CHAPTER 8

BATCH

0S/78 BATCH processing is ideally suited to lengthy or after-hour jobs
consisting of fixed sequences of 0S/78 system commands not requiring
operator intervention. BATCH allows vyou to create a file that
contains the 0S/78 commands. Output can be line printer listings and
files. These files contain program output or comprehensive summaries
{log) of all action taken by the program, O0S/78 BATCH, and the
operator.

BATCH provides optional spooling of output files. Spooling allows
printed output to be diverted to a fast file-structured device, such
as a diskette, for later transferral to the slower device. This
feature serves to increase perceived throughput on the system. A line
printer, although optional, makes the use of BATCH more effective.

With a few exceptions, BATCH executes standard 0S/78 commands.

8.1 BATCH PROCESSING UNDER 0S/78

0S/78 BATCH maintains an input file and an output log. The BATCH
input file <consists of a series of BATCH commands. The input file
must reside on the system device (disk pack or diskette). Its default
extension is .BI. Each command in the BATCH input file generally
occupies one line.

The BATCH output file is a line printer listing (log) on which BATCH
prints job headers, certain messages that result from conditions
within the input file, an image of each line in the input file, and
certain types of user output. BATCH supports only the LA78 line
printer for the output of the BATCH log. Listings, however, can be
output on the LQP78 line printer. If a line printer is not present in
the system, the output file is displayed on the terminal.

BATCH accepts program and data files from any input device 1in the
system. User output files may be directed to any output device in the
system,

BATCH also permits optional spooling of output files. When spooling
is requested, every output request to a non-file-structured device
output file is assigned a file name from a list of names maintained by
BATCH and directed to a file-structured spool device instead of the
user—-specified device. Spooling of output files increases BATCH
throughput, permitting slow output operations to be postponed until a
more favorable time. For example, a batch processing run that
generates many output listings may be initialized to reroute all
listings to a specified diskette. The listings on the diskette may
then be dumped onto the appropriate hard copy device after the run,
when more time is available. The spool device may be any 0S/78
file-structured device.

BATCH

BATCH is called via the SUBMIT command. The format for a BATCH
command string is:

SUBMIT spool-dev:<dev:input/options
where:
spool-dev: is the device on which to spool output. If not
specified, no spooling 1is performed. Note that

spooling applies only to non-file-structured output.

dev:input is the input device and file. The default extension
for BATCH input files 1is .BI. The default input
device is DSK.

/options are listed in Table 8-1.

Table 8-1
BATCH Run-Time Options

Option Meaning

/E Treat 0S/78 Monitor errors as non-fatal
errors. If /E 1is not specified, monitor
errors cause the current BATCH job to be
terminated.

/H Do not output a BATCH log.

/Q Output an abbreviated BATCH log, consisting
of SJOB and $MSG lines.

/T Output the BATCH log to the terminal. This
option need be specified only if a line
printer is available. 1If a line printer is
not available, the BATCH log is

automatically output to the terminal.

/U BATCH will not pause for operator response
to S$MSG lines. Any attempt to use TTY: as
an input device to an unattended BATCH
stream will cause the current Jjob to be
aborted.

8.2 BATCH COMMANDS

A BATCH command is a character or string of characters that begins
with the first character of a line in the BATCH input file. Each
BATCH command must be followed by a RETURN. The files may contain
form feed characters, but form feed characters are ignored by BATCH on
input.

BATCH recognizes four monitor level commands. These commands allow
routine housekeeping operations in a multi-job, batch processing
environment and provide communication between the BATCH user and the
operator. Table 8-2 lists the BATCH commands, which may be considered
as an extension of the 0S/78 Monitor command set. Note that the first
character of the $JOB, $MSG and S$END commands 1is a dollar sign
(SHIFT/4).

BATCH

Table 8-2
BATCH Commands

Command Meaning

$JOB Initialize for a new job and display a job header on
the output file. The remainder of the $JOB record
is included in the job header but ignored by BATCH.
It should be used for job identification, to provide
correlation between terminal output, line printer
output and spool device output.

$MSG text Sound the terminal buzzer and print the message
specified by the argument text at the terminal. 1If
the /U option was not specified, 1implying that an
operator is present, BATCH will pause until any key
is struck at the keyboard. If the /U option was
specified, processing continues uninterrupted.

SEND Terminate batch processing and exit to the monitor.
A SEND command should be the last line of every
BATCH input file.

/ Copy the linc onto the output log, then ignore it.
BATCH assumes that every line beginning with a slash
is a comment.

Any record that begins with a dollar sign character but is not one of
the BATCH commands listed above is copied onto the output file and
ignored by BATCH.

A BATCH processing job consists of a $JOB command line and all of the
commands that follow it wup to the next $JOB or SEND command.
Normally, all the commands submitted by one user are processed as a
single job, and all output from these commands appears under one job
header.

After BATCH encounters a $JOB command, it scans the input file until
the next O0S/78 command 1is read. Any 1lines that follow the $JOB
command and precede the first command are written onto the 1log and
ignored by BATCH.

The first character of every command is a period (.). An exception to
this 1is the wuse of an asterisk (*) whose function is to accept a
command string that indicates input/output files. It is further

described in the example program given in Section 8.3. The rest of
the line contains a command, which should appear in standard 0S/78
format. However, commands that would be terminated with an ESCape
under interactive 0S/78 should be terminated with a dollar sign under
BATCH. Most 0S/78 commands are legal input to BATCH except the MEMORY
and SQUISH SYS: commands. ODT will go to the terminal for input
instead of the BATCH file. It is not usually meaningful to invoke
ODT, EDIT, or other interactive programs under BATCH.

BATCH executes an 0S/78 command by stripping off the initial period
(.) character and passing the remainder of the line to the monitor.
BATCH then passes control to the monitor, which executes the command
as though it had been typed at the keyboard. Monitor commands that
return control to the monitor level should be followed by a BATCH
command or another monitor command. The SUBMIT command can be used to
chain from one BATCH stream to another.

BATCH

The general rules and conventions associated with BATCH processing are
as follows:

1. The dollar sign ($) is always in the first character position
of the BATCH command lines SJOB, $MSG and $END.

2. Each job must have a $JOB and $END command.

3. 08/78 commands can be spelled out entirely or in accordance
with the accepted abbreviations. Also, a period (.) must
precede every command.

4, Wildcards can be specified only for the 0S/78 commands COPY,
DELETE, DIRECT, LIST, RENAME and TYPE.

5. Comments may only be included as separate comment lines.

6. Only 80 characters per control statement are allowed.

7. Continuation file specification lines (where necessary) are

specified by an asterisk at the beginning of the line:

.0a0 FROG SURAY SURES
¥SURCy» SURLy SUBE S

8.3 THE BATCH INPUT FILE
The following file is an example of a BATCH input file.

$JOR

LDATE 13-MAY-79

ZLIST ANY HELP FILES AND STARTING BLOCKS
+OIR X HL/ZR

$MSG INSERY DISKETTE INTO DRIVE 1 - TYFE ANY KEY TO CONTINUE

ZLIST DIRECTORY OF DISKETTE 2 -~ SFOOL TO FILE BTCHAL
LOIR TTY!CRXAL:

ACOPY FILE FROM DISKETTE 2 DISKETTE 1

LCOPY RXAQIZRXALIFOWER.FT

ZCOMPILE FORTRAN FROGRAM FOWER.FT

OOMFILE POWERLFT

ZLOAD FORTRAN FROGRAM AND CHAIN TO RUN TIME SYSTEM
+LLOAD FPOWER CRL/GS

/STORE RESULTS OF FORTRAN FROGRAM IN FILE “HOLD
XHOLIN. TM /4%

JEXECUTE FORTRAN FROGRAM AND DISPLAY RESULTS ON SCREEN
+EXE FOWER.LD

ZEND OF JOR NO.1 ~ START NEXT JOR

$J0R

/ASSEMBLE FILE SaMFLE AND PRODUCE CREF LISTING

+FAL SAMFLE/ZC-LS

ZEXECUTE PROGRAM SAMPLE

+EXE S56AMPLE BN

ZEND OF EXAMFLE AND BRATCH INFUT FILE

$END

The file was created using the Editor and is named BATSAM.BI.

For the

example wused, both the PAL8 and FORTRAN IV system programs were on

diskette RXAOQ.

BATCH

BATCH is started using the SUBMIT command and typing
.SUB“IT RXAQ$RATSAM

when spooling is desired, or
SUBMIT BATSAM

when spooling is not desired. The default extension for the BATCH
input file is .BI.

BATCH begins processing by printing a job header and executing the
DATE command. BATCH next executes the DIRECT command, which displays
any Help file names and their starting blocks. Wildcards are used in
this command.

BATCH continues to scan the input file for the next line. BATCH
processes the $MSG command, sounds the terminal buzzer, and copies the
SMSG record onto the terminal. Assuming that an operator is present,
processing is suspended until any key is typed at the terminal.

The operator performs the task specified by the $MSG command (that of
placing diskette 2 into Drive 1) and types any key, allowing BATCH to
continue reading the input file.

BATCH then executes the DIRECT command, which lists the directory of
RXA1l on the line printer. Since spooling is active because RXAO was
specified as the spooling device in the SUBMIT command line and a
non-file-structured device 1is specified as output in the DIRECT
command, BATCH intercepts this output and stores it in a temporary
file on the spool device. The output 1is stored in a file named
BTCHAl. BATCH then outputs the message

#SPOOL TO FILE BTCHAl

on both the console terminal and the line printer, if available. If
another file 1is routed to the spool device, it will be assigned the
file name BTCHA2, and any successive files will be named in the
following seguence:

BTCHA3

BTCHAS
BTCHBO

BTCHZ9

A total of 260 spool files are permitted. If output to a spool file
is generated by a program that appends a default extension to output
file names, the spool file will be assigned a standard default
extension. All of the spool files may then be transferred to the
terminal or line printer by using the TYPE or LIST command with the
input file specification dev:BTCH??.*,

You may type CIRL/C at any time during a batch processing run. Typing
CTRL/C at the program 1level causes an effective jump to location
07600, which recalls the BATCH program. BATCH program then recognizes
the CTRL/C and terminates the BATCH run. Sometimes two CTRL/C's are
required to be typed in succession to return to the monitor.

BATCH

Continuing with our example program, the next command copies the
FORTRAN program POWER.FT from Drive 1 to Drive 0. The program then is
compiled creating a module POWER.RL that is used by the LOAD command
to generate a loader 1image file. The LOAD command is given the /G
option, which chains to the run-time system for program execution.

Note that the ESCape function, specified via a dollar sign ($), calls
a system program called the Command Decoder. This program (which
normally displays an asterisk when it is running) allows the run-time
system to accept file input/output specifications. Similarly, an
asterisk is used for specifying input/output files. In this case, a
file HOLD.TM is designated to store the output of the executed FORTRAN
program. The file specification line is then followed by a dollar
sign (again serving as an ESCape key function) to execute the LOAD
command. After the execution of this command, the loader 1image file
POWER.LD has been created, and its executable results stored in the
HOLD.TM file. The EXECUTE command executes the program POWER.FT,
displaying the results on the terminal.

BATCH then encounters the second $JOB command. The first Jjob is
terminated and a new header is printed. The second job calls CREF to
assemble a source program named SAMPLE and produce a CREF 1listing.
The results of this command is to produce a binary file called
SAMPLE.BN and a CREF listing stored in the file SAMPLE.LS. Typing the
TYPE or LIST commands will print this file on the terminal or line
printer, respectively. The program is then executed. The BATCH job
is terminated upon encountering the $END command and control returns
to the monitor.

The BATCH $END command always must appear as the last record in the
input file to terminate batch processing and cause BATCH to recall the
monitor and re-establish interactive processing under 0S/78.

8.4 BATCH ERROR MESSAGES

BATCH generates two types of error messages. They are BATCH error
messages and system error messages. BATCH level error messages appear
in the form:

#BATCH ERR

System error messages are generated by 0S/78 system programs. When
these occur, BATCH will append a "#" character to the beginning of the
message, so that it appears in the form:

#SYSTEM ERROR

Any occurrence of an error normally causes BATCH to terminate the
current job and scan the input file for the next $JOB command. If the
/E option was specified, BATCH treats errors as non-fatal and
continues the BATCH run.

Table 8-3 lists the BATCH error messages, their meanings, and the
probable cause for the error.

BATCH

Table 8-3
BATCH Error Messages

Message Meaning
#BAD LINE JOB ABORTED The BATCH program detected a line in
the input file that did not have one
of the characters period (.), slash,

dollar sign or asterisk as the first
character of the record. The record
is ignored, and BATCH scans the
input file for the next SJOB
command.

$BATCH SQUISHING SYS:! BATCH is running and attempting to
execute a SQUISH on the sgsystem
device. This may cause BATCH.SV or
the BATCH input file to be moved.

BATCH.SV NOT FOUND A copy of BATCH.SV must exist on the
system device. Control returns to
the monitor.

DEV NOT IMPLEMENTED BATCH cannot accept input from the
specified 1input device because its
handler is not permanently resident.
Only input from SYS: is permitted.
Control returns to the Command

Decoder (See Appendix D). In most
cases, type CTRL/C and then retype
the command, using the correct

parameters.

#ILLEGAL INPUT A file specification designated TTY
as an input device when the /U
option indicated that an operator is
not available, The current job is
terminated, and BATCH scans the
input file for the next SJOB

command.
ILLEGAL SPOOL DEVICE The device specified as a spooling
output device must be

file-structured. Control returns to
the Command Decoder (See Appendix
D). In most cases, type CTRL/C and
then retype the command, using the
correct parameters.

#INPUT FAILURE Either a hardware problem prevented
BATCH from reading the next line of
the input file, or BATCH read the
last 1line of the input file without
encountering a S$END command line.
If a hardware problem exists,
correct the problem and type any
character at the terminal to resume
processing.

(continued on next page)

BATCH

Table 8-3 (Cont.)
BATCH Error Messages

Message Meaning
#MANUAL HELP NEEDED BATCH is attempting to operate an
I/0 device, such as TTY, that will
require operator intervention. If

the /U option was specified to
indicate that an operator is not
present, this message is suppressed,
the current job is terminated, and
BATCH scans the input file for the
next $JOB command record. If an
operator is present, the $MSG
command provides notification of the
action that should be taken.

#MONITOR OVERLAYED The BATCH program was called to
accept and transmit a file
specification, but found that a user
program had overlaid part or all of
BATCH. BATCH then executes the next

command .

#SPOOL TO FILE BTCHAl Where the "A" may be any character
of the alphabet and the "1" may be
any decimal digit. This message

indicates that BATCH has intercepted
a non-file-structured output file
and routed it to the spool device.
This in not, generally, an error
condition, Spool device file names
are assigned sequentially, beginning
with file BTCHAl. Standard default
extensions may be assigned by some
system programs.

#SYS ERROR A hardware problem prevented BATCH
from performing an I/0 operation.
Program execution halts, and the
system must be restarted by pressing
the START pushbutton.

8.5 RESTRICTIONS UNDER 0S/78 BATCH

0S/78 BATCH is unprotected from user errors. The BATCH program
resides in 1locations 5000 to 7577 in the highest memory field
available. BATCH also uses the following locations in field 0 and the
highest memory field available.

LOCATION USED AS:
07777 Batch processing flag.
££7774-££7777 Internal pointers (ff = field number).

Both the monitor and the Command Decoder (see Appendix D) check the
batch processing flag (bit 1 of 07777) whenever they are entered from
the program level. Any user program that modifies location 07777 may
cause batch processing to be terminated prematurely before the next
line of the BATCH input file is read unless bit 1 is left alone.

BATCH

When the monitor is entered from the program level (JMP to 07600 or
07605), it checks the batch processing flag and reads a new copy of
the BATCH program into memory if batch processing is in progress. The
Command Decoder, however, does NOT perform this operation. Thus, the
Command Decoder must not be called unless the BATCH program is already
in memory.

Therefore, large user programs may be loaded over the BATCH program as
long as they do not modify the 1last four locations in field 3.
However, once a user memory load has overwritten the BATCH program,
execution must remain at the program level until the monitor has been
re-entered and a new copy of the BATCH program is read into memory.
The Command Decoder must not be called after a user program has been
loaded over the BATCH program.

In general, this restriction applies only to loader programs and only
when the loader <calls the Command Decoder more than once while
building a large memory load. Multiple calls to the Command Decoder
may be avoided when loading large programs during batch processing if
the memory load is first built in the monitor environment and then
saved with the SAVE command for subsegquent execution under BATCH.

However, the memory image of any program that overlays the BATCH
program cannot be saved with the SAVE command. After the load
operation but before the save is executed, BATCH will be read back
into memory, destroying part of the user program. Thus, the monitor
SAVE operation will cause part of the BATCH program to be saved
instead of that part of the user program which originally overlaid the
BATCH program.

A BATCH job must never move or delete either BATCH.SV or the BATCH
input file. Also, SYS: should never be SQUISHed while BATCH is
running since this may cause these files to be moved to another region
on the system device.

CHAPTER 9

OCTAL DEBUGGING TECHNIQUE (ODT)

ODT is an interactive system program that makes debugging PALS
programs easy by providing selective execution and memory examination,
modification, and searching facilities.

9.1 ODT FEATURES

ODT features include examination and modification of memory locations,
and the use of instruction breakpoints to return control to ODT. ODT
makes no use of the program interrupt facility and, with few
restrictions, is invisible to a user program.

The breakpoint is one of ODT's most useful features. To accomplish
this, ODT acts as a monitor to the user program and permits you to
insert ODT-controlled halts (breakpoints) in your program. You decide
how far the program is to run and instruct ODT to insert a breakpoint
in the program which, when encountered, transfers control to transfer
back to ODT. ODT immediately preserves 1in 1its internal storage
locations the contents of the AC and L at the breakpoint,. It then
displays the location at which the breakpoint occurred, as well as the

contents of the AC at that point. ODT will allow examination and
modification of any location of the program (or those ODT locations
containing the AC and L). You can move the breakpoint or delete it,

and request that ODT continue running the program. This causes ODT to
restore the AC and L, execute the "trapped" instruction and continue
in the program until the breakpoint 1is again encountered, or the
program is terminated.

9.2 CALLING AND USING ODT

When ODT is being used, a complete assembly 1listing of the program
should be available for the program that is being debugged.

Before calling ODT, place the program that is to be debugged in memory
as the "current program". For example, if it is a memory image file,
type

.GET SYS SAMPLE

.0ODT
If it is a binary file, type

.LOAD SAMPLE

.ODT

OCTAL DEBUGGING TECHNIQUE (ODT)

Little of the memory that is being used is disturbed by the running of
ODT, because the sections of the program which ODT may occupy when in
memory are preserved on the system device and swapped back into memory
as necessary. ODT uses the Job Status Word of the particular program
to determine whether or not swapping should occur. If the program
does not use locations 0-1777 in field 0, less swapping occurs during
use of the breakpoint feature.

If any amount of a program is typed directly into memory (in octal),
the Core Control Block of the program may not reflect the true extent
of the program. If octal additions are made below location 2000 in
field 0, ODT may give erroneous results. This condition is corrected
by changing the Job Status Word, which is stored in location 7746 of
field 0, and which can be examined and changed using ODT as explained
later in this chapter. Location 7745 of field 0 is the 12-bit .
starting address of the program in memory and location 7744 contains
the field designation in the form 62n3, where n 1is the field
designation of the starting address.

When using the breakpoint feature of ODT, keep <certain operating
characteristics in mind:

1. If a breakpoint is inserted at a location which contains an
auto-indexed instruction, the auto-index register is
incremented immediately after the breakpoint. Thus, when
control returns to the user in ODT, the register will have
been increased by one. The breakpoint instruction is
executed properly, but the index register, if examined, will
be one greater than it should.

2. ODT keeps track of the terminal display I/0 flag and restores
the terminal flag when it continues from a breakpoint.

3. The breakpoint feature uses and does not restore locations 4,
5, and 6 in the memory field in which the breakpoint is set.

4, The breakpoint feature of ODT uses the table of user-defined
device names as scratch storage, destroying any device names
that may have been <created and creating garbage entries.
Therefore, it 1is advisable not to use user—-defined device
names in programs being debugged with ODT breakpoints. After
a session with ODT in which breakpoints are used, give a
DEASSIGN command to clear out the user-device name table.

5. Breakpoints must not be set in the monitor, 1in the device
handlers, or between a CIF and the following JMP or JMS
instruction.

6. ODT should not be used to debug programs which use
interrupts.

If an operation is attempted in non-existent memory, ODT ignores the
command and types "?". Thus, attempting to examine locations in field
4 and above, ODT responds with ?.

Typing CTRL/C returns control to the monitor. You can then save your
program on any file-structured device with the SAVE command. If you
want to do this, do not issue any other commands before the SAVE
command.

OCTAL DEBUGGING TECHNIQUE (ODT)

9.3 ODT COMMANDS

9.3.1 Special Characters

These characters will be illustrated wusing the SAMPLE.PA program
created in Chapter 4.

9.3.1.1 sSlash (/) - Open This Location - The location examination
character (/) causes the location addressed by the octal number
preceding the slash to be opened for modification and its contents are
displayed 1in octal. The open location can then be modified by typing
the desired octal number and closing the location by using the RETURN
key. Any octal number from 1 to 6 digits in length is legal input for
addresses and from 1 to 4 digits for data. If the number is not octal
or 1if the DELETE key is typed, a question mark (?) is displayed and
the number is ignored. If more than the maximum number of digits are
entered, ODT accepts only the last 6 entered (for addresses) or the
last 4 (for data). Typing / with no preceding argument reopens the
most recently opened location. For example,

200 /7300 (Cuer)
000201/6046
000201 /6046 6048 7
000201 /6046 2345
/ 23R4

The above example modifies locations in field O. If locations are
examined in other fields, specify the location as ffnnnn/ where ff is
the field (0-37) and nnnn is the location in octal.

9.3.1.2 RETURN - Close Location - If you have typed a valid octal
number after the content of a location is displayed by ODT, pressing
the RETURN key causes that number to replace the original contents of
the opened 1location and the location to be closed. If you type
nothing, the location is closed but the contents of the 1location are
not changed. For example,

201 746046 (D) location 201 is unchanged.
000201 /6046 2345 location 201 is changed to contain 2345.
/2345 6046 place 6046 back in location 201.

Typing another command will also close an opened register.

9.3.1.3 LINE FEED - Close Location, Open Next Location - The LINE
FEED Kkey has the same effect as the RETURN key, but, in addition, the

next seqguential location is opened and its contents displayed. For
example,
200 /7300 (5) location 200 is closed unchanged and 201

is opened. Type change.

000201 /23446 6046 201 is closed (containing 6046) and 202
is opened.

000202 71216

OCTAL DEBUGGING TECHNIQUE (ODT)

9.3.1.4 Semicolon(;) - Change Location, Close It and Open Next - The
semicolon 1inserts the octal value (if any) that follows it into the
currently opened location, closes that location and opens the next
seguential location for modification. For example,

20271216 123455670
00020271234
O00203/5670

A series of octal values can be deposited seguentially using the
semicolon character. Typing multiple semicolons skips a memory
location for each semicolon typed and will accept an octal value at
the location skipped to. For example,

20271234 12165770000
Q00202/1216
000203/54670
000204/6041
000205 /0000

9.3.1.5 nnnn+ and nnnn- - Open Location Relative to Another - The
nnnn+ and nnnn- commands open the current location plus or minus an
offset value for modification and prints the content of that location.
If n is omitted, it is assumed to be 1., For example,

2OOS7300 3¢
0QO203/3670 3217

or

207/6046 2+
QOOROE/0000 5204

9.3.1.6 Circumflex(”) - Close Location, Take Contents as Memory
Reference Instruction and Open Effective Address - The circumflex will
close an open location just as will the RETURN key. Further, it will
interpret the contents of the 1location as a memory reference
instruction, open the location referenced and display 1its contents.
For example,

20271216 7 1216 symbolically is "TAD, this page,
relative location 16," so ODT opens
location 216.

QO0R216 /0220

The indirect bit is used in determining the effective address.

9.3.1.7 Underline(_) - Close Location, Open Indirectly - The back
arrow will close the currently open location and then interpret its
contents as the address of the location (in the same field) whose
contents it is to print and open for modification. For example,

OCTAL DEBUGGING TECHNIQUE (ODT)

9.3.2 1Illegal Characters

Any character that is neither a valid control character nor an octal
digit causes the «current 1line to be ignored and a question mark

printed. For example,

2:?
ODT opens no location.

2072

206 /1617 67K? ODT ignores a partial number and closes
location 206.

/1617

9.3.3 Control Commands

9.3.3.1 f£fnnnnG - Transfer Control to Program at Location nnnn of
Field ff - Clear the AC and L then go to the location ffnnnn. The
breakpoint, if any, will be inserted. Typing G alone will <cause a
start at location 00000.

9.3.3.2 ffnnnnB - Set Breakpoint at Location nnnn of Field
ff - Instructs ODT to establish a breakpoint at the location ffnnnn.
A breakpoint may be changed to another location whenever ODT 1is in
control, by simply typing ffnnnnB where f£fnnnn is the new location.
Only one breakpoint may be in effect at a time; therefore, requesting
a new breakpoint removes any previously existing one. A breakpoint
may be established at location 000000.

The breakpoint {B) command does not make the actual exchange of ODT
instruction for user instruction, it only sets up the mechanism for
doing so. The actual exchange occurs when a G or a C command is
executed.

wWhen, during execution, the program encounters the location containing
the breakpoint, control passes immediately to ODT (via locations
0004-0006 of the instruction field). The contents of the accumulator
and contents of the link at the point of the interruption are saved in
special locations accessible to ODT. The user instruction that the
breakpoint was replacing is restored, before the address of the trap
and the content of the AC are displayed. The restored instruction has
not been executed at this time, and will not be executed until the
"continue from breakpoint" command is given. Any location used,
including those containing the stored accumulator and Link, can now be
modified. The breakpoint can also be moved or removed at this time.

