
-

-

_____,

-
____,

USA 1986 SPRING

PROCEEDINGS OF THE DIGIT AL EQUIPMENT COMPUTER USERS SOCIETY

--=-

D

E

c

u t--H

s t--

I

::r

·.

11 f'\
I \

___!/

25th SILVER
ANNIVERSARY

I

[Q]
DEC US

PROCEEDINGS
OF THE

DIGITAL EQUIPMENT
COMPUTER USERS

SOCIETY

Presentations and Reports
USA Spring 1986

Dallas Texas
April 28-May 2, 1986

Printed in the U.S.A

"The Following are trademarks of Digital Equipment Corporation

ALLIN-I LAIOO RSX-II M
BASEWAY Micro PDP-I I RT-II
DATATRIEVE Micro Power/ Pascal RX02
DEC Micro/RSX TOPS-IO
DEC lab MicroVAX TOPS-20
DECmail Micro VMS VAX
DECnet PDP-I I V AX-11/730 (et al)
DEC page PDP-11/23 VAXCluster
DECSYSTEM-10/20 PDP-11/44 VAXELN
DECUS Professional 350 VAX/VMS
FALCON Q-bus VMS
FMS Rainbow VTIOO (et al)
HSC50 RSX WPS-PLUS

Copyright° DECUS and Digital Equipment Corporation 1986
All Rights Reserved

The information in this document is subject to change without notice and should not be construed as a commitment by Digital
Equipment Corporation or DECUS. Digital Equipment Corporation and DECUS assume no responsibility for any errors that
may appear in this document

Apple II is a trademark of Apple Computer Inc.; UNIX is a trademark of AT&T Bell Laboratories; Scribe is a trademark of
Unilogic Ltd; TeX is a trademark of American Mathematical Society; UniLINK is a trademark of Applitek; HYPERchannel is a
trademark of Network Systems Corporation; 68000 is a trademark of Motorola, Inc.; TI way is a trademark ofTexas Instruments,
Inc.; XNS is a trademark of Xerox Corporation; IBM. PC-XT, BITNET are trademarks of International Business Machines
Corporation; TCP/ IP is a trademark of Darpa; 32000 is a trademark of Nationa~ Cyber 180 is a trademark of Control Data;
Modbus is a trademark of Gould, Inc.

FOREWORD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world-wide society of users of
computers, computer peripheral equipment and software manufactured by Digital Equipment Corporation The U. S.
Chapter of DECUS has approximately 45,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on locaL national and
international levels to fulfill its primary functions of advancing the art of computation and providing a means of
interchange of information ideas among members. Two major technical symposia are held annually in the United
States.

For information on the availability of back issues of Proceedings as well as forthcoming DECUS symposia, contact the
following.

DECUS U. S. Chapter
219 Boston Post Road BR>2
Marlboro, Massachusetts 01752-1850

All issues of past Proceedings are available on microfilm from·

University Microfilms International
300 North Zeeb Road
Ann Arbor, MI 48106

PREFACE

This volume of the Proceedings contains papers which were
presented at symposia sponsored by the Digital Equipment
Computer Users Society during the Spring and Summer of
1986. It includes submissions from the Spring National Sym­
posium and the Northeast DECUS Regional Conference.

The Spring 1986 Symposium was held at the Dallas Con­
vention Center in Dallas, Texas, from April28 through May2,
1986. 4605 DECUS members attended the Spring Symposium
in Dallas. They took part in birds- of- a-feather sessions, 7 4 pre­
sympsoium seminars, and over 925 presentations made by
both DECUS and Digital The majority of this volume of the
Proceedings is from that symposium

However, there are two unusual features about this volume
that make it a very exciting one for me.

The first starts with the silver cover. This is the silver
anniversary ofDECUS! To commemorate this special event, I
have chosen some excerpts from the first Proceedings of
DECUS, published in 1962. The original Preface and Foreword
are here, containing references to the PDP-1 and the new and
exciting PDP-4. Mr. Walter, the DECUS President, described
his pleasure of being in a position to observe the evolution of a
"Society which spans such a diversity of on-line processor
configurations and uses." I suspect that the present Digital
product line would have been entirely inconceivable in 1962.
Then, for those of you who have had to wade through the over
1500 sessions at a national symposium lately, comes the
program for the Fall, 1962 annual meeting. This takes almost
two pages. An attendance list follows; at some point it is
mentioned that "all of the DECUS members attended this
meeting."

The first paper in this special section is entitled" Translation
Problems of a Peripheral Computer in a Multi-Lingual House,"
from what is now known as Lawrence Livermore Labs. This is
the first published paper about IBM-to-Digital interconnection

The authors note, with astonishing foresight, that "one can­
not afford to approach the trivial problem of data conversions
with careless contempt" Next the first interactive computer
game, Spacewar, is described Readers familiar with the game
"Asteroids" will see its roots. Then, in "A Time- Sharing
System for the PDP-1 Computer," an MIT student describes
his idea of an operating system Finally, and my personal
favorite," MACRO, DECAL, and the PDP-1" is a transcript of
a discussion on the relative merits of assembly languages
versus higher- level languages.

The second unusual feature about this Proceedings is the
inclusion of regional conference papers. The Northeast DECUS
Regional Conference was held in Boxboro, Massachusetts
June 4, 5, and 6. Over 120 people attended 40 sessions and
two post-symposium seminars and, of these sessions, 7 were
also submitted as papers for the Proceedings. All future issues
of the Proceedings will have space allocated for papers from
the U. S. DECUS Regional Conferences. I would like to thank
Dennis Costello, of that symposium, for helping get those
papers into the Proceedings. By adding the regional confer­
ence papers, we hope to make the Proceedings more valuable
to the membership.

My thanks on behalf of the attendees of the Spring National
Symposium go out to Ms. Sandra Traylor and Dr. Jeffrey
Jalbert, the DECUS volunteers who led the Symposium
Committee. They worked together with DECUS staff members
Ms. Nancy Wilga, Ms. Joan Mann, and Ms. Gloria Caputo to
put together an exciting, impressive, and informative meeting.
The leadership of the entire Symposium Committee is sincerely
appreciated For her special work on the Proceedings, I would
also like to thank my colleague, DECUS staff member Ms.
Cheryl Smith In addition, it is important for me to express my
thanks to Ms. Judith Arsenault and Mr. Mark Grundler for
their continuing support of this work

Proceedings Editor
DECUS U. S. Chapter Publications Committee

TABLE OF CONTENTS

ARTICLE PAGE
25th ANNIVERSARY

Excerpts from 1962 Proceedings..................... 1

SPRINGS 1986 NATIONAL SYMPOSIUM

ARTIFICIAL INTELLIGENCE SIG

Development of a VAX Tuner Using OPS5
Robert A Small . 33

BUSINESS APPLICATIONS SIG

Project Management in the New Micro/Mini World
Raymond J. Doubleday. 41

Packaged Software and the International Market
Chandan W. Seernani . 49

Productivity Tools Improve More Than Productivity
Chandan W. Seernani . 53

COMMERCIAL LANGUAGES SIG

COBOL: An Endangered Species?
Edward W. Wooward 59

DATA ACQUISITION, ANALYSIS, RESEARCH, AND
CONTROL SIG

Interfacing the Stomach with a Computer: An Automated
Analysis of Gastric Electrical Activity
0. Guetta, J. Hamilton, J. J. Conklin, A Dubois. 73

BASWW A Y Implementation Issues
Daniel J. Drislane . 79

Using MicroPower/Pascal to Implement a Data Acquisition
and Analysis System
Paul Brown. 87

An Ultra- High Speed Data Acquisition Front- End for
PDP-lls
Edward R. Darken. 91

Data Acquisition with the MicroVAX II
W. M. Foreman, J. F. Amann, T. Kozlowsh
M. A Oothoudt. 95

Conversion from RT-11 to Micro/RSX for Real-Time Data
Acquisition and Analysis
Mitchell E. King. 97

Data Acquisition and Valve Control for Onboard Oxygen
Generating System Chemical Contamination Studies
Paul A Lozano 103

Real-Time Performance of MicroVAX II and Micro VMS
Richard K Somes I07

Interfacing to Data Acquisition Systems
George Sirois 121

DATA MANAGEMENT SIG

Encryption for Beginners
Bart Z. Lederman 129

Designing Front-End and Interface Systems for the Casual
End User
Bud Pine ... 145

ARTICLE PAGE
A DBMS Performance Evaluation Tool Description and
Methodology of Use
Alexander B. Wasilow, Robert L Ewing,
Gary B. Lamont 149

The Complex Network: A Database Definition Dilemma
Mildred D. Lintner, David W. Chilson 155

DATATRIEVE SIG

DATATRIEVE Novice Questions and Answers
Joe Gallagher, Chris WooL Bart Lederman,
Larry Jasmann, et aL 161

Record Definition Tutorial
B. Z. Lederman 169

The SAR Data Catalog System: An Interface Between the
Scientist and the Data System
A A Pang, A L Holmes, J. C. Curlander 191

Using DATATRIEVE as a COBOL Code Generator
Lynn D. Duncan 195

Commonly Asked DATATRIEVE Questions
Larry Jasmann, etaL 201

DATATRIEVE and RMS
Joe Gallagher, Gary Friedman, Bart Lederman 211

EDU SIG

Test Generation and Course Managing with Digital' s
Computer Managed Learning Software
Claude M. Watson 221

The Management of Computer Resources with a Well
Designed Accounting Structure
Philip A Dawdy 229

Using VMS to Teach Operating Systems
Jerry Scott 235

Student Information Systems
Warren Alkire. 239

GRAPHICS APPLICATIONS SIG

Computer Assisted Course Development and Instructional
System (CACDIS)
A L Narasimhan 245

IAS SIG

Intertask Communication
Ted Smith .. 253

LARGE SYSTEMS SIG

TOPS.20 Technical Update
Donald A Kassebaum 265

TOPS.IO Technical Update
Frank~ Francois 269

TOPS.IO V7.03 Users Panel
Frank J. Francois 275

LCG Software Products Update
Carla J. Rissmeyer 277

ARTICLE PAGE
LANGUAGES AND TOOLS SIG

Typesetting Articles for the DECUS Proceedings with
LATEX
Barbara N. Beeton 281

An Introduction to TEX and LATEX
Samuel R Whidden 289

LA TEX Examples
Samuel R Whidden, J. R. Westmoreland 307

C Program Portability
Michael D. Tilson 333

NETWORKS SIG

A High Speed Local Area Computer Network Across the
Goodard Space Flight Center
James P. Gary, et al. 339

OFFICE AUTOMATION SIG

ALL-IN-1: A New Road to Effective Applications
Barclay Brown 371

User Communications for Office Automation Systems
Peter LaQuerre 379

PERSONAL COMPUTER SIG

Putting the Reader Back in Manuals: Computer Manuals and
the Problems of Readability - V2.0
Thomas L Warren 387

RT-11 SIG

TSXLIB: Updated for TSX-PLUS V6.0
Nick A Bourgeois 399

RSX-11 SIG

"MACHIAVILLI'': An Engineering Applications
Development Environment in DECUS C Under
RSX-HM-PLUS
R. A Wittenoom 405

Developing Large Programs on the PDP: The Spawn
Process
Walter Hayes 409

Development of a Computer Based Data Acquisition System
S. K R. lyenger, R. P. Schmidt 413

ARTICLE PAGE
VAX SYSTEMS SIG

HSC50 Operations in a V AXcluster
Larry Harzlich 425

V AXclusters -- Expectations and Experiences
Gary Grebus 431

High-End VAX 1/0 Benchmark
Don Hamparian, Michael Huffenberger 435

A Robust VMS LOGOUT Driver Activator
Larry L, Johnson 443

The Time Warp Simulator
J. Steven Hughes 495

POSTER PAPERS

Distributed Batch Queues on MicroVAX Ils
Michael A Oothoudt, J. F. Amann, M. V. Hoehn 505

1986NORTHEAST DECUS REGIONAL CONFERENCE

Adding Devices to RSX without a Sysgen
Dennis P. Costello 511

Remote Bridge Management
John Heffernam, Donna Ritter 527

Productivity Increases with the CORTEX Application
Factory: Empirical Survey Results
Anthony C Picardi 545

Rainbow Color/Graphics Option Use in an Assembler
Language Programming Course
Robert Workman 561

Introduction to Speakeasy
David H. Saxe 567

Extraction of 1022 Data to PC Files: New INIT and PRINT
Features in Vll 7 B
John Duesenberry 577

Using Mobius to Extend 1022 and 1032 Capabilities to
Personal Computers
E. William Merriam 595

DECUS PROCEEDINGS

FOREWORD

These Proceedings comprise a broad spectrum of papers whose color, in a figurative sense, ranges from the

deep blues of special utility programs and debugging aids, through the lush greens of problem oriented

techniques, to the rosey hues of new hardware aids designed to enhance the on-line use of computers. In

organizing the papers we have attempted to portray the typical cycle of events centered about the utili­

zation of a new class of computers.

Much initial energy has to be expended on the creation and improvement of utility programs and systems

before anything very useful can be accomplishedwith oursystems. To those of us who are strictly problem

oriented, this is an extremely frustrating time, made bearable by the naive hope that it might be brief and

end with some powerful general problem solving language in our possession. Unfortunately, this dream is

inevitably dispelled as we proceed to call for a diversity of modes of control, and of action, which strain

theexistinghardwareandprogrammingsystemsto their technological limits, in our quest for useful results.

From the insight thus gained, however, is created the structure of new programming systems, and of _pro­

cessor configurations better fitted to provide each particular user with assistance in solving the problems

of interest to him. The onset of the second stage of activity is already clearly discernible from the orien­

tation of a majority of the papers in these Proceedings. The theme is closer man-machine interaction.

This theme in present, both in the increased emphasis on on-line programming, debugging and problem

solving aids uti I izing scope and I ight-penci I communication, and in the requisite improvements in flicker­

free scopes, time sharing hardware, and optical 1-0 devices.

It has been a singular pleasure, during the past two years, to have been in a position to observe the evoJu­

tion of a Society which spans such a diversity of on-line processor configurations and uses. In this brief

interval of time the small scale processor has evolved from a meager and inadequate substitute for a large

central computer, into a formidable device whose flexibility and increasingly lower cost makes it the

logical candidate for a multitude of real-time information processing operations.

The ease with which hardware can be tailored to particular applications has already out-stripped the soft­

ware development problem. However, as the engineering technology rapidly improves, and the ultimate

userbecomesmore intimately tied to the operating system, we may look forward to an era in which better

control can be achieved and maintained over the growing software domain.

3

C. M. Walter,
DECUS President

PREFACE

This is the first Proceedings of meetings of the Digital Equipment Computer Users Society. Formed in

March 1961, for the purpose of fostering the interchange of information, ideas, and the advancement of

the art of programmed data processing - particularly with application to the Digital PDP-1, the Society

(DECUS) has grown in numbers and in scope. DECUS now maintains a programming library facility for its

members and issues DECUSCOPE, a technical newsbulletin, every month.

The papers presented at two Meetings which took place in 1962 are the subject of these Proceedings. A

one-day Symposium was held May 17, 1962 at ITEK Corporation in Lexington on the subject: "Image

Processing and Displays." A two-day Annual Meeting, in October 1962, was hosted by the Computation

and Mathematical Sciences Laboratory, AFCRL, Hanscom Field, Bedford. The papers presented covered

a wide range of subjects and the meeting was highlighted by a lively Panel Discussion called: MACRO,

DECAL, and the PDP-1. Some of the papers given then are still in the germinal state but the authors

were prevailed upon to contribute them. During 1962, users of a second Programmed Data Processor, the

PDP-4, were welcomed to DECUS. More will be reported in the 1963 meetings about this data processor.

The rapid growth of DEC US and its diverse interests are evidenced by the presentations themselves. What

may not be clearly visible is the remarkable spirit of cooperation in the interchange of such diverse infor­

mation. The 1962 Proceedings are a testimonial of this cooperative spirit and a tribute to the authors. I

regret that there was not space forthe sparkling good humor and even wit, which enlivened the discussion

between papers and during the questioning periods. Every user member was represented and participated

fully.

DECUS is deeply grateful to all who have contributed to the substance and embellishment of this first

endeavor.

5

Elsa Newman
DECUS Secretary

ANNUAL MEETING

Place: Air Force Cambridge Research Laboratories
L. G. Hanscom Field
Bedford, Massachusetts

Date: October 10, 11, 1962

PROGRAM
October 10 - Wednesday

0900

0930

0945

1030

1100

1215

1330

1400

1600

October 11 - Thursday

0900

0920

Registration

Introductory Remarks - Charlton M. Walter, President of DECUS

The PDP-4 Programming System - H. Morse, DEC

Reading Film with a Computer - M. Cappelletti, Information International, Inc.

A World Oceanographic Data Display System - Edward Fredkin, Information
International, Inc.

Lunch - Officers' Club

Minimax Detection Station Placement - Richard D. Smallwood, AFCRL

Displays -

Group I: to the DX-1 Experimenta I Dynamic Processor Room

Display of Minimax Detection Station Placement

Dynamic Attribute Extraction Display & Discussion - Charlton M. Walter,
AFCRL

Display - Steven Bernstein, AFCRL

Group II: to the Operations Applications Laboratory

Displays & Discussion

Reconvene in Main Conference Room, Building l 105A - General Discussion
and Security Check

Matrix Package for the DX-1 System - Carmine Caso, Wolf R & D

Lawrence Radiation Laboratory's PDP-1

1. A Peripheral Processor for Large Computers - Mrs. Dorothy Monk

2. A PDP Systems Tape - Fraser Bonnell

3. Translation Problems of a Peripheral Computer in a Multilingual House -
R. P. Abbott and L. E. Mish

7

1100

1115

1230

1330

1530

1730

Playing Music in Real Time - Peter R. Samson, MIT

Business, Introduction of Newly Elected Officers

1962-63 Officers

Lunch

Edward Fredkin, President
Elsa Newman, Secretary

Committee Chairman

Eunice Cronin, Meetings
William Fletcher, Equipment
John R. Hayes, Programming
Elsa Newman, Publications

The BBN Symbolic Version of DECAL - R. J. McQuillin, Bolt, Beranek &
Newman, Inc.

DECAL, MACRO and the PDP-1 (Panel Discussion)

Moderator

Panel

(for MACRO)

(for DECAL)

Concluding Remarks

John Hayes, OAL, Air Force Systems Command

Professor Jack Dennis, Massachusetts Institute of
Technology

Harrison Morse, Digital Equipment Corporation
Alan Kotok, Massachusetts Institute of Technology

Edward Fredkin, Information International, Inc.
Theodore Strollo, AFCRL, BBN

Edward Fredk in, Decus President, (1962-1963)

8

ATTENDANCE

ANNUAL MEETING

October 10 and 11, 1962

Air Force Cambridge Research Laboratories

CHARLES W. ADAMS ASSOCIATES
Bedford, Massachusetts

John Gilmore - D
Mary Lanahan
Al Rousseau
Paul Rodenh iser

AIR FORCE CAMBRIDGE RESEARCH LABS.
Bedford, Massachusetts

Frank Balzer, Jr.
B. Bernstein - pd
Harry Blum
Roger E. Bave
Eunice C. Cronin
Robert Duncan
Donald Easterday
Stuart Gygi
Edward Le Febvre
Philip Lieberman
John Mott-Smith
Vera Pless
Eugene Prange
Richard D. Smallwood P, pd
Charlton M. Walter - P, D
We iant Wathen-Dunn - D

AIR FORCE SYSTEMS COMMAND
(Electronic System Division)
Bedford, Massachusetts

Charles R. Brown - pd, D
Donald W. Connolly - pd
James Duva
Ira Goldstein
John B. Goodenough
John R. Hayes - P, D
Syh ·ia Mayer .
Raymond Nicke~on
Anne Story
Paul Wein
Robert Westfield
Major John T. Willis

9

ATOMIC ENERGY OF CANADA, LIMITED
Chalk River, Canada

J. Quarrington - D

BIO-DYNAMICS
Cambridge, Massachusetts
Avery Johnson

BOLT, BERANEK & NEWMAN, INC.
Cambridge, Massachusetts
Los Angeles, California

M. Breen
Lucy Darley
Thomas Evans
William Mann
Thomas Maril I - D
Richard J. McQuillin - P
David Park
Theodore Strollo - pd

JET PROPULSION LABORATORY
(California Institute of Technology)
Pasadena, California

Wi 11 iam Sho ley

DATA PROCESSING, INC.
Waltham, Massachusetts

Richard Mills - D

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts

Harlan Anderson
Robert Beckman
Gordon Bell
Peter Bonner
Martin Graetz
Benjamin Gurley
John Koudela
Nancy Lambert
Harrison Mo~e - D
Elsa Newman
George Rice

GEOTECHNICAL INFORMATION
Garland, Texas

Gerald Clawson - D

INFORMATION INTERNATIONAL, INC.
Maynard, Massachusetts

Michael Cappelletti - P
Edward Fredkin - P, D
John Wood

INFORONICS, INC.
Maynard, Massachusetts

Lawrence Buckland - D
William Nugent

INFORMATION SYSTEMS DIVISION
(International Telephone & Telegraph)
Paramus, New Jersey

H. Gould - D

ITEK CORPORATION
Lexington, Massachusetts

William Blotnick
Charles Burgess
Terrence R. Cullen
Doris Gagnon
Richard Hagan
H • P • Peterson
Earle Pughe
Edward Radkowski
Robert Rizzo
Edward Spignise
T. R. Stansfield

LAWRENCE RADIATION LABORATORY
Livermore, California

Frazer Bonnell - D
Lloyd Mish - P
Dorothy T • Monk - P, D

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts

Professor Jack B. Denn is - P, D
Alan Kotok
Peter Samson - P
Robert Saunders
Jackson Wright

MASSEY DICKENSEN COMPANY
Waltham, Massachusetts

W. J. Lennon

OREGON PRIMATE RESEARCH CENTER
Beaverton, Oregon

Robert W. Coffin - D

RAYTHEON COMPANY
Wayland, Massachusetts

Ralph W. Zaorski

SYSTEMS RESEARCH LABORATORIES
Dayton, Ohio

W. Fahie - D

UNITED AIRCRAFT RESEARCH LABORATORIES
East Hartford, Connecticut

Gerard A. Paquette - D
David Sirota

WOLF RESEARCH & DEVELOPMENT CORP.
West Concord, Massachusetts

D. B. Brzezenski - D
Carmine Caso - P
Norman Hirst
Janet Seltzer

Notes: D - DECUS Delegate or designated representative.

P - Speaker or Panel member.

pd - Displayed CRT showing special programs.

10

TRANSLATION PROBLEMS OF A PERIPHERAL COMPUTER
IN A MULTI-LINGUAL HOUSE

R. P. Abbott and L. E. Mish

Introduction

Datamation - the oracle of our burgeoning indus­
try - has mentioned, on more than one occasion,
that Lawrence Radiation Laboratory is o hodge­
podge of incompatible mo chines. Th is paper might
be considered, somewhat, as on "Insider's Con­
fession." Our present computer configuration con­
sists of three 7090's, two 1401 's, one LARC, one
STRETCH, one 650, and, of course, one PDP. We
ore in the process of converting the three 7090's
to two 7094's. In the foreseeable future, the com­
puter complex will be expanded to include o CDC
3600, as we 11 as o CDC 6600. These machines
speak such different languages as Decimo I, Bino­
r y, Concise, BCD-eeze, XS3-eeze, and, of
course, thet old standby, Hollerith. Frequently,
the output from one of these machines is needed as
input too code which is on some other machine.
Usually, the two machines do not speak the same
language or the data must be rearranged or both.

In addition to the computer complex, there ore many
data gathering devices located at various testing
stations, both at LRL and at other agencies. These
devices generally speak one of the aforementioned
languages, but the dio lects include 35 mm photo­
graphic negatives, 5 or 8 channel paper to pe,
punched cords, and 7 or 8 channel magnetic tape.
1\1\ost of these may be odd parity, even parity, or
both. Thus, we are called upon to make o trans­
lation, conversion rearrangement, or both. The
PDP, to which con be attached enough 10 gear to
be able to accept and generate o II of the languages
and dialects, was programmed to make these trans­
lations, conversion, etc.

Programming for the PDP

Two ground rules were established prior to initiat­
ing the programming.

1) Because there are at least two 10 devices in­
volved in each translation code, the pro;essing
speed of each code should be equa I to the max­
imum rate of the slowest of the involved devices.

2) Whenever possible, a II Input and Output data

11

must be checked for validity and parity.

IBM cords - intermixed Hollerith and binary - to
IBM magnetic tape

The translation from intermixed Hollerith and bina­
ry has been done on our 1401 's, but to take advan­
tage of the faster cord reader and for bockup rea­
sons, it was decided to make this available on the
PDP also.

Ground rule 1) calls for an examination of rotes,
so-oo. The cord reader con run at 2100 cords/min.
The maximum rote for putting cord images on 15KC
tape is about 3750 cord images/min. The processing
rote, by rule 1), shall be 2100 cords/min. Rule 2)
soys that we sho II vo lidity check the Hollerith cords.
The binary cords wi II be checked by the large com­
puters at read-in time. Each record on magnetic
tape shall be checked and "standard tape tech­
niques" shall be used. "Standard tape technique"
means that if o bod record is encountered, that rec­
ord sho II be backspaced, o space equal to one record
gap she II be erased, and the record sho II be re­
written and rechecked. If ten erasure attempts foi I
to yield o good record, the problem shall be re­
started and the tape replaced.

The conversion from Hollerith to BCD is not wired
into the PDP so it must be programmed. The first
approach took 103 decimal cells and, on the over­
age, took 47 .6 ms to empty the cord reader buffer
and convert. This was o weighted table search
where a maximum of 16 searches were made for each
character. The on I y trouble with th is method was
that the 47 .6 ms is much too large for an individual
cord cycle of 28.4 ms when running at 2100 cords/
min.

The method fino II y used is a direct table-look up
using the Hollerith punches as the table address.
For each character, the punches in rows l - 9 pro­
vide the table address, and the punches in rows 12,
11and0 provide o correction factor. Th is approach
empties the buffer and converts in only 10 ms, which
is well under the required 28.4 ms. Space-wise,
the fast conversion is a dog. It takes 463 decimal
cells, of which only 87 contain data or instructions

and the rest con ta in zeroes. The zeroes are impor­
tant to the conversion, however, in that an inva I id
Hollerith punch is converted to one of these zeroes
and when it is written on the even parity tape, a
character skip will result and the standard tape
technique will stop the problem.

An interesting sidelight is to be found in the time
versus space analysis in the previous example.
Speed was increased by a factor of 4.7. On the
other hand, space was increased by 4 .6. This rule
was found to be true in other examples: That is,
an increase in speed by a factor of N causes an
increase in space by the same factor N.

Now that the code has been debugged and timed,
it is running at 1600 to 1900 cards/min, instead
of 2100. This discrepancy seems to be due to the
summation of pl us and minus fudge factors on the
time quotations for the card reader and tape drive.
For instance, the card reader time is not a hard
fast 28 .4 ms, but more I ike 28 .4 ±2 ms, under
ideal conditions.

Tape start time, and tape stop time, are quoted at
±1 ms. The fact that the PDP is a 5 microsecond
machine doesn't begin to dent mechanical delays
on the order of 5 ms. If a highly integrated tim­
ing study is made, it might be possible to strike
2100 cards/min, but is it really worth the effort?

IBM magnetic tape to LARC magnetic tape

Another trans lotion problem of interest is the trans­
lation of IBM magnetic tape to LARC magnetic
tape, or vice versa. Our PDP has an IBM com­
patible tape control and a LARC compatible tape
control. Each control has 2 tape drives. To make
th is a genera I purpose routine, it was dee ided that
the code should stand ready to accept variable
length records. Rule 2) (va I idity & parity checks)
will be satisfied by standard tape techniques. A
look at rule 1) (timing) provides the brilliant idea
of simultaneity. That is -- let's start one tape
reading and, at the same time, start the other tape
writing and perform the translation while theyare
in motion! It is sort of a "he takes the high road
and she takes the low road and I' II be in Scotland
before them." Only, it doesn't work. The com­
mand structure of the PDP (specifically lack of in­
dex register) is such that the bookkeeping necessary
to convert three separate characters from a PDP
word requires more than 200 microseconds per word
converted.

12

PDP Saves Processing Steps

The procedure which was fino II y used is to start the
read tape, convert the first N words; start the write
tape, and finish the conversion of the remaining
words. The processing speed attained with this
method is about 6 ms longer than the read time.
Th is particular translation code is a good i 11 ustrotion
of the processing steps which can be saved with the
PDP. Th is code takes output from, soy, o 7090 and ,
in one step, produces LARC input. The old method
consisted of an additional processing pass on the
7090 to prepare o Hollerith image tape, which was
punched off line on a 1401. The cards were then
converted to o LARC tape by o Remington Rand
Card-to-tape Converter.

Other routines

Other conversion routines on the PDP include:
Paper tape to magnetic tape, with options to check
odd or even parity on the paper tape, write odd or
even parity I BM or Remington Rand tapes.

Print LARC or IBM tapes on the PDP Printer.

Magnetic tape to visual CRT, and precision CRT
with 35 mm camera. This routine handles bOth
characters and graph ica I data.

35 mm negatives with graphical data to magnetic
tape.

IBM tape to IBM tape.

LARC tape to LARC tape.

Magnetic tape to printer and magnetic tape to pre­
cision CRT - simultaneously.

Our assembly routine deserves mention in that it
reads the instructions from Hollerith cards, uses
I BM tape as temporary storage, prints the I isting on
the Anelex printer at 1000 lines/min (the printer
uses the XS3 language), and the object code is
punched in binary form on IBM cards.

Conclusion

The coding techniques which were finally used in
our conversion routines are not complex, but they
do serve to illustrate that one cannot afford to ap­
proach the trivia I problem of data conversions with
care less contempt.

SPACEWAR!
REAL-TIME CAPABILITY OF THE PDP-1

J. M. Graetz

Abstract
The game starts with each player in control
of a spaceship {shown on PDP scope) equipped
with propulsion rockets, rotation gyros, and
space torpedos. The use of switches to con­
trol apparent motion of displayed objects
amp I y demonstrates the rea I-time capabil­
ities of the PDP-1 •

Introduction
The demonstration program known as SPACEWAR!
was first conceived in December, 1961 at an in­
formal gathering of the Hingham Institute where
Wayne Wiitanen, Stephen Russell, and the author
were discussing some of the possibilities of the use
of the large-screen CRT which was to be attached
to the new PDP-1 computer at M.l .T. One idea
that caught our fancy was the thought of a moving
display under the control of the user. We thought
that a simulation of ships in space would provide
an excellent demonstration and the discussion de­
veloped into the Hingham Institute Study Group on
Space Warfare, under whose auspices almost all
of the work described here was done. The main
control and computation programs were written and
debugged in the first months of 1962 by Stephen R.
Russe 11 of Harvard.

The program is set up in the form of a game for two
personsanda PDP-1. Each person has control over
one of twodisplayedspaceshipoutlines. The object
of the game is to destroy the opponent's ship by
blasting him out of space with torpedos. Control
is maintained over the ship's orientation by simu­
lating rotational gyroscopes. A 11 translation is
achieved with the ship's main drive rocket; the ship
wil I accelerate in the direction its nose is pointing
as long as the rocket engines are turned on. Both
ships are armed with ballistic missiles (torpedos)
which are released from the nose of the ship with a
velocity equal to the ship's velocity plus that im­
parted to the missile by the launcher. From then
on, the torpedos are in true ballistic flight. Each
ship has one other means of getting from one place
to another, namely "hyperspace, 11 which allows
him to get out of the way quickly.

The display includes a background of stars and a
bright, flickering star or 11 heavy star" in the center
of the scope which maintains a rather fierce grav­
itational field.

The Game
At the beginning of the game two spaceships,
equipped with 31 torpedos, are displayed in diag­
onally opposite quadrants of the scope face. The
players operate switches for the purpose of maneu­
vering into position for joining the fray. {It is un­
wise to remain in a single position for a very long
time, and also fruitless, for the torpedos have only
a limited range.) The torpedos have two types of
fuze: one is a proximity fuze which causes the
torpedo to explode when it comes within a certain
critica I distance of any other col I idable object
which will also be caused to explode. The other
is a time fuze which causes the torpedo itself to
explode if it has not encountered another object
after a given length of time.

The "heavy star" in the center is constantly exert­
ing a strong gravitational influence on the two
spaceships {torpedos are not affected by gravity).
Th is star also has a very short capture radius; a ship
with reasonably large intrinsic velocity can come
in quite close to the star without fear of being cap­
tured. Th is maneuver is frequently used to change
direction rapidly.

If a ship is captured by th is star, it loses a 11 velocity
and is thrust into the 11 anti-point, 11 that point on
the surfaceofa topologically toroidal scope which
is represented by the four corners of the face,

Al I col I idable objects explode on coming into crit­
ical range. The current rules require that a game
is won only if the remaining ship (after the op,xment
has exploded) can successfully avoid being blown
up by any torpedos which may be left over. A tie
is declared: when both ships collide {and explode);
when an apparent victor is destroyed by a loose
torpedo; or when both ships run out of torpedos.
(Each ship has 31 torpedos at the start of each game).

13

The Spaceships
The two ships have different outlines making them
more easily distinguishable on the scope face. Ro­
tation is readily apparent and rocket blast is equal­
ly detectable. When the ship is blasting, a fiery
tail is seen at the base of the ship, where the main
rocket exhaust is placed. The spaceship out I ines
are generated and displayed by a program written
by Danie I Edwards of M. I • T. Th is program pro­
vides a very fast and reasonably flicker-free dis­
play. Torpedos appear as single moving dots. They
resemble stars rather closely.

The Heavy Star
A bright, flickering point in the center of the scope
represents the massive star referred to as the "heavy
star •11 This star has a strong effect (which approx­
imates gravitation} on the two spaceships. The
programforthiswasalsowritten by Daniel Edwards.
In the final version of SPACEWAR! he is going to
provide an improved integration to eliminate some
of the more unexpected, albeit interesting, pro­
perties of the "heavy star •11

The Stars of the Heavens
To add verisimilitude to the display, a background
of stars is provided. At first, this was merely a
random display of dots. However, Peter Samson of
M. I. T. has written a program which displays a star
map of the sky as seen from the Earth's equator.
The size of the scope I imits the extent of the map
to a 45° segment of the heavens. Stars down to
just above fifth magnitude are displayed. The dis­
play moves imperceptibly across the face of the
scope from left to right, and, given time, the com-

14

plete band of stars of th is section of the map wi 11
be displayed.

Hyperspace
This isan emergencydevice. It frequently happens
that a ship cannot accelerate fast enough to get
out of the way of an approaching torpedo, The
player may send the ship into hyperspace then.
The ship then will disappear and very shortly will
reappear somewhere else on the scope. Since this
is a way of getting from one place to another with­
out trove I ing the distance between, the method
used must be hyperspace! Each player has exactly
three hyperspace jumps.

On most PDP-ls, the ships are controlled byswitch­
es in the Test Word. For the M.l.T. machine,
however, two control consoles were devised by
Robert A. Saunders and Alan Kotok, both of M. I • T.
Each console has a double-throw switch to control
rotation, a firing button, and a blast lever. Hyper­
space is entered by pushing the blast lever forward
and releasing.

Acknowledgement
Special thanks from the Hingham Institute are ex­
tended to: the various members of the Tech Model
Railroad Club for help and encouragement; to Prof,
Jack B. Denn is, director of the M. I • T. TX-0 and
PDP-1 installations, whose assistance went beyond
the generous allowance of time on the computer;
and, to Digital Equipment Corporation without
whose gift SPACEWAR! would stil I be wishful think­
ing at the Hingham Institute.

Figure 1 A Common Opening Monewer

15

A TIME-SHARING SYSTEM FOR THE PDP-1 COMPUTER*

John E. Yates

Abstract
A system for time shoring of the PDP-1 digital
computerwith seven typewriters, two paper
tape punches, two paper tape readers and two
CRT Displays is described. The additional
hardware required forthe system and the mod­
ification required to a basic PDP-1 are de­
scribed and a program is presented to handle
the monitor of "executive" functions of the
system. A System using two typewriters, one
punch, one reader and one dis?lay based on
this design is currently being installed at
M.l.T.

Introduction
A time sharing system for the PDP-1 at M. I. T. has
been designed and is in the process of construction .
It allows for the use of seven typewriters, two paper
tape punches, two readers, and two CRT displays
simultaneously, by up to seven users. Every effort
has been made to make as many features of the bas­
ic machine available to users as possible, although
some sacrifices must be made to make the computing
capacityavailable to several users simultaneously.

The System
The seven consoles which comprise the system each
consist of a typewriter, six sense switches, a con­
so I e 0 N switch, a display lever which allows
lengthened quantas, a debugging button, and two
lights indicating the console is active in core and
it is permissible to type in. The two punches, two
readers and two displays are shared among the users
on an assigned basis. The test word switches are
also assigned.

Programming for the System in Two Parts
The programming for the time-sharing system con­
sists of two parts, the executive routine and the ad­
ministrative routine. The executive routine is a
permanent part of r.ore memory (approximately 512
registers) which will handle the needs of the time
sharingsystemonasecond-to-second basis. It will
handle the so-cal led instruction traps and time -out
interrupts. 2. The administrative routine is a sep­
arate program brought into memory on request to

17

perform such jobs as: assignment of equipment, reg­
ulation of memory protection, provision for services
such as an assembling, debugging routines, editing
programs, error indication for illegal instructions,
and other miscellaneous jobs. Let us assume several
users are using the computer, a particular program
is in core and is being executed. Since one does
not wish the computer to stop because of a user's
errors, (and thus keep others from executing) certain
provisions must be made. All halt instructions, il­
legal operation codes, requests for manual run, and
illegal instruction cause a trap to the executive
routine, ER (See Figure l).

ENTRY

r...,,
Dispatch

v ..

Re tum

Time Out
Service

External
Equipment

Dismiu Lller

Figure 1 General Flow
Diagram of Executive Routine

Similarly certain IOT commands must trap as the
program does not know if the equipment has been
assigned to it, or which one to address if one has
been assigned. The ER then executes the command
using the correct assignment, or puts out an error
indication thru the administrative routine

Maximum Efficiencf
Theprogrammaywe I compute or require characters
faster than the 1/0 equipment can take care of or
supply them. Normally, the computer waits in an
in-out halt for the completion pulse before process­
ing the next character. Under the time-sharing sys­
tem it goes to another program while waiting. For
maximum efficiency, several characters are com­
puted at once and stored in a buffer in the ER. Then
the next program is brought in. At frequent intervals
a time-out interrupt occurs where in control is mo­
mentarily transferred to the ER. Here one character
is taken from each buffer and transmitted, if the 110
device is ready to accept. If not, it is skipped.
Control then returns to the program in core. When
a certain maximum time has elapsed, or if the ER
buffer becomes full, or if the program runs into an
error, the program is dismissed and another brought
in. A magnetic drum capable of holding twenty -
two memories is used as auxiliary storage for the
programs not currently active in core. In this way

no time is wasted and each user's program is in mem­
ory often enough for the user to think he has the
computer to himself.

Several instructions have been added to the machine
which are valid during the time the executive rou­
tine has control. They are decoded from the IOT
77 class and are used by the executive routine to
test the states of the consoles, to make equipment
assignments, and to provide the proper information
to the status bits for the user current in memory.

*This paper is based on a thesis prepared by the
author in partial fulfillment of the requirements for
the degree of MS in Electrical Engineering, M.l .T.
The complete thesis is available as report ESL-R-140
from:

18

Publications Department
Electronic Systems Laboratory
Building 32
Massachusetts Institute of Technology

MACRO, DECAL, and the PDP-1

Moderator: Dr. John Hayes*

Panel:

Dr. Hayes:

Prof. Dennis:

Dr. Hayes:

Prof. Dennis:

(MACRO) Professor Jack Dennis, M.l.T.

(DECAL)

Harrison Morse, DEC
Alan Kotok, M.l .T.

Edward Fredkin, Information International, Inc.
Ted Strollo, BBN
Roland Si Iver, Mitre Corp. (not present)

For some time now, there have been rumblings among programmers about DECAL
versus MACRO for the PDP-1 • It began to look as though perhaps people
wouldn't talk to each other who talked different programming languages. From
the discussion today, we should learn a good deal about both of these program­
ming languages.

Among a numberof things, I'd liketoremindourpanelists that some of us know
DECAL, some of us know MACRO, some of us don't know either. But very
few of us know both MACRO and DECAL. So, I hope that statements may be
explained where there may be a language difficulty. In the process of discus­
sion, I would hope that we would develop first of all, for the purpose of new
users who are perhaps trying to decide which language to use, the relative
advantages of one over the other or perhaps the relative advantages of using
both. For old users of MACRO or DECAL, such as the members of my labora­
tory, we would like to find out enough advantages of one language over the
other to justify the time and expense (which may well be considerable) of re­
training people to use the other language.

Now I'd like to introduce the panel: For MACRO, Professor Jack Dennis of
M. I. T., Harrison Morse of DEC, and Alan Kotok of DEC and M. I. T. For
DECAL, Ted Strollo of AFCRL and BBN, and Edward Fredkin of Information
International, Inc. I'm sorry that Roland Silver, who was to speak for DECAL
could not attend. I am moderator, but I plan to moderate only in the case of
severe physical danger to one or more participants. Professor Dennis.

Am I correct in the understanding that so far in this meeting, there has been
no presentation of MACRO? How much time do I have for my initial presen­
tation?

The time will be five minutes.

I will start with a brief description of what MACRO is. MACRO is an assembly
program (as opposed to a compiler program) and was originally developed in
1958 and 1959 for the TX-0 computer at M. I • T. The needs of the users of the
TX-0 computer, atthat time, were the determinants of the features that were
placed in the MACRO assembly program. The original version of the MACRO

*Psychologist, Operational Applications Laboratory, Air Force Electronics Systems Division, AFSC,
Bedford, Mass •

19

Dr. Hayes:

Mr. Fredkin:

assembly program was based quite a bit on previous experience in the Whirlwind
Laboratory at M. I. T. and the experience of the people who participated in the
Whirlwind group. When the TX-0 computer was brought to M.l .T. in 1958,
we had need for creating a new programming system for the machine. At that
time, we asked for an assembly language so that the machine could be used by
students and research people at M.l .T. We discovered many features which
should be in an assembly program for the type of uses which were being made
of it - for example, the automatic macro-instruction feature, whereby a user
may assign a name to a sequence of instructions or words and later on in his
program use that name to specify the sequence to be placed in the object pro­
gram. Since then additional features have been added to TX-0 MACRO, such
as automatic reservation of storage for constants, for variable automatic stor­
age, and automatic reservation of table space by using a dimension statement.
Various people here helped with this work. Among them, we should mention
Bob Saunders in particular (now with Information International), Bob Wagner
who is working for the Rand Corporation, and Alan Kotok who is on this panel.
When the PDP Computer was donated to M.l .T. bythe Digital Equipment Cor­
poration in the fol I of 1961, there was quite a bit of concern about the kind
of language that should be provided for the PDP for use by students and staff
in the M.l.T. work and after some time we decided to translate the MACRO
program so it could be used on the PDP. This was a rather easy job because
of the great similarity of the two machines, and I believe it was accomplished
in something I ike three weeks of work on the part of about four people, work­
ing port time, which was quite an accomplishment. As to the reasons I th ink
that MACRO is a very useful assembly program, I have the feeling that for the
PDP Computer, an assembler is more desirable than a compiler. I fee I th is way
because applications made of the PDP-1 are such that using a compiler would
lead to object programs which are relatively inefficient and require consider­
ably more space than required by a program hand-coded for translation by an
assembly program. When I say this, I don't mean that a compiler can 1t be con­
structed which would be suitable for the PDP-1, but I believe that compilers
which ore based on the kind of compiling techniques which are now in exist­
ence would lead toprogramswhichare longand time-consuming intheir opera­
tion on this machine. So my feeling is that for many classes of problems for
which the PDP is used, an assembly language is the more important language
to be concerned with. I believe that the MACRO source language has all of
the more important useful features of any assembly language in existence and
is very flexible in its use. I think I'll wait until later for any further comments.

Maybe we should now turn to a DECAL representative: Mr. Fredkin.

Well, I guess I've been labeled a DECAL representative. Let me say some­
thing about MACRO, though. I like MACRO and I think it's fine, but I don't
th ink it's fine for the PDP-1 because I don't th ink the PDP cares what you put
in the reader as long as you don't make it shudder too much. I think MACRO
is fine for a group of people and there are members of that group here. The
fact is, that we could be sitting up here arguing whether we should speak English
or some other language and I don't th ink you can argue th is on the merits of the
language so much as by looking at the language in terms of its practical uses.
DECAL and MACRO are two very different languages. DECAL is a very com­
plicated system, MACRO is a simple system. Simplicity is very nice sometimes
and the PDP-1 is perhaps a simple computer, but if you describe the two sys­
tems by listing their properties, DECAL includes more of the desirable features
of MACRO than vice versa by a big margin.

20

Mr. Kotok:

l. DECAL has one important thing and this is really best described as growth
potential. The language is increasing in capability with time. The fact that
it's changing may be a disadvantage, but still it is including more and more of
the ALGOL language features.

2. DECAL has a library feature. It allows groups, large organizations to set
up systems with various individuals' programs. It allows you to use library pro­
grams and library tapes and allows you to relocate binary - in general, those
things that are oriented for systems programming.

Now MACRO, on the other hand, is a beautiful language for one person who
wants to sit down, write his program, and make it work. This is characteristic
of many users of MACRO; in particular, I would say, characteristic of M.l .T.
students who generally don't get together to write large systems, but write their
own programs. They want to assemble, get something out, run it, debug it, etc.
That is very different from the way many other organizations use computers.
So, I really feel that there are a set of users for which MACRO is better. On
theotherhand, I feel that there is a much largerset for which DECAL is better
because most organizations have invested in systems and these systems are large
and quantitative.

Another point ••• Sure enough, MACRO does result in efficient object codes,
but normally I don't care. What I care about is the lapse of time between when
I start writing and when I have a finished program. Generally I'm going to
write the program over five times and maybe the last time I'll do it in machine
code. I want the amountof time I spend doing this to be minimum; I don't care
about the machine. I usually write programs for hours that only amount to
milliseconds and so sometimes it takes 10 milliseconds (instead of one) for hav­
ing used the DECAL algebraic compiler. On the other hand, use of the DECAL
compiler maycut hoursoff thetime of actually writing the program itself. So,
I think that there are very specific issues involved in the choice of a program­
ming language, and I think I'll defer getting down to them until we've heard
from each of the people.

I don't think I can say as much as the two gentlemen who preceded me, but I
think they did outline the issues pretty well. One thought, which might be
germane, is that maybe we shouldn't be arguing whether MACRO versus DECAL.
Instead, whether either one of them or FRAP. It seems I've been informed that
a large numberofusers are still using FRAP for one reason or another and may­
be if we come out no where else, at least users will know something about one
of these two systems that we are discussing here.

I'm certainly not trying to claim that MACRO isas general a system as DECAL,
especially, the new DECAL described in the paper that was presented before
this discussion.* I think that you obtain through this generality, the facility
of the use of DECAL {as was shown in the discussion that preceded this one)
the description of instruction generators and action operators, which caused
Mr. McQuillin to indicate that even he gets confused occasionally. The
macro-instruction feature of MACRO is somewhat akin to the instruction gen­
erator feature of DECAL and our system is, we think, somewhat easier to use.
I think that most of the complaints against MACRO and why people say DECAL

*DECAL-BBN - SymbOlic Version of DECAL - by R. J. McQuillin - p. 19 of these proceedings.

21

Mr. Strollo:

Mr. Morse:

over MACRO as an assembler is that, first of all, MA CR 0 has a Ii mite d
set of s y m bo Is: 1, 2, and 3 characters. I can certainly see that people
can get unhappy with th is. Maybe 1 'm on the wrong side of the fence, too,
but, like Ed, I can see where there might be objection to this. Also, in
MACRO there is an absence of a linking facility between programs. However,
the linking facility, it seems, as provided by DECAL, is a mixed blessing.
Since it is a one pass system, there is no way to directly get a loadable binary
type which can be read in right away. The second pass of the assembly that
MACRO does do is often necessary in DECAL if you do wish just a self-loading
tape causing you to go through two passes of punching. These are just a few
of the points.

I'd like to say that I don't think it's different typesof programmers who should
use MACRO or DECAL. It would seem to me it depended on the type of pro­
gram to be written. Sometimes when writing a short program which one would
like to get into the machine as quickly as possible, MACRO has advantages.
But, if one were working on a long system and expected to I ink severa I short
programs together then I think DECAL is the better system to use because pro­
grams which other people have already written can easily be incorporated. A
library tape, for example, could be used. Thus available programs which have
already been debugged can be linked with the recently written program. Cer­
tainly this is a lot easier than recompiling all programs over again and going
through a new process with each program and then reading it into the computer.

I think there are two philosophies you can have when writing programs. You
can either write one very large program (and you would almost have to do it
with MACRO where all the symbols are linked together and where you stand
a good chance of not getting the program debugged for quite a while) or you
can write several short programs debugging each program as you write it. When
you are certain that programs A & Bare working, then you can write a program
C and get it working and then try it in conjunction with A and B. I think the
latter is a strong point of DECAL. You can take all of your shorter programs
which you know are working now and link them together with your recently
written program and be pretty much certain that you're not going to have a
major debugging problem.

I would like, first of all, to make one thing very clear. An impression, I
think, Ed Fredkin and Ted Strollo have given is that it's difficult for more than
one person to work on one program in MACRO and it's difficult to write a pro­
gram that isn't one big chunk of coding. This is not true. I have many times
written programs which consist of a big glob of subroutines (literally 20 or 40
to 100) and a large control program, with the subroutines on separate symbolic
tapes. The subroutines are assembled and checked out separately, prior to put­
ting together the whole system. Once the subroutines are checked out, these
are punched out on a binary tape and a symbol punch gotten from MACRO. The
subroutines sit in a fixed place and remain there while you go to work on a
control program. One great advantage of this is that you can use MACRO
instructions as a means of cal I ing these subroutines. In particular, one person
can write al I the subroutines, define how they're used, and another person, not
knowing a thing about this big black box, can use MACRO instructions to call
the subroutines. This is one way of performing the same function that DECAL
does with the relocatable subroutines which are called by system symbols when
the main program is loaded. Just this to counteract the impression that MACRO

22

Mr. Strollo:

Mr. Fredkin:

Dr. Hayes:

Mr. Fredkin:

Prof. Denn is:

Mr. Fredkin:

Prof. Denn is:

Mr. Fredkin:

Prof. Denn is:

is for one-man programs only. There are advantages to both systems. If you're
doing mainly arithmetic processing, DECAL does have the advantage that you
can write a program much more quickly and possibly get it debugged much more
quickly. A disadvantage here is that at the present time DECAL's programs
must be debugged in octa I. Th is wi 11 eventual I y be counteracted by using DDT
and symbols from DECAL for debugging. Another disadvantage is that if the
DECAL program is large and has many systems symbols which must be stored in
memory while loading the program, then you also have storage problems that
are alleviated by using MACRO since you can use all of core except the last
27 registers or so.

If I understand MACRO correctly al I symbols are three characters in MACRO.
Is that correct? For example if someone else were working on a program could
you say to them don't use the symbol A because I'm using the symbol A in my
program and you can't use it in yours? Is this what you would have to do? I
think there should be a feature for external symbols because there are a certain
group of symbols that I use over and over again in several of my programs and
even if I were working on a system I I ike to use these symbols with in the pro­
gram I ike "move" or something I ike that.

I think the communications problem when you're writing a long system would
be enormous if you had to eliminate al I the symbols you use and pass it on and
say don't use these symbols in your program.

Well, when writing with FRAP we used to break things up. We used to say
I'll start all my symbols with my initials. This is sort of hard when you're lim­
ited to three characters because it doesn't leave too many initials.

Especially if you have a long name.

That's right. If you have four initials.

Take the example that Mr. Morse gave in which you compile a set of subrou­
tines and then define a setof MACRO instructions to be the calling sequences
for the subroutines. After you've got to that stage, you may dispense with the
symbols which are involved in the subroutines and simply use the MACRO in­
structions in your main control program. So once you have coded the subrou­
tines and defined the calling sequences and debugged them you may dispense
with all of the symbols involved in these programs in the subroutines and refer
to them only through the MACRO instructions.

Isn't that true only if you know the binary locations?

No.

Dispensing with all the symbols?

One wayof doing this is to define the calling sequ~nces as macro-instructions
on a separate tape which isassembled with the subroutines. Then a definitions
tape is obtained containing only the macro-definitions. If you have used the
system correctly, the macro-instructions defined on the tape provide the
correct calling sequences for the subroutines, but the tape will not have any
of the symbol definitions of the subroutines.

23

Mr. Fredkin:

Prof. Denn is:

Mr. Fredkin:

Prof. Denn is:

Mr. Kotok:

Mr. Fredkin:

Dr. Hayes:

Note:

Mr. fliorse:

However, these subroutines wi 11 not be able to I ink if you get rid of their def­
initions, unless you pick the binary location.

That is correct •

Now for instance ona DECAL library tape you might have 20,000 instructions
worth of program. You can't fix the binary locations and pick any subset so
it's impossible to have such facility in MACRO where you do in DECAL. By
the way, whenwetalkabout librarytape I thought I'd mentiononething. One
of the advantages of MACRO is the ease of tape handling. With DECAL, es­
peciallywith this librarytape and such, we had in mind from the very beginning
that this should be a magnetic tape feature eventually. It should work with
paper tape, and in addition it should get into magnetic tape. It is on magnetic
tape here and there are people who put in a little paper tape, maybe about 20
fanfolds, where they crowd a whole slew of things in the library and just go
whizzing through this mag tape and they pick up all of these routines so that
you do get access easily in a relocatable form.

I would liketopointout that for the TX-0 computer there is a relocating ver­
sion of MACRO assembly program. The relocating features were not translated
intothe PDP version becauseofspace limitations in memory of the PDP. How­
ever, I expect that this is something that the Digital Equipment Company would
be interested in doing, but we don't have the manpower at this time.

Another way, is to store the symbolic version of each subroutine on tape and
add to MACRO a foci I ity which could be done with about as much trouble as
putting in the DECAL library tape to call the subroutines wanted in symbolic,
assembling these at that time. This means a double tape handling, but when
you're handling magnetic tape the extra time needed is still so much less than
the time used to handle the paper tape it becomes a very workable scheme and
does not entail large changes to the MACRO system itself.

Just to comment on the thing Prof. Dennis was talking about before - assembl­
ing a large number of subroutines and using the MACRO instructions with these
subroutines ascallingsequencesmoybe done by using the symbol punch facility
in MACRO. The symbols may be punched for use with DDT, or the MACRO
instructions without the symbols may be punched for use at a later date. The
MACRO calling sequences would be absolute addresses of the subroutines for
later use.

Three things occur to me: First, how about the length of symbols because we
can't name everything you want with thre.d letters? Second, what about re­
location? Third, what about library tapes? These are al I features of DECAL
now and they could be a part of MACRO.

Yes, our discussion seems to have boiled down to the properties of future pro­
grams. Are there any further comments from the panel or is it now time to
entertain questions from the floor?

(Questions from the audience were not audible for purposes of recording them.
One question to Dit prompted the explanation of macro-instructions.)

I would like to give a brief description of how to use macro-instructions. The

24

Mrs. Newmon:

Mr. Worse:

Prof. Denn is:

macro-instruction facility is a way of naming a series of instructions which ore
commonly used in the program, which can be put in the program by writing the
name of the macro-instruction.

For instance to define the MACRO instruction food:

define food B, A
lac (A
doc B
terminate

Th is MACRO instruction is commonly used to load register B with the constant A,

Now to use the instruction in the program to food 3 with register zzz one need
only write:

food zzz, 3

I may also use other MACRO instructions within a MACRO definition:

define

The use of th is

load 2 z, one, two
food z, one
load z+ 1, two
terminate

food 2 g, 4, 20

will cause the following instruction to be assembled

lac (4
doc g
lac (20
doc g+l

This operation will be performed many times. The argument A will be cycle
lac 9 times and that can be used as port of the later work. For example, this
is essentially the MACRO feature.

A good, brief description of MACRO appeared in the Moy 1962 issue of
DECUSCOPE.

Thank you.

In programs written in a large interpretive system (for example, a system for
floating point computation), the interpreted instructions may be given names
with mnemonic significance by parameter assignments or macro-instruction
definitions. With macro-instructions, specifying the parameters of on inter­
preted instruction is for more convenient. Of course, an interpreted instruction
may occupy two or three registers, depending on how many arguments must be
specified to the interpreter. This makes no difference when you ore using
macro-instructions. The macro-instruction may hove a length of 1, 2, or 3

25

Editor's Note:

Mr. Fredkin:

Mr. f'.Aorse :

Editor's Note:

Dr. Hayes:

Questions from
the fioor:

Prof. Dennis:

Mr. Saunders:

Mr • Stro 11 o :

Mr. Morse:

Dr. Hayes:

Question:

Dr. Hayes:

registers depending on the particular instruction it represents.

There was a comment from the floor about the ease of writing macros.

There is one thing about macros. They are easy to write, but I would rather
work with" instruction generators" which are easy to use. You use things more
often than you write them and since you are only going to write it once you
don't need MACRO to do it. Let me give you an example of this. What do
you do when you want 39 in register? In DECAL you write: 39=>A but in
MACRO you have to remember whether it is: LOAD A, 39 or: LOAD 39, A
(which goes into which). I guess Dit made a mistake in the definition and you
can write into A, put 39. His results wil I involve the equivalent law 47, and
doc into A. Taking Dit Morse's example in the May DECUSCOPE; I showed
him a program in DECAL which did the same thing and it was easily 1/8 as long
and he said that's not fair because I used existing subroutines. I didn't use
anything but a single DECAL library tape. So the program was shorter and
much easier to write.

This is true, but first of all, the example was to illustrate the use of macro­
instructions and was not intended to compare MACRO's virtues with those of
any other programming system. However, let's use it for that as Ed has, and
compare the effort needed to run the programs. Using MACRO, you need only
do two passes on the symbo Ii c tape and you have a bi nary tape which may be
loaded and run. Using DECAL, you must first assemble the program, then load
the I inking loader, load the program, load the I ibrary tape, and if you do not
wish to do this every time the program is run, you must load punch-off and
punch out a binary tape.

There was much reaction in the audience, especially from DECAL users.

I think the audience is getting jittery because they cannot participate. Are
there any questions from the audience?

One of the features of DECAL is the instruction generator. I think this is
equivalent to definitions. Is this correct?

Yes, in the form of macro-instruction definitions.

What you can do, for instance, is to have additional MACRO instructions
written into the programs. What one cannot do is have the MACRO instructions
written in duplicate on certain substructures depending on the value.

If you can't get all of the instructions in on DECAL, you can insert a new tape
in DECAL. Can you do this in MACRO?

Yes, it is possible.

Any comments from the floor?

Not audible but f'.Aoderator repeated.

The question has to do with the use of magnetic tape with DECAL.

26

Mr. Fredkin:

Mr. Fredkin:

Prof. Dennis:

Editor's Nore:

Dr. Hayes:

Mr. Kotok:

Prof. Dennis:

Mr. Strollo:

Mr. Fredkin:

When you use it, my experience with DECAL is that even paper tape tears
much less. DECAL definitely has growth potential with respect to magnetic
tape.

(A question was directed to Mr. Fredkin about writing programs.)

The thing is that DECAL has facility for doing things. In MACRO you write
the programs over and over, but in DECAL we only do it once. A very im­
portant thing isthe joining of binary programs. You can do it in MACRO, but
in DECAL we put them in locations and never bother with them again. In gen­
eral, if you have a very complicated mathematical thing and you have to be
fast, you can do parts of it in DECAL algebraic language and then maybe convert.

The language I would use would depend on whether my program could be divided
into subroutines. Certain programs are impossible to divide into subroutines.
Then the question of MACRO versus DECAL depends on whether the macro­
instruction feature of MACRO turns out to be useful with reference to what you
are doing, and in most cases it is. The advantage of using MACRO for pro­
grams with many subroutines is that you can give nice names to their calling
sequences and refer to them by convenient names. You have the advantage
in DECAL which is given by the linking loader feature. I prefer the coding
format of MACRO to the coding format of DECAL. This, of course, is some­
thing outside of what either program can do for you and I admit that this is a
matter of opinion and my personal bias. It may also have something to do with
my experience with MACRO.

Discussion from the floor became more I ively but speakers were heard by those
sitting close by. A question was raised about the effect of DECAL on the PDP
causing strain on input-output devices and it was pointed out that the M. I. T. ma­
chine had been modified for MACRO and didn't accept DECAL. Jackson Wright
repeated that the format of MACRO was easier for a program writer. A I ittle
excitement was engendered at this point. It was obvious that the audience was
having a good time and that the DECAL users thought it more advantages for
them in its present form.

Yes, Mr. Kotok.

I saw Ted Strollo working on a program on the flexowriter. I didn't see any
algebraic statements in it at all. He mentioned the manipulations which you
will have to go through to type the DECAL program, some of which have to do
with just which characters to choose. All the upper cases were troubling him.
Also, a system where you have to put in information as to where you are assem­
bling and not compiling has many difficulties such as the difficulty of putting
in addresses alone.

It depends on whether you are talking about compiling. If you are doing your
own programming and have no typist, the more characters you have the more
chance for errors.

This could be remedied by the action operators in DECAL.

Ease of typing should not be the bosis for evaluating a system.

27

Dr. Hayes:

Mr. Fredkin:

Mr. Kotok:

Editor's Note:

Dr. Hayes:

Mr. Fredkin:

Prof. Denn is:

Dr. Hayes:

Mr. Morse:

Mr. Strollo:

Mr. Wright:

It is difficult to evaluate on the basis of how many keys you have to strike to
make a comma •

There was a time when I, too, used to program in MACRO. I I iked MACRO
instructions but I've made progress. The algebraic statement is the best although
I'd I ike to have a combined system.

We ought to ask the audience what they like, we have been talking mainly
about what we have to offer. It would be interesting to find out what they use
and what they like. {Many voices and affirmative nods.) Who are DECAL
users?

The moderator asked for a showof hands. The numberof people using MACRO
and the number of people using DECAL were about the same. The count for
each system is given be low.

16 DECAL
16 MACRO - {M. I • T. programmers)
9 FRAP

About one-half of the audience did not indicate a preference. That is very
interesting. Yes, Ed.

MACRO is 5 years old and has reached some maturity. It has a good write-up.
DECAL hasn't reached the same state of maturity but seems to be getting there.
I think that with in the not too distant future we wil I see DECAL with a good
up-to-date Symbolic and a good write-up.

DECAL as it is presently offered, does not have the possibility of subscripted
variables -- the most important feature of the algebraic language. I understand
a version of DECAL is being prepared now which does offer subscripts but I
have the feeling that putting subscripts in DECAL is going to increase the in­
efficiency of object programs over programs created with the absence of sub­
scripts and I think it is possible to create a compiler language for a computer
like the PDP-1 which could compile efficient object programs better than any
today in that it would not be a one to one translation between source programs
and object representations. I believe that such a program is possible and I
would like to see one prepared and I would then be sure to use a compiler for
any program I would write, but until such time I will use the assembler.

Yes. Would theothermembersof the panel like to give some conclusions now?

I believe MACRO is a better system for writing programs in which you need
close control over the resulting object code and storage al location, for example
a real-time control program. In contrast, DECAL is more efficient from the
point of view of the lapse time of beginning a program and getting it running.

It's a matter of what type of program one is writing and whether it is desirable
to use programs other people have worked out. When I inking a group of pro­
grams together, one saves time with the DECAL system.

Can you link programs with different symbols and different programs?

28

Mr. Fredkin:

Mr. Kotok:

Audience:

Prof. Denn is:

Dr. Hayes:

Yes! DECAL does it! BBN has it - In summary; an interesting thing happened
some time ago -Elsa Newman got after me. (She's the greatest weapon DECUS
has!) With reference to outlining virtues for DECAL or MACRO, her idea was
to do something I ike th is debate, but in written form for the DE CU SCOPE. So
Dit Morse and I got together to have a debate and what happened was that I
agreed with nearly every statement he made and I th ink, vice versa. We got
so bored with this, that after three-quarters of an hour, we went home. On
thepaneltoday, I decided that I wouldarguemorestronglyin behalf of DECAL,
but my fee ling is that both systems are good, for the reasons I've mentioned
earlier.

I must agree with Ed. I argued for MACRO, but I feel as Ed does that both
systems are worthwhile. I would have I iked to find out about what others I ike.
If one sees something that neither of these systems has or can find a compromise
that you think is better drop a line to DECUSCOPE and we'll start something
I ike the ACM debates.

(laughed)

The discussion this afternoon served a very good purpose in bringing to light
the features of these two systems to the audience. If this is so, it has served
its purpose •

I hope, in spite of thegood-fellowshipand gemutlichkeit we have generated,
that the audience will have gained some appreciation of the differences be­
tween these two systems and that they wi 11 now be able to ask better questions
about them for their own applications.

29

DEVELOPMENT OF A VAX TUNER USING OPS5

Robert A. Sma 11
Vitro Corporation

New London, Connecticut

ABSTRACT

The VAX Tuner was conceived of as a learning experience in our
attempt to gain mastery of knowledge based system development
skills and techniques. Using a Lisp machine and a knowledge
based system development tool, a prototype was developed
quickly to validate the concept of a computer-based Vax Tuner.
Several simplifying assumptions were made and OPS5 programming
techniques were adapted to the problem.

I. Introduction

This paper describes the development of a
prototype VAX Tuner kn owl edge based (KB) sys tern
using OPS5e. The project reflects the efforts of
Karen Kennedy, David Kennedy, and myself; it was
completed in the summer of 1985. We learned
several lessons in the course of developing this
prototype -- some were technical, others were not.
The remainder of this paper will attempt to share
what we have learned.

II. How we got started

Our company's long range objective is to sell
Artifical Intelligence (AI) solutions to both our
existing Department of Defense (DOD) customers and
new customers. To meet this goal, a strategy
involving hardware, software, and trained people
(fleshware) was formulated. To begin, we
purchased several Lisp machines, one of which is
located in our office. Additionally, the Lisp­
based version of OPS5 (OPS5e) the tool for the
construction of KB sys terns, was purchased for our
site.

Our group of three is comprised of a former
sonar engineer and two software engineers with
sonar software experience. One of us (Small) had
several years experience in VAX/VMS system
programming.

The first step in our preparation was to
attend seminars on AI and expert systems as well
as trade shows. We also joined appropriate
professional orgainzations and began to read the
literature. Our Lisp machine purchase came with
some Lisp training which helped us to use our new
computer and introduced us to the language.

We had developed some momentum; our
experience at seminars was becoming repetitive.
There was nothing left to do but begin.

III. Choosing a Project

Several applications were explored; most were
dismissed because they were seen as too difficult
both in terms of our 1 imited experience and our
need to create a meaningful demonstration system
in a short period of time.

We settled on the VAX Tuner as our first
project for several reasons. First, my background

Proceedings of the Digital Equipment Computer Users Society

33

in VMS coupled with the VAX/VMS Release 4
documentation, specifically, its enhanced tuning
discussion, gave us easy access to sufficient
expertise to get started. Secondly, although
VAX/VMS tuning is a broad problem, we felt it
could be segmented and a meaningful demonstration
system could be created in a reasonable amount of
ti me (not more than a few months). Thi rd was the
appropriateness of the tool for the job. It is
usually important to select the right tool for the
given problem. In our case, we had a tool and
were in search of a pro bl em so we matched the
application to the tool. The procedural knowledge
in the DEC documentation seemed to lend itself to
the kind representation that OPS5 easily
supported.

The lesson to be shared here is that in order
to develop a KB system, you must have access to
sufficient information about the domain. The
classical approach to construction of a KB system
is to give a knowledge engineer access to a domain
expert and some hardware/software and he/she can
synthesize an expert system. While we did not
employ a recognized expert in VAX Tuning, we did
mine and refine "textbook knowledge" and tempered
it with experience. The fruit of our labor is a
prototype that successfully demonstrates that a
computer program can recognize VAX resource
utilization patterns that can be improved with
tuning and it offers advice as to how to a chi eve
this improvement.

IV. Narrowing the Scope of Vax Tuning for Concept
Demonstration

The tuning manua 1 gives a stern warning to
those who would tinker with the system paramters:

"Tuning is a delicate and often time-
consumi ng operation that requires both
thorough familiarity with the system workload
and a deep understanding of VAX/VMS resource
management mechanisms. An attempt to tune a
system without the proper 1 evel of
understanding may very well degrade, rather
than improve, system performance.... Too
many users assume incorrectly that tuning is
a first rather than a last resort solution."
(1)
Our objective was to demonstrate a central

concept -- that we could construct a system to

Dallas Texas - 1986

make meaningful tuning recommendations given a
state snapshot of the VMS workload environment.
To be sure, the variety of hardware configurations
available and workload differences make tuning a
very broad problem. There are, however, core
issues that we needed to abstract for our
demonstration system. We, therefore, made several
simplifying assumptions.

The process of VAX tuning begins with the
identification of a bottleneck in a major computer
system resource: memory, CPU, or I/0. We
selected the memory subsystem for our prototype.
The procedural rules of our system focus on the
VAX/VMS resource management mechanisms. The issue
of system workload familiarity was temporarily
deferred. For our prototype, we "hardwired"
acceptable system performance thresholds. In a
fully developed product, there would have to be an
"installation procedure" where the Tuner could
observe the workload and gain a sense of what is
"normal 11 for its host system.

A VAX tuner, as a product, would no doubt
process system performance data that it collected
on-1 i ne. Perhaps it would be raw data from the
VMS Monitor Utility or DEC's Sys tern Performance
Monitor (SPM). Si nee we did not have on-1 i ne
access to a VAX we collected Monitor Utility
output in files and extracted system performance
data reflecting different system conditions.
These snapshot files were then loaded into the
Lisp machine.

The issue of delivery vehicles was ignored.
Since OPSS written in Bliss runs on the VAX,
transportability of the Tuner knowledge base was
not seen as an issue worthy of immediate
consideration. A fortiori, it was not at all
clear that the tuner would ever develop into a
product; the issue of delivery might be moot.

V. Overview of OPSS

OPS5e on the Lisp machine is an environment
that includes many resources. A rule editor
allows production rules to be created and
modified. Rules are of the form "IF conditions
THEN conclusions; 11 the conditions are referred to
as the left-hand side (LHS) and the conclusions,
the right-hand side (RHS). A detailed example of
the structure of a rule is given in Figure 1. The
state of knowledge is maintained in working
memory. These working memory elements (WME) are
structures called objects represented by a cl ass
name and associated attributes. The attributes
have values that may change in the course of
reasoning.

The system does pattern matching between WME
and con di ti on elements of rules. The resource
that performs the pattern matching is the
inference engine. When a match is found between a
WME and the LHS of a rule, that rule is a
candidate to fire and is displayed in the conflict
set. The working memory elements that would cause
the rule in Figure l to enter the conflict set are
shown in Figure 2. In firing a rule's RHS is
executed. If more than one rule is a candidate to
fire, a conflict resolution strategy selects only
one rule from the conflict set to be fired. As
rules are fired, they are displayed in the history
set.

There are also resources available to
facilitate debugging of the knowledge base. The
user can choose a single step mode in either the
forward or backward direction. In forward

34

stepping, a rule is fired and any changes its RHS
induces will be represented in the next state of

(defo samole-rule

{(class-1 Aattribute-1 xyz
Aattribute-2 zyxl lhs-1}

- (class-2 Aattribute-1 abc)

lclass-3 Aattribute-1 ghi)

-->

(modify lhs-1 Aattribute-2 qrsl

(remove 3>)

Figure 1. Detailed example of the structure of a
rule. The keyword DEFP defines a
production rule. It has the name
SAMPLE-RULE and two left-hand side (LHS)
elements. The rule will enter the
conflict set if working memory contains
an instance of CLASS-1 ATTRIBUTE-1 equal
to XYZ, CLASS-1 ATTRIBUTE-2 equal to
ZYX, and CLASS-2 ATTRIBUTE-1 not equal
to ABC and CLASS-3 ATTRIBUTE-lequal to
GHI. The first LHS element has a cl a use
name of LHS-1 that is local to the rule.
The second LHS element does not have a
clause name. The arrow demarcates the
LHS from the right- hand side (RHS).
When SAMPLE-RULE fires, the two RHS
elements will be executed. The first
will change the value of ATTRIBUTE-2 in
the LHS element named LHS-1 to QRS. The
second wi 11 remove the element from
working memory that matches the third
LHS element.

-: A I-

•~lass-1 A•t-t-ribute-1 xvz Aattribute-2 zyx)
(class-2 ····."·1-·h-ih11t-P-l mnop)
(class-3 Aattribute-1 ghi)

-: B :-

(class-1 Aattribute-1 xyz Aattribute-2 qrs)
lclass-2 Aattribute-1 mnop)

Figure 2. Working memory elements associated with
SAMPLE-RULE. 2-A shows working memory before
SAMPLE-RULE fires and 2-B shows working
memory after it fires. It will fire if it is
either the only rule in the conflict set or
it is selected based on the criteria of the
conflict resolution strategy.

knowledge. In backward stepping, the previous
changes to working memory are retracted, if
possible, and the state of knowledge returns to
its condition prior to the firing of the last
rule.

Programming in the pattern matching model of
OPS5 is unlike programming in a conventional High
Order Language (HOL) 1 i ke Pascal; there are no
branching structures and code is not executed
sequentially. If the contents of working memory
pattern-match the LHS of a rule, it is a candidate
to fire. If the rule triggering pattern reoccurs,
the rule will fire again.

The process of pattern matching on the LHS is
characteristic of the reasoning strategy called
forward chaining where the system considers what
is initially known and uses the rules to conclude
whatever the knowledge base wil 1 support. This
process of drawing conclusions (firing of rules)
is repeated until nothing further can be concluded
(no more rules can fire).

VI. Building the Tuner

The process of building the Tuner was
iterative and ex pl oratory. We did not work from
design specifications and our requirements were at
a very high level. Using the fault logic tree in
the Rel ease 4 Tuning Manual, we created rules and
data structures as needed to represent a path of
the tree from root to twelve terminal nodes. Many
of the observations that the tuning process
required could not be made directly from the VAX
Monitor data so OPS5 programming techniques were
used to fulfil 1 these data requirements as needed.
An example of this is given below. A data file
representing each VAX performance scenario was
available to test each logic path that we
implemented.

This approach, if continued, would yield a KB
system that would approximate the competence of
the tuning approach documented by the fault logic
tree. Assuming that experts in VAX tuning possess
heuristic or rule-of-thumb knowledge that is not
contained in the fault logic tree, one or more
people who are pre-eminent in the art of VAX
tuning would certainly need to be consulted and
their knowledge of tuning codified. This step is
es sen ti a 1 if one were to develop an expert VAX
Tuner.

VII. Programming Examples from the Tuner

To motivate the examples, consider the
preliminary milestones in the tuning fault logic
tree. In the Guide to VAX/VMS Performance
Management, Figure 3-1 initiates the tuning
investigation; the entry point to the memory
analysis is in Figure 3-2 where phase I of the
excessive paging investigation is considered.
Phase II is reached in Figure 3-3 by two alternate
paths in phase I. The first example illustrates
how some of the fault tree analysis is captured in
OPS5 rules.

Figure 3 contains a reprint of the first
phase of the excessive paging investigation
(Figure 3-2) from the Guide to VAX/VMS Performance
Management, for reference. Figure 4 contains five
of the rules used in this phase of the
investigation. Notice that the first LHS element
in each rule refers to the class DIAGNOSIS and
attribute NEXT. This will be abbreviated as D-N.
The value of D-N is modified by each rule as it
fires. Each value was chosen to help associate
the rules in the knowledge base with the decision
nodes in the fault logic tree.

This was useful for two reasons.
facilitated programmer understanding

It
during

35

development and it also insured that a rule would
only fire in the desired context. This issue is
illustrated in Figure 1. Notice that the same
question (Overall Fault Rate High?) is asked
whether the answer to the previous question (High
rate of Hard Page Faults?) is yes or no.

In Figure 4, R1 (inv-memory-limitations)
enters the conflict set when the value of D-N is
"inv-memory-limitations." When it fires, D-N
becomes "inv-high-page-fault-rates." This rule
really serves as a placeholder. Our notion was to
have a complete mapping of rules to decisions
nodes.

With this value of D-N, three rules match
this WME. Each of the three rules, R2, R3, and R4
(high-page-fault-rate-from-disk, high-cache-fault­
rate, and not-high-page-fault-rates) have other
LHS elements. Si nee the second and third LHS
elements in R4 are mutually exclusive with the
second LHS element of R2 and R3, at most, only two
rules (R2 and R3) can be in the conflict set. The

Figure 3-2 Investigating Excessive Paging-Phase I

TOO MANY IMAGE
ACTIVATIONS?
!ACCOUNTINQJ , ..

APPLICATION
DESIGN

ERAOA ·SEE
SECTION 421

TOTAL 0"
WORKING SET SIZES

IS TOO SMAU.

1NYEST1GAT! MEMORY LIMITATION

DECREASE
SIZE Oli'

PAGE CACME •
SEE SECTION

•2.l

HIGH PAGE F4.ULT RATE F~OY 0151<
OA C ... CHIE" /MONITOR PAGEi

INVESTIGATE SWAPPING

BEHAVIOR

HIGH RATE OF HARO PAGE FAUL TS"
1MONITOA PAGEi

OVERAt.L. FAULT
RATE tilGH"

1MONITOR PAGEi

NO

£;:u::iOR
01r,c;,1"'G ,5

1110T exc~ss1vE
sE:: sec~·0r.. " :

'i'QT"L OF WORKING SET
SIZES 15 TOO SMALL

Figure 3. Investigation Excessive Paging - Phase
I, from Digital's Guide to
VAX/VMS Performance Management.

Cdefo inv-memory-limitation
{(diaonosis

Anext inv-memory-limitationl
inv-memory-limitation-match}

-->

Rl

<modify inv-memorv-limitation-match
Anext inv-hiah-oaae-fault-ratesll

!rlefp high-page-fault-rate-from-disk R2
{(diagnosis

Anext inv-high-page-fault-rates>
high-hard-fault-rate-1-match}

Cspv Apage-read-io-rate > 5.)
temp. threshhold for high = 5

-->

(modify high-hard-fault-rate-1-match
Anext inv-image-activations))

ldefp high-cache-fault-rate R3
{(diagnosis

Anext inv-high-page-fault-rates)
high-soft-fault-match}

lspv Apage-fault-rate > 20.l
temp. threshhold for high = 20

-->

!modify hiah-soft-fault-match
Anext inv-image-activations))

Cdefo not-high-page-fault-rates
{ Cdia.gnosis

R4

Anext inv-high-page-fault-ratesl
not-high-page-fault-rates-match}

- (spv Apage-fault-rate > 20.)
; temp. threshhold for high = 20

- lspv Apaqe-read-io-rate > 5.)
temp. threshhold for high 5

-->

lmadify
not-high-page-fault-rates-match
··ne:<t inv-s1-iapping-behavior))

(defp 1maqe-activations
{(diai.gnosis

Anext inv-image-activations)
image-activation-match}

(spv Aimage-activations > 20.l

RS

; temp. threshhold for high = 20
<last-scenario Ascenario <scenario>>

-->

(modify 3
-···scenario "image-activation")

(modify image-activation-match
·'··next clean-Lop) l

Figure 4. First five VAX Tuner rules to perform
phase I of the excessive
paging investigation.

36

decision node in the tree at this point suggests
disjunction. That is, a rule with LHS elements
ORed together. Unfortunately, OPSS treats all LHS
elements as a conjunction; they are ANDed.

If either of the two rules R2 or R3 fire, due
to a high page fault rate from disk or cache, they
modify D-N to "inv-image-activations." This, in
turn matches a LHS element of two more rules, Rs
and 'R6. If the IMAGE-ACTIVATIONS attribute of
class SPV (system performance values) exceeds 20
(or whatever threshold is used for this
parameter), then the Rs (image-act~vations) ~s
fired. This corresponds to the terminal node in
the fault logic tree for application design error.
At this point in the prototype, the manual's
advice is synopsized and presented to the user.

The term SCENARIO in class LAST-SCENARIO is
used to solve an internal tuner problem -- keeping
track of which scenario is currently being
diagnosed. It has no bearing on the tuning
analysis itself. At the conclusion of the
analysis, after the results and advice are given,
working memory is cleared and a menu is presented
for the user to select another tuning scenario for
analysis.

To this point in the tuning investigation,
questions are asked that can be answered directly
by looking at values for system and user
processes. The first step in phase II of the
excessive paging investigation is to determine
which processes are faulting the most (Monitor
Processes/Topf). The second example shows how
OPSS rules were used to create a sequence of the
top faulting processes based on each process' page
fault value. This sequence was not available
directly from the VAX performance measurements.

The cl ass defi ni ti ons of the objects used by
the rules in this example, PC (process
characteristics), Utility, and Diagnosis, are
shown in Figure 5. There are four rules involved
and they work in two pairs; TOPF and ORDERING-TOPF
are shown in Figure 6; TOPF-POST-PROCESS and TOPF­
EXIT are shown in Figure 7.

The tuner uses a rule of thumb or heuristic
in determining which processes are the most
faulting. The 80% rule, as it is called, finds
the highest faulting process and then the next
highest faulting process as long as the next

ldefliteralize pc
pid
name
wssize
1-isquota
pa.ge-f aul ts
swaooer-trimmed
tc•of-flaq)

Cdefliteralize diagnosis
ne~{t

initialization
file)

ldefliteralize utility
ma:-:-toof-p id
orev-ma:<-topf
fl)ax-tl~pf

/.SO-value
status)

Figure 5. Class and attributes used in determining
the top faulting processes.

(cjefp topf

{(diagnosis
·····ne:·~t

inv-voluntary-decrementing)
match}

{(utility Amax-topf <max-topf>
·"··prev-max -top f
<orev-ma:·:-topf)
Af.80-value (/.80-value)
"'·max-topf-pi d
<topf-pid>J

ma:·:-match}

{(pc -page-faults > <max-topf>
-page-faults '= <I.BO-value>
··"·page-f aL1l ts <
<prev-ma:·:-topf >
""pid <pid>
-page-faults <page-faults>>

pq-match}

-->

(modify max-match
"··max-topf
<page-faults>
·"·I.BO-value
<compute . 8 *

<page-faults>>
""max-topf-pid <pid)l)

(defo orderinq-topf

{(diaqnosis
,.···ne:·:t

inv-voluntary-decrementing)
topf-diagnosis}

-->

(modify topf-diagnosis
""next topf-post-process))

Figure 6. TOPF and OROERING-TOPF rules used i~
determining the top faulting processes.

highest faulting process has a page fault value
that is greater than or equal to the page fault
value of the previously found process. _The sear~h
for the highest faulting processes continues until
the page fault va 1 ue for the ith + l process is
less than 80% of the page fault value for the ith

process· f the cl ass When the NEXT attribute o . 11

DIAGNOSIS is set to "inv-voluntary-decrementing
the rule ORDERING- TOPF enters the conflict set.
The rule TOPF also enters the conflict set if its
other two LHS components are satisfied. The LHS
element labelled "max-match," involving the
attributes of the class UTILITY, does not contain
any test· it is included in the rule so that
variables' local to the rule can be established.
The first time the rule is considered, these
attributes have been set to initial conditions by
a previously fired rule. The attribute MAX-TOPF
stores the page fault value associated with the
currently considered process. That process is

37

ldofp topf-post-orocess
((diagnosis ""next

topf-post-process)
post-diagnosis-match}

{(utility ""max-topf <max-topf>
""max-topf-pid <topf-pid>
-;::so-value <%80-value>J

post-match}

{(pc ""page-faults > {/.80-value>
Atopf-flag nil) pc-match }

-->

(make topf-processes
""toof-pid <topf-pid>
""toof-faults <max-topf >
""topf-status nil)

(modify post-match
""prev-max-topf <max-tapf>
·""i~BO-val Lie

(compute .8 * <max-tapf>J
""·ma:<-topf OJ

(modify pc-match
··"topf-f 1 ag t)

<modify post-diagnosis-match
.···T1e:·:t

inv-voluntary-decrementing))

(de·fp topf-e:d t
{(diagnosis

Figure 7.

""next topf-post-process)
e:<it-match}

-->

(modify exit-match
""next inv-excessive-paging)J

TOPF-POST-PROCESS and TOPF-EXIT rules
used in determining the top faulting
processes.

identified by its PID in the attribute MAX-TOPF­
PID. The 80% value and the page fault value of
the previously considered process is stored in
PREV-MAX-TOPF. The third LHS element requires
that, for a process to be considered, its page
fault value must be greater than the MAX-TOPF
term, not less than the PREV-MAX-TOPF term defined
in the immediately preceding LHS element.

For each WME representing a process that
satisfies the conditions of TOPF, TOPF will appear
once in the conflict set; if there are five
process that satisfy its LHS, five instances of
TOPF, each associated with the working memory
element that it matches will be shown in the
conflict set. The conflict resolution strategy
prefers rules with more LHS terms si nee they a re
more specific than simpler rules. Therefore, all
the TOPF rules in the conflict set will be
preferred over ORDERING-TOPF. Among rules of
equal complexity, the conflict resolution strategy
prefers rules that match newer working memory
elements. Since the working memory elements being
matched represent process characteristics that
were sequentially read from a file, the last one
read was the newest; the associated rule instance
is chosen to fire.

In firing, the page fault values of the
current process are applied to the attributes of
UTILITY. Specifically, the process' page fault
va 1 ue becomes the va 1 ue of MAX- TOPF, 80% of the
page fault value becomes the value of 80%-VALUE,
and the process ID number becomes the value of
MAX-TOPF-PID. The state of knowledge is therefore
subtley changed and the inference engine finds all
pattern matches between working memory elements
and LHS elements of rules. The previously fired
rule migrates to the history set and is not a
candidate to fire again.

This process continues with an instance TOPF
firing as long as its LHS matches some working
memory element. When no more matches exist, two
things happen. Fi rs t the sys tern has found the
largest page fault value associated with a process
and stored this in the attributes of UTILITY.
Second, the conflict set contains only ORDER-TOPF,
which fires.

ORDERING-TOPF changes the value of DIAGNOSIS
NEXT so that neither it nor TOPF are candidates to
fire. The value it assigns allows the rules TOPF­
POST-PROCESS and TOPF-EXIT to enter the conflict
set. TOPF-POST-PROCESS, however, will only enter
the conflict set if there exist a process whose
page fault value exceeds the 80%-VALUE of UTILITY.
UTILITY is included as a LHS element in this rule
to establish local variables as described above
for TOPF.

Si nee the sequence of firings of TOPF and
ORDERING-TOPF formed the highest page fault value,
TOPF-POST-PROCESS will only be instantiated in the
conflict set for working set elements whose page
fault value exceed the 80%-VALUE; the highest
faulting process wil 1 be identified. When the
rule fires, a new working memory element will be
created representing the identified process as a
top faulting one. This is accomplished by the

'MAKE TOPF-PROCESSES expression. The attributes of
UTILITY are again updated by the MODIFY term and
the DIAGNOSIS NEXT value is reset to induce TOPF
and ORDERING-TOPF to enter the conflict set. When
all the processes have been found that meet the
80% rule, neither TOPF nor TOPF-POST-PROCESS wi 11
enter the conflict set in their turn. ORDERING­
TOPF will fire allowing TOPF-EXIT to fire which
then changes the DIAGNOSIS NEXT value to change so
that this tuning analysis can continue.

The result of these four rules firing is that
when they are done, working memory contains new
elements, one for each process that passes the 80%
page fault rule.

VI I. Summary

We have completed a prototype tuner that
demonstrates the feasibility of the concept of
automated VAX tuning. The effort required less
than half a man-year. In the process, we learned
a great deal about OPS5 and the art of knowledge
engineering. The most important factors in the
success of a KB system development project are
choosing a suitable problem and having appropriate
resources to solve it. The Lisp machine is a very
powerful development tool with its integrated
environment. Software shells take the agony out
of developing KB sys terns by allowing the user to
solve the problem at a high level. In most cases,
these commercial tools are far superior to working
directly in Lisp. Although not the most powerful
or complete shell available, OPS5 is well suited

38

to many problems and it does run on a variety of
machines including VAXes.

VIII. References

(1) Digital Equipment Corporation. Guide to
VAX/VMS Performance Management, Version 4.0,
September 1984.

(2) Forgy, Charles L. OPS5 User's Manual,
Carnegie-Mellon University, July, 1981.

PROJECT MANAGEMENT IN THE NEW MICRO/MINI WORLD

Raymond J. Doubleday
Advanced Technology, Inc.

Two Shaw's Cove, Suite 205
New London, Connecticut 06320

1.0 INTRODUCTION

There are over 40 Project Management software
packages currently available on the market. These
packages ranye from the very simple and inexpen­
sive, capable of handling only 50 events at a c?st
of $80, to the sophisticated, capable of planning
the construction of a space station at a cost of
more than $100,UOO. With this wide variety of
features, functions, and capabilities, selecting
the appropriate system for your needs would appear
to be an overwhelming task.

The purpose of this paper is to focus on what these
automated tools can do for you, the project man­
ager· what to look for; how to define your require­
ment~· and how to evaluate packages that might
fulfi1'1 those requirements. I also hope to point
out some of the gains you should expect from an
automated project management system. Specifically,
what I hope you get from this paper is:

o An understanding of what you should look
for in Project Management tools.

o An understanding of whether or not you
require automated project management
tools.

o An understanding of what features and
tools you need to fill your specific
requirements.

What you won't get from this paper is:

o A tutorial on project management and
project management techniques.

o A recommendation of the "right" package
tor you.

2.0 BACKGROUND

2.1 Hi story

Before beginning the main part of this paper, I
would like to discuss how Project Management soft­
ware has changed over the past years and what has
happened in the marketplace to warrant a discussion
such as presented in this paper.

We have been part of a revolution in computing
power. We have gone from large mainframe computers
to microcomputers and now, to what I would call
super-micro or sma 11 mini -computers. Ori gi na l ~Y,
Project Management software was developed on main­
frame computers. These Project Management systems
had enormous capacity for ·project management data
and literally un 1 i mited capacity for handling that
information. These systems typically ran in a
batch mode, which made them extremely slow in terms
of user response. They required a "guru" to care
and feed the system and to analyze the data that
came out of it. The graphics capabilities of these
early machines were limited, if available at all.

Proceedings of the Digital Equipment Computer Users Society

41

However, there was no meaningful limit to what
these machines could do. ARTEMIS is an example of
a typical project management system with this
legacy, as is PSD from Cambridge, Massachusetts
(see Figure 1).

LARGE PIAIN FRN'E

BATCH ORIOOED
-- LARGE CAPACITY SUPER-11ICR0/111NI

USER-fR I ENIJL Y
LARGE CAPACITY

MICRO C!JIPUTER

USER-fRIENILY
SIW..l CAPACITY

-- INTERACTIVE

-- INTERACTIVE

Tll1E

Figure 1. Automated Project Management
Capabilities

However, with the advent of the microcomputer
revolution (typified by machines such as the DEC
Rainbow, Apple II, I~M PC, and others), we found a
new kind of Project Management software. The
capacity and capabilities of this softwar~ were
limited; however, the packages were very friendly,
easy to use, and provided immediate response . for
the project manager. There was no expert required
to input data or interpret results; hence, the
manager found a real-time decision s_upport t?ol tor
his desktop. Typically, the graphics provided by
these micros were of very poor quality (graphics
were produced using either a dot-matrix or a line
printer) but were sufficient to get the job done.

But, now, what do we have today? We have the
super-micro, typified by machines such as the DEC
Professional 350, the IBM PC XT/AT, and the
MicroVAX I and II. Typically, these are the fast,
powerful, single or few user machines with a large
storage capacity built in. What has happened is
that we have regained the data storage and speed of
the mainframe computer.

Fortunately, current software has been able to
maintain the user-friendliness of the micro
machine. We now have real-time decision support
software that is easy to use and has no realistic
limitations to the quantity and complexity of data
that can be handled.

The current systems are also able to generate
high-quality graphics. Now we have the best of
both worlds: we have a machine at the project
manager's desk with the capacity of a mainframe and
can provide him with real-time, real world answers
to his project management needs.

Dallas Texas - 1986

2.2 New Ideas

I would like to propose two themes for the evalua­
tion of all tools and controls to be dicussed in
the remainder of the paper. These themes are
abstraction and communication.

In everything that you do in a proJect, a software
development program, or real life, it is important
to be able to break the project into manageable,
definable, understandable tasks (i.e., abstrac­
tion). Then, it is equally important to be able to
meaningfully communicate that information.

There are three major features that should be part
of the fundamental design of any Project Management
package. These three features carry through the
fundamental theme of abstraction and communication.

2.2.1. Abstraction. A package should support the
concept of abstraction. By being able to abstract
a project, you are able to take multiple-level
views of your program (i.e., decomposition). Then,
you can deal with it from the beginning (the Con­
cept stage), through other successive levels of
detail, down to the last possible level of detail
(such as fabrication and assembly of a product).

2.2.2. Representation/communication. The choice
of activities and milestones must be such that
their representation on paper can be used as a
means of communication. This is important because
unless you can communicate the needs of the project
to your staff, nothing can get done. Communication
must be clear and unequivocal.

2.2.3. Manipulation. The automated tools must
act on these representations of activities and
milestones to ensure consistency, feasibility, and,
most of all, achievability.

When looking at Project Management tools, you
should look at the tools in the light of these
themes as stated above.

3.0 PROJECT MANAGEMENT

This paper is not meant to be a tutorial on project
management, but I would like to briefly go over
what project management is to establish a common
framework. The point of this paper is to highlight
the benefits of automated project management and
the gains that are achievable through the use of
project management.

A proJect can be broken down into five major
phases: Conception, Planning, Scheduling, Monitor­
ing, and Action. Very often action involves the
replanning and rescheduling of activities, as shown
in Figure 2. We will look at each phase in detail
from the point of view of Project Management sys­
tems.

Project Management systems have two major func­
tions. They can be used either as tools or as

42

CONCEIVE

ACT

Figure 2. Project Phases

controls. As tools, they help you to organize,
plan, and schedule; as controls, they monitor
progress of the program (in terms of time and
money). Tools help you to plan; controls tell you
if your plan is working. If you are evaluating a
feature of a Project Management system to be used
as a tool, you should ask yourself how it will help
you to plan your project; if you are evaluating a
feature to be used as a control, you should ask
yourself how it will help you to monitor your job.

3.1 Concept

The first phase of the project is the Conception
phase. This is the definition of the program or
the project and, in fact, becomes its charter.
There are certainly no computers here; this is
whsre insiyht, intuition, and depth of human under­
standing play a part in defining the project, its
goals, and its requirements. This is where the
goals of the project are established and the tempo
of the program set.

3.2 Planning

3.2.1 Work Breakdown Structure. The planning
stage is the decomposition of the project as con­
ceived into its logical structure. In the initial
planning stage, no schedule or resources have been
assigned yet.

Top view planning. This is the first place a
computer Project Management package should be able
to do something for you. First of all, it should
support multiple views of the project and secondly,
have the capacity to move down the project in
detail. This is analogous to a top-down step wise
refinement of the project. This is a place where
the concept of being able to abstract a project or
to push down the detai 1 s of the project becomes
very important because what you want as a project
manager is to deal with a larger picture first and
then to fill in the details of each phase. In
essence, you are creating a management outline for
your project managers to complete; and they in turn
may provide the same sort of outline to their
subordinates.

Let's look at what a typical software development
project might look like as shown in Figure 3.

ASTROLOGICAL ORGANIZATION

024-01

SPECIFICATION
DEPARTMENT A

024-02

DESIGN
DEPARTMENT B

PPS
024-D2-Dl

TEST PLAN
024-02-02

ASTROLOGICAL

024-00

024-03

CODE
DEPARTMENT C

024-04

TEST
DEPARTMENT D

024-0S

DOCUMENTATION
DEPARTMENT E

Figure 3. Astrological Organization

This is the development of a program called Astro­
logical to analyze digitized images of the night
sky. The product breaks down into typical software
development components. The specification, design,
coding, testing, and documentation. The package is
meant for in-house use; therefore, the manufactur­
ing and marketing functions are not included on
this particular product. After the concept devel­
opment, the next thing that the senior manager must
do is to assign res pons i bil i ty for each of these
major phases to a person or department and then
produce a rough schedule or goals for the project
completion. Once this preliminary schedule and
assignment have been achieved, the senior manager
wi 11 ask the department managers to produce their
own schedules, budgets, and resource requirements
within the limits of their schedule.

How do you do this? You do this by having a proj­
ect management package that supports various levels
of hierarchy. One way to do this is through the
use of work breakdown structure numbers, although
there are a number of other schemes that may work
equally well. Briefly, work breakdown structure is
a hierarchical numbering system similar to the
concept of a work outline where the order and the
number that each work assignment has has meaning.
Typically, a work breakdown structure number is
associated with the concept of a work package,
which is the smallest measurable unit of work. In
our example, Figure 3, the Astrological analyzer is
given the number 024. This code indicates that
this particular software product is one of at least
24 different jobs that are taking place or have
taken place within the organization. Looking
underneath that, we see that the number 024-02 is
the design function for Job 024. Looking at the
design function in more detail , we see that the
preparation of the program performance specifi­
cation is given the number 024-02-01. Development
of the test plan is given the·number 024-02-02. It
is possible, of course, for this numbering scheme
to continue down in more detail as required within
each function and, of course, to go across to
support more than the five functions shown here.

Why is this work breakdown structure important? It
is important for two reasons. First of all, it

43

allows you to assign responsibility and a budget
for a category of work such as the spec ifi cations
024-01 to Department A for completion. Secondly,
it allows you to isolate your view of the proj~ct
to the higher level • From now on, you as senior
manager, will only be lookin~ at things_ down to the
second level· that is, you will be looking at tasks
024-01, 024-02, etc., leaving the specific details
of the project to the managers of each ~f those
particular departments. Your management, in turn,
may look at Jobs 022, 023, and 024 to supervise the
overall performance of the departments.

The next thing you should look for in a Proje~t
Management package is the ability to support vari­
ous levels of hierarchy through the use of work
breakdown number structuring or other means.

3.2.2 PERT/CPM. Now that we have established.the
major phases of the program, we need to go into
more detail on how the Astrologicial prog~am can be
realized. The major tool you have avai_ la~ le for
this is network analysis. Network analysis is also
known as either PERT (Program Evaluation and Review
Technique) or CPM (Critical Path Method).

PERT/CPM are synonymous today; we wi~l u~e the term
network analysis to stand for a combination_ of_ PERT
and CPM. The idea behind network a~alysis _is to
represent a complex project as a series of inter­
connected activities that must be performed. The
description of the project is then used to analyze
the project and answer the following questions.

0
0

0

How long will the project take?
Which jobs are most critical to the proj­
ect?
How should the project be scheduled?

An activity is a time/resource co~suming _event. in
the project. I will use the ar~ in. my ?i scussi on
to represent an activity. A point in ti me c?r~e­
spondi ng to the start or completion of an ac~ivity
is a mil es tone; they are represented _by a triangle
on the schedule. On a network drawing, they a re
represented as nodes or circles (note, however,
that all nodes are not necessarily milestones).

)

Now, let's look at the network for our Astrological
package as shown in Figure 4.

J A
1985

Figure 4. Astrological Development

,
i
i

' I K ,
~

What is wrong with this figure? Well, fundamental­
ly, it is too simple; however, to introduce the
detail necessary to understand the project from
beginning to end would be too hard; the graph would
be too hard to read, the program would be too hard
to manage and control.

Again, we must be able to do a top-down refinement
of the tasks. Tasks at a higher level can be
broken dow~ and should be broken down in order to
understand the problem. Figure 5 shows an example
of the proper kind of decomposition when applied to
writing a book. As you can see from the figure,
the book has been divided into a number of chap­
ters, each chapter into a number of sections, each
section into a number of paragraphs, and each
paragraph into a number of sentences. This of
course, is a very manageable approach with' the
appropriate work breakdown structure numbers being
shown in the right part of the picture.

AIW. YSIS
UVEL

I

AllAL YSIS
UVEL
2

AIW.YSIS
UVEL

3

Returning to our example, Figure 6 shows the code
portion of our task broken down into more detail
beginning with the review of the performance speci­
fication and ending with the final integration of
the package.

Code Generation Tasks

1985

Figure 6. Network Plot

What have we done? We have been able to isolate
our tasks into the correct areas of responsibility
and we have been able to decompose the coding job
to manageable uni ts. If you were the head of the
programming department, you might want to have even
more detail for a particular task such as the
coding of the input handlers and you could, in
fact, ao that for yourself. The output for this
section, the overall time from the beginning to the
end, can now be passed back up the management chain
and the time put in for coding on the network
drawing as shown previously in Figure 4.

In examining Figure 6, our tool has answered the
first two questions: how long will it take and
which jobs are critical to the project.

WBS Ll:HL I

OESCRIPTIOll WBS NO.

Chapter l 001-00-00-00-00
Chapter 2 002-00-00-00-00
Chapter 3 003-00-00-00-00
Chapter 4 004-00-00-00-00
Chapter 5 005-00-00-00-00
Chapter 6 006-00-00-00-00

WBS UVEL 2

OESCRIPTIOll WBS NO.

Sect ion l 003-01-00-00-00
Sect ion 2 003-02-00-00-00
Section 3 003-03-00-00-00
Section 4 003-04-00-00-00
Sectlon 5 003-05-00-00-00
Section 6 003-06-00-00-00

WBS LEVEL 3

llESCRIPTIOll HS Ill.

Paragraph I 003-06-01-00-00
Paragraph 2 003-06-02-00-00
Paragraph 3 003-06-03-00-00

WBS LEVEL 4

llESCRIPTIOR WBS Ill. AllAL YSIS
UVEL

4

llMTIMCI 1

... ~ .. Sentence I 003-06-02-01-00
Sentence 2 003-06-02-02-00
Sentence 3 003-06-02-03-00

Figure 5. Network DecOllj)osition

44

Now that we have our network drawing, what other
kinds of planning tools are available? Next is a
Gantt chart, shown in Figure 7.

I I
I EV£NT

NO.
100
200
JOO
•OO
600
500
700

1000
900

"°" 1100
1200
1•00
1300

Code Generation Tasks PG i of ii
CALENDAR YEAR 1985

DESCRIPTION DAYS JlL AUG SEP OCT I NOV I DCC

:~~~~1gn ~~ ~ ~
file Design Jo ==§ab~== Buffer D@s1gn 40 @ w qw \\ S
Graptucs 95 nnnnx1n1g1n1nnngg1
R!!!port Gen 70 *S MW.l
D! 0
Input Hndl r 60
Dr1wr
D2
File t1aint

D3
D•
Integrat 1on

llLRATION

22
0

40
0
0

15

FLOAT

1\§11\\Mlfo§§lli§NSSi

VQJ/11714\\\m\\

=
l!lll/lW/ml'l/A!I ~li>\1

l'Jllllll1JA
l2lm!

CRITICAL

Figure 7. Gantt Plot

The Gantt chart is the first depiction of a sched­
ule. The critical activities are shown in red on
the Gantt chart as they were shown in red on the
network drawing. Additionally, there should be a
number of tabular reports provided with the network
analysis to bring out the necessary detail in order
to properly analyze the schedule. The kind of
reports that you should expect to see again support
the ideas of abstraction and decomposition, and are
listed in Figure 8. There should be an executive
summary, something that provides an overview of the
time and resources consumed for the project, and a
variety of reports getting down to a final detailed
report showing for each of the activities the time
estimates, the scheduled early start and late
start, the early finish and late finish dates, as
well as the float, the slack time, and the identi­
fication of the activities and resources that are
critical to the time of completion of your task.

o DATA SUMMARY
o EXECUTIVE SUMMARY

o DETAIL REPORTS
o CRITICAL PATH REPORT

Figure 8. Network Analysis Management Reports

This in essence becomes the plan for your project.
However, it is necessary now to generate a firm,
fixed schedule or baseline.

3.3 Schedule

The Gantt plot is a candidate schedule. What you
must do is use it to develop a firm, fixed schedule
or baseline. The final schedule represents the
plan of the Gantt Plot, with real-world constraints
applied to the plan. This schedule is one that you
wi 11 manage to and report 011. A 11 your progress
will be measured against this baseline schedule.
The schedule for the coding effort is shown in
Figure 9.

45

Code Generation Schedule PACE 1 p
EVENT CALENDAR YEAR 1!185 H

NO. DESCRIPTION Y.C()1P JUL I AUG ~.1..E. ~ ~ ~
100 PPS Revu~w ~ N
300 Flie Design I
200 Output Design - x
•OO Buffer Design ~ E 600 Graphics ' H
500 Report Gen : ~ 1000 Input Hndlr u
•01 Design Co111pl ~ 900 Driver

1100 File 11aint - s
1101 11odules CoMpl ... T
1300 Integration, A

T
u s

l'IJ:u;:A.!9!!!!!..: .. C8T • .0. -.CT C.0-1... '~l'TIVITY,R...£!T. IZ1Z1I ~T.

Figure 9. Schedule Plot

3.4 Monitor

3.4.1 Controls. You have passed the planning
stage. Now that you have established a schedule,
you need to have a number of automated project
controls that will let you examine the schedule and
examine the financials for your project to make
sure you are both within budget and on schedule.
Before we begin discussion of some controls you
should look for in a project management package,
let's take a look at our project.

First of all, the job spans five departments. The
initial time estimates were that the job would take
two years to complete, cost $1. 5 million dollars,
and would be composed of approximately 5,000 separ­
able and discrete activities. Given this size, how
are you going to control it? We 11 , taking a step
back, you have to look at why you are a project
manager. Most likely, it is because of your
ability to thoroughly understand your job and to
almost be intuitive about the nature of the work
you do. A project of the magnitude of Astrological
would require a database so large it would negate
your ability to be intuitive. What you need from a
project management package is the ability to be
dynamic in monitoring your project to be able to
develop various views downward into the database
until you can focus on the issues that are perti­
nent to the project. You need to be able to select
or segment the database so that you can get an
accurate, concise view of a limited segment of the
database.

Again, this supports the concept of abstraction.
You want to be able to look at the data in varying
degrees of detail; only the detail necessary to
give you the insights that you need to do your job.
Your Project Management controls should provide
unlimited query capability on the database.

3.4.1 Schedule Status. The first thing you should
look at is the schedule. This is shown in
Figure 10, which is a schedule with milestones for
monitoring the progress of each task.

In this particular example we are showing a graphic
depiction, one that is very important and gives a
quick indication of how we are doing and where we
should be today for the project. As you can see,
immediately below the baseline schedule is the
actual start and completion of each of the act i vi -
ties in the project as well as percentage complete.
The percentage complete for each task is indicated
by how much of the lower bar is filled in.

Code Generation Status PIM I
E.vtNT CALENDAA i'EAR 1985

NO. DESCRIPTION Y.COHP JUL :r AU<: [SEP T ocT T NOV I:Kc
100 PPS Review 100

~-· 300 Flle Design 80
200 output Design '" 400 Buffer Design 15 ~
600 Graphics 5
!l-00 Report~

1000 Input Hndlr
401 DK1gn Colllfll ..
900 Driver """"""

1100 File 11aint -
1101 l1odu I es CQfllfl l ...
1300 Integration =

20AUG8'l

Figure 10. Schedule Status Plot

3.4.2 Completion Status. The second chart,
Figure 11, is a Completion Status Plot which gives
us another view of the data. It indicates which
events are early, which events are late, percentage
complete, and how many days remain until the com­
pletion of the job.

Code Generation Status PAGE 1
EVENT ACTIVITY START P£RCENT COl1PLETE FINISH DAYS

NO. DESCRIPTION DATE lJ> 40 60 :-w. DATE SP£NT RE"'
100 PPS Review 01Jll_B5 26Jll_B5 26 0
300 File Design 20Jll_85 25AUG85 30 7
200 Output Design 2BJUL~

~- - - - - - - - -
''~ 20 1

400 Buffer Design 17AUG85 24SEPB5 6 • 33
600 Graphics 20AUGB5 ;>';NOVB5 5 93
500 Report Gl!n 22AU<:B6 12NOVB5 0 83

1000 Input Hndlr 04SEPB5 03NOVB5 0 61
900 Driver 2-4SEPB5 160CT85 0 23

1100 Flis H.;unt HIOCTB5 25NOVB5 0 41
1300 Integration 25NOV85 10DEC85 0 16

Figure 11. Completion Status Plot

3.4.3 Cost Status. Figure 12 shows a Cost Plot,
which is a measure of the budget, the dollars
spent, and the work achieved for those dollars
spent.

Astrological Finance

1515'.:f '"•""·-····- -
HOO.oof
1225.00 +

':~::::I
700. 00

525. 00

350. 00

175.00

o. 00 t'==M===*=.=uo=~=S£P==l==coc"'1 =:==NO:c=v=:==oo°"Ec===1
1985

sews --- BCl.ll •--

Figure 12. Cost Plot

This plot gives you a feel for the rate at which
the funds of the project are being used and the
amount of work that is actually being performed for
your project. This brings up a number of ideas,
such as the budgeted cost of the work scheduled,
the budgeted cost of the work performed, and the
actual cost of the work performed.

46

3.4.4 Cost Variance. Figure 13 shows a Cost
Variance Plot. It is the difference plot of the
data that was previously shown in Figure 12 and
gives us a measure of how we 11 we are progressing
against the schedule. The closer these curves are
to zero, the more accurate were our project predic­
tions and the better our project performance.

Astrological Finance

=1 p

417 .oo
H
0

' 278. 00
,,
I

,,, ,, I x
v

' A

-----~ I ! 0.00

-139.00 I 1 ' -278. 0(.' \

I b
\

-417.00 '
-55€. 00 '\

I 1 J JUL T AUG T SEP T OCT T NOV .1 DEC
1985

ISK i COST SCH£Dl1.._E ~-- - <

Figure 13. Cost Variance Plot

3.4.5 Communication. What is significant is that
the previous four figures provide accurate and
timely information that may be communicated easily.
Large stacks of computer runs are not required, and
it is not necessary to connect dots and asterisks
because the plot was prepared on a printer. The
control reports provided are presentation-quality
graphics.

The monitoring tools that you should select should
be suitable for all levels of management. In
management reporting, you certainly don't want to
have separate tools for different levels of manage­
ment. What you should expect from your project
management tools is that for high level meetings,
briefings, and presentations, they should support
full-color graphics with figures that are easy to
read and understand. They should be crisp and to
the point. For reports, figures should be done in
black and white so they can be clearly reproduced
by either printing or copying.

Your project controls should also support graphics
with tabular reports which contain all necessary
back-up data.

3.5 Act

Management must manage. Now that you have read the
reports, reviewed the project data from your sub­
ordinates, you must identify the causes of any
problems and act on them. Therefore, it is very
important that the project management system you
select be able to perform what-if analyses to aid
in replanning and redefining the project as it
progresses.

At this point, the idea of representation of the
ideas and their automated manipulation becomes very
important. You must be able to easily manipulate
the parameters of your program and perform rapid
what-if analyses until you have developed an ade­
quate approach to your problem. You must then be
able to modify schedules to accommodate this
replanning just as easily. With replanning, the
cycle begins again.

4.0 CONCLUSIONS

The 1 a test generation ot· Project Management soft­
ware has the power and capacity of main-frame type
packages and the ease of use of micro-computer
software.

Any Project Management system you select should:

o Be easy to use.
o Support multiple views of the database

(abstraction).
o Provide presentation-quality graphics

(communication).
o Provide real-time analysis (monitor).
o Support rapid what-if analyses (plan and

replan).

47

Packaged Software & International Market.

By Chandan W Seernani
Ambase International Corporation

Atlanta, Georgia

ABSTRACT

Many software vendors that are successful in the US
market are disappointed because they do not enjoy same
amount of success in the international market. This paper
discusses the following problems and their possible
solutions

- Implementation difference
- Marketing strategy
- Software support overseas

Government red tape

INTRODUCTION :

The concept of packaged software
is here to stay. There are several
companies in this business and many more
are venturing into it everyday. Many
companies that are successful in the US
market are very disappointed to discover
that they do not enjoy same amount of
success in the international market.
There is a multi million dollar market
for these products overseas. There are
several factors which one must consider
before investing in any such venture. I
will be talking about a few important
ones,these are:-

- Implementation differences.
Marketing strategy.

- Software support overseas.
- Government red tape.

IMPLEMENTATION DIFFERENCES

This is one of the major factors
we overlook while designing a software
package. We must remember that some
concepts are implemented differently in
various countries. A simple example is
that of a date. In the US the acceptable
format is MM/DD/YYYY. Some countries use
the format DD/MM/YYYY or YYYY/MM/DD or
YYYY/DD/MM. When we design routines that
manipulate dates, we must consider
formats other than those acceptable in
the us.

Another major difference is the
language. We must remember that English
is not a universal language. Prompts,
defaults,validity lists and help text
information could be external to the
program. The program could be made smart

Proceedings of the Digital Equipment Computer Users Society

49

enough to retrieve this information and
process it. Hence, if we want our system
to prompt the operator in the German
language and to interpret the responses
that will be supplied in German we can
do so because the information in the
external file can be changed from
english to the desired language. Hence
the program will do the following in
desired language :-

- Prompt the operator
- Display the default response
- Check against a list of valid

responses
- Display help message

You
figure-1 as
entry screens

may use the example in
a guideline to design data
for your system.

Many software packages offer
code generation capabilities. Code
generated by such facilities is fairly
generalized and hence inefficient when
executed. In several countries where
Machine costs are high and the cost per
CPU hour ranges anywhere from $90 to
$150 it is important to assure that
software is efficient. Generators are
useful in countries where manpower costs
are higher than machine time costs but
they are practically worthless, where
manpower costs are lower than machine
time cost. We must design our package so
that it is broken into several modules
and the user buys only what he needs.It
is recommended that each module be sold
separately.

MARKETING STRATEGY

There
we can

are several different strategies
adopt to market the product. I

Dallas Texas - 1986

MASTER ENTER/MAINTAIN MASTER RECORD MM/DD/YY HH:MM XM

COMPANY INFORMATION

1) Reference Number
2) Company Name
3) Address line 1
4) Address line 2
5) State I province
6) Country
7) Postal code

##) Prompt line used with bottom of screen entry

?
(Default >

MESSAGE AREA

You may want to consider the following
suggestions while designing data entry
screens for your software :-

1) Row could be the SCREEN BANNER.
Information like menu option,
description of this screen/menu
option, current system date and
system time could be displayed on
this line.

2) Rows 2 thru 17 could be reserved for
programmer use.

3) Row 18 could be reserved for printing
a descriptive version of the prompt
currently being processed. Note that
'##' is number of the field currently
being processed.

4) Row 19 could be reserved for special
messages printed by the software.

Special messages

These could be printed when an
operator invokes a special command or
an error occurs during data entry.

5) Row 20 could be reserved for entries
made by the operator in response to
the current prompt.

6) Row 21 could be reserved for display
of default response to the current
prompt.

7) Row 22 could be a blank line to serve
as a spacer between the default
display line and the message area.

8) Rows 23-24 could be reserved for
printing help/aid messages. We might
consider defining these as scrolling
region incase help messages are over
2 lines long.

FIGURE-I

so

will discuss them one at a time along
with their respective pros and cons.

l)
it's own
advantages

The Company could develop
marketing force. Some of the
of this approach are :-

a) The Company controls all it's
International operations from
us.

b) The company does not have to
share it's profits with any
third parties.

However this approach has many
disadvantages. These are:-

a) Marketing
expensive.

trips abroad are

b) It is expensive to get in
touch with every prospect due
to high costs of calling
overseas.

c)

d)

e)

2)

a)

b)

We may have an inaccurate
perception of the market. One
way to solve this problem is
to conduct a market research,
but the cost of such a survey
can be prohibitive.

We may not be
import regulations

aware of
in each

country. This point will
been discussed later in more
detail.

Software support
client abroad can
expensive.

to
be

every
very

The company could have a
distributor in every country
who could operate on a
commission basis. The main
advantages of this approach
are : -

Money spent on marketing
trips abroad is saved.

The distributor is locally
situated, hence he has a
better idea about the market.

c) Since the distributor is
working for the company,
control is still maintained
from the US, this assumes
that the security built into
the package is tight enough.

Major disadvantages of this
strategy are:-

a) Software support overseas is
a major problem that the
company must tackle while
designing the contract with
the distributor. This point

51

b)

will be discussed later in
more detail.

The problem of import
regulations still exists,
however now we have someone
who knows the rules of his
country.

3) Sell international rights to
one company and let this
company form it's own network
of distributors.

Some advantages of this approach
are

a) Money spent on marketing
trips abroad is saved.

b) We have only one distributor
to deal with, for the entire
international market. In the
previous approach we had to
deal with one per territory.

c) Control is more centralized.

d) We might also reduce software
support costs, if we design
the contract correctly.

Most of the disadvantages
mentioned earlier still exist.
However, when a big market is
given to one company chances are
that this company will control
the enhancements and future
direction of the product. When
stakes are high the vendor
normally tends to comply with
special requests.

4) Locate distributors in each
country and sell them the
package on an outright basis for
that country. This means that we
must give them source code. In
this case the price tag should
be high enough so that there is
scope for profit, but at the
same time, low enough so that
the distributor feels it is a
good bargain for him.

The main advantages of this
approach are:-

a) Now the distributor has the
source code so he can modify
it to suit the needs of his
market. Hence, the software
will not contain pieces of
code that are irrelevant to
that environment. Hopefully,
the package will execute more
efficiently. Also, now that
the package will be sold in
local currency the seller can
price it right.

b) The problem of import licence
will disappear because the
package is now being sold
locally. However the buyer
has to obtain the approval
while purchasing software
from the vendor.

c) The software support problem
will disappear. The seller
now has source code and he
can support the package
locally.

Some of the disadvantages of
this approach are :-

a) Since the package is being
sold on an outright basis it
generates only a one time
revenue for the vendor.

b) Since the distributor has to
pay a high cost,hence he has
to justify a higher amount
for an import licence. This
can sometimes pose problems.

SOFTWARE SUPPORT OVERSEAS :

Marketing strategy 2 & strategy
3 mentioned above require that support
be considered as a very crucial issue
and all ambiguities must be resolved in
writing. The main area of concern is who
would support the software ? It will be
too expensive for the vendor to do it,
however, if the distributor has to
support it then he has to be supplied
with source code. I am sure nobody would
like to share source code with the
distributor, as this can be misused in
many ways. To get around this problem
the contract must be designed such that
all support calls go to the distributor,
who acts as a buffer between the vendor
and the end user. If the distributor is
sure that it is a software bug, then he
could contact the vendor to fix it. The
contract must have penalty clauses
clearly stated, if this rule is
violated.

GOVERlllMENT RED TAPE :

In several countries import
regulations require that one has to go
through government red tape to obtain an
import licence for spending money from
that country's foreign exchange reserve.
Formalities vary from one country to
another. Also the high price of US
dollar in the international market may
make it all the more difficult for an
end user to obtain an import licence. A
good way to help the end user will be to
sell your package in modules. Modules
like the code generators may be sold
separately so that the end user pays
only for what he needs and not for bells
and whistles in the system. This will
reduce the amount he may have to justify

52

to his government and increase
probability of obtaining the licence.

CONCLUSION

I would like to conclude

the

by

saying that this paper is not intended
to scare away software vendors from
entering the international market, but
instead it is meant to warn them about
some of the problems they may encounter
while doing so. I think it will be
appropriate to say that US Department of
Commerce prohibits sale of Hi-technology
to some countries. One must check with
them before signing any overseas
agreement.

Productivity Tools Improve More Than Productivity

By Chandan W Seernani
Ambase International Corporation

Atlanta, Georgia

ABSTRACT

This paper
cope with
shops today

discusses how productivity tools help a company
the following problems that are common in most DP

- Technical manpower shortage
- Standardization
- Support/maintainence
- Application backlog

INTRODUCTION :

What is a productivity tool ?

For this paper a productivity
tool will be defined as any tool that
helps increase productivity and reduce
maintainence overheads. Some of the
examples are :-

- DEC's DATATRIEVE.
Any kind of application
generator.

- Any kind of program code
generator.

We are aware that a productivity
tool that does 100% of what you want it
to do does not exist. However, if a
proper tool is selected for your shop it
must help you cope with the following
problems that are common with most DP
shops : -

- Technical manpower shortage
Standardization

- Support/maintainence
- Application backlog

We will
these factors
greater detail.

now take each one of
and talk about them in a

TECHNICAL MANPOWER SHORTAGE

During application development
there are two major questions that must
be answered. These are :-

- WHAT will be accomplished by writing
this application ?

- HOW will we do it ?

Proceedings of the Digital Equipment Computer Users Society

53

The first question is usually
answered by potential end users of the
application. The technical experts are
required to give advice on the various
technical considerations. For example
hardware and software constraints. To

answer the second question we need a
programmer. In a shop that does not have
productivity tools every program is
written from scratch. Some shops have
source code libraries which help.
However, writing every program from
scratch is like inventing the wheel
every time. As we have mentioned before
a productivity tool that does 100% of
what you want does not exist. We must
therefore select a tool that

Is easy to use. To assist new users it
must have sufficent tutorial text
preferably in a multi-level format
with each level providing additional
detail about the prompt.

Must allow you to do proto typing
easily. This has the following
advantages :-

Gives the ability to quickly and
easily create a program for user
testing & approval.
If changes are requested a new

prototype can be created quickly for
user testing and approval.
Substantial user involvement via

prototypes insures fewer changes
after the system has been completed.

Being involved with development and
testing gives the user confidence
that the system will satisfy his
needs.
By the time the project is
the user is familiar
operation of the system.

Dallas Texas· 1986

completed
with the

Should be definitional rather than
procedural because

Entering a definition of WHAT the
program does is less time consuming
than writing source code which
details HOW the processing occurs.

One def ination parameter may expand
into multiple procedural steps. This
expansion must be done by the tool
to minimize development time per
program.

The generated
friendly for an
that it supports
standard features
code:-

code must be user
end user. This means

the following as
of the generated

- Several kinds of terminals.
- Commonly used commands like the HELP

command.
Cursor control keys to move around

on the screen.
Any standard screen function like

Reverse video,Bold video etc.
Capability to refresh a data entry

screen incase someone sends messages
during a data entry session.

Same program must be able to input
different sets of data using either
overlap screens or windows on the
same screen.

Complex data verification and
validation. In some cases it may
involve looking up several files to
achive this.

Handling conditions that may be
formulated at run time.
Security while processing fields or

while processing screens. Some
examples are :-

Conditional skipping of fields.
These may either be predefined
conditions or conditions that are
formulated at run time.
Display only fields. The operator

is not allowed to alter the value
of such a field.

Required fields. These are fields
for which an operator must enter a
valid response before he is
allowed to exit from that screen.

Jump back fields. The operator
will be allowed to alter the value
in such a field only if he jumps
back to it from another field.
During normal processing the
default value in this field is
displayed and the program moves on
to the next field.

The generated program must be able to
switch itself from production to test
mode when desired by the user. This
will help a company train new
operators directly on the programs
they will be using on a day to day
basis. In test mode the program does
everything else but store records.
This will insure that all the files
are intact.

54

The generated code must be broken up
into several modules. These must be
logically and physically independent.
E.Yourdon explains the advantage of
dividing a program into modules in his
basic theorem of software engineering.
This is stated as ·-

C(P + Q) > C(P) + C(Q)

This means that the cost (C) of
solving a problem (P + Q) as a whole
is more than the cost of solving it's
parts (P) and (Q) seperately.

If the generated program follows this
fundamental theorem then it is easy to
have programmer hook areas. The
programmer only codes these areas. As
a result of this less time is spent in
development and support/maintainence
of the application.

- The generated code must have sufficent
comment lines so that the code is well
documented.

- In short the tool must do as much work
as possible so
have lots of time
creative efforts
contents of the
most needed.

STANDARDIZATION

are all

that the programmers
to concentrate their

on the functional
program where it is

familiar with the We
high rate
industry.

of manpower turnover in our
We also know that different

programmers have different coding
styles. A shop without productivity
tools will typically have programs
written by different people using
different styles and structures. A new
programmer in the organization will
find it very hard to maintain and
modify all that code. Some of the
advantages of using productivity tools
are :-

Generated code always has the same
style and structure; the differences
occur only in functional content.

- Programming errors are minimum because
most of the program consists of shells
and external subroutines that have
been tested over and over.

Since the generated code is standard,
a maintainence programmer can move
from one application to another with
ease.

Standard code also eases the task of
training a new programmer in the shop.

Standard code eases the task of
modifications and enhancements.

SUPPORT/HAINTAINENCE :

This is another area in which
productivity tools will help your
organization. Generated programs as a
class, are easier to support & enhance
than custom programs because :-

A manually produced program differs
from all others in style, structure
and techniques. A generated program
on the other hand is standardized.

The programmer writes minimum code
since most of the program is in form
of pretested shells and external
subroutines. This reduces the
possibility of programmer error.

- The code in generated programs is well
commented, whereas in case of a manual
program the programmer may be a bad
documenter.

Since the generated code is broken
into modules the programmer doing
maintainence looks only at small
pieces of code at a "time. Yourdon's
theorem described above can also be
applied in this case.

If we were to draw a graph of Effort
vs Complexity as shown in figure-I
then beyond the point of intersection
(this is point of rewrite) the cost of
rewriting the software will be lower
than cost of continued maintainence.

EFFORT

COMPLEXITY

APPLICATION BACKLOG :

There are 2 types of application
backlogs, namely :-

- New development
Rewriting systems that are beyond the

point of rewrite

As discussed before, manpower shortage
demands that we increase programmer
productivity as much as possible.
Studies show an improvement ratio of
1:10 can be easily obtained by using
productivity tools. Hence we conclude
that productivity tools will help us
cope with application backlogs because
program development will be much
faster than before for following
reasons :-

The productivity tool is definitional
rather than procedural.

The tool automatically breaks up the
defination into procedural steps hence
the programmer does not code every
detail of the program.

Since most of the code is in form of
shells the programmer does minimum
coding. This reduces the possibility
of programmer errors and speeds up
development.

The shells are pretested.
reduces the time that would be
spent on debugging.

SOPPORT/MAIRTAINENCE

DEVELOPMENT

This

Effort vs Complexity

FIGURE-I

55

CONCLUSION

In conclusion I'd like to say
that a productivity tool can make or
break your development efforts. One
must evaluate several tools before
investing in one. Some of the
questions to ask a vendor would be :-

References of people currently using
that tool. You must call these people
and ask them pointed questions like :­
- What they like about the product and

what they don't like about it ?
What kind of response do they get

when they call for support ?
- Are the support people knowledgeable

about the product ?
What kind of training facilities

does the vendor have ? If this
customer has used any of these then
ask for an evaluation of these
facilities.

How often
enhancements
software ?

does the vendor provide
and bug fixes to the

Does the vendor usually keep the
promises that are made at the time
of sale ?

Confirm some of the things that the
vendor has told you with these
customers.

Check the vendor's credentials. This
will include things like :-
- How long have they been in business
- Where did their top level management

come from ?
Do they have any law suits pending

against them ? If yes, probe for
details.

Has this vendor filed for bankrupcy
before ? Or have they ever been in
financial trouble before ? If the
answer is yes, probe for details.

Have they been sold to any other
corporation ?

- Upward compatability of the product ?

What is the future direction of the
product ?

- Visit the vendor's site.

These may appear to be fairly
tough questions to get answers for from
various people but it is better to be
cautious while buying the tool rather
than being sorry after you have bought
it.

56

1 INTRODUCTION

COBOL: An Endangered Species?

Edward W. Woodward
Computer Sciences Corporation

443 Inyokern Road
Ridgecrest, California 93555

(619)/446-6585

ABSTRACT

Controlling the life cycle of a commercial
project continues to be a critical
professional task. One of the most costly
elements of this activity is the time used in
performing the program maintenance function.
This paper will point out some of the reasons
why continued use of COBOL as a commercial
language may be in jeopardy. We will then
look at a variety of techniques which can go a
long way toward improving the efficiency of
program development throughout the project
life cycle.

Several developments are currently contributing to the uncertain future of COBOL
as a commercial programming language.

1.1 RISING SYSTEM DEVELOPMENT COSTS

The rising costs of developing and maintaining computerized business systems are
threatening the way programmers operate. Throughout the industry, the steady
rise of development costs using COBOL is endangering the continued use of the
language.

1.2 HOW DOES COBOL MEASURE UP?

COBOL was intended to possess a number of benefits for the programmer as well as
the business manager. The language is not living up to the expectations. The
following list contains a few of the benefits expected from COBOL:

<a> Satisfy user needs and decrease costs.

(bl Produce an English-like programming language.

<c> Provide code which would be readable and maintainable.

1.3 INTRODUCTION OF FOURTH GENERATION LANGUAGES

Several languages have been developed which significantly reduce the time needed
to develop business applications. These Fourth Generation Languages. which
include DATATRIEVE, are high productivity tools.

Proceedings of the Digital Equipment Computer Users Society Dallas Texas- 1986

59

2 HOW DOES THIS AFFECT THE COBOL PROGRAMMER?

These trends in the industry are having a significant impact on the future of
COBOL programming. We operate in a profession which is subject to continual
change. The future of a programming language which fails to serve user needs in
an efficient and cost effective manner is doubtful. It is important to recognize
these changes and protect oureselves from their effects. There are actions that
the COBOL programmer can take to postpone what would otherwise be a limited
future.

3 HOW CAN COBOL BE IMPROVED?

To alleviate these problems with COBOL. it is important that programmers use the
productivity tools available within the language. This paper will focus on those
techniques which can be easily implemented within the body of the COBOL source
code. In this way. the techniques will not inhibit the development of an
application on a multi-programmer project.

These techniques are not complex and neither are they obscure. Each one is easy
to use and is probably fairly well known by a majority of the COBOL programming
community. The intent of this discussion is to remind us all that these tools
and techniques are available. In addition. it is hoped that this discussion will
encourage all of us to consider the possibility that there are other and even
better ways of developing systems using COBOL.

There are a number of sources available to the COBOL programmer who wants to
improve the quality of program code. The obvious sources for this information
are the COBOL manuals and seminars provided by the computer hardware/software
manufacturer. There are also the books and technical journals which focus on the
topic of program development and efficiency.

A number of
significantly
systems using
productivity
enhanced.

techniques are discussed on the following pages which can
improve the productivity of COBOL and reduce the cost of developing
COBOL over the project life cycle. If these ideas along with other
tools within COBOL are used, the future for COBOL can be markedly

3. 1 USE PREAMBLE COMMENTS IN THE IDENTIFICATION DIVISION

THE NORM

The COBOL programmer has tended to stick with only the required statements. Very
little information has been provided in this area of the program. The future
maintenance programmer is generally left with the task of trying to determine
what the program is doing. This becomes tantamount to redeveloping the program.
The thought processes and research required for developing the program must be
repeated during the maintenance process.

It is not uncommon to see programs which contain only the required statements in
the IDENTIFICATION DIVISION. What we find is no information about the purpose.
restrictions. interfaces or requirements of the program. The following
illustration provides a graphic example:

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATE INVOICE_DATA INITIAL.

60

SUGGESTED IMPROVEMENT

In contrast. the following example gives more
programmer with a better understanding of the
program. With the use of this technique, the
overall view of what the program does and how it

information and provides the
purpose and overall scope of the
maintenance staff has a good
is done.

IDENTIFICATION DIVISION.
PROGRAM-ID. CREATE_INVOICE_DATA INITIAL.

*"'"' TITLE:
"'"'"'
>1<>1<>1< USAGE:

"'"'"'

CREATE INVOICE DATA

$ RUN CREATE_INVOICE_DATA

* * * PURPOSE:

"'"'"'
"'"'"'

This program is used to accept the sales
invoice data, validate this data and
organize it into the sales invoice file.

"'"'"' "'"'"' LIMITATIONS: There are no limitations placed on the
"'"'"' execution of this program.

"'"'"' *"'"' WARNINGS:
"'"'"'

There are no special resources required
by this program.

"'"'"'
>1<>1<>1< SUBPROGRAM REFERENCES:

"'"'"'
This program uses no called modules.

"'"'"' ALGORITHM: None.

"'"'"'
>1<>1<>1< NOTES: None.

"'"'"'
"'"'"' WAIVERS: No waivers exist for this program. All coding
"'"'"' conforms to department standards.

"'"'"' *"'"' ENVIRONMENT:

"'"'"'
"'"'"'
"'"'"'

VMS
COBOL
FMS

Version 4.2
Version 3.2
Version 2. 1.

"'"'"' RECORD OF MODIFICATION:

"'"'"' "'"'"'
"'"'"'
"'"'"' 1.
Jfc'fl:Jfc 2.

"'"'"'
"'"'"'
"'"'"'
"'"'"'
AUTHOR.

PROGRAMMER:

Ed Woodward

DATE: MODIFICATION PERFORMED

03/05/86 INITIAL EDIT.

Ed Woodward.
INSTALLATION.
DATE-WRITTEN.
DATE-COMPILED.

Computer Sciences Corporation.
March, 1986.

Under the
INSTALLATION,

NOTE

new COBOL-85
DATE-WRITTEN

standards, AUTHOR,
and DATE-COMPILED are

obsolete reserve words. These too can be added as
actual PREAMBLE COMMENTS.

61

3.2 USE EXTERNAL ASSIGN STATEMENTS

THE NORM

The tendency is to modify pro9rams for chan9es to filenames. This then requires
the pro9rammer to recompile the source pro9ram. If a pro9ram can be developed
with flexibility in mind, future maintenance can be reduced.

SUGGESTED IMPROVEMENT

An improvement on this would be to set up an external 109ical for the filename.
In this way an external ASSIGN could be used. This would not require pro9ram
modification or pro9ram recompilin9. It will reduce the possibility of makin9
the wrens chan9e to a pro9ram or inadvertently modifyin9 code which does not
require chan9e. An example of this technique is show below.

Command Procedure Usin9 DCL

$!
$! The PREAMBLE COMMENTS for this command procedure are located
$! at the end of this file.
$!
$!
$ ASSIGN CUSTOMER_INVOICE.DAT
$ ASSIGN PRINT_FILE.DAT
$ RUN CREATE INVOICE_DATA
$ EXIT
$

$!
$!
$!
$!
$!

PREAMBLE COMMENTS

INVOICE
PRINTFILE

////ll//////llll//////l/l//l/l//////////ll//l//////llll/l/l/ll/ll

CREATE_INVOICE_DATA.COB Source File

ENVIRONMENT DIVISION.
CONFIGURATION SECTION.
SOURCE-COMPUTER.
OBJECT-COMPUTER.

INPUT-OUTPUT SECTION.
FILE-CONTROL.

SELECT
SELECT

INVOICE-FILE
PRINT-FILE

62

VAX-11.
VAX-11.

ASSIGN TO "INVOICE".
ASSIGN TO "PRINTFILE".

3.3 USE SOUND FILE, RECORD AND FIELD NAMING CONVENTIONS

THE NORM

There are benefits in developing data names that clearly describe their function.
Time normally used to reference back and forth between the PROCEDURE DIVISION and
the DATA DIVISION of the source program will be reduced.

SUGGESTED IMPROVEMENT

The following is an example of meaningful names used to define the filename and
field names for a file:

FD INVOICE-FILE.
01 INVOICE-RECORD.

05 INVOICE-NUMBER PIC 9 (12).
05 INVOICE-CUSTOMER-NUMBER PIC 9(10).
05 INVOICE-DATE.

10 INVOICE-DATE-MO PIC 9<02).
10 INVOICE-DATE-DY PIC 9 <02).
10 INVOICE-DATE-YR PIC 9<02).

05 INVOICE-DELIVERY-DATE.
10 INVOICE-DEL-DATE-MO PIC 9<02).
10 INVOICE-DEL-DATE-DY PIC 9<02).
10 INVOICE-DEL-DATE-YR PIC 9(02).

05 INVOICE-TOTAL-COST PIC 9 < 1 0 l V9 < 02 > •

3.4 USE NUMERIC LITERALS

THE NORM

The tendency has been to code numerics in the body of the PROCEDURE DIVISION.

SUGGESTED IMPROVEMENT

Numeric literals defined in the WORKING-STORAGE section of the program will
reduce the time re9uired to make program modifications when this variable must be
changed.

WORKING-STORAGE SECTION

01 MAXIMUM-INVOICE-DETAILS PIC 9(03) VALUE 150.

PROCEDURE DIVISION

PERFORM 5000-SEARCH-INVOICE-TABLE THRU
5000-SEARCH-INVOICE-TABLE-EXIT UNTIL

<INVOICE-TABLE-CTR MAXIMUM-INVOICE-DETAILS>

63

3.5 ORGANIZE THE WORKING-STORAGE SECTION

THE NORM

There has been very little interest
WORKING-STORAGE section. Entries in
follow a logical format.

in organizing the contents of the
this portion of the program often do not

SUGGESTED IMPROVEMENT

It is recommended that the WORKING-STORAGE section of the program be organized in
such a way that data elements can be easily found. This will also reduce the
possibility of creating duplicate data names. The following example demonstrates
the organization of data by type. Within each data type. the entries are listed
in alphabetical order.

WORKING STORAGE SECTION

*** H 0 L D A R E A S ***
**

01 HOLD-STORE-DATA

01 TODAYS-DATE

01 TODAYS-DATE-BREAKDOWN
05 TODAYS-MONTH
05 TODAYS-DAY
05 TODAYS-YEAR

REDEFINES

PIC X<75l.

PIC 9 <06l.

TODAYS-DATE.
PIC 9 <02l.
PIC 9 C02l.
PIC 9C02l.

**
*** T A B L E S ***
**

*** This table is used to build the two records which will
*** be stored for each invoice entered.

01 INVOICE-DATA-TABLE.
05 INVOICE-DATA-TBL

10 INVOICE-NBR
10 INVOICE-CUSTOMER-NUMBER
10 INVOICE-DELIVERY-DATE

01 UNIT-OF-ISSUE-TABLE.
05 UNIT-OF-ISSUE-TBL

ASCENDING KEY IS UIT-LITERAL
INDEXED BY UIT-INDEX.
10 UIT-LITERAL

64

OCCURS 150 TIMES.
PIC X<12l.
PIC X<10l.
PIC 9 (06).

OCCURS 300 TIMES

PIC X <02>.

**
*** S W I T C H E S ***
**

01 ANSWER-SWITCH

88 ANSWERED-YES
88 ANSWERED-ND

PIC 9 VALUE O.
VALUE 1.
VALUE 2.

*** Entries exist in this switch in the order each is retrieved.

01 GET-FIELD-SWITCH PIC 99 VALUE o.
88 GET-INVOICE-NUMBER VALUE 1.
88 GET-DATE-SIGNED VALUE 2.
88 GET-DELIVERY-DATE VALUE 3.
88 GET-EXPIRATION-DATE VALUE 4.
88 ND-MORE-FIELDS VALUE 99.

••• C 0 U N T E R S ***
**

01 COUNTERS.
05 DESC-ENTRY-CTR
05 INVDICE-DATA-TBL-CTR
05 INVDICE-DATA-TBL-SRCH-CTR
05 UNIT-DF-ISSUE-TBL-CTR

PIC 999 USAGE COMP VALUE O.
PIC 999 USAGE COMP VALUE 0.
PIC 999 USAGE COMP VALUE O.
PIC 999 USAGE COMP VALUE 0.

3.6 USE THE OPTIONS AVAILABLE FDR TABLE SEARCHES

THE NORM

When tables have been used, searches have often been performed by using an
iterative process. In this situation, the programmer will execute a paragraph
where the programmer is responsible far controlling the value of the subscripted
variable. The fallowing gives an example of this tendency:

5410-FIND-UNIT-DF-ISSUE.

IF (HOLD-UNIT-OF-ISSUE = UNIT-OF-ISSUE <UIT-CDUNTER> >
MOVE HOLD-UNIT-OF-ISSUE TD INVOICE-UNIT-OF-ISSUE
SET VALID-UNIT-OF-ISSUE TD TRUE

ELSE
ADD 1 TD UIT-CDUNTER

END-IF

5410-FIND-UNIT-DF-ISSUE-EXIT.
EXIT.

65

SUGGESTED IMPROVEMENT

Use of the PERFORM ..• THRU ••• VARYING construct:

PROCEDURE DIVISION

PERFORM 5410-FIND-UNIT-OF-ISSUE THRU
5410-FIND-UNIT-OF-ISSUE-EXIT VARYING

UIT-COUNTER FROM 1 BY 1 UNTIL
<VALID-UNIT-OF-ISSUE OR

UIT-COUNTER MAXIMUM-UIT-ENTRIES>

5410-FIND-UNIT-OF-ISSUE.

IF (HOLD-UNIT-OF-ISSUE = UNIT-OF-ISSUE <UIT-COUNTER> >
MOVE HOLD-UNIT-OF-ISSUE TO INVOICE-UNIT-OF-ISSUE
SET VALID-UNIT-OF-ISSUE TO TRUE

END-IF

5410-FIND-UNIT-OF-ISSUE-EXIT.
EXIT.

Use of the SEARCH command:

WORKING-STORAGE SECTION

01 UNIT-OF-ISSUE-TABLE.
05 UNIT-OF-ISSUE-TBL

ASCENDING KEY IS UIT-LITERAL
INDEXED BY UIT-INDEX.
10 UIT-LITERAL

PROCEDURE DIVISION

7200-SEARCH-ISSUE-TBL.

OCCURS 300 TIMES

PIC X<02>.

SEARCH ALL UNIT-OF-ISSUE-TBL OF UNIT-OF-ISSUE-TABLE
AT END

INITIALIZE
WHEN UIT-LITERAL <UIT-INDEX>

SET VALID-UNIT-OF-ISSUE
MOVE HOLD-UNIT-OF-ISSUE

END-SEARCH

7200-SEARCH-ISSUE-TBL-EXIT.
EXIT.

66

VALID-FIELD-SWITCH
HOLD-UNIT-OF-ISSUE
TO TRUE
TD INVOICE-UNIT-OF-ISSUE

3.7 USE THE EVALUATE VERB

When a number of values for a switch is possible. the programmer has generally
used the NESTED IF construct. The complexity of this generally results in
confusion as well as maintenance nightmares.

SUGGESTED IMPROVEMENT

The EVALUATE verb has the effect of reducing the complexity of the coding
reguired. This is an improvement over the use of the NESTED IF construct. In
effect. the coding is easier to read and more efficiently maintained.

WORKING-STORAGE SECTION

01 GET-FIELD-SWITCH
88 GET-INVOICE-NUMBER
88 GET-DATE-SIGNED
88 GET-DELIVERY-DATE
88 GET-EXPIRATION-DATE
88 NO-MORE-FIELDS

PROCEDURE DIVISION

5000-GET-INVOICE-DATA.

INITIALIZE VALID-FIELD-SWITCH

EVALUATE GET-FIELD-SWITCH

PIC 99

WHEN 1 PERFORM 5010-GET-INVOICE-NUMBER
5010-GET-INVOICE-NUMBER-EXIT

WHEN 2 PERFORM 5020-GET-DATE-SIGNED
5020-GET-DATE-SIGNED-EXIT

WHEN 3 PERFORM 5030-GET-DELIVERY-DATE
5030-GET-DELIVERY-DATE-EXIT

WHEN 4 PERFORM 5040-GET-EXPIRATION-DATE

VALUE o.
VALUE 1.
VALUE ~, ...
VALUE 3.
VALUE 4.
VALUE 99.

THRU

THRU

THRU

THRU
5040-GET-EXPIRATION-DATE-EXIT

END-EVALUATE

5000-GET-INVOICE-DATA-EXIT.
EXIT.

67

3.8 IMPROVE PROGRAMMING FORMAT AND FORM

The tendency has been to produce executable code that is simply workable. Very
little attention has been focused on the readablility and maintainability of the
code produced.

SUGGESTED IMPROVEMENT

This example demonstrates the use of indentin9. spacing and inline commentin9 to
improve clarity of the source code.

5100-GET-INVOICE-NBR.

.........

.........

.........

.........
**"'
"'"'"'

CALL "FDV$GET" USING BY DESCRIPTOR D-RP0170-INV
BY REFERENCE TERMINATOR-SWITCH
BY DESCRIPTOR "INV"

IF RETURN-KEY
SET ACTION-MESSAGE TD TRUE

The following message is retrieved via the CALL
to the routine ERR001:

"DO YOU WANT TO EXIT THIS SCREEN?

MOVE 31
CALL "ERR001"

PERFORM 9100-DISPLAY-MESSAGE
9100-DISPLAY-MESSAGE-EXIT

IF ANSWERED-YES
SET NO-MORE-FIELDS
SET NO-MORE-INVOICES

END-IF
END-IF

IF TAB-KEY
INITIALIZE
PERFORM 6000-VALIDATE-INVOICE-NBR

6000-VALIDATE-INVDICE-NBR-EXIT
IF INVOICE-NBR-VALID

SET GET-DATE-SIGNED
END-IF

END-IF

CY/N) ".

TO ERROR-SS
USING X-MESSAG,

ERROR-SS
THRU

TO TRUE
TO TRUE

HOLD-INVOICE-NBR
THRU

TO TRUE

5100-GET-INVOICE-NBR-EXIT.
EXIT.

68

4 RESULTS OF IMPROVING THE PROGRAMMING FUNCTION

This discussion has focused on the productivity of COBOL. At the outset, the
coding function for new systems. using these and other techni9ues, may possibly
take more time to produce. It will re9uire that we do a bit more planning and
research before we begin the actual coding function. In the long run. the cost
savings will be substantial.

We can look at it in terms of an investment. By spending a bit more time and
resources initially, we will be able to receive a dividend in reduced maintenance
costs in future years. My primary concern is the reduction of costs. improved
readability and more efficient program maintenance over the project life cycle.
When these benefits are realized, COBOL will be more attractive aa a development
tool. This will have the effect of at least postponing the migration of data
processing shops to Fourth Generation Languages.

5 REFERENCES FOR FURTHER READING

Chmura, Louis J. and Ledgard, Henry F.; COBOL With Style: Pro9ramming Proverbs;
Hayden Book Company, Inc.; Rochelle Park• New Jersey, 1976.

Kernighan. Brian W. and Plauger. P.J.; The Elements of Programming Style;
McGraw-Hill Book Company; New York, New York. 1978.

69

INTERFACING THE STOMACH WITH A COMPUTER: AN AUTOMATED ANALYSIS OF GASTRIC ELECI'RICAL ACTIVITY.

O. Guetta, J. Hamilton, J.J. COnklin, A. Dubois.
Department of Physiology, Armed Forces Radiobiology Research Institute and

Digestive Diseases Division, Department of Medicine,
Uniformed Services University of the Health Sciences

Bethesda, Maryland

ABSTRACT

To improve our understanding of gastric motility,
gastric electrical activity was amplified, recorded on an
analog tape, and subsequently analyzed using an MNC/DECLAB-
23 computer, locally developed programs, and software
packages. After digitization, the output of a 2.2 to 5.5
cpm band-pass filter was analyzed using a peak-processing
program that calculated the electrical activity and the
instantaneous frequency of each peak. In addition, the
original electrical signals were filtered using a 54 to 78
cpm band-pass filter and analyzed using a spike processing
program to determine the instantaneous frequency and
activity of the bursts. Electrical signals were
characterized by slow fluctuations occurring at 3.7/min,
with an activity of 9.1 mV/min, and by superimposed spikes
at 3.3/min with a mean burst activity of 2.9 mV/min. This
method provides an objective and precise measurement of
gastric electrical activity, and may be applied to study
diseases of the stomach, as well as the effect of various
medications.

INTRODUCTION

The present paper describes a computerized
method for the analysis of gastric electrical
activity. These signals are first amplified,
without any other processing than a 30 Hz low­
pass filter, and then taped on an analog
recorder. The taped signals are subsequently
digitized and analyzed using an MNC/DECLAB-23
computer (Digital Equipment Corporation,
Landover, MD), locally developed programs, and
software packages. Using this method, we found
that gastric electrical signals were composed
of: (1) slow waves occurring at a frequency of
about 3 cycles/min; and (2) fast activities,
called spikes, in the range of 0.9 Hz to 1.3 Hz.

MATERIAL

The MNC/DECLAB-23 computer is based on the
PDP-11/23 processor. RT-11 is the interactive,
single-user, real-time operating system used for
program development and real time application.
The locally developed programs, as well as the
programs from software packages, are written in
FORTRAN IV. OUr hardware includes:

1. The PDP-11/23 central processing units;
2. Two RLOl hard disks;
3. Two RX02 floppy disks;
4. One VT-125 graphic display terminal;

Proceedings of the Digital Eqwpment Computer Users Society

73

5. One LA-100 letterprinter;
6. A programmable real-time clock module

that offers several accurate methods of
measuring intervals and counting events
and, therefore, controls analog to dig­
ital transfer rates;

7. A four-channel analog to digital con­
verter module that has an input range
of -5.12 V to +5.12 V and a scale of
4,096 points to represent these 10.24
V; the sensibility limit is, therefore,
2.5 mV. This A/D converter translates
the amplitude of the analog voltage re­
ceived from the tape recorder into a
binary value that the processor can
accept. It also features a direct con­
nection to the clock module, so that
input sampling during a transfer of
data will occur at very precise clock­
controlled intervals.

METHODS

The processing of the signals includes dig­
itization, filtering, peak-processing analysis,
and spikes analysis.

I. Digitization
Digitization is performed using the clock

module (MNCKW) and the A/D converter module
(MNCAD), in addition to the REAL-11/MNC library
software. The REAL-11/MNC software consists of
subprograms that allow communications with the

Dallas Texas - 1986

MNCKW and MNCAD modules and perform A/D conver­
sions, buffer management and all data transfer
operations.

The REAL-11/MNC software accesses the four
channels of the A/D converter sequentially, but
the period of time between accessing one channel
and accessing the next one is so small (150
microseconds) that the transfer is considered
simultaneous on the four channels (1). The
smallest amount of data that can be transferred
is one word. Data transferred simultaneously
over one or more channels is called a sample.
The process of transferring one or more samples
is called a sweep. To successfully execute a
sweep, the main program must:

first initialize the sweep by defining
its characteristics
then start the sweep with the primary
clock
finally define the event that drives the
sweep.

The repetitive occurrence of this event will
cause each sample to be transferred.

Our sweeps are driven by hardware, with a
clock overflow. A clock interval is defined by
a combination of a selected internal oscillation
rate and a presettable counter. Each time an
oscillation time interval elapses, the clock
counter is incremented until it reaches its
greatest value. The next interval causes the
counter to overflow and reset to the presettable
value. This event is called a clock overflow.
Each time the clock overflows, a sample is
transferred through the A/D converter and is
temporarily stored in a user-defined buffer.
All REAL-11/MNC subprograms must use at least
one buffer. The user-defined buffers that we
define are two-dimensional integer arrays. The
first dimension represents the number of chan­
nels used by the sweep and the second dimension
is the number of samples transferred per
channel. While a sweep is active, each REAL-11/
MNC buffer called by that sweep is always in at
least one of the following four states:

in the device-transfer state, when the
software is transferring data to the
buff er
in the user-processing state, when the
user program is processing data in the
buffer
available for the device-transfer state
and located in the device queue.
available for the user-processing state
and located in the user queue.

Furthermore, the sweep uses a forty-word
sweep-information array that contains values
that the REAL-11/MNC software uses to control
and execute the sweep. The user-defined buffers
must be managed very carefully so that the sweep
executes successfully. The digitization program
must perform certain procedures by calling sub­
routines in a very specific order.

our main program for digitization is thus
organized as follows:

- We first define IBUF(40), sweep-informa­
tion array, and I0(4,200), Il(4,200),
I2(4,200) three user-defined buffers.
An iteration on three buffers is
required to simultaneously digitize at 8
Hz and store the results on a disk.

- We establish, assign identification num-

74

ber, and place these buffers in the
user-processing state by calling
SETIBF(IBUF,IND,,IO,Il,I2).

- We call RLSBUF(IBUF,IND,0,1,2) to remove
buffers O (IO), 1 (Il) and 2 (I2) from
the user-processing state and to place
them in the device queue.

- We call XRATE(OOELL,IRATE,IPRSET) with
DWELL desired intersample interval,
IRATE computed clock rate, IPRSET clock
preset value, and CLOCKA (IRATE,IPRSET,
IND) with IND success or failure code,
to set the rate of the clock and, there­
fore, the rate of digitization.

- A call to ADSWP(IBUF,800,NBUF,MODE,
IPRSET,,,0,4) irrunediately initiates an
A/D input sweep through the A/D conver­
ter. The analog input word placed in
the buffer consists of twelve data bits
read from the A/D converter.

MODE is the sum of the code for gain, data
representation, sweep start and sampling. We
choose MODE=l6 to have a gain of 1, to start the
sweep irrunediately, to perform a channel sweep on
each clock overflow, and to return only the
twelve bits of the A/D converter by forcing bits
15 to 12 to zero. NBUF is the number of buffers
to be filled. NBUF=300 allows to digitize two
hours of a signal at 8 Hz.

- After buffer 0 (IO) is filled, the REAL-
11/MNC software removes it from the
device-transfer state and places it in
the user queue. It then removes from
the device queue buffer 1 (Ill, the next
available buffer in that queue, and
places it in the device-transfer state.
Buffer 2 (I2) remains in the device
queue.

- A call to IWTBUF(IBUF,,IBUFNO,IND) re­
turns IBUFNO, number of the next buffer
available in the user queue (0 (IO) in
our example) and places it in the user­
processing state. While the sweep con­
tinues transferring additional data from
the A/D converter to the buffer in the
device-transfer state (1 (Il)), the pro­
gram reads the data from buffer 0 (IO)
and writes them in a file on the hard
disk.

- When all data have been written, a call
to RLSBUF(IBUF,IND,IBUFNO) releases buf­
fer number IBUFNO (IO) and places it in
the device queue. The same process is
then repeated until NBUF buffers are
filled.

II. Filtering
To isolate each type of activity, we need

to filter the raw signal obtained after digiti­
zation. Therefore, we have designed various
digital filters. The general process of design­
ing a digital filter involves several steps:

- choosing a specific structure in which
the filter will be realized.
Solving the approximation problem to de­
termine filter coefficients that satisfy
performance specifications.
verifying by simulation that the result­
ing design meets the given performance
specifications.

A program based on the Remez Exchange Algo-

rithm is used to design specific Finite Irrpulse
Response (FIR) passband/stopband filters (2).
Each digital band-pass filter is characterized
by:

1. the filter duration, also called length
of the filter, which is an odd integer
to maintain linear phase.

2. fpl, fp2, fsl, fs2, passband and stop­
band cut-off frequencies. By conven­
tion, fp and fs are expressed in units
of normalized frequencies, which are
the actual signal frequencies divided
by the sampling rate. Because of the
Nyquist sampling theorem, the normal­
ized frequency axis extends from 0.0 to
0.5.

3. the desired frequency response, 1 in
the passband area and 0 in the stopband
area.

4. The weighting function:
- 1 in the stopband area
- k=d2/dl in the passband area with

20log(l+dl) representing the pass­
band ripple or deviation in dB, and
20log(d2) being the stopband ripple
or attenuation in dB.

We always choose dl=d2=1.
A 40 dB attenuation means that the

filter suppresses 99% of the original
amplitude, and leads to a 2.5 dB deviation.

If the amplitude of the original signal
is AMO and the attenuation in the stopband
is AT'r, the amplitude of the filtered
signal AMF in the stopband will be:

AMF = AMO/F with F verifying AT'r =
20log (F). In the same manner, if the
amplitude of the original signal is
AMO and the deviation in the passband
is DEV, the amplitude of the filtered
signal AMF in the passband will be:
AMF=AMO/F with F verifying
DEV=20log(F).

Several tradeoffs exist among these design
parameters. Obtaining low values of dl and d2
requires increasing the length of the filter. A
length of 127 is generally required to approxi­
mate sharp cutoff filters, although a large
value of N increases the number of additions and
multiplications that the computer has to do and
therefore slows down the process.

The output of each digital filter is calcu­
lated using the equation below. If N represents
the length of the filter, H the array containing
the coefficients of this filter, and 1 the array
containing the input values, then each element
of the output array 0 is defined by:

k = N
0 (z) = L I(k+z-N)*H(N-k+l)

k = 1
or because of the syrrmetry of the filter

k = N
0 (z) = E I(k+z-N)*H(k)

k = 1
Two different band-pass filters are used to

isolate the slow activity and the fast activity;
a separate processing is done on the output of
these two filters.

III. Peak-processing analysis
A peak-processing analysis is done to

analyze the slow waves in the signal.

75

Peak-processing analysis consists in
detecting significant fluctuations, called
peaks, in data describing a waveform, and
reporting definitive characteristics for
each peak found. This type of analysis is
done by using a peak-processing subroutine
from the Digital Laboratory Subroutines
Package (3). The peak-processing algorithm
is a procedure to detect increasing and de­
creasing trends in the set of data. Output
from this PEAK subroutine is directly re­
lated to the points where changes in these
trends are observed. When an increasing
trend is seen, the point where the increase
begins is labeled the start of the peak,
and its value the leading minimum height.
The point where a subsequent decreasing
trend begins is the crest of the peak, and
its value is the crest height. The point
where the decreasing trend stops is taken
as the end of the peak, and its value
called trailing minimum height. Input to
this subroutine must be a series of dis­
crete positive integers corresponding to
values of the signal at evenly spaced
intervals. The peak-processing algorithm
first takes a linear average of input-data
points. The number of points to be
averaged, called Original Point Density
(OPD), has to be specified by the user.
The averaged data points can then be fil­
tered with an internal digital filter.
Since our data have already been filtered,
we do not use the optional filter, and
choose OPD=l to suppress the averaging. In
our case, a greater value for OPD has for
effect to smooth the data and prevent the
detection of important peaks. Even though
the original signal has been smoothed by
the digital filter, the resultant data
points may still exhibit slight point-to­
point fluctuations unrelated to the domi­
nant trend of the data. Three parameters,
the baseline test factor, the gate factor,
and the minimum increase, can be set so
that the algorithm eliminates much of the
effect of these fluctuations. The subrou­
tine is called as follows:
CALL PEAK(ITABLE,INPUT,INLAST,INPTR,OUTPUT,
IDIMO,NPEAKS)
(a) !TABLE is a 79-element integer array

used to store intermediate results and
other information required by the
algorithm. The first five elements
are the algorithm variable parameters:
- ITABLE(l), Original Point Density,

is chosen to equal 1.
- ITABLE(2) is the baseline test
factor; on a peak with a width of WD,
baseline detection begins at time WD x
ITABLE(2) past crest time. We choose
ITABLE(2)=1. A greater value would
delay baseline detection, so every
peak detected would be wider, but some
peaks would be missed.
- ITABLE(3), gate factor, specifies a

valid directional trend in terms of
the number of changes in direction
over a series of filtered points.
We choose ITABLE(3)=3. A smaller
value would allow the detection of

very small amplitude peaks that we
consider as insignificant fluctua­
tion. Thus, the algorithm would
detect fewer peaks if ITABLE(3) was
further increased.

- ITABLE(4), Minimum Differential be­
tween data points that would be in­
terpreted as a real increase by the
algorithm, has similar effects than
ITABLE(3). After trying several
values in the range from 1-7, we
chose ITABLE(4) =l.

- ITABLE(5) is fixed at 1, so that
the output is a single precision
floating point. Double-precision
would be obtained with
ITABLE (5) =-1.

(b) INPUT is a 1,000-element array con­
taining input data.

(c) INLAST specifies subscript of last
data element in INPUT; it is set at
1,000 at the beginning of the program.

(d) INPTR specifies subscript of last ele­
ment in INPUT processed; it is set at
O at the beginning of the program.

(e) OUTPUT(l0,100) is the output array,
and in particular:
- OUTPUT(2,N) crest height, Nth peak
- OUTPUT(3,N) crest time, Nth peak
- OUTPUT(4,N) leading minimum height,

Nth peak
- OUTPUT(5,N) leading minimum time,

Nth peak
- OUTPUT(7,N) trailing minimum

height, Nth peak
- OUTPUT(8,N) trailing minimum time,

Nth peak
(fl IDIMO=lOO specifies the number of peak

data sets that can be stored in
OUTPUT.

(g) NPEAKS is the number of peak data sets
already stored in OUTPUT.

We split the filtered file into continuous
sets of 1,000 elements each. Every set becomes
successively the input of the PEAK program, and
the characteristics of all the peaks found are
stored in a first file (Fl). We noticed that if
a significant peak was located at the end of a
set and the point where the decreasing trend
stopped was located at the beginning of the fol­
lowing set, no end of peak was detected by the
subroutine and, therefore, the peak was not de­
tected. For identical reasons, a significant
peak located at the beginning of one set could
sometimes remain undetected. To avoid missing
these peaks, an overlapping of 500 elements is
done, and the peaks found are stored in a second
file (F2). A third file (F3) is then created by
merging Fl and F2 and deleting one of each peak
corranon to both Fl and F2.

For each remaining peak, the following
parameters are then calculated and stored:

(a) width of the peak
W(N)=OUTPUT(8,N)-OUTPUT(5,N)

(b) relative amplitude of the peak
A(N)=OUTPUT(2,N)-(OUTPUT(4,N)+oUTPUT(-
7 ,8))/2

(c) an approximation to the area under the
peak, called triangulation and being
the area of the triangle: beginning
of peak I peak I end of peak.

76

(d) the instantaneous frequency of each
peak, which is the inverse of the dis­
tance expressed in seconds between one
peak and the previous one.
IF(N)=I/(OUTPUT(3,N)-OUTPUT(3,N-I))

We then average and calculate the standard
deviation of these parameters for different win­
dows of the filtered signal.

IV. Spikes analysis

Spikes analysis involves eliminating the
slow fluctuations of a signal, detecting only
its fast variations called spikes, and quantify­
ing the activity of each burst of spikes. A
data point is considered to be a spike if its
amplitude is greater or smaller than the thresh­
old defined as the mean of the filtered signal's
values plus or minus 1.4 times standard devia­
tion. This value was selected because lower
values of the threshold prevented the separation
of spikes from noise. Two consecutive spikes
are part of the same burst if the distance sepa­
rating them is less than two seconds. For each
burst of spikes, we calculate and store its dur­
ation, its activity, and its instantaneous fre­
quency. If:

then:

ibeg(n)
iend(n)
A(i)
RMEAN
DUR(n)
ABS(Y)
IF(n)

DUR(n)

time beginning of burst n
time end of burst n
amplitude of point time i
mean of the signal's values
duration of burst n
absolute value of Y
instantaneous frequency of
burst n

iend(n) - ibeg(n)

i=iend(n)
ACT(n) = I: ABS(A(i)-RMEAN)

i=ibeg(n)
IF(n)=l/(ibeg(n)-ibeg(n-1))

We then average and calculate the standard
deviation of these parameters for different
windows of the filtered signal.

RESULTS

Figure 1 illustrates an example of our re­
sults. Figure lA represents a raw electrical
signal, while Figures lB and lC represent the
processed signals. The position of each peak is
marked with a •+• on the graph. The beginning
of each burst of spikes is marked with a"+",
its end is marked with an "x".

CONCLUSION

Peak-processing and spike analysis of short
tracings seemed at first easy to perform by
"eye-balling" the tracings. However, the compu­
ter was needed to achieve objective and quanti­
tative analysis of large amounts of data. By
combining locally-developed programs, software
packages and by trial and error, this method
provided a precise and objective measurement of
the two types of myoelectrical activity, thus
allowing comprehensive analysis of the electri­
cal activity of the stomach.

REFERENCES

1. Real-11/MNC Fortran Programmer's Reference
Manual. Digital Equipment Corporation,
Landover, MD, 1982.

2. Theory and Application of Digital Signal
Processing. Lawrence R. Rabiner and
Bernard Gold. Program written by Jim
McClellan, Rice University, 1973:194-204.

3. Laboratory Subroutines Programmer's
Reference Manual, Chapter 2, Digital
Equipment Corporation, Landover, MD, 1982.

77

.,
.~
c: .,

.t:.
0

" ::;

612~~~~~~~~-,-~~~~~~~

476

340

204

68
o~

1000r-.-r-r--r--r-r-r-r--r-r-~-r-.---.--r-r-i

800

600

400

200

o~~~~~~~~~~~~~~~~

120

60

0 N-4tllttllttMiillllfll~Nllt
-60

-120

1000~-.~--.-~~-..-.-~-..-~~~

800

600

400

200

0 ~~~~~~~~~~~~~~~~
0 60 120 180

Time in Seconds

Time Beg.
peak (5)

6.0
27.0
47.0
67.0
85.5

104.5
123.0
140.0
157.0
178.0

Time Beg.
peek(s)

6.0
25.5
46.0
67.0
84.5

107.5
125.5
139.0
150.5
161.5
176.0

Time Beg.
burst fs)

8.5
18.9
36.9
56.1
74.9
92.5

112.6
128.4
146.6
164.5

Rel.Amp!. Triang. Inst. Freq.
paak(mg) (mgxs) (per min)

434 9273
492 9795 2.86
366 7462 3.00
348 6224 3.00
411 7759 3.24
422 7127 3.16
342 6128 3.24
366 6388 J.53
429 8318 3.53
301 5420 2.86

Rel. Ampl. Triang. Inst. Freq.
peek (µV) (i.iVxs) (per min)

171 3518
207 2924 3.08
174 3480 2.93
167 3410 2.86
249 3968 3.43
120 1246 2.61
166 3162 3.33
67 754 4.44
82 1002 5.22
37 320 5.45

194 3566 4.14

Rel. Ampl. Triang. Inst. Freq.
burst{s) (µV) (parminl

9.4 212
20.4 629 5.78
40.0 787 3.33
59.3 851 3.12
78 0 878 3.20
96.1 1138 3.40

114.4 696 2.98
132.0 1315 3.81
149.9 1027 3.29
168.1 1139 3.36

Figure 1: Example of mechanical (A) and myoelectrical (B,C,D,) gastric

activities. On the left are the digitized signals: A and B are the

output of the low-pass filter processing using the peak program, C is

the output of the band-pass filter processed using the spikes

program. The tables on the right of the tracing A, B, and C

represent the parameters calculated for each event.

78

BASEWAY IMPLEMENTATION ISSUES

Daniel J, Drislane
Digital Equipment Corporation

Rochester, New York

ABSTRACT

Baseway is a software product set from Digital
Equipment Corporation that allows manufacturers

maximum flexibility and expandability in
connecting industrial controllers to manufacturing

applications. Application programs and plant
personnel are then allowed easy access to data

originating on the factory floor through
industrial devices such as programmable

controllers, robots and numerically controlled
machine tools. Baseway software also provides a
well defined information management architecture

whereby many applications may share data and send
messages to one another as well as to devices on

the factory floor. Implementing Baseway in a
factory environment represents a significant step

towards Computer Integrated Manufacturing.
Consequently, there are many issues that must be

addressed to ensure successful implementation.
The diverse family of devices that can be computer

integrated, potential manufacturing applications
to be used and performance considerations

are discussed.

INTRO DUCT ION

The Baseway software product set can be
considered an architecture that serves two
important functions: (1) data acquisition
and control of manufacturing processes and
(2) implementation of manufacturing software
applications. The most notable feature of
the architecture is that it allows the above
two functions to work together by enabling
powerful high-level applications to collect
data from a manufacturing process, make some
decisions and/or interact with a user, and
then perhaps effect control of that same (or
another) manufacturing process.

into the plant MIS environment completes the
scenario. Distributing data to these
disparate devices, or collecting data from
them to send to powerful applications, is a
monumental problem for manufacturers.
Implementing Baseway is a move in the right
direction.

The product set (there are two) addresses
the needs of the manufacturer who wishes to
implement a hierarchical manufacturing data
acquisition and control system. The
environment that Baseway addresses is
usually a collection of various industrial
devices such as programmable controllers,
robots, numerically controlled machine tools
and barcode wands. These devices are
connected to a computer that "commands" the
industrial devices and perhaps the same or a
separate computer provides a user interface
and runs application program tools that
collect and use factory floor data. All of
this operating in a distributed environment
(factories lend to the distributed
processing theory) and classically linked

Proceedings of the Digital Equipment Computer Users Society

79

PRODUCTION
MONITORING"

PROGRAMMABLE

MAINTENANCE QUALITY
MANAGEMENT CONTROL• PDS MRP•

BASEWAY APPLICATION BUS

SHOP FLOOR
GATEWAYS

CONTROLLERS: ROBOTS.
NC

MACHINES

BAA
CODE

READERS NETWORKS

ENERGY •
MANAGEMENT

PROCESS
CONTROLS"

FIGURE 1, Baseway Software Architecture

Dallas Texas - 1986

The Baseway architecture, illustrated in
Figure 1, makes the sets of rules in
implementing a manufacturing software system
kPown to you. However the task of
implementation within such harsh, unfriendly
environments demands a carefully thought-out
plan. Understanding the function of the
Baseway product family is necessary before
such a plan is drafted.

What Is Baseway?

The Baseway software product family consists
of two components [1 , 2]: (1) the Baseway
Applications Bus is an applications
processing and data management program that
runs in a VAX/VMS standalone, cluster or
DECnet environment; (2) the Shop Floor
Gateway is a real-time data processor that
acts as an industrial controller interface
and is able to send and receive data to and

BHIWI~ App, Bu1

MicroVAX
II

Hlchine Tool1 Pro~rlfllMlb l 1
Control l1r1

Robots, etc.

FIGURE 2, Sample Hardware Configuration

from Baseway applications as well as execute
polling operations. The Shop Floor Gateway
executes on any 22-bit PDP-11 and runs in an
RSX-11S memory-only environment. Therefore,
the Shop Floor Gateway software is built on
the VAX (using the VAX/RSX Application
Migration Executive) and downloaded via
DECnet to the appropriate PDP-11 (2]. A
typical hardware Baseway configuration is
illustrated in Figure 2.

The Baseway Applications Bus software also
provides a number of menu-driven,
ready-to-use facilities that provide useful
functions such as:

o Programmable Device Support - a utility
that allows you to upload and download
programmable controller logic programs,
store those programs in disk-based
libraries on the VAX and even perform
comparisons of running logic programs
with its stored copy. There is also

80

logic program documentation/annotation
capabilities.

o .Application Control - allows you to
start applications in the Baseway
environment, and more importantly,
provides for an orderly shutdown of the
application if it encounters run-time
problems.

o Definition Editors - allow you to define
users, their operating privileges,
device registers (or memory locations),
Shop Floor Gateways (there may be more
than one), ports or lines and polling
sets.

So what are the rules of machine
integration; of implementing applications;
of data management? And specifically, what
must you consider when installing Baseway?
To start, consider the environment.

YOUR SHOP FLOOR

Manufacturers who have made steps towards
automation are committed to employ advanced
control devices on their factory floors.
Programmable controllers are in their second
decade of use and have advanced considerably
in processing capabilities, speed and I/0
capacity. Computer Numerical Control has
risen to new heights in versatility and
operation of machine tools. Robots are
displaying increasingly wider applicability
with enhanced capabilities in vision,
programmability, communications,
repeatability and payload. These industrial
wonders populated about the shop floor are
sinks for critical, invaluable information.
They hold in their memories process data,
tolerance measurement results, product
tracking information. Information that
often times is difficult -- even impossible
-- to obtain in any meaningful way.
Opposite to obtaining this desired
information is the sending of equally
important information. Downline-loading of
logic programs to PLCs, part programs to NC
machine tools, path programs to robots, and
routing information to conveyor systems are
key components of automated manufacturing.
Employing the features of Baseway software
will facilitate these operations.

PROVIDING SUPPORT FOR DEVICES

A design feature of the Baseway Applications
Bus ("Applications Bus") and the Shop Floor
Gateway ("Gateway") is that they provide the
manufacturer with the "hooks" for connecting
new devices or providing total
communications support for a device.
"Providing support" means developing the
total communications support for an
industrial device. Communications support
in Baseway requires that a device is
integrated at the following levels:

o physical communication - providing a
line or device driver to execute in the
Shop Floor Gateway.

o functional 1/0 support - defining the
necessary device 1/0 function codes to
operate the device. This is the
responsibility of the Shop Floor
Gateway's Device Interface Module (DIM),
which will be explained later.

o generic 1/0 support - providing the
application programmer with a common
device access interface at the
Applications Bus level [1].

The Gateway's primary component for device
integration is the Device Interface Module,
or DIM [1]. DIMS define the functional
characteristics of each device to be
integrated. The Bus components consist of
the Device Definition file and high level
device access (i.e. read/write) and control
(i.e. start/stop) programs that
applications will use when communicating to
each device. The key device support
components are illustrated in Figure 3.

------------------------------' EASEWAY APPLICATIONS EUS 1

D1vic1 D1f,
Fill

Basew1~ Obj1ct Libr1r~

Div ice Acc111 I
Routin11 J ,

I I

I - - - - - - - - _ - __ - -,..-.. - - - - - - - - - - - - • - I
I I
I I

~---------LJ----------,
I SHOP FLOOR GATEWAY :

I

D1vic1 Int1rhc1
Module

FIGURE 3, Primary System Device
Support Components

The Baseway Applications Bus V1 .1 and Shop
Floor Gateway V1.1 currently supports
Allen-Bradley Data Highway (tm) and
programmable controllers (PLC-2, PLC-3).

Gould Modbus (tm) and programmable
controllers (384, 484, 584) are also
supported [6]. Texas Instruments
Corporation provides separate Baseway/Shop
Floor Gateway support for for their PM
programmable controller line and Tlway (tm)
network. These controllers are supported
utilizing DIMs, device access programs and
definition files.

Providing device support requires that you
know the device fairly well. Essentially,
two things must be considered when

81

integrating a device: communication and
functionality. Ask two questions when
considering supporting a device in Baseway.

o How does it communicate? The specific
communications interface and how it will
be connected to a computer host
(point-to-point, multi-drop, etc.) must
be defined. Many devices come
configured with various communications
options supplied by the device vendor.
RS232C is a popular standard for remote
host communication, but don't assume
that this is the supplied interface.
The device could support RS422 as well,
or perhaps a parallel interface.
Protocols are to be considered as well.
Protocols vary across the wide spectrum
of industrial controllers for different
reasons. In some cases, industrial
controller makers might offer network
hardware and software enabling their
controllers to communicate with one
another and possibly a host.
Allen-Bradley's Data Highway (tm) is one
such example that connects their PLCs
(slaves) in a multi-dropped
configuration to a PDP-11 host (master).
Determine the most desirable method of
communication configuration (if you have
a choice) of the devices you wish to
integrate into Baseway.

o How functional is it? Another way of
asking this question is, "How capable is
the device of providing a true remote
interface?" For example, devices that
allow 15 local operations to be
performed at the local console but allow
only 5 to be performed remotely could be
considered minimally functional from a
remote source. It is possible that the
desirable control features that you
expect can be influenced from a Baseway
environment are not possible.

Consider as an example the following:
you plan to have a custom Baseway
application "talk" with a family of
robots. The application's purpose is to
upload and download path programs to
various robots at certain times or when
certain events occur. A desirable
feature is that you want the application
program to query a particular robot for
a directory of resident path programs.
A problem arises because the robot's
communications interface is incapable of
reporting such information.

Reasons for this limit in remote
functionality are many. An
understandable one is that of safety:
makers of programmable machinery don't
want uncontrollable sources to turn
their equipment on at the wrong time
resulting in human injury. Whatever the
reason, you must examine the
functionality of each device and
determine if it is capable of doing what

you want it to do. Baseway can only
collect information that is capable of
being reported.

Once you know how functional a device is,
you can then design the device's Device
Interface Module, develop any necessary
Applications Bus device specific routines
and update the device definition files to
include the new device.

As previously stated, the Gateway supports
two programmable devices as delivered by
Digital: (1) Allen-Bradley PLCs (the PLC-2,
PLC-3); (2) Gould PLCs (384,484,584); it
also supports most ASCII and barcode
devices. It is capable of supporting much
more, including robots, additional PLCs, NC
machine tools and process controls. The
Gateway currently supports the DZ11
communications interface for Unibus PDP-11
systems and the DZQ11 for Q-bus PDPs. By no
means are you limited to these two
interfaces. For example, in supporting a
device you may wish to collect data at a
rate faster than that of the DZ11 (9600
bits/sec). Selecting a KMS11 for
synchronous transfer of data at 56,000 bits
per second might be more suitable in this
instance. You do not have to limit your
throughput capabilities to 9600 baud. Be
aware, though, that the interface you choose
is compatible with the device. Looks can be
deceiving.

THE APPLICATIONS YOU'LL USE

Programmable Device Support, which is part
of the standard Baseway shipped from
Digital, is one example of an application
that takes advantage of the Applications
Bus. It utilizes various Bus facilities to
read and write data to programmable
controllers, to upload and download logic
programs, and to compare logic programs
resident in a PLC with those resident in
libraries on the VAX.

Programmable Device Support is not the only
application that may run in a Baseway
environment. Custom applications may be
written to take advantage of the data
acquisition and control capabilities of the
Applications Bus and the Gateway.

What Is An Application?

In a Baseway environment, an application can
be considered as any set of programs and
VAX/VMS processes running in a VAX/VMS
environment that are (1) known to Baseway
(via the Baseway application editor) and (2)
utilize Baseway facilities. Putting it
simply, programs that utilize some of the
more than forty Baseway programming
subroutines are Baseway applications.
Applications might also share data gathered
from shop floor devices. Most applications
utilized in a Baseway environment will be

82

custom applications, examples of which
follow:

o QUALITY CONTROL MANAGER - monitors a
automated mixing process by polling PLCs
based on a predefined timing formula to
read critical process values such as
pressure, composition, temperature or
measurements such as critical tolerance.
This polled data is collected from a
programmable controller's registers and
either sent to a file for subsequent use
by an analysis program or analyzed
immediately. The application determines
if the process was within specification.
The application then orders the mixing
process either to continue to abort.

o ALARM MONITOR - monitors various points
in a group of machines for correct
operation. Each machine sets a status
bit when abnormal operation occurs. The
Alarm Monitor polls these status bits
continuously to detect change, and once
change occurs, begins a notification
process. Notification is enabled via
audible alarms on video terminals along
with status information displayed in the
shop maintenance department.

0 FLEXIBLE PATH MANAGER - part of a
Flexible Manufacturing System (FMS),
this application stores and manages
robot path programs for all robots
plant-wide. The FMS requires different
robot paths programs to be downloaded to
different robots at specified times or
even when certain events occur. The
application uses the Applications Bus to
download the appropriate path to the
appropriate robot.

Applications can be as simple as collecting
data and populating a sequential file. But
they may be complex applications that
collect data, analyze it, converse with
users and other applications or systems, and
access large databases on remote systems.
Baseway applications may run across a
VAXcluster environment or even a DECnet
network. In this case, the Applications Bus
software would be installed on each CPU
running a Baseway application.

In some cases, you might already use a
manufacturing-related software package.
Possibly you are presently evaluating

software offered by third party software
developers. Packaged software such as
Material Requirements Planning (MRP),
Inventory Control, Work In Process (WIP)
Tracking are popular and useful tools in
manufacturing management. There are many
third party software vendors that sell
VAX/VMS-based manufacturing software. Is it
possible to integrate these packages with
Baseway? It depends primarily on two
factors: (1) Is source code available from
the vendor and/or, (2) does the vendor offer
a customizable facility or application

calling feature? There must be a means for
the vendor's software to call the
appropriate Baseway subroutines.

To examine this notion more closely, as an
example consider using a third party
statistical analysis program. You'd like to
use the Applications Bus to access
information required by the program. A key
function that would be necessary is
reading/writing to the database. Once
you've collected the data from, say, your
PLCs, you'll want to write this into the
statistical program's database. Therefore,
"middle-man" programs must be developed that
will use the Baseway read subroutines to
access the data and then use the statistical
program's database write subroutines to
enter the data into the database. This
"middle-man" program is actually a Baseway
application utilizing Baseway access
subroutines to perform the widely varied I/0
to the PLCs.

The Applications Bus library of over forty
subroutines supports the VAX/VMS calling
standard. The Applications Bus supports VAX
languages: PASCAL, FORTRAN, COBOL, PL/I, C,
Basic and Bliss-32.

How Does A Baseway Application Work?

A custom Baseway application can operate in
many different ways according to the
specific needs of the plant. Most Baseway
applications, though, have a few similar
characteristics. Almost all will be
performing shop floor device access and an
equal number will use the Baseway messaging
and polling facilities.

Polling is accomplished by defining a
"polling set" to Baseway. The polling set
consists of information such as which device
to poll, what memory locations, the polling
interval and the destination Baseway message
port that polled data will be sent to.
Though polling operations with Baseway can
be quite sophisticated, polling is simply a
read operation that is carried out by the
Shop Floor Gateway to determine if a
specific memory location has changed in
value.

The polled message port is usually
controlled by a user written program called
a Data Processor. The Data Processor is a
data sink that is actually part of an
application. It s purpose is to wait for
polled data and when it arrives, to dispatch
it to other application processes that will
analyze it or display it.

It is here that the Baseway messaging
facility earns its keep. The Data Processor
may send and receive application-specific
messages and data using Baseway subroutines.
An advantage to Baseway messaging is that
messages are routed to logical message
ports, possibly in a VAXcluster or DECnet

83

environment.

Other application processes may wish to do
deliberate device access such as stopping a
robot, downloading a programmable controller
or reading a status register in a machine
tool.

UHr lnttrhct ~

I D1tlb111 S1rv1r I

I
BASEWAY APPLICATIONS BUS

FIGURE 4, Sample Application

Baseway applications may perform a variety
of functions within a flexible VMS
environment. An example of a Baseway
application represented in functional blocks
is shown in Figure 4. The Data Processors
are waiting for polled data to arrive in
their message ports as defined by various
polling sets. Each Processor sends its data
to other areas of the application for
further (perhaps more time consuming)
processing. The Data Analyzer interprets
the meaning of each message and interacts
with a database server and a user interface
process that drives terminal screens and
manages a user session.

As you can see, an application doesn't have
to exist as one VAX/VMS process, nor do the
functions illustrated in Figure 4 have to
execute on the same VAX. Baseway accounts
for all application processes with its
Application Control facility. Each part of
an application may communicate with other
parts via the Baseway messaging facility.
Additionally, separate applications may
communicate with each other. Figure 5
illustrates various communication scenarios.
A Baseway application running on Node 1 can
communicate quite readily using Applications
Bus messaging with a sister application
running on Node 2 (see I). Similarly,
processes belonging to the same application
may communicate to each other across a
DECnet network or VAXcluster (see II). As
shown in Figure 4, Figure 5-III shows
processes executing on the same node
communicating with each other. Baseway
provides the flexibility and frees you from
managing many VMS mailboxes. Separate
applications are often desirable for
variable Baseway application control.

Appl ic1tion
11Au

Node 1

Applic1tion
uAu

Node 1

Application "A"

Process ,____.
11A11 ~

Noda 1

Application
11s11

Node 2

Application
nAn

Noda 2

FIGURE 5, Baseway-supported Communication

What Programming Skills Do You Need?

Designing and developing Baseway
applications are probably no more difficult
than designing any other VAX/VMS application
program of medium complexity. Good
programming practice works miracles.
Besides being familiar with Baseway concepts
and operation, a working knowledge of
VAX/VMS programming features is a must.
Utilizing VMS Run Time Library routines,
System Services, RMS, AST operation and the
Lock Manager serve to enhance the power and
functionality of any application, let alone
one running in Baseway. Knowledge of one of
the Baseway supported VAX-11 languages
(mentioned earlier) is necessary [3,5].

Skills and knowledge that would prove to be
a bonus are:

o VAX/VMS Global Sections

o VAXclusters

o DECnet Concepts

o Real-Time Programming Experience

o VAX/VMS Products: FMS, ACMS, Rdb

The skills necessary are not extraordinary
for the application programmer. A key skill
that has not been mentioned is knowledge of
the actual shop floor device. That's the
advantage of Baseway! You, as the
application programmer, are freed of that
burden. Once support is provided for a
device (or if it's already a Digital
supported device), the application
programmer need not worry about device
attributes, protocol peculiarities, native
operation, etc. Baseway provides high-level
subroutines to access these devices.

How Valuable Is Your Data?

84

Data that originates on the shop floor as a
result of a process or event can be
insignificant or very important. It's up to
the manufacturer -- specifically, the
production engineers, quality engineers and
plant foremen -- to determine the importance
of data. In a computer-integrated
manufacturing environment, this issue is
addressed at the manufacturing applications
level. Ask yourself the following:

0 what data must be collected?

0 when does it need to be collected?

0 where does it originate?

0 when is it created?

0 how is it to be used?

0 who is it to be used by?

0 how long is it to be kept?

This will help you establish how valuable
your data is. The Applications Bus allows
data collected from a single source to be
sent to more than one calling application.
Data Processors, previously described, can
exist to receive data from polled devices
via the Gateway and then dispatch that data
to one or more applications.

Alternately, in the case of utilizing a
database (Figure 4), Data Processors might
be responsible for write accessing the
database. A separate program, utilizing the
Applications Bus messaging fa~ility ~nd the
VAX/VMS Lock Manager, can notify various
applications that the data has been placed
in the database and is available.

Helpful Hints

Like most software systems, there are tried
and true practices in Baseway. A few "steps
in the right direction" follow:

o Data Processors should be separate
detached VMS processes that take
advantage of: large working sets,
process priority and resource locking.

o Use the handle argument in the device
access Baseway subroutines to avoid
additional disk I/O when accessing
devices repeatedly. Use of the defined
handle will cause Baseway to reference a
configuration global section instead of
a disk file.

o The Baseway messaging facility supports
both temporary and permanent message
ports. Use the permanent ports for
unplanned, critical events and priority
data. Use temporary ports for processes
that hibernate or have secondary
processing chores.

o Use the Baseway allocate/deallocate
routines when uploading and downloading
programs to shop floor devices. This
will lock the device until it has the
proper program to run.

o Take advantage of the Baseway logging
facility to record significant events.

o When creating Baseway message ports, use
the message size and queue size wisely
to keep VMS process BYTLM economical.

PERFORMING WITH BASEWAY

A successful implementation of Baseway
requires that you examine the environment it
will operate in and design the system
accordingly. An often abused term used to
describe the success of a computer system,
no matter the size, is performance.
Definition of performance is ambiguous in a
computer environment. To folks with a
computer engineering bent, things such as
instruction time, I/0 latency, and seek time
are parametric to discussing performance.
But to most of us, performance is a synonym
for Response Time, the naked time between
the release of the RETURN key and the
display of the requested data on the screen.

This is perhaps a too simple definition but
one that is central to a successful Baseway
implementation. This paper does not intend
to present a tried-and-true formula for
performance in utilizing Baseway, but to
raise important issues that one should
consider when implementing Baseway.

Questions To Ask Yourself

There are performance considerations for
both the overall VAX/VMS based load, and the
load placed on the system by the
Applications Bus and any Baseway .
applications. We also should consider the
PDP-11s, acting as Gateways. Ask yourself:

o how many progranunable devices will be
accessed (integrated)?

