
/.\DECUS 
\ / PROGRAM LIBRARY 

DECUS NO. 

TITLE 

AUTHOR 

COMPANY 

DATE 

SOURCE LANGUAGE 

12-80 

FOCAL-RT 

William Siege1 and Keith Whittle 
University of Western Ontario 
London, Canada 
Submitted by: Kenneth Ellson 
Digital Equipment Corporation 
Maynard, Massachusetts 

June 1972 

FOCAL, DIAL 

Although this program has been tested by the contributor, no warranty, express or implied, i s  made by the contributor, 
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the 
program or related program material, and no responsibility i s  assumed by these parties i n  connection therewith. 





DECUS Program Library Write-up 

FOCAL-RT 

USER'S GUIDE 

DECUS NO 12-80 

June, 1972 

Keith Whittle and William Siege1 

Department o f  Psychology 

The University of Western Ontario 

London, Canada 

Description: 
chaining of FOCAL and assembly-language programs, computed GOT0 and DO 
commands, new FRAN( ) function, FIN( ) and FOUT( ) t o  handle character 
strings i n  FOCAL f i l e s ,  subroutines f o r  opening and closing FOCAL f i l e s  
within assembly-language programs, LP08 printer option, return-to-DIAL 
command, and expanded text buffer. 

Modifications of FOCAL-12 tha t  include device-independent 

Hardware Required: 8K PDP-12, LINCtapes or  disk 

Software Required: DIAL-MS Monitor 





ACKNOWLEDGMENTS 

Many of the new features i n  FOCAL-RT were inspired by other 
software systems. For example, the FIN( ) and FOUT( ) instructions 
were modelled a f t e r  those of PS/8 FOCAL, developed a t  the Oregon 
Museum of Science and Industry. The idea of scaling random numbers 
internally came from PSYCBL, a software system developed by Braida, 
Call ahan and Herman a t  the Massachusetts Ins t i  tu te  of Technology. 
J.A. Siege1 contributed a number of suggestions fo r  this Users' Manual. 

Prof. 



FOCAL-RT USER'S GUIDE 

June, 1972 

I. 

11. 

111. 

IV. 

V. 

'VI . 

INTRODUCTION 

1.1 FOCAL-RT: A Research-Oriented FOCAL f o r  the PDP-12 
1.2 Suggested Reading 

NEW COMMANDS 

2.1 LOAD BINARY 
2.2 LOCATE FILE 
2.3 LIBRARY EXIT 
2.4 Computed GOT0 
2.5 Computed DO 

NEW FUNCTIONS 

3.1 FRAN( ) 
3.2 FIN( ) 
3.3 FOUT( ) 
3.4 FPRI( ) 

OTHER MODIFICATIONS OF FOCAL-12 

4.1 Functions Deleted 
4.2 FOCAL-RT User Area 
4.3 LIBRARY SAVE and LIBRARY MAKE 

LINKING SUBROUTINES FOR ASSEMBLY -LANGUAGE PROGRAMS 

5.1 FOCLDR 
5.2 RD-WRI 

PROGRAMMING WITH FOCAL-RT 

6.1 Chaining FOCAL and As 
6.2 Randomizing Sequences 

embl y-L nguage Programs 

6 . 3  Communication between FOCAL and Assembly-Language 
6.4 Demonstration Program 



V I  I. MISCELLANEOUS TECHNICAL NOTES 

7.1 Minimizing Program Length 

7.2 Minimizing Tape Motion 
7.3 Using the TYPE Command 
7.4 Maximizing the Speed o f  Program Execution 

V I I I .  APPENDICES 

8.1 Flow Chart Describing the  Operation o f  the LOAD BINARY and 
LOCATE FILE comnands 

8.2 FOCAL-RT Patch f o r  J i g g l i n g  FRAN( ) Through the  Right  Switch 
Register 

8.3 Decimal A S C I I  Codes f o r  FIN( ) and FOUT( ) 
8.4 RD-WRI Subroutine 
8.5 FOCLDR Subroutine 



I. INTRODUCTION 

1.1 FOCAL-RT: A RESEARCH-ORIENTED FOCAL FOR THE PDP-12 

FOCAL-RT i s  a modified version of FOCAL-12 tha t  i s  specialized 
for  real-time applications, such as laboratory experiments. 
FOCAL-RT may be used to  program simple data-acquisition tasks, provided 
that  t i m i n g  i s  not too c r i t i ca l  and data rates are low. 
usefulness of FOCAL-RT does not end here. 
interleave FOCAL-RT and assembly-language programs tha t  share common data 
f i l e s ,  one can do the b u l k  of the programming o f  even very complex tasks 
i n  FOCAL. 

Like FOCAL-12,  

However, the 
Because i t  i s  possible t o  

In a typical laboratory experiment, one may i n p u t  parameters for  
a day's session, s e t  up sequences of t r i a l s ,  and randomize extraneous 
variables i n  FOCAL. All of the information necessary to  r u n  the session 
is  l i s t e d  sequentially i n  a FOCAL data f i l e .  
program to  r u n  the experiment may be called up w i t h  the FOCAL-RT 
LOAD BINARY command. The assembly-1 anguage program simply works through 
the FOCAL data f i l e ,  controlling the machinery, collecting data, and t i m i n g .  
Since FOCAL i s  not core-resident d u r i n g  the data collection phase of an 
experiment, one is  not res t r ic ted  by the l imitations of an interpreted 
language a t  this point. After the data have been collected, a chained 
FOCAL-RT program may be called up f o r  data analysis. 
combination of FOCAL and assembly-language, one may achieve s ignif icant  
savings in software development time over s t ra ight  assembly-language 
programming. 

A short  assembly-language 

By using a 

As well as the chaining features described above, FOCAL-RT 
has a number of  features tha t  are useful f o r  research applications. 
include a new random number function, computed program branches and 
subroutine ca l l s ,  and the ab i l i t y  to  handle alphanumeric t ex t  i n  FOCAL 
data f i l e s .  

These 

1 .l-1 



1.2 SUGGESTED READING 

(a)  FOCAL-12 Programing Manual . Order no. DEC-12-AJAA-D from Program 
Library ,  D i g i t a l  Equipment Corp., Maynard, Mass. 01754, U.S.A. 

(b)  Programming Languages, 1970, Ch. 11, FOCAL. Ava i lab le  from the 
DEC Program Library .  

( c )  Laboratory Computer Handbook, 1971 . 
Library .  

Avai 1 ab1 e from t h e  DEC Program 

(d) LAP6-DIAL Programmer's Reference Manual, DEC-12-SE2D-D. Ava i l  ab le 
from t h e  DEC Program Library .  

(e) Siegel , W. Combining FOCAL and assembly language. Behavior Research 
Methods and Instrumentat ion,  1972, 4, 105-106. 

( f )  Siegel, W., & Whi t t le ,  K. 
DECUS Symposium, Spring, 1972. 

Using FOCAL i n  research, Proceedings o f  the 

1.2-1 



11. NEW COMMANDS 

2.1 LOAD BINARY 

L B, Name, U n i t  2 

where "Name" r e f e r s  t o  a s e l f - s t a r t i n g  b ina ry  program t h a t  i s  f i l e d  i n  
the DIAL index, and "Uni t "  r e f e r s  t o  the device on which the program i s  
stored. Uni ts fl - 7 r e f e r  t o  LINCtape, and u n i t s  lpl - 25 r e f e r  t o  RSpl8 
o r  RK8 disks (cf., p. 5, FOCAL-12 Programming Manual ). 

w i l l  load and s t a r t  a machine-language program named RUN t h a t  i s  located 
on LINCtape u n i t  pl. 

