
CHAPTER 5

THE PAL8 ASSEMBLER

5.1 INTRODUCTION

PAL8, the OS/78 Operating System assembler, generates binary object
files from source (ASCII) programs written in the PAL8 assembly
language.

PAL8 is a two-pass assembler. During pass 1, the source program is
read and an internal symbol table is produced that contains the PAL8
permanent symbols and any new symbols that you define. During pass 2,
the assembler reads the source file again, generates the binary code
using the symbol table definitions created during pass 1, and
continues defining symbols as well. The binary file that is output
may be loaded into memory as the "current" executable program by the
LOAD command. Absolute binary format consists of 8-bit bytes,
containing field setting commands, address setting'. commands, and
sequential data words. An optional third pass will produce a program
listing if one is desired. During pass 3, the assembler reads the
source file a final time and generates the assembly listing as an
ASCII (character string) file. The assembly listing consists of the
source statement together with its current location counter and the
generated code in octal. The first 40 (decimal) characters of the
first line of each page of the listing contain a title, the assembler
version number, the date and the listing page number.

Use the 05/78 command PAL to call the assembler. You can also use the
commands CREF and EXECUTE as explained in this chapter.

The PAL command specifies. the binary and listing output devices and
file names, the input devices and file names, and any options that you
select. From one to nine input files may be specified. The typical
way to assemble, load, and then run a program called PROG is as
follows:

'PAL PROG -Assemble the program
LOAD -Load the program into memory
=SAVE SYS PROG -Save the program
* R PROG -Run the program

The long form of the command string is

PAL dev:binary,dev:listing,dev:crefls<dev:input, .../ options
If the extension to the file name is omitted, the following extensions
are assumed.

.PA f o r input files.

.BN for binary output file.

.LS for listing output f i l e .

.TM fo r intermediate CREF file.

5-1

THE PAL8 ASSEMBLER

I f an assembly o r CREF l i s t i n g is n o t d e s i r e d , omi t t h e l i s t i n g f i l e
o r CREF f i l e , r e s p e c t i v e l y .

For example, t o a s semble , l o a d , and run a PAL8 program named SAMPLE,
which i s s t o r e d on d i s k e t t e u n i t 1, t y p e

*PAL. RXAI:SAMPLE/G-T

A f t e r assembly t h e program is loaded and run (s i n c e t h e /G was
s p e c i f i e d) w i t h t h e s t a r t i n g a d d r e s s assumed t o be l o c a t i o n 0 2 0 0 i n
f i e l d 0; t h e b i n a r y f i l e i s s t o r e d on t h e DSK: d e v i c e a s SAMPLE.BN.
The -T Genera l -Purpose Dash Op t ion d i s p l a y s t h e assembled program
l i s t i n g on t h e t e r m i n a l (see T a b l e 2-3).

I f a b i n a r y f i l e i s n o t d e s i r e d , s p e c i f y t h e -NB o p t i o n a t t h e end of
t h e command l i n e (NB s t a n d s f o r No B i n a r y) . For example, t o g e t a
l i s t i n g o n l y , t y p e

PAL.. SAMPL.E-LS-NB

The -LS o p t i o n i n d i c a t e s t h a t a l i s t i n g shou ld be produced .

The a s semble r d i s p l a y s any e r r o r messages encoun te red i n t h e program
on t h e t e r m i n a l , even when a l i s t i n g i s n o t produced . Typing CTRL/O
a t t h e keyboard d u r i n g an assembly s u p p r e s s e s t h e d i s p l a y o f e r r o r
messages. However, messages a re s t i l l p r i n t e d i n t h e l i s t i n g f i l e (i f
any) and occur immedia te ly b e f o r e t h e l i n e t h a t is i n e r r o r .

For example, t h e command l i n e

+ PAL. S AMP L..E / s -- L. S

c a u s e s PAL8 t o a s semble SAMPLE.PA (o r S A M P L E) , g e n e r a t i n g
DSK:SAMPLE.BN and p u t t i n g t h e l i s t i n g i n t o t h e f i l e SAMPLE.LS on t h e
d e f a u l t d e v i c e DSK. The /S o p t i o n s u p p r e s s e s l i s t i n g of t h e symbol
t ab le .

The command l i n e

a s sembles SAMPLE.PA, c r e a t e s a b i n a r y o u t p u t f i l e named B I N . B N , l o a d s
t h e f i l e B I N . B N , and s t a r t s i t a t l o c a t i o n 600. T h e c o n s t r u c t i o n =600
is an o p t i o n t h a t s p e c i f i e s t h e s t a r t i n g a d d r e s s .

Assembly can be t e r m i n a t e d a t any time by t y p i n g CTRL/C on t h e
keyboard , and any o u t p u t f i l e s b e i n g s t o r e d w i l l be d e l e t e d .
O t h e r w i s e , PAL8 a lways r e t u r n s t o t h e mon i to r upon c o m p l e t i o n o f
assembly .

A s o u r c e program may c o n s i s t of a number of s o u r c e f i l e modules t o be
assembled t o g e t h e r . You do t h i s by s p e c i f y i n g a s t r i n g of i n p u t
d e v i c e and f i l e names s e p a r a t e d by commas. For example,

a s sembles a t h r e e - p a r t program. T h i s t e c h n i q u e i s u s e f u l when it i s
d e s i r e d t o assemble two programs t h a t a r e i d e n t i c a l e x c e p t f o r a few
l i n e s a t t h e beg inn ing of t h e programs. D i f f e r e n t l i n e s can be broken

5-2

THE PAL8 ASSEMBLER

out i n t o a "pref ix f i l e " . For example, two d i f f e r e n t f i l e assemblies
may be generated by

+PAL PRFXl Y FILE

and

rPCIL. PRFX2 I FILE

You can en ter up t o nine input f i l e s t o be t r e a t e d a s one source input
i n a command l i n e .

If more than one input f i l e is s p e c i f i e d , and output f i l e s a r e des i red
but n o t e x p l i c i t l y s p e c i f i e d , the name of t h e f i r s t input f i l e i s used
f o r the output f i l e names. For example,

.PAL AYB

produces the binary f i l e A.BN.

I f a f i l e name other than the f i r s t input f i l e i s desired f o r the
binary name, u s e the -NB General-Purpose Dash Option a f t e r the l a s t
input f i l e name not des i red a s t h e binary f i l e name. For example,

+PAL. A-NBYB

produces DSK:B.BN and

+FAl... A P B I C-NE Y 11 Y E IF

produces DSK:D.BN.

I f a -LS opt ion i s s p e c i f i e d , i t m u s t appear immediately a f t e r an
input f i l e name. T h i s is the name t h a t w i l l be used f o r t h e name of
t h e l i s t i n g f i l e . For example,

,PAL.. A Y B-LS

produces DSK:B.LS while

.PAL. A--L.S Y B

produces DSK:A.LS

The -L o r -T General-Purpose Dash Options used w i t h a PAL or COMPILE
command send the l i s t i n g output f i l e t o the l i n e p r i n t e r and terminal
respec t ive ly .

Note t h a t the PAL command normally produces a binary f i l e even when a
name is not given. T h u s , typing

L. F:' 'r t +:file

I

+ PA I...

produces a binary f i l e .

I f you do not specify an extension, PAL assumes t h a t the input f i l e
extension is .PA. T h u s , the command

+PAL.. TEST

causes the assembler t o search f o r a f i l e name1 DSK:TEST.PA. I f no
f i l e w i t h .PA is found on D S K : , the assembler then searches f o r a f i l e
named TEST w i t h no extension. I t i s good p r a c t i c e when c r e a t i n g a
PAL8 source f i l e t o i n c l u d e a .PA extens ion t o remind you what type of
source f i l e i t is.

5-3

THE PAL8 ASSEMBLER

The COMPILE and EXECUTE commands may also be used to invoke PAL8.
These commands search the directory of the specified device for the
file given with the command, and if one is found with a .PA extension,
PAL8 is invoked. For example,

COMPILE TEST

will run PAL8 if TEST.PA is found. An unusual extension may be
explicitly specified by typing

'PAL TEST'XX

which will assemble DSK:TEST.XX. To specify PAL8 as the processor in
the COMPILE command, use the -PA General-Purpose Dash Option in the
command line as follows:

'COMPILE TEST'XX-PA

The EXECUTE command is similar to the COMPILE command except that the
EXECUTE command is supported by the /G option.

If an argument is not given with a PAL or COMPILE or EXECUTE command,
the argument used with the last such command is assumed when that
command is used again.

5.2 CREATING AND RUNNING A PAL8 PROGRAM

The following steps demonstrate the procedure for creating and running
a PAL8 program.

5.2.1 Creating a Program

Create the assembly language source file by calling the Editor as
follows:

'CREATE SAMPLEIPA

Since a new program is being created, only a single file name need be
specified. The OS/78 Editor will then display a number sign (#) to
indicate it is ready to accept a command. (See Chapter 4 for a
detailed discussion of the OS/78 Editor.)

Type the A (Append) command to allow the Editor to accept text. Then
type in the program, one line at a time. Press the RETURN key after
each line.

#A

/ROUTINE TO TYPE A MESSAGE
t 2 0 0
M O N A D R = ~ ~ O O

STARTI CLA CLL /CLEAR ACCUHULATOR ANn LINK
TLS /CLEAR TERMINAL FLAG
TAD BUFADR /SET UP POINTER
ncA PNTR /FOR GETTING CHARACTERS

5-4

THE PAL8 ASSEMBLER

NEX'Tr TSF /SKIP I F TERMINAL F L A G SET
.JMP +-1 /NO: CHE:CK AGAIN
TAD 1 PNTR /GET A CHARACTER
TLS /PRINT A CHARACTER
ISZ PNTR /BONE YET?
C L A c:t..t. /CLEAR ACCUMULATOR AND L I N K
TAD I PNTR /GET ANOTHER CHARACTER
SZA C L A /JUMP ON ZERO ANI1 CLEAR
JMP NEXT /GET READY TO PRINT ANOTHER
JMP I MON /RETURN TO MONITOR

BlJF-ADR I BUFF /BUFFER ADI:IRE SS
PNTR Y BUFF /PO INTER
BUFF9
MON I MONA DR /MONITOR ENTRY POINT

21.55212; 'H9 ' E i 'L;'L; ' O F ' ! $0

Now type a CTRL/L t o terminate input. T h i s command re turns you t o the
Editor command mode.

Type the L (L i s t) command i n response t o the E d i t o r ' s number s ign (#)
t o l i s t the t e x t t h a t was inser ted i n t o the t e x t buffer .

When you a r e s a t i s f i e d t h a t the input is c o r r e c t , type t h e E (E x i t)
command t o s t o r e the f i l e and re turn t o the monitor.

5.2.2 Assembling a Program

Now assemble the source program j u s t created. Use the command:

,PAL. SAMF'L .. E:-I ... S

T h i s command c r e a t e s two f i l e s , a binary f i l e c a l l e d SAMPLE.BN, and a
l i s t i n g f i l e (-LS opt ion) ca l led SAMPLE.LS. Use the TYPE command t o
d i s p l a y the l i s t i n g on t h e terminal or t h e L I S T command t o p r i n t the
l i s t i n g on a l i n e p r i n t e r .

The assembly l i s t i n g produced by PAL appears a s follows:

/ROUTINE TO TYPE A MESSAGE PAL#-U1JA 14-MARCH-79 PAGE 1

000200
000201
000202
000203
000204
000205
000206
000207
000210
00021 1
0002 12
00021 3
000214
000215
000216
000217
000220

0200
7600
7300
6046
1216
3217
604 1
5204
1617
6046
2217
7300
1617
7640
5204
5631
0220
0220
0215

/ROUTINE TO TYPE A MESSAGE
t200
MONA Kl R = 7 6 00

STARTI CLA CLL /CLEAR ACCUMULATOR ANff L I N K
TLS /CLEAR TERMINAL F L A G
TAD BUFAMt /SET UP POINTER
r m PNTR /FOR GETTING CHARACTERS

JMP +-1 /NO: CHECK AGAIN
TAU I PNTR /GET A CHARACTER
TLS /PRINT A CHARACTER
ISZ PNTR /DONE YET?
CLA CLL /CLEAR ACCUMULATOR AND L I N K
TAD I PNTR /GET ANOTHER CHARACTER
SZA CLA /JUMP ON ZERO AND CLEAR
JMP NEXT /GET READY TO PRINT ANOTHER
JMP I MON /RETURN TO MONITOR

NEXTi TSF / S K I P I F TERMINAL F L A G SET

HUFAURr BUFF /E UF FE R ADDR E S S
PNTRr BUFF /POINTER
BUFF? 2 1 5 i 2 1 2 i ' H i ' E i ' L i ' L i 8 0 i ' ! i O

5-5

THE PAL8 ASSEMBLER

000221
000222
000223
00 02 a 4
000 2 >? 5
0 0 0 2 2 6
000227
000230
0 002 3 1.

0212
0310
0305
031.4
0 3 1 4
0317
0 2 4 1
0000
7600 MONr MONADR

/ROUTINE TO TYPE A MESSAGE

/MONITOR ENTRY POINT

PALEl-UlJA 14-MARCH-79 PAGE 2

BUFADR 0216
HUFF 0220
MON 0231
MONADR 7600
NEXT 0 2 0 4
PNTR 0217
START 0200

ERRORS m x x ' r t a : o
L I N K S GENERATED: 0

T h e f i r s t column o f t h e l i s t i n g g i v e s t h e f i e l d number and o c t a l
a d d r e s s . The second column is t h e assembled object code. The symbol
t a b l e is p r i n t e d a t t h e end fo l lowed by t h e number o f e r r o r s d e t e c t e d
and number of l i n k s g e n e r a t e d . Link g e n e r a t i o n is d e s c r i b e d i n
S e c t i o n 5.12. Each e r r o r g e n e r a t e s an e r r o r message (see S e c t i o n
5 . 1 4) .

I f e r r o r s have been d e t e c t e d , t h e program h a s been w r i t t e n or typed
i n c o r r e c t l y . Check it a g a i n .

The COMPILE command may a l s o be used t o assemble t h e program by t y p i n g

COMPILE SAMPLE

S e v e r a l o p t i o n s a r e a v a i l a b l e w i t h t h e PAL command. The o p t i o n s a r e
d e s c r i b e d i n S e c t i o n 5.3.

5.2.3 Loading and S a v i n g a Program

Load t h e b i n a r y f i l e g e n e r a t e d by a s s e m b l i n g SAMPLE.PA i n t o memory by
t y p i n g

L.OAI:I SAMPLE

The SAMPLE program is now t h e " c u r r e n t " memory image.

S i n c e programs i n memory image f o r m a t can b e e x e c u t e d d i r e c t l y , i t is
d e s i r a b l e t o s a v e t h i s f o r m a t o f your program. Do t h i s w i t h t h e SAVE
command by t y p i n g

+SAVE: SYS SAMPLE

The memory image f o r m a t o f SAMPLE i s now b o t h i n memory and on t h e
sys tem d e v i c e as a new f i l e c a l l e d SAMPLE.SV.

5-6

THE PAL8 ASSEMBLER

5.2.4 E x e c u t i n g t h e Program

S i n c e t h e program now r e s i d e s on SYS and i n main memory, you c a n
e x e c u t e i t by t y p i n g

,START

O t h e r w i s e , you c a n l o a d t h e f i l e SAMPLE.SV i n t o memory from SYS: and
r u n by t y p i n g

,R SAMPLE

A s t h e program r u n s , i t d i s p l a y s t h e message HELLO!

You c a n a l s o u s e t h e EXECUTE command t o assemble, l o a d and run t h e
p r og r a m .

, EXEC 1J T E SAMPLE

T h i s command p r o d u c e s t h e b i n a r y f i l e SAMPLE.BN, l o a d s i t i n t o memory,
and s t a r t s it r u n n i n g .

Another load-and-go method t h a t i s a v a i l a b l e w i t h t h e PAL command i s
t h e /G o p t i o n . Typing

+PAL. SAHPLE/G

assembles t h e i n p u t f i l e SAMPLE.PA, l o a d s t h e b i n a r y f i l e , and
e x e c u t e s t h e program. A l s o , t h e command

,L.OAD SAMPL.E/G

w i l l l o a d t h e b i n a r y f i l e SAMPLE.BN and e x e c u t e it.

5 . 2 . 5 G e t t i n g and Using a Cross-Reference L i s t i n g

The Cross -Refe rence Program (CREF) a i d s i n debugg ing a s sembly l a n g u a g e
p rograms by p i n p o i n t i n g a l l r e f e r e n c e s t o a p a r t i c u l a r symbol.

G e n e r a t e t h e CREF l i s t i n g by u s i n g t h e CREF command or t h e PAL command
w i t h t h e /C o p t i o n . Typing

+PAL SAMPL.E/C-LS

w i l l p r o d u c e a b i n a r y f i l e and t h e CREF l i s t i n g as a f i l e c a l l e d
SAMPLE.LS. Using t h e TYPE o r LIST command w i l l d i s p l a y t h e l i s t i n g on
t h e t e r m i n a l o r p r i n t i t on a l i n e p r i n t e r , r e s p e c t i v e l y . F u r t h e r
i n f o r m a t i o n on CREF is g i v e n w i t h t h e d i s c u s s i o n o f t h e CREF command
i n C h a p t e r 3.

The o u t p u t o f CREF is i d e n t i c a l t o t h e PAL8 a s s e m b l e r o u t p u t e x c e p t
t h a t t h e CREF program numbers e a c h l i n e i n d e c i m a l and g e n e r a t e s a f t e r
t h e l i s t i n g a c r o s s - r e f e r e n c e t a b l e t h a t h a s t h e f o l l o w i n g f o r m a t :

B UF A DR 6 18)
BUFF 18 19 20#
MON 17 29$
MONADR 3) 29
NEXT 8 t 16
PNTR 7 10 12 14 19#
START 4)

5-7

THE PAL8 ASSEMBLER

The c r o s s - r e f e r e n c e t a b l e c o n t a i n s e v e r y u s e r - d e f i n e d symbol and
l i t e r a l , sor ted a l p h a b e t i c a l l y . I f l i t e r a l s a r e u s e d , e a c h l i t e r a l is
i n d i c a t e d by a n u n d e r l i n e fo l lowed by t h e f i e l d and a d d r e s s a t wh ich
i t o c c u r s . For e a c h symbol and l i t e r a l there a p p e a r s a l ist o f
numbers t h a t s p e c i f y t h e l i n e s i n which each i s r e f e r e n c e d . The
symbol # f o l l o w s t h e number o f t h e l i n e where t h e symbol is d e f i n e d .

5.2.6 O b t a i n i n g a Memory Map

Many times i t is des i rab le t o o b t a i n a map o f a program showing memory
l o c a t i o n s used by t h e g i v e n b i n a r y f i l e . G e n e r a t e t h e map by u s i n g
t h e MAP command. Typing

+ MAP SAMPLE-L

w i l l p r i n t t h e map on a l i n e p r i n t e r from SAMPLE.BN, and t y p i n g

*MAP SAMPLE

w i l l d i s p l a y t h e map on t h e t e r m i n a l (i n e f f e c t , e q u i v a l e n t t o t h e
command MAP SAMPLE-T).

The i n p u t f i l e must a lways be a b i n a r y f i l e (. B N e x t e n s i o n) . Use t h e
command

* MAP MAPFILeZSAMPLE

t o p l a c e t h e map i n t h e f i l e MAPFIL.MP. D i s p l a y t h e map on t h e
t e r m i n a l o r p r i n t it on a l i n e p r i n t e r by u s i n g t h e commands TYPE and
LIST, r e s p e c t i v e l y . The map for t h e program SAMPLE i s shown below.

BITMAP U4 FIELD 0

0000000011111111222222~2333333334444444455555S556666666677777777
0123456701234567012345670123456701234567012345670123456701234567

00000
00100

00200 1111111111111111111111111100000000000000000000000000000000000000
00300

00400
00500

00600
00700

The o u t p u t is a series o f l i n e s t h a t a r e made up o f a s t r i n g o f
d ig i t s . Each d i g i t , which r e p r e s e n t s a s i n g l e memory l o c a t i o n , c a n
have a v a l u e of 0 t o 3. A 0 means t h a t t h e l o c a t i o n i s empty w h i l e a
1 means t h a t t h e l o c a t i o n was l o a d e d i n t o once . The a p p e a r a n c e of a 2
means t h a t a l o c a t i o n was l o a d e d i n t o two times. A 3 means t h a t t h e
l o c a t i o n was l o a d e d i n t o three o r more times. The a p p e a r a n c e of a 2
o r 3 may imply a programming e r r o r i n t h a t two or more s e p a r a t e
r o u t i n e s are e a c h t r y i n g t o l o a d v a l u e s i n t o t h e same l o c a t i o n . The
example program shows memory l o c a t i o n s 0200 through 0231 b e i n g l o a d e d
i n t o once which i s c o r r e c t . F u r t h e r i n f o r m a t i o n on t h e MAP command is
g i v e n i n Chapter 3.

5-8

THE PAL8 ASSEMBLER

5.3 PAL8 OPTIONS

The command s t r i n g typed f o r t h e PAL command may i n c l u d e s e v e r a l
o p t i o n s . The o p t i o n s a r e l i s t e d i n T a b l e 5-1.

O p t i o n

T a b l e 5-1
PAL8 O p t i o n s

Meaning

T h i s o p t i o n makes t h e o p e r a t o r ! a 6 - b i t l e f t s h i f t
i n s t e a d o f an i n c l u s i v e OR (A!B e q u a l s A - 1 0 0 B) . T h i s
a l l o w s you t o pack two 6 - b i t A S C I I c h a r a c t e r s i n t o a
1 2 - b i t word. T h i s e f f e c t a p p l i e s f o r t h e e n t i r e
assembly .

Create a symbol c r o s s - r e f e r e n c e l i s t i n g (r u n s CREF.SV
program) a f t e r assembly . The t h i r d o u t p u t f i l e
s p e c i f i e d (o p t i o n a l) is t h e temporary o u t p u t f i l e passed
t o CREF. The second o u t p u t f i l e i s t h e l i s t i n g f i l e t o
be produced . I f no t h i r d o u t p u t f i l e i s g i v e n ,
SYS:CREFLS.TM is assumed and w i l l be d e l e t e d a f t e r u s e .
The /C o p t i o n s u p e r s e d e s t h e /G and /L o p t i o n s i f
s p e c i f i e d i n t h e same command s t r i n g .

Enable e r r o r messages i f a l i n k i s g e n e r a t e d . The LG
e r r o r message is g e n e r a t e d a s w e l l a s t h e Link b e i n g
f l a g g e d .

D i s a b l e ex t r a z e r o f i l l i n TEXT pseudo-op. I f t h e t e x t
i n t h e TEXT pseudo-op c o n t a i n s an even number o f
c h a r a c t e r s , no word o f z e r o s w i l l be added t o t h e end .

Load t h e b i n a r y f i l e i n t o memory and b e g i n e x e c u t i o n a t
t h e i n d i c a t e d s t a r t i n g a d d r e s s . I f no s t a r t i n g a d d r e s s
is i n d i c a t e d , s t a r t a t 200.

G e n e r a t e nonpag ina ted o u t p u t . Headers (i n c l u d i n g page
numbers and page f o r m a t) a re s u p p r e s s e d .

Do n o t l ist l i n e s of unassembled c o n d i t i o n a l s o u r c e
code.

Used i n a s sembl ing v e r y l a r g e programs: a l l o w s more
space i n f i e l d 1 t o be used f o r symbol t a b l e s t o r a g e .

Load t h e r e s u l t i n g b i n a r y f i l e i n t o memory b u t d o n o t
s t a r t it.

(c o n t i n u e d on n e x t page)

5-9

THE PAL8 ASSEMBLER

Table 5-1 (Cont.)
PAL8 Options

Option Meaning

Generate the symbol table but not the rest of the
1 ist ing .
Disable output of default (200) current location counter
(CLC) setting after a FIELD pseudo-op. The CLC remains
unchanged.

Omit the symbol table normally generated with the
listing.

Output a carriage return/line feed in place of form feed
character(s) in the program listing.

Do not remember the number of literals that were
previously stored on a page after changing the current
location counter to an off page value and then back
again.

When the /L or /G option is specified, you can also include any option
in the command line for the LOAD command, such as = starting address
option. If no address is specified, 00200 is assumed. If no binary
output file is specified (by using the -NB option) with a /L or /G, a
temporary file SYS:PAL8BN.TM is created and loaded.

5.4 CHARACTER SET

PAL8 programs are composed of physical lines containing assembly
language mnemonics that indicate processor instructions, user-defined
symbols, comments, listing control characters and pseudo-operators
(assembler directives). The following characters (see Appendix A
also) are used to specify these components.

1. The alphabetic characters A through 2

2. The numeric characters 0 through 9

3 . The characters special characters and operators described
below

4. Characters that are ignored during assembly, such as LINE
FEED and FORM FEED

All other characters are illegal (except when used in a comment) and
cause the following error message to be printed during passes 1 and 2:

IC nnnn

where:

nnnn represents the octal location at which the illegal
character occurred.

5-1 0

THE PAL8 ASSEMBLER

As assembly proceeds, each instruction is assigned a location
determined by the current location counter. When an illegal character
or any other error is encountered during assembly, the value of the
current location counter is displayed in the error message.

NOTE

You cannot use lower case characters in
labels, instruction mnemonics and
operands.

5 . 5 STATEMENTS

A PAL8 source program is prepared at the terminal using the Editor
program (EDIT command) to enter a sequence of statements. You must
enter each statement on a single line and terminate with a carriage
return. PAL8 statements have four elements. They are identified by
the order of their appearance in the statement and by the separating
(or delimiting) character that follows o r precedes the element. These
elements are:

1. label

2. instruction

3 . operand

4 . comment

A statement must contain at least one of these elements and may
contain all four. The assembler interprets and processes the
statements, generating one or more binary instructions or data words,
or performing an assembly process.

5.5.1 Labels

A label is the symbolic name created by the programmer to identify the
location of a statement in the program. If present, the label is
written first in a statement. It must begin with an alphabetic
character, contain only alphanumeric characters, and be terminated by
a comma. There must be no intervening spaces between any of the
characters and the comma. A label may be of any length, but only the
first six characters are significant. If a label is the only element
on a line, it identifies the location of the next program location.

For example,

*200
A, Defines A as 00200
B,O Defines B as 00200 and stores 0000 at location 00200

5.5.2 Instructions

An instruction may be one or more of the mnemonic machine instructions
or a pseudo-operation that directs assembly processing. (Assembly
pseudo-ops are described in Section 5.11.) Instructions are terminated
with zero o r more spaqes (or tabs) followed by a semicolon, slash, o r
the end of the line.

5-11

TBE PAL8 ASSEMBLER

5.5.3 Operands

Operands a r e t h e o c t a l or symbolic addresses of an assembly language
i n s t r u c t i o n or t h e argument of a pseudo-operator, and can be any l e g a l
expression. I n each case , i n t e r p r e t a t i o n of an operand depends on the
i n s t r u c t i o n or t h e pseudo-op. Operands a r e terminated by a semicolon,
s l a s h , o r the end of the l i n e .

5.5.4 Comments

Comments a r e a r b i t r a r y s t r i n g s of any character i n t h e ASCII s e t (see
Appendix A) t h a t begin w i t h a s l a s h (/ I . Comments do not a f f e c t
assembly processing or program execution b u t a r e useful i n t h e program
l i s t i n g t o record information f o r l a t e r ana lys i s or debugging. The
assembler ignores a l l charac te rs between the s l a s h and the n e x t
c a r r i a g e re turn .

I t is possible t o have only a c a r r i a g e r e t u r n on a l i n e , r e s u l t i n g i n
a blank l i n e i n the f i n a l l i s t i n g . Such a l i n e is ignored, and t h e
cur ren t loca t ion counter i s not incremented.

5.6 FORMAT CHARACTERS

The following charac te rs a r e useful i n c o n t r o l l i n g the format of an
assembly l i s t i n g t o improve r e a d a b i l i t y . They allow a neat readable
l i s t i n g t o be produced by providing a means of spacing through the
program.

5.6.1 Form Feed

The form feed character causes the assembler t o output blank l i n e s (or
a form feed character i f l i s t i n g on the l i n e p r i n t e r) i n order t o s k i p
t o a new page i n the output l i s t i n g during pass 3; t h i s f e a t u r e is
useful i n c r e a t i n g a page-by-page l i s t i n g . The form feed is generated
by t h e Editor P (Page) command. The pseudo-op E J E C T may a l s o be used
t o form pages i n t h e assembly l i s t i n g (see Section 5.11.7).

5.6.2 Tab

Tabs a r e used i n the body of a source program t o separate f i e l d s i n t o
columns. For example, a l i n e wr i t ten

GOp TAD TOTALIMAIN LOOP

i s much e a s i e r t o read i f t abs a r e inser ted t o form

001 T A D TOTAL / M A I N LOOP

Each occurrence of a t a b character causes PAL8 t o output enough spaces
t o move t o t h e next t e x t column. Each t e x t column is 8 charac te rs
wide.

5-1 2

THE PAL8 ASSEMBLER

5.6 .3 Statement Terminators

Each statement is terminated by the c a r r i a g e r e t u r n / l i n e feed
character combination produced by the Editor when the RETURN key was
pressed during the I n s e r t or Append modes. T h e semicolon (:) may a l s o
be used a s a statement terminator and is considered i d e n t i c a l t o a
car r iage Leturn except t h a t i t w i l l not terminate a comment. For
example,

TAU A /TC4I8 IS A COMMENT; TAD B

The e n t i r e expression between the s l a s h and the end of the l i n e i s
considered a comment. T h u s i n t h i s case the assembler ignores the TAD
B. I f , f o r example, a sequence of i n s t r u c t i o n s t o r o t a t e the contents
of t h e accumulator and l i n k s i x p laces t o the r i g h t is d e s i r e d , i t can
be w r i t t e n a s follows:

RTR
RTR
RTR

However, a s an a l t e r n a t i v e , a l l th ree i n s t r u c t i o n s can be placed on a
s i n g l e l i n e by separat ing them w i t h the s p e c i a l character semicolon
and terminating t h e e n t i r e l i n e w i t h a c a r r i a g e re turn . The above
sequence of i n s t r u c t i o n s can then be wr i t ten

1 3 ' ~ ~ 5 r.'rR ;

These multistatement l i n e s a r e p a r t i c u l a r l y useful when s e t t i n g as ide
a sec t ion of d a t a s torage . For example, a 4-word block of d a t a could
be reserved by specifying e i t h e r of the following:

I... :c E; 'r I

or

5 . 7 NUMBERS

Any sequence of d i g i t s del imited by a SPACE, TAB, semicolon, or the
end of a l i n e forms a number. PAL8 i n i t i a l l y i n t e r p r e t s numbers i n
o c t a l (base 8) . T h i s can be changed t o decimal using t h e pseudo-op
DECIMAL (Section 5 . 1 1 . 1 0) . Numbers a r e used i n expressions.

5.8 SYMBOLS

A symbol is a s t r i n g of alphanumeric charac te rs beginning w i t h a
l e t t e r and delimited by a nonalphanumeric charac te r . Although a
symbol may be any length, only the f i r s t s i x charac te rs a r e
s i g n i f i c a n t . Since addi t iona l charac te rs a r e ignored, symbols which
a r e i d e n t i c a l i n t h e i r f i r s t s i x charac te rs a r e considered i d e n t i c a l .

5-1 3

THE PAL8 ASSEMBLER

5.8.1 Permanent Symbols

The assembler symbol table initially contains definitions of the
symbols for all computer instructions and PAL8 psuedo-ops. These
symbols are permanently defined by PAL8 and need no further definition
by the user; they are summarized in Section 5.15. For example,

HLT This is a symbolic instruction assigned the value 7402 in
its permanent symbol table.

5.8.2 User-Defined Symbols

All desired symbols not defined by the assembler (in its permanent
symbol table) must be defined within the source program. User symbols
may be defined in two ways:

1. As a statement label. Labels are assigned a value equal to
the current location counter.

2. As an explicitly defined symbolic value (for example, A =
3 3) .

Permanent symbols (instructions, special characters, and pseudo-ops)
may not be redefined as a label or symbolic value. The following
examples are legal labels:

ADDR,

SUM,
AL

TOTAL,

The following labels are illegal:

AD>M, (contains an illegal character)
7ABC, (first character not alphabetic)
LA BEL, (contains embedded spaces)
D+TAG , (contains a legal but non-alphanumeric character)
LABEL (a comma does not follow immediately after)
TAD, (instruction mnemonic)

5.8.3 Current Location Counter

As source statements are processed, PAL8 assigns consecutive memory
addresses to the instructions and data words of the object program
(binary and listing) being produced.

The current location counter contains the address in which the next
word of object code will be assembled and is automatically incremented
each time a memory location is assigned. A statement that generates a
single object program storage word increments the location counter by
one. Another statement might generate six storage words, incrementing
the location counter by six.

The location counter is set or reset by typing an asterisk followed by
an expression giving the address in which the next program word is to
be stored. The expression may include symbols, but every such symbol
must have been defined at some previous point in the current source
file(s) being assembled. If the origin is not set by the user, PAL8
begins assigning addresses at location 200.

5-1 4

THE PAL8 ASSEMBLER

The symbol TAG i n t h e f o l l o w i n g example is a s s i g n e d a v a l u e o f 0300,
t h e symbol B a va lue o f 0302, and t h e symbol A a va lue of 0303.

*ZOO /SET ClJRRENT LOCATION COUNTER TO 300
T A G 1 CLA

JMP A
B? 0
A ? DCA E

I f a symbol is d e f i n e d more t h a n once as a l a b e l , t h e a s s e m b l e r w i l l
d i s p l a y t h e " i l l e g a l d e f i n i t i o n " e r r o r message:

I D a d d r e s s

where:

a d d r e s s is t h e o c t a l v a l u e of t h e l o c a t i o n c o u n t e r a t t h e
second o c c u r r e n c e o f t h e symbol d e f i n i t i o n . The symbol
is n o t r e d e f i n e d . PAL8 e r r o r c o n d i t i o n s a r e d e s c r i b e d
i n S e c t i o n 5.14.

JMF:' S'rART
A ? 7 4
COlJNTERr 0
sTAAfi"r CLA CLL

*
*
*

symbol START would h
have a v a l u e o f 0302:
Th ve v l u e o f 0300; t h e symbol CONTIN would

. t h e symbol A would have a v a l u e o f 0304; and
t h e symbol COUNTER (c o n s i d e r e d COUNTE by t h e a s s e m b l e r , because t h e
a s s e m b l e r uses o n l y t h e f i r s t s i x c h a r a c t e r s o f a symbol) would have a
v a l u e of 0305. When t h e assembler p r o c e s s e s t h e n e x t . l i n e , i t w i l l
d i s p l a y t h e e r r o r message:

I D COUNTE+0001

PAL8 w i l l a l s o d i s p l a y a n e r r o r message i f you r e f e r t o an u n d e f i n e d
symbol. For example,

t 7 1 7 0

C1.A CMA
H L. 'r
JMP A I

A ? TAD C

CY 0

T h i s would produce t h e " u n d e f i n e d symbol" e r r o r message
c

s i n c e t h e symbol A 1 h a s n o t been d e f i n e d .

5-1 5

THE PAL8 ASSEWBLER

5.8.4 Symbol T a b l e

I n i t i a l l y , t h e a s s e m b l e r ' s symbol t a b l e c o n t a i n s t h e d e f i n i t i o n s o f
t h e computer i n s t r u c t i o n s and PAL8 pseudo-ops; t h e s e a re PAL8's
permanent symbols . A s t h e s o u r c e program is p r o c e s s e d , u s e r - d e f i n e d
symbols and t h e i r 1 2 - b i t b i n a r y v a l u e s a re added t o t h e symbol t a b l e .
E n t r i e s i n t h e symbol t a b l e are l i s t e d i n a l p h a b e t i c o r d e r a t t h e end
o f t h e assembly l i s t i n g f i l e .

Dur ing p a s s 1, i f PAL8 d e t e c t s t h a t t h e symbol t a b l e is f u l l (i n o t h e r
words, t h e r e is no more memory s p a c e i n which t o s t o r e symbols and
t h e i r v a l u e s) , t h e "symbol t a b l e exceeded" e r r o r message is d i s p l a y e d
a s follows:

SE a d d r e s s

and c o n t r o l r e t u r n s t o t h e mon i to r . The number o f symbols d e f i n e d i n
t h e program may b e r educed by u s i n g r e l a t i v e a d d r e s s i n g f o r example ,
JMP START+3).

You c a n a l so segment a program and a s semble t h e segments s e p a r a t e l y ,
t a k i n g c a r e t o d e f i n e c o r r e c t l i n k s between t h e segments . P A L 8 ' s
symbol c a p a c i t y i s 2621 (d e c i m a l) symbols o f which 96 a r e permanent .
Where PAL8 is r u n under BATCH, 2357 symbols c a n b e d e f i n e d . (Use o f
t h e /K o p t i o n expands t h e s e t o 2971 and 2719 r e s p e c t i v e l y , b u t
a s sembly time is s l o w e r .)

I n s t r u c t i o n s f o r a l t e r i n g t h e permanent symbol t a b l e are i n S e c t i o n
5.11.8.

5 .8 .5 Direct Assignment S t a t e m e n t 8

N e w symbols and t h e i r a s s i g n e d v a l u e s may b e i n s e r t e d d i r e c t l y i n t o
t h e symbol t a b l e by u s i n g a d i r e c t a s s ignmen t s t a t e m e n t .

Format:

SYMBOL=value

where:

v a l u e is a number o r an e x p r e s s i o n .

No s p a c e s o r t a b s may appea r between t h e symbol t o t h e l e f t o f t h e
equal s i g n and t h e e q u a l s i g n i t s e l f b u t t h e y may appea r (and a r e
i g n o r e d) a f t e r t h e equal s i g n . The f o l l o w i n g a r e examples o f d i r e c t
a s s ignmen t s t a t e m e n t s :

A-6
EXIT=JMP I 0
C=A+B
CO=JMS I [. I

A l l symbols t o t h e r i g h t of t h e e q u a l s i g n must a l r e a d y b e d e f i n e d ,
e x c e p t t h a t symbols a r e a l lowed t o b e unde f ined d u r i n g p a s s 1. For
example ,

A=B

B=3
...

5-1 6

TEE PAL8 ASSEMBLER

During p a s s 1, A w i l l equal 0, s i n c e it i s u n d e f i n e d t h u s f a r . During
p a s s 2, A w i l l e q u a l 3, s i n c e B is g i v e n t h e v a l u e 3 a t t h e end o f
pass 1. The u s e o f t h e e q u a l s i g n d o e s n o t i n c r e m e n t t h e l o c a t i o n
c o u n t e r ; it is a n i n s t r u c t i o n t o t h e assembler i t se l f ra ther t h a n a
d a t a v a l u e .

A d i rec t a s s i g n m e n t s t a t e m e n t may a l s o e q u a t e a new symbol t o t h e
v a l u e a s s i g n e d t o a p r e v i o u s l y d e f i n e d symbol. For example,

BETA-1 7
GAMMA-BETA

The new symbol GAMMA is e n t e r e d i n t o t h e user ' s symbol t a b l e w i t h t h e
v a l u e 17. The v a l u e a s s i g n e d t o a symbol may b e changed a s f o l l o w s :

ALPHA35
ALPHA=7

The second l i n e of code shown changes t h e v a l u e a s s i g n e d t o ALPHA from
5 t o 7.

Symbols d e f i n e d by use o f t h e equal s i g n may be used i n any v a l i d
e x p r e s s i o n . For example,

t200
A=100 /DOES NOT UPDATE CURRENT LOCATION COUNTER
B=400 /DOES NOT UPDATE CURRENT LOCATION COUNTER
A t E /THE VALUE 500 IS ASSEMBLED AT LOC 200
TAD A /THE VAL.UE 1100 I S ASSEMBLED AT LOC 201

I f t h e symbol t o t h e l e f t o f t h e equal s i g n is i n t h e permanent symbol
t ab l e , t h e " r e d e f i n i t i o n " d i a g n o s t i c

RD address

w i l l be d i s p l a y e d as a warning (a d d r e s s is t h e v a l u e of t h e l o c a t i o n
c o u n t e r a t t h e p o i n t o f r e d e f i n i t i o n) . The new v a l u e w i l l be s t o r e d
i n t h e symbol t a b l e . For example,

CLA=7 6 00

w i l l cause t h e d i a g n o s t i c

RD+2 00

Whenever CLA is used a f t e r t h i s p o i n t , i t w i l l have t h e v a l u e 7600.

