
CHAPTER 6
BASIC

6.1 INTRODUCTION
OS/78 BASIC* is an interactive programming language used in scientific and business environments to solve mathe-
matical problems with a minimum of programming effort. It also is used by educators and students as a problem-
solving tool and as an aid to learning through programmed instruction and simulation.

In many respects the BASIC language is similar to other programming languages (such as FORTRAN IV), but BASIC
is aimed at facilitating communication between the user and the computer. BASIC simply requires that you type in
the computational procedure as a series of numbered statements, making use of common English words and familiar
mathematical notations. Because of the small number of commands necessary and its easy application in solving
problems, BASIC is an easy computer language to learn. With experience, the advanced techniques available can be
added in the language to perform more intricate manipulations or to express a problem more efficiently and
concisely.

6.2 MAJOR COMPONENTS OF OS/78 BASIC
The BASIC subsystem has four major components

1. BASIC Editor (BASICSV)
2. Compiler (BCOMPSV)
3. Loader (BLOADSV)
4. BASIC Run Time System (BRTSSV, BASIC.AF, BASICSF, BASIC.FF)

The BASIC editor is used to create and edit program source files. During this process, the editor creates a file called
BASIC.WS containing the current program.

Once the program has been prepared for execution, entering a RUN command cmses the editor to chain to the
BASIC compiler. The compiler converts the statements in BASIC.WS into relocatable binary instructions.

Following compilation, the BASIC loader is automatically requested. The loade : converts the relocatable binary
data output by the compiler into executable form and loads the result into memory.

The BASIC loader then chains to the BASIC Run Time System (BRTS) whch executes the program. The modules
BASIC.AF, BASIC.FF, and BASICSF are overlays to BRTSSV.

6.3 BASIC INSTRUCTION REPERTOIRE
BASIC instructions and commands can be grouped in three categories as follows :

1. BASIC Editor commands that allow you to

a. Create or modify a program,
b. Execute a program,
c. Retrieve a program from diskette, and
d. Save a program.

*BASIC is a registered trademark of the trustees of Dartmouth College.

6-1

BASIC

2.

3 .

BASIC statements, comprising the BASIC language, that are the building blocks used to create and struc-
ture BASIC programs.
BASIC Functions, represented by subroutines, that are built into BASIC primarily to facilitate problem
solving activities.

6.4 CALLING BASIC
To enter the BASIC subsystem, type

e BAS :C C -
in response to the Monitor dot. This command invokes the BASIC editor.

6.5 BASIC EDITOR COMMANDS

6.5.1 Using the BASIC Editor
The BASIC editor incorporates all the tools and capabilities necessary to create, correct, modify, execute, save and
retrieve BASIC programs. After calling BASIC, the BASIC editor responds with the displayed query

Editing is now continued in one of two ways:

1. Typing NEW with a file name instructs the system to initiate the creation of a new file.
2. Typing OLD with a file name instructs the system to retrieve an old file containing a previously-generated

program.

Figure 6-1 summarizes user actions implemented by the BASIC editor. This figure shows two arbitrarily selected
file names (MAKER/ALTER). File names may contain no more than six alphanumeric symbols.

The left side of Figure 6-1 shows the types and patterns of activities that you ordinarily pursue after typing the NEW
command. The right side of the illustration shows activities frequently carried out after typing the OLD command.
Note that most of the BASIC editor commands appear on both sides of the figure. Only the sequence in which they
are used differs.

6.5.2 BASIC Editor Commands
This section summarizes the BASIC editor commands. Letters that are not required in naming the command are
shown as lower case in the Command/Parameter description. For example, only NE is required to be recognized by
the BASIC editor as the NEW command.

NOTE
The RETURN key must be pressed following each BASIC
editor command.

6.5.2.1 NEW Command - The NEW command clears the memory worksprce and specifies the name of the pro-
gram that is to be input.

Command Parameters

NEW file [.ex]

file .ex is the new file name and extension of the program about to be typed in. If the extension
is omitted, the editor assigns .BA.

6-2

BASIC

Correction
Keys

I

J
NEW

FILE NAME
/

I

Add BASIC Statements

I
PRESERVE
Your Program Using

SAVE

8 M t C *
/ \

\
QLES

A R E A D Y
CREATE
Your Program u;i;;;;\

MODIFY - f, Your Program Using

REVIEW
Your Program Using

PRESERVE

Your Program Using

SJIV-15

EXECUTE
Your Program Using

{ 'zH - ERROR MESSAGE -

1

\
FILE NAME

\
ALTER

t

Miscellaneous BASIC
Editor Commands

BYE
SCRATCH
CTRL/C

EXECUTE REVIEW
Your Program Using Your Program Using

MODIFY
Your Program Using

~ ~~

End of BASIC Session

1. *Keyboard Monitor Command
2. Shaded areas indicate user

action at the console

Figure 6-1 BASIC Editor Commands and Related Uses

6 -3

BASIC

An alternate method is to type NEW without a file name, followed by the RETURN key. BASIC displays

FILE NAME I”..

in response to which the file name and extension is typed.

For example, to clear the workspace and name the new program “TEST.BA”, type

NEW TEST

or

NE TEST+RA

6.5.2.2 OLD Command - The OLD command clears the memory workspace, and causes the editor to find a
program on a diskette and place it into the workspace.

Command Parameters

OLd dev:file [.ex]

dev: file .ex is the device, file name, and extension of the program on the disk. If the extension
is omitted, BASIC assumes “.BA”.

Another method is to type OLD without a file name. BASIC displays

FILE NAME --
in response to which the device, file name, and extension is typed. When no device is specified, the BASIC editor
defaults to DSK (usually = SYS).

For example, to bring TEST.BA into the workspace from RXAl, type

OLKI RXAi :TEST + BA

or

6.5.2.3 LIST/LISTNH Commands - The LIST command displays the current program along with a header line,
containing the program name, date, and the revision number of BASIC. The date is displayed only if the current
date has been entered into the system.

Command Parameters

LIst b l

If n is omitted all program statements in the workspace are displayed. When n is specified, line n and all subsequent
lines are displayed. Type CTRL/O to terminate a listing.

64

BASIC

For example, typing LIST (or LI) displays the program PROG.BA:

LIST

PROG BA 5 A 26- JUL-77

’LO FOR A=I. TO 5
20 F‘RXNT A
30 NEXT A
40 END

REASIY

Typing LI 30 displays line 30 and all subsequent lines:

1-1 30

P R O G BA 5 A 26.- JUL-77

30 NEXT A
4Q END

READY

The LISTNH command also displays the program statements in the workspace but without the header.

Command Parameters

LISTNH bl

n has the same effects as specified for the LIST command, but does not display the header

6.5.2.4 SAVE Command - The SAVE command writes the program in the workspace onto the diskette as a
permanently saved file. Do not confuse this command with the Monitor SAVE command.

Command Parame ters

SAve [dev:file.ex]

dev is the device on which you want to store your program.

file .ex is the file name and extension that the program will have on the diskette. If both are left
out, BASIC will use the current file name and extension of the program in the workspace.
If only the extension is omitted BASIC assigns .BA. If DEV: is omitted, BASIC assumes the
device is DSK.

In the following example, the program “TEST.BA” is in the workspace. To store it on RXAl under the same file
name and extension, type

or

6-5

BASIC

6.5.2.5 RUNlRUNNH Commands - The RUN command executes the program in the workspace. Note that
this command differs from the monitor RUN command.

Command Parameters

Run (none)

Prior to program execution, this command displays a heading consisting of the file name and extension, BASIC
version number and system date, assuming that the current date has been entered in the system. When program
execution is completed, BASIC displays

READY

The following example shows the program PROG.BA in the workspace displaying the result of a calculation:

RUN
FROG Bc) 5 A 26-JAN-76
3.179

The RUNNH command executes the program in the workspace, but does not display the header line.

Command Parameters

RUNNH (none)

Thus, the only difference between the RUNNH and RUN commands is that RUN prints the header and RUNNH
does not display the header.

6.5.2.6 NAME Command - The NAME command allows the user to rename the program in the workspace.

Command Parameters

NAme newfil[.ex]

newfil.ex is the new file name and extension of the program in the workspace. If the extension
is omitted, the editor assigns .BA.

To change the name of the program in the workspace to PROG.BA, type

NAME F'ROG,BA

or

NA PROG

6.5.2.7 SCRATCH Command - The SCRATCH command erases all statements from the workspace, that is,
it clears the workspace.

Command Parameters

Scratch (none)

6.5.2.8 BYE Command - The BYE command exits from BASIC and returns control to the Monitor from
BASIC.

6 6

BASIC

Command Parameters

BYE (none)

Typing BYE before SAVEing a newly created program will delete the program. Whenever the BASIC editor is
waiting for user input, typing CTRL/C performs the same function as BYE.

6.5.3 BASIC Control Keys
This section describes the control keys that are used to correct errors, eliminate and substitute program links, and
control program listings.

6.5.3.1 Correcting Typing and Format Errors (DELETE, CTRL/U) - Errors made while typing programs at the
terminal are easily corrected. Pressing the DELETE key causes deletion of the last character typed. One character is
deleted each time the key is pressed.

Sometimes it is easier to delete a line being typed and retype the line rather than attempt a correction using a series
of DELETEs. Typing CTRL/U will delete the entire line currently being worked on and echoe “DELETED” and a
carriage return-line feed. Use of the CTRL/U key is equivalent to typing DELETES back to the beginning of the line.

6.5.3.2 Eliminating and Substituting Program Lines (RETURN) - To delete a program line that has already been
entered into the computer, simply type the line number and then press the RETURN key. Both the line number
and the statement(s) are removed from the program.

Change individual lines by simply retyping them in again. Whenever a line is entered, it replaces any existing line
having the same line number. New lines may be inserted anywhere in the program by giving them unique line
numbers.

6.5.3.3 Interrupting Program Execution - Program execution may be terminated by typing CTRL/C. BASIC
responds by displaying the READY message allowing you to correct or add statements to the program.

NOTE
BASIC responds to CTRL/C with a “READY” message
onlyif you have already given the RUN command.
Typing CTRL/C when the BASIC Editor is operational
causes a return to the Monitor.

