
CHAPTER 1
SYSTEM INTRODUCTION

GENERAL
This chapter is divided into two sections: Section 1 describes the PDP-
8 / E badc processor and section 2 describes the PDP-8/M basic pro-
cessor.

SECTION 1 THE PDPSIE BASIC SYSTEM
The development of the PDP-8/E is the successful culmination of many
years of computer design research-a process that has enabled Digital
Equipment Corporation to provide better computers at the lowest possi-
ble price.

The PDP-8/E is specially designed as a general purpose computer. It is
fast, compact, inexpensive, and easy to interface. The PDP-8/E is de-
signed to meet the needs of the average user and is capable of modular
expansion to accomodate most individual requirements for a user‘s
specific applications.

The PDP-8/E basic processor is a single-address, fixed word length,
parallel-transfer computer using 12-bit, 2’s complement arithmetic. The
cycle time of the 4096-word random address magnetic core memory is
1.2 microseconds for fetch and defer cycles without autoindex; and 1.4
microseconds for all other cycles. Standard features include indiret
addressing and facilities for instruction skip and program interrupt as a
function of the input/output device condition.

Five 12-bit registers are used to control computer operations, address
memory, wefate on data and store data. A Programmer’s console pro-
vides switches to allow addressing and loading memory and indicators
to bbserve the results. The PDP-8/E may also be programmed using the
console Teletype with a reader/punch facility. Thus, programs can be
loaded into memory using the switches on the Programmer’s console,
the Teletype keyboard, or the paper tape reader. Processor operation in-
cludes addressing memory, storing data, retrieving data, receiving and
transmitting data and mathematical computations.

The 1.2/1.4 microsecond cycle time of the machine provides a computa-
tion rate of 385,000 additions per second. Each addition requires 2.6
microseconds (with one number in the accumulator) and subtraction
requires 5.0 microseconds (with the subtrahend in the accumulator).
Multiplication is performed in 256.5 microseconds or less by a subrou-
tine that operates on two signed 12-bit numbers to produce a 24-bit
product, leaving the 12 most significant bit$ in the accumulator. Division
of two signed 12-bit numbers is performed in 342.4 microseconds or less
by a subroutine that produces a 12-bit quotient in the accumulator and
a 12-bit remainder in core memory. Similar signed multiplication and
division operations are performed in approximately 40 microseconds,
utilizing the optional Extended Arithmetic Element.

The flexible, high-capacity input/ouput capabilities of the computer
allow it to operate a large variety of peripheral machines. Besides the
standard keyboard and paper-tape punch and reader equipment, these

2 - 1

\

computers are capable of operating in conjunctlon with a number of
optional devices (such as high-speed perforated-tape punch and reader
equipment, card reader equipment, line printers. analog-to digital con
verters, cathode ray tube (CRT) displays, magnetic tape equipment. a
32,764-word random-access disk file, a 262,112-word random-access disk
file, etc.).

The PDP-8/ E system is completely self-contained, and requires no special
power sources or environmental conditions A single source of 1 1 5 V
or 230V at 47 to 63 Hz, single-phase power is required. Internal power
supplies produce the necessary operating voltages for the system.

The user has a choice of two basic configurations. Table Top or Rack
Mountable. Standaid DEC cabinets are available to accommodate those
users desiring many peripherals, The Table Top version is a convenient
approach for those desiring to use the processor in a small area, such
as an office.

SECTION 2 THE PDP-8/M OEM PROCESSOR
DEC has recently introduced the OEM version of the PDP-8/E called the
PDP-8/M. Because the OEM version is functionally the same processor
as the PDP-8/E, all chapters contained in this handbook apply to the
PDP-8/M as well as the PDP-8/E with the following exceptions:

1-2

General Description I

The PDP-8/M is a 12-bit parallel computer with identical performance
as the PDP-8/E. The PDP-8/M contains one OMNIBUS which defines
the maximum basic system configuration. Expansion of the system to
three (3) OMNlBUSes is possible.

The Basic PDP-8/M consists of the following components:

0 KK8-E Central Processor-same as used in the PDP-8/E.
0 MM8-E 4K Memory-same as the PDP-8/E.
0 OMNIBUS-The PDP-8/M contains only one OMNIBUS (20 slots).
0 The new H740 power supply is sufficient to drive one fully expande

OMNIBUS: !

+5V -15V +15V # of Slots
BASIC 8/M-MC
Options Permitted 6.6A 3.3A 0.6A 8

10.4A 1.7A 0.4A 12

Total Available 17.OA 5.OA 1 .OA 20

0 The power switch can turn on the PDP-8/M directly, or can operate a
remote power control, or both.

0 Front Panel-The PDP-8/M offers two front panels corresponding to
the two models offered.

The PDP-8/M-MC includes the KC8-M Operators Panel and 4K mem-
ory. This panel contains a Power On switch, a Power On indicator,
a SW switch ,(for M18-E Bootstrap Loader) and a RUN indicator.
The indicators are solid state light emitting diodes.

The PDP-S/M-DC includes the KC8-ML- Programmers Panel and
4K Memory. This panel is similar to, and has all the features
(lights and switches) of the KC8-EA panel standard on the PDP-8/E.
All lights, however, are solid state LED’s. This panel is also
offered as an option.

NOTE
There is no way to “initialize” the PDP-8/M
with the KC8/M Operators Panel. An optional
KL8-ML Programmers Panel, or a M18-E Boot-

- strap Loader, or KP8-EA Power Fail and Auto
Restart option, or customer defined loader is
required.

All PDP-8/E options are applicable.

1-3

SECTION *3 PDP-8/E COMPUTER ORGANIZATION
The PDP-8/E system consists of a central processor, core memory, and
input/output equipment facilities; all of which interrelate by means of
a common bus called "OMNIBUS."

Al l arithmetic, logic, and system control operations are performed by
the central processor. .Information storage and retrieval operations are
performed by the core memory. The memory is continuously cycling,
automatically performing a read and write operation during each com-
puter cycle. Input and output address and data buffering of the core
memory are performed by registers in the central processor, and the
operation of the core memory is under control of t iming signals produced
by the central processor. Because of the close relationship of operations
performed by the central processor and the core memory, both are
described in this chapter.

Central processor interface circuits provide bussed connections to a
variety of peripheral inputiqutput equipment. Each input/output device
is responsible for detecting its own select code and for providing all
required input or output gating. Individually programmed data transfers
between the central processor and peripheral equipment take place
through the central processor accumulator. Data break transfers can be
initiated by peripheral equipment, rather than under program control,
through the data break facilities. Standard features of the computer allow
peripheral equipment to perform certain control functions, i.e., instruc-
t ion skipping and a transfer of program control initiated by a program
interrupt.

Standard equipment provided with each system includes a console tele-
printer control, which drives and controls a Teletype Model 33 Automatic
Send-Receive (ASR). The ASR set is a standard machine operating from
serial 11-unit code characters at a rate of 10 characters per second.
The ASR provides a means of supplying data to the computer from key-
board or perforated tape; and supplies data as output from the computer
in the form of typed copy, or typed copy and perforated tape. The Tele-
type control serves as a serial-to-parallel converter for teletype inputs to
the computer and serves as a parallel-to-serial converter for computer
output signals to the Teletype unit. The Teletype and other inputloutput
equipment options are discussed in Chapter 7 of this handbook.

The basic system is illustrated i n Figure 1-1. It contains ten PDP-8/E
FLIP-CHIP modules called: Major register (M8300); Register Control
(M8310); Bus-Loads (M8320); Timinr Generator (M8330); Panel type KE8-
EA; Teletype control. (M8360); XY Driver and Current Source (G227);
Memory Stack (H220); Sense/ Inhibit (G104). (The last three modules
are memory system modules.) and RFI Shield (M849).

1-4

I
I
I
I
I
I
I
I
I
I
I
I

IF
1 1 . 1

I

Figure 1-1 PDP-8/E Basic System Block Diagram

1 -5

MAJOR REGISTERS (M8300)
In order to store, retrieve, control, and modify.information and to per-
form ttie required logical, arithmetic, and data processing operations,
the core memory and the central processor employ the logic complement
and major registers shown in Figure 1-1 and described in the following
paragraphs.

Accumulator (AC)
The AC is a 12-bit register in which arithmetic and logic operations are
performed. Under program control the AC can be cleared or cornple-
mented, or its contents can be rotated right or left. The contents of the
memory buffer register can be added to the contents of the AC (via
the adder circuit), and the result stored in the AC. The contents of both
of these registers can be combined by the logical AND operation with
the result remaining in the AC. The inclusive OR may be performed
between the AC and the switch register (on the programmer’s console),
and the result left in the AC. The AC also serves as an input/output
register; all programmed information transfers between the core memory
and an 110 device are passed through the AC to data lines located on
the OMNIBUS.

Multiplier Quotient (MQ) Register
The MQ is a 12-bit bidirectional shift register that acts as an extension
of the AC during EAE operations. The MQ contains the multiplier at the
beginning of a multiplication and the least significant half of the product
at the conclusion. The MQ contains the least significant half of the
dividend at the start of a division and the quotient at the end. The MQ
contains the least significant part of a number during a shift or a normal-
ize operation. The MQ I S also available as a temporary storage register
adding additional capability and flexibility for the programmer.

Program Counter (PC)
The PC is a 12-bit register that is used to control the program sequence;
that is, the order in which instructions are performed is determined by the
PC. The PC contains the address of the core memory location from which
the next instruction is taken. Information enters the PC from the core
memory via the Memory Buffer and from the Memory Address Register.
Information in the PC is transferred into the Memory Address register
to determine the core memory address from which each instruction is
taken. Incrementing the contents of the PC establishes the successive
program core memory locations and provides skipping of an Instruction
based upon a programmed test of information or conditions.

Central Processor Memory Address (CPMA) Register
The CPMA register is a 12-bit register that contains the address in core
memory that is currently selected for reading or writing. Therefore, all
4096 words of core memory can be addressed directly by the CPMA.
Data can be transferred into the CPMA from the Memory Buffer, from
the Program Counter and from the switch register on the operator’s
console. Memory Addressing is also accomplished by each data break
interface (refer to Chapter 6). This register is never cleared. New in-
formation is always jam transferred in and the original content is lost.

Memory Buffer (MB) Register
The MB register is a 12-bit register that is used for all information

1-6

transfers between the central processor registers and the core memory.
Information can be transferred and temporarily held in the MB from the
AC or PC. Also, the MB can simultaneously be loaded and incremented by
one before being read back into memory. Information can be loaded into
the MB from an I / O device during a data break or from core memory.
Information is read from a memory location in 0.6 microseconds and re-
written in the same location in another 0.6 microsecond of a single 1.2-
microsecond duration memory cycle. Many machine cycles require modi-
fication of memory data. In such cycles, an extra 0.2 microsecond is
inserted between read and write.

Data Gates and Adders
The Major Registers module also contains the gating necessary to move
data from one register t o another. At the heart of the data gating is a
12-bit parallel adder. Information from a register is gated to the adder
inputs. The output of the adder is applied to a set of shift gates. The
output of the shift gates serves as data input t o all of the major
registers.

REGISTER CONTROLS (M8310)
The Register Control module contains the Link, the Major Register Con-
trol circuits, the Major States register, the Instruction register, and the
necessary control circuits for the Major Sates register and the Instruc-
tion register.

Link (L)
The Link is a 1-bit register that is used to extend the arithmetic facilities
of the AC. It is used as the carry register for 2s complement arithmetic.
Overflow into the L from the AC can be checked by the program to
greatly simplify and speed up single and multiple-precision arithmetic
routine. Under program control, the L may be either cleared, comple-
mented, or rotated as part of the AC.

Major Register Control Circuits
The Major Register Control Circuits enable the adder input and shift
gates of the Major Register module. They also gate time pulses to
cause loading of the appropriate major register.

Major State Register
The Major State register is the control for the three major states of
the PDP-8/ E. Conditional inputs, consisting of processor instructions
combined with the output of the Major State register, determine which
of the three major states (FETCH, DEFER, or EXECUTE) the processor is
about to enter. Each of the major state signals, when asserted, is used
to enable the corresponding register control circuitry.

Instruction Register (IR)
The IR is a 3-bit register that contains the operation code of the instruc-
tion currently being performed by the 'machine. The three most signifi-
cant bits of the current instruction are loaded into the IR from the
memory during a fetch cycle. The contents of the IR are decoded to
produce the eight basic instructions and affect the cycles and states
entered during each step of the program.

