
CHAPTER 4
PDP-8/E PROGRAMMING SYSTEMS

GENERAL
This chapter deals with the concepts required to program the PDP-8/E
and identifies the system programs available to the user Two hand-
books, INTRODUCTION TO PROGRAMMING and PROGRAMMING LAN-
GUAGES, provide a more detailed treatment and description of the
commonly used programming languages and programming systems.
The chapter is divided into 2 sections. Section 1 provides basic pro-
gramming guidelines and section 2 identifies the various programming
systems and commonly used languages available to the user.

SECTION 1
PDP-8/ E PROGRAMMING FUNDAMENTALS
Organization of the standard core memory or any 4096-word field of
exteided memory is summarized as follows:

Total locations (decimal) 04095 or 4096
Total addresses (octal) 07777 or 10,000

Number of pages (decimal)
Page designations (octal)

0-31 or 32
0-37 or 40

Number of locations per page (decimal) 0.127 or 128
Addresses within a page’(octa1) 0-177 or 200

Routines using 128 instructions or less can be written in one page us-
ing direct addresses for looping and indirect addresses for data stored
in other pages. When planning the location of instructions and data in
core memory, the following locations are reserved for special purposes:
Address Purpose
0 (octal) Stores the contents of the program counter follow-

ing a program interrupt.
1 (octal) Stores the first instruction to be executed following

a program interrupt.
10 (octal)-17 (octal) Auto-indexing.
MEMORY ADDRESS1 NG
The programmer has 4096 (decimal) locations which he may address.
However, as illustrated in Figure 3-2 of Chapter 3, when an instruction
is fetched from memory, only bits 5 through 11 contain the address of
the. data. Addressing is accomplished using octal notation. Therefore
the 4096 possible locations require addresses in octal from 0000 to
7777. This means that a total of 12 bits is required to specify an ab-
solute address. So that all locations may be addressed as efficiently as
possible, memory is addressed in terms of pages with a coding scheme
that allows easy access to any one of the 10,000 octal locations. The
page addressing scheme is illustrated in Figure 4-1 which shows the
relationship of the 40 octal pages with the 10,000 octal locations. The
programmer is interested in only three pages in memory at any one time:

a. The current page
b. Page 0
c. A location on other than the current page or page 0.

I
4- 1

Page 0 is used to store commonly used operands and off-page pointers.
For instance, the location of an indirect address used by instructions is
usually o n Page 0.

Figure 4-1 Memory Addressing Scheme

4-2

The format of the Central Processor (CPMA) Memory Address Register
establishing the memory page must first be considered. The MA register
is an unequally divided 12-bit register in which the least significant bits
of the MA (bits 5-11) are called the page address bits and the most
significant bits (bits 0-4) are called the page bits. The 12 bits of the
Memory Address are established by the program counter (PC) and are
re-established each time the PC loads an absolute address for the next
instruction. Bits 0-4 are used to establish the memory page as shown
in Figure 4-2. Because the pages to be addressed include pages 0-37
(octal), only five bits are required. The first two bits represent numbers
from 0 to 3 and the next three represent numbers from 0 to 7. Because
the locations to be addressed on any given page include locations 0-177
(octal), only seven bits are required to specify any one location. Bit 5
represents an octal 1 or 0; bits 6, 7, and 8 represent the second octal
digit from 0 to 7; bits 9, 10, and 11 represent the last octal digit from
0 to 7. Thus, on the example shown in Figure 4-2, the MA register is
addressing page 5, location 73 (absolute address 1273).

When the user first receives his PDP-8/E, he should assume that it has
no information content in its memory. Before he can load instructions
into memory, he must first perform the initializing and loading proce-
dures described in Chapter 2. The following discussion assumes that the
preliminary procedures have been completed and that the programmer
now wants t o load into core those instructions which will be called upon
after a program has been written. His main concern is t o decide in
which memory locations he desires to place his instructions and in which
locations he wishes t o place the corresponding data.

0 0 1 0 1 0 1 ! l o 1 1
2 3 4 5 6 7 8 9 10 1 1 MAREG I 0 4

(000-1778)

Figure 4-2 Format Establishing Memory Page

initially, the programmer must load the Central Processor Memory Ad-
dress Register with an address and then deposit a 12-bit instruction
word in the format shown in Figure 4-3.

4-3

OPERAND

BIT w

1

POSITION 0 1 2 3 4 5 6 7 8 9 10 11

PAGE ADDRESS BITS OR 1

CODE (0 TO 1778)

ADDRESS MODE BIT CURRENT PAGE OR PAGE 0 BIT
0: DIRECT ADDRESSING
1 : INDIRECT ADDRESSING

0: PAGE 0
1 : CURRENT PAGE

Figure 4-3 Format of a Memory Reference Instruction

The first three bits contain the instruction operation code and have
nothing to do with addressing. The last seven bits address the location
(from 0 to 177 octal), which will contain either data or a 12-bit address.
Those address bits are located in the Memory Buffer Register, and are
ineffective until bits 3 and 4 are decoded, at which time the address bits
are transferred from the Memory Buffer to the Central Processor Memory
Address Register. The page address (the first five bits of the MA register)
is determined by whether bit 4 is a 0 or 1 (see Figure 4-4).

Where to place the instruction word or Data word is a very important
consideration. At this point, the programmer has three choices in the
location of the data:

a. the current page (that page containing the Instruction)
b. page 0
c. a page other than page 0 or the current page.

MEMORY REFERENCE INSTRUCTION

0 [1 [2 1 3 [4 1 5 [6 1 7 [8 1 9 I I O I 1 1

CURRENT PAGE:RETAlN PAGE 1 1 1 1 1 1 1
PAGE 0: SET PAGE BITS TO

ZEROS

BITS

J
Y

PAGE BITS PAGE ADDRESS
BITS (OT01778)

Figure 4.4 Transfer of Address Portion of MRI into MA Register

4-4

Current Page-If the programmer desires the data to be located in the
current page, he must make bit 4 a 1 in the original instruction word.
The logic within the processor causes the first five bits of the MA to
remain, and transfers the last seven bits of the MB (the new address
within a page) to the last seven bits of the MA Register. This method
of updating the MA Register is illustrated in Figure 4-4.

Page 0-Page 0 is commonly used t o store operands or address of
operands or routines. The programmer must set bit 4 word t o 0. The
logic within the processor then places all zeros in MA bits 0 through 4
and transfers the content of the last 7 bits of the MB register t o the
last 7 bits of the MA Register. Thus, the page address is now page 0 and
the address within page 0 is some address between 0 and 177 octal.
This is illustrated in Figure 4-4.

Addressing A Page Other Than the Current Page or Page 0-The pro-
grammer may address a page other than the current page or page 0 by
placing a 1 in bit 3 of the original instruction word. As before, the com-
puter then goes to an address on the current page or on page 0, de-
pending on the state of bit 4. The logic within the processor responds to
bit 3 being a 1 by going into a defer state for a new address. This pro-
cedure is called "Indirect Addressing."

INDIRECT ADDRESSING
In the preceding section, the method of directly addressing 400(octal)
memory locations by an MRI was described-namely those on page 0
and those on the current page. This section describes the method for
addressing the other 7400(octal) memory locations. Bit 3 of an MRI des-
ignates the address mode. When bit 3 is a 0, the operand is a direct
address. When bit 3 is a 1, the operand is an indirect address. An in-
direct address (pointer address) identifies the location that contains the
desired address (effective address). To address a location that is not
directly addressable, the absolute address of the desired location is
stored in one of the 400(octal) directly addressable locations (pointer
address); the pointer address is written as the operand of the MRI: and
the letter I is written between the mnemonic and the operand. (During
assembly, the presence of the I results in bit 3 of the MRI being set to
1.) Upon execution, the MRI will operate on the contents of the locatioo
identified by the address contained in the pointer location.

The two examples in Figure 4-5 illustrate the difference between direct
addressing and indirect addressing. The first example shows a TAD in-
struction that uses direct addressing to get data stored on page 0 in
location 50; the second is a TAD instruction that uses indirect address-
ing, with a pointer on page 0 in location 50, to obtain data stored
in location 1275. (When references are made to them from various
pages, constants and pointer addresses can be stored on page 0 to
avoid the necessity of storing them on each applicable page.) The octal
value 1050, in the fi lst example, represents direct addressing (bit 3 = 0);
the octal value 1450, in the second example, represents indirect address-
ing (bit 3 = 1). Both examples assume that the accumulator has previ-
ously been cleared.

4-5

Location Content

200 TAD 50 (TAD 50 zz 1050s)
Instruction

50 1275 Data (Number) To Be Acted Upon By
Instruction Address

(Content of location 1275 is not used in the exe-
cution of the instruction in location 200.)

1275

NOTE: AC = 1275 after executing the instruction in location 200

Location Content

20

200 TAD I 50 (TAD I50 = 1450s)

Designates lhdirect Addressing
Instruction

50 1275 Pointer Address

1275 20 Data (Number) To Be Acted Upon By
Instruction
Effective Address

NOTE: AC = 20 after executing the instruction in location 200.

Figure 4-5 Comparison of Direct and Indirect Addressing

The following three examples illustrate some additional ways in which
indirect addressing can be used. As shown in example 1, indirect ad-
dressing makes it possible to transfer program control from off page 0
(or any other page) to any desired memory location. (Similarly, indirect
addressing makes it possible for other memory reference instructions to
address any of the 4,096(10) memory locations.) Example 2 shows a
DCA instruction that uses indirect addressing with a pointer on the cur-
cent page. The pointer in this case designates a location off the current
page (location 227) in which the data is to be stored. (A pointer address
is normally stored on the current page when all references to the desig-
nated location are from the current page.) Indirect addressing provides
the means for returning to a main program from a subroutine, as shown
in example 3. Indirect addressing is also effectively used in manipulating
tables of data.

EXAMPLE 1

Location Content

75 JMP I 100 (JMP I 100 = 5500(octal))

Designates Indirect Addressing
Instruction

4-6

100 6000 Pointer Address

6000 DCA 6100 Next Instruction To Be Executed

NOTE: Execution of the instruction in location 75 causes program con-
trol to be transferred to location 6000, and the next instruction
to be executed is the DCA 6100 instruction.

EXAMPLE 2

Location Content

450 DCA I 577 (DCA I 577 = 3777(octal))
Designates lndi rect Add ressi ng
Instruction

577 277 Pointer Address

227 nnnn Data (Number) Stored By Instruction

NOTES: 1. Memory Location 577 is location 177 of current page.
Execution of the instruction in location 450 causes the
contents of the accumulator to be stored in location 227.

(Effective Address)

EXAMPLE 3
CI

Location Content

207 JMS I 70 (JMS I 70=4470(octal))
210 TAD 250 (The next instruction to be executed

upon return from the subroutine.)

70 2000 (Starting address of the subroutine

2000 aaaa (Return address stored here by JMS

2001 i i i (First instruction of subroutine.)

2077 JMP I 2000 (Last instruction of subroutine.)

stored here.)

instruction.)

NOTES: 1. Execution of the instruction in location 207 causes the ad-
dress 210 to be stored in location 2000 and the instruction
in location 2001 to be executed next. Execution of the sub-
routine proceeds untll the last instruction (JMP I 2000)
causes control to be transferred back to the main program,
continuing with the execution of the instruction stored in
location 210.

4-7

2. A JMS instruction that uses indirect addressing is useful
when the subroutine is too large to store on the current
page.

3. Storing the pointer address on page 0 enables instructions
on various pagcs to have access to the subroutine.

PROGRAMMING OPERATIONS
The programmer can make use of any combination of instructions. The
following sections describe the more common programming operations.

STORING AND LOADING
Data is stored in any core memory location by use of the DCA (Deposit
& Clear AC) instruction. This instruction clears the AC to simplify load-
ing of the next data. If the data deposited is required in the AC for the
next program operation, the DCA must be followed by a TAD for the
same address. A l l loading of core memory information into the AC is
accomplished by means of the TAD instruction.

The DCA instruction stores the contents of the AC in the referenced
location, destroying the original contents of the location. The AC is then
set to all zeroes. The following example shows the contents of the
accumulator, link, and location 225 before and after executing the in-
struction DCA 225.

DCA 225

AC Link LOC. 225

Before Execution 1234 1 7654
After Execution 0000 1 1234

The following facts should be kept in mind when using the DCA instruc-
tion: *

a. The state of the link bit is not altered.
b. The AC is cleared.
c. The original contents of the addressed location are replaced by

the contents of the AC.

PROGRAM CONTROL
The Program Counter is used to direct the processor to the next address
of the next instruction to be fetched. Therefore, the content of the PC
Register is always one more than the content of the Central Processor
Memory Address (CPMA) Register. When an instruction has been com-
pleted and the processor is ready to go into a new fetch, the content of
the Program Counter is transferred into the CPMA Register and the
Program Counter with its original address is incremented by +1, thereby
pointing to the next sequential address. This procedure is called Program
Control because it directs the processor to the next instruction. Because
this rigid sequence of instructions is not always desirable for practical
programming, the PDP-8/E provides a means of jumping out of this
sequence to transfer Program Control from one sequence of instructions
to another or t o allow the processor t o enter a subroutine which is itself
a sequence of instructions and re-enter the main program when the sub-
routine has been completed.

4-8

Transfer of program control to any core memory location uses the JMP
or JMS instructions. The JMP I and JMS I (indirect address, bit 3 z 1)
are used to transfer program control to any location in core memory
which is not in the current page or page 0.

The JMS Y is used to enter a subroutine which starts at location Y +1
in the current page or page 0. The contents of the PC are stored in
the specified address Y, and address Y + 1 is transferred into the PC.
Subroutines or other pages may be entered via an indirect JMS. To exit
a subroutine, the last instruction is a JMP I Y, which returns program
control to the location stored in Y.
The JMP .instruction loads the effective address of the instruction into
the program counter, thereby changing the program sequence since
the PC specifies the next instruction to be performed. In the following
example, execution of the instruction in location 250 (JMP 300) causes
the program to jump over the instructions in locations 251 through 277
and immediately transfer control to the instruction in location 300.

, Location Content

250 JMP 300 (This instruction transfers program
control to location 300.)

300 DCA 300

NOTE: The JMP instruction does not affect the contents of the AC or
link.