Knowing what progranunable devices.will
be accessed and how many of them is
helpful in sizing and configuring the
Shop Floor Gateway PDP-11. Two
important sizing parameters of concern
are memory and the number of I/0
interfaces. This has to do with Gateway
saturation, which is further discussed
in the next criterion.

o for each device, what is the
"conununications profile?"

The conununications profile of a
progranunable device can be defined as
follows:

85

* how many points (registers, memory
locations, status bits, etc.) will
be defined?

* how often will these points be
polled, read or written to?

* are file transfers (uploads,
downloads of programs, data, etc.)
done often, and how big are the
transfers?

* what speed is the conununications
link between the device and the Shop
Floor Gateway?

* is it part of a industrial local
area network (data highway, etc.) or
a standalone device?

Of course, it's impossible to answer all
of these questions. But giving thought
to them will help you size your Gateway
systems better. Perhaps the most
critical factors are the first two,
collectively impacting the Gateway
processing saturation point. Generally,
a Gateway responsible for polling 2000
points distributed among 125 PLCs every
5 seconds will be much "busier" than one
who must download 1000 foot NC part
programs to 5 machine tools every half
hour. Study the role of each device
that will be integrated, what
environment it exists in, and
of information it will hold.
the factors that will deem it
busy device or a loner.

what kind
These are
either a

o across the entire device population, how
many known points will there be?

Consider how many known points (status
registers, words, coils, trigger bits,
etc.) will be defined to the Baseway
system. The sum of these points
represents the potential polled data
load across the Baseway system. Of
course, polling is only one operation
that might be occurring at any one time.
Data reads and writes (i.e. uploading
and downloading) make up the balance of
the I/0 tasks performed by the
Applications Bus and the Gateway.

o what other software products will be
used?

This question is posed as a reminder to
those installing Baseway on a presently
utilized VAX. This issue is more global
in scope, addressing general performance
of VAX systems in various environments.
Various standard Digital software
products complement the Applications Bus
but also pose an additional processing
load. This should be taken into
consideration when designing for
performance.

o for each application, what is its
"resource profile?"

An extension of the previous question,
Baseway applications generally are free
to allocate the same resources as most
other applications that run in a VAX/VMS
environment. The Applications Bus
utilizes VAX/VMS, DECnet-VAX and VAX-11
FMS. It is up to the application
developer, when designing a Baseway
application, what resources, what
services and what utilities to utilize.
If the application is a third party
package, it is important to obtain from
the vendor the suggested minimum
software/hardware resources that are
used.

o will plant floor design hurt or help me?

Consider the logistical implications of
connecting the population of
programmable devices to the Shop Floor
Gateway PDPs. Shop floor devices and
factory floor design have a way of
making wiring tasks difficult. Be aware
that length/speed requirements will
impact the performance and noise
rejection qualities of the communication
links to the shop equipment.

Performance Hints

Baseway can consume resources if not
properly configured and managed. The
Baseway/Shop Floor Gateway environment in
general is impacted by:

o CPU power and memory utilization.

o Baseway message port activity.

o DECnet logical links.

o amount of polling performed.

o Baseway application resource load.

o Speed and configuration of programmable
device industrial local area networks
that are attached to Gateways.

o Gateway polling interval and rate of
change.

Here are some helpful hints for the
Applications Bus and Baseway applications:

o critical inter-application and
intra-application messaging (high
volume, real-time) should reside on the
same VAX.

o in a DECnet Baseway environment,
applications performing device access
operations should reside on same VAX as
the Baseway configuration global
section.

86

o perform time-consuming
upload/download/compare operations at
non-critical times such as between
shifts. le;using the Baseway editors,
define useful point group associations
that applications may reference.

For the Gateway:

o employ 1MB memory or more.

o use the maximum Gateway message size of
8000 bytes (configured at Gateway
startup time).

o distribute heavily polled devices across
many ports on one Gateway.

o distribute total device population
(total device I/O) across multiple
Gateways.

o poll only as frequently as necessary.

o encourage device programmers (PLCs,
robots) to group related data
contiguously to minimize the number of
discrete polling operations.

SUMMARY

There are many factors that contribute to
the success of implementing Baseway in your
plant. I have attempted to describe the
characteristics of the two Baseway software
products, the Baseway Applications Bus and
the Shop Floor Gateway, how Baseway
applications are written and what they can
do for you, helpful hints on configuring
Baseway-related hardware, supporting foreign
devices and designing applications.

The Baseway environment is complex because
it must solve complex problems in a
seemingly always-customized, user-unfriendly
factory floor. Baseway is a programmers
tool that can do wonders towards developing
a comprehensive man11facturing control system
for the end users, those knowledge workers
in the factory: production engineers, plant
management and plant equipment operators.

REFERENCES AND SUGGESTED READING

[l] Digital Equipment Corp., BASEWAY
APPLICATIONS BUS PROGRAMMER GUIDE, 1985.
[2] Digital Equipment Corp., BASEWAY
APPLICATIONS BUS USER'S AND UTILITIES
GUIDE, 1985.
[3) Digital Equipment Corp., VAX/VMS RUN
TIME LIBRARY ROUTINES REF. MAN., 1985.
[4] Digital Equipment Corp., VAX/VMS REAL­
TIME USER'S GUIDE, 1982.
[5] Digital Equipment Corp., VAX/VMS SYSTEM
SERVICES REF. MAN., 1985.
[6] Digital Equipment Corp., BASEWAY APPLI­
CATIONS BUS SOFTWARE PRODUCT DESCRIP., 1986.

USING MICROPOWERIPASCAL TO IMPLEMENT A
DATA ACQUISITION & ANALYSIS SYSTEM

Paul Brown
Sidlinger Computer Corporation

San Antonio, TX

ABSTRACT
A real-time data acquisition and control system requires interrupt-driven
software to make effective use of computing resources. The
MicroPower/Pascal development environment is a powerful tool for creating
an event-driven, multi-tasking system on a dedicated, inexpensive
microcomputer such as an LSI-1112 or FALCON single board computer.
This paper is intended to serve as an introduction in the use of
MicroPower!P,,ascal in the development of software for concurrent data
acquisition, dt!,ta analysis, device control, and user interfacing.

BACKGROUND

We are supporting a customer who is interested in producing a
benchtop instrument for determining the freezing point of various
liquids. The existing manual testing method is both tedious and
labor-intensive from an operator's point of view. It is expected
that the introduction of the new, automated instrument will allow
the test operators to perform other tasks while waiting for the test
to complete. This paper describes how MicroPower/Pascal was
used to develop the necessary software functions for controlling
the instrument.

An integral part of the proposed instrument is an internal,
ROM-based controller. Several alternatives for implementing the
controller were investigated, including chip-level microcomputers,
single board computers (SBC) and Standard (STD) bus systems.
We suggested the use of a DEC FALCON SBC and software
developed with MicroPower/Pascal (MPP). Initially, DEC
equipment had not been considered because, although the
customer used DEC minicomputers, they had no experience with
non-disk-based DEC computers. Further, they weren't aware that
some DEC board-level products, such as the FALCON and the
AXV-1 lC Analog-to-Digital Converter were available at prices
comparable to those of more primitive SB Cs.

After an initial cost analysis in which the DEC equipment was
shown to be competitively priced, the customer gave approval for
the initial phases of the project. An important factor in their
decision was the question of whether or not the project could be
completed in a reasonable amount of time in a low-level language
on a custom SBC. It was estimated that the development period
would be appreciably shortened with the FALCON/MPP system.
The longer period that was necessary for a "homebrew" system
would have made the project economically questionable.

Software for the FALCON SBC is typically written in Pascal (and
MACRO if necessary) with the MPP system or entirely in
MACRO (assembly language). MicroPower/Pascal was chosen as
the development environment for several reasons:

• The development team was effectively given a
"head start" with the existence of the MPP system
library of procedures and functions that would be
required in any real-time implementation.
Primitive features such as terminal 1/0, real
number support, and prioritized multi-tasking
would require significant lead time to develop.

Proceedings of the Digital Equipment Computer Users Society

87

Additionally, Digital supplies drivers for many
popular Q-BUS devices.

• Software modifications that were required in the
course of development would probably be easier
to handle with a high level language.

• Maintainability of the source code would be
enhanced by the use of a high level language.

• The multi-tasking capability of MPP greatly
simplified concurrent data acquisition and
analysis.

INTRODUCTION

The instrument is planned to be a one-button device. To begin a
test, all you do is insert a sample of the liquid and press the
start/stop button. The instrument will perform the test and report
the freeze point temperature on a display. Testing can be
interrupted at any time by pressing the start/stop button again.

The liquid that is being frozen behaves in a characteristic manner
as shown in figure 1. The freeze point is marked by an inflection
point during the initial freezing and also when the liquid is thawed.
By monitoring the change in temperature over time (the slope of
the curve), the point at which the liquid freezes or unfreezes can be
determined.

IMPLEMENTATION

Figure 2 is a block diagram of the hardware in the instrument.
The AXV -11 is a DEC board with 8 double-ended channels of
Analog to Digital conversion (AID) and 2 channels of Digital to
Analog conversion (D/A). Both the A/D and the D/A have 12 bits
ofresolution. One DIA channel is used to control the power
supply of the cooling unit. A change in output voltage will cause a
proportional change in the temperature of the liquid being cooled.

One channel of the AID is used to take temperature measurements
the liquid. These measurements are made every clock tick (60
times a second in our case).

The FALCON SBC controls the overall operation of the system.
The FALCON is a 16 bit processor with up to 16K bytes of RAM

Dallas Texas - 1986

and 32K bytes of PROM. It has 2 lines for serial 1/0, 24 lines of
programmable parallel 1/0, and 3 real-time clock rates: 50, 60, and
800 Hz. Two user interface functions will be implemented
through the parallel 1/0 ports: a small status/result display and the
start/stop switch.

coo I-

inflection
points

liquid

solid

down reheat
freeze ~temp.~ freeze__.

detection I control I detection

Time•

Figure 1 - Reheat Curve for a Liquid

FALCON

Display

Start/Stop
switch

Thermocouple
AXV-11

~--+t A/D & D/A

liquid

Cooling unit

converter

power
supply

Figure 2 - Freeze Detection Hardware

The software for the system must provide several functions
including temperature control, data acquisition, and freeze point
detection. Figure 3 is a block diagram of the major dynamic
processes in the system. (Figure 3 does not show the static
"control" process which activates each of the processes shown in
Figure 3 when they are needed.) Data acquisition occurs
synchronously and is triggered by a semaphore that is connected
(with the Digital-supplied "Connect_Semaphore" procedure) to the
system clock. As previously mentioned, this interrupt will occur
every 1/60th of a second. By connecting and disconnecting the
interrupt to the semaphore (or vice versa) the data acquisition
process can be turned "on and off' when needed.

Figure 4 shows a flow chart of the data acquisition process. Once
the clock semaphore is signalled, the process commands the AID
to take data for a specific set of channels. The process then waits
for the AID to interrupt when it is done (the AID interrupt is
detected with another "Connect_Semaphore" call). When the
interrupt occurs, the process retrieves the data and places it in a
ring buffer. The process then loops back and waits for the next
clock tick.

88

Freeze
Detection
Process

Data
Acquisition

Process

Temp.
Control
Process

Figure 3 - Freeze Detection Processes

start

Wait for clock tick

Command A/D to take data

Wait for A/D interrupt

Get A/D data

error exit

Put data in ring buffer(s)

y error exit

Figure 4 - Data Acquisition Process Flowchart

A ring buffer is a software mechanism that is managed by
Digital-supplied procedures and functions. It provides a
convenient way to transfer data between processes and does not
require the processes to know about each other's operation. Data
can be placed in the ring buffer synchronously (or
asynchronously) and removed asynchronously, whenever the
removing process finds data available.

Figure 3 shows that data is removed from the ring buffer by either
the freeze detection process or the temperature control process, but
the two do not compete for data at the same time. The freeze
detection process uses the data to determine if and when the liquid
has frozen. The temperature control process uses the temperature
data to achieve a stable temperature in the test cell between periods
of freeze detection.

A simple flow chart depicting the freeze detection algorithm is
shown in Figure 5. The process waits for a block of data to be
available in the ring buffer (a "Cond_Get_Element" call is used).
Once a block is available it is removed and averaged. An estimate
of the slope is then determined using several adjacent average
values. The slope is compared to empirically determined
parameters to determine if the freeze point has been reached. If it
has, the process ends and either the temperature control phase
begins or the final freeze point temperature is displayed
(depending on which phase of freeze detection was just
completed). Otherwise, the process loops back and waits for the
next block of data.

Once the inflection point has been found during the cool-down
phase, the liquid must be stabilized at a temperature just below the
suspected freeze point (inflection point). Figure 6 shows a flow
chart of the temperature control process. Data is retrieved from the
ring buffer and is compared to empirically derived parameters. If
the comparison indicates that the sample's temperature is stable,
the process ends and we move on to the last (reheat) phase of
freeze detection. Otherwise, we calculate proportional, integral,
and derivative (PIO) control values and output the appropriate
digital values via the D/ A converter. A complete discussion of the
PID control algorithm can be found in many control texts
including reference [2].

Figure 7 shows that the data acquisition process operates
concurrently with either the freeze detection or the temperature
control process. Although the figure indicates that two processes
are active simultaneously, only one can be truly active at any given
time. The AID process has a higher priority and will be activated
every clock tick. The freeze detection or temperature control
process, with lower priority, will be active in the remaining free
time slots to do asynchronous data processing.

start

Get temp. data (with wait)
from ring buffer

Average

Determine slope

Check for freezing

N

y

exit

Figure 5 - Freeze Detection Process Flowchart

89

Start

Get temp. data (with
wait) from ring buffer

y

Calculate PID values

Calculate D/A value
(voltage) to output

Output control
voltage via D/A

return

Figure 6 - Temperature Control Process Flowchart

A/D

Freeze
Detect

Temp.
Control

time-+

Figure 7 - Process Activity Diagram

CONCLUSIONS

The previous figures have shown the major functions of the freeze
detection process. Several other features will be added to the final
product, including over-temperature protection, power supply
monitoring, thermocouple checkout, and switches for field
calibration. These features will be implemented with the
remaining AID and parallel I/O ports. The serial ports are being
reserved for future expansion capabilities including the possible
connection to a host computer.

We believe that MicroPower/Pascal has reduced the amount of
time required to develop a working prototype. Additionally, the
FALCON/MPP combination has been found to be economically
competitive with alternate solutions. Some of the major
advantages of using the MPP development system are:

• The source Code is easy to understand. All the
code for this project is in Pascal. There is no
MACRO code.

• Since this was a development project, there were
many changes in the software due to increasing
understanding of the problem as time went on.
We found that major modifications could be
implemented easily. Again, the fact that the code
was written in a high level language was a major
factor.

• Because a FALCON SBC was not initially
available, the initial development target processor
was an 11/02. Changing the kernel build
procedure enabled us to easily switch to the
FALCON when it became available.

• MPP made the implementation of concurrent
processes relatively simple. MACRO code to
duplicate or simulate the synchronous data
gathering operation and concurrent number
crunching would require significantly more
complex software.

REFERENCES

1. Digital Equipment Corp., MicroPower/Pascal Language Guide,
(1985).

2. Phillips, Charles L. and H. Troy Nagle Jr., Digital Control
System Analysis and Design, Prentice Hall, Inc. (1984).

90

An ultra-high speed data acquisition front end for PDP-lls

E.R. Darken, A.L. Taylor, 0. Oakeley, M.S. Spach and S. Herman-Giddens
Duke University Medical Center

Durham, N.C.

Abstract

An expandable high speed data acquisition front end attach­
able to the Unibus was designed and built in our cardiology labora­
tory to augment an existing data acquistion system. The principle
used in developing the system was to dedicate A/D converters and
controlling microprocessors to each data channel. The front end
is capable of collecting samples at rates up to 62,500 samples per
second per channel for brief durations (about half a second). We
currently have a six-channel system which can be expanded on a
channel-by-channel basis, with no degradation in the maximum
sample rates of the existing channels.

1. Introduction

This paper describes the design and construction of a high­
speed data acquisition front-end for PDP-Us. We built, at rela­
tively inexpensive cost, a six-channel system capable of aggregate
data acquisition rates as high as 375,000 samples per second. Also,
in constructing the system ourselves we were able to tailor it to
our needs.

Research in our cardiological laboratory is directed toward
the analysis of electrical activity in the heart. Experimenters
use an interactive real-time data acquisition system [1] to control
conditions in a tissue bath and collect data from electrodes in
contact with heart tissue which in turn is stimulated by a pacing
electrode.

This system currently is controlled by a PDP-11/44 running
a large standalone program which responds to user commands
while it controls the tissue bath, collects data and moves selected
sample runs to permanent storage [2]. The original equipment
could collect data over a maximum of 24 channels at aggregate
sample rates up to 40,000 per second, the maximum rate for a sin­
gle channel being limited to 20,000 samples per second. Significant
features of the system include facilities for automatic control of
experiments (3] and immediate display ofrecorded data [4]. Both
are critical for most of our experiments. The original design goal
was to facilitate the recording of isopotential body surface maps.
These experiments tended to use all 24 channels at approximately
1,500 samples per second per channel [5].

In recent years, our researchers have been moving more and
more from study of macroscopic events in the heart to study of
microscopic events, typically involving one cell or a small bundle
of cells. As a result, they have been tending more and more to­
ward experiments involving one to six channels using high sample
rates. It became apparent that significant research results could
be attained at sample rates greater than those allowed by the
existing system, constraints being felt in both the aggregate and
single channel limitations.

Proceedings of the Digital Equipment Computer Users Society

91

The research goals demanded a system that could collect
data over each of six channels at a minimum of 40,000 samples
per second, for an aggregate rate of 240,000 samples per second.
This specification greatly exceeded the limits of the laboratory
system and it became necessary to consider purchasing an entire
new system or modifying the existing system substantially. Eco­
nomic constraints and our needs ruled out the former possibility.
Systems which met our requirements cost more than we could
afford, and systems we could afford failed to meet one or more
of our requirements. On the other hand, we discovered the cost
of the individual components for such a system was within our
means, and the presence of a well-equipped technical staff made
it feasible to design and implement an in-house data acquisition
subsystem to augment the existing resources.

ULTRA~FAST A/D SUBSYSTEM

FIGURE 1. Block diagram of the Biophysipedic data acquisition
system and how it was augmented by the ultra-fast front end.

2. Functional description

The new data acquisition subsystem is based on A/D con­
verter boards designed and fabricated in-house and Z80-based
slave microprocessor boards bought off the shelf. Figure 1 shows
how the original laboratory system was augmented by the new
data acquisition equipment. One of both board types is dedicated
to each data channel, and currently we have a six-channel system.
Figure 2 shows the components and functional operation of this
system. Data collection is coordinated by a special A/D timing

Dallas Texas- 1986

control board which ensures data is acquired simultaneously on
all active channels. The PDP-11/44 initiates sampling by first
signaling each slave processor to take X samples and then prim­
ing and triggering the A/D timing control board, which starts the
A/D conversions at a selectable rate. As soon as a slave processor
is started, it collects a sample on each conversion completion sig­
nal from its associated A/D converter, which in turn is triggered
by the timing control board. Upon collection of X samples, the
slave sets its done bit, and the PDP-11/44 transfers the data from
the slave's memory to its own memory. The data then may be
displayed and stored permanently, and the sampling cycle begins
again.

TIMER -~EJ
START/STOP

[

CONTROLLER

A/OPULSES B
POP·ll

START/STOP
SAMPLE RUN

ZBD
BOARD 1

ZBO
BOARD 2

zso
BOARD 3

,ZBO
BOARD 4

ZBO
BOARD 5

1 oA:_ zao
\._____.;_ BOARD 6

~

~

<JSAMPLE

<I SAMPLE

<:!SAMPLE

AID
CONVERTER

A/0
CONVERTER

AID
CONVERTER

AID
CONVERTER

A/D
CONVERTER

A/O
CONVERTER

L-----1

AID
PULSE

ANALOG

SIGNAL

ANALOG

SIGNAL

ANALOG

SIGNAL

ANALOG

SIGNAL

ANALOG

SIGNAL

ANALOG

<_)
SIG!1AL

FIGURE 2. The components and data paths of the six-channel

subsystem and their relation to the controlling PDP-11 computer.

3. Hardware

There are three basic components to the data acquisition
subsystem: the slave microprocessor board, the A/D converter
board and the A/D timing control board. Figure 3 shows the
signal and data paths, on and off the Unibus, for a single channel
set-up.

The slave microprocessor board is an off-the-shelf unit which
plugs directly into the Unibus. Each board contains a Z80 micro­
processor driven by a 10-megahertz clock, 64 kilobytes of memory
and a parallel I/O port. The host PDP-il controls each board
through four eight-bit registers in the I/O page, two for slave
memory address and one each for slave memory contents and con­
trol/ status.

92

a:
"" >- ' "' 0..
cC Q
:E 0..

a:
"" =:
>->-z a: >-:;;: 0 a:

:E cC
:E "" >-:E "' Q

z
cC

Q Q
< < 0 0

::> >-
0.. a:
u 0

:E
"" "" > "' < c
"' z

cC

....
< ..:: z:
~ >-<
"' Q

>- Q
c "" ..:: >-
"" a:
a: "" >

"" z: 0
0.. u
:E ..::
"'

"' a: ::>
a:: ~
"" 3...J :z:
>- oz ::>

e. a:: 0..0

"" ..:: > :z:
0
u

FIGURE 3. Control and communication signals involving a single

channel of the subsystem.

The A/D converter board was designed and built in-house.
Each board consists of three Analogic IC packages: an MP2712D
very high speed 12-bit A/D converter, an MP270 high speed sam­
ple and hold and an MP3025 DC power converter. The board
draws power through its Unibus backplane connection. It does
not have any other Unibus connections; all of its operations are
carried out through external connections. Those connections in­
clude an 11-wire link with the Z80 microprocessor board, a single
line from the timing control clock and a single data line carrying
the signal to be converted. Extra hardware on the board synchro­
nizes the operations of the sample and hold and A/D converter,
along with presentation of data on the Z80 data path. Amplified
data signals coming into the board generally have peaks lying
within a 5-volt range around zero. An on-board differential in­
put amplifier with unity gain and a high common mode rejection
ratio (CMRR) reduces input signal noise to the .5-millivolt level.
When corrected for signal amplification, this introduces noise on
the order of 10-microvolt into our data. The reduction of signal
noise was the single most time-consuming element in production
of the subsystem. The speed at which the A/D conversions take
place resulted in an unexpected amount of on-board noise which
was largely eliminated only after an intensive search involving

a variety of attempted fixes. The most important alteration to
the board to remove this noise was the routing of all compo­

nent grounds through a single ground (which we call "Mother
Ground"). By comparison, the reduction of noise from incoming
signals was easier, since methods for designing noise filters were
more well-known locally. We settled on the differential input am­

plifier with high CMRR as the filter which least affected the data
signal while reducing noise. Figure 4 shows the level of noise seen
on a very slow (4 Hz) sine-wave. The bar at the left of the base­
line represents 10 microvolts, and about 50 milliseconds of data
is displayed. The signal has been blown up to the point that the
5-microvolt step limit of the A/D converters is clearly visible. We
believe the rapid oscillation visible throughout the wave is due to

on-board noise.
The third component is the timing control unit. This element

is composed of two boards: a DRU-A general purpose interface;

and an in-house timer based on an Intel 8254 programmable timer.
The in-house board also includes a 10-MHz crystal whose signal
is routed through two modulo-n dividers cascaded together to
allow a switch selectable pulse rate supplied to the Intel timer.
This timer, after counting a preselected number of pulses, in turn
sends apulse to a port which may be connected to multiple A/D
converters for synchronization of data acquisition among two or
more channels. The master processor loads and starts the timer

through the DRU-A.

4. Software

Software control of this data acquisition front-end is con­
ducted through our laboratory's PDP-11/44. The controlling
software must deal with two devices in the front-end: the slave

microprocessor and the timing control card. Each slave micropro­
cessor must have a program loaded into its memory and started.
In this case, the program consists of the equivalent of about 40
lines of Z80 assembly code to store a designated number of A/D
converter results in a slave memory buffer. The controlling soft­
ware also must prime and start the timing control board for a
particular sample rate. The clock pulses from this board trigger

each A/D converter board and therefore control the rate at which
the entire system operates. When the slave microprocessors have
collected the designated number of samples, they signal done to
the master processor, in this case the PDP-U/44. The control­
ling software has access to all of slave memory through the slave
microprocessor's Unibus registers, so upon reception of the done
signal the PDP-11/44 can index through the slave memory and
move the data to its own memory.

5. Conclusion

Figure 5 shows data taken over a single channel at 50,000
samples per second. This in-house data acquisition front-end can
collect data at rates up to 62,500 samples per second per channel,
with no degradation for increasing the number of channels. The
modular design of the system and the dedication of equipment to
individual channels accounts for this. Currently, our system con­
sists of six channels over which we can collect an aggregate 375,000
samples per second for periods up to half a second. These limits

93

-•
..
N -•

., -.,. -... -. .,,
i

:r
:::3

+illl -·· ··-.... '. f ~~ g~=-

·~· -·· ••• ··-
~~~ ~~ ... 
.. tU_ -·· ••• ··-

.... 

FIGURE 4. An exploded 4-Hz sine wave showing noise added 
to signals by the subsystem. The bar intersecting the left end 
of the baseline represents 10 microvolts. The 5 to 10 microvolt 
resolution of the A/D converters is observable. 



are well beyond the requirements stipulated by our researchers. 
The sample rate limitation is imposed by the speed with which a 
slave Z80, running at a 10-MHz clock rate, can execute the code 
for gathering a single sample. The time limitation is imposed by 
the size of the slave microprocessor's memory, in this case a little 
less than 64 kilobytes. Both limitations could be raised to signif­
icantly higher levels through use of a faster processor and larger 

slave memory. The trade-off for these speed improvements would 
be increased cost. In our case, cost was a significant factor, and 
we found we could meet our specifications with the Z80 board. 

6. References 

[1] Barr, Herman-Giddens, Spach, Warren and Gallie, "The de­
sign of a real-time computer system for examining the elec­
trical activity of the heart," Computers and Biomedical Re­
search 9 (1976), 445-469. 

[2] BATHll USER MANUAL, Biophysipedic Laboratory, 320 
Old Chemistry Building, Duke University, Durham, N.C. 
27706, Aug. 1, 1979. 

[3] Herman-Giddens, Warren, Spach and Barr, "Two-level con­
trol of a real-time data acquisition and control system for 
studying electrical activity of the heart," Proc. of the 16th 
Annual Southeast Regional ACM Conference, pp. 288-294, 
Atlanta, Ga., April 13-15, 1978. 

[4] Warren, Barr, Herman-Giddens and Spach, "Display of elec­
trical wave forms from the heart," Computer Graphics, Vol. 
9, No. 3, pp. 17-30, Fall 1975. 

[5] Barr and Spach, "Sampling rates required for digital record­
ing of intracellular and extracellular cardiac potentials," Cir­
culation 55:40-48, 1977. 

94 

• T __ -, 

FIGURE 5. Data collected over a single channel of the subsys­
tem. The bar intersecting the left end of the baseline represents 
1 millivolt, and the duration of the displayed sample is a.bout 35 
milliseconds. 



DATA ACQUISITION WITH THE MICROVAX II 

W.M. Foreman, J.F. Amann, T. Kozlowski, M.A. Oothoudt 
Los Alamos National Laboratory 

Box 1663 
Los Alamos, NM 87545 

This paper summarizes the effort required to 
install a Digital Equipment Corporation Micro Vax II 
computer in the data acquisition environment at the Los 
Alamos National Laboratory Medium Energy Physics 
Division. 

The standard data acquisition systems at the 
Los Alamos Meson Physics Facility (LAMPF) have used 
either a PDP-11 and more recently a VAX-11/750 as 
the host computer. The obvious cost/performance 
ratio of the MicroVAX II, made it highly desirable 
to determine the feasibility of using it as 
replacement for the older PDP-11 based systems. 
The main concerns in using the MicroVAX were in the 
ability to maintain compatibility with our existing 
data acquisition software system known as O (1,2), 
and to utilize existing PDP-11 peripherals wherever 
possible. In particular, it was necessary to 
continue use of CAMAC and the LAMPF standard 
micro-programmed CAMAC branch driver (MBD) (3) as 
well as existing industry standard 1/2" magnetic 
tapes on which the experimental data is recorded. 

The MBD is an 18-bit Unibus device which 
operates as an independent list processor 
performing sequences of CAMAC commands associated 
with the specific experimental triggers. Data 
acquired through CAMAC is temporarily buffered by 
the MBD and then moved via a OMA transfer to the 
host memory. Under VMS, the 0 system interfaces to 
the MBD through the "connect to interrupt" system 
service and a driver which handles the completed 
data transfers. Low speed CAMAC operations, i.e. 
experimental setup and control, are handled by a 
VMS driver, CC:, written by a collaborator at U.C. 
Berkeley, R.P. Singh. 

The tape drives are after-market drives which 
interfaced to the Unibus via a Unibus coupler 
(Dilog DU132) which emulates the Digital Equipment 
Corp. (DEC) TSll tape controller. On the 
VAX-ll/750's we have used Kennedy 9100/9220 and 
9400 drives, the Dilog coupler, and the standard 
DEC VMS driver for TSlls. On the MicroVAX, these 
drives were to be interfaced directly to the 0-bus 
using a Q-bus version (00132) of the same coupler. 
The older 9100 series drives provide dual density 
(800/1600 BPI) recording and the newer 9400 drives 
provide tri-density (800/1600/6250 BPI). This does 
not affect TSll emulation, except that the density 
must be selected manually, since the TSll is a 
single density drive. 

In order to attach the MBD to the 0-bus, we 
purchased an after-market 22-bit 0-bus to Unibus 
converter, the Able Microverter. Our first 
attempts to use this device failed. The MicroVAX 
II could not address the MBD. Investigation of the 
addressing revealed an incompatibility between the 
Microverter and the MicroVAX II 0-bus. Unibus I/O 
page addresses begin at 760000 octal and the MBD 

Proceedings of the Digital Equipment Computer Users Society 

95 

decodes all 18 bits of the address on the Unibus, 
requ1r1ng that bits DA13-DA17 be set. The 0-bus 
protocol allows devices to use only the low order 
13 bits for addressing. A 0-bus device must decode 
RBS7 to determine I/O requests. In order to 
continue with our test, we modified the Able 
hardware to provide the high order bits for the MBD 
address. It is our understanding and experience 
that Able has corrected this incompatibility in 
later versions of their product which will be 
installed on a MicroVAX II. The Unibus VMS device 
drivers for MBD operation were copied directly from 
a VAX-11/730 and worked without modification on the 
MicroVAX. 

A Dilog 00132 was installed on the MicroVAX II 
and the standard DEC supplied TSll device driver 
was copied from the 11/730. All that was required 
to make the tape operational was to run a VMS 
SYSGEN in order to define the TSll to the system. 
While DEC does not explicitly support TSll 
operation with version 4.1 of MicroVMS, we have had 
no problems. 

The O system software was copied to the 
MicroVAX II and a simple data acquisition system 
was tested. There were no apparent problems in the 
system so plans were made to install a MicroVAX II 
in an actual experiment. That system was used 
around the clock from mid August 1985 until the end 
of our operational cycle in mid December. While 
there were no major problems associated with its 
use, a few minor difficulties were encountered. 
The first MicroVAX we ordered was housed in a BA23 
enclosure with a single RD-52 disk and 2 MB of 
memory. Our experience indicates that the BA23 
enclosure is inadequate for our needs with respect 
to power for peripherals and in ease of service. 
The small disk and limited memory also resulted in 
some problems. In particular, the default SYSGEN 
parameters for swap and page files were not 
sufficient for our needs. Both parameters were 
changed to match those in use on the VAX-11/750 
systems. All future systems will be housed in a 
BA-123 enclosure and will be equipped with 5 MB of 
memory and an RD-53 disk. 

One final area of concern was that the use of 
the 0-bus, as opposed to the Unibus, might somehow 
limit the rate at which data could be acquired in 
the MBD and passed through the VAX and onto a data 
tape. In order to answer this question two 
comparisons were made of a VAX-11/750 and a 
MicroVAX II. The first test involved writing data 
to tape using a Kennedy 9400 tape drive at 6250 

Dallas Texas - 1986 



BPI/45 ips with 12.8 KB records. Data throughputs 
of 196 KB/sec and 199 KB/sec were achieved on the 
11/750 and MicroVAX II respectively. The second 
test involved using the MBD to transfer blocks of 
data from the MBD memory to VAX memory. Two 
versions of the MBD code were tested, one which 
released the bus after every word transferred, the 
second released the bus only after every fourth 
word was transferred. In the latter mode average 
transfer rates in excess of 600 KB/sec were 
measured for both the 11/750 and the MicroVAX. In 
addition, by comparing the difference in average 
time per word transferred in two modes, one can 
separately infer a bus arbitration time and a 
transfer time per word. The results are presented 
in the table below. 

111750 MicroVAX II 

Arbitration time 1.4 1.2 
(microseconds) 

Transfer time/word 1.6 1.8 
(microseconds) 

For both these tests of bus speed, the 
MicroVAX II was essentially equivalent in speed to 
the 11/750. In an actual data acquisition 
environment we expect the MicroVAX II to be 
superior to the 11/750 because of its higher 
intrinsic speed in data handling. 

(1) M.A. Oothoudt et.al., "DESIGN OF THE RSX-llM 
Q SYSTEM", IEEE Transactions on Nuclear 
Science, Vol. NS-28 No. 5, October 1981. 

(2) M.M. Minor et.al., "A SOFTWARE SYSTEM FOR DATA 
ACQUISITION IN NUCLEAR PHYSICS EXPERIMENTS 
USING CAMAC", IEEE Transactions on Nuclear 
Science, Vol. NS-23, 459 (1976). 

(3) L.R. Biswell, R.E. Rajala, "DESIGN AND OPERA­
TION OF A MICROPROGRAMMED BRANCH DRIVER FOR 
A PDP-11 COMPUTER", LA-5144 (Los Alamos), 
May 1973. 

96 



CONVERSION FROM RT-11 TO MICRO-RSX FOR REAL-TIME DATA 
ACQUISITION AND ANALYSIS 

Mitchell E. King 
Northrop Services, Inc. - Environmental Sciences 

P.O. Box 12313 
Research Triangle Park, NC 27709 

DISCLAIMER 

The research described in this paper has been reviewed by the Health Effects 
Research Laboratory, U.S. Environmental Protection Agency and approved for 
publication. Approval does not signify that the contents necessarily reflect the views 
and policies of the Agency nor does mention of trade names or commercial 
products constitute endorsement or recommendation for use. 

ABSTRACT 

Many scientists who use Digital Equipment Corporation microcomputers utilize the 
RT-11 operating system for the acquisition of real-time data in the laboratory. For 
these researchers, the work and time required to learn a new operating system and 
reprogram software prevents them from upgrading their laboratory computer 
resources. However, there are several advantages in upgrading to Micro-RSX, a 
multiuser, multitasking system. Some advantages include sharing of hardware 
resources by many experimental setups, multiterminal support for concurrent data 
analysis, and reduced costs per experimental setup. 

This paper presents simple techniques for converting FORTRAN/Macro-11 single­
user programs that run under RT-11 to run concurrently under Micro-RSX. The 
concept of using a shared common region that maps the 110 page will be introduced 
along with a simple method to use Macro-11 routines from RT-11 with Micro-RSX. 
Techniques for overlaying programs and setting up group global event flags for 
dual-task control will be illustrated. Programs rewritten for Micro-RSX to acquire 
and analyze pulmonary physiology data will be used as examples. 

INTRODUCTION 

For many years, scientists have used microcomputers to collect and 
analyze data in the laboratory. Digital Equipment Corporation (DEC) 
markets the PDP-11 series that utilizes the RT-11 operating system 
for this purpose. This system, although very fast in processing speed, 
has limited memory addressing capabilities and limits the laboratory 
to collect data from one experiment at a time. Previously, the only 
solution, which proved too costly for most researchers, was to 
purchase a series of computer systems. With the vast improvements 
in computer technology over the past few years, multiuser­
multitasking real-time systems have become cost effective in the 
laboratory. 

This paper outlines a method to convert real-time data acquisition 
programs, using the RT-11 single-job operating system, to the Micro­
RSX multiuser operating system. This technique is based on the 
concept of shared common regions and shows the RT-11 
programmer how to map the 1/0 page in RSX (the top four Kbytes in 
memory designated for control of 1/0 devices) so that user programs 
can access device registers to control 1/0 operations. Overlaying 
techniques and uses of group global event flags for dual task 
synchronization will also be discussed. Lastly, the experimental 
setups at the Northrop Services, Inc. - Environmental Sciences, 
Pulmonary Functions Laboratory will be presented as an example of 
real-time data collection using this technique. 

Proceedings of the Digital Equipment Computer Users Society 

97 

METHODS 

Users of the RT-11 operating system for real-time data 
collection either employ previously written subroutines or use their 
own custom-written subroutines to drive their 1/0 interfaces. These 
subroutines generally manipulate the control and data registers of 
specific boards to implement the desired operations. The programs 
often are written in Macro-11 assembly language. Digital has, for 
many years, assumed users are proficient Macro-11 programmers; 
however, in the scientific community, a laboratory scientist may only 
be familiar with FORTRAN. Assuming the scientist has FORTRAN 
programs that use Macro-11 subroutines to collect data under the 
RT-11 operating system, the method described below will allow for 
easy conversion to the Micro-RSX operating system. 

Shared Common Region 

Steps for creating a shared common region that maps the 1/0 page 
in Micro-RSX (e.g., for an AID converter controlled by a real-time 
clock and a D/A converter) are as follows: 

Step 1: Determine and write down the control status and data 
registers (CSR & BUF) of your 1/0 boards. Except for a specific design 
reason or conflict of addresses, these will be set for the standard 
LSl-11 bus floating address assignments (See PDP-11 Microcomputer 
Interfaces Handbook, Appendix A). 

Dallas Texas - 1986 



Step 2: Rearrange these numbers in an increasing incremental list. 

For example: 

Device 1 

AID CSR 
AID Buffer 

170400 (ADCSR) 
170402 (ADBUF) 

Device2 

Clock CSR 170420 (CKCSR) 
Clock Buffer = 170422 (CKBUF) 

Device 3 

DIA CSR Ch 0 = 170440 (DACO) 

Step 3: Subtract (octal subtraction) 160000 from the lowest address 
(ADCSR in Device 1). 

i.e., 170400 
-160000 

10400 (initial offset) 

The offsets are used to designate the number of bytes from the start 
of the shared common region to the first register location (or 
between registers) that are then mapped to the task. This ensures 
that each label (e.g., ADCSR) will be located at the proper address 
(160000 is the base starting address of the 1/0 page). 

Step 4: Now subtract (in octal) the next address above the previous 
device (e.g., Device 1, Buffer address AID Buf = 170402 + 2 
= 170404) from the next device (e.g , Device 2) CSR. 

i.e., 170420 
-170404 

14 (next offset) 

Step 5: Continue this procedure until all the offsets have been 
defined. 

i.e., 170440 
-170424 

14 (next offset) 

Step 6: Create the shared common region by writing the following 
simple Macro-11 program on the RSX system. 

i.e., 
. TITLE DEVCOM 

.PSECT DEVCOM,GBL,D,RW,OVR 

. = . + 10400 ;Initial offset from 1/0 page base 

ADCSR:: . WORDO 
ADBUF:: . WORDO 

. =. + 14 ;Next offset 

CK CSR:: .WORD 0 
CKBPR:: . WORD 0 

. = . + 14 ; Next offset ... 

DACO:: .WORD 0 
.END 

The PSECT directive establishes a program section named DEVCOM. 

The double colon(::) defines the label as a global symbol. 

Each .WORD 0 designates the word space that is mapped over the 
CSR or buffer register for each device. 

The . = . advances the location counter the specified amount 
(. =. + 14isequivalentto.BLKB 14or.BLKW7). 

Step 7: Compile the source listing using the Macro Assembler. 

i.e., MAC DEVCOM 

98 

Step 8: Link the object code with the following command file 

i.e., 
LINK @DEVCOM 

LB:[l, 1]DEVCOM/CO/Pl/-HD,LB:[1, l]DEVCOM/-Wl/-SP, -
(1, 1] DEVCOM = DEVCOM 
I 
STACK= 0 
PAR= DEVCOM: 17760000:20000 
II 

The syntax to link a task is TASK-IMAGE,MAP-FILE,SYMBOL­
DEFINITION-FILE =INPUT-FILE with the appropriate switches. 

The symbol-definition-file (STB) contains required linkage 
information for the operating system about the mapped region. 

Switch /CO causes the task builder to build a shared common region. 

Switch /Pl causes the task builder to build a position-independent 
region. This Pl switch allows the task builder to place the shared 
common region in any position within the user-task virtual address 
space. 

Switch /-HD directs the task builder to exclude a header from 
the task image because headers are only required in executable 
tasks. 

Note that switch /IP (task maps the 1/0 page) is omitted because this 
is the common that maps the 1/0 page; tasks using this method will 
map to this region. Also, switch llP is the default. 

The option STACK= 0 suppresses the stack area in the task image. 
Stack areas are only required with executable tasks. 

The option 'PAR= ... ' identifies the partition for which the task is 
built. This option defines the base of the 1/0 page at memory 
address 17760000, and the size of the partition (the octal number of 
bytes in the partition). 

Step 9: Examine the memory allocation map in (1, 1 )DEVCOM.MAP 
to verify that the global symbols are offset to correspond exactly to 
the actual address registers . 

i.e., Global symbols: 

ADCSR 170400-R CKCSR 170420-R 
ADBUF 170402-R CKBPR 170422-R 
DACO 170440-R 

If these addresses do not correspond to the device registers, the 
offsets are incorrectly defined in DEVCOM.MAC 

Step 10: The final step needed to correctly set up a shared common 
region is to inform the RSX executive that the region exists. This is 
done with the SET PARTITION command and is most efficiently 
executed if placed in a startup command file (In Micro-RSX place 
command in [1,2]FASTART.CMD). 

i.e., 
SET PAR= DEVCOM: 177600:200/DEVICE 

This command uses values that are in 64. (decimal) byte (100 octal 
byte) increments. Therefore, the two trailing zeros are stripped 
from the 22-bit base address and the size of the partition 
( 17760000 -+ 177600, and 20000 -+ 200). 

The /DEVICE qualifier identifies the partition as a common partition 
for mapping device registers. 

When the SET PAR command is implemented in Micro-RSX, the 
partition DEVCOM is displayed (using the SHOW PAR command) as a 
named common (!DEVCOM!) subpartition to the partition named 
10 PAR. This partition is preassigned by DEC in the Micro-RSX 
distributed code, but it is not documented. 



Sampling Routine 

Now that the shared common region has been created and 
implemented, it is very simple to change the RT-11 sampling routine 
to use the shared common region in RSX. All that is required is 
removal of the statements in the assembled subroutine that define 
the CSR and Buffer registers for that device (place a semicolon in 
front of the definitions), since the device assignments have already 
been established as global variables in the shared common region. 
The RSX task builder takes care of all global references in the built 
task. The following subroutine is given as an example. This is a 
FORTRAN callable subroutine designed to sample up to eight 
channels of analog data using the AAV11-C AID converter. The AID 
converter timing is controlled by a KWVl 1-C programmable clock. 

.TITLE SAMPLE 
;SAMPLE.MAC SAMPLE UP TO 8 CHANNELS 
;(CONTROLLED BY KWVl 1-C PROGRAMMABLE CLOCK) 

;FORTRAN CALL: 
;CALL SAMPLE (ICOUNT,IFREQ,NUMPTS,CHCODE,IDATA) 

;WHERE: 
; !COUNT - NUMBER OF CLOCK COUNTS BETWEEN SAMPLES 

FREQ - FREQUENCY OF CLOCK (MUST BE 8, 16, 24, 32, OR 40) 
VALUE: 8 16 24 32 40 
FREQ: 1 MHz 100 KHz 10 KHz 1 KHz 100 Hz 

;NUMPTS - NUMBER OF DATA POINTS PER CHANNEL 
;CHCODE - TO SAMPLE A CHANNEL, SET THE CORRESPONDING BITS 

(EXAMPLES: CH 0,3 = 9, CH 1, 7 = 130, CH 0, 1,2 = 7) 
; IDATA -THE RAW DATA STORAGE ARRAY 

;THIS PROGRAM SETS THE GAIN AT 4 (+I- 2.S VOLTS) AND THE 
;CLOCK MODE AT 1 (REPEAT INTERVAL) 

;M.E.KING NORTHROP SERVICES, INC. AUG-84 

;FOR RSX, THE FOLLOWING ADDRESS ASSIGNMENTS ARE 
;COMMENTED OUT FOR USE WITH THE SHARED COMMON 
;REGION, DEVCOM, MAPPED OVER THE 1/0 PAGE. 
;FOR RT, TAKE OUT THE SEMICOLONS AND 
;LINKAS USUAL 

;ADCSR = 170400 ; AID CSR ADDRESS 
;ADBUF = 170402 ; AID DATA BUFFER ADDRESS 
;CKCSR = 170420 ; CLOCK CSR ADDRESS 
;CKBPR = 170422 ; CLOCK COUNT BUFFER ADDRESS 

.CSECT 

. GLOBL SAMPLE 

SAMPLE:ADD #2,RS ;RS POINTS TO 1ST ARGUMENT 
MOV @(RS) + ,@#CKBPR ; ICOU NT TO CKBPR 
COM@#CKBPR 
INC@#CKBPR 
MOV @(RS)+ ,RO 
MOV @(RS)+ ,R 1 
MOV @(RS)+ ,R4 
MOV (RS) + ,R2 
MOV R4,RS 
ADD #3,RO 
MOV RO,@#CKCSR 

LOOPl: TSTB @#CKCSR 
BPL LOOPl 
BIC #200,@#CKCSR 
CLR@#ADCSR 
MOV #10,R3 

LOOP3: MOVB #11,@#ADCSR 
LOOP4: TSTB @#ADCSR 

BPLLOOP4 
MOV @#ADBUF,(R2) 
BIT #1,R4 
BEQSKIP 
TST(R2) + 

;TWO'S COMPLEMENT 
;IFREQTO RO 
;NUMPTS TO Rl 
;CHCODE TO R4 
;IDATA STARTING ADDRESS TO R2 
;STORE CHCODE IN RS 
;INITIALIZE CKCSR 
;MOVE RO TO CKCSR & GO 
;TEST FOR DONE BIT SET 
;BRANCH IF NOT SET 
;CLEAR DONE BIT 
; CLEAR AID CSR 
;R3 COUNTS NO. OF CHANNELS 
;SET GAIN AND CONVERT 
;TEST FOR DONE BIT SET 
;BRANCH IF NOT SET 
;STORE CONVERSION 
; IS BIT IN CH CODE SET 
; NO - DON'T STORE SAMPLE 
;INCREMENT ARRAY POINTER 

99 

SKIP: INCB @#ADCSR + 1 
RORR4 
SOB R3,LOOP3 
MOVRS,R4 
SOB R1,LOOP1 
CLR@#CKCSR 
CLR@#ADCSR 
RTSPC 
END 

Overlay File 

; INCREMENT CHANNEL NO 
;ROTATE CHCODE 
;DEC CH COUNTER & BRANCH 
; LOAD CHCODE INTO R4 
;DEC NUMPTS & BRANCH 
;CLEAR CLOCK 
;CLEAR ADCSR 

In our laboratory, one data collection program uses different array 
sizes, channels, and timing parameters. For these cases, it is more 
efficient to overlay (share the same address space) all of the various 
FORTRAN subroutines that call one Macro-11 sampling routine, 
rather than to have copies of the same sampling code inserted in 
each FORTRAN routine. An overlay descriptor file (ODL) can be 
created to accomplish this approach. The ODL file names the 
subroutines and library references that make up the task. 

For example: 

.ROOT MAIN 1-MAIN2-LIB 1-LIB2-*(PART1 ,PART2) 
MAINl: .FCTR ONLANA-COMAND-FILRDY-NEWFLE 
MAIN2: .FCTR SAMPLE-IADC-MBELL-DACOUT-XYPLOT-CODE 

LIB 1: .FCTR LB:[l, 1]F77RMS/LB 
LIB2: .FCTR LB:[1,1]RMSLIB/LB:ROAUTL:ROIMPA:ROEXSY 

PART1: .FCTR ONLBOY,ONLN2,0NLPV,ONLRST,OLCHEK,ONLFVL 
PART2: .FCTR SETSEQ,SETGAN 

.END 

This file has two separate segments: the root segment (MAINl, 
MAIN2, LIB 1, and LIB2), composed of programs or library references 
that always reside in memory, and the overlay segment (PART1 & 
PART2), the components of which share virtual address space. The 
root comprises three sections: the program backbone (MAIN 1), the 
various 1/0 control routines (MAIN2), and the library references (LIBl 
and LIB2). The first line of the ODL file uses the ROOT directive to 
define the structure of the overlayed task. The hyphen (-) operator 
designates the concatenation of virtual address space (each 
subprogram has its own space). As seen, the subroutine SAMPLE is 
located within the root, which means it can be referenced from any 
of the overlayed subroutines. The FCTR directive allows you to build 
a complex tree-structured program in a clear format. The second 
segment of the ODL file contains the overlayed subprograms. These 
are designated by commas (.) that represent the overlaying of 
virtual address space. In the root, parts 1 & 2 are overlayed because 
they perform different functions within the task at different times . 
Part 1 represents the individual subroutines that call the AID 
sampling routine with different arguments. The asterisk C*l is the 
autoload indicator. This is used to ensure that a subprogram will be 
properly loaded when called, regardless of the flow of control 
within the task. 

Task Build 

Once the overlay descriptor file has been created, task building is a 
simple procedure. The ODL file has to be referenced and any task 
builder options must be included. The following example 
demonstrates the task build command file for a FORTRAN program 
named ONLANA. 

ONLANAICP,ONLANA.MAP/CR = ONLANAIMP 
(Main program with ODL reference) 

CLSTR= F77RMS,RMSRES:RO 
(Library reference) 

ACTFIL= 3 
(Number of active files) 

MAXBUF = 7000 
(FORTRAN maximum buffer size) 



UNITS= 10 
(Number of FORTRAN logical units) 

ASG=TT1:6 
(Assign logical unit 6 to TT1) 

COMMON = DEV COM: RW 
(Shared common reference) 

TASK= ... ONL 
(Assigned task name when installed) 

II 

The /MP switch informs the task builder that the input file contains 
an overlay descriptor. This switch automatically prompts for the 
options input; thus, a single slash is not needed to inform the task 
builder to switch to optional input. 

The option COMMON= DEVCOM:RW declares that the task being 
built intends to access the shared common region DEVCOM with 
Read/Write attributes. 

Event Flags 

RSX event flags are means by which tasks can recognize specific 
events. In all single central processing unit systems, only one 
operation can take place at any one time. With RSX and similar 
operating systems, several tasks can reside in memory 
simultaneously and compete for CPU time. For system tasks (EDT, 
TKB, etc.), RSX takes care of scheduling and setting priorities for 
these operations. User tasks that must have access to the CPU at a 
specific time, however, must be synchronized. Simultaneously 
running tasks that use the same device (i.e., an AID) must also be 
synchronized so they will not request AID conversion data at the 
same time. Event flags are one way to prevent conflicting requests 
to the same device. 

In RSX, three groups of event flags exist. The first set (#1-#32) is 
unique within one task. The second set (#33-#64) is common flags 
that can be manipulated by any task in the system. The third set 
(#65-#96) is known as group global event flags. Group global event 
flags apply only to tasks running under the User Identification Code 
(UIC) containing the group number specified when the flags were 
created (The UIC is the group and member numbers that designate 
accounts, e.g., 100, 1). 

Five programming directives (FORTRAN or Macro callable 
subroutines that perform a specific operating system function) are 
commonly used to control synchronization using event flags. The 
directive, CRGF (create group global event flags), needs to be called 
only once from any of the tasks being synchronized. Once called, all 
tasks running under the same UIC group can access this particular 
group of global event flags. Two directives, SETEF (set event flag), 
and CLREF (clear event flag), manipulate individual event flags. The 
directive, WAITFR (wait for single event flag) is used to suspend a 
task's operation until a specified event flag is set. The final directive 
is READEF (read event flag), which tests the specified event flag and 
reports its status (set or not set). 

A strategy for programming event flags for dual-task 
synchronization is as follows. Each of two cooperating tasks should 
be assigned a different group global event flag. One task (Task A) 
checks to see if the other task's (Task B) event flag is set using the 
READEF directive. If Task B's event flag is clear, Task A clears its event 
flag (CLREF), performs its operation, then resets its flag (SETEF). 
Meanwhile, Task B works in an opposite fashion, calling the 
directive WAITFR to see if Task A's event flag is set. If Task A's flag is 
not set, Task B is suspended until the flag is set. If Task A's flag is set, 
Task B proceeds to set its event flag, performs its operation, then 
clears the flag. This method prevents both tasks from attempting to 
use the same device at the same time. If the criterion for each 
program requires both tasks to sample data for 10 s every minute, 
the tasks should be synchronized in such a manner that one task 
samples data at the minute mark, and the other at the 30 s mark. 
The Mark Time (MARK) and WAITFR directives can be used in 
conjunction with group global event flags to accomplish this. 

100 

The following example shows the event flag programming strategy. 

Task A (EF 66) 

CALL CRGF( ,IDSW) !Create flags 

CALL SETEF(66) !Set flag 
!so Task B 
!is not 
!blocked 

(USER INPUT) 

CALL READEF(65) !See if Task B 
!is sampling 
!data Yes-write 
!message 
!&loop 

CALL CLREF(66) !No-clear flag 
!to block 
!Task B 

CALL SAMPLE( ) !Get data 

CALL SETEF(66) !Reset flag 

Physiological Techniques 

Task B (EF 65) 

(USER INPUT) 

CALL WAITFR(66) !See if Task A 
!is sampling 
!Yes-Delay 
!until free 

CALL SETEF(65) !No-set flag 
CALL SAMPLE( ) !Get data 

CALL CLREF(65) !Clear flag 

The Pulmonary Functions Laboratory at Northrop conducts scientific 
experiments that measure the effects of airborne pollutants on the 
respiratory system of small mammals. Generally, there are two 
categories of experimental setups. The first setup (Task A - see 
Figure 1) is used to perform a battery of different techniques to 
assess the physiological function of the lung after exposure. 
Pressures created from breathing efforts are sensed by four pressure 
transducers and nitrogen concentration 1n the exhaled air is 
monitored. The data are collected at a sampling rate of 250 Hz. 
Using this task, data collection is requested at random time 
intervals, thus requiring event flag synchronization. The second 
setup (Task B - see Figure 1) is used to measure the amount of 
pollutant retained in an animal's respiratory system during 
exposure. The experimental protocol requires sampling the pressure 
transducer to obtain the volume of air moved through the animal's 
lungs and various monitors to analyze gas concentrations before 
and after it passes the animal's face. These data are also collected at 
a rate of 250 Hz for 4 s approximately once per minute. 

Event flag synchronization allows both tasks to run simultaneously, 
without interfering with one another. Suppose, for example, 
Task B's minute had elapsed and it was time to obtain the next 
sample point. However, 5 s before the minute mark, the technician 
using Task A requested a test that required 10 s of sampling. Event 
flag synchronization could delay Task B from executing its 1/0 
request until Task A was completed. Although Task B would then be 
5 s behind schedule, Task B could use the GETTIM directive to 
calculate the time lost and resume data collection at the minute 
mark. Another example of conflict would arise if Task B had just 
initiated a sample at the minute mark and Task A requested a 
sample. Task A event flag checking would notify the technician that 
Task B was using a device and to try again in a few seconds. In this 
manner, both tasks could not attempt data collection at the same 
time. 

DISCUSSION 

While implementing these techniques, two problems arose. Using 
Micro-RSX (a pregenerated, e.g., built by DEC, RSX-11 M + 
operating system), the memory required by the operating system 
and the two simultaneously running tasks is substantial. We 
discovered that running the two programs with only 128 KWords 
(KW) of memory occasionally caused one or both programs to hang. 
This was due to checkpointing (one task is removed from memory by 
the operating system to make room for the other task), and in our 
case, a simple solution was the addition of another 128 KW memory 



board. The other problem occurred because Micro-RSX 
automatically installs system accounting during its start-up 
procedures. Accounting requests several system statistics every 5 
min. We found that if the two tasks were being heavily used when 
an accounting request occurred, the programs would malfunction. 
The solution was to disable accounting from the system when using 
these two programs. 

One precaution when implementing shared common regions is that 
the proper global symbols must correspond exactly to the device 
address registers (see Step 9 in Methods). Writing or reading device 
registers that are incorrectly assigned could cause loss of data on 
disks or improper operation of system or user tasks. 

More complicated experiments requiring increased synchronization 
and timing protocols can be performed using the connect-to­
interrupt (CINT) facility in RSX, or by using a device driver to 
schedule and handle 1/0 requests. Tasks using shared commons tend 
to tie up the CPU while waiting for control st.:itus bits to «nange in 
the control status register of a device, whereas these methods free 
the CPU until the s•atus changes. These techniques do promote 
efficient handling of asynchronous events; however, they are 
difficult to program and beyond the scope of this paper. 

CONCLUSIONS 

The techniques described in this paper allow one computer system 
running the Micro-RSX operating system to perform the operations 
that normally would require two processors under RT-11. The 

TASK A SETUP 
Pulmonary Function 

Experiments 

~-------------1AMPLIFIERS 

c_ ____ _, NITROGEN 
MONITOR 

Anesthetized rat inside plethysmograph 

2 PRESSURE 
TRANSDUCERS 

inherent benefits of RSX over RT include account and directory 
structures, security, and memory management, which improve a 
laboratory's overall computer processing capabilities. Naturally, 
using a more complex operating system requires more intricate and 
technical programming schemes. Upward migration of existing 
programming techniques is, however, accomplished with relative 
ease and minimal effort. 

Shared common regions provide the most straightforward approach 
to upgrade from RT-to an RSX-based system. As demonstrated, 
previously written Macro-11 programs can be converted without 
much change. The shared common region is simply a list of device 
addresses. Addition of new devices requires only modifying and 
rebuilding the common region. For larger laboratories, using 
different programs at various times, individual shared commons can 
be built to use specific devices within each task. 

Laboratories currently using RT-11 should seriously consider 
upgrading their computer capabilities by converting to an RSX­
based system. As shown, reprogramming should not be considered a 
drawback when weighing the benefits of switching from RT to RSX. 

ACKNOWLEDGMENTS 

This work was supported by the U .5. Environmental Protection 
Agency, Research Triangle Park, NC, under contract# 68-02-4032 

TASK Ii SETUP 
Pollutant Exposure 

Experiments 

AMPLIFIERS 1---------------

11 t I 
EXHAUST 

MAST 
~--11--------lOZONE 

MONITOR 

MONITOR LABS 
OZONE 
MONITOR 

TCM 
OXYGEN MONITOR 

_____ _____, TCM 

CARBON DIOXIDE 
MONITOR 

PRESSURE 
TRANSDUCER 

Awake restrained rat inside plethysmograph 

Figure 1. Block Diagram of the Experimental Setups in the Northrop Services, Inc. -
Environmental Pulmonary Functions Laboratory. 

101 





DATA ACQUISITION AND VALVE CONTROL 
FOR ONBOARD OXYGEN GENERATING SYSTEM (OBOGS) 

CHEMICAL CONTAMINATION STUDIES 

Paul A. Lozano 
George W. Miller 

Crew Technology Division 
USAF School of Aerospace Medicine 

Brooks AFB, San Antonio, TX 78235-5301 

Kent S. Knaebel 
Department of Chemical Engineering 

The Ohio State University 
Columbus, Ohio 43210 

ABSTRACT 

At the USAF School of Aerospace Medicine a study is being 
conducted to evaluate molecular sieve adsorbents based on 
their ability to remove chemical contaminants from an OBOGS 
inlet air stream. These adsorbents are used in the molecular 
sieve oxygen concentrators, the primary component of the 
OBOGS, to separate oxygen gas from the inlet air stream. This 
paper describes a Fortran computer program written under the 
RT-11 operating system which is used by the study to simulta­
neously control the experiment and collect data. 

INTRODUCTION 

An Onboard Oxygen Generating System (OBOGS) is a 
breathing system designed to automatically provide 
aircrews with an inexhaustible supply of oxygen­
enriched gas for the prevention of hypoxia. It has 
many advantages over conventional liquid oxygen 
systems, such as: reduced cost, extended flight­
time capability, m1n1mum ground servicing, and 
elimination of fire/explosion hazards. 

The OBOGS system produces oxygen aboard the air­
craft by application of Pressure Swing Adsorption 
( PSA) technology. In applying this technique, the 
aircraft's engine delivers bleed air to an OBOGS 
concentrator comprising several beds of molecular 
sieve adsorbent. When air pressure is cycled within 
the adsorbent beds, the nitrogen component of the 
air is preferentially adsorbed and vented over­
board, thus yielding a nearly pure oxygen product 
gas suitable for hypoxia protection. 

Because these systems use ambient air as their 
source, the possibility of chemical contamination 
exists. The OBOGS system must protect crewmen from 
any substance which, if inhaled, could adversely 
affect their health. Thus, the selection of a 
molecular sieve which minimizes the degree of 
contaminant penetration of the oxygen concen­
trator's adsorbent beds is of critical importance. 

Proceedings of the Digital Equipment Computer Users Society 

103 

An integral component of the experiment is a PDP 
11/03 minicomputer. It uses a Fortran computer 
program written for data collection and simul tane­
ous experiment control. The program was orginally 
written by K. S. Knaebel and has since been up­
graded to meet new requirements imposed on the 
system. 

EXPERIMENT 

OBOGS oxygen concentrators are typically comprised 
of two or three beds of molecular sieve adsorbent, 
valving, piping, and an electronic timer for auto­
matic valve cycling. In the PSA process the ad­
sorbent beds are alternately cycled through steps 
of adsorption and desorption (Fig. 1). During the 
adsorption step, air at high pressure enters the 
adsorbent bed, whereupon nitrogen is preferentially 
adsorbed and enriched oxygen is recovered from the 
bed outlet or product port. The adsorption step is 
followed by desorption, or venting of the previ­
ously absorbed gases to a lower pressure; usually 
these gases are discharged to the ambient surround­
ings. During the desorption step, countercurrent 
purging of the adsorbent beds with a portion of the 
enriched product sweeps nitrogen from the intersti­
tial void volume and reduces the amount of nitrogen 
remaining adsorbed on the sieve. These steps of 
adsorption and desorption are repeated in each bed, 
and ultimately result in the production of a 
continous stream of enriched oxygen at the unit's 
outlet. 

Dallas Texas - 1986 



TWO· STEP 

PRODUCT PRODUCT 

B A B 

REPRES. BLOWDOWN 
PURGE 

BLOWDOWN REPRES. 

FEED PURGE FEED 

STEP 1 STEP 2 

Figure 1 

PSA Process 

The PDP 11/03 used to control the experiment 
sequentially: actuates sampling valves to permit 
measurement of gas contaminant concentrations; 
actuates the solenoid valves of the OBOGS 
concentrator to precisely control system cycle 
time; and collects up to 14 channels of data at a 
specified sampling rate (Fig. 2). It is an LSI-11 
processor with dual floppy 8-inch disk drives. It 
has a KWV11-A (Programmable Real-Time Clock), 
ADV11-A (Analog Input Board), AAV11-A (Analog 
Output Board), and a DRV11 (Parallel Line Unit). 
Although not the latest in equipment, this setup 
has been suitable for our requirements, because it 
is transportable between experiment sites and has 
sufficient speed for the current sampling rates 
used for this experiment. 

CONTAMINANT 
GAS 

NGL 3·BED 
CONCENTRATOR 

Figure 2 

Experimental Apparatus 

VENT 
(14.• 
PSIA) 

104 

ACQUISITION AND CONTROL PROGRAM 

Input File 

The first phase of the Fortran Data Acquisition and 
Control program is to read an input file created by 
the experimenter using an editor (Appendix A). The 
input file specifies the experiment operating 
conditions, data acquisition requirements, and the 
calibration equation parameters. The experimental 
operating conditions are specified in the input 
file remarks section for identification when the 
results are analyzed. 

The alternation of adsorption and desorption is 
described in the experiment controls and is re­
ferred to as steps within cycles. There may be 
several steps within each cycle depending on the 
conditions to be tested. The experiment controls 
define the number of steps within a cycle and the 
number of cycles in which to collect data. Each 
step has a step length in seconds, the number of 
valves to be opened, and the codes of the open 
valves. 

The data acquisition requirements specify the 
sampling rate, the number of channels to digitize 
(AID) and the respective 8-character channel la­
bels. The calibration equations for each channel 
and their respect! ve parameters are precalculated 
by the experimenter for converting the data into 
the appropiate engineering units. 

Process 

Once the input file is read, it is transfered to an 
output file to be used for future analysis. The 
program then starts cycling through the different 
steps, opening and closing the appropiate valves, 
sampling the different channels, and displaying on 
the screen the calibrated values for each channel. 
The display is in 1-second intervals with channel 
names displayed every 10 seconds. The program runs 
continuously through the different steps, display­
ing data on the screen, but does not collect any 
data until the line feed key is pressed. This is 
done to allow the experiment to reach the proper 
operating conditions the experimenter has selected 
to analyze. Once the line feed key is pressed the 
program collects data for the specified number of 
cycles, outputs it to a file, and terminates. 

The PDP 11 /03 has only one KWV11 real-time clock 
and the A/D process requires the clock to sample 
the data channels at the proper time intervals. The 
problem then is to simultaneously digitize the data 
and monitor the elapsed time of a step. The solu­
tion is to set the clock frequency to a factor of 
both the sampling rate interval and the smallest 
tiining unit (one, 1 /1 O, or 1/100 of a second) of 
the step time. A simple example is a digitizing 
rate of 10 samples per second and a step time unit 
of 1 second; the sampling rate interval would be 
0.1 second. However, a digitizing rate of 20 sam­
ples per second and a step time unit at a tenth of 
a second would require a time interval of O. 05 
second. 



At each time interval two counters are incremented; 
one for the step time and one for digitizing. When 
the step counter equals the current elapsed step 
time, the program proceeds to the next step and 
opens the appropiate valves. When the digitizing 
counter reaches the sampling rate interval, the 
required AID converters are sampled and the data is 
stored. When one second of data is collected, the 
last sample of each channel is displayed on the 
screen. The collection process is double buffered 
with one second of data in each buffer. 

Upon termination of the program two files have been 
created. One is the configuration file with the 
experimental conditions. The other is the data file 
with the step number, elapsed time, and raw data in 
the form of integer values corresponding to the 
analog (voltage) input. These files are then 
transfered to a VAX-111780 for further processing. 

History 

The program has been through several phases of 
modification. It was orginally written using the 
FortranlRT-11 Extension library and the step times 
were in 1-second multiples. Also this version was 
only capable of a maximum of ten steps per cycle. 
The second version was written with the capability 
for defining step times in tenths of a second, and 
a third version was written to accommodate up to 60 
steps per cycle. 

The latest version uses a Macro subroutine to 
control the time intervals (KWV11 clock) and to 
sample from the AID converters. It is more effi­
cient than using the Extension subroutines because 
it allows much faster sampling rates and requires 
less computer space. This program contains all the 
enhancements of previous versions and is capable of 
resolving step times to the one hundredth of a 
second which will be a future requirement. 

The PDP 11103 is being replaced with a Micro 
PDP-11173 and will be connected to a LCP01 ink-jet 
color printer. The new system will allow the ex­
perimenter to analyze and plot the results immedi­
ately after a run. This will eliminate the transfer 
of data to the VAX-111780 and thereby, improve the 
experiment turn-around time. Also there will not be 
the limitation on the amount of data that can be 
collected as there is now using the PDP 11103. 

SUMMARY 

We have developed a Fortran AID program in the 
RT-11 operating system which is capable of perform­
ing two timimg functions with only one KWV11 clock. 
It can sample AID converters while simultaneously 
monitoring the step time of a function. It has 
proven itself to be very useful in OBOGS experimen­
tation and could be easily converted to other uses. 

APPENDIX A 

Input File Layout 

OXYGEN BREAKTHROUGH EXPERIMENT 
2 USING 100% OXYGEN BED SATURATED WITH AIR. 
3 OXYGEN FLOW = 20. SLPM (FLOWMETER) 

105 

4 86104106 
5 3 Number of cycles in the experiment 
6 1 Number of sample per average sample 
7 20 Sampling rate (sweeps per second) 
8 2 Step sequence 
9 Feed to bed no. 1 (STEP SEQUENCE 1) 
10 2.0,4,01,03,05,07 
11 Feed to bed no. 2 (STEP SEQUENCE 2) 
12 2.0,4,02,04,06,07 
13 6 AID channel sequence 
14 FLOW IN BECKMAN FLOW OUT NITROG% OXYGEN% ARGON% 
15 01 CHAN 1 FLOW:INPUT (0-150 LPM) = (0 TO 5 VDC) 
16 2,-158.483,7.712E-02 
17 01 CHAN 2 BECKMAN (0-10 PPMV) (0 TO VDC) 
18 2,-181.888,8.8764E-02 
19 01 CHAN 3 FLOW:OUT (0-85 LPM) (0 TO 5 VDC) 
20 2,-17.483,8.6207E-03 
21 01 CHAN 4 N2 PER CENT ( 0-1 00%) ( -5 TO 5 VDC) 
22 2,-3.2266,2.5208E-02 
23 01 CHAN 5 02 PER CENT (0-100%) (-5 TO 5 VDC) 
24 2,-2.7777,2.523341E-02 
25 01 CHAN 6 AR PER CENT (0-100%) (-5 TO 5 VDC) 
26 2,-0.61676,5.13966E-02 

Lines 1-4 Remarks section for identifying the 
experimental operating conditions. 

Lines 5-8 Cycles, sampling rate and step se­
quence. 

Lines 9,11 Remarks for the step sequence used for 
screen display. 

Lines 10, 12 Step time (sec.) , Number of valves to 
be opened and codes of those valves. 

Line 13 

Line 14 

Number of AID channels. 

8-character channel labels. If more 
labels are needed they can be continued 
on the next line. 

Lines 15,17,19,21,23,25 Type of equation and re­
marks. (01=linear, 02=quadric, 03=cu­
bic) 

Lines 16,18,20,22,24,26 Number of constants for the 
calibration equations and the values of 
the constants. (as depicted: intercept, 
slope) 





REAL TIME PERFORMANCE OF MICROVAX II AND MICROVMS 

By Richard K. Somes 
Digital Equipment Corporation 

Marlboro, Massachussetts 

ABSTRACT 

In many data driven applications the data can be 
acquired in bursts and will fit in available 
physical memory. In these applications polling 
loop techniques can be used. In many event driven 
applications interrupt latency is the real time 
attribute of interest. Measurement of these 
performance attributes characterize real time 
computers so as to permit the user to make 
informed cost/performance comparisons. 

This paper presents the following real 
performance data for MicroVAX/VMS systems: 

time 

o Polled I/O to memory 

o Interrupt latency 
configurations 

on various 

A discussion of test methodology will be 
in the paper, as well. 

Proceedings of the Digital Equipment Computer Users Society 

107 

system 

included 

Dallas Texas - 1986 



INTRODUCTION 

Laboratory Data Products is an applications 
marketing group within Digital Equipment 
which concerns itself with the computing 
needs of the scientific end user. MicroVAX 
puts single user 32 bit computation, and 
the MicroVMS computating environment within 
the reach of the scientific user. Today it 
is economically feasible to dedicate a 
MicroVAX to a single user application. 
Although real time computation was possible 
on the VAX 11/780, it couldn't be done 
effectively with large numbers of users 
logged on because of the terminal interrupt 
loading. The cost of a 11/780 made it 
useable for real time only in limited 
applications. Today, it is feasible to 
commit a MicroVAX to a dedicated 
appli7ation, and it will exhibit good 
real time performance under certain 
situations. The laboratory end user needs 
performance information in order to select 
the right system, and to successfully 
design his application. 

Third party developers have an increasing 
interest in using 32 bit computers, VAX 
computers in particular, in embedded 
applications and those who want to do that 
sort of thing need to know about 
performance. There is a demand for more 
sop~isticated single-user development 
environments, and there aren't many more 
sophisticated development environments 
other than what's available under VMS. 

The performance data our users need is 
being developed by a consortium of 
marketing and engineering groups within 
Digital. LOP, Laboratory Data Products 
CMG, (that's the new name for what you kno~ 
and love as TOEM) Channels Marketing Group 
and CAEM, Computer Aided Engineering and 
Manufacturing,are marketing groups. The 
next two groups are central engineering 
organizations. MSD, Micro Systems 
Development is the engineering group 
responsible for PDPll's, and MicroVAXs will 
provide performance data for MicroPower 
PASCAL and VAXELN. There is also an 
ongoing performance testing effort within 
the VMS development group. 

There has been performance data reported at 
previous DECUS Symposia. What's new, 
however, is a will and a commitment to 
coordinate the activities of these groups 
~o merge the data and start reporting them 
in way that's useful. This cooperative 
effort began last fall and a couple of the 
groups that reported at the last DECUS 
symposium are now involved. The efforts of 
the ELN group in benchmarking the interrupt 
performance of ELN which was reported in 
Fall DECUS last year now fall under this 
general heading of performance testing and 
the PDPll data which was provided by the 
Channels marketing group at the last DECUS 
is also included, so all of these groups 
are wor~ing toge~he:. It's already begun 
and we re continuing here at this DECUS 

with my presentation today 
aspects, a couple of 
attributes of MicroVMS 
systems. 

on a couple of 
attributes, RT 

and MicroVAX 

The ultimate goal of all this performance 
testing is to characterize the attributes 
of computer systems which affect realtime 
~erformance. We want to characterize them 
in such a way that we can understand how 
applications work. We begin by measuring 
attributes l~ke interrupt latency or the 
rate at which we can acquire data using 
polled IO methods. These are the things 
I'm going to characterize in this paper. 
But from here, we need to characterize 
additonal attributes which will be 
indicated later. 

Ultimately we want to be able to say, for 
instance, whether data acquisition at 100 
khz from an A/D converter to disk is going 
to work on a particular system. We want to 
be able to define the realtime attributes 
of the system that decide if that 
application is going to work. We want to 
identfy the primitives that measurements 
can be made t? detrmine if a system will 
work, and which parameters can be adjusted 
to make a system work. We want to know how 
to enhance the operation of existing 
systems and perhaps more important we want 
~o ~no~ how to design better syste~s. This 
isn t JUSt performance testing. This is 
the beginning of an on-going e:fort in 
understanding and providing systems with 
advanced realtime architectures. 

TEST METHODOLOGY 

Figure 1 is a functional block diagram of 
the system on which the performance data 
was acquired. The test philosophy is to 
s~art with the minimum configuration that 
will run, characterize it and then 
incrementally add loads to show their 
effects. In the past VMS performance data 
has . been acquired on heavily loaded 
multi-user systems. It is not unusual in 
such.systems to observe interrupt latencies 
out into the hundreds of micro-seconds and 
even in the millisecond range. Lightly 
loaded systems don't exhibit that kind of 
behavior at all, as the data will 
illustrate. 

The test system always includes a KA 630 
CPU, and 4 megabytes of expansion memory 
for a total memory load of 5 and the 
interrupt test module. A ' DEQNA NI 
con~roller, and.a VCBOl video subsystem are 
op~ional depending on the loading condition 
being tested. The data describes four 
system configurations; a standalone 
MicroVAX II isolated from the Ethernet a 
~orkstation configuration like~ise 
isolated, and both MicroVAXs and 
workstations with network interfaces. 

The test board is a parallel interface 
board, not the DRVll-WA, but a a DEC 
product sold in Europe called the DRQllC. 

108 



It is the Q Bus version of the DREll-C and 
DRUll-C for the Unibus. It is a 22 bit DMA 
board - 16 bits in, 16 bits out - and it's 
claim to fame is that it does double 
buffered DMA. The DMA functionality 
doesn't really have any bearing on what 
we're doing here. For the purposes of this 
testing it is a parallel interface capable 
of generating interrupts. 

External to the parallel interface is 
connected the test counter shown in Figure 
2. It is a simple 16 bit test counter, 
using four 74LS193 pre-settable up/down 
counters and a holding register made up of 
two 8 bit transparent latches. The counter 
can be turned on or off, and counting can 
be enabled or disabled. It can be pre-set 
by writing a 16 bit word to the output 
register of the parallel interface. The 
counter always counts up and the outputs 
are always connected to the holding 
register. Depending on whether the holding 
register is in hold mode or transparent 
mode, these lines are either running with 
the counter or frozen. 

The carry output of the last counter stage 
is connected to one of the function bits so 
that the counter can generate an interrupt 
on overflow. 

Handshake lines between the input interface 
of the parallel IO board and the holding 
register allow a software generated trigger 
to freeze the holding register until 
handshake completes when a polled I/O read 
is done to the holding register. This 
triggering of the holding register is 
synchronized with the counter clock to 
insure that there is always a valid code 
stored in the register. 

POLLED I/0 TEST 

The first test done with this arrangement 
was polled I/0. The MACR032 code for the 
test is given in Figure 3. This code is 
called from a C program, but it could be 
called from any higher level language. One 
of the things that distinguishes this 
routine is that it is called using the 
SYS$CMKRNL (Change Mode to Keena!) system 
service. This was necessary because the 
polling code does one of a couple of things 
which require kernal mode access. One of 
the things is to disable interrupts by 
raising the processor IPL to 30 for the 
execution of the polling loop and re-enable 
them before returning to the calling 
program. The other alternative is to turn 
off the processor interval timer and then 
turn it on again at the end. Both of these 
are commented out in the listing shown, but 
the test was run for both cases as well as 
for the case in which neither was done. 

There are three sets of data here. In the 
first set, polling is done at elevated IPL 
so that the system is "asleep" for anybody 
else. In the second set of data the 
interval timer is off and the system is 
otherwise idle. In the third set of data 
the interval timer is on and the system is 
otherwise idle. 

109 

There are two graphs of this data, shown in 
Figures 4 and 5, one which shows all the 
data and one which shows the detail of the 
major peak in the distribution. The 
distribution of polled I/0 times for IPL30, 
and that for IPLO with the interval timer 
off are essentially the same. With the 
interval timer on, there is a major peak 
similar to that in the two previous cases, 
but there are also a couple of discrete 
groupings of longer sampling times. 

Every time the polling loop is traversed, 
the holding register is triggered and its 
contents are read into a data buffer in 
memory. The data is processed by taking 
the first difference producing an array of 
times between each successive sample. 
Anytime there's an interrupt on the system, 
the instruction stream is pre-empted and a 
delay is injected between samples. There 
are three discrete groupings, one at around 
60 microseconds, another one around 300, 
and a third around 600. In summary the 
minimum polling time for the code shown is 
10 microseconds, the maximum polling time 
is 14, and the most frequent polling time 
is 10 1/2 microseconds. That translates 
into a polling rate of 70 - 100 KHZ, 70 KHZ 
worse case. 

In Figure 5 it is clear that the first peak 
of all three distributions are essentially 
identical. The spread in ?Olling times is 
due to the fact that there are other things 
happening even on an idle system besides 
the process it is executing. Among them, 
memory has to be refreshed. In a MicroVAX 
II the memory is connected to the MicroVAX 
CPU through a private memory interconnect 
and is managed by a memory controller on 
the MicroVAX CPU board. Among other 
things, that memory controller has to 
refresh memory periodically and that 
refresh interval can delay the reply times 
on a READ thereby extending the length of 
an I/O cycle. 

Let's take a closer look at the outlyers in 
the third test case. They are obviously 
the result of interval timer interrupt 
loading on the system. There are several 
different code paths which can be traversed 
in response to an interval timer interrupt. 
One possibility is that there is a timer 
queue entry. Another possibility is that 
the quantum allocation for the process at 
hand is expired. A third possiblity is 
that neither of these conditions exists and 
the interrupted code stream can be resumed. 
Each one of those code paths is associated 
with one of the outlying peaks. My guess 
is that the shortest interruption occurs 
when there is neither timer queue entry nor 
quantum timeout. I am reasonably certain 
that the second one out is associated with 
quantum expiration. When the polling loop 
is run at realtime process priority, the 
outlyer moves in from about 200 to about 



125 microseconds. The third peak is 
probably due to the posting of an AST 
resulting from a timer queue entry. 

INTERRUPT LATENCY TEST RESULTS 

The connect interrupt driver, which is 
supplied as a part of VMS on most VAX 
systems including the MicroVAX II, is a 
generic driver which allows the user to 
write his own start I/0 code, interrupt 
code, cancel I/0 code and initialize code 
and to call it using the QIO system service 
without having to write an entire device 
driver. The device driver code provides 
JSB, RSB linkages to the user defined code. 
The user defined code and any data 
locations required for its execution is 
known as the CIN buffer. Its location and 
size are defined in the QIO call which 
initiates I/0 from the device. The CIN 
buffer must be less than or equal to 64K 
bytes in length. It must, above all, be 
clean code, because it runs in system 
context at elevated IPL. If it generates a 
machine check, it will cause a system 
crash. 

Figures 6 ~nd 7 are fragments of the code 
used for interrupt testing. In the test 
1024 interrupts are accepted for each QIO, 
and the time data for each interrupt is 
stored in a data buffer located at the top 
of the CIN buffer. 

In the START I/0 routine two temporary 
locations within the CIN buffer are 
initialized, one containing the number of 
interrupts to be processed (1024) and the 
other containing a pointer to the temporary 
data buffer. The base address of the 
device, a DRQll in this case, is loaded 
into another register. Before manipulating 
device registers, IPL is raised to power 
fail level to synchronize access with other 
processes which might be "touching" the 
device. The test counter is stopped and 
read to obtain a time measurement from the 
beginning of the QIO call to the start I/O. 
It is then preset at -20,000 clock ticks, 
which amounts to 10 milliseconds and 
started. Interrupts are re-enabled, and 
control is returned to the driver and from 
there to the process which issued the QIO. 

Since there is a 10 millisecond delay 
loaded in the test counter, it is virtually 
guaranteed that control will return to the 
user code before an interrupt occurs. When 
that counter overflows, that code stream is 
interrupted. The counter continues to run, 
however, until the interrupt service 
routine is entered. The ISR fetches the 
base address of the DRQll and immediately 
transmits a trigger to the test counter. 
The counter is triggered in the second 
instruction of the ISR. The effect of the 
trigger is freeze the contents of the 
counter. Because the triggering of the 
counter is synchronized with the test 
counter clock, it is necessary to test the 
DONE flag to make sure that the 
synchronization has occurred before reading 

110 

tne register. That's accomplished by the 
two line polling loop at 3$. With a 2 MHZ 
this loop is never traversed more than 
once. If we were using an A/D converter 
doing 20 microsecond conversions, it would 
be necessary to traverse this loop a number 
of times before reading the device. 

Once the data has been stored in the 
temporary data buffer, the counter is 
pre-set to -20,000 again and control is 
returned to the user. If 1024 interrupts 
have been acquired a request to execute 
user defined AST code is posted and the I/0 
operation is terminated. There are two 
versions of this code, by the way, one with 
a fixed pre-set and one with a random 
pre-set. I've seen one test result where 
it appeared that there was some sort of 
synchronization going on between the test 
source and another interrupt source on the 
system. In most cases, I didn't see 
anything like that, but in one case I did 
and I wrote the random code in order to 
deal with that specific situation. 

The interrupt data in Figures 8, 9, and 10 
were gathered on three different system 
configurations. For the tests of Figure 8 
the system includes only a KA630 CPU, 4 
megabytes of expansion memory, a disk 
controller, and the interrupt test board. 
The terminal is connected to the console 
terminal port on the KA630 CPU board. For 
Figure 9 an Ethernet controller is added to 
this configuration, and for Figure 10 a 
VCBOl video subsystem is added making the 
system a VS II with an Ethernet port. 
These three sets of data show the basic 
interrupt latency of MicroVMS on the 
MicroVAX II CPU, and the cumulative effects 
of additional interrupt loading. 

In a minimum MicroVAX II configuration such 
as was used for the tests shown in Figure 8 
the only interrupt sources are the interval 
timer, the console port, the disk 
controller, and the test board. In all 
tests the disk controller was inactive, so 
that only the other three sources were 
considered. In the first test the Interval 
Timer was disabled. The resulting 
distribution of interrupt latencies is 
indicative of the raw performance of the 
processor and the operating system. All 
interrupts were processed in between 36 and 
42.5 microseconds, with a most frequent 
(almost 80%) time 37.5 microseconds. The 
variation in times is due to bus 
arbitration time which is influenced by the 
instruction being interrupted and by memory 
refresh. 

When the Interval Timer is enabled there 
are two interrupt sources, and it is 
possible for the test interrupt to be 
blocked by Interval Timer ISR code. In 
this case the maximum interrupt latency 
stretches out to 75 microseconds, but the 
minimum and the most frequent values are 
not significantly effected. 

The scrollinq load injects a third source 



of interrupts. These are also capable of 
blocking the test interrupt. Apparently 
the ISR for the console terminal is capable 
of blocking for extended periods, for the 
worst case latency is extended to 740 
microseconds in this case. 

In Figure 9 the effects of adding DECnet 
loads is shown. In the first data set the 
DECnet link is quiescent, and the results 
are similar to those shown in the second 
data set in Figure 8. The Ethernet 
controller adds an interrupt load and the 
worst case latency is extended to 91.5 
microseconds. In the second and third data 
sets, the effects of network activity are 
shown. In the second set a single remote 
login/logout transaction was performed over 
the Ethernet from a LAT server. In the 
third set a continuous scrolling process 
was executing from the remote terminal. It 
was the same scrolling load as used to test 
console interrupts, but when executed over 
the Ethernet the worst case interrupt 
latency was only 122.5 microseconds. 

In Figure 10 the effects of a video 
subsystem are shown. Even the quiescent 
VCBOl adds interrupt loading to the system. 
It generates an interrupt for every frame, 
or 60 times per second. The worst case 
interrupt latency in the presence of a 
video subsystem is measured at 266 
microseconds. When the scrolling load used 
in the two previous tests is executed in a 
VS II window interrupt latencies of about 2 
milliseconds are observed. 

A word or two about how interrupts are 
handled on the MicroVAX II are in order. 
In the MicroVAXII the interval timer 
interrupts at IPL22, which corresponds to 
BR6 on the Q Bus. It is serviced at that 
IPL as well. The console terminal 
interrupts and is serviced at IPL 20, 
corresponding to BR4 on the bus. In the 
tests run for this paper the test device 
was requesting at BR4, so that it could be 
blocked by either the clock or the console 
terminal. It is reasonable to assume that 
if a BR7 device were the only interrupt 
source, it would have an interrupt response 
distribution essentially identical to that 
observed on an idle MicroVAX II with 
Interval Timer disabled. 

Because interrupts are acknowledged on only 
one line on the Q Bus, the processor's IPL 
is raised to 23 regardless of the BR level 
of the request. Unless the device driver 
drops to the correct device IPL or forks 
very quickly in the interrupt service code, 
it is possible for other higher priority 
devices to be blocked. In order to get 
optimum interrupt response for a critical 
device, it is necessary that interrupting 
devices be arranged in strict accordance 
with DEC Std 160 and that all devices are 
serviced at the appropriate device IPL. At 
this time compliance with the latter 
restriction is the responsibility of the 
device driver writer. 

Ill 

FUTURE PLANS 

The next major area of performance 
characterization is OMA throughput, because 
OMA is the fastest way to get burst data 
and the only way to get sustained data flow 
for buffers larger than 64 KB. It is 
possible to acquire bursts of data using 
polled I/0 at 70 KHz. With that kind of 
capability one can grab frames of speech 
data, for instance, analyze it off-line, 
and reproduce it, using very simple 
peripherals like the AXVll-C. 

If you want to move data at hardware rate 
of the bus, you've got to have DMA. The Q 
Bus as it's operated by most I/O 
peripherals today exhibits a peak bandwidth 
of about 1 2/3 megabytes per second in 
single transfer mode. It's capable of much 
higher rates (about double that rate) in 
block mode and that is one of the things we 
want to characterize for you. 

Channels Marketing Group is going to 
complete the job of baseline 
characterization of the PDPll. Most DEC 
realtime users come to where they are today 
knowing how PDPll's work under RT and RSX 
and wanting to understand how MicroVAX 
under MicroVMS and under ELN compares with 
it. CMG is interested in doing that job 
and a lot more. The ELN group is committed 
to characterizing the performance of new 
VAX systems as they are supported by ELN. 
All of us, LOP, CMG and ELN are 
interested in providing this kind of data. 
We have a pretty good picture of interrupt 
response, interrupt latency. We want to 
characterize interrupt rate; and DMA 
performance, and the major inter-process 
and svnchronization mechanisms real time 
users are interested in. 

ACKNOWLEDGEMENTS 

I am indebted to a number of people who 
contributed to this paper. 

Frank Jones is responsible for the 
isometric plots of polled I/0 and interrupt 
latency performance. Frank wrote the 
programs to extract the data from the log 
files produced by the tests, and to plot 
it. The plots were produced on an LVP16 
plotter connected to a MicroVAX II. 

Ivan Goddard built the the test timer 
circuitry. 

Amr Hafez helped with the running of the 
tests and gathering of the data. 

Jane Whitney transcribed the audio tape of 
my DECUS presentation for use as a first 
draft of this paper. She also proofed the 
final draft, and did the paste up work. 



MICROVAX II BASED PERFORMANCE TEST SYSTEM 

PMI 
+-------------------------------+ 
I I 
I I 
I Q BUS I 
v 

+---------------+ 
Slot 2 I 
MS630 PMI I<------> 
4 MB Max I 

+---------------+ 

v 
+--------------+ 
I Slot 1 I 

<------>I KA630 CPU I 
I I 
+--------------+ 

CONSOLE 
+----------------

+---------------+ +---------------+ 
I Slot 4 I I Slot 3 
I DEQNA I<------> 
I I 

<------1 TEST BOARD 
I 

+---------------+ +---------------+ 

Serial Lines +---------------+ 
<-------->I Slot 5 I 

Video I VCBOl I<------> 
<---------1 I 

+---------------+ 

RD5x +---------------+ 
-------->I Slot 6 I 

RXSO I RQDX3 I<------> 
-------->I I 

+---------------+ 

v 

Figure 1 

DRQll TEST COUNTER 

OV~RFLOW INTERRUPT 
+----------------------------------------------> 
I 
I 

+--------+ +--------+ 
I COUNTER! !HOLDING I 
I I I REGISTER I 

16 I I 16 I I 16 
----/--->I 1---------/----------->I 1----/-----> 

DRQ I I CTR OUTPUTS I I DRQ 
OUTPUTS I I I I INPUTS 

+--------+ 

3 CTRL LINES I 
----/-------+ 

Figure 2 

112 

+--------+ 

2 HSK LINES 
+-----/--------> 



:MODULE TO ACQUIRE N (FIRST ARG OF CALL) POINTS FROM A DRQll-C BY POLLED I/0 
:AND STORE THEM IN A DATA ARRAY DEFINED BY THE SECOND ARG OF THE CALL 
;THIS VERSION PERFORMS THE ACQUISITION AT IPL 30 

.PSECT 

.ENTRY 

. , 
$1: 
$2: 

.LIBRARY /SYS$LIBRARY:LIB.MLB/ 

$IDBDEF 
$UCBDEF 
$IODEF 
$CINDEF 
$CRBDEF 
$VECDEF 
$PRDEF 

DRQ SCR 
DRQ-COR 
DRQ-ADR 
DRQ=DATA 

CLEAR 
PRESET 
START 
STOP 
TRIGGER 

= 0 
2 
4 

= 6 

8 
14 
4 
12 

= 5 

DRQ PIO,PAGE 

Definition for I/O drivers 
Data structurs 
I/O function codes 
Connect-to-interrupt 
CRB stuff 
more 
Processor register defs 

DRQ=PIO, AM<R2,R3,R4,R5,R6> 

MOVL 4 (AP) ,R3 GET THE VALUE OF N AND SET LOOP CTR 
MOVL 8 (AP) ,R4 GET THE ADDRESS OF THE DATA ARRAY 
MOVL 12(AP) ,R2 GET THE BASE ADDRESS OF THE DRQll-C 

DSBINT #30 ELEVATE IPL TO 30 
MTPR #O, #PR$ recs TURN THE TIMER OFF 
MOVW #TRIGGER~DRQ SCR(R2) TRIGGER THE HOLDING REGISTER 
MOVZWL DRQ SCR(R2),R5 TEST THE DATA AVAILABLE FLAG 
BBC #ll~R5, $2 AND WAIT HERE UNTIL IT SETS 
MOVW DRQ DATA(R2),(R4)+ STORE THE DATA 
SOBGTR R3,Sl TEST THE LOOP COUNTER 
ENBINT RESTORE IPL 
MTPR #AX40, #PR$_ICCS TURN THE TIMER ON 
MOVZWL R2,RO 
RET RETURN 

LOOP END:: .LONG 0 

, 
.END 

Figure 3 

113 



/ 

I 

-....,> 

Q 
;; 
0 
u - ..._., "" 0 
.-4 
bD 
0 
~ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

11( 

/ 1 

lOOl:J 

/ 
/I 

I 
10)[1 
/ 

/ I 

1rJ 
/I 

/ 
I 

100~ 

//I 

101 

/1 
/ I 

01..· .... 

Fiqure 4 

IPL 30 

MicroVAXll 
(Polled I/O) 

MicroVAX II, Polled I/O 

+------+--------+------+---------+---------+---------+---------+ 
1 Min 1 Ma• lMostF 1 Most % 1 <•50 I <•75 1 <•100 1 
1------1--------1------1---------1---------1---------1---------1 
1 10.0 1 14.o I 10.5 1 87.91% I 100.00% I 100.00% 1 100.00% I 
1------1--------1------1---------1---------1---------1---------1 

IPL 0, Timer OFF 1 1 o. o I 14. o 1 1 o. 5 I 84. 66% I 1 oo. 00% I 100. 00% I 1oo.00% I 
1------1--------1------1---------1---------1---------1---------1 

IPL O. Timer ON I 10.0 I 619.5 1 10.5 I 84.37% I 99.90% I 99.99% I 99.99% I 
+------+--------+------+---------+---------+---------+---------+ 

_o'l...tl~r_ 

...,..: 

.. 
-,.lOM 

/ 
/ 

T,, 7 788 

/ c;.. 1-/:112 ........ ""~el 
/ el - . ~ ...... ~ 

/ 2158 ~ 
~-So-ao :$. ...... ~ 

~o 

...... -



\\5 



.SBTTL LDPIO_CIN_START, Start I/0 routine 

;++ 
LDPIO CIN START - Starts the DRQ 

Functional description: 

Inputs: 
R2 
R3 
R5 

0(R2) 
4(R2) 
8(R2) 
12(R2) 
16(R2) 

Outputs: 
none 

- Addr of count arg list 
- Addr of IR?. 
- Addr of UCB 

- arg count of 4 
- Address of the process buffer (system mapped) 
- Address of the IRP (I/0 request packet ) 
- Address of the device's base I/O address 
- Address of the UCB (Unit control block) 

The routine must preserve all registers except RO-R4. 

;--

LDPIO CIN START:: 
MOVW 
MOVL 
MOVL 
DSBINT 
MOVW 
MOVW 
MOVW 
MOVW 
MOVW 
MOVW 
ENBINT 
MOVZWL 
RSB 

#1024,POINT COUNT 
4(R2),POINTER 
12 ( R2), RO 

#STOP CTR, DRQ SCR(RO) 
#TRIGGER CTR,DRQ SCR(RO) 
DRQ DBR(RO), QIO-TIME 
#PRESET CTR,DRQ SCR(RO) 
#45356,DRQ DBR(RO) 
#START_CTR~ DRQ_SCR(RO) 

#SS$_NORMAL,R0 

Set point count 1024 points 
Set up pointer into data buffer 
Get value of the DRQ I/0 address 
Raise IPL to IPL$ POWER 
STOP CTR AND READ-QIO TIME 

PRESET DRQ TEST COUNTER 

START CTR AND ENABLE DRQ INTERRUPTS 
Restore IPL 
Load a success code into RO. 
Return 

Fiqure 6 

116 



.SBTTL LDPIO_CIN_INTERRUPT, Interrupt service routine 

;++ 
LDPIO CIN INTERRUPT 
FunctTonaI description: 

Inputs: 
R2 
R4 
RS 

O(R2) 
4(R2) 
8(R2) 
12(R2) 
16(R2) 
20(R2) 

Outputs: 

- Addr of counted agr list 
- Addr of IDB 
- Addr of UCB 

- arg count of 5 
- Address of the process buff er 
- Address of the AST parameter 
- Address of the device REGISTERS 
- Address of the IDB (interrupt dispatch block) 
- Address of the UCB (Unit control block) 

The routine must preserve all registers except RO-R4 

. --, 
CIN BUF ADD = 4 
AST-PARM = 8 
CIN-CSR ADD = 12 

;Address of CIN buffer 
;Offset to AST parmeter address 
;Address of BASE 1/0 ADDRESS 

LDPIO CIN INT:: 
- MOVL 

MOVW 
3$: MOVZWL 

10$: 

BBC 
MOVL 
MOVW 
ADDL 
MOVL 
DECL 
BNEQU 
MOVW 
MOVW 
MOVW 
MOVW 
MOVZWL 
MOVL 
RSB 

DSBINT 
MOVW 
MOVW 
MOVW 
ENBINT 
MOVL 
RSB 

CIN CSR ADD(R2),R0 ; 
#TRIGGER CTR, DRQ SCR(RO) 
DRQ SCR(RO), R4 -
#11:- R4, 3$ 
POINTER,R3 
DRQ DBR(R0),(R3) 
#2,R3 
R3,POINTER 
POINT COUNT 
10$ -
#STOP CTR, DRQ SCR(RO) 
#CLEAR CTR, DRQ SCR(RO) 
#STOP CTR, DRQ SCR(RO) 
#START TIM, DRQ SCR(RO) 
#1, @8TR2) -
#1,RO 

#PRESET CTR,DRQ SCR(RO) 
#45356,DRQ DBR(RO) 
#START_CTR~ DRQ_SC.R(RO) 

#0,RO 

Figure 7 

Get BASE 1/0 address 
; TRIGGER TEST COUNTER 

Read data (assume no error) 

Dec ooint count 
Done-? 

RETURN #1 to AST PARAMETER 
1 means queue the AST, 0 means don't 

Not done; IPL$ POWER 
PRESET DRQ TEST COUNTER 

'3TART CTR AND ENABLE DRQ LITERR!JPTS 
Restore IPL 
1 means queue the AST, 0 means don't 

117 



-.....i 
~ 
;j - 0 

00 u -0 
....... 
till 
0 

..:l 

/ 
/ 
I 

/ 

/ 

/ 

/ 

/ 

/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

./ 
/ 

/·-

/ 

/ 

/ 

/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

lOOK 
/1 

/ 
/ I 

101:' 
/1 

// I 

/ 
/ 

/ 
/ 

I 
1~ 
/I 

I 
100~ 

/I 

I 
lOj 

/I 
/ 

/ 
/ 

I 
?,L .. · 

/ 

/ 

//_ 
/ 

Fiqure 8 

MicroVAX II 
(Int.rrupt latency) 

MicroVAX II 

+------+--------+------+---------+---------+---------+---------+ 
I Min I Max IMostF !Most % I <•SO I <=75 I <=100 I 
1------1--------1------1---------1---------1---------1---------1 

Timer OFF I 36.0 I 42.S I 37.5 I 79.61% I 100.00% I 100.00% I 100.00% I 
1------1--------1------1---------1---------1---------1---------1 

No Load I 38.0 I 75.0 I 40.0 I 83.49% I 99.95% I 100.00% I 100.00% I 
1------1--------1------1---------1---------1---------1---------1 

scro111ng I 36.0 I 740.o I 40.o I 68.68% I 97.59% I 98.89% I 99.53% I 
+------+--------+------+---------+---------+---------+---------+ 

_oy__~r_ 
.. · 

.....: 

.·· - ~· 
~-· 

/ 102.C. - - ' / ; jf 7788 

iilll• I e.~ l llJl'D'512 \.....vce; 

lrt-~e ~~e, 
- -..:.::::? ~o-eo ~v~ BcrOZU.: ~0~ 

~ 

1- - - - -
"Na;;.;-
S.htezn 



,... ,... 
\Cl 

/ 
\ 

".:>' 
~ 
0 
u -0 

/ 
/ 

.-4 
ti1\ 

5 

/ 

/ 

/ 

/ 
/ 

/ 

100J. 
/ /\ 

/ 

oi 
1. '\ 
/ 

\ 

\U,cto VAX 1.1 
(DBC~•t. ~t,erru\lt. i.~cY) 

~\croVA~ it/D~cnet 
- .---------·---------·--- -----·---------· 

•. -----·--------·---- - I •. ,, I ••'' I ••'"" I 1 ''" I ~· 1•••'.C.l~'.'.'-' ... 1 ... : .. ---1---------1---------I 
1------1--------1--· \ '''''I "·'''I ''·'''I '""·""'I '"'"' I ,,_, I ,,.,I ''·" · ... 1 .... -----1---------1··------·1 
1------1--------1------1------ I '' ''' I ,,_,,, I '""·""' I 

one Log\n/Out I 34.S I 131.0 1,_:~:~-11_-~::~~~-1----:----1---------1---------ll 
1------1-------- • ''' I ''·''' I "·''' I ''·'" 

·------·--------·------·-----
/ 

/ 
/ 

/ 
\ 

1.1.'\ 

,.~•• '''''' I ''·' I '''·' I ,,.o I '· ----·---------·---------·---------• 

/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ 
/ 

/ 

/ / \ 
/ \ 

/ 
/ 

/ 

/ 
/ 

/ 

100~ 

/ \ 
/ \ 

1.0l 

/ \ 
/ 

/ \ 

/// 7·"_ 
/// /-----

/ -

_9uti~r- ___ _ .. ·· 
....:. -

/ 

... 
--\oi-4 

/ 

71aa ~ 
/ e,c 

/ ,§ 
7~1.Z e,-...;::. 

/ ~$' 
/ ~ 

/ ~e .:::r<Q. 

~-ea e,~~ .... 
Quiet -.-m.Ot;; Sc~ll ....,-9 

Figure 9 



-~ 
C:I - ::s 
0 N 
u Q -0 ..... 
tlD 
0 

...:l 

/ 
/ 

/ 

I 

/ 
/ 

/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

l/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

/ 
/ 

100)[ 

/1 
/ 

10)[1 

/1 
/ I 

I 
11:1 

/ 
/ I 

I 
100~ 

//I 

I 
10j 

//I 

I 
. / .... 

/ 
/-

V AXstation ll/DECnet 
(Interrupt Latenc,.) 

VAXstatlon II/DECnet 

+------+--------+------+---------+---------+---------+---------+ 
I Min I Max IMostF !Most % I <=50 I <=75 I <=100 I 
1------1--------1------1---------1---------1---------1---------1 

Quiet I 34.5 I 266.0 I 38.o I 59.11% I 98.81% I 99.22%· I 99.55% I 
1------1--------1------1---------1---------1---------1---------1 

1 vs wind scro11 I 34.5 I 2111.5 I 38.5 I 46.84% I 96.43% I 97.80% I 98.02% I 

1------1--------1------1---------1---------1---------1---------1 
VS/Remote Scroll I 34.5 I 2094.5 I 39.0 I 50.83% I 96.60% I 98.12% I 98.42% I 

+------+--------+------+---------+---------+---------+---------+ 

_oy__tl~r_ 

- -

~ _ - - •JJlllP"" - - ~·1J~ IVV °' 
Qqt•t - - ' - - - i '?>Ill 

- - - - - - - -· 512 '\...v 
---- --- e 

~-- -- -~ IP'bido.,.~" - _ "!'...<'V 
Lo ~ - ~ ~ 

d -- ~ a ---- :so-eo ... ~ 
~ - Ill~ 
~ote Lz.oll ,~ Figure 10 



INTERFACING TO 
DATA ACQUISITION SYSTEMS 

George F. Sirois 
Digital Equipment Corporation 

Marlborough, Massachusetts 

ABSTRACT 

Some of the more common problems encountered by 
users when interfacing to Data Acquisition Systems 
(DAS's) their symptoms and proposed solutions. 
Includes: static and dynamic problems due to MUX's 
and source resistance; ground loops; single-ended 
vs. differential input schemes; non-isolated vs. 
isolated differential inputs; and, driving cables. 

INTRODUCTION and, for Ri >> Rs, the offset becomes 

There are several problems commonly encount­
ered by users when interfacing to a data ac­
quisition system (DAS) that can significant­
ly reduce the system accuracy or even cause 
permanent damage to the front-end. 

MULTIPLEXER & 
SOURCE RESISTANCE 

Many problems are associated with the analog 
input multiplexer. Aside from the static 
scaling and offset errors that occur, the 
source output resistance also results in a 
dynamic error when the source is connected 
directly to an analog multiplexer (MUX). 

SOURCE RESISTANCE 

The static scaling error is due to the volt­
age divider effect between the source output 
resistance and the DAS's input resistance; 
the off set error is due to DAS input bias 
currents flowing through the source output 
resistance. 

v, 

Fig. 1: Static input errors. 

From fig. 1, the signal, v, that is present­
ed to the DAS becomes: 

v =Vs [Ri/(Ri+Rs)] - Ii [Ri Rs/(Ri+Rs)] 

Thus, the scaling error is 

% Error= -100 I (1 + Ri/Rs), 

Proceedings of the Digital Equipment Computer Users Society 

121 

Vos = -Ii Rs . 

As shown in table 1, Rs must be very small 
compared to Ri to maintain 12 bit accuracy. 

Table 1: Scale Error 

Ri/Rs % Error 

99 - 1.0 % 
499 - 0.2 % 

4999 - 0.02 % 

The dynamic error results from MUX switch 
charge injection and MUX node charge trans­
fer when a MUX channel is switched on, thus 
causing the input to become unsettled. The 

v, 

SOUR.CE. 

MUX 

s, 
Vo --+--+--+-+-e--+-~ 

Fig.2: MUX node charge 
transfer model. 

Dallas Texas - 1986 



MUX node charge transfer model is shown in 
fig. 2. The MUX node capacitance Cn has been 
charged through Sl to Vo from the previously 
addressed channel. When the next channel is 
addressed its MUX switch, S2, will close 
(after Sl has opened). This will cause the 
current input, which has been charged to the 
source voltage, Vs, and the MUX node to 
share a portion of their charges, thus un­
unsettling the input. The input must now re­
settle, through the source resistance Rs, to 
the source voltage, Vs. The resulting input 
transient waveform, given by 

+- -+ 
(Vo-Vs) en I - (t-T) I 

v Vs + ---------- Expl --------- I u(t-T) 
in Cs + en I Rs(Cs+Cn) I 

+- -+ 

is pictured in fig. 3. To simplify the 
analysis, it has been assumed that the 
switch on resistance is zero. 

v. 

v, 1------' 

c. 
( v.- v,) c~ +c.., 

~~-~-1-~~~~-~~~~~~•t 

T 

Fig. 3: MUX node charge transfer 
transient waveform. 

A similar situation occurs due to the stray 
coupli~g capaci~ance between the gate of the 
MUX switch and its source and drain nodes. 
Wh~n the gate control signal turns the 
switch on, a charge is injected on to both 
the MUX input and its output node (fig.4) 
again unsettling the input. Many moder~ 

MUX 

I 
_.L_ _J._ 

-~-- -T- _-r 
__/ 

Fig. 4: MUX switch charge injection. 

122 

MUX's, however, are designed using complem­
entary MOS switches to significantly reduce 
this injected charge. 

A general solution to these problems is to 
buffer the source with a voltage follower 
configuration to present a lower source re­
sistance. If, however, the static errors are 
not significant, an added delay to allow the 
input to re-setttle (at the cost of a lower 
sample rate) or increasing the source capac­
itance to reduce the transient amplitude to 
less than an LSB (at a cost of lower signal 
bandwidth) will solve the dynamic problems. 

OPEN CHANNELS 

All unused inputs to the MUX should be 
grounded since addressing an open channel 
will cause the input bias currents to flow 
through an indeterminately large leakage re­
sistance resulting in an input voltage that 
could saturate the front-end amplifiers. 
This, in turn, will cause a settling problem 
on the next addressed channel since op-amps 
typically require lO's of microseconds to 
recover from saturation. 

OVER-VOLTAGE 

Two related problems that can at the very 
least cause trouble and at the most cause 
damage to the input MUX are: power-off load­
ing of the source and input over-voltage. 

Power-off loading occurs when the power to 
the DAS is removed while the source is still 
active, causing junctions within the MUX to 
become forward biased. This can result in a 
large current being drawn from the source 
which may damage either the MUX or the 
source (or both). 

A similar situation occurs when the input 
exceeds the MUX power supply levels during 
normal operation. However, even if there is 
an over voltage specification this often 
only indicates a "no damage" limit and may 
result in severe channel interaction when 
any input voltage is beyond the FSR limits, 
but within the maximum specified limits. 

In the case of power-off loading, the user 
must either take steps to limit the source's 
output current or disconnect the sources be­
fore power is removed from the DAS. To pre­
vent over-voltage from occuring during norm­
al operation it may be necessary to also 
limit the source output voltage swing. Of 
course, if the DAS has been designed and 
specified to tolerate one or both of these 
these conditions, then the life of the user 
is greatly simplified. 

NOISE PROBLEMS 

Noise is perhaps one of the most common 
stubborn problems encountered in the use 
analog systems. However, there are a 
precautions that can mininize noise. 

and 
of 

few 



GROUND LOOPS 

Ground loops can induce high noise levels 
as a result of current divider action of 
digital circuit return currents. From fig. 5 

I2 = (I +AI) Zl/(Zl + Z2), 

where is the digital circuit quiescent 
current, 4I represents the digital switching 
currents, and where Zl and Z2 are the wiring 

'OOURC.E. 
DIGITAL 

CK.T'b 

+ 
~. 

:r, ~ --------------
Iz 

Fig. 5: Ground loop. 

'O c 
&Ul"PLY 

impedances. Thus, the front-end "sees": 

or, 

v V - (I +AI) Zl Z2 /(Zl + Z2) 
in s 

V - 4I Zl Z2 /(Zl + Z2) 
s 

because Zll IZ2 is significantly larger for 
dI due to the inductive components of both 
Zl and Z2. 

SHIELDING 

Shielding the input wires can reduce ex­
ternally coupled electrical noise. However, 
improper shield connections can result in 
common-mode noise pick-up due primarily to 
the stray coupling capacitance, C, from each 
input signal line to the cable shield, as 
shown in fig. 6. If the shield were to be 
connected to the analog ground return of 
the DAS, as in fig. 7, then the high fre­
quency components of the common-mode volt­
age, Vern, would have a closed circuit and 

li>HIEL t:> DAS 

'OOURC.E 

Fig. 6: Shielded twisted pair. 

123 

therefore create noise currents that would 
flow through both the source output resist­
ance and the distributed cable series resis­
tance and inductance. 

DAS 

c 

Fig. 7: Shield grounded at DAS. 

Fig. 8, with the shield connected to the 
source's "low" side, is the preferred con­
nection for the shield. In this conf igura­
tion the common-mode voltage drives shield 
and, as a result, there is no longer a 
high frequency common-mode current path; 
the "low" side-to-shield capacitance has 
been shorted out, and the "high" side-to­
shield capacitance now appears across the 
signal source. It should also be noted here 
that the currents required to drive the 
stray shield-to-ground capacitance from the 
common-mode voltage are shunted directly 
through the shield in this case, thus 
by-passing the source and the DAS input 
lines. 

c 

SOURCE. 

Fig. 8: Shield connected to 
"low" source end. 

SINGLE-ENDED vs DIFFERENTIAL 

Th~ choice of single-ended vs differential 
is often critical, since a differential in­
put will generally reduce common-mode noise. 
Because of cost, a pseudo-differential con­
nection is often a reasonable compromise. 



SINGLE-ENDED INPUTS 

As shown in the ground loop example (fig. 5) 
a grounded single-ended source will result 
in higher noise. Not connecting the source 
"low" to the analog return isn't much better 
since the ADC must now "look" back through 
the digital return to "see" the analog in­
put. The only "safe" source for single ended 
operation is a "floating" source. 

PSEUDO-DIFFERENTIAL INPUTS 

Pseudo-differential connections are essent­
ially single-ended inputs with the AMP LOW 
input connected to the source ground, or 
"low" side, as in fig. 9. The input instru­
mentation amplifier now "sees" only the 
source signal and does not include noise 
source generated by digital return currents 
flowing through Z as it would if the amplif­
ier were to be connected to the DAS analog 
return. Also, this scheme is general enough 
to accept a mix of grounded and floating 
sources. In such a case the floating sources 
would be grounded at one of the grounded 
sources. 

v, 

·----------·--------~ 

MUX 
DAS 

R, 

AMP 1-ow 

'$OUR.CE. 

Fig. 9: Pseudo-differential 
input connection. 

NON-ISOLATED DIFFERENTIAL INPUTS 

Connections to non-isolated differential in­
puts are often not properly understood by 
users of data acquisition systems. A float­
ing source cannot just be connected across 
this type of differential input. The input 
bias currents to the DAS require that such 
inputs be referenced to the DAS's analog 
return through a finite, and relatively low 
valued, resistance (R shown in fig. 10) to 
prevent large common-mode voltages from be­
ing generated that generally would saturate 
the front end. Since 

Vern= - R (Il + 12), 

Vern will become very large if R is the leak­
age resistance to ground. 

124 

Fig. 10: Non-Isolated differential 
inputs. 

ISOLATED DIFFERENTIAL INPUTS 

Isolated differential inputs (fig. 11) are 
the most general purpose, but also the most 
expensive, connections. They will accept 
floating input sources without the need to 
reference to the system analog ground, as 
with the non-isolated differential case, and 
they will accept grounded sources without 
creating ground loops. They are, however, 
usually used where large common-mode voltage 
signals are present. 

Fig. 11: Isolated Differential 

DRIVING CABLES 

Driving long cables with amplifiers requires 
some care on the part of the user to avoid 
instability and to maintain the expected 
dynamic performance. Since most cables can 
be expected to exhibit between 20pf to 40pf 
per foot of capacitance, a long cable can 
present a rather large reactive load to the 
driving amplifier. Many op-amps, especially 
the wide bandwidth types, are specified to 
drive only a few hundred pF. Even a low 
bandwidth type is limited to 1000 pF. 



STABILITY 

Cable capacitance can cause the driving amp­
lifier to become unstable because of the 
pole created by the amplifier's output re­
sistance, r, and the cable load capacitance, 
C (see fig. 12). 

R. (G-1) R 

Fig. 12: Capacitive loading. 

If A(s) is assumed to be: 

A(s) = A(O)/[l + s A(O)/Wc] 
and 

G R >> r 

then the loop gain response will be as in 
fig. 13. The loop gain will role off at a 

).OOP 
GA.IK 

Fig. 13: Loop gain response. 

20 dB/decade rate passing through unity when 
l/rC > Wc/G and is, therefore, stable. How­
ever, when l/rC < Wc/G the loop gain roles 
off at 40 dB/decade through unity which 
results in the loop becoming unstable. 

125 

The load capacitance in fig. 14 has been de­
coupled f:om the amplifier output by Ro 
thus allowi~g.the phase correction capacitor 
Co to stabilize the loop. The requirement 
for stability is: 

(G-l)R Co > 2 (r + Ro) c 

provided that Co << C. 

(G-1 H. 

Fig. 14: Decoupled output. 

SLEW RATE 

Also, the apparent slew rate can be signif­
icantly lower than the amplifier's rated 
slew rate as a result of amplifier output 
current limiting. If the maximum amplifier 
output current is Im, then the load capacit­
ance charging rate is 

de/dt Im/C. 

When the amplifier slew rate SR is greater 
than this charging rate, the capacitance 
would require a current greater than Im to 
maintain that slew rate. Therefore, the 
amplifier goes into current limiting and the 
apparent slew rate, SR', becomes 

SR' = Im/C 

This effect can be eliminated by buffer­
ing the amplifier's output with a current 
buffer amplifier, connected within the feed­
back loop, to increase the maximum output 
current. 

CONCLUSION 

Although there are many potential problems 
for users to be aware of when interfacing to 
data acquisition systems, with care, most of 
them can be avoided or their effects reduced 
to acceptable levels. 









Encryption for Beginners 

B. Z. Lederman 
2572 E. 22nd St. 

Brooklyn, N. Y. 11235-2504 

Abstract 

The purpose of this paper is to make people aware of what data encryption 
is, how it is used, who needs it, and why it is needed. It is intended as 
an introduction to the subject, so it will not go deeply into the 
mathematical internals of ciphers. 

For many subjects, what something is and how it 
is used is often so intertwined that one needs to 
understand one before the other can be explained; so 
some very simple definitions will be given at first, 
and they will be elaborated upon later. 

What is it? 

Ctyptography covers the general field of 
transmission of information which is protected from 
unauthorized access, and includes secret writing, 
codes, ciphers, and their use and defeat. Lately, 
encryption and decryption have come to be used in 
place of encipher and decipher to refer specifically 
to the use of ciphers to protect data, and will 
generally be used as such here. 

Stated more simply, data encryption is a method 
of protecting data so that it can be accessed only by 
the people who are supposed to be able to get to it. 
This definition, while correct, is rather vague (it 
could apply equally well to the physical protection 
of data such as locking it up in a safe, or 
translating it into an obscure langu<1gc): it docs, 
however, explain the purpose of encryption, which is 
to limit the accessibility of selected items of 
information. This will be explained first, as it is 
desirable to understand why access should be limited 
to understand how it is to be done 

Proceedings of the Digital Equipment Computer Users Society 129 

Why is it used? 

If you are working on a computer system which 
can be accessed by one or a very limited number of 
users, and which has no outside lines (no modems or 
dial-in lines), and which stores all information on 
easily removable media (floppy disks or tape 
cartridges), and you always remove this media and 
lock it in a safe when you arc not using it, then you 
may not need encryption. If you can climin<1te all 
access to your data other than by having the key or 
combination to the safe, and if nobody can look over 
your shoulder or otherwise tap into your computer or 
terminal lines while you are examining your data, 
then access to your information has been m<1de <1boul 
as secure as possible through physical means and 
encryption is probably not necessary. Unfortunately, 
this ideal state of affairs docs not often exist. 
Sometimes your storage media cannot be kept in a 
safe, or you must store your information on a fixed 
disk which cannot be removed from your system, or you 
must share the system with many other users at the 
same time, or you must have dial-in lines so that 
people outside your physical location can access the 
same machine, or you must send information to other 
locations: in any of these cases, you may need to 
limit access to your information, and encryption is 
one method of doing this. 

Dallas Texas - 1986 



The immediate reaction many people have to this 
is: "Our computer is used only by people within our 
company. We don't have dial-in lines, for our 
dial-in lines are secured by other methods, such as 
passwords or dialback], and all of our terminals are 
within our company area. Why do I have to protect my 
data?" Even in this situation, there may still be 
good reasons for using encryption. 

Confidentiality. 

First, you may have information which you are 
obliged to keep confidential. If you use your system 
to administer company medical benefits, for example, 
you may be obliged to keep medical records 
confidential. Without some sort of encryption or 
other protection scheme, it may be possible for many 
people in your company to peruse the medical records 
of other employees at will. Even if you arc certain 
nobody will do this, increasing demand for rights to 
privacy of personnel records may set a legal 
requirement that you protect information from 
indiscriminate access. (Note that encryption will 
not protect against the persons who must still 
have access to the data: other checks are needed to 
insure that persons who must have the data will not 
misuse it.) 

Next, there may be information you want to keep 
confidential. If you use your system to keep track 
of employee performance records, or calculate 
salaries as part of your budget planning, you might 
not want the employees involved to read or modify 
that data. It is all well and good to say you trust 
your employees, and probably most people can be 
trusted: but locks were invented to keep out the 
(small?) percentage of society which cannot be 
trusted. I rather imagine that most people reading 
this paper have locked their houses and cars before 
leaving them, even if they trnst most of their 
neighbors: if you would do that, then you probably 
have information which should also he '1ocked up". 
Similarly, you might be preparing information for 
contracts, order placements, payroll records, 
competitive bids, and similar information which could 
represent a significant portion of your company's 
assets, and might be several times the annual salary 
of many of the people who have access to it (and they 
are not always only the people whom you think have 
access to it). The more important an item of 
information is, the more likely it is that someone 
could benefit by getting it, and therefore the need 
to protect it increases directly with it's 
importance. 

130 

Unauthorized access. 

The case where a "hacker" or other unauthorized 
person calls into a computer system and proceeds to 
cause various type of mischief and/or damage is one 
that probably most people fear. You may have a 
system where it is necessary to have dial-in access 
for your own personnel, and it then becomes necessary 
to guard the system as much as possible. There arc 
various methods of limiting access to a system 
through passwords, or through hardware, which arc 
outside the scope of this paper. Data encryption can 
act as a second line of defense, however, and should 
also be considered. In many cases, "hackers" arc 
simply looking for files they can read, or programs 
they can run: encryption can put data in a form 
where it cannot be read, and programs into a state 
where they cannot be run, and thus defeat two of the 
hackers main goals. Encryption will not prevent 
the random modification of data (where the modifier 
doesn't care what the change actually does) or 
deletion of files: other methods of protection arc 
required to guard against that type of damage 

Protection on "outside" systems. 

The situation may also be reversed, as many 
computer users do not own their own systems and have 
to use time-sharing or other outside computer 
processing to store data and provide other computer 
services. In this case, you may have little control 
over who in the world has access to your data. An 
encryption scheme that can be implemented on your own 
data on the outside machine could be one way of 
protecting your information. Similarly, many 
companies store copies of their records in outside 
warehouses or other storage facilities to protect 
against fire or earthquake damage at their main 
location, and while such facilities usually offer 
guarantees against unauthorized access, some extra 
protection might be desirable. 

Protecting data during transmission. 

One last situation which occurs to many people 
is when data has to be transmitted from one location 
to another, usually over some public facility 
(telephone, telex, leased communication line, air 
freight, or mail). It is actually more likely that 
the data will be accessed from within your company 
than from without (intercepting telephone channels 
from microwave links is possible, but rather 
difficult), but the more valuable the information is, 



the more likely it is that someone will try, and it 
wouldn't hurt to take some reasonable precautions. 
If you are engaged in any type of electronic funds 
transfer, such as depositing your employees payroll 
directly to their bank accounts, or transfer of 
company assets to your bank or to other companies, 
the sums of money involved may be so great that not 
encrypting the data in some way is courting disaster. 

Always consider the worst case situation. 

In deciding if encryption is needed, you should 
consider what would happen if someone were to change 
your records just once: if damaging or losing an 
important piece of information would seriously hamper 
your business, or cost you a significant amount of 
money (either by direct loss, or delay, or the effort 
to replace the missing information, or loss of 
goodwill of the person/company at the other end), 
then you should consider encrypting your data. 
Remember that the true cost of data might not be just 
what it cost you to obtain it, but also what it will 
cost if you lose it, or what it will cost to replace 
it. 

Other protection methods. 

It can be seen, therefore, that many users will 
have some use for a data protection scheme of some 
kind, as nearly everyone has some type of infonnation 
which is not to be accessed by everyone else. This 
leads to the methods which can be used to protect 
information. Various computer operating systems arc 
in use today, some of which include access protection 
through requiring users to log into accounts, or 
various methods of verifying that persons accessing 
dial-in lines are properly authorized, or through 
protection codes within the storage system (such as 
the file protection codes used in the RSX, RSTS, and 
VMS operating systems). These are outside the range 
of this paper, but it will be mentioned that they 
don't always provide the limit of protection needed, 
either because there has to be at least one 
privileged user of the system who can bypass the 
checks, or because backup copies of the data must be 
stored off of the machine, or from other limitations 
of the system. Even when such schemes work well, 
they may not be enough, and they don't work at all if 
the information has to be sent outside (by wire or 
mail, etc.). This leads us back to data encryption, 
which will allow the information to be protected by a 
method which is independent of any protection which 
may be provided by the operating system. This does 
not mean that other protection schemes should not be 

131 

used, or that encryption is the answer to everything, 
either: different protection schemes cover different 
areas, and usually complement rather than substitute 
for each other. 

Once the need for some type of data protection 
is recognized, a protection scheme must be selected. 
As previously mentioned, cryptography covers, in 
general, secret writings, codes, and ciphers. 

Secret Writing. 

Secret writing covers such things as invisible 
inks, micro-photographs, and concealing messages 
within other messages. This is a highly specialized 
field, and one which is not likely to have much 
general application: it is usually too cumbersome 
for easy use, and is not applicable to storage of 
large amounts of information on computer media. Just 
to show what it is like, consider the message: 

"Inspect details for Trigleth, acknowledge the 
bonds from Pewell." 

which doesn't seem to mean anything. If you take the 
third letter of each word, however, you get the 
message "Strike Now". This is an example of secret 
writing, (a method which follows a fixed formula like 
this may also be called a concealment cipher), and it 
can be seen that it would not be easy to use: if it 
had no other faults, the concealed message has become 
over 6 tirnes the length of the original ("clear") 
message, and if you have to pay for disk storage 
space or transmission costs, you can see a big 
disadvantage to this type of protection. Invisible 
inks can be used on paper messages, but obviously 
won't work at all on data stored on disk or magnetic 
tape. (There was one fictional story where a message 
was written on a reel of tape with a grease pencil, 
but this tends to gum up the tape drive, and isn't 
very practical.) They can be useful to authenticate 
documents, as they cannot be duplicated by 
photocopying machines, but again, this is a field 
where expert assistance trom a printing company or 
ink manufacturer is required. The one and only 
advantage to secret writing is that many countries 
are implementing restrictions on trans-border data 
transmission: even though they encrypt their data, 
they won't Jct you encrypt your data, so they can 
monitor your transmissions: a good method of secret 
writing might evade this restriction because the 
essential feature of secret writing is that it docs 



not appear to be conveying anything hut the obvious 
innocent message, but most methods arc too cumbersome 
to he practical. We will not give any more attention 
to this subject. 

Codes. 

J\ code is the arbitrary mapping of one set of 
symbols to another set: it is usually one to one, 
but can be one to many or many to one. One example 
of a code which is in very common use every day is 
ASCII, the American Standard Code for Information 
Interchange, used by most computer terminals to map 
binary signals to numbers, letters, and other 
characters; a portion of which is shown here. 

040 SPA 060 0 100 @ 120 
041 061 1 101 A 121 
042 " 062 2 102 B 122 
043 # 063 3 103 c 123 
044 $ 064 4 104 D 124 
045 % 065 5 105 E 125 
046 &. 066 6 106 F 126 
047 067 7 107 G 127 
050 ( 070 8 110 H 130 
051 ) 071 9 111 I 131 
052 * 072 112 J 132 
053 + 073 113 K 133 
054 074 < 114 L 134 
055 075 115 M 135 
056 076 > 116 N 136 
057 I 077 ? 117 0 137 

This isn't usually thought of as a code, and it 
certainly isn't a secret, but it is a code: it 

p 
Q 
R 
s 
T 
u 
v 
w 
x 
y 
z 
[ 

\ 
] 
~ 

transforms one type of data into another through an 
arbitrary mapping. Note that the mapping is indeed 
arbitrary, even though the letters follow the 
alphabet for convenience: there is no reason why 
they would have to do so for the code to work. 

Another code which better fits the general public's 
perception of a code is the typ~ of code ~vhi<:h has 
been used for telegrams, a portion of which 1s 

reproduced here: 

MUWUB Improving rapidly 
MUXAW Improving slowly 
MUXEX Is not improving as I wish 
MUXIZ Is there any change 

132 

MUXNO Is there any improvement 
MUXPU Progressing satisfactorily 
MUXRY Sorry to hear you are ill 

MYGEL How would 
MYGIM HURRY (See Haste) 
MYGON HYPOTHECATE-D 
MYHAL IF 
MYHCI And if 
NYHDO And if not 

and so on. It can be seen that the mapping between 
the original phrase (the "clear" or "plain" text) on 
the right and the code word on the left is completely 
arbitrary, and that the book is the only way to go 
from one to the other. This particular code had the 
advantage that in most cases the coded text was much 
shorter than the original message: two groups of 
five letters could be pushed together to make one 10 
letter group, which was counted as only one word in 
the cost of sending the telegram. Since the mapping 
is arbitrary, codes can be very secure. Generally, 
you have to have the arbitrary mapping in order to 
defeat (or "break") the code, though if the code is 
re-used often enough, the mapping can sometimes he 
deduced. They are also vulnerable if one can obtain 
a copy of the plain text and the coded text which 
goes with it, and of course are defeated if the wrong 
person obtains a copy of the code hook. Some 
authorities consider book codes like this that are 
used once only to be completely unbreakable, and it 
would be easy to use a computer to generate lists of 
arbitrary code words to use. 

Codes do have many disadvantages in the computer 
environment, however. A computer program to 
automaticallv code a message with a scheme like the 
example wo~ld be very complex, as the context of the 
entire message (or a fair portion of it) is needed to 
search through the list of phrases and find the 
appropriate code word: decoding the message by 
looking up the letter group would he easier. 
Encoding large strings of numbers through code words 
is tedious and likely to increase the size of the 
message, and there is always the prohlcm of what to 
do if you need a phrase which is not already defined 
in the code book. Binary data cannot be coded at all 
with this particular scheme, and would be difficult 
to encode with most schemes. Codes are most likely 
to be of use where a set of messages or phrases arc 
going to be sent, and where that set is not too large 
and can he well defined before they wilt be used. 
Since we would like a method which would work on a 
computer and accommodate a wide variety of data with 
a minimum of human intervention, we wilt not consider 
codes further. 



Ciphers. 

A cipher is a method of transforming data from 
one form to another through a logical process, 
usually with a geometric or mathematical basis. 
Since a cipher is a method or system rather than a 
group of arbitrary mappings, it should be possible to 
transform any "plain" or "clear" text, regardless of 
length or content, into a single enciphered message. 
'Ibis is more easily understood with an example, such 
as a simple geometrical cipher. I will take the 
familiar phrase, 

"THE QUICK BROWN FOX JUMPS OVER 
THE LAZY DOGS BACK" 

and write it out in a square in the usual fashion, 
left to right, top to bottom. 

T H E Q U I 
c K B R 0 w 
N F 0 x J 
u M p s 0 v 
E R TH E 
L A z y D 0 
G S BA c K 

To encipher this message, I can take the letters out 
by some sequence other than the way they went in: 
for example, top to bottom, right to left. (This is 
an example of a transposition cipher, as it works by 
transposing or changing the order of the letters in 
the message, but not the letters themselves.) This 
wiJI give me: 

"IWJV OKUO OEDCQRX H A BOSTYBE 
FP Z HK MRASTCNUEI .. G" 

which doesn't look anything like the original. The 
underlying principle here is that there is a definite 
method of transformation between the original text 
and the enciphered text without considering the 
actual content (even if it is not obvious on a 
cursory inspection), whereas in a code the 
transformation was completely arbitrary and very 
sensitive to content. Because ciphers work on a 
method of translating data from one form to another, 
they are generally much easier to implement on a 
computer, and they are generally much less data 
sensitive than codes would be. In this example, each 

133 

character could easily be a byte or word of hinary 
data, and the scheme would work just as well: this 
makes it suitable for use on a computer, and 
transmission of data without having to know what the 
data will be before use. (Though outside the scope 
of this paper, it may be noted that if a voice signal 
is converted to binary data, it can also be 
enciphered to protect against unauthorized reception. 
This is the basis for most modem voice "scramblers", 
though there are other methods available.) 

There are a great many types of ciphers, some 
more secure than others, and some easier to use than 
others. One which is very common, and even occurs in 
some daily newspapers, is a simple letter 
substitution, where one letter is replaced by 
another. For example, 

ABCDEFGHIJKLMNOPQRSTUVWXYZ 

can be replaced with 

EFGHIJKLMNOPQRSTUVWZYZABCD 

This is a substitution cipher, which changes the 
letters in the message, but not their order in the 
message. This would make the sample phrase 'THE 
QUICK BROWN ... " come out to be: 

"ZLI UYMGO FVSAR JSB NYQTW 
SZIV ZLI PEDC HSKW FEGO" 

Since this is a one to one mapping, I am going to 
leave it to the purists to determine if it is a code 
or a cipher, though it is content insensitive (there 
is obviously some overlap between some codes and 
ciphers). The drawback to a simple cipher like this 
is that it is too easy to break with just a pencil 
and paper, and with even the least expensive home 
computer it is literally child's play. (You can read 
The Gold Bug by Edgar Allan Poe or The 
Adventure nf the Dancing Men by Sir Arthur Connan 
Doyle to find out how.) Many other, more 
sophisticated, transposition and substitution ciphers 
than the ones demonstrated here have been invented 
and used in the past few centuries, but since they 
were all implemented by hand they are all too easy to 
break by modem methods. You can purchase a number 
of books that will tell you exactly how to do it with 



no more equipment than pencil and paper (and 
patience), and the proliferation of home computers 
makes most of them very simple to break indeed. They 
may still be adequate for some purposes however, but 
considering how good a cipher needs to be will be 
discussed later. 

Modern Ciphers 

If secret writing is too cumbersome, codes arc 
too data sensitive or limited, and existing ciphers 
are too easy to defeat with computers, then what is 
left? The answer is that most modem encryption 
schemes are based on the same principles as older 
ciphers, but use the power of the computer to expand 
the magnitude of the encryption scheme. Por example, 
in the transposition cipher shown, the box was 7 · 
letters on a side: it could be made larger, but when 
encryption is done by hand a box much larger than 15 
or so on a side becomes too cumbersome to use. With 
a computer, however, there is no limit to the size of 
the box: simply increasing the box to I 00 per side 
makes it too large to 'break" the cipher by hand. 
This scheme of using the computer to expand on a good 
encryption method can be used to create ciphers that 
arc difficult to defeat, even with another computer 
(the box cipher would still be too easy to break by 
computer and is given only to illustrate the idea). 
One which I have used is a variation on the periodic 
number substitution (also known as an addition or 
Vigenere) cipher. In this scheme, a number sequence 
is added to the text: a simple example would be to 
add the sequence 

13571357135713571357135713571357 

to the numeric value of the ASCII characters in the 
message 

THE QUICK BROWN FOX JUMPS OVER 
THE LAZY DOGS BACK 

to get this: 

UKJ'RXNJL#GYPZS'GR] 'KXRWT#T]FU%[ 
IH%SB]-'ERLZ!EFJL 

With a number sequence this short, the cipher would 
not be too secure (you can see even in this short 
message that a SPACE becomes a' four times, and the 

134 

sequence "SPACE-something-lJ'' has twice been changed 
to "'-something-X") though it is more secure than the 
simple substitution cipher shown before. Various 
methods of obtaining a less repetitive sequence have 
been tried in the past, but usually produce no real 
increase in security. Using the computer, however, a 
number sequence can be generated that appears to be 
random, and is thousands of digits long. Most 
computer languages have a random number generator (or 
more accurately, a pseudo-random number generator, as 
the sequence can be repeated exactly when desired), 
such as: 

LET A = RND ( B) in BASIC, and 

A = RAN(B) in PORTR/\N, 

and similarly for other languages. There arc 
theoretically an infinite number of such 
pseudo-random sequences, and even for a specific 
generator there are a very large number of specific 
sequences: in DEC's FORTRAN-77, the number that 
starts the sequence (the variable B in the above 
example) can have at least two billion possible 
values. This particular cipher is sometimes called 
the Fast "Infinite-Key" method, and has hccn widely 
used with good results. We could repeat the above 
procedure by generating a pseudo-random number 
sequence such as: 

198683392515385726581534169734718 

and adding it to 

THE QUICK BROWN FOX JUMPS OVER 
THE LAZY DOGS BACK 

to obtain 

UQM_YXLLM%CWR_S'HU](KZPTT&X]HV'U 
PH'UJ_a'JULZ)JHGM 

At first glance, this doesn't appear significantly 
different from the first example, but if ~omeone were 
to attempt to defeat the cipher by the usual method 
of looking for repetitive patterns and common 
adjacent letters, they wouldn't find any, and would 
not be able to defeat the cipher. This cipher has 



the additional advantage over the "box" cipher in 
that the characters can be processed in the order 
they arc read: in the box cipher, a large portion of 
the message has to be read in and stored before any 
of it can be processed. Jn most computer ciphers, it 
is an advantage to be able to process the message 
serially, and to not have the length of the message 
have any effect on the encryption scheme itself, 
especially when the messages being processed are 
being transmitted from one place to another (over a 
communications line or to a disk or tape drive are 
two examples). 

It can be seen, therefore, that even though the 
computer has made it easier to defeat some encryption 
schemes, the power of the computer can also be used 
to raise the complexity of a cipher to the point 
where it is very difficult to defeat, even with 
another computer. This is the basic principle behind 
most good modern computer ciphers: the use of the 
computer to make the cipher so complex that it is 
(hopefully) beyond the ability to defeat by any 
practical means. 

Data Compression? 

It was mentioned that the telegraph code example 
shown earlier also compressed the information into a 
more compact form. There arc a number of data 
compression schemes in use to minimize the amount of 
space data occupies when stored, or to reduce the 
amount of time needed to transmit information from 
one location to anothn (and hence reduce the cost of 
transmission). Some of these compression schemes 
could also be thought of as ciphers, as they 
transform data from one form to another. While they 
have the obvious advantage of compressing the data, 
generally the compression algorithms are too well 
known to provide any security. 

With some understanding of what encryption is, 
we can perhaps present a better definition. One such 
definition could be: 

"Encryption is a method of transfonning data into a 
state where it is not easily available to persons 
other than those for whom it is intended (using 
ciphers)." 

This is a very general definition, and it docs appear 
to be somewhat cumbersome, but it is worded in this 
way deliberately. Note especially the emphasis of 
the phrase, "not easily available". Generally, no 

135 

encryption scheme is absolutely secure from ever 
being defeated, and a decision has to be made as to 
how good a scheme is needed, or how much security has 
to be obtained and at what cost. Prom a practical 
standpoint, the real purpose of encryption can be 
defined as this: 

"'The goal of encryption is to make obtaining the data 
more expensive than the data itself is worth." 

(Where expense is counted in time, effort expended, 
cost of labor, cost of computer services, etc.) 

While this definition may not precisely define a 
cipher, it does clearly define the goal encryption 
should achieve. 

To evaluate a potential encryption scheme, one 
must consider from whom the data is being protected. 
Some possihilities are: 

l. Curious employees 
2. "Hackers" 
3. Outside visitors 
4. Service personnel and/or vendors 
5. Competitors 
6. The Criminal Element (internal or 

external) 
7. The IRS 
8. The "spooks" (CI/\, NS!\, KGB, MIS, etc.) 



among others. The first four can probably be 
discouraged with even a very simple cipher: as 
mentioned before, most "hackers" and other idle 
curious are simply looking for files that can be read 
or run. If they were to see a file such as this: 

RTP $%& &.2H8I]).4HHQPPJ8IKNUIOQPP 
RUP $%& &.3H8I],%.H342DH).4H8III 
RVP 2%-
SQP 02).4 B#/-054!4)/. /& -/2'! '% 0!9-%.43B 
SRP 02). 4 
SUP 02).4 B0,%!3% ).054 4(&% 02).#)0!, H7)4( 
SVP ) . 054 0 
SWP 02).4 B).054 4(% ! .. 5!, ).4%2%34 2!4% H). EIB[ 
SXP ).054) 
SYP 02).4 B).054 4(% 4%2- H). 9%!23IB[ 
TPP ) . 054 4 
TQP 02). 4 
TSP 4]4JQR 
TUP 1]) 
TVP )])OQRPP 
UPP -]&.2HOJ)OHQMQOHQK)I>4II 
UTP 02).4 B02).#)0!,B[4!"HSUI[BDB[O 
UUP 02).4 B).4%2%34 2!4%B[4!"HSTI[l[BEB 
UVP 02).4 B4%2-B[4!"HSTI[4[4!"HTPI[B-/.4(3B 
UWP 02). 4 B-/. 4(, 9 0 ! 9-%. 4B[ 4 ! "HSU! [ BDB[ 4 ! "HSXM&. 3 

they might well pass it by, or maybe make a few 
simple attempts to read the file as if it was binary 
data. But if anyone should happen to figure out or 
guess that it is really a BASIC program (and at every 
previous presentation of this paper there have been 
attendees who have immediately recognized this), then 
it would not take long to decipher it as it happens 
to be encrypted with a simple letter substitution 
cipher. Since a computer is going to do the work, it 
would be just as easy to use a more secure cipher, 
and one which will transform the data into something 
which will not look like obviously encrypted data 
when examined. For example, the "Infinite- Key" 
method takes no more computer time or disk space than 
simple substitution, is very much more secure, and 
the resulting data doesn't look at all like text, so 
there is no reason to use the simple substitution 
when superior methods are easily available. 

If interception of data by a competitor, or by a 
dishonest employee (which is really the greatest 
threat) is a serious consideration, then you will 
probably want the most secure cipher that can be 
reasonably implemented (one which protects the data 
well, but will not use up so great an amount of 
computer resource that it becomes more expensive than 
the data it is protecting). 

136 

If you intend to protect your data from 
categories 2, J and 4, then other protection schemes 
should be your first choice, such as not allowing 
outside visitors to wander un-escorted about your 
plant, removing your data from the system before 
allowing it to be serviced by outside personnel, and 
using various protection schemes to prevent 
unauthorized dial-in access. Encryption of data can 
act as a second line of defense in these cases, 
however, and should still be considered: it must be 
stated again, however, that encryption is not 
necessarily the best solution to every situation, and 
that all methods of protecting data need to be 
evaluated to determine what best suits a given need. 

Against the last two categories: you have to he 
realistic, and understand that any government agency 
that can put the gross national product of a major 
world power into it's efforts is going to be able to 
break any cipher you could use. That doesn't mean 
you have to make things easy for them, and there are 
ciphers available now which are very difficult for 
anyone to defeat, hut you must remember that no 
cipher is absolutely unbreakable. 



How Good is Good Enough? 

It was stated that a good encryption scheme 
costs more to defeat than the information is worth. 
This means that the cost of the labor expended and 
computer resource dedicated to the task are more than 
the ultimate value received from the information 
which may be obtained. For example, breaking the 
Infinite-Key and DRS ciphers is generally expected to 
require a 'brute force" approach: trying every 
possible key, and looking at the result to see if it 
makes sense, and even this may not work. Even if 
someone is willing to dedicate a computer to the 
task, it could take months or even years of effort to 
break one message, by which time the information may 
be useless. In addition, the time a computer spends 
on breaking the code cannot be used for anything 
else, like doing payroll or inventory or other normal 
business functions. If you are preparing bids on a 
contract which will yield, say, $10,000 and a 
competitor tries to steal your information and 
under-bid you, then your encryption scheme is 
successful if it either takes so long to break cipher 
that the competitor can't meet the deadline for 
submitting bids, or if it costs the competitor more 
in computer resources than the $10,000 or so that the 
contract would yield: even though the cipher is 
broken, the person who broke it comes out with a net 
loss. Few "hackers" are going to have the patience 
to let their home computer run for several months or 
years to decrypt one message and not use the computer 
for anything else, and not much information is so 
valuable that it would be worth while renting a Cyber 
or Cray super-computer for several months to break 
the message relatively quickly (unless you are a 
government agency, and can do whatever you like). 
The situation is similar to the physical protection 
of property: you can't really make any building 
completely burglar proof, but you can make it 
difficult enough not to be worth the effort to break 
in, or to make it easier to break in somewhere else. 

It is possible that someone within a company 
might use the company computer to try to break a 
cipher by brute force, reasoning that the computer 
time doesn't cost them anything. Since defeating a 
good encryption scheme would use up relatively large 
amounts of computer time over an extended period, it 
should be possible to detect if anyone within a 
company is using the computer system in this manner, 
and deal with the problem directly. 

137 

Other necessary precautions. 

A consideration which is equally important as 
the selection of an encryption scheme is keeping the 
keys themselves secure. .Just as it would do no good 
to buy the most expensive lock and lock your house if 
you then put the key under the door mat, it does 
little good to encrypt your data if anyone can get 
the key. In terms of internal security, this often 
means correct selection of a key to use: since most 
modern ciphers use a number as the key, there is a 
great temptation to use an easily remembered number 
such as your telephone number, birth date, social 
security number, wedding anniversary, or some such 
number as a key. When a word or phrase is used, as 
is often used for computer passwords, then there is a 
great temptation to use names of friends, spouses, 
pets, children, hobby interests, etc. Unfortunately, 
any number or phrase that you can remember easily 
will also be easy to guess for anyone who knows you. 
If you are trying to protect data internally in your 
company, using such a number would defeat the best 
cipher: rather than having to try several billion 
possible keys to break a cipher by brute force, the 
number of attempts are reduced to a few dozen or so 
and trying them all becomes quite practical. This 
leads to the paradox that you must chose a number you 
can remember (or you may never get your data back if 
you forget the key), hut one which no one else is 
likely to guess; or else you have to write the number 
down, but in a place where no one is likely to get 
it. The latter scheme is probably better than 
trusting to memory, hut you should not keep important 
numbers laying about: keep them in your wallet (and 
keep your wallet with you), or in some other secure 
place. Similarly, don't put them in the telephone 
directory or card file that sits on top of your desk, 
or in other easily accessed places. It is also a 
good idea to change the keys periodically, especially 
if it is being used for data transmitted externally. 
(Internally, the threat is greater that someone will 
figure out your key, or may see you type in the key, 
or he able to compare the encrypted data with the 
"clear" data, and deduce the key that way). 
Basically, you must use at least as much caution in 
dealing with cipher keys as you would use in handing 
out door keys to your plant, or electronic lock keys 
to your personnel: they all protect your assets, and 
have to be treated with the same respect. While you 
can hire guards for physical security in a plant, you 
cannot do the same for information in a file or 
transmitted over a wire, and information is easier to 
move than equipment; so if anything, the cipher keys 
must be kept even more secure than other kinds of 
keys. 



Public Keys. 

When data has to be transferred from one 
location to another, then the risk is doubled, as the 
key has to be kept in two places. One absolute rule 
is that you never, ever, transmit the key with the 
data it protects (you might just as well not bother 
encrypting at all). It is usually a good idea to use 
an encrypted transmission to send the next key to be 
used at one time, and the data at some other time, 
and that both parties must exercise the same caution 
in protecting the keys. Otherwise, you must use some 
secure method of transmitting the keys to the 
locations where they will be used (such as sending 
someone you can trust to carry them by hand), and 
storing them in a safe or other secure location. One 
partial solution to the problem is the Public Key. 
method of selecting keys. This is not an encrypt.ton 
scheme, but is a method where two people can create a 
large numeric key by each selecting a number which 
forms half of the key, and were each party knows only 
half of each key. (Please refer to figure 1.) The 
advantage of this method is that one half of the key 

User A 

• • • • • • • • • • • • • • 

can be made public, and anyone can use it to enc~phcr 
a message intended for you, but only you can ~lcctpher 
the message using the other half of the key which was 
kept secret. This can also be used for source 
verification if both halves are kept secret: for you 
to be able to decipher the message, it will have to 
have been enciphered using the matching half of the 
key, and this is "proof" that the message came from 
the correct source. The method is based on the fact 
that it is difficult to factor a very large number 
which is the product of two very large prime numbers 
(each party picks one of the large primes): lately, 
there have been some announcements that it might not 
be as difficult to factor large prime numbers as was 
formally thought, but it may still be useful to many 
people. If you are transferring data within an 
organization and can keep the key secret at both 
ends, then Public Key isn't necessary: it's primary 
use is where the security of the key at one end isn't 
known, or must be made public. 

Fl • • • • • • • • • • • • • • • • • Apublic•AAA BBBBBBBBBBBBBBBBBBBB•Bpublic 
• • A B t t 

• Aprivate t A B • Bprivate • t • • • t • • • t • t t • t A • • t • • • t • • t • • t • t t 
a BA b 

a B A b 
a B b 

a B A b 
a B A b 

a B A b 
a B A b 
\ / \ / v v 

Data Out <-1 Decrypt I< Encrypt j<-Data In 

Figure 1 Public Key Encryption 

138 



Hardware protection and DES. 

So far, we have considered encrypting data while 
it is in the computer system, and before it is stored 
or transmitted. This is not the only way it can be 
done: it is also possible to attach a device to a 
communications line so that information passing 
through it is encrypted in one direction and 
decrypted in the other direction. (Please refer to 
figure 2.) Por example, the device could be attached 
between your computer and a modem, so that "clear" 
information being transmitted from your computer will 
be encrypted before it goes into the modem and out 
into the world. Most of the special hardware 
currently offered for sale for this purpose use the 
Data Encryption Standard (DES), also called the Data 
Encryption Algorithm (DEA). This method of 
encryption was developed by the National Bureau of 
Standards to provide a standard, secure encryption 
method, and it involves many stages of transposition 
and substitution. Purthennore, there are several 
modes for data to pass through the encryption scheme: 
the method any individual will use depends upon the 
application. According to the developers, the DEA is 
intended for use only with hardware encryption 
schemes for several reasons, two of which arc 
security of operation and verification of 
correctness. 

CPU 

1be first reason includes protecting the key and 
the encryption method: if it is in special hardware, 
you have to enter the key into that piece of 
hardware, and it won't be "floating around" your 
computer system as it might be if a software program 
was used. Similarly, only the manager in charge of 
the special hardware knows what the key is: you 
don't have individual users losing their keys (or 
giving them away). In addition, there are often ways 
for one user to monitor another user's program on the 
same computer (for example, to watch someone type in 
their key), and it was felt that it would be more 
difficult to tap into a separate piece of hardware. 
With the protection in hardware there is the 
additional advantage that no-one can forget to 
encrypt data before sending it out: anything which 
is transmitted on that line is automatically 
encrypted. It was stated before that encryption 
might not prevent "hackers" or other unauthorized 
persons from accessing a system, but the one 
exception is if there is a hardware encryption device 
placed between the system and the modem which always 
encrypts the data on that line. Encryption would 
then prevent unauthorized access, as anyone who 
wishes to dial in on that line must have an 

Modem, 
Terminal, 

Transmission Line Port Selector 

Normal connection without Encryption 

-------------------------------------------------------------

CPU Encryption 
Device 

Encrypt ~-> Out 
In <~~ Decrypt 

Modem, 
Terminal, 
PC, etc. 

Connection with Hardware Encryption Device 

Figure 2 DES Hardware 

139 



encryption device which uses the same cipher and key. 
Jn a similar manner, a hardware device can be placed 
between a computer and a peripheral device: for 
example, a disk. If this is done, then all data on 
the disk is automatically encrypted, and you don't 
have to worry about users forgetting to encrypt 
sensitive data, or service personnel reading it 
during maintenance. 

The second reason, that it would be easier to 
test if the hardware is working correctly than to 
test if a program is working correctly, is a reason 
with which I do not entirely agree. It also means 
that the use of DES would be limited to those 
applications that can send the data through a line to 
the special hardware, and that you would have to buy 
the special hardware for every location which wanted 
to encrypt data: this meant that locations with 
personal or small business computers had to buy an 
encryption device that was as large and as expensive 
as the computer itself. This is changing rapidly as 
more large scale integrated circuits which implement 
the DES arc being placed on the market, so that the 
cost of a peripheral device that does encryption in 
hardware is decreasing, but it still has many 
drawbacks for some users. As a result, software 
houses arc offering data encryption programs that use 
the DES method to encrypt data on the system itself 
with no special hardware. 

DES in the future. 

Use of the DES was expected to increase over the 
next several years, especially where information has 
to he exchanged between different companies, because 
it is a standard and it is possible to obtain 
different pieces of hardware or software which 
implement it and will still he compatible, as they 
have to meet the standard to he able to say they use 
DES; hut recently, a snag has developed. I ,ike most 
modern ciphers, DES uses a numeric key, and there 
were some arguments about how secure DES really is, 
based on the length of the key, which is 56 bits (the 
scheme adds bits to make it 64 hits long). Some of 
the developers suggested that the key should be 128 
bits long, but the National Security Agency required 
the NBS shorten the key: some critics suggested that 
a key of this length is such as to be virtually 
unbreakable by anyone except the NSA itself. Even 
so, it was expected that the DES would probably be 
secure enough for most commercial users for the 
foreseeahle future, or at least through 1987, but 
recently the NSA has been privately telling hardware 
companies not to put the DES into any new equipment, 
and to stop using it now. They apparently want to 
use a new algorithm which will not be made public, 
ostensibly for better security, but possibly for 

140 

other motives. In spite of this, the DES will 
continue to be very difficult for commercial and home 
users to hreak, so it will prohably continue in use 
for some time (remember what was said earlier ahout 
determining from whom you wish to protect your data). 

Additional Precautions. 

Jf you expect a real effort will be made to 
defeat your encryption scheme, there are a few extra 
precautions that can he taken to reduce the risk. 
The easiest way to break a code is if you have a copy 
of the enciphered message and the clear text 
together, and can compare the two to work back to the 
cipher. This indicates that access to important 
information should be carefully restricted: for 
example, if encryption is used to protect data during 
transmission, then when the data is deciphered and 
safe, the enciphered copy should he erased or 
destroyed. If it is carelessly discarded it might 
give someone a chance to work on it at leisure, 
especially if the threat is within the company where 
the clear text might also be available. Some 
newspaper codes were broken because the text of an 
article was transmitted in cipher (by radio, where it 
could be heard) and then printed word for word the 
next day in the paper: sending the contents of the 
article but re-wording it before releasing it to the 
public helped solve that problem. Similar 
precautions could be taken if such things as 
financial reports arc to be transmitted: if 
possible, don't transmit the data in exactly the same 
form in which it will he published. In the case of 
business letters and memos, most start with a date 
and the person to whom it is addressed, and someone 
could know (or guess) how the message starts, and use 
that to cut down the number of attempts needed to 
find the key to the cipher: one way to stop that is 
to arbitrarily cut the memo in the middle somewhere, 
and put the last part before the first. The 
recipient, after deciphering, can easily see where 
the real beginning is, and move it back where it 
belongs. In short: 

Don't be predictable. 

There are also a few other precautions one can 
take if you feel that someone is really trying to 
defeat your encryption scheme. If you think someone 
is trying to get your key by brute force, you can put 
random garhage at the beginning and end of your data: 
anyone who is trying a key and checking only the 
beginning of the file to see if the data makes sense 
will not realize it if they do find the right key, as 
the decrypted data still won't make sense. Of 



course, anyone can simply check the entire contents 
of the message for every key tried, but this is much 
slower, and anything that slows the process of 
defeating an encryption scheme means the scheme is 
that much more secure. If there is some reason to 
believe that whole messages are being intercepted and 
stored (with some ciphers, the more data you have, 
the easier it is to find the key), then you should 
change the key more often than you might otherwise 
do. In any event, you should not use a given key for 
too great a period of time, _just in case someone is 
collecting your messages: with many ciphers, having 

I 
I 
I 

11 

I 1 

I 
I 

11r-­
ll 
I 

Before 
Encryption 

After 

Encrypt;on 1 
~ 

I 

just two messages enciphered with the same key makes 
breaking the cipher very much easier than having just 
one message, and the task is greatly simplified with 
each extra message intercepted with the same key. 
[There is a method, at least theoretically, where 
having two messages sent with the same key, and where 
the general nature of the encrypted data is known 
(for example, English text in ASCII characters), 
which would allow breaking virtually any known 
cipher. It would be rather difficult to accomplish, 
but the more valuable the data, the greater the 
effort worthwhile to obtain it.] You can also 

G y a i Q y 

Figure 3 Character Count of ASCII Text 

141 



occasionally send out messages which are the same 
length and otherwise look like your real messages, 
but which contain enciphered garbage. The contents 
(before enciphering) should look as much like real 
data as possible, without actually meaning anything. 
This will add to the difficulty of defeating the 
encryption scheme, hut is only worth while if there 
is a real possibility that someone is making a 
concerted effort to break the cipher or if the cost 
of doing this is low. 

Some timing comparisons. 

J\s a test of the time required to encrypt data, 
I took a sample file of 743 blocks of text (the 
combined HELP files on an RSX system), which 
contained 380,416 characters, or 11,423 lines, or 
about 200 printed pages. To print this entire file 
on a fast (600 lines per minute) printer would take 
about 20 minutes: printing on a 120 character per 
second printer or transmission over a 1200 baud line 
(with no error checking) would take about 53 minutes: 
printing on a 30 character per second printer or 
transmission over a 300 baud line would take 3 
hours. Using a simple FORTRAN program and the 
Infinite Key cipher on a PDP-11/70 and RP06 disks, 
encryption took about 4 minutes (or about 1500 
characters per second): the same program on a 
PR0-350 (equivalent to a PDP-11/23) took 22 minutes 
(or about 300 characters per second). In both cases, 
performance was basically 1/0 limited, and the 
program was not doing anything special to increase 
1/0 speed. It can be seen that encryption need not 
add to the time taken to process data: the program 
which reads a file and transmits it over a 
communication line could also encrypt and do so at a 
speed high enough continue to drive the line at it's 
full speed. I tried a program that did simple 
substitution (to produce some of the examples in this 
paper), and since it does the same 1/0. the only 
possible difference is in the cipher code: accessing 
a substitution matrix was not significantly faster 
than generating the pseudo-random number sequence, so 
using a "cheap" substitution cipher docs not save any 
computer or clock time over a much better cipher, and 
provides much less security. 

142 

Testing Ciphers. 

Testing a cipher for security is really a job 
for experts: history has demonstrated many times 
that it is much easier to think up a cipher than to 
test it for security, and that only a person well 
acquainted with the methods of breaking ciphers can 
determine if a new cipher can be broken. Some 
familiarity with the methods used are useful in 
knowing what precautions to take against them, 
though, and the references given below list many of 
them. The graph reproduced below (please refer to 
figure 3) also demonstrates some of the basic 
principles: it is a count of all of the various 
ASCII characters in a text file (a smaller version of 
the file used for the timing tests discussed before). 
The jagged line with the sharp peaks is the character 
distribution: the greatest peak is for the blank 
space, with other peaks for the lower case vowels. J\ 
substitution cipher simply moves these peaks to 
different letters; finding the peaks reveals the 
mapping and is the reason why most substitution 
ciphers don't provide any real security. The nearly 
flat line near the bottom of the graph is the same 
text file after being processed with the Infinite Key 
cipher. Because the pseudo-random number generator 
used is fairly good, all of the peaks have hcen 
flattened out, and frequently occurring letters no 
longer provide a "handle" for breaking the cipher. 
What this chart does not show is that other patterns, 
such as commonly occurring pairs of letters such as 
"th" must not map into pairs of encrypted characters, 
and that other patterns in the clear text must not be 
carried through into the encrypted text. This 
demonstrates that while removing the simple letter 
frequency pattern may be a requirement of a good 
cipher, it is not sufficient in itself, and much less 
obvious tests must be made if the cipher is to 
withstand expert attacks. 



Bibliography 

There are a number of good descriptions of 
cryptography in popular literature. Jn addition to 
the two examples of the simple substitution dpher 
given before (The Gold Bug by Edgar Allan Poe and 
The Adventure of the Dancing Men by Sir Arthur 
Coonan Doyle), two books by Dorothy L. Sayers (in 
addition to being entertaining in themselves) are of 
interest. Have His Carcass contains a good 
description of the Playfair cipher (a good 
combination transposition and substitution cipher 
which is easily worked with only a pencil and paper), 
and a good description on one way to attempt to break 
it which also clearly shows the hazard of sending 
messages in a form which allows the content to be 
deduced. The Nine Tailors contains an extremely 
ingenious example of secret writing. Both are 
currently published in paperback. 

On a more formal basis, the following will be 
useful: 

Cryptanalysis, a Study of Ciphers and their 
Solutions by Helen Pouche Gaines (Dover Publications, 
Inc.) 
though written before computers were developed, 
contains thorough descriptions of many ciphers, and 
specifically the methods used to defeat them, with 
worked examples and reference tables. Dover has a 
mail order department. 

Security and Privacy in Computer System.r by Lance 
J. Hoffman (Melville Publishing Co.) treats a wide 
variety of computer security subjects, one of which 
is the use of data encryption. It includes a good 
description of the "Infinite Key" cipher, with a 
mathematical test of it's effectiveness. It also 
covers operating system security, physical plant 
security, and other subjects. 

Cryptanalysis for Microcomputers by Caxton C. 
Foster (Hayden Book Co. Inc., Rochelle Park, New 
Jersey) Contains explanations of many ciphers, with 
programs in BASIC to implement them or act as aids in 
defeating them. The programs may require some work 
to implement (you have to search through the book to 
find the subroutines, and sometimes the names of 
variables change), but some good material is 
included. The programs are in a simple version of 
BASIC which most computers should handle "as is" or 
with only minor changes. 

"Securing Data Inexpensively via Public Keys" by 
Brian Schanning (Computer Design, April 5 1983, 
Vol. 22 #4) is an article which describes the 
mathematics used to generate the two halves of a 
Public Key. 

143 

"The Data Encryption Standard, Recent Controversies" 
by John E. Hersey, (Telecommunications, Sept. 
1983, Vol. 17 #9) gives an encapsulated history of 
the development of the DES, with some of the 
arguments for and against it's method of 
implementation and use. 

The Codebreakers by David Kahn (Macmillan) gives a 
good history of ciphers (and other data protection 
schemes such as voice scrambling) and their use, and 
a description of how some good modem ciphers were 
broken. The paperback version may be abridged. 
Considered one of the classic works on the subject. 

I have not been able to review the following sources 
myself, but they may be useful. 

"RSA: A Public Key Cryptograph System" by 
C. E. Burton, (Dr. Dohh's Journal, Mar 1984, 
16-21) 

"Mathematical Games" by M. Gardner, (Scientific 
American, 237(2), August 1977, 120-124 

The following government publications may also he 
useful: 

"Data Encryption Standard" 
Federal lnfonnation Processing Standards 
Publication 46 

"DES Modes of Operation" 
Federal Information Processing Standards 
Publication 81 

Standards Information Office 
Institute for Computer Sciences and Technology 
National Bureau of Standards 
Washington, D.C. 20234 

The Smithsonian Institution has a section devoted to 
cipher machines, and give the following address for 
inquiries for more information on the subject: 

Division of Mathematics 
The National Museum of American I Ii story 
Smithsonian Institution 
Washington, D.C. 20560 





DESIGNING FRONT-END AND INTERFACE SYSTEMS 

FOR THE CASUAL END USER 

BUD PINE 
NCP COMPANY 

111 ANZA BLVD. 
SUITE 300 

BURLINGAME, CA 94010 

ABSTRACT 

This paper describes techniques that were found 
useful in designing a front-end and interface 
system for the casual user of a database 
management system. These techniques can be 
applied to other front-end and interface systems. 

INTRODUCTION 

This paper describes techniques that have been 
found useful in designing a Front-End and 
Interface System for the Casual User and for 
maximizing usage on a system. The author believes 
that similar techniques can be used when designing 
other interface systems. 

NCP Company has been producing system and 
application software packages for the DECsystem 
10/20 community for the past eight years and more 
recently for the VAX family. During that time we 
have experienced a variety of requests for "user 
friendly" application and interface systems. It 
was not easy to ascertain exactly what the user 
community meant by this, until the System 1022 
community and the NCP Cale community became very 
vocal and fairly explicit about their needs. It 
was at this point that NCP Company became 
interested in the concept and undertook the 
development of an interface system. 

The primary requirement for the interface system 
was that it should be a transparent vehicle for 
the end-user of application software packages. It 
should not require a systems support staff to 
transfer the information from a database to 
another software package. A classic example given 
to us was of an executive that needed to get at 
financial data which was stored in a database 
file, make the appropriate selections, and bring 
it into a spreadsheet format in order to be able 
to manipulate the data within the confines of the 
spreadsheet. 

At the onset, this seemed a fairly straightforward 
and "simple" task to the development team. In 
fact their original development schedule was three 
weeks! Once the process of design was underway 
the individual steps necessary to accomplish each 
task became visible to the design team. They came 
to realize that this "user" would have to have 
knowledge of the specific DBMS, (i.e., know how to 
open database files, specify fields, and select 
records), before a transfer to the spreadsheet 
could take place. In three weeks, we went back to 
the user community and said we could transfer the 

Proceedings of the Digital Equipment Computer Users Society 145 

data from the database to a flat file through a 
very simple menu system. Their response was, 
"no, we don't want to have to have the user know 
the database". They did not want to limit the 
usage of the DBMS to the current knowledgeable 
users but rather to increase the usage of the 
database management system within their 
organizations. In order to meet this criteria, it 
became necessary to design a user-friendly front­
end to the database before the transfer of data 
could be made. With these parameters in mind NCP 
IFS took shape; and the design, development, and 
production began. Following are some of the 
techniques, ideas, and key features that we found 
useful in the design of this system and subsequent 
systems. 

THE PROTOTYPICAL CASUAL USER 

The reason for advocating this approach to 
designing interface systems for the casual user is 
the following: The end user gets a system that is 
truly user friendly. This is achieved because 
actual user views are fully considered and 
integrated into the design of the system. The 
design team can try out various ideas, scenarios, 
and approaches to designing the system directly 
with an interested user. 

By considering the attitudes, responses and 
reactions from the prototypical casual user, the 
design team can build a more useful system for the 
end user. They can achieve this with lower 
development effort because the development 
priorities and resources go into developing the 
features that the casual end user will find 
useful, rather, than in features that the software 
designers feel will be required. If the 
prototypical user is selected properly, they are 
much better able to contribute to the design 
effort than the system designers are without input 
from a qualified casual user. 

Dallas Texas- 1986 



SELECTING THE PROTOTYPICAL CASUAL USER 

The prime requirement of the prototypical casual 
user is that they understand the problems of every 
casual user. They have to have been a user of a 
variety of software so that they understand and 
can deal with the various kinds of problems that 
casual users experience. 

Ideally, the prototypical casual user should also 
have been involved in the support of other casual 
users and in the training of casual users in the 
use of other computer software systems. 

There is a danger however, if, the prototypical 
user becomes too knowledgeable. Yhen they know 
all the subtleties and instantly know how to solve 
them, they get to the point where they no longer 
have the views of the "casual user", they cease to 
be that person. If this occurs, the proper 
approach should be to find another person to serve 
as the prototypical casual user. You want to 
avoid getting people that are too active in 
software design because these people are clearly 
not casual users. They are often heavy users 
and/or expert users, and cannot adequately 
empathize with kinds of situations that the truly 
casual user can get into, because an expert user 
knows how to avoid most of them. 

Another requirement for the prototypical casual 
user is that they be very good at communicating 
with the software designers. It is insufficient 
to know what the casual users need and how the 
software system should be designed, if one cannot 
communicate that to the software designers. This 
communication ability is extremely important and 
if your choice does not have this ability it would 
be wise to look for another person to serve as the 
prototypical casual user. 

This person needs to be very very good at 
visualizing. Often the software designers listen 
to a description of a problem and come up with a 
solution that is not exactly what the 
recommendation or description of the problem was, 
and the prototypical user, in order to continue to 
make a contribution needs to be able to visualize 
this new possibility. Often, the systems 
designers will come up with two or three solutions 
to each problem. It is more efficient if the 
basic decisions can be made without implementing 
each of them, merely to show how each proposed 
solution works. So, visualization is an key 
characteristic in the prototypical casual user. 

BASIC CHARACTERISTICS OF THE CASUAL END USER 

This paper now shifts attention from the 
prototypical casual user who is an active member 
of the design team, to a description of the 
characteristics that represent the casual end­
user. 

The prime characateristic of the "casual end user" 
is that they use the system infrequently. Their 
usage is sufficiently infrequent that for the most 
part they forget things by the time they need to 
do them again. They know what they want to do, 
they just don't know how to deal with a computer 
system and telling that system the necessary steps 

that must occur before the system can solve their 
problem. 

Another characteristic is that the casual user 
typically gets very little training. They are 
often told, "Yell, it's really easy, you do X, Y, 
and Zand the problem is solved." They're told to 
read manuals. The casual user's propensity to 
solve problems by reading manuals is matched only 
by the propensity of software designers to read 
manuals. Minimal training is justified in the 
case of the casual user because casual usage means 
that they're going to forget everything, so it's 
of limited benefit to spend company resources on 
training casual users. 

Another characteristic of the casual user is that 
at the point in time that they have a problem they 
are often not close to documentation, that, and, 
most people's propensity not to read the 
documentation, means that they need other forms of 
"help" aside from written documentation. This can 
be in various forms. Help from the software 
system itself, or if that is inadequate, help from 
the systems staff to get resolutions to their 
problems. 

SUGGESTED GUIDELINES FOR DESIGNING SOFTYARE 
SYSTEMS 

FOR THE CASUAL USER 

A major problem with end-user software today is 
that as software becomes ·more powerful and 
sophisticated, the user tends to need to have 
knowledge of the product. However, most 
organizations do not have the time or the 
resources to train each and every employee, that 
will need, or should ne~d, to use the system. 

One of the best things you can do for the casual 
user is to minimize things that they have to 
remember. Even though they have done it fifty 
times before, they have done it fifty times over 
two years. That averages out to once every two 
weeks. They will not remember the specific 
keystrokes that are needed in order to accomplish 
each task. 

"Casual" or "infrequent" users of a computer 
system basically means that they usually, or at 
least often, don't remember things that they've 
done before. Yhen you do something once a week or 
once a month you tend not to remember all of the 
little details that are required when dealing with 
a computer software system. Unlike humans, the 
system is relentless in its need for precise 
instructions. There are a variety of things that 
the casual user needs to know in order to use a 
DBMS, such as, what the file name is, or which 
directory it is in. One of the features that we 
found helpful, was to build a "Data base of 
Databases". 

146 



The Database of Databases is a Library or list of 
descriptions of the available data bases. The 
casual user need not remember a specific file name 
he merely needs to say, "I want to select a 
database from a library of those that are 
available". This Library is pre-built into the 
system by the Database Administrator, so that 
security is not violated. Yhat the user sees in 
this Library, is a description of the database not 
necessarily the precise file name. The directory 
and the file names are built into the system, and 
therefore are invisible to the end user. For the 
experienced user an Expert Option, (i.e., "Specify 
Data Base Name") can be included. 

Even when the user remembers the database name, 
they may not always remember the attributes/fields 
in the database. A built-in ability for the user 
to say, "I want to display what fields are 
available in the database, so that I can remember 
which ones I want to select on, or which ones I am 
not interested in showing, or which 
fields/attributes I am interested in interfacing 
to another software product", is a major 
requirement. The casual user needs to look at 
these fields in two ways. They could look at a 
List of all the Attributes contained in that 
database file or they could look at a specific 
Attribute and its Characteristics. Yith this 
ability, the occasional user can now look at the 
fields in sequence or look at a specific field. 
They can go forward, backward, and basically look 
at anything with respect to the characteristics of 
the database. Further, this has been done with a 
very simple menu system that requires little 
memorization or remembering of how to deal with 
the computer software system. Additionally, at 
this point they can specify which fields they 
would like to show (look at) later. This again 
gives the infrequent user the ablity to specify 
fields while they appear on the screen, instead of 
having to remember them later. 

This kind of approach has two benefits. It makes 
it much easier on the end user, in that they don't 
have to remember the precise characters of the 
file name and that they don't have to remember the 
precise syntax of the command in order to open the 
database. There is also a more subtle benefit. 
The system's staff doesn't receive as many phone 
calls to tell the casual users the characters in 
the database name, and the directory it is in. It 
is easier on the casual user and it is easier on 
the systems staff. 

The casual user is of ten unsure of how to do what 
they want to do. It is often convenient and an 
excellent learning tool to let them try things and 
see if they work. Ye found the ability to "back­
out" of commands wherever possible so that the 
casual user can try different options. If they 
get to a point where they determine that they 
don't want to be, they can either "back-out" one 
menu at a time or they can "back-out" all the way 
to the Main Menu. This allows the casual user to 
learn and get on-line training without needing an 
expert. If they' re confused about "selecting" 
records or "showing" records of the database, they 
can try one option and see which one does what 
they want. It is unfortunate that the syntax and 
the words used in the computer business do not 
always match the words that the end user would 
use. Sometimes the user thinks of finding records 
in a database and sometimes they think of 
selecting records from the database and sometimes 
they want to use words like "match", or 

147 

"correlate", or "type", or "show"; there is no 
single "best" choice of key words in software 
systems, that is why customization is so valuable. 
Therefore, the casual user often needs to try 
things and see if the "buzz word" that is built 
into the software system matches what they want to 
do. 

The system needs to include subtle, but valuable 
features. It is important to make the menu system 
very, very simple even at the cost of verbosity. 
It needs to be built sufficiently simple so that 
people "pick it up" without any extra effort. 
Yhen the casual user makes a menu choice, the 
system needs to make something change as quickly 
as possible on the screen. Usually, this means 
that a line has been cleared to indicate that the 
character has been received by the computer and 
the requested option is being performed. The 
system also needs to be designed so that if the 
trained user types ahead, it skips displaying 
menus to the screen, as long as a valid menu 
choice has been entered into the system. This 
way, the user can optimize system efficiency 
because the system does not continue to type 
everything out. 

FEATURES THAT MINIMIZE HAND-HOLDING FOR THE CASUAL 
USER 

The casual user's attitude toward the systems 
support staff is often very much like our attitude 
toward dentists. Ye like to know they are there 
when we need them, but we certainly hope that we 
don't need them. For the competent professional 
who knows his business, and is intelligent, 
articulate, and trained, it is an unpleasant 
situation to have to go to someone else, (i.e., 
the systems support staff), and openly acknowledge 
their ignorance. Especially when they're often 
greeted with the comment, "Read the manual!" or, 
"Anybody should know that!" Hand-holding is 
unpleasant to everyone involved and it is a very 
expensive use of an organization's technical 
resources. 

We believe in three kinds of help facilities. The 
first one, is analogous to many other systems. It 
is an on-line Help facility that is accessed by 
typing a "?" at any menu choice, or by typing a 
"?" as the first character to file names, 
requests, or the entering of contents of fields, 
and so forth. The on-line Help facility looks up 
a help message, and displays it on the screen and 
then gives the user a choice as to what to do. 
The author believes this is the minimally 
acceptable Help facility that any user friendly 
software system should have built into it. Ye've 
taken this two steps further. Ye've found that it 
is possible to predict the many kinds of trouble 
that the casual user can get into and how to build 
in an automatic facility such that when it is 
detected that the user has gotten into one of 
these situations an automatic help menu is 
displayed. For example, the user is selecting 
records from the database and no records are 
found, the system should come back and tell them 
that no records were found and offer advice as to 
the usual reason this problem occurs. Various 
forms of built-in automatic help are desirable 
where it is predictable that the casual user is 
going to find problems on a frequent basis. Ye 



also found that some of the situations are 
sufficiently infrequent that by offering the user 
the choice of getting how-to-use help on a 
sophisticated feature it enables them to have 
instant access to an expert. 

Menu systems are usually abhorred by the expert 
user and this is true whether the "expert" is a 
systems programmer, an experienced word processing 
operator, or an accountant working with electronic 
spreadsheets. Once the user becomes familiar with 
the product they tend to get bored going through a 
myriad of menus. Yith this in mind, we built-in 
the ability to type ahead; thereby, bypassing the 
screen having to refresh itself with every 
command. As long as a valid command was entered, 
the system should continue to work behind the 
scenes until it either finds an unrecognizable 
menu choice or you have ceased typing ahead. 

One of the greatest "fears" of an occasional user 
of a computer system is, "Yhat do I do if I type 
the wrong character?". In looking at alternative 
solutions to that problem we decided on a "back­
up" ability. This allows the user to go back 
through each menu that they have traversed, one­
by-one or all the way back to the Main Menu. This 
again eliminates the need for the systems support 
staff to have to correct "fatal" errors day in and 
day out. 

CONCLUSION 

It is a fact, in the computer software industry 
that you can have developed the greatest software 
package in the world, but if you don't have a 
marketing and sales force to inform the world of 
its existence, it is of little value to anyone. 
In fact, it is a reel of tape gathering dust. It 
is equally true that if you've developed a good 
software package and if that package has been 
marketed and sold appropriately, and is not 
installed at an organization's site, it is of 
little value if there is little or no usage of it. 
In fact, it becomes very expensive. Formal, 
internal and external training resources can only 
go so far. Very few organizations can afford to 
train all of the employees that could or would use 
the system. And even if an organization has an 
excellent in-house training program and succeeds 
in training an adequate number of employees there 
is always turnover. Part of the cost of turnover 
is the training cost of a new hire. Even if its 
not in the computer department, an employee will 
need to be trained at some level in the use of the 
computer system and its' software. Therefore, the 
key to increasing usage of sophisticated software 
packages is to make them easy and non­
intimida ting. 

As more and more compute power and resources 
become available to a wider variety of users both 
software developers and in-house programming 
staffs are going to need to be more and more aware 
of the problems of the untrained professional in 
the use of computers and computer software 
systems. In this paper we've described them as 
casual users, infrequent users, and occasional 
users. They're not computer professionals. They 
are professionals in other areas that need to 
efficiently use the computer. 

148 



1. Introduction 

A DBMS Performance Evaluation Tool Description and 

Methodology of Use 

Alexander B. Wasilow 

Robert L. Ewing 

Gary B. Lamont 
Visiting Professor 

Department of Computer Science and Computer Engineering 
Wright State University 

Dayton, Ohio 45435 

Department of Electrical and Computer Engineering 

Air Force Institute of Technology 

Wright-Patterson AFB Ohio 45433 

ABSTRACT 

This paper describes the use of a DBMS 
performance evaluation Tool and presents a 
methodology for its use. The tool, DBMON, 
has been developed at the Air Force Insti­
tute of Technology on a VAX 11/780 computer 
system. DBMON is capable of recording and 
analyzing performance measurements 
collected during the operation of the 
INGRES and TOTAL DBMSs. The DBMON User's 
Methodology is presented to describe the 
use of DBMON in the analysis and evaluation 
of DMBMS performance problems. 

The advantages of using a DBMS are 
numerous, but come at the expense of the 
overhead placed on the resources of a 
computer system. It is only natural' to 
want to maximize the benefits of a DBMS 
while minimiizng the overhead incurred 
through its use. 

has been designed to help free the Data 
Base Analyst from having to rely solely on 
intuition , experience, and trial and error 
techniques for identifying and correcting 
DMBMS performance problems. DBMON provides 
a means of measuring DBMS performance and 
its effect on computer system resources. 
The data provided by DMBMON can be used to 
evaluate DBMS performance based on specific 
user objectives. The evaluation provides 
the basis for identifying areas for 
performance improvement. 

DBMS overhead and performance quality 
can depend on hardware configuration, 
operating system characteristics, DBMS 
query structures. In order to measure and 
identify areas where reductions to DBMS 
overhead can be made, a DBMS performance 
monitor named DBMON (Data Base MONitor), 
has been developed. DBMON is a tool that 

Proceedings of the Digital Equipment Computer Users Society Dallas Texas- 1986 

149 



DBMON has been developed as an object­
ive of the Air Force Institute of Technol­
ogy Information Sciences Laboratory 
(l,J2;3;5). DBMON is a part of an ongoing 
development of a software engineering envi­
ronment that will include DBMS applications 
and analysis. 

2. DBMON System Description 

2.1. Introduction 

Performance monitors can be grouped 
into one of three categories: software, 
hardware, or hybrid (4:82-108). The DBMON 
system implementation has been entirely 
software based thus far. It relies on VAX 
VMS Utility programs and custom DBMS moni­
toring software. 

DBMON primarily operates by using 
performance measurement and collection 
software that is embedded into DBMS appli­
cation programs. This embedded software is 
referred to as the Instrumentation Utility. 
DBMON allows the user to establish a moni­
tor session, during which computer system 
statistics are recorded and DBMS appli­
cations programs are executed. The Instru­
mentation Utility records DBMS Data Manipu­
lation Language (DML) statements. Once the 
monitor session is completed, the collected 
data is analyzed and can be viewed by the 
DBMON user. 

2.2. DBMON Structure 

The structure of DBMON consists of 
four main functional areas as shown in 
Figure I. The four functional areas are as 
follows: 

1. User Interface - This section allows 
the DBMON user to specify performance pa­
rameters to be measured, duration of the 
monitor session, and provides user control 
of monitor operation. 

2. Measurement of System and DBMS - This 
portion of DBMON controls the execution of 
the monitor utilities and collects a file 
of performance measurement data. 

3. Analyze Performance Measurement Data -
This section performs mathematical, 
statistical, and graphical analysis of 
performance data in order to reduce the 
collected mass of raw DBMS performance 
data. 

4. Present Performance Data to the User -
This section presents the collected and 
analyzed performance data to the DBMON user 
in the form of reports and graphs. 

Functional areas one and four are 
implemented with the DBMON User Interface 
Program. Area two functions are handled by 
the Instrumentation Utility and VAX/VMS 
Utilities under DBMON control. Area three 
is the responsibility of the DBMON Data 
Analysis Program. 

150 

2.2.1. Functional Areas One and Four. 

The DBON User Interface is the primary 
interface between the DBMON user and the 
DBMON performance measurement process. 
This is a multilevel menu driven program 
that allows the setup, initiation, and 
control of a performance measurement 
session. After performance data analysis, 
the User Interface provides (1) graphical 
viewing of performance data represented by 
bar graphs; (2) terminal screen viewing of 
Performance Reports; (3) statistical 
comparisons between sets of performance 
measurement data; (4) storage of 
performance reports in a DBMON maintained 
library of historical performance data. 

2.2.2. Functional Area Two. 

The actual collection of performance 
data is under control of the User Interface 
but is carried out by DB MON and VAX/VMS 
Utility programs. These utilities are the 
DBMON Instrumentation Utility, the VAX 
Monitor Uitility, VAX Accounting Utility, 
and the VAX SYE (System Error Log) Utility. 

The DBMON Instrumentation Utility is a 
collection of modules that create a file of 
DBMS performance data. Instrumentation 
Utility calls are placed before and after 
the DBMS DML statements that are of inter­
est to the SJDBMS Analyst. The instru­
mentation Utility uses before and after 
views of the DBMS to determine what system 
resources can be attributed to the DML 
statement being measured. 

The Instrumentation Utility records 
performance statistics on the following six 
parameters: 

(1) Total response time for the DMB 
Instruction. 

(2) CPU time used. 

( 3) Buff er I/O count. 

(4) Direct I/O count. 

(5) Number of page faults. 
(6) Working set size. 

These parameters are recorded into a file 
that is later used by the DBMON Data 
Analysis Program. 

The VAX Monitor Utility collects data 
on computer system performance at user 
specified intervals. The collected data is 
in four classe: I/O, Modes, States, and 
File System ACP Statistics (FCP). 

The VAX Accounting Utility uses the 
VAX Job Accounting File to produce a sum­
mary report of jobs running on the computer 
system. 



The VAX SYE Utility uses the system 
error log to produce a summary report of 
system error conditions, 

2.2.3. Functional Area Three. 

The DBMON Data Analysis Program uses 
the raw measurement data file produced by 
the DBMON Instrumentation Utility to pro­
duce the Instrumentation Report, graphical 
analysis files, and statistical analysis 
files. The Instrumentation Report is the 
summary of the data collected by the 
Instrumentation Utility. This report may 
be printed, or viewed with the DBMON User 
Interface Program. Examples of this 
report are in Figures 9 and 10. The two 
analysis files produced by the Data 
Analysis Program are used by the User 
Interface Program to provide graphical 
representations and statistical comparisons 
of performance data. 

The data collected by the three VAX 
Utilities is merged and formatted to pro­
duce the System Parameter Report. This 
report shows the state of the computer 
system during the measurement session by 
indicating the system turnaround, 
throughput, device errors, security (login 
failures), processor utilization, and queue 
wait parameters. The information in the 
System Parameters Report helps allow the 
DBMS Analyst to determine the effect of 
computer system workload on DBMS operation. 
An example of this report is in Figures 2 
through 7. 

3. DBMON User's Methodology 

Methodology can be defined as the 
synthesis of methods and tools. The tool 
in this case of DBMS performance evaluation 
is the DBMON system. DBMON and the methods 
of its application comprise a DBMON User's 
Methodology as represented in Figure 8. 
The DBMON User's Methodology for DBMS 
performance improvement consists of the 
following five phases: 

1. Understand the System - This phase 
involves familiarization with the computer 
system, the DBMS, and the DBMS application 
being studied. 

2. Identify Problem Areas - This phase 
involves analyzing the use of a DBMS to 
identify any potential problem areas that 
need to be addressed. This phase could 
also involve the creation of DBMS 
performance benchmark measurements against 
which to guage any future DBMS performance 
measurements. 

3, Formulate a Performance Improvement 
Hypothesis - Once familiar with the system, 
and having identified a problem area, pos­
sible performance improvement hypothesis 
need to be developed. These hypotheses 
should be analyzed to see if they are 
feasible. Unrealistic solutions to 
performance problems can be rejected at 
this stage. 

151 

The above DBMS performance improvement 
methodology would be cumbersome to apply 
without a complete DBMS performance 
analysis tool. DBMON can be directly 
applied to the identification of ~BMS 
performance problems and the testing of 
performance improvement modifications. 
Data collected during the identification 
stage by DB MON can be applied to the 
formulation of a performance improvement 
hypothesis, Final implementation ?f a 
performance improvement can be validated 
with DBMON performance evaluation measure­
ments, DBMON has been developed to be the 
workhorse in the application of the DBMS 
performance evaluation methodology. 

4. Application of DBMON to the User's 
Methodology. 

An example is the most straightforward 
method of demonstrating the use of DBMON 
and the application of the User's Meth­
odology. Considering the case of a DBMS 
application program, the following 
discusses a step by step application of the 
User's Methodology. 

DBMON was applied to the Data Analysis 
Program which is a part of the the DBMON 
software. The Data Analysis Program is an 
INGRES application program, The DBMON 
User's Methodology was applied with the 
following steps: 

(1) Understand System - Familiarization 
with the computer system, DBMSs, and the 
DBMON system was gained during the course 
of DBMON system development. 

(2) Identify Problem Areas - During test­
ing of the Data Analysis program, it became 
evident that the response time was lengthy 
(more than 10 mintues). As a matter of 
convenience an improvement in program re­
sponse time would be useful. The use of 
INGRES calls became the prime suspect in 
the lengthy response times, since the pre­
vious versions of the Data Analysis program 
ran quickly (less than 1 minute). In order 
to evaluate the response time contribution 
to the program overall response time, the 
Data Analysis Program's INGRES calls wer~ 
instrumented with the DBMON Instrumentation 
utility. The instrumented program was run 

during a measurement session, and the 
resulting measurement data was analyzed. A 
statistical analysis file was created 
against which to guage any future 
performance improvements. Graphical 
analysis of the measurement data as well as 
examination the Instrumentation report 
(Figure 9) revealed that an average 
response time of 1.1 seconds. Considering 
that 703 INGRES instructions were executed, 
12.9 minutes of Data Analysis Program 
execution time could be attributed to DBMS 
activity. 



(3) Formulate a Performance Improvement 
Hypothesis - The collected measurement data 
was analyzed, and it became evident that 
more than 90% of the program response time 
was attributed to its embedded INGRES 
calls. Figure 9 shows the measurement 
report for the pre-improvement Data 
Analysis Program operation. From 
examination of the Instrumentation Report, 
a large amount of page faults occurred 
during use of the data base. This 
suggested a change in the structure of the 
stored data. By examining INGRES reference 
manuals, a possible performance improvement 
would be to use the INGRES provided 
features of restructuring the Data Base 
into a hash structure from its initial heap 
structure. 

(4) Test Performance Improvements - During 
this step the data base was optimized using 
INGRES supplied procedures. The instru­
mented data analysis program was run again 
and a second set of measurement data 
collected. This data was analyzed and a 
second statistical analysis file was 
created. Figure 10 is the instrumentation 
report for this session. The performance 
improvements reduced INGRES response times 
approximately 50%. From examination of 
the reports it can be seen that the 
improvements came partially as a result of 
less CPU time used, but primarily because 
of the much smaller number of page faults 
encountered in restructured data base. 
These observations were confirmed through 

the statistical comparison the statistical 
analysis files created for both measurement 
sessions. 

(5) Implement Performance Improvement 
Modifications - Due to clear benefits of 
the hash data base structure, it has been 
adopted for use by the DBMON data base and 
has been specified in the DBMON User's 
Guide. 

This sample application of the DBMON User's 
Methodology is representative of the pro­
cedures that can be used in applying DBMON 
as a performance improvement tool. It is 
obvious that DBMON is only a tool and is 
not a cure all for DBMS performance 
problems. The DBMS Analyst is still 
responsible for uncovering solutions, 
though his job can be much simpler with the 
use of DBMON. 

5. Conclusions and Recommendations 

The result of the DBMON development 
effort is a comprehensive data base 
performance measurement tool. As a stand 
alone DBMS performance evaluation tool it 
is capable of providing the DBMS analyst 
the means of collecting and analyzing large 
amounts of DBMS performance data. Testing 
performance improvement modifications 
becomes a straightforward application of 
the DBMON system. DBMON and the DBMON 

User's Methodology are presented as ~ 
comprehensive methodology for analyzing and 
helping cure DBMS performance problems. 

152 

USER 

INPUT 

USER 
INTERFACE 

PRESENT PERFORMANCE 
1-.'.P~RES~EN"'TA""Tl;:::DN'--i..J PERFORMANCE ~==;.:_-

OPTIONS MEASUREMENT 4 :~::~::MENT 

MEASUREMENT 
OPTIONS 

PROCESSED 
MEASUREMENT 
DATA 

MEASUREMENT 
OF SYSTEM 
AND DBMS 

RAW MEASUREMENT 
DATA 

ANALYZE 
MEASUREMENT 

DATAFILES l 

FIGURE 1 DAMON 8LOCK l)IAGAAM 
Snurce:(2:11·31 

00000 Sll!IBB 
0 "" 0 BBBllB 
0 0 . . 
0 0 . . 
DODOO . " 

000 
0 0 

0 0 
0 0 

0 0 
000 

OATA .~~s~o=~~F~~~;7~~l~:;~ T~~c~~~~~~~N l. 0) 

WR!GHT-PATTfR$0N UR FORC! BA$!. OHIO 

DBMONSl!SSIO'llNl'OAMATION -----------------------
MEA5UAEMEJ<TSESS10NNA•l!:,SVSTEMPARA!olETERRl!.P0RTTl!ST 
STARTO ... TI!. 1 \3-SEP•1995 
START TUU! , !3137,2!5 
STOP OAH. ; IJ-SEP-1985 
STOP HM! '1s,oo,oo 
ANALVS150PTION 1 STAN0.0.110 
PRESENUHON OPHON , PlltNT 
CO\.LECT!Otl!NT!llVA\. 11!1 
SESSION STATUS :COMPLETE 
PAllAMETERSET 1AL\. 

FIGURE 2 

ST.\llTTIME 
HOP TIME 

••••••••••••••••••••ooo••••••••••••••••••••••oooooooooo•oo••••••n••••••••••ooooooo••o•••••••••••••• 

PllODUCTIVIH OAU -----------------

D8MDN !NGll 
08MON ~NGR 

PllOCl!SSOBMON 
PROCESS GAIUOS 
PROCl!SSIC£CAP1 
PROCESS PICTURE 
PllDCfSSTI 

tlBMON !!NGA 
tlBMON ENGll: 

................................................... 
•EFFECTlVEN!SSPAllAMETERS+ ............................................... 

13-HP-1985 !3:38 
13-SEP-!98513:44 

40C4:3l:S8.9C 
1003:12:05.88 
TO 04:02:~~ .~1 
1001,14:09.CC 
1000:00:20.90 

OCCCC001 '-SVSTU,j-S-NORM•L. ""~"'al succ11ssful ca .. o 
00000001 ,,,SVSTEM-S-"°llllAI.. no~ .. al ouccuof..,1 CD"'O 

FIGURE:. 3 



................................................................................................... 
: .. :.:.:.:.:.:.:.:.:.~.: ... :.:.:.:.:.:.:.:.: ... :.:.:.~.:.: ............................... n;::d::: 

.. f.P!'f.CTIYf.N!SSPAAAMf.T!AS• ............................. 

111..0GIN-!-NOSUCHUS!R,r>o• .. c"" .. ,. 
UOG.IN-1'-CllOINPUT,orrorroo<llntca,.. .. n<ltnpUt 
~;:::;ClllOINPUT,orrorroa<1\n9co-r><1\nput 

lil.OGIN-P-CllOINPUT,orrorroo<1tn1co.....,,<1tr>p"t 

FIGUiE 4 

..................................................................................................... 
: p £ 11 !' 0 R 11 A N C f. P A R A II ! T ! R A f. P 0 R T ~~~:T ri!:E ..................................................................................................... 

..................................... 
+ !PPIClf.NCYPARAMlTERS • ........................................... 

OllMON f.NGR 
OllMON f.NGR 

OllllSSUllPROCESSPROC!SSOATlll! 

ACCOUNT J08NAM! 

OllMCN f.NGR ooo,os.n.79 
OSMON !NGll 000;01),02.78 

PROCESSORUTll.IZAT10NIYUSf.R 

P'ROCE5S08111QN 
PROCE$SGAITllOS 
PllOCESSlCf.CAPI 
PROCESS PICTUU 
PROCESS Tl 

E•oc,.t<volloao 
l<11oTl'"o 

~~:~ .. ~~::" ....... 

000,23;12.•s 
0 OO:U,~t.75 
0 00.12.11.01 
000:03,24.10 
0 00100,04.U 

... 
U.I 
o.o 

21.7 

....... 
1293 " ,. '" '" 

FIGURE 5 

......................................................................................... ;;::;·;;;;· 
o Pf.RPORllANCI! PAllAllf.Tl!R Rl!PORT 5TOPT111! : .................................................................................................. . 

M!llMl"l IJTTl.!HTlON av USEA 

PllOCfSSOIMOH 
PROCESS(iAITROS 
PROCESSICf.CAP\ 
PROCESSPICTUllE 
PROCl!SS Tl 

OlllSSUIPROCUSl/OOATA 

OllMON f.NGR 
OIMON !NGR 

itOUTil.IZATIONIVUS!R 

PAOCf.5501M0N 

::g~:~~ ~~~~~~~ 
::g~~~~ ~~CTUR! 

l/OUTll..IZATI!mPlllAMf.TEllS 

~~~:E~~:;:~:::u 
Ohk Ree<I Rote

~~=kc:7:t:.~:u
Pe110 '•"It Aoto
P.090Aeedlloto P•ll• w~lto Aou
PogeRoedllOR•t•

................................ ~
: :::!~! ~:~: .. :!~!::!!~~ ... :

PllKWSP•GEFAULTS

3000 lHlS
102• 51740
102• 21111

" 1781

11.11
2.35
1.13
5.51
0.31
0.55
1.81

13.20
4.22

"' 0.37

:~~ 10~~:

..
131127

2112
\160
1203

'" "

FIGURE 6

153

...
: t> l A!' O 11 11 AN Cf. PA Al II IT! A II IP 0 AT ~~:TTr:.:!

