USA 1986 SPRING

PROCEEDINGS OF THE DIGITAL EQUIPMENT COMPUTER USERS SOCIETY

w | O/ m|| O

_ =\
D)

= -

25th SILVER
ANNIVERSARY

2

DECUS

PROCEEDINGS

OF THE
DIGITAL EQUIPMENT
COMPUTER USERS

SOCIETY

Presentations and Reports
USA Spring 1986

Dallas Texas
April 28-May 2, 1986

Printed in the U.S. A.

“The Following are trademarks of Digital Equipment Corporation

ALL-IN-1
BASEWAY
DATATRIEVE
DEC

DECIab
DECmail
DECnet
DECpage
DECSYSTEM-10/20
DECUS
FALCON
FMS

HSC50

LA100
MicroPDP-11
Micro Power/ Pascal
Micro/RSX
MicroVAX
MicroVMS
PDP-11
PDP-11/23
PDP-11/44
Professional 350
Q-bus

Rainbow

RSX

RSX-11M
RT-11

RXO02
TOPS-10
TOPS-20
VAX
VAX-11/730 (et al.)
VAXCluster
VAXELN
VAX/VMS
VMS

VT100 (et al.)
WPS-PLUS

Copyright® DECUS and Digital Equipment Corporation 1986

The information in this document is subject to change without notice and should not be construed as a commitment by Digital
Equipment Corporation or DECUS. Digital Equipment Corporation and DECUS assume no responsibility for any errors that

may appear in this document.

Apple I1 is a trademark of Apple Computer Inc.; UNIX is a trademark of AT&T Bell Laboratories; Scribe is a trademark of
Unilogic Ltd.; TeX is atrademark of American Mathematical Society; UniLINK is a trademark of Applitek; HYPERchannelisa
trademark of Network Systems Corporation; 68000 is a trademark of Motorola, Inc.; TIway is a trademark of Texas Instruments,
Inc; XNS is a trademark of Xerox Corporation; IBM, PC-XT, BITNET are trademarks of International Business Machines
Corporation; TCP/IP is a trademark of Darpa; 32000 is a trademark of National Cyber 180 is a trademark of Control Data;

Modbus is a trademark of Gould, Inc.

All Rights Reserved

FOREWORD

This Proceedings is published by DECUS (Digital Equipment Computer Users Society), a world- wide society of users of
computers, computer peripheral equipment and software manufactured by Digital Equipment Corporation. The U. S
Chapter of DECUS has approximately 45,000 active members.

DECUS maintains a library of programs for exchange among members and organizes meetings on local, national and
international levels to fulfill its primary functions of advancing the art of computation and providing a means of
interchange of information ideas among members. Two major technical symposia are held annually in the United
States.

For information on the availability of back issues of Proceedings as well as forthcoming DECUS symposia, contact the
following:
DECUS U. S. Chapter

219 Boston Post Road, BP02
Marlboro, Massachusetts 01752-1850

All issues of past Proceedings are available on microfilm from:

University Miecrofilms International
300 North Zeeb Road
Ann Arbor, MI 48106

PREFACE

This volume of the Proceedings contains papers which were
presented at symposia sponsored by the Digital Equipment
Computer Users Society during the Spring and Summer of
1986. It includes submissions from the Spring National Sym-
posium and the Northeast DECUS Regional Conference.

The Spring 1986 Symposium was held at the Dallas Con-
vention Center in Dallas, Texas, from April28 through May?2,
1986. 4605 DECUS members attended the Spring Symposium
in Dallas. They took part in birds- of- a-feather sessions, 74 pre-
sympsoium seminars, and over 925 presentations made by
both DECUS and Digital. The majority of this volume of the
Proceedings is from that symposium.

However, there are two unusual features about this volume
that make it a very exciting one for me.

The first starts with the silver cover. This is the silver
anniversary of DECUS! To commemorate this special event, I
have chosen some excerpts from the first Proceedings of
DECUS, published in1962. The original Preface and Foreword
are here, containing references to the PDP-1 and the new and
exciting PDP-4. Mr. Walter, the DECUS President, described
his pleasure of being in a position to observe the evolution of a
“Society which spans such a diversity of on-line processor
configurations and uses.” I suspect that the present Digital
product line would have been entirely inconceivable in 1962.
Then, for those of you who have had to wade through the over
1500 sessions at a national symposium lately, comes the
program for the Fall, 1962 annual meeting. This takes almost
two pages. An attendance list follows; at some point it is
mentioned that “all of the DECUS members attended this
meeting.”

The first paper in this special section is entitled ““ Translation
Problems of a Peripheral Computer in a Multi- Lingual House,”
from what is now known as Lawrence Livermore Labs. This is
the first published paper about IBM-to- Digital interconnection.

The authors note, with astonishing foresight, that “one can-
not afford to approach the trivial problem of data conversions
with careless contempt.” Next the first interactive computer
game, Spacewar, is described. Readers familiar with the game
“Asteroids”’ will see its roots. Then, in “A Time Sharing
System for the PDP-1 Computer,” an MIT student describes
his idea of an operating system. Finally, and my personal
favorite, “MACRO, DECAL, and the PDP-1" is a transcript of
a discussion on the relative merits of assembly languages
versus higher-level languages.

The second unusual feature about this Proceedings is the
inclusion of regional conference papers. The Northeast DECUS
Regional Conference was held in Boxboro, Massachusetts
June 4, 5, and 6. Over 120 people attended 40 sessions and
two post-symposium seminars and, of these sessions, 7 were
also submitted as papers for the Proceedings. All future issues
of the Proceedings will have space allocated for papers from
the U. S. DECUS Regional Conferences. I would like to thank
Dennis Costello, of that symposium, for helping get those
papers into the Proceedings. By adding the regional confer-
ence papers, we hope to make the Proceedings more valuable
to the membership.

My thanks on behalf of the attendees of the Spring National
Symposium go out to Ms. Sandra Traylor and Dr. Jeffrey
Jalbert, the DECUS volunteers who led the Symposium
Committee. They worked together with DECUS staff members
Ms. Nancy Wilga, Ms. Joan Mann, and Ms. Gloria Caputo to
puttogether an exciting, impressive, and informative meeting.
The leadership of the entire Symposium Committee is sincerely
appreciated For her special work on the Proceedings, I would
also like to thank my colleague, DECUS staff member Ms.
Cheryl Smith. In addition, it is important for me to express my
thanks to Ms. Judith Arsenault and Mr. Mark Grundler for
their continuing support of this work.

LY

Proceedings Editor
DECUS U. 8. Chapter Publications Committee

TABLE OF CONTENTS

ARTICLE PAGE
25th ANNIVERSARY
Excerpts from 1962 Proceedings. 1

SPRINGS 1986 NATIONAL SYMPOSIUM
ARTIFICIAL INTELLIGENCE SIG

Development of a VAX Tuner Using OPS5
Robert A. Small......... 3¢

BUSINESS APPLICATIONS SIG
Project Management in the New Micro/Mini World

Raymond J. Doubleday............................. 41
Packaged Software and the International Market

Chandan W. Seernanio, 49
Produectivity Tools Improve More Than Productivity
Chandan W. Seernaniccooivennia... 53

COMMERCIAL LANGUAGES SIG

COBOL: An Endangered Species?
Edward W. Wooward, 59

DATA ACQUISITION, ANALYSIS, RESEARCH, AND
CONTROL SIG

Interfacing the Stomach with a Computer: An Automated
Analysis of Gastric Electrical Activity

O. Guetta, J. Hamilton, J. J. Conklin, A. Dubois........ 73
BASWWAY Implementation Issues
Daniel J. Drislane oL, 79

Using MicroPower/Pascal to Implement a Data Acquisition
and Analysis System
Paul Brown. i 87

An Ultra-High Speed Data Acquisition Front-End for
PDP-11s
Edward R. Darken..............cooiun.. 91

Data Acquisition with the MicroVAX II

W. M. Foreman, J. F. Amann, T. Kozlowski,
M. A Oothoudt.......... ..., 95

Conversion from RT-11 to Micro/RSX for Real-Time Data
Acquisition and Analysis

Mitchell E. King. oot 97
Data Acquisition and Valve Control for Onboard Oxygen
Generating System Chemical Contamination Studies

Paul A. Lozano. ..., 103
Real-Time Performance of MicroVAX II and MicroVMS
Richard K. Somes 107
Interfacing to Data Acquisition Systems

George SiroiSovu it e 121

DATA MANAGEMENT SIG

Encryption for Beginners
BartZ Lederman 129

Designing Front-End and Interface Systems for the Casual
End User
BudPine. 145

ARTICLE PAGE
A DBMS Performance Evaluation Tool Description and
Methodology of Use

Alexander B. Wasilow, Robert L. Ewing,

Gary B Lamont............... 149

The Complex Network: A Database Definition Dilemma
Mildred D. Lintner, David W. Chilson 155
DATATRIEVE SIG

DATATRIEVE Novice Questions and Answers

Joe Gallagher, Chris Wool, Bart Lederman,
Larry Jasmann, et. al.............................. 161

Record Definition Tutorial
B.Z Lederman.............. 169

The SAR Data Catalog System: An Interface Between the
Scientist and the Data System

A. A Pang A. L. Holmes, J. C. Curlander............. 191
Using DATATRIEVE as a COBOL Code Generator

LynnD. Dunean............... iiiiiiinn... 195
Commonly Asked DATATRIEVE Questions

Larry Jasmann, etal 201
DATATRIEVE and RMS

Joe Gallagher, Gary Friedman, Bart Lederman........ 211
EDUSIG

Test Generation and Course Managing with Digital's
Computer Managed Learning Software
Claude M. Watson.............ooiiiiiininnn.. 221

The Management of Computer Resources with a Well
Designed Accounting Structure

Philip A Dawdy..........0 229
Using VMS to Teach Operating Systems

Jerry Scott ..o 235
Student Information Systems

Warren AlKire. i 239

GRAPHICS APPLICATIONS SIG

Computer Assisted Course Development and Instructional

System (CACDIS)

A L Narasimhan, 245
IAS SIG

Intertask Communication

Ted Smith 253

LARGE SYSTEMS SIG
TOPS-20 Technical Update

Donald A. Kassebaum. 265
TOPS-10 Technical Update

Frank J. Francois. 269
TOPS-10 V7.03 Users Panel

Frank J. Francois. i, 275
LCG Software Produets Update

Carla Jd. Rissmeyer.t iiiiinnnen.. 277

ARTICLE
LANGUAGES AND TOOLS SIG

Typesetting Articles for the DECUS Proceedings with
LATEX

PAGE

Barbara N. Beeton. ..., 281
An Introduction to TEX and LATEX

Samuel B. Whidden................ 289
LATEX Examples

Samuel B. Whidden, J. R. Westmoreland.............. 307
C Program Portability

Michael D. Tilson.coiiiiinii i, 333

NETWORKS SIG

A High Speed Local Area Computer Network Across the
Goodard Space Flight Center
James P. Gary, et. al......... L 339

OFFICE AUTOMATION SIG

ALL-IN-1: A New Road to Effective Applications
Barclay Brown......... ... oo 371

User Communications for Office Automation Systems
Peter LaQuerre ... i 379

PERSONAL COMPUTER SIG

Putting the Reader Back in Manuals: Computer Manuals and
the Problems of Readability - V2.0

Thomas L. Warren............cooiiiiiiiinnnann. 387
RT-11 SIG

TSXLIB: Updated for TSX-PLUS V6.0

Nick A. Bourgeoisoooviniiiniininon.. 399
RSX-11 SIG

“MACHIAVILLI”: An Engineering Applications
Development Environment in DECUS C Under
RSX-11M-PLUS

R A Wittenoom., 405

Developing Large Programs on the PDP: The Spawn
Process
Walter Hayes.o i 409

Development of a Computer Based Data Acquisition System
S. K R Iyenger, R. P. Schmidt 413

ARTICLE PAGE
VAX SYSTEMS SIG

HSC50 Operations in a VAXecluster

Larry Harzlich. 425
VAXeclusters -- Expectations and Experiences

Gary Grebus.o i e 431
High-End VAX I/O Benchmark

Don Hamparian, Michael Huffenberger............... 435
A Robust VMS LOGOUT Driver Activator

Larry L, Johnson.............. 443
The Time Warp Simulator

J. Steven Hughes................ 495

POSTER PAPERS

Distributed Batch Queues on MicroVAX Ils
Michael A. Oothoudt, J. F. Amann, M. V. Hoehn 505
1986 NORTHEAST DECUS REGIONAL CONFERENCE

Adding Devices to RSX without a Sysgen
Dennis P. Costelloooiiiiiii ., 511

Remote Bridge Management
John Heffernam, Donna Ritter 527

Productivity Increases with the CORTEX Application
Factory: Empirical Survey Results
Anthony C. Picardi o0 i, 545

Rainbow Color/ Graphies Option Use in an Assembler
Language Programming Course

Robert Workman................ccoiaa... 561
Introduction to Speakeasy
David H. Saxe i i 567

Extraction of 1022 Data to PC Files: New INIT and PRINT
Features in V117B
John Duesenberry 577

Using Mobius to Extend 1022 and 1032 Capabilities to
Personal Computers
E. William Merriam. ... nn... 595

FOREWORD

These Proceedings comprise a broad spectrum of papers whose color, in a figurative sense, ranges from the
deep blues of special utility programs and debugging aids, through the lush greens of problem oriented
techniques, to the rosey hues of new hardware aids designed to enhance the on-line use of computers. In
organizing the papers we have attempted to portray the typical cycle of events centered about the utili-

zation of a new class of computers.

Much initial energy has to be expended on the creation and improvement of utility programs and systems
before anything very useful can be accomplishedwith oursystems. To those of us who are strictly problem
oriented, this isan extremely frustrating time, made bearable by the naive hope that it might be brief and
end with some powerful general problem solving language in our possession. Unfortunately, this dream is
inevitably dispelled as we proceed to call for a diversity of modes of control, and of action, which strain

the existing hardware and programming systems to their technological limits, in our quest for useful results.

From the insight thus gained, however, is created the structure of new programming systems, and of pro-
cessor configurations better fitted to provide each particular user with assistance in solving the problems
of interest fohim. The onset of the second stage of activity is already clearly discernible from the orien-
tation of a majority of the papers in these Proceedings. The theme is closer man-machine interaction.
This theme in present, both in the increased emphasis on on-line programming, debugging and problem
solvingaidsutilizingscope and light-pencil communication, and in the requisite improvements in flicker-

free scopes, time sharing hardware, and optical 1-O devices.

It hasbeen asingular pleasure, during the past two years, to have been in a position to observe the evolu-
tion of a Society which spans such a diversity of on-line processor configurations and uses. In thisbrief
interval of time the small scale processor has evolved from a meager and inadequate substitute for a large
central computer, into a formidable device whose flexibility and increasingly lower cost makes it the

logical candidate for a multitude of real-time information processing operations.

The ease with which hardware can be tailored to particular applications has already out-stripped the soft-
ware development problem. However, as the engineering technology rapidly improves, and the ultimate
userbecomes more intimately tied to the operating system, we may look forward to an era in which better

control can be achieved and maintained over the growing software domain.

C. M. Walter,
DECUS President

PREFACE

This is the first Proceedings of meetings of the Digital Equipment Computer Users Society. Formed in
March 1961, for the purpose of fostering the interchange of information, ideas, and the advancement of
the art of programmed data processing - particularly with application to the Digital PDP-1, the Society
(DECUS) has grown in numbers and in scope . DECUS now maintains a programming library facility for its

members and issues DECUSCOPE, a technical newsbulletin, every month.

The papers presented at two Meetings which took place in 1962 are the subject of these Proceedings. A
one-day Symposium was held May 17, 1962 at ITEK Corporation in Lexington on the subject: "Image
Processing and Displays." A two-day Annual Meeting, in October 1962, was hosted by the Computation
and Mathematical Sciences Laboratory, AFCRL, Hanscom Field, Bedford. The papers presented covered
a wide range of subjects and the meeting was highlighted by a lively Panel Discussion called: MACRO,
DECAL, and the PDP-1. Some of the papers given then are still in the germinal state but the authors
were prevailed upon to contribute them. During 1962, users of a second Programmed Data Processor, the

PDP-4, were welcomed to DECUS. More will be reported in the 1963 meetings about this data processor.

The rapid growth of DECUS and its diverse interests are evidenced by the presentations themselves. What
may not be clearly visible isthe remarkable spirit of cooperation in the interchange of such diverse infor-
mation. The 1962 Proceedings are a testimonial of this cooperative spirit and a tribute to the authors. |
regret that there was not space forthe sparkling good humor and even wit, which enlivened the discussion

between papers and during the questioning periods. Every user member was represented and participated

fully.

