
TEK PROGRAMMERS
REFERENCE

Part No. 061-3209-00
Product Group 07

4400 SERIES
ASSEMBLY
LANGUAGE

TEK PROGRAMMERS
REFERENCE

First Printing MAR 1986

Part No. 061-3209-00
Product Group 07

4400 SERIES
ASSEMBLY
LANGUAGE

Please Check for
CHANGE INFORMATION
at the Rear of This Manual

Copyright 1986 by Tektronix, Inc., Beaverton, Oregon. Printed in the
United States of America. All rights reserved. Contents of this
publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRON IX is a registered trademark of Tektronix, Inc ..

Smalltalk-80 is a registered trademark of Xerox Corp ..

Uniflex is a registered trademark of Technical Systems Consultants,
Inc ..

Portions of this manual are reprinted with permission of the copyright
holder. Technical Systems Consultants, Inc., of Chapel Hill, North
Carolina.

The operating system software copyright information is embeded in
the code. It can be read via the "info" utility.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein, when used properly in
the specified operating environment, for a period of three (3) months from the date of shipment, or if the program is
installed by Tektronix, for a period of three (3) months from the date of installation. If this software product does not
conform as warranted, Tektronix will provide the remedial services specified below. Tektronix does not warrant that
the functions contained in this software product will meet Customer's requirements or that operation of this software
product will be uninterrupted or error-free or that all errors will be corrected.

In order to obtain service under this warranty, Customer must notifiy Tektronix of the defect before the expiration of
the warranty period and make suitable arrangements for such service in accordance with the instructions received
from Tektronix. If Tektronix is unable, within a reasonable time after receipt of such notice, to provide the remedial
services specified below, Customer may terminate the license for the software product and return this software
product and any associated materials to Tektronix for credit or refund.

This warranty shall not apply to any software prOduct that has been modified or altered by Customer. Tektronix shall
not be obligated to furnish service under this warranty with respect to any software product a) that is used in an
operating environment other than that specified or in a manner inconsistent with the Users Manual and· documentation
or b) when the software product has been integrated with other software if the result of such integration increases the
time of difficulty of analyzing or servicing the software product or the problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE WHEN SPECIFIED, REPLACE
DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO
CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE NOTICE
OF THE POSSIBLITY OF SUCH DAMAGES.

PLEASE FORWARP ALL MAIL TO;

Artificial Intelligence Machines
Tektronix, Inc.
P.O. Box 1000 M.S. 60·405
Wilsonville, Oregon 97070
Attention: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES ASSEMBL V LANGUAGE PROGRAMMERS REFERENCE

This manual supports the following versions of this product: 4404 Version 1.5, 4405 Version 1.1, and
4406 Version 1.1.

REV DATE DESCRIPTION

MAR 1986 Original Issue

4400 ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE

Table of Contents

SECTION 1 INTRODUCTION
ABOUTTHISMANUAL ... 1-1
WHERE TO FIND INFORMATION .. 1-1
MANUALSYNTAXCONVENTIONS ... 1-2

SECTION 2 PROGRAMMER'S GUIDE
INTRODUCTION ... 2-1
SYSTEM CALLS OVERVIEW .. 2-1

How 4400 Programs Run 2-1
INTRODUCTION TO SYSTEM CALLS .. 2-2

. The sys Instruction ... 2-2
System Call Example .. 2-3
Indirect System Calls 2-4

HARDWARE ACCESS TRAPS 2-5
FLOATING POINT TRAPS ... 2-6
SYSTEM ERRORS 2-6
The Task Environment 2-7
Address Space .. 2-7
Arguments and Environments 2-8

INITIATING AND TERMINATING TASKS .. , 2-11
Terminating a Task .. : ... 2-11
The wait System Call .. ,............ 2-11
The exec System Call .. 2-12
The fork and vfork System Calls 2-13

4400 FILE HANDLING .. 2-15
General File Definitions 2-15

Device Independent 110 2-15
File Descriptors .. 2-15
Standard Input and Output 2-16

Opening, Closing, and Creating Files 2-16
The open System Call..... 2-16
The close System Call 2-17
The create System Call 2-17

Reading and Writing .. 2-18
The read System Call..................... 2-18
The write System Call 2-19
Efficiency in Reading and Writing .. 2-20

Seeking .. 2-21
File Status Information .. 2-22

DIRECTORIES AND LINKING .. 2-26
OTHER SYSTEM FUNCTIONS .. 2-27
The Memory Management Functions .. 2-27
The break Function .. 2-27
The memman Function .. 2-27
The phys Function ... 2-28