1-7

BUS LOADS (M8320)
The Bus Loads module contains all of the necessary load resistors re-
quired to maintain a high inactive level for each of the busses in the
system. There are basically seven groups of signals that the B u s Loads
module services. These are: 1. Memory Address (MA); 2. Memory Data
(MD); 3. Data; 4. I / O Control; 5. B.reak Control; 6. Timing; and 7.
Miscellaneous Signals. Most lines are considered by the system to be
inactive (voltage level high) until the line level IS pulled to ground by
some component connecting to the corresponding sigval line.

TIMING GENERATOR (M8330)
The Timing Generator module contains the time pulse generator, Inter-
rupt Control circuits, the Processor IOT Decoder, and miscellaneous
control circuits.

The time pulse generator provides the timing pulses that determine the
computer cycle time and are used to initiate sequential time-synchronized
gating operations. Pulses that reset registers and control circuits during
Power turn-on and turn-off operations are produced by the power clear
Pulse generator. Several of these pulses are available for peripheral de-
vice control to be utilized with devices using programmed or data break
information transfers.

Four time states, TS1 through TS4, are provided by the time pulse gen-
erator. In addition, four time pulses are generated for use as gating
pulses throughout the system. Each time pulse overlaps the end of one
time state into the beginning of the next t ime state (refer to Figure 1-2).
Memory timing is also provided by the time pulse generator.

0 200ns 400ns 600ns 800m lOOOns 1200ns

TS l s

TP 1 L

TP 2 -
TP 3 n
TS4 1
TP4 ~n

MEMORY TIMING CYCLE (FAST CYCLE SHOWN)

1-8

The Interrupt Control circuits comprise the major portion of the Interrupt
System. The circuitry responds whenever an INTERRUPT REQUEST signal
is received f rom an interface controller module.

The Processor IOT Decoder decodes the last 9 memory data bits and
determines the type of IOT instruction that is to be performed.

The Programmer’s Console contains a convenient array of controls and
indicators that are used specifically for operation and maintenance. The
Console has been configured to achieve convenient control of the sys-
tem. Through switches and keys on the Console, the operator can STOP,
START, EXAMINE, MODIFY, or CONTINUE a program. The indicators,
when properly selected, display the machine status and contents of
major registers.

A lighted indicator denotes the presence of a Binary 1 in a specific
register bit position or control flip-flop.

The Programmer’s Console contains a 12-bit switch register, ten control
switches, and an indicator selector switch capable of selecting seven in-
dividual major states and status registers to be displayed on a 28-lamp
indicator panel.

TELETYPE CONTROL (M8350)
The Teletype Control Module contains the necessary receive and transmit
circuitry along with the control circuitry to interface the ASR 33 Teletype
terminal with the proces5or.

The basic PDP-8/E memory system (MM8-E) is a 4096 word, 12-bit
random access core memory that performs all normal functions of data
storage and retrieval. The same basic 4K memory, consisting of 3 quad
modules, can be used as an extended memory to increase the memory
capacity up to the addressing capability (32K) of the PDP-8/E.

Memory location 0 is used to store the contents of the PC following a
program interrupt, and location 1 is used to store the first instruction
to be executed following a program interrupt. When a progrzm interrupt
occurs, the contents of the PC are stored in location 0 and program
control is transferred to location 1 automatically. Core memory locations
10 (octal) through 17 (octal) are used for auto-indexing. A l l other lo-
cations can be used for the storage of either instructions or data.

The memory system contains circuits such as readiwrite switches,
address decoders, inhibit drivers, and sense amplifiers. These circuits
perform the electrical conversions necessary to transfer information to
or from the core array. They perform no arithmetic or logic operations
upon the data.

PROGRAMMER’S CONSOLE (KE8-EA)

PDP-8/E MEMORY SYSTEM (MM8-E)

The XY Driver & Current Source (6227)
This PDP-8/E module contains the circuitry required to decode the ad-
dress lines and drive the XY wires of a 4096 word core memory (i.e.,
address decoding, selection switches, XY current sources, stack dis-
charge switch, and power onioff write protection). The XY currents are

1-9

controlled remotely by a control on the Senseilnhibit board. The XY
Driver and Current Source module requires no adjustments. The same
module is used also in the memory parity option.

Memory Stack (H220)
The memory cores are mounted on a G619 Planar Stack Board. The
whole module assembly is the H220 Stack. It contains.4096 words of
12-bit core memory and the X-axis and Y axis diode selection matrix. It
also includes a resistorlthermistor combination that supplies tempera-
ture information to the XY current control. The core memory is a 3D/3-
wire memory with center tapped senseiinhibit wire. This module has no
connections from and to the OMNIBUS. The same stack is also used
in the memory parity option.

Sense/ Inhibit Module (6104)
The Senseilnhibit module (G104) is a PDP-8/E module containing the
sense amplifiers, memory register, and the inhibit drivers for a word
length of 12 bits. It also includes the slice control and the -6V supply
for the sense amplifiers, the current control for the XY current source,
control logic for the strobe and clear, and the field select, which is used
in the Senseilnhibit as well as in the XY Driver. Three jumper connec-
tions determine the field. Slice level, strobe delay, and XY current can
be selected within four discrete steps by appropriate jumper connections
(two per axis). With a given stack the proper combination is known and
the jumper connection can be selected. Adjustments in a system are,
therefore, eliminated.

The memory parity option, consisting of another 3 modules, adds all the
circuitry necessary to read, write, and store the parity for 32K of mem-
ory. Additional memory options are a 256-word Read Only Memory, a
1024-word Read Only Memory, a 256-word Read/Write Memory, and a
Bootstrap Loader Read 0nly.Memory. Refer to Chapter 7 for the descrip-
t ion of each memory option.

MAJOR PROCESSOR STATES
The PDP-8/E utilizes three processor states to execute programmed in-
structions. To accomplish this, a major state generator is used to es-
tablish one state for each computer timing cycle. The major processor
states are: FETCH, DEFER and EXECUTE. FETCH, DEFER and EXECUTE
states determine and execute instructions.

Fetch (F) State
The computer enters the FETCH state to obtain a 12-bit instruction
word. At the start of FETCH cycle, the contents of the PC are loaded
into the CPMA, giving the first memory address and starting the memory
cycle.

At the start of the FETCH cycle, the computer obtains the contents of
an addressed memory location and places the 12 bits on the Memory
Data lines of the OMNIBUS. The contents of these lines are decoded t o
determine the kind of instruction the processor must next perform. Once
the processor decides the kind of instruction it must do, it then begins
performing the instruction, entering a DEFER, or an EXECUTE state as
required. When the instruction has been completely performed, the
computer again enters the FETCH state to obtain the next instruction.

1-10

Assuming the computer is a fully automatic, running condition; that is,
the computer is continuously functioning to FETCH and/or EXECUTE in-
structions, the PC register’s contents are transferred to the MA register
at TP4 time, initiating the FETCH state. When this is accomplished, the
MA is simultaneously incremented by one and the result is transferred
to the PC register. Sometime during TS2, the memory is strobed. The
contents of the memory appear at the output of the sense amplifiers and
are transferred to the MD lines. The contents of the first three bits of
the memory data are transferred to the IR. This completes the activity
during time TS2 of the FETCH state.

If the instruction is a multicycle (2 or 3) instruction, the memory ad-
dress is computed, but no further action takes place until the Defer or
Execute cycle. If, however, the instruction is a single cycle instruction
(such as IOT, OPR, or JMP and bit 3 = 0) the instruction is carried out
immediately. The Major State register gating causes the computer- t o
enter the appropriate major state at the end of the cycle.

Defer (D) State
A t the end of a FETCH cycle, the current instruction is directed to DEFER
whenever indirect addressing is required.

The DEFER state is entered if a binary 1 is present in bit 3 of a memory
reference instruction. This state causes the central processor to obtain
the full 12-bit address of the operand from an address in either the
current page or page zero, as specified by bits 4 through 11 of the in-
struction. This process of address deferring is called indirect addressing,
because access to the operand is addressed indirectly, or deferred, to
another memory location.

Execute (E) State
The EXECUTE state is entered for all memory reference instructions
except JMP. During an AND, 2s complement add, or increment and skip
if zero instruction, the contents of the core memory location specified
by the address portion of the instruction are read into the MB and the
operation specified by the Instruction Register is performed. During a
deposit and clear accumulator instruction, the contents of the AC are
transferred into the MB and stored in core memory at the address
specified in the instruction. During a jump to a subroutine instruction,
the EXECUTE state occurs to write the contents of the PC into the core
memory location as designated by the instruction and to transfer this
address +1 into the PC to bring about a change in program control.

In addition to the three major states described, the processor responds
to other functions such as Data Break. During this time period, FETCH,
DEFER and EXECUTE states are held inactive.

Direct Memory Access (DMA) State
A fourth state exists when any one of the other three major states is not
enabled. This state, called DMA, is used to, independently address
memory and to store or read out information without the aid of proces-
sor instructions. DMA is used at the Programmer’s Console when in-
formation is added t o or taken from memory. Data Break devices also
use the DMA state t o perform block transfers.

.

1-11

INTERFACING
The PDP-8/E offers two approaches to interfacing with peripheral equip-
ment. The OMNIBUS is an internal Input/Output Bus on which all I / O
data and control signals are transferred. A variety of peripherals can
interconnect through a peripheral control module from this bus. The
OMNIBUS has eliminated wires by providing an etched circuit board on
which connectors are mounted. For the convenience of the user, each
pin assignment on one connector is identical to the next connector, al-
lowing a module to be placed anywhere on the bus. The PDP-8/E options
provide a complete line of peripherals used in most computer operations.
However, for those requirements that are not covered by options, Chap-
ter 9 provides the information needed so that a user can build his own
interface. Special interface modules can also be constructed by DEC.

An Exte'rnal Bus is the second approach to interfacing to peripherals.
The External B u s connects to the CMNIBUS and provides an extension
to the bus system for users who already possess or desire to use PDP-8: I
or PDP-8/L compatible peripherals. The interfacing details 'are provided
in Chapter 10 of this handbook.

Three types of data transfer systems are available to the user. One
system is the straight Input/Output transfer, which is the simplest and
most direct type of transfer. The Program Interrupt system is a type
of data transfer system useful for installations having mcre than one
peripheral. For installations using extremely fast transfer rates, the data
break system (sometimes called Direct Memory Access, or DMA) is
available (refer to Chapter 6 for details on the Data Break system and
Chapter 5 for details on programmed transfers).

As a new computer is developed, differences between it and its prede-
cessors inevitably result. In many cases these differences are either
benign or beneficial. All differences are listed below in order to give
users of earlier machines a concise summary.

DIFFERENCES BETWEEN PDP-8/E AND ITS PREDECESSORS

Instruction Differences

NEW INSTRUCTION OCTAL PREVIOUS FUNCTIONS

Byte Swap (BSW) 7002 Rotate 2, no direction (no oper

Swap MQ and AC MQL MQA (worked as a SWP in
(SWP) KE8 I, but not documented)

Reserved for future 7014 RAR RAL
expansion

Reserved for future 7016 RTR RTL
expansion

MQ instructions 74x1 Only available with EAE on pre
vious machines; otherwise
produced a NOP

ation)
7521

Skip if interrupt 6000 No operation

Skip on interrupt 6003 (ION)
on (SKON)

request (SRQ)

1-12

NEW INSTRUCTION OCTAL PREVIOUS FUNCTIONS
~

Get flags (GTF) 6004 No operation, or ADC in PDP-8

Restore flags (RTF) 6005 (ION) (ORed with ADC)
Skip if Greater 6006 (IOF) (ORed with ADC)

Clear all flags 6007 (ION) (ORed with ADC)

These instructions produced predictable but undocumented results in
PDP-8II and PDP-8/L. They may have been used by some programmers
to load the constants 3776 and 5775 into the AC. In the PDP.8/E, these
codes are specifically reserved for future expansion, and should not be
executed.

with 189 A/D Converter

Than (SGT)

(CAF)

TTY Differences
The console TTY uses the same IOT’s as in earlier machines, but also
has added IOTs to enable or drsable TTY flags onto the interrupt bus.
Also included are additional IOTs to clear keyboard flags without ad-
vancing the reader and an IOT to set the printer flag. The skip IOT’s
can no longer be microprogrammed with the other IOTs of the same
device code This should impose no constraint on the user, since skips
are generally not combined with other IOT’s. Reader Run is no longer
set by INITIALIZE. Hence any routines using the reader must begin with
a KCC instruction.

External I /O Bus
In general, the signals and functions at the External I / O Bus Interface
are the same as for previous machines. Users who constructed peri-
pherals using previous editions of the Small Computer Handbook as
a guide may expect their peripherals to work on the PDP-8/E. (Please
note, however, that PDP-8/E is equipped only with a positive bus; and
a DW08A bus converter IS necessary to interface to older, negative bus
equipment.)