DECUS is deeply grateful to all who have contributed to the substance and embellishment of this first

endeavor.

Elsa Newman

DECUS Secretary

ANNUAL MEETING

Place: Air Force Cambridge Research Laboratories
L. G. Hanscom Field
Bedford, Massachusetts

Date: October 10, 11, 1962

PROGRAM

October 10 - Wednesday

0900
0930
0945
1030
1100

1215
1330
1400

1600

October 11 = Thursday

0900
0920

Registration

Introductory Remarks = Charlton M. Walter, President of DECUS

The PDP-4 Programming System - H. Morse, DEC

Reading Film with a Computer = M. Cappelletti, Information International, Inc.

A World Oceanographic Data Display System = Edward Fredkin, Information
International, Inc.

Lunch - Officers' Club
Minimax Detection Station Placement - Richard D. Smallwood, AFCRL
Displays -

Group |: to the DX-1 Experimental Dynamic Processor Room

Display of Minimax Detection Station Placement

Dynamic Attribute Extraction Display & Discussion = Charlton M. Walter,
AFCRL

Display - Steven Bernstein, AFCRL

Group |l: to the Operations Applications Laboratory

Displays & Discussion

Reconvene in Main Conference Room, Building 1105A - General Discussion
and Security Check

Matrix Package for the DX-1 System = Carmine Caso, Wolf R & D
Lawrence Radiation Laboratory's PDP-1

1. A Peripheral Processor for Large Computers = Mrs. Dorothy Monk
2. A PDP Systems Tape - Fraser Bonnell

3. Translation Problems of a Peripheral Computer in a Multilingual House -
R. P. Abbott and L. E. Mish

1100
1115

1230
1330

1530

1730

Playing Music in Real Time - Peter R. Samson, MIT
Business, Introduction of Newly Elected Officers
1962-63 Officers

Edward Fredkin, President
Elsa Newman, Secretary

Committee Chairman

Eunice Cronin, Meetings
William Fletcher, Equipment
John R. Hayes, Programming
Elsa Newman, Publications

Lunch
The BBN Symbolic Version of DECAL - R. J. McQuillin, Bolt, Beranek &

Newman, Inc.

DECAL, MACRO and the PDP-1 (Panel Discussion)

Moderator John Hayes, OAL, Air Force Systems Command
Panel Professor Jack Dennis, Massachusetts Institute of
Technology

(for MACRO) Harrison Morse, Digital Equipment Corporation

Alan Kotok, Massachusetts Institute of Technology

Edward Fredkin, Information International, Inc.

(for DECAL) Theodore Strollo, AFCRL, BBN

Concluding Remarks
Edward Fredkin, Decus President, (1962-1963)

ATTENDANCE

ANNUAL MEETING
October 10 and 11, 1962

Air Force Cambridge Research Laboratories

CHARLES W. ADAMS ASSOCIATES ATOMIC ENERGY OF CANADA, LIMITED

Bedford, Massachusetts Chalk River, Canada
John Gilmore - D J. Quarrington - D
Mary Lanahan
Al Rousseau BIO-DYNAMICS
Paul Rodenhiser Cambridge, Massachusetts

Avery Johnson

AIR FORCE CAMBRIDGE RESEARCH LABS,
Bedford, Massachusetts
Frank Balzer, Jr.
B. Bernstein - pd

BOLT, BERANEK & NEWMAN, INC.
Cambridge, Massachusetts
Los Angeles, California

M. Breen
Harry Blum
Lucy Darley
Roger E. Bove
Eunice C. Cronin Thomas Evans
: William Mann

Robert Duncan
Donald Easterday
Stuart Gygi
Edward LeFebvre
Philip Lieberman
John Mott=-Smith

Thomas Marill - D
Richard J. McQuillin - P
David Park

Theodore Strollo - pd

Vera Pless JET PROPULSION LABORATORY
Eugene Prange (California Institute of Technology)
Richard D. Smallwood P, pd Pasadena, California

Charlton M. Walter =P, D
Weiant Wathen=Dunn - D

AIR FORCE SYSTEMS COMMAND
(Electronic System Division)
Bedford, Massachusetts

Charles R. Brown - pd, D
Donald W. Connolly - pd
James Duva

Ira Goldstein

John B. Goodenough
John R. Hayes - P, D
Sylvia Mayer

Raymond Nickerson

Anne Story

Paul Wein

Robert Westfield

Major John T. Willis

William Sholey

DATA PROCESSING, INC.
Waltham, Massachusetts

Richard Mills - D

DIGITAL EQUIPMENT CORPORATION
Maynard, Massachusetts

Harlan Anderson
Robert Beckman
Gordon Bell
Peter Bonner
Martin Graetz
Benjamin Gurley
John Koudela
Nancy Lambert
Harrison Morse = D
Elsa Newman
George Rice

GEOTECHNICAL INFORMATION
Garland, Texas
Gerald Clawson - D

INFORMATION INTERNATIONAL, INC.
Maynard, Massachusetts
Michael Cappelletti - P
Edward Fredkin - P, D
John Wood

INFORONICS, INC.
Maynard, Massachusetts
Lawrence Buckland - D
William Nugent

INFORMATION SYSTEMS DIVISION
(International Telephone & Telegraph)
Paramus, New Jersey

H. Gould - D

ITEK CORPORATION
Lexington, Massachusetts

William Blotnick
Charles Burgess
Terrence R. Cullen
Doris Gagnon
Richard Hagan
H. P. Peterson
Earle Pughe
Edward Radkowski
Robert Rizzo
Edward Spignise
T. R. Stansfield

LAWRENCE RADIATION LABORATORY
Livermore, California
Frazer Bonnell - D
Lloyd Mish - P
Dorothy T. Monk - P, D

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
Cambridge, Massachusetts
Professor Jack B. Dennis - P, D
Alan Kotok
Peter Samson - P
Robert Saunders
Jackson Wright

MASSEY DICKENSEN COMPANY
Waltham, Massachusetts
W. J. Lennon

OREGON PRIMATE RESEARCH CENTER
Beaverton, Oregon
Robert W. Coffin = D

RAYTHEON COMPANY
Wayland, Massachusetts
Ralph W. Zaorski

SYSTEMS RESEARCH LABORATORIES
Dayton, Ohio
W. Fahle - D

UNITED AIRCRAFT RESEARCH LABORATORIES
East Hartford, Connecticut
Gerard A. Paquette - D
David Sirota

WOLF RESEARCH & DEVELOPMENT CORP.
West Concord, Massachusetts
D. B. Brzezenski - D
Carmine Caso - P
Norman Hirst
Janet Seltzer

Notes: D - DECUS Delegate or designated representative .

P - Speaker or Panel member.

pd - Displayed CRT showing special programs.

10

TRANSLATION PROBLEMS OF A PERIPHERAL COMPUTER
IN A MULTI-LINGUAL HOUSE

R. P. Abbott and L. E. Mish

Introduction

Datamation - the oracle of our burgeoning indus-
try - has mentioned, on more than one occasion,
that Lawrence Radiation Laboratory is a hodge-
podge of incompatible machines. This paper might
be considered, somewhat, as an "Insider's Con-
fession." Our present computer configuration con-
sists of three 7090's, two 1401's, one LARC, one
STRETCH, one 650, and, of course, one PDP. We
are in the process of converting the three 7090's
totwo 7094's. In the foreseeable future, the com-
puter complex will be expanded to include a CDC
3600, as well as a CDC 6600. These machines
speak such different languages as Decimal, Bina-
ry, Concise, BCD-eeze, XS3-eeze, and, of
course, thet old standby, Hollerith. Frequently,
the output from one of these machines is neededas
input to a code which is on some other machine.
Usually, the two machines do not speak the same
language or the data must be rearranged or both.

Inaddition to the computer complex, there are many
data gathering devices located at various testing
stations, both at LRL and at other agencies. These
devices generally speak one of the aforementioned
languages, but the dialects include 35 mm photo-
graphic negatives, 5 or 8 channel paper tape,
punched cards, and 7 or 8 channel magnetic tape.
Most of these may be odd parity, even parity, or
both. Thus, we are called upon to make a trans-
lation, conversion rearrangement, or both. The
PDP, to which can be attached enough 10 gear to
be able to accept and generate all of the languages
and dialects, was programmed to make these trans-
lations, conversion, etc.

Programming for the PDP

Two ground rules were established prior to initiat=-
ing the programming.

1) Because there are at least two 1O devices in-
volved in each translation code, the pro :essing
speed of each code should be equal to the max-
imum rate of the slowest of the involved devices.

2) Whenever possible, all Input and Output data

11

must be checked for validity and parity.

IBM cards - intermixed Hollerith and binary - to
IBM magnetic tape

The translation from intermixed Hollerith and bina-
ry has been done onour 1401's, but to take advan-
tage of the faster card reader and for backup rea-
sons, it was decided to make this available on the
PDP also.

Ground rule 1) calls for an examination of rates,
so-oo. The card reader can run at 2100 cards/min .
The maximum rate for putting card images on 15KC
tape isabout 3750 card images/min. The processing
rate, by rule 1), shall be 2100 cards/min. Rule 2)
says that we shall validity check the Hollerith cards.
The binary cards will be checked by the large com=
puters at read-in time. Each record on magnetic
tape shall be checked and "standard tape tech-
niques" shall be used. "Standard tape technique"
means that if a bad record isencountered, that rec-
ordshall be backspaced, aspace equal to one record
gap shall be erased, and the record shall be re-
written andrechecked. If ten erasure attempts fail
to yield a good record, the problem shall be re-
started and the tape replaced.

The conversion from Hollerith to BCD is not wired
into the PDP so it must be programmed. The first
approach took 103 decimal cells and, on the aver-
age, took 47.6 ms to empty the card reader buffer
and convert. This was a weighted table search
where a maximum of 16 searches were made for each
character. The only trouble with this method was
that the 47.6 ms is much too large foran individual
card cycle of 28.4 ms whenrunning at 2100 cards/
min.

The method finally used is a direct table-look up
using the Hollerith punches as the table address.
For each character, the punches in rows 1 -9 pro-
vide the table address, and the punches inrows 12,
11 and O provide a correction factor. This approach
empties the bufferand convertsinonly 10 ms, which
is well under the required 28.4 ms. Space-wise,
the fast conversion is a dog. It takes 463 decimal
cells, of whichonly 87 contain data or instructions

and the rest contain zeroes. The zeroesare impor-
tant to the conversion, however, inthatan invalid
Hollerith punch is converted to one of these zeroes
and when it is written on the even parity tape, a
character skip will result and the standard tape
technique will stop the problem.

An interesting sidelight is to be found in the time
versus space analysis in the previous example.
Speed was increased by a factor of 4.7. On the
other hand, space was increased by 4.6. This rule
was found to be true in other examples: That is,
an increase in speed by a factor of N causes an
increase in space by the same factor N.

Now that the code has been debugged and timed,
it is running at 1600 to 1900 cards/min, instead
of 2100. This discrepancy seems to be due to the
summation of plus and minus fudge factors on the
time quotations for the card reader and tape drive.
For instance, the card reader time is not a hard
fast 28.4 ms, but more like 28.4 +2 ms, under
ideal conditions.

Tape start time, and tape stop time, are quoted at
+1 ms. The fact that the PDP is a 5 microsecond
machine doesn't begin to dent mechanical delays
on the order of 5 ms. If a highly integrated tim-
ing study is made, it might be possible to strike
2100 cards/min, but is it really worth the effort?

IBM magnetic tape to LARC magnetic tape

Anothertranslation problem of interest is the trans-
lation of IBM magnetic tape to LARC magnetic
tape, or vice versa. Our PDP has an IBM com-
patible tape control and a LARC compatible tape
control. Each control has 2 tape drives. To make
this a general purpose routine, it was decided that
the code should stand ready to accept variable
lengthrecords. Rule 2) (validity & parity checks)
will be satisfied by standard tape techniques. A
look at rule 1) (timing) provides the brilliant idea
of simultaneity. That is == let's start one tape
reading and, at the same time, start the other tape
writing and perform the translation while theyare
in motion! It is sort of a "he takes the high road
and she takes the low road and I'll be in Scotland
before them." Only, it doesn't work. The com-
mand structure of the PDP (specifically lack of in-
dex register) is such that the bookkeeping necessary
to convert three separate characters from a PDP
word requires more than 200 microseconds per word
converted.

12

PDP Saves Processing Steps

The procedure which was finally used is to start the
read tape, convert the first N words; start the write
tape, and finish the conversion of the remaining
words. The processing speed attained with this
method is about é ms longer than the read time.
This particular translation code is a good illustration
of the processing steps which can be saved with the
PDP. This code takesoutput from, say, a 7090 and ,
in one step, produces LARC input. The old method
consisted of an additional processing pass on the
7090 to prepare a Hollerith image tape, which was
punched off line on a 1401. The cards were then
converted to a LARC tape by a Remington Rand
Card-to-tape Converter.

Other routines

Other conversion routines on the PDP include:
Paper tape to magnetic tape, with options to check
odd or even parity on the paper tape, write odd or
even parity IBM or Remington Rand tapes.

Print LARC or IBM tapes on the PDP Printer,

Magnetic tape to visual CRT, and precision CRT
with 35 mm camera. This routine handles both
characters and graphical data.

35 mm negatives with graphical data to magnetic
tape .

IBM tape to IBM tape.

LARC tape to LARC tape.

Magnetic tape to printer and magnetic tape to pre-
cision CRT - simultaneously .

Our assembly routine deserves mention in that it
reads the instructions from Hollerith cards, uses
IBM tape as temporary storage, prints the listingon
the Anelex printer at 1000 lines/min (the printer
uses the XS3 language), and the object code is
punched in binary form on IBM cards.

Conclusion

The coding techniques which were finally used in
our conversion routines are not complex, but they
do serve to illustrate that one cannot afford to ap-
proach the trivial problemof data conversions with
careless contempt .

SPACEWAR!
REAL-TIME CAPABILITY OF THE PDP-1

J. M. Graetz

Abstract

The game starts with each player in control
of a spaceship (shown on PDP scope) equipped
with propulsion rockets, rotation gyros, and
space torpedos. The use of switches to con-
trol apparent motion of displayed objects
amply demonstrates the real-time capabil-
ities of the PDP-1,

Introduction

The demonstration program known as SPACEWAR!
was first conceived in December, 1961 at an in-
formal gathering of the Hingham Institute where
Wayne Wiitanen, Stephen Russell, and the author
were discussing some of the possibilities of the use
of the large~screen CRT which was to be attached
to the new PDP-1 computer at M.I.T. One idea
that caught our fancy was the thought of a moving
display under the control of the user. We thought
that a simulation of ships in space would provide
an excellent demonstration and the discussion de-
veloped into the Hingham Institute Study Group on
Space Warfare, under whose auspices almost all
of the work described here was done. The main
control and computation programs were written and
debugged in the first monthsof 1962 by Stephen R.
Russell of Harvard.

The program is set up in the form of a game for two
personsanda PDP-1. Each person has control over
one of two displayedspaceship outlines. The object
of the game is to destroy the opponent's ship by
blasting him out of space with torpedos. Control
is maintained over the ship's orientation by simu-
lating rotational gyroscopes. All translation is
achieved with the ship's main drive rocket; the ship
will accelerate inthe direction its nose is pointing
as long as the rocket engines are turned on. Both
ships are armed with ballistic missiles (torpedos)
which are released from the nose of the ship with a
velocity equal to the ship's velocity plus that im=
parted to the missile by the launcher. From then
on, the torpedos are in true ballistic flight. Each
ship has one other means of getting from one place
to another, namely "hyperspace," which allows
him to get out of the way quickly.

The display includes a background of stars and a
bright, flickering star or "heavystar" inthe center
of the scope which maintains a rather fierce grav-
itational field.

The Game

At the beginning of the game two spaceships,
equipped with 31 torpedos, are displayed in diag-
onally opposite quadrants of the scope face. The
players operate switches for the purpose of maneu-
vering into position for joining the fray. (It is un-
wise to remain in a single position for a very long
time, and also fruitless, for the torpedos have only
a limited range.) The torpedos have two types of
fuze: one is a proximity fuze which causes the
torpedo to explode when it comes within a certain
critical distance of any other collidable object
which will also be caused to explode. The other
is a time fuze which causes the torpedo itself to
explode if it has not encountered another object
after a given length of time.

