DECUS

PROGRAM LIBRARY

DECUS NO. 8-420
TITLE® LOGSIM-8
AUTHOR Robert Stolarz
COMPANY Princeton University

Princeton, New Jersey

DATE April 7, 1971

SOURCE LANGUAGE

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digital Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith,

LOGS IM-8

DECUS Program Library Write-up DECUS No. 8- 420

Abstract

LOGSIM-8 is an interactive digital logic simulation program
for the simulation of combinational and sequential logic
circuits at the gate 1level. The language is simple, and
allows logical wunits such as flip-flops to be called as
functions. The output consists of a table of the values of
selected variables during each pass through the circuit
description.

Langyage

The simulation language consists of two types of
statements: logic statements and control statements.
Statements are numbered, the 1line number <n> being an
integer number from 0 to 999, or an integer number from 0 to
999 preceded by an asterisk in the case of a control
statement. LOGSIM does not, however, order statements by
line number.

The 1logic statements are a description of the gates and
other functional elements making up a circuit; the
connections between elements are described by means of
variables which have only one value associated with them at
any time, either 0, 1 or undefined; any change in the value
of a variable occurs immediately. A variable is initially
undefined and remains undefined until some statement is
executed which would cause it to be set toa 0 or 1, or
until it is used as an input argument, when LOGSIM will ask
for 1its value. Variable names may be one to three
alphanumeric characters in length, the first of which must
be alphabetic. The constants 0 and 1 are also permissible
as input arguments to gates or functions. An expression
consists of a variable, a constant, or a gate reference. A
gate is referenced by giving its name followed by its
arguments (expressions) separated by commas and enclosed in
parentheses. An input argument to a gate may thus contain
references to other gates, and recursive calls are also
permitted. LOGSIM supplies the following gates:

NOT, OR, NOR, AND, NAND, XOR

NOT is the only gate which has a restrnction on the number
of inputs; it may only have one.

Logic Statements

Logic statements are of two types: the assignment statement
and the function reference. The general form of an
assignment statement is as follows: (any quantity in slashes

may be repeated as many times as necessary, or omitted
entirely)

<n> <var> = <(gate> (<Kexpr> /, <expr>/)

For example:

5 C=NOR(A,B)

2 Y=AND(NOT(X1),NOT(X2))

7 OP7=NAND(NAND(OP1,0P5),NAND(OP2,0P3))
The variable named on the left-hand side of the equal sign
will be assigned the output of the gate named on the
right. The line number <n> can be used to identify a given

element on a circuit diagram with the corresponding
statement in the circuit description.

The second type of logic statement is the function
reference. Its form is:
<n> <function> (<expr> /,<expr>/ ; <var> [,<var>/)
where <function) can be one of the functions listed in the
table below., The semicolon separates input expressions from
output variables. The significance of each of the arguments
is dependent upon its position, as can be seen in the table:
(in this table only, the slashes indicate that the second
output argument, <Qbar>, is optional)
HA(Kinpl>,<inp2>;<{sum>,<carry>)
FA(Kinpl>,<inp2>,<inp3>;<sumd>,<{carry>)
SR(<set>,{reset>;<Q>/,<Qbar>/)
CSR(<clock>,<set>,<{reset>;<Q>/,<Qbar>/)
D(<clock>,<inp>;<Q>/,<Qbar>/)
JK(<Lelock>,<J>,<K>;<Q>/,<Qbar>/)

SRUK(<set>,<reset>,<clock>,<J>,<K>;<Q>/,<Qbar>/)

For example:

11 HA(A,B;SUM,CAR)
52 SR(AND(F1,CLK),RST;F2,NF2)
21 JK(CLK,1,1;L21)

The proper number of input arguments must be supplied for
each function; only HA and FA require two output variables.
The second output argument for the other functions is just
the complement of the first; it may omitted if it is not
needed. It should be noted, however, that <Q> and <Qbar>
are totally independent variables.

