Maynard, Massachusetts dlilglijtlal

PDP-12

LAPG-DIAL

Programmer’s
Reference
Manual







PDP-12

LAP 6-DIAL
PROGRAMMER’S REFERENCE MANUAL

For additional copies of this document, order No. DEC-12-SE2B-D from Program Library,
Digital Equipment Corp., Maynard, Mass. 01754 Price $1.00

DIGITAL EQUIPMENT GCORPORATION ¢ MAYNARD, MASSACHUSETTS



Copyright () 1969 by Digital Equipment Corporation

The following are trademarks of Digital
Equipment Corporation, Maynard, Massachusetts:

DEC PDP
FLIP CHIP FOCAL

DIGITAL COMPUTER LAB



LAP6-DIAL is an editor, filing system and assembler for use with the
PDP-12 computer. The Editor and filing portion are derived from the

basic LINC program LAP6' by Mary Allen Wilkes of Washington Univer-

sity. The assembly portion is derived from several programs used

for the PDP-8 computer including PAL-D?.

The Digital Eguipment Corporation wishes to express to the author,
Mary Allen Wilkes (Clark% and the Computer Research Laboratory of
Washington University, St. Louis, Missouri, its appreciation for the
development set forth in LAP6 as well as its thanks for permission

to use parts of the LAP6 program.

IM. A. Wilkes, LAP6 Handbook, Computer Research Laboratory Tech.
Rep. No. 2, Washington University, St. Louis, May 1, 1967.

‘PAL-D Assembler Programmer's Reference Manual DEC-D8-ASAA-D.






Chapter

1.1

Chapter
2.1

2.2

Chapter

CONTENTS

1l USING DIAL
Introduction
System Description
System Operation
Source Programs
Current Line

Line Calls

Files

Commands

2 THE EDITOR

Using the Editing Cursor
Character Editing
Current Line Deletion
Large Section Deletion
Current Line Formatting
Handling Large Programs
Assembly Buffers

Use of EXIT

Leftmost Cursor Position

3 ASSEMBLY LANGUAGE
Statement Syntax
Symbols

Numbers

Expressions




Chapter
4.1

Address Assignments

Pseudo-operators

4 ASSEMBLY PROGRAMS
Assemble Program
List Program

Quick List

Save Binary

Load Binary

Assembly Operation Notes

5 UTILITY PROGRAMS AND COMMANDS
Save Program

Add Program

Clear Working Area

Display Index

Print Index

Print Source

Exit

User's Monitor Command

Peripheral Interchange Program (PIP)

Appendix A INITIAL STARTING PROCEDURE

Appendix B ASSEMBLY ERROR MESSAGES



Appendix C SUMMARIES

Commands

Pseudo-operators

Character Set

Instructions (PDP-8 and LINC modes)
Operators and Special Symbols

DIAL Tape Allocation

Sample Program

Work Flow in the DIAL System







CHAPTER 1

USING DIAL

1.1 INTRODUCTION

LAP6-DIAL (hereafter referred to as DIAL for brevity) provides the
PDP-12 user with a keyboard operating system that includes editing,
assembling, and file handling capabilities. An interactive CRT
display permits quick user response; a file Index and peripheral
device interchange program facilitate file manipulation. The mini-
mum hardware configuration for using DIAL is a PDP-12B system,
composed of:

a. 4096-word 1l2-bit, 1.6 us Core Memory

b. TCl2 LINCtape Automatic Control

c. Two TU55 Magnetic Tape Transports

d. VCl2 LINCscope Control and Character Buffer
e. VR12 7" x 9" CRT Display (Scope)

f. ASR33 Teletypewriter

It should be noted, however, that the DIAL character Editor is
designed to be operated with an ADl2 Analog-to-Digital Converter

and Multiplexer.

l.2 SYSTEM DESCRIPTION

1

The DIAL system is provided to the user on LINCtape. Each tape

contains:

1. A reserved area occupied by DIAL

'A LINCtape contains 51210 blocks of 256 12-bit words each.



2. A Working Area for temporary storage of user files

3. A file area for permanent storage of user files

The DIAL area of the tape contains the DIAL Editor, Assembly and
utility programs, and a file Index. The Index stores the name,
starting block number, and length in blocks of each stored file.

User programs are saved as named files in the file area of the system
tape. DIAL tape allocation is detailed in Appendix C. The PDP-12
includes a display for viewing source programs in the Working Area.
Up to 17 lines with 40 characters per line can be displayed at a time
on the scope. In the edit mode, any portion of a program in the

Working Area can be displayed by an appropriate line call.

1.3 SYSTEM OPERATION

A LINCtape containing DIAL must be designated as the system tape and
assigned to tape transport f. Some DIAL operations may be performed
with only one LINCtape containing DIAL, but many procedures, such as
assembling programs, require two tapes. Most efficient operation is
achieved when both tapes contain DIAL. When the system is started
(see Appendix A), it automatically enters the edit mode. A source
program may be typed in via the Teletype keyboard. The program will
reside in the Working Area and will be displayed on the scope
character-by-character as it is entered. The DIAL Editor may be used
to add, modify, or delete characters, lines, or large sections of the
program. A command may be issued also via the Teletype keyboard to

a system program. When called, the Monitor writes out its buffer



pointers and is replaced by the called program. When the system pro-
gram operation is completed, the Monitor is automatically called back

into core and retrieves its buffer pointers.

The rest of this chapter details basic concepts and terminology of

the DIAL system.

1.4 SOURCE PROGRAMS

A source program is a group of lines of program input via the key-
board. Using DIAL, the program can be altered with the Editor, stored
in a named file, or listed on the scope or Teletype keyboard. A line
number (1 - 77778) appears to the left of each line on the scope and

indicates the sequential location of that line in the source.

The programs are collected in blocks of memory; each block contains
512lO keyboard characters. Up to 64 blocks of source program can be
input to DIAL. As blocks are filled, they are saved on the DIAL tape
in the source program Working Area which starts at block 37¢ (see
tape § in Appendix C). Only the program in the Working Area can be
edited. TIf source program input exceeds 1004 blocks or 7776g lines,
the size of the source program must be reduced or the program can be

divided into two or more parts by using the Assembler pseudo-ops

SAVSYM and LODSYM, explained in Appendix C.2.

1.5 CURRENT LINE

Every source display has a current line number. By definition, it is
the last line number on the display. The current line is noted by an

indicator (2 dashes) on the right-hand side of the scope on the same

1-3



display line as the current line. The number 1 appears as the cur-

rent line number whenever the Working Area has been cleared.! Each

time RETURN is typed to terminate a source line, the next sequential

current line number appears on the scope. From 1 to 174 lines can

be displayed at a time on the scope, as determined by the setting of

A/D knob 7. After knob 7 has been set and that number of lines is

present on the scope, an additional line is added at the bottom, causing

the lowest numbered line to be removed from the top of the scope,

thereby maintaining a constant number of lines on the display.

1.6 LINE CALLS

When using DIAL, any line in the source program can be designated as
the current line. By issuing a line call, another section of the
source program will be displayed on the scope with a new line as the
current line. To obtain a new current line, use either of the following
methods:
l. Type »n) where n is the number of the line to be the
new current line. The right arrow indicates pressing

the LINE FEED key. The display will now be positioned

with line n as the last line displayed.

2. Type ALTMODE and one of the following keys:

lWhen only Iline I is seen on the scope at startup, it may merely
indicate that the source program has been positioned to line 1 and
the Working Area is not clear.



key action
1 Reposition the display forward one frame
2 Reposition the display forward one line
Reposition the display backward one frame
W Reposition the display backward one line
These ALTMODE key combinations must be the first char-

acters on a new line.

The last line of the source program can be designated as the current
line by requesting a line number greater than the last line number.
Similarly, the first line of the source program can be the current

line by calling line # or line 7777.

1.7 FILES

The DIAL system tapes are file oriented. A program, either source

or binary, is saved as a file in contiguous blocks of tape. Binary

files require a header block for pointers. Every tape contains a
file Index for the binary and/or source programs on that tape. DIAL
file entries occupy blocks @ through 267 and blocks 478 through 777.
Blocks 346 and 347 contain the file Index. The Index records file
names, starting block, and length in blocks. When a file is entered,

it is given a name which must be 1 to 8 displayable keyboard char-

acters in length, of which at least one is non-numeric. The charac-

ters slash, question mark, and comma should not be used. Only spaces

in the middle or at the end are considered to be part of the name;

leading spaces are ignored. Any name in the Index can describe a

1-5



source and a binary program, thereby doubling the number of possible

entries. Because a full Index can accommodate 63 different names,

up to 126 separate file entries can be stored.

When a file is being saved, the unused file space nearest the Index
within the reserved area that is large enough to contain the file
being saved is the next area used. Thus, the location of entries on
the tape can be controlled by their order of filing. To minimize

tape movement, the most frequently used files should be placed nearest

to blocks 346 - 347 during file assignment.

1.8 COMMANDS
The DIAL programs are requested through DIAL Monitor Commands. To
issue a command:
1. Press LINE FEED and observe right arrow on the scope
2. Type the command
3. Press RETURN

Illegal commands are ignored and erased from the scope.

The Monitor Commands are summarized in the following table and
treated in greater detail in later chapters. In this manual, a refer-
ence to unit @ means the eighth channel of the TU55 LINC tape trans-

port. Items in parentheses in the following table are optional and,

if omitted, the user's program that was most recently manipulated is

used.



Legend:

G

I

w

X

(

)

Command Function

+AS (N,U) Assemble (U=#,1)

+LO (N,U) Load Binary

-LI (L,L,) (N,U) Assemble and List (U=#,1)

QL (L,L,) (N,0) Assemble and Quick List (U=#,1)
+Ps (L,) (L,) (N,U) Print Source

+SB N,U (,M) (a) Save Binary

+SP N,U Save Program (Source)

+AP (L,L,) N,U or B,U Add Program (Source)

DX (,U) Display Index

+PX (,U) Print Index

+CL Clear Working Area

+PI Peripheral Interchange
+EX Exit

+MC (X)X,U User's Monitor Command

File name

Tape unit

Line number

Start Mode (L for LINC or P for PDP-8)

Address (5 digits - used only if mode is specified)
Tape block number

Character in Accumulator

= Optional parameter

The meanings of special symbols used in this manual are:

>

Press LINE FEED key p Press RETURN key



If a legal Monitor Command is issued, but can not be honored (e.g.,
program not on the tape) NO is displayed on the scope. Press RETURN
to return to DIAL. If no unit is specified, @ is assumed. The
commands AS, LI, QL, AND SB require two LINC tapes. A binary PIP

operation also requires two LINC tapes.



CHAPTER 2

THE EDITOR

2.1 USING THE EDITING CURSOR

DIAL provides a powerful and flexible character Editor which is con-
trolled by a cursor that appears on the scope with the text. Dele-
tion of a single character, the current line, or an entire portion

of the display, and addition of text at any location in the program

are features of the Editor.

The editing cursor appears on the scope as an inverted T (gia) which

moves in its own alley below a line of text and can scan up to 256
characters back from the last scope character in a display. The
exact location of the cursor is determined by the setting of a/D
knob 3. That setting controls how many spaces back trom the last
character on the scope the cursor is to be placed. After the cursor
has been set, it will move along with the text at that number of
spaces from the end of the text. At any time the location of the
cursor may be changed by simply rotating knob 3. Rotating the knob
clockwise moves the cursor to the right along the text. When the
end of a line is reached, the cursor advances to the left of the
next line. Similarly, rotating the knob counterclockwise moves the

cursor to the left along the text.

