
MACRO-8
PROGRAM MI NG

MANUAL

D I G I T A L E Q U I P M E N T C O R P O R A T I O N M A Y N A R D , M A S S A C H U S E T T S

PDP-8 PROGRAMMING MANUAL

MACRO-8

~~~ ~ 

For additional copies order No. DEC-08-CMAA-D from Program Library, Digital Equipment 

Corporation, Maynard, Mass. Price $2.00 

DIGITAL EQUIPMENT CORPORATION 0 MAYNARD, MASSACHUSETTS 



1st Printing October 1965 
2nd Printing Revised November 1966 
3rd Printing October 1967 
4th Printing February 1969 

Copyright @ 1965 by Digital Equipment Corporation 
1966 
1967 
1969 

Instruction timer, operating speeds and the l ike are in- 
cluded in  this manual for reference only; they are not to 
be taken as specifications. 

The following are registered trademarks of Digital 
Equipment Corporation, Maynard, Massachusetts : 

DEC PDP 
FLIP CHIP FOCAL 
DIGITAL COMPUTER LAB 

.. 
I I  



P R E F A C E  

The PDP-8 comes to the user complete with an extensive selection of system programs 

and routines making the ful l  data processing capability o f  the new computer immedi- 

ately available to each user, eliminating many commonly experienced in i t ia l  program- 

ming delays. 

The PDP-8 programming system takes advantage of the many man-years of program 

development and field testing by PDP-5 users. Although i n  many cases PDP-8 programs 

originated as PDP-5 programs, a l l  u t i l i ty  and functional program documentation i s  issued 

i n  a new, recursive format introduced with the PDP-8. Programs written by users of 

either the PDP-5 or the PDP-8 and submitted to the users' library (DECUS - Digital 

Equipment Corporation Users' Society) are immediately available to PDP-8 users. Con- 

sequently, users of either computer can take immediate advantage of the continuing 

program developments for the other. 

The MACRO-8 Manual i s  divided into two parts: Basic Information and the MACRO 

Language. Part 1 i s  especially for the new user, while those experienced with assembly 

programs w i l l  want to start with Part 2. 

... 
I l l  





CONTENTS 

PART 1 

BASIC INFORMATION 

Chapter . Page 

1 INTRODUCTION ............................ , .......................... 1-1 

2 

3 

THE BINARY SYSTEM ................................................... 2-1 

THE PDP-8 INSTRUCTION SET ........................................... 3-1 

Instructions ........................................................ 3-1 

Memory Reference Instructions ................................... 3-1 

Aug m en t ed I ns t ru c t i ons .......................................... 3-3 

3-6 The Organization of Memory ......................................... 
Complement Arithmetic .............................................. 3-8 

Addition ...................................................... 3-9 

Subtraction .................................................... 3-9 

ORGANIZATION ...................................................... 4-1 

Cod i ng ............................................................ 4-2 

Address Tags ....................................................... 4-5 

Symbolic Addressing ............................................ 4-6 

Storage Techniques ................................................. 4-6 

Optimum Use ...................................................... 4-7 

Subroutines ........................................................ 4-9 

Comments ......................................................... 4-4 

PART 2 

THE MACRO LANGUAGE 

MACRO-8 PROGRAMMING LANGUAGE ................................. 5-1 

Characters ........................................................ 5-2 

Elements ....................................................... 5-5 

Integers ....................................................... 5-5 

Sym bo I s ....................................................... 
Expressions .................................................... 5-7 

5-5 

V 



Chapter 

C O N T E N T S  ( c o n t i n u e d )  

Page . 

5 (cont) 

6 

7 

8 

9 

Appendix 

1 

2 

Current Address Indicator ........................................ 5-10 

Origin Setting ................................................. 5-10 

Literals ....................................................... 5-11 

Single Character Text Facil ity ................................... 5-12 

PSEUDO-I NSTRUCTI ONS ............................................... 
Current Location Counter ............................................ 
Extended Memory .................................................. 
Radix Control ...................................................... 
Numbers .......................................................... 

Double Precision Integers ........................................ 
Floating Point Constants ......................................... 

Text Faci I i ty ...................................................... 
End of Program ..................................................... 
End of Tape ....................................................... 
Alterations to the Symbol Table ...................................... 

6-1 

6-1 

6-1 

6-2 

6-2 

6-2 

6-3 

6-3 

6-4 
6-4 

6-4 

MACROS ............................................................. 7-1 

Restrictions ........................................................ 7-2 

ERROR DIAGNOSTICS .................................................. 8-1 

Error Messages ..................................................... 8-1 

OPERATING INSTRUCTIONS ............................................ 9-1 

Symbol Table Modification .......................................... 9-4 

MACRO-8 SYMBOL TABLE .............................................. A1 . 1 

ASCII CHARACTER SET ................................................. A2-1 

vi 



I LLUST R A T  I O  N S  

Figure 

3- 1 

3-2 

3-3 

3-4 

4- 1 

4-2 

Page . 

Memory Reference Instruction Format ...................................... 

Group 1 Operate Microinstruction Format .................................. 
Group 2 Operate Microinstruction Format .................................. 
Flow Chart of Program to Calculate Sum of Integers 

3-2 

IOT Instruction Format 3-3 
3-4 

3-5 

4-1 

Program Example ....................................................... 4-9 

.................................................. 

......................... 

T A B L E S  

Table 

2- 1 First Sixteen Integers i n  Three Number Systems ............................. 2-1 

3- 1 Memory Reference Instructions ........................................... 3-2 

3-2 Group 1 Operating Microinstructions ...................................... 3-4 

3-3 Group 2 Operating Microinstructions ...................................... 3-6 

3-4 Effective Address Calculation ............................................ 3-7 

3-5 One's and Two's Complement Representations ............................... 3-8 

......................................................... 9- 1 Switch Options 9-2 

v i  i 





PART 1 

BASIC INFORMATION 





CHAPTER 1 

INTRODUCTION 

In describing the solution of the following equation, 

one can say, "First, multiply the quantity x by m. To this product, add the quantity b. The result i s  the 

value of y." 

The same problem can be solved on an adding machine i n  the following steps: 

1 .  Clear the keyboard and registers. 

2. Enter the value of m and press the ADD key. 

3. Enter the value of x and press the keys which init iate the multiplication. 

4. Enter the value of b and press the ADD key. The result, appearing i n  the totalizing register, 

i s  the value of y. 

This sequence of steps can be thought of as a program fQr the solution of the problem on an adding machine. 

In similar fashion, the steps can be written out for a solution to be performed by a digital computer. In- 

stead of pressing buttons and keys, the programmer writes a sequence of instructions to perform operations 

on data stored in the computer. Such a sequence (for a hypothetical computer) might appear as follows: 

clear 
add m 
multiply x 
add b 
deposit y 

The variables m, x, and b represent quantities stored i n  the computer; the variable y represents a storage 

register. The operations are carried out in a register called the accumulator, abbreviated AC. The first 

instruction clears the AC. The next adds the quantity m into the AC. The third instruction multiplies 

the contents of the AC by the quantity x, and the fourth adds the quantity b to the result. Finally, the 

contents of the AC are deposited into a storage register designated by the symbol y. 

To be useful to a computer, the instructions of a written program must be translated into a sequence of 

numeric codes, each of which represents a specific computer operation. To do such translating by hand 

1-1 



from instructions to binary numbers would be tedious and lengthy. Computer programs have been written 

to perform the translating task, interpreting the written program and producing from i t  a second program 

which can be executed directly by the computer. These translators are called assemblers because they 

assemble from a source program written by the user, a working program instruction by instruction. This 

output from the assembler i s  called an object, or binary program. 

MACRO-8 i s  an assembler designed to accept input i n  the form of a sequence of symbolic instructions 

representing the operations capable of being executed on the PDP-8. It produces a binary program tape 

which may then be placed i n  the computer and executed. The next chapter explains a few basics of the 

binary numbering system; succeeding chapters deal i n  more detai I with the MACRO-8 assembly program, 

1-2 



CHAPTER 2 

THE BINARY SYSTEM 

Every i tem of information stored i n  or processed by a digital computer i s  encoded as a binary number. 

Consequently, the user should become familiar with the binary system and be able to convert numbers 

from binary to decimal representation and back, using the octal system as an intermediate. 

as the programmer gains more experience, he w i l l  find himself using the decimal system less and "thinking 

i n  octal" more. This i s  a useful habit to cultivate. 

Eventually, 

Table 2-1 gives the first 16 integers (and 0) as they are represented i n  the decimal, binary, and octal 

number systems. Note that i n  the decimal system there are ten different symbols, or digits, 0-9 which are 

used to represent any number. In the binary system there are two, 0 and 1; i n  the octal system, eight, 

0-7. The number of digits required i n  a given system i s  called the radix. Therefore, the decimal radix 

i s  10; the octal radix i s  8, and the binary radix i s  2. A subscript i s  used to identify the radix of the sys- 

tem i n  which the number i s  represented. Thus, 4196 

and 110101 a binary number. 

indicates a decimal number, 2547 an octal number, 10 8 

2 

TABLE 2-1 FIRST SIXTEEN INTEGERS IN THREE NUMBER SYSTEMS 

Decimal Octal Binary I Decimal Octa I Binary 

0 
1 
2 
3 
4 
5 
6 
7 

10 

000 
00 1 
01 0 
01 1 
100 
101 
110 
1 1 1  

1000 

9 
10 
1 1  
12 
13 
14 
15 
16 

11 
12 
13 
14 
15 
16 
17 
20 

1001 
1010 
101 1 
1100 
1101 
1110 
1111 

10000 

AI I numbering systems using radices involve positional notation; that is ,  each successive digit position to 

the left represents the next higher power of the radix. For example, the decimal number 4196 may be 

expressed algebraically as 
10 

3 2 1 0 
4 x 1 0  + 1 x 1 0  + 9 x 1 0  + 6 x 1 0  

2- 1 



which when calculated becomes 

4 x 1000 + 1 x 100 + 9 x 10 + 6 x 1 ~ 4 1 9 6 ~ ~ .  

Positionally, this appears as 

1 o3 1 o2 lo1 1 oo (Positioned radix) 

1000 100 10 1 (Radix to i t s  respective powers) 

4 1 9 6 (Units required of each value) 

2 1 0 
Likewise, the octal number 2547 can be expressed as 2 x 83 + 5 x 8 + 4 x 8 + 7 x 8 . 8 

In a l l  systems the integral and fractional parts of a number are separated by a radix point. Depending on 

the system in  use, this may be a decimal point, octal point, or binary point. 

As can be seen from the table, four binary digit positions are required to represent the decimal integers 

up to 9 .  The octal integers up to 7 require only three binary positions; furthermore, exactly three positions 

are needed. In other words, three binary digit  positions are necessary and sufficient to represent the eight 

octal digits. This fact makes binary-to-octal and octal-to-binary conversions quite simple. 

Example: Bi  nary-to-Octal Conversion 

The binary integer 

101 11001 10102 

can be converted to its octal equivalent as follows: 

1 .  Divide the binary digits into groups of three, starting from the right 

101 110 011 010 

2.  Substitute for each group its octal equivalent 

5 6 3 2  

3. The result i s  the octal number 

56328 

To perform the reverse conversion, substitute the binary eqyivaler.. of each octal digit 

4 7 5 1  
47518 = 100 1 1  1 101 001 = 1001 1 1  1O10Ol2 

2-2 



To convert an octal fraction, group by threes i n  each direction away from the radix point 

1110101 .O1O0Ol2 = 1 110 101 . 010 Ol(0) = 165.228 

2243.5578 = 010 010 100 01 1 . 101 101 1 1  1 = 01001010001 1 .lo1 101 1 1  l 2  

Example: Decimal-to-Binary Conversion 

The "remainder method" may be used to convert a decimal number to a binary number. The decimal 

number 

may be c nvert 

29701 

d as follows: 

1 
2)2 
2 - F  
2)11 
2)23 
2)46 
2)92 
2)185 
2)371 
2)742 
2)1485 

(binary radix)--+2 

1 
0 
1 
1 
1 
0 
0 
1 
1 
0 
1 
0- (remainders) 

1011100110102 

Notice that this method simply involves halving the number to be converted and noting the remainder after 

each division. 

Example: Decimal-to-Octal Conversion 

The remainder method may also be used for octal conversions. The decimal number 

2970, 

would be converted as follows: 

0 
8- 5 
8)46 6 

8 ) 3 7 1  3 
(octal radix)---+8 ) ) , o  2+(remainders) 

I 

2-3 



In one sense, the conversion of a number from one representation to another i s  a way of encoding the 

number; the octal integer 77 can be encoded as the binary integer 1 1  1 1  1 1  . Similarly, one can assign 

a binary code to any symbol, such as a letter of the alphabet. The table i n  Appendix B shows the binary 

codes assigned to a l l  the characters of the Model ASR-33 Teletypewriter. 

a 

A programmer may invent a symbolic name to refer to the location of a given word i n  the computer mem- 

ory. These symbolic names, or tags, are assembled together with the instruction mnemonic into a binary 

number which indicates the memory location of the word, the instruction code, and the address of the 

data. 

The association of binary code and symbol i s  the basis of a programming language. A programmer learns 

the symbols for the computer's repertoire of operations and the rules for arranging a sequence of symbolic 

instructions i n  a useful format. He prepares a symbolic program for input on a medium such as punched 

paper tape. An assembly program accepts this source program input and translates i t  into an equivalent 

sequence of binary numbers, producing a program which i s  usable directly by the computer by placing i t  

on an output medium, which again may be punched tape. This binary, or object program tape may then 

be read into the computer and executed. 

2-4 



CHAPTER 3 

THE PDP-8 INSTRUCTION SET 

I NS TR UCTl ONS 

Every PDP-8 operation i s  specified by a unique combination of 1 ' s  and 0's stored i n  the twelve bits of one 

memory register. Such an instruction word can be one of two types: memory reference instructions per- 

form operations which require access to the information stored in a memory register; augmented instructions 

do not refer to memory cells. 

The operation code of an instruction i s  contained in bits 0, 1 ,  and 2 of the word. Since three binary digits 

correspond to one octal digit, i t  i s  apparent that there can be no more than eight operation codes, corre- 

sponding to the octal digits 0-7. Codes 0-5 are reserved for memory reference instructions. Operation 

codes 6 and 7 are for augmented instructions. These two types of instructions are defined, and the instruc- 

tions described, in the following sections. 

The following special symbols are used in  the instruction lists below. 

V 

A 

rn 

Definition 

The contents of register A 

The contents of register A replace the contents of 
register B 
The address or location of any memory register 

The jth b i t  of register Y 

B i t s  1-4, inclusive, of register Y 

The contents of bits 0-5 of register A replace the con- 
tents of bits 6-1 1 of register Y .  The contents of A are 
not affected. 

Inclusive OR 

AND (Boolean) 

The 1 's  complement of the contents of register A 

Memory Reference Instructions 

Word format of memory reference instructions i s  shown in  Figure 3-1, and the instructions are explained 

in Table 3-1. 

3- 1 



OPERATION MEMORY 
CODES 0-5  PAGE 

0 1 2 3 4 5 6 7 8 9 10 11 

I 

Figure 3-1 Memory Reference Instruction Format 

TABLE 3-1 MEMORY REFERENCE INSTRUCTIONS 

Mnemonic Octal T i  me 
Operation 

Symbol Code (psec) 

AND Y 0 3.0 Logical AND. The AND operation i s  performed between 
the C(Y) and the C(AC). The result i s  left i n  the AC, 
and the original C(AC) are lost. The C(Y) are unchanged. 
Corresponding bits are compared independently. This in- 
struction, often called extract or mask, can be considered 
as a bit-by-bit multiplication. C(Y.) A C(AC.) => C(AC.) 

I I I 

Examp I e 

TAD Y 

ISZ Y 

DCA Y 

1 

2 

3 

3.0 

3.0 

3.0 

C(AC.) original 
I 

c(Y.1 
I 

C(AC.) f inal 
I 

Two's complement add. The C(Y) are added to the C(AC) 
i n  2's complement arithmetic. The result i s  left  i n  the AC 
and the original C(AC) are lost. The C(Y) are unchanged. 
If there i s  a carry from ACo, the l ink i s  complemented. 
This feature i s  useful i n  multiple precision arithmetic. 
C(Y) + C(AC) => C(AC) 

Index and skip i f  zero. The C(Y) are incremented by one 
i n  2's complement arithmetic. If +he resultant C(Y) = 0, 
the next instruction i s  skipped. If the resultant C(Y) # 0, 
the program proceeds to the next instruction. The C(AC) 
are unaffected. 
C(Y) + 1 => C(Y) 
If result = 0, C(PC) + 1 => C(PC) 

Deposit and clear AC. The C(AC) are deposited i n  core 
memory location Y and the AC i s  then cleared. 
The previous C(Y) are lost. 
C(AC) => C(Y), then 0 => C(AC) 

3-2 



TABLE 3-1 MEMORY REFERENCE INSTRUCTIONS (continued) 

0 1  2 3 4 5 6 

Mnemonic Octal Time 
Symbol Code (psec) 

7 8 9 IO 11 

Operation 

