
decckbasystem

COS-310
New User’s Guide

Order No. AA-D758A-TA

November 1978

This is an introductory manual to the
operating procedures, DIBOL language,
logical units, and programming conven-
tions associated with the COS-310 Oper-
ating System. This information will
allow a new user to be operating with
COS-310 in a minimal amount of time.

Utility programs are herein introduced,
but their actual operating instructions
are contained in the COS-310 System
Reference Manual.

Supersession/Update Information: This is a new manual.

Operating System and Version: COS-310 V 8.00

Software Version: COS-310 V 8.00

To order additional copies of this document, contact the Software Distribution
Center, Digital Equipment Corporation, Maynard, Massachusetts 01 754

digital equipment corporation maynard, massachusetts

First Printing, November 1978

The information in this document is subject to change without notice
and should not be construed as a commitment by Digital Equipment
Corporation.
for any errors that may appear in this document.

The software described in this document is furnished under a license
and may only be used or copied in accordance with the terms of such
license.

No responsibility is assumed for the use or reliability of software on
equipment that is not supplied by DIGITAL or its affiliated companies.

Digital Equipment Corporation assumes no responsibility

Copyright 0 1978 by Digital Equipment Corporation

The postage-prepaid READER'S COMMENTS form on the last page of this
document requests the user's critical evaluation to assist us in pre-
paring future documentation.

The following are trademarks of Digital Equipment Corporation:

DIGITAL
DEC
PDP
DECUS
UNIBUS
COMPUTER LABS
COMTEX
DDT
DECCOMM
ASSIST- 11

DECsystem-10

DIBOL
EDUSYSTEM
FLIP CHIP
FOCAL
INDAC
LAB-8
DECSY STEM- 2 0
RTS-8

DECtape
MASSBUS
OMNIBUS
OS/8
PHA
RSTS
RSX
TYPESET- 8
TYPESET-11
TMS-11
ITPS - 10

4/79-14

CONTENTS

Page

PREFACE V

ORGANIZATION OF THE MANUAL
NOTATIONAL CONVENTIONS FOR THIS MANUAL

CHAPTER 1 INTRODUCTION TO COS-310 1-1

1.1 OVE RVI E W
1.2 HARDWARE REQUIREMENTS
1.3 FUNCTIONAL VIEW OF COS-310 PROGRAMS
1.3.1 The System Monitor
1.3.2 A High-level Programming Language
1.3.3 System Utility Programs

1-1
1-1
1-2
1-2
1-2
1-2

CHAPTER 2 OPERATING COS-310 2-1

2.1
2.2
2.3
2.4
2.5
2.5.1
2.5.2
2.5.3
2.5.4
2.5.5
2.5.6

USING THE KEYBOARD
ERROR CORRECTION
ERROR MESSAGES
CALLING THE KEYBOARD MONITOR
USING MONITOR AND EDITOR COMMANDS

DIRECTORY, FETCH, and LIST Commands
RUN, SAVE, and WRITE Commands
ERASE Command
Line Number Command
Number and RESEQUENCE Commands
DELETE Command

2-1
2-3
2-3
2-3
2-4
2-4
2-5
2-7
2-7
2-8
2-9

CHAPTER 3 LOGICAL UNITS 3-1

3.1
3.2
3.3
3.3.1
3.3.2
3.3.3
3.4
3.4.1
3.4.2
3.4.3

3.4.4

3.5
3.6

LOGICAL UNIT TABLE
LOGICAL UNIT NUMBERS
HOW LOGICAL UNITS ARE ASSIGNED
Assignments Through the Keyboard (DFU/K)
Assignments From the Edit Buffer (DFU/B)
Assignments From a Named File (DFU,filnam)

HOW LOGICAL UNITS ARE DISPLAYED AND LISTED
Display Assignments on the Screen (DFU/D)
List Assignments on the Printer (DFU/DL)
Display an Expanded Table on the Screen
(DFU/E)
List an Expanded Table on the Printer
(DFU/EL)

ARRANGEMENT OF LOGICAL UNITS ON MEDIA
HOW A DIBOL PROGRAM USES LOGICAL UNIT NUMBERS

3-1
3-2
3-2
3-2
3-3
3-3
3-4
3-4
3-4

3-4

3-4
3-5
3-6

iii

CONTENTS (Cont .)

Page

CHAPTER 4 THE DIBOL LANGUAGE 4-1

4.1
4.1.1
4.1.2
4.1.3
4.2
4.2.1
4.2.1.1
4.2.1.2
4.2.1.3
4.2.1.4
4.2.1.5
4.2.1.6
4.2.1.7
4.2.1.8
4.2.1.9
4.2.2
4.2.2.1
4.2.2.2
4.2.2.3
4.2.2.4
4.2.2.5
4.2.2.6
4.2.3
4.2.3.1
4.2.3.2
4.2.3.3
4.2.3.4
4.2.3.5
4.2.3.6
4.2.3.7
4.2.4
4.2.4.1
4.2.4.2

DATA DIVISION
RECORD and Field Labels
Field Types - A or D
Initial Values

PROCEDURE DIVISION
Data Manipulation Statements
Moving Alphanumeric Data
Moving Numeric Data
Moving Records
Calculating Arithmetic Expressions
Data Conversion
Data Formatting
Clearing Fields and Records
Using Literals to Implement Data
Incrementing Data
Input/Output Statements
DISPLAY - An Input/Output Statement
XMIT - An Input/Output Statement
INIT and FIN1 - Input/Output Statements
READ and WRITE - Input/Output Statements
ACCEPT - An Input/Output Statement
FORMS - An Input/Output Statement
Program Control Statements
IF - A Program Control Statement
STOP - A Program Control Statement
GO TO - A Program Control Statement
CALL and RETURN - Program Control Statements
ON ERROR - A Program Control Statement
CHAIN - A Program Control Statement
TRAP and RETURN - Program Control Statements
Debugging Statements
TRACE - A Debugging Statement
NO TRACE - A Debugging Statement

4-1
4-2
4-3
4-3
4-4
4-4
4-5
4-6
4-6
4-7
4-9
4-11
4-12
4-13
4-14
4-14
4-14
4-15
4-16
4-18
4-19
4-19
4-20
4-20
4-21
4-21
4-21
4-22
4-23
4-24
4-25
4-25
4-26

APPENDIX A A- 1

GLOSSARY Glossary-1

INDEX Index-1

FIGURES

3-1 Arrangement of Logical Units on Devices
3-2 Flowchart of INIT Operation

3-5
3-7

i v

PREFACE

This manual introduces you to the operating procedures, DIBOL
language, logical units, and programming conventions associated with
the COS-310 Operating System. Actual installation procedures related
to the hardware and mass storage media configurations are contained in
the COS-310 Release Notes and Installation Guide (AA-D759A-TA).

This manual does not attempt to teach fundamental programming or com-
puter concepts. It is written for people who fall into one or more of
the following categories:

0 Experienced programmers unfamiliar with DIBOL or COS-310
0 New programmers of DIGITAL'S equipment configurations
0 Inexperienced-but-interested people seeking to understand the
operation of COS-310

The COS-310 New User's Guide is a supplement to the COS-310 System
Reference Manual (AA-D647A-TC).

ORGANIZATION OF THE MANUAL

This manual is written to meet the needs of a diversified audience.
You may, therefore, find familiar information; don't feel obligated
to read through such material. Three of the four chapters contain ex-
amples and/or programs to guide you in practicing the skills associat-
ed with chapter information. Information on particular or advanced
applications is found in the COS-310 System Reference Manual.

CHAPTER 1 provides a general introduction to COS-310, a listing of the
hardware associated with the COS-310 system, and a functional view of
the programs within COS-310.

CHAPTER 2 describes the procedures for operating a COS-310 system.
Emphasis is given to the Monitor and editor commands.

V

CHAPTER 3 explains the use of logical units in the COS-310 Operating
System. The logical unit within a mass storage device, the logical
unit table, and logical unit numbers are explained according to manner
of assignment, use, and arrangement.

CHAPTER 4 introduces and explains the DIBOL language. Executable ex-
amples illustrate many DIBOL statements.

NOTATIONAL CONVENTIONS FOR THIS MANUAL

Press the RETURN key following information you input through the key-
board. No special RETURN symbol is used in this text. It is assumed
that you will press the RETURN key at the end of each statement line,
after a response to a program display, and at the end of each command.

To minimize the probability of confusion with respect to the format
and content of example dialog between you and COS-310, characters
which you must input are printed in red.

Enter uppercase alphabetic characters within program statements exact-
ly as shown. Lowercase characters in a program statement are symbolic
representations of specific names, numbers, or characters which are
required in a particular application.

Although COS-310 will not recognize lowercase characters, the comment
fields in the example programs in this manual are printed in upper and
lower case characters to make reading easier.

Monitor and editor commands are spelled out rather than indicated by
their two-character designations. However, when you type these com-
mands, you only need to use the first two letters. The exceptions to
this first-two-letter convention are the RUN command, the Line Number
command, and the Number command. RUN only requires R; Line Number
requires LN; the Number command requires the statement line number.

The following symbolic representations are used:

Symbol Meaning

U Insert one character space.

Make a choice between the items contained within the
braces.

[I Decide whether to use the optional items contained
within the brackets.

dev Use the three-character designation of the mass storage
media. The first two characters designate the type of

vi

Symbol Meaning

cmnd f 1

pronam

f ilnam

channel

label

Other symbols

The following

Term

media. The third character indicates the drive on
which the mass storage media is operating.

DK indicates an RK05 disk.
RX indicates an RXOl diskette.
DY indicates an RX02 diskette.

Command file name.

Program name.

Unique name assigned to a data file.

Numeric expression associating a number to a logical
unit or to a character-oriented input/output device.

Reference label assigned to a statement in a DIBOL pro-
gram.

are explained at the time of their use.

terms are of particular importance in this text.

Meaning

Device media are also called mass storage media. These are the
diskettes or disks on which the operating system
and/or data are stored.

Device type refers to the hardware drive which contains the
mechanisms to read or write information onto or
from a mass storage media.

Drive number identifies the order in which the device types are
located in the cabinets.

Device refers to the media when it is loaded into a device
type

Other terms are explained in the Glossary.

vi i

CHAPTER 1

INTRODUCTION TO COS-310

1.1 OVERVIEW

COS-310 is a disk-resident operating system that operates on the Data-
system 308 (D308), DECstation 78, Datasystem 310 (D310), or DECstation
88 hardware configuration. COS-310 is an applications development
tool for data processing users who do such typical business applica-
tions as order entry, inventory control, back-order processing, sales
and profit analysis, and accounting.

1.2 HARDWARE REQUIREMENTS

Minimum hardware required: One of the following (with a minimum
of 16K bytes of memory).

0 Datasystem 310 (~310).

0 Datasystem 308 (D308).

0 DECstation 78/50, 78/70, 88/70, or 88/80. (The RLOl on the
DECstation 88/80 is not supported by COS-310.)

Optional hardware with D308 or DECstation 78:

0 Up to 4 RXOl floppy disk drives, or up to 4 RX02 floppy disk
drives. (RXO1 and RX02 drives are not supported on the same
system.)

0 One LA8, LQP, or LA120 printer.

Optional hardware with D310 or DECstation 88:

0 Additional memory up to a system total of 64K bytes.

0 Up to 4 RXOl floppy disk drives, or up to 4 RX02 floppy disk
drives (RXO1 and RX02 drives are not supported on the same
system.)

1-1

0 Up to 4 RK05 cartridge disk drives (D310 only).

0 One LA35, LA36R0, LQP, LA8, LA8A, LA120 or LP05 printer.

1.3 FUNCTIONAL VIEW OF COS-310

COS-310 provides the Operating System needed for applications develop-
ment and execution on the D308, DECstation 78, D310, and the DECsta-
tion 88 hardware configurations. The COS-310 Operating System in-
cludes a system Monitor, a high-level programming language (DIBOL),
and system utility programs.

1.3.1 The System Monitor

Software operation is controlled through the system Monitor. The Mon-
itor is divided into two parts: one residing in memory (a portion of
the hardware) and the other residing on the operating system media.
The Monitor controls program execution, maintains file directories,
stores all of the I/O handlers necessary for the system, and controls
the source text editor.

The source text editor uses line numbers as a reference for inserting,
deleting, and changing program information. The editor can sequence
and resequence line numbers. Input to the editor comes through the
keyboard. Output from the editor can be displayed on the screen,
listed on the printer, or written to a mass storage device.

1.3.2 A High-level Programming Language

COS-310 uses DIGITAL'S Business Oriented Language (DIBOL) as its pro-
gramming language. DIBOL consists of statements which are divided
between the Data Division and the Procedure Division in a program.
These statements are much like English verbs and are mnemonic in na-
ture. Each of these statements is introduced in Chapter 4 of this
manual and treated in detail of Chapter 1 of COS-310 System Reference L
Manual.

1.3.3 System Utility Programs

COS-310 includes various programs written to perform specialized func-
tions in the overall operation of COS-310. These are introduced below
and are described in the COS-310 System Reference Manual.

1-2 INTRODUCTION TO COS-310

A u t i l i t y program c a l l e d SYSGEN l e t s you copy t h e o p e r a t i n g system
o n t o ano the r mass s t o r a g e d e v i c e f o r i n s t a l l a t i o n s t a r t - u p and backup,
and l e t s you change t h e I / O h a n d l e r s t o a d a p t t o a v a r i e t y of d i s k and
p r i n t e r c o n f i g u r a t i o n s . You perform t h e s e o p e r a t i o n s u s i n g conversa-
t i o n a l s t a t e m e n t s prompted by t h e SYSGEN program.

T h e COS-310 Opera t ing System depends upon t h e proper u s e of l o g i c a l
u n i t s (See Chapter 3 of t h i s manual) . A Data F i l e U t i l i t y program
(D F U) l e t s you make and examine l o g i c a l u n i t ass ignments . L o g i c a l
u n i t ass ignments can be i n p u t t o DFU from t h e keyboard, from a f i l e
s t o r e d on t h e system d e v i c e , o r from a t a b l e i n t h e e d i t b u f f e r . D F U
l e t s you d i s p l a y c u r r e n t l o g i c a l u n i t a s s ignmen t s on t h e s c r e e n o r
o u t p u t them t o t h e p r i n t e r i n e i t h e r of two fo rma t s .

You can c r e a t e a DIBOL program t h a t w i l l g e n e r a t e a r e p o r t by u s i n g
t h e COS-310 u t i l i t y program PRINT. You f i r s t c r e a t e a command f i l e t o
d e s c r i b e t h e r e p o r t and then r u n t h e command f i l e th rough PRINT.

A f l o w c h a r t g e n e r a t o r program (FLOW) l e t s you g e n e r a t e a f l o w c h a r t
which i l l u s t r a t e s t h e sequence of program l o g i c .

The P e r i p h e r a l I n t e r c h a n g e Program (P I P) t r a n s f e r s f i l e s from one de-
v i c e t o a n o t h e r , r e p l a c e s an e x i s t i n g f i l e w i t h a new f i l e , and com-
b i n e s d a t a f i l e s . P I P a c c e p t s i n p u t from t h e keyboard o r from t h e
d i s k and produces o u t p u t on t h e s c r e e n , t h e d i s k , o r t h e p r i n t e r .

COS-310's m u l t i p h a s e SORT l e t s you r e o r d e r a d a t a f i l e c o n t a i n i n g
f i x e d - l e n g t h r e c o r d s i n t o a s p e c i f i e d sequence. SORT w i l l indepen-
d e n t l y s o r t each volume of a mult ivolume f i l e and then merge t h e vol -
umes w i t h i n t h e f i l e .

The F i l e Conversion program (F I L E X) can copy a COS-310 f i l e o n t o a
f l e x i b l e d i s k e t t e i n a format d i r e c t l y r e a d a b l e by t h e IBM 3740. IBM
f i l e s on f l e x i b l e d i s k e t t e s can a l s o be conve r t ed t o COS-310 fo rma t .
FILEX a l l o w s v a r i o u s f i l e t r a n s f e r s n o t u s u a l l y p o s s i b l e i n f u n c t i o n s
Of COS-310.

A MENU program l e t s you s e l e c t and e x e c u t e commands from a p r e v i o u s l y
c r e a t e d command f i l e . The MENU program can p o t e n t i a l l y e l i m i n a t e many
o p e r a t o r e r r o r s .

dump-and-fix t echn ique (DAFT) l e t s you search f o r , examine, l i s t , and
change r e c o r d s . DAFT i s a l s o used t o make minor changes t o a d a t a
f i l e . A c r o s s - r e f e r e n c i n g program (CREF) p r o v i d e s an a l p h a b e t i c a l
l i s t i n g o f a l l l a b e l s used i n a DIBOL program, t h e l i n e number where
each l a b e l i s d e f i n e d , and t h e l i n e numbers where each l a b e l i s used.

