digital equipment corporation

industrial

DEC-S8-0SIBA-A-D

0S/8 Industrial BASIC

For additional copies, order No. DEC-S8-0OSIBA-A-D
from Software Distribution Center, Digital Equipment
Corporation, Maynard, Mass.

digital equipment corporation - maynard. massachusetts

Printed October, 1973
Reprinted July, 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright © 1973, 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC rs/s
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB~8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB~K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC~8 0s/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

CONTENTS

CHAPTER 1 INTRODUCTION TO OS/8 INDUSTRIAL BASIC

HARDWARE REQUIREMENT

DOCUMENTATION CONVENTIONS
Underlining
Carriage Return
Blank Spaces
Control and Shift Characters
Terminals

LOADING AND RUNNING 0S/8 INDUSTRIAL
BASIC

Gaining Access to BASIC

Entering the New Program

Executing the Program

Correcting the Program

Interrupting Executing of the Program

Leaving the Computer

Example of 0S/8 Industrial BASIC Run

0S/8 INDUSTRIAIL BASIC OVERVIEW
General System Description
0S/8 Industrial BASIC Statements and
Commands

W NN
* o e o o
Ut W=

e o o o o o o
e o o s o o o
SO W N

b Wwwwwww

el I e el el el el I g S

N =

CHAPTER 2 0S/8 INDUSTRIAL BASIC ARITHMETIC

NUMBERS
VARIABLES

ARITHMETIC OPERATIONS
.1 Priority of Arithmetic Operations
o2 Parentheses
.3 Relational Operators
.4 Rules for Exponentiation

CHAPTER 3 0S/8 INDUSTRIAL BASIC STATEMENTS

STATEMENT NUMBERS
REMARK -- THE COMMENTING STATEMENT

STATEMENTS FOR TERMINATING A PROGRAM
END
STOP

LET -- THE ASSIGNMENT STATEMENT

INPUT/OUTPUT STATEMENTS AND FUNCTIONS
The INPUT Statement
The PRINT Statement

e o & o o
U & Www N
°«

[S

WWww Ww www w w

)
N

iii

| ot

ey
NN NDNDNON

I T N T VR W Sy e

=)} Ay i b bwWWN

=

PoT
AU b BB W

WWww Ww wWww w

CHAPTER

CHAPTER

CHAPTER

. ¢ o o s o o
« o o o o o
woNDD N

o o o o
=W N

WWww W w Wwwwww

WL ~J & Lkt

N

o

4,1

5.1
5.2

[=)]
* & o o . o o L]
=

* & 8 & ¢ ®

AN AN OOV D
« o o o 0
(S VI S

. o o

Babd WWLWWWW DD

N -

[+)}
.
w

General
Format Control Characters
Printing Numbers
PRINT Used with INPUT
The TAB(X) Function
The PNT(X) Function

THE READ AND DATA STATEMENTS
RESTORE

CONTROL STATEMENTS
GOTO
IF~THEN and IF-GOTO

LOOPS

FOR AND NEXT STATEMENTS

NESTING LOOPS

LISTS AND TABLES

SUBSCRIPTED VARIABLES
THE DIM STATEMENT

0S/8 INDUSTRIAL BASIC FUNCTIONS AND
SUBROUTINES

GENERAL INFORMATION ON OS/8 INDUSTRIAL
BASIC FUNCTIONS

ARITHMETIC FUNCTIONS
The Random Number Function == RND (X)
The RANDOMIZE Statement
The Sign Function ==~ SGN(X)
The Integer Function -- INT(X)
The Absolute Value Function == ABS(X)
The Square Root Function =- SQR(X)

TRANSCENDENTAL FUNCTIONS
The Sine Function =~ SIN(X)
The Cosine Function == COS(X)
The Arctan Function == ATN (X)
The Exponential Function =-- EXP (X)
The Natural Logarithm Function == LOG(X)

USER DEFINED FUNCTIONS
The FNA(X) Function and the DEF Statement
The UDEF Function Call and the USE
Statement

THE DEBUGGING FUNCTION ~- TRC (X)

iv

Ol\ [+)] N O O\O\G\O\O\?\ AN O
o o WO NN Tt =

6.6 SUBROUTINES 6=11
6.6.1 GOSUB and RETURN 6~-11
6.6.2 Nesting Subroutines 6~12
CHAPTER 7 ALPHANUMERIC INFORMATION (STRINGS) 7=1
7.1 STRING CONVENTIONS 7-1
7.1.1 Constants and Variables 7-1
7.1.2 Dimensioning Strings 7-1
7.1.3 Inputing String Data 7-2
7.1.4 Strings in LET and IF-THEN Statements 7=3
7.1.5 String Concatenation 7-4
7.2 STRING HANDLING FUNCTIONS 7-4
7.2.1 The LEN Function 7-4
7.2.2 The ASC and CHRS Functions 7-5
7.2.3 The VAL and STR$ Functions 7-6
Te2.4 The POS Function 7-6
7.2.5 The SEG$ Function 7=7
7e2.6 The DATS Function 7=7
CHAPTER 8 REAL TIME OPERATIONS 8~-1
8.1 GENERAL DESCRIPTION 8~1
8.2 REAL TIME BASIC STATEMENTS 8-1
8.2.3 CONTACT 8~3
8.2.4 DISMISS 8-3
8.3 EXTENDED FUNCTIONS FOR INPUT OR OUTPUT 8-3
8.3.1 The Clock Function == CLK(X) 8-4
8.3.2 Analog Input Function == ANI(C,G) 8-5
8.3.3 Analog Output Function ~-- ANO (C,V) 8-5
8.3.4 Read Digital Input =-- RDI (P,N) 8-5
8.3.5 Send Digital Output -~ SDO (P,N,V) 8-5
8.3.6 Read Digital Output == RDO (P,N) 8-6
8.3.7 Counter Input =-- CNI (P) 8~6
8.3.8 Counter Output -- CNO (P,V) 8~6
8.4 UPIR IDENTIFICATION FUNCTIONS 8-6
8.4,2 State -- STA(X) 8=-7
8.4.3 Count == CNT (X) 8-7
8.5 EXAMPLE CONTROL PROGRAM 8-7
8.6 POWER FAIL == RESTART 8~-8
CHAPTER 9 EDITING AND CONTROL COMMANDS 9-1
2.1 CORRECTING PROGRAMS 9-1
9.1.1 Erasing Characters and Lines 9-1
9.1.2 The RESEQ Program 9-2

CHAPTER

CHAPTER

11.1
11l.2

11.3

11.3.1
11.3.2
11.3.3

11.4

11.4.1
11.4.2
11.4.3
11.4.4

11.5

11.5.1
11.5.2
11.5.3
11.5.4

THE LIST AND LISTNH COMMANDS
THE SCRATCH COMMAND

THE NEW COMMAND

THE OLD COMMAND

THE NAME COMMAND

THE SAVE COMMAND

THE RUN AND RUNNH COMMANDS
THE BYE COMMAND

FILES, FILE STATEMENTS AND CHAINING

GENERAIL INFORMATION ON 0S/8 INDUSTRIAL
BASIC FILES
Resident Devices
File Descriptions
Fixed Length Files
Variable Length Files
Numeric Files
ASCII Files

FILE STATEMENTS
The FILE# Statement
The PRINT# Statement
The INPUT# Statement
The RESTORE# Statement
The CLOSE# Statement
The IF END# Statement

THE CHAIN STATEMENT

CREATING ASSEMBLY LANGUAGE FUNCTIONS

INTRODUCTION
THE 0S/8 INDUSTRIAL BASIC SYSTEM

THE 0S/8 INDUSTRIAL BASIC RUNTIME SYSTEM
INBRTS Core Layout
INBRTS Overlays
INBRTS Symbol Tables

DATA FORMATS
Variables
Strings
Incore DATA List
The String Accumulator

INBRTS SYMBOL TABLE STRUCTURE
The Scalar Table
The Array Symbol Table
The String Symbol Table
The String Array Table

vi

11-1

11-1
11-1

11-2
11-2
11-3
11-4

11-4
11-4
11-5
11-6
11-7

11-7
11-7
11-7
11-8
11-9

11.6

1ll.6.1
11.6,2
11.6.3

11.7

11.7.1
11.7.2
11.7.3
11.7.4
11.7.5
11.7.6
11.7.7
11.7.8
11.7.9

11.8
11.8.1
11.8.2

11.9

11.9.,1
11.9.2
1109.3
11.9.4
11.9.5

11.10

11.11
11.11.1

11.11.2
11.11.3

11.12
11.13

APPENDIX A

APPENDIX B

APPENDIX C

APPENDIX D

APPENDIX E

APPENDIX F

APPENDIX G

APPENDIX H

FLOATING-POINT PACKAGE
Floating~Point Accumulator
Floating—-Point Routines
Floating-Point Operations

INBRTS SUBROUTINES
Subroutine ARGPRE
Subroutine XPUTCH
Subroutine PSWAP
Subroutine UNSFIX
Subroutine STFIND
Subroutine BSW
Subroutine MPY
Subroutine DLREAD
Subroutine ABSVAL

PASSING ARGUMENTS TO THE USER FUNCTION
Interfacing FIELD 1 Code with FIELD #
Subroutines
Using the USE Statement

INBRTS I/0
Terminal I/0
INBRTS File Formats
INBRTS Buffer Space
INBRTS Device Driver Space
The INBRTS I/0 Table

INTERFACING THE ASSEMBLY LANGUAGE TO INBRTS

GENERAL CONSIDERATIONS AND HINTS
Routines Unusable by Assembly Language
Functions
Using 0S/8
Page @ Usage

ASSEMBLY LANGUAGE FUNCTION EXAMPLE
LINKING INTO THE INTERRUPT SKIP CHAIN

0S/8 BASIC STATEMENT, COMMAND, AND FUNCTION
SUMMARY

COMPILE-TIME DIAGNOSTICS

RUNTIME DIAGNOSTICS

ASCII CONVERSION TABLE

0S/8 INDUSTRIAL BASIC SYSTEM BUILD
INSTRUCTIONS

INDUSTRIAL BASIC SYSTEM GENERATION

OPTIMIZING SYSTEM PERFORMANCE

SYMBOL TABLE

vii

11-10
11-10
11-11
11-14

11-14
11-14
11-15
11-15
11-16
11-16
11-17
11-17
11-17
11-18

11-18
11-19
11-20

11-21
11-21
11-21
11-22
11-22
11-22

11-23
11-25
11-25

11-27
11-27

11-27
11-29

CHAPTER 1

INTRODUCTION TO 0S/8 INDUSTRIAL BASIC

NOTE

BASIC IS A REGISTERED TRADEMARK
OF THE TRUSTEES OF DARTMOUTH COLLEGE.

BASIC is an interactive programming language for a variety of
applications. It is used in scientific and business environments to
solve both simple and complex mathematical problems with a minimum of
programming effort. It is used by educators and students as a
problem-solving tool and as an aid to learning through programmed
instruction and simulation.

In many respects the BASIC language is similar to other programming
languages (such as FOCAL and FORTRAN), but BASIC is aimed at
facilitating communication between the user and the computer. The
BASIC user types in the computational procedure as a series of
numbered statements, making use of common English words and familiar
mathematical notations. Because of the small number of commands
necessary and its easy application in solving problems, BASIC is one
of the simplest computer languages to learn. With experience, the
user can add the advanced techniques available in the 1language to
perform more intricate manipulations or express a problem more
efficiently and concisely.

0S/8 Industrial BASIC has such features as chaining, string
manipulation, and file-oriented input/output. 0S/8 Industrial BASIC
has added features for support of time based, and external event
driven segments, coded in BASIC, to service the user's real time data
collection and response via DEC's UNIVERSAL DIGITAL CONTROLLER (UDC).

1,1 HARDWARE REQUIREMENT

The standard requirements for an 0S/8 system must be met. In addition
the only devices supported will be:

l. TD8~E with either ROM or 12K
UDC with not more than 16 words I/0O
DK8-EC crystal clock jumpered for 50 hz

2. RK8-E and DECtape
UDC with not more than 16 words I/O
DK8=~EC crystal clock jumpered for 50 hz

1.2 DOCUMENTATION CONVENTIONS

1.2,1 Underlining

Where clarification is required in the programming examples used in
this manual, underlined copy denotes user input. Copy not underlined
indicates entries typed by 0S/8 Industrial BASIC.

1.2.2 Carriage return

A carriage return is always typed at the end of a 1line to indicate
that the line is complete. The carriage return notation used in this
manual is the symbol PR

1.2.3 Blank spaces

Blank spaces are denoted by the symbol ., where clarification is
required.

1.2.4 Control and shift characters

Control characters such as CTRL/O are typed by holding down the CTRL
key and pressing the letter 0. Shift characters such as SHIFT/L are
typed by holding down the SHIFT key and pressing the letter L.

1.2.5 Terminals

The use of the word "terminal®™ throughout this manual implies a
DECwriter, an ASR-33 Teletype, or an equivalent interactive device.

1.3 LOADING AND RUNNING 0OS/8 INDUSTRIAL BASIC

The following discussion assumes that the 0S/8 operating system for
the user's hardware configuration is on line. The 0S/8 operating
system is described in the 0S/8 SYSTEM REFERENCE MANUAL. The
following paragraphs are a condensation of the editing and control
commands described in Chapter 9 of this manual.

1.3.1 Gaining Access to BASIC

Once the Keyboard Monitor has responded with a period to indicate that
it is géady to receive a monitor command, the user types the following
command :

+R INBSIC

BASIC responds with the following:
NEW OR OLD ~~

The user types in:
NEW FILE.EX

if the user is going to create a new program, where PFILE.EX is the
name and extension of the new program. If the user wants to work with
a previously created program that he saved on a storage device, he
types in the following:

OLD DEV:FILE.EX
where DEV: is the name of the 0S/8 device his old file is stored on.
For example:

OLD DTA6:SAMPLE.BA

This response to NEW OR OLD -- retrieves the file named SAMPLE from
DECtape and replaces the current contents of user core with the file
SAMPLE, If you specify a device that does not exist or that is not
available for your use, INDUSTRIAL BASIC returns an error message.

For further information regarding 0S/8 files and devices, refer to
Chapter 9 of this manual and to the 0S/8 SYSTEM REFERENCE MANUAL.

1.3.2 Entering the New Program

After the user types in his filename, 0S/8 Industrial BASIC responds
with the following:

READY

The user can begin to type in his new program or make changes to his
old program. When the new program is being typed, the user must make
sure that each line begins with a line number containing no more than
five digits and containing no spaces or nondigit characters. The
RETURN key must be pressed at the completion of each line, If, in the
process of typing a statement, the user makes a typing error and
notices it before he terminates the 1line, he can correct it by
pressing the RUBOUT key or SHIFT/O keys once for each character to be
erased, going backward until the character in error is reached. Then
he may continue typing, beginning with the character in error. Using
the RUBOUT key or SHIFT/O keys echoes a backarrow () for each
character deleted, The following is an example of this correcting
process (note that ae< is typed for spaces as well as characters):

20 DEN FeeeF FNA(X,Y)=Xt2+3%Y

1-3

The corrected version of the above example would appear on a
subsequent listing of the program as:

2 DEF FNA(X,Y)=Xt2+3xY

Program listings can be generated using the LIST or LISTNH commands.

l.3.3 Executing the Program

After typing the complete program (do not forget to end with an END
statement), the user types RUN or RUNNH, followed by the RETURN key.
0S/8 Industrial BASIC types the name of the program, the version of
05/8 Industrial BASIC, the current date (unless RUNNH is specified),
and then it analyzes the program. If the program can be run, 0S/8
Industrial BASIC executes it and, via PRINT statements, types out any
results that were requested. The typeout of results does not
guarantee that the program is correct (the results could be wrong),
but it does indicate that no syntactical errors exist (e.g., missing
line numbers, misspelled words, or illegal syntax)., If errors of this
type do exist, 0S/8 Industrial BASIC types a message (or several
messages) to the user. A 1list of these diagnostic messages, with
their meanings, is given in Appendices B and C.

NOTE

RUN and RUNNH are control commands, and like all
other 08/8 1Industrial BASIC edit and control
commands, they do not require a line number
preceding the command.

1,3.4 Correcting the Program

If the user receives an error message typeout informing him, for
example, that line 60 is in error, the line can be corrected by typing
in a new line 60 to replace the erroneous one. If the statement on
line 110 is to be deleted from your program, it is accomplished by
typing the following:

110)

If he wishes to insert a statement between lines 60 and 70, the user
types a 1line number between 60 and 70 (e.g., 65), followed by the
statement.

1.3.5 Interrupting Execution of the Program

If the results being typed out seem to be incorrect and he wants to
stop execution of his program, the user types CTRL/C which is echoed
by 4C. The 0S/8 Industrial BASIC editor responds with the READY

message whereupon the user can modify or add statements and rerun his

program,

1.3,6 Ieaving the Computer

When the user's program is finished and he no longer requires the use

of 0S/8 Industrial BASIC, he types
return control to the Keyboard Monitor.

1.3.7 Example of 0S/8 Industrial BASIC

the BYE command (or CTRL/C to

Run

The following is a simple example of the use of 0S/8 Industrial BASIC,

«R INBSIC

NEW OR OLD-~-NEW SAMPLE.BA

READY

19 FOR N=1 TO 7
20 PRINT N, SQR(N)

39 NEXT N

43 PRINT “DONE"

54 END

RUN

SAMPLE BA 1.2 22~SEP=-73
1 1
2 141421
3 1732085
4 2
S 2.236487
6 2.44949
7 2464575

DONE

READY

Instruct monitor to bring
BASIC into core and start its
execution

BASIC asks whether new or old
program is to be run

BASIC is now ready to receive
statements

Type in statements

Run program

Program heading and results of
program are printed.

1.4 0s/8 INDUSTRIAL BASIC OVERVIEW

The experienced BASIC programmer may elect to skip Chapters 2 and 4
through 6 of this manual since they are rather fundamental. However,
he should familiarize himself with the remaining chapters and
appendices as they provide information specifically related to 0S/8
Industrial BASIC.

l1.4.1 General System Description

The 0S/8 Industrial BASIC system is divided into five discrete parts:
1. Editor
2, Compiler
3. Loader
4, Runtime System
5. Runtime System Overlays

The 0S/8 Industrial BASIC Editor is used to create and edit the source
program. On receipt of a RUN command, the Editor stores the program
in a temporary file and chains to the Compiler. The Compiler compiles
the program into pseudo-instructions which are then loaded into core
with the Runtime System by the Loader. The Runtime System interprets
each pseudo-instruction, calling each of the Overlays into core as
needed. On completion of the program, the Runtime System chains back
to the Editor. An O0S/8 Industrial BASIC program consists of a
mainline segment and user process interrupt routines, User process
interrupt routines are executed in response to external events. A
more complete description of the 0S/8 Industrial BASIC System is
provided in Chapter 11 of this manual.

1.4,2 08/8 Industrial BASIC Statements and Commands

0S/8 Industrial BASIC consists of program statements and system
control commands which are needed to write programs. A number of the
elementary 0S/8 Industrial BASIC statements and commands are:

0S/8 INDUSTRIAL BASIC STATEMENTS

LET Assign a value to a variable.

PRINT Print out the indicated information.

READ Initialize variables to values from the data
list.

DATA
GOTO

IF GOTO
IF THEN
FOR TO
STEP
NEXT
GOSUB
RETURN
INPUT
REM
RESTORE
DEF
STOP
END
DIM
UDEF
TIMER
CONTACT
COUNTER

DISMISS

Provide initial data for a program,
Change order of program execution,
Conditionally change order of
execution,

Set up a program loop.

End a program loop.

Go to a subroutine.

Return from a subroutine.

Get initial values from the terminal.
Insert a program comment,

Restore the data list.

Define a function.

Stop program execution,

End a program,

Define subscripted variables.

Define user-coded function.

program

Associate interrupt service routine with

external event,

Return from interrupt service routine.

0S/8 INDUSTRIAL BASIC EDIT AND CONTROL COMMANDS

LIST

RUN

SCRATCH

SAVE

OLD

NEW

NAME

BYE

List all stored program statements.
Run the currently stored program.
Delete the currently stored program,
Save the currently stored program.
Retrieve the old program.

Prepare for a new program.

Rename the currently stored program.

Exit from BASIC.

0S/8 Industrial BASIC may execute BASIC statements in either of two
modes, mainline or user process interrupt. Mainline Mode is standard
BASIC sequence. User Process Interrupt Mode is used to execute
routines, similar to BASIC subroutines, that service external events.

These statements and commands are explained in detail with actual
computer output in this manual. For the convenience of the user, a
detailed 0S/8 Industrial BASIC Statement, Command and Function Summary
is included in Appendix A.

CHAPTER 2

0S/8 INDUSTRIAL BASIC ARITHMETIC

2.1 NUMBERS

An 0S/8 Industrial BASIC number may be any number in the range of
10-818«N<1081€, 0s/8 Industrial BASIC treats all numbers as decimal
numbers -- that is, it accepts any number containing a decimal, and
assumes a decimal point after an integer. The advantage of treating
all numbers as decimal numbers is that the programmer can use any
number or symbol in any mathematical expression without regard to its

type.

In addition to integer and decimal formats, a third format is
recognized and accepted by 0S/8 1Industrial BASIC and is used to
express numbers outside the range .00001<x<999999, This format is
called exponential or E-type notation and in this format, a number is
expressed as a decimal number times some power of 10. The form is:

XXEn

where E represents "times 10 to the power of", thus the number is
read: "xx times 10 to the power of n." For example:

23,4E2=23,4%1042=2340

Data may be input in any one or all three of these forms. Results of
computations are output as decimals if they are within the range
previously stated; otherwise, they are output in E format. 0s/8
Industrial BASIC handles six significant digits in normal operation
and input/output, as illustrated below:

Value Typed In Value Qutput By 0S/8 Industrial BASIC
.01 0.0099999
.0099 0.0099
999999 999999
1000000 .100000E+007
.0000009 .899999E~006

0S/8 Industrial BASIC automatically suppresses the printing of leading
and trailing zeros in integer numbers and all but one leading zero in
decimal numbers., As can be seen from the preceding examples, O0S/8
Industrial BASIC formats all exponential numbers in the form:

sign .xxxxxxE(+or-)n

where x represents the number carried to six decimal places, E stands
for "times 10 to the power of," and n represents the exponential
value. For example:

-.347021E+009 is equal to -347,021,000
.726000E-003 is equal to 0.000726

2.2 VARIABLES

A simple variable in 05/8 Industrial BASIC is an algebraic symbol
representing a number, and is formed by a single letter or a letter
followed by a digit. For example:

Acceptable Variables Unacceptable Variables
I 2C - a digit cannot begin a
variable
B3 AB - two or more letters

cannot form a variable

The user may assign values to variables either by indicating the
values in a LET statement, or by inputting the values as data.

10 LET I=53721
20 LET B3=456.9
30 LET X=20E9
40 INPUT Q

These operations, as well as subscripted variables, are discussed in
detail in Chapter 5. A discussion of subscripted and unsubscripted
string variables is provided in Chapter 7.

The meaning of the = sign should be clarified. In algebraic
notation, the formula X=X+1 is meaningless, However, in 0S/8
Industrial BASIC (and most computer languages), the equal sign
designates replacement rather than equality. Thus, this formula is
actually translated "add one to the current value of X and store the
new result back in the same variable X", Whatever values had previously
been assigned to X will be combined with the value 1. An expression
such as A=B+C instructs the computer to add the values of B and C and
store the result in a third variable A. The variable A is not being
evaluated in terms of any previously assigned value, but only in terms
of B and C, Therefore, if A has been assigned any value prior to its
use in this statement, the old value is lost; it is instead replaced
by the value of B+C.

2,3 ARITHMETIC QPERATIONS

0S/8 Industrial BASIC performs addition, subtraction, multiplication,
division and exponentiation, as well as more complicated operations
explained in detail later in the manual. The five operators used in
writing most formulas are:

Symbol

Operator Meaning Example
+ Addition A+ B
- Subtraction A~-B
* Multiplication A*B
/ Division A/B
t (or **) Exponentiation A} B or (A**B)

(Raise A to the B Power)

2.3.1 Priority of Arithmetic Operations

In any given mathematical formula, 0S/8 Industrial BASIC performs the
arithmetic operations in the following order:

1. Parentheses receive top priority. Any expression within
parentheses is evaluated Dbefore an unparenthesized
expression.

2. In absence of parentheses, the order of priority is:

a. Exponentiation
b. Multiplication and Division (of equal priority)
c. Addition and Subtraction (of equal priority)

3, If either 1 or 2 above does not clearly designate the order
of priority, then the evaluation of expressions proceeds from
left to right,

The expression A/B*C is evaluated from left to right as follows:

1. A/B

step 1

2. (result of step 1) *C

answer

2,3.2 Parentheses

Parentheses may be used by the programmer to change the order of
priority (as 1listed in rule 2 above), because expressions within
parentheses are always evaluated first. Thus, by enclosing
expressions appropriately, the programmer can control the order of
evaluation. Parentheses may be nested, or enclosed by a second set
(or more) of parentheses, In this case, the expression within the
innermost parentheses is evaluated first, and then the next innermost,
and so on, until all have been evaluated.

Consider the following example:

A=7*((B42+4) /X)

The order of priority is:

1. Bf2 = gstep 1
2, (result of step 1)+4 = step 2
3. (result of step 2)/X = step 3
4. (result of step 3)*7 = A

Parentheses also prevent any confusion or doubt as to how the
expression is evaluated. For example:

A*B$2/7+B/C+D42

((a*B$2) /7)+((B/C) +D}2)

Both of these formulas will be executed in the same way. However, the
inexperienced programmer or student may find that the second is easier
to understand.

Spaces may also be used to increase readability. Since the 0S/8
Industrial BASIC compiler ignores spaces, the two statements:

10 LET B = D42 + 1

10 LETB=D§2+1

are identical, but spaces in the first statement provide ease in
reading.

2.,3.3 Relational Operators

A program may require that two values be compared at some point to
discover their relation to one another. To accomplish this, 0S/8
Industrial BASIC makes use of the following relational operators:

= equal to
< less than
> greater than
=< or <= less than or equal to
=> or >= greater than or equal to
>< or <> not equal to

Depending upon the result of the comparison, control of program
execution may be directed to another part of the program. Relational
operators are used in conjunction with the IP-THEN statement which is
discussed in Chapter 3.

2,3.4 Rules for Exponentiation

The following rules apply in evaluating the expression A}B.

2,
3.

7.

Rule
If B=0, then A¢4B=l
If A=0 and B>0, then A4{B=0
If A=0 and B<0, then A$B=0

and a DV error message is
printed (See Appendix C).

If B is an integer> 0, then
AfB=A *A *A ,,,.*A , where n=B.

If B is an integer <0 then
A¢B=1/(A *A *A ,,.*A), where n=B

If B is a decimal (non-integer)
and A>0, then A4{B=EXP(B*LOG(A))

If B is a positive or negative
decimal (non-integer) and A<O0,
program aborts due to fatal error,

Example
3t0=1
042=0
04-2=0

345=3#*3%3%3%3=243

34=5=1/243

243.6=12,1257

-3%2.6 is illegal.
Fatal error message
EM printed.

CHAPTER 3

0S/8 INDUSTRIAL BASIC STATEMENTS

The following Example Program is included at this point as an
illustration of the format of an 0S/8 Industrial BASIC program, the
ease in running it, and the type of output that may be produced. This
program and its results are for the most part self-explanatory.
Following sections and chapters cover the program statements and
system commands used in 0S/8 Industrial BASIC programming.

13 REM - PROGRAM TO TAKE AVERAGE OF
15 REM -~ STUDENT GRADES AND CLASS GRADES
20 PRINT *"HOW MANY STUDENTS, H0W MANY GRADES PER STUDENT"3
30 INPUT A,B

49 LET I=@

58 FOR J=1 TO A-1

55 LET v=80

68 PRINT "STUDENT NUMBER = '3J

75 PRINT "ENTER GRADES"

76 LET D=J

803 FOR K=D TO D+(B-~1)

g1 INPUT G

82 LET V=V+G

85 NEXT K

90 LET v=V/B

95 PRINT *'AVERAGE GRADE ='"3; V

96 PRINT

99 LET Q=G+V

100 NEXT J

101 PRINT

192 PRINT

193 PRINT '""CLASS AVERAGE ='"3Q/A

104 STOP

105 END

READY

RUNNH

HOWw MANY STUDENTS, HOW MANY GRADES PER STUDENT?S5, 4
STUDENT NUMBER = 0

ENTER GRADES

278

286

783

?74

AVERAGE GRADE = 8145

STUDENT NUMBER = 1
ENTER GRADES

2?59

286

270

87

AVERAGE GRADE = 75.5

3-1

STUDENT NUMBER = 2
ENTER GRADES

258

?64

275

890

AVERAGE GRADE = 69.25

STUDENT NUMBER = 3
ENTER GRADES

788

92

?85

279

AVERAGE GRADE = 86

STUDENT NUMBER = 4
ENTER GRADES
760
278
785
7?80
AVERAGE GRADE

75.75

CLASS AVERAGE

17. 6

3.1 STATEMENT NUMBERS

A program is made up of statements. Each line of the program begins
with a 1line number of 1 to 5 digits that serves to identify the line
as a statement., The largest allowable line number is 99999, Line
numbers serve to specify the order in which these statements are to be
performed. Before the program is run, 0S/8 Industrial BASIC sorts out
and edits the program, putting the statements into the order specified
by their line numbers; thus, the program statements can be typed in
any order, as long as each statement is prefixed with a line number
indicating its proper sequence in the order of execution, Each
statement starts after its line number with an English word (except
the LET statement where 'LET' is optional) which denotes the type of
statement. Unlike program statements, system commands are not
preceded by line numbers and are executed immediately after they are
typed in. (Refer to Chapter 9 for a further description of commands.)
Spaces have no significance in BASIC programs or commands, except in
messages or literal strings which are printed out, and in line
numbers. Thus, spaces may be used to modify a program and make it
more readable,

A common programming practice is to number lines by fives or tens, so
that additional 1lines may be inserted in a program without the
necessity of renumbering lines already present., Renumbering a program
can be accomplished by using the RESEQ program described in Chapter 9,
section 9,1.2.