~~~ 

JMS Y 4 3.0 Jump to subroutine. The C(PC) are deposited i n core mem-
ory location Y. The next instruction i s taken from location
Y + 1 .
C(PC) + 1 => C(Y)
Y + 1 * C(PC)

JMP Y 5 1.5 Jump to Y. The next instruction i s taken from core mem-
ory location Y.
Y 3 C(PC)

Augmented Instructions

There are two classes of augmented instructions, or instructions which do not reference core memory.

They are the input-output transfer (IOT) which has an operation code of 6, and the operate (OPR), which

has an operation code of 7. B i t s 3 through 1 1 within these instructions function as an extension of the

operation code and can be microprogrammed to perform several operations with one instruction. Augmented

instructions are 1-cycle instructions requiring 1.5 psec for execution.

Input-Output Transfer Instruction

Microinstructions of the input-output transfer (IOT) instruction effect information transfers between the

arithmetic and control element and an input-output device via the input-output control element. The

format of the IOT instruction i s shown in Figure 3-2. B i t s 3 through 8 are used to select the I/O device;

and bits 9 through 1 1 enable generation of I/O pulses during event times 4, 2, and 1 , respectively.

Operations performed by IOT microinstructions are explained in Chapter 4 of the PDP-8 Users Handbook.

OPERATION
CODE 6

GENERATES GENERATES
AN IOP 4 AN IOP 1

PULSE AT PULSE AT
EVENT TIME 3 EVENT TIME1

IF A 1 I F A 1

Figure 3-2 IOT Instruction Format

3-3

Operate Instruction

0 1 2 3 4 5 6

The operate instruction consists of two groups of microinstructions. Group 1 i s principally for clear,

complement, rotate, and increment operations and i s designated by the presence of a 0 in bi t 3. Group 2

i s used principally for checking the contents of the accumulator and link and continuing to or skipping the

next instruction based on the check. A 1 in b i t 3 and a 0 i n b i t 1 1 designate a Group 2 microinstruction.

7 8 9 10 4 1

Group 1 operate microinstruction format i s shown i n Figure 3-3, and the microinstructions are listed i n the

table below. Any logical combination of bits within this group can be combined into one microinstruction.

For example, i t i s possible to assign 1 ' s to bits 5, 6, and 11; but i t i s not logical to assign 1 ' s to b i t 8 and

9 simultaneously since they specify conflicting operations. If RAL, RAR, RTL, or RTR i s specified, IAC

may not be specified, and conversely.

ROTATE 1

OPERATION AC AND L 2 POSITIONS
CODE 7 CLA CMA RIGHT IF A. $

ROTATE POSITION IF A 0.

- * r - - - * *

CONTAINS CLL CML ROTATE IAC
A 0 TO AC AND L

SPECIFY LEFT
GROUP 1

Figure 3-3 Group 1 Operate Microinstr-uction Format

TABLE 3-2 GROUP 1 OPERATE MICROINSTRUCTIONS

Mnemonic Octal Event
Symbol Code T i me

Operation

CLA 7200 1 Clear AC.
0 => C(AC)

CLL 71 00 1 Clear L.
0 => C(L)

CMA 7040 1 Complement AC. The C(AC) are set to the 1 ' s com-
plement of C(AC).
C(AC) => C(AC)

CML 7020 1 Complement L.

RAR 701 0 2 Rotate AC and L right. The C(AC) and the C(L) are

CO => C(L)

rotated right one place.
C(AC.) * C(AC. + ,)
C(AC\,) * C(L)'
C(L) + C(ACO)

3-4

TABLE 3-2 GROUP 1 OPERATE MICROINSTRUCTIONS (continued)

0 1 2 3 4 5 6 7 8

Mnemonic Octdl Event
Symbol Code Time

9 f0 II

Opera t i on

RAL 7004 2

RTR 701 2 2

RTL 7006 2

IAC 700 1 2

NOP 7000 -

Rotate AC and L left. The C(AC) and the C(L) are
rotated left one place.
C(ACi) => C(ACi - 1)
C(AC0) 3 C(L)
C(L) + C(AC1 1)

Rotate two places to the right. Equivalent to two
successive RAR operations.

Rotate two places to the left. Equivalent to two
successive RAL operations.

Index AC. The C(AC) are incremented by one i n
2's complement arithmetic.
C(AC) + 1 3 C(AC)

N o operation. Causes a 1.5 psec program delay.

Group 2 operate microinstruction format i s shown i n Figure 3-4, and the microinstructions are listed i n

the table below. Any logical combination of bits within this group can be composed i n one microinstruction.

REVERSE
SKIP

OPERATION SENSING OF
CODE 7 CLA SZA BITS 5.6,7 HLT - * * A *

CONTAINS A 1 ShA
TO SPECIFY

GROUP 2

SNL OSR CONTAINS A 0
TO SPECIFY
GROUP 2

Figure 3-4 Group 2 Operate Microinstruction Format

If skips are combined in a single instruction, the inclusive OR of the conditions determines the skip. For

example, i f 1 ' s are designated i n bits 6 and 7 (SZA and SNL), the next instruction i s skipped i f either

C(AC) = 0, or C(L) = 1, or both. If two reverse sense skip instructions are combined (bit 8 i s set), the

logical AND of the conditions determines the skip, For example, i f 1 ' s are designated in bits 6, 7, and

8 (SNA and SZL), the next instruction i s skipped i f C(AC) # 0 - and C(L) = 0. The CLA microinstruction

from Group 1 can be combined with Group 2 commands. This command occurs at event time 2 with respect

to the event times listed in the following table.