For normal input of data, knob 3 is rotated all the way to the
right. As each character is entered, the cursor follows along.

When a mistake has been noted in the previous text, the cursor is

2-1



used to indicate where the correction is to be made. After the cor-
rection has been completed, knob 3 is again rotated all the way to

the right and input continued.

Monitor Commands and line calls can be issued only when the cursor
is located at the start of a new line. Turn knob 3 all the wav to

the right and press the RETURN key before issuing a Monitor Command

or a line call to locate the cursor correctly.

A/D knob 7 controls the maximum number of lines displayed at a time.
By rotating knob 7, from 1 to l78 lines can be displayed on the

scope, up to a maximum of 256 characters.

For a PDP-12B system, the Right and Left Switches are used instead
of knobs 7 and 3 respectively. The setting of Right Switches 8-11
determines the maximum number of lines displayed. The Left Switches
can be set to values from 1 to 2047 to determine the position of

the cursor. The value of the switches locates the cursor that many

characters from the end of the text.

2.2 CHARACTER EDITING

A single text character may be deleted or added at any point in the

displayed text. To delete a character, turn knob 3 to’ locate the
cursor under that character and type RUBOUT. The character will be
removed and the rest of the line and the cursor will move one char-

acter to the left. 1In the following example, the letter D is deleted

from line 4.

1To insert a line after line n (1) issue line call for line n and
insert new line as the current line; or (2) position the cursor to the

last character position of line n (i.e., the blank representing RETURN)
and type the new line, including its RETURN.

2-2



before 4 JMP gi‘AG (press RUBOUT)

after 4 JMP TAG
&

In the same manner, characters may be inserted in a line of text to
the right of the character above the cursor. After typing in the

additions, the cursor moves one character to the right for each char-

acter that is inserted. The characters AD are added to line 2 below.

before 2 T I 20 (type AD)
&
after 2 TAD I 20
dh

2.3 CURRENT LINE DELETION

The current line of a display is the last line number visible on the
scope. A source display always has a current line number and is so
denoted by the horizontal indicator at the far right of the scope.

The current line of a program may be deleted at any time by striking

the keys ALTMODE and D. Only the current line is removed by this
operation. Line 5 of the source display is omitted in the following

example.

= 1z SCURSOR DISPLAY
before = £ CURFLG SCLERR FLRAG
I




after

D5C 12
CLR #CURSOR DISPLRY

S5TC CURFLG #CLERR FLRG‘
LDAR I

Any line of the source program may be displayed as the current line.
The two ways to call the current line described in section 1.6 are

used with the Editor. Both require the cursor to be the first char-

acter on a new current line.

2.4 LARGE SECTION DELETION

To delete a large section of the displayed text, the Editor has a
command that permits deletion of all the displayed text to the right
or left of the cursor. By setting the cursor at the last letter to
be deleted from a string of text to its left and typing the keys
ALTMODE and L, the character above the cursor and all the characters
to its left on preceding lines of the display are deleted. When the
delete left operation is performed, the characters on the line to
the right of the cursor and sufficient lines after it are displayed
to fill the number of lines defined by knob 7. The cursor is
located the same number of spaces from the end of the text as it had

been prior to the delete left command. In the following example, all

characters on lines 1 and 2 are deleted.



before

after

SCOPE- DSC 12
CLR SCURSOR DISPLRU.

5T7C CURFLG SCLERR FLRG
l,gg I

S5TC CURFLG SCLERR FLRG

LDR I
-16

To delete a large section of code:

1.

2.

Turn knob 3 all the way to the right.

Turn knob 7 all the way to the right.

Type a line call so the last line to be deleted is
the current line.

Type ALTMODE and L as needed until the first line
of the section of code to be deleted appears on
the scope.

Type ALTMODE and D to delete the program through

that line.

Typing the keys ALTMODE and R performs a delete-right operation,

removing the character above the cursor and all the characters to

its right on succeeding lines of the display. The remaining text is

redisplayed with enough preceding lines to satisfy the knob 7 dis-

2-5



played line number requirement. The cursor is positioned the same
number of spaces from the new end of the text. In the following
example, the cursor is located eight characters from the end of the

text. (Remember that tabs and carriage return count as one character

each.)

before I " eLe o SCURSOR DISPLAV
2 STC CURFLG “CLERAR FLAG
I

OS¢ 18
z CLR SCURSOR DI SPLAW
after 5 STC CURFLG SCLERR ELHh

L0

2.5 CURRENT LINE FORMATTING

When a new line is typed in as the current line of the displayed
text, it is automatically formatted by the Editor. The text line is

considered to be composed of 3 fields, each with an allotted number



of displayable line spaces. The first 8 spaces are provided for the
tag field, the next 16 for the instruction field, and the last 16
for the comment field. A horizontal tab is taken as 8 scope spaces,
thus permitting 5 tabs per line. When a new line is encountered,
the first characters are displayed in the instruction field, unless
the first character was a slash. If a comma is then typed before
the se&enth character is input, the preceding characters are moved

to the tag field and subsequent input is displayed starting from the

instruction field. This operation is demonstrated with the input

line TAG,ISZ 300.

during TAG
ole
after TAG, Isz 300
wil

If a slash is encountered as any character but the first on a line, it

is positioned in the comment field along with the characters typed

after it before a carriage return. If a slash is the first character
of a line, it is displayed in the tag field. Consider the following

user input:

Keys typed Displayed as
/L /L
P/L P /L
P,/L p, /L
P tab /L P /L

Note that text displayed on the scope and text printed on the Teletype

by the commands PS, LI, or QL will have the same format.



2.6 HANDLING LARGE PROGRAMS

DIAL can edit or assemble programs that are up to 64 blocks long.
(Assuming an average of 16 characters per line, this will accommodate
about 2048 lines of code.) Only Monitor Commands or deletions can

be accepted by the Editor when the program is 64 blocks long. To
facilitate the processing of programs.whose source will be greater
than 6410 blocks, the program can be edited in two or more sections
and then combined during Assembly by using the assembly pseudo-ops

SAVSYM and LODSYM (refer to Appendix C.2).

If a line is entered when the Working Area is full, the line is de-
leted when RETURN is typed. If any corrections are required to a
source of that length before assembly, one whole block must be de-
leted from the file first. Use the ALTMODE and L deletion procedure
to remove one block from the program. (The LINC tape will move when
this has been accomplished.) Use the EXIT command (see section 5.7),

then press the CONT key on the computer console to perform the re-

gquired editing while maintaining the current source program.

The Editor will not accept more than 120 characters on a line. A
carriage return is automatically generated as the 121st character.
This 120 character limit holds both before and after any editing
operation, such as deleting several carriage returns to make one

long line.

2.7 ASSEMBLY BUFFERS

As the core buffers are being filled, the Editor writes them out on



tape. While a tape operation is in process, up to 20 additional
characters may be typed. The display will not be updated with the
additional characters until the tape operation has been completed.
However, the characters are echoed on the Teletype to assure the
user that his input is being accepted. If the auxiliary buffer
space is filled during a tape operation, the Editor will indicate

this to the user by not echoing the characters on the Teletype.

2.8 USE OF EXIT

At the conclusion of an editing session, an EXIT command (- EX) )
should be given to be sure the Editor has saved its pointers on tape,

thus enabling resumption of the program at a later time.

2.9 LEFTMOST CURSOR POSITION

If the setting value of the cursor is ever greater than the number

of characters on the scope, the cursor moves along at the value deter-
mined by the last character on the scope at the time the cursor was
set. When enough characters have been added to equal the cursor
setting value, the cursor jumps back from its previous value to the
location determined by its actual knob 3 setting. For example, if

the cursor was set to 10 characters from tﬂe end of the text, but only
6 characters are displayed at first, the cursor will jump back when

four more characters ‘AG,T have been added.

before TAD 20
o
during TAGTAD 20
ok
after TAG,TAD 20
"






CHAPTER 3

ASSEMBLY LANGUAGE

The DIAL Assembler processes a source program by translating
mnemonic operation codes into binary codes for machine instruc-
tions, relating symbols to their numeric values, assigning
absolute core addresses for data and instructions and listing the

program with error messages.

This section discusses the DIAL syntax and semantics.

3.1 STATEMENT SYNTAX

DIAL source programs are usually prepared on a Teletype with the
aid of the Editor, as a sequence of statements. Each statement is
written on a single line and is terminated by a carriage return.
DIAL statements can be typed in without having to adhere to a

strict column format.

There are four fields in a DIAL statement; they are identified by
the order of appearance in the statement, and by the separating,
or delimiting, character which follows or precedes the field.
Statements are written in the general form:

label, operator operand /comment
The Assembler interprets and processes these statements, generating
one or more binary instructions or data words, or performing an

assembly process. A statement must contain at least one of these



fields and may contain all four.

1l. Labels
A label is the symbolic name used in the source program
to identify the position of the statement in the program.
If present, the label is written first in a statement and
terminated by a comma. A mnemonic machine instruction
(see Appendix C.4) or pseudo-op (see Appendix C.2) may
not be used as a label.

2. Operators
An operator may be one of the mnemonic machine instruc-
tion codes (see Appendix C.4), or pseudo-op codes which
directs assembly processing (see Section 3.5). Operators
are terminated with a space if an operand follows or with
a semicolon, slash, or carriage return. Note that a semi-
colon located by the Assembler anywhere in a statement,
except in a comment, will terminate the line at that
location and increment the program's line numbers by 1
line for each semicoloni thus the line numbers on an
Assembly listing will not agree with those seen on the scope.

3. Operands
Operands are usually the symbolic address of the data to
be accessed when an instruction is executed, or the input
data or arguments of a pseudo-op. In each case, inter-
pretation of operands in a statement depends on the
statement operator. Operands are terminated by a carriage

return, semicolongr slash.



Comments

The programmer may add notes to a statement following a

slash character. Such comments do not affect assembly

processing or program execution, but are useful in the

program listing for later analysis or debugging.

3.2 SYMBOLS

Types of Symbols

There are two main groups of symbols.

1.

Permanent Symbols

The assembler has in its permanent sympol table definitions
of its operation codes, operate commands, and many input-
output transfer (IOT) microinstructions (see Appendix C.4).
Any symbol in the Assembler's permanent symbols may be used

without prior definition by the user.

Initially, the Assembler's permanent symbol table in memory
contains the mnemonic op codes of the machine instructions

of LINC mode programming and the Assembler pseudo-op codes.
The symbols for PDP-8 mode programming remain on tape. AS

the source program is processed, symbols defined in the

source program are added to the user's symbol table.

If the programming mode is changed to PDP-8 mode, the
pseudo-op PMODE must precede the new program input. This

instructs the Assembler to retrieve the PDP-8 mode permanent

symbols in memory. (The same LINC memory block is used



for the permanent symbols of both modes.) Similarly, LMODE must pre-

cede a change to LINC mode programming.
2. User-defined Symbols
User-defined symbols, to be used as statement labels, opera-

tors, or operands, are composed according to the following

rules:
a. The characters must be alphabetic (A-Z) or numeric (0-9).
b. The first character must be alphabetic. Leading numeric

characters are ignored.

c. Only the first six legal characters of any symbol are

meaningful to the Assembler; the remainder, if any, are

ignored.

d. The Assembler assigns values according to the following

rules:

(see section 3.6 for definition of LMODE and PMODE).