9.3.3.3 B - Remove Breakpoint - Typing B alone removes any previously
established breakpoint and restores the actual contents of the
breakpoint location. B should be typed before saving the current
program if a breakpoint was set. Typing B where no breakpoint is set
has no effect.

OCTAL DEBUGGING TECHNIQUE (ODT)

NOTE

If a breakpoint set by ODT 1is not
encountered while ODT is running the
object (user's) program, the instruction
which causes the break to occur will not
be removed from the user's program.

9.3.3.4 A - Open (AC) Location - When the breakpoint is encountered
the contents of the accumulator and the contents of the link are saved
for later restoration. Typing A after having encountered a breakpoint
opens for modification the 1location in which the AC was saved and
prints its contents. This location may now be modified in the normal
manner (see Slash) and the modification will be restored to the
accumulator when the C or G command is given (contains either 0000 or
0001).

9.3.3.5 L - Open C(L) Location - Typing L opens the 1link storage
location for modification and prints its contents. The link location
may now be modified as usual (see Slash) and that modification will be
restored to the Link when the C or G command is given.

9.3.3.6 C - Continue From a Breakpoint - Typing C, after having
encountered a breakpoint, causes ODT to restore the contents of the
accumulator, link, and breakpoint location, and transfer control to
the breakpoint location. The user program then runs until the
breakpoint is again encountered or the program halts or exits to the
monitor.

9.3.3.7 nnnnC - Continue nnnn+l Times from Breakpoint - A breakpoint
may be established at some location within a loop of a program. Since
loops often run to many iterations, some means must be available to
prevent a break from occurring each time the break location is
encountered. This is the function of nnnnC (where nnnn is an octal
number) . The "continue" operation is done nnnn+l times. If nnnn is
omitted, 0 is assumed. Thus, 2C will allow a loop 1in which the
breakpoint is embedded to execute three times.

Given the following program ADDl, which increases the wvalue of the
accumulator by increments of 1, the use of the Breakpoint and Continue
commands may be illustrated.

X200

0200 *200
000200 7300 Cta CLL
000201 1206 Ay TAIl ONE
000202 2207 Ry ISZ CONT
000203 G202 JMF R
000204 G201 JMF A
000205 7402 HLT
0002068 0001 ONE » 1
000207 0000 CNT 0

OCTAL DEBUGGING TECHNIQUE (ODT)

Assemble the program and call ODT by typing the following:
Jal annL/i.

LonT

000201k
0002006

000201 (050000
i

000201 (050001
C

Q00201 (030002
40

Q00201 (070006

ODT has been loaded and started. A breakpoint is inserted at location
0201 and execution stops here showing the accumulator initially set to
0000. The use of the Continue command (C) executes the program until
the breakpoint 1is again encountered (after one complete loop) and
shows the accumulator to contain a value of 0001. Again execution
continues, incrementing the AC to 0002. At this point, the command 4C
is used, allowing execution of the loop to continue five more times
before stopping at the breakpoint. The contents of the accumulator
have now been incremented to 0006.

9.3.3.8 D - Open Data Field - Typing D opens for modification the
internal ODT location containing the data field which was in effect at
the last breakpoint. Contents of D always appears as a value between
0 and 37.

9.3.3.9 F =~ Open Current Field - Typing F opens for modification the
internal ODT 1location containing the field used by ODT in the W
(search) command, in the and ~ (indirect addressing) commands, or in
the last breakpoint (depending upon which was used most recently). A
value between 0 and 37.

9.3.3.10 M - Open Search Mask - Typing M causes ODT to open for
modification the internal ODT location containing the current value of
the search mask and print its contents. Initially the mask is set to
7777. It may be changed by opening the mask location and typing the
desired value after the value printed by ODT, then closing the
location.

9.3.3.11 M (r) - Open Lower Search Limit - The word immediately
following the mask storage location contains the location at which the
search is to begin. Pressing the LINE FEED key to close the mask
location <causes the lower search limit to be opened for modification
and its contents displayed. 1Initially the lower search limit 1is set
to 0000. It may be changed by typing the desired lower limit after
that printed by ODT, then closing the location.

OCTAL DEBUGGING TECHNIQUE (ODT)

9.3.3.12 M (OC®) - Open Upper Search Limit - The next sequential
word after the lower search limit contains the location with which the
search is to terminate. Pressing the LINE FEED key to close the lower
search limit causes the upper search 1limit to be opened for
modification and its contents printed. 1Initially, the wupper search
limit {is 7577. It may be changed by typing the desired upper search
limit after the one printed by ODT, then closing the location with the
RETURN key.

9.3.3.13 nnnnW - Word Search - The command nnnnW (where nnnn 1is an
octal number) will cause ODT to conduct a search of a defined section
of memory, using the mask and the lower and upper limits that the user
has specified, as indicated above. The word searching operation
determines if a given quantity is present in any of the locations of
that defined section of memory. A search never alters the contents of
any location.

The search is conducted as follows. ODT masks each 1location within
the limits specified and compares the result to the guantity for which
it is searching. If the two gquantities are identical, the address and
the actual unmasked contents of the matching location are displayed,
and the search continues until the upper limit is reached. The search
includes the upper limit.

For example, locations 3000 through 3777 are to be searched for all
ISZ 1instructions, regardless of what location they refer to (that is,
search for all locations beginning with an octal 2, which 1is the
operation code for an ISZ instruction).

MA7P?7 7000w Change the mask to 7000; open lower search
limit.

000041/5273 3000(r) Change the lower limit to 3000; open upper
limit.

000042/1335 3777(xr) Change the upper limit to 3777; <close
location.

2000uW Initiate the search for ISZ instructions.

0000005 /2331 There are four 1ISZ instructions 1in this

0000006 /2324 section of memory. Note that these might also

0000011 /2222 be data values that happen to start with an

0000033 /2575 octal 2.

9.4 ERRORS

The only legal inputs are command chardcters and octal digits. Any
other <character will cause the character or line to be ignored and a
guestion mark to be printed by ODT. When G is wused, it must be
preceded by an address to which control will be transferred. If G is
not preceded by an address, a question mark will not be displayed, but
control will be transferred to location 0.

9.5 PROGRAMMING NOTES

ODT will not turn on the program interrupt. It does, however, turn
off the interrupt when a breakpoint is encountered, to prevent
spurious interrupts.

OCTAL DEBUGGING TECHNIQUE (ODT)

Breakpoints are fully invisible to "open location" commands; however,
breakpoints must not be placed in locations which the user program
will modify in the course of -execution or the breakpoint may be
destroyed. Caution should be used in placing a breakpoint between a
call to USR function code 10 (USRIN) and the following call to USR
function code 11 (USROUT).

If a trap set by ODT 1is not encountered by your program, the
breakpoint instruction will not be removed. If the SAVE command is to

be used, the B command must be used to remove the breakpoint before
typing CTRL/C. ODT should not be run under BATCH,

9.6 ODT COMMAND SUMMARY
Table 9-1 presents a brief summary of the ODT commands.

Table 9-1
ODT Command Summary

Command Meaning
ffnnnn/ Opens location designated by the octal
number ffnnnn, where ff represents the
memory field (0-37). ODT displays the

contents of the location, a space, and waits
for the user to enter a new value for that
location or close the location. If you omit
ff, field 0 is assumed.

/ Reopens the latest opened location.

nnnn; or nnnn Deposits nnnn in the currently opened
location, <close that location and open the
next location in sequence for modification.
The semicolon (;) lets you deposit a series
of octal values in sequential locations. To
skip 1locations in the sequence, type a
semicolon for each location that you want to

skip.
RETURN key Closes the currently open location, if any.
LINE FEED key Closes the currently open location, opens
the next sequential location for

modification, and displays the contents of
that location.

nnnn+ Opens the current 1location plus n and
displays the contents of that location.

nnnn- Opens the current location minus n and
displays its contents.

(continued on next page)

OCTAL DEBUGGING TECHNIQUE (ODT)

Table 9-1 (Cont.)
ODT Command Summary

Command

Meaning

“(Circumfiex)

_(Underline)

ffnnnnG

ffnnnnB

nnnnC

Closes the current location, reads its
contents as a memory-reference instruction
and opens the location it points to,
displaying its contents.

e ODT makes no distinction between
instruction op-codes when you use
this command. It treats all
op-codes as memory-reference
instructions.

& Take care when you use this command
with indirectly referenced
auto-index registers. If you use
the command in this way, the
contents of the auto-index register
is incremented by one. Check to see
that the register contains the
proper value before proceeding.

Closes the current 1location, takes the
contents of the current location as a 12-bit
address and opens that address for
modification, displaying its contents.

Transfers control of the program to location
ffnnnn, where ff represents the memory
field.

Establishes a breakpoint at\location ffnnnn,
where ff represents the mé;bgy field. Only
one breakpoint is allowed at any given time.

Removes the breakpoint, if any.

Opens for modification the location in which
the contents of the accumulator were stored
when the breakpoint was encountered.

Opens for modification the location in which
the contents of the link were stored when
the breakpoint was encountered.

Continues from a breakpoint.

Continues from a breakpoint nnnn+l times
before interrupting the wuser's program at
the breakpoint location.

Opens the search mask, initially set to
7777, which can be changed by typing a new
value.

(continued on next page)

9-10

OCTAL DEBUGGING TECHNIQUE (ODT)

Table 9-1 (Cont.)
ODT Command Summary

Command Meaning
M Opens the lower search limit. Type 1in the
location (four octal digits) where the

search will begin,

M Opens the upper search limit. Type 1in the
location (four octal digits) where the
search will terminate.

nnnnW Searches the portion of memory as defined by
the wupper and lower limits for the octal
value nnnn. Search can only be done on a
single memory field at a time. See the F
command.

D Opens for modification the word containing
the data field (0-37) that was in effect at
the last breakpoint. To change the field,
enter a field number in the range 0-37.

F Opens for modification the word containing
the field (0-37) wused by ODT in the W
(search) command, in the = and (indirect
addressing) commands, or in the last

breakpoint (depending upon which was wused
most recently). To change the field, enter
a field number in the range 0-37.

CTRL/O Interrupts a long search output and waits
for a new ODT command.

DELETE key Cancels previous number typed, up to the
last non-numeric character entered. oDT

responds with a question mark, after’ which
you enter the correct location value.

9-11

APPENDIX A

ASCII CHARACTER SET

The following table shows the standard ASCII
marked with an asterisk (*) have no

0s/78 software.

Control

significance to 0S/78.

codes

7-Bit 8-Bit 6-Bit Character/
Decimal Octal Octal Control Code
000 200 NUL
001 201 SOH *
002 202 STX *
003 203 ETX
004 204 EOT *
005 205 ENQ *
006 206 ACK *
007 207 BEL
008 210 Bs *
009 211 HT
010 212 LF
011 213 VT
012 214 FF
013 215 CR
014 216 SO *
015 217 SI
016 220 DLE *
017 221 DC1
018 222 DC2 *
019 223 DC3
020 224 DC4 *
021 225 NAK
022 226 SYN *
023 227 ETB *
024 230 CAN *
025 231 EM *
026 232 SUB
027 233 ESC
028 234 FS *
029 235 GsS *
030 236 RS *
031 237 gs *
032 240 40 SP

character set wused by

Remarks
Fill character - ignored on
input
CTRL/C -~ Return control to
monitor
CTRL/G - Sound audible signal
CTRL/I ~ Horizontal tab
CTRL/J ~ LINE FEED (new line)
CTRL/K ~ TAB (vertical)
CTRL/L ~ Form feed
Cursor or carriage RETURN
(CTRL/M)
CTRL/0O - Abort current
terminal output
CTRL/Q - Disable terminal
output
CTRL/S - Enable terminal
output
CTRL/U - Delete current input
line
CTRL/Z - End of file
ALTMODE
Space

ASCII CHARACTER SET

7-Bit 8-Bit 6-Bit Character/

Decimal Octal Octal Control Code Remarks

033 241 41 ! Exclamation point

034 242 42 " Quotation mark

035 243 43 #

036 244 44 S Dollar sign

037 245 45 % Percent sign

038 246 46 & Ampersand

039 247 47 ! Apostrophe

040 250 50 (Left parenthesis

041 251 51) Right parenthesis

042 252 52 * Asterisk

043 253 53 + Plus sign

044 254 54 ’ Comma

045 255 55 - Hyphen or minus sign

046 256 56 . Period

047 257 57 / Slash (right)

048 260 60 0

049 261 61 1

050 262 62 2

051 263 63 3

052 264 64 4

053 265 65 5

054 266 66 6

055 267 67 7

056 270 70 8

057 271 71 9

058 272 72 : Colon

059 273 73 : Semicolon

060 274 74 < Left angle bracket or less
than sign

061 275 75 = Equals sign

062 276 76 > Right angle bracket or greater
than sign

063 277 77 ? Question mark

064 300 00 @ At sign (null in 6-bit)

065 301 01 A

066 302 02 B

067 303 03 C

068 304 04 D

069 305 05 E

070 306 06 F

071 307 07 G

072 310 10 H

073 311 11 I

074 312 12 J

075 313 13 K

076 314 14 L

077 315 15 M

078 316 16 N

079 317 17 0

080 320 20 P

081 321 21 Q

082 322 22 R

083 323 23 s

084 324 24 T

085 325 25 U

086 326 26 \Y

087 327 27 W

088 330 30 X

089 331 31 Y

090 332 32 y/

091 333 33 [Left square bracket

ASCII CHARACTER SET

7-Bit 8-Bit 6-~Bit Character/
Decimal Octal Octal Control Code
092 334 34 \
093 335 35]
094 336 36 -
095 337 37 -—
096 340 40

097 341 41 a
098 342 42 b
099 343 43 c
100 344 44 d
101 345 45 e
102 346 46 f
103 347 47 g
104 350 50 h
105 351 51 i
106 352 52 3
107 353 53 k
108 354 54 1
109 355 55 m
110 356 56 n
111 357 57 o
112 360" 60 p
113 361 61 q
114 362 62 r
115 363 63 s
116 364 64 t
117 365 65 u
118 366 66 v
119 367 67 w
120 370 70 X
121 371 71 y
122 372 72 z
123 373 73 {
124 374 74 !
125 375 75 }
126 376 76 ~
127 377 77 DEL

Remarks
Backslash
Right square bracket
Circumflex

Grave accent

Tilde
RUBOUT

APPENDIX B

USEFUL MATHEMATICAL SUBROUTINES

Since the DECstation hardware does not contain built-in multiplication
or division instructions, you must incorporate these functions
explicitly in your assembly language programs. The subroutines listed
in this appendix illustrate efficient ways to do these calculations.
These routines perform single-precision, unsigned calculations. this
means that all numbers are positive values represented by 12-bit words
in the range from 0 to 7777 (octal), inclusive. Another important
point is that single-precision, unsigned numbers may be regarded as
integers or as fractions, depending on whether the binary point
(analogous to the decimal point 1in the decimal number system) is
assumed to be located to the right of the right-most bit (in the case
of integers) or to the left of the left-most bit (in the case of
fractions).

B.1 UNSIGNED INTEGER MULTIPLICATION SUBROUTINE

/CALCULATES AXBy WHERE A AND B ARE UNSIGNED INTEGERS. IF AXB:=7777
/6 JMP IS MADE TO LOCATION "ERROR".

ZCALLING SEQUENCES

/ SME ML
/ A
/ E

/CDNTHOL.RESUMES HERE WITH (I.E.s AT THE THIRD LOCATION AFTER THE
/JMS INSTRUCTION) WITH ACCUMULATORC(AC)=A%XR., A AND B ARE FRESERVED.
ZLINK=0 ON RETURN.

/NOTES! USE REFETITIVE ADDITION INSTEADR OF THIS SUBRROUTINE
/IF EITHER ARGUMENT WILL ALWAYS RE LESS THAN ARQUT S0 (OCTAL).

/NOTE! STARRED INSTRUCTIONS MAY BE REMOVED IF THEIR EFFECTS
ZARE. NOT NEEDED.

ZNOTE ! REMOVING ALl OVERFLOW TEST INSTRUCTIONS GIVES A SUBROUTINE
ZWHICH TRUNCATES THE RESULTy RETURNING AXR MOD 10000,

MLy 1]
CLA /% IGNORE AC
TAD I ML /GET MULTIFLIER
182 ML
nCA ML2
TAD KM14
GCA COUNT

MLl Cl.L. RAL /ZACCUMULATE LSRC(FRODUCT)
nca FROD
SZL. /% OVERFLOW TEST
JMP ERROR /X

USEFUL MATHEMATICAL SUBROUTINES

TAaD ML2 /GET NEXT RIT OF MULTIFLIER
RAL
nca ML2
SZL /IF SETy AN MULTIFLICAND INTO
/THE FARTIAL FRODUCT
TAD I ML /ZMULTIFLICAND
CLL /7% OVERFLOW TEST
Tan FPROD /FARTIAL PRODUCT
ISZ COUNT /L0O0F FOR 12 RITS
JME ML
ISZ ML
SNL /X OQVERFLOW TEST
SHMF T ML /RETURN
CLA g
JMFP ERROR /X
/VARTARLES
ML.2y 0 /MULTIFLIER
FRODy 0 /FPARTIAL FRODUCT
COUNT 0
KM14y -14

UNSIGNED FRACTIONAL MULTIPLICATION SUBROUTINE
/CALCULATES AXR/10000s WHERE A& AND B ARE UNSIGNED INTEGERS.

ZCALLING SEQUENCE:

/ JME ML
/ A
/ E

/CONTROL RESUMES HERE WITH AC=AXE/10000.
/A AND B ARE FRESERVED,

/NOTES: THERE ARE NO ERROR CONDITIONS.

ML » 0
CL.A /% MAY EE REMOVED IF AC=0 ON ENTRY
TAl I ML /GET MULTIFLIER
I8Z ML
nca ML2
TAD KM14
ML1s nea FPROD
TAD ML2 ZGET NEXT BIT OF MULTIPLIER
Cl.l. RAR
nea M2
571 /IF SETy ADD MULTIFLICAND INTO
TALI I ML
(.
Tan FROD /THE PARTIAL FRODUCT
RAR /KEEF MSE (FROD) ONLY
I8Z COUNT /LOOF FOR 12 RITS
SHME ML
I6Z Ml
JMP T ML . /RETURN

/VARTARBLES

ML2y 0 /MULTIPLIER
FROLy 0 /PARTIAL FRODUCT
COUNT» 0

KM14y ~14

USEFUL MATHEMATICAL SUBROUTINES

UNSIGNED INTEGER DIVISION SUBROUTINE

ZCALCULATES A/Ey WHERE A& AND B ARE UNSIGNED INTEGERS SUCH THAT
ZBOTS NOT E.0. IF EB=0 THEN A JMF I8 MADE TO LOC "ERROR".
ZOUOTIENT IS RETURNED IN ACy REMAINDER IS AVAILARLE IN
ZLOCATION "REMAIN".

ZCALLLING SEQUENCES

7 SME TV

7 A

/ |5

AUONTROL RESUMES HERE (I.E.» AT THE THIRD LOCATION AFTER THE
MG INSTRUCTIONY WITH AC=QUOTIENT(A/EB)y REMAIN=REMAINDER(A/E).
8 ANDN B OARE PRESERVED. LINK=0G ON RETURN.

/NOTE S STARRED INSTRUCTIONS MAY RE REMOVED IF THEIR EFFECTS
ZARE NOT NEEDED.

HAVE 0
ClLA /% IGNORE A
TAD T 1V /GET ARGS
8z nv
nea ba /OIVIDEND
TAan I nv
ISZ Dy
SNA /% B o= O TESGT
JHME ERROR /X
CLL CIa /SUBRTRACTION WILL RE DONE BY ADDING
nea DR /=NIVISOR
nea REMAIN ZCLEAR MSE (DIVIDENDD
CLL Cla CMA RAL /SET INITIAL VALUE OF QUOTIENT TO 7776. AS
JOUOTIENT IS SHIFTED LEFTy THE O RBIT WILL SHIF
ZLEFTy SERVING AS A FLAG TO STOF THE DIVISION
ZLOOF AFTER ALL 12 RBITS ARE COMFUTED.
DVl /MATIN LOOFY COMPUTE NEXT RIT OF FARTIAL
nea QuoT JAUOTIENT INITIALIZE OR STORE FARTIAL
TALL 1A ZRUOTIENT SHIFT REMAINDER LEFT TO NEXT RIT
CLl RAL
nea na
TA REMAIN JONE RIT INTO MSE(DIVIDENID)
RAL
nCA REMAIN
Tall REMAIN ZTRIAL SUBTRACTION
TAD DR ZSURTRACT DIVISOR FROM DIVIDEND
571 ZGTORE BACK REMAINDER ONLY IF .GE. O
nea REMAIN
CLA ZLINK=1 IFF SURTRACT SUCCEEDETD
TAal QUOT
RAL. ZROTATE LINK INTO FARTIAL QUOTIENT
VAN 00 LOOF ONCE FOR EACH RIT
JHME DV
JSMEP D DV /RETURN
AVARTARLES

1Ay 0 ZLSBCOIVIDENID

REMATNy 0 /MSBCDIVIDEND) » REMAINDER
DRy 0 /=DIVISOR

RUOT» o /PARTIAL RUOTIENT

USEFUL MATHEMATICAL SUBROUTINES

UNSIGNED FRACTIONAL DIVISION SUBROUTINE

/CALCULATES 10000%A/Ey WHERE A AND B ARE UNSIGNED INTEGERS SUCH THAT
/B WNE. O AND A<E. IF EB=0 OR A .GE. B THEN A JMF IS MADE TO LOCATION "ER

/CALLING SEQUENCE:

/! JME DV
/ A
/ B

ZCONTROL RESUMES HERE (I.E.y AT THE THIRD LOCATION AFTER THE
/JMS INSTRUCTION) WITH AC=QUOTIENT (10000%A/E).
/A ANII B ARE PRESERVED., LINK=0 ON RETURN.

ANOTE? STARRED INSTRUCTIONS MAY BE REMOVED IF THEIR EFFECTS
/ARE NOT NEEDED.

nvy 0
CLA /% IGNORE AC
TAD I v /GET ARGS
ISZ vV
nCA Iia /OIVIDEND
TAD T W
1872 v
SNA /%X B = O TEST
JMF ERROR /X
CLL CIn ZSURBTRACTION WILL BE OONE EY ADDING
ncA DR /=NIVISOR
TAD DA /7% QUERFLOW TEST
Tah IR /X
8ZL. CLA Vg
JMP ERROR /%

CLL CLA CMA RAL /SET INITIAL VALUE OF QUOTIENT TO 7776. AS QU
/IS SHIFTEDR LEFTy THE O RIT WILL SHIFT LEFT»
/SERVING AS A& FLAG TO STOF THE DIVISION LOOF
ZAFTER ALL 12 BITS ARE COMPUTED.

vy /MAIN LOOF: COMFUTE NEXT BIT OF FARTIAL
nca quor ZAUOTIENT INITIALIZE OR STORE FARTIAL
TAD DA JRUOTIENT SHIFT REMAINDER LEFT TO NEXT BIT
CL.L RAL
necA na
Tan DA /TRIAL SURTRACTION
TADl DR JSURTRACT DIVISOR FROM DIVIDEND
SZL /STORE RACK REMAINDER ONLY IF .GE. 0
nca na
CLA ZLINK=1 IFF SURTRACT SUCCEEDED
Tah QUOT
RaAL. /ROTATE LINK INTD FARTIAL QUOTIENT
SZL. /N0 LOOF ONCE FOR EACH RIT
JMP DVl
JMF T DV /RETURN

/VARTABRLES

DAY 0 /DIVIDEND (REMAINDER)
DRy 0 /=-NIVISOR
QUOT » 0 /PARTIAL QUOTIENT

APPENDIX C

USER SERVICE ROUTINE

The User Service Routine, or USR, is a collection of subroutines that
perform the operations of opening and closing files, loading device
handlers, program chaining, and calling the Command Decoder. The USR
provides these functions not only for the system itself but for any
programs running under the 0S/78 system. A summary of USR functions
is given in Table C-1.

USR is used only by PAL8 programs. Users who code in BASIC or FORTRAN
IV can skip this appendix and Appendix F, "Using Device Handlers".

The USR resides on the system device and, when called, is swapped into
memory. Typically, a series of calls is involved in any I/O operation
and it is inefficient to repeat the swap every time. Therefore, the
calling program can lock USR in memory in the first 2000 (octal) words
of field 1, through the wuse of USRIN function. To perform any
operations on files, it 1is necessary to have the relevant device
handlers available.

This is accomplished with the FETCH function which loads a device
handler into memory. Since the handlers reside in the calling
program, space must be reserved for them. Special characteristics of
0S/78 device handlers and their use are described in Appendix F.

An attempt to call the USR with a code greater than 13 (octal) will
cause a Monitor Error 4 message to be printed and the program to be
aborted.

C.1 CALLING THE USR

Performing any USR function is done by issuing a JMS instruction
followed by the proper arguments. Calls to the USR take a
standardized calling sequence. This standard call should be studied
before progressing to the operation of the various USR functions.

€C.1.1 Standard USR Call

In the remainder of this chapter, the following calling sequence is
referenced:

TAD VAL The contents of the AC is applicable in some
cases only.

CDF N Where N is the value of the current program
field multiplied by 10 (octal).

CIF 10

JMS I (USR)

FUNCTION

ARG(1l), ARG(2),

ARG (3)

error return

normal return

USER SERVICE ROUTINE

The instruction field must be set to 1.

