

DECUS NO.

8-285

TITLE

TELETYPE INPUT-OUTPUT PACKAGE

AUTHOR

Garth Peterson

COMPANY

Institute of Atmospheric Sciences South Dakota School of Mines and Technology Rapid City, South Dakota

DATE

December 9, 1969

SOURCELANGUAGE

PALD

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor, Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the program or related program material, and no responsibility is assumed by these parties in connection therewith.

Title: Teletype Input-Output Package

Author: Garth Peterson

Date: 2 December 1969

Name: TTYP

Programming language: PALD

Core usage: One page, plus location 0.

Abstract:

This is a teletype control package containing subroutines for single-character input and output and for output of packed and open text. These subroutines are single-field oriented, but provide for interrupt-enabled and disabled operation.

Description:

There are nine subroutines:

Name	Function
KTREAD	Read one input character unconditionally.
KTGET	Get contents of keyboard buffer (conditional input).
KTKCL	Clear keyboard buffer.
KTKSV	Service keyboard flag interrupt.
KTWRTE	Write one output character.
KTTSV	Service teletype output flag interrupt.
KTACPT	Accept keyboard input character and echo it.
TYPOPN	Type open text.
TYPPAK	Type packed text.

KTREAD, KTGET, and KTACPT return to the calling program with data in the accumulator; all others return with the accumulator cleared to zero. KTWRTE takes data from the accumulator upon entry; all others clear the accumulator at the start.

The design of these subroutines is based on the following interrupt philosophy: Under interrupt-disabled operation the user's program consists of a single process which includes all calculations, decision branches, and peripheral device service. The operation of peripherals simultaneously with one another and with the calculating and branching parts of the program is thus limited to the inherent buffering capabilities of the peripheral hardware. Under interrupt-enabled operation the user's program contains first a main process, which makes calculations and decisions and which initiates peripheral operations, and second an interrupt service process, which clears flags and issues such commands as are required by the current states of the peripheral devices [8]. Whenever the interrupt service determines that no more devices currently require service, execution of the main process must resume at the point of interruption. The main process runs primarily with the interrupt facility enabled but with it disabled when instructions are executed which are common to both processes. Thus this teletype package is unsuitable for time-sharing systems, but it can run only one teletype anyway. Interrupt-enabled operation is made to resemble interrupt-disabled operation as closely as possible; therefore buffering of the teletype is actually or virtually limited to hardware buffering, and multiple entry points for the individual subroutines are avoided. Other peripherals can run simultaneously with the teletype as permitted by program logic and the interrupt facility.

If the calling program enables the interrupt facility, the interrupt flag identification routine should contain some coding sequence such as:

> KSF SKP JMS KTKSV TSF SKP

JMS KTTSV

KTKSV and KTTSV should be called only while the interrupt facility is disabled and only in response to interrupts. No references in the calling program to these two subroutines are needed if the interrupt facility is always disabled. All the remaining subroutines may be called with the interrupt facility enabled or disabled, but only as part of the main process.

The text output subroutines have calling sequences as follows:

JMS TYPOPN AREA

JMS TYPPAK AREA

"AREA" is the address of the first word of the text. The separation of the character string from the subroutine call allows more efficient use of PDP-8 memory pages. TYPOPN outputs open text consisting of 8-bit ASCII with one right-justified character per memory word. The text string is terminated by a zero word; however, blank tape can still be punched by means of a non-zero word which is zero in the low-order 8 bits When writing a program, certain characters, such as carriage return, line feed, rubout, and back arrow, must be written in octal to avoid problems with the Editor program. Most printing characters can be written explicitly, using the single-character assembly facility of PALD or MACRO-8 [2,5]. For example:

MESG, 215;212;"M;"E;"S;"S;"A;"G;"E;0

At least three characters in the source program are needed for each character in the text, so that open text is inefficient in both the source program and object program. However, open text is more convenient as program-generated text, such as numerical output.

