O00O0O0O0OOOOOOOOC

software
support manual
digital equipment corporation

0S/8 SOFTWARE SUPPORT MANUAL

(Version 3)

DEC-S8-0SSMB-A-D

Order additional copies as directed on the Software
Information page at the back of this document.

digital equipment corporation - maynard. massachusetts

First Printing, January 1973
Revised, June 1974

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation. Digital Equipment Corporation assumes no responsibility
for any errors that may appear in this manual.

The software described in this document is furnished to the purchaser
under a license for use on a single computer system and can be copied
(with inclusion of DIGITAL's copyright notice) only for use in such
system, except as may otherwise be provided in writing by DIGITAL.

Digital Equipment Corporation assumes no responsibility for the use
or reliability of its software on equipment that is not supplied by
DIGITAL.

Copyright (:) 1973, 1974 by Digital Equipment Corporation

The HOW TO OBTAIN SOFTWARE INFORMATION page, located at the back of
this document, explains the various services available to DIGITAL
software users.

The postage prepaid READER'S COMMENTS form on the last page of this

document requests the user's critical evaluation to assist us in
preparing future documentation.

The following are trademarks of Digital Equipment Corporation:

CDP DIGITAL INDAC PS/8
COMPUTER LAB DNC KAlO QUICKPOINT
COMSYST EDGRIN LAB-8 RAD-8
COMTEX EDUSYSTEM LAB-8/e RSTS

DDT FLIP CHIP LAB-K RSX

DEC FOCAL OMNIBUS RTM
DECCOMM GLC-8 0s/8 RT-11
DECTAPE IDAC PDP SABR
DIBOL IDACS PHA TYPESET 8

UNIBUS

PREFACE

The 8K Operating System (0S/8) is an extremely powerful program
development system, 05/8 greatly expands the capabilities of any 8K
ppP-8, 8/1, 8/L, 8/E, or PDP-12 computer having the necessary disk or
DECtape storage. Use of 0S/8, is described in detail in the 0S/8
HANDBOOK (DEC=-S8~0OSHBA~A-D).

This manual covers a wide range of advanced topics pertinent to the
experienced user. In Chapter 1 the various basic system concepts are
described and terms are defined. Chapter 2 explains the process by
which wuser programs call upon the system for the performance of
important operations including loading device handlers, opening and
closing files, and chaining to other programs. Chapter 3 covers the
functions of the Command Decoder and the means by which the user
program can employ its services, Chapter 4 explains the use and
operation of the device handlers in detail, Chapter 5 covers the
details of ‘"custom tailoring"™ a system, including how to write a
device handler for a non~-standard device.

Technical information, intended to enhance the information in the 0S/8
HANDBOOK, as well as +this manual, can be found in the Appendices.
Appendix A details the 0S/8 directory structure and gives standard
file format. Appendix B describes the system data base and gives the
layouts of the system areas. Appendix C gives a complete 1list of
system error messages. Appendix D illustrates some useful advanced
techniques and programming "tricks" for use with the 05/8 system,
Appendix E 1is a complete list of the gstandard ASCII character codes
meaningful to 0S/8. Finally, Appendix F describes a set of generalized
I/0 routines for use under the 0S/8 system,

iii

CONTENTS

CHAPTER 0S/8 CONCEPTS AND TERMINOLOGY

SOFTWARE COMPONENTS OF 0S/8

FILES

.1 File Names and Extensions

.2 File Structured Devices

.3 File Types

.4 File Directories and Additional
Information Words

.3 CORE CONTROL BLOCK

.3.1 Program Starting Address

.3.2 Job Status Word

.3.3 Software Core Size

.4 DEVICE NAMES AND DEVICE NUMBERS

.5 THE DEVICE AND FILENAME PSEUDO-OPS
CHAPTER USER SERVICE ROUTINE
CALLING THE USR

Standard USR Call
Direct and Indirect Calling Sequence

pON
« o e

NN [el ol ol
N

SUMMARY OF USR FUNCTIONS
FETCH Device Handler

LOOKUP Permanent File

ENTER Output (Tentative) File
The CLOSE Function

Call Command Decoder (DECODE)
CHAIN Function

Signal User Error

Lock USR in Core (USRIN)
Dismiss USR from Core (USROUT)
Ascertain Device Information (INQUIRE)
RESET System Tables

MY
e e+ e s ® o s e s o & o
FHWOO~IAUI&WN

O

w

CHAPTER THE COMMAND DECODER

3.1 COMMAND DECODER CONVENTION

3.2 COMMAND DECODER ERROR MESSAGES
CALLING THE COMMAND DECODER
COMMAND DECODER TABLES

1 Output Files

2 Input Files

3

4

Command Decoder Option Table
Example

WNNODN

[
U w

o)}

I el e et el el
R

[L L
HHEROYOANV AW

NNV NN NN

w

U
~N oy U w

Wwwww W w w

Page

3.5 SPECIAL MODE OF THE COMMAND DECODER 3-8
3.5.1 Calling the Command Decoder Special Mode 3-9
3.5.2 Operation of the Command Decoder in Special
Mode 3-9
3.6 CCL AND THE COMMAND DECODER 3-10
3.7 USEFUL LOCATIONS IN BATCH 3-10
3.8 CCL TABLES 3-10
CHAPTER 4 USING DEVICE HANDLERS 4-1
4.1 CALLING DEVICE HANDLERS 4-1
4.2 DEVICE DEPENDENT OPERATIONS 4-4
4.2.1 Teletype (TTY) 4-4
4.2.2 4.2,2 High-Speed Paper Tape Reader (PTR) 4-4
4,2.3 High-Speed Paper Tape Punch (PTP) 4-5
4.2.4 Line Printer (LPT) 4-5
4.2.5 Cassettes 4-6
4,2.6 Card Reader (CDR) 4-7
4.2.7 TMBE Handler 4-8
4.2.8 File Structured Devices 4-11
4.2.9 TD8E DECtape 4-11
4.2.10 KL8E Teletype Handler 4-12
CHAPTER 5 RECONFIGURING THE 0S/8 SYSTEM 5~1
5.1 WRITING DEVICE HANDLERS 5-1
5.2 INSERTING DEVICE HANDLERS INTO 0S/8 5~5
APPENDIX A 0S/8 FILE STRUCTURES A-1
A.l FILE DIRECTORIES A-1
A.l1.1 Directory Entries A-2
A.l.2 Number and Size of 0S/8 Files A-3
A.1.3 Sample Directory A-3
A.2 FILE FORMATS A-4
A.2.1 ASCII and Binary Files A-4
A.2.2 Core Image (.SV format) Files A-5
A.2.3 Relocatable FORTRAN Library File A-7
APPENDIX B DETAILED LAYOUT OF THE SYSTEM B-1
B.1l LAYOUT OF THE SYSTEM DEVICE B-1
B.2 LAYOUT OF THE 0S/8 RESIDENT PROGRAM B=-2
B.3 SYSTEM DEVICE TABLES B-4
B.3.1 Permanent Device Name Table B~4
B.3.2 User Device Name Table B-4
B.3.3 Device Handler Residency Table B=-5
B.3.4 Device Handler Information Table B-5
B.3.5 Device Control Word Table B-6
B.3.6 Device Length Table B-7

vi

APPENDIX C SYSTEM ERROR CONDITIONS AND MESSAGES

c.1l SYSTEM HALTS

c.2 USR ERRORS

c.3 KEYBOARD MONITOR ERRORS

C.4 CCL ERROR MESSAGES

C.5 COMMAND DECODER ERRORS

APPENDIX D PROGRAMMING NOTES

D.1 THE DEFAULT FILE STORAGE DEVICE, DSK

D.2 MODIFICATION TO CARD READER HANDLER

D.3 SUPPRESSION OF CARRIAGE RETURN/LINE FEED
IN FORTRAN

D.4 ACCESSING THE SYSTEM DATE IN A FORTRAN
PROGRAM

D.5 DETERMINING CORE SIZE ON PDP-8 FAMILY
COMPUTERS

D.6 USING PRTC1l2-F TO CONVERT 0OS/8 DECTAPES

TO 0S/12 LINCTAPES

NOTES ON LOADING DEVICE HANDLERS
Problem with Multiple Input Files
Dynamically Loading Device Handlers

« o o
o
[\ SN g

AVAILABLE LOCATIONS IN THE USR AREA

ACCESSING ADDITIONAL INFORMATION WORDS
IN 0S/8

After a LOOKUP or ENTER

After a CLOSE

Rewriting the Current Directory Segment

.
O O WY O o] N

« v e
wWN

SABR PROGRAMMING NOTES

Optimizing SABR Code

Calling the USR and Device Handler's from
SABR Code

DOUUu U v U Voo

. L]
=
[N ool
. L]

N

APPENDIX E CHARACTER CODES AND CONVENTIONS
APPENDIX F 0S/8 INPUT/OUTPUT ROUTINES

1 GENERAL DESCRIPTION

2 SUBROUTINE FUNCTIONS

3 SUBROUTINE PARAMETERS
3

1 Example
2 Subroutine Listing

vii

O U VDOUOOo
HE WwWwWw
oo

[
N

1 1 1 1
MWW H B B e

b B e B I s T ¢

CHAPTER 1

0S/8 CONCEPTS AND TERMINOLOGY

Before examining the details of the 0S/8 system, the reader should
first be familiar with the simpler techniques and terms used within
the framework of the 0S/8 system. The material in this chapter, along
with that contained in the 0S/8 HANDBOOK, provides the tools needed to
pursue the later chapters.

1.1 SOFTWARE COMPONENTS OF 0S/8
There are four main components of the 0S/8 system:

1. The Keyboard Monitor performs commands specified by the user
at the keyboard console. The nine Keyboard Monitor commands
(ASSIGN, DEASSIGN, GET, SAVE, ODT, RUN, R, START, and DATE)
are explained in Chapter 1 of the 0S/8 HANDBOOK.

User programs can exit to the Keyboard Monitor by executing a
JMP to 1location 7600 in field 0. All JMPs to 7600 must be
made with the DATA FIELD set to zero. This saves the
contents of locations 0000 to 1777 in field 0 and loads the
Keyboard Monitor which could be called by a JMP to location
7605 in field 0. In this latter case the contents of core are
not saved, which conserves some time.

Existing system programs, device handlers, and the Command
Decoder test for the CTRL/C character in the terminal input
buffer and, on finding this character, abort the current
operation and perform a JMP to 7600 in field 0., Thus, typing
CTRL/C is the conventional method of calling the Keyboard
Monitor from the console.

2, Device handlers, which are subroutines for performing all
device-oriented input/output operations, can be utilized by
any program, These subroutines have standard calling
sequences and "mask" from the user program the special
characteristics of the 1I/0 device. In this way, device
independent I/0O 1is achieved. A detailed description of
device handlers is found in Chapter 4.

3. The User Service Routine (USR) 1is to a program what the
Keyboard Monitor is to the user., For example, programs can
request the USR to fetch device handlers, perform file
operations on any device, chain to another program, or call
the Command Decoder. A full description of the USR functions
is found in Chapter 2.

4., The Command Decoder interprets a command line typed by the
user to indicate input and output files and various options,
The command line format is described in detail in Chapter 1
of the 0S/8 HANDBOOK. The Command Decoder removes the burden
of this repetitive operation from the user's program. A full
description of the Command Decoder's function is found in
Chapter 3.

5. Two other components, ABSLDR and ODT, are not logically part
of the 0S/8 system., However, in the sources and listings,
ABSLDR is combined with the Keyboard Monitor and USR. ODT is
combined with the command decoder.

l.2 FILES

Files are basic units of the 0S/8 system, and a thorough understanding
of file structure is required for its use, A file is any collection
of data to be treated as a unit. The format of this data is
unimportant; for example, 0S/8 can manipulate several standard
formats, including ASCII files, binary files, and core image files.
The important consideration is that the data forms a single unit
within the system,

l.2.1 File Names and Extensions

An individual file is identified by its file name and extension. The
file name consists of up to six alphanumeric characters, optionally
followed by a two character extension. The extension is often used to
clarify the format of the data within the file, For example, an ASCII
file used as input to PAL8 might be given a PA extension, while a core
image file has a SV extension.

l.2.2 File Structured Devices

Devices that can be logically divided into a number of 256-word blocks
and have the ability to read and write from any desired block are
called file structured devices, Disks and DECtapes are file
structured devices while a paper tape reader or terminal is not.

Cassettes and magnetic tapes form an intermediate case, They may be
treated directly as non-file structured devices, or the program MCPIP
may appear to be file structured.

The system device (SYS) in any 0S/8 system is always file structured,
as is the default storage device, DSK.

All 0s/8 file structured devices must be logically divided into these
256=-word blocks. Hence, 256 woxrds is considered the standard 0S/8
block size. Some devices, 1like RK8, DECtape, and LINCtape, are
physically divided into blocks. These physical blocks should not be
confused with the logical 256-word blocks, For example, DECtapes must
be formatted with standard 129~word physical blocks. A logical 0S/8

1-2

block consists of the first 128 words of two consecutive physical
DECtape blocks. The 129th word of every DECtape block is not used by
0S/8. Similarly, LINCtapes are formatted with 129 (or 128) woxrds per
block but never 256, as this format is unacceptable to 0S/8.

A given 08/8 file consists of one or more sequential blocks of 256
words each (consecutively numbered). A minimum of one block per file
is required, although a single file could occupy all of the blocks on
a device.

1.2.3 File Types
Three different types of files exist in the 0S/8 system:

l. An "empty file" is a contiguous area of unused blocks. Empty
files are created when permanent files are deleted.

2. A "tentative file" is a file that is open to accept output
and has not yet been closed., Only one tentative file can be
open on any single device at one time,

3. A "permanent file" is a file that has been given a fixed size
and is no longer expandable, A tentative file becomes
permanent when it is closed.

To further understand file types, consider what occurs when a file is
created. Normally, the User Service Routine, in creating a tentative
file, first locates the largest empty file available and creates a
tentative file in that space. This establishes the maximum space into
which the file can expand. The user program then writes data into the
tentative file, At the end of the data, the program calls the USR to
close the tentative file, making it a permanent file. The USR does so
and allocates whatever space remains on the end of the tentative file
to a new, smaller, empty file,

l.2.,4 File Directories and Additional Information Words

To maintain records of the files on a device, 0S/8 allocates blocks 1
through 6 of each file structured device as the file directory.
Entries in this directory inform the system of the name, size, and
location of each file, including all empty files and the tentative
file, if one exists. For a detailed description of the entries in the
file directory, see Appendix A,

Each entry in a directory can, optionally, have extra storage words
called Additional Information Words. The number of Additional
Information Words is determined at the time the directory is initially
created (normally by using the /S or /Z features of PIP; see Chapter
1l of the 0S/8 HANDBOOK.

Whenever Additional Information Words are used, the first one for each
file entry is used to store the value of the System Date Word at the
time the file was created. 0S/8 automatically uses one extra word per
entry for the date, This value is set by executing a DATE command

(see Chapter 1 of the 0S/8 HANDBOOK) which codes the current date into
memory location 07666 in the following format:

g 34 89 11
MONTH DAY YEAR-1970
(1—148) (1—378) (0-7)

A date word of 0 implies that no DATE command has been executed since
the system initialization.

The values of Additional Information Words beyond the first are
user~defined. See Appendix D for further information on Additional
Information Words.

1.3 CORE CONTROL BLOCK

Associated with each core image file (SV file) is a block of data
called the Core Control Block. The Core Control Block is a table of
information containing the program's starting address, areas of core
into which the program is loaded, and the program's Job Status Word.
The Core Control Block is created at the time the program is loaded by
ABSLDR or other means and is written onto the SV file by the SAVE
operation. More information on the Core Control Block can be found in
the description of core image files in section A.2.2. Note that
specifying arguments to the SAVE command as described in Chapter 1 of
the 0S/8 HANDBOOK, can alter the contents of the target program's Core
Control Block.

When a program is loaded, the starting address and Job Status Word are
read from the Core Control Block and saved in core. The Core Control
Block itself is saved in the last 200 (octal) words of block 37 on the
system device unless the program was loaded with the R (rather than
GET or RUN) command.,

1.3.1 Program Starting Address

The current starting address (used by the START command) is stored in
two words at locations 07744 and 07745. The format of these words is:

LOCATION CONTENTS NOTES
07744 62n3 n is the field in

which to start,

07745 nnnn Starting address of
the program.

1,3.2 Job Status Word

The Job Status Word contains certain flags that affect 0s/8
operations, such as whether to save core when loading the USR or
Command Decoder, The Job Status Word for the program currently in
core is saved at location 07746 and contains the following
information:

Bit Condition Meaning

Bit 0 =1 File does not load into locations 00000
to 01777.

Bit 1 =1 File does not load into locations 00000
to 01777.

Bit 2 =1 Program must be reloaded before it can
be restarted.

Bit 3 =1 Program does not destroy the contents of
the highest existing memory field, an
optimization for the Batch system,

Bits 4 thru 9 Reserved for future use,

Bit 10 =1 Locations 00000 to 01777 need not be
saved when calling the Command Decoder.

Bit 11 =1 Locations 10000 to 11777 need not be

saved when calling the USR.,

When bit 2 of the Job Status Word is 1, any attempt to perform a START
(without an explicit address) results in a

NO!!

error message being printed. As this bit is always zero in the Core
Control Block, the user program is expected to internally set this bit
(in location 7746) if a program is not restartable. This could be
done as follows:

CDF 0

TAD I (7746 /LOAD JOB STATUS WORD
AND (6777

TAD (1000

DCA I (7746 /JOB IS NOT RESTARTABLE

The Job Status Word can be updated from the user's program or with the
ABSLDR /P option, thus providing optimization of tape (disk) motion.
More information on the Core Control Block can be found in the
description of Core Image (SV) files found in Appendix A,

Bit 3 of the JSW (Job Status Word) is used as an optimization for the
Batch operating system. If a program can never cause the highest
existing memory field to be altered, this bit should be set, For
example, EDIT, PIP, FORT, and SABR can never use memory above 8K.
Thus, they should set bit 3 of the JSW. Programs such as ABSLDR,

LOADER, PAL8 and CREF can alter all of core. They should perhaps not
have bit 3 on. Note that the more core that exists, the more unlikely
it is that a program will destroy upper core., Thus, on 28K systems,
only the largest FORTRAN programs can alter field 6 and, in general,
bit 3 should be set.

l1.3.3 Software Core Size

Location 07777 contains the software core size in bits 6=8., This
represents the highest memory field available for use by 0S/8. If bits
6-8 contain 0, all of the available memory is used. Most 0S/8 cusps
interrogate this word to determine how much memory is available. The
other bits of this location are reserved for use by BATCH and should
not be touched by user programs.

1.4 DEVICE NAMES AND DEVICE NUMBERS

The 0S/8 system can accommodate up to 15 separate devices. In Chapter
1 of the 0S/8 HANDBOOK the reader is introduced to the concept of
device names. Briefly, each device on the system is recognized by
either a permanent device name (such as PTR or DTAl) which is created
when the system is built, or a user-defined device name determined by
an ASSIGN command, The system insures that the user-defined device
name takes precedence. For example,

+ASSIGN DSK DTa4
causes all future references to DTA4 to address the device DSK.

In calling the User Service Routine, a device can be alternatively
recognized by a device number., Each device on the system has a unique
predefined number in the range 1 to 17 (octal) assigned at the time
the system is generated. Thus, user programs have the choice of
referring to a device by either name or number, Referencing a device
by name is preferable, as it maintains device independence for the
program,

Accessing devices by number should be done only when the appropriate
number has been obtained from a USR INQUIRE CALL. Except for SYS and
DSK, the 0S/8 peripherals do not have fixed numbers; instead, device
numbers vary whenever BUILD is used to modify a system., Thus, it is
suggested that reference by name be used whenever possible,

To determine whether a device name is recognized in the systen,
attempt to ASSIGN that device. For example, to determine whether
LINCtape handlers are called LTA or DTA, perform:

«DEASSIGN
«AS LTAO

If the system responds with a dot (.), LTAO does indeed exist. If the
system responds with:

LTA0 NOT AVAILABLE

no device named LTAQ0 is present.

l.5 THE DEVICE AND FILENAME PSEUDO=-OPS

Several of the USR functions take device names or file names as
arguments., To simplify the task of generating these arguments, the
DEVICE and FILENAME pseudo-ops have been added to the PAL8 Assembler,

A device name consists of a two word block, containing four
alphanumeric characters in six-bit ASCII format, A block in this
format can be created by the DEVICE pseudo-op as follows:

DEVICE DTAl

generates the following two words:

0424
0161

Similarly, the FILENAME pseudo-op creates a four word block, the first

three words of which contain the file name and the fourth word of
which contains the file extension. For example:

FILENAME PIP,.SV
generates the following four words:
2011
2000
0000
2326
Note that positions for characters 4 through 6 are filled with zeros.

The DEVICE and FILENAME pseudo-ops are used in examples in the
following chapters.

CHAPTER 2

USER SERVICE ROUTINE

The User Service Routine, or USR, is a collection of subroutines which
perform the operations of opening and closing files, loading device
handlers, program chaining, and calling the Command Decoder. The USR
provides these functions not only for the system itself, but for all
programs running under the 0S/8 system,

2.1 CALLING THE USR

Performing any USR function is as simple as giving a JMS followed by
the proper arguments. Calls to the USR take a standardized calling
sequence. This standard call should be studied before progressing to
the operation of the various USR functions.