The "heavy star" in the center is constantly exert-
ing a strong gravitational influence on the two
spaceships (torpedos are not affected by gravity).
This star also has a very short capture radius; a ship
with reasonably large intrinsic velocity can come
in quite close to the star without fearof being cap-
tured. This maneuver is frequently used to change
direction rapidly.

If a ship is captured by thisstar, it losesall velocity
and is thrust into the "anti-point," that point on
the surface of a topologically toroidal scope which
is represented by the four corners of the face.

All collidable objects explode on cominginto crit-
ical range. The current rules require that a game
is wononly if the remaining ship (after the op onent
has exploded) can successfully avoid being blown
up by any torpedos which may be left over. A tie
isdeclared: when both ships collide (and explode);
when an apparent victor is destroyed by a loose
torpedo; or when both ships run out of torpedos.
(Each ship has 31 torpedos at the start of each game).

13

The Spaceships

The two ships have different outlines making them
more easily distinguishable on the scope face. Ro-
tation isreadily apparent and rocket blast is equal -
ly detectable. When the ship is blasting, a fiery
tail is seen at the base of the ship, where the main
rocket exhaust is placed. The spaceship outlines
are generated and displayed by a program written
by Daniel Edwards of M.1.T. This program pro-
vides a very fast and reasonably flicker-free dis-
play. Torpedosappear as single movingdots. They
resemble stars rather closely.

The Heavy Star

Abright, flickering point inthe center of the scope
represents the massive star referred to asthe "heavy
star." This star has a strong effect (which approx-
imates gravitation) on the two spaceships. The
program for this was also written by Daniel Edwards.
In the final version of SPACEWAR! he is going to
provide an improved integration to eliminate some
of the more unexpected, albeit interesting, pro-
perties of the "heavy star."

The Stars of the Heavens

To add verisimilitude to the display, a background
of stars is provided. At first, this was merely a
random display of dots. However, Peter Samson of
M.I.T. has written a program which displays a star
map of the sky as seen from the Earth's equator.
The size of the scope limits the extent of the map
to a 45° segment of the heavens. Stars down to
just above fifth magnitude are displayed. The dis-
play moves imperceptibly across the face of the
scope from left to right, and, giventime, the com-

14

plete band of stars of this section of the map will
be displayed.

Hyperspace

This isan emergency device. It frequently happens
that a ship cannot accelerate fast enough to get
out of the way of an approaching torpedo. The
player may send the ship into hyperspace then.
The ship then will disappear and very shortly will
reappear somewhere else on the scope. Since this
isawayof getting from one place to another with-
out traveling the distance between, the method
used must be hyperspace! Each player has exactly
three hyperspace jumps.

On most PDP-1s, the ships are controlled by switch-
es in the Test Word. For the M.I.T. machine,
however, two control consoles were devised by
Robert A. Saunders and Alan Kotok, both of M .1.T.
Each console has a double=throw switch to control
rotation, a firing button, anda blast lever. Hyper-
space is entered by pushing the blast lever forward
and releasing.

Acknowledgement

Special thanks from the Hingham Institute are ex-
tended to: the various members of the Tech Model
Railroad Club for help andencouragement; to Prof,
Jack B. Dennis, director of the M.I.T. TX-0 and
PDP-1 installations, whose assistance went beyond
the generous allowance of time on the computer;
and, to Digital Equipment Corporation without
whose gift SPACEWAR! wouldstill be wishful think-
ing at the Hingham Institute .

Figure 1 A Common Opening Maneuver

15

A TIME-SHARING SYSTEM FOR THE PDP-1 COMPUTER *

John E. Yates

Abstract

A system for time sharing of the PDP-1 digital
computer with seven typewriters, two paper
tape punches, two paper tape readers and two
CRT Displays is described. The additional
hardware required forthe system and the mod-
ification required to a basic PDP-1 are de-
scribedand a program is presented to handle
the monitor of "executive" functions of the
system. ASystemusingtwo typewriters, one
punch, one reader and one disolay based on
this design is currently being installed at
M.I.T.

Introduction

A time sharing system for the PDP-1 at M.I.T. has
been designed and is in the process of construction .
It allows for the use of seven typewriters, two paper
tape punches, two readers, and two CRT displays
simultaneously, by up to seven users. Every effort
has been made to make as many features of the bas-
icmachine available to users as possible, although
some sacrifices must be made to make the computing
capacity available to several users simultaneously.

The System

The seven consoles which comprise the system each
consist of a typewriter, six sense switches, a con-
sole ON switch, a display lever which allows
lengthened quantas, a debugging button, and two
lights indicating the console is active in core and
itis permissible to type in. The two punches, two
readers and two displays are shared among the users
on an assigned basis. The test word switches are
also assigned.

Programming for the System in Two Parts

The programming for the time=-sharing system con-
sists of two parts, the executive routine and the ad-
ministrative routine. The executive routine is a
permanent part of core memory (approximately 512
registers) which will handle the needs of the time
sharing system on a second-to-second basis. It will
handle the so-called instruction traps and time -out
interrupts. 2. The administrative routine is a sep-
arate program brought into memory on request to

performsuch jobs as: assignment of equipment, reg-
ulation of memory protection, provision for services
such asan assembling, debugging routines, editing
programs, error indication for illegal instructions,
and other miscellaneous jobs. Let us assume several
users are using the computer, a particular program
is in core and is being executed. Since one does
not wish the computer to stop because of a user's
errors, (and thus keep others from executing) certain
provisions must be made. All halt instructions, il-
legal operation codes, requests for manual run, and
illegal instruction cause a trap to the executive
routine, ER (See Figure 1).

ENTRY

Trop
Dispatch
Service
Time Out Extemal
Equipment
Trops
Store ¢ harocter| Hondle
in buffer or Equipment
get from buffer Assignments
Is
quontum
No w?
Yes
Set up Dismiss
ime
for more
rvice before Y.
swap ? hd
Retum
No
Dismiss User
Figure 1T General Flow

Diagram of Executive Routine

Similarly certain IOT commands must trap as the
program does not know if the equipment has been
assigned to it, or which one to address if one has
beenassigned. The ER then executes the command
using the correct assignment, or puts out an error
indication thru the administrative routine

17

Maximum Efficiency

The program may well compute orrequire characters
faster than the 1/O equipment can take care of or
supply them. Normally, the computer waits in an
in-out halt for the completion pulse before process-
ing the next character. Under the time=-sharing sys-
tem it goes to another program while waiting. For
maximum efficiency, several characters are com-
puted at once and stored inabuffer in the ER. Then
the next program is brought in. At frequent intervals
atime-out interrupt occurs where in control is mo-
mentarily transferred to the ER. Here one character
is taken from each buffer and transmitted, if the 1/0
device is ready to accept. If not, it is skipped.
Control then returns to the program in core. When
a certain maximum time has elapsed, or if the ER
buffer becomes full, or if the program runs into an
error, the program is dismissed and another brought
in. A magnetic drum capable of holding twenty -
two memories is used as auxiliary storage for the
programs not currently active in core. In this way

18

no time iswastedand each user's program is in mem-
ory often enough for the user to think he has the
computer to himself.

Several instructions have been added to the machine
whichare valid during the time the executive rou-
tine has control. They are decoded from the IOT
77 class and are used by the executive routine to
test the states of the consoles, to make equipment
assignments, and to provide the proper information
to the status bits for the user current in memory.

*This paper is based on a thesis prepared by the
author in partial fulfillment of the requirements for
the degree of MS in Electrical Engineering, M.I.T .
The complete thesis isavailable as report ESL-R-140
from:

Publications Department

Electronic Systems Laboratory

Building 32

Massachusetts Institute of Technology

MACRO, DECAL, and the PDP-1

Moderator: Dr. John Hayes*
Panel: (MACRO) Professor Jack Dennis, M.I1.T,

Dr. Hayes:

Prof. Dennis:

Dr. Hayes:

Prof. Dennis:

Harrison Morse, DEC
Alan Kotok, M.I.T.

(DECAL) Edward Fredkin, Information International, Inc.
Ted Strollo, BBN
Roland Silver, Mitre Corp. (not present)

For some time now, there have been rumblings among programmers about DECAL
versus MACRO for the PDP-1. It began to look as though perhaps people
wouldn't talk to eachother who talked different programming languages. From
the discussion today, we should learn a good deal about both of these program-
ming languages.

Among a number of things, 1'd like to remind our panelists that some of us know
DECAL, some of us know MACRO, some of us don't know either. But very
few of us know both MACRO and DECAL. So, | hope that statements may be
explained where there may be a language difficulty. In the process of discus-
sion, | would hope that we would develop first of all, for the purpose of new
users who are perhaps trying to decide which language to use, the relative
advantages of one over the other or perhaps the relative advantages of using
both. For old users of MACRO or DECAL, such as the members of my labora-
tory, we would like to find out enough advantages of one language over the
other to justify the time and expense (which may well be considerable) of re-
training people to use the other language .

Now I'd like to introduce the panel: For MACRO, Professor Jack Dennis of
M.1.T., Harrison Morse of DEC, and Alan Kotok of DEC and M.I.T. For
DECAL, Ted Strollo of AFCRL and BBN, and Edward Fredkin of Information
International, Inc. |I'm sorry that Roland Silver, who was to speak for DECAL
could not attend. | am moderator, but | plan to moderate only in the case of
severe physical danger to one or more participants. Professor Dennis.

Am | correct in the understanding that so far in this meeting, there has been
no presentation of MACRO? How much time do | have for my initial presen-
tation?

The time will be five minutes.

I will start with a brief description of what MACRO is. MACRO is an assembly
program (as opposed to a compiler program) and was originally developed in
1958 and 1959 for the TX-O computer at M.l.T. The needs of the users of the
TX=-O computer, at that time, were the determinants of the features that were
placed in the MACRO assembly program. The original version of the MACRO

*Psychologist, Operational Applications Laboratory, Air Force Electronics Systems Division, AFSC,

Bedford, Mass.

19

Dr. Hayes:

Mr. Fredkin:

assembly program was based quite a bit on previous experience in the Whirlwind
Laboratoryat M.I.T. and the experience of the people who participated in the
Whirlwind group. When the TX-O computer was brought to M .. T, in 1958,
we had need for creating a new programming system for the machine. At that
time, we asked for an assembly language so that the machine could be used by
students and research people at M.I.T. We discovered many features which
should be in an assembly program for the type of uses which were being made
of it - for example, the automatic macro-instruction feature, whereby a user
may assign a name to a sequence of instructions or words and later on in his
program use that name to specify the sequence to be placed in the object pro-
gram. Since then additional features have been added to TX-O MACRO, such
as automatic reservation of storage for constants, for variable automatic stor-
age, and automatic reservation of table space by using a dimension statement .
Various people here helped with this work. Among them, we should mention
Bob Saunders in particular (now with Information International), Bob Wagner
who is working for the Rand Corporation, and Alan Kotok who is on this panel.
When the PDP Computer was donated to M.1.T. bythe Digital Equipment Cor-
poration in the fall of 1961, there was quite a bit of concern about the kind
of language that should be provided for the PDP for use by students and staff
in the M.1.T. work and after some time we decided to translate the MACRO
program so it could be used on the PDP. This was a rather easy job because
of the great similarity of the two machines, and | believe it was accomplished
in something like three weeks of work on the part of about four people, work-
ing part time, which was quite an accomplishment. As to the reasons | think
that MACRO is avery useful assembly program, | have the feeling that for the
PDP Computer, an assembler is more desirable than a compiler. | feel this way
because applications made of the PDP-1 are such that using a compiler would
lead to object programs which are relatively inefficient and require consider-
ably more space than required by a program hand-coded for translation by an
assembly program. When I say this, | don't mean that a compiler can't be con-
structed which would be suitable for the PDP-1, but | believe that compilers
which are based on the kind of compiling techniques which are now in exist-
ence would lead to programs which are longand time=-consuming intheir opera-
tion on this machine. So my feeling is that for many classes of problems for
which the PDP is used, an assembly language is the more important language
to be concerned with. | believe that the MACRO source language has all of
the more important useful features of any assembly language in existence and
is very flexible in its use . | think I'll wait until later for any further comments.

Maybe we should now turn to a DECAL representative: Mr. Fredkin.

Well, | guess |'ve been labeled a DECAL representative. Let me say some-
thing about MACRO, though. | like MACRO and | think it's fine, but | don't
think it's fine for the PDP-1 because | don't think the PDP cares what you put
in the reader as long as you don't make it shudder too much. | think MACRO
is fine for a group of people and there are members of that group here. The
fact is, that we could be sitting up here arguing whether we should speak English
or some other language and | don't think you can argue this on the merits of the
language so much as by looking at the language in terms of its practical uses.
DECAL and MACRO are two very different languages. DECAL is a very com-
plicated system, MACRO is a simple system. Simplicity isvery nice sometimes
and the PDP-1 is perhaps a simple computer, but if you describe the two sys-
tems by listing their properties, DECAL includes more of the desirable features
of MACRO than vice versa by a big margin.

20

Mr. Kotok:

1. DECAL has one important thing and this is really best described as growth

otential . The language is increasing in capability with time. The fact that
it's changing may be a disadvantage, but still it is including more and more of
the ALGOL language features.

2. DECAL has a library feature. It allows groups, large organizations to set
up systems with various individuals' programs. It allows you to use library pro-
grams and library tapes and allows you to relocate binary - in general, those
things that are oriented for systems programming.

Now MACRO, on the other hand, is a beautiful language for one person who
wants to sit down, write his program, and make it work. This is characteristic
of many users of MACRO; in particular, | would say, characteristic of M.1.T.
students who generally don't get together to write large systems, but write their
own programs. They want to assemble, get something out, run it, debug it, etc.
That is very different from the way many other organizations use computers.
So, | really feel that there are a set of users for which MACRO is better. On
the other hand, | feel that there is a much largerset for which DECAL is better
because most organizations have invested insystems and these systems are large
and quantitative.

Another point...Sure enough, MACRO does result in efficient object codes,
but normally | don't care. What | care about isthe lapse of time between when
| start writing and when | have a finished program. Generally I'm going to
write the program over five times and maybe the last time |'ll do it in machine
code. |want the amount of time | spend doing this to be minimum; | don't care
about the machine. | usually write programs for hours that only amount to
milliseconds and so sometimes it takes 10 milliseconds (instead of one) for hav-
ing used the DECAL algebraic compiler. On the other hand, use of the DECAL
compiler may cut hours off the time of actually writing the program itself. So,
| think that there are very specific issues involved inthe choice of a program-
ming language, and | think I'll defer getting down to them until we've heard
from each of the people.

| don't think | can say as much as the two gentlemen who preceded me, but |
think they did outline the issues pretty well. One thought, which might be
germane, is that maybe we shouldn't be arguing whether MACRO versus DECAL,
Instead, whether either one of them or FRAP. It seems |'ve been informed that
a large number of users are still using FRAP for one reason or another and may-
be if we come out no where else, at least users will know something about one
of these two systems that we are discussing here.

I'm certainly not tryingto claimthat MACRO isas general a system as DECAL,
especially, the new DECAL described in the paper that was presented before
this discussion.* | think that you obtain through this generality, the facility
of the use of DECAL (as was shown in the discussion that preceded this one)
the description of instruction generators and action operators, which caused
Mr. McQuillin to indicate that even he gets confused occasionally. The
macro-instruction feature of MACRO is somewhat akin to the instruction gen-
erator feature of DECAL and our system is, we think, somewhat easier to use.
| think that most of the complaints against MACRO and why people say DECAL

*DECAL-BBN - Symbolic Version of DECAL - by R. J. McQuillin - p. 19 of these proceedings.

21

Mr. Strollo:

Mr. Morse:

over MACRO as an assembler is that, first of all, MACRO has a limited
set of symbols: 1, 2, and 3 characters. | can certainly see that people
can get unhappy with this. Maybe I'm on the wrong side of the fence, too,
but, like Ed, | can see where there might be objection to this. Also, in
MACRO there isan absence of a linking facility between programs. However,
the linking facility, it seems, as provided by DECAL, is a mixed blessing.
Since it is a one pass system, there is no way to directly get a loadable binary
type which can be read in right away. The second pass of the assembly that
MACRO does do is often necessary in DECAL if you do wish just a self-loading
tape causing you to go through two passes of punching. These are just a few
of the points.

