
/.\DECUS
\ / PROGRAM LIBRARY

DECUS NO.

TITLE

AUTHOR

COMPANY

DATE

SOURCE LANGUAGE

8-1 95

POLY BAS IC

L. Elekman
R. Lary

Digital Equipment Corporation
Maynard, Massachusetts

Submitted: September 16, 1969

Although this program has been tested by the contributor, no warranty, express or implied, i s mode by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation OS to the accuracy or functioning of the
program or related program moterial, and no responsibility i s assumed by these parties in connection therewith.

DECUS Program Library Write-up

POLY BASIC

DECUS NO. 8-195

DESCRIPTION

POLY BASIC i s a stand-alone system designed for a PDP-8, 81,8L, with an ASR (or KSR) -33
or 35 Teletype and a random access input/output device. The devices for which it i s currently
implemented are DF32 Disk, RF@8 Disk, and TU55 DECtape.

THE BASIC LANGUAGE

A N EXAMPLE

The following example i s a complete BASIC program for solving a system of two simultaneous
linear equations in two variables:

ax + by = c
dx + ey = f

and then solving two different systems, each differing from this system only in the constants c
and f. You should be able to solve this system, i f ae - bd i s not equal to 0, to find that

ce - bf and af - cd
ae - bd

X - Y =
ae - bd.

If ae - bd == 0, there i s either no solution or there are infinitely many, but there i s no unique
solution.
now, we want you to understand the BASIC program for solving this system.

If you are rusty on solving such systems, take our word for it that this i s correct. For

Study this example carefully; in most cases the purpose of each line in the program i s self-
evident, then read the commentary and explanation.

1@

2a'
3121

15

37
42
55
6/21
65
7/21
8/21
85
w

READ A, B, D, E

If G s @THEN 65
READ C, F
LET X = (C*E-B*F)/G
LET Y = (A*F-C*D)/G
P R I N T X, Y
GO TO 3@
PRINT "NO UNIQUE SOLUTION"
DATA 1, 2, 4,

LET G = A*E-B*D

DATA 2, -7, 5
DATA 1 , 3, 4, -7
END

Immediately we observe several things about this sample program. First, we see that the
program uses only capital letters, since the Teletype has only capital letters. We also see
that the letter ''oh" i s distinguished from the numeral "zero'' by having a diagonal slash
through the "zero". We make the distinction since, in a computer program, it i s not always
possible to tell from the context whether the letter or the numeral was intended, unless they
have a different appearance. This distinction i s made automatically while typing, since the
Teletype has one key for ''oh'' and another for I'zero"; and one key for "one", another for
the letter "i", and no key for the lower case letter "I".

A second observation i s that each line of the program begins with a number. These numbers
are called l ine numbers (and may range from 1 through 4095) and serve to identify the lines,
each of which i s called a statement. Thus, a program i s made up of statements, most of which
are instructions to BASIC. Line numbers also serve to specify the order in which the statements
are to be performed by BASIC, therefore, you may type your line numbers in any order, however,
best results w i l l be obtained if they are in ascending order. As you typed, BASIC sorts out
and edits the program, putting the statements into the order specified by their line numbers.
(This editing process facilitates the correcting and changing of programs, as explained later.)

A third observation shows that each statement starts, after i t s l ine number, with an English
word which denotes the type of the statement. There are several types of statements in BASIC,
eight of which are discussed in this chapter. Seven of these eight appear in the sample program,
above.

A fourth observation, not at all obvious from the program, i s that spaces have no signficance
in BASIC, except in messages which are to be printed out, as in line number 65 above. Thus,
spaces may be used or not used to improve the appearance of a program and make i t more
readable. Statement 10 could have been typed as lOREADA,B,D,E and statement 15 as
15LETG s A*E-B*D.

With this perface, let us go through the example, step by step. The first statement, 10, i s a
READ statement. It must be accompanied by one or more DATA statements. When BASIC
encounters a READ statement while executing your program, it w i l l cause the variables
(A,B,D,E) listed after the READ to be given values according to the next available numbers
i n the DATA statements (lines 70, 80, and 85). In the example, we read A in statement 10
and assign the value 1 to i t from statement 70, similarly with B and 2, and with D and 4.
At this point, we have exhausted the available data i n statement 70, but there i s more in
statement 80, so we pick up from it the number 2 to be assigned to E.

Next we go to statement 15, which i s a LET statement, and encounter a formula to be
evaluated. (The asterisk "*" i s used to denote multiplication.) In this statement, we direct
BASIC to compute the value of AE - ED, and to call the result G. In general, a LET statement
directs BASIC to set a variable equal to the formula on the right side of the equal sign.

We know that if G i s equal to zero, the system has no unique solution, therfore, we ask in line
20, i f G i s equal to zero. I f BASIC discovers a yes answer to the question, i t i s directed to go
to line 65, where i t prints NO UNIQUE SOLUTION. From this point, i t would go to the next
statement, but lines 70, 80, and 85 give it no instructions since DATA statements are not
executed, therefore, i t goes to line 90 which tells it to END the program.

2

I f the answer to the question " I s G equal to zero?" i s no, as it i s in this example, BASIC
goes on to the next statement, in this case 30. (Thus, an IF-THEN tells BASIC where to go
i f the IF condition i s met, or to go on to the next statement i f it i s not met.) BASIC i s now
directed to read the next two entries from the DATA statement, -7 and 5, (both are in statement
80) and to assign them to C and F respectively. BASIC i s now ready to solve the system

x + 2y = -7
4x + 2y = 5

In statements 37 and 42, we direct BASIC to compute the value of X and Y according to the
formulas provided. Note that we must use parentheses to indicate that CE - BF i s divided by
G; without parenthese, only BF would be divided by G, which would let X= CE -_ BF .
BASIC i s told to print the two values computed, that of X and that of Y, in l ine 55, then it
moves on to line 60 where i t i s directed back to line 30. If there are additional numbers in the
DATA statements, as there are here in 85, it i s told in line 30 fo take the next number and
assign i t to C, and the one after that to F. BASIC i s now ready to solve the system

G

x + 2 y = 1
4x + 2y = 3

As before, i t finds the solution in 37 and 42 and prints them out i n 55, and then i s directed in 60
to go back to 30.

In line 30 BASIC reads two more values, 4 and -7, which are found in line 85, and then proceeds
to solve the system

x +2y = 4
4x+ 2y= -7

and to print out the solutions. It i s directed back to 30, but there are no more pairs of numbers
available for C and F in the DATA statements. BASIC then informs you that it i s out of data by
typing ERROR DA and stops.

Let us look at the importance of the various statements. For example, what would have happened
i f we had omitted line number 55? The answer i s simple; BASIC would have solved the three
systems and then told us when it was out of data. However, since it was not asked to tell us
(PRINT) i t s answers, the solutions would be BASIC's secret. What would have happened i f we
had left out line 20? In the problem just solved nothing would have happened, but i f G were
equal to zero, we would have given BASIC the impossible task of dividing by zero in 37 and 42,
and it would tell us so by printing ERROR Da. If we left out statement 60, BASIC would have
solved the first system, printed out the values of X and Y, and then gone on to line 65 where it
would be directed to print NO UNIQUE SOLUTION. It would do this and then stop.

3

One very natural question arises from the seemingly arbitrary numbering of the statements:
Why this selection of line numbers? The answer i s that the particular choice of line numbers
i s arbitrary, as long as the statements are numbered in the order in which we want BASIC to
follow in executing the program. We could have numbered the statements 1, 2, 3, . .., 13,
although we do not recommend this numbering. We would normally number the statements
10, 20, 30, . . . , 130, allowing additional statements to be inserted later. Thus, i f we find
that we have lef t out two statements between those numbered 40 and 50, we can give then
any two numbers between 40 and 50, and in the editing and sorting process, BASIC w i l l put
them in their proper place,

Another question arises from the seemingly arbitrary placing of the elements of data in the
DATA statements: Why place them as they have been in the example program? Here again
the choice i s arbitrary and we need only put the numbers in the order that we want them read
(the first for A, the second for B, the third for D, the fourth for E, the fifith for C, the sixth
for F, the seventh for the next C, etc.) In place of the three statements numbered 70, 80, and
85, we could have put

75 DATA 1, 2, 4, 2, -7, 5, 1, 3, 4, -7

or we could have written, perhaps more naturally,

7@ DATA 1, 2, 4, 2
75 DATA -7, 5
8# DATA 1, 3
85 DATA 4, -7

to indicate that the coefficients appear in the first data statement and the various pairs of
right-hand constants appear in the subsequent statements.