The <set> and <reset> inputs to SR, CSR and SRJK have the
following effect on <Q> (and a corresponding effect on
{Qbar> when it is specified): when both are zero, no change
in <Q>; when <set)> is one, <Q> is set to one; when <reset>
is one, <Q> is reset to zero; when both are one, an error
condition exists. The <{set> and <reset> inputs to SRJK have
precedence over the other inputs.

The clock inputs to the functions are not edge-triggered;
whenever a function statement containing a clock input is
executed, and its clock input is one, the indicated action,
if any, is performed. |In order to simulate an edge-trigger,
the value of the clock input can be saved after the function
statement so that the old value of the clock can be compared
with the new value on the next pass. For example, the
following sequence will produce a leading-edge trigger:

10 JK(AND(X,NOT(XS)),1,1;FLG)
99 XS=0R(X)

For a trailing-edge trigger:

10 JK(AND(NOT(X),XS),1,1;FLG)
99 XS=0R(X)

To simulate sequential circuits, any of the flip-flops can
be used as memory elements. Corresponding to the general
model of a sequential circuit, such memory elements should
generally be placed at the end of the circuit description,
so that the new values of their outputs will not take
effect until the next pass.

Lontrol Statements

The control statements are used to input and output
variables or set them to certain values. The general format
of a control statement is:

<n> <keyword> <var> [/, <var)> /

where <keyword> in this format hay be INPUT, OUTPUT or
CYCLE.

INPUT

When this statement is encountered, the program will type
the names of the variables in the statement list followed by
a question mark, after which the user should type the value
(0 or 1) he wishes the variable to assume. The program will
ignore any characters typed until a 0 or 1 is encountered,
and then ask for the next value, if any. When atll
variables have been assigned, the program will Issue a
carriage return and 1line feed and will continue the
simulation with the next statement.

OUTPUT

On first encountering this statement, the program will
print a heading consisting of the variable names in the
list. On this and each consecutive time that it executes
the OUTPUT statement, the program will print the values of
the variables under their names in table form. |If there is
more than one QUTPUT statement in a circuit description, a
heading will be produced only for the first OUTPUT
statement encountered.

CYCLE

On first encountering this statement, the program will
assign 0 to any variables in the list that have not already
been assigned values. After the program performs the last
statement in the circuit description, control will return to
the CYCLE statement. Starting with the left-most variable
in the list, CYCLE will search for the first variable with a
value of 0 and assign it a value of 1 and the simulation
will continue with the next statement. Any variables with
values of 1 that CYCLE passed over in searching for a 0
value are assigned 0 values. When control returns to the
CYCLE statement and the values of each of the variables in
the list is 1, the simulation is terminated. There should
be only one CYCLE statement in a circuit description.

Thus CYCLE may be used to supply the values necessary to
print a truth tabie for a given circuit, the first variable
in the CYCLE 1list varying most rapidly. CYCLE may also be
used simply to cause the simulation statements to be
repeatedly executed by using dummy variables 1in the
statement list (for example, in conjuction with an [INPUT
statement to allow the testing of a sequential circuit).

SET

There is another control statement whose format differs
slightly from that of the other control statements. |Its
keyword name is SET and its format is:

{n> SET Cvar> =0 | 1 /, Kvar> =0 | 1/

Upon encountering this statement, the program will set the
named variables to the given values.

Qperation

LOGSIM is loaded by means of the binary loader; its starting
address is octal 200. LOGSIM is similar in operation to
FOCAL, with the exception that it uses a different line
number~editing scheme. LOGSIM starts in command mode, in
which it will accept commands or simulation statements. Any
line beginning with a letter will be interpreted as a
command, and any line beginning with a number or an asterisk
followed by a number will be interpreted as a simulation
statement to be stored in the buffer. Every 1line is
terminated with a carriage return. Lines may be longer than
72 characters; LOGSIM automatically accounts for line
overflow by issuing a carriage return~line feed.