Where USR 1is either 7700 or 0200, (see
Section C.1.2).

This word contains an integer from 1 to 13
(octal) indicating which USR operation is to
be performed as described in the USR
Functions Summary Table (Table C-1).

The number and meaning of these argument
words varies with the particular USR function
to be performed.

When applicable, this is the return address
for any errors.

The operation was successful. The AC is

cleared and the data field is set to current
field.

Table C-1

Summary of USR Functions

Function
Code Name

Operation

1 FETCH

2 LOOKUP

3 ENTER

4 CLOSE

5 DECODE

6 CHAIN

7 ERROR

10 USRIN

11 USROUT

Loads a device handler into memory.
Return the entry address of the handler.

Searches the file directory on any device
to locate a specified permanent file.

Creates and opens for output a tentative
file on a specified device.

Closes the currently open tentative file
on the specified device, making it a
permanent file. Also, any previous
permanent file with the same file name
and extension is deleted.

Calls the Command Decoder. The function
of the Command Decoder is described in
Appendix D.

Loads a specified memory image file from
the system device and starts it.

Prints an error message of the form USER
ERROR n AT LOCATION xxXXxX.

Loads the USR into memory. Subsequent
calls to the USR are by an effective JMS
to location 10200.

Dismisses the USR from memory and
restores the previous contents of
locations 10000 to 11777.

(continued on next page)

USER SERVICE ROUTINE

Table C-1 (Cont.)
Summary of USR Functions

Function
Code Name Operation

12 INQUIRE Ascertains whether a given device exists
and, 1f so, whether its handler is in
memory.

13 RESET Resets system tables to their initial
cleared state.

14 - 17 Not currently used, these request numbers
are reserved for future use.

This calling sequence can change from function to function. For

example, some functions take no value in the AC and others have fewer
or greater numbers of arguments. However, this format 1is generally
followed.

The value of the data field preceding the JMS to the USR is
exceedingly important. The data field MUST be set to the current
field, and the instruction field MUST be set to 1. Note that a CDF is
not explicitly required if the data field is already correct. When a
doubt exists as to the data field setting, an explicit CDF should be
executed.

Three other restrictions apply to all USR calls, as follows:

1. The USR can never be called from any address between 10000
and 11777. Attempting to do so results in the:

MONITOR ERROR 4 AT xxxxx (ILLEGAL USR CALL)
message and termination of program execution. The value of

xXxxxX 1s the address of the calling sequence (in all such
MONITOR ERROR messages).

2. Several USR calls take address pointers as arguments. These
pointers always refer to data in the same memory field as the
call.

3. When calling the USR from field 1, these address pointers
must never refer to data that 1lies in the area 10000 to
11777.

C.1.2 Direct and Indirect Sequence

A user program can call the USR in two ways. First, by performing a
JMS to location 17700. In this case, locations 10000 to 11777 are
saved on a special reserved area on the system device, and the USR 1is
then loaded into 10000 to 11777. When the USR operation is completed,
locations 10000 to 11777 are restored to their previous values.

USER SERVICE ROUTINE

NOTE

By setting bit 11 of the Job Status Word
to a 1, you can avoid this saving and
restoring of memory for programs that do
not wuse locations 0000 to 1777 in field
1.

Alternatively, a program can keep the USR permanently resident in
memory at locations 10000 to 11777 by using the USRIN function (see
Section C.2.8). Once the USR has been brought into memory, a USR call
is made by performing a JMS to location 10200. This is the most
efficient way of calling the USR. When USR operations have been
completed, the program restores locations 10000 to 11777 to their
original state by executing the USROUT function, if necessary (see
Section C.2.9).

C.2 USR FUNCTIONS

C.2.1 FETCH Device Handler (Function Code = 1)
Device handlers must be loaded into memory to make them available to
the USR and wuser program for I/O operations on that device. Before
performing a LOOKUP, ENTER, or CLOSE function on any device, the
handler for that device must be loaded by FETCH.
The FETCH function takes two forms:

1. Load a device handler corresponding to a given device name.

First, the following is an example of loading a handler by
name from memory field O0:

ClLA /7AC MUST RE CLEAR

COF © ZDF = CURRENT FIELD

CIF 10 JIF =1

JMS T (USSR

1 /FUNCTION CODE = 1

DEVICE RXA1 /GENERATES TWO WORDS: ARG(1)
ZAND ARG (2)

6001 /ARG (3)

JMF ERR /ERROR RETURN

. /NORMAL. RETURN

*

*

ARG(l) and ARG(2) contain the device name in standard format.
If the normal return 1is taken, ARG(2) is changed to the
device number corresponding to the device loaded. ARG (3)
contains the following information:

Bits 0 to 4 contain the page number into which the
handler 1is to be loaded (handlers are always loaded and
used in field 0).

USER SERVICE ROUTINE

Bit 11 is 0 if the user program can only accept
handler for this FETCH operation.

Bit 11 is 1 if there is room for a 2-page handle

a l-page

r.

Notice that in the example above, the handler for RXAl is to

be loaded into locations 6000 to 6377. After
return, ARG(3) is changed to contain the entry point
handler.

2. Load a device handler corresponding to a given device

A different set of arguments 1is wused to fetch a

handler by number. The following is an example of th
TALl VAL /AC I8 NOT ZERO
CIF O Z0F = CURRENT FIELD
CIF 10 JIF = 1

JMG T CUSR)
1 ZFUNCTION CODE = 1
6001 ZARGL)

JME ERR FERROR RETURN

. /NORMAL. RETURN

+

On entry to the USR, the AC contains the device nu
bits 8 to 11 (bits 0 to 7 are ignored). The fo
ARG(l) is the same as that for ARG(3) in the
example. Following a normal return ARG(l) is repla
the entry point of the handler.

The conditions that can cause an error return to occur in bot
are as follows:

1. There is no device corresponding to the given device
device number, or

2. An attempt was made to load a two-page handler into o
If this 1is an attempt to 1load the handler by n
contents of ARG(2) have been changed already to the
device number.

In addition, one of the following Monitor errors can be
followed by a return to the Monitor:

Error Message Meaning
MONITOR ERROR 4 AT XXXXX Results if bits 8 to 11 of
(ILLEGAL USR CALL) are zero (and bits 0 to

non-zero).
MONITOR ERROR 5 AT XxxXXxXX Results if a read error
{I/O ERROR ON SYS) while loading the device ha

The FETCH function checks to see if the handler is in memory,
it 1is not, then the handler and all co-resident handlers are

a normal
of the
number.

device
is form:

mber in
rmat for
previous
ced with

h cases

name or

ne page.
ame, the
internal

printed,

the AC
7 are

occurs
ndler.

and if
loaded.

While the FETCH operation is essentially a simple one, the following

points should be noted:

1. Device handlers are always loaded into memory field 0

2. The entry point that is returned may not be on the page

desired. This would happen if the handler were
resident.

already

USER SERVICE ROUTINE

3. Never attempt to load a handler into page 37 or into page 0.
Never lcad a two page handler into page 36 since this will
corrupt the 0S/78 resident monitor.

For more information on using device handlers, see Appendix F.

NOTE
Two OFr more device handlers are
"co-resident"” when they are both

included in the same memory pages, for
example, RXAO and RXAl.

C.2.2 LOOKUP Permanent File (Function Code = 2)

This request locates a permanent file entry on a given device, if one
exists. An example of a typical LOOKUP would be:

TAD VAL /1060 DEVICE NUMRER

CnF o /OF = CURRENT FIELD

CIF 10 ZIF = 1

JMS T (USR)

2 ZFUNCTION CODE = 2

NAME /ZARGCL) s POINTS TO FILE NAME
0 /ARGC2)

JMF ERR JERROR RETURN

s /NORMAL. RETURN

NAME » FILENAME FROG.FA

This request looks up a permanent file with the name PROG.PA. The
device number on which the lookup is to be performed must be in AC
bits 8 to 11 when the call to USR is made. ARG(l) must contain a
pointer to the file name. Note that the file name block must be in
the same memory field as the call, and that it cannot be in locations
10000 to 11777. The device handler must have been previously loaded
into memory. If the normal return is taken, ARG(l) is changed to the
starting block of the file and ARG(2) is changed to the file length in
blocks as a negative number. If the device specified is a readable,
non-file structured device (for example, the terminal), then ARG(1)
and ARG(2) are both set to zero.

If the error return is taken, ARG{l) and ARG(2) are unchanged. The
following conditions cause an error return:

1. The device specified is a write-only device.

2. The file specified was not found.

USER SERVICE ROUTINE

In addition, specifying 1illegal arguments can cause one of the
following monitor errors, followed by a return to the Keyboard

Monitor:

Error Message Meaning

MONITOR ERROR 2 AT XXXXX Results 1if an 1I/0 error occurred
(DIRECTORY I/0 ERROR) while reading the device directory.
MONITOR ERROR 3 AT XXXXX Results if the device handler for
(DEVICE HANDLER NOT IN the specified device 1is not in
CORE) memory.

MONITOR ERROR 4 AT xXXXX Results if bits 8 to 11 of the AC
(ILLEGAL USR CALL) are zero.

The LOOKUP function is the standard method of opening a permanent file
for input.

C.2.3 ENTER Output (Tentative) (File Function Code = 3)

The ENTER function is used to create a tentative file entry to be used
for output. An example of a typical ENTER function is as follows:

TALL VAL /AC IS NOT ZERQO

COF 0 /0F = CURRENT FIELID

CIF 10 JIF = 1

JMS T (USRS

3 /FUNCTION CODE = 3

NAME ZARG(1)Y FOINTS TO FILE NAME
0 /ARG 2D

JMF ERROR /ERROR RETURN

. /NORMAL RETURN

NAME » FILENAME TEST.FA

Bits 8 and 11 of the AC contain the device number of the selected
device; the device handler for this device must be loaded into memory
before performing an ENTER function. If bits 0 to 7 of the AC are
non-zero, this value is considered to be a declaration of the maximum
length of the file. The ENTER function searches the file directory
for the smallest empty file that contains at least the declared number
of blocks. 1If bits 0 to 7 of the AC are zero, the ENTER function
locates the largest available empty file.

On the normal return, the contents of ARG(1) are replaced with the
starting block of the file. The 2's complement of the actual length
of the created tentative file in blocks (which can be equal to or
greater than the requested length) replaces ARG(2).

NOTE

If the selected device 1is not file
structured but permits output operations
(for example, a line printer), the ENTER
operation always succeeds. In this
case, ARG(l) and ARG(2) are both zeroed
on return.

USER SERVICE ROUTINE

If the error return is taken, ARG(1l) and ARG(2) are unchanged. The
following conditions cause an error return:

1. The device specified by bits 8 to 11 of the AC is a read only
device.

2. No empty file exists which satisfies the request length
requirement.

3. Another tentative file is already active on this device (only
one output file can be active at any given time).

4. The first word of the file name was 0 (an illegal file name).

In addition, one of the following monitor errors can occur, followed
by a return to the Keyboard Monitor:

Error Message Meaning

MONITOR ERROR 2 AT xXXXX Results if an I/0 error occurred

(DIRECTORY I/0 ERROR) while reading or writing the
device directory.

MONITOR ERROR 3 AT XXXXX Results if the device handler for

(DEVICE HANDLER NOT IN MEMORY) the specified device 1is not in
memory.

MONITOR ERROR 4 AT XXXXX Results if AC bits 8 to 11 are

(ILLEGAL USR CALL) zero.

MONITOR ERROR 5 AT xXXXxX Read error on the system device

(I/0 ERROR ON SYS) while bringing in the overlay code
for the ENTER function.

MONITOR ERROR 6 AT XXXXX Results if a directory overflow

(DIRECTORY OVERFLOW) occurred (no room for tentative

file entry in directory).

C.2.4 The CLOSE Function (Function Code = 4)

The CLOSE function has a dual purpose: first, it is used to close the
current active tentative file, making it a permanent file. Second,
when a tentative file becomes permanent, it is necessary to remove
{delete) any permanent file having the same name; this operation is
also performed by the CLOSE function. An example of CLOSE usage
follows:

TAD VAL /GET DEVICE NUMRER

CoF o ZDF = CURRENT FIELD
CIF 10 JIF =1

SMG T (USSR

4 ZFUNCTION CODE = 4

NAME ZARGCL)

15 ARG (L)

JMF ERR ZERROR RETURN

. /NORMAL. RETURN

NAME » FILENAME TEST.FA

USER SERVICE ROUTINE

The device number is contained in AC bits 8 to 11 when calling the
USR. ARG(1l) is a pointer to the name of the file to be closed and/or
deleted and ARG(2) contains the number of blocks to be used for the
new permanent file.

The normal sequence of operations on an output file is:
1. FETCH the device handler for the output device.

2. ENTER the tentative file on the output device, getting the
starting block and the maximum number of blocks available for
the file.

3. Perform the actual output using calls to the device handler,
keeping track of how many blocks are written, and checking to
insure that the file does not exceed the available space.

4. CLOSE the tentative file, making it permanent. The CLOSE
operation would always use the same file name as the one used
for ENTER performed in step 2. The closing file length would
have been computed in step 3 and used in the CLOSE call.

After a normal return from CLOSE, the active tentative file is
permanent and any permanent file having the specified file name
already stored on the device is deleted. 1If the specified device is a
non-file structured device that permits output (the lineprinter, for
example) the CLOSE function will always succeed.

NOTE

The user must be careful to specify the
same file names to the ENTER and the
CLOSE functions., Failure to do so can
cause several permanent files with
identical names to appear in the
directory. If CLOSE is intended only to
be used to delete some existing file,
then the number of blocks (ARG (2)}))
should be zero.

The following conditions cause the error return to be taken:

1. The device specified by bits 8 to 11 of the AC is a read-only
device.

2. There is neither an active tentative file to be made into a
permanent file nor a permanent file with the specified name
to be deleted.

In addition, one of the following Monitor errors can occur:

Error Message Meaning
MONITOR ERROR 1 AT xXXXX Results if the length specified by
(CLOSE ERROR) ARG (2) exceeded the allotted
space.
MONITOR ERROR 2 AT XXXXX Results if an I/O error occurred
(DIRECTORY I/0 ERROR) while reading or writing the

device directory.

USER SERVICE ROUTINE

Error Message Meaning
MONITOR ERROR 3 AT XXXXX Results if the device handler for
(DEVICE HANDLER NOT IN MEMORY) the specified device 1is not in
memory.
MONITOR ERROR 4 AT xXXXxX Results if AC bits 8 to 11 are
(ILLEGAL USR CALL) Zero.

C.2.5 Call Command Decoder (DECODE) (Function Code = 5)

The DECODE function causes the USR to load and execute the Command
Decoder. The Command Decoder accepts (from the terminal) a list of
input and output devices and files, along with various options. The
Command Decoder performs a LOOKUP on all input files, sets up
necessary tables in the top page of field 1, and returns to the user
program.

A typical call to the Command Decoder looks as follows:

ChoF O /0F = CURRENT FIELD

CIF 10 /IF = 1

JM8 I (USR

5 /FUNCTION CODE = §

2001 /ARG (1) y ASSUMED INFUT EXTENSION (.FA)

0 /ARG(2)y ZERO TO FRESERVE ALL
/TENTATIVE FILES

. /NORMAL RETURN

+

*

ARG(1l) is the assumed input extension; in this example it is ".PA".
On return from the Command Decoder, information is stored in tables
located in the last page of memory field 1. The DECODE function also
resets all system tables as in the RESET function (see RESET function,
Section C.2.11); if ARG(2) is 0, all currently active tentative files
remain open; 1if ARG(2) is non-zero,l all tentative files are deleted,
and the normal return is to ARG(2) instead of ARG(2)+1.

The DECODE function has no error return (Command Decoder error
messages are given in Appendix D). However, the following Monitor
error can occur:

Error Message Meaning
MONITOR ERROR 5 AT XxXXX 1/0 error occurred while reading or
(I/0 ERROR ON S5YS) writing on the system device.

C.2.6 CHAIN Function (function Code = 6)

The CHAIN function permits a program to run another program with the
restriction that the program chained to must be a memory image (.SV)
file located on the system device. A typical implementation of the
CHAIN function follows:

CoF o Z0F = CURRENT FIELD

CIF 10 FIF = 1

JMS I (USSR

b ZFUNCTION CODE = 4

RLOCK /ARG(L)Yy STARTING BLOCK NUMRER

USER SERVICE ROUTINE

There is no normal or error return from CHAIN. However, the following
monitor error can occur:

Error Message Meaning
MONITOR ERROR 5 AT XXXXX I/0 error occurred while reading or
(I/O0 ERROR ON SYS) writing on the system device.
CHAIN ERR If an attempt is made to CHAIN to a

file which 1is not a memory image
(.5V) file. Control returns to the
Monitor.

The CHAIN function loads a memory image file located on the system
device beginning at the block number specified as ARG(1l) (which is
normally determined by performing a LOOKUP on the desired file name).
Once loaded, the program is started at an address that is one greater
than the starting address specified by the program's Core Control
Block.

CHAIN automatically performs a USROUT function (see Section C.2.9), if
necessary, to dismiss the USR from memory, and a RESET to clear all
system tables (see Section <C.2.11), but CHAIN does not delete
tentative files. ©Normally, it is best to set bit 11 of the Job Status
Word before chaining to an 0S/78 system program.

The areas of memory altered by the CHAIN function are determined by
the contents of the Core Control Block of the memory image file loaded
by CHAIN. The Core Control Block for the file is set up by ABSLDR or
LOADER programs. It can be modified by performing a SAVE command with
specific arguments. Every page of memory in which at 1least one
location was saved 1is loaded. If the page 1is one of the "odd
numbered" pages (pages 1, 3, etc.; locations 0200 to 0377, 0600 to
0777, etc.), the previous page is always loaded. 1In addition, CHAIN
always alters the contents of locations 07200 to 07577.

NOTE

CHAIN destroys a necessary part of the
ODT resident breakpoint routine. Thus
an ODT breakpoint should never be
attempted across a CHAIN.

With the above exceptions, programs can pass data back and forth in
memory while <c¢haining. For example, FORTRAN programs normally leave
the COMMON area in memory field 1 unchanged. This COMMON area can
then be accessed by the program activated by the CHAIN.

C.2.7 signal User ERROR (Function Code = 7)

The USR can be called to print a user error message for a program.
The following is a possible ERROR call:

COF 0 JNF = CURRENT FIELD
CIF 10 JIF =]

JME T (USR

7 ZFUNCTION CODE = 7

2 ZARGC1) y ERRORK NUMEBER

USER SERVICE ROUTINE

The ERROR function causes a messadge of the form:

USER ERROR n AT xxXxXx
to be printed. Here n is the error number given as ARG(l); n must be
between 0 and 11 (octal), and xxxxx is the address of ARG(l). 1If
ARG (1) in the sample call above was at location 500 in field 0, the
message:

USER ERROR 2 AT 00500

would be printed. Following the message, the USR returns control to
the Keyboard Monitor, preserving the user program intact.

The error number is arbitrary. Two numbers have currently assigned
meanings:

Error Message Meaning

USER ERROR 0 AT xxXxXxX During a RUN, GET, or R command,
this error message indicates that
an error occurred while loading the
memory image.

USER ERROR 1 AT xxXxX During a FORTRAN program execution,
this error indicates that a call
was made to a subroutine that was
not loaded.

C.2.8 Lock USR in Memory (USRIN) (Function Code = 10)

When a program must make a number of <calls to the USR, it is
advantageous to have the program avoid reloading the USR each time a
USR call is made. The USR can be brought into memory and kept there
by the USRIN function. The calling sequence for the USRIN function is
as follows:

CoF 0 Z0F = CURRENT FIELD
CIF 10 AIF = 1

JMS T (77000

10 ZFUNCTION CODE = 10

. /NORMAL RETURN

*

The USRIN function saves the contents of locations 10000 to 11777 in a
reserved area on SYS: (provided the calling prcgram loads into this
area as indicated by the current Job Status Word), then loads the USR,
and finally returns control to the user program.

Once the USR is locked in memory, you can call it at location 10200.

NOTE

If bit 11 of the current Job Status Word
is a 1, the USRIN function will not save
the contents of locations 10000 through
11777.

USER SERVICE ROUTINE

C.2.9 Dismiss USR From Memory (USROUT) (Function Code = 11)

When a program has loaded the USR into memory with the USRIN function
and no longer wants or needs the USR in memory, the USROUT function
restores the original contents of locations 10000 to 11777. The
calling sequence for the USROUT function is as follows:

COF 0 /IF = CURRENT FIELD
CIF 10 JIF = 1

JMS T (200) /0 NOT M8 TO 1770011
11 /FUNCTION CODE = 11

. /NORMAL RETURN

Subsequent calls to the USR must be made by performing a JMS to
location 7700 in field 1.

NOTE

If bit 11 of the current Job Status Word
is a 1, the contents of memory are not
changed by the USROUT function. 1In this
case USROUT 1is a redundant operation
since memory was not preserved by the
USRIN function.

C.2.10 Ascertain Device Information (INQUIRE) (Function Code = 12)

On some occasions a user may wish to determine what internal device
number <corresponds to a given device name or whether the device
handler for a specified device 1is in memory, without actually
performing a FETCH operation. 1INQUIRE performs these operations for
the user. The function call for INQUIRE closely resembles the FETCH
handler call.

INQUIRE, like FETCH, has two forms:

1. Obtain the device number corresponding to a given device name
and determine if the handler for that device is in memory.

An example of the INQUIRE call is shown below:

cLAa /7AC MUST ERE CLEAR
CnF O ZOF = CURRENT FIELD
CIF 10 /IF = 1

JMS I (USR)

12 /FUNCTION CODE = 12

REVICE RLOR /GENERATES TWO WORDS:
/ARG (1) AND ARG(2)

0 /ARG (3)
JMF ERR /ERROR RETURN
’ /NORMAL. RETURN

.

+

ARG (1) and ARG(2) contain the device name in standard format.
When the normal return is taken, ARG(2) 1is changed to the
device number corresponding to the given name, and ARG(3) is
changed to either the entry point of the device handler if it
is already in memory, or zero if the corresponding device
handler has not yet been loaded.

C-13

USER SERVICE ROUTINE

2. Determine if the handler corresponding to a given device
number is in memory.

A slightly different set of arguments is used to inquire
about a device by its device number:

TAl VAL /AC TS NON-ZERD

CoF o ZOF = CURRENT FIELD
CIF 10 /IF = 1

SMS T (USSR

12 ZFUNCTION CODE = 12
0 /ARG L)

JMROERR ZERROR RETURN

N /NORMAL RETURN

*

.

On entry to INQUIRE, AC bits 8 to 11 contain the device
number.

NOTE

If AC bits 0 to 7 are non-zero, and bits
8 to 11 are =zero (an illegal device
number) , the

MONITOR ERROR 4 AT xXXXXX

message is displayed and program
execution is terminated.

On normal return ARG(l) is set to the entry point of the device
handler if it is already in memory, or zerc if the corresponding
device handler has not yet been loaded. The error return in both
cases 1is taken only if there is no device corresponding to the device
name or number specified.

C.2.11 RESET System Tables (Function Code = 13)

Resetting the system tables effectively removes from memory all device
handlers except the system handler. An example of the RESET function
is shown below:

CoF 0 Z0F = CURRENT FIELD

CIF 10 AIF =1

JMG T (USSR

13 ZFUNCTION CODE = 13

0 /0 FRESERVES TENTATIVE FILES
. /NORMAL, RETURN

+

+

RESET removes all device handlers, other than that for the system
device, from mepory. This operation should be done anytime a user
program modifies any page in which a device handler was loaded.

USER SERVICE ROUTINE

RESET also deletes all currently active tentative
have been entered but not closed). This results
through 11 of every entry in the Device Control

Section B.3.5 of 0S/8 Software Support Manual).

used to delete all active tentative files, then
non-zero and the normal return is ARG(l) rather than
example, the following call would serve this purpose.

CoF o ATFECURRENT FILELD
CIF 10 ZIF = 1}
JMS T (USSR
13 ZFUNCTION CODE = 13
Cl.a CHA /NON~ZERQ INSTRUCTION
The normal return would execute the CLA CMA, and all

files on all devices would be deleted.
does not reset the Monitor tables.
the Command Decoder are used,
before loading device handlers.

handler will be loaded into memory.

The Keyboard
If user programs
it 1is wise to do

files

(files that
in zeroing bits 9
Word Table (see
If RESET is to be

ARG(l) must be
to ARG(l)+1l. For
active tentative

Monitor currently
which do not call
a RESET operation

The RESET will ensure that the proper

APPENDIX D

THE COMMAND DECODER

05/78 provides a powerful subroutine called the Command Decoder for
use by all system and user programs. The Command Decoder is normally
called when a program starts running. When called, the Command
Decoder displays an asterisk (*) and then accepts a command line from
the console terminal that includes a list of I/0 devices, file names,
and various option specifications. The Command Decoder validates the
command line for accuracy, performs a LOOKUP on all input files, and
sets up various tables for the calling program (refer to Appendix C,
Section C.2.2, for more information on LOOKUP).

D.1 COMMAND DECODER CONVENTIONS

The command line has the following general form 1in response to the
Command Decoder asterisk:

*output files <input files/(options)

There can be 0 to 3 output files and 0 to 9 input files specified.

Output File Examples Meaning

EXPLE.EX Output to a file named EXPLE.EX on device DSK
(the default file storage device).

LPT: Output to the LPT. This format generally
specifies a non-file-structured device.

RXA2:EXPLE.EX Output to a file named EXPLE.EX on device
RXA2.

RLOA:EXPLE.EX[99] Output to a file named EXPLE.EX on device

RLOA. A maximum output file size of 99 blocks
is specified.

(null) No output specified.