6.5.3.4 Controlling Program Listings at the Terminal Console (CTRL/S, CTRL/C an CTRL/O) - For programs
exceeding a single display frame (24 lines) the user may wish to stop the scrolling effect that occurs after typing the
LISTlLISTNH command. Three sets of control keys are provided to do this. They are as follows:

1, CTRL/S keys. Simultaneously pressing these keys suspends listing (scrolling) of the program. However
it leaves the program in a state where you may resume listing.

2. CTRL/Q keys. Simultaneously pressing these keys (after having suspended scrolling with CTRL/S),
resumes the listing process.

3. CTRL/O keys. Simultaneously pressing these keys aborts the listing process and causes the BASIC editor
to display READY.

6.5.4 Resequencing Programs (RESEQ)
If a program is extensively modified, you may find that some portions of the program have line numbers spaced so
closely together that they do not permit any further addition of statements. Renumbering the lines in the program
to provide a practical increment between line numbers can be done by using the RESEQ program. Note that the
RESEQ program modifies the line numbers in GOSUB and IF-THEN statements to agree with the new line numbers
assigned to program statements by RESEQ. Line lengths must not exceed 80 characters and programs may not
exceed 350 lines.

6 -7

BASIC

Typically, the program would be used as follows:

SAVE DSK:SAMPLE BA

READY

OLD DSK:RESEQ

READY

RUNNH

FILE :DSK:SAMPLE .BA

START,STEP: 100,lO

READY

OLD DSK:SAMPLE.BA

READY

LISTNH

User saves program SAMPLE which requires renumbering.

BASIC is ready for next command.

User calls for program RESEQ.

BASIC is ready for next command.

User runs RESEQ program.

Program asks for filename. User responds with device, name, and extension of
program to be renumbered.

Program asks for a starting line number (START) and for the increment
between line numbers (STEP). User requests that SAMPLE start with line
number 100 and each line be incremented by 10.

Renumbering is accomplished. BASIC ready for next command.

User calls back his program.

BASIC ready for next command.

User gets listing of program SAMPLE for further modification.

6.6 DATA FORMATS ACCEPTABLE TO BASIC

6.6.1 Numeric Information

6.6.2 Numbers
Numbers are expressed in decimal or E (exponential) format. Examples of numbers in both categories are as follows:

Decimal E TY pe

0 10.23E27

7 6.21Et27

t 6 9 - 7.232E6

- 52 2.2 1 1 E- 3

- 3.9265 -2.21 14E-4

0.123

-0.769

In the decimal format, the decimal point is optional for integers. That is, BASIC assumes a decimal point after the
rightmost digit of an integer. In E type format, BASIC assumes a positive expohent when no plus (t) or minus (-)
sign follows the E. Substitute the words “times ten to the power o f ’ for the letter E when reading E type format
numbers.

6 -8

BASIC

Numeric data may be input in either format. Results of computations with an absolute value outside the range
+.OOOOOl<N<999999 are always output in E type format. BASIC handles six significant digits as shown by the
following examples:

Value Typed In Value Output by BASIC

.o 1

.0099

999999

100000

.0000009

0.0099999

0.0099

999999

.100000E+007

.899999E- 006

Note in the above examples that the nature of the binary numbering system does not permit a completely accurate
representation of certain decimal numbers. Hence they are output as close to the true value as the internal logic of
the computer permits.

BASIC automatically suppresses the printing of leading and trailing zeros in integer numbers and all but one leading
zero in decimal numbers. As can be seen from the preceding examples, BASIC formats all exponential numbers in
the form:

sign .xxxxxxE(+or-)n

where x represents the number carried to six decimal places, E stands for "times 10 to the power of', and n repre-
sents the exponential value.

For example,

- ,34702 1Et009 is equal to - 347,02 1,000, and

.726000E-003 is equal to 0.000726

All numbers used in BASIC must have an absolute value (N) in the range:

1O"616<N<1On+616

6.6.3 Simple Variables
A simple variable in BASIC is an algebraic symbol representing a number, and is formed by a single letter or a letter
followed by a digit. For example,

Acceptable Variables Unacceptable Variables

3 2C (a digit cannot begin a variable)

B3 AB (two or more letters cannot form a variable)

Values may be assigned to variables either by indicating the values in LET statements, or by inputting the values as
data via INPUT and DATA statements. .

6 -9

BASIC

Examples:

10 LET 1=53721
20 LET B3=456.9
30 LET X=20E9
40 INPUT Q
50 DATA 5,6,7

6.6.4 Subscripted Variables
In addition to simple variables, BASIC accepts another class of variables called subscripted variables. Subscripted
variables provide additional computing capabilities for handling arrays, lists, tables, matrices, or any set of related
variables. Variables are allowed one or two subscripts. A single letter or a letter followed by a digit forms the name
of the variable. The subscript is formed by one or two integers enclosed in parentheses and separated by commas.
Up to 31 arrays are possible in any program, subject only to the amount of memory available for data storage. For
example, an array might be described as A(J) where J goes from 1 to 5 , as follows:

This allows reference to be made to each of the five elements in the array A. A two-dimensional array A(J,K) can be
defined in a similar manner, but the subscripted variable A must always have the same number of subscripts (that is,
A(J) and A(3 ,K) cannot be used in the same program). It is possible, however, to use the same variable name as both
a subscripted and an unsubscripted variable. Both A and A(J) are valid variable names and can be used in the same
program. F)r more information on arrays and the use of subscripts, see the description of the DIM statement
(Section 6.7.10.1).

6.6.5 Arithmetic Operations

6.6.5.1 Operators - BASIC performs addition, subtraction, multiplication, division and exponentiation, as well as
more complicated operations (explained in detail later in the manual). The five operators used in writing most
formulas are :

Symbol
Operator Meaning Example

t Addit ion A+B
Subtraction A- B
Multiplication A*B

-
*
I Division A D
-(or**) Exponentiation A^B or (A**B)

(Raise A to the B Power)

6.6.5.2 Priority - In any given mathematical formula, BASIC performs the arithmetic operations in the follow-
ing order:

1. Parentheses receive top priority. Any expression within parentheses is evaluated before an unparen-
thesized expression.

2. In the absence of parentheses, the order or priority is:

a. Exponentiation
b. Multiplication and Division (of equal priority)
c. Addition and Subtraction (of equal priority)

3. If either sequence 1 or 2 above does not clearly designate the order of priority, then the evaluation of
expressions proceeds from left to right.

6-1 0

BASIC

The expression A+B-C is evaluated from left to right as follows:

1 . A+B = step 1
2 . (result of step 1)-C = answer

The expression A/B*C is also evaluated from left to right since multiplication and division are of equal priority:

1 . A/B = step 1
2. (result of step l)*C = answer

6.6.5.3 Parentheses - Parentheses may be used to change the order or priority because expressions within paren-
thesis are always evaluated first. Thus, by enclosing expressions appropriately, the order of evaluation can be
controlled. Parentheses may be nested, that is, enclosed by one or more sets of parentheses. In this case, the ex-
pression within the innermost parentheses is evaluated first, and then the next innermost, and so on, until all have
been evaluated. Consider the following example:

The order of priority is:

1 . BA2 = step 1
2. (result of step 1)+4 = step 2
3 . (result of step 2)/X = step 3
4 . (result of step 3)*7 = answer

Parentheses also prevent any confusion or doubt as to how the expression is evaluated. For example,

A*BA2/7tB/C+DA2
((A*BA2>/7)+((B/C)+D12)

Both of these formulas will be executed in the same way. However, the second example may be easier to under-
stand. Spaces may also be used to increase readability. Since the BASIC compiler ignores spaces, the two
statements:

10 LET B=DA2+1
10LETB=DT+l

are identical, but spaces in the first statement provide ease in reading.

6.6.5.4 Rules for Exponentiation - The following rules apply in evaluating the expression AAB.

1 . If B=O, then A-B=l 3^0=1

3.
4 . If B is an integer X, then A^B=A, *A2 *A3. . .*A,, where n=B
5 . If B is an integer <O then A"B=l/A1 *A2*A,. . .*A,), where n=B
6 . If B is a decimal (noninteger) and A>o, then A^B=EXP(B*LOG(A))
7 . If B is a positive or negative decimal (noninteger) and A X , the

2. If A=O and B X , then AAB=O 0 -2=0
If A=O and B<O, then AAB=O and a DV error message is displayed 0--2=o

3^5=3 *3 *3 *3 *3=243
3--5=1/243
2-3 .6=eB 1 nA =e 3.6 1 n2

-3-2.6 is illegal.
program halts and an EM error is displayed. z

4

6-1 1

BASIC

6.6.5.5 Relational Operators - A program may require that two values be compared at some point to discover
their relation to one another. To accomplish this, BASIC makes use of the following relational operators:

equal - -

< less than

= < or < =

> greater than

= > or > =

>< or <>

less than or equal to

greater than or equal to

not equal to

Depending upon the result of the comparison, control of program execution may be directed to another part of the
program. Relational operators are used in conjunction with the IF-THEN statement.

The meaning of the (=) sign should be clarified. In algebraic notation, the formula X=Xt1 is meaningless. How-
ever, in BASIC (and most computer languages), the equal sign designates replacement rather than equality. Thus,
this formula is actually translated “add one to the current value of X and store the new result back in the same
variable X”. Whatever value has previously been assigned to X will be combined with the value 1. An expression
such as A=B+C instructs the computer to add the values of B and C and store the result in a third variable A. The
variable A is not being evaluated in terms of any previously assigned value, but only in terms of B and C. Therefore,
if A has been assigned any value prior to its use in this statement, the old value is lost; it is replaced instead by the
value of BtC.

6.6.6 String Information
The previous sections dealt only with numerical information. However, BASIC also processes alphanumerical
information called strings. A string is a sequence of characters, each of which is a letter, a digit, a space, or some
character other than a statement terminator (backslash or carriage return).

6.6.6.1 String Character Set - The character set recognized by BASIC is as shown below. The decimal code for
each character is also shown.

Code
Number

O @
1 A
2 B
3 c
4 D
5 E
6 F
7 G
8 H
9 1

10 J
11 K
12 L
13 M
14 N
15 0
16 P
17 Q

Code
Number

18 R
19 S
20 T
21 u
22 v
23 w
24 X
25 Y
26 Z
27 [(left bracket)
28 \ (back slash)
29] (right bracket)
30 - (exponent sign)
31 - (underscore)
32 (space)
33 ! (exclamation point)
34 ” (double quotes)
35 #

6-12

BASIC

Code
Number

36 $
37 %
38 & (ampersand)
39 ’ (apostrophe)
40 (
41 1
42 *
43 t
44 , (comma)
45 - (hyphen or minus sign)
46 . (period)
47 / (slash or division sign)
48 0
49 1

50 2
51 3
52 4
53 5
54 6
55 7
56 8
57 9
58 :
59 ;

Code
Number

60 < (left-angle bracket)
61 =
62 > (right-angle bracket)
63 ?