P'o19Vlr\tel/Olteto

Ol!YICl!UTll..IUTIONOATA -----····--------------

DIMSS.UIPllOCl!SSQU!UIS

0UIUl!WAlfP'ARAlll!Tl!R5

~==:~::v:~~· !' ~:! t W•I t

~:~~: ~~~~:::ppea)
~~::,.:::: wot t
Hlbornuo (0.,to••PPO<I)
LocolE.,tPleg(Outs••PP•<I)

~~:! :":~!c'~:: .. ~~!! Vlott

:~::.~:~~ t Wait
5.,,pen<1od(Out••OPP•<ll

UNDERSTAND
SYSTEM

o.oo
o.oo
1.311
D.00
1.00
0.00
... a..
o.oo
o.oo
9.21
D.02
D.Ot
D.00
o.oo

IDENTIFY
PROBLEM

AREAS

PIGUllE 7

TEST
PERFORMANCE
IMPROVEMENT

•
IMPLEMENT

PERFORMANCE
IMPROVEMENT&

FIGURE B OB MON 'usER"S METHOOOLOGY

P'llOGAA.llNAME1 OATAlNAl..YS!SP'ROGAAMTfST

ooc $TATEMl!NT$UfillU.AY

llUlll!Y•LCOllMANOS
--------- ----··-·

COMllANO m• f.Xl!CUTION Al!SPONS! "" IUP!'l!AEO DIRECT P•GI! WORKO+G
NAME !NfOllllATtON COUNT TillU••c•l Tlllf.1,.••c) uo uo l'AULTS "'

... 180 1'90 ' .. "' "' 4.1150 1490.0 •.o S4.o 193.C 512.0

... 81!0 1490 ' ,. "' "' 4.880 1410.0 •.o 54.0 193.0 su.a
STOllAGECOM.llAHOS
··-··-- ····-···

COll!IAl\IO TYP! f.Xf.CUTION RESPONSE ''" IUl'Ff.R!O OIRECT P'AGE llNlRK!N(l
NAMI! INPORllATION COUNT TlMf.(aocs) Tl.llUrnoocJ '" '" l'AUl.TS "'

37T.4i0 71Z40 3•3' 1387 ' '" 0.549 111.0 •.o •.o 0.0 912.0

190.220 29700 " "' 1!151 "' Jl.703 4950.0 '-' H.!i 259.J 512.0

191.?•0 79670 " 2217 3831 "' 21.IO• IUl.I ,_, 2•e.J 421.2 912.0

713.110 115510 31'• 401!!1 '!5399 s~'.~ 1.oH H•.3 •.o '-' ·1.1

SUlllllll;VOFAl.1.CO-AHOS ------- -------------
COMMA NO TYlll! f.Xl!CUTION lll!SPONS! ''" IUP!'!Rf.0 OlR!CT PUll! •OllKING

NAiil 1HFORllATION COUNT TlMl!Ceoea) TIME(mooe) '" uo PAUl.T5 m
718.740 117000 39•1 40111 !1592 '" 1.014 211.0 •. o ... 0.0 912.0

FIGURE '