The ttyset and ttyget Functions ... 2-28
Console.Device parameters ... 2-28

Raw 110 Mode ... 2-31
Echo Input Characters 2-31

Table of Contents-l

Expand Tabs on Output ... 2-32
Auto Line Feed .. 2-32
Single Character Input Mode ... 2-32
Ignore Control Characters .. 2-32

Communications Device Parameters ... 2-33
Pseudo Device Parameters ... 2-35
Pipes ... 2-38
Program Interrupts ... ,. 2-40

Sending and Catching Program Interrupts 2-40
Interrupted System Calls 2-44

Locking and Unlocking Records ... 2-45
Shared Text Programs 2-46

GENERAL PROGRAMMING PRACTICES ... 2-46
Starting Locations 2-46
Stack Considerations 2-46
Hardware Interrupts and Traps .. 2-47
Delays 2-47
System lib Files Provided 2-47
Generating Unique Filenames ... 2-48
Debugging 2-48

PROGRAMMING EXAMPLE ... 2-48
SAMPLE strip UTILITY ... 2-50

SECTION 3 THE ASSEMBLER
INTRODUCTION ... 3-1

Invoking the Assembler 3-1
The Command Line 3-1
Multiple Input Source Files 3-2
Specifying Assembly Options ... 3-3
Order for Specifying Filenames, Options, and Parameters 3-4
Sending Output to a Hardcopy Device .. 3-5

Examples: .. 3-5
ASSEMBLER OPERATION & SOURCE LINE COMPONENTS 3-6
Source Statement Fields 3-6

Label or Symbol Field 3-7
Opcode Field 3-8
Operand Field 3-8
Comment Field 3-9

Register Specification 3-10
Expressions .. 3-10
Item Types 3-11
Types of Expressions 3-12

Absolute Expressions ... 3-12
Relocatable Expressions 3-12
External Expressions 3-13

Expression Operators ... 3-13
Arithmetic Operators 3-13
Logical Operators .. 3-14
Relational Operators .. 3-14
Operator Precedence .;.. 3-15

Table of Contents-2

INSTRUCTION SET DIFFERENCES ... 3-16
Instruction Set Extensions ... 3-16

Addressing Modes ... 3-18
Convenience Mnemonics 3-18

STANDARD DIRECTNES OR PSEUOO-OPS .. 3-19
dc .. 3-19
ds .. 3-20
equ .. 3-20
err ... 3-21
even .. 3-21
fcb .. 3-21
fcc .. 3-21
fdb .. 3-22
fqb .. 3-22
info ... 3-23
lib ... 3-23
log .. 3-24
opt ... 3-24
pag .. 3-25
rab .. 3-25
rmb ... 3-25
rzb .. 3-26
set ... 3-26
spc .. 3-26
sttl .. 3-27
sys .. 3-27
ttl .. 3-27

CONDITIONAL ASSEMBLY .. 3-28
The if-endif Clause .. 3-28
The if-else-endifConstruction ... 3-29

SPECIAL FEATURES .. 3-30
End of Assembly Information ... 3-30
Excessive Branch Indicator ... 3-30
Auto Fielding ... 3-31
Fix Mode .. 3-31
Local Labels .. 3-31

OBJECT CODE PRODUCTION .. 3-32
Relocatable (Segmented) Object Code files .. 3-32
The Base and Struct Directives ... 3-33
global 3-:~4

. Define and Enddef .. ; .. 3-35
Extern ... 3-35
Name .. 3-35
Common and Endcom .. ; .. 3-36

ERROR AND WARNING MESSAGES .. 3-37
Possible Non-Fatal Error Messages ... 3-37
Possible Fatal Error Messages 3-44

THE LINKING LOADER ... ~... 3-46
Terminology 3-46

Linking Loader Input 3-46

Table of Contents-3

Linking Loader Output .. 3-47
The Standard Environment File 3-47

Invoking the Loader ... 3-47
Valid Options 3-48

Libraries 3-52
Introduction ... 3-52
Library Generation ... 3-53

Examples ... 3-54
Segmentation and Memory Assignment .. 3-54

Relocatable and Executable Files .. 3-54
Relocatable Modules 3-55
Executable Programs . .. 3-55
Shared Text Programs .. 3-56
Non-shared Text Programs .. 3-57

Load and Module Maps ... 3-58
Load Map ... 3-58
Module Map 3-58
The Module Map of a Relocatable Module ... 3-58

Miscellaneous 3-60
Transfer Address 3-60
Resolution of Externals With Library Modules 3-60