6.6.6.2 String Conventions - Strings may be used as constants or variables. String constants are enclosed in
quotes. For example,

“THIS IS A STRING CONSTANT”

A string variable consists of a letter followed by a dollar sign ($) or a letter and a single digit followed by a dollar
sign. A$ and A l $ are both legitimate string variable names while 2A$ and AA$ are not.

A string variable may contain at most eight characters unless it has been dimensioned with the DIM statement.
Quotation marks may be included in strings by indicating two quotation marks in succession. For example, the
string A”B woiild appear in a program as:

10 LET A$=“A” “B”

The following lines:

10 LET A$=m”QUQTE”m
20 PRINT A$
99 END

will result in this display:

‘QUOTE ’

It is important to recognize the real, structural difference between strings and numerical data. This number

2

is not identical to this string:

“2”

Numerical data may not be used where strings are required, and vice-versa.

6-1 3

BASIC

6.6.6.3 String Concatenation - Strings can be concatenated, that is, connected like links in a chain, by using the
ampersand (&). For example, as a result of the following lines, the next statemment executed will be line 460:

4 0 0 LET A13 = 'AB'
410 LET 4339 = 'Cfi'
420 LET c i $ = 'ABcrin
4 3 0 I F Ci$=Al38BX$ GOTO 460

The ampersand can be used to concatenate string expressions wherever a string-expression is legal, with the ex-
ception that information cannot be stored by means of a LET statement in concatenated string variables. That is,
concatenated string variables cannot appear to the left of the equal sign in a LET statement. For example, this
statement is legal

LET A$=B$&C$

while this statement is not:

LET A$&B$=C$

6.6.7 Format Control Characters
In OS/78 BASIC, a terminal line is formatted into five fixed zones (called print zones) of 14 columns each. A pro-
gram such as:

1 LET A~2.3

3 LET C = 1 5 6 * 7 5
4 LET D=1*134
5 LET Ez23*4
1.0 PRINT A y B Y C r l l r E
1 5 END

2 LET B=:21

where the control character comma (,) is used to separate the variables in the PRINT statement, will cause the values
of the variables to be displayed, using all five zones. For example,

2 + 3 - 21 156 + 75 1 + 134 23.4 -
REAKiY

It is not necessary to use the standard five zone format for output. The control character semicolon (;) causes the
text or data to be output immediately after the last character printed.

The following example program illustrates the use of the control characters in PRINT statements.

6-14

BASIC

RUNNH
4
36

c
J - - 6 - 16 -

4 5 6 16 25 36

READY

As this example illustrates, when more than five variables are listed in the PRINT statement, OS/78 BASIC auto-
matically moves the sixth number to the beginning of the next line.

6.6.8 Files
Files are referenced symbolically by a name of up to six alphanumeric characters followed, optionally, by a period
and an extension of two alphanumeric characters. The extension to a file name is generally used as an aid for
remembering the format of a file.

A fixed length file is one which is already in existence. That is, it has been created and CLOSEd. The length of a
fixed length file is equal to the number of blocks in the file and cannot be changed.

A variable length file is a newly created file. Until the file is CLOSEd, it is equal in length to the largest free space
on the device. When the file is CLOSEd it becomes a‘fixed length file equal in length to the actual number of blocks
it occupies. Unless the file is CLOSEd, the CHAIN, STOP or END statements will cause a loss of the file.

6.7 BASIC STATEMENTS
BASIC statements are the principal components of BASIC programs. The general format of BASIC statements
is :

xxx Word Type Parameters

where

xxx is the line num5er;

Word Type is the statement (instruction) type; and

Parameters are the variables used in conjunction with the statement type.

Each statement starts with a line number followed by the word statement type. Spaces have no significance in
BASIC language statements except in messages or literal strings which are displayed or printed out. Thus, spaces
may, but need not, be used to modify a program and make it more readable.

Multiple statements may be placed on a single line by separating each statement from the preceding statement with
a backslash. For example:

10 LET A=5\LETB=.2\LETC=3\PRINT “ENTER DATA”

All of the statements in line 10 will be executed before BASIC continues to the next line. Only one statement num-
ber at the beginning of th entire line is necessary. However, it should be remembered that program control cannot
be transferred i o a statement within a line, only to the first statement of the line in which it is contained. This
consideration is important when using control statements or loop statements (see related descriptions).

6.7.1 Statement Line Numbers (Sequencing)
Failure to assign a line number results in the message:

WHAT

6-1 5

BASIC

Each line of the program begins with a line number of 1 to 5 digits that serves to identify the line as a statement.
The largest allowable line number is 99999.

A common programming practice is to number lines by fives or tens, so that additional lines may be inserted in a
program without the necessity of renumbering lines already present. Renumbering a program can be accomplished
by using the RESEQ program (Section 6.5.4).

6.7.2 The PRINT Statement
The PRINT statement is used to perform calculations and display results. It is also used to display alphanumeric
(string) messages.

PRINT Statement Form

Line Number Statement Parameter

xxx PRINT expressions

Where expressions may be numbers, variables, strings or arithmetic expressions, separated by commas or semicolons.
When used without an expression, a blank line will be output on the terminal.

In BASIC, a line is formatted into five fixed zones (called print zones) of 14 columns each. If the expressions in a
PRINT statement are separated by commas, each will begin at a 14-column interval. That is, the first expression
will be displayed starting at the first position, the second at the fifteenth position, and so forth. If more than five
variables are involved, the display will automatically continue at the beginning of the next line.

If this format is not desired, you may separate expiessions with the semicolon (;), causing the text or data to be out-
put immediately after the last character printed (see Example 3).

If the last expression in a PRINT statement is followed by a comma or semicolon, the next display called for by the
program will begin on the same line (if there is room). This also applies to the question mark displayed by the
INPUT statement (see Examples 2 and 4).

Any algebraic expression in a PRINT statement will be evaluated using the current value of the variables.

Regardless of format (integer, decimal, or E-type), BASIC prints numbers in th.e form:

sign number space

where the sign is either minus (-) or blank (for plus) and a blank space always follows the number (see Example 3).

Strings and numeric expressions may be combined in a single PRINT statement (see Example 3).

To output an alphanumeric message, enclose the expression in quotation marks. To print a quotation mark (”)
put two quotation marks (“”) in the expression (see Example 5).

The following examples illustrate the use of the PRINT statement.

6-16

BASIC

Example 1:

The following lines

40 LET A = 1
50 LET B-2
55 LET C-3
60 FRINT A Y B Y C
99 E m

will cause each variable to begin at a 14column interval as follows:

2 - 3 -
Example 2 :

The following lines

will display the following:

PRINTING - STRINGS

Example 3:

The following lines:

10 A 1 5
20 F'RINT "NUMBER"iAi'AN~l"i6
99 END

will cause this display:

NUMBER 5 AND h

Blanks appear before the 5 and 6 because they are positive. The blank following the 5 accounts for the blank that
BASIC always generates after a number.

Example 4:

The following lines

60 PRINT "NIJMEiER O F YEARS";

99 w r t
70 INPUT N

will display (the number 9 is typed in by the user) the following:

NUMBER OF YKARS
?9 -

6-1 7

BASIC

Example 5 :

The following lines

80 PRINT 'MESSAGE'
90 PRINT 'A"IFs'
100 PRINT "'QUOTE""
199 END

will cause the following display:

6.7.3 Information Entry Statements (DATA, READ)
The DATA and READ statements are always used together. The DATA statement is used to set up a list of numeric
or string values. These values are accessed by the READ statement which assigns those values to variables in a
program.

6.7.3.1 DATA Statement Format - The DATA statement sets up a list of values to be used by the READ
statement.

DATA Statement Form

Line Number Statement Parameters

xxx DATA Values

where values are numeric and/or string entries separated by commas. The DATA statement serves as a source of
input variables for the program. The variables are accessed for processing by the READ statement.

There may be any number of DATA statements in a program. They are not executed and may be placed anywhere
within the program. However, BASIC treats them all together as a single list.

Both string data and numeric data may be intermixed in a single DATA statement.

String data in a DATA list must always be enclosed by quotation marks.

For example, the three DATA statements

are equivalent to the following statement:

6.7.3.2 READ Statement Format - The READ statement accesses variables defined by the DATA statement and
assigns those values to variables in a program.

6-1 8

BASIC

READ Statement Form

Line Number Statement Parameters

xxx READ variables

where variables are names corresponding to values contained in DATA statements. The following examples illustrate
the use of the READ statement.

Variable names must be separated by commas.

A READ statement may contain numeric and string variable names intermixed, to correspond to numeric and alpha-
numeric values in the DATA list. However, since values are taken from the DATA list in sequential order, you must
insure that the values in the list are in the correct sequence to correspond to the variable names of the same format
(numeric or str:ing).

A READ statement may have more or fewer variables than there are values in any one DATA statement. The
READ statement causes BASIC to search all available DATA statements in the order of their line numbers until
values are found for each variable in the READ. A second READ statement will begin reading values where the first
one stopped.

The READ statement is always used in combination with the DATA statement.

Example 1:

The following lines

will set variable A equal to 1, B equal to 2 , and C equal to 3.

Example 2 :

These statements

will set:

C=5
D$="AAA"
E=l2
F=$=''WO RD"

Example 3

The following program will display the first and third variables in a DATA list:

6-19

BASIC

The screen will show:

Example 4:

The following program uses DATA statements to supply both a variable number of scores and variable score values
to an average calculation routine.

100 PRINT 'NUMBER'
110 PRINT 'OF SCORES'r'AVERAGE'
120 PRINT
125 READ N J
127 FOR 1=1 TO N1
130 READ N
135 I F N=O GOTO 999
140 LET S-0
150 FOR ti=i TO N
160 READ T
170 LET S=S+T
180 NEXT K
i90 PRINT N r W N
200 NEXT I
890 DATA 5
900 DATA 3 I 82 r 88 r 97
910 DATA 5~66r78r71r82r75
920 DATA 4r82r86rlOOr91
930 DATA 4~72~82973~82
940 DATA hr61~73r67~80r84r79
999 ENri

NUMBER
OF SCORES AVERAGE

3 89

4 89 75
74.4 r 3
- .