2.1.1 Standard USR Call

In the remainder of this chapter, the following calling sequence is
referenced:

TAD VAL The contents of the AC is applicable in
some cases only.

CDF N Where N is the wvalue of the current
program field multiplied by 10 (octal).

CIF 10

JMS I (USR Where USR is either 7700 or 0200, (see
section 2.1.2}).

FUNCTION This word contains an integer from 1 to
13 (octal) indicating which USR
operation is to be performed.

ARG(1) The number and meaning of these argument
words varies with the particular USR
function to be performed.

error return When applicable, this is the return
address for all errors,

normal return The operation was successful., The AC is

cleared and the data field is set to
current field.

2-1

This calling sequence can change from function to function. For
example, some functions take no value in the AC and others have fewer
or greater numbers of arguments, Nonetheless, this format is
generally followed.

The value of the data field preceding the JMS to the USR is
exceedingly important. The data £field MUST be set to the current
field, and the instruction field MUST be set to 1, Note that a CDF is
not explicitly required if the data field is already correct. When a
doubt exists as to the data field setting, an explicit CDF should be
executed,

There are three other restrictions which apply to all USR calls, as
follows:

1. The USR can never be called from any address between 10000
and 11777. Attempting to do so results in the:

MONITOR ERROR 4 AT xxxxx (ILLEGAL USR CALL)

message and termination of program execution. The value of
xxxxXx 1is the address of the calling sequence (in all such
MONITOR ERROR messages).

2. Several USR calls take address pointers as arguments. These
pointers always refer to data in the same memory field as the
call.

3. When calling the USR from field 1, these address pointers
must never refer to data that 1lies in the area 10000 to
11777,

2,1.2 Direct and Indirect Calling Sequence

A user program can call the USR in two ways. First, by performing a
JMS to location 17700 In this case, locations 10000 to 11777 are saved
on a special area on the system device, and the USR is then loaded
into 10000 to 11777. When the USR operation is completed, locations
10000 to 11777 are restored to their previous values.

NOTE

By setting bit 11 of the Job Status Word
to a 1, the user can avoid this saving
and restoring of core when preserving
core is unnecessary.

Alternatively, a program can opt to keep the USR permanently resident
in core at locations 10000 to 11777 by using the USRIN function (see
section 2.2.8). Once the USR has been brought into core, a USR call
can be made by performing a JMS to location 10200. This is the most
efficient way of calling the USR. When USR operations have been
completed, the program restores locations 10000 to 11777 to their
initial state by executing the USROUT function, if necessary (see
section 2.2,9),

2,2 Summary of USR Functions

Function
Code Name Operation

1 FETCH Loads a device handler into core,
Returns the entry address of the
handler,

2 LOOKUP Searches the file directory on any
device to locate a specified permanent
file.

3 ENTER Creates and opens for output a tentative
file on a specified device,

4 CLOSE Closes the currently open tentative file
on the specified device and becomes a
permanent file, Also, any previous
permanent file with the same file name
and extension is deleted.

5 DECODE Calls the Command Decoder, The function
of the Command Decoder is described in
Chapter 3.

6 CHAIN Loads a specified core image file from
the system device and starts it,

7 ERROR Prints an error message of the form USER
ERROR n AT LOCATION XXXXX.

10 USRIN Loads the USR into core. Subsequent
calls to the USR are by an effective JMS
to location 10200,

11 USROUT Dismisses the USR from core and restores
the previous contents of locations 10000
to 11777,

12 INQUIRE Ascertains whether a given device exists
and, if so, whether its handler is in
core.

13 RESET Resets system tables to their initial
cleared state.

14-17 Not currently used, these request
numbers are reserved for future use,

An attempt to call the USR with a code greater than 13 (octal) will

currently cause a Monitor Error 4 message to be printed and the
program to be aborted.

2-3

2.2.1 FETCH Device Handler Function Code = 1
Device handlers must be loaded into core so as to be available to the
USR and user program for I/0 operations on that device, Before
performing a LOOKUP, ENTER, or CLOSE function on any device, the
handler for that device must be loaded by FETCH,
The FETCH function takes two distinct forms:
l. Load a device handler corresponding to a given device name,
2, Load a device handler corresponding to a given device number.

First, the following is an example of loading a handler by name from
memory field O:

CLA /AC MUST BE CLEAR

CDF 0 /DF = CURRENT FIELD

CIF 10 /IF =1

JMS I (USR

1 /FUNCTION CODE = 1

DEVICE DTA3 /GENERATES TWO WORDS: ARG(1l)
/AND ARG (2)

6001 /ARG (3)

JMP ERR /ERROR RETURN

. /NORMAL RETURN

ARG(l) and ARG(2) contain the device name in standard format. If the
normal return is taken, ARG(2) is changed to the device number
corresponding to the device loaded. ARG(3) contains the following
information:

Bits 0 to 4 contain the page number into which the handler is
loaded.

Bit 11 is 0 if the user program can only accept a l-page
handler.

Bit 11 is 1 if there is room for a 2-page handler,

Notice that in the example above, the handler for DTA3 is to be loaded
into locations 6000 to 6177. If necessary, a two page handler could be
loaded; the second page would be placed in locations 6200 to 6377.
After a normal return, ARG(3) is changed to contain the entry point of
the handler.

A different set of arguments is used to fetch a device handler by
number, The following is an example of this form:

TAD VAL /AC IS NOT ZERO
CDF 0 /DF = CURRENT FIELD
CIF 10 IF = 1

JMs I (USR

1 /FUNCTION CODE = 1
6001 /ARG (1)

JMP ERR /ERROR RETURN

. /NORMAL RETURN

On entry to the USR, the AC contains the device number in bits 8 to 11
(bit 0 to 7 are ignored). The format for ARG(l) is the same as that
for ARG(3) in the previous example., Following a normal return ARG(1)
. is replaced with the entry point of the handler.

The conditions that can cause an error return to occur in both cases
are as follows:

1. There is no device corresponding to the given device name or
device number, or

2., An attempt was made to load a two page handler into one page.
If this is an attempt to load the handler by name, the
contents of ARG(2) have been changed already to the internal
device number,

In addition, one of the following Monitor errors can be printed,
followed by a return to the Keyboard Monitor:

Error Message Meaning
MONITOR ERROR 4 AT XXXXX Results if bits 8 to 11 of the AC
(ILLEGAL USR CALL) are zero (and bits 0 to 7 are
non-zero) .,
MONITOR ERROR 5 AT xXXXXX Results if a read error occurs
(I/0 ERROR ON SYS) while loading the device handler,

The FETCH function checks to see if the handler is in core, and if it
is not, then the handler and all co-resident handlers are loaded.
While the FETCH operation is essentially a simple one, the user should
be aware of the following points:

1, Device handlers are always loaded into memory field 0.

2, The entry point that is returned may not be on the page
desired. This would happen if +the handler were already
resident.

3. Never attempt to load a handler into the 7600 page or into
page 0, Never load a two page handler into the 7400 page.

For more information on using device handlers, see Chapter 4.
NOTE

Two or more device handlers are
"co-resident" when they are Dboth
included in the same one or two core
pages., For example, the paper tape
reader and punch routines are
co-resident, as are the eight DECtape
handler routines.

2,2,2 LOOKUP Permanent file Function Code = 2

This request locates a permanent file entry on a given device, if one
exists. An example of a typical LOOKUP would be:

TAD VAL /LOAD DEVICE NUMBER

CDF 0O /DF=CURRENT FIELD
CIF 10 JIF =1
JMS I (USR
2 /FUNCTION CODE = 2
NAME /ARG(l), POINTS TO FILE NAME
0 /ARG(2)
JMP ERR /ERROR RETURN
. /NORMAL RETURN
NAME, FILENAME PROG.PA

This request looks up a permanent file entry with the name PROG.PA.
The device number on which the lookup is to be performed is in AC bit
8 to ll. ARG(l) contains a pointer to the file name. Note that the
file name block must be in the same memory field as the call, and that
it cannot be in locations 10000 to 11777. The device handler must have
been previously 1loaded into core. If the normal return is taken,
ARG(l) is changed to the starting block of the file and ARG(2)
contains the file 1length in blocks as a negative number. If the
device specified is a readable, non-file structured device (for
example, the papertape reader), then ARG(l) and ARG(2) contain the
file length in blocks as a negative number. If the device specified
is a readable, non-file structured device (for example, the paper tape
reader), then ARG(l) and ARG(2) are both set to zero,

If the error return is taken, ARG(l) and ARG(2) are unchanged. The
following conditions cause an error return:

1. The device specified is a write-only device,
2. The file specified was not found.
In addition, specifying illegal arguments can cause one of the

following monitor errors, followed by a return to the Keyboard
Monitor:

Exrror Message Meaning
MONITOR ERROR 2 AT XXXXX Results if an 1/0 error occurred
(DIRECTORY I/O ERROR) while reading the device directory.
MONITOR ERROR 3 AT XXXXX Results if the device handler for
(DEVICE HANDLER NOT IN CORE) the specified device is not in
core.

MONITOR ERROR 4 AT XXXXX Results if bits 8 to 11 of the AC
(ILLEGAL USR CALL) are zero.

The LOOKUP function is the standard method of opening a permanent file
for input.,

2.2,3 ENTER Output (Tentative) File Function Code = 3

The ENTER function is used to create a tentative file entry to be used
for output, An example of a typical ENTER function is as follows:

TAD VAL /AC IS NOT ZERO
CDF 0 /DF = CURRENT FIELD
CIF 10 /IF =1

JMS I (USR

3 /FUNCTION CODE = 3
NAME /ARG(1l) POINTS TO FILE NAME
0 /ARG(2)
JMP ERROR /ERROR RETURN
. /NORMAL RETURN
NAME , FILENAME PROG.LS

Bits 8 to 11 of the AC contain the device number of the selected
device; the device handler for this device must be loaded into core
before performing an ENTER function. If bits 0 to 7 of the AC are
non-zero, this value is considered to be a declaration of the maximum
length of the file. The ENTER function searches the file directory
for the smallest empty file that contains at least the declared number
of blocks. If bits 0 to 7 of the AC are zero, the ENTER function
locates the largest available empty file.

On a normal return, the contents of ARG(l) are replaced with the
starting block of the file. The 2's complement of the actual length
of the created tentative file in blocks (which can be equal to or
greater than the requested 1length) replaces ARG(2). If the file
directory contains any Additional Information Words, the system DATE
(location 17666) is written as the first Additional Information Word
of the newly created tentative file at this time,

NOTE

If the selected device is not file
structured but permits output operations
(e.g., the high speed punch), the ENTER
operation always succeeds, In this
case, ARG(l) and ARG(2) are both 2zeroed
on return,

If the error return is taken, ARG(l) and ARG(2) are unchanged. The
following conditions cause an error return:

l. The device specified by bits 8 to 11 of the AC is a read only
device.

2. No empty file exists which satisfies the requested length
requirement.

3. Another tentative file is already active on this device (only
one output file can be active at any given time).

4, The first word of the file name was 0 (an illegal file name).

In addition, one of the following monitor errors can occur, followed
by a return to the Keyboard Monitor:

Error Message Meaning
MONITOR ERROR 2 AT XXXXX Result if an I/0 error occurred
(DIRECTORY I/0O ERROR) while reading or writing the device
directory.
MONITOR ERROR 3 AT XXXXX Results if the device handler for
(DEVICE HANDLER NOT IN CORE) the specified device is not in
core.

2-7

Error Message Meaning

MONITOR ERROR 4 AT XXXXX Results if AC bits 8 to 1l are

(ILLEGAL USR CALL) Zero.

MONITOR ERROR 5 AT xXXXxX Read error on the system device

(/0 ERROR ON SYS) while bringing in the overlay code
for the ENTER function.

MONITOR ERROR 6 AT XXXXX Results if a directory overflow

(DIRECTORY OVERFLOW) occurred (no room for tentative

file entry in directory).

2.2.4 The CLOSE Function Function Code = 4

The CLOSE function has a dual purpose: first, it is used to close the
current active tentative file, making it a permanent file. Second,
when a tentative file becomes permanent it is necessary to remove any
permanent file having the same name; this operation is also performed
by the CLOSE function. An example of CLOSE usage follows:

TAD VAL /GET DEVICE NUMBER

CDF 0 /DF=CURRENT FIELD

CIF 10 /IF=1

JMS I (USR

4 /FUNCTION CODE = 4

NAME /ARG (1)

15 /ARG(2)

JMP ERR /ERROR RETURN

. /NORMAL RETURN
NAME , FILENAME PROG.LS

The device number is contained in AC bits 8 to 11 when calling the
USR. ARG(l) is a pointer to the name of the file to be deleted and
(ARG(2) contains the number of blocks to be used for the new permanent
file.

The normal sequence of operations on an output file is:
1, FETCH the device handler for the output device,

2. ENTER the tentative file on the output device, getting the
starting block and the maximum number of blocks available for
the file.

3. Perform the actual output using the device handler, keeping
track of how many blocks are written, and checking to insure
that the file does not exceed the available space.

4. CLOSE the tentative file, making it permanent. The CLOSE
operation would always use the same file name as the ENTER
performed in step 2. The closing file length would have been
computed in step 3.

After a normal return from CLOSE, the active tentative file is
permanent and any permanent file having the specified file name
already stored on the device is deleted. If the specified device is a
non-file structured device that permits output (the paper tape punch,
for example) the CLOSE function will always succeed,

2-8

NOTE

the user must be careful to specify the
same file names to the ENTER and the
CLOSE functions., Failure to do so can
cause several permanent files with
identical names to appear in the
directory. If CLOSE is intended only to
be used to delete some existing file,
then the number of blocks, ARG(2) should
be zero.

The following conditions cause the error return to be taken:

1. The device specified by bits 8 to 11 of the AC is a read only
device.

2. There is neither an active tentative file to be made into a
permanent file, nor a permanent file with the specified name
to be deleted.

In addition, one of the following Monitor errors can occur:

Error Message Meaning
MONITOR ERROR 1 AT XXXXX Results if the length specified by
(CLOSE ,ERROR) ARG(2) exceeded the allotted space.
MONITOR ERROR 2 AT XXXXX Results if an I/0 error occurred
(DIRECTORY 1I/0 ERROR) while reading or writing the device
directory.

MONITOR ERROR 3 AT xXXXXX Results if the device handler for
(DEVICE HANDLER NOT IN CORE) the specified device is not in
core.,

MONITOR ERROR 4 AT XXXXX Results if AC bits 8 to 11 are
(ILLEGAL USR CALL) Zero.
2.2.,5 Call Command Decoder (DECODE) Function Code = 5

The DECODE function causes the USR to load and execute the Command
Decoder. The Command Decoder accepts (from the Teletype) a list of
input and output devices and files, along with various options. The
Command Decoder performs a LOOKUP on all input files, sets up
necessary tables in the top page of field 1, and returns to the user
program., These operations are described in detail in Chapter 3, which
shoud be read before attempting to use the DECODE function.

A typical call to the Command Decoder looks as follows:

CDF 0 /DF=CURRENT FIELD

CIF 10 /IF=1

JMS I (USR

5 /FUNCTION CODE = 5

2001 /ARG (l) , ASSUMED INPUT EXTENSION

0 /ARG(2), ZERO TO PRESERVE ALL
/TENTATIVE FILES

. /NORMAL RETURN

2-9

ARG(1l) is the assumed input extension, in the preceding example it is
", PA", On return from the Command Decoder, information is stored in
tables located in the top page of memory field 1. The DECODE function
also resets all system tables as in the RESET function (see RESET
function, section 2,2,11) if ARG(2) is O all currently active
tentative files remain open; if ARG(2) is non-zero all tentative
files are deleted and the normal return is to ARG(2) instead of
ARG(2)+1.

The DECODE function has no error return (Command Decoder error
messages are given in Chapter 3). However, the following Monitor error
can occur:

Error Message Meaning
MONITOR ERROR 5 AT XXXXX I/0 error occurred while reading or
(I/0 ERROR ON SY¥S) writing on the system device.
2,2,6 CHAIN Function Function Code = 6

The CHAIN function permits a program to load and start another program
with the restriction that the program chained to must be a core image
(.SV) file located on the system device. A typical implementation of
the CHAIN function looks as follows:

CDF 0 /DF=CURRENT FIELD

CIF 10 /IF=1

JMS I (USR

6 /FUNCTION CODE = 6

BLOCK /ARG (1), TARTING BLOCK NUMBER

There is no normal or error return from CHAIN. However, the following
monitor error can occur:

Error Message Meaning
MONITOR ERROR 5 AT XXXXX I/0 error occurred while reading or
(I/0 ERROR ON SY¥S) writing on the system device.
CHAIN ERR If an attempt is made to CHAIN to a

file which is not a core image
(.8V) file. Control returns to the
keyboard monitor.

The CHAIN function loads a core image file located on the system
device beginning at the block number specified as ARG(l) (which is
normally determined by performing a LOOKUP on the desired file name).
Once loaded, the program is started at an address one greater than the
starting address specified by the program's Core Control Block.

CHAIN automatically performs a USROUT function (see section 2.,2.9) to
dismiss the USR from core, and a RESET to clear all system tables see
section 2,2.11), but CHAIN does not delete tentative files.

The areas of core altered by the CHAIN function are determined by the
contents of the Core Control Block of the core image file loaded by
CHAIN. The Core Control Block for the file is set up by other ABSLDR
or LOADER programs, It can be modified by performing a SAVE command
with specific arguments. Every page of core in which at 1least one

2-10

location was saved is loaded, If the page is one of the "odd
numbered" pages (pages 1, 3, etc,; locations 0200 to 0377, 0600 to
0777, etc.), the previous page is always loaded., In addition, CHAIN
always alters the contents of locations 07200 to 07577.

NOTE

CHAIN destroys a necessary part of the
ODT resident breakpoint routine, Thus
an ODT breakpoint should never be
maintained across a CHAIN.

With the above exceptions, programs can pass data back and forth in
core while chaining., For example, FORTRAN programs normally leave the
COMMON area in memory field 1 unchanged. This COMMON area can then be
accessed by the program activated by the CHAIN,

2,2,7 Signal User ERROR Function Code = 7

The USR can be called to print a user error message for a program,
The following is a possible ERROR call:

CDF 0 /DF = CURRENT FIELD
CIF 10 JIF = 1

JMs I (USR ‘

7 /FUNCTION CODE = 7

2 /ARG(1l) , ERROR NUMBER

THE ERROR function causes a message of the form:

USER ERROR n AT XXXxXX
to be printed. Here n is the error number given as ARG(l); n must be
between 0 and 11 (octal), and xxxxx is the address of ARG(l). If
ARG(l) in the sample call above was at location 500 in field 0, the
message:

USER ERROR 2 AT 00500

would be printed. Following the message, the USR returns control to
the Keyboard Monitor, preserving the user program intact.

The error number is arbitrary. Two numbers have currently assigned
meanings:

Error Message Meaning

USER ERROR 0 AT XXXXX During a RUN, GET, or R command,
this error message indicates that
an error occurred while loading the
core image.

USER ERROR 1 AT XXXXX While executing a FORTRAN or SABR
program, this error indicates that
a call was made to a subroutine
that was not loaded.

2-11

2,2,8 Lock USR in Core (USRIN) Function Code = 10

When making a number of calls to the USR it is advantageous for a
program to avoid reloading the USR each time a USR call is made, The
USR can be brought into core and kept there for subsequent use by the

USRIN function. The calling sequence for the USRIN function looks as
follows:

CDF 0 /DF = CURRENT FIELD
CIF 10 /JIF =1

JMS I (7700

10 /FUNCTION CODE = 10
B /NORMAL RETURN

THE USRIN function saves the contents of locations 10000 to 11777 on
the system scratch blocks, provided the calling program loads into
this area as indicated by the current JSW, and 1loads the USR, then
returns control to the user program.

NOTE

If bit 11 of the current Job Status Word
is a one, the USRIN function will not
save the contents of locations 10000
thru 11777.

2.2,9 Dismiss USR from Core (USROUT) Function Code = 11

When a program has loaded the USR into core with +the USRIN function
and no longer wants or needs the USR in core, the USROUT function is
used to restore the original contents of locations 10000 to 11777. The
calling sequence for the USROUT function is as follows:

CDF 0 /DF = CURRENT FIELD
CIF 10 JIF =1

JMS I (200 /DO NOT JMS TO 177001!
11 /FUNCTION CODE = 11

. /NORMAL RETURN

The USROUT function and the USRIN function are complementary
operations., Subsequent calls to the USR must be made by performing a
JMS to location 7700 in field 1.

NOTE

If bit 11 of the current Job Status Word
is a 1, the contents of core are not
changed by the USROUT function. In this
case USROUT is a redundant operation
since core was not preserved by the
USRIN function.

2-12

2.2,10 Ascertain Device Information (INQUIRE) Function Code = 12

On some occasions a user may wish to determine what internal device
number corresponds to a given device name or whether the device
handler for a specified device is in core, without actually performing
a FETCH operation. INQUIRE performs these operations for the user,
The function call for INQUIRE closely resembles the FETCH handler
call.