I'd like to say that | don't think it's different typesof programmers who should
use MACRO or DECAL. It would seem to me it depended on the type of pro-
gram to be written. Sometimes when writing a short program which one would
like to get into the machine as quickly as possible, MACRO has advantages.
But, if one were working on a long system and expected to link several short
programs together then | think DECAL is the better system to use because pro-
grams which other people have already written can easily be incorporated. A
library tape, for example, could be used. Thus available programs which have
already been debugged can be linked with the recently written program. Cer-
tainly this is a lot easier than recompiling all programs over again and going
through a new process with each program and then reading it into the computer.

| think there are two philosophies you can have when writing programs. You
can either write one very large program (and you would almost have to do it
with MACRO where all the symbols are linked together and where you stand
a good chance of not getting the program debugged for quite a while) or you
can write several short programs debugging each programas you write it. When
you are certain that programs A & B are working, then you can write a program
C and get it working and then try it in conjunction with A and B. | think the
latter is a strong point of DECAL. You can take all of your shorter programs
which you know are working now and link them together with your recently
written program and be pretty much certain that you're not going to have a
major debugging problem.

| would like, first of all, to make one thing very clear. An impression, |
think, Ed Fredkin and Ted Strollo have given isthat it's difficult for more than
one person to work on one program in MACRO and it's difficult to write a pro-
gram that isn't one big chunk of coding. This is not true. | have many times
written programs which consist of a big glob of subroutines (literally 20 or 40
to 100) and a large control program, with the subroutines on separate symbolic
tapes. The subroutines are assembled and checked out separately, prior to put-
ting together the whole system. Once the subroutines are checked out, these
are punched out on a binary tape and a symbol punch gotten from MACRO. The
subroutines sit in a fixed place and remain there while you go to work on a
control program. One great advantage of this is that you can use MACRO
instructions as a means of calling these subroutines. In particular, one person
can write all the subroutines, define how they're used, and another person, not
knowing a thing about this big black box, can use MACRO instructions to call
the subroutines. This is one way of performing the same function that DECAL
does with the relocatable subroutines which are called by system symbols when
the main program is loaded. Just this to counteract the impression that MACRO

22

Mr. Strollo:

Mr. Fredkin:

Dr. Hayes:

Mr. Fredkin:

Prof. Dennis:

Mr. Fredkin:
Prof. Dennis:
Mr. Fredkin:

Prof. Dennis:

is for one-man programs only. There are advantagesto both systems. If you're
doing mainly arithmetic processing, DECAL does have the advantage that you
can write aprogram much more quickly and possibly get it debugged much more
quickly. A disadvantage here is that at the present time DECAL's programs
must be debugged inoctal. This will eventually be counteracted by using DDT
and symbols from DECAL for debugging. Another disadvantage is that if the
DECAL program is large and has many systems symbols which must be stored in
memory while loading the program, then you also have storage problems that
are alleviated by using MACRO since you can use all of core except the last
27 registers or so.

If | understand MACRO correctly all symbols are three characters in MACRO.
Is that correct? For example if someone else were working on a program could
you say to them don't use the symbol A because I'm using the symbol A in my
program and you can't use it in yours? Is this what you would have to do? |
think there should be afeature for external symbols because there are a certain
group of symbols that | use over and over again in several of my programs and
even if | were working on a system | like to use these symbols within the pro-
gram like "move" or something like that.

| think the communications problem when you're writing a long system would
be enormous if you had to eliminate all the symbols you use and pass it on and
say don't use these symbols in your program.

Well, when writing with FRAP we used to break things up. We used to say
I'll start all my symbols with my initials. Thisis sort of hard when you're lim-
ited to three characters because it doesn't leave too many initials.

Especially if you have a long name.
That's right. If you have four initials.

Take the example that Mr. Morse gave in which you compile a set of subrou-
tines and then define a set of MACRO instructions to be the calling sequences
for the subroutines. After you've got to that stage, you may dispense with the
symbols which are involved in the subroutines and simply use the MACRO in-
structions in your main control program. So once you have coded the subrou-
tines and defined the calling sequences and debugged them you may dispense
with all of the symbols involved in these programs in the subroutines and refer
to them only through the MACRO instructions.

Isn't that true only if you know the binary locations?

No.

Dispensing with all the symbols?

One way of doing this is to define the calling sequances as macro-instructions
on a separate tape which is assembled with the subroutines. Then a definitions
tape is obtained containing only the macro-definitions. If you have used the
system correctly, the macro-instructions defined on the tape provide the

correct calling sequences for the subroutines, but the tape will not have any
of the symbol definitions of the subroutines.

23

Mr. Fredkin:

Prof. Dennis:

Mr. Fredkin:

Prof. Dennis:

Mr. Kotok:

Mr. Fredkin:

Dr. Hayes:

Note :

Mr. Morse:

However, these subroutines will not be able to link if you get rid of their def-
initions, unless you pick the binary location.

That is correct.

Now for instance ona DECAL library tape you might have 20,000 instructions
worth of program. You can't fix the binary locations and pick any subset so
it's impossible to have such facility in MACRO where you do in DECAL. By
the way, when we talk about library tape | thought I'd mention one thing. One
of the advantages of MACRO is the ease of tape handling. With DECAL, es-
pecially with this library tape and such, we had in mind from the very beginning
that this should be a magnetic tape feature eventually. It should work with
paper tape, and inaddition it should get into magnetic tape. It ison magnetic
tape here and there are people who put in a little paper tape, maybe about 20
fanfolds, where they crowd a whole slew of things in the library and just go
whizzing through this mag tape and they pick up all of these routines so that
you do get access easily in a relocatable form.

| would like to pointout that for the TX-O computer there is a relocating ver-
sion of MACRO assembly program. The relocating features were not translated
intothe PDP version because of space limitations in memory of the PDP. How-
ever, lexpect that this is somethingthat the Digital Equipment Company would
be interested in doing, but we don't have the manpower at this time.

Another way, is to store the symbolic version of each subroutine on tape and
add to MACRO a facility which could be done with about as much trouble as
putting in the DECAL library tape to call the subroutines wanted in symbolic,
assembling these at that time. This means a double tape handling, but when
you're handling magnetic tape the extra time needed is still so much less than
the time used to handle the paper tape it becomes a very workable scheme and
does not entail large changes to the MACRO system itself.

Just to comment on the thing Prof. Dennis was talking about before - assembl-
ing a large number of subroutines and using the MACRO instructions with these
subroutines as calling sequences may be done by using the symbol punch facility
in MACRO. The symbols may be punched for use with DDT, or the MACRO
instructions without the symbols may be punched for use at a later date. The
MACRO calling sequences would be absolute addresses of the subroutines for
later use.

Three things occur to me: First, how about the length of symbols because we
can't name everything you want with three letters? Second, what about re-
location? Third, what about library tapes? These are all features of DECAL
now and they could be a part of MACRO.

Yes, our discussion seems to have boiled down to the properties of future pro-
grams. Are there any further comments from the panel or is it now time to

entertain questions from the floor?

(Questions from the audience were not audible for purposes of recording them.
One question to Dit prompted the explanation of macro=instructions.)

| would like to give a brief description of how to use macro-instructions. The

24

Mrs. Newman:

Mr. Morse:

Prof. Dennis:

macro-instruction facility is a way of naming a series of instructions which are
commonly used in the program, which can be put inthe program by writing the
name of the macro-instruction.

For instance to define the MACRO instruction load:

define load B, A
lac (A
dac B
terminate

This MACRO instruction is commonly used to load register B with the constant A,

Now to use the instruction in the program to load 3 with register zzz one need
only write:

load zzz, 3
| may also use other MACRO instructions within a MACRO definition:

define load 2 z, one, two
load z, one
load z+1, two
terminate

The use of this

load 2 g, 4, 20
will cause the following instruction to be assembled

lac (4
dac g
lac (20
dac g+l

This operation will be performed many times. The argument A will be cycle
lac 9 times and that can be used as part of the later work. For example, this
is essentially the MACRO feature .

A good, brief description of MACRO appeared in the May 1962 issue of
DECUSCORPE.

Thank you.

In programs written in a large interpretive system (for example, a system for
floating point computation), the interpreted instructions may be given names
with mnemonic significance by parameter assignments or macro-instruction
definitions. With macro-instructions, specifying the parameters of an inter-
preted instruction is far more convenient. Of course, an interpreted instruction
may occupy two or three registers, depending on how many arguments must be
specified to the interpreter. This makes no difference when you are using
macro-instructions. The macro-instruction may have a length of 1, 2, or 3

25

Editor's Note:

Mr. Fredkin:

Mr. Morse:

Editor's Note:
Dr. Hayes:
Questions from
the fioor:
Prof. Dennis:

Mr. Saunders:

Mr. Strollo:

Mr. Morse:
Dr. Hayes:
Question:

Dr. Hayes:

registers depending on the particular instruction it represents.
There was a comment from the floor about the ease of writing macros.

There is one thing about macros. They are easy to write, but | would rather
work with "instruction generators" which are easy to use. You use things more
often than you write them and since you are only going to write it once you
don't need MACRO to do it. Let me give you an example of this. What do
you do when you want 39 in register? In DECAL you write: 39=>A but in
MACRO you have to remember whether it is: LOAD A, 39 or: LOAD 39, A
(which goes into which). |guess Dit made a mistake in the definition and you
can write into A, put 39. His results will involve the equivalent law 47, and
dac into A. Taking Dit Morse's example in the May DECUSCOPE; | showed
him a program in DECAL which did the same thing and it was easily 1/8 as long
and he said that's not fair because | used existing subroutines. | didn't use
anything but a single DECAL library tape. So the program was shorter and
much easier to write.

This is true, but first of all, the example was to illustrate the use of macro-
instructions and was not intended to compare MACRO's virtues with those of
any other programming system. However, let's use it for that as Ed has, and
compare the effort needed to run the programs. Using MACRO, you need only
do two passes on the symbolic tape and you have a binary tape which may be
loaded and run. Using DECAL, you must first assemble the program, then load
the linking loader, load the program, load the library tape, and if you do not
wish to do this every time the program is run, you must load punch-off and
punch out a binary tape.

There was muchreaction in the audience, especially from DECAL users.

| think the audience is getting jittery because they cannot participate. Are
there any questions from the audience?

One of the features of DECAL is the instruction generator. | think this is
equivalent to definitions. Is this correct?

Yes, in the form of macro-instruction definitions.
What you can do, for instance, is to have additional MACRQ instructions
written into the programs . What one cannot do is have the MACRO instructions

written in duplicate on certain substructures depending on the value.

If you can't get all of the instructions inon DECAL, you can insert a new tape
in DECAL. Can you do this in MACRO?

Yes, it is possible.
Any comments from the floor?
Not audible but Moderator repeated.

The question has to do with the use of magnetic tape with DECAL.

26

Mr. Fredkin:

Mr. Fredkin:

Prof. Dennis:

Editor's Nore:

Dr. Hayes:

Mr. Kotok:

Prof. Dennis:

Mr. Strollo:

Mr. Fredkin:

When you use it, my experience with DECAL is that even paper tape tears
much less. DECAL definitely has growth potential with respect to magnetic
tape.

(A question was directed to Mr. Fredkin about writing programs.)

The thing is that DECAL has facility for doing things. In MACRO you write
the programs over and over, but in DECAL we only do it once. A very im-
portant thing isthe joining of binary programs. You can do it in MACRO, but
in DECAL we put them in locations and never bother with them again. In gen-
eral, if you have a very complicated mathematical thing and you have to be
fast, you can do parts of it in DECAL algebraic language and then maybe convert .

The language | would use would depend on whether my program could be divided
into subroutines. Certain programs are impossible to divide into subroutines.
Then the question of MACRO versus DECAL depends on whether the macro-
instruction feature of MACRO turns out to be useful with reference to what you
are doing, and in most cases it is. The advantage of using MACRO for pro-
grams with many subroutines is that you can give nice names to their calling
sequences and refer to them by convenient names. You have the advantage
in DECAL which is given by the linking loader feature. | prefer the coding
format of MACRO to the coding format of DECAL. This, of course, is some-
thing outside of what either program can do for you and | admit that this is a
matter of opinion and my personal bias. It mayalso have something to do with
my experience with MACRO.

Discussion from the floor became more lively but speakers were heard by those
sitting close by. A question was raised about the effect of DECAL on the PDP
causing strain on input-output devices and it was pointed out that the M.1.T. ma-
chine had been modified for MACRO and didn't accept DECAL. Jackson Wright
repeated that the format of MACRO was easier for a program writer. A little
excitement was engendered at this point. It wasobvious that the audience was
having a good time and that the DECAL users thought it more advantages for
them in its present form.

Yes, Mr. Kotok.

| saw Ted Strollo working on a program on the flexowriter. | didn't see any
algebraic statements in it at all. He mentioned the manipulations which you
will have to go through to type the DECAL program, some of which have to do
with just which characters to choose . All the upper cases were troubling him.
Also, asystem where you have to put in information as to where you are assem-
bling and not compiling has many difficulties such as the difficulty of putting
in addresses alone .

It depends on whether you are talking about compiling. If you are doing your
own programming and have no typist, the more characters you have the more
chance for errors.

This could be remedied by the action operators in DECAL.

Ease of typing should not be the basis for evaluating a system.

27

Dr. Hayes:

Mr. Fredkin:

Mr. Kotok:

Editor's Note:

Dr. Hayes:

Mr. Fredkin:

Prof. Dennis:

Dr. Hayes:

Mr. Morse:

Mr. Strollo:

Mr. Wright:

It is difficult to evaluate on the basis of how many keys you have to strike to
make a comma.

There was a time when |, too, used to program in MACRO. | liked MACRO
instructions but 1've made progress. The algebraic statement is the best although
I'd like to have a combined system.

We ought to ask the audience what they like, we have been talking mainly
about what we have to offer. It would be interesting to find out what they use
and what they like. (Many voices and affirmative nods.) Who are DECAL
users?

The moderator asked for a showof hands. The number of people using MACRO
and the number of people using DECAL were about the same. The count for
each system is given below.

16 DECAL
16 MACRO - (M.I.T. programmers)
9 FRAP

About one-half of the audience did not indicate a preference. That is very
interesting. Yes, Ed.

MACRO is 5 yearsold and hasreached some maturity. It has a good write-up.
DECAL hasn't reached the same state of maturity but seems to be getting there.
| think that within the not too distant future we will see DECAL with a good
up-to-date Symbolic and a good write-up.

DECAL as it is presently offered, does not have the possibility of subscripted
variables == the most important feature of the algebraic language . | understand
a version of DECAL is being prepared now which does offer subscripts but |
have the feeling that putting subscripts in DECAL is going to increase the in-
efficiency of object programs over programs created with the absence of sub-
scripts and | think it is possible to create a compiler language for a computer
like the PDP-1 which could compile efficient object programs better than any
today in that it would not be a one to one translation between source programs
and object representations. | believe that such a program is possible and |
would like to see one prepared and | would then be sure to use a compiler for
any program | would write, but until such time | will use the assembler.

Yes. Would the other members of the panel like to give some conclusions now?
| believe MACRO is a better system for writing programs in which you need
close control overthe resultingobject code and storage allocation, for example
a real-time control program. In contrast, DECAL is more efficient from the
point of view of the lapse time of beginning a program and getting it running.
It's a matter of what type of program one is writing and whether it is desirable

to use programs other people have worked out. When linking a group of pro-
grams together, one saves time with the DECAL system.

Can you link programs with different symbols and different programs?

28

Mr. Fredkin:

Mr. Kotok:

Audience:

Prof. Dennis:

Dr. Hayes:

Yes! DECAL does it! BBN has it - In summary; an interesting thing happened
some time ago - Elsa Newman got after me. (She's the greatest weapon DECUS
has!) With reference to outlining virtues for DECAL or MACRO, her idea was
to do something like this debate, but in written form for the DECUSCOPE. So
Dit Morse and | got together to have a debate and what happened was that |
agreed with nearly every statement he made and | think, vice versa. We got
so bored with this, that after three-quarters of an hour, we went home. On
the panel today, | decided that | would argue more strongly in behalf of DECAL,
but my feeling is that both systems are good, for the reasons |'ve mentioned
earlier.

| must agree with Ed. | argued for MACRO, but | feel as Ed does that both
systems are worthwhile. |would have liked to find out about what others like.
If one sees something that neither of these systems has or can finda compromise
that you think is better drop a line to DECUSCOPE and we'll start something
like the ACM debates.

(laughed)

The discussion this afternoon served a very good purpose in bringing to light
the features of these two systems to the audience. If this is so, it has served
its purpose .

| hope, in spite of the good-fellowship and gemitlichkeit we have generated,
that the audience will have gained some appreciation of the differences be-
tween these two systems and that they will nowbe able to ask better questions
about them for their own applications.

29

o

o
e

L

. e
.. .
. - .