The program s p e c i f i e d  by LOAD BINARY may s t a r t  i n  e i t h e r  
LINC-mode o r  8-mode. A t  present, LOAD BINARY w i l l  load only  i n t o  FIELD 9, 
b u t  i t  could be e a s i l y  adapted t o  handle 8K o f  core. 
o u t l i n i n g  the  operat ion o f  t h i s  command i s  found i n  Section 8.1. 

A f l ow  cha r t  

2.1-1 



2.2 LOCATE FILE 

L F, Name, U n i t  3 

stores the u n i t ,  s t a r t i n g  block, and length  o f  a designated FOCAL data f i l e  
i n  locat ions BBBl, p)plP2, and p)pIp13 o f  FIELD 1. 
2.1. 

"Name" and "Uni t "  are as i n  

LOCATE FILE i s  used when chained FOCAL and assembly-language 
programs share common data f i l e s .  The parameters saved by LOCATE FILE are 
used by a subroutine named RD-WRI (Section 5.1) i n  order  t o  access a FOCAL 
data f i l e  by name w i t h i n  an assembly-language program. 

One may open o r  c lose a FOCAL f i l e  prev ious ly  spec i f i ed  by a 
LOCATE FILE command simply by jumping t o  RD-WRI i n  the  assembly-language 
program. This fea ture  i s  espec ia l l y  useful  i f  one moves data from one 
storage device t o  another, as the actual  tape o r  d isk  operations are 
i n v i s i b l e  t o  the user, and since i t  i s  n o t  necessary t o  worry about the 
absolute addresses o f  the f i l e  on the d i f f e r e n t  storage devices. 

The operat ion o f  the  LOCATE FILE command i s  f low-charted i n  
Section 8.1. 

NOTE: LOCATE FILE should on ly  be used immediately before e x i t i n g  from 
FOCAL v i a  a LOAD BINARY COMMAND, s ince one o f  i t s  e f f e c t s  i s  t o  
scramble t e x t  d isplayed on the CRT using OUTPUT SCOPE. I t  doesn't  
a f f e c t  the  te le type operation, however. 

2 . lg  L F, DATA, B 

2.28 L B, RUN, 1 

/SAVE PARAMETERS OF 
/FILE NAMED "DATA STORED 
/ON UNIT 8 

/LOAD ASSEMBLY- 
/LANGUAGE PROGRAM 
/FROM UNIT 1 

2.2-1 



2.3 LIBRARY E X I T  

returns the user t o  the DIAL monitor. 

2.3-1 



2.4 COMPUTED GOTO 

G X,L1 ,L2...Ln 9 

where X i s  any legal variable, and Li  i s  a program l ine  number. 

l ine  l i s ted  i n  the command. 
computed GOTO. 

The computed GOTO command transfers program control t o  the X t h  
Only the integer value of X i s  used by the 

1.1Jd SET Y=3 

1.2p) G Y ,  4.1, 5.1, 6.1, 7.1 

will cause a program branch to  l ine  6.1. 

GOTO command provided that  they can a l l  be f i t  into a single l i ne  o f  FOCAL 
program text. 

comnand will be interpreted as a standard FOCAL GOTO. 

As many l ine  numbers as desired may be l i s t e d  i n  a computed 

If  a l i t e r a l  rather than a variable follows the GOTO, then the 

e.g., 1.1p) G 3.1 

will cause a program branch to  l ine  3.1. 

With a computed GOTO command, i f  the integer value of the variable 
X is  greater than the number of program l ines  l i s t ed  i n  the command, then the 
command following the GOTO statement will be executed. 

e.g., l . la  S X=lP,  

1.2P, G X ,  2.10, 3.1p) 

1.3p) T "ERROR" 1 

will resul t  in "ERROR" being typed on the teletype. 

2.4-1 



If  X=p), then the command will be interpreted as Gg , and control 
will be transferred to  the lowest l ine  number i n  the program. 

2.4-2 



2.5 COMPUTED DO 

D X,G1 ,G2...Gn 3 

where X is  a legal variable, and Gi i s  a program group o r  l ine  number. 

FOCAL-RT allows computed subroutine ca l l s  u s i n g  the DO 
command, and the syntax i s  similar t o  tha t  of the computed GOTO. 
i s  followed by a legal variable X ,  tha t  variable is  evaluated and 
integerized. The X t h  1 ine o r  group o f  1 ines 1 isted i n  the command will be 
returned t o  the command following the DO statement. 

If DO 

e.g., 1.10 SET J=2 
1.28 DO J ,  2.0, 3.0,  4.13 
1.30 Q 

will resul t  i n  execution of a l l  group 3 l ines ,  a f t e r  which the program 
will halt.  In  the above example, i f  J=3, l ine  4.13 will be executed, and 
then the program will halt.  

If DO is  followed by a l i t e r a l  rather than a variable, the 
command will be interpreted as a standard FOCAL DO command. 

e.g., 1.10 DO 2.0 
1.20 QUIT 

will  resul t  i n  execution of a l l  group 2 l ines ,  and then the program will 
ha1 t. 

- NOTE: If  the value o f  X in a computed DO command i s  greater than  the 
number o f  l ines l i s ted  i n  the command, then the program exi ts  from 
the DO statement and proceeds t o  the next FOCAL command. 

2.5-1 



111. NEW FUNCTIONS 

3.1 FRAN( ) 

SET A=FRAN(X)  3 

defines the variable A as a random integer such tha t  1sAsX. 

In many research applications, i t  i s  important t o  have a 
random number generator w i t h  adequate distributional and sequential 
characterist ics.  The algorithm used by FOCAL-RT's FRAN( ) function was 
developed by Green, Smith, and Klem (1959)*, and i t  has been thoroughly 
documented and tested. The periodicity of the sequences produced by i t  
i s  i n  the neighborhood of 67 mil 1 ion. 

In order t o  generate a random integer from 1 t o  25, one need 
only cal l  FRAN( ) with 25 as the argument: 

1.lg SET A=FRAN(25) 

Jiggling FRAN( ). With FOCAL-RT, the random number function i s  
" j i g g l e d "  when FRAN( ) i s  called f o r  the f i r s t  time. I f  this  were not done, 
the same sequence of numbers would be produced each time FOCAL i s  loaded. 
KW-12A clock i s  used i n  conjunction with sense-switch #1 on the computer 
console to  produce a random seed number. 
then the r ight  switch regis ter  may be used to  vary the i n i t i a l  random number 
(see 8.2). 

loaded, the clock i s  s e t  ticking a t  i t s  f a s t e s t  ra te  (4gg KHz.). 
then waits fo r  the operator t o  h i t  SNS-1. As soon as this i s  done, the 
current value of the clock counter i s  used t o  j iggle  FRAN( ). 
necessary to  h i t  SNS-1 the f i r s t  time FRAN( ) i s  called. After the random 
number function has been in i t i a l i zed ,  i t  generates numbers directly.  

The 

I f  the KW-12A clock i s  not available, 

When FRAN( ) is  called f o r  the f i rs t  time a f t e r  FOCAL-RT has been 
The computer 

I t  i s  only 

During the execution o f  a program, i t  may not be obvious to  the 
user t h a t  he is  supposed t o  h i t  SNS-1 a t  a given point i n  time, unless a 
reminder i s  given. The following routine may be useful fo r  i n i t i a l i z i n g  FRAN( ) :  

* Green, B. F., Jr. ,  Smith, J.E.K., & Klem, L. Empirical tests of an 
additive random number generator. Journal of the Association of  Computing 
Machinery, 1959, 6 ,  527-537. 