INQUIRE, like FETCH, has two distinct forms:
1. Obtain the device number corresponding to a given device name
and determine if the handler for that device is in core
(example shown below).

2. Determine if the handler corresponding to a given device
number is in core.

An example of the INQUIRE call is shown below:

CLA /AC MUST BE CLEAR

CDF 0 /DF = CURRENT FIELD

CIF 10 /JIF =1

JMS I (USR

12 /FUNCTION CODE = 12

DEVICE DTA3 /GENERATES TWO WORDS:
/ARG (1) AND ARG(2)

0 /ARG (3)

JMP ERR /ERROR RETURN

. /NORMAL RETURN

ARG(l) and ARG(2) contain the device name in standard format. When
the normal return is taken ARG(2) is changed to the device number
corresponding to the given name, and ARG(3) contains either the entry
point of the device handler if it is already in core, or zero if the
corresponding device handler has not yet been loaded.

A slightly different set of arguments is used to inquire about a
device by its device number:

TAD VAL /AC IS NON-ZERO

CDF 0 /DF = CURRENT FIELD
CIF 10 JIF = 1

JMS I (USR

12 /FUNCTION CODE = 12
0 /ARG (1)

JMP ERR /ERROR RETURN

. /NORMAL RETURN

°

On entry to INQUIRE, AC bits 8 to 11 contain the device number,

2-13

NOTE

If AC bits 0 to 7 are non-zero, and bits
8 to 11 are =zero (an illegal device
number) a:

MONITOR ERROR 4 AT XXXXX

message is printed and program execution
is terminated,

On normal return ARG(l) is set to the entry point of the device
handler if it is already in core, or zero if the corresponding device
handler has not yet been loaded. The error return in both cases is
taken only if there is no device corresponding to the device name or
number specified.

2,2,11 RESET System Tables Function Code = 13

There are certain occasions when it is desired to reset the system
tables, effectively removing from core all device handlers except the
system handler. An example of the RESET function is shown below:

CDF 0 /DF = CURRENT FIELD

CIF 10 JIF =1

JMS I (USR

13 /FUNCTION CODE = 13

0 /0 PRESERVES TENTATIVE FILES

/NORMAL RETURN

RESET zeros all entries except the one for the system device in the
Device Handler Residency Table (see section B.3.3, removing all
device handlers, other than that for the system device, from core.
This should be done anytime a user program modifies any page in which
a device handler was loaded.

RESET has the additional function of deleting all currently active
tentative files (files that have been entered but not closed). This is
accomplished by zeroing bits 9 through,ll of every entry in the Device
Control Word Table (see section B.3.5).

If RESET is to be used in this last fashion, to delete all active
tentative files, then ARG(l) must be non-zero and the normal return is
to ARG(1l) rather than to ARG(l)+l. For example, the following call
would serve this purpose

CDF © /DF :CURRENT FIELD
CIF 10 /IF = 1

JMS I (USR

13 /FUNCTION CODE = 13
CLA CMA /NON=-ZERO3

The normal return would execute the CLA CMA and all active tentative
files on all devices would be deleted. The Keyboard Monitor currently
does not reset the Monitor tables. If user programs which do not call
the Command Decoder are used, it is wise to do a RESET operation
before loading device handlers. The RESET will ensure that the proper
handler will be loaded into core.

2~14

CHAPTER 3

THE COMMAND DECODER

0S/8 provides a powerful subroutine called the Command Decoder for use
by all system programs., The Command Decoder is normally called when a
program starts running, When called, the Command Decoder prints an *
and then accepts a command line from the console Teletype that
includes a list of 1I/0 devices, file names, and various option
specifications. The Command Decoder validates the command line for
accuracy, performs a LOOKUP on all input files, and sets up various
tables for the calling program.

The operations performed by the Command Decoder greatly simplify the
initialization routines of all 0S/8 programs. Also, since command

lines all have a standard basic structure, the Command Decoder makes
learning to use 0S/8 much easier,

3.1 COMMAND DECODER CONVENTIONS

Chapter 1 of the 0S/8 HANDBOOK describes the syntax for the command
line in detail, A brief synopsis is given here only to clarify the
later discussion in this chapter,

The command line has the following general form:

*output files < input files/ (options)

There can be 0 to 3 output files and 0 to 9 input files specified.

Output File Format Meaning
EXPLE.EX Output to a file named EXPLE.EX on

device DSK (the default file
storage device).

LPT: Output to the LPT. This format
generally specifies a non=-file
structured device,

DTA2:EXPLE.EX Output to a file named EXPLE.EX on
device DTA2,

DTA2:EXPLE.EX[99] Output to a file named EXPLE.EX on
device DTA2, A maximum output file
size of 99 blocks is specified.

null No output specified.

An input file specification has one of the following forms:

3-1

Input File Format

DTA2:INPUT

DTAZ2:INPUT.EX

INPUT.EX

PTR:

DTA2:

null

Meaning

Input from a file named INPUT.df on
device DTA2. "df" is the assumed
input file extension specified in
the Command Decoder.

Input from a file named INPUT.EX on
device DTA2, In this case JEX
overrides the assumed input file
extension,

Input from a file named INPUT,EX,
If there is no previously specified
input device, input is from device
DSK, the default file storage
device; otherwise, the input
device is the same as the last
specified input device,

Input from device PTR; no file
name is needed for non-file
structured devices,

Input from device DTA2 treated as a
non-file structured device, as, for
example, in the PIP command line:

*TTY:/L{DTA2:

In both of the last two formats, no
LOOKUP operation is performed since
the device 1is assumed to be
non-file structured.

Repeats input from the previous
device specified (must not be first
in input list, and must refer to a
non=-file structured device). For
example:

* ¢(PTR:,,

(two null files) indicates that
three paper tapes are to be loaded.

NOTE

Whenever a file extension is left off an
input file specification, the Command
Decoder first performs a LOOKUP for the
given name appending a specified assumed
extension. If the LOOKUP fails, a
second LOOKUP is made for the file
appending a null (zero) extension.

The Command Decoder verifies that the specified device names, file
names, and extensions consist only of the characters A through Z and 0
through 9. If not, a syntax error is generated and the command line is
considered to be valid.

There are two kinds of options that can be specified: first,
alphanumeric option switches are denoted by a single alphanumeric
character preceded by a slash (/) or a string of characters enclosed
in parentheses; secondly, a numeric option can be specified as an
octal number from 1 to 37777777 preceded by an equal sign (=). These
options are passed to the user program and are interpreted differently
by each program,

Finally, the Command Decoder permits the command line to be terminated
by either the RETURN or ALT MODE key. This information is also passed
to the user program.

3.2 COMMAND DECODER ERROR MESSAGES

If an error in the command line is detected by the Command Decoder,
one of the following error messages 1is printed. After the error
message, the Command Decoder starts a new line, prints an *, and waits
for another command line, The erroneous command is ignored.

Error Message Meaning
ILLEGAL SYNTAX The command 1line is formatted
incorrectly.
TOO MANY FILES More than three output files or

nine input files were specified.
(Or in special mode, more than 1
output file or more than 5 input
files.,)

device DOES NOT EXIST The specified device name does not
correspond to any permanent device
name or any user assigned device
name,

name NOT FOUND The specified input file name was
not found on the selected device.,

3.3 CALLING THE COMMAND DECODER

The Command Decoder is initiated by the DECODE function of the USR.
DECODE causes the contents of locations 0 to 1777 of field 0 to be
saved on the system scratch blocks, and Command Decoder to be brought
into that area of core and started. When the command line has been
entered and properly interpreted, the Command Decoder exits to the
USR, which restores the original contents of 0 to 1777 and returns to
the calling program,

3-3

NOTE

By setting bit 10 of the Job Status Word
to a 1 the user can avoid this saving
and restoring of core for programs that
do not occupy locations 0 to 1777,

The DECODE call can reside in the area between 0000 to 1777 and still
function correctly. A typical call would appear as follows:

CDF 0 /SET DATA FIELD TO CURRENT FIELD

CIF 10 /INSTRUCTION FIELD MUST BE 1

JMS I (USR /USR=7700 IF USR IS NOT IN CORE
/OR USR=0200 IF USRIN WAS PERFORMED

5 /DECODE FUNCTION = 5
2001 /ARG(1) ,ASSUMED INPUT EXTENSION
0 /ARG(2) ,ZERO TO PRESERVE
/ALL TENTATIVE FILES
. /NORMAL RETURN

ARG(1l) is the assumed input extension. If an input file name is given
with no specified extension, the Command Decoder first performs a
LOOKUP for a file having the given name with the assumed extension,
If the LOOKUP fails, the Command Decoder performs a second LOOKUP for
a file having the given name and a null (zero) extension. In this
example, the assumed input extension is ",.PA",

DECODE performs an automatic RESET operation (see section 2.2.11) to
remove from core all device handlers except those equivalent to the
system device. As in the RESET function, if ARG(2) is zero all
currently active tentative files are preserved. If ARG(2) is
non-zero, all tentative files are deleted and DECODE returns to ARG(2)
instead of ARG(2)+l.

As the Command Decoder normally handles all of its own errors, there
is no error return from the DECODE operation,

3.4 COMMAND DECODER TABLES

The Command decoder sets up various tables in the top page of field 1
that describe the command line typed to the user program.

3.4.1 oOutput Files

There is room for three entries in the output file table that begins
at location 17600. Each entry is five words long and has the following
format:

0 1 2 3 4 5 6 7 8 9 10 11
WORD 1 USER SPECIFIED 4 BIT-DEVICE
FILE LENGTH NUMBER
WORD 2 FILE NAME FILE NAME
CHARACTER 1 CHARACTER 2
WORD 3 FILE NAME FILE NAME OUTPUT FILE NAME
CHARACTER 3 CHARACTER 4 6 CHARACTERS
WORD 4 FILE NAME FILE NAME
CHARACTER 5 CHARACTER 6
WORD 5 FILE EXTENSION FILE EXTENSION FILE EXTENSION
CHARACTER 1 CHARACTER 2 2 CHARACTERS

Bits 0 to 7 of word 1 in each entry contain the file 1length, if the
file length was specified with the square bracket construction in the
command line. Otherwise, those bits are zero.

The entry for the first output file is in locations
the second is in locations 17605 to 17611,
locations 17612 to 17616, If word 1 of any entry is
corresponding output file was not specified,
that no file name was specified,

17600 to 17604,
and the third is in
zero, the
A zero in word 2 means

Also, if word 5 of any entry is zero no file extension was specified
for the corresponding file. It is left to the user program to take
the proper action in these cases.

These entries are in a format that is
function.

acceptable to the ENTER

3.,4.2 Input Files

There is room for nine entries in the input file table that begins at
location 17617. Each entry is two words long and has the following
format:

0 1 2 3 4 5 6 7 8 9 1011
WORD 1 MINUS FILE 4-BIT DEVICE

LENGTH NUMBER
WORD 2 STARTING BLOCK OF FILE

Bits 0 to 7 of word 1 contain the file length as a negative number.
Thus, 377 (octal) in these bits is a length of one block, 376 (octal)
is a length of two blocks, etc, If bits 0 to 7 are zero, the
specified file has a length greater than or equal to 256 blocks or a
non-file structured device was specified,

NOTE

This restriction to 255 blocks of actual
specified size can cause some problems
if the program has no way of detecting
end-of-file conditions. For example,
PIP cannot copy in image mode any file
on a file structured device that is
greater than 255 blocks 1long, although
it can handle in /A or/B modes (ASCII or
Binary) files of unlimited gize., In /A
or/B modes PIP will detect the CTRL/Z
marking the end-of-file.

If this is liable to be a problem, it is
suggested that the user program employ
the special mode of the Command Decoder
described in section 3.5 and perform its
own LOOKUP on the input files to obtain
the exact file length.

The two-word input file 1list entries beginning at odd numbered
locations from 17617 to 17637 inclusive. If location 17617 is zero,
no input files were indicated in the command line. If less than nine
input files were specified, the unused entries in the input file list
are zeroed (location 17641 is always set to zero to provide a
terminator even when no files are specified).

3.4.3 Command Decoder Option Table

Five words are reserved beginning at 1location 17642 to store the
various options specified in the command line. The format of these
five words is as follows:

01 2 3 4 5 6 7 8 9 10 11

17642 HIGH ORDER 11 BITS F
= N OPTIONS

17643|A |B|C|DE|F|(G|H|I|J|K]|L
17644|M IN|O|P|Q|R|[S|T|U|V|W|X

l764s5{Y |2{0}1|2|3|4|5|6]7]|8]9

17646| LOW ORDER 12 BITS OF

> OPTIONS

Each of these bits corresponds to one of the possible alphanumeric
option switches. The corresponding bit is 1 if the switch was
specified, 0 otherwise.

NOTE

If no = n option is specified, the
Command Decoder zeroes 17646 and bits 1
to 11 of 17642, Thus, typing =0 is
meaningless since the user program
cannot tell that any option was
specified.

Bit 0 of location 17642 is 0 if the
command line was terminated by a
carriage return, 1 if it was terminated
by an ALT MODE.

3.4.4 Example

To clarify some of the preceding, consider the interpretation of the
following command line:

*BIN[10]<PTR:,,DTA2:PARA,MAIN /I=14200%

If this command line is typed to PAL8, it would cause assembly of a
program consisting of four separate parts: two paper tapes, one file
named PARA.PA (or just PARA) on DTA2, and one file named MAIN.PA (or
just MAIN) also on DTA2, The binary output is placed on a file named
BIN.BN on device DSK, for which only 10 blocks need be allocated. No
listing 4is generated. In addition, automatic loading of the binary
output is specified by the /L option, with the starting address given
as 4200 in field 1, Flnally, the line is terminated by the ALTMODE key
(which echoes as $) causing a return to the Keyboard Monitor after the
program is loaded.

In the case of this example, the Command Decoder returns to PAL8 with
the following values in the system tables:

NOTE

The entries for PTR (where no input file
name is specified) have a starting block
number and file size of zero. This is
always true of the input table for a
non-file structured device, or a file
structured device on which no file name
is given.

17600 0242 |—DSK:IS DEVICE NUMBER 2

0211
1600 FILE NAME IS BIN
0000
17604| 0000 [—NULL EXTENSION
17605
R <R PREMAINING ENTRIES
{IN ouTPUT TABLES
17616 ARE ZERO
17617
0016
FIRST PTR INPUT
. 0000 %
17620
17621
0016
SECOND PTR INPUT
0000 S
17622

17623 7667 DAT2: PARA PA IS 5 BLOCKS LONG,

BEGINNING AT 100 (8)

0100
17624
17625
0007 DTA2: MAIN PA IS 256 (10) OR MORE
BLOCKS LONG, BEGINNING AT BLOCK 105(8)
0105
17626
17627
REMAINING ENTRIES
=R <R (IN INPUT TABLES
ARE ZERO.
17641
17642 4001 [—LINE WAS TERMINATED BY ALT MODE
17643 0001
17644 0000 /L WAS ONLY OPTION SWITCH
SPECIFIED
17645 0000
17646 4200 =14200 WAS SPECIFIED

3.5 SPECIAL MODE OF THE COMMAND DECODER

Occasionally the user program does not want the Command Decoder to
perform the LOOKUP on input files, leaving this option to the user
program itself. Programs such as format conversion routines which
access non-standard file structures could use this special format. If
the input files were not 05/8 format, a command decoder LOOKUP
operation would fail. The capability to handle this case is provided

3-8

in the 0s/8 Command Decoder. This capability is generally referred to
as the "special mode" of the Command Decoder.

3.5.1 Calling the Command Decoder Special Mode

The special mode call to the Command Decoder is identical to the
standard DECODE call except that the assumed input file extension,
specified by ARG(l), is equal to 5200. The value 5200 corresponds to
an assumed extension of ".*", which is illegal. Therefore, the
special mode of the Command Decoder in no way conflicts with the
normal mode.

3.5.2 Operation of the Command Decoder in Special Mode

In special mode the Command Decoder is loaded and inputs a command
line as wusual., The appearance of the command line is altered by the
special mode in these respects:

1. Only one output file can be specified,

2. No more than five input files can be specified, rather than
the nine acceptable in normal mode.

3. The characters asterisk (*) and question mark (?) are legal
in file names and extensions, both in input files and on
output files. It is strongly suggested that these characters
be tested by the user program and treated either as special
options or as illegal file names, The user program must be
careful not to ENTER an output file with an asterisk or
question mark in its name as such a file cannot easily be
manipulated or deleted by the standard system programs.

The output and option table set up by the Command Decoder is not

altered in special mode. Entries in the input table are changed to
the following format:

0 1 2 3 4 5 6 7 8 9 10 11

WORD 1 4-BIT DEVICE BITS 0-7 ARE
NUMBER ALWAYS 0
WORD 2 FILE NAME FILE NAME
CHARACTER 1 CHARACTER 2
WORD 3 FILE NAME FILE NAME INPUT FILE NAME
CHARACTER 3 CHARACTER 4 6 CHARACTER
WORD 4 FILE NAME FILE NAME
CHARACTER 5 CHARACTER 6
WORD 5 FILE EXTENSION FILE EXTENSION FILE EXTENSION
CHARACTER 1 CHARACTER 1 2 CHARACTERS

The table entry for the first input file is in locations 17605 to
17611; the second in locations 17612 to 17616; the third in locations
17617 to 17623; the fourth in locations 17624 to 17630; and the fifth
in locations 17631 to 17635. A zero in word 1 terminates the list of
input files. If word 2 of an entry is zero, no input file name was
specified.

The 0S/8 batch generating system will allow calls to the command
decoder in special mode.

3.6 CCL AND THE COMMAND DECODER

CCL uses its own copy of the Command Decoder instead of the copy
available from the monitor. Thus, the CCL Command Decoder has several
options not available via standard USR calls to the 0S/8 Command
Decoder, e.g., multiple default extensions.,

3.7 USEFUL LOCATIONS IN BATCH

BATCH will run whenever bit 0 of location 07777 is a 1. The user may
wish to access the following useful locations in BATCH. The locations
are in the highest memory field available to 0S/8:

BATERR = 7000 JMP here to abort BATCH.

BATOUT = 7400 JMS here to print character
in AC in BATCH log.

BATSPL = 7200 JMS here to permit spooling

with default extension in AC,

3.8 CCL TABLES

A description of all tables used by CCL is included in the file CCL.PA
supplied to all users of 0S/8 version 3.

CHAPTER 4

USING DEVICE HANDLERS

A device handler is a system subroutine that is used by all parts of
the 0S/8 system and by all standard system programs to perform I/O
transfers. All device handlers are called in the same way and they
all perform the same basic operation: reading or writing a specified
number of 128 word records beginning at a selected core address.

These subroutines effectively mask the nunique characteristics of
different I/0 devices from the calling program; thus, programs that
use device handlers properly are effectively "device independent",
Changing devices involves merely changing the device handlers used for
I/0.

0S/8 device handlers have another important feature. They are able to
transfer a number of records as a single operation. On a device like
DECtape this permits many bks of data to be transferred without
stopping the tape motion. On a disk, a single operation could
transfer an entire track or more. This capability significantly
increases the speed of operation of 0S/8 programs, such as PIP, that
have large buffer areas.

NOTE

The word "record" is defined to mean 128
words of data; thus, an 0S/8 block
consists of two 128 word records.

4,1 CALLING DEVICE HANDLERS

Device handlers are loaded into a user selected area in memory field 0
by the FETCH function. FETCH returns in ARG(1l) the entry point of the
handler loaded. The handler is called by performing a JMS to the
specified entry point address. It has the following format:

CDF N /WHERE N IS THE VALUE OF THE CURRENT
/PROGRAM INSTRUCTION FIELD TIMES 10 (OCTAL)

CIF O /DEVICE HANDLER ALWAYS IN FIELD 0

JMS I ENTRY

ARG (1) /FUNCTION CONTROL WORD

ARG(2) /BUFFER ADDRESS

ARG(3) /STARTING BLOCK NUMBER

JMP ERR /ERROR RETURN
. /NORMAL RETURN (I/O TRANSFER COMPLETE)

L]
ENTRY 0 /ENTRY CONTAINS THE ENTRY POINT OF THE
/HANDLER, DETERMINED WHEN LOADED BY ETCH

As with calls to the USR, it is important that the data field is set
to the current program field before teldevice handler is called. On
exit from the device handler, the data field will remain set to the
current program field,

ARG(l) is the function control word, and contains the following
information:

Bits Contents

Bit O 0 for an input operation, 1 for an output
operation.

Bits 1 to 5 The number of 128 word records to be

transferred. If bits 1=-5 are zero and the
device is non~file structured (i.e., TTY,
LPT, etc.) the operation is device dependent.
If the device is file structured (sYs,
DECtape, disk, etc.), a read/write of 40
(octal) pages is performed.

Bits 6 to 8 The memory field in which the transfer is to
be performed.

Bits 9 to 11 Device dependent bits, can be left zero.
Currently only bit 11 is used; on DECtape
bit 11 determines the direction in which the
tape is started. If bit 11 is 0, the tape
starts in reverse., If bit 11 is 1, the tape
starts forward. All other handlers ignore
these bits at present (except TMS8E and TAS8E),

NOTE

Starting forward saves time as long as
the block number, ARG(3), is about seven
or more blocks greater than the number
of the block at which the tape is
currently positioned.