An input file specification has one of the following forms:

Input File Format Meaning
RXA2:INPUT Input from a file named INPUT.df on device
RXA2. where df 1is the assumed input file

extension specified to the Command Decoder.

RXA2:INPUT.EX Input from a file named INPUT.EX on device
RXA2. In this case .EX overrides the assumed

input file extension.

THE COMMAND DECODER

Input File Format Meaning

INPUT.EX Input from a file named INPUT.EX. If there is
no previously specified input device, input is
from device DSK, the default file storage
device; otherwise, the input device is the
same as the last specified input device.

TTY: Input from terminal; no file name 1is needed
for non-file structured devices.

(null) Repeats input from the previous device
specified (must not be first in input 1list,
and must refer to a non-file structured
device).

NOTE

Whenever a file extension is left off an
input file specification, the Command
Decoder first performs a LOOKUP for the
given name appending a specified assumed
extension. If the LOOKUP fails, a
second LOOKUP is made for the file
appending a null (zero) extension.

The Command Decoder verifies that the specified device names, file
names, and extensions consist only of the characters A through Z and 0
through 9. If not, a syntax error is generated and the command line

is considered to be invalid.

Two kinds of options can be specified: alphanumeric and numberic.
Alphanumeric option switches are denoted by a single alphanumeric
character preceded by a slash (/) or a string of characters enclosed
in parentheses. Numeric options can be specified in octal numbers
from 1 to 37777777 preceded by an equal sign (=). These options are
passed to the user program and are interpreted differently by each
program.

Finally, the Command Decoder permits the command line to be terminated
by either the RETURN or ESCape key. This information is also passed
to the user program.

D.2 COMMAND DECODER ERROR MESSAGES

If an error in the command line is detected by the Command Decoder,
one of the following error messages is displayed. After the error
message, the Command Decoder starts a new line, prints an *, and waits
for another command line, The erroneous command is ignored.

Error Message Meaning
ILLEGAL SYNTAX The command line is formatted
incorrectly.
TOO MANY FILES More than three output files or nine

input files were specified. (Or in
special mode, more than one output
file or more than five input files.)

THE COMMAND DECODER

Error Message Meaning

device DOES NOT EXIST The specified device name does not
correspond to any permanent device
name or any user assigned device name.

name NOT FOUND The specified input file name was not
found on the selected device.

D.3 CALLING THE COMMAND DECODER

The Command Decoder is initiated by the DECODE fuanction of the USR.
DECODE saves the contents of locations 0 to 1777 of field 0 on the
system scratch blocks, and brings the Command Decoder into that area
of memory and starts it. When the command line has been entered and
properly interpreted, the Command Decoder exits to the USR, which
restores the original contents of 0 to 1777 and returns to the calling
program.

NOTE

By setting bit 10 of the Job Status Word
to a 1l; vyou can avoid this saving and
restoring of memory for programs that do
not occupy locations 0 to 1777.

The DECODE call can reside in the area between 00000 to 01777 and
still function correctly. A typical call would appear as follows:

CcoF o /SET DATA FIELD TO CURRENT FIELD
CIF 10 JINSTRUCTION FIELD MUST RBE 1
JMS I (USSR ZUSR=7700. IF USR I8 NOT IN MEMORY
ZO0R USR=0200 IF USRIN WAS PERFORMELD
] ZNECODE . FUNCTION = 5
2001 ZARG (1) y ASSUMED INFUT EXTENSTON
0 ZARG(2)y ZERD TO PRESERVE
ZALL TENTATIVE FILES
. /NORMAL RETURN

+

+

ARG(l) is the assumed input extension in SIXBIT notation. If an input
file name 1is given with no specified extension, the Command Decoder
first performs a LOOKRUP for a file having the given name with the
assumed extension. If the LOOKUP fails, the Command Decoder performs
a second LOOKUP for a file having the given name and a null (zero)
extension. In this example, the assumed input extension is ".PA".

DECODE performs an automatic RESET operation to remove from memory all
device handlers except those equivalent to the system device. As in
the RESET function, if ARG(2) is zero, all currently active tentative
files are preserved. If ARG(2) is non-zero, all tentative files are
deleted, and DECODE returns to ARG(2) instead of ARG(2)+1l.

As the Command Decoder normally handles all of its own errors, there
is no error return from the DECODE operation.

THE COMMAND DECODER

D.4 COMMAND DECODER TABLES

The Command Decoder sets up various tables in the top page of field 1
that describe the command line typed to the user program.

D.4.1 Output Files

The output file table that begins at location 17600 has room for three
entries. Each entry is five words long and has the following format:

60 1 2 3 4 5 6 7 8 9 10 "

WORD 1 USER SPECIFIED 4-BIT DEVICE BITS 0-7 ARE
FILE LENGTH NUMBER ALWAYS O
WORD 2 FILE NAME FILE NAME 1
CHARACTER 1 CHARACTER 2
WORD 3 FILE NAME FILE NAME \ OUTPUT FILE NAME
CHARACTER 3 CHARACTER 4 6 CHARACTER
WORD 4 FILE NAME FILE NAME
CHARACTER b5 CHARACTER 6 J
WORD 5 FILE EXTENSION FILE EXTENSION WL FILE EXTENSION
CHARACTER 1 CHARACTER 2 J 2 CHARACTERS

Bits 0 to 7 of word 1 in each entry contain the file 1length, if the
file 1length was specified with the square bracket construction in the
command line. Otherwise, those bits are zero.

The entry for the first output file is in locations 17600 to 17604,
the second 1is in locations 17605 to 17611, and the third is in
locations 17612 to 17616. If word 1 of any entry is =zero, the
corresponding output file was not specified. A zero in word 2 means
that no file name was specified.

Also, if word 5 of any entry is zero no file extension was specified
for the corresponding file. It is left to the user program to take
the proper action in these cases.

These entries are 1in a format that 1is acceptable to the ENTER
function.

D.4.2 1Input Files

The input file table that begins at location 17617 has room for nine
entries. Each entry is two words long and has the following format:

01 2 3 45 6 7 8 9 10 M

WORD 1 MINUS FILE 4-BIT DEVICE
LENGTH NUMBER

WORD 2 STARTING BLOCK OF FILE

THE COMMAND DECODER

Bits 0 to 7 of word 1 contain the file length as a negative number.
Thus, 377 (octal) in these bits is a length of one block, 376 (octal)
is a length of two blocks, etc. If bits 0 to 7 are zero, the
specified file has a length greater than or equal to 256 blocks or a
non-file structured device was specified.

NOTE

Restrictiing the actual specified size
to 255 blocks can cause some problems if
the program has no way of detecting
end-of-file conditions. If this is a
problem, your program probably should
use the special mode of the Command
Decoder described in Section D.5 and
perform its own LOOKUP on the input
files to obtain the exact file length.

The two-word input file 1list entries beginning at odd numbered
locations from 17617 to 17637 inclusive. If location 17617 is zero,
no input files were indicated in the command line. If less than nine
input files were specified, the unused entries in the input file list
are zeroed (location 17641 is always set to zero to provide a
terminator even when no files are specified).

D.4.3 Command Decoder Option Table

Five words are reserved beginning at location 17642 to store the
various options specified in the command line. The format of these
five words is as follows:

0 1 2 3 4 5 6 7 8 9 101
17642 HIGH ORDER 11 BITS OF = N OPTIONS
17643 A|IB|CIDJE|JF{G|H] I]J] K]L
17644 MIN[OIP]QJR|S|T]UlV] WX
17645 YlZz]o}j1]2]|3(|4]|5]6]7] 8|9
17646 LOW ORDER 12 BITS OF = N OPTIONS

Each of the bits in locations 17643 and 17645 corresponds to one of
the possible alphanumeric option switches. The corresponding bit is 1
if the switch was specified, 0 if not specified.

THE COMMAND DECODER

NOTE

If no = n option 1is specified, the

Command Decoder
and bits 1 to

zeroes location 17646
11 of 17642. Thus,

typing = 0 is meaningless since the user
program cannot tell that any option was

specified.

Bit 0 of location 17642 1is 0 if the

command line

carriage return,

by an ESCape.

D.4.4 Example

was terminated by a
1 if it was terminated

To clarify some of the preceding, consider the interpretation of the

following command line:

*BIN[10]<TTY:, ,RXA2:PARA.PA,MAIN.PA/L=14200

If this command line is typed,

the Command Decoder would return to the

calling program with the following values in the system tables:

17600

17604
17605

17616
17617

17620
17621

17622
17623

17624
17625

17626
17627

17641

17642

17643

17644

17645

1746

)

)

THE
0242 f—o
0211 |)
1600 >
0000 | J
0000 |—
=
~
~
-
0016 \L
0000 | |
N
0016 [
0000
J
3
7667 |
0100 >
0007
0105

)

)

kﬂ_JH_JL

|

4001

0001

0000

0000

4200 p—

COMMAND DECODER

DSK: IS DEVICE NUMBER 2

FILE NAME IS BIN

NULL EXTENSION

REMAINING ENTRIES
IN QUTPUT TABLES
ARE ZERO

FIRST TERMINAL INPUT

SECOND TERMINAL INPUT

RXA2: PARA PA IS 5 BLOCKS LONG,
BEGINNING AT 100 (8)

RXA2: MAIN PA IS 256 (10) OR MORE
BLOCKS LONG, BEGINNING AT BLOCK 105 (8}

REMAINING ENTRIES
IN INPUT TABLES
ARE ZERO

LINE WAS TERMINATED BY ESC (1 OF 14200)

/L WAS ONLY OPTION SWITCH SPECIFIED

LSD’'S OF 14200 WAS SPECIFIED

THE COMMAND DECODER

NOTE

The entries for terminal (where no input
file name is specified) have a starting
block number and file size of =zero.
This 1is always true of the input table
for a non-file structured device, or a
file structured device on which no file
name is given.

D.5 SPECIAL MODE OF THE COMMAND DECODER

Occasionally the user program does not want the Command Decoder to
perform the LOOKUP on input files, leaving this option to the user
program itself. Programs such as format conversion routines which
access non-standard file structures could use this special format. 1If
the input files were not 0S/78 format, a command decoder LOOKUP
operation would fail. The capability to handle this case is provided
in the 0S/78 Command Decoder. This capability is generally referred
to as the "special mode" of the Command Decoder.

D.5.1 Calling the Command Decoder Special Mode

The special mode call to the Command Decoder 1is identical to the
standard DECODE <call except that the assumed input file extension,
specified by ARG(l), is equal to 5200. The value 5200 corresponds to
an assumed extension of ".*", which is 1illegal. Therefore, the
special mode of the Command Decoder in no way conflicts with the
normal mode.

D.5.2 Operation of the Command Decoder in Special Mode

In special mode the Command Decoder is loaded and inputs a command
line as wusual. The appearance of the command line is altered by the
special mode in these respects:

1. Only one output file can be specified.

2. No more than five input files can be specified, rather than
the nine acceptable in normal mode.

3. The characters asterisk (*) and question mark (?) are legal
in file names and extensions, both in input files and on
output files. It is strongly suggested that these characters
be tested by the user program and treated either as special
options or as illegal file names. The user program must not
ENTER an output file with an asterisk or a question mark in
its name since the 0S/78 system programs will have difficulty
manipulating or deleting files named this way.

THE COMMAND DECODER

The output and option table set up by the Command Decoder is not
altered in special mode. Entries in the input table are changed to
the following format:

0 1 2 3 4 5 6 7 8 9 10 N

WORD 1 4-BIT DEVICE BITS 0-7 ARE
NUMBER ALWAYS O
WORD 2 FILE NAME FILE NAME W
CHARACTER 1 CHARACTER 2
WORD 3 FILE NAME FILE NAME \ OUTPUT FILE NAME
CHARACTER 3 CHARACTER 4 6 CHARACTER
WORD 4 FILE NAME FILE NAME
CHARACTER 6 CHARACTER 6 J
WORD 5 FILE EXTENSION FILE EXTENSION FILE EXTENSION
CHARACTER 1 CHARACTER 2 2 CHARACTERS

The table entry for the first input file is in locations 17605 to
17611; the second in locations 17612 to 17616; the third in location
17617 to 17623; the fourth in locations 17624 to 17630; and the
fifth in locations 17631 to 17635. A zero in word 1 terminates the
list of input files. If word 2 of an entry is zero, no input file
name was specified.

APPENDIX E

0S/78 DEFAULT FILE NAME EXTENSIONS

This appendix lists the default file name extensions used in 0S/78.

Extension

.BA
.BI

.BN

.CM
.DI

.FT

.HL

.HN
.LD
.LS
.MP

.PA
.RA

.RL
.SV

.TM

Meaning

BASIC source file (default extension for a BASIC
input file).

Batch input file (input for BATCH).

Absolute binary file (default extension for ABSLDR
and BITMAP input files; also used as default
extension for PAL8 binary output file).

Command file.

Directory listing file.

FORTRAN language source file (default extension for
FORTRAN input files).

Text file accessed by the HELP command.

Device handler save 1image file wused by the SET
HANDLER command.

FORTRAN load module file (default assumed by
run—-time system, FORTRAN IV loader).

Assembly listing Output file (default extension for
PALS) . '

File containing a loading map (used by the Linking
Loader, MAP command).

PAL8 source file.
RALF assembly language file (FORTRAN IV).

Relocatable binary file (default extension for a
Linking Loader input file).

Memory image file (SAVE file); <cdefault for the R,
RUN, SAVE, and GET commands.

Temporary file generated by system.

APPENDIX F

USING DEVICE HANDLERS

A device handler is a system subroutine that is used by all parts of
the 0S/78 system and by all standard system programs to perform I/0O
transfers. All device handlers are called in the same way, and they
all perform the same basic operation of reading or writing a specified
number of 128 -word records beginning at a selected memory address.
This appendix contains information relevant to assembly language
(PAL8) programming only.

These subroutines effectively mask the wunique characteristics of
different I/0 devices from the calling program; thus, programs that
use device handlers properly are effectively "device independent”.
Changing devices involves merely changing the device handlers used for
I/0.

Device handlers have another important feature. They are able to
transfer a number of records as a single operation. On a
file-structured device, a single operation could transfer an entire
track or more. This capability significantly increases the speed of
operation of programs that have large buffer areas.

All device handlers occupy two memory pages, and can run in any page
of field 0, except in Pages 0, 36 and 37.

NOTE
A "record" is 128 words of data; thus,
an 0S/78 block consists of two 128-word

records.

F.1 CALLING DEVICE HANDLERS

Device handlers are loaded into a user selected area in memory field 0
by the FETCH function of the USR (see Appendix C). This is possible
because the 8YS: handler is always resident. FETCH stores in ARG(1l)
the entry point of the handler 1loaded. The handler is called by
executing a JMS to the specified entry point address. Handler calls
have the following format:

CIF N ZWHERE N IS5 THE VALUE OF THE CURRENT
ZFPROGRAM FIELD TIMES 10 (OCTALD

CIF O JOEVICE HANULER ALWAYS IN FIELD O

JMS T ENTRY ZTENTRY CONTAINS THE HANDLER ENTRY FOINT

ARG (1) ZFUNCTION CONTROL WORD

ARG D) /BUFFER ADDRESS

ARG (3) /8TARTING BLOCK NUMEBER

JMF ERR JERROR RETURN

USING DEVICE HANDLERS

. /NORMAL RETURN (I/0 TRANSFER COMFLETE)
ENTRYy» O JENTRY CONTAINS ARG(3) FROM THE FETCH OFERATION
#
NOTE

The entry point for SYS is always 07607,

As with calls to the USR, it is important to set the data field is set
to the current program field before the device handler is called. On
exit from the device handler, the data field will remain set to the
current program field. The accumulator need not be zero when calling
a handler; it will be zero when the normal return is taken.

ARG(l) is the function control word, and contains the following
information:

Bits Contents

Bit O 0 for an input operation (read), 1 for an
output operation (write).

Bits 1 to 5 The number of 128 word records to be
transferred. If bits 1-5 are zero and the
device is non-file structured (i.e., TTY,
LPT, etc.) the operation is device
dependent. If the device is file

structured, a read/write of 40 (octal)
pages is performed.

Bits 6 to 8 The memory field in which the transfer is
to be performed.

Bits 9 to 11 unused (device dependent} bits should be
left zero.

ARG(2) is the starting location of the transfer buffer.

ARG (3) is the number of the block at which the transfer is to begin.
The user program initially determines this wvalue by performing a
LOOKUP or ENTER operation. After each transfer the user program
should itself add to the current block number (this argument) the
actual number of blocks transferred, equal to one-half the number of
128-word records specified, rounded up if the number of records was
odd.

Error returns are either: fatal or non-fatal. When an error return
occurs and the contents of the AC are negative, the error is fatal. A
fatal error can be caused by a bad data checksum (CRC) or an attempt
to write on a read-only device (or vice versa). The meaning can vary
from device to device, but in all cases it 1is serious -enough to
indicate that the data transferred, if any, is invalid.

When an error return occurs and the contents of the AC are greater
than or equal to zero, a non-fatal error has occurred. This error
always indicates detection of the end-of-file character (CTRL/Z) on
non-file-structured input devices. For example, when a CTRL/Z is
typed during input from device TTY, the TTY handler inserts a CTRL/Z
code in the buffer and takes the error exit with the AC equal to zero.
While non-file-structured input devices can detect the end-of-file
condition, file-structured devices cannot; furthermore, no device
handler takes a non-fatal error return when doing output.

F~-2

USING DEVICE HANDLERS

The following restrictions apply to the use of device handlers:

1.

File-structured Handlers - If bits 1-5 of the function
control word (ARG(1l)) are zero, the handler transfers an
entire memory page (40 (octal) blocks). Be caregul when

using this type of transfer not to overlay the handler itself
on the system that resides in the various parts of Fields O,
1, and 2.

The user program must never specify an input into locations
07600 to 07777, 17600 to 17777, or 27600-27777, or the
page(s) in which the device handler itself resides. In
general, 7600-7777 in every memory field are reserved for use
by system software. Those areas should be used with caution.

Note that the amount of data tranferred is given as a number
of 128-word records, exactly one half of an 0S5/78 block.
Attempting to output an odd number of records will change the
contents of the last 128 words of the last block written.

The specified buffer address does not have to begin at the
start of a page. The specified buffer cannot overlap fields;
rather the address will "wrap around" memory. For example, a
write of 2 pages starting at location 07600 would cause
locations 07600~07777 and 00000-00177 of field 0 to be
written.

If bits 1-5 of the function control word (ARG(l)) are zero, a
non-file-structured device-dependent operation occurs. Users
should not expect a 40-page (full field) transfer of data.
The CLOSE operation of the USR calls the handler with bits
1-5 and 9-11 of the function control word 0. This condition
means "perform any special <c¢lose operation desired".
Non-file structured handlers, which need no special handling
on the conclusion of data transfers, should treat this case
as a NOP. An example of usage of such special codes would be
where the line printer would perform a line feed.

F.2 0S/78 DEVICE HANDLERS

This section describes briefly the operation of standard 0S/78 device

handlers,

including normal operation, any special initialization

operations for function control word=0, terminating conditions, and
response to control characters typed at the keyboard.

F.2.1

1.

Line Printer (LPT, LQP)

Normal Operation

These handlers unpack characters from the buffer and print
them on the 1line printer. The character horizontal tab
(ASCII 211) causes sufficient spaces to be 1inserted to
position the next character at a "tab stop" (every eighth
column, by definition). The character vertical tab (ASCII
213) causes a skip to the next paper position for vertical
tabulation if the 1line printer hardware provides that
feature. The character form feed (ASCII 214) causes a skip
to the top of the next page. Finally, the handler maintains
a record of the current print column and starts a new line
after the full width has been printed. This handler
functions properly only on ASCII data.

F-3

F.2.2

1.

USING DEVICE HANDLERS

Initialization for Function Control Word = 0

Before printing begins, the line printer handler issues a
form feed to space to the top of the next page.

Terminating Condition

On detection ot a CTRL/Z character in the buffer, the 1line
printer handler issues a form feed and immediately takes the
normal return., Attempting to input from the 1line printer
forces a fatal error to be returned. A fatal error is also
returned if the line printer error flag is set. There are no
fatal errors associated with the line printer handler if the
device is off line.

File-Structured Devices (8YS, DSK, RXAx, RLxx, VXAOQ)

Normal Operation

These handlers transfer data directly between the device and
the buffer.

Initialization for Function Control Word = 0
None.
Terminating Conditions

A fatal error is returned whenever the transfer sets one of
the error flags in the device status register to be set. For
example, a fatal error would result if a CRC error occurred
while reading data from a diskette. The device handlers
generally try to perform the operation three times before
giving up and returning a fatal error. All errors for
rile-structured devices are fatal.

Terminal Interaction

Typing CTRL/C forces a return to the Monitor except when
using the system device handler (SYS).

NOTE

The system and non-system device
handlers for the RX01 and RX0Z2 when
called whith a negative block number
(4000-7777) take the error return with
the complement of the device size in the
AC (single density = 7022, double
density = 6044). This allows you to
determine whether the device is on RX01
or on RX02.

USING DEVICE HANDLERS

F.2.3 Terminal Handlers (TTY, SLUx, VLUX)
Listed are the features of the terminal handlers:

1. These handlers read a line at a time. Whenever the user
types CR, they enter a CR/LF into the buffer, echo a CR/LF,
pad the remainder of the buffer with nulls, and return to the
calling program. The characters are inserted into the buffer
one character per word. Thus every third character is a null
so far as 0S/78 is concerned.

2. The DELETE deletes the previous character from the buffer.
The handler will echo a backslash (\) for a hard-copy device
or delete the character from the screen for a video terminal.
This can be altered by the SET term SCOPE command.

3. CTRL/U echoes as "U and erases the current line, allowing the
user to retype it. (It also starts a new line.) The buffer
pointer is reset to the beginning of the butfer.

4, CTRL/Z echoes as "Z (followed by CR, LF) and 1is used to
signal end-of-file (end of input). The "Z enters the buffer
and the remainder of the buffer is padded with nulls. The
error return is taken with a positive AC (non-fatal error).

5. Nulls are ignored.

6. CTRL/C echoes as "C and returns control to the Monitor via
location 07600.

On output: (either normal output or when echoing input)

1. CTRL/C on keyboard echoes as "C and returns control to the
Monitor.

2, CTRL/O on keyboard stops further echoing. All visible output
ceases (although the buffer continues to be filled) until
either the handler is reloaded into memory or the user types
any character on the keyboard. Not operative during input.

3. CTRL/S causes the handler to suspend output to the terminal.
No characters are lost, and output resumes when a CTRL/Q is
typed. CTRL/S and CTRL/Q do not echo. These characters are
operative only upon output. On input, they are treated like
other input characters. This is useful on high-speed video
terminals.

F.2.4 Multiple Input Files

There is a peculiarity associated with reusing Device Handler areas in
0S/78. This is illustrated by the following example:

Assume a program has reserved 1locations 1000-1377 for its input
handler and locations 7400-7577 for its output handler. If the
program gives a USR FETCH command to load the RXAl handler as an input
device handler, both RX handlers will load into 1000-1377, since they
are both co-resident. If another FETCH is issued to 1load the RXAQ
handler as an output device handler, that handler will not be loaded,
because it shares space with the RXAl handler currently in memory.
This 1is fine; however, if the user now switches input devices and
FETCHes the terminal handler, as an input device handler, it will
destroy the RXAO0 handler and the next attempt to output using the RXAQ
handler will produce errors. You can get around this problem in two
ways.

F-5

USING DEVICE HANDLERS

Always assign first the handler which you expect to stay 1in
memory the longest. Although most programs can process more
than one input file per program step (for example, an
assembly pass is one program step), they can process only one
output file; therefore, they assign the output handler
before any of the input handlers. In the above example, the
problem would be eliminated if the RXAl handler were assigned
first.

Always give a USR RESET call before each FETCH, Obviously,
this call should not delete any open output files. This
means that the USR will always load the new handler, even if
another copy 1is in memory. The user must FETCH the output
handler again before issuing the USR CLOSE call; otherwise,
the USR will determine that the output handler is not in
memory and give a MONITOR ERROR 3 message.

APPENDIX G

05/78 ERROR MESSAGE SUMMARY

Error messages generated by 0S/78 programs are 1listed in alphabetic
order and identified by the system program by which they are
generated. Also, system halts that occur as a result of errors are
listed. This appendix 1is only a summary. Refer to the appropriate
chapters for more detailed information about specific error
conditions.

G.1l SYSTEM HALTS

Errors that occur as a result of a major I/0 failure on the system
device can cause a system halt. These are as follows.

Value of PC Meaning
00601 A read error occurred while attempting to 1load
ODT.
07461 An error occurred while reading a program into

memory during a CHAIN.

07605 An error occurred while attempting to write the
Monitor area onto the system scratch blocks.

07702 A user program has performed a JMS to 7700 in
field 0. This is a result of trying to call the
USR without first performing a CIF 10.

07764 A read error occurred while loading a program.

07772 A read error occurred on the system scratch area
while loading a program.

10066 An input error occurred while attempting to
restore the USR.

10256 A read error occurred while attempting to 1load
the Monitor.

17676 An error occurred while attempting to read the
Monitor from the system device.

17721 An error occurred while saving the USR area.

17727 An error occurred while attempting to read the USR
from the system device,.

17736 An error occurred while reading the scratch blocks
to restore the USR area.

G-1

0S/78 ERROR MESSAGE SUMMARY

After bootstrapping and retrying the operation that caused the
failure, if the error persists, it is the result of a hardware
malfunction or a parity error in the system area.

G.2 ERROR MESSAGES
Message Program Explanation

20 SRCCOM Insufficient memory -- this means
that the differences between the
files are too large to allow for
effective comparison. Use of the
/X option may alleviate this

problem.

0 EDIT Editor failed in reading a device,
Error occurred in device handler;
most likely a hardware

malfunction.

