DECUS

PROGRAM LIBRARY

DECUS NO. 12-80
TITLE FOCAL-RT
AUTHOR William Siegel and Keith Whittle

University of Western Ontario
London, Canada
Submitted by: Kenneth Ellson

COMPANY Digital Equipment Corporation
Maynard, Massachusetts
DATE June 1972
SOURCE LANGUAGE FOCAL, DIAL

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.

DECUS Program Library Write-up DECUS NO 12-80

FOCAL-RT

USER'S GUIDE

June, 1972
Keith Whittle and William Siegel
Department of Psychology
The University of Western Ontario

London, Canada

Description: Modifications of FOCAL-12 that include device-independent
chaining of FOCAL and assembly-language programs, computed GOTO and DO
commands, new FRAN() function, FIN() and FOUT() to handle character
strings in FOCAL files, subroutines for opening and closing FOCAL files
within assembly-language programs, LP@8 printer option, return-to-DIAL
command, and expanded text buffer,

Hardware Required: 8K PDP-12, LINCtapes or disk

Software Required: DIAL-MS Monitor

ACKNOWLEDGMENTS

Many of the new features in FOCAL-RT were inspired by other
software systems, For example, the FIN() and FOUT() instructions
were modelled after those of PS/8 FOCAL, developed at the Oregon
Museum of Science and Industry. The idea of scaling random numbers
internally came from PSYCBL, a software system developed by Braida,
Callahan and Herman at the Massachusetts Institute of Technology. Prof.
J.A. Siegel contributed a number of suggestions for this Users' Manual.

II.

IiI.

IV,

VI.

FOCAL-RT USER'S GUIDE

June, 1972

INTRODUCTION

1.1 FOCAL-RT: A Research-Oriented FOCAL for the PDP-12
].

(3]

Suggested Reading

NEW COMMANDS

2.1 LOAD BINARY
2.2 LOCATE FILE
2.3 LIBRARY EXIT
2.4 Computed GOTO
2.5 Computed DO

NEW FUNCTIONS

3.1 FRAN()
3.2 FIN()
3.3 FOUT()
3.4 FPRI()

OTHER MODIFICATIONS OF FOCAL-12

4.1 Functions Deleted
4.2 FOCAL-RT User Area
4.3 LIBRARY SAVE and LIBRARY MAKE

LINKING SUBROUTINES FOR ASSEMBLY-LANGUAGE PROGRAMS

5.1 FOCLDR
5.2 RD-WRI

PROGRAMMING WITH FOCAL-RT

6.1 Chaining FOCAL and Assembly-Language Programs

6.2 Randomizing Sequences

6.3 Communication between FOCAL and Assembly-lLanguage
6.4 Demonstration Program

- ii -

VII. MISCELLANEOUS TECHNICAL NOTES

7.1 Minimizing Program Length

7.2 Minimizing Tape Motion

7.3 Using the TYPE Command

7.4 Maximizing the Speed of Program Execution

VIII. APPENDICES
8.1 Flow Chart Describing the Operation of the LOAD BINARY and
LOCATE FILE commands

8.2 FOCAL-RT Patch for Jiggling FRAN() Through the Right Switch
Register

8.3 Decimal ASCII Codes for FIN() and FOUT()
8.4 RD-WRI Subroutine
8.5 FOCLDR Subroutine

- iii -

I. INTRODUCTION

1.1 FOCAL-RT: A RESEARCH-ORIENTED FOCAL FOR THE PDP-12

FOCAL-RT is a modified version of FOCAL-12 that is specialized
for real-time applications, such as laboratory experiments. Like FOCAL-12,
FOCAL-RT may be used to program simple data-acquisition tasks, provided
that timing is not too critical and data rates are low. However, the
usefulness of FOCAL-RT does not end here. Because it is possible to
interleave FOCAL-RT and assembly-language programs that share common data
files, one can do the bulk of the programming of even very complex tasks
in FOCAL.

In a typical laboratory experiment, one may input parameters for
a day's session, set up sequences of trials, and randomize extraneous
variables in FOCAL. All of the information necessary to run the session
is listed sequentially in a FOCAL data file. A short assembly-language
program to run the experiment may be called up with the FOCAL-RT
LOAD BINARY command. The assembly-language program simply works through
the FOCAL data file, controlling the machinery, collecting data, and timing.
Since FOCAL is not core-resident during the data collection phase of an
experiment, one is not restricted by the limitations of an interpreted
language at this point. After the data have been collected, a chained
FOCAL-RT program may be called up for data analysis. By using a
combination of FOCAL and assembly-language, one may achieve significant
savings in software development time over straight assembly-language
programming.

As well as the chaining features described above, FOCAL-RT
has a number of features that are useful for research applications. These
include a new random number function, computed program branches and
subroutine calls, and the ability to handle alphanumeric text in FOCAL
data files.

1.1-1

1.2

(a)

(c)

(d)

(e)

SUGGESTED READING

FOCAL-12 Programming Manual. Order no. DEC-12-AJAA-D from Program

Library, Digital Equipment Corp., Maynard, Mass. 01754, U.S.A.
Programming Languages, 1970, Ch, 11, FOCAL. Available from the

DEC Program Library.

Laboratory Computer Handbook, 1971. Available from the DEC Program

Library.
LAP6-DIAL Programmer's Reference Manual, DEC-12-SE2D-D, Available

from the DEC Program Library.

Siegel, W. Combining FOCAL and assembly language. Behavior Research
Methods and Instrumentation, 1972, 4, 105-106.

Siegel, W., & Whittle, K. Using FOCAL in research, Proceedings of the

DECUS Symposium, Spring, 1972.

1.2-1

II. NEW COMMANDS

2.1 LOAD BINARY

L B, Name, Unit 2

where "Name" refers to a self-starting binary program that is filed in
the DIAL index, and "Unit" refers to the device on which the program is
stored. Units @ - 7 refer to LINCtape, and units 18 - 25 refer to RS@8
or RK8 disks (cf., p. 5, FOCAL-12 Programming Manual).

L B, RUN, ¢j2

will load and start a machine-language program named RUN that is located
on LINCtape unit 0.