DIBOL Debugging Technique (D D T) a i d s i n program debugging. A

INTRODUCTION TO COS-310 1-3

CHAPTER 2

OPERATING COS-310

This chapter provides the basic information needed to operate the
COS-310 system. Emphasis is given to the use of the keyboard and Mon-
itor commands during program creation and editing.

This basic information is presented in a logically applicable order.

Because COS-310 Operating System software is applicable to various
hardware configurations, starting instructions for particular hardware
and loading instructions for various devices are not contained here.
The COS-310 Release Notes and Installation Guide is the best written
source for this information.

2.1 USING THE KEYBOARD

The keyboard allows you to enter data and interact with the computer.
Most of the keyboard is identical to a typewriter keyboard. Unlike on
a typewriter, pressing a key on the keyboard does not automatically
display a character. Pressing a key causes the selected character to
be sent to the Central Processing Unit (CPU). A program will then
display this character on the screen. Consequently, pressing a key
will have no effect if the CPU is not running or is running a program
that is not waiting for input from the keyboard.

The CAP LOCK key must be locked for alphabetic characters to be used
by COS-310. If it is not locked, only numbers will be accepted.

Adjacent to the main keyboard may be a smaller numeric key panel.
COS-310 recognizes these keys as another set of numeric keys.

The following keys have special functions when used with COS-310. All
other keys operate as if on a normal typewriter keyboard. The shift
register must still be pressed to use the top character on any
double-character key.

0 RETURN key

Pressing the RETURN key indicates the end of COS-310 Monitor and edi-
tor command lines, of program statements, and of responses to program
inquiries.

2-1

0 DELETE key

Pressing the DELETE key erases typing errors made while entering Moni-
tor and editor commands. The DELETE key erases the last character or
space typed and thus allows you to make character-by-character correc-
tions. It can be used on a line prior to pressing the RETURN key. If
you find an error on a line after you have pressed the RETURN key,
make corrections with the Monitor Number commands.

0 CTRL key

The CTRL (control) key is held down while another key is pressed.
These combinations are represented in this manual by using a slash (/)
between CTRL and the designation for the other key. The combinations
and their effect are shown below.

Th

CTRL/C

CTRL/O

CTRL/Q

CTRL/S

CTRL/U

CTRL/Z

preced in

Terminates execution of the currently running program
and returns control to the Monitor.

Stops the display of characters on the screen.
Characters sent to the screen after an initial CTRL/O
are discarded. Another CTRL/O or a CTRL/C will stop
this loss of characters.

Resumes output suspended by CTRL/S.

Suspends output to the screen but neither loses char-
acters nor terminates the program or command. No input
is possible while a CTRL/S is in control. Output is
resumed by CTRL/Q.

Deletes an entire line if pressed before RETURN.

Indicates the end of input and terminates automatic
line numbers. Deletes the contents of a line if used
before pressing the RETURN key.

combinations require neither a RETURN key nor any other
terminator key: the system performs the function as soon as the com-
bination is typed.

0 BACKSPACE, COPY, BREAK, E S C , LINE FEED keys

These keys and their characters are not part of the COS-310 character
set. They produce unpredictable results.

2.2 ERROR CORRECTION

Use the DELETE key or CRTL/U to correct errors on a line before you
press the RETURN key. The DELETE key erases individual characters:
the CTRL/U combination erases an entire line. If you find an error or
want to make a change after you press RETURN, use the Number command.

2-2 OPERATING COS-310

2.3 ERROR MESSAGES

COS-310 is programmed to display error messages for certain kinds of
incorrect information. These messages are referenced in Appendix C of
the COS-310 System Reference Manual.

2.4 CALLING THE KEYBOARD MONITOR

Once the diskettes and/or disks are mounted and the system is turned
on and booted (all these instructions are in the COS-310 Release Notes
and Installation Guide), the Monitor asks for a date by displaying:

COS MONITOR V 8.00
DATE?

Enter the date in the form:

.DA dd-mmm-yy

where :

dd is the number representing the day of the month
mmm are the first three letters of the name of the month
yy are the last two digits of the year designation

If you type anything before the date, the Monitor displays:

DATE?

If you enter the date in the wrong form, the Monitor displays:

BAD DATE \

You must enter a date whenever the Monitor is booted or whenever you
change the system date.

The Monitor indicates that it is ready to accept further commands by
displaying the COS MONITOR message.

2.5 USING MONITOR AND EDITOR COMMANDS

Enter all Monitor and editor commands immediately following the dot
(.) displayed by the system. An error message is displayed if a char-
acter or a blank space occurs between the dot and the command.

The cursor will flash after the last character or space on a line and
will wait for you to either enter more information, press CTRL/Z, or
press the RETURN key. Pressing CTRL/Z will erase whatever else is on
the same line.

OPERATING COS-310 2-3

2.5.1 DIRECTORY, FETCH, and LIST Commands

The three commands (DI, FE, and LI) are used to display or print the
information contained on a system device.

Type DI/T to display the directory of all files on the system device.
A directory similar to the following will appear on the screen.

DI/T

D I RECTORY

NAME TYPE LN DATE

0 3 - AUG- 78

COMP
PIP
MENU
SYSGEN
PATCH
CREF
BOOT
SORT
LINCHG
FILEX
DK FMT
DY FMT
DFU
DAFTA
DAFTB
PRINT0
PRINT1
PRINT2
PRINT3
PRINT4
PRINT5
PRZNT6
PRINT7
PRINT8
PRINT9
FLOW1
FLOW2
FLOW3
FLOW4
KRFSRT
KREF
TRMTST
LPTEST
FLOPXX

V 14
v 10
V 05
v 19
V 05
V 07
v 02
V 15
v 02
V 23
v 02
v 02
V 07
s 12
S 15
S 16
S 15
S 04
s 12
S 05
S 15
s 09
S 13
S 06
s 09
s 11
S 06
s lo
s 11
s 01
S 06
S 05
S 06
S 07

18-JUL-78
19-JUL-78
19-JUL-7 8
19-JUL-78
19- ju1-7 8
19-JUL-78
19-JUL-7 8
19-JUL-78
19-JUL-78
19-JUL-7 8
19- JUL-78
19-JUL-78
19-JUL-7 8
19-JUL-78
19- ju1-7 8
19-JUL-7 8
19-JUL-7 8
19-JUL-78
19-JUL-78
19- ju1-7 8
19-JUL-78
19-JUL-7 8
19-JUL-78
19-JUL-78
19-JUL-78
19-JUL-78
19-JUL-78
19- JUL- 78
19-JUL-7 8
19-JUL-78
19-JUL-7 8
19- ju1-7 8
19-JUL-78
19-JUL-7 8

<0173 FREE BLOCKS>

Type DI to list the directory on the printer rather than to display it
on the screen.

The directory gives the name, the type, the length in blocks, and the
creation date of each file.

2-4 OPERATING COS-310

There a r e t h r e e t y p e s of f i l e s : b i n a r y (B) , s o u r c e (S) , and system
(V) . The b i n a r y and t h e system f i l e s canno t be e d i t e d o r a l t e r e d by
t h e u s u a l e d i t i n g commands; s o u r c e f i l e s can be c a l l e d i n t o t h e e d i t
b u f f e r and e d i t e d . Do n o t e d i t o r a l t e r programs which come wi th your
i n i t i a l system u n l e s s you a r e adv i sed t o do so i n an o f f i c i a l n o t i f i -
c a t i o n (a p a t c h) from D I G I T A L . Unauthorized changes t o you s o f t w a r e
w i l l vo id your s d f t w a r e war ran ty .

Type FE and t h e f i l e name t o c l e a r t h e e d i t b u f f e r (a work a r e a i n
memory) and copy a sou rce program from t h e d i r e c t o r y i n t o t h e e d i t
b u f f e r . An L I command d i s p l a y s t h e c o n t e n t s of t h e e d i t b u f f e r .

.FE KREF . L I

Use CTRL/S and CTRL/Q r e s p e c t i v e l y t o s t a r t and s t o p o u t p u t t o t h e
s c r e e n . Use CTRL/C t o s t o p t h e o u t p u t t o t h e p r i n t e r and r e t u r n con-
t r o l t o t h e Monitor .

2.5.2 RUN, SAVE, and WRITE Commands

The RUN (R) command i s used t o e x e c u t e b i n a r y (B) o r system (V) pro-
grams. Other commands and o p t i o n s w i t c h e s a r e used wi th t h e RUN com-
mand t o compile and e x e c u t e a DIBOL sou rce program.

T h e commands SAVE and WRITE a r e used t o s t o r e programs on a mass
s t o r a g e dev ice . SAVE (S A) s t o r e s a b i n a r y program and WRITE (WR)
s t o r e s a s o u r c e program. Example e x e r c i s e and e x p l a n a t i o n :

The f o l l o w i n g e x e r c i s e i l l u s t r a t e s t h e u s e of t h e RUN, S A V E , and WRITE
commands. I n i t i a l i z e t h e system, e n t e r t h e da t e , and s t e p through
t h i s e x e r c i s e t o become f a m i l i a r w i t h t h e o r d e r and i n t e r r e l a t i o n s h i p
o f commands.

I n t h i s e x e r c i s e , you w i l l make a d u p l i c a t e of a d i s t r i b u t e d s o u r c e
program, compile t h e sou rce program, rename t h e program t o p r e v e n t a l -
t e r a t i o n of t h e s o u r c e , and work w i t h t h e d u p l i c a t e .

Use t h e FETCH (F E) , L I S T (L I) combinat ion t o d i s p l a y t h e s o u r c e pro-
gram TRMTST (Terminal T e s t) : t h i s i s a program d i s t r i b u t e d w i t h t h e
COS-310 so f tware .

. F E TRMTST

. L I

Before a sou rce program can be execu ted , it m u s t be compiled (a spe-
c i a l program t h a t c o n v e r t s a h i g h - l e v e l programming language i n t o an
e x e c u t a b l e b i n a r y program) . I t is good programming p r a c t i c e t o in-
c l u d e t h e name of t h e f i l e whenever you u s e t h a t f i l e i n a Monitor
command. I f t h e s o u r c e f i l e i s i n t h e e d i t b u f f e r , t h e f i l e name is
o p t i o n a l . Compile t h e s o u r c e program by t y p i n g :

.RUN COMP,TRMTST

OPERATING COS-310 2-5

After a slight delay while COS-310 loads the compiler program, the
printer will output a two-part compilation listing (Data and Procedure
Divisions) and a storage-map listing. To suppress the printing of
these listings or if you are without a printer, use the /N option im-
mediately after the RUN COMP,TRMTST command (leave no space).

*RUN COMP,TRMTST/N

When the source program has been compiled into a binary program and is
temporarily stored in the binary scratch area (a work area in memory),
the COS MONITOR message will appear.

To store this newly compiled program as a binary file on the system
device, type the following command (LEARN becomes its new name):

*SA LEARN

The program can now be executed with the RUN command. The file name
is needed following this RUN command because the program is being exe-
cuted from the system device rather than from the binary scratch area.
It is good programming practice to include the name of the binary file
whenever you use that file in a Monitor command. If the binary file
is in the binary scratch area, the file name is optional.

-RUN LEARN

Questions from the TRMTST program (you are calling it LEARN) should
appear on the screen. The first question is as follows:

DO YOU WISH TO ENTER PARAMETERS?

If something else happens, either type CTRL/C and return to the Moni-
tor or boot the system and start over by entering the date.

Because TRMTST is a program written to test the terminal, feel free to
answer the displayed questions in a number of ways. YES (Y) and NO
(N) responses as well as other characters and numbers may be used.
Use your imagination, but remember what happens with each response.

Use CTRL/S to temporarily halt output and CTRL/Q to resume output.
CTRL/O will stop output but data will be lost. After a CTRL/O com-
mand, only another CTRL/O or a CTRL/C will get things going again.

The TRMTST program (renamed LEARN in this excercise) is written in a
closed loop so it continues to execute until you either stop it with
CTRL/C or you turn the system off. CTRL/C returns control to the Mon-
itor; turning off the system requires a complete power up, boot, and
correct date entry before the COS MONITOR will appear.

If you use the SAVE command to copy LEARN back into the directory, RE-
PLACE? will be displayed on the screen. The directory already con-
tains a binary file named LEARN so the system wants to know what to do
about an attempted duplication.

2-6 OPERATING COS-310

Type N (NO) at this time. A Y (Yes) will replace the file.

*SA LEARN
REPLACE ?
N

The WRITE command followed by LEARN will store the newly named program
without any questions because no source (S) file named LEARN is in the
directory. Names must be used with the SAVE or WRITE command, or the
Monitor will display ERROR IN COMMAND. A name not found in the direc-
tory will initiate the message FILE NOT FOUND.

*WR LEARN

Type DI/T or DI to see this new file name (LEARN) in the directory.

-DI/T

After a source file is copied from the edit buffer onto a storage
device, the file remains in the edit buffer until an ERASE (ER)
command erases it or a FETCH (FE) command replaces it.

A binary file will remain in the binary scratch area until another
program is compiled. If a program is too big to fit in the binary
scratch area, see Chapter 8 of the COS-310 System Reference Manual.

2.5.3 ERASE Command

The ERASE (ER) command clears the edit buffer. Erasing makes it im-
possible to retrieve erased information from the edit buffer. Always
store (WRITE) information that you want to keep before using ERASE.

If the buffer is not erased, the old contents of the buffer will in-
terfere with new information entered through the keyboard.

2.5.4 Line Number Command

Use line numbers to write a program with COS-310. These numbers are
necessary for editing and are used for error location and
cross-referencing in conjunction with system programs.

Line numbers are entered manually or with a Line Number (LN) command.

During program development, enter either a number or the Line Number
(LN) command whenever the system displays a dot (. I . The highest line
number that the system will accept is 4095. Since the edit buffer is
not large enough to hold 4095 lines, line numbers are incremented.

You can designate the starting number and the increment number in the
LN command. If you don't designate values, the numbering begins with
100 and is incremented by 10.

OPERATING COS-310 2-7

Leave one space after the LN and enter your starting number. Enter
your increment value after a comma which follows your starting number.
If you want the increment to be the same as the starting number, only
enter the starting number.

Automatic line numbers will continue until you press CTRL/Z to indi-
cate that data input has stopped. Press RETURN before CTRL/Z or a
line of input will be lost. After CTRL/Z, the system displays a dot
(.) . If you press LN after a CTRL/Z, the incremented numbers continue
as they were before you pressed CTRL/Z. Use LN and new parameters if
you want to change increment values.

. LN ;Line numbers begin at 100 and increment by 10, or
;numbers continue to increment according to parameters
;established before the CTRL/Z.

.LN 50 ;Line numbers begin at 50 and increment by 50.

. LN 50, ;Line numbers begin at 50 and increment by 10.

.LN 50,15 ;Line numbers begin at 50 and increment by 15.

2.5.5 Number and RESEQUENCE Commands

Use the Number command to edit source programs.

Only entire lines can be edited with the Number command. Automatic
line numbering must be stopped with a CTRL/Z before editing with the
Number command can be done. Type the line number and the entire line
just as you want it; if you are replacing a line, the old line will
be completely deleted. Use CTRL/U to erase an entire line before you
press RETURN. Use the DELETE key to erase individual characters be-
fore you press RETURN. A line number followed by RETURN will delete
the contents of the line.

Type LI to display the edited program on the screen.

Use the RESEQUENCE (RE) command to make increments consistent. This
RESEQUENCE standardizes the increment between line numbers. The RESE-
QUENCE command uses the same numbering procedure as the Line Number
command. In place of LN, you type RE.

. RE ;Line numbers begin at 100 and increment by 10.

. RE 20 ;Line numbers begin at 20 and increment by 20.

. RE 20, ;Line numbers begin at 20 and increment by 10.

.RE 20,s ;Line numbers begin at 20 and increment by 5.

Be careful that the highest line number does not exceed 4095. Type
the LI command to display the results of the RE command.

2-8 OPERATING COS-310

2.5.6 DELETE Command

The DELETE (DE) command is used to erase programs from the directory.
Once a program is deleted, it is gone; the information is wiped out.
Great caution should be exercised when using this command.

Because you created, named, and stored LEARN, you can delete it with-
out altering your operating system. Do not delete any of the programs
distributed with your COS-310 Operating System software. When using
DELETE, you must stipulate both the file name and the type of file
(preceded by /) that you are deleting. The type of file is listed in
the directory.