?1 SRCCOM Input error on file #1 or less
than 2 input files specified.

1 EDIT Editor failed in writing onto a
device. Generally a hardware
malfunction.

?2 SRCCOM Input error on file #2.

2 EDIT File close error occurred. The

output file could not be closed;
the file has been deleted.

2045 REFS CREF More than 2044 (decimal)
references to one symbol were
made.

23 SRCCOM Qutput file too large for output

device. It has been deleted.

3 EDIT File open error occurred. This
error occurs if the output device
is a read-only device or if nc
output file name is specified for
a file-oriented output device.

?4 SRCCOM Qutput I/0 error.

4 EDIT Device handler error occurred.
The Editor could not 1load the
device handler for the specified
device. This error should never

occur.
?5 SRCCOM Could not create output file.
AA F4 More than six subroutine arguments

are arrays.

ALREADY EXISTS FOTP An attempt was made to rename an
(filename) output file with the name of an
existing output file.

Message

AMBIGUOUS SWITCH

ARE

AS

BAD

BAD

BAD

BAD

BAD

BAD

YOU SURE?

ARG

ARGS

COMMAND LINE

DATE

DEVICE

DIRECTORY ON

DEVICE #n

BAD

BAD

BAD

DISK

EXTENSION

INPUT

DIRECTORY

BAD

BAD

BAD INPUT, FILE #n

INPUT FILE

INPUT, FILE #n

0S/78 ERROR MESSAGE SUMMARY

Program

CCL

PIP

F4

FRTS

Monitor

FORMAT

Monitor

CCL

PIP

FORMAT

CCL

DIRECT
FOTP

LOAD

ABSLDR

BITMAP

Explanation
Not enough characters of the
command full word option were
specified to make it unique. (See
Appendix H.)

Occurs when using the SQUISH
command. A response of Y will
compress the files.

Bad ASSIGN statement.

Illegal argument to library
function.

The arguments to the SAVE command
are not consistent and violate
restrictions.

The command line contains a syntax
error. Retype the line correctly.

The date has not been entered
correctly, or incorrect arguments
were used, or the date was out of
range.

The device specified in a system
command 1is not of the correct
form.

PIP is trying to read the
directory, but it is not a legal
0S/78 directory.

Disk pack cannot be reformatted.
There are more than 63 bad blocks
on the system area (blocks 0-70
octal) contains bad blocks.

Either an extension was specified
without a file name or two
extensions were specified.

The directory on the specified
input device is not a valid 0S/78
directory.

An input file was not a RALF
module.

Attempt was made to load a
non-binary file as file number n
of the input file 1list; or a
non-memory image with /I option.

A physical end of file was reached
before a 1logical end of file, or
extraneous characters were found
in binary file n.

Message

#BAD LINE. JOB
ABORTED

BAD NUMBER

BAD OUTPUT DEVICE

BAD OUTPUT DEVICE

BAD OUTPUT
DIRECTORY

BAD RECOLLECTION

BAD SYSTEM HEAD

BAD SWITCH OPTION

BATCH.SV NOT FOUND
ON SYS:

$BATCH SQUISHING
SYsS:!
BD

BE

BE

BI

BO

0S/78 ERROR MESSAGE SUMMARY

Program

BATCH

CCL

FOTP

LOAD

FOTP
CCL
PIP
CCL
BATCH

BATCH

F4

RALF
PALS
RALF

FRTS

Explanation

BATCH detected a record in the
input file that did not have one
of the <characters period, slash,
dollar sign, or asterisk as the
first <character of the record.
The record is ignored, and BATCH
scans the input file for the next
$JOB record.

The =n option was used, where n
was not in the <correct octal
format.

This message usually appears when
a non-file structured device is
specified as the output device for
a file-oriented operation.

The loader image file device was
not a directory device, or the
symbol map file device was a
read-only device. The entire
command is ignored.

The directory on the specified
output device is not a valid 0S/78
device directory.

An attempt was made to use a
previously remembered argument
after the system date had been
changed.

Attempt to copy an obsolete
version of the system head.

The character used with a slash
(/) to indicate an option is nct a
legal option.

A copy of BATCH.SV must exist on
the system device. Control
returns to the 0S/78 Monitor.

Batch 1is running and attempting
to squish the system.

Bad dimensicns (too big, or
syntax) in DIMENSION, COMMON or
type declarations.

Illegal eguate. The symbol had
been defined previously.

PALS8 internal table has
overflowed. Fatal error;
assembly cannot continue.

Illegal index register
specification.

No more file buffer available.

Message

BS

BX

CANNOT CHANGE
MEMORY CAPACITY
WHILE RUNNING
BATCH

?CAN'T-DEVICE
DOESN'T EXIST

?CAN'T-DEVICE IS
RESIDENT

?CAN'T-HANDLER
ALREADY RESIDENT

?CAN"'T-OBSOLETE
HANDLER

CANT-TOO MANY LOGICAL

DEVICES

?CAN ' T-UNKNOWN
VERSION OF THIS
HANDLER

CAN'T OPEN OUTPUT
FILE

CAN'T READ IT

$CAN'T REMEMBER

CAUTION - THIS
COMMAND DESTROYS

CONTENTS OF SYSTEM
DISK. CHANGE DISKS

BEFORE PROCEEDING
OR CTRL/C.

CF

0S/78 ERROR MESSAGE SUMMARY

Program

F4

RALF

CCL

SET

SET

SET

SET

SET

SET

PIP

FRTS

CCL

RLFMT

PALS

Explanation
Non-declarative statement used
BLOCK DATA program.

Bad expression. Something in the
expression 1is 1incorrect, or the
expression is not wvalid in this
context.

A MEMORY command was issued while
BATCH was running.

A nonexistent device was

referenced.

No modifications are allowed to
the system handler.

Attempt to replace a handler with
one already in the system head.

Obsolete version of the handler.

The system does not allow you to
have more than 12 logical devices
(excluding SYS, DSK, and TTY).
The handler that you are
attempting to insert will cause
the number of logical devices to
exceed 12.

This handler's version number is
not recognized; possibly a newer
version.

Message occurs due to one of the
following:

1. Output file is on a read-only
device.

2. No name has been specified for
the output file.

3. OQutput file has zero free
blocks.

I/0 error on reading loader image
file.

The argument specified in a CCL
command line 1is too 1long to be
remembered or an I/0 error
occurred.

Drive 0 was selected for
formatting. Be sure to replace
your system disk pack with the one
that you want to format.

CREF.SV not on SYS:

G~5

Message

CH
CHAIN ERROR

CL

CLOSE ERROR

CLOSE FAILED
Cco

COMMAND LINE
OVERFLOW

COMPARE ERROR

CONTRADICTORY
SWITCHES

CORE IMAGE ERR
DA

DE

DE

DELETES PERFORMED
ONLY ON INPUT
DEVICE GROUP 1
CAN'T HANDLE
MULTIPLE DEVICE
DELETES

DEV LPT BAD

DEV NOT IMPLE-
MENTED

DEVICE DOES
NOT HAVE A
DIRECTORY

0S/78 ERROR MESSAGE SUMMARY

Program

PALS
USR
Monitor
F4

USR
Monitor

CREF
F4

CCL

RXCOPY

CCL

Monitor
F4

F4

PALS

FOTP

CREF

BATCH

DIRECT

Explanation

Chain to CREF error -- CREF.SV was
not found on S5YS:.

Chain error

Bad COMPLEX literal.

Close error

CLOSE on output file failed.
Syntax error in COMMON statement.

The command 1line specified with
@ construction is more than 512
characters in length.

A compare error has been detected
at the track and sector specified.

Either two CCL processor switches
were specified in the same command
line or the file extension and the
processor switch do not agree.

Cannot run system program.
Bad syntax in DATA statement.

This type of statement illegal as
end of DO loop.

Device error. An I1/0 failure was
detected when trying to read or
write a device. Fatal
error-assembly cannot continue.

More than one input device was
specified in the DELETE command
when no output specification
(device or filename) was included.

The default output device, LPT,
cannot be wused as it is not
available on this system.

BATCH cannot accept input from the
specified input device because its
handler is not SYS: Control
returns to the Command Decoder.

The input device is a non-
directory device; for example,
TTY. DIRECT can only read

directories from file-structured
devices.

Message
DEVICE FULL
DEVICE HANDLER
NOT IN CORE

DEVICE IS NOT RX

DF
DF
D.F. TOO BIG
DH

DIRECTORY I/O
ERROR

DIRECTORY
OVERFLOW
DIVIDE BY

DL

DN

DO

name DOES NOT
EXIST
DP

EG

ENTER FAILED

EOF ERROR

EQUALS OPTION BAD

0S/78 ERROR MESSAGE SUMMARY

Program

HELP

USR

Monitor

RXCOPY

PALS

F4

FRTS

F4

USR
Monitor

USR

Monitor

FRTS

F4

F4

F4

CCL

F4

RALF

CREF

FRTS

DIRECT

Explanation

Output device storage capacity

exhausted.

Handler for device specified not
in memory.

One oOr more of the devices
specified to RXCOPY were not RX
diskettes.

Device full. Fatal error -
assembly cannot continue.

Bad DEFINE FILE statement.

Product of number of records times
number of blocks per record
exceeds number of blocks in file.

Hollerith field error in DATA
statement.

An 1/0 error occurred while
attempting to read or write a
directory block.

Directory overflow occurred.

Attempt to divide by zero. The
resulting quotient is set to zero
and execution continues.

Data list and variable 1list are
not same length.

DO-end missing or incorrectly
nested. It is followed by the
statement number of the erroneous
statement rather than the ISN.

Syntax error in DO or implied DO.

The device with the name given is
not present on the 0S/78 system.

DO loop parameter not 1integer or
real.

The preceding line contains extra
code which could not be used by
the assembler.

Entering an output file was
unsuccessful -- possibly output
was specified to a read-only
device.

End of file encountered on input.

The =n option 1is not in the
correct range,

Message

ERROR CLOSING
FILE

ERROR IN
COMMAND

ERROR ON INPUT
DEVICE SKIPPING
(filename)

ERROR ON OUTPUT
DEVICE

ERROR ON OUTPUT

DEVICE SKIPPING
(filename)

ERROR READING
INPUT DIRECTORY

ERROR WRITING
FILE

ERROR WRITING
OUTPUT DIRECTORY

ES

EX

FETCH ERROR

FILE ERROR

FILE OVERFLOW

0S/78 ERROR MESSAGE SUMMARY

Program

DIRECT

CCL

FOTP

BITMAP

FOTP

DIRECT
FOTP
DIRECT

FOTP

RALF

F4

HELP

FRTS

FRTS

Explanation

Qutput device was read-only.

A command not entered directly
from the console terminal is not a
legal CCL command. This error
occurs when the argument of a UA,
UB, or UC command was not a legal
command.

The file specified is not
transferred (due to a hardware
I/0 error), but any previous or
subsequent files are transferred
and indicated in the new
directory. Any file of the same
name may have been deleted from
the output device.

A hardware I/0 error occurred
while writing on output device.

The file specified is not
transferred, but any previous or
subsequent files are ransferred
and indicated in the new
directory.

A hardware I/0 error occurred
while reading the directory.

A hardware I/0 error occurred
while writing the output file.

A hardware I/0 error has occurred.
The output device has probably
been corrupted (directory no
longer describes current files).

External symbol error.

Syntax error in EXTERNAL
statement.

Cannot initialize device handler.
Any of the following:

a. A file specified as an
existing file was not found.

b. A file specified as a
non-existing file would not
fit on the designated device.

c. More than 1 nonexistent file
was specified on a single
device.

d. File specification contained
"*" as name or extension.

Attempt to write outside file
boundaries.

0S/78 ERROR MESSAGE SUMMARY

Message Program Explanation
FL RALF An error has occurred in an
integer-to-real conversion
routine.
FORMAT ERROR FRTS Illegal syntax in FORMAT

statement.

FP RALF A syntax error was encountered in
a real constant.

FULL EDIT The specified output device has

* become full. The file is <closed;
the user must specify a new output
file.

GT F4 Syntax error in GO TO statement.

GV F4 Assigned or computed GO TO
variable must be integer or real.

HO F4 Hollerith field error.

IC RALF The symbol or expression in a

conditional is improperly used, or
left angle bracket is missing.
The conditional pseudo-op is

ignored.
IC PALS Illegal character. The character
is ignored and the assembly

continued.

1D PALS Illegal redefinition of a symbol.
1E F4 A hardware I/0 error on reading
input file. Control returns to

the Monitor.

I1E PALS Illegal equals -- an attempt was
made to equate a variable to an
expression containing an undefined
term. The variable remains
undefined.

1E RALF An entry point has not been
defined, or 1is absolute, or also
is defined as a common section, or
external.

IF F4 Logical IF statement cannot be
used with DO, DATA, INTEGER, etc.

II PALS Illegal indirect -~ an off-page
reference was made; a link could
not be generated because the

indirect bit was already set.

ILLEGAL * DIRECT An asterisk (*) was included in
FOTP the output file specification or
an 1llegal * was included in the

input file name.

Message
ILLEGAL * OR ?
ILLEGAL ?
ILLEGAL ARG

#ILLEGAL INPUT

ILLEGAL ORIGIN

ILLEGAL SPOOL
DEVICE

ILLEGAL SYNTAX

?ILLEGAL WIDTH

INCOMPATIBLE MONITOR
-~ 0S/78 V3.0 EXPECTED

INPUT DEVICE
READ ERROR

INPUT ERROR

INPUT ERROR
READING
INDIRECT FILE

#INPUT FAILURE

0S/78 ERROR MESSAGE SUMMARY

Program

CCL

DIRECT
FOTP

Monitor

BATCH

Loader

BATCH

CCL

SET

SET

RXCOPY

CREF

FRTS

CCL

BATCH

Explanation
An * or ? was used in a CCL
command that does not accept the
wild card construction.

A question mark (?) was included
in the output file specification.

The SAVE command was not expressed
correctly; 1illegal syntax used.

A file specification designated
TTY or LPT as an input device when
the initial dialogue indicated
that an operator is not available.
The current job 1is aborted, and
BATCH scans the input file for the
next $JOB command record.

A RALF routine tried to store data
outside the bounds of its overlay.

The device specified as a spooling
output device must be
file-structured. Control returns
to the Command Decoder.

The command line was formatted
incorrectly.

A width that was 0 or too large
was specified; for the TTY, a
width of 128 or one not a multiple
of 8 was specified.

The system head contains. an o0ld
version of the 0S/78 Monitor. You
cannot change handlers in a system
head that has an o0ld version of
the Monitor.

Bad sector (s), operation
continues.
A hardware I/0 error occurred

while reading the file.

Illegal character received as
input.

CCL cannot read the file specified
with the @ construction due to
hardware I/0 error.

Either a hardware problem
prevented BATCH from reading the
next line of the input file, or
BATCH read the last record of the
input file without encountering a
S$END command record.

Message

INSUFFICIENT
MEMORY FOR
BATCH RUN

1/0

I/0 ERROR

I1/0 ERROR,
FILE #n

IO ERROR IN (file
name) —-- CONTINUING

I/0 ERROR ON SYS:
?I/0 ERROR ON SYS:

I/0 ERROR TRYING
TO RECALL

I/0 READ ERROR
I/0 WRITE ERROR

IP

IX

Iz

LD
LG
LI

LOADER 1/0
ERROR

0S/78 ERROR MESSAGE SUMMARY

Program

BATCH

RALF

FRTS

ABSLDR
BITMAP

PIP

CCL

SET

CCL

SET

SET

PALS

RALF

PALS

PALS

PALS

F4

LOAD

Explanation

0S/78 BATCH requires 12K of memory

to run. Control returns to the
0S/78 Monitor. Type MEMORY 3 and
try again.

I/0 error (fatal error).

Error reading or writing a file,
tried to read from an output
device, or tried to write on an
output device.

An I/0 error has occurred in input
file number n.

An error has occurred during a
SQUISH transfer.

An error occurred while doing 1I/0
to the system device. The system
must be rebootstrapped.

An 1/0 error occurred while trying
to read or rewrite the handler.

An I/0 error occurred while CCL
was trying to remember an
argument.

A hardware error occurred while

reading from the system device.
A hardware error occurred while
writing to the system device.

Illegal pseudo-op -—- a pseudo-op
was used 1in the wrong context or
with incorrect syntax.

An index register was specified
for an instruction which cannot
accept one.

Illegal page zero reference —-- The
pseudo-op was found in an
ingstruction which did not refer to
page zero. The Z is ignored.

The /L or /G options have been
specified and ABSLDR.SV 1is not
present on the system.

Link Generated -- only printed 1if
the /E switch was specified to
PALS.

Argument of logical IF is not of
type Logical.

Fatal error message indicating
that an error was detected by
0S/78 while trying to perform a

USR function.

G-11

Message

LT

LT

#MANUAL HELP
NEEDED

MD

MIXED INPUT

MK

ML

MM

MO

MONITOR ERROR 5

AT xxxx (I/0 ERROR
ON SYS=)

MONITOR ERROR 6

AT xxxx (DIRECTORY
OVERFLOW)

#MONITOR
OVERLAYED

MORE CORE
REQUIRED

MT

0S/78 ERROR MESSAGE SUMMARY

Program

F4

RALF

BATCH

RALF

LOAD

F4
F4
F4
F4

Monitor

Monitor
USR

BATCH

FRTS

F4

Explanation
Input line too 1long, too many
continuations.

The line 1is 1longer than 128
characters. The first 127
characters are assembled and
listed.

BATCH is attempting to operate an
I/0 device, such as a terminal,
that will require operator
intervention.

The tag on the 1line has been
previously encountered at another
location or has been wused in a
context requiring an absolute
expression.

The L option was specified on a
line that contained some file
other than a 1library file. The
library file (if any) is accepted.
Any other input file specification
is ignored.

Misspelled keyword.
Multiply-defined line number.
Mismatched parenthesis.

Operand expected but not found.

A hardware I/0 error occurred
while doing I/0 to the system
device.

A directory overflow has occurred
(no room for tentative file entry
in directory).

The Command Decoder attempted to
call the BATCH monitor to accept
and transmit a file specification,
but found that a user program had
overlayed part of all of the BATCH
monitor. Control returns to the
monitor level, and BATCH executes
the next Monitor command.

The space required for the
program, the I/0 device handlers
(I/0 buffers) and the resident
Monitor exceeds the available
memory.

Operand of mixed type or operator
does not match operands.

Message

MULT SECT

NE

NO CCL!!

NO DEFINE FILE
NO FILES OF THE
FORM xxxXx

NO HELP

NO HELP FILE
NO/1I

NO/I!

NO INPUT

NO INPUT DEVICE
NO OUTPUT
DEVICE

NO MAIN

NO NUMERIC
SWITCH

NO ROOM FOR
OUTPUT FILE

NO ROOM IN (file
name) —-CONTINUING

0S/78 ERROR MESSAGE SUMMARY

Program

Loader

RALF

Monitor

Monitor

FRTS

FOTP

HELP

HELP

BITMAP

ABSLDR

ABSLDR

BITMAP

RXCOPY

RXCOPY

LOAD

FRTS

DIRECT
PIP

PIP

Explanation
Any combination of entry point,
COMMON section {(with the exception
of multiple COMMONs) or program
section of the same name causes
this error.

Number error. A number out of
range was specified or an 8 or 9
occurred while in octal radix
(internal error during FORTRAN
assembly pass).

The user attempted to start (with
.ST) a program that is no longer
in memory.

CCL.SV is not present on the
system device or an I/0 error
occurred on reading it.

Direct access 1/0 attempted
without a DEFINE FILE statement.

No files of the form (XXXX)
specified were found.

No help information is present on
the command given.

No help file is on the system
device.

Cannot produce a bitmap of an
image file.

Use of /I is prohibited after the
first file.

No input or binary file was found
on the designated device.

The command line lacks the
required parameters.

The command line lacks the
required parameters.

No RALF module contained section
#MAIN.

The referenced FORTRAN 1I/0 unit
was not specified to the run-time
system.

Either room on device or room in
directory is lacking.

Occurs during the SQUISH command.
The output device cannot contain
all of the files on the input
device.

Message

NO ROOM, SKIPPING
(filename)

NOT A LOADER
IMAGE

name NOT
AVAILABLE

NOT ENOUGH
MEMORY

name NOT FOUND

?NUMBER TOO BIG

OF

OLD HANDLER NOT FOUND
IN MONITOR

OP
OPTION UNKNOWN XXXXX

0S78 ENTER ERROR

oT

OUT DEV FULL
OUTPUT DEVICE
READ ERROR

OUTPUT DEVICE
WRITE ERROR

OVER CORE

OVER IMAG

0S/78 ERROR MESSAGE SUMMARY

Program

FOTP

FRTS

Monitor

CCL

CCL
Monitor

SET

F4

SET

F4
CCL

LOAD

F4

CREF
RXCOPY
RXCOPY
LOAD

LOAD

Explanation
No space 1is available on the
output device to perform the
transfer. Predeletion may already
have occurred.

The first input file specified to
the run-time system was not a
loader image file.

The device with the name given is
not listed in any system table, or
it is not available for use at the
moment, or the wuser tried to
obtain input from an output-only
device.

The number specified in a MEMORY
command is greater than is
available in the system.

The file name designated 1in the
command was not found in the
device directory.

The number specified was out of
range.

I/0 error while writing output
file. Control returns to the
Monitor.

You attempted to replace a handler
that is not in the system head.

Illegal operator.

Fatal error message indicating
that an error was detected by
0S/78 while trying to perform a
USR function.

Type/operator use illegal (for
example, A.AND.B where A and/or B
not of type Logical).

The output device is full
(directory devices only).

Bad sector (s), operation
continues.

Bad sector (s), operation
continues.

The loader 1image requires more
memory than is available.

Output file overflow in the loader
image file.

Message

OVER SYMB

OVERFLOW

PARENS TOO DEEP
PD
PE

PH

PH

QL
QS
RD

RD

RE

READ ERR

READY. STRIKE
CARRIAGE RETURN
TO CONTINUE

RT
RW

SAVE ERROR

0S/78 ERROR MESSAGE SUMMARY

Program

LOAD

FRTS

FRTS

F4

PALS
F4

PALS

F4

F4

F4

PALS

RALF

HELP

RLFMT

F4

F4

Monitor

Explanation
Symbol table overflow. More than
253 (decimal) symbols in one
FORTRAN job.

Result of a computation exceeds
upper bound for that class of
variable, The result is set equal
to zero and execution continues.

Parentheses nested too deeply 1in
FORMAT statement.

Compiler stack overflow;
statement too big and/or too many
nested loops.

Current non-zero page exceeded.
Bad program header line.

A conditional assembly bracket 1is
still 1in effect at the end of the
input stream -- this is caused by
nonmatching < and > characters in
the source.

Nesting error in EQUIVALENCE
statement.

Syntax error in EQUIVALENCE
statement.

Attempt to redefine the dimensions
of an array.

A permanent symbol has been
redefined using =. The new and
0old definitions do not match. The
redefinition is allowed.

Relocatability error. A
relocatable expression has been
used in a context requiring an
absolute expression.

Cannot read input device.

The /P option was selected. Mount
the disk pack to be formatted and
type a carriage return to begin
formatting.

Attempt to redefine the type of a
variable.

Syntax error on READ/WRITE
statement.

An I/0 error has occurred while
saving the program. The program
remains intact in memory.

Message

SE

SF
SN

SORRY -- NO
INTERRUPTIONS

#SPOOL TO FILE
BTCHAl

SS

ST

ST

SWITCH NOT
ALLOWED HERE

SY

SYM OVERFLOW

?SYNTAX ERROR

#SYS ERROR

SYSTEM DEVICE
ERROR

SYSTEM ERR

0S/78 ERROR MESSAGE SUMMARY

Program

PALS

F4
F4

PIP

BATCH

F4

F4

RALF

CCL

F4

CREF

SET

BATCH

FRTS

Monitor

Explanation
Symbol table exceeded -- too many
symbols have been defined for the
amount of memory available for the
symbol table. Fatal error --
assembly cannot continue.

Bad arithmetic statement function.

Illegal subroutine name in CALL.
“C (CTRL/C) was typed during a
SQUISH; the transfer continues.

Where the "A" may be any character
of the alphabet and the "1" may be
any decimal digit. This message
indicates that BATCH has
intercepted a non-file structured
output file and routed it to the
spool device. This is not,
generally, an error condition.

Error 1in subscript expression;
i.e., wrong number, syntax.

Compiler symbol table full,
program too big. Causes an
immediate return to the Keyboard
Monitor.

User symbol table overflow (fatal
error).

Either a CCL option was specified
on the left side of the < or was
used when not allowed.

System error; i.e., PASS20.SV or
PASS2.SV missing, or no room for
output file. Causes an immediate
return to the Keyboard Monitor.

More than 896 (decimal) symbols
and literals were encountered.
Try again using /M option.

Incorrect format used in SET
command or NO specified when not
allowed.

A hardware I1/0 error occurred
during BATCH operation.

I/0 failure on the system device.
An error occurred while doing 1I/O

to the system device. The system
should be rebootstrapped.

Message

SYSTEM ERROR

SYSTEM ERROR --
CLOSING FILE

D

TOO FEW ARGS

TOO MANY FILES

TOO MANY
HANDLERS

TOO MANY
RALF FILES

?UNKNOWN
ATTRIBUTE
FOR DEVICE dev

UNIT ERROR

uo

us

USER ERROR

USER ERROR 0
AT XXXX

VE

WRITE ERR

WRONG FLOPPY TYPE

0S/78 ERROR MESSAGE SUMMARY

Program

LOAD

FOTP

F4

Monitor

CCL

FRTS

LOAD

SET

FRTS

PALS

RALF
PALS

FRTS

Monitor

F4

HELP

RXCOPY

Explanation

Fatal error message indicating
that an error was detected by
0S/78 while trying to perform a
USR function.