4 77.25
6 74

6.7.4

READY

LET Statement
The LET statement assigns the value of an algebraic expression to a variable. Use of the word LET is optional.

LET Statement Form

Line Number Statement Parame t e n

xxx LET v = expression

6-20

BASIC

where

v is a variable; and

expression is a number, another variable, a string (enclosed in quotes), or an arithmetic expression.

The following examples illustrate the use of the LET statement.

Example 1:

The numeric variable A is set equal to 5 by the statement

10 LET A4 = 5

Example 2 :

The string variable A$ is set equal to “XYZ” by the statement

10 A$ = “XYZ”

Example 3:

An element (3 !,2) in array A is set equal to an element (1,4) in array B by the statement

10 LET ,4(3,2) = B(1,4)

NOTE
The LET statement does not necessarily imply an equal-
ity. LET means “evaluate the expression to the right of
the equal sign and assign this value to the variable on the
left”. Thus, the statement

L=L+ 1

means “set L equal to a value one greater than it was
before”.

6.7.5 Loops (FOR and NEXT Statement)

6.7.5.1 FOR Statement Format - The FOR statement is used in combination with the NEXT statement to
specify prograrn loops.

FOR Statement Form

Line Number Statement Parameters

xxx FOR V = x to y [STEP z]

LOOP INDEX INDEX INDEX
INDEX INITIAL TERMINAL STEP

VALUE VALUE VALUE
where

V is a vaxiable that serves as the INDEX for the loop. The index value is incremented (or decremented) each
time the loop is executed.

6-2 1

BASIC

x is an expression (numerical value, variable name, or mathematical expression) indicating the initial value
of the index, that is, the value it will have before the loop is executed the first time;

y is the terminal value of the index. When v is “beyond” y, the loop will not be repeated; and

z is the step value, that is, it is the value that is added to the index ea.ch time the loop is executed. Vari-
able z may be assigned a minus value in cases where it is desired to decrement the index. If “STEP Z”
is omitted, a value t 1 is assumed.

The x, y, and z values are expressions: these expressions are evaluated upon first encountering the loop. This in-
cludes setting the index equal to the initial value. Therefore, the program can later jump back to the same FOR
statement any number of times to re-start the loop. If the x, y, and z values are unchanged, the loop will be re-
peated the same number of times each time the program executes the FOR statement.

A variable used as an index in a FOR statement must not be subscripted.

The block of instructions to be executed repeatedly will immediately follow the FOR statement. After the last of
these instructions there must be a NEXT statement whose parameter is the same as the index of the loop.

If the initial value is “beyond” the terminal value, the loop will never execute because an initial check is made of the
starting and terminal values before the loop is executed. “Beyond”, as used here, means that the initial value is not
equal to the terminal value and adding the step value will only increase the difference. If the step value is negative
“beyond” means “less than”. If the step value is positive, “ beyond” means “greater than”.

The value of the loop index can be changed within the loop, thus influencing the number of times the loop is
executed.

A program can have one or more loops within a loop. This is called “nesting loops”, and is often used with sub-
scripted variables.

It is possible to exit from a loop without the index reaching the terminal value by using an IF statement. Control
may transfer into a loop only if that loop was left earlier without being completed.

The following examples illustrate the use of the FOR statement.

Example 1:

The following program

10 DIM C (2 r J)
20 FOR A x 1 TO 3
30 FOR B=i TO 2
4 0 READ C(BrA)
50 PRINT C(BrA)r BiCI
60 NEXT B
70 NEXT A

90 END
80 m * r A 1r293r4r5rb

6-22

BASIC

will display:

1. i 1

3 i 2
4 2 2
5 1 3
6 2 3

2 2 3
-
-

-
Lines 30 through 60 of the above program represent a loop nested within another loop (line 20 through 70). The
FOR statement on line 30 will be executed three times. Each time, its loop statements (lines 40 through 60) will be
repeated twice.

Example 2 :

The following llines

JO LET B:=2\C=3
20 FOR AzC-B TO N”C STEP C

40 NEXT A
50 PRINT A
99 END

30 PRIN*r A

will display:

When the FOR statement was encountered, it interpreted the initial value as 1 (3 minus 2), the terminal value as
8 (2 to the third power) and the step value as 3.

Example 3:

The following lloop

10 FOR 1 ~ 1 0 TO 1 STEP -1
20 NEXT I
30 PRINT I
99 END

will display:

Example 4:

The following loop

10 FOR D=1 TO 5
20 LET D = D t 4
30 NEXT D
99 END

6-23

BASIC

will only be executed once.

Example 5:

The loops in the following program will never be executed:

. io FOR D=S TO i
20 PRINT rl
30 NEXT D
10 FOR W l TO 5 STEP -1
20 PRINT D

99 END
30 w x - r D

6.7.5.2 NEXT Statement Format - The NEXT statement defines the end of a program loop.

NEXT Statement Form

Line Number Statement Parameters

xxx NEXT v (variable)

where v represents the index value used in the corresponding FOR statement.

A NEXT statement is never used without a FOR statement. The variable value must be identical to the index value
(v) used in the corresponding FOR statement. The variable parameter may not be subscripted.

6.7.6 Control Statements (GOTO, IF-THEN, GOSUB, RETURN)
Normally the statements in a BASIC program are executed in the sequence they appear in a program. Control state-
ments allow this execution sequence to be redirected.

6.7.6.1 Unconditional Branch (GOTO Statement) - The GOTO statement is used to transfer control to another
line statement in a program. BASIC then continues execution at the line number referred to in the GOTO statement.

GOTO Statement Form

Line Number Statement Parameter

XXX GOTO n

where n is the line number of the statement to which control should be transferred.

For example, the following program employs two separate GOTO statements lo redirect program control.

10 GOTO 40
20 PRINT 'SECOND'
30 STOP
40 PRINT "FIRST"
50 GOTO 20
99 END

When executed, the program displays:

6-24

BASIC

NOTE
When the program reaches the GOTO statement, the
statements immediately following will not be executed;
instead, execution is transferred to the statement begin-
ning with the line number indicated.

Xk7.6.2 Conditional Branch (IF-THEN Statement) - The IF-THEN statement tests a condition and redirects pro-
gram control if that condition is true. That is, if the condition specified is true, the IF-THEN statement effectively
executes a GOTO statement for the line number specified. When the condition is false, the next statement is
executed.

Line Num,ber Statement Parameters

xxx IF VI relation v2 THEN n

where

v l , v2

relation

THEN

are variables, numbers, strings, or expressions to be compared;

is the relational operator to be used in comparing v l and v2 (See Section 6.6.5.4);

may be replaced with GOTO if desired (either THEN or GOTO is acceptable, but one of
the two must be present); and

is the number of the statement to which the program will jump if the relationship described
is true.

n

The following examples illustrate the IF-THEN statement.

Example 1:

After executing the first two instructions

20 LET A - 5
30 IF A =$2 GOTO 100

100 PRINT "HERE'
40 PRINT "NO"

control is transferred to line 100.

Example 2:

After executing the following instructions

20 LET A = 5
30 IF A = 2 GOT0 100
40 PRINT 'NO'
99 END

the console will display:

6-25

BASIC

After executing the following instructions

10 LET A$-’* ’
20 IF AB:= ‘ Z ’ G O T 0 99
30 PRINT ‘YES’
99 EN11

the program will display:

YES

because the ASCII code for “*” is not equal to the ASCII code ASCII for a “Z”.

Strings may be used in IF-THEN statements, but comparisons are based on the positions of the characters in the
string sequence. The question mark (?) is the highest alphanumeric character and the at sign (@) is the lowest.

The two strings described in the IF-THEN statement are compared one character at a time, from left to right, until
the ends of the strings are reached or until an inequality is found.

If the strings are of unequal length, BASIC lengthens the shorter string by adding spaces to the right until both are of
equal length. If “AB” is compared to a four-character string, it will be treated as “AB(space) (space”.

When using numerical expressions in the IF-THEN statement, the test for equality may not always work due to the
nature of the arithmetic used by the computer. One way to get around this is to compare the absolute value of the
difference between the operands to a very small number. For example, instead of

20 IF A=B THEN 50

use

20 IF ABS(B) < 0001 THEN 50

6.7.6.3 Branch to Subroutine (GOSUB Statements) - A subroutine is a group of statements that perform a proc-
essing operation at more than one point in a program.

The GOSUB statement is used to branch to the subroutine and the RETURN statement redirects control back to the
main body of the program.

GOSUB Statement Form

Line Number Statement Parameters

xxx GOSUB n

where n is the line number of the first line of the subroutine.

When the program encounters a GOSUB statement, the following action occurs:

1. BASIC internally records the number of the statement following the GOSUB statement.
2 . Control is transferred to statement number n.

GOSUB is always used with the RETURN statement.

The RETURN statement is the last statement in a subroutine. When the program encounters tile RETURN state-
ment, control transfers back to the statement following the GOSUB.

6-26

BASIC

A subroutine can call another subroutine. This is called "nesting" (see Example 2). Programs may be written to
transfer control from one statement to another in the same subroutine, or to a statement in a different subroutine.
When a RETURN is encountered, control returns to the statement following the last GOSUB that was executed.
Subroutines may not be nested more than ten levels deep (Example 2 shows two levels of nesting).

The following examples illustrate the GOSUB statement.

Example 1:

The following program

100
110
i20
130
140
150
160
170

will display:

Example 2 :

The following program, showing subroutine nesting,

100 FOR I=l. TCI 3

120 GCISI.JS 1000
130 LET X = 2 * 1
:L40 GQSUB 500
150 NEXT I
200 STOP

I 1 o LET v:- I

500 REM CALCULATE
510 I._ET V:=X+2
520 G O W B 1000
530 RETURN

1000 REM PRINT VALUE
1010 PRINT 'TI4E VALUE I S " ;
1020 PRINT V
1030 RETURN
9999 END

6-27

BASIC

will display:

THE VALUE IS 1
THE VALUE IS 4
THE VALUE IS 2
THE VALUE IS 6
THE UALlJE IS ;3
THE VALUE IS 8

6.7.6.4 Return from Subroutine (RETURN Statement) - The RETURN statement is used to redirect control
from a subroutine.

RETURN Statement Form

Line Number Statement Parameters

XXX RETURN (none)

RETURN is always used with the GOSUB statement.