A program written to perform a specific operation often includes sets of
instructions which perform intermediate tasks. These intermediate tasks
may be finding a square root, or typing a character on a keyboard. Such
operations are often performed many times in the running of one pro-
gram and may be coded as subroutines. To eliminate the need of writing
the complete set of instructions each time the operation must be per-
formed, the JMS (jump to subroutine) instruction is used. The JMS in-
struction stores a pointer address in the first location of the subroutine
and transfers control to the second location of the subroutine. After the
subroutine is executed, the pointer address identifies the next instruc-
tion to be executed. Thus, the programmer has at his disposal axsimple
means of exiting from the normal flow of his progrpw to perform an
intermediate task and a means of returning to the correct location upon
completion of the task. (This return is accomplished using indirect ad-
dressing, which is discussed elsewhere in this chapter.)

The following example illustrates the action of the JMS instruction:

Location Content

PROGRAM
200 JMS 350 (This instruction stores 0201 in loca-

tion 350 and transfers program con-
trol to location 351.)

4.9

.-
20 1 DCA 270 (This instruction stores the contents

of the AC in location 270 upon return
from the subroutine.)

SUBROUTINE
350 0000 (This location is assumed to have an

initial value of 0000; after JMS 350
is executed, it is 0201.)

35 1 i i i (First instruction of subroutine) .

375 JMP I 350 (Last instruction of subroutine)

The following should be kept in mind when using the JMS:

1. The value of the PC (the address of the JMS instruction +1) is
always stored in the first location of the subroutine, replacing
the original contents.

2. Program control is always transferred to the location designated
by the operand + 1 (second location of the subroutine).

3. The normal return from a subroutine is made by using an in-
direct JMP to the first location of the subroutine (JMP I 3 5 0 in
the above example); (Indirect addressing, as discussed in this
chapter effectively transfers control to location 201).

4. When the results of the subroutine processing are cpntained in
the AC and are to be used in the main program, they must be
stored upon return from the subroutine before further caicula-
tions are performed. (In the above example, the results of the
subroutine processing are stored in location 270.)

ARITHMETIC OPERATIONS
One arithmetic instruction is included in the order code, the two’s
complement add (TAD). Using this instruction, routines can easily be
written to perform addition, subtraction, multiplication, and division in
two’s complement arithmetic.

Two’s Complement Arithmetic
In two’s complement arithmetic, addition, subtraction, multiplication,
and division of binary numbers are performed in accordance with the
common rules of binary arithmetic. In the PDP-8/E, as in other machines
utilizing complementation techniques, negative numbers are represented
as the complements of positive numbers, and subtraction is achieved by
complement addition. Representation of negative values in one’s com-
plement arithmetic is slightly different from that in two’s complement
arithmetic.

The one’s Complement of a number is the complement of the absolute
positive value: that is. all 1s are replaced by Os and all Os are replaced
by 1s. The twds complement of a number is equal to one plus the one’s
complement of the number.

4-10

In one's complement arithmetic a carry from the sign bit (most signifi-
cant bit) is added to the least significant bit in an end-around carry. In
two's complement arithmetic a carry from the sign bit complements the
link (a carry would set the link to 1 if it were properly cleared before the
operation), and there is no end-around carry.

The TAD instruction (see Figure 4-6) performs a binary addition between
the specified data word and the contents of the accumulator, leaving the
result of the addition in the accumulator. If a carry out of the most
significant bit of the accumulator should occur, the state of the link bit
is complemented. The add instruction is called a Two's Complement Add
to remind the programmer that negative numbers must be expressed
as the two's complement of the positive value.

0 0 0 0 0 LINK

LINK

0 0 0 0 1 0 1 AC:+5

1 1 1 1 1 1 1 1 1 1 0 1 DATAWORO:-3

0 0 0 0 0 0 0 0 0 0

Figure 4-6 Operation of the TAD Instruction

1 0 AC(RESULT):+2

The following points should be remembered when using the TAD instruc-
tion:

a. Negative numbers must be expressed as a two's complement
of the positive value of the number.

b. A carry out of the accumulator will complement the link.
c. The data word in the referenced location is not affected.

LOGIC OPERATIONS
The PDP-8/E instruction list includes the logic instruction AND. A short
routine can be written from this instruction to perform the exclusive OR
operation.

Logical AND
The logical AND operation between the contents of the accumulator and
the contents of a core memory location Y is performed directly by means
of the AND Y instruction. The logical AND performs an AND operation
with AC0 and MBO, AC1 and MB1, etc. The result remains in the AC, the
original contents of the AC are lost, and the contents of location Y are
unaffected.

The AND instruction causes a bit-bybit Boolean AND operation between
the contents of the accumutator and the data word specified by the
instruction. The result is left in the accumulator as shown in Figure 4-7.

4-11

1

Figure 4-2 Operation of the AND Instruction

The following points should be noted with respect to the AND instruction:

a. A 1 appears in the AC only when a 1 is present in both the AC
and the data word (The data'word is often referred to as a
mask).

b. The state of the link bit is not affected by the AND instruction.
C. The data word in the referenced location is not altered.

Inclusive OR
The Inclusive OR instruction makes use of the MQ register, which is a
permanent part of the PDP-8/E. Assuming that value A is in the AC and
value B is stored in a known core memory address, the following se-
quence performs the inclusive OR. The sequence is stated as a utility
subroutine called IOR.

/CALLING SEQUENCE JMS IOR
I (ADDRESS OF B)

/ENTER WITH ARGUMENT IN AC; EXIT WITH
/LOGICAL RESULT IN AC

IOR, 0
/ADDRESS LABEL INSTRUCTION REMARKS

MQL /AC TO MQ, CLEAR AC
TAD I IOR /GET ADDRESS OF SECOND
DCA TEMl ARGUMENT
TAD I TEMl

MB I t 0 0 0 t 1 1 0 0 0 (O ~ ~ A W O R D)

MQA llOR MQ TO AC
ISZ IOR
JMP 1 IOR

TEMl, 0

Exclusive OR
The exclusive OR operation for two numbers, A and B, can be performed
by a subroutine called by the mnemonic code XOR. In the following
general purpose XOR subroutine, the value A is assumed to be in the
AC, and the address of the value B is assumed to be stored in a known
core memory location.

/CALLING SEQUENCE JMS XOR
I (ADDRESS OF E)
I (RETURN)

/ENTER WITH ARGUMENT W A C ; EXIT WITH
/LOGICAL RESULT IN AC

4-12

XOR, 0
DCA TEMl
TAD I XOR
DCA TEM2
TAD TEMl
AND I TEM2
CMA IAC
CLL RAL
TAD TEMl
TAD I TEM2
ISZ XOR
JMP I XOR

TEM1, 0
TEMP, 0

An XOR subroutine can be written using fewer core memory locations by
making use of the IOR subroutine; however, such a subroutine takes
more time to execute. A faster XOR subroutine can be written by storing
the value B instead of the address of 6, in the second instruction of the
calling sequence; howe\rer, the resulting subroutine is not as useful as
the subroutine given here.

INDEXING OPERATIONS
External events can be counted by the program, and the count can be
stored in core memory. The core memory location used to store the
event count can be initialized (cleared) by a CLA command followed by
a DCA instruction. Each time the event occurs, the event count can be
advanced by a sequence of commands such as CLA, TAD, IAC, and DCA.

The ISZ instruction is used to count repetitive program operations or
external events without disturbing the contents of the accumulator.
Counting a specified number of operations is performed by storing a
two’s complement negative number equivalent to the number of opera-
tions to be counted. Each time the operation is performed, the ISZ in-
struction is used to increment the contents of this.stored number and
to check the result. When the stored number becomes zero, the specified
number of operations have occurred and the program skips out of the
loop and back to the main sequence.

This instruction is also used for other routines in which the contents of
a memory location are incremented without disturbing the contents of
the accumulator, such as storing information from an I / O device in se-
quential memory locations, or using core memory locations to count I / O
device events.

The ISZ instruction adds a 1 to the referenced data word and then ex-
amines the result of the addition. If a zero result occurs, the instruction
following the ISZ is skipped. If the result is not zero, the irrstruction
following the ISZ is performed. In either case, the result of the addition
replaces the original data word in memory. The example below illustrates
one method of adding the contents of a given location to the AC a speci-
fied number of times (multiplying) by using an ISZ instruction to incre-
ment a tally. The effect of this example is to multiply the contents of
location 275 by 2. (To add the contents of a given location to the AC

4-13

twice, using the ISZ loop, as shown below, requires more instructions
than merely repeating the TAD instruction or using a rotate instruction.
However, when adding the contents four or more times, use of the ISZ
loop requires fewer instructions.) In the first pass of the example, execu-
tion of ISZ 250 increments the contents of location 250 from 7776 to
7777 and then transfers control to the following instruction (JMP 200).
In the second pass, execution of ISZ 250 increments the contents of
location 250 from 7777 to 0000 and transfers control t o the instruction
in location 203, skipping over location 202.

CODING FOR ISZ LOOP

Location
200
20 1
202
203

Content
TAD 275
ISZ 250
JMP 200
DCA 276

250 7776

275
276

0100
0000

SEQUENCE OF EXECUTION FOR ISZ LOOP

Content After Instruction Execution
Location Content AC 250 275 276
FIRST PASS
200 TAD 275 0100 7776 0100 0000
20 1 ISZ 250 0100 7777 0100 0000
202 JMP 200 0100 7777 0100 0000

SECOND PASS
200 TAD 275 0200 7777 0100 0000
20 1 ISZ 250 0200 0000 0100 0000
202 JMP 200 (Skipped during second pass)
203 DCA 276 0000 0000 0100 0200

ISZ Instruction Incrementing a Tally

The following points should be kept in mind when using the ISZ instruc-
tion:

a. The contents of the AC and link are not disturbed.
b. The original word is replaced in main memory -by the incre-

mented value.
c. When using the ISZ for looping a specified number of times,

the tally must be set to the negative of the desired number.
d. The ISZ performs the incrementation first and then checks for

a zero result.

4-14

CODING A PROGRAM
The introduction of an assembler in Chapter 2 enabled the programmer
to write a symbolic program using meaningful mnemonic codes rather
than the octal representation of the instructions. The programmer could
now write mnemonic programs such as the following example, which
multiplies 18(10) by 36(10) using successive addition.

200 CLA CLL Initialize
20 1 TAD 210 Set up a Tally
202 CIA equal to -18(10) to
203 DCA 212 count the additions of 36
204 TAD 211 Add 36
205 ISZ 212 Skip if Tally is 0
206 JMP 204 Add another 36 if not done
207 HLT Stop after 18 times
210 0022 Equal to 18(10)
21 1 0044 Equal to 36(10)
212 0000 Holds the tally

Writing the above program was greatly simplified because mnemonic
codes were used for the octal instructions. However, writing down the
absolute address of each instruction is clearly an inconvenience. If the
programmer later adds or deletes instructions, thus altering the location
assignments of his program, he has to rewrite those instructions whose
operands refer to the altered assignments. If the programmer wishes to
move the program to a different section of memory, he must rewrite the
program. Since such changes must be made often, especially in large
programs, a better means of assigning locations is needed. The assem-
bler provides this better means.

Location Assignment
As in the previous program example, most programs are written in suc-
cessive memory locations. If the programmer assigned an absolute loca-
tion to the first instruction, the assembler could be told to assign the
next instructions to the following locations in order. In programming the
PDP-8/E the initial location is denoted by a precedent asterisk (*). The
assembler maintains a current location counter by which it assigns suc-
cessive locations to instructions. The asterisk causes the current location
counter to be set to the value following the asterisk. With this improve-
ment incorporated, and with the use of symbolic addresses, the previous
example appears as shown in the following example.

"200
START, CLA CLL

TAD A
CIA
DCA TALLY
TAD B
ISZ TALLY NOTE: In this example, CLA CLL is
JMP START+4 stored in location 200 and the suc-
HLT cessive instructions are stored in 201,

202, etc. A, 0022
B, 0044

TALLY, 0000

4-15

WRITING SUBROUTINES
Included in the memory reference instructions, given in Chapter 3, was
the instruction JMS (jump to subroutine). This instruction is a modified
JMP command which makes possible a later return to the point of de-
parture from the main program. The JMS instruction automatically
stores the location of the next instruction after the JMS in the location
to which the program is instructed to jump, thereby enabling a return.

The programmer need only terminate the subroutine with an indirect
JMP to the first location of the subroutine in order to return to the next
instruction following the JMS instruction. The following simple program
illustrates the use of a subroutine to double a number contained in the
accumulator.

(Main Program)

START, CLA CLL
TAD N
JMS DOUBLE
DCA W O N

N, nnnn
W O N , nnnn

DOUBLE,

Get the number in the AC
Jump to subroutine to double N
First instruction after the subroutine

Any number, N
2N will be stored here

Subroutine

0000
CLL RAL
SNL I Did overflow occur?
JMP I DOUBLE
RAR

NLT then stop the computer.

Rotate left, multiplying by 2

If overflow occurs, display the num-
ber to be doubled in the AC and

Notice that the first instruction of the subroutine is located in the second
location of the subroutine. Any instruction stored in location DOUBLE
would be lost when the return address is stored. Also note that the sub-
routine as it is written must be located on page 0 or current page, b e
cause it is directly addressed. (A subroutine is often located on another
page and addressed indirectly as the next example demonstrates.)

The following program multiplies a number in the accumulator by a
number stored in the location immediately following the JMS instruction.

4-16

Main Program

3 200
START,

PRDUCT,
A,
B,
"30

- *6000
MULT,

MTALLY.

TAD A
DCA .+3
TAD B
JMS I 3 0
0000
DCA PRDUCT

0000
005 1
0027

MULT
Subroutine

0000
CIA
DCA MTALLY
TAD I MULT
ISZ MTALLY

ISZ MULT
JMP I MULT
0000

JMP .-2

The preceding example illustrates the following important points.

a. The JMS I 30 instruction could be used anywhere in core mem-
ory to jump to this subroutine because the pointer word (stored
in location 30) is located on page 0, and all pages of memory
can reference page 0.

b. The period was used to denote the current location in the in-
structions DCA .+3 and JMP .-2.

c. Since the result of the subroutine is left in the AC when jumping
back to the main program, the next instruction should store the
result for future use.

d. The first instruction of the subroutine is in location MULT + 1
since the next address in the main program is stored in MULT
by the JMS instruction.

e. The first two instructions of the subroutine set the tally with
the negative of the number in the AC.

f. The second number to be multiplied is brought into the sub-
routine by the TAD I MULT instruction, as it is stored in the lo-
cation specified by the address that the JMS instruction auto-
matically stores in the first location of the subroutine. This is a
common technique for transferring information into a subrou.
tine.