Used after
LMODE PMODE
Defined LMODE 10 bitst 12 bits
after PMODE 12 bits 12 bits

e. The maximum number of symbols is 876.

The programmer has 2 methods of specifying the value to be assigned

to a symbol.

l. When the first symbol of a statement is terminated by a

lNote that no check is made on expression arithmetic. For example,
if TAG = TAGl+TAG2 where TAGl = 1777 = TAG2, then TAG = 3776, which
is more than 10 bits.



comma, it is assigned a value equal to the Current Loca-
tion Counter (CLC). Any instruction or data word in the
program may be so "labeled".

For example:

*100
TAG, CLR
JMP A
B, 0
A, STC B

The symbol TAG is assigned a value of 0100, the symbol B,

a value of 0102, and the symbol A, a value of 0103.

If a programmer attempts to define the same symbol as a
label again, it is redefined as the user requested, but
the error message ID is given.
The programmer may insert new symbols with their assigned
values directly into the symbol table by using a direct
assignment statement of the form

symbol=value
where the value may be a number or expression.
For example:

ALPHA=5

BETA=17
There must be no spaces between the symbol and the equal

sign.

A direct assignment statement may also be used to give a

new symbol the same value as a previously defined symbol.

3-5



BETA=17

GAMMA=BETA
The new symbol, GAMMA, is entered into the user's symbol
table with the wvalue 17.
The value assigned to a symbol mav be changed.

ALPHA=7

changes the value assigned in the first example from 5 to 7.

Direct assignment statements do not generate instructions
or data in the object program. These statements are used
to assign values so that symbols can be conveniently used

in other statements.

Use of Symbols

Symbols are used in 3 ways.

1.

A symbol may be used to label an instruction or data word at
any point in the program. The label must appear first in
the statement and must be immediately followed by a comma.

Tf the symbol is redefined later, the illegal definition

error message 1s printed.

Symbols used as operators must be predefined by the Assembler
or by the programmer. If a statement has no label, the opera-
tor may appear first in the statement, and must be terminated
by a space, tab, semicolon, or carriage return. The follow-

ing are examples of operators:

TAD a permanent symbol
OCTAL an Assembler pseudo-op
ZTIPp legal only if defined by the user

3-6



3. Symbols used as operands should have a value defined by
the user. These may be symbolic references to previously
defined labels where the arguments to be used by this in-

struction are to be found, or the values of symbolic

operands may be constants or character strings.

3.3 NUMBERS

Any sequence of numbers delimited by a slash, semicolon, tab or
carriage return is interpreted numerically by the Assembler.

1/ COMMENT

12;

4372
The radix control pseudo-ops indicate to the Assembler the radix
to be used in number interpretation. The pseudo-op DECIMAL in-
dicates that all numbers are to be interpreted as decimal until
the next occurrence of the pseudo-op OCTAL. The pseudo-op OCTAL
indicates that all numbers are to be interpreted as octal until the
next occurrence of the pseudo-op DECIMAL. The radix is initially

set to octal and remains octal unless otherwise specified.

3.4 EXPRESSIONS

The arithmetic and logical operators used in numerical operations
are:

+ Plus 2s complement addition (modulo 4096)
after a PMODE pseudo-op.

ls complement addition after an LMODE
pseudo-op.



- Minus 2s complement subtraction (modulo
4096) after a PMODE pseudo-op.

ls complement subtraction after an
LMODE pseudo-op.

: Exclamation Mark Boolean inclusive OR (union).
& Ampersand Boolean AND (intersection)
4 Space Interpreted as inclusive OR when used

to separate two symboloc operators.
For example:

TAG, CLA CLL
Note that there should be no spaces between operands and the above

operators.

Symbols and numbers (exclusive of pseudo-op symbols) may be com-
bined by using the arithmetic and logical operators to form expres-
sions. Expressions are evaluated from left to right. These

operations are shown in the following example.

MODE A B A+B A-B AlB A&B
PDP-8 0002 0003 0005 7777 0003 0002
0007 0005 0014 0002 0007 0005

0700 0007 0707 0671 0707 0000

LINC 0002 0003 0005 7776 0003 0002

3.5 ADDRESS ASSIGNMENTS

The Assembler sets the origin, or starting address, of the source
program to absolute address 4020, which may then be changed by the

programmer. As source statements are processed, the Assembler



assigns consecutive memory addresses to the instructions and data
words of the object program. This is done by incrementing a
location counter each time a memory location is assigned. A
statement which generates a single object program storage word
increments the location counter by one. Another statement may
generate six storage words, thus incrementing the location counter
by six. Direct assignment statements and most Assembler pseudo-
ops do not generate storage words and therefore do not affect the

location counter.

The special character . (period)lalways has a value equal to the
value of the Current Location Counter. It may be used as any
integer or symbol (except to the left of an equal sign). The
following is equivalent to JMP 0202.

*200

JMP 42
The next example will produce in location 0300 the quantity 700.

*300

.+400
Consider the next example.

*20

LMODE

CALL=JMP

0027

The second line, CALL=JMP . , does not increment the Current

lperiod must be preceded by a delimiter or operator, or erroneous
code may result.



Location Counter, therefore 0027 is placed in location 20 and

CALL is placed in the user's symbol table with an associated value

of 6020 (the octal equivalent of JMP . ).

Legal Characters

Programs processed under the DIAL Assembler are prepared by the

system in the Assembler's internal code. See Appendix C.3 for a

complete list of the characters with their 6-bit octal equivalents.

The following characters are acceptable by the Assembler:

a. The alphabetic characters
ABCD...XYZ
b. The numeric characters

0123456789

¢c. The special characters

Space

+ Plus

- Minus

Exclamation Mark

J Carriage Return
- Tabulation
’ Comma

Separates symbols and numbers
(see expressions in section
3.4)

Combines symbols or numbers
(add)

Combines symbols or numbers
(subtract)

Combines symbols or numbers
(inclusive OR)

Terminates a statement or a
line

Formats symbols or numbers for
source tape output

Assigns symbolic address



= Equal Sign Direct assignment of symbol
values

; Semicolon Terminates coding statement
(will not terminate comment)

* Asterisk Sets current location counter;
redefines origin

. Period Has value equal to current
location counter

\ Backslash X\Y = 1000gX+Y

/ Slash Indicates start of comment

& Ampersand Combines symbols or numbers
(AND)

All characters other than those listed above are illegal when not
in a comment or TEXT field and, being illegal, their occurrence
causes the error message IC (Illegal Character) to be printed by

the Assembler.

3.6 PSEUDO-OPERATORS

The programmer may use pseudo-operators (pseudo-ops) to direct the
Assembler to perform certain tasks or to interpret subsequent
coding in a certain manner. Some pseudo-ops generate storage words
in the object program, other pseudo-ops direct the Assembler on
how to proceed with the assembly. Pseudo-ops are maintained in

the Assembler's permanent symbol table. Do not use pseudo-ops

as variable names; erroneous logic and code may result without

generating an error message.

The function of each Assembler pseudo-op is described next.



PMODE

The Assembler can assemble either LINC instructions (coding) or
PDP-8 instructions. Each has a pseudo-op to designate its assembly
mode. PMODE indicates that PDP-8 coding follows. The Assembler
remains in PDP-8 mode until explicitly changed to LINC mode by an

LMODE pseudo-op.

LMODE
To designate LINC mode coding, the pseudo-op LMODE is used. The
initial mode of the Assembler is LMODE and will remain in LMODE

until the PMODE pseudo-op is given.

SEGMNT n (0<n<7)
SEGMNT resets the CLC to the first location of segment n, where n
is an integer, a previously defined symbol, or a symbolic expres-
sion. Each memory bank is divided into four 1024-word segments.
For example:

SEGMNT 2 sets CLC to location 4000

SEGMNT 1 sets CLC to location 2000
Without an argument, the CLC is reset to the first location of the

succeeding segment.

FIELD n (0<n<1)
The FIELD pseudo-op indicates the field 0 or 1. If the field is

not specified, 0 is assumed as the initial condition.



DECIMAL
Integers are usually taken to be octal numbers. However, following
the pseudo-op DECIMAL (and prior to a succeeding OCTAL pseudo-op)

all numbers are interpreted as decimal.

OCTAL
OCTAL is used to reset the radix to its original octal base. It
should be noted that if a decimal number is specified when the
radix is octal, the Assembler tries, often unsuccessfully, to

interpret the number.

NOLIST
NOLIST is used to prevent printout during an LI assembly. The
NOLIST appears in the listing, but then the printout is suppressed

until a LIST pseudo-op is encountered.

LIST

LIST is used to negate the NOLIST state. The LIST statement does

not appear in the listing.

TEXT
The pseudo-op TEXT enables the user to represent a character or
string of characters in USASCII code trimmed to six bits and

packed two characters to a word. The numerical values generated

by TEXT are left-justified in the storage words they occupy, with

the unused bits of the last word filled with 00.



A string of text may be entered by giving the pseudo-op TEXT fol-
lowed by a space, a delimiting character, a string of text, and
the same delimiting character.

For example:

TEXT ZSTRING OF TEXTZ

If this example is at location 0200, the listing is as follows:

200 2324
201 2211
202 1607
203 4017
204 0640
205 2405
206 3024

TEXT ZSTRING OF TEXTZ

The first printing character following TEXT is taken as the de-
limiting character, and the text string is the characters which
follow until the delimiting character is again encountered. Any
legal character may be used as a delimiting character: The
Assembler will print out all the code, then print the entire line
after it when a carriage return is encountered. If the text goes
past the end of the manuscriot the error message IE (illegal

expansion) is printed and the assembly is immediately terminated.

PAGE n (0<n<40g)
PAGE is used to reset the Current Location Counter to the first

location of the specified PDP-8 page. If n is not specified, the

Current Location Counter is reset to the first location of the

TWhen using the TEXT pseudo-op, remember that the formatting feature
of the Editor may insert unwanted tabs when a comma, slash, or
carriage return is encountered.



succeeding page.

EJECT
When a program is to be listed on a line printer, the command
EJECT causes the next line to be printed at the top of the next
line printer paper page, thus permitting a logical splitting along

page boundaries.

ASMIFXx n

The conditional assembly pseudo-ops, of the general form ASMIFx,

can have 3 possible forms:

Pseudo-op Meaning

ASMIFZ n Assemble if zero
ASMIFN n Assemble if non-zero
ASMIFM n Assemble if minus

In each case the expression is evaluated and if the value of the
expression matches the condition specified (zero, non-zero, minus),
the next line is assembled. If it does not match, then the next
line is not processed by the Assembler. The next line may be any
statement, but will most frequently be an ASMSKP pseudo-op
(discussed below). Sections of code may thus be altered or entire-
ly deleted from a program just be setting some values in the

beginning of the assembly program.

ASMSKP n

When the pseudo-op ASMSKP and the expression n following it are



encountered, the expression on the right is evaluated. The number
of lines equal to that value of that expression, starting on the
next line, are not assembled. Thus, the ASMIFx class of pseudo-ops
control the assembly of one statement; the ASKSKP controls any
number of lines and can be used to eliminate entire blocks of

statements.