3.1-1 



2.10 T "HIT SNS-1" ! 
2.20 0 I,2; 0 I 
2.30 S A=FRAN( ) /INITIAL R.N. 
2.40 0 I 

/ A  HELPFUL REMINDER 
/WAIT FOR TYPING TO FINISH 

/THIS WON'T WORK: SEE BELOW 

NOTE: Since the i n i t i a l  FRAN( ) call  uses the KW-12A clock, i t  will 
change the clock rate and mode from the values determined by a 
previous OUTPUT INTERVAL command, e.g., l ine  2.2p). 
command i n  l ine  2.4p) will not produce a delay of 2 sec. unless 
the clock i s  reset  as follows 

The 0 I 

2.48 0 I,2; 0 I 

Generating Random Sequences. If i t  is not necessary to  specify 
how many times each item occurs i n  the sequence, then the following 
routine may be used to  give randomization w i t h  replacement: 

1.18 ASK "NO. OF ITEMS TO BE RANDOMIZED?" S,! 
1.29) ASK "SEQUENCE LENGTH?" N,! 

1.40 0 I,2; 0 I 
1.50 FOR I=l,N; TYPE FRAN(S),! 

1.38 TYPE "HIT SNS-l",! 

A no-replacement randomization routine i s  provided in Section VI, 
together w i t h  several examples of the use o f  the new FWN( ) function. 

3.1 -2 



3.2 FIN( ) 

SET A=FIN( ) 3 

se ts  A equal to  the decimal ASCII code o f  a keyboard i n p u t .  

Normally FIN( ) is used i n  conjunction w i t h  FOUT( ) 
(Sectmion 3.3) t o  handle character strings i n  FOCAL integer data f i l e s .  
T h i s  i s  particularly useful i f  one wishes t o  s tore  large amounts of 
alphanumeric tex t  w i t h  FOCAL, since FOCAL data f i l e s  do no t  compete w i t h  
program text for  core. 

e.g., 1.lp) L M,l,DATA,p) 
1.2p) L O,Fg,I ,DATA,P) 
1.3p) FOR I=P),19; SET Fp)(I)=FIN( ) 
1.4P) L C y  Fp) 

This program creates a FOCAL f i l e  named DATA, and then opens 
i t  as an integer f i l e .  
keyboard and stores the i r  ASCII codes i n  locations p) t o  19 o f  the data f i l e .  

Line 1.3@ accepts 2p) characters from the teletype 

CTRL/Z may be used as a terminator when FIN( ) i s  used i n  
conjunction w i t h  the FOR command. T h i s  i s  useful when one does no t  
know i n  advance how long the character string will be...as may be the case 
w i t h  a question/answer dialogue. 
character typed i s  CTRL/Z,  then 
( a )  

( b )  

(c )  

I f ,  i n  the above example, the lgth 

the FOR statement will be terminated w i t h  Fjil(9) containing the l a s t  
character ( the ASCII code for  CTRL/Z) of the i n p u t  string; 
the value of I will be s e t  equal to  i t s  value a t  the time CTRL/Z was 
inputted, plus one; i n  this case, I=lp); 
the program will proceed t o  the next command; in this case, i t  will 
close the data f i l e .  

Programming Notes : 

(1) The RUBOUT f a c i l i t y  is available w i t h  FIN( ). 
( 2 )  With  FOCAL-RT, two tape blocks worth of core (512 

used as a buffer for FOCAL f i l e s .  When a f i l e  loEgtion t h a t  i s  n o t  
represented i n  core is  referenced i n  a FOCAL program, tape motion 
will occur as a tape block containing the relevant datum i s  searched. 
I f  this happens while a character string is  being inputted us ing  
FIN( ), some of the i n p u t  may be lost .  T h i s  can be avoided by making 
sure that  a single FIN( ) instruction refers only to  f i l e  locations 
that  are currently i n  the core f i l e  buffer. 

locations) are 

3.2-1 



( 3 )  In some s i tuat ions,  i t  may be necessary t o  i n p u t  a ser ies  of successive 
character strings. For example, one m i g h t  want to  have a respondent 
type his name, his place of b i r t h ,  the date, etc. ,  and i n  each case, 
the programmer does not know i n  advance how many characters are 
required for  each piece of information. I f  the respondent uses 
CTRL/Z t o  terminate an i n p u t  string, i t  is  necessary to  keep track of 
where that  string ends so t h a t  the next string can be read into 
adjacent f i l e  locations. 
recursively: 

In the following example, this is  done 

1.19) L 0,  Fl,I,DATA,P) 
1.15 SET A=@ 
1.29) TYPE ! "NAME:"; DO 2.9) 
1.3p) TYPE ! "RANK:"; DO 2.91 
1.4g TYPE ! "SERIAL NUMBER:"; DO 2.8 
2.19) FOR I=A, lap); SET Fp)(I)=FIN( ) 
2.29) SET A=I 
2.39) TYPE ! 

(4) CTRL/Z works as a terminator w i t h  FIN( ) and FOUT( ) only i f  these 
commands directly follow a FOR command. 

e.g., 1.19) FOR A=l,19); S C=FIN( ) 

CTRL/Z does not work in the following DO loop: 

1.10 F I=p),20; D 2.p) 

2.1@ S A=FIN( ) 
2.2@ T !!! 

1.29) Q 

(5) A table of decimal ASCII codes is given i n  Section 8.3, 

3.2-2 



3.3 FOUT( ) 

SET D=FOUT(A) 2 

will type o r  display on the current o u t p u t  device a character whose 
decimal ASCII code is  equal t o  A. Here, D i s  a dummy variable. 

Normally, FOUT( ) is  used to  o u t p u t  characters whose ASCII 
codes have been previously stored in a FOCAL data f i l e  w i t h  FIN( ). 

2.05 OUTPUT TELETYPE 
2-10 L O,Fg,I,DATA,g 
2.2121 
2.30 L C,  FP) 

FOR I=V, 19; SET D=FOUT (FB(1)) 

T h i s  example would type o u t  the characters whose ASCII codes were stored 
in locations 0 t o  19 of an integer f i l e  named DATA. 

CTRL/Z acts as a terminating character w i t h  FOUT( ) just as w i t h  
FIN( ). 
encountered, the program loop will be terminated and control will be 
transferred to l ine  2.30. 
i t s  value a t  the time CTRL/Z i s  found. 

I f  d u r i n g  execution of l i ne  2.20, the code for  CTRL/Z i s  

The variable I will be incremented by one over 

Often a s e t  of character strings may be stored sequentially i n  
a data f i l e ,  each separated by the code for  CTRL/Z. 
user may no t  know exactly where each s t r ing  i s  stored. 
routine may be used t o  keep track o f  f i l e  locations when o u t p u t t i n g  
successive strings. 

In that  case, the 
The following 

3.10 L 0, F@,I,DATA,0 
3.15 SET A=@ 
3.20 TYPE ! "NAME:"; DO 4.0 
3.30 TYPE ! "RANK:"; DO 4.0 
3-40 TYPE 1 "SERIAL NUMBER:"; DO 4.8 
3.50 QUIT 
4-18 FOR I=A,lPIPI; SET D=FOUT(FB(I)) 
4.20 SET A=I 
4.30 TYPE ! 

3.3-1 



3.4 FPRI( ) : LINE-PRINTER OPTION 

SET D=FPRI( ) 2 

d ive r t s  output t o  the LP08 l i n e  p r in te r .  
te letype, 0 S t o  re tu rn  t o  the scope. 