The program specified by LOAD BINARY may start in either
LINC-mode or 8-mode. At present, LOAD BINARY will load only into FIELD @,
but it could be easily adapted to handle 8K of core. A flow chart
outlining the operation of this command is found in Section 8.1.

2.1-1

2.2 LOCATE FILE

L F, Name, Unit 2

stores the unit, starting block, and length of a designated FOCAL data file
in locations Ppp1, PPP2, and PPP3 of FIELD 1. “Name" and "Unit" are as in
2.].

LOCATE FILE is used when chained FOCAL and assembly-language
programs share common data files. The parameters saved by LOCATE FILE are
used by a subroutine named RD-WRI (Section 5.1) in order to access a FOCAL
data file by name within an assembly-language program.

One may open or close a FOCAL file previously specified by a
LOCATE FILE command simply by jumping to RD-WRI in the assembly-language
program. This feature is especially useful if one moves data from one
storage device to another, as the actual tape or disk operations are
invisible to the user, and since it is not necessary to worry about the
absolute addresses of the file on the different storage devices.

The operation of the LOCATE FILE command is flow-charted in
Section 8,1.

NOTE: LOCATE FILE should only be used immediately before exiting from
FOCAL via a LOAD BINARY COMMAND, since one of its effects is to
scramble text displayed on the CRT using OUTPUT SCOPE. It doesn't
affect the teletype operation, however,

2.19 L F, DATA, 0 /SAVE PARAMETERS OF
/FILE NAMED "DATA STORED
/ON UNIT @

2,20 L B, RUN, 1 /LOAD ASSEMBLY-

/LANGUAGE PROGRAM
/FROM UNIT 1

2.2-1

2.3 LIBRARY EXIT

L E, 2

returns the user to the DIAL monitor.

2.3-1

2.4 COMPUTED GOTO

G X,L],Lz...Ln~Q
where X is any legal variable, and Li is a program line number,
The computed GOTO command transfers program control to the Xth

line listed in the command. Only the integer value of X is used by the
computed GOTO,

1.1p SET Y=3
1.20 GY, 4.1, 5.1, 6.1, 7.1

will cause a program branch to 1line 6.1.

As many line numbers as desired may be listed in a computed
GOTO command provided that they can all be fit into a single line of FOCAL
program text.

If a literal rather than a variable follows the GOTO, then the
command will be interpreted as a standard FOCAL GOTO.

e.g., 1.19 G 3.1

will cause a program branch to line 3.1.
With a computed GOTO command, if the integer value of the variable

X is greater than the number of program lines Tisted in the command, then the
command following the GOTO statement will be executed.

€.9., 1.18 S X=19
1.2 G X, 2.18, 3.19
1.39 T "ERROR" !

will result in “ERROR" being typed on the teletype.

2.4-1

If X=@, then the command will be interpreted as G2, and control
will be transferred to the lowest line number in the program.

2.4-2

2.5 COMPUTED DO

D X’G]’GZ"'Gn 27

where X is a legal variable, and Gi is a program group or line number,

FOCAL-RT allows computed subroutine calls using the DO
command, and the syntax is similar to that of the computed GOTO. If DO
is followed by a legal variable X, that variable is evaluated and
integerized. The Xth line or group of lines listed in the command will be
returned to the command following the DO statement.

will result in execution of all group 3 lines, after which the program
will halt. In the above example, if J=3, line 4.13 will be executed, and
then the program will halt.

If DO is followed by a literal rather than a variable, the
command will be interpreted as a standard FOCAL DO command.

e.g., 1.19 DO 2.0
1.20 QUIT

will result in execution of all group 2 lines, and then the program will
halt.

NOTE: If the value of X in a computed DO command is greater than the

number of lines listed in the command, then the program exits from
the DO statement and proceeds to the next FOCAL command.

2.5-1

III. NEW FUNCTIONS

3.1 FRAN()

SET A=FRAN(X) 2

defines the variable A as a random integer such that 1<A<X,

In many research applications, it is important to have a
random number generator with adequate distributional and sequential
characteristics. The algorithm used by FOCAL-RT's FRAN() function was
developed by Green, Smith, and Klem (1959)*, and it has been thoroughly
documented and tested. The periodicity of the sequences produced by it
is in the neighborhood of 67 million.

In order to generate a random integer from 1 to 25, one need
only call FRAN() with 25 as the argument:

1.18 SET A=FRAN(25)

Jiggling FRAN(). With FOCAL-RT, the random number function is
"jiggled" when FRAN is called for the first time. If this were not done,
the same sequence of numbers would be produced each time FOCAL is loaded. The
KW-12A clock is used in conjunction with sense-switch #1 on the computer
console to produce a random seed number. If the KW-12A clock is not available,
?hen the)right switch register may be used to vary the initial random number
see 8.2).

When FRAN() is called for the first time after FOCAL-RT has been
loaded, the clock is set ticking at its fastest rate (40@ KHz.). The computer
then waits for the operator to hit SNS-1, As soon as this is done, the
current value of the clock counter is used to jiggle FRAN(). It is only
necessary to hit SNS-1 the first time FRAN() is called. After the random
number function has been initialized, it generates numbers directly.

During the execution of a program, it may not be obvious to the
user that he is supposed to hit SNS-1 at a given point in time, unless a
reminder is given. The following routine may be useful for initializing FRAN():

* Green, B.F., Jdr., Smith, J.E.K., & Klem, L. Empirical tests of an
additive random number generator. Journal of the Association of Computing
Machinery, 1959, 6, 527-537.

3.1-1

2.1 T "HIT SNS-1" ! /A HELPFUL REMINDER

2.2 01,2, 01 /WAIT FOR TYPING TO FINISH
2.39 S A=FRAN() /INITIAL R.N.

2,40 0 1 /THIS WON'T WORK: SEE BELOW

NOTE: Since the initial FRAN() call uses the KW-12A clock, it will
change the clock rate and mode from the values determined by a
previous OUTPUT INTERVAL command, e.g., line 2.20. The O I
command in Tine 2.4f will not produce a delay of 2 sec. unless
the clock is reset as follows

2,40 01,2, 0 I

Generating Random Sequences. If it is not necessary to specify
how many times each item occurs in the sequence, then the following
routine may be used to give randomization with replacement:

1.19 ASK "NO, OF ITEMS TO BE RANDOMIZED?" S,.
1.29 ASK "SEQUENCE LENGTH?" N,.

1.3¢ TYPE "HIT SNS-1",.