4-1 7

g. The ISZ MTALLY instruction is used in the subroutine to count
the number of additions. The ISZ MULT instruction is used to
Increment the contents of MULT by one, thereby making the
return jump (JMP I MULT) proceed to the next instruction after
the location that held the number to be multiplied.

h. An interesting modification of the previous program is achieved
thropgh defining a “new operation” MLTPLY by including in the
coding the statement MLTPLY = JMS 130. The assembler would
make a replacement i n such a way that any time the program-
mer writes MLTPLY the computer would perform a jump to the
subroutine and return to the program with the product in the AC.

ADDRESS MODIFICATION
A very powerful tool often used by the programmer is address modifi-
cation, meaning the inclusion of instructions in a program to modify
the operand portion of a memory reference instruction. It is a partic-
ularly useful technique when working with large blocks of stored data
as illustrated by the two programs that follow (see Figure 4-8).

 ADD FIRST NUMBER I

&ADD NEXT NUMBER I

STOP

NO

“200
START,

Figure 4-8 Address Modification

CLA CLL
TAD K200

DCA TALLY
TAD K4000
DCA NUM
TAD K4200
DCA RESULT

CIA

4-18

AGAIN,

K200,
TALLY,
K4000,
NUM,
K4200, 4200
RESULT,
*300
SQUARE,

STORE,

TAD I NUM
JMS- SQUARE
DCA I RESULT
ISZ RESULT
ISZ NUM
ISZ TALLY
JMP AGAIN
H LT
0200
0000
4000
0000

0000

0000
DCA STORE
TAD STORE
CIA
DCA CO’UNT
TAD STORE
ISZ COUNT
JMP .-2
JMP I SQUARE
0000

COUNT, 0000
$

It will be noted that the first eight instructions are concerned with
initializing the program. This initializing enables the stored program to
be restarted several times and still operate on the correct locations. If
the program had merely incremented locations K4000 and K4200 and
utilized those locations for indirect addressing, it would only operate on
the correct locations on the first running. On successive runnings, the
program would be operating on successively higher locations in memory.
With the program written as shown, however, the pointer words are
automatically reset. This procedure is often referred to as “house-
keeping.”

LOOPING A PROGRAM
As many examples have already shown, the use of a program loop, in
which a set of instructions is performed repeatedly, is common program-
ming practice. Looping a program is one of the m q t powerful tools at
the programmer’s disposal. It enables him to perform similar operations
many times using the same instructions, thus saving memory location
because he need not store the same instructions many times. Looping
also makes a program more flexible because it is relatively easy to
change the number of loops required for varying conditions by resetting
a counter. It should be remembered that looping is little more than a
jump to an earlier part of the program; however, the jump is usually
controlled by changing program conditions.

There are two basic methods of creating a program loop. The first me-

4-19

thod is using an ISZ (2nnn(octal)) instruction to count the number of
passes made through the loop. The ISZ is usually followed by a JMP in-
struction to the beginning of the loop. This technique is very efficient
when the required number of passes through the loop can be readily
determined.

The second technique is to use the Group 2 Operate Microinstructions to
test conditions other than the number of passes which have been made.
Using this second technique, the program is required to loop until a
specific condition is present in the accumulator or link bit, rather than
until a predetermined number of passes are made.

To illustrate the use of an ISZ instructjon in a program loop situation,
consider the following program which simply sets the contents of all
addresses from 2000 to 2777 to zero.

4200
CLEAR, CLA

TAD CONST
DCA COUNT

. TAD TTABLE
DCA STABLE
DCA I STABLE
ISZ STABLE
ISZ COUNT
JMP .-3
HLT

CONST, 7000
COUNT, 0
TTA B LE, TABLE
STABLE, 0
"2000
TABLE, 0
$

/SET COUNT TO -1000.

/SET STABLE TO 2000.
/CLEAR ONE LOCATION.
/SELECT NEXT LOCATION.
/ I S OPERATION COMPLETE?
/NO: REPEAT.
/YES: HALT.
12's COMP OF 1000.

/POINTER TO TABLE.

Several points should be carefully noted.

a. The first five instructions initialize the loop, but are not in it.
The location COUNT is set to -1000 at the beginning, and 1 is
added to it during each passage of the loop. After the 1000th
(octal) passage, COUNT goes to zero, and the program skips
the JMP instruction, and executes the HLT instruction. On each
previous occasion, it executed the JMP instruction.
In the list of constants following the HLT instruction, TTABLE
contains TABLE, which is defined below as having the value
2000, and containing 0. Therefore, STABLE contains 2000
initially. In order to understand this point, it must be remem-
bered that an asterisk character causes the first location .after
the asterisk to be set to the value after the asterisk. Therefore,
in the previous examp(e CLEAR equak 200 and TABLE equals
2000.

c. ISZ STABLE adds 1 to the contents of location STABLE, forming
2001 on the first pass, 2002 on the second pass, and so on.
Since it never reaches zero, it will never skip. This is a very

b.

4-20

common use. It is said to be indexing the addresses from 2000
to 2777. (When using an ISZ instruction in this way, the pro-
grammer must be certain that it does not reach 0. Follow the
ISZ instruction with a NOP if it does reach 0 so that the result-
ing skip will not modify the program sequence.)

d. For every tSZ instruction used in a program, there must be two
lnltlallzlng instructions before the loop. and there must be a
constant and a counting location in a table of constants. This
procedure allows the program to be rerun with the counting
locations reset to the correct values.

The following program utilizes a Group 2 skip instruction to create a
loop. The program will search all of core memory to find the first oc-
currence of the octal number 1234.

"0
NUMBER,
200

BEGIN.

REPEAT,

COMPARE,
ENTRY,
$

1234

CLA CLL
TAD NUMBER
CIA
DCA COMPARE /STORES MINUS NUMBER.
DCA ENTRY /SETS ENTRY TO 0.
ISZ ENTRY /INCREASES ENTRY.
NOP
TAD I ENTRY /COMPARISON IS
TAD COMPARE /DONE HERE.
SZA CLA
JMP REPEAT
TAD ENTRY
HLT /ENTRY IS IN AC.
0
0

This example shows that the program searches itself as well as all other
core memory locations, and points up the following points:

a. The ISZ entry instruction is used to index the locations to be
tested. The next instruction (NOP) is unnecessary; thus, if
ENTRY becomes zero during the course of the program, the
program will not be affected. It is important to protect against
an ISZ instruction going to zero and skipping a necessary part
of a program, if the ISZ is being used simply to index.

b. The number to be searched for is stored in location 0, and the
search starts in location 1. Therefore, the program will find at
least one occurrence of the number, and will halt after one com-
plete pass through memory, if not before.

c. The program could be modified to bound the area of the search.
If the contents ,of ENTRY are set equal to one less than the
desired start location and the number being searched for is put
in the location following the last location to be searched, the
program will search only the designated area of memory.

4-21

d. The program could be restarted at location REPEAT in order to
find a second occurrence of 1234 after being halted by the first
occurrence.

AUTO- IN OEXl NG
The PDP-8/E computer has eight special registers in page 0; locations
0010 through 0017. Whenever these locations are addressed indirectly
by a memory reference instruction, the content of the register is incre-
mented before it is used as the operand of the instruction. These loca-
tions can, therefore, be used in place of an ISZ instruction in an indexing
application. Because of this, these eight locations are called autoindex
registers. Autoindex registers act as any other location when addressed
directly. The autoindexing feature is performed only when the location
is addressed indirectly.

The following examples below are a modification of the first program
example in the preceding section with an autoindex register used in
place of .the ISZ instruction. (The purpose of the program is to clear
memory locations 2000 through 2777.)
Carefully notice the difference between the two examples, especially that
TABLE now has to be set to TABLE-1 since this is incremented by the
autoindexing register before being used for the first time. This point must
be remembered when using an autoindex register. The register incre-
ments before the operation takes place: therefore, it must always be
set to one less than the first value of the addresses to be indexed.

"10
INDEX, 0
"200
CLEAR, CLA

TAD CONST
DCA COUNT
TAD TTABLE
DCA INDEX
DCA I INDEX
ISZ COUNT

HLT
JMP .-2

CONST, 7000
COUNT, 0
TTABLE, TABLE-1
"2000
TABLE, 0
$

The memory search example of the preceding section could also be
simplified using an autoindex register as shown below.

"0
NUMBER, 1234
*IO
ENTRY, 0 Notice that in this case ENTRY or ig
"200 inally equals 0 because its content is
BEGIN, CLA CLL incremented before being used to ob-

TAD NUMBER tain data for the comparison.

4-22

,

CIA
DCA COMPARE
DCA ENTRY

TAD COMPARE
SZA CLA
JMP REPEAT
TAD ENTRY
HLT

RE PEAT, TAD I ENTRY

COMPARE, 0
$

PROGRAM DELAYS
Because computer development has been primarily sparked by a desire
for speed in performing calculations, it seems inconsistent and self-
defeating to slow the computer down with program delays. However,
there are many occasions when a computer must be told to slow down
or to wait for further information. This is because most peripheral equip-
ment, and certainly the human operator, is very much slower than the
computer program. A temporary delay may be introduced into the execu-
tion of a program when needed by causing the computer to enter one
or more futile loops, which it must traverse a fixed number of times
before jumping out. It is often necessary to have a computer perform
a temporary delay while a peripheral device is processing data to be
submitted to the computer. The delays can be accurately timed so as
not to waste any more computer time than necessary.

The following is a simple delay routine using the ISZ instruction for an
inner loop and an outer loop. When analyzing the example it should be
remembered that the PDP-8/E represents only positive numbers up to
3777(octal) or 2047(10). Therefore, the computer counts up to 2047
(10) and then continues to count starting at the next octal number
4000(octal), which the computer interprets as -2048(10). Successive
increments of this number will finally bring the count to zero. Thus,
a location could be used to count from 1 up to 0 by using an ISZ in-
struction.

(main program)

TAD CONST /START OF DELAY ROUTINE
DCA COUNT
ISZ COUNT1 /INNER
JMP .-1 I LOOP
ISZ COUNT
JMP .-3

CONST, 6030 /SETS DELAY
COUNT, 0
COUNT1 0

PROGRAM BRAhCHING
Very few meaningful programs are written which do not take advantage

4-23

of the computer's ability to determine the future course the program
should follow, based upon intermediate results. The procedure of testing
a condition and providing alternative paths for the program to travel for
each of the different results possible is called branching a program. The
Group 2 microinstructions presented previously are most often used for
this purpose. The ISZ instruction often referred to as a conditional skip
instruction, also provides a branch in a program. This instruction op-
erates upon the contents of a memory location, while the Group 2 micro-
instructions test the contents of the AC and L.
A typical example of a conditional skip would be a program to compare
A and B and to reverse their order if B is larger than A (see Figure 4-9).

START 0 '6 FORM A-B

1
SAVE A
IN DUMMY

STORE B IN
A'S LOCATION

STORE DUMMY IN
B'S LOCATION

Figure 4-9

'200
TEST, CLA CLL

TAD B
CIA
TAD A
SMA CLA
HLT

TAD A
DCA DUMMY
TAD B
DCA A
TAD DUMMY
DCA B
HLT

A. 1234
6, 2460 -
DUMMY, 0
$

Conditional Skip

/SUBTRACT 6
/FROM A
/HERE.

/STOP HERE IF A IS GREATER
/OR EQUAL
/THE REMAtNDER OF
/THE PROGRAM
/DOES THE SWITCH.

/SUBSTITUTE ANY POSITIVE
/VALUES FOR A AND B.

4-24

If A is less than B, their difference will be negative and the HALT will
be skipped. The program will proceed to reverse the order of A and B.
If A is greater than or equal to B, the program will halt.

1 1 1 0 CLA CLL

Since the CLA and the CLL instructions occupy separate bit positions,
they may be expressed in the same instruction, thus combining the two
operations into one instruction. This instruction would be written as fol-
lows.

CLA CLL 7300 (octal)

In this manner, many operate microinstructions can be combined, mak-
ing the execution of the program much more efficient. The assembler
for the PDP-8/E will combine the instructions properly when they are
written as above; that is, on the same coding line, separated by a space.

Illegal Combinations
Microprogramming, although very efficient, can also be troublesome for
the new programmer. There are many violations of coding which the
assembler will not accept.

One rule to remember is: “If you can’t code it, the computer can’t do
it.” In other words, the programmer could write a string of mnemohic
microinstructions, but unless these microinstructions can be coded

4-25

correctly in octal representation, they cannot be performed. To illustrate
this fact, suppose the programmer would like to complement the ac-
cumulator (CMA), complement the link (CML), and then skip on a non-
zero link (SNL). He could write the following.

CMA CML SNL

These instructions require the bit assignments shown in Figure 4-11.

CML I

0 I 2 3 4 5 6 7 8 9 IO I1

C M A I I I O I l l l l l l l I

I 1 0 I

Figure 4-11 Example of Illegal Combinations

The three microinstructions cannot be combined in one instruction be-
cause bit 3 IS required to be a 0 and a l simultaneously. Therefore,
no instructions may be used which combine Group 1 and Group 2 micro-
instructions because bit 3 usage is not compatible. The CMA and CML
can, however, be combined because their bit assignments are compat-
ible. The combination would be as follows.

CMA CML 7060 (octal)

To perform the original set of three operations, two instructions are
needed.

CMA CML 7060 (octal)
SNL 7420 (octal)

Because Group 1 and Group 2 microinstructions cannot be combined,
the commonly used microinstruction CLA is a member of both grou'ps.
Clearing the AC is often required in a program and it is very convenient
to be able to microprogram the CLA with the members of both groups.

,

RAR
RTR

7010 (octal)
7012 (octal)

4-26

Although he can write the instruction “RAR RTR,” it cannot be correctly
converted to octal by the assembler because of the conflict in bit 10;
therefore, it is illegal.