*DI/T
*DE LEARN/B
*DI /T

A review of the directory before and after the DELETE command will
assure you that the proper file has been erased. Once the file is
erased it cannot be referenced or accessed; it is gone.

OPERATING COS-310 2-9

CHAPTER 3

LOGICAL UNITS

A l o g i c a l u n i t i s a d a t a f i l e s t o r a g e a r e a l o c a t e d on a mass s t o r a g e
d e v i c e . L o g i c a l u n i t s a r e s e q u e n t i a l l y o rde red on a mass s t o r a g e de-
v i c e . The D I B O L language uses a l o g i c a l u n i t number t o r e f e r e n c e a
l o g i c a l u n i t . A l o g i c a l u n i t t a b l e main ta ined on t h e system d e v i c e
l i n k s a l o g i c a l u n i t number t o a l o g i c a l u n i t .

T h e l o g i c a l u n i t number i d e n t i f i e s an e n t r y i n t h e l o g i c a l u n i t t a b l e .
The e n t r y c o n t a i n s in fo rma t ion w h i c h p o i n t s t o a s p e c i f i c d a t a f i l e
s t o r a g e a r e a (l o g i c a l u n i t) . One l o g i c a l u n i t t a b l e can a c c e s s s t o r -
age a r e a s con ta ined on many d i f f e r e n t d e v i c e s .

T h i s a c c e s s i n g of d a t a through t h e l o g i c a l u n i t t a b l e enhances s t o r -
age f l e x i b i l i t y because t h e same d a t a f i l e s t o r a g e a r e a s can be r e f e r -
enced by d i f f e r e n t programs i n d i f f e r e n t ways. L o g i c a l u n i t s may be
r e a s s i g n e d (g i v e n d i f f e r e n t numbers) w i thou t changing t h e c o n t e n t s of
t h e d a t a f i l e , and l o g i c a l u n i t ass ignments can be made o r remade a t
each system s t a r t - u p o r between programs be ing execu ted .

3 .1 LOGICAL U N I T TABLE

T h e l o g i c a l u n i t t a b l e main ta ined on t h e system d e v i c e i s a c e n t r a l -
i zed index f o r l o g i c a l u n i t ass ignments . Th i s t a b l e c o n t a i n s and d i s -
p l a y s a l i s t of u n i t numbers, d e v i c e d e s i g n a t i o n s f o r d e v i c e s be ing
u s e d , and t h e l e n g t h i n segments of each l o g i c a l u n i t (1 segment
e q u a l s 1 6 b locks which e q u a l s 8 1 9 2 b y t e s) . A l o g i c a l u n i t t a b l e d i s -
p l a y i s s i m i l a r t o t h e fo l lowing example.

U N I T DEV. SEGS.
1 RXO 0 0 0 1
2 RXO 0001
3 RXO 0001
4 RXO 0001
5 RXO 0001
6 -UNDEFINED-
7 -UNDEFINED-
8 -UNDEFINED-

15 -UNDEFINED-

3-1

The logical unit table also contains but does not display the starting
address of the first block and the address of the handler.

The logical unit table only knows where a data file storage area be-
gins and how many segments are reserved in that area. The data file's
name, volume number, and creation date are stored on the first block
of the data file.

3.2 LOGICAL UNIT NUMBERS

Unlike data file directory information which is referenced and ac-
cessed by file name, information on a logical unit is referenced by
logical unit number and accessed through the logical unit table. A
maximum of 15 logical unit numbers can be assigned in a table.

3.3 HOW LOGICAL UNITS ARE ASSIGNED

Assigning logical units and associating them with numbers in the logi-
cal unit table is done with the Data File Utility (DFU) program.

DFU is an interactive program which allows you to designate the device
on which you want the data to be stored and the number of segments you
want reserved for the data. The DFU program goes to the device that
you designate and determines where on that device your data storage
area will be located. The starting address of the first segment in
the storage area and its length in segments is then recorded in the
logical unit table. The starting address of the first segment is not
displayed by any of the options of DFU.

Option switches (/ K , /B, filnam) used with DFU allow you to make logi-
cal unit assignments in different ways.

3.3.1 Assignments Through the Keyboard (DFU/K)

DFU/K allows you to make or to change logical unit assignments by in-
putting information through the keyboard. The following exercise
makes logical unit assignments with the /K option.

1'Rxo ,10
2'RX1,10
3 ~ x o ,15

3-2 LOGICAL UNITS

3 . 3 . 2 Assignments From the Edit Buffer (DFU/B)

DFU/B allows you to create a logical unit table in the edit buffer and
then automatically make the logical unit assignments and copy the
table onto the system device. The following exercise creates a table
in the edit buffer and then makes logical unit assignments with the /B
option. The .ER command clears the edit buffer to prevent mixing of
old and new entries. It is good practice to use END to indicate your
last entry to the logical unit table.

-0900 END
-RUN DFU/B
DFU V8.00
COS MONITOR V 8.00

3 . 3 . 3 Assignments From a Named File (DFU,filnam)

Another way to assign logical units is to create and name a file con-
taining the input for DFU. This named file can then be used at any
time by using the DFU command followed by the file name. The follow-
ing exercise makes logical units assignments with the filnam option.
The .ER command clears the edit buffer to prevent mixing of old and
new entries.

-0200 END
*WR TABLE1
*RUN DFU,TABLEl
DFU V 8.00
COS MONITOR V 8.00

LOGICAL UNITS 3-3

3.4 HOW LOGICAL UNIT ASSIGNMENTS ARE DISPLAYED AND LISTED

The option switches (/D, /DL, /E, /EL) used with DFU allow you to dis-
play or list logical unit tables in different ways.

The /D and /DL options output a table containing the logical unit
number, the device on which the unit resides, and the number of seg-
ments reserved in each unit.

The /E and /EL options output an expanded table containing the logical
unit number, the device on which the unit resides, the number of seg-
ments reserved in each unit, the name of the file contained on the
unit, the sequence number of the file, the date the file was created,
and the actual number of segments in the file.

When you use the /E or /EL options, you must have all devices which
contain logical unit assignments mounted on the system. If a device
is not mounted, an error message is displayed.

3.4.1 Display Assignments on the Screen (DFU/D)

To display a table of current logical assignments on the screen, type:

.RUN DFU/D

3.4.2 List Assignments on the Printer (DFU/DL)

To list a table of current logical assignments on the printer, type:

.RUN DFU/DL

3.4.3 Display an Expanded Table on the Screen (DFU/E)

To display a list of data files and the logical units on which the
files are assigned, type:

-RUN DFU/E

3.4.4 List an Expanded Table on the Printer (DFU/EL)

To print a list of data files and the logical units on which the files
are assigned, type:

* R U N DFU/EL

3-4 LOGICAL UNITS

3.5 ARRANGEMENT OF LOGICAL UNITS ON MEDIA

Logical units are data file storage areas sequentially ordered on mass
storage media. The method of storage differs between devices contain-
ing only data and devices containing the operating system. Sequential
order on data media is from the beginning of the media moving in in-
cremental order toward the end of the media. The first logical unit
on the data media is at the beginning and data storage units are se-
quentially numbered through the remainder of the storage media.

Sequential order on the operating system media is different from the
sequential order on data media. Rather than beginning at the front of
the media, the logical units are input from the end of the media.
Numbers are assigned in a push-down sequence. The first storage unit
created is temporarily placed at the end of the media. When a second
unit is created, the first unit is pushed toward the front of the
media and the second unit remains at the end. This can continue until
the disk area is full or the maximum number of units has been desig-
nated. The first unit always goes nearer to the front as more units
are added at the end. This arrangement on the system device is to
allow the unused space to be between the programs and the data
Any new programs can then be added in the unused space. This is
trated in Figure 3-1.

SYSTEM DEVICE

Logical unit 3

Logical unit 2

Logical unit 1

I Unused Space
User Program

(Source & Binaries)

