO HOME
/
/ FOUND THE NAME, BUT NOT TYPE
/
NTR21@, LDA I / CONSTANT -2
-2
ADD XPNTZ2 / FROM POINTER INDEX
STC MARK / SAVE ADDR OF FILE POINTERS
JMP NTR@32 / GO BEGIN SCAN FOR FILE SPACE
/
/ NOTHING FOUND IN THE LOOKUP SCAN
/
NTR228, SET I MARK / INDICATE NO FIND
7777
NTR@3@, XSK [RET3 / NO NAME CONFLICT, INCREMENT RETURN
EJECT

9531
@532
@533
8534
@535
8536
p537
8549
2541
@542
3543
2544
@545
A546
8547
2550
2551
@552
2553
@554
2555
0556
8557
2560
g561
0562
8563
9564
@565
8566
8567
2570
8571
8572
8573
574
8575
8576
8577
2600
2601
8682
0603
p604
2605
peode6
pep7
gé1p
611
B612
0613
p614
p615
p616
2617
2620
p621
2622
0623
0624
625
0626
g627

2345
2346
0347
p350
2351
p352
9353
2354
0355
a356
P3b7
2362
2361
9362
0363
2364
B365
366
8367
p37¢@
2371
3372
8373
374
8375
2376
8377
2400
2401
o482
2403

0404
0445
B406
a4a7
ga1@2
p411
p412

2413
P414
2415
@416
pai17
B420
@421
2422
2423
paz4
0425
426
B427
pa3e
2431
p432

1022
3471
4605
1020
2005
2003
1040
2286
4007
1827
D451
6543
2479
6543
1049
2636
2817
1129
0279
a47@
2611
g451
6404
46 35
6550
6413
1000
P636
2017
1194
6370

8R72
2200
10820
6777
2636
4649
6425

aa72
7777
1000
@635
10406
0637
2636
1129
7061
4640
10229
2451
4605
1029
B470
1040

/

/ FSp -

/

FSP@@2@, LDA
APQ
STC
LLDA
5
ADD
STA
LP1
STC
LDA
APO
JMP
AZE
JMP
STA

FIND SPACE ON

I
I
FCF250
I

PARM2
LP2

1 LP2
RTRN@

I
RTRNG

TRYLEN

COM
ADA
270
FSP@1g, AZE
CLR
APO
JHMP
STC
JMP
JMP
LDA
TRYL
COoM
ADA
JMP

/
/
/
FSP@28, SET
2
LOA
-1029
ADD
STC
JMP

/
/
/
FSP@3@®, SET
7777

LDA

TRY

STA
SVTR

ADD

ADA

-716

STC
FSP235, LDA
APO

STC

LDA

470

FSp24@, STA

I
{

FSP@20
TRY

FCFoog
FSP@3g@

EN

XPNT
FSP@19

1 NFSHW

I

2
TRYLEN
UPLIM
FSPB35

I NFSW

Y
TRYLEN
1

UPLIM
I

FCFE50
I

NN NN NN NN ~ NN NN NN ~

NN N

WEVE FOUND NO SPACE

/

/

/
/
/

/

/

NN NN NN

~

DIAL TAPE FOR NEW FILE

PICK UP SKIP-NEG INSTRUCTION
MOVED TO FCF@5@
STORE IN INDEX-SCAN ROUTINE

POINT TO USERS START BLOCK FIELD
HOLD FOR LATER

STORE POINTER

PICK UP LENGTH

TEST FOR POSITIVE LEN REQUEST
ELSE RETURN ERROR

SKIP IF LEN NOT ZERO

BOMB IF NULL REQUEST

HOLDO LENGTH HANDY

SUBTRACT LEN FROM HIGHEST BLOCK NO, LOW FILE

SKIP NOT ZERO

FORCE TRUE ZERC IF RESULT IS 7777
SKIP IF STILL ON THE TAPE

NO SPACE IN LOW FILE AREA

HOLD TRIAL STARTING BLOCK

GO FIND POSSIBLE CONFLICT

HOORAY -- NO CONFLICT

NOPE -- THAT TRY IS NO GOOD

SUBTRACT THE SEARCH LENGTH FROM.,.