Combining Skip Microinstructions
Group 2 operate microinstructions use bit 8 to determine the instruction

instructions SMA, SZA, and SNL are specified. If bit 8 is a 1, the in-
structions SPA, SNA, and SZL are specified. Thus, SMA cannot be com-
bined with SZL because of the opposite values of bit 8.

specified by bits 5, 6, and 7 as previously described. if bit 8 is a 0. the

OR GROUP-SMA OR SZA OR SNL
If bit 8 is a 0, the instruction skips on the logical OR of the conditions
specified by the separate microinstructions. The next instruction is
skipped if any of the stated conditions exist. For example, the combined
microinstruction SMA SNL will skip under the following conditions:

a. The accumulator is negative, the link is zero.
b. The link is nonzero, the accumulator is not negative.
c. The accumulator is negative and the link is nonzero.

(It will not skip if all conditions fail.) This manner of combining the test
conditions is described as the logical OR of the conditions.

AND GROUP-SPA AND SNA AND SZL
A value of bit 8 = 1 specifies the group of microinstructions SPA, SNA,
and SZL, which combine to form instructions that act according to the
logical A N D of the conditions. In other words, the next instruction is
skipped only if all conditions are satisfied. For example, the instruction
SPA SZL will cause a skip of the next instruction only if the accumulator
is positive and the link is zero. (It will not skip if either of the conditions
fail.)

NOTES: 1. The programmer is not able to specify the manner of com-
bination. The SMA, SZA, SNL conditions are always com-
bined by the logical OR, and the SPA, SNA, SZL conditions
are always joined by a logical AND.

2. Since the SPA microinstruction will skip on either a positive
or a zero accumulator, to skip on a strictly positive (positive,
nonzero) accumulator the combined microinstruction SPA
SNA is used.

Order of Execution of Combined Microinstructions
The combined microinstructions are performed by the computer in a very
definite sequence. When written separately, the order of exetution of the
instructions is the order in which they are encountered in the program.
In writing a combined instruction of Group 1 or Group 2 microinstruc-
tions, the order written has no bearing upon the order of execution.
This should be clear, because the combined instruction is a 12-bit
binary number with certain bits set to a value of 1. The order in which
the bits are set to 1 has no bearing on the final execution of the whole
binary word.

4-27

GROUP 1

1. CLA, CLL-Clear the accumulator and/or clear the link are the
first actions performed. They are effectively performed simul-
taneously and yet independently.

2. CMA, CML-Complement the accumulator and/or complement
the link. These operations are also effectively performed simul-
taneously and independently.

3. IAC-Increment the accumulator. This operation is performed
third, allowing a number in the AC to be complemented and
then incremented by 1. thereby forming the two's complement,
or negative, of the number.

4. RAR, RAL, RTR, RTL, BSW-The rotate instructions are per-
formed last in sequence. Because of the bit assignment pre-
viously discussed, only one of the five operations may be
performed in each combined instruction.

GROUP 2

1. Either SMA or SZA or SNL when bit 8 is a 0. Both SPA and SNA
and SZL when bit 8 is a 1. Combined microinstructions spec-
ifying a skip are performed first. The microinstructions are
combined to form one specific test; therefore, skip instructions
are effectively performed simultaneously.
Because of bit 8, only members of one skip group may be com-
bined in an instruction.

. 2. CLA-Clear the accumulator. This instruction is performed sec-
ond in sequence, allowing different arithmetic operations to be
performed after testing (see Event 1) without the necessity of
clearing the accumulator with a separate instruction before
some subsequent arithmetic operation.

3. OSR-Inclusive OR between the switch register and the AC. This
instruction is performed third in sequence, allowing the AC to
be cleared first, and then loaded from the switch register.

4. HLT-The HLT is performed last to allow any other operations
to be concluded before the program stops.

This is the order in which all combined instructions are performed. In
order to perform operations in a different order, the instructions must
be written separately, as shown in the following example. The following
combined microinstruction looks as if it might clear the accumulator,
perform an inclusive OR between the SR and the AC, and then skip on a
nonzero accumulator.

CLA OSR SNA

However, the instt'uction would not perform in that manner, because
the SNA would be executed first. In order to perform the skip last, the
instructions must be separated, as follows:

CLA OSR
SNA

Microprogramming requires that the programmer carefully code mne.
monics legally so that the instruction actually does what he desires it

4-28

t o do. The sequence in which the operations are performed and the
legality of combinations are crucial to PDP-8/ E programming.

The following is a list of commonly used combined microinstructions,
some of which have been assigned a separate mnemonic.

- CLA CLL Clear the accumulator and link.
CIA CMA IAC Compliment and increment the accumulator. (Sets

the accumulator equal to its own negative.)
LAS CLA OSR Load accumulator from switches.

(Loads the accumulator with the value of the switch
register.)

STL CLL CML Set the link (to a 1). - CLA IAC Sets the accumulator t o a 1.
STA CLA CMA Sets the accumulator to a -1.

INSTRUCTION EXPLANATION

In summary, the basic rules for combining operate microinstructions are
as follows:

a. Group 1 and Group 2 microinstructions cannot be combined.
b. Rotate microinstructions (Group 1) cannot be combined with

each other.
c. OR Group (SMA, SZA, or SNL) microinstructions cannot be com-

bined with AND Group (SPA, SNA, or SZL) microinstructions.
d. OR Group microinstructions are combined as the logical OR of

their respective skip conditions. AND Gro.up microinstructions
are combined as the logical AND of their respective skip con-
ditions.

e. Order of execution for combined instructions is listed below.

Group 1 Group 2
1. CLA, CLL 1. SMAISZAISNL (OR group) or

2. CMA, CML 2. CLA
3. IAC 3. OSR
4. RAR, RAL, RTR, RTL, BSW 4. HLT

SPA/ SNA/ SZL (AND group)

4-29

For the modern business manager, DEC offers complete data processing
capability with on-line inputloutput devices such as a line printer, DEC-
writer, card reader, high-speed reader/punch; for mass storage, the
DECtape and/or Disk systems are provided with complete file handling
programs.

4-30

SECTION 2
PDP-8/E SYSTEM PROGRAMS
The Programming System for the PDP-8/E consists of SYSTEM PRO-
GRAMS, UTILITY PROGRAMS, and APPLICATION PROGRAMS, and is
complemented with the DECUS LIBRARY (see Figure 4-12).

More than 1000 PDP-8 programs are available to the user. Digital Equip-
ment Corporation’s Program Library, for instance, offers more than 700
programs from which to choose. In addition, a library containing pro-
grams developed by PDP-8 users, called the “DECUS LIBRARY,” is
available to all PDP-8 users. These programs cover a wide variety of
applications in addition to the application programs developed by DEC.
The programming system was designed to simplify and accelerate the
process of learning to program. At the same time, experienced pro-
grammers will find that it incorporates many advanced features. The
system is intended to make immediately available to each user the full,
general-purpose data processing capability of the computer and to serve
as the operating nucleus for a growing library of programs and routines
available to all installations.

r - u s ~ R p ~ o ~ R i i M i i G - i

I ‘ I
I I
I I
I I
I I
I

I
I /\
I
I A

I
I
L _ _ _ _ _ _ - J ,

APPLICATW
PROORAMS

1 1

D
A
T

Figure 4-12 PDP-8/E Programming System

PDP-8/E Software Kit
A basic Family-of-8 software kit for the PDP-8/E computer is provided
with each basic PDP-8/E system. The user receives one or more paper
tapes and the necessary documentation for each program. Those pro-
grams provided in the basic software kit are identified by an asterisk (*)
in the following p r o g r m descriptions.

4-31

The following material is included in the basic PDP-8/E software kit:

PDP-8/E Small Computer Handbook
Introduction to Programming Handbook, 1970
Programming Languages Manual, 1970
Logic Handbook
PDP-8/E Instruction Cards (2 Cards)
FOCAL-69 Binary Tape and Utility Overlay Tape
PAL-Ill Symbolic Assembler
DDT Symbolic Debugging Program
ODT Octal Debugging Program (2 Tapes)
Symbolic Editor Program
RIM Punch (ASR-33 version)
Binary Punch (ASR-33 version)
Octal Memory Dump Program
Floating Point Subroutines (4 Tapes)
Software Performance Summary
A Complete Set of Maintenance (Diagnostic) Software

System Programs
The system programs are used, combined with the utility programs and/.
or the DECUS Library Program, t o translate the user's ideas into de-
sired application Programs. System Programs include: Monitors, Editors,
Assemblers, Compilers, Interpretive Languages, Debuggers, and Loaders,

Monitor Programs
Monitor programs used with the PDP-8/E include PS/8, Disk Monitor,
and TSE.
PS/8 PROGRAMMING SYSTEM-PS/8, an 8K programming system, rep-
resents a significant advance in software development for small com-
puters with capabilities which were formerly available only on such
powerful machines as the PDP-10.
The PS/8 is a program development system for the PDP-8/E with min
imum 8K of core and one or more of the following mass storage devices:

a. TC08/TU56 DECtape
b. RF08 Disk
c. RK8 Disk Pack
d. DF32 Disk (64K minimum)
e. TD8-E DECtape (with 12K Core)

a. it allows the user device-independent access to up to 15 I /O
devices, including up to eight DECtapes, up to four Disk units,
Teletype, high speed paper tape reader and punch, card reader,
line printer, and any other device for which it is possible to
write a device handler in one, or in some cases two, pages.

b. The user program may call upon the monitor for s'everal ser-
vices, including loading device handlers for devices to which
the user may assign a name, looking up input files on these
devices, creating and closing variable and fixed-length output
files on these devices, and getting and decoding a line of input
from the console Teletype that identifies input and output files
and options.

The 8K programming system has the following features:
I

4-32

PS/8 gives the user, in addition to the language processor (8K FOCAL,
8K FORTRAN, PAL-8, and SABR), absolute and relocatable loaders, a
symbolic editor, CONVERT (a program to provide file compatibility with
the present Disk Monitor System), PIP (Peripheral interchange Program),
and an invisible ODT (Octal Debugging Technique), which allows the
programmer to debug programs without giving up valuable core space.

Advantages offered by the PS/8 System include:

a.

b.

C.

d.

e.
f.

g.
h.

Device lndependence-
1. Programs can be run using the most effective I /O devices

available at a given installation.
2. As an installation grows, programs need not be rewritten

for increased I / O capability.
3. A user device handler may easily be added.

1. User may use any standard I / O device without having to
directly program the device.

2. User may use the system command decoder to vary the
I / O used in the programs.

Performance-Increased, due to efficient use of storage devices
(especially noticeable on DECtape).
Expandability-As the system grows, so does the capability of
the PS/8 system.
The PS/8 Library of Programs.
increased power, derived from the addition of 4K of core to an
existing 4K disk monitor system.
A program to convert all 4K monitor files to PS/8 files.
The capability of accommodating any amount of core storage
from 8K to 32K.

-
User interfacing-

Disk Monitor System
A keyboard monitor is available to Disk System users that allows them
to save core images on the Disk and restore them to memory. The ex-
tensive software package available consists of: FORTRAN Compiler,
Program Assembly Language (PAL-D), Editor Program (Editor), Periph-,
era1 Interchange Program (PIP), and Dynamic Debugging Technique
(DDT-D) Program.

In addition, the user may save and restore his own core images and
use the remainder of the available device storage for temporary storage
of source or binary data. The monitor system may also be used with
DECtape.

Time-sharing Monitor
TSE (Time-sharing PDP-8/E) is a general purpose, stand-alone monitor
time-sharing system. The TSE can accommodate up to 16 users simul-
taneously. A minimum of 12K of core memory and an RF08-type disk
is required for a comprehensive library of system programs, which pro-
vide facilities for compiling, assembling, editing, loading, saving, calling,
debugging, and running user programs on line.

4-33

The center of a TSE system is a complex of programs called Monitor.
Monitor coordinates the operations of the various units, allocates the
time and services of the computer to users, and controls their access to
the system. The computer works on user programs simultaneously by
segregating the central processor operations from the timeconsuming
interactions of the human users. Execution of various programs are
interspersed without interfering with one another and without detectable
delays in the responses to the individual user.

Consult the DECUS Library for additional monitor programs.

EDITOR PROGRAM
Symbolic Paper Tape Editor*
The Symbolic Paper Tape Editor program is used to edit, correct, and
update symbolic program tapes using the PDP-8/E, the Teletype unit,
and/or the high-speed reader. With Editor in core memory, the user
reads in portions of his symbolic tape, removes, changes, or adds in-
structions, and gets back a complete new symbolic tape with errors
removed. He can work through the program instruction, spot check it,
or concentrate on new sections. A character string search is available.
The user can move one or more lines of text from one place to another.
The program requires 4K core and a Teletype. Consult the DECUS
Library for additional editor programs.

ASSEMBLER PROGRAMS
Assembler Programs used with the PDP-8/E include PAL-Ill, PAL-D,
MACRO-8, and 8KrSABR. The use of an assembly program has become
a standard practice in programming digital computers. This process
allows the programmer to code instructions in a symbolic language, one
he can work with more conveniently then the 12-bit binary numbers that
actually operate the compcter. The assembly program translates the
symbolic language program into its machine code equivalent. The ad-
vantages are significant: the symbolic language is more meaningful and
convenient to a programmer than a numeric code; instructions or data
can be referred to by symbolic names without concern for, or even
knowledge of, their actual addresses in core memory; decimal and alpha-
betical data can be expressed in a form more convenient than binary
numbers; programs can be altered more efficiently and debugging is
considerably simplified

PAL-IIl*-PAL-III is a basic assembler allowing symbolic references,
origins, and expressions. The output is in a form suitable for input to
the binary loader.

PAL-Ill is a two-pass assembler with an optional third pass; i.e., the
symbolic program tape must be passed through the assembler two
times to produce the binary-coded tape, and the optional third pass
produces a complete octal symbolic program listing, which can be .
typed and/or punched.

'Part of the basic software package.

4.34

PAL-Ill accepts symbolic program tapes from either the lowspeed or
high-speed reader and produces the binary tapes on either the l o w
speed or high-speed punch:

During assembly, the programmer communicates with PAL-Ill via the
switches on the computer console. Switch options are used to specify
which pass the assembler is to perform and which reader and punch
the assembler should accept input from and punch out on.
PAL-Ill requires 4K of core memory and a Teletype.

PAL-D-PAL-D incorporates most of the features of both PAL-Ill and
MACRO-8, and is used only in the Disk Monitor System. PAL-D is de-
signed primarily for 4K PDP-8/E computers with disk.