System Programs

Directory

NON-SYSTEM DEVICE

Unused Space

~~~ 

Logical unit 6 

Logic.al unit 5 

Logical unit 4 

files. 
illus- 

Beginning of the Device Beginning of the Device 

Figure 3-1 Arrangement of Logical Units on Devices 

LOGICAL UNITS 3-5 



3.6 HOW A DIBOL PROGRAM USES LOGICAL UNIT NUMBERS 

The following explanation illustrates how an INIT statement uses a 
logical unit number to identify a location in the logical unit table. 
The table location contains information which points to the first 
block of an assigned logical unit on mass storage device. The first 
block of data on a logical unit is reserved for the file name, volume 
number, and creation date. A flowchart of an INIT operation is shown 
in Figure 3-2. 

If a logical unit number is specified at compilation time, when the 
INIT statement is executed, the program uses the logical unit number 
to access the logical unit table. The information stored in the table 
finds the device where the logical unit (the storage area) is located 
and reads the file name and volume number from the first block on the 
logical unit. The file name from the logical unit is compared to the 
file name as specified in the INIT statement. 

If the file names are the same, the program verifies that volume one 
of the file is on the specified logical unit. If volume one is on the 
logical unit, the program associates the logical unit with the speci- 
fied channel number. This association of channel with logical unit 
completes the purpose of the INIT statement. 

If a logical unit number is not specified at compilation time, when 
the INIT statement is executed the program checks to see what mode was 
specified in the INIT statement. The program then displays a mount 
message to prompt the operator to specify a logical unit number. 
After the operator specifies a logical unit number, the device is 
found, the first block is read, comparisons and verifications are 
made, and the channel number is associated with the logical unit. 

If the file name on the first block of the logical unit is different 
than the file name specified in the INIT statement, the program checks 
to see what mode is specified in the INIT statement. If the specified 
mode is input, the program displays a mount message to prompt the op- 
erator to specify another logical unit number. After the operator 
specifies a logical unit number, the device is found, the first block 
is read, comparisons and verifications are made, and the channel 
number is associated with the logical unit. 

If the file names are different and the specified mode is output, the 
program checks to see if the file name on the logical unit is a tempo- 
rary file name. If the file name is temporary, the program replaces 
the temporary name with the name specified in the INIT statement and 
associates the specified channel number with the logical unit. 

If the file names are different, the specified mode is output, but the 
file name is not temporary, the program displays a replace message to 
prompt the operator to decide whether to replace the file name on the 
logical unit. If the name is replaced, the specified channel number 
is associated with the logical unit. If the file name is not re- 
placed, the entire operation goes back to the mount messages which 
ask for a new logical unit number. 

3-6 LOGICAL UNITS 



INlT (channel,mode,fllnam[,loglcal unlt #]) A 

I 

YES 

NO 

1 

Display Dlsplay 
"MOUNT fllnam #01 
FOR INPUT" FOR OUTPUT" 

"MOUNT fllnam #01 

1 

Wait for logical 
unit # to ba 
entarad 

Uae ioglcai unlt # as 
an index Into logical 
unit table 
Find dovlca contalnlng 
data file and 
read first block 

YES 

YES 
8 

'flla name In flrat block 

NO Aasoclab channel wlth 
logical unit # 

FIia has been INITed 

Figure 3-2 Flowchart of INIT Operation 

LOGICAL UNITS 3-7 





CHAPTER 4 

THE DIBOL LANGUAGE 

DIGITAL'S Business Oriented Language, DIBOL, is designed to run 
commerical applications on COS-310 based systems. COS-310 will recog- 
nize no other high-level language programs. 

A DIBOL program is divided into a Data Division and a Procedure Divi- 
sion. The Data Division allocates data storage, designates the names 
of data records and fields, determines the type of fields being used 
(alphanumeric or numeric), indicates the number of characters in each 
field, and may contain initial values assigned to a field. The Proce- 
dure Division consists of English-like action statements used with 
data information to develop programs. 

4.1 THE DATA DIVISION 

The Data Division optionally begins with START. This nonexecutable 
statement issues a top-of-page command. A heading optionally follows 
a semicolon after START. COS-310 prints this heading at the top of 
the page. Any comment to accompany START follows a second semicolon. 

The Data Division contains RECORD statements and accompanying field 
data information. The RECORD statement designates the beginning of a 
group of data fields; the group is called a record. RECORD state- 
ments control the location in memory where the data is stored during 
program execution. Unnamed records (records without labels) cannot be 
used for input/output operations. The RECORD statement should have a 
space but no punctuation between the word RECORD and the name assigned 
(optional) to the record. 

Field data information always accompanies RECORD statements. Data 
fields designate the type of information (alphanumeric or numeric), 
the number of characters, and optionally designate an initial value 
for each field. Fields optionally contain array information. An 
array is a series of same-sized entries within the same field. 

The following example illustrates a Data Division within an actual 
DIBOL program. COS-310 ignores comments after the semicolon (except 
after START and PROC). Comments are optional and are used in source 
program listings to explain and document the program. 

4-1 



Example : 

PFOl , 
PF02, 

PF03, 

PF04 , 
PF05, 

1 

1 

I 

I 

ACTNO, 
DESC, 
VENN0 , 
INVNO , 
DATE, 
AMT, 

LINE, 

START 
RECORD XXPLIN ;Record named XXPLIN. 
A7 ;Account number. 
A2 
A2 5 ;Description. 
A2 
A8 ;Invoice number. 
A2 
A8 ;Date. 
A2 
A1 0 ;Amount. 
RECORD ACCT ;Input account record. 
A7 ;Account number. 
A2 5 ;Description. 
5A4 ;Vendor numbers. 
A8 ;Invoice number. 
D6 ;Date. 
D8 ;Amount. 
RECORD XXHDOl ;Column headings. 
A7 , 'ACCOUNT' 
A5 
A19,'ACCOUNT DESCRIPTION' 
A6 
A7 ,'INVOICE' 
A4 
A4 ,'DATE' 
A6 
A6 ,'AMOUNT' 
RECORD ;Work area. 
D2,OO 

The variation in spacing in the preceding example is not mandatory 
(COS-310 ignores it) but is for convenience and ease of reading. 

4.1.1 RECORD and Field Labels 

Labels are used to identify RECORD and field statements. A label can 
have any number of alphabetic and numeric characters (the first char- 
acter is alphabetic) but COS-310 works with only the first six. The 
labels are referenced in the Procedure Division. A comma must follow 
a label in a field statement; if no label is used, a comma must begin 
a field statement. without proper placement of punctuation, the in- 
formation within the Data Division will be incorrectly interpreted. 
Name and label are used interchangeably. The following example con- 
tains statements and comments from a Data Division. 

Example : 

RECORD XXPLIN 
PFO1, A7 
I A2 
PF02, A25 

;Record labeled XXPLIN. 
;Field labeled PFO1. 
;Unnamed field statement. 
; F i e l d  named PF02. 

4-2 THE DIBOL LANGUAGE 



4.1.2 Field Types - A or D 

Numerics and the alphabetic characters A or D follow the first comma 
in a field statement. The alphabetic characters indicate the type of 
characters within the field; A for alphanumeric, D for numeric. 
Numeric characters before the A or D indicate the number of elements 
within an array. Numeric characters after the A or D indicate the 
number of characters in the field or in each element of an array. 

Elements in an array can be referenced individually or in combinations 
with the use of subscripts. A subscripted label can be used in any 
command or statement where a label is appropriate. 

Numeric fields contain up to 15 characters. Only numbers can be used 
in numeric fields; alphanumeric fields are required if you want to 
use punctuation. Calculations can only be done in numeric fields. 

Alphanumeric fields can contain up to 510 characters. Any legal 
COS-310 character can be part of an alphanumeric field. 

The following example contains statement labels, A and D designations, 
field size, and array information. 

Example : 

RECORD 
ACTNO, A7 
DESC, A25 
VENNO, 5A4 
INVNO, A8 
DATE, D6 
AMT, D8 

;Alphanumeric field. 
;Twenty-five character field. 
;Five elements, four characters each. 
;Eight-character alphanumeric field. 
;Six-character numeric field. 
;Eight-character field. 

4.1.3 Initial Values 

Initial values in the Data Division follow a comma after the type and 
character count designations. Alphanumeric initial values begin and 
end with single quotes. All spaces and characters enclosed between 
the single quotes are included in the character count; the single 
quotes are not counted. Numeric initial values do not require quotes. 
No spaces are allowed between numbers in a D (numeric) designation. 

Example : 

, A4 ,'DATE' 
I A6 
I A 6  ,'AMOUNT' 

RECORD 
LINE, D2 ,00 

;Alphanumeric initial value. 

;Alphanumeric initial value. 
;No initial value on Record. 
;Numeric initial value 

Notice that only fields contain initial values. Initial values in the 
Data Division must agree in type and character count with the informa- 
tion defined in the type and character count designations, 

THE DIBOL LANGUAGE 4-3 



4.2 THE PROCEDURE DIVISION 

The Data 
executab 
the Data 

Division is separated from the Procedure Division by the non- 
le mandatory statement PROC. This statement indicates that 
Division is complete and the Procedure Division is to begin. 

The Procedure Division contains DIBOL statements for data manipula- 
tion, input/output of data, program control, and program debugging. 

The following example contains statements and comments from a Proce- 
dure Division. 

Example : 

PROC 1 
INIT(6.LP) 
INIT(l,IN,'ACCTFL' , 2 )  

PFOltACTNO 
PFOZ=DESC 
PFO 3 = INVNO 
PF04-DATE,'XX/XX/XX8 
PFO5=AMT,'XXX,XXX.XX1 
IF(LINE.LE.O)CALL TOP 
XMIT (6, XXPLIN) 
LINE=LINE-l 
XXPLIN= 
GO TO READ 

READ, XMIT (1 ,ACCT, EOF) 

EOF, FINI (1) 
FINI (6) 
STOP 

TOP, FORMS (6,O) 
XMIT (6 ,XXHDO1) 
FORMS ( 6 ,1) 
LINE=55 
RETURN 
END 

;Open the printer. 
;Open account file in input mode. 
;Get the next account record. 
;Move ACTNO to PFO1. 
;Move description to print record. 
;Move INVNO to PF03. 
;Move date to print record. 
;Move amount to print record. 
;Start new page if needed. 
;Print this line. 
;Decrement line counter. 
;Clear print record. 
:Continue. 

;Close account file. 
;Close the printer. 
;Stop program execution. 

;Start a new page. 
;Print column headings. 
;Skip a line. 
;Set line counter to 55. 
; Return from subroutine. 

4 . 2 . 1  Data Manipulation Statements 

DIBOL data manipulation statements move data between fields and 
between records, calculate arithmetic expressions, convert data from 
one type of field to another, clear data fields, and format data. 

DIBOL uses the following form as a data manipulation statement. 

destination = source 

4-4 THE DIBOL LANGUAGE 



COS-310 interprets this to mean that the contents of the source are 
moved to the destination. The destination is defined and named in the 
Data Division. The source is a variable, a literal, or an expression. 

When data is moved from source to destination, the source remains un- 
changed but destination is always altered. The following example con- 
tains data manipulation statements. 

Example : 

P F 0 1 =AC TNO ;Move account number to print record. 
PFO 2=DESC ;Move description to print record. 
PF03-INVNO ;Move invoice number to print record. 
PF04=DATE,'XX/XX/XXt ;Move date to print record. 
PF05=AMT,'XXX,XXX.XX' ;Move amount to print record. 

LINE=LINE-l 
XXPL IN= 

;Decrement line counter. 
;Clear print record. 

The next two examples contain data manipulation statements. These ex- 
amples are executable and will work if you input them properly. 

Example : 

RECORD 

PROC 
FLD1, A7, 'DEVICES' ;Initial value is DEVICES. 

FLDl= 'SEGMENT' ;Move SEGMENT into FLD1. 
DISPLAY (O,O,FLDl) ;FLD1 now contains SEGMENT. 
STOP 

Example : 

RECORD 
FLD1, A7, 'NUMBERS' ;Initial value is NUMBERS. 
FLD2, D7, 1234567 ;Initial value is 1234567. 

FLDl=FLD2 ;Move 1234567 to FLD1. 
DISPLAY(O,O,FLDl) ;FLD1 now contains 1234567. 
XMIT(8," ' )  ;Execute a carriage return/line feed. 
DISPLAY ( o , O ,  FLD2) ;FLD2 still contains 1234567. 
STOP 

PROC 

4.2.1.1 Moving Alphanumeric Data 

An alphanumeric source moved to an alphanumeric destination by a data 
manipulation statement is left-justified in destination. If the 
source has fewer characters than the destination, data is 
left-justified and the rightmost characters in the destination are un- 
disturbed. If the source has more characters than the destination, 
data is left-justified and the rightmost characters from the source 

THE DIBOL LANGUAGE 4-5 



are not moved into the destination. The following example illustrates 
the moving of a larger source into a smaller destination. 

Example : 

RECORD ACCT 
HEAD1, A7, 'BALANCE' :Seven-character alphanumeric field. 
HEADZ, A5, 'TOTAL' ;Five-character alphanumeric field. 

HEAD2=HEADl ;Move the seven characters into the 

DISPLAY ( 0  ,O , HEAD2) ;Display the five-character area. 
STOP 

PROC 

;five-character area. 

Alphanumeric records and fields are used in moving data. Fields can 
only be moved into fields, and records can only be moved into records. 

4.2.1.2 Moving Numeric Data 

Numeric source data moved to a numeric destination by a data manipula- 
tion statement is right-justified in destination. If source has fewer 
characters than destination, data is right-justified and zero filled. 
If source has more characters than destination, the leftmost source 
characters are not moved. 

The following example performs a calculation, moves the sum into a 
destination area, and displays the answer on the screen. The sum of 
BILLS + TAXES + MORTG produces a 4 digit result (1075). Since costs 
is only 3 digits in length, the most significant digit is lost. 

Example : 

RECORD A 
BILLS, D2, 75 ;Two-character numeric field. 
TAXES, D3, 800 ;Three-character numeric field. 
MORTG, D3,, 200 ;Three-character numeric field. 

COSTS, D3 ;Three-character numeric field. 

COSTS=BILLS+TAXES+MORTG ;Calculate to four-digit source and 

XMIT (8,B) ;Display destination (RECORD B). 
STOP 

RECORD B 

PROC 

;store in three-digit destination. 

4.2.1.3 Moving Records 

Records moved with a data manipulation statement are treated like 
large alphanumeric fields. Source and destination are record areas. 
If source has fewer characters than defined for destination, data is 
left-justified and the rightmost characters in destination are undis- 
turbed. If source has more characters than defined for destination, 

4-6 THE DIBOL LANGUAGE 



data is left-justified and the rightmost source characters are not 
moved to destination. 

The following example moves the contents of the record named FRMR into 
the record named ENGR and displays ENGR on the screen. 

Example : 

RECORD ENGR 
,A5 
,A6 

RECORD FRMR 

PROC 
FLD1, All, 'OCCUPATIONS' 

ENGR=FRMR 
XMIT (8, ENGR) 
STOP 

;Record named ENGR 
;Five-character unnamed field. 
;Six-character unnamed field. 
;Record named FRMR 
;Initial value is OCCUPATIONS. 

;Move OCCUPATIONS into ENGR. 
;DISPLAY record named ENGR. 

4.2.1.4 Calculating Arithmetic Expressions 

Arithmetic expressions are used as the source in a data manipulation 
statement. The value of the expression is moved to the destination. 
Expressions can contain numeric elements, subscripted data elements, 
literals, variables, and arithmetic operators ( # ,  # ,  +, -, *, / ) .  

The arithmetic operations of converting to internal code ( # ) ,  rounding 
( # I ,  adding ( + I ,  subtracting ( - 1 ,  multiplying ( * ) ,  and dividing ( / )  
are performed on a priority basis. The value of the expression is 
calculated and the value is moved to the destination. 

The following example performs calculations, stores them in a destina- 
tion, and displays the record named TOTAL. 

Example : 

START 
RECORD 
QORDER, D4, 0002 

UCOST, D4, 0200 
ECOST, D10 
Y, 5D3,000,007,100,025,023 

RECORD TOTAL 

PROC 
X, D5 

ECOST=UCOST*QORDER 
x=x+1 
Y (1) =Y (X) + (25*Y (2) +Y ( 3 )  ) /Y ( 4 )  

X=Y (3) +Y (4) +Y (1) 
XMIT (8 ,TOTAL) 
STOP 

;Four-digit numeric with initial 
;value. 
;Four-digit initial value. 
;Ten-digit numeric field. 
;Five array elements with 
;three-digit initial values. 
;RECORD named TOTAL. 
;Only field in RECORD TOTAL. 

;Multiply and store in ECOST. 
;Add one to X and store in X. 
;Value of X determines subscript 
;of Y. Solve equation and store 
;in first element of Y. 
;Add elements and store in X. 
;Display RECORD TOTAL on screen. 

THE DIBOL LANGUAGE 4-7 



The arithmetic operator # converts an alphanumeric or a numeric char- 
acter to its equivalent internal code and then returns the code for 
use as a decimal value (see Appendix A for equivalent internal codes). 
This converting to internal code is expressed with # inserted prior to 
the source in the data manipulation statement. 

destination = #source 

If a character preceded by # is used in a calculation, the code 
conversion takes place first and then the arithmetic calculations are 
done and the value is moved to destination. 

Example : 

RECORD 
CUSNAM, Al, 'Q' ;Initial value Q equal to decimal 

:code 50. 
FACTOR, D2, 02 ;Initial value 02. 