Multiple statements may be placed on a single line by separating each
statement from the preceding statement with a backslash (SHIFT/L).
For example:

10 A=5\B=.2\C=3\PRINT "ENTER DATA"

All of the statements in 1line 10 will be executed before BASIC
continues to the next line. Only one statement number at the
beginning of the entire line is necessary. However, it should be
remembered that program control cannot be transferred to a statement
within a line, but only to the first statement of the line in which it
is contained.

NOTE

User process interrupt routines will be entered
only when the mainline encounters a line number,
I.e. f

100 FOR I=1 TO 10000\NEXT I

does not allow user process interrupt routines to
be entered while executing this line because the
entire loop does not contain line numbers,

100 FOR I=1 TO 10000
105 NEXT I

will allow user process interrupt routines to be
executed while processing the loop.

3.2 REMARK =-- THE COMMENTING STATEMENT

The REM or REMARK statement allows the programmer to insert comments
or remarks into a program without these comments affecting execution.
The 0S/8 Industrial BASIC compiler ignores everything between REM and
the end of the line, The form is:

(line number) REM (message)

In the Example Program, lines 10 and 15 are REMARK statements
describing what the program does. It is often useful to put the name
of the program and information relating to its use at the beginning
where it is available for future reference. Remarks throughout the
body of a long program will help subsequent debugging by explaining
the purpose of each statement within the program,

3.3 STATEMENTS FOR TERMINATING A PROGRAM

3.3.1 END

The END statement (line 140 in the Example Program) should be the last
statement of the entire program. The form is:

(line number) END

NOTE

An END statement must be the last
statement in the program. A program is
terminated when an END statement is
executed. In real time operations a
program should never execute either an
END or a STOP.

3.3.2 8STOP

The STOP statement is used synonymously with the END statement to
terminate execution; but while END occurs only once at the end of a
program, STOP may occur any number of times. The format of the STOP
statement is:

(line number) STOP

This statement signals that execution is to be terminated at that
point in the program where it is encountered,

3.4 LET -- THE ASSIGNMENT STATEMENT

The Assignment (LET) statement is probably the most commonly used 0S/8
Industrial BASIC statement and is wused whenever a value is to be
assigned to a variable, It is of the form:

(line number) LET x = expression
where x represents a variable, and the expression is either a number,
another variable, or an arithmetic expression. The word "LET" is
optional; thus the following statements are treated the same:

100 LET A=A$B+10 110 LET L=L+1

100 A=A$B+10 110 L=1L+1
The LET statement is not strictly an equality. LET means “"evaluate
the expression to the right of the equal sign and assign this value to

the variable on the left." Thus, the statement L=L+1 means "set L
equal to a value one greater than it was before."

3.5 INPUT/OUTPUT STATEMENTS AND FUNCTIONS

Input/output statements allow the user to bring data into a program
and output results or data at any time during execution,

3.5.1 The INPUT Statement

The INPUT statement is used when data is to be supplied by the user
from the terminal keyboard while a program is executing and is of the
form:

(line number) INPUT x1, X%2,...,Xn
where x1 through xn represent variable names. For example:
25 INPUT A

When this statement occurs in Mainline Mode, the user will be prompted
with a question mark and while waiting for input, user process
interrupt service routines may execute. If it occurs in the user
process interrupt service routine, the user will be prompted with an
exclamation mark followed by a question mark and the system will wait
for input completion before processing any other user process
interrupt routine,

NOTE

If an input statement occurs in the wuser process
interrupt service routine while the user is
entering input in the Mainline Mode, the text is
lost to the last terminator, After the request is
fulfilled for the user process interrupt service
routine the mainline request will be reissued.

The following rules apply to the use of the INPUT statement,
Rule

1. The following characters are recognized as acceptable when
inputting numeric data:

+ or - sign

digits 0 through 9

the letter E

leading spaces (ignored)
. (first decimal point)

Terminators are carriage return or comma.

All other characters cause the remaining characters in the
field to be ignored.

10 INPUT A,B,C,D,E

RUNNH
210,32A16,8 1
25,6

READY

In the above example, A=10, B=32, C=8, D=5, and E=6.

2., When inputting numeric data, two terminators read in
succession imply that the data between the terminators is 0.

10 INPUT A,B,C,D,E

RUNNH
25,10,,12,15
READY

In the above example A=5, B=10, C=0, D=12, and E=15,

3. In response to an INPUT statement the user can provide more
data than is requested by the INPUT statement. The remaining
or unused data is saved for subsequent use by the next INPUT
statement. The question mark (?) is not printed until the

program is out of data.

4, When inputting string data, all characters, except
terminators, are recognized as part of the string. See
Chapter 7 for further information relating to strings.

5. A line feed is recognized as part of the

therefore is stored in the text buffer.

3.5.2 The PRINT Statement

3.5.2.1 General

The PRINT statement is wused to output results
comments, values of variables, or plot points
terminal. The format is:

(line number) PRINT expression

string data, and

of computations,
of a graph on the

When used without an expression, a blank line will be output on the
terminal. For more complicated uses, the type of expression and the
type of format control characters (comma or semicolon) following the

word PRINT determines which formats will be created.

In order to have the computer print out the results of a computation,
or the value of a variable at any point in the program, the user types

the line number, PRINT, and the variable name(s) separated by a format
control character, in this case, commas:

5 A=16\B=5\C=4
10 PRINT A,C+B,SQR(A)
15 END
The PRINT statement may also be used to output a message or 1line of

text. The desired message is simply placed in quotation marks in the
PRINT statement as follows:

10 PRINT "THIS IS A TEST"

When line 10 is encountered during execution, the following will be
printed:

THIS IS A TEST

A message may be combined with the result of a calculation or a
variable as follows:

80 PRINT "AMOUNT PER PAYMENT =";R

Assuming R=344.961 when line 80 is encountered during execution, this
will be output as:

AMOUNT PER PAYMENT = 344,961

THE PRINT statement can also cause a constant to be printed on the
conscle. For example:

10 PRINT 1.234,SQR(10014)
will cause the following to be output at execution time:
1.234 100.07

Any algebraic expression in a PRINT statement will be evaluated using
the current value of the variables. Numbers will be printed according
to the format specified in Chapter 2 and in paragraph 3.5.2.3.

3.5.2.,2 Format Control Characters

In 0S/8 Industrial BASIC, a terminal line is formatted into five fixed
zones (called print zones) of 14 columns each. A program such as:

5 A=2.3\B=21\C=156.75\D=1.134\E=23.4
10 PRINT A,B,C,D,E
15 END

where the control character comma (,) is wused to separate the
variables in the PRINT statement, will cause the values of the
variables to be printed using all five zones.

RUNNH
2.3 21 156.75 1.134 23.4

}- 14 columnsp- 14 columnsj 14 columnsf- 14 columnsk- 14 columns
READY

It is not necessary to use the standard five zone format for output.
The control character semicolon (;) causes the text or data to be
output immediately after the last character printed.

The following example program illustrates the use of the control
characters in PRINT statements

18 READ A,B»C

23 PRINT A»B»C,At2,Bt2,Ct2
30 PRINT

40 PRINT A3 BsCsAr2:Br2:5Cr2

59 DATA 4,556
60 END

READY

RUNNH
4 5 6 16 25

36

4 5 6 16 25 36

READY

As this example illustrates, when more than five variables are listed
in the PRINT statement, 0S/8 Industrial BASIC automatically moves the
sixth number to the beginning of the next line.

3.5.2.3 Printing Numbers

For any format (integer, decimal, or E-type) 0S/8 1Industrial BASIC
prints numbers in the form:

sign number space

where sign is either minus (=) or blank (for plus) and a blank space
always trails the number.

READY
10 A=64\B=-32\C=72
2@ PRINT A3BsC
21 END
RUNNH
64 <32 172

3.5.2.4 PRINT Used With INPUT

Another use of the PRINT statement is to combine it with an
statement so as to identify the data expected to be entered.
example, consider the following program:

READY

19 REM - PROGRAM TO COMPUTE INTEREST PAYMENTS
20 PRINT "INTEREST IN PERCENT's

25 INPUT J

26 LET J=J/1008

3@ PRINT "AMOUNT OF LOAN"3

35 INPUT A

4@ PRINT "NUMBER OF YEARS':

45 INPUT N

5@ PRINT "NUMBER OF PAYMENTS PER YEAR':
55 INPUT ¥

60 LET N=N*M

65 LET 1=J/mM

78 LET B=1+1

75 LET R=Ax1/C1-1/Bt\)

78 PRINT

80 PRINT ""AMOUNT PER PAYMENT ='';

85 PRINT "TOTAL INTEREST =3 RkN=-A

90 LET B=A

95 PRINT " INTEREST APP TO PRIN BALANCE"

1090 LET L=Bx*I

119 LET P=R-L

120 LET B=B-P

130 PRINT L,PsB

140 IF B>=R GO TO 100

158 PRINT B*I,R~BxI

160 PRINT "LAST PAYMENT ='3BxI+B
200 END

READY

RUNNH

INTEREST IN PERCENT?9

AMOUNT OF LOAN?2509

NUMBER OF YEARS?Z2

NUMBER OF PAYMENTS PER YEAR?4

AMOUNT PER PAYMENT = 344.965

TOTAL INTEREST = 259.724
INTEREST APP TO PRIN BALANCE
56.25 288.715 2211.28
49 .7539 295.212 1916. 07
43.1116 301.854 1614.22
36.3199 308 . 645 1385.57
29.3754 315. 59 989.982
22.2746 322. 691 667.291
158141 329.951 337.34
7.59015 337. 375

LAST PAYMENT = 344.93

READY

INPUT
As an

As can be noticed in this example, the question mark is grammatically
useful in a program in which several wvalues are to be input by
allowing the programmer to formulate a verbal question which the input
value will answer.

3.5.3 The TAB(X) Function

The TAB function, which may only be used in a PRINT statement, allows
the user to position the printing of characters anywhere on the
terminal line (or other printing device line when used with PRINT#,
see Chapter 10)., Print positions can be thought of as being numbered
from 1 to 72 across the terminal from left to right. The form of this
function is:

TAB (X)

where the argument X represents the position (from 1 to 72 columns
available on the terminal) in which the next character will be typed.

Each time the TAB function is used in a PRINT statement, positions are
counted from the beginning of the line, not from the current position
of the printing head. For example, the TAB function in the following
program causes the character "/" to be printed at 24 equally spaced
positions along the line,

10 FOR K=3 TO 72 STEP 3
20 PRINT TAB(K):"/";

30 NEXT K

40 END

If the argument X in the TAB function is less than the current
position of the printing head, printing is started at the current
position. If the argument X is greater than 72 (the number of columns
available in an output line), a carriage return-~line feed is executed
and printing resumes at position 1.

3.5.4 The PNT(X) Function

0S/8 Industrial BASIC provides an additional function, PNT(X), to
increase input/output flexibility. The function is primarily used for
outputting non-printing characters such as the "bell", but can be used
for more sophisticated applications. The PNT(X) function, like the
TAB(X) function, may only be used in either a PRINT or PRINT#
statement, The form of the function is:

PNT (X)

where the argument X represents the decimal value of the 7~bit ASCII
character to be output. For example, the statement:

10 PRINT "X=";3.14159;PNT(13);TAB(14);"/"

3-10

will print the slash (/) on top of the equal sign after executing a
carriage return (CR=13) and a TAB to column 2 as shown below:

X#,3.14159

Notice that a TAB(l4) is required since 0S/8 Industrial BASIC
remembers the print head to be at column 12 after the carriage return
(11 columns for X= 3,14159 and 1 column for the PNT function). A
tab to column 2 after the carriage return provides a total of 14
columns. The PNT(13) carriage return does not zero the column count
but, in fact, adds to the column count. (This example may not work on
some terminals.)

3.6 THE READ AND DATA STATEMENTS

READ and DATA statements are used to provide data to a program. One
statement is never used without the other. The form of the READ
statement is:

(line number) READ x1,Xx2,...,Xn
where x1 through xn represent variable names. For example:
10 READ A,B,C

A, B, and C are variables to which values will be assigned. Variables
in a READ statement must be separated by commas. READ statements are
generally placed at the beginning of a program, but must at least
logically occur before that point in the program where the value is
required for some computation.

Values which will be assigned to the variables in a READ statement are
supplied in a DATA statement of the form:

(line number) DATA x1,x2,...,Xn

where xl1 through xn represent values., The values must be separated by
commas and occur in the same order as the variables which are listed
in the corresponding READ statement, A DATA statement appropriate for
the preceding READ statement is:

70 DATA 1,2,3
Thus, at execution time A=1l, B=2, and C=3.

The DATA statement is usually placed at the end of a program (before
the END statement) where it is easily accessible to the programmer
should he wish to change the values.

A READ statement may have more or fewer variables than there are
values in any one DATA statement. The READ statement causes 0S/8
Industrial BASIC to search all available DATA statements in the order
of their line numbers until values are found for each variable in the
READ., A second READ statement will begin reading wvalues where the
first stopped. If at some point in the program an attempt is made to
read data which is not present, 0S/8 Industrial BASIC will stop and

print the following message at the console:
DA AT LINE YYYYY

where YYYYY indicates the line which caused the error.

3.7 RESTORE

If it is desired to use the same data more than once in a program, the
RESTORE statement will make it possible to recycle through the DATA
list beginning with the first DATA statement. The RESTORE statement
is of the form:

(line number) RESTORE
An example of its use follows:

15 READ B,C,D

55 RESTORE
60 READ E,F,G

80 DATA 6,3,4,7,9,2

100 END

The READ statements in lines 15 and 60 will both read the first three
data values provided in line 80. (If the RESTORE statement had not
been inserted before line 60, then the second READ would pick up data
in line 80 starting with the fourth value.)

The programmer may, if he chooses to do so, use the same variable
names the second time through the data, since the values are being
read as though for the first time, In order to skip unwanted values,
the programmer may insert replacement, or dummy variables. Consider:

1 REM - PROGRAM TO ILLUSTRATE USE OF RESTORE
20 READ N

25 PRINT "VALUES OF X ARE:"

30 FOR I=1 TO N

40 READ X

56 PRINT X,

60 NEXT I

76 RESTORE

185 PRINT

190 PRINT "SECOND LIST OF X VALUES"

260 PRINT "FOLLOWING RESTORE STATEMENT:"
219 FOR I=1 TO N

3-12

220 READ X

230 PRINT X,
240 NEXT I

252 DATA 4,1,2
251 DATA 3,4

300 END
READY
RUNNH
VALUES OF X ARE:
1 2 3 4

SECOND LIST OF X VALUES
FOLLOWING RESTORE STATEMENT:

4 1 2 3
READY

The second time the data values are read, the first X picks up the
value originally assigned to N in 1line 20, and as a result, 0S/8
Industrial BASIC prints:

4 1 2 3

To circumvent this, the programmer could insert a dummy variable which
would pick up and store the first value, but would not be represented
in the PRINT statement, in which case the output would be the same
each time through the 1list.

3.8 CONTROL STATEMENTS

Certain control statements cause the execution of a program to jump to
a different 1line either unconditionally or depending upon some
condition within the program. The following statements give the
programmer capabilities in this area.

3.8.1 GOTO

The GOTO (or GO TO) statement is an unconditional statement used to
direct program control either forward or backward in a program., The
form of the GOTO statement is:

(line number) GOTO n

where n represents a statement number. When the logic of the program
reaches the GOTO statement, the statement(s) immediately following
will not be executed; instead execution is transferred to the
statement beginning with the line number indicated.

The following program never reaches the END statement; it does a READ,
prints something, and jumps back to the READ via a GOTO statement. It
attempts to do this over and over until it runs out of data, which is
sometimes an acceptable, though not advisable, way to end a program,

READY

19 REM - PROGRAM ENDING WITH ERROR
11 REM - MESSAGE WHEN OUT OF DATA

20 READ X

25 PRINT "X="3X,"Xt12=""3X12
3¢ GO TO 20

35 DATA 1,5,10,15,20,25
40 END

READY

RUNNH

X= 1 Xt2= 1

X= 5 Xt2= 25
X= 19 Xt2= 1090
X= 15 Xt2= 225
X= 20 Xt12= 400
X= 25 Xt2= 625

DA AT LINE 00020

READY

3.8.2 IPF-THEN and IF-GOTO

If a program requires that two values be compared at some point,
control of program execution may be directed to different procedures
depending upon the result of the comparison. In computing, values are
logically tested to see whether they are equal to, greater than, or
less than another value, or possibly a combination of the three. This
is accomplished by wuse of the relational operators discussed in
Chapter 2.

IF-THEN and IP-GOTO statements allow the programmer to test the
relationship between two variables, numbers, or expressions.
Providing the relationship described in the IF statement is true at
the point it is tested, control will transfer to the line number
specified, If the relationship described in the IF statement is not
true at the point it is tested, control will transfer to the line
following the IF statement. The statements are of the form:

GOTO
(line number)IPF vl <relation> v2 or %
THEN

where vl and v2 represent variable names, numbers, or expressions, and
X represents a line number, The use of either THEN or GOTO is
acceptable.

If the following example, the value of the variable A 1is changed or
remains the same depending on A's relation to B.

100 IF A>B THEN 120
110 A=A$B~-1
120 C=A/D

NOTE A

When using non-integer arithmetic in the
IF-THEN statement, the test for equality
may not always be appropriate due to the
nature of the floating~point arithmetic
used by the computer. To avoid this
problem, the programmer should either
avoid using non-integer arithmetic in
fractional values less than the
tolerance desired. IF-THEN statements
that test the running wvariable in
FOR-NEXT loops (see Chapter 4) are
particularly sensitive to this problem.
For example:

10 FOR A=~5 TO 5 STEP .1
20 IF A=0 THEN 50

30 NEXT A

40 STOP

50 PRINT "EQUAL TO ZERO"
60 END

The above margin will never go to line 50.

CHAPTER 4

LOOPS

Frequently programmers are interested in writing a program in which
one or more portions are executed a number of times, usually with
slight variations each time., To write the simplest program in which
the portion of the program to be repeated is written just once, a loop
is used., A loop is a block of instructions that the computer executes
repeatedly until a specified terminal condition is met. 0s5/8
Industrial BASIC provides two statements to specify a loop: FOR and
NEXT,

4.1 FOR AND NEXT STATEMENTS
The FOR statement is of the form:
(line number) FOR v=xl1 TO x2 STEP x3

where v represents a variable name, and x1, x2, and x3 all represent
expressions (a numerical value, variable name, or mathematical
expression). Vv is termed the index, x1 the initial wvalue, x2 the
terminal value, and x3 the incremental value. For example:

15 FOR K=2 TO 20 STEP 2

This means that the loop will be repeated as long as K is less than or
equal to 20. Each time through the loop, K is incremented by 2, so
the loop will be executed a total of 10 times.

A variable used as an index in a FOR statement must not be
subscripted, although a common use of loops is to deal with
subscripted variables, using the value of the index as the subscript
of a previously defined variable (this is illustrated in Chapter 5,
section 5.1 concerning Subscripted Variables).

The NEXT statement is of the form:
(line number) NEXT v

and signals the end of the loop. When execution of the 1loop reaches
the NEXT statement, the computer adds the STEP value to the index and
checks to see if the index is less than or equal to the terminal
value. If so, the loop is executed again. If the value of the index
exceeds the terminal value, control falls through the 1loop to the
statement following the NEXT statement, with the value of the index
equalling the value it was assigned the final time through the loop.

If the STEP value is omitted, a value of +1 is assumed. Since +1 is
the usual STEP value, that portion of the statement is frequently
omitted., The STEP value may also be a negative number.

The following example illustrates the use of loops. This loop is
executed 10 times: the value of I is 10 when control leaves the loop.
+1 is the assumed STEP value,

READY
19 FOR I=1 TO 10
20 NEXT I
38 PRINT I
49 END
RUNNH
10

READY

If line 10 had been:
10 FOR I=10 TO 1 STEP -1
the value printed by the computer would be 1,

As indicated earlier, the numbers used in the FOR statement are
expressions; these expressions are evaluated upon first encountering
the loop. While the index, initial, terminal, and STEP values may be
changed within the loop, the value assigned to the initial expression
remains as originally defined until the terminal condition is reached.,
To illustrate this point, consider the last example program, The
value of I (in line 10) can be successfully changed as follows:

10 FOR I=1 TO 10
15 LET I=10
20 NEXT I

The loop will be executed only once since the value 10 has been
reached by the variable I and the terminal condition is satisfied.

If the value of the counter variable is originally set equal to the
terminal wvalue, the loop will execute once, regardless of the STEP
value. If the starting value is beyond the terminal value, the loop
will never execute because an initial check is made of the starting
and terminal values before the 1loop is executed. The following
statement is executed but the loop it describes would never be
executed:

10 FOR I=10 TO 20 STEP =2

It is possible to exit from a FOR=-NEXT loop without the index reaching
the terminal value via an IF statement., Control may only transfer
into a loop which has been 1left earlier without being completed,
ensuring that the terminal and STEP values are assigned.

4,2 NESTING LOOPS

It is often useful to have one or more loops within a loop. This
technique is called nesting, and is allowed as long as the field of
one loop (the numbered 1lines from the FOR statement to the
corresponding NEXT statement, inclusive) does not cross the field of

another loop. The following diagram

procedures:

ACCEPTABLE NESTING
TECHNIQUES

Two Level Nesting

FOR
FOR
NEXT
FOR
NEXT
NEXT

Three Level Nesting

~ FOR
FOR
FOR
NEXT
FOR
NEXT
NEXT
- NEXT

4-3

illustrates acceptable

UNACCEPTABLE NESTING
TECHNIQUES

FOR
FOR
NEXT

NEXT

FOR

[FOR
FOR
NEXT
FOR
[NEXT
NEXT
- NEXT

nesting

CHAPTER 5

LISTS AND TABLES

5.1 SUBSCRIPTED VARIABLES

In addition to single variable names, 0S/8 Industrial BASIC accepts
another class of variables called Subscripted Variables. Subscripted
variables provide the programmer with additional computing
capabilities for handling 1lists, tables, matrices, or any set of
related variables. Variables are allowed one or two subscripts. A
single letter or a letter followed by a digit forms the name of the
variable; this is followed by one or two integers in parentheses and
separated by commas, indicating the place of that variable in the
list. Up to 31 arrays are possible in any program, subject only to
the amount of core space available for data storage. For example, a
list might be described as A(I) where I goes from 1 to 5, as follows:

a(l),A(2),A(3),A(4) ,A(5)

This allows the programmer to reference each of the five elements in
the 1list A. A two dimensional matrix A(I,J) can be defined in a
similar manner, but the subscripted variable A can be used only once
(i.e., A(I) and A(I,J) cannot be used in the same program). It is
possible, however, to use the same variable name as both a subscripted
and an unsubscripted variable. Both A and A(I) are valid variable
names and can be used in the same program.

Subscripted variables allow data to be input quickly and easily, as
illustrated in the following program (the index of the FOR statement
in lines 20, 42, and 44 is used as the subscript):

10 REM -~ PROGRAM DEMONSTARTING READING
11 REM - OF SUBSCRIPTED VARIABLES
15 DIM A(S5),5B(2,3)

18 PRINT *"A(I> WHERE A=1 TO 5:*
28 FOR I=1 TO S

25 READ A

30 PRINT A(1)3

35 NEXT I

38 PRINT

39 PRINT

40 PRINT "B(I,J) WHERE I=1 TO 2:"
41 PRINT " AND J=1 TO 3:"
42 FOR I=1 TO 2

43 PRINT

44 FOR J=1 TO 3

48 READ B(I.,J)

S@ PRINT B(1,J)s

55 NEXT J

56 NEXT I

60 DATA 1,2,3,4,5,6,7,8

61 DATA 857,6555453,251

65 END

5«1

READY

RUNNH

ACI) WHERE A=1 TO S:
1 2 3 4 5

B¢1,J) WHERE I=1 TO 2:
AND J=1 TO 3:

6 7 8
g8 7 6
READY

5.2 THE DIM STATEMENT

From the preceding example, it can be seen that the use of subscripts
requires a dimension (DIM) statement to define the maximum number of
elements in the array. The DIM statement is of the form:

{line number) DIM v (n), v (n ,m)
where v indicates an array variable name and n and m are integer
numbers indicating the largest subscript value required during the
program, For example:

15 DIM A(6,10)

The first element of every array is automatically assumed to have a
subscript of zero. Dimensioning A(6,10) sets up room for an array
with 7 rows and 11 columns. This matrix can be thought of as existing
in the following form:

A [] - L]

g,8 2g,1 Ay 1p
A

1,9 P10 0 - R
A

and is illustrated in the following program:

18 REM - MATRIX CHECK PROGRAM
1S DIM AC6, 1)

20 FOR I=0 TO 6

22 LET ACl, D=1

25 FOR J=@ TO 19

28 LET A(@,J0)=J
32 PRINT A(I.J);
35 NEXT J

49 PRINT

45 NEXT 1

50 END

READY
RUNNH

UL WN—-D
QRO -
QoL
oW
[SESES RIS SIS
[T
SIS
IR
DT eR
Lo evw
ST -

READY

Notice that a variable assumes a value of zero until another value has
been assigned. If the wuser wishes to conserve core space by not
making use of the extra variables set up within the array, he should
set his DIM statement to one less than necessary, DIM A(5,9). This
results in a 6 by 10 array which may then be referenced beginning with
the A(0,0) element.

More than one array can be defined in a single DIM statement:
10 DIM A(20), B(4,7)
This dimensions both the list A and the matrix B,

A number must be used to define the maximum size of the array. A
variable inside the parentheses is not acceptable and will result in
an error message by BASIC at compile time. The amount of user core
not filled by the program will determine the amount of data the
computer can accept as input to the program at any one time., In some
programs a TB error (too big) may occur, indicating that core will not
hold an array of the size requested. In that event, the user should
change his program to process part of the data in one run and the rest

later.
NOTE
If a subscripted variable is not defined

by a DIM statement, the variable is
assigned an array size of ten.

CHAPTER 6

0S/8 INDUSTRIAL BASIC FUNCTIONS AND SUBROUTINES

6.1 GENERAL INFORMATION ON 0OS/8 INDUSTRIAL BASIC FUNCTIONS

0S/8 Industrial BASIC provides a number of functions, as part of the
language, which perform calculations. The use of these functions
eliminates the need for writing small programs to perform the
calculations. Functions have a three letter call name, followed by an
argument, X, which can be a number, variable, expression or another
function, Generally, functions may be used anywhere a number or a
variable is legal in a mathematical expression,

The following 0S/8 Industrial BASIC functions are discussed in this
chapter.

Function Meaning
SIN(X) Sine of X (X is expressed in radians)
COS (X) Cosine of X (X is expressed in radians)
ATN (X) Arctangent of X {result expressed in radians)
EXP (X) eX (e = 2.718282)
LOG(X) Natural log of X (logex)
RND(X) Random number
ABS (X) Absolute value of X (]x])
INT (X) Integer value of X
SGN (X) Sign of X - assign a value of +1 if X is
positive, 0 if X is zero, or -l if X is
negative
SQR(X) Square root of X (VX)
FNA (X) User-defined function
TRC (X) Trace function - Used for debugging 0s/8

Industrial BASIC programs,

In addition, there are a number of other functions provided by 0S/8
Industrial BASIC, which include printing functions, string handling
functions, and UDC functions, These functions are described in other
parts of this manual as indicated below.

PRINTING FUNCTIONS Refer to Paragraph
PNT (X) 3.5.4
TAB (X) 3.5.3

LEN (X§) 7.2.1

ASC (X) 7.2.2
CHRS$ (X) 7.2.2
VAL (X) 7.2.3

STRING HANDLING FUNCTIONS

STRS$ (x) 7.2.3
POS(X$,Y$,2) 7.2.4
SEG$ (X$,Y,2) 7.2.5
DATS$ (X) 7.2.6

REAL TIME FUNCTIONS

ANI(X,Y) 8.3.2
ANO (X,Y) 8.3.3
RDI(X,Y) 8.3.4
SDo(X,Y,2) 8.3.5
RDO (X, Y) 8.3.6
CNI(X) 8.3.7
CNO(X,Y) 8.3.8
CLK(X) 8.3.1
INE (X) 8.4.1
STA (X) 8.4.2
CNT (X) 8.4.3

6.2 ARITHMETIC FUNCTIONS

6.2.1 The Random Number Function = RND(X)

The RND(X) function produces pseudo~random numbers between 0 and 1.
The argument X is a dummy argument and can be any number.

If the user wants the first 20 random numbers, he can write the
program shown below and get 20 six-digit decimals.