ARG(2) is the starting location of the transfer buffer.

ARG(3) is the number of the block on which the transfer is to begin.
The user program initially determines this value by performing a
LOOKUP or ENTER operation. After each transfer the user program
should itself add to the current block number the actual number of
blocks transferred, equal to one-half the number of 128 word records
specified, rounded up if the number of records was odd.

There are two kinds of error returns: fatal and non-fatal. When an
error return occurs and the contents of the AC are negative, the error
is fatal. A fatal error can be caused by a parity error on input, a
write 1lock error on output, or an attempt to write on a read-only

device (or vice versa). The meaning can vary from device to device,
but in all cases it 1is serious enough to indicate that the data
transferred, if any, is invalid.

When an error return occurs and the contents of the AC are greater
than or equal to zero, a non-fatal error has occurred., This error
always indicates detection of the logical end-of-file. For example,
when the paper tape reader handler detects the end of a paper tape it
inserts a CTRL/Z code in the buffer and takes the error exit with the
AC equal to zero. While all non-file structured input devices can
detect the end-of-file condition, no file structured device can;
furthermore, no device handler takes the non-~fatal error return when
doing output,

The following restrictions apply to the use of device handlers:

1, If bits 1 to 5 of the function control word, ARG(l), are
zero, a transfer of 40 (octal) pages or an entire memory
field is indicated., Care must be used to ensure that the
handler 1is not overlaid in this call. This only applies to
file-structured handlers.

2. The user program must never specify an input into locations
07600 to 07777, 17600 to 17777, or 27600-~27777, or the
page(s) in which the device handler itself resides. In
general, 7600-7777 in every memory field are reserved for use
by system software. Those areas should be used with caution.

3. Note that the amount of data transferred is given as a number
of 128 word records, exactly one half of an 0S/8 block.
Attempting to output an odd number of records can change the
contents of the last 128 words of the last block written.
For example, outputting 128 words to a block on the RK8 disk
causes the 1last 128 words of the block to be filled with
zeroes.

4, The specified buffer address does not have to begin at the
start of a page. The specified buffer cannot overlap fields,
rather the address will "wrap around” memory. For example, a
write of 2 pages starting at location 07600 would cause
locations 07600-07777 and 00000-00177 of field 0 to be
written.

5. If bits 1-5 of the function control word ARG(l) are =zero, a
device-dependent operation occurs, Users should not expect a
40-page (full field) transfer of data. The CLOSE operation
of the USR calls the handler with bits 1=-5 and 9-11 of the
function control word 0. This condition means ‘perform any
special close operations desired'. Non-file structured
handlers which need no special handling on the conclusion of
data transfers should treat this case as a NOP. Examples of
usage of such special codes:

LPT -~ perform a form feed
CSAn, MTAn - write two file marks

4.2 DEVICE DEPENDENT OPERATIONS

This section describes briefly the operation of certain standard 0S/8
device handlers, including normal operation, any special
initialization operations for block 0, terminating conditions, and
response to control characters typed at the keyboard. Further
information on device handlers can be found in Chapter 5.

4.2,1 1l-Page Terminal (TTY) (AS33)
1. Normal Operation

This handler inputs characters from the terminal keyboard and
packs them into the buffer or unpacks characters from the
buffer and outputs them to the console terminal.

On input, characters are echoed as they are typed. Following
a carriage return, a line feed character is inserted into the
input buffer and printed on the terminal.

2, Initialization for Block 0
None,
3. Terminating Conditions

On input, detection of a CTRL/Z causes a CTRL/Z (octal code
232) to be placed in the input buffer, the remaining words of
the buffer to be filled with zeros, and a non-fatal error to
be returned. On output, detection of a CTRL/Z character in
the output buffer causes output to be terminated and the
normal return to be taken. There are no fatal errors
associated with the l-page terminal handler,

4., Terminal Interaction
CTRL/C forces a return to the Keyboard Monitor, CTRL/

forces an end-of-file on input (see 3). CTRL/O terminates
printing of the contents of the current buffer on output.

4,2,2 High-Speed Paper Tape Reader (PTR)
l. Normal Operation

This handler inputs characters from the high-speed paper tape
reader and packs them into the buffer,

2., Initialization for Block 0

The handler prints an up-arrow (t) on the terminal and waits
for the user to load the paper tape reader. By typing any
single character (except CTRL/C) the user initiates reading
of the paper tape.

3.

NOTE

On some terminals, up-arrow is replaced
by the circumflex (") character,

Terminating Conditions

Detection of an end-of-tape condition, indicated by the
failure to get a character in a specified period of time,
causes a CTRL/Z to be entered in the buffer, the remaining
words of the buffer to be filled with zeros, and a non-fatal
error to be returned. Attempting output to the paper tape
reader causes a fatal error to be returned.

Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.

4,2.3 High~Speed Paper Tape Punch (PTP)

1.

2.

4.

Normal Operation

This handler unpacks characters from the output buffer and
punches them on the paper tape punch.

Initialization for Block 0

None.

Terminating Conditions

Attempting to input from the paper tape punch causes a fatal
error to be returned. There are no non-fatal errors
associated with this handler.

Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor, but
only when actual punching has begun, or if tC is typed before

punching commences., If the punch is off 1line, tC is only
effective immediately before punching would begin,

4,2,4 Line Printer (LPT) (LPSV)

1.

Normal Operation

This handler unpacks characters from the buffer and prints
them on the 1line printer, The characters horizontal tab
(ASCII 211) causes sufficient spaces to be inserted to
position the next character at a "tab stop" (every eighth
column, by definition)., The character vertical tab (ASCII
213) causes a skip to the next paper position for vertical
tabulation if the 1line printer hardware provides that
feature. The character form feed (ASCII 214) causes a skip
to the top of the next page. Finally, the handler maintains
a record of the current print column and starts a new line
after 80 or 128 columns have been printed. This handler

4-5

3.

4.

5.

functions properly only on ASCII data. The handler for the
LS8E line printer handler utilizes the expanded character
capability of the printer. If a 216 (CTRL/N) character
appears anywhere in a line of text, the entire 1line is
printed in the expanded character mode, The 216 must be used
on a line-by-line basis,

Initialization for Block 0

Before printing begins, the line printer handler issues a
form feed to space to the top of the next page.

Terminating Condition -

On detection of a CTRL/Z character in the buffer, the 1line
printer handler issues a form feed and immediately takes the
normal return, Attempting to input from the 1line printer
forces a fatal error to be returned. A fatal error is also
returned if the line printer error flag is set, There are no
non-fatal errors associated with the line printer handler.
Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor.
Patching the LPSV Handler

The following patches are available for the LPSV line printer
handler.

rel. loc 0: set to ~printer width-1 (i.e. set to =121(octal)
for an 80 column line

printer)

rel. loc l: set to 4 for the LVSE line
printers

set to 14 for the LPOE and LSS8E
printers

rel, loc 2: set to =40 to convert lowexr case to
upper case

set to 0 if your printer can print

lower case

4,2.5 Cassettes

1.

2.

3.

Normal Operation

This handler performs character 1/0 between the cassettes and
the buffer, It treats cassettes as a non-file structured
device, Data appears on cassette in 192-byte records.
Initialization for Block 0

On input the cassette is rewound. On output the cassette is
rewound and a file gap is written.

Terminating Condition

4,

5.

The source is already in 0S/8 BUILD format.

An end-of-file on input is a software error.

Terminal Interaction

Typing CTRL/C forces a return to the Keyboard monitor.

Special Codes (device dependent features)

If the handler is called with bits 1-5 of the

function word

=0, then bits 10-~1ll are examined. The meaning of these codes

are as follows:

0 write a file gap

1l rewind also, then write a file gap if bit 0=1
2 space backwards one record

3 skip one file (direction depends on bit 0)

NOTE

The handler neither reads nor writes
standard files, It is merely a paper
tape replacement, It writes raw data
(organized into 192-byte records) onto
the cassettes starting at the beginning;

and then later reads it back.

The handler has only two

entry points (for drives A and B of a controller). The decision as to
which controller it uses is made at assembly time by changing the
symbol code. The result is as follows:

CODE DEVICE NAME HANDLER DEVICE CODE

0 TABA A:CSA0D 70
B:CSAl

1 TAS8B A:CSA2 71
B:CSA3

2 TAS8C A:CSA4 72
B:CSAS5

3 TA8D A:CSA6 73
B:CSA7

The handler has the internal device code of 27
Chapter 2 of the 0S/8 HANDBOOK.

4,2.6 Card Reader (CDR)

1.

Normal Operation

(see Table 2-12 in
The handler is two pages long.

This handler reads characters from the card reader and packs
them into the input buffer. Trailing spaces (blank columns)
on a card are deleted from input. The handler can accept
only alphanumeric format data on cards (the DEC029 standard

card codes are used).

4-7

2.

4,

Initialization for Block 0
None.
Terminating Conditions

A card which contains an underline character in column 1 (an
0-8-5 punch) with the remaining columns blank is an
end-of-file card, In addition, after reading each card the
handler checks to see if a CTRL/Z was typed at the keyboard.
After either an end-of-file card or a CTRL/Z being typed, a
CTRL/Z 1is inserted in the buffer, the remaining words of the
input buffer are filled with zeros, and a non-fatal error is
returned, Attempting to output to the card reader causes a
fatal error to be returned.

Terminal Interaction

Typing CTRL/C forces a return to the Keyboard Monitor,
Typing CTRL/Z forces an end-of-file to occur (see 3.).

1.

Normal Operation:

When the handler is used in its normal mode, single-file
mode, magtapes may consist of exactly one file. It starts at
the beginning of the tape and consists of consecutive records
until an end-of-file mark (EOF) is reached. In this sense, a
magtape is similar to one big paper tape. This is the same
way that 0S/8 currently treats cassettes.

Since the capacity of magtapes is so big, provisions have
been made for storing multiple files per tape. 1In such a
structure, several files may exist on one magtape. They are
unlabeled and are separated from each other by a single file
mark. The last one is followed by two file marks. Each
'file' 1looks like a paper tape. It is referenced in a
non-file structured manner. The magtape handler must be
altered first to work in file mode. Then the magtape must be
positioned to exactly the correct spot where the read or
write operation will commence. This may be done with any
program using the auxiliary capabilities of the magtape
handler (described below), or the positioner program, CAMP,
To read a file, the handler must be positioned to just before
the first data record of that file. To write file #1, rewind
the tape (i.e., be at BOT). To write file #n, (n>l) the
handler should be positioned after the (n-1)st file mark on
the tape. Previous file n and all files past it then become
unreadable (non-existent),

A. Device-Dependent Capabilities:

The TM8~E handler has several auxiliary features which
may be invoked by a user program which calls the handler
in a device~-dependent manner. These features all rely on
the contents of bits 9-~11 of the function word (argument
1 of the handler call) and some require argument 3 in
addition.

These features are brought to life whenever the handler
is called with a page count of 0 (bits 1-5 of the
function word). Call bits 9-11 of the function word, the
Special Function Register (SFR) for short, and also refer
to bit 0 of the function word as the direction bit, If
the page count is not 0, the contents of the SFR is
ignored.

If the page count is 0, then the SFR together with the
direction bit (and possibly argument 3) determine what
special function to perform, as follows:

SFR OPERATION
0. CLOSE., Write two EOF's,
l. Rewind.

2, Space forward/reverse records., The direction to
space 1is determined by the direction bit (0 means
space forward, 1 means space reverse). The negative
(two's complement) of the number of records to space
over is given by argument 3 of the handler call. (=1
means space past one record, 0 means 4096 records.)
The error return is taken if either a file mark or
BOT is encountered. In such cases, you would be left
positioned at the beginning of a file.

3. Space forward/reverse files. The direction to space
is determined by the direction bit (0 means space
forward, 1 means space reverse). The negative of the
number of file marks to space past is given by
argument 3 (-1 means space past one file mark; 0
means 4096 file marks). In reverse mode, the tape is
left positioned at the end of a file; an error is
given if BOT is encountered., In forward mode, the
tape is left positioned at the beginning of a file.
If EOD is reached, the handler automatically performs
a backspace record to leave you between the two file
marks; no error is given.

4. Rewind the unit and put drive off-line,
5. Write a single EOF,

6. Special read/write function. The direction bit (as
usual) determines read or write (0 means read, 1
means write). The specified 1/0 operation is
performed between the wuser's buffer (start is
specified by argument 2) and the very next magtape
record. Only one record is transferred and the
user's buffer must be large enough to contain it,
The record length is specified by the negative of
argument 3 (in words). 0 means a record length of
4096,

7. Unused. Reserved for future use, If specified, it
currently acts as a NO=-OP.

In each case, the unit affected is determined by the handler entry
point.

2.

3.

4.

5.

B. Other Common Operations:

(a) To backspace n files, use special code 3 to pass over
n+l file marks backwards, then use special code 2 to
advance (forward) over one record (EOF) ignoring the
EOF error.

(b) To advance to EOD, first perform a backspace of one
record (or perform a rewind to play safe) then use
special code 3 to advance over 4096 files in the
forward direction (argument 3=0),

Special Handling for Block 0

If the handler is called to read or write block 0, it will
first perform a rewind. This feature can be patched out if
desired by altering relative location 1 from a 0 to a l. This
altered handler should be operating in file mode., The
original handler should be operating in single-file mode.

A. Special Handling for CLOSE:

A close operation is signaled to the handler by calling
it with a function word which has a page count of 0 (bits
1-5) and which has bits 9~11 all zeroces. This is how the
USR CLOSE operation calls the handler (0S/8 V3 only.
This causes the handler to write two successive file
marks on the tape. Two successive EOF's is the software
indication of end-of-data (EOD).

B. Restrictions:

In single-file mode, should not have more than 4095
blocks because on trying to write the 4096th block, the
handler will think it's writing block 0 and perform a
rewind., This restriction does not apply when using the
handler in file-mode; but beware, some cusps, such as
PIP, are suspected to behave strangely on block 4096 of
non-file-structured devices.,

Terminating Conditions

None.

Keyboard Interaction:

Typing tC on the keyboard while the handler is in operation
causes the handler to abort and return to the 0S/8 keyboard
monitor via location 7600. Such action is ill-advised since
it leaves the magtape without an end-of-file indicator.

Error Conditions:

Oon a hard error, the handler takes the error return (with a

negative AC) and the AC contains the contents of the main
status register, as follows:

Bit on Meaning

Error flag

Tape rewinding

BOT

Select error

Parity error (vertical, longitudinal, or
CRC)

EOF

Record length incorrect
Data request late

EOT

File protect

Read compare error
Illegal function

=03 B WO

= o

4,2,8 File-Structured Devices
l., Normal Operation
(DECtape, LINCtape, TDS8E DECtape, DF32, RF08, and RK8, RKSE)

These handlers transfer data directly between the device and
the buffer,

2. Initialization for Block 0
None.
3, Terminating Conditions

A fatal error is returned whenever the transfer causes one of
the error flags in the device status register to be set. For
example, a fatal error would result if a parity error
occurred on input, or a write lock error occurred on output,
The device handlers generally try three times to perform the
operation before giving up and returning a fatal error.
There are no non-fatal errors associated with file structured
devices,

4. Terminal Interaction
Typing CTRL/C forces a return to the Keyboard Monitor.
NOTE

The system device handler does NOT
respond to a typed CTRL/C.

4.2.9 TDSE DECtape

TD8E DECtape is the new accumulator transfer DECtape. Since 05/8 is a
noninterrupt driven system, TD8E DECtape has data transfer rates
equivalent to those for TC08 DECtape; however, the interrupt should
never be used with the TDS8E, Device handlers for TD8 DECtape are
supplied as a standard part of 0S/8, Each pair of drives (0, and 1, 2
and 3, etc.) requires a 2-page device handler. Thus, to have all

eight TD8E drives in the system at one time will require four separate
handlers. Thus for TD8E, it is wise to restrict usage to those units
that physically exist., Also, the tape drives are hardwired to select
one of two possible unit numbers; thus, the first pair of drives
installed must be called units 0 to l. Any others numbers will cause a
SELECT error, In this case, the computer hangs until the correct
drive is selected.

4.,2,10 KLS8E Terminal Handler

Listed are the features of the KLS8E handler. Those that are
conditional are marked by an asterisk:

l. It reads a line at a time. Whenever the user types CR, it
enters CR, LF into the buffer; it echoes CR, LF; and then
pads the remainder of the buffer with nulls and returns to
the calling program. The characters get put into the buffer,
one character per word., Thus every third character is a null
as far as 0S/8 is concerned.

2. RUBOUT deletes the previous character. It echoes as either a
back slash (\) or as the character rubbed out, depending on
assembly parameters. RUBOUT at the beginning of a line acts
as tU,

3. CTRL/U echoes as tU and erases the current line, allowing the
user to retype it. (It also echoes CR, LF.,) The buffer
pointer is reset to the beginning of the buffer,

4. CTRL/Z echoes as tZ (followed by CR, LF) and signals
end-of-input. The tZ enters the buffer and the remainder of
the buffer is padded with nulls. The error return is taken
with a positive AC (non-fatal error).

5. Nulls are ignored.

*6, The altmode characters (octal 175 and 176) are converted to
escapes (octal 33).

*7. Lower-case characters typed may be automatically converted to
upper case.,

8. CTRL/C echoes as tC and returns control to the keyboard
monitor via location 07600.

On output: (either normal output or when echoing input)

1. CTRL/C on keyboard echoes as 1C and returns control to the
keyboard monitor via location 7600.

2, CTRL/O on keyboard stops further echoing., All echoing ceases
(through possibly many buffer loads) until either the handler
is reloaded into core or the user types a character other
than t0 on the keyboard. Not operative during input,

3. 15 causes the handler to stop sending to the terminal. No
characters are 1lost and outputting resumes when a tQ is
typed. ts and tQ do not echo. These characters are

4.

*5.

*6.

7e

*8.

*9'

*10.

operative only upon output. On input, they are treated like
any other input characters. This is very useful on high
speed CRT displays.

Nulls are ignored,

Lower case characters may be optionally printed as upper case
and flagged with an apostrophe.

Tabs may be handled in one of three manners:
a. Output as actual tabs,
b. Output as actual tab followed by padding of two rubouts,

c. Output as the correct number of spaces to bring the text
to the start of the next tab stop.

Whenever the output line reaches the end of the physical line
(length set at assembly time), the handler automatically
performs a carriage-return line-feed.

The escape character (octal 33) prints as a dollar sign.

The handler may be set to delay about 16 ms after typing any
character (specified at assembly time), for example, line
feed,

Control characters are printed as their corresponding 1letter
preceded by an up-arrow. Thus CTRL/K prints as tK.

CHAPTER 5

RECONFIGURING THE 0S/8 SYSTEM

It is sometimes necessary to construct an 0S/8 system from scratch, or
to make a new peripheral device available to 05/8. Both of these tasks
are a part of reconfiquring the 05/8 system, 0S/8 BUILD, which is
described in detail in Chapter 2 of the 0S/8 HANDBOOK, allows the user
quickly and easily to build a new system or to alter the device
complement of an existing system.

5.1 WRITING DEVICE HANDLERS

A device handler is a page-independent subroutine one or two pages
long. The device handler must run properly in any single page or two
contiguous pages in field 0 (except 0000 to 0177 or 7600 to 7777). All
device handlers have the same calling sequence:

CDF N /N IS CURRENT FIELD TIMES 10 (OCTAL)
CIF 0 /DEVICE HANDLER LOCATED IN FIELD 0
JMS I ENTRY /ENTRY IS DETERMINED BY SR "FETCH"
FUNCTION /FUNCTION IS BROKEN DOWN AS FOLLOWS:

/BIT 0 = 0 FOR READ

/BIT 0 = 1 FOR WRITE

/BITS 1 TO 5 = NUMBER OF PGS TO TRANSFER
/BITS 6 TO 8 = FIELD FOR TRANSFER

/BITS 9 TO 11 = DEVICE DEPENDENT BITS

BUFFER /CORE ADDRESS OF TRANSFER BUFFER

BLOCK /BLOCK NUMBER TO START TRANSFER

ERROR /ERROR RETURN, AC>=0 MEANS END-OF-FILE
AC<0 MEANS FATAL ERROR

NORMAL /NORMAL RETURN

The device handler reads or writes a number of 128 word records
beginning at the selected block. In general, device handlers should
conform to the following standards:

1. On normal return from a device handler the AC is zero and the
DATA FIELD is always restored to its original entry value,

2. Although the starting block number has true significance only
for file structured devices, handlers for non-file structured
devices can check the block number and perform initialization
if the block number is zero. For example, the line printer
handler outputs a form feed before printing when the
specified block number is zero,

3. Handlers should be written to be as foolproof as possible
checking for the most common errors in the calling program.

5-1

4,

5.

7.

8.

9.

10.

Examples of typical user errors are: calling handler with
non-zero AC (always perform a CLA in the handler); trying to
read on a write only device, or trying to write on a read
only device (gives a fatal error return); specifying 0 pages
to be transferred (accept as meaning no actual transfer is to
take place); or attempting to access a nonexistent block
(gives a fatal error return).