TYPPAK outputs 6-bit stripped ASCII, packed two characters per word, as assembled by PALD or MACRO-8 when the pseudo-op "TEXT" is used [3,6]. Permissible output characters are space, carriage return, line feed, and all the graphics except the at (@), per cent (%), and pound (#) signs. The text is terminated by 00 (octal), which is generated by the assembler, and which is what "@" in the text will compress to. The at sign is therefore a logical choice for a text delimiter. The

per cent and pound signs are compressed in the usual way by the assembler but then converted by TYPPAK to carriage return and line feed respectively [1]. The back arrow is excluded by the Editor, rather than by TYPPAK or the assembler. In addition, if the Editor converts successive spaces in the text to a single tabulate character, the final result in the output will be "I".

Both text subroutines call KTWRTE, which the calling program may also access directly. KTWRTE loops until the teletype flag rises, or until enough time has elapsed to assure that no flag is pending, and then issues the output command [7]. The entry point KTWRTE is immediatedly followed by a skip and return:

```
KTWRTE, 00
SKP
JMP I KTWRTE
```

This allows the output of TYPPAK to be diverted to another device when the skip is replaced by a call to the subroutine for that device. For example, suppose "PTWRTE" is the name of a fast punch subroutine. Then output can be diverted and restored thus:

```
TAD (JMS I [PTWRTE])
DCA KTWRTE+1

TAD (SKP)
DCA KTWRTE+1
```

Note that "PTWRTE" must return to KTWRTE+2 with the accumulator cleared. KTWRTE must be in its normal condition whenever KTACPT is called. For the PDP-8/S the supplied version of KTWRTE should be replaced by:

```
00
 00
 00
KTWRTE, 00
 SKP
 JMP I KTWRTE
DCA KTWRTE-2
DCA KTWRTE-3
 ISZ KTWRTE-3
 TAD KTWRTE-1
 SNA CLA
 JMP .+3
 TSF
 JMP .-5
 TAD KTWRTE-2
 TLS
 STA
DCA KTWRTE-1
 JMP I KTWRTE
```

The input subroutines KTREAD, KTGET, and KTKCL provide access to the "keyboard buffer," which is an abstraction but which has these properties from the viewpoint of the calling program: The buffer is cleared, or voided, by a program command; keyboard input data loads the buffer, which then remains loaded with this input character until cleared by the program or until reloaded by new input data. KTKCL clears the buffer and should be called before data is read from the teletype to avoid inputting spurious characters. KTREAD provides unconditional input; after entry KTREAD loops until the keyboard buffer contains data, then clears the buffer, and returns with the input data in the accumulator and also in core location KTNEXT. KTGET is a conditional input subroutine which shows the current contents of the keyboard buffer in the accumulator but which does not clear the buffer. If the buffer is void, it sets the accumulator to -1. KTGET is called by KTREAD and may be called directly by the user's program to determine whether or not a teletype key has been pressed. In order to determine the status of the interrupt facility, KTGET accesses location 0; the calling program must therefore avoid this location even if the interrupt facility is never used. The interrelation of KTKCL, KTGET, and KTREAD may be made clearer by the following examples of how these subroutines would be written if the interrupt facility were always disabled. Here the "keyboard buffer" is in fact the hardware buffer, provided that a keyboard flag must be present for the buffer to be considered loaded.

```
KTKCL, 00
KCC
JMP I KTKCL
KTGET, 00
CLA
KRS
KSF
STA
JMP I KTGET
KTREAD, 00
JMS KTGET
SPA
JMP .-2
DCA KTNEXT
KCC
TAD KTNEXT
JMP I KTREAD
KTNEXT, 00
```

Interrupt-enabled operation and teletype paper tape input are not fully compatible. This is a hardware characteristic and cannot readily be offset in programming; a fairly large input buffer in memory is usually required. If KTREAD is used for paper tape input with the interrupt facility enabled, successive calls must occur within 100 milliseconds

to avoid loss of data; if the teletype reader is ready, the tape will advance continuously even when input is not requested. Under interrupt-disabled operation the tape advances by one character for each call to KTREAD.