PAL-8-PAL-8 is an extended assembler which runs undei the PS/8
Programming System. It includes the best features of PAL-Ill and
MACRO-8 plus a number of additional features:

Conditional assembly.
Large symbol table (up to 1800 symbols) (12K core).
High speed Binary symbol table search.
Paginated listings with page headings and page numbers.

MACRO-8*-MACRO-8 is an advanced assembler which has the same
features as PAL-HI, plus the following additional features: user-defined
macros, double precision integers, floatingpoint constants, arithmetic
and Boolean operators, literals, text facilities, and automatic off-page
linkage generation. To incorporate such features, the size of the user's
symbol table was decreased. However, the programmer can increase
or decrease the size of the permanent symbol table at the expense of
some of the more space-consuming features.

MACRO-8 requires 4K of core memory and a Teletype.

8K SABR-8K SABR (Symbolic Assembler for Binary Relocatable Pro-
grams) is an advanced onepass symbolic assembler. It translates
symbolic programs written in the SABR language into binary relocatable
code acceptable to the computer. SABR programs are core page inde-
pendent. Therefore, programs may be written without regard to the 128-
word core page of the computer. SABR automatically generates off-page
and off-field references for direct or indirect statements. It also auto-
matically connects instructions on one page to those that overflow onto
the next. The list of available pseudo-ops is extensive, including ex-
ternal subroutine calling, argument passing, and conditional assembly.
SABR offers an optional second pass t o produce a side-by-side octal/
symbolic listing of the assembled program.

The relocatable binary tapes produced by SABR are loaded into any
field of core memory using the 8K linking Loader, as are the cornpre-
hensive library of subprograms. These subprograms may be called by
any SABR program.

*Part of the basic software packagg.

4-35

The high speed reader and punch is recommended for the 8 K SABR
program.

Consult the DECUS Library for additional assembler programs.

COMPILER PROGRAMS
Compiler programs used with the PDP-8/E include DIBOL, FORTRAN
4K and 8K, and ALGOL.8. Although the DIBOL program is listed with
compiler programs, DIBOL includes a package which contains a Monitor
Program, an Editor Program, and utility programs.

DIBOL Software System-DIBOL (Dlgital Equipment Corporation Busi-
ness Oriented Language) is the first business language that was de-
signed specifically for a minicomputer. The DIBOL Software System is a
complete business oriented software system for implementing busi-
ness applications such as billing, Accounts Receivable, Inventory Con-
trol, Cost Accounting, payroll, Accounts Payable, Sales Analysis, and
many other accounting and business management functions. This soft-
ware system comprises a simple business oriented language, a data
management system to provide input, sorting, editing and filing facil-
ities, and a monitor program to organize‘the DIBOL facilities into a
unified system. These components of the software system enable you
to develop business applications “your way”.

The DIBOL configuration consists of:

a. One PDP-8/ E,
b. One high speed paper tape reader and punch,
c. Four DECtapes,
d. One ASR-33,
e. 8 K of core,
f. LE8 Line Printer, and
g. The DIBOL Software System Package.

Refer to appendix A for more details on .the DIBOL Software System.

4K FORTRAN-The 4K FORTRAN (for FORmula TRANslation) compiler
lets the user express the problem he is trying to solve in a mixture of
English words and mathematical statements that is close to the lan-
guage of mathematics and is also intelligible to the computer..

4 K FORTRAN consists of a compiler, a debugging aid, and an operating
system. The one-pass compiler translates FORTRAN coded symbolic
language statements into binary code and produces a binary tape. The
debugging aid (Symbolprint) lists the variables used and their locations
in core and indicates the section of core used by the compiled program.
The program requires 4K of core memory and a Teletype.

Document: 4 K FORTRAN Programmer’s Reference Manual

8K FORTRAN Cornpiler-
The PDP-8 Paper Tape System version of 8 K FORTRAN has t i e following
features: subroutines, two levels of subscripting, function subprograms,
relocatable output, COMMON statements, library subroutines, six types
of format specifications, and I / O supervisors. 8K FORTRAN requires the
use of the 8 K SABR assembler and Linking Loader.

4-36

This compiler utilizes all available core from 8K to 32K, and correctly
loads programs over page boundaries.

The program requires 8K of core memory, a Teletype and high speed
Reader1 Punch.

Interpretive Programs used with the PDP-8/E include FOCAL and BASIC.

FOCAL-8-FOCAL-8 (Formula CALculator) is an on-line conversational
language designed for solving complicated calculations. The language
consists of short statements and mathematical expressions in standard
notation. FOCAL puts the full calculating power and speed of tbe com-
puter at the user’s fingertips without the user having to master the
intricacies of machine-language programming. FOCAL is an easy way of
simulating mathematical models, plotting curves, handling set of simul-
taneous equations, ahd much more.

FOCAL is available in several configurations.

\ INTERPRETIVE PROGRAMS

*a) Singleuser FOCAL-requires 4K and Teletype.
b) Four-user FOCAL-requires 8K core and four Teletypes (con-

c) Seven-user FOCAL requires 8K core, seven Teletypes (console
sole plus three).

plus six), and a RF08 or DF32D disk.

BASIC 8
BASIC 8 is a modified version of the algebraic language developed at
Dartmouth College. The BASIC language is composed of easyto-learn
English statements and mathematical expressions.

BASIC 8 is available in five versions:

a. EDUSYST-10 One user-requires basic processor and Teletype,
b. EDUSYST-20 Two t o five users-requires basic processor

with 8K memory and two to five Teletypes.
c. EDUSYST-30 One user Batch-requires basic processor, tele-

type, and either DECtape or Disk (RF08 or

d. EDUSYST-40 Combination of b and c.
e. EDUSYST-50 Eight to sixteen users-multiple language capa-

bility-requires basic processor with 8K mem-
ory, DECtape or Disk (RF08 or DF32-D), and
eight to sixteen Teletypes.

DEBUGGER PROGRAMS
Debugger Programs used with the PDP-8/E include ODT.8 and DDT-8.

DDT-8 (Dynamic Debugging Techniques)*-On-line debwging with DDT-8
gives the user dynamic printed program status information. It gives him
close control over program execution, preventing errors (“bugs”) from
destroying other portions of his program. He can monitor the execution
of single instructions or subsections, change instructions or data in any
format, and output a corrected program at the end of the debugging
session.

*Part of the basic software package.

DF32-D),

4-37

Using the standard Teletype, the user can Communicate conveniently
with the PDP-8/E in the symbols of his source language. He can Control
the execution of any portion of his object program by inserting breaks,
or traps, in it. When the computer reaches a break, it transfers control
of the object program to DDT. The user can then examine and modify
the content of individual core memory registers to correct and improve
his object program.

DDT-8 requires 4K of core memory and a Teletype.

ODT-8 (Octal Debugging Technique)*-ODT-8 allows the programmer to
do all the things mentioned in DDT-8 by communicating with his object
program using the octal representation of his binary program. ODT-8
occupies less core storage than DDT-8 and can be loaded in upper
memory or lower memory, depending on where the binary program
resides.

ODT-8 requires 4K of core memory and a Teletype.
Consult the DECUS Library for additional debugging programs.

LOADERS
Read-In Mode (RIM) Loader*
The RIM Loader is a minimum routine for reading and storing informa-
tion contained in read-in mode coded tapes via the Teletype or high
speed paper tape reader.

Binary Loader*
The Binary Loader is a short routine for reading and storing information
contained in binary-coded tapes, using the Teletype or high-speeU paper
tape reader.

The Binary Loader accepts tapes prepared by the use of PAL or MACRO-8.
Diagnostic messages may be included on tapes produced when using
either PAL or MACRO. The Binary Loader ignores all diagnostic messages.
See Appendix A and the DECUS Library listing for additional loader
programs.

Linking Loader
The Linking Loader is capable of loading and linking a user's program
and subprograms in any field(s) of memory. The Linking Loader has
options which can obtain storage map listings of core availability for the
user.

The Linking Loader has the capability to search program libraries for
subroutines which are referenced by the program in core and load those
subroutines needed. A library is a Collection of relocatable subroutines
(FORTRAN or SABR output) with a directory at the beginning to facilitate
sea rc hi rig.

The Linking Loader is capable of loading any number of user and library
programs into any field of memory. Several programs are usually loaded
into each field. Because of the space reserved for the Linkage Routines,
the available space in field 0 is three
fields. -

pages smaller than in all other

*Part of the basic software package.

4-38
I

/-

UTILITY PROGRAMS
PDP-8/E utility programs provide printouts or punchouts of core memory
content in octal, decimal, or binary form, as specified by the user. Sub-
routines are provided for octal or decimal data transfer and binary-to-
decimal, decimal-to-binary, and Teletype tape conversion. ,

Most of these programs require only 4K of core memory and a Teletype.
Some of the primary utility programs include data conversion programs
and maintenance and diagnostic programs (see Appendix A for a listing
of other utility programs).

Data Conversion Programs-Data conversion programs used with the
PDP-8/E include the Floating Point Package and Math Function Routines.

Octal Memory Dump-This program enables the user to dump in octal
mode any or all data in any memory field to either the Teletype or high-
speed paper tape punch. During dumping, the absolute address of each
location being dumped is held in the accumulator. When dumping is
completed, output devices and memory fields can be changed to dump
another section of memory. The program requires one core page.

Mathematical Function Routines
The programming system includes a set of mathematical function rou-
tines to perform the following operations: single precision multiplication,
division, square root; double precision sine, cosine, multiply, divide;
and arithmetic and logical shifts.

Floating Point Package*
The Floating Point Package permits the PDP-8/E to perform arithmetic
operations that many other computers can perform only after the addi-
tion of costly optional hardware. Floating point operands retain the max-
imum precision available by discarding leading zeros. In addition to
increasing accuracy, floating point operations relieve the programmer of
scaling problems common in fixed-point operations, a particularly ad-
vantageous feature to the inexperienced programmer. The floating point
subroutines and interpreter permit the programmer to encode arithmetic
operations to either six or ten decimal digits of precision as easily as
though the machine had floating point hardware. Also included in the
package are input and output conversion routines.

Any common storage reserved by the programs being loaded is allocated
in field 1 from location 200 upwards. The space reserved for common
storage is subtracted from the available loading area in field 1. The pro-
gram reserving the largest amount of common storage must be loaded
first.

The Run-Time Linkage Routines necessary to execute SABR programs
are automatically loaded into the required areas of every field by the
Linking Loader as part of its initialization. The user needs to know
nothing more about these routines than the particular areas of core
they occupy.

*Part of the basic software package.

4-39

MAINTENANCE AND DIAGNOSTIC PROGRAMS
A complete set of standard diagnostic programs is provided (see A p
pendix A) to simplify and expedite system maintenance. Program d e
scriptions and manuals permit the user to effectively test the operation
of the computer for proper core memory functioning and proper execu-
tion of instructions. In addition, diagnostic programs to check the per-
formance of standard and optional peripheral devices are provided with
the devices.

Consult the DECUS Library for additional utility programs.

THE DECUS LIBRARY
Although each PDP-81E'is delivered to the user complete with an exten-
sive program kit, the DECUS Library provides the user with a continually
growing assortment of various programs which are available for general
use. DECUS includes a wide variety of system programs, utility programs,
and application programs. A listing of the programs available from the
DECUS Library can be obtained from the Program Library, Digital Equip
ment Corporation, Maynard, Mass. 01754.

APPLICATION PROGRAMS
Integrated Application Packs are special-purpose software packages
which provide a specific solution to one aspect of a general problem. By
using the proper application pack and additional hardware and/or soft-
ware, the user can have a computer system customized to f i t his par-
ticular requirements. Although numerous programs are offered by the
DECUS Library, some of the commonly used application programs
include:

Display 8
IDAC 8
LAB 8 /e
EDUSYSTEMS
DIBOL
Quick Point 8
Typeset 8
PHA 8
Chromatographic Data Processing (CDP)

LAB-8/E System Software
The LAB-8/E is a major step forward in lowcost laboratory computing.
A t a cost lower than most special purpose instruments, LAB-8/E includes
an analog-to-digital converter, real time clock with three Schmitt triggers.
point plot display control, and Digital's newest small general purpose
computer, the PDP-8/ E.

*Part of the basic software package.

4-40

LAB-81 E

4-4 1

The LAB-8/E is designed to be used as a total laboratory system, not a
computer with laboratorytype peripherals. The peripherals have been
designed to plug into the laboratory option cabinet H945. The Schmitt
triggers may start the clock, the clock may start the analog-to-digital
converter, the analogto-digital converter may increment the multiplexer,
and so on. This kind of flexibility lets you configure an interactive
LAB-8/E system from a PDP-8/E and lets you expand the system to suit
your particular needs. in most cases without the expense of extra cab-
inets, space, and cabling.

, A significant feature of the LAB-8/E is its software. Programs developed
for over 11,000 "family of 8" computers are compatible with the PDP-8/E.
Special groups of applications software developed for the LAB-8/E allow
many users to put their system to work on the day it arrives. Users may
share their programs through DECUS, one of the world's largest com-
puter users groups.

The LAB-8/E is being used in biomedical research for EEG, ECG, EMG,
Behavior Studies, diagnostic assistance, patient monitoring, and similar
applications. In analytical instrumentation, LAB-8/E is used for NMR
work, electrochemistry, kenetic studies, reporting, automation of instru-
ments, etc. In engineering and science, the LAB-8/E is used in simulation
techniques, and laboratory applications in physics, biology and psy-
chology. In industrial testing, LAB-8/E is used for material testing, sound
and vibration analysis and real-time data acquisition and data analysis.

The LAB-8/E features some unique software packages such as BASIC
and Advanced Averages, Auto and Cross Correlatkn, NMR Averager,
Simulator, Fast Fourier Transforms, Histrogram programs, DAQUAN
(data acquisition and analysis),, and real-time BASIC, the easy to learn,
conversational language. Refer to the LAB-8/E Users Handbook, DEC.
LB-HRZA-D for more information.

'

,

INDAC SOFTWARE FOR IDACS8 SYSTEMS
JNDAC software package is designed for real t ime data acquisition and
control applications. This field proven software presents the total sys-
tem capability to a design or process engineer by integrating various
process interfaces and allowing English like statements for data input/
output in a real time environment.