When the RETURN is encountered, it causes control to transfer to the statement following the last GOSUB
executed.

6.7.7 Program Termination Statements (END, STOP)
BASIC is equipped with two statements, the END and STOP statements, that can be used to terminate program
execution.

6.7.7.1 END Statement Format - The END statement terminates execution of the program. It informs the
BASIC compiler that it has reached the last line of the program.

END Statement Form

Line Number Statement Parame ters

XXX END None

NOTE
Only one END statement may appear in a program and it
must be the last statement in the program.

6.7.7.2 STOP Statement Format - The STOP statement is used to terminate the execution of a program.

STOP Statement Form

Line Number Statement Parame ters

xxx STOP None

Note that there may be several STOP statements in a program.

6.7.8 The INPUT Statement
The INPUT statement permits the operator to specify data during execution of a program.

6-28

BASIC

INPUT Statement Form

Line Number Statement Parame ten

XXX INPUT Variable List

where variables can be a single variable or a list of variables.

The INPUT Statlement will cause the program to pause during execution, display a question mark, and wait for you
to enter a value and press the RETURN key. If there are several variables involved, the program will expect you to
type in a value csorresponding to each variable. If you press the RETURN without having done this, the system will
display another question mark and wait for the rest of the data. When the values have all been typed in, the pro-
gram will continue with the variable names now equivalent to the values typed in. The first variable will equal the
first entry, the second will equal the second entry, etc. (See Example 1).

The following vadues are recognized as acceptable when inputting numeric data:

+ or - sign
digits 0 through 9
the letter E
leading spaces (ignored)
(first decirnal point)

All other characters are treated as delimiters for separating numeric data. That is, when the system encounters a
character other than those specified, it will consider that it has come to the end of the entry relating to the variable
it is currently prlocessing and will apply any characters typed in after that to the following variable, if any (see
Example 1).

When inputting numeric data, two delimiters read in succession imply that the data between delimiters is 0 (see
Example 2).

In response to an INPUT statement, you can provide more values than are requested by the INPUT statement. The
remaining or unused values are saved for subsequent use by the next INPUT statement. The question mark is not
displayed until the program is out of data.

When inputting string data all characters are recognized as part of the string. Quotation marks are not typed in
unless they are deliberately meant to be part of the string.

Each string requested by an INPUT statement must be terminated by a carriage return which acts as the data de-
limiter. This is necessary since all characters except for the carriage return are recognized as part of the data string.

String variables are assumed to be eight characters long unless otherwise described in a DIM statement.

The following examples illustrate the use of the INPUT statement.

Example 1:

If, in response to' this statement:

6-29

BASIC

the variables will have the following values:

A:-2
B:3.7
C: 4000(4E3=4X 10^3=4000)
D: 9
E: l(numbers are assumed to be positive unless they are specified to be negative).

The delimiters in the above line are the comma, the letter “A”, the space after the number 3, the left-angle bracket
(<), and the RETURN.

Example 2:

If, in response to the same statement, you type

- ?-2t 3.7? 4E3? ? i

The results will be identical except that variable “D” will have the value 0.

Example 3:

If, in response to the statement:

50 INFUT R 8

YOU type

- 1 .ArC>=t7

the string variable R$ will have the value:

“A,C>=+7

Example 4:

If, in response to:

40 LET A = 5
50 INFUT B t A)

1 7 -
B (5) will now have the value of 7.

6.7.9 The REMark Statement
The REM statement is a nonexecutable statement used to insert comments into the source program.

REMARK Statement Form

Line Number Statement Parameters

xxx REM comments

6-30

BASIC

6.7.10 Ancillary Statements (DIMension, RESTORE, DEFine, RANDOMIZE and CHAIN)
BASIC has five atdditional statements that are used as helping statements and fall in no particular category. They are
described in the following paragraphs.

6.7.10.1 DIMension Statement Format - The DIMension statement is used to describe subscripted variables and
to define the length of strings.

DIMension Statement Form

Line Number Statement Parameters

xxx DIM v(n [m l)

where v is the na.me of the subscripted variable.

If the variable name (v) is numeric, and

1. m is omitted, then n+l is the number of elements in an array or vector (see Example 1).
2. m is specified, then n t 1 is the number of rows in a two-dimensional array (see Example 2).
3. if v is numeric, then m+l is the number of columns in a two-dimensional array (see Example 2);

If the variable nalme (v) is alphanumeric, and

1 . m is omitted, then n is the length of the string. This describes a single string, not a list, and cannot exceed
80 (see Example 3).

2. m is specified, then n+l is the number of strings in the list. This is a one dimensional array (see Example 4).
3. if v is alphanumeric, then m is the length of each string in a one-dimensional list. It cannot exceed 80 (see

Example 4).

The parameters n and m must be integer constants. They are limited in size only by the amount of available memory.

If a numeric variable is used in the program with a subscript but is not defined in a DIM statement, BASIC assigns it
an array size of tjen.

BASIC assumes a maximum string length of 8 characters unless the variable appears in a DIM statement.

Two-dimensional string variables are not permitted.

When the variable is used in other statements, it is not permitted to have subscripts whose values are higher than
those in the DIM statement.

The first element of every array is automatically assumed to have a subscript of zero. Therefore, the number of
boxes in a one dimensional array is n+ 1. The number of boxes in a two-dimensional array is (n+ l)*(m+ 1). The
first element in an array is v(0) or v(0,O) (see Example 2). However, the “zero” elements can be disregarded in pro-
gramming unless the user wishes to conserve memory.

More than one array can be defined in a single DIM statement (see Example 7).

In general, wherever you can use a single variable name in a statement, you can use a subscripted one. Exceptions
are noted in descriptions of the individual statements (such as the index of the FOR statement).

The following ex,amples illustrate the use of DIMension statement.

6-3 1

BASIC

Example 1:

The following statement

10 D I M A (5)

describes six numeric elements as follows:

To store a 5 in A(3) and then display it, type

20 LET A (3) = 5
30 PRINT A (3)

Example 2:

The following statement

10 D I M A t 3 9 5 1

describes 24 numeric elements (4X6=24) as follows:

SIX COLUMNS

Example 3:

The following statement

10 D I M C B (1 2)

describes one string, 12 characters long:

C$

Example 4:

The following statement

i o rmi ~ ~ (3 9 2 0)

describes 4 strings, each 20 characters long:

D$(O) D$(1) D$(2) D$(3)

6-3 2

BASIC

2 3 4 5
-

1

2

3

Example 5 :

The following program will fill the array in Example 4 from a DATA list:

10 IIIM D B (3 r 2 0)
20 FOR Y=Q TO 3
90 READ D$(Y)
40 NEXT Y
50 FOFl Z=O TO 3
60 PRINT D B (Z)
70 NEXT Z
80 D A T A 'ZERO'Y'ONE'Y'TWO'Y'THREE"
'39 ENXI

and display each element:

ZIZRO
ONE
'TWQ
THREE

-

Example 6:

After these statements:

The area diagrarnmed in Example 2 would appear as follows:

The following statement dimensions both the one-dimensional array A and the two-dimensional array B:

6.7.10.2 RESTORE Statement - The RESTORE statement allows the program to go back to the beginning of a
DATA list (paragraph 6.7.3.1) after using the list in a READ statement (paragraph 6.7.3.2).

6-33

BASIC

RESTORE Statement Form

Line Number Statement Parameters

xxx RESTORE None

If it is desired to use the same data more than once in a program, RESTORE makes it possible to recycle through
the DATA list beginning with the first value in the first DATA statement.

The RESTORE statement may be used in programs where DATA statements convey numeric or string data to
READ statements.

The same variable names may be used the second time through the data since the values are being read as though for
the first time.

The following example illustrates the use of the RESTORE statement.

The following lines

10
2 0
3 0
40
50
60
99

will cause

6.7.10.3 DEFine Statement

DEFine Statement Form

Line Number

xxx

where

This statement allows you to add function:; to a program.

Statement Parameters

DEF FNa(x)=expression

a is the capital letter used for identifying the function;

x is a dummy variable and must be the same on both sides of the equal (=) sign; and

expression defines the function by indicating the calculation process (fiinction) involved.

There must be a DEF statement for each function used in the program.

The DEF statement must appear before the first use of the function it defines.

If there is more than one variable involved in the function, BASIC will identify them by their position.

Up to 14 different arguments may be used.

6-34

BASIC

Up to 26 FN functions may be defined in a single program (FNA, FNB . . .FNZ).

The following examples illustrate the use of the DEFine statement.

Example 1

The statement

:L 0 DEF FND (S 1 ::nSC’2

will cause the later statement

to be evaluated as R=16. BASIC locates the DEF statement for the function FND, substitutes the 4 for the variable
(S) in the expression (S-2) and calculates the value of FND(4) to be 4^2=16.

NOTE
A variable that is used as a dummy argument in a DEF
FNa statement can also be used elsewhere in the program.

Example 2:

This program:

will display:

14 -
BASIC takes the first value in the function (4) as “N”, because “N” appears first in the DEF statement. It takes the
second value (5) as “I”’, because “P” is in the second position.

DEF FNH (N,P) = 2*PtN

first position second position

PRINT FNH(X,Y)

6.7.10.4 KANDOMIZE Statement - The RANDOMIZE statement is used with the RND function to generate
a different set of numbers each time the program is run.

RANDOMIZE Statement Form

Line Number Statement Parameters

XXX RANDOMIZE None

6-35

BASIC

6.7.10.5 CHAIN Statement - The CHAIN statement allows one program to execute another program. It can be
used to divide large programs into a number of smaller programs that are to be written and stored separately.

CHAIN Statement Form

Line Number Statement Parameters

xxx CHAIN “dev: file.ex”

where ‘‘dev:file.ex” is the device and the file name of the program to be executed.

When BASIC encounters a CHAIN statement in a program, it stops execution of that program, retrieves the program
named in the CHAIN statement from the specified device and file, compiles the CHAINed program (if necessary)
and begins execution of that program.

If the program was started in the editor, when execution of all programs in the chain is complete, the workspace will
contain the original program.

All output files that are opened in the original program must be closed before the CHAIN statement is encountered.