LOGSIM maintains an internal pointer which determines where
a simulation statement entered from the keyboard will be
placed in the buffer. Initially, the pointer 1is set at the
beginning of the buffer (when there is nothing in it). When
a line is input, it is placed in the buffer at the position
indicated by the pointer, and then the pointer is moved
immediately after the line just added. The 1line numbers
used in simulation statements thus have no relation at all
to the way the lines are stored in the buffer or to the
order in which the simulator will look at them.

Should one wish to insert a line or group of 1lines before a
certain line presently in the buffer, the insert command,
i<n>, is given. When this command is given, the pointer
will be moved before the line with the given number, To add
lines at the end of the buffer, the append command, A, is
given. To delete the entire buffer or a specific line, one
may give the commands D or D<n>, respectively.

To list the entire buffer, L is given. If L<nd> is given,
the listing will start at the given line and continue until
the last 1line in the buffer has been printed. To save
simulation statements on paper tape, type L, turn on the
punch, and type carriage return. (LOGSIM only uses low-speed
paper tape equipment.)

To replace a line, one may simply retype the line; the
replacement will occur and the- pointer will not be
affected.

Blanks are ignored everywhere in general, with the exception
that there must be a blank following the keyword in a
control statement. Note also that only the first character
of a control statement keyword is significant; thus OUTPUT
may be abbreviated OUT or 0, or extended to OUTPUTS.

There are two characters used for error correction when
typing a line. The rubout (echoed as a backslash) will
erase a single character to the left each time it is typed,
while the back-arrow will erase all of the line just typed
in. LOGSIM will respond to an invalid command or simulation
statement with a question mark.

To run the simulation, the command G 1is given. Upon
completion, LOGSIM will return to command mode. If any
variable used as an input argument does not have a value
when it is referenced, the program will ask for its value as
with INPUT. To interrupt LOGSIM at any time and return to
command mode, type CTRL/C. A question mark will be printed
to indicate (interruption. There is no immediate mode
execution of simulation statements available.

Should the simulator detect an error while running the
simulation, it will print an error message of the form
? <errno> @ <n> , and return to command mode. The meaning of
the error numbers is given in the table below.

LOGSIM's internal pointers have been set to allow 128
variables, 128 simulation statements and 4000 characters of
buffer storage. The user should note that no warning will
be given if these limits are exceeded, although this is not
likely to occur.

Comments

The author is currently planning a second version of
LOGSIM-8 which would implement features desirable for the
simulation of sequential circuits. The author would
appreciate receiving any comments or suggestions that a user
may have about LOGSIM-8.

Command Summary

A Append after last line

D Delete all lines

D<n> Delete line <n>

{<n> insert before line <n>

L List all lines

L<n> List from line <n>

G Begin simulation
Error Messages

name too long

illegal character

improper number, sequence or type of argument
invalid character sequence

invalid gate or function name

invalid control statement keyword

invalid SR, CSR or SRJK input

mismatched parentheses

COoI NV E W=
[I I T D R B

Examples

(1) verifying DeMorgan's law

*1 CYCLE Y,X

1 Al1=NOR(X,Y)

2 A2=AND(NOT(X),NOT(Y))
*2 OUTPUT X,Y,Al,A2

(2) comparing LOGSIM's XOR with one constructed with NANDs

*1 CYCLE B,A
X1=NAND(A,B)
X2=NAND (A, X1)
X3=NAND (B, X1)
XR1=NAND(X2,X3)
XR2=XOR(A,B)
OUTPUT A,B,XR1,XR2

NV EWN -

(3) simple ALU implemented with NAND/NOR logic to perform
the following functions:

when X1=0 and X2=0, C=AND(A,B)
when X1=0 and X2=1, C=0R(A,B)
when X1=1 and X2=0, C=NOT(A)
when X1=1 and X2=1, C=0

*1 CYCLE B,A,X2,X1

11 NX1=NAND(X1)

12 NX2=NAND(X2)

13 NA=NAND(A)

21 021=NOR(A,B)

22 022=NOR(021)