For both the ASMIFx family and ASMSKP pseudo-ops, if no expression
is present, the next statement will be assembled. If an attempt

is made to go past the end of a manuscript with one of these
pseudo-ops no error results; the end of the manuscript is simple
treated as the end of the skip block. With both the ASMIFx and the

ASMSKP pseudo-ops a line may be a normal assembly instruction or it

may be just a comment.

Note that with the ASMIFx family and ASMSKP pseudo-ops, the condition

"zero" must be specified by @@gJ.

Consider the following program listing.

g4z ASMIFN TAPE

gg43  p2g2 4491 JMS I WRITE

gpaa ASMIFN TAPE-DISK
ggas ASMSKP 2

g046 JMS I READ

g@47 JMS I WRITE

ggs0 @293 1995 TAD M 18

The expression after ASMIFN pseudo-op at line 42, TAPE, had a non-

zero value so the next line, 43, was assembled. The value of the

expression TAPE-DISK also had a non-zero value, causing line 45



to be executed, thus skipping lines 46 and 47. Assembly was con-

tinued at line 50.

The last 2 pseudo-ops, SAVSYM n and LODSYM, are sophisticated tools
which should be used only in large system programs. These pseudo-

ops are discussed briefly here and in detail in Appendix C.2.

SAVSYM n (n=1 or 2)

The pseudo-op SAVSYM n allows the programmer to save part or all of
his user symbol table for use in later assemblies. It is followed
by an expression, n, which is evaluated to a value of 1 or 2.

There are 2 cases when a user will want to save his symbols. Case
1 is when the user has defined some common definitions which are

to be used with all his programs; case 2 is when the program is

too large and must be split into 2 or more smaller programs that

can communicate with each other.

LODSYM

The pseudo-op LODSYM loads a symbol table previously saved by a

SAVSYM pseudo-op. When a LODSYM command is given all previously

defined user symbols in core are erased. For this reason, a LODSYM

should be one of the first statements in a program. SAVSYM and

LODSYM permit the user to do an assembly, save the symbol table,

do another assembly and call back in the original symbol table.






CHAPTER 4

ASSEMBLY PROGRAMS

4,1 ASSEMBLE PROGRAM

*AS (NAME, UNIT) )

NAME name of filed program to be assembled

UNIT

tape unit on which named file is to be found (g or 1)

The Monitor Command AS performs an assembly of the NAMEAd source
file on the specified UNIT. If no NAME is given, the source pro-
gram in the Working Area on unit @ is assembled. With the command
AS, an assembly listing is not produced, but error messages with
line numbers and a tag table are printed. (See Appendix B for the
assembly error messages.) Note that the assembly and tag table
printout can be stopped and the Editor called back by typing

RETURN.

The Assembler requires that the program to be assembled be on tape
unit @ or 1. The Working Area of tape unit 1 is always used for

binary output and tag table storage.

For all DIAL programs, NAME can be 1 to 8 characters long and must

have at least 1 non-numeric character and no ? or / characters.

4,2 LIST PROGRAM

+LI (LINE NUMBER1l, LINE NUMBER2,) (NAME, UNIT) )



LINE NUMBER 1 = starting line number
LINE NUMBER 2 = terminating line number

NAME

name of filed program to be listed

UNIT = tape unit on which NAMEd file is to be found
(# or 1)

The list program performs the same functions as the assemble pro-
gram, but in addition produces an octal-symbolic listing on the
Assembler output device. It will assemble and list from the
workspace if no program NAME and UNIT are specified. The value

of UNIT can only be # or 1. As with the assemble command, AS, the
Working Area on the tape unit 1 is used for the bin .ry output and

tag table.

If two line numbers are supplied, it will cause the entire program
in the workspace or a NAMEd file to be assembled and will list only
the portions of the program between the two line numbers. To
assemble and list only that part between lines 140 and 160 type
+LI 140,160 )
To assemble and 1list lines 300 to 310 of file MART on unit 1, the
correct command is
LI 300,310 MART,1 )
If a line printer is available and in the ready state, the listing
will be output to that device. By using the pseudo-operators
NOLIST and LIST, the output listing can be controlled.

RETURN may be typed at any time to return to the Editor.



4.3 QUICK LIST

-QL (LINE NUMBER 1, LINE NUMBER 2,) (NAME, UNIT) J

LINE NUMBER 1

1l

starting line number

LINE NUMBER 2

terminating line number

NAME = name of filed program to be listed

UNIT

tape unit on which NAMEd file is to be found
(8 or 1)

This command performs the same functions as the LI command with the
following exceptions:
a. Line numbers and all comments are deleted.

b. All tabs are printed out as spaces.

The QL command enables the user to examine his code without having
to wait the extra time to receive a full listing. The QUICK LIST
feature normally saves 1 to 2 seconds per line, more if the program
contains many tabs and comments. Only unit § or 1 may be specified.

No line numbers are printed out with the QL command. To help the

user determine statement line numbers from the listing, QL takes

) advantage of the fact that the pseudo-ops (FIELD, *, PAGE, PMODE,
LMODE, etc.) generate no code and the line number is printed instead
of the location counter. The assembl, may be interrupted by typing

RETURN to go back to the Editor.
Two listings of the same program follow to illustrate the differ-

enceg between a listing produced by a list command and one generated

by a quick list command.

4-3



This listing was produced by a List command.

X 351%)

ponl

0002

0oB3

0804

POBS 4020
2806 4021
2307

2610

go11 4922
go12 4023
2013 4024
A014 4025
2815 4826
0016 4827
2817 4030
0008 ERRORS
LINEP 0009
LOOP 4822
START 4020

6032
6646

69831
5222
6836
6641
5225
6046
5222

*20

STARTS»

LOOP,

PMODE
LINEP=@
ASMIFN
EJECT
KCC
TLS
ASMIFN
EJECT
KSF
JMP
KRB
TSF
JMP
TLS
JMP

4-4

LINEP

LINEP

/START IN PDP-8 MODE
/N0 EJECTS

/EJECT?

/YESe.

/CLEAR KEYBOARD FLAG
/SET TELETYPE FLAG
/EJECT?

/GO TO TOP OF PAGE.
/CHAR. TYPED?

/NO. WAIT

/YES. READ IT IN.
/TELEPRINTER READY?
/NO. WAIT

/YES. OUTPUT THE CHAR
/G0 GET ANOTHER CHAR.



This listing was produced by a quick list command.

2000 *20

00061 PMODE 7/

poO22 LINEP=G /
0083 ASMIFN LINEP /
poB A EJECT /

4020 6032 STARTs KCC 7/
4021 6046 TLS 7/

2007 ASMIFN LINEP /
2019 EJECT 7/
4022 6031 LOOP, KSF 7/
4023 5222 JMP -1 /
4024 6036 KRB 7

4825 6041 TSF 7/

49026 5225 JMP -1 7/
4027 6046 TLS 7/

4030 5222 JMP LOOP 7/

pB0B ERRORS
LINEP 0000

LOOP 422
START 4828



4.4 SAVE BINARY

+SB NAME, UNIT (,MODE) (ADDRESS))

NAME = name to be assigned to saved binary file
UNIT = unit on which binary file is to be saved
MODE = L if program should start in LINC mode

P if program should start in PDP-8 mode
ADDRESS = starting address

The binary program most recently assembled with the AS, LI, or QL

command can be saved with the SB command as file NAME on the speci-

fied UNIT.

The SB command has a load and go option so that when a program is

loaded into memory with the LO command, it will also automatically
start to be executed. To use this option, the program mode must

be specified.

If the program is to be started in LINC mode whenever loaded, the

unit number is followed by an L. If the program is to start at
P4920, the L is followed by typing RETURN. If the program is to

be started elsewhere, a full five digit address must be specified.

The Data Field 1is always set to three when the program is started.

If the program is to be started in PDP-8 mode, the unit number is

followed by a P which will cause the program to be started at
location @@2@@; otherwise the full five digit starting address

should be specified.

4-6



If the SB command is terminated after UNIT with a carriage return,
the loader will halt to location 7774 after having loaded the
program.

For example:

To save the program PGMNAM on unit 1 so it will load and start in
LINC mode at location @492g
+SB PGMNAM,1,L )

To save the program PGMNAM on unit @ so it will load and start in

LINC mode at location 4@2@of the second band (IF = 6)

+SB PGMNAM, g, L14g20 )

To save the program PGMNAM or unit @ so it will load and hal&

+SB PGMNAM, § J)

With each assembly, a binary header block is generated by the

Assembler which maps the memory blocks used. The Save and Load
Binary commands use the data in the header to save or load the
appropriate blocks. (Block 4000 is always saved). Thus, if a

program occupied blocks 4000 and 4400, three blocks would be saved:

the two program blocks and the header block. If a previous version

of the same program is already present on the specified tape,

DIAL will display REPLACE?. Strike R to replace the existing file

entry with this new entry; strike RETURN if the existing file

is not to be replaced.

4-7



4.5 LOAD BINARY

+LO (NAME, UNIT) )

NAME

name of binary file to be loaded

UNIT unit from which file is to be loaded

If the NAMEd program was saved by a Save B8inary command and no mode
was specified, the program is loaded into core memory and the com-
puter halts at location 7774. When a UNIT is also specified, the
NAMEd binary program is read into memory from che selected file.

If no NAME is given, the last binary program assembled by DIAL is

read into memory from unit 1 and the computer again halts at 7774.

If the file had been saved with a mode and address specified in
the Save Binary command, then the Load Binary program will load
and go. Program execution will start automatically from the NAMEd
file on the specified UNIT. This command will exit from DIAL
before reading the binary program. Note that the loader overlays

locations 7761-7777 with a bootstrap routine and these locations,

therefore, cannot be used by the program.

4.6 ASSEMBLY OPERATION NOTES

The Assembler looks at the tape on unit 1 to determine if there is

a copy of the Assembler on tape 1. If there is a copy, then
symbols can be swapped in and out on tape unit 1 rather than on
unit @, resulting in a considerable saving of tape motion and time.

Note that it is not necessary to have an Assembler on unit 1, but

it is faster.



For users with 8K of core, the Assembler uses the extra 4K rather
than swap user symbols in and out from the tape. 1In addition, the
pseudo-op processor will then always be resident and double buffer-
ing from the input file can be used. Such a system greatly in-

creases the speed of assembling a program over a 4K machine.

For an 8K machine with a line-printer, the Assembler will auto-
matically give its listing and symbol table on the line-printer,
if it is in the START or READY status. Otherwise, the output will

go to the Teletype.






CHAPTER 5

UTILITY PROGRAMS AND COMMANDS

5.1 SAVE PROGRAM

*SP NAME, UNIT‘)

NAME = name to be assigned to saved program in file

UNIT = unit to contain the named program

DIAL saves the source program by NAME in one file on the UNIT speci-

fied. When saving a program, RETURN may be typed at any time. This

will interrupt the command and return to the source display, with

no effect once DIAL has updated the Index. To prevent saving two

programs with the same NAME, DIAL displays REPLACE?. The user may

either type R to replace the file entry with this source or press

RETURN to keep the old file entry.

5.2 ADD PROGRAM

+AP BN, UNIT )

+AP (LN1l, LN2,) NAME, UNIT )

BN = First block number of source program

NAME = name of filed program

UNIT

unit on which program is located

To add DIAL source to the current source at the current line, the AP
command requires specifving only its starting block number, BN, or
its NAME. Two line numbers may be specified to add that portion of

the NAMEd program to the current source.