The BAC lines at the External I / O Bus interface are merely the buffered
DATA bits of the OMNIBUS. Since the DATA lines are used for bi-direc-
tional transfer, any input of data at the External I / O Bus interface will
cause an immediate change at the BAC outputs. Simultaneous input and
output transfers in the same IOP should be checked. In such situations,
the register in the peripheral must be edge-triggered.

Also, at the conclusion of the IOP dialogue, the DATA bus is used for
updating the PC, and then for determining break or API priority Users
can no longer rely on the BAC lines being available until the end of
the major state However, the IOP width and separation may be adjusted
if desired, to accommodate slow I / O devices. External IOTs are faster
in all cases except for IOTs ending in 7.

1-13

EAE
The Extended Arithmetic Element has been redesigned, and several
powerful features have been added. Previous EAE users may use the
EAE without modifying their programs, but it is a wise move to recode
the EAE programs in order to make use of the new SAM, DCM, DAD,
DST. DPlC and DPSZ instructions.

Data Break
The time required to access the Data Break system has been greatly
reduced Maximum benefit can be obtained on machines without EAE,
and with only internal options (or options which are not activated while
Data b e a k is in use) An added feature, ADM, allows the user to add
an input word to the contents of a memory location An internal mul-
tiplexing scheme allows the use of several (12 m a x) external and/pr
internal break devices.

Control Panel
The control panel of PDP-8/E differs from panels of its predecessors
as follows:

1.

2.

3.

4.

5.

6.

Only the MA (and EMA) and the RUN status are permanently
displayed. All other registers are selected by a rotary switch.
Machine stops occur after TP4. Thus the MA lights indicate the
next address to be accessed. Similarly, the Major State indica-
tors show the next major state to be executed.
Extended field information is loaded via SR6-11 and the EXTD
ADDR LOAD switch.
Operation of the ADDR LOAD switch places the CP in the FETCH
state.
Programs are started by operating and releasing the CLEAR
key, then operating and releasing the CONT key.
Turning the Power Switch to the PANEL LOCK position extin-
guishes all indicators except the RUN light.

ADDRESSING NONEXISTING CORE
An attempt to deposit data in a non-existant memory field will not stop
the machine. An attempt to read data from a non-existant memory yields
a zero operand. A jump to a non-existant memory will, of course, “hang
up” the program, since there is then no way to jump back t o existant
memory.

1-14

CHAPTER 2

STANDARD SYSTEM OPERATION

GENERAL
The PDP-8/E Computer allows the operator t o manually program the
machine using the switch register located on the Programmer’s Console
or use the more automatic process with the ASR 33 Teletype Console
which contains the Tape Reader/punch combination as well as the
standard Teletype keyboard. This chapter defines the operation of com-
municating with the processor in both the manual and program control
modes.

The user should be thoroughly acquainted with the content of chapters
3 and 4 before operating the system.

CONTROLS AND INDICATORS
The controls and indicators on the Programmer’s Console provide manual
control and indicate the program conditions of the PDP-8/E. Controls
on the Programmer’s Console provide the operator with the hardware to
start, stop, examine, modify, or continue a program. The indicators on
the console provide a visual indication of the machine status and current
program, the contents of the major registers, and the condition of the
control flip-flops. A lighted indicator denotes the presence of a binary
l’ in a specific register bit position or control flip-flop. Table 2-1 lists the
functions of controls and indicators. The controls are divided into two
groups; switches and keys. Keys are momentary, or spring-return,
switches. Figure 2-1 illustrates the console. Controls and indicators of
the standard Model 33 ASR Teletype unit are shown in Figure 2-2 and
their functions are described in Table 2-2.

I I I I I
1113.7 .00*1s1

/ M A

0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0

L

Figure 2-1 Programmer’s Console

2- 1

Table 2-1

Programmer’s Console Control and Indicator Functions

CONTROL OR INDICATOR FU NCTlON

Off/ Power/ Panel Lock

sw

Switch Register Switches
(SR)

Load Address Key
(ADDR LOAD) -

Extended Address Load

(EXTD ADDR LOAD)
Key

Clear Key (CLEAR)

This is a key operated switch. In the
counter-clockwise, or OFF, position, the
switch disconnects all primary power to
the machine. In the POWER, or straight
up position, it enables all manual con-
trols. and applies primary computer
power. In the PANEL LOCK or clock-
wise position, it disables all keys and
switches with the exception of the
switch register and mode switch. In this
position, a running program is protected
from inadvertent switch operation and
all panel indicators except the RUN
light are turned off.

When this switch is up, the line on the
OMNIBUS line called SW is high; when
the lever is down, the line is low. This
switch is used by special peripheral con-
trols, such as the Bootstrap Loader.

These 12 switches provide a means of
communication between operator and
machine. They allow a 12-bit word to be
input. When the switch is up it desig-
nates a binary 1 to the machine; switch
down is a 0 (zero). These switches are
used during manual functions or under
program control.

This key loads the contents of the
Switch Register into the CPMA and
forces Fetch to be set (no Major States
while the Load Address Key is de-
pressed).

This switch loads the contents of SR6-
11 into the Data Field and Instruction
Field registers of the Memory Extension
Control. SR9-11 goes to Data Field 0-2.
SR6-8 goes to Instruction Field 0-2.

This key issues an Initialize Pulse, clear-
ing the AC, LINK, Interrupt system, and
I /O Flags.

2-2

Table 2-1 (Cont.)

CONTROL OR INDICATOR FUNCTION

Continue Key (CONT) This key resumes the computer pro
gram by issuing a M-emory Start and
setting the Run Flip-Flop. The word
stored at the address currently held by
the CPMA is taken as the first instruc-
tion.

Examine Key (EXAM) Puts the contents of core memory at
the address specified by the contents of
the CPMA into the MB. Then the con-
tents of the PC and CPMA are incre
mented by one to allow examination of
the contents of sequential core memory
addresses by repeating the operation of
the examine switch.

Halt Switch (HALT)

Single Step Switch
(SING STEP)

Deposit Key (DEP)

This switch clears the Run flip-flop and
causes the machine to stop at TS1 of
the next Fetch cycle. TQis switch is also
used for single instruction stepping.

This switch clears the Run flip-flop and
causes the machine to stop at TS1 of
the next cycle. Thereafter, repeated de-
pressing of the continue key steps the
program one cycle at a time, so that
the contents of registers can be ob-
served in each state.

Loads the contents of the SR into the
MB and core memory at the address
given by the current contents of the
CPMA. Then the contents of the PC and
CPMA are incremented by one: This al-
lows storing of information in sequen-
tial memory address by repeated opera-
tion of the deposit switch.

Indicator Selector Switch This is a six-position rotary switch, used
to select a register for display. The six
positions are as follows:

1. STATE - Indicates an individual
function for each bit;
Bit 0-Fetch

1-Defer
2-Execute
3-IR 0
4-IR 1
5-IR 2

2-3

Table 2-1 (Cont.)

CONTROL OR INDICATOR FUNCTION

6-MD DIR
7-Data Control
a-sw
9-Pause

10-Break in Prog
11-Break

2. STATUS - Indicates an individual
function for each bit;
Bit 0-Link

1-Greater Than Flag
2-Interrupt Bus

4-Interrupt On
5-User Mode
6-Instruction Field 0
7-Instruction Field 1
8-Instruction Field 2
9-Data Field 0

10-Data Field 1
11-Data Field 2

4 3-No Interrupt Allowed

Indicator Selector Switch 3 AC - Indicates bits 0 11 of the ac-
cumulator at TS1

4. MD-Indicates Information just writ
ten or rewritten into memory.

5. MQ-Indicates contents of MQ reg
ister during TS1.

6 BUS-Indicates bits 0-11 of the
DATA Lines.

Memory Address Indicates the contents of the memory ad-
dress which will be accessed next.

EMA Indicates which Extended Memory field is
being accessed.

Run Light When lit means machine’s timing is enabled
and capable of executing instructions.

2-4

Figure 2-2 Teletype Model ASR33 Console

Table 2-2

$SR33 Teletype Controls and Indicators

FU NCTl ON CONTROL OR INDICATOR

REL Pushbutton Disengages the tape in the punch to
allow tape removal or tape loading.

B SP Pushbutton Backspaces the tape in the punch by
one space, allowing manual correction
or rubout of the character just punched.

OFFION Pushbuttons Controls use of the tape punch with
operation of the Teletype keyboard/
printer.

START/ STOP/ FREE
Switch

Controls use of the tape reader with
operation of the Teletype. In the FREE
position the reader is disengaged, per-
mitting the paper tape to be manually
moved within the reader without neces-
sarily reloading or unloading it. In the
STOP position the reader mechanism is

2-5

Table 2-2 (Cont.)

CONTROL OR INDICATOR FUNCTION

engaged but de-energized. In the START
position the reader IS engaged and op-
erated under program control. The tape
may be loaded or unloaded in either the
FREE or STOP positions.

Keyboard

LINE/OFF/ LOCAL
Switch

Provides a means of printing on paper
when used as a typewriter and punching
tape when the punch ON pushbbtton is
pressed; also provides a means of sup-
plying input data to the computer when
the LINE/OFF/LOCAL switch is in the
LINE position.

Controls application of primary power to
the Teletype and data connection to the
processor. In the LINE position, the
Teletype is energized and connected as
a computer I / O device. In the OFF po-
sition, the Teletype is de-energized. In
.the LOCAL position, the Teletype is en-
ergized for off-line operation, and signal
connections to the processor are dis-
connected. Both LINE and LOCAL use
of the Teletype require that the com-
puter be. energized through the POWER
switch.

I S P A C E

Figure 2-3 Teletype Keyboard

KEYBOARD OPERATION
The Teletype keyboard shown in Figure 2-3 is similar to a typewriter
keyboard, except that some nonprinting characters are included as
upper case elements. For typing characters or symbols, such as $, yo,
#, which appear on the upper portion of numeric keys and certain

2-6

alphabetic keys, the SHIFT key is held depressed while the desired key
is operated.

Designations for certain nonprinting functions are shown on the upper
part of some alphabetic keys. By holding the CTRL (control) key de-
pressed and then depressing the desired key, these functions are ac-
tivated. Table 2-3 lists several commonly used keys that have special
functions in the symbolic language of PDP-8/ E computers.

Table 2-3

Special Keyboard Functions

KEY FUNCTION USE

SPACE space used to combine and delimit symbols

RETURN carriage used to terminate line of symbolic

or numbers in a symbolic program

return program

HERE IS blank tape used for leader/trailer (effective only
in LOCAL)

RUBOUT rubout used for deleting characters, punches
all channels on paper tape

CTRL/ REPT/ P code 200 used for leader/trailer of binary pro-
gram paper tapes (keys must be re-
leased in reverse order: P, REPT
CTRL)

printer one line
LINE FEED line feed follows carriage return to advance

PRINTER OPERATION
The printer provides a typed copy of input and output at ten characters
per second maximum rate. When the Teletype unit is on line (LINE),
the copy is generated by the computer; when the Teletype unit is off
line (LOCAL), the copy is automatically generated whenever a key is
struck.

,, PAPER TAPE READER OPERATION
The paper tape reader is used to input into memory data punched on
eight-channel perforated paper tape at a maximum rate of ten characters
per second. The reader control positions are shown in Figure 2-2 and are
described below.

START Activates the reader; reader sprocket wheel is engaged
and operative.

STOP Deactivates the reader; reader sprocket wheel IS engaged
but not operative.

FREE Deactivates the reader; reader sprocket wheel is dis-
engaged.

2-7

PqPER TAPE PUNCH OPERATION
The paper tape punch is used to perforate eight-channel rolled oiled
paper tape at a maximum rate of ten characters per second. The punch
controls are shown in Figure 2-2 and described below.

REL.
B. SP.

ON
OFF

Disengages the tape to allow tape removal or loading.
Backspaces the tape one space for each firm depression
of the 6. SP. button.
Activates the paper tape punch.
Deactivates the paper tape punch.

CHANNELS

8 7 6 5 4 3 2 1

.
...... 0 . . .

.
- COLUMN

Data is recorded (punched) on paper
tape by groups of holes arranged in
a definite format along the length of
the tape. The tape is divided into
channels, which run the length of
the tape, and into columns, which
extend across the width of the tape,
as shown in the adjacent diagram.
The paper tape readers and punches
used with PDP-8 family computers
accept eight-channel paper tape.

SPROCKET
HOLE

Generating a Symbolic Tape
The previously described components may be used to generate a sym-
bolic program paper tape through the following procedure.