Etext, Edata, and End 3-61
Error Messages............ 3-61

Non-Fatal Error Messages ... 3-61
Fatal Error Messages 3-62

SECTION 4 SYSTEM CALLS
INTRODUCTION ... 4-1
OVERVIEW .. 4-1

System Errors ... 4-2
System Definitions 4-6

DETAILS OF SYSTEM CALLS .. 4-7
set high address mask 4-7
alaiin .:-: :-: ... 4-8
break .. 4-9
chace .. 4-10
chdir ... 4-11
chown ... 4-12
chprm ... 4-13
close ... 4-14
control-1'ty ... 4-15
cpint ... 4-17
create 4-19
create-1'ty ... 4-20
crpipe ... ; ... 4-21
crtsd .. 4-22
defacc ... 4-23
dup ... 4-24
dups .. ,' 4-25
exec .. 4-26

Table of Contents-4

exece .. 4-27
fcnd .. 4-29
filtim .. 4-30
fork•.. 4-31
gtid ... 4-32
guid .. 4-33
ind .. 4-34
indx .. 4-35
link .. : .. 4-36
lock .. 4-37
Irec ... 4-38
memman .. 4-39
mount ... 4-40
of stat 4-41
open .. 4-42
phys .. 4-43
profile ... 4-44
read .. 4-45
rump ... 4-46
seek .. 4-48
setpr .. 4-49
spint ... 4-50
stack ... 4-51
status .. 4-52
stime ... 4-53
stop ... 4-54
suid ... 4-55
term .. 4-56
time .. 4-57
truncate 4-58
ttime ... 4-59
ttyget .. 4-60
ttynum ... ,. 4-61
ttyset 4-62
unlink .. ; .. 4-63
unmnt ... 4-64
update 4-65
urec .. 4-66
vfork ... 4-67
wait .. 4-68
write ... 4-69

SECTION 5 DISPLAY ACCESS FUNCTIONS
Display Functions .. 5-3

SECTION 6 KEYBOARD AND MOUSE FUNCTIONS
THE EVENT MANAGER .. 6-1

Event Manager Functions 6-1
Event Manager Key Codes 6-7

Table of Contents-5

SECTION 7 FLOATING POINT SUPPORT
Floating Point Returns ... 7-2
Floating POint Functions .. 7-2

Figures

2-1. Relationship of Passed Pointers. .. 2-9
2-2. File Mode (st_mod). 2-24
2-3. Pennissions (st-pnn). ... 2-25
2-4. Flag Byte (tt_fIg). . .. 2-29
2-5. Tenninal Speed Byte (tt_spd). 2-30
2-6. Stop Output Byte (tt_spr). .. 2-31
4-1. Argument And Environment Variables .. 4-28

Tables

2-1 4400 PROGRAM INTERRUP1'S ... 2-41
5-1 Display Function Codes ... 5-2
6-1 Event manager functions ... 6-1
6-2 Keys and Event Driver Codes ... 6-7
7 -1 Floating Point Function Codes .. 7-1

Table of Contents-6

Section 1

INTRODUCTION
ABOUT THIS MANUAL
This manual is the primary programmer's reference to the 4400 assembly language. This manual
contains a guide to assembly language programming and the system calls that you can use with
the assembler. The 4400 Users Manual contains a complete list of the other manuals available
for the 4400 series.

This manual has the following sections:

Introduction

Programmers Guide

The Assembler

System Calls

About this manual.

A general introduction to assembly language programming.

A description of the assembler and linking loader.

A description of the system calls available to the assembler.

The 4400 series assembler is similar on all 4400 series products. When assembling mnemonics,
the assembler generates code that fits the processor of the machine it is running on. To assemble
code for a different processor, set the swiches on the command line appropriately. Information
for setting the switches is found in section 3, The Assembler, of this manual. If you write a
program that uses MC68020 mnemonics, by proberly setting the command line switches it will
assemble and run on a MC68010 or MC68000 processor. This simplifies writing and assembling
programs for use with other microprocessors.

WHERE TO FIND INFORMATION
You have several important sources of information on the 4400:

• This manual, the 4400 Series Assembly LAnguage Programmers Reference manual,
contains the details of the assembler and linking loader.

• The 4400 Series Operating System Reference manual contains the syntax and details of
commands and utilities. This manual also contains details about a text editor and a remote
terminal emulator.

• The 4400 Series C LAnguage Reference manual contains detail about the "c" programming
language.

• The 4400 Users manual contains basic information on system installation, startup,
installing software, and the other "how to put commands together" discussions. See the
index of the User's manual to find how to perform particular tasks.