PllCIGllA•N.ute1 o.tU •N•LYSI$ PllOGR•M Tl!ST 2

DlilL. STAT .. INT SUMMARY

~~~~~~~~= ~~~~~~~~ 

c:::NO TYpe; 
ix~g~~.:.oN RESPONU "" IUl';~~!D DIR!CT P•Ge: INl'OAM•TION TIM!i:(HU) TI•U-•c) '" l'•ULTS wo::.:.NG 

2.230 IHO ' " "' "' 2.230 1210.0 "' 12.0 113.0 !112.0 
total 2.230 1210 ' " '" "' •v11r11911 2.230 1210.D '·' 12.D 113.0 912.D 

!:~~~:~ ~~~~! 
CO!W•ND m• Vr.l!CUTION lll!SPONU 

''" IUl';~:e:o l'AGI! MM• INl'Oll•ATION COUNT TIMl!(•11c•) TIMl!(-•cl DI~~~ WOllKilofG 
l'AULT$ "' 201.110 

r~=~ 3432 1317 ' "' 0.300 '·' '·' '-' 9U.O 
91.210 H!llO " ... ... "' 1.131 4711.7 '·' 11.S 14.0 502.7 

tot•I lZ!l.100 1HOD " 2913 2121 "' •v•r•v• 13.HI 11 ... 7 ... 271.2 321.4 ...... , 
total 313.210 112770 

3;~: 4=~~ mo "' ....... !!. 0.541 2110.4 '·' $11.1 

!~~~ ~~ ~== ~~~~~~! 
CO.ANO ~ .. EXl!CUTION RESPONSE ''" IUl'l'ER!D DIRECT NAME IHl'ORMATIOft COUNT l'AGI! WORKING TIMl.(HC•} Tl•ECmHcl '" '" l'AULTS "' 31$.120 114DIO 3940 4421 3101 "' D.541 211.1 '·' '·' '·' Sii.i 

FIGUR.E 10 

References 

1. Bailor, Paul D. Development .Qf. £ 
.Jliit.g~ Management System Performance 
Monitor. MS thesis, AFIT/GCS/EE/830-2. 
School of Engineering, Air Force Institute 
of Technology (AU), Wright-Patterson AFB 
OH, December 1983. 

2. Bailor, PAUL D., Lamont, G. B., 
and Ewing, R. L. Development .Qf ~ ~ 
.B..a..s..e. Management System Performance Monitor. 
MS thesis, AFIT/GCS/EE/84D-6. School of 
Engineering, Air Force Institute of 
Technology (AU), Wright-Patterson AFB OH, 
December 1984. 

4. Svobodova, Liba. Computer 
Performance Measurement .a.n.Q Evaluation 
Methods: Analysis .ailil Applications. New 
York, NY: American Elsevier Publishing 
Co., 1976. 

5. Wasilow, Alexander B. 
Development Completion .Q.f ~ .lla..t..ii .B..a..s..e. 
Management System Performance Monitor. MS 
thesis, AFIT/GCS/EE/85D. School of 
Engineering, Air Force Institute of 
Technology (AU), Wright-Patterson AFB OH, 
December 1985. 

154 



THE COMPLEX NETWORK: 
A DATABASE DEFINITION DILEMMA 

Mildred D. Lintner and David W. Chilson 
Bowling Green State University 

Bowling Green, Ohio 

ABSTRACT 
This study examines complex networks as implemented by DBMS-
20, a CODASYL DBTG database management system. Textbooks 
define a "complex network" in one of two way.a (sometimes 
asserting both): (1) as a many-to-many relationship between two 
record types, and (2) as a one-to-many relationship which goes in 
both directions between two record types. Using a student-course 
database and a state-president-vice president database, this 
paper demonstrates that a true complex network involves the first 
definition and requires decomposition of the many-to-many 
relationship into a pair of simple networks through the introduction 
of an intersection record type. The paper further demonstrates that 
a one-to-many relationship in both directions is not necessarily 

a complex network and, if not, can be implemented directly by 
DBMS-20 without decomposition and without the introduction of 
an intersection record type. The term "compound" network is 
proposed as a name to designate this second type of relationship. 

INTRODUCTION 

As a technology matures, definition of its 
terminology is continually being refined in the laboratories 
of research and experience. This refinement allows the 
technology to be described, and therefore understood, 
with increasing accuracy and precision. Especially 
important are definitions of the underlying structures upon 
which the practical applications of the technology are 
founded. Sometimes, as various applications expose the 
central issues of a technology, small differences among 
definitions cause discrepancies to arise between the 
conceptual basis and the practical applications of the 
technology. Such is the case with one of the underlying 
structures of database technology, the complex network. 

The most common definition of a complex 
network is that it involves a many-to-many relationship. In 
this data structure, a parent-record may have many child­
records, and a child-record may have many parent­
records of the same record type. Database literature 
contains many examples of this definition in use. For 
example. Joseph A Vasta, in his text Understanding Data 
Base Management Systems (1985), defines a complex 
network as one in which "a many-to-many relationship 
exists between the child and the parent" (Vasta, 1985: p. 
73). A similar definition is used by James Martin, in 
Computer 8ata-Base organization (1977), stating that a 
complex network is represented schematically by "one of 
the lines [connecting record types] having double arrows 
in both directions" (Martin, 1977: p. 113). 

While this definition is most widely used, another 
definition exists in the literature. In this case the 
relationship between the two record types in the structure 

Proceedings of the Digital Equipment Computer Users Society 155 

is described as a pair of parallel, or binary, one-to-many 
relationships. That is, there is a one-to-many relationship 
in both possible directions. Jeffery D. Ullman, for example, 
in Principles of Database Systems (1980) defines 
complex networks as "binary many-one relationships" 
(Ullman, 1980: p. 83). And David Krpenke, in Database 
Processing: Fundamentals Modeling and Applications 
(1977) offers the following definition: " ... we shall refer to 
networks having one-to-many relationship in both 
directions as complex networks." (Kroenke, 1977: P. 79). 

Figure 1 

While these two pairs of definitions may appear 
similar, fundamental differences exist between them. 
Basically, any many-to-many relationship is also a binary 

one-to-many relationship that goes in both directions. The 
reverse, however, is not necessarily the case. That is, a 
one to many relationship that goes in both directions 
between two record types is not necessarily a many-to­
many relationship. To demonstrate these differences, 
consider two databases: (1) a student-course database, 
and (2) a state-president-vice president database. 

Dallas Texas· 1986 



A STUDENT-COURSE DATABASE 

The classic example of a many-to-many complex 
data definition is the student-course database. Each 
student can be enrolled in one or more courses during a 
particular academic term, and any course can in turn have 
one or more students enrolled. 

FIGURE2 

The relationship between students and courses 
can be expressed as either many-to-many or bi­
directional one-to-many. As such, it is a true complex 
network, and cannot be directly implemented by DBMS-
20. The reason for this is that DBMS-20 is based on the 
CODASYL DBTG database model. Under this standard, a 
member record can have only one owner in a given set. A 
member record occurrence in a particular set can have 
only one owner pointer for each set type in which it is 
designated as a member. Multiple owner pointers can be 
used, but each would have to be for an owner in a 
different set type. As you see in Figure 1, a given course 
would need one or more owner pointers within the student­
course set, since a given course could have one or more 
student owners. Likewise, a given student record would 
need one ot more owner pointers within the course­
student set since a given student could have one or more 
course owners. 

What is needed to solve this problem is the 
introduction of a third record type, an intersection or 
connector record, which contains the intersecting primary 
keys of pairs of student and course records, as well as 
pointers in each of two set types -- a student-intersection 
set and a course-intersection set. Introducing the third 
record type reduces the original complex network to a pair 
of simple networks. The resulting structure of record types 
is as follows: 

Figure 3 

The student-course database is now in a form that 
can be directly implemented by DBMS-20. The student 
records are owner records in the student-intersection set, 
the course records are owners in the course-intersection 
set, and the intersection records are members of both 
sets. Each member record in this case has two owners, 
but each owner is in a different set type. 

A STATE-PRESIDENT-VICE PRESIDENT DATABASE 

In the state-president-vice-president database, 
the structure of record types is the following: 

Figure 4 

A state could have had one or more presidents come from 
that state (i.e., state of birth), and a president could have 
had one or more states admitted to the union during his 
term(s) or office. Additionally, a president could have had 
one or more vice presidents serve under him during his 
administration, and a vice president could have served 
under one or more presidents. Note that in this database 
the state-president relationship is one-to-many in both 
directions, while the president-vice president relationship 
is many-to-many. The state-president relationship is not 
a complex network. Therefore, it does not require the 
introduction of an intersection record type to reduce the 
relationship to two simple networks. The president-vice 
president relationship ~ a complex network, and 
therefore ~ require the introduction of an intersection 
type. 

Figure 5 

The state records are owner records in the state-president 
set and member records in the president-state set. The 
president records are owner records in the president-state 
set and member records in the state president set. In 
contrast to the student-course database, in which multiple 
owner pointers would have been needed for direct 

156 



implementation, note that president records ( as member 
records) require only a single owner pointer in the state­
president set. Any given president could have been born 
in only one state. Similarly, state records ( as member 
records) require only a single owner pointer in the 
president-state set. A given state could have been 
admitted to the union during the term of only one 
president. 

The president records are also owner records in 
the president-intersection set. The vice president records 
are owner records in the vice president-intersection set. 
Finally, the intersection records are member records in 
both sets. 

CONCLUSION 

What distinguishes the state-president 
relationship from the student-course relationship (as well 
as from the president vice-president relationship is that 
the meaning if the relationship is not the same in both 
directions. In one case, "state" means "state of birth"; in 
the other, it means "admission of the state to the union". 
The relationship might be classified as a special case of a 
bi-directional one-to-many relationship between record 
types, but it is certainly not a complex network. Some 
clarification of terminology, therefore, is needed regarding 
the definition of complex networks. 

Usually, when there are dual definitions for one 
technical idea, those definitions are refinements of one 
another, or restatements, made for the sake of 
clarification. This study demonstrated that that cannot be 
the case with 'complex network'. Major conceptual and 
implementational differences between data structures 
described by the two definitions were found to exist. 

A many-to-many structure comprises a single 
relationship which can be stated as parallel statements: 
There are many X in Y: There are many Y in X. The 

relationship remains the same whichever way it is stated. 
The bidirectional one-to-many structure, however, 

comprises two different, indeed independent, data 
relationships, which coincidentally depend on the same 
two record types. Typically, these relationships cannot be 
reduced to parallel statements. For example, the 
president-state database used in this study presented this 
bidirectional relationship: Many presidents could have 
been born in one state: Many states could have been 
brought into the union during the administration of one 
president. The conceptual difference between this pair of 
statements and the pair above is clear. Neither of these 
can be stated as the inverse of the other and still maintain 
accuracy in describing the relationships. Thus, the two 
data structures were seen in this study to be not two 
definitions of a single concept, but two distinctly different 
entities_ 

In conformance with accepted expectations, it 
was found that the many-to-many relationships studied 
could not be directly implemented in DBMS-20, a 
CODASYL database system. Both many-to-many 
structures (supplier-part and president-vice president) 
needed to be decomposed into simple networks by the 
introduction of intersection or connector records before 
DBMS-20 could implement them. 

The bidirectional one-to-many relationship 
exemplified by the president-state structure, however, 

157 

needed no such artificial insertions with the bidirectional 
one-to-many structure. Being declared as two separate 
sets (each representing one of the two relationships), the 
president-state database was directly implemented. 

The difference in implementation between the 
many-to-many structure and the bidirectional structure 
adds the weight of its evidence to the significance of the 
conceptual difference described above. If the two 
definitions describe different entities, and if the two entities 
behave differently and are treated differently by at least 
one model of database management system, should they 
not be given different names? 

The many-to-many structure behaves and is 
treated in accordance with our expectations and 
predictions concerning 'complex network'. It therefore 
should be given sole possession to that title, thereby 
maintaining the accuracy of an overwhelming 
compendium of database literature, including the 
CODASYL standards documents. 

The bidirectional one-to-many structure, however, 
should be renamed with a unique title descriptive of the 
relationships it contains. An appropriate title might be 
'compound network'. This term is in keeping with the 
names given to other data structure types in that the three 
terms together, simple, compound and complex, describe 
an increasing degree of complexity in the data types, in 
much the same way that identical terms describe more 
and more convoluted sentence structure in English. 

With the compound network data structure 
defined and differentiated from the complex network 
structure, efforts should be made to investigate it further, 
and to treat it as a separate data type in text and scholarly 
literature. Only in this way can the accuracy of data 
structure description be maintained and the definition 
dilemma be solved. 

BIBLIOGRAPHY 

CODASYL Data Base Task Group April 71 Report, 
Conference on Data Systems Languages, April, 
1971. Third Printing, 1977. 

Kroenke, David. Database Processing. Chicago: 
Science Research Associates, Inc., 1977. 

Martin, James. Computer Data-base Organization. 
second edition. Englewood Cliffs, New Jersey: 
Prentice-Hall, Inc., 1977. 

Ullman, Jeffrey D. Principles of Database Systems. 
Potomac, Maryland: Computer Science Press, Inc., 
1980. 

Vasta, Joseph A. Understanding Data Base Management 
Sysyems. Belmont, California: Wadsworth 
Publishing Company, 1985.787 









DATATRIEVE Novice Questions & Answers 

.Joe II. Gallagher 
4GL Solutions 

Kansas City, MO 

Chris Wool 
DuPont Corp. 

Wilmington, DE 

H. Z. Lederman 
Brooklyn, N.Y. 

Larry .Jasmann 
U.S. Coast Guard 

Burke, V /\ 

Transcribed by B. Z. Lederman 

Abstract 

This is a transcription of a panel presentation which answers some of the 
most common questions asked by new D/\Tt\TRIEVE users. The transcription may 
paraphrase some questions or answers for clarity, and the transcriber 
apologizes in advance for any misspelled names: the usual convention of 
placing square brackets around interpretations or material supplied by the 
editor is followed in this paper. DTR is used in this paper as an . 
abbreviation for DAT/\TRIEVE. 

Dana Schwart·7.: I already have a record definition 
for a domain, and I want to add a field in the 
middle of the record. How do I do that? 

(Joe:) This is relatively easy. Ready the 
existing domain under an alias, for example: 

READY FOO AS OLD READ 
This brings the old definition into memory and 
sets it aside so you can read the data in the 
domain. 

EDIT FOO_RECORD 
to bring the record definition into the buffer, 
and add the new field(s). Exit from the 
editor, and the new defmition is now in the 
dictionary. 

Proceedings of the Digital Equipment Computer Users Society 161 

DEFINE FILE FOR FOO 
to create a new file for the revised record 
definition. 

READY FOO AS NEW WRITE 
to ready the new domain. 

NEW = OLD 
to move all of the old d?.ta into the new 
domain. 

This will leave default values (blanks or zeros) in 
the new fields. 

If you want to put something into the new 
fields, you can do the following (in place of 
NEW= OLD): 

Dallas Texas - 1986 



FOR OLD STORE NEW USING BEGIN 
NEW_REC = OLD_REC 
NEW_VARIABLE = constant 
END 

It is quite easy to add a new variable and 
restructure a domain with a few statements. One 
caution: if the system crashes while you h:i.vc NEW 
at1d OLD readied, the definition will be in the new 
form, while the data is in the old form. You may 
have to delete the new (partially filled) file, and 
the new record definition and go back to the old 
ones (or rename them to save the new definitions). 

Rand Wilson, Wilson Concrete: I've done 
restructuring a few times, and it seems to compress 
the data (the new file occupies less space). Will 
you comment on that? 

(Chris:) You are using an indexed file? (Yes) 
You have also done multiple deletes before 
restructuring? (Yes) When you delete records, you 
don't delete everything: records have what is 
called a Record File Address (RFA). When you delete 
a record, the RFA cannot be reused, so there is a 
little piece of information which is still in the 
file. When you restructure the file and rewrite the 
data, you are eliminating all of the little pieces 
of unusable space. If you are doing a lot of 
deletes (or storage of new records) on a file, you 
should run CONVERT fairly often to rewrite the file. 
One thing you have to watch out for is VMS V4 
CONVERT, which reduces the amount of blocks used, 
but not allocated: if you start with an 8000 block 
file and after conversion you only need 3000 blocks, 
8000 are still allocated. That is a bug which is 
known and should be fixed some time in the future. 
If you are tight on quotas you may have to use FDL 
to define a new file of the proper size and have 
CONVERT use the new definition to set a file of the 
proper size. CONVERT is a DCL level command, and is 
faster than using DTR to read one file just to write 
to another. If you are adding a field to a large 
data file (more than 1000 - 2000 records), you may 
want your NEW domain (from the previous question) to 
be a sequential file, and then use CONVERT to change 
it to an indexed file. DTR is not the most optimum 
tool for populating and empty indexed file from both 
performance and time stand points, because DTR 
populates it by descending primary key one record at 
a time. (Larry:) one final comment: if you have 
reasonably large files, you should get familiar with 
the RMS utilities and how to tune files. It can pay 
big dividends in disk space and especially in 
performance. 

162 

Kevin Cullan, Vitamix Corp: I have a situation 
where I have a lot of zoned numeric field.~. they are 
used as key values, and DTR doesn't se('!n to 
recognize them as keys. I've been forced to define 
them as unsigned numeric, and that isn't what I 
really want to do. ls there some way around this 
problem? I realize that if they really are zoned 
numeric they won't be .rnrted in the order normally 
expected. (Editor's note: the sign flag, which you 
don't see when the number is printed, can change the 
apparent sort order if the data is taken as 
characters or numbers without sign flags.) (Question 
from p::tnel: is there a reason why you have to use 
/'.oned numeric?) I ha11e to use zoned numeric for 
compatibility with another language. There does not 
seem to be any reason why it .shouldn't work. 
(Question from panel: I assume you defipe the 
fields in DTR and then do a DEFINE FILE KEY = field: 
have you ever looked at the FDI, description of the 
fik to see what data type DTR is using?) I don't 
create the file with DTR I do it with FDL, and the 
field i.s defined as STRING. 

(Bart:) That might be the problem. DTR may be 
recognizing your data as numeric and will not be 
sending it out to RMS as a string. As a first shot, 
I'd create a file with DTR w:th a zoned numeric 
field as a key, and then look at the file DTR 
creates to see what data type it is expecting for 
that field. What we usually recommend in these 
cases is to always define the file with DTR fin•t, 
to insur~ that the keys have the proper data type, 
and are m the correct location. Then, if you want 
to, by all means use FOL to optimize the file for 
your application, but use DTR first to get the kevs 
in the right place. -

Kevin Cutlan: What I've done is to use unsigned 
numeric, and that does work. . 

(Chris:) The other thing to do is to run DTR in 
DEBUG mode and do an RSE to sec if DTR identifies 
that as an indexed read or not. !Rather than run 
the DTR image directly, issue the command 
~EBUG SYS$SYSTEM:DTR32 using the appropriate 
duectory and file name for your DTR image. After 
DEBUG issues some informational messages, enter the 
command GO and you wiJt see the normal DTR prompt. 
From that point you use DTR as you normally would, 
but you will receive extra informational messages 
about such things as the keys being used for record 
retrieval. J 

Kevin Cullan: I have not done a DEBUG, hut from the 
time it takes I believe it is not doing indexed 
reads. It takes hours if the field is zoned versus 



seconds for unsigned numeric. I can see how zoned 
variables could cause problems, and am wondering if 
they are not allowed as keys. I'd prefer·DATATRIEVE 
to do what I ask, whether it thinks it's a good idea 
or not. 

Actually, DTR usually allows you to do what you 
want, even if it is a poor idea, such as crosses 
over fields which are not keys. We may have to 
pursue this problem in the campground. 

Wayne Heidennan, (?) International: Do you have any 
recommendations on bucket sizes? 

(Bart:) On the PDP-11, use the smallest bucket 
size that will hold the data. On the VAX, 
increasing bucket size may or may not get you 
anything. If you are reading through the file 
sequentially, a larger bucket size may help you; if 
you are retrieving a particular record and are 
likely to immediately use the next record(s) then an 
increased bucket size may help; if your accesses are 
more random, and are scattered throughout the file, 
an increased bucket size won't help and may even 
hurt a little. If you want to get fancy, you can 
use FOL to examine the file definition: a larger 
bucket size which will flatten the index structure 
usually improves accessing the file, but it's 
usually a case of try it on your particular data 
file and application and see what happens. (Chris:) 
I'd also suggest you look for efficient use of the 
buckets. If you have a 600 byte record, then you 
don't want a 2 block bucket size, as you may only 
have one record per block and about 400 bytes unused 
space. A bucket size of 3 might be better: you 
don't want a large amount of unused space. You do 
want some extra space for the RF As mentioned 
earlier, otherwise if you delete one record there 
may not be enough space for a new record and RF A and 
again space will be wasted, so do leave a little 
space for future deletes. 

Prank Schipani, Emery University. I manage a 
comparatively large database with DTR and due to 
various changes in the database I have to use 
CONVERT a great deal. One feature I miss that is 
available on other systems that I don't have in 
CONVERT i.~ a field description language, so if I am 
going to insert a field in the middle of a record is 
to go through an involved procedure. [Editor's 
note: a process using RMS utilities and sometimes 
COBOL was described.] ls there any prospect of 
enhancing CONVERT. 

163 

(Bart:) I don't think a data restructure 
facility wiJl be added to CONVERT. However, if you 
arc doing things like that often you may want to u~c 
the SORT utility, which does have a field 
description language and a way to restructure 
records. SORT might be faster than DTR though not 
as fast as CONVERT. 

Frank Schipani: SORT is going to have to sort a 
very large file that doesn't really need to be 
sorted. 

(Bart:) I believe that MERGE has the same field 
description capability, and I believe there is also 
a qualifier that you can use to tell SORT that the 
data is close to being sorted already, or use 
/ST ABLE to tell it that it has less work to do. 

(Chris:) I guess I don't understand why you would 
have a problem doing a redefine as was described (in 
the first qucstionj. 

Frank Schipani: it took two weeks as a background 
job. 

(Chris:) Were you going from an indexed file to an 
indexed file? (Yes) OK, that is your problem. You 
should try going indexed to sequential to 
restructure the data. 

Frank Schipani: That's true but then it would still 
take overnight to do that. There should be a faster 
way: for example, if I use COBOL to unload to a 
sequential file, the same file that takes fl hours 
in DTR takes 8 minutes. 

(Chris:) what you can also do is write a special 
record definition which has only three large fields. 
One goes from the beginning of the record to the 
place the new data will be inserted, then a field 
for the new space, and a third to cover the data to 
the end of the record. This will increase speed by 
reducing the time DTR takes for a field by field 
copy. This lets you stay in DTR rather than having 
to write in COBOL. 

Frank Schipani: that's true. 

(Bart:) also, when you define your sequential file, 
did you also pre-allocate space in the output file? 
When you move very large amounts of data, you want 
to go from one disk to another if possible, and you 
want to open the file with the space allocated all 



at once at the beginning rather than having to get 
it in chunks while the program is running. 
Otherwise, going from an indexed file to a 
sequential file should be about as fast in DTR as 
any other language unless you are doing a lot of 
fancy things with the fields. 

Frank Schipani: I think that MOVE CORRESPONDING 
works faster than whatever DTR is using. I think 
now that the difference was more like I /2 hour 
versus 8 minutes. 

Lisa Axelrod, EG&G.: I have a record definition I 
cannot change, and it has a history element which 
occurs 18 times, and has numeric and non-numeric 
information. I can't find any way to get "down 
there" unless FIND a unique record; and if they are 
all blank, how do I get down to a particular one? 

(Chris:) what you are trying to do is find the first 
blank record? 

Lisa Axelrod: no, I have 18 occurrences, and 
depending on what is happening, I may have to get to 
the nth element to store something in it. 

(Chris:) there are several things you can do. Are 
you in a procedure, or doing this interactively? Is 
it within a BEGIN-END block so you can't do FIND and 
SELECT? 

Lisa Axelrod: 111 do it any way I can. 

(Chris:) [To do an interactive query,J you find the 
record you want to operate on, and SELECT it. Then 
you do a FIND giving the name of the list (the name 
on the OCCURS clause). This gives you what appears 
to he a collection of all of the data in the occurs 
clause. You can then do a PRINT ALL, and if you 
want the 5th one say SELECT 5, and you can then 
print, modify, store, etc. 

(Don Stem:) if you check the April 1986 issue of 
the newsletter, there was some "magic" printed from 
the Anaheim symposia on using running counts to get 
to a particular occurs clause record. (Chris:) that 
is better for procedures, rather than interactive 
queries which may be better with FIND I SELECT. 
(Bart:) The trick is to get one particular record, 
then treat the OCCURS clause as if it was another 
domain: that is what you have to remember. There 
was also an earlier newsletter that shows another 
method of getting to OCCURS clauses. [The two 

164 

articles referred to are both transcriptions of 
Wombat Magic sessions. The first was by Diana 
Washburn, doing "subscripting" or "indexing" an 
OCCURS, printed in the Wombat f;xaminer, Volume 6 
Numbers 1&2, April 1985 (combined Winter/Spring 
issue), pages 30 to 35. The second was by Rowland 
W. Fox, Doing a Modify to the nth Field in an 
OCCURS, and is on page DTR-20 of the Combined 
Newsletter for April 1986, Volume I, Number 8. J 

Doak Bane (?) Coleson Inc. I have a problem getting 
a date field defined as a date field in FMS. It 
does not seem to go into DTR as a date field. ls 
there some way around this? 

(Chris:) The simple thing is that you cannot use FMS 
date fields with DTR date fields. The field in F MS 
must he character. 

Doak Bane: I found that out. I had defined a date 
field and found that FMS sent more characters than I 
had defined. (Was the form defined for a domain or 
using a DISPLAY _FORM?) It used DJSPLA Y _PORM 

(Chris:) The simple thing to do then is to set the 
edit string in DTR to the way you want it, then use 
a character field in FMS (if you want MM/DD/YY then 
the PMS field must be 8 characters), then you can do 
a PUT_FORM fms_field = FORMAT(date_field). This 
will force DTR to output the date to FMS as 
specified hy the edit string. When you read it in, 
do a field = GET_FORM fms_ficld, which DTR will read 
as ordinary characters and convert to a date as 
normal. It's the same with TDMS [as it is with 
PMS]. 

Wayne Heiderman: I'm dumping some information from 
an f BM mainframe, and it has a dollar figure with an 
overpunch on the last digit. !.r there an ea.ry way 
to get rid of it? 

(Joe:) That particular problem has been addressed, 
and has been published in the newsletter. 
Basically, the method is to use define the last 
charackr of the field (the one that has the sign) 
separately from the rest of the numeric field, and 
use tables to convert the character that appears 
here to extract the sign and value for that field. 
You then use a COMPUTED_BY field or equivalent to 
reconstruct the number by multiplying the leading 
digits by 10 (the least significant digit was 
stripped off, remember), multiply by the sign ( + I or 
- I) from the sign table, and add the least 
significant digit from the conversion table. !An 
alternate method used by Bob Lott to convert DEC 



COMP _5 fields to IBM format using a CHOICE statement 
to change the least significant digit _;as puhlishcd 
in the Wombat Hxaminer, Volume 5, Number 4, Pall 
1984, pages 46 and 47.) 

Paul Merbeme, Contro Co.: We have several records 
which were built with DlBOf, and which have many 
dates in them. How do we convert that to DTR? 
(Question from Chris: what format arc the dates in? 
Are they 6 characters, or 8 characters?) l believe 
they are 6 character. (Chris: like two digit 
month, two digit day, etc.?) Yes. 

(Chris:) it turns out that DTR is smart enough 
to do this during file restructuring. Your old file 
record would be PIC X(6), the new file would have 
USAGE DATE, both fields have the same name, if you 
do an NEW = OLD [as in the first question] DTR will 
do the date conversion. (Larry:) in some cases 
where the dates in the old files are not matching up 
correctly, for example they go year, month, day, 
then you can separate them into separate fields, and 
re-shuffle them around [as in a COMPUTED _BY), and as 
long as you can put it into something that looks 
like one of the DTR date formats it will do the 
conversion. Sometimes you have to put in the "/" 
characters, etc., but you should be able to make it 
work. 

Paul Merbeme: I've tried that with EXTRACT to try 
flipping around the fields, with some success. 

(Chris:) do you have the capability of changing that 
data file? 

Paul Merbeme: no, otherwise the DIBOL program has 
to change. I don't have any problems printing out 
the dates, [but I want to use the date field in 
selection expressions to find certain dates). 

(Chris:) presently, a COMPUTED_BY field cannot have 
a USAGE DATE. (.Joe:) do you have the ability to add 
an additional field at the end of the record, so 
that DTR could read the file and put in the data in 
USAGE DA TE format in the extra field? 

Paul Merbeme: No, I can't change the file. I could 
copy the whole thing over, but it would take a lot 
of space and time. 

(unidentified:) why not just define the field in DTR 
with an edit string of "MMDDYY"? 

165 

(Joe:) it would not be a DATE data type, to be used 
for proper date comparisons. DTR treats the DATE 
data type in a very special manner. There is a 
difference between a data type of date, and numeric 
values corresponding to a month, day, and year. 
(Bart:) It sounds like you want to prompt somebody 
in DTR for a date, and then find the one in your 
file. (We want a starting and ending date). Doing 
a BETWEEN on data types other than USAGE DATE will 
be rather difficult. 

Paul Merbeme: I don't remember the exact solution, 
but basically I changed the date to strings. 

(Chris:) you can also convert the date to a numeric 
value using year + 10,000 + month + 100 + day, to 
yield a numeric value which will sort dates 
properly. Then your starting and ending dates would 
also be PIC 9(6), and this format will compare 
properly. 

Paul Merbeme: T have tried this. 

(Bart:) I believe that if the COMPUTED __ BY is done 
with the FN$--- function that converts an ASCII 
string to a date type, that perhaps that will yield 
the proper COMPUTED_BY field type. I have used this 
to convert dates. The format must be DD-MMM-YYYY, 
and you may need a table to convert the numeric 
month to .JAN, FEB, MAR, etc. (Don Stern:) If you 
are willing to do the conversion in a FOR loop, you 
can declare a temporary variable of USAGE DATE 
outside the FOR loop, and then use FN$STRING_EXTRACT 
to put it back into a date form, then do the math on 
the declared variable. (Chris:) we've got it: 
FN$DA TE does the conversion from ASCII characters to 
64 bit date type, so you can change your MM/DD/YY to 
a USAGE_DATE. (Bart:) I've used it, and I'm fairly 
certain the date input has to be DD-MMM-YYYY. I had 
to do a field = 
FN$DATE(dayl"-"lmonth via mon_tabl"-19"1year) to get 
the conversion to work. The result was a standard 
USAGE DATE field that did all of the normal DTR date 
functions and searches. (.Joe:) I think the 
converted month must be upper case. [Converting the 
numeric month via a table yields an upper case 
month.J 

Ken Fox, Shearing Plough (?) .. l heard earlier this 
week that VMS was allowinf? shared access to 
sequential files. Does this mean we .rhould expect 
DTR to follow in the near future? 



Andy Schneider, DEC: [Editor's note: though not 
scheduled as a panelist, the person primarily 
responsible for the VAX-DATATRIEVE product obviously 
could not resist the opportunity to answer the 
qucstion.J Please, I repeat, please, don't use 
shared sequential file access with DTR if you are 
going to write to the file: let me explain why. 
DTR, when it connects to a sequential file, connects 
to END-OF-FILE. If you connect to END-OP-FILE, and 
your neighbor [sharing the file] connects to 
END-OF-FILE, and you are writing records to the 
file, and then your neighbor decides to add records, 
he is trying to add to hjs END-OF-FILE, but your 
END-OF-FILE is past that so he is going to write 
over your records because the END-OF-FILE markers 
don't get updated [from one user to another). We 
arc frantically looking at the correct method to do 
this, working with the RMS developers to determine 
what the right method is. For now, the watchword is 
CAUTION. Version 3.4 warns the users of the 
pitfalls. The problem has to be addressed by RMS as 
well as DTR. 

(unidentified:) in the current version of DTR, will 
it even let you have more than one person write to a 
shared sequential file? 

Andy Schneider: sure. What DTR docs when you say 

(unidentified) ft was stated at a previous session 
that SELECT is not supported within a RF,<1fN-FNf) 
block. I'd like a clarification of what "not 
supported" means, because in an application I wrote 
I have .fet'eral people sharing update acceS.f to a 
single remrd in an indexed.file (to increment a 
counter), and in order to release the record so thr 
other u.rers can get to it it is necessary to 
de-select the record. SELECT NON F, apparently works. 

Andy Schneider: SELECT NONE docs work, but let me 
explain. There are two restrictions in DTR that 
people seem to stumble over every 5 minutes: the 
restriction that you can't use a FIND and you can't 
use a SELECT within a BEGIN-END block. Now, if you 
try to do it, DTR won't tell you "YOU CAN'T DO 
THAT!". The reason we say it isn't [supported) is 
because of the way DTR parses, compiles and executes 
a BEGIN-END block. DTR treats the entire BEGIN-END 
block as one statement, not a bunch of separate 
ones. If you have a FIND within a BEGIN-END block 
it will work; for example: 

BEGIN 
FIND YACHTS 

END 

READY domain SHARED, DTR does not look at what typ will work. However, if you have FIND --- and SEI ,f~CT 
of file it is, it simply passes the request off to in the BEGIN-END block, it won't work, because when 
RMS. Up until VMS V4.4, RMS did support shared it goes through and tries to generate the context 
writes to sequential files if they were 512 byte for the SELECT, the FIND hasn't taken place, UNLESS: 
fixed length records, and DTR will work with that there was a FIND done outside the BEGIN-END block, 
file. The rejection comes from VMS. and in that particular case the context for the 

(unidentified:) on shared files, if a file is locked 
by another user, is the only switch I have to set 
the DTR WAIT_LOCK switch, or are there also CDD and 
VMS switches I have to set for my users to wait 
before access? 

Andy Schneider: you're talking about records in an 
RMS file? (Yes) Yes, WAIT_LOCK is the only switch 
you have to set to have the DTR user stall until the 
record is free. (Not CDD?) No, you arc not in the 
CDD at that point. This has no effect on your data 
files. [There were some comments about dictionary 
sharing, which was lost as the tape changed sides.) 
If you set CDD wait, then it should not affect 
multiple users executing procedures, but will effect 
users if one person is editing a procedure. 

166 

SELECT is driven off of that FIND. As long as that 
FIND is for the domain the SELECT is supposed to be 
on, that's OK. If the SELECT is in a loop, you will 
probably be selecting the same record over and over 
again, I believe, [because the context has already 
been set outside of the loop]. 

(user:) That's exactly what I want to do: I want to 
SEI ,RCT the same record over and over again, and 
de-select the same record. 

Andy: well, in that case it's not a restriction. 
We designed DATATRIEVE just for you! [laughter] 
Next question! 

Larry: I think you should realize that at nearly 
every symposia someone comes up with something 
that's never been done, or we never ever conceived 
of being done in DTR, and I think you just blew 
Andy's mind for this symposia. 

Andy: any other new features you'd like us to put 
in like that? [more laughter] 



(user:) I'd alw like compiled procedures. 

J\ndy: I was probably supposed to talk about this at 
some time. Any of you who have seen wishlists in 
the past have seen our response, which is, "that's a 
good idea, we will consider it for the future". 
Well, we spent about a month looking at compiled 
DTR, and what it would mean to compile DTR language. 
With the current architecture of the product, there 
would he so many restrictions that READY Y /\CHI'S 
might not even work properly, because of it's 
flexibility and the point in it's path at which it 
resolves certain specifications. We investigated at 
a gut level how many man-months it would take to 
re-design DTR, and I won't give the figure hut it's 
very large. J\t this stage in DJ\TATRIEVE's stable 
life, and I say stable because we put in a lot of 
effort to make DTR a stable product, without bugs, 
it just doesn't seem to really work [to make it 
compile]. 

(user:) what about the intermediate stages in the 
parse/compile/execute process? Does it have to be 
stored at the text level? 

J\ndy: sometimes, maybe. There are certain things 
we do opening the dictionary and parsing things 
(described in the internals session), and it turns 
out that the earliest stage we could break the 
process and store the results and guarantee that it 
would work is at the lexical analysis stage, which 
is essentially where it is now in the CDD. We could 
find some simple cases where it could work at a 
later stage, hut you couldn't do anything with 
database products, forms products, or any 
distributed work. This eliminates a lot of 
functionality from DTR. We are not throwing the 
idea away: I can fairly safely say that compiling 
DTR (the language) is something you will not see. 
The concept of compiling an entire application is 
something we are very seriously looking at for 
whatever else may come down the pike in this area. 

167 





Record Definition Tutorial 

B. Z. Lederman 
2572 E. 22nd St. 

Brooklyn, N.Y. 11235 

Abstract 

This session will supply examples and suggestions which go hcyond the 
material in the Datatrieve manuals, and show how various types of problems 
may be solved using the options available within the record definition. 
The material will include some comparisons between different approaches to 
the same problem, the use of VIEWS (which arc created from record 
definitions), and methods of transferring data from one domain to another, 
which also depends in part upon record definitions. 

It is not unreasonable to state that the record definition is the foundation of any Datatricvc 
application, as it is the reference by which all data is stored and retrieved. Therefore, the first rule 
for any application is: 

KNOW YOUR APPLICATION 

from which immediately follows: 

KNOW YOUR DATA 

I find that the best way to work out record definitions is with two very simple pieces of equipment: a 
pencil, and a piece of paper marked off in squares such as graph paper, or a printer form layout sheet, 
or CRT display form, or an old coding sheet. fly marking ofT the fields, using one square per byte, the 
number of data items, the length of each field, and it's alignment and relationship to other fields arc 
easily determined. This is especially important with the REDEFINES clause, which will be shown later. 

Often, an unsuspected benefit of taking an existing manual operation and implementing it on 
Datatricve is that the people involved must sit down and figure out exactly what pieces of data they arc 
dealing with, and in what manner: this is often the first time anyone actually docs this, and they arc 
often surprised by the amount of data involved. 

Some applications move onto Datatrieve almost automatically. If you arc using a preprinted form 
(and almost every company has some sort of printed form for orders, absence reports, pencil requisitions, 
etc.) then one can simply copy the fields into the record definition: there arc cases of new users 
moving applications like this in one day. If your records arc not as well organized, then you must 
analyze them yourself. If you are using Datatrieve to read an existing file created by some other 
program, then it is necessary to obtain the file record layout and follow it. 

Keep in mind that, while it is nice to get a good record definition at the beginning, it is always 
possible to define a new domain and record and read the data from the old domain to a new one, so if you 
have 10,000 records stored, and find you need to add a field, don't panic. Examples of this will be 
given. 

Proceedings of the Digital Equipment Computer Users Society 169 Dallas Texas - 1986 



While one could use ADT or follow the simple examples in the manuals and develop many useful 
applications with Datatrieve, there is a much wider range of applications which may be addressed with a 
few simple techniques. For example, suppose the YACHTS domain was being used in a show room, where the 
customers arc allowed to look up data at a terminal, but the seller doesn't want the price to appear. 
Using the simplified record definition for Y ACIITS, here are two possible solutions. 

Original 
Definition 

01 BOAT. 

Second 
Definition 

01 BOAT. 

View 

DEFINE DOMAIN LOOK OF YACHTS USING 
01 LOOK OCCURS FOR YACHTS. 

06 BUILDER PIC X(lO). 
06 MODEL PIC X(lO). 

06 BUILDER PIC X(lO). 
06 MODEL PIC X(lO). 

03 BUILDER FROM YACHTS. 
03 MODEL FROM YACHTS. 

03 SPEC. 
06 RIG PIC X(6). 
06 LOA PIC XXX. 
06 DISP PIC 9(5). 
06 BEAM PIC 99. 
06 PRICE PIC 99. 

03 SPEC. 
06 RIG PIC X(6). 
06 LOA PIC XXX. 
06 DISP PIC 9(5). 
06 BEAM PIC 99. 
06 FILLER PIC XX. 

03 
03 
03 
03 

RIG FROM YACHTS. 
LOA FROM YACHTS. 
DISP FROM YACHTS. 
BEAM FROM YACHTS. 

The definition on the left is for the whole domain which the show room owner will use, and is the short 
definition given in the manual in the optimization chapter. PDP-11 user~ who are short of pool space 
should look at this chapter, and compare the short definition, which uses much less pool space by having 
fewer clauses, with the definition created by the installation package. The customers could use the view 
on the right, which does not have the price, or a second domain using the record definition in the center 
could be used to access the same file as is used for Y ACIITS. This shows two useful features. First, 
it is possible to have more than one domain access the data in a single file: this makes it possible to 
look at the data in more than one way, with more than one record definition. The only restriction is 
that the user must document the domains accessing each file so that, if it is ever necessary to change a 
file, the domains to be affected will be known. There is also an important difference between the 
domains and the view: you cannot store or erase records in a view, but you can do all operations on the 
second domain. The limitation on views can be bad or good, depending upon the application: in this 
example, you probably would not want customers to add or erase records, so using a VIEW would be one way 
of preventing this. 

The second domain shows the use of the special field type Fil J,ER to "skip" over data in a record. 
The data is still there, and may be accessed by the original domain, but not by the second domain: if 
you also protect the record definition itself to be execute but not read, the user will never see the 
filler field (it doesn't appear in SHOW FIELDS), and will not know there is data there. This may be 
extended for use in 'hiding' fields. 

01 CUSTOMER. 
03 ADDRESS. 

06 STREET PIC X(lO). 
06 CITY PIC X(lO). 
06 STATE PIC X(2). 
06 ZIP PIC 9(5). 

03 FILL-ENG. 
06 FILLER PIC X(lO). 

03 ENG REDEFINES FILL-ENG. 
06 ENGINEER PIC X(lO). 

170 



If you normal command PRINT you get: 

STREET CITY STATE ZIP 

2572 E. 22 BROOKLYN NY 11235 

but if you say PRINT ADDRESS, ENG the result is: 

STREET CITY STATE ZIP ENGINEER 

2572 E. 22 BROOKLYN NY 11235 LEDERMAN 

Thus the ENGINEER field is always available, but will not print out unless specifically asked for. This 
can also be a pool saving technique for very large records, or may be used to control access to 
information where several users must access the same file by doing something like this: 

01 ALL-DEPT-REC. 
03 DEPT-A. 

06 BUDGET PIC 999. 
06 MANAGER PIC XX. 

03 DEPT-B. 
06 BUDGET PIC 999. 
06 MANAGER PIC XX. 

03 DEPT-C. 
06 BUDGET PIC 999. 
06 MANAGER PIC XX. 

01 DEPT-A-REC. 
03 DEPT-A. 

06 BUDGET PIC 999. 
06 MANAGER PIC XX. 

03 FILLER PIC X(lO). 

02 DEPT-B-REC. 
03 FILLER PIC X(5). 

03 DEPT-B. 
06 BUDGET PIC 999. 
06 MANAGER PIC XX. 

03 FILLER PIC X(5). 

This is a very small example, but it shows how a single file may be accessed by one domain having access 
to all fields, and by several other domains, accessing only some of the data. Each of the smaller 
domains can read and write only their own data, and the big domain could be used for report giving all of 
the data. This is an alternative to having separate domains for each department, and using a view to tie 
them together for reports. (For PDP- I I and PRO users, each of the smaller record definitions uses less 
pool than the big definition, allowing more complicated procedures to be used (or more sort space, etc.). 
If a record definition is very large (hundreds of bytes), then the only way to access it usefully in 
Datatrieve-11 may be to have more than one domain each access a portion of the record.) 

Another approach to the same problem would be to use a VIEW. Pirst, a definition may be given for 
the domain which holds data for all departments. 

01 BUDGET-REC. 
10 DEP.ARTMENT PIC XX. 
10 PROJECT PIC X(lO). 
10 AMOUNT PIC 9(6)V99 EDIT-STRING $$$$,$$$.00. 
10 MANAGER PIC X(lO). 

The person in charge of budgets would have full access to this domain, and so could access all of the 
data. 

171 



Each individual department would have their own VIEW defined like this: 

DEFINE DOMAIN AA-BUDGET OF BUDGET USING 
01 AA-BUDGET OCCURS FOR BUDGET WITH DEPARTMENT= "AA". 

10 PROJECT FROM BUDGET. 
10 AMOUNT FROM BUDGET. 
10 MANAGER FROM BUDGET. 

This definition should be protected so that the department can execute it, but not read or modify it, 
otherwise they might want to change the definition to allow access to other departments. Because the 
selection criteria is fixed, they will sec only their own department's data. This configuration would be 
of greatest use when the different departments must read the information, hut only the central controller 
will enter or erase it. 

Another very useful feature of the REDEFINES clause is that it allows one to look at the data in a 
domain in more than one way within a single domain. An application for this could he a file which has 
more than one record type in a single file. The author docs not recommend this for new applications, but 
there may be existing files set up like this (COBOL and RPG are often the source) which one would like to 
access with Datatrieve. Consider a file with data that looks like this: 

Key Type 

0001 N 
0001 A 
0001 p 
0001 T 

Lederman Bart Z 
2572 E 22nd New York NY 11235 
38 DPG 2222 Distributed Proc 
212-555-5555 718-555-5555 

Name information 
Address information 
Business information 
Telephone numbers 

A possible record definition is: 

DEFINE RECORD MULTI-REC 
01 MULTI-REC. 

03 KEY PIC 9999 EDIT-STRING ZZZ9. 
03 TYPE PIC X. 
03 NAME-PAGE. 

06 LAST PIC X(l4). 
06 FIRST PIC X(l2). 
06 M PIC X. 
06 N PIC X. 

03 ADDRESS-PAGE REDEFINES NAME-PAGE. 
06 STREET PIC X(ll). 
06 CITY PIC X(lO). 
06 STATE PIC XX. 
06 ZIP PIC 99999. 

03 PERSONNEL-PAGE REDEFINES NAME-PAGE. 
06 FLOOR PIC 99 EDIT-STRING Z9. 
06 SECTION PIC XXX. 
06 CLOCK PIC 9999. 
06 DEPARTMENT PIC X(19). 

03 TELEPHONE-PAGE REDEFINES NAME-PAGE. 
06 BUSINESS PIC X(lO) 

EDIT-STRING XXX-XXX-XXXX. 
06 HOME PIC X(lO) 

EDIT-STRING XXX-XXX-XXXX. 
06 FILLER PIC X(8). 

172 



The first part of the definition is for the fields which do not change (the key and the type, which are 
common to all records). The next part is the definition for the first record, the name fields. Because 
this is the first definition (highest in the hierarchy), it is used by default when accessing the data. 
If the data is printed, the result is: 

KEY TYPE LAST FIRST MN 

1 
1 
1 
1 

N 
A 
p 

Lederman 
2572 E 22ndNew 
38DPG2222Distr 
21255555557185 

Bart 
York 

ributed 
555555 

z 
NY112 3 5 
Pr o c c 

T 

Notice how all records have been printed as if they were NAME-PAGE as this is the first group in the 
hierarchy, but because I have the redefined fields, I can also access the data in different ways. Each 
redefines has it's own group name, which makes access much easier as I can specify a group name for one 
whole page, and note that a redefines must never be longer than the original field and/or group. In 
other applications, you should be certain the longest group comes first, or that you fill the first group 
to be as long as the longest group. It is acceptable for the redefines to be shorter than the original 
field, but I prefer to fill all groups in for my own reference. In this case, the telephone data is 
shorter, and the additional length is made up with FILLER. With the redefines, a simple procedure will 
access the data correctly. 

DEFINE PROCEDURE PRINT-MULTI 
READY MULTI 
FOR MULTI BEGIN 

IF TYPE EQ "N" PRINT NAME-PAGE 
IF TYPE EQ "A" PRINT ADDRESS-PAGE 
IF TYPE EQ "P" PRINT PERSONNEL-PAGE 
IF TYPE EQ "T" PRINT TELEPHONE-PAGE 

END 
END-PROCEDURE 

When this procedure is invoked, the data prints like this: 

LAST FIRST MN 

Lederman Bart z 

STREET CITY STATE ZIP 

2572 E 22nd New York NY 11235 

FLOOR SECTION CLOCK DEPARTMENT 

38 DPG 2222 Distributed Proc 

BUSINESS HOME 

212-555-5555 718-555-5555 

If you have more than one set of records, the following sets will not have headers when they print out 
(this is the normal way the Datatrieve PRINT command behaves) but the data will print out using the 
correct field definitions. The same technique may be used to select the proper page for storing, and so 
on. Individual fields of each page may be accessed simply by using the name of the field, at any time: 
Datatrieve will go through the record hierarchy, as it would for any other domain, to resolve the field 
references. 

173 



An alternative to the procedure is to define two separate domains for the data. 

DEFINE RECORD BASE-REC 
01 BASE. 

' 

03 KEY PIC 9999 EDIT-STRING ZZZ9. 
03 TYPE PIC X. 
03 LAST PIC X(14). 
03 FIRST PIC X(l2). 
03 M PIC X. 
03 N PIC X. 

DEFINE DOMAIN BASE USING BASE-REC ON MULTI.SEQ; 

DEFINE RECORD OTHER-REC 
01 OTHER. 

' 

03 KEY PIC 9999 EDIT-STRING ZZZ9. 
03 TYPE PIC X. 
03 ADDRESS-PAGE. 

06 STREET PIC X(ll). 
06 CITY PIC X(lO). 
06 STATE PIC XX. 
06 ZIP PIC 99999. 

03 PERSONNEL-PAGE REDEFINES ADDRESS-PAGE. 
06 FLOOR PIC 99 EDIT-STRING Z9. 
06 SECTION PIC XXX. 
06 CLOCK PIC 9999. 
06 DEPARTMENT PIC X(l9). 

03 TELEPHONE-PAGE REDEFINES ADDRESS-PAGE. 
06 BUSINESS PIC X(lO) EDIT-STRING XXX-XXX-XXXX. 
06 HOME PIC X(lO) EDIT-STRING XXX-XXX-XXXX. 

DEFINE DOMAIN OTHER USING OTHER-REC ON MULTI.SEQ; 

Now, I can define a view of these two domains to bring all of the separate records together into what 
will look like one single record: 

DEFINE DOMAIN MUL OF BASE, OTHER USING 
01 MULT OCCURS FOR BASE WITH TYPE EQ "N". 

06 LAST FROM BASE. 
06 FIRST FROM BASE. 
06 M FROM BASE. 
06 N FROM BASE. 

03 ADDRESS-PAGE OCCURS FOR OTHER WITH 
TYPE EQ "A" AND OTHER.KEY=BASE.KEY. 

06 STREET FROM OTHER. 
06 CITY FROM OTHER. 
06 STATE FROM OTHER. 
06 ZIP FROM OTHER. 

03 PERSONNEL-PAGE OCCURS FOR OTHER WITH 
TYPE EQ "P" AND OTHER.KEY=BASE.KEY. 

06 FLOOR FROM OTHER. 
06 SECTION FROM OTHER. 
06 CLOCK FROM OTHER. 
06 DEPARTMENT FROM OTHER. 

03 TELEPHONE-PAGE OCCURS FOR OTHER WITH 

174 



TYPE EQ "T" AND OTHER.KEY=BASE.KEY. 
06 BUSINESS FROM OTHER. 
06 HOME FROM OTHER. 

The reason for the two domains is to be able to use the key field to tic together the appropriate 
separate records. The BASE domain will occur once for each group of associated records, and the KEY 
field will be used to retrieve the other records of the same group. When this view is readied and 
printed, it looks like this (I have added a second set of data records to show that the view works 
properly): 

LAST FIRST MN STREET CITY STATE ZIP FLOOR 

Lederman Bart z 2572 E 22nd New York NY 11235 
2222 Distributed Proc 212-555-5555 212-555-5555 
Hackinbush Hugo z 11 Julius Hialeah FL 33999 
1313 Sales & Promotion 305-555-3131 305-555-1476 

Jt appears wrapped around here as there arc only 80 columns on this page, but on 132 column paper, all 
fields print out with their headers. This view would be very useful in "flattening" the data record so 
it could be processed as other domains are. 

Another use of the redefines can be for break fields. 

DEFINE RECORD TTN-REC 
01 TTN. 

03 PORT PIC 999. 
03 BREAK REDEFINES PORT. 

06 Bl PIC 99. 
06 FILLER PIC X. 

03 GROUP PIC 999. 
03 SWITCH PIC 9. 
03 TRUNK PIC 9999. 
03 COMMENTS PIC X(21). 

Although PORT is an integer number, I am using the DISPLAY data type so I can redefine it as a two digit 
field. The reason can be seen when reporting the data. 

DEFINE PROCEDURE RPT-TTN 
READY TTN 
REPORT TTN ON TTN.RPT 
SET REPORT-NAME="Show Breaks with Redefines" 
SET COLUMNS-PAGE=50 
PRINT COL 1, PORT, COL 8, GROUP, COL 20, SWITCH, 

COL 24, TRUNK, COL 40, COMMENTS 
AT BOTTOM OF Bl PRINT COL 1, 
"------------------------------------------------" 
END-REPORT 
END-PROCEDURE 

When this procedure is invoked, the resulting report is: 

175 

38 

13 

SECTION 

DPG 

MRX 



Show Breaks with Redefines 10-Mar-83 
Page 1 

PORT GROUP SWITCH COMMENTS 

040 347 4 1154 88/89 
041 347 4 1155 88/89 
042 347 4 1156 88/89 
043 347 4 1157 88/89 
044 347 4 1417 88/89 
045 347 4 1440 88/89 
046 347 5 4521 88/89 
047 347 5 4522 88/89 
------------------------------------------------
050 347 5 4523 88/89 
052 131 7 5311 TYPE 0 
053 131 7 5312 TYPE 0 
054 131 7 5313 TYPE 0 
055 131 7 5314 TYPE 0 
056 131 7 5315 TYPE 0 
057 131 7 5316 TYPE 0 
------------------------------------------------
060 131 7 5317 TYPE 0 
061 131 7 5320 TYPE 0 
062 131 7 5321 TYPE 0 
------------------------------------------------

As may be seen, by having a field which acts on the first two digits of PORT, it is possible to put in a 
break line every 'n' entries, something which would be difficult othenvise. (Incidentally, the ports arc 
numbered in octal, which is why there is no port 048 or 049, but the system works just as well in 
decimal.) Not shown is a LINES-PAGE command: if you want groups of records to print out on successive 
pages with the breaks aligned, you will have to set the number of lines per page to match the group 
breaks. It may be noted that there is no SORTED BY clause in the report statement: it is not necessary 
to sort the data if it is already in the proper order, as it will be if a sequential file is reported in 
it's present sequence, or if an indexed file is reported in the order of it's primary key. (One of the 
uses for indexed files can be to keep data ordered.) If there is no SORTED BY clause, Datatrieve will 
issue a warning that unsorted records arc being reported, but will then report and allow a break on any 
field: if there is a SORTED BY clause, then only fields which were sorted can have breaks, and in this 
case I want the report in the order of PORT, not the order of BI. Reports also come out faster if you 
don't have to sort the domain first, and exhaustion of sort pool space is avoided. 

A commonly used feature is variable length records, as in the FAMILIES domain. While certainly 
useful, variable length records have some draw backs, including more difficult access to the fields in 
the variable length portion, and having to know the maximum number of variable occurrences when defining 
the domain. There is an alternative approach using two files and a view. First, for comparison, is a 
shortened record definition for the FAMILY domain. 

176 



DEFINE RECORD SHORT-FAMILY-REC 
01 FAMILY. 

03 FATHER PIC X(lO). 
03 MOTHER PIC X(lO). 
03 NUMBER-KIDS PIC 99 EDIT-STRING Z9. 
03 KIDS OCCURS 0 TO 10 TIMES DEPENDING ON NUMBER-KIDS. 

06 KID PIC X(lO). 
06 AGE PIC 99 EDIT-STRING Z9. 

DEFINE DOMAIN FAMILY USING SHORT-FAMILY-REC ON FAMILY.DAT; 

The alternative uses one domain for the fixed data, and one for the variable occurrence data, with one 
field in common to tie the two together. 

DEFINE RECORD PARENT-REC 
01 PARENT. 

03 KEY PIC 999 EDIT-STRING ZZ9. 
03 FATHER PIC X(lO). 
03 MOTHER PIC X(lO). 

DEFINE RECORD OFFSPRING-REC 
01 OFFSPRING. 

03 KEY PIC 999 EDIT-STRING ZZ9. 
03 KID PIC X(lO). 
03 AGE PIC 99 EDIT-STRING Z9. 

DEFINE DOMAIN PARENT USING PARENT-REC ON PARENT.DOM; 

DEFINE FILE FOR PARENT KEY=KEY(NO DUP); 

DEFINE DOMAIN OFFSPRING USING OFFSPRING-REC ON OFFSPRING.DOM; 

DEFINE FILE FOR OFFSPRING KEY=KEY(DUP); 

The two domains are then connected with a view: 

DEFINE DOMAIN HOUSEHOLD OF PARENT, OFFSPRING USING 
01 HOUSEHOLD OCCURS FOR PARENT. 

03 FATHER FROM PARENT. 
03 MOTHER FROM PARENT. 
03 KIDS OCCURS FOR OFFSPRING WITH OFFSPRING.KEY EQ PARENT.KEY. 

06 KID FROM OFFSPRING. 
06 AGE FROM OFFSPRING. 

When printed, the HOUSEHOLD domain looks just like the PAMILY domain, without the NUMBER-KIDS field. 

177 



FATHER MOTHER KID AGE 

JIM ANN URSULA 7 
RALPH 3 

JIM LOUISE ANNE 31 
JIM 29 
ELLEN 26 
DAVID 24 
ROBERT 16 

JOHN JULIE ANN 29 
JEAN 26 

JOHN ELLEN CHRISTOPHR 0 
ARNIE ANNE SCOTT 2 

BRIAN 0 
SHEARMAN SARAH DAVID 0 
TOM ANNE SUZIE 6 

PATRICK 4 
BASIL MERIDETH BEAU 28 

BROOKS 26 
ROBIN 24 
JAY 22 
JILL 20 
WREN 17 

ROB DIDI 
JEROME RUTH ERIC 32 

CISSY 24 
NANCY 22 
MICHAEL 20 

TOM BETTY MARTHA 30 
TOM 27 

GEORGE LOIS FRED 26 
JEFF 23 
LAURA 21 

HAROLD SARAH HAROLD 35 
CHARLIE 31 
SARAH 27 

EDWIN TRINITA ERIC 16 
SCOTT 11 

This view can be readied, printed, reported, examined, etc. just like the FAMILY domain, but there are 
several important differences. First, because they are two separate domains, it is not necessary to know 
how many occurrences there are for the variable portion, and there is no limit to the number of variable 
records. Also, because there are two separate domains, it is possible to work on each portion 
separately, and protect each portion separately. We had an application where the fixed portion was the 
basic information on a communications circuit (the customer name, location, date due, and so on), and the 
variable portion was a record entered each time a workman attended to the circuit: the domains were 
protected so the workmen could read the fixed portion hut never had write or modify access to it, but 
could write to the variable domain. This mixed protection cannot be done on a single domain with 
variable occurs. Another benefit is in Datatrieve-11, where pool space may be saved by readying only the 
portion required for a given application, rather than always having to use the larger single domain. 

178 



One drawback is that one cannot STORE to a view, but a simple procedure solves this: 

DEFINE PROCEDURE STORE-FAMILY 
DECLARE PROMPT PIC X. 
DECLARE KEY-FIELD PIC 9999. 
READY PARENT WRITE 
READY OFFSPRING WRITE 
KEY-FIELD = MAX KEY OF PARENT 
KEY-FIELD = KEY-FIELD + 1 
WHILE *."Y to store a family" CONT "Y" BEGIN 

END 
FINISH 

STORE PARENT USING BEGIN 
KEY = KEY-FIELD 
FATHER= *.FATHER 
MOTHER= *.MOTHER 

END 
PROMPT= *."Y if there are any kids" 
WHILE PROMPT CONT "Y" BEGIN 

END 

STORE OFFSPRING USING BEGIN 
KEY = KEY-FIELD 
KID= *."Kid's name" 
AGE = *.AGE 

END 
PROMPT= *."Y for another kid" 

RELEASE KEY-FIELD 
RELEASE PROMPT 
END-PROCEDURE 

Get the last key used 
make it the next key 

Use the common key 

Use the common key 

Note that a temporary field KEY-FIELD is used to obtain the key (either by prompting or as is done here, 
by obtaining the last key previously used), and this field is used to store the same value in both 
domains, thus insuring the fields will match. The prompting for repeats could easily he made more 
sophisticated than this simple example. 

The field KEY is used to tie the two domains together, but need not appear in the final view. 
have used the name KEY for this field to emphasize the fact that this is a good application for a keyed 
field in an indexed file. Note the condition on matching KIDS, where the two KEY fields arc matched: if 
KEY were not a keyed field in domain OFFSPRING, then for every record in PARENTS, every record in 
offspring would have to be searched for a matching field. While it is possible for the variable length 
portion domain to be a sequential file, don't complain when it takes several hours to print out a few 
records. In the fixed length portion domain, it is not absolutely necessary for the KEY field to 
actually be a key, but making it so takes advantage of another aspect of keyed fields, that of preventing 
duplicates. If there were duplicates in PARENTS, than one set of KIDS would he assigned to more than one 
set of PARENTS, a confusing situation to say the least. In most applications, it is desirable for each 
set of variable records to be assigned to one fixed record, though the use of a VIEW will allow you to 
have multiple associations, one more possible advantage of the VIEW over the variable occurs for some 
applications A similar use of key fields not shown here is the NO CIIJ\ NGE attribute, which can prevent a 
field from being modified, regardless of what access or privileges a user has to that domain. This can 
be very useful in protecting data from accidental or deliberate modification. 

179 



The technique of tying two domains together with a matching field can be extended to do something 
else the occurs clause can not do: a domain (view) with more than one variable portion. To the previous 
definition, I will now add: 

DEFINE RECORD ANIMAL-REC 
01 PETS. 

03 KEY PIC 999 EDIT-STRING ZZ9. 
03 NAME PIC X(lO). 
03 SPECIES PIC X(lO). 

DEFINE DOMAIN ANIMALS USING ANIMAL-REC ON ANIMAL.DOM; 

DEFINE FILE FOR ANIMALS KEY=KEY(DUP); 

DEFINE DOMAIN HOUSEHOLD OF PARENT, OFFSPRING, ANIMALS USING 
01 HOUSEHOLD OCCURS FOR PARENT. 

03 FATHER FROM PARENT. 
03 MOTHER FROM PARENT. 
03 KIDS OCCURS FOR OFFSPRING WITH OFFSPRING.KEY EQ PARENT.KEY. 

06 KID FROM OFFSPRING. 
06 AGE FROM OFFSPRING. 

03 PETS OCCURS FOR ANIMALS WITH ANIMALS.KEY EQ PARENT.KEY. 
06 NAME FROM ANIMALS. 
06 SPECIES FROM ANIMALS. 

The same rules about keys, etc. apply to this view. I have chosen to match the PETS with the PARENTS, 
but I could have added an additional field to the OPFSPRING domain if I had wanted PETS to be matched to 
OFFSPRING. When printed, the first few entries look like this: 

FATHER MOTHER KID 

JIM ANN URSULA 
RALPH 

JIM LOUISE ANNE 
JIM 
ELLEN 
DAVID 
ROBERT 

JOHN JULIE ANN 
JEAN 

AGE 

7 
3 

31 
29 
26 
24 
16 
29 
26 

NAME 

GAYLORD 
FREDDY 

RAG MOMMA 

SPECIES 

CAT 
PARAKEET 

DOG 

It is not necessary for every entry in the PARENTS portion to have either OFFSPRING, or ANIMALS, or both, 
and neither OFFSPRING nor ANIMALS require the presence of the other. However, because of the way 
HOUSEHOLDS was defined, there must be a PARENT record if an OFPSPRING or ANIMAL record with the same ke: 
is to appear in the view. If PETS had been matched to OPPSPRING, then an OFPSPRING would have to be 
present for PETS to appear. 

An alternative method of combining data from two domains in VAX-Datatrieve (and DTR-20) is to use 
the CROSS statement. Instead of the VIEW joining PARENT and OPFSPRING, I could use something like this: 

180 



PRINT PARENT CROSS OFFSPRING OVER KEY 

This wonlrl l!ive me: 

KEY FATHER 

1 JIM 
1 JIM 
2 JIM 
2 JIM 
2 JIM 
2 JIM 
2 JIM 
3 JOHN 
3 JOHN 
4 JOHN 
5 ARNIE 
5 ARNIE 
6 SHEARMAN 
7 TOM 
7 TOM 
8 BASIL 
8 BASIL 
8 BASIL 
8 BASIL 
8 BASIL 
8 BASIL 

10 JEROME 
10 JEROME 
10 JEROME 
10 JEROME 
11 TOM 
11 TOM 
12 GEORGE 
12 GEORGE 
12 GEORGE 
13 HAROLD 
13 HAROLD 
13 HAROLD 
14 EDWIN 
14 EDWIN 

MOTHER 

ANN 
ANN 
LOUISE 
LOUISE 
LOUISE 
LOUISE 
LOUISE 
JULIE 
JULIE 
ELLEN 
ANNE 
ANNE 
SARAH 
ANNE 
ANNE 
MERIDETH 
MERIDETH 
MERIDETH 
MERIDETH 
MERIDETH 
MERIDETH 
RUTH 
RUTH 
RUTH 
RUTH 
BETTY 
BETTY 
LOIS 
LOIS 
LOIS 
SARAH 
SARAH 
SARAH 
TRINITA 
THINITA 

KEY KID AGE 

1 URSULA 7 
1 RALPH 3 
2 ANNE 31 
2 JIM 29 
2 ELLEN 26 
2 DAVID 24 
2 ROBERT 16 
3 ANN 29 
3 JEAN 26 
4 CHRISTOPHR 0 
5 SCOTT 2 
5 BRIAN 0 
6 DAVID 0 
7 PATRICK 4 
7 SUZIE 6 
8 BEAU 28 
8 BROOKS 26 
8 ROBIN 24 
8 JAY 22 
8 WREN 17 
8 JILL 20 

10 ERIC 32 
10 CISSY 24 
10 NANCY 22 
10 MICHAEL 20 
11 MARTHA 30 
11 T0M 27 
12 JEFF 23 
12 FRED 26 
12 LAURA 21 
13 CHARLIE 31 
13 HAROLD 35 
13 SARAH 27 
14 ERIC 16 
14 SCOTT 11 

By specifying the fields I want to print in the CROSS statement I could suppress the KEY fields, but I 
let them print out this time to show what is happening. Note that the way this particular CROSS 
statement was entered results in picking up only those parents who have at least one offspring. The 
CROSS statement can often be thought of as a short way to do a VIEW, and regarding it as such may help 
you sec what it is doing. Note particularly what was said before about OFFSPRING having to be keyed for 
fast retrieval: you can sec here that the second domain listed in the CROSS statement is taking the same 
place as the second domain in our VTEW example; therefore, it should also be keyed if the CROSS statement 
is to execute quickly. Just as with the view, if both domains arc keyed it doesn't matter \Vhich comes 
first, but if only one is keyed it should givcTJ last in a CROSS statement for best results. Because the 
CROSS can he implemented in a single statement, it is easier to me during interactive sessions, and when 
you arc invcs1igating relationships between various domain:; and groups of data. If you find a particular 

181 



relationship which you expect will be used many times, you may want to convert your CROSS into a VIEW, as 
this will fix the relationship and you will be able to ready the domain and print records without having 
to remember what the joining conditions are. 

Lest it be thought that I am completely against the use of the OCCURS clause, I will now show a good 
use for it: de-blocking records. With some other languages, a person will sometimes write more than one 
logical record or associated group of data into what the operating system and Datatricve consider to be a 
single record. An example file containing some names, looks like this: 

Dump of DB2:[300,3]DEBLOCK.SEQ;l - File ID 4556,33,0 
Record number 01. - Size 512. bytes 

000000 w 0 1 f J F 1 y 
000020 w h e e 1 
000040 M a h a t m a K J e e 
000060 v e s 
000100 H u g 0 z H a c 
000120 k i n b u s h 
000140 0 t i s c r i 
000160 b b 1 e c 0 b 1 i s 
000200 s Q Q u a 
000220 1 e 
000240 s a m G r u 
000260 n i 0 n 
000300 
000320 
000340 
000360 
000400 
000420 
000440 
000460 
000500 
000520 
000540 
000560 
000600 
000620 
000640 
000660 
000700 
000720 
000740 
000760 

*** EOF *** 
This data is all one physical record as there is no separation hetwcen logical records (each name), but 
it can be "de-blocked" with the proper record definition. 

182 



DEFINE RECORD DEBLOCK-REC 
01 DEBLOCK-REC. 

03 FIELDS OCCURS 16 TIMES. 
06 FIRST PIC X(l2). 
06 MI PIC X. 
06 LAST PIC X(l4). 
06 FILLER PIC X(S). 

Note that there is no "fixed" portion to this definition: everything is in the "variable" portion (inner 
list) of the record definition. When a domain with this record definition is readied and printed, it 
looks like this: 

FIRST MI LAST 

Wolf J Flywheel 
Mahatma K Jeeves 
Hugo z Hackinbush 
Otis Cribblecoblis 
s Q Quale 
Sam Grunion 

The blank lines at the bottom are due to the fact that the entire inner list is printed by default, and 
the unused entries are filled with blanks. This record definition can he made to print better looking 
data with the redefines and computed by expressions. 

DEFINE RECORD DEBLOCK-TWO 
01 DEBLOCK-TWO. 

08 FIELDS OCCURS 16 TIMES. 
16 DUMMY. 

24 FILLER PIC X(32). 
16 N REDEFINES DUMMY. 

24 FIRST PIC X(l2). 
24 MI PIC X. 
24 LAST PIC X(l4). 

16 NAME PIC X(29) 
COMPUTED BY FIRST I I " "I MI I I " "I LAST. 

Once again, space is allocated with filler, then redefined with the real fields to "hide" them. The 
COMPUTED RY may surprise persons who expect that only math functions can be used with this clause, but it 
works just as well with character strings. The effect of this is to squeeze down the three fields to a 
single field with blank spaces removed. 

NAME 

Wolf J Flywheel 
Mahatma K Jeeves 
Hugo Z Hackinbush 
Otis Cribblecoblis 
S Q Quale 
Sam Grunion 

183 



Processing the name in this way removes one of the objections many people have to computer output; that 
it looks too "regimented" or too rigidly organized. Removing the blanks makes the names look more as 
they would when written or typed by a person: simple little things like this can significantly improve 
the appearance of a report. The use of the COMPUTED BY in the record definition allows us still to enter 
the first and last names separately so we can, for example, sort the data hy last name or otherwise 
access the individual fields, and then use the concatenated name where desired. 

It was stated that if a record definition is found not to meet the requirements of an application, 
it can be changed. The rules for changing an existing record definition (without having to change the 
domain or file used by the domain) reduce to a simple requirement: the length of the record cannot 
change. This condition results in the following rules: 

Field names, group names, query headers, query names, and edit strings may always he changed, as they do 
not affect the length of the record, but watch out for any views which access that record definition: if 
you change a field or group name, any views which use that field must he changed so that their 
corresponding group and field names match. 

Query headers, query names, and edit strings may be added or deleted. 

Group names may be added or deleted, provided they do not cause REDEFINES or OCCURS boundaries to be 
crossed. 

REDEFINES fields or groups may be added or deleted. 

As a general rule, PICTURE cannot he changed, and elementary fields cannot be added or deleted. There 
arc a few cases where a change can be made, very, VERY, very carefully, when the length of a field 
wilt not change. For example: 

03 A PIC 999. can be changed to 03 A PIC XXX. 

but the data can no longer he used as a number, nor can leading zeros he suppressed. Going the other 
way, from PIC XXX to PIC 999 may cause very strange numbers to appear. 

03 A PIC 99 USAGE IS INTEGER. can change to 03 A PIC 999 USAGE IS INTEGER. 
but not to 03 A PIC 9999 USAGE IS INTEGER. 

because the first two are 2 bytes in length and the last is 4 bytes in length. 

Fields can be combined if the total length is the same: 

03 CITY PIC X(lO). 
03 STATE PIC X(2). 

can both be replaced with 

03 CITY-STATE PIC X(l2). 

There is one change which is always allowed, and that is to replace any field or combination of adjacent 
fields with FILLER of the same length. 

184 



A VALID IF statement can also he added, deleted, or modified. It should be noted that VALID IF applies 
only when storing or modifying data with Datatrieve: it docs not check data which is already in the 
domain. Thus it is entirely possible to store data in a field, then add a VALID IF clause which makes 
that data invalid: no more data of that kind may be added, but the existing data will be unchanged. 
This is similar to the condition stated above where PIC XXX could be changed to PIC 999: if the data in 
the field happens to all be numeric digits, the data will be correct, but if there is anything else 
(including leading blanks), Datatricve will assume they are supposed to be numeric digits, and this will 
result in some strange numbers being printed out. Datatrieve will not check the existing data, but will 
not allow you to modify or store a new field with non-numeric data. 

If all of this scares you, it should be noted that the worst that can happen is that if you do 
change the length of the record definition, when you REA DY the domain you will get an error message 
telling you that the record lengths don't match, or you will read the data and get strange results. As 
long as you extract a copy of your definition before you start, and ready the domain for read only the 
first time after you change the definition and look at the data, it is very unlikely that you can damage 
your data, and the worst that can happen is you will have to make additional corrections to your record 
definition, or go back to the old one. 

When changes arc required which will not fit the above rules, such as adding an additional 
elementary field, then a new file will be needed to hold the new length record. One way to transfer 
information is shown under "Creating New Domains from Old" in the Datatrievc manual. This basically 
depends on the FOR statement, which reads the old domain one record at a time. Suppose I defined an 
address file like this: 

DEFINE RECORD OLD-ADDR-REC 
01 OLD-ADDR-REC. 

03 NAME PIC X(20). 
03 STREET PIC X(20). 
03 CITY PIC X(lO). 
03 STATE PIC X(2). 

and I have stored some data, 

NAME STREET 

B. Z. Lederman 
Hugo Z. Hackinbush 

2572 E. 22nd St. 
11 Julius Ct. 

CITY 

Brooklyn 
Hialeah 

STATE 

NY 
FL 

and then I realize I forgot the Zip code. I can define a new record and corresponding domain: 

DEFINE RECORD NEW-ADDR-REC 
01 NEW-ADDR-REC. 

03 NAME PIC X(20). 
03 STREET PIC X(20). 
03 CITY PIC X(l2). 
03 STATE PIC X(2). 
03 ZIP PIC 99999. 

with an additional field and an increased field size for CITY, and move the data. 

READY OLD-ADDR 
READY NEW-ADDR WRITE 
FOR OLD-ADDR STORE NEW-ADDR USING NEW-ADDR-REC=OLD-ADDR~REC 

185 



and the data will now be 

NAME 

B. Z. Lederman 
Hugo Z. Hackinbush 

STREET 

2572 E. 22nd St. 
11 Julius Ct. 

CITY 

Brooklyn 
Hialeah 

STATE ZIP 

NY 00000 
FL 00000 

Note that ZIP was filled with default characters, which in the case of numeric fields is zero, and that 
the city field has been moved. When one says USING new= old, Datatrieve will match up fields with the 
same name in moving data: any new fields get zeros or blanks. If the new fields arc at the end of the 
record, it would be faster to move the data outside of Datatrieve using one of the RMS utilities (CNV or 
IFL on the 11, CONVERT on the VAX), or SORT, any of which can pad the new records and will transfer data 
between files faster than Datatrieve. If you are removing a field from the end of the definition, the 
same rule applies, as the utilities will truncate long records. If you arc changing fields in the middle 
as was done here when the size of CITY was increased, then the SORT utility can be used, but if it is a 
one time only change, it will be easier (if slower) to use Datatrievc than to set up the sort commands. 
For example, suppose I decided I needed a second address line. 

DEFINE RECORD NEW-ADDR-REC 
01 NEW-ADDR-REC. 

03 NAME PIC X(20). 
03 STREET PIC X(20). 
03 SECOND-LINE PIC X(20). 
03 CITY PIC X(l2). 
03 STATE PIC X(2). 
03 ZIP PIC 99999. 

Using the same statement as before for conversion yields: 

NAME STREET LINE CITY STATE ZIP 

B. Z. Lederman 
Hugo Z. Hackinbush 

2572 E. 22nd St. 
11 Julius Ct. 

with the new line filled with blanks. One can do more than take the defaults, however. 

DEFINE RECORD NEW-ADDR-REC 
01 NEW-ADDR-REC. 

03 ENTRY PIC 99. 
03 NAME PIC X(20). 
03 STREET PIC X(20). 
03 CITY PIC X(l2). 
03 STATE PIC X(2). 
03 ZIP PIC 99999. 
03 ENTRY-DATE USAGE IS DATE. 

186 

Brooklyn 
Hialeah 

NY 
FL 

00000 
00000 



This time I want to add an entry number, and a date, so I have to give Datatrieve a few more commands. 

DEFINE PROCEDURE CONVERT-ADDR 
READY OLD-ADDR 
READY NEW-ADDR WRITE 
DECLARE COUNTER PIC 99. 
COUNTER=O 
FOR OLD-ADDR BEGIN 

COUNTER=COUNTER + 1 
STORE NEW-ADDR USING BEGIN 

ENTRY=COUNTER 
NAME=NAME 
STREET=STREET 
CITY=CITY 
STATE=STATE 
ENTRY-DATE="TODAY" 
END 

END 
RELEASE COUNTER 
FINISH 
END-PROCEDURE 

Here I have a temporary variable which will automatically count up the number of entries and store it in 
the new domain: also, the ENTRY-DATE will automatically be time stamped (on the PDP-I I, it will have 
only the date, not the time) as entered. Note there is still no ZIP= ... command: as I have no ZIP data 
in the old domain, I will let the new domain be filled with the default value of zero. I could also put 
in a prompt here and have someone enter the zip code during conversion, hut on a long domain this would 
be very tedious, so it is better to convert automatically and modify the individual zip codes later. The 
new data is: 

ENTRY NAME 

01 B. Z. Lederman 
02 Hugo Z. Hackinbush 

STREET 

2572 E. 22nd St. 
11 Julius Ct. 

CITY 

Brooklyn 
Hialeah 

STATE ZIP 

NY 
FL 

00000 
00000 

One can go on from here to make more elaborate changes if desired: the basic idea is that Datatrieve can 
be made to convert data from one domain to another if it should happen that a record definition needs to 
be changed, and this can be simplified though a careful choice of field names. As another example, 
suppose I had to change 5 digit zip codes to 9 digit. 

DEFINE RECORD OLD-ADDR-REC 
01 OLD-ADDR-REC. 

03 NAME PIC X{20). 
03 ZIP PIC 9(5). 

DEFINE RECORD NEW-ADDR-REC 
01 NEW-ADDR-REC. 

03 NAME PIC X(20). 
03 ZIP·-CODE. 

06 ZIP PIC 9(5). 
06 PLUS4 PIC 9(4). 

187 



Because I have defined the field ZIP in both domains, the data can be directly transfc1Tcd. 

FOR OLD-ADDR STORE NEW-ADDR USING NEW-ADDR-REC=OLD-ADDR-REC 

NAME 

B. Z. Lederman 
Hugo Z. Hackinbush 

ZIP PLUS4 

11235 0000 
33999 0000 

It would probably he better if Pl ,US4 had an edit string to suppress zeros, and there was a way to print 
out the dash that joins the two parts of the ZIP code. 

DEFINE RECORD NEW-ADDR-REC 
01 NEW-ADDR-REC. 

03 NAME PIC X(20). 
03 ZIP PIC 9(5). 
03 DASH PIC XXX COMPUTED BY " - " QUERY-HEADER "" 
03 PLUS4 PIC 9(4) EDIT-STRING Z(4). 

NAME 

B. Z. Lederman 
Hugo Z. Hackinbush 

ZIP 

11235 -
33999 -

PLUS4 

The zip suffix doesn't print because of the zero suppression, but the data in the domain looks like this: 

B. Z. Lederman 112350000 
Hugo Z. Hackinbush 339990000 

Just to give one last example, I will show how to get the data from FAMILIES to the two domains 
PARENT and OFFSPRING shown earlier. 

DEFINE PROCEDURE CHANGE-FAMILY 
DECLARE COUNTER PIC 999. 
COUNTER=O 
READY FAMILY 
READY PARENT WRITE 
READY OFFSPRING WRITE 
FOR FAMILY BEGIN 

COUNTER = COUNTER + 1 
STORE PARENT USING BEGIN 

KEY = COUNTER 
FATHER = FATHER 
MOTHER = MOTHER 

END 
FOR KIDS STORE OFFSPRING USING BEGIN 

KEY = COUNTER 

END 
FINISH 

END 

RELEASE COUNTER 
END-PROCEDURE 

KID = KID 
AGE = AGE 

188 



As may be seen, there is a '1oop within a loop". The POR FAMILY moves through the domain and picks up 
each set of parents, and within this the POR KIDS moves through the inner list to pick up each kid within 
a family. The use of the declared variable COUNTER insures that each offspring has the same key as the 
corresponding parent. 

A final note: the length of each field is important when using the REDEFINES clause, when the data 
must be read by other programs, or when data is to be transferred between different systems (for example, 
from a VAX to a PDP-11 or PRO). There is a hidden "gotcha" that should be kept in mind: 

DEFINE RECORD GOTCHA 
01 GOTCHA. 

03 A PIC X. 
03 B PIC 99 USAGE IS INTEGER. 

It might be thought that this record is 3 bytes long, and on a VAX it is, but on a PDP-11 it isn't: it 
is 4 bytes long, because of something called word alignment. INTEGER, REAL, DOUBLE and DATE must 
start on a word boundary, which is an even number of bytes: if they don't, Datatrieve inserts a hidden 
byte to align the data; in this case, between fields A and n. This byte takes up space in the record but 
can never be accessed, unless you change the definition. As a general principle, space should not be 
wasted, and if the application must be transported between a PD P-11 and a VAX the records must match, so 
in this instance, it would be better to reverse the order of the fields, so the INTEGER would be on an 
even boundary, and the record would then be 3 bytes long; or put an extra one byte field between A and B 
and use the space to store some other data field; or use the ALIGNMENT clause, which will make the VAX 
force word alignments in the same manner as the PDP- I I, which will insure compatibility. 

189 





THE SAR DATA CATALOG SYSTEM: 
AN INTERFACE BETWEEN THE SCIENTIST 

AND THE DATA SYSTEM 

A.A. Pang, A.L. Holmes, J.C. Curlander 
Jet Propulsion Laboratory 

California Institute of Technology 
Pasadena, California 91109 

ABSTRACT 

The Shuttle Imaging Radar-B (SIR-B) was the 
second NASA/JPL synthetic aperture radar 

(SAR) experiment to fly on the Space Shuttle. 
To date, close to three thousand images have 
been correlated from the SAR raw signal data 

collected during the eight-day mission. 
This paper presents the SAR Data Catalog System 

(SDCS) developed as a low-cost, electronic 
information service to support users with timely 

access to SIR-B mission information, data 
products and image parameters. The catalog 

system, developed on a VAX 11/780 minicomputer, 
utilizes mission software, VAX Datatrieve and 

VAX/VMS utilities to implement its functions. 
The SDCS is both menu-driven and 

user-interactive. The design of the modules 
comprising the catalog system are discussed, as 

well as, its potential applications for 
archiving data from future SAR missions. 

INTRODUCTION 

Significant advances in remote sensing have been 
achieved since the first aerial photographs were 
taken in the mid-19th century [1]. With the 
advancement of imaging radar systems and digital 
computers, data returned from airborne and 
spaceborne sensors have proven to be of great 
scientific benefit. As an imaging device, the 
synthetic aperture radar has advantages over both 
real aperture and optical wavelength instruments 
in that it operates independent of cloud cover or 
daylight and its resolution is not a function of 
the sensor altitude [2]. The SIR-B instrument, 
part of the payload in the October 1984 mission 
of the Space Shuttle Challenger, collected a 
large volume of data over the 8-day mission 
covering parts of 6 continents and their sur­
rounding oceans. An international team of 
scientists participated in the SIR-B mission, 
taking advantage of the unique characteristics 
provided by the SIR-B radar to study and observe 
the Earth's surface. Areas of study included 
geology, hydrology, vegetation, oceanography, 
cartography, as well as, the radar system 
itself. The results of these studies will pave 
the way for the development of innovative 
utilizations of future radar sensors [3]. 

*This paper presents the results of one phase of 
research carried out at the Jet Propulsion Labo­
ratory, California Institute of Technology, under 
a contract with the National Aeronautics and 
Space Administration. 

Proceedings of the Digital Equipment Computer Users Society 

191 

Figure 1. An example of a SIR-B SAR image 
produced by SDPS (Mt. Shasta, CA) 

For the raw digitized SAR data to be utilized by 
the scientists, it must be processed into image 
products. The SIR-B Digital Processing System 
(SDPS) developed on a SEL 32/77 minicomputer is a 
software-based signal processor originally de­
signed by C. Wu [4]. This system is the primary 
image production facility in support of the SIR-B 
science investigators. The processed images are 
stored on computer compatible tapes (CCT's) and 
an Optronics imaging device is used to produce 
the hardcopy photo-products from the image CCT's 
(Figure 1). These are the standard output of the 
SDPS archived by the JPL SIR Data Center (JSDC). 
In addition, the processing parameters associated 
with each image are saved on tape and transferred 
to a database on a VAX minicomputer maintained by 
the JSDC. 

The addition of the SIR-B image data has resulted 
in a significant expansion of the SAR data 
archived at JPL. Concurrent with this growth is 

Dallas Texas - 1986 



the increasing problem encountered by the JSDC in 
managing this large body of data. The primary 
issue is data accessibility. This includes not 
only an investigator's ability to obtain data, 
but also information about the data itself. 
Therefore, to ensure maximum utilization of this 
data and its timely dissemination to the user 
community, it became essential to develop a data 
management system that has both the 
sophistication to handle many types of data and 
the flexibility to allow incorporation of 
additional information and the future projects 
into the system. The SAR Data Catalog System, 
which currently supports the SIR-B mission data 
set, is such a system. The objectives of this 
paper are to present some of the functional 
capabilities of the SDCS and highlight its 
features. 

THE SDCS 

This section describes the functions of the SDCS 
and the hardware and software modules which 
implement them. 

Requirements and Functions 

General requirements for the SDCS hardware and 
software are flexibility and expandability to 
include future users and data sets [5]. In 
addition, the catalog software is designed for 
users with no a priori knowledge of a query lan­
guage or the existence of a specific data set. 
The system prompts the user as to a specific 
interest and provides a uniformly detailed 
response for each data set. In addition to sup­
plying information, the SDCS accepts information 
from users for SAR data-product requests. Other 
features of the SDCS are on-line Help and the 
capability to contact other users on the system 
for real-time troubleshooting. The SDCS is, 
therefore, not only a catalog for SAR data, but 
also an interface between its users and a diverse 
set of services. 

System Architecture 

A VAX 11/780 minicomputer supported the 
development of the SDCS. A simplified system 
block diagram is shown in Figure 2. The SIR-B 
correlated image parameters are transferred from 
the image processing facility to disk storage on 
the VAX. Data acquisition from databases are 
done by VAX Datatrieve through the use of the 
Datatrieve Call Interface. 

Software Design 

An effective and low-cost method was derived to 
implement the SDCS. The approach is to utilize 
software developed for SIR-B mission operation. 
The only new programs required for the catalog 
system are the driver routines, which display the 
menus of options available and initiate the 
execution of the selected option. The existing 
application software used by the SDCS fall into 
three categories: (1) Mission software; (2) 
Datatrieve; and (3) VAX/VMS utility software. 

USER WORK STATION 

VAX l l/ 785 

SDCS 

CALL INTERFACE 

DMF 
(SHAREABLE DTR IMAGE) 

RMS 

IMAGE 
------PARAMETERS 

GROUND 
IMAGE 

PROCESSOR 

RRST DATABASES 

Figure 2. SDCS system block diagram 

For some system users, these are not typically 
accessible and utilizing them might require 
special knowledge. The SDCS, however, brings 
these modules together under a central application 
and attempts to simplify the user interactions. 

Figure 3 shows the hierarchical structure of the 
SDCS design. The top level displays the sensor(s) 
whose data sets are in the SDCS. Successive 
levels provide the information pertaining to each 
sensor. The SDCS is predominately menu-driven. 
The rationale for this implementation is for 
simplicity. Users select services or data sets 
by entering the single character identifier 
associated with the options presented on a menu. 
Within the options, more user-interactions are 
sometimes required. In these instances, the 
users are prompted for short answers with default 
values presented along with the prompts whenever 
applicable. Messages are displayed when user 
inputs do not conform to those expected by the 
SDCS. All of these features are designed to 
simplify the use of the catalog system. 

USER SELECTS A SENSOR: 

LEVEL I - SIR-8 
- SEASAT 
- SIR-A 
- OTHERS 

TUTORIAL ON THE SENSOR SELECTED: 

- SENSOR PERFORMANCE 
- DATA LINK LEVEL2 

- PROCESSING AND ANY QUANTITATIVE 
PARAMETERS VALID FOR THE MISSION 

- OTHERS nm 

l DATA FROM THE MISSION: 

l - MISSION COVERAGE 
- DATA COLLECTION PARAMETERS 

r DIGITAL IM<\GERY PARAMETERS. REFERENCED BY ANY OF OVER 50 J IMAGE SPECIFIC PARAMETERS. 

LEVEL 3 

LEVEL 4 

Figure 3. SDCS hierarchy 

Descriptions of the remaining modules of the SDCS 
are given below. 

Mission Software 

A set of application programs were developed to 
support the SIR-B mission. These programs 

192 



provide insightful information pertaining to 
actual events which occurred during the mission. 
For example, planning programs developed to 
propagate the Shuttle's imaging paths and the 
graphics software developed to plot out the 
Shuttle's track are good sources of information 
for locating the ground areas covered. A 
collection of these programs have been brought 
together and modified into subroutines for the 
SDCS. The information they provide are offered 
as options under the SIR-B Mission Menu. 

Software to Interface with Databases 

Datatrieve serves as an efficient relational data 
management system for relatively small databases 
of a few thousand records. The JPL SIR Data 
Center has used Datatrieve as the exclusive data 
management language. Throughout many missions, 
the JSDC has taken advantage of Datatrieve's 
report writing capabilities to produce reports of 
the existing SAR imagery in its archive. 

The Datatrieve Call Interface makes all of Data­
trieve 's information management capabilities 
available to application programs [6]. By using 
the Call Interface, the SDCS can access the data­
bases already set-up by the JSDC for monitoring 
its SAR imagery collection. At the same time, all 
of the data query language peculiarities can be 
handled by the catalog system's driver routines. 
Thus, users do not have to learn the Datatrieve 
query language in order to use the SDCS. For 
options in the SIR-B Image Parameter Menu, the 
SDCS prompts the user for specific inputs 
regarding SIR-B imagery, reformats the user's 
reply into a proper Datatrieve command or data 
format and issues the command on behalf of the 
user through the Call Interface. The SDCS also 
handles the status information returned from 
Datatrieve and displays the results from data 
queries according to the user's specifications. 

Aside from the SIR-B SAR image parameter data 
file, two additional databases have been created 
to support the SDCS. A user request capability 
for data-products and a user directory are defined 
and maintained by Datatrieve. Under the Process­
ing Queue Menu of the SDCS, users can make re­
quests and determine the status of their requests. 
The user directory enables both the JSDC and 
authorized users in the science community to ex­
change information and data. The User Directory 
Menu in the SDCS permits users to enter their 
address and phone number into a directory 
database and to access this database. 

The Datatrieve Report Writer is an easy-to-use 
tool for uniformly organizing output data. After 
data is fetched by Datatrieve, the SDCS uses the 
Report Writer's data formatting capabilities to 
present the output to the user. Besides display­
ing the data on the terminal screen, the Report 
Writer can also output the data to a permanent 
disk file, allowing the SDCS to offer users the 
option of hardcopy reports. 

VAX/VMS Utility Software 

The VAX/VMS Mail and Phone utilities allow users 
to send messages and talk with other users on the 
system, respectively [7]. These functions are 
useful for real-time or near real-time trouble­
shooting. Also, since the image processing 
facility and science contacts are resident at 
JPL, remote users can conveniently communicate 
with the processing engineers for information 
pertaining to SAR data by contacting the 
appropriate individuals via the system. 

The SDCS also has custom Help information 
designed to assist users while on the system. 
The VAX/VMS Help structure is followed in 
formatting this information. 

Each SDCS menu offers these utilities as 
options. When one of these options is selected, 
the SDCS spawns to a sub-process and executes the 
utility. Upon exiting the sub-process, the SDCS 
resumes activity at the point of interruption. 
Data retrieval functions, performed prior to the 
execution of the VAX/VMS utility, are always 
preserved. 

DISCUSSION 

The development of the SAR Data Catalog System 
has demonstrated the feasibility of creating a 
low-cost, sophisticated interface between data 
and its users. This result is important for 
future SAR missions which plan to collect and 
correlate large volumes of data several orders of 
magnitude larger than SIR-B. ~he implementation 
described in this paper greatly simplifies user 
interactions with the computer while allowing 
maximum accessibility to archived mission data. 
The concept and design of the SDCS allows for 
other data sets to be incorporated with minimum 
effort. As more data is added, the SDCS could 
also be enhanced to include features such as a 
cross-reference capability between the data from 
different sensors. 

FUTURE APPLICATIONS 

Currently there are four sources of SAR data at 
JPL: SEASAT, SIR-A, CV-990 and SIR-B. Each of 
these data sets consists of raw data and image 
data in both optical and digital format. Within 
the next decade there will be no less than five 
new sources of SAR data, each with its own set of 
ancillary data and performance characteristics. 
The goal of the SDCS is to be able to support all 
of these. Since the volume of data collected 
during any mission is expected to be quite large, 
it would not be feasible to have entire data sets 
on-line. However, enough of the data can be 
cataloged such that particular attributes between 
data sets can be characterized. 

Upgrades of the SDCS hardware configuration might 
include several large capacity storage devices as 

193 



an alternative to archiving imagery on magnetic 
tapes. The new optical media, along with a high 
data-rate satellite or terrestrial link, would 
give the catalog system the capacity for 
transferring image data to users in real-time, 
opening the doors for even greater accessibility 
and utility of SAR data. 

ACKNOWLEDGEMENT 

The authors would like to acknowledge D. Casey, 
B. Jai and M. Kobrick for their software 
contributions in the SDCS, and E. Chu for his 
system management support. 

REFERENCES 

[l] S.A. Hovanessian, Introduction to Synthetic 
Array and Imaging Radars, Artech House, 
Inc., 1980. 

[2] J.C. Curlander, "Performance of the SIR-B 
Digital Image Processing Subsystem," 
Science, June 1, 1985. 

[3] "The SIR-B Science Investigations Plan," JPL 
Publication 84-3, July 1, 1984. 

[4] Chialin Wu, Budak Barkan, Walter J. Karplus, 
and Dennis Caswell, "SEASAT Synthetic 
Aperture Radar Reduction Using Parallel 
Programmable Array Processors," IEEE 
Transactions on Geoscience Remote Sensing, 
Vol. GE-20, No. 3, July 1982. 

[5] J. Curlander, A. Pang, "Conceptual Design of 
a SIR-B/SAR Data Catalog and Archival 
Network," JPL IOM 3348-84-073, August 21, 
1984. 

[6] "VAX Datatrieve Guide to Programming and 
Customizing," Digital Equipment Corporation, 
September 1984. 

[7] "VAX-11 Utilities Reference Manual," Digital 
Equipment Corporation, May, 1982. 

194 



USING DATATRIEVE AS A COBOL CODE GENERATOR 

Lynn D. Duncan 
Oak Ridge National Laboratory 

operated by 
Martin Marietta Energy Systems 

Oak Ridge, Tennessee 

ABSTRACT 

This paper describes the use of DATATRIEVE to automatically 
generate large blocks of COBOL code for use in a computer 
aided instruction application. Pro/DATATRIEVE was used to 
store information describing the attributes of screens that 
make up the instruction and tests, and to maintain data on 
expected student responses for each screen. DATATRIEVE 
procedures were used to create standard, error-free COBOL 
code that controls the presentation and order of flow of the 
screens within the lessons and tests. The code generated by 
DATATRIEVE was incorporated into skeleton COBOL programs 
through use of the COPY statement. 

This project involves the use of DATATRIEVE on a DEC 
Professional-380. The generated code segments were 
electronically transmitted to a Honeywell DPS-6 minicomputer 
where the application was compiled and executed. However, 
the procedures used for the code generation could be applied 
to any DATATRIEVE implementation and any application system 
that requires standardized procedures for processing a 
variety of functions (i.e. 1 transactions). 

BACKGROUND 

The Oak Ridge National Laboratory 
(ORNL) has developed a Computer Aided 
Instruction (CAI) protoytpe which is 
written entirely in COBOL rather than in 
one of the many course authoring languages 
commonly used for CAI development. This 
project was initiated at the request of our 
sponsors, the Navy Management Systems 
Support Office (NAVMASSO), the Naval Supply 
Systems Command (NAVSUP) and the U.S. 
Department of Energy (DOE), to improve the 
quality and availability of training for 
shipboard computer applications. 

A major requirement of the project was 
that the CAI run in the existing shipboard 
hardware and software environment, and be 
compatible with NAVMASSO's software 
development environment. In other words no 
new software or hardware procurement was 
possible. This environment included 
Honeywell DPS-6 computers running the GCOS 
operating system, the COBOL programming 
language, a forms creation and display 
utility (VFORMS/VDAM), and little else. 
The GCOS operating system was difficult to 
use, and no programmer productivity tools 
were available. 

Proceedings of the Digital Equipment Computer Users Society 

195 

The ORNL team completed a detailed 
structured analysis and structured design 
as a first step in the project. This 
resulted in the identification of a modular 
set of functions that would have to be 
performed, and allowed for the 
standardization of those functions. Since 
development tools were not available on the 
Honeywell, the development effort was 
redirected to existing Pro-380 
workstations. 

APPLICATION SYSTEM 

The CAI system that was developed 
consists of a series of preformatted 
screens. However, not every student views 
every screen, and the screens may be 
presented in a different order for each 
student. The primary function of this 
system is to display a screen, accept a 
student's input, and then select the next 
screen to display. The next screen is 
always dependent on the student's input. 

Dallas Texas - 1986 



Intro- _. Present _. Ask 
due ti on r Info T Ouestion 

ii~ 

~ ~ 

Closing • Feedback L.. Judge 
• IW Response 

Figure 1 The flow of a tutorial. 

This is typical of any general tutorial 
s.ession (Figure 1). The CAI system 
presents information, asks a question of 
the student, and gets some response. 
Depending on the response, the student will 
either go on to the next topic or receive 
some remediation on the current topic. The 
introductory sections are very linear 
(Figure 2). One screen leads directly to 
the next screen, which leads directly to 
the next screen after that, and so on. The 
student is only required to press return to 
continue. Those segments are simple to 
progl·am, but most of the lessons are a lot 
more complex. The lessons contain screens 
that present information and numerous 
screens that require some sort of response 
to gauge the student's level of 

Screen 1 

Screen 2 

Screen 3 

and so on 

Figure 2 Introduction. 

196 

understanding. Depending on the type of 
question asked, there may be two possible 
responses or several dozen (Figure 3). 
Based on the student's response, one of the 
potential branches is selected. The COBOL 
program must dynamically determine what 

Screen 1 

1 l I 
Screen 1A Screen 18 Screen 1C 

Figure 3 Lesson flow. 

information (i.e., which screen) to present 
next. To accomplish this task, the COBOL 
programs reference two large tables. The 
first is called the FORM TABLE and the 
second, the DECISION TABLE. These two 
tables control display of the screens and 
the choice of next screen. The FORM TABLE 
contains information including 

1. the name of the display subroutine 
which cotrols how this particular form is 
displayed; 

2. the name of the answer subroutine 
which controls how to accept and process 
the information that the student types in; 

3. special field locations for 
certain fields that require special 
processing; and 

4. pointers into the DECISION TABLE 
for the entries associated with this 
screen. 

The DECISION TABLE contains all of the 
anticipated correct answers, and all of the 
anticipated incorrect answers, plus a 
catch-all answer for each screen. Since 
the designers cannot anticipate everything 
that a student might type in, there is 
always a catch-all answer for the 
extraneous information. For each one of 
the potential answers in the DECISION TABLE 
there is a pointer back to the FORM TABLE, 
pointing to the specific form that should 
be displayed next. 

These two tables comprise the major 
portion of the CAI programs amd were 
automatically generated in DATATRIEVE. 



DATATRIEVE ENVIRONMENT 

This effort was performed using a 
PR0-380 running P/OS Version 2.0A with a 33 
megabyte hard disk and Pro/DATATRIEVE 
Version 2. The Tool Kit is also installed 
and most of the work is initiated from the 
tool kit instead of from the Pro menus. 
Two data files were created with domains 
defined to DATATRIEVE (SCREENS and 
RESPONSES), and a third view domain was 
defined (FLOW), which includes all the 
information from SCREENS and RESPONSES 
joined together. The DATATRIEVE domain 
definitions loosely parallel the two tables 
in the COBOL program. 

There are DATATRIEVE procedures for 
data input, for data update, for data 
display, for code generation, and for 
documentation reports. The input, update 
and display procedures were written to 
maintain consistency between the two 
datafiles and to make the repetitive 
functions faster and easier. Once the data 
is input, it is simply a matter of 
selecting a procedure to either create the 
COBOL code or produce reports (Figure 4). 

(The procedures are not discussed 
specifically in this paper, but samples are 
available in the DTR/4GL Session Notes.) 

Input or 
modify 
data 

Run OTA 
Procedure 

( ] 
COBOL Reports 
COPY 
Blocks 

Figure 4 Code Generation Procedure. 

PROBLEMS AND SOLUTIONS 

Rather than discuss any of those 
procedures in detail, I will discuss some 
general problems that I encountered. My 
personal experience with DATATRIEVE began 
on a PDP-11, then I migrated to the VAX and 
most of my experience has been on the VAX. 

197 

I still have difficulty trying to do things 
that work on the VAX but do not work on the 
Pro. Sometimes I get frustrated, but I 
generally find I just have to do something 
differently to achieve the same results. 

First of all, Pro/DTR has no ON 
statement. I used a series of PRINT 
statements in the procedures and I would 
have liked to use: 

ON file-name 
BEGIN 

END. 
Instead of the ON statement I used an OPEN 
statement and multiple levels of procedures 
so that all of the output from the 
procedure was written to a file. The 
biggest drawback of this approach was that 
I was not able to prompt for the file name. 

Pro/DTR has no CROSS clause. I would 
have liked to use CROSS to join domains. 
Instead, I used nested FORs which worked 
just as well in most instances. I also 
used a view to join two domains, which was 
not as easy to work with. The hierarchical 
structure of the view adds an extra degree 
of difficulty. I was forced to learn how 
to create inner print lists which are not a 
lot of fun, but, if you get the context 
right, they work. 

There is no REDUCE statement or REDUCE 
TO which would have been very useful. 
Instead, I used a more procedural 
programming approach. I defined variables 
to use as counters and processed a series 
of records sequentially comparing each 
record to the last record in order to do 
things that I would have done with a REDUCE 
statement. 

Pro/DTR offers limited concatenation, 
only the single bar and double bar, not the 
triple bar. Quite often, I needed the 
functionality of the triple bar 
concatenation, where all trailing blanks 
but one are removed. To get the desired 
output, I used a combination of the 
available concatenation functions 
( i teml 11" "Ii tem2). 

APPLICATION SOFTWARE CONFIGURATION 

Once the COBOL COPY blocks were 
created by DATATRIEVE, they still had to be 
integrated with the rest of the system. A 
set of standardized skeleton programs and a 
set of COPY blocks in the library were used 
to build the system. The compilation 
process took the skeleton program, and the 
COPY blocks out of the library to create 
the object code (Figure 5). There are four 
standard skeleton programs, one for each 
program type. There is one to actually 
present the lesson, one to present summary 
information, one to present reviews, and 
one to administer the test. Each one of 
the skeletons follows a standard format. 
The skeleton lesson program is the most 
complex and consists of a total of 13 
lines. That includes seven COPY 



COPY Skeleton 
Block Program 

T I 

Object 
Code 

Figure 5 Compilation Process. 
statements. The compiled programs that 
were created from that skeleton are up to 
1700 lines. There are 15 lessons and the 
only variations in the skeleton lesson 
programs are two items containing a unique 
Unit/Lesson number. Everything else is 
static. 

There are seven COPY blocks referenced 
in the skeleton lesson program. Six of 
those are used without change in every 
lesson. One of those copy blocks is unique 
to each lesson. That is the one that is 
built in DATATRIEVE. That is the one that 
has all the screen control and answer 
analysis information. The COPY blocks are 
all stored centrally and referenced at 
compile time. 

Because of incompatibility of 
communications protocols between the Pro 
and the Honeywell, a Zenith PC was used to 
electronically transfer the generated COPY 
blocks to the Honeywell DPS-6. The 
Honeywell is the target machine where the 
COBOL application actually runs. Once the 
COPY blocks were transferred to the 
Honeywell, then it was a simple process to 
compile the skeleton programs, and produce 
the object code and eventually the entire 
computer aided instruction system (Figure 
6) • 

BENEFITS REALIZED 

Numerous benefits were realized by 
using this procedure. First and foremost 
is the productivity enhancement. The 
project team spent longer than "average" in 
the early stages of analysis and design but 
by so doing, the development and testing 
time were shortened significantly. By 
using DTR to generate the repetitive 
portions of the lesson, summary, review and 
test programs, the programmer/analysts 
could concentrate on the more complex 
aspects of the project. 

Honeywell DPS-6 

Zenith-150 

Communications 

Figure 6 Application configuration. 

198 

The programmer/analysts also had a lot 
of fle~ibility'. It was very easy to change 
or modify the information about the screens 
and the order of flow. They could add new 
screens into the series very easily. They 
could change the order of the screens, they 
could delete screens, and it was a simple 
matter just to go into DATATRIEVE and 
delete a record and rerun a procedure and 
send a new COPY block to the Honeywell. 
The timeliness was increased because it was 
such a simple matter to make the changes. 
Modification required as a result of 
testing or at the request of sponsors was 
completed very quickly. The modular 
structure and automated code generation 
guaranteed that each newly created COPY 
block would be error free each time we ran 
the procedure. 

There are also quality enhancements. 
Standardization is automatically built in. 
Since all of the COPY blocks are created by 
the same procedure, each one follows the 
exact same format. Maintenance is also 
automated, therefore it is easy, timely and 
very flexible. Again, the changes go into 
DATATRIEVE, a DATATRIEVE procedure creates 
a_new COPY block, and then the programmer 
simply transfers the new file and 
re-compiles on the Honeywell and it 
produces error free code. 

Up-to-date documentation is another 
major benefit. All the data is stored in 
one set of data files. That same set of 
data files can be used to produce the code 
or produce the report. There is a central 
point of control so that the documentation 
and the actual code always stay in sync. 



What has been described of the CAI is 
just the student subsystem. This subsystem 
consists of the programs that interact with 
the student. For the student subsystem, 
the automatically generated code was 74.1 
percent of the total, about 20 1 000 lines. 
In addition to the student subsystem there 
is an instructor subsystem. Tt-iis subsystem 
can be used by an instructor to track the 
students' progress and see how they are 
doing. The instructor system did not use 
the automated DATATRIEVE code generation. 
When the instructor system is included in 
the complete system the automated code 
accounts for 57 percent of the total system 
(Figure 7). 

Figure 7 Lines of code. 

Anytime you can generate error-free 
COBOL code, you will realize a savings in 
development, testing, and debugging time. 
When that code amounts to over half of the 
total application, the savings is a very 
significant achievement. 

APPLICABILITY AND EXTENSIBILITY 

There are a few key elements in this 
development strategy that need to be 
followed to reap similar benefits. First, 
we followed a strict structured analysis, 
structured design methodology. We planned 
what we were going to do.· We didn't just 
sit down and start coding. We did a lot of 
standardization and modularization. We 
knew ahead of time what functions were 
going to be used in every program so it was 
easy to select the portions that could be 
generated in DATATRIEVE. The automated 
code generation using DATATRIEVE really 
gave us the big productivity increase. 

199 

As far as the applicability to other 
systems, a similar approach could be used 
in most any application. A similar 
approach could be used to generate entire 
programs. In fact we are modifying our 
system now and the next set of programs 
will be entirely generated from DATATRIEVE. 
The approach is particularly applicable to 
those applications where there is extensive 
user interaction, where you have 
standardized functions, or you have some 
kind of transaction processing. 

The same kind of approach is not only 
possible in DATATRIEVE, but could probably 
be done with most other data management 
systems. You have to plan ahead and invest 
time and effort in the analysis and design; 
and then you can use the data management 
software to perform the standardized, 
repetitive portions of the application 
development. 

SUMMARY 

There is general agreement on the 
benefits of automated code generators but 
there are certain drawbacks, too. With the 
approach described in this paper, you have 
all the benefits mentioned above plus one 
more. You don't have to select, justify, 
fund and acquire a new product, and then 
learn how to use it. You already have 
DATATRIEVE running on your system and you 
know how to use it. You simply have to 
write a new application using existing 
tools. 





Commonly Asked DATATRIEVE Questions & Answers 

f,arry .Jasmann (Chair) 
U.S. Coast Guard 

Burke V /\. 

.Joe II. Gallagher 
4GL Solutions 

Kansas City, MO 

Andy Schneider 
Developer, VAX-D/\.T/\.TRIEVE 

Dick Azzi 
Motorola 

Phoenix, /\.Z. 

Chris Wool 
E.I. DuPont 

Wilmington, DE 

B. Z. Lederman 
Brooklyn, N.Y. 

Transcribed by B. Z. I ~derman 

ABSTRACT 

This is a transcription of a panel presentation which answers some of the 
most common questions asked about D/\.T /\.TR JEVE. Some of the material has been 
reordered when that would group logical subjects together. The 
transcription may paraphrase some questions or answers for clarity. and the 
transcriber apologizes in advance for any misspelled names. This paper 
follows the usual convention of placing square brackets around 
interpretations or material supplied by the editor. Throughout this paper 
DTR is an abbreviation for DAT/\.TRIEVE. 

Why is DATATRIEVE so slow? 

(Larry:) DTR has a lot of power, and does a lot of 
things, but it also "sits on top of" one of three 
other products: RMS, DBMS, or Rdh. If you use DTR 
in such a way as to cause, for example, RMS to do a 
sequential search of a file containing 20,000 
records, you should not be surprised if it takes a 
long time to respond with an answer. If you arc a 

Proceedings of the Digital Equipment Computer Users Society 201 

programmer [in a traditional language] you probably 
wouldn't do such a silly thing when writing a 
program, but when you are using DTR interactively on 
a large file it's really easy to do this . .Toe has 
some slides which show the difference between 
retrieving data with keys and without keys. 
[Figure I] You can see that when you get beyond l 000 
records, the amount of time to access a file 
sequentially skyrockets compared with keyed 

Dallas Texas- 1986 



c 
p 

u 

T 
i 
m 
e 

c 
p 

u 

T 
i 
m 

Order of Keys versus Non-Keys 
in CROSS statement 

1400 ~---------------~l 
1200 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . , 

1000 ................................ . 

800 

600 

400 

200 

0 L-...-....---Jl<:i.---UlL..........r>d---"1-..-:J----'"1---4--.-:.a._.LlSL-l 

100 200 300 400 500 600 700 800 900 1000 

Number of Records 

Figure 1 

• Nokey-Key 
~ Key-Nokey 

One Key versus Two Keys 
Update Time 

60 .-------------------~ 

50 ................................ . 

40 ............................ . 

30 .......... · ........... . 

• 1 Key 
~ 2 Keys 

e 20 ............. . 

10 

100 200 300 400 500 600 700 800 900 1000 

Number of Records 
Figure 2 

202 



T 
i 
c 
5 

x 

1 
0 
0 
0 

FOR versus FIND 

25000 

20000 

Ii For 
~Find 

15000 

10000 

5000 . . . . . . . ~ . . 

o L.I I J U---.->1.--

100 200 300 400 500 600 700 800 900 1000 

Number of Records 

Figure 3 

203 



retrieval. (Joe:) This example is in fact a CROSS, 
that is you are doing a relational join between two 
domains: the second domain does not have a key in 
one case, and does in the other. The performance 
ratio is essentially the same as for a simple lookup 
doing a single keyed retrieval compared with a 
single sequential search. The point to be made is 
that DTR is only as fast as what it sits on: it's 
because DTR hides some of the details of what is 
going on below it that many times it's possible to 
do something that seems perfectly reasonable to you, 
but is very slow because the file design is not 
appropriate for that function, and performance 
suffers considerably. (Larry:) A corollary: it's 
not altogether clear unless you've studied it which 
constructs in D'l'R will cause sequential searches, 
and this is something you need to know well if you 
have a big file. (Dick:) My first answer to this 
normally is: if you are on a VT 100, try hitting 1 he 
NO SCROLL key again. That happens quite often: 
that will slow the system [your applicationJ. Along 
with the sequential portion, the number of keys [in 
an indexed file] has a direct bearing on how fast 
the application will be: this doesn't matter much 
on a read, but on a write, the more keys there are 
the slower it will be. [Figure 2] (Joe:) if you 
are going to retrieve records on both keys, the time 
needed to store the extra key will be well worth it 
in the retrieval. However, if you are not going to 
retrieve records on that key, you are going to pay 
an overhead price. It's important to choose the 
keys carefully, to use only those which will be used 
for retrieval. These underlying factors in file 
design determine how fast the application will be in 
Datatrieve. (Andy:) One of the advantages to using 
keys is that RMS will do sorting for you. When you 
create a primary key and DTR says "give me the 
records" RMS gives them back in sorted order. If 
you have an application and you have a primary key, 
and you enter a command which sorts on that key, why 
would it take so long? DTR isn't super smart: if 
you explicitly order DTR to sort the data, it isn't 
able to tell that it's already sorted. So: don't 
go out and automatically sort everything, figure out 
what are primary keys, and don't sort fields that 
are already sorted. How do you know when your 
retrieval is using keys? One way is to do this: 
instead of just running the DTR image, run it with 
DERUG. 

$DEBUG SYS$SYSTEM:DTR32 

You get some VAX DEBUG headers and messages, and 
then the prompt: simply say "GO", and you will be 
in DTR. What you are doing is initializing the 

DEBUGGER, and then you will be in D/\TATRIEVE. What 
happens is that when you perform an RSE, if a key is 
being used you will receive an informational message 
on your terminal for every key being used in your 
RSE or Boolean or whatever. If you were assuming 
that three keys are being used, this way DTR will 
tell you if those keys are actually being used or 
not. If it isn't using it, then perhaps there is a 
flaw in your design, and you can go back and work on 
it. This is a debugging technique to sec if what 
you are doing is what you thought you were doing. 

(Lany:) Another thing you need to know is FIND 
and FOR statements. If you do a rIND and create a 
current collection, subsequent operations on that 
collection are going to be done sequentially. 
[fiigure 3J This is usually the minimum amount of 
time you will save with a FOR, but there are other 
savings that are also obtained. You should remember 
that any operation on the collection is not keyed, 
even if it looks as if it was. The only time a FIND 
is better than a FOR is if you have a very large 
domain, and you can do a PIND to collect a 
relatively small numher of records, and arc going to 
do several operations on that small collection. For 
example, if you have 10,000 records and want to work 
on a subset of 50 or 60 records, it makes sense to 
use a FIND, otherwise not. (Dick:) While we arc 
talking about PINDs, it's important to remember that 
when you do a SORT, even to do a PR INT (for example, 
PRINT FIRST 5 --- SORTED BY field), that DTR is 
going to do the SORT first. If you can do a FIND 
and reduce the number of records you are going to be 
using, and then SORT that small numher, you will 
save a lot of time because DTR will not have to sott 
the whole file. 

(Andy:) another bottleneck is access to the 
dictionary (the COD). It's crucial, especially at 
initial access time, that the dictionary not be "top 
heavy". A lot of people make the mistake of putting 
everything into CDD$TOP, and then when you want to 
ready a domain the amount of time that it takes for 
COD to access the pieces in the dictionary is 
extremely high. If you have a lot of stuff in 
CDD$TOP and not much in subdirectories, create a 
good tree structure and move stuff down the tree. 

(Joe:) There is one area I run into that most 
users don't run into. From a scientific and medical 
standpoint, we have some users who do calculations 
in DTR rather than some other language like 
FORTRAN), so in fact they are doing a lot of 
calculations in DTR. In many cases they created 
complex: procedures where all of the temporary 
variables are declared something like PIC 999V999 
(string variables). If for some reason you have to 

204 



do heavy calculations in DTR you gain a substantive 
return by converting those variables to COMP 
variables (REAL, INTEGER) because DTR does a fair 
amount of conversion, and these arc CPU intensive 
activities where numbers in one format has to be 
converted to other formats with a lot of sanity 
checks. If you are going to do a lot of 
calculations (such as a data base of scientific 
data) you get a performance improvement by making 
the variables the appropriate data type. 

(Joe:) If you think you are running slow, and 
you don't know if it's you or other programs [on the 
system] there is a pair of functions within VAX-DTR 
which will allow you to initialize a timer and then 
show the amount of elapsed time between the 
initialization and the show time. [For example, the 
following procedure was used when testing the CROSS 
statement with and without keys to obtain the data 
shown in Pigure I.] 

FN$INIT_TIMER 
FN$SHOW_TIMER 
PRINT fieldl, £ield2 of 

Why can't I put a READY inside my BEGIN-END loop? 

(Andy:) [A suggested source for information on this 
point is the VAX-DTR internals scssionj, but 
basically this has to do with the difference between 
commands and statements. In a nutshell, the reason 
you can't put a command like READY within a 
BEGIN-END block is because commands go through one 
path [when being processed by DTRJ and statements go 
throogh another. When you put a BEGIN-END around 
something, what you have done is created one big 
statement out of everything within the BEGIN-END 
block. If you stick a command in there and DTR runs 
across it, it's not down the right path [internally] 
to execute it. (Larry:) the main thing is to 
understand that there are such things as commands 
and statements and that one can't go in the other. 
With the way the language is constructed there is 
little need to do that: there are ways around it. 
(Joe:) A simpler explanation is that statements 
manipulate the data within an environment, and 
commands change that environment. By putting a 
command within a BEGIN-END loop you've changed the 
environment while trying to work in it. 

domainl CROSS domain2 OVER fieldl 
FN$SHOW_TIMER 

You can place them around various sections of code 
and find those sections that are actually running 
slow. It will give you information about elapsed 
clock time, CPU time, page faults, etc., and that's 
very helpful. If something is not running as fast 
as you think it ought to, you can go and look and 
decide if it's your process or someone else who is 
hogging the system [if CPU time is small but elapsed 
time is large]. (Bart:) on DTR-11 and PRO-DTR you 
don't have INIT_TIMER, but you can do remote DTR and 
the log file will have some information on times and 
what DTR is doing with the retrievals. This will 
also work for VAX-DTR, and is another way to find 
out what is going on inside DTR. You can always do 
a remote DTR to your own node. 

205 

Can I read DTR files from another language? 

(Dick:) There is no such thing as DTR files. There 
are RMS files, Rdb files, DBMS, etc. DTR docs not 
create files of it's own. You can read RMS from 
BASIC, COBOL, or any language. The converse of that 
is DTR can read files created by other languages: 
even the editor if you are careful. ( !Jart:) the 
problem with the editor is that you may not align 
everything properly. You may also run into the 
problem where you create a record definition 80 
bytes long, and you go into the editor and type data 
80 bytes long but the editor creates a variable 
length file. When you ready the domain DTR will 
give you a warning message that the file types don't 
match, but it will then go ahead and read it anyway. 
If DTR gets a record which is too short, it pads it 
out (and may give an error message): if it's too 



long, DTR truncates the record (and in the past, 
especially on the PDP-11, tends to abort). If you 
are in doubt, put a FILLER field on the end of the 
record definition to make the record definition too 
long: you may get warning messages but I?T~ will go 
ahead and read the data. You can then wnte 1t to 
another file with fixed length records and DTR will 
be happy. (Larry:) a related question is, what if 
you have a nasty system manager who won't tell you 
what the file is like and you are trying to read it? 
The answer is, use the RMS utilities to find out how 
long the record is, then create a record definition 
of the same length with one big field with a PIC 
length the length of the record, EDIT_S't'RING T(RO) 
[to make the data fit on the usual CRT screen), 
ready the domain, print some records out, and by 
looking at it you can usually figure out where the 
fields are, and revise your record definition. 
(Bart:) remember to ready the domain read only and 
shared, until you are certain you have the record 
definition correct. You don't want to modify 
anything until you know what it is. 

Can you sort on a non-keyed field? 

(Dick:) You can sort on any field you have in your 
record. (Not COMPlJTED_BY fields on a PDP-11, but 
any real field.) On a VAX, it should be any field. 

Why can't I prompt for a domain or a field? 

(Andy:) DTR is really forgiving, but there are 
certain features intended to be used in some places 
and not others. Prompting, when you do a "'.prompt, 
is for value expressions and value expressions only. 
A value expression is a value for a field, or a 
piece of text. They don't include things like key 
words or names of things, which is what a domain is. 
When you say READY "'.---,what you arc prompting for 
is a value expression, and DTR wilt say "oh no I 
won't!". Essentially, the contents of a quoted 
string is what it grabs, so when you prompt for 
anything it must be a value expression or piece. 
There are some workarounds, one being logical names: 
you prompt for a string, do an PN$--- to create a 
logical name translation, ready the logical name and 
DTR will translate one level of logical names. 

206 

How many records can I have in my domain? How large 
a record can I have? 

(Bart:) Basically, the number of records you can 
have in your domain is limited by how large your 
disk is (or your disk quota if applicable). As for 
the size of the record: on the PDP- I I if it's very 
large you will run out of pool space. On the VAX 
there may be a limit, but I don't know anyone who 
has hit it. (Comment from audience indicating it 
had been reached.) There is a system wide RMS limit 
on the maximum size for any record on a VAX, and I 
believe it's set around 32,000 bytes. As far as the 
number of records, it's limited by the amount of 
disk space, and I've done domains with over 130,000 
records. (Comment from audience indicating a user 
with 6000 + byte records, stating that the 
application seemed a bit slow, but when the 
application was broken up into smatler pieces with 
relevant sections connected by crosses, it ran 
faster. Doesn't it make more sense to keep the 
record size smaller?) (Bart:) It's partially record 
size, and partially the number of fields. If you 
don't need all 6000 bytes at once, breaking it up 
into smaller pieces that most logically go together 
will save you overhead. The other possibility is to 
have more than one record definition for the same 
file and use FILLER to skip over the pieces that 
aren't needed at that time, and that also cuts down 
the number of fields that DTR has to know about. 
Either of those approaches would give an 
improvement. (User: if you use filler, it cuts 
down the number of fields, but then you have the 
same number of FILLER fields.) You use one FILLER 
field to skip over all of them. (Andy:) One 
important point we are looking at for 'way in the 
future is that access to the COD is very inefficient 
for metadata. Por every attribute you have for 
every field DTR has to make a call to the CDD. If 
you have 400 fields, and each field has a name, a 
query header, and edit string, a query name, missing 
value, default value, DTR makes one call for each 
(at least 2800 calls including the PIC clauseJ. If 
you can cut unnecessary attributes, or you have 
fields that aren't used often and you can skip over 
with PILLER, DTR jumps over FILLER and it's internal 
field tree is much, much simpler. Also, less memory 
is used, as it allocates a big block for each field, 
and this block is the same size for a field with no 
attributes or with many attributes. If you can 
eliminate fields, you save time and memory not 
allocating blocks. (Larry:) Besides, anyone with a 
record that has 6000 bytes in it needs to go back an 
re-evaluate how the data is being structured. 
(User:) the records were a complete record of our 



field engineers, including their education, 
experience, etc. Jn essence, we had 1 O major areas 
of interest, and instead of I record we really had 
I 0. It worked a lot faster [after we changed to IO 
records.] (Bart:) Not just speed but other 
considerations apply: if you give someone write 
access to that domain, they now have access to 
everything in there, and do you really want to give 
them everything at once? From the management 
standpoint you also want to separate the data. 

Can I do menu-driven applications in DTR? 

(Larry:) Yes, and I know of about 4 different 
met~ods. The first is the way NOT to do it, and 
that ts to use DCL and have it call DTR every time 
~?~ ne~d to do som~thi~1g (having the menu in DCL). 
I hts will work, but it's mefficient: you go 
through all of the overhead of starting up DTR 
whenever you want to do something. 

I like to use the call interface, and a little 
program that feeds procedures back to DTR. 
Essentially, DTR tells the program what it wants to 
do next, and the program tcUs DTR to run it [a 
procedure] next. That works very well. 
(Die~ Azzi:) I like to "pre-compile" DTR. Andy 
mentioned that anything within a BEGIN-END block is 
treated as one statement, and DTR always has to 
parse the next statement it is going to work on. We 
take maybe 75 to 100 "programs", put them all within 
a large BEGIN-END block with a menu so DTR treats it 
all as one statement: it takes 15 to 20 minutes to 
parse that statement (we bring it up on Monday 
morning and leave it up until everyone goes home 
Priday night). Included on the menu arc functions 
"sleep" and "pause", which bring up an FMS screen 
with a no-echo password so that the user can leave a 
terminal and get hack in only if they enter the same 
password. This process works well in our 
application, where we treat DTR as the center of the 
universe: if we have to do something in DCJ, we will 
spawn out of DTR, work in DCJ, (things like word 
processing, PJJONE, running another program), and 
then return to DTR where all of the pre-compiled 
statements are still active, all READYs are still 
there, etc. This gives a very quick turn-around on 
menu response. 

(!,any:) Another method is with logical names 
[calling a procedure which has one fixed name: a 
logical name assignment is made from the menu to 
translate that logical name to the name of one of a 
set of "real" procedures]. There arc probably other 
methods as well. 

207 

(Mike Nickolas, Bank Ohio:) Another method of 
doing menus in DTR is to have a simple procedure 
called DISPLAY _MENU which has a print statement to 
clear the screen, displays an abbreviated form of 
the procedure such as ":Ml", and that procedure only 
does one function such as ADD [a record!, which 
would require only a very short compilation time. 

(Chris:) I'd like to make an exception about 
how not to do a menu [using DCL described above]. 
There are times when a DCL menu is appropriate. If 
you have several choices on the menu and only one is 
going to be DTR, the startup delay occurs only after 
the choice of that option is made. The main menu 
can come up very quickly in a DCL procedure, and if 
there is only one choice which goes to DTR, or there 
are many options only one or two of which go to DTR, 
the total delay is less than if you have to go in 
and out of DTR a lot. 

Using logical names is very similar to the 
"pre-compile" method. The difference is that in 
your choice statement you use the FN$CRFATF LOGICAL 
and at the bottom of the choice statement you in;okc ' 
the logical name and DTR will execute the procedure 
name used in the create logical function: you can 
even go back and invoke the procedure you are in 
now. This appears to be recursive use of DTR but in 
fact is not really working recursively. 

Susan Krantz, NK F Engineering: another way I 
use DCL and DTR together is in DBMS applications 
where I have a COBOL program using FMS doing an 
update function and then have a menu in the 
beginning asking if I want to use the update program 
or do I want to go into DTR and do my reporting. 
That's a good combination because they arc either 
changing the database or they arc doing report, and 
once you are in the report module everything is 
pre-compiled. 

(Larry:) as Chris said, if you are doing one-shots 
then the DCL menu is good, but on the other hand if 
you are going to switch back back and forth between 
updating and reporting I'd use the call interface 
and integrate [DTR] right in [to the COBOL program]. 



Will the DTR Call Interface support new languages? 

Ron Swift, Xerox: we use a FORTRAN interface 
for some of [those applications, such as were 
discussed for the previous question] which allows us 
to leave the domains open. It allows us to go 
through a menu, and appears to speed up tremendously 
what we're doing. My question is, will there ever 
be a "C" interface to DTR 

(Andy:) Do you mean, wi11 there ever be 
something which DTR ships as part of it's kit to 
allow you to automatically run with "C"? You can do 
it today, but you have to create your own DAB. The 
bottom line is: any language which confonns to the 
VAX calling standard can use callable DTR today, 
which means "C" can use it. We have chosen a subset 
to ship with our kit which means DABs, examples, and 
so forth. We have been asked for "C" in the past 
and that may come, although it doesn't stop you from 
using it today, it just means you have to do some 
legwork up front. 

(Bart:) A little advertisement for the DECUS 
library: if the first person to do it would please 
submit it to the library then everyone else will get 
it. 

How do I used nested FOR loops? (i.e., how do I 
optimize acces..'I to two domains?) 

Bob Brown, INTEL: In regards to optimization, 
could someone explain to me how nested POR loops 
work, where you put the keys (on the inside or 
outside); it's kind of difficult to understand from 
the manual. 

(Bart:) [rather than transcribing the problem 
description, the example below shows the outline of 
a nested POR statement being used to access two 
domains, with records in the second domain being 
selected according to the match of some field in the 
second domain equaling a field in the first domain.) 

FOR domain_l BEGIN 

The field that you are specifying in the second 
domain (the inner loop) [labeled field_2, belonging 
to domain_2 in the example above] is the one that 
should be keyed. 1bis is exactly the same as the 
example shown earlier for the CROSS, where it was 
going nokey-key. If it's a VIEW, and you specify 
the first domain, and then the second domain occurs 
for a field equal to the first domain, it's the 
second domain where the field should be keyed. For 
all cases, for a record in the first domain, DTR has 
to find the matching record in the second domain. 
[The following illustrates the case of a VIEW. As 
in the first example, field_2 belonging to domain_2 
is the one which normally should be keyed.] 

DEFINE DOMAIN view_domain OF domain_l, 
domain_2 USING 

01 FIRST OCCURS FOR domain_!. 
10 field_l FROM domain_!. 

--- other fields from domain_l. 
10 SECOND OCCURS FOR domain_2 with 

field_2 = field_l. 
--- other fields from domain_2. 

(Larry:) please understand that the field doesn't 
HA VE to be keyed, but if you want to take advantage 
of the keys, it must be the second domain that is 
keyed. (Bart:) If you would like it to run in a 
reasonable amount of time, the second should be 
keyed. 

Bob Brown: even if the outside loop has an RSE? 

(Bart:) Yes, because the outside loop is going to go 
in the order you specify in the RSE: it may or may 
not be keyed, depending on how you do it. But if 
you want the matches on the inner loop to be fast, 
then the second domain has to be keyed so the 
retrieval can be on the key. 

FOR domain_2 WITH field_2 = field_l BEGIN 

work done here on one or both domains 

END 
END 

208 



"Field --- is undefined or used out of context"? 

(Joe:) [We now have] the infamous "undefined or used 
out of context" error message. This is probably the 
most frustrating and common occurrence for beginning 
users of DTR. There arc some important obvious 
things, such as misspellings, that cause this 
problem. The real underlying cause is a cry for 
help from DTR because it does not understand what 
you have told it.. There is something in the command 
that it docs not understand, and when it doesn't 
understand it doesn't know where it docsrl°t 
understand (or maybe not know where it doesn't 
understand). (/,any:) here's the point: a lot of 
times when you get "undefined ... " the error is not 
on the quoted string in the error message, the error 
is going to be somewhere hack upstream from that 
string. What I tell my users is to put your finger 
on that string, and where I'm pointing is where the 
error is [using your right hand, the error is 
somewhere left and up). This can happen because DTR 
continues to parse for a while until finally things 
don't make sense, and then you get the error: the 
thing that caused it not to understand could be a 
comma or a space or word encountered previously. 
(Joe:) You look at the thing it's complaining about 
and back: sometimes what it's complaining about is 
a misspelling, but it's also possible that it's 
something back up the line. This happens because 
DTR is parsing and compiling, and it has a context 
within which it has to communicate with you, trying 
to understand what you're telling it: at this point 
it's saying "I don't understand anymore". 

Whm do I use hierarchies? (OCCURS clauses in 
record definitions) 

Ron Wilson, Wilson Concrete: J wonder if there 
are any rules when one should use "flat" records 
versus hierarchies? 

209 

(Larry:) [missing from the tapej. (Hart:) 
Basically, if you use an OCCURS, you limit how you 
can access that subordinate data. If you have a 
very well defined application where some data is 
definitely subordinate to a main data piece, and I'm 
absolutely positively always going to he getting the 
subordinate data with the main data then an OCCURS 
might make sense. The problem is that when you do 
do an OCCURS, it makes it difficult to get to the 
subordinate data only. (Larry:) It's really hard to 
manipulate within an OCCURS clause. You are better 
off putting it in another domain and use a CROSS and 
treat it in a relational way. 

(Joe) I'd like to make a dissenting opinion. 
There arc some applications I've used in a medical 
database where the data is naturally hierarchical: 
and because the underlying data is naturally 
hierarchical, DTR is, in my opinion, the best tool 
for accessing hierarchical data. There arc certain 
prices you must pay in order to do that, hut I would 
argue the other way around. If the data is 
naturally hierarchical in the way it's used, it 
should he stored hierarchically, either in an OCCURS 
within a domain, or in separate domains using a VIEW 
which in effect creates a hierarchy. (Hart:) 
[section missing from tape). 

How do I pass information from DTR back to DCL? 

[name of questioner missing from tape:] ... 
that logical names created through DTR are user mode 
logical names. Is there any way that [DTR can 
create logical names in other modes: question 
wasn't finished as J\ndy Schneider was shaking his 
head "no"]. We use DTR in certain situations to 
pass values out to DCL and use those values: now we 
can't do that. 

(Andy:) FN$CREJ\TE_I ,OGJCJ\L creates a user mode 
logical name for DTR's purposes only, because 9 
people out of 10 will use the logical name while in 
DTR to optimize [an application] and don't want to 
have it "kicking around" afterwards so everyone 
picks it up. What I would suggest is if you want 
the logical name to be [in existence] afterwards is 
to use a DTR procedure to create an indirect command 
file that you execute when you leave DTR to create 
the logic~! names. (questioner:) just write it to a 
file basically. (Andy and Larry:) or create your 
own function [to create a logical name in some table 
or mode other than user]. And submit it to the 
DECUS library. 





What is RMS? 

DATATRIEVE and RMS 

.Joe H. Gallagher 
Research Medical Center 

Kansas City, M () 

Gary Friedman 
Montgomery Engineering 

B. Z. Lederman 
2572 E. 22nd St. 

Brooklyn, N.Y. 11235-2504 

Transcribed by B. Z. Lederman 

Abstract 

This is a transcription of a panel presentation on some of the important 
features of RMS as seen from the perspective of the DATATR IFVE user. Tt 
will give some basic definitions, list some of the options available to 
users, and how some tools may be used to optimize performance. The usual 
convention of placing square brackets around material interpreted or 
supplied by the editor is followed in this paper, as is the use of DTR as 
an abbreviation for DATATRIEVE. 

Types of files. 

RMS stands for Record Management Services: it 
is a set of system services which provide for a 
uniform method of accessing data in files. It is 
built into VMS, and comes with the PDP- I I operating 
systems, it supports several types of file access 
(sequential, relative and indexed), several types of 

Sequential files are the simplest, they are the 
smallest (least amount of storage space) for a given 
amount of data, they are compatible with programs 
that don't use RMS, can be stored on magnetic tape, 
arc easier to transmit over communications lines, 

data records (fixed and variable length), arbitrates 
file sharing and block locking (some of these 
functions are being moved to other parts of the 
operating system, particularly within VMS clusters), 
and controls the conversion of data on the disk 
(tape) to within your program. In short, it's the 
way of getting stored data into your program. 

Proceedings of the Digital Equipment Computer Users Society 211 

and generally have the fastest access and least 
overhead when the data is going to be accessed 
sequentially. The catch is that most applications 
don't access data sequentially, and even when they 
do there are some possible drawbacks to sequential 
files. Por example, new records may only he 
inserted at the end: if the file is sorted in some 

Dallas Texas - 1986 



order and you have to add a new record, you must 
then re-sort the file. They can also nonnally only 
be deleted from the end of the file as well. As 
processing must be sequential, if you want to 
retrieve a record in the middle or end of the file 
the only way to get to it is to start at the 
beginning and read every record until you get the 
one vou want. Sharing the file is limited to 
rcad~only for all acccsscrs (this may change in the 
latest release of VMS). 

Indexed files can be read sequentially or by 
one of the keys. Keys can have duplicate entries or 
no duplicates, there is automatic sorting in that 
data is automatically kept in order by the primary 
key so a sequential read is automatically sorted, 
an~i files can be shared for read and write. There 
is higher overhead in accessing the file (than for 
sequential), they can only be stored on disks (it 
will automatically be converted by most backup 
utilities when stored on tape, hut you cannot have 
indexed access directly to a file on tape), and the 
file is larger as you arc storing both the data and 
the index information in the file. Records may be 
added and deleted from any point in the file, but 
deleting a record does not recover all of the space 
used until the file is compressed or reorganized. 
Indexed files must have one primary key, and the 
data in that field may not be modified: it can only 
be deleted and the entire record replaced. 
(Secondary keys may be modified, or modification may 
be prohibited as you choose when you create the 
file.) In nearly all applications, the advantages 
over sequential files far outweigh the 
disadvantages, and indexed files will be used in 
nearly all DTR applications. 

Buckets. 

A bucket is a logical division of the space on 
the disk. Disks arc divided into blocks: in order 
to use a disk, the space must be divided into 
manageable chunks, and all DEC disks are divided 
into blocks of 512 bytes. [A few older devices have 
smaller "blocks", but the software makes them look 
as if they had 512 byte blocks. J The data records 
you are using may be larger or smaller than 512 
bytes, so the file is divided into buckets: each 
bucket holds one or more of your data records, and 
buckets arc stored on the disk (as one or more 
blocks). One of the options available is to select 
the bucket size for a file. On the PDP- I I, in order 
to conserve pool space, it should almost ahvays be 
the smallest bucket size into which your record will 
fit, and DATA TR IEVE-1 l will automatically select 
this size. On the VAX, the option exists to choose 

212 

a larger bucket size, which may or may not help 
performance. A larger bucket size means there arc 
more records stored in one place, and retrieving one 
bucket from the disk gets you several records from 
the same area of the file. If you are processing 
the file sequentially, when you read one record you 
automatically get the next few records at the same 
time, and so when you are ready to process the next 
record you already have it. This will save disk 
accesses, and generally improve the perfonnance of 
the program. If, however, your accesses arc 
scattered more or less randomly through the file 
(for example, you have a telephone directory file 
and you are not looking up people in alphabetical 
order so that file retrievals arc scattered 
throughout the whole file in no particular order) 
then a larger bucket size won't help, and may even 
hurt a little by having to read extra data from the 
disk that won't be used. If you have an application 
where you read a record and then will probably need 
the next few records for related processing, or you 
have multiple records with the same key and may need 

to read some or all of them at the same time, then a 
larger bucket size may help by obtaining more data 
with each disk access. 

File Prolog Type. 

When you create a file (or display the 
attributes of an existing file), one of the 
attributes is the file Prolog, which can be Prolog 
1, 2 or 3. Indexed files can be Prolog 2 or 3. 
Pro log 3 files have a tradeoff between speed and 
size: the index can be compressed, which will save 
space on disk, but will require more CPU work to 
compress and expand the data when needed. Also, it 
was mentioned before that deleting a record from an 
indexed file left a little unusable space in the 
file: with a Prolog 3 file, this space may be 
reclaimed more easily than with a Prolog 2 file with 
the "CONVERT/RECLAIM" command. [See also some 
discussion at the end of the paper about access 
speed. 

Alternate Keys. 

For each key in an indexed file, some work must 
be done to store the index information whenever a 
record is added to the file. The graph in Figure 1 
shows the result of a test comparing the time needed 
to store records in a file with DTR when there was 
one key, and two keys, and shows the increased 
overhead. However, Figure 2 shows how much work can 



c 
p 

u 

c 
p 

u 

T 

One Key versus Two Keys 
Update Time 

50 ................................ . 

40 ............................ . 

• 1 Key 
f§§1 2 Keys 

i 30 ..................... . 

m 
e 20 ............. . 

10 . . . . . . . . 

0 
100 200 300 400 500 600 700 BOO 900 1000 

Number of Records 

Order of Keys versus Non-Keys 
in CROSS statement 

1200 .................................... . 

1000 ................................ . 

• Nokey-Key 
~ Key-Nokey 

T 800 ............................. ~ 

i 
m 
e 

600 

400 

20: ··~··~·i] .... 
-

100 200 300 400 500 600 700 800 900 1000 

Number of Records 

213 



be saved when retrieving with a key as opposed to 
retrieving without a key: in the case shown here, 
retrieving the second file in a CROSS (or a VIEW) 
without a key requires several orders of magnitude 
more work than if a key is used (this is cause of 
one of the most common complaints heard from DTR 
users, that a CROSS or a VIEW is slow: the second 
fi.Je was not being retrieved with a key). The 
result of this is: if you will be retrieving data 
fairly often hy a particular field, it should be 
keyed as the time saved in retrieval is much greater 
than the time taken during storage. If, however, a 
field won't be used for retrieval it should not be a 
key, as the extra work for storing all records won't 
be recovered. 

Creating a file. 

You can create a file with the "DEFINE FILE" 
command in DATATR IFVE. This will give you a file 
which will always work, and will have all of the 
keys in the right place with the correct data type. 
It may not give you a file which is optimum for your 
particular application and data, however. You can 
also use one of the RMS utilities (DFN on the 
PDP- I I, CREATE or EDIT/FDL on the VAX): this can he 
quite a lot of work as you have to figure out where 
(in bytes) in the file each key is, and what data 
type it is. I recommend that you first create the 
file with DTR, then use the RMS utilities to 
examine, and if necessary modify, the file to your 
particular needs. 

Loading a file. 

Loading a file all at once, with one of the RMS 
utilities, is a different operation than storing 
single records (as with DTR). The utilities (IFL on 
the I ls, CONVERT on the VAX) do an optimized file 
load: they sort records, pre-allocate disk space 
(for data and index), and store the information. If 
you store individual records, it will be inserted in 
the middle of the file if it can: if the file was 
loaded with a fill factor of less than 100%, there 
will be empty space in the middle of the file to 
receive extra records. The resulting file will 
still be in good order, and performance will he 
good. If the file is already full, then RMS docs 
what is called a bucket split: a pointer must he 
put into the file to point to another area of the 
file, which will then contain the data. Subsequent 
read operations are slowed a little as you have to 
"jump around" in the file to follow the pointers to 
an alternate area and back again. Generally, you 

214 

want to avoid this. Similarly, there is the space 
that the file has requested on the disk: if there 
is extra empty space in the file, new records will 
be added into this space and all of the data will he 
close together. If the file has run out of space, 
then the operating system will try to find more on 
the disk (subject to user quotas, etc.). If space 
is available next to the existing file, it will be 
added, hut it is possible that the next free space 
on disk may be physically distant. This is known as 
a "fragmented" file, as it is stored in several 
separate pieces on the disk. This results in a 
performance degradation, and should be avoided. 
When a record is deleted, there is a small amount of 
space which cannot be immediately recovered (until 
the file is reorganized). 

DATATRIEVE is not the best tool for doing a 
complete file reorganization: the RMS utilities 
which were written specifically for this purpose 
will yield better results. If a file is being added 
to or modified frequently, then it is a good idea to 
use one of the utilities to re-organize the file at 
regular intervals. 

Some Tools. 

There are a number of utilities that give 
useful information about your files. On the VAX, 
ANALYZE/RMS/FDL will yield a file full of 
information about the analyzed file, and you can 
look at this with ordinary editors or with EDIT/l'DL. 
Much of the information will not be of interest to 
casual DATATRIEVE users, but a few items arc 
important. 

AI ,LOCATION is how many blocks on the disk are 
reserved for this file. 

BEST TRY CONTIGUOUS means that if the file rum 
out of disk space and the operating system must get 
more, it will first try to get contiguous blocks 
(those immediately next to the existing file), but 
if it can't it will get what space it can. If the 
file was marked as CONTIGUOUS only, when it runs out 
of space if there is no more contiguous space 
available the attempt to expand the file will fail 
with an error message. 

CLUSTER SIZE is generally set by the system 
manager for a given disk. 

EXTENSION is how many blocks of disk space arc 
added to a file hy default when it has to he 
extended. If you know that you will he adding many 



records to your file, especially if they will be 
added at one time, then you should specify a larger 
extension value to get a large piece of disk space 
each time the file is extended: this will minimize 
fragmentation, and will make the application run 
faster as adding space to a file is a relatively 
slow process. 

GLOBAL BUPFER has to do with sharing files, and 
will not be set by most users: it needs to be 
considered on a system wide basis. 

BLOCK SPANNING: if a record spans a disk 
block, then you have to read both disk blocks to 
retrieve the record: this may be a little slower 
than if the record were in one block only. If your 
records are smaller than one block (512 bytes) in 
size, and you want every fraction of performance, 
and are willing to leave a little space at the end 
of each block empty (wasting a little disk space), 
then NO SPAN BLOCKS may give you a little extra 
performance, though I suspect that in most cases the 
improvement will be minimal. 

Allocations for areas have to do with how much 
space is reserved for data and keys. Rather than 
attempt to calculate these, let the RMS utilities 
set them, or use one of the optimization scripts in 
EDIT/FOL to set them. 

Each key has it's own section for description. 
One of the fields in this is the name of the key. 
DTR does not put this information into the file: I 
highly recommend for documentation and maintenance 
purposes that you obtain an FDL description for all 
of your DTR data files, and that you fill in the 
name of the field into the FOL key name so that you 
will know which keys correspond to which field in 
your DTR application. 

You can use this file to select some options 
that are also available in DTR, such as allowing or 
preventing duplicates and changes. You can also 
enable or disable data compression and key 
compression. As noted before, this may save disk 
space as the cost of performance. It is difficult 
to predict how much compression will be done on a 
file, so you will probably want to load the data, 
then ANALYZE the file and see what happened. There 
may be a performance trade off between compressing 
to save space, and the work needed to compress and 
decompress the data and keys. [See also the 
discussion transcribed below.] 

FILL can be a very important parameter. If you 
are working with a file whose data is fairly static 

215 

(does not change often), you will probably want a 
fill factor of 100%, or very close, to save disk 
space and keep the data close together on disk for 
fast access. If you have a file which changes 
often, or to which data will be added, then you want 
to avoid the bucket splitting problem by using a 
lower fill factor during the initial load so there 
will be empty space scattered throughout the file to 
receive new records. The RMS utilities honor the 
fill factors to leave empty space in the file: DTR 
does not, so it will use the extra space for new 
records. 

If the file has data in it, ANALYZE/RMS/FDL 
will also give you information about how much 
reclaimable space is in the file which is not being 
used, and how much compression is being done on the 
keys and data. This is a good indication of the 
state the file is in, and can also be used by 
EDIT/FDL optimization scripts to design a better 
file. 

Built into the FOL editor are some scripts 
which work quite well in designing better files, 
especially if you analyze an existing file filled 
with data. Generally, a "flatter" file is one with 
better performance: the fewer the number of index 
levels, the fewer disk accesses will be needed to 
find a particular record, and this results in better 
performance. DIRECTORY/FULL on the VAX (DJR/ATT or 
DSP on the 11) gives information about the number of 
keys, Prolog type, number of blocks allocated, etc. 

Example of reorganization. 

We found that when a number of records had to 
be added to a large indexed file with many keys, it 
was better to add the new records to a separate 
sequential file, convert the large indexed file to a 
sequential file, append the file with the new 
records, then use the combined data to re-populate 
an indexed file. This process can be done in a 
batch mode, to save time and 1/0 processing. It 
avoids the problems of adding records to indexed 
files (such as bucket splitting), especially when 
the updating is done in "chunks". 

We did some benchmarks with a file containing 
fixed length 110 byte long records, with 5 keys, 
containing a total of 1778 records. DAT A TR IEVE was 
used to write the new data to the end of the 
sequential file that contains the updates, and again 
to write the sequential records back in an indexed 
file. This was found to take much less time than to 
put records into an indexed file. 



We also tested the use of the CONVERT utility 
to do the file conversions. This was found to take 
much less time and system resources: the 
improvement is much greater than that which can be 
obtained from typical "system tuning" efforts, which 
usualty try to adjust system parameters for a 5°/i, or 
so improvement. Adjusting the data file parameters 
can yield a much greater improvement. 

Tests were performed on a stand-alone 11/780 
(no other users), comparing DATATRIEVE with CONVERT 
to do the hatch update. CPU usage was reduced by 
about 3 orders of magnitude, 1/0 operations were 
reduced from about 35,000 for OTR to 1700 for 
CONVERT, Elapsed time was reduced from 14 minutes to 
2 minutes. The reduction in 1/0 operatiom is 
espccialty significant for many applications. 

These tests were done using the same DATATRIEVE 
file definition. By using one of the FOI, optimize 
scripts, the file can be further tuned to the 
particular application. You should load the data 
into a file first for best performance, and look at 
values for compression, etc. If compression shows 
up as a negative value, turn compression off. The 
scripts are nearly automatic in operation: simply 
select the optimize script. (Also look at the 
VMS Guide to File Applications manual: it may take 
a while to absorb atl of the contents, but it's 
worth the effort.) We did a one pass optimization of 
our test file: not a lot of tuning, just some 
changes to bucket size, key compression, etc. When 
we ran the load test again, 1/0 operations were cut 
in half, Elapsed time was cut in half, and CPU time 
improved a hit. It took no more than 15 minutes to 
do the optimization with FOL. 

General Hints. 

Big updates witl cost you, as you have to work 
with alt of the indices: use CONVERT rather than 
OTR. Tune your files: a little effort here yields 
considerable benefits. Update in batch: you can 
off-load operations to times when the system is less 
used. 

Some final examples. 

I compared the time it takes to populate the 
YACHTS file, as is done during installation of DTR. 
lbese tests were done with the PDP-11, copying the 
installation verification procedure. An empty 
indexed file is created using DEFINE FILE (and I 
even improved the procedure by adding the ALLOCATION 

216 

clause), and OTR then reads the sequential file from 
the distribution kit and stores the indexed file 
using a FOR loop. This took 2 minutes and 46 
seconds. I then create an identical empty file 
u~mg OTR again (no optimization work done), and use 
IM~ (the POP-ll's equivalent of CONVERT) to populate 
the indexed file and it takes 17 seconds. The 
.reason for the difference is that DTR is a general 
query and report language whereas IFI, is written for 
the sole purpose of populating indexed files. 

Disk fragmentation: this is not directly an 
RMS problem, but it is something to know about. A 
fragmented disk causes performance degradation and 
usually implies fragmented files as well. As you' 
create and delete files, and extend files, your free 
space tends to be scattered about the disk in small 
chunks. All of the normal backup utilities (BACKUP, 
BRU, DSC) do disk compression as they copy disks. 
One way to find out if your disk is fragmented is a 
utility called FRAG, available through the DECUS 
library or SIG tapes for VMS and RSX. Because 
fragmentation happens gradually while the system is 
used, it can be a rather subtle performance 
degradation that may not be immediately obvious. 
Fragmentation is an important reason for making 
backup copies of your disks fairly often. If you 
have fixed media disks (Winchesters) and are backing 
up your disks to tape, you are not compressing the 
disks, which are probably getting more and more 
fragmented. You should either get extra disks (if 
you can) and copy disk to disk, or else you have to 
copy from disk to tape, then back from tape to disk 
to get the benefits of compression. If you have 
removable disks, you should copy from disk to disk, 
put the old disk on the shelf as a backup and run 
with the new disk. This not only gives you the 
advantages of disk compaction, it also tells you 
very quickly if the copy procedure worked, and if it 
didn't your original disk is safely on the shelf. 
(There are many people who backup to tape only, or 
backup to disk and put the new disk on the shelf, 
and it's only when a disaster occurs that they find 
out that their backup copies aren't usable.) 

Questions and Answers. 

Steve Hicks, Rockwell International. 
Question: When you create a file with OTR, is it 
CONTIGUOUS or CONTIGlJOlJS_BEST_TRY? 

Answer: sometimes. 

Question: Will using FOL to set it 
CONTIGUOUS gain anything? 



Answer: perhaps, but certainly you should get the 
PDL file and check. 

Question: Can you change a Prolog-2 to 
a Prolog-3 with a set command in FDL? 

Answer: you can specify it with the FDL editor. 

Question: I have a file which which has fields 
which arc not keys. Will they be compressed? 

Answer: you can specify data compression 
independently of key data compression for this. 
(.Joe:) Note that compression works on adjacent bytes 
with the same value. If your field is filled with 
different characters, you don't get compression. If 
your field is all blanks or zeros, or some 
characters followed by trailing blanks, for example, 
then you do get compression. You need strings 
longer than 4 or 5 bytes to get an advantage from 
compression. (Gary:) There is a system parameter to 
set Prolog-2 or Prolog-3 as the system wide default, 
but there is no system wide parameter to set data 
compression on or off as a default. (Unidentified 
comment:) There may be a speedup in looking up keys 
when compression is on. (Much of the later comments 
were off the microphone: apparently the user saw a 
considerable improvement.) (Gary:) We just ran into 
problems where we tried data key compression, and 
found the system was deleting records. There were 
about 60,000 records in the file, and CPU usage 
greatly increased. (Joe:) It depends on the data: 
you cannot make a general rule of thumb about files 
going faster or slower with key compression. The 
other issue has to do with the nature of the key. 
If adjacent keys have a lot of commonalty (for 
example, the keys are values such as 12345, I 2346, 
12347, 12348), then you get a lot of compression: 
if the keys are vary different, you get much less 
compression. A file which has a lot of compression 
may well sec a performance improvement. [Audience 
comment not audible: apparently the key in question 
was a ZIP code.) A ZIP code would an ideal case 
where you have a lot of duplicate or similar keys, 
resulting in considerable compression. Other types 
of data might not work as well. 

Warren Alkire, Abilene Christian University. 
Question: Once you have your FDL file, do you 
ever need to edit it again (once it's optimized). 

Answer: once you have the file in a state where you 
are satisfied with the performance, quit. Sometimes 
you can keep on tuning, other times FDI, my indicate 
that this is the best you can get. 

217 

Question: I may convert the file, then a week or 
two later may need to convert it again. Do I 
use the same FDL file? 

Answer: if the nature of the data you have has 
changed significantly, then maybe you want to 
optimize again. If the nature of the data hasn't 
changed, and you are just adding records, then you 
can use the same FDL file. 

Rick Trane, (?) Engineers, Milwaukee. 
Question: You stated that if you delete a record, 
it is physically still in the bucket, and is not 
removed until you do a reclaim on the file, is 
that correct? 

Answer: some of the space does get reused. What 
happens is that there is a pointer in the bucket 
saying that there used to be a record here. If 
there is still enough free space in that bucket to 
hold a new record and a new pointer, then the space 
may be reused, but there is still an extra pointer 
from the original record. A lot depends on the size 
of the record: if the record is, for example, 480 
bytes long and you have a bucket size of I which is 
512 bytes, there is only room for one record and 
pointer. If you delete the record, there is not 
enough room for a record and two pointers, so the 
space docs not get reused at all until the file is 
compressed. If, however, the records are only 20 
bytes long, there is room for several records and 
pointers in a single bucket, and some space may be 
reused. (.Joe:) If the file has a single primary 
key, under version 4 of VMS it can be deleted and 
reclaimed immediately: if there are secondary keys, 
it can't reclaim space, and you have to use CONVERT. 

(Unidentified) 
Question: Our problem is with a file that 
has alternate keys which allow duplicates. Any 
hints for access time? 

Answer: you must understand that if a key is not 
unique and there are many duplicates (for example, 
if sex is a key in a personnel file and about 51 % 
have the same key), you arc essentially using half 
of a sequential file, and there isn't much that can 
be done for performance. The best performance 
occurs when keys are unique or nearly unique. 
[Remainder lost from end of tape.] 



Procedure used to compare loading a file with 
DATATRIEVE and IFL. 

This was placed in an indirect command procedure so 
no time would be lost typing in the commands. It 
was run on a PDP-11/70 using RSX and no other users. 

>PIP YACHT.DAT;*/DE 
>DTR @DY 
DEFINE FILE YACHTS 

>TIM 

KEY=TYPE(NO DUP), 
KEY=MODEL(DUP, NO CHANGE), 
ALLOCATION=30, SUPERSEDE 

09:02:04 02-DEC-82 
>DTR @Tl 
READY YACHTS WRITE 
READY YACHTS-SEQUENTIAL 
FOR YACHTS-SEQUENTAIL STORE YACHTS 

USING BOAT=BOAT 
>TIM 
09:05:04 02-DEC-82 

[Elapsed time 2:46) 
>PIP YACHT.DAT;*/DE 
>DTR @DY 
DEFINE FILE YACHTS 

>TIM 

KEY=TYPE(NO DUP), 
KEY=MODEL(DUP, NO CHANGE), 
ALLOCATION=30, SUPERSEDE 

09:05:04 02-DEC-82 
!FL YACHT.DAT=YACHT.SEQ 

PRIMARY KEY: 
SORT HAS STARTED 
SORT MERGE PHASE HAS FINISHED 

ALTERNATE KEY(S) 

>TIM 

SORT MERGE PHASE HAS FINISHED 
ALTERNATE KEY(S) 1: 

NUMBER OF INPUT RECORDS: 113 
NUMBER OF OUTPUT RECORDS: 113 
NUMBER OF EXCEPTION RECORDS: 0 

09:05:21 02-DEC-82 
[Elapsed time 0:17] 

>@ <EOF> 

218 

Example of output from FRAG utility 

Disk fragmentation statistics 
for DWl: 

28-APR-86 09:18:40 

Contiguous free blocks (Holes) 

Number 
Hole Range Frequency Blocks 

1 - 8 23 76 
9 - 16 6 79 

17 - 32 0 0 
33 - 64 0 0 
65 - 125 3 225 

126 - 250 1 212 
251 - 500 1 304 
501 - 1000 0 0 

1001 - 2000 0 0 
2001 - 4000 1 3311 
4001 - 8000 0 0 
8001 - 16000 0 0 

16001 and up 0 0 

Largest free block 3311 
Total free blocks 4207 







TEST GENERATION AND COURSE MANAGEMENT WITH DEC'S CML, 

COMPUTER MANAGED LEAR.~ING SOFTWARE 

Claude M. Watson 
Lansing Community College 

Lansing, Michigan 

ABSTRACT 

This session will feature the Computer Based Training 
software developed by CBTS of Canada and marketed by 

Digital in the U.S. Test generation and course manage­
ment are combined in a single integrated system. The 

power and flexibility will be discussed. Topics covered 
will be: features, description, success and popularity, 

equipment and support for variety of options, and training 
required for best use. This report is based on two years 

experience. 

This session was presented by Claude M. Watson, 
Divisional Computer Coordinator, Arts & Sciences 
Division, Lansing Community College, Lansing, Michi­
gan and described LCC's experience with an education­
al management software package. 

Introduction to CML 

The Computer Managed Learning (CML) system is a 
software package designed to manage learning activi­
ties in an educational environment. The system was 
developed and marketed by Computer Based Training 
Systems, Ltd, (CBTS) of Calgary, Alberta, Canada. 
The main features of the system are menu access to 
the various CML options, a test generating system, 
and a course management system. The CML system runs 
on VAX computers using the VAX editor EDT extensive­
ly and supports integration with DEC software such 
as CAS-DAL, REGIS, etc. While it is designed espe­
cially for independent study types of courses, its 
features can be adapted to manage traditional classes 
as well. 

History of Computer Course Management at LCC 

Prior to obtaining CML by CBTS, LCC faculty had 
developed extensive test generating systems for two 
independent study courses on a Hewlett Packard com­
puter. These systems were complex and dependent on 
support from staff members with other responsibili­
ties. When new computing facilities were obtained, 
support became increasingly difficult to maintain 
and the courses began to shift back to traditional 
classroom courses. 

Introduction of CML by CBTS 

In the fall of 1982, the college received a Title III 
grant to assist faculty in achieving computer liter­
acy and to pilot both the training of staff and the 
introduction of the computer to the classroom. By 
the following fall, the CML package had been identi­
fied, evaluated and obtained. The CML software 
package was installed and a five day intensive 
training program was conducted by CBTS. Eight Com­
puter Assisted Instruction (CAI) Coordinators and 
trainers participated. Following this training, a 

Proceedings of the Digital Equipment Computer Users Society 

221 

pilot project was begun in 1984 with the Rocks and 
Stars course. Workshops were then developed for the 
training of other faculty. 

The implementation of CML generally has followed 
three steps at LCC. The first is training, second 
is the development of test banks, and finally, 
course management is implemented. At this time, 
27 courses have test banks in the development or 
implementation stages. 

Features of CML 

The menu overview, Figure 1, shows the key features 
of CML. Figure 2 shows the actual Main Menu 1 as it 
appears on the terminal screen. The general cate­
gories which the user may select, as shown in 
Figure 1, are: 

(1) Item 2.0, Testbank. Test bank editing, 
test bank reports, and test generation are controlled 
by the Test Bank Menu 2.0 (Figure 3). 

(2) Item 3.0, Course. Figure 4 is the Course 
Menu 3.0, which controls the creation and editing of 
a course, as well as choices to create student 
records. 

(3) The remaining menu items 4.0 through 9.0 
identify the support for other DEC products, course 
reports, and the student menu that provides the 
supporting structure for operating a course. 

A very important feature of CML test banking is the 
classification scheme for cataloging questions 
(Figure 5). Figure 6 diagrams in three dimensions 
the "MMOQQ" coding for numbering the questions with: 
MM, module number up to 99, O, objective number up 
to 9, and QQ, questior number up to 99. This gives 
a possible total number of questions of 99 x 9 x 99, 
or 88,209 for each test bank. 

In addition to identifying the questions with five 
digits, each question has a header, described in 
Figure 5, that is 14 more digits long. This provides 
a very flexible scheme for identifying key features 
for classifying questions, such as type, value, 
degree of difficulty, lock level and cognitive level. 
A variety of kinds of questions can be used, such as 
multiple choice, true-false, problems with randomly 
generated variables, essay and completion. Questions 

Dallas Texas - 1986 



can be classified to produce general tests for a 
course, pre-tests, tests by topic, by level of diffi­
culty, or by instructor where more than one instruc­
tor is involved in teaching a course. 

The Course Management portion of the CML system also 
makes use of the VAX editor EDT to allow the user to 
organize the sequence of course objectives, the 
testing methods, and tracking of the student's prog­
ress through a course. Figure 7 is a three dimen­
sional view of the main parameters involved in 
"mapping" a course. A course can be composed of up 
to nine subjects with 99 testing points each. Each 
of the testing points can have up to 19 decision 
options. Independent study courses can be organized 
and managed in a variety of ways. For traditional 
courses, norm referencing is available. 

Training and Training Materials 

A system that allows so many options and the ability 
to meet so many educational challenges requires 
training for its users to be able to effectively 
take advantage of its potential. LCC's initial 
training for trainers was provided by CBTS at the 
time the software package was installed. One of the 
initial faculty trainees, in cooperation with LCC 
technical staff, began a pilot program which included 
establishment of a test bank. This program served as 
a model as training proceeded for other faculty. 
Training of additional staff was offered in various 
workshop or seminar formats in two categories: test 
banking and course mapping. Development of test 
banks is a natural first step, so two types of work­
shop formats were developed in this area. The most 
effective was two full, consecutive days of training. 
The second option was one hour per week over a five 
week period, with lab time provided additionally. 
Training for course management has been offered in 
the same choice of formats, Knowledge of or experi­
ence with test banking is a pre-requisite. 

Materials developed for use in training workshops 
have also proved useful as aids to self-study. 

Surrnnary 

The CML system provides a set of programs to support 
a wide variety of learning environments, Users can 
use a few or as many as they wish, Inherent in the 
system are the tools to analyze and improve the test­
ing and the delivery of instructional materials. A 
tribute to the power and flexibility of the CML soft­
ware has been the many ways and levels at which 
the various departments at LCC have implemented the 
system. 

In order to provide these options and flexibility, 
the system is necessarily complex. To make the most 
effective use of CML, ongoing training is important. 
Effort and support are required. At LCC, faculty and 
students have been enthusiastic about the benefits 
obtained. CML is clearly superior to previous 
management systems developed in-house, 

222 



MANAGER MENU 1.0 

1.0 MAIN MENU 

Supporting Menus 

2.0 TESTBANK -- 2.9 GUIDES 

Edit Menus 
Documentation Menus 
Test generating screen 

3.0 COURSE 3.3 COURSE EDIT 

3.5 COURSE SUPERVISOR -- 3.5.2 SUPERVISOR REPORTING 
I 

3.5.3 SUPERVISOR MANAGING 

4.0 STUDENT 

5.0 ANALYSIS 

6.0 INSTRUCTOR 

7.0 UTILITY ------------------- 7.2 MANUALS 

7.3 LOCAL PROCEDURES MENU 

8.0 NORM - REFERENCED --------- 8.3 NORM REFERENCED ROSTER 

8.4 NORM REFERENCED SCORES 

9.0 CBI DEVELOPMENT MENU ------ 9.6 DEC GRAPHICS MENU 

9.7 DEC CAS MENU 

Figure 1. Menu Overview 

223 



******************************************************************* 
* CML 2.7 MAIN MENU 1.0 cbts * 
* ============================================================== * 
* PF2=HELP PF4=EXIT * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Please select one of the following * 
* 
* 

or type Help for additional information: 

l. EXIT 
2. TESTBANK 
3. COURSE 
4. STUDENT 
5. ANALYSIS 
6. USER PRIVILEGES 
7. UTILITY 
8. NORM REFERENCE 
9. CBI -

* - Return to CML ID Menu or DCL * 
- Display Testbank Menu * 
- Display Course Creation Menu * 
- Display Student Menu * 
- Display Course Analysis Menu * 
- Display User Privileges Menu * 
- Display Utility Menu * 
- Display Norm reference Menu * 
- Display CBI Development Menu * 

* 
Enter option number or name and press <RETURN>=~~~~ * 

* 
* 
* 
* ******************************************************************* 

Figure 2. Main Menu 1.0 

******************************************************************* 
* CML 2.7 TESTBANK MENU 2.0 cbts * 
* ===========================·-=-================================ * 
* PF2=HELP PF4=EXIT * 

Please select one of the following 
or type Help for additional information: 

l) EXIT - Return to MAIN menu 
2) CREATE - Create a new test bank 
3) EDIT - Edit an existing test bank 
4) CHECK - Check testbank for errors 
5) MATRIX - Difficulty & cognitive level matrix 
6) CHARACTERISTICS- Question characterstics listing 

* 
* * 
* 
* 
* 
* 
* 
* 

* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

7) DOCUMENT - Access to curriculum bank documents * 
8) EXAM - Draw exams from testbanks 
9) GUIDES - Display module study guide menu 

Enter option number or name and press <RETURN>=~~~~ 

* 
* 
* 
* 
* 
* 
* 

******************************************************************* 

Figure 3. Testbank Menu 2.0 

224 



******************************************************************* 
* CML 2.7 COURSE MENU 3.0 cbts * 
* =============================================================== * 
* PF2=HELP PF4=EXIT * 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

Please select one of the following 
or type Help for additional information: 

l) EXIT - Return to MAIN menu 
2) CREATE - Create a new empty course file 
3) EDIT - Display a Course Edit Menu 
4) ROSTER - Enroll or remove students 
5) SUPERVISE - Instructor Reporting and Managing 
6) EXAM - Generate single course exam 
7) MULTI_EXAM - Generate range of course exams 

Enter option number or name and press <RETURN>:~~~~ 

* 
* 
* 
* 
* 
* 
* 
* Option* 

* 
* 
* 
* 
* 
* 
* 
* 

******************************************************************* 

******************************************************************* 
* CML 2.7 COURSE EDIT MENU 3.3 cbts * 
* =============================================================== * 

* 
* 
* 
* • 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 
* 

PF2=HELP PF4=EXIT 
Please select one of the following * 

* 
* 
* 

or type Help for additional information: 

l) EXIT - Return to Course menu * 
2) EDIT - Edits the Course File * 
3) SUBJECTS - Give a list of Subjects * 
4) MAP - Give a Map of a Subject * 
5) LIST - Course Decission Listing * 
6) SUMMARY - Give a summary of Group Exams * 
7) RESOURCES - Estimate of Terminal Resources Required * 

Enter option number or name and press <RETURN>=~~~~-
* 
* 
* 
* 
* 

******************************************************************* 

Figure 4. Course Menu 3.0 and Course Edit Menu 3.3 

225 



Coding system - Test Questions 

Question_Characteristic_Coding 

Each question can be 100 lines long, 00-99 coded as LL appended to 
the location coding resulting in line coding of MMOQQLL. Line oo of 
each question contains the characteristic coding as follows: 

MMOQQ 

There are a possible 99 modules. 
Each module can have up to 9 objectives 
with 99 questions for each objective. 

MMOQQOO IITTBBLLCVVNDDFAnswer(s) 
where II instruction statement number 01 - 99 

TT question type = 01, 02, 03, 05, and 09 
01 for Multiple Choice 
02 for True/False 
03 for Short Answer (completion/matching/etc.) 
05 for Problem solving (self generating) 
09 for Assignment (non computer marked) 

BB Blank Lines left .after question printing 01 - 99 
LL Lock Level (Ol, 02, 04, 08, 16, 32, 64) Total = 127 

C Cognitive level currently only lock level masks from 1 
to 9 can be use4 when setting up course decisions. 
categories: K, C:,. A, OS 

VV Question value 01-99 
N Number of answers expected O - 9 

1 for Multiple Choice and True-False 
1 to 9 for Short Answer and problem solving questions 
o or l for Assignment questions 
if o the question is assumed answered when issued, other 
questions are marked normally. 
If 1, the question and any others on the exam can not 
be marked until the instructor receives the assignment 
and clears the student via the Main program. 

DD Degree of Difficulty O - 99 
F Future expansion fields 

Answer Correct answer expected. 
Multiple choice: o to 6 or A to F (must be capital letter) 
True False: T or F 
Short answer: each answer terminated by a 1 (semicolon). 
Alternate correct answers separated by an &. 

Problem solving: no answer in answer field required. 
Assignment: Can be coded answer known only to instructor. 

Figure 5. Testbank Classification Scheme 

226 



.............. . . . . . . 

CML TESTBANK STRUCTURE 

3 COMPLETION/MATCHING 
5 SELF GENERATING 

MATHEMATICAL 
9 ASSIGNMENTS 

Figure 6, Three Dimensional Testbank Coding Diagram 

227 

CBTS61) 

Each 9uestion is 
allowed 99 lines 
-about 1.5 p:iges 

T~pes 1 to 5 are 
coMputer issued 
3nd ~arked -t~pe 
9 is cor111:,uter is­
sued, instructor 
M:srked, 



Subject 1 

Subject 2 

Subject 9 

CML COURSE STRUCTURE 

....... T ....... r·······r······r·······-r·······T ....... . 
.___.____._ ........................ ,, .................... , ••••••••• J ................... . 

" TESTINC POINTS: 
i = l'IJDULE 
C • SUBJECT PRE-TEST 
P = DOMAIN PRE OR POST TEST 
S = DOMAIN SL.fERVISED POST TEST 
G = DOMAIN UN-SUPERVISED POST TEST 
N = NON ISSUE ELEMENT 
F = FLAG 
E = SUBJECT END TEST (FINAL) 

Figure 7. Three Dimensional Course Management Diagram 

228 

CBTS59 



THE MANAGEMENT OF COMPUTER RESOURCES 
WITH A WELL DESIGNED ACCOUNTING STRUCTURE 

By Philip A. Dawdy, System Manager of a VAX 11/780 
Lansing Community College 
Lansing, Michigan 48901 

ABSTRACT 

This paper describes good system management techniques as 
well as specific accounting and file structures used to 

manage Lansing Community College computer resour~es. 

OVERVIEW 

LCC's VAX is primarily used for academic applica­
tions. All computer sites are different, and there­
fore the material presented is not to be construed 
as the only method for effectively managing a compu­
ter installation. The ideas are provided to convey 
concepts which you may or may not find applicable 
for your particular site. 

The following is a summary of our VAX installation: 

VAX 11/780 (w/FPA), 8 MB memory, (2) 500 MB hard 
disks, tape drive, 96 DZ-11 ports. The 96 devices 
consist of 46 VTlOOs, 7 VT125s, 13 VT24ls, 14 GIGI 
terminals, 2 modems, 6 matrix printers, 6 laser 
printers, 1 line printer, and 1 plotter. 

Software installed is VMS 4.3, FORTRAN, BASIC, 
PASCAL, 20/20 spreadsheet, SPSSX stat. package, 
CML (Computer Managed Learning), GAS (Courseware 
Authoring System), and GIGI software. 

Over 1000 user accounts are authorized on our VAX. 
More than 50 percent of these are for computer 
science courses. During peak loads, 35-40 con­
current users is the maximum. 

Students use the VAX for computer based education 
and for learning computer science. Faculty use it 
for course management and developing course mater­
ials. Staff and faculty develop lessons, drill and 
practice, and laboratory support. They also create 
procedures to facilitate user access to resources as 
well as run statistics on various courses. 

IMPORTANT MANAGEMENT GOALS 

The following goals are useful in all environments, 
but are considered important at our academic site: 

o Provide a user-oriented environment 
o Program automatic procedures 
o Document all developments 
o Provide technical support and training 
o Create common conventions (facilitates usage) 
o Provide a means for simple shared file access 
o Create well-organized file and account structures 
o Communicate with users and listen to requests 
o Inform users in advance of system changes 

Proceedings of the 01g1tal Equipment Computer Users Society 

229 

PRACTICES IMPLEMENTED TO FACILITATE USAGE 

System-wide symbols are assigned to the most useful 
commands desired. User tasks are therefore simplied 
and made more efficient. Logical names are assigned 
with a common methodology and the more frequently 
used logicals are short -- thus easy to remember. 

All commands that are added to VMS are documented. 
On-line help for each command is obtained via enter­
ing LCCHELP. Documentation files are also available 
for the purpose of viewing or printing. By entering 
the command DOC, you can list or print any document 
in the LCC$DOC directory. For the newcomer, the 
special file $$$READ_FIRST.DOC provides a good 
starting place. $OUTLINE.DOC is an outline of all 
documentation -- correlating the files with each. 

A sample of our documentation files are: VAX_INTRO, 
VAX_ACCESS, VAX_HARDWARE, VAX_SOFTWARE, VAX_HELP, 
VAX_POLICIES, ACCOUNT_TYPES, ACCT_CLASS, DEVICES, 
DISK_STRUCTURE, COMMON_VMS_CMDS, LCC_LOGICALS, 
ENVIRONMENT, ENV_STRUCTURE, LIBRARY USAGE. 

ACCOUNT STRUCTURES AND CLASSIFICATIONS 

Accounts are authorized by having the user fill out 
an "Account Authorization Request Form." This helps 
the system manager classify and file the account. 
The authorization procedure is automated and only 
requires five inputs per account. Entries include: 
"environment" (department or program), username, 
owner, password (defaults to username), and any 
additional accounting options. 

At LCC there are five divisions, each division 
having several departments or programs. Under VMS 
V3, there was a severe limitation of file access via 
UIC's. The UIC system is much too restrictive and 
only allowed one level of hierarchy that places 
members into a specific group. This caused the 
division and its various departments to be placed 
into different groups. Computer science classes 
are each placed into different groups also. 

The member number within a group determines another 
type of classification: group library, development 
leader, personal development, shared management, 
shared CML (Computer Managed Learning), shared CAI 
(Computer Assisted Instruction), class instructor, 
and class students. 

Dallas Texas - 1986 



ACCOUNT STRUCTURES AND CLASSIFICATIONS cont. 

At LCC there are three major types of accounts: 

o Personal Account -- private and permanent. 

o Shared Account -- usually captive and shared 
by many users. Four categories are used at 
LCC: CAI (Computer Assisted Instruction), CML 
(Computer Managed Learning), LIB (for library 
management -- obsolete), and class management. 

o Class Account -- private and temporary for in­
structors and students. Each student has their 
own account like the instructor. Since class 
accounts are never removed, all files are 
deleted and passwords are reset each term. 

As was mentioned, under VMS V3 there was no way to 
create a hierarchy of environments that would place 
the division at the top, its departments at level 
two, and any department disciplines at level three. 
This desired scheme would allow accounts to access 
files at its own level or below. 

With the new AGL (access control list) feature of 
VMS V4, the structure and access of files on the 
system could fit the desired hierarchial structure 
at LCC. This scheme has been implemented at LCC and 
has provided a much more flexible environment for 
every user while increasing the security as well. 

Many users have wondered whether ACL's are a burden 
on the system. When few (less than ten) AGL entries 
are used, the extra overhead is very small -- as we 
have experienced. The use of special identifiers 
and wildcards helps decrease AGL entries. Most 
managers and DEC technical staff agree that there 
is little performance degradation for few ACL's. 

ACCOUNT POLICIES 

In addition to the normal policies of scheduling 
backup and assigning default protection schemes, LCC 
has many policies that are designed to help share 
the various computer resources equally. A detached 
program called WATCHDOG (nicknamed RABID_DOG) runs 
on the system to provide the following services: 

o Connect time is conditionally enforced when all 
terminals in a predefined area are active. 

o Idle (inactive) terminals are logged off after 
certain time periods. Users are given warning. 

o Under heavy loads: disconnected processes not 
running an image are logged off, interactive 
compiles and links are lowered priority, and 
GAMES account is not allowed access. 

o Special warnings are sent when CPU is low. 

Even though computer science students can type list­
ings directly in, the policies that follow help keep 
the temptation to copy other students programs low: 

o Mail cannot be received (however it can be sent). 

o Files cannot be copied from other student's. 

ENVIRONMENTS AND THEIR STRUCTURE 

Environment is defined as a common group of users 
that share most of the same resources. Files and 
logical names that reference files and devices are 
important resources to environments. There are 
three major classes of environments at LCC: 

1) System (identifier SYS) 

2) General (identifier GEN) 

3) CBE (Computer Based Education). Environments 
are broken up by divisions and departments. A 
two or three character abbreviation is used to 
identify each environment. Names of logicals 
and root directories are derived from these 
short "identifiers" to maintain commonality. 

The departments within a division are a sub­
environment of the parent -- providing the 
hierarchy of file access as desired. At LCC, 
the Arts and Sciences division and Business 
division hold the following identifiers: 

AS 
HUM COM MTH SCI SS CPS 

BUS 
MS OS MDC GAS HS CJS AFS 

DISK FILE STRUCTURE AND CORRESPONDING LOGICALS 

Figure 1 illustrates the structure of environments 
for the user disk directories. The top-level direc­
tories represent the divisions. The directories at 
the second level represent the departments. 

All "U$" entries signify a user disk environment 
root. For example, U$AS is the Arts and Sciences 
division main root. Each root directory contains 
four main subdirectories for the various types of 
accounts. Personal account directories are placed 
in the [.PER] subdirectory of the environment root. 

Logicals U$AS: and U$AS_: point to the AS divisional 
roots. U$AS_: is a root of the U$AS directory. 
U$AS: is a root of [.PER]. Therefore, account RED's 
personal directory is accessed via U$AS:[RED]. 

Figure 2 illustrates the structure of the system 
disk shared library directories. All "L$" entries 
signify a library for each environment. Again, the 
hierarchy is maintained for both structure & access. 
Logicals for the libraries are prefixed with "L$". 
Therefore, L$AS: is the library for the AS division. 

To access your own environment library, the LIB: 
logical used. It is assigned automatically at login 
for all users. Therefore, L$env: logicals are only 
needed for other environment libraries. 

VMS does not allow you to access a subdirectory via 
a non-rooted logical that points to the parent dir­
ectory. At LCC, we have set up a convention for 
easy access to subdirectories. By appending an 
underscore to a logical that points to a directory, 
you may then use the new logical to access its sub­
directories. Therefore, LIB_: allows you to assess 
subdirectories in your default library. 

230 



User Disk Structure 

FIGURE 1 

System Disk 
Li bra ry Structure 

LCC$HELP: 

FIGURE 2 

231 



SHARED LIBRARY USAGE AND ACCESS 

General-purpose directories are set up on the system 
disk called libraries to allow files to be shared 
between users. The divisional libraries are access­
ible by all users of the system. However, depart­
mental libraries are only accessible by the individ­
ual department that owns it as well as its division. 

To copy a file into your default library, use the 
command: 

COPY file.ext LIB: 

To copy a file from a subdirectory of your library 
into your current directory, use the command: 

COPY LIB_:[sub]file.ext * 

The L$env logicals are used to access libraries 
other than your default library. 

Figure 3 illustrates the library access from a 
divisional account, departmental account, and CPS 
class accounts. The arrows between the account and 
the library shows the direction of access (read and 
write). Notice that the Communications department 
(COM) accounts may only read files from the divi­
sional library. They have read or write access to 
their own library (L$COM). The divisional accounts 
also have read or write access to any departmental 
library as well as their own divisional library. 

The rationale for setting up the libraries in this 
manner is managerial in nature. Each library is 
maintained by key users (library managers) in each 
environment. Any user may write files into their 
own shared library, but they become the owner. Once 
a file has been determined as useful and permanent 
by the library managers, they may reassign ownership 
of the file to the library (via identifiers). Thus, 
you are not charged disk quota usage. The system 
charges it against the library identifiers. 

Library 

COM Dept. 
Account 

THE KEY TO FILE ACCESS WITH RESPECT TO ENVIRONMENTS 

Special identifiers, logical names, logical tables, 
and file ACL's are the key to file access for all 
environments at LCC. At system startup, top level 
environment logical tables are created for the 
entire divisional tree (see figure 5). At login, 
the appropriate logical table is linked and your 
job logicals are assigned automatically by the 
system-wide login program. 

In addition to the four default logical tables (pro­
cess, job, group, and system), two more tables are 
linked up via the LNM$FILE_DEV logical (see figure 
4): LNM$SITE and LNM$ENV. Instead of assigning 
system-wide logicals to the system table, they are 
assigned to LNM$LCC which is assigned to LNM$SITE. 
This keeps the system logical table and the site 
table uncluttered with each other's logicals. 

The hierarchial file access for the libraries are 
dictated by the ACL's on the library directories. 
The following shows part of the AS library ACL's: 

L$AS.DIR;l 4/4 L$AS (RWE,RWE,RWE,RE) 
(ID=L$AS,OPTIONS=PROTECT,ACCESS=R+W+E+D+C) 
(ID=L$AS,OPTIONS=DEFAULT+PROTECT,ACCESS=R+W+E+D+C) 
(ID-[AS,*],ACCESS=R+W+E) 
(DEFAULT_PROTECTION,S:RWED,O:RWED,G:RE,W:RE) 

Directory SY$:[L$AS] 

L$COM.DIR;l 4/4 L$AS (RWE,RWE,RWE,) 
(ID=L$AS,OPTIONS=PROTECT,ACCESS=R+W+E+D+C) 
(ID=[COM,*] ,ACCESS=R+W+E) 
(ID=[AS,*],ACCESS=R+W+E) 
(ID=L$AS,OPTIONS=DEFAULT+PROTECT,ACCESS=R+W+E+D+C) 
(ID=[COM,*] ,OPTIONS=DEFAULT,ACCESS=R+E) 
(ID=[AS,*] ,OPTIONS=DEFAULT,ACCESS=R+E) 

LOGIN.COM;20 1/1 L$AS (RWED,RWED,RE,RE) 
(ID=L$AS,OPTIONS=PROTECT,ACCESS=R+W+E+D+C) 

L$CPS: 

l$CPS: 

CPS Instr. 
Account 

FIGURE 3 

232 



The divisions at LCC are fairly autonomous. How­
ever, sometimes it may be desirable to share or 
access files in divisions other than your default. 
Therefore, a special utility called ENVIRONMENT was 
created to provide you with easy access to external 
environments. It performs the following functions: 

1) List all possible environment names: 

ENV (or ENV/LIST) 

2) Set your default directory to another user s 
personal account home directory. For example: 

ENV VAXUSER 

sets your default to VAXUSER's home directory. 

ENV/LOG AS 
Default directory is U$AS_:[OOOOOO] 

sets your default to the AS division's top root 
directory and logs the command. 

3) Reassigns logicals LIB: and LIB_ in your job 
logical table to point to a different library. 
For example, to reassign your default library 
to be the Communications department library, 
use the command: 

4) 

ENV/ASSIGN COM 

The logicals would be assigned as follows: 

LIB: 
LIB : 

"L$COM:" 
"L$COM_:" 

(Comm. library) 
(root of L$COM) 

Adds or replaces a parent environment logical 
table to/with your current lookup table list. 
For example: 

ENV/ADD BUS 

links the Business division's logical table 
along with your default. 

5) Sets environment related symbols for use in 
command procedures. The following command sets 
local symbols (for use in a command procedure) 
for the Communications department: 

6) 

ENV/SYM COM 

sets the following symbols: 

ENV$ID= 
ENV$DIR= 
LIB$DIR= 
P ENV$ID= 
ENv$ALL= 

11 COM 11 

"U$AS.U$COM" 
"L$AS.L$COM" 
"AS 11 

"AS HUM COM MTH SCI SS CPS" 

Shows the current settings of any of the above. 
For example: 

ENV/SHOW=(PARENT,LOGICALS) 

Environment COM has parent AS 

Environment Logicals: 

LIB: 
LIB_: 

SY$:[L$AS.L$COM] 
DRAO:[L$AS.L$COM.] 

233 

FILE PROTECTION SCHEME 

The default UIC protection for user files is the 
standard (S:RWED,O:RWED,G:RE,W). However, ACL's 
have been used to provide the special access methods 
described. Even the divisional logical tables are 
protected so that divisional managers are able to 
write to it while others can only read it. Until 
queue ACL's have been implemented, we have assigned 
area managers to be owner of their printer's queue. 

As mentioned earlier, library managers are granted 
the right to manage their division's libraries. 
They are the only ones that have the right to assign 
library ownership to files placed in the libraries. 

Computer class account directories have a special 
ACL setup that disallows students to access files 
from other student's directories. We implemented 
this by assigning ownership of their directory to 
the system manager. ACL's were placed on each 
student directory granting read, write, and execute 
access to the student as well as the instructor. 
Since students do not own their directory, they 
do not have "control" access that normally allows 
them to change their directory protection. This 
scheme has been very effective and secure. The 
directory ACL's are shown below for an LCC BASIC 
class (BASQOO is the instructor): 

BASQOO.DIR;l 3/3 [SYS,MANAGER] 
(ID=[CPS,*],ACCESS=R+W+E) 
(ID=[BASQOO],ACCESS=R+W+E) 

BASQOl.DIR;l 3/3 [SYS,MANAGER] 
(ID=[BASQOl] ,ACCESS=R+W+E) 
(ID=[BASQOO],ACCESS=R+W+E) 

BASQ02.DIR;l 3/3 [SYS,MANAGER] 
(ID=[BASQ02],ACCESS=R+W+E) 
(ID=[BASQOO],ACCESS=R+W+E) 

BASQ41.DIR;l 3/3 [SYS,MANAGER] 

SUMMARY 

(ID=[BASQ41],ACCESS=R+W+E) 
(ID=[BASQOO] ,ACCESS=R+W+E) 

(RWE, RWE, , ) 

(RWE,RWE,,) 

(RWE,RWE,,) 

(RWE,RWE,,) 

Creating a computing environment like the one that 
has been implemented at Lansing Community College 
has not been an easy task. It requires a system 
manager with VMS and programming expertise, as well 
as many months to design and implement all of the 
features. Delegating responsibility to users by 
granting them additional access rights relieves the 
system manager(s) of many duties and helps motivate 
the individuals. 

Users have found our system to be easy to use and 
flexible while maintaining tight but not excessive 
security. Our environment promotes development, 
motivates the user, and allows the user to easily 
communicate with the system manager. Listening to 
users and their requests as well as implementing 
innovative ideas ensured the success of our site. 

* 



N 
w 

""' 

System Logical Table Directory Arts and Science Division Environment Logical Table 

(LNM$SYSTEM_DIRECTORY) [kernel] [shareable,directory] I (LNM$AS) (exec] (shareable] 
[Protection=(RWE,RWE,R,R)] [Owner=[SYS,SYSTEM]] 

Logical Tables: 

[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
(exec] 
(exec] 
(exec] 
[exec] 

11 LNM$AS 11 

"LNM$BUS" 
11 LNM$CML" 
11 LNM$GEN 11 

"LNM$LCC" 
11 LNM$SPS 11 
11 LNM$SYS 11 

"LNM$TAS" 
"LNM$TCA" 

[kernel] 11 LNM$SYSTEM DIRECTORY" 
[kernel] 11 LNM$SYSTEM:::TABLE" 

Logical Names Pointing to Logical Tables: 

(super] "LNM$DCL_LOGICAL" 

[super] 

[exec] 
[exec] 
[exec] 
[exec] 

"LNM$FILE_DEV" 

"LNM$$AS" 
"LNM$$COM" 
"LNM$$SCI" 
"LNM$$SS 11 

11 LNM$FILE_DEV" 

"LNM$PROCESS", "LNM$JOB", "LNM$GROUP 11 , 

11 LNM$SITE", 11 LNM$ENV 11 , "LNM$SYSTEM11 

11 LNM$GROUP 000110 11 

11 LNM$GROUP-000112 11 
11 LNM$GROUP-000ll4 11 

"LNM$GROUP:::oooll5 11 

[exec] "LNM$ENV" 11 LNM$SYS" I "LNM$AS", "LNM$BUS", "LNM$SPS 11 ' 

"LNM$TAS" I 11 LNM$TCA11 , 11 LNM$GEN" 

[exec] 
[exec] 
(exec] 
(exec] 
(exec] 

11 LNM$FILE DEV" 
"LNM$PERMANENT MAILBOX" 
"LNM$SITE 11 -

"LNM$SYSTEM" 
"LOG$SYSTEM" 

[kernel] "LNM$DIRECTORIES" 

[kernel] "LNM$PERMANENT MAILBOX" 
[kernel] "LNM$TEMPORARY-MAILBOX" 
[kernel] 11 LOG$GROUP 11 -

[kernel] "LOG$PROCESS" 

[kernel] 11 LOG$SYSTEM 11 

11 LNM$SYSTEM11 , 11 LNM$SITE" I "LNM$ENV 11 

"LNM$SYSTEM" I "LNM$SITE 11 , "LNM$ENV" 
11 LNM$LCC 11 • 
"LNM$SYSTEM TABLE". 

= "LNM$SYSTEMu, "LNM$SITE", "LNM$ENV" 

"LNM$PROCESS DIRECTORY"., 
"LNM$SYSTEM_DIRECTORY". 

"LNM$SYSTEM11 
11 LNM$JOB" 
11 LNM$GROUP" 
"LNM$PROCESS 11 , "LNM$JOB" 

"LNM$SYSTEM". 
[kernel] "TRNLOG$_GROUP_SYSTEM" 
[kernel] "TRNLOG$_PROCESS_GROUP" 
[kernel] 11 TRNLOG$_PROCESS_GROUP_SYSTEM" 

"LOG$GROUP11 , 11 LOG$SYSTEM" 
11 LOG$PROCESS", 11 LOG$GROUP 11 
11 LOG$PROCESS", "LOG$GROUP 11 , 

"LOG$SYSTEM" 
[kernel] "TRNLOG$_PROCESS_SYSTEM11 "LOG$PROCESS 11 , 11 LOG$SYSTEM" 

FIGURE 4 

"L$AS" 
"L$AS II 

[exec] 
[exec] 

[Protection=(RWED,RWED,R,R)] [Owner=[SYS,SYSTEM]] 

ACL= (IDENTIFIER=MGR$AS,ACCESS=READ+WRITE) 
(IDENTIFIER=[AS,*],ACCESS=READ) 

"SY$: [L$AS] II 

"DRAO: [L$AS.]" (concealed, terminal] 

"L$COM" [exec] = "L$AS : [L$COM]" 
"L$COM_" [exec] = "DRAO:(L$AS.L$COM.] 11 (concealed, terminal] 

(concealed, terminal] 

(concealed, terminal] 

(concealed, terminal] 

(concealed, terminal] 

"L$CLS II 

"L$CPSli 
11 L$CPS II 

"L$HUMli 
11 L$HUM II 

"L$MTHli 
"L$MTH II 

"L$scI" 
"L$SCI II 

"L$SS 11 -
"L$SS_11 

[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
[exec] 

"LJ$BOLD" 
"LJ$COMPRESSED" 
"LJ$ELITE" 
"LJ$ITALIC" 
"LJ$MATH" 
"LJ$PICA" 

"PLIB" 
"PLIB II 

11 U$AS 11 
11 U$AS_" 

[exec] 
[exec] 

[exec] 
[exec] 

"U$COM" [exec] 
11 U$COM_" [exec] 

"U$CLS" 
"U$CLS II 

"U$CPsli 
"U$CPS II 

11U$HUMu 
"U$HUM II 

"U$MTH" 
"U$MTH II 

11u$scI" 
"U$SCI II 

"U$SS"­
"U$SS_11 

[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
[exec] 
(exec] 
(exec] 
[exec] 
[exec] 
(exec] 
[exec] 

"DRAO:[L$AS.L$CPS.L$CLS.] 11 
"SY$:(L$AS.L$CPS]" 

= "DRAO:[L$AS.L$CPS.] 11 
= 11 L$AS : [L$HUM] II 

"DRAO:[L$AS. L$HUM.] 11 
11 L$AS : [L$MTH] II 

"DRAO:[L$AS.L$MTH.]" 
"L$AS_: [L$SCI] II 
11 DRAO:[L$AS.L$SCI.] 11 
11 L$AS_: (L$SS]" 
"DRAO:(L$AS.L$SS.] 11 

(concealed, terminal] 

(concealed, terminal] 

[super] 
[super] 
[super] 
[super] 
[super] 
(super] 

11 L$AS [LASER FONTS]BOLD. 11 
11 L$AS- [LASER-FONTS]COMPRESSED. 11 
"L$AS- [LASER-FONTS]ELITE." 
11 L$AS- [LASER-FONTS]ITALIC. 11 
"L$AS- [LASER-FONTS]MATH." 
"L$As::: [LASER:::FONTS]PICA. 11 

"L$AS:" 
"DRAO: (L$AS.] 11 

"DRBl:(U$AS.PER.]" 
11 DRB1: [U$AS.]" 

"DRBl:[U$AS.U$COM.PER.] 11 

11 DRB1: [U$AS. U$COM.] 11 

"DRBl [U$AS.U$CPS.CLASSES.]" 
"DRBl (U$AS.U$CPS.CLASSES.] 11 

11 DRB1 [U$AS.U$CPS.PER.] 11 
"DRBl [U$AS.U$CPS.]" 
"DRBl [U$AS.U$HUM.PER.]" 
"DRBl [U$AS.U$HUM.] 11 
"DRBl [U$AS.U$MTH.PER.] 11 

= "DRBl [U$AS.U$MTH.] 11 
= 11 DRB1 [U$AS.U$SCI.PER.] 11 

"DRBl [U$AS.U$SCI.] 11 
"DRBl (U$AS.U$SS.PER.] 11 
"DRBl [U$AS.U$SS.]" 

FIGURE 5 

[concealed, terminal] 

[concealed, terminal] 
(concealed, terminal] 

(concealed, terminal] 
[concealed, terminal] 

[concealed, terminal] 
[concealed, terminal] 
[concealed, terminal] 
[concealed, terminal] 
[concealed, terminal] 
(concealed, terminal] 
(concealed, terminal] 
(concealed, terminal] 
(concealed, terminal] 
(concealed, terminal] 
(concealed, terminal] 
(concealed, terminal] 



1. Operating 

perspective 

Using VMS to Teach Operating Systems 

Jerry Scott, Ph.D. 

Spring Hill College 

Mobile, Alabama 36608 

This talk discusses teaching the 

standard ACM-oriented, undergraduate course 

in "Fundamentals of Operating Systems" using 

VMS and its many features as the standard 

example of an Operating System. Classroom 

laboratory exercises are designed to 

highlight the principles of Operating Systems 

Design. Some of the VMS features used 

include: DCL, the SHOW utility, Timers, 

Event Flags, and Mailboxes, the MONITOR 

utility, Process Scheduling and Memory 

Management Techniques, and Working Set Tuning 

Techniques. 

Systems course 

o Student preparation o Problems in teaching OS 

students cannot modify VMS 

* Two Pascal Courses 

* One Cobol Course 

* One course in VAX macro 

* One course in Data Structures 

Proceedings of the Digital Equipment Computer Users Society 

235 

o Need a small OS that students can 

"Tweak" to see how OS performance 

can be changed 

Dallas Texas- 1986 



2. 

3. 

Classical Operating Systems 

Problems covered in OS course 

o Higher language to machine 

translation capability 

o Concurrency PC versions vs. 

True VAX versions 

* 

* 

* 

Readers and Writers 

Producers and Consumers 

Dining Philosophers 

o Process Deadlock Causes and Cures 

o Memory Management 

o Files Structures 

o Performance 

Benchmarking 

Measuring 

Current Text used 

or 

Deitel. 

Developed 100 page set of lecture 

notes to complement Deitel. 

4. Most OS books either follow OS360 

or Multics. 

5. Most textbooks advocate "State of 

the Art" techniques as of late 

70's 

236 

6. Why use VMS? 

o VMS supports many "State of the 

Art" features: 

* DCL -- easy to learn vs. JCL 

* Process scheduling is 

sophisticated and not batch 

oriented 

* Balance Set Implementation 

* Many utilities easy to access 

* Excellent Monitor for 

investigating dynamic data 

structures VMS uses 

7. Initial Classroom Exercises with 

VMS 

0 Building an additional Utility 

Monitor all processes within your 

Group. 

0 Using Monitor to discover Process 

ID'S 

0 Show System to see System Data 

Structures 



8. Advanced Exercises with VMS -- VMS 

solutions to the classical OS 

problems. 

9. 

o VMS language facilities --

* 

* 

common Debugger 

common .obj format 

common linker 

o Explanation of Systems Services 

Layer 

o VAX calling standard 

Solutions to concurrency and 

process coordination with VMS 

o Using timers to activate suspended 

processes 

o Using Event Flags and MailBoxes 

for Interprocess Communication 

10. Performance Measurement Techniques 

o Investigating the Balance Set and 

Working Set mechanisms used by VMS 

o Using the System Monitor to size 

various working 

processes 

sets for VMS 

237 

0 Alan Watson's DECUS talk on "Turbo 

Tuning" using Working Set 

Parameters 

o Lab exercise 

parameters 

with Working set 

* determine different working 

set sizes 

* How to tune the WS parameters 

for our workload? 

11. Future directions 

course with VMS 

for the OS 

o Built a simple "partition oriented 

operating system" on IBM PC in 

Turbo Pascal 

* Have students run this system 

and vary such things as 

a) I/O timeout amounts 

b) First Fit vs. Best Fit 

memory management 

c) Quantum variation 

12. Incorporate these items into VMS 

with above, lessening the number 

of written labs and increasing the 

number of programming labs 





Student Information Systems 

Warren Alkire 
Abilene Christian University 

ABSTRACT 

Student Information Systems arc described. Factors leading to the choice of 
a Student Information System are listed, as well as ideas on a successful 
implementation plan for a Student Information System. 

To begin, some background on Abilene Christian 
University and its computing history should be given so 
the reader can compare their situation with our 
situation to see if there are similarities. ACU is a 
private, 4-year university of approximately 4500 
students offering both baccalaureate degrees and 
graduate degrees up to the master's level. Around 1968 
the university acquired an IBM 360 model 30. No EDP 
upgrades were made until the late 1970's when a PDP 
11/70 was installed. On this several home grown systems 
were developed including registration, loan collection, 
billing, etc. At this point the school came to an 
impasse as the IBM was still doing 80% of the 
processing and there was no more machine capacity to 
develop interactive systems on the 11 /70 to replace the 
IBM programs. There was also no physical room for 
another machine. The decision was made to do a quick 
convert to allow the 11/70 to run the IBM programs in 
batch mode temporarily and to buy two VAXes and 
"canned" software to replace the systems running on the 
IBM and 11/70. A VAX 11/780 and 11/750 were installed 
(taking up less room than the 360) and the Information 
Associates Student Information System (SIS) was 
purchased. ACU went live with the SIS system .June 1, 
1984. 

What are the functions of a student information 
system? This may seem like a ridiculous question as 
the users attend their conferences, read their journals 
and are continuously telling the Data Processing 
department of atl the functions they "need". There arc 
some things that ACU felt were essential functions of 
administrative support software. First, the student 
recruiting office needs to track prospective students. 
This is one of the places where students first enter 
the database. Student recruiting will need to be able 

Proceedings of the Digital Equipment Computer Users Society 239 

to pull groups of prospective students for mass 
mailings, and should have the capability to do 
enrotlment projections. The second office needing 
computer support is the Admissions office. This is the 
other place where students will enter the database. 
This office needs to do application processing, 
decision support and generate reports based on various 
attributes of the applicants. 

The most obvious function of a student information 
system is the Registrar functions. This office will 
need computer support to enter students into their 
classes, produce transcripts, do class and room 
scheduling and enrollment reporting. Based on 
historical data, the registrar's office will want to he 
able to project total enrollment as well as class and 
room usage. One of the improvements that computers can 
offer over traditional methods is in the area of 
transcripts. With disk storage of a student's class 
history, transcripts can now be organized by subject 
or category rather than chronologically. This actually 
presents the information in a more useful format to 
both prospective employers and other institutions of 
higher learning. 

Probably some of the most complex processing 
occurs in the Financial Aid office and therefore there 
is a great need for computer support. Some of the 
capabilities needed are support for need analysis 
tapes, document tracking, and decision support of aid 
packaging. Computer supp011 of aid packaging allows 
the financial aid office to be more equitable in the 
distribution of funds. They should be a:ble to do 
packaging models to see how their funds last and what 
adjustments in the packaging formula will lead to the 

Dallas Texas- 1986 



need of more students being met. This is in stark 
contrast to the traditional method of awarding packages 
to students in order of their need until the funds are 
depleted. 

The business or bursar's office functions are 
something that could be included in a discussion of 
student information systems though they could equally 
well fit in the category of accounting software. 
Nevertheless, this office docs have information about 
the student's account and wilt require computer support 
for student billing and possibly student loan 
collection depending on the set-up of the particular 
institution. 

/\ final function that is particularly important to 
private schools such as ACU is the ability to feed 
information about students to the Alumni office as 
these students leave the institution. /\ClJ's alumni arc 
an important murce of funds for the school so accurate 
information on student's and their parents is vital. 
Infonnation about siblings is also useful for future 
student recruiting. 

There arc several factors to consider in the 
decision to buy versus in house development. The first 
factor is the time tradeoffs for in house development. 
The institution must consider the amount of time it 
will take to develop the needed capabilities as well 
as the personnel costs for capable analysts and 
programmers. Against this time consideration must he 
balanced the time and resources that will he needed for 
training in the use of a purchased package and 
conversion from whatever system is currently in place. 

Another factor in the decision to buy is that 
someone else has already thought through many of the 
problems. Much of the groundwork and debate has 
already been done. /\lso, because a vendor must deal 
with multiple clients there are often problems solved 
in the software that your institution has not yet 
encountered. This is a two-edged sword. This is a 
help in that when the problem or a desire for these 
additional capabilities appears in the future, the 
software is already able to handle it. It also may 
lead to the consideration of problems which do affect 
the institution but have not yet been considered. This 
factor may be a hindrance in that the solutions to 
problems not affecting the institution and the unneeded 
capabilities may make the operation of the software 
more difficult than it needs to be for your particular 
institution. 

240 

One characteristic of software vendors is that 
they do not have to be concerned with the day to day 
operation of nmning a school. This allows them to 
concentrate on improving the tool rather than "fighting 
the fires" that occur when using the tool for 
administrative supp01t. This can be detrimental if the 
vendor does not have a good perception of the true 
needs of an institution and solves nonexistent problems 
while leaving other pressing problems unresolved. 

The best advice that can be shared from /\ClJ's 
experience concerns who makes the decision on which 
software package to buy. That should he a user 
community decision. Administrative support is no 
longer a DP driven environment. Now the users tell DP 
when the various jobs will be run and DP is a servant 
to the other departments. /\n important aspect of this 
principle is that the decision should be made both hy 
user VPs as well as clerk level users. /\ClJ did not 
consult the clerk level users and this caused some 
problems during the installation of the software. The 
reason for letting the users make the decision about 
which package to buy is so they will he happy with the 
functions provided by the vendor chosen and will 
require a bare minimum of modifications to the package. 
The reasons for keeping modifications to a minimum will 
be discussed later. 

While it is vital that the user community make the 
decision on which software package to buy, Data 
Processing needs to have some input into the decision. 
There arc several technical considerations for DP to 
take into account. Pirst, what mechanisms arc 
available for conversion? What resources will be 
required to do the conversion from the present system 
to the purchased package? The system /\ClJ purchased 
provided batch transactions that could be loaded with 
the information from the old systems. By using hatch 
transactions, the interrelationships between the files 
are handled. This allowed /\CU to go ahead with the 
conversion before the DP staff had learned the 
relationships and nuances of the system. Another thing 
to be considered is the ability of the current DP staff 
to support the new package. Will other manpower or 
machine resources need to be added? Also the DP 
department must consider the modifications to be made 
and the time it will take to have these modifications 
in place. Will the installation of the software be 
able to be complete before these modificiltions arc 
complete? Finally, the data processing staff must look 
at the issue of integrating homegrown systems whose 
functions will not be replaced by the new software with 
the purchased package. /\CU has a required daily chapel 
attendance Programs had been developed to track the 
attendance and these programs had to he interfaced with 
the bought package which provided the more traditional 
administrative support functions. 



When the decision to purchase a package has been 
made, there is another decision to be made. What if 
any modifications will be made to the purchased 
package? Commercial packages by nature have to be 
generic, yet by this very nature they may not fill alt 
the needs of a particular institution. This is why 
modification becomes an issue for almost every 
installation. In administrative support software, the 
specifications will change. The government seems to 
delight in changing the way financial aid 
administrators do business on a least an annual basis. 
Other things will change. SAT may change the layout 
and content of their magnetic tape records as they did 
this year. New needs and demands will arise for the 
software to fulfi'll. There are two roads which may be 
taken. One road is to consider the purchase a one time 
deal and do any required modifications in house. The 
other road is to chose a vendor who provides an update 
service, usually in the form of release maintenance. 
Extensive modifications to the delivered system will 
inhibit release installations. If the modifications 
are too extensive, they may prevent timely 
implementation of the releases. Therefore it is best 
to keep the modifications to an absolute minimum. The 
one time purchase strategy has the advantage of freeing 
an institution from the problems of release maintenance 
installation, but carries its own pitfalls. The 
institution will have to make specification changes 
itself. This can demand considerable resources in man 
hours which is not getting any cheaper. Most 
modifications will require someone with extensive 
experience in the workings of your software package. 
This makes high staff turnover rates very costly. 
Consider the example of the resources necessary for 
making specification changes in financial aid. As a 
bare minimum which may not be entirely adequate, and 
institution will need a super financial aid 
administrator who is responsible in all areas of the 
financial aid office. This person must be able to read 
and correctly interpret the government regulations. 
Second a programmer/analyst will be needed who is 
extremely well versed in financial aid administration 
almost to the point that the person could work 
effectively in the financial aid office at a moment's 
notice. Even with these two individuals, the 
institution does not have the viewpoints of other 
financial aid administrators in interpreting the 
government regulations. These other viewpoints from 
other situations can lead to a more correct 
understanding of the government's meaning in a 
particular regulation. 

241 

The final thing to be considered is the Student 
Information System Integration Committee. Most of the 
current packages are highly integrated. They make the 
business office dependent on the work of the 
registrar's office who in turn is relying on data from 
the Admissions office and so on. It is important that 
all components of an integrated system be brought up 
simultaneously. Those schools that are using the same 
package as ACU, who are having problems and have 
contacted ACU have generally gone live on some but not 
all the components of their student information system. 
This 1s usually a factor in the problems they are 
experiencing. ACU is becoming increasingly aware of 
the way that the actions of one office impacts the work 
of other offices. These interrelations need to be 
discussed and policies need to be made in light of 
those discussions. There also needs to be a reason for 
the integration committee to meet regularly. At ACU 
that reason is final enrollment which happens at the 
beginning of each term. This occurs four times a year. 
When the committee meets it not only discusses what if 
any changes need to be made in the way final enrollment 
is done and who will actually do the multitude of tasks 
that must be done each time, but it also discusses any 
problems that have arisen since the last meeting that 
concern integration of the software. Any potential 
changes in policy by one office are discussed here so 
that the other offices that will be aff ectcd can speak 
up before the policy change causes any problems. 

A summary of the findings of Abilene Christian 
University in the installation of a student information 
system would include the following considerations. I ,ct 

the user community make the decision about which 
software package will be purchased. Data processing 
should have some input. Keep modifications to the base 
system to a minimum. The fewer modifications, the 
easier it will be to keep the system curre111 with 
regulation and specification changes. Form an ongoing 
integration committee that has some reason that causes 
them to meet on a regular basis. These factors will 
ease some of the problems in installing and using a 
student information system. 

About the author: Warren Alkire is a 
programmer/analyst with Abilene Christian University. 
He has been with the university since .July 1982 and was 
one of two programmers on the Student Information 
System implementation committee. I le spent a year as 
the primary contact for the SIS system. 









COMPUTER ASSISTED COURSE DEVELOPMENT 
AND 

INSTRUCTIONAL SYSTEM (CACDIS) 

A.L.Lakshminarasimhan 
Associate Professor 

Computer Science Dept. 
Stevens Institute of Technology 

Hoboken, N.J., 07030 

ABSTRACT 

This paper describes the design, development 
and implementation of a 'Computer Assisted Course 
Development and Instructional System' (CACDIS) on 
Digital PC 350. This system can be used by 
instructors to create Computer Aided Instructional 
(CAI) materials for a variety of courses. Students 
can access the CAI materials through this system 
for self study. Also the instructors can use the 
system as an aid in class room teaching. This 
system also provides an easy interface with 
graphics to create pictures. These pictures can be 
combined with textual informaton. The use and 
the capabilities of the system are illustrated with 
an example of a graphics course. The proposed 
system would enhance human-machine interaction both 
as instructional aid to students and also for the 
instructors for the generation of the course 
material. 

INTRODUCTION: 
In a maJor study on computers and their 

use in the educational environment, a 
carnegie commission noted that there are two 
problems of computers as instructional tools. 
Firstly, there is a lack of good learning 
materials in many areas. How do we generate 
such learning materials? Secondly, the 
non-availability of learning materials, to 
students on a large scale basis. With the 
advent of personal computers there has been a 
remarkable growth in their use for 
instruction and education for solving the 
above problems and as a consequence we are no 
longer limited by the availability of 
resources of a large time-sharing system. 
The use of microcomputers is a powerful 
medium for instruction. Thus the hardware 
needs of a typical computer-based tutorial or 
instruction is not excessive and is well 
within reach of students. 

Historially, Computer Aided Instruction 
(CAI) has been used by industries to train 

thelr personnel on specific aspects of a job. 
In CAI the student trains himself by 
repeatedly going through a sequence of 
instructional material. Persons with varied 
learning abilities could progress at their 
own pace as they receive the feedback from 
the CAI. This process is difficult and 
almost impossible if an instructor were 
required to pay individual attention to each 
one of the students. Now CAI is being 
increasingly used in classroom education at 
schools and universities. The use of visual 
aids is certainly an asset, especially where 
there is a need to portray graphics 
information. Needless to say, even simple 
animation can be a very effective means of 
understanding complex ideas in Science and 
Engineering. The use of CAI with animation 

Proceedings of the Digital Equipment Computer Users Society 

makes the process of instruction very 
effective. However, the creation of the 
course material for CAI is rather tedious and 
time consuming. This paper describes a 
Computer Assisted Course Development and 
Instructional System (CACDIS). It is simple 
to use and suitable for course material 
development and to impart instruction. 

The CACDIS system provides the user with 
two functions - the creation of a new course 
and accessing of an existing one. Creation 
of a new course involves three subfunctions; 
create the necessary menu using Frame 
Development Tool (FDT), create textual 
information and create graphical information. 
The menu frame enables easy interaction for 
students to traverse through different parts 
of the course material. This is created by 
using the FDT available on Digital PC 350. 
The instructor interactively creates pages of 
tutorial material by properly assigning 
chapter numbers, section numbers and page 
numbers. The system interactively reads this 
information and stores it as a record (with 
concatenation of chapter number, section 
number and page number as an index to that 
record). The facility includes provisions 
for easy modification and deletion of pages. 
One could also insert a page between two 
existing pages. During the creation of 
course material, the instructor can traverse 
through the course material so far developed 
by using 'NEXTSCREEN' and 'PREVSCREEN' keys. 
Also, the course material could be in any 
arbitrary order. The graphics generator of 
CACDIS enables creation of graphical 

(pictorial) information. The instructor can 
use the core graphics language primitives 
interactively to draw pictures. 

Students can access the relevant 
material through CACDIS as follows. 
the CACDIS displays the information 

Dallas Texas - 1986 

245 

course 
First 

regarding 



the chapters of the course selected. The 
student/user can then make his selection. 
The system then displays the first page in a 
chosen chapter/section and the student can 
traverse through the course forwards or 
backwards by using NEXTSCREEN and PREVSCREEN 
keys. This feature of traversing through 
course material is also present during 
creation and modification of course material. 

The CACDIS provides 'help' feature. 
Both instructors and students can query for 
operational details while they are either 
creating course material or accessing it. 

The main features of the CACDIS system are 
the following: 
1) Students constantly interact with the 
course material while learning. 
2) A great deal of individualization of the 
course material is possible to suit the needs 
of the students. 
3) An aid to students in problem solving 
skills through computer aided instruction. 

PROBLEM DEFINITION 
We are concerned with the design and 

development of a CACDIS system having the 
following capabilities. 
a) An efficient tool for instructors to 
create course material consisting of textual 
information and graphical information. 

b) A facility for comfortable learning of 
course material. 
THE CACDIS SYSTEM 

The CACDIS system is intended for two 
types of users. The 'instructor-user'- the 
person who intends to use the system and 
generates a computer based course material. 
The 'student-user'- who uses the system and 
learns a particular course. 

The system design depicting various 
modules and their relationships is 
illustrated using the hierarchical diagram of 
fig. 1. The CACDIS is divided into two 
modules: 
1) Module to create a new course. 
2) Module to access an existing course. 

The creation module is divided into 

three sub modules: 
1) Course structure 
2) Manu and help frames through FDT 
3) Textual/graphical information 

The course material is input in terms of 
pages. The system is menu-driven with the 
'help' feature at each stage of development 
of course material or retrieval of course 
material. 
FILE SYSTEM 

The CACDIS system requires creation, 
modification and access of pages containing 
CAI material. The file structure chosen 
should be capable of accessing the pages 
randomly as well as sequentially. Hence we 
have chosen index sequential access method 
provided by RMS on the Digital PC 350. In 
order to accommodate the facility of 
inserting pages between existing pages, the 
primary key of index sequential file is 
chosen as chapter number, section number, 
page number and additional page number. 
PROGRAMMING DETAILS 

All the modules, illustrated in Fig 1, 
are coded in PASCAL. In what follows, we 
describe the scenario of operation of the 
system. 

The 'Instructor-user' creates the course 
by invoking the CACDIS system. A main menu, 
as shown in fig. 2, will be displayed on the 
screen. He may choose to create a new course 
by positioning cursor at 'Creating a new 
course' and pressing Do. Then the menu, as 
shown in fig. 3, will be displayed. He would 
create course structure which is planned 
earlier for computerising the instruction. 
A. Creation of Textual Information 

Textual information is stored in blocks 
of 1280 characters called 'pages'. Once we 
select option 'Create textual information' 
from the menu (see fig. 3), then a new menu 
as shown in fig. 4, pops up. This has four 
options which are described below: 
(i) Create ~new~ 

The system prompts for the chapter 
number, section number, and page number. If 
the page does not exist, then the system 
displays a blank page. The user may enter 
the textual information. The process is 
terminated by pressing the 'Do key'. However 
if the page is already created then a prompt 
to that effect is given to the user. An 
example for creating page 1 of chapter 1 
section 1 is shown in fig. 5. 
(ii) Page Modification 

Once the user selects this option, the 
system prompts for the chapter, section and 
the page number. If the page exists then it 
is displayed as shown in fig. 6. If the user 
intends to modify this page, he could respond 
'yes'. System then positions the cursor at 
the beginning of the page for modification. 
If the user responds with a 'n' then the 
modification is not done. 
(iii) Page Insertion 

An additional facility of inserting a 
page before an existing one can be done in 
two ways: 

246 

1) Two pages in the same chapter and section, 
with numbers say 1 and 2 are created by the 
user. If the user later needs to add another 
page between these two pages, then he can 
respond with a 'y'. 

If the user's response is 'n', then the 
page traversing menu is displayed and the 
user may traverse the database. After each 
page is displayed the system enquires if the 
user intends to insert a page before the 
current one. 
2) Suppose there are two pages existing in 
chapter three, section four-(pages five and 
ten with additional page number of zero). 
The page being currently diplayed is page 
ten. The user prompts the system that he 
intends to insert a page before the current 
one. The system then allows the user to 
create a new page with identification of 
chapter three, section three, page number 
nine and additional page number zero. 
(iv) ~age Deletion 

Existing pages in the data base may be 
deleted using this facility. The system 
prompts the user for the chapter number, 
section number and page number. The data 
base is checked for the existence of this 
page and it is displayed (see fig. 8). The 
system issues prompt to confirm deletion. 
The user may then delete this page by 
responding 'y'. If however, the user decides 
not to delete the page, the page traversing 
menu is displayed. For each page that is 
displayed the system prompts the user to see 
if he intends to delete the current page. 



B. Creation of Graphical Information 
This module provides the user with a 

facility for generation of picture and text 
for illustration. A large number of 
instructions chosen from core graphics 
language is implemented. 

As in the case of text creation, the 
system prompts the user for the chapter, 
section number and page number. The system 
checks for the existence of the page and then 
prompts the user to that effect if the page 
does exist. If it does not exist then the 
screen is cleared and core graphics 
primitives are displayed. Additional core 
graphics language instruction can be seen by 
depressing 'NEXT SCREEN'. Further, the user 
can traverse back by pressing 'PREVSCREEN 
key' for earlier core graphics language 
instruction. The user enters the number 
corresponding to the instruction that is 
needed and the system prompts with the 
corresponding inputs needed. After the user 
gives inputs for the instruction, an effect 
of execution of instruction is shown 
interactively on the screen (see fig. 9) 
C. Accessing the Course 

Now the CACDIS system is ready for 
accessing course material. The student-user 
can go through series of chapter, section 
numbers and pages to learn about a specific 
topic (see fig.10) 

COURSE 
; STRUCTURE 
i 
i...-......--. -- -

I - ---: 
ATE I L NEW COURSE 

----l· 
i----··-- ---·· 

I FRAMES 
USING 

L. FDT 

r ·~ ·· ! 1 

! TEXTUAL/ I 
GRAPHICAL 

!INFORMATION, 
, ------T _; 

CONCLUSION 
CACDIS is a general purpose system with 

dual capability of creating course material 
for a specific subject and its use as 
Computer-Assisted instructional system for 
students. The CACDIS system, implemented on 
Digital PC 350, is powerful enough to be used 
for the development of computer based 
instructional system. It is simple and is 
completely menu driven. The users of CACDIS 
can learn the operation of system easily with 
the 'help' feature provided at each stage of 
operation. It is important that the present 
day computer aided instructional packages 
provide an easy interface for creation of 
pictures. The course material created for 
students may not only contain textual 
information but also pictorial drawings. 
Accordingly, CACDIS is provided with an easy 
inteface to graphics. This does not need 
elaborate programming usually required and 
hence it is easy for user to create graphical 
images. Such a CAI material on CACDIS would 
significantly enhance understanding of 
course. 
REFERENCES: 
1. A.L.Lakshminarasimhan "Computer Assisted 
Course Development and Instructional System 
on Digital PC 350", Computer Science Dept. 
Report, Stevens Institute of Technology, 
1986. 

I 

r~g~:~~ l 
DISPLAY 

I PAGE 
[_ 

SKIP TO 
'NEXT/PREV 
I_ PAGE 

PROBLEM 
SESSION 

r----
1 NEW 
, PAGE . 

'.INSERT 
l PAGE . 

. 1 
.DELETE• 

PAGE ' 
L---·-- I 

Fig 1: Hierarchical diagram of CACDIS system 

Fig 2 

The followin9 are the option5 available.On information on 
how to use_s~stem press HELP ke~. For information on an~ 
of the choices move the cursor to the choice and press HELP. 

-> Create a new course. 
Access an existing course. 
Exit 

Make a selection us1n9 the arrow ke~s and press DD. Press EXIT to leave 

247 



Fig 3 

Fig 4 

Fig 5 

Fig 6 

The fol lowing are the options avialable. Make a selction and 
press the DO ke\j. For information on an\J of the option move the 
cursor and press HELP: 

Course Structure. 
Create l'lenu Frames using FDT. 

-> Create Textual Information. 
Create Graphical Information. 
Exit 

Press HELP for mformation. Press EXIT to leave the session. 

Textual information ma'dbe created using this option. For 
i nf'o,..mat ion on an\j of' theo cho; ces mavE' theo cursor a;·.,3 
press HELP. Press EXIT to leave the ses~,. on. 

-> Create a new page. 
Plodify an existing page 
Insert a new page 
Delete an existing page 
Exit 

Make a selection using the arro1o.· ke\js and press DO 

WELCOME TO THE COURSE 
ON 

COMPUTER GRAPHICS 

This course introduces ~ou to the basic concepts in computer graphics. It 
teaches ~ou the basic skills that ~ou need to start writing programs for 
computer graphics. 

Select a topic and press do: 
LIST OF TOPICS 
1. Introduction 
2. Computer Basics 
3. Basic interactive graphics programming 
4. Implementation of Basic graphic packages 
5. Geometrical Transformations Contd. 

Press NEXT SCREEN for next page 
Pre~s HELP if needed 

Press PREV SCREEN for previous page 
Press EXIT to leave session 

6. Viewing in three dimensions 
7. Raster algorithms and software 
8. Hidden surface elimination 
9. Shading algorithms 

10. Color Models. 

Contd. 

MODIFY THIS PAGE ? [Y/N/HELPJ: 
Press HELP if needed 

248 



Fig 7 

Fig 8 

Fig 9 

Fig 10 

,- - • - • ~ ~ - ~ • ..... r r ' - l • -':i'- - --

WINDOWS 

Window statement in Core 9raphics lan9ua9e [C.G.L.J or Graphic Kernel S\jstem 
[G.K.SJ ls used to map device independent world coordinates to normalized 
device coordinates. window selects the portion of world coordinate space 
for displa\j. 
World coordinates ! --------1 

or ! WINDOW ! Normalized device coordinates 
User coordinates !---------! 

The C.G.L or G.K.S. statement is WINDOW < Xmin, Ymin, Xmax, Ymax 
where the coordinates are 9iven b\j 

< Xmax, Ymax > 
!---------! 
! ! 

<Xmin, Yminl!-------- ! Contd. 

INSERT BEFORE THIS PAGE ? [V/N/HELPJ: 
Press HELP if needed 

rbi,·::'. 
- ---~J i'J 

WINDOW creates effects of PANNING 
!select a portion for view) 
ZOOMIN OR ZOOMOUT 

DELETE THIS PAGE ? [Y/N/HELPJ: 
Press HELP if needed 
~-----·-

! 

_________ j 
: \ ·, "'-:;~- !" 1.,.,: ..:.: ~~:C~n' ( i) MC!:·- 1f:: fit'{~~ ~ :.2: M;Jl/F REL I 3 _; l. J. Nt- {1Ht:i \ ·.~ J L 1 NF h'F l 

( h Y :::lE"T \ifEWPiJF r ~bl 1•,._: :. i ~.;N:_;: __ ~ ~BS !. / .1 RE.CT P11\iGLE REL ( 8 J Mf1RKf.0. f48b 
t·:1)M1'.1F/r:q RE.C .. "rDYfSET ,_ __ ._J~C~r~IJTH -(j_J ;C;E:";· cTif;R~~I.7f:." (1.2)SET CHt:1RSP/:;C[ 

Press EXIT when finished Press NEXTSCREEN PREVSCREEN to see more optiors 

CLIPPING 

An\j part of picture outside window is made invisible 

f tffi~:~·~~Af 1 r--R~:~·--rJ 
i 

c::::Jl.___.-Y- t i 

L - - - - - --- - -- - - ---- L ________ -- ----- --~ 

Press NEXT SCREEN for next pa9e 
Press 1-ELP if needed 

Press PREY SCREEN for previous pa9e 
Press EXIT to leave session 

249 









INTERTASK COMMUNICATION 

Ted Smith 
Division of Medical Physics 
Department of Radiation Therapy 
Hospital of the University of Pennsylvania 
Philadelphia, PA 19104 

Introduction 

Intertask communication is a powerful 
tool available to project designers and 
programmers. Large projects can be 
divided into a group of smaller and less 
complex tasks. Each task provides a 
subset of the functions required from the 
project. Through various methods, these 
tasks communicate information for 
processing and synchronization. Greater 
flexibility for future enhancements is 
achieved by updating only affected tasks 
or adding a new task. The task 
environment created by the computer 
hardware and operating system provide the 
mechanisms which enable, control and 
limit communication among tasks. The 
Radiation Therapy Patient Tracking System 
will illustrate some of the communication 
mechanisms provided on our system. 

Hardware environment 

Digital's PDP-11 family of minicomputers 
is among the most popular in use today 
[l]. However, the 16-bit word size of the 
PDP-11 restricts a task from explicitly 
referencing a memory address greater than 
64Kb (1). Using the memory management 
option, a task's logical 64Kb of address 
space [2] may be mapped to any physical 
memory address [2]. Memory management is 
used to divide a task into a maximum of 
eight segments. Each segment is 
independently mapped and assigned either 
Read-only (R/O) or Read-write (R/W) 
access for the task. Segments may even 
map to the same physical address space as 
other tasks if permitted by the operating 
system. 

Proceedings of the Digital Equipment Computer Users Society 

253 

Memory Management 

On the PDP-11, memory management is 
virtually transparent to the programmer 
who references task address space as 
logically contiguous and as starting at 
physical address zero (0). The Memory 
Management Unit (MMU) converts the task's 
64Kb of logical address space into the 
actual physical addresses. The MMU 
hardware consists of eight 32-bit 
registers known as Addressing Page 
Registers (APR). Each APR can map from 64 
bytes to 8192 bytes called a page. The 
MMU hardware divides physical memory into 
blocks of 64 bytes [3] and a page always 
begins on a 64 byte boundary. APR's are 
composed of two 16-bit registers called 
the Page Address Register (PAR) and the 
Page Descriptor Register (PDR). The PAR 
contains the base (starting) address of 
the page being mapped by the APR. The PDR 
contains the size of the page in blocks 
and the access rights to the page granted 
by the operating system (Figure 1). 

Access to logical address space 50000 to 
57777 is restricted because the page size 
is only 2kb in the PDR of APR 2. 
Conversion of a logical to physical 
address is accomplished by a mapping 
process. The following steps and examples 
demonstrate this process: 

Dallas Texas - 1986 



Figure 1: Example of Logical 

Logical 
Address APR 

0 - 17777 0 
20000 - 37777 1 
40000 - 47777 2 
60000 - 77777 3 

100000 - 117777 4 
120000 - 137777 5 
140000 - 157777 6 
160000 - 177777 7 

Memory Mapping Process: 

1. Bits 13-15 of the logical address 
determine which APR map the 

corresponding physical address. 

2. The PAR contains the physical base 
address of the page mapped by the 

3. Bits 6-12 are added to bits 0-6 of 
the PAR. The address of the 
physical memory block is the 
result. 

4. Bits 0-5 of the logical address 
contain the block address off set 
resulting in the physical address. 
These bits are appended (on the 
right), to the result of step 3. 
The final result is the actual 
physical address. 

PAR 

1600 
2000 
2200 
4000 
4200 
3300 

13000 
13200 

to Physical address mapping 

Physical 
PDR Address 

200 160000 - 177777 
200 200000 - 217777 
100 220000 - 227777 
200 400000 - 417777 
200 420000 - 437777 
200 330000 - 347777 
200 1300000 - 1317777 
200 1320000 - 1337777 

Operating Environment 

The Interactive Application System (IAS), 
Digital's largest operating system for 
the PDP-11, provides an ideal 
environment for intertask communication. 
The IAS executive contains a variety of 
mechanisms used for communication 
including address sharing, event flags 
and a communication node pool (4). 

Address sharing between tasks is 
accomplished by having two or more tasks 
map the same physical address. This 
provides the programmer with the fastest 
method of transferring information 
between tasks. The IAS executive controls 
whether a task may map to another task's 
address space by assigning a protection 
mask to each segment of every task. Once 
access is granted, IAS loads the access 
rights (R/O or R/W) and page size into 
the PDR and the base address in the PAR 
of each APR that maps to the shared 
region of memory. The shared region then 
becomes a part of the address space of 
each task. 

Examples of mapping process using data from Figure 1: 

I. Logical address accessed= 023712 0010011111001010 

APR = 1 = 001 
Bits 0-12 remain 0011111001010 

PAR! = 002000 0000010000000000 
Add bits 6-12: 0011111 

Memory block address 0000010000011111 

Append bits 0-5: 0000010000011111001010 

Physical address = 00203712 0000010000011111001010 

II. Logical address accessed = 143076 = 1100011000111110 

APR = 6 = 110 
Bits 0-12 remain = 0011000111110 

PAR6 = 013000 
Add bits 6-12: 

Memory block address 

Append bits 0-5: 

Physical address = 01303076 

254 

0001011000000000 
0011000 

0001011000011000 

0001011000011000111110 

0001011000011000111110 

Step 1 

Step 2 

Step 3 

Step 4 

Step 1 

Step 2 

Step 3 

Step 4 



Event Flags 

IAS provides event flags as a mechanism 
for tasks to detect and declare events 
(changes) in the operating environment. 
sixty-four event flags are available in 
two groups of thirty-two flags: Local and 
Global. Each task has a unique set of 
local event flags numbered 1 thru 32 
which cannot be accessed by other tasks 
in the system. Changing the state 
(setting or clearing) of local event 
flags will only affect the task and has 
no effect on other tasks in the system. 
Local event flags are commonly used to 
inform the task that an I/O request {2} 
has be completed. Common to all tasks in 
the system are a set of global event 
flags numbered 33 thru 64. Global event 
flags can be accessed by any task having 
proper privilege. using a global event 
flag enables a task to inform one or more 
other tasks of an event. The programmer 
decides which event flag to associate 

with a specific event, so that a task can 
sense up to sixty-four different events. 
The IAS executive reserves local event 
flags 25 thru 32 of every task and global 
event flags 57 thru 64 for use by the 
operating system [5]. 

Node Pool 

IAS allows up to 24Kb of main memory to 
be used as a system communications area 
called SCOM. System data structures such 
as the Send/Recieve Queues and the Active 
Task List are located in SCOM [6]. Any 
remaining unused space in SCOM is made 
available to tasks as a node pool. Each 
node is eight words in length. A task may 
have up to 255 nodes in use at any time. 
Nodes are charged to the sending task 
until released when the receiving task 
accepts the message contained in the 
nodes. 

Methods of Intertask Communication 

Using one or a combination of 
communication mechanisms, IAS provides 
the programmer with five methods for 
intertask communication. Most of these 
communication methods are also available 
with other operating systems including 
RSX and VMS. In addition, IAS includes a 
group of FORTRAN callable subroutines 
allowing access to executive facilities 
directly from a FORTRAN program. 

Methods of Intertask Communication: 

o Disk files 

o Subtasking 

o Chaining 

0 SEND/RECEIVE messages 

o Shared Global Area 

255 

Disk Files 

Disk files allow tasks to transfer large 
amounts of data. This is the simpliest 
method of communication requiring none of 
the communication mechanisms previously 
described. Because of the disk access 
overhead, data files are beneficial only 
for large data transfers, memory 
constrained systems or batch oriented 
projects. A typical batch project would 
consist of two or more tasks that run 
sequentially. The first task creates the 
input data file later used by another 
task. Our department billing system is a 
good example of a batch system. 

Our department billing system is composed 
of three phases: Charge item entry, Daily 
tape creation and reporting functions 
(Figure 2). During the day, as patients 
receive services provided by our 
department, the charges are entered into 
a file containing all unbilled charges. 
At the end of each day, the operator 
mounts and creates the "daily billing 
tape". The daily tape contains the 
unbilled charges sorted and grouped by 
various fields such as the patient's 
medical record number (ID) and status 
(inpatient/outpatient). The tape is then 
sent to central data processing where the 
actual patient billing occurs. Also, the 
charges written to tape are appended to a 
log file prior to the unbilled file being 
deleted. Finally, daily billing reports 
are prepared and placed into the 
adminstrator's account by a nightly batch 
job. Quarterly and other reports are 
possible using the charge log maintained 
by the billing system. 

Subtasking 

Subtasking is the ability of a task 
(parent) to run (spawn) another task 
(child). When a child is spawned, the 
parent task is suspended from futher 
processing until the child completes. 
When spawning a child task, IAS allows 
one line of information (command line) to 
be passed from the parent to the child. 
This command line usually contains 
parameters informing the child of the 
operations to be completed for the 
parent. Subtasking enables a task to use 

system utilities such as SORT-11 and PIP, 
drastically reducing the coding of 
projects. 



FIGURE 2: 

CHARGE 

E N T R Y 

DE:PARTMENT RILLING 

L 0 G 

rlGURE3 SUBTASKING SYSTEM UTILITIES 

DAI LY 

LOG 

C H A R G E 
B A T C H 

SORT-1·1 

256 

SYSTEM 

C H A R G E 

B A T C H 

S 0R1 

F I L E 



Again, the department billing system 
provides an excellent example of 
subtasking. During the daily billing tape 
generation phase, charges must be 
separated into batches of outpatients and 
inpatients. Each batch must then be 
sorted by medical record number. SORT-11 
provides the capability of both selecting 
and sorting specific records from a file. 
Thus, to sort outpatients, we spawn 
SORT-11 and pass the name of the unbilled 
file, a sort specification file and the 
output file name. The sort specification 
file contains all the information for 
record selection, sort keys, and output 
file format. When completed, the sorted 
output is written to tape. PIP is then 
spawned to delete the sorted output file 
(Figure 3). This process is then repeated 
for inpatients. Here, subtasking 
eliminated the need to write and maintain 
a sorting algorithm reducing the task to 
a much smaller program. 

Chaining 

Chaining allows another task to be 
invoked when the current task completes. 
As with subtasking, a command line may be 
passed to the succeeding task. However, 
chaining differs from subtasking in that 
the initiating task exits as the 
successor is scheduled to run. Under !AS, 
chaining is available only in timesharing 
mode using the Timesharing Control 
Services (TCS) macro CHN$T [7]. Tasks 
running in real time or multi-tasking 
modes can simulate chaining by using the 
RUN$ [8] system directive before exiting. 
The RUN$ directive does not permit 
passing a command line to the task being 
scheduled. 

Send/Receive Messages 

IA8 provides the Send/Receive message 
utility allowing messages to be passed 
between tasks. Nodes from SCOM are used 
to buffer the Send/Receive messages. A 
message may contain up to 510 bytes of 
information. Tasks waiting to receive a 
message may request to be suspended, 
stopped or exit if no messages are 
received. Likewise, tasks sending a 
message may request that the receiver be 
resumed from a suspended or stopped 
state. This mechanism allows tasks to 
efficiently synchronize communications. 
An optional event flag can be set by a 
sending task as an alternate means of 
informing the receiver that a message was 
sent. 

send/Receive messages are most useful for 
brief messages rather than to transfer 
large amounts of information requiring 
multiple messages. Nodes comprising the 
message are charged against the sender'.s 
quota until released when the message is 
received. sufficient nodes must be 
available or the message will not be . 
sent. Although the messages are sto:ed in 
memory, it will be copied severa~ times 
to different locations before being 
received. First the message is assembled 
into a buffer in the sender's task 
address space. When the SEND directive is 
issued, the contents of the message 
buffer are copied into the ~ode pool b¥ 
the executive. The message is then copied 
from the node pool into the message 
buffer of the receiver. Finally, the 
receiver interprets the message. 

257 

Shared Global Areas 

Shared global areas (SGA) are regions of 
memory shared by two or mor7 tasks •. SGA's 
may contain either data or instruction 
code. When used to contain data, an SGA 
provides the fastest mechanism for data 
transfers among tasks. Reduction in 
memory use is obtained by placing common 
routines into an SGA. Four types of SGA's 
are supported by !AS: 

o Resident Libraries 

o Common Areas 

o Installed Regions 

o Dynamic Regions 

An SGA is built and installed in a matter 
similiar to a normal task (Figure 4a). 
SGA's are taskbuilt with no taskheader, 
stack or units. A symbol table must be 
specified when taskbuilding. An SGA must 
be installed prior to installing any task 
that reference the SGA (Figure 4b). 



Figure 4a: A FORTRAN example of a Shared Global Area 

BLOCK DATA 

INTEGER*2 NODES 
INTEGER*2 VACANT 
INTEGER*2 POSTS 
INTEGER*2 CASES 
INTEGER*2 TRKEFN 
INTEGER*2 WAITRM 
INTEGER*2 TRKFLG(lO) 
INTEGER*2 POOL(l6,511) 

Register: size of pool in nodes 
Register: address of first FREE node 
Register: address of first POST node 
Register: address of first CASE node 
Register: Global Event flag 
Register: Tracking console 
Registers reserved for future use 
TRKCOM node pool 

COMMON /TRKCOM/ NODES, VACANT, POSTS, CASES, TRKEFN, TRKFLG, WAITRM 
COMMON /TRKCOM/ POOL 

DATA NODES/511/ 
DATA TRKEFN/33/ 

END 

Figure 4b: IAS DCL taskbuild command for a Shared Global Area 

LINK/POSITION/SYMBOL/NOHEADER/OPTIONS TRKCOM 
UIC=[ll,120] 
STACK=O 
UNITS=O 
I 

Figure 4c: IAS DCL Mapping to a Shared Global Area 

LINK/FULL_SEARCH/OVERLAY DESCRIPTION:TRKHUP/READ WRITE-
/MAP/TASK:TRKHUP/OPTIONS- -
ACTFIL=lO 
MAXBUF=80 
UNITS=40 
UIC=[ll,120] 
RESSGA=LB:[ll,120]TRKCOM/RW 
I 

Mapping to an SGA requires at least one 
APR from the task's set of eight. An SGA 
size that is not an exact multiple of 8Kb 
will result in the task losing the 
ability to access addresses between the 
size of the SGA and the next higher 8Kb 
multiple address. This is a hardware 
restriction of the Memory Management 
Unit. Mapping an SGA larger than 8Kb can 
be accomplished by two methods. First, a 
task may allocate sufficient APR's until 
the entire SGA is mapped. This reduces 
the address space of the task available 
for other purposes by 8Kb for each APR 
allocated to the SGA (Figure 4c). 

For some applications, mapping an entire 
SGA is not practical. Alternatively, a 
Task could logically divide the SGA into 
windows. Using the memory management 
directives, only one APR would be needed 
to access the SGA. However, only 
addresses mapped by the current window 
will be available to the task. The task 
would have to unmap the current window, 
freeing the APR, and map to another 
window to gain access to other addresses 
in the SGA. 

258 

Resident Libraries 

Resident libraries allow routines common 
to many tasks to be placed into a region 
shared by those tasks. This reduces the 
actual physical memory needed to 
simultaneously run the tasks. Resident 
libraries are always read-only and never 
swapped out of memory. SYSRES and H~N~IB 
are resident libraries in IAS conta1n1ng 
common system routines used by many 
tasks. 

common Areas and Installed Regions 

Unlike resident libraries, common areas 
and installed regions may be swapped out 
of memory and be mapped read-write by 
tasks. Common areas are swapped to the 
disk image file, thus the area is 
preserved in the disk image file until 
loaded back into memory. Installing the 



common area will load the contents of the 
area when it was last swapped to the 
image file. Installed regions are swapped 
to the system swapfile leaving the disk 
image file intact. Installing an 
installed region will always load the 
initial contents of the region when 
taskbuilt. 

Dynamic Regions 

Similiar to installed regions but created 
at run-time by the task, "dynamic 
regions" provide a task with the ability 
to send large amounts of data to another 
task. While other types of SGA's must 
have a unique name, a dynamic region 
provides the programmer with three naming 
mechanisms increasing the protection of 
the region. 

o The dynamic region may be nameless. 
To gain access, the region creator 
must use the send by reference 
directive to attach the receiving 
task to the region. This provides 
the creating task with full control 
of who may attach to the region. 

o A global name may be assigned to 
the region. Access to the region is 
possible by any task knowing the 
name of the region. 

o A terminal sensitive name, allowing 
only tasks running at the same 
terminal as the region creator to 
attach. 

These mechanisms are in addition to the 
protection mask assigned to the region 
when created. Therefore, a task knowing 
the global name of a dynamic region can 
still be denied access if it fails to 
match the protection requirements of the 
region protection mask. 

An Illustration 

Our department's "Patient Tracking 
System" illustrates some uses for 
intertask communication. The patient 
tracking system is used to follow 
patients through the department and 
collect information about the services 
provided to them. At each service area, a 
VT220 terminal is installed to interact 
with the system. When the patient arrives 
at the reception desk, the receptionist 
notifies the tracking system. For each 
service the patient is scheduled, his 
name is placed on the screen of the VT220 
at the corresponding service area. 
Selecting a patient for a service area 
locks out selection by other areas for 
that patient. When the service is 
completed, the patient is then removed 
from the service area and becomes 
available to the other areas. The 
tracking system is currently composed of 
an installed region and three tasks used 
to control the service area terminals, 
lookup patient information and utilities 
(Figure 5). 

259 

Installed Region 

The installed region, TRKCOM, contains 
information for all of the service areas 
and patients in the system. TRKCOM is a 
16Kb region and is mapped using two APRs. 
The region is divided into 16 registers 
and 511 nodes of 16 words. Like the 
system node pool (SCOM), the nodes in 
TRKCOM are used to communicate the 
current state of the tracking system 
among the tasks composing the system. 
These nodes are dynamically allocated and 
deallocated to form one of five record 
types: 

o POST record: is assigned to each 
service area containing area 
specific information. POST records 
contain one node. 

o CASE record: contain demographic 
information (name, ID, etc.) for 
each patient currently in the 
tracking system. CASE records 
contain three nodes. 

o TASK record: contain information 
about the service scheduled for the 
patient. One task record is created 
for each service the patient is 
receiving. TASK records use one 

node. 

o RUMOR record: are used to transmit 
messages between service areas and 
use a variable number of nodes 
depending on the length of the 
message. 

o FREE record: mark unallocated 
nodes in the area and have a 
variable number of nodes assigned. 
Adjacent unallocated nodes are 
combined to form one FREE record. 

Currently, only six of TRKCOM's sixteen 
registers are used by the tracking 
system. These registers contain: 

o Size of tracking system node pool 
(in nodes) 

o Address of the first FREE record 

o Address of the last POST record 

o Address of the last CASE record 

0 Global Event Flag used by tracking 
system 

o Address of the reception service 
area 

When installed, TRKCOM contains the size 
of the node pool, global event flag 
number and one FREE record of 511 nodes. 
All other registers are zero. The 
tracking controller task, TRKHUP, 
maintains the data and integrity of the 
region. 



FIGURE 5: PATIENT 

INSTALLE 

REGION 

TRKCOM 

TRftCKING SYSTEM 

i-------1 VT 220 

TRKFND 
------~CONTROLLER 

TRKHUP 

1--------1 .. ----1 VT 2 2 0 

DA TA· 
BASE 

Tracking Controller 

TRKHUP, the controlling tracking system 
task performs three functions: 
initialization of the TRKCOM region, 
control of all service area terminals and 
requests for patient schedule information 
from the database interface. When TRKHUP 
is executed, the TRKCOM region is loaded 
with all service area information from a 

startup data file. The service terminals 
are cleared and painted with the main 
menu. The controller then assigns a local 
event flag and issues a QIO$ [9] for each 
terminal. TRKHUP then-awaits commands 
from the service areas using a "wait for 
logical OR of event flags" directive. 

260 

TRKHUP divides the service areas into 
reception and service posts. At the 
reception post, patients are entered into 
the system as they arrive in the 
department. The patient's appointments 
for the day are displayed at each post 
scheduled. Until the patient is selected 
by a post, he is displayed at the 
reception desk as waiting. A post may 
select a patient from the list of 
available patients displayed. Once 
selected, a message is sent to the post 
where the patient is waiting (usually the 
reception area), to send the patient to 
this post. Also, the patient is marked 
unavailable to any other post scheduled 
for the patient. When the service is 
completed, the technician or nurse 
removes the patient from the post, making 
the patient available for selection by 
another post. If this was the patient's 
last service for the day, the technician 
is informed and the patient is sent home. 
Otherwise, the techician will be prompted 
for the postname where the patient will 
be sent to wait for his next service. A 
message utility is also supported by 
TRKHUP, allowing posts to send messages 
to one another. This popular feature 
allows a post to send special 
instructions or requests to another post. 



Patient Lookup 

A patient database [10] is stored on disk 
and may require many di~k a~cesse~ to 
locate a patient. To maintain a high 
response time, a separate task.was . 
written to search for patient information 
freeing TRKHUP from ever referencing a 
disk file after startup. SEND/RECEIVE 
messages and a global event flag are used 
to initiate and communicate with the 
database interface task, TRKFND. 

When a patient arrives in the department, 

the receptionist informs the system of a 
new arrival. TRKHUP will then prompt the 
receptionist for a patient identifier. 
When either the name, social security 
number or ID of the patient is received, 
TRKHUP sends a message to TRKFND, and 
sets global event flag 33. TRKFND is a 
task which issues a wait for event flag 
directive and is suspended until event 
flag 33 is set. When TRKHUP sets flag 33, 
TRKFND is resumed and immediately clears 
flag 33 and fetches the message from the 
SEND/RECEIVE queue. The patient 
identifier is extracted and TRKFND 
searches the patient database for a 
matching patient file. If an exact match 
is found, TRKFND sends a message to 
TRKHUP containing today's schedule 
information for the patient. However, if 
an ambiguous identifier (such as a common 
surname) was received, TRKFND sends 
TRKHUP a message containing.matching 
patient names and summaries. TRKHUP will 
then display the matching patients to the 
receptionist and prompt for a selection. 
If the receptionist selects a patient 
from the display, TRKHUP sends TRKFND the 
chosen identifier. If no patient was 
selected, TRKFND is sent a message asking 
for more matches. This process will 
continue until the patient is found in 
the database or no more matches remain. 
After TRKFND sends TRKHUP a response to a 
message, a wait for'event flag is issued 
suspending TRKFND until the next patient 
arrives. 

Tracking Utilities 

A utility task, TRKUTL, was written as a 
programming aid for testing and debugging 
the tracking system. Options include: 

o Initializing the TRKCOM region 

o Dumping the TRKCOM region 

o Testing the patient search task 

o Stop the tracking system tasks 

Normally, the utility task is only used 
to test new features of the tracking 
system. However, dumping the TRKCOM 

261 

region and testing TRKFND can be 
performed while the system is active 
without risk of corruption. Statistics of 
node pool usage can be kept for periods 
throughout the day enabling detection of 
periods of node depletion. 

Future Enhancements 

Additional features are now being 
designed into the tracking system. Some 
of the more interesting are described 
below with a brief explanation of how the 
features will be implemented: 

o Catching service information: When 
a patient is provided a with 
service, the technician enters the 
service information and TRKHUP 
sends the information to a task 
which updates the patient database. 

o Automated billing: Based on the 
treatment information entered, the 
database updater looks up the 
billing charge and sends a message 
to the billing system (previously 
described) to generate a charge 
record for the patient. 

o System viewing: A task attaching 
read-only to the TRKCOM region 
allowing a non-tracking user such 
as the chief technician to view the 
patient load at any service area 
and to send messages to the areas. 

Summary 

Using the communication mechanisms . 
provided by IAS has improved the design 
of the Patient Tracking System. User 
response time was increased by dedicating 
a task (TRKFND) for database searches, 
freeing the controller (TRKHUP) from disk 
bound operations. Features such as 
realtime monitoring of activity and 
communicating with other projects, 
(billing system) increases project 
functionality. In addition, we are better 
able to meet the expanding needs of our 
department. 



Footnotes 

{l} "Kb" a constant equivalent to 1,024 bytes of memory. 

{2} Typically, an I/O request is a read or write to a device such as 
a terminal, disk file or lineprinter. 

References 

1. Digital Equipment Corporation, PDP-11 Architecture Handbook, 1983, 
Preface p vii. 

2. Digital Equipment Corporation, IAS Systems Directives Reference 
Manual, October 1978, pp 2-2, 2-3. 

3. Digital Equipment Corporation, IAS Executive Facilities Reference 
Manual, October 1978, p 1-5. 

4. Digital Equipment Corporation, IAS Performance and Tuning Guide, 
December 1980, p 2-6. 

5. Digital Equipment Corporation, IAS Executive Facilities Reference 
Manual, October 1978, p 2-2. 

6. Digital Equipment Corporation, IAS Executive Facilities Reference 
Manual, October 1978, pp 3-5 to 3-7. 

7. Digital Equipment Corporation, IAS Guide to Writing Command Language 
Interpreters, December 1980. pp 8-8, 8-9 

8. Digital Equipment Corporation, IAS Systems Directives Reference 
Manual, December 1980, pp 4-103 to 4-106. 

9. Digital Equipment Corporation, IAS Systems Directives Reference 
Manual, December 1980, pp 4-84 to 4-88. 

10. Curley, Robert F. and Smith, Theodore J., "A Radiotherapy 
Department Computer Database", Proceedings of the Eighth 
International Conference on the Use of Computers in Radiation 
Therapy, July 9-12, 1984, pp. 501-505. 

262 







TOPS-20 Technical Update 

Donald A Kassebaum 
Computation Center 

The University of Texas at Austin 

Abstract 

This session featured presentations from Digital on the status of TOPS-20 
software. 

Speakers TOPS-20 SPR Backlog 

• Ernie Racine TOPS-20 250 
218 

180 • Mark Pratt DECmail/MS 

• Dave Eklund FORTRAN 

TOPS-20 

Current Status 
Nov'84 May'85 Nov'85 

TOPS-20 Rel 6.1 

• Field Image (KL) TOPS-20 Customers Waiting 

o Current "Off-the-Shelf" Version 141 
o Basis for Maintenance 121 

• (Support for 5.1 Ends September 1986} 102 

• Reliability Is High 

o Long Uptimes 

• Performance Is Improving 
Nov'84 May'85 Nov'85 

o Enhancements Are On The Way 

• Maintenance Efforts 
TOPS-20 - Future Directions 

Release 7.0 
o Autopatch 

o SPRs 
• Goals 

o Complete Commitments 
Autopatch Status o Improve RAMP 

• Tape 12 (SDC Ship - April 1986} o Minimize External Change 

135 

I I 
I I 
I I 

Apr'86 

66 

I I 
I I 
I I 

Apr'86 

o First Release To Update TOPS-20 6.1 

• Tape 13 (Expected SDC Ship - June 1986) 

o Minimize Impact of Upgrade 

• Sources of Input 

o OFN Caching (performance enhancement) o DECUS 

o Additional Edits o Engineering 

o SPRs/QARs 

o Marketing 

Proceedings of the Digital Equipment Computer Users Society Dallas Texas - 1986 

265 



TOPS-20 Rel 7.0 

Goals Priorities 

\ I 
II 
11 
\/ 

Plan 

• Expectations For 

o Content 

o Schedule 

Ideas 

TOPS-20 DECmail/MS version 11 MS - MX 

TOPS-20 DECmail/MS vll 

benefits 

• BUNDLED WITH TOPS-20 

• PROVIDES SUPPORT TO -lO's, -20's, VAXes 

• MS - USER INTERFACE 

• MX - MESSAGE SENDERS/RECEIVERS 

o REPLACES OLD UNSUPPORTED MAILERS 

o RELIABILITY 

o COOPERATES WITH ARPA MAILERS 

Current status 

• IN FIELD TEST ON TOPS-10 AND TOPS-20 

•EXPECTED TO GO TO SDC BY END OF JULY 

• DISTRIBUTED ON UPDATE TAPE 

FORTRAN-20 

Overview of VlO.O Features 

FORTRAN-10/20 Version 10 

• Field Image 

o Shipped in June, 1985 

o TOPS-10 and TOPS-20 

o KL, KS 

• Autopatched Beginning With Tape 11 

o EXE File Replacement Option 

266 

FORTRAN-20 Version 10 New Features 

o Full Language FORTRAN-77 

• Full level validation for All Configurations 

o Extended Addressing 

• TOPS-20 KL Model B Only 

o Portability Flagger 

o Industry Standard Magtape 

o G-Floating Support 

• TOPS-10 and TOPS-20 

o VAX FORTRAN Features 

o Debugger Enhancements 

Portability Flagger 

o Options 

• /FLAG:ANSI 
• /FLAG:VMS 
• /FLAG:ALL 

o Compile Time Warnings 

o Run Time Warnings 

Supported Configurations 

o TOPS-10 

• 7.02 or 7.03 
•KL or KS 

• LINK 5.1 or 6.0 

o TOPS-20 

• 4.1, 5.1, or 6.1 

•KLorKS 

• LINK 6.0 

Documentation 

o Language Manual 

o Pocket Guide 

o FORTRAN-10/20 and VAX-11 FORTRAN 
Compatibility Manual 

o Math Library Manual 

o Installation Guide 

Installation 

o Leave FOROT7.EXE on System Indefinitely 

o Install VlO Compiler, FORLIB, FOROTS, 
FORDDT 

o Programs linked with VlO FORLIB use 
FOROIO.EXE 

o Old .EXE's Continue to Use FOROT7.EXE 



Future Directions 

Performance Improvements 

o Object Code Improvements for Character Data 

• Single-character Assignments 

• Single-character Relationals 

RMS 

o Sequential, Relative, and ISAM File Organiza­
tions 

o Invoked by New 1/0 Keywords 

o 1/0 Keyword Compatibility with VMS FOR­
TRAN 

o Access to COBOL and BASIC+2 RMS files 

o No Additional Overhead when RMS Not Explic­
itly Invoked 

Network File Access 

o Transparent Network File Access Between 
TOPS-20 and VMS for ASCII Data 

o Remote 1/0 to RMS and Non~RMS Stream Files 

VMS Symbols 

o VMS-compatible Symbol Names Up to 31 Char­
acters in Length 

o Dollar Sign ($) and Underscore (-) in Symbol 
Names 

267 





TOPS-10 Technical Update 

Frank J. Francois 
Federal Home Loan Bank Board 

Washington, DC 

Abstract 

This article is a transcript of an audio tape made of this session at the Dallas 
symposium. Representatives from Digital Equipment Corporation were on hand 
to discuss the technical changes to the TOPS-10 operating system. Mark Pratt 
talked about DECmail MS. Dave Eckland discussed Fortran-10/20. Kimo Yap 
talked about TOPS-10 V7.03 performance. Bill Davenport discussed TOPS-10 
futures. A question and answer period followed. 

DECmail MS 

The DECmail MS product is a mail system which has been 
available in various forms for a while now. It's been on 
TOPS-20 for quite a number of years, and it's been avail­
able on TOPS-10 for a few years as a product that was un­
bundled. We've done an awful lot of work on it. We now 
have a version that runs on both TOPS-10 and TOPS-20. 
It's a two-part mail system. There is a user interface and 
there is a system interface which actually sends and re­
ceives the mail. The mail system will let you send mail, it 
will let you read mail, it will let you move messages out to 
other files. 

[MS is] a pretty powerful interface; you can do quite a bit 
of things with it. You can get a little summary listing of 
every message that has a particular subject or a particular 
date. There's probably a dozen to two dozen different 
options you can get for selecting mail messages. 

As the TOPS statement says there, [MS/MX is] going to 
be bundled with TOPS-10 7.03. It's not on your SDC 
tapes because we're still in field test with the product, but 
it is going to be delivered with the operating system and 
be [present on] future update tapes. 

It runs on both TOPS-10 and TOPS-20 and talks between 
the two of those. It also talks to VMS systems. It uses two 
different protocols to do this. Between TOPS-10 to TOPS-
20 or TOPS-10 to TOPS-10 or TOPS-20 to TOPS-20, we 
use something called the Simple Mail Transfer Protocol 
(SMTP). If you are familiar with the Arpanet at all, it 
is a spec that is called RFC 822. The protocol that we 
use to talk to VMS systems is called Mail-11, which is 
the standard bundled mail system on VMS. In addition 
to that, there is some capability to talk to the ALL-IN-
1 mail system using software on the VAX that is called 

Proceedings of the Digital Equipment Computer Users Society 269 

MR GATE. We speak directly with that to the Mail-11 
protocol. 

MS is the user interface and it is very powerful. MX is the 
system process that is the sender/receiver. MS is written 
totally in Macro and MX is written in a combination of 
Macro and Bliss-36. We are sending out the sources. In 
the case of MX, if you don't have Bliss-36 then we have 
provided some method for you to tailor MX, so that you 
can tailor the number of senders for TOPS-10, TOPS-20 
or VMS. 

By the way, [MX] communicates over DECnet. There 
has been no supported network mail on TOPS-10 before. 
There have been several unsupported mail systems out 
there, one of which was called NETMA. I don't believe it 
was even sent out to the field. 

The reliability of the [MS/MX] product is pretty high. 
Currently you are able to have 512 messages in your mail 
text file; that will probably be extended to a very large 
number very soon. Since I can't speak about the TOPS-
10 part of the reliability in comparison to what we had on 
the TOPS-20, [let me just say something about TOPS-20]. 
Some of the very old mailers that we had on the TOPS-20 
side corrupted your mailed out file very easily. That's one 
of the things that we put into this product: the ability to 
recover from that [type of problem]. With just one mail 
system then we don't have the problems of contending 
mailers. 

We are currently in field test on both TOPS-10 and TOPS-
20. On the TOPS-10 side we have only been in field test for 
about three weeks. The reports that we get back [indicate] 
that it is fairly stable, in fact very stable. We have actually 
only had two QAR 's reported against it and both of those 
have both been answered. We have no current outstanding 
problems with the mail system. We are expecting to end 

Dallas Texas - 1986 



the field test around the end of June. It will be going into 
the SDC on an update tape; this should happen the end 
of July. If you have any questions about the product, at 
the end of the session just let me know. 

Fortran-10/20 Update 

[This portion of the session is] an overview of the last re­
lease of Fortran-10/20 which went out almost a year ago 
and some of the things we have been thinking about for 
the next release. 

Fortran VIO 

Version 10 is currently our field image Fortran. It was 
shipped in June of 1985 to both TOPS-10 and TOPS-
20 for KL's and KS's. It is currently the only supported 
version of Fortran. We began autopatching it with tape 
11 and we include both source updates on the autopatch 
tape as well as EXE file replacement. 

We had quite a number of new features in Fortran version 
10. It is a full Fortran 77 language [implementation with 
complete] level validation for all the configurations. We 
just recently got through revalidating the product at the 
full level. 

There is a portability flagger that will allow you to discover 
those things which are either not ANSI compatible or not 
VMS compatible. 

We also put in support for G-floating on both TOPS-10 
and TOPS-20. We added some industry standard magtape 
features. We put in some compatibility features to allow us 
to be similar to VAX Fortran and we made some debugger 
enhancements. It was a major release. 

Incidentally, it has been a very stable release over the past 
year. We've had very few bug reports from customers. 
We've had customers tell us that it is really one of the 
more stable versions of Fortran. If there are any of you 
that have not yet put it up, I strongly encourage you to 
do so. Our experience with it has been very positive. 

The portability flagger in version 10 gives you three op­
tions. It allows you to determine those things which are 
not ANSI standard, those things which are not the same 
as on VMS, and you can get a collection on both. It gives 
you compile time warnings and, for those things that are 
not detectable at compile time, you may get some run time 
warnmgs. 

These are the supporting configurations for TOPS-10. It 
runs under 7.02, and it will be supported under 7.03 on 
both the KL and the KS using LINK version 5.1. For 
TOPS-20 for those of you who also have TOPS-20 systems, 
it runs under 4.1, 5.1, 6.0 or 6.1, [on] KL's, KS's with LINK 
6.0. 

The documentation that we put out with version 10 was 

fairly extensive. There's a large language manual, a pocket 
guide, the Fortran-10/20 VAX-11 Fortran compatibility 
manual showing you the differences that we know about 
between the various Fortran's. There is a large math li­
brary manual giving you some of the algorithms, some er­
ror analysis that we did, and there is an installation guide. 

270 

For those of you who haven't installed it, it's a rather 
simple matter. Version 10 and version 7 of Fortran can 
co-exist on the system. What we usually do is to put the 
new Fortran up on new for a while just in case and leave 
the old Fortran on SYS:. That allows your people to use 
either one for a short time to ensure that the new Fortran 
works properly. 

Fortran Futures 

We have a number of things in mind for the next version 
of Fortran. While it is not an announced product per se, 
we would like to give you some idea of the things we are 
thinking about and solicit things that you may desparately 
need. This will be probably one of the last times to give us 
input on what you would like to see on the next version. 

The things we have in mind, however, are performance 
improvements and supporting [Jong?] symbols along with 
symbols for VMS. 

In the area of performance improvements, we would like 
to improve the object code for character data, specifically 
for single character assignments and single character rela­
tionals. We believe that the speed-up can be substantial 
for these very common cases. We would also like to put 
in support for VMS symbols, to be VMS compatible, up 
to 31 characters in length, dollar sign and underscoring 
included. You will still get warnings if you are using the 
flagger about variable names that contain more than six 
characters. 

TOPS-10 V7 .03 Performance 

I have the impression that everybody has seen all the 7.03 
slides before, so I thought I would talk about something 
different. This be the theory aspects of the performance 
issues. 

We haven't had time to get a really good feel for exactly 
what's going to happen with 7.03 performance. We did a 
number of things to try and counteract places where we 
knew we were going to have an effect [on performance] 
with some of the new features we were adding in 7.03. 
Normally during the course of our field tests, we get some 
data from the field test sites. Western Michigan is one 
that in particular we did get performance data from. We 
got a little bit from them but not as much as we would 
like to get [in order] to say anything more definite about 
performance. We also get impressions from the field test 
sites, WMU specifically, because they have a particular 



package that they run every time and usually we try to 
compare it against the previous release. 

Performance, as always, is composed of overhead, through­
put and responsiveness, and sometimes you end up trading 
off different things. We have not really heard of a problem 
with throughput from the field test sites. We have had 
a few complaints about overhead on all CPU's, and some 
complaints about responsiveness, but these haven't been 
quantified yet. 

What I would like to talk about, as I said, are the things 
I know we worked to improve on. 

In the area of Ethernet and DECnet the main killer we 
found early during our development was routing overhead. 
Toward the end, Bill did a heroic amount of work to try 
and cut down that amount of overhead by eliminating one 
of the routing vectors and postponing the updates until 
they were absolutely necessary. Basically, what this can 
do is cut down the number of nodes that you recompute. It 
makes the assumption that only one or two nodes change 
when you get a routing update instead of [assuming that] 
all of the nodes change. It only tries to affect the few 
nodes that are changing, and also eliminates unnecessary 
updates. For our configuration, we were running around 
90% overhead on our POLICY CPU's sometimes. The 
Enet [DEC's internal DECnet] configuration is a little bit 
unusual and I'll explain about that in a minute. With 
the changes we lost about 30%-40% of our overhead on 
the boot CPU. As the note says, that [result] was [with] 
the Enet configuration; your mileage may vary. The main 
difference with the Enet configuration is that we are con­
figured with a very large number of routing nodes, and 
I speak about that on the last slide when I talk about 
things you should watch out for with 7.03. A large number 
of routing nodes can make your overhead go up tremen­
dously. The other thing [unusual] about Enet is most peo­
ple do not have 5,000 or plus node networks. 

In the area of virtual memory, with the larger address 
spaces possible with 7.03, we did a number of things to 
try and improve the virtual memory performance. There 
is a small [over]head on the CORE UUO that we found 
out with Western Michigan University. We are hoping 
that that is not a heavily trafficed area of code and we are 
also putting in some work to try and speed it up. 

For the virtual memory we implemented paging queues. 
In the past when the page fault handler said to page out a 
page or when the user said page out a page, it was written 
immediately to the swapping space. That is not necessarily 
the case in 7.03. Pages go on to a number of queues; 
they migrate into one of two "in core queues". Following 
that, they will move to an "in progress queue" when a 
monitor decides it needs to swap out the queue, and then 
it will move to an "out" queue. As long as it is in one 
of those three queues, if the user faults for it in the time 
before it disappears off the out queue and gets recycled as 
a free page, the page fault will not generate an 1/0. A 

271 

secondary advantage of this is that pages that get paged 
out get to be collected as contiguous chunks of space on the 
swapper. The swapper handles large amounts of swapping 
much more efficiently then individual pages. The benefit 
you will get out of this even if you do not use virtual 
memory per se is that IPCF pages which the monitor has 
been in the habit of paging out at the drop of a hat will 
collect on the paging queues instead of immediately going 
out to the swap space. 

Another thing we have changed with 7 .03 is to increase the 
swap space to 256K pages per unit, [with] the same limi~ 
of 8 units. There is a dependency there, however, on the 
cluster size: the swap file must fit between the bat blocks. 

An additional change we made to improve end perfor­
mance is to move the page fault handler into the monitor 
and hopefully write a better one. There is no change in 
the user mode any more for that. User PFH's will still 
work with non-extended programs. We have attempted to 
keep the mechanism alive, but we do recommend you use 
the monitor PFH if possible. Your user PFH will not get 
merged into your image from a file, the PFH must be set 
up when the page fault occurs. 

There have also been some improvements to the SAVE/GET 
code to do larger IO P's and increase the virtual SAVE/GET 
cases. 

Early on in 7.03 we picked up some scheduler improve­
ments from Western Michigan. What these implement are 
one high segment retention time, so that if you have appli­
cations that do a considerable number of GETSEG's, you 
can keep these segments around on the swap space more 
easily if you tend to be recycling them a lot. 

[We] also [got] a free core goal. You always know that it 
is an improvement that if you can do the swapping when 
you are idle and not when you have to swap something. 
The free core goal is one way that Western Michigan has 
tried to quantify when the system is idle and what you 
should actually be shooting for. It allows you to set a goal 
so that if the swapper is idle it will attempt to swap out 
long term waiters to meet the free core goal. These things 
are affected by schedule set parameter; the default is the 
same as the 7.02 behavior. 

[Here are some] things you should watch out for with 7.03. 
The memory requirements [are] bigger and better, but 
mostly bigger. The minimum configuration for the KL's 
is 768K now. Insufficient memory can negate the effect 
of the paging queues. The pages will only stay around in 
memory as long as there is sufficient memory to hold them. 
If you do not have that memory you will have the added 
overhead of actually putting the pages on the queue, and 
you won't get the benefits of either the lack of fragmenta­
tion because it will be going out in one or two page chunks. 
Basically, you will not have any of the improvements. 

Second thing to watch out for in 7.03 are routing wars, 
this is particularly true if you do run with a lot of routing 



nodes on your network. You should try to run with as 
few as possible. First of all, each routing node generates 
a lot of traffic for all the routing updates. And second 
of all, if somebody does happen to have a bug and starts 
disagreeing about what the routing vector is to a particular 
node they will exchange messages with each other as they 
argue about who was right as to how far away a certain 
node is. This is also possible on 7.02. However, on 7.03 
[with] Ethernet, the messages can go many times faster so 
you can chew up a lot more CPU resources doing that. If 
you have any questions about this, we will be taking them 
at the end or you can talk to me at the booth. If somebody 
wants to know about the features that are actually in 7.03 
you can also talk to me about that. 

TOPS-10 Futures 

What I would like to talk about is what we are thinking 
about for 7.04, our next release. We are currently in a very 
early stage in the development cycle. In fact, we're in pre­
internal phase 0. Phase 0 is the point where we actually sit 
down with product management and hash out the different 
features which are going to be in 7.04. We are not to that 
point yet. In fact, internally in the development group we 
are just now starting to sit down and write down our ideas 
about what we believe belongs in that release and what 
we believe the customers actually need for that release. In 
terms of input, the session later today at 3:00 is a very 
good time to let us know what you need for that release; 
it is a perfect time in the cycle. 

Our goal for 7.04, the next release, is stability. We are 
going to be working to make this product a very stable re­
lease, very reliable, maintainable, all the good things that 
you have heard in the past with the RAMP philosophy. 
So for goals and particular things like reliability we are 
going to be doing a lot of concentrating on SPR's. We are 
going to be answering SPR's, we are going to be looking 
through the SPR's to find those particular sections of code 
or those particular pieces of the product that do not func­
tion very well or have more problems then other sections. 
We are going to concentrate on those particular things. 
Hopefully, we will be able to reduce the sticky points we 
have had over the last years. Along with SPR 's in general, 
there are a lot of problems we know of that exist in some 
of the releases that we are going to try and address, things 
that haven't been SPR'd that have just been lying around. 

Maintainability-wise we're going to be doing as much code 
clean up in the monitor as possible and in the utilities. The 
idea being to make the flow code very easy to read, very 
understandable, [and to allow there] less chance of any 
bugs actually being in the code because we will be doing 
some inspection of that. 

We are going to be doing some work to complete things 
that are in and implemented in 7.02, 7.03 past monitors, 
that for some reason or other that didn't quite get finished. 

One particular thing that comes to mind is the QUEUE 
UUO. There is some small missing pieces of the QUEUE 
UUO that you can not do, [such as the requirement] that 
you know you must use IPCF's to actually have happen. 
So we will be working on areas like that to just basically 
stabilize the code and complete the ne functionality that 
we started in the past. 

Other things we are thinking about in terms of making the 
product more maintainable for customers and in fact for 
ourselves internally is that if there there are any utilities 
or any functions that more than one program might be 
doing, we are going to try coalesce these things. At the 
moment, I don't know of any specific examples, but if we 
can find a function that is being done very similarly by 
two programs, we are going to make some attempt to put 
those programs together into one. 

The other big area that we are going to be investigat­
ing is performance. One of the things that I would like 
to see happen (in fact, I was the major force behind get­
ting it on our list) is some work being done to actually 
go in under induced loads and identify specific hot spots 
in the code, so that we can go in and address specific ar­
eas that under some circumstances we know will give bad 
performance. One of the things that was done in 7.03 was 
the routing vector fixes. That in particular under some 
circumstances (like our configuration) has very dramatic 
effects; on smaller configurations it might not be as much 
a win. There are other circumstances I know everybody's 
load is different so that different sites have different things 
that they do a lot of, so they'll have different areas that 
we can concentrate on. 

As I say, since we are very early in the process right now, 
just starting to think about what 7.04 entails, there is 
nothing specific I can tell you about what we are thinking 
about, but what I would encourage you to do is, given some 
of the things that we are interested in doing and think that 
we believe need to be addressed, to come to us at the 3:00 
session this afternoon and let us know what it is you need 
for us to accomplish this goal from your perspective. If 
anybody has any specific questions on specific features, I 
am more than willing to talk about them either off-line or 
at the booth. 

Question k Answer Period 

272 

Q. What plans do you have for ANF-10? 

A. At the moment, we have no developments planned for 
ANF-10 but we expect to have it continue working in the 
same fashion that is works right now. 

Q. Is there any hope of getting extended addressing and 
Fortran on the TOPS-10? 

A. Probably not. 



A. (Kimo) For the futures [portion of the talk], I neglected 
to mention that there is a full documentation set down in 
the booth, in the documentation area. 

Q. Right now we are running 7.0lA, and we have had 
people looking at going to 7.02. One of the issues is, that 
our accounting system still uses FACT files even though 
we have gone to Galaxy. It is feasible and have any of 
the test sites of 7.03 jumped directly from 7.0lA to 7.03? 
There would be pros and cons of doing that. 

A. There is a program on the tools tape that will convert 
your usage files back into FACT files for your accounting. 

Q. (Bob Derchie, PRC) We are also going from 7.0lA to 
7.03 and I think the main question we have is-what were 
the problems of going from 7.0lA to 7.02 and a.re we going 
to have the same problems going from 7.0lA to 7.03? 

A. Perhaps some of the people who went to 7.02 would be 
better able to answer from the problems they had. 

Q. (Brent Stern - University of Ontario) I have a question 
from another site who is interested in PUSH a.nd POP. 
Is there a. convenient way of communicating between pro­
cesses that use that utility? Funny space shared for exam­
ple. 

A. Funny space tends to go downward but not upward. 
IPCF between different contacts works. 

Q. (John Edgcomb) We finally got a VAX. The VAX com­
patibility is an area that we should be concerned with. 
There a.re two specific areas that I like, one is the Fortran 
and the other is the monitor. [What I would like to see in] 
Fortran [is] the variable field format [that allows you to] 
specify at one time how wide a field is, that can be put on 
with an angle bracket in the format. 

A. I don't believe it is on our list of things at this point. 
Why don't you catch me later and give me a fuller descrip­
tion of what you would like. 

Q. The second thing is in the monitor and that is the recall 
command. I don't like typing, and when I make a mistake 
and have to retype the whole line to interchange two let­
ters. I would like to have the recall command preferably 
with full line editing, but if not, then just the ability to 
go back a couple of commands and re-execute it would be 
heaven. 

A. (Kimo) I didn't bring the noted side from the VAX 
group. Does anyone have an answer for this other gentle­
men by the way? Did you want to talk to them off-line 
a.bout the problems going from 7.0lA to 7.02? I guess 
there weren't any problems. 

Q. (Stan Ba.er, Harvard Business School) On the DECma.il 
MS, it sounds like it ma.y be the solution to a. problem that 
recently came up. We had some faculty members who 
are interested now that we a.re on BITNET on our IBM 

273 

mainframe. Interested in having some wa.y of moving stuff 
from the DEC-10 over out through BITNET. If we got a 
MicroVAX with j-net on it in between, and we got MS on 
the DEC-10 they could send things to the va.x. Could it 
be sent in such a wa.y that it could kind of keep going and 
go out through BITNET? 

A. We do a. few special things. Like I said, if the mail will 
be sent to the VAX using the Mail-11 protocol, you have 
the ability to format a message within quotes. Now if you 
can route that on the VMS side to the special mailer to go 
out to the j-net or the BITNET, you would probably be 
able to do that. There is some software called mr gate that 
runs on the VAX, and I'm not sure what they do to talk to 
other mail systems, but that is the route we have gone to 
get mail into ALL-IN-1 mail. There is some special other 
mailers that I have seen on VMS which interface directly 
to the arpEnet. Nothing that will go directly from the 
DEC-10 to another network, but if you can get it to the 
VAX and you have the VAX software to do that, I suspect 
you can do it. 

Q. I was willing to get a. VAX to do it, but my preference 
would be, is there any way to get things directly from the 
DEC-10 out to any other network? 

A. Do you have the Bliss-36 compiler? 

Q. No. 

A. It's probably going to be a problem for you then, be­
cause most of the MS is written in Bliss, the scheduler for 
it is, many of the utilities. The individual drivers though, 
that we have are written in Macro. For SMTP and for 
VMS mail, they're both in Macro. I don't know what we 
would have to do to allow you to add another driver with­
out modifying the utilities. Most of the 1/0 is done in 
Bliss code, and usually there are common drivers for that. 
You might have to write a. special driver and then be able 
to interface it that way. It's possible but I can't guarantee 
it. 

Q. (Frank Francois, FHLBB) On the MS mail it is bundled 
in 7.03, but can you run that newer package in 7.02? 

A. No it can't. It is only supported under 7.03 for TOPS-
10 and 6.1 for TOPS-20. 

We do a lot of things with the new Galaxy, especially hav­
ing to do with account validation and things like that. 

Q. (Brent Stern) I am running 7.02 with autopatch tape 
8 installed. I have 4 other autopatch tapes sitting on my 
shelf. I am not going to be going to 7.03 because I am 
just so busy with so many other things and we see the end 
of the line. Is it worth my while to put in the effort of 
upgrading to the 12th autopatch tape, or is there a 13th 
coming? Am I going to see better stability then I've got 
now, which quite frankly is pretty good? Are there some 
really good reasons for doing that? Am I going to get 
better support? 



A. (Kimo) Well, i .02 support will end on the usual date 
that it ends, 6 months after the last customer ship. If you 
don't see any problems and you don't have any plans on 
upgrading anyway, I can't think of anything really obvious, 
any particular reason why you would want to go, other 
then the support issue which like I said, 6 months after 
the last customer ship for 7.03 it's going to be a new point 
anyway. 

Q. My understanding is that 7.03 requires Galaxy V5, is 
that the right way around? 

A. Sort of in the same way that 7 .02 required Galaxy V 4. 

If you don't want the new features, officially the only sup­
ported position is Galaxy V5. If you don't really want the 
new features, you can get away without running Galaxy 
V5. 

Q. So all the Galaxy V4 EXE's will run on i.03? 

A. I believe that is true. Like 7.02, Galaxy V2 would run 
with i.02. 

Q. (Chuck Bacon, NIH) Is there any likelihood that either 
mode 2 or mode 3 files will be supported for disks? 

A. (Kimo) What do you want them to be? 

Q. So I can open a file in mode 2 and have 8 bit bytes to 
and from the disk. Right now if I open in mode 2, I get 
36 bit bytes. 

Mode 2 is pim, that's only technically legal for terminals. 

Increasingly, we are getting binary files stored in 8 or 32 
bit modes, and we are trying to discourage people from 
writing binary data in 36 bit mode and instead encour­
aging them to treat all binary data as 32 or 16 or 8 bit 
data. this is working, KERMIT works wonderfully with 8 
bit data, it also works with 36 bit data but you have to 
tell it it's text and nobody understands the data when it 
gets to the other end. It's beside the point. If an organized 
blessed mode existed for 8 bits, I think people would really 
like that. I know you open and enter the file and then you 
go and set the bite pointer and then off you go. 

A. (Kimo) We'll note that, if it was it probably would not 
be one of the existing modes, it would probably be a new 
data mode. 

Q. All we've had to do to every monitor we ever had was 
to, there is some bit you flake someplace that says is this a 
legal mode and off you go and it works. and there is some­
place where you have to change the count from multiply 
it by 4, divide it by 4 or do one of those things. For some 
reason or other our fix got it so it writes nicely on the disk 
but when you read it back, it still comes back funny, that's 
our fault. But we would like to see the company bless it. 

Q. How much trouble should I expect retrofitting FACT 
files throughout and not having anything to do with usage 
in 7.03? 

274 

A. (Kimo) You can skip the mail system. There are a lot 
of reasons why you might want the rest of the accounting 
for 7 .03. Encrypted passwords, password expiration, min­
imum length all those good things you won't get without 
going to the Galaxy 5 accounting. In terms of just your 
accounting data, the utilities that's on the tools tape will 
convert the accounting data from usage format to FACT 
format which you can then run from your downline ac­
counting program if that is what you want. 

A. MS is not with the 7.03 FDC tapes, it will be sent out 
on a later update tape. 



TOPS-10 V7.03 Users Panel 

Frank J. Francois 
Federal Home Loan Bank Board 

Washington, DC 

Abstract 

Representatives from TOPS-10 V7.03 field test sites discussed their experience 
with the new release of the operating system. Ralph Bradshaw represented 
Johnson & Johnson, and Robert McQueen represented Stevens Institute of 
Technology. 

Johnson & Johnson 

Johnson & Johnson became a field test site for 7 .03 be­
cause an impending move required them to have Ether­
net running on the TOPS-10 system. TOPS-10 7.03 with 
DECnet Phase IV provided Ethernet support on the DEC-
1095 with the NI. 

Johnson & Johnson 7.03 Findings 

• J&J used two terminal servers. They ran dedicated 
service on the terminal servers. They encountered a 
problem using V2 of the terminal server software with 
a 7 bit host, dedicated service and autobaud. The 
terminal server beat itself to death never servicing 
the line. This resulted in a 1 % throughput. Stevens' 
took away the autobaud as a work around to this ts 
problem. 

• With dedicated service you also lose sight of the host. 
You can connect to terminal server and connect to 
host (if host isn't there you get no indication of a host 
being down). No message such as "host not available" 
comes back to the terminal. 

• No disconnect from terminal server on logout. Host 
drops you to the terminal server or you do a carriage 
return and you end back up to the host-host drops 
you and you are back to the terminal server. Version 
2 of the terminal server doesn't let you know what 
port you are on. The terminal server's next software 
release is supposed to fix the problem. 

• The terminal server makes flow control much more 
complex. There is Bow control between terminal 
server and host and terminal and terminal server. If 
you have page size set to 24 lines and the DEC-10 
stops the output, there is no way to restart the DEC-
10 output unless you have the unpause bit set up. 

Proceedings of the Digital Equipment Computer Users Society 
275 

When you try to restart the DEC-10 flowing by hit· 
ting a Ctrl/ Q - the terminal server doesn't pass it 
along to the DEC-10. You can, with the unpause­
bit, set up any character to become a Ctrl/Q when it 
hits the DEC-10. Johnson & Johnson generally uses 
a Ctrl/ A as the alternate flow control character. 

• security and accounting was a major change. 

o Password encryption is available. 

o Password expiration in accounting daemon now 
available. There is a new program available 
called NEWACT allows it to set the expiration 
time. This program generally only run once so 
be sure you have the correct parameters. 

o The conversion to the new accounting program 
is straight forward but it does take some study­
ing of the documentation to insure a complete 
conversion. 

• The DECnet File Access Listner behaves differently; 
FAL in 7.03 is now multi-threaded. 

• Galaxy V 4 to Galaxy V5 transition went smoothly. 
Operators had little trouble adjusting to the new 
Galaxy. 

• J&J is experiencing good up time now; 7.03 is reliable. 

• A problem with corrupted disks (UFD) was hardware­
related and did not necessarily have any thing to do 
with 7.03. Some sites did experience UFD corrup­
tions. 

Stevens Institute of Technology 

Stevens' configuration included 1090 with MG20, NIA 20, 
MCA 25, ANF network, DN 200, and a DN20. They have 
been running with an Ethernet for several years. 50 PRO 
350 IP, VAXcluster and MicroVAX II on same network. 

Dallas Texas- 1986 



Stevens Institute 7 .03 Findings 

• NI-based DECnet works fine. Stevens runs multiple 
DECnet areas. There was a problem with the DN20 
being Phase III, so they will have to swap that out. 

• Other 7 .03 stuff works fine. Alternate context is really 
great. Extended address user mode has a few bugs. 

• Galaxy. The multiple driver in line printer support is 
great. Can write your own module for foreign equip­
ment without a lot of changes to the DEC sources. 

• Accounting. There are new password and security 
features. The ability to put distribution location on 
output is a real plus. 

• CTERM doesn't work with RSX and PRO 350 sys­
tems. 

• The DEC-2020 had performance problems and is no 
longer running 7 .03. Cobol-based and Scope applica­
tions suffered. 

Question & Answer Period 

Q. (Ralph Smith) Can you give me an idea on size of sys­
tem and users response? 

A. (Stevens) 1090 1 meg, 40-50 jobs slows down system. 
2020 monitor grew about 20 pages. 

A. (Johnson & Johnson) 1095 2 meg CPU power is used 
up before you run out of memory. 

276 



LCG Software Products Update 

Carla J. Rissmeyer 
Computation Center 

The University of Texas at Austin 

Abstract 

Dave Braithwaite and Susan Porada of Digital Equipment Corporation presented 
this update on the Large Computer Group's software products. Mr. Braithwaite 
talked about engineering's strategy and work in progress, while Ms. Porada 
discussed the directions of the documentation group. 

ENGINEERING 

Product Strategy Since 1983 

• Expand the TOPS environment 

1. CI, HSC disks, CFS 

2. MG memory, MCA-25 

3. improved performance and reliability 

• Interconnect with other DEC products 

1. Ethernet: gateways, LAT 

2. DECnet Phase IV 

• Provide migration path 

1. integration tools 

2. documentation 

3. Datatrieve 

4. language compatibility 

Current Happenings 

• TOPS-20 7.03 to SDC 

• MS-10/20 in field test 

• TOPS-20 6.1 shipped 

Work in Progress 

• Microcode improvements 

• TOPS-20 7.04 

• TOPS-20 V7 

• Fortran Vl 1 

• DECmail/MS-10/20 

• DIU 

• Reduction of SPR backlog 

Proceedings of the Digital Equipment Computer Users Society 
277 

Strategy for LCG Engineering 

• Migration of engineers to cluster projects 

• Add large systems features to VMS 

1. DX20 for VMS 

2. VAXcluster console 

• Future possibilities 

1. very large disk farms 

2. cluster management 

3. high availability 

• Continued focus on needs of large systems environ­
ment 

DOCUMENTATION 

Development Releases 

• TOPS-10 7.03 in SDC 

• DECmail/MS in field test 

• DIU /RMS-20 in late summer 

• Fortran Vll 

Completed Integration Documents 

• Network compatibility 

• Operating system compatibility 

• Language compatibility 

Documentation Stabilization Goals 

• Get up to field image level 

• Ensure adequacy 

• Provide soft copy 

Dallas Texas· 1986 



New Projects 

• V AXcluster console 

• VAXcluster applications guide 

• VAXcluster systems handbook 

• VAXcluster systems QUORUM magazine 

COMMENTS FROM THE Q&A PERIOD 

Concerns were raised about the quality of the TOPS-20 
V6.1 manuals. They were not typeset. 

Users requested that documentation for the final releases 
of the TOPS operating systems be provided in both hard 
and machine-readable (DSR format) copy. This would en­
able users to maintain documentation easily. 

When TOPS-20 development ends, users ask that the 
documentation be as complete as possible, including 
MONSYM, MACSYM and ACTSYM listings, as well as 
Bug lists and monitor tables. 

278 







Typesetting Articles for the DECUS Proceedings with I.t\'IEX 

Barbara N. Beeton 
American Mathematical Society 

Providence, Rhode Island 

Abstract 

The DECUS Proceedings have traditionally been published from copy supplied 
by the authors, prepared according to rules devised for typewritten material. 
The power of the computer typesetting language 'JEX, 1 through the macro pack­
age JJ.'JEX, has now been applied to this task, and a formatting package, named 
DEPROC, has been submitted to the DECUS Program Library for use by authors 
who have access to a working 'JEX system. (The 'JEX program and related 
software, created by Donald Knuth of Stanford, are in the public domain.) 

This paper presents the important features of the Jl.'JEX implementation of 
DEPROC and, through examples, shows how it is to be used. Use of DEPROC, which 
is encouraged, will produce the author's work, nicely typeset, in the standard 
Proceedings format. There is a general description of how the package works and 
of the mechanical requirements for camera copy of Proceedings articles, which 
will be created on the author's local output device. 

No prior knowledge of 'JEX or U.'JEX is required, but authors using DEPROC 
will be expected to learn some rudiments, especially if their papers contain 
special notation or formats such as tables. 

The DECUS Proceedings, like the conference proceed­
ings of many other organizations, is rushed to publication 
as quickly as possible so that the material will reach the 
conference participants and other interested readers be­
fore its value is diminished by time. Reproducing author­
prepared copy eliminates the considerable bother and ex­
pense of typesetting, proofreading and corrections. The 
published document should be compact, uniform in ap­
pearance, and readable, regardless of the kind or quality 
of printing device available to the author. For these rea­
sons, instructions to authors have heretofore assumed that 
nothing more elaborate is available than an ordinary type­
writer or dot matrix printer. 

To enforce uniformity, the author is provided with 
"model paper", on which are printed (in non-reproducing 
ink) column and page borders, alignment marks, and in­
structions for placement of title, author, and the other 
parts of a proceedings article. The dimensions of the model 
paper are almost always larger than those of the published 
Proceedings - this permits more text to be packed onto 
each page, and also improves its appearance or "quality" 
when photographically reduced, smoothing out the rough 
edges of letters and symbols generated by a typewriter, 
dot-matrix printer or other "low-resolution" device. 

Within the past few years, advances in laser-printer 
technology have made good-quality output accessible to a 

1 TEX is a trademark of the American Mathematical Society. 

Proceedings of the Digital Equipment Computer Users Society 
281 

growing number of users, through a widening selection of 
low-cost output systems based on print engines with SOO 
dot-per-inch resolution and (relatively) easy-to-use inter­
faces. Such devices have been attached to most kinds of 
DEC computers, and drivers now exist to print the out­
put from such programs as Scribe, 2 'JEX and Troff. Most 
low-end laser printers cannot use paper wider than 81/2", 
however, so even if both a good composition program and 
output printer had been available, until now an author 
would have been discouraged from using them for mechan­
ical reasons. 

The editor of the DEC US Proceedings has now agreed 
to accept typeset copy printed on such a system at 1003 
on 81/2 x 11" paper, provided it conforms to the published 
format. This article (which has itself been produced by 
the technique it describes) introduces a package, DEPROC, 
designed to prepare Proceedings articles using Jl.'!EX. 

What is 'JEX? What is IJ..TEX? 

TEX is a public-domain typesetting language created by 
Donald Knuth of Stanford University. His original aim 
was to typeset his own books, in particular The Art of 
Computer Programming [ACP], with a quality equal to 
that produced by the best traditional composition meth­
ods. The technical content of these books assured that full 

2 Scribe is a trademark of Unilogic Ltd. 

Dallas Texas- 1986 



DECSystem-10 DECSYSTEM-20 VAX (Unix) VAX (VMS) 

Allied Linotronic Text set Textset 
1100, L300P 

Apple LaserWriter Carleton University Textset t 
Textset t 

Autologic Textset Text set Intergraph t 
APS-5, Micro-5 Text set 

Canon Canon 

Compugraphic Kellerman & Smith 
8400, 8600 

DEC LNOl Univ of Washington Louisiana State U 

DEC LN03 DEC 
Kellerman & Smith 

Imagen Stanford SRI Univ of Maryland Kellerman & Smith t 
Vanderbilt Columbia 

QMS Lasergrafix Textset GA Technologies 
Univ of Washington Texas A&M 

Text set 

Symbolics Univ of Washington Univ of Washington UM ass 

Talaris Talarist Talaris t Talarist Talaris t 

Xerox Dover Carnegie-Mellon U Stanford 

Xerox 2700 Ohio State U Ohio State U 

Xerox 9700 Univ of Delaware Univ of Delaware ACC 
Text set 

t Graphics supported 

Figure 1: Computer/output device combinations with TEX interfaces 

Information regarding the interfaces shown here can be 
obtained from the individual listed below for the site. 
This table and the names of the site contacts were pro­
vided by the TEX Users Group. 

ACC (Advanced Computer Communications) 
Diane Cast, 805-963-9431 

Canon (Tokyo) Masaaki Nagashima, (03) 758-2111 
Carleton University Neil Holtz, 613-231-7145 
Carnegie-Mellon University Howard Gayle, 

412-578-3042 
Columbia University Frank da Cruz, 212-280-5126 
DEC (Digital Equipment Corp) John Sauter, 

603-881-2301 
GA Technologies Phil Andrews, 619-455-4583 
Intergraph Mike Cunningham, 205-772-2000 
Kellerman &l Smith Barry Smith, 503-222-4234 

282 

Louisiana State University Neil Stoltzfus, 
504-388-1570 

Ohio State University John Gourlay, 614-422-6653 
SRI 
Stanford 
Talaris Sonny Burkett, 619-587-0787 
Texas A&M Bart Childs, 409-845-5470 
Textset Bruce Baker, 313-996-3566 
University of Delaware Daniel Grim, 302-451-1990 
University of Maryland Chris Torek, 301-454-7690 
University of Massachusetts Gary Wallace, 

413-545-4296 
University of Washington Pierre MacKay, 

206-543-2386 
Vanderbilt University H. Denson Burnum, 

615-322-2357 



attention was given to the niceties of formatting mathe­
matical expressions, as well as to the structures of docu­
ments commonly encountered in technical publishing. 

TEX deals with low-level concepts familiar to typeset­
ters - type size, leading, interword spacing and kerning. 
It does not incorporate directly the structures an author 
encounters when writing a paper-title, figure references, 
bibliographic entries. However, 1E;X is essentially a macro 
compiler, and provides a full vocabulary of low-level func­
tions that can be manipulated by knowledgeable users to 
create higher-level packages to support the casual user. 

One such macro package is :U.'IE;X. :U.'IE;X [LT] is a 
powerful document formatter, providing the capability to 
format books and reports, with functionality similar to 
that provided by Scribe. 

The DEPROC macro package 

In order to use this implementation of the DEPROC macro 
package, the author of a DECUS Proceedings article must 
have available a working :U.'fEX system, which presup­
poses a working 1E;X system. 1E;X has been implemented 
on VAXes and DECsystem-lOs and -20s under the stan­
dard operating systems. There is also a good selection of 
output devices available, capable of production output of 
quality suitable for the Proceedings; Table 1 shows the 
computer/output device combinations known to the '!EX 
Users Group. ('JEX has not, however, been implemented 
on PDP-lls, since it requires a larger address space than 
is supported on those machines.) 

:U.'JEX may not be available to all '!EX users. ('JEX is a 
very large program by itself, and routinely adding a large 
macro package can put unwelcome strain on an already 
overloaded machine. Some system administrators prefer 
not to give their users that opportunity.) An earlier im­
plementation of DEPROC does not require U.'JEX, but only 
'JEX itself; it was described in [DP], and the supporting 
files are on the Fall '85 DECUS Program Library tapes for 
Languages & Tools, Large Systems, and VAX. 

The present U.1E;X-based version of this macro pack­
age is called DEPROC. STY, for "DECUS Proceedings style 
file". It is an ordinary ASCII file, and has been submitted 
to the Spring 86 DECUS Program Library for the same 
systems listed above. 

Some preliminary '.IEXnical information 

An author who intends to use the :U.'IEX version of DEPROC 
should preferably have used :U.'IEX already. Nonetheless, a 
few basic concepts are worth repeating. (U.'IEX is identical 
to 'JEX in many ways. The following discussion will specify 
U.'IEX only when there is a difference.) 

Spacing 

1E;X uses different spacing rules in text (paragraphs) and 
math. Paragraphs are set so that interword spacing is as 

283 

uniform as possible. Wider spaces are set after punctua­
tion that indicates the ends of sentences (period, ! and ?). 
Within math, the best traditions for arranging symbols in 
two dimensions, including proper spacing, are observed. 
Thus input spacing is largely ignored, except for its func­
tions of separating words and marking the boundaries of 
certain kinds of expressions. '!EX considers multiple spaces 
in an input file to be equivalent to a single space. The car­
riage return (cR) and the tab character (TAB) are equiv­
alent to ordinary spaces, except in special environments 
(noted below). And all spaces at the beginning of any line 
are ignored. 

Paragraph breaks 

A blank line in the input file indicates a paragraph break. 
A line is blank if it contains only a (CR) or spaces and a 
(CR). Multiple blank lines are equivalent to a single blank 
line. (A paragraph can also be indicated by \par; terms 
beginning with \ are described below.) 

Comments 

A comment may be entered on any line; a comment begins 
with a % sign: 

% This line contains nothing but a comment. 
\newcommand{\cs}{ ... }% explanatory comment 
... Smythe % ***** check spelling ***** 

'JEX will ignore the% and everything following it, including 
the (cR). Thus, the space ordinarily indicated by the (CR) 
will be suppressed, and if a space is really wanted between 
the last item before a comment and the first item on the 
next line, it must be input before the %. Conversely, if 
no space is wanted between the last item on a line and 
the first item on the next, a % can be used to suppress it 
in ten ti on ally. 

Control sequences, also called macros 

A "control sequence" cs is an instruction for '!EX to per­
form some action or to produce a particular symbol. A cs 
begins with a backslash, \. There are two types of cs-es: 

- A "control word" consists of\ followed by one or more 
letters. It is terminated by any non-letter, including 
a space; multiple spaces follow the usual compression 
rule, so a special technique (see next paragraph) is re­
quired to create an output space after a control word. 
\TeX is an example of a control word; it produces the 
'!EX logo. 

- A "control symbol" consists of\ followed by exactly 
one non-letter. Since its length is known, no special 
terminator is required. \It is a control symbol to pro­
duce an &. \u (\ followed by a space) is an explicit 
space, to be used where an output space should follow 
an element input as a control word. 



New ca-es can be defined within a document to make input 
easier or clearer. A few principles governing ca names 
should be observed carefully. 

- Case matters; \caname is not the same as \Caname or 
\CSName. Try to pick a name that means something 
to you, and is easy to type. 

- Don't try to redefine an existing ca name unless you 
really know what you're doing; results, as they say, 
"may be unpredictable". 

- Never define or redefine any ca whose name begins 
with '\end'. 

To define a new command, 

\newcommand{\caname}{ ... something ... } 

If the name has been used before, JJ.TEX will stop and 
report an error. If you are really adamant about re-using 
this name, 

\renewcommand{\caname}{ ... something ... } 

will assign it the new meaning. 
The control symbols \0, ... , \0 always start out un­

defined, so they are available for transient use without 
checking. 

A cs with arguments is defined by 

\newcommand{\csname}[2]{ ... #1 ... {#2} ... } 

with the number of arguments given in brackets as shown; 
for details, see [LT]. 

Math 

Mathematical expressions are input between \ ( ... \). 
Display math is begun and ended with \ [ ... \] . For de­
tails of math input, see [LT]. 

Starting a DECUS Proceedings article 

The first step in preparing an article is to create a file. 
The first two lines in this file should be 

\documentatyle{deproc} 
\begin{document} 

This will cause the formatting definitions to be loaded 
when the file is input to JJ.TEX. 

Next, enter the "top matter". This consists of such 
things as the title of the article, the author(s) and their 
addresses, and the abstract. 

Title and authors 

For an article with a short title and one author, the input 
looks like this: 

\title{A One-Line Title} 
\author{Author Name\\ 

Author's Organization\\ 
City, State} 

284 

The double backslashes \ \ indicate line breaks. This tech­
nique is also used to break up long titles: 

\title{Here We Have a Particularly 
Long Title\\That Can't Possibly 
Fit on a Single Line} 

This will be set (in a boldface font slightly larger than text 
size) as 

Here We Have a Particularly Long Title 
That Can't Possibly Fit on a Single Line 

Notice that the way the lines are broken in the input file 
is not how they appear in the output - only \ \ matters to 
TEX. Actually, TEX will break long titles into lines short 
enough to fit on the page, but a multi-line title usually 
makes more sense to the reader if the author decides where 
the line breaks should occur. 

For multiple authors, the same \author tag is used 
with \and or \And: 

or 

\author{Firat Author 
\and 

Second Author\\ 
Common Organization\\ 
City, State} 

\author{Firat Author\\ 
First Organization\\ 
City, State 

\And 
Second Author\\ 
Second Organization\\ 
City, State} 

and so forth, which will appear thus in the output: 

or 

First Author and Second Author 
Common Organization 

City, State 

First Author 
First Organization 

City, State 

Second Author 
Second Organization 

City, State 

Authors' names (the first line, and the first line after \And) 
are printed in boldface; if an author name is to appear on 
any other line, begin that line with \bf (the TEX instruc­
tion for boldface type). 

The title and author of the present paper look like 
this in the file: 



\title{Typeaetting Articles for the DECUS 
Proceedings with \LaTeX} 

\author{Barbara N. Beeton\\ 
\ANS\\ 
Providence, Rhode Island} 

One item to look at here is \ANS, which becomes American 
Mathematical Society in the output. This is an example 
of a "local definition", something that is not likely to be 
useful to anyone else, but can save the author a lot of time 
correcting typing errors. Local definitions that are used 
throughout an article are best input right after specifying 
the document style: 

\documentatyle{deproc} 
\newcommand{\ANS}{American 

Mathematical Society} 

\begin{document} 

Abstract 

The abstract is the final part of the top matter. 

\begin{abatract} 
Thia is a short summary of what 
the article is about. 
\end{abatract} 

The heading "Abstract" is provided automatically; don't 
input it. The abstract may contain more than one para­
graph. Paragraphs are separated by a blank line or by 
\par, as usual. 

The top matter is now complete. The body of the 
article follows. 

\maketitle 
(Text of footnotes to the top matter is given here} 

Thia is the first sentence of article text. 

\end{document} 

The body of the article 

An article can start out with text or with a heading. Three 
levels of headings are provided by DEPROC: 

\aection{Section heading} 
\aubaection{Subaection heading} 
\aubsubaection{Subaubsection heading} 

These produce headings (with extra space above and be­
low, not shown here) in the following styles: 

Section heading 

Subsection heading 

Subsubsection heading 

The first paragraph following a heading will not be 
indented in the default style. Other paragraphs will be 
indented a standard amount. To suppress indentation on 
a single paragraph, precede it by \noindent. 

285 

Footnotes 

A footnote consists of two parts, the mark and the text. 
These are usually entered as a unit8 : 

... as a unit\footnote{Like this.}: 

This is equivalent to the two statements4 

. . . two atatementa\f ootnotemark 
\footnotetext{Or this.} 

The two-statement form must be used for footnotes in the 
title or abstract and in "boxed" environments (which will 
not be explained here; see [LT] for details). In such cases, 
the \footnotetext should be specified as soon as possible 
after completion of the special environment. 

Footnotes are automatically numbered sequentially 
starting with 1. Numbers may also be given explicitly, 
between [ ... ] following the \footnote ... command. In 
most contexts, this is optional, but for footnotes in ab­
stracts or in "boxed" environments, the number must be 
given for the \footnotetext; the first footnote in this ar­
ticle was produced by the following: 

\maketitle 
\footnotetext[1]{\TeX\ is a trademark 

of the \ANS.} 

Footnote numbers can be reset if necessary by 

\resetcounter{footnote}{integer} 

Quotations 

Short quotations, of less than a paragraph, are set with 

\begin{quote} 
If you can't fix it, ... {\em Button} 
\end{quote} 

and look like this: 

If you can't fix it, call it a feature. Button 

For longer quotations, use 

\begin{quotation} 

\end{quotation} 

in a similar manner, separating paragraphs with blank 
lines as usual. 

Lists 

Itemized and enumerated lists occur in many DECUS Pro­
ceedings articles. JJ.'fEX provides automatic counters and 
up to four levels of nesting. Here is a short example of a 
two-level itemized list. 

3 Like this. 

"Or this. 



- Small figures which can be set in place, i.e., in the 
same relative position where they occur in the input 
file 

- One-column figures to be set at the top or bottom of 
the first available column 

- Double-column figures to be set at the top or bottom 
of the first available page 

- Full-page figures 

Figure 2: Possible figure formats 

\begin{itemize} 
\item first item 
\item second item 

\begin{itemize} 
\item new level 
\item one more 

\end{itemize} 
\item back a level 

\end{itemize} 

Here's what the output looks like, after padding out the 
text a bit to show how longer items look. 

• The first item in this list isn't particularly interesting, 
but it has to be long enough to make two lines. 

• The second item isn't either. 

o Even going to a new level doesn't add very much 
excitement to this exercise. 

o We'll do one more at this level. 

• Then we'll go back a level to finish things off. 

If {enumerate} is specified instead of {itemize}, the 
items will be numbered-1, 2, ... at the first level, a, b, ... 
at the second level. If the default labels aren't what you 
want, an overriding label may be specified, for example, 
[--] (used in Figure 2). Each item comprises one para­
graph; an unlabeled paragraph can be produced by speci­
fying an empty label. Extra space above and below a list 
is provided automatically. 

Figures 

Figures come in the sizes, shapes and page locations listed 
in Figure 2. Not all these formats are supported yet 
by DEPROC. In particular, two-column figures cannot be 
placed at the bottom of text pages. 

One-column figures 

To get a single-column figure, enter 

\begin{figure} [loc] 
content of figure 

286 

\caption{Caption text} 
\label {label} 
\end{f igure} 

loc is the location where the figure is to be placed, specified 
by one to four letters (in the order in which you find the 
possible locations suitable), as follows: 

h here, at the position in the text where the figure 1s 
input. 

t at the top of a text page. 

b at the bottom of a text page. 

p on a page of "floats". 

The default loc is tbp; note that figures will not be placed 
in-line unless h is indicated explicitly. For additional de­
tails, see [LT]. 

Figures are numbered automatically. The optional 
label is provided to permit references in the text to the 
figure: 

shown in Figure-\ref{/abe/} 

To reserve space for figures which will be prepared 
separately, use the command \vspace{dimension}. Some 
space is automatically skipped above and below a figure, 
and also between the figure and the caption, so the dimen­
sion given with \ vspace should be precisely the height of 
the item to be pasted in. 

Two-column figures 

Double-column figures can be placed either at the top of a 
text page or on a separate page of "floats". The command 
syntax is the same as for one-column figures, except that 
the "star" notation \begin{f igure*} . .. \end{f igure*} 
is used. 

Full-page figures 

Full-page figures are a special case of two-column figures, 
specified by \begin{figure*}[p] ... \end{figure*}. A 
full-page figure will be placed on the first available page. 
If space is to be reserved for insertion of a separately­
prepared figure, use the \vspace command with a suitably 
large dimension; 8. 5in should be sufficient. 

Tables 

:U.JEX contains powerful table-formatting capabilities. 
However, since their use is specialized and the rules some­
what complex, specifics are not presented here; see [LT] 
for details. 



Verbatim 

Verbatim items are printed in so-called "typewriter" style, 
using 1EX's \tt font. In-text verbatim items are preceded 
by the command \verb and enclosed within a pair of iden­
tical characters which do not occur within the verbatim 
string (except a space, a letter, or*), for example, vertical 
bars I ... I or ditto marks 11 ••• 11 • Blocks of verbatim code 
are delimited by 

\begin{ verbatim} 

\end{ verbatim} 

\begin{verbatim} and \end{verbatim} should be on 
lines by themselves. Within verbatim mode, (cR)s are 
obeyed as line breaks, not spaces. An input line that is 
too long for the current column width will be broken at 
a space if possible, and the remainder of the line hanging 
indented on the next output line; since this may change 
the meaning of the verbatim passage, such passages should 
be checked with special care in the output. Overlong lines 
also frequently result in overfull \hboxes, which are listed 
in the transcript file. To mark overfull \hboxes clearly on 
the printed output (with black boxes: I), specify 

\documentstyle [draft]{deproc} 

at the beginning of your input file. The draft option can 
easily be removed when you are ready to prepare the final 
copy. 

A passage occurring between \begin{ verbatim} ... 
\end{verbatim} is treated as a unit by U.TEX-if it is 
too long for the vertical space available, it either will be 
carried over as a unit to the next column or page, or will 
result in an overfull \vbox, which will be noted only in 
the transcript of the L\'lEX run. In such a case, the best 
remedy is to break the passage in two, by inserting another 
\end{verbatim} \begin{verbatim}. 

Verbatim mode is suitable for program listings, in­
dicating keyboarding instructions, file names, and similar 
uses. 

References, bibliography 

References in text to items in the bibliography are input 
as 

\ci te{labe/} 

\cite [text] {label} 

where the label is the same as that specified for the item in 
the bibliography. For a label "ABC", the reference will be 
rendered [ABC]. See [LT, pp. 73, 189] for further details. 

References may also be made to figures, tables, or 
anything else for which you have established a label: 

\ref{labe/} 

\pageref {label} 

287 

\pageref is not immediately useful-the page numbers 
generated by 1EX will not be the same as those assigned 
when the collection is put together in the editorial office. 
This feature would become useful if it ever becomes pos­
sible to submit articles electronically, as L\TEX input files. 

Before you start to input the reference list, some 
housekeeping is required -you must decide what you want 
the list to look like. This is what the input looks like for 
one of the items in the reference list at the end of this 
article: 

\bibitem[TB]{TB} Knuth, Donald E., \TB, 
Addison-Wesley and \AMS, 1984. 

(\TB and \AMS are among the local definitions for this ar­
ticle.) Default output looks like this: 

[TB] Knuth, Donald E., The T£Xbook, Addison-
Wesley and American Mathematical Society, 1984. 

Labels may also be omitted, or numbered sequentially. 
Begin the reference list with this command: 

\begin {the bibliography}{ wide at label} 

This will generate the References section heading, and 
establish the item indentation, using the width of the spec­
ified label. 

If you do not wish to use labels, substitute \omit 
for the widest label. (The { ... } are still required in the 
context of \bibitem.) 

\bibitem{} Knuth, Donald E., ... 

will result in 

Knuth, Donald E., The T£Xbook, Addison-Wesley 
and American Mathematical Society, 1984. 

Note that \cite cannot be used if references are unlabeled. 
If your labels are numeric, no labels need be entered­

items will automatically be numbered sequentially. How­
ever, the widest label must be specified at the beginning 
of thebibliography environment. The input 

\begin{thebibliography}{99} 
\bibitem{TB} Knuth, Donald E., 

will now look like this: 

[2] Knuth, Donald E., The T£Xbook, Addison-Wesley 
and American Mathematical Society, 1984. 

Caveats 

DEPROC and this article were created on a DECSYSTEM-
20 at the American Mathematical Society, running L\1EX 
version 2.08 under TEX version 1.3. The AMS installation 
is standard in all ways. 

With one exception, none of the changes to the TEX 
program since version 1.0 should have any noticeable ef­
fect on an article produced with DEPROC. The exception is 



large, complex tables-tables incorporating many boxes 
and rules require large amounts of '!EX memory. Mem­
ory management was radically changed in version 1.3 to 
make more memory available to the user without actually 
changing the physical memory allotment. (Otherwise, if 
you run out of memory, the most likely cause is an input 
error.) 

Although thorough testing has been attempted, no 
one outside the AMS has tried to use DEPROC yet, so bugs 
are sure to be found. In fact, the version of DEPROC first 
placed in the Program Library should best be considered 
a beta test version. If you find a bug, please communi­
cate it to the author, accompanied by an example which 
demonstrates the bug as simply as possible. Suggestions 
for improvements are also welcome. Send everything to 

Barbara Beeton 
American Mathematical Society 
P. 0. Box 6248 
Providence, RI 02940 

References 

[DP] Beeton, Barbara, Typesetting articles for the DE­
CUS Proceedings with '!EX, Proceedings of the 
Digital Equipment Computer Users Society, USA 
Spring 1985, 349-356. 

[ACP] Knuth, Donald E., The Art of Computer Program­
ming, Addison-Wesley, Vol. 2, second edition, 1981. 

[TB] Knuth, Donald E., The Tj;;Xbook, Addison-Wesley 
and American Mathematical Society, 1984. 

[LT] Lamport, Leslie, JATj;;X, A document preparation 
system, Addison-Wesley, 1985. 

[TD] Southall, Richard, First principles of typographic 
design for document production, TUGboat Vol. 5 
(1984), No. 2, 79-90; Corrigenda, Vol. 6 (1985), 
No. 1, p. 6. 

[TUB] TUG boat, the Newsletter of the TEX Users Group, 
'!EX Users Group, C/0 American Mathematical So­
ciety, P. 0. Box 9506, Providence, RI, 02940. 

288 



An Introduction to '1EX and li\TEX 

Samuel B. Whidden 
American Mathematical Society 

LT012, DECUS Symposium, Dallas, Texas 

Abstract 

This is the first of two sessions in which examples of Jil.TE)X usage are given. The author hopes to 
demonstrate that Jil.TE)X, a document formatter based on the TEX typesetting system, is both powerful and 

easy to use. This session briefly describes the origins of TEX, and Jil.TE)X 's relation to TEX, and then 
presents examples of the author's use of Jil.TE)X to do some fairly corrunon and useful things. 

This session is intended to introduce new users to type­
setting with UTEX by offering a few examples of UTEX's 
use. Experienced users of UTEX won't learn much from 
this presentation, but those who haven't been exposed 
to it will get an idea of what it can do, and with what 
degree of difficulty. 

UTEX is a system of typesetting macros and definitions 
built on top of Donald Knuth's '!EX typesetting lan­
guage. '!EX is a powerful language that offers nearly un­
limited flexibility in composing and typesetting difficult 
material. It was devised originally to typeset mathemat­
ics and allows very complex mathematical formulations 
to be set precisely as the mathematician desires. 

My first illustration, Figure 1, is the title page of Chapter 
One of The '!EXbook, by Donald Knuth. The 'IEXbook 
is the principal document describing '!EX· It's a book 
you'll need if you intend to use '!EX· The three letters of 
the TEX logo are typeset as you see them here by '!EX· 
These are the Greek letters Tau Epsilon Chi, pronounced 
'techhh'. They form, to quote Michael Spivak in The Joy 

Proceedings of the Digital Equipment Computer Users Society 
289 

1 
The Name of 

the Game 

Don::i.!d Knutb., The It;.\book, © 1984, American Mathematical Society: 
co-published by tbe Arneric~"l. Ma.them:itic:ll Society, Providence, RI. ~ci 
Addison-Wesl~y Publish.in; Compa.a.y, Rea.ding, MA; reprinted with 
permis~ion. 

Figure 1: '!EX 

Dallas Texas - 1986 



of TEX "the beginning of the Greek word that means 
art, a word that is also the root of English terms like 
technology. This name emphasizes two basic features of 
TEX: it is a computer system for typesetting technical 
text ... and it is a system for producing beautiful text." 

Figure 2 illustrates TEX's mathematical typesetting abil­
ity. The top half shows material typeset as final copy, 
on an Alpha.type CRS photo-typesetter with a very high 
resolution of some 5000 dots per inch. The lower half 
shows the same material set for proofreading on a low­
resolution, 200-dot-per-inch Varian printer/plotter. Ex­
amined with a magnifier, these two samples reveal a very 
different print quality, but note that their typeset format 
is identical. Element positioning and linebreaking as the 
same in the final copy as they are in the proofreading 
copy. TEX's output is designed to be device independent 
to permit exactly this identity of formatting, allowing 
multiple, low cost proofreading runs which correctly re­
flect the appearance of the final, expensively-produced 
copy. 

But '.IEX is used for many other typesetting jobs besides 