When switched to LOCAL, the Teletype unit is independent of the com-
puter and functions like an electric typewriter. Any character struck on
the keyboard is printed, and also punched on paper tape if the tape
punch is ON. Each character struck on the keyboard is represented in
code by one row of holes and spaces according to the ASCII code d e
scribed in the following section and given in Appendix C.

A section of leader-trailer code several inches long is punched at the
beginning of the symbolic tape, by pressing the HERE IS key on the

2-8

Teletype keyboard. The symbolic program is then carefully typed, follow-
ing the conventions used in PDP-8 symbolic programs.

A typing error can be corrected using the 6. SP. button of the paper tape
punch and the RUBOUT key on the Teletype keyboard. The 6. SP. button
backspaces the paper tape one column for each depression of the
button, and the RUBOUT key perforates all eight channels of a column
(this perforation is ignored by the computer). Therefore, errors are re-
moved by backspacing the tape to the error and typing rubouts over the
error and all following characters. After typing rubouts, the correct in-
formation must be typed beginning where the error occurred.

Once the symbolic tape is punched, a form feed is punched, and then
more leader-trailer tape is generated by striking the HERE IS key. The
tape is removed from the punch unit by tearing against the plastic cover
of the punch. The symbolic program thus generated is the input to the
assembler described in Chapter 4. rl

The program may be listed (typed out) by placing the paper tape in the
paper tape reader. This is done by releasing the plastic cover of the
reader unit and placing the eight-channel tape over the reader head with
the smaller sprocket holes over the sprocket wheel, and replacing the
cover. If the Teletype control is switched to LOCAL and the reader is
switched to START, the tape will advance over the reader head and a
printed copy of the program win be typed on the Teletype printer. If
the tape punch is also ON, a duplicate of the tape will be generated at
the same time.

Paper Tape Formats
Manual use of the toggle switches on the operator console is a tedious
and inefficient means of loading a program. This procedure is necessary
in some instances, however, because the PDP-8/ E computer must be
programmed before any form of input to the memory unit is possible.
For example, before any paper tape can be used to input information
into the computer, the memory unit must have a stored program which
will interpret the paper tape format for the computer. This loader pro-,
gram must be stored in memory with the console switches. A loader
program consists of input instructions to accept information from the
Teletype paper tape reader and instructions to store the incoming data
in the proper memory locations.

Before the loader program can be written to accept information, the
format in which the data is represented on the paper tape must be es-
tablished. There are three basic paper tape formats commonly used in
conjunction with PDP-8/ E computer. The following paragraphs describe
and illustrate these formats.

2-9

324
0 . 0 . 310

311
323
Z*O
311
323
2 4 0
301
323
303
31 1

5
C
1

LOCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

CONTENTS

LOCATION

ASCI! FORMAT
The USA Standard Code for Infor-
mation Interchange (ASCII) format
uses all eight channels* of the
paper tape to represent a single
character (letter, number, or sym-
bol) as shown in the diagram at left.
The complete code is given in Ap-
pendix C.

RIM (READ IN MODE) FORMAT
RIM format tape uses adjacent col-
umns to represent 12-bit binary
information directly. Channels 1
through 6 are used to represent
either address or information to be
stored. A channel 7 punch indicates
that the adjacent column and the
following column are to be inter-
preted as an address ,specifying the
location in which the information of
the following two columns is to be
stored. The tape leader and trai!er
for RIM format tape must be
punched in channel 8 only (octal
200).

* Channel 8 is normally designated for parity check. The Teletype units
used with the PDP-8/E computer do not generate parity, and Channel 8 is
always punched.

r,

2-10

0 <L 0 . . *...

:7
$ *

,",

ORIGIN

INSTRUCTION

*INSTRUCTION

2 'INSTRUCTION

li , INSTRUCTION

!; INSTRUCTION :: INSTRUCTION

BIN (BINARY FORMAT)
BIN format tape is similar to RIM
format except that only the first ad-
dress of consecutive locations is
specified. An address is designated
by a channel 7 punch and informa-
tion following an address is stored
in sequential locations after the des-
ignated address, until another loca-
tion is specified as an origin. The
tape leader/trailer for BIN format
tape must be punched in channel 8
(octal 200) only.

Paper Tape Loader Programs
The three previously described paper tape formats are each used for a
separate purpose in conjunction with PDP-8/E computer. The ASCII
format is used to represent symbolic programs on paper tape, which
are then used as input to the assembler. The assembler translates the
mnemonic instructions and symbolic addresses into binary instructions
and absolute addresses. Once this translation has been performed by
the assembler, a binary format tape is generated. ASCII tapes can be
quickly recognized by noting that all channels of the tape are used.

The binary format tape is the common means of loading an assembled
program into the core memory of a PDP-8/E computer. The BIN (Binary)
loader is the program used to load these binary format paper tapes.
Program instructions are stored in successive locations beginning with
an origin which is signaled by a channel 7 punch on the paper tape. The
81N loader is a lengthy program requiring 83 memory locations. (As an
alternative to manually entering the contents of all 83 locations, the RIM
(Read In Mode) format is used.) Tapes in binary (BIN) format can be
quickly recognized because channel 8 is not used in the middle of the
tape, and channel 7 is punched infrequently.

The RIM loader is simpler than the BIN loader because the memory unit
is supplied with a location for each incoming instruction. It consists~of
17 instructions which must be toggled into memory. The BIN loader is
punched in RIM format, and is loaded by the RIM loader; but it is used
to load tapes punched in the BIN format, which is the output of the
assembly program. Tapes in RIM format are similar in appearance to
BIN tapes, but channel 7 is punched every fourth character.

OPERATING PROCEDURES
Many means are available for loading and unloading PDP$/E informa-
tion. The means used are dependent upon the form of the information,
time limitations, and the peripheral equipment connected to the sys-
tem. The foltowing procedures are basic to any use of these systems,

2-11

and, although they may be used infrequently as the programming and
use of the computer become more sophisticated, they are valuable in
preparing the initial programs and learning the function of machine input
and output transfers.

Manual Data Storage and Modification
Programs and data can be stored or modified manually by means of the
facilities on the Programmer’s Console. Chief use of manual data storage
is made to load the read-in mode (RIM) loader program into the com-
puter core memory. The RIM loader is a program used to automatically
load programs into the computer from perforated tape in RIM format.
This program and the RIM tape format are described below. Use the
following procedure * t o store data manually in the computer core
memory.

Power For Manual Operation
a. Turn the OFF/POWER/PANEL Lock switch clockwise

POWER position.

Set the SWITCH REGISTER switches to corresDond to
Memory Addressing for Manual Operation

a.

b.
C.

Manual
a.

b.

d.
C.

e.

to the

the ad-
dress bits of the word to be stored.
Press the LOAD ADDRESS key.
Observe that the address in the switch register is held in the
computer as designated by lighted MEMORY ADDRESS indi-
cators corresponding to switches in the 1 (up) position and
unlighted indicators corresponding to switches in the 0 (down)
position.

Data Input to Addressed Memory Location
Set the SWITCH REGISTER switches to correspond to the data
or instruction word to be stored at the address just set into the
CPMA.
Rotate the INDICATOR SELECTOR SWITCH to MD.
Lift and release the DEP key.
Observe that the data in the SWITCH REGISTER is the same
as the data shown on the MD indicators. Data IS now stored in
the addressed location.
Check to see that the MA has been incremented by one so that
additional data can be stored at sequential addresses by re-
peated SWITCH REGISTER settling and deposit key operation.

Checking the Contents of Any Address in Core Memory
a. Perform the Memory Addressing Procedure.
b. Depress the EXAMINE switch.
c. Rotate the INDICATOR SELECTOR switch to the MD position.
d. Observe the data shown on the MD indicators.
e. To observe the next location in core, the contents of the PC and

the CPMA are automatically incremented by one. The operator
simply depresses the EXAMINE switch and observes the content
of the new location.

LOADlNG DATA UNDER PROGRAM CONTROL
Information can be stored or modified automatically in the computer
only by using programs previously stored in core memory. For example,

2-12

having the RIM loader stored in core memory allows RIM format tape to
be loaded as follows:

INITIALIZING THE SYSTEM
a.

b.
C.

d.

e.

f.

Rotate the OFF/ POWER/ PANEL LOCK switch clockwise to the
POWER position.
Set the Teletype LINE/OFF/LOCAL switch to the LINE position.
Load the tape in the Teletype reader by settling the START/
STOP/FREE switch to the FREE position, releasing the cover
guard by means of the latch at the right, loading the tape so
that the s,procket wheel teeth engage the feed holes in the tape,
closing the cover guard, moving the tape either forward or
backward until the punched leader section is over the read sta-
tion, and setting the switch to the STOP position. Tape is
loaded in the back of the reader so that it moves toward the
front as it is read. Proper positioning of the tape in reader re-
sults in three bit positions being sensed to the left of the
sprocket wheel and five bit positions being sensed to the right
of the sprocket wheel. The directional arrow. printed on the tape
should point toward the operator.
Load the starting address of the RIM loader program (not the
address of the program to be loaded) into the PC by means of
the Switch Register and the LOAD ADDRESS switches.
In sequence, press the computer keys CLEAR and CONTINUE
and set the 3-position Teletype reader switch to the START posi-
tion. The tape is then read automatically.
Stop the computer program by means of the Halt switch when
the reader reaches the trailer section of tape.

PROGRAM LOADING OPERATION
Automatic storing of the binary loader (BIN) program is performed by
means of the RIM loader program as described below. With the BIN
loader stored in core memory, program tapes assembled in the program
assembly language (PAL Ill) binary format can be stored as described
in the previous procedure, except that the starting address of the BIN
loader (usually 7777) is used in step d. When the BIN program is loaded
the computer stops; at this point the AC should contain all zeros if the
program is stored properly. If the computer stops with a number other
than zero in the AC, a checksum error has been detected. When the
program has been stored, it can be initiated by loading the program
starting address (usually designated on the leader of the tape) into the
PC by means of the Switch Register and LOAD ADDRESS switches, then
pressing and releasing the CLEAR key and then pressing the CONTinue
key.
The steps involved in the process of loading programs and bringing the
system up to the point where the user can communicate with the pro-
cessor is illustrated in Figure 2.4. The loading flow diagram for each
type of program to be loaded is referenced, and each flow diagram is
accompanied with a corresponding procedure.
This loading procedure is greatly simplified when the user^ employs a
mass storage device such as the Disk Monitor System. Using the Mon-
itor, stored programs are called in from Disk,files. This is illustrated in
Figure 2-5.

2-13

Loaders
When a PDP-8/E computer is first received, it should be assumed that no
useful information is in memory. The machine is not capable of per-
forming any arithmetic operations or receiving data.
Al l tapes in the Program Library are written in binary format. The user,
therefore, must load the machine so that it is capable of accepting
binary tapes. Initially, sixteen RIM instructions are manually toggled into
memory. The binary loader tape is then used to eliminate the necessity
of toggling in 86 additional instructions.
RIM allows the binary loader tape to be read into memory and the
binary loader tape allows the use of any tape in the Program Library
such as symbolic editor.

The RIM Loader is the very first program loaded into the computer, and
it is loaded by the programmer using the console switches. The RIM
Loader instructs the computer to receive and store, in core, data
punched on paper tape in RIM coded format. (RIM Loader is used to
load the BIN Loader described below.)
There are two RIM loader programs: one is used when the input is t o be
from the low-speed paper tape reader, and the other is used when input
is to be from the high-speed paper tape reader. The locations and cor-
responding instructions for both loaders are listed in Table 2-4.
The procedure for loading (toggling) the RIM Loader into core is illus-
trated in Figure 2-6.

READ-IN-MODE (RIM) LOADER

'r.- LOAD ntwdl

I

+, RlDGRlY

Figure 2-4 Loading Data Under Program Control

2-14

, < STORED \,DISK
PROGRAM

PASS I
PASS 2

ASSEMBLED
PROGRAM

STORED DISK
PROGRAM I PAL

I PASS-2 I F\, Fp\

deLED) DISK
I PROGRAM

+
MONITOR

0 OUTPUT

Figure 2-5 Loading Programs with Mass Storage Devices

Table 2 4
RIM Loader Programs

LOCATION INSTRUCTION

Low-speed Reader High-Speed Reader
7756 6032 6014
7757 603 1 6011
7760 5357 5357
7761 6036 6016
7762 7106 7106
7763 7006 7006
7764 7510 7510
7765 5357 5374
7766 7006 7006

2-15

LOCATION INSTRUCTION

Low-speed Reader High-speed Reader ,
7767 603 1 6011
7770 5367 5367
7771 6034 6016
7772 7420 7420
7773 3776 3776
7774 3376 3376
7775 5356 5357
7776 0000 0000

After RIM has been loaded, it is good programming practice to
verify that all instructions were stored properly. This can be done
by performing the steps illustrated in Figure 2-7, which also shows
how to correct an incorrectly stored instruction.
When loaded, the RIM Loader occupies absolute locations 7765
through 7776.