... o . . e

- - L . o -

. . . s , . . . ! . .
. . %@@ﬂﬂmmwmnﬁa%mwmm&%Mwﬁﬁ%«»@mmwmmmﬁmmﬁmv&mw%m; mwmmwwwimmwmgwgww:iwm% - .
. , - . & . . o .
. & . . . - ﬁﬁ&mm&%@m o , ; -

L u
- - -

. . . .

o
o

.

o

&WMWW%W MM» &
- o

. . . o o .
. &m&x%%%\www%wmmwp@%mwﬁxmm ammwmmﬁawmm%méwﬁm%x -

. .

... .

. m,m%%mw& . &&%ﬁ%@éﬁ%&?z& .
s

gm
e

. .
o .

.
.

: ‘hgi:
.

- - - a
.
ﬁ%&%@@w - . m&mw%wg%,mw%ﬁmw -

o

. . . .
o .
- ,
... . . o .

. ﬁm;ﬁmﬂm@k%

- ‘ = & - o o
. . , . o
. & . Wm me.w . ,WW Wwwm . @W&wwmwmmwmww& - . x&%wm@@ww .

o - . o

-
- S www& - ..

- . . . -
. ‘ . . mwmwﬁgaﬁ . , - Wmm%w}?%éhmmmmmiw . awmw%&

. . - .
.

. o

-

G
-

.
i
.

.
.

S

o

G

o
S

-
.
.

-
5

-
.
axgg

.

.
o

i e
-
.

i

.
-

. - - . o
. . W«mwmm“ﬁ . , . , - . - . ﬁwam%mmw%ﬁ ...~ _
- . - _ .
. . . ‘
- o o ! . megmmwmmwmm . - - - .
o e L - -
... , ..

w . Lo . . -
o . . - o . . .
, , - - . .
L o . . . - . .
Wm ;;ww%@ﬁﬁ%mﬂ mm&%ﬁ%&%g - . . a &MWW ammwmwmmwmmwmmmwmwwwwwmmmmm% %m% - . nm.mmmww&hmmmmmm% .

‘ , x gm .
i,z?: z% fzg §E: %&@
... . . ._.__._______ __
... - - - - - . -
... . & ‘ -
.....__.____ ___ __ ‘ - ..
... - . . .
o ... , , ...
... .
...
e Mmﬁémwvmnm Mﬁmwﬁw . mwmﬁﬁw ...
. e - : S
. . . .
-

o
.

o
o
-
§§§=’1§§:

-

e

e

-
-

i

i
-
o

i
.

-
.
.
.
i
i

. &
& ... co
o ... -
... . . .
- . . . - .
... - . . .
.. . .. o ... -
wwuﬁman
G . e e 5
o . -

-
o
-

.
i

e

. .
.. .
- - .
e »
. . - ...
- , , .
...
...
..

o
-

.
mg’g

e
.
i

L e
H i o

.
e

W%m&:gé twézﬁm;mf@m e

.
-

e

- G o :
S s e .
. %
- ... S
- .. .
... . .
. .

.

-

o

o

-
-

.
o

-
-

gfg;zﬁé

-

. . - o S - - o
o
. ; . , . &
- - . o - . e - - . - . .
e o ‘ . . L . . .
znw%wm ... §aﬁ%iﬁ&imz%mmﬁ; . , |
‘ . . -

o
o

ol

i

-

.

i

... . - . .
.. . . . - . o
. 5%5%
...
Eﬂmm.mmwwwa%,mmmmm&s%«mww M%wﬁ .

-
e

o

.
L

.
.
.
-

e
mmm%mw&m&

.

. .- . , - - ,

o . o . L e : e

o e - e e - - e

- . : - L L L

-
. .

o . o o o . s

i

e
o

.

.

:
.
L

. mw» - &, . : , :mmwwwwmmmw&dwﬁﬁ&ﬁ .

.
.
-

i

-

-
o

- .
.. - .
.

. ...
. - mﬁmxmmsrwwmﬁ@a
i : . i

@xv v
L L - - h nn

.

-
.
-

-
i
.

.

.

.
o
- :5?“@%&%&;

o

o

-

o

.

-

o
.
i
-

o
.

o -

-
.
e
e
e

-
L
.

-

?szm -

.
. .

- ..
. -
. zwmquww%ﬁmﬁmaz?wﬁzmm% ,
o - L . -

P

o

e
S

o - i S o S
. : Cooa i e e . &

i ,MM ... o . , -
i

o

.
.

-

... . o . . o - - . .
... , .
. mm%mwm@ﬁﬁ& . . . , . . , .
- . - . S o

s
g:a:a Fa

. o .. L
. . - . . .
. . . - ,
. ‘ - -
... ... -
. ... Q&W o
- . . ,
- - . -
i mmﬂ%?ﬁ% S - ;%,m»w ,
-
,Mm@;iwmzﬁ - o o .
e i -
-
.
o =

o
i

o

;;s?i ‘
- ‘ . , . & o
. . L

- . ‘ -

.
L

-

T

L
i

o
i

o
G

.

-

-

-
o

-

.

-
.
o

S

. o o o
. ..
.
.
e

i

=

;‘::&

.
L

. .
.
.
. wﬁﬁﬁxww
u««awﬁw»
.

i

.

.

o
.
-

-
L

.

L

-
o
.

o
.

-

i
.
i
G
s
cain

i
L

o .
.. . ..
. ..
- e

-
.
.

-

-
-
.
.
.
o
.
o

.
B
-
.
.

e

FESa
.
.
-
-
.
i
.
..
.
o

i

.

.

.
o

,
S

.
.

.
-
.

-

. o

... ...
!Nmumwww%u%wmﬁmmwm ‘ ,.amwwmms ‘ . «m&fwm

.. .
o
Lo

-
.
e

-

o

e
|
o

-

-
-
o
e
.
i
o
.

L
-
.
.
-
&

o

q:uwﬁﬁ&s%n\ i
o ,
.

o
.
.

G

-
.

«Séa{‘;
o

-
.

o

-
.

.

e

-
-
-
-
-
5:3'\73){5’”4
o

o L
.

-

Kmmwm .
.

.

.
-

B
L
.

Sl
L
L

=

|
-

L

S

L

ggﬁ%

-

5

b

-
o

o

e

.
.

o

-

o

s
r&wﬁ

L
.

DEVELOPMENT OF A VAX TUNER USING OPS5

Robert A. Small
Vitro Corporation
New London, Connecticut

ABSTRACT

The VAX Tuner was conceived of as a learning experience in our
attempt to gain mastery of knowledge based system development

skills and techniques.
based

system development tool,

Using a Lisp machine and a knowledge
a prototype was

developed

quickly to validate the concept of a computer-based Vax Tuner.
Several simplifying assumptions were made and OPS5 programming
techniques were adapted to the problem.

I. Introduction

This paper describes the development of a
prototype VAX Tuner knowledge based (KB) system
using OPS5e. The project reflects the efforts of
Karen Kennedy, David Kennedy, and myself; it was
completed in the summer of 1985. We Tlearned
several lessons in the course of developing this
prototype -- some were technical, others were not.
The remainder of this paper will attempt to share
what we have learned.

II. How we got started

Our company's long range objective is to sell
Artifical Intelligence (AI) solutions to both our
existing Department of Defense (DOD) customers and
new customers. To meet this goal, a strategy
involving hardware, software, and trained people
(fleshware) was formulated. To begin, we
purchased several Lisp machines, one of which is
located in our office. Additionally, the Lisp-
based version of OPS5 (0PS5e) the tool for the
construction of KB systems, was purchased for our
site.

Qur group of three is comprised of a former
sonar engineer and two software engineers with
sonar software experience., One of us (Small) had
several years experience in VAX/VMS system
programming.

The first step in our preparation was to
attend seminars on AI and expert systems as well
as trade shows. We also joined appropriate
professional orgainzations and began to read the
literature. Our Lisp machine purchase came with
some Lisp training which helped us to use our new
computer and introduced us to the language.

We had developed some momentum; our
experience at seminars was becoming repetitive.
There was nothing left to do but begin.

III. Choosing a Project

Several applications were explored; most were
dismissed because they were seen as too difficult
both in terms of our 1limited experience and our
need to create a meaningful demonstration system
in a short period of time.

We settled on the VAX Tuner as our first
project for several reasons. First, my background

Proceedings of the Digital Equipment Computer Users Society

33

in VMS coupled with the
documentation, specifically,
discussion, gave us easy access to sufficient
expertise to get started. Secondly, although
VAX/VMS tuning is a broad problem, we felt it
could be segmented and a meaningful demonstration
system could be created in a reasonable amount of
time (not more than a few months). Third was the
appropriateness of the tool for the job. It is
usually important to select the right tool for the
given problem, In our case, we had a tool and
were 1in search of a problem so we matched the
application to the tool. The procedural knowledge
in the DEC documentation seemed to lend itself to
the kind representation that 0PS5 easily
supported.

The lesson to be shared here is that in order
to develop a KB system, you must have access to
sufficient information about the domain. The
classical approach to construction of a KB system
is to give a knowledge engineer access to a domain
expert and some hardware/software and he/she can
synthesize an expert system. While we did not
employ a recognized expert in VAX Tuning, we did
mine and refine "textbook knowledge" and tempered
it with experience. The fruit of our labor is a
prototype that successfully demonstrates that a
computer program can recognize VAX resource
utilization patterns that can be improved with
tuning and it offers advice as to how to achieve
this improvement.

VAX/VYMS Release 4
its enhanced tuning

IV. Narrowing the Scope of Vax Tuning for Concept

Demonstration

The tuning manual gives a stern warning to
those who would tinker with the system paramters:
"Tuning is a delicate and often time-
consuming operation that requires both
thorough familiarity with the system workload
and a deep understanding of VAX/VMS resource
management mechanisms. An attempt to tune a

system without the proper level of
understanding may very well degrade, rather
than improve, system performance.... Too

many users assume incorrectly that tuning is
? first rather than a last resort solution."
1)
Our objective was to demonstrate a central
concept -- that we could construct a system to

Dallas Texas- 1986

make wmeaningful tuning recommendations given a
state snapshot of the VMS workload environment.
To be sure, the variety of hardware configurations
available and workload differences make tuning a
very broad problem. There are, however, core
issues that we needed to abstract for our
demonstration system. We, therefore, made several
simplifying assumptions.

The process of VAX tuning begins with the
identification of a bottleneck in a major computer
system resource: memory, CPU, or 1I/0. We
selected the memory subsystem for our prototype.
The procedural rules of our system focus on the

VAX/VMS resource management mechanisms. The issue
of system workload familiarity was temporarily
deferred. For our prototype, we "hardwired"

acceptable system performance thresholds. In a
fully developed product, there would have to be an
"installation procedure" where the Tuner could
observe the workload and gain a sense of what is
"normal" for its host system.

A VAX tuner, as a product, would no doubt
process system performance data that it collected
on-line. Perhaps it would be raw data from the
VMS Monitor Utility or DEC's System Performance
Monitor (SPM). Since we did not have on-line
access to a VAX we collected Monitor Utility
output in files and extracted system performance
data reflecting different system conditions.
These snapshot files were then loaded into the
Lisp machine.

The issue of delivery vehicles was ignored.
Since O0PS5 written in Bliss runs on the VAX,
transportability of the Tuner knowledge base was
not seen as an issue worthy of immediate
consideration. A fortiori, it was not at all
clear that the tuner would ever develop into a
product; the issue of delivery might be moot.

V. Overview of QPS5

0PS5e on the Lisp machine is an environment

that includes many resources. A rule editor
allows production rules to be <created and
modified. Rules are of the form "IF conditions

THEN conclusions;" the conditions are referred to
as the left-hand side (LHS) and the conclusions,
the right-hand side (RHS). A detailed example of
the structure of a rule is given in Figure 1. The
state of knowledge 1is maintained in workin
memory. These working memory elements (WME) are
structures called objects represented by a class
name and associated attributes. The attributes
have values that may change in the course of
reasoning.

The system does pattern matching between WME
and condition elements of rules. The resource

that performs the pattern matching is the
inference engine. When a match is found between a
WME and the LHS of a rule, that rule is a

candidate to fire and is displayed in the conflict
set. The working memory elements that would cause
the rule in Figure 1 to enter the conflict set are
shown in Figure 2. In firing a rule's RHS is
executed. If more than one rule is a candidate to
fire, a conflict resolution strategy selects only
one rule from the conflict set to be fired. As
rules are fired, they are displayed in the history
set.

T There are also resources available to
facilitate debugging of the knowledge base. The
user can choose a single step mode in either the
forward or backward direction. In forward

34

stepping, a rule is fired and any changes its RHS
induces will be represented in the next state of

{defo samole-rule

~

(class—-1 "attribute-1

Tattribute-2

Hyz
zyx) lhs—13

= (zlass—2 “attribute-1 abc)

(class—-3 “attribute—1 ghi)

—_—

(modify lhs—1 “attribute-2 greJ

)

Detailed example of the structure of a
rule. The keyword DEFP defines a
production rule. It has the name
SAMPLE-RULE and two left-hand side (LHS)
elements. The rule will enter the
conflict set if working memory contains
an instance of CLASS-1 ATTRIBUTE-1 equal
to XYZ, CLASS-1 ATTRIBUTE-2 equal to
ZYX, and CLASS-2 ATTRIBUTE-1 not equal
to ABC and CLASS-3 ATTRIBUTE-1 equal to
GHI. The first LHS element has a clause
name of LHS-1 that is local to the rule.
The second LHS element does not have a
clause name. The arrow demarcates the
LHS from the right-hand side (RHS).
When SAMPLE-RULE fires, the two RHS
elements will be executed. The first
will change the value of ATTRIBUTE-2 in
the LHS element named LHS-1 to QRS. The
second will remove the element from
working memory that matches the third
LHS element.

(remove

Figure 1.

-t A -
to) ass-1 Tattribute-1 xyz Tattribute-2 @y
(cltass~2 “artribote—-1 mnop)
{cltass-3 "attribute—1 ghi)

“attribute-1
attribute-1

yz Tattribute—-3 grs)
mnop)

Figure 2. Working memory elements associated with
SAMPLE-RULE. 2-A shows working memory before
SAMPLE-RULE fires and 2-B shows working
memory after it fires. It will fire if it is
either the only rule in the conflict set or
it is selected based on the criteria of the
conflict resolution strategy.

knowledge. In
changes to
possible,
its

rule.

backward stepping, the previous
working memory are retracted, if
and the state of knowledge returns to
condition prior to the firing of the last

Programming in the pattern matching model of
OPS5 is unlike programming in a conventional High
Order Language (HOL) 1ike Pascal; there are no
branching structures and code is not executed
sequentially. If the contents of working memory
pattern-match the LHS of a rule, it is a candidate
to fire. If the rule triggering pattern reoccurs,
the rule will fire again.

The process of pattern matching on the LHS is
characteristic of the reasoning strategy called
forward chaining where the system considers what
is initially known and uses the rules to conclude
whatever the knowledge base will support. This
process of drawing conclusions (firing of rules)
is repeated until nothing further can be concluded
(no more rules can fire).

VI. Building the Tuner

The process of building the Tuner was
iterative and exploratory. We did not work from
design specifications and our requirements were at
a very high level. Using the fault logic tree in
the Release 4 Tuning Manual, we created rules and
data structures as needed to represent a path of
the tree from root to twelve terminal nodes. Many
of the observations that the tuning process
required could not be made directly from the VAX
Monitor data so OPS5 programming techniques were
used to fulfill these data requirements as needed.

An example of this is given below. A data file
representing each VAX performance scenario was
available to test each 1logic path that we

implemented.

This approach, if continued, would yield a KB
system that would approximate the competence of
the tuning approach documented by the fault logic
tree. Assuming that experts in VAX tuning possess
heuristic or rule-of-thumb knowledge that is not
contained in the fault logic tree, one or more
people who are pre-eminent in the art of VAX
tuning would certainly need to be consulted and
their knowledge of tuning codified. This step is

essential if one were to develop an expert VAX
Tuner.
VII. Programming Examples from the Tuner

To motivate the examples, consider the
preliminary milestones in the tuning fault logic
tree. In the Guide to VAX/VMS Performance
Management, Figure 3-1 initiates the tuning
investigation; the entry point to the memory

analysis is in Figure 3-2 where phase I of the
excessive paging investigation is considered.
Phase II is reached in Figure 3-3 by two alternate
paths in phase I. The first example illustrates
how some of the fault tree analysis is captured in
OPS5 rules.