RATING, A3 ;Alphanumeric field. 

RATING=# CUSNAM * FACTOR ;Multiply and store in RATING. 
DISPLAY(O,O,RATING) ;Display alphanumeric field RATING. 
STOP 

PROC 

Another use of # is in conjunction with the digits 1 through 7 for 
rounding numbers and manipulating them into certain formats. When 
used for rounding, # is placed after the element being rounded and be- 
fore the digit. The digit indicates how many characters are removed 
from the right of the number. If a number larger than 7 is used, the 
number is divided by the maximum number plus one (7+1=8) and the re- 
mainder is the number of characters to be removed. This is modulo 8. 

The following exercise rounds numbers, moves them to a destination, 
and displays the record wherein the answer is stored. 

Example : 

START 
RECORD TOTALl 
SUB1, 5D5 

RECORD TOTAL2 
SUBT, 5D5 

RECORD 
SUB2, D5, 13579 

SUB3, D5, 86420 

PROC 
SUB1 (1) =SUB2#2 

SUBT (1) =SUB3#2 

XMIT (8 ,TOTALl) 
XMIT (8 ,TOTAL2) 

STOP 

;Record named TOTAL1. 
;Five-element numeric array named 
; SUB1 . 
;Record named TOTAL2. 
;Five-element numeric array named 
; SUBT. 
;Unnamed record. 
;Five-digit numeric field named 
; SUB2. 
;Five-digit numeric field named 
; SUB3. 

;Cut SUB2 by two digits and store in 
;the first element of array SUB1. 
;Cut SUB3 by two digits and store in 
;the first element of array SUBT. 
:Display TOTALl (contents of SUB1). 
:Display TOTAL2 (contents of SUBT). 

4-8 THE DIBOL LANGUAGE 



In addition to cutting off characters, # causes the rightmost remain- 
ing number to be incremented by 1 if the leftmost number that was cut 
off was 5 or  greater. 

COS-310 executes arithmetic operators in order of priority. Rounding 
( # )  is done first, multiplying ( * )  and dividing ( / )  are done next; 
adding (+) and subtracting ( - 1  are done last. Operators with the same 
priority are executed left to right. Operations within parentheses 
will be executed first. 

The following example performs 
different priorities. Answers 

Example : 

START 
RECORD 

FLD, 4A5 

PROC 
FLD (1) =100*10/2+3-1 

FLD (2) =100*10/ (2+3) -1 

FLD ( 3 )  = l o o *  (10/2+3-1) 
FLD (4) =100*10/ (2+3-1) 

DISPLAY (O,O, FLD (1) ) 
XMIT (8," I )  

DISPLAY ( 0  ,O ,FLD (2) ) 
XMIT (8," I )  

DISPLAY (O,O, FLD ( 3 )  ) 
XMIT (8," ' )  
DISPLAY (O,O, FLD (4) ) 

STOP 

calculations using the same numbers but 
are displayed on the screen. 

;Four-character array, five charac- 
;ters each. 

;Calculate expression and store in 
;first element of FLD. 
;Calculate expression and store in 
;second element of FLD. 
;Calculate expression and store in 
;third element of FLD. 
;Calculate expression and store in 
;fourth element of FLD. 
;Display first element in array. 
;Carriage return/line feed. 
;Display second element in array. 
;Carriage return/line feed. 
;Display third element in array. 
;Carriage return/line feed. 
;Display fourth element in array. 

4.2.1.5 Data Conversion 

Data manipulation statements allow alphanumeric fields to be converted 
to numeric fields for arithmetic operations and then converted from 
numeric to alphanumeric for display. 

Signs usually associated with arithmetic calculations are alphanumeric 
in type and cannot be used in numeric fields. The actual display and 
computation requirements are simplified by this data conversion capa- 
bili ty. 

The following example converts data from alphanumeric to numeric form, 
performs a calculation, and displays the results of the calculation 
and conversion on the screen. 

TEIE DIBOL LANGUAGE 4-9 



Example : 

RECORD A 
NUMl, D4 

NUM2 , D4 
NUM3, D4 

ALF1, A4, ‘-123’ 

ALF2, A4, ‘-456‘ 

ALF3, A4 

NUMl=ALFl 
NUM2=ALF2 
NUM3=NUMl+NUM2 
ALF3=NUM3 
XMIT (8,A) 
XMIT (8,B) 
STOP 

I A1 

I A1 

RECORD B 

I A1 

I A1 

PROC 

;Numeric field. 

;Numeric field. 

;Numeric field. 

;Alphanumeric field. 

;Alphanumeric field. 

;Alphanumeric field. 

;Move contents of ALFl into NUM1. 
;Move contents of ALF2 into NUM2. 
;Add NUMl to NUM2 and store in NUM3. 
;Move NUM3 to ALF3. 
;Display contents of RECORD A. 
;Display contents of RECORD B. 

The least significant character in a numeric field may have a bit set 
to indicate that the field has a negative value. This saves one char- 
acter of disk space for each numeric field. If this negative numeric 
field were displayed or printed, it would have a Q through Y as its 
last character. 

Numeric Display Alphanumeric Display 

P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

123T 
16W 
612Y 

-0 
-1 
-2 
-3  
-4  
-5 
-6 
-7 
-8 
-9 

-1234 
167- 
-6129 

The negative value of 1 appears in an alphanumeric display as -1. The 
numeric display for the negative value of 1 is Q. All negative 
numbers are displayed in numeric form using the equivalent code for 
the negative value of the least significant digit. People are used to 
seeing -1 which is an alphanumeric character combination. 

This direct data conversion from a numeric negative value to an al- 
phanumeric field allows computation and display or printing without 
the use of special formatting statements. 

4-10 THE DIBOL LANGUAGE 



4.2.1.6 Data Formatting 

Data fields can be formatted to contain special characters and punctu- 
ation which cannot be present during arithmetic calculations. Data 
formatting requires converting numeric fields to alphanumeric fields 
with the use of a data manipulation statement. The format string must 
begin and end with single quotes. The number of characters and spaces 
between the single quotes should agree with the character count de- 
fined for the destination field. Labels can be used to reference for- 
mats contained in the Data Division. 

Formatting uses the following form of the data manipulation statement. 

alphanumeric destination = numeric source, 'format string' 

Any COS-310 character except X, Z, *, -, ., I ,  and , may be used in 
the format string. These restricted characters have special meanings 
and must be used with care. These meanings are explained in Chapter 1 
of the COS-310 System Reference Manual. 

The following example formats data and displays it on the screen. 

Example : 

START 
RECORD A 
A1 ,A8 

€13 
A2 ,A4 

I A3 
A3 ,A4 

I A3 
A4 ,All 

,A3 
RECORD B 
FMT,A4,'X.XX1 

DATE,D6,103078 

NUM,D3,123 
COST,D3,999 
TOT,D12,000007894211 

PROC 
Al=DATE,'XX/XX/XX' 
A2=NUM,'ZZX1 

A3=COST,'XXX01 
A4=TOT,'*XXX,XXX.XX-' 

XMIT (8,A) 
A2=NUM, FMT 

XMIT (8,A) 
END 

;Record labeled A. 

;Field to allocate three spaces. 

;Field to allocate eleven spaces. 

;Field with initial value of format 
; field. 
;Numeric field with date informa- 
; tion. 

;Numeric field with twelve initial 
;characters. 

;Format for date to be stored in Al. 
;Format field; (Z suppresses lead- 
ing ;zeros). 
;Format with 0 preceded by Xs. 
;Format TOT; the * is inserted and 
;replaces leading zeros. 
;Display contents of Record A. 
;Use format from statement FMT to 
;format NUM and store in A2. 
;Display contents of RECORD A. 

THE DIBOL LANGUAGE 4-11 



4.2.1.7 Clearing Fields and Records 

This data manipulation statement clears an entire field or record, 
clears designated characters within fields, or clears designatd ele- 
ments within an array. Clearing entire fields or records is done with 
the following manipulation statement. No source is used. 

destination = 

Clearing specific characters or elements requires the use of both the 
field or array name and subscripts. These subscripts set the limits 
(beginning and ending) of the characters or elements to be used. 

The following example clears fields within records and displays the 
contents of the records. 

Example : 

START 
RECORD ACCTNG 

ACCTPBI2A4,'0000','1ll1' 

ACCTRB , 3D2 , 99 , 88 , 77 
FIFO, D7, 1357975 
LIFO , D8 , 24680864 

,A3 

RECORD INVNTR 

PROC 
ACCTPB (2) = 
ACCTRB (3) = 
XMIT ( 8  ,ACCTNG) 

XMIT (8 , INVNTR) 
END 

;Record named ACCTNG. 
;Array with two elements. 
;Three-character temporary storage. 
;Array with initialized values. 
;Record named INVNTR. 
;Seven-character numeric field. 
;Eight-character numeric field. 

;Subscripted statement. 
;Subscripted statement. 
;Display record ACCTNG on screen 
; (channel 8). 
;Display record INVNTR on channel 8. 

Records may be cleared in a similar fashion as arrays. The records 
used in an array must be in sequential order and must all be the same 
length in the Data Division. The records do not have to have the same 
name. Records are cleared to all spaces even if the record contains 
numeric fields. This is illustrated in the following example. 

Example : 

START 
RECORD BUSNS 

RECORD ENGR 

RECORD ACCT 

,A20 

,D20 

,D20 

BUSNS (2) = 
BUSNS (3) = 

PROC 

END 

;First record in Data Division. 

;Second record in Data Division. 

;Third record in Data Division. 

;Clears second record. 
;Clears third record. 

4-12 THE DIBOL LANGUAGE 



4.2.1.8 Using Literals to Implement Data 

An alphanumeric literal is a series of characters delimited by single 
quotes. A numeric literal is a series of up to 15 numbers (not delim- 
ited by quotes). A numeric or alphanumeric literal is used as a field 
anywhere except as the destination in a data manipulation statement. 

The following example uses alphanumeric and numeric literals. 

Example : 

START 
RECORD INVNTY ;Record named INVNTY. 

ITEMl, A5 
NUM1, D3 
ITEM2 , A7 
NUM2, D3 
ITEM3 , A9 
NUM3, D3 

RECORD TOTAL 
ITEM4 , A7 
NUMI, D3 

ITEMl='POTS' 
NUMl = 2 5 
ITEM2=', PANS ' 
NUM2 =10 1 
ITEM3=', DISHES' 
NUM3 =12 5 
ITEM4='ITEMS= ' 
NUM4=NUMl+NUM2+NUM3 ;Total moved to NUMI. 
XMIT ( 8 ,  INVNTY) ;Display record INVNTY. 
XMIT ( 8  ,TOTAL) ;Display record TOTAL. 

PROC 

END 

;Record named TOTAL. 

;Literal moved to ITEM1. 
;Numeric literal moved to NUM1. 
;Literal moved to ITEM2. 

A record literal is a sequence of alphanumeric characters delimited by 
a double quote at the beginning and a single quote at the end. Record 
literals are used as the source in a data manipulation statement. The 
following example shows the use of record literals. 

Example : 

START 
RECORD HDNG 

RECORD DATA 
,A10 

,A14 
PROC 
HDNG=" MONTHLY ' 
DATA="BALANCE REPORT ' 
XMIT ( 8  ,HDNG) 
XMIT ( 8 ,  DATA) 

END 

;Record named HDNG. 
:Ten-character field. 
;Record named DATA. 
;Fourteen-character field. 

:MONTHLY preceded by three spaces. 
;Record literal moved to DATA. 
;Display contents of HDNG. 
;Display contents of DATA. 

Alphanumeric, numeric, or record literals cannot be altered. These 
are not defined in the Data Division of the program. 

THE DIBOL LANGUAGE 4-13 



4.2.1.9 Incrementing Data 

Another kind of data manipulation is done with the INCR statement. A 
variable is incremented by 1 with INCR faster than with the data mani- 
pulation statement which uses destination = source +l. It is often 
used to increment a counter. 

The following example increments a counter to a total of 20. 

Example : 

START 
RECORD COUNT 

PROC 
LOOP, 

CTR, D2 

;Label where control transfers. 

INCR CTR ;Add 1 to CTR. 
IF(CTR.LT.20)GO TO LOOP ;Control transfer statement. 

XMIT ( 8 ,  COUNT) 
END 

4.2.2 Input/Output Statements 

4.2.2.1 DISPLAY - An Input/Output Statement 

The DISPLAY statement is used to move the cursor to a particular loca- 
tion on the screen, to display a message beginning at that particular 
cursor location, and to clear the screen. The message can either be 
the contents of an alphanumeric data field or an alphanumeric literal. 
The DISPLAY statement is also used to display questions on the screen. 
Numeric fields cannot be displayed. The DISPLAY statement has the 
following form: 

1 iter a1 

df ield 
DISPLAY (x,y, afield ) 

The cursor is positioned according to the values of two numeric ex- 
pressions separated by a comma (x and y in the format above). The 
value of the first expression indicates a line on the screen: if the 
value is larger than the number of lines on the screen, the cursor 
will go to the last line on the screen. The value of the second ex- 
pression indicates a character position on the screen width: if the 
value is larger than the number of character positions on the screen 
width ,  t h e  cursor goes  t o  t h e  l a s t  pos i t i on  on t h e  screen width.  

4-14 THE DIBOL LANGUAGE 



Special effects are generated by a select group of numeric characters 
inserted as numeric fields after the cursor positioning information. 

0 positions the cursor but displays no message. 
1 clears from the cursor position to the end of screen. 
2 clears from cursor position to the end of line. 
7 sounds the terminal alarm. 

Any other numeric fields must be converted to alphanumeric fields be- 
fore they can be used with DISPLAY. 

Examples : 

DISPLAY (5,1O,'DATE') 

DISPLAY (3,5,REC) 

DISPLAY (O,O,'RESPOND') 

DISPLAY 

DISPLAY 

Example : 

;Display DATE beginning on line 5, char- 
;acter position 10. 

;Display the contents of REC beginning 
;on line 3, character position 5. 

;Display RESPOND at the current cursor 
;location. 

;Clear to end of screen from line 10, 
;character position 15. 

;Position the cursor at line 6 ,  char- 
;acter position 7. 

START 
RECORD 
LINE1, A18, 'THIS IS AN EXAMPLE' 

PROC 
DISPLAY (1,1,1) 
DISPLAY (10,31,LINE1) 
DISPLAY (12,37, 'OF THE') 

DISPLAY (14,32,'DISPLAY STATEMENT') 

DISPLAY ( 0  I 0,7) 
STOP 

;Field named LINE1. 

;Clear the screen. 
;Display contents of LINE1. 
;Begin display of literal 
;on line 12. 
;Begin display on line 14, 
;character position 32. 
;Sound terminal alarm. 

4 . 2 . 2 . 2  XMIT - An Input/Output Statement 

An XMIT statement transfers a record between memory, storage devices, 
and peripheral devices. The transfer involves a channel over which 
the transfer will happen, the name of the record involved in the 
transfer, and optionally includes a label which indicates a program 
statement to branch to if an end-of-file is read. If a record exceeds 
the size of the record into which it is being read, an error message 
is displayed. 

THE DIBOL LANGUAGE 4-15 



The XMIT statement has the following form: 

XMIT (channe1,record [,eof label]) 

substituted for the record A record literal can be 
label when the record is being output. 

Example : 

XMIT ( 3  ,ACCT ,TOTAL) ;Transfers a record from channel 3 
;into a record called ACCT ( 3  must 
;have been open by an INIT statement 
;in input mode). Branch to TOTAL at 
;end-of-file. 

XMIT (8,  SCRTST) ;Output record SCRTST (screen test) 
;onto the screen (channel 8 ) .  

XMIT statements allow records to be displayed on the screen or listed 
on the printer. 

Example : 

RECORD SHOW ;Record named SHOW. 
FLDl,A18,'THIS IS AN EXAMPLE ;Field with initial value. 
FLDZ,A11,' OF AN XMIT' ;Field with initial value. 

XMIT ( 8, SHOW) ;Transfer content of SHOW over 

XMIT (8, "STATEMENT' ) ;Record literal transferred over 

PROC 

;channel 8 (screen). 

;channel 8. 
STOP 

The XMIT statement also allows data to be read from the keyboard. 
Because the DELETE key does not work with XMIT statements, use CTRL/U 
to correct any errors. If you type more data than the record can ac- 
cept, an error message will be displayed. This use of XMIT is not de- 
sirable because the ACCEPT statement does the same thing with fewer 
complications. 

4.2 .2 .3  INIT and FINI - Input/Output Statements 

DIBOL uses channel numbers (1-15) to reference mass storage devices 
and character-oriented input/output devices during program execution. 
If you stipulate a number greater than 15, it is treated modulo 16. 

The INIT statement opens a device and associates a channel number with 
the device. The FINI statement closes a device and disassociates the 
channel number from the device. 

4-16 THE DIBOL LANGUAGE 



Each device, whether mass storage or character-oriented, has a mode 
designation that is used along with the INIT statement. The designa- 
tions (I, 0, U) indicate the purpose (input, output, or update) for 
which the storage device was opened. Input allows sequential reading 
of data, output overwrites the data stored on a logical unit, and up- 
date is a random I/O operation. The designations (K, T, L, s) indi- 
cate the character-oriented device (keyboard, terminal, printer, 
source file) and its relationship to program execution. 

The channel number and the mode designations are required in an INIT 
statement. COS-310 is shipped with channel numbers 6, 7, 8 set to de- 
fault to the printer, the keyboard, and the terminal respectively. If 
these channel numbers are associated with any other mode, their de- 
fault is no longer in effect. 

It is good programming practice to stipulate the data file name and 
the logical unit number referencing the logical unit in which the file 
is stored. The complete INIT statement has the following form: 

INIT (channel,mode[,filnam][,logical Unit # I )  

Ex ample s : 

INIT ( 9  ,U,BKLG ,3) ;Opens (initializes) channel 9 for 
;update. BKLG contains the file 
;name on logical unit 3 .  

INIT (1,1,'INVNTY1,7) ;Associates channel 1 for input. 
;INVNTY is a file found on logical 
;unit 7. 

INIT (7,K) ;Associates the keyboard with chan- 
;ne1 7. 

Because the FINI statement disassociates the channel number from its 
related information, the FINI statement only needs the channel number. 
The FINI statement has the following form: 

FINI (channel) 

Examples : 

Assume that the FINI statements below are in the same program as the 
INIT statements above. 

FINI ( 9 )  

FINI (1) 

FINI (7) 

;Disassociates channel 9 as an up- 
;date mode; closes BKLG on logical 
;unit 3 .  

;Closes file INVNTY and disassoci- 
;ates channel 1 from input mode. 

;Disassociates channel 7 from key- 
; board. 

THE DIBOL LANGUAGE 4-17 



4 . 2 . 2 . 4  READ and WRITE - Input/Output Statements 