1 ,*, LOAD ADD

#I DEC TAPE USERS SHOULD
LOAD R Y INTO FIELD 0

Figure 2-6 Loading the RIM Loader

2-16

INITIALIZE

SET'
DF. CORRECT FIELD
IF * CORRECT FIELD

DEPRESS LOAD ADD a
SET SR- CORRECT

4
I DEPRESS^

CHECKED

RIM IS LOADED

Figure 2-7 Checking the RIM Loader

BINARY (BIN) LOADER
The BIN Loader is a short utility program which, when in core, instructs
the computer to read binary-coded data punched on paper tape and
store it in core memory. BIN is used primarily to load the programs fur-
nished in the software package (excluding the loaders and certain sub-
routines) and the programmer's binary tapes.

BIN is furnished to the programmer on punched paper tape in Rlh-
coded format. Therefore, RIM must be in core before BIN can be loaded.
Figure 2-8 illustrates the steps necessary to properly load BIN. When
loading, the input device (low- or high-speed reader) must correspond
to the version of RIM loaded in the machine.

When stored in core. BIN resides on the last page of core, occupying
absolute locations 7625 through 7752 and 7777.

BIN was purposely placed on the last page of core so that it would
always be available for use-the programs in DEC's software package do
not use the last page of core (excluding the Disk Monitor). The pro-
grammer must be aware that if he writes a program which uses the last
page of core, BIN will be wiped out when that program runs on the
computer. When this happens, the programmer must load RIM and then
BIN before he can load another binary tape.

Figure 2-9 illustrates the procedure for loading binary tapes into core.

2-1 7

LOA0 RIM

4

i SET SR - 7756

,-,

6, DEPRESS CLEAPKONT

I

6 BIN IS L O q D

Figure 2-8 Loading the BIN Loader

2-18

LOAD BIN v
IF=FIELD OF BIN u SET SR=7777

FEAD€R ,-, SET SR* 3777 p+zq

W T TAPE IN HRS + PUT TAPE IN HSR

DEPRESS C N T

4

Figure 2-9 Loading A Binary Tape Using BIN

2-19

Symbolic Editor
The Symbolic Editor is a service program which allows the programmer
to write and prepare symbolic programs and to generate a symbolic
program tape of his programs. Editor is very flexible in that the pro-
grammer can type his symbolic program online from the Teletype key-
board, thus storing it directly into core memory. Then, using certain
Editor commands, the programmer can have his program listed (printed)
on the teleprinter for visual inspection.

Editor also allows the programmer to add, correct, or delete any portion
of his symbolic program. When the programmer is satisfied that his
program is correct and ready to be assembled or compiled, Editor can
be commanded to generate a symbolic program tape of the stored pro-
gram.

The Symbolic Editor program is issued on punched paper tape in
binary-coded format. Therefore, it is loaded into core memory using the
BIN Loader. When in core, Editor is activated for use by setting the
switch register (SR) t o 0200 (the starting address) and depressing the
LOAD ADD (load address) and then START switches. Editor responds
with a carriage returnlline feed sequence on the Teletype.

initially, Editor is in command mode, that is, it is ready to accept com-
mands from the programmer; anything typed by the programmer is in-
terpreted as a command to Editor. Editor accepts only legal commands,
and if the programmer types something else, Editor ignores the com-
mand and types a question mark (?).

When not in command mode, Editor is in text mode, that is, all charac-
ters typed from the keyboard or tapes read in on the tape reader are
interpreted as text to be put into the text buffer in the manner specified
by a preceding Editor command. Figure 2-10 illustrates how the pro-
grammer can transfer Editor from one mode to another.

TYPE A COMMAND
THEN DEPRESS

RETURN KEY

TYPE DESlRtD
INPUT, THEN

CTRL/FORM KEYS .
Figure 2-10 Transition Between Editor Modes

2-20

Seven of Editor's basic commands are briefly described below.

COMMAND -MEANING
J

A Append incoming text from the keyboard into the text
buffer immediately following the text currently stored in
the buffer.

I

Read incoming tex t from the tape reader and append it
to the text currently stored in the buffer.

List entire text buffer; the programmer can specify one
line or a group of lines

Change a line, the programmer precedes the command
with the decimal line number or line numbers of the
lines to be changed

Insert into text buffer; the programmer specifies the
decimal line number in his program where the inserted
text is to begin.

D Delete from text buffer; the programmer specifies the
line or group of lines to be deleted.

P Punch text buffer; the programmer can specify one line,
a group of lines, or the entire text buffer.

A l l commands are executed when the RETURN key is depressed except
the P command. To execute the P command, press the RETURN key on
the Teletype, turn on the punch, and press the CONT (continue) switch
on the computer console.

I

The above commands are only the seven basic commands. A summary
of all commands is provided in Table 2-7 at the end of this section.

WRITING A PROGRAM
Now that you have some idea of what you can do with Editor and what
Editor can do for you, we will write and edit a short program, explaining
each step in the comments to the right of the printout.

The example program finds the larger of two numbers and halts with
the number displayed in the accumulator (AC). The program IS written
in PAL Ill, to be assembled using the PAL Ill Assembler described later
in this chapter.

The programmer loads Editor using the BIN loader (see Figure 2-81.
Editor is then activated by loading the starting address (0200(octal))
and depressing the LOAD ADD, CLEAR and CONT switches. After Editor
responds with a carriage return-line feed, the programmer types A and
RETURN key, Editor is now in text mode, that is, subsequent characters
typed are appended to the text buffer. The programmer now types the
symbolic program. (Block indenting is facilitated using fhe CTRL/TAB
key, which Editor has programmed to indent in ten-character incre
ments.)

2-21

A

/CLEAR AC
/GET B

* 200
CLA
TAD NUMB
CMA
CMA
IAC
TAD NUMA
SMA
JMP .+4
CLA
TAD NUMB
HLT
CLA
TAD NUMA
HLT

NUMB, 0000
NU MA, 0000

$

/1’S COMP B
I -B
/ADD -B + A
/ IF -B LARGER
/JUMP 4 LOCATIONS
/CLEAR AC
/GET B
/ B IS LARGER
/CLEAR AC
/GET A
/A IS LARGER

Visual inspection reveals that we have errors in lines 4, 16, and 17.
(Editor maintains a line number count in decimal, with the first line
typed being 1 and our last line being 18.) Line 4 can be removed using
the D (Delete) command, and lines 16 and 17 can be corrected using
the C (Change) command. However, Editor is presently in text mode, and
in order to issue another command Editor must be transferred to com-
mand mode. This is done when the programmer types CTRL/FORM
(depress and hold down the CTRL key while typing the FORM key).

CTRL/ FORM (nonprinting) The programmer types CTRL/FORM;
Editor responds with CR/LF and rings
the teleprinter bell, indicating that it is
in command mode.

4D

15, 16C

NUMA, 1111
NUMB, 0011

The programmer types 4D and the RE-
TURN key: Editor responds with a
CR/LF and the line is deleted.

The programmer types 15, 16C and
the RETURN key, informing Editor that
lines 15 and 16 (formerly 16 and 17)
are to be changed.

Editor responds with a CR/LF, transfers
to text mode, and waits for the pro.
grammer to change the lines.

The programmer types NUMA. 1111
and NUMB, 0011.

2-22

The symbolic program should now be correct. However, it is good pro-
gramming practice to check the program after editing; this can be done
using the L (List) command, but since only original lines 4, 16, and 17
were changed it is not necessary to have the whole program listed. The
programmer can command Editor to list lines 4 through 17.

CTRL/ FORM (nonprinting)

4. 17L

The programmer types CTRL/ FORM to
return Editor to command mode; Editor
responds with CR/LF and rings the bell,
and waits for the next command.

The programmer types 4, 17L and the
RETURN key; Editor types lines 4
through 17.

CMA
IAC
TAD NUMA
SMA
JMP .+4
CLA
TAD NUMB
HLT
CLA
TAD NUMA
HLT

NUMA, 1111
NUMB, 0011

$

/l’S COMP B
I - B
/ADD -B + A

/JUMP 4 LOCATIONS
/CLEAR AC
/GET B
/ B IS LARGER
/CLEAR AC
/GET A
/ A IS LARGER

/ I F -B LARGER

The changes were accepted properly. The symbolic program is correct
and ready to be punched on paper tape.

GENERATING A PROGRAM TAPE
Before issuing the P (Punch) command, Editor must be in command
mode. Figure 2-11 illustrates the procedures required to generate a
symbolic program tape using Editor.

CTRL/ FORM (nonprinting) The programmer types CTRLiFORM;
Editor responds with a question mark,
indicating that Editor was already in

? command mode.

P The programmer commands Editor to
punch the entire text buffer by typing
P and the RETURN key.

2-23

EDITOR IS IN
COMMAND MADE
AND COMPLETED

P R D W M ! S I N
TEXT BUFFER

SELECT WTCH

TEXT IS WNCHED

MOR€ TEXT

TYPE F AND

*I TYPE T AND

c-t7 REMOVE TAPE

TYPE T AND

AND RETURN KEY

RETURN KEYS AND

REMOVE TAPE

Figure 2-11 Generating a Symbolic Tape Using Editor

When Editor recognizes a P command it waits for the programmer to
specify the low- or high-spee& punch. If the programmer wants the pro-

2-24

gram punched and typed, he sets SR bit 10 to 0 and the program will-
be punched on the low-speed punch and simultaneously typed on the
teleprinter. If the programmer want only a program tape and if he has
a high-speed punch available, he sets SR bit 10 to 1 and the program
will be punched on the high-speed punch. For the purposes of this dis-
cussion, a printed program listing is desired, so the low-speed punch
is specified. The programmer turns on the low-speed punch and de-
presses the CONT switch on the computer console, and Editor begins
punching and typing the contents of the entire text buffer.

An image of the stored symbolic program has been punched and typed
by Editor

If the programmer stops the computer, e.g., purposely or accidentally
turning the computer off, he may restart Editor at location 0200 or 0177
without disturbing the text in the buffer. Editor can also be restarted at
location 0176; however, all text currently in the buffer is wiped out.
Therefore, the programmer can restart at location 0176 t o re-initialize for
a new program.

SEARCH FEATURE
A very convenient feature available with Editor is the search feature
which allows the programmer to search a line of text for a specified
character. When the programmer types a line number followed by S,
Editor waits for the user to type in the character for which it is t o search.
The search character is not echoed (printed on the teleprinter). When
Editor locates and types the search character typing stops, and Editor
waits for the programmer to either type new text and terminate the line
with a RETURN key or to use one of the following special keys.

1. +- t o delete the entire line to the left,

2. RETURN to delete the entire line to the right,

. 3. RUBOUT to delete from right t o left one character for
each RUBOUT typed (a / is echoed for each
RUBOUT typed).

4. LINE FEED to insert a carriage returnlline feed (CR/LF)
thus dividing the line into two,

5. CTRLiFORM to search for the next occurrence of the
search character, and/or

6. CTRL/BELL to change the search character t o the next
character typed by the programmer.

-

INPUT/OUTPUT CONTROL
Switch register options are used with input and output commands to
cbntrol the reading and punching of paper tape. The options available
to the programmer are shown in Table 2-5. These options are used in
conjunction with the "Select Switch Register Option" operation in Figure
2-11.

2-25

Table 2-5

Input/Output Control

SR BIT POSITION FUNCTION

0 0
1

1 0
1

2 0
1

10 0
1

11 0
1

Input text as is
Convert all occurrences of 2 or more
spaces to a tab
Output each tab as 8 spaces
Tab is punched as tab/rubout
Output as specified
Suppress output
Low-speed punch and Teleprinter
High-speed punch
Low-speed reader
High-speed reader

‘: Bit 2 allows the user to interrupt any output command and return
imrned:ately to command mode: when desired, merely set bit 2
to 1.

ERROR DETECTION
Editor checks all commands for nonexistent information and incorrect
formatting. When an error is detected, Editor types a question mark (?),
and ignores the command. However, if an argument is provided for a
command that doesn’t require one, the argument is ignored and the
command is executed properly.

Editor does not recognize extraneous and illegal control characters;
therefore, a tape containing these characters can be cleared up or COT-
rected by merely reading the tape into Editor and punching out a new
tape.

SUMMARY OF SPECIAL KEYS AND COMMANDS
Using special keyboard keys and commands, the programmer controls
Editor’s operation. Certain keys have special meaning to Editor, of
which some can be used in either command or text mode. The mode of
operation determines the function of each key. The special keys and
their functions are shown in Table 2-6.