The first line of the program is added after the current line on the
scope. Source lines which follow the added source are then renum-
bered; if there is no current source, e.g., a CLEAR command was
issued, the added source will be the entire source. If the arguments

are omitted, the command is ignored.

5.3 CLEAR

*CL)
The Working Area on the tape unit § can be cleared by using the
command CL. DIAL remains in core and is restarted with a clean

buffer area. ~CL may be typed at any time to clear the Working Area

without having to manipulate any console switches.

5.4 DISPLAY INDEX

+DX(,UNIT))
UNIT = unit whose Index is to be displayed
The file Index of the specified UNIT is displayed on the scope by
the command +DX. For each program, its name, source or binary, start-

ing block number, and length in blocks is indicated.

To view the entire Index, use the following keys:

Key Action
1 Forward one frame
2 Forward one entry
Q Backward one frame
W Backward one entry

5«2



Press the RETURN key to return to the source display at any time.
Entries may be deleted from the display also. Pressing the RUBOUT
key will delete the last line on the display. If the wrong entry
is deleted, type R to restore the Index. The deletions are made
permanent by pressing the colon key (:). The source display is
returned to the scope. Pressing the RETURN key will cause a return
to the source display after one of the above operations. Note that

if there is no Index or an empty Index, NO is displayed on the scope.

5.5 PRINT INDEX

+PX(,UNIT))

UNIT = unit of Index to be printed
The command -+PX prints out the contents of the specified Index on
the Teletype. Press RETURN at any time to stop the printout and to

return to the source display.

5.6 PRINT SOURCE
+PS (LNl,) (IN2,) (NAME,UNIT) )
NAME = name of file to be printed
UNIT = unit on which named file is to be located

IN1

starting line number

IN2 = terminating line number
The NAMEd source file is printed on the Teletype from the specified
UNIT. The current source is printed when no NAME and/o; UNIT are
designated. If two line numbers are specified, that portion of the

NAMEd file will be printed.



Any DIAL source can be printed with the PS command. No words will
be split between Teletype lines. Printing time is approximately

1 minute per page for PDP-12 program sources.

Line numbers, if specified, provide inclusive bounds for the print-
out. When only one line number is specified, it is assumed to be

the initial bound and the rest of the source is printed.

5.7 EXIT
+EX )
The Exit command completes the updating of the working area from

the memory buffers, thus assuring the user of leaving DIAL without

losing the current source program. After *EX, DIAL halts. Press

the CONT console switch to return to DIAL.

5.8 USER'S MONITOR COMMAND

+MC X(X),U )

X = value in left of Accumulator

(X) = value in right of Accumulator (optional)

U = unit to be read
The User's Monitor command allows the DIAL user to define an
individualized function to the Editor. The MC command is similar to

the Load Binary command, but with twc additional features:
1. Block 270 of the free area is read into core.
2. Arguments are passed by the Editor using the

Accumulator.



When the MC command is issued, block 270 of unit U is read into core
locations 4000 to 4377 and the program is started in LINC mode at

location 4020. Block 270 is the first block of an eight block free

area on the DIAL tape and is accessed by the MC command. Since DIAL

will never use these blocks, the user can retrieve any or all by

using absolute references; there is no need to access the DIAL

directory. The DIAL code of the alphabetic character X is placed in

the left half of the Accumulator. The value of the second character,

which can be alphabetic or numeric, is placed in the right half of

the Accumulator. If the second character is omitted, the value 77

is placed in the right half of the Accumulator automatically.

5.9 PERIPHERAL INTERCHANGE PROGRAM (PIP)

»PI )
PIP for the PDP-12 permits the user to transfer source or binary

files between devices such as a LINC tape, high-speed paper tape

reader/punch, card reader, or line printer.

PIP is a user's program, residing in the file area, and is not
necessarily resident on unit @ with the DIAL source programs. Call-
ing PIP by the command °“PI i equivalent to ~LO PIP,#. Thus, if

PIP is moved to a unit other than @ the >PI command is inoperable.
The appropriate tape unit may be substituted for unit @ in the

*LO PIP command above to call the program.

Mode Options

When PIP is started, tne following message is displayed. Note that



lower case letters are used here to indicate half size characters

on the scope.

PIP OPTIONS

a---auxiliary mode
b---binary mode
s—---source mode

reply:

The file to be manipulated by PIP must be described at this time.
Only one of the 3 single letter abbreviations needs to be typed

after reply. A carriage return terminates all PIP command strings.

This PIP display and all the subsequent ones are followed by reply:
and a square-shaped cursor in the lower left hand corner. When a
response is typed, it is seen at the location indicated by the cur-
sor. The cursor moves one character to the right for each character
typed in. When responding to any PIP display, RUBOUT can be typed
to delete the last character typed or LINE FEED can be typed to
delete the entire line. If an illegal character is typed, it is
ignored and the PIP display is returned to the scope. Typing CTRL/P
will also return the PIP OPTIONS display to the scope at any time.

CTRL/D may be typed to return to DIAL.

Binary or Source Input

After the mode has been accepted, the input device must be specified.

If the reply to the first PIP display was B or S, the second PIP

5-6



display is shown, as follows:
INPUT DEVICE

h---high speed reader
1---linc tape
t---teletype

c---card reader

reply:
The auxiliary mode options are described later in this section.

If LINC tape is to be the input device, the user's response to the
second PIP display must be in the format Ln;NAME where L indicates
the LINC tape option, n is the 1,INC tape input unit number (g - 7)
followed by a semicolon, and NAME is a 1 to 8 character file name.
Thus, to input a file named ABC3 from LINC tape unit 4 the correct

command is L4;ABC3.

If source mode was chosen as the first option, then data may be
input from the card reader by typing a reply of C). Columns 1-110g
are read unless a response is given in the form Caa; THRU,bb where aa
is the first column to be read and bb is the last column to be read.

To read columns 50 to 110 (octal) the correct string is C50;THRU,110.

The character codes used are not the card reader codes in the PDP-12
User Handbook. 1Instead, they are the standard IBM-029 Keypunch

codes (see Appendix B of "Introduction to Programming" DEC-C-18).



There are some minor changes in that set to be compatible witwn

standard ASCII.

CARD CODE 029 CHARACTER DIAL CHARACTER
g-8-2 NONE ]
#-8-5 __ (Underscore) «
11-8-7 ~7 (Logical not) \
12-8-2 ¢ (Cent Sign) L
12-8-7 | (Vertical Bar) 4

If the user desires he may substitute an entirely different charac-

ter set into PIP (with the exception of BLANK).

If, for binary input, the device is to be the high-speed reader or
the Teletype, neither of which is file or unit oriented, the user's
response is in the form DF;Mode,Address where D is the device
abbreviation (H or T), and F is the memory field and is specified
only for field 1 or larger. Mode is indicated by L for LINC Mode

and by P for PDP-8 Mode and Address is the starting address. If

Mode and Address are omitted, the program just loaded will not start.
The mode must be specified for the program to start after it has been

read.

The punctuation marks are always required if the items after them
are specified. If no Address is given, a LINC Mode operation will
start at location 4020 and a PDP-8 mode operation will start at

location 200. A carriage return terminates the command string.



Consider the following examples.

H;P Input is from the high-speed reader and will start
in PDP-8 mode at location 200.

H1;P,1000 Input is from the high-speed reader and will start
in PDP-8 mode at location 1000 in memory field 1.

T;L,6000 Input is from the Teletype and will start in Linc
Mode at location 6000.

H Input is from the high-speed reader and will not
be started.
If the specified file is not at the indicated location, NO will be
displayed on the scope. Return to PIP by typing CTRL/P or return

to DIAL by typing CTRL/D at this time.

When the high-speed reader is the input device, the tape must be.in
the reader pefore the carriage return is typed to terminate the out-
put device command string. For ASCII paper tape input, the character
CTRL/Z must terminate the input. It must be present as the last
character on the tape or typed on the Teletype after the tape has
been read in. If the tape had originaliy been punched by PIP, a

CTRL/Z will already be present at the end of it.

Binary or Source Output

When a response to the input device display has been accepted, the
output device must be specified. The following display appears on

the scope.



OUTPUT DEVICE

h---high speed punch
l---linc tape
t---teletype

p~---line printer

reply:

If the LINC tape is to be the output device, a response in the same
format as was used to specify LINC tape as the input device is re-
quired. Never ask to copy a file onto itself by using the same

name and the same unit for both the input and output commands. This
will destroy the named file. To locate the file PAUL on LINC tape

unit §# the correct command string is L@ ;PAUL.

When using LINC tape as the input or output device for any PIP opera- -
tion, be sure to specify the name of the file. If the file name is
omitted when specifying LINC tape output, the file is assigned the
name question mark (?) by PIP. The file will be accessible only by
using PIP and the name ? or no name. If the file name is omitted
when specifying LINC tape input, PIP can locate only a file named ?
If there is no file with that name, then NO will be displayed on the
scope. Only a return to PIP or DIAL can be generated at this time.
If no unit is specified when using PIP to perform a LINC tape opera-

tion, unit # is assumed.

If there is not sufficient room on the indicated tape, NO is dis-

played. Type CTRL/P to return to the first PIP display or CTRL/D



to return to DIAL. If a file with the same name is already located
on that tape, the message REPLACE? is displayed. Type R) if the
present file is to replace the existing file or, if it is not to re-
place it, type CTRL/P to return to the first PIP display or CTRL/D

to return to DIAL.

For high-speed punch, Teletype, or line printer output, only the
letter abbreviation is required. The punch will type leader tape
automatically. When the output device command string is terminated,
typing a carriage return initiates the specified operation. Note

that tape punched using PIP can be read directly into DIAL by the

Teletype reader.

If the input device was the paper tape reader, then after the first
tape has been read in, the following display appears on the scope.
MORE TAPES?
a---read another tape
n---no more tapes
reply:
Type the appropriate letter answer. A reply of A will store the next
file immediately after the first one. Each tape must be terminated

by a CTRL/Z. Any operation can be interrupted by typing CTRL/P to

return to the first PIP display or by typing CTRL/D to return to DIAL.

Auxiliary Mode

If the letter A was typed in response to the first PIP display, the
following is seen on the scope.
OPTIONS
c~---copy specified blocks

d-—--duplicate tape # onto unit 1
reply:



In addition to specifying the option, a number can follow a

reply of C or D to indicate the number of consecutive upits onto
which the specified blocks or whole file is to be transferred.

A reply of D will perform that operation immediately. A response
of C will produce the second PIP display requesting the input
device. The only acceptable input device is LINC tape. The reply
must be in the format Ln;fb,nb where fb is the first block and nb
is the number of blocks to be read. Thus, L2;63,24 will start
input from LINC tape unit 2, block 63, and continue for 24 blocks.

Note that block numbers are octal.

When the input response has been accepted, the PIP output display
is seen on the scope. The only acceptable output device is LINC
tape. The response must be in the form Ln;fb where n is the number
of the first consecutive tape unit and fb is the block where output

is to start.

During all PIP operation, the program checks for tape errors. When

one is encountered, the following message is displayed.