Self-explanatory.

Bad syntax in type declaration
statement.

An important argument has been
omitted from a command.

Too many files were included in a
CCL command.

Too many I/0 device handlers are
resident in memory, or files have
been defined on too many devices.

More than 128 input files were
specified.

An illegal attribute was specified
for the given device.

1/0 unit not assigned, or
incapable of executing tne
requested operation.

Undefined origin -- an undefined
symbol has occurred in an origin
statement.

Undefined symbol in an expression.

Illegal subroutine call, or call
to undefined subroutine.
Execution continues only if the E
option was specified.

An input error was detected while
loading the program. xxxx refers
to the Monitor location where the
error was denerated.

Version error. One of the
compiler programs is absent from
SYS.

Cannot output to device.

Attempt to duplicate from an RXO02
drive with a double-density
diskette to an RX01l single-density
diskette drive.

Message

XxXxXxx.HN NOT FOUND
ON SYS

ZE

ZERO 8YS?

0S/78 ERROR MESSAGE SUMMARY

Program

SET

PALS

PIP

Explanation
The handler that you want to
insert into the system head does
not reside on the system device
(SYS), or does not have a .HN
extension.

Page 0 exceeded -- same as PE
except with reference to page 0.

If any attempt is made to zero the
system device directory, this
message occurs. Responding with Y
causes the directory to be zeroed;

any other character prevents
destruction of the system
directory.

APPENDIX H

0S/78 MULTIFUNCTION OPERATION

DECstation 78 series systems can perform multifunction operations;
that 1is, these systems can run two tasks simultaneously. ©One task is
the normal 0S/78 job stream, that runs in the first 12K of memory.
The second task (the symbiont) runs in the upper 4K of memory (field
3). The symbiont is an interrupt-driven task that you write in PALS8
assembly language. O0S/78 and the symbiont share a common floppy disk
and line printer.

BASIC, FORTRAN and PAL8 programs can be compiled, but only BASIC and
PAL8 programs can run while a symbiont is active. You cannot run
FORTRAN programs because the FORTRAN run time system performs
interrupt-driven I1/0, which would interfere with symbiont operation.

A demonstration symbiont, called spoolr comes with 0S/78. You can use
the SPOOLR to queue and print listings on the line printer while you
do other 05/78 work at the terminal.

H.l1 SYMBIONT COMMANDS
0S/78 commands that control symbiont operation are as follows:
REQEST symbiont-name
This command automatically sets memory for 0S/78 to 12K (MEM
2) and starts up the named symbiont. The default extension
for a symbiont save image is .SM; if .SM is not found, the
auxiliary default extension is .SV.
CANCEL
This command cancels the <currently running symbiont and
returns 0S/78 to operation in 16K memory.

CAUTION

Do not use the MEM command while a symbiont is
running.

0S/78 MULTIFUNCTION OPERATION

H.2 SPOOLER COMMANDS

Type the following command to start SPOOLR.

«REQ SFOOLR

This command starts the spooler.

You can use the following commands once the SPOOLR program is running.

.QUEue filename list, .../options,...

Enter the specified lists of files for printing on the 1line
printer. Options for the QUEUE command are:

/L Lists contents of queue and prints version number
of QUEUE and SPOOLR

/C:n Specifies the number (n) of copies to be printed
(in octal)

/N A block letter header will not be added to the
files queued

/2 Prints two pages of block 1letter header rather
than one.

H.3 CUSP CODE CONVENTION

You should observe the following conventions when writing 0S/78
programs if you want to run them while a symbiont is running.

1.

If the program loads into page 0 of field 0, then it must
contain the following coade:

X1
CIF 30
JHMFE -

Also, locations 0, 1, and 2 must not be used as scratch or as
data.

The program must not use page 0 of field 0 as a buffer or
data area. However, you may swap the 0S/8 command decoder in
this area.

The program must not turn interrupts on or off.

The program must not modify the software memory size.

The program must not use field 3.

0S/78 MULTIFUNCTION OPERATION

H.4 WRITING A SYMBIONT

To write your own symbiont, you must know the PAL8 assembly language
and the PDP-8 architecture. You must observe the following
conventions when you write a symbiont.

1. The symbiont runs only in field 3.

2. The symbiont must turn on interrupts and must disable
keyboard interrupts (KIE with AC=1).

3. The CANCEL command branches to the symbiont at 1location
30003.

4. The symbiont will receive interrupts at location 30001.
After saving the AC, Link, etc., the symbiont should pick up
location 0 in field 0 and save it in location 0 of field 3.

APPENDIX I

FULL WORD COMMAND SWITCHES

0S/78 allows you to enter complete words in place of most of the
standard single-character command options. For example, this command

.DIR/BRIEF
is the same as
.DIR/F

This appendix lists the switch options and the full word equivalents
that you can use in 0S/78 commands. Keep in mind the following rules
and features.

e The standard single-character slash options remain legal and
are the only single-character switches you should attempt to
use in a command.

® Only the first six characters of a full word are significant.

® Every character in a full word switch must be legal. For
example, /QUIEX 1is an 1illegal switch and will produce the
message UNKNOWN SWITCH.

® You may abbreviate any switch option to the number of
characters (at 1least two) necessary to determine the switch
uniguely for the command in question. For example, 1in the
DIRECT command, /EXT is a valid abbreviation for the /EXTENDED
switch. /EX, however, is not valid because the switch /EXCEPT
also begins with these two characters.

e If you fail to type enough characters to identify a switch
uniquely, you will receive an AMBIGUOUS SWITCH message.

e You may still enclose single-character switches in
parentheses. (ABC) in a command line means the same as A/B/C.
However, you may not enter full word switches in this manner.

® :n is the same as the standard =n and may optionally follow
any full word switch. Thus /IMAGE:24 is the same as /I=24.

FULL WORD COMMAND SWITCHES

Single-

Command Character Switch Full Word Switch
COMPARE /B /BLANKS

/C /NOCOMMENTS

/S /NO SPACES

/T /TABS

/X /NOPRINTCOMMENTS
COMPILE /G /GO
(see PAL and BASIC) /N /NOISN

/Q . /OPTIMIZE
COPY /C /CURRENT

/D /NOCOPY

/F /FAILSAFE

/N /NOPREDELETE

/0 /OTHER

/Q /QUERY

/R /RENAME

/T /TODAY

/U /INDEPENDENTLY

/v /EXCEPT
CREATE /B /SPACES
CREF /E KEEP

/M MAMMOTH

/P NOLIST

/U NOSYNTAR

/X NOLITERALS
DELETE /C /CURRENT

/0 /OTHER

/Q /QUERY

/T /TODAY

/U /INDEPENDENTLY

/v /EXCEPT
DIRECT /B /BLOCKS

/C /CURRENT

/E /EXTENDED

/F /FAST

/M /EMPTIES

/0 /OTHER

/R /REMAINDER

/U /INDEPENDENTLY

Va'% /EXCEPT

=n /COLUMNS:n
DUPLICATE /M /NOCOPY

/N /NOMATCH

/P /PAUSE

/R /READYCNLY
EDIT /B /SPACES

/D /DELETE

Command

FORMAT RLO1

LIST

LOAD

MAP

PAL

QUEUE

RENAME

SQUISH

SUBMIT

TYPE

FULL WORD COMMAND SWITCHES

Single-

Character Switch

/0
/1
/P

/C
/0
/Q
/U
/v

/G
/I
/S

/S
/T

/B
/C
/E
/F
/G
/H
/J
/L
/N
/0
/S
/W

/C=n
/L
/N

Full Word Switch

/ZERO
/ONE
/PAUSE

/CURRENT
/OTHER

/QUERY
/INDEPENDENTLY
/EXCEPT

/GO
/IMAGE
/MULTIPLE

/MULTIPLE
/INVERT

/SHIFT

/CREF

/NOLINKS
/NOFILL

/GO
/NONPAGINATED
/NOCONDITIONALS
/LOAD

/NOLIST

/NOORIG
/NOSYMTAB
/NOREMEMBERLITERALS

/COPIES:n
/LIST
/NOH

/CURRENT
/OTHER

/QUERY

/TODAY
/INDEPENDENTLY
/EXCEPT
/VERSION

/OK

/NONFATAL
/HUSH
/QUIET
/TERMINAL
/UNATTENDED
/VERSION

/CURRENT
/OTHER

/QUERY

/TODAY
/INDEPENDENTLY
/EXCEPT

MODEL CPU
78/40 VT78 (16K)
78/50 VT78 (16K)
78/60 VT78 (16K)
78/70 VT78 (16K)
88/50 8A205 (32K)
88/70 8A205 (32K)
88/80 8A205 (32K)
88/90 8A205 (32K)
88/92 8A425 (32K)
88/97 8A425 (64K)
* Can be connected
equivalent.

Console
Terminal

VT78
VT78
vT78
VT78
vT100
VT100

VT100

VT100
VT100

VT100

APPENDIX J

or

or

or

or

or

or

LA36

LA36

LA36

LA36

LA36

LA36

to LA34/38,

Disk

LA36,

Systen

RX01
RX02
RX01
RX02
RX02
RX02

RX02
RLO1

RLO1
RLO1

RLO1

LA120,

DECstation Hardware Configuration Summary

Line Printer
(optional)

LA78 or LQP78
LA78 or LQP78
LA78 or LQP78
LA78 or LQP78
LA180 or LQP7
LA180

LA180

LA180
LA180

LA180

VvT52, VT100

8

or

Serial 1/0
" Ports*

2 (optional)
2 (optional)

2 (optional)

2 (optional)
2 (optional)

2 (optional)

GLOSSARY

GLOSSARY

ABSOLUTE ADDRESS
A number that is permanently assigned as the address of a memory
storage location.

ACCESS TIME
The interval between the instant at which a data transfer is
requested and the instant at which the data actually starts
transferring.

ACCUMULATOR
The register in which the hardware arithmetic operations are
performed (abbreviated AC).

ADDRESS
1. A name or a number which identifies a location in memory,
either within a field (l2-bits wide) or within all available
memory (15-bits wide with left-most bit 0).

2. The part of an instruction that specifies the location of the
operand of that instruction.

ALGORITHM
A prescribed sequence of well-defined rules or processes for the
solution of a problem.

ALPHANUMERIC
Pertaining to the character set that contains only letters and
numbers.

ARGUMENT
A variable or constant which is given in the call of a subroutine
as information to it; the independent variables of a function;

the known reference factor necessary to find an item in a table
or array {that is, the index).

ARRAY
An ordered set of data values. An n-dimensional array is a table
having n dimensions.

ASCIT
American Standard Code for Information Interchange. Established
by American Standards Association to standardize a binary code
for printing and control characters.

ASSEMBLE
To translate from a source program to a binary program by
substituting binary operation codes for mnemonic operation codes
and absolute or relocatable addresses for symbolic addresses.

Glossary-1

GLOSSARY

ASSEMBLER
A program which translates assembly language instructions into
machine 1language and assigns memory locations for variables and
constants.

ASSEMBLY LANGUAGE
A symbolic 1language that translates directly into machine

language instructions. Usually there is a one to-one relation
between assembly 1language instructions and machine language
instructions.

AUTO-INDEXING
A property of the autoindex registers (locations 0010 through
0017. When one of these locations is addressed indirectly, the
contents of that location are incremented by one, rewritten into
that same location and then used as the effective address of the
current instruction.

AUXILIARY STORAGE
Storage that supplements memory such as a diskettes and disk
packs.

BASIC
A high~level easy to learn programming language for arithmetic
and string computations Developed by Dartmouth College.

BATCH PROCESSING
A method of using 0S/78 with no operator interaction.

BINARY
Pertaining to the number system with a base (or radix) of two.
In this system numbers are represented by strings of 1's and 0's.

BINARY CODE

A code that makes use of two distinct values: 0 and 1.
BIT
Contraction of "Binary digit", a bit 1is the smallest unit of
information in the binary system of notation.
BIT MAP
A method of keeping track of used and unused entities by
assigning one bit in a table to each entity.
BLOCK
A set of consecutive machine words, characters or digits handled
as a unit, particularly with reference to input and output; an
0S/78 block is 400 octal contiguous words (two memory pages).
BOOTSTRAP
A program of instructions that are executed when the START
pushbutton 1is pressed or you use the BOOT command. The purpose
of a bootstrap is to load and start the 0S/78 Monitor.
BREAKPOINT
A location in a program at which that program's execution may be
suspended, so that partial results can be examined via ODT.
BUFFER

An area that is usually used for temporary storage. Buffers are
often used to hold data being passed between processes or devices
which operate at different speeds or different times.

Glossary-2

GLOSSARY

BUG
A mistake in the design or implementation of a program resulting
in erroneous results.

BYTE
A group of binary digits wusually operated upon as a unit,
especially one of six bits.

CALL

To transfer control to a specified routine; to invoke a system
command.

CALLING SEQUENCE
A specified arrangement of instructions and data necessary to
pass parameters and control to a given subroutine.

CARTRIDGE DISK PACK
A removable data storage medium consisting of a thin disk coated
with a magnetic recording material and enclosed in a two-piece

protective cover.

CCL (CONCISE COMMAND LANGUAGE)
A system program that simplifies the entry of 0S/78 commands by
calling the selected system program and decoding its command
string.

CHAINING
A program technique which involves dividing a program into
sections with each section terminated by a call to. the next
section. i

CHARACTER
A single letter, number or symbol (printing or non-printing) used
to represent information.

CLEAR
To erase or reset the contents of a memory location or hardware
register.

CLOCK
A hardware device that generates periodic program interrupts when
enabled.

COMPILE

To translate a source program written in a high-level language,
such as BASIC or FORTRAN, into a binary-coded program. In
addition to translating the source language, appropriate
subroutines may be selected from a subroutine library and output
in binary code along with the main program.

COMPILER
A program which compiles entire high-level 1language source
programs into binary coded programs.

CONCATENATION
The adjacent joining of two strings of characters to produce a
longer string.

CODE
To write instructions for a computer using symbols meaningful to
the computer or to an assembler, compiler, or other language
processor.

Glossary-3

GLOSSARY

COMMAND
A directive from the user to the system entered from the keyboard

or a BATCH input file.

COMMAND DECODER
A part of 0S/78 that interprets file and option specification
strings typed by the user,.

CONDITIONAL ASSEMBLY
The processes of translating specific sections of an assembly
language program into machine code only if certain conditions
have been met during the assembly process.

CONFIGURATION
A particular selection of computer, peripherals and interfacing
equipment that are to function together.

CONSTANT
Numeric data used but not changed by a program.

CONTROL
Memory address at which the next instruction will be executed.
When "control is passed" to a location, the instruction contained
in that location will be the next one to be executed.

CONVERSATIONAL PROGRAM
A program which interacts dynamically with on-line users, that
is, an interactive program.

COUNTER
A variable or memory location wused to control the number of
iterations of a program loop.

CPU
Central Processing Unit, the portion of a computer that executes
most instructions.
CRASH
Fail Totally. When a system crashes, it will not function at all
and must be restarted.
CRC
Cycle Redundancy Check. An error detection technique used for
detecting incorrectly read pits in file-structured devices.
CREATE

To open, write, and close a file for the first time.

CROSS REFERENCE PROGRAM (CREF)
A program that generates a sequence-numbered listing file and a
table that contains line numbers of all referenced user-defined
symbols and literals and their usage.

CYCLE TIME
A basic unit of time in a computer, usually egual to the memory
read time plus memory write time. Computer instructions usually
execute in multiples of the cycle time.

DATA
A general term used to denote any or all computer-represented
facts, numbers, letters and symbols.

DEBUG
To detect, locate, and correct mistakes in a program.

Glossary-4

GLOSSARY

DEFAULT
A parameter that is assumed by the system when none is explicitly

specified. :

DELIMITER
A character that separates and organizes elements of data,

particularly the symbols of a programming language.

DEVICE
A peripheral hardwre I/O unit and/or a removable date volume

mounted on it.

DEVICE CODES
Numbers assigned to each device in the system, used in the
computer instructions for those devices.

DEVICE DRIVERS
See Device Handlers.

DEVICE HANDLERS
Routines that perform I/O for specific devices 1in a standard
format. These routines also handle error recovery and provide
device independence.

DEVICE INDEPENDENCE
The ability of a computer system to divert the input or output of
an executing program from one device to another, either
automatically 1f the specified device is out of order, or by a
xeyboard command to the Monitor.

DIAGNOSTIC
Pertaining to the detection and isolation of hardware
malfunctions.

DIGITAL
Representation of information by discrete units.

DIRECT ACCESS
Same as Random Access.

DIRECT ADDRESS
A number that specifies the location of an instruction operand.

DIRECTORY
A reserved storage area on a mass storage device that describes
the 1layout o©of the data on that device in terms of file names,
length, location, and creation date.

DISKETTE
A removable data volume, consisting of a thin disk coated with a
magnetic data-storage material. Also called a floppy disk.

DISK PACK
See cartridge disk pack.

DUMMY ARGUMENTS
Symbolic names used only as placeholders for other actual
arguments that will be uniformly substituted for them at a later
time. Used within programming language function definitions to
represent the independent (supplied) variables.

ECHO

The displaying by the terminal of characters typed on the
keyboard.

Glossary-5

GLOSSARY

EDITOR
A program which interacts with the programmer or typist to enter
new programs into the computer and edit them as well as modify
existing programs.

EFFECTIVE ADDRESS
The address actually used to fetch an instruction operand, that
is, the specified address modified by indexing or indirect
addressing rules.

ENTRY POINT
A point in a subroutine to which control is transferred when the
subroutine is called.

ERROR MESSAGE
A message from computer system to programmer that reports a
hardware malfunction or an incorrect format or operation detected
by software.

EXECUTE
To cause the computer to carry out an instruction; to run a
program on the computer.

FIELD
1. A division of memory containing 4096 decimal (numbered 0-7777
octal) storage cells (locations).

2, An element of a format specification, particularly of a

record.
FILE
A contiguous block of characters or computer words, particularly
where stored on a mass storage device and entered in the device's
directory.
FILE NAME

A name of one to six alphanumeric characters chosen by the user
to identify a file.

FILE NAME EXTENSION
Two alphanumeric characters chosen by the programmer or provided
by 0S/78 to describe the format of information in the file.

FILE~-STRUCTURED DEVICE
A device on which files may be stored; also contains a file
directory.

FIXED POINT
A format in which one or more computer words (two in the case of
0S/8 FORTRAN 1integers), represent a number with a fixed binary
point.

FLAG
A variable or register used to record the status of a program or
device. In the latter case it is sometimes called a device flag.

FLOATING POINT
A format in which one or more computer words (three in the case
of 0S/8 FORTRAN Real and 0S/8 BASIC numbers) represent a number
with a variable binary point, particularly when there is an
exponent part and a mantissa part.

FLOPPY DISK
See diskette.

Glossary-~6

GLOSSARY

FORMAT
1. A description of a set of valid seguences of language or data
elements; syntax.

2. A FORTRAN statement which specifies the arrangement of
characters to be used to represent a piece of data.

FORTRAN
A high-level language developed for the scientific community, it
stands for FORmula TRANslation.

GARBAGE
Undefined or random data or instructions.

HARD COPY
Computer output in the form of printing on paper and generally in
readable form such as listings or other documents.

HEAD
A hardware component that reads, records, or erases data on a
file-structured device.

HIGH-LEVEL LANGUAGE
A language in which single statements typically result in more
than one machine 1language instruction, for example, BASIC,
FORTRAN.,

INDIRECT ADDRESS
An address in a computer instruction which indicates a location
in memory where the address of the referenced operand 1s to be
found.

INHIBIT
To prevent, suppress or disallow.

INITIALIZATION CODE
Code which sets counters, switches, and addresses to zero or
other starting values at the beginning of or at prescribed points
in a computer routine.

INPUT BUFFER
A section of memory used for storage of input data.

INPUT
The process of transferring data to memory from a mass storage
device or from other peripheral devices into the AC.

INSTRUCTION
One unit of machine language, usually corresponding to one line
of assembly language, which tells the computer what elementary
operations to do next.

1/0
Input-output. Refers to transfers of data between memory and
peripheral devices.

ITERATION
Repetition of a group (loop) of instructions.

INTERACTIVE

Referring to a mode of using a computer system in which the
computer and the user communicate via a computer terminal.

Glossary-7

GLOSSARY

INTERRUPT
A hardware facility that executes an effective JMS to location 0
of field 0 upon any of a particular set of external (peripheral)
conditions. The processor state is saved so that the interrupted
program can be continued following any desired interrupt-level
processing.

INTERRUPT DRIVEN
Pertaining to software that uses the interrupt facility of the
computer to handle I/O and respond to user requests.

JOB
A unit of code which solves a problem; a program or seguence of
programs.

JUMP
A departure from the consecutive seguence of executing
instructions. Control is passed to some location in memory which
is specified by the jump instruction.

K
Two to the tenth power (1024 in decimal notation). For example,
a 4K memory has 4096 words.

KEYBOARD
On a typing device, the array of buttons which causes character
codes for letters, numbers, and symbols to be generated when
pressed.

LABEL
One or more characters used to identify a source language
statement on line or label.

LATENCY

On rotating storage devices, the delay between the 1instant the
device 1is notified that a transfer is coming and the instant the
device is ready to perform the transfer,

LEAST SIGNIFICANT DIGIT
The rightmost digit.

LIBRARY
A collection of standard routines which can be incorporated into
other programs.

LINE
A string of characters terminated with a line feed, vertical tab,
or form feed character (and usually also a carriage return). The
terminator belongs to the line that it terminates.

LINE NUMBER
1. In source languages such as BASIC and FORTRAN, a number which
begins a 1line for purposes of identification. A numeric
label.

2. In editors and listings, the number of the line beginning at
the first line of the program and counting each line.

3. An automatically-generated indirect address for an off-page
reference (PALS8).

Glossary-8

GLOSSARY

LINK
1. A one-bit register that is complemented when overflow occurs

in the accumulator.

2. An address pointer to the next element of a list or next block
of a file.

3. A PALS8 assembler-created indirect address.

LINKAGE
Code that connects two separately coded routines and passes
values and/or control between them, particularly when the
routines occupy separate fields.

LIST
To output out a listing on the terminal or 1line printer. The
listing of a source program is a sequential copy of statements or
instructions in the program. Also, a table of data in a program.

LITERAL
A constant that defines itself by requesting the assembler to
reserve storage for 1it, even though no storage location is
explicitly specified in the source prgram.

LOAD
To move data into a hardware register or into memory.

LOADER
A program which takes information in binary format and copies it
into memory. An absolute loader loads binary information that
has been prepared for the absolute addresses of memory. A
relocatable or linking loader loads binary information specified
in relative addresses by assigning an absolute address to every
relative address.

LOCATION
A numbered or named cell in memory where a word of data or an
instruction or address may be stored.

LOOP
A sequence of instructions that is executed repeatedly until a
terminating condition occurs. Also, used as a verb meaning to
execute this sequence of instructions while waiting for the
ending condition.

MACHINE LANGUAGE
The language, particular to each kind of computer, that those
computers understand. It is a binary code which contains an
operation code to tell the computer what to do and an address to
tell the computer what data to perform the operation on.

MAP
A diagram representing memory locations and outlining which
locations are used by which programs.

MASK
A combination of bits that is used to clear or accept selected
portions of any word, character or register while retaining or
ignoring other parts. Also, to clear these selected locations
with a mask.

MASK STORAGE
Devices such as a diskette and disk pack that stores large
amounts of data readily accessible to the central processing
unit,

Glossary-~9

GLOSSARY

MATRIX
A rectangular array of elements. A two-dimensional table can be

considered a matrix.

MEMORY
The main storage in a computer from which instructions must be
fetched and executed. Consists of a seguence of

consecutively-numbered cells storing one word each.

MEMORY IMAGE FILE
An executable binary code program file created by the system
command SAVE from the current contents of memory.

MEMORY MAP
A diagram or table showing specific memory reguirements of one or

more programs.

MEMORY REFERENCE INSTRUCTION
A computer instruction that accesses the computer memory during
its execution, as opposed to a register instruction which only
accesses registers in the CPU and I/O instructions which are
commands to peripheral devices.

MNEMONIC
A symbolic representation of an operation code or address (for
example, X for unknown variable, JMP for jump instruction).

MODE
A state or method of system or program operation.

MODULE
A routine that handles a particular function.

MONITOR
The collection of routines which schedules resources, I/0, system
programs, and user programs, and obeys keyboard commands.

MONITOR SYSTEM
Editors, assemblers, compilers, loaders, interpreters, data
management programs and other utility programs all automated for
the user by a monitor.

MOST SIGNIFICANT DIGIT
The leftmost digit.

NESTING
The inclusion of one program language c¢onstruction inside
another.

NON-DIRECTORY DEVICE
A device such as a terminal or a line printer that cannot store
or retrieve files.

NO-0OP
Contraction of No Operation, an instruction that specifically
causes the computer to delay for one instruction time, and then
to get the next instruction.

OBJECT CODE
The result after assembling or compiling source code.

OCTAL
The number system with a base, or radix, of eight.

Glossary-10

GLOSSARY

ODT
Octal Debugging Technique, an interactive program for finding and
correcting bugs in programs in which the user communicates in
octal notation.

OFF-LINE

Pertaining to equipment, devices or events which are not under
direct control of the computer.

ONE'S COMPLEMENT
A number formed by settng each bit in an input number to the
other bit: 1l's become 0's and 0's become 1's. .

OP~CODE
The part of a machine language instruction that identifies the
operation that the CPU will be required to perform.

OPERAND
The data to be used when an instruction is executed.