.. THE START BLOCK OF CONFLICT FILE,..
.+ AND TRY AGAIN

LARGE ENOUGH IN THE LOWER FILE AREA
SET NO-FIND SWITCH

PICK UP MINUS END OF TAPE

MINUS LAST FEASIBLE START BLOCK

HOLD AS SCAN LIMIT
ENTER UPPER SCAN

TRY POINTS TO GOOD SPACE IN LOWER AREA

INDICATE SPACE FOUND
PICK UP OLD TRY
SAVE IT

GET END BLOCK
GET COMPARE CONSTANT (TRYEND-~2#INDEX LOC)

MINUS HIGHEST DESIRABLE STARTING BLOCK
GET SKIP-POS INSTRUCTION

MOVED TO FCF@50

STORE IN INDEX SCAN ROUTINE

INITIAL STARTING BLOCK, UPPER FILE

SET NEW TRY BLOCK

g630 P433 2635 TRY

2631 P434 2640 ADD UPLIM / COMPARE TO MAXIMUM USABLE BLOCK
2632 2435 0471 APO 1 / SKIP IF STILL IN USEFUL REGION
B633 A436 6444 JMP FSP@50 / NO SPACE IN THIS AREA

2634 @437 6554 JMP FCF@20 / SEARCH FOR CONFLICT

p635 P44g 6451 JMP FSPO6D / WEVE FOUND SPACE

8636 g441 1204 LDA XPNT / THIS TRY WONT WORK...

p637 P442 1195 ADA XPNT2 /...80 TRY AT END OF CONFLICT FILE
2640 2443 6432 JMP FSP@240

641 /

2642 / THERE WAS NO SPACE FOUND IN UPPER FILE AREA

643 /

644 #444 @212 FSPR50, XSK NFSH / SKIP IF FOUND IN LOWER AREA
2645 §445 6543 JMP RTRN@ / RETURN BAD NEWS -- NO SPACE
p646 @446 1000 LDA / GET START BLOCK OF FILE IN LOWER AREA
2647 p447 0637 SVTRY

2650 3450 4635 STC TRY / THATS THE ONE WELL USE

0651 /

@652 / THERE IS SPACE AT TRY

8653 /

g654 @451 0210 FSPP6D, XSK MARK / WAS THERE A FILE BY THIS NAME
2655 P452 6525 JMP FSP1Q@ / YES - GO USE THAT ENTRY

2656 /

8657 / WE MUST SEARCH FOR EMPTY INDEX SPACE

D660 /

0661 #4553 0870 SET I MARK / INITIALIZE MARK POINTER

0662 B454 1000 INDEX

2663 @455 1920 FSP@278, LDA I / BUMP INDEX INDEX

D664 p456 @097 7

2665 @457 1140 ADM

2666 Ba60 Q010 MARK

2667 2461 ¥210 XSK MARK / TEST FOR END OF INDEX

pe7a g462 @467 SKP / NOT END

p671 P463 6543 JMP RTRNO / NO SPACE IN INDEX ~-- RETURN ZEROD
672 p464 1030 LOA I MARK / FIRST WORD OF INDEX NAME

P673 P465 1460 SAE I / CHECK FOR EMPTY ENTRY

P674 @466 5757 5757

2675 @467 6455 JMP FSPB79 / NOT EMPTY, TRY NEXT

B676 /

B677 / MARK POINTS TO AN UNUSED INDEX ENTRY

6708 / PUT THE NAME INTO 1IT

2701 /

p7@2 @470 1093 LDA PARM2 / FIRST WORD OF USER NAME

2703 $471 1052 STA MARK / PLUNK INTO INDEX

8724 @472 1023 LDA I PARM2 / 2ND

0785 2473 1278 STA 1 MARK

8706 pa74 1023 LDA 1 PARMZ / 3RD

B787 @475 1870 STA 1 MARK

p718 @476 1023 LDA [PARM2 / 4TH

@711 @477 107¢ STA 1 MARK

712 @500 1023 LDA 1 PARM2 / TYPE CONTROL (S GOR B)