3-5

TABLE 3-3 GROUP 2 OPERATE MICROINSTRUCTIONS

Mnemonic Oc ta I Event
Symbol Code Time Opera tion

CLA

SPA

SMA

SNA

SZA

SZL

SNL

SKP

OSR

HLT

7600

7510

7500

7450

7440

7430

7420

741 0

7404

7402

1

2

Clear AC.
0 3 C(AC)

Skip on positive AC. If the C(AC) i s a positive
number, the next instruction i s skipped.
If C(AC0) = 0, then C(PC) + 1 3 C(PC)

Skip on minus AC. If the C(AC) i s a negative num-
ber, the next instruction i s skipped.
If C(AC0) = 1, then C(PC) + 1 * C(PC)

Skip on non-zero AC.
If C(AC) # 0, then C(PC) + 1 3 C(PC)

Skip on zero AC.
If C(AC) 0, then C(PC) + 1 3 C(PC)

Skip on zero L. If C(L) = 0, the next instruction i s

skipped.
If C(L) = 0, the C(PC) + 1 3 C(PC)

Skip on non-zero L .
If C(L) = 1, then C(PC) + 1 3 C(PC)

Skip, unconditional. The next instruction i s skipped.
C(PC) + 1 * C(PC)

OR with switch register. (May be combined with
CLA .)
C(SR) V C(AC) 3 C(AC)

Halt. Stops the program. If this instruction i s com-
bined with others i n the OPR 2 group, the computer
stops immediately after completion of the cycle i n
process.

THE ORGANIZATION OF MEMORY

A PDP-8 memory f ield can be likened to a book. The 4,096 words of the memory f ield correspond to the

lines of text, and i f we divide the memory into segments of 128 words each, we have an analogy to a

32-page book i n which each page contains 128 lines.

The memory f ield i s i n fact segmented i n this fashion, and the analogy to a book i s affirmed by the fact

that each of the 128-word blocks i s called a page. Because the PDP-8 instruction word i s not long enough

to allow direct reference to a l l of the registers in a memory field, a special type of address reference must

be provided. This can be illustrated by pursuing our book analogy a l i t t le b i t farther.

3-6

Suppose that one i s reading a text, and taking notes i n the margins of each page. One can expect that

some of the notes w i l l refer to other parts of the page, or to information on other pages. For convenience,

i f one of the notes refers to a line of text on the same page, write only the line number. If the note re-

fers to a line on some other page, write the page number followed by the number of the line on that page.

Alternatively, of course, i t i s possible to begin on the first page and number a l l the lines of the book con-

secutively, and refer to them by these numbers alone.

In similar fashion, a given word of memory may be referred to by its page address; that is, i t s address

within a page, or by its absolute address, which designates its position i n the whole of memory.

ana logy ends.

Here the

A PDP-8 memory f ield i s organized as follows: the 4,096 words are arranged sequentially, with absolute

addresses of 0 through 77778. The f ield is divided into 32 pages numbered from 0-378. Each page con-

tains 128 registers, with page addresses of 0-177 8 '
f ie ld of a memory reference instruction contains 7 bits, which i s just enough to allow access to 200

locations. If b i t 4 of the instruction contains a 1, the address f ield of the instruction refers to one of the

addresses on the current page, that is , the page i n which the instruction i s stored. If b i t 4 contains a 0,

the reference i s to an address on page 0.

As Figure 3-1 shows, the address f ield of a memory

8

The state of b i t 3 of the instruction determines what i s done with the contents of the memory register speci-

f ied by bits 4-1 1 . If this b i t i s 0, the contents of the cel l addressed by the instruction are taken as the

operand, and the operation i s completed. In this case, the address specified by the instruction i s the

effective address of the instruction. I f , however, b i t 3 contains a 1 , the contents of the cel l addressed

are treated, not as the operand, but as the 12-bit absolute address of the register containing the operand.

In other words, the cel l addressed contains the effective address of the instruction. In this way, a mem-

ory reference instruction can indirectly address any register i n the memory field, regardless of which page

i t i s on.

Thus, there are four ways, depending on the states of bits 3 and 4 of a memory reference instruction, i n

which the effective address may be obtained.

TABLE 3-4 EFFECTIVE ADDRESS CALCULATION
~~

Bit 3 B i t 4 Effective Address
~

0

0

0 The operand i s i n page 0 at the address specified by bits 5
through 1 1 .

The operand i s i n the current page at the address specified by
bits 5 through 1 1 .

1

3- 7

TABLE 3-4 EFFECTIVE ADDRESS CALCULATION (continued)

Bit 3 B i t 4 Effective Address

1 0 The absolute address of the operand i s taken from the contents
of the location in page 0 designated by bits 5 through 1 1 .

The absolute address of the operand i s taken from the contents
of the location i n the current page designated by bits 5 through 11 .

1 1

COMPLEMENT AR I THMETl C

In the PDP-8, as in other machines ut i l iz ing complementation techniques, negative numbers are repre-

sented as the complement of positive numbers, and subtraction i s achieved by complement addition.

Representation of negative values i n 2's complement arithmetic i s slightly different from that in 1 I s com-

plement arithmetic.

The 1 ' s complement of a number i s the complement of the absolute positive value; that is, a l l 1 ' s are re-

placed by o's and a l l o's are replaced by 1 ' s . The 2's complement of a number i s equal to the 1 ' s com-

plement of the positive value plus one.

In 1 Is complement arithmetic a carry from the sign bi t (most significant bit) i s added to the least signifi-

cant b i t in an end-around carry.

l ink (a carry would set the l ink to 1 i f i t were properly cleared before the operation), and there i s no

end-around carry.

In 2's complement arithmetic a carry from the sign b i t complements the

A 1 Is complement representation of a negative number i s always one less than the 2's complement repre-

sentation of the same number. Differences between 1 I s and 2's complement representations are indicated

i n the following table.

TABLE 3-5 ONE'S AND TWO'S COMPLEMENT REPRESENTATIONS

Number One's Complement Two's Complement

+5
+4
+3
+2
+ 1
+ O
- 0
- 1

0000000001 0 1
0000000001 00
000000000011
000000000010
000000000001
000000000000
111111111111
111111111110

000000000 1 0 1
000000000 1 00
000000000011
000000000010
000000000001
000000000000
Nonexistent
111111111111

3-8

TABLE 3-5 ONE'S AND TWO'S COMPLEMENT REPRESENTATIONS (continued)

Number One's Complement Two Is Comp lemen t
~~ ~

- 2
- 3
- 4
-5

~

1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 00
1 1 1 1 1 1 1 1 1 0 1 1
1 1 1 1 1 1 1 1 1 0 1 0

1 1 1 1 1 1 1 1 1 1 1 0
1 1 1 1 1 1 1 1 1 1 0 1
1 1 1 1 1 1 1 1 1 1 0 0
1 1 1 1 1 1 1 1 1 0 1 1

Note that i n 2's complement there i s only one representation for the number which has the value zero,

while i n 1 's complement there are two representations. Note also that complementation does not interfere

with sign notation i n either 1 ' s or 2's complement arithmetic; b i t 0 remains a 0 for positive numbers and a

1 for negative numbers.

PDP-8 arithmetic operations (as exemplified by the TAD instruction) are carried out in 2's complement.

This means that the operands involved i n the arithmetic must be i n correct 2's complement representation.

The 2's complement of any number i s formed by taking the 1's complement, and adding 1 to i t . The two

operate class instructions, CMA and IAC, may be combined into a single instruction to perform the opera-

tion of taking a 2's complement. Because the operation i s often required, the mnemonic CIA is given to

the combined instruction.

Addition

The addition of a number contained in a core memory location and the number contained in the accumu-

lator i s performed directly by using the TAD Y instruction, assuming that the binary point i s i n the same

position and that both numbers are properly represented i n 2's complement arithmetic. Addition can be

performed without regard for the sign of either the augend or the addend. Overflow i s possible, i n which

case the result w i l l have an incorrect sign, although the eleven least significant bits w i l l be correct. A

carry from b i t 0 w i l l complement the l ink bit.

Subtraction

Subtraction i s performed by complementing the subtrahend and adding the minuend, As in addition, if

both numbers are represented by their 2's complement, subtraction can be performed without regard for

the signs of either number.

3-9

CHAPTER 4

ORGAN lZATl ON

The rules for writ ing a program can best be introduced by tracing the steps from the statement of a problem

to the completed routine. Consider, for example, a program to compute the sum of the first n integers,

s = n + (n-1) + (n-2) + (n-3) + . , .+3 + 2 + 1

First, a f low chart, that is, a block diagram of the general steps to the solution of the problem, should be

made. It might look something l ike Figure 4-1, Ignoring the first box for the moment, consider the

second, third, and fourth boxes, The operations specified i n these three boxes perform the main compu-

tation of the sum. Box 2 specifies the actual arithmetic of computing the partial sum. Box 3 i s a counter,

which counts the number of partial additions that have been made. Box 4 i s a decision point; i f the count

indicates that the sum is complete, the program goes on to box 5; if i t i s not complete, the program re-

turns to the beginning of the main computation. This sort of continuous recycling through a section of

program i s called a loop. -

2

DECREMENT
INDEX 3

5 +,
Figure 4-1 Flow Chart of Program to Calculate Sum of Integers

The first box i n this chart specifies the operations which prepare the program for operation. Since nearly

every program written w i l l be used more than once, with different data each time, i t i s necessary at the

4- 1

start of the routine to clear out old results from previous use of the program so that one can start fresh

with new data, in the same way that one clears the keyboard and registers of an adding machine before

starting a new calculation. In programming terms, this preparation i s called init ializing.

Besides indicating the general sequence of operations, the flow chart also gives an idea of storage require-

ments. Space w i l l be needed not only for the instructions which perform the computation, but also for the

data used by the routine. One register w i l l be needed to hold the partial sum accumulated through re-

peated additions; this register w i l l naturally hold the correct total when the calculation i s finished.

Another cel l i s needed for the index, which i s the counter specified i n box 3 of the flow chart. Finally,

one register i s necessary to hold the number - n, which determines the l imit of the computation.

The program, then, must supply two types of information. First, i t must include the executable instructions,

data, and temporary registers which w i l l occupy memory cells when the program i s executed. Second, i t

must include a certain amount of information for the MACRO Assembler itself, to establish the locations

and extent of the program in memory.

included in the program along with the executable instructions. A pseudo-instruction i s rather l ike a

proofreader's mark on a manuscript; the mark provides information to the editor, but does not itself cause

additional text to appear i n the printed book. Similarly, a pseudo-instruction provides information to the

Assembler, but does not itself cause any coding to be inserted into the object program.

These assembler directives are called pseudo-instructions; they are

CODING

Now to write the program. First one must decide where the program i s to be stored. To do this, i t i s

necessary only to establish the location of the first register of the program, This word i s called the origin,

and can be designated i n two ways. The most common way i s to designate the page in which the program i s

to be stored; the origin i s automatically set at the first register (page address 0) i n that page. Thus, to put

the routine i n page 2, the pseudo-instruction, PAGE, would be used as follows:

PAGE 2

The program would then begin i n location 0 of page 2.

To set the origin to any register other than the first one i n a page, the absolute address of the starting

location must be specified. This i s done by using the special character " * ' I , To place the origin at loca-

tion 210, the coding would be:

*210

In establishing the origin, an index within the Assembler, called the current location counter (CLC), has

been set equal to the absolute address of the origin. For example, the use of PAGE 2 would set the CLC

4-2

to a value of 400, which i s the absolute address of the first register i n page 2. Likewise, *210 causes

the CLC to be set to a value of 210.. In programming terms the CLC points to the origin; such an index

i s called a pointer.

The coding for the program may now be written. First three registers for the three items of data must be

reserved, Usually, data storage i s set aside by placing a 0 in each register, thus allocating a cel l . The

coding looks l ike this:

PAGE 2
0
0
0

Since the origin has been set at location 400, the three data cells occupy locations 400, 401 , and 402

(page addresses 0, 1 , and 2, respectively).