KTACPT inputs characters from the keyboard and echoes them on the teleprinter. It first clears the keyboard buffer, then reads one character, echoes it, and returns with the character in the accumulator and in KTNEXT. All characters are typed as read except carriage return, which is echoed as carriage return plus line feed. KTACPT is not suitable for paper tape input because of this double echo and because KTKCL should be called only once at the beginning of a paper tape, not repeatedly while the tape is read. Paper tape input with teletype echo is performed by this coding sequence:

JMS KTREAD JMS KTWRTE TAD KTNEXT

This teletype control package is intended for use by programs which run entirely within 4096 words of memory or which use extended memory only as fast-access auxiliary data storage. Its use on a multiple-field PDP-8 is subject to these restrictions: Each subroutine must be called with the data field matching the instruction field, and it will return only to locations in the field where it resides. Location 0 must be avoided in any field where KTGET is called. Interrupt-enabled operation is limited to field 0. Text for TYPOPN or TYPPAK must not "wrap around" from location 7777 to location 0.

It can be useful to patch the input and output functions of the PDP-8 floating-point interpreter [4] into the teletype package, allowing floating-point input and output with the interrupt facility enabled. The following patches will do this:

```
*7344+1 /OUTPUT PATCH
JMS I .+2
JMP I 7344
KTWRTE

*7142+1 /INPUT PATCH
JMS I [KTKCL] /OMIT IF PT INPUT
*7142+2
SKP
KTREAD
JMS I .-1
```

These patches should be assembled along with the main program, which must be loaded into core after the floating-point interpreter.

This subroutine package is supplied in ASCII, both with and without comments, and can be assembled as one page of core in the user's program. The first line has the pseudo-op "PAGE", which is the only exception to PAL III, and the last line is a dollar sign. There are 11 labels and no references to auto-index registers.

References:

- 1. Digital Equipment Corporation, Alphanumeric Message Typeout, Digital-8-18-Sym, February 16, 1967.
- 2. idem, PAL-D Disk Assembler Programmer's Reference Manual, DEC-D8-ASAA-D, April 1968, p. 1-12.
- 3. ibidem, p. 2-2.
- 4. idem, PDP-8 Floating-Point System Programming Manual, DEC-08-YQYA-D, 1968.
- 5. idem, MACRO-8 Programming Manual, DEC-08-CMAA-D, 1965, p. 5-12.
- 6. ibidem, pp. 6-3, 6-4.
- 7. Fichtenbaum, Matthew L., to Mrs. Angela J. Cossette (DECUS Executive Secretary), June 7, 1967, distributed to members of Digital Equipment Computer Users Society.
- 8. Wirth, Niklaus, "On Multiprogramming, Machine Coding, and Computer Organization," Communications of the ACM, vol. 12, no. 9 (Sept. 1969), pp. 489-498.