READY

18 FOR L=1 TO 28
20 PRINT RNDCX),
30 NEXT L

4@ END

RUNNH

Q.361572 0.332764 2. 633057 B.350342 B. 670166
B« 3539795 Be8B4T9 B.926123 B.54126 B.9234326
Be 125244 0. 389404 B.974853 B. 516357 B« 465088
B.440186 Be9799 47 P.28 5889 P.86T7432 B. 1783467
READY
A second RUN gives exactly the same sequence of numbers as the first
RUN; this is done to facilitate the debugging of programs.
RUNNH
P. 361572 B+332764 B. 633057 0.350342 D. 670166
B. 539795 B+.8479 D.026123 Be54126 2.934326
P. 125244 B+ 389 404 B.974853 Pe 516357 B. 465088
P. 44018 6 B.9709 417 Q.28 5889 P.867432 B.178467
READY
If the user wants 20 random one-~digit integers, he can change line 20
to read as follows:
20 PRINT INTC10%xRNDCX)),
RUNNH
The results will be as follows:
3 3 6 3 6
5 8 7] 5 9
i 3 9 S 4
4 9 2 8 1
To vary the type of random numbers (20 random numbers ranging from 1
to 9, inclusive), the user can change line 20 as follows:
20 PRINT INT(9*RND(X)+1);
To obtain random numbers which are integers from 5 to 24, inclusive,

the user can change line 20 to the following:

20 PRINT INT(20*RND(X)+5);

If random numbers are to be chosen from the A integers of which B is

the smallest, the user can call for INT(A*RND(X)+B),

6.,2.1.1 The RANDOMIZE Statement

As noted in the first program in paragraph 6.2.1l, the same numbers in
the same order resulted both times the program was run. However, a
different set will be produced with the RANDOMIZE statement, as in the

following program:

5 RANDOMIZE

16 FOR L=1 TO 20

20 PRINT INTC1@*RND(X))3
3@ NEXT L

40 END

READY
RUNNH

3 3 6 3 6 5 8 # 5 9 1 3 9 5 4 4 9 2 8 1
READY
RUNNH

2 1 9 7 9 5 3 9 1t 1 4 S 4 6 2 8 9 3 1 6
READY

RANDOMIZE resets the numbers based on elapsed time spent waiting for
terminal 1I/0. For example, if RANDOMIZE appears after a PRINT or
INPUT instruction but before a statement with the RND(X) function,
then repeated RUNs of the program produce different results, If the
instruction is absent, the official list of random numbers is obtained
in the usual order. It is suggested that a simulated model should be
debugged without this instruction so that one always obtains the same
random numbers in test runs, After the program is debugged, and
before starting production runs, the user inserts the following:

(line number) RANDOMIZE

at the appropriate place in the program.

6.2.2 The Sign Function - SGN(X)

The SGN function is one which assigns the value 1 if the argument is
any positive number, 0 if zero, and =1 if any negative number. Thus,
SGN(7.23) = 1, SGN{0) = 0, and SGN(=~.2387) = =1, For example, the
following statement:

25 LET X=SQR(A}2+2*B*C) *SGN (Aa)

assigns the square root of the sine of A to X.

6.2.3 The Integer Function = INT(X)

The integer function returns the value of the nearest integer not
greater than X. For example, INT(34.67) = 34. By specifying
INT (X+.5) the INT function can be used to round numbers to the nearest
integer; thus, INT(34.67+.5) = 35, INT can also be used to round

numbers to any given decimal place by specifying:
INT (X*104D+.5)/104D

where D is the number of decimal places desired. The following
program illustrates this function; execution has been stopped by

typing a CTRL/C:

19 REM - INT FUNCTION EXAMPLE

29 PRINT *NUMBER TO BE ROUNDED':
38 INPUT A

43 PRINT "NO. OF DECIMAL PLACES:*s
5@ INPUT D

60 LET B=INT(Ax10tD+.3) /101D

70 PRINT "A ROUNDED ='38B

80 GO TO 20

90 END

READY

RUNNH

NUMBER TO BE ROUNDED?5S5. 65342
NO. OF DECIMAL PLACES:?2

A ROUNDED = 55.65

NUMBER TO BE ROUNDED?78.375
NO. OF DECIMAL PLACES: 7-2

A ROUNDED = 100

NUMBER TO BE ROUNDED?67.89
NO. OF DECIMAL PLACES: ?-1

A ROUNDED = 78

NUMBER TO BE ROUNDED?tC

READY

If the argument is a negative number, the value returned is the
largest negative integer (rounded to the higher value) contained in
the number. For example, INT(-23) = =23 but INT(-14.39) = -15,

6.2.4 The Absolute Value Function - ABS(X)

The absolute value function is used to obtain the absolute (positive)

value of an expression, For example:

READY
5 PRINT ABS(-66)
13 END
RUNNH
66

6.2.5 The Square Root Function = SQR(X)

The square root function is used to compute the square root of an
expression. For example:

S LET B=4\A=2.5\C=.5
12 PRINT SQR(Bt2~4%A*x()
20 END
RUNNH
3.31662

READY

If the argument of the SQR(X) function is <0, the absolute value of
the argument is used.

6.3 TRANSCENDENTAL FUNCTIONS

6.3.1 The Sine Function -~ SIN(X)

The sine function is used to calculate the sine of an angle specified
in radians. For example:

5 REM - CALCULATE SINE 30 DEGREES
19 LET P=3.1419%9
20 PRINT SIN(32%P/18@)
25 END
RUNNH
@5

READY
READY

6.3.2 The Cosine Function = COS(X)

The cosine function is used to calculate the cosine of an angle
specified in radians. For example:

S REM - CALCULATE THE COSINE OF 45 DEGREES
10 PRINT COS(45%3.14159/180)

20 END

READY

RUNNH
2.707108

6.3.3 The Arctan Function - ATN(X)

This function calculates the angle (in radians) whose tangent is given
as the argument of the function. For example:

READY

5 REM =« CALCULATE ATN(.37735)
10 PRINT ATN(.5773%

20 END

RUNNH
@.523598

6.3.4 The Exponential Function - EXP (X)

The EXP(X) function calculates the value of e raised to the X power,
where e is equal to 2,71828. For example:

S5 REM - CALCULATE EXPONENTIAL VALUE OF 1.5
190 PRINT EXP(1.5)
20 END

READY
RUNNH
4e 48168

6.3.5 The Natural Logarithm Function - LOG(X)

The LOG(X) function calculates the natural logarithm of X. For
example:

5 REM - CALCULATE THE LOG OF 959
16 PRINT LOG(95)
28 END
RUNNH
6.8 6589

READY

6.4 USER DEFINED FUNCTIONS

6.4.1 The FNA(X) Function and the DEF Statement

In addition to the standard functions 0S/8 Industrial BASIC provides,
the user may define up to 26 functions of his own with the DEF
statement. The name of the defined function must be three letters,
the first two of which are FN, i.e., FNA, FNB,...,FNZ, Each DEF
statement introduces a single function and is of the form:

{line number) DEF FNA (X)=expression (X)

where A may be any letter and X is a dummy variable, but must be the
same on each side of the equal sign. The DEF statement may appear
anywhere in the program so long as it appears before the first use of
the function it defines. The function itself can be defined in terms
of numbers, several variables, other functions, or mathematical
expgessions. For example, if the user repeatedly uses the function
-X

e +5, he can introduce the function by the following:

30 DEF FNE(X)=EXP (-X4$2)+5
and call for various values of the function by FNE(.l), FNE(3.45),
FNE(A+2), etc. This statement saves a great deal of time when the
user needs values of the function for a number of different values of
the variable.
The statement:

DEF FNA(S)=S%2
will cause the later statement:

20 LET R=FNA(4)+1
to be evaluated as R=1l7.

The user-defined function can be a function of more than one variable,
as shown below:

25 DEF FNL(X,Y,Z)=SQR(X$2+Y42+242)

A later statement in a program containing the above function might
appear as follows:

55 LET B=FNL(D,L,R)

where D, L, and R have been defined in the program.

6.,4.2 The UDEF Function Call and the USE Statement

0S/8 Industrial BASIC has the capability for adding one or more
user-coded assembly language functions. The user functions may use
four numeric and two string arguments, and once properly interfaced to
0S8/8 Industrial BASIC, they can be used as any other 0S/8 Industrial
BASIC function. Complete instructions for writing and interfacing

6-8

such functions are provided in Chapter 11 of this manual, A
user~coded function, if present, is specified in an 0S/8 Industrial
BASIC program as:

(1ine number) UDEF function name (argument)
For example:

10 LET R=4

15 LET B=6

20 LET Q=10

25 UDEF PLT(X,Y,Z)
30 LET D=PLT(R,B,0)
35 PRINT 4*D

40 END

Line 25 introduces the function PLT to 0S/8 Industrial BASIC and
indicates the number and type of arguments associated with the
function. 1In line 30 the function is used as any other standard
function might be wused in an 0S/8 Industrial BASIC program. If the
function requires the use of an array, a USE statement identifying the
array must precede the statement that calls the function,

10 DIM s(15,5)

L]

20 LET Q=10
22 USE S
25 UDEF PLT(X,Y,2)

NOTE

A UDEF function name may consist of alphabetic
characters only and must have at least one
argument (a dummy argument if necessary).

6.5 THE DEBUGGING FUNCTION - TRC(X)

The TRC(X) function is used by the programmer to follow the progress
of a program and is, therefore, a useful debugging aid. The form of
this function is:

(line number) v1=TRC(X)

where vl is a dummy variable, X=1 turns the function on and X=0 turns
the function off, When TRC(l) is encountered in a program, 0S/8
Industrial BASIC prints the line number of each line in the program as
it is executed. The line numbers are printed between a pair of
percent signs so as to be distinguishable from other material that is
printed by the program. Program execution time is slowed down
considerably to accommodate the function and the extra printing it
causes. When TRC(0) is encountered by the program the function is
turned off and normal program operation resumes.

The following example shows the effect of using the TRC(X) function in
a program to check the operation of a loop. The same program with the
TRC(X) function removed from the program, is also shown.

5 REM -

6 REM - FACTORI AL PROGRAM

10 FOR J=1 TO 5
20 GOSUB 68

30 NEXT J

49 STOP

68 LET S=1

62 T=TRC(D)

65 FOR K=1 TO J
70 LET S=5%K

75 NEXT K

77 T=TRC(9)

80 PRINT J,S
85 RETURN

98 END

RUNNH
% 65
Z 70
z 117
1
Z 65
278
zZ 709
717
2
% 65
Z 10
z 19
Z 170
z 77
3
% 65
%X 78
Z 79
%70
z 70
z 77
4
65
70
70
70
70
79
77
S

38 3129 M M

39 MM MM NN 29 39 29 39 2008 S FINM AN AN AN N

24

120

6-10

S REM - BASIC

6 REM ~ FACTORI AL PROGRAM
16 FOR J=1 TO 5

20 GOSUB 68

30 NEXT J

40 STOP

68 LET S=1

65 FOR K=1 TO J

78 LET S=5%K

75 NEXT K

8¢ PRINT J»S

85 RETURN

99 END

READY

RUNNH
1 1
2 2
3 6
4 24
S 120

READY

NOTE

0S/8 Industrial BASIC idles on input
statements. Therefore, a trace should
not be on when input is requested.

6.6 SUBROUTINES

A subroutine is a part of the program performing some operation that
is required at more than one point in the program. Subroutines are
generally placed physically at the end of a program, usually before
DATA statements, if any, and always before the END statement.

6.6.,1 GOSUB and RETURN

Two statements are used exclusively in 0S/8 Industrial BASIC to handle
subroutine; these are the GOSUB and RETURN statements.

When a program encounters a GOSUB statement of the form:
(line number) GOSUB x

where x represents the first line number of the subroutine, control
then transfers to that line, For example:

50 GOSUB 200

When program execution reaches line 50, control transfers to line 200;
the subroutine is processed until execution encounters a RETURN
statement of the form:

(line number) RETURN

which causes control to return to the statement following the GOSUB
statement. Before transferring to the subroutine, 0S/8 Industrial
BASIC internally records the next statement to be processed after the
GOSUB statement; thus the RETURN statement is a signal to transfer
control to this statement. In this way, no matter how many different
subroutines are called, or how many times they are used, 0S/8
Industrial BASIC always knows where to go next.

The following program demonstrates a simple subroutine:

1 REM -~ THIS PROGRAM ILLUSTRATES GOSUB AND RETURN
1@ DEF FNA(X)=ABSC(INT(X))

2@ INPUT AsB,C

30 GOSUB 100

40 LET A=FNACA)

58 LET B=FNA(B)

60 LET C=FNACC)

6-11

79 PRINT

80 GOSUB 1090

98 STOP

100 REM = THIS SUBROUTINE PRINTS OUT THE SOLUTIONS
1190 REM - OF THE EQUATION A(Xt2)+B(X)+C=0¢

120 PRINT "THE EQUATION IS"™3A3“*xXt2+"3 B3 “xX+'"5C
139 LET D=B*B-4%xAx(C

148 1F D<>@ THEN 170

1590 PRINT "ONLY ONE SOLUTION«.«X="3~-B/(2kA)

160 RETURN

179 1IF D<@ THEN 200

188 PRINT "TWO SOLUTIONS..+X='3

185 PRINT (=B+SQR(D)) /(2%¥A)3*"AND X='3(-B=-SQR(D)) /(2% A)
190 RETURN

200 PRINT "IMAGINARY SOLUTIONSeseX=("3

205 PRINT =-B/(2%A)3", "3 SQR(=D) /¢ 2%xAY3 ') AND ('3
207 PRINT ~B/(2%A)3", "3 -SQR(-D) /7(2¢A)s'") "

219 RETURN

989 END

READY

RUNNH

?215¢55-45

THE EQUATION IS 1 *Xt2+ 0.5 *X+-0.5
TWO SOLUTIONSeseX= @5 AND X=-1

THE EQUATION IS 1 *Xt2+ 0 *X+ 1
IMAGINARY SOLUTIONSeeeX=C @ 5 1) AND C @ 5=-1)

Line 100 begins the subroutine. There are several places in which
control may return to the main program, depending upon a certain
condition being satisfied. The subroutine is executed from 1line 30
and again from line 80. When control returns to line 90, the program
encounters the STOP statement and execution is terminated.

It is important to remember that subroutines should generally be kept
distinct from the main program. The last statement in the main
program should be a STOP or GOTO statement, and subroutines are
normally placed following this statement.

More than one subroutine may be used in a single program in which case
these can be placed one after another at the end of the program (in
line number sequence). A useful practice 1is to assign distinctive
line numbers to subroutines. For example, if the main program is
numbered with line numbers up to 199, 200 and 300 could be used as the
first numbers of two subroutines.

6.6.2 Nesting Subroutines

Nesting of subroutines occurs when one subroutine calls another
subroutine. If a RETURN statement is encountered during execution of
a subroutine, control returns to the statement following the GOSUB
which called it., From this point, it is possible to transfer to the
beginning or any part of a subroutine, even back to the calling

6-12

subroutine. Multiple entry points and RETURN statements make
broutines more versatile,

The maximum level of GOSUB nesting is ten levels, which should prove
more than adequate for all normal uses. Exceeding this limit results
in the message:

GS AT LINE YYYYY

where YYYYY represents the line number where the error occurred. An
example of GOSUB nesting follows (execution has been stopped by typing
a CTRL/C, as the program would otherwise continue in an infinite
loop).

16 REM - FACTORIAL PROGRAM USING GOSUB TO
15 REM - RECURSIVELY COMPUTE THESE FACTORS
49 INPUT N

50 1F N>20 THEN 120

69 X=1

70 K=1

80 GOSUB 200

9@ PRINT "FACTORIAL "3N3"='3X

116 GO TO 40

120 PRINT "MUST BE 20 OR LESS"

130 GO TO 49

200 X=X*K

210 K=K+1

220 IF K<=N THEN 200

238 RETURN

240 END

READY

RUNNH

22

FACTORIAL 2 = 2
?4

FACTORIAL 4
?5

FACTORIAL 5 = 128
221

MUST BE 208 OR LESS
26

FACTORIAL 6 = 728
?2tC

READY

24

6~13

CHAPTER 7

ALPHANUMERIC INFORMATION (STRINGS)

In previous chapters we have dealt only with numerical information.
However, 0S/8 Industrial BASIC also processes, or manipulates,
alphanumeric information called strings. A string is a sequence of
characters, each of which is a letter, a digit, a space, or some
character other than a statement terminator (backslash or carriage
return).

7.1 STRING CONVENTIONS

7.1.1 Constants and Variables

Strings may appear as constants or variables just as numerics may. We
have already used string constants in PRINT statements. For example:

100 PRINT "THIS IS A STRING CONSTANT"
where the alphanumerics enclosed in quotes are the string constant.
Naming a string variable is similar to naming a numeric variable. It
consists of a letter followed by a dollar sign (§) or a letter and a
single digit followed by $. AS$ and Al$ are both legitimate string
variable names; 2A$ and AA$ are not legitimate string variable names.
7.1.2 Dimensioning Strings

0S/8 Industrial BASIC assumes that a string length is 8 characters or
less unless a string has been dimensioned in the form:

10 DIM AS$(I)
where I is the length of string variable A$. I cannot exceed 72,
String lists (equivalent to single subscripted numeric variables) are
permitted in 0S/8 Industrial BASIC and must be dimensioned in the
form:

20 DIM AS(K,L)

where K is the number of strings in the list and L is the 1length of
each string,

When referencing a subscripted string variable in a LET or IF-THEN
statement, for example:

25 LET B$(I) = "YES"

the expression I represents the place of that string variable in the
list BS.

7-1

Double subscripted string variables (string tables) are not permitted
in 0S/8 Industrial BASIC.

7.1.3 Inputting String Data

String data may be included in a DATA list but must always be enclosed
by quotation marks. In fact, any string written into a program must
be enclosed by quotation marks to be recognized by the 0S/8 Industrial
BASIC Compiler.

10 READ AS$,BS$,CS

20 PRINT C$;BS$:AS

25 DATA "NG","RI","ST"
30 END

The program above prints STRING.

Quotation marks may be included in strings by indicating two quotation
marks in succession, For example the string A"B would appear in a
program as:

10 LET A$ = “A""B"

Both string data and numeric data may be intermixed in a DATA list but
the burden falls on the programmer to assemble the list in the correct
sequence, since all READ statements for both string and numeric data
remove data serially from the DATA list., If he does not, the results
of the READ statement are unpredictable,

The INPUT statement may also be used for inputting string data to a
program. Quotation marks are not necessary when inputting string data
in response to the question mark (?) generated by the INPUT statement
unless the quotation marks are deliberately meant to be part of the
string.

330 PRINT "DO YOU WISH TO CONTINUE?"
340 INPUT AS

350 IF AS="YES" THEN 410

360 PRINT "ARE YOU SURE?"

370 INPUT BS$

380 IF B$="NO" THEN 410

390 PRINT "PROGRAM STOPPED"

400 STOP

410 PRINT "LET'S CONTINUE"

Oe o 0 o o

490 END

Each string literal requested by an INPUT statement must be terminated
by a carriage return or comma which acts as the data delimiter. This
is necessary since all characters, except for the carriage return or
comma, are recognized as part of the data string.

READY

10 INPUT AS$,BS$,CS

RUNNH
?ABCD
?EFGH
?21J

In the above example A$="ABCD", B$="EFGH" and C$="IF",

7.1.4 Strings in LET and IF-THEN Statements

Strings may be used in both LET and IF-THEN statements as already
indicated by some of the previous examples. Any of the relational
operators decribed in paragraph 2,3.3 may be wused in an IF-THEN
statement to compare strings. Strings are compared on the basis of
the ASCII numeric value of each character in the string (see Appendix
D for numeric values of ASCII characters).

When comparing strings in an IF-THEN statement, the relational
operators have the following significance:

Operator Meaning
< earlier in ASCII numeric order than
> later in ASCII numeric order than
=< or <= same ASCII numeric order as or earlier in

ASCII numeric order than
= same ASCII numeric order
>< Or <> different ASCII numeric order from

=> Qr >= same ASCII numeric order as or later in ASCII
numeric order than

For example:

10 IF "ABCD"<"ABC@" THEN 50
20 STOP

50 LET AS$="ABCD"
Each character in string ABCD is compared, left-to-right, with the

respective character in string ABCR. A, B, and C match but D and € do
not. From Appendix D, the character @ has a lower numeric value than

the character D. Therefore the string ABCD is not earlier in ASCII
numeric sequence than ABC@ and the program stops at line 20,

If the strings in an IF-THEN comparison are of unequal 1length, then
0S/8 Industrial BASIC lengthens the shorter string to make it equal in
length to the longer string by appending an appropriate number of
ASCII space characters. In the following example

10 IF "ABCD"<"AB" THEN 50
20 STOP

50 LET A$="ABCD"

string "AB" is treated as "ABLy ™, Since the character C is earlier
in ASCII numeric order than the character "space", the IF-THEN
statement is true and control is transferred to line 50.

7.1.,5 String Concatenation

Strings can be concatenated by means of the operator ampersand (&).
The ampersand can be used to concatenate string expressions wherever a
string expression is legal, with the exception that information cannot
be stored by means of a LET statement in concatenated string
variables. That is, concatenated string variables cannot appear to
the left of the equal sign in a LET statement. For example, LET
A$=B$&C$ is legal, but LET A$&B$=C$ is not. An example of string
concatenation is:

10 READ AS$,BS$,C$

20 PRINT C$&BS$&AS

25 DATA "NG","RI","ST"
30 END

Running this program (a modification of the program in paragraph
7.1.3) causes STRING to be printed.

7.2 STRING HANDLING FUNCTIONS

A number of functions have been implemented that perform manipulations
on strings. These functions are LEN, ASC, CHR$, VAL, STR$, POS, SEGS,
and DAT$. Functions that return strings have names that end in a
dollar sign ($); those functions that return numbers have names that
do not end in a dollar sign,

7.2.1 The LEN Function

The LEN function returns the number of characters in a string. It has
the form:

LEN (X$)

7-4

Exanmple:

S DIM BSC1d)

19 READ AS,BS

20 PRINT LEN(AS&BSEZ"AROUND'™)
39 DATA '"UPs ","DOWN, AND "
406 END

READY
RUNNH
22

READY

7.2.2 The ASC and CHRS$ Functions

The ASC and CHRS$ functions perform conversion from and to ASCII,
respectively. The ASC function converts a one~-character string to its
ASCII decimal equivalent, and the CHR$ function converts a decimal
number to its equivalent ASCII character.

The ASC function has the form:
ASC (argument)

The argument is a one character string. ASC returns the equivalent
ASCII decimal number for the character.

The CHR$ function has the form:
CHR$ (numeric expression)

The value of the numeric expression is truncated to an integer that is
in the range 0 to 63. Integers greater than 63 are treated modulo 64.
That is, they are divided by 64 and the remainder- becomes the new
integer. This integer is then interpreted as an ASCII decimal number
that is converted to its equivalent character (refer to Appendix D for
the ASCII decimal numbers and the equivalent characters).

An example of the ASC and CHR$ functions follows:

5 FOR T=ASC("A") TO ASC("A")+3
7 NEXT T
10 PRINT "THIS IS TEST "&CHRS (T)

This is the beginning of a FOR loop that successively prints: '

THIS IS TEST A

THIS IS TEST B

THIS IS TEST C

"

7-5

THIS IS TEST D

7.2.3 The VAL and STR$ Functions

The VAL and STR$ functions perform conversions from strings to numbers
and numbers to strings. The form of the VAL function is:

VAL (string expression)
The string expression must look like any number which may be 1legally
typed in response to an INPUT statement., VAL returns the actual
number that the string represents. The VAL function does not return
the ASCII value of the number that the string represents, it returns
the number. For example, VAL ("25") returns the number 25, The 25

that is the argument to VAL is a string, the 25 that VAL returns is a
number.

Example:
READY

10 INPUT AS
20 PRINT VAL (A§) *2

100 END

RUNNH

?2.46111
4,92222

READY

The STR$ function returns the string representation (as a number) of
its arqument. The form of STRS is:

STR$ (numeric expression)
The string that is returned is in the form in which numbers are output
in BASIC. For example, PRINT STR$(1.76111124) prints the string
1,76111.
7.2.4 The POS Function
The POS function is of the form:

POS(X$,Y$,2)

The function returns the location in string X$ of the first occurrence
of string ¥$ starting with 2Zth character in string X$. For example:

20 LET X$="MONDAY"
25 LET X=POS(X$,"DAY",1)

After line 25, X will be equal to 4. The arguments of the POS
function may be constants, variables, or expressions,

The following rules apply in evaluating the POS(X$,Y$,Z) function.

1, If Y$ is a null string (no characters) then
POS(X$,YS$,2)=1

2. If X$ is a null string (no characters) then
POS(X$,Y$,2)=0

3. If Z<0, a fatal error (PA) is detected and program
execution stops

4, If Y$ is not found, then
POS(XS$,Y$,2)=0

7.2.5 THE SEG$ Function

This function is of the form:
SEG$ (X$,Y,2)

The function returns the substring of X$ which is between positions Y
and 2 inclusively. For example:

20 LET X$="MONDAY"
25 LET B=6
30 LET A$=SEGS$(X$,2*B/3,B)

After line 30, A$ is equal to "DAY", The arguments of the SEGS$
function may be variables, constants, or expressions.

The following rules apply in evaluating the SEGS$(X$,Y,2Z) function.
1. If ¥<0, Y is set equal to 1

2., If Y> length X$, then SEG$(X$,Y,Z) = null string (no
characters)

3. If 2,0, then SEG$(X$,Y,2) = null string
4, If 2 > length X$, then Z is set eqgual to length of X$

5. If 2,Y, then SEGS$(X$,Y,Z) = null string

7.2.6 ‘The DAT$ Function
The DATS$ function is of the form:

DATS$ (X)

The function returns an eight character string giving the current date
in the form MM/DD/YY, For example:

SCRATCH

READY

20 PRINT DATS (X)

30 END

RUNNH

7/ 1/73

READY
The use of DATS$ function assumes the user has specified the date in
the 0S/8 monitor command "DATE",., If the DATE command was not used,
the DAT$ function outputs a null string (no characters).
If the Industrial BASIC clock is set, and then exceeds one day, the

next call to the DATS$ function will return the next day and update the
0s/8 date.

CHAPTER 8

REAL TIME OPERATIONS

8.1 GENERAL DESCRIPTION

This chapter contains the statements and functions which give the user
the facility to support asynchronous operation, and control and
monitor external devices.

The following BASIC Statements are used to associate BASIC routines
with external events:

TIMER -time based operations
COUNTER -UDC counter operations
CONTACT ~UDC contact operations
DISMISS -termination of service routines

These statements are explained in detail later in this chapter,

The following function calls are used to access, synchronously, Real
Tine devices:

ANI ~-Analog Input

ANO ~Analog Output

RDI =Read digital input
RDO -Read digital output
SDO -Send digital output
CNI ~Set counter

CNO -Read counter

CLK -Set or read clock

CNT -Information regarding
LNE asynchronous operations
STA

These function calls are also explained in detail 1later in this
chapter.

8.2 REAL TIME BASIC STATEMENTS

8.2.1 TIMER
TIMER V THEN X

where X is the line number of the first statement of the User Process
Interrupt Service Routine (UPIR), and V is the time interval in
seconds,

When the time interval has elapsed the user service routine is
scheduled for execution and the timer is restarted. Time intervals of
less than .1 second may have significant inaccuracies in timing. Time
intervals which are zero or negative deactivate all the timers
associated with the specified line number. This allows the user to
change the elapsed time intervals or stop the timers entirely. A
maximum of 4 timers may be active at any time.

Examples of TIMER Statements:
200 TIMER 10 THEN 400

Every 10 seconds, the UPIR beginning at line 400 will be executed.

o

300 TIMER 0 THEN 400

This statement will cause all timers associated with line 400 of the
UPIR to be deactivated,

100 TIMER 7 THEN 400
110 TIMER 3 THEN 400

These statements cause 2 timers to start; a 7-second timer that will
cause the UPIR at line 400 to be scheduled for execution every 7
seconds, and a 3-second timer that will cause the UPIR at line 400 to
be scheduled for execution every 3 seconds. Note that at 2l-second
intervals the UPIR will be scheduled twice,

The following is an example of a time based operation:

10 TIMER 10 THEN 400
20 TIMER 15 THEN 500
25 LET Y =0
30 GOTO 25
400 PRINT "SEGMENT 400"
410 DISMISS
500 PRINT "SEGMENT 500"
510 DISMISS
600 END

this example will print "SEGMENT 400" every 10 seconds, and “SEGMENT
500" every 15 seconds until terminated with a CTRL/C.

8.2,2 COUNTER
COUNTER V THEN X

where X is the line number of the first statement of the UPIR and V is
the counter module to associate with the given line number. There is
a maximum of 4 counter modules supported. As with timers, when the
counter number is 2zero or negative all counters associated with the
line number are disabled.

Counter modules should be loaded via the CNO function for counting
operations. For additional information on Counter Modules refer to
the UDC8 UNIVERSAL DIGITAL CONTROL SUBSYSTEM MAINTENANCE MANUAL,
DEC-08-HZDC-D.

Example of a Counter Statement:

200 COUNTER 1 THEN 1000

When Counter 1 counts to zero the UPIR at line 1000 will be scheduled.

The following is an example of a program to load a counter with a
number of items to count and log the completion of the count:

10 COUNTER 1 THEN 100

20 REM NOW LOAD COUNTER

25 LET A = CNO(1,100)

30 LETA=0

35 GOTO 30

100 PRINT "COUNT CYCLE COMPLETE"
110 DISMISS
200 END

8.2.3 CONTACT
CONTACT V THEN X

where X is the line number associated with the specified CONTACT. The
value V is the CONTACT number. The maximum number of CONTACTs is 36,
in the range 1 to 36. If zero is specified as a CONTACT number all
active CONTACT wuser interrupt service routines associated with the
line number in the CONTACT statement are deactivated.

Example of a CONTACT statement:

200 CONTACT 1 THEN 600
300 CONTACT 2 THEN 600
400 CONTACT 3 THEN 700

After these statements are executed a change of state in CONTACT 1 or
2 will cause the UPIR at line 600 to be scheduled., A change of state
in CONTACT 3 will schedule the UPIR at line 700.

8.2.4 DISMISS

A DISMISS statement is used to terminate a user interrupt service
routine, This causes the mainline code to resume execution, If
another user process interrupt routine was scheduled, it will receive
control at this point, DISMISS performs an action similar to that of
RETURN,

8.3 EXTENDED FUNCTIONS FOR INPUT OR OUTPUT

The Extended I/O Functions allow the user to turn a digital output
"on" or "off", read a switch position, set an analog voltage, or read
analog voltage via the UDC. An added function allows reading or
setting of the system clock.