Figure 3 contains a reprint of the first
phase of the excessive paging investigation
(Figure 3-2) from the Guide to VAX/VMS Performance
Management, for reference. Figure 4 contains five
of the rules wused in this phase of the
investigation. Notice that the first LHS element
in each rule refers to the class DIAGNOSIS and
attribute NEXT. This will be abbreviated as D-N.
The value of D-N is modified by each rule as it
fires. Each value was chosen to help associate
the rules in the knowledge base with the decision
nodes in the fault logic tree.

This was wuseful for
facilitated programmer

reasons. It
during

two
understanding

35

development and it also insured that a rule would

only fire in the desired context. This issue is
illustrated in Figure 1, Notice that the same
question (Overall Fault Rate High?) is asked

whether the answer to the previous question (High
rate of Hard Page Faults?) is yes or no.

In Figure 4, Ry (inv-memory-limitations)
enters the conflict set when the value of D-N is
"inv-memory-limitations." When it fires, D-N
becomes "inv-high-page-fault-rates." This rule
really serves as a placeholder. Our notion was to
have a complete mapping of rules to decisions
nodes.

With this value of D-N, three rules match
this WME. Each of the three rules, Ry, R3, and Rg
(high-page-fault-rate-from-disk, high-cache-fault-

rate, and not-high-page-fault-rates) have other
LHS elements. Since the second and third LHS
elements in Rg are mutually exclusive with the

second LHS element of Ry and R3, at most, only two
rules (Rp and R3) can be in the conflict set. The

Figure 3-2 Investigating Excessive Paging—Phase |

INVESTIGATE MEMORY LIMITATION

3

MIGH PAGE FAULT RATE FROM DISK
OR CACHE? (MONITOR PAGE)

YES, NO
TOQ MANY IMAGE INVESTIGATE SWAPPING
ACTIVATIONS? 8 BEHAVIOR
(ACCOUNTING)
YES, NO
HIGM RATE OF HARD PAGE FAULTS?
(MONITOR PAGE)
YES NO
APPLICATION
DESIGN
ERAOR - SEE
SECTION 4 2.1
OVERALL FAULT OVERALL FAULT
RATE HIGH? AATE HIGH?
(MONITOR PAGE) IMONITOR PAGE)
YES NO YES NO
£AROR
SAGING S
INCREASE NOT EXCESSIVE
SIZE OF CACHE SIZE SEE SECTION 1%
4 PAGE TOO LARGE”
CACHE - (SHOW MEMORY MONITOR 10 MONITOR ©AGE!
SEE YES NO
PAGING IS SECTION
SATURATING 422

SYSTEM OISK
TOTAL OF
WORKING SET SIZES
1S TOO SMALL

TOTAL OF WORKING 3ET

OECREASE
‘4 SIZES 15 700 SMALL

SIZE OF
PAGE CACHE -
SEE SECTION
423

Figure 3. Investigation Excessive Paging - Phase
I, from Digital's Guide to
VAX/VMS Performance Management.

(defp inv-memory-limitation i R1
{(diaonosis '
“next inv-memory-limitation)
inv-memory-limitation-match?

(modify inv-memory-limitation-match
“next inv-high-page-fault-rates))

tdefp high-page-fault-rate—-from-disk s R2
{(diagnosis
“next inv-high-page-fault-rates)
high~-hard-fault-rate—-1-match?
(spv “page-read-io-rate > 5.)
i temp. threshhold for high = 5

(modify high-hard-fault-rate-1-match
“next inv-image-activations))

(detp high-cache-fault-rate i R3
{(diagnosis 4
“next inv—-high-page-fault-rates)
high-soft—fault-matchl
“page-fault-rate > 20.)

(spv
i temp. threshhold for high =

(modify high-soft—fault-match
“next inv-image—activations))

not-hiagh-page-fault-rates s R4
{(diagnosis

“next inv-high-page-fault-rates)

not-high-page—fault-rates-match?

= (zpv "“page—fault-rate > Z0O.)

i temp. threshhold for high =
= {(spv “page-read-io-rate » 5.)

i temp. threshhold for high =

20

9

(modify
not—-high-page-fault-rates—-match
“next inv-swapping-behavior))

(defp 1mage—activations

{(diagnosis

“next inv-image-activations)
image-~activation-match?
(spv ™image-activations * 20.,)
i temp. threshhold for high = 20
(last—scenario “scenario <scenariox)

(modify 3
“scenarin "imagE-activation")
(modify image-—-activation—-match
“next clean—up))

Figure 4. First five VAX Tuner rules to perform
phase I of the excessive
paging investigation.

36

decision node in the tree at this point suggests
disjunction. That is, a rule with LHS elements
ORed together. Unfortunately, OPS5 treats all LHS
elements as a conjunction; they are ANDed.

If either of the two rules Ry or R3 fire, due
to a high page fault rate from disk or cache, they
modify D-N to "inv-image-activations." This, in
turn, matches a LHS element of two more rules, Rg
and Rg. If the IMAGE-ACTIVATIONS attribute of
class SPV (system performance values) exceeds 20
(or whatever threshold is used for this
parameter), then the Rg (image-activations) is
fired. This corresponds to the terminal node in
the fault logic tree for application design error.
At this point in the prototype, the manual's
advice is synopsized and presented to the user.

The term SCENARIO in class LAST-SCENARIO is
used to solve an internal tuner problem -- keeping

track of which scenario is currently being
diagnosed. It has no bearing on the tuning
analysis itself. At the conclusion of the

analysis, after the results and advice are given,
working memory is cleared and a menu is presented
for the user to select another tuning scenario for
analysis.

To this point in the tuning investigation,
questions are asked that can be answered directly
by looking at values for system and wuser
processes. The first step in phase II of the
excessive paging investigation is to determine
which processes are faulting the most (Monitor
Processes/Topf). The second example shows how
0PS5 rules were used to create a sequence of the
top faulting processes based on each process' page
fault value. This sequence was not available
directly from the VAX performance measurements.

The class definitions of the objects used by
the rules in this example, PC (process
characteristics), Utility, and Diagnosis, are
shown in Figure 5. There are four rules involved
and they work in two pairs; TOPF and ORDERING-TOPF
are shown in Figure 6; TOPF-POST-PROCESS and TOPF-
EXIT are shown in Figure 7.

The tuner uses a rule of thumb or heuristic
in determining which processes are the most
faulting. The 80% rule, as it is called, finds
the highest faulting process and then the next
highest faulting process as long as the next

(defliteralize pc
pid
name
wssize
wequota
page—faults
swapper—trimmer:
topf—-+1aq)

(defliteralize diagnosis
next
initialization
file)

(defliteralize utility
max—topf—-pid
prev-max—topf
max—topf
Z80-value
status)

Figure 5. Class and attributes used in determining
the top faulting processes.

tdefp topf

{(diagnosis
“next
inv-voluntary-decrementing)
matchl
{(utility "max—tepf <max—topf:
“prev-max-—topf
wprev-max—topf
“AB80-value <ZA80-value:
“max—topf-pid
<topf-pid)
max —match?
{(pc “page—-faults » <max—topf:>
“page—faults = <4LBO-valuel
“page—faults
“prev-max—topf
“pid <pidi
“page—-faults
pa-matchy

“page—faultsx)

(modify max—match
“max-—topf
“page—faultsl
“LB0-value
(compute .8 #*
“page—-faults>)
“max—topf-pid <pid#))

ordering-topf

{({diaagnosis
“next
inv-voluntary-decrementing)
topf-diagnosisy

(modify topf-diaanosis
“next topf-post-process))

Figure 6. TOPF and ORDERING-TOPF rules used in
determining the top faulting processes.

highest faulting process has a page fault value
that is greater than or equal to the page fault
value of the previously found process. The search
for the highest faulting processes continues until
the page fault value for the ith + 1 process is
less than 80% of the page fault value for the ith

process.

When the NEXT attribute of the «class
DIAGNOSIS is set to "inv-voluntary-decrementing"
the rule ORDERING-TOPF enters the conflict set.
The rule TOPF also enters the conflict set if its
other two LHS components are satisfied. The LHS
element labelled "max-match," involving the
attributes of the class UTILITY, does not contain
any test; it is included in the rule so that

variables local to the rule can be established.
The first time the rule 1is considered, these
attributes have been set to initial conditions by
a previously fired rule. The attribute MAX-TOPF
stores the page fault value associated with the
currently considered process. That process is

37

‘defp topf-post-process

{(diagnosis “next
topf-post-process)

post-diagnosis—matchl

{(utility “max—topf “max—topf:
“max—topf-pid “topf-pid>
“ABO-value <ZLBO-valuel)

post—matchl

{(pc "page-faults - L 780-val uesls
“topf-flag nil) pc—match >
(make topf-processes

“topf-pid <topf-pid>
“topf-tfaults “max—topf >
“topf-status nil)

(modify post-—-match
“prev-max—topf
“7%B0-value

(compute
“max—topf O)

“max—topf:

.8 ¥ <{max-—topf)

(modify pc—match
“topf-flag t)

(modify post—diagnosis—match
“rnext
inv-voluntary—decrementing))
{detp topt-exit
{(diagnosis
“next topf-post-process)
exit-match?

(modify exit-match
“next inv-excessive-paging))
TOPF-POST-PROCESS and TOPF-EXIT rules
used in determining the top faulting
processes.

Figure 7.

identified by its PID in the attribute MAX-TOPF-
PID. The 80% value and the page fault value of
the previously considered process is stored in
PREV-MAX-TOPF. The third LHS element vrequires
that, for a process to be considered, its page
fault value must be greater than the MAX-TOPF
term, not less than the PREV-MAX-TOPF term defined
in the immediately preceding LHS element.

For each WME representing a process that
satisfies the conditions of TOPF, TOPF will appear
once 1in the conflict set; if there are five
process that satisfy its LHS, five instances of

TOPF, each associated with the working memory
element that it matches will be shown in the
conflict set. The conflict resolution strategy

prefers rules with more LHS terms since they are
more specific than simpler rules. Therefore, all
the TOPF rules in the conflict set will be
preferred over ORDERING-TOPF. Among rules of
equal complexity, the conflict resolution strategy

prefers rules that match newer working memory
elements. Since the working memory elements being
matched represent process characteristics that

were sequentially read from a file, the last one
read was the newest; the associated rule instance
is chosen to fire.

In firing, the page fault values of the
current process are applied to the attributes of
UTILITY. Specifically, the process' page fault
value becomes the value of MAX-TOPF, 80% of the
page fault value becomes the value of 80%-VALUE,
and the process ID number becomes the value of
MAX-TOPF-PID. The state of knowledge is therefore
subtley changed and the inference engine finds all
pattern matches between working memory elements
and LHS elements of rules. The previously fired
rule migrates to the history set and is not a
candidate to fire again.

This process continues with an instance TOPF
firing as long as its LHS matches some working
memory element. When no more matches exist, two
things happen. First the system has found the
largest page fault value associated with a process
and stored this in the attributes of UTILITY.
Second, the conflict set contains only ORDER-TOPF,
which fires.

ORDERING-TOPF changes the value of DIAGNOSIS
NEXT so that neither it nor TOPF are candidates to
fire. The value it assigns allows the rules TOPF-
POST-PROCESS and TOPF-EXIT to enter the conflict
set. TOPF-POST-PROCESS, however, will only enter
the conflict set if there exist a process whose
page fault value exceeds the 80%-VALUE of UTILITY.
UTILITY is included as a LHS element in this rule
to establish 1local variables as described above
for TOPF.

Since the sequence of firings of TOPF and
ORDERING-TOPF formed the highest page fault value,
TOPF-POST-PROCESS will only be instantiated in the
conflict set for working set elements whose page
fault value exceed the 80%-VALUE; the highest
faulting process will be identified. When the
rule fires, a new working memory element will be
created representing the identified process as a
top faulting one. This is accomplished by the
'MAKE TOPF-PROCESSES expression. The attributes of
UTILITY are again updated by the MODIFY term and
the DIAGNOSIS NEXT value is reset to induce TOPF
and ORDERING-TOPF to enter the conflict set. When
all the processes have been found that meet the
80% rule, neither TOPF nor TOPF-POST-PROCESS will
enter the conflict set in their turn. ORDERING-
TOPF will fire allowing TOPF-EXIT to fire which
then changes the DIAGNOSIS NEXT value to change so
that this tuning analysis can continue.

The result of these four rules firing is that
when they are done, working memory contains new
elements, one for each process that passes the 80%
page fault rule.

VII. Summary
We have completed a prototype tuner that
demonstrates the feasibility of the concept of

automated VAX tuning. The effort required Tess
than half a man-year. In the process, we learned
a great deal about OPS5 and the art of knowledge
engineering. The most important factors in the
success of a KB system development project are
choosing a suitable problem and having appropriate
resources to solve it. The Lisp machine is a very
powerful development tool with its integrated
environment. Software shells take the agony out
of developing KB systems by allowing the user to
solve the problem at a high level. In most cases,
these commercial tools are far superior to working
directly in Lisp. Although not the most powerful
or complete shell available, OPS5 is well suited

38

to many problems and it does run on a variety of
machines including VAXes.

VIII.
(1)

References

Digital Equipment Corporation. Guide to
VAX/VMS Performance Management, Version 4.0,
September 1984.

(2) Forgy, Charles L. O0PS5 User's

Manual,
Carnegie-Mellon University, July, 1987.

ESS APPLICATIONS SIG

PROJECT MANAGEMENT IN THE NEW MICRO/MINI WORLD

Raymond J. Doubleday
Advanced Technology, Inc.
Two Shaw's Cove, Suite 205

New London, Connecticut

1.0 INTRODUCTION

There are over 40 Project Management software
packages currently available on the market. These
packages range from the very simple and inexpen-

sive, capable of handling only 50 events at a cost
of $80, to the sophisticated, capable of planning
the construction of a space station at a cost of
more than $100,000. With this wide variety of
features, functions, and capabilities, selecting
the appropriate system for your needs would appear
to be an overwhelming task.

The purpose of this paper is to focus on what these
automated tools can do for you, the project man-
ager; what to look for; how to define your require-
ments; and how to evaluate packages that might
fulfill those requirements. I also hope to point
out some of the gains you should expect from an
automated project management system. Specifically,
what I hope you get from this paper is:

0 An understanding of what you should look
for in Project Management tools.
0o An understanding of whether or not you

require automated project management
tools.

0 An understanding of what features and
tools you need to fill your specific
requirements.

What you won't get from this paper is:

o A tutorial on project management and
project management techniques.

o A recommendation of the "right" package
for you.

2.0 BACKGROUND
2.1 History

Before beginning the main part of this paper, I
would like to discuss how Project Management soft-
ware has changed over the past years and what has
happened in the marketplace to warrant a discussion
such as presented in this paper.

We have been part of a revolution in computing
power. We have gone from large mainframe computers
to microcomputers and now, to what I would call
super-micro or small mini-computers. Originally,
Project Management software was developed on main-
frame computers. These Project Management systems
had enormous capacity for project management data
and literally unlimited capacity for handling that
information. These systems typically ran in a
batch mode, which made them extremely slow in terms
of user response. They required a '"guru" to care
and feed the system and to analyze the data that
came out of it. The graphics capabilities of these
early machines were limited, if available at all.

Proceedings of the Digital Equipment Computer Users Society

41

CAPABILITY

06320

However, there was no meaningful Timit to what
these machines could do. ARTEMIS is an example of
a typical project management system with this
legacy, as is PSD from Cambridge, Massachusetts
(see Figure 1).

LARGE MAIN FRAME

~= BATCH ORIENTED
== LARGE CAPACITY SUPER-MICRO/MINI
== USER-FRIENDLY
-- LARGE CAPACITY
-~ INTERACTIVE

MICRO COMPUTER

== USER-FRIENDLY
-= SMALL CAPACITY
== INTERACTIVE

TIME

Automated Project Management
Capabilities

Figure 1.

However, with the advent of the microcomputer
revolution (typified by machines such as the DEC
Rainbow, Apple II, IBM PC, and others), we found a
new kind of Project Management software. The
capacity and capabilities of this software were
limited; however, the packages were very friendly,
easy to use, and provided immediate response for
the project manager. There was no expert required
to input data or interpret results; hence, the
manager found a real-time decision support tool for
his desktop. Typically, the graphics provided by
these micros were of very poor quality (graphics
were produced using either a dot-matrix or a line
printer) but were sufficient to get the job done.

But, now, what do we have today? We have the
super-micro, typified by machines such as the DEC
Professional 350, the 1IBM PC XT/AT, and the
MicroVAX I and II. Typically, these are the fast,
powerful, single or few user machines with a large
storage capacity built in. What has happened is
that we have regained the data storage and speed of
the mainframe computer.