2713 P581 1429 SHD I / 1S TYPE S

2714 @502 2300 23080

2715 @503 6510 JMP FSP280 / YES

2716 @584 1420 SHD 1 / 18 TYPE B

2717 @585 0200 0200

@720 @s5m6 6521 JMP FSP29@ / YES

8721 P587 6543 JMP RTRN®@ / NO-- BOMB NOW

p722 EJECT

2510
p511
P512
2513
8514
2515
2516
2517
0520

2521
2522
p523
2524

3525
2526
@527
#5382
7531
8532

2533
2534
P535
9536
2537
@540
@541
3542
2543
3544
@545
2546
@547

pa4a7
0010
0v227
8227
1020
5757
1067
1067
6525

1229
5757
1070
1370

12p0
2635
1479
1046
1026
1079

2062
2704
Ra77
6542
gR61
2277
6244
@235
Pe40
22315
2500
6244
6000

/
/ HE WANTS A SOURCE FILE -- SCRATCH THE BINARY POINTERS
/
FSP@8@, SET LP2 / TEMP POINTER
MARK
XSK 1 LP2 / CANT SKIP
XSK I LP2 / DITTO
LDA 1 / GET 57s...
5757
STA | LP2 / STORE THEM...
STA 1 LP2 /... IN BINARY POINTERS
JMP FSP1@0
/
/ HE WANTS BINARY FILE
/
FSP@9@, LDA I
5757
STA 1 MARK / STORE 57S...
STA I MARK /...IN SOURCE POINTERS
/
/ MARK NOW POINTS TO POINTER AREA OF DESIRED TYPE IN A NAMED INDEX ENTRY
/
FSP1@@, LDA / PICK UP STARTING BLOCK
TRY
STA 1 MARK / STORE IN INDEX
STA LP1 / STORE IN USERS LIST
LDA T LP1 / GET LENGTH
STA [MARK / STORE IN INDEX
/
/ NOW EVERYBODY IS HAPPY EXCEPT THE TAPE, WHICH HASNT BEEN UPDATED
/
SET 1 RDMWR / SETUP WRITE CODE
704
SET I RETURN / SETUP RETURN JMP
JMP FSP1180 / INST MOVED FOR LATER USE
SET 1 PARAM / SETUP PARAMETER POINTER
XP ARM
JMP RWENT / GO DO THE WRITE
FSP11@, XSK I RET3 / BUMP RETURN ADDR
RTRN@, SET @ / MOVE RETURN JMP T0 2
RET3
108
LRMF / RESTORE USERS FIELDS
JMP @ / GO TO CALLER

EJECT

@550
2551
@552
p553
2554
@555
@556
@557
P560
2561
562
2563
@564
@565
0566
@567
2570
2571
@572
2573
8574
575
8576
8577
76020
peol

602
p6B3
p604
26085
p6aé
g6@7
3610
p611
p612
2613

8056
2200
Bo64
106
2224
467
6816
224
1209
024
8323
2452
6602
1004
1460
5757
6576
1029
2eas
1149
2234
6554
10292
P24
1140
2o04

1094
1129
7439
2451
6554
PB45
2004
1825
2451
6554

/
/ FIND POSSIBLE CONFLICT BETWEEN INDEX ENTRY AND TRIAL STARTING BLOCK
/
/ CALLER MUST SET OR CLEAR I-BIT IN FCF@58 TO SELECT DESIRED FILE AREA
/
FCF@2@, SET RET2 / SAVE RETURN
2
SET I XPNT / INITIALIZE POINTER TO INDEX IN CORE
INDEX+6
FCF@1@, XSK I XPNT / SKIP ON END OF INDEX
SKP
JMP RETZ2 / END OF INDEX, RETURN NO CONFLICT
XSK I XPNT / INCREMENT AGAIN, NO SKIP POSSIBLE
LDA / PICK UP POINTER
XPNT
ROR 1 3 / MOVE BIT 9 TO LINK
LZE / SKIp IF NAME AREA OF ENTRY
JMP FCFR40 / JMP IF POINTER AREA
LDA XPNT / GET FIRST WORD OF NAME
SAE 1 / SKIP IF EMPTY ENTRY
5757
JMP FCFO30 / WORD IS VALID NAME
LDA I / GET CONSTANT 6
6
ADM / ADDRESS NEXT ENTRY - 2, THIS ONE IS EMPTY
XPNT
JMP FCFO10 / TRY NEXT INDEX ENTRY
FCF@3@8, LDA I / INCREMENT BY 4
4
ADM /...7T0 ADDRESS POINTER
XPNT
/
/ XPNT NOW ADDRESSES A STARTING BLOCK NO
/
FCF@40, LDA XPNT / PICK UP STARTING BLOCK
ADA / SUBTRACT INDEX LOCATION
-347
FCF@250, APO / REVERSE SENSE BIT MAY BE SET BY CALLER
JMP FCFO@19 / TRY AGAIN IF WRONG FILE AREA
SET XPNT2 / TEMP POINT TO LENGTH WORD
XPNT
LDA 1 XPNTZ / PICK UP LENGTH
APO / SKIP IF LENGTH POS
JMP FCFR1i@ / NEG LEN -- NO FILE HERE