• The on-line "help" utility contains a brief description of the syntax of user commands.

• The Introduction to Smalltalk-80{tm} manual contains details and a short tutorial on the
Smalltalk-80 programming language.

• The reference manuals for the optional languages for the 4400 product family are also
available.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 1-1

INTRODUCTION

MANUAL SYNTAX CONVENTIONS
Throughout this manual, the 4400 User's manual, and in the on-line help files, the following
syntax conventions apply:

1. Words standing alone on the command line are keywords. They are the words recognized
by the system and should be typed exactly as shown.

2. Words enclosed by angle brackets « and » enclose descriptions that are replaced with a
specific argument. If an expression is enclosed only in angle brackets, it is an essential part
of the command line. For example, in the line:

adduser <user name>

you must specify the name of the user in place of the expression <user_name>.

3. Words or expressions surrounded by square brackets ([and]) are optional. You may omit
these words or expressions if you wish.

4. If the word list appears as part of a tenn, that tenn consists of one or more elements of the
type described in the tenn, separated by spaces. For example:

<file name list>

consists of a series (one or more) of file names separated by spaces.

1-2

Section 2

PROGRAMMER'S GUIDE
INTRODUCTION
This section, the 4400 Programmer's Guide, provides a general introduction to
MC68000/68010/68020 assembly language programming on the 4400 product family. This
section includes a sample 4400 utility program that you can type in and execute.

For information on the MC68000/68010/68020 assembler, see Section 3, The Assembler and
Linking Loader. For information on system calls, see Section 4, System Calls. System
programming in C is described in the manual, THE 4400 C COMPILER, while programming in
other languages is described in the reference manuals for those languages.

SYSTEM CALLS OVERVIEW
The following paragraphs give an overview of assembly language programs of the 4400 family:
how they run, how they perform system function calls, how they handle errors, and what the task
environment is like.

How 4400 Programs Run
Most programs or utilities are run by typing the name of such a program in response to a prompt
from the shell. The shell assumes the typed name is a file containing an executable binary
program. (There are exceptions, such as command text files, but we will ignore those for now).
This binary program is loaded into memory and executed. If desired, this program can obtain
parameters from the command line. When it is finished, the program terminates, passing control
back to the shell.

Every program that runs on the system is a task. Many tasks may be active at once, but in reality
only one task is running at any given instant. The system switches from task to task so rapidly
that the appearance is that all of the tasks are executing concurrently. If you were to freeze the
system at some point in time, you would see a single task or program in the cpu's address space.
A task may not have all of RAM assigned to it, but it would have the entire address space
available. Other tasks may be resident in other memory, but that memory is not mapped into the
task's address space. When the task terminates, its allocated memory is returned to the system,
and control is passed to the parent task (the task which created or initiated the terminating task).

This section discusses how to write a program which the shell can load and execute, how this
program can communicate with the user, system, other tasks, etc, and how to terminate the
program's execution.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-1

PROGRAMMER '8 GUIDE

INTRODUCTION TO SYSTEM CALLS
When a user's program communicates with the user, a disk file, another task, or anything else in
the system, it uses calls to the operating system. The operating system is essentially another task,
always available, that has built in routines to perform a variety of system oriented functions.
These functions include reading files, writing files, seeking to file locations, setting permissions,
creating pipes, reporting id's, creating tasks, terminating tasks, mounting devices, reporting the
time, and so on.

A user program executes functions by making a call to the system with a proper function code
and input parameters. The technique of making the call in the assembler code is the sys
instruction recognized by the assembler. In addition to the sys calls, which implement generic
Operating System instructions, other calls made with the trap instruction allow access to the 4400
series specific hardware, such as the display or floating-point processor.

The sys Instruction
The assembler has a built-in instruction to make system calls. It is the sys instruction and has the
following format:

sys <function>, [<parameterl>, ... <parameter4>]

The only required portion of the operand is the <function>, which is a numeric code for the
desired function. The parameters required depend on the particular function. There may be no
parameters or as many as four. The function code is a 16-bit value; while parameters are always
32-bit values. Many system functions also require certain values or parameters to be in one or
more of the processor's cpu-registers before executing a sys instruction. When some parameters
are required in registers, it is the programmer's responsibility to see that the proper values are
loaded before calling on the system.

When the sys instruction has completed execution, control generally passes to the next instruction
in the program. In some cases, the system function returns one or more values to the calling
program by placing the values in selected cpu registers. In some cases the returned value{s) are
placed at a location specified as one of the input parameters.