TAPE ERROR

AT BLOCK nnnn
a-——-accept as 1is
r---try again (repeat tape operation)
s---try to skip past error

reply:

(8]
|

12



It is up to the user's discretion to choose one of the three above
options. If the problem is a minor hardware error, such as the
WRITE ENABLE switch was not set, then choice R can be used. If

some of the block numbers have been modified, then choice S may
still yield a working system. The user can always type CTRL/P to
return to PIP or CTRL/D to return to DIAL. For binary tape input,
the error message CHECKSUM ERROR can only be followed by a return to

PIP or DIAL.

If the return commands CTRL/P and CTRL/D ever fail to operate, PIP
may be restarted by stopping the processor, setting the Left

Switches = 0200 and pressing the START LS console key.

The following command sequences are examples of PIP operations.
1. Copy the binary file BINFILE from unit @ to unit 6.
B
L@ ; BINFILE
L6; BINFILE
2. Copy the source file PSL from unit 3 to unit 7.
S
L3;PSL
L7;PSL
3. Copy the binary file OLDNAME from unit 1 to unit 7 and call
it NEWNAME.
B
L1; OLDNAME
L7 ; NEWNAME
4, Duplicate the source file COPYl on unit 2 and call it COPY2

on the same unit.

5-13



S
L2;CoPY1
L2;COPY2

Warning: Never copy a file onto itself on the same unit. For

example:

B
L1;COPY1l
L1;COPY1

This will possibly result in the destruction of the file COPYL.

5‘

Punch the source file HERE on unit 3 by the high-speed punch.
S
L3; HERE
H
Read in ~ tape on the Teletype that was not originally punched
by PIP and store it as file MARTY on tape unit fg.
S
T
LJ; MARTY
When the tape is finished type CTRL/Z on the Teletype (if PIP
had punched the tape originally there would be a CTRL/Z at

the end of it).

Then type
N if only this tape is to be read
or
A if another tape is to be read and added

after the first tape.
Duplicate tape @ onto tape 1.

A
D

Duplicate tape @ onto tapes 1, 2, 3, 4, and 5.



10.

11.

A
D5

Copy blocks 300-317, unit 4, to blocks 200-217, unit 6.

A

C

L4; 300,20

L6;200
Copy blocks 600-677, unit 2 to blocks 700-777 of units 5,
6, and 7.

A

C3
1,2;600,100
L5;700

Read in a binary tape via the high-speed reader and store

it as file J10 on unit @, where it will start at location 200
in PMODE.

B

H;P
L@;J10

5-15






APPENDIX A

INITIAL STARTING PROCEDURE

Mount a DIAL tape on tape unit f. (Unit § is indicated by
setting the tape channel indicator to 8 on TU55 transports.)
Mount another tape on unit 1, if required. (Refer to commands,
chapter 1.)

Set the switches of both tape units to REMOTE and set unit #
to WRITE ENABLE.

Set the mode switch to LINC mode and press I/0 PRESET to
initialize LINC Instruction Field to 2 and LINC Data Field

to 3.

Set the Left Switches to #7¢1 and the Right Switches to 73¢@
by raising the switches indicated by + and pushing down those

indicated by ¥ in the following diagram.

IR AR RN IR 2 A ) K A AR 2 2 A

Left Switches Right Switches

Press the DO console switch.

When the tape has stopped moving, press the START 20 key.






APPENDIX B

ASSEMBLY ERROR MESSAGES

Durinag source program assembly, error messages in the form of a

2 letter code are included in the program listing. These messages

define illegal syntax or insufficient space errors and are explained

below.

Error Code

IC

ID

IE

IR

SE

Us

WA

PS

Explanation

Illegal Character - An illegal character was

processed in the instruction field; the
character is ignored and the assembly is

continued.

Illegal redefinition of a symbol - An attempt

was made to give a previously defined symbol a
new value by other means than the equal sign;

the symbol was not redefined.

Illegal expansion - Delimiter missing in text.

Illegal equals - An equal sign was used in the
wrong context.

Illegal reference - An off page reference was
made.

Symbol table exceeded - Assembly is terminated
and control is returned to DIAL; the symbol
table may be expanded to contain up to 896

user symbols.

Undefined symbol - A symbol has been processed
during pass 2 that was not defined before the
end of pass 1.

Working Area exceeded - Assembly is terminated
and control 1s returned to DIAL; more than
100g blocks of source program have been input
for assembly.

Push-down stack exceeded - Too many symbols to
be evaluated on one line.







APPENDIX C

SUMMARIES

C.1 COMMAND SUMMARY
All commands are issued in the form

+Command )

Command Function
AS (N,U) Assemble (U=f#,1)
LO (N,U) Load Binary
LT (L,L,) (N,U) Assemble and List (U=f#,1)
QL (L,L,) (N,U) Assemble and Quick List (U=g#,1)
ps (L,) (L,) (N,U) Print Source
SB N,U (,M)(A) Save Binary
SP N,U Save Program (Source)
ap (L,L,) N,U or B,U Add Program (Source)
DX (,U) Display Index
PX {(,U) Print Index
CL Clear Working Area
PI Peripheral Interchange
EX Exit
MC X(X), U User's Monitor Command
Legend:
( ) indicates an optional parameter
N = File Name
U = Tape Unit



Legend:
L =

MA =

- =

) =

(Cont.)

Line Number

Mode (I. for LINC or P for PDP-8) and Address (5 digits)

Tape Block Number
Accumulator
Line Feed

Carriage Return

C.2 PSEUDO-OPERATORS

Pseudo-0p

ASMIFM n

ASMIFN n

ASMIFZ n

ASMSKP n

DECIMAL

EJECT

FIELD n

I

LIST

LMODE

LODSYM

NOLIST

OCTAL

PAGE n

Mode
8/L
8/L
8/L
8/L
8/L

8/L

8/L
8
8/L
8

8/L
8/L
8/L
8/L

Operation
Assemble if n is negative
Assemble if n # 0
Assemble if n = 0
Continue assembly after n lines

Sets decimal radix for integer input

Print next line at top of next page
of line printer

Defines each 4K of memory; n = 0 or 1
Indirect addressing
Negate NOLIST condition

Causes LINC-8 instructions and pseudo-
ops to be defined subsequently

Load saved symbol table (see below)

Inhibit octal-symbolic listing

Sets octal radix for integer input

Start new page at n-200. If no para-
meter, start at next page
(0 < n < 408)



Pseudo-Operators (Cont)

Pseudo-0Op Mode Operation

PMODE L Causes PDP-8 instructions to be defined
subsequently

SAVSYM n 8/L Saves symbol table for later assembly

(n =1 or 2) (see below)

SEGMNT n 8/L Starts new segment at Nx2000. If no
parameter start at next segment.
(0 <n < 7)

TEXT 8/L Packs two 6-bit words per cell

Z 8 Page zero reference

The 2 cases requiring use of the SAVSYM pseudo-op and the procedure
for assembling large programs with the SAVSYM and LODSYM pseudo-ops

are discussed in detail in this section.

Case 1. Assume that the user has defined the following symbols for

his program.

INDEX=346 /set the index pointer to 346

DISK=3 /3 disks

TTYIN=7423 /address of Teletype input routine
TTYOUT=7520 /address of the Teletype output routines
SAVSYM 1 /now save just these symbols (see below)
*XXXX

YYYY /the rest of the program

The command SAVSYM 1 will cause the user defined symbols INDEX,
DISK, TTYIN, and TTYOUT to be saved when the program is assembled.
Any user symbols occurring later in the program will not be saved.
At a later time in another program a LODSYM command will load

these symbols into the symbol table without having to retype them.



Case 2. 1If all symbols are to be saved in a common table, the
SAVSYM 2 command is used. Thus, if SAVSYM 1 is replaced by

SAVSYM 2 in the previous example, then the 4 user-defined symbols
and all symbols to follow will be saved in the symbol table. This
is useful in breaking up large assemblies, when all symbols are to
be saved. If a symbol was redefined, the last definition assigned
will be the one saved. Note that the more symbols defined and

saved, the slower the Assembler will run.

The symbol table is always stored in the Working Area on unit 1
near the binary output and the present symbol table. With SAVSYM 1
the symbol table is saved at this point in pass 1 of the assembly.
With SAVSYM 2 the symbol table is saved at this point during

pass 2. The user who wants to save a set of common definitions or
a common page zero with pointers should use the command SAVSYM 1
after the definitions on page zero. No other symbols will be
saved. The user who wishes to save all his symbols because his
program has to be split into sections should put the command

SAVSYM 2 at the end of his program, assuring that all symbols will

be properly defined.

In either case, the symbols will be permanently saved unless one
of the following occurs:
1. The tape is erased.

2. The tape is used for unit @ workspace (source) and is
overwritten.



3. Another SAVSYM command is given at some later time and
replaces the old symbol table with a new one.

Assembling Large Programs with SAVSYM and LODSYM

SAVSYM and LODSYM may be used to assemble a program that is longer
than lOO8 blocks, by breaking the program into several smaller

files.

To avoid symbol communication difficulties, SAVSYM and LODSYM are

employed in the following manher.

——

l PART 1
PROGRAM ‘SAVSYM 2
LONGER ; +
THAN 1004
LODSYM
BLOCKS PART 2

A SAVSYM 2 during the assembly of PART 1 will save all the symbols
from PART 1. The LODSYM at the start of PART 2 loads in the saved

symbol table, thus putting all the symbols from PART 1 and PART 2

into a common symbol table.

The program is then assembled by the commands

> AS PART 1
+ AS PART 2

This method will only work if all the symbols referenced in PART 2
are defined in PART 1. Because most programs cannot easily be

split so all references occur after definitions, the following



technique is employed.

PROGRAM
LONGER [0 | LODSYM LODSYM |
, savsym 1| !
THAN 100, — ¥
SAVSYM 2 SAVSYM 21
BLOCKS ] :
CLEARSYM PART 1 PART 2

The program is assembled by the following command string.

> AS CLEARSYM

-+ AS PART 2

- AS PART 1

-+ AS PART 2
The program named CLEARSYM produces a clean symbol table. The
LODSYM in PART 1 then loads in this clean symbol table. PART 2
is assembled first so that all symbols in that part will be
defined when PART 1 is assembled. Ignore any error messages
generated at this time. PART 1 and PART 2 are then assembled
correctly by using a SAVSYM 2 pseudo-op at the end of each part

and a LODSYM at the start of each. Any error messages generated

now indicate real errors in the program.

When starting an assembly, the Assembler destroys the binary
coding in locations 4000-4377. Therefore, the user must assemble
the part containing this section of code last. TIf the program was
split so that locations 4000-4377 are in PART 2, then the sequence
above will assemble the program correctly. If the program was

split so that locations 4000-4377 are in PART 1, then the correct



sequence of commands is as follows.
+AS CLEARSYM
+~AS PART 2
+AS PART 1
+AS PART 2
+~AS PART 1
Locations 4000-4377 must be in the last part assembled, no matter

into how many parts the program has been split.

The program may then be loaded directly, but cannot be saved by a
Save Binary command directly because the binary header block for
the file is incorrect. Only the last part of the program to be
assembled is included in the header block. Block 447, the header
block, must be filled with correct information. Each word of
block 447 from word 340 to 377 represents 400g words of the file

to be saved, as follows.