1.4 01,2, 01

1.5¢ FOR I=1,N; TYPE FRAN(S),.

A no-replacement randomization routine is provided in Section VI,
together with several examples of the use of the new FRAN() function.

3.1-2

3.2 FIN()

SET A=FIN() 2

sets A equal to the decimal ASCII code of a keyboard input.

Normally FIN() is used in conjunction with FOUT()
(Section 3.3) to handle character strings in FOCAL integer data files.
This 1is particularly useful if one wishes to store large amounts of
alphanumeric text with FOCAL, since FOCAL data files do not compete with
program text for core.

e.g., 1.19 L M,1,DATA,Q
1.2¢ L 0,F@,I,DATA,Q
1.30 FOR I=@,19; SET F@(I)=FIN()
1.49 L C, FP

This program creates a FOCAL file named DATA, and then opens
it as an integer file. Line 1.3Q accepts 20 characters from the teletype
keyboard and stores their ASCII codes in locations @ to 19 of the data file.

CTRL/Z may be used as a terminator when FIN() is used in
conjunction with the FOR command. This is useful when one does not
know in advance how long the character string will be...as may be the case
with a question/answer dialogue. If, in the above example, the 10th
character typed is CTRL/Z, then
(a) the FOR statement will be terminated with F@(9) containing the last
character (the ASCII code for CTRL/Z) of the input string;
(b) the value of I will be set equal to its value at the time CTRL/Z was
inputted, plus one; in this case, I=10;
(c) the program will proceed to the next command; in this case, it will
close the data file.

Programming Notes:

(1) The RUBOUT facility is available with FIN().

(2) With FOCAL-RT, two tape blocks worth of core (512,, locations) are
used as a buffer for FOCAL files. When a file lolgtion that is not
represented in core is referenced in a FOCAL program, tape motion
will occur as a tape block containing the relevant datum is searched.
If this happens while a character string is being inputted using
FIN(), some of the input may be lost. This can be avoided by making
sure that a single FIN() instruction refers only to file locations
that are currently in the core file buffer.

3.2-1

(3) In some situations, it may be necessary to input a series of successive
character strings. For example, one might want to have a respondent
type his name, his place of birth, the date, etc., and in each case,
the programmer does not know in advance how many characters are
required for each piece of information. If the respondent uses
CTRL/Z to terminate an input string, it is necessary to keep track of
where that string ends so that the next string can be read into
adjacent file locations. In the following example, this is done

recursively:
1.1 L 0, F1,I,DATA,.P
1.15 SET A=
1.20 TYPE ! "NAME:"; DO 2.0
1.30 TYPE ! "RANK:"; DO 2.9
1.490 TYPE ! "SERIAL NUMBER:"; DO 2.0
2.19 FOR I=A, 19@; SET F@(I)=FIN()
2.20 SET A=I
2.30 TYPE .

(4) CTRL/Z works as a terminator with FIN() and FOUT() only if these
commands directly follow a FOR command.

€.g., 1.10 FOR A=1,18; S C=FIN()

CTRL/Z does not work in the following DO loop:

(5) A table of decimal ASCII codes is given in Section 8.3,

3.2-2

3.3 FOUT()
SET D=FOUT(A) 2

will type or display on the current output device a character whose
decimal ASCII code is equal to A. Here, D is a dummy variable.

Normally, FOUT() is used to output characters whose ASCII
codes have been previously stored in a FOCAL data file with FIN().

2.85 OUTPUT TELETYPE

2.19 L O,Fp,I,DATA,Q

2.20 FOR I=p, 19; SET D=FOUT (F@(I))
2,30 L C, Fp

This example would type out the characters whose ASCII codes were stored
in locations @ to 19 of an integer file named DATA.

CTRL/Z acts as a terminating character with FOUT() just as with
FIN(). If during execution of line 2.2@, the code for CTRL/Z is
encountered, the program loop will be terminated and control will be
transferred to line 2.3@. The variable I will be incremented by one over
its value at the time CTRL/Z is found.

Often a set of character strings may be stored sequentially in
a data file, each separated by the code for CTRL/Z. In that case, the
user may not know exactly where each string is stored. The following
routine may be used to keep track of file locations when outputting
successive strings.

3.19 L O, F@,I,DATA,D

3.15 SET A=

3.20 TYPE . "NAME:"; DO 4.¢

3.3p TYPE . "RANK:"; DO 4.0

3.40 TYPE ! "SERIAL NUMBER:"; DO 4.0
3.50 QUIT

4.19 FOR I=A,19@; SET D=FOUT(F@(I))
4,20 SET A=1

4,390 TYPE .

3.3-1

3.4 FPRI(): LINE-PRINTER OPTION
SET D=FPRI() 2

diverts output to the LP@8 line printer. Use 0 T to return to the
teletype, 0 S to return to the scope.

3.4-1

IV, OTHER MODIFICATIONS OF FOCAL-12

4.1 FUNCTIONS DELETED

Several mathematical functions available in FOCAL-12 have been
deleted in FOCAL-RT in order to increase the area available for user
programs. These are:

FEXP
FATN
FLOG
FSIN
FCOS

4.1-1

4.2 FOCAL-RT USER AREA

Table 4.2-1 outlines the space available for program text,
variable storage, and push-down 1ist in FOCAL-12 and FOCAL-RT.

TABLE 4.2-1

Core No. of Locations %
Boundaries Locations Gained Gain
{ ...
]
FOCAL=12 E 3229)8-46178 767m - -
]
]
]
FOCAL-RT E 322@8-51118 9531¢ 186]¢ 24.2
|
1
]

The end of the user area of both FOCAL-12 and FOCAL-RT is
labelled BOTTOM; i.e., for FOCAL-RT, BOTTOM=5111,. User overlays are
added to FOCAL by redefining BOTTOM to a lower m§mory location, thereby
sacrificing text storage. The user patch is then positioned between the
old and new definition of bottom,

4.2-1

4.3 LIBRARY SAVE AND LIBRARY MAKE

With FOCAL-12, the user is warned if he attempts to save a
program under a name already listed in the DIAL index. He must indicate
that he wishes to replace the file by typing "R" on the keyboard. FOCAL-RT
does not have this feature, and files are saved directly regardless of
whether or not the file name was used previously.