Section 4, System Calls, describes the operating system functions. Along with the description,
the necessary parameters and returned values are specified. For example, look at the read system
call in that section. Under the USAGE heading you will see the following:

<file descriptor in DO>
sys read,buffer,count
<bytes read in DO>

This shows that before executing the read function call, you must ensure that the desired file
descriptor must be loaded into the processor's DO register. In addition to the read function code
itself, you must supply a buffer address (32-bit address of a buffer to read into) and a count (32-
bit count of how many characters to read). After executing the read function, the actual number
of bytes read is returned in the processor's DO register.

All user-accessible processor registers except for the DO, AD, and CCR registers are left intact
across system calls. The contents of the DO, AO, and CCR registers upon return from a system
call vary depending on the particular call.

2-2

PROGRAMMER'S GUIDE

The actual system function code numbers are defined in the sysdef file located in the / lib
directory. This file is provided on disk so that you can include those definitions in your program
by including the sysdeJfile in your source via a lib sysdefinstruction.

Briefly, the sys function works by generating a software interrupt. When this interrupt occurs, the
handling routine maps the calling task out of the cpu's address space and maps the operating
system code in. This system code then performs the requested function. It obtains the function
number and parameters from the code directly following the software interrupt itself. When the
system function has completed, the operating system is mapped out, and the task is mapped back
in, to continue with its instructions.

System Call Example
Let's try a sample program that includes a system function call. The sample program has four
fields: Label, Opcode, Operand and Comment. In section 3, The Assembler, of this manual there
is a description of the source statement fields (columns) in a program. The four source statement
fields are summarized as:

Label

Opcode

Operand

Comment

Contains a symbolic label or name that can be called upon throughout the
source program.

Contains the opcode (mnemonic) or pseudo-op.

Provides data ar address information required by the opcode.

Contains comments on each line of code.

The simplest program is one that does nothing at all: as soon as it is initiated, it immediately
terminates. Thus, the only system function we will need to call is the term function. The
description of term in Section 4, System Calls, shows that there are no parameters required on the
sys instruction itself (besides the function code), but that you must put a status value in the DO
register before performing the call. If there are no errors this status should be zero. Thus you can
write an extremely simple program that looks like the following:

Label Opcode

lib
text

start move.!
sys
end

Operand

sysdef

#O,dO
term
start

Comment

Put status in DO
Terminate task

The first line includes the definitions of all system function codes so that we can specify the term
function as a symbol (term) and not have to type in the particular number for that function. The
third line puts the status in DO, as required by the term function, and line 4 terminates the
program. In the case of the term function, control is not returned to the calling program after
execution of the call. Of course, that is the reason for the function; it terminates the current task
(the task which made the calI) and returns control to that task's parent. Notice that the program's
end statement includes the symbol start. This tells the assembler the beginning location for
execution and also induces the assembler to make the resulting code executable by setting the
permission bits.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-3

PROGRAMMER'S GUIDE

Let's assume you call the source file nothing.asm and assemble it with the following commands:

++ asm nothing.asm +s +o=nothing.r
++ load nothing.r +o=nothing

The result would be a binary file that when executed by the command:

++ nothing

would load, run, and immediately return to the shell. This is, of course, a meaningless example,
but it does show the rudimentary steps in writing, assembling, and executing a 4400 assembly
language program.

Indirect System Calls
In order to use the sys instruction directly, you must define all the parameters at assembly time.
When parameters are not known at assembly time (because they will be determined or changed
during the execution of the program), you must use indirect system calls. There are two types of
indirect system calls - ind and indx - and they are themselves system functions called with the
normal sys instruction. They permit the programmer to tell the system that the parameters do not
actually follow the software interrupt, but instead are placed at some other specified location in
memory. This memory location, specified by the programmer, can be in an area of memory
containing data and not program code.

The first of these indirect system call functions is called indo Its format is:

sys ind,label

The label is the address of the memory locations that contains the actual desired function code
and parameters. Thus, when this function is executed, the system goes to location label and picks
up the desired function code and any necessary parameters. The system executes that function
and returns control to the statement following the sys ind,label instruction.

