PDP-8 Family
Commonly Used

Utility Routines

(Dumps, Verifier, Duplicator,

Conversion and Printing Routines)

For additional copies, order NO. DEC-8I-RZPA-D from the
Program Library, Digital Equipment Corporation, Maynard,
Mass, 01754.

PDP-8

LIBRARY

First Edition, January 1971

This volume is a collection
of manuals printed 1965-1970.

Copyright @ 1971 by

Digital Equipment Corporation

The following are trademarks of Digital
Equipment Corporation, Maynard, Mass.

DEC PDP COMPUTERLAB
FLIPCHIP FOCAL UNIBUS
DIGITAL OMNIBUS

PREFACE

This document is a collection of proven routines for
the PDP-8 family of computers. These routines in themselves
are useful to many programmers and are all illustrative of
assembly language programming technigues. The user is advised
to first investigate the sections on assembly language pro-

gramming in Programming Languages and Introduction to Pro-

gramming 1970.

Chapter
Chapter

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter

Chapter

Chapter
Chapter
Chapter
Chapter
Chapter
Chapter

Chapter
Chapter

10

11

12

13

14

15

16

17
18

CONTENTS

RIM Loader

Binary Loader
(33~-ASR, High-Speed Reader)

RIM Punch
(33-ASR, High-Speed Punch)

Binary Punch

(33-ASR, High-Speed Punch)
Octal Memory Dump

(33-ASR, High-Speed Punch)

Teletype I/O Subroutines
(33-ASR)

Master Tape Duplicator/Verifier
(High-Speed Reader/Punch)

Incremental Plotter Subroutine
(Type 350 Control and Plotter)

Decimal to Binary Conversion and Input
(Single Precision, Signed or Unsigned,
33-ASR)

Decimal to Binary Conversion and Input
(Double Precision, Signed or Unsigned,
33-ASR)

BCD to Binary Conversion, Single Precision
(33-ASR)

BCD to Binary Conversion, Double Precision
(33-ASR)

Unsigned Decimal Integer Print, Single
Precision (33-ASR)

Signed Decimal Integer Print, Single
Precision (33-ASR)

Unsigned Decimal Integer Print, Double
Precision (33-ASR)

Signed Decimal Integer Print, Double
Precision (33-ASR)

Binary to BCD Conversion

Binary to BCD Conversion (4-Digit)

10-1

11-1

12-1

13-1

14-1

15-1

le-1

17-1
18-1

Formerly
DEC-08-LRAA~-D

CHAPTER 1
RIM LOADER

1.1 ABSTRACT

The Read-In Mode (RIM) Loader is a minimum-sized routine for
reading and storing into core information contained in Read-In-
Mode coded tapes via the 33-ASR perforated tape reader or high speed
perforated tape reader.

1.2 REQUIREMENTS

The RIM Loader requires 17 (218) core locations and is used

10
with any PDP-8 family computer with a 33-ASR Teletype(:). A high

speed perforated tape reader is optional.

1.3 USAGE

1.3.1 Loading
To place the RIM Loader into memory via the console switches,

proceed as follows:

a. Set 7756 in the switch register (SR).

b. Press LOAD ADDress.

c. Set the first instruction (6032 for 33-ASR}.
d. Press DEPosit.

e. Set the next instruction (6031 for 33-ASR).
f. Press DEPosit.

g. Repeat steps e. and f. until all instructions have been
deposited.

1.3.2 Start-up/Entry

a. Place the perforated tape which must be in RIM format in the
perforated-tape reader.

GDPDP, Programmed Data Processor, is a registered trademark of
the Digital Equipment Corporation.

(EEeletype ig a trademark of the Teletype Corporation.

b. Make sure the reader is set to LINE.

c. Place the starting address (7756) in the switch register.
d. Press the LOAD ADDress key.

e. Press the START key.

f. If the 33-ASR version is used, move the reader control
to START. .

There are no error stops in this routine.

1.4 DESCRIPTION

This is a basic routine that alternately assembles an address
from two successive characters on tape, then assembles data contained
in the next two characters and stores this data at the associated

address.

Because a tape in RIM format is twice as long as a comparable
tape in binary format, it is suggested that the RIM Loader only be
used to load the Binary Loader. After this, the Binary Loader should
be used.

Any tapes to be read by this program must be in Read-In-Mode

coded format.

Leader tape for RIM format tapes should be about two feet of
leader-trailer codes; i.e., any code with channel 8 punched,
preferably code 200. (Depress ALT MODE, CTRL, and @ keys simultaneously
to punch 200 leader trailer.)

Characters representing the absolute, machine language program
are arrahged in an alternating pattern of address, contents, address,
contents, etc. Addresses have channel 7 punched, channel 8 not

punched. Contents have no punch in channel 7 or 8.

Trailer tape should be the same as leader tape.

1.5 EXAMPLE OF READ-IN-MODE CODED FORMAT

Tape Channel Channels 8 and 7 Indicate
87 654 S 321

10 000 . 000 Leader code is always found first.

01 A1 . A2 Absolute octal Address of data in next
00 A3 . A4 two characters.

00 D1 . D2 Octal Data to be stored at preceding
00 D3 . D4 address.

This pattern repeats in similar four character groups until
the concluding Trailer Code is
10 000 . 000 encountered.

Note that a 3-bit group (a single octal character) is designated
by the notation Al above. The 1 in this notation indicates that this
particular octal character is used as the nmost significant three bits
in specifying the absolute address into which following data is
deposited. Correspondingly, A2, A3, and A4 designate successively

less significant octal characters in the absolute address.

The remarks above apply equally to data as specified by the
notation D1, D2, D3, and D4.

1.6 PROGRAM LISTING

1.6.1 33-ASR Version

Abs Octal
Addr. Contents Instruction
1756, 6032 BEG, KCC
7757. 6031 KSF
7760, 5357 JMp .-1
7761, 6036 KRB
7762, 7106 CLL RTL
7763, 7006 RTL
7764, 7510 SPA
7765, 5357 JMP BEG+1
7766, 7006 RTL
7767, 6031 KSF
7770, 5367 JMP .-1
7771, 6034 KRS
7772, 7420 SNL
7773, 3776 DCA I TEMP
7774, 3376 DCA TEMP
7775, 5356 JMP BEG
7776, 0 TEMP, 0
77717, JMP start of 0

BIN loader

1.6.2 High-speed Version

Abs Octal

Addr. Contents Instruction

7756 6014 BEG, RCF

7757 6011 RSF

7760 5357 JMP .-1
7761 6016 RCC

7762 7106 CLL RTL
7763 7006 RTL

7764 7510 SPA

7765 5374 JMP TEMP-2
7766 7006 RTL

7767 6011 RSF

7770 5367 JMP .-1
7771 6016 RCC

7772 7420 SNL

7773 3776 DCA I TEMP
7774 3376 DCA TEMP
7775 5357 JMP BEG+1
7776 J/) TEMP, 7}

7777

Comments

/clear AC and flag
/skip if flag = 1
/looking for char
/read buffer

/ch8 in ACO
/checking for leader
/found leader
/OK,ch7 in link

/read, do not clear
/checking for address
/store contents
/store address

/next word

/temp storage

Comments

/clear flag and fetch char.
/skip if flag = 1

/wait for fetching to be done
/put char.in AC; fetch another
/rotate channel 8 to

/bit @ of AC

/was it set (leader-trailer)?
/yes - leader trailer

/no - rotate channel 7 to link
/character fetched yet?

/no - wait for it

/yes - add it to AC; fetch
/another

/is 12-bit word in AC an
/address?

/ho - store in last stored
/address

/yes - store new address

/get next word

/temporary storage

/start of binary loader

1.7 OTHER POSSIBLE RIM LOADERS
Variations of the RIM Loader may prove useful in special cases
where, due to circumstances, RIM must be located in a different

section of core.

On the other hand, the equipment involved may make it necessary
to use a variation of RIM tailored specifically to a particular situa-
tion. As an example of this, consider a special-purpose PDP-8 system
used for text editing. 1In this system, no 33-ASR's are used. In-
stead, several typewriters which use a different code (including
provision for upper and lower case) are time-shared with respect to
input and output with a central PDP-8.

Please consult the Applied Programming Department at Digital
Equipment Corporation for details of other RIM Loaders currently

available or for assistance in special cases.

1.8 USE OF PDP-8 SYSTEM PROGRAMS
Certain system programs, such as the DECtape Library System
(DEC-08-8UCO), require that the RIM Loader be used precisely as

listed in section 1.6.

1.9 USING THE RIM LOADER WITH EXTENDED MEMORY

The RIM Loader as described in section 1.6 can run in any
memory field provided that it is loaded into memory following a
slightly different procedure than that described in 1.3.1. The
Instruction Field register and the Data Field register must both be
set to N (a number from 0 to 7) where N indicates the memory field

in which the RIM Loader is to be placed. This is easily done.

a. Set the DATA FIELD extension of the switch register to N.

b. Set the INSTRUCTION FIELD extension of the switch register
to N.

c. Follow procedure in steps a through g in section 1.3.1l.

rFormer.ly
DEC-08-LBAA-D
CHAPTER 2
BINARY LOADER
2,1 ABSTRACT
The Binary Loader is a short routine for reading and storing informa-
tion contained in binary-coded tapes, using the 33-ASR reader or the

High-Speed Reader.

The Binary Loader accepts tapes prepared with the PAL III, PAL-D,
PALS8, or MACRO-8 assemblers. Diagnostic messages may be included on
tapes produced when using either PAL or MACRO. The Binary Loader ignores

all diagnostic messages.

2.2 REQUIREMENTS

This program occupies 94 (1368) core locations.

10

The Binary Loader can be used with a system consisting of the
PDP-8 and a 33-ASR Teletype only. On the other hand, the same program
operates with systems including the High-Speed Tape Reader and/or the
Memory Extension Control. This loader is compatible with the 552
DECtape Library System and the TCO0l DECtape Library System. \

2.3 LOADING PROCEDURES

The Binary Loader is brought into memory by the RIM or Read-In-
Mode Loader. This requires that the Binary Loader tape itself be in
RIM format. See Introduction to Programming and Chapter 1 for dis-

cussions of the RIM Loader and RIM format.

NOTE: Memory Extension users; refer to Special Requirements
section.
Proceed as follows:

a. Load the RIM Loader for the type of reader which is to load
the Binary Loader.

Place the Binary Loader tape in the reader.
Make sure that the reader is on-line.

d. Place the starting address of the RIM Loader (7756) in
the SWITCH REGISTER.

e. Press the LOAD ADDRESS key.
f. Press the START key.

g. If the 33-ASR is the chosen reader, move the READER CONTROL
switch to the START position.

2-1

Q

2.3.1 Switch Setting

NOTE: Memory Extension users see "Special Requirements"
section.

2.4 USING THE PROGRAM

a. Place the tape to be loaded (which must be in binary format)
in either the 33-ASR Tape Reader or the High-Speed Reader,
with leader-trailer under the read head. When using the
33-ASR, make sure the reader is on-line. When using the
High-Speed reader, make sure the reader is on.

b. "Place the starting address of the Binary Loader (7777) in the
SWITCH REGISTER.

c. Press LOAD ADDRESS key.

When using the High-Speed Reader, change the SWITCH REGISTER
to 3777 (bit 0 = 0). Omit this step if using the 33-ASR.

d. Press console START key.

When using the 33-ASR, move the READER CONTROL switch to
START.

2.5 ERRORS
When any of the PDP-8 assemblers is used to produce a binary tape,
a checksum is automatically punched at the end of the binary tape. The

checksum is the sum of all data on the tape including the origin word.

To be more specific, it is the sum of all data contained on tape
that will enter the accumulator (AC) in bit positions 4 through 11 from,
for example, the 33-ASR Reader buffer. The sum is accumulated charac-

ter by character and not word by word. Overflow (a carry out of the

most-significant bit position of the AC) is ignored both when calculat-
ing a checksum (which is done by the assembler used) and when the

Binary Loader accumulates a checksum while loading a tape.

If the checksum accumulated while using the Binary Loader does
not agree with the last two characters on the tape (i.e., the checksum
on the tape calculated and placed there by the assembler), an erxror

has occurred.

When the computer halts, the display lights will be static, the
memory buffer (MB) will contain 7402, and the contents of the AC will

be unequal to zero if a checksum error has occurred.

Restart the computer after the tape has been repositioned by
pressing the CONTINUE key.

2.6 DETAILS OF OPERATION AND STORAGE
This program furnishes the basic means by which the contents of

binary-coded taves are loaded into core.

The heart of the program is a short subroutine (tagged BEGG) which

operates in outline as follows:

The incoming character is tested to see if it is a "rubout" (all

eight tape channels punched).

If this is the case, all subsequent information coming from the

reader is ignored until another rubout is detected.

This is the mechanism by which assembler diagnostic messages are
detected. They are preceded and followed by a single rubout char-
acter. Within a diagnostic message, in contrast to the rules concerning
the balance of the binary tape, any character is valid except, of course,
a single rubout character which would prematurely conclude the
diagnostic message. Note that two consecutive rubouts within a diagnostic

message would, in effect, be ignored.

Next the character is tested to see if it is leader or field setting.

These tests are listed in the order in which they are performed.
If none of the actions indicated have occurred upon exit from the BEGG
subroutine, the character is part of the origin address, contains part
of a data word, or is a part of the checksum, and the appropriate

course is followed by the main routine.

2.7 SPECIAL REQUIREMENTS OR FORMATS

2.7.1 External Format
Tapes to be read by this program must be in binary-coded format
and have about 1 foot of leader-trailer code (any code with channel 8

punched; preferably code 200).

The first two characters represent the address (origin) into which
the first command on the next portion of the tape will be placed.

Successive commands are placed in memory at addresses:
origin+l,origin+2,...,0origin+n.

The initial character of the origin has no punch in channel 8,
while channel 7 is punched. The second character designating the origin

has no punches in either channel 8 or 7.

A concluding 2-character group representing the checksum has no

punches present in channels 8 or 7.
Trailer tape is similar to leader.

Reference to Program Listing indicates that after the BEGG sub-
routine tests to see if the character just read was leader/trailer,
a test is made to determine whether the character is a "field setting."
This is a reference to the fact that the assemblers produce tapes on

which characters of the form

11 XXX 000
indicate the memory field into which the following data is to be
loaded. 1If, for example XXX were 101, all data following the field

designator should be loaded into memory field five. Unlike origins and
other data, field settings are not included in the checksum.

2.7.2 Example of Binary Loader Format

Tape Channel Channels 8 and Program Notes

87 654 s 321 7 Indicate _ Proper

10 600 . 000 Leader No

01 000 . 010 Origin No In octal the origin 0200.
00 000 . 000 Loading will start at 0200.
00 111 . 010 Contents of 200 Yes The command 7200 or CLA.

00 000 . 000

00 011 . 010 Contents of 201 Yes The command 3276 or

00 111 . 110 DCA Z 076.

Example of Binary Loader Format (Cont.)

Tape Channel Channels 8 and Program Notes

87 654 s 321 7 Indicate Proper)

00 111 . 100 Contents of 202 Yes The command 7402 or HLT.
00 000 . 010

00 000 . 100 Checksum No The program determines

00 010 . 010 that these two characters

10

are the checksum since
trailer follows.

000 . 000 Trailer No

The octal checksum in this example is 0422. Note that
this is the following sum:

102 Origin

000

072 First word
000

032 Second word
076

074 Third word
002

422

2.7.3 Memory Extension Usage

It is recommended that the Binary Loader exist in field 0. This

ensures a permanent program lining around location 7754 and 7755 which
are used for TCOlL DECtape. The loader can exist in any field, though
caution must be taken not to use location 7754 and 7755 in field 0 (this

applies only to DECtape users). Also, when the proper field is chosen
it should be noted that the RIM Loader must already be in that field.

Binary Loader Loading Procedure for Extended Memory Users

a. Place the Binary Loader tape in the reader.

b. Place the proper FIELD in the INSTRUCTION FIELD REGISTER
when putting the starting address of the RIM Loader (7756)
in the SWITCH REGISTER.

c. Press the LOAD ADDRESS key.

d. Press the START key.

e. OStart the reader. 33-ASR: press READER CONTROL to start.
High-Speed Reader: should already be ready to start.

Operation and Usage for Extended Memory Users

a. Place the tape to be loaded (tape must be in binary
format) in the reader. When using the 33-ASR, make

sure reader is on-line. When using the High-Speed Reader,

make sure reader is on and tape is positioned with
leader/trailer over read head.

b. 1In the DATA FIELD register place the field in which the
program is to be loaded. 1In the INSTRUCTION FIELD
register place the field that the Binary Loader is in.

c. Press LOAD ADDRESS key.
When using the High-Speed Reader, change the SWITCH
REGISTER TO 3777 (bit 0 = 0). Omit this step if using
the 33-ASR.

d. Press console START key.

Starting Program

After program has been successfully loaded, place starting
address of program in SWITCH REGISTER. Place the field
where program exists in the FIELD INSTRUCTION REGISTER.
Press LOAD ADDRESS key.

Press START key.

7612
7613
7614
7615
7616

7626
7627
7630
7631
7632
7633
7634
7635
7636
7637
7640
7641
7642
7643
7644
7645
7646
7647
7650

7651
7652
7653
7654
7655
7656
7657
7660
7661
7662
7663
7664
7665
7666
7667
7670
7671
7672

PROGRAM LISTING

0000
0000
0000
0000
0000

0000
3212
4260
1300
7750
5237
2212
7040
5227
1212
7640
5230
1214
0274
1341
7510
2226
7750
5626

1214
0256
1257
3213
5230
0070
6201
0000
0000
6031
5262
6036
3214
1214
5660
6011
5270
6016

/GOPYRIGHT 1971 DIGITAL EJJIPMENT CORPIRATIIN
JMAYNARD, MASSACHJSEITS

/BINARY AND DECTAPE LOADERS FOR

/555 CONTROL

*7612
SWITCH,
MEMTEM,
CHAR,
CHKSUM,
ORIGIN,

OCOoOOOO0O

*7626
/EXTRACT ERRORS, FIELD, L/T
BEGG, 0
DCA SWITCH /SET SWITCH
JMS READ /GET A CHARACTER
TAD M376 /TEST FOR 377
SPA SNA CLA
JMP .+4 /NO
ISZ SWITCH /YES: COMPLEMENT SWITCH
CMA
JMP BEGG+1
TAD SWITCH /NOT 377
SZA CLA /IS SWITCH SET?
JMP BEGG+2 /YES; IGNORE
TAD CHAR /NO; TEST FOR CODE
AND MASK /TYPES
TAD M200
SPA
ISZ BEGG /DATA OR ORIGIN
SPA SNA CLA
JMP I BEGG /DATA, ORIGIN, or L/T

TAD CHAR /FIELD SETTING
AND FMASK
TAD CHANGE
DCA MEMTEM
JMP BEGG+2 - /CONTINUE INPUT
FMASK, 70
CHANGE, CDF
READ 0
0
LOR, KSF /WAIT FOR FLAG
JMP .-1
KRB
DCA CHAR
TAD CHAR
JMP I READ
HIR, RSF
JMP .-1
RRB RFC

7673
7674

7675
7676
7677
7700
7701
7702
7703
7704
7705
7706
7707
7710
7711
7712
7713
7714

7715
7716
7717
7720
7721
7722
7723
7724
7725
7726
7727
7730

7731
7732
7733
7734

7735

7736
7737
7740
7741
7742

7743
7744
7745
7746
7747
7750
7751
7752

5265
0300

4343
7041
1215
7402
6032
6014
6214
1257
3213
7604
7700
1353
1352
3261
4226
5313

3215
1213
3336
1214
3376
4260
3355
4226
5275
4343
7420
5336

3216
1376
1355
1215
5315

0000
3616
2216
7600
5332

0000
1376
7106
7006
7006
1355
5743
5262

MASK,
/TRAILER CODE SEEN
BEND,

M376,
BEGIN,

GO’

CHEX,

MEMFLD,

M200,

ASSEMB,

LORT,

JMP
300

JMS
cia
TAD
HLT
KCC
RFC
RDF
TAD

-DCA

CLA
SMA
TAD
TAD
DCA
JMS
JMP

DCA
TAD
DCA
TAD
DCA
JMS
DCA
JMS
JMP
JMS
SNL
JMP

DCA
TAD
TAD
TAD
JMP

0
DCA
152

7600

JMP

0

TAD
CLL
RTL
RTL
TAD
JMP
JMP

LOR+3

ASSEMB

CHKSUM

CHANGE
MEMTEM
OSR
CLA
HIRT
LORI
READ+1
BEGG
-1

CHKSUM
MEMTEM
MEMFLD
CHAR
WORD1
READ
WORD2
BEGG
BEND
ASSEMB

MEMFLD

ORIGIN
WORD1
WORD2
CHKSUM
GO

I ORIGIN
ORIGIN
CHEX

WORD1
RTL

WORD2
I ASSEMB
LOR

/SAVE FIELD INSTRUCTION

/IGNORE LEADER

/LOOK AHEAD
/TRAILER, END

7753
7754

7755

7777

ASSEMB
BEGG
BEGIN
BEND
CHANGE
CHAR
CHEX
CHKSUM
FMASK
GO

HIR
HIRI
LOR
LORI
MASK
MEMFLD
MEMTEM
M200
M376
ORIGIN
READ
SWITCH
WORD1
WORD2

0006
0000

0000

5301

7743
7626
7701
7675
7657
7614
7732
7615
7656
7715
7670
7753
7662
7752
7674
7736
7613
7741
7700
7616
7660
7612
7776
7755

HIRI, HIR-LOR
WORD1=7776
WORD2, 0
*7777
JMP BEGIN

Formerly
DEC-08-PMPO0O-D

CHAPTER 3

RIM PUNCH

3.1 ABSTRACT

The RIM Punch program provides a means of punching information
contained in selected blocks of core memory as RIM-coded tape via the
33-ASR Perforated Tape Punch or 75E High Speed Punch. The punch pro-
gram may occupy either low or high memory depending on the version used.

3.2 REQUIREMENTS
The RIM Punch program will run on any PDP-8 family computer
with a 33-ASR (Teletype) or 75E (high-speed) punch.

This program requires 6llo (758) memory locations.

Program tapes are as follows:

33-ASR Version ' High-speed Punch Version
Low Memory Binary DEC-08-PMP1-PB Low Memory Binary DEC-08-PMP4-PB
Low Source DEC-08-PMP1-PA Low Source DEC-08-PMP4-PA
High Memory Binary DEC-08-PMP2-PB High Memory Binary DEC-08-PMP3-PB
High Source DEC-08-PMP2-PA High Source DEC-08-PMP3-PA

3.3 LOADING PROCEDURES
This routine is loaded using the Binary Loader. See Introduction

to Programming or Programming Languages for a complete description of

the Binary Loader. (This routine cannot be called as a subroutine.)
3.4 USING THE PROGRAM
The SWITCH REGISTER is used to enter the initial and final address

of each block of core memory to be punched.

a. Make sure 33-ASR or 75E punch is on.

b. Set the starting address 0041 (or 7441 if using the high-
memory version) into the SWITCH REGISTER and press the
LOAD ADDRESS key. Next press the START key.

c. The computer halts. Set the initial address of the block
to be punched into the SWITCH REGISTER and press the
CONTINUE key.

d. The computer halts. Set the final address of the block
to be punched into SWITCH REGISTER and press the CONTINUE
key.

Note that the final address must be larger than the initial
address.

e. A block of leader (code 200) tape is punched followed
by the selected block of data in RIM format.

f. The computer halts. Steps (c¢) and (d) can now be repeated
to punch as many blocks of data as desired. To terminate
the tape, proceed as described in (g) below.

g. Set the terminating address 0074 (7474) into the SWITCH
REGISTER and press the LOAD ADDRESS key. Next press the
START key and a block of trailer tape is punched,

3.5 DETAILS OF OPERATION AND STORAGE
Reference to section 1.7, Flow Chart, will illustrate the follow-

ing discussion.

After entry, a short subroutine is entered to punch a block of
leader. ©Next the initial address is picked up and the six most
significant bits are rotated right, masked out, added to 0100 (in
order to punch channel 7), and punched. The least-significant six

bits of the address are next masked out and punched.

A similar process is followed to punch the data associated with
the corresponding address except 0100 is not added before the first
character is punched.

This process is repeated until the final address is reached; then
the computer halts at the starting address. If more blocks of data
are to be punched, this is done as explained in step (f) above.

The routine is entered at a different address to punch the final

trailer.

3.6 EXTERNAL DATA
See Chapter 4 of Introduction to Programming for a description

of RIM paper tape format.

3.7 FLOW CHART

LEADER DATA BLOCK ENTRY TRAILER ENTRY

Y

PUNCH TRAILER

BEG HALT

LOAD
INITIAL ADDRESS

HALT

FINAL ADDRESS

PUNCH LEADER

\ J
PADD LOAD ADDRESS

SHIFT RIGHT &

ADD CHANNEL 7

PUNCH

LOAD RIGHT HALF
ADDRESS

PUNCH

PCON LOAD CONTENTS

SHIFT RIGHT 6

PUNCH

LOAD RIGHT HALF
CONTENTS

PUNCH

BLOCK
PROCESSED
?