Fortunately, current software has been able to
maintain the wuser-friendliness of the micro
machine. We now have real-time decision support
software that is easy to use and has no realistic
limitations to the quantity and complexity of data
that can be handled.

The current systems are also able to generate
high-quality graphics. Now we have the best of
both worlds: we have a machine at the project
manager's desk with the capacity of a mainframe and
can provide him with real-time, real world answers
to his project management needs.

Dallas Texas- 1986

2.2 New Ideas

I would like to propose two themes for the evalua-
tion of all tools and controls to be dicussed in
the remainder of the paper. These themes are
abstraction and communication.

In everything that you do in a project, a software
development program, or real life, it is important
to be able to break the project into manageable,
definable, understandable tasks (i.e., abstrac-
tion). Then, it is equally important to be able to
meaningfully communicate that information.

There are three major features that should be part
of the fundamental design of any Project Management
package. These three features carry through the
fundamental theme of abstraction and communication,

2.2.1. Abstraction. A package should support the
concept of abstraction. By being able to abstract
a project, you are able to take multiple-Tlevel
views of your program (i.e., decomposition). Then,
you can deal with it from the beginning (the Con-
cept stage), through other successive levels of
detail, down to the last possible level of detail
(such as fabrication and assembly of a product).

2.2.2. Representation/communication. The choice
of activities and milestones must be such that
their representation on paper can be used as a
means of communication. This is important because
unless you can communicate the needs of the project
to your staff, nothing can get done. Communication
must be clear and unequivocal.

2.2.3. Manipulation. The automated tools must
act on these representations of activities and
milestones to ensure consistency, feasibility, and,
most of all, achievability.

When 1looking at Project Management tools, you
should look at the tools in the light of these
themes as stated above.

3.0 PROJECT MANAGEMENT

This paper is not meant to be a tutorial on project
management, but I would like to briefly go over
what project management is to establish a common
framework. The point of this paper is to highlight
the benefits of automated project management and
the gains that are achievable through the use of
project management.

A project can be broken down into five major
phases: Conception, Planning, Scheduling, Monitor-
ing, and Action. Very often action involves the
replanning and rescheduling of activities, as shown
in Figure 2. We will look at each phase in detail
from the point of view of Project Management sys-
tems.

Project Management systems have two major func-
tions. They can be used either as tools or as

42

CONCEIVE

PLAN

SCHEDULE

MONITOR

ACT

Figure 2. Project Phases
controls. As tools, they help you to organize,
plan, and schedule; as controls, they monitor

progress of the program (in terms of time and
money). Tools help you to plan; controls tell you
if your plan is working. If you are evaluating a
feature of a Project Management system to be used
as a tool, you should ask yourself how it will help
you to plan your project; if you are evaluating a
feature to be used as a control, you should ask
yourself how it will help you to monitor your job.
3.1 Concept

The first phase of the project is the Conception
phase. This is the definition of the program or
the project and, in fact, becomes its charter.
There are certainly no computers here; this is
where insight, intuition, and depth of human under-
standing play a part in defining the project, its
goals, and its requirements. This is where the
goals of the project are established and the tempo
of the program set.

3.2 Planning
3.2.1 Work Breakdown Structure. The planning
stage is the decomposition of the project as con-
ceived into its logical structure. In the initial
planning stage, no schedule or resources have been
assigned yet.

Top view planning. This is the first place a
computer Project Management package should be able
to do something for you. First of all, it should
support multiple views of the project and secondly,
have the capacity to move down the project in
detail. This is analogous to a top-down step wise
refinement of the project. This is a place where
the concept of being able to abstract a project or
to push down the details of the project becomes
very important because what you want as a project
manager is to deal with a larger picture first and
then to fill in the details of each phase. In
essence, you are creating a management outline for
your project managers to complete; and they in turn
may provide the same sort of outline to their
subordinates.

Let's look at what a typical software development
project might look 1ike as shown in Figure 3.

ASTROLOGICAL ORGANIZATION

DEPARTMENT A DEPARTMENT B

DEPARTMENT C

ASTROLOGICAL

024-00
024-01 024-02 024-03 024-04 024-05
SPECIFICATION DESIGN CODE TEST DOCUMENTATION

DEPARTMENT D DEPARTMENT E

PPS
024-02-01

TEST PLAN
024-02-02

Figure 3.

This is the development of a program called Astro-
logical to analyze digitized images of the night
sky. The product breaks down into typical software
development components. The specification, design,
coding, testing, and documentation. The package is
meant for in-house use; therefore, the manufactur-
ing and marketing functions are not included on
this particular product. After the concept devel-
opment, the next thing that the senior manager must
do 1is to assign responsibility for each of these
major phases to a person or department and then
produce a rough schedule or goals for the project
completion. Once this preliminary schedule and
assignment have been achieved, the senior manager
will ask the department managers to produce their
own schedules, budgets, and resource requirements
within the limits of their schedule.

How do you do this? You do this by having a proj-
ect management package that supports various levels
of hierarchy. One way to do this is through the
use of work breakdown structure numbers, although
there are a number of other schemes that may work
equally well. Briefly, work breakdown structure is
a hierarchical numbering system similar to the
concept of a work outline where the order and the
number that each work assignment has has meaning.
Typically, a work breakdown structure number is
associated with the concept of a work package,
which is the smallest measurable unit of work. In
our example, Figure 3, the Astrological analyzer is
given the number 024. This code indicates that
this particular software product is one of at least
24 different jobs that are taking place or have
taken place within the organization. Looking
underneath that, we see that the number 024-02 is
the design function for Job 024, Looking at the
design function in more detail, we see that the
preparation of the program performance specifi-
cation is given the number 024-02-01. Development
of the test plan is given the number 024-02-02. It
is possible, of course, for this numbering scheme
to continue down in more detail as required within
each function and, of course, to go across to
support more than the five functions shown here.

Why is this work breakdown structure important? It
is important for two reasons. First of all, it

43

Astrological Organization

allows you to assign responsibility and a budget
for a category of work such as the specifications
024-01 to Department A for completion. Seconqu,
it allows you to isolate your view of the prOcht
to the higher level. From now on, you as senior
manager, will only be looking at things down to the
second level; that is, you will be looking at tasks
024-01, 024-02, etc., leaving the specific details
of the project to the managers of each qf those
particular departments. Your management, in turn,
may look at Jobs 022, 023, and 024 to supervise the
overall performance of the departments.

The next thing you should look for in a Project
Management package is the ability to support vari-
ous levels of hierarchy through the use of work
breakdown number structuring or other means.

3.2.2 PERT/CPM. Now that we have estab]ished.the
major phases of the program, we need to go into
more detail on how the Astrologicial program can be
realized. The major tool you have available for
this is network analysis. Network analysis is also
known as either PERT (Program Evaluation and Review
Technique) or CPM (Critical Path Method).

PERT/CPM are synonymous today; we will use the term
network analysis to stand for a combination of'PERT
and CPM. The idea behind network ana]ysis.1s to
represent a complex project as a series of inter-
connected activities that must be performed. The
description of the project is then used to analyze
the project and answer the following questions.

o How long will the project take?)

o Which jobs are most critical to the proj-
ect?

0 How should the project be scheduled?

An activity is a time/resource consuming'event.in
the project. I will use the arc in'my qIScuss1on
to represent an activity. A point 1n time corre-
sponding to the start or completion of an ac§1v1ty
is a milestone; they are represented by a triangle
on the schedule. On a network drawing, they are
represented as nodes or circles (note, however,
that all nodes are not necessarily milestones).

Now, let's look at the network for our Astrological
package as shown in Figure 4.

Astrolodical Devel
4
]
i
Ol -O YR -Ofvr - - - - - - (VX O >0 g
= & K
[
b

;] el n] s s 1 e sTcT «] T JTF
T " —

Figure 4. Astrological Development

What is wrong with this figure? Well, fundamental-
ly, it is too simple; however, to introduce the
detail necessary to understand the project from
beginning to end would be too hard; the graph would
be too hard to read, the program would be too hard
to manage and control.

Again, we must be able to do a top-down refinement
of the tasks. Tasks at a higher level can be
broken down and should be broken down in order to
understand the problem. Figure 5 shows an example
of the proper kind of decomposition when applied to
writing a book. As you can see from the figure,
the book has been divided into a number of chap-
ters, each chapter into a number of sections, each
section into a number of paragraphs, and each
paragraph into a number of sentences. This, of
course, is a very manageable approach with the
appropriate work breakdown structure numbers being
shown in the right part of the picture.

ANALYSIS
LEVEL

CHAPTER 2

Returning to our example, Figure 6 shows the code
portion of our task broken down into more detail
beginning with the review of the performance speci-
fication and ending with the final integration of
the package.

Code Generation Tasks
“;:>:. e . .
AV ~en, H
\ 0
- /e \ S -
v ~ N
s RN £
Qfterant s V%O y
) £ |f
° P
° L
N g
T
4 y
O 1000 O
[1 A%k [&] oer], Moy | DeC]
1965
Figure 6. Network Plot

What have we done? We have been able to isolate
our tasks into the correct areas of responsibility
and we have been able to decompose the coding job
to manageable units. If you were the head of the
programming department, you might want to have even
more detail for a particular task such as the
coding of the input handlers and you could, in
fact, do that for yourself. The output for this
section, the overall time from the beginning to the
end, can now be passed back up the management chain
and the time put in for coding on the network
drawing as shown previously in Figure 4.

In examining Figure 6, our tool has answered the

first two questions: how long will it take and
which jobs are critical to the project.

WBS LEVEL 1

DESCRIPTION

Chapter 1
Chapter 2

(\CHAPTER §

Chapter 3
Chapter 4
Chapter 5
Chapter 6

WBS NO.

001-00-00-00-00
002-00-00-00-00
003-00-00-00-00
004-00-00-00-00
005-00-00-00-00
006-00-00-00-00

AMALYSIS
LEVEL

SECTION 4
SECTION §

MBS LEVEL 2
DESCRIPTION

I
Section 1
Section 2
Section 3
Section 4
Section 5
Section 6

WBS NO.

003-01-00-00-00
003-02-00-00-00
003-03-00-00-00
003-04-00-00-00
003-05-00-00-00
003-06-00-00-00

AMALYSIS
LEVEL

MBS LEVEL 3

Paragraph 1
Y, Paragraph 2
Paragraph 3

DESCRIPTION IUBS NO.

003-06-01-00-00
003-06-02-00-00
003-06-03-00-00

s
N

W8S LEVEL 4

AMALYSIS

LIVEL SENTENCE 1
4
SENTENCE 2 SENTENCE 3

Figure 5.

Sentence 1
Sentence 2
Sentence 3

Network Decomposition

44

DESCRIPTION |[WBS NO.

003-06-02-01-00
003-06-02-02-00

003-06-02-03-00

Now that we have our network drawing, what other

kinds of planning tools are available? Next is a
Gantt chart, shown in Figure 7.
I
Code Generation Tasks P i of §
EVENT CALENDAR YEAR 1985
NO. DESCRIPTION DAYS | JUL] AUG | SEP.] OCT | NOV_| DEC | p
100 | PPS Review 25 [N H
200 | Output Design 27 [ravatsan] 2
300 | File Design 30 HTITEI NN N
400 | Buffer Design 40 i
600 | Graphics 95 X XX XXXKXXXXKXERX]
500 | Report Gen 70 ¢
700 | Dy 0 e]
1000 | Input Hndlr 60 1
900 | Driver 22 T
800 | D2 0 P
1100 | File Maint 40 VZATTTTS b
1200 D3 0 A T
1400 | D4 0
1300 | Integration 15 axxx
am DURATION wm _ FLOAT ax CRITICAL
Figure 7. Gantt Plot

The Gantt chart is the first depiction of a sched-
ule. The critical activities are shown in red on
the Gantt chart as they were shown in red on the
network drawing. Additionally, there should be a
number of tabular reports provided with the network
analysis to bring out the necessary detail in order
to properly analyze the schedule. The kind of
reports that you should expect to see again support
the ideas of abstraction and decomposition, and are
listed in Figure 8. There should be an executive
summary, something that provides an overview of the
time and resources consumed for the project, and a
variety of reports getting down to a final detailed
report showing for each of the activities the time
estimates, the scheduled early start and late
start, the early finish and late finish dates, as
well as the float, the slack time, and the identi-
fication of the activities and resources that are
critical to the time of completion of your task.

o DATA SUMMARY

o EXECUTIVE SUMMARY

o DETAIL REPORTS

o CRITICAL PATH REPORT

Figure 8. Network Analysis Management Reports
This in essence becomes the plan for your project.
However, it is necessary now to generate a firm,
fixed schedule or baseline.

3.3 Schedule

The Gantt plot is a candidate schedule. What you
must do is use it to develop a firm, fixed schedule
or baseline. The final schedule represents the
plan of the Gantt Plot, with real-world constraints
applied to the plan. This schedule is one that you
will manage to and report on. All your progress
will be measured against this baseline schedule.
The schedule for the coding effort is shown in
Figure 9.

45

Code Generation Schedule
CALENDAR YEAR
NO. DESCRIPTION
100 | PFS Review

300 | File Design
200 | Output Design
400 | Buffer Design
600 | Graphics

600 | Report Gen
Input Hndlr
401 | Design Comp!l
900 | Driver

File Maint
Modules Compl
Integration

PAGE 1

1985
JUC [AU | SeF] .0¢T | v, | DEC
¥

7.COMP

WCADAD MECOMTIOW X—~ZMOT T

Figure 9. Schedule Plot
3.4 Monitor
3.4.1 Controls. You have passed the planning
stage. Now that you have established a schedule,

you need to have a number of automated project
controls that will let you examine the schedule and
examine the financials for your project to make
sure you are both within budget and on schedule.
Before we begin discussion of some controls you
should look for in a project management package,
let's take a look at our project.

First of all, the job spans five departments. The
initial time estimates were that the job would take
two years to complete, cost $1.5 million dollars,
and would be composed of approximately 5,000 separ-
able and discrete activities. Given this size, how
are you going to control it? Well, taking a step
back, you have to look at why you are a project
manager. Most likely, it 1is because of your
ability to thoroughly understand your job and to
almost be intuitive about the nature of the work
you do. A project of the magnitude of Astrological
would require a database so large it would negate
your ability to be intuitive. What you need from a
project management package is the ability to be
dynamic in monitoring your project to be able to
develop various views downward into the database
until you can focus on the issues that are perti-
nent to the project. You need to be able to select
or segment the database so that you can get an
accurate, concise view of a limited segment of the
database.

Again, this supports the concept of abstraction.
You want to be able to look at the data in varying
degrees of detail; only the detail necessary to
give you the insights that you need to do your job.
Your Project Management controls should provide
unlimited query capability on the database.

3.4.1 Schedule Status. The first thing you should
look at is the schedule. This is shown in
Figure 10, which is a schedule with milestones for
monitoring the progress of each task.

In this particular example we are showing a graphic
depiction, one that is very important and gives a
quick indication of how we are doing and where we
should be today for the project. As you can see,
immediately below the baseline schedule is the
actual start and completion of each of the activi-
ties in the project as well as percentage complete.
The percentage complete for each task is indicated
by how much of the lower bar is filled in.

Code Generation Status PAGE | | p
EVENT CALENDAR YEAR 1985 H
NO. DESCRIPTION | 7coMP| JUL | A6 | StF] 00T] MOV 18
100 | PPS Review 100 m) '1‘
300 | File Design 80 X
200 | Output Design 99 5
400 | Buffer Design 15 ¢
600 | Graphics 5 H
600 | Report Gen e —— b
1000 | Input Hndlir ' A u
20 | Driver 7 P t
1100 | File Maint ' S
1101 | Modules Compl . 4
1300 | Integration | T
A ¢

.

HILEOTONG: 4 EOT. O ACT. & cOmeL. ACTIviTY: END gov. W act.

Figure 10. Schedule Status Plot

3.4.2 Completion Status. The second chart,
Figure 11, is a Completion Status Plot which gives
us another view of the data. It indicates which
events are early, which events are late, percentage
compiete, and how many days remain until the com-
pletion of the job.