To illustrate, let's assume a program that needs to read from a file, but does not know how many
characters to read until it is executing. Somewhere in the first part of the executing program, the
number of characters to be read is determined and stored in a label called rcount. The indirect
function call is used:

move.! rcount,iread+6 Put count to read
move.! fd,dO Put file descriptor
sys ind,iread Do indirect read call

iread dc.w read READ function code
de.! buffer Read buffer location
dc.! 0 Read count (unknown)

buffer ds.b $4000 Space for read buffer

2-4

PROGRAMMER'S GUIDE

(At this point we're not concerned with details of how the read really works or what the file
descriptor is, we simply want to show how the indirect system call is made,)

The second form of indirect system call is the indx function, and is very similar to the ind
function. The difference is that the call to ind includes a parameter (label) that points to the
parameters in memory; with the indx function the pointer to the parameters in memory is in the
AO register. To see how this works, we can modify the above sample by changing the instruction
sys ind,iread to:

lea iread,aO Get address of parameter
sys indx Do indirect read call

An obvious use of indx is to push the parameters onto the system stack and point AO to it, thereby
eliminating the need for the parameter buffer in memory. For example:

move.l rcount,-(a7) Set count to read
move.l #buffer,-(a7) Set buffer address
move.w #read,-(a7) Set read function code
move.l fd,dO Put file descriptor
move.! a7,aO Point to parameters on stack
sys indx Do indirect read call
lea 1O(a7),a7 Clean parameters off
stack

buffer ds.b $4000 Space for read buffer

Note the importance of the order in which the parameters are pushed onto the stack. Also note
the lea 10(a7),a7 instruction following the function call. It removes the parameters which were
pushed onto the stack so that the stack is where it was before the system call section.

HARDWARE ACCESS TRAPS
The 4400 series Operating System supports direct user program access to hardware facilities such
as the bitmap display, mouse, keyboard and interval timer. The Trap #13 instruction provides
this access. Set register dO to a value that indentifies the specific function to be performed when
a Trap #13 instruction is executed.

Symbolic names for these function codes are defined in the file /lib/sysdisplay. Section 5,
Display Access Functions and section 6, Keyboard and Mouse Functions, describes the details of
these functions.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-5

PROGRAMMER'S GUIDE

FLOATING POINT TRAPS
The 4404 uses a National Semiconductor 32081 Floating Point co-processor. This is interfaced
to the MC68010 as an I/O device that is accessably only when the processor is operating in
supervisor mode. The 4400 operating system provides routines that allow programs to perform
floating point calculations using the NS32081. Invoke these routines using the Trap #12
instruction. When a Trap #12 instruction is executed, specify the floating point function code in
register dO.

These function codes are defined in the file Ilib!sysfloat. Section 7, Floating Point Functions,
describes the details of the support.

The MC68020 based members of the 4400 series do not use the NS32081 floating point
processor. Instead, they use the Motorola MC68881 floating point processor. This processor
implements a superset of functions available with the NS32081. Additionally, the MC68881
floating point processor are optionally accessable to the programmmer without the use of
operating system trap routines.

To maintain compatability with the 4404 programs, MC68020 members of the 4404 series family
also implement the floating point trap routines as an alternate way to access the MC68881.

SYSTEM ERRORS
Upon completion, system calls retum to the calling program with an error flag. This flag is the
carry bit in the condition code register. If the bit is zero on return, it implies that no error
occurred. If the bit is set (a one), then an error has occurred and the DO register contains an error
number. The assembler supports two special mnemonics for testing the error status on retum
from a system call: bes for branch if error set and bee for branch if error cleared. These are
equivalent to the standard mnemonics bcs and bee.

Section 4, System Calls, contains a list of the error numbers and their meanings. There is also a
file of equates called !libl syserrors which assign standard labels to the error numbers. These can
be used in a program by simply including the file with a lib syserrors instruction. Note that the
operating system does not report errors directly to the user. Error numbers are returned from
system calls and it is entirely up to the user's program to report such errors or handle them as
required by the specific application.

2-6

PROGRAMMER'S GUIDE

The Task Environment
A task is a single program which has complete use of the cpu's directly-accessible address space.
It can call on functions in the operating system, but is essentially a single, stand-alone program.
Each time a program is run, a new task is generated and the program becomes that task.
Whenever that executing task performs some I/O or system call that requires it to wait, the task is
mapped out so that another waiting active task may be mapped in and executed. If the executing
task does not perform any type of system call which would cause it to be mapped out, it will
eventually run into a time-slice interrupt which forces the task out so that other tasks can get
some execution time.

In this manner, multiple tasks can be run at what seems like the same time. To assist in keeping
track of all the active tasks, the operating system assigns a unique task id number to each task.
This is a 15 bit unsigned value that can be used to uniquely identify a particular task. The gtid
system call allows a task or program to obtain this task id if desired.