The program and the resulting run i s shown below exactly as it appears on the Teletype.

LISTNH

la'

2@
3a'

15

37
42
55
6pI
65
71d
8@
85
91d

READA, B, D, E

IF G = # THEN 65
LET G = A*E -B*D

READ C, F
LET X = (C*E-B*F)/G

PRINT X, Y
GO TO S a
PRINT "NO UNIQUE SOLUTION"
DATA 1, 2, 4

LET Y= (A*F-c*D)/G

DATA 2-i -7, 5
DATA 1, 3, 4, -7
END

RU N

TEST 1 BASIC -69

4

4 -5.5
.666666 ,166666
-3.66666 3.83333

ERROR DA AT 1857 (An indication that the program ran
out of data)

READY

READY, the last line in the printout above, i s explained in Operating the POLY BASIC System.

After typing the program, we type RUN followed by a carriage-return. Up to this point BASIC
stores the program and does nothing with it.
execute your program.

It i s the RUN command which directs BASIC to

The message ERROR DA here may be ignored since i t means your program has made an attempt
to read more data than you have made available in DATA statments.

Arit hmeti c 0 Rerat ions

BASIC can add, subtract, multiply, divide, extract square roots, raise a number to a power, and
find trigonometric functions such as sine and cosine. We shall now learn how to te l l BASIC to
perform these various operations in the order that we want them done.

BASIC performs its primary function (that of computation) by evaluating formulas which are
supplied in a program. These formulas are very similar to those used in standard mathematical
calculation, w i th the exception that al l BASIC formulas must be written on a single line.
Five arithmetic operators can be used to write a formula:

Symbol

+,
-
*

/

9 or **

Example Meaning

A-tB

A-B Subtraction (subtract B from A)

A*B

A/B

~ 4 ' 2 orX**2

Addition (add B to A)

Multiplication (multiply B by A)

Division (divide A by B)

2 Raise to the power (find X)

We must be careful with parentheses to make sure that those things which we want together are
grouped together. We must also understand the order in which BASIC operates. For example,
i f we type A t B * C $D, BASIC w i l l first raise C to the power D, multiply this result by B,

If this i s not the order intended, then we must use parentheses to indicate a different order. For
example, i f i t i s the product of B and C that we want raised to the power D, we must write

and then add A to the resulting product. This i s the same convention as i s usual for: A+B x C D .

5

A + (B * C)l-D; or, i f we want to multiply A+B by C to the power D, we write (A i B) * C? D.
We could even add A to B, multiply the sum by C, and raise the product to the power D by
writing ((Af-B) * C) 9 D. The order of priorities i s summarized in the following rules:

1. The formula inside parentheses i s computed before the parenthesized quantity
i s used in further computations.

2. In the absence of parentheses in a formula involving addition, multiplication, and
the raising of a number to the power, BASIC first performs exponentiation, then performs
the multiplication, and the addition comes last. Division has the same priority as
multiplication, and subtraction the same as addition.

3. In the absence of parentheses in a formula involving only multiplication and division,
the operations are performed from left to right, just as they are read. Addition and
subtraction i s performed from left to right also.

These rules which are illustrated in the previous example, tell us that when BASIC i s faced with
A - B - C, i t w i l l (as usual) subtract B from A and then C from the difference; with A/k/C, i t
w i l l divide A by B and that quotient by C; wi th A T B q C , it w i l l raise the number A to the
power B and take the resulting number and raise it to the power C. To avoid a question of
priority, you may put parentheses in as necessary to eliminate possible ambiguities.

Functions -
In addition to the five arithmetic operators, BASIC cun evaluate several mathematical functions.
These functions are given special three-letter names, as the following list shows:

Functions

SIN (X)

lnterpretat ion

X interpreted as a number, or
as an angle measured in radians. 3 Find the sine of X

Find the cosine of X

ART (X)

EXP (X) Find ex (2.712818)

Find the arctangent of X

LOG (X)

ABS (X)

Find a natural logarithm of X(logeX)

Find the absolute value of X (1x1)
SQR (X) Find the square root of X (.ssT)

Three other functions are also available in BASIC: INT, RND, and SGN; these are reserved for
explanation in the section ADVANCED BASIC - Functions.

6

In place of X, we may substitute any formula or any number in parentheses following any of

these functions. For example, BASIC may be asked to find 4 4 t X 3 by writing SQR(4+X*3),
or the arctangent of 3X - 2 e X t 8 by writing

ART

If the value of (' 7 i s needed, you can write the two
I ine program

(3*X -2" EX P(X) 4 8)

5

1ff PRINT (5/6)+ 7
2$END

RUN N H

.279$81

READY

and BASIC w i l l find the decimal form of this expression and print i t out in less time than i t
took to type either line. (The command RUN N H i s identical to RUN except that no heading i s
printed.)

Numbers and Variables -
Since we have mentioned numbers and variables, i t should be understood how to write numbers
for BASIC and what variables are allowed. A number may be positive or negative and may
contain up to 10 significant digits (of which only the first 7 are retained) but it must be expressed
in decimal form. For example, all of the following are numbers in BASIC: 2, -3.675,
123456789, -.98765432, and 483.4156. The following are not numbers in BASIC: 14/3,=
and .001234567890. The first two are formulas but not numbers, and the last one has more
than 10 significant digits. BASIC may be asked to find the decimal expansion of 14/3 or fl
and to do something with the resulting number, but neither may be included in a list of DATA.
Further flexibil i ty i s gained by use of the letter E (exponent), which stands for "times ten to
the power"; thus, .00123456789 may be written in any of several forms: .123456789E-2 or
123456789E-11 or 1234.56789E-6. Ten million may be written as 1E7 (or lEi-7) and 1969 as
1.969E3 (or 1.969Et 3). E7 i s not written as a nitmber, but as 1E7 to indicate that it i s 1 that
i s multiplied by 107. Numbers must be in the range 1 .OE-614<N<1 .OE614.

The BASIC program performs computations in this E (or floating-point) format. Results are
printed out in decimal format for numbers in the range O.O1<N<l000000. Trailing decimal
points are omitted. Leading and trailing zeroes are also omitted, except when the value i s
zero or when the number i s in the range O.Ol<N<O. 1. Numbers outside the range 0.1<N<1000000
are printed out in E format.

- -

7

A numerical variable in BASIC i s denoted by any letter, or by any letter followed by a
single digit. The computer, therefore, w i l l interpret E7 as a variable, along with A, X,
N5, JO, and M1. A variable in BASIC stands for a number, usually one that isnot known to
the programmer at the time the program was written. Varibles are given or assigned values
by LET and READ statements. The value so assigned w i l l not change until the next time
a LET or READ statement i s encountered with a value for that variable. However, a l l
variables are set equal to zero before a RUN; thus, it i s only necessary to assign a value
to a variable when a value other than zero i s required.

Although BASIC does l i t t le in the way of correcting, during computation i t w i l l sometimes
help you when you forget to indicate absolute value. For example, if BASIC i s asked for
the square root of -7 it w i l l give the square root of ,7 with the error message for the square
root of a negative number.

Symbols of Relation -
Six other mathematical symbols, symbols of relation, are used in BASIC, and these are
used in IF-THEN statements where it i s necessary to compare values. An example of the
use of these relation symbols was given in the example program in the section functions.