Next, write the coding for the computation.

PAGE 2
0
0
0
CLA
DCA 400
TAD 401
DCA 402
TAD 400
TAD 402
DCA 400
S TA
TAD 402
SZA
JMP 406
HLT
$

The program now occupies locations 400-416 (0-16 on page 2).

The special character $ indicates to the Assembler that i t i s a complete program and that nothing else i s

to follow.

This program i s now complete, and can be assembled into a working routine. The coding, however, i s

rather stark, and not very useful to another programmer, should he wish to discover what the program does.

Of course, he could figure out the function of the routine by going through i t step by step with pencil

4-3

and paper, but i f this program were much longer, this task would be tedious and impractical. Comments,

a method of explaining the functions of the program, ,make the work immediately useful to someone else.

COMMENTS

Comments are included in a PDP-8 program i n a simple way. Consider the three data storage locations of

our program. A comment would identify each register's function immediately; they might appear as:

...
0
0
0

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

...
The slash preceding each comment i s the character which identifies a comment field. Al l information on

that line following the slash i s considered to be a comment, and i s ignored by the Assembler. For clarity

and neatness, a tab has been inserted between the instruction and the comment.

Sirice a slash identifies a l l the subsequent information on a line as a comment, one ful l line can be used

for a t i t le by placing the slash i n the first space after the left margin. With a title, the program might

look like this:

/INTEGER SUMMATION ROUTINE

PAGE 2
0

/PARTIAL SUM AND FINAL TOTAL

Now, an immediate identification of what the program i s to be used for i s included in the listing.

More comments explain the workings of the program:

/INTEGER SUMMATION ROUTINE

PAGE 2
0
0
0

CLA
DCA 400
TAD 401
DCA 402
TAD 400
TAD 402
DCA 400
S TA

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

4-4

TAD 402
SZA
JMP 406
HLT
$

/ IS I T O?
/NO: KEEP GOING
/YES: HALT

Now i t i s a l i t t le easier to understand the program, but some limitations remain. I t i s tied to one particu-

lar place i n the computer's memory; to put i t i n some other location, recoding the entire routine with new

addresses would be necessary. Nor are these octal page addresses much help i n keeping track of program

flow; even i n a short routine such as this, i t i s necessary to do some counting to find out what location the

instruction STA i s in, for example. A simple, meaningful way of identifying storage addresses i s needed.

ADDRESS TAGS

As described above, a symbol i s assigned to each of the PDP-8 instruction codes. Similarly, the program-

mer can assign a symbol to any one of the storage addresses i n the computer memory. For instance, the

routine under discussion contains three important registers: the beginning of data storage, the beginning

of the program sequence, and the beginning of the main loop.

Each one of these locations can be labelled with a symbolic - tag, in the following way:

/INTEGER SUMMATION ROUTINE

PAGE 2
DATA, 0

0
0

BEGIN, CLA
DCA 400
TAD 401

GO, DCA402
TAD 400
TAD 402
DCA 400
STA
TAD 402
SZA
JMP 406
HLT
$

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

/ IS I T O?
/NO: KEEP GOING
/YES; HALT

Three reference points have been established. Note that the tags are roughly mnemonic, thus offering an

additional measure of program identification and clarification. In programming terms, three symbols have

been defined. In this case, each symbol has a value that i s equal to the absolute address of the register i n

which the associated item (data word or instruction) i s stored. Thus, the value of the symbol DATA i s 400;

of BEGIN, 403; of GO, 406.

4-5

Symbolic Addressing

Locating sections of a program has been simplified, but fu l l advantage of address tags has not yet been

taken. The instruction addresses themselves are sti l l tied to the absolute addresses of the program. How-

ever, since each tag has a numeric value corresponding to an address, a tag may also be used as a symbol

i n the address part of an instruction. For example, the absolute address 402 i s clearly equivalent to the

expression, BEGIN-1 (BEGIN=403; 403-1=402). Similarly, the address 41 1 i s equivalent to G0+3.

Replacing absolute addresses with symbolic expressions, the program w i l l look l ike this:

/ I N TE GER S UMMATl ON ROUT1 NE

PAGE 2
DATA, 0

0
0

BEGIN, CLA
DCA DATA
TAD DATA+1

GO, DCA DATA+2
TAD DATA
TAD DATA+:!
DCA DATA
S TA
TAD DATA+2
SZA
JMP GO
HLT
$

/PARTIAL SUM AND FINAL TOTAL
/INTEGER N
/INDEX

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

/IS I T O?
/NO: KEEP GOING
/YES: HALT

This program that i s easily readable, includes a running commentary for explaining i t s functions, and

carries i t s own symbolic references that further assist i n understanding and keeping track of the routine.

Moreover, the routine has been freed from a specific place i n memory by the use of symbolic addresses.

To change the location of the program, i t i s necessary only to change the origin setting by the PAGE

pseudo-instructions.

STORAGE TECHNIQUES

The program above w i l l function but i t may be improved. One of i t s drawbacks i s the fact that wherever

the program i s stored, the data must be stored right along with i t . When space i s at a premium, as i t

often is, i t would be desirable to put a l l of the data in a fixed place, and let the working parts of the

program be arranged as necessary.

In the PDP-8, data that i s used by several parts of a program i s often stored i n page 0. If each of the

three data words i n the program i s given a name, page 0 addresses can be assigned to them, Call the first

4-6

word TOTAL, the second INDEX, and the third N. In effect, the data words have been labeled with

address tags, but since the names can be used in symbolic expressions (for instance, i n an instruction

address), programmers usually refer to them as variables. If the variables are assigned to page 0 and the

instruction address i n the program changed to match, the coding w i l l look l ike this:

/INTEGER SUMMATION ROUTINE

* 20
TOTAL, 0
INDEX, 0

PAGE 2
BEGIN, CLA

N, 0

DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
S TA
TAD INDEX
SZA
JMP GO
HLT
$

/THESE REGISTERS ARE
/NOW ON PAGE 0

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

/IS I T O?
/NO: KEEP GOING
/YES: HALT

When the program i s loaded, the three items of data (having been assigned addresses on page 0) w i l l be

stored i n page 0.

A large step toward our goal of a refined, useful routine has been taken; i .e. , a program which may be

placed anywhere i n memory and i s easily understood and interpreted by someone other than the author,

because of liberal comments and symbolic addressing.

OPTIMUM USE

It remains only to relate this sequence of coding to the context i n which i t i s l ikely to operate. Obviously

the summation program i s useless i n core by itself, waiting for an integer summation to be carried out.

Since the example has served its purpose in illustrating how a complete program can be written, a l l the

coding except the minimum necessary for the actual computation w i l l be removed, leaving this (the

ellipsis always indicates the presence of unspecified coding):

4-7

BEGIN, CLA
DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
STA
TAD INDEX
SZA
JMP GO
HLT

/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

/IS IT O?
/NO: KEEP GOING
/YES: HALT

This sequence can now be placed within a larger program wherever i t may be needed. Figure 4-2 i s an

example of a long program which uses this routine two times. Whenever the summation routine occurs,

i t i s preceded by an instruction which takes the value of N from the AC and places i t on the proper loca-

tion i n data storage. One other change i s also necessary. The address tag GO has been eliminated from

a l l but the first occurrence in the coding sequence; i t i s obvious that one symbol cannot be defined with

more than one value, or there would be confusion as to which of the values was meant at any one time,

As a result, i t i s necessary to eliminate the reference to GO in the JMP instruction at the end of the

sequence.

Notice that the instruction, DCA INDEX always remains exactly seven locations ahead of the JMP in-

struction, regardless of where the routine i s stored. Evidently, an address expression which could refer

to the location of DCA INDEX relative to the location of the JMP instruction i s needed. In other words,

a construction i s desired that w i l l perform the same function as the following but without having to define

the symbol HERE:

DCA INDEX
TAD INDEX

HERE, JMP HERE-2

Remembering that the current location counter always ''points'' to the location of the instruction currently

being assembled, i t becomes apparent that what i s desired i s a symbol which, whenever i t i s used, always

takes the value of the CLC. In MACRO-8, this symbol i s the period, I' . ' I . Whenever this character i s

encountered i n an address expression, the value of the CLC i s substituted for i t. In the example i n

Figure 4-2 i t i s used in the address of the JMP instruction wherever i t appears in the routine. In this way,

the necessity of having to define a new set of symbols each time the routine i s used i s avoided.

4-8

PAGE 10

BEGIN,

GO,

$

DCA
DCA
TAD
DCA
TAD
TAD
DCA
S TA
TAD
SZA
JMP ...
...

DCA
DCA
TAD
DCA
TAD
TAD
DCA
STA
TAD
S Z A
JMP

... ...

...

...

...
N
TOTAL
N
INDEX
TOTAL
INDEX
TOTAL

INDEX

GO

/IN IT1 ALl ZATl ON

/SET INDEX
/MAIN LOOP

/INCREMENT IDE

/IS I T O?
/NO: KEEP GOING
/YES: ALL DONE

N
TOTAL
N
INDEX
TOTAL
INDEX
TOTAL

/IN IT1 ALl ZATl ON

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX
INDEX

. -7
/ IS I T O?
/NO: KEEP GOING
/YES: ALL DONE

,
\

Figure 4-2 Program Example

SUBROUTINES

Now the program example i s useful, but one more diff iculty must be overcome. An examination of

Figure 2-4 w i l l make this problem obvious: If the routine i s used very many times, an extremely large

amount of storage space w i l l be used simply in repetitions ot the same coding sequence. This counteracts

the general aim of writing a concise, efficient program,

in a separate section of memory and called into operation each time i t was needed, the whole procedure

would be more efficient.

If the routine could be written only once, placed

4-9

A program that may be used i n this manner i s called a subroutine. It i s a sequence of coding with the

following properties:

1 . It i s self-contained, that is, i t can be assembled by itself without having to be part

of a larger program.

2. I t occupies i t s own section of memory, logically separate from other coding sequences.

3. I t performs only one task. Each subroutine has a definite purpose.

4. It i s called into operation only by another program, and when i t has finished i t s

task, i t returns to that program. I t can be called any number of times, and upon com-

pletion always returns control to the point from which i t was last called.

5. When necessary, i t uses data supplied by the call ing program, and returns results to

a place accessible by that program.

When a subroutine i s written, four requirements which are implied by the last two properties listed above

must be ful l f i l led:

a. The data must be accessible by the subroutine.

b. The results must be accessible by the call ing program.

c. There must be a way of call ing the subroutine into operation.

d. There must be a way of returning control to the call ing program.

The problem of data transmission has been solved by placing the three data storage registers i n page 0,

thereby making them accessible to any program or subroutine i n memory. The transfer and control of

return i s not quite so obvious. First, restore the symbolic tags to the subroutine as well as the t i t le and

other pseudo-instructions to make i t a self-contained program giving:

/INTEGER SUMMATI ON SUBROUTINE

PAGE 2
INTSUM, DCA N

DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
STA

/SAVE INPUT IN C(AC)
/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

4-10

TAD INDEX
SZA
JMP GO

$

/IS I T O?
/NO: CONTINUE
/YES

At a first glance, i t could seem easy to eliminate the problem of transferring control to the subroutine.

A JMP INTSUM in the call ing program every time the subroutine was called would provide the path. But

what happens at the end of the calculation? The subroutine has no way of knowing where to return. The

Subroutine cannot merely halt as this violates requirement - d above.