NO

INCREMENT
ADDRESS

3.8 PROGRAM LISTING

7441
7442
7443
T444
7445
7446
7447
7459
7451
7452
71453
7454
7455
7456
7457
71460
7461
1462
7463

7464
7465
74566
7457
7470
7471
1472
7473
T474
7475
7476
7477
7509
7501
7502
7503
7504
75925
7526
71507
7510
7511
7512
7513

7402
716934
3322
74022
71604
3323
4276
1322
4336
1326
4314
1322
#2325
4314
1722
43956
4314
1722
¥325

4314
1322
7941
1323
7650
5275
2322
5259
4276
5241
12351019
1327
3324
1332
4314
2324
5301
5676
2000
7612
7312
7912
@325
5706

/CIPYRIGAT

7AAYNARDS

1271 "DIGITAL E2JIAMENT CORPORATION

/DEC-98=~PMP2=-PA
/RIM PUNCH 33-ASR HIGH

*7441
BEG»

PADD>»

PCON,

LTS,

MORE>

SHF T,

HLT
LAS
DCA
HLT
LAS
DCA
JMS
TAD
Jvs
TAD
JvSs
TAD
AND
JMS
TAD
JMs
JMS
TAD
AND

JMS
TAD
CiA
TAD
SNA
JIMP
157
Jup
J4s
JIMP
)

TAD
DCa
TAD
JYs
I1SZ
JMP
JMP
4]

RTR
RTR
RTR
AND
JMP

IA

FA
LTS
IA
SHFET
CH7
PUN
1A
SL6
PUN
I IA
SHFT
PUN
I IA
SLé

PUN
IA

FA

CLA
P)
IA

PADD
LTS
BEG

M101
CTR
C209
PUN
CTR
MORE
I LTS

SLé
I SHFT

MASSACHJISET TS

MEMORY

ZENTRY FOR LEADER DATA BLOCK
/SET INITIAL ADDRESS

/SET FINAL ADDRESS

/GO0 TO L/T SUBROUTINE
/PUNCH ADDRESS

/PUNCH CONTENTS

/TEST FOR END
ZENTRY FOR L/T

/L/T SUBROUTINE

/MORE L-T CODES

/SHIFT RIGHT

7514
7515
7516
7517
7520
7521
7522
7523
7524
7525
7526
7527
75308

20241
pB42
0043
a4
2045
20846
0047
Po50
2051
2852
P53
2954
9055
P56
2057
o060
206 1
062
8063
P064
2065
0066
0067
Po70
P71
o072
0073
o074
P75

2000
6346
6041
5316
712088
5714
Voo
Vo209
A1 3]
o117
2100
16717
0280

7402
7604
3122
7402
7604
3123
4076
1122
4106
1126
4114
1122
p125
4114
1522
4106
4114
1522
2125
4114
1122
7041
1123
7650
5875
2122
5950
4076
5041

PUNs

1A,
Fas
CTR>
SL6s
CH7>
M1O1,
C209,

/COPYRTGHT

IAYNARDS

/RIM PUNCH 33 LOW MEMORY

*41
BEG»

4]
TLS
TSF
JMP
CLa
JMP 1 PUN
9]

2

4]

77

1900

-101

200

=1

1971

DIGITAL

MASSACHUSETTS
/DIGITAL-8-4-U~RIM

HLT

LAS

BCca

HLT
LAS

DCaA
JMS
TAD
JMS
TAD
JMS
TAD
AND
JMS
TAD
JMS
JMS
TAD
AND
JMS
TAD

PADD.,

PCON.»

FA
LTS
IA
SHFT
CH7
PUN
1a
SLé6
PUN
I 1A
SHFT
PUN
I 1A
SLé
PUN
1A

Cia

TAD
SNA
JMP
152
JMP
JMS
JMP

FA
CLAa
o+
1A
PADD
LTS
BEG

/PUNCH SUBROUTINE

E3JIPMENT CORPORATION

/ENTRY FOR LEADER DATA BLOCK
/SET INITIAL ADDRESS

/SET FINAL ADDRESS

/GO0 TO L/T SUBROUTINE
/PUNCH ADDRESS

/PUNCH CONTENTS

/TEST FOR END

/ENTRY FOR L/T

0076
PoT7
0100
pl1o1
plo2
PL03
2184
0105
P106
0107
2110
pLr11
piia
P113
2114
p115
2116
P117
p120
plai
piz2
@123

pla24a
p125

2126
8127
p130

7441

1442
1443
1444
1445
1446
1447
7450
7451
1452
7453
71454
7455
1456
7457
71460
7461
T462
7463
7464

Julels)
1127
3124
1130
4114
2124
5101
5476
000
7012
7012
7012
pias
5506
0000
60846
6041
5116
7200
5514
2000
Povo
o000
0277

0180
76717
P200

7402
7604
3322
1492
71604
3323
4276
1322
4386
1326
4314
1322
#325
4314
1722
4306
4314
1722
2325
4314

LTS,

MORE»

SHFT»

PUN»

14,
FA,
CTR»
SL6»
CH7»
MiD1,
C200,

/COPYRIGHT
/MAYNARD,

(%]

TAD M101
DCA CTR
TAD C200
JMS PUN
1SZ CTR
JMP MORE
JMP I LTS

RTR
RTR
RTR

AND SL6
JMP I SHFT

TLS
TSF

JMP =1

CLA

JvP I PUN

77
100
-101
200

1971

/DIGITAL-8~-4-U=~RIM
/RIM PUNCH 75 HIGH MEMORY

*¥7441
BEGS

PADD»

PCON,

HLT
LAS
DCA
HLT
LAS
DCA
JMS
TAD
JMS
TAD
JMS
TAD
AND
JMS
TAD
JMS
JMS
TAD
AND
JMS

1A

Fa
LTS
ia
SHFT
CH7
PUN
IA
SL6&
PUN
I IA
SHFT
PUN
I 1A
SLeé
PUN

/L/T SUBROUTINE

/MORE L-T CODES

/SHIFT RIGHT

/PUNCH SUBROUTINE

DIGITAL Z£JJIPMINT CORPORATION
MASSACHISETITS

/ENTRY FOR LEADER DATA BLOCK
/SET INITIAL ADDRESS

/SET FINAL ADDRESS

/GO0 TO L/T SUBROUTINE
/PUNCH ADDRESS

/PUNCH CONTENTS

7465
1466
7467
7470
7471
7472
7473
1474
7475
7476
7477
7500
7501
7592
7503
71504
7505
71586
7507
7510
7511
7512
7513
7514
7515
7516
7517
7520
7521
7522

7523
7524

7525
7526
7527
71530

041
P42
2043
2044
PB45S
@046
Boa7
o509
go51
2852

1322
7041
1323
7650
5275
2322
5258
4276
5241
2000
1327
3324
1332
4314
2324
5321
5676
2300
7912
7012
78012
A325
57906
0090
6026
6021
5316
7209
5714
V000

413037
0o

no17
ni1eo
76717
%2080

7402
71604
3122
7402
71604
3123
4876
1122
4106
1126

LTS,

MORE»

SHFT»

PUN»

1A,
FAs
CTR,
SL6»
CHT»
M101,
C20a,

/CAPYRIGHT 1971
/MAYNARDS

TAD
CIa
TAD
SNA
JMP
ISz
JMP
JMS
JMPpP

TAD
DCA
TAD
JMS.
I[SZ
JMP
JMP

RTR
RTR
RTR
AND
JMp

PLS
PSF
JMP
CLA
Jmp

717
180
-101
200

IA

FA

CLA
e+ 4
IA

PADD
LTS
BEG

M101
CTR
cego
PUN
CTR
MORE
I LTS

SL6
I SHFT

I PUN

/DIGITAL-8=-4-U=-RIM
/RIM PUNCH 75 LOW MEMORY

*41
BEG»

PADD,

HLT
LAS

DCA 1A

HLT
LAS

DCA FA

JMS LTS

TAD 1A

JMS SHFT
TAD CH7

/TEST FOR END

/EN

7L/

/M0

7/ SH

TRY FOR L/T

T SUBROUTINE

RE L~-T CODES

IFT RIGHT

/PUNCH SUBROUTINE

DIGITAL
MASSACHJSETTS

EJJIPMENT CORPORATION

/ENTRY FOR LEADER DATA BLOCK
/SET INITIAL ADDRESS
/SET FINAL ADDRESS

/GO TO L/T SUBROUTINE
/PUNCH ADDRESS

PB53
0054
Pd55
2856
2057
12051-3]
PB6 1
2062
p063
2064
B065
2066
gns7
o170
Po71
pR72
08173
RO74
oB715
2276
2217
2192
2101
2192
2103
B104
2105
B1os6
2107
0119
B111
g1i2
2113
2114
2115
J116
2117
7120
g121
2122
2123
B124
7125
2126
2127
2139

4114
1122
2125
4114
1522
4106
4114
1522
2125
4114
1122
7041
1123
71650
5275
2122
5850
40176
5041
PABY
1127
3124
1139
4114
2124
5191
5476
2000
7912
7212
7812
2125
5586
Beng
6326
6021
5116
7280
5514
PO0D
vona

2009
Pa77
n1a3
7677
0200

PCON»

LTS»

MORES

SHFT,

PUN»

1A,
FAs
CTR»
SL6>
CHT7,
M1O1,
cCa2a6,

JMS
TAD
AND
JMS
TAD
JMS
JMS
TAD
AND
JMS
TAD
CIA
TAD
SNA
JMP
152
JMP
JMS
JMpP
(5]
TAD
DCA
TAD
JMS
18z
JMP
JMP
4]
RTR
RTR
RTR
AND
JMP
g
PLS
PSF
JMP
cLA
JMP
4]

2

4]
77
120

-101

2069

PUN
IA
SLs
PUN
I Ia
SHFT
PUN
I IA
SLé
PUN
IA

FA

CLA
ot 4
Ia

PADD
LTS
BEG

M101
CTR
C209
PUN
CTR
MORE
I LTS

SL6

I SHFT

=1

I PUN

/PUNCH CONTENTS

/TEST FOR END

ZENTRY FOR L/T

/L/T SUBROUTINE

/MORE L/T CODES

/SHIFT RIGHT

/7PUNCH SUBROUTINE

Formerly
DEC-08-YXYA-D

CHAPTER 4

BINARY PUNCH

(Binary Core Dump to High-speed or
Teletype Punch)

4.1 ABSTRACT
This program provides a means of punching information con-
tained in selected blocks of core memory as binary-coded paper tape

using the high-speed or Teletype punch.

4,2 REQUIREMENTS
This program occupies 7510 (1138) core memory locations.

The Binary Punch program runs on the basic PDP-8, 8/S, 8/I, 8/L,
or 8/E with standard 33-ASR Teletype or standard high-speed punch.

Program tapes are as follows:

33-ASR Binary DEC-08-YX1A~-PB
33~ASR Source DEC-08-YX1A~PA
High~speed Binary DEC-08-YX2A~PB
High-speed Source DEC-08-YX2A~PA

4.3 LOADING PROCEDURES
This program is loaded by means of the Binary Loader. See

Introduction to Programming or Programming Languages for a complete
discussson of the Binary Loader and its use. (This program

canhot be called as a subroutine.)

The SWITCH REGISTER is used to enter initial and final addresses
of blocks to be punched as well as the number of blocks to be punched.

This program is used in the following manner:

4-1

a. Assuming the program is in memory as listed in 4.7, place
the starting address 7465 in the SWITCH REGISTER and press
the LOAD ADDRESS key.

b. Press the START key. Leader tape is punched and the computer
halts. Set the number of blocks to be punched into the
SWITCH REGISTER and press the CONTINUE key.

c. The computer halts. Set the initial address of the block
to be punched into the SWITCH REGISTER and press the CONTINUE
key.

d. The computer halts. Set the final address of the block to
be punched into the SWITCH REGISTER and press the CONTINUE
key.

e. Note that the final address must be greater than the initial
address.

f. The indicated block of data is punched. If only one block
has been called for, the trailer tape is punched and the
computer halts. If more than one block has been called for,
the computer halts at step (a) waiting for a new initial
address. The second block is punched following completion
of steps (c) and (d), etc.

4.4 METHOD
This is a basic program used to produce tapes acceptable by the

Binary Loader.

With each punched block of data, an initial address (into which
that data is to be loaded) is punched as the first two characters.
Following the initial address, each 2~character group represents the
binary contents of a computer word. At the end of each block, a 2-

character checksum is punched.

Reference to Section 4.6, Flow Chart, will illustrate the com-
putational approach. Basically data is picked up from memory, the
most significant half shifted right and punched, and the least

significant half masked out and punched.

A similar process is followed with respect to the initial address

and the checksum,which is accumulated character by character as a

block)is punched.

4.5 EXTERNAL DATA

See Chapter 4 of Introduction to Programming for a complete
discussion of tape format.

4.6 FLOW CHART

Note that in this diagram circles represent subroutine utiliza-
tion, not connectives.

START

|

CLA CLt
BPUN INITIALIZE
dMS PLOT

@ PUNCH LEADER

HLT
DCA NB

XL HLT ENTER BLOCK

sTL IA AND FA 1
TAD CKSM
INS BINP

ENTER NUMBER
OF BLOCKS

PUNL JMS BINP

PUNCH 2
CHARACTERS
INCREMENT CUSM

TAD 1A

PUNCH
CHECKSUM

IMS PLOT

TAD FA

<0 20

TAD I IA

PUNCH
TRAILER

cLL

<>

JMP PUNL

JMP NXBL

4.7 PROGRAM LISTING
A listing of this program with BPUN located at 7465 is as

follows:
/COPYRIGHT 1971 DIGITAL E1JIPYENT CORPIRATION
/MAYNARD s AASSACH JSETTS
/BIN PUNCH HIGH SPEED PUNCH (PC@3, PP8&I> PPBL)
*T465
7465 7300 BPUNS CLA CLL
7466 6026 PLS /INITIAL PUNCH
7467 3366 DCA CKSM /CLEAR CHECK-SUM
7470 4330 JMS PLOT /GO PUNCH LEADEK CODES
7471 7402 HLT /SET SWITCHES=NUMBER OF
BLOCKS
7472 7604 LAS
7473 7041 cia
7474 3367 DCA NB /STOKE MINUS NUMBER OF
BLOCKS
7475 7402 NXBL» HLT /SET SWITCHES=INITIAL ADDRESS
OF BLOCK
7476 7604 LAS
7477 3370 DCA 1A
7500 7402 HLT /SET SWITCHES=FINAL ADDRESS
OF BLOCK
7501 7604 LAS
7502 7001 IAC
7503 3371 DCA FA
750 4 1370 TAD IA
7505 7120 STL /TC PUNCH IA AS ORIGIN
7506 4341 PUNL» JMS BINP /GO PUNCH WORD AS TWO LINES
OF TAPE
7507 1379 TAD 1A
7510 7041 ClA
7511 1371 TAD FA /AC=FA-]A
7512 765@ SNA CLA /WAS 1T LAST WORD OF BLOCK?
7513 5320 JMP < +5 /1T WAS THE LAST WORD
7514 1770 TAD 11A /GET WORD TO PUNCH
7515 7100 CLL /NOT AN OKRIGIN
7516 2370 1Sz 1A /JUST INDEX IA
7517 5306 JMP PUNL
7520 2367 1Sz NB /1S THERE ANOTHER BLOCK?
7521 5275 JMP- NXBL /HANDLE NEXT BLOCK
7522 1366 TAD CKSM
7523 7100 CLL
7524 4341 JMS BINP /GO0 PUNCH CHECK SumM
7525 4330 JMS PLOT /GO PUNCH TRAILEK CODES
7526 7402 HLT /DONE
7527 5265 JMP BPUN
7530 0aoa PLOT> @
7531 7300 CLA CLL
7532 1372 TAD M212 /TO PUNCH 212 OCTAL LEADER

TRAILER CODES

7533
7534
7535
7536
7537
7540
7541
7542
7543
7544
7545
7546
7547

7550
7551
7552
7553
1554

7555
7556
7557
1560
7561
7562
7563
7564
7565
7566
1567
7570
7571
1572
7573
1574
7575
7576
7577

3373
1374
4361
2373
5335
5730
DoBo
3375
1375
7012
012
7012
0376

4361
1366
3366
1375
8377

4361
1366
3366
5741
173030]
6021
5362
6026
5761
oo
5101517]
oo
a)ayal]
7566
5151515
w2eo
2000
D177
BT

BINP»

PUN,

CKSM,
NB s
1A,
FA
M212s
CTR1»
C200»
TEM] »
SL7»
SL6»

DCA CTR1
TAD C200
JMS PUN
ISZ CTR]
\JMP . "2
JMP I PLOT

DCA TEMI
TAD TEMI

AND SL 7

JMS PUN
TAD CKSM
DCA CKSM
TAD TEMI
AND SLé6

JMS PUN
TAD CKSM

DCA CKSM
JMP T BINP

JMP 1 PUN

77

4.8 33-ASR TELETYPE PUNCH PROGRAM
To use this program with the 33-ASR Teletype, make the following

changes:

7466
7562
1564

6046
6641
6L 46

/LEADER TKAILEkKR CODE
/PUNCH C (AC)

/ANOTHER L-T CODE OR NOT?
/G0 PUNCH ANOTHER

/JEXIT

/FIRST TWO OCTAL DIGITS IN
AC 5-11
/PUNCH C (AC)

/LAST TWO OCTAL DIGITS IN
AC 6-11
/PUNCH C <AC)

/EXIT

/ROUTINE TO PUNCH C (AC)
/AND EXIT WITH C (AC)
/UNALTEKED

/PUNCH IT

/EXIT

TLS /INITIAL PUNCH
TSF /AND EXIT WITH C (AC)
TLS /PUNCH IT

Formerly
DEC-08-YPPA-D
CHAPTER 5

OCTAL MEMORY DUMP

(Octal Core Dump to Paper Tape)

5.1 ABSTRACT

This program enables the user to dump, in octal, any or all
data in any memory field to either the Teletype or high-speed paper
tape punch. During dumping the absolute address of each location
being dumped is held in the accumulator. When dumping is completed
output devices and memory fields can be changed to dump another

section of memory.

5.2 REQUIREMENTS

This program requires one core page; initially 7400-7577.

The Octal Memory Dump program runs on any PDP-8 family computer
with at least 4K words of core, a 33-ASR Teletype and/or high-speed
paper tape punch.

No additional software is required. The program leaves the

BIN and RIM Loaders untouched. The program tapes are as follows:

Binary DEC~08-YPPA-PB
Source DEC-08-YPPA-PA

5.3 USAGE

The program is supplied in ASCII format on punched paper tape,
and can be assembled by any 4K PDP-8 assembler (i.e., PAL III,
MACRO-8, or PAL-D). The origin of this program (7400) can be changed
with the PDP-8 Symbolic Editor in order to dump locations 7400-7577.

(See the appropriate assembler section of Programming Languages for

assembly instructions.)

5.3.1 Loading
The program is loaded into core with the Binary Loader (see

Introduction to Programming or Programming Languages for loading

procedures) and can be loaded into any available memory field.

5-1

5.3.2 Operating Procedures
The SWITCH REGISTER on the PDP-8 console is used to control the
program; all options are determined by the position of bit 0. The

program can be interrupted by depressing the STOP switch.
With Octal Memory Dump program in core:

a. Set the SWITCH REGISTER to the starting address (7400) and
the INSTRUCTION FIELD to the field containing the Octal
Dump. Set DATA FIELD to the field containing the code to
be dumped. Press the LOAD ADDRESS key.

b. Set SWITCH REGISTER bit @ to 1 for a core dump to the
Teletype punch, or to § when dumping via the high-speed
paper tape punch.

c. Press the START switch. The computer halts.

d. Set the SWITCH REGISTER to the starting address of the
section of core to be dumped.

Press the CONTINUE switch. The computer halts.

f. Set the SWITCH REGISTER to the final core address of the
section of core to be dumped.

g. Press the CONTINUE switch; dumping commences and stops
after dumping the contents of the final core address
specified in step (£f) above.

Another dump can be performed at this time by continuing at
step (a) when the output device or data field is to change. Other-
wise, continue at step (4).

The program halts after each dump.

The preceding operations are illustrated in Figure 5-1.

5.4 INPUT/OUTPUT

The program contains its own Teletype and high-speed punch
output, and there are no external I/0 handlers used. SWITCH REGISTER
bit 0 determines the output device.

5.5 FUNCTIONAL DESCRIPTION

The program is written in the PAL III language. Four routines

are used in the program:

Ioad BIN Loader
and Press STOP

Set gtart Starting Address and
Address In SR ~ = T T T 77 Data Field of

Octal Memory Dump

A
|Press 10AD ADD|

High-Speed Which Teletype
\Pu-nCh?/
[Set SR Bit g = g| |'set sr Bit g = 1]

—3| Press START ¢

| Computer Halts]

v
Set Start Address
of Dump In SR
v

| Press conT|

| Computer Halts |

Set Ending Address
of Dunp In SR

{Press covr|

Specified Memory Is
Being Dumed

¥
[Duping Stops|

Finished

Figure 5-1 Operating Procedures

a. The TOCT/routine causes a number to be formatted for a
typeout or punchout.

b. The TCR routine outputs a carriage return-line feed.
c. The TSP routine outputs a space.

d. The TCHAR routine is the output routine for both the
Teletype and the high-speed punch.

The main routine begins with the initialization of variables, and
the two address arguments are picked up from the switch register. Two
carriage return-line feeds are performed, followed by the starting

address and several spaces. A loop is then entered to type the contents

of eight memory locations (if eight remain). If more data remains

to be output, a JMP to LP@2 repeats the process. If during this loop
the routine finds that it has processed the last memory location, the
loop exits, a carriage return line feed is performed, a JMP to LP@g is

executed, and the program halts.

See the program listing that follows for more precise information.

5.6 PROGRAM LISTING

/ OCTAL MEMORY DUMP PROGRAM

/ COPYRIGHT 1969

/ DIGITAL EQUIPMENT CORP.

/ MAYNAED> MASS.

/TO OPERATE:

/ LOAD ADDRESS 7420 IN SR

/ TO CHOSE OUTPUT DEVICE:

/ SET BIT 0=¢ FOR H. S. PUNCH QOUTPUT OR

/ SET BIT P=1 FOR TTY OUTPUT THEN PRESS START

/ SET STARTING ADDRESS AND DATA FIELD IN SR -PRFSS C
ONTINUE

/ SET ENDING ADLCRESS AND DATA FIELD IN SE -PRESS CON
TINUE

*T400

1400 7604 DUNMP, CLA OSER /EXAMINE SR FOR QUTPUT DEVICE
7481 7700 SMA CLA
7422 1265 TaD Cl1@
7403 1270 TAD C7420
7424 3385 DCA SKPZ /STORE A '"SKP" IN SKPZ IF H. S. PU
NCH QUTPU1
7425 T4R2 LPZO- HLT /STOP. ENTER DUMP STARTING ADDRFSS

7406 1604 LAaS

7407 32€1 DCA ADDE .

7410 T4022 HLT /STOP. ENTER DUMP ENDING ADCRESS
7411 T76C4 LAS

7412 7040 CMA

7413 1261 TAD ADDR

7414 3262 DCA INDEX /CCUNTER FOR NUM CF LOCS TO BE DUM
PED

7415 4312 JMS TCER /TYPE CR-LFS

7416 4312 LPC1, JMS TCE

7417 1261 TAD ADDER

7420 4272 JMS TOCT /0UTPUT STARTING ADDRESS IN OCTAL
7421 4320 JMS TSP /0UTPUT 3 SPACES

7422 A320 JMS TSF

7423 4320 LFQ2s JMS TSP

7424 1661 TAD 1 ALDDEK /GET CONTENTS OF LOC

7425 4272 JMS TOCT /TYPE OUT CONTENTS

7426 2262 I1SZ INDEX /DONE DUMFING?