Each class of functional I/0O module (analog input, analog output,
digital input, digital output) operates on a continuous range of
logical addresses. The mapping between the logical address and the
corresponding physical address of the UDC module and subchannel is
performed within the system, based on tables which define the UDC
configuration and which the user generates during "SYSTEM GENERATION".

Thus, analog input point one (1) is different from analog output point
(1). This prevents the user from specifying meaningless operations
(attempting to set a bit "on" in an input module). In addition, UDC
reconfigurations will require only a new table generation and no BASIC
level programming changes. The logical addressing simplifies the use
of FOR - NEXT loops.

In general, all arguments to the Industrial Functions must be within
the range:

0 argument 4095
Negative arguments will generate a fatal error, FM; arguments that are
out of range generate a FO,
8.3.1 The Clock Function = CLK(X)
This function has two operations:
1., If X is positive, the system clock is set to the value of X in
seconds. The value of X must be less than 86400 (the number of

seconds in 24 hours).

2. If X is zero or negative, the value (in seconds) of the system
clock is returned.

Example:
l. Set the system clock to 12:00:00
100 LET T = 12*3600
200 LET X = CLK(T)
300 END
2. Read the system clock
100 LET T = CLK(0)
3. Set the system clock to the value entered on the terminal
50 GOTO 100
75 PRINT "INVALID TIME"

100 PRINT "ENTER PRESENT TIME AS HH:MM:SS";
110 INPUT A,B,C

120 IF A < 0 THEN 75
125 IF A > 23 THEN 75
130 IF B < 0 THEN 75
135 IF B > 59 THEN 75
140 IF C < 0 THEN 75
145 IF C > 59 THEN 75

150 LET T = CLK(A*3600+B*60+C)

900 END

8.3.2 Analog Input Function - ANI(C,G)

This function returns the results, in volts, of reading channel (C) at
gain (G) . The valid gains for the ADUQ1 are:
1000,200,100,50,20,10,2,1.

Example:

Read analog input channel 6 at a gain of 10, input wvoltage is .5
volts.

100 LET V= ANI (6,10)
200 PRINT V

the value printed will be 5,

8.3.3* Analog Output Function « ANO(C,V)

The ANO function sets the analog output channel (C) to the value (V).
The actual output generated is a function of the modules used.
However, full scale output will be generated by a value (V) of 1023,
and minimum output will be generated by a value of zero., Values
greater than 1023 or less than zero are illegal,

Example of full scale output on channel 3:

100 LET A = ANO (3,1023)

8.3.4 Read Digital Input - RDI (P,N)

This function returns the value of the digital input points starting
at point P for N number of points, The read may not cross a boundary
between modules (points divisible by twelve, i.e., 12,24 etc.).

Example:
100 LET A
200 LET B

RDI (25,4)
RDI (1,1)

Line 100 reads 4 points (25~28) and returns the value as A, this is
useful for BCD input devices, Line 200 reads the value of point 1 and
returns a 1 if the point is "on", and a zero if it is "off",

8.3.5 Send Digital oOutput - sSpo (P,N,V)

The SDO function sets the digital output point(s) specified by P and N
to the value V. The value must be a positive, and able to be
represented within the range of N. The definition of P and N is the
same as in the RDI function., The value of V, in binary notation, is
sent right-justified into the range stated.

Example:

100 LET A
200 LET A

spo (4,1,1)

Line 100 will turn point 4 on, while line 200 will turn on points 1
and 3.

8.3.6 Read Digital Output - RDO (P,N)

This function is identical to the RDI function except that the "read"
is of the digital output channel(s)., The data return is read from a
table, not the actual physical channels., Therefore, output modules
that alter state independently of computer operations (single shot
output) may be "on" in the output table but "off" physically.

8.3.7 Counter Input - CNI (P)

This function returns the number of counts remaining in the counter
module.

Example:

100 LET A = CNI (3)
A is assigned the value of the number of events remaining to be
counted in counter 3,
8.3.8 Counter Output - CNO (P,V)
Counter output is used to set a counter module, P is the channel of
the counter module, and V is the value of the number of items to count

before generating an interrupt.

Example:
100 LET A = CNO (2,300)

This will set counter 2 to count 300 events,

8.4 UPIR IDENTIFICATION FUNCTIONS

The following functions provide the user with a means of identifying
the channel (INE) and state (STA) of the device that caused the
interrupt. This will allow the user to have more than one UPIR for
several modules of the same type.

8.4,1 Line - LNE (X)

The LNE function returns the channel number of the module that caused
the interrupt. The LNE function has meaning only in a UPIR,

Example:
100 LET A = LNE (0)

Upon entry to the UPIR at line 100, A is assigned the channel number
that caused the UPIR to be invoked.

8.4.2 State - STA (X)

The STA function is used to find the state of contact associated with
the channel that scheduled the UPIR.

Example:
100 LET A = STA (INE (0))

A is assigned the state of the contact that changed to cause the
interrupt.
8.4.3 Count = CNT (X)

This function returns the number of identical schedule requests for
the same UPIR,

8.5 EXAMPLE CONTROL PROGRAM

The example control program demonstrates the maintaining of a constant
temperature bath via the following operations:

1. Open the hot and cold water valves.

2. Open the drain and turn the "BATH OK" lamp off.

3., Measure the bath temperature; if it is not 68 +or- .5 degrees
turn the "BATH OK" lamp off and adjust the hot water valve. If

the bath temperature is 68 +or- .5 degrees turn the "BATH OK"
lamp on.

4, Close the hot and cold water valves, and open the drain when
the switch is closed to shut down the process.

The hardware interfaces are as follows:

ELEMENT TYPE POINT
HOT VALVE UDC/DAC 1
COLD VALVE UDC/DAC 2
DRAIN VALVE ubc/Do 1
BATH OK LAMP uDc/bo 3
TEMP, SENSOR UDC/ADUO1 4
SHUT-DOWN SWITCH uDC/C1 2

The Industrial BASIC program would be:

100 REM CONTACT 2 SHUTS DOWN ENTIRE RUN

120 CONTACT 2 THEN 960

140 REM SCAN FOR TEMPERATURE EVERY 5 SECONDS
160 TIMER 5 THEN 500

180 REM SET SOFTWARE SWITCH FOR RESTART

200 LET sS=1

220 REM OPEN DRAIN VALVE

240 LET A=5DO(1,1,1)

260 REM OPEN HOT AND COLD VALVES 50%

280 LET H=1023*,50

300 LET C=1023*,50

320 LET A=ANO(1,H)

340 LET A=ANO(2,C)

360 REM SHUT BATH OK LAMP OFF
380 LET A=SDO(3,1,0)

400 REM NOW IDDLE

420 LET A=0

440 IF S=0 GOTO 140

460 GOTO 420

480 REM

500 LET T=ANI(4,200)

520 GOSUB 680

540 REM CONVERTS VOLTS TO DEGREES TEMPERATURE
560 IF T>68.5 THEN 740

580 IF T<67.5 THEN 800

600 REM TEMPERATURE OK TURN BATH OK LAMP ON
620 LET B=SDO(3,1,1)

640 DISMISS

660 REM

680 REM SUBROUTINE TO CONVERT VOLTS TO DEGREES
700 RETURN

720 REM

740 LET H=H*,95

760 LET C=C*1,05

780 GOTO 860

800 LET H=H*1,05

820 LET C=C*,95

840 REM STEP VALVE AND TURN OFF BATH OK LAMP
860 LET B=ANO(1,H)

880 LET B=ANO(2,C)

900 LET B=SD0(3,1,0)

920 GOTO 640

940 REM

960 LET S=STA(LNE(0))

980 IF S=0 THEN 1140

1000 REM SHUT BATH DOWN

1020 LET B=ANO(1,0)

1040 LET B=ANO(2,0)

1060 LET B=SDO(3,1,0)

1080 LET B=Spo(1l,1,1)

1100 REM NOW STOP TIMER

1120 TIMER O THEN 500

1140 DISMISS

1160 END

NOTE

The system will resume control when the
SHUT-DOWN SWITCH is restored to normal
position.

8.6 POWER FAIL - RESTART

If a power failure occurs at Run-Time the system will close any open
files and chain to a BASIC file (PWRUP.BA). The user may write his
own restart operations.

NOTE

TD8/E file operations require that the
Interrupt System be "off". Therefore,
power fail on TD8/E's nmay not be
detected if file I/O is in progress.
Closing an open file will delete any
file with the same name and extension.

CHAPTER 9

EDITING AND CONTROL COMMANDS

Several commands for editing 0S/8 BASIC programs and for controlling
their execution enable the user to perform such operations as:

. erase characters or lines
. 1list part or all of a program
« Save programs on various storage devices, and

. call program from storage devices.

NOTE

See Chapter 10 for a description of 0S/8
storage devices and files.

9.1 CORRECTING PROGRAMS
9.1.1 Erasing Characters and Lines

Errors made while typing programs at the terminal are easily
corrected. Typing a SHIFT/O or pressing the RUBOUT key causes
deletion of the last character typed, and echoes back arrow (<) on the
terminal, One character is deleted each time the key is typed. For
example:

20 DEN Fe<<F FNA(X,Y)=X4$2+3*Y

The user types N instead of F and immediately notices his mistake, He
presses the RUBOUT key (or SHIFT/0) three times, which is once for as
many characters including spaces to be deleted. He makes the
correction and continues typing the line. The typed line enters the
computer only when the RETURN key is pressed.

20 DEF FNA (X,Y)=X4$243*Y

Sometimes it is easier to delete a line being typed and retype the
line rather than attempt a correction using rubouts. Typing CTRL/U or
pressing the ALTMODE key will delete the line currently being worked
on and echoes DELETED and a carriage return-line feed, Use of the
CTRL/U or ALTMODE command is equivalent to typing rubouts back to the
beginning of the line,

To delete a line that has already been entered into the computer the
user simply types the line number followed by a carriage return., Both
the line number and the line are removed from his program.

The user may change individual lines by simply typing them in again,
Whenever a 1line is entered, it replaces any existing line which has
the same line number. New lines may be inserted anywhere in the
program by giving them 1line numbers which are between two other
existing line numbers. Using these editing capabilities, the program
may be modified and re-run until it works properly.

9.1.2 The RESEQ Program

After the user has extensively modified his program, he may find that
some portions of the program have line numbers spaced so closely
together that they do not permit any further addition of statements
should he wish to do so. Renumbering the lines in the program so as
to provide a practical increment between 1line numbers can be
accomplished automatically by wusing the RESEQ program listed below.
The RESEQ program is saved as RESEQ,BA., It should be noted that the
RESEQ program modifies the line numbers in all statements containing
them (such as GOSUB and IF-THEN statements) to agree with the new line
numbers assigned to statements by the program. Line lengths must not
exceed 72 characters.

990 REM PROGRAM RESEQ

1000 DIM L$(72),F$(1),CS$(1),NS$(16)
1010 DIM L2$(72)

1020 DIM N(350)

1030 LET F$=CHRS$ (28)

1040 PRINT "FILE";

1050 INPUT N$

1060 PRINT "START, STEP";
1070 INPUT S1,S

1080 LET S1=INT(ABS(S1l))
1090 LET S=INT(ABS(S))

1100 LET T=0

1110 LET N2=0

1120 FILE #1:N$

1130 LET I=1

1140 INPUT #1:LS$

1150 IFEND #1 THEN 1320
1160 LET L=LEN(LS)

1170 GOSUB 1980

1180 IF N1>0 THEN 1220

1190 PRINT "NO LINE NUMBER"
1200 PRINT LS

1210 GO TO 1130

1220 IF N1>N2 THEN 1260
1230 PRINT "“OUT OF SEQUENCE"
1240 PRINT L$

1250 GO TO 1130

1260 LET N2=N1

1270 LET T=T+l

1280 LET N(T)=N1

1290 IF T<350 THEN 1130
1300 PRINT "TOO MANY LINES"
1310 sTOP

1320 RESTORE #1

1330 FILEV #2:NS

LET N2=S1

INPUT #l: L$

IFEND #1 THEN 1730

LET I=1

LET L=LEN (L$)

GOSUB 1980

LET L2$=STRS$ (N2)

PRINT #2:L2$;

LET L$=SEG$(LS$,I,72)

LET N2=N2+S

LET F=0

LET D=POS(L$,F$,1)\LET P=D
IF D=0 THEN 1490

LET L2$=SEG$(LS$,P+1,72)
LET L$=SEG$(L$,1,P-1)

LET I=POS(L$,"GOTO",1l)+4
IF I>4 THEN 1750

LET I=POS(L$,"GOTO",1l)+5
IF I>5 THEN 1750

LET I=POS(L$,"THEN",1)+4
IF I>4 THEN 1750

LET I=POS(L$,"GOSUB",1l)+5
IF I>5 THEN 1750

LET I=POS(L$,"GOSUB",1l)+6
IF I>6 THEN 1750

IF F=0 THEN 1610

PRINT #2:F$;

PRINT #2:L$;

LET F=F+1

IF D>0 THEN 1660

PRINT #2:

GO TO 1350

LET D=POS(L2$,F$,1)\LET P=D
IF D>0 THEN 1700

LET L$=L2$

GO TO 1490

LET L$=SEG$(L2$,1,P-1)
LET L2$=SEGS$ (L2$,P+1,72)
GO TO 1490

CLOSE #2

STOP

LET L=LEN(LS)

GOSUB 1920

IF C=32 THEN 1760

IF C<0 THEN 1890

LET I=I-1

LET P=I

GOSUB 1980

IF N1=0 THEN 1890

FOR J=1 TO T

IF N1<>N(J) THEN 1880
LET Q$=STR$ (J*S=S+S1)
LET L$=SEGS$(LS$,1,P-1)&Q$
GO TO 1590

NEXT J

PRINT "BAD REFERENCE"
PRINT LS

GO TO 1590

IF I<=L THEN 1950

1930 LET C=-1
1940 RETURN

1950 LET C=ASC(SEGS$(L$,I,I))

1960 LET I=I+l

1970 RETURN
1980 LET N1=0

1990 GOSUB 1920

2000 TIF C<48 THEN 2040
2010 IF C>57 THEN 2040
2020 LET N1=N1*10+C-48

2030 GO TO 1990

2040 TIF C<0 THEN 2060

2050 LET I=I-1

2060 RETURN
2070 END

Typically, the program would be used as follows:

SAVE SYS:SAMPLE

READY
OLD SYS:RESEQ
READY
RUNNH

FILE? SYS:SAMPLE.BA

START, STEP?100,10

READY

OLD SYS:SAMPLE
READY

LISTNH

User saves program SAMPLE which requires
renumbering.

BASIC is ready for next command.

User calls for program RESEQ.

BASIC is ready for next command.

User runs program,

Program asks for filename, User
responds with name of program to be
renumbered.

Program asks for a starting line number
(START) and for the increment between
line numbers (STEP), User requested
that SAMPLE start with line number 100
and each line be incremented by 10.

Renumbering is accomplished. BASIC
ready for next command,

User calls back his program.
BASIC ready for next command.
User gets listing of program SAMPLE for

further modification.

NOTE

All commands described in the following
paragraphs, except LISTNH and RUNNH, may
be abbreviated using the first two
letters of the command.

9.2 THE LIST AND LISTNH COMMANDS

An entire program can be 1listed on the terminal by typing LIST
followed by a carriage return. A heading is printed before the
program itself and is of the form:

FILE EX VERSION NO., DATE

For example, if the user is working on a program named USER.BA and
wants a listing he types:

LIST

and BASIC responds with:

USER BA 1.0 26=-JUL-72
100 LET X=1
200 END
READY
NOTE

When any 0s/8 BASIC command is
completed, the message READY is printed
at the terminal. 0S/8 BASIC is then
ready to accept any other commands from
the user.

A part of a program may be listed by typing LIST followed by a 1line
number, This causes that line and all following lines in the program
to be listed. For example:

LIST 100

will list line 100 and all remaining lines in the program. Typing
CTRL/0 while the listing is being printed terminates the printing and
outputs the READY message.

The LISTNH command may be used exactly as the LIST command, but it
eliminates the heading from the listing.

9.3 THE SCRATCH COMMAND
The command:

SCRATCH

is prgvided to allow the programmer to clear his storage area,
deleting any commands, or a program which may have been previously

9-5

entered, and leaving a clean area in which to work, If the storage
area is not cleared before entering a new program, lines from previous
programs may be executed along with the new program, causing errors or
misinformation., The SCRATCH command eliminates all old statements and
numbers and should be used before new programs are created,

9.4 THE NEW COMMAND

The NEW command is used to name a program you are going to create and

performs an inherent SCRATCH on the storage area. The command is in
the form:

NEW FILE.EX

It assigns the filename to the program to be created. For example:
NEW USERA.BA

creates file USERA,BA.

An alternate method of naming programs is to type NEW followed by the
RETURN key. BASIC responds with:

FILE NAME~--

The user types the filename and extension followed by the RETURN key.

NEW
FILE NAME--USER.BA (.BA is assumed and need not
be typed)
NOTE

Extension .BA is assumed in the OLD,
NEW, NAME, and SAVE commands unless
otherwise specified. If no extension is
specified in the OLD command, O0S/8
Industrial BASIC first +tries to load
FILE.BA and if wunsuccessful tries to
locate and load FILE without the
extension,

9.5 THE OLD COMMAND

This command retrieves a previously created file from a storage device

and places the file in the storage area of the computer. The command
is of the form:

OLD DEV:FILE.EX

For example:
OLD DTAl:SAMPLE.BA

retrieves file SAMPLE from DECtape number 1 and places it in the
storage area of the computer.

An alternate method of retrieving a file is to type OLD followed by
the RETURN key. BASIC responds with:

FILE NAME--

The user types the device, filename and extension followed by the
RETURN key.

OLD
FILE NAME--~DTAl:SAMPLE,BA

If the device is omitted, DSK: is assumed.

9.6 THE NAME COMMAND

This command permits the user to rename the program in the storage
area of the computer, The command is of the form:

NAME FILE.EX
Since this command changes only the name of the storage area of the
computer - not its contents, it can be used to create two almost
identical versions of the same program, This is accomplished by

retrieving the first £file, making modifications to it, and then
SAVEing (see paragraph 9.7) the modified version under the new name,

9.7 THE SAVE COMMAND

The SAVE command saves on the specified device the file currently in
the storage area of the computer, The command is of the form:

SAVE DEV:FILE.EX

If device is omitted, DSK: is assumed. If filename and extension are
omitted, the current filename and extension are used.

The SAVE command also provides a convenient method for 1listing large
programs quickly on the line printer rather than the terminal. For
example:

SAVE LPT:

lists the current program on the line printer.

9.8 THE RUN AND RUNNH COMMANDS

After a Industrial BASIC program has been typed and is in core, it is
ready to be run. This is accomplished by simply typing the command:

RUN

The program heading is printed and the program begins execution.
If errors are encountered, appropriate error messages are typed on
the keyboard; otherwise, +the program runs to completion, printing
whatever output was requested. When the END statement is reached,
0S/8 Industrial BASIC stops execution and prints:

READY

If the program does not run properly, or contains an infinite 1loop
and, hence, will never stop, it may be terminated by typing CTRL/C,
which returns control to the 0S/8 Industrial BASIC editor (READY).

The RUNNH command suppresses printing of the heading and may be used
in place of the RUN command.,

NOTE

If a program that is not SAVEd is RUN,
and for some reason is not retrievable
by LISTing, the program may be retrieved
by calling for OLD file BASIC.WS.

9.9 THE BYE COMMAND

The BYE command instructs the computer to exit from 0S/8 Industrial
BASIC and returns control to the 0S/8 Keyboard Monitor, Typing a
CTRL/C while in the 05/8 Industrial BASIC editor (READY) mode also
returns control to the 0S/8 Keyboard Monitor.

NOTE

Never type BYE before SAVEing a newly
typed program. Unless the SAVE command
is used, the program will be lost.

CHAPTER 10

FILES, FILE STATEMENTS AND CHAINING

10.1 GENERAL INFORMATION ON 0S/8 INDUSTRIAL BASIC FILES

10.1.1 Resident Devices

The file capability provided by 0S/8 Industrial BASIC allows the user
to write information into (PRINT#) or read information from (INPUT#)
files. Only I/O to devices which are part of the resident portion of
the 0S/8 Monitor may be done. The Resident Device handler includes
the devices:

SYS: and DTAl: for TDSE's
and
SYS: and RKBO: for RKS8E's

All other current system device handlers contain only SYS:

10.1.2 File Descriptions

Files are referenced symbolically by a name of up to six alphanumeric
characters followed, optionally, by a period and an extension of two
alphanumeric characters. The extension to a file name is generally
used as an aid for remembering the format of a file,

NOTE

All files operating under 0s/8
Industrial BASIC are considered
sequential access files, That is, they
must be read or written sequentially,
one item after another, from the
beginning of the file.

10.1.2.1 Fixed Length Files

A fixed length file is one which is already in existence. That is, it
has been created and CLOSEd.

The length of a fixed length file is equal to the number of blocks in
the file and cannot be changed.
10.1.2.2 Variable Length Files

A variable length file is a newly created file. Until the file |is
CLOSEd, it is equal in length to the largest free space on the device.

When the file is CLOSEd it becomes a fixed length file equal in length
to the actual number of blocks it occupies.

10-1

Unless the file is CLOSEd, the CHAIN, STOP or END statements will
cause a loss of the file.

10,1.2.,3 Numeric Files

Data in numeric files are stored as successive three-word

floating-point numbers (85 to each 0S/8 block) with the last word in
each block unused.

10,1.3.4 ASCII Files
Data in ASCII files are stored in standard 0S/8 format (three 8-bit

characters to every two words), Refer to Chapter 11 of this manual
and the 0S/8 Software Support Manual (DEC-S8-0SSMA-A-D).

10.2 FILE STATEMENTS

0S/8 Industrial BASIC provides a number of statements for operating on
files. They include:

FILE#
PRINT#
INPUT#
RESTORE#
CLOSE#
IF END#

The statements are distinguishable from other 0S/8 Industrial BASIC
statements by the number sign (#) which is appended to the statement.

10.2.1 The FILE# Statement
This statement is used to open a file and is of the form:

(1ine number) FILEtype numeric expression:
STRING EXPRESSION

where:

a. FILEtype is one of four possibilities:

FILEtype Definition

FILE Fixed length - ASCII
FILEV Variable length - ASCII
FILEN Fixed length - numeric

FILEVN Variable length - numeric

b. The numeric expression has a value of one or two and represents
the internal file number for the file being _opened and
is used in any other statements referencing this file,

c. The string expression is either a string variable or a string
constant which has a value of the form:

DEV:FILE.EX
For example, the following program:

10 LET A$="DTAl:NETSAK,BA"
20 FILEN #1:AS

is equivalent to:
10 FILEN #1:"DTAl:NETSAK.BA"

for opening fixed length numeric file NETSAK on DECtape number 1 and
assigning it internal file number 1., If DEV: is missing from the
string expression, the device DSK is assumed by default,

NOTE

Only two files, (numbered 1 and 2)
besides the terminal (FILE #0) may be
open in a program at any time. However,
the ability to open and close (CLOSE#)
files under program control permits the
user to access an unlimited number of
files.

When selecting a FILEtype, the user should keep in mind that wvariable
length files (FILEV and FILEVN) are restricted to outputting only.
That is, variable length files should be used in conjunction with the
PRINT# statement only. An attempt to read (INPUT#) from a variable
length file results in error message VR. Only one FILEV or FILEVN may
be active per device at a given time,

Fixed length ASCII files (FILE) should be restricted to use
with the INPUT# statement, but may be used with the PRINT# statement
when the user is certain that the ASCII or numeric data he is PRINTING
(i,e., the number of characters) replaces, exactly, the ASCII or
numeric data on the file, It is recommended that the use of fixed
length ASCII files (FILE) for output be entirely avoided.

10.2.2 The PRINT# Statement
The PRINT# statement writes data into files and is of the form:

(line number) PRINT #N: list of expressions and delimiters
where N is the numerical expression for a file number. For ASCII
files, the expressions in the list can be string or numeric, and the
TAB and PNT functions can both be used, The delimiters can be commas

or semicolons and have the same meanings that they have in the PRINT
statement for the terminal (refer to Chapter 3). For numeric files,

10-3

the expressions may be onlynumeric variables separated by commas or
semicolons.

10 FILEV #1:"RKBO:DATE,DA"
20 LET F=1

30 PRINT #F: TAB(28) ;DATS (X)
40 CLOSE #F

50 END

This routine prints the date, starting at column 28 on the device RKB0
in a file named "DATE,DA" .,

10.2.3 The INPUT# Statement
The INPUT# statement reads data from files and is of the form:
(line number) INPUT #N: list of wvariables

where N is the numerical expression for a file number. The INPUT#
statement does not expect a line number on each line of data in the
file. If one is present, it is read as data:

10 DIM N$(19,15)
20 FILE #1:"LARRY"
30 FOR I=1 TO 19
40 INPUT #l: N$(I)
50 NEXT I

60 END

The above routine reads 19 strings from file LARRY,

NOTE

DSK: is the system device in this
example,

The previous paragraph indicated that numbers may be written into an
ASCII file. The reading of numbers from an ASCII file requires some
precaution if the data delimiter is other than a comma or semicolon.
In 1line 30 of the example below, the data written into file number 1
will be separated by a carriage-return and line-feed which are both
written into the file. The subsequent reading of numbers from the
file in line number 80 shows the use of a pair of dqummy arguments (C
and L) to compensate for the carriage~-return and line-feed since they
would otherwise be read as numeric data with a value of 0.

10 FILEV #1:AS$

20 FOR I =1 TO 10
30 PRINT #1:I

40 NEXT I

50 CLOSE #1

60 FILE #1:A$

70 FOR I = 1 TO 10
80 INPUT #l:J,C,L
90 NEXT I
100 END

1l0-4

10.2.4 The RESTORE# Statement
The RESTORE# statement is of the form:
(line number) RESTORE #

where N is a numerical expression for the file number to be reset to
the beginning, If N is equal to zero, or if #N is missing from the
statement, the DATA list in the program is reset to the beginning,

10 FILE #2:"SUSAN"
20 INPUT #2: A,B,C,D
25 RESTORE #2

30 INPUT #2: E,F,G,H

This program uses the same values from system file SUSAN for variables
A, B, C, and D as it does for variables E, F, G, and H.

10.2.5 The CLOSE# Statement
The CLOSE# statement is of the form:
(line number) CLOSE #N

where N is the numerical expression for the file number to be closed,
For example:

10 DIM A$(5,10)

15 FOR I=1 TO 4

20 LET AS$(I) = "SHERRY" & CHR$(I+48)&".BA"
25 FILE #1:A$(1)

30 INPUT #1:BS

35 IN BS$="SANDY" THEN 60

40 CLOSE #1

45 NEXT I

50 PRINT "CANNOT FIND SANDY"
55 STOP

60 PRINT "FOUND SANDY"

END

This program searches through four system files (SHERY1l through
SHERY4) for the file that has SANDY as the first entry. If the first
entry in the file is not SANDY, the file is closed (statement 40) and
the next file is opened.

NOTE
The user must CLOSE# all output files

before ending the program in order to
prevent the loss of data.

10-5

10.2.6 The IF END# Statement
The IF END# statement allows the user to determine whether or not
there has been an End-of-File detected for the file in question. The
statement has the form:

(line number) IF END #N THEN line number

where N is a numerical expression for the file number, The line
number must refer to a line in the program,

100 IF END #1 THEN 170

e o s Oe o o o

170 END

If the IF END# statement is found true, the last INPUT# or PRINT#
(read or write) should be discarded.

The IF END# statement is not used to determine if more data is
available, but rather to determine if the last read or write was
valid,

The first attempt, in an INPUT# or PRINT# statement, to read or write
past an end-of-file causes an abort of the I/O associated with that
read or write, and the program passes control to the next operation to
be performed. The second, and any subsequent attempts, to read or
write past an end-of-file causes an RE or WE runtime error to be
printed for each syntactical item in the INPUT# or PRINT# list. To
avoid a lengthy list of error messages, avoid using 1long INPUT# or
PRINT# lists in situations which may approach an end-of-file,

10.3 THE CHAIN STATEMENT

The CHAIN statement provides a convenient means for dividing large
programs into a series of smaller programs which are written and
stored separately, and executed in a chain. The CHAIN statement is of
the form:

(line number) CHAIN "DEV:Filename.,extension"

When BASIC encounters a CHAIN statement in a program, it stops
execution of that program, retrieves the program named in the CHAIN
statement from the specified device and file, compiles the chained
program and begins execution of the program, The use of the CHAIN
statement, therefore, is the automatic equivalent of running an OLD
program with no header (RUNNH), The file BASIC.WS will contain the
original program in the chain and when execution 1is complete, the
BASIC storage area will contain the original program,

Since BASIC removes the program which contains the CHAIN statement
from core before retrieving the chained program, the user should make
certain to CLOSE# all output files that are opened by FILE statements
in the program which contains the CHAIN statement in order to avoid

the loss of data generated by the program.
NOTES

l. Control commands OLD, RUNNH, and SAVE
are described in Chapter 9,

2, If DEV: is not specified, DSK: is
assumed by default.

10-7

CHAPTER 11

CREATING ASSEMBLY LANGUAGE FUNCTIONS

11.1 INTRODUCTION

0S/8 Industrial BASIC has a facility which allows experienced PDP=-8
assembly language programmers to interface their own assembly language
routines to 0S/8 Industrial BASIC. This facility permits the user to
add functions to 0S/8 Industrial BASIC which can operate directly on
special purpose peripheral devices. This chapter describes in some
detail the organization and internal characteristics of the 0S/8
Industrial BASIC Run-time System (INBRTS) and is intended to serve as
a programming guide for the creation of such user-~coded assembly
language functions. This material assumes the user to be familiar
with 0S/8 and PDP-8 assembly lanquage. For additional information on
either subject, see the 0S/8 SYSTEM REFERENCE MANUAL,

In addition to this chapter the programmer would find most useful a

listing of the 0s/8 Industrial BASIC Runtime System
(DEC~S8~-LBASB~A~LA) .