The solution lies in the use of the JMS instruction. Remembering from Chapter 2 when the JMS instruction

i s executed, the contents of the program counter are saved, in the location addressed by the instruction,

and control i s transferred to the register immediately following the one addressed. Thus, a register which

contains the address of the next instruction following the JMS i s available. This can be used to return to

the proper point in the call ing program when the subroutine has finished its computation. Rearrange the

first part of our subroutine as follows:

/INTEGER SUMMATION ROUTINE

PAGE 2
INTSUM, 0

DCA N
DCA TOTAL
TAD N

GO, DCA INDEX

/SAVE PC HERE
/SAVE INPUT NUMBER
/ZERO TO SUM

/SET INDEX
Now, whenever the instruction JMS INTSUM i s used, the contents of the program counter are stored i n the

location tagged with the name INTSUM and the computer continues operation with the instruction imme-

diately following which i s the first instruction of the subroutine.

Now that the subroutine has been called, a means to exit from i t must be provided. The JMS instruction

stores the program counter which "points" to the instruction following the JMS. After the execution of a

JMS INTSUM, the register INTSUM contains the contents of the program counter at the time the JMS was

executed. This can be used as an effective address (See Chapter 3 , the "Organization of Memory") to

return to the point of cal l . To do this, the subroutine may be terminated with a JMP instruction which

references the register INTSUM as an indirect address as follows:

4-1 1

/INTEGER SUMMATION SUBROUTINE

PAGE 2
INTSUM, 0

DCA N
/SAVE PC HERE
/SAVE INPUT NUMBER

JMP I INTSUM /YES: EXIT SUBROUTINE

The character "I" i s used to signify indirect addressing. In use here i t means, "Jump to the register whose

address i s contained in the register tagged INTSUM."

The complete subroutine i s shown below: (not including the page 0 definition of the variables).

/INTEGER SUMMATI ON SUBROUTINE

PAGE 2
INTSUM, 0

DCA N
DCA TOTAL
TAD N

GO, DCA INDEX
TAD TOTAL
TAD INDEX
DCA TOTAL
S TA
TAD INDEX
SZA
JMP GO
JMP I INTSUM

/SAVE PC HERE
/SAVE INPUT NUMBER
/ZERO TO SUM

/SET INDEX
/MAIN LOOP

/DECREMENT INDEX

/IS IT O?
/NO: CONTINUE
/YES: ALL DONE

The reader i s referred to the PDP-8 Library for other examples of subroutine call ing techniques.

The MACRO-8 Programming Language may now be discussed i n detail.

4-12

PART 2

THE MACRO LANGUAGE

CHAPTER 5

MACRO-8 PROGRAMMING LANGUAGE

The MACRO-8 Symbolic Assembler accepts source programs written i n symbolic language and translates

them into binary form, MACRO-8 produces an obiect program tape (binary), a symbol table defining

memory locations (for use with DDT), an octaI/symbolic assembly listing, and useful diagnostic messages.

MACRO-8 i s compatible with PAL 111, but has the following additional features:

User -Def ined Macro's Groups of computer instructions required for the

the solution of a specific problem can be defined

as a macro instruction by the user.

Double Precision Integers Positive or negative double precision integers are

allotted two consecutive core locations.

F loati ng Point Constants The format and rules for defining these constants

are compatible with the format used by the PDP-8

Floating Point Package (See Digital-8-5-S).

Operators

Litera I s

Text Faci I i ty

Link Generation

Symbols and integers may be combined with a

number of operators.

+ Addition 8, Boolean AND

- Subtraction ! Boolean Inclusive OR

Symbolic or integer literals (constants) are auto-

matical ly assigned.

There are text facilities for sing1 3 characters and

blocks of text,

Links are automatically generated for out of page

references.

To incorporate these new features, i t was necessary to decrease the size of the symbol table and because

of this, programs that were originally coded to be assembled by PAL I l l might have too many symbols to

be assembled by MACRO-8.

5- 1

C HARACTE RS

Programs in the MACRO-8 language are written using characters from the ASCII character set. The

following characters are used:

Letters

A B C D . . . X Y Z

Digits

1 2 3 4 5 6 7 8 9 0

Punctuation Characters

Since a number of characters are invisible (i .e. I nonprinting), the following notation i s used to represent

them i n the examples:

space
U

4 tab

carriage return 2
The following characters are used to specify operations to be performed upon symbols or numbers:

Character

space

plus

minus

exclamation point

carriage return

tab

comma

equals

semi co Ion

dollar sign

asterisk

point

Use

Combine symbols or numbers

Combine symbols or numbers (add)

Combine symbols or numbers (subtract)

Combine symbols or numbers (OR)

Terminate line

Combine symbols or numbers or format source

tape

Assign symbolic address

Define parameters

Terminate coding line

End of pass

Set location counter

Has value equal to current location counter

5-2

/ slash

& ampersand

I I quote

0 parentheses

[I brackets

< > angle brackets

Ignored Characters

Form-feed

Blank tape

Rubouts

Code 200

Line-feed

Indicates start of a comment

Combine symbols or numbers (AND)

Generate ASCI I constant

Define literal on current page

Define page 0 literal

Define a macro

End of a logical page of a source program

(see Symbolic Editor)

Used for leader/trailer

Used for deleting characters

Used for leader/trailer

Follows carriage-return

A l l other characters are i l legal when not in a comment or a TEXT field, and cause the error message IC
to be printed. The form-feed i s used at the end of a page of program for editing purposes. The functions

of leader and trailer are self-explanatory. This may be either blank tape or code 200.

Tabulations are usually used i n the body of a program to provide a neat page for printing; they can separate

fields from one another, as between an instruction and an associated comment. For example, a line could

be written as:

GO, TAD TOTAL/MAIN LOOP,)

but i t i s far easier to read i f tabs are inserted:

GO, + TAD TOTAL __H /MAIN LOOP,)

(the characters -H and ,) are nonprinting)

Either ; (semicolon) or the combination carriage-return/Iine-feed may be used as line terminators. The

semicolon i s considered identical to carriage-return/line-feed except that i t w i l l not terminate a comment.

Example:

TAD A /THIS ISACOMMENT ; TAD BJ

The entire expression up to the carriage return is considered a comment,

5-3

As was noted previously, the tabulation i s used as a formatting device to provide a neat appearance for

the printed program listing. Use of the semicolon allows the programmer to place several lines of coding

on a single line. If, for example, he wishes to write a-sequence of instructions to rotate the C(AC) and

C(L) six places to the right, i t might look like:

...
RTR,)

RTR,)

RTR,)

...
He may place a l l three instructions as a single line by substituting the

for the line terminator "$ I' (carriage return). The above sequence of

con tro I character ";I1 (semi co Ion)

instructions may be rewritten as:

RTR; RTR; RTR,)

This type of format i s particularly useful when setting aside a section of data storage for a l i s t . For ex-

ample, a 12-word list could be reserved by:

A neat printout (or program listing, as i t i s usually called) makes subsequent editing, debugging, and

interpretation much easier than i f the coding were laid out in a haphazard fashion. The coding practices

listed below are i n general use, and w i l l result in a readable, orderly listing. (See Digital-8-21-U for

a program to produce listings of this form .)

1 . A t i t le comment begins at the left hand margin.

2. Pseudo-instructions may begin at the left margin; often, however, they are indented

one tab stop to line up with the executable instructions.

3. Address tags begin at the left margin. They are separated from succeeding fields by

a tabulation.

4.

one tab stop.

Instruction fields, whether or not they are preceded by a tag field, are indented

5 . A comment i s separated from the preceding f ield by a tabulation, unless i t occupies

the whole line, i n which case i t usually begins at the left margin.

5-4

E lements

12 . Any group of letters, digits, and punctuation characters which represents binary values less than 2

element.

I S an

Integers

Any sequence of numbers delimited by punctuation characters forms a number. Example:

1

12

4372

The radix control pseudo-instructions indicate to the Assembler the radix to be used i n number interpre-

tation. The pseudo-instruction DECIMAL indicates that a l l numbers are to be interpreted as decimal unti l

the next occurrence of the pseudo-instruction OCTAL.

The pseudo-instruction OCTAL indicates that a l l numbers are to be interpreted as octal unti l the next

occurrence of the pseudo-instruction DECIMAL. The radix i s in i t ia l ly set to octal and remains octal un-

less otherwise specified.

S ym bo1 s

A symbol i s a string of one or more alphanumeric characters delimited by a punctuation character. Symbols

are composed according to the following rules:

1 . The characters must be either alphabetic (A-Z) or numeric (0-9).

2. The first character must be alphabetic.

3. Only the first six characters of any symbol are meaningful; the remainder, i f any,

are ignored .

4. A symbol i s terminated by any nonalphanumeric character.

The MACRO Assembler has, in i t s permanent symbol table, definitions of the symbols for a l l PDP-8 operation

codes, operate commands, and many IOT commands (see Appendix A for a complete list). These may be

used without prior definition by the user. Example:

JMS i s a symbol whose value of 4000 i s taken from the operation code

definitions.

5-5

A i s a user-created symbol. '&/hen used as a symbolic address tag, i t s value

i s the address of the instruction i t tags. This value i s assigned by the

Assembler.

Note that because of rule 3, a symbol such as INTEGER, for instance, would be interpreted as INTEGE

since the seventh letter i s ignored. If symbols of more than six characters are used, the programmer should

be careful to avoid the error of defining two apparently different symbols whose first six characters are,

i n fact, identical. For example, the two symbols, GEORGE1 and GEORGE2, differ only i n the seventh

character, so that the Assembler would treat them as being the same symbol, GEORGE.

I t i s not necessary to define a symbol before i t i s used i n an expression. They must be defined before the

end of PASS 1, however. Thus, one may refer to a number of registers by their address tags, and then

define the symbols later.

Parameter Assignments

A symbol may be assigned a value by means of a parameter assignment statement which looks l ike an alge-

braic statement. The single symbol to the left of the equal sign i s assigned the value of the expression on

the right. No space(s) or tab(s) may appear between the single symbol to the left of the equal sign and the

equal sign. Examples:

A = 6

EXIT = JMP I O
C = A + B

Al l symbols to the right of an "='' sign must be already defined. The symbol to the left of the "=" sign

and i t s associated value i s stored i n the Assembler's symbol table.

The use of the "=" does not increment the current location counter. I t is , rather, an instruction to the

Assembler itself rather than a part of the output binary. The equal sign may be used to redefine a symbol.

S ym bo I Definition

A symbol may be defined by the user in one of three ways:

1 . By use of a parameter assignment. Example:

DlSMlS = J M P RESTOR

5-6

2. As a macro name. Example:

DEFINE LOAD A

< CLA
TAD A >

3. By use of the comma. When a symbol i s terminated by a comma, i t i s assigned

a value equal to the current location counter. Example:

* 100
TAG, CLA

JMP A

A, DCA B
B, 0

/SET CLC TO 100

...

...

The symbol "TAG" i s assigned a value of 0100, the symbol "B" a value of 0102, and the symbol "A" a

value of 0103.

Expressions

All elements, i ,e., symbols and numbers (exclusive of pseudo-instruction symbols, macro names, and

double precision or floating point constants) may be combined with certain operators to form expressions.

These operators are:

+ plus This signifies 2's complement addition (modulo

40961 o).

4096, o) .
- minus This signifies 2's complement subtraction (modulo

I This signifies Boolean inclusive OR (union). exc lamati on point

& ampersand This signifies Boolean AND (intersection).

L-I space Space i s interpreted i n context. It may signify

inclusive OR or act as a f ield delimiter.