Use 0 T t o  r e t u r n  t o  the 

3.4-1 



I V .  OTHER MODIFICATIONS OF FOCAL-12 

4.1 FUNCTIONS DELETED 

Several mathematical funct ions ava i l ab le  i n  FOCAL-12 have been 
deleted i n  FOCAL-RT i n  order  t o  increase the  area ava i l ab le  for user 
programs. These are: 

FEXP 
FATN 
FLOG 
F S I N  
FCOS 

4.1-1 



4.2 FOCAL-RT USER AREA 

Table 4.2-1 o u t l i n e s  the space a v a i l a b l e  f o r  program t e x t ,  
va r iab le  storage, and push-down l i s t  i n  FOCAL-12 and FOCAL-RT. 

TABLE 4.2-1 

core No. o f  Locations % 
Boundaries Locations Gained Gain 

I 

I 
I 

FOCAL-1 2 I I 322g8-461 78 

I 

FOCAL-RT 322gg5111 

7 6 7 ~ a  

9531 pl 1861g 24.2 
I 
I 
I 

The end o f  the user area o f  both FOCAL-12 and FOCAL-RT i s  
1 abel l e d  BOTTOM; i . e . ,  f o r  FOCAL-RT, 80TTOM=5111 . User over1 ays are 
added t o  FOCAL by r e d e f i n i n g  BOTTOM t o  a lower m8mory l oca t i on ,  thereby 
s a c r i f i c i n g  t e x t  storage. The user patch i s  then pos i t i oned  between the 
o l d  and new d e f i n i t i o n  o f  bottom. 

4.2-1 



4.3 LIBRARY SAVE AND LIBRARY MAKE 

With FOCAL-12, the user i s  warned i f  he attempts t o  save a 
program under a name a1 ready 1 i s t e d  i n  the DIAL  index. 
t h a t  he wishes t o  replace the  f i l e  by t yp ing  "R" on the keyboard. 
does no t  have t h i s  feature, and f i l e s  are saved d i r e c t l y  regardless o f  
whether o r  no t  the f i l e  name was used previously. 

He must i n d i c a t e  
FOCAL-RT 

The same holds t r u e  when f i l e s  are being created w i t h  the LIBRARY 
MAKE command. 

4.3-1 



V . L I N K I  NG SUB ROUT I N ES FOR ASSEMBLY - LANGUAGE PROGRAMS 

Two subroutines are described here t h a t  f a c i l i t a t e  the 
i n te r l eav ing  o f  FOCAL-RT and assembly-language programs. When incorporated 
i n t o  assembly-language programs, RD-WRI al lows the  user t o  open o r  c lose 
a FOCAL data f i l e  whose name had been prev ious ly  spec i f i ed  by a LOCATE FILE 
command (Section 2.2). A second subroutine, FOCLDR, al lows the user t o  
chain FOCAL-RT user programs t o  assembly-1 anguage programs. 
simp1 i f y  the res idual  machine-language programming necessary w i t h  the 
FOCAL-RT system by a l lowing the user t o  access program and data f i l e s  by 
name ra the r  than by absolute tape o r  d i sk  addressing, and by making the 
tape o r  d i sk  I/O operations i n v i s i b l e  t o  the user. 

Both subroutines 

5.1 RD-WRI: OPENING AND CLOSING FOCAL DATA FILES WITHIN ASSEMBLY- 
LANGUAGE PROGRAMS 

RD-WRI uses in format ion prev ious ly  s to red  i n  loca t ions  P,P,P,l-P,P,83 
o f  FIELD 1 by a FOCAL-RT LOCATE FILE command (Section 2.2) t o  read a FOCAL 
data f i l e  i n t o  core from tape o r  disk, o r  t o  w r i t e  i t  back onto the storage 
devi ce. 

With RD-WRI, i t  i s  n o t  necessary fo r  the user t o  know where a 
p a r t i c u l a r  f i l e  i s  loca ted  on a storage device, since t h a t  in format ion 
i s  obtained by the LOCATE FILE command. Moreover, RD-WRI e l iminates 
the  need f o r  modifying the assembly-language program i f  a f i l e  i s  moved, 
even t o  a d i f f e r e n t  storage device. 

To open the FOCAL f i l e  whose parameters have been saved by a 
LOCATE FILE command, en ter  RD-WRI w i t h  a JMS READIN OR JMS I PREADIN. 

To w r i t e  the f i l e  back onto tape, do a JMS WRIOUT o r  a JMS I 
PWRIOUT. 

When adding RD-WRI t o  an assembly-language program, i t  i s  necessary 
t o  s e t  l oca t i on  "MBLK1" o f  t h a t  subroutine t o  the s t a r t i n g  memory block fo r  
the data f i l e .  For the purposes o f  the RD-WRI command, the f i r s t  8K of the 
PDP-12 memory are d iv ided i n t o  a t o t a l  o f  40 blocks, each conta in ing 40g8 
locations. This organizat ion i s  shown i n  Figure 5.1-1. 

The maximum length  o f  the data f i l e  i s  determined by the amount 
of core i n  FIELD P, t h a t  the user wishes t o  reserve f o r  h i s  assembly- 
language program. It i s  genera l ly  a good idea t o  place the  assembly- 
language program i n  the lower p a r t  of FIELD P, ,  as shown i n  Figure 5.1-1. 
Then, the remainder of FIELD P, and a l l  of FIELD 1 (except f o r  the l a s t  two 
memory blocks) may be used f o r  data f i l e s .  

5.1-1 



Memory Block 

0 1 400 0 - 3 7 7  - 777 g 
2 1000 - 1377 
3 1400 - 1777 
4 2000 - 2377 
5 2400 - 2777 
6 3000 - 3377 

7 3400 - 3777 
10 4000 - 4377 

i 

i 

i 

i 

i 
i 

i 

11 4400 - 4777 > 
12 5000 - 5377 
13 5400 - 5777 
14 6000 - 6377 
15 6400 - 6777 
16 7000 - 7377 

i 
i 
i 
i 
i 
i 
i 
i 
i 

i 
--------------------,,,,,,_I 17 7400 - 7777 

20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 

36 
37 

0 - 377 : I  
1 
1 
1 
1 
1 

400 - 777 

1000 - 1377 1 

1400 - 1777 
2000 - 2377 

2400 - 2777 
3000 - 3377 
3400 - 3777 
4000 - 4377 
4400 - 4777 
5000 - 5377 
5400 - 5777 
6000 - 6377 
6400 - 6777 
7000 - 7377 
7400 - 7777 

1 D 
1 

Assembly Language 
Program 

Data F i l e  

Dia l  I/O 
Hand1 ers 

F i e l d  0 

F i e l d  1 

FIGURE 5.1-1 

5.1-2 



N.B.--Data f i l e s  must not extend into memory blocks 36 and 37 i n  FIELD 1. 
This area i s  reserved fo r  the DIAL-MS I/O handlers, which are l e f t  
over from FOCAL a f t e r  the assembly-language program has been 
read i n t o  FIELD 0 w i t h  a LOAD BINARY command, and which are  used by 
RD-WRI. 

NOTES: (1)  RD-WRI is  72 locations long, and i t  is  written i n  8-mode. 
( 2 )  I t  may be plgced on any page of core. 
(3)  The source of RD-WRI is found on the FOCAL-RT systems 

LINCtape (available from DECUS). 
(4) RD-WRI works only on f i l e s  w i t h  no header block--i.e., FOCAL 

data f i les .  
(5 )  The operation of RD-WRI is flow-charted i n  Section 8.4. 

5.1-3 



5.2 FOCLDR 

FOCLDR i s  an assembly-1 anguage subrout ine t h a t  loads FOCAL-RT 
i n t o  core, i n i t i a l i z e s  it, then loads and s t a r t s  a FOCAL user program 
from tape o r  disk. With the a v a i l a b i l i t y  o f  FOCLDR and the FOCAL-RT 
LOAD BINARY command (Sect ion 2.1) i t  i s  poss ib le  t o  go back and f o r t h  
between FOCAL and assembly-language programs w i thout  touching the  computer 
consol e. 