7427 1410 SKP

7430 S5e47 JMP OUT /YESe EXIT

7431 2261 152 ADDR /NO+ KICK ADLCRESS UP

7432 1261 TAD ADDR /HAVE WE OUTPUT 8 LOCS ON A LINE?
7433 @263 AND C3

7434 7640 Sza CLA

7435 5223 JMP LPC2 /NO+. SPACE OVER ONE AND GET NEXT
7436 1261 TAD ADCFk

7437 0264 AND C7

T44¢ 7640 szA CLA

7441 5222 JMP LPB2-1

7442 1261 TAD ADDE

7443 0266 AND Cl177

7444 7640 Szha CLA

7445 5216 JMP LPCZ1 /0UTPUT CR/LF THEN NEW ADDRESS
7446 5215 JMP LPE1-1

T447 4312 O0OUT» JMS TCER /0UTPUT CR/LF

7456 1267 TAD C214

7451 4324 JMS TCHAR /0UTPUT A FORM FEED

7452 1271 TAD M20 /THEN OUTPUT 20 BLANKS OF TRAILER
7453 3262 DCA INDEX

7454 4324 JMS TCHAR

7455 226¢ 1SZ INDEX

7456 5254 JMP -2

7457 1261 TAD ADLCR /LEAVE WITH FINAL ADDRESS IN AC
746€ 5205 JMP LPOO /GO TO HALT FOR POSSIRBLE RESTART

/ VARIABLES AND CONSTANTS

74€1 ©VPO¢ ADDR, 4] /LCC OF STARTING ADDRESS TO BE DUM
PED

7462 Q0VECO INDEX., 0 /COUNTER FOR NUMBEFR OF LOCS TO BE
DUMPED

7463
T4€4
7465
7466
T467
7470
7471
uT

7472
7473
1474
7475
7476
7477
7500
7501
7502
7503
7504
7505
7506
7507
7510
7511

7512
7513
7514
7515
7516
7517

7520
7521
75282
7523

PR3
pee7
Pe1o
0177
pela
T400
776¢

4)301)
7104
3344
1352
3345
1344
006
7004
3344
1344
peo4
1351
4324
2345
5277
5672

e
1347
4324
1346
4324
5712

PR
1350
4324
5720

C3» 3
C7s 7
Clo. 10

Cr77, 177
Cal4, 214

CT400, 74020

M20 - - 20

/ OCTAL TYPEOUT ROUTINE

TOCT>]
CLL
DCA
TAD
DCA

LPO3- TAD
RTL
RAL
DCA
TAD
AND
TAD
JMS
152
JMP
JVUP

RAL /ROTATE
WCORD

M4

NDX

WORD

WORD
WORD
c7
C260
TCHAER
N DX
LPR3

I TOCT

/MASK VALUES

/FORM FEELD
/USED TO FORM SKP COMMAND

/COUNTER FOR NUM OF BLANKS

ADDRESS 1 LEFT

TO OUTP

/SET NUMBER OF DIGITS PERK WORD

/ROTATE WORD 3 LFEFT

/MASK BITS 9-11

/ADD 260 FOR OUTPUT
/0UTPUT DIGIT

/DONE FOUR?

/NCe. PICK UF ANOTHEER DIGIT
/YES. RETURN

/ ROUTINE TO OUTPUT A CARRIAGE RETURN/LINE FEED

TCE.» 0
TAD
JMS
TAD
JMS
JMP

cails
TCHAE
celz
TCHAR
I TCR

/0U0TPUT A C. R.

/0UTPUT A L. F.

/ ROUTINE TO OUTPUT A SPACE

TSP, @
TAD
JMS
JMP

Ce40
TCHAR
I TSP

5-6

/0UTPUT A SPACE

7524
7525

71526
75217
7530
7531

7532
7533
7534
7535
7536
7537
7540
7541
7542
7543

7544

7545
7546
547
7550
7551
7552

oo
10290

5335
6026
7200
1261

6021
5332
5342
6046
7200
1261
6241
5340
7200
5724

0oV

DOLo
palz
gels
D249
D60
7774

/ ROUTINE TO OUTFUT A CHAKACTFR OV TTY OR H. S« PUNCH

TCHAR.
SKPZ >

TCH1.,

TCH2,

@
NOF

JMP
PLS
CLA
TAD

PSF
JMF
JMP
TLS
CLA
TAD
TSF
JMP
CLA
JMP

/ VARIABLES

WORD>

NDX >
cela,
C215,
ca4a0.,
C260.,
Mas

2

]
ela
ets
240
260
-4

/CHANGED TO A "'SKP" IF H. S. QUTPU

TCH1 /0THERWISE GO TO TTY OUTPUT

ADDR /KFEF ADDRESS IN AC WHILF PUNCHING
-1

TCHZ

/TTY OUTPUT ROUTINE
ADDER
o1
I TCHAR
AND CONSTANTS
/STORAGE FOR DIGIT TO BE FORMATTED

/COUNTER FOR NUM OF DIGITS OUTPUT
/CODE FOR LINE FEED

/" CARRIAGE RETURN
/" " SPACE
/" " FORMATTING DIGITS

/NUMBER OF DIGITS PER WORD

CHAPTER 6
TELETYPE I/O SUBROUTINES

6.1 ABSTRACT

The routines described in this chapter are illustrative of the
procedures to be followed in creating I/0 routines to be used with
the ASR-33 Teletype. The user is advised to peruse these routines
prior to writing I/O routines tailored for his particular needs.
Subroutines are provided which perform input and output of character
strings and single alphanumeric characters. These routines are
illustrative and by no means exhaustive of routines to handle the
ASR-33 Teletype.

6.2 REQUIREMENTS

The routines as supplied require 124 (1748) core locations.

10

The Teletype I/O Subroutines run on any PDP-8 family computer
with an ASR-33 Teletype console. The program is distributed as an
ASCII tape as follows:

DEC-08-FIKA-PA
6.3 USAGE

6.3.1 Assembly

The routines as supplied will be automatically assembled onto
the first available core page. There is no $ character at the end
of the tape; although a PAUSE statement is present to allow for the

later loading of additional programs, if any.

This collection of subroutines can be assembled with PAL III,
PAL~-D, PAL8, or MACRO-8. (If using the tape with TSS/8, remove the
PAUSE statement from the end of the tape.)

If the routines are to be assembled separately (without a user

program), they will assemble at location 200. In this cacse, the

user should append a separate tape with a $ character to the end

of the Teletype I/0 Subroutines tape before assembly.

If the routines are to be assembled with a user program (such
as the example program in section 6.6), the Teletype I1I/0 Subroutines
tape should be loaded after the user program and the whole
followed by a tape with a $ character. 1In this case, the I/O sub-
routines will fit on the first available free core page and will
not overlay the user program. (Tapes can be loaded after the I/0
routines if allowance is made for the length of the routines or by

assigning a specific address to the beginning of the I/O routines.)

6.3.2 Calling Sequence

The calling sequence for the Subroutines is designed so that
the user can easily incorporate messages into his program. The
user inserts a series of JMS instructions to the I/O routines

followed by the address of the message to be transmitted.

The subroutines the user is likely to call are as follows:

Subroutine Purpose Calling Sequence
TYPX Prints a message. Message is ENTRY, JMS TYPX
coded by programmer if using POINTER /ADDR OF
PAL III, or set in a labeled /MESSAGE
TEXT pseudo-op statement if /EXIT IS TO
using PAL-D, PALS8, or MACRO-8. /ENTRY+2 WITH
/AC CLEAR
TLSX Prints a single character, used JMS TLSX
by TYPX to print message, charac- /CHAR IN AC
ter by character. Subroutine is /BITS 6 TO 11

entered with character to be
printed in AC bits 6 to 11.

KREAD Inputs a message. KREAD accepts ENTRY, JMS KREAD
8-bit ASCII and does not convert POINTER /ADDR OF
to 6-bit ASCII, therefore TYPX /INPUT BUFFER
cannot directly cause a message -LENGTH /-SIZE OF
read by KREAD to be printed, /INPUT BUFFER
although a simple routine to do /JEXIT IS TO ENTRY+3
SO can be written by the user. /WITH AC CLEAR
Remember, the size of the input /ZERO PLACED AT
buffer must include the carriage /BUFFER END

return character.

Subroutine Purpose Calling Sequence

KRBX Inputs single character from ENTRY, JMS KRBX
Teletype, exits with charac- /JEXIT IS TO
ter read in the AC. /ENTRY+1 WITH

/CHAR READ IN AC

Other routines provided include KRUB, which deletes the last
character in the input buffer when the RUBOUT key is typed. This
routine is not necessary to Teletype I/0 but allows for erasing
of typing mistakes and also performs echoing. If the user rubs
out characters past the beginning of the input buffer, a

carriage return/line feed is performed as a warning.

6.4 RESTRICTIONS
The user program must initialize the teleprinter flag before

calling these subroutines. Initialization is performed as follows:

CLA /SET AC TO ZERO, GOOD PRACTICE
TLS /INITIALIZE TELETYPE

The routines can only be called from the memory field in which
they reside.

The following characters have special meaning to the output

subroutines:
6-bit value Character Purpose
00 @ Marks the end of a message; supplied via
the TEXT pseudo-op when using PAL-D,
PAL8, or MACRO-8. Must be supplied by
user if using PAL III. :
37 <« Causes a carriage return-line feed to be

output to the Teletype.

The following characters have special meaning to the input

subroutine:

8-bit value Character Purpose

212 LINE FEED Ignored on input.
000 null Ignored on input.
377 RUBOUT Deletes the previous character typed,

echoes a backslash after the first
RUBOUT typed and a closing back-
slash after the first non-RUBQUT
character typed.

215 RUBOUT Echoes a carriage return/line feed
and exits from the input subroutine
to the user program (calling
program) .

On input buffer overflow while reading characters into the
Teletype buffer, characters echo as "bell" (the bell within the
Teletype rings). All characters other than RETURN and RUBOUT

are lost if typed while "bell" is being rung as a warning.

6.5 DESCRIPTION

Table 6.1 shows the ASCII values of the characters which can
be used with the supplied Teletype I/O Subroutines. When using
PAL III, the user must code these ASCII values at the location
referenced by the output routine. The PAL III assembler reads

the ASCII codes directly as octal numbers.

PAL-D, PAL8, and MACRO-8 can use the TEXT pseudo-op to
directly format alphanumeric characters into ASCII code. The TEXT
pseudo-op puts the desired message into 6-bit ASCII format; the
routines convert the 6-bit ASCII to the printable 8-bit ASCII and

then output the message.

If the user were outputting the message HELLO, it would be

done as follows, where MESG is the location given for the message:

PAL TII PAL-D, MACRO-8, or PALS

MESG, 1995 /HE MESG, TEXT/HELLO/
1414 /LL
1799 /O END OF
/MESSAGE CODE

TABLE 6.1

6-BIT ASCII CHARACTER SET FOR INPUT WHEN USING THE
PAL III ASSEMBLER, 8-BIT ASCII FORMAT IS ALSO SHOWN FOR

COMPLETENESS.

6-BIT 8-BIT 6~-BIT 8-BIT

Character Value Value Character Value Value
A 01 301 ! 41 241
B 02 302 " 42 242
C 03 303 # 43 243
D 04 304 S 44 244
E 05 305 % 45 245
F 06 306 & 46 246
G 07 307 ! 47 247
H 10 310 (50 250
I 11 311) 51 251
J 12 312 * 52 252
K 13 313 + 53 253
L 14 314 , 54 254
M 15 315 - 55 255
N 16 316 . 56 256
0] 17 317 / 57 257
P 20 320 : 72 272
Q 21 321 ; 73 273
R 22 322 < 74 274
S 23 323 = 75 275
T 24 324 > 76 276
U 25 325 ? 77 277
v 25 326 Q 00 300
W 27 327 I 33 333
X 30 330 34 334
Y 31 331 g 35 335
Z 32 332 4 36 336
0 60 260 < 37 337
1 61 261 leader tape 200
2 62 262 LINE FEED 212
3 63 263 RETURN 215
4 64 264 SPACE 40 240
5 65 265 RUBOUT 377
6 66 266 blank 000
7 67 267 BELL 207
8 70 270 TAB 211
9 71 271 FORM 214

The same results are achieved in both cases. The TEXT pseudo-
op performs all of the necessary operations in the case of PAL-D,
PAL8, and MACRO-8 which the programmer must perform if using

PAL III.

The input routines echo characters typed at the keyboard,
accept 8-bit ASCII characters (as they come from the Teletype
keyboard) for internal storage, and allow character editing via
the RUBOUT key. Once the RETURN key is typed, no further input
is accepted from the keyboard until the next time such input is

requested by the calling program.

Additional information on these routines and their usage can
be found by reading through the listing (section 6.7) and by
reading Chapter 5 in Introduction to Programming, 1970.

6.6 EXAMPLE PROGRAM (

The following example program was assembled with the Tele-
type 1/0 Subroutines as shown in section 6.7 (PROGRAM LISTING).
The demonstration program was loaded prior to the I/O routines.
If no program had preceded the I/O routines they would, of
course, have started at location 200 (instead of location 400).

The output of the demonstration program is shown below:

FLEASE TYPE YOUR NAME
HERMAN

IT IS A PLEASURE TO MEET YOU, HERMAN

The computer causes
PLEASE TYPE YOUR NAME

and a carriage return/line feed to be output. The user types
his name on the keyboard, enters it with the RETURN key, and

the computer then prints a carriage return/line feed followed by

IT IS A PLEASURE TO MEET YOU, HERMAN

The program as input to the Assembler (PAL-D in this case),

looks as follows:

/DEMONSTRATION OF TTY I/0 SUBROUTINES

/
*200 /ADDRESS OF START OF PROGRAM
START», TLS /INITIALIZE TELEPRINTER FLAG
JMS TYPX /PRINT A MESSAGE
MESG1 /"PLEASE TYPE YOUR NAME"
JMS KREAD /READ IN REPLY
INAREA /UP TO 16 CHARs 1 PER WORD
-29 /BEGINNING IN INAREA
JMS TYPX /PRINT SECOND MESSAGE
MESG2 /"IT IS A PLEASURE TO MEET YOU, *
TAD (INAREA-1 /SET AUTOINDEX REGISTER 12 TO
DCA 19 /ADDRESS WHERE NAME 1S STORED(-1)
LOOP, CLA CLL /BEGIN PRINTING THE NAME
TAD 1 19 /GET A CHARACTER
SNA /TEST FOR ZERO
JMP DONE /1F ZEROs ALL DONE~-QUIT
JMS TLSX /ELSE PRINT A CHARACTER
JMP LOOP
DONE» HLT
JMP START /1T IS A GOOD PRACTICE TO PUT

/A MP TO SOMEWHERE AFTER THE
/ZHLT AT THE END OF A PROGRAM
/IN CASE SOMEONE INADVERTANTLY
ZJHITS "CONTINUE".

MESG1, TEXT /+~PLEASE TYPE YOUR NAME«~/

MESG2, TEXT /+IT IS A PLEASURE TO MEET YOU», /

INAREA, O /INPUT AREA FOR NAME

The demonstration program assembled with PAL~D looks as
follows:

/DEMONSTRATION OF TTY 1/0 SUBROUTINES

/

*200 /ADDRESS OF START OF PROGRAM
9209 6046 START, TLS /INITIALIZE TELEPRINTER FLAG
g201 47177 JMS TYPX /PRINT A MESSAGE
p2p2 p222 MESG1 /"PLEASE TYPE YOUR NAME"
P2B3 47176 JMS KREAD /READ IN REPLY
P24 0256 INAREA /UP TO 16 CHAR» 1 PER WORD
Q205 7760 -20 /BEGINNING IN INAREA
p206 4717 JMS TYPX /PRINT SECOND MESSAGE
P207 B236 MESG2 /*"IT IS A PLEASURE TO MEET YOU.,
p21@ 1375 TAD (INAREA-1 /SET AUTOINDEX REGISTER 10 TO

6-7

(2]

P211
pa2la
9213
p214
215
p216
paiT
22209
ge221

paz2
9223
p224
p225
p226
p227
9230
9231
p232
9233
p234
9235

P236
9237
p240
p241
9242
9243
0244
#2245
0246
0247
0250
9251
p2s52
9253
pe54
2255
2256

3010
7300
1410
7450
5220
4774
5212
7402
5200

3728
1495
p1a3
2540
2431
2005
4031
1725
2240
1601
1565
3700

3711
24409
1123
4001
4020
1405
2123
2522
2540
2417
4015
0505
2449
3117
2554
4000
000

LOOP,

DONE,

MESG1,»
LE
AS
E
TY
PE
Y
ou
R
NA
ME
-/

MESG2»
T
Is
A
P
LE
AS
UR
E
TO
M
EE
T
YO
Us
/
INAREA,

DCA 10
CLA CLL
TAD I 10
SNA

JMP DONE
JMS TLSX
JMP LOOP
HLT

JMP START

TEXT /+P

TEXT /~1

2

/ADDRESS WHERE NAME IS STORED(-1)
/7BEGIN PRINTING THE NAME

/GET A CHARACTER

/TEST FOR ZERO

/1F ZERO» ALL DONE--QUIT

/ELSE PRINT A CHARACTER

/1T 1S A GOOD PRACTICE TO PUT
/A JMP TO SOMEWHERE AFTER THE
/HLT AT THE END OF A PROGRAM
/1IN CASE SOMEONE INADVERTANTLY
ZHITS '"CONTINUE®.

/INPUT AREA FOR NAME

6.7 PROGRAM LISTING

As explained in section 6.6, this listing of the I/O routines
was made following the example program shown in that section.
These routines can start at any address if the user changes the
starting address or will start at the beginning of the first free

page after any programs loaded previously.

/BASIC TELETYPE I/0 SUBRCUTINES

/REVISION: 18-JAN-71 /GWB
/COPYRIGHT 1971 DIGITAL EQUIPMENT CORPORATION
/ MAYNARDs MASSACHUSETTS @1754

/THESE SUBROUTINES ILLUSTRATE TYPICAL METHODS OF USING THE

/STANDARD TELETYPE TO INPUT AND OUTPUT ALPHANUMERIC DATA
/0N A PDP-8 FAMILY COMPUTER.

/ -=-NOTES=-~-

/ (1) THE USER PROGRAM MUST INITIALIZE THE TELE=-
/ PRINTER FLAG BEFORE CALLING THESE SUBROUTINES.
/ (2) THESE ROUTINES MAY ONLY BE CALLED FROM

/ THE FIELD IN WHICH THEY RESIDE.

/O0RIGIN TO NEW PAGE

e=1 17741

/SUBROUTINE TO TYPE MESSAGES.
/THIS SUBROUTINE PRINTS A MESSAGE TO BE STORED IN STRIPPED

/SIX-BIT ASCII, TWO CHARACTERS PER WORDe. THIS FORMAT

/CAN BE EASILY GENERATED BY USING THE "“TEXT' PSEUDO-OP IN
/PROGRAMS ASSEMBLED BY PALD» PAL8», OR MACRO-8.

/ENTRY» JMS TYPX
/ POINTER (ADDRESS OF MESSAGE)
ZEXIT IS TO ENTRY+2 WITH THE AC CLEAR.

P4go
P40l
2402
P493
P44

0405
paoeée
0401
P410
P41l
pa12
9413

0414
P415

pal16

4117
2420
p4a21
pa22
2423
B424
2425
2426
p4az7
2430

P4a31
ga32
P433
B434
0435

2000
7300
1600
3216
2200

1616
7012
7212
7012
4217
1616
2216

4217
5205

2200

Peoo
8236
7450
5608
1237
7440
5231
1240
4244
1241

7510
1242
1243
4244
5617

/ -=-NOTE~~
/THE FOLLOWING CHARACTERS HAVE SPECIAL MEANINGS:

/VALUE CHARACTER COMMENTS
/ 00 15} MARKS THE END OF MESSAGE, THE TEXT
/ PSEUDC-0P INSERTS THIS CHARACTER.
/7 37 - CAUSES A CARRIAGE RETURN/LINE FEED
/ TO BE OUTPUT.
TYPX>» 7]
CLA CLL
TAD 1 TYPX /GET POINTER
DCA TYPNT /AND SAVE IT LOCALLY
I15Z TYPX
TYPX1, TAD I TYPNT /GET LEFT HAND CHARACTER
RTR /TH1IS CAN BE CHANGED TO A
RTR /BYTE SWAP ON THE PDP-8E!
RTR
JUS TYPY /CONVERT AND TYPE
TAD 1 TYPNT /GET RIGHT HAND CHARACTER
 §YA4 TYPNT /MOVE POINTER TO NEXT WORD
JMS TYPY /CONVERT AND TYPE
JMP TYPX1 /CONTINUE UNTIL DONE.
TYPNT, O /POINTER TO STRING

/THIS SUBROUTINE IS CALLED BY "TYPX'" (AND “KRBX"!)--
/ENTER WITH THE CHARACTER TO TYPE IN AC6-11¢

/ (1) TESTS FOR TERMINATOR (2@
/ (2) TESTS FOR CR-LF (37> CHARACTER
/ (3> CONVERTS CHARACTER TO &-BIT ASCII AND TYPES IT
TYPY» 4]

AND TK77 /MASK OFF CHARACTER

SNA /TEST FOR TERMINATOR

JMP 1 TYPX /EXIT 1F TERMINATOR

TAD TKM37

SZaA /TEST FOR CR-LF

JMP TYPY! /NOT A 37

TAD TK215 /TYPE A -CR-

JMS TLSX

TAD TKM125 /CONVERTS TO A ~LF- (212)
TYPY1l> SPA /TEST RANGE

TAD TK100 /RANGE IS 301-336

TAD TK237 /RANGE 1S5 249-2717

JMS TLSX /TYPE CHARACTER

JMP 1 TYPY

2436
437
P44
P44l
p442
p443

pa44
P445
0446
D447
2450
2451

p4as52
p453
2454
pass
P4s6

2e77
7741
2215
7653
0100
02317

2000
60241
5245
6046
7200
5644

415101]
6031
5253
6036
5652

TK77»

TKM37»
TK215,
TKM 125,
TK100.,
TK2o7»

17 /MASK FOR AC6-11

-37 /TEST FOR CR-LF CHARACTER
215 /7ASC11 VALUE OF -CR-

-125 /THIS PLUS 337 = 212 ~LF~
100 /CONVERT TO RANGE 301-336
237 /CONVERT TO RANGE 240-277

/TELETYPE OUTPUT SUBROUTINE.
/ENTER WITH CHARACTER IN THE AC.

/

~=NOTE=-~

/THE TELETYPE FLAG MUST BE INITIALIZED
/BEFORE CALLING THIS SUBROUTINE!

TLSX»

(5]

TSF

JMP o=1 /WAIT FOR TELETYPE READY
TLS :
CLA

JMP 1 TLSX

/TELETYPE INPUT SUBROUTINE.
/EXIT WITH CHARACTER READ IN THE AC.

KRBX»

%]

KSF

JMP =1 /WAIT FOR CHARACTER
KRB

JMP 1 KRBX

/TELETYPE INPUT SUBROUTINE.

/THIS SUBROUTINE DEMONSTRATES HOW TO INPUT

/ALPHANUMERIC CHARACTERS FROM THE TELETYPE. IT READS
/THE CHARACTERS INTO A BUFFER, ECHOES CHARACTERS TYPED.s
/AND PERFORMS MINOR EDITING:

/ (1) CHARACTERS NULL(200 AND @@00) AND LINE FEED

/ ARE DELETED ON INPUT.

/ (2> CHARACTER RUBOUT (377> DELETES THE PREVIOUS

/ CHARACTER TYPED. IT ECHOES AS A BACKSLASH FOLLOWED
/ BY THE CHARACTER DELETED (MULTIPLE RUBOUTS DO NOT
/ ECHO BACKSLASH AFTER THE FIRST$ A NON-RUBOUT CHAR-
/ ACTER CAUSES A "CLOSING" BACKSLASH TO BE PRINTED).
/THE CHARACTER CARRIAGE RETURN TERMINATES INPUT. IT

/ECHOES AS A CARRIAGE RETURN FOLLOWED BY A LINE FEED.

2457
2460
246 1
pa62
P463
p4a64
P465

2466
2467
D470
2471

p472
P4a73

0474
2475
2476
24117
0500
25901

2502
P53
0504

25905
0506
2587
p510
2511

0000
7300
1657
2257
3216
1657
3200

4252
3616
1360
3345

1616
2345

7658
5745
2345
1745
1440
5272

4345
2200
5312

1356
4244
71240
1200
5265

/ENTRYs JMS KREAD

/ POINTER * (ADDRESS OF INPUT BUFFER)

/ -LENGTH (MINUS SIZE OF INPUT BUFFER)
JEXIT 15 TO ENTRY+23 ON EXIT:

/ (1) AC 1S CLEAR.

/ (2) A TERMINATING WORD OF ZERO IS PLACED IN THE

/ INPUT BUFFER (THE CARRIAGE RETURN IS NOT ENTERRED
/7 IN THE BUFFER).

/ =-=-NOTE~-~

/0N BUFFER OVERFLOW, CHARACTERS WILL BE ECHOED AS '"BELL"
/TO INFORM USER THAT BUFFER IS FULLe ALL CHARACTERS.,

/0THER THAN CARRIAGE RETURN AND RUBOUT, ARE LOSTe.
/THIS SUBROUTINE IS WRITTEN TO CO-RESIDE WITH THE TELETYPE

/0UTPUT SUBROUTINES "TYPY'™ AND "TLSX".