Any of the following six standard relations may be used:

Symbol Example Meaning

A = B Is equal to (A i s equal to 6) - -
< A < B I s less than (Ais less than B)

< = o r = = < A<=B Is less than or equal to (Ais less than
or equal to B)

> A > B Is greater than (A is greater than 6)

z > o r > = A=> B Is greater than or equal to (A is greater than
or equal to B)

<> A<>B Is not equal to (A i s not equal to 8)

LOOPS

We are frequently interested in writing a program in which one or more portions are per-
formed not just once but a number of times, perhaps with slight changes each time. To
write the simplest program, the one in which the portion to be repeated i s written just once,
we use the programming device known as a loop.

Programs which use loops can be best illustrated and explained by two programs which
print out a table of the first 100 positive integers together with the square root of each.
Without a loop, the program would be 101 lines long and read:

8

1/21 PRINT 1, SQR(1)
2$ PRINT 2, SQR(2)
3/21 PRINT 3, SQR(3)

99@ PRINT 99, SQR(99)
1/21#/21 PRINT 1/21@,SQR(l/21@
ll END

With the following program using one type of loop, we can obtain the same table wi th
5 lines instead of 101:

1/21 LET X = l
2# PRINT X, SQR(X)
3@ LET X =X -t 1
4# IF X< = I @ @ THEN 2#
50' END

Statement 10 give the value of 1 to X and "initializes" the loop. In l in 20, both 1
and its square root are printed. Then, in line 30, X i s increased by 1, to 2. Line 40
asks whether X i s less than or equal to 100; an affirmative answer directs BASIC back
to line 20. Here BASIC prints 2 a n d m and goes to 30. Again X is increased by 1;
this time to 3, and at 40 i t goes back to 20. This process i s repeated (line 20 (print
3 and m, line 30 (X =4), line 40(since 4t100 go back to line 20), etc.) until the
loop has been traversed 100 times. Then, after i t has printed 100 and i t s square root
X becomes 101. BASIC now receives a negative answer to the question in line 40
(X i s greater than 100, not less than or equal to it), it does not return to 20 but moves
on to line 50, and ends the program. A l l loops contain four characteristics:

1. Initialization (line lo),

2. the body (line 20),

3. modification (line 30), and

4. an exit test (line 40).

Because loops are so important and because loops of the type just illustrated arise so often,
BASIC provides two statements to specify a loop even more simply. They are the FOR and
NEXT statements, and their use i s illustrated i n the program:

10' FOR X =1 TO 10'0'
2# PRINT X, SQR(X)
3# NEXT X
5@ END

In line 10, X i s set equal to 1 , and a test is set up, l ike that of l ine 40 i n the previous
example program. Line 30 carries out two tasks: X i s increased by 1, and the test i s
made to determine whether to go back to 20 or go on. Thus, lines 10 and 30 take the
place of lines 10, 30, and 40 in the previous program, and they are easier to use.

9

Note that the value of X i s increased by 1 each time we go through the loop. I f we
wanted a different increase, as in increments of 5, we could specify i t by writing

la' FOR X-1 TO la'@ STEP 5

and BASIC would assign 1 to X on the first time through the loop, 6 to X on the second
time through, 11 on the third time, and 96 on the 20th and last time through the loop.
(Another step of 5 would take X beyond 100.) The program would proceed to the end
after printing 96 and i t s square root. The STEP may be positive or negative, and we
could have obtained the f i rs t table, printed in reverse order, by writing line 10 as

I @ FOR X=lplld TO 1 STEP -1

In the absence of a STEP instruction, a step size of t 1 i s assumed.

More complicated FOR statements are allowed. The in i t ia l value, the final value, and
the step size may al l be formulas of any complexity. For example, if N and Z have been
specified earlier in the program, we could write

FOR X.= N T 7 * Z TO (Z-N)/3 STEP (N-4*2)/1$

For a positive step-size, the loop continues as long as the control variable is.less than or
equal to the final value. For a negative step-size, the loop continues as long as the control
variable i s greater than or equal to the final value. , .

If the init ial value i s greater than the final value (less than, for negative step-size)
then the body of the loop w i l l be executed once.

It i s often useful to have loops within loops, called nested loops, which can be expressed
with FOR and NEXT statements, however, they must actually be nested and must not
cross, as the following skeleton examples illustrates:

AI lowed Allowed

FOR X

FOR Y

NEXT Y

NEXT X

Not Allowed

rFoR
L L T y X

t NEXT Y

-

FOR X

-FOR Y

[Z iT 'Z

FOR W El NEXT W

-NEXT Y

[Z:TzZ

.-L NEXT X
10

LISTS and TABLES

In addition to the ordinary variables used by BASIC, there are variables which can be
used to designate the elements of a l i s t or a table. These are used where we might
ordinarily use a subscript or a double subscript; for example, the coefficients of a
polynomial (ao, ai, a2/. . .) or the elements of a matrix (b e *). The variables which
we use in BASIC consists of a legal BASIC variable name, whlch we call the name of)he list,
followed by the subscripts in parentheses. Thus, we might write A(O),A(l),A(2),etc. ,
for the elements of the l i s t A and B3(0,0),B3(1,0),B3(2,3), etc., for the elements of the
table (or matrix) 83.

I l l

When using subscripts, a DIMENSION (DIM) statement may be used to indicate that BASIC
must save extra space for the list or table. The dimension statement consists of the command
DIM, a space, and the variable followed by the largest subscript (parenthesized) to be
assigned.
given. As shown in the following examples, more than one variable may be declared
in a single DIM statement.

If this statement i s not given for a l i s t it i s as i f the statement DIM A(10) were

The l i s t A(O),A(l), . . .,A(10) may be entered into a program very simply by the lines:

,$5 DIM A(1PI)
1,$ FOR I=,$ TO l @
2,$ READ A(I)
3,$ NEXT I
4,$ DATA 2, 3, -5, 5, 2.2, 4, -7, 123, -4, -4, 3

Statement 05 may be omitted, as 10 i s the assumed value i f no DIM statement i s given for A .

We can enter a 3x5 table into a program by writing:

,$5 DIM B(2,4)
la FORH=,$TO 2
2,$ FOR J=,$TO 4
316 READ B(H,J)
4,$ NEXT J
5 g NEXT H
6,$ DATA 2, 3, -5, -9, 2
7@ DATA 4, -7, 3, 4, -2
8,$ DATA 3, -3, 5, 7, 8

The variable name associated with a l i s t or table, when used as a scalar name, refers to the
first element of the l i s t or table. For example, i f the statement DIM C(5), Q3(2,7) was in
the program then C would be equivalent to C(0) and Q 7 to Q7(0,0). However, the same
letter may not be used to denote both a list and a table in the same program. The form of
the subscript i s quite flexible, and you might have the l i s t item B(H t K) or the table items
B(H,K) or Q(A(3,7),B-C).

1 1

A l i s t and a run of a problem which uses both a l i s t and a table i s shown below. The program
computes the total sales of each of five salesmen, a l l of whom sell the same three products.
The l i s t P gives the price/item of the three products and the table S tells how many items
of each product each man sold. The program indicates that product No. 1 sells for $1.25
per item, No. 2 for $4.30 per item, and No. 3 for $2.50 per item; and also that salesman
No. 1 sold 40 items of the first product, 10 of the second, and 35 of the third, and so on.
The program reads in the price list in lines 40-80, using data in lines 910-930. The same pro-
gram could be used again, modifying only line 900 if the prices change, and only lines
910-930 to enter the sales in another month.

Since the DIM statement i s not executed, it may be entered into the program on any line before
END and prior to use of the l i s t or table; it i s convenient, however, to place DIM statements
near the beginning of the program.