The same holds true when files are being created with the LIBRARY
MAKE command.

4.3-1

V. LINKING SUBROUTINES FOR ASSEMBLY-LANGUAGE PROGRAMS

Two subroutines are described here that facilitate the
interleaving of FOCAL-RT and assembly-language programs. When incorporated
into assembly-language programs, RD-WRI allows the user to open or close
a FOCAL data file whose name had been previously specified by a LOCATE FILE
command (Section 2.2). A second subroutine, FOCLDR, allows the user to
chain FOCAL-RT user programs to assembly-language programs. Both subroutines
simplify the residual machine-language programming necessary with the
FOCAL-RT system by allowing the user to access program and data files by
name rather than by absolute tape or disk addressing, and by making the
tape or disk I/0 operations invisible to the user.

5.1 RD-WRI: OPENING AND CLOSING FOCAL DATA FILES WITHIN ASSEMBLY-
LANGUAGE PROGRAMS

RD-WRI uses information previously stored in locations P@@1-p@@3
of FIELD 1 by a FOCAL-RT LOCATE FILE command (Section 2.2) to read a FOCAL
data file into core from tape or disk, or to write it back onto the storage
device.

With RD-WRI, it is not necessary for the user to know where a
particular file is located on a storage device, since that information
is obtained by the LOCATE FILE command. Moreover, RD-WRI eliminates
the need for modifying the assembly-language program if a file is moved,
even to a different storage device.

To open the FOCAL file whose parameters have been saved by a
LOCATE FILE command, enter RD-WRI with a JMS READIN OR JMS I PREADIN.

To write the file back onto tape, do a JMS WRIOUT or a JMS I
PWRIOUT.

When adding RD-WRI to an assembly-language program, it is necessary
to set location "MBLK1" of that subroutine to the starting memory block for
the data file. For the purposes of the RD-WRI command, the first 8K of the
PDP-12 memory are divided into a total of 4@, blocks, each containing 4¢¢8
locations. This organization is shown in Fiéure 5.1-1.

The maximum length of the data file is determined by the amount
of core in FIELD @ that the user wishes to reserve for his assembly-
language program. It is generally a good idea to place the assembly-
language program in the lower part of FIELD @, as shown in Figure 5.1-1.
Then, the remainder of FIELD @ and all of FIELD 1 (except for the last two
memory blocks) may be used for data files.

5.1-1

Memory Block

~J
w
~
~

FIGURE 5.1-1
5.1-2

Assembly Language

Program
Field O
Data File
Field 1
Dial I/0
Handlers

N.B.--Data files must not extend into memory blocks 36 and 37 in FIELD 1.
This area is reserved for the DIAL-MS I/0 handlers, which are left
over from FOCAL after the assembly-language program has been
read into FIELD @ with a LOAD BINARY command, and which are used by
RD-WRI.

NOTES: (1) RD-WRI is 72, locations long, and it is written in 8-mode.
(2) It may be p1§ced on any page of core.
(3) The source of RD-WRI is found on the FOCAL-RT systems
LINCtape (available from DECUS).
(4) RD-WRI works only on files with no header block--i.e., FOCAL
data files.
(5) The operation of RD-WRI is flow-charted in Section 8.4.

5.1-3

5.2 FOCLDR

FOCLDR is an assembly-language subroutine that loads FOCAL-RT
into core, initializes it, then loads and starts a FOCAL user program
from tape or disk. With the availability of FOCLDR and the FOCAL-RT
LOAD BINARY command (Section 2.1) it is possible to go back and forth
between FOCAL and assembly-language programs without touching the computer
console.

FOCLDR is capable of reading any of 1¢] different FOCAL programs
into the FOCAL text buffer from unit @#. To load g FOCAL program named
PROGRAM3, jump to FOCLDR with 38 in the AC. For PROGRAMN, (@<N<9)

one calls FOCLDR with the octal equivalent of N in the AC.

FOCLDR works by placing the ASCII codes for the following characters
into the command buffer after FOCAL-RT has been loaded and initialized:

L G, PROGRAMN,@

where N=contents of AC when FOCLDR is called.

By substituting these ASCII codes with others of the user's choice,
it is possible to load programs with any admissible name from any storage
device handled by DIAL-MS. Otherwise it is necessary to save FOCAL
programs as PROGRAMN, and to use LINCtape @ as the storage unit.

NOTES:

(1) The positioning of FOCLDR in core is critical. It should start at
location 4P@@ of FIELD @ so that it will not be read over by FOCAL-RT.
(2) Location PTR+2 of FOCLDR must be set to the starting binary tape block
of FOCAL-RT. If FOCAL-RT is the first file added to the tape, it will
start at block 243,. This is one block past the location of FOCAL-RT
specified by the D?AL index, since the first block recorded in the
index is the header block. FOCLDR ignores the header block and reads
the FOCAL-RT binary file into core directly.
To simplify matters, always save FOCAL-RT as the first program on
the tape. That way PTR+2 will always have the same value (i.e., 243
) FOCLDR is a LINC-mode routine, and it occupies 113, core locations.

).
(3 8
(4) A flow-chart of FOCLDR's operation is given in section 8.5.

5.2-1

VI. PROGRAMMING WITH FOCAL-RT

In many situations where timing is not too critical, where data
rates are low, and where core limitations are not problemmatical, one may
be able to program a research paradigm entirely with FOCAL-RT. This is
especially feasible if the task involves alphanumeric input and output,
where FOCAL-RT's ability to handle character strings comes to the fore.

More demanding tasks may be programmed with a combination of FOCAL
and assembly language. Here one may use FOCAL-RT to do all of the more
difficult work: inputting of parameters at the beginning of an experiment,
setting up sequences of trials, data analysis, and so forth. A short
assembly-language program may be used during the data-collection phase
of the experiment. Because of the chaining features available with the
FOCAL-RT operating system, it is not necessary to have the interpreter in
core during critical phases of the research, and the limitations of an
interpreted language are thus not applicable during those times. In most
cases, a very considerable reduction in program development time may be
achieved by interleaving FOCAL and assembly-language programs.