INDAC system software fully supports INDAC language. It is a BASIC
like language with special commands for program scheduling as a func-
tion of time, sequence or external event. Communication between
process variables and computer is achieved by much simplified input/
output commands.

The elements of INDAC software are:

SYSTEM BUILDER-GENDAC-A conversational program allowing
system configuration for a specific installation. It allows adding
new I/O handlers, library routines, etc. to an INDAC system,
INDAC COMPILER-The compiler converts a source program into
object code, which is executable at runtime. It provides extensive
diagnostics to help debug source program.

442

\

INDAC EXECUTIVE-The executive schedules various tasks at run-
time, supervises allocation of disk and core, handles clock inter-
rupts, controls the flow of data from input to output devices, and
allows on-line communications between the user and INDAC system.

I/O HANDLERS LIBRARY-The input/output handlers library ser-
vices various devices in INDAC system, which can be addressed
with simple GET or SEND statements. The devices supported in-
clude the complete line of analog input, digital input/output and
analog output sub-systems besides standard peripherals.

LIBRARY-The library contains the arithmetic and transcendental
functions such as sine, cosine, arctangent, or log, as well as con-
version routines for commonly used thermocouples.

SUPPORTING SOFTWARE-INDAC support programs are unique
in the field of small computer systems. INDAC program prepara-
tion is achieved by powerful PDP-8 disc monitor system. User can
establish and maintain files for source programs, edit and com-
pile them, in a file-to-file operation. Other support programs help
core examination for system configuration and other related de-
bugging tasks.

INDAC software has been proven in various field installations for appli-
cations such as:

Quality control and testing of air-conditioner valves
Performance testing of internal combustion engines
Control of semi-conductor diffusion furnaces

4-43

INDAC-8 System

4-44

EDUSYSTEMS 10 THROUGH 50
DEC’s EduSystem series is ready to serve the needs of schools-now
and for the future.

The EduSystem series is a reliable, proven, expandable, and instruction-
ally complete classroom computer system. Designed as a complete in-
structional package, Edusystems 10 through 50 offer a range of class-
room computer systems that can update the calculator user to
computers or fill the most ambitious computer science and administra-
tive needs of the modern school.

The PDP-8 family of computers is the nucleus of the system. Time-
proven curriculum materials and a truly comprehensive library of appli-
cation programs in all subject areas are brought together in the
classrooms by Edusystems as a total instructional package for the be-
ginner or sophisticated teacher-user.

Each EduSystem is completely expandable to a higher system: no nom
functioning leftovers or obsolescent units. The expansion route for Edu-
systems is diagrammed below:

The EduSystem-10 graduate, who requires a system capable of involving
a much greater number of students, has two choices: (1) Edusystem-20
or (2) Edusystem-SO. Both are excellent systems and the choice comes
in tailoring the system to the individual school.

Edusystem-20 can accommodate up to five on-line terminals for t i m e
sharing BASIC on one PDP-8/€ Computer. The benefit here is a very
great degree of interaction between student and the computer, accom-
panied by increased motivation.

Edusystem-30 offers a capability of “batching” mark-sense cards that
students mark with an ordinary pencil. This relieves the bottleneck of
students waiting to sit down and type their programs. The benefis here
are stored or “saved” programs and throughput, more students actually
getting involved with “hands on” computer experience. With an optional
DECwriter and accompanying paper-tape reader, Edusystem-30 can real-
istically process up to 100 programs each hour.

4-45

The multiple terminals of Edusystem-20 allow students to interact with
the computer in exercising simulation programs. Population growth,
genetic change, environmental pollution, and Civil War battles are only
a few examples of simulation programs that encourage the student to
learn by doing.

Edusystern-30 is a true miniature of the gigantic systems in commercial
and scientific computer centers.
For those who need more:
0 Edusystem-20 offe.rs even greater throughput;
0 Edusystem-30 is for users who want multiple terminals for greater

student involvement;
0 Edusystem-40-a combination of Edusystem-20 and Edusystern-30.
0 Edusystem-50 is the top of the PDP-8 based EduSystem line. Edu-

system-50 offers the school well versed in computer sciences a true
computer center installation. Sixteen simultaneous users may be
handled by Edusystem-50 either at the computer site or over te le
phone lines.

Edusystem-50 is versatile; each of the many users has his choice of
computer language. BASIC, FOCAL, ALGOL, FORTRAN, and PAL (an
assembly language) are available to any user at any time.
In all of these Edusystems, the design criteria are reliability, ease of
operation and the production of a complete instructional program. Each
EduSystem includes a teacher’s library of curriculum material that
includes:
EduSystem User’s Guide; DEC
Teach Yourself BASIC, I and 11; Tecnica
Basic BASIC; Hayden
A FOCAL Primer; Cornell University
Computer Methods in Mathematics: Addison-Wesley
Computer Assisted Math Program; Scott-Foreman

CAMP, First Course
CAMP, Second Course
CAMP, Algebra
CAMP, Geometry
CAMP, Intermediate Mathematics
Teacher’s Guides

Problem Solving with the Computer; Entelek
Computers in the Classroom; DEC
Problems for Computer Mathematics; DEC
An Introduction to Computer Science; Scott-Foresman

with a Teacher’s Commentary
Fundamentals of Digital’s Computers: Howard W. Sams
Introduction to Programming; DEC
Programming Languages: DEC
“Introducing BASIC with the Overhead Projector”; DEC
23 viewgraph transparencies and teacher’s guide

BASIC Application Programs, Sets I , I I , I l l , IV and V; DEC
Program listings and descriptions in all subject areas

BASIC Simulation Programs, Volumes I through VI; Huntington Project
and DEC

4-46

,

.

EDUSYSTEM-10
EduSystem-10 is a low-cost, general-purpose instructional computer
system-ideal for the school just getting started with computers.

Edusystern-10 is a logical followon to the use of simple electronic cal-
culators in the Math and Science Labs, with the added ease and power
of the English-like control language BASIC.

EduSystem-10's BASIC allows students with no experience to perform
calculations the minute they sit at the terminal and t o develop their
first simple program during their first class period.

EduSystem-10 is composed of:
0 Hardware

PDP-8/e Computer with 4K (4096) words of core storage
Power Fail Detect and Auto Restart
Hardware bootstrap loader
ASR-33 Teleprinter with paper-tape reader/ punch

0 Software
BASIC compiler and Teacher's Curriculum Materials
FOCAL
FORTRAN"
PAL Ill (Assembly)"

0 Input/Output
1 interactive terminal

* Available with optional high-speed, paper- tape reader/punch

4-47

EDUSYSTEM-20 /

Edusystem-20 is a lowcost timesharing system that simultaneously
supports two to. five term'nals. Edusystem.20 is intended for school
systems intending to use the computer with large classes of students or in
several classes at the same time.

A typical distribution of five terminals is:
a. Three terminals in the Math Lab
b. One terminal in a Science Lab
c. The fifth terminal operating over telephone lines at a second school.

Edusystem-20, as with EduSystem-10, generally is operated in a prob-
lem-solving role. The multiple terminals of the Edusystem-20 also make
the system ideal for simulation programs.

Significantly larger and more complex programs can be run on Edu-
system-20 and the practical limit to the size of the student programs is
a function of the number of terminals being used and the amount of
core storage available. Edusystem-20 BASIC offers extended features
such as a complete EDIT command allowing simple debugging of student
programs.

Edusystem-20 is composed of:
0 Hardware

PDP-8/e Computer with 8K or more of core storage
Power Fail Detect and Auto Restart
Hardware Bootstrap Loader
1 to 5 ASR-33 Teleprinters

Time-shared BASIC and Teacher's Curriculum Materials
Timeshared FOCAL
FORTRAN ':
PAL Ill (assembly)"

Software

4-48

EDUSYSTEM-30
Edusystem-30 is a true miniature of the massive commercial and uni-
versity computer centers. Edusystem-30 offers stored programs on a
mass storage device, "batch" operation with pencil marked cards and
sophisticated BASIC software.
Edusystem-30 has throughput. As many as 50 student programs can be
run in one hour when the output device is a standard ASR-33 teleprinter,
and over 100 programs can be run in one hour with an optional DEC-
writer. Edusystem-30 gives the lower dollar-per-student figure possible.
Commonly used utility programs can be stored on the mass storage
device, and students need only enter data cards.
Edusystem-30 is a natural base for expansion to a PS/8 programming
system for computer science and administrative work.

Edusystem-30 consists of:
0 Haware

PDP-8/e Computer with 4K of core storage
A mass storage device (disk or DECtape")
Power Fail & Auto Restart
Optical Mark Card Reader
ASR-33 Teleprinter
Optional DECwriter or line printer

e Software
Batch BASIC, cards, templates and Teacher's Materials
FOCAL

PAL I l l (assembly)::::::

Card readerlteleprinter
0 Environmental Requirements

Control of excessive dust, temperature and humidity (formal com-
puter room not required).

FORTRAN:>:%

0 Input/Output

* TC08
* * Avai lable with opt ional high-speed, paper - tape reader,'punch

4-49

EDUSYSTEM-40
Edusystem-40 is the ideal school-wide instructional computer system
operating under one language. Edusystem-40 offers all the advantages
of both Edusystems-20 and -30.
Edusystem-40 can "batch" mark-sense cards for the large volume of
instructional use, and then provide interactive terminal use for inten-
sive work with a smaller number of either advanced or slower students.
The interactive terminal 'allows the slower Student the motivation and
infinite patience of the computer, while the advanced student uses it
a i a means of investigation and expression.
Edusystem-40 software is provided in card format to make use of the
high-speed input of the card reader.
Edusystem-40 consists of:

Hardware
PDP-8/e Computer with 8K or more of core storage
Mass-storage device (disk or DECtape")
Power Fail and Auto Restart
Hardware Bootstrap
Optical Mark Card Reader
1 to 5 ASR-33 Teleprinters
Optional DECwriter or Lineprinter

Software
Batch BASIC with cards, templates and Teacher's Materials
Time-sharing BASIC
Time-sharing FOCAL
FORTRAN""
PAL Ill (assembly)

Input/Output
1 to 5 interactive terminals, or card reader/teleprinter

Environmental Requirements
Control of excessive dust, temperature and humidity (formal com-
puter room not required)

* TC08
* * Full s tandard FORTRAN II available with 64K of disk or DECtape configuration

(PS/8)

4-50

EDUSYSTEM-50
Edusystem-50 is a true time-sharing system that offers multiple lan-
guages to 16 simultaneous users. Edusystem-50 supports from 4 to 16
terminals in BASIC, FOCAL, ALGOL, FORTRAN or PAL (assembly) at the
same time.
The computer science class might be using 6 terminals and PAL, while
the Math Lab is using 8 terminals operating with BASIC, and the Physics,
class is using 2 terminals with the simplified FORTRAN.

Edusystem-50’s BASIC allows users to maintain files on DECtape and
output through the optional line printer. Edusystem-50 can do admin-
istrative and instructional work at the same time.
Edusystem-50 consists of:
0 Hardware

PDP-8/E Computer with 12K or more core storage
262K disk storage
DECtapes::
Timesharing hardware/sof?ware
Clock
1 to 16 ASR-33 Teleprinterslremote lines
Optional Line Printer
High-speed Paper-Tape Reader/ Punch
Power Fail Detect and Auto Restart
Hardware Bootstrap Loader

Time-shared 8 (TSS/8) Monitor System

System Manager’s Guide and documentation
User’s Guides
Teacher’s Curriculum Materials

1 to 16 interactive terminals and optional line printer

Control of excessive dust, temperature and humidity (formal corn-
puter room not required)

0 Software

BASIC, FOCAL, ALGOL, FORTRAN-D, PAL-D

Input/Output

Environmental Requirements

4-51

TYPESET4 COMPUTERIZED SYSTEM
Typeset-8 is a computerized system that produces punched paper tape
containing all the hyphenation, justification and format commands
needed to drive just about any Typesetting machine on the market.

A perforator operator sits down at the same perforating machine he has
always used. When he is through typing, he feeds the tape into a
Photoelectric reader, which transfers the combined instructions and
marked up copy to paper tape for processing. Letter spacing, word
spacing, and end-of-line decisions are unnecessary; therefore, manual
justification is completely eliminated. As the perforated tape is being
read, the computer simultaneously processes the instructions and text,
as the Typeset-8 punch perforates the output tape;

Hot Metal
When the output tape is placed in the tape reader of the linecasting
machine, it is processed in the same manner as a manually prepared
tape. As the pqrforated tape is being read, the linecasting machine
drops the proper imats to produce lines of justified tape.

Photo Composition (coM type)
Photo composition and associated new processes for composing a com.
plete type form ready for plate making and the press begins and ends
in the same way as the older and more conventional methods of printing
from hot metal. The main difference is that the input tape contains
slightly more complex format codes to produce varying typefaces, styles,
kerning, leading, and column widths.

Business
In addition to typesetting, DEC offers a business package designed to
computerize many areas of administrative activities with considerable
timesaving and cost-saving features.

DEC’s Business Package include 5 systems: Payroll, Circulation, Adver-
tising, Accounts Payable, and General Ledger. These systems are made
to order for your business. They are intended to do the detail work and
give the manager time to manage. For example, with DEC’s Business
Package:

0 You can print a complete payroll for 500 employees in less than three
hours.

0 You can have detailed sales analysis reports on circulation and ad-
vertising.

0 Your accountant can indicate the due bills he doesn’t want to pay;
and your computer automatically pays the rest.

You can use Business Package reports to determine if, why, and
where business is increasing or decreasing.

e You can pinpoint your troublespots.

0 You will have time to manage.

4-52

STORAGE AND EDIT SYSTEM
The PDP8lE Storage and Edit System is designed for customers who
need the capability to retain text on a storage media for an indefinite
period of time. The stored information can be corrected, reformatted,
updated, and reworked until a final proof is accepted by the editorial
staff. Proofing is done through copy output on a line printer, thus elim-
inating the expense, time, and manual intervention involved in using
a photocomp machine as a proofing device.

During initialization of the system, the “master system tape” is placed
on a DECtape transport and then transferred to the disks by the execu-
tive. The master tape is then removed, and three storage tapes mounted.
With the system in this configuration (i.e., 3 storage tapes), immedi-
ate access can be gained to 100 stories, consisting of approximately
1 million TTS characters or 21,000 11-pica lines. Additional transports
can be added to increase the immediate access by 7000 lines/transport.
A directory of stories currently on the system is retained on the storage
tapes and can be requested for printout through the monitor. Files that
are retained for an extended length of time and updated less fre-
quently can be stored on separate tapes and incorporated into the sys-
tem when needed.