Address Space
The addresses which can be generated by a program make up what is known as the logical
address space. Under hardware memory management, these logical addresses are not presented
directly to the system memory. Instead, they are routed through the hardware memory manager,
which translates the logical addresses into physical addresses. Memory management allows
programs which reside at a particular logical address to actually load into system memory at a
different physical address. The total range of physical addresses makes up the physical address
space.

Although it would be possible to pass the addresses generated by the program directly to the
system memory, the use of a hardware memory manager provides several benefits. First, and
perhaps foremost, it prevents one task from reading from, or writing to, the memory allocated to
another task. In addition, it allows multiple tasks to reside in physical memory without the need
for each task to reside in a different area in the logical address space. Thus, all programs can be
written to execute at the same fixed logical address. No matter where those programs are loaded
into physical memory when they are executed, the memory management unit converts the logical
addresses the program uses to the proper physical addresses.

The 4400's logical address space is divided into four sections: text, data, stack and shared
resources. The program itself resides in the text section. This section cannot be written to during
execution of the program. The data section contains any data the program uses. It can be both
read from and written to during execution. The system stack is located in the stack section. The
shared resource section is an area where resources shared by tasks, such as the display bitmap,
may be accessed. These resources are made addressable by using the phys system call.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-7

PROGRAMMER'S GUIDE

The memory management unit allocates a certain amount of memory to each section when the
task is initiated. The amount of memory assigned to each section is determined by the size of the
task and its needs. It is also possible, as we shall see later, for a task to add more memory to the
data or stack section during execution.

The address space of a task is futher divided into smaller units called pages. A page is the
smallest unit of memory controllable by the memory management hardware. Using the mmeman
system call, individual pages may be protected, added, or deleted, from a tasks address space.

The size of a page and the maximum size of a tasks address space varies amoung the members of
the 4400 series family. Refer to the appendices of the Operating System Reference for more
information about page and maximum task size.

Arguments and Environments
It is often desirable to pass arguments or parameters to a program when you begin its execution.
The exec and exece system calls provide this ability. Exec and exece are the calls that are used to
begin execution of a program or binary file.

Arguments are passed to a program by leaving them on the system stack. When initiating a
program, the system stack pointer (A 7) is left pointing at some unknown location in the stack
page. Any arguments passed to the program are found in a special format just above where the
stack pointer points. The environment variables are also found in this area.

The arguments themselves are simply strings of characters which the program must know how to
use. In order to easily find these strings, the system provides a list of pointers to the beginning of
the strings. In addition, the system provides a count of how many arguments have been passed.

The pointers to the environment variables are found in memory, directly above the pointers to the
arguments. Since there is no count of the pointers to the environment variables, they are
terminated by a null string. Refer to Figure 2-1 for the relationship of the pointers to the strings.

2-8

PROGRAMMER'S GUIDE

\ 0

ENVIRONMENT STRING POINTERS . ,ENVIRONMENT STRING (n) \ 0 I
• I
I

I
I

ENVIRONMENT STRING POINTERS i ENVIRONMENT STRING (1) \ 0 I
\ 0

ARGUMENT STRING POINTER ·1 ARGUMENT STRING (n) \ 0 I
I •
I

I
I

ARGUMENT STRING POINTER J ARGUMENT STRING (1) \ 0 I
I STACK POINTER • ARGUMENT COUNT

5927-1

Figure 2-1. Relationship of Passed Pointers.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-9

PROGRAMMER'S GUIDE

This argument information is laid out as follows:

1. The stack pointer is pointing to the argument count It is a 4 byte value and should always
be greater than zero.

2. Just above the argument count (higher addresses in memory) is the list of pointers to the
argument strings. These pointers are 32 bit addresses of the actual strings.

3. At the end of the pointer list are four bytes of zero to signify the end of the list (A null
pointer.)

4. The list of pointers to the environmental variables is next. these pointers are 32 bit
addresses to the actual strings.

5. At the end of the pointer list are four bytes of zero to signify the end of the list. (A null
pointer.)

6. The actual argument strings begin above the zero bytes. Each argument string is the string
of characters that make up the argument followed by a zero byte.

7. The environment strings are next. Each string is the string of characters that make up the
environment variables followed by a zero byte.

8. An additional null string after after the terminal null of the last environmental variable
string terminates the null string.

In general, the shell initiates the programs or utilities that a system programmer writes.
Specifically, they are started when the user types the name of that program in response to the
shell's prompt. The shell starts the program by performing an exec system call. The arguments
that the shell sets up for the exec (which are those passed to the program) are the arguments that
are typed on the shell command line after the program name. By convention, the shell sets
argument 0 to be the command or program name itself. The arguments after the program name
are then numbered sequentially beginning with one.