5.8.6 Symbolic I n s t r u c t i o n s

Symbols used as i n s t r u c t i o n s m u s t be p r e d e f i n e d by t h e assembler o r
d e f i n e d i n t h e assembly by t h e programmer. I f a s t a t e m e n t h a s no
l a b e l , t h e i n s t r u c t i o n s may a p p e a r f i r s t i n t h e s t a t e m e n t and must be
t e r m i n a t e d by a s p a c e , t a b , s e m i c o l o n , s l a s h , o r c a r r i a g e r e t u r n . The
f o l l o w i n g a r e examples o f l e g a l i n s t r u c t i o n s :

TAD (a mnemonic machine i n s t r u c t i o n)
PAGE (a n assembler pseudo-op)
ZIP (a n i n s t r u c t i o n d e f i n e d by t h e user)

5-1 7

THE PAL8 ASSEMBLER

5.8.7 Symbolic Operands

Symbols used as operands normally have a value defined by the user.
The assembler allows symbolic references to instructions or data
defined elsewhere in the program. Operands may be numbers or
expressions. For example,

TOTAL, TAD ACI+TAG

The values of the two symbols AC1 and TAG (previously defined in the
program) are combined by a two's complement add. (See Section 5.9.1
on Operators.) This value is then used as the operand address.

5.9 EXPRESSIONS

Expressions are formed by the combination of symbols, numbers, and
certain characters called operators, which cause specific arithmetic

' operations to be performed. An expression is terminated by either a
comma, carriage return, or semicolon. Expressions are evaluated by a
left-to-right scan.

5.9.1 Operators

Seven characters in PAL8 act as operators:

t -
n

%

6r
Space
(or TAB)

I

TWO'S complement addition
TWO'S complement subtraction
Multiplication (unsigned, 12-bit integer)
Division (unsigned, 12-bit integer)
Boolean inclusive OR
Boolean AND
Treated as a Boolean inclusive OR except
in a memory reference instruction

No checks for arithmetic overflow are made during assembly, and any
overflow bits are lost from the high-order end. For example,

7 7 55+2 4

will give a result of 1.

The operators plus (+) and minus (-1 may be used freely as unary
(prefix) operators.

Multiplication is accomplished by repeated addition. No checks for
sign or overflow are made. All 12 bits of each factor are considered
as magnitude. For example,

. 3000"2

will give a result of 6000.

5-1 8

THE PAL8 ASSEWBLER

Division is accomplished by repeated subtraction. The quotient is the
number of subtractions that are performed. The remainder is not saved
and no checks are made for sign. Division by 0 will arbitrarily yield
a result of 0. For example,

7000%1000

will yield a result of 7. This example could be written as:

-1000%1000

The answer might be expected to be -1 (7777), but all 12 bits are
considered as magnitude and the result is still 7.

Use of the multiplication and division operators requires more
attention to sign (on the part of the programmer) than is required for
simple addition and subtraction. Table 5-2 contains examples of
expressions using arithmetic operators.

Table 5-2
Use of Arithmetic Operators

Expression

7777+2
7776-3
0-2
2-0
1000-7
0%12
12%0
7777%1
7000%1000
1%2

A l s o Written as

-1+2
-2-3

-181
-1000%1000

Result
~ ~

+1
7773 or -5
0
0
7000 or -1000
0
0
7777 or -1
7
0

The ! operator causes a Boolean inclusive OR to be performed bit by
bit between the left-hand term and the right-hand term. Giving the /B
option changes the memory of "!I ' throughout the assembly to become a
6-bit left shift of the left term prior to the inclusive OR of the
right. According to this interpretation,

If A = l and B=2

then

A! B=0102

Under normal conditions A!B would be 0003.

The & operator causes a Boolean AND to be performed bit by bit between
the left and right values.

5-1 9

THE PAL8 ASSEMBLER

SPACE is an operator that has special significance depending on the
context in which it is used. When the symbol preceding the space is
not a memory reference instruction as in the following example

SMA CLA

it causes an inclusive OR to be performed between them. In this case,
SMA=7500 and CLA=7600. The expression SMA CLA is assembled as 7700.
When SPACE is used following pseudo-operators, it merely delimits the
symbol. When it is used after memory reference operators, it has a
special function explained below.

User-defined symbols are treated as non-memory reference instructions.
For example,

A=1234
B=7 7
A B

stores a data value of 1277 (octal), the same as A!B.

If data values are generated, the current location counter is
incremented. For example,

B-7;A+4;A-B

produces three words of information; the current location counter is
incremented after each expression. The statement

HLTCLA=HLT CLA

produces no information to be loaded (it produces a value for "HLTCLA"
in the symbol table) and hence does not increment the current location
counter.

In the program

*4271
TEMP,
TEM2, 0

the location counter is not incremented after the line TEMP,: the two
symbols TEMP and TEM2 are assigned the same value, in this case 4721.

Since a CPU instruction has an operation code of three bits as well as
one indirect bit, one page bit, and seven address bits, the assembler
must combine memory reference instructions in a manner somewhat
differently from the way in which it combines operate or IOT
instructions. The assembler differentiates between memory reference
instructions and user-defined symbols. The following symbols are the
memory reference instructions:

AND 0 0 0 0 Logical AND
TAD 1000 Two's complement addition
ISZ 2000 Increment and skip if zero
DCA 3000 Deposit and clear accumulator
JMS 4000 Jump to subroutine
JMP 5000 Jump

When the assembler has processed one of these symbols, the space or
tab €allowing it acts as an address field delimiter. In the example,

"4100
JMP A

A, CLA

5-20

THE PAL8 ASSEMBLER

A has t h e value 4 1 0 1 , JMP has t h e value 5000, and t h e space a c t s a s a
f i e l d de l imi te r . These symbols a r e represented i n binary a s follows:

A: 1 0 0 0 0 1 000 0 0 1
JMP: 1 0 1 000 000 000

The seven address b i t s of A a r e taken, f o r example,

0 0 0 0 0 1 000 0 0 1

The remaining b i t s of the address a r e t e s t e d t o see i f they a r e zeros
(page zero re ference) ; i f they a r e not , the c u r r e n t page b i t is set:

000 011 000 001

T h e operat ion code is then O R e d i n t o the JMP value t o form

1 0 1 0 1 1 000 0 0 1

o r , i n o c t a l

5301

I n addi t ion t o the above t e s t s , the page b i t s of the address f i e l d a r e
compared w i t h t h e page b i t s of the cur ren t l o c a t i o n counter. I f the
page b i t s of the address f i e l d a r e nonzero and do not equal t h e page
b i t s of the cur ren t l o c a t i o n counter , an out-of-page reference is
being attempted, and the assembler w i l l take ac t ion a s described i n
Section 5.12, on L i n k Generation and Storage.

5.9.2 Special Characters

I n addi t ion t o t h e opera tors described i n t h e previous s e c t i o n , PAL8
recognizes several s p e c i a l charac te rs t h a t serve s p e c i f i c funct ions i n
t h e assembly process:

equal s ign
comma
a s t e r i s k
period
double quote
parentheses
square brackets
s l a s h
semicolon
angle brackets
d o l l a r s ign

The equal s ign , comma, a s t e r i s k , s l a s h , and semicolon have been
previously described. The remaining s p e c i a l charac te rs a r e described
i n the following sec t ions .

5.9.2.1 Period (.) - The period character (.) represents the value
contained i n cur ren t loca t ion counter. I t may be used i n any
expression (except t o the l e f t of an equal s i g n) . I t m u s t be
separated from other symbols by a space or other operator . For
example,

"200
JMP .+2

5-21

THE PAL8 ASSEHBLER

is

w i

e q u i v a l e n t

t300
+ t2400

t o JMP 0202. Also,

1 produce n o c a t i o n 0300 t h e q u a n t i t y 2700. Cons i

ti40
PRINT=JMS I +
2200

er

The second l i n e (PRINT=JMS I .) d o e s n o t increment t h e c u r r e n t l o c a t i o n
c o u n t e r ; t h e r e f o r e , 2200 i s p l a c e d i n l o c a t i o n 140 and PRINT is
placed i n t h e user 's symbol t ab l e w i t h a n a s s o c i a t e d v a l u e o f 4540
(t h e o c t a l e q u i v a l e n t o f JMS I .) . T h i s t e c h n i q u e i s u s e f u l i n
c r e a t i n g " g l o b a l " s u b r o u t i n e ca l l s .

Large b u f f e r s may b e d e f i n e d by u s i n g a f o r m a t such as t h e f o l l o w i n g :

ti200 /BUFFER LOCATION
BUFFERr 0 /FIRST WORD OF BUFFER

NEXTi 0 /PROGRAM CONTINUES
bet400 /DEFINE A 401 WORD BUFFER

5.9.2.2 Double Quote (" 1 - When a d o u b l e q u o t e (") precedes a n ASCII
c h a r a c t e r , PAL8 a s s e m b l e s t h e 8 - b i t A S C I I e q u i v a l e n t o f t h e c h a r a c t e r .
(ASCII c o d e s a re l i s t e d i n Appendix A ,) For example,

CLA
TAD ("A)

The c o n s t a n t 0301 i s p l a c e d i n t h e accumula tor when t h e s e two
i n s t r u c t i o n s a re e v e n t u a l l y e x e c u t e d . The c h a r a c t e r m u s t n o t b e a
c a r r i a g e r e t u r n o r one o f t h e c h a r a c t e r s t h a t a r e i g n o r e d on i n p u t
(d i s c u s s e d a t t h e end of t h i s s e c t i o n) .

5.9.2.3 P a r e n t h e s e s (1 and Brackets[] - L e f t and r i g h t p a r e n t h e s e s ,
0 , e n c l o s e a c u r r e n t page l i t e r a l . The r i g h t p a r e n t h e s i s is
o p t i o n a l .

f200

+
+
CLA
TAD INDEX
TCSD (2)
DCA INDEX

*

The l e f t p a r e n t h e s i s is a s i g n a l t o t h e assembler t h a t t h e e x p r e s s i o n
t h a t f o l l o w s i s t o b e e v a l u a t e d and a s s i g n e d a word i n t h e l i t e r a l
area o f t h e c u r r e n t page. T h i s is t h e same area i n which t h e i n d i r e c t
a d d r e s s l i n k a g e s a r e s t o r e d . I n t h e above example, t h e q u a n t i t y 2 is
s t o r e d i n a word i n t h e l i t e r a l a r e a b e g i n n i n g a t t h e end o f t h e
c u r r e n t memory page. The i n s t r u c t i o n i n which t h e l i t e r a l a p p e a r s i s
g i v e n t h e a d d r e s s of t h e l i t e r a l . A l i t e r a l is a s s i g n e d t o s t o r a g e
t h e f i r s t time it i s e n c o u n t e r e d ; s u b s e q u e n t r e f e r e n c e s t o t h e same
l i t e r a l from t h e current p a g e a re made t o t h e same l o c a t i o n . The use

5-22

THE PAL8 ASSEWBLER

of l i t e r a l s f r e e s symbol s torage t a b l e and makes programs much more
readable. L i t e r a l a l l o c a t i o n s t a r t s w i t h the l a s t loca t ion on the
page and works towards the f i r s t loca t ion . I f the l i t e r a l a rea
reaches the ins t ruc t ion /da ta a rea , a PE (Page Exceeded) e r r o r message
is generated and assembly continues.

I f square brackets ([and I) a r e used i n place of parentheses , t h e
l i t e r a l is assigned t o page zero r a t h e r than the cur ren t page. T h i s
enables a value t o be referenced from any address w i t h i n the f i e l d .
For example,

1200
T A D C 2 1

t

1500
r A r t C 2 3
+
t

t

The closing member is opt iona l . L i t e r a l s may contain any expression.

NOTE

L i t e r a l s can be nested, f o r example:

T h i s type of nest ing may be continued t o
a s many a s s i x l e v e l s , depending on the
number of other l i t e r a l s on the page and
the complexity of the expressions w i t h i n
the next. I f the l i m i t s of the
assembler a r e reached, the e r r o r message
BE (too many l e v e l s of nes t ing) or PE
(too many l i t e r a l s) w i l l r e s u l t .

5.9.2.4 Angle Brackets (< > I - Angle brackets (< > I a r e used a s
condi t ional de l imi te rs . The code enclosed i n the angle brackets i s
assembled or ignored, depending on the d e f i n i t i o n of the symbol or
value of the expression preceding the angle brackets. (T h e IFDEF,
I F N D E F , I F Z E R O , and I F N Z R O pseudo-operators a r e used w i t h angle
brackets and a r e described i n Section 5.11.9.)

NOTE

Programs t h a t use condi t iona ls should
avoid angle brackets i n comments a s t h e y
w i l l be in te rpre ted a s beginning or
terminating the condi t iona l .

5-23

THE PAL8 ASSEMBLER

CLA MQA MQL OPERATION
CODE 1 I

5.9.2.5 Dollar Sign($) - The d o l l a r s ign ($ 1 character is opt iona l a t
t h e end of a program and is in te rpre ted a s an unconditional
end-of-pass. I t may, however, occur i n a t e x t s t r i n g , comment, or
double quote (" 1 term, i n which case it is in te rpre ted i n t h e same
manner a s any other charac te r . T h i s f e a t u r e is provided f o r
compat ibi l i ty w i t h . o lder PDP-8 assemblers, and i t s use is not
recommended.

5.9.3 Other Characters

The following charac te rs a r e handled by the assembler for the pass 3
program l i s t i n g b u t a r e otherwise ignored:

FORM F E E D Skips t o a new page
L I N E F E E D Creates a l i n e spacing without causing a c a r r i a g e

S P A C E Spaces t o next character pos i t ion
TAB Spaces t o next " tab column" of 8 charac te rs
RETURN Terminates each l i n e
BELL (CTRL/G) Sounds the terminal buzzer

re turn

5.10 INSTRUCTION SET

The i n s t r u c t i o n s e t f o r P A L 8 includes processor i n s t r u c t i o n s ,
input/output (I/O) i n s t r u c t i o n s , and assembler i n s t r u c t i o n s
(pseudo-ops). The processor i n s t r u c t i o n s a r e f u r t h e r divided i n t o two
basic groups of i n s t r u c t i o n s : memory reference and microinstruct ions.
(See Section 5.15 f o r d e t a i l e d l i s t i n g of i n s t r u c t i o n s .)

5.10.1 Memory Reference I n s t r u c t i o n s

Memory reference i n s t r u c t i o n s have the following format:

I CONTAINS A 1 TO A
SPECIFY GROUP 3
CONTAINS A 1 TO SPECIFY GROUP 3

Memory Reference B i t I n s t r u c t i o n s

B i t s 0 through 2 contain the operat ion code of the i n s t r u c t i o n t o be
performed. B i t 3 i n d i c a t e s whether t h e memory reference is i n d i r e c t .
B i t 4 i n d i c a t e s whether t h e i n s t r u c t i o n is referencing the cur ren t
page r a t h e r than page zero. B i t s 5 through 11 (7 b i t s) spec i fy an
address. Using these seven b i t s , 2 0 0 o c t a l (1 2 8 decimal) l o c a t i o n s
can be d i r e c t l y specif ied: t h e page b i t increases access ib le
l o c a t i o n s t o 4 0 0 o c t a l o r 256 decimal. A l i s t of the memory reference
i n s t r u c t i o n s and t h e i r codes i s given a t t h e end of t h i s chapter .

5-24

THE PAL8 ASSEMBLER

I n PAL8, a memory r e f e r e n c e i n s t r u c t i o n m u s t b e f o l l o w e d by one o r
more s p a c e s and t a b s , an o p t i o n a l I and/or 2 d e s i g n a t i o n , and any
v a l i d e x p r e s s i o n .

When t h e c h a r a c t e r I a p p e a r s i n a s t a t e m e n t between a memory r e f e r e n c e
i n s t r u c t i o n and an o p e r a n d , t h e o p e r a n d , is i n t e r p r e t e d as t h e a d d r e s s
(or l o c a t i o n) c o n t a i n i n g t h e a d d r e s s o f t h e operand t o be used i n t h e
c u r r e n t i n s t r u c t i o n . Cons ider :

TAD 40

which i s a d i r e c t a d d r e s s s t a t e m e n t , where 4 0 i s i n t e r p r e t e d a s t h e
l o c a t i o n on page z e r o c o n t a i n i n g t h e q u a n t i t y t o be added t o t h e
a c c u m u l a t o r . R e f e r e n c e s t o l o c a t i o n s on t h e c u r r e n t page and page
z e r o may b e done d i r e c t l y . For c o m p a t i b i l i t y w i t h o l d e r PDP-8
assemblers, t h e symbol Z is a l s o a c c e p t e d as a way o f i n d i c a t i n g a
page z e r o r e f e r e n c e , as f o l l o w s :

TAD Z 40

T h i s i s a n o p t i o n a l n o t a t i o n , n o t d i f f e r i n g i n e f f e c t from t h e
p r e v i o u s example. Thus, i f l o c a t i o n 4 0 c o n t a i n s 0432, t h e n 0432 is
added t o t h e accumula tor when t h e code is executed. Now c o n s i d e r :

TAD I 40

which i s an i n d i r e c t a d d r e s s s t a t e m e n t , where 40 is i n t e r p r e t e d a s t h e
a d d r e s s c o n t a i n i n g t h e a d d r e s s o f t h e q u a n t i t y t o be added t o t h e
accumula tor . Thus, i f l o c a t i o n 4 0 c o n t a i n s 0432, and l o c a t i o n 432
c o n t a i n s 0456, t h e n 456 is added t o t h e accumula tor when t h e
i n s t r u c t i o n i s e v e n t u a l l y e x e c u t e d .

NOTE

Because t h e l e t t e r I is used t o i n d i c a t e
i n d i r e c t a d d r e s s i n g , i t may n o t be
r e d e f i n e d as a l a b e l o r v a r i a b l e .
L i k e w i s e t h e l e t t e r 2 , which i s
sometimes used t o i n d i c a t e a page z e r o
r e f e r e n c e , may n o t be r e d e f i n e d .

5.10.2 Microinstructions

M i c r o i n s t r u c t i o n s a re d i v i d e d i n t o two classes: o p e r a t e and
Input /Output T r a n s f e r (I O T) m i c r o i n s t r u c t i o n s . O p e r a t e
m i c r o i n s t r u c t i o n s a re f u r t h e r s u b d i v i d e d i n t o Group 1, Group 2 , and
Group 3.

NOTE

I f a n i l l e g a l combina t ion o f
m i c r o i n s t r u c t i o n s is s p e c i f i e d , t h e
a s s e m b l e r w i l l per form an i n c l u s i v e OR
between them, r e s u l t i n g i n a n unexpec ted
o p e r a t i o n . For example,

CLL SKP is i n t e r p r e t e d as SPA
(7100) (7410) (7510)

5-25

THE PAL8 ASSEMBLER

BSW IAC 1 1 1 0 CLA CLL CMA CML
I 1

5.10.2.1 Operate Microinstructions - O p e r a t e i n s t r u c t i o n s a r e d i v i d e d
i n t o t h r e e g r o u p s of m i c r o i n s t r u c t i o n s . Although i t is p o s s i b l e t o
combine i n s t r u c t i o n s w i t h i n a g r o u p , i t is n o t l o g i c a l l y p o s s i b l e t o
combine i n s t r u c t i o n s from d i f f e r e n t g r o u p s . Group 1 m i c r o i n s t r u c t i o n s
p e r f o r m c l ea r , complement, r o t a t e and i n c r e m e n t o p e r a t i o n s on t h e
Accumulator and Link r e g i s t e r s , and a r e d e s i g n a t e d by t h e p r e s e n c e o f
a 0 i n b i t 3 of t h e machine i n s t r u c t i o n word.

ROTATE AC AND L LEFT

Group 1 O p e r a t e M i c r o i n s t r u c t i o n B i t Assignments

The f o l l o w i n g c o n s t a n t s c a n be produced
i n s t r u c t i o n :

C o n s t a n t

i n t h e accumula tor by a s i n g l e

I n s t r u c t i o n

0
1
2
3"
4 *
6*

l o o *
2000
3777
4 0 0 0
5777
6000*
7775
7776
7777

CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
CLA
STA

I A C
CLL CML RTL
CLL CML I A C RAL
CLL I A C RTL
CLL CML I A C RTL
I A C BSW
CLL CML RTR
CLL CMA RAR
CLL CML RAR
CLL CMA RTR
CLL CML I A C RTR
CLL CMA RTL
CLL CMA RAL
(=CLA CMA)

I n s t r u c t i o n s t h a t a re s t a r r ed (*) m u s t n o t be used on s o f t w a r e t o be
t r a n s p o r t e d o n t o o l d (non-omnibus) PDP-8 computers .

Group 2 m i c r o i n s t r u c t i o n s check t h e c o n t e n t s of t h e Accumulator and
Link a n d , based on t h e c h e c k , c o n t i n u e t o o r s k i p t h e n e x t
i n s t r u c t i o n . Group 2 m i c r o i n s t r u c t i o n s a r e i d e n t i f i e d by t h e p r e s e n c e
of a 1 i n b i t 3 and a 0 i n b i t 11 of t h e machine i n s t r u c t i o n word.

5-26

THE PAL8 ASSEMBLER

1 1 1 1 CLA SMA SZA SNL OSR HLT 0

LOGICAL SEQUENCE: 1 (BIT 8 IS 0) -SMA OR SZA OR SNL
(BIT 8 IS 1) - SPA AND SNA AND SZL

2 - CLA
3 - OSR, HLT

CLA MQA MQL OPERATION
CODE

Group 2 Operate Microinstruction Bit Assignments

1 I

Group 3 microinstructions reference the MQ register. They are
differentiated from Group 2 instructions by the presence of a 1 in
bits 3 and 11 of the machine instruction word.

I CONTAINS A 1 TO 1
SPECIFY GROUP 3

CONTAINS A 1 TO SPECIFY GROUP 3

Group 3 Operate Microinstruction Bit Assignments

Group 1 and Group 2 microinstructions cannot be combined since bit 3
determines either one or the other. Group 2 has two groups of skip
instructions. They can be referred to as the OR group and the AND
group.

OR Group AND Group

SMA SPA
SZA SNA
SNL SZL

The OR group is designated by a 0 in bit 8, and the AND group by a 1
in bit 8. OR and AND group instructions cannot be combined with each
other since bit 8 determines either one or the other.

If skip instructions are combined, it is important to note the
conditions under which a skip may occur.

1. OR Group -- If these skips are combined in a statement, the
inclusive OR of the conditions determines the skip. For
example :

SZA SNL

The next statement is skipped if the Accumulator contains
0000 or the link is a 1 or both.

5-2 7

THE PAL8 ASSEMBLER

1 1 0

2 , AND Group -- I f the sk ips a r e combined i n a s ta tement , the
l o g i c a l AND of the condi t ions determines the skip. For
example:

SNA SZL

In

The next statement i s skipped only i f tk.e accumulator d i f f e r s
from 0000 and the l i n k i s 0 .

5 .10 .2 .2 rnput/Output Transfer Microinstruct ions - Input/output
t r a n s f e r microinstruct ions i n i t i a t e operat ion of' per ipheral equipment
and e f f e c t an information t r a n s f e r between the c e n t r a l processor and
t h e input/output d e v i c e (s) .

0 1 2 3 4 5 6 7 8 9 10 11

DEVICE CODE SELECTION
CONTROL BITS

IOT I n s t r u c t i o n B i t Assignments

5.10.3 Autoindexing

Consecutive address references a r e of ten necessary f o r obtaining d a t a
values when processing l a r g e amounts of da ta . Autoindex r e g i s t e r s
(l o c a t i o n s 10-17 of each memory f i e l d) a r e used f o r t h i s purpose.
When one of the absolute l o c a t i o n s from 1 0 through 1 7 (o c t a l) is
i n d i r e c t l y addressed, the contents of the loca t ion a r e incremented and
then used a s an i n d i r e c t operand address. T h i s allows consecutive
memory l o c a t i o n s t o be addressed, u s i n g a minimum of i n s t r u c t i o n s . I t
m u s t be remembered t h a t i n i t i a l l y these l o c a t i o n s (1 0 through 1 7 on
page 0 of each f i e l d) m u s t be s e t t o one l e s s than the f i r s t des i red
address. No incrementation takes place when 3.ocations 1 0 t o 1 7 a r e
addressed d i r e c t l y . For example, i f t h e i n s t r u c t i o n t o be executed
next i s i n loca t ion 300 and the da ta t o be referenced is on the page
s t a r t i n g a t l o c a t i o n 5000 , autoindex r e g i s t e r 1 0 can be used t o
address the d a t a a s follows:

0276 1377 TAD (4777) /=5000-1
0277 3010 DCA 10 /SET UP rlUTO I N D E X
0300 1410 TAD I 10 /INCREMENT TO 5000
* * /BEFORE IJSE OF AN I N D I R E C T
* * /ADD RES S

0377 4777 (Literal Area o f Page 1)
* *

Note t h a t t h e Data Field m u s t be s e t t o the f i e l d of the da ta being
referenced, i n t h i s case , Field 0 .

When the i n s t r u c t i o n i n loca t ion 300 is executed, the contents of
loca t ion 1 0 w i . 1 1 be incremented t o 5 0 0 0 , and the contents of l o c a t i o n
5000 w i l l be added t o the contents of t h e accumulator. I f the
i n s t r u c t i o n TAD I 1 0 is executed again, the contents of l o c a t i o n 5001
w i l l be added t o t h e accumulator, and s o on.

5-28

THE PAL8 ASSEMBLER

5.11 PSEUDO-OPERATORS

Pseudo-opera tors a r e used t o d i r e c t t h e assembler t o per form c e r t a i n
p r o c e s s i n g o p e r a t i o n s o r t o i n t e r p r e t s u b s e q u e n t c o d i n g i n a c e r t a i n
manner. Some pseudo-ops g e n e r a t e s t o r a g e words i n t h e o b j e c t program,
o t h e r pseudo-ops d i r e c t t h e a s s e m b l e r on how t o proceed w i t h t h e
assembly . The pseudo-ops a r e d e f i n e d i n t h e permanent symbol t a b l e .

5.11.1 I n d i r e c t and Page Zero Address ing

The p s e u d o - o p e r a t o r s I and Z s p e c i f y t h e t y p e o f a d d r e s s i n g t o b e
per formed. These a re d i s c u s s e d i n S e c t i o n 5.10.1.

5.11.2 Extended Memory

5.11.2.1 FIELD Pseudo-Operator - The pseudo-op FIELD i n s t r u c t s t h e
a s s e m b l e r t o o u t p u t a f i e l d s e t t i n g so t h a t i t may assemble c o d e i n t o
more t h a n one memory f i e l d . T h i s f i e l d s e t t i n g i s o u t p u t d u r i n g p a s s
2 i n t h e ob jec t b i n a r y f i l e and is r e c o g n i z e d by t h e LOAD command
which i n t u r n causes a l l s u b s e q u e n t i n f o r m a t i o n t o be loaded i n t o t h e
f i e l d s p e c i f i e d by t h e e x p r e s s i o n .

Format:

F I E L D f f

where:

f f is an i n t e g e r , a p r e v i o u s l y d e f i n e d symbol, o r an
e x p r e s s i o n whose terms have been d e f i n e d . The v a l u e
m u s t be i n t h e r a n g e 0 t o 3 7 .

T h i s f i e l d s e t t i n g i s o u t p u t t o t h e b i n a r y f i l e d u r i n g p a s s 2 a l o n g
w i t h a d e f a u l t c u r r e n t l o c a t i o n c o u n t e r s e t t i n g of 200 . These
s e t t i n g s a r e r e a d by t h e LOAD command when it is e x e c u t e d t o b e g i n
l o a d i n g i n f o r m a t i o n i n t o t h e new f i e l d .

The f i e l d s e t t i n g i s n e v e r remembered by t h e assembler e x c e p t a s t h e
h igh-order d i g i t o f t h e L o c a t i o n Counter on t h e l i s t i n g . A b i n a r y
f i l e produced w i t h o u t f i e l d s e t t i n g s w i l l be loaded i n t o f i e l d 0 when
u s i n g t h e LOAD command.

A symbol i n one f i e l d may b e used t o r e f e r e n c e t h e same l o c a t i o n i n
any o t h e r f i e l d . The f i e l d t o which i t r e f e r s is d e t e r m i n e d by t h e
u s e o f t h e CDF and C I F i n s t r u c t i o n s . CDF and CIF i n s t r u c t i o n s m u s t b e
used pr ior t o any i n s t r u c t i o n r e f e r e n c i n g a l o c a t i o n o u t s i d e t h e
c u r r e n t f i e l d , a s shown i n t h e f o l l o w i n g example:

t200

CDF 00
C I F 10

CIF 10
.JMP NEXT

F'1EL.D 1
*zoo

TAD ~ 3 0 1

JMS P R I N T

I D 3 0 l r 301

5-29

THE PAL0 ASSEMBLER

NEXTr TAD P302
CDF 10
JMS PRINT
HLT

P3029 302
PRINTr 0

TLS
TSF
JMP +- l
CLA
RDF
TAD PCDIF
DCA *+l
000
JMP I PRINT

PCDIFi CDF CIF 0

When FIELD i s used, the assembler follows the new F I E L D s e t t i n g w i t h
an o r i g i n a t loca t ion 2 0 0 . For t h i s reason, t o assemble code a t
loca t ion 4 0 0 i n f i e l d 1, i t would be necessary t o wr i te

FIELD1 /CORRECT EXAMPLE
t 4 0 O

The following is incor rec t and w i l l not generate the desired code:

t400 /INCORRECT
FIELD1

Specifying the /O option t o PAL8 i n h i b i t s the output of the d e f a u l t
cur ren t loca t ion counter s e t t i n g of 2 0 0 a f t e r a FIELD pseudo-op. T h i s
leaves the cur ren t loca t ion counter a t i t s previous value.

5 .11 .2 .2 Specifying Data and I n s t r u c t i o n F ie lds - The PDP-8's memory
addresses a r e spec i f ied by the contents of the Memory Reference
I n s t r u c t i o n modified by the Data Field and I n s t r u c t i o n Field
Regis ters . Direct addressing, spec i f ied by b i t 3=0, causes reference
t o t h e address given i n b i t s 5-11 i n page 0 of the cur ren t f i e l d , i f
b i t 4=0 , or t o the cur ren t page, i f b i t 4=1. I n d i r e c t addressing,
spec i f ied by b i t 3 = 1 , causes reference t o the i n d i r e c t address
contained i n the loca t ion spec i f ied by b i t s 4 -11 , used a s above. The
i n d i r e c t address for AND, TAD, ISZ, and DCA r e f e r s not t o the cur ren t
f i e l d , b u t t o t h e f i e l d spec i f ied i n the Data Field Regis ter . The JMP
and JMS i n s t r u c t i o n s r e f e r t o l o c a t i o n s i n the f i e l d spec i f ied i n the
I n s t r u c t i o n Field Regis ter .

The Data Field Register and I n s t r u c t i o n Field Register can be s e t
under program cont ro l by means of the C I F and CDF i n s t r u c t i o n s . The
C I F i n s t r u c t i o n causes the I n s t r u c t i o n Field Buffer t o be s e t t o t h e
spec i f ied f i e l d . The CDF i n s t r u c t i o n causes the Data Field Register
t o be changed immediately. Other i n s t r u c t i o n s allow the program t o
read, save, and r e s t o r e the Data F i e l d and I n s t r u c t i o n Field
Regis ters . Completion of execution of a JMP or JMS i n s t r u c t i o n causes
the I n s t r u c t i o n Field Register t o be s e t t o the contents of the
I n s t r u c t i o n Field Buffer. T h i s procedure permits a program t o choose
a new f i e l d , then execute a jump from the cur ren t f i e l d t o a chosen
address i n the new f i e l d .

5-30

THE PAL8 ASSEMBLER

The CDF and C I F i n s t r u c t i o n s l e t you s p e c i f y f i e l d s 0 t o 3 7 as da t a
and i n s t r u c t i o n f i e l d s . E n t e r i n g t h e a rgument r e q u i r e s knowledge o f
t h e b i t a r r a n g e m e n t o f t h e s e two i n s t r u c t i o n s .

Mnemonic IOT B i t Arrangement

CDF 6201 1 1 0 Ola cdebOl
-

C I F 6202 1 1 0 Ola cdeblO

B i t s a cde b i n d i c a t e t h e d a t a o r i n s t r u c t i o n f i e l d . (The p o s i t i o n i n g
o f t h e b i t s i s e c c e n t r i c as t o m a i n t a i n c o m p a t i b i l i t y w i t h o l d e r PDP-8
s y s t e m s . 1

To s p e c i f y a f i e l d from 0 t o 7 , use b i t s c , d , and e o n l y . The f o r m a t
o f t h e i n s t r u c t i o n s are:

CDF nO
C I F nO

where:

nO is a n o c t a l number t h a t PAL8 O R s w i t h t h e i n s t r u c t i o n
c o d e

n is a n o c t a l d i g i t f rom 0 t o 7 (b i t s cde)

For example , t h i s i n s t r u c t i o n

CDF 60

s p e c i f i e s f i e l d 6 by c a u s i n g PAL8 t o d o t h e f o l l o w i n g OR.

a cde b
I n s t r u c t i o n code 6201 1 1 0 010 000 0 0 1
Argument 60 000 000 1 1 0 0 0 0

6261 1 1 0 010 1 1 0 001

Keep i n mind t h a t t o c a l l f o r f i e l d s above f i e l d 7 (above 32K) w i t h
CDF and C I F , you must f i r s t l o a d t h e KT8A Extended Mode R e g i s t e r w i t h
t h e LXM i n s t r u c t i o n (see t h e KT8A Memory Management C o n t r o l User's
G u i d e) . For example , t h e f o l l o w i n g code d e p o s i t s 7777 i n f i e l d 1 2 ,
l o c a t i o n 1000 .

LXM
CDF 24
TAD (7 7 7 7
DCA I (1000

KT8A users m u s t a l s o e n s u r e t h a t t h e i r p rog rams and d e v i c e h a n d l e r s d o
n o t c o n t a i n t h e f o l l o w i n g c o m b i n a t i o n o f i n s t r u c t i o n s teps .

C I F /Change i n s t r u c t i o n f i e l d
IOT /Any PDP8 IOT i n s t r u c t i o n
JMP I /The i n s t r u c t i o n t h a t d o e s t h e C I F

I f you e n a b l e t h e KT8A and t u r n on t h e i n t e r r u p t s , t h e KT8A ha rdware
w i l l r e t u r n t o t h e wrong place on t r aps between t h e C I F and JMP I
i n s t r u c t i o n s .

5-31

THE PAL8 ASSEMBLER

To s p e c i f y a f i e l d f rom 1 0 t o 1 7 , use b i t s c d e and s e t b i t b . The
f o r m a t o f t h e i n s t r u c t i o n s are:

CDF n4
C I F n4

where:

n4 i s a n o c t a l number t h a t PAL8 O R s w i t h t h e i n s t r u c t i o n
c o d e

n i s a n o c t a l v a l u e from 0 t o 7 (b i t s c d e)

4 is a n o c t a l v a l u e i n d i c a t i n g a f i e l d r a n g e of 1 0 t o 17
(se t s b i t b)

For example, t h i s i n s t r u c t i o n

CDF 64

i n d i c a t e s f i e l d 1 6 .

To s p e c i f y a f i e l d f rom 20 t o 27, use b i t s c d e and s e t b i t a . The
f o r m a t s are:

CDF I n 0
C I F I n 0

where:

I n 0 i s a n o c t a l number t h a t PAL8 O R s w i t h t h e i n s t r u c t i o n

1 is a n oc t a l v a l u e i n d i c a t i n g f i e l d r a n g e 20 t o 27 (sets
A)

n i s a v a l u e from 0 t o 7 (b i t s CDE)

For example, t h i s i n s t r u c t i o n

CDF 160

i n d i c a t e s f i e l d 26.

To s p e c i f y a f i e l d f rom 30 t o 37, u s e b i t s CDE and s e t b i t A and B.
The f o r m a t s a r e :

CDF l n 4
C I F l n 4

where:

l n 4 i s a n oc ta l number t h a t PAL8 O R s w i t h t h e i n s t r u c t i o n

1.. . 4 are oc t a l v a l u e s i n d i c a t i n g a f i e l d r a n g e o f 30 t o 37

n is a n oc t a l d i g i t i n t h e r a n g e 0 t o 7 (b i t s CDE)

(set b i t s A and B)

.5-32

THE PAL8 ASSEMBLER

For example, t h i s i n s t r u c t i o n

CDF 1 6 4

s p e c i f i e s f i e l d 36

One way t o avoid confusion w i t h t h i s unusual b i t configurat ion is t o
def ine high f i e l d s w i t h convenient mnemonics. For example:

F36a.164
CDF F36

5.11.3 Reset t ing t h e Location Counter

The PAGE n pseudo-op r e s e t s the loca t ion counter t o the f i r s t address
of page n , where n is an in teger , a defined symbol, o r a symbolic
expression whose terms have been defined previously and whose value is
from 0 t o 37 inclusive. I f n is not s p e c i f i e d , t h e l o c a t i o n counter
i s r e s e t t o the beginning of t h e n e x t page of memory. For example,

PAGE 2 s e t s the l o c a t i o n counter t o 0 0 4 0 0
PAGE 6 s e t s the l o c a t i o n counter t o 0 1 4 0 0

I f the pseudo-op is used without an argument and the cur ren t l o c a t i o n
counter is a t the f i r s t loca t ion of a page, the cur ren t l o c a t i o n
counter w i l l not be r e s e t . I n the following example, the code TAD B
i s assembled i n t o loca t ion 0 0 4 0 0 :

t377
JMP .-3
PAGE
TAD E

I f severa l consecutive PAGE pseudo-ops a r e given, the f i r s t w i l l cause
the cur ren t l o c a t i o n counter t o be r e s e t a s spec i f ied . The r e s t of
the PAGE pseudo-ops w i l l be ignored.

5.11.4 Reserving Memory

ZBLOCK i n s t r u c t s the assembler t o reserve n words of memory containing
zeros , s t a r t i n g a t t h e address indicated by t h e cur ren t l o c a t i o n
counter. I t i s of t h e form

ZBLOCK n

For example,

ZBLOCK 4 0

causes the assembler t o reserve 4 0 (o c t a l) words and s t o r e zeros i n
them. The n may be an expression. I f n=O, no loca t ions a r e reserved.
A ZBLOCK statement may have a l a b e l .

5-33

THE PAL8 ASSEMBLER

5.11.5 Relocation Pseudo-Operator

I t is sometimes d e s i r a b l e t o assemble code a t a given l o c a t i o n and
t h e n move it a t r u n time t o another l o c a t i o n for execution. T h i s may
r e su l t i n e r r o r s u n l e s s t h e re located code is assembled i n s u c h a way
t h a t t h e assembler ass igns symbols t h e i r execution-time addresses
rather than the i r load-time addresses. The RELOC pseudo-op
e s t a b l i s h e s a v i r t u a l l o c a t i o n counter without a l t e r i n g t h e a c t u a l
l o c a t i o n counter. The l i n e

RELOC expr

s e t s t h e v i r t u a l loca t ion counter t o expr. The l i n e

RELOC

r e s e t s t h e v i r t u a l l o c a t i o n counter back t o the a c t u a l l o c a t i o n
counter value and terminates the re loca t ion sec t ion .

For example, the following program causes t h e assembler t o load t h e
word a t CODE i n t o loca t ion 204, b u t assembles it a s i f i t were loaded
i n t o 1371. The a s t e r i s k s a f t e r t h e loca t ion values i n d i c a t e t h a t the
v i r t u a l and t h e a c t u a l l o c a t i o n counters d i f f e r f o r t h a t l i n e of code.
Only the v i r t u a l l o c a t i o n counter i s l i s t e d . Do not use c u r r e n t page
l i t e r a l s i n code t h a t is af fec ted by a RELOC.