5.2-2

6.1 CHAINING FOCAL AND ASSEMBLY-LANGUAGE PROGRAMS

With FOCAL-RT's LOAD BINARY command, it is possible to go from
a FOCAL program to an assembly-language program stored on tape or disk
without touching the computer console (Section 2.1). Similarly, it is
poss1b1e to chain a FOCAL user program to an assembly-language program by
jumping to the FOCLDR subroutine (Section 5. 1) Moreover, one may open and
close named FOCAL files within an assembly-language program by using the
RD-WRI subroutine (Section 5.2) in conjunction with the FOCAL-RT LOCATE FILE
COMMAND (Section 2.2).

These chaining procedures may be suhmarized as follows:

LOAD DIAL

l

LOAD FOCAL-RT

|

LOAD AND RUN FOCAL PROGRAM

|

CLOSE DATA FILE AND GET FILE PARAMETERS
LC; LF

J

LOAD ASSEMBLY-LANGUAGE PROGRAM
L B

l

OPEN COMMON DATA FILE
USING RD-WRI

RUN — 3 CLOSE FILE 3 LOAD AND START FOCAL
WITH RD~WRI PROGRAM WITH FOCLDR

6.1-1

6.2 RANDOMIZING SEQUENCES

If one does not wish to place restrictions on the sequence, then
programming random events is very simple with FOCAL-RT. The following
routine randomizes the order of three sentences that will be displayed on
the PDP-12 scope. It uses the new FRAN() function and the computed DO.

T "HIT SNS-1",

QUIT
S A=FRAN(3)

* .

L]
LN = N =t 1PN =~

P pWwwPPOONON
*
AR R SRSRSR SR SR SR SR)

Randomization Without Replacement.,

A “"SEQUENCE LENGTH?" N !

. /JIGGLE FRAN()

0 I,2; 01I; S A=FRAN()
0S; FI=1,N; D 3.0

DO A, 4,10, 4.20, 4.30 /COMPUTED DO
T "THIS IS SENTENCE 1."
T "THIS IS SENTENCE 2."
T "THIS IS SENTENCE 3."

If one wishes to restrict the sequence by specifying how many
times each item occurs, then the following routine may be used to achieve

randomization without replacement:

F1(1)
1=p} -{.}.- (1)
Ty 1 C=1 (2)
21 1
1S 3
5; 5 C=2
6: 2
7¢v 3 5
AREDATE (5)
] (6)
T-11 10
(7)

Figure 6.2-1

Open a FOCAL data file, FI1.

Determine the number of times, N(c), each
of the items is to occur.

Determine the total no. of trials, T.

List each item N{c) in arbitrary order in
F1. The file will look like Fig. 6.2-1 at
this point.

The contents of F1(@) will now be exchanged
with those of one of the T file elements
selected at random.

The contents of F1(1) are exchanged with
those of one of the remaining T-1 file
elements drawn at random.

This process is repeated until all T elements
have been shuffled. The file will now look
like Fig. 6.2-2.

6.2-1

3le183
e ltd
"'1,; . 1 ".7,5

e ln)
GTAees!

541
15 ¢ 21}

1iel0)
17621}
17627
17 47L0)
11 .1
1121}
1137
11 o413
1159
11 4h7
1176
*

‘3

‘

R B¢

-~
vy

)

el s B B o Nt

L B B

= T

A FOCAL-RT routine using this algorithm is
given below. It allows the user to specify
the starting location in the data file, SL,
where the random sequence is to begin.

Figure 6.2-2
10.1
%6 eDss" 34 N(C)I,!

A=1,NC(CI3D 4.0

F1C1)=C

I=1+1

K=S5L+T=-FRAN(T=J)

A=F1(X)33 F1(X)=F1(SL+J)3S Fl(SL+J)=A

VNIRRT GF ALTW INATIVES?™ S, 1!
NITEM NOe KOs OF TIMES™,!
C=1555N 2.9

T=A3F C=1,535% T=1+N(0)

GsF151s50CRAG, 0

*oTACTING KFILS LOCATIGN®® S35 I=SL
C=1,53D Reit

NIT SHS=1",1

1,350 1

J=@sT=25D S

I=SLySL+T=13T F1CI),1

TigdEl OF ALTREARANATIURS?:3

Tiwe

VAT ING

NTY o

1
2

X}

NUe F TINES
2
12

e

FILE LOCATINNES

AT SNS -t

—_0 0 W W e

6.2-2

6.3 COMMUNICATION BETWEEN FOCAL AND ASSEMBLY LANGUAGE

NOTE: The following material is largely exerpted from Siegel and
Whittle (1972)%*,

If one is to interleave FOCAL and assembly-language programs, it
is necessary for the data produced by the various chained programs to be
compatible, That is, codes produced by FOCAL programs must be intelligible
to assembly-language programs, and vice versa. This is no problem if one
places all of the common data in FOCAL files using 12-bit integer format.

If the decimal number 1029 is placed in a FOCAL integer file,
it is stored as a 12-bit binary equivalent. Since all of the machine codes
for the PDP-12 consist of 12-bit binary numbers, then one can compute
any machine-language instruction or datum using FOCAL-RT. Given the
extensive set of mathematical functions that are built into FOCAL, this
means that one can use this interpretive package as a very sophisticated
compiler...a computational compiler, if you will.

When we use the term “computational compiler," we don't mean that
FOCAL 1is used to compile an entire assembly-language program. Rather, it
is used to compile a set of codes that can be used sequentially by
subroutines in the assembly-language program for running the trials of an
experiment. The compiled codes may be actual machine-language instructions,
but more typically they are in the form of data that are used as operands
by machine-language instructions,

With this system, machine-language programming can often be
reduced to hooking together a few device handlers and timing routines.
This is because all or most of the variable information can be set up in
advance with FOCAL programs. The remaining assembly-language programming
is often trivial.

