DECUS

PROGRAM LIBRARY

DECUS NO. 8-479

TITLE PDP-8/E INSTRUCTION SIMULATORS FOR OTHER PDP-8S

AUTHOR Guy L. Steele, Jr.
COMPANY Brighton, Massachusetts
DATE August 25, 1971
SOURCE LANGUAGE PAL Il

Although this program has been tested by the contributor, no warranty, express or implied, is made by the contributor,
Digital Equipment Computer Users Society or Digitel Equipment Corporation as to the accuracy or functioning of the
program or related program material, and no responsibility is assumed by these parties in connection therewith.






DECUS Program Library Write-up DECUS NO. 8-479

PDP=-8/E Instruction Simulators for Other PDP-8 s

Guy L., Steele Jr,
110 Washington St.
Brighton, Mass. 02135

Introduction

It used to be that PDP-8's came in four flavors: straight 8, 8/S,
8/I, and B/L, Now thers is & most marvellous fAf th flavort 8/E, The B/E
ynlike the other four 8's has same extra instructions in the standard
(non=-FAE) set, This makes for easisr programming, but messes up compatibility.
Thus, although other 8 programs will rum on an 8/E, 8/E programs may not
run on otherB's,

There are three solutions to this problemt
1) don't use 8/E programs on your eight,
2) get rid of your other 8 and get an 8/E,
3) use some nice simulation subroutines like these,

The subroutines listed herein provide simulation for the functions
of the PDP-8/E!'s BSW (byte swap) aml standard MQ (non-FAE) microinmst ructions,

Advantages of Simulation Subroutines

* !hey mrk.

# They are called by a JMS I through a page zero pointer; thus thesabroutines
are callable from anywhere in LK of core,

% The subroutine calls are exactly as long as the microinstructions they
replaces one location,

# They are virtually independent of one anotherj thus they may be tucked into
any page where there are a few words to spare, scattered all over core,

# They're efficient (for simulation subroutines,)

# They may be called by the same mnemonics as the actual ins ructions;
no extensive program revision is necessary,

DJisadvantages of Simulation Submutines

¥ They take up a little extra core,

% They tie up page zero locations,

% There is no provision for the use of multiple memory fields,

# They'rs slower than the real things (If you're that anxious to save execution
time, see option 2) above and ignore this stuff,

Methods
I was inspired to write these routines by Robert H, Nagel (Ret, 1),
who wrote a BSW simulator, BsSW simulator is an improved version of his

original subroutine, The othér microinstructions are dimulatea by maintaining
& pseudo=MQ register on page zero, All the MQ operations are performed with
respect to this pseudo=-MQ.

Each simulator is invoked by using the standard microinstruction
mnemonics BSW, MQA, MQL, (M, AQL, SwP, and one I invented called ALC which
is equivalent to (LA SWE which in turn equals QA MQA MQL. These mnemonics
are redefined to be JMS!'s to the appropriate simulator subroutinese Thus,
assembling the subroutines with the user program causes the links to the
simulators to be assembled into the program.



One location is required on page zero for the pseudo-MQ, plus one
location for each subroutine to serve as a pointer for the JMS's,

The algorithms used for the simulations are relatively straightforward
and are explained in comments in the listinge All sigorithms are original with
mjself except for the dweclusive OR algorithm (Ref, 2)

Reatrictions

If the microinstructions are encountered in the forms MQA MQL, QLA MQL,
etc, instead of SWP, CAM, etc, the instructions will not execute properly,
This applies especially to QLA SWP which has no single standsrd mmnemonice I have
provided one: ALC, Any coding containing such combinations should be rewritten
in terms of single mnemonics,

No provision is made for the possible desire to microprogram Bow
with CLL, ML, STL, or IAC. The user may either write an extra simulator
or simply use two separate instructions,

Reterences

1) Robert H. Nagel, Letter to the Editor, DECUSCOPE, Vol. 10, Noes 3¢ pe 23

2) 1970 SmaYl Computer Handbook, Digital Equipment Corporation, p. 28.




PDP=8/% MICROINSTRUCTION STMULATION ROUTINES

7

/ EACH SUBROUTINE IS INDEPENDENT OF THRE Of HRRS3
/ HOWEVER, NOT% THAT TO GONSERVE (ORE LOCATIONS
/ XXCAM AND XTACL ARE USED AS TEMPORARY STORAGE
/ BY OTHER SUBROUTINES. IF XXO&M OR XXACL SHOULD
/ BE REMOVED A NEW LOCATION SHOULD BE DEFINED IF
/ NECESSARY FOR XXTMP1 02 XXTMP2.

/
/
/
/

NOTE THAT IF A SUBROUTINE IS REMOVED ITS PAGE
ZERO POINTER MAY ALSO SE REMOVED,

/ NOT% THAT THE MQL INSTRUCTION IS SIMULATED
/ SIMPLY BY A DCA R\THER THAN A JMS.