5 DIM P(3),S(3,5)
10’ FOR I =1 TO 3
20’ READ P(I)
30’NEXT I
40’ FOR 1 . ~ 1 TO 3
50’ FOR J = l TO 5
60’ READ S(I,J)
70’ NEXT J
80’ NEXT I
90’ FOR J =1 TO 5
10’0’ LET S = @
1 lgFOR 1 = 1 TO 3
120’ LET S = S f P(I)*S(I,J)
13p(NEXT I
14p(PRINT “TOTAL SALES FOR SALESMAN ‘I J , ‘I $‘IS
150’ NEXT J
90’0’ DATA 1.25,4.75,2.50’
910’ DATA 4@, 20’, 37,29,42
920’ DATA 10’,16,3,21,8
930’ DATA 35/47’, 29,16,33
99a END

RUN N H

TOTAL SALES FOR SALESMAN 1 $ 185
TOTAL SALES FOR SALESMAN 2 $ 218.5
TOTAL SALES FOR SALESMAN 3 $ 133
TOTAL SALES FOR SALESMAN 4 $ 176
TOTAL SALES FOR SALESMAN 5 $ 173

REARY

12

ELEMENTARY BASIC STATEMENTS

This section contains a short and concise description of each type of BASIC statement discussed
earlier in this chapter and adds one statement to the list.
assumed, and brackets denote a general type, thus, fiariable-) refers to any variable, which
i s a single letter, possibly followed by a single digit.

In each form, a line number i s

This statement i s not a statement of algebraic equality, but rather a command to BASIC to
perform certain computations and to assign the answer to a certain variable. Each LET state-
ment i s of the form:

LET EariabIeJ = GormuIaJ .
For example:

READ and DATA

A READ statement i s used to assign to the listed variable, values obtained from a DATA
statement. Neither statement i s used without the other type. A READ statement causes
the variables listed in i t to be given, in order, the next available numbers i n the collection
of DATA statements. Before the program i s run, BASIC takes al l of the DATA statements
in the order in which they appear and creates a large data block. Each time a READ statement
i s encountered anywhere in the program, the data block supplies the next available number
or numbers. If the data block runs out of data with a READ statement still asking for more,
the program i s assumed to be done and an OUT OF DATA message i s received.

Since data must be read in before i t can be worked with, READ statements normally occur
near the beginning of a program. The location of DATA statements i s arbitrary, as long as
they occur in the correct order. A common practice i s to collect a l l DATA Statements and
place them just before the END statement.

Each READ statement i s of the form:

READ Eequence of variable3

and each DATA statement i s of the form:

DATA Eequence of number4

Ex amp1 e:

133 READ X, Y, Z, X1, Y2, Q9
33a DATA 4, 2, 1.7
34g DATA 6.734E-3, -174.321, 3.1415926

13

234 READ B(K)
263 DATA 2, 3, 5, 7, 9, 11, is; a, 6, 4

1$ READ R(I,J)
44@ DATA -3, 5, -9, 2.37, 2.9876, -437.234-5
45g DATA 2.765, 5.5576, 2.3789E2

Remember that only numbers are put in a DATA statement, and that 15n and c a r e formulas,
not numbers.

PRINT -
The PRINT statement has a number of different uses, which are discussed in more detail in
the section ADVANCER BASIC. The common uses are described below.

1 . To print out the result of some computation:

l @ PRINT X, SQR(X)
135 PRINT X, Y, Z, B*B-4*A*CI EXP(A-B)

The first w i l l print X and then several spaces to the right of that number (X), i t ' s square root.
The second w i l l print f ive different numbers:

A -B X, Y, Z, B2 -4AC, and e

BASIC w i l l compute the two formulas and print them, as long as values have been given to
A, B, and C. It can print up to five numbers per line in this format.

2. To print out verbatim a message included in the program:

lafl PRINT "NO UNIQUE SOLUTION"
43fl PRINT "X VALUE", "SINE", "RESOLUTION"

Both have been encountered in the example programs. The first prints the simple statement;
the second prints the three labels with spaces between them. The labels in 430 automatically
line up with three numbers called for a PRINT statement.

3. A combination of 1 . and 2. above:

150' PRINT "THE VALUE OF X IS" X
3p(PRINT "THE SQUARE ROOT OF" X, "IS" SQR(X)

If the first has computed the value of X to be 3, it w i l l print out:

THE VALUE OF X IS 3

If the second has computed the value of X to be 625, it w i l l print out:

THE SQUARE ROOT OF 625 IS 25

14

4. To skip a l ine (explained in the section ADVANCED BASIC).

We have seen examples of the first three in our previous example programs. Each type
is slightly different i n form, but al l start w i th PRI NT after the line number.

GO TO

In a
that
Yet,
to a

program there are times when you do not want al l commands executed in the order
they appear in the program.
but to go through the same process for a different value, we direct BASIC to go back
certain line with a GO TO statement; in the form:

If we do not want the program to go to the END statement

GO TO sine numbed

Example:

15a GO TO 75

IF --THEN

There are times when we are interested in jumping the normal sequence of commands, i f
a certain relationship holds. For this we use an IF--THEN statement, sometimes called a
conditional GO TO statement. Each such statement i s of the form:

I f Cformulaj LreIationJtormuIa] THEN u ine numbed

Example :

416 IF SIN(X) < = M THEN 816
216 IF G = THEN 65

The f i r s t asks i f the sine of X i s less than or equal to M, and directs the computer to skip to
line 80 i f i t is . The second asks i f G is equal to 0, and directs the computer to skip to line
65 i f i t is .
of the program.

In each case, i f the answer to the question i s no, BASIC w i l l go to the next line

FOR and NEXT

We have already encountered the FOR and NEXT statement in our loops, and have seen that
they go together, one at the entrance to the loop and one at the exit, directing BASIC back
to the entrace again. Every FOR statement is of the form:

FOR bariableJ -- Cformulaj TO [formula1 STEP pormuld

Most commonly, the expressions w i l l be integers and the STEP omitted.
a step size of one i s assumed. The accompanying NEXT statement i s simple in form, but the
variable must be precisely the same one as that following FOR in the FOR statement.
i s NEXT LvariableJ .
subcripted.

In the latter case,

Its form
The variable used in the FOR and NEXT statements may not be

15

Examples:

3@
8@ NEXT X

l2$ FOR X4 = (17tCOS(Z))/3 TO 3*SQR(l@ STEP 1/4
235 NEXT X 4
24@
456 FOR J’ -3 TO 12 STEP 2

FOR X = @ T O 3 STEP D

FOR X = 8 TO 3 STEP -1

Notice that the step size may be a formula (1/4), a negative number (-1), or a positive
number (2). In the example with lines 120 and 235, the successive values of X4 wi l l be
.25 apart, in increasing order. In line 240, the successive values of X w i l l be 8, 7, 6,
5, 4, 3. In line 456, on successive trips through the loop, J wi l l take cn values -3, -1,
I, 3, 5, 7, 9, and 1 1 .

If the initial, final, or step-size values are given as formulas, these formulas are evaluated
once and for al l upon entering the FOR statement. The control variable can be changed in
the body of the loop; of course, the exit test always uses the latest value of this variable.

If you write 50 FOR Z=2 TO -2, without a negative step size, the body of the loop w i l l
be performed once and BASIC w i l l then proceed to the statement immediately following
the corresponding NEXT statement.

DIM

Whenever we want to enter a l i s t or a table, we must use a DIM statement to inform BASIC
to save sufficient room for the list or table. Examples:

2111 DIM H(35)
35 DIM Q(5,25)

An alternate way of writing this would be:

2111 DIM H(35), Q(5,25)

The first would enable us to enter a l i s t of 35 items, or 36 i f we use H(0); and the latter a
table 5x25, or by using rbw 0 and column 0 we get a 6x26 table. A l l tables must be
dimensioned, but a l i s t which i s not dimensioned i s assumed to have 11 elements numbered
0 through 10.

Every program must have an END statement, and it must be the statement wi th the highest
line number in the program. I t s form i s simple: a line number wi th END.

999 END

16

ERRORS AND DEBUGGING

I t may occasionally happen that the first run of a new problem wi l l be free of errors and give
the correct answer, but i t i s much more common that errors w i l l be present and w i l l have to be
corrected. Errors are of two types: errors of form (or syntactical errors) which prevent the
running of the program; and logical errors (bugs) in the program which cause BASIC to produce
wrong answers or no answers at a1 I .