0200
000200 1205
000201 7402

1367
0013673 1371
001370f 7402
0013713 0000

0205
000205 0000

3200
TAD CHAR
HLT
RELOC 1367
TAD CODE
HLT

RELOC
CODE I 0

CHAR 9 0

5.11.6 Suppressing t h e L i s t i n g

The por t ions of t h e source program enclosed by XLIST pseudo-ops w i l l
not appear i n t h e l i s t i n g f i l e ; t h e assembled binary w i l l be ou tput ,
however.

Two XLIST pseudo-ops may be used t o enclose the code t o be suppressed
i n wh ich case t h e f i r s t XLIST w i t h no argument w i l l suppress t h e
l i s t i n g , and the second w i l l allow i t again. XLIST may a l s o be used
w i t h an expression a s an argument. The l i s t i n g w i l l be inh ib i ted i f
t h e expression is not equal t o zero, o r allowed i f t h e expression is
equal t o zero. XLIST pseudo-ops never appear i n t h e assembly l i s t i n g .

5.11.7 Control l ing Page Format

The E J E C T pseudo-op causes t h e l i s t i n g t o s k i p t o the top of the next
page. A page e j e c t i s done automatically every 55 l i n e s ; E J E C T is
u s e f u l i f more frequent paging is des i red . I f t h i s pseudo-op is
followed by a s t r i n g of charac te rs , the f i r s t 40 (decimal) charac te rs
of t h a t s t r i n g w i l l be used a s a new t i t l e a t the top of each page of
the l i s t i n g .

5-34

THE PAL8 ASSEMBLER

5.11.8 A l t e r i n g t h e Permanent Symbol T a b l e

I f your DECsystem i n c l u d e s one o r more o p t i o n a l d e v i c e s t h a t you want
t o program d i r e c t l y whose i n s t r u c t i o n sets a re n o t d e f i n e d i n t h e
permanent symbol t ab le , t h e n you would have t o a l t e r t h e symbol t a b l e
t o i n c l u d e t h e IOT i n s t r u c t i o n s f o r t h e s e d e v i c e s .

I n a n o t h e r s i t u a t i o n , programmed-defined symbols migh t require more
s p a c e t h a n i s a v a i l a b l e i n t h e symbol t a b l e . Again , t h e symbol t a b l e

* would have t o b e a l t e r e d by removing a l l d e f i n i t i o n s n o t needed i n t h e
program b e i n g assembled . PAL8 h a s t h r e e pseudo-ops t h a t c a n b e used
t o a l t e r t h e permanent symbol t a b l e . These pseudo-ops a re r e c o g n i z e d
by t h e a s semble r o n l y d u r i n g p a s s 1. Dur ing e i t h e r p a s s 2 o r p a s s 3 ,
t h e a s semble r i g n o r e s them, and t h e y have no e f f e c t .

EXPUNGE de le tes t h e e n t i r e permanent symbol t a b l e e x c e p t pseudo-ops.

FIXTAB appends a l l c u r r e n t l y d e f i n e d symbols t o t h e permanent symbol
t a b l e . A l l symbols d e f i n e d b e f o r e t h e o c c u r r e n c e o f F I X T A B a r e made
pa r t of t h e permanent symbol t a b l e f o r t h e c u r r e n t assembly .

To append t h e f o l l o w i n g i n s t r u c t i o n s t o t h e symbol t a b l e , you have t o
g e n e r a t e an ASCII f i l e c a l l e d SYM.PA. T h i s f i l e c o n t a i n s t h e
f o l l o w i n g :

CLSK=6133 / S K I P ON CLOCK INTERRUPT
F I X T A B /SO THAT THIS WON'T BE

/PRINTED IN THE SYMBOL TABLE

The A S C I I f i l e is t h e n e n t e r e d i n t h e PAL8 i n p u t d e s i g n a t i o n . By
p l a c i n g t h e d e f i n i t i o n s a t t h e b e g i n n i n g o f t h e s o u r c e f i l e , you c a n
a v o i d l o a d i n g an e x t r a f i l e . Each time t h e a s semble r is l o a d e d , t h e
PAL8's i n i t i a l permanent symbol t ab l e is r e s t o r e d .

The t h i r d pseudo-op used t o a l t e r t h e permanent symbol t a b l e i n PAL8
i s F I X M R I . F I X M R I d e f i n e s a memory r e f e r e n c e i n s t r u c t i o n and is o f
t h e form:

FIXMRI name=value

The l e t t e r s FIXMRI m u s t be fo l lowed by o n e s p a c e , t h e symbol f o r t h e
i n s t r u c t i o n t o be d e f i n e d , a n e q u a l s i g n , and t h e v a l u e o f t h e symbol .
The symbol w i l l be d e f i n e d and s t o r e d i n t h e symbol t a b l e a s a memory
r e f e r e n c e i n s t r u c t i o n . The pseudo-op m u s t be r e p e a t e d f o r each memory
r e f e r e n c e i n s t r u c t i o n t o be d e f i n e d . For example ,

EXPUNGE
FIXMRI TAD=1000
FIXMRI K l C A = 3 0 0 0
CL. A = 72 00
F I X T A B

When t h e p r e c e d i n g program segment is r e a d by t h e a s s e m b l e r d u r i n g
p a s s 1, a l l symbol d e f i n i t i o n s a r e d e l e t e d , and t h e t h r e e symbols
l i s t e d a r e added t o t h e permanent symbol t a b l e . N o t i c e t h a t CLA i s
n o t a memory r e f e r e n c e i n s t r u c t i o n . T h i s p r o c e s s c a n be per formed t o
a l t e r t h e a s s e m b l e r ' s symbol t a b l e so t h a t it c o n t a i n s o n l y t h e
symbols used a t a g i v e n i n s t a l l a t i o n o r by a g i v e n program.

5-35

THE PAL8 ASSEMBLER

5.11.9 Conditional Assembly Pseudo-operators

The I F D E F pseudo-op takes the form

IFDEF symbol <source code>

I f the symbol indicated is previously def ined, the code contained i n
the angle brackets i s assembled; i f the symbol i s undefined, t h i s
code is ignored. Any number of statements or l i n e s of code may be
contained i n the angle brackets. The format of the IFDEF statement
requi res a s i n g l e space before and a f t e r the symbol’.

Example:

IFDEF A <TAD A
DCA B>

The IFNDEF pseudo-op i s s imi la r i n form t o IFDEF and i s expressed as:

I F N D E F symbol <source code>

I f the symbol indicated has not been previously def ined, the source
code i n angle brackets i s assembled. I f the symbol i s def ined, the
code i n the angle brackets i s ignored.

The I F Z E R O pseudo-op i s of the form

I F Z E R O expression <source code>

I f the evaluated expression is equal t o zero, the code w i t h i n the
angle brackets is assembled; i f the expression is nonzero, the code
is ignored. Any number of statements or l i n e s of code may be
contained i n the angle brackets. The expression may not contain any
embedded spaces and m u s t have a s i n g l e space preceding and following
it .

I F N Z R O i s s imi la r i n form t o the I F Z E R O pseudo-op and i s expressed a s

I F N Z R O expression <source code>

I f the evaluated expression is not equal t o zero, the source code
w i t h i n the angle brackets is assembled: i f the expression i s equal t o
zero, t h i s code is ignored.

Pseudo-ops can be nested. For example,

IFDEF SYM < I F N Z R O X2<...>>

T h e evaluat ion and subsequent inclusion or d e l e t i o n of statements a r e
done by evaluat ing the outermost pseudo-op f i r s t .

Conditional code t h a t i s not assembled can be deleted from the l i s t i n g
output by the /J option.

5.11.10 Radix Control

Numbers used i n a source program a r e i n i t i a l l y considered t o be o c t a l
numbers. However, the program may change the radix i n t e r p r e t a t i o n by
the use of the pseudo-operators DECIMAL and OCTAL. The DECIMAL
pseudo-op i n t e r p r e t s a l l following numbers a s decimal u n t i l the
occurrence of the pseudo-op OCTAL. The OCTAL pseudo-op r e s e t s the
radix t o o c t a l .

5-36

THE PAL8 ASSEMBLER

5.11.11 Entering T e x t S t r i n g s

The TEXT pseudo-op allows a s t r i n g of t e x t charac te rs t o be entered a s
da ta and s tored i n 6-bi t A S C I I . The format required i s the pseudo-op
TEXT followed by one or more spaces or tabs , a de l imi t ing charac te r
(m u s t be a p r i n t i n g c h a r a c t e r) , t h e s t r i n g of t e x t , and the same
del imit ing character . I f the number of charac te rs i n a spec i f ied
s t r i n g is odd, t h e l a s t word w i l l contain zero i n i t s r i g h t h a l f . I f
the number of charac te rs is even, a f i n a l word of zero w i l l be
appended. Ei ther way, a f i n a l 6 - b i t character of zeros i s generated
providing a convenient "end-of-string" ind ica t ion . Note t h a t the /F
opt ion prevents the e x t r a word of zero when the number of c h a r a c t e r s
is even. Note a l s o t h a t s i x b i t s a r e s u f f i c i e n t t o encode only the
p r i n t i n g characters . For example:

TAG ? TEXT'1231('

The s t r i n g would be s tored a s

6162
6352
0000

The /F option i n h i b i t s the generat ion of the e x t r a 6 - b i t zero word.
Al te rna t ive ly , the statement "*.-l" may be used t o e l iminate t h e e x t r a
zero word (when the number of charac te rs i s even) .

5.11.12 End-of-File Signal

PAUSE s i g n a l s t h e assembler t o s top processing the f i l e being read.
The cur ren t pass i s not terminated, and processing continues w i t h the
next f i l e . The PAUSE pseudo-op is present only f o r compat ib i l i ty w i t h
paper tape assemblers, and i t s use i s not recommended.

5.11.13 U s e of DEVICE and FILENAME Pseudo-Operators

The pseudo-operators DEVICE and FILENAME may be used by c a l l s t o the
User Service Routine (see Appendix C) , or may be used f o r other
purposes. They s t o r e 6 - b i t A S C I I s t r i n g s a t the cur ren t loca t ion .
The form f o r these pseudo-ops is

DEVICE name
FILENAME name.extension

T h e name used w i t h DEVICE can be from 1 t o 4 alphanumeric charac te rs .
These a r e trimmed t o 6-bi t A S C I I and packed i n t o two words, f i l l e d - i n
w i t h zeros on the r i g h t i f necessary. W i t h FILENAME (FILENA is a l s o
acceptab le) , t h e name (or name.extension) may be from 1 t o 6
alphanumeric charac te rs and t h e op t iona l extension may be 1 or 2
charac te rs . The charac te rs a r e trimmed t o 6 - b i t A S C I I and packed two
t o a word. Three words a r e a l loca ted f o r the f i l e name, f i l l e d w i t h
zeros on the r i g h t i f fewer than 6 charac te rs a r e spec i f ied , followed
by one word f o r t h e extension. The example

L F FILENAME ARCIDA

5-3 7

THE PAL8 ASSEMBLER

is e q u i v a l e n t t o t h e f o l l o w i n g coding:

L, 0102
0300
0000
0401

The symbols DEVICE and FILENAME may n o t b e used as l a b e l s s i n c e t h e y
a r e p r e d e f i n e d pseudo-ops.

5.12 LINK GENERATION AND STORAGE

I n a d d i t i o n t o h a n d l i n g symbol ic a d d r e s s i n g on t h e c u r r e n t page of
memory, PAL8 a u t o m a t i c a l l y g e n e r a t e s " l i n k s " f o r o f f - p a g e r e f e r e n c e s .
I f a d i r e c t memory r e f e r e n c e is made t o an a d d r e s s n o t on t h e page
where a n i n s t r u c t i o n is l o c a t e d o r on page 0 , t h e assembler se t s t h e
i n d i r e c t b i t (b i t 3 1 , and an i n d i r e c t a d d r e s s l i t e r a l (a " l i n k ") w i l l
b e s t o r e d on t h e c u r r e n t memory page. I f t h e s p e c i f i e d r e f e r e n c e is
a l r e a d y a n i n d i r e c t o n e , t h e e r r o r d i a g n o s t i c I1 (I l l e g a l I n d i r e c t)
w i l l b e g e n e r a t e d . I n t h e f o l l o w i n g example,

X2117
A ? CLA

*
4

X 2 6 0 O
JMP A

t h e assembler w i l l r e c o g n i z e t h a t t h e r e g i s t e r l a b e l e d A i s n o t on t h e
c u r r e n t page and w i l l g e n e r a t e a l i n k t o i t as f o l l o w s :

1. I n l o c a t i o n 2600 t h e a s s e m b l e r w i l l place t h e word 5777
(e q u i v a l e n t t o JMP I 2777) .

2. I n a d d r e s s 2777 (t h e l a s t a v a i l a b l e l o c a t i o n on t h e c u r r e n t
p a g e) , t h e assembler w i l l p l a c e t h e word 2117 (t h e a c t u a l
a d d r e s s o f A) .

I n t h e l i s t i n g , t h e o c t a l code f o r t h e i n s t r u c t i o n w i l l be fo l lowed by
a s i n g l e q u o t e (' 1 t o i n d i c a t e t h a t a l i n k was g e n e r a t e d .

Although t h e assembler w i l l r e c o g n i z e and g e n e r a t e an i n d i r e c t a d d r e s s
l i n k a g e when n e c e s s a r y , t h e program may i n d i c a t e an e x p l i c i t i n d i r e c t
address by t h e pseudo-op I , f o r example:

t2117
A ? CLA

t2600
JMP I (A)

5-38

THE PAL8 ASSEMBLER

The assembler
a l ready spec
supports no s
as sem b l e r w i 1

cannot generate a l i n k f o r an i n s t r u c t i o n t h a t is
i f i e d a s being an i n d i r e c t reference, s ince the computer
uch i n s t r u c t i o n format. For t h e example shown below, t h e
1 p r i n t t h e e r r o r message I1 (I l l e g a l I n d i r e c t) .

lt2117
A ? CLA

6

t2600
JMP I A

NOTE

The opt ion /E makes l i n k generat ion a
condi t ion t h a t produces the LG (L i n k
Generated) e r r o r message.

The above coding w i l l f a i l because A is not defined on the page where
JMP I A i s attempted, and the i n d i r e c t b i t i s already s e t .

L i t e r a l s and l i n k s a r e s tored on each page s t a r t i n g a t page address
1 7 7 (r e l a t i v e) and extending toward page address 0 (relative).
Whenever the o r i g i n is then set t o another page, the l i t e r a l a rea for
the c u r r e n t page is output. There i s room for 160 (o c t a l) l i t e r a l s
and l i n k s on page zero and 1 0 0 (o c t a l) l i t e r a l s on each o ther page of
memory. L i t e r a l s and l i n k s a r e s tored only a s f a r down a s the h ighes t
i n s t r u c t i o n on the page. Further attempts t o def ine l i t e r a l s w i l l
r e su l t i n a PE (Page Exceeded) or ZE (page Zero Exceeded) e r r o r
message.

5.13 TERMINATING ASSEMBLY

PAL8 w i l l terminate assembly and re turn t o t h e monitor under any of
t h e following conditions:

1. Normal e x i t : The end of the source program was reached on

2. Fa ta l e r r o r : One of the following e r r o r condi t ions was found

pass 2 (or pass 3 i f a l i s t i n g is being generated) .

and flagged (Section 5.14):

BE DE DF PH SE

3. CTRL/C: I f typed, cont ro l r e t u r n s t o the monitor. Any
p a r t i a l output f i l e s a r e deleted.

5.14 DIAGNOSTIC ERROR MESSAGES

PAL8 w i l l d e t e c t and f l a g e r r o r condi t ions and d isp lay e r r o r messages
both on t h e console terminal and i n t h e program l i s t i n g . The format
of t h e e r r o r message is:

code address

5-39

THE PAL8 ASSEMBLER

where:

code is a 2 - l e t t e r code t h a t s p e c i f i e s the type of e r r o r . +

address is e i t h e r the absolute o c t a l address where €he e r r o r
occurred or the address of the e r r o r r e l a t i v e t o the
l a s t l a b e l (i f there was one) on the cur ren t page.

For example, t h e i n s t r u c t i o n sequence:

BEG ? ' r m LBL
%TAD 1.PL.

would produce the e r r o r message

IC BEGS000.l.

s ince % i s an i l l e g a l character because of i t s placement.

I n the l i s t i n g , e r r o r messages a r e output a s 2-character messages on
t h e l i n e j u s t p r i o r t o the l i n e i n which the e r r o r occurred. Table
5-3 l i s t s t h e PAL8 e r r o r codes. Fa ta l e r r o r s cause PAL8 t o terminate
the assembly immediately (de le t ing any output f i l e s produced so f a r)
and re turn t o the monitor.

Table 5-3
PAL8 Diagnostic Error Codes

Error Code

BE

CF

DE

DF

I C

ID

I E

I1

Meaning

A PAL8 i n t e r n a l t a b l e has overflowed. T h i s s i t u a t i o n
can usual ly be corrected by decreasing the l e v e l of
l i t e r a l nest ing or the number of cur ren t page
l i t e r a l s used p r i o r t o t h i s point on the page. Fa ta l
e r r o r : assembly cannot continue.

Chain t o CREF e r r o r . CREF.SV was not found on SYS.

Device e r r o r . An e r r o r was detected when t ry ing t o
read or wr i te a device. Fa ta l e r r o r : assembly
cannot continue.

Device f u l l . Fa ta l e r r o r : assembly cannot continue.

I l l e g a l character . The character is ignored and the
assembly is continued.

I l l e g a l r e d e f i n i t i o n of a symbol. An attempt was
made t o give a previous symbol a new value by means
other than the equal s ign. The symbol is not
redefined.

I l l e g a l equals. An attempt was made t o equate a
v a r i a b l e t o an expression containing an undefined
term. The v a r i a b l e remains undefined.

I l l e g a l i n d i r e c t . An off-page reference was made; a
l i n k could not be generated because the i n d i r e c t b i t
was already spec i f ied .

(continued on n e x t page)

5-40

THE PAL8 ASSEMBLER

Table 5-3 (Cont.)
PAL8 Diagnostic Error Codes

Meaning

Illegal pseudo-op. A pseudo-op was used in the wrong
context or with incorrect syntax.

Illegal page zero reference. The pseudo-op 2 was
found in an instruction which did not refer to page
zero. The 2 is ignored.

The /L or /G options have been specified but the
Absolute Loader system program is not present.

Link generated. This code is displayed only if the
/E option was specified to PAL8.

Current nonzero page exceeded. An attempt was made
to

1. Override a literal with an instruction.

2 . Override an instruction with a literal.

3 . Use more literals than the assembler allows on
that page.

This can be corrected by decreasing either the number
of literals on the page or the number of instructions
on the page.

A conditional assembly bracket is still in effect at
the end of the input stream. This is caused by
nonmatching < and > characters in the source file.
Redefinition. A permanent symbol has been defined
with =. The new and old definitions do not match.
The redefinition is allowed.

Symbol table exceeded. Too many symbols have been
defined for the amount of memory available. Fatal
error: assembly cannot continue.

Undefined origin. An undefined symbol has occurred
in an origin statement.

Undefined symbol. A symbol has been processed during
pass 2 that was not defined before the end of pass 1.

Page 0 exceeded. This is the same as PE except
occurs in page 0 .

5.15 PAL8 PERMANENT SYMBOL TABLE

The following mnemonics represent the central processor's instruction
set found in the permanent symbol table within the PAL8 Assembler.
For additional information on these instructions, refer to the
DECstation 78 User's Guide.

5 - 4 1

THE PAL8 ASSEMBLER

Code - Mnemonic Operation

Memory Reference Instructions

AND 0000
TAD 1000
ISZ 2000
DCA 3000
JMS 4000
JMP 5000
IOT 6000
OPR 7000

Logical AND
TWO'S complement add
Increment and skip if zero
Deposit and clear AC
Jump to subroutine
Jump
In/out transfer
Operate

Group 1 Operate Microinstructions

NOP
IAC
BSW
RAL
RTL
RAR
RTR
CML
CMA
CLL
CLA

7000
7001
7002
7004
7006
7010
7012
7020
7040
7100
7200

No operation
Increment AC
Byte swap
Rotate AC and Link left one
Rotate AC and Link left two
Rotate AC and Link right one
Rotate AC and Link right two
Complement the link
Complement the AC
Clear Link
Clear AC

Group 2 Operate Microinstructions (1 cycle)

HLT
SKP
SNL
SZL
SZA
SNA
SMA
SPA

7402
7410
7420
7430
7440
7450
7500
7510

Halts the computer
Skip unconditionally
Skip on nonzero Link
Skip on zero Link
Skip on zero AC
Skip on nonzero AC
Skip on minus AC
Skip on positive AC (zero is positive)

Group 3 Operate Microinstructions

MQL 7421 Load MQ, clear AC
MQA 7501 MQ OR into AC
SWP 7521 Swap AC and MQ

Combined ODerate Microinstructions

CIA 7041 Complement and increment AC
STL 7120 Set Link to 1
GLK 7204 Get Link (put Link in AC, bit 11)
STA 7240 SET AC to -1 (7777)

Internal IOT Microinstructions

SKON 6000 Skip with interrupts on and turn them off
I ON 6001 Turn interrupt facility on
I OF 6002 Turn interrupt facility off
GTF 6004 Get flags
RTF 6005 Restore flag, ION
CAF 6007 Clear all flags

5-42

THE PAL8 ASSEMBLER

Memory E x t e n s i o n IOT I n s t r u c t i o n s

CDF 6 2 n l Change t o Data F i e l d n (n=OO t o 0 7)
62n5 Change t o Data F i e l d n (n=10 t o 1 7)
63111 Change t o Data F i e l d n (n=20 t o 27)
63n5 Change t o Data F i e l d n (n=30 t o 3 7)

CIF * 62n2 Change t o I n s t r u c t i o n F i e l d n (n=OO

62n6 Change t o I n s t r u c t i o n F i e l d n (n=10

62n2 Change t o I n s t r u c t i o n F i e l d n (n=20

63n6 Change t o I n s t r u c t i o n F i e l d n (n=30

62n3 Change t o Data and I n s t r u c t i o n F i e l d s

62n7 Change t o Data and I n s t r u c t i o n F i e l d s

63n3 Change t o Data and I n s t r u c t i o n F i e l d s

63n7 Change t o Data and I n s t r u c t i o n F i e l d s

07 1

1 7)

27)

37)

(n-00 t o 07)

(n=10 t o 1 7)

(n=20 t o 27)

(n=30 t o 37)
CDF CIF 62n3 Combine CDF and CIF

C D I

t o

t o

t o

t o

n

n

n

n

B i t a s s i g n m e n t s f o r n a re a s fo l lows .

F i e l d Number (0-37) = a b c d e

b i t 0 b i t 11

CDF I 110 I Ola I c d e I bo1 1

CIF I 110 I Ola I c d e b10

CDF CIF I 1 1 0 I Ola I c d e I b l l I

RDF

RIF

RSB

RMF

6214 Read (O R) t h e Data F i e l d i n t o b i t s 6-8
o f AC

6224 Read (OR) t h e I n s t r u c t i o n F i e l d i n t o
b i t s 6-8 of AC

6234 Read I n s t r u c t i o n Save F i e l d i n t o b i t s
7-8 and Data Save F i e l d i n t o b i t s 10-11
of AC

6244 R e s t o r e memory f i e l d s t o s t a t e p r i o r t o
l a s t i n t e r r u p t by l o a d i n g t h e Data Save
F i e l d i n t o DF r e g i s t e r and t h e
I n s t r u c t i o n Save F i e l d i n t o t h e I B
r e g i s t e r and i n h i b i t i n g i n t e r r u p t s . A t
t h e n e x t JMP or JMS, I B i s l o a d e d i n t o
t h e I F r e g i s t e r and t h e i n t e r r u p t
i n h i b i t i s removed.

* Execu ted a t n e x t JMP or JMS instruction.

5-43

THE ,PAL8 ASSEMBLER

KCF
KSF
KCC
KRS
K I E
KRB

6030
6031
6032
6034
6035
6036

Keyboard (1 cycle)

Clear keyboard f l a g
Skip on keyboard f l a g
Clear keyboard f l a g and AC
OR keyboard buffer i n t o AC
Se t /c lear i n t e r r u p t enable
Clear AC, read keyboard buf fer
Clear keyboard f l a g

Term,.Ial (1 cycle

TSF 6 0 4 1
TCF 6 0 4 2
TSK 6045
TLS 6046

Skip on terminal f l a g
Clear terminal f l a g
Skip on keyboard or terminal f l a g
Load te rmina l , d i sp l ay cha rac t e r , and
c l e a r terminal f l a g

5-44

CHAPTER 7

FORTRAN IV

7.1 OVERVIEW

The FORTRAN (or FORmula TRANSlator) programming language enables you
to express mathematical operations in a form similar to standard
mathematical notation as well as perform a variety of such
applications as process control, information retrieval, and commercial
data processing.

This chapter describes the components of the FORTRAN system--the
Compiler, Loader, Run-Time System, and Library--and the elements of
the language.

OS/78 FORTRAN IV conforms generally to the specifications for American
National Standard FORTRAN. Several enhancements have been added, and
these are described in Section 7.2.

To create and run a FORTRAN program, use the following procedure.

1. Write the program in source code, using the statements and
other features of the FORTRAN language as they are described
in this chapter. Divide the program into logical units--one
for the main program and one for each subroutine you need.
Use the OS/78 Editor to create a file for each program unit.

2. Use the COMPILE command to compile and assemble the FORTRAN
source program. The Compiler (which chains automatically to
the assembler) accepts one program unit--a main program or a
subroutine--and produces one module of relocatable code:
that is, assembled code which has not yet been assigned
permanent addresses in memory. The Compiler also produces an
optional listing file. (For complete details on the FORTRAN
Compiler, see Section 7.1.1.)

3. Use the LOAD command to link the program units and assign
permanent memory locations to the complete program. The
FORTRAN Loader accepts up t o 128 modules of relocatable code.
It links subroutines to the main program, assigns permanent
addresses, and produces a loader-image file, which contains
the complete program in linked and relocated form. In
addition, it determines if the program requires any functions
from the FORTRAN library and copies them in relocated form
into the loader-image file. The Loader also produces an
optional loader symbol map, showing the areas in memory that
the program will use. (For details on the Loader, see
Section 7.1.2.)

7-1

FORTRAN IV

4 . Load-the program into memory and run it with the EXECUTE
command. The EXECUTE command summons the Run-Time System,
which accepts a loader-image file, places it in memory,
determines the I/O requirements of the program, and starts
execution. (For details on the Run-Time System, see Section
7.1.3.)

The Compiler and Loader provide options that enable you to compile,
load, and run a program with a single command. In addition, the
EXECUTE command accepts source code or relocatable code, performs the
necessary operations, and causes execution.

For example, assume you have written a short program called POWER that
you want to enter as a file on your system device and run. To enter
the file, summon the Editor with the CREATE command, naming the file
in the command line and adding the extension FT, the standard OS/78
extension for a file containing a FORTRAN source program.

,CREATE POWEReFT

As soon as the Editor displays its prompt (#) to indicate that it is
ready to receive your first instruction, type I (to put the Editor
into text mode) and a carriage return and enter the program.

*I
C FORTRAN DEMONSTRATION
C COMPUTE AND PRINT POWERS DF TWO

D1MENS:tON A (1 6)
W R I T E (4 t l 5)

ftcf 20 Nzlr16
A(N)=Z.**N

WRITE (4 ~ 2 5) (N ~ A 6 N) r N = l r l 6)

STOP
END

15 FORMAT(1H r'F'OWER OF TWO')

20 CONTINUE

25 FORMAT(1H r ' 2 * * ' r I Z ~ ' = ' v F l O + l)

Now type CTRL/L to put the Editor in command mode and issue the EXIT
instruction. The Editor will write file POWER.FT on your system
device and return control' to the monitor.

To compile and assemble the source program, use the COMPILE command,
enteting POWER.FT as the input file. If you wish to generate an
annotated listing file and send it to the lineprinter, enter LPT: as
the second output specification.

.COMPILE POWER~LPT:~:PQWERS.FT

The Compiler will send the binary file to SYS: (which it uses as a
default device], adding an RL extension to indicate that the file
contains relocatable FORTRAN code, and produce the following annotated
listing on the lineprinter.

0002
0003
0004
0005
0006
0007
0010
0011
001 2
0013

C FORTRAN bEMONSTRATION
C COMPUTE ANU PRINT POWERS OF TWO

ItIMENSION A (l 6)
WRITE (4 9 1 5)

DO 20 N = 1 ~ 1 6
A(N)=2.**N

WRITE (4 ~ 2 5) (N r A (N) r N = l r l 6)

STOP
END

15 FORMAT(1W v'POWER OF' TWO')

20 CONTINUE

25 FOHMAT(1H r'2X* ' r I 2 r ' ~ ' ~ F l O + l)

7-2

FORTRAN IV

To create a loader-image file--containing the program in absolute
binary form and a copy of the exponentiation library function--use the
LOAD command, specifying the RL file as input. To send a
loader-symbol map--showing the areas of memory the program uses--to
the lineprinter, enter LPT: as the second output specification.

+ LOA11 POWER 9 LPT :.:::POWER RL

The Load command creates a loader-image file (adding the LD extension)
on SYS and the following map.

I...OA~lER U24A 17-APR-79

SYHBOL. UAL..IJE LUL. O V L Y

ARCiERR 00204 0 00

:)MAIN 10000 0 00
E:xI’r 00223 0 00

11000 = 1ST FREE L0C:ATION

LUL OULY LE:NGTH

0 00 10601

The optional loader symbol map lists all symbols defined in the loader
image file. The LVL and OVLY entries apply only to OS/8, a superset
of OS/78 FORTRAN.

Following the alphabetical list of symbols, the loader prints the
address of the first free memory location and the length, in octal
words. This information is useful for optimizing memory requirements.

To execute this program, call the Run-Time System with the EXECUTE
command, specifying POWER.LD for input.

. ExEciirE POWER LD

The program output will appear on the terminal screen.

2.0
4 . 0
8.0

16.0
32.0
64 .0

256 0
512.0

1024.0
2048 0
4096 0
8192.0

16384 4 0
32768 + 0
65536 + 0

i m + o

7-3

FORTRAR IV

FORTRAN programs are usually saved as loader-image files and then run
with the EXECUTE command. To produce a loader-image file with a
single command--that is, to instruct the Compiler/Assembler to chain
automatically to the Loader--use the Compiler /L option.

C(IMPIL..E: f:'C)WER+ FT/L..

The FORTRAN system consists of the following components: the Compiler
(plus Assembler), the Loader, the Run-Time system, and the FORTRAN
library of functions. These components are described fully in
Sections 7.1.1 through 7.1.4.

7.1.1 The COMPILER

The OS/78 FORTRAN IV Compiler/Assembler accepts one FORTRAN source
language program or subroutine as input, examines each FORTRAN
statement for validity, and produces a list of error messages plus a
relocatable assembly-language version of the source program, along
with an optional annotated source listing, as output.

If your program contains one or more subroutines, compile and assemble
the main program and each subroutine separately, then use the Loader
to link them together.

The FORTRAN Compiler terminates a compilation by chaining
automatically to the Assembler.

To summon the FORTRAN compiler, use the COMPILE command. The Compiler
accepts 1 to 3 output file specifications and 1 to 9 files for input,
along with several run-time options. If you omit the device name, the
Compiler assumes SYS. If you omit the extensions on the output
filenames, the Compiler adds .RL and .LS to the binary file and the
1 is t ing .
The format is

COMPILE out:file.RL,out:file.LS,out:file.MP<in:f~lel.FT. ..,file9.F

where:

file.RL is the relocatable binary code

file.LS is an optional listing file

file.MP is an optional loader symbol map (to obtain it,
you must chain to the Loader with the /L option)

filel.FT...9 is a single program unit--a main program or a
subroutine--written as 1 to 9 files

The Compiler assigns an internal statement number (ISN) to each
FORTRAN IV statement sequentially, in octal notation, starting with
ISN 2 at the first FORTRAN statement. When the Compiler encounters an
error during compilation, it prints a 2-character error code, followed
by the ISN of the offending statement, on the terminal. An extended
error message is printed below every erroneous statement in the
annotated listing. Certain errors causes the Compiler to return
immediately to the monitor, thereby preventing the output of a listing
file.

7-4

FORTRAlp IV

Option

7.1.1.1 CorMleg Options - Compiler options are described in Table
7-1. If you chain automatically to the Loader (with the /L option)
you can also add Loader options to the command line.

Operation

I

I 1

/G

/L

/N

/ a

Chain to the loader when assembly is complete and
chain to the run-time system following creation of a
loader image file (equivalent to the EXECUTE command)
(see Section 7.1.3).

Chain to the loader when assembly is complete to
create a loader-image file. If the /L option is not
specified, the system will return to the monitor upon
completion.

Suppress compilation of ISNs. This option reduces
program memory requirements by two words per
executable statement; however, it also prevents full
error traceback at run time.

Optimize cross-statement subscripting during
compilation. This option should not be requested
when any variable that appears in a subscript is
modified either by referencing a variable equivalent
to it or via a SUBROUTINE or FUNCTION call (whether
as an argument or through COMMON).

7.1.1.2 Compiler Error Messages - During pass 2, the Compiler
displays error messages on the terminal as a 2-character message
followed by the ISN of the erroneous statement. To suppress the
messages, type CTRL/O at the terminal. If you request a listing, it
will contain an extended error message following the erroneous
statement. Except as noted, errors located by the Compiler do not
halt processing. Error messages are described in Table 7-2.

a
Table 7-2

Compiler Error Messages

Error
Code Meaning

AA
AS
BD

BS
CL
co
DA
DE

More than six subroutine arguments are arrays.
Bad ASSIGN statement.
Bad dimensions (too big or syntax) in DIMENSION,
COMMON or type declaration.
Illegal in BLOCK DATA Program.
Bad COMPLEX literal.
Syntax error in COMMON Statement.
Bad syntax in DATA statement.
This type of statement illegal as end of DO loop
(that is, GO TO, another DO).

~~ ~~ ~ ~

(continued on next page)

7-5

FORTRAN IV

Table 7-2 (Cont.)
Compiler Error Messages

Error
Code

DF
DH
DL
DN

DO
DP
EX
GT
GV

HO
IE

IF

LI
LT
MK
ML
MM
MO
MT
OF

OP
OT

PD

PH
QL
QS
RD
RT
RW
SF
SN
ss
ST

SY

TD
us

VE

Meaning

Bad DEFINE FILE statement.
Hollerith field error in DATA statement.
DATA list and variable list are not same length.
DO-end missing or incorrectly nested. This message
is not printed during pass 3 , if it is followed by
the statement number of the erroneous statement,
rather than the ISN.
Syntax error in DO or implied DO.
DO loop parameter not integer or real.
Syntax error in EXTERNAL statement.
Syntax error in GO TO statement.
Assigned or computed GO TO variable must be integer
or real.
Hollerith field error.
Error reading input file. Control returns to the
monitor.
Logical IF statement cannot be used with DO, DATA,
INTEGER, etc.
Argument of logical IF is not type Logical.
Input line too long, too many continuations.
Misspelled keyword.
Multiply defined line number.
Mismatched parenthesis.
Expected operand is missing.
Mixed variable types (other than integer and real).
Error writing output file. Control returns to the
monitor.
Illegal operator.
Type / operator use illegal (for example, A.AND.B
where A and/or B not typed Logical).
Compiler stack overflow; statement too big and/or
too many nested loops.
Bad program header line.
Nesting error in EQUIVALENCE statement.
Syntax error in EQUIVALENCE statement.
Attempt to redefine the dimensions of a variable.
Attempt to redefine the type of a variable.
Syntax error in READ/WRITE statement.
Bad arithmetic statement function.
Illegal subroutine name in CALL.
Error in subscript expression, that is, wrong number,
syntax.
Compiler symbol table full, program too big. Causes
an immediate return to the monitor.
System error, that is, PASS2O.SV or PASS2.SV missing,
or no room on system for output file. Causes an
immediate return to the monitor.
Bad syntax in type declaration statement.
Undefined statement number. This message is not
printed during pass 3 . It is followed by the
statement number of the erroneous statement, rather
than the ISN.
Version error. One of the compiler programs is
absent from SYS or is present in the wrong version.

7-6

FORTRAN IV

7.1.2 The LOADER

The FORTRAN IV Loader accepts up to 128 relocatable binary modules as
input. It links all modules, including any routines from the FORTRAN
library that the program may require, to form a loader-image file of
the complete program--that is, an image of the binary code with
absolute addresses assigned. This loader-image file can be passed
directly to the Run-time system, which loads it into memory and
executes it.

In addition to the loader-image file, the Loader generates an optional
symbol map, which shows the areas the program occupies in memory.

You can call the Loader automatically by adding the /L option to the
COMPILE command line.

The format of the Load command is

LOAD out:file.LD,out:map.LS<in:filel.RL ..., file9.RL
where :

file . LD is a loader image file
map. LS is an optional symbol map
filel.. .,9.RL are relocatable binary modules

QS/78 permits a maximum of nine input files in a command line. If you
wish to specify more than nine relocatable modules for input, use the
Loader /C (continue) option. This option enables you to add
additional file names on the following line.

,
7.1.2.1 Specifying I/O Devices - The LOAD /G option causes the Loader
to chain directly to the FORTRAN Run-Time System. If you use the /G
option and terminate the LOAD command with the RETURN key, execution
begins immediately. If you use the /G option and terminate the
command with the ESCAPE key, the system calls a special program called
the Command Decoder (described in Appendix D). The Command Decoder
prints an asterisk (*) to indicate that it is ready to accept your
special device and file I / O specifications. This feature makes it
possible for you to change the devices used in a FORTRAN program,
making the program device-independent.

For example, if the POWER.FT program were written with 3 as the output
unit designation, that is,

WRITE (3,15)

the output generated by program execution would be sent to the line
printer. However, if your system does not have a line printer
available, you could change the output unit designation by typing

+ LOA11 POWER LD.::POWER + RL/G (ESC)

7-7

FORTRAN IV

Press the ESCape key (which echoes a s a d o l l a r s ign) t o c a l l up the
Command Decoder, which prompts w i t h an a s t e r i s k . Then type /3=4 which
ass igns I / O u n i t 3 t o t h e console terminal instead of the l i n e
p r i n t e r . Pressing t h e ESCape key again executes t h e program and
program output is s e n t t o t h e terminal. The command l i n e w i l l appear
a s follows:

L..C)AJl POWER L..I:I.:::POWE:R RL/G <ESC) t / 3 : ~ 4 <ESC)

The Command Decoder program a l s o allows you t o s t o r e t h e output of an
executed program i n a f i l e t h a t has not been created a t load time.

For example,

.LOAD POWER.LD<POWER.RL/G (ESC) *RXAl:HOLD.TM</4 <ESC)

w i l l output t h e r e s u l t s of t h e program i n t o a f i l e ca l led HOLD.TM on
RXA1. Typing

.TYPE RXA1:HOLD.TM

w i l l d i sp lay the contents of t h i s f i l e , t h a t is , the r e s u l t s of the
program POWER.FT on t h e terminal screen.

For f u r t h e r information on I/O s p e c i f i c a t i o n s a t run-time, see t h e
FORTRAN compiler.

7 . 1 . 2 . 2 Running Subprograms - The LOAD command is e s p e c i a l l y useful
t o l i n k subprograms. Consider t h e program shown i n Figure 7-1, which
computes the volume of a regular polyhedron when given the number of
faces and t h e length of one edge. I t c o n s i s t s of a main program and a
subroutine. The subprogram does the required computation, using a
computed GO TO statement t o determine whether the polyhedron i s a
te t rahedron, cube, octahedron, dodecahedron, or icosahedron, then
t r a n s f e r s cont ro l t o t h e proper a r i thmet ic expression for performing
t h e ca lcu la t ion .