PAGE 1 13670

// JOB T 0002 0002 13670

LOG DRIVE CART SPEC CART AVAIL PHY DRIVE 0000 0001 0001 0000 0001 0002 0002 0001

V2M6 16K SDSMT COMP CNTR 05DEC69

// * GARTH PETERSON 50120

// XEQ PTTCD

KTACPT 0274
KTGET 0213
KTKCL 0225
KTKSV 0232
KTNEXT 0211
KTPA 0351
KTREAD 0200
KTTSV 0265
KTWRTE 0242
TYPUPN 0311
TYPPAK 0325

```
PAGE
                                 /**********************
            /TTY I/O PACKAGE
            /11MR68, 30NV69
                                 /SUBR, READ KEYBOARD UNCONDITIONALLY
0200
     0000
            KTREAD, 00
0201
                                 /GET INPUT CHARACTER, IF ANY
      4213
             JMS KTGET
0202
     7510
             SPA
                                 /IF NONE, TRY AGAIN
0203
      5201
             JMP .-2
             DCA KTNEXT
                                 /DEPOSIT INPUT CHARACTER
0204
      3211
0205
      7240
             STA
                                /MARK BUFFER IN CORE EMPTY
             DCA KTNEXT+1
0206
      3212
0207
     1211
             TAD KTNEXT
                                /RETURN WITH INPUT IN AC
0210 5600
             JMP I KTREAD
0211
      0000
           KTNEXT, 00
                                /+O TELETYPE INPUT WORD
      0000
                                /+1
                                     TELETYPE INPUT BUFFER
0212
             00
                                /SUBR, GET TELETYPE INPUT CHARACTER IF
0213
      0000
            KTGET, 00
0214
     7200
             CLA
                                / ANY
0215
      3000
             DCA O
                               /LOCATION O HOLDS RETURN ADDRESSES OF
                               / INTERRUPTS
0216
             KSF
      6031
                              /BRANCH IF NO FLAG, LOOK FOR CHARACTER
/ IN CORE
/SKIP IF FLAG CAUSED INTERRUPT
0217
      5223
             JMP .+4
0220 1000
             TAD 0
0221
      7650
             SNA CLA
             JMS KTKSV
                                /READ HARDWARE BUFFER INTO CORE
0222 4232
                                /GET BUFFER CHARACTER, AC= -1 IF NONE
0223 1212
             TAD KTNEXT+1
0224
      5613
             JMP I KTGET
                                 /SUBR, CLEAR OUT PREVIOUS KEYBOARD INPUT
0225
      0000
            KTKCL, 00
                                 /CLEAR HARDWARE FLAG WHEN INTERRUPT
0226
      6032
             KCC
0227
      7240
                                / DISABLED
             STA
0230
     3212
             DCA KTNEXT+1
                                /MARK BUFFER IN CORE EMPTY
0231
      5625
             JMP I KTKCL
                                /KEYBOARD INPUT INTERRUPT & FLAG SER' CE
0232
      0000
           KTKSV, 00
0233
                                 /CLEAR FLAG, READ BUFFER, ALLOW NEW
     6036
             KRB
0234
      3212
             DCA KTNEXT+1
                                /SAVE CHARACTER
0235
             JMP I KTKSV
      5632
0236
      0000
                                 /-4 HIGH-ORDER TIME COUNT
             00
0237
      0000
             00
                                /-3 LOW-ORDER TIME COUNT
0240
                                /-2 OUTPUT CHARACTER
     0000
             00
0241
      0000
                                /-1
                                      BUSY LATCH, -1 = BUSY, 0 = NOT BUSY
             00
                                /SUBR, TELETYPE OUTPUT
0242
     0000
           KTWRTE, OO
0243
      7410
           ·SKP
                                 /PATCH HERE TO DIVERT TO ANOTHER DEVICE
0244
      5642
             JMP I KTWRTE
0245
     3240
             DCA KTWRTE-2
                                 /SAVE CHARACTER
0246
     7346
                                 /AC = -3
             CLL STA RTL
                                 /INITIALIZE TIME COUNT (140 MS MIN)
0247
      3236
             DCA KTWRTE-4
0250
     2237
             ISZ KTWRTE-3
                                /BEGIN LOOP
0251
     7410
             SKP
0252
      2236
             ISZ KTWRTE-4
                                 /SKIP IF TIME COUNT DONE, EXPECT NO FLAG
0253
     1241
             TAD KTWRTE-1
                                 /CHECK BUSY LATCH
0254
     7650
                                /SKIP IF LATCH ON AND COUNT NOT DONE
             SNA CLA
0255
     5260
             JMP .+3
                                 /BRANCH IF NOT BUSY
0256
             TSF
                                /SKIP IF FLAG, INTERRUPT MAY BE DISABLED
     6041
0257
     5250
             JMP .-7
                                /PREVIOUS CHARACTER NOT DONE, TRY AGAIN
             TAD KTWRTE-2
0260
     1240
                                /GET CHARACTER
0261
     6046
             TLS
                                /START TELETYPE
0262
     7240
             STA
0263
     3241
             DCA KTWRTE-1
                                 /MARK BUSY
```