FOCLDR i s  capable o f  reading any o f  1p d i f f e r e n t  FOCAL programs 
i n t o  the FOCAL t e x t  b u f f e r  from u n i t  p. To l oad ' i  FOCAL program named 
PROGRAM3, jump t o  FOCLDR w i t h  38 i n  the  AC. For PROGRAMN, (OsNs9) 
one c a l l s  FOCLDR w i t h  the oc ta l  equiva lent  o f  N i n  the  AC. 

FOCLDR works by p lac ing  the A S C I I  codes f o r  the fo l l ow ing  characters 
i n t o  the comnand b u f f e r  a f t e r  FOCAL-RT has been loaded and i n i t i a l i z e d :  

L G, PROGRAMNJ 

where N=contents of AC when FOCLDR i s  ca l led.  

By s u b s t i t u t i n g  these A S C I I  codes w i t h  others o f  the  user 's choice, 
i t  i s  poss ib le  t o  l oad  programs w i t h  any admissible name from any storage 
device handled by DIAL-MS. 
programs as PROGRAMN, and t o  use LINCtape 8 as the storage un i t .  

Otherwise i t  i s  necessary t o  save FOCAL 

NOTES: 

(1) 

(2) 

The pos i t i on ing  o f  FOCLDR i n  core i s  c r i t i c a l .  
l oca t i on  4008 o f  FIELD 0 so t h a t  i t  w i l l  no t  be read over by FOCAL-RT. 
Locat ion PTR+2 o f  FOCLDR must be s e t  t o  the s t a r t i n g  b inary  tape b lock 
o f  FOCAL-RT. I f  FOCAL-RT i s  the f i r s t  f i l e  added t o  the tape, i t  w i l l  
s t a r t  a t  b lock 243 . This i s  one b lock past  the l o c a t i o n  o f  FOCAL-RT 
spec i f i ed  by the DHAL index, s ince the f i r s t  b lock recorded i n  the 
index i s  the header block. FOCLDR ignores the  header block and reads 
the FOCAL-RT b inary  f i l e  i n t o  core d i r e c t l y .  

To s i m p l i f y  matters, always save FOCAL-RT as the  f i r s t  program on 
the tape. 
FOCLDR i s  a LINC-mode rout ine,  and i t  occupies 113 core locat ions.  
A f low-char t  o f  FOCLDR's operat ion i s  given i n  Secf ion 8.5. 

I t  should s t a r t  a t  

That way PTR+2 w i l l  always have the  same value (i.e:, 2438). 
(3) 
(4) 

5.2-1 



VI. PROGRAMMING WITH FOCAL-RT 

In many situations where t i m i n g  i s  not too c r i t i c a l ,  where data 
rates are low, and where core limitations are  not problemmatical, one may 
be able to  program a research paradigm ent i re ly  w i t h  FOCAL-RT. This i s  
especially feasible i f  the task involves alphanumeric i n p u t  and output, 
where FOCAL-RT's ab i l i t y  to  handle character strings comes to  the fore. 

More demanding tasks may be programmed with a combination of FOCAL 
and assembly language. Here one may use FOCAL-RT to  do a l l  of the more 
d i f f i cu l t  work: inputting of parameters a t  the beginning of an experiment, 
set t ing up sequences of t r i a l s ,  data analysis, and so forth. A short  
assembly-language program may be used during the data-col lection phase 
of the experiment. Because of the chaining features available w i t h  the 
FOCAL-RT operating system, i t  is  not necessary to  have the interpreter  i n  
core during c r i t i ca l  phases of the research, and the limitations of an 
interpreted language are thus not applicable d u r i n g  those times. In  most 
cases, a very considerable reduction i n  program development time may be 
achieved by interleaving FOCAL and assembly-language programs. 

5.2-2 



6.1 CHAINING FOCAL AND ASSEMBLY-LANGUAGE PROGRAMS 

With FOCAL-RT's LOAD BINARY command, i t  is possible t o  go from 
a FOCAL program t o  an assembly-language program stored on tape or  d i sk  
without touching the computer console (Section 2.1). Similarly, i t  i s  
possible to  chain a FOCAL user program to  an assembly-language program by 
jumping  t o  the FOCLDR subroutine (Section 5.1). Moreover, one may open and 
close named FOCAL fi les w i t h i n  an assembly-language program by u s i n g  the 
RD-WRI subroutine (Section 5.2) i n  conjunction w i t h  the FOCAL-RT LOCATE F I L E  
COMMAND (Section 2.2). 

These chaining procedures may be sumarized as follows: 

LOAD D I A L  

LOAD FOCAL-RT 

1 
LOAD AND RUN FOCAL PROGRAM 

CLOSE DATA F I L E  AND GET F I L E  PARAMETERS 
L C ; L F  

3- 
LOAD ASSEMBLY-LANGUAGE PROGRAM 

L B  

OPEN COMMON DATA F I L E  
USING RD-WRI 

RUN + CLOSE F I L E  .-. LOAD AND START FOCAL 
WITH RD-WRI PROGRAM WITH FOCLDR 

6.1 -1 



6.2 RANDOMIZING SEQUENCES 

I f  one does n o t  wish t o  p lace r e s t r i c t i o n s  on the  sequence, then 
programming random events i s  very s imple w i t h  FOCAL-RT. The f o l l o w i n g  
r o u t i n e  randomizes the  order  o f  th ree  sentences t h a t  w i l l  be d isp layed on 
the  PDP-12 scope. It uses the new FRAN( ) f u n c t i o n  and the  computed DO. 

2.18 
2.28 
2.38 
2.48 
2.58 
3.18 
3.28 
4.18 
4.28 
4.38 

A "SEQUENCE LENGTH?" N ! 
T "HIT  SNS-l", ! /JIGGLE FRAN( ) 
0 I, 2 ;  0 I; S A=FRAN( ) 
0 S; F I =  1,N; D 3.8 
QUIT  
S A=FRAN(3) 
DO A, 4.18, 4.28, 4.38 /COMPUTED DO 
T "THIS IS SENTENCE 1." ! 
T "THIS I S  SENTENCE 2." ! 
T "THIS I S  SENTENCE 3." ! 

Randomization Without Replacement. 

I f  one wishes t o  r e s t r i c t  the  sequence by spec i f y ing  how many 
times each i t em occurs, then the  f o l l o w i n g  r o u t i n e  may be used t o  achieve 
randomization w i thou t  replacement: 

'> 1 9 3 3 

I -- 
I 
I 

T-1 i 10 
I 

Figure 6.2-1 

C = l  

c = 2  

c = 3  

(1)  Open a FOCAL data f i l e ,  F1. 
(2) Determine the number o f  times, N(c), each 

o f  the  items i s  t o  occur. 
( 3 )  Determine the  t o t a l  no. o f  t r i a l s ,  T. 
(4)  L i s t  each i t e m  N(c) i n  a r b i t r a r y  o rder  i n  

F1. The f i l e  w i l l  l ook  l i k e  Fig. 6.2-1 a t  
t h i s  po in t .  

( 5 )  The contents o f  Fl(pI) w i l l  now be exchanged 
w i t h  those o f  one o f  t he  T f i l e  elements 
se lec ted  a t  random. 

(6) The contents o f  F l ( 1 )  a re  exchanged w i t h  
those o f  one o f  t he  remaining T-1 f i l e  
elements drawn a t  random. 

( 7 )  This process i s  repeated u n t i l  a l l  T elements 
have been shuffled. The f i l e  w i l l  now look 
l i k e  Fig. 6.2-2. 