M A I N PROGRAM:

C C(3MF'IJTE THE VOLUME OF A REGULAR POLYHEDRON G I V E N
c THE: NUMBER O F F A C E S A N D LENGTH O F 13NE EIIGE

5 WRITE: (4 I 10)
10 I-ORMA'T (1H I ' TYPE I N NO CIF' FACES ANI1 ONE LENGTH E:DGE')

COMMON NFACES I I-:mE

REA11 < 4 I 2 0) NF'AOES I EDGE
20 FORMAT (I2 I F8 5 1

CAL.1.. SOLVE
GO TO 5
STOP
E: N D

Figure 7-1 Main Program and Subprogram for Calculating the Volume
of a Regular Polyhedron

7-8

FORTRAN IV

SUBPROGRAM SOLVE :

C SUBROUTINE TO SOLVE PROBLEM A N D PRINT ANSWER
C CALLED SOLVE + F T

SUBROUTINE SOLVE
COMMON NFACES I EDGE I VOLUME
IF(NFACES+GT+20)GOTO 8
CUBED= EKl GE* * 3

GO T ~ (~ I ~ I ~ ~ ~ I ~ I ~ I ~ ~ J I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~ I ~) I N F A C E S
1 VOLUME=CUBED*O+l1785

GO TO 20
U 0 1.11 ME = C UB E D
GO TO 20

GO TO 20

GO TO 20

GO TO 20

2

;3 UOLLIME~CUBEDIO + 47140

4 UOLUME=CUB&Dt7.66312

5 ‘JOLIJME=CIJBEKJ*2+ 181 70

6 WRXTE(4r10) NFACES
10 F-ORMAT(~HOI‘NO REGULAR POLYHEDRON H A S ’ r I 3 v l X v ’ F A C E S ’)

20 WRXTE(4930) VOLUME
30 FORMAT(lHOI’VOLUME=’IF10*2)

8
40 FORMAT (1HOlr”DO NOT SPECIFY MORE THAN 20 FACES)

RETURN

RETURN
W R I TE (4 I 10)

RETURN
ENKl

Figure 7-1 (Cont.) Main Program and Subprogram f o r Cal
of a Regular Polyhedron

u l a t i g t h e Volume

I f the number of faces of t h e s o l i d is other than 4 , 6, 8 , 1 2 , or 2 0 ,
or i f more than 20 faces a r e s p e c i f i e d , t h e subroutine d i s p l a y s an
e r r o r message on t h e terminal. If t h e c o r r e c t input parameters a r e
typed i n a t t h e terminal keyboard, t h e c a l c u l a t i o n is performed, and
t h e answer is displayed on the terminal screen.

When subprograms a r e used , t h e main program and the subprograms m u s t
be ind iv idua l ly compiled. For the example program, both the main
program and subprogram a r e compiled as follows:

+COMPILE MAINIFT

and

.COMPILE SOLVEIFT

which c r e a t e re loca tab le binary f i l e s .

7-9

FORTRAR IV

Option

The modules must now be loaded to make a single image file that can be
executed. This is done as follows:

Operation

*LOAD POLY+LD<MAIN+RLVSOLVEIRL

This command creates a file POLY.LD and returns to the monitor.
Execute the program by typing

.EXECUTE POLYeLD

which results in the program calling for the required input parameters
as follows:

TYPE I N NO, OF FACES AND ONE LENGTH EDGE

Typing a " 6 " to represent a cube (preceded by a space since the field
specification is 12) and " 2 0 " as one length edge in accordance with
the field specification requirement as follows:

b6 20.0

results in the answer being displayed on the terminal screen, and a
prompt for the next set of input parameters as follows:

VOLUME = 8000.00
TYPE IN NO, O F FACES AND ONE LENGTH EDGE

Do not specify blanks or zeroes for the NFACES and EDGES variables.
Type CTRL/C to return to the monitor.

7.1.2.3 LOADER Options - Loader options are described in Table 7-3.
The examples following the table illustrate their use.

Continue the current line of input on the next line
of input. When specifying input files to the loader,
there may be more than nine files in a command line.
The /C option permits the additional files to be put
on the following line. Terminate each continuation
line (except the last) with a RETURN. Terminate the
last line with an ESC.

Treat the current line as the last line of input, and
chain to the FORTRAN IV run-time system when finished
(see Section 7.1.3).

Include system symbols in the loader symbol map.
System symbols are identified by an initial number
sign (#) . This option is only valid when a symbol
map output file was specifically defined.

7-10

FORTRAN IV

Examples :

,LOAD POWER RL
Loads POWER.RL and p r o d u c e s a l o a d e r image f i l e
POWER. LD.

,L.C)AD R X A i :POWER R L / O
Loads POWER.RL, p r o d u c e s a l o a d e r image f i l e POWER.LD,
c h a i n s t o t h e r u n - t i m e sys tem, and executes t h e
p r og r am.

+L.OAD FROG e L.D I RLOE: MAP(MAIN + RL I SUEA RL
Loads and l i n k s MAIN.RL and SUBA.RL t o produce PROG.LD,
and p r o d u c e s MAP.LS, a l o a d e r symbol map o u t p u t f i l e ,
on d i s k RLOB. Using t h e t y p e command

, TYF'E!: RI...OB: MAF:'

w i l l d i s p l a y t h e MAP f i l e on t h e screen. Typing .EXE
PROG.LD w i l l execute t h e program.

,LOAD FROG LD*<FROG RL P PROG1 RL -*(more file specificat inns) (h9C)
Loads and l i n k s two i n p u t f i l e s t o produce PROG.LD,
t h e n c a l l s a s p e c i a l sys tem program f o r a c c e p t i n g f i l e
I / O s p e c i f i c a t i o n s (see S e c t i o n 7 .2 .3) . The second
ESCape executes t h e e n t i r e command.

7.1.2.4 Loader Error Messages - The Loader d i s p l a y s e r r o r messages on
t h e t e r m i n a l d u r i n g g e n e r a t i o n of a loader- image f i l e . Except where
i n d i c a t e d i n T a b l e 7-4, Loader e r ro r s are f a t a l . When it e n c o u n t e r s a
f a t a l e r r o r c o n d i t i o n , t h e Loader r e t u r n s c o n t r o l t o t h e m o n i t o r .

T a b l e 7-4
Loader E r r o r Messages

Q r r o r Message

BAD INPUT F I L E

BAD OUTPUT DEVICE

EX

I N V A L I D OS/78 OPTION

ME

M I X E D INPUT

Meaning

An i n p u t f i l e was n o t a r e l o c a t a b l e b i n a r y
module.

The l o a d e r image f i l e d e v i c e was n o t a
d i r e c t o r y d e v i c e , o r t h e symbol map f i l e
d e v i c e was a read-only d e v i c e . The e n t i r e
l i n e is i g n o r e d .

The symbol is r e f e r e n c e d b u t n o t d e f i n e d .

Attempt t o u s e an o p t i o n
a v a i l a b l e .

Mul t ip le e n t r y . The symbol
d e f i n e d .

t h a t is n o t

is m u l t i p l y

The L o p t i o n was s p e c i f i e d on a l i n e t h a t
c o n t a i n e d some f i l e o t h e r -han a l i b r a r y
f i l e . The l i b r a r y f i l e (i f any) is
a c c e p t e d . Any o t h e r i n p u t f i l e
s p e c i f i c a t i o n is i g n o r e d .

(c o n t i n u e d on n e x t page)

7-11

FORTRAN IV

E r r o r Messages Meaning

NO MAIN

TOO MANY RALF FILES

OVER CORE

More t h a n 128 i n p u t f i l e s were s p e c i f i e d .

OVER IMAG

OVER SYMB

No r e l o c a t a b l e b i n a r y module c o n t a i n e d t h e
s e c t i o n #MAIN.

The l o a d e r image requires more t h a n 16K of
memory.

Output f i l e o v e r f l o w i n t h e l o a d e r image
f i l e .

Symbol t ab l e over f low. More t h a n 253
(d e c i m a l) symbols i n one FORTRAN j o b .

7.1.3 The Run-Time System (FRTS)

The run-t ime sys tem reads, l o a d s , and e x e c u t e s a loader image f i l e
produced by t h e l o a d e r . I t e v a l u a t e s a r i t h m e t i c and l o g i c a l
o p e r a t i o n s . I t a l s o c o n f i g u r e s a s o f t w a r e I / O i n t e r f a c e between t h e
FORTRAN I V program and t h e OS/78 o p e r a t i n g sys tem, and t h e n m o n i t o r s
program e x e c u t i o n t o d i r e c t I / O p r o c e s s e s and i d e n t i f i e s c e r t a i n t y p e s
o f run-t ime e r r o r s .

The run-t ime sys tem is a u t o m a t i c a l l y c a l l e d t o l o a d and execute t h e
l o a d e r image f i l e produced by t h e loader whenever t h e / G o p t i o n i s
s p e c i f i e d t o t h e l o a d e r . When c h a i n e d t o t h e l o a d e r , t h e run- t ime
sys tem r e a c t s i n one o f two ways. I f t h e LOAD command l i n e was
t e r m i n a t e d by p r e s s i n g t h e RETURN key, t h e program is e x e c u t e d . If
t h e LOAD command l i n e was t e r m i n a t e d w i t h an ESCape, a sys tem program
c a l l e d t h e Command Decoder i s c a l l e d and i n d i c a t e s t h a t i t i s r u n n i n g
by p r i n t i n g an a s t e r i sk (*) .
I n r e s p o n s e t o t h e a s t e r i s k , you can s u p p l y f i l e s p e c i f i c a t i o n s t o t h e
run-time system. T h i s a l l o w s a s o u r c e program t o b e w r i t t e n t h a t
r e f e r s t o I / O d e v i c e s a s i n t e g e r c o n s t a n t s o r v a r i a b l e s . Such a
program may be compiled, assembled , and l o a d e d i n t o an image f i l e .
T h i s image f i l e may b e r u n any number of times, e a c h time s p e c i f y i n g
d i f f e r e n t ac tua l p e r i p h e r a l d e v i c e s . Thus l o g i c a l u n i t 8 may r e f e r i n
one r u n t o t h e c o n s o l e t e r m i n a l and i n a n o t h e r run t o a d i s k e t t e f i l e .

Of t h e n i n e I / O u n i t numbers a v a i l a b l e under FORTRAN I V , two a r e
i n i t i a l l y a s s i g n e d t o FORTRAN i n t e r n a l d e v i c e h a n d l e r s by t h e system:

I / O U n i t I n t e r n a l Handler Comments

3 Line p r i n t e r LA78 o n l y .

4 Console t e r m i n a l Double b u f f e r e d o u t p u t ,
s i n g l e c h a r a c t e r i n p u t .

The FORTRAN i n t e r n a l h a n d l e r s l i s t e d above are n o t t h e same a s t h e
OS/78 d e v i c e h a n d l e r s . The FORTRAN i n t e r n a l h a n d l e r s a r e d e s i g n e d f o r
A S C I I t e x t o n l y and w i l l n o t t r a n s f e r n o n c h a r a c t e r d a t a .

7-1 2

FORTRAN IV

Additional unit numbers may be assigned, in addition to those listed
above, to the FORTRAN internal device handlers by typing (in response
to the asterisk generated by the Command Decoder):

/n=m

where:

n is a different unit number (1 to 9) that is also to be
assigned to that internal handler: and

handlers.
m is the I / O unit number (3 or 4) of the internal

This specification causes all program references to logical unit n to
perform I/O to device m. For example,

/6=3 Assigns the FORTRAN internal line printer handler as
I/O unit number 6, in addition to unit number 3.

/3=4 Assigns I/O unit number 3 to the FORTRAN console
terminal handler instead of the internal line printer
handler.

I/O unit numbers may be assigned to OS/7.8 device handlers for
nondirectory devices by typing (in response to the asterisk generated
by the Command Decoder):

dev : /n

where:

dev : is the standard or assigned designation for any

n is an I / O unit number (1 to 9).

supported nondirectory device; and

Example :

LQP:/3 Specifies the OS/78 LQP line printer handler to be used
as device #3 instead of the FORTRAN internal line
printer handler.

Existing directory device files may be assigned I / O unit numbers by
typing (in response to the asterisk generated by the Command Decoder):

dev:file.ex/n

where:

dev:file.ex is the standard OS/78 designation for an existing

n is an I / O unit number (1 to 9).

directory device file; and

7-13

FORTRAN IV

Example :

RXAl:FORIO.TM/4 Assigns unit number 4 to Diskette file FORIO.TM
rather than to the FORTRAN internal console
terminal handler, where FORIO.TM is an existing
file on Diskette unit 1.

A directory device file that does not presently exist may be assigned
a FORTRAN I/O unit number in the same manner by entering it as an
output file on the specification line; however, only one such file
may be created on any particular device. For example:

FORIO.TM</g Assigns unit number 9 to file DSK:FORIO.TM,
which has not been created at load time.

In any case, only one device or file specification is permitted on
each line, and no more than six directory device files may be created
by the FORTRAN program. Excess files after the sixth are accepted and
written, but they will not be closed. If a file created by the
program has the same file name and extension as a pre-existing file,
the old file is automatically deleted when the new file is closed.

The Command Decoder "[nl" specification may be used to optimize
storage allocation when assigning files that do not yet exist, where n
is a decimal number that indicates the maximum expected length of the
file, in blocks.

Each time a run-time I/O specification is terminated by pressing the
RETURN key, the Command Decoder is recalled to accept another
specification. When a specification is terminated by the ESCape key,
the program is run.

The following examples illustrate the use of device and file
specifications.

C

c
1
10

3

20

C

C

WRITE+ F T PROGRAM
DIMENSION I L T (2 0 0)
INTEGER I L T
SPECIFY LOGICAL U N I T NUMBEX FOR TTY AS 2 INSTEAD OF: 4
WRITE (2~10)
FORMAT (1 X r 'WRITING AND READING A S C I I SEQ, D A T A F I L E ' 1
DO 3 . r=xv2oo
IL:r (I)=I**:?

HEuINrl E)
NOW REYJI m'rA FILX rlATA+rlA FROM MASS STORAGE IIEUICE

WR 1 TE
FORMAT (l H v / / v 2 0 (1 0 1 7 r /))

(8 v 20) (I I.. T (I) 9 I = 1 r 200)

RE:AD (8920) 1L.T
CIUTPUT F I L E TO TTY
WRITE (4~20) I L T
END

The above program raises 200 sequential numbers to the power of two.
The following sequence of specifications are typed using the COMPILE
command as follows:

7-14

FORTRAN IV

The /G option in the command line will call the run-time system to
execute the program. Pressing the ESCape key after the command calls
the Command Decoder, allowing device and file specifications to be
declared. In this case, the terminal (4) is assigned to unit number 2
while the load image file is assigned number 8 . A file DATA.DA is
created on diskette 1 that contains the results of the program. The
contents of this file are then displayed on the terminal screen. The
command and the specification strings are executed by the second
ESCape.

The second example shows an output file RAY.DA being created on the
diskette by PROGl.FT, and then being read from the diskette by
PROG2. FT.

C THIS PROGRAM WRITES A RECORD OF 400 VARIABLES
C INTO A FILE CALLED RAYtDA

DIMENSION RAY(400)
INTEGER RAY
DEFINE FILE 1 (1 v 4 0 0 ~ U ~ J)
J= 1
DO 5 I=lr400

WRITE (l/J) (RAY(I)r1=1~400)
CALL EXIT
END

5 RAY(I)=2*1

The above program writes a record into file RAY.DA. The following
command and specification strings are typed to accomplish this.

tCOMPILE PROGl*FT/G <Esc>*RAYtDA</l=

C
C DEVICE CREATED BY PREVIOUS PROGRAM

READ 'DIRECT ACCESS FILE RAYtDA FROM MASS STORAGE

DIMENSION RAY(4OO)
INTEGER RAY DEFINE FILE l(lr400~U9J)
J= 1
READ (1'J) (RAY(I)rI=lr400)

100 FORMAT (lHv//~40(1016v/))
C DUMP CONTENTS OF DATA FILE ONTO TTY

WRITE (4,100) RAY
CALL EXIT
END

The above program then reads out the results o ROGl.FT, an- displays
the contents of file RAY.DA on the terminal screen. This is done by
typing the following command line.

t COMPILE PROG2*FT/G <enc> *RAY *DA/1 (mrc>

Although existing files are specified as though they were input files
and nonexistent files are specified as though they were output files,
any file that has been assigned a unit number may be used for either
input or output.

7.1.3.1 Runtime System Options - Run-time system option
specifications are described in Table 7-5.

7-1 5

FORTRAN IV

Option

Table 7-5
Run-Time System Options

Ope r a t ion

Carriage cont ro l switch. The f i r s t character on
every output l i n e is processed a s a c a r r i a g e cont ro l
character by a l l FORTRAN i n t e r n a l handlers and a l s o
by the OS/78 handlers TTY and LPT. The f i r s t
character on every output l i n e is processed ?.s d a t a ,
i n the same manner a s any other charac te r , by a l l
OS/78 handlers except TTY and LPT. Entering a C
option s p e c i f i c a t i o n on the command l i n e t h a t ass igns
an I / O u n i t number t o a p a r t i c u l a r handler reverses
t h e processing of c a r r i a g e control charac te rs f o r
t h a t device. T h u s ,

TEMP (2 C)

ass igns f i l e DSK:TEMP. a s I / O u n i t 2. The /C opt ion
causes the f i r s t character of every output l i n e t o be
processed a s a car r iage cont ro l charac te r . I f C were
not s p e c i f i e d , these charac te rs would be processed a s
da ta .

/ C / 6 = 3

ass igns the FORTRAN i n t e r n a l l i n e p r i n t e r handler a s
I / O u n i t 6, a s well a s u n i t 3. The f i r s t character
of every l i n e w i l l be processed a s a c a r r i a g e cont ro l
character on u n i t 3, and a s a character of da ta on
u n i t 6 .

Ignore the following run-time system e r r o r s , any of
which ind ica tes t h a t an e r r o r was detected e a r l i e r i n
the compilation loading process:

1. I l l e g a l subroutine c a l l .
2 . Reference t o an undefined symbol.

The console terminal serves a s FORTRAN I / O u n i t 4 for both input and
output. Terminal input is automatical ly echoed on t h e console screen.
I n addi t ion , the run-time system monitors the keyboard cont inua l ly
during execution of a FORTRAN program. Typing CTRL/C a t any t i m e
causes an immediate re turn t o t h e monitor. Typing CTRL/B branches t o
the system traceback rout ine , and then e x i t s t o the monitor. T h i s
traceback rout ine generates a p r i n t o u t , s imi la r t o t h e e r r o r
traceback, including the cur ren t subroutine, the l i n e number i n t h e
next higher l e v e l subroutine from which it was c a l l e d , and so f o r t h ,
t o the main program. T h i s f a c i l i t a t e s loca t ing i n f i n i t e loops when
debugging a program. The following addi t iona l spec ia l charac te rs a r e
recognized by the console terminal handler and processed a s shown:

DELETE Deletes l a s t character accepted.

CTRL/U Deletes current l i n e of input.

CTRL/Z Signals end-of-fi le on input.

7-16

FORTRAN IV

Tentative output files (that is, files created by the FORTRAN program)
are closed automatically upon successful completion of program
execution provided that one of the following conditions occurs:

1. An END FILE statement referencing the file was executed.
FRTS assigns a file length equal to the actual length of the
file.

2. The last operation performed on the file was a write
operation. FRTS proceeds as though an END FILE statement had
been executed.

3. A DEFINE FILE statement referencing the file was executed but
an END FILE statement was not executed. Upon completion of
program execution, FRTS assigns a file length equal to the
length specified in tce DEFINE FILE statement.

Execution of a REWIND statement does not close a tentative file, nor
does it modify the tentative file length.

7.1.3.2 Run-Time System Error Messages - The run-time system
generates two classes of error messages. Messages listed in Table 7-6
identify errors that may occur during execution of a FORTRAN program
and errors that may be encountered when the run-time system is reading
a loader image file into memory in preparation for execution, or
accepting I / O unit specifications. Except where indicated, all
run-time system errors cause full traceback and an immediate return to
the monitor. Nonfatal errors cause partial traceback, sufficient to
locate the error, and execution continues.

The run-time system error traceback feature provides automatic
printout of statement numbers ISNs corresponding to the sequence of
executable statements that terminated in an error condition. At least
one statement number is always printed. This number identifies the
erroneous statement or, in certain cases, the last correct statement
executed prior to the error. When a statement was compiled under the
/N option, however, the system cannot generate meaningful statement
nurtlbers during traceback. When a statement is reached through any
form of GOTO, the line number for error traceback is not reset. Thus,
an error in such a line will give the number of the last executed line
in the error traceback.

Table 7-6
Run-Time System Error Messages

Error Message I Meaning

BAD ARG

CAN'T READ IT!

D.F. TOO BIG

DIVIDE BY 0

Illegal argument to library function.

I/O error on reading loader image file.

Random access file requirements exceed
available storage.

Attempt to divide by zero. The resulting
quotient is set to zero and execution
continues.

I

7-1 7

(continued on next page) .

FORTRAN IV

Table 7-6 (Cont.)
Run-Time System Error Messages

Error Messages

EOF ERROR

FILE ERROR

FILE OVERFLOW

FORMAT ERROR

INPUT ERROR

I/O ERROR

MORE CORE REQUIRED

NO DEFINE FILE

NO NUMERIC SWITCH

NOT A LOADER IMAGE

OVERFLOW

PARENS TOO DEEP

SYSTEM DEVICE ERROR

TOO MANY HANDLERS

UNIT ERROR

UNKNOWN INTERRUPT

USER ERROR

Meaning

End of file encountered on input.

Any of the following conditions occurred:

1. A file specified as an existing
file was not found.

2. A file specified as a nonexistent
file would not fit on the
designated device.

3 . More than one nonexistent file was
specified on a single device.

4 . The file specification contained
an asterisk (f) as name or
extension.

Attempt to write outside file boundaries.

Illegal syntax in FORMAT statement.

Illegal character received as input.

Error reading or writing a file, tried to
read from an output device, or tried to
write on an input device.

The space required for the program, the I/O
device handlers, the I/O buffers, and the
monitor exceeds the available memory.

Direct access I/O attempted without a
DEFINE FILE statement.

The referenced FORTRAN I/O unit was not
specified to the run-time system.

The first input file specified to the
run-time system was not a loader image
file.

Result of a computation exceeds upper bound
for that class of variable. The result is
set equal to zero and execution continues.

Parentheses nested too deeply in FORMAT
statement.

I/O failure on the system device.

Too many I/O device handlers are resident
in memory, or files have been defined on
too many devices.

I/O unit not assigned, or incapable of
executing the requested operation.

A hardware interrupt occurred from a device
that the run-time system is not using.

Illegal subroutine call, or call to
undefined subroutine. Execution continues
only if the E option was requested.

7-18

FORTRAN IV

7.1.4 T h e Library

The OS/78 FORTRAN IV system contains a general purpose FORTRAN library
named FORLIB.RL. FORLIB.RL contains mathematical functions and
miscellaneous subroutines.

Library functions and subroutines are called in the same manner as
user written functions and subroutines. Section lists the library
components that are available to FORTRAN programs and illustrates
calling sequences, where ne-,essary.

7.2 THE FORTRAN IV SOURCE LANGUAGE

A FORTRAN source program consists of statements using the language
elements and the syntax described in this chapter. A statement
performs one of the following functions:

0 Causes operations such as multiplication, division, and

0 Specifies the type and format of data being processed

0 Specifies the characteristics of the source program

branching to be carried out

FORTRAN statements are composed of keywords (that is, words that the
FORTRAN compiler recognizes) that you use with elements of the
language set. These elements are constants, variables and
expressions. There are two basic types of FORTRAN statements:
executable and nonexecutable.

Executable statements specify the action of the program:
nonexecutable statements describe the characteristics and arrangement
of data, editing information, statement functions, and subprograms
that you may include in the program. The compilation of executable
statements results in the creation of executable code. Nonexecutable
statements provide information only to the compiler; they do not
create executable code.

The OS/78 FORTRAN IV language generally conforms to the specifications
for American National Standard FORTRAN X3.9-1966. The following
enhancements are included in OS/78 FORTRAN:

0 You may use any arithmetic expression as an array subscript.
If the expression is not of integer type, FORTRAN converts it
to integer form.

0 You may use alphanumeric literals (character strings delimited
by apostrophes or quotation marks) in place of Hollerith
constants.

0 The statement label list in an ASSIGNed GO TO statement is
optional.

0 The following Input/Output (I / O) statements have been added:

DEFINE FILE Device-oriented I/O

READ (u'r)
WRITE (u'r) Unformatted Direct Access I/O

7-1 9

FORTRAN IV

0 You may use any arithmetic expression as the initial value,
increment, or limit-parameter in the DO statement, or as the
control parameter in the COMPUTED GO TO statement.

0 OS/78 FORTRAN permits constants and expressions in the I/O
lists of WRITE statements.

All FORTRAN statements are listed in Section 7.13.

In this chapter, the FORTRAN language statements are grouped into
eight categories, each of which is described in a separate section.
The name, definition, and section references for each statement
category are given ia Table 7-7.

Table 7-7
FORTRAN Statement Categories

Category

Assignment
Statement

Specification
Statement

DATA Statements

Control Statements

Subprogram
Statements

Input/Output
Statements

FORMAT Statements

Function Sect ion

Assign values to named variables 7.5
and array elements.

Declare the properties of 7.6
variables, arrays, and functions.

and array elements.

Determine order of execution of 7.8
the object program and terminate
its execution.

Assign initial values to variables 7.7

Define functions and subroutines. 7.9

Transfer data between internal 7.10
storage and specified input/output
devices.

Specify formats for data on 7.11
input/output.

7.2.1 The FORTRAN Character Set

The FORTRAN character set consists of:

0 The upper case letters A through Z

0 The numerals 0 through 9

0 The special characters in Table 7-8

7-20

FORTRAN IV

Table 7-8
FORTRAN Special Characters

Character Name
~

Space

Tab

Equals

Plus

Minus

Asterisk

Slash

Character

0

I

I

II

$

Name

Parentheses

Comma

Decimal Point

Apostrophe

Quote

Dollar Sign

You may type other printable characters such as %, -, and @ only as
part of Hollerith constants, alphanumeric literals, or comments.

7.2.2 Elements of a FORTRAN Program

A FORTRAN program consists of FORTRAN statements and optional
comments. You group the statements into logical units called program
units (a program unit being a sequence of statements which you
terminate with an optional END statement).

A program unit can be either a main program or a subprogram. One main
program and possibly one or more subprograms form the executable
program.

1.2.2.1 Statements - Statements are grouped into two general classes:
executable and nonexecutable. Executable statements are the action
statements of the program: nonexecutable statements describe data
arrangement and data characteristics. Nonexecutable statements may
also contain editing and data conversion information.

A program consists of a series of statements, written one statement to
a line. (A line is a string of up to 72 characters.) If a statement
is too long to fit on one line, you may continue it on up t6 five
additional lines (called continuation lines). (For further
information, see Section 7.2.3.4, Continuation Indicator Field.)

A statement can refer to another statement. FORTRAN refers to such a
statement by an integer number (called a label) ranging from 1 to
99999. Such a statement is most often referenced for the information
it may contain or so that program execution can continue at that
statement.

7-21

FORTRAN IV

7.2.2.2 Comments - Comments are lines of text which document program
action, indicate program sections and processes, and provide greater
ease in reading the source program listing by identifying variables.

The FORTRAN compiler ignores comments: the comments exist only so
that you can document what the program is doing.

7.2.3 FORTRAN Lines

A FORTRAN line consists of four fields:

0 Statement Label Field

0 Continuation Indicator Field

0 Statement Field

0 Identification Field

You may skip any of these fields when entering statements, but, except
for the identification field, the spaces allotted to each field must
remain present. In the case of the identification field, you may type
a carriage return before reaching it.

Each printing space represents a single character. The following
sections describe the entering of the source program and the
information contained in each field.

7.2.3.1 Using a Text Editor - When creating a source program with the
OS/78 text editor, you type the lines on a "dharacter-per-column"
basis. You may also use the @J character to format lines.

NOTE

The text editor and terminal advance the
terminal print carriage to a predefined
print position when you type a <Tas>.
This action, however, is not related to
FORTRAN's interpretation of the <7AB)
character. The FORTRAN system
interprets a (TAB) as one character, not
the number of characters (up to eight)
that it will print.

For example, you may format the following lines in either of the ways
shown :

C- INITIALIZE ARRAYS or C INITIALIZE ARRAYS

10- w=3 or 10 w=3

- SEL (1)=111200022DO or SEL (1) =111200022DO

where:

- represents a (ws> , and
represents a space character,

7-22

FORTRAN IV

Use space characters in a FORTRAN statement to improve the legibility
of a line. The compiler ignores all spaces in a statement field
except those within a Hollerith constant or alphanumeric literal.

Example:

GO TO and GOTO are equivalent.

The compiler also ignores a (.M7 in a statement field; it regards a
(TAB) to be the same as a space. However, in the compiler generated
source listing, FORTRAN prints the character following the <Tas> at
the next tab stop (located at columns 9,17,25,33, etc.).

7.2.3.2 Statement Label Field - A statement label is a number which
FORTRAN uses to reference one statement from another statement.

A statement label (sometimes also called a statement number) consists
of €rom one to five decimal digits ranging from I through 99999.
Place this label in the first five positions of a statement's first
line. Any source program statement that is referenced by another
statement must have a statement number.

FORTRAN ignores spaces and leading zeros preceding the statement
label, e.g., FORTRAN interprets the following as statement label 105:

105
00105
105

You may assign statement numbers in any order; however, each
statement number must be unique in the program or subprogram. In
contrast, a main program and a subprogram may contain identical
statement numbers. In this case, FORTRAN understands that reference
to these numbers means the numbers in the program unit in which the
reference is made.

Example :

Assume that the main program and a subprogram both contain
statement number 105. A GOTO statement in the main program will
refer to statement number 105 in the main program, not to
statement 105 in SUB1. A GOTO in SUB1 will transfer control to
105 in SUB1.

An all-zero statement label is illegal.

You cannot label non-executable statements other than FORMAT
statements.

When you type a source program with a terminal, an initial <TAB> skips
over the label and continuation field.

7.2.3.3 Comment Indicator - A comment indicator tells FORTRAN that
the text on a line is a comment and that, therefore, it should not
process that line.

Type the letter C in column one to indicate that the line is a
comment. The compiler will print the contents of that line in the
source program listing. However, it ignores the line when it compiles
the program.

7-23

FORTRAN IV

The following are restrictions on comments.

0 All comment lines must begin with the letter C in column one.

0 You cannot continue comment lines; consequently each comment
line must begin with a C.

0 Unlike other statements, the text of a comment can begin in
the second space of a line.

0 Comment lines must not intervene between a statement's initial
line and its continuation line (or lines), or between
successive continuation lines.

7.2.3.4 Continuation Indicator Field - A continuation indicator tells
FORTRAN that the text on that line is part of the same statement as
the preceding line.

You must reserve column six of a FORTRAN line for the continuation
indicator even if you do not type a continuation indicator.

FORTRAN defines any character except a space in column 6 to be a
continuation indicator.

The following are rules for using continuation indicators:

You may divide a statement into distinct lines at any point.

You may precede the continuation indicator with space
characters only; you may not precede it with a <TAB) as an
initial skips over the continuation field.

The characters beginning in column seven of a continuation
line are considered to follow the last character of the
previous line as if there were no break at that point.

You may enter no more than 5 continuation lines for one
statement.

You cannot continue comment lines.

A comment line must not intervene between a statement's
initial line and its continuation line (or lines), or between
successive continuation lines.

You cannot assign statement numbers to continuation lines.

7.2.3.5 Stagement Field - Type the text of a FORTRAN statement in
columns 7 through 72. A <TAB) may precede the statement field rather
than spaces. Note that because the compiler ignores <TAB>s and spaces
(except in Hollerith constants and alphanumeric literals), you can
space the text of the statement in any way desired fo r maximum
legibility .

7-2 4

FORTRAN IV

7.2.3.6 Identification Field - Type a sequence number or other such
identifying information in columns 73-80 of any line in a FORTRAN
program. FORTRAN ignores the characters in this field.

NOTE

The FORTRAN compiler ignores text in
these positions. Moreover, FORTRAN does
not print a warning message if you
accidently type text in this field.
This is sometimes the source of
inexplicable errors.

You might use this feature when typing
punched card input. It is seldom used
with terminals.

7.2.4 Blank Lines

You may insert lines consisting only of blanks, m s , or no
characters anywhere in your source program excep.t immediately
preceding a continuation line. You would use a blank line to improve
the readability of a source listing: the FORTRAN compiler ignores
them.

7.2.5 Line Format Summary

The fields and the columns in which they may appear are listed in
Table 7-9.

Table 7-9
Field Summary

Field

Statement Label

Continuation Indicator

Statement

Identification

Column

1 through 5

6

7 through 72

73 through 80

This example shows the placement of fields (the numbers
column numbers) :

7
1 67 3

IlIMENSION A ~ 1 2 ~ ~ B ~ 1 0 ~ 1 0 ~ 1 0 ~ r C ~ 1 3 ~ 1 3 ~ ~ ~ ~ ~ ~ 7 ~ 0 0 0 0 0 0 0 1
12195)

1.0 RECAD (1910005) (ArB9ClrD) 00000002
C THE DATA IS STORED ON DECTAPE; USE THE FORTRAN RUN 03
C TIME SYSTEM TO ASSIGN LUN 1 TO DTA:.:: 00000004

CALL UPJM’I’E (A 9 D) 00000005
IF (+ N O T + ENI1) GO TO 10 00000006

represent

FORTRAN IV

7.3 FORTRAN STATEMENT COMPONENTS

The elements of FORTRAN statements are:

e Constants

A constant is a fixed, self-describing value.

e Variables

A variable is a symbolic name that represents a stored value.

e Arrays

An array is a group of variables that you may refer to
individually or collectively. The individual values are
called array elements. Use a symbolic name to refer to the
array.

e Expressions

An expression can be a constant, variable, array element, or
function reference. It may also be a combination of those
components and certain other elements (called operators). The
operators indicate computations which FORTRAN will perform on
the values represented by those components. The result of the
computation is a single value.

e Function References

A function reference is the name of a function (often followed
by a list of arguments). After FORTRAN performs the
computation indicated by the function definition, it
substitutes the computed value in place of the function
reference.

7.3.1 Symbolic Names

You use symbolic names to identify many entities within a FORTRAN
program unit. Symbolic names consist of a combination of from one to
six alphanumeric characters. If you use more than six characters in a
symbolic name, FORTRAN reads only the first six.

The first letter of a symbolic name must be a letter. The special
characters listed in Table 7-8 may not appear in symbolic names.

Examples of valid and invalid symbolic names are:

Val id Invalid

NUMBER 54 (Begins with a numeral)
K9 B.4 (Contains a special character)

Table 4-1 indicates the types of variables which FORTRAN identifies by
symbolic names.

Except as specifically mentioned in this manual, you may not use the
same symbolic name to identify more than one FORTRAN entity.

Each variable indicated as "Typed" in Table 7-10 has a data type. The
means of specifying the data type of a name are presented in Sections
7.3.2, Data Types, and 7.6.1, Type Declaration Statements.

7-26

FORTRAN IV

Data Type
)r

INTEGER 1

I

Within a subprogram, you may use symbolic names as dummy arguments. A
dummy argument may represent a variable, array, array element,
constant, expression, or subprogram. However, all subprograms must be
uniquely named.

Meaning

A whole number.

Table 7-10
Classes of Symbolic Names

I Entity I Typed

Variables
Arrays
Arithmetic statement functions
Processor-defined functions
FUNCTION subprograms
SUBROUTINE subprograms
Common blocks
Block data subprograms

7.3.2 D a t a Types

The data type Of a FORTRAN element may be inherent in its
construction, implied by convention, or you may declare it explicitly.
The data types available in FORTRAN, and their definitions, are listed
in Table 7-11.

Table 7-11
FORTRAN Data Types

REAL I A decimal number; it can be a whole number, a
decimal fraction, or a combination of the two.

LOGICAL I The logical value "true" or "false".
OCTAL An integer number in radix 8.

I

7 . 3 . 3 Constants

A constant represents a fixed value; that is, a constant can
represent numeric values, logical values, or character strings. You
can specify five types of constants in an OS/78 FORTRAN program:
integer, real, octal, logical, and Hollerith.

7-27

FORTRAN I V

7.3.3.1 I n t e g e r C o n s t a n t s - An i n t e g e r c o n s t a n t is a whole number
w i t h no dec imal p o i n t . I t may have a l e a d i n g s i g n .

Format:

s n n

where:

nn is a s t r i n g of from 1 t o 7 d e c i m a l d i g i t s , and
s is an o p t i o n a l a l g e b r a i c s i g n .

I n OS/78 FORTRAN, an i n t e g e r c o n s t a n t is a whole s i g n e d o r uns igned
number which c o n t a i n s no more t h a n 7 decimal d i g i t s . I n t e g e r
c o n s t a n t s m u s t f a l l w i t h i n t h e r a n g e -2**23 t o 2**23-1 (-8,388,608 t o
8,338,607). When you u s e i n t e g e r c o n s t a n t s as s u b s c r i p t s , FORTRAN
uses them a t modulo 2**12 (4,096 d e c i m a l) .

FORTRAN i g n o r e s l e a d i n g z e r o s i n i n t e g e r c o n s t a n t s .

Precede a n e g a t i v e i n t e g e r c o n s t a n t by a minus symbol. A p l u s symbol
i s o p t i o n a l b e f o r e a p o s i t i v e number because FORTRAN assumes a n
uns igned c o n s t a n t t o b e p o s i t i v e ; e . g . , +27 and 27 are i d e n t i c a l .

With t h e e x c e p t i o n of a p l u s o r minus s i g n , an i n t e g e r c o n s t a n t c a n n o t
c o n t a i n any c h a r a c t e r o t h e r t h a n t h e numera ls 0 th rough 9.
S p e c i f i c a l l y , embedded commas and d e c i m a l p o i n t s a r e n o t a l l o w e d .

Examples :

V a l i d I n v a l i d
I n t e g e r C o n s t a n t s I n t e g e r C o n s t a n t s

0 99999999999 (Too l a r g e)
-127 3.14 (Decimal p o i n t and

+32123 32,767 comma n o t a l l o w e d)

7.3.3.2 Real C o n s t a n t s - A d e c i m a l rea l c o n s t a n t is a s t r i n g of
d e c i m a l d i g i t s w i t h a dec imal p o i n t . An e x p o n e n t i a l r e a l c o n s t a n t i s
a d e c i m a l rea l c o n s t a n t fo l lowed by a n exponent .

A Decimal Real C o n s t a n t is a decimal number. I t may have a l e a d i n g
s i g n .

Format:

s . n n
snn . nn
snn .

where:

nn is a s t r i n g of n u m e r i c ; c h a r a c t e r s .

s is an o p t i o n a l a l g e b r a i c s i g n .
is a d e c i m a l p o i n t .

A d e c i m a l real c o n s t a n t is a s t r i n g o f decimal d i g i t s w i t h a d e c i m a l
p o i n t . Note t h a t you d o n o t a lways have t o t y p e , a number f o l l o w i n g
t h e d e c i m a l p o i n t , b u t you m u s t a lways t y p e t h e dec imal p o i n t . The
dec imal p o i n t can a p p e a r anywhere i n t h e d i g i t s t r i n g .

7-28

FORTRAN IV

FORTRAN d o e s n o t l i m i t t h e number o f d i g i t s i n a dec ima l rea l
c o n s t a n t , b u t o n l y t h e l e f t m o s t s i x d i g i t s are s i g n i f i c a n t . For
example, i n t h e c o n s t a n t 0 . 0 0 0 0 1 2 3 4 5 6 7 8 , a l l o f t h e non-zero d i g i t s
are s i g n i f i c a n t (n o t e t h a t FORTRAN o n l y s t o r e s 0 . 0 0 0 0 1 2) . However, i n
t h e c o n s t a n t 0 0 0 5 0 7 , t h e f i r s t t h r e e z e r o s a re n o t s i g n i f i c a n t .

You m u s t p r e c e d e a n e g a t i v e c o n s t a n t w i t h a minus s i g n . The p lus s i g n
is o p t i o n a l p r e c e d i n g a p o s i t i v e r ea l c o n s t a n t .

Except f o r a lgebraic s i g n s and a dec ima l p o i n t , a r e a l d e c i m a l
c o n s t a n t c a n n o t c o n t a i n any c h a r a c t e r o t h e r t h a n t h e numera l s 0
t h rough 9 .