OPERATING SYSTEM
See MONITOR SYSTEM

OPERATOR
That symbol or code which indicates an action or operation to be
performed (e.g., + or TAD).

ORIGIN
The absolute address of the beginning of a section of code.

OouTPUT
The process of transferring data from memory to a mass storage
device or to a listing device such as a line printer.

OVERFLOW
A condition that occurs when a mathematical operation yields a
result whose magnitude is larger than the program or system is
capable of handling.

PACK
To conserve storage requirements by combining data.

PAGE
A 128 (decimal) word section of memory, beginning at an address
which 1is a multiple of 200 ({octal). There are 40 (octal) pages
in a field, numbered 0-37 (octal).

PAL
The name of the 0S/78 system's assembly language.

PARITY BIT

A bit that indicates whether the total number of binary one
digits in a piece of data is even or odd.

PARITY CHECK
A check that tests whether the sum of all the bits in an entity
is odd or even.

PASS
One complete reading of a set of input data. An assembler
usually reguires two passes over a source program in order to
translate it into binary code.

Glossary-11

GLOSSARY

PATCH
To modify a routine in an expedient way, usually by modifying the

memory image rather than reassembling it.

PERIPHERAL
In a data processing system, any device distinct from the CPU,
which provides the computer system with outside communication.

POINTER '
A location containing the address of another word in memory.

PRINTOUT
A loose term referring to almost anything printed by a computer
peripheral device; any computer-generated hard copy.

PROGRAM
A unit of instruction and routines necessary to solve a problem.

PROGRAM COUNTER
A register in the CPU that holds the address of the next
instruction to be executed.

PROGRAMMABLE
Can be controlled by instructions in a program.

PROMPTING CHARACTER
A character that is displayed on the console terminal and cues
the user to perform some action.

PSEUDO-OP
Contraction of "Pseudo Operation", an assembly language directive
which does not directly translate into machine code but gives
directions to the assembler on how to assemble the code that
follows.

RADIX
The base of a number system, the number of digit symbols reguired
by a number system. The decimal number system is radix 10.

RANDOM ACCESS
Pertaining to a storage device where data or blocks of data can
be read without regard to their physical order (for example,

diskette).

READ
To transfer information from a peripheral device into memory or a
register in the CPU.

RECORD
A collection of related items of data treated as a unit, such as
a line of source code, or a person's name, address, and telephone
number.

REDUNDANCY
In any data, that portion of the total characters or bits that
can be eliminated without any loss of information.

REGISTER

A device usually made of semiconductor components that is capable
of storing a specified amount of data, frequently one word.

RELATIVE ADDRESS

The number that specifies the difference between the actual
address and the base address.

Glossary-12

GLOSSARY

RELOCATE
To move a routine from one portion of storage to another and to
adjust the necessary address references so that the routine can
be executed in the new location.

RESTART
To resume execution of a program.

RETURN
To pass control back te a calling program at a point following
the call when a subroutine has completed its execution.

1. The set of instructions at the end of a subroutine that
permits control to return to the proper point in the main
program.

2. The point in the main program to which control is returned.
3. The name of a key on the terminal.
RING-BUFFER
A storage area for data accessed on a first-in, first-out Dbasis
whose area is reused circularly.
ROUTINE

A set of instructions arranged in proper seqguence to cause the
computer to perform a desired task.

RUN
1. A single continuous execution of a program.
2. To perform that execution.

RUN TIME

The time during which a program is executed.

SCRATCH PAD MEMORY
Any memory or registers used for temporary storage of partial
results.

SECTOR
The smallest unit of physical storage on a file-structured
device.

SEGMENT
To divide information into segments or to store portions of
information program on a mass storage device to be brought into
memory as needed.

SERIAL ACCESS
Pertaining to tne sequential or consecutive transmission of data
to or from memory or a peripheral device.

SERIAL TRANSMISSION
A method of information transfer in which the bits composing the
character are sent sequentially on a single path.

SERVICE ROUTINE
A program used for general support of the user; I/0 routines,
diagnostics, and other utility routines.

SHIFT
A movement of bits to the left or right, usually performed in the

accumulator.

Glossary-13

GLOSSARY

SIMULATE '
To represent the function of a device, system or program with

another device, system or program.

SOFTWARE
The executable instructions used in a computer system.

SOURCE LANGUAGE
Any programming language used by the programmer to write a
program before it is translated into machine code.

SOURCE PROGRAM
The computer program written in the source language.

SPOOLING
The technique by which output to slow devices 1is placed 1into
temporary files on mass storage devices to await transmission.
This allows more efficient use of the system since programs using
low speed devices can run to completion quickly and make room for
others.

STATEMENT
An expression or instruction in a source language.

STORAGE
A general term for any device capable of retaining information.

STORE
To enter data into a storage device, especially memory.

STRING
A sequence of characters.

SUBROUTINE
A section of code, usually performing one task, that may be
called from various points of a main program.

SUBSCRIPT
A value used to specify a particular item in an array.

SYMBIONT
A program (or task) that can run simultaneously and cooperatively
with the 0S/78 system. This 1is a feature of DEC station 78
series systems (see Appendix H).

SYMBOLIC ADDRESS
Alphanumeric characters used to represent a storage location in
the context of a particular program. It must be translated to an
absolute address by the assembler.

SYMBOL TABLE
A memory storage area or a listing that contains all derined
symbols and the binary value associated with each one., Mnemonic
operators, labels, and user defined symbols are all placed in the

symbol table. (Mnemonic operators stay in the table
permanently.)
SYNCHRONQUS

Pertaining to circuits or events where all changes occur
simultaneously or in definite timed intervals.

SYSTEM

A combination of software and hardware which performs specific
processing operations.

Glossary-14

GLOSSARY

SYSTEM DEVICE
A peripheral mass storage device on which the system software
resides. Its handler (SYS) is resident in the last page of field
0.

SYSTEM HEAD
The system area reserved on a file-structured device for the
0S/78 Keyboard Monitor. It resides on the system device and
contains, in addition to the Monitor, programs such as ODT and
Command Decoder.

SYSTEM SOFTWARE
DEC-supplied programs which come in the basic software packages.
These include editors, assemblers, compilers, loaders, etc.

TABLE
A collection of data sorted for ease of reference, denerally a
two-dimensional array.

TEMPORARY STORAGE
Storage locations or registers reserved for intermediate results.

TERMINAL
A peripheral device in a system through which data can enter or
leave the computer, especially in a display and keyboard.

TEXT
A message or program expressed in characters.

TRACK
The set of all sectors of a file-structured device that are
accessible at each head position.

TRUNCATION
The reduction of precision by ignoring one or more of the least
significant digits without rounding off.

TWO'S COMPLEMENT
A number used to represent the negative of a given value in many
computers. This number is formed from the given binary value by
changing all 1's to 0's and all 0's to 1's, then adding 1.

UTILITIES
Programs to perform general useful functions.

VARIABLE
A piece of data whose wvalue changes during the execution,
assembly, or compilation of a program.

WORD

A 12-bit unit of data which may be stored in one addressable
location in memory or on a peripheral device.

Glossary-15

INDEX

¢ FORTRAN carriage control
character, 7-1¢1

1 FORTRAN carriayge control
character, 7-181

/2 QUEUE command option,

/8 LOAD command option, 3-43

/9 LOAD command option, 3-43

/=n DIRECT command option,
3-25

H-2

A,

Editor append command,

field descriptor, 7-95

ODT command, 9-6
ABS BASIC function,
ABSLDR.SV, 3-11, 3-34,
Absolute binary files,
Absolute value function,
Addition,

BASIC operator (+), 6-17

FORTRAN operator (+), 7-39

PAL8 operator (+), 5-18

4-6

6-48

3-44
3-42
6-48

Addressing indirect and page zero,

5-29
AINT FORTRAN function, 7-106
ALOG FORTRAN function, 7-106
ALOGl¢¥ FORTRAN function, 7-1¢6
Alphanumeric literals, 7-31
AMAX® FORTRAN function, 7-~1€6
AMAX1 FORTRAN function, 7-~106,

6-106
AMINg FORTRAN function, 7-106
AMIN1 FORTRAN function, 7-106
AMCD FORTRAN function, 7-106
Anpersand (&),

BASIC operator, 6-18, 6-33

PAL8 operator, 5-18
AND,

BASIC function, 6-58

PAL8 AND symbol (&), 5-18
.AND. FORTRAN operator, 7-42
Angle brackets (<>),

BASIC relations, 6-21

in PAL8 comments, 5-23

left (<),

Editor command, 4-12
monitor, 2-13
PAL8 conditionals, 5-23

right (>) Editor command, 4-12
Arctangent function, 6-45
Arguments system retention of,

2-17
Arithmetic expressions,

BASIC, 6-17
FORTRAN, 7-38

Arithmetic statements,
FORTRAN, 7-45
BASIC strings, 6-19
Arrays,
BASIC, 6-24
FORTRAN, 7-33, 7-47
ARROW SET command option,
ASC function, 6-52
ASCII,
6-bit, 5-37
character set,
conversion,
BASIC function,
PAL8, 5-22
entering PALS8 text strings,
file format, 2-26
ASF function, 7-7¢
ASIN FORTRAN function,
Assembling a PALS8 program,
CREF command, 3-19
PAL command, 3-53
Assembly language programs,
Command Decoder use, D-1
math subroutines, B-1
Assembler termination,
ASSIGN,
command,
statement, 7-58
ASS1IGNed GOTO, 7-58
Assigning logical device names,
3-2
Asterisk (*),
BASIC, 6-33
double (**),
BASIC operator, 6-17
FORTRAN operator, 7-39
FORTRAN operator, 7-39
prompting symbol, 2-21
PAL8 location counter,
PAL8 special character,
wild character, 2-18
At (@) symbol indirect commands,
2-29
ATAN FORTRAN function,
ATAN2 FORTRAN function,
ATN function, 6-45
Autoindex registers,

3-62

A-1
5-52

5-37

7-187
5-5

5-39

2-11, 3-2

5-14
5-21

7-167
7-187

5-28

B
’Editor buffer command, 4-7
ODT command, 9-5
/B,
BASIC option, 6-79
COMPARE option, 3-6

COMPILE command option, 6-79

Index-1

INDEX (Cont.)

/B (cont.)
DIRECT command option,
Editor option, 4-21
PAL8 option, 5-9
.BA file name extension,
BACKSPACE statement, 7-86
BASIC, 6-1,
arithmetic expressions, 6-17
auto line numbering, 6-8
calling an old program, 6-4
changing program text, 6-7
character set, 6-2
command, 3-3
command summary,
commands, 6-3

3-25

2-12

6-86

commercial arithmetic, 6-19
compilation, 3-34
constants, 6-13

control statements, 6-36

creating a new program, 6-4

deleting text, 6-7

deleting program lines, 6-12

direct record 1/0, 6-69

elements of the language, 6-13

ending a session, 6-11

erasing a program, 6-11

error messages, 6-86

execution, 3-34, 3-18

expression operators, 6-17

expressions, 6-17

file control, 6-62

file statements, 6-62

format control, 6-30

function summary, 6-83

functions, 6-43

interaction with BATCH, 6-80

interrupting program execution,
6-12

issuing monitor commands, 6-55

listing a program, 6-~5
listing control, 6-12
logical functions, 6-58
merging text, 6-9
numeric,

constants, 6-13

field list use, 6-36

functions, 6-44

variables, 6-15
operating procedures, 6-3
overlay files, 6-89
overview, 6-1
printing format strings, 6-35
program termination, 6-41
program segmentation, 6-74
reading files, 6-65
relational expressions, 6-18
renaming a program, 6-1¢
resequencing a program, 6-11
running a program, 6~5
saving programs, 6-79

BTCHAx BATCH files,

BASIC (cont.)
special print functions, 6-34
statements, 6-23
formatting, 6-22
summary, 6-81
storing a program, 6-18
string,
concatenation,
constants, 6-14
functions, 6-49
numbers, 6-20
relations, 6-22
variables, 6-15
subroutines, 6-42
subscripted variables, 6-16
user-defined functions, 6-78
using record 1/0 files, 6-72
variables, 6-14
writing files, 6-65
writing programs, 6-1

6-18

BASIC.SV, 3-3
BAT device handler, 3-67
Batch,

command processing, 8-3
commands, 8-2

error messages, 8-6

input file structure, 8-4
interaction with BASIC, 6-80
introduction, 8-1

SUBMIT command, 3-72

operating restrictions, 8-8
options, 8-2

BATCH.SV, 3-74

BCOMP.SV, 3-11,, 3-34

.BI file name extension, 2-12

BITMAP.SV, 3-48
Blgnk lines in FORTRAN programs,
-25
BLOAD.SV, 3-34
BLOCK DATA statement, 7-54
.BN file name extension, 2-12
Boolean operators, PAL8, 5-18
BOOT,
command, 3-4
button, 2-6
BOOT.SV, 3-4
Bootstrapping 0S/78,
Brackets ([]), 2-16
PAL8 special characters,
Breakpoints under 0ODT, 9-2
3-74
Buffer size of Editor, 4-4
BYE command, 6-11

2-6

5-22

c,
Editor change command, 4-9
FORTRAN comment indicator, 7-23
ODT command, 9-~7

Index-2

INDEX (Cont.)

/C, Commands, 0S/78 (cont.)
COMPARE option, 3-6 ASSIGN, 3-2
COPY command option, 3~14 BASIC, 3-3
DELETE command option, 3-24 BOOT, 3-4
DIRECT command option, 3-25 CANCEL, 3-5
FORTRAN Loader option, 7-10 COMPARE, 3-6
FRTS option, 7-16 COMPILE, 3-1¢, 7-4
LIST command option, 3~41 copYy, 3-12
LOAD command option, 3-44 CREATE, 3-18
PAL8 option, 5-9 CREF, 3-19
RENAME command option, 3-56 DATE, 3-21
TYPE command option, 3-76 DEASSIGN, 3-22
C:n/ QUEUE command option, H-2 DELETE, 3-23
CALL statement, 7-74 DIRECT, 3-25
CANCEL command, 3-5, H-1 DUPLICATE, 3-28
CAPS$ function, 6-54 EDIT, 3-32
Caret - see circumflex EXECUTE, 3-34
ccL.sv, 3-9, 3-3, 3-4 format, 2-13
CDF instruction, 5-36, 5-43 FORMAT, 3-35
CGET subroutine, 7-107 full word switches, H-1
CHAIN, GET, 3-37
statement, 6-74 HELP, 2-22, 3-38
USR function C-10 incorrect, 2-14
Chaining PAL8 programs, C-10 LIST, 3-40
Character conversion function, LOAD, 3-42
6-52 MAP, 3-46
Character set, A-1 MEMORY, 3-50
BASIC, 6-2, 6-2 oDT, 3-52, 9-3
FORTRAN, 7-28@ PAL, 3-53
PALS8, 5-1¢0 QUEUE, 3-54
Characters, R, 3-55
output by codes (BASIC), 6-60 RENAME, 3-56
PAL8 formatting, 5-12 REQUEST, 3-57
wild, 2-18 SAVE, 3-59
CHKEOF FORTRAN subroutine, 7-168 SET, 3-62
CHR$ function, 6-53 SQUISH, 3-7¢
CIF instruction, 5-38, 5-43 START, 3-71
Circumflex (°) ODT command, 9-4 SUBMIT, 3-72, 8-2
CLOCK FORTRAN subroutine, 7-188 summary, 2-26
CLOSE function (USR), C-8 TERMINATE, 3-75
CLOSE# statement, 6-64, 6-71 TYPE, 3-76
.CM file name extension, 2-12 UA/UB/UC, 3-78
coL, ZERO, 3-79
function, 6-60 Comments,
SET command option, 3-62 BASIC, 6-26
Comma (,), FORTRAN, 7-23
BASIC, 6-34 PAL8, 5-12
FORTRAN use, 7-101 COMMON statement, 7-58
PAL8 special character, 5-21 interaction with EQUIVALENCE,
Command Decoder, 7-54
calling from USR, C-1 COMPARE command, 3-6
conventions, D-1 error messages, 3-9
calling, D-3 option summary, 3-6
error messages, D-2 COMPILE command, 3-10
example of use, D-6 option summary, 6-79, 7-5
option table, D-5 Computed GOTO, 7-58
special mode call, D-8 Concatenation, 6-18
tables, D-4 Conditional,
Commands, 0S/78, 2-11, 3-1 assembly operators, 5-36
argument retention 2-17 delimiters, 5-23

Index-3

INDEX

Conditional (cont.)
transfer,
BASIC, 6-37
FORTRAN, 7-60
Constants,
BASIC, 6-13
FORTRAN, 7-27
exponential, 7-29
integer, 7-28
Hollerith, 7-31
logical, 7-30
octal, 7-30
CONTINUE statement, 7-66
Control character,
representation, 2-7
uparrow (") echo control, 3-63
Control statements,
BASIC, 6-36
FORTRAN, 7-56
COPY command, 3-12
option summary, 3-16
error messages, 3-17
Core Control Block, 3-55, 3-59,
3-71, 9-2
Correcting errors, 2-15
C0S8 function, 6-45
COS FORTRAN subroutine, 7-108
COSH FORTRAN subroutine, 7-108
CPUT FORTRAN subroutine, 7-189
CREATE command, 3-18
Creating a PALS8 program, 5-4
CREF command, 3-19
error messages, 3-20
option summary, 3-19
CREFLS.TM file, 3-19
CREF.SV, 3-19, 3-19

Cross~reference listing, 3-19, 5-7

CTRL/C, 2-7, 2-15
BASIC use, 6-12
BATCH use, 8-5
COPY use, 3-15
EDIT use, 4-3

CTRL/G, 5-24

CTRL/L, 4-3

CTRL/O, 2-7
BASIC, 6-6, 6-12
control character, 4~3
ODT use, 9-11

CTRL/Q, 2-7
BASIC use, 6-12

CTRL/S, 2-7
BASIC use, 6-12

CTRL/U, 2-7
BASIC use, 6-12
FORTRAN use, 7-16

CTRL/Z,

FORTRAN use, 7-16
with device handlers, F-2, F-4
CURS$ function, 6-59

(Cont.)

Current location counter, 5-21
changing with PAGE, 5-33
PAL8 symbol, 5-14
PAL8, 5-21

Current page literals, 5-22

Cursor function, 6-59

Db,
Editor delete command, 4-9
ODT command, 9-7
/D,
DUPLICATE command option, 3-30
Editor option, 4-21
Dash options (general-purpose),
2-16
DATS function, 6-57
Data field register, 5-30
DATA statement, 6-28, 7-54
DATE,
command, 3-21
FORTRAN subroutine, 7-169
Date,
file transfer by, 3-14
function, 6-57
DEASSIGN command, 3-22
Debugging,
function (BASIC), 6-57
in octal, 3-5%2, 9-1
DECIMAL pseudo-operator, 5-36
Decimal to octal conversion, 6-55
Decimal point (.), 7-28
DECODE function (USR), C-18
DECstation System Hardware, 1-1
configuration summary, J-1
DEF statement, 6-56
Default,
file name extensions, E-1
file specifications, 2-21
DEFINE FILE statement, 7-86
DEFINE$ statement, 6-~70
DELETE,
BASIC command, 6-7
key, 2-7, 6-12, 7-16
08/78 command, 3-23
error messages, 3-24
option summary, 3-24
Demonstration programs, 2-10
Device Control Word Table, C-15
Device handlers, 3-67
calling, F-1
description and use, F-1
FETCH function (USR), C-4
file-structured devices, 2-23,
F-4
function control word, F-2
line printer, F-3
loading from PAL8 programs, C-4

Index-4

INDEX (Cont.)

Device handlers (cont.)
multiple input file
restrictions, F-5
obtaining characteristics via
USR, C-13
removal from memory, C-14
restrictions of use, F-3
terminals, F-5
Device names,
permanent, 2-10
reassigning, 2-10
DEVICE pseudo-operator, 5-37
Devices - see terminals also
file-structured, 2-23, F-4
FORTRAN I/0, 7-7
storage capacity, 2-23
using RX@G1/RX@2 and RLO1K,
using VXag, 2-25
.DI file name extension, 2-12
DIM FORTRAN function, 7-1@9
Diagnostic messages,
FORTRAN, 7-5
PAL8, 5-39
DIMENSION statement,
BASIC, 6-24
FORTRAN, 7-47
Direct,
assignment statements,
record 1/0, 6-69
DIRECT command, 3-25
option summary, 3-25
error messages, 3-27
DIRECT.SV, 3-27
Directory (file), 2-25
Disk pack - see RLO1K,
Diskette - see RXPl/RX82 also
bootstrap procedure, 2-5
making backup copies, 2-8
Dismissing USR, C-13
Division,
BASIC operator (/), 6-17
FORTRAN operator (/), 7-39
PAL8 operator (%), 5-18
DO statement, 7-62, 7-64
Document,
conventions, Preface
reference, Preface
dollar sign ($),
BASIC, 6-34
Editor symbol, 4-10
ESCape key echo, 3-64
FORTRAN field descriptor, 7-98
PAL8 special symbol, 5-24
Double,
asterisk (**),
quote ("), 5-22
Double-density diskette
formatting, 3-36
DSK device handler, F-4

2-24

5-16

6-17

DUPLICATE command,

Dummy arguments in subprograms,
7-69
3-28

3-31

3-39

error messages,
option summary,

E,
Editor command, 4-7
FORTRAN field descriptor,
ODT command, 9-7
/E,
CREF command option,
DIRECT command option,
FRTS option, 7-16
PAL8 option, 5-9
SUBMIT command option,
ECHO option (SET command),
EDIT command, 3-32
BASIC, 6-7
EDIT.SV, 3-18, 3-33
Editor - (see CREATE and EDIT
commands also), 4-1
alteration commands, 4-9
append (A) command, 4-6
buffer (B) command, 4
buffer size, 4-4
calling procedure, 4-1
change (C) command, 4-~9
changing existing file,
command mode, 4-2, 4-5
command summary, 4-23
command usage, 4-13 thru 4-18
control commands, 4-3
creating a new file, 4-1
delete (D) command, 4-~9
Editor,exit (E) command,
error messages, 4-21,4-22
example session, 4-18
get (G) command, 4-6
insert (1) command, 3-6
interbuffer search (J) command,
4-10
kill (K) buffer command,
list (L) command, 4-6
list buffer (V) command,
listing commands, 4-6
next (N) command, 4-8
operating modes, 4-2
option summary, 4-21
output commands, 4-7
output current buffer (E)
command, 4-7
output (P) command, 4-7
page (P) command, 4-4
quit (Q) command, 4-8
read (R) command, 4-5, 4-6
search character (S) command,
4-10

7-92

3-19
3-25

3-72, 8-2

3-62

-

4-2

4-7

4-8

4-9

Index-5

INDEX (Cont.)

Editor (cont.)
search next (F) command, 4-10
special characters, 4-11
text mode, 4-2
text searches, 4-13
yank (Y) command, 4-1@
EJECT pseudo-operator, 5-34
$END command (BATCH), 8-3
END statement, 6-41, 7-68
END# statement, 6-68
End-of-file,
BASIC, 6-68
FORTRAN ENDFILE statement, 7-87
PAL8, 5-37
ENTER function (USR), C-7
Exponentiation, 6-17
Equals sign (=), 2-16
BASIC, 6~21, 6-23
Editor command, 4-12
FORTRAN use, 7-45
PAL8 direct assignment, 5-16
PAL8 special character, 5-21
EQUIVALENCE statement, 7-52
interaction with COMMON, 7-54
.EQV. FORTRAN operator, 7-42
Error messages,
BASIC, 6-86
BATCH, 8-6
Command Decoder, D-2
COMPARE command, 3-9
COPY command, 3-17
CREF command, 3-20
DELETE command, 3-24
DIRECT command, 3-27
DUPLICATE command, 3-31
Editor, 4-21,4-22
FORMAT command, .3-36
FORTRAN Loader, 7-11
FRTS, 7-17
HELP command, 3-39
LIST command, 3-41
MAP command, 3-49
oDT, 9-8
03/78 summary, G-1
PALS8, 5-39
SET command, 3-68
system halts, G-1
TYPE command, 3-77
ERROR function (USR), C-11
Errors, correcting keyboard, 2-15,
6-12
ESC SET command option, 3-62
ESCape key, 2-~7
BATCH operation, 3-73
dollar sign ($) echo control,
3-64
Editor intrabuffer search
command, 4-16
FORTRAN use, 7-14
terminator, 2-13

ESCape sequences in BASIC, 6-76

- Exclamation point (!),

BASIC, 6-26

PAL8 operator, 5-18
EXECUTE command, 3-34
Executing PALS8 programs, 5-7
EXP function, 6-46
EXP FORTRAN function, 7-1180
Exponential,

function, 6-46

operator (**), 7-39

real constant, 7-29
Expressions,

BASIC, 6-17

FORTRAN, 7-38

PAL8, 5-18
EXPUNGE pseudo-operator, 5-35
Extensions, file name 2-11, E-1
EXTERNAL statement, 7-48

F,
Editor search next command,
field descriptor, 7-91
/F,
COPY command option, 3-14
DIRECT command option, 3-25
PAL8 option, 5-9
F4.8v, 3-11, 3-34
/ff LOAD command option, 3-42
/ffnnnn, LCAD command option,
.FALSE. logical constant, 7-30
FETCH function (USR), C-4
FIELD pseudo-operator, 5-29
Fields,
BASIC numeric, 6-33
memory data and instruction,
$-39
FILE statement, 6-63
FILE# statement, 6-7¢
FILENAME pseudo-operator, 5-37
Files, 2-25
Files,
absolute binary, 3-42
ASCII format, 2-26
BASIC, 6-62
batch input, 3-72
changing ASCII, 4-2
closing, 6-~71, C-8
creating ASCII, 4-1
deleting tentative, C-15
directory, 2-25
listing, 3-25
eliminating empty, 3-78
fixed length, 6-78
input table, D-4
memory-image,
creation, 3-59
loading and executing, 3-55,
3-71

Index-6

INDEX (Cont.)