A BASIC language program may only CHAIN to another BASIC language program, and the program it CHAINS to
may not have an extension of “SV” (see the following example).

A compiled program may also execute CHAIN statements, but it can only CHAIN to other compiled programs
which have “SV” extensions.

In the following example, the program “SECOND” will CHAIN to the program “FIRST”.

R E A D Y

Enter FIRST and store it.

R E n D Y
:I. o Iw I: N‘r
20 C:I-IAIN ~ E ; Y S : I ~ : C K S T .EA“

OR I c; I N AI ... a

30 1i:Nfl
E; h V E: !;Y !; : !; 1:: C: (:I N D Enter SECOND and store it.

c3 R I G I N A I...
Execute the programs.
Displayed by SECOND.
Displayed by FIRST.

6.7.1 1 File Handing Statements
The file capability provided by OS/78 BASIC allows writing to or reading from the peripheral devices of the system.

6.7.1 1.1 FILE# Statement - The FILE# statement defines and opens a file.

6-36

BASIC

FILE# Statement Form

Line Number Statement

XXX FILE

where

t

n

Parameters

t # n: “dev:file.ex”

must be one of the following:

(blank) - for an input string file
V
N
VN

- for an output string file
- for an input numeric file
- for an output numeric file;

is the number you are assigning to the file (It must be 1 ,2 ,3 , or 4 and can be a numeric
variable); and

“dev: file.ex” is the standard device, file name and extension; It must be either a string variable or the
string itself in quotation marks.

A file must be opened before it can be used. The only exception is the terminal, which is always available for use.

The n in this statement is the number you must use in all FILE# statements that refer to the file. The terminal is
always FILEW.

The following e:xamples illustrate the use of the FILE# statement.

Example 1:

The following statement describes file number 1 to be the string file HPRDAT.AS on RXAl and opens it for output.

Example 2:

The following statement describes file number 2 to be the numeric file DATA.NU on RXAl and opens it for output.

Example 3:

The following statement describes file number 3 to be the string file TEST.AB on RXAl and opens it for input.

:LO F‘III ...E93: ‘ R X A 1 :TES’T+RB“

Example 4:

The following statement describes file number 4 to be the numeric file FILA.CD on RXAl and opens it for input.

6.7.1 1.2 PRINT# Statement - The PRINT# statement writes data into files.

6-37

BASIC

PRINT# Statement Form

Line Number Statement Parame ten

XXX PRINT# n: expressions

where

n

expressions

is the file number (It may be a numeric \variable); and

depends on file type, numeric or string as discussed below.

As long as PRINT# is used for only numbers or numeric variables separated by commas or semicolons (or RETURN
at the end of a PRINT# line), BASIC converts commas to spaces and does not write the carriage return and line feed
to numeric files. The only thing written out will be a "list" of numbers separated by spaces. Each time INPUT# is
used, it will read another number from the list (see Example 1).

When dealing with string files, symbols such as RETURNS, semicolons, and so forth, are used in the PRINT# state-
ment in the same way they are used in the PRINT statement. The PRINT# statement works exactly the same way
that the PRINT statement does, except that the line goes to the file designated instead of to the terminal.

The important difference here is that string files involve lines, while numeric files involve individual numbers. That
is, each INPUT# will read a line (see Example 2).

If PRINT# is used for numerics to a string file, BASIC will convert them to strings. If an attempt is then made to
INPUT# them into numeric variables, BASIC will convert them back to numerics. However, the RETURN and line
feed at the end of a line will be converted to zeros. This can be dealt with by adding two extra variables to the
INPUT# statement.

The following examples illustrate the use of the PRINT# statement.

Example 1:

The following lines

10 FILEUN#l:'SYS:TST*XX'
20 PRINT#l:lrZ
30 FRINT#1:3r4r
40 PRINT#l:Sr6
50 CLOSEtl

70 FOR X = l TO 6
80 INPUTB1:Z
90 PRINT Z
100 NEXT X
i (3 Y END

60 FILEN#l:'SYS:TST*XX'

will display

6-38

BASIC

Example 2:

The following lines

will display

The same display will also be caused by

6.7.11.3 INPUT# Statement - The INPUT# statement reads data from a file.

INPUT# Statement Form

Line Number Statement Parameters

xxx INPUT# n:variables

where

n

variables

is the file number of the file being read (it may be a variable); and

is the list of variables into which data will be read. Each variable is separated by a comma.

Normally, data from numeric files is read into numeric variables and data from string files is read into string variables.

It is possible however to write numerics into a string file and then read them into either numeric or string variables,
depending on how it is desired to use them. If numbers are read from a string file into string variables, they will be
in string form and subject to the same rules as other strings.

Numbers read from a string file into numeric variables will be converted to numerics. Line feeds are ignored in this
case.

The following examples illustrate the use of the INPUT# statement.

6-39

BASIC

Example 1:

To read two strings from RXAl:FIL.DA, enter

10 FILE#l:'RXAl:FIL+DA"
20 INPUT#l:ArB

A$ will contain the first string, B$ the second string.

Example 2:

To read five numbers from RXAl:TST.XX, enter

10 FILEN#3:'RXAl:TST+XXm
20 INPUTP3 :A rI31CrDv E

Example 3:

The following program writes numerics to a string file and reads them back as numerics:

10 FILEUI1:"SYS,FILA,ZZ'
20 FOR Iz.1 TO 5
30 FRINTP1:I
40 NEXT I
50 CLC')SEIl
60 FI:I._Etl: 'SYS:FILA+Z%'
70 FOR I=l TO 5
80 1NPlJT:ki :..I?CrL

1.00 NEXT K
110 END

90 P R w r J

It will display:

6.7.11.4 RESTORE#Statement - The RESTORE statement resets the file data printer back to the beginning of
the file, that is, RESTORE effectively performs a file close followed immediately by a file open so that the first data
element in the file can be. reread.

RESTORE# Statement Form

Line Number Statement Parameters

XXX RESTORE# n

where

n is the number of the file to be reset. It may be a number or a numeric variable.

640

BASIC

For example, if RXA1:FILB.LM is a numeric file containing the numbers 1 through 9, the instructions

100 FIL .ENi3: ' R X A 1 :FIL..E{+LM'
110 FOR I = i TO 3
120 INPUT :k3:Z

140 NEXT I
150 RESTORE93

170 PRINT Z
194 IZNKI

130 PR1N.r z

1.60 I N P I . m z : z

will display:

NOTE
If n is zero, the DATA list in the program is reset.

6.7.1 1.5 CLOSE# Statement - The CLOSE# statement finishes the processing of a file and allows it number to be
assigned to another file in a FILE# statement.

FILE CLOSE# Statement Form

Line Number Statement

xxx CLOSE#

where

Parameters

n

n is the number of the file to be closed. I t may be a variable.

For example, in the following program

The CLOSE# statement at line 70 finished the processing of file SYS:TEST.XX and allowed its number, 1, to be
assigned to RXAl : FILD.DA in line 80.

NOTE
All output files must be CLOSED before any of the fol-
lowing is executed.

CHAIN END
STOP CTRL/C

Failure to do so results in loss of file.

6-41

BASIC

6.7.1 1.6 IF END# Statement - The IF END# statement determines if the End of File (EOF) marker has been
read from a file, and if so, branches to the line specified.

IF END# Statement Form

Line Number Statement Parameters

xxx IF END# n THEN m

where:

n

m

is the file number of the file in question (it may be a variable); and

is the line number to which control passes when the end of the file is detected.

This statement works only for string files.

The IF END# statement should come immediately after the PRINT# or INPUT# statement for that file. If, as a
result of the IF END# statement, control passes to line m, it means that the last PRINT# or INPUT# was not
successful. That is, nothing was actually read from or written to the file as a result of the last INPUT# or PRINT#
statement.

For Example,

The following lines

3. 0
20
30
4 0
50
60
70
80
70

100
110
199

will display

A
B
-
EN11

FILEV#l:'SYS:PROGA*BR'
PFZINT*I.: " A '
P R I N T # l : ' B "
CLOSE91
F I L E t l : 'SYS:PROGA,BB"
INPUT#l:A$
I F END91 THEN 100
PRINT A$
GOT0 60
PRINT 'END OF FILE'
CLOSE91
END

OF FILE

6.8 BASIC FUNCTIONS
BASIC functions are standard subroutines incorporated into the BASIC Run Time System (BRTS) to aid computa-
tions and text handling.

Function calls consist of a three letter (all capitals) name followed by an argument in parentheses. The argument
may be a number, variable, expression, or another function. Generally, functions may be used anywhere a number
or variable is legal in a mathematical expression.

Most functions compute a value based on the value of the argument or arguments involved. They are said to return
this value. For example, SQR(A) "returns" the square root of A.

6-42

BASIC

Functions may return either strings or numbers. Functions that return strings have names ending in a dollar sign
(STR$, SEG$), while functions returning numbers have names that do not end in a dollar sign (SGN, VAL).

6.8.1 Arithmetic Functions (ABS, INT, EXP, RND, SGN, SQR)

6.8.1.1 BASIC ABS Function - The ABS function returns the absolute value of an expression.

Format

ABS(X)

where

X is a number, numeric variable, or numeric expression

6.8.1.2 BASIC EXP Function - The EXP function calculates the value of e raised to the X power, where e is
equal to 2.71828. That is, EXP(X) is equivalent to 2.71828 X.

Format

where

X is a number, numeric variable, expression, or another function.

6.8.1.3 BASIC INT Function - The INT function returns the value of the largest integer not greater than the
argument.

Format

INT(X)

where

X is, a number, numeric variable, expression, or another function.

NOTE
This function can be used to round numbers to the near-
est integer by specifying INT(Xt.5).

For example, the function INT(34.67) has the value 34; the functions INT(34.67+.5) and INT(34.37+.5) have
these values of 35 and 34, respectively; and these functions INT(-23) and INT(- 14.39) have these values of - 23 and
- 15, respectively.

6.8.1.4 BASIC]RND Function - The RND function produces random numbers between (but not including
Oand 1.

Format

where

X is a dummy variable in this function.

6-43

BASIC

Every time this function is encountered in a statement, it will produce a different set of decimal numbers. However,
the program is RUN again, the same set of numbers will be produced (see Example 1).

If this repetition is undesirable, it can be changed with the RANDOMIZE statement.