mathematics. Any difficult and complex typesetting re­
quirement is a candidate for '.IEX· Figure 3 shows a page 
from a manual in the documentation set for VMS Version 
4. The version 4 documentation was produced by DEC 
using an internally-developed typesetting system based 
on TEX- Here the various fonts, typestyles, and page for­
mats are produced by TEX commands. The system is 
called SDML, for Standard Digital Markup Language, 
and can output either runoff files, for quick proofreading 
using low-cost printers, or TEX files for final copy like 
this. 

A companion program to TEX is METAFONT. In order 
to accomplish beautiful typesetting, it's obviously neces­
sary to have beautiful fonts of type. METAFONT creates 
such fonts, for use by TEX- First, a type designer draws 
the characters and symbols. Next, a METAFONT pro­
grammer, someone who knows the METAFONT language 
created by Knuth, writes a rather simple program encod­
ing the character for METAFONT. The programmer codes 
entire families of characters, adding parameters to allow 
METAFONT to produce variant versions of the fonts like 
bold, slanted, or bold slanted. Then METAFONT reads 
these programs, outputting two kinds of font files. One 
kind, the .TFM file, simply contains what are called the 
"'!EX Font Metrics" -the size and position details of each 
character. TEX as shown in Figure 4, reads these .TFM 
files when it composes a document. 

METAFONT's second kind of output, the .GF files, con­
tain the actual raster images of the characters. Both the 

290 

The JEX/METAFONT System 

METAFONT 
character 

descriptions 

t 
METAFONT 

TEX 
input 

l 
.TFM ~ 

--~ file -----;>-~ 
~-t~~ t 

. G F file .DVI file 

~,...------,D"i" / 
driver 

Output 
device 

Typeset 
output 

Figure 4: The TEX-METAFONTSystem 



366 JON BORWEIN 

where f11n := f11n(k,1) is the associated multiplier which is also algebraic ink and 
I. Indeed Jacobi's differential equation 

(2) 

shows immediately the algebraic nature of f11n, given that for ~". In terms of the 
nome q one has 

(3) q:=e-"'K'/K and q"=e-1'L'/L 

and the standard product relationship 

(4) 

Logarithmic differentiation of (4) combined with application of (2) and qdk/dq = 
2kk'2 K2 /7r2 produce 

(5) nP(q") - P(q) = (4KL/TT2 )R,.(k,l), 

JON BORWEIN 

where mn := mn(k, l) is the associated multiplier which is also algebraic ink and 
l. Indeed Jacobi's differential equation 

(2) 

shows immediately the algebraic nature of mn, given that for ~n· In terms of the 
nome q one has 

(3) 

and the standard product relationship 

(4) 

Logarithmic differentiation of (4) combined with application of (2) and qdk/dq = 
2kk'2 K 2 /7r2 produce 

(5) nP(q") - P(q) = (4KL/7r2 )Rn(k,l), 

Figure 2: Math typeset by 1E;X 

291 



1.4.1 

Overview of the VAX Text Processing Utility 

• The last two lines on the screen are reserved for error and informational 
messages from VAXTPU. 

• The EDT prompt "Command:" is replaced with "TPU Command:", and the 
prompt appears on the third line from the bottom of the screen. 

EDIT /TPU Command Qualifiers 
You can add qualifiers to the EDIT/TPU command. VAXTPU qualifiers 
control such items as recovery from an interrupted session and the 
initialization files that provide the interface with which you access VAXTPU. 
Qualifiers for EDIT/TPU are listed in Table 1-1. 

Table 1-1 Qualifiers to the DCL command EDIT/TPU 

QUALIFIER DEFAULT 

/[NO]COMMAND /COMMAND= TPUINI 

/[NO]DISPLA Y /DISPLAY 

/[NO]JOURNAL /JOURNAL 

/[NO]OUTPUT /OUTPUT 

/[NO]RECOVER /NORECOVER 

/[NO]READ_ONL Y /NOREAD_ONL Y 

/[NO]SECTION /SECTION= TPUSECINI 

For full descriptions of the V AXTPU command qualifiers, see Section 6. 

1 .4.2 Initialization Files 
There are two kinds of initialization files that can create or customize a 
V AXTPU interface: command files and section files. 

A command file is a VAXTPU source code file that has a file type TPU. 
It is used with the V AXTPU qualifier /COMMAND=file-spec. By default, 
no command file is read when you invoke VAXTPU. You must specify 
/COMMAND=file-spec, if you want to include a command file. 

A section file is the compiled form of V AXTPU source code. It is a binary file 
that has a GBL file type. It is used with the qualifier /SECTION=file-spec. 
By default, the section file that creates the EVE interface is read when you 
invoke VAXTPU. You must specify a different section file (for example, 
/SECTION=my_section_file) or /NOSECTION if you do not want to use the 
EVE interface. 

Note: When you invoke V AXTPU with the /NOSECTION qualifier, no binary 
file is read to provide an interface for V AXTPU. Even the RETURN 
and DELETE keys are not defined. Use /NOSECTION when you are 
creating a new section file and do not want the procedures, variables, and 
definitions from an existing section file to be included. See Sections 5 and 
6 for more information on /NOSECTION. 

Figure 3: VMS Documentation typeset by 'JEX 

292 



.DVI file, output by '!EX, and the .GF file are device­
independent. Both are read by translators that convert 
them into device-specific formats for input to driver pro­
grams for particular output devices. 

If you are a member of TUG, the TEX Users Group, 
you receive a publication called TUG boat which provides 
current technical and user information to the TEX com­
munity. Figure 5 is a page from TUGboat giving the 
most recent information on output devices for which '!EX 
drivers exist. 

But we don't always need as powerful and complex a tool 
as '!EX· For simple jobs, like a letter, a simpler tool would 
be useful. In a delightful and very positive review of 
'!EX in the American Mathematical Monthly (The Math­
ematical Association of America, April, 1986), Herbert 
S. Wilf, of the University of PA, says 

ls it all perfect, then? Well, not quite. 
TEX is a non-user-friendly program. It be­
longs to the 'what-you-see-isn't-a-bit-like-what­
you 'II-get' school of programs. The learning 
process was very painful for me. For about 
one month, using the system several hours per 
week, I can recall no session in which I wasn't 
totally surprised by something that printed out. 
After three months I got moderately proficient 
at it, and now I can type from my head into 
TEX fairly fluently ... Despite my limitations ... it 
is clear to me that TEX represents a quantum 
jump in our ability to convey thoughts to pa­
per ... 

Leslie Lamport, then of SRI in Palo Alto and now at 
DEC's Systems Research Center, also in Palo Alto, rec­
ognized not only the need for a simpler version of TEX, 
but also the potential that TEX itself offered, through 
its extremely powerful macro facility, for creating such a 
tool. The result was L\TEX, a tool second only to TEX 
itself in power and flexibility, but far simpler and easier 
to learn and use. 

Figure 6, for example, shows a simple business letter 
written in L\TEX. Every character on the page was pro­
duced by L\TEX, including the letterhead and the per­
sonalization block. 

I offer this and some following real examples, not to teach 
you all you need to know about typesetting with L\TEX, 
but to show you that it's relatively easy to use and that 
you can produce very attractive, professional-looking re­
sults with it with not much effort. 

293 

\documentstyle[12pt]{letter} 

\topmargin=-.6in \textwidth=6in 
\oddsidemargin=.2in \pagestyle{headings} 

\begin{document} 
\raggedright 

Figure 7: L\TEX Letter-Houskeeping 

To go beyond the examples I give here and in my follow­
on session, read the L\TEX manual. It's very readable 
and easy to use, and it's available, like the TEXbook, 
from the TEX Users Group. Its first half consists of a 
well-written users guide, covering matters of gradually 
increasing complexity, and its second half is a concise 
reference manual, suitable for quick lookup of any L\TEX 
question. 

Figure 7 shows the first few lines of the L\TEX input file 
that created the letter in the previous illustration. TEX 
and L\TEX commands begin with a " \", and the first 
command L\TEX expects to see is one telling it what kind 
of document it's going to work on. In this case, we're 
using the "letter" style, and this command gets from the 
L\TEX database the "letter" style file of macro definitions 
to use in processing our document. 

"\documentstyle" is a macro command. Any required 
arguments of macro commands are enclosed in "{} 
braces. Any optional arguments precede the required 
arguments, and are enclosed in "[]" brackets. The 
"\documentstyle" command can take several optional 
arguments-for example, when the documentstyle is "ar­
ticle", the " [ twocolumn]" optional argument typesets 
the document in double-column pages. Here, we've called 
for a fairly large type size, 12-point, because the letter 
is short. 11-point is another option, and the default is 
10-point. 

The next few commands set up the physical position of 
the typeset area on the page. The "\topmargin" and 
"\oddsidemargin" commands adjust the margins of the 
page a little upward and rightward from the default po­
s1t10n. "pagestyle{headings}" tells L\TEX to use its 
standard headings (which consist of the addressee's name 
and the date) on pages of the letter after the first. 

Next we tell L\TEX we're ready to begin actual document 



DEC10 DEC 20 VAX (Unix) VAX (VMS) 

Apple LaserWriter 
Carleton Univ; 

Textset t 
Textset t 

Autologic 
Textset Textset 

Intergraph t; 
APS-5/Micro-5 Textset 

Canon Canon 

DEC LN01 Univ of Washington Louisiana State U 

DEC LN03 
Procyon; 

Distrib Tape 

Imagen 
Stanford; SRI; 

Univ of Maryland Kellerman & Smith t 
Vanderbilt Columbia 

Postscript printers Text set Textset 

Textset: 
GA Technologies; 

QMS Lasergrafix 
Univ of Washington 

Texas A&M; 
Textset 

screen preview Univ of Adelaide 

Symbolics Univ of Washington Univ of Washington Univ of Massachusetts 

Talaris Talaris t Talaris t Talarist Talaris t 

Xerox Dover Carnegie-Mellon U Stanford 

Xerox 9700 Univ of Delaware Univ of Delaware ACC; Textset 

Table 1. Selected Output Devices Interfaced to DEC Computers 

Information regarding the interfaces shown in this table can Intergraph: Mike Cunningham, 205-772-2000 
be obtained from the individual listed below for the site. This Kellerman & Smith: Barry Smith, 503-222-4234 
table and the names of the site contacts were provided by 

Louisiana State U: Neal Stoltzfus, 504-388-1570 
the TeX Users Group. 

SRI: 
ACC (Advanced Computer Communications): Diane Cast, Stanford: 

720 Santa Barbara St .. Santa Barbara, CA 93101. 
Tataris: Sonny Burkett, 619-587-0787 

805-963-9431 

Canon: Masaaki Nagashima, Office Systems Center, 
Texas A&M: Bart Childs, 409-845-5470 

30-2 Shimomaruko 3-chome Ohtaku, Tokyo 146, Textset: Bruce Baker, 313-996-3566 

Japan, (03)758-2111 Univ of Delaware: Daniel Grim, 302-451-1990 

Carleton University: Neil Holtz. 613-231-7145 Univ of Maryland: Chris Torek, 301-454-7690 

Carnegie-Mellon U: Howard Gayle, 412-578-3042 Univ of Massachusetts: Gary Wallace, 413-545-4296 

Columbia: Frank da Cruz, 212-280-5126 Univ of Washington: Pierre MacKay. 206-543-2386 

Distrib Tape: VAX/VMS tape available from Maria Code, Vanderbilt: H. Denson Burnum, 615-322-2357 
408-735-8006 

GA Technologies: Phil Andrews. 619-455-4583 

t graphics supported 

Figure 5: Current Output Devices 

294 



AMERICAN MATHEMATICAL SOCIETY 
Post Office Box 6248, Providence, Rhode Island 02940 

{201 Charles Street at Randall Square - (401)272-9500} 

Samuel B. Whidden 
Director of Computer Services 

Joe Angelico 
U. S. Coast Guard 
500 Camp St 
New Orleans LA 70130 

Dear Joe: 

April 14, 1986 

I look forward to working with you again in the DECUS Store at the Anaheim 
meeting. 

I've used L\T~ to typeset our price list this time. I think you 'II agree it's a lot 
better looking than our old one. 

cc: Judy Arsenault 

encl: Price List 

With Best Regards, 

Samuel B. Whidden 
Director, Computer Services 

Figure 6: A U.TEX Letter 

295 



\begin{letter}{Joe Angelico\\ 
U. S. Coast Guard\\ 
600 Camp St\\New Orleans LA 70130} 

\addreas{\null} 

\begin{center} 
{{\large AMERICAN MATHEMATICAL SOCIETY}\\ 
{\bf Post Office Box 6248, 
Providence, Rhode Island 02940}\\ 
{\small \{201 Charles Street 
at Randall Square (401)272-9600\}}} 
\end{center} 

Figure 8: IJ.TEXLatter-Beginning Matter 

typesetting and that the right margin need not be justi­
fied; if we were to omit the "\raggedright" command, 
the right margin would be justified and '!EX would auto­
matically hyphenate words where necessary. fl.TEX is a 
structured language; there will be an "\end{document}" 
command later to tell fl.TEX that processing is complete. 

You see three kinds of commands here: dimension­
setting commands, like "\textwidth=6in", that ad­
just the value of variables like the length a line of 
type may have; environment-establishing commands like 
"\pagestyle{headings}", which give fl.TEX some of 
the conditions under which it does its processing; and 
switches, like "\raggedright", which turn certain type­
setting modes on or off. Among the latter, commands 
affecting type size and style occur frequently. 

These few commands are all we use to tell fl.TEX how 
we want our letter physically set up. We wouldn't even 
need all of these if we were content with all of IJ.TEX's 
defaults. 

The commands in Figure 8 begin the material specific 
to this letter. The command "\begin{letter}" tells 
fl.TEX to start collecting the information it needs to type­
set this letter. "\begin{letter}" will be matched by 
"\end{letter }",which could in turn be followed by an­
other "begin{letter}". 

"\begin{letter}" takes a second required parameter 
which is the name and address of the recipient, with ad­
dress lines separated by "\ \" commands. fl.TEX stores 
this name and address away for future reference. 

\vspace{3ex} 

\parbox{30em}{\scriptsize Samuel B. Whidden\\ 
Director of Computer Services} 

\signature{Samuel B. Whidden\\ 
Director, Computer Services} 

Figure 9: IJ.TEXLetter-Personalization Block & Signa­
ture 

Before it begins writing the letter, fl.TEX wants to know 
our return address, to put at the top of the letter. But 
when fl.TEX comes to print this return address, it puts 
it against the right margin near the top of the letter, 
a default style I didn't want to use here. The "letter" 
documentstyle requires an "\address", so I gave it a 
"\null" argument to keep it happy, and created my own 
letterhead in the following commands. 

I started a "center" environment, into which I put my 
office address. For the Society name I switched to the 
"\large" type size, but limited the scope of that com­
mand by enclosing it with the company name in braces. 
Within the center environment, lines are broken with the 
"\ \" command. I wanted the next line in boldface type, 
so I enclosed it in braces along with the "\bf" command. 
I followed that line with one giving our street address 
and phone number in the "\small" typesize (note that 
there's no double backslash after "Street", so there's no 
line break there). To get braces to print on this line, I 
typed "\{" and "\}". The command "\{" prints a "} 

Another look at Figure 6 shows the result. 

In Figure 9, the "\vspace" command moves fl.TEX down 
the page by three times the height of a the letter "x", 
below the letterhead. I next create a "box" containing 
my name and title in the size of type normally used for 
sub- and superscripts. fl.TEX typesets this box where 
it finds it. Finally, I tell it what to use for a signature 
block. In letter style, UTEX recognizes the "\signature" 
command and stores away the data in the argument for 
later use. 

In Figure 10 we come to the body of the letter. ]).TEX 
recognizes the "\opening" command and does several 
things. First, it digs out the return "\addreBB" it stored 
away earlier. It has only "\null" for this, since I wanted 

296 



\opening{Dear Joe:} 

I look forward to working with you again 
in the DECUS Store at the Anaheim meeting. 

I've used \LaTeX\ to typeset 
our price list this time. 
I think you'll agree it's a lot 
better looking than our old one. 

\closing{With Best Regards,} 

Figure 10: L\TEJXLetter-Body 

\cc{Judy Arsenault 
} 

\encl{Price List 
} 

\ps 

\end{letter} 
\end{document} 

Figure 11: L\TEX Letter-Bottom Matter 

to create my own letterhead, so nothing much happens. 
Then it sets today's date against the righthand margin. 
Then it retrieves the recipient's name and address block, 
which it typesets. Finally, it extracts the argument of 
the "\opening" command, in this case, "Dear Joe", and 
typesets it. All the elements it has remembered, it will 
continue to remember and use for subsequent letters in 
this run, if there are any, until you change them by en­
tering them again with new values. 

I type in what I want to say to the DECUS Store Man­
ager as ordinary text in paragraph form, and then I end 
with the "\closing" command. L\TEX recognizes the 
closing command just as it does the "\opening" com­
mand. It typesets the argument, then retrieves the sig­
nature block it stored away earlier, and typesets that. 

In the LETTER context, L\TEX understands the com­
mands "\cc", "\encl", and "\ps" (see Figure 11), which 

297 

\storeitem{39}{3-Ring Binder}{S.00} 

Figure 14: Store Input Sample 

we can use if we want to. We tell it we're ending both 
the letter and the typesetting run, so it finishes up and 
outputs our letter. We make it do the typesetting by giv­
ing the command, at the operating system level, "L\TEX 
joe. tex", assuming the file that contains our letter is 
named "joe.tex", and assuming that our systems peo­
ple have installed TEX and L\TEX on our machine. The 
result will be "joe.dvi", a device-independent file, which 
must be translated by a driver to drive the output device 
at our installation. 

In that letter, I told Joe I had typeset the Store Price 
List. The Price List is shown in Figure 12. It's a table 
with multiple rows, columns, and headers. The first col­
umn contains the store's control number and the second 
the name of the item. The third and fourth columns are 
blanks to be filled in by the customer, and the last is 
the price. All the columns repeat on the right hand side 
of the sheet. Note that in some cases, the name of the 
item may go to more than one line, and that a header 
crosses the entire form. Also note that there's a small 
commercial for L\TEX tucked away at the bottom. 

In fact, it's two tables, both set with the same L\TEX 
macros, using different input files. The large table con­
tains most of the items sold in the store, while the smaller 
one, Figure 13, contains just session notes, which are sold 
first at the registration counter, and later at the store 
(the 3-ring session notes binder appears in both lists). 

Judy Arsenault, the DECUS staff member responsible for 
the store, sends me both lists over DCS. I put them in 
alphabetical order and embed them in L\TEX commands, 
as in Figure 14 The command name is "\storeitem" 
and it takes three arguments: the control number, the 
item name, and the price. The file of all the items is 
read into a L\TEX file that contains, among other things, 
a definition of the "\storei tem" macro. 

Figure 15 shows the beginning set-up commands from 
that file. The "article" documentstyle is the standard 
for most L\TEX documents. "\text width" tells L\TEX to 
use just about the full width of the 8 1/2 inch paper, and 
"\textheight" says to use use more of the page verti­
cally than the default would allow. "\arrayrulewidth" 
sets the thickness of the rules in the table; a 1-point set-



DECUS STORE, Spring Symposium, April 28 - May 2, 1986, Dallas, TX. 

Code Description Color, 
Qty Price Code Description Color, Qty Price 

Size, etc. s Size, etc. s 
39 3-Ring Binder 8.00 18 Ruler 4.00 

01 Backpack 7.00 19 Scissors 6.00 

02 Bag, Bike 3.00 11 
Secretary, Mini (pocket 7.00 
address bookl 

05 Bag, Canvas 8.00 21 Shoe Laces 2.00 

04 Business Card Case 4.00 34 Stick Pin, DTR SIG 4.00 

06 Coffee Warmer Plate 5.00 40 Stick Pin, VAX Chip, L&T 5.00 
SIG 

07 Dart Board 3.00 37 T-Shirt, L&T SIG 9.00 

31 Flashlight, (RSX) 5.00 48 T-Shirt, Large Systems 9.00 

08 Flippy Flyer 2.00 62 T-Shirt, Library 9.00 

50 License Plate Frame, (BA) 3.00 43 T-Shirt, PC SIG, (Adult) 9.00 

33 Magnet, DTR SIG 1.00 44 T-Shirt, PC SIG, (Youth) 8.00 

09 Markers, Transparency 1.00 55 T-Shirt, Site SIG (Adult) 9.00 

12 Money Clip 6.00 56 T-Shirt, Site SIG (Youth) 8.00 

03 Mug, Boot 6.00 26 T-Shirt, VAX SIG, (Adult) 9.00 

28 Mug, VAX 9.00 27 T-Shirt, VAX SIG, (Youth) 8.00 

22 Notebook, Spiral LOO 65 Tape, DM-111 75.00 

46 PC Floppy (DECmate) 15.00 63 Tape, PR0-123 75.00 

47 PC Floppy (PRO) 15.00 64 Tape, PR0-124 45.00 

45 PC Floppy (Rainbow) 45.00 66 Tape, VAX-150 45.00 

13 Pen Set 6.00 41 Template 4.00 

20 Pen, Schaeffer 12.00 40 Tie Tack, VAX Chip, L&T 5.00 
_..filG_ 

14 Pen/HiLighter Combination 2.00 29 Tie Tack, VAX SIG 9.00 

10 Pencil, Mechanical 1.00 53 Tie, Texas style, (AI) 6.00 

15 Portfolio, Large 13.00 23 Transparencies (set of 3) 1.00 

16 Portfolio, Small 3.00 24 Travel Alarm w /pen 15.00 

68 Proceedings 15.00 69 Utility Keypad Blanks, (L&T) 2.00 

17 Refill Pads (8 1/2 x 11) 2.00 38 
Ttillty KeypiiOLayouts, 

5.00 
LL&Tl 

April U, Hiii 

Figure 12: The Store Price List 

298 



Session Notes 

"'l 
o'<j" 
i::: ., 
Ill 

.... DECUS STORE, Spring Symposium, April 28 - May 2, 1986, Dallas, TX. 
CAO 

t-3 
::r 
Ill 

Code Description 
Color, 

Qty Price Code Description 
Color, 

Qty Price 
Size, etc. $ Size, etc. $ 

rn 
N 
\0 

Ill 

"' 
\0 "' .... 

0 

= 

39 3-Rlng Binder 8.00 35 Networks 13.00 

50 Artificial Intelligence 11.00 59 Office Automation 15.00 
z 
0 - 47 Business Applications 15.00 42 Personal Computer 8.00 
Ill 

"' 
'"Cl 49 Commercial Languages 11.00 60 Refereed Papers Journal 8.00 ., .... 
(") 
Ill 56 DAARC 9.00 30 RSX 11.00 
t'"' 
;;· 58 Data Management 15.00 52 Site Management 8.00 -

32 DATATRIEVE/4GL 10.00 57 UNISIG 15.00 

55 Graphics Applications 8.00 25 VAX Systems 15.00 

36 Languages & Tools 13.00 
Table by L•TJc,X April 14, 1916 



\documentatyle{article} 

\textwidth=Bin \textheight=9.6in 

\topmargin=-1in \oddaidemargin=-.7in 

\arrayrulewidth=1pt 

\renewcommand{\arrayatretch}{1.6} 

\count20=0 \pageatyle{empty} 

Figure 15: Store List-Houskeeping 

\newcommand{\atoreitem}[3]{#1t\parbox{1.7in}% 

{\raggedright#2}ttt#3% 

\ifnum\count20=0\global\count20=1% 

\newcommand{\finiah}{t}\elae\global\count20=0% 

\newcommand{\finiah}{\\\hline}\fi\finiah} 

Figure 16: The Store Item Input Command 

ting (about 1/72nd of an inch), makes them nice and 
dark. 

"\arrayatretch" governs the vertical distance between 
rows of the table. That command has already been set 
by JI.TEX, but we can "renew" the setting by using the 
"\renewcommand" command, and here we tell JI.TEX to 
make that vertical distance one and a half times what it 
otherwise would. 

We want "\pageatyle" to be empty-we don't need 
page numbers or running heads. We're going to use one 
of 'fEX's already-defined internal registers, "\count20", 
as an on-off switch in our macro definition, so here in the 
"preamble" we initialize it to zero. 

The next thing we come to in the file is the definition of 
the "\atoreitem" macro, Figure 16. It's just defined at 
this point, not used. It will be used later when it is in­
voked by the "\atorei tem" command while it is building 

300 

our table. 

"\newcommand" tells JI.TEX we're defining a new com­
mand. The first argument gives the new command's 
name. The next argument is an optional one. It tells 
whether our new command will have any required argu­
ments, and, if so, how many. Recall that there will be 
three arguments to "\atorei tem": the control number, 
the item name, and the price (Figure 14). 

The second required argument of "\newcommand" is the 
string which defines the new command. For "\atore­
item", the definition begins with the # symbol, which 
tells JJ..TEX to substitute here the first argument given 
in the call, in this case the control number, 39. So, 
when "\atorei tem" is called during table construction, 
the control number will be set in the first column of the 
table (we define the table itself later). 

The next character in the defining string is&, which says 
"skip to the next column in the table". For what to put in 
that next column, JI.TEX finds that we want to construct 
a "paragraph box", that is, a "box" of text, in this case 
1. 7 inches wide, the width of the item-name column of 
the table, within which text is set in paragraph mode, 
with automatic line breaking. If an item name is shorter 
than 1. 7 inches, as most of them are, it will simply be set 
as is. If it's longer, JI.TEX automatically breaks it into 
multiple lines, increasing the height of that row in the 
table. The contents of the "\parbox" are specified by 
the #2, which tells JI.TEX to substitute here the second 
argument in the calling string, namely the item name. 
"\raggedright" tells Y.TEXthe item name needn't be 
justified and hyphenated at the right margin. 

1E;X uses the % as a comment-character-anything fol­
lowing a % on a line is ignored, including the "return". 
Returns are normally converted to spaces by 'IE;X, and 
spaces inside macro definitions can have unfortunate ef­
fects. It's usually best to comment out the return with a 
%, except in circumstances where you know a space will 
just be thrown away (as following a command word like 
"\line"). 

Now we come to three column-skip symbols, getting us 
past the two blank table columns and into the price col­
umn. The #3 simply picks up the third argument in the 
calling string, the price, and dumps it here. And the 
macro definition is complete. 

Almost. 

Recall that the table has a right side and a left side. 
Those two sides differ only in what JJ..TEX needs to do 



\newcommand{\storehead}{ 

\multicolumn{l}{cl}{Description}t 

\multicolumn{l}{cl}{\parbox{36pt}% 
{Color,\\Size, etc.}}t 

\multicolumn{l}{cl}{Qty}t 

\multicolumn{l}{cl 1}{\parbox{30pt}% 
{Price\\\$}}} 

Figure 17: Partial Headers 

to finish off the macro, after inserting the price. If it's 
working on the left side, it must finish by crossing over 
to the right side so as to be in position to start the next 
item. If it's working on the right side, it must end by 
dropping down a row, drawing a horizontal line across 
the table, and positioning itself at the left margin to be 
ready for the next item. 

TEX provides some conditional statements for testing 
conditions like this, one of which is used here. It be­
gins with "\ifnum", the start of a numeric test. The 
end-if statement in TEX is-what else?-"\fi". You'll 
find it toward the end of the macro definition. Every­
thing between "\ifnum" and "\fi" is a conditional test 
which defines one of two versions, separated by "\else", 
of the macro "\finish". Which version of "\finish" 
is defined, the left side version or the right side version, 
depends on the setting of the switch "\count20", which 
the test itself toggles back and forth. Once "\finish" is 
properly defined, it's called and executed and the call to 
"\storei tem" is done. The left-side definition of "\fin­
ish" contains only a column-skip symbol (&) (plus a 
call to the "\rule" macro, which is here just a device 
to insure sufficient vertical separation between rows, and 
may not even really be necessary). The right hand ver­
sion of "\finish" issues the double-backslash linebreak 
command, plus the "\hline" command to draw a hori­
zontal line under the row. The switch, "\count20" must 
be set "\global" ly so its value will persist after the call 
to "\storei tem" is closed. 

in Figure 17, another command is defined. You'll rec­
ognize part of its content as most of the column headers 
from the table: "Description", "Color, Size, etc.", "Qty", 
and "Price". They appear on both halves of the table, so 

301 

\newcommand{\storetable}[2]{ 
\begin{table} 
\begin{center}{\Huge #2}\vspace{.Sin}\end{center} 
\small 
\begin{tabular}{I lrlllclclrl lrlllclclrl l}\hline 

\multicolumn{lO}{I lei !}{\Large DECUS STORE, 
Spring Symposium, 
April 28 -- May 2, 1986, Dallas, TX.}% 

\rule[-.9em]{Opt}{2.9em}\\\hline 
\multicolumn{l}{I lcl}{\rule[-1.2em]{Opt}{3em}Code}t 
\storeheadt 
\multicolumn{l}{cl}{Code}t 
\storehead\\\hline 
\input{#l.txt} 
\end{ tabular} 
\par\hspace•{Sem}{\tiny Table byL\hspace{-.1em}% 
\raisebox{lex}[2ex] 
{a}\TeX\hfill \today \hspace•{8em}\null} 
\end{ table}} 

Figure 18: The Store Table 

I defined them separately. We'll see how this command, 
"\storehead" is used, and what its definition means, 
when we examine the actual table definition. 

Figure 18 gives the definition of the table itself. The 
definition is put into a macro, called "\storetable", so 
it can be invoked once for the main store list, and again 
for the session notes list. Note that the definition of 
"\storetable" calls for two arguments to be expected in 
the calling string. The first argument will govern which 
table is being set. The second is a title phrase which can 
be used to identify the table. 

The table definition is set within a "table" environment, 
delimited by "\begin{ table}" and "\end{ table}". 
The principal effect of this environment is to allow JI.TEX 
to choose an appropriate page, or position within a page, 
at which to set it. 

To set the title above the table, we establish a "cen­
ter" environment ( "\begin{center ... \end{center }"), 
within which we typeset the title (argument #2) in 
JJ.TEX's "\huge" typesize, followed by a half inch of ver­
tical space. The scope of "\huge is delimited by sur­
rounding braces. 

Next we set "\small" as JJ.TEX's default type size inside 
the "table" environment. 



The significant environment for our purposes is the "tab­
ular" environment inside the "\begin{ tabular}" and 
"\end{tabular}" statements. The second argument of 
the "\begin{tabular}" command is a series of charac­
ters that describe to L\TEX the columns in the table. 
Each letter "r", "l", or "c" identifies a column within 
which text is to be set right or left justified, or centered. 
Between these code letters are vertical bars, telling L\TEX 
whether to insert a single vertical line between columns, 
a double line, or none. There are 10 columns in our table, 
5 on the left half and five on the right. Single vertical 
lines separate all of them except for the center pair of 
columns and the right and left hand edges of the table. 

That's the definition of our table. Now all we have to do 
is fill it in. 

The first command after the definition is "\hline", giv­
ing us the topmost horizontal line. Next we want a 
header to cross all the columns. We obtain this using the 
"\multicolumn" command, the first argument of which 
is the number of columns we wa.nt to span (here all 10), 
the second the column-formatting code for the multiple 
column (here, centered text with double vertical lines at 
each border of the table), and the third the text to be 
set. After the header and before we go to a new line, 
we insert a vertical rule to cause some extra white space 
to be set above and below the header text. The first 
argument of the "\rule" command tells how far below 
the base of the current line our rule extends. The second 
gives the rule's width (this rule will be invisible because 
we specify 0 width), and the third tells how far above the 
baseline it extends. We adjust these dimensions by trial 
and error, depending on what we find pleasing. 

We follow this by the usual double-backslash command 
for breaking lines inside special environments, and an­
other horizontal line. And that takes care of our major 
heading. 

Next we have to establish our individual column head­
ers. Again we use multicolumn to allow special format­
ting within the column, but this time we need to span 
only a single column. We format it with a double ver­
tical column on the left (because this is the left edge 
of the table), and centered text. The heading itself is 
"Code", standing for "Control Number". Once again, 
the "\rule" command is used to provide a minimum 
height for the row of column headers. Then comes an & 
column-skip command and a call to the "\storehead" 
macro of Figure 17. 

Each of the remaining four column headers is represented 
the same way in both sides of the table, so they can be 

302 

\begin{document} 
\storetable{store}{\ } 

\clearpage\newpage 

\storetable{sessnotes}{Session Notes} 
\end{document} 

Figure 19: Using the Store Table 

collected in this macro. Each spans a single column with 
centered text and a vertical line at its right edge, except 
for "Price", which has a double vertical. The command 
"\$" typesets a $ on a line below "Price". The "Size, 
Color ... " header is set in paragraph mode to allow L\TEX 
to break gracefully into more than one line. Each column 
is followed by an & except for the last, since there's no 
next column to skip to if we're setting the right hand side 
of the table. 

The first time we call "\storehead" we put an & after 
it to get us from the last column in the left half of the 
table to the first of the right half. Then we describe the 
header for the right hand "Code" column, with slightly 
different format codes than its left hand counterpart, fol­
lowed by a column-advance, followed by the second call 
to "\storehead". This time we don't want a column­
advance after "\storehead", but we do want a linebreak 
command and another horizontal line. Now we've estab­
lished all the headers. It only remains to get the actual 
store items into the table. 

We do that with the "\input" command. This tells 
L\TEX to read a file whose name is given by its argu­
ment, here "#1.txt", and input the contents here. We'll 
see how this command gets the input for both our tables. 

After the "tabular" environment ends, the phrase "Table 
by L\TEX" is set in the smallest, "\tiny", of UTEX's 
type sizes. No "\LaTeX" macro has been defined at that 
typesize, so we have to set the word UTEX properly, with 
all its case shifts and position changes, ourselves. 

Finally, we're ready to begin. Everything's defined and 
ready to go, it just has to be called. We tell UTEX to 
get ready to begin outputting and then (Figure 19), we 
issue a call to "\storetable". This call causes L\TEX 
to begin processing "\storetable", defining the table's 
columns, setting its headers and reading and process­
ing an input file. Recall that the first argument of 



\documentstyle{article} 
\textwidth=6in \textheight=Bin 
\topmargin=-lin \oddsidemargin=-.7in 
\parskip=3in \parindent=Oin 
\fboxrule=lpt \count20=0 
\pagestyle{empty} 

Figure 22: Labels Macros-Housekeeping 

the "\storetable" call determines the input file that 
will be read by "\storetable". The argument "store" 
means that the "\input" command will read the file 
"store. txt". 

Figure 20 shows the Store input file, filled with calls to 
"\storei tem", which will load the table with data on in­
dividual store items, gradually building the table down­
ward until the end of the input file is reached, followed 
by the end of the "tabular" environment. 

After the "\storetable" macro ha.s finished process­
ing the "store. txt" input file, the "\clearpage" and 
"\newpage" commands are encountered, finishing and 
ejecting the page, and then "\storetable" is called 
again, this time to process the "sessnotes. txt" input 
file for the second table. 

The "sessnotes. txt" input file (Figure 21) is formatted 
identically to the "store. txt" input file. 

My la.st example is short. We've just seen one :U.TEX 
macro file produce output from two separate input files. 
In this example, those same two input files are processed 
by another UTEX macro file to produce entirely differ­
ent output. In Figure 22 we see some of the same set­
up commands we've used before. New features here are 
a setting of "\parskip", the vertical distance between 
para.graphs, to 3 inches. We're going to set things that 
are far apart vertically on the page. "\fboxrule" does 
a similar thing here to the job "\arrayrulewidth" did 
in the last example; it determines the heaviness of rules. 

And Figure 23 presents a redefinition of the "\stor­
ei tem" macro. It will still take three arguments, and 
they'll be the same three arguments as before, because 
this version of "\storei tem" will still serve the same two 
input files. 

This time, though, #1, #2, and #3 will go inside a 3.5-

303 

\newcommand{\storeitem}[3]{{\LARGE 
\framebox{\parbox{3.6in}% 
{\raggedright Code: #1\\ 
\centering#2\\ 
\raggedleft\$#3}}}% 
\ifnum\count20=0% 

\hspace{.376in}\count20=1% 
\else \par\count20=0\fi} 

Figure 23: A New Definition of "STOREITEM" 

\begin{document} 
\input{store.txt} 
\input{sessnotes.txt} 
\end{document} 

Figure 24: Setting the Labels 

inch wide "\parbox" that, in turn, is inside a "\frame­
box" (a box with a visible frame around it). The first 
thing into the box, "\raggedright" (left-justified), is 
the word "Code", followed by #1-which, a.s you'll re­
call from Figure 14, is the control number for an item. 
There's a line break, a. "\centering" command, and #2, 
the item name. Next, after another linebreak, is a $ and 
#3, the price, set "\raggedleft" (right-justified). 

Finally, the macro ends with a conditional that inserts a 
horizontal space of .375 inches if the switch says we're on 
the left hand side of the page or sets a paragraph break 
(which we previously set equal to three vertical inches) 
otherwise. 

Figure 24 shows the complete set of commands which use 
the new definition of "\storeitem". As before, we input 
"store. txt", followed by "sessnotes. txt", with their 
many calls to "\storei tem". 

And the result, Figure 25, is just what you expected. One 
small sign for each item, one large plus for the DECUS 
store. This is a good example of the power of 1EX and 
:U.TEX, invoked in a reasonably straightforward and not­
too-difficult way, using and reusing data through simple 
redefinition of macros. 

In my next session, I'll describe the UTEX macros that 
typeset the Symposium Sessions-at-a-glance. 



"'.!'.j 
o'Q" 
~ 
"1 
(I) 

~ 

9 

1.#J 
1-3 

0 
::r 
(I) 

.a::. r.n 
~ 

0 
"1 
(I) 

..... 
::s 

"Cl 
~ ,,... 
~ 
:;-

\storeitem{39}{3-Ring Binder}{Q.00} 
\storeitem{01}{Backpack}{8.00} 
\storeitem{02}{Bag, Bike}{4.00} 
\storeitem{05}{Bag, Canvas Tote}{8.00} 
\storeitem{21}{Bag, Sport}{10.00} 
\storeitem{03}{Bookmark}{1.00} 
\storeitem{04}{Business Card Case}{5.00} 
\storeitem{06}{Coffee Warmer Plate}{6.00} 
\storeitem{07}{Dart Board}{6.00} 
\storeitem{33}{Flashlight (RSX SIG)}{5.00} 
\storeitem{08}{Flippy Flyer (frisbee)}{3.00} 
\storeitem{48}{License Plate Frame (BA SIC)}{3.00} 
\storeitem{OQ}{Luggage Tag}{2.00} 
\storeitem{35}{Magnet, DTR SIG}{l.00} 
\storeitem{10}{Markers}{1.00} 
\storeitem{32}{Microfiche (RSX)}{3.00} 
\storeitem{13}{Money Clip}{6.00} 
\storeitem{28}{Mug, VAX}{Q.00} 
\storeitem{20}{Notebook, Spiral}{l.00} 
\storeitem{65}{PC Floppy, Basic 8}{26.00} 
\storeitem{66}{PC Floppy, PC0001}{6.00} 
\storeitem{67}{PC Floppy. PC0002}{6.00} 
\storeitem{68}{PC Floppy, PC0003}{5.00} 
\storeitem{69}{PC Floppy, PC0004}{5.00} 
\storeitem{70}{PC Floppy, PC0006}{6.00} 
\storeitem{71}{PC Floppy, PC0006}{5.00} 
\storeitem{72}{PC Floppy, PC0007}{5.00} 
\storeitem{73}{PC Floppy. PC0008}{5.00} 
\storeitem{74}{PC Disk}{5.00} 
\storeitem{14}{Pen Set}{10.00} 

\storeitem{16}{Pen/Hi-Lighter Combination}{2.00} 
\storeitem{11}{Pencil, Mechanical}{l.00} 
\storeitem{16}{Portfolio}{6.00} 
\storeitem{17}{Refill Pads (8 1/2 x 11)}{2.00} 
\storeitem{18}{Ruler}{6.00} 
\storeitem{19}{Scissors}{8.00} 
\storeitem{12}{Secretary, Mini (pocket address book)}{12.00} 
\storeitem{36}{Stick Pin, DTR SIG}{4.00} 
\storeitem{22}{Sweater}{10.00} 
\storeitem{60}{T-Shirt, CL SIG, Adult}{8.00} 
\storeitem{62}{T-Shirt, CL SIG, Toddler}{8.00} 
\storeitem{51}{T-Shirt, CL SIG, Youth}{8.00} 
\storeitem{40}{T-Shirt, L\T SIG, (new)}{Q.00} 
\storeitem{41}{T-Shirt, L\tT SIG, (old)}{8.00} 
\storeitem{46}{T-Shirt, Large Systems SIG}{Q.00} 
\storeitem{44}{T-Shirt, PC SIG, Adult}{Q.00} 
\storeitem{46}{T-Shirt, PC SIG, Youth}{8.00} 
\storeitem{30}{T-Shirt, RSX, Adult}{8.00} 
\storeitem{31}{T-Shirt, RSX, Youth}{8.00} 
\storeitem{26}{T-Shirt, VAX SIG, Adult}{Q.00} 
\storeitem{27}{T-Shirt, VAX SIG, Youth}{8.00} 
\storeitem{62}{Tape, OA SIG, V-SP-44}{76.00} 
\storeitem{63}{Tape, RSX-11 SIG, 11-SP-84}{164.00} 
\storeitem{64}{Tape, RT-11 SIG, 11-SP-83}{164.00} 
\storeitem{61}{Tape, VAX SIG, V-SP-46}{154.00} 
\storeitem{42}{Template, L\tT SIG}{4.00} 
\storeitem{23}{Transparencies (set of 3)}{1.00} 
\storeitem{24}{Travel Alarm w/pen}{19.00} 
\storeitem{60}{Visor, LUG}{2.00} 
\storeitem{ }{\ }{} 

Figure 11 - Store Input File 



\storeitem{39}{3-Ring Binder}{S.00} \storeitem{38}{Session Notes, L\&T SIG}{13.00} 
\storeitem{57}{Session Notes, AI SIC}{13.00} \storeitem{37}{Session Notes, Networks SIG}{9.00} 
\storeitem{47}{Session Notes, BA SIC}{15.00} \storeitem{55}{Session Notes, OA SIG}{9.00} 

'Tl 
~· 

= ..., 

\storeitem{49}{Session Notes, CL SIG}{13.00} \storeitem{43}{Session Notes, PC SIG}{8.00} 
\storeitem{56}{Session Notes, DAARC SIG}{9.00} \storeitem{29}{Session Notes, RSX SIG}{11.00} 

<ti 

~ \storeitem{59}{Session Notes, OMS SIG}{16.00} \storeitem{54}{Session Notes, Site Mgmt}{9.00} 
..... 

\storeitem{34}{Session Notes, DTR SIG}{10.00} \storeitem{58}{Session Notes, UNISIG}{16.00} 
~ 

00 

0 
<ti 

"' 
01 "' 5· 

\storeitem{53}{Session Notes, Graphics SIG}{9.00} \storeitem{25}{Session Notes, VAX SIG}{15.00} 

= 
z 
0 .,.. 
<ti 

"' -= "O = .,.. Figure 12 - Session Notes Input File 



Code: 39 Code: 18 
3-Ring Binder Ruler 

$8.00 $4.00 

'"rj 
dQ' 
~ ., .,, 
N 
t11 

w Ul 
0 .... 

0 
O'I ., .,, -.... .,, 

s 
t"' 

"' r:r 
~ 
"' 

Code: 01 Code: 19 
Backpack Scissors 

$7.00 $6.00 



Samuel B. Whidden 
J. R. Westmoreland 

Abstract 

This is the second of two sessions in which examples of @TE]X usage are given. The authors hope to 
demonstrate that ~TEJX, a document formatter based on the TEX typesetting system, is both powerful and 

easy to use. This session presents examples somewhat more advanced than those of the previous session. 

In my previous session, I described what TEX and L\TEX 
are and gave some examples of how they work. In this 
session, I will continue with two more examples. All 
TEX and L\TEX commands are described in detail in 
The 'JEXbook and The L\TEX Manual both published by 
Addison-Wesley and available from the TEX Users Group 
(see the last slide in this article). Those books should be 
consulted by anyone who seriously wants to use TEX or 
L\TEX. 

Manual typesetting of the Symposium Sessions-At-A­
Glance (SAG) traditionally required several weeks and 
was a factor affecting the timeliness with which DE­
CUS members received their Preliminary Programs in 
advance of the Symposium. Last Fall, in Anaheim, Jeff 
Jalbert, Chairman of the Symposium Committee, and 
Ned Rhodes, Chairman of its New Technology subcom­
mittee, accepted my offer to see whether the process 
could be speeded up using L\TEX to typeset the SAG. 
The project was a success, and the SAG in your Prelimi­
nary Program for this Symposium was typeset that way. 
This session will illustrate the use of L\TEX by describing 
the macros that accomplished it. 

J. R. Westmoreland, the Languages and Tools SlG's TEX 
Coordinator, is participating in this session with me to 
help answer any difficult questions you may ask. One 
of the dangers, and rewards, of discussing your work in 
public is that there's always someone in the audience 
more experienced and skillful who can, and usually does, 

Proceedings of the Digital Equipment Computer Users Society 

point out all your silly mistakes. In this case, that will 
be all to the good, since that person will immediately get 
the job of producing the SAG from now on. 

Before we examine the SAG macros, I'll show you a few 
examples of L\TEX usage taken from the SAG project's 
documentation. These are interesting if you are just 
starting to use L\TEX and you want to explore some of its 
possibilities. The documentation is a dozen pages long, 
of which I've included the first four as examples. 

The documentation file starts with the usual housekeep­
ing chores (Figure 5), setting up the size and position of 
the print area on the page, the document style (here, "ar­
ticle"; this tells L\TEX which of its various sets of macro 
definitions apply to this job), and paragraph character­
istics. 

Setting the "secnumdepth" counter to zero is a way of 
telling L\TEX not to number sections, even though we 
plan to use the "\section" and "\subsection com­
mands. The command ' '\verb+" tells L\TEX to use its 
default heading style for the "article" documentstyle, 
which is to print the name of the current section, as given 
by the most recent "\section" command, in the running 
head on each page. 

In the "article" documentstyle, L\TEX recognizes the 
"\title", "\author", and "\date" commands (Figure 
6), storing the associated data away for later use. When 

Dallas Texas- 1986 

307 



SAG Input Documentation 

General 

Sam Whidden 
Languages and Tools SIG 

May 23, 1986 

SAG is typeset by L\TEX. a dialect of the TEX typesetting language. Each day of the Symposium is 
normally set on two pages, a left- and a right-hand page (but sometimes each of these has to be set 
on two pages, when there are too many rooms to fit on one page). Input files are created in a format 
described below and placed in Sam Whidden's DCS directory. Sam runs them through L\TEX in his 
office at the American Mathematical Society in Providence, RI and returns them by mail to the DECUS 
office. It is expected that eventually the DEC US office will be able to install TEX on one of its own 
machines so that the job can be accomplished entirely in-house. 

Input files are generated in the DEC US Office as a result of the logging process at the end of symposium 
scheduling activity. They are created by the program which also generates a line-printer version of the 
SAG. L\TEX lacks sufficient memory capacity to process an entire left- or right-hand page in a single 
pass, so the files are divided into segments as described below. 

File Conventions 

File Names 

In cases where ten rooms or less are being composed into a SAG, the lefthand page is named 'DAY'.lxx 
and righthand page .rxx. (This might happen, for instance, if the sessions sponsored by one SIG are 
typeset into a "mini-SAG" for the convenience of its members.) 

If there are more than ten rooms on a page, the page must be split into several files, each containing 
up to 10 rooms. The file containing the topmost rooms on the lefthand page is named 'DAY' .ltx. The 
file containing the bottom rooms on that page is named .lbx. If there are more than 20 rooms, a third 
file, named .lex, is created containing the rooms between the first two files. In the very rare case of a 

1 

Figure 1: SAG Documentation-Page 1 

308 



FILE CO.VVE:"\TIONS 2 

symposium with more than 30 rooms. there will be more than one center section; instead of one .lex 
file. there will be an .let and an .lc2 (as well as an .rc1 and an rc2). 

For example, MONDAY .LBX is the last file containing data for the lefthand Monday page. WEDNES­
DAY .RCX contains the middle group of rooms on the righthand Wednesday page. There should always 
be a "top" and a "bottom" (or else a "full") page file; In addition, there may be zero or more "center" 
files. as needed. 

These file names are for convenience, and are used only for human reference. U.TEX relies on argu­
ments to the \aaagpage macro, discussed below, to control treatment of the various page segments. 
Nevertheless. observing the naming conventions helps avoid confusion and error. Typeset SAG pages 
are stripped together in the DECUS office from the partial pages produced from these input files. 

Room Order 

The order of the rooms in the input files should be checked with the Symposium Coordinator to ensure 
correctness. 

File Beginning and End Identifiers 

Each input file starts with the following line: 

\saagpage{name of day}{page identifier, from the list below}{fall or 
spring}{year} 

page identifiers are: 

o leftfullpage 
o rightfullpage 

or 

o lefttoppage 
o leftcenterpage 
o leftbotpage 
o righttoppage 
o rightcenterpage 
o rightbotpage 

Here's a sample: 

\saagpage{monday}{lefttopppage}{fall}{1086} 

Each input file should end with the line: 

Figure 2: SAG Documentation-Page 2 

309 



FILE CONTENTS 3 

\endsaagpage<CR> 

Note: The left- or right top- or bot- or full-page arguments cause the corresponding page headers or 
footers (the "clocks") to be typeset above or below the list of rooms and sessions, and must be used 
where appropriate. To insure proper spacing, the 'center' arguments, which are used only for groups of 
rooms appearing at neither the top nor the bottom of the page, also invoke a short form of the headers 
which is stripped out during the final paste-up process. Appendix I shows output corresponding to each 
of these arguments. 

File Contents 

Between \saagpage and \endsaagpage, the file contains data on rooms and the sessions held in them. 
Input for each room begins with the line 

\room{name of room} 

This is followed by lines describing that room's sessions. in the form 

\session{no of periods spanned}{session number}{session name} 

Each SAG page contains 28 quarter-hour periods, and a session may span any number of these time 

slots. (The typeset headers show time in half-hour increments in the form I ~~~~~ I· with extra tic 

marks indicating quarter-hour intervals). 

The first argument of \seBBion is this number of periods (this is the sole argument to \opentime, which 
is used instead of \session to cover times when the room is unused). The value of this argument must 
always be an integer. For each room, the total number of periods given in \seSBion and \opentime 
lines must equal exactly 28. 

The other two arguments of \seBBion are the session number, beginning with capital letters denoting 
the sponsoring SIG, and the session name, which must be short enough to fit in the table cell. 

Example: 

\room{Embassy West} 
\session{2}{RX056}{RSX DOCUMENTATION OVERVIEW} 
\session{2}{RX030}{DECNET TASK-TO-TASK LINK} 
\session{4}{RX010}{DECSECS} 
\session{2}{RX059}{SUPER LIGHTS} 
\session{2}{RX006}{VNS TO RSX MIGRATION} 
\opentime{6} 
\session{4}{RX011}{JUST A MODEST RSX PROPOSAL} 
\session{6}{RX004}{RSX/POS Q \t A SESSION} 

Figure 3: SAG Documentation-Page 3 

310 



~ 

I 
PROOFREADING A1\D CORRECTIONS 4 

For the appearance of this input as output. see Appendix I. The table captions appearing in Appendix I 
appear on the stripping galleys them selves to aid in identifying the various page segments. 

Appendix II shows samples of actual input files. and Appendix Ill shows the full-page stripped output 
obtained from these input files. 

Line Breaking-Making Titles Fit 

TEX generally hyphenates words automatically to make lines fit within the space allotted to the session 

1 title. TEX doesn't normally try to hyphenate proper names (defined. as far as TEX is concerned. as any 
' word containing an uppercase letter.) But, since session titles appear in all uppercase. that feature is 

suppressed for SAG processing. and TEX will try to hyphenate every word. 

Even so, a session title may contain a phrase or a word unfamiliar to TEX. which it can't hyphenate. 
And TEX won't try to break a word that already has a hyphen or a slash in it. except at the hyphen 
or the slash. One way to tell TEX where it may hyphenate a word is to insert a \- (a "discretionary" 
hyphen) wherever hyphenation would be acceptable: for example. "hy\-phen\-ate". The \-'s will 
disappear in the output. but TEX will know it can hyphenate the word at those places. (But remember, 
if you do that. to insert discretionary hyphens at all the acceptable points in the word.) 

Sometimes it is necessary to rephrase a title to allow it to fit into its box. especially when the box 
is small. A run-together phrase can be broken into separate words so TEX will break the lines at the 
spaces. In extreme cases. a word or phrase may be entered in lower case. which is considerably more 
compact than the uppercase font used normally. While these circumstances may occur occasionally with 
half-hour sessions. they are rarely encountered in longer ones. 

To keep a title (or a room name) from being broken at a particular space. replace the space with a -

(tilde). For example. I Ro.;-m8s 6~ may look odd. Typing "Rooms e-\l-8" instead gives= ~o~m8s I 

But don't put tildes wliere you don't have to: let TEX have as much freedom to format the lines as you 
can. 

Quotes 

To get a left (or right) double quote, type two left (or right) single quotes. 

Proofreading and Corrections 

As with any computerized operation requiring care and quality control. the SAG must be examined 
closely for typesetting flaws or other errors. When the SAG output has been received and proofread 
in the DECUS office. corrections to the input files may be made as required and those files containing 
corrections retransmitted to the AMS for retypesetting. 

Figure 4: SAG Documentation--Page 4 

311 



\documentstyle[12pt]{article} 
\pagestyle{headings} % use running headers 

\topmargin=-0.25in 
\oddsidemargin=-Oin 

\textheight=O.Oin 
\textwidth=6.5in 

\parindent=Opt 
\parskip=0.5\baselineskip 

\setcounter{secnumdepth}{O} 

% move top margin up some 
% decrease the left margin 

% make the page longer 
% make the text wider 

% use block-format paragraphs 
% with half a line between them 

% ~on't number sections 

Fig~re 5: SAG Documentation-Houskeeping 

\section{File Conventions} 

\subsection{File Names} 

Figure 7: SAG Documentation-Sections 

\title{SAG Input Documentation} it encounters the "\maketi tle" command, after we've 
told it, by saying "\begin{document}", to get ready 
to start outputting, it fetches the data associated with 
"\title", "\author", and "\date", and uses them to 
make a title page. The "\sf" command tells :UTEX to 
use a sans serif font as the text font in the body of the 
document. Figure 1 shows the title page it makes, us­
ing the 4ata I entered with "\title", "\author", and 
"\date". 

\author{Sam Whidden\\ 
\vspace{.5in} 
Languages and Tools SIG} 

\date{\ today} 

\begin{document} 
\sf 

\maketitle 

Figure 6: SAG Documentation-Title Group 

312 

I'll show only selected U.TEX commands from the docu­
mentation file. The two in Figure 7, just as you might 
imagine, enter a section name and a subsection name. 
See the result in Figure 1. U.TEX automatically selects a 
type size and begins a new section and subsection. They 
aren't numbered because we said not to number them. 
Figure 2 shows that U.TEJX picks up the section name to 
use as a running head. 

Figure 2 also contains examples of itemized lists, a com­
mon construct in many kinds of documents. There are 
two lists, a 2-element list and a 6-element one, separated 
by text consisting of the word "or". 



\newcom.mand{\bmylist}{\begin{list}{$\circ$}{ 
\topsep=Opt 
\partopsep=Opt 
\parsep=Opt 
\itemsep=Opt}} 

\newcom.mand{\emylist}{\end{list} 
\vspace{0.6\baselineskip}} 

page identifiers are: 
\bmylist 
\item leftfullpage 
\item rightfullpage 
\emylist 

\hspace{1.6in}or 

\bmylist 
\item lefttoppage 
\item leftcenterpage 
\item leftbotpage 
\item righttoppage 
\item rightcenterpage 
\item rightbotpage 
\emylist 

Figure 8: SAG Documentation-Lists 

313 

The input for this example, Figure 8, shows both the 
built-in power of L\TEX and the ease with which its 
formats can be changed to suit individual requirements 
and tastes. L\TEX has several "list" environments, all of 
which provide automatic spacing and indenting of your 
lists, nested up to four levels deep with correct format­
ting. If you say "\begin{enumerate}", items in your 
list are given roman or arabic numbers, depending on 
the nesting level. If you say "\begin{i temize}", items 
are presented with bullets or tick marks, again appropri­
ate to the nesting level. 

You identify the start of each item in the list with an 
"\item" command. If you give an argument to the 
"\i tern" command, that argument replaces the default 
label for that item. Thus, you can make lists in which 
each item has its own heading. 

There's also a general list environment which you can 
use or modify to suit your own taste. I can say "\be­
gin{list}", followed by an argument that gives the de­
fault label, followed by a series of settings for other pa­
rameters, such as indentation width and the between la­
bels and items or the vertical separation between items 
or at the top and bottom of the list, and a number of 
others. The L\TEX manual concisely sets forth the com­
plete list of parameters. You can see that this example 
establishes a default label consisting of the mathemati­
cal symbol "\circ", plus a number of altered parameter 
values. 

Now, instead of simply using this tailored environment, 
we can package it for use whenever we want! We make 
the whole thing be the defining string of a macro of our 
own. "\newcom.mand" is the command that establishes 
a new macro. Its first argument is the name of the 
new macro, and its second is the new macro's definition. 
Here, we give our new macro the name "\bmylist" (for 
"begin my list") and give as its definition our specialized 
list environment. 

Environments in L\TEX are structured, in the sense that 
they always begin and end with unique delimiters, such 
as "\begin{liet}" and "\end{list}". Our new macro 
definition establishes a new beginning delimiter, "\be­
gin{mylist}". For consistency, we also name an ending 
delimiter for our special list environment, "\emylist", 
and we toss in an extra vertical skip equal to half the 
current vertical distance between text lines. 

Now when we type "\bmylist", our list environment is 
invoked, and we create a 2-item list. After it, we shift 
right an inch and a half from the margin and type the 
word "or". Then we use our list environment again for a 



{\subsubsection{Example:} 

\begin{ verbatim} 
\room{Embassy West} 
\session{1}{RX066}{RSX DOCUMENTATION OVERVIEW} 
\session{1}{RX030}{DECNET TASK-TO-TASK LINK} 
\session{2}{RX010}{DECSECS} 
\session{1}{RX069}{SUPER LIGHTS} 
\session{1}{RX006}{VMS TO RSX MIGRATION} 
\opentime{3} 
\session{2}{RX011}{JUST A MODEST RSX PROPOSAL} 
\session{3}{RX004}{RSX/POS Q \t A SESSION} 

\end{verbatim} 

Figure 9: SAG Documentation-The Verbatim Environ-
ment 

there's a switch command, in this case "\verb", that 
(temporarily) turns on some of the characteristics of the 
environment, sufficient for a brief use. 

The text in Figure 11 is reproduced from Figure 4. It is 
one last example of in-line verbatim text. It also contains 
some information about UTE)C's hyphenating ability. 

The input for that text is given in Figure 12. It contains a 
couple of instances of the "\verb" command. It also uses 
the command that writes the TEX logo. Command words 
must end with a non-alphabetic character. Space is such 
a character, and TEX recognizes it as a delimiter. But 
TEX also swallows all spaces after command words, and 
won't output them. So we insert a "command space", "\ 
", which TEX does pass along to the output, otherwise 
we'd get no space between the TEX logo and the word 
following it. 

My last example from the documentation are the in-line 
frameboxes shown in Figure 13. Input for them appears 
in Figure 14. We begin with a "\parbox", which is a 
paragraph-mode environment, inside of which most style 

B t \ b+\ + d \ b \ d parameters can be adjusted. The "\parbox" 's first ar-
e ween ver saagpage an ver + en saagpage+, . . . . 

th f · 1 t · d t d th . gument is its width, which we make three-quarters of an e i e con ains a a on rooms an e sessions . . 
mch. Its second argument is the text to be set inside it, 

Figure 10: SAG Documentation-In-line Verbatim 

slightly longer list. UTEX produces the result shown in 
Figure 2. 

At the bottom of Figure 3 is a series of UTEX commands 
output as text, under the heading "Example". Figure 9 
shows all we need to do to produce it. First, we start 
a "\subsubsection" called "Example". That automat­
ically gives us our header. 

Then we "\begin{ verbatim}", copy in our example 
from an input file, and "\end{ verbatim}". (Verbatim 
output is always set in the "typewriter" font.) 

In the paragraphs just above this example in Figure 3 
are some instances of UTEXcommands output as part of 
the text. Such cases, where just a command or two is 
typeset, are handled as shown in Figure 10. For input, 
all that's necessary is to type the "\verb" command in 
line with the rest of the text, followed by any character 
not used in the command, followed by the command(s), 
followed by the same delimiter character (here, the plus 
sign). The "verbatim" environment establishes a full set 
of style parameters. As with many UTEX environments, 

314 

in this case "Rooms 6 & 8". UTEX has a "centering" en­
vironment which is invoked by "\begin{center}" and 
"\end{center}". Like many UTEX environments, this 
one has an equivalent switch command (the UTEX man­
ual calls them "declarations") for in-line use. The switch 
in this case is "\centering". 

Then we put an "\fbox" (a framebox) around the whole 
thing to make the box visible, and we're done. This 
example also contains a description of TEX's use of the 
"-" (tilde) to produce a space in the output at which 
UTEX won't break the line. 

Now we come to the SAG itself. The macros that create 
the SAGs contain a wealth of examples of things that 
work that you can copy or modify if and when you're 
faced with similar tasks. DECUS Symposium Prelim­
inary Programs show the full range of pages and cir­
cumstances that the SAG accommodates. Figure 15 il­
lustrates the first SAG page-the left hand page of the 
two-page spread representing the first day's sessions at 
a (mostly fictitious) Symposium. There's a header span­
ning all the columns on the page, headers assigning half­
hour time periods to each column, top and bottom, along 
with quarter-hour tick marks top and bottom, and a par­
tial header displaying the period during which lunch is 
served. There are room headers at the left end of each 
row (and at the right end of each row on the right hand 



Even so, a session title may contain a phrase or a word unfamiliar to TeX. which it can't hyphenate. And TEX won't 
try to break a word that already has a hyphen or a slash in it. except at the hyphen or the slash. One way to tell TEX 
where it may hyphenate a word is to insert a \- (a "discretionary" hyphen) wherever hyphenation would be acceptable: 
for example, "hy\-phen\-ate". The \-'swill disappear in the output, but TEX will know it can hyphenate the word at 
those places. (But remember. if you do that, to insert discretionary hyphens at all the acceptable points in the word.) 

Figure 11: SAG Documentation-Verbatim and Hyphenation 

Even ao, a session title may contain a phrase or a word unfamiliar to \TeX, 
which it can't hyphenate. And \TeX\ won't try to break a word that already has 
a hyphen or a al.ash in it, except at the hyphen or the slash. One way to tell 
\TeX\ where it may hyphenate a word ia to insert a \verb+\-+ (a "discretionary" 
hyphen) wherever hyphenation would be acceptable: for example, 
• '\verb+hy\-phen\-ate+••. The \verb+\-+'a will disappear in the output, but 
\TeX\ will know it can hyphenate the word at those places. (But remember, if 
you do that, to insert discretionary hyphens at {\al all} the acceptable points 
in the word.) 

Figure 12: SAG Documentation-Input for hyphenation example 

To keep a title (or a room name) from being broken at a particular space. replace the space with a - (tilde). For example. 

I Roo~s 6 & I may look odd. Typing "Rooms e-\1i-a" instead gives I ~o:mas I But don't put tildes where you 

don't have to; let TEX have as much freedom to format the lines as you can. 

Figure 13: SAG Documentation-In-line boxes 

To keep a title (or a room name) from being broken at a particular apace, 
replace the space with a \verb+-+ (tilde). For example, 
\fbox{\parbox{.76in}{\centering Rooms 6 \t 8}} may look odd. Typing 
''\verb+Rooms e-\t-a+•• instead gives \fbox{\parbox{.76in}{\centering 
Rooma\\6-\t-a}}. But don't put tildes where you don't have to; let \TeX\ have 
aa much freedom to format the lines aa you can. 

Figure 14: SAG Documentation-Input for in-line boxes 

315 



MONDAY SPRING 1986 DECUS U.S. SYMPOSIUM 

I I 1 l l LUNCH l 1 1 
ROOM 11:00 11:30 10:00 

10:30 

10:30 

11:00 

11:00 

11:30 

11:30 

12:00 

12:00 12:30 1:00 1:30 2:00 2:30 

E. Ballrm 
A 

E. Ballrm 
B 

South 411 

South 412 

South 413 

Arena 

Theatre 

South U4 

E. Ballrm 
c 

North 

233 " 234 

W. Ballrm 
c 

W. Ballrm 
D 

West 101 

West 102 

W. Ballrm 
A I< B 

West 

105 " 106 

West 107 

West 109 

North 

214 " 216 

North 

230 " 231 

E. Ballrm 
D 

East 

409 " 410 

North 

218 " 219 

East 
301 " 302 

ROOM 

11:30 10:00 

NlTSll ROADMAP 

NHI 

NETWOltllS/COMM. 
UPHll 

NIH 

IMPltMENU.TION ICGIU. + 
ISSUES CNTRl 

OAll4 DUH DAltt 

12:30 1:00 1:30 2:00 2:30 3:00 

us OYEUIEW --]us UPDATE 

1mrl ••n 
DllllU A PACICllSWll(NINti NTWK 

NIU 

DEC'S R£SPONSl TO IUUUH. 

Hiii 

NETWOIUtSO'lR¥1EW 

lilllCROOI 'IJOIWINS 
l'IOUPMUTIN& 

NIH 

Ylll 
JU.SE WAT DAU 

IUSINlSS APPLICATIONS ROlDMAP Af'Pl Uri PU A }iPPl SOFlWAIU 
UCILITIH MGMT roR DEC S1S1EVS 

BAUi Hiii IUH 

WHIT AIU. Pf.Ol"U. USIM& ru J•HU PltOIL£MS cu n1 
FOR SOUE' 

HUI HHI 

IUYIN& 1110 P.UUllSHECTIH 
lCCTNti SFTWllE APPLICATION on 

TOOL 
IHU IAIU 

COMMfJIClll UN&U'5E.S 
ROADMAP 

CUIT 

UNOUN(!Nfi UI COIOl 
liiENERATOR 

PIUCTIC.U NUWOHIN& TME N[W ANSI COIOL STANDARD 

cuu MIU Cll11 

A- lO·Z SUlE OF JFOIUN/FUTURE 
lMl 'R0DUC1 TECM 

Ulll 14111 

INlRODUCllON TO l-10-l l·TO·l IN IUSIN[SS ENYIRONMENl 

IAIU a.nu 

Ul COIOl DEMONSTUTION 

CUii 

l-10-l Af''L IENlAllOR INlllO 

DTIH 

U.1 '" "' YU ns. UPDATE 
RDADNA' UP· 1'"' L•T Uf'OA1£ANO 

ROADMAP 
YU NOYIC( IOFTWAIE Cl Ai\ Ull/1111 0¥ERYIEW JtllS'fSTEMS 

OtEllVl[W 

"" 
DATE 

YIU "" 

IBM aND WANI 
MIHATION 

5111 

llUI 

N[l kUNDll 

NIU 

vm 

HUMAN [NllNEUINI AT IU,HICS ON 
DlC WORllSUHOWI 

Nl11 

f'ROOUCTIU C.EltHR 
t.UNAllMENl 

Hlf 

nn 

MULllYlNDOlt NETWlll 
MAINT 

sm 

¥111 '11t 

YUSTUION OYlAYl[W 

cm GUI 

ltl·l1 llMON INTUNILS 

RTlll 

Glf'SI& Hf'SI& HAPHICS SUNDi\RDS &KS AND &ICS-10 NIGHtlrlD YUCLUSl(A lfO 'EIF MtMT FOR CONSULTANTS FOR SYSTEM M6R$ 
IUllMEH ROADMAP RlNtlOU UICLUSTUll 

cm &m HU Hll YIU m1 SIU 

Sil[ 
ROADMAP 

IHI 

RITS 0'ENIN& 

RSI lllOPENlltt 
SESSION 

15111 

RSlS ANNOUNCOt[NTS 

tSJfPOS 'tODUCT 
PlltllfCl• l 

f'CSl&IUSINEH 
MEETINI 

RSHI 

111111 

Pm 

DOD 
WORlllNlii 
IROU' 

SIU 

Sill 
BUSINESS 
WUTIN& 

sm 

WHAl 1Ml f'OP-11 LOOKS UK£ 

RU11 

USINI HI[ AlUNU HOT-llNE 

, ... 

YU SllWll&lliiRP 
CNAllUON'S Ml& 

nu 

ltSTI TECM Tl'"l 1 ISPllJ 

RS011 

11'511 ON l CLUSTUI OF 
Jll'I 

RSIU 

001 UN RSI SI& WOIJllN& IROUP RSI IRO f'llH 
If. FUN MUTUtG HARDWARE 

RllH UHi RUH 

FiEtD SERYICEQ AA 

nu 

ltASIC:+r YI tUNlS ANO 
ICINllS 

Ctl1t 

AN ULTIMATE RSI IUTUil 

Rlltl 

lrlEW PC DlllECTIONS llAINIOW 
COMMUNICATIONS/ 
NElWORll 

MS-DOS TICMNICU YI/QIU 

Pllf PUI PIH 

MU!llPS ROAD MAP MUMPS TUTORIAL 'UH I DOD MUMPS 
APPLICATIONS 

MUMPS DOD RUUISE MUL fl. DltRlPORHll 
SESSION £NllNEERIN& llN&U•l 

HIT TRANS 
MUI MIU MIU YIU UTION MIU DUii 

DMSANDDTR/41LSIH 
O'ENINS 

Dllll 

UI INFO ARCN OUllYIE• WO ruo UCN 
DUUUES 

DMIH 

AltU 

DlrilDU 

llHI 

-------l 
INTJIODUCTION lO ¥'1 SET YU LSE lUTOllUl UI DUU& lUTOlllU 

18\ilYA1DI 
lltllRCONNECT I 

OMlll 

Olli MAIU&EMENT 
SUltYIYAL 

£1' SH INTRO 

LTUI LTlll llUI 

OLTP CONCEPTI 

DM111 OMHI 

.. UIN&D8USERS 
~111£H0lf 

Al Lil ITM 5£NERATION 

... ..T AllO AllU 

DMm 

UNISl6 ROlllPfULTWll PROD f'ANEl UllltUAUSEll 
PRINlUS 

NEW PROCESSORS FOR Ullllll UllLITIH/TOOLS INTIO TO UCC IND LU UNll PATTERN IOTCHIN& 
ULlRll 

EDUSI& IUSINESS lill& A 
ROADMAP 

HU 

HMS IOADMAI' 

UIU UIU 

M·ll SOFTW'lRE TOOU 

UH 

C.OUllSE MANA&lM[Nl A 
T(Sl!N& 

HU 

um Ulll UHi 

ll·U ADMUrt SOFTWlRE · PART I 

UH 

UU1 

IC l1 lDlollN S0'1WU( · 
PUTJ 

EUI 

IAS Ill OPENINli SESSION IAS PRODUCT PANEL WHll ARE llile TUMDAU AND llALU 11NlT IS Ul DTll lt[MOTE DITA 
OVlllYIEW lDE' •CCf.SS 

1111 IHI DTl11 01111 DUU 01111 

STORAU STSTEMS UECTROlrt/C MEMORl C.AD SYSTEMS 
ROADIOf' OWEJIWIEW DElll0'MfN1 

MICROYU W/S PRODUCT MIO DIRECTIONI AND PIUNllRS ruTURE NEEDS 
ruTURES NlW PRODUCT 

HUI MllJ HIU - ~ ~ ~ 
111·11 Sii IUllNtsl 
Mf.ETINI 

lll-11111 llOADMAP llT-11 PRQDUCT ,ANH 

R1114 

g~:_:~NI YU LIMS/IM OATAIAH. 

SHI. 
DAISI DAIU 

OHi& 
ROADMA, 

0111 

OA. lHl !TATI Of THE ... 
OHi 

1 
10:00 

10:30 

RlllJ Rllfl 

&ElTIN& LIM!fSW TO WORK IN Liit 

UlCUTIY£ INFORlUTIOlll 
SfSTlMS 

0111 

1 1 
10;30 11:00 

11:00 11:30 

DAHi 

TLC •PH A lUN A WlOI WAIL 51RA1l&f 
UST EM 

OHi DUI 

LUNCH 
11:30 12:00 12:30 1:00 

12:00 12:30 1:00 1:30 

YUlDCS 

DAiii 

CUSTOWIUNG TOUll LUU 
!HTEM 

DAiii 

USUIU 

UJLIMSSW·IM 
PROTOCOl 

STR•lHilC DIRlCTIONI 
fOROl 

OASYlllMS UPDUE 

010 

1 1 l 
1:30 2:00 2:30 

2:00 2:30 3:00 

Figure 15: The Sessions at a Glance 

316 

DHU 

o•m 

om 



\documentstyle{article} 

\pagestyle{empty} 

\textwidth=B.6in 
\topmargin=-1in 

\tabcolsep=1pt 

\textheight=10.6in 
\oddsidemargin=-.76in 

\arrayrulewidth=.Bpt 

Figure 17: SAG Macros-Houskeeping 

page, which isn't shown here). 

Individual sessions may occupy any number of quarter­
hour periods in a room. Each session's title appears at 
the top of its cell, left-justified, and its session number 
at the bottom, right-justified. In any room, any number 
of periods may be empty. In the case of shorter sessions, 
long titles may overlap session numbers unless the titles 
are manually shortened. 

The SAG's input format is about as simple as could be 
devised (Figure 16). Input for a page begins with a 
"\saagpage" command, the arguments of which iden­
tify the day, the page segment, the symposium season 
(Spring or Fall), and the year. JJ.TEX's internal memory 
isn't big enough to hold an entire page, so input for one 
page is divided into top, bottom, or center segments. 

Next, the input contains a call to the "\room" macro 
which conveys the name of the room to be typeset in the 
"Room" column, and signifying the start of session input 
for that room. 

Next come "\session" commands, g1vmg, first, the 
number of quarter-hour periods the session will occupy, 
the session number, and the session title. The "\open­
time" macro is similar to the "\session" macro, except 
that the only argument gives the length of time the room 
is unused. 

This input would be followed by the "\room" command 
for the next row in the table, and its session information. 

JI.TEX will read a file of SAG macro definitions (Figure 
17) as well as SAG input files. It will also read a "style 
file" of macros from the L\TEX data base. In this case, the 
"\document style" is "article", indicating a particular 
set of general definitions which JI.TEX will use for this 

317 

\font\saag=tphon6 
\newcommand{\TINY}{\tiny\saag} 

\font\eightbf=amssbxB \font\tenssbf=amssbxlO 
\font\headfont=amssbx12 \font\cxfont=amssbx16 

Figure 18: SAG Macros-Fonts 

job. 

"\pagestyle" is "empty" because we want no running 
heads or page numbers on these SAG pages. Commands 
follow which set the size and position of the printed area 
on the page. "\tabcolsep" establishes a value that in­
creases the default separation between columns in the ta­
ble. "\arrayrulewidth" sets the thickness of the rules 
in the table to a reasonably dark eight tenths of a point 
(a point is one seventy-second of an inch). 

In Figure 18, we establish some T};jX fonts we will want 
to access which are not preloaded by L\TEX. The com­
mand "\font \saag=tphon6" tells T};jX that, when we 
give the command "\saag", we want it to access the font 
file "tphon6.tfm" in its font data base and use the font 
metrics-that is, the character size and relative position 
information-which are given in that file. "Tphon6" is 
a small (6-point), closely spaced font, right for putting 
session titles in the tight spaces of the SAG. This com­
mand associates a logical font name with a physical font 
metrics file. 

We also define a new command, "\TINY". Its definition 
means that, when we specify "\TINY", we are calling 
JJ.TEX's littlest font, "\tiny". "\TINY" will use all of 
"\tiny" 's built-in characteristics, such as line spacing 
and interword spacing, but will use character metrics 
from Tphon6.tfm. 

We also define 8-, 12-, 14-, and 16-point sans serif bold 
fonts for use in our various headers. 

In Figure 19 we enter commands that place the slash 
character, "/", in the class of characters which T};jX 
will accept as hyphenation points. This makes it easier 
for TEX to break phrases such as "RSX/ POS PROD­
UCT PANEL/Q & A" in tight places. These are T};jX 
commands, passed along by JI.TEX. The construct "' \" 
tells TEX to consider just the single following character. 
Putting a character into "\catcode" 13 means that that 



\eaagpage{Monday}{lefttoppage}{epring}{1986} 
\room{E.-Ballrm\\A} 
\eeeeion{2}{N061}{NETSIG ROADMAP} 
\eeeeion{2}{N030}{NETWORKS/COMM. UPDATE} 
\opentime{2} 
\eeeeion{2}{N017}{LAS OVERVIEW} 
\eeeeion{2}{N016}{LAS UPDATE} 
\eeeeion{2}{N036}{DIGITAL \t PACKETSWITCHING NTWK} 
\eeeeion{2}{N060}{NETWORKS OVERVIEW} 

Figure 16: SAG Input 

\catcode'\/=13\def/{{\char'\/\penaltyO\hekipOpt 
}} 

\uchyph=l 

Figure 19: SAG Macros-Defining extra hyphenation 
points 

character is to be considered a command word, all by it­
self. So the command "\cat code' \/=13" tells TEX that 
the character "/" is a command. 

Then we define what the command "/" means, using 
TEX's method, the "\def" command, for defining a new 
command. After this, whenever TEX comes to a "/" in 
the text, 'IE;X will think it's a command, rather than just 
another text character, so it will act on it as a command 
rather than pass it to the output stream. So the first 
thing the new definition does is to call for outputting an 
ascii "/". The TEX command "\char" does this. Again, 
the "' \" identifies the next character as our target. 

After outputting an ascii "/", the next thing our new 
"/" command does is establish a line break "\penalty" 
of zero. That give TEX the right to break the line at 
the "/" with no penalty, which is the same as giving 
TEX permission to break the line there if it wants to. 
Since TEX is only allowed to break lines at spaces, our 

'" • \ b/ ,, d d b . . new ver + comman en s y msertmg a space 
with zero width, "\hekipOpt", to complete the task of 
allowing TEX to break lines at slashes when it wants to. 

Normally, TEX doesn't hyphenate words containing up­
percase letters, believing them to be names of things 
("proper nouns"), which aren't supposed to be hyphen­
ated in English. "\uchyph" tells TEX to ignore that rule 
and go ahead and hyphenate such words. We need it 
here, since session titles are all in upper case, and if we 
didn't use it, TEX could never break any lines to fit them 
in our tiny boxes. 

Figure 20 presents several commands ("macros") defined 
for the SAG. "\newcommand" is :U.TEX's method of creat­
ing a new command. "\newcommand" takes two required 
arguments enclosed in braces ( "{}"). The first is the 
name of the new command and the second is the new 
command's definition. Between these two required ar­
guments may appear an optional argument, enclosed in 
brackets (" [) "), which is the number of arguments to be 
passed when the new command is called. 

In Figure 20, the principal new macro is "\left clock", 
which establishes the times printed in the headers and 
footers of left-hand pages (there's a similar "\right­
clock", not shown). Another, "\hour", is used in 
"\leftclock" to enter start and stop times in the col­
umn headers. As denoted by the "[1]" following the 
macro name in its definition, "\hour" takes a single ar­
gument in its call, namely a time range as can be seen 
from the calls to it in "\leftclock". 

"\hour" contains an example of :U.TEX's "\mul ticol­
umn" command. Since sessions may be scheduled in 
quarter-hour intervals, the SAG must recognize quarter­
hour "ticks of the clock". But printing headers for ev­
ery fifteen-minute period would produce a too-crowded 
result, so headers are printed for each half-hour time pe­
riod, with ticks marking the quarter hours. "\hour", 
therefore, spans two table columns (the table itself will 
be defined in later macros) as shown by the value, '2', of 

318 



\newdimen\minwidth 
\newdimen\widewidth 

\minwidth=.23in 
\widewidth=\minwidth 

\advance\widewidth by \arrayrulewidth 

\newcommand{\hour}[1){l\multicolumn{2}{p{2\minwidth}l}{\clock{#1}}} 
\newcommand{\widehour}[1){l\multicolumn{2}{p{2\widewidth}l}{\clock{#1}}} 
\newcommand{\clock}[1){\centering \eightbf #1} 
\newcommand{\spacer}{\hspace*{\minwidth}l} 

\newcommand{\leftclock}{\\\hlinel 
\spacer\spacer\spacer\spacer\spacer\spacer\spacer\spacer\spacer\spacer 
\multicolumn{8}{1cl}{\rule{Opt}{.8em}\eightbf LUNCH}l\spacer\spacer 
\spacer\spacer\spacer\spacer\spacer\spacer\spacer\hspace*{\minwidth}\\ 
\cline{12-19}\parbox{.75in}{\tenssbf \centering ROOM}% 
\hour{9:00 9:30}\hour{9:30 10:00}\hour{10:00 10:30}\hour{10:30 11:00}% 
\hour{11:00 11:30}\widehour{11:30 12:00}\widehour{12:00 12:30}% 
\widehour{12:30 1:00}\widehour{1:00 1:30}\hour{1:30 2:00}\hour{2:00 2:30}% 
\hour{2:30 3:00}\hour{3:00 3:30}\hour{3:30 4:00}} 

Figure 20: SAG Macros-Leftclock 

its first argument. 

Before the definition of "\hour", a new dimension, called 
"\minwidth" is defined, having a value a little under 
a quarter inch. The SAG must display 7 hours-28 
quarter-hour columns-plus a "room" column, on each 
page. On an 8.5-inch-wide page, the width of each 
quarter hour column can be no more than "\minwidth" 
(not counting the width of the vertical rules between 
columns). "\multicolumn's" second argument specifies 
here that the contents of this double column are to be set 
in "p" (paragraph mode) to a width of 2 times "\min­
width", with a vertical rule set at its righthand side. 
The third argument specifies the text to be set there by 
invoking another macro called "\clock". 

Remember that, when "\hour" is called, it will be called 
with one argument, a time range such as "10:00 10:30". 
The "#1" in the defining string of "\hour" marks where 
this argument is to be inserted. Here. the result is that 
the argument is passed along to the "\clock" macro, 
which, like "\hour", is defined as taking one argument in 
its call. "\clock" embeds the time-range argument in a 
"\centering" environment and invokes an 8-point bold 
sans-serif font with which to typeset it. It is convenient 
to define macros like "\hour" and "\clock" which will 
be used more than once and will reduce the number of 
keystrokes, and hence the number of errors, in the full 
set of definitions. 

319 

"\leftclock" itself will be called from inside a table­
building macro, so it contains commands appropriate to 
tables. Its first move (caused by a double backslash com­
mand), is to start a new line in the table. "\hline" draws 
a horizontal line across the table, but leaves us positioned 
at the beginning of the table's first (leftmost) column. 

Next comes an &, which is 1\TEX's command to move 
to the next column in a table. This moves us to the 
second column, which is the first of the 28 quarter-hour 
columns. The command "\spacer" has been defined as 
a horizontal space of "\minwidth" followed by an &, the 
effect of which is to establish the horizontal distance to 
be occupied by the column, cause an intercolumn vertical 
rule (called for in the table definition) to be set, and then 
skip to the next column. Calls to "\spacer" move us 
across 10 columns to get to lunch. 

Now we establish an 8-column "\multicolumn", with 
text centered ( "c") and vertical rules on either side. The 
text to be centered consists of the word LUNCH plus a 
vertical rule .8 'em's high (an 'em' is the width of an M 
in the current font) and 0 points wide (and therefore in­
visible). This rule forces a little vertical white space to 
make lunch look better. 

Then an & moves us into the 19th quarter-hour column, 
and 9 more calls to "\spacer" bring us to the 28th col­
umn. This last column's dimension is established by the 
command "\hspace*{\minwidth}", which is the same 



\newcommand{\eaagpage}[4){\gdef\eaagday 
{\uppercaee{#1}}\gdef 
\meeting{\uppercaee{#3 #4}}\cename #2\endcename 
\gdef\tabname{\uppercaee{#1}--#2}\ignoreepacee} 

Figure 21: The SAAGPAGE Macro 

as a call to "\spacer" but without the & since there are 
no more columns to skip into. Another "\ \" command 
moves us down to the beginning of the next row. 

We draw a horizontal line, using "\cline", across table 
columns 12-19, which are the same columns spanned by 
the previous "\multicolumn" command, so we get a line 
for lunch. 

We're now back at the lefthand side of the table, so we 
write the "ROOM" header, calling for our 10-point sans 
serif boldface font. We put it inside a "\parbox" and 
use a "\centering" command (otherwise it would be 
left-justified in its box). Vertically, the word ROOM will 
come out at the top of the table established by the previ­
ous "\cline" command, putting some white space below 
"ROOM", but since the "\cline" doesn't come this far 
"ROOM" will also have lots of white space above it (se~ 
Figure 15). 

Then we invoke the "\hour" macro enough times to en­
ter all the time periods in the left hand page of the 
SAG. We're forced to define "\widewidth", which we 
make equal to "\minwidth" plus the width of a vertical 
rule, and to define "\widehour" using "\widewidth" in­
stead of "\minwidth" to take account of the fact that 
the multicolumn span containing LUNCH doesn't include 
the quarter-hour tick marks the other columns do. Us­
ing "\hour" to write the time headers during the lunch 
period would result in a space deficit across this period 
equal to the thickness of four vertical rules, a quite no­
ticeable four-hundredths of an inch, which would all be 
added to the rightmost column under the LUNCH header. 

Recall that SAG input files begin with a call to the 
"\eaagpage" macro, with four arguments: the day, ·the 
page segment, the season, and the year. Figure 21 gives 
the definition of "\eaagpage". Note that it expects four 
arguments with its call. As the first thing in its defini­
tion, "\eaagpage" defines another macro, "\saagday". 
"\saagday" is redefined each time "\saagpage" is called, 
and has as its definition the first argument (which is 

the name of the day) in the call to "\eaagpage". Once 
"\eaagpage" is called, and "\eaagday" is defined, any 
call to "\saagday" will expand to that day name un­
til the next call to "\eaagpage" redefines "\eaagday". 
"\gdef" tells TEX to make the definition of "\eaagday" 
global so that it will remain defined after this call to 
"\eaagpage" is completed. 

Then another macro, "\meeting", is "\gdef" ed, consist­
ing of the season name ( "#3") and the year ( "#4"). Now, 
when we need the name of the day or the Symposium in 
later header macros, we simply refer to "eaagday" of 
"\meeting". 

Next we use the construct "\csname #2\endcename" to 
call a macro whose name is whatever the second argu­
ment, "#2", of the call is. Recall that the second argu­
ment is the page segment name, so this issues a call to 
a macro whose name is the same as the page segment 
name. If the page segment argument is, for example, 
"lefttoppage", this results in a call to "\lefttoppage". 
This call is expanded right away, before the rest of the 
call to "\saagpage" is completed, but when we do return 
to finish expanding "\eaagpage", all we do is define an­
other macro named "\tabname", consisting of the name 
of the day followed by the page segment, which we will 
use later on to give a label to the partial output for this 
segment. 

Figure 22 shows the way that segment will look, once 
we've gotten through all our definitions and have run the 
input against them. Notice that the main header is going 
to invoke the "\saagday" macro and print "MONDAY" 
in the upper left hand corner. To the right of that, the 
"\meeting" macro will give us the season and the year, 
"Spring 1986". The remaining text is just a literal in a 
later macro. 

"LUNCH" spans columns 7-10 with our "\cline" under­
neath it. "ROOM" is the first column header, aligned 
with the upper time. Notice the label at the bottom of 
the table. This is the result of a call to the "\ tabname" 
macro we just defined, and we'll see how and where that 
call is made. The DECUS Office in Marlboro played 
a major role in creating the SAG. In particular, Brent 
Lapham, the DCS System Manager, prepared the input 
files, breaking them into the necessary segments for each 
page to avoid exceeding U.TEX's memory limit. Judy Ar­
senault 's page makeup staff stripped the typeset output 
segments together. The label at the bottom of each seg­
ment helped avoid mixing them up. 

In Figure 23, the second definition is "\lefttoppage", 
which we just used as an example. The first definition , 

320 



MONDAY SPRING 1986 DECUS U.S. SYMPOSIUM 

glo g1o 10
1

00110:30 
T 1 LUNCH I I I 3:~o J 3:lo ROOM 11:00111:30 12:00112:30 1:00 1:30 2:00 2:30 

g:30 10:00 10:30 11:00 11:30 12:00 12:30 1:00 1:30 2:00 2:30 3:00 3:30 4:00 

E. Ballrm NETS!& ROADMAP ~~~:ft(S/COMM. LAS OVERVIEW llAS UPDATE Dl&ITAL & PACKETSWITCHIH& NTWK NETWORKS OVERVIEW 

A NIU NIH N017 Nill NIU NOH 

E. Ballrm BASEWU }""'wu om l 1EC'S RESPONSE TO REAl TIME MICROYAX WORKIN& 
IMPLEMENTATION ACQU. + &ROUP MEETIN& 

B ISSUES CNlRl 
DADU DAlltl DAOOI DAUt nu 

BUSINESS APPLICATIONS ROADMAP lPPL IN PBX A JAPPL SOFTWARE WHAT ARE PEOPLE USIN& HI JWHAT PROBLEMS CAN Yll BU11N& IRD PARTJSELECTIN6 
South 411 FACILITIES MGMT FOR DEC SYSTEMS FDR SOLVE' ACCTN& SFTWRE AP~UCATION on 

TOOL 
BAHi BAlllD 8AD41 BAOU BAHi 8All1D UIU 

COMMERCIAL LAN&UA&ES ANNOUNCING YU COBOL PRACTICAL NETWORKING THE NEW ANSI COBOL STANDARD YU COBOL DEMONSTRATION 

South 412 ROADMAP 6ENERATOR 

cun cun NOH CLIU CLIH 

INTRODUCTION TO A· TO·Z A-TO·Z IN BUSINESS ENVIRONMENT A·T0-1 STATE OF lORUM/FUTURE A·TO·Z APPL &ENEAUDR INTRO 

South 413 THE PRODUCT TECH 

SHU auu BA015 BAUi DTDH 

YAX S'fS. SI& YU 515. UPDATE y· LAT UPDATE AND YU NOVICE SOFTWARE Q & A HDD/lllD OVERYIE.W' j"' SYSTEMS Arena ROADMAP UP- ROADMAP DYERYIEW 
DATE 

Ylll YtU VDl1 LT050 vtH VU7 YUi 

NET kEYNDlE MICROYAX UPDATE HUMAN ENGINEERING AT 6RAPHICS ON VAXSTATION OVERVIEW 

Theatre DEC WORKSTATIONS 

Nall HDH VID2 &IU 61111 

Table I: MONDAY-lefttoppage 

Figure 22: A LeftTopPa.ge Segment ready for page makeup 

321 



\newcommand{\leftfullpage}{\openleftpage 
\global\let\endsaagpage=\closeleftpage} 

\newcommand{\lefttoppage}{\openleftpage 
\global\let\endsaagpage=\finishpage} 

\newcommand{\leftcenterpage}{\leftpageinit 
\leftclock\global\let\endsaagpage=\finishpage} 

\newcommand{\leftbotpage}{\leftpageinit 
\global\let\endsaagpage=\closeleftpage} 

Figure 23: SAG Page Segment Macros 

"\leftfullpage", can be used when a page is small 
enough to be set in a single segment, but that's usually 
only the case for test data. 

The definition of "\lefttoppage" first calls "\open­
leftpage", a macro which will invoke all the other 
macros necessary actually to set the left page headers, 
like "\saagday" and "\leftclock", and others. Then 
we use a '!EX convention, "\let", to equate one com­
mand to another, to suite our needs of the moment. Just 
as each input file begins with a "\saagpage" command, 
each one ends with an "\endsaagpage" command. But 
the "\endsaagpage" command must do different things, 
depending on what sort of segment we're setting-right 
page or left, top segment, center, or bottom. Rather than 
force the input to contain a different end command for 
each case, we use the fact that we know, at the beginning, 
what sort of segment we're working with, and equate the 
standard end command to an appropriate macro. In this 
case, "\finishpage" will give us the actions we want a.t 
the end of a. top page segment. 

Notice that "\leftfullpage" calls "\openleftpage" a.t 
the start of the page and "\closeleftpage" at the end. 
Those macros set the complete set of headers, top and 
bottom. "\lefttoppage" begins with the same opening 
call, as you'd expect, but end with "\finishpage", a 
macro which just finishes off the segment without setting 
any footers. 

Again, as you'd expect, "\leftbotpage" ends with a 
call to a macro that will set the footer, but begins with 
"\leftpageini t", which begins the segment with no 
headers. "\leftcenterpage" ought not to need either 
headers or footers, and it does open and close with the 
non-heading calls. But a call to "\leftclock" does have 

322 

\newcommand{\openleftpage}{\leftpageinit\hline 
\multicolumn{16}{icl}{\headfont\rule[-.4em]% 
{Opt}{l.6em}\hspace*{2em}\saagday \hfill 
\meeting\ DECUS U.S. SYNPOSIUN\hspace*{2em}\null}% 
\lef tclock} 

\newcommand{\leftpageinit}{% 
\global\let\room=\leftroom 
\global\let\session=\leftsession 
\global\let\opentime=\leftopentime 
\begin{ table} 
\begin{tabular}{lp{.76in}l*{28}{p{\minwidth}i}}} 

Figure 24: Left-segment opening macros 

to be inserted, artificially, and the headers stripped out 
during page-makeup, because otherwise JJ.TEYC takes its 
column widths only from the variable width of the ses­
sion headers which it sets in the various columns, without 
realizing that the headers force a standard width on the 
table. Without this call to "\leftclock" the center seg­
ment just doesn't match up with the top and the bottom. 

The two left-segment opening macros appear in Figure 
24. The first one, "\openleftpage", begins by calling 
the second, so we'll look there first. "\leftpageini t" 
is common to any left-page segment, since it's called di­
rectly by those segments that don't need the headers in 
"\openleftpage". First, it sets the "\room" command, 
which we saw starts the input for each row in the ta­
ble, to "\leftroom". That is, until this assignment is 
changed, any call to "\room" is a call to "\leftroom". 
On right hand pages, of course, a different assignment is 
used. Similarly, "\session" and "\opentime", the two 
macros that convey information about room use per time 
period, are equated to their left-brain implementations. 

Then the ma.in table itself is begun. In JI.TEX, the "table" 
environment is used mainly to permit proper placement 
of a table on the page, allowing it to float to the top or 
appear on a separate page. The table environment also 
provides the label facility we saw previously. 

The "tabular" environment provides the actual table def­
inition, establishing 29 columns. The first is to be treated 
as though it contained a "\parbox" three quarters of an 
inch wide. This is the column that will contain our room 
names. It will have a vertical rule on each side. Following 
that comes a column described a.s a. "\minwidth" wide 



\newcommand{\closeleftpage}% 
{\leftclock\f inishpage} 

Figure 25: Left-segment closing macro 

\newcommand{\finishpage}{\\\hline\end{tabular}% 
\caption{\tabname}\end{table}\vfill\clearpage 
\gdef\saagday{\null}\gdef\meeting{\null}} 

Figure 26: The Finishpage Macro 

"\parbox" with a vertical bar on its right side, and this 
column is repeated a total of 28 times. 

Now we're done with "\leftpageinit", but we need to 
finish the expansion of "\openleftpage" if we came from 
there. After the call to "\leftpageini t", we draw a hor­
izontal line across the whole table we just defined and 
set the full-page header with a call to "\multicolumn" 
that spans all 29 columns. We use the 12-point sans 
serif bold font we defined earlier. We insert an invisi­
ble vertical rule that pushes the bottom of the current 
line down four tenths of one em and pushes the top up 
1.6 ems, to provide a little extra white space above and 
below the header text. Then we force Il•TEX to indent 
( "\hapace*") 2 ems, issue a call to "\saagday" to print 
the day, call for expandable horizontal space ("\hf ill") 
to push the following text over to the right side of the line, 
call "\meeting" to print the season and year of the Sym­
posium, print the words "DECUS U.S. SYMPOSIUM", 
and finish the line with a 2-em indentation, protected 
by a "\null" command to keep :U.TEX from gobbling up 
space at the end of a line. "\openleftpage" ends with a 
call to "\leftclock", which establishes lunch time and 
all the column headers for the ROOM column and 14 half­
hour time periods. 

Of course, eventually we'll have to end a page segment. 
"\closeleftpage" (Figure 25) is used to end a left bot­
tom page segment, calling "\leftclock" to typeset the 
same column headers as footers at the bottom of the 
page, and then calls a common finishing macro used for 
any left page segment. 

"\finishpage" (Figure 26) breaks the line, draws a hor­
izontal rule, and terminates the "tabular" environment. 

323 

\newcommand{\leftroom}[1]{\\\hline\multicolumn 
{1}{lp{.76in}l}{\raisebox{-2ex}{\parbox 
{.76in}{\tenssbf\centering #1}}}\ignorespaces} 

Figure 27: The Leftroom Macro 

\newcommand{\leftsession}[3]{t\multicolumn 
{#1}{p{#1\minwidth}l}{\entry{#1}{#2}{#3}}% 
\ignorespaces} 

Figure 28: The Leftsession Macro 

We're still inside the "table" environment, though, and 
it is that environment which provides the caption facility. 
We defined "\tabname" earlier, in the definition of the 
"\saagpage" macro, to be the name of the day plus the 
page segment name: Monday-Lefttoppage, for example. 
A call to "\caption", with an argument of "\tabname" 
the caption. Then we leave the "table" environment. We 
insert vertical space ("\vfill") to fill the page, eject the 
page with "\c learpage", causing the table typesetting 
to be completed, and redefine "\saagday" and "\meet­
ing" as empty macros, just to be sure that their defi­
nitions don't get left over and picked up by subsequent 
macro calls without being properly redefined. 

During left page segments, the "\room" command is 
equated to the "\leftroom" command, which is defined 
in Figure 27. It takes one argument, the room name. 
When "\room" is read in the input file, a line break (dou­
ble backslash) command is issued and a horizontal rule is 
drawn. A "\multicolumn" command, spanning just the 
ROOM column, is issued to create a special environment 
for setting the room name. The column specifications 
make it a three-quarter inch box with vertical rules on 
either side. The "\parbox" (of the same size) provides 
the environment for the ten-point san serif bold font and 
for centering. The "\raisebox" command, with a neg­
ative argument, lowers the text to approximately center 
it vertically in the cell. 

Similarly, we equate the "\session" command to 
"\leftsession" for left-page segments (Figure 28). 
"\session" has 3 arguments: the number of quarter­
hour periods, the session number, and the session title. 
First, the "t" moves us into the next column. Then we 



\newcommand{\leftopentime}[l]{t\multicolumn{#1}% 
{p{#1\minwidth}i}{\makebox[#1\minwidth]{}}% 
\ignorespaces} 

Figure 29: The Leftopentime Macro 

issue a "\multicolumn" command spanning a number 
of columns equal to the number of quarter-hour periods 
(argument #1 of the call). The width of the box needed 
to hold "\multicolumn'"s text is equal to "\minwidth" 
multiplied by the number of columns spanned (#1), ex­
pressed to 'IEX by this convention. There's to be a ver­
tical rule at the right side of the multicolumn span. The 
text to be set in the cell thus defined will consist of the 
session title (#3) and the session number (#2). That 
material is formatted by the entry macro, which we call 
here. 

"\ignorespaces" eliminates spaces in the input stream 
which occur between commands (primarily because 'IEX 
converts carriage returns occurring between commands 
into spaces). Such spaces would act like text occurring 
between "t" column-skip commands, and would force ex­
tra width into cells, destroying our table's alignment. 

"\opentime" (see Figure 29) has a definition similar to 
"\session" 's, except that, instead of calling the "\en­
try" macro to format the material going into the cell, 
we make an empty box. The "\makebox" command has 
an optional argument (optional arguments are enclosed 
in square brackets, as opposed to required arguments, 
which are enclosed in curly braces) which is the width of 
the box. Again, as with "\session", the width of the cell 
is computed by multiplying "\minwidth" by the number 
of quarter-hour time slots. What goes in this box, in 
the case of "\opentime", is nothing, which is enclosed in 
curly braces here. 

Figure 30 shows a right hand page segment, looking much 
the same ar a left hand page segment, except that the 
room colum1 is on the right. To make the input sim­
ple, right hand input takes the same form as left hand 
input. That is, a segment starts with the "\saagpage" 
command, followed by a "\room" command, followed by 
"\session" and "\opentime" commands, and then more 
"\room"s. On left pages, the room name is set first, just 
as it's input. But on right pages, "verb+room+" has to 
set the previous room name, then start a new line and 
save the new room name to be set when the next "\room" 

324 

\newcommand{\entry}[3]{\TINY 
\parbox[t]{#l\minwidth}{\leavevmode 
\,\ifxld\xntry{#l}\fi 
\rlap{\vbox to \ht\parnbox{\hsize=#l\minwidth 
\raggedright #3\ \phantom{#2}\vss}}% 
\null\hfil\break 
\null\hfil\break 
\null\hfil\break 
\null\hfill #2\,}} 

Figure 31: The Entry Macro 

is encountered. The macros that do this are similar to 
the left page macros, but have that added complication, 
which I won't detail here (a complete listing of all the 
SAG macros appears at the end of this article). 

Before we come to the "\entry" macro, we need a couple 
of definitions. It's convenient for us to establish a stan­
dard line height, in the font we're using for table matter, 
that we can refer to conveniently. We do that by using 
'IEX's "\newbox" command to create a box. The box will 
represent the height of a pair of parentheses, which are 
tall characters, and "\newbox\parnbox" gives the box a 
reasonably mnemonic name. 

We use 'IEX's "\setbox" command here to establish the 
contents of the box. We define it to be a horizontal box, 
"\hbox"-that is, an ordinary text-type box. We invoke 
the "\TINY" font that we defined for use in the table, and 
we "set" a pair of parentheses in that font. We use the 
"\phantom" command to set them, though, which means 
they'll be invisible when we typeset this box, but they 
do nevertheless establish the height of the box, which is 
the only property of the box we'll need to use. 

The "\entry" macro, shown in Figure 31, is going to 
reuse the same three arguments that come with the 
"\session" command to typeset the contents of one ta­
ble cell. Recall that these are the number of quarter-hour 
time slots, the session number, and the session title, in 
that order. 

The cell contents are going to be set inside a "\parbox", 
where we have local control of spacing & style. "\par­
box" can have an optional argument (optional arguments 
are enclosed in square brackets) which indicates whether 
the top line, bottom line, or center (the default) of the 
"\parbox" is to be aligned with the current line of text; 



SESSIONS-AT-A-GLANCE MONDAY 

T T I T T I T T I 
10:

1
00 J 10:

1
30 6:30 7:00 7:30 B:OO 8:30 11:00 11:30 

7:00 7:30 B:OO 8:30 11:00 11:30 10:00 10:30 11:00 

TERMINAL SERVER DEC,IBM,ODP ... OSI TUTORIAL NETWORKS MA61C SESSION 
OYERYIEW COMli.llTMENT 

Nll45 N021 H03~ ND04 

WORD l DOC 
PROC. UPDATE 

COMPOUND DOCUMENTS INOA DJGIHL 'S OFFICl lPC'S JN OFFICE SUTUIS 
ARCHITECTURE 

MESSAGE ROUTER 
APPLICATIONS 

oou 

PERF IN SMALL SUS 
ENVIRONMENT 

om ODU DOU 

SIM'P APPL W/ }ELECT. ORDERING /IMIJEO ETHERNET JYO: REALTIME 
SH.TE TABLE~ INVOICIHG WORKING GROUP 

MT& 
BAUS 8AOJ3 9AD31 NOH Y011 

DEY DISTRIBUTED APPL 

NOH 

YAX SYSTEM MGMT W/6 
li!EETJN6 

nu 

OECALC·PLUS 

A-TO-Z ANO ALUN-1 MULTINUlONAl SrTWR 
P<G SOFT J DIFFERENCE APPL 

8AU21 BAOH 

YAX 81 'O.X/YMS PERF ON NEW 
ARCHITECTURE PROCESSORS 

YIU VUD 

YUSTATION INTERNALS Al WORKING &ROUP 
MEETING 

GOJI vau 

+ INTERNTL 

"" UDO 

YU 81 INTERFACING 

VO: l.llGRATION WORKING 
GROUP 

von 

1DEC ASKS ABOUT TOOLS 

Ylll 

DEC US TRIVIA CONTEST 

Table 5: MONDA Y-righttoppage 

YUH 

SUH 

Figure 30: A R1ghtTopPage Segment 

325 

OU§ l, . .,_ 
SPREADSHEET 
TRANSLATOR 

ODlG OOU 

JUST A 'IU: MODEST l 
PROPOSAL 

"" 

ROOM 

E. Ballrm 
A 

E. Ballrm 
B 

South 411 

South 412 

South 413 

Arena 

Theatre 



in this case, we want to build from the top down. The 
first required argument of the "\parbox" is its width, 
computed by the "\entry" macro to be equal to the 
cell's number of time periods times "\minwidth". 

The second and final argument of "\parbox" is its con­
tents. We have two main tasks, plus a third I'll describe 
afterward. The two main tasks are, first, to set the ses­
sion title properly formatted within the cell, and, sec­
ond, to set the session number in the lower right hand 
corner. For the moment, I'll skip down to the "\rlap" 
instruction, which tells TEX to set the following material 
rightward from its present position, then return to that 
position. The "\rlap" instruction applies to the mate­
rial contained in its argument. That material commences 
with a "\ vbox", a box to be set in a vertical direction, 
rather than in a horizontal, "word by word" mode. 

We start by giving this "\vbox" some dimensions. The 
convention "\vbox to \ht" causes TEX to establish the 
"\ vbox" with a height equal, in this case, to that of a 
parenthesis in the "\TINY" font, represented by "\parn­
box" (the "ht" command, which assigns a height to a 
box, must have another box from which to extract an 
existing height, which is why we defined "\parnbox"). 

Our "\vbox" has a height; now it needs a width. We use 
JEX's "\hsize" command to assign a width, once again 
computed from "\minsize" and argument # 1 of the call 
to "\saagpage" and "\entry". So now we have a box 
whose height is that of a tall character in our font and 
whose width is that of our current table cell. The next 
thing we tell TEX is to typeset argument #3, the session 
title, ragged right. We're doing this inside a "\vbox" 
which is the size of one line of text. The title may well 
require more than one line, but this poses no problem. 
Each subsequent line will keep the same dimensions as 
the first. We don't know how many lines the title will 
take, but we set the session number at the end (invisibly), 
to be sure we've left enough space to do so. 

Next, the "\vss" command does the same thing verti­
cally that "\rlap" did horizontally. We've set at least 
one line inside the "\vbox", but "\vss" tells JEX that 
the vertical space we've used doesn't count, just the 
way "\rlap" says that the horizontal space we've used 
doesn't count. The result is that we've set the title in the 
box but have returned to our starting point horizontally 
and vertically, for our next move. 

Which is to set three empty lines, followed by a fourth 
line on which we set the session number, pushed over to 
the right by "\hf ill". And we've accomplished what we 
set out to do, namely to typeset the session title in the 

326 

cell, and the session number in the lower right corner. As 
a matter of fact, typesetting the session number the way 
we did actually determines where the lower left corner 
will be. By setting three lines of "\null", horizontal 
space, and line break, and then setting the session number 
on the fourth, we define the box as having four lines. The 
title may be shorter than that. If so, one or two lines 
between it and the session number will be blank. If it's 
longer than that, or if there isn't room enough left on 
the fourth line for the session n um her, then an error will 
occur. The session number may be overprinted and the 
title will have to be manually shortened to fit. {The job of 
ensuring that there were no too-long titles in the Dallas 
SAG was done by Brent Lapham in the DECUS Office so 
accurately that not one was present and the Dallas SAG 
was typeset without error on the first attempt.) 

The code "\," typesets a narrow space. We insert it 
here before "\rlap" is encountered and after the session 
number to add a little white space at the edges of the 
cell. 

The command "\ifxld", which stands for "if cancelled", 
is a conditional statement which we define in Figure 32. 
It is a test to see if the word "CANCELLED" should be 
set in our cell. If "\ifxled" has been set to true, then 
the "\xntry" macro is called (with argument #1, from 
which the width of the cell can be computed). "\fi", 
you'll recall, is the ending delimiter for the conditional 
clause. 

Text set inside UTEX's "\parbox" is set in paragraph­
that is, vertical-mode. A paragraph is a vertical stack 
of boxes, each box containing one line; setting something 
in paragraph mode enables TEX to break it into lines. If 
TEX encounters a horizontal box at the beginning of a 
paragraph; it will put it on the next line. Here, "\rlap" 
creates such a box, and TEX would leave an unwanted 
empty line at the top of the cell unless we told it to go into 
horizontal mode by saying "\leavevmode". Once inside 
the "\rlap" box, TEX is again in vertical mode and the 
session title is broken into lines. I must acknowledge the 
great help and advice given me in the definition of this 
macro by Barbara Beeton, the American Mathematical 
Society's TEX wizard. 

"\xntry", in Figure 32, provides a mechanism for can­
celling a session. Recall that this macro was called just 
before we typeset the session title and number in the 

table cell. "\xntry" will, if necessary, typeset ex or 

CXLD or CANCELLED in the cell {depend­
ing on the width of the cell) before the session title and 
number are typeset on top of it. 



conditional? We define here a command ca1led "\can-
eel", and we must tell the input staff that, if a ses­

\nevcommand{\xntry}[1]{\rlap{\vbox to \ht \parnbox sion is cancelled and a rerun of the SAG showing that 
{\vbox to 4\baaelineakip 
{\haize=#1\minvidth\cxfont\vfill\begin{center}% 
\ifcase#1\or CX\or CX\or CXLD\or CXLD% 
\else CANCELLED\f i 
\end{center}\vfill}\vaa}}} 

\nevif\ifxld 

\nevcommand{\cancel}[3]{\global\xldtrue 
\aesaion{#1}{#2}{#3}\global 
\xldfalae\ignoreapaces} 

Figure 32: Cancelled Sessions 

"\xntry" has one argument, the number of time slots. 
We begin this time with "\rlap", which immediately es­
tablishes to point to which TEX will return, horizontally, 
after its work. Next comes the start of a "\ vbox" as be­
fore, with its height set to that of "\parnbox". This time, 
before we set a width, we start a vertical box with a depth 
equal to 4 times the current (established by "\parnbox") 
line height. That's a vertical box the full height of our 
cell, which we create because we want to float something 
vertically to its center. Now we set the width to the cell 
width, with "\minvidth", and invoke the 16-point font, 
which we named earlier as "\cxfont". "\vfill" inserts 
some vertical filler. Next we establish a horizontal cen­
tering environment. 

Now we call 'fEX's case statement with the cell's num­
ber of time slots as its argument. So if we have a 1- or 
2-period cell (a quarter-hour or half-hour session) case 

1 occurs and we typeset C X. If we have a 3- or 4-

period cell, case two holds and we get C X l D. If we 

have anything larger, we can fit the full word CAN­
( Ell ED into it. We leave the horizontal centering 
mode, insert another vertical filler which balances the 
one just above it, centering our work vertically in the 
current 4-line deep "\vbox". Then "\vaa" comes along 
to spring us back up to the top of the outer, "\rlap" ed 
"\ vbox", ready to go back to the job of setting the title 
and session number in the same cell. 

The switch inside the "\entry" macro that brought 
us to the "\xntry" macro was "\ifxld". This, using 
"\newif" is how you define a conditional in 'JEX. 

One last thing remains. How do we turn on the "\ifxld" 

fact is wanted, they must change that session's "\ses­
sion" command to "\cancel". If they do that, then this 
macro is invoked (with the same 3 arguments-number 
of time periods, session number, and session title. The 
first thing "\cancel" does is to use 'fEX's convention to 
set "\ifxld" on by saying ("\global"ly) "\xldtrue". 
Then it issues the "\session" command (which resolves 
to either "\leftsesaion" or "\rightaeaaion"), passing 
its three arguments on, but with the "\ifxld" switch 
turned on, too. Then all the other macros do their work, 
returning here to turn the "\ifxld" switch back off be­
fore closing and going on to the next line in the input 
file. 

Use these examples for your own purposes, if you wish. If 
you need more information about TEX or L\TEX, call the 
TEX Users Group (see Figure 33). Good documentation 
is available. 

327 



JEX USERS GROUP 

• TUG publishes a newsletter containing valuable information on extensions to 'JEX-UTEX, 
AMS'JEX, etc., solutions to typesetting problems, bug fixes, and new developments in typeset­
ting. In addition, it provides information on the latest commercial 'JEX products and services. 

• TUG provides users a way to upgrade skills through seminars and classes for Beginners, In­
termediate, and Advanced 'JEXers. 

• Through its regular meetings and BOFs (Birds of a Feather), TUG brings 'JEX users together 
to communicate on various topics of interest. 

• TUG provides a centra.lized source for all 'JEX and 'JEX-related publications and videos. It 
keeps members informed of new publications and other material of interest, and provides an 
easy way to obtain them. 

• The TUG Membership List includes the names of all members (individuals and institutions). 
Information is provided on users' computer and typesetting equipment to permit easy com­
munication with colleagues. 

• TUG maintains a list of Site Coordinators, specialists in implementations of 'JEX on various 
hardware, who have agreed to assist new users. 

Call or write: 
'JEX USERS GROUP 
Post Office Box 9506 

Providence, Rhode Island 02940 U.S.A. 
( 401 )272-9500 

1 

Figure 33: The TEX Users Group 

328 



The SAG Macros-A Complete listing 

\docwaentatyle{article} 
\pageatyle{empty} 
\textwidth=8.6in 
\topmargin=-1in 

\textheight=10.6in 
\oddaidemargin=-.76in 

I Thia header file is called by symposium.tax, which also calla the aaag 
I input files participating in a production run. Production ia 
I ini ti a tad by the conuna.nd "latex symposium". 

I set separation between table columns and width of gridlines: 

\tabcolsep=lpt \arrayrulawidth=.Bpt 

I define aoaa fonts; TINY will have the parameters of "\tiny" and the face 
I of "\ tphon6": 

\font \aaag=tphonb6 \newconuna.nd{\ TINY}{\ tiny\ aaag} 
\font\eightbf=amaabx8 \font\tenasbf=amasbxlO 
\font\headfont=amaabx12 \font\cxfont=amaabx16 

'l:aake "/" an acceptable hyphenation point: 

\catcode'\/=13\def/{{\char'\/\penaltyO\hakipOpt }} 

lpermit hyphenation of words with uppercase letters 

\uchyph=l 

I These are macros to produce the "clocks" and other labels that are 
'l: part of the head and foot of right and left pages: 

\newdimen\minwidth \minwidth=.23in 
\newdimen\widewidth \widewidth=\lllinwidth 
\advance\widewidth by \arrayrulewidth 

\newconuna.nd{\hour}[l]{l\multicolunm{2}{p{2\minwidth}l}{\clock{#1}}} 
\newconuna.nd{\widehour}[l){l\multicolunm{2}{p{2\widewidth}l}{\clock{#1}}} 
\newcommand{\clock}[l]{\centering \eightbf #1} 
\newconuna.nd{\spacer}{\hapace•{\minwidth}l} 

\newcollllll8nd{\leftclock}{\\\hlinel 
\apacer\1pacer\1pacer\1pacer\1pacer\1pacer\spacer\1pacer\spacer\spacer 
\aulticolunm{8}{1c\}{\rule{Opt}{.8em}\eightbf LUNCH}l\spacer\apacer 
\apacer\apacer\apacer\apacer\apacer\apacer\apacer\hapace•{\ndnwidth}\\ 
\cline{12-19}\parbox{.76in}{\tenaabf \centering ROOM}'l: 
\hour{9:00 9:30}\hour{9:30 10:00}\hour{lO:OO 10:30}\hour{10:30 11:00}1 
\hour{11:00 11:30}\widehour{11:30 12:00}\widehour{12:00 12:30}1 
\widehour{12:30 1:00}\widehour{l:OO 1:30}\hour{1:30 2:00}\hour{2:00 2:30}1 
\hour{2: 30 3: OO}\hour{3: 00 3: 30}\hour{3: 30 4: 00}} 

\newcommand{\rightclock}{\\ \hline 
\apacer\apacer\apacer\apacer\apacer\spacer\apacer\apacer\spacer 
\apacer\apacer\apacer\apacer\apacer\apacer\apacer\spacer\spacer 
\apacer\apacer\apacer\apacer\apacer\spacer\spacer\spacer\spacer\spacer 
\phantom{\eightbf LUNCH}\\ 
\aulticolunm{2}{1p{2\minwidth}l}{\clock{4:00 4:30}}'l: 
\hour{4: 30 6: OO}\hour{6: 00 6: 30}\hour{6: 30 6 :00}\hour{6: 00 6: 30}1 
\hour{6:30 7:00}\hour{7:00 7:30}\hour{7:30 8:00}\hour{B:OO 8:30}1 
\hour{8:30 9:00}\hour{9:00 9:30}\hour{9:30 10:00}\hour{lO:OO 10:30}1 
\hour{10:30 11:00}l\parbox{.76in}{\tenssbf \centering ROOM}} 

'l: Control comae to this macro whenever the \room macro is encountered in 
'l: left-page input. The \\ ends the previous line and the \hline drawe a 
'l: horizontal line acroee all columns. The \multicolulllJI spans just one 
I colu111J1---the "roo11" column, first on the left-hand page---placing a 

329 



% vertical on either aide of it and centering the room n&11.e inaide it. 
% \ignoreapacea prevent• carriage-return• in the input file from be 
% treated aa apace charactera by theae .acroa: 

\newco1U11and{\leftroolll}[1]{\\\hline\multicolu1111 
{1}{1p{.76in}l}{\raiaebox{-2ex}{\parbox 
{.76in}{\tenaabf\centering #1}}}\ignoreapacea} 

% The \roo• .aero occura firat, before the \aeaaiona in the rooa, in the 
% input for both right- and left-hand pagea. On left-hand pagea the roo• 
% naae ia output right away, to be printed at the left of the row. But 
% on right-hand pagea, the room na•e auat be stored and aaved to be 
% printed at the right end of the row, triggered by the NEXT occurrence 
% of the \roo• macro. Control comae here at the beginning of right-page 
% input, the firat tiae the \room macro is encountered; it storea the 
% naae of the firat roo• for later uae by \nextrightroo• at the end of 
% the row. Once thia ia done, \roo• is redirected to \nextrightroom, 
% and \aeaaion and \opentime are aet to handle the first session colu1111 
% on the righthand page: 

\newco1U11and{\firstrightroolll}[1]{\gdef\rooinnaae{#1}\global 
\let\aeaaion=\firstrightaeaaion 

\global\let\opentime=\firstrightopentime 
\global\let\rooa=\nextrightrooa\ignoreapaces} 

% control coaes here each time \room ia encountered, except the firat 
% and laat; output (by calling \rightroom) the rooa name atored 
% earlier, at beginning of row, and aave the next room'• naae. leaet 
% \aeaaion and \opentiae to handle left edge of righthand page: 

\newco11111and{\nextrightrooa}[1]{\rightroom\gdef\roo1111aae{#1}\global 
\let\aeaaion=\firetrightaeasion 
\global\let\opentiae=\firstrightopentiae\ignorespacea} 

% control comea here each time \room ia encountered, except the firat. 
% called fro• \nextrightroom and at the end of file in \rightpage Begina 
% with table-alignment (colu1111 counter) character (l'): 

\newcoaaand{\rightrooa}{l'\multicolu1111{1}{p{.76in}l}{\raiaebox 
{-2ex}{\parbox{.76in}{\tensabf\centering \roo1111aae}}}} 

% uaed if the firat "Hsaion" on the row ia eapty; The llbox 1a 
% neceaaary as the "title" (3rd) argument so as to force the correct 
" width: 

\newco1111U.nd{\firetrightopenti•e}[1]{\firstrightseaaion{#1}% 
{\ }{\makebox[#1\widewidth]{}}\ignoreapacea} 

% Control comea here when the firat \aeasion or \opentiae on each 
% right-page row ia encountered. Thia macro enda the previoua row and 
% drawa a horizontal line, then drawe the left hand vertical, then 
% reaeta \aeaaion and \opentiae to uae the generic veraiona of theae 
% macroa, \leftaeaaion and \leftopentiae, which are alao uaed on the 
% lefthand page. Each quarter-hour time-alot ia .23in -C\ainwidth) 
% wide. #1 of \aeasion ia the nulllber of quarter-hour perioda the aeaaion 
% requirea, 10 #1\widewidth aeta the correct \parbox width for thia 
% aeaaion. \entry formata the cell contents. The \\\hline at the 
% beginning of \firstrightaeaaion cauB11 10111e extra vertical linea to be 
% drawn for partial pages, which are removed in the atripping proceaa. 

\newcoaaand{\firatrightaeaaion}[3]{\\\hline 
\aulticolu1111{#1}{1p{#1\widewidth}l}{\entry{#1}{#2}{#3}}\global 
\let\aeaaion=\leftaeaeion 
\global\let\opentime=\leftopentiae\ignorespacea} 

% \leftaeeaion and \leftopenti111e are the generic aeaaion and 
% eapty-aession macros uaed by both right- and left-hand pagea. They 
% inaert a vertical only at the right edge of each colullll. 

330 



\newco11J11a.11d{\left1es1ion}[3]{t\aulticolu1111 
{#1}{p{#1\widawidth}l}{\antry{#1}{#2}{#3}}\ignoraapacea} 

\newcoaaand{\laftopentiae}[1]{t\aulticoluan{#1}{p{#1\widawidth}l}i 
{\aakebox[#1\widewidth]{}}\ignoreepacae} 

i The entry aacro foraata the contents of each call. \parenbox holds the height 
l of a () in the tphon font. \widewidth is the width of one quarter-hour 
l tiaa-alot plus the width of a vertical rule. The \vbox in \entry aeta the 
i ae11ion title (#3), leaving apace for the aeaaion nuaber (#2). Titles have to 
l fit on three linea, plua no aore of a fourth than will not overlap the session 
l nuaber. If a title is too long, it aust be edited and reinput. \vss after 
l the \parenbox height of () allowa subsequent linea to be set vertically below 
l the first without error, beyond the bottoa of the box. \rlap sate the \vbox 
l rightward fro• the left edge of the \parbox. The \parbox contents after the 
l \vbox right justify the session nuaber on the fourth line. 

\newbox\parenbox \aetbox\parenbox=\hbox{\TINY\phantom{()}} 

\newcoaaand{\entry}[3]{\TINY \parbox[t]{#1\widewidth}{\leaveV111ode 
\,\ifxld\xntry{#1}\fi 
\rlap{\vbox to \ht\parenbox{\haize=#1\widewidth 
\raggedright #3\ \phantoa{#2}\vas}}\null\hfil\break 
\null\hfil\break 
\null\hfil\break 
\null\hfill #2\,}} 

\newco111111And{\xntry}[l]{\rlap{\vbox to \ht\parenbox{\vbox to 4\baselineakipi 
{\hsize=#1\widewidth\cxfont\vfill\begin{center}i 
\ifcase#1\or CX\or CX\or CXLD\or CXLD \else CANCELLED\fi\end{center}l 
\vfill}\vu}}} 

l The \cancel co111111And acts identically to the \se11ion co111111And, except 
l that it sets to true the "ifxld" condition, which in turn trips a call 
l froa the \entry .aero to \xntry, overwriting the session with a 
l "cancelled" indicator: 

\newif\ifxld 

\newco111111And{\cancel}[3]{\global\xldtrue\1e1aion{#1}{#2}{#3}\global 
\xldfalae\ignorespacea} 

l The \aaagpage 111acro identifies an input file, and auat be the first line 
l in that file. #1 is the name of the day; #2 identifies the page segment, 
l #3 is the season (Spring, Fall), and #4 the year. The page segaent 
l identifier names a aacro which ia called to sat the proper page aegaent. 
l \tabnaae creates a label for the output identifying the page segment: 

\newcoaaand{\saagpage}[4]{\gdef\eaagday{\uppercaae{#1}}\gdef 
\aeeting{\uppercaae{#S #4} }\canaae #2\endcsnaae 
\gdef\tabnaaa{\upparcasa{#l}--#2}\ignoraapacaa} 

l The next 4 aacroa represent the 4 possible left-hand page segments: 
l full, top, canter, or bot. Each calla an appropriate start-up aacro 
l for its aagaant type, and aats \andaaagpaga (which auet be the last 
l line of any input file) to an appropriate aeaning: 

\nawcoaaand{\laftfullpage}{\openleftpage 
\global\let\endaaagpage=\cloaeleftpage} 

\newcoaaand{\lafttoppaga}{\openleftpage 
\global\let\endsaagpaga=\finiahpage} 

\newcoaaand{\laftcantarpage}{\leftpageinit 
\leftclock\global\let\endaaagpage=\finiahpage} 

\newconunand{\laftbotpage}{\leftpageinit 

331 



\global\let\endsaagpage=\closeleftpage} 

i \openleftpage begins a left-hand page by creating all its headers, 
i including the "clock". 

\newco111U.nd{\openleftpage}{\leftpageinit\hline 
\aulticolumn{29}{1cl}{\headfont\rule[-.4ell]{Opt}{1.6ell}\hspace•{2ea} 

\aaagday \hfill\aeeting\ DECUS U.S. SYNPOSIUM\hspace•{2ell}\null} 
\lettclock} 

i \leftpageinit 1et1 the aeaning of the input file aacros appropriately 
i for a left-hand page, and initializes the table and tabular 
i enviro1111entl: 

\newco111aand{\leftpageinit}{\global\let\rooa=\leftrooa 
\global\let\aeaaion=\left1ea1ion 
\global\let\opantiae=\leftopentiaa 
\begin{table}\begin{tabular}{lp{.76in}l•{28}{p{\ndnwidth}I}}} 

i \cloaeldtpage nta the lett "clock" at the botto11 of the page and 
i COlllJ>letes the page with \finiahpage: 

\newcoaaand{\cloaeleftpage}{\leftclock\finiahpage} 

(· i The following uriea of right-page macros parallel the above nriea of 
i left-page aacroa: 

\newcoamand{\rightfullpage}{\openrightpaga 
\global\let\endsaagpage=\closerightpage} 

\nawconuaand{\righttoppage}{\openrightpage 
\global\let\endaaagpage=\finishrightpaga} 

\nawcoamand{\rightcentarpaga}{\rightpageinit 
\rightclock\global\lat\endaaagpage=\finiahrightpage} 

\newco....nd{\rightbotpage}{\rightpageinit 
\global\let\endaaagpage=\cloaerightpage} 

\newconuu.nd{\openrightpage}{\rightpageinit\hline 
\aulticolumn{29}{1cl}{\headfont \rula[-.4ell]{Opt}{1.6ea} 
\hapace•{2ea} SESSIONS-AT-A-GLANCE \hfill \aaagday \hspace•{2ell}\null} 
\right clock} 

\newcoamand{\rightpagainit}{\global\let\rooa=\firatrightroo11 
\begin{table}\begin{tabular}{l•{28}{p{\lllinwidth}l}p{.76in}I}} 

\newco111111and{\clo1erightpage}{\rightroo11\rightclock\finiahpage} 

\newco....nd{\f iniahrightpage}{\rightrooa\f inishpage} 

i Finiah table and enviro1111enta, end page, reaet soae values: 

\newco111U.nd{\finiahpage}{\\\hline\end{tabular}i 
\caption{\tabna11e}\end{table}\clearpage 
\gdef\eaagday{\null}\gdef\aeeting{\null}} 

332 



C PROGRAM PORTABILITY 

Michael Tilson 

Human Computing Resources Corp. 
I 0 St. Mary Street 

Toronto, Canada M4Y IP9 

416-922-1937 
{ decvax ,utzoo, ... } !hcr!hcradm!mike 

ABSTRACT 

This anicle discusses aspects of C program portability. Using exampll's, it is intended 
to illustrate aspects of the C language that are imponani [or portahili1y and which arc 
easy to overlook ir all or one's programming is con[ined 10 a VAX. 

(Earlier versions of this paper have been published pre\'iously. For the DECl1S 
Proceedings, some of the examples have been updated and other rl'visions have been 
made.) 

Imagine 1ha1 you have just received a big program from your friend at X 
L:niversity. The program is written in C, and runs on your friend's UNIX 
system. You also have C and UNIX, so you expect to have no problems, 
although you do n•call that your friend uses a different brand of computer. 
You read the program off tape with no problem, and compile the program 
"ith no error messages. Then you run the program, and get this message: 

Segmentation violation - core dumped 

This isn't the desired result! 

C LANGUAGE PORTABILITY 

This article focuses on machine-independent coding in the C program­
ming language, illustrated by examples. All of the examples have arisen 
in practice. However, it does not cover a number of related issues, such 
as portable I ibrary routines, operating system interface, or the command 
interface, although these are also very important. This article assumes a 
working knowledge of the C programming language, and focuses on some 
or the less obvious portability problems. 

Why do we want portability? Computers are becoming a commodity. 
When you buy a computer, you want to ask a few questions: Does it run 
UNIX? (Or your favorite generic portable system.) I-:low fast is it? How 
reliable is it? How big a program can you run? How much does it cost? 
You don't really want to ask very many other questions. In particular, 
you don't want to be forced to continue to buy from the same vendor if 
another computer is faster and cheaper. We want to reuse our software 
without any conversion cost. I might also add that portable software tends 
to be more reliable, since it tends to be less "dirty", and uses fewer "tricks". 

At my company, we have a strong commercial interest in portability. Por­
tability is important to many other software companies. As an example, 
in our case we have supported or developed UNIX versions for the PDP-
1 I, the VAX, the VAX under VMS, the Prime 50 Series, the Control Data 
Cyber I 80, the National 32000 and Motorola 68000 microprocessors, the 
PERQ workstation, the Computer Automation 4/95, and several other 
machines "" can't talk about. We have also worked with UNIX on 
'l'\'eral other processors, such as the 8086 and Z8000. We sell UNIX 
software products on these and other machines. We estimate that non­
ponable software has cost us well over $ !00,000 in the last year. (The 
first version or this article was written several years ago, but the number 
never seems to go down.) 

LEYELS OF PORT ABILITY 

There are two possible kinds of portability. The [irst level of portability 
produces programs which are comple!C'ly machine independent, com­
pletely type safe and size safe. The second kind of portability involves 
portability of resulting binary file' from one "reasonable" machine to 
another, [or example rel\\ een machines which ha\e 8 bit characters, 16 
bit short integPrs. and 32 bit long integers. For example, you might have a 

Proceedings of the Digital Equipment Computer Users Society 

333 

C cross compiler ror the Intel 8086 which initially ran on a PDP-I I, got 
moved to a \'AX, and then got moved to the 8086 itselL This kind of pro­
gram may not be [ully portable (since it generates machine code), but can 
still he made easy to move over an important class or machines. 

PORT ABILITY PROBLEMS I~ C 

C is not a sare language. The original Kernighan and Ritchie re[erence 
book The C Proi:rammin!( LaD!(llU!(e d<·scribe~ a number of portability 
problems. To a\oid portability problem;. you must be familiar with all of 
the footnotes in that hook. Once the ..\NSI X3J 11 C standard is published, 
a more complet<' reference will he available>, but the "footnotes" will be 
just as imponant. 

Problems commonly arise from the careless use of pointers and the 
mismarching of types, from assumptiom about the sizes (in bits) of various 
types, and from alignment assumptions (such as the order of chars within 
a short int.) Type casts and the UNIX "lint" program checker don't solve 
all prohlems. Type casting can make lint shut up without solving the por­
tability problem. There is no substitute for getting it right. 

C has been described as a "high level assembler". While this is an exag· 
geration, it is true than many C programmers visualize the resulting com· 
piled code as they write C programs. This may result in greater efficiency 
on some machines, but it does not make for portable software. 

EXAMPLES 

The remainder of the article will focus on actual programming examples 
which have arisen in HCR's work. This is not an exhaustive list of what 
can go wrong, but rather an illustration of the care which you must take 
when writing portable programs. I should add that many of the examples 
are "lintable", at least with the default level of checking provided by some 
versions of lint. (Newer versions will catch more of the errors shown 
here.) In the following examples, you will see calls to "abort". On the 
machines most people are used to, "abort" will not be called. However, for 
each example there are machines for which the "abort" call will happen. 

Example I: 

int *p; 
char *q, *q2; 

q2 = q; 
p = (int *)q; 
q = (char *)p; 
if(q != q2) 
abortO; 

Dallas Texas- 1986 



The above can fail because there is no guarantee that the conversion of a 
pointer from "char *" to "int *" will preserve all of the bits of precision if 
the "char*" had n01 already been aligned to an "int" boundary. The above 
works on the VAX, PDP-11, and most other machines, but will fail on on 
a number of other (typically word-addressed) machines. This kind of type 
mismatch is common in UNIX software. 

Example 2: 

int *p; 
char *q; 
int arr[SO]; 

p = &arr[20]; 
q = (char*) &arr[O]; 
q++; 
if(p < (int *)q) 

abort(); 

How can this fail? Variahle p is clearly al a higher memory address than 
q. No it isn't. The q+ + could produce an internal bit representation 
which, if considered as an "int *"quantity, would look like a word pointer 
at a larger memory address. This example is adapted from the UNIX 
shell command interpreter, and we first saw it on the CA 4/95. 

Example 3: 

in1 *a. *b; 

a = {int *)sbrk(O); 
b =a; 
b--; 
if(a < b) 

abort(); 

What could he wrong with this? On a segmented architecture, the UNIX 
memory allocator sbrk might return an address at the start of a memory 
segment. Pointer arithmetic is only valid if the pointers remain within a 
known contiguous and properly aligned storage structure. The b-- could 
wrap around to the high end of a memory segment. This example comes 
from a version of the UNIX text editor. 

Example 4: 

execl("/bin/echo", "echo", "hello", 0 ); 

This error is from many versions of the UNIX Programmer's Manual. 
The execl system call takes a list of character strings, terminated by a null 
pointer. The constant "O" is guaranteed to be a valid null pointer if used 
in an expression. However, C does no type checking across function 
calls. On a machine with 32 bit pointers and 16 bit integers, the above 
could cause trouble. It would be better to use: 

execl("/bin/echo", "echo", "hello", (char *)0 ); 

Note that on the popular Intel 8086 architecture, it makes good sense to 
implement 16-bit integers and 32-bit pointers. 

Example 5: 

char *p = (char *) O; 

if( *p != 0) 
abortO; 

This is another common problem with "null" pointers. The pointer p is a 
null pointer. It is not valid to assume that a null pointer in turn points to 
a 1cm quantity, although this happens to work on many UNIX implemen­
tations. In fact, the VAX and PDP-I I implementations go out of their 
way to make this work. But this is highly non-portable, and will cause no 
end of trouble on other architectures. 

Example 6: 

int x; 

x = 70000; 
if(x != 70000) 

abort(); 

This is simple. The above works on a VAX, but n01 on the PDP-11, 
hecause the number 70000 fits in an "int" on the VAX, but not on the 11. 

334 

Moral: always explicitly specify "long" if a number is going 10 be larger 
than somewhat. (A reasonable "somewhat" is 32767.) 

Example 7: 

char *p, *q; 
int n; 

n = (int)p; 
q = (char *)n; 
if(p != q) 

abort(); 

The C language guarantees that there is a large enough int to hold the bi1 
representation of a pointer. However, on a machine with 32 bit poin1ers 
and 16 bit inrs, the ahoH' "ill fail hecause the conversion 10 int will over­
flow. Conversion 10 anything other than "long" is n01 portable. (By the 
way, conversion of pointers to integers is in general a bad idea, and is 
always non-portable if the value of the "int" is ever examined. The onlv 
safe thing to do is convert back to the same kind of pointer.) · 

Example 8: 

[Assume this is running on a machine with a large (e.g. megabytes), con­
tiguous. uniform address space.] 

char *p, *q; 
long int n; 

n = O; 
q = p; 
for(i=O; i<S; i++) { 

q += 32000; 
n + = 32000; 

} 
if((q-p) != n) 

abort(); 

The subtraction of two pointers is defined by the manual 10 yield "in!'', and 
no1 necessarily "long int". Once again, int might no1 be large enough to 
hold 1he difference. This might be an unfortuna1e restriction in some C 
compiler, but it is dictated by the current C definition. 

Example 9: 

struct { 
short int a_magic; 
long int a_text; 
long int a_data; 

} header; 

(void) write(f, (char *)&header, sizeof header); 

What could be wrong with tha1? Everything is nicely type cast, and even 
the re1urn value from write is fas1idiously voided. The problem is 1ha1 a 
binary s1ruc1ure is being communicated to the outside world via the UNIX 
write sys1em call. This always indicates a possible portability problem, 
since the resulting file can'1 be moved from machine to machine. Increas­
ingly. we will see networks of dissimilar UNIX machines, but with 
network-wide file systems. One should be careful about producing binary 
files, and one should never assume that they will be portable. 

Example IO: 

long im n; 
printf(""lod\n", n); 

This example is the bane of everyone who has ever had 10 move programs 
from the VAX to the PDP-I I. The ""lod" prints an "int", which on the 
VAX is 1he same as "long int", hut n01 on the PDP-I I. This is an example 
of the more general case of function argument mismatch, but one which is 
no1 checked by "linl'' (although i1 really should be.) 

Example 11: 

double x = l .234e30; 
printf(""lod\n", x); 

This is an example of a common programming error. A similar example 
was used in a Ycry glossy advenising brochure sen1 out by a company pro­
m01ing its C !raining courses. It looks like the programmer wanted 10 



print the number as decimal digits truncated or rounded to an integer. 
The fix proposed by the glossy brochure was as follows: 

printf(""!od\n", (int)x ); 

On the VAX, the above "fix" prints "O", rather than the correct number. 
On other machines, an overflow exception might be generated. This is an 
example of throwing in a type cast to patch a problem, rather than getting 
it right. Here a type cast was used to try an correct a datatype mismatch 
error. In other cases casts are used to remove portability problems. In all 
cases there is no substitute for simply making things match up correctly in 
the first place. Here is a much better solution: 

printf("OJo.Of\n'', x); 

which prints a floating point number correctly rounded to the nearest 
integer. 

Example 12: 

unsigned char c; 

c = 'O' - I; /* the character before 'O' •I 
if( (c - '0') < 9 ) 

abort(); /* called only if "c" is a digit •I 

This example is supposed to check whether c is in the range 'O' to '9'. 
With many UNIX compilers, this works because c is unsigned. If c is 
greater than '9', everything works as you might expect. If c is less than 
'9', you get a negative number. However, because the variable is 
"unsigned", the entire expression is taken as unsigned, and the negative 
number is taken to be a very large positive number. This is an old assem­
oly programmer's trick to check both ends of a 0-based range in one 
operation. 

However, some compilers use "value-preserving" rules. Under such rules, 
c would be widened ro the next larger "int" big enough to hold all possible 
values of c, and the conversion to unsigned would never occur. In 
general. 11 1s bad to rely upon the esoteric details of automatic type 
conversion in an expression. A better solution would be: 

if( (unsigned)(c - '0') < 9 ) 
abort(); 

Of course, you could forger trickery altogether and use something like: 

if( isdigit(c) ) 
abort(); 

Example 13: 

char *filt'name: 
filename = mktemp("/tmpiaXXXXXX"); 

This i~ an example that is straight from the UNIX reference manuals, and 
seemingly confirmed hy the AT &1 System V Interface Definition. Surely 
it can't be a problem? Well it is. The mktemp routine modifies its argu­
ment string. If you want to be portable, you should not assume that string 
constants ("/rmp/aXXXXXX") can be modified. A be11er solution would 
be: 

char filestr[80]; 
char *filename; 

filename = mktemp(strcopy(filesrr, "/tmp/aXXXXXX")); 

This solution also has the advantage that the code can be executed more 
than once, since the string constant hasn't been destroyed. 

335 

Example 14: 

to = bp->b_ptr: 
asm("movc3 r8,(r 11 ),(r7)"); 
bp->b_ptr + = put; 

This bit of program was supplit>d by a certain educational institution 
which is well known for its extensive UNIX modifications. This program 
fragment illustrates the extreme case of non-portability. "Asm" is a key­
word in the UNIX "portable" C compiler. It causes the string argument to 
be emitted into the assembly source which results from compiling the pro­
gram. In this example, thcrt> is no comment to say what is going on. The 
programmer knows what C variables are in particular registers. {The 
variable "to" is one of the registers used in this VAX assembly instruction. 
You guess which.) 

If you feel you must write such "efficient" code, at least write it a bit more 
cleanly: 

#ifdef vax_with_certain_compiler _version 

asm("movc3 r8,(rl l),(r7)"); 
#else 

--- insert portable C equivalent here ---
#endif 

Example 15: 

int TheQuickBrownFox; 
int TheQuickGreyFox; 

This causes no end of trouble when moving code from VAX UNIX sys­
tems (which typically allow rhis) to other systems, which sometimes don't. 
While meaningful variable names are laudable, names which are not 
unique in the first seven characters are not portable to other UNIX sys­
tems. (On non-UNIX systems, you might even be restricted to six charac­
ters.) With a little thought, you can always choose nice names which are 
also portable: 

int TheBrownQuickFox; 
int TheGreyQuickFox; 

CONCLUSION 

These examp!es are only an indication of the kinds of portability problems 
are often found in real C programs. You can avoid problems by viewing 
the machine as an abstract entity, and not making assumptions that 
depend upon actual bit representations. With a little bit of care, your 
software will be usable on a wide range of machines. If your software is 
worth using more than once, than it should be portable, since it's worth 
using on more than one machine. 









1.0 INTRODUCTION 

A HIGH SPEED LOCAL AREA COMPUTER NETWORK ACROSS 
THE GODDARD SPACE FLIGHT CENTER 

James P. Gary 
Kenneth E. Lehtonen 

Wi 11 iam H. Mish 

Space and Earth Sciences Directorate 
NASA Goddard Space Flight Center 

Greenbelt, Maryland 20771 

Edward D. Rothe 
Michael C. Spinolo 

Marc Peters 

Mission Operations and Data Systems Directorate 
NASA Goddard Space Flight Center 

Greenbelt, Maryland 20771 

ABSTRACT 

This paper describes a high speed, hybrid baseband/broadband 
local area communications network used primarily for 
heterogeneous computer-to-computer networking now operating 
at the NASA Goddard Space Flight Center. This network uses 
separate Ethernet/IEEE 802.3 baseband segments for 
interconnecting computers within each of approximately 20 
major GSFC buildings. These buildings are typically 
separated from one another by distances of 100 to 1000 meters. 
High speed inter-building communications are provided via a 
CCTV/CATV industry standard digital broadband subsystem using 
standard 6 mhz frequency channels. Data I ink layer bridging 
between the baseband and broadband local area network 
technologies is provided via Appl itek Corp. NilO/E Ethernet 
Bridges located in each building. 

This Center-wide network concurrently and transparently 
supports the high level host-to-host network protocols 
DECnet, XNS, and TCP/IP on Ethernet. Packets are encapsulated 
within Appl itek's UniLINK slotted time division multiple 
access message format for broadband transmissions. Nodes 
presently functioning on the network include various DEC 
superminicomputers, an IBM 3081, numerous IBM PC'S, and 
various vendor's Unix work stations. The IBM 3081 mainframe 
is interfaced to the high speed network via an Inter I ink 
IBMmvs/DECnet Gateway that al lows the IBM 3081 to participate 
as a peer node within a DECnet network. The local network 
includes interfaces with the ARPAnet and other wide area 
networks. 

This paper includes a description of the local network's 
design rationale, and an indication of throughput performance 
results derived from various memory-to-memory and disk-to-disk 
data transfer tests conducted simultaneously among multiple 
pairs of the end user computer nodes. 

The Goddard Space FI i ght Center (GSFC) is a major 
center of the National Aeronautics and Space 
Administration (NASA) with responsibi I ities in 
advancing space and Earth science research and in 
developing and managing a complex set of technical 
resources to enable effective analysis of space­
based observations. The main portion of the GSFC 
is located in Greenbelt, Maryland on a 550 acre 
campus with over 30 major buildings (see Figure 1) 

housing approximately 6000 011-site civil servant and 
contractor scientists and engineers. The GSFC is 
organizationally structured primarily according to 
special scientific and engineering disciplines, but 
there are also formal organizations for projects and 
extensive formal and informal matrix management. 

Because of the complexity of its numerous scientific 
and engineering research activities, the GSFC 
already has substantial existing computing resources 
installed at its Greenbelt site and is continuously 

Proceedings of the Digital Equipment Computer Users Society Dallas Texas· 1986 

339 



augmenting these capabi I ities to meet new 
requirements. A partial list of the present, 
locally installed, major computer-related resources 
which are applied only in the space and Earth 
science research program (not included in this 
network are the extensive systems primarily 
providing in-I ine operational support for flight 
missions) includes: 

o High speed computation: 1 CDC CYBER 205; 1 IBM 
3081-K; 1 Amdahl 470 V/6-II; 1 Amdahl 470 V/7B; a 
number of commercially available minicomputer­
attached array processors such as the FPS 180V; and 
a specially designed attached array unit with 128 x 
128 processing element;. 

o Interactive data analysis including advanced 
image processing and display: 2 DEC VAX 8600/8650s; 
about 50 DEC VAX-11/780s, 750s, and MicroVAXs; and 
about 20 other superminis and user workstations from 
HP, SUN, Masscomp, etc.; 

o On-I ine mass storage: IBM 3850 (220 gbytes); 
Masstor M860 (110 gbytes); Shugart Optimem 1000 
optical disk (2 gbytes); plus active magnetic tape 
libraries with several tens of thousands of tape 
reels. 

These systems are variously configured, are mostly 
located in different buildings from one another, 
and are frequently under the management cognizance 
of different organizations internal to the GSFC. 

The need for an integrated communications network to 
support the local networking of these computers had 
been developing at GSFC for several years. Such 
needs at GSFC had in the past been partially 
satisfied, as at other sites, by point-to-point 
links of various kinds, usually using coaxial cable 
or twisted pair wiring. With the inherent 
limitations of such methods becoming an increasing 
liabi I ity with the number of potential nodes, 
alternative networking topologies and technologies 
were needed. The present GSFC local area computer 
network (LACN) developed out of an extensive series 
of studies (Berman, 1982; Rebibo, 1982· Lehtonen 
1983; Mish, 1983) and subsequent discusslons focused 
on providing a packet oriented multiple access bus 
to transparently support higher layer peer-to-peer 
computer networking protocols among various 
computers throughout the GSFC, to do so at 
relatively low cost, and to provide throughput 
performance at least as good as point-to-point 
techniques. GSFC also undertook the implementation 
of the GSFC LACN to further enhance the 
productivity of the scientific and engineering users 
of GSFC's presently installed computers and to 
enable more flexible options in planning for the 
acquisition of additional computer systems 
capabilities (Gary and Rothe, 1985; Hal em et al., 
1985). --

Concurrent with the ongoing implementation of the 
high speed GSFC LACN, GSFC has planned to install a 
digital PABX to replace the existing voice telephone 
exchange and to satisfy a significant amount of 
Center-wide terminal-to-host connectivity. A Rolm 
CBX-II has been procured for this purpose and "cut 
in" use of the CBX-II is planned to start in May 
1986. While the CBX-II is expected to handle al I 
voice communications in a non-blocking mode, data 
transfers through the CBX-II wil I be limited to a 
maximum of 19.2 kbps asynchronous and 56 kbps 
synchronous communications. The computer network 

340 

which is the focus of this paper is targeted at 
higher speed host-to-host communications 
requirements which cannot be met through the use of 
the CBX-II. 

This paper provides a description of the overal I 
design and present state of GSFC's LACN, and is 
organized as follows: 

Section 2 summarizes the network design objectives 
while Section 3 overviews elements of the design 
itself. Sections 4 and 5 provide more descriptive 
information about GSFC's use of the relatively new 
NilO/E Ethernet Bridge and IBMmvs/DECnet Gateway 
products from Appl itek Corporation, Inc. and 
Inter I ink Computer Sciences, Inc., respectively. 
Section 6 overviews the present network 
configuration. Section 7 presents both the results 
compiled to date and a description of the benchmark 
tests planned for assessing communications subnet 
and end-to-end computer network throughput 
performance in various types of computer-to-computer 
data communications situations. Section 8 contains 
a brief indication of some fol low-on GSFC LACN 
plans. 

2.0 NETWORK DESIGN OBJECTIVES 

The design of GSFC's LACN has taken numerous 
interrelated objectives into consideration. A 
brief description of the key objectives is provided 
in the following subsections. 

2.1 End Usage 

The general goal of GSFC's LACN is to provide 
integrated, low cost, high speed 
intercommunications among a heterogenous set of 
scientific computers, peripherals, and 
terminal/workstations at GSFC and to provide 
suitable interfaces for links to remote hosts and 
other networks such as the ARPAnet and NASA's Space 
Physics Analysis Network (SPAN) (Green and Peters, 
1985). GSFC scientific users frequently use a 
local VAX or advanced user workstation to 
interactively display data and extract information 
parameters; however, they also need high speed 
access to GSFC's large mainframes for production 
data processing of large data bases and computing 
numerical models of the physical phenomena being 
studied. Powerful desktop image display 
capabi Ii ties are also beginning to be acquired for 
local image processing. These image display 
workstations need high speed access to the larger 
superminis and mainframes to share resources such as 
database files, disk space, high speed 
printer/plotters, tape drives, and array processors. 
The intent of GSFC's high speed LACN is to 
substantially increase the productivity of the users 
of the separate computer systems by improving the 
users' access to all computer resources through a 
high performance interconnection of the individual 
computers. 

A partial list of the initial set of major computers 
to be interconnected via the high speed GSFC LACN is 
shown in Figure 2. This list also identifies the 
GSFC internal discipline-oriented organizations 
responsible for managing these computers and the 
separate GSFC locations where these computers are 
presently installed. In addition to this initial 
set of computers, about 50 others are planned to be 
added to the high speed GSFC LACN by the end of 
1986. Additionally, many smaller personal computers 



(PCs), advanced user workstations, and terminal 
servers have already interfaced to the GSFC LACN and 
many more are also planned. 

2.2 Network Functionality and Performance 
Requirements 

2.2.1 High Speed Communications Subnet Connectivity 
and Expansion 

One requirement of GSFC's LACN has been a 
communications subnet which enables relatively 
simple high speed connectivity among al I of the 
various types of computers whose managers' chose to 
participate in the network. Additionally, the 
communications subnet is required to support several 
higher layer communications protocols, such as 
Digital Equipment Corporation (DEC) 's DECnet Phase 
IV, the ARPAnet-related Transmission Control 
Protocol/Internet Protocol (TCP/IP) set, and Xerox's 
XNS protocols, to enable the ful I range of network 
application services needed by GSFC's end users. 
Furthermore, the communications subnet's design and 
implementation have had to anticipate and easily 
al low for substantial connectivity growth, i.e., the 
addition of many new computers, without changing 
the overall architectural design initially 
i nsta I led. 

2.2.2 Network Applications Support 

General applications to be enabled by GSFC's LACN 
have included inter-computer file transfer, remote 
batch job submission, electronic mail, remote logons 
or virtual terminal support, and in some cases 
task-to-task communications. Also, ideally, the 
user interface for use of the network-wide 
applications services has needed to be closely 
compatible with the operating system command syntax 
of the host systems with which users were already 
fami I iar or had to be very easy to learn. 
Unfortunately, at present, no single set of 
application interconnection protocols has existed to 
satisfactorily accomplish al I of these ultimate 
goals among the ful I heterogenous mix of computer 
systems needing to be networked at GSFC. Hence, for 
the present, GSFC has planned to concurrently 
support a I imited number of vendor dependent and 
independent network protocols among overlapping key 
subsets of GSFC's local computer systems. 

Since a large fraction of GSFC's local computers was 
built by DEC, support of DECnet has been an early 
implementation requirement for GSFC's LACN. 
Furthermore, to faci I itate DECnet-based users' 
access to the mainframe computers of the NSESCC (see 
Figure 2), another major requirement has ~e~n the 
installation of a high speed gateway capab1I1ty to 
enable a substantial subset of DECnet's network 
services to be exercised with NSESCC's IBM 3081 
virtually functioning as a normal DECnet node/host 
(Mish et al., 1985). Specific network/user services 
required include: 

0 

0 

0 

DECnet-based user initiation of a file transfer 
to/from the IBM 3081; 

IBM 3081-based user initiation of a file transfer 
to/from a DEC host; 

automatic data format conversion of I*2, I*4, 
R*4, R*8 and character data files between a DEC 
host and the IBM 3081; 

341 

o DECnet-based user initiation of a batch job 
submission to the IBM 3081; 

o IBM 3081-based user initiation of a batch job 
submission to a DEC host; and 

o a rudimentary mai I faci I ity between a DEC host 
and the IBM 3081. 

DECnet-based user access to NSESCC's CYBER 205 and 
Amdahls is also required, but initially wi I I be 
enabled indirectly and transparently through 
NSESCC's IBM 3081 via inter-mainframe data 
communications I inks using IBM's RSCS and NJE 
protocols across multiple intra-NSESCC channel-to­
channel adaptors and 19.2 kbps and higher point-to­
point I ines. 

Before the rapid emergence of advanced user 
workstation capabilities, only a few isolated Unix­
based workstations existed at GSFC. Recently, 
however, broad interest has developed both for 
ARPAnet access and for local computer network 
applications support performed under control of the 
TCP/IP set. The minimum set of TCP/IP and related 
network app Ii cation services required to be 
supported by GSFC's LACN include: 

0 Internet Protocol (IP) MIL-STD-1777; 

0 Transmission Control Protocol(TCP) MIL-STD-1778; 

0 File Transfer Protocol (FTP) MIL-STD-1780; 

0 Simple Mail Transfer Protocol (SMTP) MIL-STD-1781; 

0 Telnet Protocol and Options (TELNET) MIL-STD-1782. 

2.2.3 Summary Throughput Performance Requirements 

The bandwidth requirements of GSFC's LACN vary 
largely depending on the end user applications. In 
general, however, the network has had immediate 
needs to enable end-to-end, disk-to-disk data 
transfers between interconnected VAX-class hosts at 
rates in the range of 250 kbps to several megabits 
per second. Furthermore, ten or more concurrent 
transfers at these rates need to be supported by the 
communications subnet. Also, three or more 
concurrent transfers at these rates need to be 
supported individually by each host's high speed 
interface with the communications subnet. 

2.3 Architectural Development Guidelines 

Design, engineering, and implementation requirements 
of GSFC's LACN are described below. In general, 
these requirements have included compatibi I ity with 
appropriate international, national, and industry 
standards and the planned use of easy-to-extend off­
the-shelf technologies rather than the in-house 
development and installation of special purpose 
solutions. 

2.3.1 ISO OSI Reference Model 

General compliance with the International Standards 
Organization (ISO) reference model for Open Systems 
Interconnection (OSI) has been a design guide I ine 
for GSFC's LACN. 



2.3.2 IEEE 802 Local Area Network (LAN) Standards 

Institute of Electrical and Electronics Engineers 
(IEEE) standards have been used whenever possible 
(The Ethernet, 1982; IEEE 802, 1984). Howev.er, 
considerations of the need for a low cost solution, 
relatively large local area distances to be 
covered, and on-shelf avai labi I ity of suitable 
computer interfaces and communications software to 
support high speed end user applications across a 
network of non-homogeneous computers have prevented 
the simple identification and selection of a single 
standard technology or single vendor product line in 
meeting al I of GSFC's requirements. 

Ethernet/IEEE 802.3 technologies have been preferred 
in implementing intra-bui I ding networks. This 
technology is a widely accepted communications 
medium and data link protocol for providing high 
speed data exchange among computers and other 
digital devices located within a moderately-sized 
geographic area. This technology uses commonly 
available coaxial or fiber optic cables and a data 
link protocol referred to as carrier sensed multiple 
access with collision detection (CSMA/CD). This 
technology has the advantage that it is relatively 
I ow cost to acquire and i nsta I I, it is very 
reliable, and a large number of computer system 
suppliers have provided a wide range of devices that 
support it. Unfortunately, its design I imitations 
inc I ude a maxi mum tota I I ength among the I ongest 
path of 2800 meters achievable when using fiber 
optic cables between repeaters and counting 
transceiver cable lengths. 

A broadband LAN, similar to IEEE 802.4 token bus or 
802.5 token ring standards and based on Community 
Antenna Television (CATV) component technologies, 
could easily meet GSFC's LACN distance requirements 
and potentially could take advantage of an 
extensive already-underground coaxial cable plant at 
GSFC which had been used previously only for closed 
circuit television (CCTV). This cable plant, 
representing an investment of approximately $1M, 
includes cables extending from bui I ding 8 into 
nearly every other building at GSFC. Major 
limitations, however, which have prevented GSFC's 
LACN implementatidn solely with 802.4/802.5-based 
technology have included: 

o limited speed in avai fable computer interfaces to 
802.4/802.5-based LAN technologies; 

o relatively high cost to engineer and instal I 
802.4/802.5-based LANs to a growing, non­
predetermined number of locations requiring 
connectivity; and 

o relatively high cost to implement a 802.4/802.5-
based LAN which would have minimum impact on on­
going operations as new users were installed. 

2.3.3 Higher Layer Interconnection Functionality 

While a high speed communications subnet is an 
essential component of any high throughput computer 
network, the subnet alone is by no means sufficient 
to providing functional user services across the 
network. Depending on the computers among which 
communications are required, the network application 
services required, and the throughput performance 
required, the existence of generally computer 
resident higher layer service protocols and their 

342 

operability with the communications subnet are also 
necessary facets to providing the network 
application services required by end users. Draft 
specifications of some vendor-independent higher 
layer protocols are in preparation and/or review by 
the ISO and a number of other organizations 
responsible for establishing standards. However, 
unti I the implementation of these protocols matures 
to the point of meeting al I other GSFC LACN 
requirements, an operational requirement of GSFC's 
LACN wi II continue to include concurrent support 
for various vendors' products. 

3.0 INITIAL GSFC LACN SYSTEM DESIGNS 

Numerous options were studied in planning GSFC's 
LACN. Ultimately, a· hybrid design incorporating a 
unified mix of baseband and broadband LAN 
technologies was selected for implementing an 
initial operational capabi I ity. Key elements of 
that initial design are summarized in the 
subsections that fol low. 

3.1 Architectural Overview 

The architectural reference model used in planning 
GSFC's initial LACN implementation is provided in 
Figure 3. This figure i I lustrates many important 
architectural design decisions related to GSFC's 
LACN. These design decisions include: 

o the planned hybrid mix of IEEE 802.3 (baseband) 
LANs enabling individual (and intra-building) host 
connectivity and CCTV/CATV industry standard digital 
broadband LAN technology interconnecting the 
baseband segments; 

o the functional separation of the communications 
subnet from the higher layer protocols; 

o communications subnet support for the separate 
yet concurrent operations of multiple higher layer 
protoco Is among I og i ca 11 y separate sets of 
computers; and 

o the possible participation of a single host in 
multiple logically independent networks enabled by 
different higher layer protocols co-residing on the 
host. (Such co-residence does not imply gatewaying 
even though this would be desirable in a number of 
instances.) 

3.2 Use of Ethernet 

Essentially all intra-bui I ding connectivity among 
local computer systems has been accomplished 
through the use of Ethernet/IEEE 802.3 compatible 
LANs. Selection of this technology for intra­
bui !ding installation has provided low cost, highly 
reliable operation even in the face of irregularly 
scheduled additions of new hosts to the LACN. Ful I 
connectivity with al I other hosts is enabled simply 
through a host's single Ethernet connection to the 
LACN. 

Multi-segment Ethernets have been installed to date 
in 12 separate GSFC bui !dings. Several more are 
planned before the end of 1986. Additional 
information on GSFC's use of Ethernet is provided in 
Appendix A. 



3.3 Use of CATV 

Inter-bui I ding communications among GSFC's intra­
bui I ding Ethernets has been implemented primarily 
through the use of a digital broadband LAN generally 
compatible with CCTV/CATV industry standards and 
the use of commercially new broadband/baseband 
bridging units (see Section 3.4). The broadband 
LAN has been implemented at GSFC on already 
underground coaxial cables formerly intended only 
for CCTV. The extent of the underground coaxial 
cable plant at GSFC is i I lustrated in Figure 4. 
Additional information on GSFC's use of the CATV 
cables for the LACN is provided in Appendix A. 

3.4 Bridging the Ethernet and CATV LANs 

High speed internetwork connectivity between GSFC's 
inter-bui !ding broadband LAN and GSFC's numerous 
intra-bu i Id i ng baseband Ethernets has been 
accomplished through the use of NilO/E Ethernet 
Bridges acquired from Appl itek Corporation, Inc. 
(Applitek,1985 a through g; Dahod, 1983 ~and b). 
Such high speed bridging units a~e a rel~t1vely_ new 
LAN technology, but their use 1s growing rap1~ly 
nationwide. Because of pressing needs to fulf 1 I I 
its long standing requirements, GSFC wa~ very 
active in designing elements of and promoting the 
original development of this new type of LAN 
technology. Furthermore, GSFC ev~ntual ly served. as 
a beta test site for the Appl 1tek NilO/E units 
which subsequently were the first such_ un!ts to_be 
offered commercially. In brief, the br1dg1ng units 
used in GSFC's LACN: 

0 

0 

0 

0 

0 

use standard transceivers to connect to the 
intra-bui !ding Ethernets; 

acquire al I Ethernet packets transmitted by other 
devices on the local Ethernet; 

automatically generate address I ists identifying 
the devices on the local Ethernet; 

encapsulate Ethernet packets destined for other 
Ethernet segments and broadcast them on the 
broadband LAN to other bridging units; and 

acquire a 11 encapsu I ated messages from the 
broadband LAN but retransmit onto the local 
Ethernet only those packets which are 
destined for devices on that local Ethernet. 

Salient designs of the Appl itek NilO/E's which have 
made their use particularly attractive in GSFC's 
LACN include: 

0 

0 

0 

the use of 10 mbps modems operating in the 6 mhz 
channels of the broadband LAN; 

the use on the broadband LAN of a message slotted 
data I ink layer protocol cal led Uni LINK which 
al lows either user preselected or load dependent 
message slot al locations, thereby enabl 1ng the 
broadband LAN to perform simi far to ~it~er.a 
token bus LAN operating with de~erm1.n1st1c 
performance or a CSMA LAN operating with on­
demand performance; and 

transparency to higher level protocols. 

Further descriptive information on these bridging 

343 

units and their use in GSFC's LACN is provided in 
Section 4. 

3.5 Higher Layer Interconnection Protocols 

To satisfy the immediate and broad needs of a large 
number of end users, GSFC's LACN at present uses 
several different integrated sets of higher layer 
application protocols. Each protocol set performs 
many internal functions which ultimately enable the 
integrated set to conduct both generic and specific 
forms of task-to-task communications among even 
dissimi far computers so long as those computers are 
also hosting a peer-compatible set of the same 
higher I ayer protoco Is. Each protoco I set 
essentially enables the independent operation of a 
computer network which is logically separate from a 
computer network enabled by a different protocol 
set. Sometimes, however, two or more different 
protocol sets co-reside on a single host computer 
to enable that host to concurrently participate in 
the respective logically separate networks enabled 
by the different protocol sets. Such co-residence, 
however, does not in and of itself enable inter­
network gatewaying. Sets of higher layer 
computer-to-computer communications protocols 
already functioning at high speeds in GSFC's LACN 
include: 

0 

0 

0 

DEC's DECnet operating among GSFC local DEC VAX 
8600's, VAX-ll's, microVAX's, and PDP-ll's; 

the TCP/IP-related set of ARPAnet protocols (see 
Section 2.2.2) operating primarily among GSFC 
local Unix-based user workstations but also 
operating among a few DEC VMS-based systems; and 

XNS-related intercomputer protocols operating 
primarily among GSFC local PC's with direct 
Ethernet connections. 

These computer-to-computer communications protocols 
generally enable a ful I range ?f network 
applications including inter-computer f1 le transf~r, 
remote batch job submission, electronic ma1 ~· 
remote logons or virtual terminal support, and 1n 
most cases task-to-task communications. 
Additionally, GSFC's LACN supports several sets of 
terminal/file/print server protocols. These 
include: 

0 

0 

0 

DEC's LAT-11 terminal server protocol operating 
among GSFC local DECserver lOO's and various DEC 
minicomputers; 

SNA-related terminal server protocols operating 
among Ethernet server devices, such as Bridge 
Communications' CS/1-SNAs, which enable IBM 3278 
display station emulation and IBM host 
connectivity for approximately 200 asynchronous 
terminals; and 

XNS-related terminals/file/print server protocols 
operating among GSFC _local Ethe_rnet server 
devices which enable either generic or vendor 
specific terminal/file/print server-to-host 
connectivity for approximately 200 asynchronous 
terminals, 10 file servers, and 10 print servers. 

Also, GSFC's LACN includes a number of Ethernet 
communications server devices which are dedicated 
solely to performing remote packet communications 
routing. These include: 



o DEC DECnet Router Servers used to interconnect 
GSFC's LACN with remote DECnet nodes via the wide 
area NASA SPAN; and 

o TCP/IP bridges, particularly Vital ink 
Communications Corporation's TransLANs, used to 
interconnect GSFC's LACN with the ARPAnet via a 
bridging link with the University of Maryland to 
an ARPAnet IMP. 

Approximate counts, by networking protocol set type, 
of the number of host computers and 
terminal/file/print server devices which either are 
currently on-line to GSFC's LACN or are expected to 
be added by the end of 1986 are: 

NETWORKING PROTOCOL SET 

o Computer-to-Computer 

GSFC LOCAL 
HOSTS/DEVICES 
CURRENTLY 
ON-LINE TO LACN 

- DECnet 27 
- TCP /IP 13 
- XNS 100 

o Terminal/File/Print Server-to-Host 

- LAT-11 5 
-~A 2 
- XNS 15 

o Packet Communications Routing 

- DECnet 
- TCP /IP 

0 
1 

3.6 DECnet Gateway to IBM Mainframes 

ADDITIONAL 
UNITS EXPECTED 
BY END OF 1986 

50 
10 
100 

5 
2 
15 

2 
2 

Because of GSFC's need to enable high speed DECnet­
based users' access to the mainframe computers of 
the NSESCC (see section 2.2.2), GSFC has directly 
interconnected NSESCC's IBM 3081K with GSFC's LACN 
via an Interlink Computer Science's iBMmvs/DECnet 
Gateway (Inter I ink, 1986 a through f; Lehtonen and 
Gary, 1986; Mish et al., 1985). High speed 
performance and functional requirements which have 
been met via this Gateway Interlink, include: 

o Transfer of files between the IBM mainframe and a 
DEC superminicomputer at rates exceeding 200 kbps 
while performing CHARACTER data format 
conversions between the native mode 
representations of such data in the respective 
hosts; 

o Concurrent support for up to 16 separate network 
application sessions; 

o Record level access to variously organized (e.g., 
ISAM, QSAM, VSAM) cataloged data sets on the IBM 
host; and 

o Use of native host command languages, 
respectively for both DEC-based and IBM-based 
users, to perform al I supported network 
applications. 

Further descriptive information on this Gateway and 
its use in GSFC's LACN is provided in Section 5. 

344 

4.0 THE APPLITEK NilO/E ETHERNET BRIDGE 

4.1 Hardware 

The NilO/x series of networking devices from 
Appl itek use a modular design utilizing the IEEE 796 
Multibus (Applitek, 1985a). A NilO unit consists of 
four modules: 

The Media Access Unit 
The Network Controller 
The Subscriber Processor 
The Device Interface 

Discussed here are features of the NilO/E Ethernet 
Bridge, configured as it is used in the GSFC LACN 
(see Figure 5). 

4.1.1 The Media Access Unit 

The Media Access Unit (MAU) provides physical access 
to the chosen transmission medium for UniLINK. The 
media supported are broadband or baseband coaxial 
cable, and optical fiber cable. At GSFC, broadband 
CATV cable is accessed via frequency agile (20 to 
375 mhz~ Quadrature Phase Shift Keyed (QPSK) modems 
occupying a 6 mhz CATV channel. This keying 
technique yields 1.67 bits/hz with a BER 10 e-8. 
Currently one channel is utilized by the hybrid LACN 
- 65.75 mhz reverse/257 mhz forward. 

4.1.2 The Network Controller 

The.Network Con~rol ler is independent of the type 
Media Access Unit and the Device Interface used in 
the NilO. The Network Controller, tog~ther with its 
Rx/Tx State Machine, implements the chosen UniLINK 
access method and controls access to the cable. The 
UniLINK access method is control led by software 
commands, ~hich are discussed in 4.2. The Rx/Tx 
State Machine controls access at the bit level and 
converts para I lel data streams to serial for the 
Media Access Unit and vice versa. 

4.1.3 The Subscriber Processor 

The Subscriber Processor is the primary control 
board of the NilO. Its design is based on the 
MC68000 microprocessor (MPU). The Subscriber 
Processor controls the flow of data between the 
Device Interface and the Network Contro 11 er 
provides the user interface to the NilO network 
commands, and controls a 3.5" floppy disk drive. 
The power up configuration, a field support history 
file; and operating software for the NilO are stored 
on the floppy disk. Also contained on the 
Subscriber Processor are a watch dog timer, to 
prevent the system from hanging up due to a software 
failure, and a real-time clock, to prov id~ overal I 
system timing. 

4.1.4 The Device Interface 

A variety of Device Interfaces is being developed 
for the NilO including RS 232c (async, bisync), RS 
449, T-1, DRll (Unibus interface) and Ethernet. At 
GSFC, the interface is the Ethernet via an Ethernet 
controller board with its resident software. At 
present, the Communication Machinery Corporation's 



(CMC) Ethernet Node Processor (ENP) is implemented 
with the IEEE 796 Multibus (Communication Machinery 
Corp., 1984). The architecture of the ENP consists 
of a MC68000 MPU performing supervisory functions 
over a LANCE VLSI Ethernet Family Controller, a 
closely coupled RAM, ROM for on board monitor and 
control software, and a IEEE 796 Multibus interface 
for connection to the other modules of the NilO/E. 
Applitek has announced development of an Ethernet 
controller which wil I be more specialized for the 
services of the NilO/E. 

4.2 Software 

Control of the NilO is distributed between the 
hardware modules described in the previous section 
and is a combination of firmware, on-board software, 
and downloaded software. 

4.2.1 Media Access Unit and Network Controller 

Due to the redundancy of and the high performance 
required by the functions of the Media Access Unit 
and the Network Controller, these functions are 
performed in firmware implemented on each of these 
boards. These functions include UniLINK network 
timing, data I ink services and actual signaling on 
the transmission media. 

4.2.2 Subscriber Processor 

An independent copy of the pSOS-68k Operating System 
resides on each Subscriber Processor board. Control 
software is downloaded from the 3.5" floppy drive 
when the NilO is powered up or reset by the network 
manager. Downloaded software includes UniLINK Tx 
and Rx RAM server processes, startup configuration, 
and NilO control mode software. 

4.2.3 Device Interface: Ethernet Controller 

Communication between the ENP and the Ethernet 
physical medium is handled by the ENP Kernel 
software, in ROM, and the LANCE device. 
Communication between the ENP and the Subscriber 
Processor is handled by software downloaded to the 
Ethernet controller from the floppy disk. The NilO/E 
bridges filter Ethernet packets to insure that only 
the packets that need to be bridged are broadcast by 
or accepted from the UniLINK subnet. This is 
accomplished through a Device Map stored in each 
NilO/E. The Device Maps are built automatically and 
can be manipulated by the network manager. 
Addresses can be disabled, enabled, appended, and 
deleted. These functions are provided for by 
software downloaded to the ENP from the floppy 
during bootup. 

4.3 Theory of Operation 

A diagram i I lustrating the encapsulation of Ethernet 
packets into the message frames of Appl itek's 
Uni LINK data I ink I ayer protoco I is provided in 
Figure 6. A diagram i I lustrating the encapsulation 
and end-to-end transmission of user data between 
hosts using the GSFC LACN is provided in Figure 7. 
Additional information on the operation of NilO/E's 
is provided in Appendix B. 

4.3.1 The UniLINK Access Method 

A brief discussion of the UniLINK access method as 
implemented in the NilO/E's at Goddard fol lows 
(Dahod, 1983 a and b). 

345 

Network time is divided into numbered messages. Al I 
nodes recognize the message numbers and can only 
transmit in the message slots assigned to them. 
Message assignment on the NilO/E network can be done 
either manually, by the network manager, or assigned 
automatically and dynamically by the UniLINK 
process. Under manual allocation the network 
behaves in a deterministic manner similar to token 
ring. Under the automatic al location, message slots 
are acquired by the NilO/E's as more bandwidth is 
needed, and the performance is similar to a 
contention network. At Goddard, the LACN is 
al located in manual mode to provide a deterministic 
environment for implementation and testing. Only 
the lowest two layers of the ISO OSI model are 
implemented by UniLINK in the NilO/Es. Since error 
recover, flow control, security measures, etc. are 
not ~equired or implemented by Ethernet, these 
function are relegated to the higher level protocols 
running in the hosts. 
5.0 THE INTERLINK IBMmvs/DECnet GATEWAY 

For several years, GSFC's scientific community has 
had an outstanding requirement for a high-speed 
(>100 kbps) network interconnecting DEC hosts with 
NSESCC's IBM mainframes, specifically for bulk file 
transfers. High speed access to the NSESCC is 
particularly important for several reasons: (1) the 
IBM host (3081-K) is capable of processing complex 
mathematical models and related scientific and 
engineering data; (2) a significant amount of mass 
storage both in terms of on Ii ne (disks and mass 
store) and off I ine (tapes) is ava i I able to end 
~sers; . (3) a high-speed I aser printer (IBM 3800-3) 
1s ava1 I able for the production of high-qua I ity 
documents containing text and graphics; and, (4) the 
NSESCC's IBM and compatible mainframes frontend a 
CDC CYBER 205. 

Prior to the i nsta I I at ion of the IBMmvs/DECnet 
Gateway at the NSESCC in March 1986, inter-host 
communications between GSFC DEC and IBM hosts was 
achieved on an ad hoc basis via the installation of 
point-to-point I inks with maximum data transfer 
rates of 56 kbps (Lehtonen, 1983). These rather 
inexpensive solutions worked rather wel I for the 
immediate hosts involved but offered no easy 
solution for the other DEC hosts that needed to gain 
access to the NSESCC IBM mainframes. In addition, 
the DEC user was burdened with having to know the 
detai Is of IBM's Job Control Language (JCL) to 
enable initiation of file transfers to the IBM host. 
With the successful installation of this Gateway, 
the NSESCC IBM 3081 now appears on the network as a 
peer DECnet node al lowing for transparent access 
from the remaining DECnet nodes (Interlink, 1985 a). 
To accomplish this network transparency, a 
combination of hardware (3711 Network Controller) 
and software residing in the IBM host (MVS/DECnet) 
and the 3711 has been deve I oped by Inter Ii nk 
Computer Sciences. See Figure 8 for a depiction of 
this connectivity. 

5.1 The 3711 Network Controller 

The 3711 Network Controller serves as a front end 
processor by providing al I the appropriate hardware 
interfaces to implement DECnet functionality as wel I 
as to attach to an IBM I/O block multiplexor 
channel. The 3711 is comprised of a DEC micro PDP 
11/73 CPU using LSI-11 technology, a DEQNA interface 
to enable the connection to an Ethernet segment 
transmitting data at 10 mbps, and an Auscom 8900 
Channel Interface Board which provides all the 



functions necessary to enable the attachment of 
high-speed interfaces to the IBM channel at data 
rates up to 2 mbytes/s (Farmer, 1982). {Tbe use of 
an Auscom interface eliminates the requirement for 
attaching to an IBM 3725 front end processor which 
limits data transfers to 230 kbps.) 

The Auscom 8900 enables access to an IBM standard 
channel interface. To use the 8900 the IBM host 
must support an IBM channel {or look-alike) with one 
or more subchannel addresses reserved for this 
application. The channel can be configured as a 
block mux, selector, or byte-mux channel (Farmer, 
1983). 

5.2 The MVS/DECnet Software 

The heart of the Gateway is the Inter I ink 
proprietary MVS/DECnet software residing in the IBM 
host and executing under the IBM MVS/SP Operating 
System. The MVS/DECnet software provides the 
necessary host architectural transparency to enable 
DEC remote users to transfer files back and forth to 
the IBM mainframe and, conversely, al lows IBM users 
to access files located on remote DECnet nodes . 
Intimate knowledge of the file structures on each 
host is no longer a necessity for gaining access to 
various files. In fact, the software automatically 
translates data formats to the user's native format, 
as required. The user can also control the data 
translation by creating an appropriate data 
dictionary file which defines the format of each 
record in the file to be translated. 

This Gateway software executes as a started task 
under the IBM MVS operating system (Note: a version 
that operates under the IBM VM operating system is 
also available from Interlink Computer Sciences). In 
addition to the functions previously mentioned, this 
software also controls the connection between DECnet 
and itself by establishing and maintaining a DECnet 
environment within the IBM mainframe--up to 32 
concurrent sessions can be active: 16 outbound from 
the IBM host and 16 inbound to the IBM host. The 
fol lowing information summarizes the standard 
functions supported by the MVS/DECnet software: 

5.2.1 DEC Node Initiated Communications 

Functions in this category include: access to entire 
files {data sets) or to specific records within the 
file; IBM data set creation, deletion, or transfer 
using standard DEC utilities or commands; 
translation of data in uniformly formatted files 
(ASCII/EBCDIC, integer, floating point, single and 
double precision) or based upon a user-specified 
data dictionary that contains the format of each 
individual record; brief or ful I directory listings 
of data sets currently residing at the IBM host 
site· submission of jobs to the IBM host for 
exec~tion and subsequent retrieval of relevant job 
output; and, submission of files to the JES print 
queue for printing at the IBM central printing 
facility (Interlink, 1985 a). 

5.2.2 IBM Initiated Communications 

Interlink has developed a Network Fi le Transfer 
(NFT) Utility designed to provide the TSO IBM 
mainframe user with access to remote files located 
on DEC hosts. Access to these files is achieved 
through either an interactive ISPF menu session, a 
direct TSO command environment, or through the 

346 

submission of a batch job containing NFT 
subcommands. As with DEC node initiated 
communications, this NFT Utility enables an IBM user 
to send and receive files ("push and pul I"), delete 
files, list the files within a DEC directory, and 
submit jobs to DEC batch and print queues. 

The NFT Utility SEND and RECEIVE subcommands enable 
the IBM user to access files in sequential, 
relative, or indexed format. DEC files are 
manipulated using standard DECnet file specification 
within the ISPF menus or directly within NFT 
commands. Unlike the DEC user, however, IBM users 
cannot use the NFT Uti I ity to gain access to 
individual records within DEC files. 

To delete a DEC file, the IBM user uses the DELETE 
subcommand; to list the contents of a remote DEC 
directory, the DIRECTORY subcommand is issued. 
Information about the file size, organization, 
protection, etc. is displayed (Interlink, 1986 c). 

5.2.3 Task-to-Task Interface 

Interlink has also implemented a low level task-to­
task interface capability. A user task running on a 
DEC host can communicate with a IBM application 
program executing on the IBM mainframe. A set of 
callable routines {from FORTRAN, for example) can be 
used to initiate and maintain a DECnet connection, 
to send and receive data, and to terminate a session 
(Interlink, 1985 e). 

5.3 DEC Software 

In order to perform most of the functions supported 
by the Interlink approach, no extra software is 
required to be installed on DEC hosts. {Obviously, 
the standard DECnet networking software, Phase III 
or Phase IV, wi I I be required to enable the 
attachment of a DEC host to a DECnet network.) The 
only exception is if the remote DEC user wishes to 
submit a job to the IBM mainframe or to print a file 
on the IBM facility's printer subsystem--in this 
case, each DECnet node wishing such access must 
install the Interlink-provided Job Entry Subsystem 
(JES) Utility software, IBMJUT. See Appendix C for 
more detai Is on this uti IHy. 

The software that actually provides the 
functionality for connecting the 3711 to an existing 
DECnet network resides in the· DEC micro PDP 11/73 
host. This software is incorporated within the RSX­
llM-PLUS, Version 2.1 Operating System which 
provides al I the functions for implementing DECnet 
Phase IV. 

Additionally, Interlink has developed a Pass Through 
Task (PTT) that provides the connection between 
DECnet and the Auscom-related IBM Channel Interface 
Driver. The purpose of the PTT is to service 
requests to and from the DECnet network in 
conjunction with the MVS/DECnet software executing 
in the IBM mainframe. 

5.4 Performance of Gateway 

At GSFC's request, Interlink conducted several file 
transfer benchmarks between a VAX 11/780 and an IBM 
4381-M2 using a micro PDP 11/73 processor in the 
3711 Network Controller (Inter I ink Technical 
Proposal, 1985). The resulting performance was 



dependent upon the type of data translation 
performed and the record size in bytes. For image 
data (i.e. no translation), transfer rates of over 
400 kbps were achieved; for INTEGER•2 data, transfer 
rates of over 300 kbps were achieved. GSFC's IBM 
3018-K should be able to achieve comparable or 
greater data transfer rates but as of this date 
comparable benchmarking of the Gateway has not yet 
been undertaken (see Section 7). 

6.0 CURRENT GSFC LACN CONFIGURATION 

6.1 LACN Communications Subnet 

6.1.1 Configuration Overview 

As of May 1986, in-use operation of GSFC's LACN 
broadband circuits extended to 10 GSFC buildings. 
In each of these buildings, at least one Applitek 
NilO/E bridged with an intra-bui I ding Ethernet 
segment serving as that building's primary baseband 
trunk. Fiber optic repeaters extended LACN 
Ethernets to 2·additional buildings. An overview of 
this configuration is provided in Figure 9. 

6.1.2 Broadband Channel Assignments 

Currently installed in bui I ding 8 are head end 
frequency translators capable of supporting 5 
separate pairs of 6 mhz channels. Prior to May 
1986, two pairs of channels, i.e. channels 3'/P 
operating at 60-66/252-258 mhz and channels 5'/S 
operating at 78-84/270-276 mhz, were in use. 
Also, prior to May 1986, functional use of the 
separately assigned channels had been determined by 
separate GSFC internal organizations considered to 
be the primary user of the assigned channels. 
Since there are considerable expansion restrictions 
to this type of channel assignment, GSFC has been 
considering making future channel assignments based 
on the planned use of different higher layer 
protocol sets which enable logically different 
computer networks. Such "by protocol" channel 
assignments, however, would require multiple 
NilO/E's in buildings with Ethernets that support 
the connection of computers which concurrently co­
host multiple high layer protocol sets. As an 
alternative, GSFC is also investigating feasible 
schemes for inter-channel bridging. 

6.1.3 Intra-Building Ethernets 

Overview diagrams illustrating the extent of the 
intra-building Ethernets currently integrated into 
GSFC's LACN are provided in Figures lOA and lOB. 

6.1.4 Operations 

A Network Monitoring Station (NMS) has been 
configured in bui I ding 8 at the head-end of the CATV 
system. The NMS includes an IBM compatible PC which 
is interfaced to a Applitek NilO/T serial interface 
on the broadband subnet. The control functions of 
the NilO/T can communicate with the control levels 
of the NilO/E Bridges (Applitek, 1985b). From the 
centralized NMS, GSFC network managers are able to 
allocate bandwidth to each of the NilO's and monitor 
their usage and performance. Software for the PCs 
consist of common vendor supplied communication 
programs and spreadsheets, as well as GSFC-developed 
BASIC routines for extracting raw data from the 
responses of the NilO units. Procedures for plotting 

347 

traffic loads and patterns and for packet level 
error performance have also been developed in-house 
at GSFC. 

6.1.4.1 Setup and Maintenance 

After a physical broadband channel has been 
installed, setup of the NilO/E subnet involves these 
steps. 

1) Configuration disks are set to bring 
each NilO on line in contention mode with 
all units contending for the same slots and 
in manual al location mode. Frequency 
allocation is also assigned at this time. 

2) Each NilO is booted with its 
configuration disk. 

3) The NMS operator, observing the NilO/E's 
as they come on I ine, can al locate each 
NilO/E its reserved and dedicated message 
slots. 

4) The NMS operator checks packet 
performance and makes the ne~essary 
adjustments to the RF system to del 1ver the 
lowest error rate (typically lOe-08 at the 
packet level). 

Maintenance involves monitoring performance and 
usage to provide the best performance at the 
broadband level. New NilO/E's are added in a 
contention spacing provided for this purpose and 
then allocated their bandwidth by the NMS operator. 

6.1.4.2 Usage Monitoring 

An example of an NMS display summar1z1ng broadband 
channel usage, where 6 min averages are plotted 
against time, is provided in Figure 11. 

6.2 DECnet-Enabled Computer Networking 

An indication of the current operational extent of 
DECnet-enabled computer networking in GSFC's LACN 
is provided in the following subsections. 

6.2.1 Configuration Overview 

As of May 1986, approximately 25 GSF~ l~cal 
computers located in 8 different GSFC bu• ld1ngs 
were on-line to GSFC's LACN as DECnet nodes. In 
most cases each of the DECnet-enabled computers has 
interfaced 1 with the GSFC LACN via a single Ethernet 
connection using a DEC DEUNA (for UNIBUS systems) 
or DEC DEQNA (for Q-bus systems) Ethernet 
communications controller board. (Several DEC 
DELUAs have also been ordered but none have yet been 
de I i vered.) Use ~f a sing I e ! n~erf a~e per computer 
to achieve full 1nterconnect1v1ty with the rest of 
the DECnet-enabled GSFC LACN has minimized the 
communications processing overhead of the com~uters 
so interconnected. A few computers are phys1ca.l ly 
interconnected via pairs of DEC DMR-lls which 
intercommunicate synchronously using DEC's DDCMP 
protocol. Also, one VAX 11/780 computer front­
ending the MPP in building 28 was still needed to 
bridge two Ethernets (see Appendix A) unti I the 
delivery of more NilO/E's will enable GS~C ~o extend 
broadband LAN services to more GSFC bu1 ld1ngs. An 
indication of these in-place interf~ces and of ~he 
physical topology of the GSFC LACN Just supporting 



DECnet-enabled GSFC local computer networking is 
provided in Figure 12. An indication of the 
logical topology of GSFC local computers engaged in 
DECnet-enabled high speed computer networking is 
provided in Figure 13. This latter figure also 
provides a further perspective on GSFC's use of the 
Interlink Gateway to enable DECnet access to the 
mainframe capabilities of the NSESCC. A summary 
I ist of GSFC local nodes currently in-place or 
planned to be installed by the end of 1986 is 
provided in Appendix D. 

Not shown in Figures 12 and 13 are approximately 5 
DECserver lOO's in various bui I dings providing 
terminal/print server support for approximately 40 
DEC VT1XX/2XX's and 5 DEC LPll's. Also not shown 
in Figures 12 and 13, except for GSFC's SPAN link, 
are a number of GSFC remote DECnet I inks which are 
also in use at this time. Some are enabled by 
leased point-to-point lines operating at 4800 and 
9600 bps and others by dial-up lines operating at 
1200 bps. Both static and dynamic asynchronous 
DDCMP connections are used through a number of DEC 
DZll and DMF32 asynchronous communications ports. 

6.2.2 Operational Management 

6.2.2.1 Setup and Maintenance 

Beyond the normal efforts associated with network 
software licensing, acquisition, and installation 
per host, setup and maintenance of the DECnet­
enabled network within GSFC's LACN has primarily 
involved: 

o the establishment of network unique DECnet node 
numbers for al I nodes; 

o netgening uniform DECnet data base configuration 
parameters; 

o updating DECnet internal routing/link costs to 
best match with GSFC's dynamically growing 
network, both local and remote; and 

o testing designs for a 9. 6-56 kbps backup 
communications subnet in the event that parts or 
all of the interbuilding broadband LAN failed to 
function. 

The DECnet-enabled computers in GSFC's LACN are a 
major participant in the NASA SPAN which is growing 
very rapidly. To facilitate growth, the NASA SPAN 
is now using several DECnet area numbers in its 
assignment of DECnet unique network addresses. Area 
6 has been allocated to the GSFC LACN and a number 
of other regionally nearby computers, such as those 
at Harvard and Penn State, with which GSFC LACN 
nodes have remote DECnet links. Other major areas 
within SPAN, as of December 1985, included: 

2 nodes in area 1 (Los Alamos National Labs area) 

27 nodes in area 5 (JPL and USGS, Flaggstaff, area) 

50 nodes in area 7 (SPAN general use area) 

7 nodes in area 8 (MSFC local area net area) 

10 nodes in area 9 (UCSD, LOCKHD, UCLA area) 

Many other areas and nodes have been included in the 
NASA SPAN since the beginning of 1986. 

Within GSFC's area 6, DECnet node numbers have been 
assigned by a centra I coordinator as n.eeded 
starting from 1. On the other hand, selection of 
DECnet node names is made by the individual user 
nodes. Periodically, an updated master I ist of 
GSFC's area 6 DECnet node numbers and names is 
distributed with similar data from al I other SPAN 
areas thro~ghout the entire SPAN. Also distributed 
with this list are recommended parameter settings 
for netgening a host's DECnet data base 
configuration. While the DECnet node names (not 
node numbers) and many of the netgen settings may be 
changed at the individual user nodes without 
negatively affecting the rest of the network, the 
common use of a standard set of names/settings has 
minimized problems frequently found with rapid 
network growth and has simplified overal I network 
use. 

In addition to the efforts applied to set up and 
maintain DECnet-enabled computer networking using 
the high speed communications subset of GSFC's 
LACN preparations have also been initiated among 
GSFC 1 local nodes to effect a backup, albeit slower 
speed, DECnet-enabled computer network using GSFC's 
new Rolm CBX-II once it is installed. These 
preparations have included test checkout of locally 
developed procedures to initiate dynamic 
asynchronous DDCMP connections from at least one 
router host on each building's intra-building 
Ethernet to prevent any building from being cut off 
from the GSFC LACN. 

6.2.2.2 Usage Monitoring 

Currently within GSFC's LACN, DECnet specific usage 
is monitored only at individual nodes if at al I. 
GSFC is planning to acquire and instal I DEC's 
Network Management Control Center (NMCC)/DECnet 
Monitor product in the near future. 

6.3 TCP/IP-Enabled Computer Networking 

An indication of the current operational extent of 
TCP/IP-enabled computer networking in GSFC's LACN 
is provided in the following subsections. 

6.3.1 Configuration Overview 

As of May 1986, approximately 10 GSFC local 
computers located in 3 different GSFC bui I dings 
were on-line to GSFC's LACN as TCP/IP-enabled nodes. 
Two of the TCP/IP-enabled computers in GSFC's LACN 
are DEC VMS-based systems with Excelan EXOS 204 
front end controller boards and EXOS 8043 TCP/IP 
Protocol Package; one VMS-based system is TCP/IP­
enabled via software from the Wollongong Group. The 
other computers are Unix-based user workstations 
with Ethernet controller boards from 3Com, 
Interlan, and Xerox. An indication of these in­
place interfaces and of the physical topology of the 
GSFC LACN just supporting TCP/IP-enabled GSFC local 
computer networking is provided in Figure 14. Also 
shown in Figure 14 are approximately 10 other GSFC 
local computers which GSFC expects to bring on-line 
to the GSFC LACN as TCP/IP-enabled nodes by the end 
of 1986 (again see Appendix D). Additionally shown 
in Figure 14 is GSFC's LACN in-place interconnection 
with the ARPAnet. This interconnection is enabled 
through the use of a pair of Vital ink 
Communications Corporation's TransLAN Ethernet 
bridges and a leased 56 kbps line between GSFC's 
LACN and an Ethernet at the University of Maryland 

348 



from which GSFC accesses an ARPAnet IMP. This I ink 
was first enabled in November 1985. 

6.3.2 Operational Management 

6.3.2.1 Setup and Maintenance 

Beyond normal system maintenance, setup and 
maintenance of the TCP/IP-enabled network within 
GSFC's LACN have involved only the assignment of 
network unique TCP/IP node addresses for al I nodes. 
At the present time, GSFC uses a set of addresses, 
established by the ARPAnet-related Internet Network 
Information Center, sublet to GSFC by the University 
of Maryland. 

6.3.2.2 Usage Monitoring 

Current TCP/IP-based networking activity levels 
within GSFC are very low but are growing steadily. 
Most activity is with remote ARPAnet nodes and usage 
monitoring is currently performed via the Vital ink 
TransLAN units. 

6.4 XNS-Enabled Computer Networking 

As of May 1986 approximately 100 XNS-enabled 
computers were currently Ethernet connected in 
GSFC's LACN and approximately 100 more were expected 
before the end of 1986. For the most part, they 
were al I PCs. Since a description of the networking 
applications enabled by this networking protocol 
deserves more space than can be al lotted here, 
further description of this networking activity wi I I 
be deferred, to be separately documented in a 
related fol low-on report. 

7.0 NETWORK THROUGHPUT PERFORMANCE 

This section includes an indication of the end-to­
end throughput performance which has been achieved 
to date using GSFC's LACN. 

GSFC's throughput performance studies of the LACN 
have been undertaken to determine if key design 
objectives have been met and to gain insight into 
the overal I performance characteristics of the 
network. Since many of the subsystems integrated 
into GSFC's LACN have involved relatively new 
technology, to date GSFC's primary interest _in 
assessing network performance has been to determine 
merely first order end-to-end throughput rates. 
Such end-to-end throughput rate measurements, as 
opposed to subsystem specific tests, are considered 
to be most important from an end user's perspective 
and are the ones specified in GSFC's LACN 
requirements (see Section 2). 

The results of the studies presented in this section 
need to be considered preliminary indicators of 
GSFC's LACN throughput performance. System managers 
of both the communications subnet and the host 
computers in GSFC's LACN are sti I I tuning a number 
of parameters which greatly affect LACN end-to-end 
throughput performance. Examples of these tunable 
parameters include the assignment of dedica~ion or 
contention to the various message slots 1n the 
UniLINK protocol, the al location of pipeline buffers 
in the various DECnet hosts, and the tradeoff of 
increasing the number of concurrent sessions versus 
few sessions with additional buffers to enhance 
access through NSESCC's IBMmvs/DECnet Gateway. 
Furthermore, major upgrades affecting several 

subsystems compr1s1ng the LACN have already been 
made since these indicators were generated or are 
planned in the immediate future. Examples of these 
upgrades include shielding from RFI the active 
components in the broadband LAN, the upgrade of the 
NilO/E modems to ones with better signal-to-noise 
enveloping, and the installation of revised NilO/E 
software specifically redesigned to increase data 
flow performance. A more detailed analysis of 
GSFC's LACN performance with these upgrades 
installed is in progress and wi I I be separately 
documented in a follow-on report. 

The throughput indicators presented in this section 
have been derived from various host memory-to-memory 
and disk-to-disk data transfer tests conducted in 
evening hours between I ightly loaded single pairs, 
and concurrently among multiple pairs, of end user 
computer nodes in GSFC's LACN. No standalone use of 
hosts or the communications subnet has been 
attempted in the end-to-end throughput tests 
conducted to date. Routine daily throughput within 
GSFC's LACN is similar to that indicated here, but 
is sometimes more subject to delays originating 
within hosts due to heavy internal user workloads. 

7.1 Measurement Approach 

Because GSFC's LACN includes new technology, off­
the-shelf tools and methodologies for measuring 
performance have not been readily avai I able. GSFC, 
therefore, has undertaken significant ongoing 
development to enable its desired end-to-end 
performance measurements. This has included the 
implementation of host-to-host oriented, software 
control led tests using various networking protocol 
sets. In implemention to date, DECnet-based tests 
have comprised the overwhelming majority, with only 
a few TCP/IP-based tests having yet been conducted. 
Separate tests involving only user task control led 
host memory-to-host memory transfers, as opposed to 
disk file-to-disk file transfers, have been 
performed to disclose the effects of operating 
system dependent I/O. 

Generation of the majority of the test results 
compiled to date has been accomplished through a 
GSFC developed TEST package. The TEST package 
interactively collects user specified test scenarios 
using menus and prompts, bui Ids appropriate data 
transfer commands and/or task software, downloads 
the commands/software to from 1 to approximately 10 
pairs of host computers (possibly al I independent or 
overlapping) as defined by the user's test scenario, 
and enables either memory-to-memory or disk-to-disk 
data transfers between the pairs using prescribed 
record sizes and record counts or file sizes, again, 
as defined by the user's test scenario. Originally 
written in DEC's Digital Command Language (DCL), the 
TEST package has recently been rewritten in C to 
faci I itate its being ported to run on Unix based 
systems. 

7.2 Control Tests 

Various control tests have been conducted to date to 
establish a comparison base I ine of throughput 
performance in host-to-host data transfers when both 
hosts are connected to the same physical Ethernet. 
For example, separate tests have parameterized 
record sizes and number of records sent. Sample 
results of such tests, which effectively establish 

349 



upper limits on memory-to-memory transfers between 
VAX's connected to Ethernets using DEC DEUNAs, are 
i I lustrated in Figures 15 and 16, respectively. 

7.3 Inter-Bui I ding End-to-End Throughput 
Measurements 

A complete set of end-to-end throughput measurem~nts 
involving variously selected hosts (number of pairs, 
bui I ding location, host type, operating system type, 
operating system release level, etc.) has yet to be 
accomplished. The fol lowing results! h~wev~r, do 
provide a preliminary though coarse 1nd1cat1on of 
the GSFC LACN's current end-to-end throughput 
performance capabi I ities. 

7.3.1 Inter-Bui I ding Disk-to-Disk Through the 
Interlink Gateway 

A series of 5 independent measurements, essentially 
DECnet-based, were conducted between a VAX 8600 and 
NSESCC's IBM 3081K. The computers were in different 
buildings on Ethernet segments interconnected by the 
broadband LAN. Using 512 byte records and 512 
records/file in each test, and performing entire 
file ASCII/EBCDIC translations, disk-to-disk 
throughput transfer rates were 104 kbps on average, 
with a standard deviation of 57 kbps and a maximum 
of 205 kbps. Results from similar tests using 
different record and file sizes are i I lustrated in 
Figure 17. 

7.3.2 Inter-Building Memory-to-Memory 

A series of 91 independent measurements completely 
DECnet-based were conducted between variously 
selected pairs of VAX-11/780's, with only one pair 
of VAX's transferring at a time. Each VAX of the 
pair were in different bui I dings on Ethernet 
segments interconnected by the broadband LAN. Using 
1024 byte records and 1024 records transferred in 
each test, memory-to-memory throughput transfer 
rates were 346 kbps on average, with a standard 
deviation of 130 kbps and a maximum of 748 kbps. 

8.0 NETWORK DEVELOPMENT PLANS 

As the GSFC LACN matures, the need to provide 
enhancements is being anticipated. Consequently, a 
number of development activities and new 
applications are being considered and are discussed 
in the following sections. 

8.1 RF Channel Al location 

A strategy for allocation of the several RF channels 
on the broadband medium is needed and a number of 
approaches are being considered. These include 
al location by organization, by protocol or by 
traffic loading. A final determination from among 
these options wi I I be made only after more 
information about actual growth patterns has been 
acquired. 

8.2 Enhancements to the Broadband LACN 

8.2.1 Direct Broadband LACN Interfaces 

A development path which would allow for higher end­
to-end throughput performance within the presently 
evolving LACN is, in appropriate instances, to 
eliminate the Ethernet feeder segments and provide 
dedicated interface units directly between computer 
I/O busses and a broadband channel. This option 
together with the use of a data transfer protocol 
specifically •tuned• for high throughput, could 
serve as a basis for a higher-speed data transfer 
service. A separate RF channel on the broadband 
LACN could serve as a testbed vehicle for 
prototyping ideas such as this without impacting the 
operational networks. Since this prototype would 
not participate in the same communication sub-nets, 
there would exist no need for complete 
compatibility with the medium access method or data 
link protocol used on those channels. 

8.2.2 Higher Bandwidth RF Channels 

Another option being considered is to provide very 
high (50-100 mbps) aggregate data rate channels on 
the broadband medium rather than the standard 6 mhz 
(10 mbps) channels. If projected traffic load 
levels warrant, implementing such channels would 
serve to reduce the operational management problems 
associated with maintaining several of the standard 
channels and the consequent necessity to provide 
inter-channel bridging. This option is contingent 
on the development of appropriate high-speed RF 
modems, which is not certain at this time. Should 
these modems materialize, the use of such channels 
to support higher end-to-end throughput would also 
be considered. This would have to be coupled with 
the avai labi I ity of similarly high performance 
computer bus interfaces and network protocol 
software to be justified as a feasible alternative. 

8.3 High Performance Computer Networking based on 
Optical Fibers 

Optic fiber cables are presently being routed to 
most Center bui !dings. While the present broadband 
LACN can be augmented to permit very high aggregate 
data capacities, it wi I I probably •top out• around 5 
mbps in end-to-end throughput for a 6 mhz channel. 
While this is presently adequate, computer I/O 
busses operating in the multiple tens of mbytes per 
second range can be expected soon. Even though 
additional development in RF modems can also be 
expected, the exploitation of fiber optic 
technology has considerably more potential for 
supporting high throughput networking than the 
broadband medium. Again, the issue of high level 
protocol software is an important factor. 

8.4 IBM 3270 Graphics Support For Remote Users 

GSFC contains a significant number of DEC 
minicomputer sites as wel I as a lesser number of IBM 
mainframes (3081, 4341, etc.). Although a majority 
of the IBM users communicate with their respective 
IBM hosts via a dial-up or point-to-point, twisted­
pair network using inexpensive ASCII start-stop 
terminals, a growing number of users particularly 
those with graphics requirements are procuring IBM 
or IBM-compatible 3270 terminals and connecting 
these via either the traditional twisted-pair 

350 



technology or IBM-specified coaxial-cable. A number 
of these 3270 terminals are functionally capable of 
displaying graphical images composed at the IBM 
mainframe site. The IBM 3270 terminal attached to an 
IBM 3274 cluster controller represents a de facto 
standard for IBM terminal communications. As 
mentioned above, this growing pro I iferation of 
cluster controllers and associated graphics and 
text-only terminals requires the implementation and 
maintenance of a separate coaxial-based (or twisted­
pai r), point-to-point network with its associated 
problems of pul I ing coaxial cable to multiple 
offices, implementing long-distance cable I inks 
through GSFC's nearly ful I underground ducts, and 
tracking the various communications hardware and 
software that comprise this network. 
As an alternative to the above scenario, GSFC is 
currently examining various vendor offerings 
(Applitek, Sytek, Ungermann-Bass) in the area of 
3270 terminal connectivity using broadband LAN 
technology. The theory behind using broadband 
technology is that existing IBM clusters now located 
remotely could be positioned back at the host IBM 
mainframe site (for ease of hardware and software 
maintenance) and replaced with broadband network 
adapters to provide the existing terminal 
connectivity (see Figure 18). Such a scheme would 
offer the fol lowing advantages: (1) achieving local 
response times at the remote terminal (2.34 mbps)-­
this is especially critical for transmitting 
graphics which often are composed of 50,000 bytes of 
information; (2) isolating IBM data traffic from the 
other network traffic by using a separate broadband 
channel; (3) eliminating multiple cable pul Is each 
time a new cluster site is identified; and, (4) 
easing maintenance of the 3270-based system as al I 
hardware would be now located at the central IBM 
faci I ities. 

Acknowledgments 

The authors wish to express their thanks: to NASA 
managers Dr. Caldwell McCoy, Dr. Erwin Schmerl ing 
and Joseph Bredekamp for their continued support 
for this effort; to David Howel I for his active 
participation with the authors to system engineer 
large parts of GSFC's LACN, particularly the XNS­
enabled network; to John Arslanian for his support 
in the RF system design and the use of GSFC's CCTV 
cable plant; to the Al lied Bendix Field Engineering 
technical crew, particularly Dave Yoest and Jeff 
Powell for their many efforts beyond the cal I of 
duty i~ instal I ing, certifying, troubleshooting and 
operating the network, particularly the broadband 
RF system; to Charles Cosner for his expert system 
analysis and programming assistance, particularly in 
the development of the network throughput 
performance TEST package; and to the Applitek 
Corporation for working with GSFC in the development 
of the Ethernet Bridge, without which the 
implementation of the hybrid LACN design would not 
have been feasible. 

APPENDIX A - GSFC LACN USE OF ETHERNET AND CATV 
COMPONENTS 

Ethernet 

Most of GSFC'S Ethernet segments consist of standard 
50-ohm coaxial cable, such as Beldon's 9880 or 
DEC's BHE2 yellow polyvinyl chloride covered cables. 
In a number of instances, primarily involving 
terminal and PC connections, 50-ohm thin cable 
(RG58) has been used for intra-organizational 
segments which are then connected via local 
repeaters to a common intra-building thick Ethernet 
trunk. In two instances (actually the first inter­
bui lding segments of the LACN installed in February 
1985), it was determined that inter-building LACN 
connectivity could best be achieved at that time via 
the installation of two separate extended Ethernets 
using fiber optic cables and remote repeaters. 
Subsequently, these two separate Ethernets were 
linked into a single logical network at the network 
protoco I I eve I (OSI I ayer 3) by using a host 
computer as a store-and-forward router. In these 
cases, 650 and 960 meters of 6 strand fiber optic 
cable were installed between the building pairs 22 
and 28 and the bui I ding pairs 16 and 28, 
respectively. The two extra optical fiber pairs in 
each optical fiber cable run were provided for 
contingencies, such as damaged fibers, as wel I as 
possible future extensions to the network. The 
optical fibers used are 100/140 micron graded-index 
type fibers. These have a bandwidth distance 
product of 100 Mhz.Km, and so can theoretically 
support data transmission up to 100 mbps in future 
point-to-point connections between computers 
located in either of the bui I ding pairs. Fiber 
optic connections with standard Ethernet coax cables 
were made via Amphenol 906 connectors to pairs of 
DEC's DEREP remote half-repeaters. A schematic 
identifying these connections is provided in Figure 
Al. (The location of several computers identified 
in Figure Al has changed since this initial GSFC 
LACN network configuration.) Ethernet transceivers 
concurrently in use on GSFC's LACN include: DEC's 
H4000; 3Com's 3Cl00 revision 1 (without heartbeat) 
and 3Cl02 revision 2; Interlan's NTlOO; and TCL's 
2010EB revision 1, 2010IS revision 2, and 2100 
modular multiport. 

CCTV/CATV 

Because of corrosive water damage at a large number 
of cable splice locations, extensive portions of 
GSFC's cable plant have had to be replaced to 
certify the plant for digital broadband LAN use. 
GSFC has two coaxial cables extending to each 
building from building 8. Nevertheless, for 
implementation of its initial LACN, GSFC has elected 
to use a single cable mid-split CATV/CCTV industry 
standard digital broadband LAN. Under this 
approach, a single :oaxial trunk is al located 17 
full duplex, 6 mhz channels in the 5 mhz to 300 mhz 
frequency band as illustrated in Figure A2. With 
two cables available and the use of 10 mbps modems 
operating in each of the 6 mhz channels, GSFC's 
broadband LAN has the potential for supporting a 
total aggregate data transfer capacity of 340 mbps 
throughout GSFC. An overview of the RF designs 
supporting GSFC's LACN is provided in Figure A3. 
The primary LAN components used in the broadband 
aspects of GSFC's LACN include: 

o multi-channel 192.5 mhz frequency translators 
from Bridge Communications, Inc.; 

351 



o splitter/combiners to accommodate 24 separate 
building circuit paths; and 

o Augat Broadband VFA 450 and VRA 200 20 db 
ampli!ier~ an~ Jerrold TF-108D-HE filters per 
b~1ld_1ng c1rcu1t path to isolate each building's 
c1rcu1t path from failures occurring elsewhere in 
the LACN. 

APPENDIX B - NilO/E OPERATION 

Inbound Data Flow from the Ethernet 

A simplified view of data flow from the Ethernet to 
the UniLINK network fol lows (Communication Machinery 
Corp., 1984). 

1) The ENP, driven by the Kerne I software, I i stens 
to the Ethernet for packets. Packets are recieved 
into on-board dual-ported RAM. The end of packet 
sequence causes the LANCE to signal the Ethernet 
receive process (ERxP). At power up the ERxP 
subroutine is downloaded to on-board RAM and the 
vector for the routine is loaded into the LANCE ERxP 
vector location. In operation the ERxP performs the 
fol lowing checks: 

a) If the destination address appears in 
the Device Map then discard the packet, 
since the destination is on the local 
Ethernet. 

b) If the destination does not appear in 
the Device Map then the destination is on a 
remote Ethernet. The source address is 
then checked in the Device Map for 
authority to access the bridge. If the 
address is not in the Device Map, it is 
added as a new source on the Bridge's 
Ethernet. New sources have default access 
to the Bridge. 

c) The Relay Transport Layer Process is 
signaled, which encapsulates the entire 
Ethernet packet in a UniLINK format, and 
signals the Subscriber Processor's Tx RAM 
server. 

d) All multi-cast packets are bridged 
through. 

2) The Subscriber Processor, via DMA, moves the 
UniLINK formatted packet to the Tx RAM (4 kbytes 
FIFO) from the dual ported RAM on the ENP. 

3) From Tx RAM the Network Controller hardware and 
firmware take over to send the data over the 
broadband network. 

Outbound Data Flow to the Ethernet 

A simplified view of the outbound data flow from the 
broadband UniLINK network to Ethernet fol lows. 

1) Every UniLINK packet is received and loaded into 
Rx RAM (8 kbytes FIFO) and the Subscriber Processor 
Rx RAM server is signaled. 

2) The Subscriber Processor, via DMA, moves the 
Uni LINK packet from Rx RAM on the Network Controller 
board to the dual port RAM on the ENP and signals 
the ENP UniLINK Receive Process. 

3) The destination address is checked: 

a) If the destination is not in the Device 
Map, then the packet is discarded. 

b) If the destination is in the Device 
Map,then the destination's authority for 
access to the bridge is verified. 

c) The Relay Transport Layer Process 
(RTLP)is signaled. The RTLP strips the 
U~iLINK format off the Ethernet packet and 
signals the LANCE to transmit the packet in 
dual port RAM. 

d) The Kernel firmware and LANCE transmit 
the packet onto Ethernet. 

e) Al I muti-cast packets are bridged 
through. 

APPENDIX C. JES UTILITY SOFTWARE (IBMJUT) 

The JES Utility enables DECnet users to submit JCL 
streams for execution on an IBM mainframe and to 
monitor the status of these jobs. The VAX user 
issues a SUBMIT/REMOTE command while the PDP user 
issues the NFT command. Just prlor to issuing these 
commands, the user wi I I have had to initiate a JES 
"session" via the invocation of the JES command (see 
below) at his or her terminal. This JES command 
establish~s a connection with software executing on 
the IBM side that enables the subsequent issuance of 
VMS DCL commands or RSX NFT commands that initiate 
IBM JES functions. 

For the VAX user, standard DCL commands are used 
which submit command procedure files to either 
submit a job for execution on the IBM mainframe or 
to print a file on the IBM printer subsystem. It 
should be noted that in either case the file of 
interest must reside on the IBM side of the network 
prior to issuance of the appropriate DCL command (a 
SEND command could have been previously issued to 
transfer the file to the IBM faci I ity). 

352 

For the PDP user, the standard NFT Uti I ity is used 
to submit jobs or print files on the remote IBM 
node. The PDP user has two choices regarding the 
submission of a job to the IBM remote: (1) the file 
can already exist at the IBM node in which case the 
execute option (/EX) of the NFT command is used or 
(2) ~ file can be transferred then automatically 
submitted from the remote DEC node using the submit 
option (/SB) of the NFT command. In the case where a 
file is to be printed on the remote IBM printer the 
spool option (/SP) of the NFT command is used. Here, 
however, the file to be printed must not reside on 
the IBM mainframe in order for the spool option to 
function properly. 

In order for any of the remote DEC users to submit 
work for the IBM JES, the JES User Interface Task 
must first be invoked. This is accomplished by 
typing in the 'JES' command at the user terminal 
with appropriate qua I ifiers that tailor the JES 
Uti I ity session. Examples of these qua I ifiers 
include: IBM node name, username, password, account 
number, etc. Once this JES Uti I ity session has been 
established, the DEC user can issue various JES 
commands: FETCH a job's output datasets to the 
local DECnet node; PURGE unwanted job output; SHOW 
the status of jobs submitted; and, EXIT the JES 
Ut i I i ty session . 



APPENDIX D - GSFC LOCAL COMPUTERS IN THE LACN 

This appendix provides separate lists of major GSFC local computers 
which 1) were already functioning in GSFC's LACN as of Apri I 15, 1986 
and 2) were planning to interface with the GSFC LACN by the end of 1986. 
The lists are only partially complete in that no XNS-enabled computers 
(mostly PCs) are I isted. Also, some major computers had not yet 
finalized their 1986 network interface plans. 

In the lists, multiple entries in the "protocol" column do not 
necessarily imply gatewaying, but rather concurrent and logically 
separate participation in the logically separate networks enabled by the 
protocols. 

PA~TIAL LIST OF GSFC LOCAL DATA SYSTEMS ON-LINE TO SESNET/LACN (PAGE l OF 3l 
AS OF 4/15/85 

DIVISION LEVEL ORGANIZATION 

MISSION OPERATIONS DIVISION/510 

DATA SYSTEMS TECHNOLOGY LABORATORY/520 

lNFORMATION PROCESSING DIVISION/550 

LABORATORY FOR ATMOSPHERES/510 

LABORATORY FOR TERRESTRIAL PHYSICS/620 

NASA SPACE ANO EARTH SCIENCES COMPUTING 
CENTER <NSESCCl/530.l 

NATIONAL SPACE SCIENCE DATA CENTER 
<NSSDCl/530.2 

uODDARD IMAGE ANO INFORMATION ANALYSIS 
CENTER (GllAC)/530.3 

LABORATORY FOR HIGH ENERGY ASTROPHYSICS/660 

LABORATORY FOR ASTRONOMY & SOLAR PHYSICS/680 

LABORATORY FOR EXTRATERRESTRIAL PHYSICS/690 

APPLIED ENGINEERING DIVIS!ON/730 

SPECIAL PAYLOADS DIVISION/740 

tNGINEERING SERVICES DIVISION/750 

COMPUTER SYSTEM 

VALID WORKSTATION 

DEC VAX 8500 
DEC VAX-11/785 
DEC VAX-111750 
VALID WORKSTATION 
VALID WORKSTATION 
VALID WORKSTATION 
VALID WORKSTATION 
IRIS WORKSTATION 

VALID WORKSTATION 
VALID WORKSTATION 

DEC VAX-11/780 
DEC VAX-111780 
DEC M1cRoVAX II 
DEC M1cRoVAX I 
DEC M1cRoVAX I 
DEC M1cRoVAX I 
DEC VAX-111780 

IBM 3081K (CPUOl 
<CPUll 

AMDAHL 470 V/5-ll 
AMDAHL 470 V/7B 
CDC CYBER 205 

DEC VAX-11/780 
DEC PDP-11/23 

DEC VAX-11/780 
DEC VAX-111780 
DEC M1CR0VAX I 
SUN MICROSYSTEMS 

WORKSTATION 

DEC PDP-11/44 
VALID WORKSTATION 
DEC PDP-11/44 
DEC VAX-111750 
DEC VAX-111750 

DEC VAX-11/730 
DEC VAX-11/785 

DEC VAX-11/780 

DEC VAX-11/780 

DEC M1CR0VAX II 

353 

NODE 
-1JM1L 

VLSl8 

DSTL86 
DSTL85 
KIRK 
VLSll 
VLSl2 
VLSl6 
VLSl7 
CAD522 

VLSI4 
VLSl5 

PACF 
YAP 
MVl 
MV2 
MV3 
MV4 
LTP 

SCFVM 
SCFMVS 
VPFVM 
VPFMVS 
CY2 

NSSDC 
OPTDSK 

MPP 
!AF 
MV5 
SUN2 

BBXRT 
VLSI3 
STARS 
CHAMP 
UIT 

SIRIS 
LEPVAX 

CSDR 

VX740 

ELDYN 

BUILDING 
/ROOM 

14/TBD 

23/N405 
23/N405 
23/N405 
23/N405 
23/N405 
23/E407 
23/W426 
23/N405 

23/W320 
29TBD 

21/C222 
22/111 
22/384 
22/384 
22/384 
22/384 
16W/N70 

1/5 
1/6 
22/G87 
22/G87 
22/G87 

26/121 
26/121 

28/Wl89 
28/W294 
28/\o/294 
28/Wl20R 

21264 
2/TBD 
21/GC21 
21/GC21 
21/GC21 

21234 
2/Sll4 

7 /El78 

5/C235 

21/Ll08 

PROTOCOL• 

T 

D , T 
u 
D 
T 
T 
T 
T 
T 

T 
T 

D 
D 
D 
D 
D 
D 
D 

B 
B D 
B 
B R 
R 

D 
D 

D , T 
D 
D 
T 

D 
T 
D 
D 
D 

D 
D 

D 

D 

D 



ADDlTlONAL GSFC LOCAL DATA SYSTEMS WlTH SESNET/LACN INTERFACE PLANS BY END OF FY86 (PAGE 
AS OF 4/15/86 

DIVISION LEVEL ORGANIZATION COMPUTER SYSTEM 

MISSION OPERATIONS U!VISION/510 DEC VAX 8600 
DEC VAX-11/785 
DEC PDP-11/84 

DATA SYSTEMS TECHNOLOGY LABORATORY/520 DEC PDP-11144 
UEC VAX STATION [[ 

DEC VAX STATION Il 

NASA COMMUNICATIONS DIVISION/540 DEC PR0350 

FLIGHT DYNAMICS D1v1s10N/550 DEC VAX 8600 
DEC VAX-111780 

lNFORMATION PROCESSING D!VISION/560 DEC VAX-111785 

ORBITING SATELLITES PROJECT/602 DEC VAX-111750 
DEC VAX-111750 
DEC VAX-11/730 

LABORATORY FOR ATMOSPHERES/610 DEC M1cRoVAX ll 
DEC MICROVAX Il 
DEC MI CROVAX [ [ 
DEC PDP-11170 
MASSCOMP MC-500DP 

NATIONAL SPACE SCIENCE DATA CENTER DEC VAX 8600 
lNSSDCl /630. 2 DEC M1cRoVAX lI 

LABORATORY FOR HIGH ENERGY ASTROPHYSICS/660 DEC PDP-11/44 

LABORATORY FOR OcEANs/670 DEC VAX-11/750 
DEC MICROVAX II 
DEC MICROVAX II 

LABORATORY FOR ASTRONOMY & SOLAR PHYSICS/680 DEC VAX-111750 

LABORATORY FOR EXTRATERRESTRIAL PHYS!CS/6~0 DEC MICROVAX Il 
SPACE TECHNOLOGY D!VISION/710 DEC VAX-11/780 

DEC VAX-111750 
DEC M1cRoVAX I I 

APPLIED ENGINEERING D!VISION/730 DEC VAX-11/750 
DEC VAX-111750 
DEC VAX-11/750 
DEC VAX-11/780 
DEC VAX-11/750 
DEC VAX-11/785 
DEC VAX-111750 

• B - BITNET ([BM), D - DECNET <DEC), H - HYPERCHANNEL (NSC), 
K - RHF (CDC LCNl, T - TCP/IP (DARPA), X - XNS (XERoxl 

354 

NODE BUILDING 
NAME /RooM 

GROSF 14/S287A 
ESTIFA 14/\o/22 
ESTIFV 14/\o/22 

DSTL44 23/N405 
TBD 23/N405 
TBD 23/N405 

PR0350 12/El26 

TBD 23/TBD 
TBD 23/TBD 

lPDGW 23/N304 

TBD 7 ITBD 
TED 7/Tl!D 
TBD 7/TBD 
DEIO l l/El38 
DE6I4 l l/El38 
DE696 TBD 
PACF70 2l/C222 
TBD TilD 

TED 26/121 
TBD 2/TBD 

EGRET 21264 

OCEAN! 221291 
OCEAN2 22129I 
OCEAN3 221289 

HRS 21/GC21 

SIRlS2 21/Tl>D 

TBD 11/TBD 
TBD 5/TBD 
TilD 5/TBD 

FI RAS 7 /El72 
DIRBE 7 /El72 
DMR 19/El3 
VX730 ll/El38 
VAX731 5/113A 
VX75Q 5/W214A 
VX7508 5/W214A 

[ OF 3) 

PROTOCOL* 

D 
D 
u 

D T 
D 
D 

D 

D 
D 

D H 

D 
D 
D 
D 
D 
D 
D 
T 

D T 
D 

D 

D 
D 
D 

D 

D 

D 
D 
D 

D 
D 
D 
D 
D 
D 
D 



UNOFFICIAL PARTIAL LIST OF MO&DSD LOCAL DATA SYSTEMS 
TO INTERFACE WITH UNIFIED HYPERCHANNEL-BASED LAN 

NODE BUILDING 
DIVISION LEVEL ORGANIZATION COMPUTER SYSTEM NAME /RooM PROTOCOL• 

MISSION OPERATIONS DIVISION/510 DEC VAX-1 I/785 DOC! I4/TllD H 
DEC VAX-11/785 DOC2 I4/TBD H 
IBM 4341 CMS! 14/TllD H 
IBM 4341 CMS2 I4/TBD H 
DEC PDP-11170 APOl/4 14/Tllll H 
DEC PDP-11/44 SPF! 14/TBD H 
DEC PDP-11/44 SPF2 14/TBD H 

DATA SYSTEMS TECHNOLOGY LABORATORY/520 DEC PDP-11/44 DSTL44 23/N405 H. D. T 
DEC VAX 8500 DSTL80 23/N405 H. D. T 
IBM 4341 SSP 3/Sl91 H 

FLIGHT DYNAMICS DtVISION/5)0 NAS 8040 FDFl 3/Sl91 H 
NAS 8040 FDF2 3/Sl91 H 

INFORMATION PROCESSING DIVISION/5bQ DEC YAX-111785 IPDGW 23/W304 H. D 
IBM 4341 MACS 23/C425 H 
SPERRY UN I Vi\C 1100/82 TPF 23/N218 H 
TBD CDHF 23/E418 H 
IilM 370/145 TE LOPS 23/Nl20 H 

• Ii - ll!TNET ( !8M). D - DE(NET <UEO. H - HYPERCHANNEL <NSO. 
R - RHF <CDC LCN), T - TCP/IP <DARPAl. X - XNS CXERox) 

APPENDIX E - MANUFACTURERS OF MAJOR SUBSYSTEMS IN 
GSFC'S LACN 

Appl itek Corporation 
107 Audubon Rd 
Wakefield, MA 01880 

Auscom, Inc. 
2007 Kramer Lane, Suite 102 
Austin, Texas 78758 

Bridge Communications, Inc. 
10401 Bubb Rd. 
Cupertino, California 95104 

Digital Equipment Corporation 
Maynard, MA 01754 

Excelan, Inc. 
2180 Forture Dr. 
San Jose, California 95131 

Interlink Computer Sciences, Inc. 
39055 Hastings Street Suite 203 
Fremont, California 94538 

Rolm Corporation 
4900 Old Ironsides Dr. 
Mai I Stop 626 
Santa Clara, CA 95050 

Vital ink Communications Corporation 
1350 Charleston Road 
Mountain View, CA 94043 

Wollongong Group, Inc. 
1129 San Antonio Road 
Palo Alto, CA 94303 

3Com 
1390 Shorebird Way 
Mountain View, California 94043 

ASCII 

BER 

bps 

CATV 

CCTV 

CDC 

CMC 

CPU 

CSMA/CD 

DCL 

355 

GLOSSARY 

American standards character for 
information interchange 

Bit error rate 

bits per second 

Community antenna television 

Closed circuit television 

Control Data Corporation 

Communication Machinery Corporation 

Central processing unit 

Carrier sense multiple access with 
collision detection 

Digital command language 



DDCMP 

DEC 

Digital data communications management 
protocol 

Digital Equipment Corporation 

DMA Direct memory access 

DMRll Communications interface for the Unibus 

DNA Digital Network Architecture 

DRll para I lel interface for the Unibus 

DZll serial interface for the Unibus 

EBCDIC Extended binary coded decimal interchange 
code 

ENP Ethernet Node Processor 

FIFO First in first out 

FPS Floating Point Systems 

FTP Fi le transfer protocol 

gbytes gigabytes 

GSFC Goddard Space Flight Center 

hz hertz 

I/O Input/output 

IBM International Business Machines 

IEEE Institute of Electrical and Electronics 
Engineers 

IMP Interface message processor 

IP Internet protocol 

ISAM Index sequential access method 

ISO International Standards Organization 

!SPF Interactive system productivity faci I ity 

JCL Job control language of IBM 

JES Job entry subsystem of IBM 

kbps kilobits per second 

kbytes 

LACN 

LAN 

LANCE 

mbps 

mbytes 

ki I obytes 

Local area computer network including the 
local area communications subnet 

Local area network 

Local area network controller for Ethernet 

megabits per second 

megabytes 

mhz megahertz 

MPU Micro processing unit 

MVS/SP Multiple virtual storage 

NASA N a t i o n a I A e r o n a u t i c s a n d S p a c e 
Administration 

NFT network file transfer utility of DEC RSX 

NJE Network job entry of IBM 

NMS Network monitoring station 

NSESCC NASA Space and Earth Sciences Computing 
Center 

OSI Open Systems Interconnection 

PABX Private automatic branch exchange 

PC Personal computer 

PTT Pass through task 

QPSK Quadrature phase shift keying 

QSAM Queued sequential access method 

RAM Random acccess memory 

RF Radio frequency 

RF! Radio frequency interference 

ROM Read only memory 

RSCS Remote spooling communications subsystem 

RSX DEC operating system for the PDP family of 
computers (specifically RSX-llM-PLUS for 
the PDP 11/73) 

RTLP Relay transport layer process 

SMTP Simple mai I transfer protocol 

SNA System network architecture of IBM 

SPAN Space Physics Analysis Network 

Tl 1.544 mhz bandwidth transmission channel 

TCP Transmission control protocol 

TELNET Te I net v i rt u a I term i n a I pro to co I a n d 
options 

TSO Time sharing option of IBM MVS/SP operating 
system 

UniLINK Appl itek's proprietary protocol that runs 
on the Applitek NilO/E Ethernet Bridge 

VLSI 

VM 

VMS 

Very large scale integration 

Virtual memory operating system of IBM 

DEC operating system for the VAX family of 
computers 

VSAM Virtual sequential access method of IBM 

XNA Xerox network architecture 

XNS A particular implementation of XNA 

356 



References 

Applitek Corp., Applitek Product Description: 
Ethernet Bridge, October 1985. 

Applitek Corp., Applitek Product Description: 
Network Management System, October 1985. 

Applitek Corp., Applitek Product Description: 
Broadband RF Modem, October 1985. 

Applitek Corp., Applitek Product Description: 
Baseband Modem, October 1985. 

Applitek Corp., Applitek Product Description: 
Optical Fiber Tap, October 1985. 

Appl itek Corp., Appl itek Product Description: 
NilO/DRll, October 1985. 

Applitek Corp., Applitek UniLAN Concepts: NilO/T 
Software Version 1.1, March 1985. 

Berman, R. L.,_Local Area Network Vendor Survey and 
Recommendation, Computer Sciences Corporation, 
CSC/TM 82/6134, August 1982. 

Communication Machinery Corp., Ethernet Node 
Processor (ENP) Kernel Software Manuar;-i'ictober 
1984 --

Dahod, A. M., lOM-bps LAN Combines Benefits of 
CSMA/CD and Token Passing, Mini-Micro Systems, 
November 1983. 

Dahod, A. M., Multiple Access Method Embraces 
Popular Local Net Schemes, Data Communications, 
November 1983. 

The Ethernet, 6 Local Area Network, Data Link 
Layer and Physical Layer Specification, DEC, 
Intel, Xerox, Version 2 AA-K759B-TK, 
November 1982. 

Farmer, M., Auscom's Protocol Specification for IBM 
to Ethernet, Auscom, Inc . , December 1982. - -

Farmer, M., Private Communication, April 21, 1983 

Gary, J.P. and E. D. Rothe, ADP Feasibility Study 
for Space and Earth Science5"Network (SESnet) 
Stage I (1985/1986), April 24, 1985. 

Green, J. L., and D. J. Peters (editors), Data 
Systems Users Working Group (DSUWG), Introduction 
.!!2 the Space Physics Analysis Network (SPAN) -
First Edition, NASA Technical Memorandum NASA 
TM-86499, April 1985. 

357 

Halem, M. et al., Space Data and Computing Division 
Program Plan: Fiscal ~ 1985-1990, Apri I 25, 
1985. 

IEEE-802 LAN Family of Standards, IEEE Press, 
December 1984. 

Interlink, Remote Node Users Guide Publication No. 
UG01RN.3.2U, November-r;-1985. ' 

Interlink, IBMmvs/DECnet Gateway Installation Guide 
Publication No. IG01BAS.2C, September 1985.~~' 

Interlink, Network File Transfer User's Guide 
Publication No. UG02NFT2.3U, J~ 15, 1986. 

Interlink, Translation Record Definition Utility 
~~.Publication No. UG01TRDU.2.2U, 
November 11, 1985. 

Interlink, Task to Task Handler User's Guide, 
Publication NO":° UGOlTTH.1.0U, March 15, 1986. 

Interlink, System 3711 Installation Guide, Version 
~'Publication #8404, revised November 1984. 

Interlink Technical Proposal, NASA/Goddard Space 
Flight Center Solicitation No. RFP5-36923/039, 
September 1985. 

Lehtonen, K. E., Alternative Methods for Networking 
DEC Host Computers with !.!!. IBM 3081 Host 
Computer, White Paper, January 1983. 

Lehtenon, K. E. and J.P. Gary, Guidelines for Usage 
of NSESCC IBMmvs/DECnet Gateway, SESC-UG19-00, 
March 1986. 

Mish, W. H., Networking DEC and IBM Computers, 
Proceedings of the Digital Eguipment Computer 
Users Society, May 1983. 

Mish, W. H., K. E. Lehtonen, and J. P. Gary, 
Specifications for ! System to Enable High Speed 
DECnet Functionality£!!_!.!!. IBM Mainframe, 
NASA/GSFC RFP5-36923/039, issued August 29, 1985. 

Rebibo, K. K. and H. G. Miller, Sciences Directorate 
Local Area Network Study, MITRE Corporation 
Metrek Division, WP 82W00428, August 19g2. 



.[ 
- GREENBELT 

GODDARD SPACE FLIGHT CENTER 

LOCATION MAP ~ 

N 

500· 0 500 
,...., H I 

GRAPHIC SCALE 

Figure 1. GSFC Building Location Map 

Division Level Organizations Computer System_ 

Data Systems Technology Laboratory DEC VAX-11/780 
DEC VAX-11/785 
DEC VAX-11/750 

Laboratory for Atmospheres/610 DEC VAX-11/780 
DEC VAX-11/780 
DEC MicroVAX II 
DEC MicroVAX I 
DEC MicroVAX I 
DEC MicroVAX I 

Laboratory for Terrestrial Physics/620 DEC VAX-11/780 

NASA Space and Earth Sciences Computing Center 
(NSESCC)/630.1 

National Space Science Data Center (NSSDC)/630.2 

Goddard Image and Infonnation Analysis Center 
(GilAC)/630.3 

Laboratory for High Energy Astrophysics/660 

Laboratory for Astronomy & Solar Physics/680 

Laboratory for Extraterrestrial Physics/690 

IBM 3081K (CPUO) 
(CPU!) 

Amdahl 470 V/6-Il 
Amdahl 470 V/78 
CDC CYBER 205 

DEC VAX-11/780 
DEC PDP-11/23 
MODCOMP Classic II 

DEC VAX-11/780 
DEC VAX-11/780 
DEC MicroVAX I 
Sun Microsystems 

Workstation 

DEC PDP-11/70 
DEC PDP-11/44 
DEC PDP-11/44 
DEC PDP-11/34 

DEC PDP-11/44 
DEC VAX-11/750 

DEC VAX-11/730 
DEC VAX-11/785 

Applied Engineering Division/730 DEC VAX-11/780 

Figure 2. Partial List of GSFC Computers 

Interconnected via the LACN 

358 

to 

~ Buildin9/Room Location 

86 23/N405 
DSTL85 23/N405 
KIRK 23/N405 

PACF 21/C222 
VAP 22/ 111 
MVl 22/384 
MV2 22/ 384 
MV3 22/ 384 
MV4 22/384 

LTP 16W/N70 

SCFVM 1/6 
SCFMVS 1/6 
VPFVM 22/G87 
VPFMVS 22/G87 
CY2 22/G87 

NSSDC 26/121 
OPTDSK 26/121 
MODCOMP 26/121 

MPP 28/Wl89 
!AF 28/W294 
MV5 28/ 294 
SUN2 28/Wl20R 

LHEA 2/S214 
BBXRT 2/264 
EGRET 2/56 
GRIS 2/210 

STARS 21/GC21 
CHAMP 21/GC21 

SIR IS 2/234 
LEPVAX 2/Sl 14 

CSDR ll/E240 

be Initially 



(fJ 

a: 
w 
>­
<i: 
_J 

ii) 
0 
0 
(fJ 

7 

6 

5 

4 

3 

2 

r"""'""'""'"'""""'"""""""'""""""""'""'~ 
0::- i=' 

[ '"'""""'""""""'"""""""'""'""'"""'""""'1 
i=' ~ 

w w 0.... ...._ z z ::::::: 
0.... 0 0 0.... 

Cf) 0 w "'~'''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''1 w 0 Cf) 
z !:::.. 0 0 !:::.. z x z - t """"'""""'""'""""""""""'""'"'"""""""l 

- z x 
<( <( 0 z z 0 

0 0 0 0 

J~"""''"''''"''"'''''"'''''''''''"''''''''''''''"'"''"'''''''''''''''":s 

L""'"'...,l u N IL INK L"'"'"" ETHERNET ETHERNET 
~ BROADBAND 

GSFC LACN ARCHITECTURE 

Figure 3. GSFC LACN Architectural Reference Model 

~--­
~ 

f'\A IN VIDEO TRUNK 
LINES 

(COAX ONLY) 

GODDARD UNDERGROUND CABLE 
NETWORK (CCTV, AUD I 0, AND 
VIDEO CIRCUITS) 

Figure 4. 

GSFC CCTV CABLE PLANT 

3 COAX e ONE 4 OR 6 PAIR CABLE 
2 VIDEO CIRCUITS ~ 
.1 RF CIRCUIT RCA 

4 OR 6 AUDIO ~ ~ 
CIRCUITS /V 

25 

13 

GSFC CCTV Underground Coaxial Cable Plant 

359 



ETHERNET 

~ ., 
.Cl 
-0 ., 
0 ... 

CD 

NUMBER OF BrTS 
OR BIT -TIMES 

3 5-inch 
m1 c rofl opp y 

Sub3cr1 ber 
p roce330 r 
(68000 
micro-

proce33or) 

ETHERNET 

1 
Device 

Net'w'ork 1 nte rface 
Medi a - proces3or 

H acce33 H (8-b1t b1pol~r (68000) 
Unit proce33or) Dual-

RX/TX RAM ported 
RAM 

'1' '1' 

..... ...:! __:l 

IEEE 796 Multibus 

Figure 5. NilO/E Ethernet Bridge Configuration 

NUMBER OF BITS 
OR BIT -TIMES 96 56 8 48 48 16 368 lo 12000 

z 
0 (/) w (/) 
f- (/) 0 (/) 

0 <( w a: w w 
GUARD SYNC u_ z a: :J a: Q_ 

~~ ~ DA TA (/) oo 
(/) 0 w <( <( 

0 

96 48 16 32 8 16 32 488 to 32000 

0 z 
w (/) a: Q (/) 

GUARD SYNC 
I 0 (/) 0 f- (/) 

UniLINK 
f- a: w w a: <( w (!) DATA (ENCAPSULATED ETHERNET PACKET) :J a: "- ~a: z w 
w oo ~ 0 f- 0 
_J U)O <( U>o 

<( w 1!5 <( 
I 

65535 0 1 2 3 • • • • 
65535 0 1 2 

TIME DIVISION MULTIPLE ACCESS (TOMA) 

GSFC LACN DATALINK PROTOCOLS 

Figure 6. UniLINK Encapsulation of Ethernet Packets 

360 

32 

0 
a: 
0 

16 

0 a: 
0 

<( 
f-
<( 
0 



OMPUTER: ADDRESS S 

ETHERNET/BROADBAND 
NI 10/E 

CRC 

ETHERNET 

COMPUTER: ADDRESS D 

D S T 

ETHERNET/BROADBAND 
NI 10/E 

DATA TRANSMISSION ON THE GSFC LACN 

Figure 7. End-to-End Transmissions through GSFC's LACN 

IBM 
370 Archi lecture 

M11infr11me 
or 

Mini computer 

'\_/" 
Chennel 

Block 
Multiplexers 

r 
Interlink 3711 Network Controller 

MicroPDP-11 /23 
or 

MicroPOP-11173 

Q-Bus 

DEQNA 

IBM Bus end T11g Coble Tr11nscei11er C11ble 

CRC 

Figure 8. Inter I ink IBMmvs/DECnet Gateway Interface to GSFC LACN 

361 



', 

BLDG 3114 

510 

BLDG 2J 

soo 
SOJ 
520 
550 
560 

SCfJ 660~ 610~ 1 690 -j_ 680 -j_ 
BLDG 1 BLOG 1 BLDG 11 

BLDG 11 BLDG 5 BLDG 16 

flBfR OPTIC UNKS 

Figure 9. Current GSFC LACN Configuration 

Bldg I 

81llg21 

B!dg I 

VPF 

CYBER 205 

((T\/ 

ETHERNET I 

620 

Figure lOA. GSFC LACN Intra-Bui !ding Ethernets Using Channel 3'/P 

362 

Bldg 1&W 



,.... 
" U'O 

r..:i s:l 
ti] .. 

'\ " lfJ ::l 
f"' 0 ... .a 
cc f"' 

'-' 

50 

45 

4-0 

35 

30 

25 

20 

J5 

JO 

5 

0 

Figure 108 

MODSIN/TMIS 
LOCAL AREA NETWORK 

PHYSICAL CONNECTIONS 

GSFC LACN Intra-Building Ethernets Using Channel 5'/S 

18:27 21:19 00:20 03:14 06:JJ 08:59 JJ:54 14-:38 

Figure 11. Example Display of Data Traffic Activity on One Inter­

Bui lding Channel of GSFC's LACN; 6 min averages are 
plotted as a function of time. 

363 



26 21 

k.IRK 

(IPD~-

Space and Earth Sciences Local Area Network (SESnet) 
1 O Mbps Digital Communications Subnet 

with Nodes Running~ 

2 

LEPVAX 

EGRET 

SBXRT 

LHE'A 

as of March 27, 1986 

SCFMV' 

OMR11 Link 

11 22 

~----t-COflE 

( ) • t __ ~_=_] Nodes and/or 1nlerfcices pldnned w1th1n next J rnon1hs 

16W 

l TP 

CCTV Cable 
(broadband) 

E1hernet 
Segrnent 
(baseband) 

Fiber Optic 
L tnk 

Figure 12. DECnet-Enabled Computer Networking 1n GSFC's LACN 

SESnet DECnet Interconnections with NSESCC & SPAN 

fi30 1 

Space and Earih Sciences Local Are3 Network: 
Etriernets, CCTV & Appl1tek Ni 1 o.:Es of 1 0 Mbps Bus Not Shown 

rw1sted 1 9.2 
pairs Kbps 

NSSDC 9 6 Kbps 
'/AX 1 L780 1-----------t SPAN 

- - - - - - - - - - - - - ,-'.J-E-c.-net ~;::1-ule-r - --soo+ Nodes 
OPTDSK : P'.JP 11 /23 - - - s of 12:8c 

•-----j PDP 11/23 --~ ------
3-56 Kops 

MPP 630 3 
VAX 11nao 

IAF 4 8 Kbps dia!-up 
VAX ~1.780 >----------; 

VAP 
VAX 111780 

MV1-MV5 
uVAXs 

cCN 50 Mbps 
PACF 

VAX 11/780 ,--

VPFVM 
V/6 

L TP 
VAX11-780 

LHEA 
POP 11170 

BBXRT 
POP 1L'44 

EGRET 
PDP 11:44 

CHAMP 680 
VAX 11.750 

UIT 
VAX 11.:750 

STARS 
PDP 11/44 

'.JSTL86 520 
VAX 8600 

560 

LEPVAX 690 
VAX 11/785 <------~ 730 

SIRIS 
VAX 11:730 

V1!311nk 
Trans LAN 

S6 KBPS 

Figure 13. DECnet-Enabled Logical Topology of GSFC's LACN 

364 



26 

1400 

1200 

........._ 
(/} 

1000 0., 
i::o 
~ 

i:x:i 
E-

~ 800 
0:: 
i:x:i 
(x.. 
(/} 

z 
~ 600 
E-

400 

200 

21 

Space and Earth Sciences Local Area Network (SESnet) 
1 O Mbps Digital Communications Subnet 

with Nodes Running TCP/IP 
as of March 27, 1mra-

8 

(";:i;;;;;rlif:iii'r,..~--- 6r::~;1c~a;;~~~alor for 
(60-661252-258 Mhz) 

2 28 

CClV Cable 
(broadband) 

NSSDC PACF 

Ethernet 
Segment 
(baseband) 

6 

23 

MASS­
COMP 

LEPVAXj­

VLSl3 

(G.W.lo} .. 
SCFVM 

22 16W 

YAP 

Fiber Optic 
Link 

Figure 14. TCP/IP-Enabled Computer Networking 1n GSFC's LACN 

INTRA-BUILDING 

---EFFECT---OF----RECORD----SIZE 

ON PERFORMANCE OVER 

ETHERNET 

' -

(MEMORY-TO-MEMORY) 

7 8 9 10 11 12 
RECORD SIZE (BYTES - POWER OF 2) 

Figure 15. Memory-to-Memory Throughput Performance Using Different 

Record Sizes 
365 

13 



1400 

1200 

g:: 1 000 ~ 
iXl 
;:.::: 

kl 
E-

~ 
o:; 
kl 
k. 
fJJ 
z 
~ 
E-

800 ~ 
INTRA-BUILDING -j 

EFFECT OF NUMBER 

60J OF 1024 BYTE RECORDS 

40J 
SENT OVER ETHERNET 

(MEMORY-TO-MEMORY) 

2J 
-1 0 1 2 3 

NUMBER OF RECORDS SENT (POWER OF 10) 

Figure 16. Memory-to-Memory Throughput Performance Using Different 

Record Counts 

SESNET PERFORMANCE DATA 
lnterlfnlt Throughtput Performunce 

Record size X Durotlon (Number of records senO X Rote 
o:. i lob its/Second) 

250 

150 

100 

50 

250 

200 

• I 00 eyte Recoro SI~ 

I SO 9 200 Byte Re<:onl S11e 

..,_ 300 Byt. Record Size 

I 00 + 400 Byte Re<:onl Size 

.;,. 500 Byte Re<:oni Sile 

50 

Figure 17. Inter-Building Disk-to-Disk Throughput Performance 

Through the Interlink Gateway 

366 

4 



mM._3270 IECHNOLOOY USING A BROADBAND LAN 

BLDG I 

L 
A 

N 

tOC.U 
3274 

CLUSTERS 

IBm 
3725 

Figure 18. IBM 3270 Technology Using GSFC's Broadband LAN 

L lP 

\IAX- I I 1780 

MVI 

NicrD'f'Oll I 

MV2 

MicroVo" t 

(A.!i Of- Zt2tJttSS) 

ETHEHHET LllH I 

BLOG 16W SEUM[Nl 
130 Mctcr:i 

960 Meter:> 

ETHEHHET LllH2 

BLOG ZZ SEGMUH 
117 Meter;, 

650 Mc tcr::i 

D 
[ LAS 
u 
N 

\IAX-tt/790 A 

n 
[ MPP 
u 
N 
A 

MV3 

Nlk:r-oYox I 

MVi 

MK;ro'fol'I r 

MVS 

MkroVox I 

Figure Al. Initial GSFC LACN Links Using Fiber Optic Cables 

367 



!El::!:: 8U2. 4 ~'Rl::QUENCY ALLUCATIUN 

FOR BROADBAND LANs 

(E!A TR4U.l) 

17 FULL-DUPLEX DATA CHANNl::LS 

INBOUND T7 TB T9 TlO Tll Tl2 Tl3 Tl4 2' 3' 4' 4A' 5' 6' FM!' FM2' FMJ' 
CHANNl::LS 

12 18 24 30 36 42 48 54 6U 66 72 78 84 9U 96 1U2 108 MHz 

WlTH 
Rt:: SP I:: CT TO 

llEAOENO 

Ol!rHOUND K L M 0 T w 
CHANN!::LS 

162 168 174 22< 228 234 24() 246 252 258 264 27U 276 282 288 294 3UU MHz 

11 12 13 

18U 186 192 198 204 2lU 216 MHz 

RoSl::RVl::U FUR vrnrn 

Figure A2. Mid-Split Frequency Al locations for 5-300 Mhz Band 

GSFC LACN RF DESIGN 

Headend Bldg 8 

FREQUENCY TRANSLATOR 
BACKUP 

BW30MHz 

FREQUENCY TRANSLATOR 
PRIME 

BW30MHz 

Figure A3. GSFC LACN RF Design 

368 

..._ 
11 
.. , _ _,Rx 

Bldg n RF rack 

Tx 
APPLITEK 

Tx 
APPLITEK 







ALL-IN-1: 
A New Road to Effective Applications 

Barclay Brown 
Digital Equipment Corporation 

Charlotte, NC 

As aoplication development costs rise and the need 
for applications becomes more acute. data 

processing professionals are searching for better 
ways to develop the many applicatjons thejr users 

yearn for. This paper djscusses. jn a semi-technical 
style. the capabilities of Digital's All-IN-1to help 
you develop data processjng applications quickly 
and easily by freeing you from the more mundane 

parts of the application process. 

Webster's New World Dictionary defines the word 
application as a noun, meaning a putting to use, also 
indicating continued mental or physical exertion. 

As the 1980's become the years of new 
applications of computing and information 
technology, Webster's dictionary definition of the 
word application seems to fairly hit the mark in 
describing the experiences of many software 
development groups. Fortunately, there are on the 
horizon new tools for application development that 
promise greater programmer productivity, enabling 
applications to be developed more quickly and 
efficiently, and allowing for easy later 
modification. So-called fourth generation 
languages, application environments, screen 
handling systems, report writers, graphics 
packages, data management tools, data base 
systems and even automatic application generators 
have been making the rounds in software circles 
lately. 

A Tool of the Trade 

In this article, we will discuss one such tool. You 
have propably already heard of it, but you, like 
many, including even users themselves, might not 
be aware of Its ability to aid in the application 
development process. I'm talking about Digltal's 

Proceedings of the Digital Equipment Computer Users Society 

371 

All-IN-1, the leading integrated office system, 
with over 35% of that market to Its credit. All-IN-
1 achieved this distinction with clearly superior 
word processing, electronic messaging, time 
management, desk management and communication 
capabilities, but there is yet another important side 
to this comprehensive system. A conceptual 
understanding of All-IN-1 's underlying application 
architecture will reveal some astonishing tools 
available to application developers. 

To say it another way, the standard equipment of 
ALL-IN-1: word processing, electronic messaging, 
file cabinet and time management are actually 
applications that were created using All-IN-1 's 
built-in application development tools. These very 
same tools are available to your application 
developers, who, with a little practice, can use 
them to prototype or create new applications 
quickly and easily! As a by-product, these custom 
applications become part of your existing All-IN-1 
office system. 

The Application Road: Country Lane 
or Autobahn 

If we look at the real costs of developing computer 
applications, we begin to find that the preliminary 
phases of specifying, designing and prototyping, and 
the later phases of support, training and future 

Dallas Texas· 1986 



enhancements consume much more time and 
resources than the sysem coding itself. Digital's 
experience in bringing software to the market 
bears this out. Most of the costs are incurred 
before or after the actual coding of the application. 

Using an application development tool such as ALL­
IN-1 allows you to move an application from the 
idea stage to the prototype stage quickly--you get a 
feel for how the application will look and perform. 

We call it creating a user interface. This 
application shell can then be demonstrated and when 
constructive input is received, the shell can be 
easily modified and presented again. It is much 
easier to evaluate an application in its real 
environment--on the screen of a terminal, than in a 
dry functional or design document. When the final 
design is agreed upon, there is no need to scrap the 
prototype user interface in order to begin coding. 
The user interface can simply be fleshed out with 
whatever features are necessary to give the 
application its complete functionality. 

Since ALL-IN-1 gives you--the application 
developer--access to the same tools that the 
developer of say, ALL-IN-1 Word Processing had, 
the applications you develop can look and act just 
like ALL-IN-1 's standard applications. The user 
interface will be consistent, keystrokes will be 

similar, and on-line help and computer based 

instruction lessons can be added easily--your 
application will appear as if it is an integral part of 
ALL-IN-1, which as you will soon see, it is indeed! 

How the ALL got into ALL-IN-1 

ALL-IN-1, as evidenced by its standard equipment 

applications, serves as a Grand Central Station for 
many other tools and packages in the rich VAXNMS 
application software collection. Together with ALL­
IN-1, these packages form the VAX Information 
Architecture (VIA). Via, in Latin, means way 
or road so VIA is literally an application highway 
down which your application may travel, making 
use of the many roadside services and 
conveniences, and arriving at its destination 
complete, safe and most of all, on time. 

I would now like to conduct a tour of this highway, 
pointing out the various capabilities of ALL-IN-1 in 
the application development environment. The 
discussion will be only slightly technical in nature, 
since I feel that you want to know exactly what 
might make ALL-IN-1 the right choice for your 
application. We will consider in turn the several 
types of ALL-IN-1 forms, data management, ties to 
other applications, scripts, help, computer-based 

372 

instruction, and ALL-IN-1 's built-in callable 

applications. 

What's on the Menu Today? 

Of the dozen or so different types of ALL-IN-1 
forms, the menu form is by far the most common. 

Most probably the first thing you see when you 
enter ALL-IN-1 is a menu. ALL-IN-1 menus present 

the user with a set of options as well as some 

background information such as the user's name, 
job title, the date and perhaps a current item or 

document. To explain how menus work, I must 
digress for just a moment and tell you about how 

ALL-IN-1 uses FMS. 

The VAXNMS Forms Management System, FMS, is 
a software system belonging to the VIA product set 
which provides for the creation, modification and 

display of screens of information. An FMS form 
consists of two parts: the information that appears 
on the screen of the terminal and what is called 
named data, which does not appear on the screen. 
The named data portion of a form is a set of data 
items, each with a name. FMS allows this data to 
be stored with a form but does not interpret or 
process this data in any way. ALL-IN-1, however, 
makes extensive use of this named data area to 
store functions, directives and qualifiers which 
serve to direct the processing of that form by ALL­

IN-1. 

Now, let's get back to menu forms. If you look at 

the named data of an ALL-IN-1 menu form (you can 
look at the named data of any form by pressing 
GOLD N), the first thing you will see is a .TYPE 
directive specifying the type of MENU. The other 

items on this same line, each beginning with a slash 
(/) are called form qualifiers and are used to tell 
ALL-IN-1 how to load or specify the various 

informational fields on this menu. In Figure 1, the 
/CHOICE qualifier is used to tell ALL-IN-1 that the 
user's choice will be entered into the field named 
CHOICE, while the other qualifiers specify that the 
user's name and the day of the week are to be 
displayed in the USER and DAY fields, respetively. 
Following the .TYPE directive are other named 
data items. Each of these tell ALL-IN-1 what to do 
when the user types one of the menu options shown 
on the menu screen. It's very simple. In Figure 1, 
we see that if the user types an Eon this menu, 
ALL-IN-1 will begin to execute (do) the script 
called EDITREC.SCP. We will talk more about 
functions and scripts later, but this example should 
serve to illustrate how easy it is to define menu 
options. 



Once you set up this list of menu options in named 
data, ALL-IN-1 handles all the menu processing and 
flow control for you. It provides the user 
interface, menu tree structuring, automatic EXIT 

SCREEN key processing and help support as well as 
menu chaining functions, all without additional 
coding. 

It is also important to note that not all menu options 
available to the user need appear on the screen. 
You can cause certain sets of menu options to be 
accessible from specific menus, or from anywhere 
in ALL-IN-1. Adding, removing or changing menu 
options is probably the simplest kind of 
customization you can do with ALL-IN-1. 

Before I touch on the other types of ALL-IN-1 
forms, I want to say just a word about how easy it 
is to modify forms. Included with the ALL-IN-1 
system is a menu, very similar to the word 
processing menu, which allows you to select, 
create, edit and delete all kinds of ALL-IN-1 forms. 
This menu uses some of the capabilities of FMS, but 
also adds some functions not available from FMS, 
such as the ability to edit named data with your 
chosen ALL-IN-1 text editor. You can access this 
Forms Development menu by typing FD from any 
ALL-IN-1 menu. 

Name: .TYPE 

Data: MENU /CHOICE=CHOICE /USER=USER 
/GET =DA Y,OA$DAY 

Name: E 

Data: DO EDITREC 

Figure 1 

Transactions Made Easy 

The second major kind of ALL-IN-1 form allows 
you, the application developer, to handle files, 
records and data transactions easily. It's called the 
entry form and, as its name implies, it is used to 
enter data into files. To create an entry form, just 
lay out a field on your form for every field in the 
data file. Arrange the fields in the order you want 
them in the record in the file itself. Then, using the 
.FILE directive in named data, you will specify the 
name of the data file and the name of the field to be 
used as the primary key for the file. Figure 2 is a 
sample of some named data from an entry form. 

373 

Name: .TYPE 

Data: ENTRY /MODE=UPDATE 

Name: .FILE 

Data: MYDATA.DAT,KEY1 

Figure 2 

Once you have created this entry form, you can use 
the ALL-IN-1 CREATE function to create a new, 
empty data file with a layout that exactly matches 
the entry form. You have just created a full 
transaction processor for that data file! When you 
ask ALL-IN-1 to display this new entry form (with 
a FORM function), ALL-IN-1 does all the work of 
handling the user's interaction with the data file. It 
works like this. 

First, ALL-IN-1 makes the key field reverse video 
and prompts you to enter the key field or fields. 
ALL-IN-1 validates this against the data file, and if 
the record exists in the file, all the other data 
fields are filled in from that record. Then ALL-IN-1 
asks you to select a transaction: add, change, 
delete, Inquire or copy. If you select add or 
change, you can navigate around the fields in the 
form, in any order, and change fields. When you 
press RETURN, the record is written back to the 
file. Copy allows you to duplicate any record in 
the file. 

Using ALL-IN-1 entry forms eliminates all worries 
about managing data files. Multiple entry forms 
designed for use by different kinds of users can all 
manipulate records in the same file. Multiple users 
can access the same data file concurrently. You 
can even allow users to input fields in an order 
different from the data file's field order. 

Sometimes the need for a simple application can be 
met by using only ALL-IN-1 menu and entry forms. 
More often, though, menu and entry forms are just 
a part of the entire ALL-IN-1 application necessary 
to meet your business need. 

In Search Of Excellent Data 

In most applications, the next logical step after 
allowing users to input, change and delete records 
from data files, is to allow them to search these 
data files in some flexible manner. This ability is 
provided by ALL-IN-1 select forms. Select forms 
allow the ALL-IN-1 application developer to set up a 



flexible way to allow users to get listings of data 
records that match certain search criteria. 

A select form typically has two areas, though these 
two areas may be on two different forms. The 
first area is a scrolled region meaning that chosen 
entries scroll through like scenery through the 
portal of a cruise ship. The other area contains a 
set of fields into which the user will enter the 
selection criteria. These fields will be matched 
against the data file by means of a record selection 
expression, and may be any subset of the total 
number of fields contained in a record from the data 
file. As shown in Figure 3, the named data of a 
select form looks a little more complex that the 
menu or entry form. But it's still pretty simple. 

The word SELECTtells ALL-IN-1 that this is a 
select form and that what follows is to be taken as 
a record selection expression (RSE). This RSE is a 
boolean expression and compares the contents of 
the fields on the select form with the data in fields 
in the data file. In this case we are comparing the 
fields number and name with their counterparts in 
the data file. The== notation means exactly equal, 
while the<=> indicates a containing comparison. 
Thus, a record would only match this RSE if the 
number matched exactly and the name contained 
what was entered on the select form. 

Records that match the rse are displayed in the 
scrolled region at the top of the select form 
according to the SEL_STYLE function. In this 
case, the name is to be displayed followed by the 
number. The /CHOICE qualifier tells ALL-IN-1 to 
allow the user to choose one of the displayed 
entries by line number. ALL-IN-1 stores the key of 
the item chosen in a special symbol for later use by 
the application. 

Name: .TYPE 

Data: SELECT FOR CUSTOMER_ENT WITH .NUBMER 
==NUMBER AND .NAME<=> NAME DO 
SEL_STYLE .NAME .NUMBER /STYLE= CHOICE 

Figure 3 

Other Interesting Form-ations 

Menus, entry forms, and select forms, are 
probably the most commonly used ALL-IN-1 forms 
in most applications. There are, however, several 
other kinds of ALL-IN-1 forms that may come in 
handy when designing applications. For instance, the 
argument form is a simple form with fields into 

374 

which the user can enter information. This 
information is then passed to ALL-IN-1 via ALL-IN-
1 symbols (we will discuss symbols a bit later) and 
may be used to build records later to be written to 
a file, or to specify other input to an application. 
Argument forms are in essence multi-purpose 
information gathering forms. 

Cale forms are used primarily to allow the user to 
do various kinds of pre-set calculations. The desk 
form, a general purpose variation of the calc form, 
is a full-featured desk calculator. Help forms 
present the user with helpful paragraphs of 
information written about each ALL-IN-1 
application. List forms are used to display text 
information to the user, screen by screen. Edit 
forms allow the user to edit text files and 
documents using one of ALL-IN-1's built-in text 
editors or word processors. You can use these 
various kinds of ALL-IN-1 forms, in any 
combination, to create your own specific 
application. The form types are designed to do 
most of the work for you, making your development 
task easier and faster. 

In order to use a form in an ALL-IN-1 application, 
you must first put that form in a form library. The 
VAXNMS Forms Management System allows you to 
create and maintain these libraries. Each ALL-IN-1 
user, then, can be given access to one or more 
forms libraries. This ability to selectively grant 
access to forms libraries is an important security 
feature. Suppose you have ALL-IN-1 different 
applications on your system for sales, for services 
and for engineering. As would usually be the case, 
all the menus, entry forms and other forms for the 
sales application would be in a form library 
separate from the services and engineering form 
libraries. A sales manager would be granted access 
to only the sales form library, while an engineer 
might only be granted access to the engineering 
form library. An application developer might be 
given access to all of the form libraries. In this 
way, you can have as many applications as you 
want on your system, and limit their use to specific 
sets of users. 

Do you recognize this data? 

The next stop on our tour of the ALL-IN-1 
application highway brings us to the subject of data 
recognition and validation. As you have probably 
seen, entering information into fields on forms is 
the primary (though not only) way of gathering 
information from users to be used in applications. 
Often, the application designer would like to allow 
only certain entries in a field. Some of the many 



ALL-IN-1 field qualifiers make this an easy feature 
to include in your applications. In the simplest 
case, we would like to prevent our user from 
entering anything but a Y for yes, an N for no and 
an M for maybe. In the named data of Figure 4, the 
field named DECISION shows how to do this with 
the N ALID field qualifier and the OA$TABLE 
symbol. 

Note that this named data could be a part of an 
entry, argument or select form. Field qualifiers 
for validation and recognition operate the same on 
all of these kinds of forms. 

Name: DECISION 

Data: NALID=OA$TABLE:"Y,N,M" 

Name: ACCOUNT 

Data: NALID=ACCOUNT_ENT 

Name: PERSON 

Data: /RECOG=PEOPLE_ENT /SHOW=NAME, AGE, 
PHONE 

Figure 4 

Many times you would like to allow the user to 
enter any of the values contained in another file. 
For example, in an invoicing application, you need 
to prevent the user from entering any account 
number that is not on file in the accounts file. In 
Figure 4, the field ACCOUNT is validated in this 
way. ACCOUNT_ENT is the name of the entry 
form that points to (remember the .FILE 
directive?) the accounts file. This simple N ALID 
qualifier causes ALL-IN-1 to take whatever is 
entered in the ACCOUNT field and compare it to all 
the entries in the accounts file. If the entry is not 
found, an error message is displayed and the user 
is not permitted to leave the field until a valid 
entry is made. 

Extending the validation concept, a user would like 
to be able to see a list of the valid entries for a 
field. The /RECOG field qualifier makes this easy. 
Again referring to Figure 4, we have added 
/RECOG and /SHOW qualifiers to this field. When 
the user moves onto this field, he/she may press 
GOLD L to display all the entries in file pointed to 
by PEOPLE_ENT. The /SHOW qualifier 
determines which fields in the people file are 
displayed, in this case the user will see the 
person's name, age and phone number. If the user 

375 

knows the entry begins with a B, he/she can enter 
a B in the field before pressing GOLD L. This 
produces a list containing only entries beginning 
withB. 

In any case, once this recognition list is displayed, 
the user can choose one of the entries on the screen 
by its line number and the entry will be copied into 
the field. Recognition and validation are prime 
examples of application development capabilities 
built into ALL-IN-1 that increase consistency among 
applications and provide user friendly features 
without a heavy burden on the application 
programmer! 

The ALL-IN-1 Function Family 

We have already alluded to ALL-IN-1 functions. 
Each ALL-IN-1 function has a brief, unique name and 
performs a specific function useful to the 
application developer. For example, there are ALL­
IN-1 functions to create files, compute formulas, 
display or edit text, search data files, manipulate 
symbols, handle form libraries, prompt the user 
for information and even convert data files from 
one format to another. There are a total of 152 
ALL-IN-1 functions available for the application 
developer. 

Many ALL-IN-1 functions require information to be 
passed to them in the form of ALL-IN-1 symbols. 
Symbols are a lot like variables in a programming 
language, but they are in many ways, easier to use. 
Symbols have names chosen by the application 
developer, and can contain up to 255 characters of 
alphanumeric information. Symbols are the main 
vehicle used to move data between ALL-IN-1 
functions and fields on forms. Field qualifiers such 
as /GET and /PUT are used to move data between 
specific fields and symbols. 

Sticking to the Script 

Although multiple ALL-IN-1 functions can be 
invoked from named data, it is usually necessary to 
construct more elaborate procedures to accomplish 
certain application tasks. It is for this purpose that 
ALL-IN-1 scripts were created. There are two 
kinds of scripts: do scripts, invoked by the ALL-IN-
1 DO function, and script scripts, invoked by the 
ALL-IN-1 SCRIPT function. 

Do scripts are in essence procedures consisting of 
ALL-IN-1 functions intermixed with script 
directives such as .IF, .LABEL and .GOTO, giving 
the script writer programmer-like power. But 
remember that many ALL-IN-1 functions perform 



elaborate tasks that would take many lines of code 
in a "normal" programming language. This means 
that complex procedures can be usually be written 
in small, straightforward scripts. 

Script scripts are similar to do scripts, but are 
used for different tasks. Script scripts can 
simulate keystrokes as if they were typed by the 
user. This makes this kind of script ideal for user 
defined procedures. Sequences of operations that 
are performed often can be automated by creating a 
script that acts like a robot programmed to press 
the keys for you. 

The Computer as a Teacher 

The other major application of script scripts is in 
the area of computer-based tutorial lessons. 
Scripts can interact with both ALL-IN-1 and the 
ALL-IN-1 user independently, as well as present 
windows of information overlayed on ALL-IN-1 
forms. Using these capabilities, you can develop 
computer- based tutorials that use the application 
itself, instead of simulating the application. 
Extending this concept a bit further, you can write 
tutorials that guide the user through a real task. 
For example, the lesson on creating documents can 
guide the user through the process and when the 
lesson is over, the user has actually created a real 
document. 

Both ALL-IN-1 standard equipment applications and 
other ALL-IN-1 applications developed by Digital 
include these tutorials for all major user functions. 
Once again, you, the application developer, can 
make use of the same capabilities to create 
computer-based training courses for applications 
you develop using ALL-IN-1. 

Help Is On The Way 

In recent years there has been a trend toward on­
line documentation of application systems and away 
from large printed document sets. Computer-based 
tutorials are a step in that direction, as is on-line 
help. ALL-IN-1 provides an exensive on-line help 
system that can be used to create and process help 
for applications you develop within the ALL-IN-1 
framework. To do this, write your help text using 
your favorite word processor. You may write text 
paragraphs for of any length for whole forms, 
menu options, and individual fields. You will then 
copy this text into ALL-IN-1 's help library tagging 
each paragraph as to the form, option or field it 
covers. You can also define cross references in 

376 

your help. For example, when the user presses the 
help key for the create document menu option, 
you might would also like to offer him help on text 
editors. When you do this, your user will see the 
subject text editors under the additional topics 
heading in the help window. 

By just creating your help text and putting it into 
the help library, you have provided a powerful on­
line assistance tool for your users. When the users 
press GOLD H anywhere in the application, a help 
window will appear on the screen containing your 
help text. Below this, a list of additional topics will 
appear containing related topics chosen by ALL-IN-
1 in addition to the additional topics you have 
specified as described above. ALL-IN-1 's help 
system is yet another work-saver for the 
application developer! 

Produce Your Own Junk Mail 

Quite often office automation applications involve 
the creation of specialized documents, containing 
both standard text and data items from files. A 
common example is the mass mailing sales letter. 
You would like to send the same text to everyone 
whose name and address are stored in a data file. 
Or you might want to create legal contracts, using 
selected standard paragraphs, but filling in the 
client's name and some other salient facts from a 

client data file. 

To allow you to perform these tasks, ALL-IN-1 
provides a merge facility. It works like this. You 
can include, in any text file, merge directives that 
specify a data field from any file pointed to by an 
ALL-IN-1 entry form. Note that this capability is 
more powerful than a conventional list processor, 
which only allows data to be included from only one 
file. 

<0A$DATE> 

<CLIENT.NAME[OA$MERGE_KEY]> 
<CLIENT.ADDRESS[OA$MERGE_KEY]> 

Dear Sir: 

Please call me at <PROFIL.PHONE[OA$USER]>. 

Sincerely, 

<PROFIL.FULNAM[OA$USER]> 

Figure 5 



Figure 5 is a simple example of this feature. First 

the symbol OA$DATE is used to bring in the 
current date. Then, a clients name and address is 
pulled from the client data file pointed to by entry 
form CLIENT. Lastly, the user's phone number and 
name is pulled from the ALL-IN-1 user profile using 
the symbol OA$USER as key into the profile file. 
By the way, this notation for pulling fields from 
data files is known as a data set reference (DSR) 
and is used elsewhere within ALL-IN-1 applications 
to give the application developer access to data 
files on a field by field basis. 

You may have noticed the OA$MERGE_KEY in the 
first few DSR's above. Using this symbol indicates 
that ALL-IN-1 should use the next item in the list 
file as the key into (in this case) the CLIENT file. 
A list file is simply a text file containing a list of 
the keys pointing to the records to be merged with 
a form document, like the one in Figure 5. 
Whatever the number of items in this list file, this 
same number of merged output letters will be 
produced. 

You can create a selection list document by using 
ALL-IN-1 's text editor, and typing in the keys to all 
the records you want merged. But there is a much 
easier way. The /LIST form qualifier can be 
placed on a SELECT form, causing ALL-IN-1 to 
write the keys of the records found by the SELECT 
form's record selection expression to a selection 
file. This file can then be specified when its time to 
perform the merge. The actual merge is performed 
by use of the ALL-IN-1 MERGE function, which 
requires that you specify three files. As you might 
guess, you must specify the form file (like the one 
in Figure 5), the selection list file (created by a 
SELECT form), and an output file, into which will 
be written your merged letters, ready for printing 
and mailing! 

Application Access Roads 

Over the years, Digital has developed many 
powerful VAXNMS applications for many purposes. 
Rather than re-develop comparable applications for 
the ALL-IN-1 environment, we've chosen to provide 
strong links between these applications and ALL-IN-
1, allowing you, the application developer, to use 
their functions, invisible to your user. 

A prime example of this kind of integration is 
Datatrieve. Datatrieve is a powerful and very 
popular data query, report-writing and data 
manipulation language. With Datatrieve, you can 
easily produce a variety of reports related to the 
data you have stored through ALL-IN-1 'sentry 

377 

forms. You may be wondering, how can I use 

Datatrieve if I am running ALL-IN-1? Well, the 
Datatrieve code has been linked into the ALL-IN-1 
image. This means that you have immediate access 
to all of Datatrieve's functions, just as you do to 
ALL-IN-1'sfunctions. ALL-IN-1 even has special 
functions that allow you easy access to Datatrieve 
from ALL-IN-1 scripts and named data. For 
instance, you can call a Datatrieve procedure from 
an ALL-IN-1 script, or bring a Datatrieve variable 
into an ALL-IN-1 symbol. 

DECgraph is another example of a fully integrated 
application. The easiest way to produce a graph of 
your user's data is to use Datatrieve to produce a 
load file in DECgraph's format, containing the data 
to be graphed. Then you can use the ALL-IN-1 
DECGRAPH function to pass this information, 
along with a graph description file, to DECgraph. 
The resulting graph can be stored in the ALL-IN-1 
file cabinet, and later printed or mailed. 

You would think that ALL-IN-1 would have a fully 
integrated spreadsheet system as well. It almost 
does. Digital's DECalc is a powerful spreadsheet 
system that can be used with ALL-IN-1. But unlike 
Datatrieve and DECgraph, it is not linked into the 
ALL-IN-1 image itself. So how can you use it? 
Understanding the answer to this question will not 
only allow you to use DECalc, but will also enable 
you to utilize other applications that live outside of 
ALL-IN-1, from within your ALL-IN-1 applications. 

Let me explain. ALL-IN-1, like any other program 
on the VAX, runs in the user's main process area. 
But VAXNMS allows each user to have multiple sub­
processes subordinate to this main process. ALL-IN-
1 gives the application developer the ability to 
easily run any VAXNMS application in this sub­
process without leaving ALL-IN-1. In addition, the 
the ALL-IN-1 application can transfer data to and 
from this sub-process application though easy to 
use mailboxes. Of course, the user never needs to 
know about these multiple processes, but you, the 
application developer, can see how this makes it 
possible to take any VAXNMS application and make 
it appear as a part of ALL-IN-1. Depending on that 
particular application's ability to be called, you can 
pass parameters and data (perhaps collected from 
the user on an argument form) to it, and receive 
data back from it, all without the user's awareness. 

A simple but powerful example of using the sub­
process is the DCL command procedure. DCL is the 
Digital Command Language, and as you may know, 
DCL command procedures can perform many tasks 
that would otherwise require a programming 



language. In addition, DCL procedures running in 
ALL-IN-1's sub-process can make use of ALL-IN-1 
functions, and can pass information to and from ALL­
IN-1 applications using symbols. DCL procedures 
are often a good way to specify the interaction 
between outside applications and the ALL-IN-1 
environment. 

One more thing: if you have written an application 
according to VAXNMS calling standards, you may 
be able to link your code right into the ALL-IN-1 
image, making access to your code even faster 
from an ALL-IN-1 application. 

A Closer Look at the Standard 
Equipment 

You've seen the ALL-IN-1 word processing menu 
and have probably used it. Have you ever wondered 
how it was developed? Well, the application code 
for the word processing, electronic messaging and 
file cabinet menus is really pretty simple, thanks to 
a family of ALL-IN-1 functions, known as the file 
cabinet sub-functions. These functions do things 
such as create, edit, delete, refile, cross-file, 
duplicate, send and select documents and mail 
messages. Now, why would I be telling you about 
that? Simply this. 

The very same set of functions that we used to 
create the word processng and electronic 
messaging systems in ALL-IN-1, are available to 
you for use in your applications. For example, you 
may want to give the user a document, associated 
with a particular record in a data file. Digital did 
this in the ALL-IN-1 System for Sales and 
Marketing by using these file cabinet functions to 
create the document, store its name in the 
appropriate data record, and then let the user edit 
it with the word processing editor. 

In addition to file cabinet functions, you also have 
access to a full set of mailing functions and a full 
set of calendarand time management functions. So 
if you have an application that is used to track sales 
calls, you can have it post follow up actions on the 
sales reps' calendars, reminding them to take care 
of their customers on the appropriate days. 

Let's take this concept one step further. You may 
find that some of the scripts we have written for 
say, creating a document, do much the same task 
you need to do. Insofar as is possible, we have 
made these scripts that drive the standard 
equipment ALL-IN-1 applications, callable from 

378 

your applications. This means you may be able to 
use some of the work that has already been put into 
common application needs, further reducing your 
investment in application development. 

Do We Still Need Programmers? 

That heading was just to get your attention. Surely 
we do still need application programmers, or 
developers, as we like to say, but their jobs are 
changing somewhat. As you can see, even if you 
did not follow all of the details in this article, the 
job of the ALL-IN-1 application developer is less of 
a coder, and more of a system designer and 
integrator. ALL-IN-1 applications are a collection 
of various high-level, powerful pieces, and the real 
task in implementing an ALL-IN-1 application is 
deciding which pieces to use and how to connect 
them. The "coding" itself is mimimal. 

Because of this modular approach to applications, I 
believe we will start to see ALL-IN-1 application 
libraries, supplied by vendors or created 
internally, containing various applications or 
application pieces. Items from this library could be 
taken and modified to suit your specific purpose, 
thereby even further reducing your development 
time. 

Though I have attempted to be fairly complete, I 
have only touched the surface of the totality of 
what is available to the application developer 
through ALL-IN-1. For more detailed descriptions 
of the many features and functions of ALL-IN-1, 
you may wish to consult the ALL-IN-1 Application 
Programmer's Reference, a three volume, 1000 
plus page reference work available from Digital. 

Wrapping It Up 

If you are a non-technical or semi-technical data 
processing person, and have stuck with me this far, 
I want to thank you. Though you may not have 
understood every detail, I hope you have gained an 
appreciation for this new approach to data 
processing applications. As Tom Peters has 
observed, the DO IT.FIX IT, TRY IT approach to 
business is in and the ANALYZE IT, COM PL/CA TE 
IT.DEBATE IT approach is on the way out. If we can 
quickly prototype applications and test their 
usefulness in real situations, we can not only save 
money in the development process, but more 
importantly, we can be assured of producing 
applications and putting them in the hands of users 
before they (the applications) become obsolete. 



User Communications for 
Office Automation Systems 

Peter LaQuerre 
Digital Equipment Corporation 

Maynard, Massachusetts 

Abstract 
This paper discusses major issues facing user commu­
nications in the office marketplace. Traditional docu­
mentation sets are no longer sufficient to meet the 
needs of this market. In particular, this paper defines 
an overriding issue in DIGITAL's office automation 
environment: how we provide user communications for 

complete office automation systems. 

Introduction 
Office Systems Documentation (OSD) is a group of 
writers, editors, and publications personnel responsi­
ble for providing documentation for several of 
DIGITAL's office automation products. Our goal is 
to provide accurate, useful, and timely documenta­
tion packages for Business and Office Systems 
Engineering (BOSE) systems. 

In the past few years, our responsibilities have 
changed from the task of documenting individual 
products to documenting products that can work to­
gether as complete office automation systems. Each 
of the subjects discussed in this paper is a direct 
result of this one overriding issue. 

What Is a System? 
Every science seems to have its own specific defini­
tion of the word system. It makes sense then that 
the computer industry would have a few of its own 
definitions and that DIGITAL would have several. 

If we add a qualifier to system, we can clarify what 
kind of system we are discussing. For computer us­
ers in general, a computer system can be many 
things. Most users would consider a computer sys­
tem as a mainframe or minicomputer. This system 
is stored in an air-conditioned computer lab and is 
blamed for any problems you might have in the of­
fice. 

For our purposes, the qualifier is office automation, 
as in a complete office automation system. In this 
category would be ALL-IN-1 in its many forms, and 
the WPS-PLUS/DECpage combinations, when they 
are integrated in a single VAX installation. 

These products are systems because they are an 
"assemblage or combination of" two or more soft­
ware tools, all accessible from a common interface. 
In other words, you can access more than one type 
of office automation software from the same menu 
system and from the same documentation set. 

For an office automation system to be successful, 
the user interface must be consistent throughout 
the system. That way, users can learn how to use 
the system and not each individual component. 

Proceedings of the Digital Equipment Computer Users Society 

379 

To provide a user communications package for a 
system, we must: 

• Understand and define the term system 
• Produce core documentation 

Carefully design complete user interface 
packages 

• Provide more on-line assistance 
• Build systems that are user-friendly 

This paper will discuss each of these concepts and 
how Office Systems Documentation is implementing 
them. 

WPS-PLUS as a System 
In the past, we documented standalone products. 
Standalone products are components not attached 
to a system. As you can imagine, it is easier to 
write documentation for a standalone product than 
it is to write documentation for a system. 

For example, when we wrote the documentation for 
WPS-PLUS/VMS Vl.l, we were documenting a 
standalone product that had no connections to other 
software products. We didn't have to contact other 
writing groups. We didn't have to imagine how our 
documentation would match other books in a sys­
tem documentation set. We could concentrate on 
the job of documenting the product. 

WPS-PLUS/VMS V2.0 introduced us to an office 
automation system. We now had to keep in mind 
that users would be installing DECpage as an inte­
grated part of WPS-PLUS. 

To make WPS-PLUS and DECpage work together, 
the engineers and planners designed DECpage as a 
menu option. To make the documentation more con­
sistent and easy to understand, we worked to make 
the writing styles and packaging of the DECpage 
manuals consistent with WPS-PLUS. 

The days of documenting a single, standalone word 
processor for the VAX/VMS environment were over. 

Dallas Texas· 1986 



WPS-PLUS as a System 
Component 
Besides being a system in itself, WPS-PLUS is also 
considered a component-the document processing 
component-of other systems. 

For example, WPS-PLUS/ALL-IN-I is the document 
processing component of ALL-IN-1. In this capacity, 
WPS-PLUS is a part of the ALL-IN-I system and 
the documentation, product interface, on-line Help, 
and on-line training must be integrated to make the 
package feel like a system. 

To make this possible, we had to use several of the 
tools and concepts described in this paper. Namely, 
we had to use the concepts of core documentation 
and produce a consistent, useful on-line Help 
system. 

Producing Core 
Documentation 
Currently, WPS-PLUS runs on several versions of 
VMS, ALL-IN-1, Rainbow/MS-DOS, P/OS, and 
IBM's DOS. Because WPS-PLUS is available in so 
many configurations, there is interest in making the 
software and the documentation: 

Cost-effective 
Easier and faster to produce 
Fully international and easy to translate 
Easily integrated into software systems 

However, none of these goals were seen to be as im­
portant as presenting to the user a single and con­
sistent approach to learning WPS-PLUS regardless 
of the implementation. 

The first step toward a solution involved two 
realizations: 

We realized that WPS-PLUS is basically the 
same wherever it operates. We call this same· 
ness the core of WPS-PLUS. 

We realized that the differences between en­
vironments and versions of WPS-PLUS ap­
pear, largely, in isolated areas of 
functionality. 

Therefore, we knew that we would have to devise a 
documentation strategy containing a core that was 
largely environment and version independent. 

The solution that developed represents a highly 
modular approach to documentation. It attempts to 
identify those aspects of functionality that remain 
the same across all WPS-PLUS systems. As this 
functionality is the core of WPS-PLUS, it forms the 
basis of what we call the core concept in WPS­
PLUS documentation. 

380 

Core 
Software 

Core 
Documentation 

Non-core 
Software 

Non-core 
Documentation 

Functionality that is 
always present, 
regardless of the 
version of the 
software or the 
operating environment 

Documentation of that 
functionality 

Functionality that varies 
across operating systems 

Documentation of those 
variations 

This process creates general purpose, reusable mod­
ules of text and ensures consistent presentation of 
the software across multiple systems. It gives us 
greater flexibility in building systems of communica­
tions products and makes it easier for customers 
who are translating systems or putting together 
systems from DIGITAL and third-party compo­
nents. This topic of "open" or "loosely-coupled" sys­
tems is very closely related to other important 
("hot") issues for both software and documentation: 
consistency, customization, and integrated user 
communications. 

Core modules may vary in size from individual 
phrases and sentences to entire books. An example 
of a book that is more than 90% core is WPS-PLUS 
List and Sort Processing. At the other extreme, 
primers, tutorials, and installation guides (because 
they are system-dependent) are likely to have Jess 
core material. The simplest illustration of this con­
cept may be seen in the WPS-PLUS product 
names: WPS-PLUSNMS, WPS-PLUS/ALL-IN-1, 
WPS-PLUS/Rainbow, and so on. The core name is 
the same in all three cases. Only the appendage 
that describes the implementation environment 
changes. You might think of NMS, /ALL-IN-1, and 
/Rainbow (or any of the other PC-based products) as 
non-core elements in this case. 

The issue becomes more complex when dealing with 
functionality differences. For example, WPS-PLUS 
Editor Functions documents the WPS-PLUS editor 
and every version contains the same information -
except for specific references to VMS, ALL-IN-1, or 
PC-based features. 

More sperifirally, WPS-PLUS Rainbow Fditor 
Functions documents V\'PS-PLUS on a personal 
computer with floppy disk drives, and the user must 
be aware of the physical location of documents. To 
select a document, WPS-PLUS/Rainbow users must 
enter B: before the document title (if the document 
is stored on Drive B:). The B: preface is called the 
path name of the document. 

As a result, WPS·PLUSRainbmr Fditor Functions 
reminds users to include the path name when thev 
select a Library or Abbreviation document. This " 
type of difference appears only in WPS·PLUSPC. 
baspd Editor Functions and not in the VMS or 
ALL-IN-I versions of this manual. 



The following equations may also help make these 
concepts more concrete: 

The core approach to documentation is ideal for sys­
tems because it: 

Gives consistency in organization and format 
to users migrating to and from different op­
erating systems or implementations 

Factors out generic material to create general 
purpose, reusable modules of information 

Presents to the user a single and consistent 
approach to learning the product regardless 
of the implementation 

Eliminates needless repetition in instructional 
material 

Captures and preserves well-designed, writ­
ten, and tested modules of information 

Since core documentation clearly benefits everyone, 
it is important to continue to produce and extend 
this movement towards user communications pack­
ages that are increasingly modular and generic 
(core). This approach gives users greater consistency 
in the same way that software achieves consistency 
from modular and generic code. We should be able 
to produce core documentation as long as engineer­
ing produces "core" products. 

Designing a Complete User 
Interface Package 

What Is User Interface? 
At a similar DECUS session last year, my supervi­
sor, Sue Franklin, defined user interface. She ex­
plained that user interface is "often described as 
the point where man and machine meet." It is "the 
medium through which the user receives informa­
tion about the software's functionality." 

To engineers who build Office Automation products, 
the user interface is one of many challenges in a 
complex prnblem. But to the user, the interface IS 
the product. 

We usually define the user interface as having four 
parts: 

Documentation 
On-Line Help 
CB Is 
The Product Interface 

Each of these parts is not effective by itself, but 
when they work together, they form a complete and 
useful package for the user. 

Traditionally, we in documentation have been in­
volved in only one or two of the four user interface 
ingredients. First, we have always been the people 
who write the manuals. Later, as on-line Help sys­
tems became more extensive, we took on the role of 
writing the text for the WPS-PLUS and ALL-IN-1 
on-line Help. 

Still later, we have become involved with the CBis 
for the products we document. By controlling these 
three parts of the user interface, we can create con­
sistent, integrated, user communication packages 
for our products. 

381 

Like on-line Help, the product interface has long 
been considered the responsibility of the engineers. 
The program developers write the code and user in­
terface engineers help them design the product in­
terface. 

That system worked fine in the past, but now our 
Office Automation products are more powerful and 
complex. We are documenting systems instead of 
individual products. The user interface engineers 
needed some help from the different groups who 
help build the system. Developers, computer archi­
tects, and writers. 

Why Writers and Editors? 
Recently, documentation groups have been asked to 
help design the entire user interface package for 
some of our future office automation products. 

The logic is three-fold: 

Writers and editors are familiar with the 
needs of users who must write memos and 
reports. 

2 Writers and editors tend to recognize global 
issues that affect more than just one product. 

3 Writers and editors tend to picture how the 
product will be presented to the user. 

Besides these strategic reasons, designing user in­
terface also accomplishes a more selfish goal for the 
writers and editors. By helping design the product 
interface, we can better plan our writing and editing 
resources and isolate problem areas well before the 
writing effort begins. 

Understanding the Needs of Office 
Automation Users 
Products such as ALL-IN-1 and WPS-PLUS are 
built for users who work in offices. Office workers 
rely on memos, reports, and papers that must be 
distributed to other workers. 

Writers and editors in BOSE also write memos, 
books, and papers and distribute them to other 
workers. That's our job. Therefore, we understand 
the needs of people who use word processors. 

As much as possible, the writers and editors who 
work on the WPS-PLUS documentation use the 
product themselves. We create memos, use 
DIGITAL tools to create high quality output, and 
distribute information via electronic mail, or allow 
reviewers to copy the information from library 
directories. 

In the past, our role as user interface designers was 
informal. When one of us began documenting a cer­
tain feature of WPS-PLUS, we would notice some­
thing in the software that didn't seem right. After 
questioning the developer and talking with other 
planners, our suggestions were sometimes incorpo­
rated into the product. 

Now, we are formalizing this role. As we continue 
planning for future versions of WPS-PLUS, 
DECpage, and other OA tools, writers and editors 
are being included in the planning for these prod­
ucts. We are involved in detailed discussions about 
functionality, usability, and screen design. 



We realize we are not expert user interface design­
ers. We rely on our gut instincts and our own ex­
periences to make design decisions. But together 
with the user interface engineers, who are trained in 
designing the user interface, we can work to create 
productive and easy-to-use products. 

Recognizing Global Issues 
Last year at DECUS, Sue Franklin described the 
core documentation concept and how we designed 
our documentation so we can use large sections of it 
for more than one version of WPS-PLUS, whether 
it runs on VMS, ALL-IN-1, or a PC. 

One of the goals of the core concept is to make the 
user see the consistency and usefullness of a prod­
uct that is available on many different machines. 
Our goal is to make the documentation reflect that 
consistency and make it easier for users to migrate 
from one WPS-PLUS evironment to another. 

But before the documentation could accomplish that 
goal, the software had to accomplish that goal. 
Many of the informal suggestions made by writers 
to the engineering and planning groups had to do 
with inconsistency between the WPS-PLUS prod­
ucts. The writers and editors, who had to describe 
each of the products in a consistent and concise 
way, noticed the global implications of some engi­
neering decisions. 

Now, through more formal channels, the writers and 
editors are having their say in the entire user inter­
face design. 

Picturing the User Interface 
When you tell writers or editors how a future prod­
uct might function, they usually react by picturing 
how the software might be described to the user. 

Many of us believe this is a good test for software 
ideas. If a product's interface is hard to explain in 
the documentation, there is a good chance it needs 
redesigning. The ideal software should not require a 
huge documentation set. Instead, a well-designed in­
terface should be able to handle most of the prob­
lems a user runs into and the documentation, on­
line Help, and CBls should supplement the screen 
interface. 

This perspective--the writer's point of view-can 
sometimes help engineers and planners recognize 
problem areas of the UI design. 

What Is On-Line 
Assistance? 
The term on-line assistance has no formal defini­
tion. Instead, it is the general term for a group of 
tools we use to display user information on the com­
puter screen. The idea is to minimize the need for 
bulky hardcopy documentation and to reduce the 
time it takes to locate specific information. 

The End of the Software Reference 
Manual? 
When we begin to discuss on-line assistance, some­
one always asks whether on-line information will re­
place our need for hardcopy manuals. We imagine 
the clean, paperless office of the future-no soft­
ware manuals on the shelves or strewn about the 
desk, only the computer terminal resting on an 
uncluttered desk next to a cordless telephone. 

382 

I've heard this question asked many times at com­
puter conferences and even at recent meetings here 
at DIGITAL. The answer is usually as follows: 

While on-line assistance is very useful for 
many specific purposes, there will always 
be a need for certain types of hardcopy 
information. 

Four Types of On-Line Assistance 
We can divide the current on-line assistance pack­
ages into four categories: 

On-line Help 
CBis and tutorials 
On-line documentation 
System messages 

On-Line Help 
The most important type of on-line assistance is on­
line Help. More than any other type of on-line assis­
tance, Help is becoming a necessary part of office 
automation systems. 

A successful on-line Help system can: 

Do its job better than a hardcopy manual 
Supply context-sensitive, specific 
information 
Save time for the user 

,Just as hard copy manuals are well-suited for certain 
types of information, on-line Help is well-suited for 
brief, concise instructions explaining how to get a 
job done. 

For example, imagine you are selecting a WPS­
PLUS document. As you begin to type the title in 
the title field, you realize you have forgotten the ti­
tle of the document. You wonder if there is a wav 
to see an index of the documents in vour file cabi­
net folder without leaving the WPS-PLUS form. 

In the days before on-line Help, you would have to 
reach for a reference manual or quick lookup guide. 
Either of these manuals contain the information you 
need, but the process of locating the manual, find­
ing the information, and and using the information 
is time-consuming. 

With on-line Help, you can find the specific informa­
tion you need by pressing a keyboard function. A 
window appears at the top of the screen and as you 
scroll through it, you can read specific information 
about selecting document titles. 

To design a Help system, we must keep several 
things in mind. To be effective and useful, a Help 
system must be: 

Written in a short and concise manner 
Designed so it is context-specific; it must 
supply the user with information about the 
current topic 

When a WPS-PLUS or ALL-IN-1 user presses the 
Help key, the information must be short and to the 
point. It should not give background information or 
extensive information about other functions the user 
is not using. It should tell the user how to get the 
immediate job done. 



Since we have to fit the information into a rela­
tively small area of the screen, we avoid large para­
graphs of information and instead rely on 
information that pertains only to the immediate 
task. 

All Ilelp messages should contain references to 
other Help topics or to the hardcopy documentation. 
That way, if the Help message is not sufficient to 
get the job done, the user can go directly to where 
the Help is available. 

The references to documentation link the on-line in­
formation with the hardcopy text, creating a more 
integrated user communication package. 

Computer Based Instructions 
(CBls) 
Computer Based Instruction is another specialized 
type of on-line assistance. Like on-line Help, it has 
a specific role to play in providing information to 
the user. 

While on-line Help supplies the user with direct and 
immediate information about a very specific topic, 
CBls and tutorials supply the new user with an in­
troduction to the system, as well as lessons on spe­
cific topics. 

Some characteristics of CB!s and tutorials: 

They are self-paced 
They are always available 
They fit well into the user communications 
package 

Like the Getting Started manual, CB!s are there 
whenever you need them. Depending on your pre­
Yious experience with computers and office automa­
tion equipment, you can take all or some of the 
lessons. As you become more experienced with the 
product, you can take specific CBI lessons as you 
need them. 

The CB!s also offer an alternative to the hardcopy 
Getting Started manual. Some users feel comfort­
able with an on-line set of lessons and may learn 
faster using the CB!s rather than lessons in a 
Getting Started manual. 

Once again, this helps us form a complete user 
communications package. 

On-Line Documentation 
There are several types of on-line documentation. 
For WPS-PLUS and ALL-IN-1 we are familiar with 
three specific types: 

Documentation stored on-line and delivered 
with the product 
Customizable documentation 
Documentation aYaihible through an on-line 
delivery package 

Documentation Stored On-Line 
New technology will soon make it possible to deliver 
entire documentation sets on-line. V.'hen the product 
is delivered, the customer prints out the documenta­
tion and distributes it to the users. 

This method of on-line documentation: 

Saves typesetting and printing costs 
Allows customers to print only the documen­
tation they need 

383 

Currently, we use this method for certain types of 
documentation. 

For example, WPS-PLUS/VMS V2.0 was shipped 
with a feature called XAL (External Application 
Link). This feature allows technically-oriented pro­
grammers and consultants to run VMS applications 
from within WPS-PLUS. However, to set up this 
XAL feature, you must be familiar with VMS com­
mand languages and some programming skills. 

Instead of including this specialized, technical docu­
ment in the user documentation, we used WPS­
PLUS to create the document and stored it on-line 
for users and companies who are interested. By con­
tacting the software specialist representative, the 
company can learn how XAL works and print the 
documentation from a special directory inside WPS­
PLUS. 

Customizable Documentation 
Customizable documentation is documentation 
stored on-line with instructions on how to change 
the content and organization of the documents. 

Large companies who use ALL-IN-I for specific pur­
poses appreciate this capability. They can change 
the documentation to match their specific office 
tasks and train their employees in a consistent, per­
sonalized manner. 

Refer to Tom Skelcher's DECUS presentation on 
customizing ALL-IN-1 documentation. 

Documentation Accessed On-Line 
Some types of software provide on-line access to en­
tire documentation sets. Like the Help systems and 
CB!s, these systems are effective for certain types 
of information in certain user environments. 

The concept is essentially the same used in the de­
sign of the WPS-PLUS and ALL-IN-1 Help sys­
tems. By pressing certain keystrokes, you "turn the 
pages" of the on-line manual to display the informa­
tion you want. DIGITAL's VTX Electronic 
Publishing system is an example of a product de­
signed to display large amounts of information pre­
viously produced in hardcopy format. 

On-line documentation packages are well-suited for 
information about operating systems and program­
ming tools because technically-oriented users tend 
to appreciate on-line facilities since they are exper­
ienced computer users. 

On the other hand, on-line documentation systems 
push delivery systems to their limits. Displaying 
large amounts of information on the screen is a 
challenge that requires much design work and user 
interface training. Otherwise, the time it takes to 
find the information on-line will equal the time it 
would take to read it in a hardcopy manual. 

For office automation systems, speed and ease-of­
use for non-computer specialists is very important. 
Therefore, on-line Help systems and CB!s that sup­
ply concise, direct information about getting the job 
done are more important than supplying large 
amounts of on-line documentation. 

System Messages 
System messages are an important and often over­
looked part of the user information package. 
Without these messages, users wouldn't understand 
the errors they make. Because they supply the user 
with important information, they must be consid­
ered a part of the user information package. 



Previously, the engineers were solely responsible for 
error messages. They understand the coding and 
routines that call the error messages so they main­
tained control of that part of the user interface. 

This will be true in the future as well, but new on­
line assistance programs may offer entry into the 
Help system if you don't understand the system 
messages you receive. 

In the past, documentation has tried to include a 
list of possible error messages in the hardcopy docu­
mentation. But an on-line Help system, hooked di­
rectly into the error message would be much more 
effective. In OSD, we are looking into that neces­
sary and useful connection. 

Summary of On-Line Assistance 
Each type of on-line assistance has certain advan­
tages in providing certain types of information. The 
trick is to decide where each type is useful and how 
they can work together to form a complete user in­
formation package. 

The following chart is an example of how I might 
categorize the usefulness of each type of on-line as­
sistance. Often, it is useful to imagine how different 
types of users might use on-line information: 

Use on-line 
Help? 

Use CBis? 

Use on-line 

New 
Users 

Yes 

Yes 

No 

Office 
Users 

Yes 

Yes 

No 

Computer 
Specialists 

Yes 

No 

Yes 

What has been the point of all this identification 
and discussion? What puzzle are we trying to solve? 
We are trying to solve the puzzle of communication. 
We are trying to transfer a body of knowledge 
about a product from our heads to the user's head 
through an effort called, perhaps loosely, user com­
munications. We are trying to discover how best to 
transfer this knowledge. 

The best way of transmitting knowledge has been 
debated for centuries. Today, the best ways are 
called "user friendly." This attribute is also known 
as "ease-of-use" and "easy-tcruse." 

I suspect that whether or not a system and its ac­
companying user communications package is user 
friendly is, like beauty, in the eye of the beholder. 

I suspect that if users have questions and find the 
answers easily, they say that the system is user 
friendly. And, if not, they believe the system is not 
adequately meeting their needs, are slower to learn 
the system, and are slower to use the system to its 
fullest functionality. This is not by way of getting 
us off the hook. We have made progress. A sign of 
our progress may be that our foreign language 
translators find our documentation and on-line Help 
"too friendly" and are insulted by our air of 
informality. 

User communications packages can never make a 
complex system look simple. ALL-IN-1, WPS­
PLUS, and DECpage are complex systems. With 
that complexity, the user gets greater power and 
functionality. That complexity also demands that 
the user expend more effort during the learning 
process. 

This complexity also means that we must build ease 
of use into systems at the design stage. User 
friendliness is not a concept that can be layered on 
a product like a final coat of varnish. This means 
that we must work to design systems that are: 

documentation? Simple (not simplistic), intuitive, and logical 

Use system 
messages? 

Yes Yes Yes 

This in only an example of the questions we need to 
ask ourselves as we exa.mine new and existing On­
line information technologies. 

The User Friendly Puzzle 
The strategic goal of DIGITAL'S Business and 
Office Systems Engineering group !BOSE) is "end 
user information productivity." OSD is responsible 
for providing the user communications segment of 
that goal - greater and faster user productivity. 

We have identified and discussed several communi­
cations issues in support of that goal: 

The systems approach to documentation 
Core documentation 

• The definition and role of the user interface 
• The definition and role of on-line assistance 

384 

• Consistent and, therefore, predictable 

• Customizable and open 

The messages for us are clear. We have learned 
much about building user communications packages 
for office automation products and I believe that we 
continue to move in the right direction. Learning to 
document systems, not individual products, defining 
and clarifying the role of the user interface, orient­
ing toward user tasks, learning to define and build 
integrated user communications, and struggling to 
solve the "user friendly" puzzle all support our com­
mon goal of increased user productivity. 







PUTTING THE READER BACK IN MANUALS; 
COMPUTER MANUALS AND THE 

PROBLEMS OF READABILITY--V 2.0 

By 

Thomas L. Warren 
Department of English 

Oklahoma State University 
Stillwater, OK 74078--0135 

ABSTRACT 
At the Fall, 1985 DECUS Symposium, I presented a 
paper in which I analyzed samples from computer 
manuals based on reader access. Following a 
review of how humans read and understand, I 
summarized the results of applying readability, 
stylistic, and design tests to the samples. I 
concluded that the manual excerpt that ranked 
high in style and readability rated low in 
design, and the excerpt that rated high in 
design rated low in style and readability. The 
full paper appears in the Proceedings of the 
Digita~ Equipment Corporation users Society, 
Fall, 1985 Symposium. The present paper uses 
the same tests but a different sample plus 
applying one more stylistic test. I again 
conclude that writers and designers do not use 
all the tools available to them to put readers 
back into manuals. 

This paper extends one that I did for 
DECUS at the Fall, 1985 Symposium (6). In 
that paper, I focused on instructions-­
prose that the writer meant for the reader 
to use while performing some sort of 
action. I looked at the page layout and 
style--especially the command forms of the 
verbs--because instructions are nonfiction 
prose where the reader normally does not 
read linearly, that is, beginning at the 
first word on the page and progressing to 
the last. We read novels, poems, short 
stories, newspaper features, etc. in this 
manner. Readers normally read instructions 
in a random fashion because they are inter­
ested in performing a particular action and 
need help doing it. 

I used a single command ("Move a Block 
of Text") from nine wordprocessing programs 
and analyzed them for layout and style. I 
can give you a flavor of that presentation 
by looking at some samples. Given a 
situation where "Move a Block of Text" is 
not a basic wordprocessing command that the 
reader must learn (such as "Insert Text," 
"Delete Text," "Setting Format," and so 
forth) the reader probably will turn to it 
on those occasions when moving the block is 
important. With that in mind, let's look 
at Figure 1. 

INSERT FIGURE 1 HERE 
. This text is relatively easy to get 
into. The writer and designer have used 

Proceedings of the D1g1tal Equipment Computer Users Society 

387 

plenty of white space so that there is not 
a lot of text on the page to confuse the 
reader. When readers use instructions, 
they read, turn to perform, and then return 
to the text to pick-up where they left off 
before moving to the next step. Some 
readers will hold a block of text in memory 
as they perform the step, returning for 
reminders or when the action is complete. 

We can see also that the writer and 
designer have used boldface type and have 
numbered the steps, both practices that 
help the eye quickly return to the text and 
the next action. 

Finally, a section on "Helpful 
Information"--but without numbers so that 
the reader knows this list provides 
information and not more steps to follow. 

Compare this text with the next 
~igure 2 How easily can the reader ~et 
into and out of this text? 

INSERT FIGURE 2 HERE 
This text features long lines (from margin 
t~ margin meaning very little white space), 
with the verbs buried in the sentences. 
Readers must read the entire section before 
performing the actions, and then must 
perform from memory. It is certainly a 
hard text for the reader to read, perform, 
and return to the place left. 

The results of the analysis were that 
Figures 3 and 4 tested to be the best--

Dallas Texas - 1986 



ironically, Figure 3 text tested best for 
layout but not for style and Figure 4 for 
style but not for layout. 

INSERT FIGURES 3 AND 4 HERE 
Before I discuss the new text, I need 

to review the tests from that previous 
paper (layout and style). For the layout, 
I used such matters as line length, 
justified right margins, justifie~ bottom 
margins (i.e. a fixed number of lines ~er 
page), type size, spacing and other.white 
space matters, headings and subheadings, 
etc. For the stylistic analysis, I used 
computer programs: "Grammatik.," . 
"Comment," and "Readability Calculations." 
(1, 2). My conclusions were tha~ the texts 
needed to do well in both areas in order to 
keep the readers involved. 

In the present study, I looked at what 
I took. to be a non-instructional text--one 
that ostensibly was communicating inf or­
mation. I wanted to learn what differences 
writers and designers might use to convey 
information rather than instructions. 
Figure 5 shows that text. 

INSERT FIGURE 5 HERE 
We can notice some features of this 

text without reading it. First, it runs 
from margin to margin on the page, with 
lines that are about 5 inches long. 
Second we see a visual--a copy of a screen 
showin~ elements that this section of the 
manual addresses. Third, there is a 
"Note," indented from both the right and 
left margins. Fourth, there are at least 
two levels of headings with three 
subheadings being questions. 

Having determined that, I looked more 
closely at the text and how it com~unicated 
with the reader. My first conclusion <an 
obvious one) was that the text was meant to 
be read in a linear fashion. '!'he reader 
was to start at the top of the left-hand 
page and read across the line, ~hen c~me 
back. to the left margin and begin again. 
The reader was to process the text in this 
fashion, anticipating a subject of the 
sentence followed by the verb. 

This conclusion suggested that the 
writer assumed the reader would process the 
text in the traditional way. That is, the 
reader would first sense the image on the 
page as input to the mental system. This 
input would then be filtered <because the 
mind cannot really process all the bits of 
information that the eye is capable of 
sending through). Once past this 
physiological filter, the mind searches for 
patterns; the reader, drawing on cultural 
conditioning, begins to extract meaning 
from the arrangement of the words. As an 
example, consider these two sentences: 

[lJ John hit the ball. 
[2J The ball hit John. 

Sentence [lJ conveys a different meaning 
than sentence [2]--and the reader 
recognizes that it does because of the 
positioning of the words. The reader will 
also look. upon these next two sentences as 
also conveying different meanings: 

388 

[3] Strike the key to start the 
process. 

[4] Striking the key will begin the 
process. 

Clearly, two different purposes are at work 
here. In [3J, the writer expects the 
reader to perform an action, while in [4J, 
the writer wants the reader to be informed 
without necessarily performing an action. 

Thus, at this stage of processing, the 
reader looks at our sample text and assume 
the writer wants to convey information 
without requiring a physical response. At 
least that is the impression the reader 
will get from the first paragraph. A 
different impression awaits the reader in 
the "Note" because the writer wants the 
reader to perform an action < ". press 
the Tab key"). This intent carries on into 
the next section where the heading asks a 
question and the first sentence following 
leads the reader to an action. Notice that 
the reader is commanded to "Press ... ," 
and then told "if you want to change the 
format" (my emphasis). If the reader 
anticipates command-response, a situation 
normal in manuals, he or she will press the 
key before coming to the conditional. 
Having such a mindset suggests the next 
step in processing inf ormation--selection. 

When we approach any piece of writing 
<or communication for that matter), we 
expect something. Perhaps we expect 
information or entertainment or surprise or 
being told to do something. Readers 
normally come to manuals because they need 
information, especially how to do 
something, and so expect to be told 
something. When they encounter a sentence 
that opens with a command ("Press the Y 
key," for example), the response is to 
perform. When the action depends on other 
factors and those factors follow the 
command verb, readers will respond to the 
verb and then analyze the conditional. 
Normally, the reverse should be the order. 

With this brief summary as background, 
we can now turn to a closer analysis of the 
new sample. How is the reader to respond 
to this first section? I have already noted 
the long lines (some 5 inches). Most 
researchers agree that line length does 
play a major role in the reader 
comprehending the text The studies suggest 
something closer to 3 inches for a 
comfortable line length, because the eye 
must move more when the line is long, and 
the more the eye works physically, the more 
tired it becomes, especially if the reader 
is constantly shifting from text to 
keyboard and back. again. The eye, in these 
cases, must relocate its original leaving 
point in order to resume. If there is 
sufficient white space, numbering, and 
other designer aids, the eye can return to 
the spot and not become confused. 

Another interesting point about this 
text is that page 1-23 has justified right­
hand margins, and 1-24 does not <note how 
the right-hand margin on 1-23 is regular 



and irregular on 1-24!. The eye could 
easily become confused by this. Studies 
show that the unjustified right-hand margin 
presents a more psychologically appealing 
line because the reader gains a greater 
sense of making progress when the lines are 
not justified. The reader also does not 
have to remember a part of a hyphenated 
word. 

The reader, as I mentioned above, 
responds to the first line following the 
first question (a command) only to find a 
conditional. Two of the four headings 
(three are questions) open with the 
command "Press ... ,"while the other two 
use the conditional "If you . . The 
reader is apt to become confused. 

Past these factors, I analyzed the 
text sample using the same tests as I used 
before ("Readability Calculations," 
"Grammatik," and "Comment"[4, 1, 2]). 
Table•! shows the results when running the 
text through the "Readability Calculations" 
computer analysis. 

INSERT TABLE 1 HERE 
Figure 6 shows a composite bar graph of the 
grade level scores the sample achieved on 
the nine readability formula calculations. 

INSERT FIGURE 6 HERE 
Figure 7 shows a Fry graph from the 
readability calculations. 

INSERT FIGURE 7 HERE 
These results show, as they did when I 
reported them on the other texts, that 
readability formulas may have reliability 
when compared with themselves, but are not 
very reliable when compared with other 
readability formulas. Regardless of that, 
there are some interesting points to make 
about the readability results. The 
formulas agree that anyone with an eighth­
grade education could easily understand the 
material. One formula <Dale-Chall! even 
suggests that the reading level is fourth 
grade and below. Because that formula uses 
vocabulary and the other eight formulas 
rely on some kind of count (usually 
syllables and sentence length>, the 
vocabulary must be relatively simple. In 
point of fact, it contains a number of 
words that could cause confusion <the 
clearest example, I believe, is the word 
"terminate," used in a question/heading and 
discussion). 

I was interested in this vocabulary 
question and printed out the words that 
Dale-Chall identified as not being on the 
basic vocabulary lists <a list, I might 
add, that has not been updated since the 
1940sl. Table 2 lists those words and 
indicates the number of times each occurs. 
Note that of the 47 words listed, only 4 
were defined in either the Getting Started 
or Reference Manual sections of the 
documentation. 

INSERT TABLE 2 HERE 
A scan of this list shows that these 

words are rather common words, so the 
reader should not have trouble 
understanding most of them. There are, of 
course, exceptions--"terminate" being the 
most notable. But were they words that the 
assumed reader of the document really would 

389 

know? To answer that, I looked at the 
assumed reader of the materials. Who were 
the people the writers and designers had 
decided were the readers? I ~mmd two 
answers: one in Getting Started and one in 
the Reference Manual sections: 

Intended Reader 

This guide is intended for the first­
time user of the Samna Word III word 
processing package. The purpose of 
this guide is to show you how to 
start Word III, and how to write and 
edit documents you use every day, 
such as reports and memos. This 
guide also tells you how to use the 
Samna Word III tutorial program. 
<Getting Started, p. viii) 

Intended Reader 

The purpose of this guide is to 
present an overview of the product 
and to describe each procedure and 
key you can use with Samna Word III. 
<Reference Manual, p. ixl 

Not all that helpful, but the Getting 
Started statement at least identifies the 
reader as a "first-time user," so that few 
assumptions are likely about vocabulary. 
The problem, however, is that the Reference 
Manual section makes a different assumption 
and puts that assumption into practice by 
limiting definitions. 

I also wanted to run the other 
computer tests ("Grammatik"[l] and 
"Comment"[2Jl that I previously. I have 
summarized the results of all the tests and 
placed them in the Appendix. What these 
new tests showed was a longer average word 
per sentence <expected because I assumed 
information text and not instruction), a 
greater number of forms of "to be" (again 
because of the nature of the textJ, and 
considerably lower transitions (surprising 
because I assumed this text to be 
coherent). 

One final (and new) test I ran was one 
called "PC-Style"(3). Several categories 
agreed with the previous tests, and those 
that disagreed do not suggest strong 
conflicts. <See Fiqure Bl 

INSERT FIGURE 8 HERE 

CONCLUSION 

As before, I have been concerned with 
the way the writer and the designer 
approached the reader in the manual. I 
looked at both the design of the page in 
the manual and the style the writer used to 
convey the information. I am left, again, 
with two conclusions: 

1. Writers and designers do not take 
full advantage of the ways they 
can accommodate the reader. 

2. When readers must work at getting 
the information they need, they 
tend to avoid extracting it. 



I am concerned that the writers and 
designers do not use style and design to 
encourage the reader's attitude that the 
text is accessible--and hence acceptable. 
All too often the reader comes away from 
the text with a feeling of bitterness or 
anger that the information needed was not 
readily available. 

Is it any wonder that readers consider 
the manual the last resort when the 
information is not accessible. When I see 
pages like the ones I have shown here, I 
wonder if the people responsible for 
budgets rather than writers and designers 
are in charge of the documentation. 
Certainly, documentation is not a high 
profit item, yet how much good will is lost 
because the documentation was an after­
thought, or was put together as the product 
was moving to the shipping dock? When 
budget matters take precedence over people 
matters in documentation, it is little 
wonder that the manual is the last thing 
read. 

MOVE 

Purpose 

You usf' the MOVE nimm;:ind to move a speC'ifK block of text from one 
p!;:1ce to another. \t10\'E ]Pts you dPlPte the on~ini11 block of text and insert 
it anyv.:here else you w<1nt. 

Moving a Block of Text 

1. Position the cursor at the hPi;,;mnmR of the text you want to move. 

2. Prf'ss thf' Do kf'Y. 

3. Press thf' M kpv ffN \.1o\'r). 

4. Sh.:ide the text v<1u w<1nt tn n10n~. 

Press the Return ke-y. 

6. Poc;i~ion the cursor where you want to insPrt the text. 

Hold down the Ctr! kt>y while you press the Insert Here key. 

Press the Return kf•y. 

9. Prr-ss the N key (for Nn) if vou want SAMNA to insert the text with 
its stored formflf _ Prt>s<:: lhP Y key (for Yes) if you want SAMNA to 
insert the text with the c11rrt>nt form;;it. 

10. Press th{' Return kev 

Figure 1. 

63 

Sample page from Samna Word II 
manual. 

390 

REFERENCES CITED 

1. Aspen Software Comapny. "Grammatik" 
(Includes "Random House Proofreader," 
Version 1.15 [1982Jl, Version 1.84. Aspen, 
CO: Aspen Software Company, 1981. 

2. Barker, Thomas T. "Comment." Lubbock, 
TX: Texas Tech Microcomputer Company, 
1984. 

3. Button, Jim. 
WA: Buttonware, 

"PC-Style. " 
1986. 

Bellevue, 

4. Micro Power & Light Company. 
"Readability Calculations: According to 
Nine Formulas." Dallas, TX: Micro power & 
Light Company, 1984. 

5. Samna WordTM III: Documentation. 
Marlborough, MA: Digital Equipment 
Corporation, 1984. 

6. Warren, Thomas L. "Putting the Reader 
Back in Manuals: Computer Manuals and the 
Problems of Readability. " DECUS Fall 
Symposium, Anaheim, California. Marlboro, 
MA: Digital Equipment Corporation Users 
Society, 1986, pp. 457-482. 

Helpful lnlormollon 

• The text vou move is delett>d from its On"1'.m.:tl loc;it ton If vou want to 
move a block of text and .:i.\so retain it in thP oni;;mal file. uq· the 

COPY command. 

• You can move any amount of text. You shadf' the text youwfl.nt to 
move using the Word. Sentenre. Line, Pi1retiraph, Pa,1.?e. File. t1nd 
arrow keys. However, the File key 1s not re-commernkd 

• Any marks withm the text are movPd with the text. 

• The text you move is temporarilv saved, alonJ.": with its format. m the 

TEMP file. 
• The TEMP file holds one block of text at a time. Therefore. when _y0u 

move (or copy) text, SAMNA replarf's thf' ('(mtents of the TE\'P fi\f'. 

• If vou want to save text ~tnred in thf' TE~H) filr <lft{'r you fm1<.;h 
m~vmg or copying, give the TEMP file ;muther name. T/l{' text is nnw 

safely in the file with the new name. 

• You can display and edit the TEMP filf". 

6Q 



lloving a Block 

The block move command (~KV) moves all the text in the marked block to the 
cursor position, deleting the original at its old position. If no block is 
marked when the command is given, or if either marker is hidden, an error 
message occurs (Appendix B) • 

The destination may be in the middle of a line, if desired ~ for example when 
rearranging sentences in a paragraph. Just put the cursor where you want the 
block moved to. T"ne cursor is left at the beginning of the moved text. 

The beginning and end markers move with the block and remain displayed. After 
inspecting the result, type ~KH to hide the block markers -- both to remove 
the distraction from the screen, and to protect against block commands typed 
by accident. If you wish to use the same block markers later, just type ~KH 
again. 

The block move command moves exactly the characters you have marked, and does 
no automatic reformatting. Thus, text reformatting is often required after a 
move. After rearranging sentences, for example, use paragraph reform (~B, 
Section 4) to re-establish the margins. You may also notice that you included 
too many or too few spaces or carriage returns at the beginning or end of the 
block. These errors are easily corrected with a few regular editing commands. 

After a block move, the command ~QV will move the cursor to the place the 
block came from. It's a good idea to inspect here after moving, as you may 
have left too many spaces or carriage returns behind, or you may need to 
reform the paragraph. Note that any place markers 0-9 in the marked block do 
not move with it~they remain at the place the block came from. 

For an example of moving a column block, see Figure 6-1. 

6-4 

A 
A 
A 
A 
A 

IBB ICCCC 
IBB ICCCC 
IBB ICCCC 
IBB ICCCC 
lmL_I cccc 

mDDDDDDDD 
DDDDDDDD 
DDDDDDDD 
DDDDDDDD 
DDDDDDDD 

A 
A 
A 
A 
A 

cccc 
cccc 
cccc 
cccc 
CCCC 

Figure 6-1. Moving a Coluin Block 

IBB IDDDDDDDD 
I BB I DDDDDDDD 
I BB I DDDDDDDD 
I BB I DDDDDDDD 
llilL___IDDDDDDDD 

Figure 2. Sample page from Wordstar manual 

391 



Copying or Moving Text 

You use the copy or move procedure to save a specific block or column of 
text and insert it in a different location in the file. This is useful when you 
need to repeat the same information or to copy Format Lines. You can 
copy text to a temporary buffer or to a stored file. 

Copying or Moving a Block of Text 

To copy or move an entire block of text: 

1. Position the cursor at the beginning of the text you want to copy. 

2. Press the Do key. 

3. Type the letter C (for copy) or M (for move). 

When you move text, it is deleted from its original location. When you 
i:opy text, it is not deleted from the origin;il location, and therefore 
exists twice in your file. 

If you are storing the text in a separate file: 

• Press the File key. 

• If you do not want to use the default file name TEMP, type a file 
name. 

• Press the Return key. 

NOTE 
If you do not specify a file to store the text in 
when you copy it, Samna stores it in a temporary 
buffer. This buffer can hold only about one full 
page of text. Therefore. if you have a large block 
of text to copy, you should store it in a separate 
file. 

4. Shade the text you want to copy. 

5. Press the Return key. 

Figure 3. Sample 
pages from Sarona 
Word III manual 

6. Move the cursor to whne you want to insert the copy. 
7. Hold down the Ctrl key while you press the Insert Here key. If you 

stored the text in a file: 

• Press the File key. 

• Type the name of the file, unless you used the default file TEMP. 

• Press the Return key. 

Samna asks: 

Which format •hould be u•ed' 
Type Y to u•e the current format. Type N to lnsed the 
5lored format. 

Will the text be ln•erted Into the current (displayed> 

}5 the text you ere 1n5ertlng a column? Yes/Ho (H) 

8. Respond to these questions and press the Return key. 

NOTE 
To move text with its original format, you must 
save the text in a separate file. 

392 



6.4.2 THE CUT COMMAND 

This feature allows you to remove any amount of text from a document Using thE 
Paste command described later in this chapter. you may then move the cut text to 
another position within the same document or to another document within the sam•. 
Document Directory. You may also elect to do nothing with the text you have cut 
thus deleting it from you document. The Paste command in this case allows you to 
recover the last block of text you deleted in this manner. 

6.4.2.1 Basic Conceph 

Think of the Cut function as performing the same operation you would perfo1 m with 
a knife on a paper document. At the point where you would begin your cut in the 
paper document. you place the Select Marker in MASS-11. Moving the cusor in 
MASS-11 is similar to running your knife around t~e text you want to remove 
working towards the end of the section. Finally. at the opposite end of the text 
from where you started. you executed the MASS-11 Cut function. which is similar 
to lifting the section of text from the document. Unlike the knife and paper 
operation. however. you are not left with a gaping hole in your document. MASS-11 
automatically moves the text below the cut up to meet the text above the cut. so 
that there is never a hole 'eft by the Cut operation. 

The cut text is stored in a temporary holding area. or "'paste buffer''. The paste 
buffer contains the cut text until another piece of text selected with (SEL) is cut 
or copied. until you change Document Directories. or until you exit MASS-11. The 
amount of text that can be cut at one time is limited only by the disk quota 
allocated to your account by the System Manager. 

6.4.2.2 Rulers in Cut Tut 

If the text you select has any rulers embedded in it. these rulers will also be stored 
in the paste buffer with the text. If you paste the cut text into another location. 
these rulers will be inserted into the dccument along with the cut text When you 
cut text with rulers from a document. the last ruler which occurred in the cut text 
will be placed in the document at the point of the cut This will preserve tht 
format of the text which remains in the document below the point of the cu~ 

GRADE LEVEL: 

DALE-CHALL 

HOLMQUIST 

ARI 

FLESCH 

KINCAID 

POWERS 

FRY 

COLEMAN 

FOG 

1 

Figure 4. Sample page from Mass-11 manual 

2 3 4 5 6 7 8 9 10 11 12 COLLEGE 

PRESS [ENTER] to CONTINUE 
Figure 6. Comparison of reading levels for sample text. 

393 



(;.) 

'-0 

""'" 

Introduction to Samna Word Ill 

Default Options 

Screen 1-1 shows the list of default options you can keep or change. H you 
do not type an answer to an option, Samna uses a default answer as shown 
to the left of each option. An explanation of each option follows Screen 1-1. 

. ....... ~T!lif#J1~"'.,., ,,,.,.,. · ,_! 

R..,.. the vri1•1'rolecl lab ii l°" are uS1ng llOf'pies 
loll to eidl Of'l1on to ..Oe iour selections then touch Re\"rn 

lil Do l°" mh to cll~e the del"'lt fora•t' 
Ll Tipe the ter110ator l°" want to use for the nu .. ric tab .. lc'1 . or , I 
[HJ Do jOU Vlsh 5A111A \O aut0ta\1tallj ma\e bact Up Flies? 
[ril Do 100 ..sh to ha<f the print optlon for repa<J• set for 'j.s'' 
[CJ Tjpe the desired print option iou mh to use as a def au It. 

C:contu-..ous p.,..r S:single sh"I p.,..r f:sheel (Hiler 
[YJ ls iour feeder• mgle-lrij l..O.r' Answer I tfor iosl or N lfor noJ. ( 
m lipe the 1ilen1Jlier for the ome iou w1Sh to use as the default. IA - Pl ( 

I\ l Tipe th• oelault d1re<to,.., """'· I 
[lJ Do iou Wish to havt the aore eitens1ve IEl.P level 1 as !OUr :!ef~Jlt hel1' I 
[! r ljl"' tho print Iliff! - "",.,;, to.,,.. .. tho dri;alt. 11 - ') ( 

t:Jl[C IJ60/t00 "'lliiwt1an.I 1:1£C IJ60/l00 "'ltwt1anal ( 
l:Jl[C l/l50/100 "'l11nat1<NI l:Jl[C IJ6MOO "'lluwhanal I 
5:Jl[C IJ60/100 "'ltuwturwl ':ICC Ul50/100 !Wltuwhanol I 

m Do l'* ••"'lo di'!'i"'l tho SNWo bar-. on tho,,,,...,,, ( 
m Do '°" wl511 to na.. <Nrocter lilts on !!W' screen' I 
II l Ti,.. the .,,....riat• ..- far the l"'JCl0'1'11 l"" ...,1 for a o.r ... 11. < 

l:U.,llsli 2:Sw1ill..,,.... l:S.illlfrt'lldl l:Swr<l1sh 5:'ij>"'1:..11 I 
tMc:n 7:Br1t1"1 &:""'°''" !:Au>tri'"1i._,.,... 1o:s.1g1wir'""'11 I 

Ul ltuch stile ...,...,...,1, how ,,.,a1.,. _, slullll be """'"' 1n <a•h' tl-lll 
1: -12.8'0.!MI 1: 11,890.!6- J: 111,890.SS; I 

£2 l liorw ~ 12K1Ml ,as1hC11S cil IJDU ~\ ta \l5e as a <le'fault in 1Wth? ( 
I 

Scresn 1-1. The Default Options Sc:roen 

NOiE 
For each option setting that you want to keep, 
press the Tab key. This moves you to the: next 

opt10n. 

Do you wish to change the default format? 

Press the Y key (for Yes) if you want to ch;i•i"'.e the format. Otherwise, 

Introduction to Samna Word Ill 

Your margins, tabs, and page specifications are preset. These settings are 
automatically displayed on the scratchpad and on any new file you create. 

Samna displays the current default format at the top of the screen above 
the default screen. If you answer Yes lo this question, the cursor moves to 
this format line, and you can change any of the settings. 

Type the terminator you want to use for numeric tabs . 

Press the comma (.) key if you want the terminator to be a comma. 

When you tab to and type at a numeric tab stop, Samna automatically aligns 
numbers on the terminator. The terminator is usually a period (.). This 
means that your numbers are aligned on the decimal (in columns) under the 
numeric tab stop. Changing the character on which Samna aligns the num­
bers to a comma (,) is useful if you are typing in another language using 
statistical data. 

Do you wish Samna to automatically create back up files? 

If you specify Yes, Samna automatically makes a back-up copy (exact dupli­
cate) of each file you save. The back-up copy always has exactly the same 
file name as the original file. However, Samna assigns a file type of .BKl to 
the back-up file. 

If you back up the same file again, Samna renames the file called file.BKl 
to file.BK2, and creates a newer back-up file with a file type of .BKl. 

Do you wish to have the print option for repage set for "ye~"? 

If you press the Y key (for Yes), Samna changes the page break locations in 
your file during print. 

The Repage option automatically adjusts the number of lines per page so 
that the page lengths are consistent. If you do not usually repage on the 
screen before printing, specify Y. You can always selectively change your 
setting for a particular print job. 

press the Tab key; the settings remain as lill'::y are. 
Figure 5. Sample text from Samna Word III manual 

1-23 1-~'4 



s 
e 
n 
t 
e 
n 
c 
e 
s 

p 
e 
r 

1 
0 
0 

w 
0 

r 
d 
s 

100 

1*! ~r~s~ [E~T1R] 1oTcbnli~u~ T_, 
!***l_ J_ 

1*1d _L 1* 
****_!_ _l_ ****_!_ 

1 * * *_1_ _L 1*!* ** 
_l_ _J_ _l_ ****_!_ _1_ *** +--* 

1*1d _l_ 1*1* ***_!_ 
'2'***_1_ _1_ ****J_ _l_ ***-t-* :::·::--·>·: 

i ..L I*1* *1*1*t-t-** * 
==---~-::::: 

'3'*** ****-+-t-**** ** 
_L _l_ ****-t--t**** _L _l_ ** * 1 1*1-t--t**** _l_ *1 

5 **** i *! tm[~· _l_ *1 *-+-- * t-t-10 1-111-12 I-+-
*! 1--+-*--t--t-*-t-*-t-* 

1** * * t--1 * I-+- * * t-t-* 
6 ** _1_ * * i *-+--+--* *-+- .. 

** _1_ *1 * t--it--1 * *I-+-* 
** .L ! _L **-+--+--* *-+-t-* 

T7 ** 1 * * _l_ * * t--it--1 *_1_ 
.J. _L .J. 8 ! *_L *_L * *--t--t-* 

.J. i ~ ~** r.:.:t:--i tlOLLEGE--1 
_l_ _l_ * * * '--* _L _l_ _L .J. 

Syllables per 100 words 

~; · -~ 7. Fry graph from sample text. 

Readability 
Personal tone 

Action 

PC-Style report for: B:REFERENC.GDE 

Sentences: 26 
Words: 405 

Words per sentence: 15.5 
% Long words: 8.4 

% Personal words: 6.4 
% Action verbs: 2.2 

Syllables per word: 1.5 
Readability level: 9.5 

POOR FAIR AVERAGE 

Poor ... Best 
17.l::::if 7.0 
14. ~~l=====d 2 . 0 
0.0 -.-. :~~9.0 

o.o - ;2.5 
2.5 l=dl.O 
18. '.jlj:d6.0 

GOOD EXCELLENT 

l::::::===============================:=!~~~;==========::::::t 
l:::::::=======================::::::!==============~lj====I 

Figure 8. Analysis of sample from PC-Style 

Table 1. Analysis of sample text 

CURRENT PASSAGE TEXTll 

398 WORDS 557.07 SYLLABLES 
28 3-SYLLABLE WORDS 139.97 SYLLABLES PER 100 WORDS 
30 SENTENCES 7.54 SENTENCES PER 100 WORDS 

8.12 FOG READING LEVEL 
74.96 FLESCH READING EASE SCORE 

6 FLESCH GRADE LEVEL 
5.20 POWERS READING EASE 
6.85 HOLMQUIST 
5.72 ARI 
6.10 FLESCH-KINCAID 
7.59 COLEMAN 

11-12 DALE-CHALL 

DO YOU HAVE MORE MATERIAL? (YES OR NO)? 

395 

172 

25.0 
20.0 
16.7 
14.3 
12.5 
11.1 
10.0 
9.2 
8.3 
7.5 
7.1 
6.7 
6.3 
5.8 
5.5 
5.3 
5.0 
4.8 
4.5 
4.3 
4.2 
4.0 
3.8 
3.7 



Table 2. Words listed by Dale-Chall readability formula 

Words used in the manual sample not found in Dale-Chall listing. 
(#) = Number of occurrences 
* (p. #) = Word defined in manual on page # in Getting Started 
$ (p. #) = Word defined in manual on page # in Reference Manual 

adjusts (1) 
aligned (2) 
aligns (2) 
assigns (1) 
automatically (6) $(p.1-24) 
BK (4) 

option (6) 
options (3) 
original (1) 
particular (1) 
per (1) 
period (1) 
preset (1) 
press (5) 
renames (1) 

character (1) 
comma (3) 
consistent (1) 
create (2) 
creates (1) 
current (2) 

repage (3) $(p. 1-24) 
Samna (10) 

cursor (1) *(p.1-6) $(pp.l-6,l-8) 
data (1) 

scratchpad (1) 
selectively (1) 
specify (4) 
specifications (1) 
statistical (1) 

decimal (1) 
default (6) $(p.1-23 to 1-27) 
displayed (1) tab (5) 
displays ( 1) tabs (2) 
duplicate (1) terminator (5) 
explanation (1) type (5) 
formats (5) typing (1) 

locations (1) usually (3) 
margin (1) y (4) 

numeric (3) 
APPENDIX AVi~!AGE 

rnon '.l.'EX':l:1-
PROGRAM SECTION TEX'I 11 TEXT7 ; TEXT9 
READABILITY # words 408 :J'.'J 

3-Syllable 28 22.5 
Sentences 28 22.75 
Syllables 55?.00 505./.:j 
Syll. /100 words 137. 01 137. ?'5 
Sent./100 words 6.86 6.8 
FOG Reading 8.57 9.0 
Flesch Ease 76.13 75.l 
Flesch Grade 6 6.2 
Powers Ease 5.16 5.2 
Holmquist 4.19 6.5 
ARI ~; • 9<· G. 4 
Flesch/Kincaid 6.23 6.6 
Coleman 7.~, 7.J 
Dale Chall 4th or l~ss 9.3 

GRADE LEVEL Dale Chall 1-4 -----9.3 
Holmquist 4.25 5.8 
ARI 6.00 5.8 
Flesch 6.00 6.2 
Kincaid 6.35 6.0 
Powers 5.35 4.7 
Fry 6.95 5.7 
Coleman 7.25 6.6 
Gunning Focr ----·--·- J;L 00 8. 9 

GRAFlMATIK Av.Sent.Length !.'. •• ~·; J.4.6 
Av. Word Length 4.3 4.2 
Longest Sentence 44.0 30.3 
Shortest Sentence 6.0 C.~ 
"To be" Verbs 9.0 6.25 
Prepositions 57.0 46.7 

COMMENT Content 71.6 69.5 
"To be" 130%> 4.62% 12.1% 
Prepositions < 2/Sent. l 2. O 2 .1 
Transitions 120%) lL'.34% 24.0% 
"Th" Openers <9%) 19.23% 14.0% 
Vagueness <1%) 1.23;~ O.CJ:lt> 
Short Sentences < 30% l 46. 0% 4:.:. ·n 
Long Sentences <15%> 4.0% 2.6% 
Problems Noted 6.0 5.9 

396 







TSXLIB: Updated for TSX-Plus V6.0 

N. A. Bouroeois, Jr. 
NAB Software Sirvices, Inc. 

Albuquerque, NM 

TSXLI B is a :;. i brary Df FGRTRAN c 
ment the TSX-Plus system ser 
TSX-Plus. The library has bee 
TSX-Plus unique services through 

Introduction 

Like R~- l, TSX-Plus offers the MA~RG-11 pro­
gr~mmer a num er :f system services~ ~~~ese serv:ces 
are :mplemen ed via beth the R!-ii proarammed 
reques~s 1fJ th~se servi=es ccmmcn tc botfi RT-:1 
and TSX-P:us• and raw EMT instructions 1fcr those 
ui:iique ti;~ ~?X-~:i.:.l;I. M'~T-~1 :makes,.., ~ts_ syst,:e,.~ser­
v1ces ava:~au-e tc .he .y~r~A!i pro~r~mmer •. 1-ough 
the s·:stem subrout1ne . -l!:lrary 1 SYSL.3. TSX-Plus 
also h~nors ~he bulk 2~ the serv1=e reques~s l~ the 
SYSLI3 routines. TSXLIB however makes the 
TSX-Plus uniaue EMTs avai:atfe tc tt,e FsRTR.A!i pro-
grammer. • 

These TSX-Plus li~rary r:~t:nes prov~de 
facilities tc support 2c~municat1:~ ~~~es, detached 
jobs, device al~~cating and deall8catin;, fi~e 
stru=:~re= ~e~:=e mo~nt1n~ ac~ ~ism:~nting, s~rnmun1-
cati~n ~et~een ru~ning -programs, ~ob privileges 
centre:, ~ob sta~us ~onit:rin;, pr~;ram ~~rfcrma~ce 
ana:ysis, real time pr=q~~m exec~~l?LL_~sna~e~ run 
time sys~ems, shar~d f:~es,_sp~~1a __ !1ies i~:cr~a­
tion, spc:ler ==ntr~~, =c~mun1=a~1on_tet~ee~ running 
p~agfams~~nd a :~rmi~a:, prcgraffi =2Ltr~: :f t~e tef­
m~na~, _ u~T ~ct1vat:?n _m8de1 user n~me =:n~r~~, 
w1ndo~~n~, aL2 severa~ m1scelianec~s EM.s. 

T~e :sx:IE distrib~~ion ki:, JECUS #11-490, 
includes the MACR0-11 scur=e m~d~les for all the 
routines, a user 1 s manual in mach~ne read~~le f2rm~ 
an ~ndirect ccffiman~ file to bui:d :he library, a~u 
the ~~~:eme~te~ :ibrary. 

Genera: [escripti:~ 

These ~5X-Plu5 :ibrarx routines ~r=?~je fa:ili­
ties :c sur~:rt ccmmu~ica~ic~ lines! ~etache~ jobs, 
devi=e allo~~t~L~ and 4ea~;ocating, ~ile str~ctu~ed 
devi:e xa~nt1ng an: d:~~ou~t1~;r_ c~mm~n1cat1on 
between run~inc prc;rams, J~b ~r;vi~e;es ::~:r~l, 
job stat~s mo~~t:r~ng, Dr:grarn_ per~crman=e ~na_ysis, 
real time proaram exesuliJn, s~are~ run time -~ys­
tem5, sharea files, special files ~Lfsrmat1on, 
spoo~er =~ntrol, =ommunication between run?1ng pro-
2rams and a term~na:, ~rc;ram coLtr=~ of t~e 
~~rmina:, o:T activat~cn:mo~~{ user n~me =ontroL, 
wind~~i~;, and severai rnlscei~ane:~s EM~s. 

T~e standard FORTRAN subroutine 2alling 
sequeii:e. shown bels~ may b~_used to a:cess all of 
the r:~t1~es in the ~~X-Plus ~1brary. 

CALL RTNAM I ARGl 1 ••• 1 AKJ3 1 

These ro~ti~es that return cLly Jne val~e are 
als: =a:lable as FORTRAN f~nc:ions. ~his is as f~l­
:ows: 

:lable rcutines th t imple­
ices which are nique to 

updated to inc ude all 
TSX-Plus V6.0 . 

. RUN SY: LINK 
*MYPROG=MYPROG,TSXLIB/F 
*AC 

.~,· .• SY:::.INK 
*MYPRQG=MYFR:G,~SXLIB,SYS:IE,F~J~IE 
*""C 

The application program 15 ~=w re3jy fer 
execution. 

.R:.JN DK:MYPROG 

T~e ''TSX-Pl~s ReferencE Man~a!'' des:r~~es haw 
the EMT; imp:e~en~ed iL th:s Tax-=:~~ :::rar~ are 
accessed from ~ MACRC-!1 ~rooram .. ~swe~er 1 the 
FORTRAN/MACRO interface ~escrib~~ i~ ~he ' 1 ~:-:. ?ro­
grammer 's Reference Manual'' may a:~~ ~e ~~e~ t~ 
a:cess t~e routines in t~e :ibrary. 

Com~~~ication :ine 3~p~cr: 

?a~ie : :ists the :sx::E 
certai= ==~mu~i=aticL :ine 
running pro;ram. 

r=~~~~es ~~a: :~fer 
s~pf:r: fr:c ~it~~n a 

Redirect a comm~~i=aticn Jr ~i~es~ar:ng 
.;.:.ne. 
~~-~r~- ~LP -pePj cf a =c~municat~=~ Jr 
;r~~sS~rr~~ r~~~. 

:omm~ni2ati:n :ine s~;~=r:. 
:~:.:NE. ~·~A': 
T~t:.e 1. 

:':it:.e 
detac'ieC: j ::;i::, 

lists ~he r:~~ine; :~a~ ~r:·ride 
s~:cJr: fr~c withiL a~ e::ec~t~~= Dr~-

gram. 

ISTI:~ 
KLD':'2ii 
STDTJB 

Ge~ ~~e ~:a~L3 =~ a je~ac~e~ jot. 
Kill a deta:he~ j:~. 
Start a deta2~ed j~t. 

Jeta:~~~T3~~.~~Ep:rt. 
.-ab.Le t. 

Je~ice A!l:satin; and Deallccati~g 

!RE~= RTNAM l ARGl, ... ,AR3n 

The app:ication pr~gram i~ first =crnpiled as 
f·oll.:·!f.~s: 

I~~nl;~:t~~~gi;~:~~E~~~~~~l ~~~~~!~~~a:I~~t!~-~:~=~~ 
~g~!i~~5;the~~~~b ~~ ~~Y~~~~-~~ 5a~~;~sal~~gat~~~7~e~ 
A aev1ce a~~~catea ~8 a primary ~1~e Jr ~~5==~a:e~ 
virtual line mav be accessei by an~ of ~he ass:ci~t-
ed lines. · · 

Then the routines are linked with the appli=a­
tion program as shown below: 

Proceedings of the Digital Equipment Computer Users Society 

c 

399 

All: ate a ~evice. 
=~al :=a~e a ~evi:e. 
C~ec ~~e a!la=aticn stat~5 :! a ~e~i=e. 

Dallas Texas- 1986 



Device Mounting and Dismounting 

It is possible to mount and dismount a file 
structured device for directory caching from within 
a runnina program. The routines listed in Table 4 
provide these capabilities. 

::SMNT Dismount a file structured device. 
MOUNT Mount a file structured device. 

Device mounting and dismounting. 
MNTDEV.MAC 

Table 4. 

!nterprogram Message Communication 

TSX-Plus provides an oDtional facility 
allows runnini programs to" communicate with 
other. Table ~ lists the routines that support 
interprogram message communication. 

that 
each 
this 

MSGREQ 
MSGSND 
RCVMSG 

Post a read request for a messaae. 
Send a message to another job. -
~;b. to receive a message from an:>ther 

RCVMSW Wait for a message from another job. 

Interprogram message comrnunicaticn. 
MSGCO/.l.MAC 

Table 5. 

. Messages are transferred. between programs tr 
usino named messaae channe~s. A message cnanne~ 
acce~ts a message fiom a sending program, stores the 
messaae in a queue associated with the channel, and 
delivirs the message to a receiving prcgram on its 
re~uest fer a messaae on the channel. Message chan-
ne~s are separate fiom I/D channels. -

Each active message channel has associated with 
it an ASCII character name that is used by both the 
sending and receiving Drograms to identify the chan­
nel. -The names ass~ciated with the channels are 
defined dvnamically by the running programs. A mes­
sage cha~nel is active when messages are being held 
in the queue associated with the ~hannel er if a 
program is waiting for a message from the channel. 
When message channels become inactive thev are 
returned to a free peel and may then be reused: 

Once a message is queued on a channel, that 
message will remain in the queue until some program 
receives it. A proaram's exiting to the keyboard 
monitor does not rimove any pending messages. This 
allows one program to leave a message for another 
program that will be run at a later time. 

Job Privileges Control 

Table 6 lists the routines that permit an exe­
cuting prooram to determine and make certain changes 
in its own-executing environment. 

IPRIV Determine er change the job privilege 
sets. 

ISTPRV Set the current job's priority value. 
NDNINT Set the [non]interactive job status. 

Job Privileaes Control 
JBPRI'i.MAC 
Table 6. 

Job Status Monitoring 

A facility is available for one job 
the status of one or more other jobs. 
has declared to monitor another job, a 
routine is e~ecuted in the monitoring job 
change of status occurs in the job beina 
The services provided for job monitoriftg 
in Ta'.lle 7, 

to monitor 
Dn,::e a jot 
completion 
whenever a 