4-53

e
e
e
e
e
e
e
e

a
w
l- a
n s
o w
0 %
m z
' :
c w
v)
w
>
I-

n

/

0 *
r-7 *
0 *
G *

0 0
0
0 *
0 0

0

0 A 8'. W

I-
0 * 0

4-54

CHAPTER 5

PROGRAMMED DATA TRANSFERS

GENERAL
The nature of the IOT .instruction was explained in Chapter 3, prograrn-
ming theTeletype was defined in Chapter 4, and the discussion of data
transfers as viewed from the peripheral will be discussed in Chapters 9
and 10. This chapter deals with programmed data transfers as viewed
from the processor. This discussion is directed to the major considera-
tions of setting up the mechanism for transferring data to and from the
processor.

Three types of data transfers are offered by the PDP-8/E processor to
receive, store, and transmit data between one or more peripherals and
the processor. These transfers are called:

a) Programmed I /O Transfers,
b) Programmed Transfers using the Program Interrupt Facility,
c) Data Transfers using the Data Break Facility.

The first two types of transfers, described in this chapter, are controlled
by the program, while the data break transfers are controlled by each
peripheral. Data break transfers are discussed in Chapter 6.

PROGRAMMED DATA TRANSFER VS. DATA BREAK
Most input/output (I /O) transfers are controlled by the computer pro-
gram. Such an information transfer requires perhaps five times as much
computer time as does a data break transfer. However, in terms of real
time, the duration of a programmed transfer is rather small, due to the
high speed of the computer, and is usually well within the limits required
for laboratory or process control instrumentation. To get maximum bene-
fit from the control features of the PDP-8/E, the user should utilize
programmed data transfers in most cases. Moreover, the peripheral con-
trol circuits are usually simpler and less expensive than are those of data
break transfer peripherals.

PERIPHERAL REQUIREMENTS
Programmed data transfers use the processor accumulator (AC) register
as an intermediate storage point between core memory and a buffer
register within the peripheral. If an output data transfer is to be per-
formed, the computer program causes data to be loaded from core
memory into the AC. The program then uses an input/output transfer
(IOT) instruction to. first, select the desired peripheral and, second,
direct the peripheral to generate certain control signals, which cause the
data in the AC to be placed onto the OMNIBUS DATA lines. The periph-
eral, whose control module monitors these DATA lines, then strobes the
data into its input buffer register and prepares to process the informa-
tion. Each transfer from computer to peripheral is handled in this man-
ner.

If the transfer is from peripheral to computer, the process is reversed.

5-1

The IOT instruction selects the peripheral and directs it to generate
control signals. The peripheral then places the data in its output buffer
register on the OMNIBUS DATA lines. A processor timing signal strobes
the information into the AC. The program may then either deposit the
data into a memory locatioc or use it in some other way.

Each peripheral connected to the OMNIBUS transfers data in the manner
described. The bus system of I / O transfers, by which many peripherals
monitor the OMNIBUS signal lines, imposes the following requirements
on the peripheral equipment:

Each peripheral must contain a device selector circuit which
monitors Memory Data (MD) lines 3 through 8 of the OMNIBUS.
During an IOT instruction, these MD lines carry a selection code
which is unique for each peripheral and which must be decoded
by the peripheral's device selector.
Each peripheral must contain gating circuits which monitor the
MD9-11 lines of the OMNIBUS. During an IOT instruction, these
MD lines carry command signals that the peripheral must trans-
late into transfer control signals.
Each peripheral must contain gating circuits at the input of a
receiving register and at the output of a transmitting register
(the functions of these registers may be realized with a single
buffer register if desired). These gating circuits must be capable
of strobing data into or out of the registers when triggered by
a command from the device selector.
Each peripheral must contain a "BusylDone" flag (a flip-flop)
and gating circuit, which together can'assert the OMNIBUS SKIP
line when commanded by an IOT instruction. When the flag is
set, the peripheral is ready for a word transfer.

PRINCIPLES OF PROGRAMMED I/O TRANSFERS
The simplest and most straightforward type of transfer is the pro-
grammed transfer. Rather than responding to an interrupt request and
checking each flag to find out which device made the request, the p r o
gram remains in a continuous wait loop. This method is convenient when
the purpose of the processor is to service one or more peripherals. If
the user desires to do processing in addition to servicing peripherals, he
should employ the interrupt facility.

The IOT Instruction
The nature of the IOT instruction is summarized as follows:

a. PROCESSOR OPERATION CODE-IOTs use operation code 6
and are one-cycle augmented instructions.

b. DEVICE SELECTION-The middle six bits of the instruction
word are used for device selection; each peripheral decodes
these bits and responds to the IOT only if it sees its particular
number or device code. (There is an obvious corollary to this
statement. Peripherals generally do not share the same device
code.)

c. DEVICE OPERATION CODE-The last three bits of the IOT are
used to tell the device what to do. The method varies, depend-
ing on whether the device plugs into the OMNIBUS or is at-

'

5-2

tached to the External I /O Bus interface. The end result is the
same, however, in that the last three bits define the operation
to be performed. The usage is as follows:

Binary Value. Octal Value Conventional Usage
Bit 9 Bit 10 Bit 11

(LSB)
0 0 1 1 Sampling flags, skipping
0 1 0 2 Clearing flags, clearing AC
1 0 0 . 4 Reading, loading, and

clearing buffers

Flags
In the control section of every I/O device is a flag, or status flip-flop.
The flag is cleared when the computer is first turned on. It can be
cleared by one of the device’s IOTs, and is set whenever the device
finishes its operation. The state of this flag can also he tested, usually
by an IOT that causes the next instruction to be skipped if the flag is set.

Input devices (from peripheral to processor) set flags when they have
data to be serviced by the processor.

Output devices (from)Irocessor to peripheral) receive an IOT instruction
that clears the flag. When the device has processed the data received
from the processor, it then sets the flag (to let the processor know that
it is ready for a new instruction).

In order to understand the purpose of a flag, consider the following
situation:

A program requires that a number be entered into the program via the
Teletype keyboard. Obviously, the operator might elect to take a lot of
time deciding what number to enter. Equally obviously, the program
must wait until that number has been entered: otherwise, wrong com-
putation will take place. Thus, a synchronization problem exists. The
processor must wait until the operatpr-has made up his mind.

This problem is easily overcome by making use of the flag. The flag sets
when the keyboard electronics has a character available in its buffer.
Furthermore, the pr‘ogram can find out when the flag sets by means of
the skip IOT. Al l that has to be done is to use the following instructions:

Sometimes KSF /SKIP IF THE KEYBOARD FLAG IS SET.

“Wait Loop”
Called a

JMP .-1 / IF YOU DIDN’T SKIP THE LAST TIME, TRY

/EVENTUALLY THE PROGRAM WILL GET

/WHEN THE OPERATOR STRIKES A KEY.

AGAIN.

PAST THE JUMP INSTRUCTION.

i
Note that “JMP .-1” means “jump back to previous instruction.”
Assuming that the flag becomes set, the program then clears the flag
and brings the character into the AC. If it does not clear the flag at this
time, the device will not get a second character. Also, the program must

5-3

move the character into the accumulator so that it can process the
character (store or operate upon it). This is illustrated by:

KCC /CLEAR THE KEYBOARD FLAG.
KRS /BRING THE CHARACTER INTO THE AC.

A more convenient method of accomplishing this in one instruction as
illustrated by the following:

KSF /WAIT FOR THE FLAG TO SET.

KRB /CLEAR THE FLAG AND GET THE CHARACTER.
JMP .-1

c

Data Transfers
As seen from the example above, data is moved from a peripheral into
the AC under program control. However, the input transfer may be an
OR with the previous contents of the AC, or it may be a jam transfer,
depending on the design of the peripheral: therefore, the user should
consult the detailed IOT listing for the specific peripheral (given in
Chapter 7).

Output transfers work in a similar manner. Data is loaded into the AC
using the TAD instruction. Then an output IOT is given to move the data
to the peripheral and (usually) to initiate some sort of operation. The
flag is used slightly differently, but it serves much the same purpose.
Consider the following example involving the Teletype printer:

TAD DATA
TLS

TSF
JMP .-1

GET A CHARACTER TO BE PRINTED
SEND I T T O THE PRINTER ELECTRONICS, CLEAR
THE FLAG, AND SAY “GO.”
HANG AROUND UNTIL THE FLAG SETS, SO YOU
DON’T ACCIDENTALLY TRY TO PRINT TWO
DIFFERENT CHARACTERS AT THE SAME TIME.

If the printer flag is set ahead of time, the flag may be tested before
doing the “TLS.” This technique speeds up the program, since the com-
puter can be doing instructions instead of just waiting for the flag.

TFL /SET PRINTER FLAG

TSF

TLS
JMP .-1

/GET CHARACTER

/PRINT IT

5-4

The user should not try to be exotic and microcode skip and clear IOTs
into one instruction. It won‘t always work. Trouble could develop if the
flag happened to set between the skip and clear functions, because the
program might have cleared the flag before it found out the flag had
been set.

.
PRINCIPLES OF PROGRAM INTERRUPTS

GENERAL
There may come a time when waiting for flags consumes too much
valuable time. What is needed is some way of ignoring peripherals until
they need attention.

For instance, the device flag sets when a new character is available if
the device is an input device. If the device is an output device, the flag
sets when the device is ready to receive a new character. Wouldn’t it
be desirable to service peripherals only if one or more flags happen
to set?

To accomplish this, all peripherals OR their flags onto a special line
called the Interrupt Request line. If this line becomes ground, it means
that there’s a flag (and hence a device) somewhere that needs attention.
However, the flag must demand attention; not just pull a line which can

,be tested with an IOT. The “demand attention” circuitry is known as
the interrupt system, and works as follows:

1. The interrupt system is automatically turned off when the com-
puter is first turned on.

2. The interrupt system is turned on by an IOT (ION), but the
actual enabling is delayed by one instruction. (The reason for
this will be shown later.)

3. If the interrupt is enabled and some device’s flag gets set, the
processor automatically responds by executing a JMS to loca-
tion zero and simultaneously turning off the interrupt system.
Note that this JMS is hardware-generated.

4. In case it is needed, there’s an IOT (IOF) which turns off the
interrupt system.

The interrupt system is a simple piece of hardware, but has far-reaching
program implications. Let’s examine some of those implications.

Coding a Program Interrupt. Assume, for example, that the operation is
reading and punching information using the PC8/E Reader/punch com-
bination. Between reading and punching, the processor is doing a simple,
unrelated program. Once things get started, the procedure that follows
is indicated in figure 5-1.

START

BUFFER +-, YES

RESET BUFFER

AND COUNT

YES

START

I n I+, 1
CHARACTER

JOB DONE

* READING DONE

Figure 5-1 Program Interrupt Example

/The Interrupt Service Routine

-0, xxxx /WHERE THE RETURN ADDRESS IS
/STORED WHEN THE INTERRUPT OC-
/CURS.

1, JMP 1.+1 /THIS INSTRUCTION GETS TO THE
2, FLAGS /FLAG TEST ROUTINE WHICH IS

/USUALLY ON OTHER THAN PAGE 0.
/The flag-testing and restoration routine

FLAGS, DCA AC /SAVE AC

RAL

DCA LNK /AND LINK

RSF /CHECK READER FLAG

5-6

SKP

JMP RDR

PSF /AND PUNCH FLAG

SKP

JMP PUNCH

KCC / IF WE GET HERE, SOMEONE PROB-
/ABLY STRUCK A TELETYPE KEY

TCF /OR SOME OTHER STRANGE INTER-
/RUPT EXISTS.

DISMIS, CLA CLL /HERE'S HOW WE EXIT

TAD LNK /RESTORE LINK

RAR

TAD AC /AND AC,

ION /TURN ON THE INTERRUPT

JMP I O /AND USE THE ONE-CYCLE DELAY
/TO GET THE PC LOADED.

/THE READER SERVICE ROUTINE. WE KNOW THE FLAG IS SET AL-
/READY, OR WE WOULDN'T BE HERE.

RDR, RRB /GET CHARACTER FROM READER,
/CLEAR FLAG

DCA I 10 /SAVE IN BUFFER

ISZ COUNTl

JMP RDGO /BUFFER NOT FULL

TAD BUFF /BUFFER FULL

DCA 10

TAD KCOUNT

DCA COUNTl

JMP DlSMlS /NOTICE-WE DID NOT MOVE
/READER.

RDGO, RFC /MOVE READER

JMP DlSMlS /AND EXIT

/THE PUNCH SERVICE ROUTINE

PUNCH, TAD I 11 /GET WORD FROM BUFFER.

PLS /PUNCH IT AND CLEAR FLAG

5-7

CLA

TAD 11

CIA

TAD 10

SNA CLA

JMP FINISH

ISZ COUNT2

JMP DlSMlS

TAD KCOUNT

DCA COUNT2

TAD BUFF

DCA 11

JMP RDGO

/COMPARE ADDRESS PUNCHED

/WITH READER ADDRESS

/ADDRESSES EQUAL, SO JOB DONE.

/TOP OF BUFFER, SO RESET

/COUNTER

/AND POINTER.

/AND RESTART THE READER.

/OK-THAT TAKES CARE OF THE INTERRUPT HANDLER. NOW COMES
/THE MAIN PROGRAM.

START, R FC /START READER

PLS /AND PUNCH

TAD KCOUNT /INITIALIZE ALL VARIABLES

DCA COUNT1

TAD KCOUNT

DCA COUNT2

TAD BUFF

DCA 10

TAD BUFF

DCA 11

ION /AND TURN ON INTERRUPT

ISZ PHONEY /THIS IS A TRIVIAL NULL

JMP .-1 /JOB WHICH SLOWLY INCREMENTS

IAC /THE AC.

JMP .-3

FINISH, H LT

/ CONSTANTS

5-8

KCOUNT,

BUFF, .