The DIBOL statements READ and WRITE move data records between data 
files and areas of working memory during program execution by associ- 
ating through the relative record number. 

The READ statement moves a data record from a specified data file to 
an area of working memory defined in the program's Data Division. 

The WRITE statement moves a data record from an area of working memory 
to a specified data file. 

Both READ and WRITE statements use channel numbers, records, and rec- 
ord numbers. The READ and Write statements have the following forms: 

READ (channel, record, rec#) 

WRITE (channel, record, rec#) 

The channel number (1-15) in the READ statement is associated with 
devices in input (I) or update (U) mode. The record label in the READ 
statement is the name of a record into which data is to be read. The 
record number (rec#) in the READ statement specifies the location 
within a logical unit from which data is to be read. 

Example : 

READ ( 3  ,ACTPBL, 5) ;Read record 5 of the file on chan- 
;ne1 3 into record named ACTPBL. 

READ (10,ACTRCB,11) ;Read record 11 of the file on chan- 
;ne1 10 into record named ACTRCB. 

READ (11 ,STKINV,REC+5) ;Read record determined by the ex- 
;pression REC+5 into STKINV. 

READ (5,CUSNAM,EXAM) ;Read EXAM from the file associated 
;with channel 5 into CUSNAM. 

The channel number (1-15) in the WRITE statement is associated with 
devices in output (0) or update (U) mode. The record label in the 
WRITE statement is the name of a defined record area in the program 
from which data is to be output. The record number (rec#) in the 
WRITE statement is a number or expression specifying the location 
within a logical unit into which data is to be written. 

Example : 

WRITE (S,ADDRES,PLC+l) ;Write record PLC+1 from ADDRES to 
;file associated with channel 5. 

WRITE (11 ,PHONES,41) ;Write record 41 from PHONES to file 
;associated with channel 11. 

WRITE (15 ,ZIPCOD,EXPR) ;Write record EXPR from ZIPCOD to 
; f i l e  associated w i t h  channel 15. 

4-18 THE DIBOL LANGUAGE 



4.2 .2 .5  ACCEPT - An Input/Output Statement 

The ACCEPT statement causes program execution to pause and remain dor- 
mant while you input information through the keyboard. The ACCEPT 
statement is most often used with the DISPLAY statement. 

The ACCEPT statement has the following form: 

ACCEPT (df ield, afield) 

The ACCEPT statement stores the keyboard entry in an alphanumeric 
field and stores the decimal equivalent of the terminator character 
(the last character typed) in a numeric field. The decimal equivalent 
of COS-310 terminator characters is shown with the ACCEPT statement in 
the COS-310 System Reference Manual. 

Example : 

ACCEPT (FLD1,DETAIL) ;Store input in field named DETAIL 
;and terminator character in FLD1. 

ACCEPT (DIG1 , SUMMRY) ;Store input in field named SUMMRY 
;and terminator character in DIG1. 

4 .2 .2 .6  FORMS - An Input/Output Statement 

The FORMS statement causes the printer to skip lines or to start new 
pages. The FORMS statement has the following form: 

FORMS (channel, sk ip-code) 

The channel is any number (1-15) previously associated with a printer. 
The skip-code is one of the numbers 0-4095. If 0, the form goes to 
the top of the page. Any skip-code other than 0 causes the printer to 
skip that many lines before printing characters. 

Negative numbers cause unpredictable results. If the skip-code 
exceeds 4095, COS-310 will begin reading 4096 as 0, 4097 as 1, and so 
on. This is modulo 4096. 

Example : 

FORMS (6,18) 

FORMS (15,4050) 

FORMS (12,4099) 

;Printer is associated with channel 
;6. Begin printing 18 lines from 
;the top. 

;Printer is associated with channel 
;15. Begin printing after skipping 
;to a new page. 

;Printer is associated with channel 
;12. Begin printing after skipping 
; 3  lines (modulo 4096), 

THE DIBOL LANGUAGE 4-19 



4.2.3 Program Control Statements 

4.2.3.1 IF - A Program Control Statement 

DIBOL uses the IF statement to compare expressions and to determine a 
course of action. The expressions must be of the same data type to be 
compared. The IF statement has the following form: 

IF (expressionl.rel.expression2)statement 

The following two-letter codes set between periods are used to show 
the relationships. No spaces should separate the expressions from the 
relational comparison codes. 

.EQ. Equal 

.NE. Not Equal 

.LT. Less Than 

.LE. Less Than or Equal 

.GT. Greater Than 

.GE. Greater Than or Equal 

If the relationship is true, the rest of the statement is executed. 
If the relationship is not true, program execution continues to the 
next line in sequence. 

The statement at the end of an IF statement must be one of the follow- 
ing : 

GO TO label STOP 
CALL label TRACE 
RETURN NO TRACE 
ON ERROR label 

The expressions being compared must be of the same data type and can 
be a combination of literals, variables, or arithmetic expressions. 
The expressions are made the same size before a comparison is made. 

Example : 

IF (1NCOME.LT.OUTGO)CALL HELP ;Branch control to HELP if INCOME 
;is less than OUTGO. 

IF (EOJSW.EQ.1) STOP ;Stop program if EOJSW equals 1. 

IF (DEBIT.GT.CREDIT+lO)RETURN ;RETURN to first statement after 
;previous CALL or TRAP statement if 
;DEBIT is greater than CREDIT + 10. 

IF ( ITAX. GE . RSTAX) TRACE ;Branch to TRACE if ITAX is greater 
;than or equal to RSTAX. 

4-20 THE DIBOL LANGUAGE 



4.2.3.2 STOP - A Program Control Statement 

Use STOP to terminate program execution and return control to the Mon- 
itor. This statement does not close files (FIN1 closes files) nor 
does it have to be the last statement in a program (the optional 
statement END is the last statement). If you do not close files that 
were opened for output or update, the STOP statement may cause records 
to be lost. 

A STOP statement can be used anywhere and any number of times in the 
Procedure Division of a DIBOL program. 

4.2.3.3 GO TO - A Program Control Statement 

A GO TO statement branches to the location indicated. There are two 
forms of the GO TO statement, unconditional and computed. The uncon- 
ditional GO TO branches immediately to a location identified by a 
label. The unconditional GO TO statement has the following form: 

GO TO label 

The computed GO TO contains a number of possible referencing labels 
and a variable which indicates which label is to be referenced. The 
computed GO TO statement has the following form: 

GO TO (label1 label2,. ..labeln),variable 

The variable is a numeric value or an expression representing a value. 

Example : 

GO TO LOOP ;Branch control to LOOP when this 
;statement is executed. 

GO TO(LOOP,STOP,RETURN),EXPR ;Branch control to LOOP if value of 
;EXPR is 1, to STOP if value of EXPR 
;is 2, to RETURN if value of EXPR is 
; 3 ,  and the next statement if EXPR 
;has any other value. 

4.2.3.4 CALL and RETURN - Program Control Statements 

The CALL and RETURN statements branch to, and return from, subrou- 
tines. A subroutine is a routine to be used a number of times in a 
program or to be used only under certain conditions. 

Write subroutines in places where they will not be run as part of se- 
quential program execution. A CALL statement branches program execu- 
tion to a subroutine; a RETURN statement branches execution from a 
subroutine. 

THE DIBOL LANGUAGE 4-21 



The CALL statement includes a label to identify the subroutine to 
which it is to branch. The CALL statement has the following form: 

CALL label 

Example : 

CALL LOOP ;Branch control to subroutine LOOP. 

CALL SUBRl ;Branch control to subroutine SUBR1. 

A CALL statement may be used within subroutines. As many as 50  CALL 
statements can be used at a time. This multiple CALL procedure (CALL1 
branches to CALL2 which branches to CALL3, and so forth) is called 
nesting . 
The RETURN statement is the last statement executed in a subroutine. 
Do not use a GO TO statement to branch out of a subroutine. Failure 
to use a RETURN statement will eventually overflow the pushdown stack 
arrangement and will cause the program to abort. No label is needed 
with the RETURN statement because it automatically branches control to 
the next statement after the last CALL statement that was executed. 
The RETURN statement has the following form: 

RETURN 

Do not use a RETURN statement unless it corresponds to either a CALL 
or a TRAP statement. 

4 . 2 . 3 . 5  ON ERROR - A Program Control Statement 

Fatal and nonfatal errors can occur during program execution. A fatal 
error crashes a program and requires a complete program restart. A 
nonfatal error is one where COS-310 detects an error, displays an 
error message, and waits for you to make the correction. 

An ON ERROR statement branches execution to another location when a 
nonfatal error is encountered. This branching prevents COS-310 from 
issuing error messages and waiting for corrections. No automatic cor- 
rection of the error is made; the DIBOL program must be written to 
take some corrective action or at least make an orderly shut-down 
(FINI) of the files before stopping. Execution continues from the 
statement to which control was branched. 

Write an ON ERROR statement into a program just preceding (on the line 
above) a statement where an error might occur. The ON ERROR statement 
requires a label to identify the location where execution is to 
branch . 
Example : 

ON ERROR LOOP ;Branch control to LOOP if the next 
;statement creates an error. 

4-22 THE DIBOL LANGUAGE 



A common use of the ON ERROR statement is to verify that keyboard 
entry is numeric data. This verification involves using a data mani- 
pulation statement to move keyboard data from an alphanumeric to a 
numeric field. The following example illustrates this verification 
process. 

Example : 
RECORD 

ALF, A10 ;Alphanumeric field. 
NUM, D10 ;Numeric field . 
ACCEPT (NUM,ALF) ;Enter data. 
ON ERROR NONNUM 
NUM=ALF ;Move ALF to NUM. 
XMIT (8 ,  "NUMERIC ' ) 
STOP 

STOP 

PROC 

NONNUM, XMIT ( 8, "NONNUMERIC ) 

4 . 2 . 3 . 6  CHAIN - A Program Control Statement 

Programs whose size exceeds the capacity of working memory cannot be 
executed unless they are divided into smaller programs. A CHAIN 
statement sequentially executes these smaller programs to produce the 
effect desired from the oversized program. 

List the programs to be chained following the RUN command. The order 
of this listing determines the number (0-7) associated with the pro- 
gram. A number larger than 7 results in an error message. 

A CHAIN statement written into a program must include a number 0-7. 
This number indicates which of the programs in the RUN command is exe- 
cuted next. The CHAIN statement has the following form: 

CHAIN number 

A program loaded by a CHAIN statement does not automatically return to 
the calling program. Once you have chained out of a program, the only 
way to return to that program is with an approlpriate CHAIN statement. 
Programs loaded by a CHAIN statement always begin execution immediate- 
ly after the PROC statement in a program. It is good practice to 
close (FINI) files before chaining to another program. 

Any DIBOL record storage area in a program loaded by the RUN command 
is automatically cleared. However, if the record is in a program 
loaded by the CHAIN statement, the record retains whatever contents it 
had in the previous program unless the clear option (,C) is specified 
for the record. 

THE DIBOL LANGUAGE 4-23 



Example : 

PROC 

.RUN TRFFC+SCHDL+FLGTM+DEPTTM 

DEPTTM 

Data Div. 

PROC -. 

CHAIN 2 

4.2.3.7 TRAP and RETURN - Program Control Statements 

A TRAP statement coordinates a printer and its buffer with overall 
program execution. Information output for the printer is put into a 
buffer one record at a time. The buffer holds the data until it can 
be printed. If information is output for the printer but the buffer 
is filled, a program without TRAP halts further statement execution 
and waits until the printer makes the buffer available for more char- 
acters. 

The TRAP statement allows two separate operations to take place simul- 
taneously. TRAP allows the DIBOL run-time system to interrupt the 
other task and to output more data to the printer whenever the printer 
buffer has more room for data. 

When the buffer empties, TRAP implements the following procedure. 

0 Program execution temporarily halts. 
0 Dibol run-time system stores the location of the halt. 
0 Control is transferred to the location specified in the TRAP 

statement hwere (most likely) the DIBOL program outputs 
another record to the printer and executes a RETURN. 

0 Control returns to the location where program execution was 
ha1 ted . 

0 Program statement execution then runs concurrently with the 
printer. 

The TRAP statement includes a label which identifies a printer rou- 
tine. The TRAP statement has the following form: 

TRAP label 

4-24 THE DIBOL LANGUAGE 



The last statement in the printer routine is a RETURN statement. This 
RETURN statement returns to the statement where TRAP interrupted pro- 
gram execution. 

The following example program prints numbers 1-500 on the printer 
while other program statements are being executed. 

Example : 

RECORD A 

PROC 
TRAP SUB 
FORMS (6,O) 

N, D3 

;Start the printer. 

;Perform a task. 

LOOP, IF(N.LT.500)GO TO LOOP :If the other task finishes 
:first, wait for the 
;printing to finish before 
;stopping the program. 

STOP 

I F ( N . GT .5 0 0 ) RE TURN 
XMIT (6,A) ;Print record A 500 times. 
RETURN 

SUB, N=N+1 

4.2.4 Debugging Statements 

4.2.4.1 TRACE - A Debugging Statement 

When properly written and activated within a DIBOL program, TRACE pro- 
vides a record of program execution by causing the line number of each 
statement in the Procedure Division to be printed as it is executed. 
These line numbers are printed in the following form: 

AT LINE xxxx 

If a statement line covered by TRACE contains a data manipulation 
statement, the result of the manipulation will be printed with the 
line number in the following form: 

AT LINE xxxx 
result 

The TRACE function is activated by a /T option in the RUN command 
which begins the execution of a program. 

THE DIBOL LANGUAGE 4-25 



4.2.4.2 NO TRACE - A Debugging Statement 

The NO TRACE statement is written into a DIBOL program following the 
lines that are to be traced. The NO TRACE statement stops the print- 
ing of line numbers under the TRACE statement. 

The following example includes TRACE and NO TRACE statements. 

Example : 

0110 RECORD 
0120 ITEM I D5 
0130 HOURS , D2 
0140 SALARY I D5 
0150 WAGES I D7 
0160 PROC 
0170 HOURS =4 0 
0180 SALARY=300 
0190 TRACE 
0200 WAGES=HOURS*SALARY 
0210 IF(WAGES.EQ.10000)NO TRACE 
0220 HOURS=lO 
0230 IF (HOURS. EQ. 10) GO TO NEXT 
0240 NO TRACE 
0250 NEXT,WAGES=HOURS*SALARY 
0260 NO TRACE 
0270 HOURS= 2 0 
0280 WAGES=HOURS*SALARY 
0290 STOP 

When the TRACE statement is activated by the /T option in the RUN 
command for the preceding program, the following information will be 
listed on the printer. 

AT LINE 0200 
0012000 
AT LINE 0210 
AT LINE 0220 
10 
AT LINE 0230 
AT LINE 0250 
0003000 
AT LINE 0260 

4-26 THE DIBOL LANGUAGE 



APPENDIX A 

Negative 
Number 

-0 
-1 
-2 
-3 
-4  
-5 
-6 
-7 
-8 
-9 

COS-310 CHARACTER SET 

Equivalent 
Character 

P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 

In both source and data files, characters (alphanumeric and numeric) 
are stored two characters per word in six-bit binary. Negative 
numbers are stored with the high-order bit of the low-order digit set 
to 1. For example, the number 1234- is stored as two words in the 
following form: 

WORD 1 

WORD 2 
(with high-order bit on) 

This number is recognized as 123T. This means that any program in 
which the numeric-to-alphanumeric conversion is not made might produce 
negative numbers with letters. Refer to Table A-1 for a list of char- 
acters representing negative numbers. 

Table A-1 
Characters Representing Negative Numbers 

Decimal 
Code 

49 
50 
51 
52 
53 
54 
55 
56 
57 
58 

Octal 
Code 

61 
62 
63 
64 
65 
66 
67 
70 
71 
72 

A-1 



Decimal 
Code 

00 
01 
02 
03 
04 
05 
06 
07 
08 
09 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Octal  
Code 

00 
01 
02 
03 
04 
05 
06 
07 
10 
11 
12 
13 
14 
15 
16 
17 
20 
21 
22 
23 
24 
25 
26 
27 
30 
31 
32 
33 
34 
35 
36 
37 

Table A-2 
COS-310 Character S e t  

Character 

Null 
Space 

1 

# 
$ 
% 
& 

II 

1 

( 
1 * 
+ 
I - 

i 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

; 
< 

> 
- - 

Decimal 
Code 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Octal  
Code 

40 
41 
42 
43 
44 
45 
46 

50 
51 
52 
53 
54 
55 
56 
57 
60 
61 
62 
63 
64 
65 
66 
67 
70 
71 
72 
73 
74 
75 
76 
77 

47 

Character 

? 
@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
w 
X 
Y 
z 
[ 

Tab 

A-2 C O S - 3 1 0  CHARACTER S E T  



GLOSSARY 

alphanumeric 
A character set that contains letters, digits, and other characters 
such as punctuation marks. The COS-310 alphanumeric character set 
includes the uppercase letters A-Z, the digits 0-9, and most of the 
special characters on the terminal keyboard. Two of these char- 
acters, back slash ( \ )  and back arrow (-) (shown on some termi- 
nals as an underscore), are illegal. 

array 
A DIBOL technique for specifying more than one field of the same 
length and type. The array 5D3 reserves space for five numeric 
fields, each to be three digits long. The array 2A10 describes two 
alphanumeric fields, each to be ten characters long. 

ASCII 
American Standard Code for Information Interchange. This is one 
method of coding alphanumeric characters. 

batch file 
A file containing a sequence of commands. A command to execute the 