Since FOCAL-RT can compute any 12-bit machine code, it can be
used to compute the information necessary to control any standard PDP-12
peripheral...e.g., clocks, D:A converter, relays...as well as any
computer-controlled user device. For example, we have used FOCAL-RT to set
up the oscillator and timing codes for a complex psychoacoustic experiment
that runs in assembly-language. A linear equation was solved by
FOCAL-RT in order to compute the machine code necessary to produce any
desired oscillator frequency.

* Siegel, W., & Whittle, K. Using FOCAL in research., Proceedings of
the DECUS Symposium, Spring, 1972.

6.3-1

NOTES:

(1) The trick is to specify the set of data necessary to run one's experiment
in assembly-language, and to compute the decimal equivalent when
working in FOCAL. An example of this strategy is given in Section 6.4.
(2) When setting up a FOCAL data file for later use by an assembly-language
program, it is wise to leave space for the data that are to be added
to the file when the experiment is being run. The following illustrates
a general file organization that we have found useful in a number of
research applications:

Condition #

Subject #

Date General Parameters
Relay time

Delay time

1
]
1
1
I
I
]
]
§
]
I
]
[
I Relay Code

E ga$a Cod Information Necessary to Run Trials

: elay Lode (in this case, Relay Codes), Data are added
1

]

1

]

]

!

]

I

]

]

$

Data b -
Relay Code y Assembly-Language Program

Data

— O 0~ OO W R

Stop Code ;> End of Trials

6.3-2

6.4 DEMONSTRATION PROGRAM

This section is exerpted from Siegel and Whittle (1972).*

To illustrate the use of FOCAL-RT as a computational compiler,
we wrote a demonstration program to set the PDP-12 relays in random order
using a combination of FOCAL and assembly-language. Program listings
together with an example of the programs' output are provided in
Figures 6.4-1 and 6.4-2. There are six relays on the PDP-12, and one
could use the new FRAN function very easily to produce integers between 1
and 6. The problem is that these numbers don't mean much to the machine-
language instruction that sets the PDP-12 relays. For relays 0, 1, 2, 3,
4, 5, the appropriate octal numbers that one must put in the accumulator
to set the relays are 1, 2, 4, 10, 20, 40. The decimal equivalents are
1, 2, 4, 8, 16, 32. As you may have discerned, the required relay codes
are related to the numbers 1-6 by a simple powers-of-two transformation.
The required exponential equation to transform numbers produced by our
random number function to codes intelligible to an assembly-language
program takes only one line of FOCAL coding (Fig. 6.4-1, line 4.19).

The relay demo works as follows:

(1) A FOCAL-RT program asks the experimenter how many different relays he
wants to set, how long he wants them on for, what the intertrial time is,
and how many times each relay is to occur in the sequence. Then a list of
trials is generated, using a card-shuffling algorithm to give randomization
without replacement. A1l of the necessary information is stored in a FOCAL
data file, and then an assembly-language program is called up to run the
experiment, This program works through the FOCAL file, turning the

relays on and off, and timing. When the "experiment" is finished, the
FOCAL demo program is loaded in again to request a new set of parameters,
and so forth,

The assembly-language program for the relay demo requires only 45]0
instructions, a number of which are involved in a canned routine for the
KW12-A clock.

Note that the randomization routine given in Section 6.2 is
used almost verbatim here.

* Siegel, W., & Whittle, K. Using FOCAL in research. Proceedings
of the DECUS symposium, Spring, 1972.

6.4-1

i o oUAL=RT

el Y T N LAY DREAG T 3 THE 2=l TELAYE T per R
1Te21 3 106l

5 o1 T . Hhe s .=1s" A EASEENE GO IR

Teltt B oA=1LN(O)N Al

Sl G F1CTY=RAC0
v S T=I4l

He17 3 €=60L+T-r A
a2 8 R 100)5S

friel ¥ &0 P ot '
1 a3 ¢ 1
U oo B I=lasssn b

LTS TEARE C=1,
Ple.1 1, ty T T !

11620 &~ = 35 I=3
Lle303 b .=l, 50 i

11 e3%0
1127
11en? ¢
ilehy ¥
1177
11«07

F1CI o=

LS|

I, I
=y W= 3
(NI
AN L I

i SRS Dt

1 W11
R

12036

L 0,9157
Lost
r

TG,

EERFOR CAF I

s ER

4! ey

-

NETNY % Pite 3R T
3 20
i 3
P HP4
3)

ATT SENSF=SWITO 1
PELAY TINE (SECe)s
INTRATAIAL TIME? 20
LEAJING FOCAL

FIGURE 6.4-1

WHTT S

[N

U W4

L

CIREE T

-1

WT=Jd
FIOD=RLCTLEdYSS pLOSLAETY A

-

e FEEENT O gFLA

IVe OF TIvmge

7
i

(1=-0)7'sn

TETENCD

AL
~2

AR PRD

CSFTedY TT,156 FLCA)= Tl
LoTLEw2" IT,054 #F1C1)=IT417

. e st ay
ATTAL RDAL i

30]’DK:OI

PHE P =12 AFRLAYS TN .4ND

34

U vifAys (1=52232

T Vi

1e5
5

Setting the PDP-12 relays in random order using a combination of FOCAL and

assembly language:
random sequence,

(a) FOCAL-RT program to input parameters and set up
6.4-2

NAANG *27

RN PMODE

AAR2 *4PD

G TK] RDIR1=107

AG AL BAAR 4100 STARTs> JMS RDWRI /GET DATA
AnNs Aunl H141 LINC

2346 LMODE_-AX0

aloTo ki o402 0061 SET T 1 ZINITIAL ~TR
1919 3403 2010 2001

B0 1 Aapa 1021 BFEGIN, LDA T 1 JGET STIMULIS
AB1D Aans 1460 SAE I /CHECK FOR STOP
an13 Bane 22727 BT /CODE.