11.2 THE 0S/8 INDUSTRIAL BASIC SYSTEM

The 05/8 Industrial BASIC system is divided into the following
discrete parts:

1. The BASIC editor (INBSIC.SV)
2. The BASIC compiler (INBCMP.SV)
3. The BASIC loader (INBLDR,SV)
4, The BASIC runtime system (INBRTS.SV)
5. The runtime system (INBSIC.AF)
overlays (INBSIC.SF)
(INBSIC.FF)

The 0S/8 Industrial BASIC editor is used to create and edit the source
program, On receipt of a RUN command, the editor creates a temporary
file called BASIC.WS, stores the source in that file, then chains to
the compiler. The compiler compiles the program into a 12-bit
pseudo-~code which is loaded into core along with the runtime system by
the loader. The run time system interprets each pseudo~instruction,
calling each of the overlays into core as needed. On completion of
the program, the runtime system chains back to the editor, and the
cycle is repeated. Following is a diagram showing the files on the
systems device associated with or used by each system component.

BASIC Component Associated Usage
Files
Editor BASIC.WS program storage
Compiler BASIC,WS program storage
! BASIC,.TM conmpiled code storage

11-1

Loader BASIC.TM compiled code storage

Runtime INBSIC.AF
System INBSIC.SF overlays
INBSIC,FF (1f needed)

The user must avoid using the filenames above; they are reserved for
the 0S/8 Industrial BASIC System.

11.3 THE 0S/8 INDUSTRIAL BASIC RUNTIME SYSTEM

At the time the user's BASIC program is actually being executed, the
portion of the BASIC system in control is the Run time System
(INBRTS). INBRTS is also in core when user-coded functions are
executed, and as such, a knowledge of it is essential to writing an
0S/8 BASIC assembly language function. Note that the following
sections refer frequently to specific core locations in INBRTS by
symbolic names (always capitalized). The actual value of these
symbols can be obtained from the symbol table (Appendix H) for the
version of BASIC being used. Note that this symbol table is for a
non-EAE system; the major routine entry points mentioned in this
chapter, however, are the same for both systems. All diagrams in this
chapter have the lowest core address at the bottom. This chapter also
makes use of the variable names A, A(0,0), A$, and AS$(0) to represent
the general case. All references in this chapter to "page 0" refer to
the INBRTS page 0 (Page 0, Field 0).

11.3.1 INBRTS Core Layout

When executing, INBRTS has the following configuration:

0S/8 Resident N7400 OR N7600
FIELD N Symbol
(where N= Tables
highest core
field in In-core DATA
machine) List
Array
Space
®
O Pseudo Code 12400
B
FIELD 1 File Buffers
11377 Process 1/0 10000
(0s/8 USR swap)
- el

11-2

Ve N

0S/8 Resident 07600

File Table 07577

FIELD 0 Floating Point 06677
Package INBRTS

Overlay Area 04600

Interpreter 03400

0

The highest core field is used for INBRTS symbol tables, storing of
the field 1 and field 2 (if non-ROM TD8 /E) resident portions of the
0S/8 Monitor, the in-core DATA list (data generated by DATA statements
in the program) and pseudo-code (generated by the compiler). The
bottom of the array space (marked by line A) can exceed the field
boundary and proceed into lower fields, but this will only happen for
large programs. Note that if the bottom of the pseudo-code extends
below 1line B (12400), one file buffer space must be sacrificed, with
corresponding loss of runtime file capabilities. As the bottom of the
pseudo-~code approaches 12000, the number of files which may be
simultaneously open at runtime approaches 0, At least 400(8) words of
buffer must be free for each file opened at runtime. The file buffers
are allocated dynamically at runtime in response to FILE commands in
the BASIC program, and if not fully used may be used as buffer space
by the user function.

11.3.2 INBRTS Overlays

Locations 3400~4577 of field 0 serve as an overlay area, into which
the currently needed overlay is read. The overlays consist mainly of
functions which are infrequently used, and are constructed as follows:

INBSIC.AF Arithmetic Functions

SIN, COS, ATN, EXP, FIX, FLOAT,
INT, RND, SGN, SQR, LOG

INBSIC.SR String Functions

ASC, CHRS$, DATS, LEN, POS, SEGS,
STRS, VAL, Error processing, TRC

INBSIC.FF File Functions
CHAIN, CLOSE, FILE

Note that the overlay driver reads in a new overlay only if the
overlay currently resident does not contain the function specified in
a given function call. If the function call is for a function which
is found in the currently resident overlay, no overlay I/0 takes
place.

NOTE

On TD8E's interrupts are disabled during
the I/0 for overlays.

11-3

11.3.3 INBRTS Symbol Tables

INBRTS locates variables and strings at runtime via four permanently
resident symbol tables. These tables, which always reside in the
highest core field, are the Scalar Table (for variables like A, Bl),
the Scalar Array Table (A(l),B(1,1)), the String Symbol Table (aS$,
Als), and the String Array Table, (B1$(2)). A nmore detailed

description of the structure of these tables can be found in Section
11.5.

11.4 DATA FORMATS

11.4.1 Variables

Variables are stored in core as standard 3-word floating point
numbers. The first word is a signed, 2's complement exponent, while

the second and third words represent the signed, 2's complement
mantissa.

LOW MANTISSA

+ HIGH MANTISSA

+ exponent

Single variables are stored as 3-word entries in the Scalar Table.
Arrays are stored in core as successive 3-word entries, with the
first subscript varying the fastest, and A(0,0) occupying the lowest
core address. The address and field of A(0,0) are specified in the

Scalar Array Table. The structure of the symbol tables is described
in Section 11.5.

_____ T~ . A(M,N)

- A(M-1,N)

— - - = = A (M-2,N)

A(2,9)
_ - — - - A(1,9)
- - - A(F,9)

11-4

11.4.2 Strings

Strings are stored as 6-bit ASCII characters, with a character count
as the first word of the string. The left half of each character word
is used first, with unused characters padded with spaces (46(8)). The
character count is a signed, 2's complement number representing the
actual number of characters in the string, not the number of words
devoted to that string. Each string is allocated [INT(E%£)+1] words,
where n is the maximum length specified in a DIM statement, whether
that many words are actually used or not.

"BASIC" "BRTS"
.\A/\/\/

count for \//\/’\//\

next string
——

n n 4
"gI" gg l? count for
"RA" 72 71 next string
count —p 7773 24 23 "rs"

T e g2 22 "BR"

7774 count

The minimum string is one character long. The address of the count
word for each string is pointed to by its entry in the String Symbol
Table.

String arrays are stored as successive strings, with A$(0) occupying
the lowest core address, Each string is allocated enough space for
its maximum length, even though all of this space may not be used,

AS (N)
«— count
| I
i |
| |
I |
A$ (1)
count
fp——
INT(E%L) words where n is the
AS (%) maximum length of
string specified in
44— count DIM statement

11-5

NOTE

For any of the above data types, a fielad
boundary may fall anywhere within any
individual item, Routines that use
successive words in any data item must
be careful to check for a field boundary
within that item,

11.4,3 In-core DATA list

The in-core DATA list is stored as sequential data items in core.
Strings again are devoted even numbers of words, and are prefixed by a
count, There is no separator or identifier of DATA items and the DATA
list is always in the highest core field. A page 0, field 0 pointer
to the starting address of the DATA list 1less 1 is maintained at
DLSTRT, and the address of the last word of the list can be found at
DLSTOP,

Example:
In BASIC:
DATA 1,2,"THREE", 4
In core: gane nd
2089 4
3
FIELD N 25 49
22 25 "THREE"
24 19
string
count —e» 7773
28949
20949 2
2 FIELD §
go908
DLSTOP Pointer to last
2099 1 word in DATA list
STARTING ADDRESS 1 DLSTRT Pointer to DATA
OF DATA LIST =P list -1
' ! -
be - - = —— -~

11-6

11.4.4 The String Accumulator (SAC)

All INBRTS string operations use the String Accumulator (SAC) as one
of the operations, and the result is always left in the SAC. The
string accumulator is to strings as the hardware AC is to PDP-8
instructions. The. SAC starts at location SAC for 36 words (72
characters), and the length of the string currently in the SAC is
stored as a negative number in STRLEN, A page 0 pointer to the start
of the SAC less 1 is maintained at SACPTR.

11.5 INBRTS SYMBOL TABLE STRUCTURE

The INBRTS symbol tables all reside in the highest core field, A CDF
to the symbol table field can be found in location CDFIO of field 0.

11.5.1 The Scalar Table

The Scalar Table is the highest symbol table in core, and it consists
of successive 3-word entries, each entry <containing a 3-word
floating-point number. One entry exists for each variable used in the
program, and a few extra entries are used as temporaries. A pointer
to the start of the Scalar Table can be found at location SCSTRT of
field 0. The scheme for scalar variables is as follows:

FIELD Scalar LOW MANT Variable
X Table HI MANT A
Texp
p—
FIELD CDFIO CDF X J
0
SCSTRT POINTER TO

SCALAR TABLE

11.5.2 The Array Symbol Table

The Array Symbol Table consists of successive 4- word entries, each
entry specifying the location and size of an array used in the
program, Each entry is as follows:

DIMENSION 2

DIMENSION 1

CDF TO FIELD OF A(0,0)

POINTER TO A(0,0)

11-7

The first word of each entry is a 12-bit pointer to the location of
the exponent word of the first element in the array. The second word
is a CDF N where N is the field for the pointer in the first word.
The third word is the first dimension of the array (obtained by adding
1 to the M in a DIM A(M,N) statement because the first subscript is
always 0), and the 1last word is the second dimension of the array
(obtained by adding 1 to the N in the aforementioned DIM statement for
the same reason). If the array is uni-dimensional, the second
dimension is zero. To locate the nth element in the array, INBRTS
performs the following calculation:

Addr of A(M,N)=3*[M+(DIM1+1l) *N]+Addr of A(0,0)
A pointer to the start of the Array Symbol Table less 1 (for use in an

index register) can be found in field 0 at location ARSTRT. The
scheme for arrays is:

Array N+1 A(M,N)
Symbol
Table M+1 entry 2
(FIELD X) Y Array
CDF Y A(M,N)
(FIELD Y)
POINTER TO A(#,d) —_—
A(2,8)
A(1,9)
—> A(g,9)
start of entry 1
Array -®»
Symbol ! e
Table T -~
CDFIO CDF X
FIELD g
ARSTRT
POINTER TO ARRAY TABLE-1

11.5.3 The String Symbol Table

The String Symbol Table has successive three-word entries as follows:

11-8

-MAXIMUM # OF CHARS IN STRING

CDF FOR STRING

POINTER TO STRING

The first word is a 12-bit pointer to the count word of the string,
The second word of each entry is a CDF for that count word, and the
third word of the entry is the maximum length of the string (in number
of characters) stored as a 2's complement negative number., A
pointer to the start of the String Symbol Table (less 1) can be found
in field 0 1location STSTRT. Note that the maximum number of
characters in the string represents the amount of space allocated for
the string; the amount of space actually used is represented by the
count word which is stored with the string.

The scheme for simple strings is:

x. length+l
2

words long

INT (52 y+1

String _
Symbol MAX LENGTH
Table 2 .
(FIELD X) CDE Y entry Sgrlng
A
POINTER TO A$ (FIELD Y)
entry 1 COUNT FOR AS
! | -
b - -
CDFIO f coF x
FIELD #
STSTRT [POINTER TO STRING SYMBOL TABLE-1 |—-

11.5.4 The String Array Table

The String Array Table consists of consecutive 4 - word entries, with
each entry as follows:

DIMENSION OF AS(0)

~-MAXIMUM #OF CHARS IN A$(0)

CDF FOR A$(0)

POINTER TO AS$(0)

11-9

The first word contains a pointer to the count word of string AS$(0),
and the second word contains a CDF for this count. The third word has
the maximum length (in characters) of each element in the array stored
as a 2's complement negative number. The 1last word contains the
dimension of the string array, obtained by adding 1 to the M in a DIM
statement of the form DIM A$(M,N) because the first element is always
A$(0). A pointer to the start of the String Array Table less 1 can be
found in field 0 at location SASTRT.

The scheme for string arrays is:

String M+1
Array
Table
_ 2 AS (1)
(F1ELD X)| VN entry -
CDF Y
String Array
POINTER TO P COUNT AS$ (M,N)
A$ (9) (FIELD Y)
A
entry 1 * @
g~ COUNT
\ }
L _J*‘F
FrELp g CPFIO [CDF X |

SASTRT [POINTER TO START OF STRING ARRAY TABLE -1 [—

To locate the nth element of the string array, INBRTS performs the
following calculation:

(ABS (2) +1)
addr of AS(N)=addr of AS$(0)+ (INT

+1) *N
N

where %2 = individual element length.

11.6 FLOATING-POINT PACKAGE

The INBRTS floating~point package is permanently resident, and as such
it is readily available for use by assembly language routines for
floating-point calculations,

11.6.1 Floating-Point Accumulator
One of the operands of every floating-point operation is the Floating
Accumulator (FAC), and the result of all floating~point operations

(except FPUT) is always left in the FAC, The FAC is found at EXP
HORD, and LORD on page 0 with standard PDP-8 23-bit floating-point

11-10

format:

LORD LOW MANTISSA
HORD HIGH MANTISSA
EXP Exponent

sign of sign of
mantissa exponent

The floating-point accumulator is to floating=-point instructions what
the hardware accumulator is to PDP-8 machine language instructions.
11,6.2 PFloating~Point Routines

The following £floating-point routines are available for user
subroutine use:

Function Starting Address Operation
ADD FFADD FAC<«FAC+OPERAND
SUBTRACT FFSUB FAC«FAC=-OPERAND
MULTIPLY FFMPY FAC#+FAC*OPERAND
DIVIDE FFDIV FAC<FAC/OPERAND
INVERSE SUBTRACT FFSUB1 FAC+OPERAND-FAC
INVERSE DIVIDE FFDIV1 FAC<+OPERAND/FAC
LOAD FAC FFGET FAC«OPERAND
STORE FAC FFPUT OPERAND<FAC

The symbol "<" means "is replaced by".

Note that the store function (FFPUT) is the only operation in which
the result is not left in the FAC Note also that FFPUT is a
non-destructive store, i.e,, the FAC is the same after the store
operation as before.

There are two calling sequences for the floating=-point routines, each
with a different method for passing the address of the operand. Mode
1l is the most efficient, and can be used whenever the operand is in

field 0, Mode 2 1is the field independent call, but is more core
expensive than mode 1,

The mode being used is determined as follows:

1. If the contents of the AC is non-zero on entry, the mode used
is mode 2,

2, If the contents of the AC is zero on entry, the location FF is
examined. If FF is also zero, mode 1 is the calling mode. If
FF is non-zero, mode 2 is used.
The calling modes are as follows:

Mode 1 - address of operand follows call to floating-point routine.

CLA
DCA FF /SWITCH FF=0 FOR MODE 1

11-11

JMS I POINTER /JUMP TO FLOATING-POINT ROUTINE
(operand address) /12 BIT ADDRESS OF OPERAND

POINTER, (starting address)
/FLOATING~POINT ROUTINE
/STARTING ADDRESS.
Mode 2 -~ address of operand in AC on call to floating=-point routine.

CLA IAC
DCA FF /FF SWITCH NOT EQUAL TO 0 FOR
/MODE 2
CDF N /DF TO FIELD OF OPERAND
TAD OPADDR /ADDRESS OF OP@RAND
JMS I POINTER /JUMP TO FLOATING=POINT ROUTINE
(unused) /THIS LOCATION UNUSED
/RETURNS HERE,
POINTER, (starting address) /ADDRESS OF FLOATING=POINT ROUTINE
OPADDR, (operand) /ADDRESS OF OPERAND

Both modes return with a clear AC and the data field set to 0. Note
that the switch FF is not altered by the routines themselves, hence it
is only necessary to set it when desired to change modes, not before
every call.

The mode 2 call always returns to the second instruction following the
JMS call, skipping the word following the JMS., Since this word is
completely unused, it is a good location for constant storage.

The FF switch is necessitated by the special case when it is desired
to reference an operand located at location 0 in a field other than
field 0. If the FF switch were not present, the floating~point
package would examine the AC, find it empty, and use the address in
the word following the call, since there is no way of distinguishing
an empty AC from an operand address of 0 loaded into the AC, The FF
switch, then, is used to tell the floating-point package whether the
zero AC means "mode 1 call" or "operand at 0".

INBRTS maintains links for FGET and FPUT on page 0 of field O,
providing convenient access to these frequently used routines.

Page 0
Link Name Routine Linked
FGETL FFGET
FPUTL FFPUT

Examples:
Some examples of INBRTS floating=-point code:

1. Routine to calculate X4$2+2X+1

CLA

11-12

FADDLK,
FMPYLK,
TWO,

ONE,

X,

DCA FF

JMS I FGETL
X

JMS I FMPYLK
X

JMS I FPUTL
b4

JMS I FGETL
X

JMS I FMPYLK
TWO

JMS I FADDLK
ONE

JMS I FADDLK
Y

FFADD
FFMPY
0002
2000
0000
0001
2000
0000

eee

0
0
0

2, Routine to add 5
numbers starting at location 0 of field 2.

START,

ALOOP,

MINUSS,

FADDLK,
OPADDR,
K3,

CLA
DCA OPADDR
JMS I FCLR
IAC
DCA FF
CDF 20
TAD OPADDR
JMS I FADDLK

=5
TAD OPADDR
TAD K3
DCA OPADDR
IAZ MINUSS
JMP ALOOP
HLT
FFADD

0

3

/OPERAND ADDRESS WILL
/FOLLOW CALLS (MODE 1)
/LINK IS ON PAGE 0

/X * X

/SAVE X42

/LOAD X AGAIN

/2X

/2X+1

/X42+2X+1

/RESULT NOW IN FAC

/LINK TO ADD ROUTINE

/LINK TO FLOATING MULTIPLY
/FLOATING POINT CONSTANT
/2.0

/FLOATING POINT CONSTANT
/1.0

/VARIABLE

/FLOATING-POINT TEMPORARY

successive floating=-point

/
/FIRST OPERAND AT LOCATION 0

/ZERO FAC
/CALLS ARE MODE 2

/OPERAND ADDR IN AC

/CALL ADD ROUTINE

/LOCATION UNUSED, SO WE USE
/IT AS A COUNTER

/UPDATE OPERAND ADDRESS

/DONE?

/NO

/YES~ANSWER IN FAC,

POINTER TOC ADD ROUTINE
/POINTER TO OPERAND

/EACH OPERAND IS 3 WORDS LONG.

11-13

11.6.3 Floating-Point Operations

There are also four simple floating-point operations that operate on
the FAC and are available to user subroutines,

Function Starting Address Operation
NEGATE FFNEG FAC+=FAC
NORMALIZE FFNOR NORMALIZE<FAC
SQUARE FFSQ FAC=FAC*FAC
CLEAR FACCLR FAC<0

These functions are all called by simple JMS, and return with the
hardware AC=0. Page 0 Links are maintained for negate, normalize, and
clear.

Page 0 Link Routine
FNEGL FFNEG
FNORL FFNOR
FCLR FACCLR

11.7 1INBRTS SUBROUTINES

There are several subroutines in INBRTS which can be useful to
assembly language functions. A discussion of each of these routines
follows. They are identified in the discussion by the tag for their
starting address, and all tags referred to can be found in the symbol
table,

11.7.1 Subroutine ARGPRE

Subroutine ARGPRE is used to locate scalar Table, When called, it
uses the rightmost 8 bits (0-225 decimal) of location INSAV as the
entry number to be found, and on return, the data field is set to the
field of the variable and the AC points to the exponent word of the
variable. ARGPRE is called via a JMS, and is wused most often in
passing arguments to and from the user subroutine, (See Section 11.8)

Example: Load the FAC with the third variable in the Scalar Table.

CLA
TAD C2 /WE WANT ENTRY #3, BUT
/SINCE THE FIRST ONE IS 0,
/LOAD INSAV WITH 2
DCA INSAV
IAC
DCA FF /SET FF SWITCH
JMS I ARGPRL /CALL ARGPRE
JMS I FGETL /THE AC AND DATA FIELD
(unused) /ARE SET, SO THIS IS A
HLT /MODE 2 CALL,
cz2, 2
ARGPRL, ARGPRE

11-14

11.7.2 Subroutine XPUTCH

Subroutine XPUTCH is used to put ASCII characters into the terminal
ring buffer, When called, the 8-bit ASCII character is in the
rightmost 8 bits of the AC, On return, the AC is cleared., Note that
unless the ring buffer is empty, XPUTCH does not cause any characters
to be printed; it merely places the character in the terminal ring
buffer. If the ring buffer is full the system will wait until it can
place the character in the ring buffer. A page 0 link to XPUTCH is
maintained at location XPUT,

Example: Put a carriage return/line feed combination in the terminal
buffer.

CLA /LOAD CR INTO AC
TAD D215 /CALL XPUTCH VIA PAGE 0 LINK
JMS I XPUT /LOAD LINE FEED INTO AC
TAD K212 /PUT IN BUFFER
JMS I XPUT
K215, 215 /ASCII CODE FOR CR
K212, 212 /ASCII CODE FOR LF

11.7.3 Subroutine PSWAP

Under normal conditions, INBRTS runs with the 0S/8 page 17600 portion
of the resident monitor moved to the highest page of core (second
highest page if TD8/E system). PSWAP is used to swap this page back
and forth prior to doing any operations with 0S/8. Prior to calling
08/8, PSWAP should be used to restore the page 17600 resident to
17600, and when 0S/8 operations are complete, PSWAP should be called
again to swap the 17600 resident back up to high core, A page 0 link
to PSWAP is maintained at location PlSWAP,

Example: The following code uses the USR in 0S/8 to perform a LOOKUP
on the file BASIC.DA on the systems device,

cLa /AC SHOULD BE 0 ON CALL
JMS I P1SWAP /RESTORE 0S/8 PAGE 17600 RESIDENT
CLA IAC /DEVICE # FOR SYS: IS 1
CIF 10

JMS I K7700 /CALL USR

2 /LOOKUP

FNAME /POINTER TO FILE NAME

0 /CONTAINS LENGTH ON RETURN
HLT /ERROR RETURN

JMS I PLSWAP /SWAP 0S/8 RESIDENT BACK

. /TO HIGH CORE

11-15

NOTE

If PSWAP is used, it must be executed an
even number of times., When the assembly
language function is called, the page
17600 resident is at high core; when the
function returns to INBRTS, the 17600
resident must be back in high core. On
TD8E systems interrupts should be
disabled before calling PSWAP and
reenabled after last call,

11.7.4 Subroutine UNSFIX

Subroutine UNSFIX is used to fix a positive, 12-bit, magnitude only
integer from the FAC and return with the result in the hardware AC,
The range of the fixed integer is 0-4095; an attempt to fix a number
larger than 4095 or a negative number will cause an "FO" or "FM"
error, respectively. UNSFIX is called via simple JMS, and a page 0
link to UNSFIX is maintained, called INTL., UNSFIX destroys the
contents of the FAC,

Example: The following code uses the FACl as a count of the number of
times to ring the bell on the terminal.

CLA
JMS I INTL /FIX THE FAC TO 12-BIT INTEGER
CIA /NEGATE THE INTEGER
DCA COUNTR /AND STORE AS COUNT
BELLOP, TAD K207 /ASCII FOR BELL
JMS I XPUT /PUT IN RING BUFFER
ISZ COUNTR /RIGHT NUMBER YET?
JMP BILLOP /NO-RING ANOTHER BELL
K207, 207

11.7.5 Subroutine STFIND

Subroutine STFIND is used to locate a string variable or the first
element of a string array. When called, if the link is non-zero,
STFIND looks for an entry in the String Array Table. If the 1link is
zero, STFIND uses the String Symbol Table. For standard string
variables, the rightmost 8 bits of location INSAV are used as the
number of the entry to be obtained; for string array variables the
last 5 bits are used. On returns from STFIND, the AC contains a CDF
to the field of the string specified, location STRPTR points to the
first word (count word) of the string, location STRMAX holds the
maximum length of the string (as a negative number), and location
STRCNT contains the actual number of characters in the string (as a
negative number). STFIND is used most often in passing arguments to
and from user functions.

11-16

Examples:
1, To find string number 7

TAD Ké /THE NUMBERING STARTS WITH 0
DCA INSAV /SET UP STFIND POINTER
CLL /WE WANT SIMPLE STRING
JMS I STFINL /CALL STFIND
K6, 6
STFINL, STFIND

2. To find the first element of string array number 2.

TAD K1 /THE SECOND ENTRY
DCA INSAV
CLL CML /WE WANT STRING ARRAY
JMS I STFINL /CALL STFIND
K1, 1
STFINL, STFIND

11.7.6 Subroutine BSW

Subroutine BSW is used to swap the two halves of the hardware AC. BSW
is called by a simple JMS, and a page 0 1link called BSWL is
maintained,

11.7.7 Subroutine MPY

Subroutine MPY is a 12-by-12-bit binary multiply routine, The AC is
multiplied by the contents of location TEMP3 (both numbers are treated
as 12-bit, unsigned integers), and on return, the high-order bits
of the result are in TEMP6, and the low-order bits of the result are
in the AC. The page 0 line to MPY is MPYLNK.

11.7.8 Subroutine DLREAD

Subroutine DLREAD is used to read the next word of the incore DATA
list 4into the AC. If there is no more data in the DATA list, a DA
error message results,

Example: Read the next number from the DATA list into the FAC.

CLA

JMS I DLREAL /READ EXPONENT WORD INTO AC

DCA EXP /STORE IN FAC

JMS I DLREAL /READ HIGH MANTISSA FROM LIST

DCA HORD /STORE HIGH MANTISSA WORD

JMS I DLREAL /READ LOW MANTISSA FROM LIST

DCA LOSR /STORE LOW MANTISSA WORD
DLREAL, DLREAD

11-17

11.7.9 Subroutine ABSVAL

Subroutine ABSVAL is used to take the absolute value of the FAC., If
the FAC is positive, ABSVAL is essentially a NOP; if the FAC is
negative, it is negated before return,

11,8 PASSING ARGUMENTS TO THE USER FUNCTION

INBRTS calls the user assembly language function with a JMP
instruction. Prior to executing that JMP, it places the first numeric
argument in the FAC, the second in Scalar Table entry 0, the third in
Scalar Table entry 1, etc., until the argument list is satisfied. If
any string arguments are used, the first is found in the SAC and the
second is pointed to by String Table entry 0. The user function
obtains these arguments as needed by calling the routines ARGPRE and
STFND appropriately. All user functions occur in FIELD 1.

FIELD 1 core usage is as follows:

BASIC
CODE

12400

BASIC CODE
USER FUNCTIONS
FILE I/0

12000

BASIC CODE
FILE 1/0
NON~-INTERRUPTING
USER FUNCTIONS
11400

PROCESS I/O

10000

The process I/0 area which extends up to 1400 in field 1 is used by
the real-time functions. The area from 1400 to 1777 in field 1 is a
sharable area: If any file I/0 is done, this area will be allocated
first for the buffer space; if no file I/O is done, this area may be
used for non-interrupting user functions. Finally, if no file I/O or
non-interrupting user functions are being used, BASIC interpretive
code can extend into these locations.

The area from 2000 to 2377 in field 1 is another sharable area; If 2
files are needed at runtime, this will be the second area allocated;
if this area is not needed for 2 files, large BASIC programs can use
this area for extended core, or it may be used as a resident area for
any types of user functions,

Users adding their own functions to the BASIC Run-Time System have to

provide information to INBRTS so it may handle core correctly., This
will be detailed later. -

11-18

11.8.1 Interfacing FIELD 1 Code with FIELD 0 Subroutines

For convenience a routine resides in FIELD 0 (CALLF0) which will
accept the word following the JMS as the FIELD 0 subroutine to call.
An argument can be passed to the subroutine in the AC, Return to
FIELD 1 occurs at argument +1.

The sequence looks as follows:
In FIELD 1

TAD AC

CIF 0

JMS I [CALLFO

subroutine to call

return occurs here with Data FIELD=1

The following function takes the first two numeric arguments and
performs the operation on them specified in A$:

UDEF EXM(X,AS$,Y)
LET Z=EXM (2,"PLUS",1)

Legal values for A$ are strings beginning with "PL" for "PLUS" and
"MI" for "MINUS".

If the function is to return any value, that value should be left in
the FAC on return. The user function must always return by a JMP I
ILOOP in FIELD 0 with the data FIELD O,

To generate a fatal IA (illegal argument) error message, perform a JMP
to location IA in INBRTS.

EXM, /ENTRY POINT, DATA FIELD=0

DCA I (INSAV /INITIALIZE FOR ARG 0
TAD I FlSACP /GET FIRST 2 CHARS OF A$ FROM SAC
TAD PL
SZA CLA
JMP EMINUS
CIF 0
JMS I (CALLFO
ARGPRE
CIFO
JMS I (CALLFO
FFADD
RETURN, CDF CIF 0
JMP I (ILOOP

EMINUS, TAD I F1lSACP
TAD MI
SNA CLA
JMP ISMINS
CIF CDF 0
JMP I (IA
ISMINS, CIF 0
JMS I (CALLFO
ARGPRE

11-19

CIF O
JMS I (CALLFO

FFSUB

JMP RETURN
PL, -2014
MI, -1511

11.8.2 Using the USE Statement

If the assembly language function needs to know the location of an
array (for buffer space, multiple argument passing, array argument),
the USE statement is necessary. The USE statement places the octal
number for the array specified into location USECON, By using this
value as an index into the Array Symbol Table, the array specified can
be located and used by the assembly language function, as necessary.