Errors of form wi l l cause error messages to be printed. Logical errors are often much harder to uncover,
particularly when the program gives answers which seem to be nearly correct. In either case,
after the errors are discovered, they can be corrected by changing lines, by inserting new lines,
or by deleting lines from the program. As indicated in the last section, a l ine i s changed by
typing it correctly with the same line number; a line i s inserted by typing it wi th a l ine number
between those of two existing lines: and a line i s deleted by typing i t s l ine number and pressing
the RETURN key. Notice that you can insert a line only i f the original line numbers are not
consecutive integers. for this reason, most programmers w i l l start out using line numbers that
are multiples of five or ten, but that i s a matter of choice.

These corrections can be made at any time, when in the editing phase and either before or
after a run, by simply retyping the offending line with its original l ine number.

17

ADVANCED BASIC

MORE ABOUT PRINT

The uses of the PRINT statement were previously described, but more detail i s presented
in this section.
the P R I N T statement permits a greater f lexibi l i ty for the more advanced programmer who
wishes a different format for his output.

Although the format of answers i s automatically supplied for the beginner,

The Teletype line i s divided into five zones of fourteen spaces each. Some control of the
use of these comes from the use of the comma: a comma i s a signal to move to the next
print zone or, i f the fifth print zone has just been filled, to move to the f i rs t print zone of
the next line.

For example, i f you were to type the program

I# FOR N s l TO 15
2# PRINT N
3# NEXT N
4# END

BASIC would print 1 at the beginning of a Line, 2 at the beginning of the next line, and so
on, f inally printing 15 on the fifteenth line. But, by adding a comma to line 20 to read

Z$ PRINT N,

you would have the numbers printed in the zones, reading

1 2 3 4 5
6 7 8 9 la,
11 12 13 14 15

READY

More compact output can be obtained by use of the semicolon.
quotes) is followed by a semicolon, the label i s printed with no space after it. If a variable
i s followed by a semicolon, i t s value i s printed in the following format:

If a label (expression in

first, a space, then, a minus sign for negative numbers
then, the numerical value,
then, two spaces

Thus, printing a l i s t of numbers i n semicolon format w i l l pack them in the closest readable form.

If you wanted the numbers printed in this fashion, but more tightly packed, you would change
line 20 to replace the comma by a semicolon:

2# PRINT N;

18

and the result would be printed

1 2 3 4 5 6 7 8 9 l a 1 1 12 13 14 15

You should remember that a label inside quotation marks i s printed just as it appears and
also that the end of a P R I N T signals a new line, unless a comma or semicolon i s the last
symbol.

Thus, the instruction

516 PRINT X, Y

w i l l result in the printing of two numbers and the return to the next line, while

516 PRINT X, Y,

w i l l result i n the printing of these two values and no return. The next number to be printed
w i l l occur i n the third zone, after the values of X and Y in the first two.

Since the end of a P R I N T statement signals a new line,

25p(P R I N T

w i l l cause BASIC to advance the Teletype paper one line.
program, i f you want to use i t for vertical spacing of your results, or i t causes the completion
of a partially f i l led as illustrated in the following fragment of a program:

It w i l l put a blank line in your

516
ll# FORJ = # T O M
12# PRINT B(M,J);
1316 NEXT J
1416 PRINT
1% NEXT M

FOR M = 1 TO N

This program wi l l print B(1,O) and next to i t B(1 , l) . Without line 140, BASIC would then go
on printing B(2,0),6(2,1), and B(2,2) on the same line, and then B(3,0),6(3.\), etc.
Line 140 directs BASIC, after printing the B (l , 1) value corresponding to M= 1 , to start a new
line and to do the same thing after printing the value of B(2,2) corresponding to M-2, etc.

The instructions

516
51
52 END

P R I N T "BASIC"; I' ON ' I ; I' THE 'I;

P R I N T If PDP-8"; 'I /I 'I

w i l l result in the printing of

BASIC ON THE PDP-8/1

19

The following rules for the printing of numbers w i l l help you in interpreting your printed
results:

1. If a number i s an integer, the decimal point i s not printed.
If the integer contains more than six digits, the number w i l l be
printed in E format; the Teletype w i l l give you the first digit,
followed by

(a) a decimal point,
(b) the next five digits, and
(c) and E, followed by the appropriate

signed integer.

For example, it w i l l take 32,437,580 and write it as 3.243758E +07.

2. For any decimal number, no more than seven significant
digits are printed.

3. For a number less than 0.0125, the E notation i s used.

4. Trailing zeroes after the decimal point are not printed. The
following program, in which we print out powers of 2, shows how
numbers are printed.

I,$ FOR N s -5 TO 16
20' PRINT 29N;
3# NEXT N
40' END

RU N

0.03125 0.0625 0.125 0.250.5 1 2 4 8 16 32 64 128 256
512 1024 2048 4096 8192 16384 32768 65536

FU NCT I ONS

Three functions were mentioned in THE BASK LANGUAGE; they are described below.

The INT Function

The INT function frequently appears in algebraic computation as X, and it gives the greatest
integer not greater than X. Thus, INT (2.35) -2, INT (-2.35) = -2, and INT (12) =12.

One use of the INT function i s to round numbers. We may use it to round to the nearest
integer by asking for INT (X f .5). This w i l l round 2.9, for example, to 3, by finding
INT (2.9 + .5)=INT (10*X+.5)/10f2 w i l l round X correct to two decimal places, and
INT (X * l W D t .5)/10fD between two integers up to the larger of the integers).

INT can also be used to round to any specific number of decimal places. For example,
INT (1O*X+ .5)/1092 w i l l round X correct to two decimal places, and INT (X*lO'l'D.f.
.5)/10+ D w i l l round X correct to D decimal places.

The RND Function

The function RND produces a random number between 0 and 1. Note that the argument in
this function i s not used.

If we want the first twenty random numbers, we write the program below and we get twenty
six-digit decimals.

116 FOR L= 1 TO 216
216 PRINT RND(l),
316 NEXT L
416 END

RUN N H

.222990’ .267154 .365537 .78 1 468 .754354

.591682 .627343 .775799 1 .2(6355E -1 .375576

.987772 .38230’3 .486249 .449of@ 5.94372E -2

.582546 .161621pl .952712 .725329 .867454

O n the other hand, i f we want twenty random one-digit integers, we could change line 20
to read:

20’ PRINT INT(lO’*RND(O)),
RUN N H

and we would then obtain:

2 2 3 7 7
5 6 7 1 3
9 3 4 4 0’
5 1 9 7 8

READY

We can vary the type of random numbers we want. For example, i f we want 20 random
numbers ranging from 1 to 9 inclusive, we could change line 20 as shown

20’ PRINT INT(9*RND(l)+l);
RU N

4 8 7 9 3 8 8 6 6 9 6 9 6 6 3 1 4 7 6 7

21

or we can obtain random numbers which are integers from 5 to 24 inclusive by changing line
20 as in the following example:

W PRINT INT(2akRND(l)+5);
RUN

13 22 18 23 la 22 22 17 17 24 16 22 17 17
1 1 6 12 18 17 18

In general, i f we want our random numbers to be chosen from the A integers of which B i s
the smallest, we would call for INT (A*RND(l)tB).

The SGN Function

The SGN function assigns the value 1 to any positive number, 0 to zero, and -1 to any
negative number, thus, SGN (7.23) = l , SGN(0) 0, and SGN (-. 2387)= - 1 .

DEF Statement

In addition to the standard functions, you can define any other function which you expect
to use a number of times in your program by use of a DEF statement. The name of the defined
function must be three letters, the first two of which must be FN. Hence, you may define up
to 26 functions, e.g., FNA , FNB, etc. These use a DEF statement i s shown in the following
example.