AL 4 PanT Busé SKP /CONTINUFE
BA15 Bua1le 6422 JMP RETIRN /RACK TO FOCAL.
nA16 A411 2AL4 ' ATR /CLOSE RFLAY.
AN1T 2412 1000 LDA

A%20 @413 2201 2000 /0N TIME

EEES Baly 6426 JMP CLCK /CLOCK RNITINE
nA2L P415 0314 , ATR /CLEAR RFRLAY
Pe23 pale 1000 LDA

AA2 4 a7 20362 2001 /DELAY TIME
MIDG AL2% 6426 JMP CLCK /CLOCK ROUTINFE
AR 6 Au21 6404 JMP BEGIN /LO0OP.

anT @aa22 2792 RETURN, 0702 /GET FOCLDR
%39 ga23 a4Ti Bati

An31 paga 2@11 CLR

BH30 au2s 60209 JMP 29

BA33 P426 @AG2 CLCK» PDP /CLOCK S11=-
D034 PMNDE /ROUTINE.
8035 @a27 1041 cla

@036 @433 6133 CLAR

aa37 J34a31 7209 cLA

B4 2432 6132 CLL#

Aol @433 6134 CLEN

Ap 4L @a34 1252 TAD CKCON1

0743 pua3s 6132 CLLR

Gl YV Ba36 6135 CLSA

AR 45 @437 7290 CLA

BANE Aanp 1253 TAD CKEN(J

PAL7 Baal 6134 CLEN

AR5 G pua2 7200 CLA

P51 Pau3 1254 TAD CKCON2

P52 Aany 6132 CLLR

353 Bass 7209 cLa

AR54 Q4a46 6131 CLSK

AASS @a4a7 5246 JMP -1

2056 Bus5H 6141 LINC

2057 LMODE

BA60 p4asl 6000 JMP @

MG 3452 @133 CHKCON1l, 2100

02362 2453 030@ CKENU, @300

2063 A454 5160 CKCON2s 51@0

FIGURE 6.4-2

Setting the PDP-12 relays in random order using a combination of FOCAL and
assembly language: (b) assembly language program.

6

VII., MISCELLANEQUS TECHNICAL NOTES

7.1 MINIMIZING PROGRAM LENGTH

The area of FOCAL-RT that is available for user programs is
quite restricted. Eventually we may be able to solve this problem through
a major reorganization of FOCAL-12. In the meantime, the user is referred
to pp. 61-62 of the Laboratory Computer Handbook, where several tips for
minimizing program length are outlined.

Whenever possible, define variables as FOCAL file variables.
A11 non-file variables use five core locations each. On the other hand,
one may define file variables without impinging upon the space available
for user programs. File variables are handled in a separate core buffer
area that is 512,, locations long. Moreover, if one has integer data,
each variable reagires only a single word of core. File variables that are
not represented in the core file buffer will be automatically read in from
tape or disk by the FOCAL file handlers, and this may take some time to
accomplish (c.f., p. D=1; FOCAL-12 Programming Manual).

7.1-1

7.2 MINIMIZING TAPE MOTION

When chaining programs or referencing FOCAL files, considerable
delays may be incurred in a LINCtape~based system. One solution is to buy
a disk. A less expensive alternative is to spend some time organizing
one's programs so that tape motion is minimized.

One source of tape motion arises when one opens or closes FOCAL
data files, i.e., when data are transferred between core and a mass
storage device. When leaving one FOCAL program and loading a second, it
is not necessary to close a data file and reopen it again if the same data
are used by the two programs. That is, program chaining with the LIBRARY GO
instruction does not destroy the file buffer contents or the file pointers.
On the other hand, the values of all non-file variables are lost when a new
FOCAL program is loaded. Thus it is efficient to define all common
variables as file variables; that way they will not have to be redefined
each time a program is chained, and the length of the chained programs will
be reduced.

Another source of tape motion arises from the small size of the
core buffer area for FOCAL data files. This is the same in FOCAL-RT as in
FOCAL-12...512,, words, or two blocks of LINCtape. Whenever a file location
is referenced 1Rat is not represented in the file buffer area, the tape block
containing that file location must be searched and read into core. On the
other hand, one may refer to any of the file variables that are currently
represented in core without incurring tape motion.

When referencing FOCAL files, there are several means of
reducing tape motion:

(1) Position files on tape so that they are as close together as possible.
In particular, make sure that they are not on opposite sides of the area
reserved for DIAL.

(2) 1If possible, limit the number of data files that are referenced by the
same instruction or group of instructions to one or two. It is better

to have the data organized in one large file rather than in several smaller
files.

(3) Within a file, position the data so that material that is referenced
together or compared is as close together as possible. For example, when
intercorrelating three sets of scores, it is better to have the triads

that are to be compared listed together in one file than to have the data
set up in three separate files. The latter organization will result in
interminable tape motion.

7.2-1

F1(1)

o —————

is efficient in terms of tape motion.

F2(1) F3(I)

F1(1)

This organization is not.

7.2-2

7.3 USING THE TYPE COMMAND

FOCAL uses an interrupt-driven typing routine so that program
execution will not be delayed by the slow operation of the teletype. This
means that commands following the TYPE statement will be executed while
the typing is being completed. Commands that require considerable
execution time themselves can therefore hang up the typing of a text string.
This problem may arise with any of the LIBRARY commands, as they require
tape motion, and with the initial call of the FOCAL-RT FRAN() function
(Section 3.1).

The solution is to program a delay after a TYPE command, using
the OUTPUT INTERVAL command. This prevents FOCAL from executing further
instructions before the typing is finished.

1.1¢ T "LEAVING FOCAL" !
(a) 1.20 01, 3;01
1.39 L B, RUN,D

@ T “HIT SNS-1" !
(b) 1.2 01,201
@ S A=FRAN()

7.3-1

7.4 MAXIMIZING SPEED OF PROGRAM EXECUTION

Payne (197])* has outlined two procedures for increasing the
speed of program execution with FOCAL., These involve:

(1) Giving low 1ine numbers to frequently referenced program 1lines, such
as subroutines,

(2) Defining variables in order of frequency of use. This may be done
by executing direct commands setting them to zero, in order of
decreasing frequency of use, after the indirect program has been
completed, but before it is executed or saved on tape.

* Payne, W.D. Decreasing the execution time of FOCAL programs.
DECUSCOPE, 1971, 9, 19.