~~~ii~;t~a 

IESMCN Establish a job status monitoring con­
nection.

ICNMCN Cancell a job status monitoring
connect i·on.

:BSTCH Broadcast a job status change.

Job status monitoring.
JBSTMN.MAC

Table "

400

Miscellaneous EMT Support

Table 8 lists the routines that support
several miscellaneous EMTs provided by TSX-Plus.

the

GETREG

I HERR
I SERR
ISPY

ITSLIC
ITS LIN
MEMSET

Get the word and byte values stored in a
processor register.
Enable abort en certain errors.
Inhibit abort on certain errors.
Return values from within the simulated
RMDN (SYSLIB routine).
Determine the TSX-Plus license number.
Determine the TSX-Plus line number.
Set the memory allocation.

Miscellaneous EMT support.
TSXMSC.MAC

Table 8.

DDT Activation Mode Support

DDT activation mode may be turned on and off
from within a running program. Table 9 lists the
routines that support tfiis feature. :n this mode
TSX-Plus considers all characters to be activation
characters except the digits, the comma, the dollar
sign and the semicolon.

RSTODT Reset normal activation mode.
SETDDT Set DDT activation mode.

DDT activation mode support.
TSXODT.MAC
Table 9.

Performance Analysis Support

For many applications the keyboard monitor
level performance analysis contra~ provided by
TSX-Plus is adequate. Specifically, in cases such
as analyzing the performance of an overlayed program
it is necessary to have control over the performance
analysis feature from the running program. The
routines listed in Table 10 provide Just this capa­
bility.

INITPA
ISPPA
ISTPA
TERM FA

Initialize for a performance analysis.
Stop a performance analysis.
Start a performance ana.vsis.
Terminate from a performance analysis.

Performance analysis support.
PRFANL.MAC

Table 10.

Real Time Program Support

The real time program support provided by
TSX-Plus allows multiple real time programs to be
run concurrently with normal time sharing opera­
tions. The basic functions provided by this
facility are listed in Table 11.

A program must have operator privileae to use
any of the real time routines. The real time facil­
ities are available to both normal jobs controlled
by time sharing lines and to detached jobs.
Detached jobs started by time sharing users have
operator privilege only if the user starting them
does.

A basic facility required by many real time
programs is the ability to access the I/D paae which
contains the peripheral device reaisters. A- normal
time sharing job does not have fhis access. It is
instead mapped to a simulated RMON. This allows
programs that directly access offsets into RMON to
run correctly.

A real time program can access the :;o paie in
one of two ways. .t can map the !/0 page in.o the
program's space, or it can leave the simu~ated RMDN
mapped into the program's space and perform peek
poke, bit set, and bit clear operations into the I/6
Page. It is much more efficient to directly access
~he device registers by mapping the I/0 page into
the program's space than to use the rcutines to per­
form each incividual access. However, this
technigue will not work if the prooram must also
directly access offsets into RMDN. Thi correct wav
to access offsets into RMDN is with the SYSLI~
routine, ISPY, which will work even if the I/D page
is mapped into the program's space.

CNVAPA

IBIC!O
IBISIO
ICNINT

ICNRTN

IPEKIO
I PO KIO
IRLINT
ITCRTN

IUNLKM
LKANMY
LKLOMY
MP IO PS
MPRGN

MPRMPS

RLCTL

STPRLV

TKCTL

Convert a virtual address to a .physical
address.
Bit clear a value into the I/0 page.
Bit set a value into the I/0 page.
Connect an interrupt vector to a comple­
tion routine.
Connect a service routine to an
interrupt vector.
Peek at a value in the I/0 page.
Poke a value into the I/0 page.
Release an interrupt vector connection.
Trigger a completion routine from an
interrupt service routine.
Ur.lock a job from memory.
Lock a job into any memory.
Lock a job into low memory.
Map the I/0 page into the program space.
Map a region of virtual memory to a
specified region of physical memory.
Map the simulated RMON into the program
space.
Relinquish exclusive control of the sys­
tem.
Set the user mode processor priority
level.
Take e:\clusi ve control of the system.

Real time program support.
RELTIP..MAC
Table 11.

The TSX-Plus real time support f~cility pro­
vides two methods to connect rea.i. time interrupts to
TSX-Plus jobs. The first of these methods uses the
mechanism cf completion routines_ to perform the.con­
nection. The second method provides a ~ore di~ect
connection between interrupts and service rout:nes
in TSX-Plus jobs. Once a connection is established
the routine, completion or service, is e::~cuted ~ach
time the specified interrupt occurs. !t is possible
for several interrupt vectors to be connected to the
same completion routine in a job but it is illegal
for mere than or.e job to connect to the same inter­
rupt vector.

With the first method an interrup~ causes a
completion routine to be queued for the ;ob that was
connected to the interrupt vector. This method is
verr general and allows the completion routine to
cal~ for system services (execute EMTs). Also the
job does not have to be locked in memor". On entry
to the completion routine RO contains ~he address
of the vector that caused the completi·:m routine to
be entered.

The second method sets up con~itions for the
job being ~alled and eJ?.t~r~ the interrupt service
routine. This approach minimizes the overhead in
entering the service routine. Hence, the service
routine method can process interrupts at a greater
rate than can be processed using the completion
routine method.

There are restrictions imposed OJ?. .a program
using the service routine method. Sp~cifical~y, the
following conditions must be met tc directly connect
to an interrupt:

1. The job must be locked in memc·ry before con­
necting it tc; the interrupt vector and must
remain locked in memory as long as the
interrupt connection is in effect.

z. The precessing done by the service routine
shou-d not be very lengthy _since other
interrupts ~ay be q1:1eued up during execution
of the service routine.

3. Onl¥ two system services may_ be leg~lly
~al.i.ed from within the serv:ce routine.
They are the SYSL!B routine, RESUME, and the
TSXLIB routine, ITCRTN.

The interrupt service routine runs in use~_mode
and uses memory mapping that has been estab.1.1shed
for the job before the int~rrupt_occ1:1rs. A~cess to
the I/0 page via the MPIOP~ routine_ is possible p~o­
vided this mapping has been set up in the ma1nl1ne
code before the interrupt occurs.

If an interrupt service routine needs to per­
f :;rm a s,·sterr. service other than the RESUME c~ll
listed abo~e, it should trigger a complet~on rcut~ne
via a call tc ITCRTN and have the completion routine
call for the required system servi·ce(si.

An execution priority may be specified for each
completion routine. This is not the same as the

401

hardware selected priority of the interrupt. All
completion routines are synchronized with the job
and run at hardware priority level zero. The com­
pletion routine priority is used to schedule
completion routines for execution. The available
priority levels are 0 through 127. The execution of
a real time completion routine for one jcb will be
interrupted and suspended if an interrupt occurs
that causes a higher priority completion routine for
another job to oe queued for execution. However, a
completion routine for a given job will never be
interrupted to run another completion routine for
the same job even if a higher priority completion
routine is pending.

Completion routine priorities one and larger
are real time priorities. They are hiaher than the
priorities given to time sharing joos and will
always preempt the time sharing jobs. Completion
routine priority zero is not a real time priority
but rather a very high normal priority. Such zero
priority completion routines are time sliced in the
normal fashion. If a completion routine enters a
wait state it relinquishes its real time oriority.
Jobs that have real time1 interrupt driven comple­
tion routines need not be ocked in memory.

In time critical, real time applications where
a program must respond to an interrupt with minimum
delay it may be necessary for the job tc lock
itself in memory to avoid the time consumed in pro­
gram swapping. This facility should be used with
caution since if a number of large programs are
locked in memory there may not be enough space left
to run other programs.

A running program may gain exclusive access to
the system to perform some time-critical task. The
program may then relinquish this exclusive access
when it is not needed. A running program may also
set the user mode priority level and map a region cf
virtual memory to a specified region of p.iysical
memory.

Shared Run Time System Support

TSX-Plus provides a facility that all:;ws shared
run time systems or data areas to be mapped into the
address spaces of multiple time sharing jobs. Table
12 lists the routines that support this feature.

IASRNT

MAPRNT

Associate/disassociate a shared run time
system with a job.
Map a shared run time system int= a
job's region.

Shared run time system support.
RUNTIM.l'!AC

Table 12.

Memory space can te conserved by having several
jobs access a common copy of a run time system rath­
er than having to allocate space within each job.
Shared run time systems are never swapped out of
memory. When a job is associated with a run time
system, a portion of the job's virtual mem·::rr is
mapped so as to allow access to the run time sysvem.

Shared File Support

Table 12 lists the routines that :;ffer access
to the shared file record locking facility provided
by TSX-Plus. This is useful in situations where
programs beina run from several terminals wish to
update a common file. Through the record locking
facility a program may gain exclusive access to one
or more blocks in a shared file by locking those
blocks. Other users attempting to lock the same
blocks will be denied access until the first user
releases the locked blocks.

ICKWTS
IDCLSF
ISVST
IUALBK
IUSPBK
LKBLK
LKBLKW

Check for writes to a shared file.
Declare a file to be shared.
Save the status of a shared file.
Unlock all locked blocks.
Unlock a specific block.
Try to lock a block.
Wait for a block to lock.

Shared fi:e support.
SHRFIL.MAC

Table 13.

The recommended procedure for updating a shared
file being accessed by several users is as follows:

1.
2.
3.

4.
" 6:
5.

9.

Open the file.
Declare the file to be shared.
Lock all blocks which contain the desired
recvrj.
Read the locked blocks into memory.
Update the record.
Write the updated blocks to the file.
Unlock the blocks.
Repeat steps three through seven as
required.
Close the file.

Special File Information

TSX-Plus allows a running program
certain status information about a file

to obtain
and to set
lists the the creation time of a file. Table 14

routines t~at support this facility.

IFLINF Obtain some information about a riie.
ISTFTM Set the creation time of a file.

Special file information.
TSFILS.MAC

Table 14.

Spooler Support

!able 15 lists . the routines that provide
spooler support ava1lacle to an e:ecuting program.

ISPBLK

ISPCTL

retermine the number of free
the spc;:l file:.
Control the release time cf
file.

Spooler Supl2ort.
SP OLER . MA·­

Table 15.

System Status Information

blocks in

a spooled

Information typical of that returned by the
SYSTAT keyboard command is made available to a run­
ning program by the routines listed in Table Z-16.

ICON TM
ICPUTM
IEXSTS
ILNSTS
!PGNAM

IPPNUM

MEMPOS

MEMlJSE

Determine the connect time fer a ~ob.
Get the __ CPU time used by a job.
Get a job's execution status.
Check the status of a line.
Ge~ the name of the proaram beina run by
aJ-:it. - -
Get the project-programmer number for a
JOb,
Determine the position of a job in memo-

_.Jrey~erm1i- ne t.'"1e t • • L v - amoun c. mem:ry usea ~y a
job.

Si· stem status information.
SYSTAT.MAC

Table 16.

Terminal Communications Support

The routines that allcw a running program to
communicate with a terminal are listed in Table 17.

TRMIN Accept a string cf characters from the
terminal.

TRMMSG Send a messaae to another terminal.
TRMOUT Send a strin~ of characters to the ter­

minal.

Terminal =ommunicaticns support.
TRM::GM.MAC

Table 17.

Terminal Control Support

The terminal control support routines are
listed in Table 18.

402

BRKCTL
HIEFOF

HIEFON

IACTCH
ITRCTL

ITRERR
ITRTYP
TIMOUT
TTCRTN

Establish break sentinel control.
Turn off the high efficiency terminal
mode.
Turn on the high efficiency terminal
mode.
Check for pending activation characters.
Perform lead-in character type terminal
control functions.
Check for terminal input errors.
Determine the terminal type.
Set the terminal read time out value.
Establish a terminal completion routine.

Terminal control support.
TRMCTL.MAC

Table 18.

User Name Support

An executing program may set and change the
user name for the connected job. The routines for
this facility are listed in Table 19.

GTUNAM Get the user name associated with the
current job.

STUN AM Set the user name associated with the
current job.

User name suEport.
USRNAM.MA
Table 19.

Windowing Support

TSX-Plus offers a full screen process windowing
system that allows the system to remember the con­
tents and status cf the terminal display. A running
program may redisplay windows on demand. The
routines for this facility are listed in Table 20.

When windowing is used the system monitors all
characters sent to the terminai and maintains an
updated screen image display in memorv. Terminal
attributes such as line width, reverse/~crman video,
application keypad mode and etc. are saved along
with line attribures 1Aouble wide double highi and
character attributes. The attributes retained for
each character consist cf blinKing bold, under­
linedf reverse video, and character set information
(ASCI., UK, DEC suppiemental, or graphics).

The most common use of windows is to completely
refresh the d~splay when switcting among sub­
grocesses to avoid the confusion cf mixed disp:ays.
.or __ some p~cgram_applications, it may be useful to
uti!1ze mulliple windows from the same job.

ICRWND
IDLWND
IPRWND
IRSWND
ISLWND
ISPWND

Create a window.
Delete a window.
Print the contents cf a winaow.
Resume window precessing.
Select a window.
Suspend window processing.

Windowing Su~port
WINDOVl. MA­

Table ZO.

"MACHIAVELLI": AN ENGINEERING APPLICATIONS DEVELOPMENT
ENVIRONMENT IN DECUS "C" UNDER RSX llM PLUS

Richard Wittenoom
Richard Wittenoom & Associates Pty Ltd

Consulting Chartered Engineers
West Perth 6005, Australia

ABSTRACT

The paper describes the software development environment in the author's consulting engineering
firm in Perth, Australia, where a broad spectrum engineering applications system is being

developed on PDP-11 hardware using DECUS "C" under the RSX 1 lM Plus operating system.

1.0 WHY DEVELOP?

The decision to commence a program of computer related
development was made by the author's firm in the late
1970s as a hedge against the uncertain future in
consulting engineering work in the firm's area of
expertise. The goal set was to automate all possible
aspects of small consulting engineering practice.

In the preceding ten years the firm had worked through
successive mining development booms producing thousands
of similar drawings, many of them standard, generally
relating to town planning and services development in
mining towns. With the cyclic nature of this work
(boom or bust) and the resulting problems of staffing,
financing and management, intensive use of computers
appeared to offer a way to enable a small, skilled,
base load work force to extend its productivity to
handle the profitable peak periods. At the same time
there appeared to be no suitable software available
which would allow automation of this work area (as
opposed to computer assistance).

2.0 DEVELOPMENT DIRECTIONS

Development concentrated first on an automated drawing
production system. Although limited in its initial
implementation, this was conceived as a general purpose
technical system, for which generation of drafting
output was only one possible result. The original
system has been used in production with considerable
success for the past 4 years, during which time options
for future development have been progressed. Because
of the envisaged "behind the scenes" role extending
across many aspects of consulting practice, the
evolving system has been given the name "Machiavelli".

Des9ite the pragmatic initial goals, an overriding
design decision was made that the system should be as
un-bounded as possible. This implied indirect
definition capabilities, data dependent or situation
dependent access or processing modes, and generally a
measure of intelligence. The long term implications of
this approach were not fully realised initially but
have become apparent as systems evolved with prototype
development and use.

Another design decision was that the system should
model an engineering object as an un-bounded data set,
rather than as a particular "view" or side effect. The
definition of a sewer line or a structural member may
thus take the form of a complex database, rather than
as graphics primitives with associated attributes.

Such things as the set of graphics primitives required
to draw it, or the stiffness matrix used for structural
analysis, become derived views of the object as known
to the system.

Proceedings of the Digital Equipment Computer Users Society

405

While in a typical CAD system objects are defined
directly in terms of their physical representation
(e.g. edges, surfaces, wireframes etc), objects in a
Machiavelli system can be be any tangible or intangible
thing, concept or relationship, provided they can
eventually be mathematically defined. The production
of any specific attributes is regarded as an end (or a
side effect) of processing, rather than as the
representation of the object itself.

Another basic difference is that any part of the data
in the set associated with an object may be defined
indirectly in terms of data in sets associated with
other objects. In this context the fact that another
object is "referenced" implies that there will exist
(or can be obtained) accessing and processing functions
available to select from the data in the other set and
return the selected data or a derivation of it to the
higher level object.

The ability to learn during operation is seen as
essential. An object can thus be considered to be
defined by the union of:

{{the information actually stored}
and

{information required at the time}}

and the system needs to be capable of both recognising
the need for and asking for any additional data, rules
or processing required in a particular situation.

An implementation decision was that early development
should concentrate on automation of output rather than
optimisation of input (particularly graphic input). As
a result the production system now in use relies
largely on pre-processing of batch input data under
system control rather than human interaction by
graphics means. With the prototype "back end" system
now operational a hardware based screen interface will
be added in due course. This course was adopted in
view of the rapid development in workstation hardware
and software.

3.0 FUTURE EMPHASIS

It has become increasingly obvious that what initially
appeared to be engineering specific, or even
application specific processes were in fact
substantially the same as processes in completely
different areas. Particularly as high performance
graphics becomes an integral part of almost any
commercial application, the processing functionality
required in commercial development is becoming
asymptotic to that required for an engineering
programming environment. As a result, work on
apparently different applications has now been
integrated wherever possible.

Dallas Texas· 1986

The goal now is to set up a single high level software
development environment within which to develop a wide
range of applications, ranging from basic processing
and reporting to intelligent systems, and covering both
commercial and technical applications.

In most cases there will be a "4GL" -type option which
will allow the inputs, outputs and processing to be
defined and run, either interpretively or compiled on
the fly. Below this, an applications development
environment will make available to the applications
programmer a set of high level library functions which
can be used for development of specific utilities.

The environment encountered by an application developer
will be hardware and system independent, with porting
implemented at low level using interchangeable
libraries and macro definition modules.

4.0 WHY PDP-11?

Despite its maturity, the PDP-11 architecture still
gives the most effective "bang per buck". It is a
hardy environment for mixed development and production.
By virtue of its known brick walls it encourages good
programming practices. It is considered by the firm to
be a better starting point for development over a wide
range of systems. "If it will work on an 11, it can be
ported to almost anywhere." The same does not always
apply to development carried out in a VAX environment.

5.0 WHYRSX?

RSX-llM Plus is considered the most cost efficient
general purpose operating system for a mixed
commercial, technical development and production
office. It is extremely functional, is increasingly
making more task space available to the programmer
(with l/D space, supervisor mode libraries etc) and
without the overhead of virtual memory management is
much more responsive than an equivalent VMS system. It
is closer to a number of other operating systems likely
to be development targets for the firm's software than
VMS.

Task size restrictions on the 11 are being reduced by
the new features offered by the "J" based processors
(e.g. l/D space separation, supervisor mode libraries
etc) in addition to more familiar methods such as use
of multiple intercommunicating tasks. The exploitation
of such options is included in the firm's development
program. However the details of the implementation
will be transparent to the application programmer.

5.0 WHY"C"?

"C" is a language which allows program development at a
wide range of levels. A programmer can write very low
level code, to exploit the system to the maximum. This
is particularly so on PDP-11 s, on which the language
was popularised. Operations can include direct
bit-bashing, and with an efficient compiler there is
little advantage in writing all but the most critical
functions in assembler. At the same time it can be
used as a very high level language.

"C" makes it relatively easy to structure applications
so that they can be ported to a wide range of systems,
provided one accepts the need to plan for this. It is
necessary to separate out modules which are likely to
be hardware or operating system dependent into
libraries which are tailored to each implementation.
The overall philosophy of "C", in which the language
itself is small and most system and hardware dependent
activities (including 110) occur in functions not
forming part of the language, means that library
functions are not regarded as sacred, and programmers
approach the tailoring of low level libraries to new
systems or devices without major hang-ups.

406

To set up an environment in which applications can be
quickly developed it is only necessary to build up
libraries of standard functions covering the range of
procedures normally expected in the target
applications. The applications modules can then be
restricted to quite high level code.

A disadvantage of "C" is that because of its powerful
features it can be exploited by expert programmers to
produce code which is super-efficient and small, but is
also cryptic and impenetrable. A novice programmer can
also write "C" like Basic, complete with the GOTOs.
Somewhere in the upper end of this range lies the
desirable result.

Because the compiler does not enforce such restrictions
as array bound checking, "C" programs are vulnerable to
carelessness in programming, with "dangling" or
uninitialised pointers a source of frustration. This
type of problem can take some time and energy to track
down. Low level development in "C" is thus better
carried out by experienced programmers, rather than
occasional engineering users.

6.0 ENGINEERING PROGRAMMER INTERFACE

The approach taken in the firm's development is to
present the "occasional application developer" with a
very high level interface termed "EPIC" (Engineering
programmer interface to "C"). This provides a
relatively safe level at which non expert users can
develop compiled applications. The overall structure
of this environment is set out in the following Table.

(HARDWARE AND SYSTEM INDEPENDENT)

APPLICATIONS LEVEL
code at thi.s level i.s largely
calls to lower level routi.nes

EPIC

PROCESSING MODULE LEVEL

appli.cati.on ori.ented li.brary
processi.ng modules

DATA IMPLEMENTATION LEVEL

thi.s level i.mplements the data
structures (e.g. fi.le processi.ng
procedures, memory structures, etc
(devi.ce and hardware i.ndependent)

(HARDWARE OR SYSTEM DEPENDENT)

SYSTEM AND HARDWARE DEPENDENT
GENERIC IMPLEMENTATION LAYER

Set of routi.nes used by hi.gher level
functi.ons to i.nterface to the system.

LIBRARIES

system/machi.ne I system/machi.ne
i.ndependent I dependent
'C' li.brary I 'C' li.brary
functi.ons I functi.ons

SYSTEM IMPLEMENTATION LEVEL

operati.ng, fi.le control, etc, systems

TABLE 1: "EPIC" Engineering Programmer Interface

7.0 WHY DECUS-C?

DECUS-C is available to members as a normal Library
distribution (l 1-SP-18). The most recent update of the
compiler is included in the RSX Fall 85 SIG Tape. It is
now a fully functional implementation, and includes a
suite of UNIX style software tools and utilities.

There arc a number of commercial "C" compilers for the
PDP-11. However DECUS-C offers the rare combination of
an open language (with full sources) and a nominal
price, thereby opening up the opportunity to program in
"C" on many sites where the cost of a full license or
support for a further language cannot be justified.

As a DECUS Library program, its purchase cost is
insignificant in comparison with that of other similar
computer languages. However as with most Library
packages there is no guaranteed level of support, and
the cost of upgrading in-house expertise to provide
this support, (or paying for it on a contract basis)
must be taken into account when comparing it with other
available "C" implementations. Much of this support
is, however, being provided by the Decus Membership at
no cost. For example, details of bugs found by
Australian users, and their fixes, have been submitted
to the Spring 86 RSX Symposium Tape, together with a
number of developmental modules related to this paper.

The original development of the compiler was carried
out with a view to portability of low level code across
all PDP-11 based systems, and was developed with a
RSTS-E f1avour. As a result, much of the interaction
with the RSX operating system is less efficient that
could be desired. However with the number of RSX users
increasing it is considered that user contributed
enhancements will offset such problems.

8.0 SOFTWARE DEVELOPMENT ENVIRONMENT

Components of the software modules forming the lower
levels of the development environment include:

- standard command line interface (GCL),

command parser and command despatcher

- screen windowing, editing and data
structure control functions

- workstation and hardcopy graphics functions

- report generator utilities

- command interpreter with fast binary
file compiler

- fast binary file loader

- intelligent database manager functions

- file and direct device 110 libraries

- hardware dependent libraries

- operating system dependent libraries

- device and system independent special
purpose libraries (e.g. scientific
subroutines, matrix processing, etc)

Higher level functionality is provided by appropriate
shells used in conjunction with the lower level library
modules.

9.0 DAT ABASE MANAGER

The file system is transparent to a high level
applications function. 110 may be to a region in

407

memory, a file on disk, a RAM disk, a file on a remote
network node, or a cooperating task. The routing for a
particular channel is determined by a current "context"
maintained by the file system. 110 functions may be
either built with the task or in a separate data server
task (which may be elsewhere on the network).

The database function library recognises the following
file types:

- fast binary files
- terminal format files
- fixed length record files
- slab files
- index files (various formats)

Fast binary files are organised and accessed in
"pages", each page being a single disk block. These
files are used with a module which will load data
structures or lists, already initialised with data,
into memory. This is used to load precompilcd
processes, record mapping, database information and
screen display control data structures. A command
interpreter and compiler maintains and updates these
files.

A "slab file" is a file addressable with a granularity
of 4 bytes - i.e. it is 'longword addressable.' In
this type of file records of varying length are stored
in whole numbers of contiguous 4 byte "slabs". Data
files in any but the simplest applications are treated
as slab files.

A complex record access procedure permits "records" to
be in fact complex linked lists in file. This allows
for records to "own" large variable length data areas
or to be extended indefinitely after initial
definition. Management of record 110 is controlled by
a memory resident "context'', a linked list defining the
record structure which is loaded from a fast binary
file as required. In an extreme case, this would allow
a single record to define a complete ISAM database.

Access modes to data files may be mixed, allowing
processing of files in either relational or networked
views or as virtual arrays, regardless of whether
tuples of the particular record type exist physically
as fixed length records in a file or as sets of slabs
in a file shared with records of other types. A file
which is accessed as part of a networked database by an
engineering application may also be accessed
relationally by the same (or some other) application.

Engineering applications tend to involve the need for
fast network or array processing. They also often
involve indirect definition. In addition, however,
each type of object may have associated with it a
number of processing options.

Objects in such an indirectly defined database arc
assigned a more complex system of identification, in
which every data set (or object) is allocated a
"genre'', an "ordinal'', and a "class. The genre
indicates the "family" to which the object belongs,
based on the assumption that all objects of a genre can
be "resolved" to an absolutely defined current value
set. The "ordinal" uniquely identifies each object.
The "class" identifies a processing envelope. In
addition objects may be grouped in hierarchical
"families" or in the case of "many to many"
relationships by a system of "knobs".

Database functions can access objects by functional
specifications (i.e. genre:ordinal) or location
(file:slab). In the former case the object is accessed
through an index maintained for each genre. The latter
mode is particularly suited to applications requiring
fast access, while the (g:o) mode is more convenient for
safe development and debugging of a major engineering

database involving large numbers of indirect reference
pointers, particularly when the intitial records are
likely to change substantially. The default mode for
part or all of the database can be changed once the
situation is more stable, and (g:o) mode references can
be changed to (f:s) mode as each is accesssed.

Either of these address modes will map into the system's
standard address format, a 32 bit longword which is known
as a REC ADR (record address). A single 32 bit word maps
to either of the above access modes or to a 30 bit "slab"
number, with the mode in use set by bits 30 and 31 as
status bits. Pointers from within an object to other
objects are stored within the object's data set as
REC ADRs. This pointer structure means that networked
or inairectly defined disk files may be loaded into a
memory region and accessed directly rather than as a
virtual disk.

A functionality required by (but by no means limited in
application to) engineering applications is the ability
of the data base server itself to carry out processing
of database contents in a manner which can be
influenced by the data itself. An example is the
derivation of a current data set from one or more data
sets which :tpay themselves be indirectly defined. Such
processing may be a function of both the data type
found and the current processing environment. This
allows, for example, a data set defining a structural
element to determine at different times whether it is
to be designed, drawn, or specified, and by which
process.

The usual way in which the processing mode may be
specified is by allocating one of a number of available
"classes" to each object of a particular genre. The
"class" is stored in the record header and is used to
determine the processing required to evaluate the
current data set to be returned to a higher level
object when requested. Other ways of determining
processing mode may be defined as required.

This functionality could have been provided more easily
in a LISP or SIMULA environment. However it was felt
that the time had not yet arrived when a LISP
environment will live comfortably with the types of

408

mixed mode processing likely to be encountered in a
general engineering office system in a small office.

However it is planned that a subset of "LISP",
probably written in "C", will form part of a future
intelligent user interface.

10.0 OFFICE ENVIRONMENT

The office in which the development is taking place is
predominantly engaged in civil-structural engineering
consultancy activities with computer system development
occupying a secondary role. This results in some
inefficiency in the development process, but means that
the development work is very much end-user driven. As
prototypes are developed they are immediately put into
active service. Some have been running this way for 4
years before anyone had a chance to get back and clean
them up. Despite the disadvantages, this means that
developed modules are immediately placed into field
test in house, and thus have a fighting chance of
evolving into stable, reliable products.

10.0 CURRENT STATUS

At present priority is being given to definition and
planning of the database server modules and further
development of existing utilities and utilities in
development has been deferred until this stage has been
completed. Existing office utilities in other
languages will then progressively be converted to "C"
and to the new database standards. Once again the
priorities will be set by office work flow. However it
is expected that there will be a number of systems
working in the new environment within six months.

11.0 CONCLUSION

DECUS-C is being used intensively to develop a broadly
based applications system covering areas from
specialised engineering to general purpose
applications. While there is a need for continuing
development and optimisation, of the compiler and its
utilities, particularly in its interaction with the
RSX operating system, the language has proved to be
convenient and effective in this development program.

DEVELOPING LARGE PROGRAMS ON THE PDP THE SPAWN PROCESS

BY WALTER HAYES
IIT RESEARCH INSTITUTE

ANNAPOLIS; MARYLAND

ABSTRACT

Programs can sometimes grow so large that they exceed
the 16 bit 32K word allowable program space. When this
happens, the programmer often turns to overlay and
segmentation techniques to reduce the program size. Another
technique, spawning, lets the programmer divide the program
into separate portions which can be called by each other,
enabling the program portions to be swapped in and executed
as needed. A description of the spawn process, programming
examples and reasons for its use are provided in this paper.

You've just completed a study of your new
project's requirements and suddenly realize that
your system's memory is much too small to maintain
the huge program you need. What next? Or,
suppose you need to simplify the operation of
several programs by linking them together or by
combining them into one program. How would you do
it? You could buy a larger computer (an expensive
proposition); you could separate the project
requirements into smaller more manageable
programs; you could overlay the subroutines (they
may still be too big); or you could spawn
offspring tasks. Spawning overlayed programs, a
combination of the last two alternatives, appears
to be the best alternative because the results
provide a very workable and easily maintainable
program. The best part about spawning is that it
lets your program grow way beyond the memory size
limitations of your system.

In our case, we spent two years developing
two large prototype programs that were each
overlayed, but we were still pressing the upper
limits of our PDP 11/23 memory. The PDP 11/23 has
124K words total memory available, but, if virtual
arrays are not used, only 32K words are available
for one program. The rest is used for overlaying,
multiple user tasks and system routines.

The project's objective was to allow
automatic and manual creation of a full color
graphic picture. One program displayed a color
background picture and then allowed user placement
of predetermined shapes. The other program redrew
the background picture, with the additional
shapes, and then let the user draw freeform
designs using a joystick. The user could select
any color for filling in the shapes. Each program
created a different alphanumeric display and
updated different files.

Proceedings of the D1g1tal Equipment Computer Users Society

409

Our project requirements were changing. we
needed to combine both prototype programs into one
model for easier execution, portability, and to
gain better control of the shared data files.
Combined, they totalled 64.2K words, much too
large for one program. Fortunately, there was one
major module common to both programs, which saved
some space, but we still had to figure a way to
fit the rest of the program into available
memory. We used the Overlay Description Language
(ODL) to overlay logically independent program
segments to save more memory, even though both
programs were already extensively overlayed. Any
reconfiguration steps taken must conserve as much
memory space as possible because future additions
were inevitable. Thus, it was decided to use the
spawning process available under the RSX-11 M
operating system because it allows the most
flexibility.

SPAWNING DEFINED

Spawning is the ability of a program (called
the parent task) to call, activate and execute
another program (called the offspring task).
Spawning sets up communications between the
offspring and the parent. The parent task can
either be put on hold at any time to wait for the
offspring to finish an execution, or it may run
concurrently with the offspring. To control
shared access of data it is advisable to hold the
parent task's execution. concurrent processing
can be a time saver because two separate functions
are being completed simultaneously. An offspring
can also spawn another task, thus becoming a
subparent that can wait for or run concurrently
with its spawned offspring.

Spawning may occur by one of two methods.
The most effective method is to have the command
line interpreter (CLI) execute the offspring
task. In this method, the CLI (for example,
Monitor Console Routine (MCR)) is spawned by the

Dallas Texas- 1986

parent. The name of the offspring task is passed
to MCR to execute. In the second method, the
offspring task can be directly spawned by the
parent without using the CLI. Greater control and
better success may result when using the CLI,
however.

Communications are set up between all
connected parent and offspring tasks so that
information about the status of the offspring can
be returned to the parent and any other connected
tasks. The status is transmitted by status block
to the parent when the offspring terminates or
when requested by program code. Termination of
the offspring run is a significant event and
triggers the parent back into action. At the same
time, the status block informs the parent whether
the offspring execution was successful.

The spawn process is described in the Digital
Equipment Corporation (DEC) DIGITAL SOFTWARE RSX-
1 lM EXOCU'rIVE REFERENCE MANUAL. The process is
performed by using the DEC-supplied SPWN$ (MACRO)
or SPAWN (FORTRAN) system directives.

GENERAL PROCEDURE

The following paragraphs describe a procedure
to follow when spawning tasks.

Top-level structural design is an important
first step to take. Determine how many basic
functions exist in all the programs you wish to
incorporate. Most likely, several modules will be
repeated in these different programs. Highlight
the major functions. Form the tasks by grouping
functionally cohesive modules that perform
separate activities. Set up an overall structural
design and task hierarchy to help define the
communication connections. Proper design is
crucial, so exercise great care in this phase.
The structural design will help you determine
which task will be the parent and just where
control will be transferred to the offspring.

When the top-level design is completed,
organize the programs' code by task. Use ODL to
keep their size below your system's memory
limits. Since each spawned task will actually be
a separate program, you will find that many
modules will be used over and over, so put all
modules into programmer defined libraries for each
access.

Several DEC-supplied system directives are
available that make the spawn process easy to
accomplish. The directives are SPAWN, GETMCR, and
WAITFR. SPAWN requests the CLI to execute the
offspring. The CLI requires a task instruction
array of up to 79 characters for the RSX-11M
system or up to 255 characters on the RSX-11M-PLUS
systems. This array will contain the name of the
installed offspring task and any other data you

410

wish to pass to that spawned task. For example,
assume the offspring task name is OSP and it will
perform calculations based on data derived from
the parent task. The characters OSP and the data
can be sent in one array.

GETMCR, called by the spawned task, retrieves
an 80 character MCR command line for the tasks
internal use. This may contain data passed from
the parent to the offspring.

WAITFR, called by the parent task, stops
execution until the specified event flag is set by
the exit of the spawned task.

Any tasks to be spawned must first be
installed on the system. To do this, use the
1 TASK=task-name' option when task-building the
spawned task. Then, prior to running the spawning
program, install the task-name on the system using
the INS (install) command.

PROGRAM CODING

The accompanying program listing, Figure 1 ,
is presented to illustrate the coding required to
spawn a task. It will be referred to in the
following discussion. The program in this example
is designed to set up an array, CMD, and send it
to a spawned task, OSP. Comments will be directed
to the line numbers in the right hand column.

PROGRAM PARENT

c
C THIS IS A TEST PROGRAM DESIGNED TO ILLUSTRATE
C THE SPAWN PROCESS.

c

INTEGER DSW, TLEN / MCR (2) , EFLG

CHARACTER CMD(79) ,CHARJ

DATA CMD(1)/'0' / ,CMD(2)/' S' / ,CMD(3)/' P' /

DATA MCR/3RMCR, 3R •• • /

TLEN=79
DO 100 J=l, 7
ENCODE(l ,110,CHARJ)J

100 CMD(J+3)=CHARJ

c

300

11 0

c
c

c

100
c
c

EFLG=2
CALL SPAWN(MCR,,, EFLG,, !ESB, ,CMD,TLEN,,, DSW)

IF(DSW.GE.0) GOTO 300
TYPE*, 'ERROR SPAWNING MCR ••• •
CALL WAITFR(EFLG)
IF(IESB.NE.1) TYPE *, 'OSP ERROR NUMBER= 1 , !ESB
TYPE *, 1 TS PAWN REACTIVATED'
FORMAT(Il)

STOP
END

PROGRAM OFSPRG
THIS IS THE OFFSPRING SPAWNED TASK
INSTALLED TASK NAME= ••• OSP
CHARACTER CMD(SO) ,DATA(?)

CALL GETMCR(CMD)

DO 100 1=1, 7
DATA(I)=CMD(I+3)

BEGIN PROCESSING DATA HERE

STOP
END

Figure 1.

10
11
12
1 3
14
15

16

1 7

18
19
20

Line 3 places the installed offspring task
name, 'OSP', into the first three elements of the
array, CMD. Line 4 sets up the MCR command line
interpreter letters (,, ,MCR) into the required
Radix-SO format. Lines 5, 6, 7 and 8 define the
length of the array, CMD, and assign the numbers 1
through 7 to the array as shown. The ENCODE
statement in line 7 transforms the integer value,
J, into a character value, CHARJ, for assignment
to the character array CMD. These numbers
represent any data that could be passed to the
spawned task for its use, The array, CMD, now
contains the characters 'OSP1 234567' in the first
ten elements' the remaining 69 elements are not
used.

Line 9 assigns an event flag number, EFLG, to
be set when the offspring sends any status
information or exits. According to the Executive
Reference Manual, there are a total of ninety-six
event flags available. Local event flags (1-32)
are unique to individual tasks and are set or
cleared by that task, Common flags (33-64) can be
set or cleared by any task, Group global flags
(65-96) can be set or cleared by any task running
in a group User Identification Code (UIC). Local
flags 25-32 and common flags 57-64 are reserved
for system use.

There are 12 parameters in the SPAWN
directive (line 1 0) , but they are not all
necessary for execution and can be skipped by
inserting a comma as a place holder, The SPAWN
calls the MCR command line interpreter with
arguments to be used by the Executive to issue a
system directive to run the offspring task OSP,
The first parameter is the name of the task (in
this case MCR) to be run. The fourth parameter is
the event flag number common to both the parent
and the offspring, The offspring status will be
put in IESB, an eight-word status block, which
defaults to a one word integer. Typical status
values will be: O for a task completion with a
warning, 1 for a successful completion, 2 for an
error causing unexpected results, and 4 if a
severe, usually fatal, error occurs. This value
should be checked, and if there is an error, the
status error code should be relayed to the
operator for his action, The CMD array and its
length, TLEN, parameters 8 and 9, are both sent to
the spawned task, The Directive Status Word
(DSW), parameter 12, is an integer that receives
the status of the MCR execution. Generally,
except in specialized cases not addressed in this
article, a +1 is returned by DSW if the task was
accepted and a negative value returned if the task
was rejected. Checking the value of the DSW
informs the operator of the exact MCR status (line
11), If the MCR spawn failed, a message will be
sent to warn the operator (line 12), At this
point, further testing is required to determine
the nature of the error and to allow the operator
a chance to take necessary action, i.e.,
installing a task and then looping back to try the
SPAWN call again.

411

If the spawned task is accepted, it will run
concurrently with the parent, In this case,
however we want the parent task to stop and wait
for the offspring to finish. This will help us
control the shared data, Two routines accomplish
this purpose, STOPFR(EFLG) and WAITFR(EFLG), where
EFLG is an event flag number (line 13), These
routines stop or block the parent task until the
specified event flag number (in this case EFLG=2)
is reset by the offspring, The Executive sets the
event flag to zero when the task is accepted and
resets it to one when the task terminates. If
there is an abnormal exit, the DSW code is also
recorded. The parent task must wait for the
offspring to set the event flag, If the flag is
zero, the offspring has not terminated nor been
rejected, The parent task will continue execution
after the event flag is reset.

If an error occurs within the offspring task
OSP, the status block value, IESB, can be typed
out to inform the operator (line 14),

The offspring task code must include a way to
receive and accept the MCR command line and data
we wish to send it, The FORTRAN routine
GETMCR(CMD), where CMD is an SO-character array
containing the installed task name and any data,
is the system routine that is used (line 18).
Activities included on lines 19 and 20 unravel the
data passed to the offspring for its use. When
the task execution is complete, however, no data
is transferred back to the parent in the CMD
array.

Any data calculated by the parent task and
required in the offspring that cannot be sent in
the CMD array may be transferred by files as long
as they are closed prior to each spawn and then
reopened in the offspring, The files must again
be closed prior to the offspring termination, in
preparation for the jump back to the parent task,

ADVANTAGES

There are distinct advantages to using the
spawn process. The most obvious being that the
program can grow many times beyond the size
limitations of the system, Countless tasks can be
developed and called by the parent or offspring,
each functioning as a separate program limited
only by the computer's physical memory size. The
net result is that the main program runs with no
operator intervention needed to execute any of the
spawned programs.

Debugging is made much easier, When errors
are discovered and traced to a task, only that
task need be changed, recompiled, and task­
buil t. The time savings resulting from task­
building only one task versus the entire program
is significant. If the parent is designed such
that the offsprings are called by the operator
through keyboard options, one may remove the

affected offspring task, repair the code,
recompile, task-build and reinstall without
terminating the parent task. In this way, the
entire testing phase can be completed at a quicker
pace.

Spawning stresses breaking a program into
major modules. This approach is similar to the
structured programming techniques we all hear so
much about.

Before you attempt to spawn your own
programs, here are a couple of useful hints. It
is advisable to make all the tasks checkpointable
by including the '/CP' switch on the task image
file when task building. Parent tasks waiting for
the offspring to terminate can then be
checkpointed out, thus conserving pool space. on
the PDP 11 /23, pool space is limited and can be
easily exhausted. Another memory saving
technique, using the '/-TR' option with the source
code file when compiling, eliminates the trace
capabilities but frees up memory for a larger
program.

412

CONCLUSION

Spawning is a very useful programming tool
with many advantages and a wide variety of
applications. Spawning is a relatively easy
process to understand and implement. Countless
tasks can be broken into separate programs to be
spawned from the main program. This allows the
overall program size to grow way beyond the limits
of the system's memory. No operator intervention
is required to run any of the small spawned
tasks. Although this article does not completely
investigate the concurrent processing technique,
it can easily be achieved using the spawn process.

Without spawning, our project would have been
very difficult, if not impossible, to complete on
our minicomputer. Now that we understand the
programming steps involved in spawning tasks, we
often find ourselves dreaming and scheming of new
uses to further enhance our graphic display model.

DEVELOPMENT OF A COMPUTER·
BASED DATA ACQUISITION SYSTEM

S.K.R.lyengar and R.P.Schmidt
John Deere Product Engineering Center

Waterloo, Iowa

ABSTRACT

This paper describes the development of a data acquisition
system based on the DEC Micro-PDP 11 computer using the
RSX 11 M operating system for collecting and analyzing data on
hydraulic components.

The first part describes the formulation of functional specifica­
tions and the attempts to apply data base management techni­
que~ to scientific and engineering applications, and in
particular the use of RMS files to store a variety of engineering
data.

The second part describes the menu-driven FORTRAN 77 pro­
gral!ls and their development, installation and usage by
engineers and technicians. A brief description of the hardware
used, and the impact of both the hardware and operating
system and software packages, such as FMS, on program
development and usage is furnished.

The last part describes the performance of the RMS file
structure in relation to original expectations, and the extent to
which original functional specifications could be
implemented.

INTRODUCTION
Historical Perspective
The John Deere Product Engineering Center is involved
in the design and development of many hydraulic com­
ponents used in agricultural, construction and in­
dustrial machinery.

Testing is an important part of the design cycle of such
components, and typically involves installing the test
component on a suitably designed test stand, subject­
ing it to prescribed input signals and measuring a varie­
ty of physical parameters at various locations in the test
arrangement. Typical measurands are rotational speed,
torque, temperatures, pressures and flow rates. Elec­
trical transducers generating de voltage signals which
are linear or nonlinear functions of the measurands are
C?l!lmonly used. Such voltages can be fed into analog I
d1g1tal readouts, recording equipment such as strip­
chart recorders, X-Y plotters, and optionally, transmitted
to a suitably equipped computer system.

A particular advantage of a computer - based system is
that for steady state tests, a number of calculated
quantiti~~· such as power consumption or dissipation,
and efficiency, can be calculated in real time and
displayed at the test station. Even for dynamic tests,
where the need for a high sampling rate precludes
calculation of secondary quantities in real time, it is

Proceedings of the Digital Equipment Compute1 Users Society

413

possible to print or graph them soon after a test.
Hence, a computer-based system reduces the turn­
around time . for tests, especially those of a
developmental nature. There are many other advan­
tages which we need not itemize here.

Earlier testing at PEC relied on a centralized system in
which five hydraulic test stands had been connected to
a mini-compu~er running a real-time operating system,
a~~ were assigned a set of channels of the analog to
d1g1tal (AID) converter. Each test stand had its own con­
trol ~eypad, but shared some peripherals like graphics
terminal and hard copier and line printer with others.
Since this system hardware had outlived its
usefulness, and was detracting from the productivity of
~he test stands and operators, it was decided to replace
1t by. a decentralized arrangement, with one computer
serving, at rnost two test stands.

However, the software was considered mature and
reliable, and as much of it as possible was to be
transferred to the new systems. Wherever new
techn.ology offered the potential for improving the
funct1onallty of the data acquisition system we de-
cided to use it. '

~he next s~~tio~ describes the development of func­
t1o~al spec1f1cat1ons, which was a major part of the
pro1ect.

Dallas Texas - 1986

FUNCTIONAL SPECIFICATIONS

These were developed in two phases: first from the
user's perspective and next from the system designer's
perspective. We attempted to draft the first so as to
describe what the system would appear to be doing, in
terms used by test engineers and operators. Since the
system was not expected to be completely automatic,
human interactions by both operators and test
engineers had to be spelled out in general terms. This
way we would not constrain ourselves too early to any
specific hardware I software and their idiosyncrasies.

The objectives in terms of product development were
described for performance tests on each class of test
components, and these were translated into the
terminology of data acquisition, processing, display
and storage.

Brief descriptions of testing procedures for a wide
variety of tests were also written down. Since these
were product - specific, it was necessary to analyze
them and extract the common features, and combine
them in a generic specification for all the data acquisi­
tion systems.

Requirements more specific to a product could then be
'layered' on the 'core' requirements, provided it had the
necessary 'locking' features.

For example:

• Analog channel requirements for each class of test
components were analyzed to arrive at a channel
count meeting needs for most, if not all, testing.

• Data processing was divided into real - time and non
- real - time activities; the latter was further sub­
divided into quasi - real - time and post - processing,
depending on the criticality of the turn-around time.
The task of deciding which tasks would be in the first
sub-category and which in the second, was post­
poned until the computer system was decided upon.

• Annotation was considered very important in help­
ing test and design engineers manage tests and
data. Once again the needs for various classes of
test components were analyzed and common
features extracted to impose a minimal structure on
the annotation. Little thought was given at this
stage, deliberately, to implementation considera­
tions. Length of annotations was suggested but
kept open for further negotiations.

• Software requirements were outlined in general
terms, without specifying which features were to be
provided by the Operating System, which by pur­
chased software, and which by in-house develop­
ment; to the end-user, they would be essentially
indistinguishable. However, some end-users would
have the capability of developing program modules.

It was envisaged at this early stage itself that users
would span the spectrum from test operators - to whom
the system would appear to be embedded in the test
stand, to engineers - to whom it would appear as one of
many available general purpose computers for post
- processing, to systems analysts and programmers - to
whom it would be development tool over and beyond
its data acquisition capabilities.

The second stage of functional specification prepara­
tion involved preparing a separate document for each

414

system, outlining input and output data, data process­
ing needs in real - time and pseudo - real - time, data
management, in addition to channel requirements and
test setup and data acquisition needs.

Even though the systems had much in common, certain
individual features were considered very important and
needed to be spelled out in some detail so as to ensure
that operators and test engineers were not required to
use a number and variety of keystrokes to perform com­
monly used manipulations and operations.

Even though the operating system and utilities were
not specified, language capabilities, needs for hierar­
chical storage of data and help features were described
in general terms.

Examples of typical graphs and reports to be generated
at the test station were also included in this document.

Based on the above two documents, it was concluded
that, in broad, general terms, the system had to do the
following:

• Maintain a periodically refreshed display of
measurands and secondary quantities, thus
emulating a set of digital panel meters.

• Smooth the quantities displayed by collecting a
prescribed number of samples at a prescribed
sampling rate and averaging. This was termed a
'segment-average'.

• In response to an operator input, store a set of
values for the above quantities, corresponding to an
instant of time on a permanent storage device.

• Print a completely annotated test report.

• Plot one or more standard graphs.

• Store test data and annotation in an easily
retrievable fashion, without compromising integrity.

• Answer queries for test management, for a limited
range of test numbers.

• Permit test engineers to do a certain amount of post
processing, i.e. use the system as a general purpose
computer.

The data acquisition, display and report generation ac­
tivities had to be menu driven.

The keyboard had to be used as the sole device for the
test operator interactions. This was considered
desirable for ergonomic reasons.

Other major considerations were as follows:

• Need to handle common transducers for pressure,
flow, torque, speed, position and velocity
measurements. It was decided that the computer
would handle only analog signals for uniformity. We
would convert frequency type signals from turbine
flowmeters and tachometers using frequency - to -
voltage converters.

• Test stand and testing should not be solely depen­
dent on computer system. i.e .. we should be able to
read values from transducers thru panel meters,
record on strip charts etc., even if the computer was
not in use.

• Even though post-processing of test data would be
done on a larger computer, the test stand computer
would be capable of handling most needs for quick -
turn-around analysis.

HARDWARE

Hardware selection was based as much on perceived
notions of product maturity, and expected support as
on a rigorous analysis of needs. Experience of sister
organizations in using DEC and other computers were
evaluated before final selection.

Computer

Fig. 1 shows a view of the system as finally im­
plemented, using a Micro PDP-11 computer" which was
chosen for multi-tasking multi-user support.

Peripherals and accessories were chosen as follows:

Figure 1. View of Data Acquisition System, showing
arrangement

Peripherals

Storage A 10 Megabyte hard disk came with system.
This was subsequently upgraded to 30 Megabyte
capacity. The two 500 kbyte floppy disk drives which
came with system were to be used for transferring data
to and from other systems, off-line data processing,
short-time archival. Networking was expected to be im­
plemented later.

1/0 Devices The VT240 terminal was chosen for two
main reasons:

• TEKTRONIX emulation, so that graphics could be
done at test stand2

• VT100 emulation so that FMS (Forms Management
System) could be used

Choice of the LA50 printer as the hard copy device was
a difficult decision to make, since the cost - benefit
trade-offs of quality of reports and graphs and quick
turnaround could not be quantified.

For handling analog signals from the test stand, an AID
Converter is necessary - Data Translation's 12-bit con­
verter 2752 and clock 2769 were selected. The conver­
sion rate of 50,000 samples per second seemed
adequate for all tests, except those investigating high
frequency transients. In any case, software calcula­
tions would limit the frequency of screen updates.

Purchased Software

This includes the following:

415

Operating System The choice of RSX-11 M over RT-11
was dictated by a perceived desire for multi-user sup­
port, and prior experience with program development
on an RSX-11 M system (though not one used for real
-time operations). RSX-11 M was chosen over Micro­
RSX because Data Translation software package RSX­
LI B needed it.

Utilities The RMS indexed file system was chosen, the
next section goes into the reasons in more detail. A
spreadsheet program which would handle matrices of
real numbers was obtained. FORTRAN 77 of course,
was needed for programming. RUNOFF was expected
to be used for most text processing. FMS was chosen
for menu development, though we were not sure how it
could be integrated with the rest of the software,
especially in a real - time environment.

We expected to use QIO's for screen management dur­
ing real - time display, but found that a DECUS program
UVT100 written for use with a FOR'fRAN spreadsheet
(PORTACALC) could be adapted easily.
Data Translation's software package RSXLIB and sec­
tions of diagnostic program code served as the bridge
between the AID converter and application programs.

File Specifications

Once the decision had been made to use the DEC
Micro PDP-11 computer and the RSX-11M Operating
System, and FORTRAN 77 as the programming
language, the next step was to layout the program
modules, using the existing programs (written in
FORTRAN IV), as a guide. It was felt, however, that the
capabilities of the Operating System and FORTRAN 77
would be exploited more fully by using a structured ap­
proach and the RMS file structure. It was also felt that
this would improve readability and maintainability of
the programs.

Since retrievability of test data and test attributes in a
machine readable format was considered highly
desirable, it was decided to analyze the requirements
for storage and retrieval using bubble charts.

It was found that scope of future testing activities
could not be described in the meticulous detail used in
designing business systems, and the compromise was
between an unwieldy filing system designed to cover
all types of tests versus a modest one covering perhaps
80% of test activity.

Retrievability and query needs for test data are
somewhat different from those for business systems.
Typically querying of raw test data is unnecessary.
However, pointers to the location of the test data have
to be synthesized from queries. For example, it may be
necessary to retrieve all the raw data gathered during
one or more tests, given one or more of the following:

• a unique test number
• a unique test component identification
• a test stand number
• a range for test date and time

This data should be made available for printing or
processing, including graphical display by a variety of
programs.

Similarly, under different circumstances, it may be
necessary to aggregate test data on a specific compo­
nent, possibly spanning a number of tests between given
dates, and feed it to a statistics or graphing program.

Fig. 2 depicts schematically the relationship envisaged
among a number of quantities relating to test data. It is
seen that a vector representation is applicable to most
quantities. Proceeding from the left, we move from
'raw' data to processed data. The relationship between
one type and another could be one to one or one to
many, as shown by the connecting lines. Time is con­
sidered a special kind of measurand, in that it is com­
puted directly by the computer. But for this exception
'measurands' forms a subset of 'hardware sensor
channels'. 'Run parameters', 'run variables' and 'test
parameters' are pertinent to test management, since
they enable the storage and retrieval of test data in a
hierarchical fashion. Certain common kinds of process­
ing, especially graphing, sorting and statistical
analysis are facilitated by this hierarchical structure.
Limitation to levels in the hierarchy to 2, i.e., test and
run, was based on intuition and experience.

RELATIONSHIPS BETWEEN DIFFERENT TYPES OF QUANTITIES

Figure 2. Relationship between Various Quantities

The category marked 'manually entered quantity' was
provided to allow keyboard entry of data for
transducers such as dial gages, hygrometers etc., not
having electrical signals. The quantity marked 'second­
ary quantities' was provided to cover software channel
calculations mentioned earlier. Note that the
'displayed' and 'stored quantities' are subsets of
almost all the other quantities.

Data definition plays a comparitively minor role in
scientific computation, but the adoption of a
systematic technique was considered desirable since
we intended to use RMS file management, and if possi­
ble and desirable, a data base management system at a
later date.

The bubble chart was chosen as the medium for
displaying relationships between different quantities,
since it appeared to be adequate and appropriate as
well as simple to explain to novice users of data bases.

We found that the bubble chart was primarily useful in
deciding the file structure and contents of log files and
test management files, rather than test data files. In
fact the decision to maintain different kinds of files for
test stand and test management rather than store
everything in one or more (unformatted) direct access
files, as had been done in the past, was motivated by
the capability of data base systems to read properly
structured files and permit ad hoc queries.

The bubble chart uses a single arrow to indicate a one
- to - one relationship, and a double arrow to indicate
one - to - many relationship. Thus a test id points to a
number of run id's, and a run consists of a number of
sample points. Each sample is comprised of a set of
measurand and (calculated) secondary quantities. Data
from individual sample points is rarely, if ever asked
for, and no provisions for such retrieval were con­
sidered necessary.

Fig. 3 depicts the bubble chart drawn for storing test
data. Once the structure of test data was established to
be somewhat similar to that of business data, it was
felt that the use of a data base population and query
language was worth exploring. After trying out
DATATRIEVE on some test data, we felt that a rela­
tional data base would be an overkill for storing run
data. RSX-11M DATATRIEVE was not found quite
suitable for handling floating point numbers and scien­
tific notation. Also, the release we used had no
graphics capabilities and the FORTRAN bridge did not
look easy to use either. Even for test management data,
the variety of queries could be assessed fairly ac­
curately and ad hoc queries would not arise too often.
However, by storing the test management data in in­
dexed RMS files, it was felt that migration to a rela­
tional data base, as and when indicated by the volume
of ad hoc queries, would be facilitated.

416

DATA ITEMS FOR STEADY STATE TESTS

Figure 3. Bubble Chart showing data times for tests

Once we decided on using an hierarchical structure for
storing test data, we had to establish a terminology for
the most commonly used entities. Appendix C is a
glossary containing the more important terms.

SOFTWARE DEVELOPMENT

We decided on using a resident common to com­
municate between a number of tasks. It would contain
labelled COMMON blocks used by all programs
operating in real time, and some which did not.

It was evident that a task to read the hardware channels
and deposit the numbers in part of the resident com­
mon area was to be core task. Prior to running this task,
other tasks would have to set up the data acquisition
process and log the test. This core task would stop on
receiving a suitable keyboard command. Additional
tasks, which would have to run concurrently, would be
needed to convert the raw data to engineering values
for all channels, display them on the monitor, and pro­
cess keyboard interrupts. When a run or test was com­
pleted, additional tasks would have to process user an­
notation and store them in the appropriate files.

Overview

Task PUMP30 is the main menu driver which displays
the menu shown in Fig. 4. On booting, it is invoked by
the startup command file, which also installs the resi­
dent common for inter-task communication of numbers
and character strings.

Figure 4. Main Menu

It spawns task TEST2, which controls data acquisition.
Task TEST2, in turn spawns a series of tasks to obtain
setup information. Fig. 5 is a timing chart of our own
design, which depicts the use of various flags and in­
dicates which tasks are concurrent.

ll'~ING CHART FOR DATA ACQLJISTION ON LAB MICRO SYSTEM I FOR 110 KW PUMP PfRfORMANCE STAND

RUN TASKS

- - - - - TASK RUNS CONTINUOUSLY

Figure 5. Timing Chart

POST·RUN
TASKS

417

Use of FMS to manage dialog forced us to split setup
between 3 tasks. Subsequently TEST2 spawns a task to
read the calibration information on pertinent
transducers. Now all necessary setup and calibration
information is available in the resident common. TEST2
now spawns task DTANLG, which sets up parameters
for the Data Translation programs and starts reading
the AID converter output buffers.

TEST2 next spawns tasks to convert the raw numbers
to engineering values for hardware and software chan­
nels. Flags are used to ensure that each of the tasks
waits for the completion of the previous one, and
DTANLG cannot go through the next acquisition before
all hardware and software calculations are completed.

Task MONIT1 is also spawned by TEST2 and is used to
refresh the screen display and wait for a keyboard ac­
tion. If no action is forthcoming in 3 seconds it repeats
the refresh and wait cycle.

MONIT1 uses a modification of the DECUS program
UVT100 to display channel names, units and values. It
cannot recognize a keyboard interrupt while writing
values, since the keyboard cannot be separately
addressed from the screen. Hence the need for a 'wait
window'.

Fig. 6 shows a typical display. The title, hardware and
software channel names and units are written only
once. The values are refreshed every 3 seconds.
MONIT1 also contains a reference to a MACR011 pro­
gram (see appendix B) to recognize keyboard inter­
rupts. Specific keys on the keypad result in branching
to different sections of code in MONIT1.

Figure 6. Typical Display

Keyboard interrupts trigger sections of code in TEST2
to stop DTANLG, and other tasks dealing with conver­
sion of channel readings. Additional tasks are spawned
to process user annotation for completion of run and
test.

Pre-Test Programs

These included:

Test Setup Programs
• to generate new test setup files
• to update old test setup files

Test Setup Reader Program To display I print the
following:
• channel gains
• transducer ID's for measurands
• software channel names and units
• upper/lower limits of channels (not used)

Calibration Programs to:
• to enter new transducer calibration values
• to update old transducer with new calibration values
• print Calibration data on specified transducers, or

dump entire file

Post-Test Programs

These included:

Report Generating Programs Two types of reports can
be generated at the test stand.

• a full report of all parameters
• a selected listing of certain parameters

Both reports are generated by picking the appropriate
menu option. The user then enters the desired test
number and run number. There is an option to have
statistics calculated for each of the channels (software
and hardware), also. The report is then printed out at
the test stand printer.

Fig. 7 and 8 show a typical printed report. The extrac­
tion of information from log, annotation and attribute
files should be noted. The report generation programs
turned out to be among the longest in the system, and
users are still developing variants.

LAB MICRO SYSTEM -- 300 kW DynamorHUt'

Test St•nd ID : 240 Test Number ; 132~
SN1PLE RATE/AVERAGING CHECKOUT OF LAB CCl1PUTER •2
T•st P•rt No. :RA 92700
No. of points in S•~•nt Avera9•1 100 S.nplin9 Fr•quency : 100. samples/sec.
Th. Disp. 63.00 cc/rev Rot.: F run on : 14-MAY-86 07:~8:35 by : RPS

Run Number 11 of 11 runs ' 10 MS, 100 POINTS
Run Datl!' and Tim• ' 14-MAY-86 08:01 :18 Run Completion Cod• ' s
Run Temparatul"e: 38.0 Run Parameter •• Number of points in run ' 10

Hardl..Jar• Channli!'ls

TORQUE BY-FLO SPEED CC-TMP OUT-PR JN-PR CA-PR
N-M L/S RPM DEG C kPA kPA kPA

l 2 3 4 5 6 7
l 114.664 5.094 998. 533 56. 689 10032. 74 97. 634 30. 301
2 114.664 5.252 1000 .974 56.689 10032.74 97. 634 30 .301
3 114.664 4.909 1000 .974 56 .689 11)032. 74 97. 634 20 .199
4 114.664 4.916 998.533 56 .689 !. :1032. 74 97. 634 30 .301
s 114.664 5.2'55 998. 533 56 .689 1 :J032. 74 97. 634 30 .301
6 114. 664 'S.255 998. 533 56. 689 10032. 74 97. 634 30.301
7 114.664 5.094 998 .533 56.689 10032.74 97 .634 30 .301
8 114.664 5.118 1000.974 56.689 10032. 74 97. 634 30 .301
9 114 .112 4.842 998.533 56.689 10032.74 97 .634 30 .301

10 114. 664 S.245 1000.974 56 .689 1('032. 74 97. 634 30 .301

HI-FLO LO-FLO OUTTMP IN-THP FLOTMP LOADPR ROD-PR
PPS PPS DEG C DEG C DEG C kPA kPA

8 9 10 11 12 13 14
l 174.316 54 .931 40 .137 38. 550 43.55 9696. 068 7187.480
2 174. 316 54.931 40 .137 38.'550 43.55 9712.902 7187.480
3 17•L316 54.931 40 .137 38. 550 43.55 9712.902 7187.480
4 173.584 54.199 40.198 38. sso 43.SS 9712.902 7187.480
5 174.316 SS. 664 40 .1518 38 .550 43.62 9712.902 7187.480
6 174. 316 54 .931 40 .259 38. 550 43.62 9696.068 7187 .400
7 173.584 55,664 40 .190 38. 550 43,62 9712. 902 7187.400
8 1n;.049 55 ,664 40.137 38 .550 43.62 9712.902 7187.400
9 175.048 54.199 40 .198 38 .550 43,62 9696.068 7187.480

10 174.316 54.931 40 .198 38.550 43.62 9712.902 7107 .480

Figure 7. Typical Report

Graph Generating Program A standard graph can be
generated for each set of recorded data. A standard
graph is a predefined plot of two test parameters
(measured or calculated) for a specific hydraulic com­
ponent. Fig. 9 is an example.

Sot twu·• Chann•ls

VlSCTY FLCM PR ORP PWR-lN PW-OUT DISPL KFACT
oSt lp• kP• kW kW cc/re

l 2 3 4 • 6
l 40 .030 1.029 993S.104 11.990 10.223 61.832 0 .ooo
2 40.030 1.029 9935.104 12.019 10.223 61.681 0 .ooo
3 40. 030 1.029 993S.104 12.019 10 .223 61.681 0 .ooo
4 40.030 1.025 9935.104 11. 990 10 .181 61.577 0 .000

• 39. 929 1.029 9935.104 11. 990 10 .223 61.829 0 .ooo
6 39.929 1.029 9935.104 11. 990 10 .223 61.829 0 .ooo
7 39.929 1.025 9935.104 11. 990 10 .101 61.829 0 .ooo
8 39 .929 1.033 9935.104 12.019 10 .265 61.933 0 .ooo • 39. 929 1.033 9935.104 11. 932 10 .265 62.084 0 .ooo

10 39.929 1.029 993'!5.104 11. 990 10 .223 61.829 0 .ooo

VOL-EF OVL-EF TIME FLOW! HF LOW DEL TAP
PCT PCT .. 0 lp• lps kPa

8 • 10 11 12 13
l 98.146 8'!5.267 9.449 .o ,079 1.029 0 .ooo
2 97.907 8'!5.0'!59 18.533 0.079 1.029 0 .ooo
3 97. 907 85.059 25. 883 0 .079 1.029 0 .000
4 97. 741 84.915 34.549 0.078 1.025 0 .000
5 98.142 85 .263 43 .349 o .000 1.029 0 .000
6 98.142 85. 263 51.699 0.079 1.029 0 .000
7 98.142 85.675 59. 499 o .000 1.025 0 .000
8 98. 306 85.406 68.266 0 .080 1.033 0 .ooo
9 98.547 86.028 76.266 0 ,078 1.033 0 .000

10 98.142 85. 263 84.849 0,079 1.029 0 .ooo

Rt..N Cotf'1ENT •OK

Report Gener11ted on ' 14-MAY-86 at 08:09:14

418

Figure 8. Typical Report (cont'd)

FLOW VS OUTLET PRESSURE
F 2.50
L
0
w

2 00

0.. .0.. .0.. .n .0.. ..0.. _o,
1.50 j

p
1.00

p
5.00 p

.000 b.
000 .500E + 04 100E+05 .150E + 05 .200E + 05 250E + 05

CALIBRATION PUMP OUT·PR KPA

Figure 9. Typical Graph

There are two separate tasks that make up the graphing
package. The first task asks for the test number and run
number. The first task then obtains the data and at­
tributes to be plotted from the RUN and RAT files. The
information is stored in two files that the second por­
tion of the plot program reads and plots from. These
two files can be editted if erroneous data needs to be
removed or if other test data needs to be merged into
one file. The second task changes the terminal setup to
TEKTRONIX mode and uses TEKTRONIX PLOT103 com·
mands to plot the graph.

The data acquisition system uses a DEC VT240 with
plotting capabilities. A hard copy of the graph is made
using the PRINT SCREEN key sending the plot to a
LA50 printer.

TRAINING AND DOCUMENTATION

Common classes were held for test engineers and
operators while the systems were being installed on
the shop floor. Test personnel were given drafts of the
User Guide and Reference Sheets for critique.
Documentation was generated using well known
DECUS package RUNOFF.

Technical Manual

This was written primarily for the System Manager and
advanced users of the Lab Systems. Its contents are:

• Program (Task) Descriptions
• Timing Chart
• File Descriptions
• Event Flag Usage
• Dictionary of Variables

User's Guide

The User's Guide is meant primarily for the test
engineer, though it is of use to the test operators after
they are familiar with main menu options. Its contents
are:

• Menu Usage
• Test Setup
• Task Descriptions
• File Contents

Operator's Reference Sheets

These sheets give in a cookbook fashion, the steps
needed to do a cold start. It covers:

• Booting
• Keyboard Usage

PROGRAMMING STANDARDS

Rather informally, we used the following:

• FORTRAN 77 only, no DEC extensions
• Variable names in upper case, remainder in lower

case
• Use of 'implicit character A-Z', and explicit

specification of all variables
• Every file to contain an entry showing file name and

revision date

PERFORMANCE OF RMS FILE SYSTEM

The following discussion reflects the experience of
end-users in designing file structure, often without
clear-cut initial specifications. We plunged into the
design without any formal training or experience in file
management.

RMS files were set up using the 'OPEN' command in
FORTRAN 77. The description of file structures and ac­
cess modes in the RMS 11 introduction (Vol. 4A of
Micro/RSX Advanced Programmer's Kit) was adequate,
though the examples did not have much relevance to
the engineering data being stored.

Since this was the first time an Indexed multi-key struc­
ture was being used for some of the files, we were not
too sure of the impact of many of our decisions.

Specifically, the effects of:

• length of records
• number of secondary keys
• bucket sizes and related parameters

were not considered during the design phase. No at­
tempt to 'tune' the system was made.

RMS Utilities were found very easy to use, especially
RMSDSP and RMSDES. However, due to problems in
using files created by RMSDES in FORTRAN 77 pro­
grams, it was decided to create files from within the
FORTRAN programs, using the 'OPEN' command. Our
problems may have arisen due to switching programs,

RMS files between a system running RSX-11 M and
another running Micro-RSX. In particular, it was found
that the RMSIFL utility on the Micro-RSX system could
not compress files populated by the RSX-11M system.
DEC indicated that differences in the prologue could
be the reason for our problems.

In trying to exploit the capabilities of the RMS indexed
file structure, and make our program easily readable,
we made our records quite long. This posed problems
in linking, which were resolved only by augmenting the
ACTFIL, MAXBUF and UNITS parameters, by trial and
error.

Error messages 37 ("Inconsistent Record Length"), 41
("No Buffer Room"), and 30 ("Open Failure") were en­
countered frequently while trying various combina­
tions of link parameter values.

Additionally, we found that task sizes were getting near
the 32 k word limit for PDP 11 machines, and we
couldn't always err on the side of safety.

In retrospect, we could have;

• used fewer secondary keys
• used shorter record lengths

to achieve efficient storage and retrieval and faster file
1/0.

However, the readability of our programs would have
suffered.

CONCLUSIONS

The systems have worked quite satisfactorily. Software
problems did not arise during usage. Some test stand
operators have used the SETUP features on the VT240
terminals to turn off and on the bell to suit their needs
in different phases of testing.

The screen update of display was designed for a fre·
quency of once in 3 seconds, but once in a while the
shuffler intervenes to slow it down. Reasons are still
being sought.

Our method of defining software channel calculations
is very powerful but quite involved. Users get confused
between the hardware channel setup, which describes
the transducers being used, and conversion
parameters, and the compilation of the program which
performs software calculations. They expect the latter
to be done 'automatically' when a setup has been in­
voked. Currently, they have to reboot the system to in­
stall the software calculation image.

Our attempts to involve potential users in designing
the system as well as develop some of the software has
proved quite successful. It is too early to tell how much
use will be made of the flexibility afforded by the RMS
filing system.

In using the VT240 for graphics, we have to send
escape sequences to convert from Tektronix 4010
emulation mode to VT100 mode before reverting to
VT240 mode. This is considered awkward, though of
cause, the end-user is not aware of these steps.

Summarizing our experience, the development of a
Micro PDP11 based system running RSX-11M for data
acquisition, resulted in a very powerful, yet flexible
system, which has met the needs of test activities.
Enhancements and modifications will make it suitable
for an even wider variety of tests.

419

1 See the Glossary for definition of special terms.

2 Micro PDP-11, RSX-11M, FMS are registered trademarks of
Digital Equipment Corporation. TEKTRONIX, PLOT10 are
registered trademarks of Tektronix Inc.

3 PLOT10 is a registered trademark of Tektronix Inc.

APPENDIX A. FILE STRUCTURES
We will cover only the most significant data files.

A.1 TEST SETUP FILE

Type: Keyed, Indexed, Variable Length, Unformatted

Lite: Permanent

Keys:

• Setup Descriptor
• Setup Date
• Setup Engineer

Other contents:

• Status Code
• Measurand Name
• Measurand Units
• Channel Number
• Transducer ID
• Gain
• Voltage to Frequency Conversion Factor
• Display Flag
• Software Channel Name
• Software Channel Units

PROGRAM TSTSW

PROGRAM TSTSW

C LAB Micro System ft 2 C300 KW Pump Stand I
FILE, DUO, C2 l 0, 240 I TSTSETCPI>. FTN

c
C PR!'IARY KEY TDESCR
c SEC. KEY I STENGR
C ScC. KEY 2 ENGR
C SEC. KEY 3 SETDAT
C SEC. KEY 4 STCODE
c

xxxxxxxx
xxxxxxxx
xxx
xxxxxxxxx
xx

WRITE TO UNIT I cm1s INDEXED FILE 'DCO. C2 l0. 240 I TSTSETL'P. !DX'

C Use thi5 to create a ne"'' file:

c

open (unit.=1, file='DUO:C210,240jTSTSETUP.IDX',
1 access=' keyed' , form=' unformatted 1 , RECL=3b0,
2 organization=' indexed' ,recordtype='variablc'.
3 kPy=(J•8,9•J6,J),J9,20•28,29•30),
4 init:ialsize::::JO, err=9999)

C•'•

status=' NEW' ,

open (unit::::l, file:;:; 1 DUO:C:.'.l0,241 ITSTSETUP.lDX 1 , stat11s:::'OLD 1 •

1 acces~=' keyed: : form= 1 ~n formatted' , RtXL=J60,
2 organ1z&L1on= 1ndexcd , able'.
J key=(1:8,9:16,17:19,20::..'.8,29:
4 initialsize=30, err=9999)

c .. ,. ,.., .. , ... , --····--·.-· , .. , ,: .. ·.-·-·
2000 read(3, 1050) ~1EASNM(j), LTNJTS(j), Clll\Wl(j), TRID(J),

GAIN(J), VTIJFCN(J), HCl'T(j), LCUTl.j).
JSTFLG(j), IJSPFLG(j), RTGFLG(j), STl!FLG(j I,
RZRFLG (j) , SUMFLG (j)

1050 format(2ao,1X, i2.lX,A8.lX,4f10.3,lX,oa1 J
READ (:J, 1020) SW CHAI\
do 2020 j= l, sw·clian

2020 rrad(3,1150) SWNAM(j), SUNlTS(j),SCJINl'il(J),SllCCT(JJ,SLCL:'f(.J),
SDPFLG(j), SS1TLG(j), SS'IFLG(j)

1JSO format(2a6,1X, I2, 1X,2F10.3,1X,Ja1)
write(l) TDLSCR,STE'lGR, ENGR,

1 SETDAT, STCDDE, SETTJ ~l. ~CHA'.'J,

(MEASNM(J) .l'NITSU), CHNUM(J), TRIDC.I I,

GAINiJl. \'TllFCN(J . HCllT(J), LClT\.J),

A.2 CALIBRATION FILE

Type: Keyed, Indexed, Variable Length, Unformatted

Lite: Permanent

Keys:

• Transducer ID
• Calibration Date
• Entry Date

For turbine flowmeters:

Other contents:

• Universal Curve Polynomial Coefficients

For other transducers:

• Number of Points
• Interpolation Flag
• Lagrange Interpolation Order
• X-axis Units
• Y-axis Units
• X-axis Values
• Y-axis Values

open (unit=l, file='DUO:C.210,240lcalstr. IDX', "'ldLus='DLD' _,
1 acces~=' k~yed: '. form=: unformarted' F.ECL=42,

organ1zat19n= indexed , variable',
3 key=(l:S.9:11,l'.?.:20,21:29),
4 initialsize=30, err=9999)

wrile(l) TRID, l.'lNTLS , CALDAT, REVDAT,
0, S), l~TFLG, NPTS, LNUM,

) • YV:\LUE (j), J=l, NPTS l

\1'ritf:' to J\.'.'!S fill>.

write(l l TRID, UINTLS , CALDAT. RF.VDAT, lt\TFLG, NPTS ,L'JUM,
l XUNITS, YUNJ TS,

(XVALUE(j), Y\'ALUE(j), j= I, NPTS)

A_3 TEST LOG FILE

Type: Keyed, Indexed, Variable Length, Unformatted

Lite: Permanent

Keys:

• Test ID
• Test Date
• Test Part Number

Other contents:

• Test Title
• Test Engineer
• Test Fluid
• Test Component Attributes

c Dpe11 Tesl Log Fi]e

open (~'.1 it=4;
1

1 access= Keyed , form= ,
2 organization=' indexed' ,rec.ordLype-= 1 \·;~1-iable',
3 key=(l:4:1NTEGER, J:l:l. 14:21, 22:.38),
4 initialsize=JO, err==99(1:.i)

C 1-.·rite incremented test number on f.irst record of test log
in variable N'l:-iTS

420

c Define setup file
c

STPFIL = 'DUO:C210,241ITSTSETUP.IDX'
c
c Open setup file

open (unit=l, file::STPFIL , status='old',
1 access::=:'keyed', form=' unformatted', RECL=316,

organization=' indexed', record type=' variable',
:l key=(] :8, 9: 16, 17: 19 ,20:28 ,29: 30),
4 initialsize=30, err=9999)

c Retrieve setup info from indexed file, using TDSCR as key
c
22999 Continue ! Come here from 79999 w default TDSCR

rcad(l,key=TllSCR,ERR=79999) TDESCR,STE~GR, u::\GR,
SETDAT, STCODE, SETTH!, NCHAN,
(MEASNM(J) ,UNITS(J), CHNUM(J), TR!D(J),

GAIN(J), VTOFCN(J), HCUT(J), LCUT(Jl,
lNTFLG(j), DSPFLG(j),RTGFLG(j), STRFLG(jl,

RZRFLG(j). SUMFLG(j),j=l,NCHAN),
SWCHAN, (SWNAM (j) • SUN ITS (j) , SCHNUM (j J • SH CUT (j) , SLCUT(j),
SDPFLG (j), SSTFLG (j) , SSMFLG(j) , J= 1 • S\ICHAN I

rewrite(4, err=9999) ZERO , TODAT, TOTlM, TPNUM,
NTSTS

c Write- details in test log file

\irite(4, ERR=9999l TSNUM, TODAT. TOTIM, TPNUM,
l TTITLE, ENGR, TFLUID. TSTDN, CPARM l l l • CFLAG I 1 .,

C Close Test Log File

Close(UNIT=4, status = 'KEEP')

c Create Run Attribute file , once for each t.C'st
c
C Assign character sub-string to denote test-number
c for Run Attribute file name

write (RAF1LE(l7:22), '(!6)') TSNUM
c
C write(TERMNL, 99118) RAFILE
c99118 format(lhx, 'RAFI LE: ', a26)

c

open (unit=4, file=RAFILE , status=' NEW',
1 access='keyed' ,form=' unformatted', RECL=21G,
2 organization=' indexed' , record typo<>.== 1 variable' ,
3 key=(l:2,3:11,12:19),
4 init:ialsize=lO, err=9999)

Close(UNIT=4, status 1 KEEP')

c Create Test Attribute file : done only oncP
c
C TAFILE = 'DU0:¢210,24ljPMPTSTATT.TAT'
c

open (unit=4, file= TAFILE , status~ 1 \E\..' 1 ,
access=' k~yed' , form=' unformatted' , RECLo::l80,
organization=' indexed' ,recordtype='vari.Jble',

3 key=(l:6,7:15,16:23,24:25),
4 initialsize=30, err=9999)

c close tUNIT = 4, stat.us= 'KEEP')
c
61220 continue ! come from bad entry

A.4 TEST ATTRIBUTE FILE

Type: Keyed, Indexed, Variable Length, Unformatted

Life: Permanent

Keys:

• Test Number
• Test Date
• Test Completion Code

Other contents:

• Number of Measurands
• Measurand Name

421

• Measurand Unit
• Number of Software Channels
• Software Channel Name
• Software Channel Unit
• Transducer ID
• Number of Runs in Test

open (unit=4, file=:: TAFILE , status='OLD',
1 access=' keyed', form=' unformatted 1 , RECL=180,

organization= 1 :indexed' , recordtype=' variable' ,
3 key=(!: 6, 7: 15, 16: 23,24:25),
4 in it ia I size=30, err=9999)

write (4 , ERR= 3999) RAFILE(l7:22),
1 TSTDAT, TSTTIM, STCODE, NCJ!AN,

(MEASNM(J), llNITS(J), TRID(J),
j=l ,NCHAN) ,

4 SWCHAN, (SWNAM(j), SUNITS(j),
5 J= l , SW CHAN) , NPSG, SFREQ, RNUM

A.5 RUN ATTRIBUTE FILE

Type: Keyed, Indexed, Variable Length, Unformatted

Life: Permanent

Keys:

• Run Number

Other contents:

• Run Title
• Run Date
• Run Time
• Run Temperature
• Run Parameter

A.6 RUN DATA FILE

Type: Sequential, Variable Length, Unformatted

Life: Permanent

APPENDIX B. AST FOR KEYBOARD INTERRUPT

.MCALL SETF$C,QIOW$C,ASTX$S
QUIT:: QIOW$C 10.ATA!TF.XCC,5,.,,.<UNSOL>

MOV (R5)•,R2 ;THROW AWAY# OF ARGS
MOV (R5)•,SAVE
Rio TURN
.ENABL

UNSOL: CMPB
BNE
MOV
MOV
MOV
MOV
BR

CHK2: CMPB
BNE
MOV
MOV
MOV
MOV
BR

CHKA: CMPB
BNE
MOV
MOV
MOV
MOV
BR

CHKB: CMPB
BNE
MOV
MOV
MOV
MOV
BR

CHKC: CMPB
BNE
MOV
MOV

LSB
(SP),#15

CHK2
Rl,-(SP)
SAVE,Rl
#1, (Rl)
(SP)•,Rl

80$
(SP),#64

CHKA
Rl,-(SP)
SAVE,Rl
#5,(Rl)
(SP)•,Rl

80$
(SP),#65

CHKB
Rl,-(SP)
SAVE,Rl
#6,(Rl)
(SP)•. Rl

80$
(SP),#66

CHKC
Rl,-(SP)
SAVE.Rl
#7,(Rl)
(SP)•,Rl

80$
(SP) ,#67

CHK3
Rl ,-(SP)
SAVE,Rl

; IS IT ENTER -- OCTAL 15
;CHECK FOR SECOND CHARACTER
;SAVE Rl

; SET THE INDICATOR
;RETURN Rl

; IS IT 4 -- OCTAL 64
;CHECK FOR THIRD CHARACTER
;SAVE Rl

;SET THE INDICATOR
;RETURN Rl

;IS IT 5 OCTAL 65
;CHECK FOR FOURTH CHARACTER
;SAVE Rl

;SET THE INDICATOR
; RETURN Rl

; IS IT 6 -- OCTAL 66
;CHECK FOR FIFTH CHARACTER
;SAVE Rl

;SET THE INDICATOR
;RETURN Rl

; IS IT 7 -- OCTAL 67
;CHECK FOR SIXTH CHARACTER
;SAVE Rl

MOV #2, (R 1) ; SET THE INDICATOR
MOV (SP)+, Rl ; RETURN R 1
BR 80$

CHK3: CMPB (SP) ,#70 ; IS IT 8 -- OCTAL 70
BNE CHK4 ;CHECK FOR SEVENTH CHARACTER
MOV R 1, -(SP) ;SAVE Rl
MOV SAVE,Rl
MOV #3, (Rl) ;SET THE INDICATOR
MOV (SP)+, R 1 ; RETURN R 1
BR 80$

CHK4: CMPB (SP) ,#71 ; IS IT 9 - - OCTAL 71
BNE CHECK ;CHECK FOR EIGHTH CHARACTER
MOV Rl, -(SP) ;SAVE Rl
MOV SAVE,Rl
MOV #4, (Rl) ;SET THE INDICATOR
MOV (SP)+,Rl ;RETURN Rl
BR 80$

CHECK: CMPB (SP) ,#60 ; IS IT 0 - - OCTAL 15
BNE 80$
MOV Rl, -(SP) ;SAVE Rl
MOV SAVE,Rl
MOV #-1,(Rl) ;SET THE IND NEGATIVE
MOV (SP)+, R 1 ;RETURN Rl

80$: TST (SP) ASTX$S
. DSABL LSB
. EVEN

SAVE: .WORD 0
.END

APPENDIX C. GLOSSARY
Hardware Channel: A measurand, i.e., a physical
quantity which is being measured by a transducer
signal fed to a unique terminal on the analog end of the
AID converter.