KREAD, @
CLA CLL
TAD 1 KREAD /GET ADDRESS OF BUFFER
IS5z KREAD
DCA KRPNT /SET UP POINTER
TAD 1 KREAD /GET SIZE OF BUFFER
DCA KRCNT /SET UP COUNTER
KRB1» JMS KRBX /GET CHARACTER
DCA 1 KRPNT /SAVE CHARACTER
TAD KRTAB /LOAD POINTER TO TABLE
DCA KRBKS /INTO TEMP. STORAGE
/ENTER SCANNING LOOP.
KRB3» TAD 1 KRPNT /ADD IN CURRENT CHARACTER
152 KRBKS /ADVANCE INDEX TO JMP WORD
SNA CLA
JMP 1 KRBKS /CALL SPECIAL ROUTINE
152 KRBKS /GO ON TO NEXT ENTRY
TAD 1 KRBKS /GET TABLE ENTRY
SZA /ZERO MARKS END OF TABLE
JMP KRB3 /CONTINUE SCAN

/NORMAL CHARACTER ROUTINE--
/CHECK FOR BUFFER OVERFLOW, ECHO CHARACTER», AND
/RETURN TO FETCH NEXT CHARACTER.

JMS KRBKS /ECHO BACKSLASH IF NEEDED
1572 KRCNT /TEST FOR BUFFER OVERFLOW
JMP KRB6 /NORMAL ROUTE

/BUFFER OVERFLOW!
TAD TK287 /ECHO "BELL"

KRB3, JMS TLSX
CLA CMA /DECREMENT CHAR COUNTER
TAD KRCNT
JMP KRB1-1 /RETURN TO GET NEXT CHAR

9512
2513
2514
8515

@516
@517
9520
p521
p522
2523
@524
9525
@526

25217,

9530
8531
8532

3533
2534
@535

2536

2537

2549
0541
@542
2543
P544

1616
2216
4244
5266

7240
4345
2355
1657
7041
1200
7650
5333
7240
1216
3216
1616
5306

1243
4217
4345

5266

4345

1243
4217
3616
2257
5657

KRB6» TAD 1 KRPNT /GET CHARACTER
152 KRPNT /ADVANCE BUFFER POINTER
JMS TLSX /ECHO CHARACTER
JMP KKRB1 /RETURN TO GET NEXT CHAR

/RUBOUT ROUTINE~-
/THIS ROUTINE IS CALLED WHEN A RUBOUT IS TYPED3 IT DELETES

/THE LAST CHARACTER IN THE BUFFER, RESET THE POINTERS,
/AND DOES SOME FANCY ECHOING.
KRUB.» CLA CMA /REVERSE RUBQUT FLAG TEST

JMS KRBKS /EHCO BACKSLASH IF NEEDED
I5Z KRFLAG /SET RUBOUT FLAG

TAD 1 KREAD /CHECK FOR “EMPTY*®" BUFFER
Cia

TAD KRCNT /BY COMPARING COUNTERS
SNA CLA

JMP KRUB1 /NO RUBOUT PAST BEGINNING
CLAa CMA

TAD KRPNT /DECREMENT BUFFER POINTER
DCA KRPNT

TAD 1 KRPNT /GET CHARACTER TO ECHO
JMP KRB5

/ECHO CR-LF-BACKSLASH ON ATTEMPT TO RUBOUT PAST THE START
/0F THE INPUT BUFFER.

KRUB1» TAD TK237 /LOOKS LIKE A "e'!
JMS TYPY /FORCES A CR-LF
JdM S KRBKS /ALWAYS FORCES A BACKSLASH
JMP KRB1

/CARRIAGE RETURN ROUTINE--
/THIS ROUTINE IS CALLED WHEN A CARRIAGE RETURN IS TYPED:
/ECHOES CR-LF, DEPOSITS @ IN INPUT BUFFER» AND EXITS.

KRCR» JMS KRBKS /ECHO BACKSLASH 1F NEEDED.
TAD TK237 /LOOKS LIKE A “e'"!
JMS TYPY /FORCES A CR~-LF
DCA 1 KRPNT /STORE ZERO IN BUFFER
 §-7A KREAD /SET TO EXIT ADDRESS
JMP 1 KREAD /AND EXITe

6-13

@545
@546
2547
2550
9551
@552
@553
2554

B555

2556
0557

2562

056 1
@562
9563
2564
2565
2566
2567
9579
9571
@572

Pooo
1355
7640
1357
7440
4244
3355
5745

el

p207
9334

0560

5266
7600
5266
7566
5266
7563
5337
7401
5316
0000

/THIS SUBROUTINE ECHOES BACKSLASH WHEN KRFLAG IS NON-ZERO
/NOTE-~ LOCATION '"KRBKS' IS ALSO USED AS A TEMPORARY

KRBKS, @
TAD KRFLAG
SzA CLaA
TAD TK334
SZA
JMS TLSX
pCa KRFL AG

JMP 1 KRBK

KRFLAG, 0

S

/GET FLAG

/BACKSLASH CHARACTER
/TYPE A BACKSLASH

/CLEAR FLAG

ZEXIT

/SET TO +1 IF A RUBOUT WAS

/LAST CHAR» OTHERWISE Q.

/SAVE A COUPLE LOCATIONS BY USING TYPX AND TYPNT.

KRPNT=TYPNT
KRCNT=TYPX

TK2087, 2087
TK334, 334

/POINTER TO INPUT BUFFER
/MINUS NO. OF WORDS LEFT
/BELL IS ASCII 287

/BACKSL.ASH IS ASCII 334

/SPECIAL CHARACTER TABLE=--
/ENTRIES IN THIS TABLE ARE TWO WORDS LONG:

/ (WORD 1)
/ (WORD 2)

-VALUE OF CHARACTER
JMP TO PROPER ROUTINE

/THE TABLE IS TERMINATED BY AN ENTRY OF 0.

KRTAB, o

JMP KRB1
-200s
JMP KRBl
-212;3
JMP KRB1
-215:
JMP KRCR
=377
JMP KRUB
]

PAUSE

14

/NULL -- IGNORE
/NULL =-- IGNORE
/LINE FEED =-- IGNORE
/CARRIAGE RETURN -~ EXIT

/RUBOUT -- DELETE CHARACTER
/DENOTES END OF TABLE.

Formerly
Digital-8-16-S

CHAPTER 7

MASTER TAPE DUPLICATOR/VERIFIER

7.1 ABSTRACT

This program duplicates and verifies 8-channel paper tapes using
a PDP-8 family computer with high-speed reader and high-speed punch.
The program uses the program interfupt and allows both the reader and

the punch to operate at maximum speed.

The program accumulates two types of checksums while reading and
punching: 1) the number of nonzero characters on the tape, and 2) the

sum of characters on the tape (both are taken modulo 4096).

When duplicating} the program compares the checksums at the end
b
of the tape with the checksums accumulated by the read routine. If
these differ, a reader error has occurred and a message is printed.
Tapes are verified by reading them and comparing accumulated checksums
with those at the end of the tape. Only master tapes produced by the
program can be duplicated. The master tape has the two checksums

punched at the end.

7.2 REQUIREMENTS
The program uses all of memory, except for the last page, as a
buffer.

The Master Tape Duplicator program runs on any PDP-8 family
computer with high-speed reader and high-speed punch. The program

tapes are as follows:

Binary DIGITAL-8-16-S-BIN
Source DIGITAL -8-16-S-ASC

7.3 USAGE

7.3.1 Loading
The program is loaded with the Binary Loader (see Introduction

7-1

to Programming or Programming Languages for details).

7.3.2 To Produce a Master Tape

A tape is read and duplicated by the punch. When the tape has
run out of the reader, the accumulated checksums are punched. The
tape that has been punched is the master tape used for duplication.
It should be compared against the original to ensure that the tape was

read correctly.

7.3.3 To Duplicate the Master Tape

The master tape that has been produced (see 7.3.2) is reproduced
by the punch. Checksums are accumulated by the read routine and are
compared with the checksums at the end of the tape. Checksums are
punched and are used for verification (see 7.3.4). If the master tape
is short enough to fit into the buffer, the program will notify the
operator that more copies can be made without rereading the master.

Blank tape is punched between copies.

7.3.4 Verify Duplication
Similar to duplication, but no punching takes place. Tapes are
read and the accumulated checksums are compared against the checksums

punched at the end.

7.4 OPERATION PROCEDURES

a. Set the SWITCH REGISTER to 200.

b. Press tlhe LOAD ADDRESS key; press the START key; the
program halts.

c. Set SWITCH REGISTER for the mode of operation as follows:

Bit 0 = 1 Make master tape
Bit 1 =1 Duplicate master tape
Bit 2 = 1 Verify duplication

d. Place tape in reader starting on blank tape (all modes of
operation must be started with blank leader tape in the
reader) .

e. Turn reader on. Turn punch on.
f. Press the CONTINUE key.

g. The program prints a message when the operation has been
completed and then halts.

7-2

h. Proceed from step (c) unless multiple copies are being
made.

7.5 DESCRIPTION

This program uses the program interrupt to keep the reader and
the punch running at full speed. The reader fills a buffer and the
punch punches from it. Checksums are accumulated by b»oth the reader

and the punch routines.

7.6 NOTE ON EXTRA BLANK FRAMES IN DUPLICATED TAPES

The Master Tape Duplicator does not check for extra blank frames
in the duplicate tape. A future version of this program will perform
such a check. Until this version is released, users with tape
Digital-8-16-S having difficulty with binary tapes which load and
verify properly but do not run properly should order tape and document
number 5-10 from the DECUS Program Library. The document is called
Paper Tape Reader Tester. It is a program for the PDP-5, but will run
on the PDP-8 and should be used as a second verifying operation.
Programs which are too long for the space left in core should be

broken into two or more shorter tapes for this operation.

7.7 PROGRAM LISTING

/COPYRIGHT 1971 0DIGITAL EQJIPLAENT CIORPOXATION
/ANYNARD S, MASSACHUSETTS

/TAPE DUPLICATOR FOR PDP-5/8

/ -DEC-1/15/65

/SINGLE BUFFERING-READ AND PUNCH UTILIZING
/PROGRAM INTERRUPT

/COMPUTE A CHARACTER COUNT AND CHECKSUM
/FOR EACH TAPE-COMPARE wITH CHECKS AT

/END OF TAPE

/CHECKS ARE ALSO COMPUTED DURING PUNCHING
/AND COMPARED

/THREE MODES OF OPERATION:

/A« SWITCH ©® ON~MAKE MASTER TAPE

/8B« SWITCH 1 ON-DUPLICATE MASTER TAPE

/Ce SWITCH 2 ON=-VERIFY DUPLICATION

/DURING DUPLICATION, THE PROGRAM WILL NOTIFY
/THE OPERATOR WHETHER OR NOT MORE COPIES
/CAN BE MADE WITHOUT RE-READING THE
/MASTER

/DEFINITIONS OF INTERRUPT LOCATIONS:

/FOR THE PDP-83 INTER=0

/FOR THE PDP-53 INTER=1

/PAGE 1

INTER=9Q

*INTER+ 1 :
aBv1 5820 JMP HNDL /HANDLE INTERRUPT
ABB2 0632 NPNT, DPRT
RON3 B6BB El, TES1
nanR4 @615 E2, TES2

¥16
P16 20083 NDXR» 7 /AUTO~-INDEX REGISTER
Q017 @708 NDXP» 4] /AUTO-INDEX REGISTER
P20 6011 HNDL, RSF
9221 7410 SKP
aB22 5431 JMP I READ /7750 CAUSED INTERRUPT
0023 6321 PSF
Ba24a 7419 SKP
P25 5434 JMP I PNC /75A PUNCH CAUSED INTERRUPT
ap26 4567 JMS I CRLF /EXTRANEQUS-CLEAR FLAGS
2927 2000 DSMS, 10N /ENABLE INTERRUPT
VA30 5400 JMP I INTER /RETURN
331 2093 READ, 2 /CALLED AS A
PR32 6014 RFC /SUBROUTINE TO PROVIDE
2833 58217 JMP DSMS /RETURN ADDRESS
BA34 DABA PNC, 2 /CALLED AS SUBROUTINE
@n35 6026 PLS /PROVIDES RETURN
Pa36 1230 CLA
0837 5827 JMP DSMS

P48 1417 PNCH, TAD I NDXP /GET NEXT CHARACTER

2041 7510 SPA ZIF IT IS 7777, IT

pp42 5570 JMP I PDUN /1S END OF TEXT

243 3143 DCA HLD2Z2

2044 1143 TAD HLD2

2045 7449 SZA

aB46 2145 137 ZROP /COUNT NON-ZERO CHARACTERS
@247 7000 NOP /MODULO 4096

nAasn 1147 TAD CHKP /ACCUMULATE SUM MODULO 4896
8851 3147 DCA CHKP

PRS2 1143 TAD HLD?2

Q353 4034 JMS PNC

P254 5040 JMP PNCH /G0 GET NEXT

2355 6812 RDIi, <RB /READ 758 BUFFER

7356 3142 DCA HLD1 /SAVE IT

@257 518S RST1, JMP FRST /0F "SCND™ OR "THRD"
D960 1142 TAD HLD1

261 1440 SZA

RR62 2144 [SZ ZROK /COUNT MODULO 4096

gA63 1040 NOP

PAG4 1146 TAD CHKR /ACCUMULATE SUM

2065 3146 DCA CHKR

2066 1169 TAD TIME /RESET END~OR-TAPE TIMER
pas7T 3157 DCA TIMR

QAT 7419 RST2, SKP

2871 5155 JupP VY

2872 1142 TAD HLD1 /GET CHARACTER

BwAT3 3416 DCA I NDBXR /PUT IN BUFFER

AaT4 2163 ISZ RCONT /1S BUFFER FuULL?

anTs 1419 SKP /NO

gn76 5571 JMP I FUL /YES

PATT 4331 JM5 READ /FETCH NEXT CHARACTER
3198 ~164 ISZ STRT /DELAY START OF PUNCHING
2181 5355 JMP RD1

D122 7249 CLA CMA

2183 3175 DCA SCON

B124 5349 JMP PNCH /START PUNCHING

2185 1142 FRST» TAD HLD1 /TEST TO SEE IF

126 1161 TAD TST1! /CHARACTER IS FIRST

P137T 7640 SZA CLA /IN CHECK-3UM IDENTIFIER
118 5050 JMP RST1+1 /IF IT IS~-SET SWITCH
2111 1153 TAD TRYZ2 /TO0 TEST FOR SECOND

#112 3057 DCA RST1 /CHARACTER NEXT

113 5369 JMP RST1+1

D114 1142 SCND» TAD HLD1 /CHECK FOR SECOND CHARACTER
#1115 1162 TAD TST2 ZIDENTIFIER - IF FOUND
116 7649 SZa CLA /TEST FOR THIRD NEXT
@117 5123 JMP e+ 4 /IF NOT», RESET FOR FIRST
D129 1154 TAD TRY3

0121 3057 DCA RSTI

#1222 59060 JMP RST1+1

2123
n124
aies
p126
B1217
7”130
2131
7132
2133
2134
D135
2136
0137
2149
1141
2142
7143
2144
72145
D146
D141
150
72151
A152
2153
2154
#2155
2156
3157
2160
D161

n162

B163
164
8165
D166
3167
0170
2171
a1ie
8173
2174
175
2176
21177

1152
5121

1142
1161

7640
5123
7240
3416
4541

3151

4541

3159
5540
P303
0565
0009
0000
0009
0000
2080
LLLL
n002
0000

5185
5114
5125
4031
5055
2000
00a0
7526

7653

2009
pR20
009
7410
2345
o232
¥328
2877
2002
DB2Y
AN0G
A371
aa02

THRD»

GET1,
HLD1,»
HLDZ2,
ZROR>
ZROP»
CHKR»
CHKP»
MZRO»
MCHK »
TRY 1,
TRY2>
TRY 3>,
VY

TIMR,
TIME,
TSTt,

TST2,

RCNT»
STRT»
NOPT.»
SKIP»
CRLF
PDUNS
FUL .,

BIT6,
DCON
UCNT»
SCON:
C377,
TWO»

TAD
JMP
TAD
TAD
SZA
JMP
cLA
DCA
JMS
DCA
JMS
DCA
JMP
SWT1
GET

[SS IR IS IS IS B I O I

JMP
JMP
JMP
JMS
JMp
2

]

TRY 1
=3
HLD1
TSTi
cLA
+=5
cMaA

I NDXR
I GETI1
MCHK

I GETI
MZRO

I «+}

FRST
SCND
THRD
READ
RD1

1526

7653

4]
]
NOP
SKP

CFLG

BF UL

o117

&

31717

Pea2

/TEST FOR THIRD CHARACTER
7/IN IDENTIFIER - IF FOUND

/READ CHECKS FROM TAPE
/IF NOT - RESET FOR FIRST

/SET END-OF PUNCH FLAG
/MEASURED CHECK-SUM

/MEASURED ZERO-COUNT

/GET 12-BIT WORD

/#0F NON=-ZERO READ
/#0F NON-ZERO PUNCHED
/CHECK SuUM - READ
/CHECK SUM = PUNCH

/ #0F NON-ZERO MEASURED
/CHECK SUM - MEASURED

/WHEN VERIFYING=-DON' START
/PUNCHING

/72'S COMPLEMENT 1ST AND
/ZTHIRD IDENTIFIER

/TWO'S COMPLEMENT OF 2ND
ZIDENTIFIER

/START OF PUNCHING FLAG

D220
9201
202
2293
a204
2205
P206
p2a7
2210
f211
g212
2213
2214
215
p21e6
B217
9229
nezl
neaza
p223
pe24
v225
p226
pe27
2239
7231
pa23e
2233
2234
n235
2236
7237
D240
f241
242
2243
pr4a4
h245
2246
R2417
7250
h251
gas2
2253
f254
n2s55
h256
0257
pee6a

7280
3174
7200
3144
3145
3146
3147
3173
6a12
6322
7200
3175
1152
3857
1166
3870
1166
3303
1341
3164
7402
71604
1904
7439
5259
1224
7430
1402
71004
7630
5241
T340
5224
1165
3323
1165
3379
1342
3336
5261
7239
1343
3336
3174
5261
1200
1344
3336
3174

*200

LOOP,

LOP1,

CRTE,

DUP»

CLA
DCA
CLA
DCA
DCA
DCA
DCA
DCA
RRB
PCF
CLA
DCa
TAD
DCA
TAD
DCA
TAD
DCA
TAD
DCA
HLT
CLA
RAL
SZL
JMp
KAL
SZL
JMpP
RAL
SZL
JMP
CMA
JMP
TAD
DCA
TAD
bCA
TAD
DCA
JMP
cLA
TAD
DCA
DCA
JMP
CLA
TAD
DCA
DCA

Z VCNT

ZROR

ZROP

Z CHKR

Z CHKP
DCON

SCON
TRY 1
RST1
SKIP
RS5TE
SKIP
SWT1
DLAY
Z STRT

NN N NN

OSR

CRTE

DuP

cLA
o+ 3

LOP1
NOPT
SWT1

Z NOPT
rRST2
VRPT
CONR
GO

CRPT
CONR

Z VOCNT
GO

DUPT
CONR
Z VCNT

7-7

/RESET VERIFY COUNT

/RESET PUNCHs READER
/COMPUTED CHECKS

/RESET BUFFER OVER FLAG
/CLEAR HARDWARE FLAGS

/RESET START PUNCH FLAGS
/SET PROGRAM SWITCHES

/SET START OF PUNCHING DELAY

/BIT @=1, CREATE MASTER
/BIT 1=1, DUPLICATE

/BIT 2=1, VERIFY
/ERROR SET C(ACY=T7777

/NQO PUNCHING - DON'T
ZWAIT FOR PUNCH

/7DON'T START PUNCHING

/SET-UP RETURN FOR END

/SET-UP RETURN FOR END

/SET-UP RETURN FOR END

9261
n262
p263
0264
B265
D266
D267
72210
p271
P272
¥273
B274
B275
Q276
2211
7300
3321
B382
23083
B304
@385
N306
2307
2318
311
a312
2313
w314
N315
B316
8317
2320
2321
9322
2323
D324
9325
9326

a327
23330

2331
n332
9333
D334
B335
7336
@337
B340
341
A342

4345
1337
30156
1337
30117
1340
3163
1333
3300
1160
3157
4031
5855
2157
5276
3290
12493
3416
7410
5736
1336
3179
1175
77100
5315
2009
1232
5313
1334
3060
5182
71240
3416
2173
1335
31790
5307
1341
3164
3175
6022
5262
7276
312
a326
D83
1263
1274
7760
D429

GO»

SAT,

SWT1,

BFUL»

FILL,

SA,

SAl,
RET»
CONR>
BUF »
OVR»
DLAY»
VRPT,

JMS CFLG
TAD BUF
DCA NDXR
TAD BUF
DCA NDXP
TAD OVR
DCA RCNT
TAD SA

DCA INTER
TAD Z TIME
DCA TIMK
JMS READ
JMP Z RDI1
152 Z TIMR
JMP -1
10F

CLA CMA
DCA I Z NDXR
SKP

JMP I CONR
TAD CONR
DCA PDUN
TAD Z SCON
SMA CLA
JMP o+ 4

[ON

CcLA

JMP =1
TAD SAl
DCA INTER
JMP Z FRST-3
CLA CMA
DCA I Z NDXR
I1SZ Z DCON
TAD RET
DCA Z PDUN
JMP BFUL-11
TAD DLAY
DCA STRT
DCA Z SCON
PCF

JMP GO+ 1
SAT

BFUL~6
FILL

]

X=1

X+210

1760

VRFY

/CLEAR FLAGS

/SET-UP BUFFER
/POINTERS FOR

/READ AND PUNCH

/SET BUFFER-FULL COUNT
ZINITIALIZE INTERRUPT

/SET END-OF-TAPE TIMEK
/START READING

/END-OF-TAPE

/SET END=-OF-PUNCHING FLAG
/0R NOP FOR VERIFY

/SET RETURN FOR PUNCH DONE

/DID WE START PUNCHING?

/NO -
/YES - WAIT FOR PUNCHING

/START PUNCHING

/BUFFER-FULL
/SET-UP END-OF-PUNCHING FLAG

/'FILL?

/ENTER WHEN BUFFER
/O0VERFLOWED AND HAS

/BEEN PUNCHED

/START OF BUFFER
/BUFFER-FULL COUNT
/DELAY START OF PUNCHING
/DONE POINTERS

3343
D344
d345
D346
02347
B350
7351
#352
8353
#354
29355
2356
B357
N360
2361
8362
B363

2400
2431
dapne
34033
Nad 4
ag4mBs
Ra06
a4N7
A419
gall
aa12
3413
Bat 4
2415
ga16
3417
2420
n421
B422
3423
BA24
A425
D424
na2i
5439
1431
3432
fN4a33
A43 4
J435
P4a36

404
B445

0o
6042
6472
6772
6562
6732
7320
1912
6722
1934
6702
6652
6534
6032
5745

2174
4433
5361
5351
4404
5345
4314
1327
30929
1325
4934
1326
4034
1325
4034
1146
1176
4231
1144
1177
4231
4314
1335
4734
5733
9.0
3143
1143
7912
14912
%12

CRPT,
DUPT>

CFLG»

PAUSE
* 400
VRFYs

CRET,

S5IX»

CRET
DUPL
)
TCF
5872
772
6592
6732

CLA CLL CML

RTR
6722
RAL
6702
6652
6534
AKCC
JMP

152
JMS
JMP
JMP
JMS
JMP
JMS
TAD
DCA
TAD
JMS
TAD
JMS
TAD
JMS
14D
TAD
JMS
TAD
14D
JMs
JMS
TAD
Ji S
JMP
V)

DCA
TAD
RTR
KTR
KTR

I CFLG

Z VCNT
I El
VER
VOK

I E2
MER
BLNK
HERE
INTER
i1

Z PNC
T2

PNC

T1

PNC
CHKR
c377
SIX

Z Zx0OR
Z TWO
SIX
BLANK
AD1

I PuNT
I LOP

Z HLD?Z
HLD2

7-9

/CLEAR FLAGS
/TELEPRINTER

/LIGHT PEN

/MICRO TAPE

/PLOTTER:

/DI SABLE ERF FLAG (57&)

/SET CCACY=2000

/DI SABLE WCO FLAG (57/)
/SET C(ACI=4200

/DI SABLE TCR FLAG (57A)
/LINE-PRINTER FLAG

/7133 ADC FLAG
/KEY-BOARD (AND AQ)

/COMPUTED VS MEASURED CHECKS
/VERIFY ERROR

/VERIFY OK

/COMPUTED VS PUNCHED

/MEMORY ERROR

/SET INTERRUPT POINTER
/PUNCH CHECK SUM
/IDENTIFIER CODES

/BIT PATTERN IS:
/12181010

/31218101

/712101010

/PUNCH CHECKS

/ALTER CHECKS

/PUNCH BLANK TAPE

/PUNCH NIMBER IN AC

/IN RINARY FORMAT

D437
D440
R441
D442
7443

Ba44
D445

B4a46
D447

N458
2451
0452
D453
V454

34595

R456
D457
B469
B4s1
D462
2463
D454
N465
B466

Dasd

0419
naii
B472
2473
2474
2475
476
naTT

569
0531
nsa2
7543
A574
7535
25836
A587
519
p511
As12
513

2172
4an34
1143
p172
4034
5631
4423

5347
4404

5345
1327
39292
1325
4334

1145

4231
1144
4231
4314
1173
71640
5356
1324
7642

>335

1336
4734
7492
7694
7941
3324
1332
3170

13642
3BT
3145
3147
5249
2324
7410
5356
1337
4734
1692
53920

DUPL»

GO1.,

TST4»

AND
JMS
TAD
AND
JMS
JdMpP
JMSs

JM P
JMS

JMP
TAD
DCA
TAD
Jus

TAD

JMS
TAD
Jus
JMS
TAD
SZA
JMP
TAD
SZA

JMP

TAD
JMS
HLT
cLA
cMA
DCA
TAD
DCA

TAD
DCA
DCA
DCA
JMP
52
SKP
JMpP
TAD
JMS
HLT
JMP

BITé
PNC
HLD2
BIT6
PNC
SIX
Z E1

e NN NN

RER
I z E2
MER
HERE
INTER

T1
Z PNC

Z CHKR

SIX

Z ZROR
SIX
BLNAK

Z DCON
cLA
DOK
DCNT
CLA

TS5T4

AD2
I PRNT

OSR
IAC
DCNT
HER1

Z PDUN

F
NDXP
ZrROP
CHKP
PNCH
DCNT

N INININ D

DOK
AD3
I PRNT
CLA
TST4-5

/COMPARE COMPUTED VS
/MEASIIRED CHECKS
/READER ERROR
/COMPARF. COMPUTED VS
/PUNCHED CHRCKS

/MEMORY ERROR

/PUNCH THIRD IDENTIFIER
/READER STOPPED WHEN THIRD
ZIDENTIFIFR

/HAS BEEN FOUND, IE IT IS
/NJT IN THF BJFFER

/PUNCH BLANK TAPE

/BUFFER OVERLAP-NO MORE DUP.