EJECT

1055
1856
1057
1060
1861
1062
1063
1264
1265
1866
1067
1070
1871
1@72
1073
1874
1075
1876
1877
1100
1141
1192
11083
1104
1125
1136
1197
1110
1111
1112
1113
1114
1115
1116
1117
11209
1121
1122

2614
615
7616
#617
p620
8621
2622

P623
p624
@625
7626
0627

2630
D631
632

633
0634

2635
636
B637
P640

1004
1560
7800
ge17
2635
@451
6630

2917
1195
2451
6554
6633

2636
¥451
6554

8236
6216

PeRa
2000
BaYD
puag

/

/ WE NOW HAVE A VALID INDEX ENTRY

/ COMPARE IT TO TRY

/
LDA XPNT / STARTING BLOCK OF THIS FILE
BCL 1 / CLEAR GARBAGE IN HIGH THREE BITS
7000
COM
ADD TRY / SUBTRACT XSTART FROM TRY
APO / SKIP 1IF TRY ABOVE XSTART
JMP FCFQ60 / JMP IF BELOW

/

/ TRY IS ABOVE THE START OF THIS FILE

/
COM / MAKE DIFFERENCE NEGATIVE
ADA XPNTZ2 / SUBTRACT DIFFERENCE FROM FILE LENGTH
APO / ZERO RESULT WILL BE NEG (7777)
JMP FCFOQ10 / NO CONFLICT, TRY NEXT ENTRY
JMP FCF@70 / CONFLICYT FOUND -~ RETURN

/

/ THE TRY IS BELOW OR AT THE START OF THIS FILE

/

FCFA6@, ADD TRYLEN / SUBTRACT STARTING DIFF FROM LEN OF TRY
APO / SKIP IF CONFLICT
JMP FCFQ10 / NO CONFLICT - TRY NEXT ENTRY

/

/ WE HAVE FOUND A CONFLICT -- RETURN IT 70 CALLER

/

FCF@7@8, XSK I RET2 / INCREMENT RETURN ADDRESS
JMP RET2 / GO BACK

/

/ WORK AREA

/

TRY, 2

TRYLEN, @

SVTRY, @

UPLIM, B

EJECT

1123
1124
1125
1126
1127
1130
1131
1132
1133
1134
1135
1136
1137
1142
1141
1142
1143
1144
1145
1146
1147
1158
1151
1152
1153
1154
1155
1156
1157
1160
1161
1162
1163
1164
1165
1166
1167
1178
1171
1172
1173
1174
1175
1176
1177
1209
1201
1202
1203
1204
1205
1206
1207
12102
1211
1212
1213
1214
1215
1216
1217

g641
pe4d2
643
644
0645
p646
647
0658
n651
p652
2653
p654
8655
B656
8657
2660
p661
p662
p663
2664
$665
p666
g667
2670
671
p672
p673

p674
Pe75
$676
0677
B700
@701

2710
2711
p712
8713
@714
8715
@716

8355
eapad
6144
6543
6543
ioea
7776
114g
@805
1629
5757
1345
1265
1400
2085
1668
one2
4005
1085
2471
6710
1020
5757
1044
1064
1264
1064

2064
w777
1464
6719
p2p4
6676

2011
2264
2777
1264
2294
67085

2862
2704
2277
6543
P261
8277
6244

NN N

NN

O N NN

SET RET3

@

JMP LKP22O
JMP RTRN@
JMP RTRN@
LDA |

-1

ADM

XPNT2

LOA 1

5757

STA XPNT2
STA I XPNT2
LDA

XPNT2

BCO 1

2

STC XPNT2
LDA XPNT2
APO 1

JMP DELG30
LDA I

5757

STA XPNT
STA 1 XPNT
STA 1 XPNT
STA 1 XPNT

/

NN NN

NN N

NNN N

WAS THAT THE LAST

SET I XPNT
INDEX-1
SAE T XPNT
JMP DELB3R
XSK XPNT
JMP DELB1Q

INDEX IS EMPTY:

CLR

SET 1 XPNT
INDEX-1
STA T XPNT
XSK XPNT
JMP -2

RE-WRITE INDEX

SET I RDWR
704

SET I RETURN
JMP RTRN@
SET I PARAM
XPARM

JMP RWENT
EJECT

/

/
/
/
/

DELETE -~ REMOVE A FILE FROM THE DIAL INDEX

SAME CALLING SEQUENCE AS LOOKUP, EXCEPT NO ALTERNATE RETURANS

SAVE RETURN

LOOKUP NAME IN INDEX
DIDONT FIND THE FILE
DITTO

DECREMENT XPNTZ2

...T0 ADDRESS START BLOCK FIELD

EMPTY AREA INDICATOR
ZAP START BLOCK FIELD
DITTO LEN

GET POINTER

ADDRESS OTHER TYPE LEN FIELD

PICK LENGTH OF OTHER-TYPE FILE
SKIP IF OTHER-TYPE EMPTY

GO RE-WRITE INDEX

BOTH TYPES EMPTY -- CLEAR NAME
ZAP FIRST WORD OF NAME

2ND

3RD

4TH

FILE

PCOINT TO START OF INDEX

IS THERE A NON-EMPTY ENTRY
YES - REWRITE
CHECK FQOR END
NOT YET - LOOP

MAKE 1T A NON-INDEX

NN

POINT TO INDEX
ZERO ONE WORD

LAST ONE ?
NO - LOOP

SET WRITE CODE

RETURN JUMP FOR R/W ROUTINE

DO THE WRITE THING, AND RETURN TO CALLER

1220 /

1221 / THIS WILL CAUSE AN ASSEMBLY ERROR IF ROUTINE BECOMES SO LARGE

1222 / THAT INDEX WILL OVERLAY CODE WHEN IT 1S READ IN

1223 ASMIFM INDEX-.

1224 NAUGHTY BAD BOY - ROUTINE IS TOO BIG FOR ONE FIELD.

1225 / IN CASE OF MINOR SIZE PROBLEMS, REMOVE 5 LINES OF CODE AT FCFQR42,
1226 /- REMOVE 3 LINES AT FSPO@0, AND THREE LINES AT FSP@35. THIS SHOULD
1227 / REMOVE ALL REFERENCES TO FCF@5@8. ALL OTHER TAGS MUST BE RETAINED.
1230 /

1231 /

1232 /

1233 / END OF FRED

1234 /

NO ERRORS

CMND
COMMON
DELO2O
DELO1®
DELB3%
ENTSHW
ERRTN
EXT
FCFoge
FCFo10
FCFa3o
FCFa40
FCF@50@
FCFO60
FCFa7e
FDv
FSPgop
FSPo1@
FSPB2d
FSPa3a
FSP@35
FSPR4g2
FSP@5@
FSPB6@
FSPB72
FSP28@2
FSPR9Q
FSP1p@2
FSP11@
GETFLOD
GTF21p
INDEX
10BLK
10LOOP
LKPOORO
LKPO1@
LKP@28
LKPB30
LKP@5@
LOOKUP
LP1
LP2
LRIB
LRIF
LRMF
MARK
MEMADD

4277
4p41
4641
4676
4710
2011
4252
4954
4550
4554
4576
4602
4605
4630
4633
6002
4345
4370
44p4
4413
4425
4432
4444
4451
4455
4519
4521
4525
4542
4116
4149
1008
4100
4871
4144
4174
4213
4215
4236
4142
2806
2007
6234
6224
6244
2010
4872

NFSW
NTROOO
NTRE12
NTR220
NTRR 32
PARAM
PARM2
ROWR
READ
RETURN
RET2
RET3
RPLOBO
RPLO1D
RTRND
RWENT
SVTRY
TRY
TRYLEN
UPLIM
WNTB
WNTS
WORD1
WRITE
XP ARM
XPNT
XPNT2

pe12
4321
4335
4342
4344
geo1
0oe3
oee?2
4930
goL7
ge1e
215
4303
4306
4543
4044
4637
4635
4636
4649
4261
4263
4226
4235
4277
geo4
2005

	1 0 Program Overview
	2.0 Environment
	3.0 Us age
	4.0 Description of the Routines
	4.1 GETFLD
	4.2 READ
	4.3 WRITE
	4.4 LOOKUP
	4.5 ENTER
	4.6 REPLACE
	4.7 FCF
	4.8 DE LE TE

	5.0 Flowcharts