file will cause the commands within the file to be executed sequen- 
tially. 

The technique of automatically executing a group of previously 
stored Monitor commands. 

batch processing 

binary operator 
An operator, such as + or -, which acts upon two or more constants 
or variables (e.g., A=B-C) . 

binary program 

binary scratch area 

The kind of program which is output by the compiler. 

The area in memory where the binary program is stored during execu- 
tion. 

GLOSSARY-1 



bit 
A binary digit (0 or 1). 

block 
The basic COS-310 unit of mass storage capacity. A block consists 
of up to 512 characters. 

bootstrap 
A short routine loaded at system start-up time which enables the 
system software t o  be read into machine memory. 

branch 
A change in the sequence of execution of COS-310 program state- 
ments. 

buffer 
A temporary storage area usually used for input or output data 
transfers. 

bug 
An error or malfunction in a program.or machine. 

byte 
A group of bits considered as a unit. A byte is the smallest unit 
of information that can be addressed in a DIBOL program. 

channel 
A number between 1 and 15 used to associate an input/output state- 
ment with a specified device. 

A letter, digit, or other symbol used to control or to represent 
data. 

character 

character string 
A connected linear sequence of characters. 

clear 
Setting an alphanumeric field to spaces or a numeric field to 
zeros. 

command 
An operator request for Monitor services; usually to be executed 
following a RETURN key. 

comments 
Notes for people to read; they are ignored by the compiler. 
Comments are optional and follow a semicolon on a statement line. 

Strung together without intervening space. 
concatenated 

2-GLOSSARY 



conversational program 
A program that prompts responses from an operator and reacts de- 
pending upon the response from the operator. 

cursor 
The flashing light indicator which appears at the point on the 
screen where the next character will be displayed. 

data 
A representation of information in a manner suitable fo r  communica- 
tion, interpretation, or processing by either people or machines. 
In COS-310 systems, data is represented by characters. 

The process of collecting and inputting data into the computer data 
files. Data entry is key to disk. 

data entry 

data management 
The planning, development, and operation of a system like COS-310 
by an organization to mechanize its information flow and make 
available the data needed by the organization. 

debug 
To detect, locate, and remove errors or malfunctions from a program 
or machine. 

DEC 
Acronym for Digital Equipment Corporation. 

Refers to a base ten number. 
decimal 

delimiting 
The bounds (beginning and end) of a series or string. 

device designation 
A three-character designation for a mass storage device. The first 
two characters designate the type of device; the third character 
designates the number of the drive on which the device is mounted. 

COS-310 system design permits data files and programs to be stored 
on either diskettes or disks. At run time, the operator chooses 
the most suitable or most available input and output devices. 

A three-character abbreviation used to name the COS-310 I/O de- 
vices. 

device independence 

device designations 

TTY = Screen 
KBD = Keyboard 
LPT = Printer 
DKO-DK3 = Disk drives 
RXO-RX3 = Disk drives 
DYO-DY3 = Disk drives 

GLOSSARY-3 



DIBOL 
Digital's Business Oriented Language is a COBOL-like language used 
to write business application programs. The source language of the 
COS-310 system. 

direct access 
The process of obtaining data from, or placing data into, a storage 
device where the availability of the data requested is independent 
of the location of the data most recently obtained or placed in 
storage. Direct access is available to users of COS-310 systems by 
writing the position number of any record in a data file. For ex- 
ample, you can request the 5th, 35th, and 711th records in a file. 

directory 
A place for listing information for reference. Displayed or print- 
ed with the DI command. 

dump 
To copy the contents of all or part of storage, usually from memory 
to external storage. 

edit buffer 
The work area in memory where source files are created and edited. 

end-of-file mark 
A control character which marks the physical end of a multivolume 
file. For both input and output files, the Monitor detects this 
EOF mark and types a message for the operator asking that the next 
volume in the file be mounted. 

fatal error 
An error which terminates program execution. 

field 
A specified area in a data record used for alphanumeric or numeric 
data; cannot exceed the specified character length. 

A collection of records, treated as a logical unit. 
file 

fixed-length records 
Each record in a data file is the same length. Fixed-length rec- 
ords are the only type handled by COS-310 utility programs and the 
only type on which direct access to data files is allowed. 

flowchart 
A pictorial technique for analysis and solution of data flow and 
data processing problems. Symbols represent operations, and con- 
necting flowlines show the direction of data flow. 

4-GLOSSARY 



handlers 
A specialized software function which interfaces between the system 
and peripheral devices. 

illegal character 
A character that is not valid according to the COS-310 design 
rules. DIBOL will not accept back slash ( \ )  and back arrow (-1 
(back arrow is replaced on some terminals with underscore) in al- 
phanumeric strings. 

initialization 
Putting a device into the correct format or position where it can 
successfully function in a configuration. 

input 
Data flowing into the computer. 

input/output 
Either input or output, or  both. I/O. 

A departure from the normal sequence of executing instructions in a 
computer. 

The process of positioning data in a field whose size is larger 
than the data. In alphanumeric fields, the data is left-justified 
and any remaining positions are space-filled; in numeric fields 
the digits are right-justified and any remaining positions to the 
left are zero-filled. 

j ump 

justify 

key 
One or more fields within a record used to match or sort a file. 
If a file is to be arranged by customer name, then the field that 
contains the customers' names is the key field. In a sort opera- 
tion, the key fields of two records are compared and the records 
are resequenced when necessary. 

To enter data or programs into main memory. 
load 

load-and-go 
An operating technique in which there are no stops between the 
loading and executing phases of a program. 

locat ion 
Any place where data may be stored. 

A number (1-15) which identifies an entry in a logical unit table. 
The table references the number to a location on a mass storage 
device. 

logical unit number 

GLOSSARY-5 



logical units 
An area of storage on a mass storage device. Up to 15 logical 
units may be assigned at system start-up by the data file utility 
program (DFU). These areas and their assigned sizes are listed in 
the logical unit table printed by DFU. 

loop 
A sequence of instructions that is executed repeatedly until a ter- 
minal condition prevails. A commonly used programming technique in 
processing data records. 

Programming using a sequence of binary instructions in a form exe- 
cutable by the computer. 

machine-level programming 

mass storage device 
A device having large storage capacity. 

master file 
A data file that is either relatively permanent or that is treated 
as an authority in a particular job. 

memory 
The computer's primary internal storage. 

merge 
To combine records from two or more similarly ordered strings into 
another string that is arranged in the same order. The latter 
phases of a sort operation. 

mnemonic 
Brief identifiers which are easy to remember. Examples are KBD, 
LPT, and TTY. 

mode 
A designation used in INIT statements to indicate the purpose for 
which a file was opened or to indicate the input/output device 
being used. 

modulo 
A condition where a specified number equals or exceeds the base 
(the modulo number). The base is then divided into the specified 
number and the remainder is used as the variable. In modulo 16, if 
17 were specified, 17 would be divided by 16 and the processor 
would use 1 as the variable. 

Monitor 
A COS-310 system program that loads and runs programs and performs 
other useful tasks. 

nest 
To embed subroutines, loops, or data in other subroutines or pro- 
grams. 

6-GLOSSARY 



nonfatal error 
An error which will not completely terminate program execution. 

nonsystem device 
A device that does not contain the operating system and the Moni- 
tor. A device used exclusively for data storage. 

A one- or two-character designation indicating a special function 
in conjunction with a command. Usually preceded by a slash ( / )  in 

option switch 

COS-310. 

output 
Data flowing out of the computer. 

overlay 
The technique of specifying several different record formats for 
the same data. Special rules apply. 

parameter 
A variable that is given a constant value for a specific purpose or 
process. 

peripheral equipment 
Data processing equipment which is distinct from the computer. 

pushdown stack 
A list of items where the last item entered becomes the first item 
in the list and where the relative position of the other items is 
pushed back one. 

random access 
Similar to direct access. 

RECORD 
A statement that reserves memory for DIBOL data language programs. 

segment 

sequential operation 

Sixteen blocks of storage. A block is 512 bytes long. 

Operations performed, one after the other. 

serial access 
The process of getting data from, or putting data into, storage 
where the access time is dependent upon the location of the data 
most recently obtained or placed in storage. 

screen line number 
The number which indicates the order of the horizontal lines on the 
screen. 

GLOSSARY-7 



sign 
Indicates whether a number is negative or positive. Positive 
numbers do not require a sign, but negative numbers are prefixed 
with the minus sign ( - 1 .  

significant digit 
A digit that is needed or recognized for a specified purpose. 

source program 
A program written in COS-310 DIBOL language. 

statement 
An instruction in a source program. 

string 
A connected linear sequence of characters. 

subscript 
A designation which clarifies the particular parts (characters, 
values, records) within a larger grouping or array. 

switch character 
A single letter specified in a command following a slash ( / I .  

syntax 

system configuration 

The rules governing the structure of a language. 

The combination of hardware and software that make up a usable com- 
puter system. 

A mass storage device reserved for Monitor, Run-Time System, and 
other system and source programs. 

system device 

systems directory 
A list of programs on the systems device with lengths, dates of 
creation, and other useful information. 

system handlers 
The specialized software which interfaces between the system and 
peripheral devices. 

terminal alarm 
A signal emitted from the terminal. 

unary operator 
An operator, such as + or -, which acts upon only one variable or 
constant (e.g., A=-C) . 
A system program which performs common services and requires format 
programs. Examples are SORT and PRINT. 

utility program 

8-GLOSSARY 



variable 
A quantity that can assume any one of a set of values. 

variable-length record 
A file in which the data records are not uniform in length. Direct 
access to such records is not possible. 

verify 
To determine if a transcription of data has been accomplished accu- 
rately. 

word 
A string of 12 binary bits representing two COS-310 characters. 

zero fill 
To fill the remaining character positions in a numeric field with 
zeros. 

GLOSSARY-9 





INDEX 

A 
A, alphanumeric field type, 4-3 
ACCEPT , 

see XMIT, 4-16 
input/output statement, 4-19 
often used with DISPLAY, 4-19 

Adding (+) , 4-7, 4-8 
Alarm, 7 sounds terminal, 4-15 
Alphabetic characters, 

CAP LOCK key locked for, 2-1 
lowercase, vi 
uppercase, vi 

Alphanumeric data, moving, 4-5 
Alphanumeric fields, records 

treated like, 4-6 
Alphanumeric literal, 4-13 
Array, 

clear elements in, 4-12 
elements in, 4-3 
information, fields contain, 

number of characters in, 4-3 
subscripts reference elements 

Arithmetic expressions, 
calculating, 4-7 
data manipulation statements 
calculate, 4-4 

Arithmetic operators, 
expressions contain, 4-7 

Assignments, logical unit 
displayed and listed, 3-4 

Automatic line numbers, 

4-1 

in, 4-3 

continue until CTRL/Z, 2-8 
CTRL/Z terminates, 2-2 

B 
B (binary) files, 2-5 
/B, DFU, 3-3 
BACKSPACE key, not part of 

Backup, installation start-up 

Binary (B) files, 2-5 
Binary scratch are&, 2-6 
program too big for, 2-7 

Block, address of first, 3-2 
Braces, choice of itemP within, 

Brackets, optional items within, 

BREAK key, not part of COS-310, 

Buffer, TRAP coordinates 

COS-310, 2-2 

and , 1-3 

vi 

vi 

2-2 

printer, 4-24 

C 
I C  I 
in a CHAIN statement, 4-23 
record retains contents 
without, 4-23 

only, 4-3 

statements, 4-21 

Calculations in numeric fields 

CALL and RETURN, program control 

CALL statement, form of, 4-22 
Calling the keyboard Monitor, 

CAP LOCK key, 2-1 
Central Processing Unit (CPU), 

character sent to, 2-1 
CHAIN statement, form of, 4-23 
Chaining, close files before, 

Channel , 
F I N 1  disassociates device 

in XMIT statement, 4-14, 4-15 
INIT associates device with, 

numeric expression, vii 
with FORMS statement, 4-19 

COS-310 shipped with, 4-17 
in READ statement, 4-18 
in WRITE statement, 4-19 

count designations, 4-3 
DELETE key erases, 2-2 

CAP LOCK key ,to input 

Data Division indicates number 

label can have number of, 4-2 
lowercase alphabetic, vi 
number in field, 4-3 
numeric after A or D, 4-3 
numeric before A or D, 4-3 
numeric generate special 

restricted in format string, 

up to 15 in numeric field, 4-3 
uppercase alphabetic, vi 

Clear data fields, data 
manipulation statements, 4-4 

Clearing fields and records, 

Cmndfl, command file name, vii 
Code ( t )  , converting to 

2-3 

4-23 

from, 4-16 

4-16 

Channel number, 

Character, 

Characters, 

alphabetic, 2-1 

Of, 4-1 

effects, 4-15 

4-11 

4-12 

internal, 4-7, 4-8 

INDEX-1 



INDEX (Cont . ) 

Codes, relational comparision, 

Comma , 
4-20 

must follow label, 4-2 
in unlabeled field statement, 
4-2 

Command , 
DELETE (DE) , 2-9 
DIRECTORY (DI) I 2-4 
DI/T , 2-4 
ERASE (ER) I 2-7 
FETCH (FE) I 2-4 
file name, vii 
Line Number (LN) , 2-7 
LIST (LI), 2-4 
RESEQUENCE (RE) I 2-8 
RUN (R), 2-5 
SAVE (SA) I 2-5 
WRITE (WR) I 2-5 

editor , vi 
interrelationship of, 2-5 
Monitor and editor, 2-3 
number, 2-8 

Comment fields in example 

Comments, 4-1 
Comparison, relational codes, 

Compilation Listing, 2-6 
Compile source program, 2-5 
Conventions for manual, 

notational, vi 
Conversational statements, 1-3 
Convert data, data manipulation 

Converting to internal code ( # ) ,  

COPY key, not part of COS-310, 

Corrections, character-by- 

cos-310 , 

Commands , 

programs, vi 

4-20 

statements, 4-4 

4-7 I 4-8 

2-2 

character , 2-2 
default channel numbers, 4-17 
introduction to, v 
multiphase SORT, 1-3 
procedures for operating, v 
use of logical units with, 1-3 
utility programs, 1-3 

CPU, central processing unit, 

Cross-referenceing program 

CTRL key, 2-2 

2-1 

(CREF) I 1-3 

CTRL/C I 
terminates execution of 

to return to Monitor, 2-5 
program, 2-2 

CTRL/O, stops display of 
characters, 2-2 

CTRL/Q, resumes terminal output, 

CTRL/S, terminates screen 

CTRL/U , 

2-2, 2-5 

Output, 2-2, 2-5 

deletes a line, 2-2 
to correct an error, 2-2 

line numbers continue until, 

terminates automatic line 

after last character, 2-3 
location, display message at, 

move to location on screen, 

position according to values, 

CTRL/Z 

2-8 

numbers, 2-2 
C u r s o r  , 

4-14 

4-14 

4-14 

D 
D, numeric field type, 4-3 
/DL, DFU, list table on printer, 

DAFT, dump-and-fix technique, 

Data , 

3-4 

1-3 

data manipulation statements 
convert, 4-4 

data manipulation statements 
format, 4-4 

fields, data manipulation 
statements clear, 4-4 

fields used in moving, 4-6 
file name (filnam) , vii 
files, display a list of, 3-4 
files, print a list of, 3-4 
formats referenced by labels, 

formatting, data manipulation 

moving alphanumeric, 4-5 
moving numeric, 4-6 
on logical unit, first block 

RECORDS used in moving, 4-6 

4-11 

allows, 4-11 

of, 3-6 

2-INDEX 



INDEX (Cont . ) 

using literals to implement, 

XMIT reads from keyboard, 4-16 
4-13 

Data conversion, data 
manipulation allows, 4-9 

Data devices, arrangement of 
storage on, 3-5 

Data Division, 
allocates data storage, 4-1 
designates names of files, 4-1 
destination defined in, 4-5 
determines types of fields, 

in a program, 1-2 
indicates number of 
characters, 4-1 

initial values in, 4-3 
literals defined in, 4-3 
may contain initial values, 

optionally begins with START, 

Data File Utility Program (DFU), 

Data Manipulation statements, 
allow data conversion, 4-9 
allow data formatting, 4-11 
calculate arithmetic 
expressions, 4-4 

clear fields, 4-12 
clear records, 4-12 
convert records, 4-12 
DIBOL form of, 4-4 
examples of, 4-5 
format data, 4-4 

in TRACE, 4-25 
move data, 4-4 

4-1 

4-1 

4-1 

1-3 

INCR, 4-14 

Datasystem 308 (D308), 1-1 
Datasystem 310 (D310), 1-1 
Date, Monitor asks for, 2-3 
DDT, DIBOL debugging technique, 

DE (DELETE) command, 2-9 
Debugging statements, 1-3, 4-25 
Decimal equivalent, 4-19 
DECstation 8 8 ,  1-1 
DECstation 78, 1-1 