6.2-1 



A FOCAL-RT r o u t i n e  using t h i s  algori thm i s  
given below. It allows the user t o  spec i fy  
the s t a r t i n g  l o c a t i o n  i n  the data f i l e ,  SL, 
where the random sequence i s  t o  begin. 

I 

I 
T-l  I 6 

Figure 6.2-2 

31.10 c; 18.1 

6.2-2 



6.3 COMMUNICATION BETWEEN FOCAL AND ASSEMBLY LANGUAGE 

NOTE: The following material is largely exerpted from Siegel and 
Whittle (1972)*. 

I f  one is to  interleave FOCAL and assembly-language programs, i t  
is necessary for  the data produced by the various chained programs t o  be 
compatible. T h a t  i s ,  codes produced by FOCAL programs must be in te l l ig ib le  
to  assembly-language programs, and vice versa. This i s  no problem i f  one 
places a l l  o f  the common da ta  i n  FOCAL f i l e s  using 12-bit integer format. 

I f  the decimal number 1029 is  placed i n  a FOCAL integer f i l e ,  
i t  i s  stored as a 12-bit binary equivalent. 
for the PDP-12 consist of 12-bit binary numbers, then one can compute 
any machine-language instruction or datum using FOCAL-RT. 
extensive s e t  of mathematical functions that  are b u i l t  into FOCAL, th i s  
means that  one can use this  interpretive package as a very sophisticated 
compiler..,a computational compiler, i f  you wil l .  

FOCAL i s  used t o  compile an en t i re  assembly-language program. Rather, i t  
i s  used t o  compile a s e t  of codes that  can be used sequentially by 
subroutines in the assembly-language program for  r u n n i n g  the t r i a l s  of an 
experiment. 
b u t  more typically they are i n  the form of data that  are  used as operands 
by machine-language instructions. 

Since a l l  o f  the machine codes 

Given the 

When we use the term "computational compiler," we don't mean that  

The compiled codes may be actual machine-language instructions 

W i t h  th i s  system, machine-language programming can often be 
reduced to hooking together a few device handlers and timing routines. 
This i s  because a l l  or most of the variable information can be s e t  up  in 
advance w i t h  FOCAL programs. 
i s  often t r iv i a l .  
. The remai n i n g  assembly-1 anguage programming 

Since FOCAL-RT can compute any 12-bit machine code, i t  can be 
used to  compute the information necessary to control any standard PDP-12 
peripheral ... e.g., clocks, D:A converter, relays...as well as any 
computer-controlled user device. 
up the osc i l la tor  and t i m i n g  codes fo r  a complex psychoacoustic experiment 
that  runs in assembly-language. A l inear  equation was solved by 
FOCAL-RT i n  order to  compute the machine code necessary to  produce any 
desired osci l la tor  frequency. 

For example, we have used FOCAL-RT t o  s e t  

* Siegel, W., & Whittle, K. Using FOCAL i n  research. Proceedings of 
the DECUS Symposium, Spring, 1972. 

6.3-1 



NOTES : 

(1)  The t r ick  is  to  specify the s e t  of data necessary to  r u n  one's experiment 
i n  assembly-1 anguage, and to  compute the decimal equi Val ent when 
working i n  FOCAL. An example of this strategy i s  given i n  Section 6.4. 

( 2 )  When set t ing up a FOCAL data f i l e  for  l a t e r  use by an assembly-language 
program, i t  i s  wise to  leave space fo r  the data tha t  are to  be added 
to  the f i l e  when the experiment is  being run .  The following i l l u s t r a t e s  
a general f i l e  organization tha t  we have found useful i n  a number of 
research appl ica t i  ons : 

F1 

I=Q ; Condition # 
1 Subject # 
2 ; Date 
3 ; Relay time 
4 ; Delay time 

5 ; Relay Code 
6 ; Data 
7 ; Relay Code 
8 i Data 
9 1 Relay Code 
1Q Data 

---------------- 

General Parameters 

Information Necessary to  Run Tri a1 s 
( i n  this case, Relay Codes). 
by Assembly- Lang uage Program 

Data are added 

I 

I 
I 

End of Trials 

I --- 
I 
I 
I 

T Stop Code 

6.3-2 



6.4 DEMONSTRATION PROGRAM 

* 
T h i s  section is  exerpted from Siegel and Whittle (1972). 

To i l l u s t r a t e  the use of FOCAL-RT as a computational compiler, 
we wrote a demonstration program t o  set the PDP-12 relays i n  random order 
us ing  a combination of FOCAL and assembly-language. 
together w i t h  an example of the programs' output are provided i n  
Figures 6.4-1 and 6.4-2. 
could use the new FRAN function very easi ly  to  produce integers between 1 
and 6. The problem is  that  these numbers don't mean much t o  the machine- 
language instruction that  sets the PDP-12 relays. For relays 0, 1 ,  2 ,  3, 
4, 5, the appropriate octal numbers tha t  one must p u t  i n  the accumulator 
to  set the relays are 1 ,  2 ,  4, 10, 20, 40. The decimal equivalents are 
1 ,  2 ,  4, 8, 16, 32. As you may have discerned, the required relay codes 
are related to  the numbers 1-6 by a simple powers-of-two transformation. 
The required exponential equation to  transform numbers produced by our 
random number function to  codes in t e l l i g ib l e  to  an assembly-language 
program takes only one l ine  of FOCAL coding (Fig.  6.4-1, l i ne  4.1pI). 

Program l i s t ings  

There are six relays on the PDP-12, and one 

The relay demo works as follows: 

(1 )  
wants to  s e t ,  how long he wants them on for, what the in t e r t r i a l  time i s ,  
and how many times each relay is to  occur i n  the sequence. 
t r i a l s  i s  generated, u s i n g  a card-shuffling algorithm to  give randomization 
without replacement. All of the necessary information is  stored i n  a FOCAL 
data f i l e ,  and then an assembly-language program is  called up to  r u n  the 
experiment. 
relays on and of f ,  and t iming .  When the "experiment" i s  finished, the 
FOCAL demo program is  loaded i n  again to  request a new s e t  of parameters , 
and so forth. 

A FOCAL-RT program asks the experimenter how many different  relays he 

Then a l i s t  of 

T h i s  program works through the FOCAL f i l e ,  t u r n i n g  the 

The assembly-language program for  the relay demo requires only 4510 
instructions, a number of which are involved i n  a canned routine f o r  the 
KW12-A clock. 

Note that the randomization routine given i n  Section 6.2 i s  
used almost verbatim here. 

* Siegel , W. , & Whittle, K. Using FOCAL i n  research. Proceedings 
of the DECUS symposium, Spr ing ,  1972. 

6.4-1 



FIGURE 6.4-1 

Setting the PDP-12 relays i n  random order u s i n g  a combination o f  FOCAL and 
assembly language: (a )  FOCAL-RT program t o  i n p u t  parameters and s e t  u p  
random sequence. 