9

```
0264 5642
           JMP I KTWRTE
                             /TELETYPE OUTPUT INTERRUPT SERVICE
0265 0000
          KTTSV, 00
0266 6042
           TCF
                              /CLEAR FLAG
0267 7200
          CLA
            DCA KTWRTE-1
0270 3241
                            /MARK NOT BUSY
            JMP I KTTSV
0271
     5665
0272 0212
          212
0273 7563
            -215
0274 0000 KTACPT, 00
                          /ACCEPT (AND ECHO) KEYBOARD INPUT
/CLEAR KEYBOARD BUFFER
/READ KEYBOARD
/ECHO ON TELEPRINTER
0275 4225
          JMS KTKCL
0276 4200
          JMS KTREAD
            JMS KTWRTE
0277 4242
0300 1211 TAD KTNEXT
0301 1273
            TAD KTACPT-1 /CHECK FOR CARRIAGE RETURN
0302 7640 SZA CLA
0303 5306
            JMP .+3
0304 1272 TAD KTACPT-2
                              /IF CARRIAGE RETURN, SUPPLY LINE FEED
0305 4242
            JMS KTWRTE
0306 1211 TAD KTNEXT
                              /GET CHARACTER
            JMP I KTACPT /RETURN
0307 5674
0310 0000
           00
                          /TYPE MESSAGE OF OPEN TEXT
          TYPOPN, OO
0311
     0000
                             / JMS TYPOPN (EFFECTIVE)
/ ADDRESS-OF-MESSAGE
0312
     7200
            CLA
            TAD I TYPOPN
0313 1711
                            / (NEXT INSTRUCTION)
0314 3310 DCA TYPOPN-1
0315 2311
          ISZ TYPOPN
0316 1710 TAD I TYPOPN-1
            ISZ TYPOPN-1
0317 2310
0320 7450 SNA
            JMP I TYPOPN
0321 5711
                              /ZERO WORD TERMINATES MESSAGE
          JMS KTWRTE
0322 4242
                              /WRITE CHARACTER
0323 5316
            JMP .-5
                          / TEXT POINTER
/TYPE PACKED TEXT
0324 0000
           00
0325
           TYPPAK, 00
     0000
     7200
                              /
0326
            CLA
                                    JMS TYPPAK (EFFECTIVE)
0327 1725
            TAD I TYPPAK
                                    AREA
0330 3324
           DCA TYPPAK-1
                                    (NEXT INSTRUCTION)
0331 2325
          ISZ TYPPAK
0332 1724
          TAD I TYPPAK-1 /GET FIRST CHAR IN WORD
0333 4351
            JMS KTPA
0334 1724
            TAD I TYPPAK-1 /GET SECOND CHAR IN WORD
0335
    7006
            RTL
0336
     7006
            RTL
                               /LEFT-JUSTIFY
     7006
           RTL
0337
0340 4351
          JMS KTPA
0341 2324
          ISZ TYPPAK-1
                              /INCREMENT POINTER
0342 5332
            JMP TYPPAK+5
0343 0245
            245
                              /PER CENT
0344
     7750
          215-245
                              /CR - PER CENT
0345 7776
                              /POUND - PER CENT
            243-245
     7747
0346
           212-243
                             /LF - POUND
0347 7535
                              / -POUND
            -243
0350 7700
           7700
0351 0000 KTPA, 00 /SUBR, PRINT 6-BIT ASCII LEFT 0352 0350 AND KTPA-1 /CLEAR RIGHT 6 BITS
0351 0000
0353 7450
            SNA
```

0354	5725	JMP I TYPPAK	/RETURN IF OO CHAR (NO AT SIGN)
0355	7101	CLL IAC	/AC BIT 11 WILL GO TO CHANNEL 8
0356	7500	SMA	/LINK WILL GO TO CH 7 (= COMPLEMENT OF
0357	7120	STL	/ CH 6)
0360	7012	RTR	/AC 0-5 GO TO CHS 6-1
0361	7012	RTR	
0362	7012	RTR	/AC HOLDS 8-BIT ASCII
0363	1347	TAD KTPA-2	
0364	7450	SNA	
0365	1346	TAD KTPA-3	/CHANGE POUND SIGN TO LINE FEED
0366	1345	TAD KTPA-4	
0367	7450	SNA	
0370	1344	TAD KTPA-5	/CHANGE PER CENT TO CARRIAGE RETURN
0371	1343	TAD KTPA-6	
0372	4242	JMS KTWRTE	/WRITE CHARACTER
0373	5751	JMP I KTPA	
		/END, TTY PKG	***