-

la DEF FNX(X)=X*X
2@ READ A,B
316 PRINT A,B,FNX(B)
416 GO TO 2@
5@ DATA 1,2,3,4,5,6
616 END

RU N

FNX BAS IC -69

1
3
5

ERROR DA AT la36

READY

GOSUB and RETURN

2
4
6

4
,16
36

When a particular part of a program i s to be performed more than one time, or possibly at
several different places in the overall program, i t i s most efficiently programmed as a sub-
routine. The subroutine i s entered with a GOSUB statement, where the number i s the line
number of the first statement in the subroutine. For example,

22

9$ GOSUB 21$

directs BASIC to iump to line 210, the first line of the subroutine. The last line of the
subroutine should be a RETURN command directing BASIC to return to the earlier part of
the program. For example,

35/21 RETURN

wi l l te l l BASIC to go back to the first line numbered greater than 90, and to continue the
program there.

The following example, a program for determining the greatest common divisor of three
integers using the Euclidean Algorithm, illustrates the use of a subroutine. The first two
numbers are selected in lines 30 and 40 their greatest common divisor (GCD) i s determined
in the subroutine, lines 200-310. The GCD just found i s called X i n line 60, the third
number i s called Y in line 70, and the subroutine i s entered from line 80 to find the GCD
of these two numbers. This number is, of course, the greatest common divisor of the three
given numbers and i s printed out wi th them in line 90.

You may use a GOSUB inside a subroutine to perform yet another subroutine. This would
be called nested GOSUBs. In any case, it i s absolutely necessary that a subroutine be left
only with a RETURN statement, using a GOT0 or an IF-THEN to get out of a subroutine
w i l l not work properly. You may have several RETURNS in the subroutine so long as exactly
one of them wi l l be used.

116 PRINT "A","B","C","GCD"
216 READ A,B,C
316 LET X=A
4@ LET Y = B
Sa' GOSUB 2@
6# LET X =G
7# LET Y'C
816 GOSUB 21dp(
9@ PRINT A,B,C,G
116" GO TO 2@
1 l @ DATA 616, 9/d, 12@
1216 DATA 38456,64872,98765
13/21 DATA 32,384,72
2/21@ LET Q INT(X/2/)
2 l a LET R=-X-Q*Y
2216 IF R=@ THEN 3/21@
2316 LET X--Y
24@ LET Y=R
25/21 GO TO 21616
3@@ LET G=Y
31/21 RETURN
32fl END

23

RU N

GCD

A
6pl
38456
32

ERROR

READY

IN PUT

BASIC -69

B
9pl
64872
384

C
12pl
98765
72

GCD

1
8

3id

DA AT 11653

There are times when it i s desirable to have data entered during the running of a program.
This i s particularly true when one person writes the program and enters it into the computer’s
memory, and other persons are to supply the data. This may be done by an INPUT Statement,
which acts as a READ statement but does not draw numbers from a DATA statement.
example, you want the user to supply values for X and Y into a program, you w i l l type

If, for

4$ INPUT X, Y

before the first statement which i s to use either of these numbers. When i t encounters this
statement, BASIC w i l l type a question mark. The user types two numbers, separated by a
comma or blank, presses the RETURN key, and BASIC goes on with the rest of the program.

Frequently an INPUT statement i s combined with a PRINT statement to make sure that the
user knows what the question mark i s asking for. You might type:

2g PRINT “YOUR VALUES OF X, Y, and Z ARE”;
3$ INPUT X, Y, Z

and BASIC w i l l type out

YOUR VALUES OF X, Y, and ZARE?

Without the semicolon at the end of line 20, the quesfion mark would have been printed on
the next line.

Data entered via an INPUT statement i s not saved with the program.

MISCELLANEOUS STATEMENTS

Several other BASIC statements that may be useful from time to time are STOP, REM and
RESTORE.

24

STOP Statement

STOP i s equivalent to GOTO xxxxx, where xxxxx i s the line number of the END statement
in the program. I t i s useful in programs having more than one natural finishing point. For
example, the following two program portions are equivalent.

25fl GO TO 999 25@ STOP

340' GO TO 999 34@ STOP

999 END 999 END

REM Statement

REM provides a means for inserting explanatory remarks in a program.
ignores the remainder of that line, allowing the programmer to follow the REM with directions
for using the program, with identifications of the parts of a long program, or wi th anything
else that he wants.
in a GOTO or IF-THEN statement.

BASIC completely

Although what follows REM i s ignored, its line number may be used

1@@ REM INSERT DATA IN LINES 9@@-998. THE FIRST
ll@ REM NUMBER IS N, THE NUMBER OF POINTS. THEN
12@ REM THE DATA POINTS THEMSELVES ARE ENTERED, BY

2ojd REM THIS IS A SUBROUTINE FOR SOLVING EQUATIONS

3& RETURN

52@ GOSUB 2@@

RESTORE Statement

Sometimes i t i s necessary to use the data i n a program more than once. The RESTORE
statement permits reading the data as many additional times as i t is used. Whenever RESTORE
i s encountered in a program, BASIC restores the data to its original state. A subsequent
READ statement w i l l then start reading the data al l over again. A word or warning: i f the
desired data are preceded by code numbers or parameters, superfluous READ statements should
be used to pass over these numbers. As an example, the following program portion reads
the data, restores the data to i t s original state, and reads the data again. Note the use of
line 570 to "pass over" the value of N, which i s already known,

l@@ READ N

126 READ X
l l @ FOR 1 - 1 TO N

25

2 k f NEXT I

560 RESTORE
57@ READ X
580’ FOR 1=1 TO N

26

OPERATING THE POLY BASIC SYSTEM

To load and initiate the system refer to the Loading Procedure in Appendix C.

While typing a program the following rules apply:

1 . If a line i s typed with the same line number a a line already in the program,
the old line i s replaced by the new one. If the new line was only a line number
and a carriage-return then both the old and new lines vanish.

2. If a line i s typed with a line number which does not already exist in the
program the line i s inserted into the program in numerical order.

3. If a mistake i s detected in the line currently being typed, you have two
options, the back-arrow (H deletes one character every time i t i s typed and
i s not inserted into the line itself. The "ALT MODE" character (also called
"ESCAPE" and "PREFIX") deletes the entire line, prints "DELETED" and returns
the carriage so that the line can be retyped.

4. The following characters are ignored by POLY BASIC - rubouts, blank tape,
leader (Control - shift - P), and Iine-feeds.

The POLY BASIC system obeys 17 commands, only the first two letters of the command
are significant.

SCRATCH

SCRATCH initializes the users program area to contain no statements.

RENAME

RENAME renames the users program area - the machine types back "NEW FILE NAME - I '

and the user may then input a name of up to six characters followed by a carriage-return.
These characters become the new name of the program.

NEW

NEW is CI combination of SCRATCH and RENAME.

SAVE

SAVE saves the current program on the system device (Disk or tapes), i f a f i l e nam,e with the same
name already exists on the system device, i t i s unsaved (see comment on YJNSAVE") and
replaced by the current program.
the program the message "NO SPACE" w i l l be typed. However, the old copy of the program,
i f one existed, has been deleted.

If there i s insufficient room on the system device to save

27

OLD recalls a previously saved program from the system device. The computer types "OLD
FILE NAME - I ' and the user types the name of the program he wishes to recall. I f the program
i s not found, -the computer types "NO SUCH FILE".

LENGTH

LENGTH types the length of the current user f i le in terms of blocks on the system device
(blocks are 128 words in length). The length of a f i le can range from 1 to 24.

CATALOG

CATALOG types a l i s t of a l l programs that are currently saved on the system device.
Each program name is followed by i t s length in blocks. This i s useful in determining how
much room i s left on the system device. The maximum number of blocks which can be
used on each type of system device is:

125+256n for DF32 Disk, where n=the number of extra disks @k=n<=3)
19@+@48n for RFg8 Disk, where n = the numbbr of extra disks (n=@ or 1 only)
1344 for TU55 DECtape or PDP-12 Tape.