/STARTED MULTIPLE
/DUPLICATION??

/ZMULTIPLE DUPLICATION HAS
/STARTED

/READ NUMBER FROM SR

/SET RETURN FOR PUNCHING
/NDONE

/RESET BUFFER POINTER

/RESET PUNCH-COMPUTED CHECKS

/START PUNCHING
/ARE WE DONE YET?

/YES
/NO

/HALT
/MAKE NEXT COPY

D514
A515
4516
as17
2529
#5221
ase2
9523
9524
A525
2526
ns27
9539
N531
7”532
4533
@534
#4535
8536
2537
0540
8541
2542
8543
8544
2545
546
#8547
2550
@551
B552
3553
2554
#555
B556
8557
2560
9561
2562
2563
A564
#3565

0566
B567
2570
2571
as72
ns573
8574
72575
B¥576
B577

20080
1323
3157
4334
2157
5317
5714
1600
noao
nas52
2125
7530
7200
53348
B4a47
2202
673
B741
#7151
1007
1217
1026
1836
1345
1954
1342
5354
1343
5354
1174
4492
1340
4734
5733
1341
5354
1463
1174
4492
1344
5354
AANa

4931
6912
7126
7806
7206
3142
4231
6012
1142
5765

BLNK»

MCNT,
DCNT»
T1,
T2,
HERE,

HER1»
LOP»
PRNT»
AD1»
AD2,
AD3»
AD4,
ADS,
AD6»
AD7»
AD8,
MER,

RER>

VOK»

DOK»

BF»
VERS

%]
TAD
DCA
JMS
1Sz
JMp
JMP
71600
7/
ga252
p125s
HERE
CLA
JMP
GO1
LOOP
PRIN
TAB1
TAB2
TAB3
TAB4
TABS
TABS
TAB7
TABS8
TAD
JMP
TAD
JMP
TAD
JMS
TAD
JMS
JMP
TAD
JMp
X=1
TAD
JMS
TAD
JMP
]

JMS
RRB
CLL
KTL
RTL
DCA
JMS
RRB
TAD
JMpP

MCONT

Z TIMR
Z PNC
Z TIMR
=2

I BLNK

+1

o1

abs
VOK+3
AD7
VOK+3
Z VCNT
I NPNT
AD4

I PRNT
I LOP
ADS
VOK+3

Z VCONT
I Z NPNT

ADS
VOK+3

Z READ
RTL
Z HLDI]

Z READ

Z ALD1
I GET

/SUBROUTINE TO PUNCH
/BLANAK TAPE

/CODES FOR CHECK-SUM
/IDENTIFIERS

/MASTER CREATED
/PRINT TABLE
/PRINT TABLE
/VERIFY 0K

/DUP OK

/MEMORY ERROR
/READER ERROR
/VERIFY ERROR

/VERIFY OK

/7DUPLICATION OK

ZVERIFY OK

/ROUTINE TO READ 2-6 BIT
/CHARACTERS

2600

601
n6a2
N603
2634
605
696
86017
2619
0611
6612
#613
D614
BA15

P616
726117
0620
ne21
a622
v623
D624
n625
A626
9627
#6308
7631
p632

A633
P634

A635
B636

Nn637
2640
B641
P642
D643
D644
2645
2646
A6 47
2650
D651
a652
2653
D654
N655
656
D657
660
2661

DARG

7200
1144
7941
11560
71640
5600
1146
71341
1151
7650
2299
5620
A330

7290
1145
1041
1144
71640
5615
11456
1041
1147
1659
2215
5615
153510)

3143
3142
1264
3e72

1263
3245
7410
3143
7129
1143
7422
1430
2142
7430
5242
7200
1142
1271
4325
3142
2245
2272
3244

*600
TES1,

TES?2,

DPKRTs

XYZ,

7]

CLA
TAD
CMA

TAD
SZA
JMP
TAD
CMA
TAD
SNA
Is8Z
JMP

CLA
TAD
CMA
TAD
SZA
JMP
TAD
CMA
TAD
SNA
15z
JMP
0

bCA
DCA
TAD
bCA

TAD
DCA
SKP
bCa
CLL
TAD
TAD
SZL
I5Z
SZL
JMP
CLA
TAD
TAD
JMS
DCA
I57

157

JMpP

Z ZROR
IAC

Z MZRO
CLA

I TES1
Z CHAR
IAC

Z MCHX
cLA
TES1

I TES1

Z ZROP
IAC-
Z ZROR

CLA
I TES?

Z CHXRK
IAC

Z CHKP
CLA
TES?2

I TEs?

Z HLD?2
Z HLD1
CNTR
CNT

ADDR
XYZ+3

Z HLD2

Z HLD?2
CON

Z HLD1
XYz

Z HLD1
C26p
TYPE
Z HLDI1
XYZ+3
CNT
XYZ+2

/COMPARE READER COMPUTED
/SUMS

/TO MEASURED SUMS
/IF EQUALs> RETURN TO CALL+ 2

/OTHERWISE RETURN TO CALL+ !

/COMPARE PUNCH COMPUTED
/SUMS

/TO READER COMPUTED SUMS

/1F EQUAL, RETURN TO CALL+ 2
/OTHERWISE RETURN TO CALL+{

/CONVERT BINARY WORD IN AC

/TO 4 DIGIT UNSIGNED DECIMAL
/NUMBER AND TYPE IT

/IDENTICAL TO ROUTINE IN
/LT BKARY

p662 5632

D663 T422
664 17174
D665 603D
R666 1634
A667T T1766
a67d 1771
A671 Q260
a672 B9800
0673 0000
D674 3143
7675 1543
A676 7450
2677 5320
STRING

A788 1012
pIay 1812
arge 1912
p733 4310
B704 1543
A735 43103
B106 2143
p137 5275
@718 08849
B711 @172
9712 1334
713 17510
9714 1335
Bp715 1336
g7116 4325
@717 S710
p728 1337
@721 4325
@722 1349
p723 4325
7124 5673
2725 2000
N7126 6046
P727 6041
@730 5327
731 6042
P132 7200
7733 5725
A734 7740
p735 3100
B736 Y240
n737 9215
a740 0212
@141 1501

V742 2324
743 0522

ADDR,
CNTR»
CON,

260,
CNT,
PRIN,

GPRT»

CRo»

TYPE,

Mad,
Cc128.,
c2d0.,
CAR»
LF»
TAB1»

JMP
TAD
7774
6030
7634
7766
7777
n2e6n
)

2
DCA
TAD
SNA
JMP

RTR
RTR
RTR
JMS
TAD
JMs
157
JMP
a
AND
TAD
S5PA
TAD
TAD
JMS
JMP
TAD
JMS
TAD
JMS
JMP
7]
TLS
TSF
JMP
TCF
LA
JMP
7749
2100
D242
2215
pe12
1591
2324
7Bs22

I DPRT
CON

4 HLD2
I HLD2

CR

GPRT

1 Z HLD2
GPRT

Z HLD2
PRIN+2

Z BIT6
Ma0

C120
C2a0
TYPE

I GPRT
CAR
TYPE
LF
TYPE

I PRIN

I TYPE

/rROUTINE TO PRINT A STRING
/0F PACKED ASCII CHARACTERS
ZENTER WITH S.A. OF STRING

ZIN AC: EXIT ON 9 FLEMENT
/IN STRING

/AFTER TYPING CR-LF

/7THIS ROUTINE CONVERTS
/76BIT TO ASCLI

/TYPE CR-LF

/TYPE CHARACTER IN AC

/PRINT TABLES

NT744
D745
BT46
n147
27508
B7151

27152
A753
B754
d155
B7156
aA7TsS7
A7160
B761

D762
A763
D764
37165
27656
G757
27172
@771

31172
3773
a174
Ba7175
B176
ariri
1860
1991

1902
1043
1394
17385
1926
1207
1210
1911

1912
1213
1914
1915
1416
1317
1029
1821

1922
18923
1924
1A25

49033
2285

2124

3504
2920
2305
2440
2327
1124
23140
9523
4902 4
17409
1625
1582
ns522
aa17
2640
@317
2411
72523
4024
1740
P205
4915
9134
N540
2022
72523
2349
v317
1624
1116
2595
171010}
2022
9523
2340
@317
1624
1116
2505
ooy
4049
2605
2211
w631
4017
1340
anag

TABZ2»

TAB3,

TAB4»

4903
2295
B124
2504
9193917
2385
24439
2327
1124
#3198
9523
4024
17402
1625
1502
gsex
4817
3640
B317
2011
p523
4024
1749
a295
4915
7184
3540
2022
2523
234d
317
1624
1116
2525
s
2922
4523
2340
317
1624
1116
2595
BanNa
4049
2695
2211
7631
49017
1340
16351035

1826
1027
1932
17431
1832
1433
1334
1935
1935
1937
134
19241
1442
1943
1344
1845
1246
12414
1058
1351
19052
1253
1254
1355
1356
1057
1960
1061
1962
1363
1264

425
2014
1193
D124
1117
1649
1713
2080
1585
1517
2231
49095
222
1722
naAs
2285
21024
1522
4985
P222
172
2309
4340
2635
2211
9631
4285
2222
1722
0232
pABo

TABS,

TART,

TAB3»

X

8425
2014
1183
124
1117
1640
1713
4303015
1585
1517
2231
4095
2222
1722
2000
2295
2134
2522
4385
2e22
1722
Voo
4340
2605
2211
B631
4005
2222
1722
2032
(%]

/START OF BUFFER

Formerly
DIGITAL-8-12-U

CHAPTER 8

INCREMENTAL PLOTTER SUBROUTINE

8.1 ABSTRACT

The Incremental Plotter Subroutine moves the pen of a type
350 plotter to a new position along the best straight line. The

pen can be raised or lowered during the motion.
8.2 REQUIREMENTS
The subroutine requires one memory page of storage (128lo

or 2008
equipped with a type 350 Plotter Control and Plotter.

words). The routine works on any PDP-8 family computer

The routine is distributed as an ASCII source tape as fol-

lows:
Digital-8-12-U-ASCIT
8.3 USAGE
8.3.1 Loading and Assembly
The source tape as supplied has no origin setting and ends
with a PAUSE statement. This tape can be assembled with a user
program (which supplies an origin setting) or assembled by itself

(if a dollar sign [$] is supplied at the end of the tape).

The tape can be assembled with any of the PDP-8 family as-

semblers.

8-1

8.3.2 Calling Seguence

The plotter routine is called by executing a JMS PLOTX.
The contents of the accumulator specify the operation of the

subroutine as follows:

C(AC) = -1 The location registers internal to the
subroutine are reset to zero and the
pen is raised. Control returns to the
instruction following the calling JMS
instruction.

C(aCc) =0 The pen is lowered (if it was up) and
is moved to the new located as described

K below.
c(acy =1 The pen is raised (if it was down) and

is moved to the new location as described
below.

The two locations following the calling JMS instruction
contain, respectively, the new X coordinate and the new Y co-
ordinate in steps (these values must be less than 4096). The
pen is moved from the previous location to the new location
along the best straight line with the pen up or down depending
upon the contents of the accumulator when the subroutine is
called. Control returns to the instruction following the Y co-

ordinate.
8.3.3 Examples

Initialization of Plotter:

CLA CMA /AC = -1, INITIALIZE ROUTINE AND PEN UP

JMS I PLOT /JUMP TO PLOTX ROUTINE, PAGE INDEPENDENT

return /CONTROL RETURNS TO THIS ADDRESS
PLOT,PLOTX /CONTAINS ADDRESS OF PLOTX ROUTINE

Plot with Pen Down:

CLA /AC = 0, PEN DOWN
JMS I PLOT

X coordinate /MUST BE IN RANGE -4096<X<4096
Y coordinate /=4096<Y<4096
return

PLOT, PLOTX

Plot with Pen Up:

CLA IAC /JAC = 1, PEN UP
JMS I PLOT

X coordinate /~4096<X<4096

Y coordinate /=4096<Y<4096
return

PLOT, PLOTX

8.4 DESCRIPTION

The routine has two registers which contain the location of
the last position plotted. When the subroutine is entered, the
accumulator is tested to determine if initialization is being
performed; if so the location registers are set to zero, the pen
raised, and the subroutine exits. If the routine is not being
initialized, the subroutine compares the current pen position (up
or down) with the requested one and raises or lowers the pen if
appropriate. The new X and Y coordinates are retrieved from the
two locations following the calling JMS and placed in the location
registers. The X and Y difference between the current location
and the desired location are computed and compared. The subroutine
selects motion commands depending upon the gquadrant of the new '
location compared to the old. The possible motions are now parallel
to either the X-axis (drum motion) or the Y-axis (pen motion) or
a combined motion. The subroutine determines which of these motions

to use, and when the new location is reached, it exits.

0200
2201
@22e2
2203
a204
22085
2206
207
2210
0211
#8212
0213
2214
2215
@216
@217
2220
0221
@222
2223
8224
8225

0226

The X and Y coordinates are specified in numbers of steps.

Increasing X corresponds to lowering the drum. Increasing Y cor-

responds to moving the pen left.

The subroutine is limited by the speed of the plotter. The

minor subroutine, PLOTWT can be replaced, if necessary, by a

routine making use of the program interrupt.

8.5 PROGRAM LISTING

P00
7510
5229
1361
7112
7710
5227
7628
5214
3361
6504
5216
2361
6524
4370
5227
7208
6504
3361
3362
3363
4370
5600

/COPYRIGHT 1971 DIGITAL EJQJIPHMENT CORPURATION
/MAYNARDs MASSACHJSETTS
/DIGITAL 8~12-U

/PLOT SUBROUTINE
/CALLING SEQUENCE

/ C(ACY=-1; INITIALIZE
/ C(AC)= @3 PLOT WITH PEN DOWN
/ C(AC)= 13 PLOT WITH PEN UP
/ JMS PLOTX
/ X CO-ORDINATE (IN STEPS) (RETURN IF AC=-1)
/ Y CO~-ORDINATE (IN STEPS)
PLOTX,)]
SPA /MOVE THE PEN?
JMP PLOTA /NO: CONTINUE
TAD PLOTPN /ADD PEN STATUS
CLL RTR
SPA CLA /ANY CHANGE?
JMP PLOT1 /NO: CONTINUE
SNL CLA
JMP . +4 /LOWER THE PEN
DCA PLOTPN /RAISE THE PEN
PLPU
JMP L +3
I1SZ PLOTPN /LOWER THE PEN
PLPD
JMS PLOTWT /WAIT FOR FLAG
JMP PLOTY /CONTINUE
PLOTA, CLA
PLPU /RAISE THE PEN
DCA PLOTPN
DCA PLOTNX /8 TO X CO~ORDINATE
DCA PLOTNY /8 TO Y CO~ORDINATE
JMS PLOTWT
JMP I PLOTX

0227
2230
9231
2232
2233
2234
2235
0236
0237
2240
9241
0242
9243
0244
9245
8246
2247
2259
0251
9252
0253
@254
0255
2256
8257
2260
0261
0262
2263
0264
0265
8266
8267
2279
9271
2272
0273
0274

@275
B276
0277
300
2301
23p2
2303
B304
8325
306

1362
7141
1620
7420
7041
3364
7004
3367
1600
3362
2200
1363
7141
1620
7420
7041
3365
1367
7004
3367
1600
3363
2209
1364
7141
1365
7620
5275
1364
3366
1365
3364
1366
3365
7091
2367
1342
5380

1367
71182
1345
3366
1766
3340
1367
1350
3367
1767

/DIGITAL 8~12-U

/PAGE
/P1CK

PLOT1
ClaA
TAD
SNL
clA
DCA
RAL
DCA
TAD
DCA
152
TAD
CIA
TAD
SNL
CIA
DCA
TAD
RAL
DCA
TAD
DCA
ISZ
TAD
Cla
TAD
SNL
JMP
TAD
DCA
TAD
DCA
TAD
DCA
1AC
AND
TAD
JMP

2
UP ARGUMENTS

TAD PLOTNX /FETCH PREVIOUS X CO~ORDINATE
CLL
I PLOTX /FORM NX~NPX
/L=@: NXSNPX

PLOTDX /ABSOLUTE VALUE QOF DIFFERENCE

PLOTMV /SAVE SIGN BIT
[PLOTX /SET NEW
PLOTNX /PREVIOUS X
PLOTX /INCREMENT POINTER
PLOTNY /FETCH PREVIOUS Y CO-ORDINATE
CLL
I PLOTX /FORM NY=NPY
/<=8: NPYLNY

PLOTODY /ABSOLUTE VALUE OF DIFFERENCE
PLOTMV /SAVE SIGN BIT
/BIT 10(1)= DRUM=-DOWN(POSITIVE)
PLOTMV /BIT 11(1)=PEN-LEFT (POSITIVE)
I PLOTX /SET NEW
PLOTNY /PREVIOUS Y
PLOTX /INCREMENT POINTER
PLOTDX
cLL
PLOTDY
CLA /L=@: DELTA Y < DELTA X
PLOTZ2
PLOTDX /REVERSE NUMBERS
PLOTNA
PLOTDY
PLOTDX
PLOTNA
PLOTDY
/SET MAJOR MOTION
PLOTMV /INSTRUCTION
PLOTT1
+4

/DIGITAL 8-12-U

/PAGE

PLOT2,

CLL
TAD
DCA
TAD
DCA
TAD
TAD
DCA
TAD

3

TAD PLOTMV
RAR
PLOTT2
PLOTNA
I PLOTNA
PLOTA4
PLOTMY /SET COMBINED MOTION
PLOTT3
PLOTMYV
[PLOTMYV

8-5

2327 3331 DCA PLOTDB
2319 1364 TAD PLOTDX
2311 7110 CLL RAR
@312 3366 DCA PLOTNA
8313 1364 TAD PLOTDX
@314 7048 . CMa

8315 3367 DCA PLOTMV

2316 2367 PLOTS, ISZ2 PLOTMV
@317 7410 SKP
@320 5600 JMP 1 PLOTX /ALL DONE

@321 1366 TAD PLOTNA
#8322 1365 TAD PLOTDY
2323 3386 DCA PLOTNA
2324 1366 TAD PLOTNA

8325 7149 CMA CLL

8326 1364 TAD PLOTDX

0327 7638 SZL CLA

2330 5340 JMP PLOT4 /SINGLE MOTION
2331 @088 PLOTDB,) /COMBINED MOTION
2332 1364 TAD PLOTDX

8333 7041 CIA

0334 1366 TAD PLOTNA

2335 3366 DCA PLOTNA

2336 4378 JMS PLOTWT

@337 5316 JMP PLOT3

234p 0002 PLOTA4, 2

2341 5336 JMP -3

@342 9343 PLOTT1, o+l

8343 6511 PLPR /PEN-RIGHT
0344 6521 PLPL /PEN-LEFT
@345 @346 PLOTT2, o+l

9346 6512 PLOU /DRUM-UP
0347 6514 PLDD /DRUM~DOWN
0350 @351 PLOTT3, o+l

0351 6513 PLDU PLPR JUP=-RIGHT
2352 6523 PLUD PLPL /UP=LEFT
2353 6515 PLDD PLPR /DOWN=RIGHT
0354 4355 JMS L +1 /DOWN-LEFT
0355 0000 0

8356 6514 PLDD

2357 6521 PLPL

2368 5755 JMP I .-3

/DIGITAL 8-12-U
/PAGE 4

0361 02828 PLOTPN,
@362 Y028 PLOTNX,
0363 0Q¥¥@ PLOTNY,
0364 00¢8 PLOTDX,
@365 QU@ PLOTDY,
8366 BWP3 PLOTNA,
2367 02823 PLOTMY,

SN

2370
0371
8372
8373
2374

PLOTA
PLOTDB
PLOTDX
PLOTDY
PLOTMY
PLOTNA
PLOTNX
PLOTNY
PLOTPN
PLOTTL
PLOTT2
PLOTT3
PLOTWT
PLOTX
PLOTH
PLOT2
PLOT3
PLOT4

2BA0 PLOTWT,)
6501 PLSF

5371 JMP L -1

6502 PLCF

5770 JMP I PLOTWT

g220
2331
7364
2365
2367
#3366
2362
7363
2361
a342
@345
2358
2370
p2008
@227
2275
3316
2348

PAUSE

/WAIT FOR DONE FLAG
/NOT YET

/CLEAR FLAG

JEXIT

Formerly
Digital-8-28-U-Sym

CHAPTER 9

DECIMAL TO BINARY CONVERSION AND INPUT
(single Precision, Signed or Unsigned, 33-ASR)

9.1 ABSTRACT
This routine accepts a string of up to four decimal digits (single
precision for the PDP-8) from the Teletype keyboard and converts it to

the corresponding 2's complement binary number.

The string can contain as legal characters a sign (+,-, or space)
and the digits from 0 - 9. If the first legal character is not a
sign, the conversion is unsigned. A back arrow («) at any point in
the string erases the current string and allows the operator to reenter
the correct value. Any character after the first, other than another
digit or back arrow, causes the conversion to terminate and is found in

location SISAVE within the subroutine.

9.2 REQUIREMENTS
This subroutine requires 7410 (1128) core locations and runs on
any standard PDP-8 family computer with a 33-ASR Teletype console.

Program tape is labelled Single Precision Decimal Input,

Digital-8-28-U-ASCII

9.3 USAGE

9.3.1 Loading

The symbolic tape provided can be assembled with the user's main
program by PAL III, MACRO-8, or PAL-D. The symbolic tape has neither an
origin setting nor a terminating "$", but does have a PAUSE pseudo-

instruction at the end.

9.3.2 Calling Sequence
The subroutine is called by an effective JMS to location SICONV.
Return is to the location immediately following the calling JMS with

the binary number in the accumulator.

9-1

9.4 ERRORS IN USAGE

If a sign (+, -, or space) precedes the string of decimal
digits, the maximum decimal number correctly accepted is
2047 (2ll - 1). The sign, if any, must appear first. If a sign
does not precede the string of decimal digits, the maximum decimal
12 | 1). If either of these
maxima is exceeded, the results are unspecified.

number correctly accepted is 4095 (2

9.5 RESTRICTIONS

The status of the AC and link is not preserved.
This subroutine should not be used when the interrupt is on.

The magnitude restrictions on numbers are described in
Section 9.4.

9.6 DESCRIPTION

This subroutine converts to the bihary equivalent a signed or
unsigned string of decimal numbers read from the console keyboard
of the PDP-8. 1If a minus sign is specified, the results are in
2's complement negative form. The first character is examined and,
if it is a sign (+, =, or space), a switch is set to provide the
correct sign for the conversion. Regardless, a switch is set after
the first character to terminate conversion if a character other than
a decimal digit or rubout appears. If a back arrow appears at any
time, the conversion is reinitialized and the subroutine waits for

the correct entry.

The last four bits of the ASCII code for each of the decimal
digits are identical to the standard 8-4-2-1 BCD code. Thus, the
BCD digit is extracted from the 8-bit code by the AND instruction
with a "mask" of 178. When the first BCD digit comes in, it is
added to a cleared location (SJHOLD) in memory and stored back in
that location. When the next legal character comes in, location
SJHOLD is multiplied by 10, then added to the BCD code of the

character and returned to location STORE. This sequence holds

true for a decimal number of any arbitrary length.