31 031=NAND(NX1,A,B)
32 032=NAND(NX1,X2,022)
41 O041=NAND(X1,NX2,NA)
42 C=NAND(031,032,041)
*2 OUTRPUT X1,X2,A,B,C

(4) sequential machine to recognize the sequence 1101 with
the possibility of overlap (sets Z to 1 after receiving
this sequence)

«0 SET Y1=0,Y2=0,NY2=1

*1 CYCLE A,B,C,D,E,F,G,H
*2 INPUT X

31 Z=AND(X,Y1,NY2)

11 JK(1,AND(X,Y2),NY2;Y1)
21 JK(1,X,NOT(X);Y2,NY2)
*3 OUTPUT Y1,Y2,Z

(5) BCD counter

*0 SET RST=1,D4=0,ND4=1

*1 SET XS=0,G1S=0,D1S=0,GuS=0

*2 CYCLE X,21,22,Z3,7I4

0 SRJK(O,RST,AND(NOT(X),XS),1,1;D0)
90 XS=O0R(X)
10 G1=AND(DO,NDL)

1 SRJK(O,RST,AND(NOT(G1),G1S),1,1;D1)
91 G1S=0R(G1l)

2 SRJK(0O,RST,AND(NOT(D1),D1S),1,1;D2)
92 D1S=0R(D1l)

11 CAR=AND(DO,D4)

12 Gu=0R(D2,CAR)

L SRJK(O,RST,AND(NOT(GL),G4S),1,1;D4,NDUL)
94 G4LS=0R(GH4)

*3 OUTPUT D4,D2,D1,D0,CAR

*4 SET RST=0

iz&a - Dreus Py
/./1/71? # {%ﬁ /?f /Z?,;¢ %{

Lovne® KPPt gy 0ol Stz

s f 1x viidri

/
M/J
Vet i bt By Al fitey
Vadd | gl plfod - SRS L d
A fecidn //:W

R [NOT(X/), vor(xz))

Syt

V’H/VL' 7 %/%b J
S

(3) simple ALU implemented with NAND/NOR logic to perform
the foliowing functions:

when X1=0 and X2=0, C=AND(A,B)
when X1=0 and X2=1, C=0R(A,B)
when X131 and X2=0, C=NOT(A)
when X1=1 and X2=1, C=0

*] CYCLE B,A,X2,X1

11 NX1=NAND(X1)

12 NX2=NAND(X2)

13 NA=NAND(A)

21 021=NOR(A,B)

22 022=NOR(021)

31 031=NAND(NX1,6A,B)
32 032=NAND(NX1,X2,022)
41 O41=NAND(X1,NX2,NA)
42 C=NAND(031,032,041)
*2 OQUTPUT X1,X2,A,B,C

(4) sequential machine to recognize the sequence 1101 with
the possibility of overlap (sets Z to 1 after recelving
this sequence)

«0 SET Y1=0,Y2=0,NY2=1

*1 CYCLE A,B,C,D,E,F,G,H
*2 INPUT X

31 Z=AND(X,Y1,NY2)

11 JK(1,AND(X,Y2),NY2;Y1)
21 JK(1,X,NOT(X);Y2,NY2)
*3 OUTPUT Y1,Y2,Z

(5) BCD counter

*0 SET RST=1,D4=0,ND4=1

*]1 SET XS=0,G1S=0,D1S=0,Gu4S=0

*2 CYCLE X,21,22,23,Z4

0 SRJK(O,RST,AND(NOT(X),XS),1,1;D0)
90 XS=0R(X)

10 G1=AND(DO,NDWL)

1 SRJK(0,RST,AND(NOT(G1),G1S),1,1;D1}
91 G1S=0R(G1l)

2 SRJK(O0,RST,AND(NOT(D1),D1S),1,1;D2)
92 D1S=0R(D1)
11 CAR=AND(DO,D4)
12 G4=0R(D2,CAR)

4 SRJK(O,RST,AND(NOT(GL),G4S),1,1;D4, ND4)
94 GLS=0R(GY4)

*3 OUTPUT D4,D2,D1,D0,CAR

* SET RST=0