7.4-1

APPENDICES

8.1 FLOW CHART DESCRIBING THE OPERATION OF THE LOAD BINARY AND LOCATE FILE
COMMANDS

8.2 FOCAL-RT PATCH FOR JIGGLING FRAN() THROUGH THE RIGHT SWITCH REGISTER
8.3 DECIMAL ASCII CODES FOR FIN() AND FOUT()

8.4 RD-WRI SUBROUTINE .

8.5 FOCLDR SUBROUTINE

8.1-1

8.1 FLOW CHART DESCRIBING THE OPERATION OF THE
LOAD BINARY AND LOCATE FILE COMMANDS

(L B,NAME,4)
L F,NAME,4

i

scans off right side of
"PGETRHS"]'ib\"aY‘y command
"pi DMILD" read "MILDRED" into core

" " get required parameter
PLOOKUP From DIAL INDEX
FLD 1
LB L F | UNIT > gpg1
LF TBLK—> 9@p2
NBLK - 0p@3
LB *
‘Set "PTR" RETURN
table to to
read in FOCAL
HEADER BLK

8.1-2

Read HBLK

into FLD 1

Toc 5000
-5377

[

set "COUNT"
for No. of
BINARY BLKS
In Program

-1
Search
FLD @ of
core map

this MBLK
used?

YES

PTR=MBLK

READ
in this
section

—®

8.1-3

~-search locations 15340
to 15357

-if location equals 7777,
the MBLK represented by
this location is used

-if PPPP it is not used

-find number of continuous blocks

-use DIAL I/O routine to
read in section PTR, @ /UNIT
@ /core
Tocation
@ /starting
TBLK
@ /number of
continuous
blocks

update
parameters

rolia
m
p1ngcore7

Change mode
YES
START
peel ASSEMBLY | e |
LANGUAGE

8.1-4

8.2 FOCAL-RT PATCH FOR JIGGLING FRAN() THROUGH THE RIGHT SWITCH REGISTER

If the KWI2A clock peripheral is not available to the user the
right switches may be substituted as a means of varying the initial random

number.

Location
5216
5217
5220
5221

5231

From
6132
6134
1267
6132

6137

8.2-1

To
RSW
DCA VALUE
SKP
VALUE, @

TAD VALUE

8.3 DECIMAL ASCII CODES

FOR FIN() AND FOUT()

CODE CHARACTER CODE CHARACTER CODE CHARACTER
128 CTRL/SHFT/P 16@ SPACE 193 A
(LEADER) 161 ! 194 B
129 CTRL/A 162 " 195 C
130 CTRL/B 163 # 196 D
131 CTRL/C 164 $ 197 E
132 CTRL/D 165 % 198 F
133 CTRL/E 166 & 199 G
134 CTRL/F 167 7 200 H
135 CTRL/G (BELL) 168 (201 I
136 CTRL/H 169) 202 J
137 CTRL/I 170 * 203 K
138 LINE FEED 171 + 204 L
139 CTRL/K 172 , 205 M
140 CTRL/L 173 - 206 N
141 CARRIAGE RETURN 174 . 207 0
142 CTRL/N 175 / 208 P
143 CTRL/O 176 209 Q
144 CTRL/P 177 1 210 R
145 CTRL/Q 178 2 211 S
146 CTRL/R 179 3 212 T
147 CTRL/S 180 4 213 U
148 CTRL/T 181 5 214 vV
149 CTRL/U 182 6 215 W
150 CTRL/V 183 7 216 X
151 CTRL/W 184 8 217 ¥
152 CTRL/X 185 9 218 Z
153 CTRL/Y 186 : 219 C
154 CTRL/Z 187 ; 220 \
155 CTRL/SHFT/K 188 < 221 1
156 CTRL/SHFT/L 189 = 222 ~
157 CTRL/SHFT/M 190 > 223 «
158 CTRL/SHFT/N 191 ? 253 ALT MODE
159 CTRL/SHFT/0 192 @ 255 RUBOUT

8.3-1

RD-WRI SUBROUTINE
READIN PORTION

JMS READIN

RETRIEVE
PARAMETERS
LEFTBY L F,
NAME .U

)

FLD @

COMPARE

LENGTH OF
DATA FILE
FLD@ AREA

READ IN
FLD

SET UP
POINTER
TABLE FOR
FLD 1

READ IN
FLD 1

{

READ IN
FLD @

8.4

1

UNIT =>UNIT 1
STBLK=TBLK 1
LENGTHSNBLK 1

CHECKS TO SEE IF STARTING
'MBLK' IS IN FLD @ OR FLD 1

JMP I READI

RD-WRI SUBROUTINE
WRIOUT PORTION

WRITE OUT
THE FLD

YES

WRITE
ouT
FLD 1

WRITE
ouT
FLD @

\

JMP 1
WRIOUT

8.4-2

8.5

USER'S
PROGRAM

FOCLDR SUBROUTINE

CHOICE=AC

|

READ IN I/0
ROUTINES

a

READ IN
SECTION OF
FOCAL-RT

- |UPDATE

PARAMETERS
FOR I/0 READ

NO

FINISHED
?

YES

INITIALIZE
FOCAL-RT

8.5-1

INDICATION OF FOCAL=RT
PROGRAM

MBLK
TBLK
NBLK

FOCAL-RT IS IN CORE

SET "CODE"
TABLE TO
CORRECT
PROGRAM

)

LOAD 'CODE’
TABLE INTO
COMMAND
BUFFER

!

JAM 'CR!
INTO
'CHAR®

)

(START >

8.5-2

ADDENDUM TO DECUS NO. 12-80

The Library Save, Library Load and Library Go commands in FOCAL=RT truncate the upper end
of the FOCAL user area upon storage and retrieval, The last 5 words of the user area (5105-5111)
are not saved or restored. (This can cause the first variable stored and saved to not appear when
the program is retrieved.) If an overlay is used as suggested in the FOCAL-12 manual
(DEC-12-AJAA-D) section 7.3, the last five instructions in an overlay will be forgotten. The
problem is due to a wrong constant in location 11323, This constant tells FOCAL how many

user locations fo save or restore. In FOCAL=RT it contains 6102; it should be changed to 6075.
In the DECUS NO. 12-80 tape, this is BLOCK 263; word 323. Line 1016 at the source should be
changed from 3214-5112 to 3207-5112. Programs saved before this change is made should be
called and checked and resaved.