Examples:

V a l i d I n v a l i d
Real C o n s t a n t s Real C o n s t a n t s

3 . 1 4 1 5 9

-. 00127
0 . 0

7 1 7 1 2 .
1 , 2 3 4 , 5 6 7 (Commas n o t a l lowed)
8 7 9 8 7 7 3 9 9 . (Too l a rge)
1 0 0 (Decimal p o i n t m i s s i n g)

An e x p o n e n t i a l r e a l c o n s t a n t is a decimal rea l c o n s t a n t fo l lowed by a
decimal exponent .

Format:

mmEsnn

where:

mm i s an i n t e g e r o r r ea l c o n s t a n t ,
nn i s a 1- t o 3 - d i g i t i n t e g e r c o n s t a n t ,
E i n d i c a t e s t h a t t h e c o n s t a n t is an e x p o n e n t i a l r e a l c o n s t a n t ,

s is an a l g e b r a i c s i g n .
and

A n e x p o n e n t i a l rea l c o n s t a n t i s a decimal number which you t y p e i n
s c i e n t i f i c n o t a t i o n , t h a t i s , i n powers o f t e n . The number, nn ,
r e p r e s e n t s a power o f 1 0 by which t h e p r e c e d i n g r ea l o r i n t e g e r
c o n s t a n t i s t o be m u l t i p l i e d (e . g . , 1E6 r e p r e s e n t s t h e v a l u e
1 . 0 x 10**6). The magni tude of a r ea l c o n s t a n t c a n n o t be smaller t h a n
lo**-615 nor g r e a t e r t h a n 10**615. The number mm is an i n t e g e r o r
r e a l c o n s t a n t .

A r ea l c o n s t a n t o c c u p i e s t h r e e words (i . e . , s i x b y t e s) o f s t o r a g e .
FORTRAN i n t e r p r e t s t h i s number a s hav ing a d e g r e e of p r e c i s i o n
s l i g h t l y g r e a t e r t h a n seven decimal d i g i t s .

I n 0 5 / 7 8 FORTRAN, a r ea l e x p o n e n t i a l c o n s t a n t need n o t c o n t a i n a
dec ima l p o i n t .

A minus symbol m u s t appear between t h e l e t t e r E and a n e g a t i v e
exponent ; a p l u s symbol is o p t i o n a l f o r a p o s i t i v e exponen t .

Except f o r a l g e b r a i c s i g n s , a decimal p o i n t , and t h e l e t t e r E , a r ea l
e x p o n e n t i a l c o n s t a n t c a n n o t c o n t a i n any c h a r a c t e r o t h e r t h a n t h e
numera ls 0 t h rough 9 . However, you may omi t t h e decimal p o i n t i f t h e
number d o e s n o t have a f r a c t i o n a l p a r t .

7-29

FORTRAN IV

Examples :

V a l i d
Real C o n s t a n t s

I n v a l i d
Real C o n s t a n t s

2E-3
+5.0E3

-47.E645 (Too l a r g e)
3253-801 (Too small)
5E3.2 (dec ima l p o i n t misplaced)

7.3.3.3 L o g i c a l C o n s t a n t s - A l o g i c a l c o n s t a n t s p e c i f i e s a l o g i c a l
v a l u e , t h a t is , " t rue" o r " f a l s e " . T h e r e f o r e , t h e r e are o n l y two
p o s s i b l e l o g i c a l c o n s t a n t s . They are:

.TRUE.

and

.FALSE.

NOTE

Y o u may a b b r e v i a t e .TRUE. and .FALSE.
as .T. and .F.

You m u s t t y p e t h e d e l i m i t i n g p e r i o d s a s t h e y a r e p a r t of e a c h
c o n s t a n t .

Only l o g i c a l o p e r a t o r s can o p e r a t e on l o g i c a l c o n s t a n t s .

7 .3 .3 .4 Octal C o n s t a n t s - An o c t a l c o n s t a n t is a s t r i n g of o c t a l
d i g i t s (0-7 o n l y) p receded by t h e l e t t e r 0.

Format:

DATA/O num/

where:

num is an o c t a l number, and
0 i d e n t i f i e s t h e number as an O c t a l c o n s t a n t .

An o c t a l c o n s t a n t is a d i g i t s t r i n g (0-7 o n l y) which you may u s e o n l y
i n DATA s t a t e m e n t s t o e n t e r numbers i n r a d i x e i g h t . An o c t a l c o n s t a n t
may be of any l e n g t h , b u t t h e FORTRAN compi l e r u s e s o n l y t h e 1 2 low
o r d e r d i g i t s .

You g e n e r a l l y u s e o c t a l c o n s t a n t s t o set b i t s f o r masking p u r p o s e s .

Examples:

DATA JOB/O103 2/
DATA BASE /07777/

NOTE

The c h a r a c t e r f o l l o w i n g t h e f i r s t / i n
each o f t h e s e examples i s t h e l e t t e r 0,
n o t a z e r o .

7-30

FORTRAN I V

7.3.3.5 H o l l e r i t h Constants and Alphanumeric L i t e r a l s - A H o l l e r i t h
constant is a s t r i n g of A S C I I c h a r a c t e r s preceded by 1) a character
count, and 2) t h e l e t t e r H.

Format:

nHccc.. . c

where:

n i s an unsigned, non-zero integer constant ind ica t ing the
number of charac te rs i n the s t r i n g (including spaces and
t a b s) ,

c i s any A S C I I charac te r , and
H i d e n t i f i e s t h i s a s a H o l l e r i t h constant .

A H o l l e r i t h constant i s a s t r i n g of alphanumeric and/or s p e c i a l
charac te rs preceded by a number which s t a t e s how many c h a r a c t e r s a r e
i n the constant and t h e l e t t e r H . You may use any A S C I I character
(including those which a r e not p a r t of the FORTRAN character s e t) .

Hol le r i th constants have no da ta type. They assume t h e d a t a type of
the context i n which t h e y appear.

Examples :

Val id Inval id
H o l l e r i t h Constants Hol le r i th Constants

1 6 H T O D A Y ' S DATE IS: 3HABCD (wrong number of charac te rs .
1H T h i s w i l l be s tored a s ABC.)

An alphanumeric l i t e r a l is a s t r i n g of A S C I I charac te rs del imited w i t h
apostrophes or quotat ion marks.

Format:

'ccc. . . c I
"ccc. . . c"

where :

c i s a p r i n t a b l e A S C I I charac te r , and you m u s t type both

An Alphanumeric l i t e r a l is an a l t e r n a t e form of Hol le r i th constant .
Like Hol le r i th constants , you may use any A S C I I character (including
those which a r e not p a r t of t h e FORTRAN character s e t) .

Alphanumeric l i t e r a l s have no da ta type. They assume the d a t a type of
t h e context i n which they appear.

de l imi t ing apostrophes or quotes.

I f you need t o type an apostrophe w i t h i n an alphanumeric l i t e r a l , type
i t a s two consecutive apostrophes.

Ex amp1 e s :

'CHANGE PRINTER PAPER TO PREPRINTED FORM NO. 7 2 1 '

' T O D A Y I ' S DATE IS: '

7-31

FORTRAN IV

You may use a quotation mark (") instead of an apostrophe. However,
you may not mix quotation marks and apostrophes. For example, the
following literal is not allowed:

"THIS IS A MIXED LITERAL'

but you may type

"THIS ISN'T A MIXED LITERAL''

1 . 3 . 4 Variables

A variable is a symbolic name that FORTRAN associates with a storage
location. (The FORTRAN compiler assigns the storage locations.) The
value of the variable is the value currently stored in that location:
you can only change that value by assigning a new value to the
variable with an assignment statement.

FORTRAN classifies variables by data type, in the same manner as
constants. The data type of a variable indicates

0 The type of data it represents,

0 Its precision, and

0 Its storage requirements.

You may specify the data type of a variable either by type declaration
statements (see Section 7.6.1), or by FORTRAN default typing rules
(Section 7.3.4.2).

FORTRAN associates two or more variables with each other when each
variable uses the same storage location: or, partially associates
variables when part (but not all) of the storage which one variable
uses is the same as part or all of the storage which another variable
uses. You create associations and partial associations with:

0 COMMON statements,

0 EQUIVALENCE statements, and

0 Actual and dummy arguments in subprogram references.

A variable is defined if the storage with which it is associated
contains a datum of the same type. You can define a variable prior to
program execution by typing a DATA statement or during execution by
means of assignment or input statements.

Before you assign a value to a variable, it is an undefined variable,
and you should not reference it except to assign a value to it. If
you reference an undefined variable, an unknown value (garbage) will
be obtained.

If you associate variables of differing types with the same storage
location, then defining the value of one variable (for example, by
assignment) causes the value of the other variable to become not
defined.

7-32

FORTRAN IV

7.3.4.1 Data Type Specification - Declaration statements (Section
7.6.1) associate given variables with specified data types. For
example:

INTEGER VARl

This statement indicates that FORTRAN will associate the integer
variable VARl with a 3-word storage location.

You can only explicitly declare the data type of a variable once in a
program unit.

An explicit specification takes precedence over default specification.

7.3.4.2 Default Data Types - FORTRAN assumes all variables having
names beginning with I, J, K, L, M, or N represent integer data:
variables having names beginning with any other letter are real
variables. For example:

Real Variables

ALPHA

Integer Variables

KOUNT

BETA ITEM

TOTAL NTOTAL

7.3.5 Arrays

An array is a group of contiguous storage locations which you
reference with a single symbolic name, the array name. You reference
the individual storage locations, called array elements, by a
subscript appended to the array name.

An array can have from one to seven dimensions.

The following FORTRAN statements establish arrays:

0 Type declaration statements (Section 7.6.11,

0 DIMENSION statements (Section 7.6.21, and

0 COMMON statements (Section 7.6.3).

Each of these statements defines

0 The name of the array,

0 The number of dimensions in the array, and

0 The number of elements in each dimension.

7-33

FORTRAN IV

7.3.5.1 Array Declarations - Use an array declaration to instruct
FORTRAN to reserve storage for an array.

Format:

where:

[Etypj is a data type declaration,

part of the array.

a is the array name, and
d is a number specifying the number of elements in that

An array is a group of variables that have the same symbolic name;
you address the elements of the array by means of a subscript.

Declare a variable to be an array by specifying the symbolic name
which identifies the array within a program unit and which indicates
the properties of that array. The number of dimension declarator$ d
indicates the number of dimensions in the array. The minimum number
of dimensions is one and the maximum number is seven.

You must declare the size (that is, the number or elements) of an
array in order to reserve the needed amount of locations in which to
store the array. The value of a dimension declarator specifies the
number of elements in that dimension. For example, a dimension
declarator value of 50, for example, TABLE(50), indicates that the
dimension contains 50 elements. The dimension declarators can be
constant or variable.

The rules governing the dimensioning of arrays are as follows
(characters enclosed within parentheses represent subscripted
characters). In the equation:

L (n) =M (1) [1+M (2) +M (2) M (3) +M (2) M (3) M (4) . . . M (n-1) m (n) I
let:

L = length of the entire array
n = total number of dimensions in the array
M(i) = maximum subscript for each dimension in the array, where i

specifies which dimension in the array is being
referenced.

In the above equation, L must not exceed 4095 in any case.

For example,

L(l) = M(1)<4096
L(2) = M(1) [1+M(2) I <4096
L(3) = M(1) [1+M(2)+M(2)M(3
etc.

In the above equation, L must
arrays, individual arrays, e
subprograms.

For example,

L(1) = M(1)<2047
L(2) = M(1) [1+M(2)1<2047

] <4096

not exceed 2047 when transmitting
ements, or subportions of an array to

7-34

FORTRAN IV

The number of elements in an array is always equal to the product of
the number of elements in each dimension. More specifically, the
array IAB dimensioned as (3,4) has 12 elements (3 x 4 = 12) and takes
48 words of storage. Although FORTRAN stores arrays as a series of
sequential storage locations, you may best visualize and reference
arrays as if they were a single or multi-dimensional rectilinear
matrices, dimensioned on a row, column, and plane basis. For example,
Figure 7-2 represents a 3-row, 3-column, 2-plane array.

3 ROWS

3 COLUMNS

Figure 7-2 Array Representation

Specify the size of an array by an array declaration written as a
subscripted array name. In an array declaration, however, each
subscript quantity is a dimension of the array and must be either an
integer variable or an integer constant.

An array name can appear in only one declaration statement within a
program unit.

Use variable dimension declarations to define adjustable arrays (see
Section 7.3.5.6).

7.3.5.2 Array Storage (Order of Subscript Progression) - OS/78
FORTRAN always stores arrays in memory as a linear sequence of values.
For example, FORTRAN stores a l-dimensional array with its first
element in the first storage location and its last element in the last
storage location of the sequence. FORTRAN stores a multi-dimensional
array such that the leftmost subscripts vary most rapidly. For
example, in the array ARRAY(3,2,2) the progression is:

ARRAY (1,1,1)
ARRAY (2,1,1)
ARRAY (3 , 1 , 1)
ARRAY (1,2,1)
ARRAY (2,2,1)
ARRAY (3,2,1)
ARRAY (1,1,2)
ARRAY (2,1,2)
ARRAY (3,1,2)
ARRAY (1,2,2)
ARRAY (2,2,2)
ARRAY (3,2,2)

This is called the "order of subscript progression". For example,
consider in Figure 7-3 the array declarators and the arrays that they
create.

7-35

FORTRAN IV

Figure 7-3 Array Storage

The arrows labeled "memory positions" show the order in which FORTRAN
stores information in memory. This order is critically important when
you use an unsubscripted array name in a READ or WRITE statement as
this is the order in which FORTRAN fills memory or prints data.

7.3.5.3 Subscripts - A subscript is the means by which you address
individual elements in an array.

Format:

where:

s is an integer subscript expression.

Use a subscript following the array to specify which element in the
array FORTRAN will reference.

In any subscripted array reference, you must type one subscript
expression for each dimension you define for that array (i.e., one for
each dimension declaration). For example, you could use the following
entry to refer to the element located in the first row, third column,
second level of the array TEMP in Figure 7-2 (which is the element
occupying memory position 16).

TEMP (1,3,2)

Note, however, that an array reference such as TEMP(1,3) would be
illegal because the third subscript is not indicated.

Each subscript expression can be any valid integer expression. If the
value of a subscript expression is not an integer, FORTRAN converts it
to integer before using it.

A subscript can be a compound expression, that is,

0 Subscript quantities may contain arithmetic expressions that
involve addition, subtraction, multiplication, division, and
exponentiation. For example, (I+J,K*5,L/2) and
(I**3, (J/4+K) *L,3) are valid subscripts.

0 A subscript may contain function references. For example,
TABLE(IABS(N)*KOUNT,2,3) is a valid array element identifier.

0 Subscripts may contain nested array element identifiers as
subscripts. For ex amp1 e, in the subscript
(I (J (K (L) ,M+N,ICOUNT) , the first subscript quantity given is
a nested 3-level subscript.

7-36

FORTRAN I V

7.3.5.4 Data Type of an Array - Specify the d a t a type of an a r r ay i n
t he same way a s t h e d a t a type of a va r i ab le ; t h a t i s , i m p l i c i t l y by
the i n i t i a l l e t t e r of the name, or e x p l i c i t l y by a type d e c l a r a t i o n
s ta tement . (See Sect ion 7 .6 .1 .)

A l l of the values i n an a r r ay a r e of the same d a t a type. FORTRAN
converts any value you ass ign t o an a r r ay element t o t h e da t a type of
t he a r ray .

7.3.5.5 Array References without Subscr ip ts - In t h e following
s ta tements , you may type an a r r ay name without a subsc r ip t t o spec i fy
t h a t you w i s h t o use the e n t i r e a r ray .

Type Declarat ion Statements

COMMON statement

DATA s ta tement

EQUIVALENCE s ta tement

FUNCTION statement

SUBROUTINE statement

CALL s ta tement

Input/Output s ta tements

Using unsubscripted a r r ay names i n any o ther s ta tement i s i l l e g a l .

7.3.5.6 Adjbstable Arrays - Use an ad jus t ab le a r r ay i n a subprogram
so t h a t the subprogram can process a r r ays of d i f f e r e n t s i z e s . D o t h i s
by passing the bounds a s w e l l a s t h e a r r ay name a s subprogram
arguments o r dummy arguments.

An ad jus t ab le a r r ay dec la ra to r d i f f e r s from a s tandard a r r a y
dec la ra to r i n t h a t the ad jus t ab le dec la ra to r has va r i ab le dimension
d e c l a r a t o r s (which a r e simply in teger v a r i a b l e s) . I n such an a r r a y
dec la ra t ion , each dimension dec la ra to r m u s t be e i t h e r an in t ege r
cons tan t o r an in teger dummy argument. T h i s a r r ay name m u s t a l s o
appear a s a dummy argument. (Consequently, you may not use ad jus t ab le
a r r ay d e c l a r a t o r s i n main program un i t s .)

Upon e n t r y t o a subprogram containing ad jus t ab le a r r ay d e c l a r a t o r s ,
FORTRAN a s s o c i a t e s each dummy argument i n a dimension dec la ra to r with
an in teger ac tua l argument. FORTRAN uses these values t o form the
ac tua l a r r ay dec la ra t ion . These in teger v a r i a b l e s determine t h e s i z e
of t h e ad jus t ab le a r r ay f o r t h a t s i n g l e execution of t he subprogram.

You m u s t not change the va lues of the dummy ad jus t ab le a r r a y
dec la ra to r arguments within subprogram.

The e f f e c t i v e s i z e of t he dummy a r r a y m u s t be equal t o o r less than
t h e ac tua l s i z e of t h e assoc ia ted a r ray .

7-37

FORTRAN IV

The function in the following example computes the sum of the elements
of a two-dimensional array. Note the use of the integer variables M
and N to control the iteration.

FUNCTION SUM(A,M,N)
DIMENSION A(M,N)
SUM = 0.
DO 10, I = l,M
DO 10, J = 1,N

RETURN
END

10 SUM = SUM + A(1,J)

Following are sample calls on SUM:

DIMENSION A1(10,35), A2(3,56)
SUM1 = SUM(A1,10,35)
SUM2 = SUM(A2,3,56)
SUM3 = SUM(A1,10,10)

If there are more dimensions in the adjustable array than in the array
being passed to the subroutine, you must indicate a value of 1 for
that dimension declaration.

7.4 EXPRESSIONS

An expression is a combination of elements which represents a single
value. FORTRAN relates an element in an expression to another element
in the same expression by operators and parentheses. The expression
can be a single basic component, such as a constant or variable, or a
combination of basic components with one or more operators. Operators
specify computations to be performed (using the values of the basic
components) to obtain a single value.

Expressions can be classified as arithmetic, relational, or logical.
Arithmetic expressions yield numeric values: relational and logical
expressions produce logical values.

7.4.1 Arithmetic Expressions

Form arithmetic expressions with arithmetic elements and arithmetic
operators. The evaluation of such an expression yields a single
numeric value.

An arithmetic expression element may be any of the following:

0 A numeric constant,

0 A numeric variable,

0 A numeric array element,

0 An arithmetic expression within parentheses,

0 An arithmetic function reference.

Arithmetic operators specify a computation which FORTRAN will perform
using the values of arithmetic elements; they produce a numeric value
as a result. The operators and their meanings are listed in Table
7-12.

7-38

FORTRAN IV

c
Opera tor

**

Table 7-12
Ari.thmetic Operators

Function

Exponentiation

+
-

*

/

Addition and Unary Plus

Subtraction and Unary Minus

Multiplication

Division

BASE

Integer

Real

EXPONENT

Integer Real

Yes No

Yes Yes

operators,

~

The operators listed in Table 7-12 are called binary
because you would use each in conjunction with two elements. You can
also use the + and - symbols as unary operators because, when you
write them immediately preceding an arithmetic element, they indicate
a positive or negative value.

7.4.1.1 R u l e s for Writing Arithmetic Expressions - Observe the
following rules in structuring compound arithmetic expressions:

0 An expression cannot contain two adjacent and unseparated
operators. For example, the expression A*/B is not permitted.

0 You must include all operators: no operation is implied. For
example, the expression A(B) does not specify multiplication
although this is implied by standard algebraic notation. You
must type A*(B) to obtain a multiplication of the elements.

0 When you use exponentiation, the base quantity and its
exponent may be of different types. For example, the
expression ABC**13 involves a real base and an integer
exponent. The permitted base/exponent type combinations and
the type of the result of each combination are given in Table
7-13.

0 You must assign a value to a variable or array element before
you use it in an arithmetic expression. If you do not, the
elements are undefined.

Table 7-13
Base/Exponent Combinations

7-39

FORTRAN IV

In addition, you can only exponentiate a negative element by an
integer element; you cannot exponentiate an element having a value of
zero by another zero-value element.

In any valid exponentiation, the result is of the same data type as
the base element.

7.4.1.2 Evaluation Hierarchy - FORTRAN evaluates arithmetic
expressions in an order determined by a precedence it associates with
each operator. The precedence of the operators is listed in Table
7-14.

Table 7-14
Binary Operator Evaluation Hierarchy

Ope r a tor
~~ ~

**
* and /
+ and -

- -

Precedence

First

Second

Third

Fourth

Whenever two or more operators of equal precedence (such as + or -)
appear, FORTRAN evaluates them from left to right. However, FORTRAN
evaluates exponentiation from right to left. For example, A**B**C is
evaluated as A**(B**C) where FORTRAN computes the parenthetical
subexpression (B**C) first.

7.4.1.3 Date Type of an Arithmetic Expression - The way in which
OS/78 FORTRAN determines the data type of an expression is as follows:

0 Integer operations - FORTRAN performs integer operations only
on integer elements. (When you use octal constants and
logical entities in an arithmetic context, FORTRAN treats them
as integers.) In integer arithmetic, any fraction that results
from a division is truncated, not rounded. For example, the
value of the expression in integer arithmetic

1/3 + 1/3 + 1/3
is zero, not one.

0 Real operations - FORTRAN performs real operations on real
elements or a combination of real and integer elements.
FORTRAN converts integer elements to real by giving each a
fractional part equal to zero. It then evaluates the
expression using real arithmetic. Note, however, that in the
statement Y = (I/J)*X, FORTRAN performs an integer division
operation on I and J and then performs a real multiplication
on the result and X.

7-4 0

FORTRAN IV

7 . 4 . 2 Relational Expressions

A relational expression consists of two arithmetic expressions which
you separate by a relational operator. The value of the expression is
either true or false, depending on whether or not the stated
relationship exists.

A relational operator tests for a relationship between two arithmetic
expressions. These operators are listed in Table 7-15.

Table 7-15
Relational Operators

Operator

.LT.

.LE.

.EQ.

.NE.

.GT.

.GE.

Re1 at ionsh ip

Less than

Less than or equal to

Equal to

Not equal to

Greater than

Greater than or equal to

The delimiting periods preceding and following a relational operator
are part of the operator and must be present.

In a relational expression, FORTRAN evaluates the arithmetic
expressions first to obtain their values. It then compares those
values to determine if the relationship stated by the operator exists.
For example, the expression:

APPLE+PEACH .GT. PEAR+ORANGE

tests the relationship, "The sum of the real variables APPLE and PEACH
is greater than the sum of the real variables PEAR and ORANGE." If
this relationship does exist, the value of the expression is true: if
not, the expression is false.

All relational operators have the same precedence. Thus, if two or
more relational expressions appear within an expression, FORTRAN
evaluates the relational operators from left to right. Note that
arithmetic operators have a higher precedence than relational
operators.

Use parentheses to alter the evaluation of arithmetic expressions in a
relational expression exactly as in any other arithmetic expression.
However, as FORTRAN evaluates arithmetic operators before relational
operators, it is unnecessary to enclose an arithmetic expression
preceding or following a relational operator in parentheses.

7-41

FORTRAN IV

7.4.3 Logical Expressions

A logical expression may be a single logical element, or it may be a
combination of logical elements and logical operators. A logical
expression yields a single logical value, either true or false.

A logical element can be any of the following:

0 A logical constant,

0 A logical variable,

0 A logical array element,

0 A relational expression,

0 A logical expression enclosed in parentheses,

0 A logical function reference (functions and function
references are described in Chapter 8) .

The logical operators are listed in Table 7-16.

Opera tor

.AND.

.OR.

. XOR.

. EQV.

. NOT.

Table 7-16
Log ical Opera tors

Ex amp1 e

A .AND. B

A .OR. B

A .XOR. B

A .EQV. B

.NOT. A

~ ~

Meaning

Logical conjunction. The expression is
true if, and only if, both A and B are
true.

Logical disjunction (inclusive OR).
The expression is true if, and only if,
either A or B, or both, is true.

Logical exclusive OR. The expression
is true if A is true and B is false, or
vice versa. It is false if both
elements have the same value.

Logical equivalence. The expression is
true if, and only if, both A and B have
the same logical value, whether true or
false.

Logical negation. The expression is
true if, and only if, A is false.

NOTE

A and B can be expressions or constants.

You must type the delimiting periods of logical operators.

A logical expression, like an arithmetic expression may consist of
basic elements.

7-42

FORTRAN IV

For example:

.TRUE.
X .GE. 3.14159

or

TVAL .AND. INDEX
BOOL(M) .OR. K .EQ. LIMIT

where:

BOOL is either a logical function with one argument or a
one-dimensional logical array.

You may enclose logical expressions within parentheses, e.g.,

A .AND. (B .OR. C)

or

(A .AND. B) .OR. C

Note that these expressions evaluate differently, e.g., if A is false
and C is true, then the first yields a false value while the second
yields a true.

7.4.3.1 Logical Operator Hierarchy - A summary of all operators that
may appear in a logical expression, and the order in which FORTRAN
evaluates them is listed in Table 7-17.

Table 7-17
Logical Operator Hierarchy

I Operator

**

* I /

+,-

Re1 at ional
Operators

. NOT.

.AND.

.OR.

.XOR. ,.EQV.

Precedence

First

Second

Third

Fourth

Fifth

Sixth

Seventh

Eighth

7-43

FORTRAN IV

7.4.4 Use of Parentheses

In an expression, FORTRAN evaluates all subexpressions you place
within parentheses first. When you nest parenthetic subexpressions
(that is, one subexpression is contained within another) the most
deeply nested subexpression is evaluated first, the next most deeply
nested subexpression is evaluated second, and so on, until FORTRAN
computes the entire parenthetical expression.

When you type more than one operation within a parenthetical
subexpression, FORTRAN performs the required computations according to
a hierarchy of operators.

Parentheses do not imply multiplication. For example, (A+B)(C+D) is
illegal.

The following illustrates a typical numeric expression using numeric
operators and a function reference is the familiar formula for
obtaining one of the roots of a quadratic equation.

-b +l/b**2 - 4ac
2a

which might be coded

(-B + SQRT(Bf*2-4*A*C))/(2*A)
Note how the parentheses affect the order or evaluation. Also note
that one parentheses pair is required by the SQRT function. An
example of the effect of parentheses is shown below (the numbers below
the operators indicate the order in which FORTRAN performs the
operations) .

4 + 3 * 2 - 6 [2 = 7 n n ..
2 1 4 3

(4 + 3) n * 2 - 6 / 2 = 1 1
8. .. n

1 2 4 3

(4 + 3 * 2 - 6) / 2 = 2
n n 1 n

2 1 3 4

((4 + 3) * 2 - 6) / 2 = 4
n n n n

1 2 3 4

Evaluation of expressions within parentheses takes place according to
the normal order of precedence.

Nonessential parentheses, such as in the expression

4 + (3 * 2) - (6/2)
have no effect on the evaluation of the expression.

The use of parentheses to specify the evaluation order is often
important where evaluation orders that are algebraically equivalent
might not be computationally equivalent when carried out on a
computer.

FORTRAN evaluates operators of equal rank from left to right.

7-44

FORTRAN IV

7.5 ASSIGNMENT STATEMENTS

Assignment statements evaluate expressions and assign their values to
variables or elements in an array.

There are three types of assignment statements:

0 Arithmetic assignment statement,

0 Logical assignment statement,

0 ASSIGN statement (see Section 7.2.3.1).

7.5.1 Arithmetic Assignment Statement

The arithmetic assignment statement assigns a numerical value to a
variable or array element.

Format:

v = e

where:

v is a variable or array element name.
e is an expression.

The arithmetic assignment statement assigns the value of the
expression on the right of an equal sign to the variable or array
element on the left of the equal sign. If you had previously assigned
a value to the variable, an assignment statement replaces it with the
value on the right side of the equals sign.

Note that the equal sign does not mean "is equal to", as in
mathematics. It means "is replaced by". Thus, the statement:

KOUNT = KOUNT + 1

means, "Replace the current value of the integer variable KOUNT with
the sum of that current value and the integer constant 1".

Although the symbolic name to the left of the equal sign can be
undefined, you must previously have assigned values to all symbolic
references in an expression (i.e., the right side of the equals sign).

An expression must yield a value that conforms to the requirements of
the variable or array element to which you assign it (for example, a
real expression that produces a value greater than 8,338,608 is
illegal if the entity on the left of the equal sign is an INTEGER
variable).

If the data type of the variable or array element on the left of the
equal sign is the same as that of the expression on the right, FORTRAN
assigns the value directly. If the data types are different, FORTRAN
converts the value of the expression to the data type of the entity on
the left of the equal sign before it is assigned.

7-45

FORTRAN IV

Ex ampl es :

Valid Statements

BETA

PI = 3.14159

SUM = SUM+l.

-1 ./ (2. *X) +A*A/ (4. * (X*X))

Invalid Statements

3.14 = A-B (Entity on the left must be a variable
or array element.)

-J = I**4 (Entity on the left must not be signed.)

ALPHA = ((X+6)*B*B/(X-Y) (Invalid; left and right parentheses do
not balance .)

7.5.2 Logical Assignment Statements

Use a logical assignment statement to assign a true or false value to
a logical variable.

Format:

v = e

where:

v is a variable or array element of type logical, and
e is a logical expression.

The logical assignment statement is similar to the arithmetic
assignment statement, but it operates on logical data. The logical
assignment statement evaluates the expression on the right side of an
equal sign and assigns the resulting logical value, either true or
false, to the variable or array element on the left.

The variable or array element on the left of the equal sign must be of
type LOGICAL; its value can be undefined before the assignment.

You must have previously assigned values, either numeric or logical,
to all symbolic references that appear in an expression. The
expression must yield a logical value.

Ex ampl es :

PAGEND = .FALSE.

PRNTOK = LINE .LE. 132 .AND. .NOT. PAGEND

ABIG = A .GT. B .AND. A .GT. C .AND. A .GT. D

7.6 SPECIFICATION STATEMENTS

This section discusses FORTRAN specification statements.
Specification statements are nonexecutable statements which provide
information necessary for the proper allocation and initialization of
variables and names you use in a program.

7-46

FORTRAN IV

7 . 6 . 1 Type Declaration Statements

Type declaration statements explicitly define the data type of
symbolic names.

Format:

typ v ~ , v ~ ...
where:

typ is one of the following data type specifiers:

LOGICAL
INTEGER
REAL

v is a typed variable or array.

A type declaration statement causes the specified symbolic names to
have the specified data type: it overrides the data type implied by
the initial letter of a symbolic name.

A type declaration statement can define arrays by including array
declarators in the l i s t . In each program unit, an array name can
appear only once in an array declarator. Note, however, that

DIMENSION ISUM (3 , 4)
INTEGER ISUM

is legal.

Type declaration statements should precede all executable statements
and all specification statements. You must precede the first use of
any symbolic name with its declaration statement if you do not use the
default type declaration.

You can explicitly declare the data type of a symbolic name only once.

You must not label type declaration statements. The FORTRAN entities
which you may type are:

Arithmetic Statement Functions
Arrays
functions
Variables

Examples :

INTEGER COUNT, MATRIX (4 , 4) , SUM
REAL MAN,IABS
LOGICAL SWITCH

7.6.2 DIMENSION Statement

The DIMENSION statement defines the number of dimensions in an array
and the number of elements in each dimension.

Format:

DIMENSION a (a) I[,a (a)

7-4 7

FORTRAN IV

where:

a i s t h e symbol ic name o f an a r r a y
d i s t h e d imens ion d e c l a r a t o r

Example :

DIMENSION ARRAY(6,7,4)

The DIMENSION s t a t e m e n t a l l o c a t e s s t o r a g e l o c a t i o n s , one f o r e a c h
e l emen t i n each d imens ion , f o r each a r r a y i n t h e DIMENSION s t a t e m e n t .
You may d e c l a r e any number o f a r r a y s i n one d imens ion s ta tement . Each
s t o r a g e l o c a t i o n i s s i x o r twe lve b y t e s i n l e n g t h as de te rmined by t h e
d a t a t y p e of t h e a r r a y . The amount o f s t o r a g e FORTRAN a s s i g n s t o an
a r r a y is equal t o 6 o r 12 times t h e p r o d u c t o f a l l d imens ion
d e c l a r a t o r s i n t h e a r r a y d e c l a r a t o r f o r t h a t a r r a y . For example,

DIMENSION ARRAY (4 , 4) , MATRIX (5 , 5 , 5)

d e f i n e s ARRAY as hav ing 1 6 real e l e m e n t s of 6 words e a c h , and MATRIX
as hav ing 125 i n t e g e r e l e m e n t s , a l s o o f 6 words each .

You c a n n o t d e c l a r e more t h a n 7 d imens ions t o an a r r a y . The re is a l s o
a l i m i t o f 4095 e l e m e n t s t o any a r r a y . Each s i z e s p e c i f i c a t i o n m u s t
be a non-zero p o s i t i v e i n t e g e r c o n s t a n t .

For f u r t h e r i n f o r m a t i o n conce rn ing a r r a y s and t h e s t o r a g e o f a r r a y
e l e m e n t s , see S e c t i o n 2.6.

Ar ray d e c l a r a t o r s can a l s o appear i n t y p e d e c l a r a t i o n and COMMON
s t a t e m e n t s : however, i n each program u n i t , a n a r r a y name c a n appear
i n o n l y o n e a r r a y d e c l a r a t o r .

You m u s t n o t l a b e l DIMENSION s t a t e m e n t s .

Examples :

DIMENSION BUD (12 ,24 , lo)

DIMENSION X(5 ,5 ,5) ,Y(4 ,85) , 2 (1 0 0)

DIMENSION MARK (4 , 4 , 4 , 4 , 4)

7.6.3 EXTERNAL S t a t e m e n t

The EXTERNAL s t a t e m e n t permits t h e u s e o f e x t e r n a l p r o c e d u r e names
(f u n c t i o n s , s u b r o u t i n e s , and FORTRAN l i b r a r y f u n c t i o n s) as a rgumen t s
t o o t h e r subprograms.

Format:

EXTERNAL v [,VI .. .
where:

v is t h e symbol ic name o f a subprogram o r t h e name o f a dummy
argument which i s a s s o c i a t e d w i t h a subprogram.

Example :

EXTERNAL SIN, COS, ABS

7-48

FORTRAN IV

Any subprogram which you use as an argument to another subprogram must
appear in an EXTERNAL statement in the calling subprogram. Thus, the
purpose of the EXTERNAL statement is to declare names to be subprogram
names. This distinguishes the external name v from other variable or
array names.

The subprogram may be ones that you write or those which are part of
the FORTRAN library. The EXTERNAL statement declares each name v to
be the name of a procedure external to the program unit. Such a name
can then appear as an actual argument to a subprogram.

NOTE

If you use a complete function reference
such as a ' call to the SQRT external
function in a reference such as CALL
SORT (A,SQRT (B) ,C) , the function
reference is a value (the square root of
B) and you do not need to define it as
an external statement. You would only
have to define it if you were passing
the function name, i.e., CALL
SORT (A,SQRT,C) .

FORTRAN reserves the names you declare in an external statement
throughout the compilation of the program: you cannot use it in any
other declaration statement, with the exception of a type statement.

Example:

Main Program

EXTERNAL SIN,COS,TAN

CALL TRIG (ANGLE,SIN,SINE)

CALL TRIG (ANGLE,COS,COSINE)

CALL TRIG (ANGLE,TAN,TANGNT)

Subprograms

SUBROUTINE TRIG (X,F,Y)
Y = F(X)
RETURN
END

FUNCTION TAN (X)
TAN = SIN(X) / COS (X)
RETURN
END

The CALL statements pass the name of a function to the subroutine
TRIG. The function is subsequently invoked by the function reference
F(X) in the second statement of TRIG. Thus, the second statement
becomes in effect:

Y = SIN(X)

Y = TAN(X)
Y = COS(X)

depending upon which CALL statement invoked TRIG. The functions SIN
and COS are examples of trigonometric functions supplied in the
FORTRAN Library.

7-49

FORTRAN 1V

7 . 6 . 4 COMMON Statement

U s e a COMMON statement so t h a t programs and subprograms can share
information.

Format:

COMMON [
where :

cb

n l i s t

/ [c b l / I) n l i s t / [cbI) / n l i s t l) ...

is a symbolic name or is blank. I f the f i r s t cb i s
blank, you can omit the f i r s t p a i r of s l a s h e s , and

is a l i s t of v a r i a b l e names, a r ray names, and a r r a y
d e c l a r a t o r s separated by commas.

Example:

COMMON /AREAl/A,B //C,D

The COMMON statement enables you t o e s t a b l i s h s torage t h a t two or more
programs and/or subprograms may share and t o name t h e v a r i a b l e s and
ar rays t h a t w i l l occupy t h e common storage. T h e use of common s torage
conserves s torage and provides a means t o i m p l i c i t l y t r a n s f e r
arguments between a c a l l i n g program and a subprogram. The t r a n s f e r i s
i m p l i c i t because no ac tua l t r a n f e r r a l takes place; i n s t e a d , the
program u n i t references the common storage area.

FORTRAN determines t h e length of a COMMON block by the number of
components and t h e amount of s torage each component requi res . COMMON
blocks may be of any length, subjec t t o t h e l i m i t a t i o n s of a v a i l a b l e
memory.

n l i s t , which appears a f t e r each common name cb, l i s ts the names of t h e
v a r i a b l e s and ar rays t h a t w i l l occupy the common area cb. FORTRAN
p laces t h e i t e m s €or a common w i t h i n common s torage area i n t h e order
i n which you l i s t them i n the COMMON statement or statements.

Elements you place i n t o common storage i n one program u n i t should
agree i n da ta type w i t h elements reference i n a second. T h i s i s
because assignment of s torage is on a s torage unit-for-storage u n i t
b a s i s , not var iable-for-var iable .

E i t h e r l a b e l COMMON s torage a reas or leave t h e m blank (unlabe led) . I f
you l a b e l the common area , type a symbolic name w i t h i n s l a s h e s
immediately before the l i s t of items t h a t w i l l occupy t h e cb area.

For example, the statement

COMMON/AREAl/A,B,C/AREA2/TAB(l3,3,3)

e s t a b l i s h e s two labeled common areas (i . e . , AREA1 and A R E A 2) .

I f you a r e declar ing a common storage area t o be blank common, then
you may omit the double s l a s h e s (/ /) i f and only i f i t i s the f i r s t
d e c l a r a t i o n of any common statement. Unlabeled common area i s c a l l e d
"blank common". I f t h e blank common dec lara t ion is not the f i r s t
dec la ra t ion i n a COMMON statement, then the double s l a s h e s a r e
mandatory.

For example, t h e statement

CoMMON/AREAl/A,B,C//TAB(3,3,3)

e s t a b l i s h e s one labeled area (AREA11 and one unlabeled common area.

7-50

FORTRAN IV

A given labeled common name may appear more than once i n t h e same
COMMON statement and i n more than one COMMON statement w i t h i n t h e same
program or subprogram.

During compilation of a source program, FORTRAN w i l l bring together
a l l items you l is t for each labeled and blank common area i n t h e order
i n which the items appear i n the source program statements.

For example, t h e s e r i e s of source program statements:

COMMON/ST1/A,B,C/STl/TAB(2,2)//C,D,E

COMMON/ST~/TST (3 , 4 //M , N

iOMMON/ST2/X,Y, Z//O,P,Q

has t h e same e f f e c t a s t h e s i n g l e statement

FORTRAN t r e a t s each labeled common area a s a separa te , s p e c i f i c
s torage area. You assign t h e contents of a common area , i . e . ,
v a r i a b l e s and ar rays , i n i t i a l Lalues by DATA statements i n a BLOCK
DATA subprogram. Declarations of a g i v e n common area i n d i f f e r e n t
subprograms m u s t contain the same number, s i z e , and order of v a r i a b l e s
and ar rays a s t h e reference array.