For example: The hypothetical assembly language function PLT requires
a 100-word buffer, To assure allocation of this buffer, the BASIC
user of PLT is instructed to dimension a 34-element array and use it
in a USE statment before calling the PLT function.

In BASIC:

10 REM DEFINE THE USER FUNCTION

20 UDEF PLT (X,Y)

30 REM ALLOCATE A 34 ELEMENT (102 WORDS) ARRAY FOR A BUFFER
40 DIM B(34)

100 USE B
110 Y=PLT(3,2.8)

The function PLT finds B as follows:

PLT, TAD USECON /GET ENTRY NUMBER OF B
CLL RTL /MULTIPLY BY 4 (EACH ARRAY TABLE
/ENTRY IS 4 WORDS LONG)
TAD ARSTRT /MAKE POINTER INTO ARRAY TABLE
DCA XR5 /AND SAVE IT
TAD CDFIO /GET CDF TO SYMBOL TABLE FIELD
DCA .+1 /PUT INTO LINE
. /CHANGE DF TO SYMBOL TABLE FIELD
TAD I XR5 /GET POINTER TO B(0)
DCA BPTR /SAVE FOR LATER
TAD I XR5 /GET CDF FOR B(0)
DCA BCDF /SAVE FOR LATER
TAD I XR5 /GET ARRAY DIMENSION 1
DCA DIM1
TAD I XR5 /GET ARRAY DIMENSION 2
DCA DIM2

11-20

Note that the USE statement merely passes an entry number to the
assembly language function; all actual parameters must be obtained
from the Array Symbol Table using that entry number as an index. Note
also that the physical location of arrays passed in such a fashion can
be almost anywhere in core, and a field boundary may fall within the
array.

11.9 INBRTS I/0

11.9.1 Terminal 1/0

INBRTS drives the terminal asynchronously by maintaining a character
terminal output buffer and wusing interrupts. The procedure is as
follows:

1. Characters are inserted into the terminal ring buffer by
calling subroutine XPUT. If the ring buffer is full, XPUT
waits until a character is printed and a slot is free,

2, INBRTS prints a character from the ring buffer whenever the
flag comes up.

Assembly language functions are free to use the ring buffer via XPUT.

11.9.2 1INBRTS File Formats
BASIC files are formatted as follows:

1. Numeric files - Numeric files are formatted as consecutive
3-word floating-point numbers,85 to each 256-word 0S/8 block.
The last word in each block is unused. There is no
end-of~file marker.

2. ASCII Files -~ ASCII files are stored in 0S/8 ASCII format,
that is, three 8-bit characters packed to every two words as

follows:
0 3 4 11
I ORDER CHAR 1
CHAR 3
LO ORDER CHAR 2
CHAR 3

The end of the file is marked with a CTRL/Z character.

11-21

11.9.3 INBRTS Buffer Space

Locations 11400-12377 in INBRTS are devoted to file buffer space.
Buffers are allocated as they are needed, the lowest free buffer
always being allocated first. A map of currently allocated buffers is
maintained on page 0, called BMAP. Bits in the map are on if the
buffer is allocated, off if the buffer is free. Bit 11 represents the
buffer from 11400-11777, bit 10 for 12000-12377. If any of the
buffers are not available because the pseudo-code or variable space
extends below 12400, the corresponding BMAP bits are set when INBRTS
is started.

11.9.4 1INBRTS Device Driver Space

The only available device drivers are the resident device drivers. No
other space is allocated for device drivers. On TDS8E systems units
0 and 1 are resident, on RKBE systems all of unit 0 is resident,

Note that assembly lanqguage functions that are used in programs which
do not require more than one file open at once may wish to use some of
the buffer space for their own purposes. This space can be allocated
by setting appropriate bits in BMAP, by modifying INBRTS initialize
code (follows TAG TTYBUF). After the bits are set, INBRTS will not
use this space in subsequent FILE commands,

11.9.5 The INBRTS I/0 Table

INBRTS keeps track of the status of each of the files which may be
open simultaneously by means of the I/0 table. Starting at FILEl, it
has two 13-word entries, labeled FILEl and FILE2. Each name
corresponds to the number specified in the file statement which opened
that file, and the format of each entry is as follows:

HEADER WORD

POSITION OF PRINT HEAD (FOR COLUMN FORMATTING) OR DEVICE NAME
MAXIMUM FILE LENGTH OR DEVICE NAME
FILE NAME

FILE NAME

FILE NAME

FILE NAME

STARTING ADDRESS OF BUFFER (IN FIELD 1)
CURRENT BLOCK IN BUFFER

READ/WRITE POINTER INTO BUFFER

HANDLER ENTRY POINT

STARTING BLOCK NUMBER FOR FILE

ACTUAL FILE LENGTH

The header word bits have significance as follows:

Bit Positions Meaning
0-3 0S/8 number for device
4-5 Current character number for unpacking ASCII files
6 0 if the current buffer load has not been changed

1 if the current buffer load has been altered

11-22

7 0 if device is file structured
1 if device is read/write only
8 0 if the handler is 1 page long
1 if it is a 2-page handler
9 0 if file is fixed length
1l if variable length
10 0 if more data in file
1l if EOF has been seen
11 0 if file numeric

1 if file ASCII

11.10 INTERFACING THE ASSEMBLY LANGUAGE FUNCTION TO INBRTS

All assembly language functions are routines, called by a JMP through
the User Function Table. This table, which begins at location 1560 in
INBRTS, contains absolute pointers to the starting addresses of each
of the user assembly language functions. User functions must be
origined to run in FIELD 1, and must return to INBRTS via a JMP I
ILOOPL in FIELD 0., To interface a set of user functions to INBRTS,
perform the following operations:

1., Assemble all the user assembly language functions;
the entry to the functions must be in FIELD 1. Entry is with
the data FIELD set to 1.

FIELD 1 PAGE 0 scratch locations and useful FIELD 0 pointers
are given in Section 11.11.3.

R PALS
*NAME=-NAME

2, Load the user functions and INBRTS.BN into core with the
Absolute Loader, and save the core image.

«R ABSLDR
*INBRTS ,USERS$

3. Using 0S/8 ODT, modify the User Function Table in INBRTS
which starts at 1574, entering pointers to the user assembly
language functions. Unmodified table entries are 236(8); re-
place these entries with the starting addresses (pointers)to
the user assembly language function. Starting at location
1574, enter the pointers in the table in the exact
corresponding order in which the functions appear in the UDEF
statement which defines them.

11-23

.ODT

1574/236 2000 (LF)

1575/236 2010

{C

.SAVE SYS INBRTS 0-~7577,10000-1XXXX;7605

where XXXX represents the high core address of the user

functions.

In the procedure above two functions are interfaced which start at
locations 2000 and 2010 respectively . LF indicates pressing the LINE

FEED key.

Example: There are three assembly language functions in our package,

called PLT, HI, and LO.
uses this function package,
order. The function files,

Function Source (USER.PA)

*2000
HI,

CIF CDFO

JMP I {[ILOOP
PLT,

CIF CDFO

JMP I [ILOOP
Lo,

CIF CDFO
JuMP I [ILOOP

The BASIC user is instructed that when he
PLT, HI and LO must be defined in that
then, look like:

/ENTRY POINT FOR HI
/ORDER OF ENTRY POINTS IS
/NOT CRITICAL

/ENTRY FOR PLT

/ENTRY FOR LO

To enter these three functions into the user function table in INBRTS,

the procedure is:
+GET SYS:INBRTS

.ODT

1574/236 PPPP (LF)
1575/236 HHHH (LF)

1576/236 LLLL
+«SAVE SYS:INBRTS

11-24

where PPPP, HHHH, and LLLL represent octal starting addresses for PLT,
HI, and LO respectively. LF indicates pressing the LINE FEED key.

NOTE

INBRTS establishes calls to the user function by
setting up a one-to~one correspondence between the
pointers at 1574 and the function names present in
a UDEF statement. Therefore, the order of the
pointers must exactly correspond to the order of
the function definitions in UDEF, If the BASIC
user wants to use only the n(th) function in a
given user package, he must still define n
functions in the UDEF statement, though the first
n-1 may be dummies.

For example: A package of four assembly language
functions that use arguments as follows.

ONE (X)

T™WO (X,Y)
THR (X,Y,%)
FOU (X,Y,%,A)

If a BASIC user wishes to use only one function
ONE, the UDEF would look like:

10 UDEF ONE (X)

If the BASIC user wants to use functions ONE and
FOU, the UDEF would look like:

10 UDEF ONE(X) ,DUA(D) ,DUB(D) ,FOU (D)

For this user, DUA and DUB are dummy user function
names which are never called; they merely set up
the right correspondence between names and
pointers.

The easiest way to assure that the pointers are
established correctly is to provide the user of an
assembly language function package with a set of
complete UDEF statements that define all functions
correctly, and instruct him to use the complete
set of UDEF's each time,

11.11 GENERAL CONSIDERATIONS AND HINTS

11.11.1 Routines Unusable by Assembly Language Functions

Because only one overlay is resident at any time, assembly language
functions can only call routines in the overlay which is resident when
executing, they cannot use any routines that reside in any of the two
other overlays. Following is a list of the INBRTS functions and
routines grouped by overlay.

11-25

Routine Name

Arithmetic Overlay
FFATN
FFCOS
FFEXP
EXPON
INT
FFLOG
SGN
FFSIN
RND
FROOT

String Overlay
ASC
CHR
DAT
LEN
POS
SEG
STR
VAL
TRC

File Overlay
CHAIN
CLOSE
OPENAF
OPENAV
OPENNF

OPENNV

Function

Arctangent Function

Cosine Function
Exponential Function (ex)
Power Function (AB)

Signed integer Function
Naperian log Function

Sign Function

Trigonometric Sine Function
Random Number generator

Square root Function

String Function ASC

CHR$ Function

DATS Function

String length Function
String search Function
String segmenting Function
STR$ Function

VAL Function

Trace Function

File manipulation routines

11-26

11.11.2 Using 0S/8

So long as the assembly language function is carefully designed to
protect all core areas being used by INBRTS, there are no restrictions
on the function's use of 0S/8. Once the page 17600 resident monitor
has been restored, the 0S/8 User Service Routine (USR) may be called
at will, and files may be located, used, and closed again. If the
user's BASIC program does not need full file capabilities, the
assembly language function is free to wuse the buffer space from
11400-12377. The assembly language function should be careful,
however, to check the bit maps and status words on page 0 to make
certain a given area is free before using it. Note that the system
device driver may be used without restoring the page 17600 resident:
restoration is only required when it is desired to use the USR,

11.11.3 Page 0 Usage
Following is a map of the INBRTS page 0 usage., Locations marked with

an * may be used by the assembly language function without saving the
contents,

FIELD 0, PAGE 0

0-2 Interrupt vector

3=7 System parameters and temps
10-15 * Index registers

16-17 System pointers

20-30 Compiler-INBRTS communication
30-36 System registers

37-62 Floating-point package area
63-67 System registers

73-107 Constants

110-161 Links to INBRTS subroutines
162-177 I/0 Table pointers

FIELD 1, PAGE 0

0-17 Unused (available for user)
20-33 Scratch Area
34-40 Pointers for FIELD 0 routines

Assembly language functions are free, of course, to use any of the
pointers or constants, but they must be intact when control is

returned to INBRTS,

11.12 ASSEMBLY LANGUAGE FUNCTION EXAMPLE

To illustrate the material in the previous sections, an example of a
complete assembly language function follows. Note that this example
is tutorial in nature; it is meant to illustrate argument passing and
getting along with INBRTS rather than a typical use for assembly
language functions,

The example consists of two user functions and an addition _to the
interrupt skip chain. The function performed is reading a string from

11-27

a second terminal and storing it in a string variable; the string will

console terminal if a carriage return is

REM THIS IS A DEMONSTRATION INDUSTRIAL

REM WHICH WILL RUN COMPUTE BOUND AND
REM ACCEPT CHARACTERS FROM A SECOND TELETYPE

REM THE RUN TIME SYSTEM HAS BEEN MODIFIED
REM TO ADD CODE TO THE INTERRUPT SKIP CHAIN
REM AND INSERT THE ADDRESSES OF THE USER

be printed on the main
entered,
100
105 REM BASIC PROGRAM
110
120
130 REM USING THE INTERRUPT FACILITY.
140 REM
150
160
170
180 REM FUNCTIONS
200 DIM AS(40)
210 UDEF TT1(X),TT2S$(AS)
220 PRINT "I'M RUNNING"
230 TIMER .1 THEN 1000
300 FOR I =1 TO S5ES5
310 J = J+1
320 IF J 500 THEN 350
330 PRINT I
340 J =0
350 NEXT 1
360 TIMER 0 THEN 1000
370 PRINT "DONE"
380 STOP
1000 X = TT1(0)
1010 1IF X=0 THEN 1040
1020 IF X 0 THEN 1050
1030 PRINT “***¥xx%., pagQ
1040 DISMISS
1050 AS$ = TT2S$(AS)
1060 DISMISS
5000 END

11-28

11,13 LINKING INTO THE INTERRUPT SKIP CHAIN

If the user desires to process I/0 from an 1I/0 device which is
currently not supported by INBRTS and the interrupt facility must be
used, the user must add code to the interrupt skip chain.

The user may allocate the second file I/0 buffer at location 12000 for
storage of the interrupt driven code and the skip chain. 1If this is
done, remember to mark this buffer as "in use" so that INBRTS will not
try to allocate it. File I/O buffer 1 may not be used for
interrupting code, but can be used for non-interrupting user functions
because it 1is swapped by the 0S/8 system when INBRTS calls upon the
USR to perform services,

NOTE

INBRTS gets an interrupt reqularly once
every 1/50 second for clock services.
Obviously interrupts are off in the skip
chain, therefore no computations of any
type should be performed.

Actual linking into the skip chain is performed as follows:

+R ABSLDR

*INBRTS

*UFUNCSS$ (UFUNCS are any user functions)

. ODT

6773/0000 addr addr is the FIELD 1 address of the

continuation of the skip chain

1041/6764 6773

AC

«SAVE SYS INBRTS.... save arguments as needed by the user
functions and INBRTS,

NOTE

Entries in the user function table may
also be modified at this time. Location
6773 in FIELD 0 is a CIF CDF 10, If the
user wants the data field to be zero
upon entry to the FIELD 1 portion of the
skip, he must change the CIF CDF 10 to
CIF 10,

11-29

FIELD 1

/EXAMPLE OF ASSEMBLY LANGUAGE INTERFACE
TO INBRTS

/DEFINE USED IOTS

ASKF
AKRB
ATSF
ATLS
ATCF

6331
6336
6341
6346
6342

/DEFINE REFERENCED LOCATIONS IN INBRTS

FACC
STRL
SACP
CALL

INTRET

ILOO
HORD

/THE ADDITION

*2000

TTYSCN, AKSF
JMP
AKRB
DCA

TESTOUT, ATSF
SKP
ATCF
CIF

JMP I (INTRET

LR
EN
TR
FO

P =

TESTOUT

CHAR

CDF 0

TO THE INTERRUPT SKIP CHAIN

/IS READER FLAG UP
/NO.-.

/YES...GET CHARACTER
/SAVE IT

/IS PRINTER FLAG UP
/NO...

/YES..,.CLEAR IT
/RETURN BACK TO FIELD 0

/ROUTINE TO DETERMINE FUNCTION DESIRED BY

/ALTERNATE TELETYPE

/IF FAC =0, NO ACTIVITY, IF FAC>0 ADD CHARACTER TO
/CURRENT STRING, AND IF FAC<0 PRINT STRING

TT1, TAD
SNA
JMP
ATLS
AND
DCA
DCA
CIF

JMS I (CALLFO

FACC
TAD
TAD
SNA
CLL
IAC
NOCHAR, CDF

CHAR
NOCHAR

(77
SVCHAR
CHAR
0

LR
SVCHAR
(=15
CLA
CML RAR

0

/GET CHARACTER

/IS ONE REALLY THERE?
/NO,...NOTHING INPUT RECENTLY
/YES...ECHO IT

/MAKE IT 6~BIT FOR INTERNAL FORMAT
/SAVE CHARACTER FOR STRING FUNCTION
/CLEAR LAST TYPED FLAG .

/USE CALLF0 INTERFACE FUNCTION
/TO CALL ROUTINE WHICH CLEARS

/FAC

/SEE IF CHARACTER

/WAS A CARRIAGE RETURN

/SKIP IF NOT

/YES,..MAKE AC NEGATIVE

/SET AC TO 1 OR 4001

/PLACE RETURN ARGUMENT IN

11-30

DCA
CIF
JMP

I (HORD
CDF 0
I (ILOOP

/FAC HIGH ORDER WORD
/RETURN
/TO INTERPRETER

/ROUTINE TO CONCATENATE LAST TYPED CHARACTER
/ON ALTERNATE TELETYPE TO STRING IN THE STRING
/ACCUMULATOR

/SHOULD ONLY BE CALLED IF TT1 RETURNED A
/POSITIVE NUMBER

T2,

PUTIN,

HIGHPT,

SVCHAR,
CHAR,
PTR,

CDF
TAD
CIa
CLL
TAD
DCA
SNL
JMP
TAD
TAD
DCA
CMA
TAD
DCA
CIF
JMP

TAD
CLL
RTL
RTL
JMP

[NN

0
I (STRLEN

RAR
I (SACPTR
PTR

HIGHPT
I PTR
SVCHAR
I PTR

I (STRLEN
I (STRLEN
CDF 0

I (ILOOP

SVCHAR
RTL

PUTIN

/INBRTS INFO, IS IN FIELD 0

/GET CURRENT STRING LENGTH

/MAKE IT POSITIVE

/CONVERT TO WORD OFFSET FROM CHAR OFFSET
/POINTS TO SAC-1

/SAVE IT

/LINK=1 MEANS 2ND CHAR IN WORD
/WILL BE FIRST CHARACTER IN WORD
/GET UPPER HALF OF LAST CHARACTER
/ADD IN NEW CHARACTER

/PLACE BACK INTO SAC

/BUMP LENGTH UP BY ONE, BUT IT IS
/NEGATIVE

/RETURN
/TO INTERPRETER

/CHARACTER MUST GO INTO HIGH
/SIX BITS OF WORD

/FINISH PUTTING IT IN

11-31

APPENDIX A

0S/8 BASIC STATEMENT, COMMAND, AND FUNCTION SUMMARY

A.l ELEMENTARY 0S/8 BASIC STATEMENTS

Statement

CHAIN

DATA

DEF

DIM

Example of Form

CHAIN DEV:Filemane.ext

DATA X1,X2,...,%Xn

DEF FNB(x) = £(x)

DEF FNB(x,y) = £(x,y)

For numerics:
DIM v1l(nl), v2(nl,m2)

For strings:

DIM v1$(I) ,v2$(K,L)

Explanation

Stops execution of the
current program, retrieves
the program named in the
CHAIN statement from the
specified device and file,
compiles the chained
program and begins
execution of the program.

Values x1 through xn are
to be associated with
corresponding variables in
a READ statement, The
values may be either
numerics or strings.
Strings must be enclosed
by quotation marks.

The user may define his
own function

to be called within his
program by putting a DEF
statement at the beginning
of a program, The
function name begins with
FN and must have three
letters. The argument
list in the function may
contain as many as 4
numeric and 2 string
arguments.

Enables the user to create
a table or array with the
specified number of
elements where v is the
variable name and n and m
are the maximum subscript
values. Any number of
arrays can be dimensioned
in a single DIM statement.

I is the length of string
variable v1$§,

K is the number of strings
and L is the 1length of
strings of string variable
v2S$. Strings longer than

END

FOR-TO-STEP

GOsSUB

GO TO or
GOTO

IF-GOTO

IF-THEN

INPUT

END

FOR v=x1 TO x2 STEP x3

GOSUB x

GO TO n or

GOTO n

IF £f1 r £2 GOTO n

IF £f1 r £2 THEN n

INPUT v1,v2,...,Vn

LET v =

£

8 characters must be
dimensioned. String
tables are illegal.

Last statement in the
program, Signals
completion of the program,

Used to implement loops:
the variable v is set
equal to the expression
X1, From this point the
loop cycle is completed
following which v
is incremented after each
cycle by x3 until its
value is greater than x2.
If STEP x3 is omitted, x3
is assumed to +l. x3 may
also be negative., If %3
is positive and x1>x2, the
loop is never executed.

Allows the user to enter a
subroutine at several
points in the program,
Control transfers to line
X.

Transfers control to
line n and continues
exection from there.

Same as IF-THEN,.

If the relationship r
between the expressions £l
and £f2 is true, transfers
control to line n; if not,
continue in regular
sequence,

If £f1 and £f2 are string
they are compared on the
basis of the ASCII numeric
value of each character in
the string., See paragraph
7.1.4 for details.

Causes typeout of a ? to
the user and waits for the
user to supply the values
of the variables vl
through vn. See paragraph
3.5.1 for INPUT rules.

Assigns the value of the
expression £ to the
variable v, The word LET
is optional.

NEXT

PRINT

RANDOMIZE

READ

RESTORE

RETURN

sToP

UDEF

NEXT v

PRINT al,a2,...,an

RANDOMIZE

READ v1,v2,...,Vn

RESTORE

RETURN

STOP

Used to tell the computer
to return to the FOR
statement and execute the
loop again until v is
greater than or equal to
terminal value in FOR
statement (or v
is £ terminal value if
increment <0),.

Prints the values of the
specified arguments, which
may be variables, text, or
format control characters
(, or ;). See paragraph
3.5.2 for format control
and printing rules.

Generates new sets of
random numbers,

Variables v1 through wvn
are assigned the value of
the corresponding numbers
or strings in the DATA
list.

When typed as the first
three letters of a line
everything between REM and
end of line is ignored to
allow typing of remarks
within the program.

Sets pointer back to the
beginning of the list of
DATA values.

Transfers control to the
statement following the
last GOSUB.

When encountered in the
program the STOP statement
terminates execution.

UDEF function name (arguments)

The UDEF statement is used
to define the syntax of a
call to a user-coded
machine language function
(function name) with its
associated arguments.

USE USE v1,v2,...,vn The USE statement
identifies the 1lists and
arrays referenced by a
user~coded machine
language function,

CONTACT~THEN CONTACT v THEN n Define the line number (n)
to schedule when a contact
interrupt occurs on point
V.

COUNTER=-THEN COUNTER v THEN n Define the line number (n)
to schedule when the
counter point v reaches
zero.

TIMER-THEN TIMER v THEN n Define the line number (n)
to schedule when the time
v has elapsed. Continue
to cycle until timer

disabled.
DISMISS DISMISS Exit from user process
interrupt mode - resume

main line code,

A,2 0S/8 BASIC FILE STATEMENTS

See Chapter 10 of this manual for details regarding the use of 0S/8
BASIC file statements and file descriptions,

Statement Example of Form Explanation

CLOSE # CLOSE #N: Closes a file N previously
opened by a FILE #N
statement where N is the
numerical expression for
the file number.

FILE # FILE #n:s These statements, open,
FILEV # FILEV #n:s respectively, a fixed
FILEN # FILEN #n:s length ASCII, variable
FILEVN # FILEVN #n:s length ASCII, fixed length
numeric, and variable
length numeric file, where
n has a value of l or

2 and s is a string
expression with a value of
DEV:FILE.EX. DEV is
system handler.

INPUT # INPUT #N: v1,v2,...,vn Reads vl through vn from
file number N,

IF END # IF END #N THEN n If an attempt has been
made to read or write

A-4

PRINT #

RESTORE #

A.3 0S/8 BASIC CONTROL COMMANDS

Command

BYE

CTRL/C

CTRL/O
LIST
LI

LIST n
LI n

LISTNH
LISTNH n

NAME
NA

NEW
NE
OLD
OL
RUN
RU

RUNNH

SAVE

PRINT #N: al,a2,...,an

RESTORE #N

Example of Form .

BYE

CTRL/C

CTRL/O
LIST
LI

LIST n
LI n

LISTNH
LISTNH n

NAME FILE.EX
NA FILE.EX

NEW FILE.EX

NE FILE.EX

OLD DEV: FILE.EX
OL DEV: FILE.EX
RUN

RU

RUNNH

SAVE DEV:FILE.EX
SA DEV:FILE.EX

beyond the last datum in
file number N, control
passes to line number n.

Writes the values of the
arguments into file number
N.

Sets pointer back to
beginning of file number

Explanation

Exits from BASIC and
control to Keyboard Monitor.

returns

Stops execution of program and
returns control to 0S/8 Industrial
BASIC editor. In editor mode
returns control to 0S/8 Keyboard
Monitor.

Stops the 1listing of text and
returns control to BASIC editor.

Lists program with heading.

Lists program starting from
line n, with heading.

Same as LIST and LIST n,
but heading suppressed.

This statement renames the current
program in user core.

Used to name a program to be
created.
Performs an inherent SCRATCH,

Performs inherent SCRATCH and
retrieves a previously created file
from the device specified.

Compiles and executes the program
currently in core, with heading.

Compiles and executes the program
currently in core, with heading
suppressed.

Saves the current program on the
device specified.

SCRATCH
sC

SCRATCH Deletes all program statements
sC from user core.

A.4 0S/8 BASIC FUNCTIONS

Function

ABS (X)
ASC(X)
ATN (X)

CHRS$ (X)

COs (X)
DATS (X)
EXP (X)
FNA (X)
INT (X)
LEN(XS$)
LOG (X)

PNT (X)

POS (X$,Y$,2)

RND (X)

SEGS$ (X$,Y,2)

Explanation

This function returns the absolute value of the
argument X,

This function returns the decimal ASCII number (see
Appendix D) corresponding to the character X,

This function calculates the angle (in radians) whose
tangent is given by the argument X.

X is a numeric expression (modulo 64) which is
truncated to an integer, The decimal integer is
converted to its equivalent ASCII character (see
Appendix D).

The cosine function is used to calculate the cosine of
an angle specified in radians.

This function returns the data in the form MM/DD/YY.
The argument X is a dummy argument.

This function calculates the value of e(2.71828) raised
the the X power.

Used with a DEF statement to define a user function.
Thereafter used as any other function.

This function returns the greatest integer 1less than
the value of the argument X. '

This function returns the number of characters in
string XS.

The LOG(X) function calculates the natural logarithm of
X.

This function, which can be used only 1in a PRINT
statement, outputs the character whose decimal ASCII
value is X. This function 1is useful for outputting
non-printing characters,

This function returns the location in string X$ of the
first occurrence of string Y$ starting with the Zth
character in string X$. See paragraph 7.2.,4 for POS
function rules.

This function returns a random number between 0 and 1.
This function returns the substring of X$ which is

between positions Y and Z inclusively. See paragraph
7.2.5 for SEG$ function rules.

SGN (X)

SIN(X)

SQR(X)

STRS (X)

TAB (X)

TRC (X)

VAL (X$)

The sign function returns the value 1 if X is any
positive number, 0 if zero, and -1 if any negative
number,

This function is used to calculate the sine of an angle
specified in radians.

The square root function computes the square root of
the absolute value of an expression.

This function converts the numeric value of X to a
string which is its decimal representation.

This function which can only be used in a PRINT
statement, moves the print head to position X.

This function turns on the trace feature if x=1 and
turns off the trace feature if x=0, When the trace
feature is on, line numbers are printed between percent
signs as the lines are encountered in the program, The
feature is useful when debugging programs,

This function returns the number represented by the
string X$ which is the decimal representation of a
number.

A.5 INDUSTRIAL FUNCTIONS

Function

ANI(P,G)
ANO(P,V)

CLK(X)

CNI(P)

CNOo(P,V)

RDI(P,N)

Spo (P,N,V)

Explanation

This function reads analog input point P at gain G and
return the value in volts,

This function loads the D/A point P with the value V.
1023=full scale O=minimum

If the value of X is zero or negative this function
returns the time of day clock in seconds. If the
value of X is positive the time of day clock is set
to the value of X

1€x£86400

This function returns the number of counts remaining
until zero in counter P,

This function loads the counter (P) such that V items
will be counted before the counter (P) interrupts
(overflows) .,

This function returns the value of point(s) P
through N.

This function loads the wvalue V, in binary, into
point(s) P through N (right justified).

RDO(P,N)

LNE (X)
STA (X)
CNT (X)

This function return the results of the last
sent to point(s) P thru N,

These are UPIR Identification Functions.
(Refer to chapter 8, section 8.4).
Arguments are dummies.

data

APPENDIX B
COMPILE-TIME DIAGNOSTICS
Compile-time diagnostic messages typed out by 0S/8 BASIC are in the
form:
XX YY

where XX is the diagnostic code and YY is the line number at which the
error occurred.

Diagnostic Code Explanation

CH Error in CHAIN statement.

DE Error in DEF statement,

DI Error in DIM statement syntax or string dimension
greater than 72, or array dimensioned twice.

FN Error in file number or filename designation,

FP Incorrect FOR loop parameters or FOR loop syntax.

FR Error in function arguments or function not
defined,

IF THEN or GOTO missing from IF statement, or bad
relational operator.

I0 I/0 error.

LS Missing equal sign in LET statement.

LT Statement too long (greater than 80 characters).

MD Line number defined more than once. YY equals
line number before line in error.

ME Missing END statement.

MO Operand expected, not found,

MP Missing parenthesis or error in expression within
parentheses.

MT Operand of mixed type or operator does not match
operands (e.g., A$=l and A&2 are both incorrect).

NF NEXT statement without corresponding FOR
statement,

NM Line number missing after GOTO, GOSUB, or THEN,

OF Output file error.

PD

Qs
Ss

sT

SY

TB
D
TS
RT
uD
UF

uUs

XC

Pushdown stack overflow. Result of either too
complex a statement (or statements) or too many
nested FOR-NEXT loops.

String literal too long or does not end in quote,
Subscript or function argument error.