Device handlers normally check to see if a CTRL/C (ASCII 203)
has been typed at the system console by the user. If one
has, the handler aborts I/0 and JMP's to location 7600 in
field 0. The seven low order bits of the keyboard should be
checked for a 3 so as to allow parity terminals. KRS should
be used over KRB so that any paper tape in the reader will
not be advanced if its character is not tC.

Device handlers should be able to detect standard error
conditions like checksum or parity errors. Whenever
possible, several attempts to perform the transfer should be
made before aborting I/0 and taking the error exit. 1In
addition, when operator intervention is required, the handler
would normally wait for the action rather than take a fatal
error exit., For example, if the paper tape punch is not
turned on, the PTP handler waits for the punch to be turned
on.

By convention, in any handler for a device (like DECtape)
that can search either forward or backward for a block, Bit
11 of the function word (one of the device-dependent bits)
controls the starting direction of the search. Bit 11 is a 1
if the starting direction is forward and a 0 if it is
reverse, The other two device dependent bits are not
assigned any significance at the present time,

Remember that the user specifies a multiple of 128 words to
transfer, whereas the transfer starts at the beginning of a
128 or 256 word block. This means that the handler must
provide that capability of reading or writing the first half
of a block. Writing the first half of the block causes the
contents of the second half of the block to be altered. For
example, writing 128 words to the RK8 disk (256 word blocks)
causes the second half of the block to be filled with zeroes,
This is usually done by the hardware controller.

The entry point to a two page device handler must be in the
first page.

A number of handlers (maximum of 15 decimal) can be included
in the one or two pages of code. Where more than one handler
is included in a single handler subroutine, the handlers are
called co-resident., Co-resident handlers are always brought
into core together. For example, all eight DECtape handlers
fit into one page; hence, the DECtape handlers are
co~resident. One restriction on co-resident handlers is that
if they are two pages long all entry points must be in the
first page.

The USR, while doing file operations, maintains in core the
last directory block read in order to reduce the number of
directory reads necessary. The proper functioning of this
feature depends on the fact that every handler for a

file-structured device on a single system has a unique entry
point relative to the beginning of the handler. The relative
entry points currently assigned for file structured handlers
are:

Device Handlers Relative Entry Points

System Device Handler 7

DECtape, LINCtape or TD8S8E DECtape 10 to 17

RKAO 20

RKAl 21

RKA2 22

RKA3 23

RK08 or DF32 24

Reserved for user 40 to 67

11, If the device is block oriented (such as DECtape, LINCtape,
or Disk), then the handler transfers data directly with no
alteration., However, if the device is character oriented
(such as a paper tape reader, Teletype, or line printer), the
handler is required to pack characters into the buffer on
input and unpack them on output. The standard 0S/8 character
packing format puts three 8~bit characters into two words as
follows:

WORD 1 | CHARACTER 3

BITS 0-3 CHARACTER 1
WORD 2 | CHARACTER 3
BITS 4-7 CHARACTER 2
0 3 4 11

For example, the 3 characters 'ABC' would be packed into 2
words as follows:

Word 1l: 6301
Word 2: 1702

When packing characters on input, the character CTRL/Z (octal
232) is inserted at the logical end-of-file (for example, at
the end of the tape in the paper tape reader handler).
Following CTRL/, the remaining words of the input buffer
should be zeroed.

12. A close operation should be performed by non-file structured
handlers if bits 1-5 and 9-11 of the function word are 0.

The device handler, whether one or two pages long, must be completely
page independent: it must be capable of executing in any page(s) in
field 0, except page 0 and 7600 to 7777. Page independent code can
have no address constants., Writing one page handlers is relatively
easy, since the addressing structure of the PDP-8 is essentially page
independent. Writing page relocatable code for two pages, however, is
considerably more difficult, as the two pages must communicate. The
usual technique utilized in writing two page handlers is to include
some initialization code which includes a JMS. This replaces that
location by an address on the page the handler was loaded on. Using
this, the handler can then determine where the relevant pieces of code
are in core,.

As an example, the following is the initialization procedure performed

by the TD8E DECtape routine. This is by no means the only technique

that is possible, but it is a workable solution.

JINIT,

INIT,
BASE,

CRDQAD,
CINIT2,
CSELCT,
CXUNIT,
BUFF,

NXINIT,
BASE2,

INIT2,
INIT3,

CTRY3,
CRWCOM,
XBUFF,

*200

JMP INIT

JMS,.

TAD CRDQAD
SPA

JMP NXINIT
TAD INIT
DCA CRDQAD
Isz .-1
ISZ BASE
JMP BASE

R4LINE-BASE
INIT2~BASE
SELECT-BASE
XUNIT-BASE
4000

JMS I CINIT2
DCA JINIT
JMP JINIT

*400

0

TAD CTRY3
SNA

JMP I INIT2
TAD INIT2
DCA CTRY3
ISZ o-l

ISZ INIT3
JMP INIT3

TRY3-BASE2

TRWCOM=-BSSE2
0

/EXECUTED CODE

/START INITIALIZATION

/FOUND OUT WHERE WE ARE,
/INIT GETS ADDRESS OF BASE
/NEGATIVE TERMINATES LIST
/INITIALIZE SECOND PAGE
/NOW UPDATE THE LIST OF
/ADDRESS DEPENDENT LOCATIONS
/POINT TO NEXT ELEMENT
/NEXT INPUT VALUE

/LOOP OVER INPUT TABLE.

/THESE ARE ALL POSITIVE DIFFERENCES,
/SINCE THE ROUTINES INDICATED ARE
/IN THE SECOND AGE. AFTER
/INITIALIZATION, CRDQAD POINTS TO
/THE ACTUAL ADDRESS OF R4ALINE, ETC.
/THE 4000 IN BUFF TERMINATES

/THE FIRST INITIALIZATION,

/MORE PAGE INDEPENDENT CODE

/INITIALIZE SECOND PAGE

/CLEAR OUT JINIT. NO MORE
/RELOCATING IS NEEDED UNTIL THE
/HANDLER IS LOADED INTO CORE GAIN,
/SECOND PAGE OF HANDLER

/ADDRESS OF BASE2 GOES HERE
/A 0 TERMINATES THIS LIST
/ADD VALUE OF BASE2 TO LIST

/PUT BACK INTO LIST
/NEXT LOC. TABLE

/THIS LIST GETS VALUE OF BASE2
/ADDED IN TO POINT TO THE REAL
/ROUTINE,

Writing 2 page independent code can be expensive in terms of core
required, The routines should be set up in such a way as to minimize
communication between the two pages, Some other points to keep in
mind are:

l. Relocation code is once~only code. It is done once when the
handler is 1loaded and need never be done again until the
handler is re-loaded from the system device. For this
reason, the relocation code can be placed in a buffer area or
setup in temporary scratch locations which are later used as
temporary storage.

2. A useful hint is that a JMP into the next page of code is not
required. The code can just as easily fall through 377 into
400. This may save a few locations of relocation code.

3. Useful techniques for writing 2-page handlers can be found in
the source of the KL8E handler.

5.2 INSERTING DEVICE HANDLERS INTO 0S/8

After the handler has been written and thoroughly debugged as a
stand-alone routine, it can be integrated into the 0S/8 Monitor, where
it will become a resident device handler. To accomplish the
integration, use 0S/8 BUILD, described thoroughly in the BUILD section
in Chapter 2 of the 0S/8 HANDBOOK.

Notes for writing system handlers system handlers may be integrated
into BUILD just like non-system handlers with the following additional
notes:

1. Body of system handler should be origined to 200 but must
start with a 2 BLOCK 7., Entry point must be at relative
location 7 (corresponds to location 7607).

2, Name of system handler must be SY¥S,

3. Each handler entry point has an 8-word handler block
associated with it. The following additions apply:

a. word 5: bits 9-11 should normally be 0.
If the device can have multiple platters (like RF08)
then this field specifies maximum number of platters
allowed. Each platter above first bumps internal DCB
code by 1.

word 6: bit 0=1 means system device is two pages long,
The second page 1is origined into 400 but resides in
field 2 location 7600, Bit 1=1 if entry point is S¥S.
Bit 2=1 if entry point is coresident with SYS.

word 7: must be 0

word 10: number of blocks in device. Immediately
following the header records 1is the code for the
device's bootstrap. This is preceded by minus the
number of words in the bootstrap., No origins may appear
in this code. It must be less than 47 locations long.

APPENDIX A

0S/8 FILE STRUCTURES

A.l FILE DIRECTORIES

Blocks 1 through 6 on all file structured devices are reserved for the
file directory of that device, Six blocks are always allocated,
though all are not necessarily active at any given time. To minimize
the number of directory reads and writes necessary, 0S/8 fills one
directory block completely before overflowing onto a second block.
Thus the user with only a few files can perform directory LOOKUPs and
ENTERs faster than one with many files.

The directory blocks are each structured according to the following
format:
ENTRY

0 MINUS THE NUMBER OF ENTRIES
IN THIS SEGMENT

1 THE STARTING BLOCK NUMBER
OF THE FIRST FILE IN THIS
SEGMENT

2 LINK TO NEXT SEGMENT=ZERO
IF NO NEXT SEGMENT

3 FLAG WORD=POINTS TO LAST WORD
OF TENTATIVE FILE ENTRY IN
THIS SEGMENT

DIRECTORY SEGMENTS ARE ALWAYS
LOADED INTO LOCATIONS 11400

TO 117777 BY THE USR; THIS
POINTER IS EITHER 0 OR BETWEEN
1400 TO 1777.

4 MINUS THE NUMBER OF
ADDITIONAL INFORMATION WORDS
THE NUMBER OF ADDITIONAL
INFORMATION WORDS SPECIFIED
MUST BE THE SAME IN ALL
DIRECTORY SEGMENTS

5 BEGINNING OF FILE ENTRIES

(4
)
«
>

377| END OF DIRECTORY BLOCK
(8)

Locations 0 through 4 of each directory block are called the segment
header.

A.l.1 Directory Entries

There are three types of file directory entries., They are PERMANENT
FILE ENTRY, EMPTY FILE ENTRY, and TENTATIVE FILE ENTRY. A permanent
file entry appears as follows:

Location Contents Notes
o| FILE NAME FILE NAME N
CHARACTER 1 CHARACTER 2
1 FILE NAME FILE NAME
CHARACTER 3 CHARACTER 4 THE FILE NAME AND EXTENSION
2 FILE NAME FILE NAME ??EGPAC§i? iguiéxgiTg?§CII
.CHARACTER 5 CHARACTER 6 tEy
3 FILE EXTENSION FILE EXTENSION
CHARACTER 1 CHARACTER 2 J
<
N, THE NUMBER OF ADDITIONAL
INFORMATION WORDS, IS GIVEN
o ADDITIONAL)1 BY WORD 4 OF THE DIRECTORY
»F INFORMATION ;/ HEADER. WORD 4 OF THE ENTRY

WORDS IS EITHER 0 OR THE CREATION
DATE OF THE FILE.

N+3 J

N+4| MINUS FILE LENGTH IN BLOCKS

NOTE

If word 3 is zero, the given file has a
null extension.

An empty file entry appears as follows:

Location Contents

0 ENTRY IS ALWAYS g#gd

1 MINUS THE NUMBER OF BLOCKS
IN THIS EMPTY FILE

A tentative file entry appears as a permanent file entry with a length
of zero. It 1is always immediately followed by an empty file entry.
When the tentative file is entered in a directory, location 3 in the
segment header becomes a pointer to this entry. The CLOSE function
inserts the length word of the tentative file entry, making it a
permanent file, and adjusts the length of the following empty file
entry (deleting that entry if the length becomes zero).

Whether or not there is a tentative file open on any device is
determined by examination of bits 9 to 1l of the system Device Control
Word Table (see section B.3.5) not the contents of location 3 in the
segment header, Zeroing these bits in the Device Control Word Table
makes the active tentative file on the device inactive. The next time
that the system has to write the directory segment, the inactive

tentative file entry is removed. The distinction between active and
inactive tentative files is made so that 05/8 can avoid spending the
time required to perform an extra read and write of the device
directory.

A.l.2 Number and Size of 0S/8 Files

All files on an 0S5/8 device must occupy a contiguous group of blocks
on the device., The length of any file is indicated in its directory
entry, and the starting block of the file is deduced by adding
together word 1 of the segment header and the lengths of all files
whose entries precede it in the directory segment,

Each directory segment must have enough unused words at the end to
accommodate a permanent file entry (N+5 words, where N is the number
of Additional Information Words). Thus, if N is the number of
Additional Information Words the maximum number of permanent file
entries in any one segment is:

256=7 = (N+5) 244-N
MIN = [1 = (
N+7 N+7

]

with N=1, MAX=40, and MIN=30. Since there are six segments in the
directory, the maximum number of files possible (with N=1) would be
240,

Finally, 0S/8 devices are limited to 4095 blocks, each block being 256
words long. Thus, the maximum size of any single 0S/8 file structured
device is 1,048,320 words. Blocks 0 through 6 of the device are
unavailable for file storage; therefore, the largest possible file is
4088 blocks long, or 1,046,528 words,

A.l.3 Sample Directory

The initial directory written when the 0S/8 system is built 1looks as
follows:

Location Contents Notes

0 7776 TWO ENTRIES
1 278 FILE STORAGE STARTS AT BLOCK 70 %
SEGMENT 2 8
HEADER 2999 NO ADDITIONAL DIRECTORY SEGMENTS
3 g NO TENTATIVE FILES.
\4 7777 ONE ADDITIONAL INFORMATION WORD
5 g1g2
6 2314 FILE NAME IS "ABSLDR"
PERMANENT 7 ga22
FILE 44 2326
ENTRY FILE EXTENSION IS .SV
1 5374 DATE IS 10/31/70
2 7773 LENGTH IS FIVE BLOCKS
EMPTY |13 o505 EMPTY FILE
FILE
ENTRY {14 6534 LENGTH IS 1244g (67610)BLOCKS -
9 9 THIS IS DEPENDENT ON THE SYSTEM
o~ ~, DEVICE USED. 676 IS THE VALUE
FOR A DECTAPE SYSTEM
377

*This leaves room for the 0S/8 System
Areas.

A.2 FILE FORMATS

There are three different standard file formats used by 0S/8 and
associated system programs:

1. ASCII and Binary files.
2, Core Image files (.SV format).

3. Relocatable FORTRAN library files (LIB8,RL 1is the only
current example of this format).

NOTE

Binary files can contain either absolute
binary data (i.e., output from PAL8) orx
relocatable binary data (i.e., output
from SABR).

A.2.1 ASCII and Binary Files

ASCII and Binary files are packed three characters into two words, as
follows:

CHARACTER 3
WORD 1 v CHARACTER 1
CHARACTER 3
CHARACTER 2
WORD 2 BITS 4-7
0 3 4 11

The following conventions are used by 0S/8 system programs:

1. In ASCII files the character NULL (ASCII 000) is always
ignored. Most programs only examine the low-order 7 bits, in
ASCII files. The parity bit 4is usually ignored; do not
assume that this bit is set or that data transfers will
preserve it (image mode transfers, always preserve it).

A-4

2.

3.

In Binary files the binary data must be preceded by one or
more frames of leader/trailer code (ASCII 200 code). The
first character of binary data must be either 100 to 177
(octal) (an origin setting for absolute binary files), 240 to
257 (octal) (a COMMON declaration frame for relocatable
binary files), or 300 (octal), which is an origin setting.
The end of binary data is indicated by one or more frames of
leader/trailer code.

ASCII and Binary files are terminated by a CTRL/Z code (ASCII
232). In binary files, a CTRL/Z code data rather than
end-of-file,

A.2.2 Core Image (.SV Format) Files

A core image file consists of a header by the actual core image., The
header block is called the Core Control Block. The Core Control Block
consists of the first 128 words of the 256 word block reserved for
that purpose. The second 128 words are unused, The Core Control
Block is formatted as follows:

Location Contents Notes
CORE CONTROL BLOCK

0 MINUS THE NUMBER OF CORE SEGMENTS
62N3 WHERE N IS THE

1 CDF CIF (STARTING FIELD) '_-STARTING FIELD

2 STARTING ADDRESS

3 JOB STATUS WORD

4 CORE SEGMENT
CONTROL DOUBLE WORDS

—~, =
(K IS THE NUMBER OF
2K +3 CORE SEGMENTS)

REMAINDER OF BLOCK

3778’[/ 5]‘/ IS UNUSED

The format of the Job Status Word is as follows:

Bit Condition Meaning

Bit 0 = 1 File does not load into locations 0 to 1777
in field 0,

Bit 1 =1 File does not load into locations 0 to 1777
in field 1.

Bit 2 =1 Program must be reloaded before it can be
restarted.

Bit 3 =1 Program never uses above B8K. This 1is used
when Batch processing is active,

Bit 10 =1 Locations 0 to 1777 in field 0 need not be
preserved when the Command Decoder is called.

Bit 11 = 1 Locations 0 to 1777 in field 1 need not be

preserved when the USR is called.

The Core Segment Doublewords control the reading and writing of the
associated areas of core. The format of each entry is as follows:

Location Contents Notes
1 CORE ORIGIN MULTIPLE OF 4ﬁﬁ8
2 NUMBER OF PAGES FIELD BITS @ AND 9-11
TO LOAD TO LOAD ARE ZERO
0 1 5 6 8 9 11

The core origin must be a multiple of 400 (octal). The Core Segment
Control Doublewords are sorted within the header block in order of
decreasing field and increasing origin within the same field. There
can be no more than 32 (decimal) Core Segment Control Doublewords in
any Core Control Block.

The Core Control Block for the program at the time it is loaded into
core is always saved in words 200 (octal) through 377 (octal) of block
37 (octal) (one of the system scratch blocks) on the system device.
It is placed there by the GET and RUN operations or by the ABSLDR or
LOADER programs. This Core Control Block is used when performing a
SAVE without arguments,

NOTE

The R command differs from the RUN
command in that the program's Core
Control Block is not written onto the
scratch area when using the R command.
In order to SAVE a program that has been
loaded by the R command all of the
arguments of the SAVE command must be
explicitly stated.

A.2.3 Relocatable FORTRAN Library File

A relocatable FORTRAN library consists of a library directory block
followed by relocatable binary segments. The directory block has the
following format:

Location Contents Notes
0 CH1 CH2 NAME OF ENTRY IN
SIXBIT ASCII PADDED
1 CH3 cu4 WITH TRAILING BLANKS
2 CH5 CH6
3 LOAD POINTER
4 ; h,
s/ “ ADDITIONAL ENTRIES 27
g
[}
g DENOTES END OF
NAME ENTRIES
g
o T~
I» ,OADER CONTROL WORD (S)
g |__oEND OF LOADER CONTROL
WORDS FOR THIS ENTRY
I~ P,
/n/ st
3778

The Load Pointer is a number between 0 and 377 (octal) which points
(relative to the beginning of the block) to an array of Loader Control
Words. The Loader Control Words have the following information:

0 4 5 11
NUMBER OF PAGES OCCUPIED (STARTING BLOCK OF RELO-
BY THIS SEGMENT AFTER LOADING CATABLE BINARY DATA)

(DIRECTORY BLOCK #)-1

There can be one or more Loader Control Words for each entry. The
Loader Control Words for an entry are terminated by a word of zero.
The following is a simple directory block.

Location Contents

- 11170 NAME OF ENTRY IS "IOH___"
1 1040
2 4040
3 0376 LOAD POINTER FOR "IOH"
4 0530 |]
1124 |, NAME OF ENTRY IS "EXIT__"
5 -
6 4040 |
7 0373| LOAD POINTER FOR "EXIT"
10 0000
11 0000 |l uarKS END OF ENTRIES
12 0000
13 0000 |]
.:—’ /J
LOADER g’ a-
CONTROL (373 0207 (RELATIVE BLOCK 1f,) (ONE
WORDS FOR/- PAGE LONG)
"EX T 374 0411 (RELATIVE BLOCK 12g) (TWO
375 0000 PAGES LONG)
LOADER
CONTROL (376 2400 (RELATIVE BLOCK 1) (124 PAGES
AY
WORDS FOR{3 ;7 900 LONG)
I0H 8

A=8

APPENDIX B

DETAILED LAYOUT OF THE SYSTEM

This appendix covers three topics: the reserved areas on the system
device, the resident portion of 0S/8, and the various system tables.

B.1 LAYOUT OF THE SYSTEM DEVICE

The first 70 octal blocks (l4K words) on the system device are
reserved by the 05/8 system., These blocks are used as follows:

Block(s) in Octal Contents
0 System Bootstrap Routine
1-6 Device Directory
7=12 Keyboard Monitor
13-15 User Service Routine
16=25 Device Handlers
26 ENTER Processor for USR
27-50 System Scratch Blocks
51=53 Command Decoder
54~55 SAVE and DATE Overlays
56 Monitor Error Routine
57 CHAIN Processor for USR
60-63 SYSTEM ODT
64 Reserved for System Expansion
65 CCL Reminiscences
66 12K TDS8E Resident code
67 CCL Overlay

File storage begins with block 70 (octal).

The system scratch blocks are used for preserving the contents of core
when the Keyboard Monitor, USR, Command Decoder, or ODT are loaded.
In addition, various system programs use the scratch area. Most
importantly, the SAVE command expects the Core Control Block to be
loaded in words 200 (octal) to 377 (octal) of block 37 (octal). The
Core Control Block is stored at those locations by the GET or RUN
command or by the ABSLDR or LOADER program.