9.7 EXAMPLE

Since the PDP-8 can add and shift easily, the multiplication
by 10 can be accomplished in three instructions. Since a shift left
is equivalent to a multiplication by 2, a double shift left is
equivalent to a multiplication by 4. Assume that the number currently
/in STORE is 5, and the new code just coming in is the number 1 stored
in HOLD. The program sequence to perform the multiplication and

storage is as follows:

Instruction

Seguence Comments Contents of AC
CLA
TAD STORE /Load C(STORE) into AC 000 000 000 101
CLL RTL /Multiply C(STORE) by 4 000 000 010 100
TAD STORE /Add STORE giving C(STORE) by 5 000 000 011 001
CLL RAL /Multiply by 2 giving C(STORE) by 10 000 000 110 010
TAD HOLD /Add in the next number 000 000 110 011
DCA STORE /Store back into STORE and return

to wait for next character 000 000 000 000
The number residing in location STORE is 00638 or 005110.

If the next number to come in were "9", using the same sequence
and conditions, the result would be 001 000 000 111, the binary
equivalent of 519.

9.8 SCALING
This subroutine assumes an integral decimal number (signed or

unsigned) and yields an integral binary equivalent (signed or unsighed

respectively).
9.9 FORMAT

9.9.1 Input
The input string may or may not contain a sign (+, -, or space).

9-3

Any character other than a sign, 0 - 9, or back arrow causes the

subroutine to terminate, as does a sign in any but the first position.

9.9.2 Cd}e Data

The terminating character is found in location SISAVE.

9.9.3 Output

Spacing, tabulation, carriage return, etc., are not provided

for in this subroutine. See Chapter 6 which contains short subroutines
for those purposes.

9.10

FLCW CHART

FIRST
CHARACTER
?

NO

v

Com D

INITIALIZE & ZERO

ASSEMBLY

LOCATIONS

ERASE NUMBER WAIT FOR
i INPUT FROM
KEYBOARD

YES A

BACKARROW
4

LESS
THAN 260

FIRST CHARACTER
IS A TERMINATOR

SET SIGN
INDICATOR
TO NEGATIVE

NUMBER
NEGATIVE
?

NO

FORM 2'S
COMPLEMENT

NUMBER IN AC

'

EXIT

C)

2

GREATER
THAN 271
2

MULTIPLY PARTIALLY
ASSEMBLED
NUMBER BY 10

'

ADD INCOMING
DECIMAL DIGIT

4

. ROGRAM LISTING] ~ } N | |
o F JCOPYRIGHT 1971 DIGIIAL TIJIPMENT CIRPORATIIN

/MAYNARDs MASSACHJISETTS

/SINGLE PRECISION DECIMAL INPUT FROM KEYBOARD
/CALLING SEQUENCE: JMS SICONV

/ACC IGNORED» RETURN WITH BINARY WORD IN ACC

p200 008 SICONV.]

0201 7300 CLA CLL

0202 1273 TAD SISET1 +1 /INITIALIZE PROGRAM SWITCHES

0203 3232 DCA SICTRL

P224 1273 TAD SISET! +1

p2Es 3224 DCA SIXSWI

0206 3310 DCA SIHOLD

2207 3311 DCA SINEGI /CLEAR NEGATIVE SWITCH

2210 5257 JUP SINPUT

@211 3387 SIPROC» DCA SISAVE

9212 1307 TAD SISAVE /STORE AND THE PROCESS
/CHARACTER

0213 1301 TAD SIRBUT

0214 7450 SNA /1S IT A "BACK- ARROW"
/CIE. ERASE) KEY

0215 5201 JMP SICONV +1 /YES, REINITIALIZE

@216 1302 TAD SIM260

0217 7510 SPA /1S IT LESS THAN 260
/CIE. "g™)

@220 5232 JMP SICTRL /YES. TRANSFER TO SEE WHAT
/CHAR. IT IS

@221 1303 TAD SIM271

0222 7740 SMA SZA CLA /1S IT GREATER THAN 271
/CIE. "9")?

p223 5232 JMP SICTRL /YES, TRANSFER TO SEE WHAT
/CHAR. IT IS

@224 730P SIXSW1, CLA CLL /NO, FIRST CHARACTER WAS A
/DECIMAL DIGIT

7225 1231 TAD «+4 /CLOSE SWITCH TO GO TO

p226 3224 DCA .-2 /'"SINMBR" NEXT

@227 1777 TAD SINMBR -1 /SET SWITCH TO SENSE
/TERMINATING CHAR.

0230 3232 DCA SICTRL

0231 5246 JMP SINMBR

@232 7300 SICTRL, CLA CLL /CONTINUE CHECKING

8233 1307 TAD SISAVE

@234 1304 TAD SIMSPC

0235 7450 SNA /1S IT A SPACE?

@236 5273 JMP SISET1 +1 /YES, SET SWITCH TO SENSE
/TERMINATING CHAR.

P237 1305 TAD SIMPLS

P240 7450 SNA /1S IT A "PLUS"?

@241 5273 JMP SISET1 +1 /YES, SET SW TO SENSE
/TERMINATING CHAR.

0242 1306 TAD SIMMNS

0243 7650 SNA CLA /IS IT A MINUS?

@244 5273 JMP SISETI /YES, SET NEGATIVE XSWITCH

/AND TERM. SWITCH

D245

D246

0247
B258
0251
pes2
p253
0254

P255
p256
0257
B260
D261
p26e
0263

B264
B265
0266

vee7
B9
peT1

gere
8273
8274
@275

pa2T16
02717

0309
2301
p302

V303

0304
0305

@306
0307

310
B311

5264

1310

7106
1310
7004
3310
1307
8300

1310
3310
6031
5257
6036
6046
5211

1300
1311
7010

1310
7430
7041

56080
2311
7300
1777

3232
5257

PO
7441
B257

7767

7540
1765

7776
PO00

PooYD
0Poo

JMP SIEND

SINMBR. TAD SIHOLD
CLL
TAD
RAL
DCA
TAD
AND

RTL
SIHOLD

SIHOLD
SI SAVE
SIMASK

TAD
DCA
KSF
JMP
KRB
TLS
JMP

SIHOLD
SIHOLD
SINPUT,
-1

SIPROC

/TERMINATING ROUTINE
SIEND» CLA CLL
TAD SINEGI!
RAR
TAD SIHOLD
SZL
CMA TAC
JMP
152
CLA
TAD

I SICONV
SINEG1
CLL
SINMBR =1

SISET1.»

DCA
JMP

SICTRL
SINPUT

/CONSTANTS AND VARIABLES
SIMASK. 17

SIRBUT> - 337

SIM260, 57

SiM271, -11
SIMSPC» -240
SIMPLS, -13
SIMMNS, -2

SISAVE» 9]
SIHOLD» %
SINEG1 -]
PAUSE

/NO> IT WAS A TERMINATING
/CHARACTER

/MULTIPLY CURRENT ASSEM-
/BLED NUMBER BY 10

/PICK UP CURRENT DIGIT
/MASK OFF THE HIGH ORDER
/BIT

/ADD TO ASSEMBLED
/STORE BACK 1IN

NUMBER
SIHOLD

/INPUT ROUTINE

/PUT NEGATIVE SWITCH INTO
/LINK

/IS THE LINK "1'"?

/YES, NUMBER NEGATIVE.
/CNOMPLEMENT

/RETURN»

/SET NEGATIVE SWITCH

/CLOSE SW TO TRANSFER TO
/TERM.

/CODE FOR ERASE
/NUMBER USED TO
/CODE "260"

/NUMBER USED TO
/CODE '"'271"

/CODE FOR SPACE
/NUMBER USED TO
/CODE '253" (+)
/NUMBER USED TO
/CODE '"'255" (=)
/STORAGE LOCATIONS

GENERATE

GENERATE

GENERATE

GENERATE

Formerly

Digital-8-29-U-Sym

CHAPTER 10
DECIMAL TO BINARY CONVERSION
AND INPUT
(Double Precision, Signed or Unsigned, 33-ASR)

10.1 ABSTRACT
This routine accepts aﬁd echoes a string of up to eight decimal
digits (double-precision for\the PDP-8) from the Teletype keyboard

and converts it to the corresponding two's complement binary number.

The string may contain as legal characters a sign (+, -, or space)
and the digits 0 - 9. If the first legal character is not a sign, the
conversion is unsigned. A "back-arrow" («) at any point in the
string erases the current string and allows the operator to re-enter
the value. Termination of input is accomplished by typing one illegal
character which will then be found in location DIDSAV within the sub-

routine.

10.2 REQUIREMENTS

This subroutine requires 110 (1568) core locations and runs on

10
any standard PDP-8 family computer with a 33-ASR Teletype console. The

paper tape is labelled Double Precision Decimal to Binary Conversion,

Digital-8-29-U-ASCII

10.3 USAGE

10.3.1 ILoading

The symbolic tape provided can be assembled with the user's
main program with PAL III, MACRO-8, or PAL-D. There is neither
origin setting nor terminating "$" on the symbolic tape, but a
\PAUSE pseudo-instruction is the last line on the tape.

10-1

10.3.2 Calling Sequence

The subroutine is called by an effective JMS to location DICONV.
The location immediately following the JMS instruction contains the
address of the location where the high-order portion of the number is
to be stored. (It is assumed that the low-order portion of the number
is in the location immediately following the high-order portion.)
Return is to the second location following the calling JMS with the AC
clear. For example:

JMS DICONV
ADDR
HLT

ADDR, g

g

10.4 ERRORS IN USAGE
If the string of decimal digits is preceded by a sign (+, -, or

space), the maximum decimal number that is correctly accepted is
16777215 (224 -1).

If neither of these maxima is exceeded, the results are

unspecified.

10.5 RESTRICTIONS

The status of AC and link is not preserved.
This subroutine should not be used with the interrupt on.
The magnitude restrictions on numbers is described in section 10.4

10.6 DESCRIPTION

The discussion, example, and scaling information about the
conversion are given in Chapter 9. The only difference is that the
multiplications by "4" and "2" are performed by the arithmetic shifts
as described in the section on Arithmetic Shift Subroutines in the
PDP-8 Math Routines writeup, DEC-08~FFAD-D.

Information on techniques used in this program can also be

found in Chapter 9 of this document.

10-2

10.7 FORMAT

10.7.1 Input Data
The input string may or may not contain a sign (+, -, or space).
Any character other than a sign, 0 - 9, or rubout causes the subroutine

to terminate as does a sign in any but the first position.

10.7.2 Core Data

The high-order portion of the binary equivalent of the number
is found in the location specified by the address following the JMS.
The low-order portion is found in the next successive location. This
is the format compatible with the double-precision, fixed point
arithmetic subroutines. The terminating character is found in location

DIDSAV.
10.7.3 Output Data
Spacing, tabulation, carriage return, etc., are not provided

for in this subroutine. See Chapter 6 which contains short sub-

routines for such purposes.

This subroutine is input limited at a maximum of 10 cps.

10-3

10.8

FLOW CHART

FIRST CHARACTER
IS A TERMINATING
CHARACTER

COMPLEMENT THE
DOUBLE-PRECISION
NUMBER

EGATIVE SWITCH
SET
?

THIS IS A
TERMINATING
CHARACTER

A

y

STORE RESULT IN
ADDRESS SPECIFIED BY
THE CALLING SEQUENCE]

A
EXIT

{ ENTRY ’

INITIALIZE PROGRAM
SWITCHES AND ZERO
LOCATIONS FOR HOLDING]
PARTIALLY-ASSEMBLED,
DOUBLE-PRECISION NO

\

PICK UP ADDRESS FROM
CALLING SEQUENCE FOR]
STORING DOUBLE —
PRECISION NUMBER

OPERATOR
ERASE

ERROR MADE

WISHES TO
NUMBER

WAIT FOR CHARACTER
FROM KEYBOARD
OR READER

SAVE INCOMING
CHARACTER IN
" DI DSAU"

PICK UP INCOMING
CHARACTER

GREATER
THAN 271
?

1S

switcH %

SET
?

y

10-4

SET
IiET NEGATIVE SWITCHI connoL
1 SWITCH

]

FIRST CHARACTER
WAS A DECIMAL DIGIT
SET SWITCH #1

SET
CONTROL
SWITCH

PICK UP PARTIALLY—
ASSEMBLED, DOUBLE~
PRECISION NUMBER

MULTIPLY BY FOUR
{IE DOUBLE SHIFT
LEFT TWICE)

ADD THE PARTIALLY —
ASSEMBLED, DOUBLE —
PRECISION NUMBER

MULTIPLY BY TWO
(1€ DOUBLE SHIFT
LEFT ONCE}

ADD THE INCOMING
DECIMAL DiGIT
TO THE RESULT

[STORE SUM AS THE NEW
PARTIALLY-ASSEMBLED,|
DOUBLE-PRECISION 'NO

Y

10.9 PROGRAM LISTING

/CIPYRIGHT 1971 DIGITAL £IJIPMENT CORPORATION
/AAYNARD s MASSACHJISET IS
/DOUBLE PRECISION DECIMAL-TO-BINARY CONVERSION AND INPUT

/CALI.ING SEQUENCE: /AC IGNORED
/ JMS DICONV /SUBROUTINE CALLED
/ ADDRES /ADRESS TO STORE HIGH-ORDER WORD
/ /LOW -ORDER WORD IN ADDRESS+1
0200 ©QQQ0 DICONV, @
@201 7300 CLA CLL /INITIALIZE PROGRAM SWITCHES
g202 1324 TAD DISET1+1
P23 3235 DCA DICTRL
p204 1324 TAD DISET1+1
@205 3227 DCA DIXSW1
0206 1600 TAD I DICONV /PICK UP ADDRESS TO STORE
/HIGH-ORDER WORD
0207 3351 DCA DIGET
p21p 3352 DCA DIHIHD /CLEAR LOCATIONS USED TO HOLD
/INCOMING
@211 3353 DCA DILOHD /NUMBER
g212 3347 DCA DINEG1 /CLEAR NEGATIVE SWITCH
@213 5275 JMP DIIN
@214 3350 DIPROC, DCA DIDSAV /STORE CHARACTER
@215 1350 TAD DIDSAV
g216 1341 TAD DIRBUT
0217 7450 SNA /1S IT A "BACK-ARROW'(IE. ERASE) KEY?
0220 5201 JMP DICONV+1 /YES, REINITIALIZE
g221 1342 TAD DIM260
g222 7510 SPA /1S IT LESS THAN 260 (IE. "@'")?
@223 5235 JMP DICTRL /YES> TRANSFER TO SEE WHAT
/CHARACTER IT IS
@224 1343 TAD DIM271
@225 7740 SMA SzA CLA /1S IT GREATER THAN 271 (IE. '"9'")?
9226 5235 JMP DICTRL /YESs, TRANSFER TO SEE WHAT

/CHARACTER IT IS
227 730p DIXSWl, CLA CLL /NO», FIRST CHARACTER WAS A DECIMAL DIGIT

230 1234 TAD «+4 /CLOSE SWITCH TO GO TO "DINMBR" NEXT

w231 3227 DCA .~-2

232 1258 TAD DINMBR-1 /SET SWITCH TO SENSE TERMINATING
/CHARACTER

233 3235 DCA DICTRL

pa34 5251 JMP DINMBR

@235 7200 DICTRL, CLA /CONTINUE CHECKING TO DETERMINE CHAR.

@236 1350 TAD DIDSAV

0237 1344 TAD DIMSPC

0249 7450 SNA /1S IT A "SPACE'?

@241 5324 JMP DISETI1+1 /YES, SET SWITCH TO SENSE TERM.
/CHARACTER

ga42 1345 TAD DIMPLS

Q243 7450 SNA /18 1T A "pPLUS"?

pa44 5324 JMP DISETI+1 /YES», SET SWITCH TO SENSE TERM.
/CHARACTER

10-5

2245
D246
o247

0250
8251

0252
2253
2254
2255
8256
257
260
peel
gae62
0263
0264
0265
0266
0267
0270
vaTl
ga7ie
0273
Q274

@275
paTé
0ar7
0300
2301

0302
@303
0304
0305
8306
2307
931@
0311
@312
0313

0314
0315
0316
0317

0320
p321l
@322
2323

1346
7650
5323

5302
1353

3354
1352
3355
4330
4330
1353
1354
3353
7004
1352
1355
3352
4330
1350
0340
1353
3353
7430
2352

6031
5275
6036
6046
5214

7200
1347
7110
1352
7430
T840
3751
1353
7430
7141

7430
2751
7000
2351

3751
2200
5600
2347

TAD
SNA
JMP

JMP
DINMBRs TAD

DCA
TAD
DCA
JMS
JMS
TAD
TAD
DCA
RAL
TAD
TAD
DCA
JMS
TAD
AND
TAD
DCA
SZL
152

DIMMNS

CLA /IS IT A

DISET!

DIEND
DILOHD

DIXTM1
DIHIHD
DIXTM2
DIDSPL
DIDSPL
DILOHD
DIXTM!
DILOHD

DIHIHD
DIXTM2
DIHIHD
DIDSPL
DIDSAV
DIXMSK
DILOHD
DILOHD

/DID IT

DIHIHD

/INPUT ROUTINE

DIIN, KSF
JMP
KRB
TLS
JMP

=1

DIPROC

/TERMINATING ROUTINE

DIEND., CLA
TAD
CLL
TAD
SZL
CMA
DCA
TAD
SZL
CLL

SZL
I15Z
NOP
157

DCA
I1sz
JMP
DISET!, 15Z

DINEGI1

"MINUS"?

/YES, SET NEGATIVE SWITCH AND TERM.
/SWITCH

/NO, IT WAS A TERMINATING CHARACTER

/STORE ASSEMBLED NUMBER
/TEMPORARILY

/JMULTIPLY CURRENT BY "1g"

/PICK UP CURRENT DIGIT
/MASK OFF HIGH-ORDER BITS
/ADD REMAINDER TO CURRENT NUMBER

OVERFLOW?
/YES, CORRECT HIGH-ORDER WORD

/PICK UP NEGATIVE NUMBER

RAR /PUT IT INTO LINK. ("1" IF NEGATIVE)

DIHIHD

/PICK UP HIGH ORDER PORTION

/IS LINK "1'?
S, NUMBER NEGATIVE. COMPLEMENT IT

/YE
I DIGET
DILOHD

/STORE IT
/PICK UP LOW-ORDER PORTION

/IS LINK "1"?

CMA IAC

/YES, TWO'S COMP.IT. IF OVERFLOW,
/LINK=1

/1S LINK "1"?

I DIGET

/INDEX HIGH-ORDER PRTION

/TAKES CARE WHEN HIGH-ORDER PORTION =0

DIGET

I DIGET
DICONV
I DICON
DINEG1

v

10-6

/INDEX POINTER FOR LOW-ORDER
/PORTION

/STORE LOW-ORDER POTION OF NUMBER
/INDEX FOR CORRECT RETURN

/RETURN

/SET NEGATIVE SWITCH

0324 7300 CLA CLL /CLOSE SWITCH TO TRANSFER TO TERMINATION

@325 1250 TAD DINMBR-1
0326 3235 DCA DICTRL
@327 5275 JMP DIIN /JUMP TO WAIT FOR NEXT CHARACTER

/DOUBLE PRECISION LEFT SHIFT (X2)
0330 @0P2 DIDSPL, 0

@331 1353 TAD DILOHD
0332 7104 CLL RAL
@333 3353 DCA DILOHD
@334 1352 TAD DIHIHD
@335 7004 RAL
@336 3352 DCA DIHIHD
337 5730 JMP I DIDSPL
/CONSTANTS AND VARIABLES
Q0340 @017 DIXMSK, 17 /MASK FOR LAST FOUR BITS
9341 7441 DIRBUT, -337 /CODE FOR ERASE
@342 B@57 DIM260, 57 /NUMBER USED TO GENERATE CODE ''26@"
9343 7767 DIM271, -11 /NUMBER USED TO GENERATE CODE '"271"
@344 7540 DIMSPC, -240 /CODE FOR SPACE
9345 17765 DIMPLS, -13 /NUMBER USED TO GENERATE CODE '"253" (+)
@346 17776 DIMMNS, -2 /NUMBER USED TO GENERATE CODE "255" (=)

@347 ©0@@ DINEGL, /STORAGE LOCATIONS
9350 000Q@ DIDSAV,
@351 ©@0@@ DIGET.

352 @@@@ DIHIHD,
9353 @@@@ DILOHD,
@354 @@0@ DIXTMI,

@355 0020 DIXTMZ2.,

SIS RO SSRGS RN

10-7

Formerly
Digital-8-10-U-Sym

CHAPTER 11
BCD TO BINARY CONVERSION, SINGLE PRECISION

(Binary Coded Decimal to Binary Conversion Subroutine)

11.1 ABSTRACT
This chapter presents a basic subroutine for converting binary-
coded~decimal numbers to their equivalent binary value. Conversion

is accomplished by "radix deflation".

11.2 REQUIREMENTS

This subroutine requires 23lo (278) memory locations and runs
on any standard PDP-8 family computer with a 33-ASR Teletype console.
The source paper tape is labeled BCD to Binary Conversion,

Digital-8-10-U-ASCII.
11.3 USAGE
11.3.1 Loading

Load the subroutine with the Binary or RIM Loader, as described

in either Introduction to Programming or Programming Languages.

11.3.2 Calling Sequence
Call with the number to be converted in the AC. Return will be
to the location following the calling JMS with the result in the AC.

11.4 DESCRIPTION
The method used is that of "radix deflation". Upon entry, the
BCD number may be considered to be in the following form:

2
(a) D, 16° + D, 16 + Dy

What is desired is the number in the form:

2
(b) D2 10™ + Dl 10 + D,

The PDP-8 can shift (rotate) and add. A right shift is equivalent to
a division by a power of two. An appropriate series of shifts,
additions, and subtractions is used to convert the number from the
form of (a) to that of (b).

11.5 EXAMPLE
Consider the BCD number

0101 0001 1001
representing the decimal number 519.
First the whole number is stored and then brought back into the
AC. Next, the four most significant bits are masked out. At this
point, the accumulator contains 16x16xA or
0101 0000 0000
A shift to the right of one bit yields

0010 1000 0000

This number is stored and then brought back to the AC, shifted right

two bits, and the stored value added as follows:

0000 1010 0000
0010 1000 0000

0011 0010 0000

Now the original number is added to this result

0011 0010 0000
0101 0001 1001

1000 0011 1001

and the most significant eight bits masked out as

1000 0011 - 0000

11-2

lThis is stored, brought back and shifted right once, and the stored
value added.

0100 0001 1000
1000 0011 0000

1100 0100 1000

Next the result of this addition is shifted right two places dividing
the number by four as follows:

0011 0001 0010

negated and the original number added

1100 1110 1110
0101 0001 1001

0010 0000 0111

This result represents in binary 512 plus 4 plus 2 plus 1 or 519,
the original number,

11.6 SCALING
This subroutine assumes an integral BCD number and yields an

intégral binary equivalent.

11.7 PROGRAM LISTING

A listing of the subroutine with BCDBIN located at 0200 is
given below. To simplify mnemonics.Dz, Dl, and D, have been replaced
respectively with A, B, and C.

11-3

2263
g264
2265
0266
- P2617
2270
p271
pa272
P273
paT4
P275
p276
g277
@3¢
2301
P32
V373
2304
P35
©l06
D307
231
2311
p312
¥313
2314

153u1010]
3314
1314
@311
77112
3313
1313
010
1313
7041
1314
3314
1314
Vo
7112
3313
131

T010
1371
7041
1314
5663
T400
7760
000
110Y430]

/C3P(RIGHT 1971
/MAYNARDS

DIGITAL ZAQJIPMENT CIORPORATIIN
MASSACHUSET S

/BINARY-CODED-DECIMAL TO BINARY CJOMVERS!ON SUBROUTINE

*263

BCDBIN.

LDIGIT>
MDIGIT>
COUNT>
TEMPH»

11.8 REFERENCES

11.8.1 DECUS Programs

2

DCA TEMPH
TAD TEMPH
AND LDIGIT
CLL RTR
DCA COUNT
TAD COUNT
RAR

TAD COUNT
CMA IAC
TAD TEMPH
DCA TEMPH
TAD TEMPH
AND MDIGIT
CLL RTR
DCA COUNT
TAD COUNT
RAR

TAD COUNT
CMA TIAC
TAD TEMPH
JMP I BCDBIN
7400

7760

2

]

/STORE INPUT

/160 H + 16 M + L

/60 H + 6 M

/EXIT

See DECUSOPE January 1965, article entitled "Accelerated Radix
Deflation on the PDP-7 and PDP-8".

11.8.2

ACKNOWLEDGMENTS

Mr. Donald V. Weaver, Consultant, of New York City, who first

described the algorithm used by this subroutine in reference 11.8.1

has granted his kind permission to include this subroutine in the

PDP-8 library so that a detailed description may be available.