Symbols and integers may be combined with any of the above operators. A symbolic expression i s evalu-

ated from left to right; no grouping of terms i s permitted, Example:

A-B A : B

Vu I ue 0002 0003 0005 7777 0003
Va I ue 0007 0005 0014 0002 0007
Vu I ue 0700 0007 0707 0671 0707

- A+ B - B - A - A&B

0002
0005
0000

-

5-7

The MACRO-8 Assembler makes a distinction between the types of symbols i t i s processing. These types

are 1) permanent symbols, 2) user defined symbols, and 3) macro names. The character "space" i s inter-

preted written in the context of the expression. If a space i s used to delimit two or more permanent sym-

bols, space signifies inclusive OR. Example:

CLA
CMA

i s a permanent symbol whose value i s 7200.
i s a permanent symbol whose value i s 7040.

The expression:

CLA ,CMA has a value of 7240.

If the symbol following the space i s a user defined symbol, space acts as an address f ield delimiter.

Example:

*2117
A, CLA

... ...
JMP ,A

"A" i s a user defined symbol whose value i s 21 17. The expression JMP u A i s evaluated as follows:

The seven address bits of A are taken, i .e .:
A 010 00 1 001 1 1 1

1 001 1 1 1

The remaining five bits of A are tested to see i f they are 0's (page 0 reference); i f they are not, the

current page b i t i s set.

000 011 001 111

The operation code i s ORed into the expression:

JMP 101 000 000 000
Address A 000 01 1 001 1 1 1
JMP A 101 011 001 1 1 1

or, written more concisely:

531 7

5-8

In addition to the above outlined tests, the page bits of the address f ield are compared with the page bits

of the current location counjer. I f the page bits of the address f ield are nonzero and do not equal the

page bits of the current location counter, an out-of-page reference i s being attempted. If the reference

i s to an address not on the pa3e where the instruction w i l l be located, the Assembler w i l l set the indirect

b i t (bit 3) and an indirect address linkage w i l l be generated on the current memory page. If the out-of-

page reference i s already an indirect one, the error diagnostic I1 (Illegal Indirect) w i l l be typed on

PASS 2. When the l ink i s generated, the LG (Link Generated) message w i l l be typed on PASS 2. In the

case of several out-of-page references to the same address, the link w i l l be generated only once, but the

LG message w i l l be printed each time. Example:

*2117
A, CLA

* 2600
JMP ,A

The space preceding the user defined symbol "A" acts as an address f ield delimiter. The Assembler w i l l

recognize that' the register tagged "A" i s not on the current page (in this case 2600-2777) and w i l l

generate a l ink to i t as follows:

i n location 2600 the Assembler w i l l place the word

5777 which i s JMP I 2777

in address 2777 (the last location on the current page), the word 21 17 (the actual

address of "A") wi I I be placed.

The address f ield of a memory reference instruction may be any val id expression. Example:

A=270
* 200
TAD A-20

would produce, i n location 200, the word

001 010 101 000 or 1250 (TAD 250)

Although the Assembler w i l l recognize and generate an indirect address linkage when necessary, the

programmer may indicate an expl ici t indirect address by using the special symbol " I " . This must be

between the operation code and the address field. The Assembler cannot generate a link for an instruction

that i s already specified as being an indirect reference. In this case, the Assembler w i l l type the message

I I (Illegal Indirect).

5-9

Current Address Indicator

The single character period (.) has, a t a l l times, a value equal to the value of the current location

counter, I t may be used as any integer or symbol (except to the left of an equal sign). Example:

* 200
JMP .+2

I s equivalent to JMP 202.

* 300 . +2400

would produce, i n register 0300, the quantity 2700.

* 2200
CALL=JMS I .

0027

Since the second line, CALLzJMP I ., does not increment the current location counter, 0027 would be

placed i n register 2200 and CALL would be placed in the symbol table with an associated value of

100 110 000 000 or 4600.

Origin Setting

The origin (current location counter) i s reset by use of the special character asterisk ("). The current

location counter i s set to the value of the expression following the " * ' I . The origin i s in i t ia l ly set to

0200. A l l symbols to the right of " * ' I must already have been defined. Example:

If D has the value 250

then

*D+10 w i l l set the location counter to 0260.

To simplify page handling, the pseudo-instruction PAGE may be used. When "PAGE" i s encountered,

the origin i s reset to the first location of the next page. A page number may be specified by a legal

expression following the page pseudo-instruction. Example:

* 270
a t this point, either

5-1 0

*400

or -
PAGE

PAGE 2

wi l l reset the origin to 0400. -

Literals

Since the symbolic expressions which appear i n the address part of an instruction usually refer to the loca-

tions of registers containing the quantities being operated upon, the programmer must expl ici t ly reserve

the registers holding his constants. The MACRO-8 language provides a means for using a constant directly.

Suppose, for example, that the programmer has an index which i s incremented by two. One way of coding

this operation would be as follows:

...
CLA
TAD INDEX
TAD C2
DCA INDEX
... ...

c2, 2

Using a literal, this would become

...
CLA
TAD INDEX
TAD (2)
DCA INDEX
...

The left parenthesis i s a signal to the Assembler that the expression following i s to be evaluated and as-

signed a register in the constants table of the current page. This i s the same table in which the indirect

address linkages are stored. In the above example, the quantity 2 i s stored i n a register in a l i s t begin-

ning at the top of the memory page (page address 177), and the instruction in which i t appears i s encoded

with an address referring to that address, A literal i s assigned to storage the first time i t i s encountered;

subsequent references wi l l be to the same register.

I f the programmer wishes to assign literals to page 0 rather than the current page, he may use square

brackets, " [I ' and "1 ' I , in place of the parentheses. However, i n both cases, the right of closing member

may be omitted. The following examples are acceptable:

5-1 1

TAD (777$
AND [JMP,)

Note that in the second example, the instruction AND €JMP has the same effect as AND C5000.

Literals may be nested. For example:

* 200
TAD (TAD (30

w i I I generate

0200 1376

0376 1377
0377 0030

... ...

This type of nesting may be carried to as many levels as desired. Literals are stored on each page starting

at page address 177 and extending toward page address 0. (Only 127,0 or 177 literals may be placed on

page 0). If a l iteral i s generated for a nonzero page and then the origin i s set to another page, the current

page literal buffer i s punched out (during PASS 2). If the origin i s then reset to the previously used page,

the same literal w i l l be generated i f used again.

8

Single Character Text Facil ity

If a single character i s preceded by a double quote, the 8-bit value of the ASCII code for the character

i s inserted instead of taking the letter as a symbol. Example:

C LA
TAD (“A ...

w i l l place the constant 0301 in the accumulator.

5-1 2

CHAPTER 6

PSEUDO-INSTRUCTIONS

The pseudo-instructions are directions to the Assembler to perform certain tasks or to interpret subsequent

coding i n a certain way. By themselves pseudo-instructions do not generate coding or (in general) effect

the current location counter. The functions of each pseudo-instruction are described in this chapter.

CURRENT LOCATION COUNTER

PAGE This pseudo-instruction i s used to set the current location counter.

PAGE n This w i l l reset the current location counter to the first address of page n, where n i s an

integer, a previously defined symbol, or a symbolic expression. Examples:

PAGE 2 w i l l set the CLC to 0400

PAGE 6 w i l l set the CLC to 1400

When used without an argument, PAGE w i l l reset the CLC to the first location on the

next succeeding page. Thus, if a program i s being assembled into page 1 and the pro-

grammer wishes to begin the next segment on page 2, he need only insert the pseudo-

PAGE

instruction PAGE, as follows:

JMP . -7

PAGE

CLA

The current location counter may be expl ici t ly

EXTENDED MEMORY

set by use of the asterisk.

On PDP-8's equipped with more than one memory bank, the pseudo-instruction

FIELD n may be used where n i s an integer, a previously defined symbol, or a symbolic expression

within the range OLnL7.

This pseudo-instruction causes a word of the form

1 1 XXX 000 where 000 <XXX - < 1 1 1

6- 1

to be punched on the binary tape during PASS 2. This word i s interpreted by the Extended Memory Binary

Loaders (see DigitaI-8-2A-U; Digital-8-2B-U).

RADIX CONTROL

Normally, a l l integers used in a program are taken as octal numbers. I f , however, the programmer wishes

to have certain numbers treated as decimal, he may use the pseudo-instructions:

DECIMAL When this pseudo-instruction occurs, a l l integers encountered i n subsequent coding w i II

be taken as decimal unti l the occurrence of the pseudo-instruction

OCTAL which w i l l reset the radix to i t s original (octal) base.

NUMBERS

The types of numbers allowed are integers (See Chapter 5) , double precision integers, and double pre-

cision floating point numbers.

Double Precision lnteaers

Double precision integers may be positive or negative (2's complement) according to their sign but may

not be combined with operators. They are always taken as decimal radix although the current radix i s

not disturbed. Each double precision integer i s allotted two consecutive registers with the sign indicated

by b i t 0 of the first word.

The double precision integer mode i s entered through the use of pseudo-instruction DUBL and a l l numbers

encountered w i l l be taken as double precision integers unti l an alphabetic character i s encountered.

Each number i s terminated by the carriage return (2) or the semicolon (;) or by a comment. Example:

* 400,)
DUBL 679467,)

44 J
-3$

TAG, CLA,) ...
wou Id produce

0400 0245
040 1 705 3
0402 0000
0403 0054

6-2

0404 7777
0405 7775
0406 7200

and the symbol "TAG" would have a value equal to 0406.

F I oa t i na Point Constants

Double precision floating point constants may be positive or negative according to their sign but may not

be combined with operators. Decimal radix i s assumed but the current radix i s not altered. Floating

point constants are each assigned three registers and are stored i n normalized form.

for a description of floating point arithmetic .)

(See Digital-8-5-S

The double precision floating point mode i s entered through use of the pseudo-instruction FLTG. A l l

numbers encountered after the use of FLTG w i l l be taken as double precision floating point constants unti l

the occurrence of an alphabetic character other than E. The general input format of a floating point

number i s

*ddd - ddddE*dd

where the d's are decimal digits. Any character which i s not legally part of the above format (except

rubouts) terminates input of the number. Example:

Produces

0400 0003
040 1 2427
0402 6670

-62.97E04,) 0403 0024
0404 5462
0405 0740

1.00E-2,) 0406 7772
0407 2436
041 0 5574

TAG2, CLA,) 041 1 7200

"400,)

d F LTG +509.32E -02

and the symbol "TAG2" would be assigned a value of 041 1 .

TEXT FACILITY

There i s a text faci l i ty for single characters and text strings. For a description of the single character

mode (double quote), see Chapter 5 .

6-3

A string of text may be entered by giving the pseudo-instruction TEXT followed by a space, a delimiting

character, a string of text, and repeating the same delimiting character. Example:

TEXT ATEXTA

The character codes are stored two to a register in ASCII code that has been trimmed to six bits. Following

the last character, a 6-bit zero i s inserted as a stop code. The above statement would produce

2405

3024
0000

TEXT U

would produce

0217
0200

The TEXT pseudo-op could also be used as part of a call ing sequence to a subroutine:

a. JMS MESS
TEXT / /

or

b. JMS MESS
NOWDS
ADDMESS

/NO WDS IN MESSAGE
/ADDRESS OF MESSAGE

ADDMESS, TEXT'/ /
Note that while the TEXT pseudo-instruction causes characters to be stored in a trimmed code, the use of

the single-character control code (") causes characters to be stored as a full 8-bit ASCII code.

END OF PROGRAM

The special symbol ' I$" indicates the end of a program. When the Assembler encounters the "$" i t termi-

nates the PASS.