A detailed breakdown of system scratch block usage follows:

Block{s) in Octal

27-32

33-36

37

40~-47

50

Contents

The contents of locations 10000 to 11777 are
saved in this area when the USR is loaded.

The contents of locations 0 to 1777 are saved
in this area when the Command Decoder,
Keyboard Monitor, or ODT is loaded.

Words 200 (octal) to 377 (octal) of this
block contain the Core Control Block for the
last program loaded by the GET or RUN
command, or the ABSLDR or LOADER program,

Used as scratch storage by the ABSLDR and
LOADER programs.

Reserved for future expansion,

B.2 LAYOUT OF THE 0S/8 RESIDENT PROGRAM

The top core pages in fields 0, 1, and 2 are used by the resident
portion of 0S/8 and are not accessable by the user. As a general
rule, system and user programs should never destroy the contents of

locations 7600 to 7777 of any field. ’

The resident portion of 05/8 is structured as follows:

Location

7600

7605
7607

7743
7744

7745
7746
7747
7750

7755
7756

77717

Contents

Notes

WRITE OPERATION

‘\\NON-DESTRUCTIVE

ENTRY TO PS/8

JMP TO FIELD 1 FOR READ |¢—DESTRUCTIVE

AR

—

| SYSTEM DEVICE HANDLER

ENTRY TO PS/8

¥ ENTRY TO SYSTEM
/- DEVICE HANDLER

»™

CURRENT STARTING ADDRESS

JOB STATUS WORD

g

a— MUST ALWAYS BE ZERO

LOCATIONS

RESERVED FOR DATA BREAK

. PROGRAM SETUP AREA

la— THE KEYBOARD MONITOR
1 AND ODT MODIFY THIS

A:T’ AREA

socation

7600

7616
7617

7641
7642
7643

7645
7646
7647

7665
7666
7667

7677
7700
7740
7741
7757
7760

7776
77717

TOP PAGE OF FIELD 1

Contents Notes
\
Y OUTPUT FILE LIST (3 ENTRIES):[:
g INPUT FILE LIST o
5 (MAXIMUM 9 ENTRIES) «4— g MARKS END | COMMAND
OF LIST DECODER
* =
HIGH 11 BITS OF =N . g=1 AREA
IF COMMAND
SPECIFIED OPTIONS LINE TERMI-
LOW 12 BITS OF =N NATED BY
S, DEVICE HANDLER A ALTMODE J
1 RESIDENCY TABLE 1
SYSTEM DATE WORD
A READ OPERATION A,
17 (LOAD KEYBOARD MONITOR) 7]
-
-~/ USR CALL AND RETURN AREA ~~ENTRY TO USR
NOTE
S USER DEVICE 44— SYSTEM ODT DESTROYS
/ NAME TABLE 1~ CONTENTS OF THIS TABLE
WHEN SETTING BREAKPOINTS
;:j DEVICE CONTROL WORD TABLE 4=
UNUSED RESERVED FOR FUTURE USE

Systems built around TD8E DECtape without the Read~-Only-Memory option
use 7600 in field 2 as an extension of the system device handler,

If the machine has more than 12K, the top 4 location

7600

7773
7774

7777

TOP PAGE OF FIE

LD 2,

Used only for 12K TDSE
systems. Part of system
handler resides here in that
case.

Four words reserved for BATCH
use 1if machine has exactly
12K, Contains pointers into
input file.

the last field are reserved for use by BATCH.

If a ROM (Read-Only-Memory) is being used with

locations 7400-7777 of field 7 are inaccessible to the user,

(7774-7777) of
an 8K TDBE system,
That

core is used for system handler functions.,

B.3 SYSTEM DEVICE TABLES

Each device is described to the system by entries in five system
tables, Each of these tables is fifteen words long, where the device
number is the index into the table. The five tables are described
below.

B.3.1 Permanent Device Name Table

Entries in this table specify the permanent name of each device, The
entries are computed by encoding the actual four-character device name
in a single word as follows:

l, The device name is expressed as two words in the standard
DEVICE format. For example, if the device name were "PTR"
the two words would be:

WORD 1: 2024
WORD 2: 2200

Note that when the device name is left justified; 0's are
inserted to fill four characters.

2, A single word is created by adding together these two words.

3. If word 2 is non-zero, bit 0 of the resulting word is forced
to be a one, For example, the table entry for "PTR" would be
4224,

An entry of zero means that there is no device for the corresponding
device number,

NOTE

Conventionally, device names consist
only of the characters A to Z and 0 to
9. The first character of the device
name should be alphabetic. The coding
used makes all one and two character
device names unique; however, names of
more than two characters are not unique.
For example, "PTR"™ and "RTP" have the
same encoding,

The Permanent Device Name able is fifteen locations long; it resides
in the USR., When the USR is in core the beginning of the table is in
field 1 at a location the address of which is contained in 1location
10036,

B.3.2 User Device Name Table

Entries are made in this table whenever the user performs an ASSIGN
and are restored to zero by a DEASSIGN, These entries have the same
format as those in the Permanent Device Name Table.

The User Device Name Table resides in locations 17741 through 17757,

B.3.3 Device Handler Residency Table

When a device handler is loaded by the USR, the entry in this table
for the device loaded (and entries for all devices whose handlers are
co-resident, if any) is set to contain the entry point for the device
handler, Entries other than those that contain an address above 7600
(thus referring to the system handler) are restored to 0 when a RESET,
DECODE or CHAIN function is executed. When a program exits to the
Keyboard Monitor this table is not cleared. The Keyboard Monitor
Commands GET, RUN, R, SAVE, and START (with no explicit address) clear
this table,

NOTE

Since the system device handler is
always resident the first entry (SYS is
always device number 1) in the Device
Handler Residency Table is always 7607
(the entry point of the system device
handler).

The Device Handler Residency Table resides in locations 17647 through
17665,

B.3.4 Device Handler Information Table

Each entry in this table contains all the information needed by the
USR to load the corresponding handler. The format of these entries is
as follows:

Bit Condition Meaning
Bits 0 = 1 If this is a two page device handler.
Bits 1 to 4 Contain the relative block location of

the device handler record on the system
device. This is computed by subtracting
15 (octal) (one less than the first
device handler block) from the actual
block number.

Bits 5 to 11 Contain the offset of the handler entry
point from the beginning of the page.
Note that the entry points to all
handlers must be in the first page.

If an entry is 0 the corresponding device handler is not saved in any
of the device handler storage blocks. This is always true of device
number 1 (the system device) and for all device numbers that are not
used in a given configuration. The Device Handler Information Table
is 15 locations long and resides in the USR. When the USR is in core
the beginning of the table is in field 1 at a location the address of
which is contained in location 10037,

B.3.5 Device Control Word Table

Entries in this table

including the physical device type.

Bit Condition

Bit 0 = 1
Bit 1 =1
Bit 2 =1

Bits 3 to 8

Bits 9 to 11

The device type is a number between 0 and 77
through 20 (octal) are currently

follows:

Device Code

specify special device

Meaning

characteristics,

The entry format is as follows:

If the device is file-structured,

If the device is read-only.

If the device is write-only.

Contain the physical device type code

(described below),

For file structured devices, these bits

contain the directory

block number of

the currently active tentative file., If
bits 9 to 11 are =zero, there is no

active tentative file

on the device.

For non-file structured devices, bits 9

to 11 are always zero.

Bits 9 to 11l are

reset to zero by the commands GET, RUN,

R, SAVE, START (with

no explicit

address) and optionally by the USR
functions RESET and DECODE,

Device

Teletype

High-speed paper tape reader
High-speed paper tape punch
Card Reader

Line Printer

RK8 Disk

256K Disk (RF08)

512K Disk (RF08 + RS08)
768K Disk (RF08 + 2 RS08's)
1024k disk (RF08 + 3 RS08's)
32K Disk (DF32)

64K Disk (DF32 + DS32)

96K Disk (DF32 + 2 DS32's)
128K Disk (DF32 + 3 DS32's)
DECtape

LINCtape (PDP=-12 only)

TM8E Magnetic Tape

TD8E DECtape

BATCH handler

RK8E Disk

NULL

reserved for future disks
TA8E Cassette

VR12 Scope

(octal), of which 0
assigned to existing devices, as

reserved for future use by DEC

reserved for use by users

The Device Control Word Table resides in locations 17760 through
17776,

B.3.6 Device Length Table

There is a sixth table that is not normally considered part of the
system tables. This is the Device Length Table and is used only by
PIP to perform the /Z (zero directory) and /S (compress device)
options. This table is 64 locations long, one entry for each possible
device type. 1In this table an entry of 0 means that the corresponding
device 1is non-file structured; otherwise the entry contains the
negative of the number of available 256~word blocks on the device,

For example, the entry for a 256K disk would be 6000 (octal) (minus
2000 (octal), or 1024 (decimal), 256-word blocks).

The Device Length Table resides in PIP., When PIP is brought into core
the Device Length Table is in locations 13600 to 13677, When new
device types are added to the system this table should be patched with
ODT to reflect the device length of the new device.

A similar table occurs in RESORC which the user may wish to patch. It
is located in field 0 locations 2000-2377 and contains 64 four-word
entries; one entry for each device type. Words 1 and 2 of an entry
are the names of the device (in sixbit) and word 3 is the negative of
the number. Word 4 of the entry should be 0 for non-standard devices.

APPENDIX C

SYSTEM ERROR CONDITIONS AND MESSAGES

This is a summary of all error messages that are a result of system

errors.

These errors are also described in the relevant sections of

this manual and in the 0S/8 HANDBOOK.

C.1 SYSTEM HALTS

Errors that occur as a result of a major I/0 failure on the system
device can cause a system halt to occur, These are as follows:

Value of PC

00601

07461

07605

07702

07764

07772

Meaning

A read error occurred while attempting to
lcad ODT, Return to the Keyboard Monitor by
restarting at 07605.

An error occurred while reading a program
into core during a CHAIN. Return to the
Keyboard Monitor by restarting at 07605,

An error occurred while attempting to write
the Keyboard Monitor area onto the system
scratch blocks, Verify that the system
device 1is not WRITE LOCKed and restart at
location 07600 to try again,

A user program has performed a JMS to 7700 in
field 0. This is a result of trying to call
the USR without first performing a CIF 10, As
location 07700 has been destroyed, the user
must re-bootstrap the system.

A read error occurred while loading a
program, Return to the Keyboard Monitor by
restarting at 07605,

A read error ocurred on the system scratch
area while loading a program., Return to the
Keyboard Monitor by restarting at 07605,

10066 An input error occurred while attempting to
restore the USR. Return to the Keyboard
Monitor by restarting at 07605.

10256 A read error occurred while attempting to
load the Monitor by restarting at 07605.

17676 An error occurred while attempting to read
the Keyboard Monitor from the system device.
Try again be restarting at location 07605, DO
NOT PRESS CONTINUE.,

17721 An error occurred while saving the USR area.
Verify that the system device is not WRITE
LOCKed, and press CONTINUE to try again.

17727 An error occurred while attempting to read
the USR from the system device. Return to
the Keyboard Monitor by restarting at 07605.

17736 An error occurred while reading the scratch
blocks to restore the USR area, Return to
the Keyboard Monitor by restarting at 07605,

Also, there is one halt in the LOADER program:

00005 A parity error occurred when attempting to
overlay the LOADER from the system scratch
blocks. Return to the Keyboard Monitor by
restarting at 07605, and try again.

After retrying the operation which caused the failure, if the error
persists, it is the result of a hardware malfunction or a parity error

in the system area. Run the appropriate diagnostic program to check
the device and rebuild the system,

C.2 USR ERRORS

Fatal errors that occur during operation of the USR cause the message:
MONITOR ERROR n AT XXXxXX

to be printed. In these cases, the value "n" describes the error and

"xxxxx"" is the address of the call to the USR that caused the error.
The six Monitor errors are:

Message Meaning
MONITOR ERROR 1 AT xXxXXXX File length in CLOSE function is
[CLOSE ERROR] too large.
MONITOR ERROR 2 AT XXXXX An I/0 error occurred while at-
{DIRECTORY I/0 ERROR] tempting to read or write a

directory block. This is generally
caused by the device being WRITE
LOCKed.

MONITOR ERROR 3 AT xxxxXx The device handler required for a
[DEVICE HANDLER NOT IN CORE] file operation (LOOKUP, ENTER,
CLOSE) 1is not in core.

MONITOR ERROR 4 AT xXxXxxx Illegal call to the USR; either an
(ILLEGAL USR CALL] attempt has been made to call the
USR from locations 10000 to 11777
or a device number of zero was

specified,
MONITOR ERROR 5 AT xxXXXxX I1/0 error occurred while reading or
[I/O0 ERROR ON SYS] or writing on the system device,

Verify that the system device is
not WRITE LOCKed.

MONITOR ERROR 6 AT xXXXXX Directory overflow occurred (see
[DIRECTORY OVERFLOW] section A.l1,2 for limitations on
number of directory entries),

In addition to the MONITOR ERROR messages, system and user programs
can use the USR to print:

USER ERROR n AT XXXxXX

by using the ERROR function, In this case the wvalue of "n" |is
user~defined and "xxxxx" is the address of the call to the USR.,

Currently, two USER ERROR numbers have been assigned:

Message Meaning
USER ERROR 0 AT xxxXxx An 1/0 error occurred while

attempting to load a program with
the GET, RUN, or R command,

USER ERROR 1 AT xXXXXX While running a FORTRAN or SABR
program, an attempt was made to
call a subroutine that had not been
loaded.

If an I/0 error is made during the monitor CHAIN function the message
CHAIN ERR

is generated, and control returns to the keyboard,

Following either a MONITOR ERROR message or a USER ERROR message the

USR exits to the keyboard Monitor; the current contents of core are

preserved and bit 2 of the Job Status Word is set toa 1 to prevent
continuing from the error,

C.3 KEYBOARD MONITOR ERRORS

In addition to the USR errors described previously, the following
errors can occur after a command is given to the Keyboard Monitor:

Message

aaaa?

BAD ARGS

BAD CORE IMAGE

BAD DATE

device NOT AVAILABLE

ILLEGAL ARG

name NOT FOUND

NO!!

NO CCL!

SAVE ERROR

SYSTEM ERR

TOO FEW ARGS

CCL ERROR MESSAGES

Message
BAD DEVICE

BAD EXTENSION

Meaning

The Keyboard Monitor cannot interpret
the command "aaaa". For example if the
user types HELLO the system will respond
HELLO?

Arguments to a SAVE command are

inconsistent, or illegal.

The file requested with an R, RUN, or
GET command is not a core image file,

Improper syntax in a DATE command.
The permanent device name

an ASSIGN, SAVE, RUN,
does not exist,

specified in
or GET command

The SAVE
correctly.

command was not expressed

The file name specified was not 1located
on the device indicated. This error can
also be caused by trying to RUN or GET
from an output only device.

A START command (with no address
specified) is prohibited when bit 2 of
the Job Status Word (location 07746) is
al.

Command was a valid CCL command but
CCL,SV is not on the system,

An I/0 error occurred while saving the
program, The contents of core remain
intact,

An error occurred while doing I/0 to the
system device.

An argument has been omitted from a
command.

Meaning
The device specified in a CCL command is
not of the correct form, (e.g.,
DTAO.PA:).
Either an extension was specified

without a file name (e.g., DTAl:.PA) or
two extensions were specified (e.q.,
DTAl:FILE.PA.BN),

BAD MONITOR

BAD NUMBER

BAD RECOLLECTION

BAD SWITCH OPTION

CANNOT CHANGE CORE
CAPACITY WHILE RUNNING
BATCH

$CANT REMEMBER

CCL 3X OVERLAY &
MONITOR INCOMPATIBLE

COMMAND LINE OVERFLOW

COMMAND TOO LONG

CONTRADICTOR SWITCHES

name DOES NOT EXIST

ERROR IN COMMAND

ILLEGAL * OR ?

The version of the Keyboard Monitor
being used is not compatible with CCL.
A new version of the monitor must be
obtained from Digital before CCL can be
used.

A CCL command which uses the #
construction does not have the full
l6~-digit specification that is required,

An attempt was made to use a previously
remembered argument when no argument was
saved. This error occurs when no
argument was previously saved or when
the DATE command has been used since the
argument was saved.

The character used with a slash (/) to
indicate an option is not a legal
option.

A CORE command was issued while the
BATCH program was running.

The argument specified in a CCL command
line is too long to be remembered or an
I/0 error occurred.

The version of CCL being used is not
compatible with the Keyboard Monitor
present on the system, Type R CCL to
retry.

The command line specified with the @
construction is more than 512 characters
in length.

The length of a text arqument in a MUNG
command is too long.

Either two CCL processor switches were
specified in the same command 1line
{e.g., FILE-PA=FT) or the file extension
and the processor switch do not agree
(e.g., FILE,FT=BA),

The device with the name given is not
present on the 0S/8 system,

A command not entered directly from the
console terminal is not a legal CCL
command. This error occurs when the
argument of a UA, UB, or UC command was
not a legal command.

An * or ? was used in a CCL command that
does not accept the wild card
construction. Only CCL commands that
run FOTP or DIRECT allow the wild carad
construction.

ILLEGAL SYNTAX

INPUT ERROR READING
INDIRECT FILE

I/0 ERROR ON SYS:

I/0 ERROR TRYING TO
RECALL

NO CCL!

NOT ENOUGH CORE

name NOT FOUND

$SUPERCEDED

SWITCH NOT ALLOWED HERE

TOO MANY FILES

The CCL command 1line was formatted
incorrectly.

CCL cannot read the file specified with
the @ construction.

An error occurred while doing I/O to the

system device. The system must be
restarted at 7600 or 7605, Do
not press CONT. as that will surely

cause further errors.

An I/0 error occurred while CCL was
trying to remember an argument.

CCL,SV is not present on the system
device.

The number specified in a CORE command
is 1larger than the number of 4K core
banks on the system.

The file with the name given is not
present on the specified device, or the
user tried to input from an output-only
device.,

The file specified in a MAKE command
already exists, This is a warning
message indicating that the file is
being replaced,

Either a CCL option was specified on the
left side of the { or was used when not
allowed., For example: COMPARE FILE~NB,

To many files were included in a CCL
command.,

C.5 COMMAND DECODER ERRORS

The following errors are printed by the Command Decoder, After the
error message, the Command Decoder starts a new line, prints a * and
waits for another command line. The erroneous command is ignored.

Message Meaning
ILLEGAL SYNTAX The command line is formatted
incorrectly.
TOO MANY FILES More than three output files or nine

input files were specified (regular
mode) or > 1 output or > 5 input
(special mode).

name NOT FOUND The specified input file name was not
found on the device indicated.

APPENDIX D

PROGRAMMING NOTES

This appendix is a potpourri of ideas and techniques that have proven
useful in programming the PDP-8, 0S/8 users may find some use in their
own programs for the techniques mentioned here,

D.l1 The Default File Storage Device, DSK

D.2 Modification to Card Reader Handler

D.3 Suppression of Carriage Return/Line Feed in FORTRAN 1/0

D.4 Accessing the System Date in a FORTRAN Program

D.5 Determining Core Size on PDP-8 Family Computers

D.6 Using PRTCl2-F to Convert 0S/8 DECtapes to 0S/12 LINCtapes

D.7 Notes on Loading Device Handlers

D.8 Available Locations in the USR Area

D.9 Accessing Additional Information Words in 0S/8

D.10 SABR Programming Notes

D.l1 THE DEFAULT FILE STORAGE DEVICE, DSK

The Command Decoder, as noted earlier, makes certain assumptions about
the I/0 device where none is explicitly stated, Namely, on all output
files where no device name is given, the device DSK is assumed, On
the first input file where no device name is given, DSK is assumed,
Subsequent input files assume the same device as the previous input
file. This convention was adopted to simplify typing command lines.

The permanent device name DSK is assigned when the system is built,
on all standard systems, DSK is equivalent to S¥S. A useful technique
is to use the ASSIGN command to redefine the meaning of DSK
temporarily., For example, where device DTAO0 is equivalent to DSK and

it becomes desirable to change DSK to DTAl, the following command can
be given:

+ASSIGN DTAl DSK

DTAl remains the default file storage device until it is assigned a
new name or a DEASSIGN command is executed, This technique is
considerably easier to use than rebuilding the entire system,

If 'DSK' has not been assigned via the ASSIGN command, then 'DSK'
always exists and has internal device number 2. User programs wishing
to use DSK should do an INQUIRE to find its number in case the
operator has re-assigned it.

D.2 MODIFICATION TO CARD READER HANDLER

The standard card reader handler for 0S/8 wuses the DEC029 standard
card codes. Some installations may prefer to use the DEC026 codes
instead. This can be done by changing the card conversion codes with
the BUILD command ALTER.

1, Call 0S/8 BUILD by typing:
RUN S¥YS BUILD
in response to the dot printed by the Keyboard Monitor.