For example, the following program is run twice with identical results:

10 FOR A z 1 TO 5
20 FRINT RND(X)
30 NEXT A
40 END

RUNNH
0, 361572
0, 332764

READY
RUNNH
0 , 361572
0, 332764
0, 633057
0 6 350342
0, 670166

READY

6.8.1.5 BASIC SGN Function - The SGN function creates a value based on the sign of the argument.

Format

SGN(X)

where

X is a number, numeric variable, numeric expression, or another function.

NOTE
The value of the SGN function will be 1 if the argument
is any positive number, 0 if the argument is zero, and - 1
if the argument is negative.

6.8.1.6 BASIC SQR Function - The SQR function computes the positive square root of an expression.

Format

where

X is a number, numeric variable, numeric expression, or another function.

6-44

BASIC

NOTE
If the argument is negative, the absolute value of the
argument is used.

6.8.2 Trigonometric Functions (ATN, COS, LOG, SIN)

6.8.2.1 BASIC ATN Function - The ATN function calculates the angle (in radians) whose tangent is given as the
argument of the function.

Format

ATN(X)

where

X is a number, numeric variable, expression, or another function, representing the tangent of an angle.

6.8.2.2 BASIC COS Function - The COS function is used to calculate the cosine of an angle specified in radians.

Format

COS(X)

where

X is a number, numeric variable, expression, or another function, representing the size of an angle in
radians.

6.8.2.3 BASIC LOG Function - The LOG function calculates the natural logarithm of X (to the base e).

Format

LOG(X)

where

X is a number, numeric variable, expression, or another function.

6.8.2.4 BASIC SIN Function - The SIN function is used to calculate the sine of an angle specified in radians.

Format

SIN(X)

where

X is a number, numeric variable, expression or another function, representing the size of an angle in
radians.

6.8.3 String Handling Functions (ASC, CHP$, DAT$, LEN, POS, SEG$, STR$, TAB, VAL)

6.8.3.1 BASIC ASC Function - The ASC function converts a one character string to its code number
(seeCHR$).

6-45

BASIC

Format

ASC(X)

where

X is a one character string.

To find what will be returned for any character, look for the character in the “CHARACTER’ column of Table 6-1.
The number to the left of it is the decimal equivalent.