11-4

Formerly
Digital-8-11-U

CHAPTER 12

BCD TO BINARY CONVERSION, DOUBLE PRECISION

(Binary Coded Decimal to Binary Conversion Subroutine)

12.1 ABSTRACT
This subroutine converts a 6-digit BCD number to its equivalent

binary value in two computer words.

12.2 REQUIREMENTS

This subroutine reéuires 89 (1318) memory locations and runs

on any standard PDP-8 with a 33—igR Teletype console. The source tape

is labeled Double Precision BCD to Binary Conversion,
Digital-8-11-U-ASCII

12.3 USAGE '

12.3.1 Loading
The subroutine is loaded with the Binary Loader. The symbolic
code is either assembled with the user program or separately with the

proper origin setting.

12.3.2 Calling Sequence

This subroutine is called with an effective JMS DOUBLE followed
by the address of the high-order word of the double-precision BCD
number. Control is returned to the following location with the high-
order part of the result in C(AC) and with the low-order part of the
result in C(LOW).

12.4 DESCRIPTION
Upon entry, the BCD number is in the form:

2 2
(16 D, + 16D, + D3),(l6 Dy + 16D5 + D6)

4

(each digit is 4 bits, 27 = 16)

12-1

Using the single precision BCD to binary subroutine, this is
reduced to:

2 2

(10 Dl + 10D2 + D3);(lO D, + 10D, + D6)

4 5

The high order part of the BCD word is effectively multiplied
by 1000 (=8(128 - 3)) and the low-order part is added, giving

5 4 3 2
10 Dl + 10 D2 + 10 D3 + 10 D4 + lOD5 + D6.

See Chapter 11.

12.5 EXAMPLES

GO, JMS I X
HIGH
HLT
X, DOUBLE
HIGH, 1001 1001 1001 1 999,999
LOW, 1001 1001 1001

If this program were started at GO, the C(AC) at the halt would

be 03648 and C(LOW) would be 1077 i.e., 03641077, = 999,999

8’ 8 10°

12.6 PROGRAM LISTING

/COPYRIGHT 1971 DIGITAL EZQJIPMENT COXRPORATIIN
/ZMAYNARD s MASSACHISZTTS
/DIGITAL 8-11-U-5YM

/DOUBLE PRECISION BCD TO BINARY CONVERSION
/CALLING SEZGUENCE:

/ JMS DOUBLE

/ ADDRESS OF HIGH ORDER ARGUMENT

/ RETURN: CC(ACY=HIGH ORDER PART

/ CC(LOW)> = LOW ORDER PART

/ALSO CONTAINS SINGLE PRECISION BCD TO BINARY
/CALLING SEQUENCE:

/ CcAC) = 3 BCD CHARACTERS
/ JMS BCDBIN
/ RETURN: ANSWER IN CCAC)

12-2

p2g® ©0oo® DOUBLE, 0@

9201 1300 CLA CLL
202 1600 TAD I DOUBLE /FETCH ADDRESS

p2p3 3271 DCA LOW1 / STORE

@204 2200 1SZ DOUBLE /INCREMENT RETURN
P25 1671 TAD I LOWI1 /FETCH HIGH ORDER

B206 42175 JMS BCDBIN /CONVERT IT

pe@7 3272 DCA HIGH1 /STORE

g210 2271 ISZ LOW1 /INCREMENT POINTER
g211 1671 TAD I LOW1 /FETCH LOW ORDER

p212 4275 JMS BCDBIN /CONVERT IT

@213 3271 DCA LOW1 /STORE IT

pe14 1272 TAD HIGH1

@215 7112 CLL RTR

9216 7012 RTR

@217 1010 RAR /JMULTIPLY HIGH ORDER

@220 3275 DCA BCDBIN /PART BY 128

p221 1275 TAD BCDBIN

222 9327 AND K177

9223 3274 DCA HIGH

p224 12175 TAD BCDBIN

@225 7010 RAR

g226 @325 AND K7600

p227 32173 DCA LOW ,

p23@ 1272 TAD HIGH1 /MULTIPLY HIGH ORDER
g231 7184 CLL RAL /BY THREE

p232 1272 TAD HIGHI1 /FORM 128%HI GH-3%HI GH
2233 7141 CIA CLL

p234 1273 TAD LOW

3235 3273 DCA LOW

g236 7428 SNL

P237 1040 CMA

0240 1274 TAD HIGH

241 3274 DCA HIGH 7/ 125%HI GH

P242 1274 TAD HIGH /NOW MULTIPLY BY 8
@243 7106 CLL RTL

P244 7004 RAL

P245 0326 AND K7770 /MASK 9 BITS

@246 3274 DCA HIGH

@247 1273 TAD LOW

9250 7106 CLL RTL

9251 7004 RAL

p2s52 3273 DCA LOW

@253 1273 TAD LOW

0254 1004 RAL

P255 @324 AND K7 /3 BITS

256 1214 TAD HIGH

257 3274 DCA HIGH

9260 1273 TAD LOW

9261 0326 AND K7770 /9 BITS

P262 7100 CLL

p263 1271 TAD LOW1 /ADD LOW ORDER PART
ge64a 3273 DCA LOW /STORE LOW ORDER PART

@265 1274 TAD HIGH

G266 7430 5ZL

g267 7001 IAC . /CARRY

0270 5600 JVYP I DOUBLE

12-3

271
p2712
0273
BeT4

P275
w276
0277
0300
0301
p302
0303
0304
P385
D306
B307
0310
0311
0312
2313
0314
8315
0316
B317
0320
0321
p322
9323
0324
0325
0326
B327
¥330

Voo
PBoo
voBY
DBBO

0DBno
3274
1274
9339
7112
3273
1273
7010
1273
1041
1274
3274
1274
0323
7112
3273
1273
7010
1273
7041
1274
5675
1760
voo7
1600
1770
177
7400

LOW1>
HIGH1.,»
LOW,
HIGH>»

/SINGLE
BCDBIN.

K7760>
K7,
K7600»
K7770,
K177,
K7400,

(SIS RSN

PRECI SION CONVERSION

%]
DCA
TAD
AND
CLL
DCA
TAD
RAR
TAD
cia
TAD
DCA
TAD
AND
CLL
DCA
TAD
RAR
TAD
CIA
TAD
JMP
7760
7
7600
7770
177
7400

HIGH
HIGH
KT7400
RTR
LOW
LOW

LOW

HIGH
HIGH
HIGH
K7760
RTR
LOW
LOW

LOW

HIGH
I BCDBIN

12-4

/LEFT DIGIT

Formerly
Digital-8-22-U-Sym

CHAPTER 13

UNSIGNED DECIMAL INTEGER PRINT
SUBROUTINE, SINGLE PRECISION

13.1 ABSTRACT
This subroutine permits the printing of the contents of a computer

word as a 4-digit, positive, decimal inteager.

13.2 REQUIREMENTS

This subroutine requires 38 (468) core locations and runs on

10
any standard PDP-8 family computer with a 33-ASR Teletype console. The

paper tape provided is labeled Unsigned Decimal Print Subroutine,

Digital-8-22-ASCII
13.3 USAGE

13.3.1 Loading
The subroutine can be placed in core by use of the Binary Loader.

See Introduction to Programming or Programming Languages for full

details. The symbolic tape provided is either assembled with the

user program or separately with the proper origin setting.

13.3.2 Calling Sequence

The subroutine is called by the usual JMS instruction with the
number to be printed in the AC. Return to the location following that
of the calling JMS.

13.4 DESCRIPTION

This is a basic subroutine used to obtain decimal output corres-
ponding to binary words in memory. The program operates in a straight-
forward manner. First the binary equivalent of 1000 is subtracted
from the original number until a negative result is obtained. A count
is kept of the number of subtractions necessary to accomplish this,

thus yielding the most significant decimal digit. This process is

13-1

repeated, using the proper power of ten, to give the three remaining

decimal digits.

13.5 METHOD
This method of binary to binary-coded-decimal conversion is
compact and easily understood, if not sophisticated. The latter con-

sideration is of little consequence, since the subroutine is output

limited.

13.6 OUTPUT DATA FORMAT
Output is in the form of four consecutive decimal digits. No

sign is printed. Spacing, tabulation, carriage return, etc. are not

provided in this subroutine.

N

13.7 PROGRAM LISTING

/COPYRIGHT 1971 DIGITAL EJJIPYMENT CORPORATION
/MAYNARDSs MASSACHJSETTS
/DIGITAL 8-22-U
/UNSIGNED DECIMAL PRINT
/CALL WITH NUMBER TO BE TYPED IN CC(AC)
/RETURN TO LOCATION FOLLOWING THE JMS
0200 ©BBB DECPRT., 2

0281 3243 DCA VALUE /SAVE INPUT

v2ge 3244 DCA DIGIT /CLEAR

203 1235 TAD CNTRZA

0204 3245 DCA CNTRZB /SET COUNTER TO FOUR:
0205 234 TAD ADDRZA

v2os 213 DCA ARROW /SET TABLE POINTER
2207 410 SKP

D210 3243 DCA VALUE /SAVE

g211 7109 CLL

212 1243 TAD VALUE

2213 1£36 ARROW, TAD TENPWR /SUBTRACT POWER OF TEN
8214 T438 SZL

D215 2244 ISZ DIGIT /DEVELOP BCD DIGIT
216 7430 SZL

B217 5219 JMP ARROW-3 /LOOP

B220 7200 CcLA /HAVE BCD DIGIT

vez1 1244 TAD DIGIT /GET DIGIT

222 1242 TAD K280 /MAKE IT ASCII

0223 6041 TSF /0R TAD DIGIT

ne24 5223 JMP .~1 / JMS TDIGITC(SEE 8-19-U
B225 6046 TLS /TYPE DIGIT

0226 1200 CLaA

13-2

pee7
0230
B231
ne32
0233
0234
0235
2236
0237
240
0241
242
0243
0244
0245

3244
2213
2245
5212
5600
1236
7774
6030
7634
7766
7777
p260
0ooo
B0
2000

ADDRZA,
CNTRZA.
TENPWR,

K26a,
VALUE»
DIGIT,
CNTRZB>»

DCA DIGIT
I1SZ ARROW
ISZ CNTRZB
JMP ARROW- 1
JMP I DECPRT
TAD TENPWR
- 4

-1750

-0144

-gn12

-9001

260

0

2

0

13-3

/CLEAR

/UPDATE POINTER
/DONE ALL FOUR?
/NO: CONTINUE
/YES: EXIT

/0NE THOUSAND
/0ONE HUNDRED
/TEN

/0ONE

Formerly
Digital-8-23-U-Sym

CHAPTER 14

SIGNED DECIMAL INTEGER PRINT
SUBROUTINE, SINGLE PRECISION

14.1 ABSTRACT

This subroutine permits printing the contents of a computer word
as a signed two's complement number. If bit 0 of the computer word
is a "1", the remaining bits represent a negative integer in two's
complement form; if bit 0 equals "O0", the remaining bits represent
a positive integer. If the number is negative, a minus sign is
printed; if positive, a space.

14.2 REQUIREMENTS
This subroutine requires 51lO (638) core locations and runs on
any standard PDP-8 family computer with a 33-ASR Teletype console.
The program is provided on a source tape labeled Signed Decimal Print,
Single Precision,
Digital-8-23-U-ASCII
14.3 USAGE

14.3.1 Loading

The symbolic tape provided is compatible with the PAL III, MACRO-8,
or PAL-D assemblers. It can be assembled with the user's program or
separately with the proper origin setting. Neither origin setting
nor "$" terminating character exists on the symbolic tape provided.

14.2.1 Calling Sequence

The subroutine is called by an effective "JMS SSPRNT" with the
number to be printed in the AC. The return is to the location follow-
ing that of the calling JMS. The contents of neither the AC nor the

link are preserved, and return is with both aétive registers clear.

14.4 DESCRIPTION

This is a basic subroutine to obtain signed decimal output
(integer format) corresponding to binary words in memory stored in
two's complement form. First, the number is sensed to determine if

it is positive or negative. If positive, a space is printed. If
14-1

negative, a minus sign is printed and the number complemented to form

the absolute value in two's complement.
followed as in the unsigned printout described in Chapter 13.

14.5 OUTPUT DATA
by either a space or minus sign.

return,
which contains details on subroutines for such purposes.

Then,

the same algorithm is

Output is in the form of four consecutive decimal digits preceded

etc.

are not provided in this subroutine.

routine is output limited at 10 cps by the 33-ASR.

14.6

FLOW CHART

THE NUMBER
NEGATIVE
?

SET LINK TO "1
FORM
ABSOLUTE VALUE

[STORE NUMBER AWAY1

'

INITIALIZE COUNTERS,
POINTERS AND DIGIT

STORAGE REGISTER

LOAD CODE
FOR "SPACE"
INTO AC

Spacing, tabulation, carriage

See Chapter 6,
This sub-

Luoou:v CODE TO ——]
]

g

I TYPE OUT CHARACTER]

PICK UP
CURRENT POWER
OF TEN

L INDEX DIGIT 1
[)

YES

14-2

X

SUBTRACT CURRENT
POWER OF TEN
FROM NUMBER

DIDIT
UNDERFLOW
?

LOAD GENERATED
DIGIT INTO AC

TYPE IT QUTY

HAVE
4 DIGITS
BEEN TYPED
?

YES

SUBROUTINE
FINISHED

!
C e)

INDEX INSTRUCTION
TO GET NEXT
POWER OF TEN

)

14.7 PROGRAM LISTING

0200
P21
par2
0203
0204
0205
Q206
a7
0210

galil
gaie
Pe13
g214

0215
0216
0217
0220
ga2l
gazez
B223
Ra24
@225
0226
va27
2230
0231

v232
2233
0234

@235
2236
0237
2240
0241
pa42
0243
D244

0008
7100
7510
7061
3253
3251
1250
3252
1244

3217
1246
7430
1247

4235
1253
1254
7510
5225
2251
3253
5216
7200
1251
4235
3251
2217

2252
5216
5600

0eoo
1245
6046
6041
5240
7300
5635
1254

/COPYXRIGHT 1971

/MAYNARD, MA3SACHUSETIS
/BINARY TO DECIMAL CONVERSION AND TYPEOUT
/SINGLE PRECISION
/CALLING SEQUENCE:
/ JMS SSPRNT /SUBROUTINE CALL

/RETURN. AC AND

SSPRNT», 0@
CLL
SPA
CML
DCA
DCA
TAD
DCA
TAD

DCA
TAD
SZL
TAD

JMS
SSXYZ» TAD
TAD
SPA
JMP
152
DCA
JMP
CLA
TAD
JMS
DCaA
152

152
JMP
JMP

DIGITAL EJJIAMENT CORPIRALITIIN

/AC CONTAINS BINARY WORD

L. CLEAR

/15 IS POSITIVE?

CMA IAC
SSVAL
SSBOX
SSCNTR
SSCNT
SSADDR

SSXYZ+1
SSPLUS

/1S THE
SSMNS

SSOuUT
SSVAL
SSCON
/1S THE

/NO>, SET LINK,FORM ABSOLUTE VALUE
/STORE NUMBER AWAY

/SET DIGIT LOCATION TO ZERO
/INITIALIZE OUTPUT COUNTER TO '"'4"

/INITALIZE INSTRUCTION TO GET
/FIRST 12

/GET CODE TO TYPE A "PLUS"
NUMBER NEGATIVE?

/YESs CHANGE CCDE TrF TYPE A
/UMINUS"

/TYPE IT OUT

/PICK UP NUMBER

/SUBTRACT CURRENT POWER OF 10
RESULT NEGATIVE?

«+4 /YES, INDEXING IS FINISHED

SSBOX
SSVAL
SS5XYZ

SSBOX
SSOuUT
SSBOX
SSXYZ+1

SSCNT
SSXYzZ
I SSPRNT

/TYPEOUT ROUTINE

SS0UT, @
TAD
TLS
TSF
JMP
CLA
JMP

SSADDRs TAD

SSTWO

«=1

CLL

I SSO0UT
SSCON

14-3

/NOs INDEX THE DIGIT LOCATION
/STORE REMAINDER IN SSVAL
/CONTINUE SUBTRACTING

/PICK UP THE DIGIT NUMBER
/TYPE IT OUT

/SET DIGIT COUNTER TO "g@"
/INDEX INSTRUCTION TO GET
/POWER OF 10

/HAVE WE TYPED "4" DIGITS
/NO, CONTINUE

/YES, RETURN

/INSTRUCTION TO PICK UP FIRST -
/POWER OF 10

@245
p246
oa4a7
2250
gasl
9252
0253

@254
2255
@256
0257

0260
7760
@015
7774
0000
2000
0000

6030
7634
7766
7777

SSTWO.
SSPLUS,
SSMNS.,
SSCNTR.
SSBOX.,
SSCNT.,
SSVAL.,
/TABLE
SSCON»

260 /BASIC CODE FOR DIGITAL OUTPUT
-20 /NUMBER USED TO GENERATE '"SPACE"
15 /NUMBER USED TO GENERATE "MINUS"
-4 /COUNT OF "4 DIGITS
2 /STORAGE REGISTERS
2
2
OF POWERS OF 10
6030 /=-1000
7634 /-100
7766 /=10
7777 /-1

14-4

Formerly

Digital-8-24-U-Sym

CHAPTER 15

UNSIGNED DECIMAL INTEGER PRINT
SUBROUTINE, DOUBLE PRECISION

15.1 ABSTRACT

This subroutine permits printing a double-precision integer stored
in the usual convention for double-precision numbers*. The one excep-
tion is that all 24 bits are interpreted as magnitude bits (i.e.,
the bit "0" of the high-order word is not a sign bit). The printout
is in the form of an eight-digit, positive, decimal integer.

15.2 REQUIREMENTS
This subroutine regquires 7310 (1118) locations and runs on any

standard PDP-8 family computer with a 33-ASR Teletype console.

The source tape is labeled Unsigned Decimal Print, Double
Precision,
Digital-8-24-U-ASCII

15.3 USAGE

15.3.1 Loading

The symbolic tape provided can be assembled with PAL III, MACRO-8,
or PAL-D. It can be assembled with the user program or separately
with the proper origin setting. Neither origin setting nor "$"
terminating character exists on the tape; the tape does have a PAUSE

statement on the end.

15.3.2 Calling Sequence
This subroutine is called by an effective JMS UDPRNT. The

location immediately following the calling JMS contains the address

*For details on storage of double-precision numbers, see the Math
Routines writeup available from the PDP-8 Program Library, section
on Double Precision Signed Multiply Routine.

15-1

of the high-order portion of the double-precision integer stored in

the usual double-precision format.

15.4 DESCRIPTION

This is basic double-precision subroutine used to obtain
decimal output corresponding to double-precision binary words.
First, the binary equivalent of 10,000,000 is subtracted from the
original number until under-flow occurs. A count is kept of the
number of subtractions necessary to accomplish this, thus yielding
the most significant decimal digit. Then this digit is added to 2608
and printed on the 33-ASR through the AC. This process is repeated

using the proper power of ten to give the seven remaining digits.
The numbers are interpreted and printed as integers.
See Chapter 13 for a discussion of the techniques used.

15.5 FORMAT

15.5.1 Core Data

The double-precision integers are stored in the usual double-
precision format, with the exception that bit "0" of the high-order
word is interpreted as part of the number not a sign bit.

15.5.2 Output Data

Output is in the form of eight consecutive decimal digits. No
sign is printed. Spacing, tabulatio~, carriage return, etc., are
not provided for in this subroutine. See Chapter 6 which contains

details on short subroutines for such purposes.

This subroutine is output limited at 10 cps by the 33-ASR.

15-2

15.6 FLOW CHART

‘ ENTRY ,

A

PICK UP ADDRESS OF
HIGH ORDER WORD FROM
CALLING SEQUENCE

Y

PICK UP DOUBLE
PRECISION NUMBER FOR
USE IN SUBROUTINE

INITIALIZE COUNTERS,
POINTERS AND STORAGE
REGISTERS

PICK UP CURRENT
POWER OF TEN FOR
USE IN SUBTRACTION

INDEX DIGIT

PERFORM DOUBLE
PRECISION SUBTRACT
FROM NUMBER

DID IT

YES
UNDERFLOW

?

STORE REMAINING
PORTION OF DOUBLE
PRECISION NUMBER

PICK UP
GENERATED DIGIT
TYPE IT OUT

HAVE
8 DIGITS BEEN

INDEX TO PICK UP
NEXT POWER OF TEN.
PUT DIGIT COUNT
TO ZERO

TYPED OUT
?

SUBROUTINE
FINISHED

{ EXIT }

15-3

15.7 PROGRAM LISTING

22929
0291
0292

2293
2204

0205
P2v6
2207
0210
2211
9212
B213
B214
215

217
2220
p221
p222
p223
B224

p225
B226
pe27
2230
2231
B232
0233
0234
2235

D299
730390
16913

3267
1667

32561
2267
1667
3262
1255
3269
1256
3279
2200

1672

2272
3263
1670
2272
3264
7103

1264
1262
32456
7304
1263
1261
7423
5242
2265

3261

/C32YRIGHT 1971
/M YNARDs MASSACHUSETTS

DIGITAL £3JIPMENT CORPORATION

/UNSIGNED DECIMAL PRINT, DOUBLE PRECISION

/CALLING SEQUENCE:

4 RETURN

UDPRNT » 2
CLA CLL
TAD I UDPRNT

DCA UDGET
TAD I UDGET

DCA UDHIGH
1SZ UDGET
TAD I UDGET
DCA UDLOW
TAD UDLOOP
DCA UDCNT
TAD UDADDR
DCA UDPTR
ISZ UDPRNT

UDARND» TAD I UDPTR

1SZ UDPTR

DCA UDHSUB

TAD I UDPTR

1SZ UDPTR

DCA UDLSUB
unbo. CLL

TAD UDLSUS
TAD UDLOW
DCA UDTEML
RAL

TAD UDHS3SUB
TAD UDHIGH
SNL

JMP UDOUT
I1SZ UDBOX

DCA UDHIGH

15-4

JMS UDPRNT /SUBROUTINE CALLED
/ HI ADDR

/ADDRESS OF HIGH ORDER
/WORD

/RETURN WITH AC AND L
/CLEAR

/PICK UP ADDRESS OF
/HIGH-ORDER WORD

/PICK UP BOTH WORDS FOR
/USE IN SUBROUTINE

/INITIALIZE DIGIT COUNTER
/FOR 8"

/INITIALIZE TO TABLE OF
/POWERS NF TEN

/INDEX LINKAGE FOR CORRECT
/RETURN

/PICK UP CURRENT

/POWER OF TEN FNR

/USE IN SUBTRACTION

/DOUBLE PRECI SION
/SUBTRACTINN

/DID IT UNDERFLOW?

/N0Q», COUNT IS DONE

/YES, COUNT NOT DONE YET.
/INDEX DIGIT

/DEPOSIT REMAINING PORTIONS

/70F WORD

0237
P240
D241

p242
P243
P244
P245
D246
D247
2259
p251
p252
0253
2254

8255
2256

0257
0269
P26 1
p262
0263
0264
0265
D266
2267
9272
2271
p272
0273
g274
0275
0276
82717
2320
9331
0302
¥393
B304
0305
02336
0337
0310

1266
3262
5224

7200
1265
1257
6346
60341
5246
71320
3265
2250
5216
5690

7778
2271

D260
4k01930)
514191
2020

R 716Y41Y)

0329
0RO
bood
0000
00Bo
3166
4620
7413
6733
1747
4540
7775
4360
7777
6030
7777
7634
1777
7766
7777
7777

UubnouT.»

UDLOOP,»
UDADDR

UDTWO.,
UDCNT>
UDHIGH »
UDLOW >
UDHSUB»
UDL SU3,
UDBOX»
UDTEML»
UDGET»
UDPTR>
UDCON1.»

PAUSE

TAD
DCA
JMP

CLA
TAD
TAD
TLS
TSF
JMP
CLA
DCA
15z
JMP

UDTEML
UDLOW
ubbo

UDBOX
UDTWO

-1
CLL
UbBOX
UDCNT
UDARND

JMP I UDPRNT

-10
unco

o)}
[&N]

QI[N

w
—
[opY
(o)

4690
7413
6720
1747
4540
7775
4360
7777
6030
1777
71634
7777
7766
17717
7777

N1

15-5

/G0 BACK AND SUBTRACT
/AGAIN

/PICK UP RESULTING DIGIT
/ADD "260" TO IT
/TYPE IT OUT

ZINITIALIZE DIGIT TO "@"
/JHAVE WE TYPED 8" DIGITS.
/ND, DETERMINE NEXT DIGIT
/YES, SUBROUTINE DONE.
/RETURN

/COUNT OF "g" DIGITS
/INITIAL ADDRESS OF
/POWERS NF TEN

/ICODE FOR DIGITS
/STORAGE LOCATIONS

/POWERS OF TEN
/-10,000,000
/-1,000,000
/-100,0009
/-10,000
/-1,020

/=100

/-10

/-1

Formerly
Digital-8-25-U-Sym

CHAPTER 16

SIGNED DECIMAL INTEGER PRINT

SUBROUTINE, DOUBLE PRECISION

16.1 ABSTRACT

This subroutine permits printing the contents of two consecu-
tive computer words as one signed double-precision two's complement
number. If bit 0 of the high order word is a "1", the remaining
23 bits represent a negative integer in two's complement form; if
bit 0 equals "0", the remaining bits represent a positive integer.
If the number is negative, a minus sign is printed; if positive, a

space.