BLOCK 447
Word Word Locations Represented
g"' <
| unused

336,

3372 total number word blocks saved
34,g§"“~w o g- 377

341 agp- 777

3770 ] 174p8-17777

If any of the word locations represented contain data, then the
corresponding word of block 447 must contain the value 7777. If
those word locations are empty, then the appropriate word of block

447 contains 0000.



To correct the header block, load 7777 into the correct word of
block 447. When completed, change word 337 of block 447 to the
total number of words between 340 and 377 in block 447 that contain

the value 7777. A Save Binary command may then be performed.



C.3 CHARACTER SET

External

Keyboard (ASCII) Internal
A 301 1
B 302 2
C 303 3
D 304 4
E 305 5
F 306 6
G 307 7
H 310 10
I 311 11
J 312 12
K 313 13
L 314 14
M 315 15
N 316 16
0 317 17
P 320 20
0 321 21
R 322 22
S 232 23
T 324 24
U 325 25
Y 326 26
W 327 27
X 330 30
Y 331 31
Z 332 32
[ (SHIFT/K) 333 33
\ (SHIFT/L) 334 34
1 (SHIFT/M) 335 35
4 336 36
<+ 337 Illegal (not displayed)

SPACE 240 40
: 241 41
" 242 42
# 243 Illegal (not displayed)
$ 244 44
% 245 45
& 246 46
' 247 Illegal (not displayed)
( 250 50
) 251 51
* 252 52



C.3 Character Set (Cont)

External

Keyboard (ASCII) Internal

+ 253 53

, 254 54

- 255 55

. 256 56

/ 257 57

'} 260 60

1 261 61

2 262 62

3 263 63

4 264 64

5 265 65

6 266 66

7 267 67

8 270 70

9 271 71

: 272 72

: 273 73

< 274 74

= 275 75

> 276 76

? 277 77

Q@ 300 Illegal (not displayed)
LINE FEED 212 37
RETURN 215 43 (not displayed)
ALTMODE 375 None " "
RUBOUT 377 None " "
CONTROL/I (TAB) 211 47 " "



C.4 INSTRUCTIONS

PDP-8 SYMBOLS

Mnemonic Octal Operation

MEMORY REFERENCE INSTRUCTIONS

AND 0000 logical AND
TAD 1000 2s complement add
ISZ 2000 increment & skip if zero
DCA 3000 deposit & clear AC
JMS 4000 jump to subroutine
JMP 5000 jump
GROUP 1 OPERATE MICROINSTRUCTIONS
NOP 7000 no operation
IAC 7001 increment AC
RAL 7004 rotate AC & link left one
RTL 7006 rotate AC & link left two
RAR 7010 rotate AC & link right one
RTR 7012 rotate AC & link right two
CML 7020 complement link
CMA 7040 complement AC
CLL 7100 clear link
CLa 7200 clear AC
GROUP 2 OPERATE MICROINSTRUCTIONS
HLT 7402 halts the computer
OSR 7404 inclusive OR switch register with AC
SKP 7410 skip unconditionally
SNL 7420 skip on nonzero link
SZL 7430 skip on zero link
SZA 7440 skip on zero AC
SNA 7450 skip on nonzero AC
SMA 7500 skip on minus AC
SPA 7510 skip on plus AC (zero is positive)
COMBINED OPERATE MICROINSTRUCTIONS
CIa 7041 complement & increment AC
STL 7120 set link to 1
GLK 7204 get link (put link in AC, bit 11)
STA 7240 set AC = -1
LAS 7604 load AC with switch register



PDP-8 Symbols (Cont)

Mnemonic Octal Operation

IOT MICROINSTRUCTIONS
Program Interrupt

ION 6001 turn interrupt on
I0F 6002 turn interrupt off

Keyboard/Reader
KSF 6031 skip if keyboard/reader flag =1
KCC 6032 clear AC & keyboard/reader flag
KRS 6034 read keyboard/reader buffer
KRB 6036 clear AC & read keyboard buffer, &

clear keyboard flag

Teleprinter/Punch

TSF 6041 skip if teleprinter/punch flag = 1

TCF 6042 clear teleprinter/punch flag

TPC 6044 load teleprinter/punch buffer, select
& print

TLS 6046 load teleprinter/punch buffer, select
& print, and clear teleprinter/punch
flag

Clock

CLSK 6131 skip on clock interrupt

CLLR 6132 load clock control register 1

CLAB 6133 AC to buffer preset register

CLEN 6134 load clock control register

CLSA 6135 clock status to AC

CLBA 6136 buffer preset register to AC

CLCA 6137 counter to AC

Extended Memory (Type MC8/I)

CDF 62nl change to data field n

CIF 62n2 change to instruction field n

RDF 6214 read data field into AC

RIF 6224 read instruction field into AC

RMF 6244 restore memory field

RIB 6234 restore instruction field

Processor Mode Change
LINC 6141 change to LINC mode processing



LINC SYMBOLS

Mnemonic Octal Operation
ADD
ADD 2000 ~  add memory to A (full address)
ADA 1100 add memory to A (index class)
ADM 1140 add A to memory (sum also in A)
LAM 1200 add link and A to memory (sum also
in A)
MULTIPLY
MUL 1240 signed multiply
LOAD
LDA 1000 load A, full register
LDH 1300 load A, half register
STORE
STC 4000 store and clear A (full address)
STA 1040 store A (index class)
STH 13490 store half A
SHIFT/ROTATE
ROL N 240 rotate left N places
ROR N 300 rotate right N places
SCR N 340 scale right N places
OPERATE
HLT 0 Halt
NOP 16 no operation
CLR 11 clear A and LINC
SET 40 set register N to contents of
register Y
JMP 6000 jump to register Y
QAC 5 MQ transfer to A
LOGICAL OPERATIONS
BCL 1540 bit clear (any combination of 12-bits)
BSE 1600 bit set (any combination of 12-bits)
BCO 1640 bit complement (any combination of
12 bits)
COM 17 complement A



LINC Symbols (Cont)

Mnemonic

SAE
SHD

SNS N
SKP
AZE
APO
LZE
IBZ
FLO
QLZ
SXL N
KST
SRO

XSK

STD

ATR
RTA
SAM N
DIS
DSC

PDP
RSW
LSW
I0B

LIF
LDF

Octal Operation
SKIP

Skip next instruction if:

1440 A equals memory register Y

1400 right half A unequal to specified half
of memory register Y

0440+N SENSE switch N is set

0467 unconditional skip

0450 A equals 0000 or 7777

0451 A contains positive number

0452 link bit equals 0

0453 between blocks on LINC tape

0454 add overflow is set

0455 bit 11 of Z register equals @

0400+N external level N is preset

0415 keyboard has been struck

1500 rotate memory register right one place;
then if bit 0 of Y equals 0, skip next
instruction

0200 contents of Y equal 1777; index memory
register if I bit set

0416 tape instruction completed

INPUT/OUTPUT

0014 A to relay buffer

0015 relay buffer to A

0100+N sample analog channel N

0140 display point on oscilloscope

1740 display character on oscilloscope
(2 x 6 matrix)

0002 change to PDP-8 mode

0516 RIGHT SWITCH register to A

0517 LEFT SWITCH register to A

0500 I/0 bus enable

MEMORY
0600 change instruction field
0640 change data field



LINC Symbols (Cont)

Mnemonic

RDE
RDC
RCG
WRI
WRC
WCG
CHK
MTB

ESF
TAC
TMA
AXO
DJR
MSC
SFA

Octal

Operation

LINC TAPE
read one block into memory
read and check one block
read and check N consecutive

0702
0700
0701
0706
0704
0705
0707
0703

write one
write and
write and
check one
move tape

EXTENDED OPERATIONS

0004
0003
0023
0001
0006
0000
0024

block on tape

check one block

check N blocks

block of tape

toward selected block

enable special functions
tape control register to A

A to tape

control register

A to extended operations buffer
disable Jump Return Save
miscellaneous

special functions to A



C.5 OPERATORS AND SPECIAL CHARACTERS

Char Mode Operation
' 8/L Assign symbolic address
* 8/L Origin - dependent on mode (LINC or
PDP-8)
= 8/L Define parameters
+ 8/L Combine symbols or numbers
- 8/L Combine symbols or numbers
. 8/L Has value of current location counter
/ 8/L Comment
4] L Add 10g to instruction
I L Add 20g to instruction
8 Add 400g to instruction
; 8/L Terminate coding line
SPACE 8 /1, I0OR
& 8/L Logical AND
! 8/L Logical IOR
\ L Operator x\y= 1000gx+y



C.6  IAPA-DIAL, TAPE ALLOCATION DURING -ASSEMBLY.-

Systems Unit: @ Scratch Unit: 1

g 9

FILE FILE
267 267
FREE 277 FREE 277

! !
LAP6-DIAL LAP6~-DIAL

345 345
INDEX 347 INDEX 347
v 367 ~ 367

BINARY OUTPUT (408)

427
WORKING AREA

USER SYMBOLS (4K only) 446
CORE MEMORY MAP 447
SAVSYM SYMBOIL AREA 466
467 UNUSED 467

FILE FILE
777 777




C.7 SAMPLE PROGRAM

The following listing is an example of a program which will read

in a paper tape in image mode. (PIP will read in only source or
binary). This program reads in 8 bits from the Teletype and puts
it in one word, right justified, and packed with zeroes. The data
is then written out onto the Working Area of unit 1. Sense switch
g is used to indicate when the end of the tape has been reached

and then to restart DIAL. Once the data is written on tape, it can
be copied and used as input to another user program. Remember

that this program is an example and is not the only way to do this

task.
209¢ #20
2921 /
Bap2 / THIS PROGRAM WILL READ IN A PAPER TAPE
2003 / AND PLACE THE CONTENTS OF IT ON LINC TAPE.
2004 / THE PAPER TAPE IS READ AS AN 8 BIT CODE
pees5 / AND 1S PACKED ONE CHARACTER PER WORD,
0ove / RIGHT JUSTIFIED, WITH THE LEFT BITS
62937 / CONTAINING ZERO.
20149 / THE DATA IS WRITTEN ONTO THE WORKING
2811 / AREA OF UNIT 1, STARTING AT BLOCK 378.
2312 / SENSE SWITCH @ 1S THE END OF INPUT SIGNAL.
2413 / IF THERE IS TOO MUCH DATA, THE PROGRAM
2014 / WILL HALT WITH 7777 IN THE AC.
2215 / WHEN FINISHED, THE PROGRAM WILL RESTART DIAL.
216 /
2217 /
2020 #1
pB21 /
022 /
2823 pudl 2228 BLOCKN, @ /CURRENT BLOCK NUMBER
2024 /BEING WRITTEN ON.
2225 gude 2298 BLOCKC, @ /NUMBER OF BLOCKS LEFT
2226 /IN THE WORKING AREA.
2927 2023 3320 POINT, 0 /POINTS TO NEXT FREE
223a /SPACE IN BUFFER.
pL31 wé¢@d4 232088 BCOUNT, @ /NUMBER OF FREE WORDS
22332 /LEFT IN BUFFER,
P33 /



#p3a /

D35 / THIS IS THE BOOTSTRAP TO RESTART DIAL.
2236 /

2837 #15

LY wyls 1643  DIAL, LDF 3 /SET DATA FIELD TO 3
41 16 2731 RCG /READ IN DIAL

P42 3417 B399 300 /8 BLOCKS FROM BLOCK 300
2043 /

2044 /

2245 / DIAL WILL START HERE,

2046 /

AB47 #20

P50 228 1924 START, LDA I

ER U1 2922 20 /1-0 PRESET CODE

g2g52 wE22 2904 ESF /D0 1-0 PRESET

pas53 aG23 2061 SET 1 BLOCKN /INITIALIZE POINTER
2254 pp24 2367 WKAREA=1 /T0 WORKING AREA-1

2055 ¢a25 2762 SET I BLOCKC /SET COUNTER TO WORKING
2256 vp2e 7676 ~-WKSIzE=-1 /AREA SIZE+1 TO ALLOW
pd57 /FOR RESET

2262 pp27 6256 LOOP, JMP RESET /START OF A NEW BLOCK
261 p232 2467 INLOOP, SNS ! ) /SENSE SWITCH @ NOT UP?
2362 #z31 6242 JMP DUMP /1T 1S UP. DUMP BUFFER
PI63 gn32 3500 108

2264 PMODE /D0 PpDP-8 10T

3265 4333 5231 KSF /1S A CHARACTER READY?
2066 LMODE

po67 ¢r34 6030 JMP INLOOP /NO CHAR THERE, WAIT
0a72 gr3s 2502 108 /CHAR THERE

371 PMODE

2972 4236 6036 KRB /READ IN THE CHAR

73 LMODE

Pa74 ze37 1263 STA I POINT /PLACE IN BUFFER

@275 o420 224 XSK 1 BCOUNT /BUFFER FULL?