Table 6- 1 Decimal/Character Conversions

Decimal
~~~~~~ 

0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 

Character 

@ 
A 
B 
C 
D 
E 
F 
G 
H 
I 
J 
K 
L 
M 
N 
0 
P 
Q 
R 
S 
T 
U 
V 
W 
X 
Y 
Z 
[ 

Decimal 

32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 
50 
51 
52 
53 
54 
55 
56 
57 
58 
59 
60 
61 
62 
63 

Character 

9, 

# 
$ 
% 
& 
I 

( 
1 * 
t 
I 

- 

I 
0 
1 
2 
3 
4 
5 
6 
7 
8 
9 

6-46 



BASIC 

For example, 

The following program 

10 LE:T A$-"$ '  
20 PRINT ASC('P')r ASC(A$)rASC('9') 
30 END 

will display 

16 42 57 

6.8.3.2 BASIC CHR$ Function - The CHR$ function converts a code number (modulo 64) to its equivalent 
character in the 64 character set. 

Format 

CHR%(X) 

where 

X is a number, numeric expression, or numeric variable (0 < X < 63). 

To find what will be returned for any number, look for the number in the "DECIMAL" column of the preceding 
conversion table. The equivalent character will be to the right of the number. 

For example, the following line 

10 PR:INT CHH$(1),CHR$(40) 

will display: 

A (  -. 

6.8.3.3 BASIC DAT$ Function - The DAT$ function returns the current system date. 

Format 

DAT$(X) 

where 

X is a dummy variable in this function. 

The date is returned as an eight-character string of the form: 

MM/DD/YY 

If the date has not been specified with the Monitor DATE command, no characters will be returned. 

For example, the following lines 

6-47 



BASIC 

will display: 

if that date was entered with the Monitor DATE command. 

6.8.3.4 BASIC LEN Function - The LEN function returns the number of characters in a string. 

Format 

LEN(X$) 

where 

X$ is a string or string variable. It may be several concentrated strings and/or variables. 

6.8.3.5 BASIC POS Function - The POS function returns the location of a specified group of characters in a 
string. 

Format 

POS(X$, Y $ ,  Z )  

where 

X$ 

Y$ 

Z 

is the string to be searched (it may be a string variable or string constant); 

is the series of characters you are searching for (it may be a string variable or a string constant); and 

is the position in the string at which you want to begin the search. 

This function searches X$ for the first occurrence of Y$. The search begins with the Zth character in X$. 

Z may not be less than zero or greater than the length of string X$. 

If Y$ contains no characters, the function returns a one. 

If X$ contains no characters, it returns a zero. 

If Y$ is not found, it returns a zero. 

For example, the following lines 

10 DIM N2$(12) 
20 EC?$ := " ABCDEFGHIDEF 
30 PRINT POS (B2$r 'DEF' 1 7 )  

will display: 

3.0 - 
6.8.3.6 BASIC SEG$ Function - The SEG$ function returns the sequence of characters between two positions 
in a string. 

6-48 



BASIC 

Format 

SEG$(X$,Y ,Z) 

where 

X$ 

Y 

Z 

is the string containing the characters to be returned (it may be a string variable or a string constant); 

is the position of the first character to be returned; and 

is the position of the last character to be returned. 

If Y is less than 1, it is set to 1. 

If Y is greater than the length of X$, no characters are returned. 

If Z is less than 1, no characters are returned. 

If Z is greater than the length of X$, it is set equal to the length of X$. 

If Z is smaller then Y, no characters are returned. 

For example, the following lines 

will display: 

CDE 

6.8.3.7 BASK STR$ Function - The STR$ function converts numbers to strings. 

Format 

STR$(X) 

where 

X is a numeric expression 

NOTE 
The string that is returned is in the form in which num- 
bers are output in BASIC without leading or trailing 
blanks. 

6.8.3.8 BASK TAB Function - The TAB function allows you to position characters anywhere on the terminal 
line. 

6-49 



Format 

TAB(X) 

where 

X is the position (from 1 to 80) in which the next character will be displayed. 

This function may only be used in a PRINT or PRINT# statement. 

Positions on the line are considered by BASIC to be numbered from 1 to  80 across the screen from left to right. 

Each time the TAB function is used, positions are counted from the beginning of the line, not from the current 
position of the cursor. 

If X is less than the current position of the cursor, the display starts at the current position. 

If X is greater than 80, the display will begin at the first position of the next line. 

In order to keep track of the cursor, BASIC maintains a “column count”, which represents the position of the cursor 
at any given time. As the cursor moves across the screen, BASIC adds to the column count. When the cursor returns 
to the first position, the column count is reset to  0. The activity of the TAB function is based on this count. 

There are circumstances in which the column count does not coincide with the position of the cursor. For example, 
the PNT(07) function will add 1 to the count without moving the cursor. Also, the PNT(13) function will return 
the cursor to the first position on the screen without setting the column count to zero. The user, therefore, must 
take this into account when using the TAB function after PNT functions. The column count will be corrected the 
next time there is a “normal” return to column one. 

For examples, the following lines 

60 LET Hz5 
70 PRINT ‘A’;TAB(B)P’C’ 

will cause this display : 

A C 

6.8.3.9 BASIC VAL Function - The VAL function converts a string to numeric data. 

Format 

where 

X$ is a string constant or string variable made up of those values that BASIC recognizes as acceptable 
when inputting numeric data: 

t or - sign 
digits 0 through 9 
the letter E 
leading spaces (ignored) 
. (first decimal point) 

6-50 



BASIC 

NOTE 
A string, even though it is composed of digits, is not 
numeric data. It cannot be used in calculations or as 
the argument of a mathematical function (SQR, ABS, 
EXP, and so forth), without first being converted by 
the VAL function. 

6.8.4 Display Console Control Function (PNT) 

BASIC PNT Function - The PNT function is used to perform special actions on the terminal, such as sounding 
the buzzer, erasing the screen, and moving the cursor. 

Format 

PNT(X) 

where 

X is the value of the character to be output. 

Special actions that can be performed by the PNT function are as follows: 

PNT(07) 

PNT(08) 

PNT(09) 

PNT( 10) 

PNT( 13) 

PNT(27);”A” 

PNT(27) ;”C” 

PNT(27) ;”H’ 

PNT(27) ;”J” 

PNT(27) ;”K” 

PNT(27) $‘[” 

sounds buzzer 

moves cursor one space to left 

moves to next tab stop (Tab stops are set every 8 spaces.) 

moves cursor down one line and scrolls if required 

moves cursor to left margin of current line 

moves cursor up one line 

moves cursor right one position 

moves cursor to upper lefthand corner of screen (“home” position) 

erases from cursor position to end of screen 

erases line from cursor to right margin 

stops display of any new lines when screen is full. Each time the operator presses the 
SCROLL key, another line will be displayed. If he presses SHIFT and SCROLL, 
twelve new lines will be displayed. This is called Hold Screen Mode. 

turns off Hold Screen Mode. 

NOTE 
The PNT function may only be used in a PRINT or 
PRINT# Statement. 

6-5 1 



BASIC 

6.8.5 Trace Function 

BASIC TRC Function - The TRC function causes BASIC to print the line number of each statement in the 
program as it is executed. 

Format 

v = TRC(X) 

where 

V can be any letter (it is a dummy argument and has no purpose except to occupy that position on 
the line); and 

is 1 to turn the function on and 0 to turn it off. X 

This function is used to follow the progress of a program and help in tracking down errors. 

When BASIC encounters TRC(1) in a program, it displays the line number of each line in the program as it is 
executed. The line numbers are displayed between percent signs. 

When TRC(0) is encountered, the function is turned off and normal program operation resumes. 

Certain types of statements are not recorded by TRC: namely, DATA, DEF, DIM, END, GOTO, NEXT, 
RANDOMIZE, REM, and STOP. 

For example, the following program 

60 T='TRC(l )  
70 GOSUB 90 
80 GOTO 140 

100 GOSUB 120 
110 RETURN 
120 PRINT " I N  INNER SUP' 
130 RETURN 
140 T= TRC(0 )  
150 ENB 

90 PRINT ' I N  OUTER SUB' 

will display: 

X 70 X 
X 90 X 
I N  OUTER 
X 100 X 
x 120 X 
I N  I N N E R  
X 130 X 
x 110 x 
X 140 X 

SUP 
7 

SUR - 

6-52 



BASIC 

6.9 SUMMARY OF BASIC EDITOR COMMANDS 

Command Function 

BYE Exits from the editor and returns control to the monitor 

LIst Displays the program statements in the workspace with a header 

LISTNH Displays the program statements in the work space, without a header 

NAme Renames the program in the workspace 

NEW Clears the workspace and tells the editor the name of the program the user is about to 
type 

OLd Clears the workspace, finds a program on the disk, and puts in into the workspace 

Run  Executes the program in the workspace, after displaying a header 

RUNNH Executes the program in the workspace, without displaying a header 

SAve 

Scratch 

Puts the program in the workspace on a disk 

Erases all statements from the workspace 

6.10 SUMMARY OF BASIC STATEMENTS 

Statemenl Function 

CHAIN Executes another program 

Example: 40 CHAIN “SYS:PROG.BA” 

CLOSE# Closes a file 

Example: 100 CLOSE#l 

DATA Sets up a list of values to be used by the READ statement 

Example: 240 DATA “FIRST”,2,3 

DEF 

DIM 

Defines functions 

Example: 10 DEF FND(S)=S+S 

Describes a string and/or any subscripted variables 

Example: 50 DIM B(3,5),D$(3,72) 

END Terminates program compilation and execution 

Example: 100 END 

FILE# Defines and opens a file 

Example: 20 F ILEVNa:  “RXA1 :DATA.NV” 

6-53 



BASIC 

Function Statement 

FOR 

GOSUB 

GOTO 

IF 

IF END# 

INPUT 

INPUT# 

LET 

NEXT 

PRINT 

PRINT# 

RANDOMIZE 

READ 

REM 

RESTORE 

Describes program loops (used with NEXT) 

Example: 60 FOR X=l TO 10 STEP 2 

Transfers control to a subroutine (used with RETURN) 

Example : 50 GOSUB 100 

Transfers control to another statement 

Example: 100 GOTO 50 

Tests the relationship between two variables, numbers, or expressions 

Example: 20 IF A=O THEN 50 

Tests for the end of a string file 

Example: 60 IF END#3 THEN 100 

Accepts data from the terminal 

Example: 80 INPUT A,B,C 

Reads data from a file 

Example : 50 INPUT# 1 :A$ 

Assigns a value to a variable 

Example : 90 LET A$="XYZ" 

Indicates the end of a program loop (used with FOR) 

Example: 140 NEXT I 

Displays data on the screen 

Example: 200 PRINT A,"X";6 

Writes data to a file 

Example : 1 80 PRINT# 1 : J 

Causes the RND function to produce a different set of numbers each time the program 
in run 

Example: 10 RANDOMIZE 

Sets variables equal to the values in DATA statements 

Example: 50 READ A$,B 

Inserts comments into the program 

Example : 30 REM COMPUTE EARNINGS 

Sets program READ statements back to the beginning of the DATA list 

Example: 85 RESTORE 

6-54 



BASIC 

Statement Function 

RESTORE# Resets a file pointer back to the beginning of that file 

Example : 130 RESTORE#3 

RETURN Returns control from a subroutine (used with GOSUB) 

Example : 1 15 RETURN 

STOP Terminates program execution 

Example: 40 STOP 

6.1 1 SUMMARY OF BASIC FUNCTIONS 

Command Function 

ABS(X) 

ASC(X$) 

ATN(X) 

DAT$@) 

EXP(X) 

INT(X) 

Returns the absolute value of an expression 

Example : 10 LET X=ABS(- 66) 

will assign X a value of 66 

Converts a one character string to  its code number 

Example : 20 PRINT ASC( “B”) will display 2 

Calculates the angle (in radians) whose tangent is given as the argument 

Example: 30 LET X=ATN(.57735) 

will assign X a value of 0.523598 

Converts a code number to its equivalent character 

Example: 40 PRINT CHR$(l) will display A 

Returns the cosine of an angle specified in radians 

Example : 50 LET Y=COS(45 *3.14159)/180 

will assign Y a value of 0.707108 

Returns the current system date 

Example : 60 PRINT DAT$(X) 

will display the system date, such as 07/20/77 

Calculates the value of e raised to a power, where e is equal to 2.71828 

Example: 30 IF DEXP(1.5) GOT0 70 

will go to line 70 if Y is greater than 4.48169 

Returns the value of the nearest integer not greater than the argument 

Example: 60 LET XzINT(34.67) 

will assign X the value 34 

6-55 



BASIC 

Command 

LEN@$) 

LOG(X) 

PNT(X) 

Function 

Returns the number of characters in a string 

Example : 10 PRINT LEN (“DOG”) 

will display 3 

Calculates the natural logarithm of the argument 

Example : 10 PRINT LOG(959) 

will display 6.86589 

Outputs non-printing characters for terminal control 

Example : 50 PNNT PNT( 13) 

will move the cursor to the left margin of the current line 

POS@$,Y$,Z) Returns the location of a specified group of characters (Y$) in a string (X$) starting 
at a character position (Z) 

Example: 60 LET V= POS(“ABCDBC”, “BC”,4) 

will assign V a value of 5 

IWD(X) Returns a random number between (but not including) 0 and I 

Example: 70 PRINT RND(X) 

will display a decimal number, such as 0.361572 

SEG$@$,Y Z) Returns the sequence of characters in a string (X$) between two positions in the 
string (X,Y) 

Example: 30 LET R$=SEG$(“ABCDEF”,2,4) 

will assign R$ a value of BCD 

Returns 1 if the argument is positive, 0 if it is zero, and - 1 if it is negative 

Example : 200 PRINT 5 *SGN(- 6) 

will display - 5 

Returns the sine of an angle specified in radians 

Example: 30 LET B=SIN(30*3.14159/180) 

will assign B a value of 0.5 

Returns the positive square root of an expression 

Example : 40 PRINT SQR( 16) 

will display 4 

Converts a number into a string 

Example : 120 PRINT STR$( 1.76 1 1 1 124) 

will display the string 1.761 1 1 

6-56 



BASIC 

TRC( 1) 

VAL(X$:i 

Function 

Positions characters on a line 

Example: 70 PRINT “A”;TAB(S);“B” 

will display A B 

Causes BASIC to display the line number of each statement in the program as it is 
executed 

Example: 10 V=TRC(l) 

will display the line number of each statement executed until a TRC (0) is 
encountered 

Converts a string to a number 

Example: 90 PRINT VAL(“2.4611 l”)*2 

will display 4.92222 

6.12 BASIC ERROR MESSAGES 

6.12.1 Compilier Error Messages 
The following error messages are generated by the BASIC compiler: 

CH 
DE 
DI 
FN 
FP 
FR 
IF 
IC 
LS 
LT 
MD 
ME 
MO 
M P  
MT 
NF 

ERROR IN CHAIN STATEMENT 
ERROR IN DEF STATEMENT 
ERROR IN DIM STATEMENT 
ERROR IN FILE NUMBER OR NAME 
INCORRECT FOR STATEMENT 
ERROR IN FUNCTION ARGS 
ERROR IN IF STATEMENT 
I/C ERROR 
MISSING EQUALS SIGN IN LET 
STATEMENT TOO LONG 
MULTIPLY DEFINED LINE NUMBER 
MISSING END STATEMENT 
OPI!RAND EXPECTED, NOT FOUND 
PARENTHESIS ERROR 
OPIZRAND OF MIXED TYPE 
NEXT STATEMENT WITHOUT FOR 

NM 
OF 
PD 
QS 
ss 
ST 
SY 
TB 
TD 
TS 
UD 
UF 
us 
uu 
xc 

MISSING LINE NUMBER 
OUTPUT FILE ERROR 
PUSHDOWN STACK OVERFLOW 
STRING LITERAL TOO LONG 
BAD SUBSCRIPT OR FUNCTION ARG 
SYMBOL TABLE OVERFLOW 
SYSTEM INCOMPLETE 
PROGRAM TOO BIG 
TOO MUCH DATA IN PROGRAM 
TOO MANY CHARS IN STRING 
ERROR IN UDEF STATEMENT 
FOR STATEMENT WITHOUT NEXT 
UNDEFINED STATEMENT NUMBER 
USE STATEMENT ERROR 
CHARS AFTER END OF LINE 

6.1 2.2 Run-Time System Error Messages 
The following error messages are generated by the BASIC run-time system: 

BO 
CI 
CL 
cx 
DA 
DE 
Dc 
DV 
EF 
EM 

NO MORE BUFFERS AVAILABLE GS 
IN CHAIN, DEVICE NOT FOUND IA 
IN CHAIN, FILE NOT FOUND IF 
CHAIN ERROR IN 
READING PAST END OF DATA IO 
DEVICE DRIVER ERROR LM 
NO MORE ROOM FOR DRIVERS OE 
ATTEMPT TO DIVIDE BY ZERO ov 
LOGICAL END OF FILE PA 
NEGATIVE NUMBER TO REAL POWER RE 

TOO MANY NESTED GOSUBS 
ILLEGAL ARG IN UDEF 
ILLEGAL DEV: FILENAME 
INQUIRE FAILURE 
TTY INPUT BUFFER OVERFLOW 
TAKING LOG OF NEGATIVE NUMBER 
DRIVER ERROR WHILE OVERLAYING 
NUMERIC OR INPUT OVERFLOW 
ILLEGAL ARG IN POS 
READING PAST END OF FILE 

6-57 



BASIC 

EN 
FB 
FC 
FF 
FI 
FM 
FN 
FO 
GR 

ENTER ERROR 
USING FILE ALREADY IN USE 
CLOSE ERROR 
FETCH ERROR 
CLOSING OR USING UNOPENED FILE 
FIXING NEGATIVE NUMBER 
ILLEGAL FILE NUMBER 
FIXING NUMBER > 4095 
RETURN WITHOUT GOSUB 

sc 
SL 
SR 
ST 
so 
sw 
VR 
WE 

CONCATENATED STRING TOO LONG 
STRING TOO LONG OR UNDEFINED 
READING STRING FROM NUMERIC FILE 
STRING TRUNCATION ON INPUT 
SUBSCRIPT OUT OF RANGE 
WRITING STRING INTO NUMERIC FILE 
READING VARIABLE LENGTH FILE 
WRITBNG PAST END OF FILE 

6-58 