The listing of the catalog may be stopped at the end of the currently printing line by
striking any keyboard character.

UNSAVE

UNSAVE deletes the program with the same name as the current program from the system
device. UNSAVE i s fast on disk but may require from several seconds to a few minutes on
DECtape. If the program to be unsaved is not on the system device the message "NO SUCH
FILE" i s typed.

TAPE

TAPE informs the computer that you are about to feed in a paper tape that was either prepared
off-line or created by turning on the punch during a "LIST" type command. The computer w i l l
then know not to automatically type a line-feed after a carriage-return i s inputted, and to
ignore lines which are neither text nor legal commands.

KEY

KEY reenters the normal mode of processing, i . e . , a l l carriage-returns are automatically
followed by a line-feed and illegal input causes the message "WHAT??" to be typed.
legal command given under "TAPE" mode also reenters this mode.

Any

28

LIST

This command l ists a l l or part of the current program. It has several forms:

A) LIST l i s t s the entire program with a one line heading of the program name
and date.

B) LISTNH l i s t s the entire program without a heading.

C) LIST n l i s t s users program starting at the first line with line number =>n.
Printing a heading first.

D) LlSTNHn i s the same as LIST n but no heading i s printed.

These listings can be terminated at any time by striking any key on the Teletype. I f the
Teletype punch i s on during the execution of a LISTNH command a tape w i l l be punched
that can later be read in using the TAPE command. The recommended way to do this i s to
first type LISTNH without a carriage-return, then turn on the Teletype punch and type a
few dozen rubout characters (using the REPT and RUBOUT keys) and a carriage-return.
When the listing and punching stops type a few dozen rubouts and r ip the tape off of the
punch.

ECHO

Successive uses of the ECHO command wi l l turn the Teletype from the half-duplex mode
(a1 I typed characters automatically print) to the fu Il-duplex mode (no typed characters
print) and back to half-duplex. If one were to type the sequence

ECHO
TAPE (Note: this w i l l not appear on the Teletype)

and put a paper tape in the Teletype tape reader, the tape would read in silently. When i t
was finished you would type "ECHO" to reenter the normal mode and also reenter half-duplex
mode.

HIGH

This command i s only useful at installations with a high-speed reader and punch.
output to the high-speed punch and accepts input from both the Teletype and the high-speed
reader.
as this w i l l rather randomly merge the two input sources.
the high-speed reader to type a character on the Teletype to start the reader, a rubout i s
recommended. HIGH automatically enters the full-duplex mode and the half-duplex mode
cannot be reentered until a LOW command i s given.

It switches a l l

It i s important not to use the Teletype keyboard while the high-speed reader i s reading,
It i s necessary after mounting a tape in

LOW

LOW restores the Teletype as the input and output device.

29

To read a tape from the high-speed reader:

A) Type HIGH .
B) Type TAPE$. This w i l l not print. However, a few characters w i l l be typed
on the high-speed punch.
C) Place the tape in the reader and hit RUBOUT. The tape wi l l read to the end.
D) Type L O W 3 . This w i l l not print but the computer w i l l type "READY" and
everything w i l l be back to normal.

To punch a tape on the high-speed punch:

A) Type HIGH3 .
B) Turn on the punch and feed about 4 fans of tape.
C) Type LISTNH . Do not touch the Teletype unti l the punch stops. When the

D) Type L O W 3 . The computer w i l l print "READY" and everything wi l l be cool.
punch stops feed a 4 out 2 fans of the tape and rip.

EDIT

This command resequences the users program so that the first line number i s 188 and the
difference between successive line numbers i s 18. A l l "GOTO", "GOSUB" and "IF"
statements are also changed to reflect the changed line numbers. The EDIT command can
take up to four seconds on disk and up to twenty seconds on DECtape.

RUN

This command causes the BASIC system to compile and execute the current program. If
the program has syntax errors an appropriate error message w i l l be printed and the program
wi l l not execute. A heading i s typed before the compilation i s initiated. This can be
deleted by typing the command as

RUN NH.

I f a Teletype key i s struck while the heading i s printing then the run w i l l be aborted.
Likewise, i f a key i s struck while an error message i s printing the compilation w i l l be
aborted at the end of the message. If the user wants to stop his program while it i s
executing he must depress the "BREAK" key on the Teletype. Compilation time varies
from 0.5 to 0.7 seconds on disk and from 15 to 9fl seconds on DECtape, depending on the
size of the program to be compiled.

DEBUG

This command sets a compiler switch so that a symbol table is printed at the end of compilation.
A sample table i s given in Appendix B. This switch also causes the BASIC system to halt after
typing any execution time error message (see Appendix A) so the user can examine core. This
command i s not too useful to people who do not know the standard DEC Floating Point represen-
tations and a l i t t le more about the BASIC system than this manual provides.

30

SPECIAL FEATURES OF POLY BASIC

POLY BASIC has several speical features which make it more useful. They are:

A) The character \I' (shift-L) can be used to put more than one statement on
a line.
Example :

igg FOR i=i TO ig\PRINT I,\NMI\END

B) The character "#' I can be used to obtain the ASCII value of any printing character
except I' t" (vaIue=233.), carriage-return (value=141.) and line-feed (vaIue=138.).
Example:

199 LET A=#B sets A to 194. (octal 392)

C) The form 'exp , where "exp" i s any legal arithmetic expression, appearing i n a
print statement w i l l print the single ASCII character whose value i s l'expll.

D) The form 'variable in an input statement w i l l input a single character from the
Teletype and store i t s ASCII value i n "variable".
Example:

18 FOR I=i TO 99\ INPUT eA(I)\IF A(I)=#. THEN a \NExT I
5$ PRINT
will input a sentence ending i n a period from the Teletype and store i t i n
array A.

E) The statement CHAIN "progname", where "progname" i s the name of a saved
program padded out with blanks to be six characters long, w i l l terminate execution
of the current program and compile and execute the program named progname.
Example:

9$$ CHAIN "BLAH I ' wi l l execute the program named BLAH.

F) There i s a "WRITE" statement i n BASIC for writing data onto the system device.
I t s format is:

WRITE expl, exp2, exp3.. . Where the EXPn are any legal
BASIC expressions.

The WRITE and READ statements are interconnected i n the following manner. Either
statement w i l l access the data word after the one accessed by the previous statement.
E. g. the sequence:

i/3$ FOR 1=1 TO I$$\READ A(I)\NEXT I

FOR I=I TO ,#$\WRITE A(I)\NEXT I

Wi l l read 1/38 words from the system device into the array A. The sequence:

31

Wi l l write lgjd words from the array A onto the system device. And the sequence:

1 a FOR Is1 TO I@\ READ A(I)\ WRITE A(I)\ NEXT I

Wi l l read the first number into A(1). Write A(l) over the second number, read the
third number into A(2), write A(2) over the fourth number, etc.

The RESTORE statement has the dual function of resetting the pointer to the beginning of
the data and also making sure that the last few numbers written find their way onto the
system device. Data written on the Disk in one program can be read by another i f a l l of
the following three conditions hold:

1) The second program i s executed v ia a CHAIN statement in the first one,
2) The second program contains no DATA statements,
3) The first program executed a RESTORE statement just before the CHAIN
statement.

Note: If the data pointer, which is incremented every time a number i s read or written
and reset to zero by every RESTORE statement, i s allowed to get large enough, there i s
a danger of writing over the text of your program. If your program has a lenght of n then
writing more than approximately 237fl-42n numbers w i l l overwrite your program.
more than 237g numbers w i l l cause an error message and termination of your execution as
this endangers parts of the system.

Writing

G) The statement PAUSE or PAUSE n w i l l cause the computer to print a message
("ERROR PA AT xxxx") and halt at execution time. Execution may be continued
by setting the switch register to p and pressing CONTINUE. The number n, i f it exists,
i s used to reserve core for machine language programs which the user wants interfaced to
BASIC. It is a decimal number representing the highest location which BASIC should use
for storage of program and variables. BASIC usually uses up to location 256,0 decimal
(5$,0$ octal), so that any value of n should be less than this and greater than about l@ffl
decimal. For detailed instructions on the interfacing of user programs to BASIC see Appendix
D.