/
110 L 1T 111120 10 1711717117777 1/
/ PAGE ZERO LOCATTONS

#1708 / ANY PAGE ZER0 LOGATIONS ARE OK
MQL=DCA . / MOL (LOAD MY FROM AC, (LWAR AC)
xme, ¢ / PSEUDO=MG REGISTER
CAM=JMS I . / CAM (CLEAR@ AC AND MQ)
XXCAM
AQ=JMS T , / ACL (LOAD AC FRV MQ)
XXACL
SWP=JMS I , / SWP (SWAP AC AND MQ)
XXSWP
HR=JVS I , / MQA (O’ MQ INTO AC)
QA
ALG=JMS T / ALC (STANDS FOR AC LOAD
XXALC / AND QLEAR, THIS IS NOT A

/ STANDARD MNEMONIC AND SHOULD

XXTMP1=KXACL / E DEFINED AS ALCsCLA SWP
XXTMP2=XKCAM / FOR A PDP-3/E, LOAD AC FROM
; MQ, CLEAR MQ)
BSW=JMS I . / BSd (BYTE SWAP. SWAP BITS g-5
XXBSW / OF AC WITH BITS 6~11)

/

/ THE SUBROUTTNES THEMSELVE> MAY BE LOCATED QV ANY PAGEs
/ IF XXTMP1=XXACL AND XXTMP2=XXCAM THEN THE SUBROUTINES
/ SHOULD BE ARANGED SO THAT THUSE LOCATIONS CAN BE

/ ACCESSED, BUT OTHER THAN THIS THEY MAY BE TUCKED INTO
/ WHALEVER FREE AKEAS EXIST IN .

*#6pP

/ CAM (CLEAR AC AND MQ)

/ ALGORTTHM: QUTTE STRAIGHTFORWARD

/ LENGTH: L LOCATIONS

/ FXECUTION TIME: 8 CYCLES

XXCAM, @
CIA / CLEAR AC
DG XMQ / CLEAR MQ
JMP T XXCAM



/ ACL (LOAD AC FROM MQ)

/ ALGORITHM: ABOUT AS STRAIGHTFORWARD AS FOR CAM
/ LENGTHs: } LOCATIONS

/ EXBECUTLON TIME: 8 CYCLES

XXACL, ¢
(-7 / CLEAR KC
TAD XIMQ / GET MQ
JMP I XXACL

/ SWP (SWAP AC AND MQ)

/ ALGORITHM: MOVE AC TO T1; MOVE MQ TO T2; MOVE
Tl TO MQ; MOVE T2 TO AC

/ LENGTH: 8 LOCATIONS

/ EXECUTION TIME: 17 CYCLES

XXSWP, @
DG\ XXTMP1 / MOVE AC TO T1
TAD XXMQ
DCA XXTMP2 / MOVE MQ TO T2
TAD XXTMP1
DG XOMQ / MOVE T1 TO MQ
TAD XXTMP2 / MOVE T2 TO AC
JMP T XXSWP

/ MQA (INCLUSIVE OR M) INTO AC)

/ ALGORITHM: (AC JOR MQ) EQUALS (((NOT AC) AND MQ) + AC)
WHERE TOR, NOT, AND ARE LOGICAL OPERATORS, (SEE

/ 1970 DEC SMALL COMPUTHR HANDBOOK, PAGE 28,)

/ LENGTH: 7 LOGATIONS

/ EXECUTION TIME: 1k CYCLES

XMQA, ¢
DCA XXTMPL / AC
TAD XXTMP1
QIk / (NOT AC)
AND XXMQ / ((NOT AC) AND MQ)
TAD XXTMP1 / (((NOT AC) AND MQ) + AC)
JMP I XXMQA

/ ALC (AC LOAD AND CLEAR: LOAD AC FROM MQ, CLEAR MQ)
/ ALGORITHM: MOVE MQ TO T1, GLEAR MQ, MOVE T1 TO AC
/ (THIS SUBROUTINE COULD BE SHORTENED BY USING
/ XXSWP AT A ODST OF EXECUTION TIME INCREASE,)
/ LENGTH: 7 LOCATIONS
/ EXBCUTION TIME: 1L CYCLES
XIALC, @

CLA

TAD XXMQ

DCA XXTMPL / MOVE MQ TO Tl

DCA TXMQ / CLEAR MQ

TAD XXTMPL / MOVE T1 TO AC

JMP I XXALC



/ BSW (BYIE SNAP: SWAP BITS @5 OF AC WITH BITS 6~11)
/ ALGORITHM: QUITE INGYNIOUS (I'M PROUD OF THI> ONk.)
/ THIS ONE IS HanD TO DESCRIBr VEHRBALLY, THE
/ COMMENTS (N THE SUBHOUTLNE ILLUSTRATE WHERS
/ TH. QONTENTS OF THE ORIGINAL AC AND LINK

/ APPEAR IN THE AC ANU LINK AT FACH STEP,.

/ LENGTH: 13 LOGATIONS

/ EXECUTION TIMEs: 21 CYCLES

/ NOTE THAT THY CONSTANT IS OFTEM UsurUL FOR OTHER

/ PARTS OF A UsER PROGRAM,

-~

f g LINK AC

XXBSW, ¢ / L XX XX YYY YvY
DCA XXTMPL /L 998 oop opp oo
RIR / @ PP 93p g o0
DG\ XXTMP2 / 2 200 opp ppp opp
TAD XXTMP1 / § XXX XXX YYY YYY
WD XXT799 /@ XXX XX o opp
TAD XXTMP1 7 X i XX 1YY YYY
RTL / X XXX @YY YYY YXX
RIL / X XPY YYY YYX XX
TAD XXTMP2 / X XLY YYY YYX XXX
HL / L YYY YYY O XXX
JMP I XKBSW  / ALL DONE AT LASTI

XX7798, 7700 / NIFTY CONSTANT

NN

/ IS CONQUDES THIS SET OF WANDLRFUL PDr-8/E
/ INSTRUCTION SIMULATORS. I HOPE YOU HAVE
/ ENJOYED THEM, = GUY L. STEKELE JR.