/VARIABLES

COUNTl,

COUNT2,

AC,

LN K,
PHONEY,

-100

377

The reader stops automatically when tape runs out of the reader. When
the punch pointer becomes equal to the reader pointer, the job is
finished. Notice how the one-instruction delay built into the ION instruc-
tion allows the computer to obtain the return address from location 0
before new interrupts can occur.

In the above example, the background null job (the job being done when
interrupts were not being serviced) was unrelated to the interrupt rou-
tine. In the more general case, the background job is some sort of pro-
cessing job operating on the buffer after reading and before punching.
Clearly, the programming problem is more severe. The reader must be
ahead of the processing, which must be ahead of the punching. Such
problems are beyond the scope of this chapter, and the reader should,
therefore, consult Chapter 5 of “Introduction To Programming.”

5-9

THE PDP-8/E System fits just about anywhere. The user who begins
with an inexpensive system can later convert his tabletop system to a
larger cabinet configuration and still retain most of his hardware.

5-10

CHAPTER 6

DATA BREAK TRANSFERS
GENERAL
Data break (sometimes called Direct Memory Access or DMA) is another
form of data transfer used with high speed devices. Generally, a mass-
storage device utilizes this form of data transfer. In the case of a high-
speed device such as a disk, it becomes desirable to transfer a block
of information at the fastest possible transfer rate. A block of data
containing up to 4K words would require one data break for each word
transferred.

Data break is the process of stealing memory cycles for the purpose of
adding data to memory or removing data from memory without disturb-
ing the major registers within the processor. Data breaks, therefore,
stall the processor only during that period of time when some action is
required by the processor, such as transferring data in or out of memory.

Data break is desirable when a large quantity of words is to be trans-
ferred. Transferring one 12.bit word is a relatively easy task to accom-
plish. If a word is to be transferred out to some peripheral, the only
requirement would be to stop the program and jump to some subroutine
that would address memory and transfer data out to that peripheral.
Therefore, all that would be needed is a program subroutine, a memory
address, and a 12-bit register to receive the 12-bit word at the peripheral
end. It would obviously be more practical to use a programmed type of
data transfer rather than a data break transfer.

To use data break transfers effectively, a series of words should be
transferred and the peripheral should be considered a high-speed
peripheral. To accomplish this, however, the process becomes more
complicated. For example, if 50 words are to be transferred, 50 ad-
dresses are necessary, along with a means of telling the processor when
the 50 words have been transferred. Thus, an address incrementing
device is required to add a number to the current address and a word
count mechanism is required to count the number of transfers.

THE BASIC OATA BREAK SYSTEM
The purchaser of a PDP-8/E and a data break peripheral receives, in
addition to his basic programming package, subroutines corresponding
t o the data break device and a Programmer's Reference Manual to
initially set up and program the device. Such subroutines might include
the Interrupt Service Routine, the Search Subroutine, and the Read and
Write Subroutines, depending upon the type of data break peripheral.
These are first loaded into memory to provide the necessary- IOTs
required for addressing and initializing transfer control. The user then
calls these subroutines.

The basic data break system is illustrated in Figure 6-1. The user calls
far the data break, and the software routine initializes the data break
transfer. The peripheral control contains a break priority circuit, a
current address register, a word count register, and a data register.

6-1

SUBROUTINE

_. PROGHAMMED

I/O v

I COMWER I

BREAK
INTERFACE

[-]I
I WORD COUNT I CONTFKX

Figure 6-1 General Block Diagrarn of Basic Data Break Interfaces

Its function is to address memory, count the number of word transfers
and receive or transmit data.

Current Address (CA) Register
The Current Address Register provides the ability to sequentially address
a series of memory locations by incrementing before each transfer.
Initially, the CA register is loaded with an address that is one location
before the desired address. The register is then incremented (a one is
added to the register) and the address is placed onto the memory data
lines.

Word Count (WC) Register
The Word Count Register serves to count the number of data words in
a block of data that is transferred from or to a peripheral. The two's
complement of the number of words to be transferred is placed in the
register initially. The register increments at each word transfer until the
WC register contains zeros. When the WC register overflows, a signal is
generated which cleat's the enable circuits.

Data Break Priority
Up t o 12 data break devices can be simultaneously attached to the
PDP-8/E. Each device is assigned a line on the OMNIBUS for use in
determining priority.

Bit 0 represents the highest priority, and bit 11 represents the lowest.
When a device makes a break request, the priority of the other devices
also making a break request is tested. This guarantees that a faster and
higher priority device will make the first data transfer.

Data Register
Data transfer occurs between the device Data Register and the Memory
Buffer Register. The data register only serves either to receive or to
transmit data.

6-2

Data Break Configurations
Two types of data break configurations (single-cycle and three-cycle)
may be used on the PDP-8/ E.

Single-cycle devices contain the WC and CA registers in the peripheral.
Once data transfer begins, the processor stalls only once (one cycle is
stolen) while the data transfer takes place.

Three-cycle devices use memory t o contain the WC and CA registers.
The processor then must stall one cycle for the word count, one cycle
for the current address, and one cycle for the word transfer.

ONE-CYCLE DATA BREAK TRANSFERS
A simplified block diagram of the one-cycle data break operation is
illustrated in Figure 6-2, and a flow chart showing the interaction be-
tween the processor and the device is illustrated in Figure 6-3. Because
this is a one-cycle data break device, Figure 6-2 shows the word count
and current address registers in the peripheral.

Figure 6-3 divides the chart in terms of actions required by the proc-
essor and actions required by the device. The “flow of events” time
periods are divided to reflect the INITIAL SET-UP, DATA TRANSFER,
and EXIT.

Initial Set-Up
The Program Subroutine initializes the word count (WC) and current
address (CA) hardware registers located in the peripheral and generates
IOTs to enable the device control logic and specify the direction of
transfer.

Data Transfer
The 12-bit word count register becomes incremented just prior to a
word transfer and provides an overflow signal to the control logic after
the register is incremented to all zeros.

The 12-bit current address register is incremented at the same time as
the WC register. If an overflow in the WC register occurs, the device
clears the enable circuits after the current word has been transferred.
Before the current address can be placed on the memory address lines,
a priority test must be made. If the device is the highest priority, the
contents of the CA register are placed on the memory address lines.

After the priority test, the break device generates CPU disabling signals
which tell the processor to stall while a word is transferred into or out
of memory. While the contents of the CA registers are placed on the
MA lines, a memory direction signal line (transfer into or out of memory)
is enabled. The transfer of data occurs between the memory buffer
register and the device data register.

At the end of the memory cycle, the CPU disabling signals are removed
and the processor resumes operation. If the device is still enabled (WC
Overflow has not occurred), it then repeats the data transfer cycle. If
WC overflow has occurred, the device begins an EXIT.

6-3

U

a
t
I

I
I 31 I
I
I

r--- -IC--, I

I ' J j

Figure 6-2 1-Cycle Data Break Simplified Block Diagram

6-4

PROCESSOR DEVICE

FLOW OF
EVENTS

4
INITIAL
SET-UP

REGISTERS

I I

INCREMENT WC

I
DEVICE CLEARS

OVERFLOW CURRENT WORD
HAS BEEN
TRANSFERRED

I

I
.-

I

I
PRIORITY

HIGHEST
PRIORITY

b
Figure 6-3 1-Cycle Data Break Flow Chart

DATA TRANSFER (cont.1

I 1

- -
EXIT

I
I
I
I
I

/

- -

K Z V) oow SET UP A PROGRAM
INTERRUPT TO
INDICATE DONE

PROGRAM INTERRUPTED
AND NOTIFIED THAT
DEVICE IS DONE I

PROCESSOR I DEVICE

Figure 6-3 1-Cycle Data Break Flow Chart (Continued)

6-6

EXIT
To exit, the device sets a flag indicating that the block transfer has been
completed. The processor then responds to this flag in the manner
described in Chapter 5.

THREE-CYCLE DATA BREAK TRANSFERS
A simplified block diagram of the three-cycle data break operation is
shown rn Figure 6-4, and a flow chart illustrating the interaction between
the processor and the device is shown in Figure 6-5. The WC and CA
registers are located in memory. Therefore, the program loads the WC
register with the required word count and the CA register with the
address where the data will be either stored or retrieved.

The flow chart in Figure 6-4 is divided into time periods to reflect the

and EXIT. Because the word count and current address registers are
located in memory, two additional data break cycles are required. Incre-
menting of both the CA and WC regtsters is accomplished in the
processor.

Initial Set-Up
For a three-cycle operation, the data break subroutine must load the
word count and current address memory locations. In addition, IOTs
to enable the data break control logic and peripheral addresses are
generated by the subroutine and transferred to the device.

Once the device decodes the IOTs, a break request is initiated and a
priority test is performed. If the device has the highest priority, it gen-
erates a group of CPU disable signals and the system begins a word
count cycle.

Word Count
The memory address of the word count register is hard-wired in the
peripheral. This address is gated into the break address register and
placed onto the memory address lines. An overriding line to the address
register forces a zero into bit 11 (for an even address).

The processor then fetches the contents of the word count register to
the memory buffer register. A one generated by the control logic is
forced into bit 11 of the data bus, and transferred to the memory
buffer register via the adder circuits. The resulting addition is tested for
overflow. The contents of the memory buffer register are immediately
placed into the word count register. If word count overflow occurred, the
device clears its enable after the current word has been transferred.
Just prior to entering the current address cycle, the priority is tested
again.

Current Address
Updating the Current Address Register is accompilshed in the same
manner as Word Count. However, instead of a zero being forced into
bit 11 of the break address register, a one is used.

A t the end of the current memory cycle, the contents of the MB register
are written back into the CA register and also transferred to the device
break address register. On the next memory cycle, the device break

INITIAL SET-UP, WORD COUNT, CURRENT ADDRESS, DATA TRANSFER,

6- 7

Figure 6-4 3-Cycle Data Break Simplified Block Diagram

6-8

PROCESSOR I DEVICE

[ONE CYCLE)

I

Figure 6-5 3-Cycle Data Break Flow Chart

!

6- 9

CURRENT AWRESS (cant.)
(ONE CYCLE) I I

I I
I I
I I

I
I-

I
1-

I I

- - - - - - -
DATA TRANSFER
(ONE CYCLE)

I
c 1

I

J

THE DEVICE
PLACCES DATA

THE PROCESSOR
FETCHESDATA
SPECIFIED BY THE CA
AND PLACES IT ON
THE OMNIBUS

TRANSFER m MB
I
1

/ I /

- - - - - - -
EXIT
(VARIABLE NUMBER OF CYCLES) SET A PROGRAM

CPU L
1
I
I DEVICE

Figure 6-5 3-Cycle Data Break Flow Chart (Continued)

address register points to the data address and the system is now ready
to transfer data. Just prior to addressing the data location, another
priority test is made.

Data Transfer
When the current address is placed on the address lines, a transfer
direction signal is generated, and data is placed onto the OMNIBUS data
lines. The data transfer is between the device data register and the
memory buffer register. The CPU disabling signals are removed at the
end of the cycle. If the WC overflow signal has not been received, the
device is still enabled. A break request is again initiated and the word
count-current address-data transfer cycle is repeated. A word count
overflow causes the device to set its device flag and to begin an exit.

’

6-10

Exit
A flag checking subroutine terminates the data break.

PROGRAMMING EXAMPLE
An example of programming for the data break operation is given below.
This example deals with programming a DF32 Disk, and provides a
subroutine only to transfer a block of words between Disk and Memory.
It does not include the subroutines which are necessary to determine
the word count, starting address in memory, and disk address. This
example serves to illustrate the software required with data break.

BLOCK TRANSFER SUBROUTINE
Subroutine Call

a
a
a

JMS I DRW
DEA & MEA

CA

WC

MEMDIR

DA

a

a

. a
a

DRW, DISK
DISK, 0

TAD I DISK

ISZ DISK

DEAL
CLA
TAD I DISK

ISZ DISK
DCA I DISKCA
TAD I DISK

ISZ DISK

DCA I DISKWC
TAD I DISK

ISZ DISK

/PRECEDING INSTRUCTION OF THE MAIN
/PROGRAM
/DRW CONTAINS ADDRESS OF DISK ROUTINE
/CONTENTS TO BE PLACED IN THE DISK
/AND MEMORY EXTENDED ADDRESSES
/CONTENTS TO BE PLACED IN THE CURRENT
/ADDRESS REGISTER
/CONTENTS TO BE PLACED IN THE WORD
/COUNT REGISTER

ICONTENTS CONTAINS A 2 FOR READ AND 4
/FOR WRITE
/CONTENTS TO BE PLACED IN THE DISK
/ADDRESS
/NEXT INSTRUCTION IN MAIN PROGRAM

/RETURN POINTER
/TRANSFER CONTENTS TO BE PLACED IN
/DEA and MEA TO AC REGISTER
/MOVE POINTER TO NEXT LOCATION OF CALL

/LOAD DISK EXTENDED ADDRESS
/CLEAR AC
/TRANSFER CONTENTS TO BE PLACED IN CA
/REGISTER TO THE AC REGISTER
/MOVE POINTER TO NEXT LOCATION (WC)
ISTORE UPDATED CURRENT ADDRESS
JTRANSFER THE CONTENTS TO BE PLACED
/ IN THE WC REGISTER TO AC
/MOVE POINTER TO NEXT LOCATION (MEM
/DIR)
/STORE UPDATED WORD COUNT
/TRANSFER THE CONTENT OF MEM DIR (2
/OR 4) TO AC
/MOVE POINTER TO NEXT LOCATION (DA)

(CA)

6-11

TAD IOT

DCA GO
TAD I DISK
ISZ DISK

GO, 0

DFSC

DFSE
JMP ERR
JMP I DISK

JMP .-1

DISKCA, 7751
DISKWC, 7750
IOT, 6601

/ADD 6601 TO THE AC TO BUILD READ OR
/WRITE IOT
/DEPOSIT IOT TO BE EXECUTED
/TRANSFER DISK ADDRESS TO AC
/MOVE POINTER TO THE NEXT MEMORY
/LOCATION (MAIN PROGRAM)
/EXECUTE IOT TO LOAD DISK ADDRESS
/REGISTER AND BEGIN TRANSFER
/SKIP ON COMPLETION FLAG
/CHECK FLAG AGAIN
/SKIP ON NO ERROR FLAG
/JUMP ERROR
/DISK CONTAINS ADDRESS OF NEXT
/INSTRUCTION OF MAIN PROGRAM

6-12