Common block names m u s t be unique w i t h respec t t o a l l subrout ine and
funct ion names.

The l a r g e s t d e f i n i t i o n of a given common area m u s t be loaded f i r s t .

Storage a l l o c a t i o n for blocks of the same name begins a t the same
loca t ion f o r a l l program u n i t s FORTRAN executes together . For
example, i f a program contains:

COMMON A , B , C / R / X , Y , Z

a s i t s f i r s t COMMON stateme'nt, and a subprogram has:

COMMON /R/U,V,W / / D I E I F

a s i t s f i r s t COMMON statement, the values represented by X and U a r e
s tored i n the same loca t ion . A s imi la r correspondence holds f o r A and
D i n blank common.

I f one program u n i t references a p a r t of a common block, then you m u s t
use dummy v a r i a b l e s t o e s t a b l i s h the proper correspondence. For
example, i f you dec lare a common block t o contain:

A , B , C , D , E , F , G , H , I , J , K

and a subprogram w i s h e s t o reference the s torage loca t ion pointed t o
by K, then you m u s t dec la re a common block a s follows i n t h e
subprogram:

COMMON A , B , C , D , E , F , G i H i I , J , K

The dec la ra t ion COMMON K i n t h e subprogram would cause a
correspondence between v a r i a b l e A i n t h e main program and v a r i a b l e K
i n t h e subprogram. (Note t h a t any o ther sequence of v a r i a b l e s names
would a l s o be c o r r e c t .)

7-51

FORTRAN IV

Ins tead of dec la r ing each va r i ab le contained i n t h e COMMON block, you
may s u b s t i t u t e a dummy a r ray (provided t h a t you a r e c a r e f u l t o
match-up proper s torage l e n g t h s) .

You may a l s o de f ine an a r r ay i n a COMMON statement. You may not
otherwise subsc r ip t a r r ay names. Also, you cannot ass ign ind iv idua l
a r r ay elements t o COMMON.

7.6.5 EQUIVALENCE Statement

Use an EQUIVALENCE s ta tement t o a s soc ia t e d i f f e r e n t v a r i a b l e s w i t h t h e
same s torage.

Format:

EQUIVALENCE (n l i s t) [, (n l i s t) 1 . . .
where:

n l i s t i s a l i s t of v a r i a b l e s and a r r ay elements, separated by
commas. A t l e a s t two components m u s t be p re sen t i n
each l i s t .

Example :

The EQUIVALENCE s ta tement dec la re s two or more e n t i t i e s t o be
assoc ia ted (e i t h e r t o t a l l y or p a r t i a l l y) with t h e same s to rage
loca t ion .

NOTE

EQUIVALENCE d i f f e r s from COMMON i n t h a t
EQUIVALENCE a s s o c i a t e s d i f f e r e n t
va r i ab le names with the same s torage
a rea i n a program u n i t . COMMON may
a s soc ia t e d i f f e r e n t va r i ab le names w i t h
t h e same s torage a rea b u t i t always
makes t h e a s soc ia t ion between program
u n i t s .

The EQUIVALENCE s ta tement causes FORTRAN t o a l l o c a t e a l l of the
va r i ab le s or a r r ay elements contained i n one parenthesized l i s t
beginning a t t h e same s torage loca t ion .

You can a l s o u s e t h e EQUIVALENCE s ta tement t o equate va r i ab le names.
For example, t he statement

EQUIVALENCE (FLTLEN, FLENTH, FLIGHT)

causes FLTLEN, FLENTH, and FLIGHT t o have the same value provided they
a r e a l s o of t h e same d a t a type.

7-52

FORTRAN IV

An EQUIVALENCE statement in a subprogram must not contain dummy
arguments.

Examples:

EQUIVALENCE (A,B), (B,C) (has the same effect as EQUIVALENCE
(A,B,C) 1

7.6.5.1 Making Arrays Eguivalent - When you make an element of an
array equivalent to an element of another array, the EQUIVALENCE
statement also sets equivalences between other elements of the two
arrays. Thus, if you make the first elements of two equal-sized
arrays equivalent, both arrays share the same storage space.
Moreover, if you make the third element of a 5-element array
equivalent to the first element of another array, the last three
elements of the first array overlap the first three elements of the
second array .
The EQUIVALENCE statement must not attempt to assign the same storage
location to two or more elements of the same array, nor to assign
memory locations in any way that is inconsistent with the normal
linear storage of array elements (for example, making the first
element o f an array equivalent with the first element of another
array, then attempting to set an equivalence between the second
element of the first array and the sixth element of the other).

In the EQUIVALENCE statement only, it is possible to identify an array
element with a single subscript (that is, the linear element number),
even though you have defined one as being multi-dimensional.

For example, the statements:

DIMENSION TABLE (2,2), TRIPLE (2,2,2)
EQUIVALENCE (TABLE (4) , TRIPLE (7))

result in the entire array TABLE sharing a portion of the storage
space FORTRAN allocates to array TRIPLE as illustrated in Figure 7-4.
In Figure 7-4, the elements with asterisks are those explicitly
mentioned in the above EQUIVALENCE statement.

Array TRIPLE Array TABLE

Array Element Array El emen t
El emen t Number Element Number

TRIPLE (1,1,1) 1
TRIPLE (2,1,1) 2
TRIPLE (1,2,1) 3
TRIPLE (2,2,1) 4 TABLE (1,1)
TRIPLE (1,1,2) 5 TABLE(2,l)
TRIPLE (2,1,2) 6 TABLE (1,2)
TRIPLE(1,2,2) 7* TABLE (2,2)
TRIPLE (2,2,2) 8

1
2
3
4 *

Figure 7-4 Equivalence of Array Storage

7-53

FORTRAN IV

Figure 7-4 also illustrates that the following two statements

EQUIVALENCE
EQUIVALENCE (TRIPLE(1,2,2), TABLE(4))

result in the same alignment of the two arrays.

(TABLE (1) ,TRIPLE (4))

7.6.5.2 EQUIVALENCE and COMMON Interaction - When you make components
equivalent to entities in common, it can cause FORTRAN to extend the
common block beyond its original boundaries.

An EQUIVALENCE statement can only extend common beyond the last
element of the previously established common block. It must not
attempt to increase the size of common in such a way as to place the
extended portion before the first element of existing common. (See
Figure 7-5.)

Valid Extension of Common

DIMENSION A (4) ,B (6) A(1) A(2) A(3) A(4)
COMMON A
EQUIVALENCE (A(2) ,B(1) B(1) B(2) B(3) B (4) B(5) B(6)

Exiting Common Extended Portion
7 -

Illegal Extensions of Common

DIMENSION A(4) ,B(6) A(1) A(2) A(3) A(4)
COMMON A
EQUIVALENCE(A(2) ,B(3)) B(1) B(2) B(3) B(4) B(5) \B!6),

- \ ..
Ex tended Existing Common Extended
Port ion Portion

Figure 7-5 Legal and Illegal Common Extensions

If you assign two components to the same or different common blocks,
you must not make them equivalent to each other.

7.7 DATA STATEMENTS AND BLOCK DATA SUBPROGRAMS

The DATA initialization statement permits the assignment of initial
values to variables and array elements prior to program execution.

Format:

DATA nlist/clist/ [[, Jj nlist/clist/ 1 . . .
where:

nlist is a list of one or more variable names, array names,
or array element names separated by commas,

is an optional separator, and

clist is a list of constants.

7-54

FORTRAN I V

Example:

DATA A,B,C(3),C(7)/4.0,8.1,16.0128.0/

The DATA s t a t e m e n t causes FORTRAN t o a s s i g n t h e c o n s t a n t v a l u e s i n
e a c h c l is t t o t h e e n t i t i e s i n t h e p r e c e d i n g n l i s t . FORTRAN a s s i g n s
v a l u e s i n a one-to-one manner i n t h e o r d e r i n which t h e y a p p e a r , from
l e f t t o r i g h t . [[I S COMMA OPTIONAL OR MANDATORY]]

When an u n s u b s c r i p t e d a r r a y name a p p e a r s i n a DATA s t a t e m e n t , FORTRAN
a s s i g n s v a l u e s t o e v e r y e l e m e n t of t h a t a r r a y . The a s s o c i a t e d
c o n s t a n t l i s t m u s t t h e r e f o r e c o n t a i n enough v a l u e s t o f i l l t h e a r r a y .
FORTRAN f i l l s a r r a y e l e m e n t s i n t h e o r d e r o f s u b s c r i p t p r o g r e s s i o n .
(See S e c t i o n 2.6.1.)

When you a s s i g n H o l l e r i t h d a t a t o a v a r i a b l e or a r r a y e l e m e n t , t h e
number of c h a r a c t e r s t h a t you c a n a s s i g n depends on t h e d a t a t y p e of
t h e component. I f t h e number o f c h a r a c t e r s i n a H o l l e r i t h c o n s t a n t o r
a lphanumer ic l i t e r a l is less t h a n t h e c a p a c i t y of t h e v a r i a b l e o r
a r r a y e l e m e n t , t h e c o n s t a n t i s padded on t h e r i g h t w i t h s p a c e s . I f
t h e number of c h a r a c t e r s i n t h e c o n s t a n t i s g r e a t e r t h a n t h e maximum
number t h a t t h e v a r i a b l e can h o l d , i t i g n o r e s t h e r i g h t m o s t e x c e s s
c h a r a c t e r s .

When you a s s i g n t h e same v a l u e t o more t h a n one i t e m i n n l i s t , you may
u s e a r e p e a t s p e c i f i c a t i o n . Write t h e r e p e a t s p e c i f i c a t i o n a s N*D
where N is an i n t e g e r t h a t s p e c i f i e s how many times t h e v a l u e o f i t e m
D is t o b e used. For example, a DATA s p e c i f i c a t i o n of /3*20/
s p e c i f i e s t h a t t h e v a l u e 20 is t o b e a s s i g n e d t o t h e f i r s t t h r e e items
named i n t h e p r e c e d i n g l i s t . A l s o , t h e s t a t e m e n t

DATA M , N , L /3*20/

a s s i g n s t h e v a l u e 20 t o t h e v a r i a b l e s M I N , and L. The number o f
c o n s t a n t s i n a c o n s t a n t l i s t m u s t c o r r e s p o n d e x a c t l y t o t h e number o f
e n t i t i e s s p e c i f i e d i n t h e p r e c e d i n g name l i s t . The d a t a t y p e s o f t h e
d a t a e l e m e n t s and t h e i r c o r r e s p o n d i n g symbol ic names m u s t a g r e e .

FORTRAN I V c o n v e r t s t h e c o n s t a n t t o t h e t y p e o f t h e v a r i a b l e b e i n g
i n i t i a l i z e d .

Example:

INTEGER A (10) ,BELL ,K (5 , 5 , 5)
DATA A,BELL,STARS/10*0,7, I * * * * ' /K/25*0,25*1,25*2,25*3,25*4,25*5/

The DATA s t a t e m e n t a s s i g n s z e r o t o a l l t e n e l e m e n t s o f a r r a y A , t h e
v a l u e 7 t o t h e v a r i a b l e BELL, and f o u r as te r i sks t o t h e r e a l v a r i a b l e
STARS. The 125 e lement a r r a y , K, is i n i t i a l i z e d so t h a t e a c h o f t h e
f i v e p l a n e s (i . e . , t h e t h i r d d imens ion d e c l a r a t o r) h a s a d i f f e r e n t
v a l u e .

When you i n i t i a l i z e an a r r a y , you m u s t i n i t i a l i z e t h e e n t i r e a r r a y ,
e . g . , t h e DATA s t a t e m e n t i n t h e f o l l o w i n g

DIMENSION K
DATA K /10*1/

i s i l l e g a l .

7-55

FORTRAN IV

You could effect the same thing as follows:

DIMENSION I(30) ,K(10)
EQUIVALENCE (I ,K)
DATA K/10*1/

The values you assign with a DATA statement may also be assigned with
a BLOCK DATA subprogram. However., note that initial values for
variables in COMMON storage may not be specified in subprograms which
may be overlaid at execution time. If a subprogram will be overlaid,
then you should only initialize these variables in a BLOCK DATA
subprogram. (DIGITAL recommends that you only initialize variables in
COMMON storage with BLOCK DATA subprograms.)

Use a BLOCK DATA to initialize variables you place into COMMON
storage.

Format:

BLOCK DATA

Use the BLOCK DATA subprogram to assign initial values to entities in
common blocks, at the same time establishing and defining those
blocks. It consists of a BLOCK DATA statement followed by a series of
specification statements.

The

The
and
and

statements FORTRAN allows in a BLOCK DATA subprogram are:

Type Declaration
DIMENSION
COMMON
EQUIVALENCE
DATA

specification statements in the BLOCK DATA subprogram establish
define common blocks, assign variables and arrays to those blocks,
assign initial values to those components.

A BLOCK DATA statement must be the first statement of a BLOCK DATA
subprogram. You must not label the BLOCK DATA statement.

A BLOCK DATA subprogram must not contain any executable statements.

If you initialize any entity in a common block in a BLOCK DATA
subprogram, you must enter a complete set of specification statements
to establish the entire block, even though some of the components in
the block do not appear in a DATA statement. You can define initial
values for more than one common area with the BLOCK DATA subprogram.

7.8 CONTROL STATEMENTS

FORTRAN normally executes statements in the order in which you write
them. However, it is frequently desirable to change the normal
program flow by transferring control to another section of the program
or to a subprogram. Transfer of control from a given point in the
program may occur every time that point is reached in the program
flow, or may be based on a decision made at that point.

7-56

FORTRAN IV

Transfer of control, whether within a program unit or to another
program unit, is performed by control statements. These statements
also govern iterative processing, suspension of program execution, and
program termination. The types of control statements discussed in
this chapter are:

ASSIGN
CONTINUE
DO
END
IF
GO TO
PAUSE
STOP

A second kind of statement for transferring control, subprograms, are
discussed in Chapter 8 .

7.8.1 GOTO Statements

GOTO statements transfer control within a program unit, either to the
same statement every time or to one of a set of statements, based on
the value of an expression.

The three types of GOTO statements are:

0 Unconditional GOTO statement,

0 Computed GOTO statement, and

0 Assigned GOTO statement.

7.8.1.1 Unconditional GOTO Statement - Transfers control to the same
statement every time executed.

Format:

where :

st is the label of an executable statement in the same program
unit as the GOTO statement.

Example :

GOTO 50

The unconditional GOTO statement transfers control to the statement
identified by the specified label. The statement label must identify
an executable statement in the same program unit as the GOTO
statement.

Examples :

GOTO 7734

GOTO 99999

GOTO 27.5 (Invalid; the. statement label is improperly
formed.)

7-57

FORTRAN IV

7.8.1.2 Computed GOTO Statement - Transfers control to a statement
based on the value of an expression within the statement.

Format:

GOTO (slist) [, I e
where:

slist is a list of one or more executable statement labels
separated by commas,

e is an integer expression the value of which falls
within the range 1 to n (where n is the number of
statement labels in slist) .

I is an optional separator, and

Example:

GOTO (10,200,25), NUMBER

Use the computed GOTO to transfer control to one statement out of a
list of statements. The computed GOTO thus acts as a
multi-directional switch.

The computed GOTO statement evaluates the integer expression e. The
GOTO statement then transfers control to the e'th statement label in
slist. That is, if the list contains (30,20,30,40), and the value of
e is 2, the GOTO statement transfers control to statement 20, and so
on.

You may include any number of statements in slist but you must use
each number as a label within the program.

The comma following (slist) is optional.

If the value of the expression is less than 1, or greater than the
number of labels in the slist, unpredictable results occur.

Examples :

GOTO (12,24,36) ,INCHES

GOTO (320,330,340,350,36O)ISITU(J,K)+l

7.8.1.3 ASSIGN and ASSIGNed GOTO Statement - Use the ASSIGN statement
to assign a statement label to a variable name.

Format:

ASSIGN st to v

where :

st is the label of an executable statement in the same program

v is an integer variable.
unit as the ASSIGN statement, and

Example :

ASSIGN 50 TO NUMBER

7-58

FORTRAN IV

Use the ASSIGN statement to associate a statement label with an
integer variable. You can then use the variable as a transfer
destination in a subsequent ASSIGNed GOTO statement.

NOTE

The statement number must be in the same
program unit.

The statement label st must not be the label of a FORMAT statement.

The ASSIGN statement assigns the statement number to the variable in a
manner similar to that of an arithmetic assignment statement, with one
exception: the variable becomes defined for use as a statement label
reference and becomes undefined as an integer variable.

FORTRAN must execute an ASSIGN statement before the ASSIGNed GOTO
statement in which it will use the assigned variable. The ASSIGN
statement and the ASSIGNed GOTO statement must occur in the same
program unit.

For example, the statement

ASSIGN 100 TO NUMBER

associates the variable NUMBER with the statement label 100.

Arithmetic operations on the variable, such as in the statement

NUMBER = NUMBER + 1
then become invalid, as FORTRAN cannot alter a statement label. (This
is because a statement refers to a location in memory and is not a
number.) The statement:

NUMBER = 10

disassociates NUMBER from statement 100, assigns it an integer value
10, and returns it to its status as an integer var'iable. After you
make such an assignment, you can no longer use it in an ASSIGNed GOTO
statement.

Examples :

ASSIGN 10 TO NSTART

ASSIGN 99999 TO KSTOP

ASSIGN 250 TO ERROR (ERROR must have been defined as an
integer variable.)

The ASSIGNed GOTO transfers control to a statement which is
represented by a variable.

Format:

where:

V is an integer variable,

slist (when present) is a list of one or more executable
I is an optional separator, and

statement labels separated by commas.

7-59

FORTRAN IV

Example:

GOTO NUMBER,(10,35,15)

The ASSIGNed GOTO statement transfers control to the statement whose
label was most recently assigned to the variable v by an ASSIGN
statement. (See Section XXX.)

The variable v must be of integer type. In addition, you must have
previously assigned to it a statement label number with an ASSIGN
statement (not an arithmetic assignment statement).

The ASSIGNed GOTO statement and its associated ASSIGN statement must
reside in the same program unit. Also, statements to which FORTRAN
transfers control must be executable statements in the same program
unit.

Examples :

ASSIGN 50 TO IGO
GOTO IGO

GOTO INDEX, (300,450,1000,25)

If the statement label value of v is not present in the list slist
(and a list is specified), control transfers to the next executable
statement following the ASSIGNed GOTO statement.

NOTE

You must label the statement following
an ASSIGNed GOTO; otherwise, FORTRAN
can never execute that statement..

7.8.2 IF Statements

An IF statement causes a conditional control transfer or the
conditional execution of a statement. There are two types of IF
statements:

Arithmetic IF statements, and

0 Logical IF statements.

7.8.2.1 Arithmetic IF Statement - Use the arithmetic IF as a
three-way branching statement. The branching depends on whether the
value of an expression is less than, equal to, or greater than zero.

Format:

where:

e is an arithmetic expression, and
stl, st2, st3 are the labels of executable statements in the

same program unit.

7-60

FORTRAN IV

Example :

IF (1-K) 10, 20, 30

Use the arithmetic IF statement for conditional control transfers.
This statement can transfer control to one of three statements, based
on the value of an arithmetic expression.

You may use logical expressions in arithmetic IF statements. In such
a case, FORTRAN first converts the logical expression value to an
integer. If you use a complex expression, FORTRAN only uses the real
portion.

Normal use of the arithmetic IF requires that all three labels, stl,
st2, and st3, must be present. However, they need not refer to three
different st. If desired, one or two labels can refer to the same
statement.

OS/78 FORTRAN allows you to type less than three numbers. If you type
either one or two numbers, then if a condition is not met (e.g., e is
greater than zero), then control passes to the next statement.

Example :

IF (ALPHA) 10
STOP

In this statement, control transfers to statement number 10 if ALPHA
is negative. If ALPHA is positive or equal to zero, execution stops.

The arithmetic IF statement first evaluates the expression in
parentheses and then transfers control to one of the three statement
labels that follow expression e. The values upon which FORTRAN makes
the selection are listed in Table 7-18.

Table 7-18
Arithmetic IF Transfers

I If the Value is: I Control Passes to: I

Less than 0

Equal to 0

Greater than 0

Labels stl

Label st2

Label st3

Ex amp1 es :

IF (THETA-CHI) 50,50,100

This statement transfers control to statement 50 if the real variable
THETA is less than or equal to the real variable CHI. Control passes
to statement 100 only if THETA is greater than CHI.

IF (NUMBER/2*2-NUMBER) 20,40

This statement transfers control to statement 4 0 if the value of the
integer variable NUMBER is even and to statement 20 if it is odd.

7-61

FORTRAN IV

7.8.2.2 Logical I F Statement - Use a logical IF statement for
conditional execution of statements.

Format:

IF (e) St

where:

e is a logical expression, and
st is a complete FORTRAN statement. The statement can be any

executable statement except a DO statement or another
logical IF statement.

Example:

IF(X .EQ. Y) 2=4

A logical IF statement causes a conditional statement execution.
FORTRAN bases the decision to execute the statement on the value of a
logical expression within the statement.

The logical IF statement first evaluates the logical expression. If
the value of the expression is true, FORTRAN transfers control to the
executable statement within the IF statement. If the value of the
expression is false, control transfers to the next executable
statement following the logical IF; in this case, FORTRAN does not
execute statement st.

Ex amp1 e s :

IF (J .GT. 4 .OR. J .LT. 1) GOT0 250

IF (REF(J,K) .NE. HOLD) REF(J,K) = REF(J,K)*A(K,J)

IF (.NOT. X) CALL SWITCH(S,Y)

7.8.3 DO Statement

Use the DO statement to repeatedly execute a block of statements.

Format:

DO st

where:

st is the label of an executable statement which physically
follows in the same program unit,

i is an unsubscripted real or integer variable,
el (the initial value of i) is an integer or real constant or

expression,
e2 (the terminal value of i) is an integer or real constant or

expression and must be greater than el, and
e3 (the value by which i will be incremented each time it

executes the statements in the range of the DO loops) an
integer real constant or expression.

7-62

FORTRAN IV

Example :

DO 10 1=1,10,2

DO 20 I=J,K,L

The DO statement causes FORTRAN to repeatedly execute the statements
in its range a specified number of times.

The range of a DO statement is defined as the series of statements
that follow the DO statement up to and including its specified
terminal statement st, that is, the statements that follow the DO
statement, up to and including the terminal statement are in the range
of the DO loop.

The variable i is called the control (or index) variable of the DO and
el, e2, e3 are the initial, terminal, and increment parameters
respectively .
The terminal statement of a DO loop is identified by the label st that
appears in the DO statemwt. This terminal statement must not be a
GOT0 statement, an arithmetic IF statement, a RETURN statement, PAUSE
statement, STOP statement, or another DO statement. A logical IF
statement is acceptable as the terminal statement, provided it does
not contain any of the above statements.

The DO statement first evaluates the expressions el, e2, e3 to
determine values for the initial, terminal, and increment parameters.
FORTRAN then assigns value of the initial parameter to the control
variable. FORTRAN then repeatedly executes the statements in the
range of the DO loop.

The increment parameter must be positive, and the value of the
terminal parameter must not be less than that of the initial
parameter.

The value of the increment parameter must not be zero.

After each execution of the range of the DO loop, FORTRAN adds the
increment value to the value of the index. It .then compares the
result to the terminal value. If the index value is not greater than
the terminal value, FORTRAN reexecutes the range using the new value
of the index i.

The number of executions of the DO range, called the iteration count,
is given by

MAX(1, ((e2-el)/e3) + 1
FORTRAN always executes the range of a DO statement at least once.

7.8.3.1 DO Iteration Control - You can terminate the execution of a
DO by a statement within the range that transfers control outside the
loop. When you transfer out of the DO loop's range, the control
variable of the DO remains defined with its current value.

When execution of a DO loop terminates, if other DO loops share the
same terminal statement, control transfers outward to the next most
enclosing DO loop in the DO nesting structure (Section 7.4.2). If no
other DO loop share this terminal statement, or if this DO is the
outermost DO, control transfers to the first executable statement
following the terminal statement.

7-63

FORTRAN I V

You may alter the values of i, el, e2, and e3. If you alter the value
of i, the loop will not be executed the number of times which you
originally specified. If you alter the values of the expressions, you
do not affect the looping as FORTRAN "remembers" these values. The
control variable i is available for reference as a variable within the
range .
The range of a DO loop can contain other DO statements, as long as
those "nested" DO loops conform to certain requirements.

You can transfer control out of a DO loop, but you cannot transfer
into a loop from elsewhere in the program. Exceptions to this rule
are described in the following sections.

Ex amp1 es :

DO 100 K=1,50,2 (25 iterations, K=49 during final iteration)

DO 25 IVAR=1,5 (5 iterations, IVAR=5 during final iteration)

DO NUMBER=5,40,4 (Invalid; statement label missing)

DO 40 M=2.10 (Invalid; decimal point instead of comma)

The last example illustrates a common clerical error. It is a valid
arithmetic assignment statement in the FORTRAN language; i.e.,

D040M = 2.10

7.8.3.2 N e s t e d DO Loops - A DO loop may contain one or more complete
DO loops. The range of an inner nested DO must lie completely within
the range of the next outer loop. Nested loops- may share the same
terminal statement. (See Figure 7-6.)

Correctly Nested
DO Loops

Incorrectly Nested
DO Loops

DO 45 K=1,10

DO 35 L=2,50,2

35 CONTINUE

DO 45 M=l,20

45 CONTINUE

DO 15 K=1,10

DO 25 L=1,20

15 CONTINUE

DO 30 M=1,15

25 CONTINUE

30 CONTINUE

Figure 7-6 Nesting of DO Loops

7-64

FORTRAN IV

I n t h e c o r r e c t l y nested DO loops, note t h a t t h e diagrammed l i n e s do
not cross . They do, however, share t h e same statement (45). I n the
i n c o r r e c t l y nested DO loops, t h e loop defined by DO 25 crosses t h e
ranges of t h e other two DO loops.

Note t h a t you may nest loops t o a depth of (a t l e a s t) 1 0 l e v e l s .

7.8.3.3 Control Transfers i n DO Loops - W i t h i n a n e s t e d DO loop
s t r u c t u r e , you can t r a n s f e r cont ro l from an i n n e r loop t o an outer
loop. A t r a n s f e r from an outer loop t o an i n n e r loop is i l l e g a l .

I f two or more nested DO loops share t h e same terminal statement, you
can t r a n s f e r cont ro l t o t h a t statement only from w i t h i n t h e range of
t h e innermost loop, t h a t is , t h e terminal statement belongs s o l e l y t o
t h e innermost DO statement. Any other t r a n s f e r t o t h a t statement
c o n s t i t u t e s a t r a n s f e r from an outer loop t o an inner loop because t h e
shared statement i s p a r t of the range of t h e innermost loop.

The following rules govern t h e t r a n s f e r of program cont ro l from w i t h i n
the DO statements range or t h e ranges of n e s t e d DO statements.

0 FORTRAN permits a t r a n s f e r out of the range of any DO
statement a t any time. When such a t r a n s f e r executes, t h e
c o n t r o l l i n g DO s ta tement ' s index v a r i a b l e r e t a i n s i t s cur ren t
value.

0 FORTRAN permits a t r a n s f e r i n t o t h e range of a DO statement
from w i t h i n t h e range of any:

1. DO loop;

2 . nes t ed DO loop; or

3. extended range loop (i n which you leave t h e loop v i a a
GOTO, execute statements elsewhere, and r e t u r n t o t h e
o r i g i n a l l o o p) .

7.8.3.4 Extended Range - A DO loop is sa id t o have an extended range
i f it contains a cont ro l statement t h a t t r a n s f e r s cont ro l out of the
loop and i f , a f t e r t h e execution of one or more statements, another
control statement r e t u r n s cont ro l back i n t o t h e loop. I n t h i s way,
FORTRAN extends t h e range of t h e loop t o include a l l of the executable
statements between the d e s t i n a t i o n statement of t h e f i r s t t r a n s f e r and
the statement t h a t r e t u r n s cont ro l t o the loop.

Figure 7-7 i l l u s t r a t e s v a l i d and inva l id cont ro l t r a n s f e r s .

7-65

FORTRAN I V

V a l i d
C o n t r o l T r a n s f e r s

DO 35 K=1,10

D 6 1 5 L=2,20

GOTO 20

1 5 CONTINUE

20 A=B+C

DO 35 M=1,15

G 6 TO 50

30 X=A*D

35 CONTINUE

50 D=E/F
Extended

Range
GOTO 30

I n v a l i d
C o n t r o l T r a n s f e r s

GOTO 20

DO 50 K = l , l o
'20 A=B+C

DO 35 L=2,20

30 D=E/F

35 CONTINUE

GO TO 40

DO 45 M=1,15

40 X=A*D

45 CONTINUE

50 CONTINUE

GOTO 30

F i g u r e 7-7 C o n t r o l T r a n s f e r s and Extended Range

The f o l l o w i n g ru l e s gove rn t h e u s e o f a DO s t a t e m e n t ex tended range:

0 The t r a n s f e r o u t s t a t e m e n t f o r an ex tended r ange o p e r a t i o n
m u s t be c o n t a i n e d by t h e most d e e p l y n e s t e d DO s t a t e m e n t t h a t
c o n t a i n s t h e l o c a t i o n t o which t h e r e t u r n t r a n s f e r i s t o be
made.

0 A t r a n s f e r i n t o t h e r ange o f a DO s t a t e m e n t i s p e r m i t t e d o n l y
i f t h e t r a n s f e r is made from t h e ex tended r ange o f t h a t DO
s t a t e m e n t .

0 The ex tended r ange o f a DO s t a t e m e n t m u s t n o t c o n t a i n a n o t h e r
DO s t a t e m e n t .

0 The ex tended r ange o f a DO s t a t e m e n t c a n n o t change t h e index
v a r i a b l e o r i ndex ing parameters o f t h e DO s t a t e m e n t .

0 You may e x e c u t e subprograms w i t h i n an ex tended r ange .

7.8.4 CONTINUE Statement

I n s e r t a CONTINUE statement where you d o n o t wish any s t a t e m e n t t o be
execu ted .

Format:

s t CONTINUE

7-66

FORTRAN IV

where:

st is a statement label.

A CONTINUE statement is a statement that holds a place in the program
without performing any operations.

You may place CONTINUE statements anywhere in the source program
without affecting the program sequence of execution. CONTINUE
statements are commonly used as the last statement of a DO statement
range in order to avoid ending with a GOTO, PAUSE, STOP, RETURN,
arithmetic IF, another DO statement, or a logical IF statement
containing one of the previous statements. However, they are valid
throughout a source program.

Note that you also use a CONTINUE as a transfer point for a GOTO
statement within the DO loop that is intended to begin another
repetition of the loop.

Example:

In the following sequence, the labeled CONTINUE statement provides a
legal termination for the range of the DO loop.

.
IIO 45 ITEM=lr1000
STOCK=NVNTRY(ITEM)

CALL UPDATE(ST0CKrTALLY)
IF (STOCK *Ea+ TALLY) GO TO 45

IF (ITEM *En+ LAST) GO TO 77
45 CONTINUE

*
*

77 WHITE (4920) HEADING9 PAGENO

7.8.5 PAUSE Statement

The PAUSE statement temporarily suspends program execution to permit
some action on the part of the user.

Format:

where:

num is an optional integer variable or expression containing one

The PAUSE statement prints the display (if you have specified one) at
your terminal, suspends program execution, and waits for you to type
the RETURN key. This causes program execution to resume with the
first executable statement following the PAUSE.

to five digits.

7-67

FORTRAN IV

Ex amp1 es :

PAUSE "13731

PAUSE 'MOUNT TAPE REEL #3'

7.8.6 STOP Statement

Use the $TOP statement to terminate program execution.

Format:

STOP

The STOP statement terminates program execution and returns control to
the operating system. If you do not type a STOP statement, a "stop"
occurs when FORTRAN transfers control to an END statement in the main
program unit.

A CALL EXIT statement is equivalent to STOP and closes any temporary
files at the last block written on the file. Control returns to the
OS/78 Monitor.

Examples :

STOP

99999 STOP

7.8.7 END Statement

The END statement marks the end of every program unit and it must be
the last source line of every program unit.

Format:

END

In a main program, if control reaches the END statement, execution of
the program terminates; in a subprogram, a RETURN statement is
implicitly executed.

In the main program, END is equivalent to STOP. In a subprogram, it
is equivalent to RETURN.

A program cannot reference an END statement.

Control returns to the OS/78 Monitor after FORTRAN executes an END
statement.

If you do not type an END statement as the last statement in your
program, FORTRAN appends one.

7-68

FORTRAN IV

7.9 SUBPROGRAMS

Procedures you use repeatedly in a program may be written once and
then referenced each time you need the procedure. Procedures that you
may reference are either internal (written and contained within the
program in which they are referenced) or external (self-contained
executable procedures that you may compile separately). The kinds of
procedures that you may reference are:

0 Arithmetic Statement Functions,

0 External Functions,

0 Subroutines, and

0 Intrinsic functions (FORTRAN-defined functions).

7.9.1 Subprogram Arguments

Since you may reference subprograms at more than one point throughout
a program, many of the values which the subprogram uses may be changed
each time the subprogram is called. Dummy arguments in subprograms
represent the actual values which the subprogram will use. The
arguments are passed to the subprogram when FORTRAN transfers control
to it.

Functions and subroutines use dummy arguments to indicate the type of
the actual arguments they represent and whether the actual arguments
are variables, array elements, arrays, subroutine names, or the names
of external functions. You must use each dummy argument within a
subprogram as if it were a variable, array, array element, subroutine,
or external function identifier. You enter dummy arguments in an
"argument list" which you associate with the identifier assigned to
the subprogram: actual arguments are normally given in an argument
list which you associate with a call made to the subprogram.

The position, number, and type of each dummy argument in a subprogram
must agree with the position, number, and type of each argument in the
argument list of the subprogram reference.

Dummy arguments may be:

0 Variables,

0 Array names,

0 Subroutine identifiers, or

0 Function identifiers.

When you reference a subprogram, FORTRAN replaces its dummy arguments
by the corresponding actual arguments which you supply in the
reference. All appearances of a dummy argument within a function or
subroutine are related to the given actual arguments. Except for
subroutine identifiers and literal constants, a valid association
between dummy and actual arguments occurs only if both are of the same
type: otherwise, the result of the subprogram will be unpredictable.
Argument associations may be carried through more than one level of
subprogram reference if a valid association is maintained through each
level. FORTRAN terminates the dummy/actual argument associations
which it establishes when you reference a subprogram. This occurs
when FORTRAN completes the operations defined in the subprogram.

7-69

FORTRAN IV

The following rules govern the use and form of dummy arguments:

0 The number and type of the dummy arguments of a procedure must
be the same as the number a'nd type of the actual arguments
given each time you reference the procedure.

0 Dummy argument names may not appear in EQUIVALENCE, DATA, or
COMMON statements.

0 A varialsle dummy argument should have a variable, an array
element identifier, an expression, or a constant as its
corresponding argument.

0 An array dummy argument should have either an array name or an
array element identifier as its corresponding actual argument.
If the actual argument is an array, the length of the dummy
array should be less than or equal to that of the actual
array. FORTRAN associates each element of a dummy array
directly with the corresponding elements of the actual array.

0 A dummy argument representing an external function must have
an external function as its actual argument.

0 A dummy argument representing a subroutine identifier should
have a subroutine name as its actual argument.

0 You may define (or redefine) a dummy argument in a referenced
subprogram only if its corresponding actual argument is a
variable. If dummy arguments are array names, then you may
redefine the elements of the array.

7.9.2 User-written Subprograms

FORTRAN transfers control to a function by means of a function
reference. It transfers control to a subroutine by a CALL statement.
A function reference is the name of the function, together with its
arguments, appearing in an expression. A function always returns a
value to the calling program. Both functions and subroutines may
return additional values via assignment to their arguments. A
subprogram can reference other subprograms, but it cannot, either
directly or indirectly, reference itself (that is, FORTRAN is not
recursive).

7 .9 .2 .1 Arithmetic Statement Functions (ASE) - Use an Arithmetic
Statement Function to define a one statement, self-contained
computational procedure.

Format:

nam ([a [,an ...I)=e

where:

nam is the name you assign to the ASF,
a is a dummy argument, and
e is an expression.

Ex amp1 es :

PROOT(A,B,C) = (-B+SQRT(B**2 - 4*A*C))/(2*A)
NROOT(A,B,C) = (-B-SQRT(B**2 - 4*A*X))/(2*A)

7-70

FORTRAN IV

An arithmetic statement function is a computing procedure which you
define by a single statement, similar in form to an arithmetic
assignment statement. The appearance of a reference to the function
within the same program unit causes FORTRAN to perform the computation
and make the resulting value available to the expression in which the
ASF reference appears.

The expression e is an arithmetic expression that defines the
computation to be performed by the ASF.

You reference an ASF in the same manner as an external function.

Format:

where:

nam is the name of the ASF, and
a is an actual argument.

NOTE

You must define all ASFs before you type
any executable statements.

When a reference to an arithmetic statement function appears in an
expression, FORTRAN associates the values of the actual arguments with
the dummy arguments in the ASF definition. FORTRAN then evaluates the
expression in the defining statement and uses the resulting value to
complete the evaluation of the expression containing the function
reference.

Specify the data type of an ASF either implicitly by the initial
letter of the name or explicitly in a type declaration statement.

Dummy arguments in an ASF definition only indicate the number, order,
and data type of the actual arguments. You may use the same names to
represent other entities elsewhere in the program unit. Note also
that with the exception of data type, FORTRAN does not associate
declarative information (such as placement in COMMON or declaration as
an array) with the ASF dummy arguments. Note that you cannot use the
name of the ASF to represent any other entity within the same program
unit.

The expression in an ASF definition may contain function references.

Any reference to an ASF must appear in the same program unit as the
definition of that function. You cannot use an ASF name in an
EXTERNAL statement.

An ASF reference must appear as, or be part of, an expression; you
must not use it as the left side of an assignment statement.

Actual arguments must agree in number, order, and data type with their
corresponding dummy arguments. You must assign values to actual
argument before the reference to the arithmetic statement function.

7-71

FORTRAN IV

Examples:

Definitions

VOLUME(RAD1US) = 4.189*RADIUS**3

SINH(X) = (EXP(X)-EXP(-X))*0.5

AVG (A, B , C ,3.) = (A+B+C) /3. (inval id ; constant as dummy
argument not permitted)

ASF References

AVG(A,B,C) = (A+B+C)/3. (definition)

GRADE = AVG(TESTl,TEST2,XLAB)

IF (AVG(P,D,Q) .LT.AVG(X,Y,Z)) GOT0 300

FINAL = AVG(TEST3,TEST4,LAB2) (Invalid; data type of third
argument does not agree with dummy
argument)

7.9.2.2 FUNCTION Subprogram - A FUNCTION is an external computing
procedure that returns a value. You use this value as an expression
or as part of an expression.

Format:

where:

typ is
nam is
a is

FUNCTION nam(a [r ,a.. . I 1

an optional data type specifier,
a name of the function, and
one of a maximum of six dummy arguments.

A FUNCTION subprogram is a program unit that consists of a FUNCTION
statement followed by a series of statements that define a computing
procedure. FORTRAN transfers control to a FUNCTION subprogram by a
function reference and returns to the calling program unit when it
encounters a RETURN statement.

You must always specify at least one argument to a FUNCTION. You may
specify other arguments explicitly or place them in COMMON.

A FUNCTION subprogram returns a single value to the calling program
unit by assigning that value to the function's name. FORTRAN
determines the data type of the returned value by the function's name
unless you have explictly specified the data type.

A function reference that transfers control to a FUNCTION subprogram
has the form:

where:

nam is the symbolic name of the function, and
a is an actual argument.

7-72

FORTRAN I V

When FORTRAN transfers control to a function subprogram, FORTRAN
associates the values you supply by the actual arguments (if any) with
the dummy arguments (if any) in the FUNCTION statement. FORTRAN then
executes the statements in the subprogram.