2. Load the card reader handler as described on page 2-42 of the
0S/8 HANDBOOK.,

3. Use the ALTER command (see page 2-49 of the 0S/8 HANDBOOK)
to make the following changes:

CHANGE RELATIVE LOCATION FROM TO_
104 3203 7735
105 4007 4076
106 3502 0774
114 7514 3314
115 0577 1002
116 3637 0305
124 0104 3204
125 1211 1273
126 3374 3606
127 0641 1341
134 7316 3716
135 3410 1175
136 1376 3401

The new system will have modified card codes.

Note that this procedure does not affect FORTRAN run time card input
with READ (3,n). The conversion table for FORTRAN is UTILTY.SB on
source DECtape #2. (DEC=S8=0SYSB=A=UAZ2)

Octal 8-bit
CODE

240
241
242
243
244
245
246
247

250
251
252
253
254
255
256
257

260
261
262
263
264
265
266
267

270
271
272
273
274
275
276
277

026 PUNCH CARD CODES

DEC026 Octal 8-bit DEC026
CODE CHARACTER CODE CODE
BLANK SPACE 300 8=-4
12-8-7 1 301 12-1
0=8=5 " 302 12=2
0-8-6 # 303 12-3
11=-8=3 $ 304 12=-4
0-8-7 % 305 12-5
11-8-7 & 306 12=6
8-6 ' 307 12-7
0=8=4 { 310 12-8
12-8-4) 311 12-9
11-8=4 * 312 11-1
12 + 313 11-2
0-8-3 ! 314 11-3
11 - 315 11-4
12-8-3 . 316 11-5
0-1 / 317 11l-6
0 0 320 11-7
1l 1 321 11-8
2 2 322 11-9
3 3 323 0-2
4 4 324 0-3
5 5 325 0-4
6 6 326 0=-5
7 7 327 0-~6
8 8 330 0-~7
9 9 331 0-8
11-8-2 : 332 0-9
0=8=2 : 333 11~8-5
12-8=6 4 334 8=7
8-3 = 335 12-8-5
11-8=6 > 336 8=5
12-8=2 ? 337 8=2
NOTE

On some IBM 026 Keyboards this character
is graphically represented as Q0 .

A card containing an 8-2 in column 1
with all remaining- columns blank is an
end-of-file card.

CHARACTER

>

= SN X ESCHNKONY OZRERUHID QUMM UOQD P

D.3 SUPPRESSION OF CARRIAGE RETURN/LINE FEED IN FORTRAN

It is often desirable to suppress the automatic carriage return/line
feed (CR/LF) following FORTRAN WRITE statements to achieve an easily
readable text. The following three methods in 0S/8 FORTRAN can be
used to achieve this result:

l. PFollow the 1/0 list of a WRITE statement with a comma. Thus,
the following statements:

WRITE (1,100) N,

100 FORMAT (1X,15HTHE VALUE OF A(,I2,5H)4IS)
READ (1,101)A(N)

101 FORMAT (F8.4)

result in the following single line (assume N has a value of
12 and a value of 147.83 is being input):

THE VALUE OF A(l12) IS 147.83

2, Use of an empty field print statement enables a text to be
printed without a following CR/LF when there is no variable
to be printed. For example:

WRITE (1,102)IDUMMY,
102 FORMAT ('DESIRED TEXT',IO)

3. READ statement using break character, as follows:

READ (1,101) IA,IB,IC
101 FORMAT ('A=',I1,'B=',I1,'C=!,Il)

results in no CR/LF after each phrase is printed. That is,
the output is all printed on a single line.

D.4 ACCESSING THE SYSTEM DATE IN A FORTRAN PROGRAM

The availability of the system Date word in location 17666 is useful
to many 0S/8 programs. The following FORTRAN program illustrates how
the Date can be accessed in SABR code:

PROGRAM PRINTS THE CURRENT DATE

DUMMY DATE

TAD I DATE

DCA TEMP

TAD TEMP

AND (7

DCA\IYR

TAD TEMP

RAR; RTR

AND (37

DCA \IDAY

TAD TEMP

CLL RAL;RTL;RTL

AND (17

DCA \IMO

WRITE (1,100) IMO,IDAY,IYR
100 FORMAT (/'DATE: 'I2'-I2-197'T1/)

nunununmnhnhhnnnhhnn

CALL EXIT

S CPAGE 2
SDATE, 6211

S 7666
STEMP, 0

D.5 DETERMINING CORE SIZE ON PDP-8 FAMILY COMPUTERS

Many times system programs need to determine the amount of core
available to them at run time, For example, the 0S/8 system progranms
LOADER, PAL8, and CREF perform this calculation. Because of
differences in the extended memory control of PDP-8 family computers,
subroutines that work on one machine might not work on another,

The following three conditions cause the most difficulty:

l. On a PDP-8 with an extended memory control, addressing
nonexistent memory from field 0 causes the following
instruction to be skipped and the contents of the
corresponding field 0 location to be executed., For example:

CDF 70 /NONEXISTENT FIELD
TAD I(X) /EXECUTED LOCATION X
HLT /THIS INSTRUCTION SKIPPED

X, CLA CLL CML RAR /LOAD 4000

The preceding code causes 4000 to be loaded into the AC and
the HLT instruction to be skipped when executed on a PDP-8.

2, On a PpP-12 with an odd number of 4K banks (12K, 20K, 28K),
all reads in the first nonexistent field load zeros. Reads
to higher fields, as well as all reads to nonexistent memory
on a machine with an even number of 4K banks load all one
bits.

3. ‘The PDP=-8/L normally treats all CDF's to fields 2 through 7
as NOP's. (It tests bits 6 to 7 of all CDF and CIF
instructions for 0's before executing the IOT,) However,
there is a special 12K option for the PDP-8/L called a BM0S8.,
With this option a CDF to field 2 is valid, but a CDF's to
fields 4 through 7 remain NOP's.

For those who are interested, the following subroutine has been tested
on the PpPDP-8, 8/S, 8/L, 8/1, 8/E, PDP-12, and LINC-8 computers, For
the purpose of this example, it is assembled at 00200.

/SUBROUTINE TO DETERMINE CORE SIZE,

/THIS SUBROUTINE WORKS ON ANY PDP-8 FAMILY
/COMPUTER, THE VALUE, FROM 1 TO 10 (OCTAL),
/OF THE FIRST NON-EXISTENT MEMORY FIELD IS
/RETURNED IN THE AC,

/NOTE «= THIS ROUTINE MUST BE PLACED IN FIELD 0

0200 0000 CORE, 0

0201 7300 CLA CLL

0201 6201 CORO, CDF 0 / (NEEDED FOR PDP-8L)

0203 1237 TAD CORSIZ /GET FIELD TO TEST

0204 7006 RTL

0205 7004 RAL

0206 0217 AND COR70 /MASK USEFUL BITS

0207 1232 TAD COREX

0210 3211 DCA W41 /SET UP CDF TO FIELD

0211 6201 CORl, CDF \N /N IS FIELD TO TEST

0201 1635 TAD I CORLOC /SAVE CURRENT CONTENTS
0213 7000 COR2, NOP / (HACK FOR PDP-81)

0214 3211 DCA COR1

0215 1213 TAD COR2 /7000 IS A "GOOD" PATTERN
0216 3635 DCA I CORLOC

0217 0070 COR70, 70 /(HACK FOR PDP-8.,NO-OP)
0020 1635 TAD I CORLOC /TRY TO READ BACK 7000
0221 7400 CORX, 7400 / (HACK FOR PDP-8,,NO=-OP)
0022 1221 TAD CORX /GUARD AGAINST "WRAP AROUND"
0223 1236 TAD CORV /TAD (1400)

0224 7640 SZA CLA

0225 5232 JMP COREX /NON-EXISTENT FIELD EXIT
0226 1211 TAD COR1 /RESTORE CONTENTS DESTROYED
0227 3635 DCA I CORLOC

0230 2237 1S2 CORSIZ /TRY NEXT HIGHER FIELD
0231 5202 JMP CORO

0232 6201 COREX, CDFO /LEAVE WITH DATA FIELD 0
0233 1237 TAD CORSIZ /1ST NON-EXISTENT FIELD
0234 5600 JMP I CORE

0235 0221 CORLOC, CORX /ADDRESS TO TEST IN EACH IELD
0236 1400 CORV, 1400 /7000+7400+1400=0

0237 0001 CORSIZ, 1 /CURRENT FIELD TO TEST

D.6 USING PRTCl2-F TO CONVERT OS/8 DECTAPES TO 0S/12 LINCTAPES

Many users of 0S5/8 on the PDP-12 will be interested in the fact that,
since 0S/8 wuses an identical file structure on all devices, PDP-8
DECtape in 0S/8 format may be directly copied to 0S/8 LINCtapes by the
PRTCl2-F program,

The PRTCl2-F program uses the PDP=12 TCl2-F hardware option to read
DECtapes and convert these tapes to LINCtape. This hardware option is
required to read DECtapes on the PDP=-12

THE PRTC12~F program is described in the document DEC-12-YIYA-D, This
document describes the program operation in detail, and must be read
before attempting to use PRTCl2-F, The operations that convert 0S/8
format DECtapes are as follows:

1. Mount the 0S/8 DECtape on unit 1 and a PDP-12 LINCtape
formatted with 129 words per block on unit 2,

2. When the READ questionnaire is displayed, respond as follows
(responses are underlined; the character) stands for
carriage return and stands for line feed):

READ 1777 J) BLOCKS
TAPE FORMAT A) UNIT 1)

STARTING WITH BLOCK 0)+
etc.

3. When the WRITE questionnaire is displayed, respond as
follows:

WRITE THE RESULT

IN TAPE FORMAT B) ON UNIT 2)
STARTING AT BLOCK 0)+

etc,

D.7 NOTES ON LOADING DEVICE HANDLERS

D.7.1 Problem With Multiple Input Files

There is a problem associated with reusing Device Handler areas in
0S/8. This problem is best illustrated by an example:

Assume a program has reserved locations 1000-1377 for its input
handler and locations 7400-7577 for its output handler, If the
program gives a USR FETCH command to load the DTAl handler as an input
device handler, all 8 DECtape handlers will load into 1000-1377, since
they are all co~resident. If another FETCH is issued to load the DTA2
handler as an output device handler, that handler will not be loaded,
because it shares space with the DTAl handler currently in core. This
is fine ~-- however, if the user now switches input devices and FETCHes
the paper tape reader handler as an input device handler it will
destroy the DTA2 handler and the next attempt to output using the DTA2
handler will produce errors. There are two ways to get around this
problem.

l. Always assign the handler which you expect to stay in core
the 1longest first. Most programs can process more than one
input file per program step (e.g., an assembly pass 1is one
program step) but only one output file; therefore, they
assign the output handler before any of the input handlers.
In the above example, the problem would be eliminated if the
DTA2 handler were assigned first.

2., Always give a USR RESET call before each FETCH, Obviously,
this call should not delete any open output files. This
means that the USR will always load the new handler, even if
another copy is in core. The user must FETCH the output
handler again before issuing the USR CLOSE c¢all, otherwise
the USR will determine that the output handler is not in core
and give a MONITOR ERROR 3 message,

8K FORTRAN uses this second method for device~independent I/0 at run
time -

D.7.2 Dynamically Loading Device Handlers

Some programs which use dynamic core allocations will want to use 0S/8
Device handlers but cannot afford to always allocate the maximum of
two pages per handler. The following is a subroutine which 1loads a
device handler dynamically, returning its entry in the AC. It assumes
that the name of the handler is in locations NAMEl and NAME2, and a

subroutine GETPAG exists which gets a page from the bottom of
available field g of storage and returns its address in the AC. This
example subroutine runs in field 1 and can only be called from field
1, but can be rewritten for any other possibility.

ASSIGN, £
TAD NAMEl
DCA N1
TAD NAME2
DCA N2 /MOVE DEVICE NAME INTO "INQUIRE" COMMAND
CDF CIF 18
JMS I (7788
10 /USRIN -~ FORCE USR INTO CORE
JMS I (200
12 /INQUIRE
Nl, 0
N2, 0
Locl, 0
JMP ASSERR /NO SUCH DEVICE - QUIT
TAD LOC1
SZA /IS THE HANDLER ALREADY IN CORE?
JMP I ASSIGN /YES =« RETURN ITS ENTRY POINT
JMS GETPAG /GET A PAGE DYNAMICALLY

DCA LOC2
ASSTRY, TAD N2 /LOAD DEVICE NUMBER
JMS I (200
1 /FETCH
Locz, 0 /PAGE TO FETCH INTO
JMP TWOPAG /FAILED - MUST BE A TWO-PAGE HANDLER
TAD LOC2

JMP I ASSIGN /RETURN ENTRY POINT
TWOPAG, JMS GETPAG /GET ANOTHER PAGE

IsZ LOC2 /SET "TWO PAGE HANDLER ALLOWEDY BIT

CLA

JMP ASSTRY /FETCH WILL SUCCEED THIS TIME
ASSERR, secee /ERROR ROUTINE

D.8 AVAILABLE LOCATIONS IN THE USR AREA

A few programs may need additional storage space in field 1 when the
USR is in core, A number of locations in the USR area (10000 to
11777) are available and may be used whenever the USR is in core. The
locations are as follows:

l. Locations 10000 to 10006 are available for scratch storage
and/or ODT breakpoint usage, without restriction.

2, All auto-index registers (locations 10010 to 10017) may be
used, but these locations are destroyed by USR operations.

3. Location 10020 to 10037‘may be used as scratch storage with
no restrictions.

4, Locations 11400 to 11777 are used by the USR to preserve the
last directory segment read while performing a LOOKUP, ENTER,
or CLOSE operation. Location 10007 contains a key specifying
which segment of which device is currently in core,

Any user program may use locations 11400 to 11777 as scratch
storage as long as location 10007 is set to 0 before the
first use. Of course, the LOOKUP, ENTER, and CLOSE
operations will read a directory segment into 11400 to 11777
and set 100007 to a non-zero value again.

D.9 ACCESSING ADDITIONAL INFORMATION WORDS IN 0S/8

In all of these cases, the USR must have been previously brought into
core with the USRIN function.

D.9.1 After a LOOKUP or ENTER

After a LOOKUP or ENTER, location 10017 points to the length word of
the file entry. To get a pointer to the first Additional Information
wWord, a program would execute the following code:

CDF 10

TAD I (1404 /GET # OF ADDITIONAL INFORMATION WORDS
/FROM DIRECTORY

SNA

JMP NONE /NO ADDITIONAL INFORMATION WORDS

TAD I (0017

DCA POINTER

"POINTER" now points to the first Additional Information Word.

D.9.2 After a CLOSE

Because CLOSE is a legal operation even if no output file is present,
it is not suggested that Additional Information Words be modified
following a CLOSE. To alter the Additional Information Words of a
permanent file, do a LOOKUP to get the directory segment into core,
then alter the words and rewrite the directory segment,

D.9.3 Rewriting the Current Directory Segment

Whenever a user program changes the Additional Information Words of a
file, it must rewrite the directory segment containing that file entry
in order to make sure the changes are permanently recorded.

The following code, which must be in field 1, will rewrite the current
directory segment:

CDF 10 /CODE IS IN FIELD 1

TAD 7 /GET DIRECTORY KEY WORD

AND (7 /EXTRACT SEGMENT NUMBER

DCA SEGNO

CIF 0

JMS I 51 /LOC 51 POINTS TO THE DEVICE HANDLER

4210 /WRITE OPERATION

1400 /DIRECTORY SEGMENT CORE ADDRESS
SEGNO, O
JMP ERROR /ERROR REWRITING DIRECTORY

Location 10051 will always point to the device handler entry point

used to read in the last directory segment, following a LOOKUP or
ENTER operation.

D.10 SABR PROGRAMMING NOTES

D.10.1 Optimizing SABR Code

There are two types of users who will be using the SABR assembler =
those who like the convenience of page-boundary-independent code and
are willing to pay the price for it, and those who need a relocatable
assembler but are still very location conscious. These optimizing
hints are directed to the latter user.

One way to beat the high cost of non-paged code is to Page It
Yourself, This is done by using the LAP (Leave Automatic Paging)
pseudo-op and the PAGE pseudo-op to force paging where needed, This
saves 2 to 4 instructions per page from elimination of the page
escape. In addition, the fact that the program must be properly
segmented may save a considerable amount.

Wasted core may be reduced by eliminating the ever-present CDF
instructions which SABR inserts into a program. This is done by using
"fake indirects"., Define the following op codes:

OPDEF ANDI 0400
OPDEF TADI 1400
OPDEF ISZI 2400
OPDEF DCAI 3400

These codes correspond to the PDP-8 memory reference instructions but
they include an indirect bit. The difference can best be appreciated
by an example:

If X is off-page, the sequence

LABEL, SZA
DCA X

is assembled by SABR into
LABEL, SZA
JMS 45
SKP
DCA I (X)

or four instructions and one literal.

The sequence

PX, X
LABEL, SZA
DCAI PX

assembles into three instructions for a saving of 40 percent. Note,
however, that the user must be sure that the data field will be
correct when the code at LABEL is encountered. Also note that the
SABR assumes that the Data Field is equal to the Instruction Field
after a JMS instruction, so subroutine returns should not use the JMPI
op code.

The standard method to fetch a scalar integer argument of a subroutine
in SABR is:

Code

IARG, DUMMY X
0

SUBR, BLOCK 2
TAD I SUBR
DCA X
INC SUBR#
TAD I SUBR
DCA X#
INC SUBR#
TAD I X
DCA IARG

X, BLOCK 2

This code requires 19 words of core and takes several hundred
microseconds to execute., The following sequence:

Code

IARG, O
SUBR, BLOCK 2
TAD I SUBR
DCA X
INC SUBR#
TADI SUBR#
DCA IARG
INC SUBR#
X, HLT /THIS IS A CDF
TAD I IARG
DCA IARG

takes only 14 words and executes in approximately 1/3 the time.

D.10.2 Calling the USR and Device Handlers from SABR Code

One important thing to remember is that any code which calls the USR
must not reside in locations 10000 to 11777, Therefore, any SABR
routine which calls the USR must be loaded into a field other than 1
or above location 2000 in field 1. To call the USR from SABR use the
sequence :

CPAGE n /N=7+(# OF ARGUMENTS)

6212 /CIF 10

JMS 7700 /OR 200 IF USR IN CORE
REQUEST

ARGUMENTS /OPTIONAL DEPENDING ON REQUEST

ERROR RETURN /OPTIONAL DEPENDING ON REQUEST
To call a device handler from SABR use the sequence:

CPAGE12 /10 IF "HAND"™ IN PAGE 0

6202 /CIF 0

JMS I HAND /DO NOT USE JMSI

FUNCT

ADDR

BLOCK

ERROR RETURN

SKP

HAND, 0 /"HAND" MUST BE ON SAME PAGE

/AS CALL, OR IN PAGE 0!l

APPENDIX E

CHARACTER CODES AND CONVENTIONS

Table E~1 contains a list of the control characters used by 0S/8 and
associated system programs, Table E-2 contains the 0S/8 character
set, which is a subset of the complete ASCII code, the unlisted codes
are generally not used by 0S/8 or the gystem programs. Note the
following:

1.

On some terminals, the character back-arrow («) is replaced
by an underline () character, and the up-arrow (t) is
replaced by circumflex ().

2. Some terminals use parity codes rather than forcing the
leading bit of the 8-bit character code to be a 1. To avoid
problems, 0S/8 system programs always ignore the parity bit
during ASCII input.

3. 0S/8 does not handle lower case characters (octal codes 341
through 372). The exceptions to this are the editors, EDIT
and TECO. The KL8E and LPSV handlers can be modified to
handle lower case.

Table E=-1
0S/8 Control Characters

Octal

8=bit Character

Code Name Remarks

000 null Ignored in ASCII input,

200 leader/trailer Leader/trailer code precedes and
follows the data portion of binary
files.

203 CTRL/C 0S/8 break character, forces return
to Keyboard Monitor, echoed as tC.

207 BELL CTRL/Ge

211 TAB CTRL/I, horizontal tabulation,

212 LINE FEED Used as a control character by the
Command Decoder and ODT,.

213 VT CTRL/K, vertical tabulation.

214 FORM CTRL/L, form feed.

Table E-1 (Cont.)
0S/8 control Characters

Octal
8~bit Character
Code Name Remarks

215 RETURN Carriage return, generally echoed
as carriage return followed by a
line feed.

216 Used only on LS8E line printer,
Puts current 1line into expanded
character mode,

217 CTRL/O Break Character, used to suppress
Teletype output, echoed as 10.

225 CTRL/U Delete current input line, echoed
as tU,

232 CTRL/Z End-of-File character for all ASCII
and binary files (in relocatable
binary files CTRL/Z is not a
terminator if it occurs before the
trailer code).