Code Generation Status PAGE_1 | p

EVENT ACTIVITY START |_PERCENT COMPLETE | FINISH DAYS H

NO. DESCRIPTION DaTE [20 40 60 80 | pate [sPent] Remv| §

100 | PPS Review 01 JUL.8S Pz 26 S 65 26 0 'I‘

300 | File Design 25AUGBS 30 71X
200 | Output Design XA | 2200688 | 25 1

400 | Buffer Design acepes| 6| 33| §

600 | Graphics 25N0VBS 5 93| M

§00 | Report Gen tanoves | o | 3| P

1000 | Input Hndlr omoves| o 61| g

900 | Driver teoctes | 0| 23| T

1100 | Fala Haint 160CT85 oMoves | 0| 41| §

1300 | Integration 25NOVES 10DECBS | 0O 16| N

[

T

A

T

U

5

Y aucad or oue P on scuepus BEHIND BCHEDULE

Figure 11. Completion Status Plot

3.4.3 Cost Status. Figure 12 shows a Cost Plot,
which 1s a measure of the budget, the dollars

spent, and the work achieved for those dollars
spent.
Astrological Finance
Wt lgacroage” -~ - """ - " S /-:;;»'—b"‘
1576.00 4 . -
1400.00 : g
1225.00 . g
1050.00 X)I(
875.00 ’- e - 3
700.00 - $
525.00 o '
350.00 | v
175.00 . t
0.00 ¢
JA | a6 | s ocT | NV | DEC
1985
($K) ACWP e = — = =~ = BCWS BCWP
Figure 12. Cost Plot

This plot gives you a feel for the rate at which
the funds of the project are being used and the
amount of work that is actually being performed for
your project. This brings up a number of ideas,
such as the budgeted cost of the work scheduled,
the budgeted cost of the work performed, and the
actual cost of the work performed.

46

3.4.4 Cost Variance. Figure 13 shows a Cost
Variance Plot. It is the difference plot of the
data that was previously shown in Figure 12 and
gives us a measure of how well we are progressing
against the schedule. The closer these curves are
to zero, the more accurate were our project predic-
tions and the better our project performance.

Astrological Finance
55600 : p
417.00 \ §
! N
278.00 N I
: X
139.00 v
: A
0.00 t b
R A
-139.00 ™ §
N ;
-278.00 N X
\ ' t
-417.00 N N ?
-556. N
59800 JUC__ | MG] SeP | ocT] Nov_ [DEC
1985
($K) CosT +———————————+ SCHEDULE * - - ----=-- x
Figure 13. Cost Variance Plot
3.4.5 Communication. What is significant is that

the previous four figures provide accurate and
timely information that may be communicated easily.
Large stacks of computer runs are not required, and
it is not necessary to connect dots and asterisks
because the plot was prepared on a printer. The
control reports provided are presentation-quality
graphics.

The monitoring tools that you should select should
be suitable for all levels of management. In
management reporting, you certainly don't want to
have separate tools for different Tevels of manage-
ment. What you should expect from your project
management tools is that for high level meetings,
briefings, and presentations, they should support
full-color graphics with figures that are easy to
read and understand. They should be crisp and to
the point. For reports, figures should be done in
black and white so they can be clearly reproduced
by either printing or copying.

Your project controls should also support graphics
with tabular reports which contain all necessary
back-up data.

3.5 Act

Management must manage. Now that you have read the
reports, reviewed the project data from your sub-
ordinates, you must identify the causes of any
problems and act on them. Therefore, it is very
important that the project management system you
select be able to perform what-if analyses to aid
in replanning and redefining the project as it
progresses.

At this point, the idea of representation of the
ideas and their automated manipulation becomes very
important. You must be able to easily manipulate
the parameters of your program and perform rapid
what-if analyses until you have developed an ade-
quate approach to your problem. You must then be
able to modify schedules to accommodate this
replanning just as easily. With replanning, the
cycle begins again.

4.0 CONCLUSIONS

The Tlatest generation of Project Management soft-
ware has the power and capacity of main-frame type
packages and the ease of use of micro-computer

software.

Any Project Management system you select should:

0
o

0

Be easy to use.

Support multiple views of the database
(abstraction).

Provide presentation-quality graphics
(communication).

Provide real-time analysis (monitor).
Support rapid what-if analyses (plan and
replan).

47

Packaged Software & International Market.

By Chandan W Seernani
Ambase International Corporation

Atlanta, Georgia
ABSTRACT
Many software vendors that are successful in the US
market are disappointed because they do not enjoy same
amount of success in the international market. This paper
discusses the following problems and their possible

solutions :-

- Implementation difference

Marketing strategy

- Software support overseas
- Government red tape

INTRODUCTION :

The concept of packaged software
is here to stay. There are several
companies in this business and many more
are venturing into it everyday. Many
companies that are successful in the US
market are very disappointed to discover
that they do not enjoy same amount of
success in the 1international market.
There is a multi million dollar market
for these products overseas. There are
several factors which one must consider
before investing in any such venture. 1
will be talking about a few important
ones,these are:-

- Implementation differences.
- Marketing strategy.

- Software support overseas.
- Government red tape.

IMPLEMENTATION DIFFERENCES :

This is one of the major factors
we overlook while designing a software
package. We must remember that some
concepts are implemented differently in
various countries. A simple example is
that of a date. In the US the acceptable
format is MM/DD/YYYY. Some countries use
the format DD/MM/YYYY or YYYY/MM/DD or
YYYY/DD/MM. When we design routines that
manipulate dates, we must consider
formats other than those acceptable in
the US.

Another major difference is the
language. We must remember that English
is not a wuniversal language. Prompts,
defaults,validity 1lists and help text
information «could be external to the
program. The program could be made smart

Proceedings of the Digital Equipment Computer Users Society

49

enough to retrieve this information and
process it. Hence, if we want our system
to prompt the operator 1in the German

and to interpret the responses

be supplied in German we can
do so Dbecause the 1information in the
external file can be changed from
english to the desired language. Hence
the program will do the following in
desired language :-

language
that will

- Prompt the operator

- Display the default respounse

- Check against a list of valid
responses

- Display help message

You may use the example 1in
figure-1 as a guideline to design data
entry screens for your system.

Many software packages offer
generation capabilities. Code
by such facilities is fairly
generalized and hence inefficient when
executed. In several countries where
Machine <costs are high and the cost per
CPU hour ranges anywhere from $90 to
$150 it 1is 1important to assure that
software 1is efficient. Generators are
useful in countries where manpower costs
are higher than machine time costs but
they are practically worthless, where
manpower costs are lower than machine
time cost. We must design our package so
that it 1is broken into several modules
and the user buys only what he needs.It
is recommended that each module be sold
separately.

code
generated

MARKETING STRATEGY :

several different strategies
to market the product. I

There
we can

are
adopt

Dallas Texas- 1986

You
suggestions
screens for your software

1)

2)

3)

4)

MASTER

ENTER/MAINTAIN MASTER RECORD

MM/DD/YY HH:MM XM

COMPANY INFORMATION

Reference Number
Company Name :

Address line 1

Address line 2

State / province :
Country :

Postal code

##) Prompt

?
< Default >

MESSAGE AREA

may want to consider the following

while designing data entry

-
.

Row 1 could ©be the SCREEN BANNER.
Information like menu option,
description of this screen/menu
option, current system date and
system time could be displayed on
this line.

Rows 2 thru 17 could be reserved for
programmer use.

Row 18 could be reserved for printing
a descriptive version of the prompt
currently being processed. Note that
'##' is number of the field currently
being processed.

Row 19 could be reserved for special
messages printed by the software.

5)

6)

7)

8)

FIGURE-1

50

line used with bottom of screen entry

Special messages

These could be printed when an
operator invokes a special command or
an error occurs during data entry.

for entries
response to

Row 20 could be reserved
made by the operator in
the current prompt.

Row 21 could be reserved
of default response to
prompt.

for display
the current

Row 22 could be a blank line to serve
as a spacer between the default
display line and the message area.

Rows 23-24
printing

could be reserved for
help/aid messages. We might
consider defining these as scrolling
region incase help messages are over
2 lines long.

will

discuss them one at a time along

with their respective pros and cons.

it's

1) The Company could develop

own marketing force. Some of the

advantages of this approach are :-

a) The Company controls all it's
International operations from
Us.

b) The company does not have to
share 1it's profits with any
third parties.

However this approach has many
disadvantages. These are:-

a) Marketing trips abroad are
expensive.

b) It 1is expensive to get in
touch with every prospect due
to high costs of calling
overseas.

c) We may have an inaccurate
perception of the market. One
way to solve this problem is
to conduct a market research,
but the cost of such a survey
can be prohibitive.

d) We may not be aware of
import regulations in each

country. This point will
been discussed later in more
detail.

e) Software support to every
client abroad can be very
expensive.

2) The company could have a
distributor in every country
who could operate on a
commission basis. The main
advantages of this approach
are :-

a) Money spent on marketing
trips abroad is saved.

b) The distributor 1is locally
situated, hence he has a
better idea about the market.

c) Since the distributor is
working for the company,
control is still maintained
from the US, this assumes
that the security built into
the package is tight enough.

Major disadvantages of this
strategy are:-

a) Software support overseas 1is
a major problem that the
company must tackle while
designing the —contract with
the distributor. This point

51

will be discussed 1later in
more detail.

b) The problem of import
regulations still exists,
however now we have someone
who knows the rules of his
country.

3) Sell international rights to
one company and let this
company form it's own network
of distributors.

Some advantages of this approach
are :-

a) Money spent on marketing
trips abroad is saved.

b) We have only one distributor
to deal with, for the entire
international market. In the
previous approach we had to
deal with one per territory.

c) Control is more centralized.

d) We might also reduce software
support —costs, if we design
the contract correctly.

Most of the disadvantages
mentioned earlier still exist.
However, when a big market is
given to one company chances are
that this company will control

the enhancements and future
direction of the product. When
stakes are high the vendor

normally tends to comply with
special requests.

4) Locate distributors in each
country and sell them the
package on an outright basis for
that country. This means that we
must give them source code. In
this case the price tag should
be high enough so that there is
scope for profit, but at the
same time, 1low enough so that
the distributor feels it is a
good bargain for him.

The main advantages of this
approach are:-

a) Now the distributor has the
source code so he can modify
it to suit the needs of his
market. Hence, the software
will not contain pieces of
code that are irrelevant to
that environment. Hopefully,
the package will execute more
efficiently. Also, now that
the package will be sold in
local currency the seller can
price it right.

b) The problem of import licence
will disappear because the
package 1is now being sold
locally. However the buyer
has to obtain the approval
while purchasing software
from the vendor.

c) The software support problem

will disappear. The seller
now has source code and he
can support the package
locally.

Some of the disadvantages of
this approach are :-

a) Since the package is being
sold on an outright basis it
generates only a one time
revenue for the vendor.

b) Since the distributor has to
pay a high cost,hence he has
to justify a higher amount
for an import licence. This
can sometimes pose problems.

SOFTWARE SUPPORT OVERSEAS :

Marketing strategy 2 & strategy
3 mentioned above require that support
be <considered as a very crucial issue
and all ambiguities must be resolved in
writing. The main area of concermn is who

would support the software ? It will be
too expensive for the vendor to do it,
however, if the distributor has to

support it then he has to be supplied
with source code. I am sure nobody would
like to share source code with the
distributor, as this can be misused in
many ways. To get around this problem
the contract must be designed such that
all support calls go to the distributor,
who acts as a buffer between the vendor
and the end user. If the distributor is
sure that it is a software bug, then he
could contact the vendor to fix it. The
contract must have penalty clauses
clearly stated, if this rule is
violated.

GOVERNMENT RED TAPE :

In several countries import
regulations require that one has to go
through government red tape to obtain an
import 1licence for spending money from
that country's foreign exchange reserve.

Formalities vary from one country to
another. Also the high price of US
dollar in the international market may
make it all the more difficult for an
end wuser to obtain an import licence. A
good way to help the end user will be to
sell your package in modules. Modules
like the code generators may be sold

separately so that the end user pays
only for what he needs and not for bells
and whistles in the system. This will
reduce the amount he may have to justify

52

to his government and increase the
probability of obtaining the licence.

CONCLUSION :

I would 1like to <conclude by

this paper is not intended
software vendors from
entering the intermational market, but
instead it 1is meant to warn them about
some of the problems they may encounter
while doing so. I think it will be
appropriate to say that US Department of
Commerce prohibits sale of Hi-technology
to some countries. One must check with
them before signing any overseas
agreement.

saying that
to scare away

Productivity Tools Improve More Than Productivity

By Chandan W Seernani
Ambase International Corporation
Atlanta, Georgia

ABSTRACT

This paper discusses how productivity tools help a company
cope with the following problems that are common in most DP
shops today :-

- Technical manpower shortage
- Standardization

~ Support/maintainence

- Application backlog

The first question 1is usually

INTRODUCTION : answered by potential end users of the
application. The technical experts are
What is a productivity tool ? required to give advice on the various

_____________________________ technical considerations. For example
hardware and software coanstraints. To

For this paper a productivity answer the second question we need a
tool will be defined as any tool that programmer. In a shop that does not have
helps increase productivity and reduce productivity tools every program is
maintainence overheads. Some of the written from scratch. Some shops have
examples are :- source code libraries which help.

However, writing every program from

- DEC's DATATRIEVE. scratch 1is 1like inventing the wheel

- Any kind of application every time. As we have mentioned before

generator. a productivity tool that does 100% of

- Any kind of program code what you want does not exist., We must
generator. therefore select a tool that :-

We are aware that a productivity - Is easy to use. To assist new users it
tool that does 100% of what you want it must have sufficent tutorial text
to do does not exist. However, if a preferably in a multi-level format
proper tool is selected for your shop it with each level providing additional
must help you cope with the following detail about the prompt.
problems that are common with most DP
shops :- - Must allow you to do proto typing

easily. This has the following
- Technical manpower shortage advantages :-
- Standardization - Gives the ability to quickly and
- Support/maintainence easily <create a program for user
- Application backlog testing & approval.

-~ If changes are requested a new

We will now take each one of prototype can be created quickly for
these factors and talk about them in a user testing and approval.
greater detail, - Substantial wuser involvement via

prototypes insures fewer changes
TECHNICAL MANPOWER SHORTAGE : after the system has been completed.
- Being involved with development and

During application development testing gives the user counfidence
there are two major questions that must that the system will satisfy his
be answered. These are :- needs.

- By the time the project is completed
- WHAT will be accomplished by writing the user is familiar with the
this application ? operation of the system.

~ HOW will we do it ?

Proceedings of the Digital Equipment Computer Users Society Dallas Texas- 1986

53

Should be definitional rather than

procedural because :-

- Entering a definition of WHAT the
program does is less time consuming
than writing source code which
details HOW the processing occurs.

- One defination parameter may expand

into multiple procedural steps. This

expansion must be done by the tool

to minimize development time per
program.

The generated code must be wuser
friendly for an end user. This means
that it supports the following as
standard features of the generated
code: -

- Several kinds of terminals.

- Commonly used commands like the HELP
command.

- Cursor control keys to move around
on the screen.

- Any standard screen functiom like
Reverse video,Bold video etc.

- Capability to refresh a data entry
screen incase someone sends messages
during a data entry session.

- Same program must be able to input
different sets of data using either
overlap screens or windows on the
same screen,

- Complex data verification and
validation. 1In some cases it may
involve looking up several files to
achive this.

- Handling conditions that may be

formulated at run time.
- Security while processing fields or

while processing screens. Some

examples are :-

- Conditional skipping of fields.
These may either be predefined

conditions or conditions that are
formulated at run time.

- Display only fields. The operator
is not allowed to alter the value
of such a field.

- Required fields. These are fields
for which an operator must enter a
valid response before he is
allowed to exit from that screen.

= Jump back fields. The operator
will be allowed to alter the value
in such a field only if he jumps

back to it from another field.
During normal processing the
default wvalue in this field is

displayed and the program moves on
to the next field.

The generated program must be able to

switch itself from production to test
mode when desired by the user. This
will help a company train new
operators directly on the programs
they will be wusing on a day to day
basis. 1In test mode the program does
everything else but store records.
This will insure that all the files

are intact.

54

- Standard

The generated code must be broken up
into several modules. These must be
logically and physically independent.
E.Yourdon explains the advantage of
dividing a program into modules in his
basic theorem of software engineering.
This is stated as :-

C(P + Q) > c(P) + C(Q)

This means that the cost (C) of
solving a problem (P + Q) as a whole
is more than the cost of solving it's
parts (P) and (Q) seperately.

If the generated program follows this
fundamental theorem then it is easy to
have programmer hook areas. The
programmer only codes these areas. As
a result of this less time is spent in
development and support/maintainence
of the application.

The generated code must have sufficent
comment lines so that the code is well
documented.

In short the tool must do as much work
as possible so that the programmers
have lots of time to concentrate their
creative efforts on the functional
contents of the program where it is
most needed.

STANDARDIZATION :

We are all familiar with the
high rate of manpower turnover in our
industry. We also know that different

programme<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>