NOTE

You may not pass an array to a
subprogram if it contains more than 2 0 4 7
elements. You must implicitly pass
larger arrays in COMMON.

You must assign a value to the name of the function before FORTRAN
executes a RETURN statement in that function. When FORTRAN returns
control to the calling program unit, it makes the value you have
assigned to the function's name available to the expression that
contains the function reference; it then uses this value to complete
the evaluation of the expression.

NOTE

You can store variables that a FUNCTION
requires in COMMON rather than passing
them explicitly.

You may specify the type of a function name implicitly, explicitly in
the FUNCTION statement, or explicitly in a type declaration statement.

The FUNCTION statement must be the first statement of a function
subprogram. You may not label a FUNCTION statement.

A FUNCTION subprogram must not contain a SUBROUTINE statement, a BLOCK
DATA statement, or a FUNCTION statement (other than the initial
statement of the subprogram). A function may, however, call another
function or subroutine so long as the call is not directly or
indirectly recursive.

7 . 9 . 2 . 3 SUBROUTINE Subprograms - A SUBROUTINE is an external
computing procedure that you may repeatedly call from a program or
subprogram.

Format:

SUBROUTINE nam [([a [,a] . . . I I]
where:

nam is the name of the subroutine, and
a is a dummy argument.

A SUBROUTINE subprogram is a program unit that consists of a
SUBROUTINE statement followed by a series of statements that define a
computing procedure. FORTRAN transfers control to a SUBROUTINE
subprogram by a CALL statement and returns to the calling program unit
by a RETURN statement.

7-73

FORTRAN IV

When FORTRAN transfers control to a subroutine, it associates the
values you supply with the actual arguments (if any) in the CALL
statement with the corresponding dummy arguments (if any) in the
SUBROUTINE statement. You may not specify more than six arguments in
a subroutine call. FORTRAN then executes the' statements in the
subprogram.

The SUBROUTINE statement must be the first statement of a subroutine;
it must not have a statement label.

A SUBROUTINE subprogram cannot contain a FUNCTION statement, a BLOCK
DATA statement, or a SUBROUTINE statement (other than the initial
statement of the subprogram).

Example :
C

6 5

hh

I

2

3

4

5

(5
100

MA I N PROGRAM
COMMON N F A C E S r EDGEr VOLUME
READ (4 ~ 6 5) N F A C E S r EDGE
FORMAT(I2rF8*5)
C R I... L F" 1" Y V CI I..
WRITE: (4 I 66) VOLUME
FC)RMA'I' (' VOLUME=' 9 F)
STOP
E m

S U B R O U T I N E PL.YUOL
COMMON N F A C E S r EDGE 'I VOLllME
CUBED = E I l G E f t 3
GOTO (6rhr6r1r6r2r6r3r6r6r6r4r6r6?6r6~6?6r6r~~6)rNFAC~~
VOLUME =: ClJbED d 01 11785
RE TURN
VCIL.UMF_' ;= CUBE11
RETIJRN
UCILIJME E: CURED f 0147140
R E T U R N
VOL.UME .-- c u r m * 7,66312
R E T U R N
VOLUME: = c u B E r i t 2,18170
R E T U R N
WRITE (4~100) N F A C E S
FORMAT0 NO REGULAR POLYHEKIRON HAS '~I~Y'FACES.')
RETIJRN
END

The subroutine in this example computes the volume of a regular
polyhedron, given the number of faces and the length of one edge. It
uses a computed GOT0 statement to determine whether the polyhedron is
a tetrahedron, cube, octahedron, dodecahedron, or icosahedron, and to
transfer control to the proper procedure for calculating the volume.
If the number of faces of the body is other than 4 , 6, 8, 12, or 20,
the subroutine transmits an error message to logical unit 4 as
indicated in the WRITE statement.

7 . 9 . 3 CALL Statement

The CALL statement causes the execution of a SUBROUTINE subprogram;
it can also specify an argument list for use by the subroutine.

Format:

7-74

FORTRAN IV

where:

S is the name of a SUBROUTINE subprogram, a user-written
assembly language routine, or a DEC-supplied system
subroutine, or a dummy argument associated with one of the
above.

a is an actual argument.

The CALL statement associates the values in the argument list (if the
list is present) with the dummy arguments in the subroutine and then
transfers control to the first executable statement of the subroutine.

The arguments in the CALL statement must agree in number, order, and
data type with the dummy arguments in the subroutine definition. They
can be variables, arrays, array elements, constants, expressions,
alphanumeric literals, or subprogram names (if those names have been
specified in an EXTERNAL statement, as described in Section 5 . 4) .
Note that an unsubscripted array name in the argument list refers to
the entire array.

Examples:

CALL CURVE (BASE,3.14159+X,Y,LIMIT,R(LT+2))
CALL PNTOUT (A,N, 'ABCD')

7 . 9 . 4 RETURN Statement

Use the RETURN statement to return control from a subprogram unit to
the calling program unit.

Format:

RETURN

When FORTRAN executes a RETURN statement in a FUNCTION subprogram, it
returns control to the statement that contains the function reference
(see Section XXX). When FORTRAN executes a RETURN statement in a
SUBROUTINE subprogram, it returns control to the first executable
statement following the CALL statement which initiated execution of
the subprogram.

A RETURN statement must not appear in a main program unit.

Example :

7-75

FORTRAN IV

7.9.5 FORTRAN Library Functions

The FORTRAN library functions are listed and described in Section
7.12. You write function references to FORTRAN library functions in
the same form as function references to user-defined functions. For
ex amp1 e,

R = 3.14159 * ABS(X-1)
causes the absolute value of X-1 to be calculated, multiplied by the
constant 3.14159, and assigned to the variable R.

The data type of each library function and the data type of the actual
arguments is specified in Appendix B. Arguments you pass to these
functions may not be array names or subprogram names.

Processor-defined function references are local to the program unit in
which they occur and do not affect or preclude the use of the name for
any other purpose in other program units.

7.10 INPUT/OUTPUT STATEMENTS

You specify input of data to a program by READ statements and output
by WRITE statements. You use some form of these statements in
conjunction with format specifications to control translation and
editing of the data between internal representation and character
(treadable) form.

Each READ or WRITE statement contains a reference to the logical unit
to or from which data transfer is to take place. You may associate a
logical unit to a device or file.

READ and WRITE statements fall into the following three categories:

0 Unformatted Sequential I/O
Unformatted sequential READ and WRITE statements transmit
binary data without translation.

Formatted sequential READ and WRITE statements transmit
character data using format specifications to control the
translation of data to characters on output, and to internal
form on input.

Unformatted direct access READ and WRITE statements transmit
binary data without translation to and from direct access
files.

0 Formatted Sequential I/O

0 Unformatted Direct Access I/O

The auxiliary I/O statements, REWIND and BACKSPACE do not perform data
transfer, but perform file positioning. The ENDFILE statement writes
a special record that will cause an end-of-file condition when read by
a READ statement. The BACKSPACE statement repositions a file to the
previous record. The DEFINE FILE statement declares a logical unit to
be connected to a direct access file and specifies the characteristics
of the file.

7 10.1 Defining I/O Operations

FORTRAN I/O operations require knowledge of logical unit numbers,
format specifiers, and record transmission.

7-76

FORTRAN IV

7.10.1.1 Input/Output Devices and Logical Unit Numbers - OS/78
FORTRAN uses the I/O services of the operating system and thus
supports all peripheral devices that are supported by the operating
system. I/O statements refer to I/O devices by means of logical unit
numbers which are integer constants or variables with a positive
value.

The default logical unit numbers are:

3 Line Printer
4 Terminal

The logical unit number must be in the range 1 through 9. For more
information, see Sections 7.1.2.1 and 7.1.3.

7.10.1.2 Format Specifiers - Use format specifiers in formatted I/O
statements. A format specifier is the statement label of a FORMAT
statement. Section 7.11 discusses FORMAT statements.

7.10.1.3 Input/Output Record Transmission - I/O statements transmit
data in terms of records. The amount of information that one record
can contain, and the way in which records are separated, depend on the
medium involved.

For unformatted I/O, specify the amount of data which FORTRAN will
transmit by an I/O statement. FORTRAN determines the amount of
information it will transmit by the I/O statement and by
specifications in the associated format specification.

If an input statement requires only part of a record, the excess
portion of the record is lost. In the case of formatted sequential
input or output, you may transmit one or more additional records by a
single I/O statement.

7.10.2 Input/Output Lists

An I/O list specifies the data items to be manipulated by the
statement containing the list. The I/O list of an input or output
statement contains the names of variables, arrays, and array elements
whose values FORTRAN will transmit. In addition, the I/O list of an
output statement can contain constants and expressions.

Format:

where:

s is a simple list or an implied DO list.

The I/O statement assigns input values to, or outputs values from, the
list elements in the order in which they appear, from left to right.

7-77

FORTRAN IV

7.10.2.1 Simple Lists - A simple I/O list consists of a single
variable, array, array element, constant, or expression.

When an unsubscripted array name appears in an I/O list, a READ
statement inputs enough data t o fill every element of the array; a
WRITE statement outputs all of the values contained in the array.
Data transmission starts with the initial element of the array and
proceeds in the order of subscript progression, with the leftmost
subscript varying most rapidly. For example, if the unsubscripted
name of a 2-dimensional array defined as:

DIMENSION ARRAY (3 I 3

appears in a READ statement, that statement assigns values from the
input record(s1 to ARRAY(1,l) , ARRAY(2,l) , ARRAY(3,l) , ARRAY(1,2), and
so on, through ARRAY (3,3).

If, in a READ statement, you input the individual subscripts for an
array, you must input the subscripts before their use in the array.
If, for example, FORTRAN executes the statement:

READ (1,1250) J,K,ARRAY (J,K)
1250 FORMAT (11 ,XI I1 ,X,F6.2)

and the input record contains the values:

1,3,721.73

FORTRAN assigns the value 721.73 to ARRAY(1,3). FORTRAN assigns the
first input value to J and the second to K, thereby establishing the
actual subscript values for ARRAY(J,K). Variables that you use as
subscripts in this way must appear to the left of their use in the
array subscript.

You may use any valid expression in an output statement I/O list.
However, the expression must not cause FORTRAN to attempt further I/O
operations. A reference in an output statement I/O list expression to
a FUNCTION subprogram that itself performs input/output is illegal.

You must not include an expression in an input statement I / O list
except as a subscript expression in an array reference.

7.10.2.2 Implied DO Lists - Use an implied DO list to specify
iteration within an I/O list.

Format:

(list , i=el,e2)

where:

list is an I/O list,
i is a control variable definition,
el is the initial value of i, and
e2 is the terminal value of i.

You use an implied DO list to specify iteration within an I/O list, to
transmit only part of an array, or to transmit array elements in a
sequence other than the order of subscript progression. The implied
DO list functions as though it were a part of an I / O statement that
resides in a DO loop.

7-78

FORTRAN IV

When you use nested implied DO lists, the first control variable
definition is equivalent to the innermost DO of a set of nested loops,
and therefore varies most rapidly. For example, the statement:

WRITE (5 ,150) ((FORM(K,L), L=1,10), K=1,10)
150 FORMAT (F10.2)

is similar to:

DO 50 K=1,10
DO 50 L=1,10
WRITE (5 ,150) FORM(K,L)

150 FORMAT (F10.2)
50 CONTINUE

Since the inner DO loop is executed ten times for each iteration of
the outer loop, the second subscript, L, advances from one through ten
for each increment of the first subscript. This is the reverse of the
order of subscript progression.

The implied DO uses the control variable of the imaginary DO statement
to specify which value or values are to be transmitted during each
iteration of the loop.

i, el, and e2 have the same form as that used in the DO statement.
The rules for the control, initial, and terminal variables of an
implied DO list are the same as those for the DO statement. Note,
however, an implied DO loop cannot use an increment parameter. The
list may contain references to the control variable as long as the
value of the control variable is not altered. There is no extended
range for an implied DO list.

Examples :

WRITE (3 ,200) (A,B,C, I = 1 , 3)

WRITE (6,151 L , M , (I, (J,P(I) ,Q(I,J) ,J=l,L) ,I=l,M)

READ (1 , 7 5) (((ARRAY (M,N, I) , I=2,8) , N=2,8) , M=2,8)
FORTRAN transmits the entire list of the implied DO before the
incrementation of the control variable. For example:

READ (3 ,999) (P (I) , (Q(I,J), J = 1 , 1 0) , I=1,5)

assigns input values to the elements of arrays P and Q in the order:

P (1) Q(lr1) 8 Q (1 r 2) .. - r Q(l,lo)
P(2)t Q(2,J-I r Q(2,2) Q(2,lo)

P (5) r Q(5,l) Q(5,2), ... Q(5,lO)

When processing multi-dimensional arrays, you may use a combination of
a fixed subscript and subscript or subscripts that varies according to
an implied DO. For example:

READ (3,5555) (BOX (1, J) , J=l, 10)
assigns input values to BOX(1,l) through BOX(1,10), then terminates
without affecting any other element of the array.

7-79

FORTRAN I V

I t i s a l s o p o s s i b l e t o o u t p u t t h e v a l u e o f t h e c o n t r o l v a r i a b l e
d i r e c t l y , a s i n t h e s t a t e m e n t :

WRITE (6 ,1111) (I , I = 1 , 2 0)

which s imply p r i n t s t h e i n t e g e r s 1 th rough 20 .

7.10.3 I n p u t / O u t p u t Forms

7.10.3.1 Unformat ted S e q u e n t i a l Inpu t /Ou tpu t - FORTRAN p r o v i d e s two
t y p e s o f I/O--unformatted and f o r m a t t e d . Unformatted i n p u t and o u t p u t
i s t h e t r a n s f e r o f d a t a i n i n t e r n a l (b i n a r y) format w i t h o u t c o n v e r s i o n
o r e d i t i n g . Use unfo rma t t ed I / O when d a t a o u t p u t by a program is t o
be s u b s e q u e n t l y i n p u t by t h e same program (o r a similar p rogram) .
Unformatted I / O s a v e s e x e c u t i o n t i m e because it e l i m i n a t e s t h e d a t a
c o n v e r s i o n p r o c e s s , p r e s e r v e s g r e a t e r p r e c i s i o n i n t h e e x t e r n a l d a t a ,
and u s u a l l y c o n s e r v e s f i l e s t o r a g e space.

7.10.3.2 Formatted S e q u e n t i a l Inpu t /Ou tpu t - U s e f o r m a t t e d i n p u t and
o u t p u t s t a t e m e n t s i n c o n j u n c t i o n w i t h FORMAT s t a t e m e n t s t o t r a n s l a t e
and e d i t d a t a on o u t p u t f o r ease o f i n t e r p r e t a t i o n , and , on i n p u t , t o
c o n v e r t d a t a from e x t e r n a l f o r m a t t o i n t e r n a l fo rma t .

7 .10.3.3 Unformat ted Direct Access Inpu t /Ou tpu t - U s e un fo rma t t ed
d i r e c t access READ and WRITE s t a t e m e n t s t o pe r fo rm d i r e c t a c c e s s I / O
w i t h a f i l e on a d i r e c t access d e v i c e . U s e t h e D E F I N E FILE s t a t e m e n t
t o e s t a b l i s h t h e number o f r e c o r d s , and t h e s i z e o f each r e c o r d , i n a
f i l e t o which FORTRAN w i l l per form d i r e c t access I / O . Each d i r e c t
access READ o r WRITE s t a t e m e n t c o n t a i n s an i n t e g e r e x p r e s s i o n t h a t
s p e c i f i e s t h e number o f t h e r e c o r d t o be a c c e s s e d . The r e c o r d number
m u s t n o t be less t h a n one nor g r e a t e r t h a n t h e number o f r e c o r d s you
d e f i n e f o r t h e f i l e .

I n OS/78 FORTRAN, t h e e x p r e s s i o n t h a t s p e c i f i e s t h e r e c o r d number c a n
be o f any t y p e . FORTRAN c o n v e r t s i t t o i n t e g e r t y p e i f n e c e s s a r y .

7.10.4 READ S t a t e m e n t s

FORTRAN p r o v i d e s t h e f o l l o w i n g READ s t a t e m e n t s .

7.10.4.1 Unformatted Sequen t i a l READ S t a t e m e n t - Use unfo rma t t ed
s e q u e n t i a l r e a d statements t o a s s i g n f i e l d s t o a r e c o r d w i t h o u t
t r a n s l a t i n g s t o r e d i n f o r m a t i o n i n t o e x t e r n a l form.

Format:

READ (u) [l i s t j
where:

u is a l o g i c a l u n i t number from 1 t o 9 , and
l i s t is a n I / O l i s t .

7-80

FORTRAN IV

The unformatted sequential READ statement inputs one unformatted
record from a logical unit and assigns the fields of the record
without translation to the I/O list elements in the order in which
they appear, from left to right.

An unformatted sequential READ statement transmits exactly one record.
If the I / O list does not use all of the values in the record, FORTRAN
discards the remainder of the record. If FORTRAN exhausts the
contents of the record before the I/O list is satisfied, an error
condition results.

You must only use the unformatted sequential READ statement to read
records that were created by unformatted sequential WRITE statements.

If you use an unformatted WRITE statement that does not contain an I/O
list, FORTRAN skips the next record.

Examples:

READ (1) FIELDl, FIELD2 Read one record from logical unit 1;
assign values to variables FIELDl and
FIELD2.

READ (8) Advance logical unit 8 one record.

7.10.4.2 Formatted Sequential READ Statement - Use formatted
sequential read statements to transmit information in external format.

Format:

where:

u is a logical unit number from 1 to 9 ,
f is a format statement number, and
list is an I/O list.

The formatted sequential READ statement transfers data from the
indicated logical unit. FORTRAN converts transmitted characters to
internal format as specified by the format specification. FORTRAN
assigns the resulting values to the elements of the I/O list.

If the FORMAT statement associated with a formatted input statement
contains a Hollerith constant or alphanumeric literal, input data will
be read and stored directly into the format specification. For
example, the statements

READ (5,100)
100 FORMAT (5H DATA)

cause five characters to be read and stored in the Hollerith format
descriptor. If the character string were HELLO, statement 160 would
become :

10 0 FORMAT (SHHELLO)

If there is no H field, the record is skipped.

7-81

FORTRAN I V

If t h e number of e l e m e n t s i n t h e I / O l i s t i s less t h a n t h e number o f
f i e l d s i n t h e i n p u t r e c o r d , t h e excess p o r t i o n of t h e r e c o r d i s
d i s c a r d e d . I f t h e number of e l e m e n t s i n t h e l i s t e x c e e d s t h e number
of i n p u t f i e l d s , an e r r o r c o n d i t i o n r e s u l t s u n l e s s t h e f o r m a t
s p e c i f i c a t i o n s s t a t e t h a t one o r more a d d i t i o n a l r e c o r d s a r e t o b e
read (see S e c t i o n 1 0 . 8) .

I f no I / O l i s t i s p r e s e n t , d a t a t r a n s f e r is between t h e r e c o r d and t h e
f o r m a t s p e c i f i c a t i o n .

Examples :

READ (1 , 3 0 0) ARRAY
300 FORMAT (2 0 F 8 . 2)

Read a r e c o r d from
l o g i c a l u n i t 1,
a s s i g n f i e l d s t o
ARRAY.

READ (5 , 5 0) Read 25 c h a r a c t e r s
50 FORMAT (25H PAGE H E A D I N G GOES HERE) from l o g i c a l u n i t 5 ,

p l a c e them i n t h e
FORMAT s t a t e m e n t .

The CHKEOF s u b r o u t i n e r e t u r n s a non-zero v a l u e i f t h e l o g i c a l end of a
f i l e is e n c o u n t e r e d d u r i n g a f o r m a t t e d READ o p e r a t i o n .

CHKEOF a c c e p t s one r e a l , i n t e g e r , o r l o g i c a l argument . A f t e r t h e n e x t
f o r m a t t e d READ o p e r a t i o n , t h i s argument w i l l be s e t t o a non-zero
v a l u e if t h e l o g i c a l e n d - o f - f i l e was e n c o u n t e r e d . O t h e r w i s e , i t w i l l
be set t o z e r o .

Only use CHKEOF when r e a d i n g one r e c o r d from t h e l o g i c a l u n i t .

The f o l lowing i s an example of t h e use o f CHKEOF.

CALL CHKEOF (E O F)
READ (N , l O l) D A T A
I F (EOF . N E . 0) GO TO 9999

7 . 1 0 . 4 . 3 Unformatted Direct Access READ S t a t e m e n t - U s e an
unformat ted d i r e c t a c c e s s r e a d s t a t e m e n t t o t r a n s m i t a v a l u e o r v a l u e s
t o a d i r e c t a c c e s s d e v i c e i n i n t e r n a l f o r m a t .

Format:

where :

u i s a l o g i c a l u n i t number from 1 t o 9 ,
r is t h e r e c o r d number, and
l i s t i s an I / O l i s t .

The unformat ted d i r e c t access READ s t a t e m e n t p o s i t i o n s t h e i n p u t f i l e
t o a s p e c i f i e d r e c o r d and t r a n s f e r s t h e f i e l d s i n t h a t r e c o r d t o t h e
e l e m e n t s i n t h e I / O l i s t w i t h o u t t r a n s l a t i o n .

7-82

FORTRAN I V

u may b e an uns igned i n t e g e r c o n s t a n t o r a p o s i t i v e i n t e g e r v a r i a b l e .
r may a l s o b e a v a r i a b l e . I f t h e r e a r e more f i e l d s i n t h e i n p u t
r e c o r d t h a n elements i n t h e I / O l i s t , FORTRAN d i s c a r d s t h e e x c e s s
p o r t i o n of t h e r e c o r d . I f t h e r e is i n s u f f i c i e n t d a t a i n t h e r e c o r d t o
s a t i s f y t h e r e q u i r e m e n t s of t h e I / O l i s t , a n e r r o r c o n d i t i o n r e s u l t s .

The u n i t number i n t h e unformat ted d i r e c t a c c e s s READ s t a t e m e n t m u s t
refer t o a u n i t t h a t you have p r e v i o u s l y

Examples:

READ (1'10) L I S T (l) , L I S T (8) Read r e c o r d 1 0 of a f i l e on l o g i c a l
u n i t 1, a s s i g n two INTEGER v a l u e s
t o s p e c i f i e d e l e m e n t s o f a r r a y
LIST.

READ (4 ' 5 8) (R H O (N) ,N=1,5) Read r e c o r d 58 of a f i l e on l o g i c a l
u n i t 4 , a s s i g n f i v e r e a l v a l u e s t o
a r r a y RHO.

7.10.5 WRITE S t a t e m e n t s

7.10.5.1 Unformatted S e q u e n t i a l WRITE S t a t e m e n t - FORTRAN i n c l u d e s
t h e f o l l o w i n g f o r m a t t e d and unformat ted WRITE s t a t e m e n t s . Use as
unformat ted s e q u e n t i a l wr i te s t a t e m e n t t o t r a n s m i t v a l u e s i n t h e i r
i n t e r n a l r e p r e s e n t a t i o n t o a l o g i c a l u n i t .

Format:

WRITE (u) [l i s t 1
where :

u is a l o g i c a l u n i t number from 1 t o 9 , and
l i s t is an I / O l i s t .

The unformat ted s e q u e n t i a l WRITE s t a t e m e n t t r a n s m i t s t h e v a l u e s of t h e
e l e m e n t s i n t h e I / O l ist t o t h e s p e c i f i e d l o g i c a l u n i t , w i t h o u t
t r a n s l a t i o n , a s one unformat ted r e c o r d .

The l o g i c a l u n i t s p e c i f i e r is an i n t e g e r v a r i a b l e o r an i n t e g e r
c o n s t a n t from 1 t o 9 .

I f an unformat ted WRITE statement c o n t a i n s no I/O l i s t , one n u l l
r e c o r d i s o u t p u t t o t h e s p e c i f i e d u n i t .

A r e c o r d may h o l d 85 s i n g l e p r e c i s i o n v a r i a b l e s . I f t h e l i s t e l e m e n t s
f i l l more t h a n one r e c o r d , FORTRAN wr i t e s s u c c e s s i v e r e c o r d s u n t i l t h e
l i s t is completed. Thus, i f t h e r e a r e 1 0 0 v a r i a b l e s on t h e l i s t ,
FORTRAN u s e s two r e c o r d s ; one r e c o r d c o n t a i n s 85 v a r i a b l e s and t h e
second c o n t a i n s 1 5 v a r i a b l e s . For example

DIMENSION X(200)
WRITE (6) X

w i l l p roduce t h r e e r e c o r d s on l o g i c a l u n i t 6 , t h e f i r s t c o n t a i n i n g
X (1) t o X (8 5) , t h e second X(86) t o X (1 7 0) , and t h e t h i r d X(171) t o
X(200) . I f t h e amount of d a t a FORTRAN w i l l t r a n s m i t e x c e e d s t h e
r e c o r d s i ze , a n e r r o r c o n d i t i o n r e su l t s . I f t h e WRITE s t a t e m e n t d o e s
n o t c o m p l e t e l y fill t h e r e c o r d w i t h d a t a , FORTRAN z e r o fills t h e
unused p o r t i o n of t h e r e c o r d .

7-83

FORTRAN I V

Examples :

WRITE (1) (LIST(K) ,K=1,5) Output the contents of elements 1
through 5 of a r ray L I S T t o l o g i c a l
u n i t 1.

WRITE (4) Write a n u l l record on l o g i c a l u n i t
4 .

7.10.5.2 Formatted Sequential WRITE Statement - Use a formatted
sequent ia l wr i te statement t o t r a n s l a t e a value from i t s i n t e r n a l
representa t ion t o character format and t h e n t ransmit i t t o a l o g i c a l
u n i t .

Format:

WRITE

where:

u is a l o g i c a l u n i t number from 1 t o 9 ,
f i s a format statement number, and
l i s t is an I / O l i s t .

The formatted sequent ia l WRITE statement t r a n s f e r s d a t a t o the
spec i f ied l o g i c a l u n i t . The I / O l i s t s p e c i f i e s a sequence of values
which FORTRAN converts t o charac te rs and p o s i t i o n s a s spec i f ied by a
format s p e c i f i c a t i o n .

The l o g i c a l u n i t s p e c i f i e r may be an integer var iab le .

I f no I / O l i s t is present , da ta t r a n s f e r is e n t i r e l y between the
record and t h e format s p e c i f i c a t i o n .

The da ta FORTRAN t ransmits by a formatted sequent ia l WRITE statement
normally c o n s t i t u t e s one formatted record. The format s p e c i f i c a t i o n
can, however, spec i fy t h a t addi t iona l records a r e t o be w r i t t e n during
t h e execution of t h a t same WRITE statement.

FORTRAN rounds numeric da ta output under format cont ro l during t h e
conversion t o ex terna l format. (I f such da ta i s subsequently input
for addi t iona l c a l c u l a t i o n s , l o s s of prec is ion may r e s u l t . I n t h i s
case, unformatted output is preferab le t o formatted output .)

The records FORTRAN t ransmits by a formatted WRITE statement m u s t not
exceed t h e length t h a t t h e spec i f ied device can accept. For example,
a l i n e p r i n t e r t y p i c a l l y cannot p r i n t a record t h a t is longer than 132
charac te rs . [I f longer , r u n t o next l i n e]

Examples :

WRITE (6 , 650) (Output the contents of t h e
650 FORMAT (HELLO, T H E R E ') FORMAT statement t o l o g i c a l

u n i t 6 .)

WRITE (1,95) AYE, BEE, CEE (Write one record of t h r e e
95 FORMAT (F8.5, F8.5, F8.5) f i e l d s t o l o g i c a l u n i t 1.)

WRITE (1,950) AYE, BEE, CEE (Write three separa te records
950 FORMAT (f8.5) of one f i e l d each t o l o g i c a l

u n i t 1.)

7-84

FORTRAN I V

I n the l a s t example, format cont ro l a r r i v e s a t the rightmost
parenthesis of the FORMAT statement before a l l elements of the I / O
l i s t have been output. Each time t h i s occurs , FORTRAN terminates t h e
cur ren t record and i n i t i a t e s a new record. T h u s , FORTRAN w r i t e s t h r e e
separa te records. (See Section 10.5.)

7 .10 .5 .3 Unformatted Direct Access WRITE Statement - Use an
unformatted d i r e c t access write statement t o transmit a value i n i t s

on a d i r e c t access i n t e r n a l representat ion t o a s p e c i f i c record
device.

Format:

WRITE (u l r) [l i s t 1
where :

u is a l o g i c a l u n i t number from 1 t o 9 ,
r i s t h e record number, and
l i s t i s an I / O l i s t .

The unformatted d i r e c t access WRITE statement t ansmits the values of
the elements i n t h e I/O l i s t t o a p a r t i c u l a r record p o s i t i o n on a
d i r e c t access file. The d a t a is w r i t t e n in i n t e r n a l format without
t r a n s l a t i o n .

The l o g i c a l u n i t s p e c i f i e r r may be an unsigned integer constant or
integer var iab le .

A record may hold a maximum of 85 s i n g l e prec is ion var iab les . I f the
l i s t elements f i l l more than one record, FORTRAN w r i t e s suqcessive
records u n t i l t h e l i s t i s completed. T h u s , i f t h e r e a r e 1 0 0 v a r i a b l e s
on the l i s t , FORTRAN uses two records: one record contains 85
v a r i a b l e s and the second contains 15 var iab les . For example

D I M E N S I O N X (2 0 0)
WRITE (6) X

w i l l produce three records on u n i t 6 , the f i r s t containing X (1) t o
X (8 5) , t h e second X(86) t o X (1 7 0) , and t h e t h i r d X (1 7 1) t o X (2 0 0) . I f
the amount of d a t a FORTRAN w i l l t ransmit exceeds the record s i z e , an
e r r o r condition r e s u l t s . I f the WRITE statement does not completely
f i l l the record w i t h d a t a , FORTRAN zero f i l l s t h e unused por t ion of
the record.

Examples:

WRITE (2 '35) (NUM (K) , K = 1 , 1 0) (Output ten integer values t o
record 35 of the f i l e connected t o
l o g i c a l u n i t 2.)

WRITE (3 ' J) ARRAY (Output the e n t i r e contents of
ARRAY t o t h e f i l e connected t o
l o g i c a l u n i t 3 i n t o the record
indicated by the value of J .)

7 . 1 0 . 6 Auxiliary Input/Output Statements

You use statements i n t h i s category t o perform f i l e management
functions.

7-85

FORTRAN IV

7.10.6.1 BACKSPACE Statement - Use the BACKSPACE statement to
reposition a file to the previous record accessed.

Format:

BACKSPACE U

where:

u is a logical unit number from 1 to 9 .

The BACKSPACE statement repositions a currently open sequential file
backward one record and repositions it to the beginning of that
record. On the execution of the next I/O statement for that unit,
that record is available for processing.

The unit number must refer to a directory-structured device (e.g.,
disk). A file must be open on that device.

If the file is positioned at the first record, FORTRAN ignores the
BACKSPACE statement.

Example :

BACKSPACE 4 (Reposition open file on logical unit 4 to
beginning of the previous record.)

7.10.6.2 DEFINE FILE Statement - The DEFINE FILE statement
establishes the size and structure of a file upon which FORTRAN will
perform direct access I/O.

Format:

DEFINE FILE u (m,n,u,v) [,u(m,n,u,v)l ...
where:

U is an integer constant or variable that specifies the

m is an integer constant or variable that specifies the number

n is an integer constant or variable that specifies the

U specifies that the file is unformatted (binary) and the

v is an integer variable, called the associated variable of

logical unit number,

of records in the file,

length, in words, of each record,

letter U is the only acceptable entry in this position, and

the file.

The DEFINE FILE is the means by which you specify the attributes of a
direct access device. Once the file characteristics have been
established, you should always specify them in the same manner.

At the conclusion of each direct access I/O operation, FORTRAN assigns
the record number of the next higher numbered record in the file to v.

The DEFINE FILE statement specifies that a file containing m
fixed-length records of n words each exists or is to exist, on logical
unit u. The records in the file are sequentially numbered from 1
through m.

You must type the DEFINE FILE statement before the first direct access
I/O statement that refers to the specified file.

7-86

FORTRAN I V

The DEFINE FILE statement also establishes the integer variable v as
the associated variable of the file. At the end of each direct access
I / O operation, the FORTRAN I/O system places in v the record number of
the record immediately following the one just read or written.
Because the associated variable always p'oints to the next sequential
record in the file (unless you redefine it by an assignment or input
statement), you can use direct access I/O statements to perform
sequential processing of the file. The logical unit number u cannot
be passed as a dummy argument to a DEFINE FILE statement in a
subroutine.

If more than one program unit processes the file, or in an overlay
environment, the associated variable should be placed in a resident
common block.

Example:

DEFINE FILE 3 (1000,48,U,NREC)

This statement specifies that logical unit 3 is to be connected to a
file of 1000 fixed-length records, each record of which is 48 words
long. The records are numbered sequentially from 1 through 1000, and
are unformatted. After each direct access I/O operation on this file,
the integer variable NREC will contain the record number of the record
immediately following the one just processed.

7.10.6.3 ENDFILE Statement - The ENDFILE statement writes an end-file
record to the specified sequential unit.

Format:

ENDFILE U

where :

u is a logical unit number from 1 to 9.

Use the ENDFILE statement to write an end-of-file mark on a
directory-structured device. [Note that you cannot write additional
information to that device after the ENDFILE statement.]

The ENDFILE statement must be written to a formatted output file.

No rewind occurs after this statement.

Example:

ENDFILE 2 (Output an end-file record to logical unit 2 .)

7.10.6.4 REWIND Statement - The REWIND statement repositions a
currently open sequential file to be repositioned to the beginning of
the file.

Format:

REWIND t~

where :

u is a logical unit number from 1 to 9 .

7-87

FORTRAN IV

Use the REWIND statement to position a directory-structured
its first record.

If the file is already at its first record, FORTRAN ignores
statement.

device to

the REWIND

The unit number in the REWIND statement must refer to a
directory-structured device (e.g., disk). A file must be open on that
device.

Example :

REWIND 3 (Reposition logical unit 3 to beginning of currently
open file.)

7.11 FORMAT STATEMENTS

FORMAT statements are nonexecutable statements used in conjunction
with formatted I/O statements. The FORMAT statement describes the
format in which FORTRAN transmits data fields, and the data conversion
and editing to be performed to achieve that format.

The FORMAT statement has the form:

where :

f is a field descriptor, or a group of field descriptors

s is a field separator (either a comma or slash),
q is zero or more slash (/) record terminators
st is a mandatory statement number.

enclosed in parentheses,

including the parentheses is called the format specification. You
must enclose the list in parentheses.

A field descriptor in a format specification has the form:

where:

r

C
W
d

The terms

cw [.dl

represents a repeat count which specifies that FORTRAN is to
apply the field descriptor to r successive fields. 1.f you
omit the repeat count, FORTRAN assumes it to be 1.
is a format code,
is the field width, and
is the number of characters to the right of the decimal
point, and should be less than w.

r, w, and d must all be unsigned integer constants less than
or equal to 255.

The field separators are comma and slash. A slash can also be a
record terminator. Use a slash to skip records or lines in a record.

The field descriptors used in format specifications are as follows:

1. Integer: Iw

2. Logical: Lw

7-88

FORTRAN IV

3. Real: Fw.d, Ew.d, Dw.d, Gw.d, Bw.d

4 . L i t e r a l and e d i t i n g : Aw, nH, nP, nX, Tn, $, I . . . ' , /

(I n t h e a lphanumer ic and e d i t i n g f i e l d d e s c r i p t o r s , n s p e c i f i e s t h e
number o f c h a r a c t e r s o r c h a r a c t e r p o s i t i o n s .)

You c a n p r e c e d e t h e F , E, D , or G f i e l d d e s c r i p t o r s by a scale f a c t o r
of t h e form:

where:

n i s an o p t i o n a l l y s i g n e d i n t e g e r c o n s t a n t i n t h e r a n g e -127
t o +127 t h e s c a l e f a c t o r s p e c i f i e s t h e number o f p o s i t i o n s
t h e dec imal p o i n t is t o b e s c a l e d t o t h e l e f t o r r i g h t .

During d a t a t r a n s m i s s i o n , FORTRAN s c a n s t h e f o r m a t s p e c i f i c a t i o n from
l e f t t o r i g h t . FORTRAN t h e n p e r f o r m s d a t a c o n v e r s i o n by c o r r e l a t i n g
t h e v a l u e s i n t h e I / O l i s t w i t h t h e c o r r e s p o n d i n g f i e l d d e s c r i p t o r s .
I n t h e case o f H f i e l d d e s c r i p t o r s and a lphanumer ic l i t e r a l s , d a t a
t r a n s m i s s i o n t a k e s p l a c e e n t i r e l y between t h e f i e l d d e s c r i p t o r and t h e
e x t e r n a l r e c o r d .

For example, c o n s i d e r t h e f o l l o w i n g data f o r i n p u t (where b e q u a l s a
b lank s p a c e) .

b10.2bb6732bb3967.61

To r e a d t h i s d a t a , use t h e f o l l o w i n g FORMAT s t a t e m e n t i n c o n j u n c t i o n
w i t h a READ s t a t e m e n t .

20 FORMAT (lXlF3.1,2X,I4,2X,F6.2)

where t h e f i e l d d e s c r i p t o r :
L 1x I n d i c a t e s a b lank s p a c e .

F3.1 I n d i c a t e s a 3 - d i g i t r e a l number w i t h 1 dec imal p l a c e .

2x I n d i c a t e s 2 b lank s p a c e s .

I 4 I n d i c a t e s a 4 - d i g i t i n t e g e r number.

2x I n d i c a t e s 2 b lank s p a c e s .

F6.2 I n d i c a t e s a 6 - d i g i t r e a l number w i t h 2 d e c i m a l p l a c e s .

7 .11.1 F i e l d Descriptors

The i n d i v i d u a l f i e l d d e s c r i p t o r s t h a t can appear i n a f o r m a t
s p e c i f i c a t i o n a r e d e s c r i b e d i n d e t a i l i n t h e f o l l o w i n g s e c t i o n s . The
f i e l d d e s c r i p t o r s i g n o r e l e a d i n g s p a c e s i n t h e e x t e r n a l f i e l d , b u t
t r e a t embedded and t r a i l i n g s p a c e s a s z e r o s .

7-89

FORTRAN IV

7.11.1.1 I Field Descriptor - The I field descriptor governs the
translation of integer data.

Format:

Iw

Input

The I field descriptor causes an input statement to read w characters
from an external record. FORTRAN then assigns the character as an
integer value to the corresponding integer element of the I/O list.
The external data must be an integer; it must not contain a decimal
point or exponent field.

The I field descriptor interprets an all-blank field as a zero value.

If the value of the external field exceeds the range of the
corresponding integer list element, an error occurs. If the first
non-blank character of the external field is a minus symbol, the I
field descriptor causes the field to be stored as a negative value;
FORTRAN treats a field preceded by a plus symbol, or an unsigned
field, as a positive value.

Examples :

Format External Field Internal Representation

I4 2788 2788
I3 -26 -26
I9 312 312
I9 3.12 not permitted; error
I3 -871 -87

(one is lost)

output

On output, the I field descriptor transmits the value of the
corresponding integer I/O list element, right justified, to an
external field w characters in length. It also replaces any leading
zeros with spaces. If the value does not fill the field, FORTRAN
inserts leading spaces. If the value of the list element is negative,
the field will have a minus symbol as its leftmost non-blank
character. Space must therefore be included in w for a minus symbol
if you expect one to be output. FORTRAN suppresses plus symbols and
you need not account for them in w. If w is too small to contain the
output value, FORTRAN fills the entire external field with asterisks.

Examples:

Format Internal Value External Representation

I3 284
I4 -284
I5 174
I2 3244
I3 -473
I7 29.812

284
-284
174 **

not permitted; error

7-90

FORTRAN IV

7.11.1.2 F Field Descriptor - The F field descriptor specifies the
data conversion and editing of real values.

Format:

Fw.d

Input

On input, the F field descriptor causes FORTRAN to read w characters
from the external record and to assign the characters as a real value
to the corresponding I/O list element. If the first non-blank
character of the external field is a minus sign, FORTRAN treats the
field as a negative value: FORTRAN assumes a field preceded by a plus
sign (or an unsigned field) to be positive. FORTRAN considers an
all-blank field to have a value of zero. In all appearances of the F
field descriptor, w must be greater than or equal to d+ where the
extra character is the decimal point.