6 -4

END OF TAPE

When several tapes are to be assembled together, each, except the last (which ends in "$'I), should have

as i t s last symbol the pseudo-instruction PAUSE. This causes the MACRO-8 Assembler to stop processing

and halt the computer. After placing a new tape in the reader, assembly can be continued by depressing

CONTINUE.

ALTERATIONS TO THE SYMBOL TABLE

There are two pseudo-instructions that may be used to alter the permanent symbol table (during PASS 1):

EXPUNGE EXPUNGE the entire symbol table, except for the pseudo-instructions.

FIXTAB FIX the symbol TABle. A l l symbols that are currently in the symbol table are fixed.

Example:

CLSF4141
F IXTA B

would define CLSF as a permanent symbol.

EXPUNGE
TAD=lOOO
FIXTAB

would place the symbol TAD in the assembler's permanent symbol table. A l l other symbols would have

been expunged.

6-5

CHAPTER 7

MACROS

When writing a program, i t often happens that certain coding sequences are used several times with just

the arguments changed. If so, i t i s convenient if the entire sequence can be generated by a single state-

ment. To do this, the coding sequence i s defined with dummy arguments as a macro. A single statement

referringto the macro by name, along with a l i s t of real arguments, w i l l generate the correct sequence

i n line with the rest of the coding.

The macro name must be defined before i t i s used. The macro i s defined by means of the pseudo-instruction

DEFINE followed by the macro's name and a l i s t of dummy arguments. For example:

A macro to move the contents of register A to register B and also leave the result in the

accumulator, would be coded as follows:

DEFINE - MOVE I DUMMY1 - DUMMY2
<CLA

TAD DUMMY 1
DCA DUMMY2
TAD DUMMY2>

The actual choice of symbols used as dummy arguments i s arbitrary; however, they may

not be defined or referenced prior to the macro definition.

The above definition of the macro MOVE i s identical to the following:

DEFINE - MOVE - ARGl, ARG2
<CLA;TAD ARGI; DCA ARG2; TAD ARG2>

The actual definition of the macro i s enclosed in angle brackets.

When a macro name i s processed by the assembler, the real arguments w i l l replace the dummy arguments.

For example:

Assuming that the macro MOVE has been defined as above,

"400
A,O 0400 0000
B, -6 0401 7772

7- 1

MOVE - A, B 0402 7200
$ 0403 1200

0404 3201
0405 1201

NOTE: A macro need not have any arguments: For example, a sequence of
coding to rotate the C(AC) and C(L) six places to the left might be encoded
as a macro by means of

DEFINE, ROTL 6
(RTL; RTL; RTL>

The entire macro definition i s placed in the Macro Table, two characters per word, with a dummy argu-

ment value replacing the symbolic name. Example:

DEFINE - LOAD - A
<C LA
TAD A>

i s stored, in the Macro Table, roughly as follows:

ICLIAJ~ TAI D- /77oo(xo1

where the vertical lines indicate successive 12-bit words. Comments and line-feeds

are not stored.

The macro definition can consist of any val id coding except for TEXT or ' I type statements.

RESTRICTIONS

1 . Macros cannot be nested; i .e. , another macro name or definition cannot appear i n

a macro definition and cannot be brought i n as an argument at reference time.

2. TEXT or " type statements cannot appear i n a macro definition.

3. Arguments cannot be:

a. Macro name
b. TEXT pseudo-instruction or " special character

4. The symbols used as dummy arguments must not have been previously defined or

referenced.

7-2

5 . A macro may not be redefined. Example:

DEFINE - LOOP- A - B
<TAD A

DCA B
TAD COUNT
ISZ B
JMP , -2>

The symbol "COUNT" i s not a dummy argument but an actual symbol.

A macro i s referenced by giving the macro name, a space, and then the list of real arguments, separated

by commas. There must be at least as many arguments i n the macro reference as i n the corresponding

macro definition. When a macro i s referenced, i t s definition i s found, expanded, and the real arguments

replace the dummy arguments. The expanded macro i s then processed in the normal fashion.

....
LOOP- x, Y2
i s equivalent to:

....
TAD X
DCA Y2
TAD COUNT
ISZ Y2
JMP . -2

NOTE: The macro table shares the available space (60410 registers) with the
symbol table. Thus the programmer must be aware of the amount of room re-
quired by his macros and the fact that each symbol occupies four words of mem-
ory. Also, the arguments of a macro cal l are temporarily stored i n this buffer
space while the macro i s being expanded.

7-3

CHAPTER 8

ERROR DIAGNOSTICS

The format of the error messages i s :

ERROR CODE ADDRESS

Where ERROR CODE i s a 2-character code which specifies the type of error, and ADDRESS i s either the

absolute octal address where the error occurred or the address of the error relative to the last symbolic

tag (if there was one) on this page.

Assembly w i l l continue or may be continued after a l l errors except SE (Symbol Table Exceeded). If an SE

error occurs, the Assembler w i l l halt and may not be restarted.

PE

ZE

ID

IC

ERROR MESSAGES

Current, Non-zero Page Exceeded

An attempt was made to

1. override a literal with an instruction or

2. override an instruction with a l iteral.

This can be corrected by

a. decreasing the number of literals on the page

b. decreasing the number of instructions on the page

Zero Page Exceeded

Same as PE only with reference to page 0

Illegal Redefinition of a Symbol

An attempt was made to give a previously defined symbol a new value not via the "= ' I . The

symbol was not redefined. (This i s similar to the Duplicate Tag diagnostic of PAL Ill).

I I legal Character

1 . # % ' : ? @ \ were processed neither i n a comment nor a TEXT field. The character

i s ignored and the assembly continued.

8-1

IE

I I

2. A non-valid character was processed. The computer w i l l halt with the i l legal character

displayed in the accumulator. Assembly may be continued by putting the desired character

i n the SWITCH REGISTER and depressing CONTINUE.

I I lega I Equa I s

An equal sign was used i n the wrong context. Examples:

TAD A + = B
A + B = C (The expression to the left of the equal sign i s not a single symbol)

I l legal Indirect

An out of page reference was made, and a l ink could not be generated because the indirect

b i t was already set. Example:

* 200
TAD I A

PAGE
A, CMA CLL

LG Link Generated

A link was generated for an out of page reference at this address. Example:

* 200 Generated Binary
TAD A 0200 1777

. . . 0377 0400
PAGE
A, CMA, CLL 0400 7140

. . .

SE Symbol Table Exceeded

The Symbol Table overlaps the Macro Table or vice versa. Assembly i s halted and cannot

be con t i nued .

IM Il legal Format in a Macro Definition

The expression after the DEFINE pseudo-instruction does not comply with the macro definition,

position, or structural rules. Example:

A macro name i s referenced before the macro definition.

8-2

us Undefined Symbol

A symbol has been processed during PASS 2 that was not defined by the end of PASS 1.

MP Missing Parameter i n a Macro Call

An argument, called for by the macro definition, i s missing.

Example:

DEFINE MAC A B

<TAD A
CIA
DCA B >

MAC SUM

BE Two MACRO-8 internal tables have overlapped. This situation can usually be corrected by de-

creasing the number of current page literals used prior to this point on the page. I f the error

persists, please contact the Small Computer Systems Programming Group at Digital Equipment

Corporation for assistance.

8-3

CHAPTER 9

0 PER AT1 NG I NSTRUCTI 0 NS

MACRO-8 i s a 2-pass assembler with an optional third pass which produces an octaI/symbolic assembly

listing. During the first pass, MACRO-8 processes the source tape and places a l l symbol definitions and

macro definitions i n i t s symbol table and macro table, respectively. During the second pass , MACRO-8

processes the source tape and punches the Binary Format Tape. At the end of PASS 2, MACRO-8 prints

the Symbol Table (it i s also punched i f the 33-ASR PUNCH i s turned on). This punched table may be

read by DDT (See Digital-8-4-S). The third pass provides a listing of the generated octal code and the

original source language.

There are two versions of MACRO-8 which differ with respect to their use of input/output equipment:

the low speed version uses the 33-ASR Reader for a l l input and the 33-ASR Punch for a l l output; the high

speed version uses the Type 750 Photoelectric Reader for a l l input, the Type 75 High Speed Punch for

table punching binary output, and the 33-ASR Punch for printable outpu

and listing, and third pass assembly listing.

such as error printouts, symbo

NOTE: In the high speed version of MACRO-8, the Type 75 Punch may be
used as the printable output device by changing the contents of location 0004
from 2600 to 0600. This i s useful for long third pass listings, since the punched
output from the 75 Punch can be subsequently listed off-line. It i s advised that
this change not be made unti l pass 3, so that pass 1 and pass 2 error messages
w i l l come out on the 33-ASR.

1 . Load MACRO-8 with the Binary Loader (See Digital-8-2-U).

2. Put the source tape in the reader.

3. Set the SWITCH REGISTER to 0200.

4. Depress LOAD ADDRESS.

5. Set switch options (See Table 9-1).

6. Depress START.

7 . Turn on the 33-ASR reader (if using the low speed version).

9- 1

8.

next tape in the reader and depress CONTINUE. Repeat this step until a l l tapes have

been processed.

When MACRO-8 stops reading (after processing a PAUSE statement), place the

9.

one of the following sets of events depending upon what pass has just been completed.

Proper operator intervention i s then required.

When MACRO-8 encounters the terminating character, dollar sign ($), i t performs

Pass Just Completed Events

1 Set up for PASS 2

2 Terminate current assembly;
punch out page 0 constants,
checksum and trailer code on
binary tape; print and punch
rubout, the alphanumerically
ordered symbol table, an EOT
code, a rubout, and trailer
code; Set up for PASS 1.

3 Termina te assemb I y I isting:
Set up for PASS 1 .

Operator Intervention

Turn on 33-ASR punch (in high speed
MACRO-8, symbol table i s output via
33-ASR). Put source tape in reader;
hit CONTINUE to enter PASS 2.

(a) If PASS 3 i s desired:
(In the high speed version of MACRO-8,
the contents of register 0004 could be
altered at this point to change output
devices). Go to step 2 of the operating
instructions, making sure to set AC
switch 3 up at step 5.

(b) If PASS 3 not desired:
Turn off 33-ASR punch, put next program
to be assembled in the reader. Hi t
CONTINUE to enter PASS 1.

Turn off 33-ASR punch; put next
program to be assembled in the reader;
h i t CONTINUE to enter PASS 1.

TABLE 9-1 SWITCH OPTIONS

Switch Up Resu I t

None MACRO-8 w i l l enter the next pass as defined in the preceding table. For

example: i f the previous assembly was terminated during or at the end of PASS 1,

restarting MACRO-8 with no switches up would cause PASS 2 to be entered.

MACRO-8 ini t ia l ly starts at PASS 1 .

0 Restore symbol table to only the permanent symbols and enter PASS 1 .

1 Enter PASS 2.

9-2

TABLE 9-1 SWITCH OPTIONS (continued)

Switch Up Resu I t

2 Enter PASS 1 without erasing any previously defined symbols.

3 Enter PASS 3. During PASS 3, MACRO-8 outputs an octal/symbolic listing

of the assembled program.

switch options 0 or 2 may be used to return to PASS 1 for subsequent assemblies.

MACRO-8 w i l l output as much of the source statement (symbolic) as i t s internal

storage capacity w i l l allow. Because of the internal operations during the

processing of macro statements, the symbolic output may be meaningless.

If this pass i s terminated before completion, either

10

11

The double precision integer and double precision floating point processors

are deleted and may be used for storage of user defined symbols. This in-

creases the size of the symbol table by 64, symbols.