16.2 REQUIREMENTS
This subroutine requires 86lO (1268) core locations and runs on

any standard PDP-8 family computer with a 33-ASR Teletype console.

The source tape supplied is labeled Signed Decimal Print Double
Precision,
Digital-8-25-U-ASCII

16.3 USAGE

16.3.1 Loading

The symbolic tape provided is compatible with PAL III, MACRO-8,
and PAL-D assemblers. It can be assembled with the user's program
or separately with the proper origin setting. Neither origin setting
nor "$" terminating character exists on the symbolic tape provided,

but a PAUSE pseudo-instruction is the last line on tape.

16.3.2 Calling Sequence

The subroutine is called by an effective JMS SDPRNT. The
location immediately following the calling JMS contains the address
of the high-order portion of the signed, double-precision integer

which is stored in the usual double-precision format. For example:

l6-1

JMS SDPRNT
ADDR
HLT
ADDR, @123
4567

16.4 DESCRIPTION

This is a basic subroutine to obtain signed decimal output corres-
ponding to a double-precision binary word storage in two consecutive
locations in memory. First, the binary number is sensed to determine
if it is positive or negative. If positive, a space is printed. 1If
negative, a minus sign is printed, and the number complemented to form
the absolute value. Then the same algorithm is followed as in the

unsigned double-precision printout described in Chapter 15.
The numbers are interpreted and printed as integers.
16.5 FORMAT

16.5.1 Core Data
The double precision integers are stored in the usual signed, double-
precision format (see the Double Precision Signed Multiply section of the

Math Routines writeup, available from the PDP-8 Program Library.

16.5.2 Output Data

Output is in the form of seven consecutive decimal digits preceded
by either a space or a minus sign. Spacing, tabulation, carriage
return, etc., are not provided in this subroutine. See Chapter 6 which
contains details on subroutines for such purposes. If the user wishes
to print a "+" sign instead of a space, he can change the contents of
location SDPLUS from "-15" to "-2",

This subroutine is output limited at 10 ¢ps by the 33-ASR.

16-2

16.6

FLOW CHART

(ENTRY)

PICK UP ADDRESS OF
H!GH — ORDER WORD

y

PICK UP DOUBLE
PRECISION NUMBER FOR
USE IN SUBROUTINE

y

INITIALIZE COUNTERS
AND POINTERS

PICK UP CURRENT
POWER OF TEN

INDEX DIGIT

Y
PERFORM DOUBLE

PRECISION SUBTRACT
FROM NUMBER

YES DIDIT

UNDERFLOW
?

STORE REMAINING
PORTION OF DOUBLE
PRECISION NUMBER

PICK UP
GENERATED DIGIT

TYPE IT QUT

HAVE

7 DIGITS BEEN NO

INDEX TO PICK UP
NEXT POWER OF TEN.
PUT DIGIT COUNT
T0 ZERO

TYPED OUT
?

SUBROUTINE
FINISHED

(EXIT >

16-3

16.7 PROGRAM LISTING
/COPYRIGHT 1971 DIGITAL EQJIPMENT CORPORATION

D200
201
a2

0203
0204
8205
26
0207
2210
g2l
gele
0213
0al4a

, 8215

v216
a1
022
gaz21
paea
gaz3
gaz4
pa25
226

pee7
@230
2231

232
0233
0234
@235
2236
0237
0240
pa4al
pa42
8243
Baaq
0245
0246
Ba247
0250

Voo
7300
1600

3307
1707
7700
1276
1277
4264
1707
7510
7060
3301

2307
1707
7430
7141
7430
2301
3302
1273
3300
1274

3318
2200
1710

2310
3303
1710
2318
3304
7100
1304
1302
3306
T004
1303
1301
7510
5255
2305

/MAYNARDS

MASSACHJSETTS

/SIGNED DECIMAL PRINT, DOUBLE PRECISION

/CALLING SEQUENCE:

/
/
SDPRNT.

SDARND>

SDDO s

JMS SDPRNT /SUBROUTINE CALLED

HIADDR /ADDRESS OF HIGH ORDER WORD
RETURN /RETURN WITH AC AND L CLEAR

]
CLA
TAD

DCA
TAD
SMA
TAD
TAD
JMS
TAD
SPA
cMA
DCA

15Z
TAD
SzL
CMA
SZL
157
DCA
TAD
DCA
TAD

DCA
15z
TAD

152
DCA
TAD
15z
DCA
CLL
TAD
TAD
DCA
RAL
TAD
TAD
SPA
JMP
I1s5Z

CLL
I SDPRNT /PICK UP ADDRESS OF
/HIGH-ORDER WORD
SDGET
I SDGET /PICK UP HIGH-ORER WORD
CLA /IS IT NEGATIVE?
SDPLUS /NO, GENERATE CODE FOR SPACE
SDMNS /YES, GENERATE CODE FOR "MINUS"
SDTYPE /TYPE IT OUT
I SDGET /PICK UP HIGH-ORDER WORD AGAIN

/1S 1T POSITIVE?
CML /NO, COMPLEMENT ITe. SET LINK

SDHIGH /STORE POSITIVE WORD FOR USE IN
/SUBROUTINE
SDGET
I SDGET /PICK UP LOW-ORDER WORD
/1S LINK SET?
CLL IAC /YES, FORM TWO'S COMPLEMENT
/DID AC OVERFLOW FROM ''IAC'"?
SDHIGH /YES, CORRECT HIGH-ORDER WORD
SDLOW /STORE POSITIVE LOW-ORDER WORD
SDLOOP /INITIALIZE DIGIT COUNTER TO '7"
SDCNT
SDADDR /INITIALIZE POINTER TO TABLE OF
/POWERS OF TEN
SDPTR
SDPRNT /INDEX LINKAGE FOR CORRECT RETURN
I SDPTR /PICK UP POWER OF TEN FOR USE IN
/SUBTRACT
SDPTR
SDHSUB
I SDPTR
SDPTR
SDLSUB
/DOUBLE PRECISION SUBTRACTION
SDLSUB
SDLOW
SDTEML
SDHSUB
SDHIGH
/DID IT UNDERFLOW?
SDOUT /NO, COUNT IS DONE
SDBOX /YES, COUNT NOT DONE. INDEX DIGIT

l6-4

9251

gase

9253
2254
2255
2256
0257
2260
ges6l
va262
0263
264
0265
g26é6
0267
0270
2271
a2
Q273
B274
0275
0276
2277
0300
0301
@382
@383
B304
23@5
B306
@307
@310
2311
B312
@313
2314
@315
0316
@317
2320
2321
@322
2323
@324
@325
2326

3301

1306

3302
5237
7200
1385
4264
3385
2300
5231

5600
DoRo
1275
6846
6041

5267
7300
5664
7771

@311

D260
7763
7775
0000
Qoo
a)a)axa)
436361
0000
oo
2000
Q000
2000
7413
6700
7747
4549
7775
4360
7777
6030
7777
7634
7777
7766
77717
7777

SDOUT.

SDTYPE,

SDLOOP.,
SDADDR.
SDTWO»
SDPLUS.
SDMNS »
SDCNT.»
SDHIGH.,
S5DLOW,
SDHSUB.»
SDL SUB.,
SDBOX.
SDTEML.
SDGET.
SDPTR.»
SDCONL»

16-5

DCA SDHIGH /DEPOSIT REMAINING HIGH-ORDER
/PORTION

TAD SDTEML /RESTORE REMAINING LOW-ORDER
/PORTION

DCA SDLOW

JMP SDDO /GO0 BACK AND SUBTRACT AGAIN

CcLA ’

TAD SDBOX /PICK UP RESULTING DIGIT

JMS SDTYPE /TYPE IT OUT

DCA SDBOX /INITIALIZE DIGIT TO "g"

1SZ SDCNT /JHAVE WE TYPED "7'" DICGITS

JMP SDARND /NO, DETERMINE NEXT DIGIT

JMP I SDPRNT /YES, SUBROUTINE DONE. RETURN

2 /TYPEOUT ROUTINE

TAD SDTWO

TLS

TSF

JMP .-1

CLA CLL

JMP I SDTYPE

-7 /COUNT OF SEVEN DIGITS

SDCONL /INITAL ADDRESS OF POWERS OF TEN

260 /BASIC CODE FOR DIGITS

-15 /"SPACE". TO TYPE '"+",REPLACE BY "-2"

_3 /IIMINUS"

2 /STORAGE LOCATIONS

]

]

]

2

]

2

]

2

7413 /TABLE OF POWERS OF TEN

6700 /-1,000,000

7747 /~100,000

4540

7775 /=~10,000

4360

7777 /~15,000

6030

7777 /=100

7634

7777 /=10

7766

777 /-1

7777

Formerly
Digital-8-14-U-Sym

CHAPTER 17

BINARY TO BCD CONVERSION

(Binary to Binary Coded Decimal Conversion)

17.1 ABSTRACT
This subroutine provides the basic means of converting binary
data to binary-coded-decimal (BCD) data for printing, magnetic tape

recording, etc.

17.2 REQUIREMENTS

This subroutine uses 33 (418) storage locations and runs on

any standard PDP-8 family coiguter with a 33-ASR Teletype console.
The source tape provided is labeled Binary to Binary Coded Decimal
Conversion,
Digital-8-14-U-ASCII
17.3 CALLING SEQUENCE
The subroutine is called by the JMS instruction. When called, the

binary number to be converted must be in the accumulator (AC).

The subroutine returns to the instruction immediately following
the calling JMS with the BCD result in the AC.

17.4 DESCRIPTION
Reference to the Flow Chart (Figure 17.1) illustrates this dis-

cussion.

On input the binary number is stored, a pointer is initialized,
the 1link is cleared, and a counter to control the number of passes
through the computation loop proper is properly set.

The loop is now entered, and is repeated eight times.

The binary equivalents of 800, 400, 200, 100, 80, 40, 20, and 10

are subtracted successively from the original binary number.

17-1

After each subtraction, a test on the link is made. If the result
of the test shows the link to be 0, the next lower equivalent is
subtracted from the same quantity after the contents of the links (0)
are shifted into the developing BCD number (Location NUMBER) .

If the subtraction leaves a negative link, the contents of the
accumulator replace the binary representation currently being processed
after the contents of the link (1) have been shifted into the growing
BCD number.

After eight passes through the basic loop, the developed BCD
representation is shifted left four bits and the "residual" least
significant digit is added before exit.

17.5 EXAMPLE

As an example consider the conversion of the binary equivalent
of 512 decimal:

Link Addition
001 000 000 00O

110 011 100 000 -800
0 111 011 100 000

001 000 000 000
111 001 110 000 -400
1 000 001 110 000

000 001 110 000
111 110 001 000 -200
0 111 111 111 000

000 001 110 000
111 110 011 100 -100
1 000 000 001 100

Notice that the remainder is the binary representation of 12
decimal. Writing the link bits in the order they are developed gives

0101 the BCD character denoting 5.

17.6 SCALING
The original hinary number must be no larger than 999 (decimal)

which is equivalent to 1747 (octal). The binary point is assumed to
be at the extreme right end of the word (to the right of bit position

11) and the decimal point is also so positioned.

17-2

In other words, this subroutine converts binary integers to BCD
integers.

Note that the subroutine is designed for positive input only!

ENTER

DATA —& INPUT
(CONTROL)-» POINTER
cLL
{COUNT) & AC
A
(AC)-NUMBER
TAD INPUT
POINTER TAD TABLE
SZL
(L)=0 (L)=1
(AC) - INPUT
CLA
A
TAD NUMBER
CLL RTL
RAL
CLL RTL
1SZ POINTER
TAD INPUT
JMP I BCD
SNL RETURN
(L)=0 (L)=t
JMP POINTER.-2

Figure 17.1 FLOW CHART

17-3

17.7 PROGRAM LISTING
A listing of the program with BCD located in 0200 appears as follows:

/COPYRIGHT 1971 DIGITAL EJJIPAENT CORPORATIIN
/MAYNARD, MASSACHUIETTS

/BINARY TO BCD CONVERSION 3/6/765-HB-DEC

/ENTER WITH BINARY NUMBER (<9359(18))

/IN ACCUMULATOR: EXIT WITH THREE CHARACTER
/BCD NUMBER IN ACCUMULATOR

/AC ©@-35 AC 4-75 AC 8-11 WILL CONTAIN

/THE BCD CHARACTER ON EXIT

/WEIGHTING: AC -3 100
/ AC 4-7 10
/ AC 8-11 1
/STORAGE 33C(18) REGISTERS

/TIME=216.0-235.2 MICRO-3ECONDS PDP-~8
/ZIF INPUT >999 (1@) PRSULT IS UNSPECIFIED

200 VI3 BCD.,]
P221 3226 DCA INPUT /STORE BINARY
p292 1225 TAD CONTRL /SET UP TABLE
02093 3210 DCA POINTR /POINTERS
D204 7100 CLL
P235 1230 TAD COUNT /SET BIT 7=13 8RAL'S
p2Rs 3227 DCA NJMBER ZWILL PUT IT IN LINK
2P1T 12254 TAD INPUT
218 1231 POINTR, TAD TABLE /0R TABLE+1, TABLE+2, ETC.
211 7432 SZL /IF C(LY)=1, INPUT>-TABLE
g212 3226 DCA INPUT /IF SO: INPUT=INPUT+TABLE
p213 17200 CcLA
g214 1227 TAD NUMBER
0215 7004 RAL /7PUT THIS BIT IN ANSWER
216 2210 15Z POINTR /UPDATE TABLE POINTER
217 7429 SNL /IF LINK=1, ALL DONE
0223 5236 JMP POINTR-2
g221 7186 CLL RTL /CONVERTED 2 BCD
p222 1085 RTL /CHARACTERS
0223 1226 TAD INPUT /SHIFT LEFT AND ADD
0224 5690 JMP I BCD /THE THIRD
225 1231 CONTRL, TAD TABLE
@226 ©@OB@ INPUT, ¢
0227 @@V NUMBER: 2
0239 ©B228 COUNT., BR20Y
231 6340 TABLE, -1440 /-800C10)
2232 7160 -gs27 /- 400
0233 74790 -0310 /-200
0234 17634 -0144 /=100
@235 7669 -9120 /-80
236 7730 -0059 /- 40
237 1754 ~0024 /-20
B248 1766 -po12 /-10

/EXAMPLE: INPUT 8726 (8)

/ OUTPUT D100/2111/0000 = 470 (1@

17-4

Formerly
Digital-8-15-U-Sym

CHAPTER 18

BINARY TO BCD CONVERSION (4-DIGIT)

(Binary to Binary Coded Decimal Conversion, 4-Digit)

18.1 ABSTRACT

This subroutine extends the method used in Chapter 17 so that
binary integers from 0 to 4095 contained in a single computer word
may be converted to four binary-coded-decimal characters packed in

two computer words.

18.2 REQUIREMENTS

This subroutine uses 53lO (658) storage locations and runs on any
standard PDP-8 family computer with 33-ASR Teletype Console. The
source tape provided is labeled Binary to Binary-Coded-Decimal Conver-
sion (Four Digit),

Digital-8-15-U-ASCII

18.3 CALLING SEQUENCE

This subroutine is called by the JMS instruction with the binary

number to be converted in the accumulator (AC).

This subroutine returns to the location immediately following
that containing the calling JMS. The format of the result is discussed

below.

18.4 DESCRIPTION

This program is essentially Digital-8-14-U-ASCII (described in
Chapter 17) extended to allow for integers in the range of 1000 to
4095.

18.5 CORE DATA

Results appear in core as:

Word ONE Word TWO
06012..5678. .11 o012..5678. .11
0 000 10{0 00000 0 0/0 10 oio Ofl 0 00

BA BA BA BA]

18-1

The decimal coding for 2048 is illustrated.

18.6 IBM COMPATIBILITY
Note that bits 0, 1 and 6, 7 are set so that they can be regarded
as zone B and zone A bits required for IBM BCD mode compatible 6-bit

numerical characters.

In this mode of recording, the character 1010 is used for zero
instead of code 0000 which this subroutine produces. Therefore, to
use this routine in conjunction with IBM-compatible mag tape recording,
it is necessary to write a short auxiliary routine to make this sub-

stitution.

It may also be necessary to generate the even parity required by

such recording if this is not accomplished in the tape control hardware.

18.7 PROGRAM LISTING

/CORYRIGHT 1971 DIGITAL £2JILMEINT CORPORATION
MAYNARD S MASSACHJISETTS

/BINARY TO BCD CONVERSION 3/7/65-HB-DEC

ZENTER WITH BINARY NUMBER IN ACCUvVMULATOR

ZEXIT WITH 4 SIX-BIT BCD CHARACTERS

/PACKED TWO TO A WORD IN REGISTERS

/0NE AND TWO OR IN A BUFFER-.

/USED FOR WRITING MAG-TAPE IN BCD FORMAT

/IN ADDITION TO BCD PARITY

/0UTPUT FORMAT:

/ ONE @-1 A>B BITS

/ ONE 2-5 1828 DECADE -

/ ONE 6-7 A>B BITS

/ ONE 8-11 109 DECADE

/ TWO ©-1 AsB BITS

/ TWO 2-5 10 DECADE

/ TWO 6-7 A>B BITS

/ TWO 8-11 1 DECADE
/STORAGE =53 (1@) REGI STERS

/TIME 324.8-350+.4 MICRO-SECONDS PDP-8

18-2

v20v
2201
0292
0203
D234
D285
D26
0207
2210
g211
p212
0e213
p214
2215
216
0217
0220
el
gez2
0223
p224
9225
0226
B227
0239
P231
0232
9233
2234

@235
B236
2237
p240

g241
p242
0243
B244
2245
246
p247
p250
251

0o2P
3223
1225
3240
1226
4234
1106
4234
1232
3232
1227
4234
7106
71006
1006
1223
1233
3231
5600
o822
1414}08]
1252
1910
D400
PeoD
P020
a0
oYY
o00

7100
3224
1223
1252

7430
3223
71209
1224
1004
2240
7430
5634
5236

BCD»

INPUT>
NUMBER»
CONTRL »
COUNT 1.,
COUNTZ2,
ONE>»

TWO»

BITS1.,
BITSZ,
STEP,

POINTR>

]

DCA INPUT
TAD CONTRL
DCA POINTR
TAD COUNTI1
JMS STEP
CLL RTL
JMS STEP
TAD BITS1
DCA ONE
TAD COUNT2
JMS STEP
CLL RTL
RTL

RTL

TAD INPUT
TAD BITS2
DCA TWO
JuMP I BCD
]

]

TAD TABLE
1918

2402

[SESESEORS]

DCA NUMBER
TAD INPUT
TAD TABLE
DCA INPUT
TAD NUMBER

ISZ POINTR

JvP I STEP

JMP POINTR-2

18-3

/STORE BINARY
/SET UP TABLE
/POINTER

/SET COUNT
/CONVERT

/CONVERT NEXT

/A>B BIT PATTERNS

/0R DCA I AUTO C19-17)
/SET-UP COUNT

/LEAST SIGNIFICANT BITS
/A58 BIT PATTERMS

/0R DCA I AUTO C1@-17)
JEXIT

/0R ANY BIT PATTERN
/0R ANY BIT PATTERN
/ACTUAL CONVERSION
/SUBRNUTINE

/0R TABLE+1, TABLE+2, ETC.

/ IF CCLY)=1;3; INPUT>-TABLE
/IF SO: INPUT=INPUT+TABLE

/7ROTATES WILL BRING
/COUNT BIT INTO LINK

/STEP DONE

P252
0253
P254
@255
9256
p257
P260
p261
p262
P263
P264

0140
4060
6030
6340
7160
7470
1634
7660
1730
7754
7766

TABLES

/EXAMPLE:
/
/

-7649
-3720
-1750
- 1440
~0620
-0310
-0144
-0120
-P950
-0024
-go12
INPUT
OUTPUT:

17717
ONE
TWO

/-4000 C10)

8>
P0 0100/ B0 BBOO
20 1061/ 00 0101

=4095 (1

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes software newsletters for the various DIGITAL products.
Newsletters are published monthly, and keep the user informed about cus-
tomer scoftware problems and solutions, new software products, documenta-
tion corrections, as well as programming notes and techniques.

There are two similar levels of service:

. The Software Dispatch
. The Digital Software News

The Software Dispatch is part of the Software Maintenance Service. This
service applies to the following software products:

PDP-9/15
RSX-11D
DOS/BATCH
RSTS-E
DECsystem~10

A Digital Software News for the PDP~11 and a Digital Software News for
the PDP-8/12 are available to any customer who has purchased PDP-11 or
PDP-8/12 software.

A collection of existing problems and solutions for a given software
system is published periodically. A customer receives this publicaticn
with his initial software kit with the delivery of his system. This
collection would be either a Software Dispatch Review or Software Per-
formance Summary depending on the system ordered.

A mailing list of users who receive software newsletters is also main-
tained by Software Communications. Users must sign-up for the news-
letter they desire. This can be done by either completing the form sup-
plied with the Review or Summary or by writing to:

Software Communications
P.O0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to DIGITAL's software should be reported
as follows:

North and South American Submitters:

Upon completion of Software Performance Report (SPR) form remove last
copy and send remainder to:

Software Communications
P.O0. Box F
Maynard, Massachusetts 01754

The acknowledgement copy will be returned along with a blank SPR form
upon receipt. The acknowledgement will contain a DIGITAL assigned SPR
number. The SPR number or the preprinted number should be referenced in
any future correspondence. Additional SPR forms may be obtained from
the above address.

All International Submitters:

Upon completion of the SPR form, reserve the last copy and send the re-
mainder to the SPR Center in the nearest DIGITAL office. SPR forms are
also available from our SPR Centers.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In the
United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation

Software Distribution Center Software Distribution Center
146 Main Street 1400 Terra Bella
Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computers Users Society, maintains a user ex-
change center for user-written programs and technical application infor-
mation. The Library contains approximately 1,900 programs for all
DIGITAL computer lines. Executive routines, editors, debuggers, special
functions, games, maintenance and various other classes of programs are
available.

DECUS Program Library Catalogs are routinely updated and contain lists
and abstracts of all programs according to computer line:

. PDP-8, FOCAL-8, BASIC-8, PDP-12
. PDP-7/9, 9, 15
. PDP-11, RSTS-11

PDP-6/10, 10

Forms and information on acquiring and submitting programs to the DECUS
Library may be obtained from the DECUS office.

In addition to the catalogs, DECUS also publishes the following:

DECUSCOPE ~The Society's technical newsletter, published bi-monthly,
aimed at facilitating the interchange of technical in-
formation among users of DIGITAL computers and at dis-
seminating news items concerning the Society. Circula-
tion reached 19,000 in May, 1974.

PROCEEDINGS OF ~Contains technical papers presented at DECUS Symposia
THE DIGITAL held twice a year in the United States, once a year
EQUIPMENT USERS in Europe, Australia, and Canada.

SOCIETY

MINUTES OF THE -A report of the DECsystem-10 sessions held at the two
DECsystem-10 United States DECUS Symposia.

SESSIONS

COPY-N-Mail -A monthly mailed communique among DECsystem-10 users.
LUG/SIG -Mailing of Local User Group (LUG) and Special Interest

Group (SIG) communique, aimed at providing closer
communication among users of a specific product or
application.

Further information on the DECUS Library, publications, and other DECUS
activities is available from the DECUS offices listed below:

DECUS DECUS EUROPE

Digital Equipment Corporation Digital Equipment Corp. International
146 Main Street (Europe)

Maynard, Massachusetts 01754 P.0O. Box 340

1211 Geneva 26
Switzerland

PDP+~8 Family
Commonly Used Utility Routines
DEC=8I-RZPA~D

READER'S COMMENTS
NOTE: This form is for document comments only. Problems
with software should be reported on a Software

Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material is missing and where should it be placed?

Please cut along this line.

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience
Student programmer

O
O
;|
O
U
O

Nen-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

If you do not require a written reply, please check here. []]

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

	RIM Loader
	Binary Loader
	RIM Punch
	Binary Punch
	Octal Memory Dump
	Teletype I/O Subroutines
	Master Tape Duplicator/Verifier
	Incremental Plotter Subroutine
	Decimal to Binary Conversion and Input
	Decimal to Binary Conversion and Input
	BCD to Binary Conversion Single Precision
	BCD to Binary Conversion Double Precision
	Unsigned Decimal Integer Print Single
	Signed Decimal Integer Print Single
	Unsigned Decimal Integer Print Double
	Signed Decimal Integer Print Double
	Binary to BCD Conversion
	Binary to BCD Conversion (4-Digit)