Files (cont.)
names, 2-10
extensions, 2-12, E-l1
opening for record 1/0, 6-78
output spooling under BATCH,
3-73
output table, D-4
permanent, C-6
postdeletion, 3-13
predeletion, 3-13
protection during transfer,
3-14
resetting BASIC, 6-67
restrictions on multiple input,
F-5
specifications,
using defaults, 2-21
wildcard input, 2-19
wildcard output, 2-19
tentative, C-7
testing for end, 6-68
testing for open, 6-67
transfer by date, 3-14
transfer command COPY, 3-12
types, 2-25
USR search, C-6
variable length string, 6-69
FILEVS statement, 6-69
FIX$ function, 6-55
FLOAT FORTRAN function, 7-110
FNa function, 6-56
FOR statement, 6-39
FORLIB.RL, 3-44, 7-19
FORM FEED, 5-12, 5-24
FORMAT command, 3-35
error messages, 3-36
option summary, 3-35
Format,
ASCII files, 2-26
BASIC statements, 6-22
characters,
PAL8, 5-12
control,
BASIC, 6-38
statements,
FORTRAN, 7-88
05/78 commands, 2-13
Formatted I1/0 (FORTRAN), 7-77
Formatting,
double density diskettes, 3-34¢
RL@1K disk packs, 3-35
single-density diskettes, 3-30
FORTRAN,
arithmetic,
assignment statements, 7-45
conditionals, 7-69
arrays, 7-33, 7-53
assignment statements, 7-45
auxiliary I/0 statements, 7-85
BLOCK DATA subprograms, 7-54

FORTRAN (cont.)
carriage control, 7-100
compilation, 3-34, 3-1¢
constants, 7-27
continuation lines, 7-24
control statements, 7-56
DATA statements, 7-54
data types, 7-27, 7-27, 7-33
direct access 1/0, 7-80
error message summary, 7-5
execution, 3-34
exponential constants, 7-29
eXxpressions, 7-38
operators, 7-39
field descriptors, 7-89
FORMAT statements, 7-88
format,
control and I/0 lists, 7-183
specification separators,
7-101
FRTS, 7-15
error messages, 7-17
grouping and group repeat
specifications, 7-100
Hollerith constants, 7-31
I/O'
devices, 7-7
formatting, 7-80
lists, 7~77
statements, 7-76
identification field, 7-25
integer constants, 7-28
introduction, 7-1
label field, 7-23
language, 7-19
summary, 7-112
library, 7~19
functions, 7-76, 7-185
subroutines, 7-105
line format, 7-25
literals, 7-97
Loader, 7-7
error messages, 7-11
options, 7-1@
logical,
assignment, 7-46
conditionals, 7-62
constants, 7-30
expressions, 7-42
operators, 7-42
unit numbers, 7-77
octal constants, 7-30
operating procedures, 7-4
program loading, 3-42
real constants, 7-28
relational expressions, 7-41
relocatable binary files, 3-44
runtime system (FRTS), 7-1, 7-12
I/0 assignment, 7-12
scale factors, 7-99

Index-7

INDEX (Cont.)

FORTRAN (cont.)
sequential 1/0, 7-80
special characters, 7-21
specification statements, 7-46
statements, 7-21
storage declaration, 7-50
subprograms, 7-69, 7-72
declaration, 7-48
user-written, 7-740
subroutines, 7-73
subscripts, 7-36
symbols, 7-26
variables, 7-31
FOTP.SV, 3-15, 3-23, 3-4¢, 3-56
FRTS, 7-12
FRTS.SV, 3-34
-FT dash option, 2-17
.FT file name extension, 2~-12
FUNCTION statement, 7-72
Functions,
BASIC, 6-43
FORTRAN, 7-105
user-defined, 6-78

G,
Editor get command, 4-6
field descriptor, 7-93
ODT command, 9-5
/G,
BASIC option, 6-~79
COMPILE command option, 6-79,
7-5
FORTRAN Loader option, 7-10
LOAD command option, 3-43, 3-45
PAL8 option, 5-9

General-purpose dash options, 2-16

GET command, 3-37

GET# statement, 6-71

Global subroutine calls, 5-22
GOSUB statement, 6-42

GOTO statement, 6-36, 7-57

H field descriptor, 7-96
/H,
PAL8 option, 5-9, 5-9
SUBMIT command option, 8-2
Handler - see device handler,

HANDLER option (SET command), 3-62

Hardware configuration summary,
J-1
HEIGHT option (SET command), 3-62
HELP command, 2«22, 3-38
error messages, 3~39
HELP.SV, 3-38
.HN file name extension, 2-12
Hollerith constants, 7-31

I,

Editor insert command, 4-6

field descriptor, 7-99

PAL8 indirect addressing

pseudo-operator, 5-29

/1 LOAD command option, 3-43
I/0 statements,

FORTRAN, 7-76
1/0,

BASIC, 6-~26

direct record (BASIC), 6-69
IDIM FORTRAN function, 7-110
IF GOTO statements, 6-37
IF statement, 7-60
IFDEF pseudo-operator, 5-36
IFIX FORTRAN function, 7-110
IFNDEF pseudo-operator, 5-36
IFNZRO pseudo-operator, 5-36
IFZERO pseudo-operator, 5-36
Indirect,

addressing, 5-29

commands (€ symbol), 2-20
INIT option (SET command), 3-62
Input file table, D-4
INPUT# statemen6-65, 6-65
Input/output options, 2-15
INQUIRE function (USR), C~-13
Instruction field,

buffer, 5-30

register, 5-30
Instructions,

memory reference, 5-24

PAL8, 5-11
INT function,

BASIC, 6-~47

FORTRAN, 7-~110
Integer function, 6-47
INTEGER, 7-~-27
IOR function, 6~58
IOT microinstructions, 5-28
ISIGN FORTRAN function, 7-110
Iteration,

BASIC, 6-39

FORTRAN, 7-62

J Editor command, 4-10

/J PAL8 option, 5-9

$JOB BATCH command, 3-72, 8-3
Job status word, 3-6¢

K Editor command, 4-8

/K PAL8 option, 5~9

KEYS$S function, 6-59, 6-77

Keyboard errors, 2-15

KT8A Memory Management Control,
5-31

Index-8

INDEX

L,
Editor list command, 4-6
field descriptor, 7-94
ODT command, 9-6

~L dash option, 2-17

/L,
COMPILE command option, 7-5
PALY9 option, 5-9
QUEUE command option, H-2

SET HANDLER command option, 3-67

LA34/38, 2-6
LA36, 2-6
LAl28, 2-6
Labels, 5-11
.LD file name extension, 2-12
LEN function, 6-5@
LET statement, 6-23
LINE FEED, 2-7
Editor command, 4-12
PAL8 special character, 5-24
ODT command, 9-3
Link generation and storage, 5-38
LIST command, 3-40
BASIC, 6-5
LISTNH command, 6-6
Literals,
FORTRAN, 7-97
PAL8 current page, 5-22
PAL8 storage, 5-39
LOAD command, 3-42
LOAD.SV, 3-11, 3-34
Loading PAL8 programs, 5-6
Loading,
diskettes, 2-1
RLO1K disk packs, 2-3
Location counter - see current
location counter
Locking USR in memory, C-12
LOG function function, 6-47
LOGICAL statement, 7-27
Logical,
devices,
assigning names, 3-2
deassigning names, 3-22
permanent names, 2-10
expressions, 7-42
unit numbers, 7-77
LOOKUP,
function (USR), C-6
Looping,
BASIC, 6-39
FORTRAN statements, 7-64
nested (BASIC), 6-40
Lower—-case characters,
conversion, 6-54
line printer use, 3-64
PAL8 restrictions, 5-11
LPT device handler, 3-67, F-3
LQP device handler, 3-67, F-3
~-LS dash option, 2-17
.LS file name extension, 2-12

(Cont.)

M command (ODT), 9-7, 9-8
/M,
CREF command option, 3-19
DIRECT command option, 3-25
DUPLICATE command option, 3-30
SUBMIT command option, 3-72
Machine instruction set, 5~24
MAP command, 3-46
option summary, 3-48
error messages, 3-49
Mathematical subroutines, B-1l
MAX® function, 7-111
MAX1l function, 7-111
MEMORY command,, 3-~58
Memory,
fields, 3-5@
map, 3-46, 5-8
page references, 5-38
reference instructions, 5-24
reserving with ZBLOCK, 5-33
Memory-image files,
creation, 3-59
execution, 3-71
loading, 3-37,
loading and executing, 3-55
Memory Management Control, 5-31
Microinstructions, 5-25
I0OT, 5-28
operate, 5-26
MIN@ function, 7-111
MIN1l function, 7-111
MIN12 function, 7-111
Minus (-),
BASIC, 6-17, 6-34
FORTRAN, 7-28, 7-39

PAL8, 5-18
MOD function,, 7-111
Monitor,
issuing commands from BASIC,
6-55
period (.) prompting symbol,
2-6

-MP dash option, 2-17
.MP file name extension, 2-12
$MSG command (BATCH), 8-3
Multiplication,

FORTRAN, 7-39

pPAL8, 5-18

N Editor next command, 4-8

/N,
COMPILE command option, 7-5
COPY command option, 3-13
DELETE command option, 3-24
DUPLICATE command option, 3-30
PAL8 optioin, 5-9
QUEUE command option, H-2

Index-9

/n,
FORMAT command option,

INDEX

3-35

MAP command option, 3-48

NAME command, 6-10
Natural logarithm, 6-47
-NB dash option, 2-17
Nested loops, 6-40

NEW command, 6-4

NEXT statement, 6-39

nnnn+ and nnnn- ODT commands, 9-4

Non-system device, 2-23
«NOT. FORTRAN operator,
Number sign (#), 6~33
Numbers,
BASIC string, 6-280
PAL8, 5-13
Numeric,
constants, 6-13
fields, 6-33, 6-36
functions, 6-44
variables, 6-15

Numeric-to-string conversion,

/0,
DELETE command option,
DIRECT command option,

7-42

3-24
3-25

LIST command option, 3-41

PAL8 option, 5-9, 5-30
RENAME command option,

TYPE command option, 3~

0CS$ function, 6-55
OCT function, 6-54
OCTAL,
pseudo-operator, 5-36
statemnent, 7-27
Octal constants, 7-30
3-52, 9-1

3-56
76

Octal Debugging Technique (0ODT),
Octal-to-decimal conversion, 6-54

ODT command, 3-52
command summary, 9-9
commands, 9-3
error messages, 9-8

illegal characters, 9-5

introduction, 9-1
programming notes, 9-8

setting breakpoints, 9-

setting search limits,

special characters, 9-3

word searches, 9-8
OLD command, 6-4
ON GOTO statement, 6-38
ON GOSUB statement, 6-43
OPEN# statement, 6-67
Operands,
as PAL8 symbols, 5-18
PAL8, 5-12

6
9-7

Operate microinstructions, 5-26

6-54

(Cont.)

Operators,
PAL8 arithmetic and logical,
5-18
PAL8 conditional assembly, 5-36
OR,
BASIC function, 6-58
PAL8, 5-18
.OR. FORTRAN operator, 7-42
0s/78,
bootstrapping, 2-6
command argument retention, 2-17
Command Decoder, D-1
commands, 2-11
summary, 2-26
devices,
handlers, 3-6, F-3
permanent names,
error message summary, G-l1
file names and extensions, 2-10
file-structured devices, 2-23
full word command options, I-1
hardware configurations, J-1
introduction to, 1-1
logical device names, 2-10
making software backup, 2-8
monitor commands from BASIC,
6-55
startup procedure, 2-5
system demonstration, 2-10
User Service Routine, C-1
Output file table, D-4
Overlay files (BASIC), 6-8#@

P,
Editor,
output command, 4-7
page command, 4-4
FORTRAN scale factor symbol,
7-99
/P,
CREF command option, 3-19
DUPLICATE command option, 3-3@
FORMAT command option, 3-35
LOAD command option, 3-44
-PA dash option, 2-17
.PA file name extension, 2-12
Page zero addressing, 5-29
PAGE,
pseudo~operator, 5-33
SET command option, 3-62
PAL command, 3-53
PAL8, 3-34, 3~53
assembly, 3-10, 5-5
chaining programs, C-10
character set, 5-10
restrictions, 5-11
command string examples, 5-2
comments, 5-12

Index-10

INDEX (Cont.)

PAL8 (cont.,) Percent (%), 5-18
conditional, Period (.),
assembly operators, 5-36 BASIC, 6-~34
expressions, 5-23 Editor current line symbol, 4-11
cross-reference listing, 5-7 monitor prompting symbol, 2-6
current location counter, 5-14 PAL8 special character, 5-21
current page literals, 5-22 Permanent file lookup, C-6
diagnostic messages, 5-39 Permanent symbols, 5-14
direct assignment statements, PIP.SV, 3-70
5-16 Plus sign (+),
error messages, 5-1¢ BASIC operator, 6-17
expressions, 5-18 FORTRAN, 7-28
file extensions, 5-1 carriage control character,
FORM FEED character, 5-12 7-101
formatting characters, 5-12 operator, 7-39
instructions, 5-11 PAL8 operator, 5-18
introduction to, 5-1 PMT$ function, 6-60
label, 5-11 PNT function, 6-31, 6-68, 6-76
link generation and storage, POS function, 6-51
5~38 Postdeletion of files, 3-13
listing control, 5-34 Predeletion of files, 3-13
literals, 5-39 Print head position function,
loading and saving a program, 6-60
5-6 PRINT statement, 6-29
math subroutines, B-1 PRINT# statement, 6-65
memory map, 5-8 PRINT USING statement, 6-32
numbers, 5-13 Program chaining, C-10
off-page references, 5-38 Prompt function, 6-69
operands, 5-12 Pseudo-operators,
option summary, 5-9 DECIMAL, 5-36
page zero addressing DEVICE, 5-37
pseudo-operator, 5-29 EXPUNGE, 5-35
permanent symbols, 5-14 EJECT,. 5-34
program, FIELD, 5-29
execution, 3-37 FILENAME, 5-37
loading, 3-42 IFDEF, 5-36
pseudo-operators, 5-29 IFNDEF, 5-36
radix control, 5-36 IFNZRO, 5-36
special characters, 5-21 IFZERC, 5-36
statements, 5-11, 5-13 OCTAL, 5-36
symbol table, 5-16 PAGE, 5-33
alteration, 5-35 PAL8, 5-29
symbolic instructions, 5-17 PAUSE, 5-37
symbolic operands, 5-18 RELOC, 5-34
symbols, 5-13 TEXT, 5-36
TAB character, 5-12 XLIST, 5~34
text strings, 5-37 ZBLOCK, 5-33
user-defined symbols, 5-14 PUT# statement, 6-71

using Command Decoder, D-1
PAL8.5V, 3-19, 3-34, 3-53
parentheses { ()), 2-16

FORTRAN, 7-44 Q,

PAL8, 5-22 Editor quit command, 4-8
Patching a memory-image (SAVE) /Q,

file, 3-43 COMPILE command option, 7-5
PAUSE, COPY command option, 3-15

pseudo-operator, 5-37 DELETE command option, 3-24

SET command option, 3-62 LIST command option, 3-41

statement, 7-67 SUBMIT command option, 3-72, 8-:
PDP-8 instruction set, 5-24 TYPE command option, 3-76

Index-11

INDEX (Cont.)

Question mark (?) wild character,
2-18

QUEUE command,

Quote ("),
double - PAL8 special character,
5-22

3-54, H-2

R,
Editor read command, 4-5, 4-6
monitor command, 3-55

/R,
DIRECT command option, 3-25
DUPLICATE command option, 3-30
MAP command option, 3-48

.RA file name extension, 2-12

Radix control, 5-36

RALF.SVv, 3-11

Random number function, 6-48

READ statement, 6-28, 7-80

READONLY option (SET command),
3-62

Real constants,

REAL statement,

7-28
7-27

Reassigning device names, 2-11
Record,
field definition, 6-70
size statement, 6-69
Reference Documents, Preface
Relational,
expressions,
BASIC, 6-18
FORTRAN, 7-41
operators,
BASIC strings, 6-22
RELOC pseudo-operator, 5-34
Relocatable binary files, 3-44

REM statement, 6-26
RENAME command, 3-56
RENAME command option summary,
3-56
REQUEST command, 3-57,
RESEQ program, 6-11
RESET function (USR),
Resetting BASIC files,
RESTORE statement, 6-28,
RETURN key, 2-7
BASIC, 6-12
ODT command, 9-3
PAL8 special character, 5-24
RETURN statement, 6-42, 7-75
REWIND statement, 7-87
.RL file name extension,
RLP1lK disk pack,
bootstrap procedure,
formatting, 3-35
making backup copies, 2-8
storage capacity, 2-23
use, 2-24
RLFMT.SV, 3-36

H-1, H-2

C-14

6-67
6-67

2-12

2-5

RLxx device handler, 3-67, F-4
RND function, 6-48
Rounding in BASIC,
RUN command, 6-5
RX@1/RX02,

duplicating diskettes, 3-28

6-21

storage capacity, 2-23

use, 2-24
RXAx device handler, 3-68, F-4
RXCOPY.SV, 3~30

S Editor search character command,
4-10
/S,
BASIC option, 6-79
COMPARE option, 3-6
COMPILE command option, 6-79
DUPLICATE command option, 3-30
FORTRAN Loader option, 7-10
LOAD command option, 3-42,
MAP command option, 3-48
PAL8 option, 5-9
SAVE command, 3-59
BASIC, 6-10
Saving,
PAL8 programs, 5-6
BASIC programs, 6-79
SCOPE option (SET command),
SCRATCH command, 6-11
SEGS function, 6-52
Semicolon (;) ODT command,
Semiconditional transfer,
SEQUENCE command, 6-8
SET command, 3-62
error messages,
options, 3-62
Setting terminal characteristics,
2-5
SGN function 6-48,
SIGN FORTRAN function,
SIN,
BASIC, 6-45
FORTRAN, 7-~111
Single-density diskette
formatting, 3-30
SINH FORTRAN function,
Six-bit ASCII, 5-37
Slash (/), 2~16
BASIC operator,
BATCH command,
Editor symbol,
FORTRAN operator,
FORTRAN use, 7-101
ODT command, 9-3
PAL8 comments, 5-12
SLUx device handler, 3-68, F-5
Source file comparison, 3-6

3-44

3-62

9-4
6-38

3-68

7-111

7-112

6~17
8-3
4-12
7-39

Index-12

INDEX (Cont.)

Space character,
'ORTRAN carriage control, 7-181
PALS8 operator, 5-18
PAL8 special character, 5-24
Spooler (symbiont) commands, H-2
Spooling, 3-73, 8-1, H-1
SPOOLR.SV, 3-54, H-1
SOR function, 6-46
SQRT FORTRAN function, 7-112
Square brackets ([]), 2-16,
Preface
Square root function, 6-46
SQUISH command, 3-70
SRCCCM.S8V, 3-9
START button, 2-6
START command, 3-71
Statement,
format,
BASIC, 6-22
FORTRAN, 7-24
terminators,
0s/78 monitor, 2-7
PAL8, 5-13
Statements,
FORTRAN, 7-21
pAaL8, 5-11, 5-16
STEP statement, 6-39
STOP statement,
BASIC, 6-41
FORTRAN, 7-68
Storage capacity of devices, 2-23
STRS function, 6-54
String,
arithmetic, 6-19
concatenation, 6-18
constants, 6-14
integer function, 6-55
length function, 6-50
nunbers, 6-2¢
to numeric conversion, 6-53
relations, 6-22
variables, 6-15
SUBMIT command, 3-72,
option summary, 8-2
Subprogram declaration, 7-48
SUBROUTINE statement, 7-73
Subroutines,
BASIC, 6-42
FORTRAN, 7-73
mathematical, B-1
PAL8 global calls, 5-22

semiconditional BASIC, 6-43
Subscripts,

BASIC, 6-16

FORTRAN, 7-36
Substring function, 6-51, 6-52

Subtraction,
BASIC, 6-17
FORTRAN, 7-39
PAL8, 5-18

.SV extension, 2-12, 3-59
Symbiont operation,
CANCEL command, 3-5
commands, H-1
CUSP coding conventions, H-2
REQUEST command, 3-57
spooler program, 3-54
writing your own, H-3
Symbol table,
PAL8, 5-16, 5-35, 5-41
Symbolic editor, 4-1
Symbols,
FORTRAN, 7~26
PALS8, 5-13, 5-41
use as instructions, 5-17
use as operands, 5-18
permanent, 5-14
user-defined, 5-14
SYS device handler, F-4
System Hardware, 1-1
System information,
additional documentation,
Preface
HELP command, 2-22
System date, 3-21
System device, 2-23
System table reset via USR, C-14

T field descriptor, 7-97
-T TTY dash option, 2-17
/T,
COMPARE option, 3~6
COPY command option, 3-14
MAP command option, 3-48
PAL8 option, 5-9
RENAME command option, 3-56
SUBMIT command option, 3-72, 8-2
TAB,
BASIC function, 6-31
character,
PAL8 operator, 5-18
PAL8 use, 5-12
FORTRAN, 7-24
function, 7-110
TAN BASIC function, 6-46
TANH FORTRAN function, 7-112
Tentative file lookup, C-7
Terminals,
BASIC ESCape sequences, 6-76
changing attributes, 2-5, 3-62
control in BASIC, 5-59
conventions, 2-7
LA36, 2-6
operating parameters, 2-6
vr52, 2-6
VvT1060, 2-5
TERMINATE command, 3-75
TEXT pseudo-operator, 5-37

Index~13

INDEX (Cont.)

TIME FORTRAN function, 7-112 v,

.T™ file name extension, 2-12 Editor list buffer command, 4-9
TRC function, 6-57 /v,

.TRUE. logical constant, 7-30 COPY command option, 3-12
Truncation BASIC string DELETE command option, 3-24

arithmetic, 6-21 DIRECT command option, 3-25
TTY device handler, F-5 LIST command option, 3-41
TYPE command, 3-76 RENAME command option, 3-56

option summary, 3-76 TYPE command option, 3-76

error messages, 3-77 VAL function, 6-53

Value assignment, BASIC, 6-23
Variables,
BASIC, 6-14

/U, FORTRAN, 7-

COPY command option, 3-12 nume,ic'(BAgic) 6-15

CREF command option, 3-19 string (BASIC) '6—15

. ’

DIRECT command option, 3-25 subscripted (BASIC), 6-16

SUBMIT command option, 3-72, 8-2 yLyy device handler, 3-68, F-5
UA/UB/UC commands, 3-78 VI'S52 terminal, 2-6 !)
Unconditional transfer, VT100 terminai, 2-5

BASIC, 6-36 VXAO,device handler,

FORTRAN GOTO, 7-57 characteristics, F-4
Underline (_) ODT command, 9-4 installing with’SET 3-68
Unformatted FORTRAN I/0, 7-88 storage capacity, 2-23
Unloading RL@lK disk packs, 2-5 ’

Uparsow (%), use, 2-25
BASIC operator, 6-17
echo control, 3-63
ODT command, 9-4 W ODT command, 9-8
PAL8 operator, 5-18 /W PALS optioé, 5-9
Updating BASIC records, 6-71 WIDTH SET command option, 3-62
Upper-case conversion, 6-54 Wildcards, 2-18
User Service Routine (USR), C-1 WRITE st ‘ -
User-defined functions in BASIC, atement, 7-83
6-78
USR, C~-1
CHAIN function, C-10 X FORTRAN field descriptor, 7-97
CLOSE function, C-8 /X, P ’ ’
DECODE function, C-18 COMPARE command option, 3-6

ggggg E“nct§°n' E:Zl CREF command option, 3-19
unction, XLIST pseudo-operator, 5-34

FETCH function, C-4
. XOR. FORTRAN -
INQUIRE function, C-13 operator, 7-42

LOOKUP function, C-6

RESET function, C-14

restrictions, C-3 Y Editor yank comma 4-
standard call, C-1 Y nd, 16
summary of% functions, C-1

USRIN function, C-12 Z PAL8 page zero addressing

USROUT function, C-13 pseudo-operator, 5-29
USRIN function (USR), C-12 ZBLOCK pseudo-operator, 5-33
USROUT function (USR), C-13 ZERO command, 3-15, 3-79

Index-14

Please cut along this line.

0s/78
User's Manual
AA-5748B-TA

READER'S COMMENTS

NOTE: This form is for document comments only. DIGITAL will
use comments submitted on this form at the company's
discretion. If you require a written reply and are
eligible to receive one under Software Performance
Report (SPR) service, submit your comments on an SPR
form.

Did you find this manual understandable, usable, and well-organized?
Please make suggestions for improvement.

Did you find errors in this manual? If so, specify the error and the
page number.

Please indicate the type of reader that you most nearly represent.

Assembly language programmer
Higher-level language programmer
Occasional programmer (experienced)
User with little programming experience

Student programmer

DOoOoodao

Other (please specify)

Name Date

Organization

Street

City. State Zip Code
or
Country

- — Do Not Tear- Fold Hereand Tape — — — — — — — — —

No Postage
Necessary
if Mailed in the
United States

BUSINESS REPLY MAIL

FIRST CLASS PERMIT NO.33 MAYNARD MASS.

POSTAGE WILL BE PAID BY ADDRESSEE

RT/C SOFTWARE PUBLICATIONS ML 5-5/£45
DIGITAL EQUIPMENT CORPORATION

146 MAIN STREET

MAYNARD, MASSACHUSETTS 01754

— — DoNotTear-FoldHere — — — — — — — — — — 0 — — — — — — — — —