Symbol table overflow due to too many variables,
line numbers, or literals, Combine lines using
backslash (\) to condense program.

System incomplete. System files such as
INBSIC.SV, INBCMP.SV, and INBRTS.SV missing,

Program too big. Condense or CHAIN,

Too much data in program.

Too many total characters in the string literals.
Incorrect real time statements.

Error in UDEF statement,

FOR loop without corresponding NEXT statement.

Undefined statement number, (i.e., statement
number mentioned in statement is not in program.)

Incorrect or missing array designator in USE
statement,

Extra characters after the logical and of 1line.
(e.g., LET A=B,D -- the dot after the B suggests
that B is the end of the line and the character
D appears extraneous.)

APPENDIX C

RUNTIME DIAGNOSTICS

Runtime diagnostic messages typed out by 0S/8 BASIC are in the form:
XX AT LINE YYYYY

where XX is the diagnostic code and YYY is the line number at which
the error occurred. Most runtime errors stop execution of the
program, Those errors which do not stop the program are termed
non-fatal (NF) and are indicated below.

Diagnostic Code Explanation

BO No more file buffers available.

CcI Inquire failure in CHAIN. Device not found.,

CL Lookup failure in CHAIN., Filename not found,

DA Attempt to read past end of data list.

DE Device driver error. Caused by hardware 1I/0
failure.

DO No more room for drivers, Too many different
devices used in file commands.

DV Attempt to divide by 0. Result is set to zero.
(NF)

EF Logical end of file. Usually caused when I/0
device runs out of medium,

EM Attempt to exponentiate a negative number to a
power.

EN Enter error in opening file, Device is read only

or there is already one variable file open on that
device or file not found.

FB FILE busy. Attempt to use a file already in use.

FC 0S/8 error while closing variable file. Device is
read only on file closed already.

FI Attempt to close or use unopened file,

FM Attempt to fix minus number, Usually caused by
negative subscripts or file numbers.

FN Illegal file number, Only 0,1 and 2 are legal.

FO Attempt to fix number greater than 4095, Usually

caused by negative subscripts of file numbers.,

GR

GS

IA

IF

IN

LM

OE

ov

PA

sC

SL
SR

ST

SuU
sW

VR

BE

DR

GE

IG

Iv

SG

RETURN without a GOSUB.

Too many nested GOSUBs. The limit is 10.
Illegal argument in UDEF function call.
Illegal DEV:filename specification.

Inquire failure in opening file, Device
found.

Attempt to take log of negative number or 0.

Driver error while overlaying, Caused by
device hardware error,

Numeric or input overflow.
Illegal argument in POS function.

Attempt to read past end of file. (NF)

not

SYsS

String too long (greater than 72 characters) after

concatenating,
String too long or undefined.

Attempt to read string from numeric file,

String truncation on input. Stores maximum length

allowed. (NF)

Subscript out of DIM statement range,
Attempt to write string into numeric file.
Attempt to read variable length file,

Attempt to write past end of file (NF).

Added Run-~Time Process I/0 Errors

Width crosses module boundary.

DISMISS executed while not in user interrupt

routine,

Module is not the correct generic code (Type).
Invalid gain specified for analog input.
Illegal generic code (Module not supported).
Data item out of valid range.

Channel not defined at system generation.

IC
Qw

T™

TE

Illegal channel (channel not in valid range).
Zero width or width not wide enough.

Attempt to start too many timers, counters
contacts.

Time too large (> 86400 for clock or timer.

or

APPENDIX D

ASCII CONVERSION TABLE

Character 6-Bit Octal Decimal Character 6-Bit Octal Decimal
A 01 1l 6 66 54
B 02 2 7 67 55
C 03 3 8 70 56
D 04 4 9 71 57
E 05 5 space 40 32
F 06 6 ! 41 33
G 07 7 " 42 34
H 10 8 # 43 35
I 11 9 S 44 36
J 12 10 % 45 37
K 13 11 & 46 38
L 14 12 ' (apostr,) 47 39
M 15 13 { 50 40
N 16 14) 51 41
0 17 15 * 52 42
P 20 16 + 53 43
Q 21 17 , (comma) 54 44
R 22 18 - 55 45
S 23 19 o 56 46
T 24 20 / 57 47
U 25 21 H 72 58
v 26 22 H 73 59
W 27 23 < 74 60
X 30 24 = 75 61
Y 31 25 > 76 62
Z 32 26 ? 77 63
0 60 48 Q 00 0
1l 61 49 [33 27
2 62 50 AN 34 28
3 63 51] 35 29
4 64 52 4 36 30
5 65 53 - 37 31

APPENDIX E

0S/8 INDUSTRIAL BASIC SYSTEM BUILD INSTRUCTIONS

0S/8 Industrial BASIC is distributed on DECtape.
of 0S/8 Industrial BASIC contains SAVE images (ready-to-run) for each
of the 0S/8 Industrial BASIC system components as well as binaries for
each system component. 0S/8 Industrial BASIC, then, is distributed as

the following files:

File

INBSIC.BN
INBSIC.SV
INBCMP,.BN
INBCMP,SV
INBLDR.BN
INBLDR, SV
INBRTS.BN

EAEQOVR.BN
INBRTS,.SV
INBSIC.AF

INBSIC,.SF
INBSIC.FF

Component

Binary for editor
Editor save image
Compiler binary
Compiler save image
Loader binary

Loader save image
Runtime system binary

Overlay for KE-8/E EAE
(8/E with KE-8/E EAE)
Runtime system save
image (from INBRTS,.BN)
Arithmetic function
overlay

String function overlay
File manipulation overlay

Assembling the 0S/8 Industrial BASIC sources

Instructions for assembling each of the 0S/8 Industrial BASIC
(under 0S/8) is used, and the descriptions represent
To assemble 0S/8 Industrial BASIC, a

follow. PAL-8
0S/8 commands,
required.

The 0S/8 BASIC sources are named as follows:

NAME , MM
where NN represents the version number., For the
files are named:
Name Component
INBSIC.01 Editor Source
INBCMP.O1 Compiler Source
INBLDR,O1l Loader Source
INBRTS.01 Runtime System Source

ll

To assemble the editor:

.R PALS

*DEV:INBSIC.BN DEV:INBSIC,01

The DECtape version

Distributed on:

DECtape
DECtape
DECtape
DECtape
DECtape
DECtape
DECtape

DECtape
DECtape
DECtape

DECtape
DECtape

sources

12X machine is

first release, the

3.

To assemble the compiler:

«R PALS
*DEV : INBCMP, BN<DEV:INBCMP,01

The runtime system source is conditionalized for PDP-8/E with
EAE, Assembly instructions for each of the supported
configurations follow.

To assemble for PDP-8E without EAE:

«R PALS
*DEV: INBRTS, BN<DEV: INBRTS,01/K

To assemble the run-time system overlay for PDP-8E, PDP-8F or
PDP-8/M with KE-8/E EAE option, prepare a file called EAE.PA
that looks as follows:

EAE=]

PDP8E=1

PAUSE
Then:

«R PALS
*DEV:EAEOVR.BN=DEV:EAE,PA,DEV:INBRTS,01/K

Making SAVE Images from Binary Files:

To create SAVE images of each of the 0S/8 Industrial BASIC binaries,
perform the following 0S/8 commands.

1,

2.

3.

4,

For the editor:

R ABSLDR

*DEV:BASIC,.BNS

«SAVE SYS:BASIC;3011
For the compiler:

«R ABSLDR

*DEV:BCOMP , BN$

«SAVE SYS:BCOMP; 7000
For the loader:

«R ABSLDR

*DEV: INBLDR, BN$

.SAVE SYS:BLOAD:7605
For the runtime system:

+R ABSLDR
*DEV:INBRTS.BN$ (if you have no KE-8/E EAE option)

or

*DEV:INBRTS,BN,DEV:EAEOVR, BNS
(if you have PDP~8/E, PDP-8M or
PDP=-8F with KE-8/E EAE)
«SAVE SYS INBRTS 0-7577, 10000-11377; 7605
+SAVE SYS INBSIC.AF 3400-4577
.SAVE SYS INBSIC.SF 12000-13177

«SAVE SYS INBSIC.FF 13400-14577
NOTE
All BASIC system files must reside on

the systems device (SYS:).

5. At this point, Industrial BASIC is ready to run.

APPENDIX F

INDUSTRIAL BASIC SYSTEM GENERATION

Each functional I/0 module (analog input, analog output, digital
input, digital output) operates on a continuous range of logical
addresses., The mapping between the logical address and the
corresponding physical address of the UDC module and subchannel is
performed within the system, based on tables which define the UDC
configuration and which the user generates during "SYSTEM GENERATION",

System generation is the process of setting the functional module
tables for analog input, analog output, digital input, digital output,
specifing the base of the contact modules, and the base of counter
modules,

The first step is to determine the classification of each physical
channel. The classification yroups are contacts(W742), counter(W734),
analog input (ADU0Ol), analog output (BA633), digital input (W740) and
digital output. Once the channels are classified the I/0 table in
INBRTS may be generated. The following is a sample system generation
of this set of modules,

Slot Module Class

0] BW742 contact

1 BW742 contact

2 BW740 digital input
3 BW740 digital input
4 BM6 84 digital output
5 BM686 digital output
6 BM686 digital output
7 BW734 counter

8 ADUO1 analog input

The two interrupting module types (contacts and counters) require only
the base address of the initial contiguous physical channel of each
module type. The two module types do not have to be adjacent to each
other, but each module {(contacts and counters) MUST be in contiguous
channels.

Logical channels start at the high order bit (or subchannel zero) of
the first physical channel of a given type of functional I/0O module
and continue sequentially in the order the physical channels are
specified in the functional I/0 table.

If channels 5,7,9 are digital input and the table entries are in that
order, logical channels 1 through 12 are on physical channel 5, while
25 through 36 would be on physical channel 9 (Note - the breaks are
dependent on the number of I/O points or subchannels per module).

The tables are most simply altered via 0S/8 O0ODT; the UDC physical
address should be converted to octal addresses.

The table addresses are:

DIGITAL INPUT - 10600
DIGITAL OUTPUT - 10610
ANALOG INPUT - 10620
ANALOG OUTPUT - 10630
CONTACT - 7310

COUNTER - 7276

The sample system table would be altered as follows:
+GET SYS INBRTS
. 0DT
10600/7777 0203(CR)

10610/7777 0405(LF)
10611/7777 0677 (CR)

106201/7777 1077 (CR)
7276/7777 0007 (CR)

7310/0000 O(CR)
{cC
+SAVE SYS INBRTS

Notice that addresses are entered in octal numbers and if an odd
number of addresses exists the last entry is terminated by 77. A line
feed gives the next entry in the current table. The table generation
is terminated via CTRL/C and the SAVE command. The table may be
altered to reflect alteration in hardware configurations; the sequence
of channel entries determines the mapping into logical channels.

APPENDIX G

OPTIMIZING SYSTEM PERFORMANCE

There are several steps the 0S/8 Industrial BASIC user can take to
speed up BASIC execution and compilation times, thus speeding up 0S/8
Industrial BASIC throughput rates. This appendix contains suggestions
for improving system performance.

1. Bypassing the Editor

The 0S/8 Industrial BASIC compiler is constructed such that it will
accept any source file for input. Thus, it is possible to execute an
already existing BASIC program directly, saving the overhead of an OLD
and RUN command to the editor. The format is as follows:

« R INBCMP
*DEV:FILE,.BA

If 0S5/8 Industrial BASIC is used in this fashion, it returns to the
0S/8 Monitor on completion, rather than the 0S/8 Industrial BASIC
editor,

Normal Usage Faster Equivalent
+R INBSIC +R INBCMP

NEW OR OLD--FILE *FILE

READY

RUNNH

READY

In general, use R INBSIC when:

a. Creating new programs or modifying old programs
b. Debugging old programs

Use R INBCMP:
a. To run existing programs
b. In BATCH stream to run BASIC programs

Source files for use by INBCMP must conform to the following rules:
a. There should be no blank lines,

b. Statements must be in the order in which the are to be
executed.

c. Line numbers are required only for statements that are
referenced in IF, GOSUB, and GOTO statements, 1In other
words, if the only way a statement may be reached is for the
preceding statement to be executed, it does not require a
line number, In the following example, there are no
unnecessary line numbers.

FOR I=1 TO 10
IF I=2 THEN 400
PRINT I
GO TO 410

400 PRINT "TWO"

410 NEXT I
END

Note that the source file can be created in one of two ways: it may be
created in the normal fashion with the 0S5/8 Industrial BASIC editor
and saved (in which case all lines will contain line numbers), or it
may be prepared using any of the other 0S/8 editors (EDIT, TECO). In
this second case, the user can take advantage of the extra features
supported by these sophisticated editors over the 0S/8 Industrial
BASIC editor.

2, Placement of BASIC Overlays on SYS

For DECtape system users, the performance of the system c¢an be
improved by two simple steps:

a. Use a DECtape drive other than DTA0 for DSK: (via the ASSIGN
statement)., TD8E system may only use drives 0 and 1.

b. Place the 0S/8 Irdustrial BASIC system files as close together
on the SYS tape as possible. The best approach is to make a
"BASIC tape" containing only the 0S/8 system, PIP, and the
BASIC system image files.,

Both actions have the effect of speeding up 0S/8 BASIC by the simple
reduction of the tape motion required for overlaying and compiling.

3. Placement of Function Calls Within BASIC Programs

Most of the 0S/8 BASIC functions and file operations reside in one of
the three system overlays. Since the system overlay driver reads in
an overlay only if the function desired is not present in the
currently resident overlay, overlaying overhead can be reduced by the
simple mechanism of placing calls to functions that reside in the same
overlay as close as possible in the BASIC program. For example:

10 INPUT AS

20 Z$= SEGS$(AS$,1,6)
30 FILEN #1l: 23

40 INPUT AS$

50 Z$= SEGS(AS$,1,6)
60 FILEN #2:2$

The above BASIC program uses the first six characters of a string
typed by the user as a file name to open a BASIC file. It uses the
SEG$ function, a File command, the SEG$ function, and the File command
again, Since SEGS$ and FILE are in different overlays, the overlayer
will be used four times. A faster way to accomplish the same
operations follows:

10 INPUT AS$,BS
20 Z$=SEGS$(aS$,1,6)
30 X$=SEG$(BS$,1,6)
40 PILEN #l: Z$

50 FILEN #2: X$

The above only overlays twice, saving considerable time in the program
execution., The functions are grouped in the overlays as follows:

overlay 1 (INBSIC.AF): SIN,COS,ATN,LOG,EXP,RND,SQR,SGN,POWER(A B)
Overlay 2 (INBSIC.SF): ASC,CHR$,DATS$,LEN,POS,SEG$,STR$,VAL

Overlay 3 (INBSIC,FF): CLOSE, FILE, FILEN, FILEV,FILEVN

APPENDIX H
RUN-TIME

SYMBOL TABLE

/08/8 INDUSTRIAL BASIC RUNTIME

A

ABSV
ABSVAL
ACH
ACL
ACLO
ACSAVE
ACSR
ACSRPT
ACX
ACD
AC1
AC?Z
ADCALC
ADFC
ADFW
AIRQR
AJT
ALY
AL1K
AL 1P
ALLIPP
ALLIPT
ALLIPTR
AMODE
ANDL ST
ANDPTR
ANITBL
ANOTBL
ANOUT
AN
ANZ2
APRQO)
ARGET
ARGETK
ARGETL
ARGETP
ARGPLK
ARGPLL
ARGPOL,
ARGPRE
ARGPRL
ARGSET
ARITHA
ARJIMP
ARRAYI
ARSTRT
ARTRAP
ASC
ASCNDE
ASCOLK
ASCON
ASCOUT
ATABOF
ATABDL

6347
3575
2363
245
ve46
Q246
6746
6072
4704
2044
2040
0044
oe42
pe3e6
p1es
4747
aQ43
2712
6057
3774
6240
5140
4705
5642
2310
3401
3400
0620
0630
2656
3775
3776
2374
62202
55@3
5444
6127
4312
3511
4220
2324
1415
eo7y
6373
o107
26020
Qree
4366
347
3243
3457
3667
1260
26102
1162

ATAN
ATANAL
ATANAR
ATANAS3
ATANB®
ATANBI
ATANBZ
ATANB3
A999
BADCHN
BADGC
BAS
BCGEY
BCGETL
BCPUY
BCPUTL
BE
BEND
BKHERE
BLINIT
BLREAD
BMAP
BO
BRTSB
BSHFT
BSTRT
BSWL
BSWP
BUFASS
BUF CHK
BUFCHL
81

B2

CAD
CAF
CALFFP
CALLBE
CALLF@
CALLQW
CBLK
Ccle
Cc3
cce
CDFINL
CoFlIO
COFPS
COFPSL
CDFPSU
COFXX
COFQ
CDFuQo
CoFio
CoFeo
CDIN
CFETCH

4200
4430
4436
4444
4425
4433
44414
4447
2507
2055
PQ44
6617
3035
2776
@745
3034
Q047
5572
7347
3352
3336
2036
4210
1216
2427
5547
P144
6361
4222
2706
2147
4216
4211
4506
6007
7243
2046
7221
2061
3672
4414
4316
4315
2534
P020
2025
2115
p206
2140
2210
4341
6307
4565
3623
1322

PAL8BmYT7

CHAIN
CHAR
CHARNO
CHAR3P
CHAR3UY
CHKB3
CHKB4

CLSTAG
CMMA
CMeto
CNOBMK
CNOBML
CNOBMP
CNOCLL
CNOCLR
CNTBAS
CNTCBP
CNTCBS
CNTCOM
CNTCSY
CNTCTY
CNTCTI
CNTERI
CNTFNC
CNTFUC
CNTIN
CNTLC
CNTOUT
CNTRCY
CNTSW
CNTSWe
COMBNE
COMLOP
COMMA
COMMAS
COMMON
COMONP
COMXIT
CONTAC
CONTXT
Cos

9/20/73

3600
2253
6677
er46
3064
6604
6613
3400
0151
3624
3640
4243
3442
3570
pa3o
1000
3403
3445
3405
1115
1122
3544
6434
6674
2765
5573
3104
Q146
3016
1276
6666
7310
1254
1337
1106
7122
1110
@527
7170
1314
1215
1277
1107
1077
1104
2766
2527
eSie
25514
poe
Q41
475
1327
7125
4053

PAGE

COUNCK
COUNTR
CPLOCP
CR
CREAD
CRETN
CRFUNC
CRLF
CRLFR
CRREP
CSFN
CSMOVE
CSTA
CSTAC
CLLNL
Ci3
ca20
C2000
C2400
c3

c4
c779
C7762
DA
DADP
DATABA
DATCOM
DATE
DATTAB
DAY
DAYTBL
DBAD
DBAD!
DBAD1LP
DCNT
DCNTP
DCOS
ocose
DE
DECNYV
DECON
DECONYV
DECON1
DEVCAL
DEVNAL
DEVNA1L
DEVNAZ
DGTYP
pGrYPP
DIGAUT
D1Gt
DIG1A
DIGe
DIG3
DIG4

148»1

1363
1236
3233
6432
3665
3456
2765
2153
2346
1360
2001
4251
4070
4071
7400
4534
4329
6670
66714
4070
4247
6676
6675
2302
2060
3675
3613
3600
4525
3742
4564
6115
5534
6175
5137
4726
7520
6665
3366
5213
5214
5207
5335
2124
4317
4030
4031
5076
4725
0400
4125
3571
4126
4127
4130

/0878 INDUSTRIAL BASIC RUNTIME

DIGS
DISIN
DISMIS
DISPCH
DIVBY
DIVID
DLCDF
DLEDFL
DLPTR
DLREAD
DLRELK
DLSTOP
OLSTRT
DNAY
DNAg
DNUMBR
DO
DOADD
DONA
DONE
DONEF
DOWRK
DR
DRARGY
DRARG?
DRARG3
DRCALL
DRERR
DRERRP
DRIVRL
DRIVRN
DS
DSWIT
IR

DV
DVLP1
bvid
DVOPS
DVOPSP
DVOPY
DvOP2
DvOP2P
DVOVR
OVTRAP
DVi
Dve
oved
Dva4P
DV24PT
EAE
EATONE
EBC
EBLK
EDBLK
EDON

4131
3630
2141
7523
0217
0125
2303
1164
2216
2275
7554
0027
2030
3621
3622
535
4045
6023
6027
3765
5066
6466
1067
2547
2550
0551
@532
3365
2555
4046
4200
4411
0052
5101
6355
5711
5514
6315
5533
6330
5535
6333
5777
3574
5765
5755
5745
5532
5136
2000
6d1d
2730
3737
3746
5260

tF
EFATAL
EFLG
ELOP
EM
EMDONE
EMOONL
EMESS
EMLOOP
EN
ENTLOK
ENTNO
ENTRYN
ENVAL
EOFSEL
EOFSET
EDOSPA
ERRDIS
ERRET
ERRQOR
ERRORR
ESHFT
ESTRA
ESTRNG
ETAB
ETABA
ETLOP
EXP
EXPAQ
EXPAL
EXPB1
EXPON
EXPONK
EXPON1
EXPP
E20P10
FACCLR
FACR
FACREL
FACRES
FACSAL
FACSAV
FADDL
FADDLK
FADDLL
FADDM
FADY
FATAL
FATCHK
FB
FBITGT
FRITS
FC
FCLR
FCNT

3367
4261
pes56
7053
3615
3e00
3578
4110
3545
4274
4262
162
4p3e
3516
0143
2236
6677
1457
4050
2116
4pee
P435
4134
4ite
4137
4135
4033
0044
4422
4417
4414
3477
3630
4120
P40
1327
R36e
6031
133
e37e
2132
3361
4060
3473
531e
4360
6004
6771
4040
4p1e
6547
21147
3443
Q137
5275

PAL8=V7

FD
FDOON
FDDONP
FDIVL
FDIVM
FDIVIL
FDIVIM
FOVPT
FD1
FD1P
FERRLP
FF
FFADD
FFADP
FFATN
FFCOS
FFDIV
FFDIVI
FFOP
FFDVP
FFD1
FFEXP
FFEXPL
FFGET
FFIN
FFINLK
FFINY
FFIX
FFLOAT
FFLOG
FFLOGL
FFMPP
FEMPY
FEMT
FFNEG
FFNEGA
FFNEGK
FFNEGP
FFNEGR
FFNGP
FFNOR
FFNORR
FFORMT
FFOUT
FFPUT
FFPUTP
FFSIN
FFSO
FFSUB
FFSUBY
FGETL
FGETM
FI
FIDLE
FIDVP

9/20/73

5527
5742
5531
4062
43614
4067
4362
5311
5504
5721
48114
0037
6000
4733
4220
4053
57e2
5412
5446
4734
5726
4120
3625
6241
5200
3476
5232
4500
4533
4263
3626
4735
5600
4613
6135
5410
5501
5323
5773
4736
6215
6236
1302
4600
6256
2135
4000
6347
6117
5400
0134
0134
eer3
8123
3631

PAGE

F160e2
FILEFA
FILE1L
FILEZ
FILSTR
FILSTU
FISUBL
FIXDNE
FIXL
FIXLP
FJOCI
FLDW
FLEN
FLING
FLINK
FLN
FLOAT
FLOATB
FLOATL
FLOATM
FLOOK
FLUSH
FM
FMPYL
FMPYLK
FMPYLL
FMPYLV
FMPYM
FN
FNAP
FNDMCH
FNEGI
FNEGL
FNLP
FNOM
FNORL
FNORP
FO
FOTYPE
FOUT!
FouTe
FOUT3
FOUT4
FPPARG
FPPPNT
FPPTML
FPPTM2
FPPTM3
FPPTM4
FPPTM5
FPPWRK
FPUTL
FPUTLL
FPUTM
FRACT

148=2

5241
6375
6714
6731
3311
4306
4372
4525
4066
4515
2400
eas7
4273
5142
4722
3637
BS6e
3420
3645
4356
4236
6425
1624
357¢
4061
5310
3627
4357
2005
3444
2317
1226
2140
6334
4271
2136
6176
1637
2355
4625
4634
4674
4667
7246
2035
1164
1161
1156
1153
1150
7251
2135
0720
2135
4271

/0878 INDUSTRIAL BASIC RUNTIME

FRANDM
FROOT
FSORL
FSGRM
FSTOP
FSTOPI
FSTOPN
FSTOPP
FSTOPY
FSUBL
FSUBLL
FSUBM
FSUBIL
FSUBIM
FSWITC
FTCOM
FTFLG
FTRPRT
FYYL
FYYPE
FTYPL
FTYPSE
FUDXXX
FUDXX1
FUDXX2
FUJUMP
FUNC1T
FUNC2I
FUNC3I
FUNC41
FUNCSI
F1I16
F1I17
F1SAV
F1SAV2
F1SAV3
FITMPY
FLTMP2
FITMR3
F1TMP4
GAINS
GC
GCHR
GCSE
GCSEY
6C23
GD

GE
GENERR
GETCH
GETCHG
GETCHL
GETE
GKNT
GON

2341
3646
4065
4365
3700
@557
2556
0560
a161
4064
3573
4363
4063
4364
2050
2424
6531
4505
3015
6555
e1s0
3462
1406
1416
1405
1523
1467
1deé
1535
1550
1465
ea16
22117
o0e0
e0el
022
2023
ea24
2ges
0Re6
2353
7274
5322
1153
1157
71307
5025
2245
@053
3125
3501
@142
5250
5003
3761

GOSuB
GOTSPT
GR

GS

GSP
GSPOT
GSTCK
GTFLG
GTLFLG
HANG1
HGHCLK
HGHTME
HOOKL,
HORD
HORDP
IA

Ic
IDLE
IF

I6

168
ILOOP
ILOOPF
ILOQPL
ILOOP2
IN
INALOG
INBFP
INITFN
INPHK
INPTCL
INPUT
INSAV
INSAVP
INSC
INT
INTERB
INTL
INTPC
INTPOS
INTRET
I0TAB
louT
IsZace
ISZFGT
182816
Iv
IVGAIN
T1LNL
JEOFI
JFATL
JFOR
JMPFIL
JMPT
JMPISA

415
1036
2470
417
2447
oeo3
2314
4200
He63
7565
7115
7113
3776
2045
0036
1464
easeé
2270
4424
pa7o
3534
212
A236
0113
@214
4033
@277
eae7
6427
6521
3477

5347

PR65
2034
3413
3400
1141
a114
2035
3420
6764
2031
5360
6310
6275
2065
2060
eee67
T410
Q450
2413
2034
1446
@245
0734

PALB=V?