If the field contains neither a decimal point nor an exponent, FORTRAN
treats it as a real number of w digits, in which the rightmost d
digits are to the right of the decimal point. If the field contains
an explicit decimal point, the location of that decimal point
overrides the location you specify in the field descriptor. If the
field c o n t a i n s a n exponen t , FORTRAN uses the exponent to establish the
magnitude of the value before it assigns the value to the list
element.

Examples:

Format External Field Internal Representation

F8.5
F8.5
F8.5
F5.2

123456789
-1234.567
24.773+2
1234567.89

123.45678
,1234.56
2477.0
123.45

output

On output, the F field descriptor causes FORTRAN to round the value of
the corresponding I/O list element to d decimal positions and to
transmit an external field w characters in length, right justified.
If the converted data consists of fewer than w characters, FORTRAN
inserts leading spaces; if the data exceeds w characters, FORTRAN
fills the entire field with asterisks.

The field width must be large enough to accommodate 1) a minus sign,
if you expect one to be output (FORTRAN suppresses plus signs), 2) at
least one digit to the left of the decimal point, 3) the decimal point
itself, and 4) d digits to the right of the decimal. For this reason,
w should always be greater than or equal to (d+3).

Examples:

Format Internal Value External Representation

F8.5 2.3547188 2.35472
F9.3 8789.7361 8789.736
F10.4 -23.24352 -23.2435
F5.2 325.013
F5.2 -.2 -0.20

7-91

FORTRAN IV

7.11.1.3 E Field Descriptor - The'E field descriptor specifies the
transmission of real values in exponential format.

Format:

Input

The E field descriptor causes an input statement to input w characters
from an external record. It interprets and assigns that data in
exactly the same way as the F field descriptor.

Examples :

Format External Field Internal Representation

E9.3
E12.4
E15.3

734.43233

52.37596
1022.43E-6

734432 .O
1022.433-6

52.37596

output

The E field descriptor causes an output statement to transmit the
value of the corresponding list element to an external field w
characters in width, right justified. If the number of characters in
the converted data is less than w, FORTRAN inserts leading spaces; if
the number of characters exceeds w, FORTRAN fills the entire field
with asterisks. The corresponding I / O list element must be of real
type

FORTRAN transmits data output under control of the E field descriptor
in a standard form, consisting of

1. a minus sign if the value is negative (plus signs are

2. a zero,

3. a decimal point,

4. d digits to the right of the decimal, and

5. a 3-character exponent of the form:

suppressed) ,

or

E-nnn

where:

nn is a 2-digit integer constant.

The d digits to the right of the decimal point represent the entire
value, scaled to a decimal fraction.

Because w must be large enough to include a minus sign (if any are
expected), a zero, a decimal point, and an exponent, in addition to d
digits, w should always be equal to or greater than d+7.

7-92

FORTRAN I V

Data Magnitude

Examples:

Effective Conversion

Format Internal Value External Representation

E9.2 475867.222 0.48E+06
E12.5 475867.222 0.47587E+06
E12.3 0.00069 0.6903-03
E10.3 -0.5555 -0.5563+00
E5.3 56.12 * * * * *

10d-1 < m < 1 0 d

m > 10d

7.11.1.4 G F i e l d D e s c r i p t o r - The G field descriptor transmits real
data in a form that is in effect a combination of the F and E field
descriptors.

F(w-4) .O, 4X

Ew.d

Format:

Gw.d

Input

On input, the G field descriptor functions identically to the F field
descriptor.

output

On output, the G field descriptor causes FORTRAN to transmit the value
of the corresponding I/O list element to an external field w
characters in length, right justified. The form in which the value is
output is a function of the magnitude of the value, as described in
Table 7-19.

Table 7-19
Effect of Data Magnitude on G Format Conversions

m < 0.1

0.1 < m < 1.0

1.0 < m < 10.0

Ew.d

F(w-l).d, 4X

F (w-4) . (d-1) , 4X

F(w-4).1, 4X

The 4X field descriptor is inserted by the G field descriptor for
values within its range, and means that four spaces are to follow the
numeric data representation.

7-93

FORTRAN IV

The field width, w, must include

1. space for a minus sign, if any are expected (plus signs are

2. at least one digit to the left of the decimal point,

3. the decimal point itself,

4. d digits to the right of the decimal, and

5. (for values that are outside the effective range of the G
field descriptor) a 4-character exponent.

Therefore, w should always be equal to or greater than d+7.

Examples :

suppressed)

Format Internal Value External Representation

G13.6
G13.6
G13.6
G13.6
G13.6
G13.6
G13.6
G13.6
G13.6

0.01234567
-0.12345678

1.23456789
12.34567890

123.45678901
-1234.56789012
12345.67890123

123456.78901234
-1234567.89012345

0.1234573-01
-0.123457

1.23457
12.3457
123.457

-1234.57
12345.7
123457.

-0.1234573+07

For comparison, consider the following example of the same values
output under the control of an equivalent F field descriptor.

Format Internal Value External Representation

F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6
F13.6

0.01234567
-0.12345678

1.23456789
12.34567890

123.45678901
-1234.56789012
12345.67890123

123456.78901234
-1234567.89012345

0.012346
-0.123457

1.234568
12.345679

123.456789
-1234.567890
12345.678901

123456.789012 *************

NOTE

Only the first 6 digits in external
representation are accurate.

7.11.1.5 L Field Descriptor - The L field descriptor specifies the
transmission of logical data.

Format:

LW

7-94

FORTRAN IV

I/O List
E 1 emen t

Input

The L field descriptor causes an input statement to read w characters
from external record. If the first non-blank character of that field
is the letter T or the string .T, FORTRAN assigns the value .TRUE. to
the corresponding I / O list element. (The corresponding I / O list
element must be of logical type.) If the first non-blank character of
the field is the letter F or the string .F, or if the entire field is
blank, FORTRAN assigns the value .FALSE. . Any other value in the
external field causes an error condition.

Maximum Number
of Characters

output

The L field descriptor causes an output statement to transmit either
the letter T, if the value of the corresponding list element is .TRUE.
or the letter F, if the value is .FALSE., to an external field w
characters wide. The letter T or F is in the rightmost position of
the field, preceded by w-1 spaces.

Examples :

Format Internal Value External Representation

L5 . TRUE. T
L1 .FALSE. F

7.11 .1 .8 A Field Descriptor - The A field descriptor specifies the
transmission of alphanumeric data.

Format:

Input

On input, the A field descriptor causes w characters to be read from
the external record and stored in ASCII format in the corresponding
I/O list element. (The corresponding I / O list element may be of any
data type.) The maximum number of characters that FORTRAN can store in
a variable or array element depends on the data type of that element,
as listed in Table 7-20.

Table 7-20
Character Storage

Logical
Integer
Real

6
6
6

If w is greater than the maximum number of characters that FORTRAN can
store in the corresponding I/O list element, only the rightmost six
characters are assigned to that entity; the leftmost excess
characters are lost. If w is less than the number of characters that
FORTRAN can store, it assigns w characters to the list element, left
justified, and adds trailing spaces to fill the variable or array
element.

7-95

FORTRAN IV

Examples:

Format External Field Internal Representation

A6 PAGE # PAGE # (Integer)
A6 PAGE # GE # (Real)

output

On output, the A field descriptor causes FORTRAN to transmit the
contents of the corresponding I/O list element to an external field w
characters wide. If the list element contains fewer than w
characters, the data appears in the field right-justified with leading
spaces. If the list element contains more than w characters, FORTRAN
transmits only the leftmost w characters.

Examples:

Format Internal Value External Representation

A5
A5
A5

OHMS
VOLTS
AMPERES

OHMS
VOLTS
AMPER

7.11.1.7 H Field Descriptor

Format:

nHccc.. . c
where :

n specifies the number of characters that are to be
transmitted, and

C is an ASCII character.

Input

When the H field descriptor appears in a format specification, data
transmission takes place between the external record and the field
descriptor itself.

The H field descriptor causes an input statement to read n characters
from the external record and to place them in the field descriptor,
with the first character appearing immediately after the letter H.
FORTRAN replaces any characters that had been in the field descriptor
prior to input by the input characters.

output

The H field descriptor causes an output statement to transmit the n
characters in the field descriptor following the letter H to the
external record. An example of the use of H field descriptors for
input and output follows:

WRITE (4,100)

READ (4,200)
1 0 0 FORMAT (41H ENTER PROGRAM TITLE, UP TO 20 CHARACTERS)

200 FORMAT (20H TITLE GOES HERE)

7-96

FORTRAN IV

The WRITE statement transmits the characters from the H field
descriptor in statement 100 to the user's terminal. The READ
statement accepts the response from the keyboard, placing the input
data in the H field descriptor in statement 200. The new characters
replace the string TITLE GOES HERE: if the user enters fewer than 20
characters, FORTRAN fills the remainder of the H field descriptor with
spaces to the right.

7.11.1.8 Alphanumeric Literals - You may use an alphanumeric literal
in place of an H field descriptor. For output, both types of format
specifiers function identically. However, you cannot use an
alphanumeric literal on input.

You write an apostrophe character within an alphanumeric literal as
two apostrophes. For example:

50 FORMAT (I TODAYI'S DATE IS: ',12,'/',12,'/',12)

FORTRAN treats a pair of apostrophes used in this manner to be a
single character.

7.11.1.9 X Field Descriptor - The X field descriptor causes spaces to
be skipped in a record.

Format:

nx

Input

The X field descriptor causes an input statement to skip over the next
n characters in the input record.

output

The X field descriptor causes an output statement to transmit n spaces
to the external record. For example:

WRITE (5,90) NPAGE
90 FORMAT (13HlPAGE NUMBER ,12,16X,23HGRAPHIC ANALYSIS, CONT.)

The WRITE statement prints a record similar to:

PAGE NUMBER nn GRAPHIC ANALYSIS, CONT.

where "nn" is the current value of the variable NPAGE. FORTRAN does
not print the numeral 1 in the first H field descriptor, instead using
it to advance the printer paper to the top of a new page. Printer
carriage control is explained in Section 10.5.

7.11.1.10 T Field Descriptor - The T field descriptor is a tabulation
specifier.

Format:

7-97

FORTRAN IV

where:

n indicates the character position of the external record.
The value of n must be greater than or equal to one, but not
greater than the number of characters allowed in the
external record.

Input

On input, the T field descriptor causes FORTRAN to position the
external record to its nth character position. For example, if a READ
statement inputs a record containing:

ABC XYZ

under control of the FORMAT statement:

10 FORMAT (T7 ,A3 ,T1 , A 3)

the READ statement would input the characters XYZ first, then the
characters ABC.

output

On o u t p u t to devices other than the line printer or terminal, the T
field descriptor states that subsequent data transfer is to begin at
the nth character position of the external record. For output to a
printing device, data transfer begins at position n-1). This is
because FORTRAN reserves the first position of a printed record for a
carriage control character (see Section 10.5) which is never printed.

Example the statements:

WRITE (4,25)
25 FORMAT (T51,'COLUMN 2',T21,'COLUMN 1')

would cause the following line to be printed:

Position 20 Position 50

COLUMN 1 COLUMN 2

7.11.1.11 $ Descriptor - The character $ (dollar sign) appearing in a
format specification modifies the carriage control specified by the
first character of the record. The $ descriptor is intended primarily
for interactive I/O and causes the terminal print position to be left
at the end of the text written (rather than returned to the left
margin) so that a typed response will appear on the same line
following the output.

Example :

A=5
WRITE (4,100) A
READ (4,200) B

100 FORMAT (' SAMPLE NO.', 12, ' IS: I , $)

200 FORMAT (A6)
WRITE (4,200) B
END

This program o u t p u t s

SAMPLE NO. 5 IS: RED
RED

7-98

FORTRAN IV

7.11.2 Scale Factor

You can alter the location of the decimal point in real values during
input or output through the use of a scale factor.

Format:

where :

n is a signed or unsigned integer constant in the range -127
to +127 specifying the number of positions the decimal point
is to be moved to the right or left.

You may place a scale factor anywhere in a format specification, but
it must precede the field descriptors with which it is to be
associated. It has the forms:

nPFw. d nPEw. d nPGw . d
Data input under control of one of the above field descriptors is
multiplied by 10**-n before FORTRAN assigns it to the corresponding
I / O list element. For example, a 2P scale factor multiplies an input
value by .01, moving the decimal point two places to the left; a -2P
scale factor multiplies an input value by 100, moving the decimal
point two places to the right. If the external field contains an
explicit exponent, however, the scale factor has no effect.

Examples :

Format External Field Internal Representation

3PE10.5 37.614 .037614
3PE10.5 37.61432 3761.4

-3PE10.5 37.614 37614.

The effect of the scale factor on output depends on the type of field
descriptor with which it is associated. For the F field descriptor,
FORTRAN multiplies the value of the I / O list element by 10**N before
it transmits it to the external record. Thus, a positive scale factor
moves the decimal point to the right; a negative scale factor moves
the decimal point to the left.

FORTRAN adjusts values output under control of an E or D field
descriptor with a scale factor by multiplying the basic real constant
portion of each value by 10**N and subtracting n from the exponent.
Thus a positive scale factor moves the decimal point to the right and
decreases the exponent; a negative scale factor moves the decimal
point to the left and increases the exponent.

FORTRAN suspends the effect of the scale factor while the magnitude of
the data to be output is within the effective range of the G field
descriptor, since G supplies its own scaling function. The G field
descriptor functions as an E field descriptor when the magnitude of
the data value is outside its range; the effect of the scale factor
is therefore the same as described for that field descriptor.

Note that on input, and on output under control of an F field
descriptor, a scale factor actually alters the magnitude of the data;
on output, a scale factor attached to an E or G field descriptor
merely alters the form in which the data is transmitted. Note also
that on input a positive scale factor moves the decimal point to the
left and a negative scale factor moves the decimal point to the right,
while on output the effect is just the reverse.

7-99

FORTRAN IV

If you do not attach a scale factor to a field descriptor, FORTRAN
assumes a scale factor of zero. Once you specify a scale factor,
however, it applies to all subsequent real field descriptors in the
same format specification, unless another scale factor appears. You
may only reinstate a scale factor of zero by an explicit OP
specification.

Some examples of scale factor effect on output are:

Format Internal Value External Representation

1PE12.3
1PE12.2

-1PE12.2

-270.139
-270.139
-270.139

7.11.3 Grouping and Group Repeat Specifications

You can apply any field descriptor (except H, T, P, or X) to a number
of successive data fields by preceding that field descriptor with an
unsigned integer constant, called a repeat count, that specifies the
number of repetitions. For example, the statements:

20 FORMAT (E 1 2 . 4 , E 1 2 . 4 , E 1 2 . 4 , 1 5 , 1 5 , 1 5 , 1 5)

and

20 FORMAT (3E12.4,415)

have the same effect.

Similarly, you may repeatedly apply a group of field descriptors to
data fields by enclosing those field descriptors in parentheses, with
an unsigned integer constant, called a group repeat count, preceding
the left parenthesis. For example:

50 FORMAT (218,3(F8.3,E15.7))

is equivalent to:

50 FORMAT (18 ,18 ,F8 .3 ,E15 .7 ,F8 .3 ,E15 .7 ,F8 .3 ,E15 .7)

1 2 3

You can enclose an H or X field descriptor, which could not otherwise
be repeated, in parentheses. FORTRAN then treats it as a group repeat
specification, thus allowing it to be repeated a desired number of
times.

If you omit a group repeat count, FORTRAN assumes it to be 1.

7.11.4 Carriage Control

FORTRAN never transmits the first character of a record to a printing
device; instead, FORTRAN interprets this first character as a
carriage control character. The FORTRAN I/O system recognizes certain
characters for this purpose; the effects of these characters are
shown in Table 7-21.

7-100

FORTRAN IV

Character

Table 7-21
Carriage Control Characters

Effect

space

0 zero

1 one

1 + plus

Advance one line

Advance two lines

Advances to top of next page

Do not advance (allows overprinting)

FORTRAN treats any character other than those described in Table 10-2
as though it is a space, and deletes it from the print line.

7.11.5 Format Specification Separators

You generally separate field descriptors in a format specification
from one another by commas. You may also use the slash (/) record
terminator to separate field descriptors. A slash causes FORTRAN to
terminate the input or output of the current record and to initiate a
new record.

You may omit the comma when using a slash. Also, you need not type a
comma after a Hollerith constant.

Example:

WRITE (5,4O) K,L,M,N,O,P
40 FORMAT (3A6/16,2F8.4)

is equivalent to:

WRITE (5,40) K,L,M
40 FORMAT (3A6)

50 FORMAT (16,2F8.4)
WRITE (5,50) N,O,P

It is possible to bypass input records or to output blank records by
the use of multiple slashes. If n consecutive slashes appear between
two field descriptors, they cause FORTRAN to skip n-1 records on input
or n-1 blank records to be output. (The first slash terminates the
current record: the second slash terminates the first skipped or
blank record, and so on.) If n slashes appear at the beginning or end
of a format specification, however, they result in n skipped or blank
records, because the initial and terminal parentheses of the format
specification are themselves a record initiator and record terminator,
respectively. An example of the use of multiple record terminators
is:

WRITE (5 , 9 9)
99 FORMAT ('l'T51'HEADING LINE1//T51'SUBHEADING LINE'//)

7-1 0 1

FORTRAN IV

The above statements output the following:

Column 50, top of page

(blank line)

(blank line)
(blank line)

HEADING LINE

SUBHEADING LINE

7.11.6 Short Field Termination

A field descriptor such as fw.d specifies that an input statement is
to read w characters from the external record. If the data field in
question contains fewer than w characters, the input statement would
read some characters from the following field unless the short field
were padded with leading zeros or spaces. To avoid the necessity of
doing so, you may terminate an input field containing fewer than w
characters by a comma. The comma overrides the field descriptor's
field width specification. This practice, called short field
termination, is particularly useful when entering data from a terminal
keyboard. You may also use it in conjunction with I, F, E, D, G, and
L field descriptors.

Examples :

READ (6,100) I,J,A,B
100 FORMAT (216 , 2F10.2)

If the external record input by the above statements contains:

1,-2,1.0,35

Then the following assignments take place:

1 = 1

A = 1.0

B = 0.35

Note that the physical end of the record also serves as a field
terminator. Note also that the d part of a w.d specification is not
affected as illustrated by the assignment to 8.

You may only terminate fields of fewer than w characters by a comma.
If you follow a field of w characters or greater by a comma, FORTRAN
will consider the comma to be part of the following field.

Two successive commas, or a comma following a field of exactly w
characters, constitutes a null (zero-length) field. Depending on the
field descriptor in question, the resulting value assigned is 0, 0.0,
ODO, or .FALSE.

You cannot use a comma to terminate a field that is to be read under
control of an A, HI or alphanumeric literal field descriptor. If
FORTRAN encounters the physical end of the record before it has read w
characters, however, short field termination is accomplished and
FORTRAN assigns the characters that were input successfully. It a l s o
appends trailing spaces to fill the corresponding I/O list element or
the field descriptor.

7-102

FORTRAN IV

7.11.7 Format Control Interaction with Input/Output Lists

FORTRAN initiates format control with the beginning of execution of a
formatted I/O statement. The action of format control depends on
information provided jointly by the next element of the I/O list (if
one exists) and the next field descriptor of the FORMAT statement.
FORTRAN interprets both the I/O list and the format specification from
left to right.

If the I/O statement contains an I/O list, at least one field
descriptor of a type other than H, X I T, or P must exist in the format
specification. An execution error occurs if this condition is not
met.

When FORTRAN executes a formatted input statement, it reads one record
from the specified unit and initiates format control; thereafter,
additional records can be read as indicated by the format
specification. Format control demands that a new record be input
whenever a slash is encountered in the format specification, or when
the last outer right parenthesis of the format specification is
reached and additional I/O list elements remain.

Each field descriptor of types I, F, E, G I L, and A corresponds to one
element in the I/O list. No list element corresponds to an H, X, P I
TI or alphanumeric literal field descriptor. In the case of H and
alphanumeric literal field descriptors, data transfer takes place
directly between the external record and the format specification.

When format control encounters an I, F, E, G I L, or A field
descriptor, it determines if a corresponding element exists in the I / O
list. If s o , format control transmits data, appropriately converted
to or from external format, between the record and the list element,
then proceeds to the next field descriptor (unless the current one is
to be repeated). If there is no corresponding list element, format
control terminates.

When FORTRAN reaches the last outer right parenthesis of the format
specification, it determines whether or not there are more I/O list
elements to be processed. If not, format control terminates. If
additional list elements remain, however, FORTRAN terminates the
current record, initiates a new one, and format control reverts to the
right-most top-level group repeat specification (the one whose left
parenthesis matches the next-to-last right parenthesis of the format
specification). If no group repeat specification exists in the format
specification, format control returns to the initial left parenthesis
of the format specification. Format control then continues from that
point.

7.11.8 Summary of Rules for Format Statements

The following is a summary of the rules pertaining to the construction
and use of the format statement and its components, and to the
construction of the external fields and records with which a format
specification communicates.

General

1. You must always label a FORMAT statement.

2 . In a field descriptor such as rIw or nX, the terms r, w, and
n must be unsigned integer constants greater than zero. You
may omit the repeat count and field width specification.

7-103

FORTRAN IV

3 .

4 .

5.

6 .

7 .

Input

1.

2.

3 .

4 .

5 .

6 .

7.

In a field descriptor such as Fw.d, the term d must be an
unsigned integer constant. It must be present in F, E, D,
and G field descriptors even if it is zero. The decimal
point must also be present. The field width specification w
must be greater than d. The w and d must either both be
present or both omitted.

In a field descriptor such as nHcc...c, exactly n characters
must be present following the H format code. Any ASCII
character may appear in this field descriptor (an
alphanumeric literal field descriptor follows the same rule).

In a scale factor of the form nP, n must be a signed or
unsigned integer constant in the range -127 to 1 2 7 inclusive.
Use of the scale factor applies to F, E, D, and G field
descriptors only. Once you specify a scale factor, it
applies to all subsequent real or double precision field
descriptors in that format specification until another scale
factor appears: FORTRAN requires an explicit OP
specification to reinstate a scale factor of zero.

FORTRAN does not permit a repeat count in H, X, T or
alphanumeric literal descriptors unless you enclose those
field descriptors in parentheses and treats them as a group
repeat specification.

If an I/O list is present in the associated I/O statement,
the format specification must contain at least one field
descriptor of a type other than H, X, P, T or alphanumeric
literal.

t

You must precede an external input field with a negative
value by a minus symbol: you may optionally precede a
positive value by a plus sign.

An external field whose input conversion is governed by an I
field descriptor must have the form of an integer constant.
It cannot contain a decimal point or an exponent.

FORTRAN handles an external field whose input conversion by
an F, E, or G field descriptor must have the form of an
integer constant or a real or double precision constant. It
can contain a decimal point and/or an E or D exponent field.

If an external field contains a decimal point, the actual
size of the fractional part of the field, as indicated by
that decimal point, overrides the d specification of the
corresponding real field descriptor.

If an external field contains an exponent, it causes the
scale factor (if any) of the corresponding field descriptor
to be inoperative for the conversion of that field.

The field width specification must be large enough to
accommodate, in addition to the numeric character string of
the external field, any other characters that can be present
(algebraic sign, decimal point, and/or exponent).

A comma is the only character that is acceptable for use as
an external field separator. You use it to terminate input
of fields that are shorter than the number of characters
expected, or to designate null (zero-length) fields.

7-104

FORTRAN IV

output

1.

2.

3.

A format specification must not demand the output of more
characters than can be contained in the external record (for
example, a line printer record cannot contain more than 133
characters including the carriage control character).

The field width specification w must be large enough to
accommodate all characters that FORTRAN may generate by the
output conversion, including an algebraic sign, decimal
point, and exponent. (The field width specification in an E
field descriptor, for example, should be large enough to
contain d+7 characters.)

FORTRAN uses the first character of a record output to a line
printer or terminal for carriage control; FORTRAN never
prints it. The first character of such a record should be a
space, 0,1,$, or +. FORTRAN treats any other character as a
space and deletes it from the record.

7.12 LIBRARY FUNCTIONS AND SUBROUTINES

Library functions and subroutines are called in the same manner as
user written functions and subroutines. This section lists the
library components that are available to FORTRAN programs and
illustrates calling sequences, where necessary. Arguments must be of
the correct number and type, but need not have the same name as those
shown in the illustrative examples. Certain library routines are used
by the FORTRAN system programs and are not available to a user's
FORTRAN program. These routines may be identified by a number sign
(#) in the entry point or section name, and are not listed in the
following section.

7.12.1 ABS (Single-Precision Absolute Value)

ABS calculates the absolute value of a real variable by leaving the
variable unchanged if it is positive (or zero) and negating the
variable if it i s negative.

7.12.2 ACOS (Single-Precision Arc-Cosine Function)

ACOS calculates and returns the primary arc-cosine (in radians) of a
real argument less than or equal to 1.0 according to the relation:

If x > 0.0, ACOS(x)=ATAN SQRT (1-X-2)
A

If x < 0.0, ACOS(x)= +ATAN SQRT (1-X-2)
X

If x = 0.0, ACOS(x) = /2.0

7-105

FORTRAN IV

7.12.3 AINT (Single-Precision Floating-point to Integer

AINT is a floating-point truncation function. Given a real argument,
it truncates the fractional part of the argument and returns the
integral part as an integer. This is accomplished by taking the
absolute value of the argument, aligning and normalizing this result,
then restoring the original sign. AINT, IFIX, and INT perform
identical functions.

7.12.4 ALOG (Single-Precision Natural Logarithm)

ALOG calculates and returns the natural (Naperian) logarithm of a real
argument greater than zero. Any negative or zero argument returns an
error message and a value of 0.0. The algorithm used is an 8-term
Taylor series approximation.

7.12.5 ALOGlO (Single-Precision Common Logarithm)

ALOGlO calculates and returns the common (base 10) logarithm of a real
argument greater than zero. Any negative or zero argument returns an
error message and a value of 0.0. The calculation is accomplished by
calling ALOG to compute the natural logarithm and executing a change
of base.

7.12.6 AMAXO (Single-Precision Maximum Value)

AMAXO accepts an arbitrary number of integer arguments and returns a
real value equal to the largest of the arguments.

7.12.7 AMAXl (Single-Precision Maximum Value)

AMAXl accepts an arbitrary number of real arguments and returns a real
value equal to the largest of the arguments.

7.12.8 AMINO (Single-Precision Minimum Value)

AMINO accepts an arbitrary number of integer arguments and returns a
real value equal to the smallest of the arguments.

7.12.9 AMINl (Single-Precision Minimum Value)

AMINl accepts an arbitrary number of real arguments and returns a real
value equal to the smallest of the arguments.

7.12.10 AMOD (Single-Precision A Modulo B)

AMOD accepts two real arguments and returns a real value equal to the
remainder when the first argument is divided by the second argument.
If the second argument is not suf#iciently large to prevent overflow,
an error message and a value of 0.0 are returned.

7-106

FORTRAN IV

7.12.11 ASIN (Single-Precision Arc-Sine)

ASIN calculates and returns the arc-sine (in radians) of a real
argument in the range [-1, 1 1 according to the relation:

ASIN (X) = ATAN (X/SQRT (1-X**2))

If the argument falls outside the range [-1, 11, an error message
results.

7.12.12 ATAN (Single-Precision Arc-Tangent)

ATAN calculates and returns the primary arc-tangent (in radians) of a
real argument. The argument is first reduced according to the
relations:

(1) If ~<2^-14, atan(x) = x
(2) If ~>2^-14, atan(x) = l/x
(3) If X>l.O, atan(x) = /2 - atan(l/x)
(4) If x<o, atan(x) = -atan(-x)

and the arc-tangent is then computed by a power series approximation.

7.12.13 ATAN2 (Single-Precision Arc-Tangent of Two Arguments)

ATAN2 accepts two real arguments, assumed to be an abscissa and an
ordinate respectively, and calculates the arc-tangent of the quotient
of the first argument divided by the second argument, This is
accomplished by calling ATAN to find the principal arc-tangent of the
quotient and then adjusting the result, depending upon the quadrant in
which a point defined by the arguments falls, according to the
relations:

argument in first quadrant atan2 (y,x) = atan(y/x)
argument in second quadrant atan2(y,x) = atan(y/x)-
argument in third quadrant atanZ(y,x) = atan(y/x)-
argument in fourth quadrant atad2 (y,x) = atan(y/x)+

7.12.14 CGET (Character Get Subroutine)

The calling sequence:

CALL CGET (STRING ,N , CHAR)
causes the Nth character to be unpacked from STRING and stored in CHAR
as a variable in the range 0, 63, where STRING is a character string
in A6 format.

7-107

FORTRAN IV

7.12.15 CAKEOF (Check for End-of-File Subroutine)

CHKEOF accepts one real, integer or logical argument. After the next
formatted read operation, this argument will be set to non-zero if the
logical end-of-file was encountered, or to 0 if the logical
end-of-file was not encountered. The following is an example of the
use of CHKEOF:

CALL CHKEOF (EOF)
READ (N ,101) DATA
IF (EOF.NE.0) GO TO 999

7.12.16 CLOCK* (Initialize Clock Subroutine)

The purpose of the CLOCK subroutine is to initialize the KK8-B
real-time clock. The calling sequence is:

CALL CLOCK (FUNCTN,RATE)

Where functn can have a value of 0 or 8, specifying multiple or single
A/D channel input, respectively. The value of rate is preset to 100
Hz. Any value of rate other than 0 or 8 causes an error message: any
value of rate other than 100 is ignored.

7.12.17 COS (Single-Precision Cosine Function)

COS calculates and returns the cosine of a real argument (in radians)
by applying the identity:

COS(X) = SIN(X+ /2)

7.12.18 COSA (Single-Precision Hyperbolic Cosine Function)

COSH calculates and returns the hyperbolic cosine of a real argument
according to the relations:

If 1x1 G38.029

If 1x1 > 88.028 and 1x1 - 10g~2G38.028
COSH(x) = EXP(lx1 - 10ge2)

If 1x1 - l0ge2>88.O28
COSH(x) = 377737777777,

The third relation produces an error message.

7-108

FORTRAN IV

7.12.19 CPUT (Character Put Subroutine)

The calling sequence:

CALL CPUT (STRING ,N ,CHAR)

causes CPUT to insert CHAR as the Nth character in STRING, where
STRING is a character string stored in A6 format, and CHAR is a number
in the range [0, 631 which is interpreted as a character. The
following program illustrates the use of CGET and CPUT.

:t 00

:I. 0 1.

10
1.0 2

:! 0

I03

7.12.20 DATE (OS/78 Date Subroutine)

DATE accepts three integer arguments, accesses the current OS/78
system date, and returns an integer from 1 to 12 corresponding to the
current month as the first argument, an integer from 1 to 31
corresponding to the current day as the second argument, and an
integer from 1970 to 1977 corresponding to the current year as the
third argument.

7.12.21 DIM (Single-Precision Positive Real Difference)

DIM calculates and returns the positive difference of two real
arguments. That is, if the first argument is larger than the second
argument, DIM returns the difference between the arguments; if the
first argument is less than or equal to the second argument, DIM
returns 0.0.

7-109

FORTRAN IV

7.12.22 EXP (Single-Precision Exponential Function)

EXP calculates and returns the exponential function of a real
argument. The algorithm uses a numerical method after Kogbetliantz
(IBM Journal of Research and Development, April, 1957, pp 110-5).
EXP3 (Base Raised to an Exponent) Exp3 accepts two real or integer
arguments, that is, a base and an exponent and performs the
calculation

a-b-e

If the first argument is outside the range [O, 121, the value returned
in the second argument is unpredictable. If EXTLVL is called on a
PDP-8, the second argument will always be set to zero.

7.12.23 FLOAT (Integer-to-Floating-Point Conversion)

FLOAT accepts an integer argument and returns a real variable equal to
the argument.

7.12.24 IABS (Integer Absolute Value Function)

IABS calculates and returns the absolute value of an integer variable
by leaving the variable unchanged if it is positive (or zero), and
negating the variable if it is negative.

7.12.25 IDIM (Integer Positive Difference Function)

IDIM calculates and returns the positive difference of two integer
arguments. That is, if the first argument is larger than the second
argument, IDIM returns the difference between the arguments: if the
first argument is less than or equal to the second argument, IDIM
returns a value of 0.

7.12.26 IFIX (Single-Precision Floating-Point-to-Integer Function)

IFIX is a floating-point truncation function. Given a real argument,
it truncates the fractional part of the argument and returns the
integral part as an integer. IFIX, AINT and INT perform the same
function.

7.12.27 INT (Single-Precision Floating-Point-to-Integer)

INT is a floating-point truncation function that performs the same
function as AINT and IFIX.

7.12.28 ISIGN (Integer Transfer of Sign Function)

ISIGN accepts two integer arguments, calculates the absolute value of
the first argument, and returns this value if the second argument is
positive (or zero), or the negative of this value if the second
argument is negative.

7-110

FORTRAN IV

7 . 1 2 . 2 9 MAXO (Single-Precision Maximum Value)

MAXO accepts an arbitrary number of integer arguments and returns an
integer result equal to the largest of the arguments.

7 . 1 2 . 3 0 MAXl (Single-Precision Maximum Value)

MAXl accepts an arbitrary number of real arguments and returns an
integer result equal to the largest of the arguments.

7 . 1 2 . 3 1 MINO (Single-Precision Minimum Value Function)

MINO accepts an arbitrary number of integer arguments and returns an
integer value equal to the smallest of the arguments.

7 . 1 2 . 3 2 MINl (Single-Precision Minimum Value Function)

MINl accepts an arbitrary number of real arguments and returns an
integer value equal to the smallest of the arguments.

7 . 1 2 . 3 3 MOD (Integer A Modulo B Function)

MOD accepts two integer arguments and returns an integer value equal
to the remainder when the first argument is divided by the second
argument. If the second argument is not sufficiently large to prevent
overflow, an error message and a value of 0 are returned.

7 . 1 2 . 3 4 SIGN (Single-Precision Transfer of Sign)

SIGN accepts two real arguments, calculates the absolute value of the
first argument, and returns this value if the second argument is
positive (or zero), or the negative of this value if the second
argument is negative.

7 . 1 2 . 3 5 SIN (Single-Precision Sine Function)

SIN calculates and returns the sine of a real argument (in radians).
The argument is reduced to the first quadrant, and the sine is then
computed from a Taylor series expansion.

7-111

FORTRAN IV

7.12.36 SINA (Single-Precision Hyperbolic Sign)

SINH calculates and returns the hyperbolic sine of a real argument
according to the relations:

1
If O.lO<lx1<87.929, SINH(x) = 1/2[EXF'(x)-EXP(x)]

If 1xt<Oo.10, SINH(x) = x + x ~ / ~ + x5/120

7.12.37 SQRT (Single-Precision Square Root Function)

SQRT calculates and returns the (positive) square root of a positive
real argument. Any negative argument results in an error message.

7.12.38 TAN (Single-Precision Tangent Function)

TAN calculates and returns the tangent of a real argument (in
radians). This is accomplished by computing the quotient of the sine
of the argument divided by the cosine of the argument: thus, if the
cosine of the argument is zero, an error message is returned.

7.12.39 TANA (Single-Precision Hyperbolic Tangent)

TANH calculates and returns the hyperbolic tangent of a real argument
by computing the quotient of the hyperbolic sine of the argument
divided by the hyperbolic cosine of the argument.

7.12.40 TIME (Read Time of Day)

TIME may be called as a subroutine with one real or integer argument,
or as a function with a dummy argument. It returns the elapsed time
since the clock was started. This result will be in seconds.

7.13 FORTRAN LANGUAGE SUMMARY

Form - Statement

Arithmetic a=b

Arithmetic
Stat emen t
Function
Definition

t nam (a1 . . .) = x

Effect

The value of expression b
is assigned to the
variable a.

The value of expression x
is assigned to f(a1 ...)
after parameter
substitution.

7-112

FORTRAN IV

Statement Form

ASSIGN ASSIGN n TO v

BACKSPACE

BLOCK DATA

CALL

COMMON

CONTINUE

DATA

DEFINE FILE

DIMENS ION

DO

BACKSPACE U

BLOCK DATA

CALL prog
CALL prog(a1 ...)
COMMON/blockl/a,b../..

CONTINUE

DATA varlist/var/ ...

DEFINE FILE
a (b,c,U,v)

DIMENSION array
(vl ..., v7)
DO st 1-el,e2,e3

END END

END FILE END FILE u

EQUIVALENCE EQUIVALENCE
(vl,v2,. . . ,)

Effect

Statement number n is
assigned as the value of
integer variable v for
use in an assigned GOT0
statement.

Peripheral device u is
backspaced one record.

Identifies a block data
subprogram.

Invokes subroutine named
prog, supply arguments
when required.

Variables (a,b, . . . I are
assigned to a common
block.

No processing, target for
transfers.

Assigns initial or
constant values to
variables.

Describes a mass storage
file for direct access
I/O.

Storage allocated
according to dimensions
specified for the array.

Statements following the
DO up to statement st are
iterated for values of
integer variable i,
starting at i=el,
incrementing by e3, and
terminating when i>e2.

Cease program
compilation; equivalent
to STOP in main program
or RETURN in subprogram.

Writes END-OF-FILE
character in file u.

Identifies same storage
location for variables
within parentheses.

7-113

FORTRAN IV

Effect Statement Form

EXTERNAL subprogram Declares a subprogram for
use by other subprograms.

Specifies conversions
between internal and
external representations
of data.

EXTERNAL

FORMAT FORMAT
(specl,spec2, ... / . . . I

FUNCTION name(al,...) Indicates an external
function definition.

FUNCTION

Transfers control to:
(1) statement n
(2) to statement nl if

e=1, to statement nk
if e=k.

(3) transfers control to
state-number assigned
to v optionally
checking that v is
assigned one of the
labels nl,. ..nk.

Transfers control to nl
if expr<O, n2 if = 0, or
n3 if > 0.

GO TO
(1) GO TO n
(2) GO TO (nl,...nk) ,e

(3) GO TO v
GO TO v, (nl,. ..nk)

IF

IF

IF (ar ith expr) nl , n2, n3

IF (logical expr) st Executes statement if
expression has a value
.TRUE., otherwise
executes the next
statement.

Logical
Assignment

Value of expression E is
assigned to variable V.

Program execution
interrupted and number
printed, if given.

v=e

PAUSE [numl PAUSE

READ(u,f) list
READ (u, f)
READ(u) list
READ(a'r) list

READ Reads a record from a
a peripheral device
according to
specifications given in
the argument of the
statement.

Returns control from a
subprogram to the calling
program.

Repositions designated
unit to the beginning of
the file.

RETURN

REWIND

STOP

RETURN

REWIND u

STOP Terminate program
execution.

7-114

FORTRAN IV

Statement Form Effect

WRITE

SUBROUTINE SUBROUTINE nam[(al ...) I Declares name to be a
subroutine subprogram and
al, ..., if supplied are
dummy arguments.

WRITE(u,f) list
WRITE (u,f)
WRITE (u) list
WRITE (a'r) list

Writes a record to a
peripheral device
according to
specifications given in
the arguments of the
statement.

Operators in each type are shown in order of descending precedence.

Type Opera tor Operates Upon

Arithmetic * * exponentiation arithmetic or logical constants,
* multiplication variables, and expressions
/ division
+ addition
- subtraction

Relational .GT. greater than arithmetic or logical constants
.GE. greater than or variables, and expressions (all

equal to relational operators have equal
.LT. less than priority)
.LE. less than or

equal to
.EQ. equal to
.NE. not equal to

Logical .NOT. .NOT.A 1s true logical constants, variables,
if and only if and expressions
A is false

.AND. A.AND.B iS true
if and only if
A and B are true

.OR. A.0R.B is true
if and only if
either A or B
is true.

if and only if
A and B are both
true or A and B
are both false.

if and only if
A is true and B
is false or B is
true and A is
false

.EQV. A.EQV.B is true (precedence same as .XOR.)

.XOR. A.XOR.B is true (precedence same as .EQV.)

7-1 15