Software Channel: A physical quantity, whose value is
generated by the computer from one or more
measurands in accordance with calculations stored in
the computer.

422

Display Mode: Mode of operation of the computer
system in which it emulates a series of panel meters
displaying selected hardware and software channel
values. Data storage in permanent memory is disabled.

Acquisition Mode: Mode of operation of the computer
system in which it displays selected hardware and soft­
ware channel values, and, on operator initiation, per­
mits acquisition of Point mode or Scan Mode data.

Point Mode: Mode of acquisition of data in which, on
operator initiation, a complete set of hardware and soft­
ware channel values, corresponding to an instant in
time, are recorded on disk.

Scan Mode: Mode of acquisition of data in which, on
operator initiation, a time history of raw hardware chan­
nel values only is recorded on disk, and subsequently
processed to calculate engineering values for hardware
and software channels .

Test: The test is the basic unit for maintaining records
of test activities. Test components and setups would
not be changed in the course of a test. A test would be
constituted of one or more runs.

Run: A run would be a constituent of a test character­
ized by an optional run parameter value, nominally con­
stant for the duration of the run. A run would consist of
a number of sample points.

Sample: A constituent of a run, containing the set of
numerical values of hardware and software channel
values corresponding to an instant of time.

HSC50 Operations in a VAXCluster

Larry Herzlich
University of Texas at Austin

Computation Center
Austin, Texas 78712

Abstract

Now that the HSC50 has been installed at many sites, there are plenty of ex­
periences that can be related to the perspective HSC owner as well as the new
HSC manager. For many, the HSC is just a "Black Box" that occassionally
sends messages to a console or the error logging system. This session hopefully
removes some of the mystery concerning HSC Daily Operations in a VAXcluster

Introduction

This session was given from the HSC user perspective.
Most of the information was gained through experiences
from large V AXcluster sites and from the engineers at DEC
working on the HSC50/HSC70 code.

The notes that follow are from the slides shown at the
Fall Symposium except that the comments made about
each topic are included.

The talk was preceeded by a survey of the audience
(approximately 200 people). In response to a question,
'How many are current owners of an HSCxx?', at least 80%
responded. For the question, 'How many users are plan­
ning to purchase an HSCxx?', about 10 people responded.

I would appreciate any experiences, peculiarities, sug­
gestions or comments about HSOSO's or HS070's sent to
the address above.

HSC Management and Daily Operations In a
VAXCluster

• The HSC Package

o The pieces of hardware

• HSC In The Machine Room

o Layout pitfalls to watch for

• Preparing Your Cluster For The HSC

o A few changes for a VAX going to an HSC

• Preparing HSC Console Media

o TU58's and RX33 floppy disks

• Understanding the Operator's Control Panel

o What's normal, what's not

• Daily Operations

Proceedings of the Digital Equipment Computer Users Society
425

• HSC Utilities

o Some of the common ones

• HSC50 versus HSC70

o Some thoughts

The HSC Package

With version 3.00 of the HSC "Software", the HSC pack­
age will come in two parts: the Software package (Release
notes, Console media, and User's Guide) and the Hard­
ware (Channel cards, CPU, CI port, Console storage de­
vice, cabinet).

• Installation Guide

o For field service

• Release notes

o Part of the new User's manual, was most of
V2.50 documentation

• Channel Cards

o 8 Data channels on HSC70, 6 on HSC50, pur­
chased separately

•CPU

o Essentially a PDP 11/23 on HSC50, PDP 11/70
on HSC70

• CI Port

• Proper CI Cables

• Console Storage Device

o TU58 cassette drives on HSC50, RX33 floppy
drives on HSC70

Dallas Texas - 1986

• Console Media

o V2.50 on HSC50, Vl.00 on HSC70

• User's Guide

o New for V3.00- part number AA-GMEAA-TK,
300 pages

HSC In The Machine Room

• Locate central to CPU FARM, DISK FARM, TAPE
DRIVES, CONSOLE and PRINTER

• Up to 45 meters from the Star Coupler

o Set up cabling scheme early - allow for more (or
replacement) disks, tapes.

• Adding a new cabinet of RA disks should be
easy; Offioad a 'hot' spindle with more disks
and Volume Shadowing.

o Allow for swapping cables, unit plugs

• H disk fails, a different drive can be used by
changing plugs, ie. don't bind cable labels
to unit plugs

o Use grid diagram - cabinet, position - label like
CI cables

• Tag cables - easy to track cables at disk,
CPU and Star Coupler. Hard to track ca­
bles at HSC due to high number of incoming
wires.

o Allow extra length for power - can rearrange in
machine room

• Given 15 feet of power cord,

• Console - Field Service prefers hardcopy terminal
(LA12) but can use VTlOO (New version of VT­
DPY??)

o HSC70 running Vl.00 has new VTDPY pro­
gram. Was removed from V2.50 due to system
crashing

• Allow for good ventilation - HSC and DRIVES are
HOT!

o 11,000 BTU/Hr. HSC50, 7,700 BTU/Hr. for
HSC70

• Add a Second HSC near (or next to) the first HSC -
Dual path (and Dual ported)

o Now have FAILOVER option should one HSC
fail. Cable scheme important to keep cables from
getting crossed

• HSC node name - convention (0,1, ...)

o Works better for CI arbitration. Careful plan­
ning needed for adding more HSC's

426

• Add a Third!! HSC

o Large disk farms need another HSC. Location
can confuse cable scheme. Proposed Triangle
formation. Problem: Can VMS store 3 paths
to device in tables? Solutions???

• Check-out During Installation

o Be sure Field Service does complete check­
out before turning over HSC. Some tests were
skipped by engineers at some sites.

HSC Channels ••• SDI and STI

• Connect disks and tapes over different channels

o Recommend not all disks on one channel or all
tapes on one channel - ie. buy more channel
cards

• Tape channel card should be nearest the CPU cards

o Related to prioritization on bus (State and De­
mand). Tape drives are less forgiving if not re­
sponded to promptly

• Watch for putting disks with expected High I/Orates
on same channel

o SYSTEM DISK

• Volume Shadowing will offioad 'hot' system
disk.

o Secondary PAGE/SWAP Files

• Use of secondary Page and Swap files is com­
mon. Try not to put multiple Page/Swap file
disks on same channel

• Four (4) or more channeJ cards require DC power up­
grade

o No power upgrade is required for HSC70

Preparing Your Cluster for the HSC

• Allocation classes - 0,1, ... up to 255 for CPU alloca­
tion class

o Set up different allocation classe for HSC's serv­
ing disk farm

• Setting up the CPU's console media

o Well documented in Guide to VAX/VMS System
Management and Daily Operations manual

o Register 2 in CIBOO/DEFBOO.CMD for Dual
Ported Disks

• High node number
• Low node number

o Register 3 for HSC Quorum Disk

• Quorum disk may not be necessary for clus­
ters

• Check current version of Clxxxx.BIN on CPU console
(See VMS Release notes)

o SHOW CLUSTER /CONTINUOUS, then ADD
RP _REV. For 8800 - Version 7 of CI mi­
crocode. Ask field service about prom replace­
ment L0101.

• SYSGEN parameters - PANUMPOLL, PAMAX­
PORT reduced for few nodes

o Can speed up time to poll nodes in cluster.
HSC's 0 and 1, VAX nodes 2,3,4 Reduce val­
ues from defaults.

• CONNECT/NOADAPTOR
/DRIVER=FYDRIVER

o Other terminals act as console - HSCPAD

o SET HOST /HSC HSCnnn

o Requires DIAGNOSE privilege

•SET DEVICE/DUAL_PORTED

o Turns on logic in driver for failover

Preparing HSC Console Media

• Need 6 TU58 Cassettes or 2 Floppy disks (1.2MB)

o SYSTEM

o UTILITIES

o DIAGNOSTICS

• V2.50 if new HSC, else V2.00 if upgrade site

o + enough for backups of each

• System and Utilities on 1 floppy for HSC70.
Diagnostics belong to Field Service.

• Leave ONLINE off, press INIT and FAULT to auto­
configure

o Gives new System Configuration Table. Gen­
erates a system ID based on node number and
register on P.IOC

• DO NOT interchange SYSTEM cassettes between
HSC's unless reconfigured

o Parameters recorded in SCT can confuse CPU's
if HSC reboots with wrong id to running cluster

• Setting the System Configuration Table (SCT) pa­
rameters manually

o H upgrade - SHOW SYSTEM or SHOW ALL

• ID (from register on P.ioc and node number)
* Serial number 0 for early HSC50's.

Newer boards numbered

427

• Name (eg. HSCOOO)

• Date (and time - Don't forget about Day­
light savings time)

• Allocation Class (255 decreasing... is one
convention)

• MAXTAPES

* When new HSC software installed, sys­
tem allocates memory based on MAX­
TAPES = 24. Reduce number to reflect
actual number of tape drives connected

• MAXFORMATTER
* Set to 16 with new system. Reduce value

for configuration but update value if new
tape drives are added

o Reboot HSC to save values

o A RUNNING cluster may not talk to the HSC
after ID or name changes!

• Better to change id parameters when no cir­
cuits to HSC. Don't boot with ONLINE but­
ton on.

Understanding the Operator Control Panel
(OCP)

• Press and release INIT switch to bootstrap

• Reading the State Indicator

o Stays on while reading TU58 during Init

• System is performing diagnostics
• No optimization for TU58 position on tape,

TU58 block layout optimized when kit was
built.

o Blinks fast while rebooting (2 times/sec)

• Exec is running

o Blinks (1 time/sec) while normal operation

• After system initialization. Approximately
6 minutes for HSC50 reboot, 1 minute for
HSC70

• Using the Enable/Secure Switch - Located inside door
of HSC50, above controller cards for HSC70

o Secure - pressing buttons on front panel has no
effect.

• Locking cabinet and Secure switch is sort of
password.

o Must be set to ENABLE to do anything other
than SHOW

• Error reading the LED's- (Appendix B of User Guide)

o Similar to LED's on RA disks

o Fault light is on

o Press and release Fault switch

o Read Blinking LED's (Record value for Field
Service!!)

o Press and release Fault switch

Daily Operations

• Check for Crashes each morning

o H disks spread over 2 HSC's normally, then all
disks on 1 means CRASH

o Check ERRORLOG

• Console messages also sent to ERRFMT.
SHOW EXCEPTION on HSC console. New
User's Guide will describe faults. SOFT
FAULTS will light panel but processor will
continue (under V3.00)

o Out of paper?

• Also check for enough paper for next day.
Can disable paper-out detection (See LA12
guide)

o BREAK signal over console port = HALTED
HSC - Use ;P to continue in some cases.

• Related to state of processor and error traps
in registers. Possibly caused by pulling plug
on console terminal.

• Clear break on HSC50 - H you think
BREAK sent, leave in SECURE postion,
then type any 2 characters, then switch to
ENABLE.

• Clear break on HSC70 - H SECURE then no
problem since BREAK is not remembered

• I/O Load balance - Dual porting plus failover makes
this easy

• Rule of thumb - Less than 70% of drives on one HSC

o Some load for best optimization

• Monitor temperature

• Operator Control Panel in Secure mode

o Front door locked?

• Check indicator lights (Fault light on?)

HSC Utilities

• Get prompt by typing Control-Y at console

•Run SETSHO

o For HSC management

o Set/Show many things at once

o Will Timeout and exit program if left unat­
tended - SET values not updated

428

•FORMAT/VERIFY

o H you FORMAT you MUST use VERIFY

• Certain errors not tracked during VERIFY
if not FORMATted

o Not quite as good as factory testing

• Factory formatter has lower level of ex­
pectancy - will flag more errors

o Better left for Field Service

• TUCOPY

o Does Block copy - you specify drives for source
and destination of copy

o Replace TU58 after about 1250 reboots

• Your mileage may vary!

o System Configuration Table template used with
new SYSTEM.

• Run SETSHO to update site specific param­
eters

o Check Enable Switch position on HSC and
Record tab on cassette

• BACKUP /RESTOR

o Need TA series drives (TA78, TA81)

o PHYSICAL backup - logical blocks copied
mostly in order

• HSC still does seek ordering (block clusters
of size 15) so clusters may be copied out of
order

o For catastrophic recovery - ie. no other good
backups

o Only for Tape to Disk and Disk to Tape

• Referred to as Tl or Dl rather than MFAl:
or DUAl:

o VERY FAST

• Approximately 20 minutes - 4 minutes/tape
so rewind time is significant.

o Lacks ECC or XOR group computation recovery

o Supports 2 tape drives

• Allows processing to continue without
rewind delay

o Trouble with media errors causing BACKUP to
abort

o Reverse-Retry disabled in V2.50

o Philosophical question - Is this the best method?

• Do you need file level restore?
• Not available with PHYSICAL Backup

• Can you afford the load to the CPU doing
an Image Backup?

* Image Backup usually done off-hours for
least impact

• Can you afford the time that an Image
Backup takes?

* Operator needed to monitor Backup
during off-hours

• Can you afford a disk drive offiine for ANY
amount of time?

* Important volumes need high visibility
at all times.

* Volume Shadowing solves some of this
problem

• Is an HSC Backup really reliable?

* Not well tested in user community. Sen­
sitivity to media problems prevents stor­
ing backups for long periods

• Others: ILTAPE, ILDISK, ILTAPCOM, !LEXER
etc.

o These belong to Field service

Choosing an HSC'TO versus HSC50

• Pros

o Eight Channels

o Maximum number of drives now 32

• Up to 32 drives with up to 16 tape format­
ters.

o No extra power supplies needed

o Types of CPU's in Cluster - using metric called
Relative 1/0 figure of merit. Actual/Expected
load should be deciding factor.

• More than 3 8800's is too much for HSC50

• Combination of 8x00 CPU's can be too
much - see Sale's rep.

o Possible space considerations - More connectiv-
ity in single cabinet

o Console terminal - VT220 and LA50

o Console storage - RX33 with fast reboot time

o Better cabinet - lock front handle!, console stor­
age not on door!

o Faster processor + more memory

• Cons ...

o Maximum steady state data throughput same as
HSC50

• HSC70 slightly faster in terms of Re­
quests/ sec.

o Increased price

• We don't talk about this.

o Combination of 11/7x0 CPU's

429

• Unlikely to saturate HSC50

• Saturation of Host CI port more likely than
saturating HSC50 or cable

* Pipeline errors can appear during oper­
ation of tapes - due to HSC pre-fetch of
buffers to keep TA81 streaming during
heavy traffic

VAX CLUSTERING -- EXPECTATIONS AND EXPERIENCES

Gary Grebus and Michael Huffenberger
Computer and Information Services Department

Battelle Columbus Division
Columbus, Ohio 43201

ABSTRACT

The Computer and Telecommunications Center at
Battelle Columbus began early in 1985 to consolidate
VAX resources into a cluster and has been very
successful at implementing the concept. At present
eight machines, including 780, 785, and 8600
models, populate the VAX cluster at our site.
Clustering provides many features and opportunities
for resource sharing and workload balancing, most of
which we have taken advantage of. During the first
year we have observed several subtleties of
implementing and operating the V AXcluster
environment which may not be apparent to sites
about to take the plunge. While the cluster does
effectively couple resources, the result is not a
nonstop processing environment, nor are the
differences between constituent machines negligible.
Commercial software operation and licensing are
complicated in some cases. Local software is useful
in cluster management. Understanding these issues
has made our implementation more orderly and
productive.

INTRODUCTION

The VAX cluster is a local high speed network
connecting VAX hosts to each other and to
clustered peripherals. New hardware is
required to support this dual 70 megabit per
second bus, including a Computer Interconnect
(Cl) which attaches to the host CPU, an SC008
Star Coupler providing a physical connection
between host and controller nodes, and the
HSC50 Peripheral Controller for tapes and
disks. The Star Coupler must sit within 45
meters of any node, and the HSC50 is limited
to 24 disks or 96 tapes on several HSC5X
controllers. VMS Version 4 is required to
support a VAX cluster.

The VAXcluster provides opportunities for
improving system usage which undoubtedly
become the basis for a site justifying a move
to clustering. Fundamentally these opportunities
are in Data Sharing, Improved Availability, and
Load Sharing.

Proceedings of the Digital Equipment Computer Users Society
431

To enable data sharing, the VAXcluster
supports direct access to clustered disks from
any host, and pass-through type access to
local disks owned by cluster hosts.
Consequently there can be common data and
system files, including batch and print queues,
with access synchronized through the VMS
Distributed Lock Manager.

Improved availability is provided by the fact

Dallas Texas· 1986

that users can be authorized to work from any
host, and the nodes boot and fail separately.
Thus reduced responsiveness on the surviving
nodes is the only penalty for host failure.
Dual porting the disks and tapes to multiple
HSC50's can provide failover in case of
controller failure.

Load sharing is achieved by virtue of
distributing logons over the cluster. With
shared batch and print queues, various
workload types can be directed as desired by
the System Manager. Operations support
occurs on a cluster-wide basis.

The opportunities cited above create
expectations for the site about to install a
VAXcluster. In fact, while all the described
features are provided, such a description is
idealistic and simplified. In practice our
installation has found that going to a
V AXcluster requires attention to detail and an
appreciation for the limits of the concept.

BA TTELLE'S CONFIGURATION

Battelle Columbus set up a VAX cluster
environment soon after the new hardware and
software became available. It has been in
operation since March 1985. The
configuration now consists of:

• Eight VAX hosts, including
11 /780, 11 /785, 8600 and 8650
machines

• 12.75 gigabytes of RA81 disk
(30 drives)

•Four TA78 tape drives

• Three HSC50 controllers

• 2 gigabytes of local MASSBUS
disks accessible through MSCP
server software

•Terminal service through an
INFOTRON IS/4000 data switch

Our Cl780, Star Coupler, and HSC50 hardware
ran initially under VMS 3.7. In this mode the
HSC50-supported disks were local. VMS 4.0
was then brought up on weekends for testing.
After both the new hardware and VMS Version
4 were tested and stable, V AXcluster

432

production began.

OPERATIONAL EXPERIENCES

In general the performance history of our
V AXcluster has been good. To date there is
no evidence that the 70 megabit bus or
HSC50 controllers have been bottlenecks. The
common system files, such as user
authorization, batch and print queues, and
VAX mail, have been extremely useful. There
are various complications we have encountered,
as described below.

Software Failures. Bugs in the HSC50
firmware and with the shared file system (XQP
software) have caused some system outages
since startup. These were primarily early
problems. Combined with HOA failures on the
RA81 disks and with various TA 78 failures,
peripheral services have been the greatest
problems we have had with clustering.

Cross-Cluster Software Operation. When the
underlying architecture shifts to multiple hosts,
as it does with the VAXcluster, there needs to
be a corresponding adjustment of single-host
software. (If operation across the cluster is
desired.) Our site employs database packages
with proprietary mechanisms for record
addressing, outside normal VAX record
services. They do not recognize the cluster,
nor multiple copies of themselves on different
machines. As a result a single application using
these packages is confined to one host.

Analogous limitations with DEC software
include lack of centralized accounting, no
normalization of CPU times across nodes of
different speeds, and the lack of cluster-wide
logical names, event flags, mailboxes, and
process control services.

Cluster Software Licensing. The cluster
environment has been perplexing for
commercial software vendors and contracts
for clustered machines have varied, in our
experience, from bargain- to premium-priced.
Some vendors quote a cluster price, regardless
of the number or types of machines in it.
This keeps licensing simple. But many have
sold into the 1 and 2 machine environment for
a long time and insist on the simple markdown
structures originally established for additional
separate machines. The markdowns are not
aggressive enough when the norm is becoming
many machines rather than just a few. Thus
any site feels economic pressure to support
certain packages on certain hosts only,

contributing to administrative overhead and user
confusion.

Where we have limited packages to certain
hosts and the packages have no protection
related to machine serial number, we have
written local code to defer access from other
hosts. protecting our side of the agreement
with the vendor.

Heterogeneity in the Cluster. At first.
intuition leads to an idealistic concept of the
cluster where users may be shuffled around as
needed, unaware of which machines are in the
cluster, or indeed even which machine they are
on. In practice we have not found the picture
so simple. Having accumulated VAX's over the
past several years, we have four different
models of machines in the cluster, with
decidedly different capabilities.

The variations in machines at our site, and
probably for many other sites, are both
intrinsic and due to our configuration strategy.
An 8600 is much faster than a 780. As well,
we have implemented various amounts of
memory on the different machines, including
52 megabytes on an 8650. And we have
been driven by economics to package certain
software products on only some hosts.

Thus the machines differ enough that some
applications are suited to running in only one
or two places: the separate hosts become
visible and individually crucial to the users once
again. The system programming staff must be
careful about taking hosts out of service, and
about distributing users to achieve reasonable
loading across the cluster.

Distributing Users for Load Balancing.
Whether a cluster is homogeneous or not,
some way must be found to distribute
incoming users across machines. DEC can
provide Ethernet terminal servers which allow
the selection of a host or a generic
assignment to any open port. We employ a
data switch which accepts a generic "VAX"
destination, or accepts specific host logical
names.

The algorithm by which users are assigned is
an interesting concern. One approach with a
homogeneous cluster is simply to assign users
round robin to hosts. In our heterogeneous
cluster this would mean equal numbers of
users on 780, 785, and 8600 class machines,
an absurdity. Our data switch allows the round
robin assignment to be weighted by host, thus
an 8600 will end up with 4-5 times the users
of a 780. The fact that some users must be

433

served by a particular machine confounds the
actual workload balance, since the data switch
continues to assign by the original round robin
weights.

In fact these algorithms for assigning users to
machines are primitive: they do not take into
account what the assigned users are actually
doing to the hosts where they are working. A
few users could be overwhelming a 780 and it
would still receive its normal proportion of
additional users. A similar issue exists with
load leveling across the batch queues. It is
possible to see open slots in a batch queue as
a basis for deciding whether another job
should be added, however the actual CPU and
1/0 loads on the machine are not part of the
equation.

The disparity in machine speed can also lead
users to bypass the load leveling mechanisms
in search of perceived better response.
Indeed, a heavily loaded 8650 may still be
more responsive than a lightly loaded 780.
This phenomenon has lead to under-utilization
of the slower machines, and may further
hamper load balancing as the cluster becomes
more heavily loaded.

Performance. To date we have observed no
constraints due to the bandwidth of the Cl or
HSC' s.. Our machines always seem to have a
sufficient number of computable processes.
The most frequent bottleneck observed has
come from saturating a single spindle of disk
-- predictable given a load from multiple
CPU's instead of one. This is particularly true
for system disks, where a tradeof f must be
made between performance and the simplicity
of maintaining a single copy of the system; we
have multiple system disks. It becomes more
important to consider both space requirements
and 1/0 load limitations during capacity planning
and daily operation. We have investigations
underway aimed at better characterizing our
disk 1/0 load in order to better configure our
disk resources.

Memory might also become a consideration
when moving existing machines into a cluster.
It is difficult to estimate the exact impact in
our case, since the VMS Version 4 upgrade
happened simultaneously with clustering. A
cluster node will typically have more disks
mounted, with attendant use of memory for
control blocks and file system caches. The
lock data structures were also observed to
consume more pool space in the cluster
environment.

As expected, there is also some additional CPU
overhead required to maintain synchronization
among the cluster nodes. although the impact
has not been particularly obvious. Some 1/0
intensive applications requiring heavy locking
activities appear to take longer. Rough
measurements indicate that file opens take
about 5 percent more CPU time when a disk is
mounted cluster-wide.

Finally, sites should not indulge the fallacy of
summing up all the MIPS available across a
cluster and deducing that aggregate power
equals individual power. A large computational
job running on a clustered 8600 may still take
too long. Jobs with massive 1/0 requirements
also may be better directed to mainframes
with high speed channels.

Reliability and Availability. The VAXcluster
concept provides a framework for achieving
very high availability of resources. Typically
when we have a system crash, displaced users
will gradually reappear on the machines still
functioning. The load on these machines builds
until the failed host reboots, and the workload
then redistributes itself. A cluster, nonetheless,
is unlikely to be a nonstop processing
environment; certainly ours has not been.

The multiple hosts provide redundancy but
differences in capability and in software cannot
be neglected totally when some particular host
goes out. It is wise to provide all critical
software products on at least two machines in
the cluster.

Controller failures, particularly software, have
at times paralyzed our cluster. This problem
has been particularly aggravated by problems
with support of the TA78 tape drives. During
the HSC50 reboot. the user's file access is
blocked. The user assumes the system is dead
and disconnects, though in a few minutes the
terminal would "unlock" and resume. While
dual paths can be set up to disks through two
HSC50's, we have not yet done so. (Smaller
clusters may not even have two HSC50's.)

Disk drive failures are probably the most
troublesome failures a cluster has. An outage
will likely affect users across the entire
cluster, compounded by the fact it may be
difficult to exactly identify which users are
affected. Volume shadowing is not a panacea
since there will likely always be disks which,
for economic reasons, will not be replicated.

VMS provides no facilities for gracefully
terminating access to a failing device. We
have written local software to allow a

434

particular disk volume to be taken out of
service, bringing down only those users
affected by that volume. Following a warning
message, an affected user can be logged out
and prevented from logging in until the
necessary resource is again available. This is
in contrast to the only recourse previously
available, that of shutting down the entire
cluster.

It is extremely desirable to have one or more
disks as hot spares in case of drive failure, to
circumvent relocating files. The reload time
for an RAS 1 is penalty enough. Disk to disk
copying as a recovery technique can save
considerable time when compared to dumping
and reloading using tape. (Spare disks also
serve as a handy resource for disk
compressions, not requiring the original data to
be overwritten.)

Common system files--for example, a single
copy of SYSUAF.DA T-- also may present
single points of failure. We eagerly await the
forthcoming volume shadowing facility to
eliminate this problem.

CONCLUSION

Our VAX cluster experiences over the past year
have been very favorable, on the whole. The
availability of more powerful VAX's such as
the 8600, in conjunction with the VAXcluster
concept, have allowed us to expand our VAX
configuration to become our major resource
for centralized computing. (There are IBM and
CDC hosts at our site also.) We anticipate that
many other laboratories and businesses will do
the same, guided by the ideals of the
VAX cluster concept and by the practical
experiences of sites such as ours.

HIGHEND VAX 1/0 BENCHMARK

Don Hamparian and Michael Huffenberger
Computer and Information Services Department

Battelle Columbus Division
Columbus, Ohio 43201

ABSTRACT

The power of the VAX 8650 has allowed sites to
consider supporting larger scale applications than
could be assigned effectively to earlier VAXes. As a
site with machines all up and down the VAX product
line, and other vendors' machines competing as well
for our users' computing workloads, we have been
very aware of the new potential of the VAX 8650.
Of particular interest to us is the capabilities of the
VAX 8650 and HSC based disks to perform 1/0
intensive processing traditionally thought of as
"mainframe" data processing. In this paper, we
provide results of benchmarking our 8650 machine
using a workload consisting of simulated users
querying a textual database system. Results indicate
our users' growing allegiance to the VAX architecture
is justified for a growing range of large and small
computing workloads.

INTRODUCTION

Since the introduction of the VAX 111780 in
1978, many VAX processors have been
introduced that have raw CPU power many
times faster than the original 111780. The VAX
8650, introduced in 1985, has raw CPU
performance about 5.5 times that of the
11 /780. Many traditional mainframe applications
such as corporate financial systems and large
production databases that would never be
hosted on VAX just a few years ago are now
running as production systems on our
VAX cluster.

The RAB 1, a 456 megabyte Winchester disk
drive is currently Digital's high-end disk drive
offering for the VAX line of processors. By
learning about the capacity of the 1/0
subsystem, we were then able to better tune
our 1/0 workload across our RAS 1 disk base.

Now that Digital has provided CPUs with the
computing power to process such systems,
our attention has turned to the 1/0 subsystem
of our VAXcluster. We developed this and
other benchmarks in order to learn about the
capacity of RAB 1 disk based 110 subsystem.

Proceedings of the Digital Equipment Computer Users Society

435

BENCHMARK CONFIGURATION

Hardware. Two benchmarks were run, ref erred
here as Test 1 and Test 2. The two
benchmarks had identical hardware
configurations except for the paging and
swapping disks Test 1 had one RA81
dedicated to paging and swapping, while Test 2
had 5 RAS 1 s dedicated for paging and
swapping. The hardware configuration for the
benchmarks consisted of:

Dallas Texas - 1986

• VAX B650 with Floating Point
Accelerator (FPA) and 52

megabytes of physical memory

• 3 HSC50s running HSC software
version 250

• 1 RAB 1 serving as the system
disk

• 1 RAB 1 containing the database
manager image files

• 1 RAS 1 containing the database
data files

• 3 RAS 1 s bound as a volume set
for user procedure and listing
files

• 1 RA81 dedicated for paging and
swapping (Test 1)

• 5 RA8 1 s dedicated for paging and
swapping (Test 2)

We attempted to spread the disk 1/0 load over
all three of the HSC50s. None of the HSC50s
had more than 6 RA8 1 s attached to it. Also,
none of the HSC disk channel cards had more
than 3 active RA8 1 s attached to it.

Software. The software environment for both
benchmarks was identical. Both benchmarks
were running VMS 4.2, the System
Performance Monitor (SPM) version 2.0, and
Battelle's BASIS database management software.
SPM is a valuable measurement and tuning tool,
providing effective metrics for both
benchmarks and daily system operations.

Since the database software provides it's own
database file management services, it is
important to note that the database files a:e
not managed by VAX Record Management
Services (RMS) software. Therefore, the
throughput statistics of these benchmarks may
not be indicative of a RMS based database
application such as Datatrieve layered with RMS
indexed sequential files.

BENCHMARK STRATEGY

In this benchmark, we intended to measure the
overall throughput of the 8650 in a multiuser

database environment. The benchmark
application was intentionally chosen because it
was 1/0 and memory intensive rather than CPU
intensive. It was also simple enough so that we
could effectively measure performance of
various hardware and software subsystems
without expensive custom-written
instrumentation and data gathering software.

Although there are many hardware and
software components to the 1/0 subsystem, we
concentrated our analysis on the RA8 1 disk
drives because we felt that they represented
the 1/0 bottleneck in our benchmark. Our test
results as well as daily monitoring of our
V AXcluster confirmed this as well as showing
that the Computer Interconnect (Cl) and
HSC-50 disk controller were not significant
bottlenecks. At no point in our benchmarks did
aggregate I/Os to all three HSCs exceed 3 1 0
1/0 requests per second.

Benchmark Environment. In order to maximize
system throughput and eliminate 1/0 contention
from other VAXcluster members during our
benchmarks, the following steps were taken:

• Our VAX cluster was completely
idle. No other nodes on the

. cluster were running at the time
of the benchmarks.

• All of the database files used in
the benchmark were contiguous.

•All of the database manager
images used in the benchmark
were contiguous.

•All of the database manager
images used in the benchmark
were INST ALLed /OPEN /SHARED.

Du3 to time and cost constraints, all database
'users" were emulated using detached
processes. The database scripts were read
from DCL procedure files. Therefore, the
overall system 1/0 statistics do not include the
overhead of terminal related 1/0.

All SYSGEN parameters were tuned by the
AUTOGEN command procedure. Since we have
found in daily operations that increasing the
size of file system and memory caches above
the values set by AUTOGEN have a positive
impact on overall system performance, SYSGEN
parameters related to file system and memory

436

caching were set higher than the
recommended by A UT OGEN for
benchmarks. All SYSGEN parameters
identical for both benchmarks.

values
the

were

Loading Techniques. The database "users" for
the benchmarks were loaded using the
following techniques:

• The benchmark "users" were
created using detached processes.

• All of the database scripts
included what we considered to
be typical database user think
time. Think times were
implemented as by the equivalent
of "WAIT n SECONDS" statements
in the database scripts.

• Since the benchmark data
gathering was done in 20 use:­
increments, the VAX 8650 was
loaded by creating 20 new
detached processes, waiting for
each of the processes to invoke
the database manager image, and
then gathering resource data for
approximately 1 5 minutes. This
was repeated for each 20 user
increment. Note that the
measurements were done with 40
users, then 60, 80, 100, 120,
140 and 160 users. Test 2 also
had a 170 user measurement
taken.

BENCHMARK RESULTS

Throughput. Throughput was defined as the
amount of useful work done by the entire
benchmark hardware configuration per unit time.
This differs from the throughput that each
individual user experienced which was not
measured. Throughput was measured by the
database manager which includes a subsystem
for monitoring the types of user database
queries invoked. Since each 20 user group ran
the same mix of database scripts, we
measured throughput by the number of monitor
records written by the database manager per
unit time.

100 users for Test 1 and i 40 users for Test
2. See figure 1 for a graph of throughput
measurements for both benchmarks.

I ..
l HO

f
I
I 1••
c:
0
E
.5
~ 100 :
Cl

"' e
~

Throughput Statistics

IO+--~-..----...---...---...----....----i
40 100 120 140 180 110

Number of Uaero

Figure 1.

o Mtr reoT1

• !!!!...!!!..!!

CPU Utilization. Both of our benchmarks
showed that the CPU was not the benchmark
bottleneck. Figures 2 and 3 show the CPU
mode utilization for Tests 1 and 2 respectively.
Note that most of the CPU idle time was
attributed to paging and swapping 1/0 waits.
This would indicate that the paging and
swapping disks were part of the overall
benchmark bottleneck.

Using SPM's program counter (PC) sampling
facility, we gathered PC statistics on various
110 related subsystem components. We found
the following maximum PC utilizations for the
following 1/0 subsystem components:

• RMS - 3.8% of total PC samples

• DUDRIVER - 1.5% of total PC
samples

• PADRIVER - 2.6% of total PC
samples

Note that the database files in the benchmarks
are not RMS based.

Our benchmarks yielded maximum throughput at

437

100

80

g ..
~ 60
0
2
L
0 ..
.. 40
I>
u

ct
20

CPU Modes (Test 1)

40 60 BO 100 120 140 160

Figure 2.

Legend
CJ P;/Swp Wall
Didio
IZJ lnl

Memory Utilization. Our benchmarks sho "v "-!
that 52mb of physical memory would allow JS

to run "memory rich" to about the 80 to 1CJ0
user load. "Memory rich" in this context 1s
defined as few (less than 1 0) hard page faults
per second (read and write page I/Os) and a
free page. list size that is not less than the
SYSGEN parameter FREEGOAL pages at any
time. Obviously, the fact that a that a memo:-y
shortage occurs above about 1 00 users is the
reason why the page/swap disk(s) are a
performance bottleneck at that point If we had
more memory, the page/swap disk(s) bottleneck
would be removed and the database disk wouid
be the performance bottleneck for both
benchmarks.

1/0 Subsystem Utilization. Both of our
benchmarks showed that the RAS 1 disks wer :e
the primary performance bottleneck. No oth ir

1/0 subsystem component was a significant
contributor to the benchmark performance
bottleneck. Figure 4 shows the overall system
110 rates for both benchmarks. The buffered
1/0 rates are fairly constant for both
benchmarks since there were no terminals
contributing to that measurement. The direct 1/0
rates peak at almost the same point (number of
users) as the throughput statistics (figure 1).
Test 2 showed a greater direct 1/0 rate
because the paging subsystem, which was
limited to one disk spindle in Test 1, was now
utilizing five disk spindles.

438

100

80

g .. .g 60

j
...
0 ..
.. 40
I>

£
20

140

l:I 120
c
0
u • • 100 ... • Q.

• g IO

• eo
.Q

E
" z 40

CPU Modes (Test 2)

40 60 BO 100 120 140 160 170

Figure 3.

System 1/0 Rates

-------------- -... ""' - ~
~----&--0-~- •

"-A.-..

20 ·t-----~-~--.-~~--~---_·"f)--~
~ IO 10 ~ ~ ~ ~ ~

Number ol Users

Figure 4.

Legend
CJ Po/S•P Wolf
Didi•
[Z] 1nl

[ZJ K•rn~

EZJ [io:•c

•user

0 l!!!.!.!!!'0 T!__
0 '!l!~•-•_!_l{O_!!

• RlLul..ll"-1L
• 1.1.llJ•.lL!L<U.l

Our overall 1/0 subsystem performance was
primarily limited by the database disk in both
Test 1 and Test 2. The page/swap disk was a
close competitor for performance bottleneck in
Test 1. Figures 5 and 6 show the 1/0 request
rates for each disk subsystem for Test 1 and
Test 2 respectively. Note that as the
page/swap disk saturates in Test 1, the
database disk 1/0 rate drops since many
processes are in a page/swap 1/0 wait state
and thus unable to do any I/Os to the database
disk. In Test 2 (Figure 6), note that the 5
spindle page/swap disk 1/0 rate is unrestrained
by spindle limitations and therefore does not
significantly contribute to the 1/0 subsystem

bottleneck. Database disk 110 is decreasing at
about the 140 user level because the many
processes are suf faring from long service
times to the database disk resulting in fewer
database disk 1/0 requests per process per unit
time. Note that the system disk, image file disk
and user disk were not significant contributors
to the 1/0 subsystem bottleneck.

Summary of 110 Request Rates (Test 1)

t
g

..
IO

• 40 • .. /

& ./ ... : /'
:0
er
• 10 cc
g

10

-.- - -·- - ~.,

-:>--a---<1
~ ··, __ /...,,_ '

____ ,, _____ ,. /
,,-"- I

I
-0---- -~ -;-o---- --<>--- - -<>---- - -0

- I
I

·----·~-~L__·~-·~-·----·
OQ----o -- I ·, I I I

ff " eo - m ~ -
Number of Ueera

Figure 5.

Summary of 110 Request Rates (Test 2)

100

1' IO

I •
.. IO

&

IO 10 100 Ito 140 180 110

Number of Ueere

Figure 6.

• IU!~!L_
D b.Hfb.Ht!!JI
• !!••ll!!.••It••-
0 ~t!..1'_!••!!!

/!I. fU!..fll_•!!Pl!l_

• ll!!!!!..l!!L_
a !U!Jtut !!tP
• f!llb_Hift•_

0 t!!..!tt.!!!•-•!ll
/!I. !flll..!l'-9,,,!tl.

Figures 7 and 8 show detailed perforrr.an::e
information for the database disk for both
benchmarks. The database disk becomes 100%
busy during both benchmarks at about the 80
user level. As the database disk saturated,
service times became as long as 650
milliseconds per 1/0 request Note that in Test

1 the database disk saturated at about 50 I/Os
per second, while in Test 2 the database
saturated at about 42 I/Os per second. The
only difference we could see in our hardware
configuration that could account for this
difference is that in Test 2 the database disk
shared a HSC channel card with one of the 5
paging spindles. Unfortunately, there is no
instrumentation available at the HSC level to
prove or disprove this thesis. This high 1/0 rate
probably would not be attainable on a typical
user disk since all files referenced on the
database disk were contiguous. Also, since only
about 5 files were referenced on the database
disk during the benchmarks, time consuming
track to track seeks were minimized.

40

10

.c
& c
~
! 10

• :0
0

g
10

Database Disk

700

100

100 () • • .s
400 •

E
i=

aoo • u
!

200 c8
0 Qu••• L•11 T1

-100 a ~;;!~;!-rr
• 9UHelHTI

0 --~-~----,---.~----.---,-----t-0 • !!!!!!!!!!!

ff .. IO - m ~ - -
Number of Users

Figure 7.

Figures 9 and 1 0 show detailed performance
information for the page/swap disk(s). Since
Test 2 used 5 page/swap spindles, the percent
busy, the queue length and the service times
were calculated as the average of the 5
spindles for each benchmark user load. The 1/0
requests per second statistics are calculated as
the sum for all 5 spindles for each benchmark
user load. In Test 1, the page/swap disk
spindle saturated at about the 120 user load
level. This saturation level corresponded to
about 45 I/Os per second being serviced on
the page/swap disk. At the 160 user load in
Test 1, a page/swap disk 1/0 took almost 8
tenths of a second to complete. Test 2
showed that there was still reserve page/ swap
disk capacity available throughout the entire
load of users. At the 170 user load in Test 2,
nearly 1 00 I/Os per second were being
processed by the page/ swap spindles.

439

100

>-
! IO
m
c • 2 40 :.

IO

Database Disk

.....-a-..._

;a/ ""'
I 's\

I ..---~~
I / \ '

' / \i_
I /,- \ \

I / \ \
I I \

I \
I b

I

II

IO

'U c
41 0

i ..
40 &

l
"o ::::

10 0 ll!!.L!!..._

0 ~·£!!~
• UULII...-

0 •---,----,-----.-----.----.----.---r H '° eo so ~ ~ ~ m m
Numb•r of Uaera

• WLBU!.IJt.lJ

Figure 8.

The 1/0 rate for the page/swap disk, much like
the 1/0 rate for the database disk, cannot be
used as a maximum value for a typical user
disk used for timesharing. Each page/ swap
spindle only had 2 open files on it and each of
those files contained no more than 3 extents.
Again, because of these properties, time
consuming track to track seeks were minim:zed
on the page/swap disk. A typical user d:sK
would tend to have many small, fragmerned
files and most of the I/Os to such a ::1sk
would tend to be small (1 to 3 blocks) 1Qs
that would require expensive track to tr a:::k
seeks.

Page Disk
100 1on

" I

" 10 I IO

I 'U

I
c

>- 0

• " "' IO

' IO : m
c I .. • • --1--

Q.

e
'° 40

f:T • /..-- I • Q. a:
/ I 0

1' /,
::::

20. 20

I
0 '!..!!!!...!!_

a ~~·•~t.n
__,,/ • UULII...-

0 • 1!2.Jlut.llUI ----, 0
40 IO IO 100 120 140 180 100

Number of Users

Figure 9.

440

CONCLUSIONS

1/0 Load Distribution. This benchmark
demonstrated the importance of properly
distributing the disk 1/0 load across disk
spindles in 1/0 intensive applications. A
VAX cluster utilizing a shared file base also
needs to be carefully tuned to prevent "hot"
disks that can affect performance of the entire
VAX cluster. A ballpark figure we use to
determine when a disk is saturated is when the
cluster-wide total 1/0 request rate averages
above 20 I/Os per second during our
VAXcluster's prime-time hours. Also, make sure
that you are not overloading your HSC Channel
cards. This is largely a subjective
determination; no software exists to measure
~SC channel card loading.

40

30

s a
c • ...I

• 20

"' • "' a
0 ::::

10

Page Disk

Figure 10.

100

800 -

¥ • .s
•

400 E
i=
• u
'E •

100"'

The Important Disk Statistic. Many disk
vendors like to quote the maximum transfer
rate of their drives. Unfortunately, this statistic
is nearly meaningless in a typical VMS
environment Since disk I/Os in a typical VMS
environment tend to be small and randomly
placed on a disk, the most important disk
statistic is the average time it takes to access
a block of data on disk. The maximum transfer
rate of a drive may be important if utilities
such as physical backup are used or for
dedicated page/ swap disks.

Qualifications. This benchmark was purposely
selected because it is 1/0 and memory
intensive. Our typical computing mix is less 1/0
and memory intensive than this benchmark. We

could probably load an additional 20 users over
the benchmark throughput maximum and achieve
acceptable performance in our daily computing
environment

RECOMMENDATIONS

Distribute the 1/0 Load. It is critical in 1/0
intensive applications to distribute the 1/0 load
across spindles and HSC channel cards. 110 load
tuning is an iterative process that is done over
the long term. Expect 1/0 load tuning to be
repeated as new user applications are
developed and old ones are ended. Running the
VMS Monitor utility or SPM as a detached
process as part of daily operations gives the
system manager a good source of data for 110
load balancing and forecasting.

Distribute Page/Swap Loads. If your system is
doing a lot of hard page faults and Monitor or
SPM indicates that the page/swap disk is nearly
100% busy, distribute the page/swap loads to
multiple spindles. Remember, if your page/swap
files are on your system disk and your system
has alot of hard page faults, performance of
the entire running system can be affected. Do
not put your page/swap files on user disks
unless the combined 1/0 rates of the user disk
110 and page/ swap 1/0 do not exceed the
disks' capacity.

SYS GEN Parameters. Use file system caching
and free and modified memory lists as much as
possible to reduce disk I/Os. File system
caching is the primary method VMS provides
to reduce disk I/Os without special
programming or application tuning intervention.
RMS file and program tuning can also reduce
disk I/Os, but it is sometimes difficult to talk
users into spending the time to do tuning.

Disk Compressions. Performing disk
compressions will help reduce the number of
physical disk I/Os required for a virtual (file
system) 1/0. In daily operations however, we
find that the 8 to 1 0 hours required to do a
dump to tape and reload to disk a 3 spindle
volume set makes disk compressions a rare
occurence. We do not do disk to disk
compressions because we do not have the
luxury of having 3 spare spindles to do volume
set compressions to.

Do NOT Skimp on Memory! Memory is the
cheapest and most effective means of
improving VMS performance. Saving a little
money by skimping on memory allocation for a
system is not worth the performance

441

headaches ahead. Remember that a V AXcluster
requires more memory than a stand alone
system. 1/0 intensive applications require more
physical memory to contain file system control
blocks and locks than a compute intensive
application. Also, if there is not enough
memory available to contain larger file system
and memory list caches, the effectiveness of
these caches are greatly diminished.

INST ALL images. Install all frequently
referenced images. If we had not INST ALLed
the database images, we would not have been
able to load our 8650 with nearly as many
users. Besides reducing paging from the image
file, INST Alling an image /OPEN
/HEADER_RESIDENT will reduce disk I/Os and
speed up image activation time.

SUMMARY

We have found the 8650 and VMS to be a
powerful combination for large-scale
"mainframe" type 1/0 intensive processing. By
balancing disk 1/0 load across a system and
VAXcluster, performance can be greatly
enhanced. We now feel that a new generation
of faster disk drives need to be introduced to
catch up with the power of the 8650 and
similar power VAX processors. Once disk
technology catches up with the new VAX
processors, the VAX will be a true high-end
data processing system able to compete
effectively in all classes.

A Robust VMS LOGOUT Driver Activator

Larry L. .Johnson
Texas In<:truments
McKinney, Texas

ABSl'RACT

We have constrncted a data-flow model of a genenl; soltwan: product in the
context of a general time-shllring environment. In this model, points of
control for each product arc defined for each "system-event". One of those
events is the deletion of a process (specifically, LOGOUT). The currenl
implementation of the activation of our logout driver (which calls
per-product logout functions) is weak. An unprivileged user can exit the
system in a manner which will bypass the activation of the logout driver. By
the definition of our model, logout operations are not optional. A weak
activation of the logout dr;ver is intolerable. This study was undertaken to
determine the feasibility of implementing a robust logout driver activation.

This study established the feasibility of implementing
a robust logout driver activation by:

I. proposing mechanisms on which a solid logout
driver activation can be based.

2. producing a functional prototype based on a
selection of these mechanisms.

3. proposing the mechanism and general structure
of a production version.

4. outlining the course of action to produce
such a version.

A comparison of the advantages and disadvantages of
various available mechanisms is presented. Based on
the experience derived from the mechanisms for the
prototype, recommendations are made for the selection
of mechanisms and structure for an eventual production
version.

The considerations to be addressed by future efforts
is clearly and specifically defined. The major thrust
of the considerations is to evolve the current
functional prototype in order to meet design goals of
per-site flexibility, staying out of the way of
per-machine system progn:mming, and providing the

Proceedings of the Digital Equipment Computer Users Society 443

per-machine system programmer witn tools to interface
with the mechanism more effectively than if the
programmer attempted to accomplish his task with
"vanilla" VMS.

2 Problem Analysis

2.1 Primary Objective

The primary objective of the study is to determine and
eventually implement a usable mechanism to force the
execution of a system-wide logout command file.

The mechanism is to be hardy and non-defeatable by an
unprivileged VMS user.

2.2 Decomposition of Primary Objective

The only common point of exit for processes of all
types is through the VMS image rundown. Process
deletion is a special, extended case of image nmdown
in VMS systems. Therefore the first objective of the
study must be to intercept image rundown, and
recognize the case of process deletion (rundown of the
process).

Dallas Texas- 1986

Having intercepted process deletion, the process must
be restored to a state capable of defeating user
control and forcing the execution of a normal DCL
command file in a normal user process context.

Having established a suitable environment, a mechanism
is required to force DCL to execute a system-wide
logout command procedure. (Simulate the
0 @command-file0 behavior).

3.1 Proce.'IS Deletion Interception

In order to intercept process deletion for all
processes, control must be gained each time VMS
deletes a process. VMS supplies the hooks necessary
for this through a dispatch vector mechanism described
below.

3.1.l VMS Dispatch Vectors.

The command file must have a mechanism by which it can VMS provides for the call of user-written routines at
request a process deletion (without forcing its own points critical in the VMS architecture: For each of
execution once again). these critical points VMS maintains two hooks:

The procedure must be immediately available to the
process context, which means it must be permanently
mapped and not suffer the effects of image rundown.

A method for loading such an image must be developed.

In summary, to achieve a solution the following
subproblems must be solved:

I. Design mechanism to intercept normal VMS
process deletion. (special case of image
rundown interception).

2. Design mechanism to recover process from
deletion.

3. Design mechanism to transfer control from
user to system-wide logout command procedure.

4. Select rundown interceptor image residency.

5. Develop prototype rundown interceptor using
above rr.echanisms.

6. Develop procedure to load rundown
interceptor.

3 Discussion of Technical Issues and Candidate
Solutions

The user is presumed to be intimately familiar with
VMS Internals for this material.

1. System-wide vector pointer (SO space).

2. Per-process vector pointer (Pl pointer page).

The critical points at which control is provided for
each of the hooks are:

1. Change mode to kernel dispatching. If the
VMS change mode to kernel dispatcher does not
recognize a system service code, it will call
user-written dispatchers through the
system-wide pointer if it is non-zero. If
the system-wide dispatcher does not recognize
and handle the change mode code, user-written
dispatchers are called through the
per-process pointer.

2. Change mode to executive dispatching.
Dispatching is handled analogously to the
kernel case.

3. Image rundown dispatching (process deletion
is a special case of image rundown under
VMS). The per-process dispatch vector is
called through the per-process pointer. If
the system-wide dispatch pointer exists (is
non-zero) it is called. The vectors are
called exclusively by SYS$R UNDWN and by
SYS$DELPRC.

The following are the symbolic names of the locations
of each of these pointers.

System-wide Per-process

Change mode kernel
Change mode executive
Image Rundown

(SO Space)

EXE$GL_USRCHMK
EXE$GL_USRCHME
EXE$GL_USRUNDWN

444

(Pl Space)

CTL$GL_USRCHMK
CTL$GL_USRCHME
CTL$GL_USRUNDWN

The system-wide pointers are not set by VMS. There is
no established protocol for their use. There is,
therefore, no chance of conflicting with VMS
operations in the use of these vectors. However the
vectors are truly system-wide and will be invoked by
any process. Any exclusions would have to be
dismissed by analyzing the calling environment at each
invocation.

The per-process vectors are used by the image
activator in mapping privileged shareable images.
This is the supported method for providing user
written change mode dispatchers and rundown services
on a per-image basis.

The per-process pointers point to vector tables in PI
space. These are referred to as VMS dispatch vectors.
The tables are one-half page each, located in two
contiguous pages. There is a fourth set of
pointers/vectors for message sections. The fourth
table does not follow the fonnat of the other three
described here.

The tables are not strictly "jump tables", but
mini-routines composed of JSR instructions to each
privileged dispatcher and terminating with an RSA
instruction. The image activator adds a .TSB
instruction to each of the tables as required in the
encounter of any installed privileged shareable image.
The number of such vectors is restricted by the size
of the dispatch area (256 bytes for each table... 42
.TSB sequences).

The image activator keeps track of the original
(permanent) size of each vector table and, at image
rundown, over-writes the JSR op-code written there at
image activation with the original RSB op-code. Thus,
at image rundown the vector table is reset to look as
it did before image activation.

It is possible in VMS V 4.x systems to make these
vectors permanent by updating the location containing
the original size of the vector table to the size of
the table with the permanent vectors in place. (This
possibility did not exist under V3.x and earlier
systems. The vector tables in those systems were
reset to no vectors at each image rundown.)

3.1.2 Selection of Vector Mechanism

The use of the system-wide vectors offers the
following advantages.

445

I. No VMS established protocol. There is little
chance of clashing with VMS's use of the
vector.

2. Per-process modifications are not necessary.
Once established, the rundown interceptor
will be activated for every rundown in the
context of every process, regardless of its
environment.

The disadvantages of system-wide vectors are:

l. A protocol for use of the vector would have
to be established. VMS's use of the
per-process vector could serve as a
convenient model for the protocol, making the
effort straight-forward.

2. Since a logout command procedure driver is
meaningful only to those processes which map
DCL, ineligible processes would have to be
detected so no operation would he performed,
or an alternate image-based system-wide
logout be performed.

3. The use of the system wide vector would
require mapping the image into SO rather than
PI space, since each PI space may have the
image mapped into different address ranges.
P 1 space could be used to keep per-process
data. This would require a check on each
activation to assure that the P 1 data area
has been initialized, and the initialization
performed if it has not.

Per-process SO allocated areas could also be
used, established on any access indicating
absence of structure. This approach
essentially implements an extended PCB and
should be accessed with similar protocol.

The per-process vectors offer the following
advantages:

I. They can be loaded on per-process basis by
the system-wide login procedure as desired.
If the image is activated, it is eligible to
run. Fewer environmental determinations are
necessary.

2. Any PI data area can be mapped at the same
time as the rundown image.

The per-process vectors offer the following
disadvantages:

I. They use structures under the domain of the
image activator.

2. Vector pointers are not copied to subprocess
by SYS$SPAWN implying that the SYS$SPAWN
system service may have to be tampered with
to make the facility work for spawned
subprocesses.

There is some danger in sharing the same data areas
with VMS's image activator, but the new provision for
permanent vectors is clearly an intentional feature,
though not currently utilized by VMS. Should VMS
develop uses for this feature that makes our use of it
impossible, we can fall-back on the system-wide vector
mechanism which is left entirely to the VAX owner.

Alternately, the vector itself could be revcctored to
our own code which would be responsible for locating
and activating the image activator's tables, leaving
the dispatch area solely under the domain of VMS image
activation and rundown logic. This is possible since
the image activator locates the dispatch area through

Process recovery draws on an analogy between the
rundown dispatch mechanism and the search for
user-written change mode handlers. If a change mode
handler does not recognize a change mode code, it
performs and RSB which returns for the search for
other handlers. If the handler recognizes the code,
it branches to the routine which performs the
function. That routine returns with a RET to the last
active call-frame which was established by the change
mode exception dispatcher.

The environment provided by the kernel mode AST for
process deletion coupled with the very early call of .
the rundown vectors by the SYS$DEI ,PRC system service,
makes recovery of the process straight-forward. The
rundown interceptor is called by the SYS$DEI ,PRC AST
with a .JSR instruction. The VMS AST delivery
mechanism has called the deletion AST code with a
CAI ,J ,G instruction. Consequently, if the rundown
interceptor returns via an RSB instruction, it will
return to the deletion AST which will continue through
process deletion. If, however, the facility returns
via a RET instruction, control is passed back through
the last active call frame, i.e., to the AST
dispatcher which dismisses the AST, causing the
process to continue as though nothing had happened.

one pointer, CTL$A_DISPVEC and the VMS code which Before dismissing the AST to abort process deletion,
calls the vectors locates the particular dispatch the delete pending bit in the process's PCB must he
table through the per-process vectors. (It remains to cleared. This flag is also useful for verifying that
be strictly verified that the image activator uses . process deletion is the reason that rundown has been
only CTL$A_DISPVEC, and not any of the specific vector requested for kernel mode. It is set by the minimal
pointers.) code in SYS$DEI ,PRC that is executed in the requester's

context before queuing the kernel mode AST.

Since we are using the dispatch area in a fashion
consistent with the architecture of VMS, it is
unlikely that an unresolvable conflict will occur.
However, it is important that contingency mechanisms
are available.

3.2 Recovery from Process Deletion

3.3 f<'orcing System-wide Logout Command File
Execution.

Having aborted the deletion of the process, the
program must control and force execution of a
system-wide logout command file. In other words the
interceptor must cause DCL to execute an

When SYS$DELPRC is called (from whatever process), the "@command_file" type command in the normal process
PCB of the target process is flagged as delete pending context, hut beyond control of the process owner.
and a kernel mode AST is declared. Process deletion
always occurs in the context of the target process.
Deletion is accomplished through the AST even if the
requesting user is the same as the process targeted
for deletion.

446

The usual way an image causes DCL to execute such a
command is to call the run-time library procedure
LIB$DO COMMAND with the desired command as an
argument~ This procedure is specifically constrained
to operate in user mode. The interceptor runs in
kernel mode, and must return to its caller in kernel
mode.

The goal is to get to user mode, perform the
LIB$DO COMMAND functions and then restore the
environm~nt and return to the caller. The code could
force its mode to user, perform its operation, and
then return to kernel through a special
change-mode-to-kernel dispatcher. An alternate
mechanism was selected, however.

The process recovery routine of the interceptor issues
a supervisor mode AST just before dismissing its own
kernel mode AST. It is the supervisor mode AST that
is responsible for altering DCL's course to the logout
command procedure.

A supervisor mode AST was selected for the following
reasons:

1. By raising mode as soon as possible, any
bugchecks incurred are process fatal, rather
than system fatal.

2. The convenience of SYS$DCLCMII in altering
change-mode dispatching.

3. It is preferable to run in the least
privileged (highest) access mode as is
feasible.

4. It is "natural" to deal with CI ,J data
structures in supervisor mode, which is where
the CJ ,J customarily runs.

Running in the context of the supervisor AST, the 1/0
on the CJ J's input channel is canceled so that there
will be no conflict with outstanding
read-with-prompts.

Then the AST establishes a user stack context (saving
any that is in place). This is done since there is no
guarantee that a user mode stack exists. Before
access mode is raised to user, a change mode to
supervisor handler is declared so that the mode can
later be lowered back to supervisor.

The processor mode is then artificially raised to user
by fabricating a PC/PSL pair and performing an REI.
This provides the unusual situation of a supervisor
mode AST running in user mode! A "@command_
command is sent to the CLI via the callback routine
(SYS$CLI) while in user mode.

The reason this user mode operation is considered
still part of the supervisor AST is that ASTA CT level
field in the PCB is still set to supervisor. This
level is used as a check to avoid spurious AST's.
Consequently, the AST dispatcher still secs an active
supervisor AST and protects it.

447

Note that the supported LIB$DO_COMMAND procedure is
not used. Instead the unsupported procedure, SYS$CLI,
which is used by LIB$DO_COMMAND is used. This is due
to the fact that LIB$DO COMMAND presumes a "usual"
user mode image and perl"orms a call to SYS$EXIT to
rundown the image as a fmal act. There may not be an
image to rundown in our situation. If there is not,
the execution of SYS$EXIT will cause an "exit pending"
flag to be set causing the next user image to exit
immediately ... an intolerable side-effect.

Since the call to SYS$CLI is modeled after the
supported procedure, there is little danger in using
the unsupported service. If the CLI callback protocol
is changed, it will be changed in LIB$DO_COMMAND and
the interceptor's code can be changed accordingly.
Effectively, the procedure is supported "one step
removed". Puture versions may simply use
LIB$DO COMMAND followed by the unconditional clearing
of the exit pending bit in the PCB.

The supervisor AST cannot be dismissed while in user
mode. Before changing to user mode, a change mode to
supervisor handler was declared. We therefore perform
a CIIMS instruction with the appropriate code. If the
code is not that expected, it is passed to any
previously declared handler. Otherwise, the previous
handler is formally reinstated, the stack is cleared
of the CIIMS arguments, the user stack is reset to its
original context, and the supervisor mode AST is
dismissed.

As soon as the supervisor mode AST is dismissed, the
system-wide command file is run, as setup by the CJ J
callback routine.

3.4 Deleting the Process after Command File
Execution.

Having executed the system-wide command file, there
must be a way of deleting the process which does not
cause the command file to be executed again. The
prototype described in this paper sets a flag that the
CLI call-back has been made for this process. (The
flag resides in Pl space with the prototype's code.)
If the flag has been set, it means that the command
file operation has previously been initiated, and the
interceptor returns to process deletion with an RSB
instruction.

Note that a user could "pump" consecutive delete
process requests against his process from another
process. In a production version the command-file
flag must be augmented by another which can be set

only from another image by someone with OPER or
other suitable privilege. This image would be invoked
as the last act of the command procedure. The image
can then set the appropriate privilege protected flag,
based on the history of the process (in kernel mode we
can get any privilege we want). Only when this flag
has been set will the process resume deletion. If the
command-file flag is set, the deletion /\ST will be
dismissed, but no attempt will be made to initiate the
logout command procedure.

An operator's utility should also be developed to
force deletion of a process, circumventing or aborting
the logout procedures.

3.5 Image Residency

It is important that the rundown interceptor be in a
permanent segment of memory which will survive across
image activation and rundown. This eliminates PO
space since it is destroyed entirely at each image
rundown.

The two candidates are P 1 space and SO space.

Image rundown causes all P 1 space beyond the address
contained at CTL$GL_ CTLBASV A to be deleted.
Therefore, if the image is loaded by extending PI
space, then the value at CTL$GL_ CTLBJ\SV J\ must be
changed to point to the new end of P 1 space. This
makes the code permanently mapped to the process's P 1
space.

I ,oading SO space is simply a matter of allocating
contiguous pages of paged or non-paged pool and
loading the image. SO space MUST be used if the
system-wide VMS rundown interception vector is used.

3.6 Image Loading

The code to be executed is placed in Pl space by a PO
based image (/POIMJ\GE qualifier used in conjunction
with the link of the mapping image).

The create and map section system service, SYS$CRMPSC
can be used to rnap any file into memory. It can be
mapped as a shareable or a private copy. This system
service is used repeatedly by the image activator,
SYS$IMGACT to map image sections piecemeal. The
easiest way to use this service is to load an image
linked "/SYSTEM", i.e., there is no image header.

448

Since the interceptor must be strictly
position-independent, it can not use general-mode
addressing, or external run-time images. If any
descriptors are used, they must be initialized at
nm-time.

You may also use SYS$IMGJ\CT to load the rundown
interpreter. The image activator does not perform
merged activations directly into PI, so a technique
used by VMS to map the CU into PI space is employed.
The image activator is invoked to merge the image into
PO space for sizing purposes. Having determined the
size of the image, the PO space is deleted and PI is
expanded the appropriate number of pages. The image
activator is called again to explicitly map into the
expanded address range in PI.

The advantages of SYS$CRMPSC are:

I. It is a fully supported system service.

The disadvantages of SYS$CRMPSC are:

I. The rundown interceptor must be strictly
position independent.

2. External images can not be activated or
accessed at run-time.

The advantages of SYS$IMGACT are:

I. Non-PIC code is convertible to PIC by
SYS$IMGACT so descriptors and general mode
addressing can be used freely. (This
conversion is done via a call to a sister
system service, SYS$IMGPIX which is
considered part of the image activator,
though called separately.)

2. Run-time libraries may be used (cautiously).

3. Page protection is automatically handled.

The disadvantages of SYS$IMGACT are:

1. It is not a supported system service.
However, it is so ingrained in the basic
architecture of VMS, that changes in
functionality causing incompatibility with
this application are highly unlikely.
Changes in calling protocol are more likely.

An early version o.f the prototype used SYS$CRMPSC
system service. The PIC code requirement was
unacceptably constraining.

The image activator is so powerful a tool, that its
use is warranted in this particular instance, despite
its lack of formal support.

To isolate image activator changes, a family of
utility subroutines should be developed. Should the
image activator protocol change, only this family of
routines will have to be changed for maintenance.

3. 7 l~OGINOUT Inadequacy

VMS's LOGINOUT image will not be usable for logout
since it closes the process permanent files
(SYS$0UTPUT, etc.) before calling SYS$EXIT from kernel
mode (which eventually calls SYS$DELPRC or
SYS$RUNDWN). Under this circumstance, the interceptor
stiJl gets control, but has no communication channels
for running a logout command file.

Command files typically make use of these files. It
is unreasonable to expect logout components to make no
use of these standard files. Therefore logouts must
be effected by an image which calls SYS$DELPRC and
leaves the files intact. This will provide a wholly
normal process context in which the system-wide logout
command file may run.

It is natural to ask, 'What is given up?". The
LOGINOUT image makes calls to security audit software,
and does a couple of other minor operations.

The important thing is that these operations are all
intrinsically optional. The LOGINOUT image can be
bypassed very simply by an UNPRIVILEGED user by:

1. Issuing the DCL command"$ STOP/ID= O", or

2. Calling SYS$DELPRC from an image.

On the other hand, logout operations implemented
through the proposed rundown interceptor cannot be
bypassed by an unprivileged user.

4 Prototype Rundown Interceptor

A prototype rundown interceptor and loader has been
successfully implemented using techniques described in
the section on problem discussion and solutions.

449

!!! WARNING !!!

The prototype code supplied on the DECUS tape and
described herein is strictly experimental and is
supplied for demonstration purposes only. The
code has known deficiencies and is not intended
for production purposes. The code is intended to
be used by system programmers as a "template" for
studying the problem.

The per-process vectors were selected for the
prototype due to the accessibility for development
purposes, and so that the code could be tested with
others on the system. (Once a system-wide vector is
initialized it is used for every process on the
system). The use of the per-process vectors also
provided a familiarity with the vector usage protocol
which can be used as a model of a protocol for
system-wide vector usage, if desired.

P 1 space was selected for the prototype for the
following reasons:

1. Ease of access.

2. Minimal perturbation to system during test.

The loader uses the image activator to load the
interceptor into P 1 space and sets up the per-process
rundown dispatch vector to activate the rundown
interceptor.

The interceptor assumes that logout is performed by a
SYS$DELPRC system service call, rather than running

The interceptor works for:

1. A top-level process.

2. A spawned subprocess.

3. A top-level process which had deletion
requested by any other process.

Please note that the message which marks resumption of
supervisor mode will have to be moved to make the
third scenario operate.

Thoroughly commented source and build files are
supplied on the DECUS tape for this Symposium.
Details on the implementation algorithms are included
as well as procedures for building a "demo" model.

the LOGINOUT image. (The DCL command "STOP/ID=O"
equivalent). An undeletable process will result if
normal logout is attempted.

Note that the interceptor in the prototype is
activated from the image activator's dispatch area.
When it dismisses the deletion AST, none of the
remaining vectors are activated. This is not
tolerable for a production version. If P 1 dispatching

5 Path to a Production Version.

5.1 Program Residency

is retained then the remaining vectors can be A number of factors point to the desirability of using
activated by a JSB indirect on the stack pointer, or SO space rather than Pl space for the image.
they can be run and eliminated by a call to SYS$RUNDWN
for user mode. If SO dispatching is employed, the Pl The primary factor is that the Pl vectors are a part
vectors have all been called and completed by the time of the image activator's data area. Prudence suggests
the interceptor is activated. that we stay away from this area if there is another

The prototype uses an overly simplistic mechanism for
resuming process deletion after command file
execution. See the section on resumption of deletion
for details.

The prototype interceptor outputs messages showing
significant events in its execution for demonstration
purposes.

450

reasonable approach to accomplish the same thing. The
use of P 1 residency would require the use of the P 1
vectors.

Another factor is that the SYS$SPAWN system service
does not copy extensions to the parent process's
address space into its own. The SYS$SPAWN service
starts with a new shell, initializes it, and then,
through a series of mailbox communications between the
parent and spawned process, the logical name tables
and CLI symbol tables are optionally copied. If the
rundown interceptor were to be mapped in SO space, no
such problem exists.

A routine for mapping an image into SO paged or
non-paged pool must be developed. No tests have been
made of loading SO space with the image activator­
h~wever, it is anticipated that no major difficulty '
will be encountered in its use.

5.2 Vector Mechanism

This issue is related to the image residency problem.
If the image is to reside in P 1 space then the
per-process vector must be used, since uniform mapping
of P 1 space across processes can NOT be presumed. On
the other hand if SO space is selected, then either
vector can be used. However, per-process vectors are
not copied to a spawned subprocess.

Use of the SO vector is currently indicated. It is
desirable to avoid sharing the image activator's data
area. Per-process capabilities can be provided by
keeping a list of per-process interception vectors as
in the image activators per-image vectors. A set of
utilities can be developed to manage these data areas.

5.3 Environmental Flexibility

Process deletion is invokable in a number of fashions,
only a few of which have been tested. Por example,
the situation of the deletion of a disconnected
process which has timed out must be investigated.
Tests on the availability of input/output channels
must he made and appropriate contingency action
developed.

An inventory of process deletion scenarios must be
made and appropriate special action (if any) developed
for each case.

Some of the scenarios will require special
considerations in order to accommodate them. For
example, if a process is being deleted because of CPU
limit time-out, one or more optional procedures can
apply. On first encounter, one may artificially boost
the time limit enough to initiate and finish logout
procedures. On second encounter, we know that our
estimate on the time for logout operations is wrong,
or that there is something seriously wrong with the
logout code or the machine itself -- an errorlog entry
and continuation through deletion is in order.

451

5.4 Error Mode Analysis

The system must be revisited to implement error-mode
dete~tio~ and cont~ngency operations (particularly in
con~tdermg the vanous scenarios of process deletion
as dtscussed above). In general, any error mode must
proceed toward normal process deletion.

5.5 Program Structure

If the image activator is used, it will be possible to
link at run-time to base functionality, allowing
independent maintenance of functional subsystems,
e.g., process rundown and image rundown functions.

5.6 System Programming Guidelines

The implementation of the rundown interceptor uses
some of VMS's one-of-a-kind hooks. System programmers
may need to use the VMS facilities used by this
application. In order to do this a comprehensive set
of system programming conventions and utilities must
be developed to allow system programmers to achieve
the effect of the VMS hooks used by this application.
In fact, the resulting set of tools could make the use
of those VMS facilities easier than without the
application.

Protocols and conventions must be developed to
coordinate the use of:

1. Pl and SO Space

2. Pl and SO Vectors

3. Per-process data conventions and utilities

4. Processor Register Conventions

5.7 l~out driver to replace LOGINOUT

A logout driver must be developed to emulate the
user-interface of LOGINOUT. However, the new driver
will not close process permanent 1/0 channels.
Extended features can be developed, e.g., clear the
screen as a final act leaving no print on the screen
whatsoever.

The new driver will terminate the process via a call
to SYS$DELPRC.

Investigations into running LOGINOUT at the end of the
command procedure will be made. The image could he
protected from direct operation through ACL's
specially constructed to allow access during login and
post-logout-file operation only.

452

APPENDIX A

STRUCTURE OF RUNDOWN INTERCEPTOR

The following structure chart outlines the call structure of the
rundown interceptor.

453

Rundown Interceptor Prototype Call Structure
November 1985

VMS
ASTDEL +·-. -·- ...

$DC LAST

(Original
Change Mode

Handler)

JMP

Force Command
File Execution

(User Mode
Portion)

I $D~L~~~J

Rundown
Kernel
Mode

~

,
I

Rundown
Process

A

...-----"" • $DELPRC DCL

Image Activator
, Rundown Vector

\ ', . . . --....
'---------.... ---. \

Perform
EG Rur:idown

System-wide
Logout

Command File

454

' ~

Perform
Per Image

Rundown 1

......
Rundown

User
Mode

I
I
I

+ ...
Output
Image
Name

Perform
Per_lmage

Rundown N

McKinney DCS
System Support

Larry L. Johnson

Notes to
Rundown Interceptor

Structure Chart

Module descriptions are found in the code listings. Modules formatted
"$name" are standard VMS system services SYS$name.

The SYS$RUNDWN system service is not supported.
describe its role.

It is shown here to

The VMS_ASTDEL module is actually part of the VMS executive, the
Asynchronous System Trap Delivery Mechanism. It is shown here to
describe its role.

The SYS$CLI service is unsupported. Its use is modeled after the
LIB$DO_COMMAND procedure of the VMS run-time library.

The DCL module shows the CLI's role in the command file activation.
It represents the command interpreter.

*** Structure Chart Legend ***

A. Solid lines indicate activation via VMS Procedure Calling
Standard (CALLx/RET), except for the activation of the
command procedure by DCL which is the usual "@command-file"
activation.

B. Dashed lines indicate activation by a JSB protocol.

C. The dash-dot line indicates the issue of the RET to the last
active call frame by a procedure which was actually called
under the JSB protocol.

D. Triangular "hats" on modules indicate lexical inclusion
within the subordinate, i.e., they are in the same compile
module.

E. $DELPRC invocation (A) is the last act of system-wide logout
command procedure.

455

APPENDIX B

LAYOUT OF VMS Pl DISPATCH VECTOR AREA

I VMS Dispatch Vector Data Structures I
1- ____ Lv~<;!Q! l,i!_el ____ -I

Per-imag~ change Mode to
Kernel Vectors

(256 bytes)

1- ____ Lv~<;!Q! l,i!_el _____

Per-image change Mode to
Executive Vectors

(256 bytes)

1- ____ Lv~<;!Q! l,i!_el ____ _,

Per-image Rundown Vectors
(256 bytes)

Per-image Message Sections
(256 bytes)

Typical Detail of All Except
Message Sections

_ -9!f1e.! toJ~.!JILn~l~~EL -
Series of JSB instructions

-------T--T----
1 0 I RSB

I : CTL$A - DISP,VEC I
...

...

...

I • I: CTL$GL USRCHMK

I • I: CTL$GL _ USRCHME

I • I: CTL$GL USRUNDWN

I I I: IAC$AW VECSET

I: IAC$AW - VECRESET

Arrays - one element for each vector
VECSET contains size of active portion of vector

(offset to terminating RSB)
VECRESET contains original size of vector

I LLJ:pr 05/01/86

456

APPENDIX C

LISTINGS OF RUNDOWN INTERCEPTOR

457

(~_~U~JJO~f~_iNT~HtEPTOR

OCO:J 1
0000 2
0:00 3
0 ~.;-,; IJ 4
GGOO 5
CO% 6
cooo 7
G000 8
CJ.JO 9
iJUJO 10
0000 11
ooac 12
0000 13
OJ•JO 14
G1lOO 15
GOUD 16
0000 17
oooc 18
COJC 19
cooc 20
OLl·JO 21
0000 22
cooo 23
OOJO 24
0000 25
0000 26
cooo 27
OJGO 23
00·)0 29
oouo 30
0000 31

""' coao 32
I.II
00 Q[JJ.J 33

COtJO 34
OMO 35
0000 36
00•)0 37
onoo 33
O'JCO 39
CQOC 40
0000 41
OGOO 42
OOQ!J 43
OOoJO 44
0000 45
0000 46
OOJC 47
0000 4f.
ooco 49
O•J00 50
OOGO 51
0000 52
00)0 53
COuC 51,
GO:JO 55
OOvO 56
oouc 57

30-MAY-1986 13:23:34
27-APR-1986 22:25:59

VAXIVMS Macro V04-00 Page
PROTOTYPE_RUNDOWN_INTERCEPTOR

.TITLE EG_RUNDOWN_INTERCEPTOR

; Prototype permanent per-process rundown routine.

;++
Module: EG_RUNOOWN_INTERCEPTOR

Facilitv• EGRNDN

Function: Intercept rundown of ima~es and processes and
dispatch for additional processing.

Invocation Protocol: Called via JSB by SYSSRUNDWN or SYSSOELPRC
through P1 dispatch vector entry.

Input Parameters:

R4 - Address of current PCB.
R7 - Access mode parameter to SRUNOWN maximized with

previous mode. (This parameter mill be USER
mode for image rundown1 and KERNEL mode for
process rundown.

AP - Argument pointer existing mhen the SRUNOWN system
service was invoked

Environment:

Kernel Mode, IPL = 0 for image rundown
Activated by SYSSRUNDOWN with R7 = PSLSC_USER

or R7 = PSLSC_KERNEL
Kernel Mode AST for process rundown

Activated by SYSSDELPRC with R7 = PSLSC_KERNEL

Code must reside in a permanent portion of P1 space or
SO space (paged or non-paged pool).

Side Effects:

Can cause execution in context of supervisor mode
AST in the case of process deletion. Execution
of the AST will result in system logout command file
execution in normal user context.

Status Returns:

Notes:

If an initiating AST is dismissed, then
SSS_NORMAL is returned in RO.

Else
Thore is no status return.

Endif

Revision: 1.0 20-Sep-1985 Larry L. Johnson
in collaboration mith
Liz Bellamy of DEC,
Dallas Regional Office.

1
(1l

'J•>JO 5~
UC:JO 'P
0•),)0 60
o:no 61
(J•}jQ 62
O>JC t3
(i ,..ji~ c !•4
Grr_'C 65
Cfi';O 66
00,10 o7
l).)JQ o3
Ll')SC 69
OC.00 70
;ji).JQ 71
cooo 72
JO:JC. 73
~JJO 74
:;·.;co 75
;'.),)Q 76
JOJO 77
],JOO 73
01G~ 79
OOIJC ~G
OGJll ;;1
Or}CO ~2
COJO 83
o~co 84
CtOOO 35
•l'JOO 86
UOGG 87

.i:.
OCQO ~s

Ul U1}'.J0 89
IC ;J~JO 'fO

OOJO 91
co.10 92
oooc 93
tJ100 94
1J.J1JO 95
o~~o 96
0000 97
Q:J.JC 93
a:wo 99
O:JQO 100
OJuO 101
O•JOG 102
0000 103
0000 104
0000 105

30-MAY-\~86 13:23:34
2l-APR-1986 22:25:59

VAX/VMS Macro V04-00 Page
PROTOTYPE_RUNOOWN_INTERCEPTOR

language: VAX/VMS Macro-32 Assembler.

qequired Macro libraries:
STARLET T~e default VAX System Macro Library.

(Automatically sea ned.)
_ie The master VAX System Macro library.

SCLIDEF
SIPLDEF
$PHOOEF
SPROEF
SPCBDEF
SIACDEF
SIHDDEF
SI HADEF
$IHIDEF
SPSLDEF

iOefinitions for SYSSCLI invocation.
iOefinition of interrupt priority levels.
iProcess he~Jar definitions.
iProcessor register symbols.
;process control block definitions.
ilmage activator data areas.
iimage header structure.

;processor status longmord constants.

External Status Refer~nces:

Facility OP.fined Status Values: None
VAX/VHS Common Run Time library Status Values: None
VAX/VMS RMS St•tus Values: None
VAX/VMS System Service Status V~lues: None

External Data References: None

External Routine References:

;--

Facility Defined Routines:
VAX/VMS Common Run Time Library Routines:
VAX/VMS RMS Routines:

VAX/VMS System Services:

SASSIGN
SCA NC EL
SCLI
SCMKRNL
SDASSGN
SDCLAST
SOCLCHH
SQIOW

(Not supported by DEC)

None
None
None

2
(1)

.,..
~
0

'~ L _ k Ufl;)')i-Ji~ _INT F_ k[LP T iJ i\
J<.undown f-1.:icros

OSQO 107
00·~0 10a
OiJOO 1 09
C'JUO 110
tJO:JO 111
OTJO 11 2
uooo 113
cn:JG 114
OCJC 11 5
OGQC 116
0000 117
00')0 11 8
GOOO 119
co }Q 12CI
cnoo 121
0080 122
0 DC~ 1 23
QOOO 124
cooo 125
CCIOO 1 26
O!JUC 1r
OGJC 123
OOGO 1n
0000 1 30
O·Jt;C 131
oeuc 1 ~2
DD·.:ic H3
OOJO 134
0000 1 35
UOJO 136
0000 137
OOJO 138
OOJO 139
UJOO 140

30-MAY-1986 13:23:34 VAX/VMS Macro V04-00 Page 3
27-APR-1986 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPTOR (1)

.SUBTITLE Rundown Macros

; ••• Local Macro Definitions •••

These macros are used for output ot messages for demonstration
purposes.

.MACRO PUT_TO_SYSDUTPUT MESSAGE_NAME
BSBW EGRNDN_OPEN_SYSOUTPUT_CHANNEL
$QIOW_S -

BSBW
.ENDM PUT_TO

CHAN = SYSOUTPUT_CHANNEL1 -
FUNC = #IO$ WRITEVBLK, -
P1 = "MESSAGE_NAME", -
P2 = #"MESSAGE_NAHE"_sz, -
P4 = #AX0000002Q
EGRNON_CLOSE_SYSOUTPUT_CHANNEL

SYSOUTPUT

.MACRO DECLARE_MESSAGE MESSAGE_NAME
"MESSAGE_NAME":

.ENOM OE(LARE_MESSAGE

.MACRO ENO_MESSAGE MESSAGE_NAME
MESSAGE_NAME" _sz = .-"MESSAGE_NAME

.ENOM END_MESSAGE

.MACRO DEFINE_MESSAGE MESSAGE_NAME, HESSAGE_TEXT
DECLARE_MESSAGE MESSAGc_NAME
.ASCII ""MESSAGE_TEXT""
END_MESSAGE MESSAGE_NAME

.ENOH OEFINE_MESSAGE

""' a-

r:,, r..U1~~J;,, 1~ .ifiTt..r.C:F f,),..

0 _! 'I 2,_, (. c o) vC u o5 ,, , u 2...: (. c f;i:.. ,,, i'? 74
u

Ll

1
:J

VAX/VMS Macro V04-00 Page
D~ta for Rundown Mciln Procedure

~0-MAY-1986 13:23:34
27-APR-1986 22:25:59 PROTOTYPE_RUNOOWN_INTERCEPTOR

6 ~' F
7 i:, --~

2 !.)

01JG
~G~C

0000
08GO
00~s

U~JO

G8JU
JOOCo:Jo

C~10
0 1J,~C
'.:U.JO
JCJO
D~00
G01 E
c ~)'J
004C
OUtA
GOl~
00?3
uc1 :) 1
C\J.J2
0UF4
OOF4
GQ"4
OOF4
1J JF 4
0•1F4

GJOOCJJO
VJJO
oo~c
O'JGO
Lu JO
C'.EJ•J
o:jvO

... E
74
64
SF

:JC ;IJ

CCJr:
s 1J1 3
f;G18
C~l E
G~H
081E
OOH
:J1E
001E

JCJGJCJO CQ1E
·JCOJJf1 iJO !J022
U800JC81 IJ!J22

0022

142 .SU9TITLE D~ta for Rundown Main Procedure
143
1 '•4 , .. .
145 ; ••• Local Read-Only Data Allocations ••••••••••••••••••••••••••••••••••
1i+'5
147
146
149
1 5 J
1 51
1)2
1 ;3
154
1 55
Vi6
157
153
159
1bC
1o1
162
163
1 t,4
1 65
166
1:) 7

1 "' 1~9
170
171
172

.PSECT _EGRNON_LOCAL_RO_DATA, -
CUAD, CON, NOEXE, LCL, NOPIC, NOSHR, REL, NOWRT, NOVEC

;Mess.:iqes used

~EFINE_MESSAGE

DEF!N~_MESSAGE

DEFIN:'_MESSAGE
DEFINE_MESSAGE
DEFH!E_MESSAGE
9EFINE_MESSAGE
OEFINE_~ESSAGE

OC:FINE_MESSIGE
OEF!NE_MESSAGE

for demonstration purposes.

RUNDOWN_MARKER_TEXT <Rundown Interceptor Activated.>
KERNEL_MAR~ER_TEXT <Kernel Activation.>
MARK_FIRST_PASS_TEXT <First Pass in kernel marked.>
PROCESS_MARKED_FOR_DEL_TEXT <Pr?cess was marked for delete.>
IMAGE_EXIT_FORCED_TEXT <Forcing image exit.>
RETURN_FROM_KERNEL_TEXT <Return from kernel rundown.>
AST_TEXT <Supervisor AST activated.>
USER_TEXT <Supervisor AST entered USER mode.>
RESUMPT!ON_OF_SUPER_MOOE <Supervisor AST resumes Super mo~e.>

: ••• loc~l Writeable Data Allocations ••••••••••••••••••••••••••••••••••

.PSECT _EGRNDN_LOCAL_RW_DATA, -
QUAu, CON, NOEXE, LCL, NOPIC, NOSHR, REL, WRT, NOVEC

Local Status Variable Allocations: None

173 ; Local Vari~ble Allocations:
174
175 DECLIRE_MESSAGE NONKERNEL_MARKER_TEXT
17~ .ASCII "Nonkernel Activation, Mode = ••

177 FORMATTED MODE: .BYTE •A"?"
173 END_MESSA~F NONKERNEL_MARKER_TEXT
179
H:J
, 31
162
1:n
H4
1.js
186
137

Process st~tus flags implemented here for now. Eventu~lly

de~tined for Pl Pointer Page or an "extended PCS'' structure
in non-paged pool.

PROCSTSFLAGS: .LONG 0
EGPRCSTS_V_LOGOUTPND = 0
EGPRCSTS_V_DISMISSAST = 1

4
(1l

'JI'~· 1; ',- ;; - I 1; 1 ; "(. :_ i-' T ,, ;.

", JJ 57
OJ

+- r' 04 A

°'
3 (

N

JD 5 7
32

:: J: 8

Ou

VAX/VMS M~cro V04-00 Page
~~ndo~n 01s1J2tct1er Main Procecure

30-MAY-1986 13:23:34
27-AP•-1986 22:25:59 PROTOTYPE_RUNOOWN_INTERCEPTOR

JC22 1Z9
OC' 2 2 1 90
I~/.!_? 1?1
CJ-=:~ 2 1 9c
OOZ2 193
J "J l 2 1 ?4
c; (' 2? 115

~uc:;,_:.~J,~ 10..:.

1>JCC H7
lli""'.J"J 192
(:,;.;o 1 91
C J ... C 2 O'J
() :'1J c 201
C ~JG 202
1J VJ C 2G3
CC-.iO 204
0 ;)JiJ 2C5
on J ·J 2 c~ s
CJ00 20?
C~·'JO 2C3
OiJJO ? 1J9
c 1J<)C1 210
uUi:'[I 211
i"~. ',l 2 D 212
~JiJ 21 3
() '):: L: 21 4
J '~ 2 J 215
JC 2 D 216

01 0 c;,~ G 217
1 2 lJ J Jc 218
J,J UG32 219
11 (cl 5 220

OJ37 2 21
G J l7 222
-_,· G j 7 2~3
i..:'J.) 7 224
GC37 2 ,)5

01 c ~) j 7 226
12 l.l.::;)A 227
30 G ~-JC 223

OCdF 229
11 0 c .::,(2 3 i)

C-': Li E 2 31
Ql_Jj)[232
CSul 233
'] :)6 [234
CC,E 235
l)"J 5 c 236
OOuE 237
C'::6E 230
C106E 239
0 'J:S E 240
UJ 1E .'41
C ·~ J E 242
a .J :.t. ?43
uncE 244
C C ... t= 245

.SUBTITLE Rundown Dispatcher Main Procedure

; Executcible

.PSECT EGRNON_COOE, -
CUAQ, CON, EXE, LCL, NOPIC, NOSHR, REL, NO~RT, NOVEC

RUf'.JOOWN BEGIN:

;**
******************** . ENVIRONMENT

• Kernel Mode
;• (May or may not be running as kernel mode AST)
; .
;**

;output a m~rker messvge.

PUT_TO_SYSOUTPUT RUNDOWN_MARKER TEXT

;Determine if rundown requested for user or kernel mode.

;If rundown has been requested for user mode then
Perform rundown services for user mode.

C MPL
BNEQ

R?, #PSL$C_USER
1 0$
9SBW EGRNON_USER_RUNOOWN
BRB 30$
1 a>:

;Else if rundown has been requested for kerr1el mode then
Perform rundown services for kernel mode.

CMPL
9NEQ

;Else

;Endif
30$:

R?, #PSL$C_KERNEL
20$
BS9W EGRNON_KERNEL_RUNDOWN
PUT_TO_SYSOUTPUT RETURN_FROM_KERNEL TEXT
SRB 30$
20$:

Do nothing. The meaning of requests to
rundown for supervisor or executive modes
is unknown ••• Allow routine to return to
caller to let him do as he pleases.

;Return from this routine.
Check to see if we are to make normal return CRSB) to
caller, or to is5ue a RET (normally to dismiss a
lOELPRt AST).

5
(1)

""' °' w

~ ; r. u~~ucJ,Jf;_ l r.;r~ 1-:CL rr'...:-k

01 LI ; . .:;;..;.J:JH_. C::F Q1

)G OOQJJOOG• OF

[,, tU'iC'G.,,~. lNTCr:CEPTO~

C~UUULlO.Ef ~7 3G

0;!22.

(·Ju~nJ;_, 11: • E. F Cl

RunUown Jisp~tch~r Main Procedure
30-MAY-1986 13:23:34
27-APR-1986 l2:25:59

VAX/VMS Macro V04-00 Page
PROTOTYPE_RUNDDWN_INTERCEPTDR

c4
G5

JO
Ll4

:JO!:ll
8 ,Jo E
lh~ '..IE
CQ:,C
L ~l SE
C tJ It
0]77
G277
C·J77
OC77
0077
'1:77
01)77
U877
0077
0077
Ql}77
0077
(.l'Jl7
G~77

L;'J77
OC77
IJO 7E
007F
007F
007F

246
247
24£:
~49

250
2 51
"'.' ~ "') . '"
2 '.J 3
254
r• J,

l56
257
2 s ;-:
259
260
261
262
263
2l4
265
266
267
208
269
270
271

;If dismiss AST flag has not been set then
RGturn to caller in normal fashion.

Base

;Else

#EGPRCSTS_V_DISMISSAST, PROCSTSFLAGS, DISMISS_AST
RSB

Softwara has detected that it has been invoked
ir1 AST context and has determined that the
AST calling rundown is to be dismissed.

DISMISS AST:

··•••••·•··•••••··•••••····••·•••·•···············••····•··· ******************•* ENVIRONMENT ********************* .
, .
; . Kernel Mode AST •

• ; .•....•..•..•.....•................•...•..••••.•••.••••...•.

;end if

MOVL
RET

#SSS_NDRMAL, RO

30-MAY-1986 13:23:34
Rundown for User Made (Image Termination 27-APR-1986 22:25:59

VAX/VMS Macro V04-00 Page
PROTDTYPE_RUNDOWN_INTERCEPTDR

Q~lF 273
097F 274
CJ7F 275
JO?F 276
OC7F 277
():J IF 273
OC7F 279
OC7F 260
G'.;7F 2 31
GL?F 2 i: z
OC7F l' £)
Sl:'IF ZS4
C·:7F 285
0 •_: 7 F 236
8C· IF 2~7
OO?F 238
IJ 07F 2~9

!:l1 oJC7F 290
01137 291
OUc\4 292

30 OG:;t. 293
0037 2~4

QuH 295
OOJ7 296
U03 7 297

c~ G: 3 7 2 9.3
LODE 29Q

05 O~H 300
00::.F 301

.SUBTITLE Rundown for User Mode (Image Termination)

:user Mode Rundown Functions. AssumGS the function is
image rundown.

EGRNDN_USER_RUNOOWN:

;··
;******************** ENVIRONMENT *********************
; .
i• Kernel Mode
; • *
i•••································*························

;Calculate ASCII form of access mode for output message,
and put it ta SYS$DUTPUT.

AODB3 #•x30, R7, FORMATTED MODE
PUT_TO_SYSOUTPUT NONKERNEL_HiRKER_TEXT

BSBW OUTPUT_IMAGE_NAME

;specify normal return to caller of Rundown Facility
and leave this routine.

BICL2 #<1@EGPRCSTS_v_oISMISSAST>, PROCSTSFLAGS

RSS

6
(1)

7
(1)

.j>o.

°' .j>o.

- .· -" : ~ ~ ' i. 1Jl :."e, PT JR

U~ t!L A4 C1
Cj~<\

.. ~. Of.iCQC•..;1 l •:F ·~J

,:4 ;.4 L1~

COOC001 E "'t.F 02

VAX/VMS Macro V04-00 Page
K~rn~~ Rundown (Logout>

]J-MAY-1996 13:23:34
27-APR-1?86 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPTOR

CJ
31

L2

CA

C3

cc,F
CJJF
:.·: :iF
l)'!->f

L' 1::; 3 F
'j ,}jf

:·JC;.,F

v'l"F
uG~}r

QJJF
c;: JF
Cf'it;F
Qr'oC
: rJ:: C
~c;;c

UQEC
i •. .rJtC
GC.:C
Ll1F1
:..JF4
CJ F 4
[1ClF4
JCF~

GOf 4
ocr4
O:JF4
GJF4
'J ,)f 4

C, JF 4
owr4
~J'1F4

csrc
L:OFC
core
c .~~ c
C)GFC.
U~FC

Gc'FC
UCFC
L' ~J FF
U1 J3
Giel.>
G 1 Jo
() 1 J6
(J 1 Co
ono
U 1 IJf;

0100
Lil ~O
C1CD
(;1 JD
G 11~D
oJ 1 OD
t...1 or
1) 1 ·]C
011c
;111 [

303
3 ~14
3 .:s
c06
3C7
.: CJ 3
3J~

31C
311
312
313
3H
315
316
317
31?.
319
320
321
32~

3;: 3
12'·
~25
326
327
32£
:;21
3 3~
3 31
.) _j 2
333
~34

335
336
337
E~
3 :;9
~41
3.41
342
343
344
3i.S
34~

34 7
:!.43
347
35'J
3 51
352
353
::; 5 4
)55
350
v-- J'
3 3 '3
35~

.SUBTITLE Kernel Rundown (Logout>

EG~ND~_KERNEL_RUNOOWN:

;················••**
;******************** ENVIRONMENT *********************
; .
;• Kernel Mode
; • *
;······························******************************

PUT_TO_~YSOUTPUT K=RNEL_M4RKER_TEXT

ill++

;If process deletion is pending, then

BBS #PCS$V_DELPEN1 PCS$L_STSCR4), 10$
8RW PROCESS_RUNOOWN_EN~

10$:

;·········••***
;*****************~** ENVIRONMENT *********************
;•
;.
; . Kernel Mode AST

•

;················**

;rf logout command procedure has not been run then

BBSS

; El:; e

#EGPRCSTS_V_LOGOUTPNO, PROCSTSFLAGS, -
ACTIVATE_LOGOUT_FILE_ENO

Recover from process deletion by:

••• clearing the delete pending bit in
tho PCB at synch IPL, and •••

SETIPL #IPLl_SYNCH
6ICL2 #PC3$M_DELPEN1 PCB$L_STSCR4)
SCTIPL #0

••• marking the process status flags for dismissal
of the kernel mode process deletion AST
(1.e.1 abort the process deletion).

BISL2 #<1~EGPRCSTS_V_OISMISSAST>, PROCSTSFLAGS

Declare a supervisor mode AST to force the
activation of the system-wide command file
on th2 dismissal of this kernel mode AST.

$QCLAST _S -
ASTADR
AC MODE

EGRNON_VECTOR_TO_EGLOGOUT, -
#PSLSC_SUPf.R

8
(1)

Eu_Nu~su~~_INTERCcPTQR

"" °' VI

VAX/VMS Macro V04-00 Page
K~rnal Rundown (Logout)

30-MAY-1986 13:23:34
27-APR-1986 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPTDR

G11E 3:!0
011 E 3t.i1
f) 11 = 3 ')2
ClH 5 !.13
011 E J,4

c 11 = 3~5
01H 306
011E Jc?
(i11E 36J
J11C ~09
Ul 1 E HO
011t 371
C11E H2
a 11E 373
G11o 374
011C 375
C11E '76
011E 377
011C 373
tJ1H 379
L1H 3'n ,,_
IJ 11 E 351
C11E 302
01 H 3"
011E 3&4
il11E 335
ul TE 3db
011E 337

05 G11E J~d
01H 3S9

iElse

ACTIVATE_LOGOUT_FILE_END:

iEndif

iDo nothing, allo~ing the process to continue
to deletion since the command file has
already been run.

PROCESS RUNOOWN_END:

:••••••*••··· i******************** ENVIRONMENT *********************
; .
; *
; *

Kernel Mode
(May or may not be in AST context) * :• *

i•••••···

;End if

:oo nothing, the context of this call is not understood, if
it is not a process deletion.

;Return to caller

RSB

9
(1)

tG_~Jl~QQ~l~_iNT~kC~PTOR

"'" O'I
O'I

VAX/VMS Macro V04-00 Page
F6rc~ Logout Comm~nd File Execution

30-MAY-1986 13:23:34
27-APR-1986 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPTOR

G 11 F 391
J11F 392
01 lF 3?3
C:11F 394
011 F 395
(Jl lF 39~

G11F 397
ri11F 393
u 11 F H9
011F 400
G11F 4 01
C11F 402
C11F 403
011F 404
011F 4U5
011F 406
011F 407
011F 408
011F 409
011F 410

QOJOO·J22 411
G022 412
OC22 413
0022 414
00!2 415

•JOCOLiu 00 CC.22 416
0026 417
0026 418
OvZ6 41'

QOOG'JO 7 A (;026 420
GUH 421
007A 4'2
CC74 423

OJuGGu JC ua 7A 424
GQ7E 425
OC7E 42!>
007E 427

.J'JOOUOOO OJ7E 428
JCUOlJGO'.J 00;2 42~

JCt;QC;OC•J C0,31:, 430
COeA 4 31
COCA 432
OOJA 433

uJ0002 a A oc;A 434
C~,3A 435

JO\l'JJ2JO 02~.\ 436
000002 CA 023A 437

G l:;E 433
c ;:',-jt .031
02~~ 440
G2oE 441
02J(442
tJ20E 443

GOOOOOF4 444
OOF4 445
uOF4 446
OOF4 447

.SUBTITLE Force Logout Command File Execu1ion

;***~**
Force loQout com~and file execution.

This is accomplished by calling 1he CLI callback routine. This
routine mus1 be executed in User Mode. This code is first entered
through a supervisor mode AST. Since the CLI needs to be called
from User mode, the supervisor mode AST builds a new PSL with
mode = usar and REis to the user mode code. The user mode code
calls the CLI with a command form of Qcommand_procedure. Return to
supervisor mode is accomplished by CHMS which is intercepted by
a Supervisor change mode handler established by the Supervisor
~ode AST.

; ••• Local Writeable Data Allocations ••••••••••••••••••••••••••••••••••

.PSECT _EGRNON_LOCAL_RW_DATA, -
QUAD, CON, NOEXE, LCL, NOPIC1 NOSHR1 REL1 WRT1 NOVEC

;PSL fabricated for switch to user mode.

NEW_PSL: .LONG o
;cLI Callback Request data block.

CLI_REQ_BLOCK: .BLKB CLISK_SRVOESC

;Location of original supervisor change mode handler.

OLO_HANOLER: .LONG

;original user stack profile.

CLD_PRS_USP:
OLO_USER_CTLSAL_STACK:
OLD_USER_CTLSAL_STACKLIM:

:Local stack for user mnde code.

0

.LONG

.LONG

.LONG

USER_STACK_BOTTOH: .BLKB AX200
USER_STACK:
USER_STACK_SIZE = .-USER_STACK_BOTTOM
USER_STACK_ADDRESS: .ADDRESS

0
0
0

USER_STACK

; ••• local Raad-Only Data Allocations ~··•••••••••••••••••••••••••••••••

.PSECT _EGRNDN_LOCAL_RO_OATA, -
CUAD1 CDN1 NDEXE, LCL, NOPIC1 NDSHR, REL, NOWRT, NOVEC

;command ~ctivating system-wide logout command procedure.

10
(1)

.i;:.
OI
.....:i

1_ u _/'".~:i·.~ oJ.l~ • .:. !J f ~KC'.: ?T)~ VAX/VMS Macro V04-00 Page
Fore~ Lo~out Co~mand File Execution

30-MAY-1986 13:23:34
27-APR-1986 22:25:59 PROTOTYPE_RUNOOWN_INTERCEPTOR

C :~F 4 448
~J 4~ ~~ ~1 SF 4J 45 54 ~3 3~ 5 G JtJF4 44<
~u ~c 4r 4~ Si. ~4 55 4F 47 4F 4 f 01•JIJ

4; •C 4> 4o oF 44 4 l C1JC
JCJC fJ ~J 8114 4>C

~114 451
~114 4~2

0114 453
~114 454
0114 455
IJ114 456

0008J11F 457
G11 F 45~
.;11 f 4~9

011F 460
011F 461
811F 462
011 F 4o3
C11F 4o4
l)11F 465

06'.10 C11• 466
u121 4o7
OL'.1 4e8
Cl ~1 469
0121 470
C121 411
01L1 472
0121 473
~14E 474
014E 475
Q14E 4 7b
C14E 477
014E 478
011. E 4 79
C 14E 450

SA OOJUJOJ~J· 9F n 014E 461
[; 15 5 4~2

0155 4 "3
0155 484
0155 4dS
013 5 486
01~1 437
C1o1 4~3

c 161 48Q
C161 490
Plb1 491
U1e1 492
c 161 493
'.J1b1 494
0161 05
0161 496
01u1 4-H
0170 493
8170 ~n

G17G 500
1170 5C1
G17C '502

"G_LOGOUT_COMMAND_STR:
.ASCII "@SYSTEM_~IDE_LOGOUT_COMMAND_FILE"

EG_LOGOUT_COMMAND_SIZE = .-EG_LOGOUT_COMMAND_STR

'···--························-··· ; ••• Executable ••
, .. .
.PSECT _EGRNDN_cooe, -

QUAD, CON, EXE, LCL, NOPIC, NOSHR, REL, NOWRT1 NOVEC

; ...•.•..•.......
;·······~···********* ENVIRONMENT *********************

• ; . .. Supervisor Mode AST
;. *
;••***************••***

EGRNDN_VECTDR_TO_EGLOGOUT: .WORD AM<R9,R10>

iRegister Usage:

R9 = Address ol CLI callback request description block.
; R10 = Address of process permanent data region (PPD>.

PUT_TO_SYSOUTPUT AST_TEXT

;cancel outstanding I/O on SYSSINPUT channel. CCan•t write to
SYSSOUTPUT terminal if there is outstanding rea~ with prompt
on the same ~evice via SYSSINPUTl

;Get address of Proc2ss Permanent Data region (PPO>.

MOVAB @#CTLSAG_CLIDATA1 R10

;cancel l/O on the input channel recoraed there.

SCANCEL_S -
CHAN

Set up user s~~ck.

PPOSW_INPCHAN(R10l

(We ~av or may not have a valid user stack at this point. To
assure a valid stack we will establish a local one, saving the
context of anv oxisting user stack to enable i~ to rundown
normally).

gMKRNL_S -
ROUllN = SETUP_USER_STACK

Declare a supervisor change mode handler so •• can get back from user ~ode

11
(1>

~

°' 00

E~_~ur,uuY~_INT~RCEPTO~

J.JJ:JJu~.:'!::F
fJ,_;OlJCC2.::'E.F

:;9

QC A~

JOOJ:•ClZ"EF
Q2 ld 03
02 1l 03

OOOOu0.:2"EF
UOUJC1H"EF

GOCUU026•cF
69 ')5

01 A9 05
0~ A9 2G

0000u0F4.EF

l~~!JO J026• EF
C\.OC·JUOD ~ t,F 01

VAX/VMS Macro V04•00 Page
Force logout Co~mand File Execution

30-MAY-1986 13:23:34
27-APR-1986 22:25:59 P•OTOTYPE_RUNDOWN_lNTERCEPTOR

DC
FO
FO
DD
Of
oz

GE
90
30
~o
DE

OF
FB

0170
0170
0170
()1 ~5
0135
01~j

0135
0185
0135
0135
0135
01d5
01.:9
C194
0190
u1A3
0149
01AA
U1H
01AA
01AA
0144
01AA
C lAA
01AA
01 AA
u1AA
OHA
01AA
Q1..\A
01 AA
U1 <\A
G 1 t.A
C1u7
C1~7
01J7
0107
0107
0107
0107
o1u7
0107
0107
G1:J7
01J7
01;J7
01 D:'
01:: 1
G1E5
01E9
01F1
01F1
'.;1F1
u1F1
01F7
J1fE
G1FE

503
504
505
506
507
508
509
51 r)

511
512
513
514
515
516
517
513
519
520
5 21
522
523
5;:4
525
526
527
523
529
530
531
532
533
534
535
536
537
533
5 39
540
5 41
542
543
544
545
546
547
548
549
550
551
)52
553
554
555
556
557
558
5>9

SDCLCMH_S -
ADDRES=SU?ER_HANOLER, -
PRVHND=OLD_HANDLER

force mode to USER in order to make call to Cll callback routine.

Get the current P~l and force its modes to user.
Push the PSL and the PC of continuation on the stack
and REI to change the mode.

MO VP SL
INSV
INSV
PUSHL
PUSH Al
REI

NEW_PSL
#PSLSC_USER,#PSLSV_CURMOO,#PSLSS_CURMOO,NEW_PSL
#PSLSC_USER,#PSLSV_PRVMOO,#PSLSS_PRVHOO,NEW_PSL
NEW_PSL
USER_ CODE

;·· ;******************** ENVIRONMENT *********************
;.
; .
;•

SUPERVISOR mode AST lowered to USER mode.
*
* •

:•···~···

User· '"~de code - Call the CLI to execute our command procedure then
return back to supervisor with a CHHS

US~R_CODE:

PUT_TD_SYSOUTPUT USER_TEXT

Setup CLI request block to point to the command we want to execute.

This code is modeled after the LIBSDO_COMMAND procedure which
could not be used since it issues a call to SYSSEXIT as a last
act. We may not have an outstanding image to rundown which would
cause a 11 trap 11 for the next image activation, forcing it out
immediately. When DCL executes the first USER image via the
command file, it will rundown the image if necessary.

MO VAL
MOVB
MOVW
MOVW
MO VAL

CLI_REC_BLOCK, R9
#CLISK_CLISERV, CLISB_RCTYPE<R9l
#5, CLI$W_SERVC00(R9)
#EG_LOGOUT_COMMAND_SIZE, CLISQ_RCDESC(R9)
EG_LOGOUT_COHMAND_STR, CLISQ_RQDESC+4(R9)

;Callback the CLI.

PUSHAL CLI_REQ_BLOCK
CALLS .,, GASYSSCLI

12
(1)

+;..
~
'Cl

'- ti .. J:; L' '_j i. - l I J T t k (L t· r U 1'\

::FFF .'.-:F

-SC:
o;

J01.>.JCC7A .. FF

5 E OC AE

VAX/VMS Macro V04-00 Page
Fore~ Lo;out Comn1~nd File Execution

30-M4Y-1986 13:23:34
27-APR-1986 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPTOR

:...'. =

os
19
17

CE

1:1.

G1FE
C 1 F ::'.
J 1 r-- i:

(.1 2 ·.~:.
u 2 J2
G? .;2
G :02
c· 2 ·J2
.} 2:) ~

C2J2
0202
(; 2J 2
0 ,! ,J2
c (:J 2
u;:, .J2
G 2 'J 2
0' '' ,__._)._

']: J 2
CZJZ
lJ .? •J 2
o:J2
02J4
020b
a z,1c
02JC
'J 2 JC
G 2 .JC
•J2JC
C ,,'JC
JZJC
02'.JC
c 2 'J(

o 0 o9
0237
0239
C239
0 2) 9
\j 2)'")
G 2 <t A
() 2,.:.
l 2 4:.
D 2 ~ t..
G~4A
0 2 :.:..
G 2<. E
c =:. ::
c :?4!::
G 2 4 f:
0 2.:. E
0 iL.::
tJ 24 E
0 2 '... G
C?)C
G2J8
,, Jr·,

v L):

,,_) -

5l0
5 (1
5l2
5t3
5o4
565
5 {i6
} (J 7
5 t>3
51, 9
57G
5 71
572
573
5 7~
5 '75
'i 7 6
577
573
579
530
5 81
582
523
5 84
SLS
5£. 6
537
5 [' .;
529
590
5 91
5 il2
513
594
595
~96

597
59,
599
6CO
601
602
603
6C4
UJ5
606
607
~Cd
6()9
61G
611
~. 1 2
613
614
'Jl'j

~: 1 "

Go b~ck to supervisor ~odq via our change mode handler.

CHMS #-1

;••••••**
;******************** ENVIRONMENT
; *
;. SUPERVISOR mode AST
; *
;····································~·······················

Supervisor Change Made Handler

SUPER HANDLER:

If change mode code is not ours (i.e., not negative) then
Transfer operation to the original handler.

Else

TSTL
8LSS

10$:

CSP)
1 0$
JMP @OLO_HANOLER

;output a marker message

PUT_TO_SYSOUTPUT RESUMPTION_OF_SUPER_MODE

; Reinstate the original supervisor change mode handler,
we don~t need ours any longer.

$DCLCMH_S -
ADORES @OLD HANDLER

;Reset the stack to get rid of the stuff put
there by our change mode instruction.
(Three longwords: the change mode code, PC and PSL).

MO VAL 12CSP),5P

Restore user stack. (Just in case there was an
active image which requires rundown and therefore
should be left with a valid user stack context).

lCMKRNL_S -
ROUT!N = RESTORE_USER_STACK

Dismiss supervisor mode AST

RLT

;•***••··

11
(1l

~
-i
0

l , '. .__: '. · ;;:, : ; 1: I! .. ';,_; f' Tr,;.

~h,lJ~Jc;C?:.. •:.F <l)
.., J.J.J . .J :;..., ~ • ~ F

'j 0.J.; ,; ·':: :>~' E f

0
·_;~ _). :._· /.;(. i
.) ... ', '.); 1 • .. • j[,. 9

D3
1• >jC. fi-

·~ _. :._,(.. • :; F

uCu1.1.J•JJf"~t=
<HJ•..;[;,JufJC"' 1F

n J'.C 0C"EF
ll Ullv JA'tF
~ 8~~ J0 ~f

:...1UJ 'J J_. 7
1JIJt .. 1 ·J
uuc ._l:J•J•_,

)_.- ,JUJJ.,.r~_IN I E~L.LP TGR

VAX/VMS Macro V04-00 Page
~~RN~r~ u~~r St2ck Utilities •

30-MAY-19~o 13:23:34
27-nPR-1986 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPTOR

0010

Dd
JO
uo

0A
uE
JJ

04

uO 1 •J

UA
JO
'.JO

2

2

c .:
'J(_

'-'· <

0' c
L• E
U• f
(~ - ..
L" [

(;] c
(Ji. E
•c 2 E
o.: [

'j 2 '
tJ?. E
C2 [

U:' E
02 E
u, E
C:?clJ
C2o0
026G
C ZtJO
02"0
O~vG
C Z")IJ
') 2~0
02 '· 7
0~72
1J z ?J
o:n
027D
GL7D
C: 2 7C
~254

0 2 Jf
'J ~' } A

O?~A

Ci· r.
G2?t.
OZI:
02~E

O~f5

c: ~ 16
~2'iJ

C< tD
G29C
:; ! 9:J
0210
J ~ ~:;
02Al
C 2 r~ F
U2dA

. ::d ~
619
t.20
~~. 2 1
6 ;_ 2
I-,__'~

~ c:: 4
6 25
c .~ 6 . ', .·(./

f. ' ,,
f 2~
6 3()
651
632
633
t 34
6:; 5
636
637
0 38
639
640
641
642
643
644
645
646
647
642
649
6'>u
651
-'>) 2
653
654
605
S56
657
6 5 .3
659
ooJ
1,j(..1

602
661
6~4

665
666
667
6ti8
669
070
6 71
672
673
6 71.

.$U3T!TLE EGRNDN User Stack Utilities.

:··
EGQNON User St~ck Routines.

K~rnel Mod9 routines to:

1. Setup a user stack, saving the original stack context
2. Res1ore original stack context saved in the setup of

the new stack area •

The user st2ck conteKt consists of the following three data:

1. The user stvck processor register CPR£ USP).
2. The stack pointer in the P1 pointer paQe (@#CTL$AL_STACK+12,

the last element in a four clement array.)
3. The stock s~ze in the P1 pointer page (@#CTLSAL_STACKLIM+12,

the last eleme~t in a four element array.).

;--
Kernel mode routine to save original user stack context and

establish a new one.

SETUP_USER_STACK: .WORD AM<R4>

;Register Usage:

; R4 = Usual current PCB address of kernel mode routine.

:save origninal stack context.

MFPR
MOVL
MOVL

•PRl_usP, OLD_PR$_USP
~#CTL$AL_STACK+12, OLD_USER_CTLSAL_STACK
@~CTL>AL_STACKLIM+12, 0LO_USER_CTL$AL_STACKLIM

Estoblish new user stack in local storage by appropriately
setting the s~me three items.

MTPR
MO VAL
MOVL

RET

USER_STACK_ADORESS1 #PR$_USP
USER_STACK, @#CTL>AL_STACK+12
#USER_STACK_SIZE, @#CTLSAL_STACKLIM+12

;--
Kernel Mode routine to restore saved context of user stack

RESTORE _USER_STACK: .WORD AM<R4>

iRegister Usage:

; R4 = Usual current PCB address of kernel mode routine.

MT PR
MOVL
MOVL

OLO_PR$_USP, #PRS_USP
CLD_USER_CTL$AL_STACK, @#CTL$AL_STACK+12
OLD_USER_CTL$AL_STACKLIM, @#CTL$AL_STACKLIM+12

VAX/VMS Macro V04-00 Page
lGRNOIJ User St~ck Utilities.

30-MAY-1986 13:23:34
27-APR-1986 22:25:59 PROfOTYPE_RUNDOWN_INTERCEPTOR

04 02eA
U2SR
0 2J 3

675 RET
076

677 ;············••**•···

14
(1)

1 5
(1)

""' -.I

F _ _,_i\u:;J;.,'~~ .. ~-l'•Tt.i<'.Clr'TUK VAX/VMS Macro V04-00 Page
EGkf~)t~ I/G Ut1lit1es.

30-~AY-1986 13:23:34
27-APR-1986 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPTOR

0;:: ~B
02;3
c;:. s

679 • SU3T!TLE EGRNON IIO Utilities.
6SO ;**
6F1 ; EGRNON I/O utilities.

l.l2 ,:; t, 6 i:<!
U2%
oz~:

r: 2 ,:;. 3
02JB

C00G0114
0114
0114
0114
C114

633
634
635
606

; ••• lo~al Read-Only Jata Allocations ••••••••••••••••••••••••••••••••••

607 .PSECT _EGRNDN_LOCAL_RO_OATA, -
633 QUAD, CON, NOEXE, LCL, NOPIC1 NOSHR, REL1 NOWRT1 NOVEC
t£9
690 ; Descriptor for notification device.
601

~~ ~F :4 ~J 59 ~3 OOODJ11c·a10EODOG· 0114 692 SYSOUTPUT_OEVICE: .ASCID "SYSIDUTPUT"
)4 35 5~ 54 C122

u 1...:t
U126
0121\
C126
L1~o

0121
CfJJC~1z.3c

JGCrJ

r; 2:?. E
J) ;r.:

G22t
0 2 J;::
u2 c
0 2·10
O 2 ".JG
c 2 10
c .? f 0
G z·•G
uno

JOCJQ'j2B3
C: 2~1 g
) 2 ~·,B
02~5

G20B
0233
C 2 ·_:, R
0:::.; a
U2Je
G2JB
0 2·~ P.
0 2 J;:,

o5 cnz
G2LJ 3
·J 2 [! 3
u 2J 3
c 2 J3
C2D3
Q 2 :· 3
J2 3
G2 3

~15 iJ~ 1
C2 ?
0(l

693
694
695
6•6
697

; ••• Local Writeable Data Allocations ••••••••••••••••••••••••••••••••••

69~ .PSECT _EGRNDN_LOCAL_R~_DATA, -
69? QUAD, CON, NOEXE1 L(L, NOPIC, NOSHR, REL, WRT, NOVEC
700

;channel for terminal communication.
for a batch job).

SYSOUTPUT_CHANNEL: .WORD 0

(This will not work properly

; ••• Executable ••••••••••••••••••••••••••••• ••••••••••. •••••••••••••• ••

.PSECT EGRNDN CODE, -
QUAD, CON, EXE, LCL, NOPIC, NOSHR, REL, NOWRT, NOVEC

;--

7C1
702
783
7C4
705
706
707
?'JS
709
710
711
71 2
713
714 Open a channel for rundown messages for demonstration
715 ; purposes.
716
717 EGRNDN_OPEN_SYSOUTPUT_CHANNEL:
71d
719 $ASSIGN S -
720 -DEVNAM = SYSOUTPUT DEVICE,-
7~1 CHAN = SYSOUTPUT_CHANNEL,-
722 ACMODE = #P5L$C_KERNEL
723 RS6
724
725 ;--
72~ ; Close the rundown ~essage channel.
7".7
72C EGRNDN_CLOSE_SYSOUTPUT_CHANNEL:
729
730
731

'iOASSGN_S -
C•>\ ~Y53UTPUT_CHANNEL

732 ose
7l3

754 ;··

16
(1)

""' -.J
N

L J_i;1JnJ•.Jw1, _ 1 r~ n. KCt PTO~ VAX/VMS Macro V04-00 Page
EGRNLI~ l/O Ut1l1ties.

30-~AY-1986 13:23:34
27-APR-1986 22:25:59 PROTOTYPE_RUNDOWN_INTERCEPrDR

02U 7. c ,,
c if E.' 736
j 2 t: 2 737
c ~:: 2 7., ~ , ;

c2:::2 739
OG)GL1?6 7.:.0

G 1 Z6 741
C1Z~ 742

20 jQ ZC 65 67 61 tC ~? 0126 743
OVOOl1CG3 OEE 744

OPE 745
012E 746
012E 747
G 12E 748
012Co 749
012E 750

OOOG02E2 751
C2U 752
02E2 753
0202 754

OOGOCJOOC 0.2C 2 755
UC i3B 02E2 756

C2E4 757
)< COUOJOUC.'IF DO '.l2C4 758

55 JC A2 SC G 2 tB 759
5Z 53 co 02!:F 760
~2 o2 GE 02F2 761
J3 82 9A 0 2 F5 762

0 2F o 763
FFCO 30 02F8 764

02FB 765
o ZFe 766
tFFB 767
C 2FB 708
02FB 7o9
U~FP, 770
CE2 771
0 !~ 2 772
Q7"J'") JcL 773
03<2 774
0322 775
0322 776
0322 777

FF8o 30 0345 778
0348 779

oc BA 0348 780
OS 134A 7E1

034.8 7e2
Q34B 7e3
0346 784
0348 7d5
034S 786

; ••• Loc~l Read-Only Data Allocations ••••••••••••••••••••••••••••••••••

.PS~CT _EGRNDN_LoCAL_Ro_DATA, -
QUADr CONr NOEXEr LCLr NOPICr NOSHRr RELr NOWRTr NOVEC

IMAGE NAME TITLE: .ASCII /Image = I
.-IMAGE_NAME_TITLE IMAGE-NAME-TITLE_SZ

, .. .
; ••• Executable ••

.PSECT _EGRNDN_CoDEr -
CUAJ, CON, EXE, LCL, NOPICr NOSHR, RELr NOWRT; NOVEC

OUTPUT_IMAGE_NAME:

OUTPUT_IMAGE_NAME_MASK = AM<R2,R3>
PUS HR #OUTPUT_IMAGE_NAME_MASK

MOVL
MOVZWL
ADDL2
MO VAL
MOVZBL

@#MHG$IMGHDRoUFr R2
IH0$W_IHGIDOFF(R2), R3
R3r R2
IHI$T_IMGNAMCR2lr R2
(R2J+, R3

iAddress of image header buffer.
;offset to image id section
;Address of image id section
iAddress of counted string.
;Address of count in R3 leaving
; address of string in R2.

B56W EGRNDN OPEN SYSOUTPUT CHANNEL
SQiow_s - - -

CHAN
FUNC
P1
P2
P4

SYSOUTPUT CHANNEL, -
#IOS_WRITEVBLK, -
IMAGE_NAHE_TITLEr -
#IMAGE_NAME_TITLE_sz, -
#AXQQQQQQ24

$QIOW_S -

BSSW

POPR
RSB

CHAN = SYSOUTPUT_CHANNELr -
FUNC = #IO$ WRITEVBLKr -
Pl = CR2l; -
P2 = R3, -
P4 = #AXQ000002B
EGRNDN_CLOSE_SYSOUTPUT_CHANNEL

#OUTPUT_IMAGE_NAME_MASK

;·· RUNOOWN_END:

.END RUNDOWN_BEGIN

17
(1l

...

......i
IH

fl_.\ ,L_Stlt.t:EA~LE_IHA&E_INTJ_Pl

0000
OJGO
0000
OO:JO
OO·JG
OG~O
COOi)
DGJO
ccoo
0000
OOtJtl
0000
0000
0000
1]01)0
Qi)JQ

OO.JO
ouuo
uoco
UJ00
uuuc
ocoo
lJOJC
0000
OGDC
co·Ja
coco
JOOO
O~JO
oo.;o
00'J0
0000
JOJO
uouo
:.!Gue;
G'JfJ~

llll10
u11;;'J
ono
GOOD
OQJO
ocoo
~~:JO

ccoo
OJJO
OOJO
OCJCO
0~00
OGGO
ocoo
0000
<J!J.JO
0000
OOGO
0000
0000
UJJO

1
2
3
4
5
~
7
a
9

10
~ 1
12
13
14
15
16
17
18
19
;:o
21
22
23
24
25
Z.>
27
2C:
20
30
31
32
33
34
35
36
"57
Jd
3?
i.O
41
42
43
44
45
46
47
48
49
;o
51
52
53
54
55
56
57

30-MAY-1986 13:22:32
27-APR-1986 11:46:11

VAX/VMS Macro V04-00 Pa~e
MERGE_SHAREABLE_IMAGE_INTO_P1

.TITLE MERGE_SHAREABLE_IMAGE_INTO_P1

.SUBTITLE Introduction
;++

Module: MERGE_SHAREABLE_IMAGE_INTO_P1

Facility: EGP1

Function: Permanently merge a shareable image into P1
space, returning the image header buffer and
the image transfer arr~y to caller.

Invocation Protocol: VAX/VMS Procedure Calling Standard.

CALL MERGE_SHAREABLE_IMAGE_INTO_P1
(IMAGE_FILE_NAME, IMAGE_TRANSFER_ARRAY, LOWEST_ADDRESS_LOADEO,
HIG~EST_ADDRESS_LOAOEO, IMAGE_HEADER_BUFFER, STATUS)

IMAGE FILE_NAME --->

IMAGE_TRANSFER_ARRAY <---

LOWcST_ADDRESS_LOADED <---

HIGHEST_ADDRESS_LOADEO <---

IMAGE_HEADER_BUFFER <---

STATUS <---

Descriptor.
Image file name.
Longword (3)

Array of transfer
addresses

longword.
Address of beginning

of loaded image.
Longword.
Address of end of

loaded image •
Longword •
Address of image header

buffer
Longword.
Status of operation.

Status Returns:

Notes:

SS$_NORMAL

Any other system service status (to be considered
a non-recoverable error).

1. Error analysis code is simplistic for the purposes of
this early revision. Error handling to be
extensively revisited for production version.

Revision: 1 .o ZO-Sep-1985 Larry L. Johnson

Language: VAX/VMS Macro-32 Assembler.

ReQuired Macro Libraries:

STARLET The default VAX System Macro Library.
(Automatically scanned.)

1
<1>

"" -.I

""

~o~GE_~HANE4BLE_IM4GE_IN10_P1

Introduction

o·JOl'l
ocoo
uooo
:JOJO
OOJO
0000
OCJO
0000
0000
cooo
0000
ocoo
00·10
ooao
0000
COJO
0000
OO:JO
QOJ'J
OGQO
00·10
G'JuO
OOuO
OOGO
0000
OJOG
OllOO
ocoo
ceca
(JO::JO
cno
uOGU
001C
00J0
CJ·JJO
OCJO
(1QJO

000C
OOIJO
UO,JO
0000
0000

58
59
bO
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
73
79
ao
81
ez
63
84
85
86
£7
83
;;9
90
91
92
93
94
95
96
97
98
9Q

LIB

tPSLDEF
SIACDEF
SIHDDEF
SI HADEF

30-MAY-1986 13:22:32
27-APR-1986 11:46:11

VAX/VMS Macro V04-00 Paga
MERGE_SHAREABLE_IHAGE_INTO_P1

The master VAX System Macro Library.

iOefine processor status longmord constants
iOefine image activator constants
iOefine image header details so

transfer array can
be returned

External Status References:

Facility Defined Status Values: Nona
VAX/VHS Common Run Time Library Status Values: Nona
VAX/VMS RMS Status Values: None

VAX/VMS System Service Status Values:

sss_NDRMAL

External Data References:

From STSSSYSTEH:SYS.STB

CTLSGL_CTLBASVA Base of permanent portion of
P1 space.

External Routine References:

;--

Facility Defined Routines:
VAX/VHS Common Run Time Library Routines:
VAX/VMS RMS Routines:

VAX/VMS System Services:

SYSSCMKRNL
SYSSDELTVA
SYSSEXPREG
SYSSIMGACT
SYS$IMGFIX

(Not supported by DEC)
(Not supported by DEC)

None
None
None

2
(1>

""'i
UI

t·~t." ;.,..c_5H :i;. • .:: J. ~-LC.:_ liiAGL _ 1~J r u _p 1
M.>c!ule [J.;.t.a

OG:JO
GOC0
O•hJJ
Cii·jQ
~·JiJC
OCjC
~-J"lG

iJC JO
LH..:J01JCJt. OCJC
OOCG:J8U8 1JGJO
OUUJ00'JC o~uc
.Jfj(i1Jd01 O U 1JC
iza;Je14 oo:;o
000Gu01 d OOlJQ

OOJIJ
0000
C00G
iJ(j]'.J
OOJO
UUOJ

OGlJOuvOU
u~'·Jo

O'JJO
ooco
01C:8
o:Joo
ococ
OOGD

COCCCJOO
una
0000
0000
Q(IUQ

0()J0
OUJO
OOJG
o·:;Jo
tJ000
LJ•JO
O'.JuC
OD•JO

JOOOUOOu OQJO
000')0000 0UC4

0003
03J3
UO:Je
UfJ08
LlOGS

aocooooo
OOGGOOCO

.JO·JQ~OQG

JGCUGGJO

;)U'J8
oaoa
(HJQC
o~rn

L010
0·)10
GL:lC
'.JJ 1 ;)
uC 14

101
102
103
1C4
1 U5
1:6
107
1J3
1 o·~
11 a
111
112
113
114
115
116
117
118
119
120
i 21
122
123
124

30-MAY-1986 13:22:32 VAX/VMS Macro V04-00 Page 3
27-APR-1986 11:46:11 HERGE.SHAREABLE.IHAGE.INTO_P1 (1)

.SUoTITLE Module Data

, .. .
; ••• Argument List Offsets •••
, .. .
;Argument List Offset Definitions:

IMAGE.FILE_NAME = 4
IMAGE_TRANSFER_ARRAY = 8
LOWEST_AOORESS_LOADEO = 12
HIGHEST ADDRESS LOADED = 16
IMAGE_HEAOER.BUFFER = 20
STATUS = 24

, .. .
: ••• Local Read-Only Data Allocations •••••••••••••••-••••••••••••••••~·
,
.PSECT EGP1 LOCAL RO JATA, -

CUAO,-CQN, NOEie, LCL, NOPIC, NOSHR, REL, NOWRT, NOVEC

, .. "'
125 ; ••• local Writeable Data Allocations ••••••••••••••••••••••••••••••••••
126 ; •••
127
128
1 29
no
1.i1
132
133
1 34
135
136
137
1 3 s
139
140
141
142
143
144
145
140
147
14J
149
150
1 51
152
153
154
1 55
1)6
157

.PSECT .EGP1.LOCAL_RW_GATA, -
CUAO, CON, NOEXE, LCL, NOPIC, NOSHR, REL, WRT, NOVEC

local Status Variable Allocations: None

Loc~l Variable Allocations:

:Storage for region to map arguments and return of actual
region mapped by SIHGACT

Used as argument to select PO space e~pansion by image activator
for purpose of sizing the mapped image.

PO_REGION_TO_BE_ADDEO:
PO.START_ADDR.TO.BE_ADOEO:
PO_END.AODR.TO_BE.ADOEO:

.LONG

.LONG
0
0

Returned by the image activators merge into PO space and used
to delete the address range having obtained the image size.

PO_REGION.ACTUALLY_ADCEO:
PO_REGION_TO.BE_DELETED:

PO_START_ADDR_ACTUALLY.ADOEO:
PO_END_AOOR_ACTUALLY.ADDED:

.LONG

.LONG
0
0

Results of the d•letion of the temporary mapping into PO region.

PO_REGION_A lUALLT_:EtFT~O:

PO_ TA~T-•J~l_ICTUALLY.DELETEO:
PO_ NC_A:~·-•~TU~lLY.~ElETEO:

.LONG

.LO'IG
0
0

~
~
O'I

Mt~~t_SHlk~IJLE_!MAGE_INTU_Pl

Module? Data

0~1P.

001 ~;

OC15
li01~

:.Fi~_jtJ,JCJO C,01~

0:;00 JlJOO or 1 c
0020
GOZO
0020
oozo

0CiJOUOCO 0020
llOUOuOuG 3::Ji4

0028
0028
uOZt
OC23

OOOuOCCO CJ028
GG000GOO ooze

0030
OG3C
GC30
0030

00000230 0030
02.;o

1 51;
159
163
HI
162
1d
164
1fj5
H6
167
163
1 o9
170
171
112
173
174
175
176
177
178
179
100
1 81

30-MAY-1986 13:22:32 VAX/VMS Macro V04-00 Pa9e 4
27-APR-1986 11:46:11 HERGE_SHAREABLE_IHAGE_INTO~P1 <1>

; Results of expansion of P1 program region.

P1_REGION_ACTUALLY_ADDED:
P1_START_ADDR_ACTUALLY_ADDED:
P1_END_ADDR_ACTUALLY_ADDED:

Mapping rang~ argument for image activator.

P1_IHAGE_EXTENT_TO_BE_LOAOEO:
P1_IMAGE_INTENDED_START_ADDR:
P1_IMAGE_INTENDED_END_ADDR:

.LONG

.LONG

.LONG

.LONG

0
0

Results of image activators mapping into P1 space.

P1_IMAGE_EXTENT_ACTVALLY_LOADED:
P1_IMAGE_ACTUAL_START_ADDR:
P1_IHAGE_ACTUAL_END.ADDR:

.LONG

.LONG

0
0

0
0

A place for the image activator to put the image header information
during the merge into PO for sizing purposes.

PO_IMAGE_HEAOER_SUFFER: .BLKB AX ZOO

"'" -i
-i

•:;.. r. '_,:: _ ~ d ~ ;: t ;.i G L l _ !i-1µ lJ-.: _ llH i..; _ P 1

. ·'·. '- J-_.(. • '.:.F

1 c ;,c
~c t-.e
1 ~ 3C

GOC,U'JOOG"EF

C3 50
L1J91

0(11;,>J~'~d • EF

i·iLin Moo::tuln

•j 2 _;;:
~2YJ
1): 30
C JG
c :;n
j JG
.J .L:.

'.J!JOtJL JO
GOGO

01c0 CDUC
OtJ·~2
OC'J2
DG!J2
UOJ2
G•J,]2
cc)2

0G'l2
C8J2
'JO J~
G'J02
ooo;;

ll4 O~u~

C4 00·:5
04 00 J.!.

GJ03
OOJB
0003
o:;.Jc
OOJe

?C Q;:1QG
0:111
•J011
G011
(J[Jl1
)211
0811
%11
G·J 35

Ea QO 15
31 CJ 53

O'J 5 2
~f))C

JOJB
OC3a
UCS'>
0 G 3 ~

1 0 3
1 d4
1 ;.s
106
1,;7
1lU
10?
1YG
1'11
192
193
194
195
196
197
, 9~
199
zoo
201

.SUBTITLE H~in Module

30-MAY-1986 13:22:32
27-APR-1986 11:46:11

VAX/VMS Macro V04-00 Page
MERGE_SHAREABLE_IMAGE_INTO_P1

; ••• E>Cecut~ble ••••• ••••••. ••••••••••••••••• ••••••••••• ••••••••••••••••

.PSECT _EGP1_CODE, -
QUA~, CON, EXE, LCL, NOPIC, NOSHR, REL, NOWRT, NOVEC

.ENTRY MERGE_SHAREABLE_IMAGE_INTO_P1, •M<R5,R6,R7,R8>

Register Usage:

RS - Number of pages to be added to P1 for interceptor image.
R6 - Address of image header of merged image.
R7 - Address of transfer array within image neader.
RS - Address of argument image transfer array for

auto-incre~ented transfer of array to caller.

202 ilnitialize output argum~nts.
203
204
205
206
207
2C~
209
210
211
212
213
214
215
216
217
213
219
22D
221
~22

223
224
2 C:: 5
726
227
2~~

CLRL
CLRL
CLRL

@HIGHEST_ADORESS_LOADED(AP)
~LOWEST_ADDRESS_LOADEOCAP)

~STATUS CAP)

:oo a merged activation into PO in order to size the address
sp~ce.

CLRQ PO_REGION_TO_BE_ADOEO

SIMGACT_S -

BLBS

10$:

NAME = @IMAGE_FILE_NAMECAP), -
HORBUF = PO !MAGE HEADER SUFFER, -
IMGCTL = #<IAC$M_MERGE!IACSM_EXPREG>, -
INADR = PO_REGION_TO_BE_AOOEO, -
RETAOR = PO_REGION_ACTUALLY_ADOEO

R Q, 1 OS
BRW COMMON_ EXIT

;Perform the image fix to be sure that fixup vector
work area is cleared before the P1 activation.

SIMGFIX_S
iVi42 229
OJ42
0042
0042
C~42
0042
U042
OC57
GG.)7
0057

C5 C057

230
2 31
232
233
234
235
236

;unm~p the image, it is no longer needed ••• we have
the size information we want.

SOELTVA_S -
INADR = PO REGION TO BE OELETEQ,­
RETADR = PO_REGION_ACTUALLY_OELETEO

l37 ;calculate the size in pages of the image in PO space
2 35
239 SUBL3 P~_START_AODR_ACTUALLY_AOOE01 -

5
(1)

"" -..I
00

!I ~r~ '.1L _:.1::d~ [J'i:?L: _ rnr..G ~ - H~ T~_P1

55

55

55 OOll1J1J?80 'F

·J,j.J'J1JJ~4·CF QOJOuG18• EF

:jQGG~Oill"EF U'JUOJ(ll c• EF

o:.;00Jot1 ·i:F 6C

~ :J 50

56 14 AC

56 04 et
57 02 Ao

57 56

5 j J? AC

3 ·~ 67
J.:. r; 4 .~ 7
~~ .: Jc; :. 7

~lain Mocli.Jle

C J;Z 240
J e,., J 241
82:. 3 242

'.J6 t: Jo3 243
0•;65 244

C.6 0 GrJ5 ?45
OD~C 21.6
QOc,.C 247
OO·;C 2~8

GJ6C 249
OOoC 250
OGoC 251
C1JOC 252
ouoc 253
UO?F 254
007F 255
007F 2 5 e.
OG7F ~57
007F 253
OC!7F 259

ua 007F 2:;0
003A 261
oo;;~ 262

GO· O'J8ti 263
0095 264
Q;/9~ 2 .i5
0 '~ 7 5 266
OG95 267
CJ'J-15 268
OOJS 26?
OC·~S 270
c Q /~ 2 71
0 J '5 272
00;5 273
ilCIS 274
0075 275

FA 00'~5 276
OG9C 277

E'I fJ J'?C 273
GGYF 2 79
00'9 F 230
J'l9F 281
009F 232

00 OO~F 253
CG.43 2;;4

uo UCA3 235
3C IJGA7 206

C1JAB 237
co G'JkB ?SS

•.. , ~ I:
Vvl-\ ... ~t9

t:C.:\E 290
QG.:OE 291

90 00 :.e i'.92
0082 293

UC QOu2 '294
uO CIJ~S 295
DO OO.i9 296

30-MAY-1986 13:22:32
27-APR-1986 11:46:11

PO_ENO_ADDR_ACTUALLY_ADOEQ, -

VAX/VMS Macro V04-00 Page
MERGE_SHAREABLE_IMAGE_INTO_P1

RS ;Number of bytes less one.

INCL RS iNumber of bytes.

DIVL2 #AX2QQ, RG ;Number of pages

iAdd region at end of P1-space to receive image.

#1, -
$EXPREG_S -

REGION
PAGCNT
RETA DR
AC MODE

RS, -
P1_REGION_ACTUALLY_ADOEO, -
#PSL$C_USER

iThe image a..ctivator requires mapping from low to
high ~ddresses. In Pl space the end addresses
are higher than the start addresses for regions
specified in the order of natural growth.

MOVL

MOVL

P1_START_ADDR_ACTUALLY_ADDEO, -
P1_IMAGE_INTENDED_ENO_AOOR

P1_ENO_AODR_ACTUALLY_AODEO, -
P1_IMAGE_INTENOEO_START_AOOR

iMap the image into the prsviously created
address ranqe

;This mapping orginally done in separate routine to
facilitate execution in inner access mode when load
technique used SYS$CRMPSC rather than SYSSIMGACT.

iThe partioning is left in anticipation of generalization
of this module to perform a selectable merged load
into SO paged and SO non-paged as well as P1.

CALLG CAP), MAP_IMAGE_INTO_P1

BLBC RO, COMMON_EX!T

;Extract the transfer array from the image header and
and return it.

MOVL IMAGE_HEAOER_ BUFFER CAP),

MOVL @4CR6), R6
MOVZWL IHDSW_ACTIVOFFCR6), R7

ADDL2 R6, R7

:Return the three vectors.

MOVL IMAGE _TRANSFER_ARRAYCAP),

MOVL !HA$L _TFRAOR1 CR?), CRS>+
MOVL IHA$L_TFRADR2CR7), CR8)+
MOVL IHA>L_TFRAOR3CR7), (R8l

R6

RS

;Ad~ress of image hea1er
; buffer descriptor
:Address of image header
;Offset to transfer
; vector array
iAdd~ess of transfer vector

6
<1:

"'" -.I

'°

'1:.. ;:;.;:_s~1t" f t,JLE:_ Ii1~G~_ Itd 0_P1

UC :ic
1 !} r,c

COOCJOc3·EF
cu·~·(;'~:uzc·cr

18 oc 50

:1,.i 1J·- j1l.'.<r-·t 1-.1t3LL_Ii-lhG[_HiTi...; .Pl

Si 14 AC

07 SQ

t]'](,'.)L10vc·GF UOGOOC1C"tF

;u OCUOOC·JC<' SF

Mu1n ~1cc1ule

OC>.iO
;Jr]~ [1

!J'>;.J
G J~ :J
0030
J'J~O

oucc
D1Jcc
ca cc
OfJCC
oocc

DO DJCC
DO JOJ4

OOJC
OOJC
oooc

JO OQJC
OIJEO

Gl. OG~O
0Oo1

30-MAY-1986 13:22:32
27-APR-1986 11:46:11

VAX/VMS Macro V04-00 Page
MERGE_SHAREABLE_IMAGE_INTO_P1

2 97
29£
299
300
3 81
:; c z
103

;Make the P1 m~pping permanent, so it will not disappear across
any imago activations.

HMKRNL_S -

324 COMMON_EXIT:
305

R OUTI N MAKE_P1_IMAGE_PERMANENT

30~ ;Return address range mapped for the image.
3J7
303 MOVL P1_IMAGE_ACTUAL_START_AODR, @LOWEST_AOORESS_LOADEO(AP)
309 MOVL P1_IMAGE_~CTUAL_END_AOOR, @HIGHEST_AODRESS_LOAOEO(AP)
310
311 ; ••• and the status.
312
31J MOVL RO, @STATUS(AP)
314
315 RET
316

VAX/VMS Macro V04-00 Page
Hodu)e Utilities.

30-MAY-1986 13:22:32
27-APR-1986 11:46:11 MERGE_SHAREABLE_IMAGE_INTO_P1

00 21 318
0Cc1 319
._:i OE 1 320
OOE1 3 21
00~1 322

U0C4 sot 1 323
OCE) 324
00C3 325
CCE3 32 6

DO COC3 327
Mel 328
GOE? 329
OOCl 330
OOEl 3 31
ODC7 332
U G ~ 7 13 3
CO.Cl 334
08El 335
c 1 ·JJ 336

r:9 J103 337
0103 "133
u1Jo 339
0103 340
0105 3 41
0112 342
0112 343
0112 344

04 011 2 345
0113 346
0113 347
G113 34C

0010 0113 349
(, 11 5 350
0115 351
0115 352
011 5 353
G115 354
G11~ 355
0115 356
011 5 357

JO G 11 5 353
0120 359

DO 0120 3llJ
0127 3G1

v. 0127 362

.SUBTITLE Module Utilities.

i***•••··
MAP_!MAGE_INTO_P1: .WORO AM<R2>

iGet the address of the image buffer descriptor.

MOVL IMAGE_HEAOER_BUFFER(AP), R2

iMap the image into P1.

$IMGAC7 S -

BLBC

-NAME = @IMAGE_FILE_NAME(Ap), -
HORBUF = @4CR2), -
INADR = P1_!MAGE_EXTENT_TO_BE_LOAOED, -
RETADR = Pl_IMAGE_EXTENT_ACTUALLY_LOAOEO

RQ, P1_MAPPING_RETURN

iApply the fixup vectors, simulating PIC.

$!MGFIX_S

Pl_MAPPING_RETURN:

RET

;··
MAKE_P1_IMAGE_PERMANENT: .WORD "M<R4>

;rn order to prevent all this from being undone on the first
image rundown, we move the definition of the end of base
P1 space to point to the end of our work.

iThis code must be executed in kernel mode to write this
location.