JMPISN
JMPIZ
JMPL3
JMPI®
JMPUSR
JMSI
JMSI4
JMSIS
JMSIT7
JMSSI
JMSTAD
JNEG
JSL
JUSNEG
KC
KC240
KEX
KFD1
KKK242
KKMi@
KKMi2
KKie
KK13
KKk2000
KK4Q
KK?
KK760@
KL7600
KME
KMie
KM13
KMi44
KM15
KM20
KM2e2
KM4
KM4Q2
KM7
KNT
KNTP
KSKP
KSKP2
KUPARQ
KYBRD
Ko
Kgaet
KgaercC
Keo19
Keo17
Kga37
Kea3rc
Koas7
Keat7
Kei1o@
Kgeno

9/20/73

4012
@744
1205
1604
1557
0244
1417
1432
1540
2303
1531
3466
2627
3464
37514
1140
3567
5447
3573
3704
5775
5313
4333
4067
3265
4730
1253
3744
5306
5135
5776
5134
3754
4734
37177
2004
2185
4732
4737
5154
4110
4200
3750
1201
4412
3464
3703
20873
0074
@740
3677
3701
2075
P76
277

PAGE

Kgeiao
KQ300
Ka349
KQ377
K1400
K16
K2o
K2eao
Keoao
Keis
Ke3e
K240
K260
K2700
K320
K4207K
K5700
Ké
K6000
K621 3K
Ké62e2e
K6223
K73
K7400
KT74717
K1506
K75S4
K7577K
K7600
K7607K
KT7700
K7760
K7773K
LASTB
LOH
LOHC
LOHCDL
LOHDF
LOHINI
LOHINL
LOHL
LOHPR
LOHPST
LOHPSW
LDHR
LOHRST
LOHSWT
LEN
LEV

LF
LINENHI
LINEI
LINEIL
LINELO
LKT607

148=3

3205
4057
2100
21014
4313
4721
3266
ear?
4314
2254
3461
3204
4056
3700
6711
4350
3702
47490
3772
4351
4572
4570
4564
2102
0104
5346
2436
4352
2437
3677
2103
3662
4353
3325
0131
2a7s
4504
2647
2676
2127
2646
4501
2133
4502
2705
2157
27024
3414
5477
6452
2066
1113
1127
2067
3745

/05/8 INDUSTRIAL BASIC RUNTIME

LM
LMAKE
LMAKEL
LNE
LNEFUC
LNKSVE
LNSET
LN2
LNeQva
LOADDF
LOG
LOGC!
LOGC3
LOGCS
LOGRE
LOOP
LOPR1Y
LOPO2
LOPY
LOP2
LORD
LORDP
LOWCLK
LOWTME
LPY
LRDY
LRESET
LRSCOM
LsuBtl
LsuBel
LSiI
Ls21
LTRPRT
L7466
L7600K
L7605K
L7605P
L7607
L7620
L7621
L7642
L7644
L7721
L7727
L7746
MAKED
MASKI
MASKL
MATCHL
McC
MCDF 1
MCNTLC
MCOLON
MCRMAL
MCSPE

6360
4060
3566
0524
7167
6747
1272
4471
4411
3163
4263
4455
4460
4463
4406
5052
3722
3746
6275
6037
Ra4de
pe37
7116
7114
1026
1361
2165
2655
1404
1413
1401
1400
4302
3676
4355
3664
4356
1527
3661
3663
4571
3660
4573
4574
0354
4952
2031
3427
1126
3747
6667
1220
4400
3456
4401

MCTRLZ
MDNE
MDONE
MDSET
MDSETK
MDSETP
MDV
MD1
MD1P
MFATAL
MINUS
MINUSP
MINUS3
MINY
MK6 1
MML,
MMM 4
MM260
MNITE
MNITEP
MNTHCK
MODEBK
MODESW
MONTH
MPLP
MPLPY
MPLP2
MPY
MPYLNK
MP12L
MP12LP
MP24
My

MIR
M13
M14
M215
MR4
M6
NAMEG
NAMEGL
NCG
NCGS
NCHK
NCHKL,
NEWCDF
NEWTAG
NEXRCK
NEXREC
NEXREL
NFLAG
NFLGSY
NGT
NHNDLE
NHNDLL

3103
3226
5627
5450
5774
5445
S307
5452
5443
4136
5363
3460
2355
4354
27217
4501
4415
3572
7112
3757
3760
0064
2063
3755
5653
5654
5666
2244
2121
5701
2251
5643
4727
3470
4530
2106
2055
5361
4413
4416
4059
4459
4464
4113
4262
6301
7330
42690
3275
2152
4120
4111
4257
4103
4261

PALBmVTY

NOCTC
NOCZ
NOP1}
NOPe2
NORMLP
NOTE
NULLST
NUM
NXTARG
N1

NiA

Ne

N3

N3A

N4

NS

N6

N&A
NT666
OACHR
0ADD
0ADDP
QATADI
OCOF
0]3

oLP
ONE
ONEHAF
ONERET
ONE1
OPENAF
OPENAV
OPENNF
OPENNYV
OPERI
OPH
OPL
OPNEG
OPNEGP
OPSR
OPX
OTRAPA
ouT
QUTDG
QUTODGP
OVADD
OVDNE
OVERLA
ovML
OVRLAY

9/20/73

3724
3420
6111
6053
6225
4743
4370
4113
7233
4403
4542
4404
4405
4422
4406
4407
4410
4543
3611
6455
6157
5141
1526
2136
1512
7015
3474
4466
4472
4475
4001
4000
4004
4003
1200
0050
0051
6146
5502
6034
2047
4532
5144
5150
4720
1511
1516
3400
2343
1530
6354
4415
2735
0145
5364

PAGE

PATCHP
PDNE
POP
PHYCHN
PINFO
PIOve
PLUS
PNT
POLYNL
POLYSN
POS
POSITN
POSSETY
POVTAB
POWER
PR
PRDCP
PRDCPP
PREST
PRNTX
PRNTXP
PRNTX1
PRZRO
PRZROP
PS
PSFLAG
PSSTRY
PSWAP
PSWAPZ2
PSWP2P
PS1L
PSeL
PTR
PTRBMP
PTR1
PUSKP
PUTCH
PUTCHL
PWFECH
PWFECL
PWRFLD
PWRJMP
PWRNAM
PWRUP
PZR
P1CDF
P1CDF1
P1SWAP
P2COF
P2COFL
P2CDF1
P2COL1
P2SWAL
P2oo
QUADe

148=4

2155
3216
5001
goe7
@356
4403
5362
1763
4304
4026
4400
4500
4424
D357
3472
5016
4776
5143
3542
5160
4723
5164
5172
4724
5023
0031
0026
1230
4321
4544
0360
0361
1061
2156
2233
2411
3247
211e
2200
2120
1574
0107
3552
2119
5815
1240
1245
2156
1243
4566
1247
4567
3743
5e11
4017

/08/8 INDUSTRIAL BASIC RUNTIME

QUAD3
QUAD4
OwW
RDIGIN
RDIGQU
RDITBL
RDLIST
RDOTBL
RE
READFL
READFW
READI
READIT
RELUSR
REPQOWR
RESDLS
RESTI
RESTOR
RETMDL
RETMOD
RETRNI
RETRNO
RETRN1
RET®
RIGHTL
RIGHTS
RIPTR
RND

RO
RONLY
RO6&
RSEED
RSEEDL
RTN2
RTZRO
RWONC
SAC
SACCHK
SACEM
SACL
SACPTR
SAC4QC
SAD
SAFIND
SARRAY
SASTRY
sC
SCALDF
SCALDL
SCASE
SCOF
SCOMP
SCONTU
SCON1
SCSTRY

4022
4@e24
paee
@453
0501
p6DY
7545
pe4o
3210
3200
3145
3105
B73%
4261
7555
2552
1650
2555
3674
3521
Q456
3571
3610
3565
2665
2633
2455
4544
6437
3307
Q251
23458
4563
5371
5620
3305
2316
2iee
2216
3421
f111
2106
p733
1745
27e2e
A4
2232
2314
1165
0e41
173%
2051
4462
2200
Agel

SDIS
SDATBL
SE

SEG
SEGCML
SEGCOM
SEP
SEP1
SETF
SETTTY
SETUP
SE|
SFN
SFNLP
56

SGN
SHFTNO
SHLFT
SIGNF
SIN
SINAY
SINA3Z
SINAS
SINA7T
SL
SLOAD
SL0opP
SLLOVER
SLRCOM
SMODE
SNEQ
SNEQ1
SPFUNC
SPINNR
SGURPS
SR
SRCLP
SREAD
SRESET
SRF IN
SRLIST
SRLOOP
§SAD
SSLOQP
SSLP
SSMODE
SSTEX
SSTORE
ST
STAENT
STARTB
START3
START4
STATE
STH

@273
a610
4706
4271
4373
ecee
5157
@256
2p44
6532
1343
4707
2uoe
eaes
e054
3632
an3e
5635
53209
4000
4367
4372
4375
4400
2521
3146
3713
2541
264
@266
2117
2116
1600
ea17
4452
3127
4445
2416
a37e0
2447
2400
2411
4525
2510
3156
2307
p523
w473
2444
465
4272
1141
6600
2551
3636

PAL8=VT

STCGTJ
STCOM
STC40C
STDF
STDFL
STFILK
STFIND
STFINK
STFINL
STH
STHDF
STHOKK
STHINI
STHINL
STHL
STHR
STHRST
STHSWT
STOPEM
STOPI
STOR
STPCNT
STPTMR
STR
STRCNT
STRLEN
STRMAX
STRNGA
STRPTR
STSLP
STSTRTY
SU
SuB@
suBop
SUCJMP
SUPFUD
SK
SWCLP
SWITCC
SWITY
SWITe
SWRITE

9/20/73

3500
1676
2ie4
1677
1163
Q741
1664
4503
03ae
a130
2603
@374
2636
2126
2600
2645
2160
2644
1107
4051
6750
1246
1164
3428
a1y
ep3e
0are
6374
eare
3440
Q0e3
0623
6125
5411
g4ece
6400
3256
2477
204e
@54
@855
2462
2033
6527
0034
6530
1753
2226
1532
@750
@352
3767
0233
6760
4347

PAGE

TDI
TDOFF 1
TDOFF2
TOONE
TDSRCH
TD8P1L
TD8P2
TE
TEMPY
TEMP1O
TEMP11
TEMP17
TEMPL8
TEMPR2
TEMP21
TEMP24
TEMP3
TEMP4
TEMPS
TEMP6
TEMP?
TEN
TICKS
TIME
TIMER
TIMEX
TIMINT
TINCNT
TINCN2
™
TMPY
TMRCNT
TMREND
TMRSCN
TMRTMY
TMRTME
TM3
TM3PT
T0
TOOBIG
TOOMNY
TOUY
TOVPI
TO2BIG
TP
TPRINT
TP1
TRACE
TRHOOK
TRPRET
TRREST
TRYCLS
TSMET
TSTTTY
TTCHCT

148=5

2476
1583
0543
3553
T141
6672
6673
Bo66
ea40
0061
0062
3023
3016
2006
2636
0525
2242
0043
2047
ease
ges1
5317
D364
2677
1000
1105
T117
1105
7124
2043
6353
1060
70585
7011
7056
1057
5155
5304
aee64
2256
Q063
3272
4160
oo4e
5314
3524
5315
3770
1134
1065
3775
3526
7052
1042
103e

/0S/8 INDUSTRIAL BASIC RUNTIME PALB=VT 9/20/73 PAGE 1486

TTEST2 4001} unsc 6353 XDRITE 4522
TYFULP 1003 VDSF 6361 XFLOAT 45@5
TYGET 3141 UDsSs 6351 X17 0450
TYGETP 1031 UNPACK 347 XLCOM 4514
TYMORE 10255 UNSFIX 1645 XPUT 0122
TTPUTP 1030 UNSLP 1642 XPUTCH 1000
TTYBUF 6600 UNSOQUT 1646 XR@ ee1o
TTYCHK 1034 upP 2134 XR1 oLl
TTYCHX 3565 UPDATE 3705 XRe2 gole
TTYEND 6677 UPDAY1 3715 XR3 0013
TYYF 6712 UPDAY2 3720 XR4 ee14
TYYINB 6600 UPLVL 6542 XRS 0215
TYYSIZ 1033 USE 2562 XX11@ 2340
TYYTCF 1053 USECON @2ee5 Xx212 2313
TTYUSR 4111 USELOG 3613 xXx4 2312
TiH 7063 USELOL 3567 X76@7 1235
TiHR 7873 USR 2e77 YEAR 3756
TiL 1062 USRCAL 4072 ZAPION 1513
TILNH 71023 USRCP 3470 ZCNT 371713
TILNL T710@2 USRERR 6763 ZEXP e341
TILR 7072 USRREL 4103 IMINY 4334
TeH 7065 USRRP 3471 IR 1342
TeHR 7275 Ui23c 3es6 ZRCONT 1352
T2L 1064 VAL 3461 ZROFF 1334
TeLNH 7105 VALCNT 3422 ZRORET 4470
TaLNL 7104 VALGET 35@e 2212 1357
TeLR 70274 VALLK 0154
T3H 1067 VALUE 0057
T3HR 1877 VR 3003
T3L 71066 WDONE 3245
T3LNH 7107 WE 3p3e
T3LNL 7106 WHQ 7535
T3LR 7876 WIDTH @536
T4H 7271 WORDQ 0163
T4HR 7101 WORDY @172
T4l 1079 WORD1@ 0165
T4LNH 7111 WORD11 @166
T4LNL 7110 WORD12 @167
T4LR 7100 WORD13 B170
UDCBAD 0050 WORD14 2171
UDCHNL @107 WORD2 @173
uncI 7254 WORD3 0174
UDCM3 6664 WORD4 @175
UDCTAG 7257 WORDS @176
UDCTML 7362 WORDe @177
UDCTM2 7363 WORDT Q164
UDCWRK 7306 WRBLK 3342
upD1 6365 WRBLKK 3463
UDEIL 6364 WROA 3112
uDL A €363 WRITEI 3200
UpLo 6367 WRITFL 3023
UDLS 6357 WRITFW @125
UDRA 6356 W@PTR 3466
UDRD 6366 WOPTRA 3465

UDRS 6355 XDGEY 4506

INDEX

Absolute value function - ABS(X),
6-5
ABSVAL subroutine, 11-18

Alphanumeric information, 7-1

Analog input (ANI) function, 8-5
Analog output (ANO) function, 8-5
Angle brackets (<>), 7-3

Arctan function - ATN(X), 6-7

ARGPRE subroutine, 11-14
Arguments passed to user function,
11-8
Arithmetic, 2-1
exponentiation,
functions, 6-2
numbers, 2-1
operations, 2-2
overlay, 11-26
parentheses, 2-3
priority of operations,
relational operators,
variables, 2-2
Array location,
Arrays, 5-3
Array symbol table,
ASC function, 7-5
ASCII conversion table,
ASCII files, 10-1
ASR-33 Teletype, 1-3
Assembling the sources, E-1
Assembly language functions,
example, 11-27
Assembly language/INBRTS interface,
11/23
Assignment statement,

2-5

2-3
2-4

11-20
11-7

D-1
11-1

3-4

3-3

11-17
11-22
9-8

Backslash (\),
BSW subroutine,
Buffer space,
BYE command,

Carriage return ()), 1-2
Chaining, 10-1
CHAIN statement,
Character deletion,
Characters
ASCII, D-1
format control,
CHR$ function, 7-5
Clock (CLK) function,
CLOSE# statement, 10-5
Commands, 1-6
control, 1-7, 9-1, A-5
edit, 1-7, 9-1
Comments, 3-3
Compiler, 1-6
Compile time diagnostics,
Concatenation of strings,
Considerations in assembly,

10-6

1-3, 9-1

3-7
8-4

B-1
7-4
11-25

Constants, 7-1

CONTACT statement, 8-3
Control commands, 1-7, 9-1, A-5
Control statements, 3-13

Conventions for alphanumeric
strings, 7-1
Conversion
ASCII/decimal number,
string/number, 7-6
Core layout, INBRTS,
Core usage, Field 1,
Correcting the program,
Cosine function -COS(X),
Count (CNT) function, 8-7
Counter input (CNI) function, 8-6
Counter output (CNO) function, 8-6
COUNTER statement, 8-2
CTRL/ characters, 1-2

7-5

11-2

11-18

1-4,
6-6

9-1

Data formats, 1l1l-4
DATA list, in core,
DATA statement, 3-11
DATS$ function, 7-7

11-6

Debugging function - TRC(X), 6-9
Decimal formats, 2-1
DECwriter, 1-2
Definition of 0S/8 Industrial
BASIC, 1-1
DEF statement, 6-8
Deletion
of character, 1-3, 9-1
of line, 9-1
of statement, 1-4

Delimiters, 10-4
Device driver space, INBRTS, 11-22
Devices, resident, 10-1
Diagnostics,
compile time,
run time, C-1
Dimension (DIM) statement,
Dimensioning strings, 7-1
DISMISS statement, 8-3
DLREAD subroutine, 11-17
Documentation conventions,

B-1

5-2

1-2

Editing commands, 1-7, 9-1
Editor, 1-6
End-of-file detection,
END statement, 3-4
Entering new program,
Equals (=) sign usage, 2

in IF-THEN statement,
Errors, typing, 1-3, 1-4
E-type notation, 2-1
Example program, 1-5, 3-1

assembly language function, 11-27

control program, 8-7
Exclamation mark (!) usage,

10-6

1-3
-2
7-3

’ 9-'1

3-5

Executing the program, 1-4
Exponential format, 2-1
Exponential function - EXP(X),
Exponentiation, 2-5

Extended I/0 functions,

6-7
8-3
FAC - see Floating point accumulator

Features of 0S/8 Industrial BASIC,
1-1

File formats, INBRTS, 11-21
File overlay, 11-26

FILE# statement, 10-2
Files, 10-1

Fixed length files, 10-1

Floating point accumulator (FAC),
11-10
Floating Point Package,
Floating point routines,
FNA (X) function, 6-8
FOR statement, 4-1
Format control characters,
Functions, 6-1, A-6
arithmetic, 6-2
debugging, 6-9
extended input/output,
industrial, A-7
input/output, 3-5
transcendental, 6-6
user-defined, 6-8

11-10
11-11

3~-7

8-3

Generation of system, F-1
GOSUB statement, 6-11

GOTO statement, 3-13

Hardware requirements, 1-1
Hints for assembly, 11-25

IF END# statement,
IF-GOTO statement, 3-14

IF-THEN statement, 3-14, 7-3
INBRTS/assembly language interface,

10-6

11-23
INBRTS
core layout, 11-2
file formats, 11-21
input/output, 11-21

Input of string data, 7-1
Input/output statements and
functions, 3-5
INPUT statement, 3-5,
INPUT# statement, 10-4

Inserting statement, 1-4
Interfacing assembly language to

3-8

INBRTS, 11-23
Interfacing Field 1 and Field 0,
11-19

Integer formats, 2-1

Integer function - INT(X). 6-5

Interrupting program execution, 1-4

Interrupt skip chain, 11-28
I/0 table, INBRTS, 11-22
Keyboard monitor, 1-3
Leaving the computer, 1-5
LEN function, 7-4

LET statement, 3-4, 7-3
Line deletion, 9-1

Line (LNE) function, 8-6

Line numbers resequenced, 9-2

Linking into the interrupt skip
chain, 11-28

LIST command, 9-5

LISTNH command, 9-5

Lists, 5-1

Loader, 1-6

Loading 0S/8 Industrial BASIC, 1-2

Logarithm function, 6-7

Loops, 4-1

nesting, 4-2

Mainline mode, 1-8

Matrices, 5-1

Messages, diagnostic, B-1l, C-1
MPY subroutine, 11-17

Multiple statements, 3-3

Multiply routine, 12-by-11 binary,

11-17
NAME command, 9-7
Names of files, 10-1

Natural Logarithm function - LOG(X),
6-7

Nested loops, 4-2

Nested subroutines,

NEW command, 9-6

NEXT statement,

Numbers
arithmetic, 2-1
printing format for,
resequenced line, 9-2

6-12
4-1

3-8

statement, 3-2
Numeric files, 10-1
OLD command, 9-6
Operations

arithmetic, 2-2

relational, 2-4
Overlays, 1-6, 11-26

INBRTS, 11-3
Page 0 usage, 11-27

Parentheses usage, 2-3
Passing arguments to the user
function, 11-8

PNT function, 3-10

POS function, 7-6

Power fail - restart, 8-9

PRINT statement, 3-6

PRINT# statement, 10-3

PRINT statement used with INPUT
statement, 3-8

Print zones, 3-7

Priority of arithmetic operations,2-3

Program
correction, 1-4, 9-1
entry, 1-3

example, 1-5, 3-1, 8-7 11-27
execution, 1-4

interruption, 1-4

loading and running, 1-2
subroutine, 11-15
termination statements, 3-4

Question mark (?) usage, 3-5
in string data, 7-2

RANDOMIZE statement, 6-4
Random number function - RND(X), 6-2
Read digital input (RDI) function,
8-5
Read digital output (RDO) function,
8-5
READ statement, 3-11
Real time operations, 8-1
example, 807
extended functions, 8-3
power fail - restart, 809
statements, 8-1
UPIR identification functions, 8-6
Relational operators, 2-4
in IF-THEN statement, 7-3
REMARK statement, 3-3
RESEQ program, 9-2
Resident devices, 10-1
Restart after power fail, 8-9
RESTORE statement, 3-12
RESTORE # statement, 10-5
RETURN statement, 6-11
Routines
floating point, 11-14
unusable by Assembly Language
functions, 11-25
RUBOUT, 1-3, 9-1
RUN and RUNNH commands, 9-8
Running 0S/8 Industrial BASIC, 1-2
Runtime diagnostics, C-1
Runtime system, 11-2
Runtime system overlays, 1-6

SAC -~ see String Accumulator

SAVE command, 9-7

Scalar table, 11-7, 11-14

SCRATCH command, 9-5

SEG$ function, 7-7

Send digital output (SDO) function,
8-5

SHIFT/ characters,
SHIFT/L, 3-3
Sign function - SGN(
Sine function - SIN({(
Spaces, blank, 1-2
Spaces
in programs, 3-2
in statements, 2-

1-2

X),
X),

4

[0)

|
[0 -3

Square root function - SQR(X),

6
Statement deletion or insertion,l-

Statement numbers,
Statements, 1-6, 3-
control, 3-13

3-2
1

elementary 0S/8 BASIC, A-1

file, 10-1, 2a-4
input/output, 3-5
program terminatio
real time, 8-1
State (STA) function
STFIND subroutine,
Stop execution, 1-4
STOP statement, 3-~4
STRS$ function, 7-6
String accumulator (
String array table,
String concatenation

n, 3-4

’ 8-
11-16

SAC),
11-9
’ 7=

7

4

String handling functions,

String overlay, 11-2
Strings, 7-1, 11-5
String symbol table,

6
11~

8

11-7

7-4

String to number conversion,

String variable or a
locating a, 1l-

Subroutines, 6-1
GOSUB statement,
INBRTS, 11-11
nesting, 6-12
RETURN statement,

Subscripted variable

rray,
16

6-11

6-11

S, 5-1
1-2

Symbols used in manual,

Symbol tables, H-1
INBRTS, 11-4, 1l1-

7

System build instructions,

System components,
System generation,
System performance,

TAB function, 3-10
Tables, data, 5-1
Teletypes, 1-2
Terminal I/0, 11-21
Terminals, 1-2

11-1
F-1
G-1

Termination of progranm,
TIMER statement, 8-1
Transcendental functions,
TRC (X) debugging function,

Typing errors, 1-3,

UDEF function call,
Underlining, 1-2
UNSFIX subroutine,

1-4,
6-8
1l-16

3

E_

-4
6-6
6-
9-1

7-6

1

9

6
4

Unusable routines, 11-25

UPIR - see User Process Interrupt
Service Routine

USE statement, 6-8, 11-20

User process interrupt mode, 1-8

User Process Interrupt Service
Routine (UPIR), 8-1

identification functions, 8-6
Using 0S/8 11-27

VAL function, 7-6
Variable length files, 10-1
Variables, 2-2, 7-1
storage of, 1ll1l-4
subscripted, 5-1

XPUTCH subroutine, 11-15

Zero subscript, 5-2
Zeroes, suppression of leading/
trailing, 2-1

HOW TO OBTAIN SOFTWARE INFORMATION

Announcements for new and revised software, as well as programming
notes, software problems, and documentation corrections, are published
by Software Information Service in the following newsletters.

DIGITAL Software News for the PDP-8 and PDP~12
DIGITAL Software News for the PDP-11l
DIGITAL Software News for 18-bit Computers

These newsletters contain information applicable to software available
from DIGITAL'S Software Distribution Center, Articles in DIGITAL
Software News update the cumulative Software Performance Summary which
is included in each basic kit of system software for new computers.
To assure that the monthly DIGITAL Software News is sent to the
appropriate software contact at your installation, please check with
the Software Specialist or Sales Engineer at your nearest DIGITAL
office,

Questions or problems concerning DIGITAL'S software should be reported
to the Software Specialist. If no Software Specialist is available,
please send a Software Performance Report form with details of the
problems to:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

These forms, which are provided in the software kit, should be fully
completed and accompanied by terminal output as well as listings or
tapes of the user program to facilitate a complete investigation. An
answer will be sent to the individual, and appropriate topics of
general interest will be printed in the newsletter.

Orders for new and revised software manuals, additional Software
Performance Report forms, and software price lists should be directed
to the nearest DIGITAL field office or representative. USA customers
may order directly from the Software Distribution Center in Maynard.
wWhen ordering, include the code number and a brief description of the
software requested.

Digital Equipment Computer Users Society (DECUS) maintains a user
library and publishes a catalog of programs as well as the DECUSCOPE
magazine for its members and non-members who request it. For further
information, please write to:

Digital Equipment Corporation
DECUS

Software Engineering and Services
Maynard, Massachusetts 01754

0S/8 Industrial BASIC
DEC-S8-0SIBA-A-D

READER'S COMMENTS

Digital Equipment Corporation maintains a continuous effort to improve
the quality and usefulness of its publications. To do this effectively
we need user feedback--your critical evaluation of this document.

Did you find errors in this document? If so, please specify by page.

How can this document be improved?

How does this document compare with other technical documents you
have read?

Job Title Date:
Name @ Organization:
Street: Department:

City: State: Zip or Country

Fold Here

BUSINESS REPLY MAIL

Do Not Tear - Fold Here and Staple

NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

Postage will be paid by:

Digital Equipment Corporation
Software Information Service
Software Engineering and Services
Maynard, Massachusetts 01754

	INTRODUCTION TO OS/8 INDUSTRIAL BASIC
	HARDWARE REQUIREMENT
	DOCUMENTATION CONVENTIONS
	Underlining
	Carriage Return
	Blank Spaces
	Control and Shift Characters
	Terminals

	BAS IC
	Gaining Access to BASIC
	Entering the New Program
	Executing the Program
	Correcting the Program
	Interrupting Executing of the Program
	Leaving the Computer
	Example of OS/8 Industrial BASIC Run
	OS/8 INDUSTRIAL BASIC OVERVIEW
	General System Description
	Commands

	OS/8 INDUSTRIAL BASIC ARITHMETIC
	NUMBERS
	VARIABLES
	ARITHMETIC OPERATIONS
	Priority of Arithmetic Operations
	Parentheses
	Relational Operators
	Rules for Exponentiation

	OS/8 INDUSTRIAL BASIC STATEMENTS
	STATEMENT NUMBERS
	REMARK -- THE COMMENTING STATEMENT
	STATEMENTS FOR TERMINATING A PROGRAM
	END
	STOP

	LET -- THE ASSIGNMENT STATEMENT
	INPUT/OUTPUT STATEMENTS AND FUNCTIONS
	Statement
	Statement

	General
	Format Control Characters
	Printing Numbers
	PRINT Used with INPUT
	Function
	Function
	THE READ AND DATA STATEMENTS
	RESTORE
	CONTROL STATEMENTS
	GOT0
	IF-THEN and IF-GOT0

	CHAPTER 4 LOOPS
	4.1 FOR AND NEXT STATEMENTS
	4.2 NESTING LOOPS

	CHAPTER 5 LISTS AND TABLES
	5.1 SUBSCRIPTED VARIABLES
	5.2 THE DIM STATEMENT
	S UBROUT INES
	BAS IC FUNCTIONS
	ARITHMETIC FUNCTIONS
	The Random Number Function -- FWD(X)
	The RANDOMIZE Statement

	The Sign Function -- SGN(X)
	The Integer Function -- INT(X)
	The Absolute Value Function -- ABS(X)
	The Square Root Function -- SQR(X)

	TRANSCENDENTAL FUNCTIONS
	The Sine Function -- SIN(X)
	The Cosine Function -- COS(X)
	The Arctan Function -- ATN(X)
	The Exponential Function -- EXP(X)
	The Natural Logarithm Function -- LOG(X)

	USER DEFINED FUNCTIONS
	Function and the__DEF Statement
	Statement

	THE PEBUGGING FUNCTION -- TRC(X)
	SUB ROUT INE S
	GOSUB and RETURN
	Nesting Subroutines

	ALPHANUMERIC INFORMATION (STRINGS)
	STRING CONVENTIONS
	Constants and Variables
	Dimensioning Strings
	Inputing String Data
	Strings in LET and IF-THEN Statements
	String Concatenation

	STRING HANDLING FUNCTIONS
	The LEN Function
	The ASC and CHR$ Functions
	The VAL and STR$ Functions
	The POS Function
	The SEG$ Function
	The DAT$ Function

	REAL TIME OPERATIONS
	GENERAL DESCRIPTION
	REAL TIME BASIC STATEMENTS
	TIMER
	COUNTER
	CONTACT
	DISMISS

	EXTENDED FUNCTIONS FOR INPUT OR OUTPUT
	The Clock Function -- CLK(X)
	Analog Input Function -- ANI C,G)
	Analog Output Function -- AN0 C,V)
	Read Digital Input -- RDI P,N)
	Send Digital Output -- SDO P,N,V)
	Read Digital Output -- RDO P,N)
	Counter Input -- CN1 (P)
	Counter Output -- CNO P,V)

	UPIR IDENTIFICATION FUNCTIONS
	Line -- LNE (x)
	STA(X)
	CNT(X)

	EXAMPLE CONTROL PROGRAM
	POWER FAIL -- RESTART

	EDITING AND CONTROL COMMANDS
	CORRECTING PROGRAMS
	Erasing Characters and Lines
	The RESEQ Program

	THE LIST AND LISTNH COMMANDS
	THE SCRATCH COMMAND
	THE NEW COMMAND
	THE OLD COMMAND
	THE NAME COMMAND
	THE SAVE COMMAND
	THE RUN AND RUNNH COMMANDS
	THE BYE COMMAND

	FILES FILE STATEMENTS AND CHAINING
	BASIC FILES
	Resident Devices
	File Descriptions
	10 1.2.1 Fixed Length Files
	10 1.2.2 Variable Length Files
	10.1.2.3 Numeric Files
	10.1.2.4 ASCII Files
	FILE STATEMENTS
	The FILE# Statement
	The PRINT# Statement
	The INPUT# Statement
	The RESTORE# Statement
	The CLOSE# Statement
	The IF END# Statement

	THE CHAIN STATEMENT

	CREATING ASSEMBLY LANGUAGE FUNCTIONS
	INTRODUCTION
	THE OS/8 INDUSTRIAL BASIC SYSTEM
	THE OS/8 INDUSTRIAL BASIC RUNTIME SYSTEM
	Core Layout
	Overlays
	Symbol Tables

	DATA FORMATS
	Variables
	Strings
	Incore DATA List
	The String Accumulator

	INBRTS SYMBOL TABLE STRUCTURE
	The Scalar Table
	The Array Symbol Table
	The String Symbol Table
	The String Array Table

	FLOATING-POINT PACKAGE
	Floating-point Accumulator
	Floating-point Routines
	Floating-point Operations

	INBRTS SUBROUTINES
	Subroutine ARGPRE
	Subroutine XPUTCH
	Subroutine PSWAP
	Subroutine UNSFIX
	Subroutine STFIND
	Subroutine BSW
	Subroutine MPY
	Subroutine DLFCZAD
	Subroutine ABSVAL

	PASSING ARGUMENTS TO THE USER FUNCTION
	Subroutines
	Using the USE Statement

	INBRTS I/O
	Terminal I/O
	INBRTS File Formats
	INBRTS Buffer Space
	INBRTS Device Driver Space
	The INBRTS I/O Table

	INTERFACING THE ASSEMBLY LANGUAGE TO INBRTS
	GENERAL CONSIDERATIONS AND HINTS
	Functions
	Using OS/8
	Page fl usage

	ASSEMBLY LANGUAGE FUNCTION EXAMPLE
	LINKING INTO THE INTERRUPT SKIP CHAIN

	SUMMARY
	COMPILE-TIME DIAGNOSTICS
	INSTRUCT IONS

	INDUSTRIAL BASIC SYSTEM GENERATION
	OPTIMIZING SYSTEM PERFORMANCE