The macro processor and the number processors (above) are deleted and may be

used for storage of user defined symbols. This increases the size of the symbol

table by 125, symbols.

NOTE: Switches 10 and 11 are sensed whenever PASS 1 i s entered. MACRO-8 would have to be reloaded
to handle subsequent programs that use macros, double precision integers, or floating point numbers.

The Binary Format Tape produced during PASS 2 may be loaded by the Binary Loader. When the loading

i s completed, the accumulator should contain zero which indicates that i t has loaded correctly.

The PASS 3 output i s of the following format:

AAAA NNNN (Symbolic) CR/LF

Where AAAA i s the absolute octal address and NNNN i s the generated code. Literals are somewhat out

of phase with the octal. Example:

* 200

0200 1377 TAD (1
0201 3776 DCA A
0376 4000 * 4000
0377 000 1
4000 0000 A, 0

9- 3

SY MB 0 L TAB LE MOD I F I CAT IO N

Because of the small amount 6f core (604 registers) remaining to be used for programmer symbols and the

macro table, the following suggestions are offered which may allow a particular instal lation or individual

to conserve on table space.

10

By use of the pseudo-ops EXPUNGE and FIXTAB, unnecessary instruction mnemonics can be removed from

the symbol table thus making more space available for programmer defined symbols and macros. This also

decreases assembly time as the never used instruction symbols are not involved in A e symbol table searches.

The most often used instruction mnemonics should be assembled first, so that they w i l l be in core next to

the special characters and pseudo-instructions. This i s desirable because the symbol search routine starts

searching at the top of the table and works down.

At an installation that does not have a piece of optional equipment available, the corresponding instruction

set can be removed. A symbolic tape beginning with EXPUNGE, containing a l l necessary instruction mne-

monics, and ending with FIXTAB and the $ sign could be assembled (only PASS 1 i s needed) by MACRO-8

prior to any other assemblies. Example:

EXPUNGE
A N D=0000
TAD=l 000
C LA=7200

FIXTAB
$ (The pseudo-op PAUSE could also be used with this tape, the

first of a multiple tape assembly.)

9-4

APPENDIX 1

MACRO-8 SYMBOL TABLE

/MEMORY REFERENCE INSTRUCTIONS
AND=0a00
T A D = la00
ISZ =2000
DCA 3 0 0 0
JMS = 400 0
JMP z 5000
IOT =6008
OPR 27000
/MICRO1 NST3UCTIONS
NOP = 7000
CLA =7200
CLL=7100
C M A = 7040
CML z 7020
RAR =70 I0
R T R =70 12
iiAL=7004
RTL: 7006
IAC= 788 I
SNA = 7 500
SZ A = 7440
SPA =75 10
SNA = 74 50
SNL=7420
SZL= 7430
SKP = 7 4 10
OSR ~ 7 4 0 4
HLT = 7402
/C 0 MB I N ED MI CR 01 NS I R UC T I 0 NS
C I A z 70 4 1
LAS=7604
STA = 72 40
STL= 7 120
GLK = 7204
/PROGRAM I NT ERR UP1
ION=6001
I OF ~ 6 0 0 2
/4NALOG T O DIGITAL CONVERTER
ADC= 6004
/HIGH SPEED PERFORATED TAPE R E A D E R
RSF=601 I
3 i iB = 60 12
ilFC=60 1 4
/ H I G H SPEED PERFORATED TAPE PUNCH
PSF=602 I
PC F=6022
PPC: 6024
PLS = 6026
/I EL ETY P E K EY 6 OA 2 D/R EA DER
KSF=603 1

KCC=6032
KRS = 603 4
KRB=6036
/I EL ETY P E T ELEPRI N TER /P UNCH
TSF=604 1
TCF = 6042
TPC =604 4
TLS = 6046
/FLOAT1 N G POINT I NTERPRETI VE COMMANDS
FEX T = 0B0 0
FADD= 1000
FS UB = 200 0
FMPY ~ 3 0 0 0
FDI V=4000
FGETz5B00
FP UT ~ 6 0 0 0
FNOR = 7000
/OSCILLOSCOPE A N D PRECISION C R T
lDI SPLAY
DCXz6051
DX L = 60 53
DCY =606 1
DYL=6063
DIX 26054
DIY ~ 6 0 6 4
DX S = 60 5 7
DY S = 60 6 7
i)SF=6071
DCF= 6072
DLB=6074
/INCREMENTAL PLOTTER
PLSF=650 1
PLC F = 6 502
PLP U = 6504
PLPRz6511
PLDU=6512
PLDD= 6 5 1 4
PLUD= 6 522
PLPL=6521
PLPD= 6524
/LINE PRINTER
LCFz6652
LPri ~ 6 6 5 5
LSF=6661
LCB = 6662
LLD = 666 4
/ C A R D R E A D E R A N D CONTROL
CRS F = 6632
CERS = 663 4
CRRBz6671
CRSA ~ 6 6 7 2

A1 -1

CRSB = 66 7 4
/CARD PUNCH CONTROL
CPSF=663 I
CPCF=664 I
CPS E= 6642
CPLB = 664 4
/AUTOMATIC MAGNETIC TAPE C O N T R O L
MSC2 =670 1
1% D : 6 7 02
MTS = 6 70 6
MSUd=6711
MNC=67 12
M T C = 6 7 16
IYSYFz6721
MDWF ~ 6 7 2 2
I C W F = 6 722
MEWF= 6 722
M I WF=6722
MSEFz673 1
MDEF=6732
MC ED = 6 7 3 2
PIEEF ~ 6 7 3 2
MI EF=6732
MTRS = 6734
MCC=6741
lvlft WC=6742
MiiCA=6744
MCA = 674 5
/COME1 NED INSTRUCTIONS
MMiYIM= 6 7 5 7
MMMF= 67 57
/AUTOMATIC MULTIPLY-DIVIDE
CAM=6 10 1
LAR = 6 1 04
LMQ =6 102
RDA=6I 12
MUL=6111
DI V =6 12 I
SZ0=6114
SA F =6 124
RDM=6122
/MICROTAPE INST2UCTIONS
MMLS = 67 5 I
WMLM = 6 7 52
MMLF = 67 5 4
MMSF=676 I
MMCF=6772
MMSC=6771
MMHS = 6 7 74
MMCC = 6 7 62

MM1 C = 6 76 6
MMML = 6766
/MEMORY PAR I TY
SMP =6 I0 I
CMP=6102
/TYPE 138/139 A N A L O G T O DIGITAL

/C 0 N V ER T ER
ADSFz653 1
ADCV=6532
ADRB = 6 53 4
ADCC:6541
ADSCz6542
ADIC=6544
/SERIAL MAGNETIC DRUM SYSTEM
DRCRz6603
DRC W: 6685
DRCF=66 I I
DR EF = 66 1 2
DRTSz6615
DRSE=6621
DR S C = 6 622
DR C N = 662 4
/EXTENDED ARITHMETIC ELEMENT
MUY ~ 7 4 0 5
D V I = 7407
N M I ~ 7 4 1 1
SHL = 74 1 3
ASR = 74 1 5
LSR =74 17
lW1-:7421
SCA=744 I
MQA = 750 1
/MAGNETIC TAPE SYSTEM
TIFM=6707
TSRDz6716
IS W3 =67 16
TSDF=672 I
ISSF3 = 6 722
TSSTz6724
TSRS = 6 73 4
TWRT=6731
T C T I ~ 6 7 3 2
/MEMORY MTENSI ON
RDF=62 14
R I Fz6224
RMF = 624 4
R I B = 623 4
CDF=620 1
CI F=6202

A1 -2

APPENDIX 2

ASCII CHARACTER SET

These characters may be used in symbols.

Character 8-Bi t From

A
B
C
D
E
F
G
H
I
J
K
L
M
N
0
P
Q
R

30 1
302
303
304
305
306
307
31 0
31 1
31 2
31 3
31 4
315
31 6
31 7
320
32 1
322

These characters are special.

Character %Bi t From

I

I1

5
YO

&
I

(
) *
+
I -

i

24 1
242
243
244
245
246
247
25 0
25 1
252
25 3
254
255
25 6
25 7
272

6-Bi t From

01
02
03
04
05
06
07
10
1 1
12
13
14
15
16
17
20
21
22

6-Bi t From

41
42
43
44
45
46
47
50
51
52
53
54
55
56
57
72

Character 8-Bi t From

S
T
U
V
W
X
Y
Z
0
1
2
3
4
5
6
7
8
9

32 3
324
325
326
32 7
330
33 1
332
260
26 1
262
263
264
2 65
266
267
270
271

6-Bi t From

23
24
25
26
27
30
31
32
60
61
62
63
64
65
66
67
70
71

Meaning

Inclusive OR
Character pseudo-instruction
Illegal outside of (TEXT) or (") or comment
End of PASS
Il legal outside of (TEXT) or (") or comment
Logical AND
Illegal outside of (TEXT) or ('I) or comment
Define literal
Terminate litera I
Set origin
2's complement addition
Define symbol
2's complement subtraction
Has value of CLC
Start of comment
Illegal outside of (TEXT) or (") or comment

A2- 1

Character

\

i
c

Line-feed
Return
Space
Rubout
Form-feed
Blank
Code 200

8-Bi t From

273
274
275
276
277
300
333
334
335
336
337
212
215
240
377
214
000
200

6-Bi t From

73
74
75
76
77
00
33
34
35
36
37

Terminate expression
Start macro definition
Define Parameter
End macro definition
Illegal outside of (TEXT) or (") or comment
Illegal outside of (TEXT) or (") or comment
Define page 0 literal
Illegal outside of (TEXT) or (") or comment
End page 0 literal
Illegal
Illegal
Used for formatting (ignored)
Terminate l ine
Address delimiter or inclusive OR
Ignored
Ignored
Ignored
Ignored

A2-2

E Q U I P M E N T
COR PO RAT1 0 N
MAYNARD, MASSACHUSETTS

PRINTED IN U.S.A.

	PART
	1 INTRODUCTION
	THE BINARY SYSTEM
	THE PDP-8 INSTRUCTION SET
	Instructions
	Memory Reference Instructions
	Aug m en t ed I ns t ru c t i ons

	The Organization of Memory
	Complement Arithmetic
	Addition
	Subtraction

	ORGANIZATION
	Cod i ng
	Comments
	Address Tags
	Symbolic Addressing

	Storage Techniques
	Optimum Use
	Subroutines
	PART
	MACRO-8 PROGRAMMING LANGUAGE

	Characters
	Elements
	Integers
	Sym bo I s
	Expressions

	Current Address Indicator
	Origin Setting
	Literals
	Single Character Text Facility

	PSEUDO-I NSTRUCTI ONS
	Current Location Counter
	Extended Memory
	Radix Control
	Numbers
	Double Precision Integers
	Floating Point Constants

	Text Faci I i ty
	End of Program
	End of Tape
	Alterations to the Symbol Table

	MACROS
	Restrictions

	ERROR DIAGNOSTICS
	Error Messages

	OPERATING INSTRUCTIONS
	Symbol Table Modification

	MACRO-8 SYMBOL TABLE A1
	Memory Reference Instruction Format
	IOT Instruction Format
	Group 1 Operate Microinstruction Format
	Group 2 Operate Microinstruction Format
	Flow Chart of Program to Calculate Sum of Integers
	Program Example
	2- 1 First Sixteen Integers in Three Number Systems
	3- 1 Memory Reference Instructions
	3-2 Group 1 Operating Microinstructions
	3-3 Group 2 Operating Microinstructions
	3-4 Effective Address Calculation
	3-5 One's and Two's Complement Representations
	9- 1 Switch Options