Table 2-6

Special Keys

KEY . COMMAND MODE TEXT MODE

RETURN Execute preceding com- Enter line in text buffer

c Cancel preceding command Cancel line to the left

mand

(Editor responds with a ? margin
followed by a carriage re-
turn and line feed)

2-26

Table 2-6 (Cont.)

Special Keys

KEY COMMAND MODE TEXT MODE

RUBOUT same as +- Delete to the left one char-
acter for each depression:
a (backslash) is echoed
(not used in Read (R)
command)

CTRL/FORM Respond with question Return to command mode
mark and remain in corn- and ring teleprinter bell

(period)

I

LINE FEED

ALTMODE

>
<
- -

mand mode

Value equal to decimal Legal text character
value of current line (may
be used alone or with +
or - and a number, e.g.,

Value equal to number of Legal text character
last line in buffer; used as
an argument

List next line Used in Search (S) com-
mand to insert CR/LF into
line

.+a

List next line

List next line

List previous line

Used with . or / t o obtain
their value

Same as = (gives value of
legitimate argument)

CTRLITAB Produces a tab which on
output is interpreted as 10
spaces or a tablrubout, de-
pending on SR option

Editor commands are given when in command mode. There are
three basic types of commands: Input. Editing, and Output. Table
2-7 contains a summary of Editor commands and their function.

2-27

Table 2-7
Summary of Commands

TYPE COMMAND FUNCTION

Input A

R

Editing L
nL
m,nL
nC
m,nC
I
n l
K
nD
m,nD
m,n$jM
G

nG
S

nS
m,nS

output P
nP
m,nP
T
F
N

Append incoming text from keyboard into

Append incoming text from tape reader into

List entire text buffer
List line n
List lines m through n inclusively
Change line n
Change lines m through n inclusively
Insert before first line
Insert before line n
Delete entire text buffer
Delete line n
Delete lines m through n inclusively
Move lines m through n to before line j
Print next tagged line (if none, Editor types

Print next tagged line after line n (if none, ?)
Search buffer for character specified after

RETURN key and allow modification
(search character is not echoed on printer)

Search line n, as above
Search lines m, through n inclusively, as

Punch entire text buffer
Punch line n
Punch lines m through n inclusively
Punch about 6 inches of leader/trailer tape
Punch a FORM FEED onto tape
Do P, F, K, and R commands

text buffer

text buffer

?)

above

m and n are decimal numbers, and m is smaller than n: j is a decimal

The P and N commands halt the Editor to allow the programmer to select

Commands are executed when the RETURN key is depressed, excluding

number.

I/O control; press CONT to execute these commands.

the P and N commands.

PAL 111 SYMBOLIC ASSEMBLER
The PAL Ill Symbolic Assembler (PAL stands for Program Assembly
Language) is an indispensable service program used to translate sym-
bolic programs, which are written in the PAL Ill language, into binary-
coded programs (binary programs).
PAL Ill is a two-pass assembler with an optional third pass, i.e., the
symbolic program tape must be passed through the assembler two times
to produce the binary-coded tape (binary tape), and the optional third
pass produces a complete octal/symbolic program listing which can be

2-28

typed andior punched if desired. A brief explanation of the three passes
is given below.

Pass 1. The assembler reads the symbolic program tape and defines
all symbols used and places the user symbols in a symbol table for use
during Pass 2. The assembler checks for undefined symbols and certain
other errors and types an error message on the teleprinter when an
error is detected.
Pass 2. The assembler rereads the symbolic program tape and gen-
erates the binary tape using the symbols defined during Pass 1. When
the low-speed punch is used, meaningless characters will be typed on
the teleprinter, and these should be ignored by the programmer. The
assembler checks illegal referencing during this pass and types an error
message on the teleprinter when any is detected.

Pass 3. The assembler reads the symbolic program tape and types
and/or punches the octal/symbolic program assembly listing. This listing
thoroughly documents the assembled program and is useful when de-
bugging and modifying the program.

The meaningless characters, error messages, and octaI/symboiic pro-
gram listing will be shown later in this section.

PAL Ill accepts symbolic program tapes from either the low-speed or
high-speed reader and produces the binary tapes on either the low-speed
or high-speed punch.

During assembly, the programmer communicates with PAL Ill via the
switches on the computer console. Switch options are used to specify
which pass the assembler is to perform and which reader and punch the
assembler should accept input from and punch out on. .

ASSEMBLING A SYMBOLIC PROGRAM
Earlier in this chapter, the programmer wrote a PAL Ill symbolic program
and generated the symbolic program tape using Editor. That symbolic
program can now be assembled to produce a binary program using PAL
111. A listing of the symbolic program follows.

NUMA,
NUMB,

* 200
CLA
TAD NUMB
CMA
IAC
TAD NUMA
SMA
JMP .+4
CLA
TAD NUMB
HLT
CLA
TAD NUMA
HLT
1111
001 1
S

/CLEAR AC
/GET B
/ 1 'S COMP B
/ - B ,
/ADD - B + A
/ IF -B LARGER
/JUMP 4 LOCATIONS
/CLEAR AC
/GET B
/ B IS LARGER
/CLEAR AC
/GET A
/ A IS'LARGER

2-29

First, PAL Ill must be loaded into core memory, and since PAL I l l is
on punched papw tape in binary-coded format, it is loaded into core =
memory using the BIN Loader (see Figure 2-8 for loading procedures).

With PAL Ill in core, we are ready to assemble the symbolic program.
Figures 2-12 and 2.13 illustrate the procedures for assembling with
PAL I l l using the low-speed reader/ punch and high-speed reader/punch,
respectively. In these flowcharts, the switch register options are set for
the appropriate reader! punch.

The low-speed reader and punch (LSR and LSP) are used in the fol low
ing assembly (see Figure 2-13).

Initializing and Starting Load PAL I l l into core memory using

Set SR = 0200 and depress LOAD ADD.
Turn TTY to LINE and put symbolic pro-

Set SR = 2200 and set LSR to START.
Turn LSP ON and depress START.
Error messages would be typed now.
Symbol table concludes Pass 1.
Examine Symbol table. Make sure no

Put symbolic program tape in LSR.
BB: Set SR = 4200 and set LSR to START.

Depress LSP to ON and depress CONT. - - 9 Disregard meaningless characters while

<) Error message 'would be typed now.

BIN.

- gram tape in LSR .
Entering Pass 1

flUMA 0215
NUMB 0216

"UA" diagnostics appear.

Entering Pass 2

8 8

< : object tape is being punched.

Put symbolic program tape in LSR. Entering Pass 3

0200 7200
0201 1216
0202 7040
0263 7001
0204 1215
0205 7500
0206 5212
0207 7200
0210 1216
0211 7402
0212 7200
0213 1215
0214 7402
0215 1111
0216 0011
NUMA 0215
NUMB 0216

Set SR = 6200 and set LSR to START.
Depress LSP to ON and depress CONT.
The octal/symbolic program listing is

being typed and punched.

0 200
CLA
TAD NUMB
CMA
IAC
TAD NUMA
SMA
JMP .+4
CLA
TAD NUMB
H LT
CLA
TAD NUMA
HLT

NUMA, 1111
NUMB, 0011

/CLEAR AC
/GET B
I15 COMP B
I -B
/ADD - B + A
/ IF -B LARGER
/JUMP 4 LOCATIONS
/CLEAR AC
/GET B
/ B IS LARGER
/CLEAR AC
/GET A
/ A IS LARGER

2-30

LOAD PAL m

Figure 2-12 Assembling with PAL 111 Using Low-
Speed Reader/punch

The tape produced during Pass 2 is the binary tape, which is loaded into
core memory using the BIN Loader. The symbol table tape produced
during Pass 1, the binary tape produced during Pass 2, and the octal/
symbolic program listing produced during Pass 3 are used when de-
bugging the program.

2-31

SET 51(.2201 I , SET SR.6201 I ,

I'

I REMOVE TPPE P

Figure 2-13 Assembling with PAL Ill Using High
Speed Reader/ Punch

Off-Line Teletype Operation

The Teletype can be used separately from the computer for typing,
punching tape, or duplicating tapes. To use the Teletye in this manner:

a. Ensure that the computer PANEL LOCK switch is positioned to
the PANEL LOCK position.

2-32

b. Set theTeletype LINE/OFF/LOCAL switch to the LOCAL position.
c. If the punch is to be used, load it by raising the cover, man-

ually feeding the tape from the top of the roll into the guide
at the back of the punch, advancing the tape through the punch
by manually turning the friction wheel, and then closing the
cover. Energize the punch by pressing the ON pushbutton, and
produce about two feet of leader. The leader-trailer can be code
200 or 377. To produce the code 200 leader, simultaneously
press and hold the CTRL and SHIFT keys with the left hand,
press and hold the REPT key, and press the @ (P) key. When
the required amount of leader has been punched, release the
@ key, and then all keys. To produce the 377 code, simulta-
neously press and hold both the REPT and RUB OUT keys until
a sufficient amount of leader has been punched.

If an incorrect key is struck while punching a tape, the tape can be cor-
rected as follows: If the error is noted after typing and punching any
number (n) of characters, press the punch 8.SP. (backspace) pushbutton
n + 1 t m e s and strike the keyboard RUB OUT key n + 1 times. Then
continue typing and punching with the character which was in error.

To duplicate and obtain a listing of an existing tape: Perform the pro-
cedure under steps a through c above. Then load the tape to be dupli-
cated as described in step b of the procedure listed under Loading
Data Under Program Control. Initiate tape duplication by setting the
reader START/STOP/FREE switch to the START position. The punch and
teleprinter stops when the tape being duplicated is completely read.
Corrections to insert or delete information on a perforated tape can be
made by duplicating the correct portion of the tape and manually punch-
ing additional information, or inhibiting punching of information to be
deleted. This is accomplished by duplicating the tape and carefully ob-
serving the information being typed as the tape is read. In this manner,
the reader START/STOP/FREE switch can be set to the STOP position
just before the point of the correction is reached. Information to be
inserted can then be punched manually by means of the keyboard. Infor-
mation can be deleted by pressing the punch OFF pushbutton and
operating the reader until the portion of the tape to be deleted has been
typed. It may be necessary to backspace and rub out one or two charac-
ters on the new tape i f the reader is not stopped precisely on time. The
number of characters to be rubbed out can be determined exactly by the
typed copy. Be sure to count spaces when counting typed characters.
Continue duplicating the tape in the normal manner after making the
correct ions.

New, duplicated, or corrected perforated tapes should be verified by
reading them off-line and carefully proofreading the typed copy.

Program Control
When the program is stopped at the end of an instruction with the single
step key, then the load address, examine, and deposit keys may be used
without changing the AC. The program may then be resumed by re-
setting the PC to the address wanted, and then operating the CONTinue
key.

2-33

4K Memory

2-34

CHAPTER 3

MEMORY AND PROCESSOR INSTRUCTIONS

GENERAL
An instruction is a coded program step that tells the computer what to
do for a single operation in a program. In the PDP-8 family of copputers,
there are two major types of instruction words: memory reference and
augmented. Memory reference instructions store or retrieve data from
core memory, while augmented instructions do not. A third type-a
housekeeping instruction is defined later. Al l instructions are determined
by bits 0 through 2 to specify the operation (op) code. Operation codes
of O(octa1) through 4(octal) specify memory reference instructions, and
code of 6(octal) and 7(octal) specify augmented instructions. Memory
reference instruction times are 1.2 FS for instruction fetches and non-
auto-indexed defer cycles, and 1.4 ps for all other cycles. IOT (Input/
Output Transfer) instructions are 1.2 ps for options which communicate
directly with the OMNIBUS; and 2.6, 3.6, Dr 4.6 ps for options which
communicate via the KA8-E Positive I /O Bus Interface. The latter times
are + or -5%, all other times are + or -1%.

The instruction repertoire is shown in Figure 3-1. This illustrates the
eight basic instructions and the division into the three categories-the
Memory Reference Instructions, Augmented Instructions, and the House-
keeping Instruction.

The Memory Reference Instructions are concerned with at least two
memory addresses,. the address of the initial memory location and the
address of the data. Figure 3-2 illustrates an example of the address flow
of a Memory Reference Instruction. In order to illustrate the basic flow,
a simplified diagram is shown leaving out some of the more complex
branching such as JUMP and AUTO INDEX instructions. Two cycles are
required (at a minimum) to complete an instruction. The indirect ad-
dressing capability requires an additional cycle (DEFER) which must go
back to memory for another address. On the next cycle (EXECUTE), the
data is brought into the Central Processor and the instruction is com-
pleted.