6.4-2 



tl4on 
QI40 1 

0402  
6.4183 
04n4 
01 4 65 5 
134f16 
04n7 
R4lFl 
341 1 
0412 
0413 
0414 
0415 
8416 
Ql4 17 
a42# 
6342 1 
0422 
63427 
flfj211 

n425 
0426 

0427 
0430 
043 1 
13432 
0433 
n434 

Q43h 
8437 
Fl LI 4 B 
844 1 
0442 
0443 
PI444 
0445  
0446  
0447 
045Q 

Q451 
a452 
0453 

# f J 3 5  

4 1 Bn 
6 14 1 

0061 
2B10 
lC12 1 
146@ 
L3rdq7 
4456 
6422 
0 6? 1 4 
1080 
25301 
6426 
cIc?14 
1910121 
2qB2 
6426 
6404 
37 92 
047 1 
881  1 
6028 
ann2 

7841 
6133 
72flrd 
6132 
6 134 
1252 
6132 
6135 
7238 
1253 
6134 
72630 
1254 
6132 
7206 
6131 
S Z 4 6  
6141 

6 @ @ @  
01841 
0300 

* 2  a 

STARTI 

eE t i  IN, 

RETUHNI 

C L C K D  

C K C O N l r  
C KEN!.] r 

PMODE 
*4MU 
RI?d 'i I = 1 BT? 
<JMS RDGJR I 
L I N C  
LMODEJUXO 
SET I 1 

LDA I 1 
SAE I 
08137 
S KP 
JXT RETfE3hi 
A T R  
LDA 

J M P  CLCK 
ATR 
L D A  

JMP C L C %  
JMP HEGIN 
0708 
847 1 
c LA 
JMP 2 0  
PDT) 
PMODE 
c I A  
C L A 9  
C L A  
CLL!? 
C L E N  
TAD C K C O N l  
c LL3  
C L S A  
CLA 
TAD C K E N U  
CLEN 
C L A  
TAD C K C O N 2  
C L L R  
CLA 
C L S K  
JMP 0 - 1  
LINC 
LMODE 
JiYP B 
63180 
a3QIG.I 

2QM1 

2flPlpl 

20Ql1 

a 4 5 4  5100 C K C O N ~ D  510B 

FIGURE 6.4-2 

/GET D&TA 

/ I N I T I A L  2 T R  

/ G x r  s T I M J L I J S  
/ C H E C K  FO7 STOP 
/CODE. 
/ C O N T  I NiJF: e 

/SACK T(i FOCAL. 
/ C L O S E  RELAY 

/ON TIME 
/ C L O C K  ROTIT I N17 
/CLF:AR I3fCLAY 

/DELAY TIME 
/ C L O C K  K O r I T I N E  
/LOOP 
/tiET FOCLDR 

S e t t i n g  the PDP-12 re lays  i n  random order  us ing a combination of FOCAL and 
assembly language: (b) assembly 1 anguage program. 

6 



V I I .  MISCELLANEOUS TECHNICAL NOTES 

7.1 M I N I M I Z I N G  PROGRAM LENGTH 

The area o f  FOCAL-RT t h a t  i s  ava i l ab le  f o r  user programs i s  
q u i t e  res t r i c ted .  
a major reorganizat ion o f  FOCAL-12. 
t o  pp. 61-62 of t he  Laboratory Computer Handbook, where several t i p s  f o r  
minimizing program leng th  are out l ined. 

Eventual ly we may be able t o  so lve t h i s  problem through 
I n  the meantime, the user i s  r e f e r r e d  

Whenever possible, def ine var iab les as FOCAL f i l e  var iables.  
A l l  n o n - f i l e  var iab les use f i v e  core l oca t i ons  each. On the  o the r  hand, 
one may de f i ne  f i l e  var iab les w i thou t  impinging upon the space ava i l ab le  
f o r  user programs. F i l e  var iab les are handled i n  a separate core b u f f e r  
area t h a t  i s  512 loca t i ons  long. 
each va r iab le  re48i res on ly  a s i n g l e  word o f  core. 
n o t  represented i n  the  core f i l e  b u f f e r  w i l l  be automat ica l ly  read in from 
tape o r  d i s k  by the  FOCAL f i l e  handlers, and t h i s  may take some t ime t o  
accomplish (c.f., p. D-1; FOCAL-12 Programming Manual). 

Moreover, i f  one has i n t e g e r  data, 
F i l e  var iab les t h a t  are 

7.1-1 



7.2 MINIMIZING TAPE MOTION 

When chaining programs or referencing FOCAL f i  1 es, considerable 
delays may be incurred i n  a LINCtape-based system. 
a disk.  A less expensive alternative is  to  spend some time organizing 
one's programs so that tape motion is minimized. 

data f i l e s ,  i.e., when data are transferred between core and a mass 
storage device. When leaving one FOCAL program and loading a second, i t  
is n o t  necessary t o  close a data f i l e  and reopen i t  again i f  the same data 
are used by the two programs. T h a t  i s ,  program chaining w i t h  the LIBRARY GO 
instruction does no t  destroy the f i l e  buffer contents o r  the f i l e  pointers. 
On the other hand, the values of a l l  non-file variables are lost  when a new 
FOCAL program is  loaded. Thus i t  is  e f f ic ien t  t o  define a l l  comnon 
variables as - f i l e  variables; t h a t  way they will no t  have t o  be redefined 
each time a program is chained, and the length of the chained programs will 
be reduced. 

One so lu t ion  is  t o  buy 

One source o f  tape motion arises when one opens o r  closes FOCAL 

Another source of tape motion ar ises  from the small s ize  of the 
core buffer area for  FOCAL data f i l e s .  T h i s  i s  the same i n  FOCAL-RT as i n  
FOCAL-12...512 words, o r  two blocks of LINCtape. 
i s  referenced $Rat is  not  represented i n  the f i l e  buffer area, the tape block 
containing that f i l e  location must be searched and read into core. On the 
other hand, one may refer to any of the f i l e  variables that are currently 
represented i n  core w i t h o u t  incurring tape motion. 

Whenever a f i l e  location 

When referencing FOCAL f i l e s ,  there are several means o f  
reducing tape motion : 

(1)  Posi t ion f i l e s  on tape so that  they are as close together as possible. 
In particular, make sure that  they are not on opposite sides of the area 
reserved for DIAL. 
(2) If  possible, limit the number of data f i l e s  tha t  are referenced by the 
same instruction or group o f  instructions t o  one or two. I t  i s  bet ter  
to  have the d a t a  organized i n  one large f i l e  rather than i n  several smaller 
f i l e s .  
( 3 )  Within a f i l e ,  position the data so tha t  material that  is referenced 
together o r  compared i s  as close together as possible. For example, when 
intercorrelating three se t s  of scores, i t  i s  bet ter  t o  have the tr iads 
that are t o  be compared l i s ted  together i n  one f i l e  than t o  have the data 
s e t  up i n  three separate f i les .  
interminable tape motion. 

The l a t t e r  organization will resul t  i n  

7.2-1 



i .e., I =p) 

1 
2 
3 
4 
5 
6 

F W )  
r-------- 
I 

i Apr 
I BP 
i cI 

I t c1 

I A1 
I B, 

! I A2 
I :  
I 
I 

i s  e f f i c i e n t  i n  terms o f  tape motion. 

I 

I =pr i Apr 
1 I A1 
2 i I A2 

I -- 
I 

-- 
B1 
B2 -- 

CP) 

This organizat ion i s  not. 

7.2-2 



7.3 USING THE TYPE COMMAND 

FOCAL uses an in te r rup t -d r iven  typ ing  rou t i ne  so t h a t  program 
execution w i l l  no t  be delayed by the slow operat ion o f  the  te letype. 
means t h a t  comnands fo l low ing  the TYPE statement w i l l  be executed wh i le  
the typ ing i s  being completed. 
execution t i m e  themselves can therefore hang up the typ ing  o f  a t e x t  s t r ing .  
This problem may a r i s e  w i t h  any o f  the LIBRARY commands, as they requi re 
tape motion, and with the i n i t i a l  c a l l  o f  the FOCAL-RT FRAN( ) func t ion  
(Section 3.1 ) . 

This 

Comnands t h a t  requ i re  considerable 

The so lu t i on  i s  t o  program a delay a f t e r  a TYPE command, using 
the OUTPUT INTERVAL command. This prevents FOCAL from executing f u r t h e r  
i ns t ruc t i ons  before the typ ing i s  f in ished. 