32

APPENDIX A

ERROR MESSAGES

Three types of error messages can occur in BASIC. These messages and their interpretations
are shown below.

DURING PROGRAM COMPILATION

The message consists of a two letter code, followed by the line number at which the error
was detected.

MO xxxx

EN xxxx

ST xxxx

sx xxxx

IC xxxx

IN xxxx

PC xxxx

TO xxxx

L I xxxx

UQ xxxx

RE xxxx

UL xxxx

TB xxxx

DO xxxx

D N xxxx

Your program i s too large to be executed, try to make it smaller or
reduce your variable dimensions.

Your program did not have an END statement.

A statement was used which i s not a legal BASIC statement.

The structure of the statement does not agree with BASIC syntax.

You used a character which i s il legal in the context you used i t .

The format of a statement number in the statment being processed i s
not valid.

The parentheses in this line are not matched or are used improperly.

Your program contains too many variables, constants, functions and
line numbers. Try to cut down.

There i s an illegal constant in this line.

There were unmatching quotes in this line.

A relational operator appeared where it should not.

The statement number xxxxwas referenced in a GOTO, GOSUB,
or IF statement but not defined.

Your program i s much too big, usually caused by an extremely large
excess of PRINT statements.

A NEXT statement was found in which the variable did not agree with
that in the previous FOR statement.

At the end of the program there was a FOR statement without a NEXT
corresponding to it.

33

NON-FATAL MESSAGES DURING EXECUTION

These messages print but do not cause program execution to terminate. The form of these
messages i s "ERROR xx AT yyyy" where xx is the error code and yyyy i s the core location
at which the error occurred.

Code Explanation

SQ

PA

A division by zero has occurred, the result of the division is set to
some huge number(about lpl 9 5Pg) and execution continues.

A negative square root was attempted - the square root of the absolute
value is used.

A PAUSE statement was executed. - This i s not an error, merely an
informative printout. The machine wi l l halt but execution can be
resumed by setting the switch register to zero and press CONTINUE.

FATAL EXECUTION TIME MESSAGES

These messages have the same format as the non-fatal messages except that they terminate
execution and return to the editing phase of BASIC.

Code -
PD

GS

LG

FN

DA

ss

CH

WR

Ex planat ion

The pushdown l i s t overflowed - This usually means that functions and
GOSUBs are nested too deeply. Making-the program a l i t t l e smaller
w i l l leave more room for pushdown.

Similiar to PD - usually means that GOSUBS were called recursively
to too great a depth.

An attempt was made to take the LOG of a number which was. less
than or equal to zero.

A user function was called which was not defined in a DEF statement
or interfaced through a PAUSE statement.

The program tried to read more data than it had.

A subscript on a variable was larger than the maximum specified for
that variable in a DIM statement.

An attempt was made to CHAIN to a non-existant program.

So much data was written with a WRITE statement that the system
is in danger of being overwritten.

34

APPENDIX B

A SAMPLE OF DEBUG OUTPUT

REM THIS PROGRAM COMPUTES PRIMES AND STORES THEM IN A N ARRAY
INPUT L,J
LET K=l
IF L>7 THEN 16,0
PRINT 2;3;5;7;
LET L=l l
FOR I=L TO U STEP2
FOR J=3 TO SQR(I) STEP 2

NEXT J
PRINT I;

LET A(K)=I
LET K=K+1
NEXT I
PRINT
PRINT K
GO TO l l a
END

IF I=J*INT(I/J) THEN 2 4 ~ 1

DIM A(4,0pI)

DEBUG
READY
RUN

PRIMES $9/15/69

la61

51 75
51 72
51 67

The code generated by statement 118 starts at
location l$6l (Octal).
The variable L i s in locations 5175-5177 (Octal).

The l i teral 7.$, which has an internal representation
of pIpI,03 34,0pI $,0@, is in locations IpIfk-IpIIpI

1fi&

lpIl 1

la22

1111

l g l 4
181 7

51 64
51 61
1163
26 76 The array A, dimensioned 4,@, starts at location 2676.

35

APPENDIX C

LOADING POLY BASIC ON A PDP-8, 8/1 or 8/L COMPUTER

BASIC comes as 2 tapes- the BASIC LOADER and BASIC itself.

Follow the steps below to insure proper loading.

a) Make sure the binary loader i s in locations 7600 - 7777 of field zero. Then LOAD
ADDRESS 7777.

b) Place the tape marked BASIC LOADER in the low(high) speed reader, and set the
switches to 7777 (3777).

c) Press START - the loader should read in. When the reader stops the AC should be zero
and the link 1. If not, go back to step a.

d) LOAD ADDRESS 600; make sure the Teletype i s on; START.

e) The loader w i l l type HIGH SPEED RDR?e

Type a Y i f you have high-speed paper tape, type an N i f you do not.

f) The loader w i l l type DF32 DISK?.

First load the tape marked BASIC into the proper reader - then, i f you have a DF32Disk,
Type Y and go to step i. Otherwise, type N.

g) The load w i l l type TU55 DECTAPE?,

If you h.ave a TU55 DECtape mount, certified tape, set the unit to unit #8 and \AlRITE ENABLE
type Y, and go to step k. Otherwise type N.

h) The loader w i l l type RFg8 DISK?..

If you have an RFg8 Disk type Y and go to step i. If not type N.

i The loader w i l l type “PDP-12 TAPE? ‘I If you have a PDP-12, put a tape which has
been blocked at 129 words per record on drive g, WRITE ENABLED, type Y, and go to
step k. Otherwise, type N and go back to step e.

i The loader w i l l type HOW MANY DISKS?.

Set a l l disks to WRITE ENABLED (non-protected) state and type the number of disks you
have, followed by a carriage-return. Go to step I .

36

k) The tape should move for a few seconds. This i s 0.k.

1) If you have a low-speed reader, push the lever to START.

The loader i s now reading i n the paper tape. I f any errors occur i t w i l l print "TAPE ERROR"
and halt. I f this occurs, move the tape backwards in the reader unti l the first l - inch blank
space before the error i s at the read station. This may mean backspacing up to 2 feet of tape.
Then press CONTINUE. I f error persists, the tape on the reader i s probably bad.

rn) At some point near the end of the tape the loader should print "FINISHED".
A short time after this the BASIC system wi l l automatically load and print "READY". You may
now run BASIC programs.

Note: Loading time on a DF32 or RF98 Disk takes approximately 1 minute from high-speed
paper tape, 27 minutes from the Teletype. DECtape adds about 1 minute to these times.

The BASIC system has no known bugs which w i l l cause i t to crash, but the following tips are
in order.

1) I f the machine halts due to a PAUSE statement or an execution error under the DEBUG state-
ment and you wish to abort execution, perform LOAD ADDRESS 7600 and START.

2) If someone else uses the machine with some other program, perform the following functions:

DF32 or RFg8 DISK - enter the locations

775g = 66g3 7772 = fl
7751 = 7577

7752 = 5352

7753 = 5352

LOAD ADDRESS 7750, START

PDP-12 - Set Left Switches = 0700, Right Swithces = 0. SET mode to LINC. Press DO. Wait
for tape to stop. Set Left Switches = 4160. Press START LS.

TU55 DECtape - enter the locations

7613 = 6774 7622 = $6$$

7614 = 1222 7623 = g22$

7615 = 6766 7754 = 7577

7616 = 6771 7755 = 7577

7617 = 5216 7772 = $
762$ = 1223

7621 = 5215

LOAD ADDRESS 7613, press START.

37

i 2 %
b-, D A-

' 7
u

3.

c
D
L'.
P

P

38

0 - 0
* -

I -
r z

39

'T:
z
h -

P
u-
3
u-

c

fi
l-
c

r
Y
4 c

P

40