The Augmented Instruction simplified flow program is illustrated in
Figure 3-3. Notice that the instruction is completely performed in the
FETCH cycle. Once memory is addressed and the instruction brought
from memory t o the central processor, memory is not referenced (Le.,
no additional instruction is brought from memory). Instead, the instruc-
tion is completely carried out once the initial decoding has been ac-
complished. The last 9 bits, instead of being used to specify a memory
address, are used as an extension of the basic instruction. The House-
keeping Instruction, JMP (sometimes called Unconditional Branch) is
used only to force any desired address into the Program Counter. (See
Program Control in chapter 4)

3- 1

I
I
I
I
I

WSTRUCTIONS I
I
I
I
I
I

MICRO

EXECUTE
(4 4 r S)

I
I DATA

I
EXECUTE

USTRUCTION

L - - - - - J
FETCH
NEW
INSTRUCTION

SKON GROUP 3

RTL SNL
RAR SZL MOA.CLA
RTR SZA SWP. CLA

CMA
CIA KEB-E
CLL EAE)

CLA
STL I
STA * I

lOPTlONSl

I L--------- - - - - - - - - - l

Figure 3-1 PDP-8/ E Instruction Repertoire

t

TO FETCH INSTRUCTON

FETCH
It PrS)

. .. l t
OP CODE ADDRESS
(0-48) OF DATA

I I I

Figure 3-2 Memo,ty Reference Instruction Simplified Flow

3-2

1
I

PERFORM FETCH
OPERATE NEXT

INSTRUCTION MICRO PROGRAMMED

INSTRUCTION
CODE 7 INSTRUCTION BITS

. 6 4 PEWOTRM CU&H

INSTRUCTIONS INSTRUCTION

Figure 3-3

MEMORY REFERENCE INSTRUCTIONS
Logical AND (AND Y)

Octal Code: 0
Major States: F, (D), E
Execution Time: 2.6 ps with direct addressing, 3.8 ps with indirect

addressing, 4.0 ps with auto-indexed indirect ad-
dressing.

Operation: The AND operation IS performed between the con-
tents of memory location Y and the contents of AC.
The result is left in the AC, the original contents of
the AC are lost, and the contents of Y are restored.
Corresponding bits of the AC and Y are operated
upon independently. This instruction, often called
extract or mask, can be considered as a bit-by-bit
multiplication.

Augmented Instruction Simplified Flow Diagram

Example:

Original Final
ACJ YJ ACJ
0 0 0
0 1 0
1 0 0
1 1 1

TWO% Complement Add (TAD Y)

Octal Code: 1
Major States: F, (D). E
Execution Time: 2.6 ps with direct addressing, 3.8 ps with indirect

addressing, 4.0 ps with auto-indexed indirect ad-
dressing.

3-3

Operation: The contents of memory location Y are added to the
contents of the AC in two’s complement arithmetic.
The result of this addition is held in the AC, the
original contents of the AC are lost and the contents
of Y are restored. If there is a carry from ACO, the
link is complemented. This feature is useful in mul-
tiple precision arithmetic.

Increment and Skip if Zero (ISZ Y)

Octal Code: 2
Major States: F, (W. E
Execution Time: 2.6 ps with direct addressing, 3.8 ps with indirect

addressing, 4.0 ps with auto-indexed indirect ad-
dressing.
The contents of memory location Y are incremented
by one in two’s complement arithmetic. If the re-
sultant contents of Y equal zero, the contents of the
PC are incremented by one and the next instruction
is skipped. If the resultant contents of Y do not equal
zero, the program proceeds to the next instruction.
The incremented contents of Y are restored to mem-
ory. The contents of the AC are not affected by this
instruction.

Depdit and Clear AC (DCA Y)

Octal Code: 3
Major States: F, (W, E
Execution time: 2.6 ps with direct addressing, 3.8 ps with indirect

addressing, 4.0 ps with auto-indexed indirect ad-
dressing.
The contents of the AC are deposited in core memory
at address Y and the AC is cleared. The previous
contents of memory location Y are lost.

Operation:

Operation:

Jump to Subroutine (JMS Y)
Octal Code: 4
Major States: F, (D), E ’
Execution Time: 2.6 ps with direct addressing, 3.8 ps with indirect

addressing, 4.0 ps with auto-indexed indirect ad-
dressing.
The contents of the PC are deposited in core memory
location Y and the next instruction is taken from
core memory location Y + 1. The contents of the AC
are not affected by this instruction.

Operation:

HOUSEKEEPING INSTRUCTION
Jump to Y (JMP Y)
Octal Code: 5
Major States: F, (D)
Execution Time: 1.2 ps with direct addressing, 2.4 ps with indirect

addressing, 2.6 ps with auto-indexed indirect ad-
dressing.

3 -4

Operation: Address Y is loaded into the PC so that the next in-
struction is taken from core memory address Y. The
original contents of the PC are lost. The contents
of the AC are not affected by this instruction.

AUGMENTED INSTRUCTIONS
Augmented instructions are one-cycle (FETCH) instructions that initiate
various operations as a function of bit microprogramming. Augmented
instructions are divided into two categories, neither of which are mem-
ory reference instructions, These are the INPUT/OUTPUT TRANSFER
(IOT), which has an operation code of six; and the OPERATE, which has
an operation code of seven. Bits 3 through 11 within each instruction
function as an extension of the operations to be performed.

OPERATE INSTRUCTION
The operate instruction consists of three groups of microinstructions.
Group 1 (OPR 1) is principally for clear, complement, rotate, and in-
crement operations and is designated by the presence of a 0 in bit 3.
Group 2 (OPR 2) is used principally in checking the contents of the
accumulator and link and continuing to, or skipping, the next instruc-
tion based on the check. A 1 in bit 3 and a 0 in bit 11 designates an
OPR 2 microinstruction. Group 3 is used to manipulate data between the
MQ and AC Registers. A 1 in bits 3 and 11 designate an OPR 3 micro-
instruction. Each instruction is completed during a FETCH cycle. All
operate instructions take place in 1.2 microseconds.

Group 1
The Group 1 microinstructions manipulate the contents of the accurnu-
lator and link. These instructions are microprogrammable; that is, they
can be combined to perform specialized operations with other Group 1
instructions.

The Group 1 operate microinstruction format is shown in Figure 3-4,
and the microinstructions are explained in the succeeding paragraphs.
Bits within this group can be combined into one microinstruction. For
example, it is possible to assign 1’s t o bits 5, 6, and 11, thereby
creating a single instruction which clears the link, complements the
accumulator and increments the accumulator. (The most frequently used
combinations are listed in Appendix B.)

ROTATE I

ROTATE IFAO

COOE r CLA CMA RlWT I F A I
OPERATION AC AND L 2 POSITIONS

CONTAINS CLL CML ROTATE
A O T O

SPECIFY L LEFT
GROUP I BITS B a9

ARE ZERO’S
LOGICAL SEOUENCE:
I -CLA. CLL

2 -CMA, CML
3 - IAC
4 - RAR. RAL, RTR. RTL, BSW

Figure 3-4 Group 1 Operate Instruction Bit Assignments

3-5

No Operation (NOP)

Octal Code: 7000
Sequence: None
Operation: This command causes a 1-cycle delay in the program

before the next sequential instruction is initiated. This
command is used to add execution time to a program,
such as to synchronize subroutine or loop timing. The
NOP also provides the programmer with a convenient
means of removing an instruction.

Increment Accumulator (IAC)

Octal Code: 7001

Operation:

Rotate Accumulator Left (RAL)

Octal Code: 7004
Sequence: 4
Operation:

Sequence: 3
The contents of the AC are incremented by one in two’s
complement arithmetic.

The contents of the AC and link are rotated one binary
position to the left. The contents of bits AC1-11 are
shifted to the next greater significant bit, the content
of AC0 is shifted into the L, and the content of the L is
shifted into AC11.

Rotate Two Left (RTL)

Octal Code: 7006
Sequence: 4
Operation: The contents of the AC and link are rotated two binary

positions to the left. This instruction is logically equal
to two successive RAL operations.

Rotate Accumulator Right (RAR)

Octal Code: 7010

Operation:
Sequence: 4

The contents of the AC and link are rotated one binary
position to the right. The contents of bits ACO-10 are
shifted to the next less significant bit, the content of
AC11 is shifted into the L, and the content of the L is
shifted into ACO.

Rotate Two Right (RTR)

Octal Code: 7012

Operation:
Sequence: 4

The contents of the AC and link are rotated two binary
positions to the right. This instruciorr is logically equal
to two successive RAR operations.

3-6

. I

Byte Swap (BSW)

Octal Code: 7002
Sequence: 4
Operation: The right six bits of the accumulator are exchanged

with the left six bits. AC0 is exchanged with AC6; AC1
with AC7, etc. The contents of the link are not affected.

Complement Link (CML)

Octal Code: 7020

Operation:

Complement Accumulator (CMA)

Octal Code: 7040

Operation:

Sequence: 2
The content of the L is complemented.

Sequence: 2
The contents of the AC are changed to the one's com-
plement of the current contents of the AC. The content
of each bit of the AC is complemented individually.

Complement and Increment Accumulator (CIA)

Octal Code: 7041

Operation: The contents of the AC are converted from a binary
value to their equivalent two's complement number.
This conversion is accomplished by combining the CMA
and IAC commands, thus the contents of the AC are
complemented during sequence 2 and are incremented
by one during sequence 3.

Sequence: 2, 3

Clear Link (CLL)

Octal Code: 7100
Sequence: 1
Operation:

Set Link (STL)

Octal Code: 7120

Operation:

Clear Accumulator (CLA)

Octal Code: 7200

Operation: The content of each bit of the AC is cleared (made equal
to 0).

Set Accumulator (STA)

Octal Code: 7240

Operation: Each bit of the AC is set. This operation is logically
equal t o combining the CLA and CMA commands.

The L is cleared (made equal to 0).

Sequence: 1, 2
The L is set. This instruction is logically equal to com-
bining the CLL and CML commands.

Sequence: 1

Sequence: 1, 2

3-7

NOTE: The following codes are illegal and specifically reserved for future
expansion: RAL RAR (octal code 7014), RTL RTR (octal code
7016) and any microprogramming of these bit combinations.

0 1 2 3 4 5 6 7 E 9

GROUP 2
Group 2 Operate microinstructions are often referred to as the “skip
microinstructions” because they enable the programmer to perform tests
on the accumulator and link and to skip the next instruction depending
upon the results of the test. A skip instruction causes the computer to
check for a specific condition, and if it is present, t o skip the next in-
struction. If the condition is not present, the next instruction is executed.

The Group 2 operate microinstruction format is shown in Figure 3-5 and
the primary microinstructions are explained in the following paragraphs.
Any logical combination of bits within this group can be combined into
one instruction. (The instructions constructed by most logical bit com-
binations are listed in Appendix B.)

If skips are combined in a single instruction the inclusive OR of the
conditions determines the skip when bit 8 is a 0; and the AND of the in-
verse of the conditions determines the skip when bit 8 is a 1. For
example, if 1s are designed in bits 6 and 7 (SZA and SNL), the next
instructiori is skipped if either the contents of the AC = 0, or the con-
tent of L= 1. If 1s are contained in bits 5, 7 and 8, the next instruction
is skipped if the AC contains a positive number and the L contains a 0.

10 1 1

REVERSE SKIP
SENSING

OPERATION OF BITS
CODE 7 CLA SZA 5.6.7 HLT

W V V Y V
CONTAINS SMA SNL OSR CONTAINS

A 1 TO A O T O
SPECIFY SPECIFY
GROUP 2 GROUP 2

LOGICAL SEQUENCE:
I (BIT 8 IS A 0) - EITHER SMA OR SZA OR SNL - BOTH SPA AND SNA AND SZL
2 - CLA
3 - OSR
4 - HLT

(BIT 8 IS A I)

Figure 3-5 Group 2 Operate Instruction Bit Assignments

Halt (HLT)

’ Octal Code: 7402
Sequence: 4
Operation: Clears the RUN flip-flop at Sequence 4, so that the

program stops at the conclusion of the current machine

3-8

cycle. This command can be combined with others in
the OPR 2 group. Al l other OPR Group 2 Instructions
are performed before the program stops.

OR with Switch Register (OSR)

Sequence: 3
Octal Code: 7404

Operation: The inclusive OR operation is performed between the
contents of the AC and the contents of the SR. The
result is left in the AC, the original contents of the AC
are lost. The contents of the SR are unaffected by this
command. When combined with the CLA command, the
OSR performs a transfer of the contents of the SR into
the AC.

Skip, Unconditional (SKP)

Octal Code: 7410
Sequence: 1
Operation: The contents of the PC are incremented by one so that

the next sequential instruction is skipped.