233 ESC ESCape replaces ALTMODE on some
terminals. Considered equivalent
to ALTMODE.

375 ALTMODE Special break character for
Teletype input.,

376 PREFIX PREFIX replaces ALTMODE on some
terminals. Considered equivalent
to ALTMODE.

377 RUBOUT Key is 1labeled DELETE on some

terminals. Deletes the previous
character typed.,

Table E=2

ASCII Character Codes

Octal Punched Character

8-bit 6-bit Card Representa-

Code Code Code tion Remarks

240 40 blank space (non-printing)

241 41 11-8-2 ! exclamation point

242 42 8=7 " quotation marks

243 43 8=-3 # number sign

244 44 11-8=3 $ dollar sign

245 45 0-8-3] percent

246 46 12 & ampersand

247 47 8=5 ' apostrophe or acute
accent

250 50 12-8=5 (opening parenthesis

251 51 11-8~5) closing parenthesis

252 52 11-8-4 * asterisk

253 53 12-8-6 + plus

254 54 0-8~3 P comma

255 55 11 - minus sign or hyphen

256 56 12-8-3 . period or decimal point

257 57 0-1 / slash

260 60 0 0

261 61 1 1

262 62 2 2

263 63 3 3

264 64 4 4

265 65 5 5

266 66 6 6

267 67 7 7

270 70 8 8

271 71 9 9

272 72 8=2 : colon

273 73 11-8~-6 ; semicolon

274 74 12-8-4 < less than

275 75 8-6 = equals

276 76 0-8-6 > greater than

277 77 0=-8-7 ? question mark

300 00 8~4 e at sign

301 01 12-1 A

302 02 12-2 B

303 03 12-3 Cc

304 04 12-4 D

305 05 12-5 E

306 06 12-6 F

307 07 12-7 G

310 10 12-8 H

311 11 12-9 I

Table E=-2 (Cont.)
ASCII Character Codes

Octal Punched Character
8-bit 6~bit Card Representa=-
Code Code Code tion Remarks
312 12 11-1 J
313 i3 11-2 K
314 14 11-3 L
315 15 11-4 M
316 16 11-5 N
317 17 11-6 0
320 20 11-7 P
321 21 11-8 Q
322 22 11-9 R
323 23 0-2 [
324 24 0-3 T
325 25 0-4 U
326 26 0-5 \'4
327 27 0~6 W
330 30 0-7 X
331 31 0-8 Y
332 32 0-9 2
333 33 12-8=-2 [opening bracket,SHIFT/K
334 34 11-8=7 \ backslash, SHIFT/L
335 35 0~-8~2] closing bracket, SHIFT/M
336 36 12-8-7 ~ circumflex
337 37 0-8-5 _- underline -~ EOF signal
NOTES
1. These are the DEC029 standard card codes.
2. On most DEC Teletypes circumflex is replaced by up-arrow (t).
3. A card containing 0=8-5 in column 1 with all remaining
columns blank is an end-of-file card.
4. On most DEC Teletypes underline is replaced by back=-arrow
(<)
5. On some IBM 029 keyboards [is graphically represented as a
cent sign (¢).
6. On some IBM 029 keyboards \ is graphically represented as
logical NOT (-).
7. On some IBM 029 keyboards ~ 1is graphically represented as
vertical bar (|).
8. On a very few LP08 line printers, the character diamond (¢)
is printed instead of backslash.
9. On a very few LP08 line printers, the character heart (¢) is
printed instead of underline,
10. The character number sign on some terminals is replaced by

pound sign (#).

APPENDIX F

0S/8 INPUT/OUTPUT ROUTINES

Appendix F describes a set of generalized I/0 routines for use under
the 0S/8 system. The routines presented here are used in all the 0S/8
CUSPs (Commonly Used System Programs) in more or less this form,
Variations are made depending on the particular application and how
errors are to be handled. The routines, as indicated, will work as
presented. The routines work most efficiently in field 1, since CIF
10's are not necessary when addressing the Monitor, and the Command
Decoder tables are similarly available, Obviously the routines can be
modified to run in any memory field or core locations.

F.1l GENERAL DESCRIPTION

These subroutines assume that the Command Decoder tables have been set
up to indicate the proper I/0 devices. The routines handle device
handler assignment without user interference. All I/0 1is done by
simple subroutine calls. The user program never needs to interface
with the Monitor or device handlerse. All buffering and internal
bookkeeping are performed by the routines. 1In these routines, it is
assumed that only one output device is used at a time, i.e.,, the
output routine does not automatically set up for the next output
device. This modification can be made if desired. As many as nine
inputs are handled automatically. When input from one device is
exhausted, the input routine will automatically utilize the next
device specified in the Command Decoder list of inputs,

F.2 SUBROUTINES FUNCTIONS
Following is a brief list of the subroutines and their functions.
ICHAR ~ Character input routine. ’
Call sequence:
JMS ICHAR

ERROR RETURN
NORMAL RETURN

Error:
If AC>0, an EOF on input has occurred. No more

input is available. If AC<0, a device error has
occurred.

Normal:
8 bit character is in the AC,

OCHAR - Character output routine.

Call:
TAD CHAR /8 BIT CHARACTER
JMS OCHAR
ERROR RETURN
NORMAL RETURN
Error:
AC{0 implies a fatal error.
AC > or = 0 implies that the hole allotted for
output was exceeded.
Normal:

AC=0, The character has been put into the device
output buffer,

IOPEN ~ Input initialize routine,
Call:

JMS IOPEN
RETURN

Return:
Input pointers reset., The next call to ICHAR
will read from the first device in the Command
Decoder input list.

OOPEN - Output initialize routine.

Call:
JMS OOPEN
ERROR RETURN
NORMAL RETURN
Errors:
If AC> or = 0, no output device was specified,
If ACC0, an error occurred opening the file.
Normal:

An output file has been opened, No action if
the output was a non-file structured device.

OCLOSE =~ Output close routine.

Call:
JMS OCLOSE
ERROR RETURN
NORMAL RETURN
Error:
Either the closing length is too large for the
space allotted or an output error has occurred.
Normal:

The output file is now a permanent file on the
output device.

F.3 SUBROUTINE PARAMETERS

These subroutines handle device assignment and internal buffering
automatically. To accomplish this, certain parameters must be defined
at assembly time. These parameters specify all details of handler
location, and buffer size for the routines.

Parameter Definition

INBUF = Address of input buffer.

INCTL = Input buffer control word. See the section on
using device handlers for details of the control
word format.

OUBUF = Output buffer address.

OUCTL = Output buffer control word. This must be a
negative number to indicate a write operation,

INRECS = Number of input records in input buffer. INRECS =
INCTL/256 (DECIMAL),

INDEVH = Address of input device handler,

OUDEVH = Address of output device handler,

The parameters can either be a part of the actual subroutine source,
or they can be contained in a separate parameter file to be assembled
with the subroutine file. The latter approach provides greater
flexibility in using the routines.

F.3.1 Example

Following is a sample of the use of the subroutines. The program
simply calls the Command Decoder, and transfers input from the input
devices to the output file, closes the output, and exits,

CALLCD,

OK,

TSTEOF,

CLOSE,

OUTERR,

CLERR,

TERR,

TYPIT,

CRLF,

TTYOUT,

FIELD 1
*2000

JMs I (7700
10

JMS I (200
5

0

JMS I (IOPEN

JMS I (OOPEN

SMA CLA

JMP OK

JMS TERR

TEXT /OPEN FAILED/
JMS I (ICHAR

JMP TSTEOF

JMS I (OCHAR

JMP OUTERR

JMP OK

SMA CLA

JMP CLOSE

JMS TERR

TEXT /READ ERROR/
JMS I (OCLOSE

JMP CLERR

‘JMP CALLCD

JMS TERR

TEXT /OUTPUT ERROR/

JMS TERR
TEXT /CLOSE ERROR/

0

TAD I TERR
RTR; RTR; RTR
JMS TYPIT
TAD I TERR
JMS TYPIT
ISZ TERR
JMP TERR+1

0

AND (77
SNA

JMP CRLF
TAD (300
JMS TTYOUT
JMP I TYPIT
TA (215
JMS TTYOUT
TAD (212
JMS TTYOUT
JMP CALLCD
0

TLS

TSF

/LOCK MONITOR INTO CORE,

/CALL COMMAND DECODER
/TO PICK OPTIONS,

/SETUP TO START LOOKING AT
/CD INPUT FILE.

/OPEN UP AN OUTPUT FILE.
/IF AC<0, WE HAD A FATAL
/TYPE ERROR, AC>0 IS O.K.
/ERROR,

/EITHER ERROR OR EOF.
/SAVE IT.

/TRANSFER THE CHARACTER
/OUTPUT ERROR

/TRANSFER UNTIL EOF FOUND,
/IF NEG., FATAL

/EOF. CLOSE OUTPUT

/CLOSE OUTPUT FILE.
/CLOSE ERROR
/NEXT,

JMP,.-1; CLA; JMP I TTYOUT

F.3.2 Subroutine Listing

A listing of the routines follows. The parameters are set up in such
a way as to allow them to be put into a separate file. Another
parameter, ORIGIN, determines the location of the routines.

Additional information words, 1-3,
2-7, D-9
Alphanumeric option, Command
Decoder, 3-3
switches, 3-6
ALTMODE key, 3-3
Ascertain device information
(INQUIRE function), 2-13
ASCII character codes, E-2, E-3
ASCII files format, A-4
ASSIGN command, 1-6
Asterisk,caution in using, 3-9

Batch mode, 3-10
Batch operating system, 1-5
Binary file format, A-4
Block, core control, 1-4
Blocks

directory, A-1

system scratch, B-1
Blocks of words, 1-2, 1-3
BUILD program, 5-1

Call Command Decoder (DECODE
function), 2-10, 3-3
in Special Mode, 3-9
Calling device handlers, 4-1
Calling USR and device handlers
from SABR code, D-13
Card codes, DEC029, 4-7
Card Reader (CDR) operation, 4-7
Card Reader handler modification,
D-2
Carriage return/line feed suppres-
sion in FORTRAN, D-4
Cassettes operation, 4-6
CCL, 3"'10
CCL error messages, C-4
CHAIN function, 2~10
Character codes
ASCII, E~2. E-3
0s/8, E-1
Character mode, expanded, 4-6
Character packing format, 5-8
Characters, lower case, E-1
Circumflex (") character, 4-5
CLOSE function, 2-8, D-9
Code, non-paged, D-10
Command Decoder
calling, 3-3
conventions, 3-1
error messages, 3-3
errors summary, C-7
example, 3-6
options, 3-3

INDEX

output files, 3-4
special mode, 3-8, 3-9
tables, 3-4
COMMON area, 2-12
Control characters, 0S/8, E-1
Conventions
Command Decoder, 3-1
0s/8, E-1
Core control block, 1-4, 2-11, A-5
Core image files (.SV format), A-5
Core origin, A-6
Core segment doublewords, A-6
Core size, PDP-8 computers, D-5
software, 1-6
Co-resident device handlers, 2-6
Creating files, 1-3

Data exchange in core, 2-12
Data field value, 2-2
Data transfer, 4-1, 4-2
DATE command, 1-3, 2-7
DECODE function, 2-9
DECtape operation, 4-1
Default file storage device, DSK,
D-1
Deleting tentative files, 2-14
Device control word table, B-6
Device dependent operations, 4-4
Device handler
entry point, 2-14, 5-8
information table, B-5
residency table, 2-15, B-5
Device handlers
device dependent operations, 4-4
Card Reader (CDR), 4-7
Cassettes operation, 4-6
High-Speed Paper Tape Punch
(pTP), 4-5
High-Speed Paper Tape Reader
(PTR), 4-4

file structured devices operation,

4-11
TD8E DECtape, 4-11
TM8E Magtape, 4-8
Device handlers, 1-1
calling, 4-1
co-resident, 2-6
inserting into 0S8/8, 5-5
loading dynamically, D-7
notes on loading, D=7
writing, 5-1
Device length table, B-7
Device names and numbers, l1l-6
DEVICE pseudo-op, 1-7
Devices, file structured, 1-2
DF32 disk operation, 4-11

INDEX-1

Direct calling sequence, USR, 2~2

Directories, file, 1-3

Directory block structure format,
A-1

Directory entries, A-2

Directory example, A-3

Directory segment, rewriting, D=9

Directory, system, 5-4

Dismiss USR from core, 2-12

Dot (.) used as system response, 1l-6

Doublewords, core segment, A-6

Empty file entry, A=-2

Empty files, 1-3

End-of-file card, 4-7

End-of-file condition, 4-2, 4-3

ENTER output (tentative) file
function, 2-6, D-9

Entry points for device handlers,
5-2

ERROR function, 2-11

Error messages, Command Decoder,
3-3

Error messages summary, C-1

Error returns, device handler, 4-2

Exit to Keyboard Monitor, 1-1

Expanded character mode, 4-6

Extensions of file names, 1-2

FETCH device handler function, 2-4,
4-1
File creation, 1-3
File directories, A-1
block format, A-1
entries, A~2
example, A-4
formats, A-4
number, A-3
size, A-3
File extension, omission of, 3-2
File length restriction, Command
Decoder, 3-5
FILENAME pseudo-op, 1-7
Files, 1-2
additional information words, 1-3
devices, 1-2
directories, 1-3
names, 1-2
types, 1-3
File structured devices operation,
4-11
Formats for
character packing, 5-3
command line, 3-1
directory block structure, A-l
files, A-4
FORTRAN Library File, A-7
input file, 3-2
Job Status Word, A-6

Form feed, 4-5
FORTRAN Library File Format, A-7
Functions, USR see USR functions

High~Speed Paper Tape Punch (PTP)
operation, 4-5

High~-Speed Paper Tape Reader (PTR)
operation, 4-4

Horizontal tab, 4-5

Indirect calling sequence, USR, 2-2

Information words, additional, 1-3,
2-7

accessing, D-10

Input file format, 3-2

Input files, Command Decoder, 3-5

Input/output routines, F-1

Input table, Command Decoder, 3-9

INQUIRE function, 2~13

Inserting device handlers into
0s/8, 5-10

Job Status Word, 1-5, A-6

Keyboard Monitor, 1-1
error summary, C-3
KL8E terminal handler, 4-12

LAP pseudo-op, D-10

Layouts for 0S/8 system, B-1

LINCtape operation, 4-7

Line Printer (LPT) operation, 4-5,
4-6

Load and start subprogram, 2-11

Loading device handlers dynamically,
D=7

Lock USR in core (USRIN), 2-12

Logical blocks, 1-2

LOOKUP permanent file function, 2-5,
D-9

Lower case characters, E-1

Names of devices, 1-6

Names of files, 1-2

Number and size of 0S files, A-3
Numbers of devices, 1-6

Numeric option, Command Decoder, 3-3

ODT breakpoint, 2-11
Operations, device dependent, 4-3
Options

Command decoder, 3-3, 3-6
Origin of core, A-6
Output files, Command Decoder, 3-4

INDEX-2

PAGE pseudo-op, D-10
Permanent device name table, B-4
Permanent file, 1-3
deletion, 2-8, 2-9
entry, A-2
Physical blocks, 1-2
PIP, 3-5
Program, see specific subject
Programming notes, D-1
PRTCl12-F used to convert DECtapes
to LINCtapes, D-6
Pseudo-ops
DEVICE, 1-7
FILENAME, 1-7
Punch card codes, DEC026, D-3

Records (definition), 4-1
outputting odd number of, 4-3
RESET system table, 2-14
Resident program layout, B-2
RESORC, B-7
Restrictions to USR calls, 2-2
RETURN key, 3-3
RF08 disk
operation, 4-1l
RK8E handlers, 4-11
ROM (Read-Only-Memory), B-3

SABR programming notes, D~10
SAVE command, 1l-4, 2-11
Scratch blocks, B-1l, B-2
Signal user ERROR function, 2-11
Size of 0S files, A-3
Software components, 1l-1
Software core size, 1-6
Special mode of Command Decoder,
3-8
calling, 3-9
operation, 3-9
Standard USR call, 2-1
restrictions, 2-2
START command, 1-4
Starting address of program, 1-4
Storage space, additional, D-9
Storage words, 1-3
Subroutine
examples, F-4
functions, F-1, F-2
listing, F-5
parameters, F-3
Summary of USR functions, see USR
functions
.8V file, 1-4
System DATE, 2-7
System device layout, B-1
System devices, 1-6
System device table, B-4
System halts error messages
summary, C-1
System table values, Command
Decoder, 3-7

Tables
Command Decoder, 3-4
device control word, B-6
device handler information, B-5
device handler residency, B-5
device length, B-7
permanent device name, B-4
system device, B-4
user device name, B-4
TD8E DECtape
operation, 4-11
Teletype operation, 4-4
Tentative files, 1-3
closing, 2-8
deletion, 2-4
entry, A-2
Terminal handlers
l-page, 4-4
2-page, 4-12

Up arrow (4) character, 4-4
User device name table, B-4
User Service Routine (USR), 1l-1,
2-1

available location in area, D-9

calling, 1-6, 2-1

calling sequences, 2-2

errors summary, C-2

restrictions on standard call,

2-2

USR functions

CHAIN, 2-10

CLOSE, 2-8

DECODE, 2-9

ENTER, 2-6

ERROR, 2-11

FETCH, 2-4

INQUORE, 2-13

LOOKUP, 2~5

RESET, 2-14

summary, 2-3

USRIN, 2-3, 2-12

USROUT, 2-2

Vertical tab, 4-5

Wrap around memory, 4-3
Writing device handlers, 5-1
Word blocks, 1-2

INDEX-3

HOW TO OBTAIN SOFTWARE INFORMATION

SOFTWARE NEWSLETTERS, MAILING LIST

The Software Communications Group, located at corporate headquarters in
Maynard, publishes newsletters and Software Performance Summaries (SPS)
for the various Digital products. Newsletters are published monthly,
and contain announcements of new and revised software, programming
notes, software problems and solutions, and documentation corrections.
Software Performance Summaries are a collection of existing problems
and solutions for a given software system, and are published periodi-
cally. For information on the distribution of these documents and how
to get on the software newsletter mailing list, write to:

Software Communications
P. 0. Box F
Maynard, Massachusetts 01754

SOFTWARE PROBLEMS

Questions or problems relating to Digital's software should be reported
to a Software Support Specialist. A specialist is located in each
Digital Sales Qffice in the United States. 1In Europe, software problem
reporting centers are in the following cities.

Reading, England Milan, Italy

Paris, France Solna, Sweden

The Hague, Holland Geneva, Switzerland
Tel Aviv, Israel Munich, West Germany

Software Problem Report (SPR) forms are available from the specialists
or from the Software Distribution Centers cited below.

PROGRAMS AND MANUALS

Software and manuals should be ordered by title and order number. In
the United States, send orders to the nearest distribution center.

Digital Equipment Corporation Digital Equipment Corporation
Software Distribution Center Software Distribution Center

146 Main Street 1400 Terra Bella

Maynard, Massachusetts 01754 Mountain View, California 94043

Outside of the United States, orders should be directed to the nearest
Digital Field Sales Office or representative.

USERS SOCIETY

DECUS, Digital Equipment Computer Users Society, maintains a user ex-
change center for user-written programs and technical application in-
formation. A catalog of existing programs is available. The society
publishes a periodical, DECUSCOPE, and holds technical seminars in the
United States, Canada, Europe, and Australia. For information on the
society and membership application forms, write to:

DECUS DECUS

Digital Equipment Corporation Digital Equipment, S.A.
146 Main Street 81 Route de 1l'Aire
Maynard, Massachusetts 01754 1211 Geneva 26

Switzerland

0S/8 Software Support Manual
DEC-S8-0SSMB-A~D

READER'S COMMENTS

NOTE: This form is for document comments only. Problems
with software should be reported on a Software
Problem Repcrt (SPR) form (see the HOW TO OBTAIN
SOFTWARE INFORMATION page).

Did you find errors in this manual? If so, specify by page.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Is there sufficient documentation on associated system programs
required for use of the software described in this manual? If not,
what material 1is missing and where should it be placed?

Please indicate the type of user/reader that you most nearly represent.

Assembly language programmer
Higher~level language programmer
Occasional programmer {experienced)
User with little programming experience
Student programmer

000000

Non-programmer interested in computer concepts and capabilities

Name Date
Organization
Street
City State Zip Code
or
Country

" f you do not ri' ire a written reply, please check here. f]

Fold Here

Do Not Tear - Fold Here and Staple

FIRST CLASS
PERMIT NO. 33
MAYNARD, MASS.

BUSINESS REPLY MAIL
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES

Postage will be paid by:

Software Communications
P. O. Box F
Maynard, Massachusetts 01754

	OS/8 CONCEPTS AND TERMINOLOGY
	SOFTWARE COMPONENTS OF OS/8
	FILES
	File Names and Extensions
	File Structured Devices
	File Types
	Information Words
	CORE CONTROL BLOCK
	Program Starting Address
	Job Status Word
	Software Core Size
	DEVICE NAMES AND DEVICE NUMBERS
	THE DEVICE AND FILENAME PSEUDO-OPS

	USER SERVICE ROUTINE
	CALLING THE USR
	Standard USR Call
	Direct and Indirect Calling Sequence
	SUMMARY OF USR FUNCTIONS
	FETCH Device Handler
	LOOKUP Permanent File
	ENTER Output (Tentative) File
	The CLOSE Function
	Call Command Decoder (DECODE)
	CHAIN Function
	Signal User Error
	Lock USR in Core (USRIN)
	Dismiss USR from Core (USROUT)
	Ascertain Device Information (INQUIRE)
	RESET System Tables

	CHAPTER3
	THE COMMAND DECODER
	COMMAND DECODER CONVENTION
	COMMAND DECODER ERROR MESSAGES
	CALLING THE COMMAND DECODER
	COMMAND DECODER TABLES
	Output Files
	Input Files
	Command Decoder Option Table
	Example