MOVL P1_ENO_AOOR_ACTUALLY_ADDED, GACTLSGL_CTLBASVA

MOVL #SSS_NORMAL, RO

RET

7
(1l

8
(1l

.j::o.
00
0

~~~_PL··!_P~h_r~cc~s~_J!~rvrc 

~) 1J 0 0 
8J00 
J~G8 
GCJC 
G0aG 
UJJO 
OC80 
lCjJ 
,11:10 
ca:Jo 
COJ8 
LCJO 
l]COG 
0000 
GOJ~ 

O~JQ 
COJO 
C0JC 
C~00 
00C8 
UD00 
Q]JO 
OCG0 
uJJC 
i..; ~:.] J 
co.Jc: 

3 

0 
7 
2 
? 

10 
11 
1 2 
13 
14 
1 5 
16 
1 7 
18 
19 
2Q 
21 
22 
23 
24 
25 
26 

J1JJC 27 
[_,CJ,) 0 
0000 
cn:;c 
UJJO 
OJ80 
OC 1JC 
OG:JO 
OCJO 
OOJJ 
OCJO 
OCCJ 
aooc 
OJ80 
001JC 
OCJO 
GOGC 
OJOD 
CJJG 
CJJG 
CJJO 

Z9 
50 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 

CJOO 43 
UOJ\J 
GO•JO 
CJ.JO 
OCOQ 
GGJC: 
U1JOO 
UOGO 
11000 
OG'JQ 

49 
50 
51 
52 
53 
54 
55 
56 
57 

30-MAY-1986 13:22:51 
27-APR-1986 10:49:01 

VAX/VMS Macro V04-00 Page 
ADD_PERM_PER_PROCESS_OISPVEC.MAR 

.TITLo ADD_PERM_PER_PROCESS_OISPVEC 

.SUBTITLE Introduction 

; ++ 

Module: ADD PERM_PER PROCESS_DISPVEC 

Fcicility: EGP1 

Function: Make a permanent entry in the P1 dispatch vector 
for: 

* Change mode to kernel dispatcher 
* Change mode to executive dispatcher 
* Rundown interceptor 

Invocation Protocol: V~X/VMS Procedure Calling Standard4 

CALL ADD_PERM_PER_PROCESS_DISPVEC 
CDISPATCH_ROUTINE_TYPE, DISPATCH_ROUTINE_ADDRESS, STATUS) 

DISPATCH_ROUTINE TYPE ---> 
Longword integer. 
Type of dispatch vector routine. 

EGP1VEC_C_USRCHMK = Kernel Dispatcher 
EGP1VEC C USRCHME = Executive Dispatcher 
EGP1VEc:c:usRUNDWN = Rundown Routine 

DISPATCH_ROUTINE ADDRESS ---> Longword. 
Address of routine. 

STATUS <--- Longword. 
Status of Operation. 

Status Returns: 

Notes: 

SS$ NORMAL 
ssi:rNSFARG 
EGP1VEC __ aADVECCOD 
EGP1VEC 5ADADDR 

EGP1 VEC __ PRVVEC 

Normal Successful Operation. 
Bad Argument Count. 
Invalid dispatch routinq type. 
Routine is not above base of P1 

space and will not survive 
rundown. 

There is already a per-image vector 
in place. To proceed would cause 
temporary vectors to become permanent 
pointing to non-existent code. 
(Can happen if the image using this 
routine is linked with the debugger) 

1. These entries are usually made as per-image entries 
by linking to a privileged sharecible image (see 
example in SYS$EXAMPLES:USSDISP.MAR). The entries 
are removed by image rundown. This routine will 
cause a permanent entry to the dispatch table which 
is unaffected by rundown. 

2. R~utine added by this procedure is activated ~Y JSB style 

1 
(1) 



""' 00 

~JD_P£R~1_r~R_PRUC[SS_JlSPV~C 

Introduction 

OJOO 
OOGC 
OGJC 
OGIJO 
0000 
oo:;c 
OOJG 
OGJO 
CGOO 
O:JJC 
O·J00 
0000 
VJOO 
OQQG 
00~0 
GOOU 
0000 
OOJO 
0000 
uc,oc 
oocc 
0000 
OOJO 
OO•JO 
0000 
GOJO 
GOOD 
0000 
G80C 
oooc 
OC:JO 
CGJO 
Ot11)Q 

0000 
GOGQ 
0000 
ocoo 
OOJO 
0000 
OQOO 
~000 

000J 
occo 
UJJO 
ocoo 
0008 
01100 
coco 
'l•JCO 
0000 
OOJO 
0~)0 

0000 

53 
59 
oO 
61 
62 
63 
c4 
65 
6!> 
67 
68 
69 
70 
71 
72 
n 
74 
75 
76 
77 
78 
79 
80 
ill 
d2 
83 
84 
85 
e6 
87 
3? 
e9 
90 
91 
92 
93 
94 
95 
96 
97 
9d 
99 

100 
1G1 
102 
1G3 
1 04 
105 
1 06 
107 
108 
109 
110 

30-MAY-1986 13:22:51 
27-APR-1986 10:49:01 

VAX/VMS Macro V04-00 Page 2 
ADD_PERM_PER_PROCESS_DISPVEC.MAR (1) 

call, and should therefore have no entry mask. 

Revision: 1 • c 19-Sep-1985 Larry L. Johnson 

language: VAX/VMS Macro-32 Assembler. 

Required Macro Libraries: 
STARLET The default VAX System Macro Library. 

(Automatically scanned.) 

External Status References~ 

Facility Defined Status Values: 
EGP1VEC __ BADVECCOD 
EGP1VEC __ BADADDR 
EGP1VEC __ PRVvtC 

VAX/VMS Common Run Time Library Status Values: None 

VAX/VMS RMS Status Values: None 

VAX/VMS Sys' '?m Service Status Values: None 

SSS NORMAL 
sss:rnsFARG 

Normal Successful Operation. 
Bad Argument Count. 

External Data References: 

From SYSSSYSTEM:SYS.STB 

IACSAW_VECSET 

IACSAW_VECRESET 

C TL SGL_ C TLB AS VA 

CTLSA DISPVEC 

External Routine References: 

Facility Cef ined Routines: 

Address of the vector size 
array in P1 space. 

Address of the original vector 
size array in Pl space. 

Pointer to address of end of 
base of Pl space. 

Pointer to address of first 
half-page vector in P1. 

None 

VAX/VMS Common Run Time Library Routines: None 

VAX/VMS RMS Routines: None 

VAX/VMS System Services: 

SYSSCMKRNL 

;--



:.u~· _Pt '-.li_r:: ~_?Rr.;(,L ~ S_l: I '.:.FV t;f~ 
Proc~rll,re> Data 

cc.:oG 112 
%00 113 
uouo 114 
G~OO 11 5 
QCjG 116 
1JVGO 117 
G0lJO 118 
J0')0 110 

·Jc:;ecoo4 ~ODO 120 
ocucocoa OJ:;O 1 21 
.JGOOU00C c::uo 122 

Q}JO 123 
UIJCO 1 24 
0000 125 
ooco 12~ 

0000 127 
OOGO 123 
0~00 1 2Q 

UOOGG'.JCO no 
0000 131 
OUJC 132 
oo.:;o 133 
GOOD 134 
IJOJO 135 
00·10 136 
G10J 137 
OGJO 133 
UJJO 139 
lJJJO 140 
OGOC 141 ... 0:1: .. iCi 142 

00 OCUQLlG JF c:Jco 143 
N U'i'Ju 144 

G!J·~'C 145 
OO:JS 146 
uooo 147 
OJcO 143 
0880 149 
cc:c 1 50 

0C.:U001JO Q(L~'J 1 51 
CJiJC 152 
(1~00 153 
OOJG 1 54 
OJJ'J 155 
0000 15 5 
CJ'JO 157 
ooco 153 

OOJOOOCG 159 
GJQO 160 
OJOO 1c1 
0000 162 
0000 163 
0'))0 164 

.SU3TITLE Procedure Data 

30-MAY-1986 13:22:51 
27-APR-1986 10:49:01 

VAX/VMS Macro V04-00 Page 
ADD_PERM_PER_PROCESS_DISPVEC.MAR 

: ••• Argument list Offsets ••••••••••••••••••••••••••••••••••••••••••••• 
; ....................................... · ............................... . 
:Argument Li~t Offset Definitions: 

DISPATCH_ROUTINE_TYPE 
DISPATCH_ROUTINE_ADORESS 
STATUS 

4 
8 
12 

; ••• Local Read-Only Data Allocations •••••••••••••••••••••••••••••••••• 

.PSECT _EGP1_LDCAL_RO_DATA, -
QUAD, CQN, NOEXE1 LCL, NOPIC, NOSHR, REL, NOWRT1 NOVEC 

;eKternal Parameters: 

$OPDEF :Define symbolic opcodes. 
$SSDEF ;Define system service status codes. 

;Module Parameters: 

:The code indicating absolute (PC relative deferred) 
in an instruction argument. 

ABSOLUTE_AOORESSING_MODE = •x9F 

;The size of each vector in the dispatch area. 
The dispatch area is currently four vectors 
of one-half page each for Kernel Dispatch, 
Executive Dispatch, Rundown Dispatch, and 
per-image message vectors respectively. 

MAX_OISPATCH_VECTOR_SIZE = •x100 

; •• ~ Local Write?ble Data Allocations •••••••••••••••••••••••••••••••••• 

.PSECT _EGP1_LOCAL_r.w_DATA, -
QUAD, CON, NOEXE1 LCL, NOPIC1 NOSHR1 REL1 WRT, NOVEC 

Local Status Variable Allocations: None 

Local Variable Alloc~tion~: None 

3 
(1) 



A~~-?E~l~_PC~_PRCCLiS_UI~PV[C 

M.:iin Procedure 

OOJO 166 
ocoo 167 
0000 165 
GJuC 1 ()9 
0000 170 
0,)()0 171 

O•lGGOOIJO 172 
OJJO 173 

uFc8 GOJO 174 
00l.l2 175 
0002 176 
UO:J2 177 
oou< 178 
OU:J2 179 
OOJ2 130 
0002 181 
C002 132 
0002 1 33 
con H4 
0002 185 
oon 136 
con 187 
0002 188 
o:u2 189 
O•)J2 1()0 
0002 191 
000;! 192 
OOJ2 B3 

5 3 ud SC DO C002 194 
55 ut. ac DO oou6 HS 

"'" 
OOOA 196 

00 CODA 197 
t.) OOOA 191' 

56 U0u0J000" CF 00 OCJA 199 
57 GuCOJUuO"f;F OJ 0011 200 

001£! 201 
O'Jl e 202 
0018 203 
001e 204 
GC18 205 

l>C 03 01 CC18 206 
(i9 13 o·J1 B 207 

50 00000114 3F 00 0;)10 203 
67 11 0024 2C9 

0~26 210 
0026 211 
0026 212 
GC~t 213 

5~ 05 ou;:!l 214 
09 13 0023 215 

50 DOOOOOuC"cF DO 002~ 216 
SA 11 0031 217 

OJB 213 
0033 219 

0004.JOJUU"dF 5~ 01 0033 2.20 
o~ 15 OOH 221 

s IJ OO•JtJ'J~·Jo• 3f 00 ilO 3C 222 

SUBTITLE 

30-HAY-1986 13:22:51 
27-APR-1986 10:49:01 

Main Procedure 

VAX/VMS Macro V04-00 Page 
AOO_PERM_PER_PROCESS_OISPVEC.HAR 

....................................................................... 
••• Executable •••••••••••••••••••••••••••••••••••••••••••••••••••••••• ....................................................................... 

.PSECT _EGP1_cooe, -
QUAD, CON, Exe,.LCL, NOPIC1 NOSHR, REL1 NOWRT, NOVEC 

.ENTRY ADO_PERM_PER_PROCESS_DISPVEC, AH<R31RS,R61R71R8,R9,R1Q,R11> 

:Register UsDge: 

R3 = Dispatch routi~e address. 
R4 - Not used. 

Cannot be used to pass info to kernel routine. 
~5 = Dispatch vector index for rundown vector. 
Ro = Address of VECScT array. 
R7 = Address of VECRESET array. 
Re = Instruction load pointer. 
R9 = Address of original terminating RSB instruction. 
R10 = Address of size field of rundown vector. 
R11 ~ Dispatch vector offset to base of dispatch area. 

ilnitialize registers with primary data. 

iMove arguments to registers 

MOVL iOISPATCH_ROUTINE_ADDRESS(AP), R3 
HOVL iOISPATCH_ROUTINE_lYPE(AP), R5 

;Get the addresses of the VECSET and VECRESET arrays 

MOVL #IACSAW_VECSET, R6 
HOVL #IACSAW_VECRESET1 R7 

;validate arguments. 

;validate argument count. 

CMPL 
BEQL 

10S: 

#31 CAP) 
10$ 
MOVL 
BRB 

#SSS_INSFARG, RO 
COMMON_EXIT 

;validate dispatch selection code. 

TSTL R5 
SGEQ 20S 

MOVL #EGP1VEC __ BAOVECCOO, RO 
BRB COHHON_EXIT 

20S: 

CMPL RS, #EGP1VEC_C_USRUNDWN 
BLEQ JDS 

MOVL #EGP1VEC __ BADVECCQO, RO 

4 
(1) 



.i:. 
00 
.&:-

AJO _Pt. Rli_P E R_f'RGCt ss_~ I$ PV EC 

4~ 

llUUGOOOu 0 9F 5} 
Oil 

51) OC00u000°3F 
3o 

31.l 

5A 

)A 

0745 664; 
01 

OOOOOOJO"of 
26 

5) 

OOUG01QC oF 

OOOQJ000°CF 

5v SA" 6~ 

~:..; 59 01 

oc ~c so 

Hain Procedure 

11 

D1 
1E 
D:J 
11 

~1 

13 
JO 
11 

cs 

ca 

C1 

C1 

DD 

04 

Jll43 
00~5 

Ou45 
c.:4 5 
UIJ45 
Cu45 
OJ45 
U::J45 
0045 
001.c 
OC4E 
Qf))'.) 

0057 
CO:i7 
0057 
0057 
0037 
0057 
0057 
C057 
0057 
0057 
G0'.-7 
0)57 
OC5C 
JGJE 
00.>S 
o::, 7 
tJ l]r1 l 

C0o7 
QIJ,'.)7 
0067 
0Co7 
COo? 
GCo7 
ooi:;.1 
0067 
C067 
0069 
0059 
006F 
0::: '>f 
IJG~F 
C!~i:, F 
1>J()F 
0076 
0076 
0076 
G0?5 
0076 
Oll7o 
0076 
OU7A 
00 7A 
~en 

U·' 7 t 
L ·: l A 

007A 
007E 
G~7E 
0')7E 
UG7:.: 
0C7E 
co;o 
00.:iL' 
oo .. :J 
CO.;v 
uo~1 

G091 
con 

223 
2~4 

225 
;!26 
227 
228 
229 
230 
231 
232 
l33 
234 
2 35 
236 
237 
238 
23~ 

240 
241 
242 
243 
244 
245 
246 
247 
243 
2 4 'I 
250 
z 'j 1 

252 
253 
254 
255 
256 
2~7 

258 
259 
260 
2o1 
262 
2 (., 3 
264 
265 
Z66 
267 
2~3 
269 
270 
271 
272 
273 
274 
275 
276 
277 
2~· I w 

~ 7Q 
2!:.0 
231 
2 ', 
?;; 3 
284 
285 
266 
237 
c.lB 
2i: 9 
290 
291 
292 

BRB 
30$: 

30-MAY-1986 13:22:51 
27-APR-1986 10:49:01 

COMMON_ EXIT 

YAX/VMS Macro Y04-00 Page 5 
AOO_PERM_PER_PROCESS_DlSPVEC.MAR (1) 

iValid~te that routine address 
above the base of P1 space. 
lower is not going to exist, 
disappear during rundown. 

is at least 
Anything 
or 111ill 

CMPL 
BGEQU 

40$: 

R3, ~#CTLSGL_CTLBASYA 
l+OS. 
MOVL 
BRB 

#EGP1VEC __ 8ADAOOR, RO 
COMMON_EXlT 

;validate environment 

;validate that no privileged shareable image vectors 
exist for this image. Return error if there are 
since this routine would make them permanent rundown 
vectors to code that would no longer exist after the 
first rundown. 

CMPW 
BEQL 

501: 

(R6)[R5), 
50$ 

(R7HR5] 

MOYL 
BRB 

#EGP1YEC __ PRVVEC1 ~0 

COHMON_E X IT 

;Calculate addresses of data of interest in target dispatch vector. 

:Get address of size byte (first longword of the half-page 
vector) -- the base of the vector. 

:calculate offset to vector of interest off 
base of dispatch vector area. 

MULL3 R 5,-
#MAX_DI SPATCH_ VECTOR_SIZE,­
R10 

:Add to base of dispatch vector area to get address 
of desired vector. 

AOCL2 #CTLSA_DISPVEC, R10 

;c~lculate address of the original terminating RSB instruction 
within vector (the first longword of the vector contains 
the offset to the terminating RSB off the base of the 
particul~r vector). 

AJCL3 CR10), RlJ, R9 

;c~lcul~t~ t~~ ~d~res~ of first byte to be load&d. 
(th~ ~ ~~ 1~ ;,1~·; to be left in place until ev•rythin9 
Q 1 ~,. l ';. 'l "'l .... .., .• ) • 

ADOL3 #11 R91 RB 

iWrite the vector instruction entry in kernel mode. 

$CHKRNL_S -
ROUTIN 

COMMO~l_EXIT: 

WRlTE_YECTOR_INSTRUCTION 

MOYL R01 @STATUSCAP) 

RET 



""' oc 
Ul 

AJ0_;iLR~_r~~-r~~CES~_Dl~PVEC 

33 9 F t1F 

...,3 SJ 

6!3 05 

50 :;; b 
oA 

b64~ 
6745 

6? 

50 

5A 
5~ 
so 
so 

16 

01 

Write Vector Instruction 
3'0-MAY-1 '86 13: 22: 51 
27-APR-1986 10:49:01 

VAX/VMS Macro V04-00 Page 7 
ADO.PERM_PER.PROCESS_DISPVEC.MAR C1l 

9010 

90 

QO 

90 

oon 
QJ'2 
ocn 
oon 
0092 
OC92 
0094 
OJ-14 
00 i4 
U094 
0014 
O:JJ4 
00'14 
0014 
C:,094 
00<4 
0094 
0094 
0094 
0014 
0094 
00?4 
00;14 
0094 
00}4 
00t4 
0094 
0094 
GC94 
0098 
oon 
0098 
0Ci3 
0·)98 
00 fB 
0096 
0096 
0098 
UO?B 
OQ?B 
OC9E 
QIJ ]~ 
CltE 
OG9E 

C3 1~.:;it 

00 u0A2 
5C 00A5 
BO C OA 9 

OOAO 
GOllO 
OOAO 
uOAO 
OCAD 
OOAD 
OOAO 

90 001.0 
uoao 
0030 
OCBO 

00 OOBO 
04 OOB3 

00d4 
0034 
0034 
0064 

294 .SUoTITLE Write Vector Instruction 
295 

296 ;···························································· 297 ; Write vector instruction in kernel mode. 
293 
299 
300 
301 
3C2 
3C3 
304 
305 
306 
307 
308 
309 
310 
311 
31 2 
313 
314 
315 
316 
317 
318 
319 
320 
321 
322 
323 
324 
3;5 
32~ 

327 
328 
329 
330 
331 
332 
333 
334 
355 
336 
337 
~3,3 
33q 
340 
341 
342 
343 
344 
345 
346 
347 
34a 
349 
350 

WRITE_VECTOR_INSTRUCTION: .WORO AM<R4> 

;Register Us~ge: 

The following registers are assumed initialized with the following 
data, of which only RB, the instruction load pointer, is changed. 

R3 = Dispatch routine address. 
R4 = lhe usual PCB address provided by kernel dispatcher. 

(Restored by mask to avoid being lost by kernel dispatcher.) 
RS = Dispatch vector index for rundown vector. 
R6 = Address of VECSET array. 
R7 = Address of VECRE~ET array. 
R8 = Instruction load pointer. 
R9 = Address of original terminating RSB instruction. 
R10 = Address of size field of rundown vector. 

;write the address mode (absolute). (later the RSB ~ill 
be converted to a JSB when everything is complete. This way 
if exit is forced, the vector will functionally appear 
to be as it was ••• no undefined states.) 

MOVB #ABSOLUTE_ADORESSING_MOQE, CRBl+ 

;write the address of the routine. 

MOVL R31 CRSl+ 

;write the new terminal RSB instruction. (Note that 
we don•t auto-increment here. This will facilitate 
calculation of the offset to the terminal RSB to 
be placed in th& vector and the vector offset arrays.) 

MOVB #OPS_R5S1 CR8) 

;Update the size field of the vector, the vector array, 
and the vector reset array. 

SUBL3 
MOVL 
MOVW 
MOVW 

R10, R81 RO 
RO, CR10l 
R01 CR6) [RS] 
R01 (R7) [R5] 

;Calcul~te the new size 
;store in vector. 

and the vector array 
and the reset array 
(setting the reset 
array is what makes it 
permanent) 

;Change the ~ld terminal RSB to a JSB to activate the 
rundown vector. 

MOVB #OPS_Jss, (R9) 

351 iReturn success to the caller. 
352 
353 MOVL #SS!_NORMAL1 RO 
354 P.ET 
355 

356 ;************************************************************ 
357 
358 .ENO 



APPENDIX D 

LISTINGS OF RUNDOWN INTERCEPTOR LOADER 

486 



~ 
00 
-...i 

_ _J_.J 
L' J. '-

-· ·.,· -' (. 

:. JJ.:., 

- j 1 J 

c, I I 
~· ~ i..: 
c.." i _) 
Ll J 1 ~ 
C·J 1 5 
Jj1o 
J .~ 1 I 
~..: 1 l! 
.._,..,1:, 
t_..•_,,_\_,, 

I' h:G :.,~A !1 

c++ 

c. !·lodul8: 

f-0-.Cl.llty; 

c FtJnc.t_..,uri: 

rk~TCTYJE_IIJTlRC~?TC~_LOAOER 

P~01CTY~·L ~rJf~~C~PTO~ LOADER 

~- (_, ~: 'l : _ __} N 

30-Hay-1986 13:22:26 
27-Apr-19d6 10:48:55 

Loud ~rototype rundo~n tnt~rceptor into P1 permanently, 
addin~ per~~nent rundown vector to image activator•s 
rundown disp~tc.h vector. 

Ir1voL~t1on Protocol: VMS ImaJe Activ~t1on. 

c Ncti:?S: 

c K1~v.is1on: 1. D 21-sor-1905 L~rry L. Johnson 

L ... --.~l.~U.O'J'?: V~X/VM5 Fortran, Enh~nced 1977 ANSI Standard. 

~J21 c ~xt2r11~l 5tat~~ Peferences: 
v.JL-1.... 

..:; ,.} = ) 
; ~I •.J ::_ .:. 

.; j '-) 

'J ,_; ~ l 
.,) J;: 7 
J.J.: ... 
'j,_;/ </ 

lll?L!C!T t>lGN:; 

Fcic.il.ity Uefin~d :>tatu5 Values: None 
VlX/~ris Cum1non ~un Ti~e Library Status Values: None 
VAX/VM5 RMS Status Valu~s: None 
VAX/Vt~S System Serv1cm Status Values: ~o~e 

vuJG c Ext2rn~l ~at2 Reforcnce3: 
Jc~ 1 
UJ5. 
'J-.1; 3 
0'... ',O:. 
::. J).) 

LU3t 
t,,; :j ~ 7 
'JU .:i ~ 
u J _.J J 

i._, ·~ 4 J 
c ,4] 

;.; ... ..: 
l_, J :, J 

:..,,;-:. ... 
- ~ '. j 

.._; 'J .. \, 

EHEKtJAL EGP1VEC_C_USRUNDWN 
INTEGER•4 EGP1VEC C ~USRUNOWN 

c ~xternal ~ou~in~ Reter?nces: 
c~~utine~ which include type specification are 
function typB routines which typically return 
status in RQ, the Fortran function value. 

fDc~lity Defined Routin~s: 

HEAG~_SHAREA9LE_IMAGE_INTO_P1 

AOQ_PlRM_PER_PROCESS_DISPVEC 

V~X/VM5 C0mmon Run Ti~c L1br~ry Routines: 
v:i.x/Vt1'~ r.~~S ~outincs: 

V~X/VMS 5ystem Services: 

None 
None 
None 

•.J ._.) - c.--
~) 1 

u_,'- c •••••••••••••• 4••••·•••••••••••••••••••••••••••·••••••••• .. ••••••••••••• 
·~ ••• L<..t..c1i '-"P(.--~ifLc.<.1tions ··········•••••••••••••••••••••••••••••••••••• 

_',4 c ......................................................................... . 
] ; ) 

· .••• Le: ,( .jt, t ... -, V.Jr1;:1;1.~ ,:,pc:::if icut1ons: ,. 

VAX FORTRAN V4.3-145 Pag• 
PROTOTYPE_RUNOOWN_INTERCEPTOR_LOAOER.FOR;3 



""' 00 
00 

• , • I 

.)...)'.,_; 

u ..J ,·; ~ 

:..; .J ~ .) 

- ' 
L , : I 
_,_,, .... 

.... j i.:: 
l.,._jfl., 

7 -

~'-':I 
.) ._, 1 _, 
-_ ·~ : 'i 

TYP~ ]r,T~ ~· r _ t': _ 1__ 1 • :. J l"' 

; IT i ._ ..... * l. 
Ti. L ;' ... 4 

\' T ~ '~ '' " 4 

S Tl'. r 
pl - I\ LR-._;::. - ) T ~Tu') 
v: C T'Jr:_~Ti',1U) 

lU-Moy-1936 13:22:26 
27-Apr-1906 10:48:55 

! G2n~ra1 module status. 
! Lo21ci of i:n~c:;e. 

Acd1tion of per-process vector. 

=··· LacAl V~r1JIJic S:JeL1fc~t1ons: 

! Lo·~i=~l n~·"c tor runr!~wn interc~ptor to be loaded. 

( r. {. .; C. i... ft: I'• 11 l~~G~_FILl !JGM~ 1·r;~TERCEPTOR•t 

! ~0dr 0 _,~ r~na~ into which t~e interceptor was loaded. 

l ;, T:. ;:. t. r. • .'.+ 

IIH t:St K" 4 
HIGH~~T_A~~~ES;_LOAOED 

LO~EST_AQ~~ESS_LOADED 

! l~c1ge he~cier of the interceptor. 

(rlld-:PC TfR*'512 1M4~E HEAQER BUFFER 

! Tr~n~i2r ~rray, axtrected from the interc@ptor image h~ader • 

irn:..c.::-~.-1.. I~AGr_TRANSFER_ARRAY(]) 

'_j 1 c • ....................................................................... 

. } ·~ ~ ) 

_,; ; 
_i_.:,;._ 

l) v ~ 1 
L. L 

'O 0 

•,!._::l.J 

""~; 0 

) ! 
l L 

c.. ••• l'JIC'{''Jt.;il))(? •••••••••••••••••••••••••••••••••••••••••••••••••••••••• 

(. ......................................................................... . 

:~(.?r:;;.9 th2 ruri(l0Wrl 1nt'.:·r-c2ptor into Pl space permanently. 

CALL MERGE_SH,Rt,~LE_ !1AGE_INTO_P1 
(IMU.CL_FIU:._r-.J M.: 
1lMAG _Tk~•.~F R_l~RAY 

,LO~~ T_~CURE S_LCAQED 
,HI0H ST_ADJR S5_L0AOEO 
,:;_qt,,r~ tir.:AOi.:R 2-UFFER 
,Pl_Mf PGi ~T~TLlS 

) 

ST~TUS = Pl t 1 E~G~_STATIJS 

,, ~ ~~mm~ri~a the operation for d2~on;tr]tion purposes. 
'- L ·-' 

l ·- 1 
... ] ·. 
·1_: 

:.:1..:Ct 
- I _: ~ 
_:J _, 
- I L .. 

1,_, 
~ I_.)/ 

l i ~ 
,; ii 

- i l 

~~IT~ Cb,ll 

fCRMAT 

Pl_1-1 RGE_~r~TJS 

,~1:~ ~ST_A0J~ESS_LCAUE~ 

,L~~ ~T_A ~~~_LQt~FU 

,~MA~L_T~AN:F:Q_~~~cy 

x,'Interc~!Jtor Load ~ctail:•/ 
x, . 
x,. 
x, . 
x, 

n1~r-,0 '.;t.:;1"t.us: ·,l31 
HJjhcst Addross: •,z31 
lJw2st ~jcir2ss: ~,zat 

Tr~n~fer Arr2y: •,z2,·, •,ze,·, ·,z31 

VAX FORTRAN V4.3-145 Pago 2 
PROTOTYPE_RUNOOWN_INTERCEPTOR_LOADER.FQR;J 



""' 00 

'° 

f'>...JliJJY;..': l:iTL~::,~-i-'i<;i:.:_tu.:'t.:;f_-:;: 30-May-1986 13:22:26 
27-Apr-1986 10:48:55 

VAX FORTRAN V4.3-145 Page 3 
PROTOTYPE_RUNDOWN_INTERCEPTOR_LOAOER.FOR:3 

If tl1c int2rc0~tor m~~e it to its de5tinetion then c 1 1 ; 
: 11, 
111 ? 

~cld a µ~r.ni.11ent r~r1down vector to the imDge activator·s 
di~r~0~c~ v~ctJr ~r201 c~u~in·) the interceptor to be 
invo~~d 011 2och i~1~~~ r~njo~n, including proces5 deletion. 

" 1 1 • 
~ 1 ~, 
"1 c I 
C 1 C ~ 

~Lo 

.. 124 
~ 1 ~ '.> 

u 1 :,, 
·I 7 

., 1 

t nu if 

cr1_:1~RSE_ST~TUS) TH~N 

f- !JO IF 

Li::.i_L AJQ_;:>._R1l_Pt.K PROC£S$_DISPVEC 

STATUS 

IXLOCCfG?1VEC_C_USRUNDWNI 
,IMAGE TRANSFER ARRAY(11 
,VECTOR_STATUS 
) 

VECTOR STATUS 

JI'- J 

_:; 1.) J 
....i1 .ii 
S1.>.:.' 

E~it with general st~tus • 

..__ j.J_) 

'_;; j .. 

?~US·:~~ StCTIO~JS 

~; ~· .11 ·~ 

:, C,:: :; .:. 

t·'-' J--. T ,\ 

b ·~ ') '~ .C. L 

(~cl EXIT (STATUS) 

Et~ J 

Ja~~l ~~~ce Alicc2tud 

~ i~ r ~: y o :J I 1, r s 

~0~r2ss Ty~a Name 

Bytes 

12C 
142 
640 

'102 

~-:;:_; ~J' .. 1·~ ).J PQuT0TVDE_INTtRCEPTO~_LOADER 

v µ, ~~ l. .:.. .\ :_ :: s 

Attributes 

PIC COt> REL LCL 
PIC CON REL LCL 
PIC CON REL LCL 

SHR EXE 
SHR NOEXE 

NOSHR NOEXE 

RO NOWRT LONG 
RD NOWRT LONG 
RO WRT LONG 

:_.(I CJ("<:!::,,-, T '>''IJ C' tJ,:1.1:-:> Addres~ Type Name 

J - r \ < ~ "t 1 "t. HISrl~Sl 

-~~~l, 1 I :: hAi:( Hl~ S H 
L-'j.J.J .1:,_· 1 \-. I• 4 p 1 - ~·' ;;;G 
.:-·~r:c-_;~,( 2·~ : • !~ VECT R 

A,;i;h~S'.)_ LOADED 
;.Ot:R_BUFHR 
_STf.TU5 
TA TU:) 

2-0000000C 
2-00000228 
2-00000218 

CHAR IMAGE_FILE_NAME 
I•4 LOWEST_AODRESS_LOADED 
I•4 STATUS 



""' \0 
Q 

P~OTJTYPE_lNTC~LEPTCF_LO'O!R 

h·d::~YS 

4ddr~~s Type ~ame 

l-0~0DGOOU !•4 IMASE_TRANSFtR_ARRAY 

L~E.lLS 

Addr ~~ :i l.;1bel 

1-00ou0~cJ 

fUWLlluNS AND SU~EOUTINES REFERENCED 

30-May-1986 13:22:26 
27-Apr-1936 10:48:55 

Bytes Dimensions 

12 (3) 

VAX FORTRAN V4,3-145 Page 4 
PROTOTYPE_RUNOOWN_INTERCEPTOR_LOAOER.FOR;3 

Tyµ~ tli.!~!2 Type Name Type Name 

.',, J P"RM •'ER PROCESS DISPVEC 
r~[R~E_5ri:~EA~L(_[M4G~_iNTC_P1 

Clh'1i·IZ.i~J :Ji.JAL i FI ::RS 

EGP1VEC C USRUNDWN 

0 c RT ;;i. ~I LI~ T PR0TOT 1 t' o _ R lltlDC WI!_ rnE RC i: PT~R _LOAOER. FOR 

/LHtCK=(:J~J0U~J3,Q~~RFLOW1NCUNU~RFLO~) 

/Uf~UG=CliOSYHJOLS,TRAC[aA~K) 
/~TA:~uAR:=c~~SYN!~X,'JO~~unct_FO~M) 

'·"~~=l~uPRE?RCC~ssu~.NO!NCLUJl1MAP1NODlCTIONARY1SINGLE) 
/~A~l~iMGS=CG~~~~Al1NOu~Cl~RATIONS) 

ICJ1irr~U,TILNS=19 INCtROSS_RfFERCllCE /NOD_LINES /NOEXTEND_SOURCE /F77 
/hJ~_fLOITING /I4 /NOHACltIN~_CODE /OPTIMIZE 

COH?ILITION STATISTICS 

~un Ti~e: 
~l~P~~d T~m~: 

Page faults: 
Oyn~~ic M~m~1·y: 

1.20 -;econds 
3.62 seconds 
2L6 
335 JJage5 

FORSEXIT 



APPENDIX E 

LISTINGS OF MESSAGE FILES 

491 



... 
IO 
N 

- )I' l If-:... C l~~s~~.0~ d0finit1ons 30-MIY-1936 13:23:19 
27-AP~-1936 10:43:59 

VAX-11 Mossage VQ4-00 Page 
U1:[JCHNSON.WORKOUEUE.SYSTEM PROGRAMMING.RUN 

·JCJ~O )U1 

.J ~G 10Cl us 

u J1~Q1~ 
J 01201A 
0 018022 

.TITLE P1_DISPVEC_MSGS_AND_CONSTANTS 

.FACILITY EGPlVEC,1 /PREFIX=EGP1VEC 

.S(VERITY SUCCESS 

7 rJORMAL <Normal successful completion> 

Q .ocVERlTY INFORMATIONAL 
1 G 
11 .SEVE,ITY WARNING 
1 2 
13 .SEV£P!TY ERROR 
14 
1S P~VVEC <Privileged sharable image vector is in the way.> 
16 9A0VECCOO <Invalid vector selection code.> 
17 BAO~DJR <Dispatch routine is in volatile address space.> 
16 
19 .SEVERITY SEVERE 
20 
21 ! Define facility constants. 
22 
23 .L:TERAL 
24 
25 
2c 
27 • tNO 

EGP1VEC_C_USRCHHK = Q,­
EGP1VEC C USRCHME•­
E~P1VEC-C-USRUNOWN 

Th2r~ w~re 0 error3, C w?rnings, and 0 informational messages issued. 
~:~~iQ1~~/L:ST EGP1VEC 



APPENDIX F 

PREPARATION PROCEDURES 

$ MACRO = "MACRO/LIST/CROSS=(REGISTERS,SYMBOLS,MACROS) 
$ !************************************************************ 
$ 
$ !------------------------------------------------------------
$ ! ! ! NOTE ! ! ! 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 
$ 

If any of the images are linked with the debugger, 
rundown vectors belonging to the debugger will get in the way of 
adding the permanent rundown vector, causing the load to fail 

! with an appropriate error message. 
!------------------------------------------------------------

FORTRAN/LIST PROTOTYPE_RUNDOWN_INTERCEPTOR_LOADER.FOR 
MACRO MERGE_SHAREABLE_IMAGE_INTO_Pl+SYS$LIBRARY:LIB/LIB 
MACRO ADD_PERM_PER_PROCESS_DISPVEC+SYS$LIBRARY:LIB/LIB 
MESSAGE/LIST EGPlVEC 

$ LINK/POIMAGE/NODEBUG 
PROTOTYPE_RUNDOWN_INTERCEPTOR_LOADER,SYS$INPUT/OPTION 
MERGE_SHAREABLE_IMAGE_INTO_Pl 
ADD_PERM_PER_PROCESS_DISPVEC 
EGPlVEC 
SYS$SYSTEM:SYS.STB/SEL 
$ ! 
$ MACRO PROTOTYPE_RUNDOWN_INTERCEPTOR+SYS$LIBRARY:LIB/LIB 
$ LINK/NODEBUG/SHARE/MAP/FULL 
PROTOTYPE_RUNDOWN_INTERCEPTOR,SYS$INPUT/OPTION 
SYS$SYSTEM:DCLDEF.STB/SEL 
SYS$SYSTEM:SYS.STB/SEL 
$ ! 
$ EXIT 

493 





The Time Warp Simulator 

or 

An Object Oriented 

Simulated Concurrent Processing Shell 

for the VAX 

.J. Steven Hughes 
Jet Propulsion Laboratory 

4800 Oak Grove Drive 
Pasadena, CA 

ABSTRACT 

This paper describes the Time Warp Simulator, an application which runs on a 
sequential processor and simulates the Time Warp distributed simulation 
mechanism. Implemented in parallel with the Time Warp/Hypercube project, 
this tool allowed the early development and testing of application code and 
the testing of the Time Warp interface. In addition the simulator has been 
found to promote an object oriented application development methodology while 
also allowing simulated concurrent processing. 

The Time Warp Simulator is a tool that 
was developed to support the implementation 
of an application to run under the Time Warp 
distributed simulation mechanism on a 32 node 
version of the CalTech Hypercube 
multiprocessor. The primary purpose of the 
overall project was to demonstrate the 
speedup that could be realized through 
concurrent execution of a discrete event 
simulation under the control of Time Warp. 
This project brought together leading edge 
work in hardware architecture, operating 
systems, and application development 
methodology. 

1.1 Hardware Architecture 

The CalTech Hypercube was chosen as a 
suitable hardware architecture for the 
implementation of the Time Warp mechanism 

Proceedings of the Digital Equipment Computer Users Society 495 

because of its symmetry(3]. The hypercube 
architecture is a multiprocessor architecture 
with 2++d identical nodes. Each of these 
nodes is connected individually to d other 
nodes over a bidirectional link. Each node 
has d nearest neighbors with a maximum 
distance d to any other node. The symmetry 
of the architecture allows topologically 
identical views of the system from any single 
node. 

The implementation of the hypercube 
architecture[ I] is a result of a CalTech 
collaboration between Charles Seitz and 
Geoffrey Pox, to build a 64 node hypercube 
and an initial operating system and to run 
physics problems. A subsequent combined 
CalTech/JPL project(4] was started in October 
1983, with Geoffrey Fox as principal 
investigator, to continue research and 
development of the hardware, system software, 
and applications. 

Dallas Texas· 1986 



The Mark II machine currently being used 
for Time Warp implementation, is a 32 
processor configuration. Each node consists 
of a 8086/8087 processor pair with 256k RAM. 
An Intel 310 functions as the intermediate 
host handling all 1/0 to the cube and is 
connected to a VAX by ethemet. 

1.2 Operating System 

The Time Warp mechanism[2] is 
essentially a distributed operating system 
specialized for simulation. It was invented 
at RA ND Corporation by David Jefferson and 
Henry Sowizral and first implemented in a 
version of Lisp on a network of 
microprocessor workstations. Time Warp is 
based on a discrete event simulation paradigm 
and allows the dynamic creation and 
destruction of object instances and 
subsequent object communication using time 
stamped messages. The concept of simulation 
time plays a key role and when associated 
with messages, signals when an event should 
be processed. The Time Warp mechanism speeds 
up simulations in real time by executing 
objects concurrently in a multiprocessor 
environment and by allowing some objects to 
proceed ahead in simulation time while others 
lag behind. The situation that can arise 
where an object receives a message with a 
time stamp in its past, is handled using a 
rollback mechanism that returns the object to 
a prior state. This synchronization is 
invisible to the application programmer 
except that some concept of the mechanism 
should be understood in order to produce 
efficient code. 

1.3 Application Development Methodology 

The application development methodology 
which results from programming an application 
to run under the Time Warp mechanism is based 
on an object oriented methodology. By 
definition, all code to be run under Time 
Warp must be partitioned into objects wich 
have no shared memory. An object may 
communicate with any other object but may do 
so only through the use of time stamped 
messages sent to be received at the present 
or some future time. 

496 

2 TIME WARP MECHANISM 

Intuititely the Time Warp mechanism uses 
the virtual time stamped event messages sent 
between objects to schedule the execution of 
the objects. In addition the object is 
executed with its local virtual time set to 
the virtual time of the event message. 
Virtual time is similiar to the concept of 
simulation time in the discrete event driven 
simulation paradigm in that it specifies the 
time for processing an event. 

As mentioned before, on a multiprocessor 
hardware architecture, Time Warp achieves 
speed up by allowing some parts of the 
simulation to proceed ahead in virtual time 
while others lag behind. In process 
synchronization, two situations arise. If 
object A schedules an event in object B's 
future, the message from A is inserted in B's 
input queue in time stamp order, for 
subsequent processing. However if the event 
is scheduled for B's present or past, the 
processing could proceed incorrectly 
depending on its affect on B's state. Time 
Warp handles this latter situation by being 
prepared to roll object B back to an earlier 
virtual time and to start it processing again 
with the new message in its input queue. 
Rollback is accomplished using state 
snapshots, antimessages, and global virtual 
time. Global virtual time is a computed time 
before which there exists no unprocessed 
messages in the system. It is used for 
management of processed messages and prior 
states and for committing output messages 
outside the system. An antimessage is a copy 
of a message which causes annihilation of 
both messages when they encounter one 
another. When object B is rollbacked, all 
messages that had been sent in what is now 
the object's future are subject to having an 
antimessage created and sent. If an 
antimessage and the original unprocessed 
message meet in the input queue of an object, 
the annihilation is simple, and docs not 
effect the object. However, if the original 
message has been processed, in which case the 
antimessage has been received in the objects 
past, the antimcssage itself will cause a 
rollback. 



2.1 Applications Development Under Time Warp 

An application developed to be run under 
Time Warp consists of a set of dynamically 
created objects which communicate with each 
other using event and query messages. An 
object performs event message queuing, 
querying, object creation and destruction, 
and other utility functions through the use 
of Time Warp system calls or entry points. 
Urider the current implementation each logical 
object type is implemented using three code 
segments and one data segment. The code 
segments are the Jnit section, Event section, 
and Query section. 

2.1. l Init Code Section -

The Jnit section is that section of code 
that is executed once whenever the object 
instance is created. It allows for the 
creation of the object's state but does not 
allow the processing of any messages. 
Assignment of state variables in this section 
are one time assignments. 

2.1.2 Event Code Section -

The event section handles event 
messages. When two objects communicate using 
event messages, the message sent is inserted 
into the receiving object's input queue and 
execution of the sending object continues. 
An object is scheduled for execution when it 
has at least one event message in its input 
queue. The set of event messages in the 
queue with the lowest receive virtual time 
are collected and at object execution the 
object's local virtual time is set to this 
virtual time. The object may then use time 
warp entry points to access the text, sender 
object's name, and send receive time of any 
event message in this set. The code in the 
event section may also perform other time 
warp calls including those for the creation 
and destruction of other objects. 

497 

2.1.3 Query Code Section -

The query section handles query 
messages. The query is a special type of 
object communication that allows one object 
to query the state of other with the 
restriction that the query occurs with the 
local virtual times of the objects being 
equal. Object A may query object B in either 
its event section or its query section. 
Object B handles the query in its query 
section and returns the reply using the query 
reply entry point. Object B has the 
restriction that it may not modify its own 
state. 

2.1.4 State -

Each object must have a data structure 
called the state. This state must include 
all global and static variables. The state 
is created dymically at object create time 
when the init section of the project is 
executed. 

2.2 Time Warp Entry Points[S] 

Following are brief functional 
descriptions of the Time Warp entry points. 

Obcreate - Obcreate is the object create time 
warp entry point. It allows the 
creation of a uniquely named object 
instance at a specified virtual time. 
Arguments also exist for specifying the 
logical object type of the object and 
the processor node number that the 
object will initially reside on. 

Obdestroy - Obdestroy is the object destroy 
Time Warp entry point. It allows the 
destruction of a named object instance 
at a specified virtual time. 



Evtmsg - Evtmsg queues an event message in 
the receiving object's input queue. The 
receiving time, length of the message, 
and the message text are supplied as 
arguments. The message is guaranteed to 
be queued. 

Qrymsg - Qrymsg queues a query event message 
in the receiving object's input queue 
and causes the sending object to wait 
for the reply. The query text and its 
length, and the reply buffer and its 
length are supplied as arguments. A 
return status is also available 
specifying whether or not the reply 
message had to be truncated. The query 
of one object by another is considered 
to occur with the local virtual time of 
each object being equal. 

Qreply - Qreply is the Time Warp entry point 
used in the query section of an object 
being queried to return a query 
response. The receiving object's name, 
the reply and its length are supplied as 
arguments. 

Getmsg - Getmsg may be used in either an 
object's event or query section to get 
the text of all messages available at 
the current local virtual time. The 
message number, a buffer and the buffer 
size are supplied as arguments. The 
actual length of the data copied into 
the buffer and a status are returned. 
The status may be success, message 
truncation, or message does not exist. 

Getmbytes - Getmbytes is functionally 
similiar to Getmsg except that a byte 
pointer and length are specified for 
returning a substring of the message 
text. 

Me - Me returns the name of the calling 
object. 

498 

Sendtime - Sendtime returns the virtual time 
that a message was sent. A message 
number is supplied as an argument and 
the virtual time and a status is 
returned. The status may be set to 
success or message does not exist. 

Sender - Sender returns the sending object's 
name. A message number is suppJied as 
an argument and the name of the sending 
object and a status is returned. The 
status may be success or message does 
not exist. 

Simtime - Simtime returns the current local 
virtual time of the calling object. 

Mcount - Mcount returns the number of 
messages in an object's input queue that 
have a receive virtual time equal to the 
catling object's current local virtual 
time. 

3 THE TIME WARP SIMULATOR(6) - HISTORY 

The need for the simulator is evident 
when one considers the complexity of the Time 
Warp implementation project. An operating 
system was to be developed for a new hardware 
architecture and a methodology and skills for 
the design and implementation of a concurrent 
event application had to be developed. In 
addition, the Operating System based on Time 
Warp was to be machine independent. 
Therefore, a machine interface level had to 
be implemented to handle message 
communication, routing, memory management, 
error handling and 1/0. The Time Warp layer 
would then handle typical operating system 
functions such as object creation and 
destruction, scheduling, and synchronization. 

In considering the need for the 
application programmers to be able to start 
early development it seemed reasonable to 
develop a simulator of the Time Warp 
mechanism on a sequential processor. Given 
that Time Warp mechanism allow messages to be 
sent only in the present or at a future time, 
a single system wide queue of event messages, 



ordered by receive virtual time, wou]d give 
the simulator the capability to determine 
what object is executing or should be 
executed next in any instance of real time. 
This precludes the need for anti.messages 
since objects would not be executed out of 
order and only pseudo rollback is required in 
a few specific cases. Global virtual time, 
difficult to calculate in a multiprocessor 
environment, is immediately available and the 
number of snapshots of the state of an object 
is limited to two. 

3.1 Time Warp Simulator - .Justification 

Due to the reduction in complexity of 
the system, the simulator was available in a 
relatively short amount of time and was not 
dependent on other work units of the project. 
In comparison, the layered aspect of the 
system implementation on the hypercube caused 
many critical dependencies between work 
units. The availability of the simulator 
would therefore allow the early development 
of the application software and the early 
testing of the proposed Time Warp interfaces. 

3.2 Time Warp Simulator System Structure 

An application to be run under the Time 
Warp Simulator is linked to run as a single 
job on a sequential processor. This single 
job consists of a number of logical modules 
that handle the required functional areas, 
where each module may be implemented using 
several procedures or functions. The three 
main functional groupings of modules are the 
Time Warp entry points, the Time Warp 
simulator driver and utility modules, and the 
application modules. All coding is currently 
done in the C programming language and the 
system was originally developed for the VAX 
family of processors. Since its 
implementation, the simulator has been ported 
to the IBM/PC and the Macintosh. 

An application developer simply codes 
and compiles his application and links it 
with the precompiled Time Warp entry point, 
driver and utility modules and· executes the 
resulting image as a single job under the 
host's operating system. This allows the 

499 

developer to use the host's interactive 
debugging system or to do application 
debugging using standard output. 

3.3 Adherence To Time Warp 

In implementing a simulator of the Time 
Warp.mechanism, the intent was to implement a . . \ 

mmor unage of the application interface in 
form and function. Simulators by definition 
do not perfectly imitate the original system 
and three exceptions are known to exist. The 
first exception is based on a Time Warp 
characteristic that in a muJtiprocessor 
environment there would be no guarantee of 
the order of arrival of messages. This is 
evident in the situation where several 
messages have been sent to be received by the 
same object at the same virtual time. The 
simulator however, in the above case, queues 
messages in the order sent and an application 
programmer could make use of this 
information. The resuJting application could 
then possibly execute differently in a 
multiprocessor environment. 

The second exception is a hidden message 
situation involving 3 objects sending 
messages to be received at the same virtual 
time. If object A sends a message to both 
objects Band C, and object B sends a message 
to object C, then the order in which object A 
sends its messages is critical. If the 
message from A to C is sent first, then 
object C is scheduled for execution before 
object B and therefore will not have the 
message from B available. The solution to 
this problem is the proper ordering of the 
message sending. In addition, even though 
actual Time Warp could handle this situation, 
it would be advantageous to code in a 
similiar manner. 

The third exception is that the 
simulator requires the use of an application 
object entry point array. This array simply 
allows the simulator to link the application 
object's init, event and query code sections. 
The artay is coded as a separately compiled 
module and need not be recompiled as long as 
no new object type names are added to the 
simulation. 



3.4 Development Aids 

Three application development aids are 
available to the application programmer who 
is developing code using the simulator. 
Breakpoints may be set at either object 
execution (when the object receives a 
message) or when a Time Warp entry point is 
called. At a breakpoint the capabilities 
then exist to either display the event 
message queue or the object's state. 

4 A TIME WARP APPLICATION 

An application that has been used as a 
test case for the Time Warp system is the 
Game of Life. This game is played on an N by 
N board. The N++2 cells have two states, 
either live or dead, and a first generation 
or initial configuration of live and dead 
cells is given by the player. Succeeding 
generations have their configurations 
determined by a set of rules. The set chosen 
for this implementation are 1) a live cell 
remains alive in the next generation if it 
has two or three live neighbors in the 
current generation, 2) a dead cell becomes 
alive in the next generation if it has 
exactly three live neighbors in the current 
generation, and 3) otherwise a cell is dead 
in the next generation. For this 
implementation the board is wrapped around so 
that all cells have exactly 8 neighbors. 

The design of this game for Time Warp 
includes the implementation of four logical 
object types. These are the board 
initializer object, cell object, board 
display object, and a standard output object. 

4.1 Board Initializer Object 

The board initializer object executes 
once and creates all instances of the cell 
objects, the board display object and the 
standard output object. It also sends an 
event message to each of the created objects 
containing initialization information such as 
the board size. 

500 

4.2 Board Cell Objects 

Given an N by N board, N++2 board cell 
objects are created by the initializer 
object. The one initialization event message 
received by the cell object after creation is 
used to determine its position on the board, 
its neighbors, and its initial state. 
Subsequent execution of a cell object 
consists of I) sending its current state via 
an event message to the board display object, 
2)querying its eight neighbors for their 
states and setting its own state accordinitlv. 
and 3)sending and event message to itself 
with a future time stamp signifying the next 
generation. 

4.3 Board Display Object 

The Life board display object receives 
N++2 event messages from the cell objects at 
each generation. It then formats the game 
board and sends one row of the board at a 
time to the standard output object for 
display on the terminal. 

4.4 Life Game Results 

A typical implementation of the life 
game used as a test case consists of an 8 by 
8 board with some initial configuration such 
as the blinker. A blinker is a straight line 
configuration of three live cell which 
returns to its initial configuration every 
other generation. Generally 100 generations 
are allowed to complete. Run time statistics 
available at job completion show that over 
400 queries per second are being executed on 
a lightly loaded VAX 11/780. 

5 CURRENT APPLICATIONS USING THE 
SIMULATOR 

The following is a list of some current 
applications using the simulator. 



Life Game - Query Version - This application, 
detailed above, is typically used as a 
test case for Time Warp because of its 
use of both event and query messages. 
It executes in a lock step manner which 
helps in early development and 
debugging. 

Life Game - Event Message Version - This 
implementation of the Life game has a 
live cell send its state to its 
neighbors via an event message. No 
querying is done and it is therefore 
much more efficient than the query 
version. 

Army Command and Control Simulation Model of 
Message Processing and Handling by 
Various Staff Elements. This 
application, a work unit of the original 
Time Warp/Hypercube project funded by 
the sponsor, has been implemented using 
the simulator and will be the first 
non-trivial application running on the 
hypercube under the Time Warp mechanism. 
This military application creates about 
60 object instances. 

Data Flow modeling of Military Intelligence 
Processing. This simple model has been 
used to support the development of a 
prototype military intellegence 
workstation. 

Hopfield Associative Memory Model.[8) This 
application is a software implementation 
used to study the properties and 
structure of the llopfield Associative 
memory and its applications including 
Expert Systems. 

Knowledge Network Model. A distributed 
architecture containing expert system, 
data base management, user interface and 
conventional algorithmic processing 
objects is being modeled to study its 
characteristics and performance 
properties prior to prototyping. 

501 

References 

1. "The Cosmic Cube", C.L. Seitz, CACM 
Special issue on architecture . 
.January 1985 

2. "Fast Concurrent Simulation Using 
the Time Warp Mechanism", D. 
.Jefferson (UCLA), H. Sowizral 
(Rand), SCG conferences on 
Distributed Simulation, San Diego, 
.January 1985. 

3. "Implementation of Time Warp on the 
CalTech Hypercube", D. Jefferson 
(UCLA) B. Beckman and group from .JPL, 
SCG conference on Distributed 
Simulation, San Diego , January 1985 

4. "Caltech/JPL Concurrent Computation 
Project - Annual Report 1984", 
G. Fox, February 1985. 

5. "Design Specifications for Time Warp 
Entry Points", B. Beckman, JPL 
Internal Documents, 1984 -1985. 

6. 'Time Warp Simulators User's 
Manual", S. Hughes, V. Warren, K. 
Sturdevant, JPL Internal Document, 
September 1985. 

7. "Object-Oriented Programming: 
Themes and Variations", M. Stefik 
and D. Bobrow, The AI Magazine, 
Winter 1986. 

8. "Automated Deduction/Neural Net 
Accomplishments", J. Spagnuolo, .JPL 
Internal Document, May 1985. 









Distributed Batch Queues On MicroVAX IIs 

M. A. Oothoudt, J. F. Amann, and M. v. Hoehn 
Los Alamos National Laboratory 

Los Alamos, New Mexico 87545 

ABSTRACT 

The pr~ce/performance ratio of the MicroVAX II 
makes i~s use as a batch job "compute engine" very 
attractive. We have developed software to allow a 
user to submit batch jobs to a single queue on a 
host VAX and have those jobs run on any available 
VAX attached to the host with DECNET. The host 
VAX acts as the central queue manager for the 
~emote n~des and provides mass storage for the 
JObs running on them. The remote microVAX rrs 
access data files on host disks via DECNET and 
have sufficient local disk space for VMS user 
executables, and limited amounts of user r~n-time 
s~orage. For jobs typical of our environment, a 
single VAX-11/780 host should be able to service 
at least 20 MicroVAX rrs. 

INTRODUCTION 

The Clinton P. Anderson Meson Physics 
Facility will soon be using three 
VAX-ll/750s and six MicroVAX IIs for medium 
energy physics data acquisition. These 
machines will be used for data acquisition 
for six months of the year but will be idle 
much of the remainder of the year. Since 
these nine machines have a combined 
processing power equivalent to the two VAX 
8600s in our Data Analysis Center (DAC), we 
wished to find a simple way to add their 
processing power to the DAC during the idle 
periods. 

The chosen solution is to off-load 
batch jobs from the 8600s onto the "farm" of 
remote VAXs, leaving the 8600s free to 
handle interactive jobs. An 8600 "host" 
serves as a "queue manager" for the remote 
machines and as a "disk server" so that 
massive data files need not be located on 
the relatively small (71 MB) MicroVAX local 
disks. Each batch job runs on a single 
remote VAX, accessing any necessary data 
files over DECNET. Aside from usage of idle 
CPU power, this solution has the added 
advantage of getting significant throughput 
for batch jobs in the daytime when the 8600s 
are almost entirely consumed by interactive 
compute-bound jobs. 

COMPONENTS 

To run this VAX farm system, VMS V4.2 
(or later) and DECNET are required on all 
nodes. Ethernet is used as the physical 
connection for DECNET at our facility, but 
any communications link supported by DECNET 
could be used. 

The farm software running at our 

Proceedings of the Digital Equipment Computer Users Society 

505 

facility consists of 

1. DCL command procedures for the system 
manager to initialize the farm system 
and for the user to run jobs in it. 

i. A small disk "data base" on the host 
machine. This file contains a list of 
remote nodes and the status of any jobs 
running on those nodes. The file is 
owned by the SYSTEM; the WORLD has only 
READ access to it. 

3. Batch queues. In the host a batch queue 
SYS$FARM: contains a job for each user 
job running on a remote node. This host 
job controls and monitors the user job 
on the remote node; it uses very little 
CPU time (e.g. 5 minutes of host time 
to control a 15 hour user job on the 
remote CPU). Because our DAC is a 
Cluster we also have a generic queue so 
that jobs may be submitted to the 
execution queue from any cluster node. 
On the remote node a batch queue runs 
the user's job. 

4. Four images. One of these images must 
be Installed with SYSPRV privilege so 
that it may update the farm data base. 
The remaining images require no special 
privileges beyond that associated with a 
normal account (TMPMBX and NETMBX). 

(An early version of the software was 
implemented as a user-written server 
symbiont. However, server symbionts are 
only possible for printer or terminal queues 
and in such queues there can only be one 
active job [ie. one active remote node per 
queue] at a time. The inconveniences of a 
server symbiont were not compensated by any 
advantages, so the symbiont implementation 
was dropped.) 

Dallas Texas· 1986 



USER INTERFACE 

A user who wishes to submit jobs to the 
host farm queue must execute a farm command 
file (usually from his login command file) 
to initialize his process. The primary 
effect of this command procedure is to 
define a symbol S*UBMIT which points to farm 
command file SUBMIT FARM.COM. 

When the user submits a job, 
SUBMIT FARM checks to see if the job is 
intended for queue SYS$FARM; if not, it does 
a normal DCL SUBMIT with the user's command 
line. Farm jobs have farm command procedure 
FARMER BATCH.COM prefixed to the list of 
user batch command files, and the resulting 
job is submitted to SYS$FARM. All of this 
is done transparently to the user. 

Once the user's job has started running 
on a remote node, the user can run image 
FARM VIEW to list all nodes in the farm 
system and the status of executing jobs 
(e.g. amount of CPU time used). If the 
user needs more detailed knowledge about his 
job, he can login at the remote node. 
Otherwise all of his operations are done on 
the host. 

EXECUTION LOGIC OF A FARM JOB 

When a farm job starts executing in a 
host queue, command file FARMER BATCH is run 
and it, in turn, executes image FARMER. 
FARMER gets the user's SUBMIT command 
information from the Job Controller, 
allocates a remote node from the farm data 
base, and passes the job information to the 
remote node. FARMER then hibernates; when 
the remote node sends status information for 
the remote job, FARMER wakes and updates 
information in the data base. When the 
remote job terminates, FARMER deallocates 
the node in the data base and terminates the 
host batch job. 

In the remote node the user's 
executes in a normal batch queue. 
files on the host machine disks may 
accessed via standard DECNET remote 
access; e.g. from FORTRAN 

OPEN (UNIT-1,NAME='host node:: 
1 DUAl:[USER.DAT)RUN972:DAT', ... ) 

Because of problems under VMS V4.2 
below), the user's batch command file 
transfer all user executable images to 
remote nodes's local disk. 

job 
Data 

be 
file 

(see 
must 

the 

In the 
network task 
user's job and 
the host. 

remote node a farm system 
monitors the progress of the 
periodically reports back to 

PERFORMANCE 

The performance of the farm system can 
be measured in terms of its effects on the 
host machine, the Ethernet DECNET link, and 
the remote nodes. We assume that jobs run 
on this system are "CPU bound". By this we 
mean that a job running on an otherwise idle 
system has essentially zero NULL time. (The 
farm system does, however, support 

significant data transfer capability; a 
typical job processes 30 MB of data per hour 
of microVAX II CPU time.) Since we do not 
yet have a full complement of farm nodes, we 
estimated these effects as follows. 

The test system consisted of a 
VAX-11/780 host with disks on an HSC-50. A 
VAX-11/750 and a VAX 11/780 were the remote 
nodes with an Ethernet link used for DECNET 
communication. The effects on the host are 
primarily due to reading of data files by 
the remote job from the host disk. We ran 
an essentially IO-bound job on the remote 
nodes which read 3 KB records from a 
sequential unformatted file on the host 
disk. We then measured the fraction of CPU 
time consumed on the host to service these 
read requests. We found that approximately 
34 milliseconds of host CPU time were 
required per record transferred. This time 
was essentially independent of the number of 
remote nodes doing READs or the rate at 
which the READS occurred. Approximately 
55-60% of that time was accounted for by the 
"FAL" process created on the host to service 
the network requests. The remainder of the 
time was spent on the interrupt stack and in 
KERNEL mode. Since previous measurements 
have shown that a MicroVAX II typically 
requires 700 milliseconds to process that 
same 3 KB buffer we conclude that a 
dedicated VAX-11/780 host could support more 
than 20 MicroVAX II's in such an 
environment. 

To measure the overhead on the remote 
node we compared the time on a node required 
to read and process data read from a local 
disk as compared to data read over the 
network. We found that both wall clock time 
and CPU time increased by roughly 5% when 
data was read over the network. Even when 
data was read over the network the job on 
the remote node remained essentially compute 
bound (<1% NULL time). 

Even at the highest data rates we do 
not expect that the load on the Ethernet 
will be important. At the highest rates 
measured, data was being transferred over 
the network at 77 KB/sec using approximately 
85% of the host 11/780 CPU time in doing so. 
Extrapolating this to 100% usage gives an 
upper limit of roughly 90 KB/sec or 7% of 
the Ethernet bandwidth at 10 Mbit/sec. If 
run as a dedicated host, a faster CPU such 
as the 8600 could conceivably handle more 
remote nodes and put a heavier burden on the 
network. It is unlikely however that we 
will ever operate in such a mode due to 
heavy demand for time on our 8600's. 

PROBLEMS 

The farm system was implemented under 
VMS V4.2 where commands like 

$RUN host_node::file_specification 

on a remote node cause access violations if 
the image was linked using the LINKER 
CLUSTER option. Since a majority of our 
applications use this option, we were forced 
to require the user to copy all executable 
images to the remote node's local disk. As 

506 



a side effect, accounts needed to be created 
on the remote disks for every user of the 
farm system. 

Under VMS V4.3 the above problem does 
not exist and we are investigating whether 
we can leave the user's executable images on 
the host disks. This is a very important 
consideration for the MicroVAX systems, 
which have limited disk space. 

CONCLUSIONS 

For the last three months batch jobs 
have been running almost continuously on a 
farm consisting of two VAX-11/750s. When 
our six new microVAXs arrive they will be 
added into our farm. 

For year-round batch support, several 
minimally configured MicroVAX II systems 
will be purchased for installation in the 
DAC. The minimal configuration will consist 
of a MicroVAX II in a rackmount BA23 box 
with 4 MB of addon memory, a 30 MB disk, and 
an Ethernet link to the host 8600. 

ACKNOWLEDGEMENTS 

This work was 
Department of 
W-7405-ENG-36. 

supported 
Energy 

by 
under 

the U.S. 
Contract 

507 









ADDING DEVICES TO RSX WITHOUT A SYSGEN 

Dennis P. Costello 
National Research and Resource Facility 

for Submicron Structures 
Cornell University 

Ithaca, NY 

ABSTRACT 

Performing an RSX Sysgen can be a painful and lengthy procedure. This is 
generally due not to the Sysgen process itself, but to the work which 
surrounds Sysgen. It may be necessary to regenerate DECnet or other 
privileged software, the RSX sources may not be present on the target 
machine, or some other difficulty may arise. 

Generally, adding a new device to an RSX system requires that Sysgen 
be performed. This paper describes a technique for building a loadable 
device driver using sources provided by DEC. A command file which 
substantially automates this process is listed, and has been submitted to 
the spring 1986 RSX SIG tape. 

No particular knowledge of device drivers is assumed, but the reader 
should be familiar with the Sysgen process and the function of the various 
components of RSX. 

Introduction 

There are two types of device drivers in RSX; 
resident and loadable. Early versions of RSX 
allowed only the simpler of these, the reside~t 
driver. The resident driver is a set of Executive 
subroutines--the driver code and device database are 
included within the Executive address space. RSX 
version 3.2 introduced loadable drivers, in which 
the driver code is isolated into a special type of 
privileged task, and therefore. removed fr~t~ the 
Executive address space. This greatly facilitated 
the debugging and patching of device drivers, 
whether user written or supplied by DEC, because a 
change in driver code no longer necessitated a new 
Sysgen. All device drivers refer to device 
databases, which are collections of control blocks 
that describe each 1/0 device known to the system. 
Device databases may be either resident or loadable. 
Resident drivers always have resident databases, but 
loadable drivers may have either variety of 
database. A resident database is created during 
Sysgen as part of the Executive (located in 
Executive module SYSTB, not in pool), and 

511 

therefore cannot be changed without relinking the 
Executive. By contrast, a loadable database is 
created when its associated driver is built, and is 
copied into pool when the driver is loaded. Thus, a 
loadable driver with a loadable database can be 
added to an RSX system after Sysgen has been 
completed. Jn either case, the database is within 
the Executive address space, which allows easy 
access from privileged tasks and the Executive 
itself. When Sysgen builds a loadable driver, the 
driver always has a resident database. The driver 
built by the procedure described here will have a 
database which is identical to what Sysgen would 
have created, except that it will be loadable. 
Pigure 1 illustrates the relationships between 
resident and loadable drivers and databases, and 
Figures 2-4 illustrate the three legal combinations 
of driver and database types. The only 
prerequisites for this procedure are that loadable 
driver support, ANSI magtape support (if desired), 
and the desired terminal driver features (if the 
terminal driver is being rebuilt) must have been 
selected during the original Sysgen. Device 
databases are comprised of three different types of 



control blocks: the Device Control Block (DCB), the 
Unit Control Block (UCB), and the Status Control 
Block (SCB). The DCB contains information common to 
all devices of a given type, that is, all devices 
connected to the same type of controller. For 
example, there is one DCB for all DUnn disks in the 
system, one for all MSnn tape drives, but there may 

be several for TTnn terminal lines, since there is a 
separate DCB for each type of terminal controller 
(DLl 1, DZl l, DHl 1). The UCB contains all the 
information necessary to control an individual 
device, so there is one per device. The SCB 
contains information on an individual l/0 operation. 
There is usually one SCB per controller. Figures 5, 
6, and 7 illustrate the relationships among these 
control blocks. The DCBs form a linked list, 
pointed to by $DEVIID. Each DCB also contains a 
pointer to the UCB for the first device of that 
type. lJCBs of a given type are always contiguous, 
therefore there is no need for pointers from one UCB 
to the next. However, each UCB does has a pointer 
to the SCB associated with that unit. rigure 5 
shows a device database for an RL21 l controller with 
four RLOl or RL02 disk drives attached. There is a 
single DCB for these drives, four UCBs, and a single 
SCB. The RL211 controller does not support more 
than one 1/0 operation at a time, regardless of the 
number of attached drives. In this case, one SCB is 
sufficient. Figure 6 shows a database where a 
second R L2 l l controller is added to the situation of 
Figure 5. There is still just one DCB, since both 
controllers are of the same type. The number of 
drives has not changed, so neither has the number of 
lJCBs. But there is an additional SCB, since there 
can now be one 1/0 operation active simultaneously 
on each of the two controllers. Figure 7 shows a 
database for four terminal lines. There is a single 
DCB, which indicates that all the lines are attached 
through the same controller type. There are four 
lJCBs, each of which points to a separate SCB. This 
could be either separate DLI 1 terminal controllers, 
or a terminal multiplexer such as the DZ 11. 
Separate SCBs are provided for terminal lines 
because multiplexers such as the DZ I 1 can support 
simultaneous l/0 operations on all attached lines. 

Procedure to Build Loadable Device Driver -
General Case 

The general procedure for building a loadable device 
driver with a loadable database consists of the 
following steps: 

512 

o Write the driver code; 
o Write the code for the device database; 
o Assemble these source files, and link them 

together; 
o Remove the old device database, if it 

exists; 
o Load the new device driver and database, 

using the MCR LOJ\d command; 
o Test the driver thoroughly; and 
o Load the driver using the VMR LOJ\d command, 

so it is available at every system boot. 

The most difficult of these steps is writing the 
driver and database code. The procedure described 
here substantialty automates these steps. The 
obvious replacement for the first step is to copy 
the existing DEC driver code, which can be found in 
II 1,lO]xxDRV.MAC. 

NOTE 

xx is the device mnemonic of the driver 
being built 

Sysgen catls the command file [200,200JSGNPER.CMD to 
produce resident device database code. To generate 
loadable device database code, I have several times 
"executed" this command file manually. That is, I 
calculated the value of each variable and deduced 
what output SGNPER would have generated, had it been 
calted by Sysgen in the normal way. While this is 
preferable to writing the database code from 
scratch, it is still a fairly long and error-prone 
procedure. To automate the process further, I wrote 
a command file, TJ\BBlJILD.CMD, which catls SGNPFR.Cl\ 
for me. TJ\BBUILD impersonates the portion of 
SYSGEN.CMD which calls SGNPER.CMD. It first reads 
the files SYSSAVED.CMD and SGNPJ\RM.CMD, which wc1 
produced by the original SYSGEN, and uses them to 
set a number of global symbols appropriately. It 
~hen opens the files which SGNPER wilt act upon, and 
mvokes SGNPER. SGNPER then writes a new copv of 
the device database, which is identical to Executive " 
module SYSTB with the exception of the added 
devices. The database code for the individual 
driver is then extracted from this file using your 
favorite editor and used to build a loadable driver 
with loadable database, which can then be added into 
the system. If SGNPER were coerced into producing 
only the xxDRV database without atl the other code 
it would not be able to take into account the rest ' 
of the devices on the system when calculating 
floating vector and CSR addresses, and is more 
likely to get them wrong. That is why it is better 
to let SGNPER produce the entire database and delete 
the unwanted portions. 



Procedure to Build l..oadable Device Driver 
- using T ABBUU,D 

Please note in the following procedure that if the 
loadable database which is being produced will 
replace an existing database, the existing database 
must be removed before the loadable driver is 
loaded. Otherwise, the existing database will be 
used instead of the new one, and nothing will have 
been accomplished. In order to clarify the 
discussion of the procedure, this case is examined 
in a later section. Similarly, the extra steps 
involved when the database being added to the system 
is for a DU or MU device, or for a DY device on a 
22-bit Qbus system, are also explained in separate 
sections. 

NOTE 

In the following, (ggg,mmm] is a scratch 
directory, and xx is the device-type 
mnemonic (for example, DL for RL01/RL02 
disks). 

1. Back up the system disk before proceeding, 
then copy all files needed into a scratch 
directory and set that as your default 
directory. Since SGNPER modifies certain 
system files, reasonable caution dictates 
that these changes be made to copies of 
these files. The files needed are: 

[11,lO]RSXMC.MAC 
[11,lO]xxDRV.MAC 
[200,200]SYSSAVED.CMD 
[200,200]SGNPARM.CMD 
[200,200]SGNPER.CMD 
TABBUILD.CMD (in Appendix A; 

also on SIG tape) 
NOTE 

If an existing database will be 
replaced, it may be necessary to 
edit SYSSAVED.CMD now. See the 
section "REMOVING AN EXISTING 
DATABASE THROUGH POOL SURGERY" for 
more information. 

2. Invoke T ABBUILD.CMD. It will ask for the 
mnemonic of the device controller to be 
added to the system, and the number of such 
controllers. SGNPER will write some 
comments to the terminal, and may ask some 
questions regarding the controller(s) and 
devices to be added. Answer these as you 
would during a real Sysgen. 

513 

3. Inspect the files SYSSAVED.CMD, 
SGNPARM.CMD, and RSXMC.MAC. SGNPER will 
have appended lines to the end of these 
files, describing the entire device 
configuration of the system. These tines 
should be duplicates of the definitions 
originally written by the Sysgen. This 
should not be a problem, since the 
variables will simply be redefined. 
Examine closely any new lines added to 
these files. Pay particular attention to 
lines in RSXMC.MAC which add or change 
variable definitions. These variables 
generally control the generation of 
conditional Executive code (to support 
driver features such as ECC). Since a 
Sysgen will not be performed, this code 
will not be generated, and the driver may 
not work correctly. In general, try to 
understand the-purpose of all the tines 
which are added to these files, and verify 
that nothing has gone wrong so far. 

4. Edit the file xxTAB.MAC. This is what 
SGNPER.CMD would have written as SYSTB.MAC 
during a real SYSGEN, and contains the 
databases for all devices in the system, 
including pseudo devices, such as SY: and 
NL:. Remove all extraneous material from 
this file and change the first field of the 
xx DCB, leaving the file in the following 
format: 

.TITLE xxTAB 

comments: Digital copyright 
notice, etc. 

; DEVICE TABLES 

$xxDAT:: 

.WORD 0 
{ other DCB fields } 

{ UCB's } 

SCB's } 

$xxEND:: 
.END 



5. Assemble the driver and databases source 
files and taskbuild the driver: 

MAC xxDRV=[l,l]EXEMC/ML, 
MAC xxTAB=[l,l]EXEMC/ML, 
TKB @xxDRVBLD.CMD 

[ggg,mmm]RSXMC/PA:l,xxDRV 
[ggg,mmm]RSXMC/PA:l,xxTAB 

Where xxDRVBLD.CMD contains: 

[l,54]xxDRV,,[l,54]xxDRV=[ggg,mmm]xxDRV,xxTAB 
[l,54]RSX11M.STB/SS, LB:[l,l]EXELIB/LB, LB:[l,l]SYSLIB/DL 
I 
STACK=O 
PAR=DRVPAR:120000:length 
I 

In the above, length is taken from the following table: 

Device 

DU, MU 
XE, TT 
Others 

NOTE 

Length 

20000 
40000 
14000 

If the device driver being built is 
DU or MU, or DY on a 22-bit Qbus 
system, see the appropriate section 
for further information. 

6. LOAd the new driver and database, using the 
MCR LOAd command. If space does not exist 
in DRVPAR, you may need to use the /PAR and 
/HIGH switches on the LOAd command. 

NOTE 

If an existing database is to be 
replaced, it must be removed before 
the new driver is LOAded. See the 
section "REMOVING AN EXISTING 
DAT ABASE THROUGH POOL SURGERY". If 
the device driver being built is DU 
or MU, or DY on a 22-bit Qhus 
system, see the appropriate section 
for further information. 

514 

7. Test the new driver. If it is a disk 
driver, for each drive initialize a volume, 
create some directories and files, and read 
and write some files on the disk. Note 
that INltialize is not in itself an 
adequate test of a disk driver, since it is 
possible to build a database which allows 
INI to work normally, but does not allow 
the disk to be mounted or files to be 
created on it. I have in fact made that 
mistake myself. If is a tape driver, for 
each drive initialize a tape, mount it, and 
write some files with COPY or PIP. Read 
the tape on a system which is known to 
support ANSI tapes (preferably another RSX 
or VMS system). If it is a terminal 
driver, plug a terminal into each port in 
tum, log in through that port, and execute 
several commands. Only when you are 
convinced that everything works should you 
proceed to the next step. 



8. Install the new driver permanently, using 
the VMR LOAd command. You may wish to 
modify SYSVMR.CMD to include the LOAd 
command, create a new virgin RSXI IM.SYS, 
and run VMR @SYSVMR. This way, the 
partition layout can be changed so the new 
driver will fit into DRVPAR. Up to this 
point, the bootable system image has not 
been changed, so backing up to recover from 
an error has required nothing more than 
booting the system, and repeating the 
appropriate steps. But once the system 
image is modified, any errors might make 
the image unbootable, forcing you to 
restore the system disk from backup tapes 
and start all over again. A conservative 
approach would be to perform a software 
boot using the BOOt command and test the 
modified system, before using SA V /WB to 
make the new image hardware bootable. This 
is particularly true if an existing 
database was removed. 

Special Considerations for DU and MU Drivers 

These drivers refer to extra support code which is 
collected into a common region called PUCOM. This 
must be assembled, taskbuilt, and loaded. In step 
5, issue the following extra commands: 

In step 6, PUCOM must be installed into a common 
region. If there is a hole in the memory partition 
layout. of at least 75 (octal) memory blocks, the 
followmg two commands can be issued from MCR (with 
the + replaced with the starting block number of the 
hole). Otherwise, they must be added to SYSVMR.CMD, 
and a new system image built. 

SET /MAIN=PUCOM:*:75:COM 
INS PUCOM 

MAC PUCOM=[l,l]EXEMC/ML,[ggg,mmm]RSXMC/PA:l,[11,lO]DSAPRE/PA:l,PUCOM 
TKB @PUCOMBLD 

Where PUCOMBLD.CMD contains: 

[l,54]PUCOM,,[l,54]PUCOM=[ggg,mmm]PUCOM,[l,54]RSX11M.STB/SS 
I 
STACK=O 
UNITS=O 
PAR=PUCOM:140000:20000 
I 

515 



Special Considerations for DY Drivers on 
22-bit QBUS Systems 

This driver requires a common region, DYCOM, 1ocated 
within the first 124k words of memory, for buffering 
1/0 to and from the controller (which can on1y 
generate 18 bit addresses). This must be assemb1ed, 
taskbuilt, and loaded. In step 5, issue the 
following extra commands: 

MAC DYCOM=[l,l]EXEMCjML,[ggg,mmm]RSXMC/PA:l,DYCOM 
TKB @DYCOMBLD 

Where DYCOMBLD.CMD contains: 

[l,54]DYCOM,,[l,54]DYCOM=rggg,mmm]DYCOM 
I 
STACK=O 
PAR=DYCOM:O:O 
I 

In step 6, DYCOM must be instal1ed into a common 
region. If there is a hole in the memory partition 
layout which can be used, the following two lines 
can be issued from MCR (with the +replaced with the 
starting block number of the hole). Otherwise, they 
must be added to SYSVMR.CMD, and a new system image 
built. 

SET /MAIN=DYCOM:*:length:COM 
INS DYCOM 

Where length is the number of DY controllers times 20 (octal). 

Removing an Existing Database Through Pool Surgery 

If an existing database is being replaced, the old 
device configuration answers in SYSSA VED.CMD may 
need to be changed or deleted. Generally, if a 
controller is being added, and the devices attached 
to the existing controller(s) have not changed, 
nothing need be done at this stage. There will be 
no predefined answers to the questions for the new 
controller, and SGNPER will simply ask the 
appropriate questions as it is being run. However, 
if the configuration of devices attached to the 
existing controller(s) changes, the data in 
SYSSA VED.CMD will be incorrect. The appropriate 
lines must be either corrected or deleted. SGNPER 
will then either use the corrected answers, or ask 
the appropriate questions for all controllers of 
that type. The symbols to be altered are located 
near the end of SYSSAVED.CMD, in the section labeled 
"Peripheral Configuration". String symbols are 
defined for each controller, and generally for each 
device. These are named $$xxn (for controllers) or 
$nxxm (for devices). Note that n is the controller 

516 

number, and mis the device number. Thus, 2 RL02s 
on a single controller would be defined by the 
symbols $$DLO, $0DLO, and $0DLI. These string 
symbols each contain a set of fields separated by 
commas. Generally, the last field of the controller 
symbol $$xxn is the number of devices attached to 
the corresponding controller. You should either 
delete all these symbol definitions, or edit them 
appropriately. Before the newly-built driver is 
LOAded, the old device database must be removed from 
the system. Since the UNLoad command removes only 
the driver, not the database, extra steps are 
required at this point. Loadable databases may be 
easily removed by either booting the system (if the 
driver was loaded via MCR) or by building a new 
system image with VMR (if the driver was loaded via 
VMR). Resident databases (such as are produced by 
Sysgen) must be removed using a technique I call 
pool surgery. (Purists please note that I am 
operating on objects in SYSTB and not in pool, so 
this could as easily be known as SYSTB surgery. 
'Pool surgery' has a nicer ring to it.) The 
technique is as follows: 



o Make sure no one else is using the system. 
Any conflicts while performing pool surgery 
can corrupt the system in unpredictable 
ways. 

o Make sure that all devices whose database 
will be removed are idle, have no open 
files, have no checkpoint space allocated, 
are not mounted (marked for dismount is not 
sufficient), have no tasks installed from 
them, and that the associated driver has 
been lJNLoaded. Note that it is not 
possible to remove the database for the 
system disk or terminal drivers, since 
either all the terminals will go dead, or 
the system will lose communication with its 
system disk. If this happens, you'll have 
to reboot and start the pool surgery over. 
These cases require some extra steps, which 
are described at the appropriate time. 

o Look at [l,34)RSX1JM.MAP to find the 
location of Executive symbol $DEVHD. If 
the MAP file is not available, use DMP to 
examine [1,54JRSX 11 M.STB. Each record of 
the .STB file has several symbol 
definitions, whose fonnat is shown in 
Pigure 8. Dump the file, twice, once 
looking for the name of the symbol, and 
once looking for its location, using the 
following commands: 

DMP TI:=RSXllM.STB/RS/RC 
DMP TI:=RSXllM.STB/RC 

o lJse the MCR OPEn command for all subsequen 
steps, except as noted. 

o OPEn the address of $DEVHD to find its 
value. This is the pointer to the first 
DCB. lJse the @ operator of the OPEn 
command to follow the DCB linked list to 
its end (which is denoted by a link value 
of 0). 

o Look at the ASCII value of the third word 
of each DCB. This will contain the device 
mnemonic for the DCB. Find the DCB(s) 
which must be removed (for the terminal 
driver, you may need to remove all TT 
DCBs). 

517 

o Remove the DCB from the linked list by 
resetting the link pointer on the preceding 
DCB to point to the following DCB. If the 
DCB is not for the system disk or terminal 
drivers, OPEn may be used to make this 
change on the running system. Otherwise, 
ZAP must be used to make these changes on 
a copy of the system image file, 
RSX 11 M.SYS. 

o From MCR, confirm that the device database 
has been removed, using the DEV command. 
Then LOAd the driver, and test it as in the 
normal procedure. 

o If ZAP was used above, these steps must be 
done on the copy of the system image using 
VMR commands. The modified system image is 
then booted using the MCR BOOt command, at 
which time the new driver(s) will be loaded 
and available for testing. Once you are 
satisfied, use SA V /WB to make the modified 
system image the hardware boo table system. 
If you do this before the driver is 
adequately tested, or use ZAP on the 
original system image (rather than a copy), 
any error will most likely render the 
system disk unusable. 

NOTE 

Do not attempt to reclaim the 
space occupied by the old database. 
If you add this space to pool, the 
pool allocation routine will force 
a system crash when it first 
encounters this block, since the 
old database is located outside 
pool's address limits. 



Appropriate Applications 

This technique described in this paper is especially 
appropriate for adding a new type of controller to a 
system. It has been successfully used several 
times. In one case, an RSX Sysgen was performed on 
a VAX for a newly acquired PDP-11/23. This system 
had dual RX02 floppies and a Winchester disk which 
emulated several RK06s. A bootable floppy was 
required to move RSX to the target system. The only 
RSX system available that had an RX02 drive (and 
thus could make a bootable floppy) did not have a DM 
driver for the RK06/Winchester. ADM driver was 
added to the RX02-based RSX system, and this was 
then used to copy RSX onto the target system's RK06 
system disk. In another case, a newly arrived 
PDP-11/44 had an RL02 drive, an RA80 drive, and an 
Ethernet connection, but no tape drive. Existing 
RSX systems on the same Ethernet also had RL02's but 
no tape drives or RA disks. The only RSX 
distribution kit was on magtape. The only tape 
drive was on a VAX. The problem was how to move the 
distribution kit onto the RA80 so a Sysgen could be 
done. To do so, I started by copying the RL02 
system disk from one of the other RSX systems, and 
booting it on the 11/44. Then, the network node 
name and address were changed to avoid conflicts, 
and the network was brought up. A DU disk driver 
was added to the system, and the RA80 was 
initialized and mounted. The distribution kit was 
read onto a disk on the VAX. The RSX distribution 
kit was copied over the network onto the l l/44's 
RA80, VMR was used to make the RA80 bootable with 
the baseline system, and a normal Sysgen was 
performed. A TU80 tape drive was added to the same 
system months later. A MS driver was added to the 
system, which allowed the tape drive to be used for 
BR U. The common thread of these three examples is 
that no new executive features were required, so I 
was able to get around some rather sticky problems. 
In particular, the systems which I was modifying had 
all had loadable driver support selected when they 
were Generated. Also, a new controller type was 
added to the system in each case, and therefore it 
was not necessary to remove a device database. 
Other situations in which the technique might be 
particularly helpful involve turnkey systems. 
Performing a Sysgen on such a system might not be 
possible, since the sources or objects necessary to 
re-build privileged user tasks might not be 
available. The user could use this technique to 
avoid a Sysgen when new hardware is added. Or the 
vendor could use it to make loadable drivers in 
advance. This would be preferable to common 
practice among such vendors of generating "one of 
everything" into their systems, since it frees up 
space for pool that is otherwise taken up by unused 
device databases. 

518 

Inappropriate Applications 

This technique will not be of any use at all in two 
situations: 

o Adding a tape drive to a system without 
ANSI Magtape support. Extra code is needed 
in the Executive to support the use of 
MOUnt, PIP, COPY, DIR, etc. on tape 
drives. If ANSI Magtape support was not 
selected during the original Sysgen, this 
code will not be present. 

o Changing from half-duplex to full-duplex 
terminal driver, since the full-duplex 
driver requires executive code which the 
half-duplex driver does not. Changing the 
set of terminal driver features supported 
will probably not work either, since mar _y 
of these features also involve conditional 
support code in the Executive. 

Conclusion 

Loadable device drivers with loadable databases 
provide a comparatively easy, if seemingly obscure, 
way to add support for a newly acquired 1/0 device 
to an RSX system. The entire procedure described in 
this paper can be accomplished in a few hours, as 
opposed to the several days that might be required 
Lo perform a full Sysgen and Netgen, and to re-build 
privileged user tasks. 

Acknowlegemcnts 

This work was supported by the National Science 
Foundation under Grant ECS-8200312 to the National 
Research and Resource Facility for Submicron 
Structures. The author also wishes to acknowledge 
the assistance of Lindy Costello in the preparation 
of this paper, and of .John Koumjian in the 
preparation of the slides which accompany it. 



Device Driver T~pes 

LOADABLE 

RESIDENT DEC STANDARD NOT 
RESIDENT POSSIBLE 

DEC STANDARD TOPIC OF 
LOADABLE THIS PAPER LOADABLE 

Figure 1 

Resident Driver, Resident Database 

ALL RESIDENT DATABASES ARE LOCATED HERE 

Figure 2 

519 



Loadable Driver, Resident Database 

ALL RESIDENT DATABASES ARE LOCATED HERE 

xxDRV 

Figure 3 

Loadable Driver, Loadable Database 

p 
0 

EXECUTIVE 

0 ................................... .. 
L .....__ __ ____, 

xxDRV 

l .................................... j CODE ............................................. DATABASE 

Figure 4 

520 



Device Database Structure 

DCBs 
soEVHD:: ........... G ...... ~ . .'.'.~0 ........... ~0 .......... 8 

i 
! .... ~~~ 

DL0 .... , 

UCBs DLi ""j ....... o SCB 
DL2 .... i 

I 
DL3 .... · 

Figure 5 

Device Database Structure 

DCB1 
soEvHo:: ............ Gu .......... 0L ........... Er .............. ~s 

....... 
! 
: .... ,, 

UCBs 

DL00 ... . 

DL01 .... / ....... 0 SCB 

DL10 .... f ....... o SCB 

DL11 .... . 

Figure 6 

521 



Device Database Structure 

DCBs 
•DEvHD:: ............ Gu ........... EJL ........... GT .......... Es 

, .... . 
! 
i ..... ...r-----. 

TT00 ......... .. 

UCBs TT01 .......... . 

TT10 .......... . 

TT11 .......... . 

Figure 7 

Finding Address of $DEVHD 
FORMAT OF RECORDS IN RSX11M.STB 

..... S .. X .. .M ...... . 

.... l .. D .. J.. ..... .. 
SYMBOL NAME IS 2 WORDS 
IN RAD!50 FORMAT 

ADDRESS IS 1 WORD 

Figure 8 

522 

SCBs 



APPENDIX A 

T ARBUILD.CMD 

This command file can also he found on the Spring 86 
RSX SIG Tape. 

TABBUILD.CMD 

Author: Dennis P. Costello 
National Research and Resource Facility for Submicron Structures 
G02 Knight Lab 
Cornell University 
(607) 255-2329 

Copyright (c) 1986. This command file may be reproduced without charge 
provided this copyright notice remains intact. 

This command file at the attendant procedure for its use are believed to be 
correct, however, neither the author, the Submicron Facility, nor Cornell 
University acknowledge any liability for any damages arising from its use. 
In particular, the user is strongly encouraged to read and understand the 
paper "Adding Devices to RSX without a Sysgen", published in the Spring 86 
DECUS Proceedings, before proceeding. A copy is included here as PAPER.RNO . 

. , Prefix file for calling SGNPER.CMD. Sets global symbols appropriately, opens 

., files that are expected to be open, etc., and then calls SGNPER . 

. , Assumes that the files SYSSAVED.CMD and SGNPARM.CMD are in the current 

. , directory, and that they are copies of the file produced by SYSGEN . 

. , Also assumes that SGNPER.CMD is in the current directory. This should be run 

., in a scratch directory, to reduce the chance of corrupting any system files . 

. , Will append to RSXMC.MAC, so make a backup copy first . 

. , If you have the RL02 kit, $EXC should be defined as the disk on which EXCPRV 

., is mounted . 

. , For RSX-llM only, NOT RSX-llS, MICRO/RSX, P/OS, or RSX-llM+ 

., Get name of device to be added 

.DISABLE LOWERCASE 

.ASKS XX [2:2) Enter name of device to be added (e.g., DL, MS) 

.ASKN [1:9.:l] XXN Enter number of controllers of type ·xx· 

Read saved answer file 

.SETF $SGN1 

.SETF $SGN2 
@SYSSAVED 
@SGNPARM 

Set other global variables 

.SETN $SYGRP 1 

. SETN $UIC 11 . 

. SETN $GRP 0 

.IFT $MAP .SETN $GRP 4 

.TEST <UIC> 

.SETS $DFUIC <UIC>[2:<STRLEN>-l) 

.SETS $SGNUC <UIC>[2:<STRLEN>-l) 

.SETS $LST "" 

.IF $ALO NE "NL:" .SETS $LST "'$ALD'[ '$UIC',3'$GRP')" 

.SETS $EXC "SY:" 

523 



.SETS $DRV $EXC 

. SETS $DIR " [ '$UIC' , 2 '$GRP' ] " 

.SETS $PREFX "LB:[ '$SYGRP' ,l]EXEMC/ML,SY:[ '$UIC' ,lO]RSXMC" 

.SETS $XEPRE "LB:[ '$SYGRP',l)EXEMC/ML,DEUNA/ML,SY:[ '$UIC',10]RSXMC" 

.SETS $UICMS "[ '$SYGRP' ,5'$GRP')" 

.SETF $ACFDF 

.SETF $ACL 

.IFT $DCL .OR .IF $NUC GT 0 .SETT $ACL 

.SETS $SYS "M" 

.SETF $FUD 

.IF $TTY EQ "C" .SETT $FUD 

.SETT $PERIP 

.SETS $SF1 "" 

.SETT $SAVE 

.SETT $SAVED 

.SETS $SAO "SYSSAVED.CMD" 

.SETF $QBUS 

.IF $TPR EQ "11/03" OR $TPR EQ "11/23" OR $TPR EQ "11/73" .SETT $QBUS 

.IF $TPR EQ "11/83" OR $TPR EQ "LSI-11/73" OR $TPR EQ "KXJll" .SETT $QBUS 

.SETT $XPRES 

.SETF $PTW 

Change number of controllers in $DEV, $DV2, $DV3 to show new device 

.SETS STRING "$DEV" 

.GOSUB ADDDEV 

.SETS STRING "$DV2" 

.GOSUB ADDDEV 

.SETS STRING "$DV3" 

.GOSUB ADDDEV 

. , Open the various files that SGNPER expects to write to 

. ; 
.OPENA #0 SYSSAVED.CMD 
.OPENA #1 RSXMC.MAC 
.OPEN #2 'XX'TAB.MAC 
.OPEN #3 'XX'DRVASM.CMD 

., Write header records in SGNPER's output files 

. ; 

.DATA #2 .TITLE 'XX'TAB 

.ENABLE DATA #2 
. !DENT /M4. 2/ 

COPYRIGHT (c) 1983, 1985 BY 
DIGITAL EQUIPMENT CORPORATION, MAYNARD 

MASSACHUSETTS. ALL RIGHTS RESERVED. 

THIS SOFTWARE IS FURNISHED UNDER A LICENSE AND MAY 
BE USED AND COPIED ONLY IN ACCORDANCE WITH THE 
TERMS OF SUCH LICENSE AND WITH THE INCLUSION OF THE 
ABOVE COPYRIGHT NOTICE. THIS SOFTWARE OR ANY OTHER 
COPIES THEREOF MAY NOT BE PROVIDED OR OTHERWISE 
MADE AVAILABLE TO ANY OTHER PERSON. NO TITLE TO 
AND OWNERSHIP OF THE SOFTWARE IS HEREBY TRANSFERRED. 

THE INFORMATION IN THIS SOFTWARE IS SUBJECT TO 
CHANGE WITHOUT NOTICE AND SHOULD NOT BE CONSTRUED 
AS A COMMITMENT BY DIGITAL EQUIPMENT CORPORATION. 

524 



, 

DIGITAL ASSUMES NO RESPONSIBILITY FOR THE USE OR 
RELIABILITY OF ITS SOFTWARE ON EQUIPMENT THAT IS 
NOT SUPPLIED BY DIGITAL. 

VERSION M4.2 BASELEVEL 38 

CREATED BY SYSGEN VERSION 3.00 

SYSTEM TABLES 

MACRO LIBRARY CALLS 

.MCALL 
HWDDF$ 
SCBDF$ 
UCBDF$ 
CLKDF$ 

HWDDF$,SCBDF$,UCBDF$,CLKDF$ 
;DEFINE HARDWARE REGISTERS 

,,SYSDEF ;DEFINE SCB OFFSETS 
,,TTDEF ;DEFINE UCB OFFSETS 

;DEFINE CLOCK QUEUE OFFSETS 

LOCAL ASSIGNMENTS 

UMD=O 
.IIF DF D$$IAG,UMD=400 ;DIAGNOSTIC FUNCTIONS BECOME LEGAL 
ERL=O 
.IIF DF E$$DVC,ERL=4 

DEVICE TABLES 

.DISABLE DATA #2 

.DATA #2 $'XX'DAT:: 

., Call SGNPER to setup the device tables 

@SGNPER 
SET /UIC=[ '$DFUIC'] 

., Write trailer records in SGNPER's output files 

.DATA #2 $"XX'END:: 

.DATA #2 .END 

.; Close the files written by SGNPER 

.CLOSE #0 

.CLOSE #1 

.CLOSE #2 

.CLOSE #3 
. ' 
. ' All done!!! .. 

.EXIT 0 .. 
. , Change the number of controllers for device XX to XXN, if XX is in STRING 

.ADDDEV: 

.LOOP: 

.FOUND: 

.TEST 'STRING' 

.SETN POS 1 

.IF XX EQ 'STRING'[POS:POS+l] .GOTO FOUND 

.SETN POS POS+4 

.IF POS GT <STRLEN> .RETURN 

.GOTO LOOP 

. SETS XXNS "'XXN'" 

.SETS 'STRING' 'STRING'[l:POS+2]+XXNS+'STRING'[POS+4:<STRLEN>] 

.RETURN 

525 





Remote Bridge Management 

John Heffernan 
Donna Ritter 

Abstract 

This paper describes the general network mana 
we have come up with to solve it. We th d ger:ibenthproblcm and the models 

b·1· . en cscn e t e general 
capa t tttes of network management. Next w d. h. . 
store and forward repeater and its netw k ' c tscuss t c I,;\ N Bndgc I 00, a 

is a implementation of some of the con::pt~~~~~~;:~nt!nsothftcwfiarct R Bt~S. R RMS 
c trs sec ton. 

THE NE'IWORK MANAGEMENT PROBLEM 

As the LAN (Local Arca Network) becomes a system 
bus and Wide Area Networks begin interconnecting 
LAN's to form large and complex distributed systems, 
the network becomes the system. The problem network 
management faces today is one of size, complexity, 
and diversity. As networks are becoming quite large, 
network management can no longer be thought of as an 
afterthought or as a part time job. Instead of 
multiple independent system managers managing their 
part of the network, we tend to see network managers 
who have overall network responsibility. Networks 

VAX 1----1 
I 
I 
I 
I 
I 
I 

____ , 
I 

VAX 1----' 

today are complex because of the sheer number of 
devices and many ways to configure these devices. 
Networks today are diverse because of the wide 
variety of devices and communications hardware and 
software on the network. The architectural models 
for network management that we are working on today 
can form the basis for products that address the 
management of today's and tomorrow's networks in an 
integrated fashion. RBMS (Remote Bridge Management) 
is a product based on many of the principles 
described in the first half of this paper. 

We sec below the LAN multi-access medium as the 
LAN system bus. 

Router 1----- Remote DECnet Link 

----1 Terminal 
I Server 

PDP 11 1----

----1 Server 

PDP 11 1----
----1 Bridge 

Figure 1 

527 

I 
I 
I 
I 

'----' I I 
I 
I 
I 
I 



Ideally, the network manager logs into a host 
node dedicated to network management and can manage 
any network component such as bridges, terminal 
servers, and DECnet nodes. For example, the network 
manager should be able to do a "set line cost IO" 
operation for a1l bridges in the network with one 
command. Today, we are working on models that may 
help us construct integrated network management 
solutions. Some of the concepts of such a model are 
presented in sections one and two. 

1.1 Definitions 

Next, we present some definitions that we use 
later. 

Entity- An individually addressable component in 
the network. 

Agent- Software in the entity that carries out 
the remote management functions. 

Attribute - A perceived property of an entity, 
an attribute has a value that can be examined and 
possibly modified. 

Database- In the context of network management, 
we mean a management database. That is, a place 
where management attributes are stored. 

Datagram Transport Service - Management messages 
are transferred via datagrams. There is one datagram 
per management message. The caller can not be sure 
that messages have been received by the other side. 
Also called connectionless service. 

Director- Software that does the managing. This 
software is usually resident on the management 
station and has remote access to the agent via a 
protocol. 

Directive - A directive is a management request, 
or action, defined upon an entity which may be 
applied to that entity. 

Event sinks- A node where event messages are 
received and processed. 

Multicast- On the Ethernet, this refers to 
sending a packet to a known group address so that the 
packet can be received by more than one node per 
transmission. Normally, packets are sent to only one 
node. 

528 

Protocol- The rules and regulations governing 
communication between the agent and the director. 

Reboot- To cause the server to be started again. 
Generally, this means that the server is stopped and 
then operating software and characteristics are 
reloaded. 

Service Element - That part of the entity that 
does the work that the entity is chartered to do 
(aside from management, which is done by the agent 
part of the clement). 

Server- General term for a product that sits on 
a LAN and serves multiple clients on the network. 

Virtual Circuit Transport Service - Management 
messages may be transferred over a virtual circuit. 
This provided for guaranteed message delivery; the 
transport user can be assured that messages are 
either received by the other end or else the user is 
notified. Also called connection oriented service. 

Bridge- A device that interconnects networks at 
the data link level. 

LAN Bridge JOO- An intelligent store and forward 
repeater that extends Local Area Networks. 

RBMS- Remote Bridge Management Software­
Software that manages the LAN Bridge 100. RBMS runs 
under the VAX/VMS operating system. 



2 THE NE1WORK MANAGEMENT MODEL 

The basic model of network management is shown 
below. 

On the director side, we see applications built 
on top of more basic management functions. The 
functions are the primitives needed to access the 
management data in the agent. The application 
provides the added value and user interface needed to 
make sense of and ease the management process. In 
the general case, the director provides 
configuration, fault, accounting, performance, and 
security management. Note that these functions are 
those prescribed by the ISO model and they are not 
necessarily implemented by Digital. 

Software on both sides carries out the functions 
by building and parsing messages that convey the 
desired operation between the director and the agent. 
Messages are sent back and forth between director and 
lgent. In a typical operation, the user types a 

Director 

Applications 
------------------
Configuration 
Fault Management 
Performance 

Accounting 

------------------

Functions 
I 
I 

v 
------------------

"set" command. The intention of the set command is 
to modify an attribute in the entity being managed. 
For example, the network manager may want to "SET 
LINE 1 COST 10" in a bridge. In this case, the 
application in the director, which does configuration 
management, calls a function that builds the 
appropriate message to be sent to the agent. The 
message is then sent over the network using an agreed 
up.on management protocol. Depending on the entity 
bemg managed, a datagram or virtual circuit is used. 
The agent receives the request anJ validates it. It 
then carries out the operation and t1ends status back 
to the director. The director reads the status and 
reports any errors to the user. 

In the typical operation above, the context of 
the command is a single bridge. However, in our 
architectural models we allow for the concept of user 
defmed groups of entities which may be managed 
essentially at the same time. RBMS, for example, 
allows the context of a "set" command to be all the 
bridges "known" to RBMS. 

Agent 

Management Data 

Characteristics 
Counters 
State 
Events 

I 
I 

Functions v 
------------------

Set Operation Protocol 
Get Operation !<-------------------->' 
Action Operation! 

Do Set 
Send information 
Do action 
G.enerate Event Event Reception I 

----------------~ 

Figure 2 

529 



2.1 Attributes, Directives, And Events 

Another way of looking at an entity is shown 
below. 

We see that the agent and the service element 
Hshareu directives, attributes, and events. The 
service element is that part of the entity not 
dedicated to management (that is, does whatever work 
the entity is chartered to do). 

Attributes are values associated with the 
entity. These may be characteristics, counter ... , or 
status. Characteristics are operational parameters 
used to control the operation of the entity. 
Examples are baud rate on a terminal server or 
maximum addresses on a DECnet node. Counters are 
those attributes that count events. Examples are 
number of lost packets for a DECnet node or framing 
errors in a data link. Finally, status are 
attributes that reflect the current state of the 
service element. 

Directives are a command to the agent to do 
something. We can classify them as either examine, 
modify, or action directives. Examine directives 
return the value of counters, status, or 
characteristics. Modify directives modify the value 
of attributes. Finally, actions perform some 
management action such as rebooting a server. 

Some common actions are listed below. 

o Initialize entity- Reset the attributes to 
those stored in a database for the server or 
the factory defaults and reboot the server. 

o Create entity- Create a new instance of an 
entity. For example, there may be a create 
entity directive to create a new service on 
a terminal server. 

o Create iink- Create a communications link 
between two entities. For example, there 
may be a directive to create a logical link 
between two nodes. 

o Delete link- Destroy a communication link 
between two entities. For example, there 
may be a directive to break a logical link 
between two nodes. 

Directives may change attributes of the entity. 

530 

Events are the occurrence of conditions within 
the entity that are of significance to management. 
For example, a server may generate an event when it 
reboots. Events are sent over the LAN and are 
received by event sinks and usually put in a log fLle 
at the management station. 

I ligher level software in the director calls the 
primitive functions in order to provide an easy to 
use interface that controls and monitors the agent. 
This is illustrated graphically below. 

We see the higher level applications layered on 
top of the primitive functions. This is because the 
primitive functions can be shared by different higher 
level applications. 

Configuration management includes the typical 
management in currently available products such as 
the maintenance of attributes and seeing what is on 
the network. Fault management addresses the 
diagnosis of failing network components and includes 
things like loopback testing and invoking diagnostics 
on the communications hardware. Performance 
management addresses how the network works under 
various loads. This might include monitoring 
counters or providing histograms of daily traffic. 

Accounting addresses keeping track of who is 
using what. This might include generating usage 
reports so that network components can be charged 
back to the user. 

Security management addresses keeping the 
network secure. This includes password maintenance 
and perhaps security event logging. Authenticati~n . 
also comes under security management. Authentication 
means verifying the identify of the person performing 
the requested management function. 

2.2 Typical Operations 

Some typical operations provided by network 
management are discussed next. The most common 
operation is to access attributes. This includes 
setting characteristics, reading counters, and 
reading status information. Network management 
software also includes a summary display which shows 
only the most important information about an entity. 
Counters are especially important when things go 
wrong. They can indicate which component is in 
trouble. 



For fault management, the network manager may 
also choose to invoke diagnostics from the network 
management software. Most products allow at least a 
reboot of the product, which normally invokes. self 
test on power up. The results of the self test may 
or may not be available to the network management 
software. 

The network manager may also perform security 
management. He or she may set passwords on the 
communications product. 

Another common network management operation is 
down line loading. The network management station 

Manager I Protocol I A 
1<---------->1 g 
I I e 

I n 
I t 

sends the operational software, diagnostic software, 
or operational parameters to the server when the 
server boots up. Usually, the server multicasts a 
load me" message to the network and the host 
responsible (it could be many) takes responsibility 
for down loading the server. Some products, like the 
LAN Bridge 100, have their operational software and 
characteristics stored on board since they must come 
up operational despite potential host problems. A 
similar operation is the upline dump of software and 
attributes when a server is in trouble. This allows 
support personnel to diagnose the problem with the 
server. 

Directives 

Attributes 

Events 

Service 
Element 

Figure 3 

I Configuration 
I Manager 

\ 

I Fault I 
I Manager I 

\ 

I Performance 
I Manager 

I 
I 

v 

I Accounting I 
I Manager I 

I 

I Security I 
I Manager I 

I 

I Get I Set I Action I Event I 

I Request l Request I Request I Indicate I 

Primitive Functions 

I Directives 
I 
I 
v 

To Agent 

Layered Director Approach 

Figure 4 

531 



2.3 System Management Protocols 

There are many different system management 
protocols around now and we are moving towards 
standardizing on a single protocol (most likely, 
whatever becomes the ISO standard). MOP and NICE are 
two examples of protocols that have been used for 
DECnet. MOP is oriented towards low level datagram 
operations. NICE runs over a virtual circuit and is 
intended for use with a running node. RBMS uses a 
version of the IEEE 802.1 protocol over a datagram 
service. In the future, we hope to use a standard 
protocol and a standard transport mechanism. 

In general, these protocols are all 
request/response protocols. That is, a request is 
made and the initiator of the request waits for the 
response. The typical format for a set request 
packet is shown below (based on IEEE 802. l ). 

The request ID is copied irito the response 
message to allow the director to uniquely identify 
the message. The request ID field can also be used 
to hold information such as user identification, 
retry count, and sequence number in the case of a 
connectionless datagram transport mechanism. 

2.4 Management Information Databases 

In general, the following databases may be 
present for any particular product. 

Volatile- This is the local copy of 
operational parameters. Counters are always 
here along with the local copy of 
attributes. These are the ones used by the 
currently running service element software. 

Local permanent- This database may or 
may not exist depending on the product. It 
may reside on local mass storage or in 
non-volatile RAM (NVRAM). The local 
permanent database is saved across a power 
down or reboot. The LAN 100 bridge has 
local permanent storage in the form of 
NVRAM. Usually, if local permanent storage 
is present, there is no need to have a host 
permanent database. 

Host permanent- This is a copy of the 
attributes stored on the host management 
station. These are sent to the server when 
the server reboots. Usually, these are 
present if the product does not have local 
permanent storage. 

Directory- This is a management station 
database that maps names to addresses and 
may contain other data only of interest to 
management software. Basically, this is a 
list of servers that can be managed. The 
management software may have a command tc, 
add all responding servers to this list; 
this builds the directory automatically. 

+-------------------------------------------------------------------+ 
Ethernet data link header (Source, destination, type) I 

-------------------------------------------------------------------: 
Function type (Set) : 

-------------------------------------------------------------------
Component Type (Bridge link) 
------~------------------------------------------------------------

Subcomponent Type (Link l) 

-;~~~~~-~~-(~-~~~b~~-i~~~~i~;i~~-~h~-~~~~~~~-~~-~h~-i~i~i~~~~)----
-------------------------------------------------------------------
Action Type (Null if not an action) 

-------------------------------------------------------------------
Parameter List (Cost, 20 ) 

-------------------------------------------------------------------
Ethernet Data Link Trailer (CRC) 

+-------------------------------------------------------------------+ 
Typical Ethernet Management Message 

532 



2.5 User Interfaces 

The user interface is software that parses the 
user's command and displays the output. This is 
another area we hope to standardize and make 
consistent across all our network management 
products. The old style NCP style interface will 
probably give way to a more screen oriented display 
such as seen in the NMCC/DECnet Monitor. One new 
concept that can be seen in RBMS is the USE command. 
The USE command selects the entity or entities to be 
managed in subsequent commands. This becomes 
necessary as we move towards managing more than one 
server or more than one product by the same network 
management software. 

I I 
I I 

2.6 Implementation Model 

Next, we show a generic model of a single 
product network management package. 

The display, command parser, and command 
executor make up the user interface. The user 
interface parses commands, forms messages if needed 
(some commands may not access the network), relays 
the message to the listener process, and then waits 
for the response from the listener process. It then 
decodes the status of its request and formats the 
result if need be. 

------ I Display I <------------ Command 
' '<----' '• I I I 

I User I 
I I----
1 I 

------ I ---------

I 
I 

v 

-->I Command I 
I Parser 1----------> 
I I 

Management Messages 

Executor 

Listener 
Process 

'<------------------------->! 
I I 
I I 
I I 

------------- I 

I 
I 

v 

LAN 

I 
I 

v 

I Managed 
I Entity 

Figure 5 

533 

I 
I 

v 

Unsolicited 
Message 
Process 



The listener process handles communications with 
the network and the the managed entities. It is 
responsible for demultiplexing any incoming traffic 
between the user interfaces (there may be more than 
one) and the unsolicited message process. If the 
product uses virtual circuits, it handles these. If 
a datagram service is used, the listener handles 
retries, timeouts, and sequencing. 

The unsolicited message process handles any 
messages that arrive unsolicited. These could be 
events or requests for down loads. 

Together, these three components show a general 
implementation model for a single network management 
product. Next, we look at RBMS, which is an actual 
implementation of some of the ideas we have 
presented. R BMS is a VMS layered product that will 
allow users at a VAX/VMS host to control and monitor 
any LAN Bridge 100 in an Extended LAN. 

3 J,AN BRIDGE 100 FEATURES 

The bridging function performed by the LAN 
Br'...i5e 100 operates at the data link layer, therefore 
it is an intelligent forwarding/filtering device 
which is protocol independent. It bridges two 
Ethernets (802.3 CSMA/CD LAN's) together. It uses 
the 802. l standard request and response 
connectionless protocol for system management access. 
Bridges do not require RBMS, the management software 
running on VMS, to operate; however the Network 
manager gains a tremendous advantage with the use of 
RBMS. RBMS not only allows for the control of 
bridges, but also gives the Network Manager a tool to 
troubleshoot the network. 

As Local Area Networks (I AN) grow they may 
exceed the physical limitations of signal propagation 
on the cable. The extension of the LAN using bridges 
solves this problem. This provides transparent data 
link connectivity. It also provides the ability to 
build redundancy in the network by placing bridges in 
parallel so that if one of them fails, the other will 
take over immediately. Finally, remote management 
capabilities provide the added feature of being able 
to control the filtering and fonvarding of the 
traffic am! to assist in isolating faults. 

534 

3.1 Dynamic Address Learning 

Digital's LAN Bridge 100 receives all frames 
(from both Ethernets) since it operates in 
promiscuous mode. It dynamically learns \\'here nodes 
are in the network by observing the source address of 
these frames. The bridge has a cache of table 
entries for these addresses that includes the 
Ethernet on which it was received and an "aging" 
timer. This information is used to forward and 
filter frames. Periodically, the table is checked 
for "aged'' entries that have not been heard from; 
these are deleted from the table. 

3.2 f'orwarding Decision 

When a packet is received, the bridge must 
decide whether it should be forwarded. To make this 
forwarding decision, the bridge looks up the 
destination address in its forwarding database. 

Figure 6 shows an Extended LAN example where 
Station C is on the right side of Bridge_ l. Assuming 
that a packet comes in Linc I (Ethernet I) of 
Bridge_ l with a destination address of C, the bridge 
will look up C in its forwarding database. If C is 
found, the bridge will have an entry that marks it as 
last being seen on its right side, so it would be 
forwarded on Line 2. If destination address B was 
received by Bridge_!, it would be discarded, because 
the packet is already on the correct side. If an 
address is not in the database, the hridgc will flood 
the packet on all Ethernets except the Ethernet on 
which it was received. It will then learn this new 
address by putting it in the forwarding datahase. 

3.3 Remote Management Module In lbe Bridge 

The LAN Bridge 100 has a network management 
module (agent) that responds to management requests 
sent by an RBMS station. RBMS can be used to query 
the bridge for information, to control the bridge's 
state, to cause it to run self-test code and to set 
addresses in the forwarding database. This control 
over the fonvarding database enables the Network 
Manager to filter traffic selectively on the Extended 
LAN. 



3.4 Loop Detection 

If bridges are to function in an environment 
free from management intervention, they must be able 
to break any loops that might occur in the topology 
either intentionally (for redundancy) or 
unintentionally. The LAN Bridge I 00 uses a Loop 
Detection algorithm called the Spanning Tree 
Algorithm. (See reference 3 for a complete 
description of the Spanning Tree Algorithm.) The 
Spanning Tree Algorithm allows bridges in the network 
to automatically configure themselves into a loop 
free topology. This algorithm requires no management 
intervention, but can be tuned by Remote Bridge 
Management. 

In very simple terms, this algorithm elects a 
Root Bridge by selecting the bridge with the lowest 
priority. The Root Bridge is the root of a loop free 
spanning tree. The Root's priority field is settable 
by management. Setting this priority field can force 
a choice of which bridge becomes the Root. In the 
case of a tie, the lowest physical address is 
selected. 

End Stations 

Line 1 

Next, for each LAN, a Designated bridge is 
elected based on the lowest cost path to the Root. 
The Designated bridge is the bridge which forwards 
frames for the LAN segment. The other bridges on 
that LAN segment will be in a backup mode. The cost 
parameter is settable by management and can force the 
selection of a certain bridge to be the designated 
bridge. All bridges will turn off all of their 
lines, except for the single line that is the 
shortest path to the Root. The designated bridges 
will also tum on any lines attached to LANs for 
which they are designated. 

Figure 7 is an example of some physical 
topology. It contains a backbone connected to 3 
floors, each by a bridge. The third floor also 
contains a second LAN with 2 bridges in parallel. 

For simplicity, we will assume that all bridge 
priorities and line costs are the same. These 
parameters could be changed by RBMS to force the 
topology to configure differently. 

I 
I 
I 
I 

I Line 2 I 
Bridge_l '--------------------------' I 

LAN 1 
I 

Forwarding Table 

<-- A 
<-- B 

c --> 

Figure 6 

535 

LAN 2 



1 I 
----1 

I 
I 
I 
I 

2 I 
---' I 

I 
I 
I 
I 

2 I 
----' I 

I 
I 
I 
I 

Bl 

BS 

B4 

Network Physical Configuration 

Mesh Topology 

2 

B2 

1 I 
I 
I 
I 
I 

2 

B3 

1 

I 2 I I 
1-----------------------------------------------------
1 
I 
I 
I 

I 1 

Third Floor 

!--------------------------------------------------
! Second Floor 
I 
I 

I 1 
1--------------------------------------------------
1 First Floor 
I 
I 

Figure 7 

536 



Figure 8 shows the results of the spanning tree 
algorithm. Bridge B 1 with the lowest id 
(address/priority) is the Root. It is designated on 
both the Backbone LAN and LAN 3. Both of its lines 
are in the forwarding state. 

Bridge BS is designated on LAN 2. Line 2 is in 
the forwarding state because it is the least cost 
path to the Root. Line 1 is in forwarding state 
because Bridge BS is designated on LAN 2. 

A similar situation exists for Bridges B4 and 
B2. Bridge B3 is not a designated bridge; therefore 
it placed it's Line 2 in the backup state to prevent 
loops. It left Line 1 in forwarding since it is the 
least cost path to the Root. 

Result of the Spanning Tree Algorithm 

Forwarding 1 I 
-------------1 
I I 
I I 

Designated I 

I 
I 
I 
I 
I 
I 

Forwarding 
I 
I 

2 I 

BS 

1 I 
I 
I 
I 
I 
I 
I 

Designated 
I 
I 

Forwarding 

LAN 2 

Backbone LAN 

I 
I 
I 
I 
I 
I 

Forwarding 
I 
I 

2 I 

B4 

1 I 
I 
I 
I 
I 
I 
I 

Designated 
I 
I 

Forwarding 

LAN 1 

Root 

Bl 

I 2 Forwarding 
'----------------' I I 
I 
I 

I 
I 

Designated 
I 

I 
I 
I 
I 
I 
I 

Forwarding 
I 
I 

1 I 
I 

B2 

2 I 
I 
I 
I 
I 
I 
I 

Designated 
I 
I 

Forwarding 

I 
I 
I 
I 
I 
I 
I LAN 3 

I 
I 
I 
I 
I 
I 

Forwarding 
I 
I 

1 I 
I 

B3 

2 I 
I 
I 
I 
I 
I 
I 

/Ill Backup //// 
I 
I 
I 
I 
I 
I 
I 
I 

LAN 4 

Figure 8 

537 



4 REMOTE BRIDGE MANAGEMENT SOFTWARE 

RBMS allows the Network Manager to observe and 
control bridges. It runs on any VAX/VMS host with a 
DEC Ethernet controller. RBMS gives the Network 
Manager a tool to troubleshoot the network. This 
troubleshooting can help selectively filter traffic 
in the network as well as determine where potential 
faults have occurred. For example, if the Network 
Manager wanted to isolate a babbling transceiver to 
one network, the address could be placed in the 
bridge's forwarding database to be filtered. 

4. l Overview Of Remote Bridge Management Software 
(RBMS) 

4.2 Using RBMS In A Trouble Shooting Environment 

RBMS allows the Network Manager to examine 
bridge or line status, characteristics and c~unters. 
It also allows examination of the forwardmg database 
in the bridge. The forward~g database ~an ~e 
examined one address at a time or exammed m 
categories (i.e. those addresses set by management, 
those addresses learned by the bridge, permanent 
entries or all entries). RBMS can be used to set 
certain bridge/line parameters, such as the spanning 
tree parameters, and to set addresses in the 
forwarding database. 

Groups of bridges or lines can be addressed with 
a single command by using the KNOWN BRIDGES/KNO\\ 
LINES command. If the Network Manager is interested 
only in those bridges that are in the OPERATE.state, , 

RBMS is made up of 2 processes. One i~ the the ACTIVE BRIDGES option may be used. ( fhe OPI•,RA 
Bridge Control Process (BCP) and the othe~ ts the state is the normal state of the bridge.) A USE 
Bridge Management Listener (BML). Multiple users. can command is also available that allows the Network 
access RBMS on a VAX/VMS system. Each user will have Manager to establish a target for subsequent 
a BCP process. commands. 

BCP is the user interface to RBMS. It provides 
the translation of a user's command to a bridge 
protocol message. It checks to see that the user has 
the privileges required to execute the requested 
command. It sends the protocol messages to BML for 
transmission. When it receives a reply from a bridge 
through BML, it parses the answer, and displays the 
resulting data on the user's screen. 

BML handles all communication over the Ethernet. 
it is responsible for multiplexing and demultiplexing 
the requests from BCPs. It is also responsible for 
command retries and timeouts. 

RBMS manages several databases. It keeps a host 
directory to associate ASCII names to bridge 
addresses. This feature enables the Network Manager 
to give meaningful names to the bridges rather then 
typing in their physical addresses. The directory 
also contains descriptive information about the 
bridges. RBMS allows access to the databases kept on 
the bridge. The bridge keeps a database with counter 
and status information. It keeps a cache for all of 
the forwarding entries it knows about. These entries 
include those dynamically learned and those set by 
RBMS. 

538 

This command set gives the Network Manager a 
means to determine the condition of an Extended LAN 
and to selectively filter traffir.. These 
capabilities allow RBMS to be used as a 
troubleshooting tool on an Extended LAN. 



4.2.1 Example I -

In Figure 9, there are two LANs connected 
together by a bridge. The fault is that node ABC and 
node XYZ cannot communicate. 

First the state of the bridge connecting the two 
LANs is examined. The "USE" command is executed to 
establish bridge Lanl_to_Lan2 as the current target 
for subsequent commands. Next a SHOW STATUS command 
is executed to determine if the bridge is in operate 
state (Figure 10). 

Extended LAN Trouble Shooting Example #1 

AA-AA-OC-OC-13-13 

I ABC I 

I 
I 

AA-AA-00-00-12-12 

I XYZ I 

I 
I 

I Line 1 I I Line 2 I 
-------------------------' I Lanl to_Lan2 !--------------------

LANl 

Figure 9 

I 
I 

RBMS> USE BRIDGE LANl_TO_LAN2 

' I 

RBMS> SHOW BRIDGE LANl_TO_LAN2 STATUS 

Bridge Status as of 10-APR-1986 09:53:22 

LAN2 

Bridge LAN1_TO_LAN2, Address 08-00-2B-02-99-55 

Bridge state: 
Forwarding entries - current volatile: 
Forwarding entries - current non-volatile: 
Management heard link: 

Figure 10 

539 

OPERATE 
257 

2 
1 



The bridge is in the OPERATE state, so next the 
line states are examined. Given this topology, both 
lines should be in the FORWARDING state (see Figure 
11 ). 

The reason the two nodes cannot communicate is 
that the address is in the forwarding database as 
being filtered (destination is set to NONE). This 
can be rectified by issuing a management command to 
set the address to be forwarded on the appropriate 
line as is shown in Figure 13. 

Since both lines are in the forwarding state, 
the address of the unreachable node is examined in 
the Bridge's forwarding database (see Figure 12). 

RBMS> SHOW KNOWN LINES STATUS 

Line characteristics for Line 1 
Bridge LAN1_TO_LAN2, Address 

as of 10-APR-1986 09:54:09 
08-00-2B-02-99-55 

Port id: 
State: 
Line type: 
Remote management SETs: 
Collision Presence: 

A 
FORWARDING 
Ethernet CSMA/CD 
Enabled 
Disabled 

Line characteristics for Line 2 
Bridge LANl_TO_LAN2, Address 

as of 10-APR-1986 09:54:09 
08-00-2B-02-99-55 

Port id: B 
State: 
Line type: 
Remote management SETs: 

FORWARDING 
Ethernet CSMA/CD 
Enabled 

Collision Presence: Disabled 

Figure 11 

RBMS> SHOW BRIDGE LANl_TO_LAN2 PHYSICAL ADDRESS AA-AA-00-00-12-12 

Forwarding Entry for Address AA-AA-00-00-12-12 as of 10-APR-1986 
Bridge LAN1_TO_LAN2, Address 08-00-2B-02-99-55 

Set by: 
Outbound Line: 
Last seen on: 
Destination: 
Auto-delete: 

MANAGEMENT 
Line NONE 
Line NONE 
NONE 
NO 

Figure 12 

RBMS> SET BRIDGE LAN1_TO_LAN2 PHYSICAL ADDRESS AA-AA-00-00-12-12 LINE 2 

Figure 13 

540 



4.2.2 Example 2 -

In Figure 14 there are 3 LANs interconnected by 
bridges. This example shows how to locate a node in 
the network given its address. 

The address AA-00-04-00-lE-10 is the one that 
needs to be located. This is done by examining the 
forwarding databases of the bridges. Figure 15 shows 
the output of examining this entry in the database on 
Lanl_to_Lan2. The display shows that the bridge 
knows that the address is to be forwarded on Line 1. 

Extended LAN Trouble Shooting Example #2 
RBMS 

I 
I 

! ! 
! ! 
! ! L2 
1 ! ----------- ILanl_to_Lan2 

I 
I 

Ll 

L2 Ll 

LAN 1 

Bridge 
Backup_Bridge 

Figure 14 

I 
I 

------------1 Root_Bridge 

Ll 

LAN 2 --------------------------------------
LAN3 

I AA-00-04-00-lE-10 I 

RBMS> SHOW BRIDGE LAN1_TO_LAN2 FORWARDING ADDRESS AA-00-04-00-lE-10 

Forwarding Entry for Address AA-00-04-00-lE-10 as of 10-APR-1986 
Bridge LAN1_TO_LAN2, Address 08-00-2B-02-99-55 

Set by: 
Outbound Line: 
Last seen on: 
Destination: 
Auto-delete: 

LEARNING 
Line 1 
Line N/A 
NORMAL 
YES 

Figure 15 

541 



Figure 16 shows the forwarding entry for the 
address to be located. The display indicates that 
the bridge ROOT_BRIDGE has learned that the address 
is on its Line 1. This us indicated by the field 
"OutBound Line". This narrows the location of the 
node to be somewhere on LAN3. 

The field "Last Seen on" only applies to 
addresses that are set by management. If this were 
an address set by management, the "Last Seen on" 
field would indicate which side the bridge "saw" the 
address on; that is which side it would have learned 
it on. This is because when an address is set by 
management the "Outbound Line" is set, even though it 
may not be the line the address was last seen on. 

RBMS> SHOW BRIDGE ROOT_BRIDGE PHYSICAL ADDRESS AA-00-04-00-lE-10 

Forwarding Entry for Address AA-00-04-00-lE-10 as of 10-APR-1986 
Bridge ROOT_BRIDGE, Address 08-00-2B-02-0B-1A 

Set by: 
Outbound Line: 
Last seen on: 
Destination: 
Auto-delete: 

5 SUMMARY 

LEARNING 
Line 1 
Line N/A 
NORMAL 
YES 

Figure 16 

We have seen that current Networks require a 
distributed system of management. To facilitate this 
distributed system, Remote Server Management is 
needed to control the various network components on 
the Extended LAN. We discussed a general model and 
defined some of the desired features for Remote 
Server Management. 

We discussed Remote Bridge Management Software 
(RAMS) as an example of Remote Server Management and 
noted that it not only gave us the ability to control 
and observe bridges; but also is an invaluahlc tool 
in trouble shooting an Extended LAN. 

6 ACKNOWI,EDGMENTS 

Much of the general network management 
discus~ion is based on the work of Stan Goldfarb and 
Nancy T ,aPclle and various task forces they chaired. 
Thanks to Nancy LaPelle and Colin Strutt for a 
careful review of this paper. 

542 

7 REFERENCES 

1) Alan Kirby, Tony Lauck, "/\n Architecture for 
Transparently Interconnecting IEEE 802 Local Arca 
Networks", Presented at IEEE 802 Meeting, San Diego, 
CA, 1984. 

2) Bill Hawe, George Varghese, "Extended Local Arca 
Network Management Principles", Presented at IEEE 802 
Meeting, San Diego, CA, 1984. 

3) Radia Perlman, "An Algorithm for Distributed 
Computation of a Spanning Tree in an Extended I ,/\N", 
Ninth Data Communications Symposium, September, 1985. 

4) Nancy LaPclle, Ken Chapman, "Building Blocks fi<,r 
Remote LAN System Management", FOC/LAN85 Procecdin} 
Information Gatekeepers, Boston, Ml\. 

5) Bill Hawe, Alan Kirby, Bob Stewart, "Transparent 
Interconnection of Local Area Networks With Bridges", 
Journal Of Telecommunications Networks, Summer 1984. 



6) "DNA Ethernet Data Link Functional Specification, 
Version 1.0.0", Order No. AA-Y298A-TK. 

7) "DNA Ethernet Node Product Architecture 
Specification, Version 1.0.0", Order No. 
AA-X440A-TK. 

8) "DNA Maintenance Operations Punctional 
Specification, Version 3.0.0", Order No. 
AA-X436A-TK. 

9) "DNA Network Management Functional Specification, 
Version 4.0.0", AA-X437A-TK. 

10) 'The Ethernet - A Local Area Network - Data I ,ink 
Layer and Physical Layer Specifications, Version 2.0, 
(Digital, Intel, and Xerox)", Order No. AA-K759B-TK. 

543 





Productivity Increases with the CORTEX Application Factory: 

Empicical Survey Results 

Anthony C. Picardi 
Cortex Corp. 

128 Roberts Road 
Waltham, Mass. 02154 

Abstract 

The purpose of this paper is to present empirical evidence of productivity 
increases resulting from use of Cortex's Application Factory. A high-level 
architectural overview of the Factory is given first, including a sketch of 
how the modules work together and where the Factory fits in the application 
development life cycle. A list of some recent Factory applications is 
given next for the purpose of aquainting the reader with the types of 
applications the Factory is used for. 

The productivity estimates given in this paper were derived by 
comparing the actual time needed to produce applications with the Factory 
against production time using standard COBOL. Since none of the 
applications could be done twice, the COBOL efforts were estimated from the 
actual delivered functionality using function point estimating techniques 
developed by Albrecht in the late 1970's. The results of the comparison 
indicate an average productivity increase of a factor of 15. 

Further survey results are given which serve to quantify the size and 
complexity of the applications in terms of function point inputs such as 
the number of screens and reports and the type of VAX target computer. 
Finally, some relationships between the size and complexity of the 
application and development efficiency are investigated using some of the 
metrics developed. 

Beyond the average estimated productivity gain of 15, the survey 
showed that Factory applications were not concentrated in any one business 
sector or application. Average Factory applications included 45 screens 15 
reports and 33 datasets. There is some indication from graphical data that 
large applications are less efficient in terms of required hours per 
function point, which is also true of the estimated COBOL effort for large 
projects. However, it seems that the relative advantage of the Factory 
relative to standard COBOL increases slightly as the application size and 
complexity increase. These conclusions are made tentatively, however, due 
to the small sample size and variance of the sample data. 

545 



1 APPLICATION FACTORY OVERVIEW 

1.1 What Is The Application Factory? 

The Cortex Application Factory evolved quite 
literally from the same roots as all other factories 
-- from the need to automate repetitious and tedious 
production processes. Cortex had long been involved 
in the development of business applications and had 
developed its own high-level language (Builder) for 
that purpose in the late 1970's. The fact that 
modern on-line multi-user business applications are 
composed of generic modules -- menus, screens, 
databases, reports, and procedural logic -- prompted 
Cortex developers to seek ways of capturing their 
expertise in building business applications to 
automate the process. If this could be achieved, 
then each consultant could be freed to concentrate on 
the creative part of the application development 
process, leaving the tedious coding to the computer. 

This was the genesis of the Application Factory. 
The core of the Factory is the generator, which is 
capable of reading specifications about an 
application -- the application "meta data" -- and 
generating compilable code from them. The process of 
colJecting specifications has also been automated by 
producing a Factory application for this task! Since 
specifications are nothing but data about generic 
parts of applications, it was possible to generate an 
application to collect and organize information ahout 
applications. Figure l shows a schematic of the 
Application Factory concept. The visible part of the 
Factory is the developer interface (a Factory 
application) which collects meta data information and 
stores it as a collection of RMS files. The input to 
the generator is this set of RMS files while the 
output is a set of programs which are the highly 
modularized components of an application. 

Since it is so easy to create and change modules 
with the Factory, it is best used in a "prototyping" 
type of development process in which users are 
involved in the development process to test the 
various modules as they are developed. Experience 
has shown that much richer applications and more 
satisfied users result from this prototyping method 
rather than the more formalized specification method, 
especially when the applications are highly 
user-interactive. 

546 

1.2 What Is The Application Factory Used For? 

The Application Factory is used to convert a 
business application data model and operational 
specification into an implementation on the full 
range of DEC VAX computers (and clustered computers) 
running the VMS operating system. An application is 
an integrated set of source modules and data 
definitions, not just a heap of screen and report 
programs. 

Applications that have been developed with the 
Factory range from the "bread and butter" sales 
tracking, order entry, accounting, inventory and 
payroll applications to esoteric applictions to track 
samples in quality control labs or to track raw 
materials through manufacturing, inspection, 
labelling, packing and shipping stages of automated 
manufacturing plants. Businesses using the Factory 
range from heavy manufacturing and energy production 
to ravel agencies and health clubs. A number of 
consulting enterprises have sprung up to use the 
Factory to deliver customized business applications. 
Figure 2 shows a list of some of the representative 
applications included in the survey. 

2 FUNCTION POINT sonw ARE ESTIMATING 
TECHNIQUES 

2.1 Major Inputs 

The need for a new measure of software 
productivity beyond the traditional '1ines of code" 
(LOC) evolved with the advent of higher level 
languages with which developers were producing fewer 
lines of code per unit time at a greater cost per 
line, yet sti11 claiming productivity increases. The 
relevant question became: regardless of the number 
of lines of code, how do languages compare in terms 
of functionality delivered? Late in the 1970s Allen 
Albrecht of IBM began to develop a method of 
measuring an application's size and complexity in 
terms of function points. Function points measured 
the delivered functionality of a program instead of 
the developer's prior estimate of how many lines of 
code it would take (Albrecht, 1979). Since then his 
work has been extented to include numerous measures 
of complexity and environmental influences on 



developer performance (Drummond, 1985; Zwanzig, 1984) 
as we11 as coefficients linking function points to 
many programming languages. 

Function point estimating is done by first 
counting up the number of function-providing elements 
in each of five classes: inputs such as data 
screens; outputs such as reports; files; inquiries 
such as key screens or queries; and interfaces to 
other hardware or software systems. For each type of 
function, the number is weighted by a judgemental 
difficulty factor, and all the functional components 
are then added up to yeild the "unadjusted function 
point total". This unadjusted total is then further 
modified up or down based on the importance of a set 
of "project influencing factors". These factors 
measure the importance of features such as 
communications, performance, hardware utilization or 
documentation and thus the extent to which developers 
will spend time devising elegant solutions to these 
problems. For example, the more critical performance 
is to an application, the more time will be spent on 
ways to deliver performance even though the total 
number of function points is not increased. The 
result of this activity is a total function point 
index which is independant of programming language 
and which embodies measures of both the size of the 
application, via extensive measures such a number of 
screens and the complexity of the application, via 
intensive mensures such as influencing factors 
pertaining to procedural complexity. 

The heart of the function point technique is to 
relate the resulting function point index derived 
from the above activity to some empirical sample of 
software projects to establish a quantitative 
relation between function points and the expected 
time the project will take. Indeed much of the work 
since Albrecht's original paper has been to establish 
coefficients relating development effort in a 
particular language to total estimated function 
points. Even though the function points for a 
particular application may be fixed, technological 
advances in programmer development tools or languages 
can now be reflected in this coefficient. Thus a 
more efficient programming language will deliver more 
function points per unit time than an older language. 
This applies equally to non-procedural languages and 
application generators for which the old measures of 
lines of code are irrelevant. 

547 

2.2 Use To Estimate COBOL-Equivalent Effort 

In order to be useful, a measure of productivity 
increase must be relative to some familiar standard. 
For this reason, the estimates of productivity 
increses in this paper are based upon the effort it 
would take to produce the same application 
functionality using the Application Factory relative 
to COBOL. The empirical coefficient relating COBOL 
to total function points was obtained from a 1983 
GUIDE publication. The coefficient relates the total 
function point measure for an application to the 
total time it would take to produce the application 
entirely coded in COBOL, with the level of technology 
(editors, report painters and generators) that was 
typical at IBM in the early 1980s. Since the most 
common language for business applications has 
traditionalJy been COBOL, this was thought to be the 
least common denominator for the Factory comparison. 

3 THE APPUCA TION FACTORY SURVEY 

3.1 The Sample 

The survey sample consisted of applications 
which have been completed by Cortex's Application 
Factory customers and internal Cortex Factory users 
in the period between late summer of 1985 and early 
spring of 1986. About half of the data was colJected 
via a four-page written questionnaire and half via a 
telephone survey. The target population was censused 
rather than sampled since the numbers were smalJ 
enough to allow complete inclusion in this time 
frame. Even so, probably a full 20 percent of the 
applictions were not included due to non-reporting or 
omission from the census list. It is not felt that 
this introduced any significant bias in the results, 
however, since the omissions were not concentrated in 
a particular sector or application type. Jn all the 
sample consisted of 29 applications. 



3.2 Descriptive Results 

The following figures describe the quantitative 
aspects of the applications that were used as inputs 
to the function point estimate. Figure 3 shows the 
distribution of the number of data screens in the 
app1icatins among the sample. The average number of 
screens was 45 with a definite trend toward more data 
screens in the later telephone survey sample. 

Figure 4 shows the distribution of the number of 
reports among the survey sample, with the average 
being 15. This is a clear underestimate of the 
number of reports in a "typical" application since a 
number of the sites reported that they had delivered 
the first application with only a fraction of the 
required reports due to aggressive delivery 
schedules. Nevertheless, the function points were 
calculated on the basis of the actually delivered 
number of reports. 

Figure 5 shows the distribution of the number of 
datasets included in the survey sample. Datasets are 
logical file data structures and are implemented in 
the Factory as RMS files. The average number of 
datasets was 33, again with the trend being to larger 
applications over the time span of the survey. 

The survey included fourteen "influencing 
factors" which could potentially add complexity to 
the delivered application. Among the factors which 
were found to be inportant were: communications 
between the application and sources of data via 

include: on-line entry of data; complex multi-screen 
functions; on-line update of the database; full 
documentation of the application meta data; and 
utilities which automate database updating for data 
structure changes and moving the application to 
various target operating machines. 

The resulting distribution of total function 
points for the sample applictions is shown in Figure 
6 with the average being 657 total function points 
per application. This average number of function 
points corresponds to a generic application with an 
average of 45 screens, 15 reports and 33 datasets 
with an upward adjustment factor of 7 percent due to 
performance and logical complexities of the type 
mentioned above. This average number of function 
points corresponds to an equivalent of 68,960 lines 
of COBOL code. 

Information on the relation between function 
points and the CPU size that the applications were 
targeted for was only available for about half the 
sample and is most meaningfully given in terms of the 
ranges below. The surprising lack of correlation 
between the size of machine and the function points 
in the application results from the facts that 
machines are shared among other applications most of 
the time and the wide variety of configurations 
achievable with any one basic CPU via additions of 
memory or disk drives. 

CPU Function Point 

Microvax 237 to 1325 
750 111 to 1437 

VAXMAIL or other means over DECNET in 14 percent of 
the cases; distributed processing via CPU sharing of 

780 
785 
8600 

458 
291 
763 

to 1640 
to 1195 
to 2418 data files in IO percent of the cases; 

performance-related FDL tuning and other 
modifications in 66 percent of the cases; 
customizations related too a high number of 
concurrent users or transaction volume relative to 
the target CPU in 48 percent of the cases; attention 
paid to application generality for multiple 
installations in 24 percent of the cases; 
customizations needed to add application features not 
obtainable via non-procedural Factory specification 
in 38 percent of the cases; and hooks added to the 
application for the purpose of easing future 
modification in 59 percent of the cases. 

There are a number of adjustment factors that 
normally add function points to an application which 
the Factory provides by default with no extra effort 
on the part of the developer. These features 

548 

8650 594 

3.3 Productivity Ratio Of COBOL To Factory Effort 

Function points were used to estimate the 
person-weeks of effort that each of the applications 
in the survey would take if coded from scratch in 
COBOL. This estimate was then divided by the actual 
person-weeks that the application took to develop. 



This ratio is termed the productivity increase of the 
Factory relative to COBOL and was found to average 15 
over the entire survey sample. The distribution of 
productivity increases is shown in Figure 7. The 
smallest productivity increase was found to be 3.& 
and the largest was found to be 32. A ratio of 32, 
for example, can be interpreted as meaning that the 
programmer on this particular application was 3100 
percent more efficient using the Factory than an 
average COBOL programmer would be expected to be 
using COBOL! 

3.4 Relationships Among Size, Efficiency And 
Productivity 

Having data on both function points and actual 
resources, it is appropriate to ask whether the 
larger applications take longer than the shorter 
ones. Figure 8 shows an exploratory plot relating 
the delivered function points to actual person-week 
resources. One would expect the effort to increase 
as functionality increases, which is the case in 
general, however, there does seem to be the slight 
"decreasing returns to scale" phenomenon common in 
all production systems. This behavior means that you 
get proportionately fewer and fewer function points 
per person-week expended as the project increases in 
size (function points). 

The decreasing returns to scale relation between 
effort and application size can be seen more clearly 
in Figure 9 in which actual hours per function point 
is related to total function points in the 
applications. This scatter plot suggests, again, 
that function points are harder to come by as the 
application size and complexity increases. 

But decreasing returns to scale for production 
factors is nothing new -- indeed the relative 
efficiency of small-developer teams is well-known in 
the software industry. The important question is 
whether the Factory performs better on large projects 
than COBOL could be expected to perform. Figure 10 
shows the relation between the productivity increase 
ratio (shown in Figure 7) and the size of the 
application as measured in function points. The 
scatter plot indicates a slight trend to increased 
advantage relative to COBOL as application size and 

549 

complexity increases. These last inferences drawn 
from Figures 8, 9 and 10 are made only tentatively 
since the small sample and its large variance do not 
admit to strong statistical inferences. 

4 CONCLUSIONS 

This survey of applications produced with the 
Cortex application Factory has shown them to be 
diverse, covering a wide range of industries and 
application types. The average application consisted 
of 45 screens, 15 reports and 33 datasets and was 
produced 15 times more efficiently than it could have 
been expected to have been produced using COBOL (in a 
1980s IBM COBOL coding environment). Although the 
small sample and its variance do not admit to 
quantitative inferences, there is an indication that 
Factory- produced development efforts may not be as 
subject to the large project decreasing returns to 
scale as could be expected using COBOL. This may be 
due in part to the Factory's application STATUS and 
developer guidance system, and automatic meta data 
documentation which significantly reduces the 
confusion and interference among multi-developer 
teams. 

Future investigation of Factory productivity 
will endeavor to establish the nature of the learning 
curve for developers as they accumulate experience 
using the Factory in successive applications. 

5 REFERENCES 

l. Albrecht, Allan J., "Measuring Application 
Development Productivity", Proceedings of the 
Joint SHARE/GU/DE/IBM Application Development 
Symposium, October, 1979, Pages 83-92. 

2. Drummond, Steve, "Measuring Applications 
Development Performance", DATAMATION, 
February, 1984. 

3. Zwanzig, Ken, ed. Handbook for e.rtimating Using 
Function Points, for GUIDE Project DP-1234, 
November, 1984. 



v 
T 

0 

0 

c 
0 

n 
p 

A 

T 

A 

B 

L 

E 

T 

E 

B 

n 
I 

• 
A 

L 

s 

Figure 1: The AJU~lication Factory: ConcepJ; 

Component 
Specihcation 

Reports 

BABDCOPY 
LISTIJl'G 

Application 
Status 
Scnen 

Dictionary 
Datasets 
Lilll<s 
Dataviews 

J.!.!J} TEST mum 

1-=:==[-=rll OPEBATE - n~ APPLICATIOR 
~ 

550 

Application 
SpecihcatiONI 

Parameters 

Screel\B 
Job Streams 
Reports 
ExtractioNI 
Graphs 
Procedures 
Custom.i:atioN1 

GEREBATIOR 

Application 
Source 

Proaram.s 

File Creates 
I/ 0 Routines 
Key ScreeNI 
Data Screel\B 
Job Streams 

Reports 
ExtractioNI 

Graphs 
Procedures 

Custom. Files 

BUJI 
APPLICA Tl OR 

Intearated 
Application 

J 

J 
J 

ans 
DATA 

FILES 

FACT OBY 

GEREBATOB 

BMLDEB 

SOUBCE 

CODE 

BMLDEB 

COBPILEB 

VAi 
EIECUTABLE 

IBAGE 



Figure 2: Representative List of Factory Applications 

Job quotation and interface to order entry system 

International purchase order tracking 

Consultant job and time tracking and reporting 

Software maintenance contract tracking and renewal letter production 

Integrated inventory, accounts receivable/payable and payroll for 
wholesaler in Bermuda 

Hotline call tracking and bug reporting 

Application Factory user interface 

Medical office management, patient registration, scheduling, billing 

Manufacturing material tracking, wieghing, packing, labelling, 
storage, history 

Inventory and reorder for municipal utility water Department 

Order entry, inventory and production scheduling for a variety of 
industries 

Student registration, student and teacher scheduling, and reporting 

Sample testing and quality control for beverages and pharmaceuticals 

Field service scheduling for software hardware/software customers 

Travel club membership, mailing list, trip discount tracking 

Commodities daily price tracking, analysis and reporting 

Document tracking for large engineering firms 

Customized payroll packages for universities or foreign countries 

Health club membership, checkin, billing and dietary analysis 

551 



Figure 3: Number of Data Screens In an Appucauon 

8 

7 

6 

5 

:::n 
w 
c 
(l) 

4 ::i 
cr 
•l) 
L 
u. 

3 

2 

0 

O to 19 40 to 59 80 to 99 120 to 139 
20 to 39 60 to 79 100 to 119 140 & over 

Number or Screens 1n App11cat1on 

552 



Figure 4: Number of Reports In an AppUcaUon 

10 

9 

8 

7 

6 
::n 
u 
c 
Q) 

5 :::; 
er 
Q) 
!... 

LL. 

4 

3 

2 

0 
Oto 4 10 to14 20 to24 30 to34 40 & over 

5 to 9 15 to19 25 to29 35 to39 

Number of Reports 1n App11cat1on 

553 



Figure 5: Number of Datasets in an Application 

16 

14 

12 

10 

::1l 
(_) 
i:: 
OJ 

8 ::l 
er 
OJ 
L 
u.. 

6 

4 

2 

0 
Oto 19 20 to 39 40 to 59 60 to 79 80 to 99 100 & over 

Number of Datasets 1n App11cat1on 

554 



12 

10 

8 

:::T:• 
u 
,;::: 
Q) 

6 ::l 
er 
1I1 

!.... 
Li.. 

4 

2 

0 

Ftgure 6: Funcuon Point Measure of Appttcauon 
Size and Complenty 

o to 299 600 to 899 1200 to 1499 
300 to 599 900 to 1 199 1500 & over 

Application Function Points 

555 



6 

5 

4 

::::Y.• 
r .. J 
c 
Cl) 

3 ::3 
cr 
•l.i 
I-
LL 

2 

0 

Figure 7: Ratio of Estimated COBOL Effort to Actual 
Effort Using the Application Factory 

1 to 4 4 to 8 8 to 12 12 to 16 16 to 20 20 to 24 24 & over 

Product1v1ty Increase Over COBOL 

556 



c 
D 

-· (IJ 
( __ ) 

CL 
CL 
<[ 

2500 

2000 

1500 

1000 

500 

0 

Figure 8: Relationship Between Application Size and 
Complexity and Development Resources 

• 

• 

• • 
• • 

• 

• • 
• • • • 

• • • • • • 

50 100 150 200 

Actual Resources, Person-Weeks 

557 

250 



7 

6 

~· 

5 
0 

CL 

0 

+-' 
(.j 

4 ;:: 

= LL 

I].) 
Q_ 

(11 

3 L 
::3 
;=1 

I 

•D 
::3 

( ... 1 2 
·'.t 

0 

Figure 9: Relationship Between Application Size and 
Complexity and Development Efficiency 

• 

• 

• 
• 

• 
• • 

• • 
•• • • • • • • • • 

• 
• • •• 

500 1000 1500 2000 

Function Points in Application 

558 

• 

2500 



Ftgure I 0: Relationship Between Application Size and 
Productivity Increase Relative to COBOL 

35 

• 
30 • 

_J • 
0 

25 fO • • 0 
u • L 
m 
> • 0 
(I) 20 
if! 
•J;) • • •]) • L 
D 
c -
-::I! 15 -· • • 
> 
.... 
D 
::l • "O 

10 • • 0 
L 
CL • • • • • 

• • 
5 • • 

• 
0 --, 

0 500 1000 1500 2000 2500 

AppJ1cat1on Funct1on Po1nts 

559 





Rainbow Color/Graphics Option Use 

in an 

Assembler Language Programming Course 

Robert Workman 
Southern Connecticut State University 

New Haven, Connecticut 

ABSTRACT 

The Rainbow .Color/Graphics Option is used in an assembler language and 
computer arclutecture course. to demonstrate macro assembler programming and 
coprocessor contr~l and ar~h1tecture. Topics covered are graphics option 
software level architecture, mterface with the 8088, display of graphics 
data, and the use of Macro Assembler J ,anguagc to implement a graphics 
standard. ' 

The study of The Rainbow Color/Graphics Option is an 
excellent supplementary topic for use in 8088 
Assembler Language and Architecture courses. The 
Rainbow Color/Graphics Options is based on a NEC 
uPD7220 Graphics Display Controller (GDC) and a 64K 
byte vidio memory. The Rainbow Assembler Language 
programmer can control the GDC by use of the 
Rainbow's 8088 microprocessor's 1/0 ports. The 
details of how the Rainbow interacts with the GDC is 
documented in the "Rainbow Color/Graphics Option 
Programmer's Reference Guide"[I). This manual 
provides a clear description of the GDC architecture 
and how the Rainbow interacts with it. A serious 
shortcomming of the manual is that there arc no 
demonstration programs. This paper will comment on 
the advantages of including GDC programming in an 
Assembler Language course and present a sample 
program that uses procedures presented in 'The 
Color/Graphics Option Programmer's Reference Guide". 

Assembler l,anguage texts generally include sections 
on the software level architecture of a 
microprocessor; machine language coding; the use of 
software development tools such as an editor and a 
debugger; the use of an assembler such as Microsoft's 
MASM; the microprocessor's instruction set; and 
several short application examples that illustrate 

561 

topics such as sorting and searching[2). It is 
unusual to find examples of programs that take 
advantage of procedures written by others. This 
omission can leave students with the false impression 
that "real" programming consists of starting a 
project from the begining and writing all the code 
that is needed to complete it. Including an exercise 
that uses the Rainbow's GDC has a number of 
advantages. Students get to create a small part of a 
large system. They learn how to set up a large 
assembler program. They get to work with 
professionaly written and documented code. Finally 
they are able to work on an interesting problem that 
is fairly easy to solve with assembler language and 
that has many interesting expansion possibilities. 

User programming of the GDC is possible only because 
of the execellent documentation and demonstration 
assembler code provided in the "Color/Graphics Option 
Programmer's Reference Guide". The guide includes 
material on the Graphics Option's operating 
principles, programming guidelines with over thirty 
demonstration assembler language procedures, and a 
reference section that documents the Graphics 
Option's instructions and software level 
architecture. The demonstration procedures were 
developed by Digital to test the Rainbow's Graphics 
Option. Procedures documented included routines that 



initialize the GDC, set up the GDC registers, and do 
area, vector, and text write operations. Read 
operations and vertical scrolling are also 
demonstrated. The assembler language source code is 
an excellent model of what professionally written 
assembler code should look like. An example of this 
code is shown in Figure 1. 

program uses several GDC procedures, these procedures 
are listed in extrn statements. The program includes 
a demonstration macro that displays a graphics 
character in a user selected row and column on the 
graphics screen. The GDC procedure used to select 
and place the text is named GTEXT. As commented 
machine readable source code is available it is 
relatively easy to change the characters. A small 

An additional feature of using the GDC assembler 
language procedures is that this source code has been 
widely available on Rainbow Fido network bultetin 
boards making this code available in machine readable 
form. As previously pointed out a problem exists in 
that the "Color/Graphics Option Programmer's 
Reference Guide" does not include any working 
examples. The user is left with the task of setting 

part of GTEXT where characters are defined is shown 
in Figure 3. It is also possible to modify GTEXT to 
change the size of the characters. 

up their own Assembler Language EXE file. The 
program in Figure 2 shows how to set up an EXE file 
with seperate Code, Data, and Stack Segments. Also 
shown in the program is a sample programming exercise 
and the commands that must be given to the I JNK 
program. The object code that is linke with the 
exception of TEXT, the main program, is assembled 
code from the "Rainbow Color/Graphics Option 
Programmer's Reference Guide". The demonstration 

·******************************************************************** ' 
p r o c e d u r e o p t i o n p r e s e n t t e s t 

test if Graphics Option is present. 
none. 

* 
* 
* 
* 
* 

purpose: 
entry: 
exit: dl = 1 option present. * 

dl = 0 option not present. * 
; register usage: ax,dx * 
·******************************************************************** ' cseg segment byte public 'codesg' 

public option_present_test 
assume cs:cseg,ds:nothing,es:nothing,ss:nothing 

option_present_test proc near 
mov dl,l ;set dl for option present 
in al,8 ;input from port 8 
test al,04h ;test bit 2 to see if option present 
jz optl ;if option is present, exit 
xor dl,dl ;else, set dl for option not present 

optl: ret 
option_present_test endp 
cseg ends 

end 

Figure 1. A sample procedure from the Color/Graphics Option Programmer's 
Reference Guide, page 5-1. 

562 



;This program demonstrates the use of the Rainbow Graphics option 
;text write option. It shows: 

EXE file set up with seperate code, data, and stack segments. 
The use of several external procedures and public data. 
A macro definition and use. 

Use of the GTEXT procedure from the GOO reference manual. 
User defined text location and character selection 
The use of the FGBG register to create light on dark text. 

;Programming Assignment 12: 

' 

a. Accept characters from the keyboard 
b. Display the character. 
c. Accept additional characters adjust the cursor 

and display the new characters. 
d. Allow the user to exit this routine. 
e. Print what has been entered using JOBSDUMP. 
f. Modify procedure gtext display 6 nonstandard letters 

See extern statements for procedures used. 
Link parameters are: 

link text+ex03+ex04+exOS+ex08+ex09+exlO+exl6+exl9+ex20+ex2l+ex24; 
Text is the object file from this program. All other object files 
are from the "Color/Graphics Option Programmer's Reference Guide". 

·*********************************************************************** ' m a c r o d i s p 1 a y t e x t * 
* 

purpose: display 8 by 10 graphics text * 
entry: row is the column location of the character * 

column is the column location of the character * 
character is the ascii code for the character * 

notes: This macro makes use of procedure gtext * 
; which is defined in the C/GO Reference Guide. * 
·*********************************************************************** ' 

563 



DISPLAY_TEXT MACRO ROW,COLUMN,CHARACTER 
mov bx, row ;row number 
mov ax, column ;column number 
mov dl,character ;character number 
mov dh,OfOh ;set fgbg register for light on dark 
call gtext 

ENDM DISPLAY_TEXT 
;*************** Set up Code Segment 
cseg segment byte public 'codesg' 
extrn gtext:near ;text write 

********************************** 

extrn init_option:near,graphics_on:near,graphics_off:near 
extrn gdc_not_busy:near,imode:near 
extrn set_rectangle:near,pixel:near,pattern_register:near 
extrn pattern_mult:near 

assume cs:cseg,ds:dseg,ss:sseg,es:dseg 
org lOOh 
mov 
mov 

ax,dseg 
ds,ax 

mov es,ax 
mov dx,2 ;select 
call init_option 
call graphics_on 

Display characters 80 through 
mov cx,80 

text: 
push ex 
DISPLAY_TEXT 1,CX,CL 
pop ex 
loop text 

set up data segment 

; set up extra segment 
high resolution 

;initialize graphics option 
turn on the graphics 

0 in columns 80 through 0. 

display_text 10,15,80 ;use display_text macro with constants 
Character 80 which is a capital P 
will display in row 10, column 15 

mov ah,Olh ;wait for character to be typed 
int 21h 

call 
mov 
int 

cseg ends 

graphics_off 
ah,4ch 
21h 

;leave graphics mode 
;end of job 

;*************** Set up Stack Segment ********************************* 
sseg segment stack 

db 50 dup (" ") 
sseg ends 
;*************** Set up Data Segment ********************************* 
dseg segment byte public 'datasg' 
extrn yinit:word,yfinal:word,xinit:word,xfinal:word 
extrn xstart:word,xstop:word,ystart:word,ystop:word 
extrn gbmod:byte,curlO:byte,curll:byte,curl2:byte 
extrn xinit:word,yinit:word 
dseg ends 

end 

Figure 2. A program that displays graphics mode, high resolution text. 

564 



greatr db llllllllb 
db lOOlllllb 
db llOOllllb 
db llllOOllb 
db lllllOOlb 
db llllOOllb 
db llOOllllb 
db lOOlllllb 
db llllllllb 
db llllllllb 

ques db llllllllb 
db llOOOOllb 
db 1001100lb 
db lllllOOlb 
db llllOOllb 
db lllOOlllb 
db llllllllb 
db lllOOlllb 
db llllllllb 
db llllllllb 

Figure 3. Graphics character definition of "greater than" and "question 
mark" from procedure GTEXT. "Rainbow Color/Graphics Option Programmer's 
Reference Guide", page 9-11. 

565 



An excellent source of programming projects is the 
development of routines that conform to established 
graphics standards. The Core Graphics System [4J for 
example, includes a series of text attribute 
commands. These commands include, SETCURRENTCil/\RSIZE 
which is used to set relative character size and 
CHARSPACE which is used to set X-axis and Y-axis 
displacement between the starting points of adjacent 
characters. Implementing commands such as these, 
while not trivial, is approachable through the use of 
procedures provided in the "Rainbow Color/Graphics 
Option Programmer's Reference Guide". 

Digital has provide excellent documentation and 
commented assembler language source code in machine 
readable form for users who wish to use the 
Color/Graphics Option. Once working demonstration 
programs such as the one provided here are available 
the assembler language programming of the GDC is 
reasonable easy and makes an excellent supplementary 
exercise for courses in assembler language 
programming. 

REFERENCES 

1. "Rainbow Color/Graphics Option 
Programmer's Reference Guide", Digital Equipment 
Corporation", Product Number AA-AE36/\-TV, June 1984. 

2. I BM PC/8088 Assembly Language Programming, 
A vtar Singh, Walter A. Triebel, Prentice- II all I 985. 

3. "Graphics Programming Using the Core System", R. 
Daniel Bergeron, Peter R. Bono, James D. Foley, 
ACM Computing Surveys0

, Volume 10, Number 4, 
December 1978. 

566 



IRTRODUCTIOB TO SPEAKEASY 

David H. Saxe 

Speakeasy Consultant 
159 Wilson Crossing Road 

Auburn, NH 03032 
603-625-2019 

ABSTRACT 
"Speakeasy is a conversational computer language that has 
evolved over the past two decades through the continued use by 
a large and varied international community of users. A large 
audience of economists, research scientists, statisticians and 
students from a large variety of disciplines find Speakeasy a 
powerful yet natural means for using a computer. The modular 
structure of the language enables each group of users to adapt 
the system to its own needs by adding new words to the 
existing Speakeasy vocabulary."(2) Speakeasy contains 
facilities for defining and operating on a variety of data 
structures including scalars, matrices, sets, time series and 
character data. This paper discusses the VAX implementation 
of Speakeasy and examines its use in an elementary statistical 
analysis. A method for extending the vocabulary and porting 
extensions between the VAX and IBM versions is described. 

IRTRODUCTIOB 

Speakeasy is a conversational computer language 
in wide use as an interactive problem solving tool on 
VAX and IBM systems. Speakeasy provides an extremely 
user-friendly interface to a powerful set of tools 
for data analysis and presentation. Speakeasy was 
originally developed in the mid 1960's for large IBM 
mainframes to provide a data analysis tool to a 
research scientist co11D11unity. The natural syntax 
made possible the direct use by the research 
scientist at a time when other languages required 
extensive familiarity with the computer system. 
Also, Speakeasy's design allowed for simple addition 
of new operations to meet the analysis needs of the 
user. Thus, the early and continued involvement of 
the end-user co11D11unity in directing the evolution of 
the language contributed to the ~apid expansion of 
language features and capabilities. 

LANGUAGE FEATURES 

Speakeasy offers both an interactive and program 
mode. In the interactive mode, a user is prompted 
with :_ for a line of input. The user then types a 
Speakeasy statement consisting of references to data 
objects defined by the user and operators from the 
Speakeasy vocabulary. When the line is read, 
Speakeasy parses the line and controls the execution 
of operations that the user has specified. Results 
from the processing may be printed or assigned to a 
Speakeasy object. When the execution is complete, 
the user receives another prompt and may enter the 
next statement. In the program mode, collections of 
Speakeasy statements are executed as a single 
program. Special statements for use in the program 
mode allow for flow control. 

Many different types of 
by Speakeasy, including 
dimensional arrays, vectors 
and sets. Real, complex 
used in most structures. 
illustrated below. 

data objects are allowed 
scalars, one and two 

and matrices, time series 
and character data may be 
A number of these are 

Much of Speakeasy's power results from its 
ability to operate on collections of numbers or text 
without the user having to be concerned about 
dimensioning. Operators deal with entire objects, 
thus generally eliminating the need for looping and 
subscript operations. Presently, there are about 800 
operators in the Speakeasy vocabulary, including 
numerical operations, such as SQRT which takes the 
square root of elements in an object, text 
operations, such as TABULATE which automatically 
formats and prints objects, and graphics operators 
which allow the presentation of results on a variety 
of device types. The operators are used in a natural 
syntax which resembles that of Fortran but is far 
more error tolerant. A general guideline is that if 
a line makes sense in an unambiguous way, then 
Speakeasy should be able to understand it. 

Speakeasy's vocabulary may be extended and 
tailored to fit the needs of an individual user 
community. Large numbers of statistical, econometric 
and graphics operators have been added to the 
language by the user co11D11unity. 

Speakeasy offers extensive online documentation 
in the form of interactive tutorial sessions for 
learning to use the language, help documents for 
locating and using operators and examples of operator 
use. 

LANGUAGE EXAMPLES 

Speakeasy is best understood by actually looking 
at some simple examples. In this section, examples 
of the use of scalars, arrays and matrices are given. 
Later sections discuss the online documentation and 
demonstrate the use of Speakeasy in performing an 
elementary statistical analysis. 

567 



In the examples below, the user input is typed 
in lowercase after the :_ prompt and the computer 
output has been set for uppercase. First, some 
examples of elementary scalar operations: 

:_2 + 2 
2 + 2 4 

:_2 * 3 + 1 
2*3+1 7 

:_2 - 2 
2 - 2 0 

:_sqrt(8) - 2/3 
SQRT(8) - 2/3 2.1618 

:_answer 
ANSWER = 2.1618 

:_answer + 4.94 
ANSWER+ 4.94 = 7.1018 

:_x = 5 * log(2) 
:_x 
x = 3.4657 

:_angles in degrees 
:_y = cos(x) - 2.8 
:_y 
y = -1.8018 

:_names 
X, Y, ANSWER 

Arrays are objects with multiple elements 
arranged in a list (one dimensional array) or table 
(two dimensional array). Operations may be performed 
on a whole array as shown in these one dimensional 
array examples: 

:_a 1, 3, 9, 6, x 
: a 
-A (A 5 COMPONENT ARRAY) 

1 3 9 6 

sum( a) 
SUM(A) = 22.466 
:_answer/noels(a) 
ANSWER/NOELS(A) 4.4931 

:_mean a 
MEAN A 4.4931 

:_2 * a + 3 
2 * A + 3 (A 5 COMPONENT ARRAY) 

5 9 21 15 

i = locs( a .gt. 3) 
==b=a( i) 
:_tabulate i,b 

I B 
* ****** 
3 9 
4 6 
5 3.4657 

3 .4657 

9. 9315 

Two dimensional arrays are also provided. Note 
that arithmetic is performed element by element. 

: a = a2d( 2, 3: integers(l,6) 
:=:a; l/a 

A (A 2 BY 3 ARRAY) 
1 2 3 
4 5 6 

l/A (A 2 BY 3 ARRAY) 
1 .5 .33333 
.25 .2 .16667 

_total=sumrows(a) 
:_tabulate a,total 

A TOTAL 
***** ***** 
1 2 3 6 
4 5 6 15 

:_a + l/a 
A + l/A (A 2 BY 3 ARRAY) 

2 
4.25 

:_sqrt(a) 

2.5 3.3333 
5.2 6.1667 

SQRT(A) (A 2 BY 3 ARRAY) 
1 1.4142 1.7321 
2 2.2361 2.4495 

a - 2 
A-- 2 (A 2 BY 3 ARRAY) 

-1 0 1 
2 3 4 

Matrices obey the rules of matrix algebra. All 
of the elementary matrix operations are included. 
Several are demonstrated here: 

:_m = matrix(3,3:3 4 2 4 5 6 1 3 4) 

: l/m 
lfM (A 3 BY 3 MATRIX) 
-.1 .5 -.7 

.5 -.5 .5 
-.35 .25 .05 

:_answer * m 
ANSWER * M (A 3 BY 3 MATRIX) 

1 5.5511E-17 l.1102E-16 
0 1 -l.1102E-16 
7.8063E-18 -3.4694E-18 l 

:_eigenvalues(m) 
EIGENVALUES(M) (A VECTOR WITH 3 COMPONENTS) 
-.89 2.0785 10.811 

568 



The online documentation provided includes tutorials and a tree structured help facility. A sample of 
the main menu for the tutorial is shown below along with a small portion of the tutorial dealing with matrix 
use. In the HELP sample, assume that the user wishes to perform a correlation but does not remember the 
correct word. By following the tree structure, the user may arrive at the document describing the word 
CORREL. 

:_tutorial 
INDEX PAGE 0 
CONTENTS 
Index to the Speakeasy tutorial sessions December 1979 

SESSION SUBJECT 
An introduction to Speakeasy 
Array definitions and operations 
Matrix definitions and operations 

Start 
Arrays 
Matrix 
Vector Vector definitions and operations including 

vector-matrix operations 
Logic 
Edit 

Use of logical and relational operators 
Use of the editor 

Stat How to use the statistical routines 
Keep Saving information between runs 
Tektron Using the Tektronix Graphics Package 
Tek Tektronix graphing (older package) 
Printgraph Graphics for a printer. 
Sets Set definition arid operations 
Misc Miscellaneous information 

Type TUTORIAL XXX to begin the tut.orial session called XXX. 
Type TUTORIAL XXX N to display page N of the session, XXX. 
(TUTORIAL XXX will give you a table of contents for that session.) 
Type MORE to continue a session. 

:_tutorial matrix 5 
MATRIX PAGE 5 
MATRIX ADDITION AND MULTIPLICATION 

Rules for adding and multiplying matrices in Speakeasy are just 
those utilized for matrices in mathematics. Hence, if 

X=MATRIX(2,2:1,2,3,4) and Y=MAT(2,2:5,6,7,8), 
then, 

X+Y= 6 8 X-Y= -4 -4 X*Y= 19 22 Y*X= 23 34 
10 12 -4 -4 43 50 31 46. 

Remember that 
Let 

A=MAT(3,2:1, 
So, A= 1 2 

5.6 45 
23 0 

the order of multiplying matrices does matter. 

2' 5. 6' 45' 23) 
B= 10 0 

0 1 

and B=DIAGMAT(2:10,l). 
A*B= 10 2 

56 45 
230 o. 

Typing B*A will result in an error message because the sizes of A and 
B are incompatible in matrix multiplication. Notice that both A+B 
and B+A are undefined and therefore Speakeasy will also print out an 
error message for them. 

:_help 
HELP 

QUIT 
OBJECTS 

explains how to use the HELP processor. 

MATH 
ECONOMETRICS 
IOWORDS 
DATAWORDS 
PROGRAMS 
MISCELLANEOUS 
DOCUMENT 
EXAMPLE 
NEWS 
TUTORIAL 
TSOPERATIONS 
GRAPHICAL 

HELP XXX 

is the command to leave Speakeasy. 
lists words dealing with structured 
lists mathematical functions. 

objects. 

lists words which perform econometric analysis. 
words about data input, storage, output, and graphing. 
lists words relating to data organization or type. 
lists words used in writing and running programs. 
lists words not falling under any other classification. 
explains how to use the Speakeasy documents. 
explains how to use the Speakeasy Examples. 
lists information on new features in Speakeasy. 
tells how to use the Speakeasy tutorial. 
lists words relating to TIMESERIES objects. 
lists words relating to graphical operations. 

gives an explanation of the word XXX. 
XXX is any vocabulary word. 

The following is the name of a tree structure document for 
operations which have not been included in the standard Help data set. 
CONTRIBUTIONS lists words contributed by users. 

569 



:_help math 
MATH lists categories of mathematical functions. 

DIFFEQUATIONS are words used to solve differential equations. 
ELEMENTAL are elemental mathematical structures and functions. 
FITTING are words which are used to fit or interpolate fens. 
INTEGRATION are words dealing with numerical integration. 
LP are words dealing with linear programming. 
PHYSICS are functions of interest primarily to physicists. 
SINGLEVAR are functions of one variable. 
SPECIAL are special mathematical functions. 
STATISTICS are words related to statisical analysis. 

To obtain the words in a given subclass SC, enter 
HELP SC 

:_help statistics 
STATISTICS are words related to statistical analysis. 

AUTOCOR returns a vector of autocorrelation coefficients. 
AUTOCOV returns a vector of autocovariance coefficients. 
AVERAGE returns the average value of the elements of an object. 
CHIPROB calculates chi-squared probabilities. 
CHISQUARED performs a chi-squared test. 
COMBINATIONS gives the combinations of X items taken Y at a time. 
CORREL returns a correlation matrix. 
CORRELATION gives the correlation coefficient between 2 sets of data. 
COVARIANCE returns a covariance matrix. 
FPROB calculates f-statistic probabilities. 
GETRANDOM returns the random number seed. 
GETSEED returns the seed for the next invocation of NORMRAND. 
KURTOSIS produces a coefficient of kurtosis. 
LSQPOL finds a least-squares polynomial fit for two sets of data. 
MEAN returns the mean of the elements of an object. 
MEDIAN returns the median. 
MODE returns the most frequently occuring value in an object. 
MULTIREGRES performs multiple linear regression. 
NORMRAND returns random numbers from a normal distribution. 
PARTIALAUTO returns an array of partial auto-correlation coefficients. 
PERMUTATIONS gives the permutations of X items taken Y at a time. 
PROBIT scales data for a probability plot. 
RANDOM generates random numbers. 
RANGE returns the range of a series of real numbers. 
RMS returns the root mean square. 
SETRANDOM sets the random number seed. 
SETSEED sets the seed for the next invocation of NORMRAND. 
SKEWNESS returns a coefficient of skewness. 
STANDDEV returns the standard deviation. 
STANDERROR returns the standard error of the mean. 
TINDEPT performs a t-test on two independent sets of data. 
TPROB returns a significance value for a t-statistic. 
TRELATE performs a t-test on two related sets of data. 
TSAMPPOP performs a t-test on a sample and a population mean. 
VARIANCE returns the variance of the elements of an object. 

See also the MATRIXOPS tree structure document. 
To obtain a description of a given word XXX, enter 

HELP XXX. 

:_help correl 
CORREL(Xl,X2) returns a correlation matrix. 

For 1-dimensional arrays or vectors use CORREL(Xl,X2,X3, ••• XN). The 
(i,j)th entry is the coefficient of correlation between the ith and the 
jth input arguments. Xl to XN must be (I-dimensional) arrays or vectors 
with equal numbers of elements. 

If CORREL is called with a 2-dimensional array or matrix as its only 
argument, as in CORREL(X), the (i,j)th entry of the correlation matrix 
is the coefficient of correlation between the ith and the jth rows 
of X. X must have at least two rows and two columns. 

570 



Examples of the action of Speakeasy words use 
stored collDll8nds to demonstrate how a given word 
performs: 

:_example median 

EXAMPLES OF THE USE OF MEDIAN. SEE HELP STATISTICS 
FOR A LIST OF RELATED WORDS. RW 

INPUT ••• MEDIAN(l,2,3) 
MEDIAN(l,2,3) = 2 
INPUT ••• MEDIAN(l,2,3,4) 
MEDIAN(l,2,3,4) = 2.5 
INPUT ••• 
INPUT ••• As(l,2,3,4) 
INPUT ••• B=(5,6,7) 
INPUT ••• C=(8,9) 
INPUT ••• MEDIAN (A,B,C) 
MEDIAN (A,B,C) = 5 

STATISTICS EXAMPLE 

In the following section, a set of data 
representing fuel economy ratings are used to 
demonstrate the use of a variety of statistical 
words. The variables involved are miles per gallon, 
MPG, make of car, CARMODEL, cubic inches of 
displacement, CID, number of cylinders, CYL, 
transmission type, TRANS, and number of gears, GEARS. 
HEAD was previously defined as a character object for 
the title of the TABULATE. Methods for obtaining 
simple statistics are presented and followed by a 
regression. Finally, a printer plot is made of MPG 
on CID. Using other plotter devices, regression 
lines could be drawn. While this example is 
extremely simple, it demonstrates the ease of 
interacting with the data to arrive at an 
understanding of any underlying relationship in the 
data. 

:_tabulate(mpg,carmodel,cid,cyl,trans,gears:title=head) 

EPA FUEL ECONOMY RATINGS FOR 1985 MODELS 
TWO SEATERS - CITY DltIVING 
SOURCE: USA TODAY, 9/24/84 

MPG CARMODEL CID CYL TRANS GEARS 
*** ******************** *** *** ***** ***** 
21 Alfa Spider 2000 120 4 M 5 
23 Bertone Xl/9 91 4 M 5 
16 Chevrolet Corvette 350 8 L 4 
16 Chevrolet Corvette 350 8 M 4 
25 Ford Exp 98 4 A 3 
25 Ford Exp 98 4 M 5 
23 Ford Exp 98 4 M 5 
28 Honda Civic Coupe 91 4 L 3 
31 Honda Civic Coupe 91 4 M 5 
49 Honda Civic Coupe HF 91 4 M 5 
17 Mazda RX-7 70 2 L 4 
17 Mazda RX-7 70 2 M 5 
16 Mazda RX-7 80 2 M 5 
16 Mercedes 380SL 234 8 A 4 
16 Nissan 300ZX 181 6 A 4 
17 Nissan 300ZX 181 6 L 4 
17 Nissan 300ZX 181 6 M 5 
19 Nissan 300ZX 181 6 M 5 
20 Pininfarina Spider 122 4 A 3 
23 Pininfarina Spider 122 4 M 5 
25 Pontiac Fiero 151 4 L 3 
26 Subaru XT-DL 109 4 M 5 

571 

:_mean(mpg); median(mpg) 
MEAN(MPG) = 22.091 
MEDIAN(MPG) = 20.5 

:_standdev(mpg) ; standdev(cid) 
STANDDEV(MPG) = 7.5145 
ST.Am>DEV(CID) = 79.85 

:_extrema(mpg) 
EXTREMA(MPG) (A 2 COMPONENT ARRAY) 

16 49 

:_covariance mpg,cid,cyl,gears 
COVARIANCE MPG,CID,CYL,GEARS (A 4 BY 4 MATRIX) 

56.468 -250.68 -3.7749 .72727 
-250.68 6376 130.15 -13.29 
-3.7749 130.15 3.1948 -.24242 

.72727 -13.29 -.24242 .62338 

:_correl mpg,cid,cyl,gears 
CORREL MPG,CID,CYL,GEARS (A 4 BY 4 MATRIX) 

1 -.41778 -.28105 .12258 
-.41778 1 .91188 -.2108 
-.28105 .91188 1 -.17178 

.12258 -.2108 -.17178 1 

:_eigenvals(answer) 
EIGENVALS(ANSWER) (A VECTOR WITH 4 COMPONENTS) 

.075776 .7944 .92719 2.2026 

:_regress(mpg,c,cid,cyl,gears) 

ORDINARY LEAST SQUARES ESTIMATION 

DEPENDENT VARIABLE: MPG 
NAME LAG COEFF STD ERROR T-STATISTIC 

IC 0 22.466 
CID 0 -.089503 
CYL 0 2.4815 
GEARS 0 .22353 

10.369 
.047719 
2.1153 
2.0107 

.10671 
R-SQUARE = .23433 
R-SQUARE (CORRECTED) = 
NUMBER OF OBSERVATIONS 
DURBIN WATSON STATISTIC= 
SUM OF SQUARED RESIDUALS = 

22 
1.4148 

907 .95 

STD ERROR OF REGRESSION= 7.1022 

2.1666 
-1.8756 

1.1731 
.11117 



:_graphz mpg cid 

•• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• +. 

50 + * + 

M 
p 

G 37.5 + + 

* 
* 

25 + * * * + 
* * * 

* * 
* * 

* * * * 
12.5 + + 

•• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• + •••• +. 
75 125 175 225 275 325 375 

50 100 150 200 250 300 350 
CID 

PROGRAM EXAMPLE 

Once the procedures for an analysis have been set, a Speakeasy program may be written to perform the 
analysis using different sets of data. The program shown below performs a simple regression and draws plots 
of the variables, predicted values and residuals. The program REGPLOT was prepared using a standard editor 
and was then invoked in Speakeasy by simply typing its name. Only one of the plots is shown. 

EDITING REGPLOT 
1 PROGRAM 
2 GRAPHICS TEK4010 
3 ERASE 
4 "ENTER NAMES OF VARIABLES OR RETURN TO KEEP THE SAME VARIABLES" 
5 ASK ("DEPENDENT VARIABLE (Y) ", "Y=") 
6 ASK ("INDEPENDENT VARIABLE (X) ", "X=") 
7 ASKLIT("ENTER TITLE","SETTITLE") 
8 N=NOELS(X) 
9 N 

10 MEAN(X);STANDDEV(X) 
11 MEAN(Y);STANDDEV(Y) 
12 CORRELATION(X,Y) 
13 COEF=MULTIREGRES(X,Y:RESID,MULTR) 
14 "REGRESSION OF Y ON X GIVES FOLLOWING COEFFICIENTS" 
15 TYPE "Y = ",COEF{l)," + ",COEF(2)," * X" 
16 SUMSQ(RESID) 
17 HARDCOPY 
18 SETXLABEL("X - INDEPENDENT VARIABLE") 
19 SETYLABEL("Y DEPENDENT VARIABLE") 
20 LINECODE=-2 
21 GRAPH(Y:X) 
22 Xl=MIN(X)-1000,MAX(X)+lOOO 
23 Yl=COEF{l)+COEF(2)*Xl 
24 LINECODE=l 
25 ADDGRAPH(Yl:Xl) 
26 Xl=MEAN(X) ; Yl=MEAN(Y) 
27 LINECODE = -5 
28 ADDGRAPH(Yl,Xl) 
29 HARDCOPY 
30 LINECODEc-2 
31 SETYLABEL("RESIDUALS") 
32 GRAPH(RESID:X) 
33 HARDCOPY 
34 SETXLABEL("PREDICTED Y VALUES") 
35 GRAPH(RESID:RESID+Y) 
36 HARDCOPY 
37 SETXLABEL("ACTUAL Y VALUES") 
38 GRAPH(RESID:Y) 

*39 HARDCOPY 

572 



:_regplot 
EXECUTION STARTED 
ENTER NAMES OF VARIABLES OR RETURN TO KEEP THE SAME VARIABLES 
DEPENDENT VARIABLE (Y) mpg 
INDEPENDENT VARIABLE (X) cid 
ENTER TITLE epa two 
N = 22 
MEAN(X) = 143.64 
STANDDEV(X) = 79.85 
MEAN(Y) = 22.091 
STANDDEV(Y) = 7.5145 
CORRELATION(X,Y) = -.41778 
REGRESSION OF Y ON X GIVES FOLLOWING COEFFICIENTS 
y = 27.738 + -.039316 * x 
SUMSQ(RESID) = 978.85 

1 iJ 
+ 

5 + 
: + 

+ 
F~ 0 

++ 
+ E + 

s + + 
I + 
0 -5 
LI + 
A 
L -10 

-15 

-20 

EPA Tl•JO 

+ 

+ 

-251...-L-.....L ...... _._~...._--1.~~~.1..---1.~~-:-"-::--'-----:~~..__~-::-_._-=":--:--' 
80 120 160 200 240 280 320 360 

X - INDEPENDENT UARIA8LE 

573 



SYSTEM STl.UCTUB.E 

One of the most important features of Speakeasy 
is the ability to add words to the language to tailor 
it to a specific user coumunity's need. Words in 
Speakeasy are really just Fortran function 
subprograms, so that it becomes possible to convert 
local libraries of analysis routines to operate in 
the Speakeasy environment. To understand how this 
works, the following section briefly describes 
Speakeasy's internal structure shown in figure 1. 

+-----------+ 
Input- I 
Output I 

+-----------+ 
I 

+-----------+ +-----------+ +-----------+ 
I System l __ I SPEAKEASY l __ I User I 
I Libraries I I Processor I I Libraries I 
+-----------+ +-----------+ +-----------+ 

I 
+-----------+ 

Named I 
Storage I 

+-----------+ 

Speakeasy System Structure 

figure 1 

The Speakeasy processor is responsible for 
accepting input from the user, parsing it and 
directing the execution of the various operations 
that have been requested. The processor interfaces 
with the (Speakeasy) system libraries to map, 
activate and unmap the operators as required. A very 
few operators are actually implemented in the 
processor. The processor also maintains an area of 
memory called named storage used to store all objects 
used in a session. 

All input and output during a Speakeasy session 
is controlled through the processor. In addition to 
the user prompts and replies shown above, Speakeasy 
also provides error handling and, at the user's 
request, will log any portion of a session. A number 
of the internally used routines are available for use 
when adding operators to Speakeasy. 

Named storage is an area of memory maintained by 
the processor that contains all Speakeasy objects 
that are in use. Objects may be defined, read, 
modified and freed. Named storage is dynamically 
maintained with efficient algorithms for locating and 
using objects. 

The system libraries contain the help, tutorial 
and example files, data to be stored between sessions 
and the operators which are also known as "linkules." 
Each user may also create libraries corresponding to 
the system copies for individual modifications or 
enhancements. 

SPEAKEASY LI!llCULES 

As mentioned above, Speakeasy linkules are just 
Fortran functions. Each linkule is an executable 
file that is mapped and activated by the processor 
when first used. Speakeasy maintains internal tables 
of which linkules have been used and will not unmap a 
linkule until necessary. This retention of linkules 
speeds repeated use since the linkule does not have 
to be remapped. The processor coumunicates with the 
linkule through a standard calling sequence which 
provides information about named storage and how the 
linkule was invoked by the user. The linkule may use 
named storage to examine values of objects and to 
compute and define results. It is the responsibility 
of the linkule writer to check the calling sequence 
specified by the user for errors and to produce error 
messages. If the arguments specified are acceptable, 
space may be reserved for a result and the result 
computed and returned to the user. Typically, a 
linkule is written by writing a code fragment that 
handles these details and then calls a computational 
routine. For example, SQRT would check whether it 
had received a positive real argument and then pass 
that argument to the correct routine for computing 
square roots of real numbers. Finally, the linkule's 
Fortran function value is used to tell the processor 
if errors occurred and if a result was defined. 

A Fortran macro preprocessor, Mortran, may be 
used to assist in preparing linkules. If linkules 
are being used only on the VAX, Mortran can be used 
to generate the standard calling sequence and define 
a number of important Fortran variables. Mortran's 
primary purpose, however, is to isolate 
machine-dependent code in macro form. For instance, 
Mortran has a macro which represents the largest real 
number. The linkule writer types CONSTANT(BIGEST) in 
the Mortran source file, specifies a target machine 
and runs the preprocessor. Mortran expands the macro 
and outputs a file of Fortran statements that will 
compile on the target system. On the VAX, 
CONSTANT(BIGEST) expands to 'FFFFFFFFFFFF7FFF'X and 
on IBM to Z7FFFFFFF FFFFFFFF. Only the Fortran 
compile has to be run on the target system as long as 
the appropriate macro files exist. Thus, it is 
possible to use the VAX as a development system for 
linkules which will run under the IBM version of 
Speakeasy. Speakeasy itself is written in Mortran 
and uses this facility to support versions for 
different machines. 

CONCLUSION 

Speakeasy's ease of use and extensive vocabulary 
make it an ideal tool for interactive data analysis. 
Analytical techniques may be developed and formulated 
as programs for general use. Existing libraries of 
Fortran subprograms may be added to the vocabulary, 
thereby extending and tailoring the language to meet 
special needs of virtually any user coumunity. 
Moreover, by using Mortran, additions to the language 
are portable across different machine versions. 

574 



UFEUNCES 

For the reader who wishes to learn more about 
Speakeasy, the following reading list is suggested. 

[l] Cohen, Stanley, "A Look at Speakeasy, The 
Interactive Computing System That Found a Home 
in VAX", VAX RSTS Professional, August, 1984, 
Vo 1. 6, No. 4, pp. 26 - 34. 

[2] Cohen, Stanley, "Speakeasy: A Conversational 
Language on VAX", Proceedings of the Digital 
Equipment Corporation User Society, Spring, 
1983, pp. 1 - 7. 

[3] Saxe, David, "Introducing Speakeasy to the New 
User", Speakeasy Meeting: 13th Annual 
Conference Proceedings, 1985, Speakeasy 
Computing Corporation, Chicago, IL. 

[4] Introduction to Speakeasy IV Linkule Writing, 
1985, Speakeasy Computing Corporation, Chicago, 
IL. 

[5] Lectures on Speakeasy, 1984, Speakeasy Computing 
Corporation, Chicago, IL. 

[6] Sampler, 1985, Speakeasy Computing Corporation, 
Chicago, IL. 

[7] Speakeasy IV Help Documents, 1985, Speakeasy 
Computing Corporation, Chicago, IL. 

[8] The Speakeasy Reference Manual, 1983, Speakeasy 
Computing Corporation, Chicago, IL. 

ACKNOWLEGEMENTS 

SPEAKEASY and are trademarks of the Speakeasy 
Computing Corporation. 

The author wishes 
Speakeasy Computing 
Speakeasy development 
sessions used in this 

to thank Stanley Cohen of the 
Corporation for the use of the 
VAX in preparing the example 
paper. 

575 





Extraction of 1022 Data to PC Files: 
New INIT and PRINT Features in Vll7B 

1.0 OVERVIEW 

John Duesenberry 
Software House 

This paper describes new features in Vll7B for the extraction of 
1022 data to spreadsheet and other applications on personal 
computers. Enhancements to the System 1022 PRINT and INIT 
command~ provide users of Lotus 1-2-3 and Symphony with data in 
Lotus worksheet file format from within 1022. 1022 also 
provides data in Data Interchange Format (DIF). 

The following examples illustrate command sequences such as 
a user might employ to obtain data at his or her PC. We will 
assume that the user's link between the PC and the host computer 
is MOBIUS. 

Proceedings of the Digital Equipment Computer Users Society 577 Dallas Texas- 1986 



2.0 CREATING LOTUS PRN FILES WITH FORMATTED PRINTS 

Before considering the new 117B features, let us briefly look at 
what is probably the most direct method previously available for 
extracting 1022 data into a file that Lotus 1-2-3 can translate. 

FIGURE 1 is an example program; 
in Lotus 'PRN' format. In this 
separated by commas, text strings are 
each CRLF delimits a spreadsheet row. 

MAKPRN.DMC 

MAKPRN.DMC creates a file 
format, all data items are 
delimited by quotes,and 

A DMC to write out 1022 data in Lotus PRN format. 

OPEN MOBDEM RO. 
F SYSID BET 1 10. 
SORT LN FN. 
!NIT 2 DEM02.PRN. 
PRINT ON 2 "From 1022 Dataset: "+$TRIM{SYSDSNAME}+" in " -

+$TRIM{SYSDSFILE} FMT 1 " 1 ,lx,'-'11 , 1 , 1 1111 ,A, 1 " 1 END. 
PRINT ON 2 SYSDATE FMT -

1111 ,lx, 1111 , 1 , 1 , 1111 ,"Extracted on: ",'"' , 1 , 1 , 1 '" ,D2,''" END. 
!skip a row 
PRINT ON 2 FMT 1111 ,'"' END. 
PRINT ON 2 "FIRST NAME" "LAST NAME" "# CHILDREN" "CITY" -

"STATE" "ZIP" FMT 5 {I 111 ,A, I II' I) 1111 ,A,I 111 END. 
!skip a row 
PRINT ON 2 FMT I II I 'I II I END. 
PRINT ON 2 FN,LN,NCH,CITY,STATE,ZIP FMT -

2 { I II ' 'A' I " I ' I ' I } ' I ' 2 { I ' I ' I II I 'A ' I II I I I } I II ' 'A' I II ' END . 
!skip a row 
PRINT ON 2 FMT ' 111 , 1111 END. 
PRINT ON 2 MEAN{NCH} FMT -

' 111 ,lX,'"' ,' ,' , 111 ' ,"Average# Children:",'"' , 1 , 1 , F2.l END. 
RELEASE 2. 
TYPE "DEM02.PRN has been created on host. -

It can be FILE IMPORTed to 1-2-3." 

Fig. 1 

578 



FIGURE 2 is the actual output of MAKPRN.DMC. Note the use 
of quote-delimited spaces in order to 'indent' 1 cell at the 
start of some rows. The null string is printed to skip a row. 

" ","From 1022 Dataset: NEW in MOBDEM.DMS" 
" ","Extracted on: ","Jul-29-1985" 
"" 
"FIRST NAME","LAST NAME","# CHILDREN","CITY","STATE","ZIP" 
II II 

"CHARLES","CARAGIANES",3,"DEDHAM",,"NY","02138" 
"RICH","GARLAND",4,"BRISTOL",,"CT","d2138" 
"CHARLES","GOTT",2,''BRISTOL",,"CT","22209" 
"KATHY","HOUSMAN",0,"AUGUSTA",,"GA","43220" 
"MARK","JONES",0,"DEDHAM",,"NY","60064" 
"ROGER","LEVINSON",3,"BRISTOL",,"CT","11729" 
"LOUIS","MERZ",0,"ROXBURY",,"TX","77056" 
"OLGA","PONG",3,"STONEHAM",,"MA","02238" 
"ALFRED","SAVIO",l,"ROXBURY",,"IN","46225" 
"ALFRED","STEVENS",0,"BRISTOL",,"CT","02238" 
1111 

" ","Average # Children:", 1.6 

Fig. 2 

FIGURE 3 shows the sequence of commands the user would give 
in order to create the .PRN file on the host and load it into 
1-2-3 after having defined the device D: as the host area where 
the datasets and output files reside and having created the PC 
command "1022" with the MOBIUS MAKE feature: 

A>l022 
*USE MAKPRN 
DEM02.PRN has been created on host. 
It can be FILE IMPORTed by 1-2-3. 
*QUIT 
A>l23 
/File Import Numbers D:DEM02 

Fig. 3 

579 



Having imported the file and changed the width of a few 
spreadsheet columns, the user sees the 1-2-3 screen of FIGURE 4. 

From 1022 Dataset: NEW in MOBDEM.DMS 
Extracted on: Jul-29-1985 

FIRST NAME LAST NAME # CHILDREN CITY STATE ZIP 

CHARLES CARAGIANES 3 DEDHAM NY 02138 
RICH GARLAND 4 BRISTOL CT 02138 
CHARLES GOTT 2 BRISTOL CT 22209 
KATHY HOUSMAN 0 AUGUSTA GA 43220 
MARK JONES 0 DEDHAM NY 60064 
ROGER LEVINSON 3 BRISTOL CT 11729 
LOUIS MERZ 0 ROXBURY TX 77056 
OLGA PONG 3 STONEHAM MA 02238 
ALFRED SAVIO 1 ROXBURY IN 46225 
ALFRED STEVENS 0 BRISTOL CT 02238 

Average # Children: 1.6 

Fig. 4 

To the end user, this is quite straightforward, 
MOBIUS. However, if we return to the DMC of FIGURE 
deficiencies become apparent, from the viewpoint 
programmer who must write such DMC's: 

thanks to 
2, various 

of the 

* 

* 

* 

* 

Coding the format statements is tedious and error-prone. 
The code becomes virtually unreadable, and making a simple 
change in the program, such as adding a new item to a PRINT 
list, is more difficult than one would wish. 

Kludges (the aforementioned blanks and null strings) must be 
used if empty cells or rows are desired. 

Ad hoc queries are difficult, especially for end users who 
are likely to know little of 1022 PRINT formats. 

The resulting file is not native to 1-2-3, in the sense that 
the PRN file must be translated and loaded into the 
spreadsheet and the result saved to a WKS file. 

580 



3.0 CREATING A LOTUS WORKSHEET FILE DIRECTLY FROM 1022 

By way of contrast, consider FIGURE 5. MAKWKS.DMC is a working 
program that uses the Vll7B enhanced INIT and PRINT commands to 
produce a 1-2-3 worksheet file directly from 1022. A cursory 
glance shows that the FORMAT statements have been eliminated or 
greatly simplified. 

MAKWKS.DMC 
A program to create a Lotus WKS file 
using Vll7B INIT/PRINT features 

OPEN MOBDEM RO. 
F SYSID BET 1 10. 
SORT LN FN. 
INIT 123 2 DEM03. 
PR ON 2 "From 1022 Dataset: "+$TRIM(SYSDSNAME)+" in " 

+$TRIM(SYSDSFILE) FMT lX,A END. 
PRINT ON 2 SYSDATE FMT lX,"Extracted on: ",LB / END. 
PRINT ON 2 "FIRST NAME" "LAST NAME" "# CHILDREN" "CITY" -

"STATE" "ZIP" . 
PRINT ON 2 ALL. 
PRINT ON 2 MEAN(NCH) FMT /,lX,"Average # Children: 11 ,Ll.l END. 
RELEASE 2. 
TYPE "DEM03.WKS has been created on host. -

It can be FILE RETRIEVEd by 1-2-3." 

Fig. 5 

Before walking through the code, let's look at how the user 
would produce the file with MOBIUS and 1022 (FIGURE 6): 

A>l022 
*USE MAKWKS 
DEM03.WKS has been created on host. 
It can be FILE RETRIEVed by 1-2-3. 
*QUIT 
A>l23 
/File Retrieve D:DEM03 

Fig. 6 

581 



FIGURE 7 is a screen dump from 1-2-3 after loading the 
resulting file. The results are practically identical to those 
obtained with the PRN file, with the exception of the formatting 
of SYSDATE. (This will be explained below). 

From 1022 Dataset: NEW in MOBDEM.DMS 
Extracted on: 30-Jul-85 

FIRST NAME LAST NAME # CHILDREN CITY STATE ZIP 

CHARLES CARAGIANES 3 DEDHAM NY 02138 
RICH GARLAND 4 BRISTOL CT 02138 
CHARLES GOTT 2 BRISTOL CT 22209 
KATHY HOUSMAN 0 AUGUSTA GA 43220 
MARK JONES 0 DEDHAM NY 60064 
ROGER LEVINSON 3 BRISTOL CT 11729 
LOUIS MERZ 0 ROXBURY TX 77056 
OLGA PONG 3 STONEHAM MA 02238 
ALFRED SAVIO 1 ROXBURY IN 46225 
ALFRED STEVENS 0 BRISTOL CT 02238 

DMC: 

* 

* 

Average # Children: 1.6 

Fig. 7 

Returning to FIGURE 5, notice the following features of the 

The new '123' keyword in the INIT command informs 1022 that 
any output directed to PRINT channel 2 must be formatted as 
1-2-3 data cells, rather than the usual ASCII strings. The 
extension for the output filespec is defaulted to .WKS, and 
several other actions are taken in the background at 
INIT-time. The most significant action is the 
initialization of internal counters which, in effect, always 
point to the spreadsheet cell to which 1022 will next PRINT 
data. These counters are automatically updated in the 
course of printing, and are also accessible to user programs 
in the form of system variables. They will be discussed in 
more detail below. For now, it suffices to say that in our 
example, after the INIT command the counters will point to 
cell Al, by default. 

There are two instances in the example of a new ~ormat spec 
- "L" format. (The L stands for Lotus). This format serves 
a dual purpose: 

1. It enables a 1022-to-l-2-3 data transformation which 
maps 1022 datatypes (integer,real,date,double integer,or 
text) into Lotus datatypes (integer, real, or text 
[label] ) . 

582 



2. It allows the user to specify a Lotus display format to 
be used with the item. In our example, a date(SYSDATE) 
is printed under L8 format. This causes a Lotus binary 
date to be written, with its format code set to (Dl) -
l-2-3's day-mon-yr format. (This is why SYSDATE shows 
up differently in FIGURE 7). In the last PRINT of the 
example, a 1022 function result (type real) is printed 
under Ll.l format. The 1022 real is converted to a 
Lotus real, with a format code set to Fixed format, 1 
decimal place."Ll" format signifies Fixed format, with 
the argument after the "."indicating the desired number 
of decimal places. 

* Unformatted PRINT statements also occur in the DMC. 
Unformatted PRINTS simply default to "L" format by virtue of 
the fact that they are directed to a PRINT channel that has 
been INITed to a 1-2-3 file. Thus, in the PRINT ALL 
statement, 1022 looks at each attribute it is to write out, 
and produces a 1-2-3 label, integer, or real record on the 
basis of the attribute's datatype. 

The data transformations made under L format are 
summarized in FIGURE 8: 

1022 
TYPE 

INTEGER 
DOUBLE INTEGER 
REAL 
DATE 
TEXT 

LOTUS 
TYPE 

INTEGER or REAL * 
INTEGER or REAL * 
REAL (8087 DP floating point) 
INTEGER or REAL ** 
LABEL*** 

* Integers or double integers that exceed the range 
+/- 32767 will be converted to 1022 reals and then 
to Lotus floating point. 

** The stored binary date is offset such that 
Jan.1,1900 = 1. The Lotus format byte is set 
for (Dl) format. 

***The maximum length of a LABEL is 240 characters, 
including a Label-Prefix (') and a terminating null, 
both of which are automatically added to the string 
by 1022. Any text epression or literal longer than 
238 characters will be truncated to 238 characters. 

Fig. 8 

583 



* 

FIGURE 9 summarizes the possible L format specs and the 
resultant Lotus format types: 

Form of an L-format spec: rLm.n 

where r = repeat count 
m = integer signifying Lotus format type 
n = number of decimal places (0<=n<=l5) 

Default for m = 12 

Default for n = 2, in accordance with 1-2-3 default 
(n is applicable only to types 1-5 below) 

Values of m 

1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 

Fig. 9 

Lotus type 

fixed 
scientific 
currency ($) 
percent 
comma (xxx,xxx.xx) 
+/- horiz. bar graph 
general 
day/mon/yr 
day/mon 
mon/yr 
text 
default 

Notice also in FIGURE 5 the presence of conventional 1022 
format specs: "A" format, "/" format, "X" format and quoted 
literals. Conventional 1022 formats, in the context of 
PRINTing to 1-2-3 files, work differently than in normal 
printing. 

"X" format is a means to skip some number of cells 
within a row. Thus, in our example the lX format in the 
first PRINT command repositions the internal cell counter 
such that the first actual data item in the worksheet is in 
cell Bl. 

"/" format is a means to skip some number of rows.The 
"/" spec at the end of the 2nd PRINT command in the example 
repositions the internal cell counter such that the next 
item will be written to cell A3, instead of to the next 
consecutive row. 

584 



Most of the other conventional 1022 formats (such as 
the "A" format in the first PRINT command or the literal in 
the second) will cause a LABEL to be written to the 
worksheet, whether the type of the 1022 expression being 
printed was text or not. The content of the label will be 
an ASCII string identical to that which 1022 would have 
produced while printing 'normally'. For example, consider 
the following command sequence: 

*INIT 123 3 FOO.WKS. 
*DEFINE INTEGER Q. LET Q 9999. 
*PRINT ON 3 Q Q+l FMT L I. 
*RELEASE 3. 

When loaded into 1-2-3, the spreadsheet will contain 
the binary integer 9999 in cell Al, while cell Bl will 
contain a label consisting of the DIGIT STRING '10000'. 
Since, presumably, most of the data that 1022 users will 
want to extract will be for computational purposes, they 
will therefore wish in most instances to use L format, which 
is the default. 

3.1 Summary Of 1-2-3-Related INIT/PRINT Features 

Our example has covered the basics of PRINTing to Lotus 1-2-3 
files. Let us now summarize the points covered so far, and 
explore further options available under this file format: 

3.1.1 L Format - is the default format used when PRINTING to a 
channel that has been INITed to a 1-2-3 file. The optional 
specification m.n following the L selects the Lotus format type 
and (if applicable) number of decimal places. L format MUST be 
used to derive computational spreadsheet data from 1022 numeric 
data. 

3.1.2 Conventional Formats - such as I, F, 
used to produce labels. /, X, and $ 
available for controlling the cell location 
and literals also produce labels. 

585 

E, A, D, etc. are 
are among the means 

of data. H format 



3.1.3 Data-Positioning Options - One requirement of Lotus 
worksheet format is that the cell coordinates of every data item 
be included in the data record. In order to do this, 1022 
maintains three counters for each channel that has been 
initialized to a 1-2-3 file. These counters are available to 
user programs in the form of three system variables, indexed on 
channel number N. 

3.1.3.1 Cell Location Counters SYSPCROW,SYSPCCOL,SYSPCRESET -

* 

* 

* 

SYSPCROW(N) points to the spreadsheet row to which 1022 is 
currently printing or is about to print. By default, 
SYSPCROW points to row 1 at !NIT-time and is incremented 
upon completion of every PRINT command. 11 / 11 format may be 
used to increment SYSPCROW at any time. SYSPCROW is 
user-settable. 

SYSPCCOL(N) points to the spreadsheet column to which 1022 
is currently printing or is about to print. By default, 
SYSPCCOL points to column A at !NIT-time. It is then 
incremented once for every cell produced in a given PRINT 
command. "nx" format adds n to SYSPCCOL, effectively 
skipping cells. Whenever a new-row action is triggered (as 
at the conclusion of a PRINT command or the execution of a 
"/" format) , SYSPCCOL is reset to point to the column whose 
value is stored in a third PC-related variable, SYSPCRESET. 

SYSPCRESET(N) points to the column at which each new row is 
to start. By default, SYSPCRESET points to column A at 
!NIT-time. 

SYSPCCOL and SYSPCRESET, like SYSPCROW, are user-settable. 

NOTE that all the SYSPC variables are "zero origin": 
that is, when the column and row counters are pointing to Al, 
they are both set to 0. To advance SYSPCROW to row 5 and 
SYSPCCOL to column D, therefore: 

LET SYSPCROW(N) 4 SYSPCCOL(N) 3. 

3.1.3.2 $SYSPCPOS Function - As a convenience, the string 
function $SYSPCPOS(N) has been added. $SYSPCCOS(N) returns the 
ASCII representation of the cell coordinates to which 
SYSPCROW(N) and SYSPCCOL(N) currently point. An example: 

*LET SYSPCROW(2) 5 SYSPCCOL(2) 4 
*TYPE $SYSPCPOS(2) 
*E6 

586 



3.1.3.3 Controlling Data Position Via The SYSPC variables -
FIGURE 10 shows an example of manipulating the position of data 
within a target spreadsheet by changing the values of the SYSPC 
variables.: 

!program fragment showing placement of data in spreadsheet 
!via alteration of SYSPCxxx variables. 
!attributes AT1 ... AT5 are from GOO.OMS 
!attributes VV ... ZZ are from POO.DMS 

OPEN GOO.OMS 
INIT 123 2 

!start at Al 

POO.DMS. FIND SYSID BET 1 10. 
FOO.WKS. 

!SYSPCROW(2) ,SYSPCRESET(2) ,SYSPCCOL(2) all=0 
!fill COLS A-E of ROWS 1-10 

PRINT ON 2 ATl AT2 AT3 AT4 ATS. 
DBS POO.DMS. FIND SYSID BET 1 10. 

right now, SYSPCROW=l0,SYSPCCOL=0 
!go to another ds 

LET SYSPCROW(2) 0. !reset to row 1 
LET SYSPCRESET(2) 6. !slide over to col.#G 

!NOTE!! SYSPCRESET is now pointing to COL. G. but if we 
!do not also set SYSPCCOL, SYSPCCOL will be set to COL. A 
!when the first record is printed below. 

LET SYSPCCOL(2) SYSPCRESET(2). 
PRINT ON 2 VV WW XX YY ZZ !fill cols G-K on rows 1-10 

3.1.3.4 Setting 
arguments have 
initial values 
PRINTing data. 

Fig. 10 

The SYSPC variables At 
been provided in order to 
of SYSPCROW, SYSPCCOL, 

The syntax is as follows: 

INIT 123 [COL c] [ROW r] ... 

INIT-Time - Two new 
allow the user to set 
SYSPCRESET prior to 

If COL is present, SYSPCRESET and SYSPCCOL are set to c. 
If ROW is present SYSPCROW is set to r. The defaults for c and 
r are Al, as mentioned previously. 

3.1.3.5 Columnwise vs. Rowwise Data Formatting - In all our 
examples thus far, data cells have been written in left-to­
right fashion within each PRINT command, with the row counter 
advancing down the spreadsheet upon each new PRINT. This is 
termed "columnwise" representation in spreadsheet parlance, and 
is the default action. However, a "rowwise" representation is 
also possible when printing to a 1-2-3 file. we include an 
optional CWISE/RWISE clause in the INIT command for this 
purpose: 

587 



CWISE 
INIT 123 [COL c] [ROW r] { } 

RWISE 

FIGURE 11 shows a DMC using these options. FIGURES 12A-12B 
show the spreadsheet results: 

!this DMC prints the same data to two Lotus WKS files. 
!the first files is INITed CWISE (by default) 
!while the second is INITed RWISE. 
INIT 123 2 EELSl.WKS. 
INIT 123 RWISE 3 EELS2.WKS. 
DEF TEXT 10 A B C D E F. 
LET A "My" B "Hovercraft" C "is" D "full" E "of" F "eels." . 
PRINT ON 2 A B C D E F. 
PRINT ON 3 A B C D E F. 
RELEASE. 

Fig. 11 

Bl: 'Hovercraft READY 

A B c D E F G 
1 My Hovercraft is full of eels. 
2 
3 
4 
5 
6 
7 

Fig. 12A - CWISE 

Al: 'My READY 

A B c D E F G 
1 My 
2 Hovercraft 
3 is 
4 full 
5 of 
6 eels. 
7 

Fig. 12B - RWISE 

As one might imagine, the underlying effect of the RWISE 
option is simply to switch counters; SYSPCROW is 
auto-incremented as individual items are printed, "X" formats 
executed etc. SYSPCCOL is auto-incremented on the end of each 
PRINT command, by "/" formats, etc. Programmers who want to 
change the counters would do well to remember this. 

588 



3.1.3.6 "$" Format - "$" format behaves as an analog to 
"$"-format in normal printing: it disables automatic 
incrementing of SYSPCROW and resetting of SYSPCCOL at the end of 
a PRINT command. This enables your program to (for example) 
print some data to a given row, "save its place" and do more 
calculation, and resume printing in the same row. 

3.1.4 NAMED RANGE (NRANGE) Option - The final INIT option for 
1-2-3 files is the ability to designate a block of cells within 
a worksheet as a Named Range: 

INIT 123 NRANGE FRED B3 Dl0 

uses the defaults for COL,ROW, and CWISE, and creates the Named 

Range FRED in the worksheet. One could use this with the File 
combine feature, for example, to extract the subset FRED of the 
1022 data into 1-2-3. 

The user may define as many 
using multiple NRANGE clauses. 
of such clauses. 

Named Ranges as desired by 
There is no limit on the number 

The default is no NRANGE present. 

589 



4.0 CREATING DIF FILES DIRECTLY FROM 1022 

DIF is an ASCII format; therefore DIF files can be written from 
1022 using normal formatted PRINTS. FIGURE 13 is an example: 

!This DMC extracts 1022 records and fields and produces a DIF 
!file. Note that the number of 'VECTORS' = 7 (6 attr's and one 
!blank cell) and IWDITH is set accordingly. The number of 'TUPLES' 
!equals the number of selected records, + 1 for the 'tuple' of 
!labels, + 1 for the blank 'tuple' and NTUPLES is set accordingly. 
CLEAR. 
OPEN MOBDEM.DMS RO. 
F SYSID BET 1 10. SORT LN FN. 
!NIT 2 DEMDIF.DIF. 
DEF TEXT 9 SKIPCELL TEXT 11 BOT EOD TEXT 2 CRLF TEXT 63 SKIPROW. 
LET CRLF $CHAR(l3)+$CHAR(l0). 
LET SKIPCELL "l,0"+CRLF+'""'+CRLF. 
LET SKIPROW SKIPCELL+SKIPCELL+SKIPCELL+SKIPCELL+SKIPCELL -

+SKIPCELL+SKIPCELL. 
LET BOT "-l,0"+CRLF+"BOT"+CRLF. 
LET EOD $REPLACE("BOT","EOD",BOT). 
LET !WIDTH 7. ! kludge to setup correct VECTORS item 
LET NTUPLES SYSNREC+2. !kludge works as long as we print !WIDTH 

!cells for SYSNREC+ (# of label rows and 
!blank rows) records 

!print the header section, note vectors and tuples counts. 
PR ON 2 "TABLE" "0,1" '''"' "VECTORS" "0," !WIDTH -

FMT 4(G I) 2G I '""' END. 
PR ON 2 "TUPLES" "0," NTUPLES FMT G / 2G / '"''' END. 
PR ON 2 "DATA'' "0,0" '""' FMT 2(G /) G END. 
!print the data section. start with a row of text labels, with a 
!blank cell in col. A (all rows will be like this) 
PR ON 2 BOT "FIRST NAME" "LAST NAME" "# CHILDREN" "CITY" 

"STATE" SKIPCELL "ZIP" FMT G 5("1,0" I '"' G '"' I) G "1,0" I -
'"' G '"' END. 

!now print a row of blank cells 
PR ON 2 BOT SKIPROW FMT G G $ END. 
!now print the stuff from the records 
PR ON 2 BOT FN LN NCH CITY STATE SKIPCELL ZIP -

FMT G 2("1,0" I '"' G '"' I ) "0," GI -
"v" /2("1,0" I '"' G '"' I> G "1,0" I '"' G '"' END. 

PR ON 2 EOD FMT G $ END. 
PR ON 2 $CHAR(26) FMT G $ END. !ctrl-Z eof mark 
RELEASE 2. 
TYPE "DEMDIF.DIF has been created on host and may be File". 
TYPE "Translated into 1-2-3 format.". 

Fig. 13 

590 



Like our previous example (MAKPRN) , this one suffers from 
intractably complicated FORMATS. Furthermore, there are two 
requirements imposed by DIF which our DMC does not really 
address: 

1. The file must consist of a known number of "TUPLES" (we can 
consider them spreadsheet rows) and this number must be 
recorded in the file header; 

2. Each "TUPLE" must be of equal length - i.e. each tuple must 
consist of the same number of "VECTORS" (we can consider 
them spreadsheet columns) and this number must be recorded 
in the file header. 

Our example meets these requirements only because it was 
constructed knowing the correct counts in advance. Obviously 
this is not usually the case. 

A more general way to handle requirement (1) would be to 
have the program keep track of the number of lines(TUPLES) 
printed, and to write this count to the DIF file header when 
done. This is in fact what the 1022 DIF printing option does. 
The means of counting "TUPLES" is SYSPCROW, whose value is used 
for the count at RELEASE-time. 

Requirement (2) is handled by assuming that each "TUPLE" 
will contain 100 cells ("VECTORS") unless the user says 
otherwise at !NIT-time. The user specifies this via an optional 
NCOLS (Number of COLumns) clause in the !NIT command. Given 
this NCOLS parameter, 1022 ensures that each row is of equal 
width. 

Given a large enough NCOLS, then, a program need not worry 
about uniform length of its PRINT commands. If the correct 
NCOLS value can be known in advanvce at !NIT-time, however, it 
can be used to advantage by avoiding padding and therefore 
saving file space. 

4.1 !NIT Syntax For Printing DIF 

The full !NIT syntax for DIF is: 

!NIT DIF [COL c] [ROW r] NCOLS n chan filespec 

defaults: c=A, r=l, NCOLS=l00, filespec extension= .DIF 

591 



4.2 DIF Example DMC 

FIGURE 14 shows a DMC using the new !NIT/PRINT features to 
produce a DIF file equivalent to the previous example. Note the 
use of "X" and "/" formats. 

!This DMC extracts 1022 records and fields and produces 
!a DIF file using Vll7B DIF printing features. 
OPEN MOBDEM.DMS RO. 
F SYSID BET 1 10. SORT LN FN. 
!NIT DIF 2 DEMDIF. 
!!NIT wrote the header ••.• no fuss, no muss. 
!Note use of X and I fmts in next command 
PRINT ON 2 "FIRST NAME" "LAST NAME" "# CHILDREN" "CITY" -

"STATE" "ZIP" FMT G lX G / END. 
!now print the data from the records 
PR ON 2 FN LN NCH CITY STATE ZIP FMT 5G lX G END. 
RELEASE 2. 
TYPE "DEMDIF.DIF has been created on host nd may be File" • 
TYPE "Translated into 1-2-3 format.". 

Fig. 14 

"X" and "/" (as well as the COL and ROW options) are 
functionally identical to their usage in printing 1-2-3 files. 
However, they actually work by writing out "padding" (blank 
cells). 

FIGURE 15 is the result of using the Lotus File Translate 
utility to derive a WKS file from the DIF file produced by the 
program of FIG. 14, and loading the WKS file into 1-2-3: 

FIRST NAME LAST NAME # CHILDREN CITY STATE ZIP 

CHARLES CARAGIANES 3 DEDHAM NY 02138 
RICH GARLAND 4 BRISTOL CT 02138 
CHARLES GOTT 2 BRISTOL CT 22209 
KATHY HOUSMAN 0 AUGUSTA GA 43220 
MARK JONES 0 DEDHAM NY 60064 
ROGER LEVINSON 3 BRISTOL CT 11729 
LOUIS MERZ 0 ROXBURY TX 77056 
OLGA PONG 3 STONEHAM MA 02238 
ALFRED SAVIO 1 ROXBURY IN 46225 
ALFRED STEVENS 0 BRISTOL CT 02238 

Fig. 15 

592 



4.3 1022 --> DIF Data Transformations 

DIF format recognizes only two datatypes: text and numeric. 
Numeric data is represented by ASCII digit strings. The rules 
for data transformation and formatting are quite simple: 

1. The type of the 1022 item being printed determines the DIF 
data type: 

1022 type 

Integer 
Double Integer 
Real 
Date 
Text 

DIF type 

Numeric 
Numeric 
Numeric 
Text 
Text 

(Note the date --> text transformation. If a 
computational date is desired, $INT(date-item) should be 
printed. This does not guarantee that the resultant number 
will be correct when read into the target spreadsheet or 
other program, which is likely to represent dates 
differently than 1022. The $INT result may have to be 
offset by an amount that will cover the difference.) 

2. Conventional 1022 formats are employed when printing to DIF 
files; there is no DIF equivalent to "L" format. The 
actual text or digit string that results is the same as that 
which would normally be produced under a given format spec. 
It is the programmer's responsibility to ensure that such a 
result is appropriate for the spreadsheet or other program 
which is to receive the DIF file. To mention a fairly 
obvious example, PRINTing an integer under ''O" (octal) 
format would produce a numeric DIF item which would be 
interpreted as a string of decimal digits by any program 
that adheres to the DIF standard. 

593 





Using Mobius to Extend 1022 and 1032 
Capabilities to Personal Computers 

by 
E. William Merriam, President 

FEL Computing 
PO Box 200 

East Dover, VT 05341 
U.S.A. 

(802) 348-7171 

Mobius is a micro/host integration package that extends the 
capabilities of Software House's 1022 or 1032 systems to personal 
computers. The personal computer user can now extract data from 
a large central data base and process it using the vast array of 
readily available personal computer software. This can all be 
accomplished without ever leaving the familiar environment of the 
microcomputer. In addition, host system capabilities, such as 
its mail system, are now directly available to the microcomputer 
user. 

This paper shows how the 1022 system interacts with Mobius to 
provide a smooth interface between the host and micro computers. 
While the examples given are for 1022, the principles and most of 
the details are identical for 1032. How Mobius meets the varying 
needs of the microcomputer end user, host computer user, 
programmer, and information manager will also be addressed. More 
complete information and technical details about Mobius may be 
obtained by contacting the author. 

1.0 MOBIUS, 1022, AND THE MICROCOMPUTER END USER 

Mobius allows the microcomputer user to access host progrruns, 
data, and other resources (such as printers) in exactly the same 
way that the micro's own programs, data, and resources are 
accessed. Thus, the end user only needs to master one computing 
environment - that of the microcomputer. Mobius handles access 
to host resources completely transparently, so that the user can 
be totally unaware of where the programs and/or data actually 
reside. Therefore, the user is left to concentrate on the task 
to be accomplished, unencumbered by difficult and error-prone 
file transfer and communication tasks. This results in more 
efficient use of the person's time, both because no additional 
training is required and because the operations being performed 
are handled smoothly and easily. 

Proceedings of the Digital Equipment Computer Users Society 595 Dallas Texas - 1986 



1. 1 An Example 

An example will illustrate how easily the micro-to-host 
interaction becomes to the end user. Here, the host 1022 data 
base management system is used to extract information from a 
central data base, and then that information is loaded into a 
Lotus 1-2-3 spreadsheet on the micro. With Mobius, this task is 
performed completely on the user's microcomputer with the 
following sequence of commands: 

(1) A)l 022 
(2) *USE MAKWKS 
(3) *QUIT 
(4) A)123 
(5) /File Retrieve D:DEM03 

Line (1) of this example shows the "A)" prompt displayed on the 
user's personal computer (IBM-PC, Rainbow, etc.). The user now 
wants to run the 1022 system which is written for and runs on the 
host machine, so he enters the "1022" command to the 
microcomputer's prompt. Notice that this is exactly how the user 
would start a program that was written for and runs on the 
microcomputer. As far as this user is concerned, he is simply 
running a program; he does not know or need to know where it 
actually resides. 

Between lines (1) and (2) of the example, Mobius operates 
invisibly so as to make the host program access completely 
transparent to the user. First, Mobius starts the host 1022 
program and then it automatically causes the microcomputer to 
operate as a VT-100 terminal. Thus, when 1022 outputs its "*" 
prompt, it appears on the screen just as would the prompt from 
any microcomputer program. 

Lines (2) and (3) are commands which the user enters into the 
1022 system. These commands can be as simple or elaborate as the 
application requires, and all features of the host 1022 system 
can be utilized. In this example, MAKWKS is a program that 
extracts data from a 1022 data base file and outputs a file in a 
format that can be read by the Lotus 1-2-3 spreadsheet program 
which runs on the user's microcomputer. The file itself is 
stored in a directory on the host computer, but the user need not 
be concerned about this. All the user in this example needs to 
know is that when the MAKWKS program is run, it produces a file 
called "DEM03" on the microcomputer's "D" drive which is internal 
to his machine and which he can't actually see. In fact, later 
on, Mobius will perform the appropriate tasks, invisibly to the 
user, which cause this file to be retrieved when the "D" drive is 
referenced. 

Between lines (3) and (4), Mobius again operates invisibly. 
First, it detects that the host 1022 program has terminated; 

596 



then it causes the microcomputer to operate as it normally does, 
instead of as a VT-100 terminal; and finally, it causes the 
micro's "A)" prompt to again appear. 

Now, wher. the Lotus 1-2-3 program is started (line 4), all that 
the user needs to do is to retrieve the file D:DEM03 that was 
created by the 1022 system, just as any other file would be 
retrieved with 1-2-3 (line 5). Again, Mobius operates invisibly 
to retrieve the file from the host system and to make it 
available to the 1-2-3 program. 

1.2 An Even Simpler Example 

The above example illustrates how Mobius operates to provide 
truly integrated micro/host interaction. The entire process can 
be even further simplified by using still other features of 
Mobius. For example, for users who do not know how to use 1022, 
but still have a need to access its data, Mobius provides a 
facility where lines (1) through (3) of the example can be 
combined into what ap~~ars to the user simply as a microcomputer 
program. If we call this program "GETWKS", then the following 
user commands to the micro perform the same function as the 
previous example: 

(6) A)GETWKS 
(7) A/123 
(8) /Flle Retrieve D:DEM03 

In this example, the user isfreed from needing to know anything 
about the host 1022 system. This is particularly useful in the 
somewhat common situation where the user wishes the same type of 
updated data on a regular basis. 

Since Mobius is completely integrated into the microcomputer's 
operating system, its "batch" facility can be used to even 
further simplify the action required by the user. For example, 
if lines (6) and (7) are combined into a batch file called 
"START123", then the entire process of accessing the host, 
starting the 1022 system, extracting data from the data base, 
outputting the 0 xtracted data into 1-2-3 file fo'rmat, and loading 
that data into a 1-2-3 spreadsheet can be performed with only two 
microcomputer commands: 

(9) A)START123 
(10) /File Retrieve D:DEM03 

Note that in these examples, Mobius has worked completely 
invisibly and has not required the user to deviate from normal 
microcomputer procedures in any way. 

597 



1.3 Additional Versatility 

The above is only one illustration of how Mobius allows end users 
to access host resources without needing to know any of the 
details of the host system. While the examples used the 1022 and 
1-2-3 programs, they are equally valid for any host and/or micro 
program or combination of them. For instance, the host MAIL 
program can be run just as conveniently as 1022 was run in the 
example, thus providing the micro user with access to all of the 
features of the host mail facility as if that facility resided on 
the micro. 

As another example, a microcornputer text editor, such as 
WordStar, can be used to edit files that have been created by a 
host program. In this case, Mobius allows the host file to be 
read directly into WordStar, eliminating the need to perform any 
complex file transfer tasks. 

As can be seen by all of these examples, the integrated 
applications which Mobius makes available are virtually 
unlimited, since every host program can now be run as if it were 
on the micro, and every micro program can directly access host 
data and other resources. Mobius imposes no constraints on these 
whatsoever, thus eliminating user retraining and preserving 
current invescm·ents in software. 

2.0 HOW MOBIUS SUPPORTS THE HOST USER WHO HAS A MICROCOMPUTER 

While Mobius allows the microcomputer end user complete 
transparency when accessing a host machine, such transparency may 
not always be desired by a person who is familiar with the use of 
the host. Also, this type of person is most likely to be setting 
up applications for end users, and therefore needs a mechanism to 
accomplish this quickly and conveniently. 

2.1 Switching Between the Micro and Host 

Switching directly between the microcomputer and host 
environments can be accomplished in a variety of ways with 
Mobius. The way most familiar to most host users is simply to 
type the following microcomputer commands: 

A) PUSH 
A)SPAWN 

(if the host is TOPS-20) 
(if the host is VMS) 

When this is done, Mobius invisibly starts a new host process and 
causes the microcomputer to operate as a VT-100 terminal. At 
this point, any host program or function can be performed, such 
as editing a file, reading mail, running a data base system, etc. 
When Mobius detects that the process is terminated (ie: the user 

598 



enters "POP" on TOPS-20, "LOGO" on VMS), it causes the 
microcomputer to.operate as it normally does, instead of as a 
VT-100 terminal, and then to display the "A)" prompt again. 

2.2 Configuring the Micro/Host Environment 

Rather than requiring direct access to the host operating system 
functions as above, the user may wish instead to access that 
portion of the Mobius system itself which resides on the host 
machine. It is this portion of Mobius that contains an 
easy-to-use set of commands which allow the user to configure the 
Mobius environment, as was necessary for the 1022 example given 
above. To do this, the user simply enters a single keyboard 
character (initially defined as "CONTROL-A", but resettable by 
the user). Then, the current activity taking place on the 
microcomputer is instantly suspended (so that it can be resumed 
later), the host Mobius system is activated, and its "MOBIUS))" 
prompt is displayed. At this point, Mobius is waiting for a 
command to be entered by the user. 

The host Mobius commands provide a tremendous amount of 
convenience and capability for setting up applications as well as 
for performing useful host functions. In the 1022 example above, 
a file called "DEM03" was written to a host directory, and that 
file was seen by the microcomputer to reside on its disk drive 
"D:". This relationship between host and micro resources is 
established using the Mobius "DEFINE" command. For instance, the 
command 

MOBIUS))DEFINE (micro device) D: (to be) Host (resource) * * . 
tells Mobius that whenever the microcomputer's "D:" device is 
referenced (such as was done with Lotus 1-2-3 in the example), 
the files of the currently accessed directory (as specified by 
the"*.*") are to be accessed. Thus, as an additional example, 
the microcomputer command 

A)DIR D: 

will display all of the files on the user's currently accessed 
host directory. If the list of files specified to the DEFINE 
command had been "*.DOC,*.MEM", then only those files with "DOC" 
and "MEM" ex tens ions would be 1 isted. Similarly, if "SYS:" had 
been specified, then all of the files associated with that 
logical name would be displayed, no matter how many directories 
that represents. 

The DEFINE command can also be used to specify that output 
normally destined for the microcomputer's printer will instead be 
routed to a host device. For example, 

599 



MOBIUS))DEFINE (micro device) PRN: (to be) HOST 
(resource) PRINTR.OUT 

would route all microcomputer printer output to the host file 
"PRINTR.OUT". This output could have just as easily been routed 
to a host line printer or other device. 

The "DEFINE" command is only one of about thirty commands that 
the host Mobius system provides. Some of the other commands 
replicate host system commands such as "COPY", "DELETE", 
"RENAME", etc., so that these functions can be performed easily 
and without leaving the Mobius system. Others allow for the 
tailoring of the Mobius environment for individual user's needs, 
such as changing the "CONTROL-A" character mentioned above, 
specifying the amount and type of information given when help is 
requested, and outputting specific application-oriented 
information. Still other commands allow setting the parameters 
of the communication channel or showing the status of the Mobius 
environment. 

Once it has been determined how the Mobius environment is to be 
configured, all of the necessary host commands can be put into a 
data file. This file is then read when host Mobius is started 
and each command is executed, just as if it had been entered from 
the keyboard. Thus, the entire micro/host environment can be set 
up automatically and lnvisibly to the user. 

3.0 MOBIUS AND THE PROGRAMMER 

For most organizations, Mobius provides all necessary 
micro-to-host integration functions without requiring any special 
programming whatsoever. However, for those organizations which 
wish to create specialized distributed applications, Mobius 
simplifies the process by prviding an Advanced Programmer's 
Interface (API). The API is designed to give programmers direct 
access to the Mobius features that are available to the user at 
the microcomputer keyboard. For example, the user activates the 
VT-100 terminal emulator by typing a special character. 
Similarly, a program can activate the terminal emulator by using 
a Mobius API "system call". 

The Advanced Programmer's Interface appears to the programmer as 
an extension of the micro's operating system. As such, it gives 
the programmer access to several new system calls which are 
utilized in exactly the same way as normal system calls are 
utilized. Any programming language which can make calls to the 
microcomputer's operating system (which is virtually all of them) 
can call upon Mobius to perform its micro-to-host integration 
tasks. Thus, the API allows end-user organizations and OEMs to 
create sophisticated distributed applications without requiring 
systems programmers or communication specialists. 

600 



4.0 MOBIUS AND THE INFORMATION MANAGER 

The previous sections have shown some features of Mobius as they 
related to particular types of host and/or personal computer 
users. To the Information Manager, though, Mobius is more than a 
set of technical features and capabilities. Rather, it is a 
single unified solution to the problems created by a diverse set 
of micro/host users, using a variety of programs and machine 
types. The inherent versatility of Mobius is illustrated in the 
previous section by the ease of use for the microcompucer end 
user, host system user, and programmer alike. Mobius provides 
each class of user with the same environment they are already 
used ~o, thus increasing their productivity and minimizing (even 
eliminating) the need for retraining. Each class of user is also 
provided with easy access to the rich set of features that are 
available to the other classes of users, should they wish to take 
advantage of them. 

This versatility is complemented by close attention to the needs 
of managing host data and security. Mobius provides this through 
a combination of host file access mechanisms and special Host 
Mobius features. A key element of Mobius is that first-level 
access security is not controlled at the microcomputer, which is 
the most vulnerable part of a micro-to-host system, or even by 
Mobius itself; but rather it is controlled through the host 
operating system. 

5.0 HOST-BASED ACCESS PROTECTION 

The Host Mobius program operates as a normal user program running 
under the host operating system. Therefore, Mobius can provide 
the microcomputer user with no more file access than that user 
would have if accessing the host from a normal computer terminal. 
This design was chosen over a "server" or "privileged program" 
concept because it allows easy custom tailoring to individual 
users without introducing security problems. 

Some of the advantages of this design are: 

(a) The host system manager needs to establish directory and 
file access privileg~s only once. There is· no additional 
mechanism needed to provide protection for microcomputer 
users. 

(b) No passwords can be entered by the user when running a 
program from the microcomputer, nor can any passwords be 
accidentally displayed. 

(c) Because of (b), it is useless to enter passwords into data 
files stored on the microcomputer since they can not be 
functional from such files. Storing passwords in such files 
is one of the most common areas of security breach. 

601 



(d) The microcomputer user has full access to those host files 
normally available to that user. No additional procedures 
must be learned to access them. 

(e) The host system manager remains in full control of the 
access and integrity of the host system files. 

6.0 MOBIUS-BASED ACCESS PROTECTION 

.By design, Mobius can not allow access to host files beyond what 
is allowed by the host operating system. However, it can further 
restrict such access. For example, if the host system allows a 
user to read and write all files in a particular directory, 
Mobius can be set to allow reading only those files written by 
the user during the current Mobius session. 

Mobius also provides the ability to mark sets of host fi.les as 
"read only". This is accomplished with the Host Mobius "LOCK" 
command, which not only prevents writing to files that already 
exist, but also prevents new host files from being created. 

It is also possible to prevent the user from accessing the host 
except through Mobius and/or to issue any Host Mobius commands. 
Thus, the micro-to-host environment can be set up so that the 
user will never be able to change it, but all required host 
resources will still be available to the microcomputer user. 

7.0 INTEGR.~TING PCS AND HOSTS 

Mobius is a system which fully integrates personal computers with 
host machines. While traditional file transfer and terminal 
emulation capabilities are built into Mobius, these only scratch 
the surface of the tremendous versatility available to the user 
and/or system integrator. 

The example illustrating the use of the 1022 data base system 
with the 1-2-3 spreadsheet shows that Mobius supplies direct 
access to an organization's data and facilities from a personal 
computer, while maintaining all of the flexibility that these 
machines offer the user. Also, by offloading tasks to the 
personal computer, host performance and user productivity is 
increased. 

The versatility of Mobi'JS is further enhanced by the wide variety 
of machines on which it is implemented, including VAX, 
DECsystem-10, and DECsystem-20 host computers and PC-DOS (IBM-PC 
and compatibles), MS-DOS, and CP/M microcomputers. This range of 
machines allows integration to take place not just between PCs 
and hosts, but between dissimilar hosts and microcomputers as 
well. 

602 



All of this adds up to an unusually flexible system for the 
1022/1032 user. First, Mobius allows the capabilities of these 
systems to be immediately extended to the microcomputer user. 
Then, extracted host data can be used in 1-2-3, dBase, and other 
microcomputer programs. As the user's needs grow, additional 
host systems can also be extended to the micro. What may 
initially be viewed as an adjunct to the 1022 or 1032 system, in 
fact provides general-purpose capabilities that can be used to 
integrate virtually any micro/host application. 

603 





\ 