Skip on Non-zero Link (SNL)

Octal Code: 7420
Sequence: 1
Operation: The content of the L is sampled, and if it contains a

1, the contents of the PC are incremented by one so
that the next sequential instruction is skipped. If the L
contains a 0, no operation occurs and the next sequen-
tial instruction is initiated.

Skip on Zero Link (SZL)

Octal Code: 7430
Sequence: 1
Operation: The content of the L is sampled, and if it contains a

0 the contents of the PC are incremented by one so
that the next sequential instruction is skipped. If the
L contains a 1, no operation occurs and the next se-
quential instruction is initiated.

Skip on Zero Accumulator (SZA)

Octal Code: 7440
Sequence: 1
Operation: The content of each bit of the AC is sampled, and if all

bits contain a 0 the contents of the PC are incremented
by one so that the next sequential instruction is skipped.
If any bit of the AC contains a 1, no operation occurs
and the next sequential instruction is initiated.

3-9

Skip on Non-zero Accumulator (SNA)

Octal Code: 7450
Sequence: 1
Operation: The content of each bit of the AC is sampled, and if

any bit contains a 1 the contents of the PC are in-
cremented by one so that the next sequential instruc-
tion is skipped. If all bits of the AC contain a 0. no
operation occurs and the next sequential instruction is
initiated.

Skip on Minus Accumulator (SMA)
Octal Code: 7500

Operation:
Sequence: 1

The content of the most significant bit of the AC is
sampled, and if it contains a 1, indicating that the AC
contains a negative two's complement number, the
contents of the PC are incremented by one so that the
next sequential instruction is skipped. If the AC con-
tains a positive number no operation occurs and the
next sequential instruction is initiated.

Skip on Positive Accumulator (SPA)
Octal Code: 7510

Operation:
Sequence: 1

The content of the most significant bit of the AC is
sampled, and if it contains a 0, indicating a positive
(or zero) two's complement number, the contents of the
PC are incremented by one so that the next sequential
instruction is skipped. I f the AC contains a negative
number, no operation occurs and the next sequential
instruction is initiated.

Clear Accumulator (CLA)
Octal Code: 7600
Sequence: 2
Operation: Each bit of the AC is cleared to contain a binary 0.

Group 3
The Group 3 Operate microinstructions are concerned with the manipula-
tion of data between the AC and the MQ registers. The MQ register is
an auxiliary register for the temporary storage of data. It is sometimes
convenient t o temporarily store data in an auxiliary register rather than
in a memory location. Group 3 instructions enable the loading of AC con-
tents into the MQ; the loading of the MQ contents into the AC, the swap-
ping of AC and MQ contents; the loading of the inclusive OR of the
contents of the AC and MQ into the AC; and the clearing of both the AC!
and MQ. Although the register and instructions are primarily intended to
be used with the Extended Arithmetic KE8-E option, they are available for
use as a standard feature.

The format of the Group 3 instructions is shown in Figure 3-6. Having
an operation code of 7, this instruction class is identified as group 3
only when both bits 3 and 11 contain a 1.

3-10

0 1 2 3

u z*u* * *u
CONTAINS MQL CONTAINS

A j TO A t TO

4 5 6 7 8 9 10 1 1

SPECIFY
GROUP 3

LOGICAL SEQUENCE:
1 - C L A
2-MQA.MQL

SPECIFY
GROUP 3

*USED B Y KEB-E

Figure 3-6 Bit Assignments for Group 3 Operate Instructions

Bits 6, 8, 9 and 10 should be zero when the KE8-E option is not em-
ployed. The description of the four Group 3 instructions is given in the
following:

Instructions

Clear Accumulator and Multiplier Quotient (CAM)

Octal Code: 762 1
Execution Time: 1.2 ps
Operation:

Multiplier Quotient Load into Accumulator (MQA)

Octal Code: 7501
Execution Time: 1.2 ps
Operation:

Clears the AC during logical sequence 1, as in CLA;
during logical sequence 2, the MQ is cleared.

The contents of the MQ are inclusively ORed with
the AC, and the result loaded into the AC. The
previous contents of the AC are lost, but the con-
tents of the MQ are not affected. This instruction
provides the programmer with a direct inclusive OR
instruction. This instruction may also be combined
with a CLA instruction to effect a direct transfer of
information from MQ to AC.

Load Multiplier Quotient (MQL)

Octal Code: 7421 ,

Execution Time: 1.2 ps
Operation:

Swap MQ and AC (SWP)

Octal Code: 7521
Execution Time: 1.2 ps
Operation:

Loads the content of the AC into the MQ, and then
clears the AC.

The contents of AC and MQ are exchanged. This
instruction can be combined with the CLA bit

3-11

to move the contents of MQ to AC and then clear
the MQ.’

INPUT/OUTPUT TRANSFER (IOT)

Operation:

Octal Code: 6
Major State: F
Execution Time: If the selected device is internal, the IOT takes

place in 1.2 microseconds.
If the selected device is external, the computer
enters an expanded cycle of 2.6 microseconds (if
the IOP ends in 1, 2 or 4); 3.6 microseconds (if
the IOP ends in 3, 5, or 6); or 4.6 microseconds
(if the IOP ends in 7). An IOT ending in 0 always
takes place in 1.2 microseconds.
Input/output transfer (IOT) instructions initiate the
operation of peripheral equipment and effect in-
formation transfers between the processor and an
I / O device. Upon recognition of the. operation code
6 as an IOT instruction, the computer determines
whether the selected device is internal (plugged
directly into the OMNIBUS) or external (connected
via the KA8-E Positive I /O Bus Interface module).
The nature of the OMNIBUS is such that IOT’s such
as 6000 can be used for control codes for devices
directly connected to the OMNIBUS, since the last
3 bits are decoded to determine the device opera-
tion.

The last 3 bits of the instruction cause the genera-
tion of “IOP PULSES” at the External Bus Interface
as follows:

Instruction IOP Sequence
Bit Time

11 IOP 1 1
10 IOP 2 2
9 IOP 4 3

IOP pulses enact a data transfer or initiate a con-
trol operation. Selection of an equipment is ac-
complished by bits 3 through 8 of the IOT instruc-
tion. These bits form a 6-bit code that enables the
device selector in a given device.

The format of the IOT instruction is shown in Figure
3-7. Operations performed by IOT microinstructions
are explained in Chapters 5, 9, and 10.

3-12

OPERATION
CODE 6

n
0

DEVICE
OPERATION

1 2 3 4 5 6 7 8 9 10 1 1

DEVICE
SELECTION

Figure 3-7 IOT Instruction Bit Assignment

PROGRAM INTERRUPT
The program interrupt features allow certain external conditions to inter-
rupt the computer program. Program interrupts are used to either speed
the information processing of input/output devices or allow certain
alarms to halt the program in progress and initiate another routine. When
a program interrupt request is made, the computer completes execution
of the instruction in progress before acknowledging the request and
entering the interrupt mode. A program interrupt is similar to a JMS to
location 0; that is, the contents of the program counter are stored in
location 0, and the program resumes operation in location 1 with the
interrupt disabled. The interrupt program commencing in location 1 is
responsible for identifying the signal causing the interruption, for remov-
ing the interrupt condition, and for returning to the original program with
the interrupt re-enabled. Exit from the interrupt program, back to the
original program, can be accomplished by a JMP I 0 instruction.

When an interrupt request is acknowledged, the interrupt is automatically
disabled by the program interrupt synchronization circuits (not by in-
structions). The next instruction is taken from' core memory location 1.
Usually, the instruction stored in locations 1 is a JMP, which transfers
program control to a subroutine which services the interrupt. A t some
time during this subroutine, an ION instruction must be given. The ION
can be given at the end of the subroutine, just before control is trans-
ferred back to the original program. In this application, the ION instruc-
tion immediately precedes the last instruction in the routine. A delay of
one instruction (regardless of the execution time of the following instruc-
tion), is inherent in the ION instruction to allow transfer of program
control back to the original program before enabling the interrupt. Exit
from the subroutine usually is accomplished by a JMP I 0 instruction.

The ION command can also be given during the subroutine as soon as
the I / O device causing the interrupt has been identified. This latter
method allows the subroutine which is handling a low priority interrupt
to be interrupted, possible by a high priority device. Programming of an
interrupt subroutine, which checks for priority and allows itself to be
interrupted, must make provisions to relocate the contents of the pro-
gram counter stored in location 0; so that the return address to the
original program is not lost if another interrupt occurs.

3-13

Instructions
Interrupt Turn ON(ICYN)
Octal Code: 6001
Operation: This command enables the computer to respond to a

program interrupt request. If the interrupt is disabled
when this instruction is given, the computer executes the
next instruction, then enables the interrupt. The additional
instruction allows exit from the interrupt subroutine be-
fore allowing another interrupt to occur. This instruction
has no effect upon the condition of the interrupt circuits
if it is given when the interrupt is enabled.

Skip If Interrupt ON (SKON)
Octal Code: 6000
Operation: The state of the interrupt enable flip-flop is tested. If

this flip-flop is set, the next sequential instruction is
skipped. Simultaneously with this test (and before a de-
vice flag can cause an interrupt) the interrupt system is
turned off as described under the following IOF instruc-
tion.

Interrupt Turn Off (IOF)
Octal Code: 6002
Operation:

Skip If Interrupt Request (SRQ)
Octal Code: 6003
Operation:

This command causes the program interrupt feature to
be disabled.

The state of the internal interrupt request bus is tested.
If it is low, indicating one or more devices are requesting
an interrupt, the next instruction is skipped.

Flag Processing IOTs
Get Flags (GTF)
Operation: 6004
Octal Code: The following machine states are read into the indicated

bits of the accumulator:

LINK

0 I 2 3 4 5 6 7 8 9 10 1 1

GT 4;; ET ION SUF SFO SFI SF2 Sf3 SF4 SF5

Figure 3-8 Flag Processing States

* Only if Extended Memory Control, type KM8-E. installed.
** Only if Extended Arithmetic Element (EAE), type KE8-E, installed.

3-14

Restore Flags (RTF)

Octal Code 6005

Operation This instruction is the converse of GTF. The bits in the
AC (see figure 3-8) are used to set the corresponding
flip-flops in the processor, the KM8-E Extended Memory
Control or the KE8-E Extended Arithmetic Element. RTF
enables the interrupt in the same manner as an ION in-
struction. Refer t o the KM8-E Memory Extension and
Timeshare Option in Chapter 7 for more details on the
RTF instruction.

Skip if Greater Than (SGT)

If the GT flag is set, the next instruction is skipped. This
instruction is implemented only if the KE8-E is installed.

Octal Code: 6006
Operation:

Clear all flags (CAF)

Octal Code: 6007
Operation:

-

This instruction is logically equivalent t o operating the
CLEAR key on the panel. It generates INITIALIZE on the
OMNIBUS and at the external I/O interface. The LINK and
AC are cleared. The action of INITIALIZE is a function of
the design of each peripheral, but generally INITIALIZE
clears flags and motion control flip-flops, and sets the
interrupt enable flip-flop of all peripherals.

NOTE

A CAF instruction should not be given when a
device is active. For example: A CAF instruction
should not be given until at least lOOms after a
TLS instruction.

INSTRUCTION SUMMARY
A summary of the common usage of the eight basic instructions is pro-
vided in Table 3-1. As the reader continues on with the remaining
chapters in this handbook, he should keep in mind the capability of all
eight instructions since the processor’s operation is determined by the
use of each instruction. A program, for instance, is simply a collection of
instructions strung out in a particular order for a particular purpose such
as solving a problem. Each instruction performs a series of steps to
satisfy the requirements of the program.

3-15

Table 3-1
Basic Instruction Usage Summary

BASIC MINIMUM NO. EXAMPLE
INSTRUCTION OF CYCLES COMMON USAGE OF USAGE

AND (O)(octal) 2 Data Strips unwanted bits
Manipulation from the AC.

TAD (l)(octal) 2 Data Provides arithmetic
Manipulation addition. Also serves

to load the AC with
the contents of some
memory location.

Program Loops Used for counting.

Data Used when placing
Manipulation data into some mem-

Subroutine Provides entry to sub-
Entry routines.

ory location.

ISZ (2)(octal) 2

DCA (3)(octal) 2

JMS (4)(octal) 2

JMP (5)(octal) 1

IOT (6)(octal) 1

OPR (7)(octal) 1

Manipulation Allows the program-
mer to go to a differ-

Counter ent portion of his
program. Also pro-
vides subroutine exit.

Externa I Allows the program
Communication to converse with pe-

ripherals.

Testing of AC Operates on and/or
and Link tests the contents of

the AC and Link. Op-
erates on the con-
tents of the MQ Reg-
ister.

- of Program

3-16