Default channel numbers, COS-310 

shipped with, 4-17 
Delete a line, CTRL/U, 2-2 
DELETE (DE) command (DE), 2-9 
DELETE key to correct error, 2-2 
DELETE key, will not work with 

1-3 

XMIT, 4-16 

Designations, 
character count, 4-3 
of mass storage media, vi 
three-character, vi 
two-character, vi 

data manipulation statement 

defined in Data Division, 4-5 
example of source to, 4-6 

arrangement of storage on 

arrangement of storage on 

FIN1 disassociates channel 

INIT associates channel with, 

loading instructions for, 2-1 
logical unit on mass storage, 

media loaded into, vii 
sequential order on nonsystem, 

sequential order on system, 

type, vii 

Designations, 

in, 4-4 

Device, 

data, 3-5 

system, 3-5 

from, 4-16 

4-16 

3-1 

3-5 

3-5 

DFU/B, 3-3 
DFU, data file utility program, 

DFU/D, display table on screen, 

DFU/E, display a list of data 

DFU/EL, print a list of data 

DFU, filnam, 3-3 
DFU/K, 3-2 
DFU option switches, 3-2 
DI (DIRECTORY) command, 2-4 
DI/T command, 2-4 

1-3 

3-4 

files, 3-4 

files, 3-4 

DIBOL, 4-1 
program, labels reference, vii 
program, logical units in, 3-6 

DIBOL Debugging Technique, 

Directories, Monitor maintains 

DIRECTORY (DI) command, 2-4 
Directory, erase programs from, 

Disk, DK indicates RK05, vii 

(DDT), 1-3 

file, 1-2 

2-9 

INDEX-3 



INDEX (Cont . ) 

Diskette, 

DISPLAY statement, form of, 4-14 
Dividing ( / )  , 4-7, 4-8 
DK indicates RK05 disk, vii 
Dot displayed by the system, 2-3 
Double-character key, shift 

register on, 2-1 
Double quotes, record literal 

delimited by, 4-13 
Drive number, vii 
D308 (Datasystem 308), 1-1 
D310 (Datasystem 310), 1-1 
Dump-and-fix technique (DAFT), 

DY indicates RX02 diskette, vii 

DX indicates RX02, vii 
RX indicates RXO1, vii 

1-3 

E 
/E, DFU, display a list of data 

Edit buffer, 
files, 3-4 

ER clears, 2-7 
LI displays contents of, 2-4 
logical unit assignments 
through, 3-3 

command, 2-8 
Edited, entire lines by number 

Editor commands, Monitor and, 
2-3 

Editor commands spelled out, vi 
Editor , 

input to, 1-2 
Monitor controls source text, 

output'from, 1-2 
1-2 

/EL, DFU, print a list of data 

Elements, 
files, 3-4 

in array, 4-3 
in array, clear, 4-12 
subscripts reference, 4-3 

END, last entry in logical unit 

ER command, prevent mixing of 

ERASE (ER) command, 2-7 
Erase programs from directory, 

2-9 
Erase characters, DELETE key, 

2-2 
Error Messages, 2-3 
Errors, 

table , 3-3 
entries, 3-3 

correct after RETURN key, 2-2 

correction of, 2-2 
CTRL/U to correct, 2-2 
DELETE key to correct, 2-2 
fatal and nonfatal, 4-22 
MENU eliminates many operator, 

1-3 

2-2 

in, vi 

ESC key, not part of COS-310, 

Example programs, comment fields 

Expression, source is an, 4-5 
Expressions, 
calculate arithmetic, 4-4 
calculating arithmetic, 4-7 
compare with IF, 4-20 

F 
Fatal errors, ON ERROR with, 

FETCH (FE) command, 2-4 
Field, 

4-21 

comment, vi 
data manipulation statements 

number of character in, 4-3 
RECORD statement designates 

used in moving data, 4-6 

clear, 4-4, 4-12 

group of, 4-1 

Field data information 
accompanies RECORD, 4-1 

Field labels, 4-2 
Field statement , comma must 

follow label in, 4-2 
Field Types, A or D, 4-3 
File conversion program (FILEX), 

File directories, Monitor 

File name, 

1-3 

maintains , 1-2 
command, vii 
data, vii 

binary (B) , 2-5 
source (S) , 2-5 
STOP does not close, 4-21 
system (V), 2-5 
three types of, 2-5 

Files , 

FILEX, file conversion program, 

Filnam ,. 
1-3 

data file name, vii 
DFU, 3-3 

4 -INDEX 



INDEX (Cont . I 

FIN1 , 
closes device and 

form of statement, 4-17 
Flexibility, table enhances 

Flowchart generator program 

Flowchart of an INIT operation, 

Format data, data manipulation 

Format string, characters 

FORMS, form of statement, 4-19 

disassociates channel, 4-16 

storage, 3-1 

(FLOW) , 1-3 
3-7 

statements, 4-4 

restricted in, 4-11 

G 
GO TO, 

form of statement, 4-21 
out of subroutine, 4-22 

H 
Hand.lers, 

address of, 3-2 
Monitor stores I/O, 1-2 

drive, vii 
minimum required, 1-1 
starting instructions for, 2-1 

Hardware, 

Heading, COS-310 prints at top 
of page, 4-1 

I 
I, mode designation for input, 

IBM 3740, directly readable by, 

IF, form of statement, 4-20 
Implement data, using literals 

INCR, form of statement, 4-14 
Incorrect information, error 

Increment by 1, # causes, 4-9 
Incremented, Line numbers are, 

Incrementing data, 4-14 
Increments, use RE to make 

consistent, 2-8 
Index, centralized, 3-1 
INIT, form of statement, 4-17 

4-17 

1-3 

to , 4-13 

messages for, 2-3 

2-7 

INIT operation, flowchart of an, 

Initial values, 
Data Division contains, 4-1, 

only fields contain, 4-3 
Input/Output statements, 4-14 
Internal code, converting to 

I/O handlers, Monitor stores, 

Input to editor, 1-2 
Installation procedures, v 
Installation start-up and 

3-7 

4-3 

( # I  I 4-7 

1-2 

backup, 
1-3 

starting, 2-1 
Instructions, loading and 

Interrelationship of commands, 
2-5 

K 

K ,  mode designation for 
keyboard , 4-17 

Key panel adjacent to keyboard, 

Keyboard, 
data to be read from, 4-16 
input information through, 

interact with computer, 2-1 
logical unit assignments 

Monitor, calling the, 2-3 
Keys, special function, 2-1 

/ K ,  DFU, 3-2 

2-1 

4-19 

through, 3-2 

L 
L, mode designation for printer, 

Label , 
4-17 

comma must follow, 4-2 
interchangeable with name, 4-2 
RECORD and field, 4-2 
reference data formats, 4-11 
reference DIBOL program, vii 
reference in Procedure 
Division, 4-2 

programming, 1-2 
Language, (DIBOL), high-level 

LINE FEED key, not part of 
COS-310, 2-2 

INDEX-5 



INDEX (Cont . ) 

Line Number (LN) command, 2-7 
Line numbers, 

as references, 1-2 
CTRL/Z terminates automatic, 

incremented, 2-7 

alphanumeric, 4-13 
defined in Data Division, 4-13 
expressions can contain, 4-7 
implement data, 4-13 
numeric, 4-13 
record, 4-13 
source is a, 4-5 

2-2 

Liter a1 s , 

LIST (LI) Command, 2-4 
Listing, 

Loading instructions for 

Logical unit assignments, 
displayed and listed, 3-4 
from a named file, 3-3 
from the edit buffer, 3-3 
through the keyboard, 3-2 

Logical unit numbers, 3-2 
Logical units, 

arrangement on media, 3-5 
COS-310 depends on, 1-3 
explains use of, vi 
how assigned, 3-2 
reassigned, 3-1 
referenced by number, 3-1 

displayed on screen, 3-4 
END is last entry in, 3-3 
listed on printer, 3-4 

Lowercase characters, vi 

storage-map, 2-6 
two-part compilation, 2-6 

devices, 2-1 

Logical unit table, 3-1 

M 
Manual, 

notational conventions for, vi 
organization of this, v 

Mass storage device, logical 

Mass storage media 

Media , 

vi 

unit on, 3-1 

designations of, vi 
also called device, vii 

also called mass storage, vii 
designations of mass storage, 

device, vii 
loaded into device, vii 

Memory, minimum of 16K bytes of, 

MENU, eliminate operator errors, 

Message, display at cursor 
location, 4-14 

Mode designation, 4-17 

Monitor, 

1-1 

1-3 

Modulo 16, 4-16 

and editor commands, 2-3 
commands spelled out, vi 
divided into two parts, 1-2 
number commands, 2-2 
system, 1-2 

Move data, data manipulation 

Moving data, 
statements, 4-4 

alphanumeric, 4-5 
fields used in, 4-6 
numeric, 4-6 
records used in, 4-6 

Multiplying ( * ) ,  4-7, 4-8 

N 
Name, 

command file, vii 
Data Division designates, 4-1 
interchangeable with label, 

program (pronam) , vii 
Named file, logical unit 

Negative Numbers, 
in numeric form, 4-10 
skip-codes with, 4-19 

Negative value, 4-10 
Nesting, 4-22 
Nonfatal errors, ON ERROR with, 

Notational conventions for 

NO TRACE, form of statement, 

Number commands, 2-8 
Number, drive, vii 
Numbers, 

lines as reference, 1-2 
skip-codes with negative, 4-19 

Numeric characters, 
after A or D, 4-3 
before A or D, 4-3 
generate special effects, 4-15 

Numeric data, 
moving, 4-6 

4-2 

assignments from, 3-3 

4-22 

manual, vi 

4-26 

6-INDEX 



INDEX (Cont. ) 

ON ERROR, verifies, 4-23 
Numeric elements, expressions 

Numeric fields, 
calculations only in, 4-3 
up to 15 characters in, 4-3 

Numeric form of negative 
numbers, 4-10 

Numeric key panel, adjacent to 
keyboard, 2-1 

Numeric literal, 4-13 

can contain, 4-7 

0 
0, mode designation for output, 

ON ERROR, form of statement, 

Operating COS-310, procedures 

Operators, expressions can 

Option switches, DFU, 3-2 
Optional hardware, 1-1 
Organization of manual, v 
Output, CTRL/S suspends 

Output from editor, 1-2 

4-17 

4-22 

for, v 

contain arithmetic, 4-7 

terminal, 2-2 

P 
Pages, FORMS starts new, 4-19 
Parentheses, operations within 

executed first, 4-9 
Patch, official notification 

from DIGITAL, 2-5 
Peripheral interchange program 

PRINT, COS-310 utility program, 

Printer, 

(PIP), 1-3 

1-3 

records listed on, 4-16 
routine, 4-25 
TRAP coordinates with program, 

4-24 
Priority, calculations on, 4-7 
PROC statement, nonexecutable 

Procedure Division, 
mandatory, 4-4 

contains DIBOL statements, 4-4 
develop programs in, 4-1 
example statements from, 4-4 
in a program, 1-2 
labels referenced in, 4-2 

Procedures, installation, v 

Program, 
comments explain and document, 

compile the source, 2-5 
control statements, 4-20 
CTRL/'C terminates execution 

labels reference DIBOL, vii 
Monitor controls execution, 

name (pronam), vii 
too big, 2-7 
use of logical units, 3-6 

TRACE provides record of, 4-25 
TRAP coordinates printer with, 

erase from the directory, 2-9 
functional view of DIBOL, v 
perform functions with, 1-2 
system utility, 1-2 

Programming language (DIBOL), 
1-2 

Punctuation, 
in RECORD statement, 4-1 
proper placement of, 4-2 

Push-down sequence, numbers 

vi, 4-1 

of, 2-2 

1-2 ' 

Program execution, 

4-24 
Programs, 

assigned in, 3-5 

Q 
Questions, to display on screen, 

Quotes, 
4-14 

double, 4-11, 4-13 
single, 4-13 

R 
R (RUN) command, 2-5 
READ, form of statement, 4-18 
RE (RE$EQUENCE) command, 2-8 
Reassigned, logical units, 3-1 
Record label, 4-2 

in R&AD statement, 4-18 
in WRITE statement, 4-18 

Record literal, 4-13 
Record number (recb) , 

in READ statement, 4-18 
in WRITE statement, 4-18 

RECORD statement, 
designates a group of fields, 
4-1 

punctuation in, 4-1 

INDEX-7 



INDEX (Cont.) 

Records , 
cleared as in an array, 4-12 
data manipulation statement 

clears, 4-12 
display or list, 4-16 
field data information 
accompanies, 4-1 

treated like alphanumeric 
fields , 4-6 

used in moving data, 4-6 
Red, characters printed in, vi 
Relational comparison codes, 

Report, DIBOL program will 

Representations, symbolic, vi 
RESEQUENCE (RE) Command , 2-8 
Resume terminal output, CTRL/Q, 

RETURN key, 2-1 

4-20 

generate, 1-3 

2-2 

correct errors after, 2-2 
no special symbol for, vi 
press following input, vi 

last statement in printer 
routine, 4-25 

with CALL, 4-21 
with CALL or TRAP, 4-22 
with TRAP, 4-24 

RK05 disk, DK indicates, vii 
Rounding ( # )  , 4-7, 4-8 
RUN (R) command, 2-5 

RETURN, form of statement, 4-21, 
4-24 

programs to be chained follow, 

/T activates TRACE, 4-25 
4-23 

RX indicates RXOl diskette, vii 
RXOl and RX02 drives, 1-1 
RXOl diskette, RX indicates, vii 
RX02 diskette, DY indicates, vii 
RX02 drives, RXOl and, 1-1 

S 
S I  mode designation for source 

S (source) files, 2-5 
SAVE ( S A )  command, 2-5 
Scratch area, binary, 2-6 
Screen , 

file , 4-17 

clear the, 4-14 
move cursor to location on, 

records displayed on, 4-16 
suspend output to, 2-2 

4-14 

Segments on logical units, 3-1 
Shift register on 

double-character key, 2-1 
Skip-code, 4-19 
Skip lines, FORMS causes printer 

Software, unauthorized changes 

SORT, COS-310's multiphase, 1-3 
Source , 
data manipulation statement, 

4-4 
example of, 4-6 
expression as, 4-5 
files (S) , 2-5 
literal as , 4-5 
program, compile a, 2-5 
record liter'al as , 4-13 
text editor, Monitor controls, 

variable as , 4-5 
reading, 4-2 

to I 4-19 

to, 2-5 

1-2 

Spacing, variation for ease of 

START, nonexecutable statement, 
4-1 

Starting address of first block, 
3-2 

Starting instructions for 
hardware , 2-1 

Start-up and backup , 
installation, 1-3 

Statements, 
comma must follow label in, 

conversational, 1-3 
DIBOL are mnemonic, 1-2 
from Procedure Division, 4-4 

Stop display of characters, 

4-2 

CTRL/O, 2-2 
STOP p 

does not close files, 4-21 
program control statement, 

arrangement of data device, 

arrangement of system device, 

Data Division allocates, 4-1 
designations of mass, vi 
flexibility, 3-1 
media, vii 

4-21 
Storage , 

3-5 

3-5 

Storage device, logical unit on 

Storage-map listing, 2-6 
mass , 3-1 

8-INDEX 



INDEX (Con t . ) 

Subroutines, 
CALL statement with, 4-22 
CALL and RETURN from, 4-21 
where to write, 4-21 

Subscripted data elements, 

Subscripts, 

4-3 

4-12 

expressions can contain, 4-7 

reference elements in array, 

to clear elements in array, 

Subtracting ( - )  , 4-7, 4-8 
Symbolic representations, vi 
SYSGEN, utility program called, 

Sys tem, 
1-3 

date, change the, 2-3 
devices, arrangement of 

files (V) , 2-5 
Monitor, 1-2 
utility programs, 1-2 

storage on, 3-5 

T 
T, mode designation for 

terminal, 4-17 
/T, TRACE function activated by, 

Table, 
4-25 

display on screen, 3-4 
END in logical unit, 3-3 
listed on printer, 3-4 
output an expanded, 3-4 

Terminal alarm, 7 sounds, 4-15 
Terminal output, CTRL/Q resumes, 

2-2 

Terminates program execution, 

Terminator character, 4-19 
Text editor, Monitor controls 

Three-character designation, vi 
Top-of-page command, START 

TRACE, form of statement, 4-25 
Transfer, of records, 4-15 
TRAP, form of statement, 4-24 
Type of fields, Data Division 

CTRL/C, 2-2 
STOP, 4-21 

source, 1-2 

issues, 4-1 

determines, 4-1 

U 
U, mode designation for update, 

Unnamed records, 4-1 
Utility programs, system, 1-2 
Uppercase alphabetic characters, 

4-17 

vi 

v 
V (system) files, 2-5 
Values, Data Division may 

contain initial, 4-1 

W 
WRITE (WR) command, 2-5 
WRITE, form of statement, 4-18 

X 
XMIT statement, form of, 4-15 

INDEX-9 





I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 

I f  
liT 
I 
I 
I 
I 
I 
I 
I 
1 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 
I 

COS-310 New User’s Guide 
AA-D’I58A-TA 

READER’S COMMENTS 

NOTE: This form is for document comments only. DIGITAL will 
use comments submitted on this form at the company’s 
discretion. Problems with software should be reported 
on a Software Performance Report (SPR) form. If you 
require a written reply and are eligible to receive 
one under SPR service, submit your comments on an SPR 
form. 

Did you find errors in this manual? If so, specify by page. 

Did you find this manual understandable, usable, and well-organized? 
Please make suggestions for improvement. 

Is there sufficient documentation on associated system programs ’ 

required for use of the software described in this manual? If not, 
what material is missing and where should it be placed? 

Please indicate the type of user/reader that you most nearly represent. 

0 Assembly language programmer 
0 Higher-level language programmer 
0 Occasional programmer (experienced) 
0 User with little programming experience 
0 Student programmer 
0 Non-programmer interested in computer concepts and capabilities 

Name Date 

Organization 

Street 

City State Zip Code 
or 

Country 



FIRST CLASS 
PERMIT NO. 33 

MAY NARD, MASS. 

BUSINESS REPLY MAIL 
NO POSTAGE STAMP NECESSARY IF MAILED IN THE UNITED STATES 

Postage will be paid by: 

B u s i n e s s  Products  
Software  Development Group 
MK 2/H32 
Camp Sargent  Road 
Merrimack, New Hampshire 03054 





digital equipment corporation 


	PREFACE
	CHAPTER 1 INTRODUCTION TOCOS-310
	1.1 OVE RVI E W
	1.2 HARDWARE REQUIREMENTS
	1.3 FUNCTIONAL VIEW OF COS-310 PROGRAMS
	1.3.1 The System Monitor
	1.3.2 A High-level Programming Language
	1.3.3 System Utility Programs

	CHAPTER 2 OPERATINGCOS-310
	USING THE KEYBOARD
	ERROR CORRECTION
	ERROR MESSAGES
	CALLING THE KEYBOARD MONITOR
	USING MONITOR AND EDITOR COMMANDS
	DIRECTORY FETCH and LIST Commands
	RUN SAVE and WRITE Commands
	ERASE Command
	Line Number Command
	Number and RESEQUENCE Commands
	DELETE Command


	CHAPTER 3 LOGICAL UNITS
	LOGICAL UNIT TABLE
	LOGICAL UNIT NUMBERS
	HOW LOGICAL UNITS ARE ASSIGNED
	Through the Keyboard (DFU/K)
	From the Edit Buffer (DFU/B)
	From a Named File DFU,filnam)

	HOW LOGICAL UNITS ARE DISPLAYED AND LISTED
	Display Assignments on the Screen (DFU/D)
	List Assignments on the Printer (DFU/DL)
	(DFU/EL)

	ARRANGEMENT OF LOGICAL UNITS ON MEDIA
	HOW A DIBOL PROGRAM USES LOGICAL UNIT NUMBERS

	CHAPTER 4 THE DIBOL LANGUAGE
	DATA DIVISION
	RECORD and Field Labels
	Field Types - A or D
	Initial Values

	PROCEDURE DIVISION
	Data Manipulation Statements
	Moving Alphanumeric Data
	Moving Numeric Data
	Moving Records
	Calculating Arithmetic Expressions
	Data Conversion
	Data Formatting
	Clearing Fields and Records
	Using Literals to Implement Data
	Incrementing Data
	Input/Output Statements
	DISPLAY - An Input/Output Statement
	XMIT - An Input/Output Statement
	INIT and FIN1 - Input/Output Statements
	READ and WRITE - Input/Output Statements
	ACCEPT - An Input/Output Statement
	FORMS - An Input/Output Statement
	Program Control Statements
	IF - A Program Control Statement
	STOP - A Program Control Statement
	GO TO - A Program Control Statement
	CALL and RETURN - Program Control Statements
	ON ERROR - A Program Control Statement
	CHAIN - A Program Control Statement
	TRAP and RETURN - Program Control Statements
	Debugging Statements
	TRACE - A Debugging Statement
	NO TRACE - A Debugging Statement


	APPENDIX A
	INDEX
	3-1 Arrangement of Logical Units on Devices
	3-2 Flowchart of INIT Operation
	Table