1.18 T "LEAVING FOCAL" ! 
(a) 1.28 0 I ,  3;O I 

1.3pI L B, RUN,O 

l.l@ T "HIT SNS-1" ! 
1.28 0 I ,  2;o I 
1.3@ S A=FRAN( ) 

(b) 

7.3-1 



7.4 MAXIMIZING SPEED OF PROGRAM EXECUTION 

* 
Payne (1971) has outlined two procedures fo r  increasing the 

speed of program execution w i t h  FOCAL. These involve: 

(1) Giv ing  low line numbers to  frequently referenced program lines, such 
as subroutines. 

( 2 )  D e f i n i n g  variables i n  order of frequency of use. 
by executing d i rec t  commands setting them to  zero, i n  order of 
decreasing frequency of use, a f t e r  the indirect  program has been 
completed, b u t  before i t  is executed or  saved on tape. 

T h i s  may be done 

* Payne, W.D. Decreasing the execution time of FOCAL programs. 
DECUSCOPE, 1971, 9,  19. 

7.4-1 



APPENDICES 

8.1 FLOW CHART DESCRIBING THE OPERATION OF THE LOAD BINARY AND LOCATE F I L E  
COMMANDS 

FOCAL-RT PATCH FOR J IGGLING FRAN( ) THROUGH THE RIGHT SWITCH REGISTER 8.2 

8.3 DECIMAL A S C I I  CODES FOR F I N (  ) AND FOUT( ) 

8.4 RD-WRI SUBROUTINE 

8.5 FOCLDR SUBROUTINE 

8.1-1 



8.1 FLOW CHART DESCRIBING THE OPERATION OF THE 

LOAD BINARY AND LOCATE FILE COMMANDS 

B,NAME,4) i-0 L F,NAME,4 

I' P LDMI LD" 0 
L B  t 

Set "PTR" 
table t o  
read i n  

RETURN 

FOCAL 

scans o f f  r i g h t  side o f  
1 i brary command 

read "MILDRED" into core 

get required parameter 
from DIAL  INDEX 

8.1-2 



Q 

Search 
FLD pl of 
core map 

i 

into FLD 1 
loc 5000 

-5377 

\ 

NO 

set  I' COUNT" 
fo r  No. of 
B I NARY B L KS 

-search locations 1534pl 
t o  15357 

-if  location equals 7777, 
the MBLK represented by 
this location i s  used 

-if  000pl i t  is  not used 

PT R=MB L K a 
- f i n d  number of continuous blocks 

t No 

i n  this 
section 

b 
8.1 -3 

-use D I A L  I / O  routine to  
read i n  section PTR, pl /UNIT 

pl /core 
1 ocati on 

pl /start ing 
TBLK 

pl /number of 
continuous 
blocks 



Q 
update 
parameters 

8.1 -4 



8.2 FOCAL-RT PATCH FOR JIGGLING FRAN( ) THROUGH THE RIGHT SWITCH REGISTER 

I f  the  KWI2A c lock per iphera l  i s  n o t  ava i l ab le  t o  the user the 
r i g h t  switches may be subs t i t u ted  as a means o f  vary ing  the i n i t i a l  random 
number. 

i .e. Locat ion From To 
5216 61 32 RSW 
521 7 61 34 DCA VALUE 
5228 1267 SKP 
5221 61 32 VALUE, fl 

5231 61 37 TAD VALUE 

8.2-1 



8.3 

CODE CHARACTER 

128 CTRL/SHFT/P 
(LEADER) 

129 CTRL/A 
1 30 CTRL/B 
131 CTRL/C 
132 CTRL/D 
133 CTRL/E 
1 34 CTRL/F 
135 CTRL/G (BELL) 
1 36 CTRL/H 
137 CTRL/I 
138 LINE FEED 
139 CTRL/K 
140 CTRL/L 
141 CARRIAGE RETURN 
142 CTRL/N 
143 CTRL/O 
144 CTRL/P 
145 CTRL/Q 
146 CTRL/R 
147 CTRL/S 
148 CTRL/T 
149 CTRL/U 
150 CTRL/V 
151 CTRL/W 
152 CTRL/X 
153 CTRL/Y 
154 CTRL/Z 
155 CTRL/SHFT/K 
156 CTRL/SHFT/L 
157 CTRL/SHFT/M 
158 CTRL/SHFT/N 
159 CTRL/SHFT/O 

DECIMAL A S C I I  CODES 

FOR FIN( ) AND FOUT( ) 

CODE CHARACTER 

1641 SPACE 
161 1 
162 " 

163 # 
164 $ 
165 % 
166 & 
167 
168 ( 
169 ) 
170 * 
171 + 
172 , 
173 - 
174 . 
175 / 
176 (d 
177 1 
178 2 
179 3 
180 4 
181 5 
182 6 
183 7 
184 8 
185 9 
186 : 
187 ; 
188 < 
189 = 
190 > 
191 ? 
192 (3 

CODE CHARACTER 

193 A 
194 B 
195 C 
196 D 
197 E 
198 F 
199 G 
200 H 
201 I 
202 J 
203 K 
204 ,L 
205 M 
206 N 
207 0 
208 P 
209 Q 
210 R 
211 s 
212 T 
213 U 
214 V 
215 W 
216 X 
217 Y 
218 Z 
219 c 
220 \ 
221 3 
222 
223 + 
253 ALT MODE 
255 RUBOUT 

8.3-1 



8.4 

READ I N  
FLD 1 

R D- W R I SUB ROUT I NE 

READIN PORTION 

f 

RETRIEVE 
PARAMETERS 
LEFT BY L F, 

JNIT -+UNIT 1 
STBLK-TBLK 1 
LENGTHWBLK 1 

CHECKS TO SEE I F  STARTING 
'MBLK' I S  I N  FLD (l OR FLD 1 

LENGTH OF 
DATA F I L E  

SET UP 
POINTER 
TABLE FOR 

8.4-1 



RD-WRI SUBROUTINE 

WRIOUT PORTION 

WRIOUT (7 
WRITE OUT 

THE FLD 

WRITE 
OUT 
FLD 1 

WRITE 

FLD 0 

(A-1 WRIOUT 

8.4-2 



8.5 FOCLDR SUBROUTINE 

CHOICE=AC INDICATION OF FOCAL-RT 
PROGRAM 

READ I N  I / O  
ROUT1 NES 

READ I N  
SECTION OF 
FOCAL- RT 

UPDATE 
PARAMETERS 
FOR I / O  READ 

MBLK 
TBLK 
NBLK 

FOCAL-RT I S  I N  CORE 

8.5-1 



r 

SET "CODE" 
TABLE TO 
CORRECT 
PROGRAM 1 

1 

8.5-2 

I 7 

LOAD 'CODE' 
TABLE INTO 
COMMAND 
BUFFER d 

JAM 'CR'  
INTO 
' CHAR' 



ADDENDUM TO DECUS NO. 12-80 

The Library Save, Library Load and Library Go commands in FOCAL-RT truncate the upper end 
of the FOCAL user area upon storage and retrieval. The last 5 words of the user area (5105-51 11) 
are not saved or restored. (This can cause the first variable stored and saved to not appear when 
the program is  retrieved.) If an overlay is used as suggested i n  the FOCAL-12 manual 
(DEC-12-AJAA-D) section 7.3, the last five instructions in an overlay w i l l  be forgotten. The 
problem is  due to a wrong constant in location 11323. This constant tells FOCAL how many 
user locations to save or restore. In FOCAL-RT it contains 6102; it should be changed to 6075. 
In the DECUS NO. 12-80 tape, this i s  BLOCK 263; word 323. Line 1016 at the source should be 
changed from 3214-51 12 to 3207-51 12. 
called and checked and resaved. 

Programs saved before this change is made should be 