2376 gr41 6039 JMP INLOOP /NO. GET ANOTHER WORD.
2877 Fg42 102¢ DUMP, LDA /YES., WRITE OUT BUFFER
2100 3243  20P1 BLOCKN

9101 pr44 1569 BcL 1 /ONLY 9 BITS OF INTEREST
2192 Gi45 7000 ~777 /AND WITH 777

2103 2546 1628 BSE I /SET CORRECT FIELD BITS
2104 PMODE /FOR 12 BIT CALCULATION
2105 4947 1009 BUFFER+4008389@ /SETS CORRECT BITS ON
2106 LMODE

2127 tp5g 4952 STC +2 /GET BLOCKN NUMBER AND PLACE
g110 /IN WRITE INSTRUCTION
2111 wp51 @714 WRC v /WRITE OUT ON UNIT 1
0112 ans52 29208 00e0 /BLOCK NUMBER GOES HERE
2113 pp53 0440 SNS 2 /SENSE SWITCH 2 UP?
0114 Ep54 6027 JMP LOQP /G0 BACK AND GET SOME MORE
2115 aes55 6015 JMP DIAL /YES., LOAD IN DIAL.
2116 /



8117
0129
6121
g122
0123
124
125
@126
2127
2130
2131
0132
0133
2134
2135
2136
0137
Plap
2141
142
2143
0144

Ppeg

BCOUNT
BLOCKC
BLOCKN
BUFFER
DIAL
DUMP
INLOOP
LOOP
POINT
RESET
START
WKAREA
WKSTZE

Q56
Zp57
7p60
Ag6é1
QH62
N
pAa64
P65
REa66
Gwa67
pa708

FRRORS

4034
4092
4301
44P¢
4015
4042
4830
4027
4003
4056
4922
g37e
p182

221
2063
4377
2064
7377
g222
6900
1820
7777
2200
6065

RESET.,

Y N

XSK 1 BLOCKN
SET 1 POINT

BUFFER=-1

SET 1 BCOUNT
-400

XSK 1 BLOCKC

Jue g
LDA I

7777

HLT

JMP =3
WKSIZE=1p0
WKAREA=3780

BUFFER=4400

/ INCREMENT BLOCK NUMBER
/SET BUFFER POINTER

/SET BUFFER WORD COUNTER NOW
/400 OCTAL=256 DECIMAL

/700 MUCH DATA?

/N0, RETURN

/YES. HALT WITH 7777 IN AC
/ONLY A RESTART PERMITTED NOW

/WORKING AREA SIZE IS
/180 BLOCKS

/WORKING AREA STARTS FROM
/BLOCK 378

/TAPE BUFFER AREA



WORK FLOW IN THE DIAL SYSTEM

C.8

AHYNIg
30HNOS — — —

CO1—

_‘l

€ LINN'INYN O

3400

24/4-0
192 - @ Syoo1d
1I0@ LINN

¢ LINN'XQ—

\.

2y-08 SO0 a
LLUNN

1Nd1NO X1aWISsY

V3HVY INdLNO AHVNIG

¢ LINN‘INVYNES— _

¢ LNN"INYN IS -

¢ LINN‘INVYN dv —

19v —0/€ IO
@ UNN

WVHDOHd 30HNOS
AN3HHNO

V3HY ONDIHOM

c-21







INDEX

A H
Add Programf 5-1 Hardware Requirements, 1-1
Address Assignment, 3-8 Header Block, 1-5, 4-6, C-7

A/D Knob 3, 2-1
A/D Knob 7, 1-4, 2-2
Assemble, 4-1

Assembler, 3-1 I
Assembly Programs 4-1
Assemble, 4-1 Index, 1-2
List, 4-1 Input Options, PIP, 5-6
Load Binary, 4-7 Instructions
Quick List, 4-3 LINC, C-13
Save Binary, 4-5 pPDP-8, C-11

Auxiliary Mode, PIP, 5-10

B
Label, 3-2, 3-6
Buffer, secondary, 2-8 Large Programs, 2-8
Large Section Deletion, 2-4, C-5
Line Call, 1-4

List, 4-1
C Load Binary, 4-7
Character Editing, 2-2
Characters, Legal, 3-10, C-9
Clear, 5-2 M
Commands, 1-6, C=1
Comment, 3-3 Mode Options, PIP, 5-5
Current Line, 1-3
Deletion, 2-3
Formatting, 2-6
Cursor, 2-1 N
Numbers, 3-7
D
Delete Left, 2-4 )
Delete Right, 2-5
Display Index, 5-2 Operand, 3-2, 3-7
Operator, 3-2, 3-6, 3-7, C-16
Output Options, PIP, 5-9
E
Editor, 2-1 P
Error Messages, B-1
Exit, 5-4 PDP-12B, 1-1, 2-2
Expressions, 3-7 PIP, 5-5
Auxiliary Mode, 5-11
Input Options, 5-6
Mode Options, 5-5
F Output Options, 5-9
Print Index, 5-3
Files, 1-5 o Print Source, 5-3



Pseudo-operators, 3-11, C-2 T
ASMIFx, 3-14
ASMSKP, 3-14 Tape Allocation, C-17
DECIMAL, 3-12
EJECT, 3-14
FIELD, 3-11

LIST, 3-12 U

LMODE, 3-11

LODSYM, 3-16, C-5 User's Monitor Command, 5-4

NOLIST, 3-12 Utility Programs and Commands, 5-1
OCTAL, 3-12 Add Program, 5-1

PAGE, 3-13 Clear, 5-2

PMODE, 3-11 Display Index, 5-2

SAVSYM, 3-16, C-3, C-5 Exit, 5-4

SEGMNT, 3-11 Peripheral Interchange (PIP), 5-5
TEXT, 3-12 Print Index, 5-3

Print Source, 5-3
Save Program, 5-1
User's Monitor Command, 5-4

Q
Quick List, 4-3
\Y
Values, 3-4, 3-5
S
Sample Program, C-18
Save Binary, 4 -5 W
Save Program, 5-~1
Source Programs, 1-3 Working Area, 1-2

Starting Procedure, A-1
Statement Syntax, 3-1
Symbols, 3-3
Permanent, 3-3
User-defined, 3-4
System Description, 1-1



HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming notes, software problems, and documenta-
tion corrections are published by Software Information Service in the following newsletters.

Digital Software News for the PDP-8 Family
Digital Software News for the PDP-9/15 Family
PDP-6/PDP-10 Software Bulletin

These newsletters contain information applicable to software available from Digital’s Program Library.

Please complete the card below to place your name on the newsletter mailing list.

Questions or problems concerning DEC Software should be reported to the Software Specialist at your nearest DEC
regional or district sales office. In cases where no Software Specialist is available, please send a Software Trouble
Report form with details of the problem to:

Software Information Service
Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

These forms, which are available without charge from the Program Library, should be fully filled out and accompa-
nied by teletype output as well as listings or tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual and appropriate topics of general interest will be printed in the newsletter.

New and revised software and manuals, Software Trouble Report forms, and cumulative Software Manual Updates
are available from the Program Library. When ordering, include the document number and a brief description of
the program or manual requested. Revisions of programs and documents will be announced in the newsletters and
a price list will be included twice yearly. Direct all inquiries and requests to:

Program Library

Digital Equipment Corporation
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Digital Equipment Computer Users Society (DECUS) maintains a user Library and publishes a catalog of programs
as well as the DECUSCOPE magazine for its members and non-members who request it. For further information
please write to:

DECUS

Digital Equipment Corporation
146 Main Street

Maynard, Massachusetts 01754

Send Digital’s software newsletters to:

Name

Company Name

Address
(zip code)
My computer is a PDP-8/1 O PDP-8/L O
LINC-8 O PDP-12 O
PDP-9 O PDP-15 O p if
PDP-10 O OTHER O lease specily

My system serial number is (if known)




————————————————— — Fold Here -~ - - ------ - - —— — — — — — —

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THF UNITED STATES

Postage will be paid by:

dlilgliltiall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754



READER’S COMMENTS DIAL PROGRAMMER'S

REFERENCE MANUAL
DEC-12-SE2A-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its
publications. To do this effectively we need user feedback — your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?

How can this manual be improved?

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the followtng period-
wally distributed publications are available upon request. Please check the appropriate boxes for a current issue of the
publication(s) destred.

(O Software Manual Update, a quarterly collection of revisions to current software manuals.

(O User's Bookshelf, a bibliography of current software manuals.

(O Program Library Price List, a hst of currently available software programs and manuals.

Please describe your position,

Name Organization

Street Department

City State Zip or Country



————————————————— — Fold Her¢ - - - ~-----—--—--— - — —— — — -

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

dlilgliltjall

Digital Equipment Corporation
Software Information Services
146 Main Street, Bldg. 3-5
Maynard, Massachusetts 01754

Postage will be paid by:






Maynard, Massachusetts dlilgliltiall

printed in U.S.A.



	1.1 Introduction
	1.2 System Description
	1.3 System Operation
	1.4 Source Programs
	1.5 Current Line
	1.6 Line Calls
	1.7 Files
	1.8 Commands
	Using the Editing Cursor
	Character Editing
	Current Line Deletion
	Large Section Deletion
	Current Line Formatting
	Handling Large Programs
	Assembly Buffers
	Use of EXIT
	Leftmost Cursor Position
	3.1 Statement Syntax
	3.2 Symbols
	3.3 Numbers
	3.4 Expressions
	3.5 Address Assignments
	3.6 Pseudo-operators
	4.1 Assemble Program
	4.2 List Program
	4.3 Quick List
	5.1 Save Program
	5.2 Add Program
	5.3 Clear Working Area
	5.4 Display Index
	5.5 Print Index
	5.6 Print Source
	5.7 Exit
	5.8 User's Monitor Command
	5.9 Peripheral Interchange Program (PIP)

	Appendix B ASSEMBLY ERROR MESSAGES