The shell performs pattern-matching before passing the arguments to the command. For
example, consider the command:

++list file*

The shell does not pass file* as an argument to list, but rather searches the directory for all
filenames that match and passes them all as individual arguments. Thus, the list program would
see four arguments:

argument 0 -> list
argument 1 -> file 1
argument 2 -> file2
argument 3 -> filename

(Recall that argument number zero is always the nanie of the program or command being
executed.)

2-10

PROGRAMMER'S GUIDE

INITIATING AND TERMINATING TASKS
In a multi-tasking environment, one task can spawn or start a new task. There must, of course,
also be means for terminating tasks and for the parent of a terminating task to be informed of that
termination. The following discussion covers these techniques.

Terminating a Task
Tasks or programs are terminated with the term system call. When this function is executed, the
task is halted and its memory is relinquished to the system. Before calling the term function, the
programmer is required to place an error status value in the DO register. When the task
terminates, this value is passed back to the task's parent. If there is no error on termination, this
error status should be zero to indicate a clean termination. If the task terminates due to a system
error such as an I/O error, the error value returned by that system call should be used as the error
status for the term function. If the task terminates due to an error defined by the program (for
example, the program expects an argument but none was supplied), the recommended value to
return is $OOOOOOFF. By convention the parent task would recognize this as a user-defined error.
The parent would know some error had occurred that caused the program to terminate, but would
not be able to determine the exact nature of the error. A user-defined error should not return a
termination status of greater than $OOOOOOFF.

The wait System Call
The wait system function is issued by a task when it wants to wait for one of the child tasks it has
spawned to terminate. It is through the wait command that the parent task receives the
termination status from its child. Wait has the following syntax:

sys wait

When the system call wait returns, the termination status is in the AO register and the terminated
task's id is in the DO register.

If there are no child tasks when a wait call is issued, an error is returned. If a child task is still
running when the parent issues a wait, the parent is put to sleep until the child task terminats. If a
child task terminates before its parent has issued a wait, the system will save the child's task id
and termination status until the parent does issue a wait. If several child tasks have been
spawned, the parent must issue a wait call for each one individually.

The termination status is a two-byte value that is returned in the lower half of the AO register.
The lower byte (bits 0-7 of AO) is the low-order byte of the status value passed by the term
system call. If this byte is non-zero, some sort of error condition caused termination. Under
normal termination conditions, the higher byte of the termination status (bits 8-15 of AO) is zero.
If non-zero, the task was terminated by some system interrupt, and the least significant seven bits
of this byte contain the interrupt number. If the most significant bit of this byte is set, a core
dump was produced as a result of the termination. (Interrupt numbers .and core dumps are
described later.)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-11

PROGRAMMER'S GUIDE

The exec System Call
At times, a user-written program may wish to load and execute a program by itself without using
the shell. The tool used to load and execute another program or binary file is the exec system
function. That is the function which the shell uses when it loads and executes a program.
(Remember the shell itself is just another program.)

The program that makes the exec call and the new program (a binary file) have the same task id
number. If the exec is successful (i.e. no errors such as the file not existing), there is no return to
the calling program. The calling program is thrown away, making it impossible to return. If,
however, there is an error in attempting to perform the exec function, the system does not load the
new program and returns an error status to the calling program, which is still intact. Thus a
properly written program follows any sys exec call with error handling code.

If the environment variables are to be passed to the new program, use the exece system call.

The exec call requires two arguments: a pointer to the name of the file to be executed and a
pointer to a list of arguments to be supplied to the new program. Exec's format is:

sys exec,fname,arglist

The fname is the pointer to the filename. This filename is a string of appropriate characters
located somewhere in memory and terminated by a zero byte. The arglist is the pointer to a list
of argument pointers. In other words, arglist is an address that points to an address that begins a
list of pointers to arguments. This list of pointers is consecutive 4-byte addresses or pointers to
the actual argument strings. The list is terminated by four bytes of zero (which could be
considered a pointer to zero). Each pointer in the list is the address of the actual argument string
that is terminated by a zero byte. When the exec function is complete, the new program will have
these arguments available in the exact format previously described.

Let's try an example of the use of exec. As you know the dir command can be run by typing the
name and possible arguments on the shell command line. The shell actually starts execution of
dir by performing an exec. As an exercise, let's write our own program that executes the dir
command automatically, always providing an argument of +ba. This provides a long directory
with file sizes specified in bytes and includes all files. We will not specify any specific directory,
so our command will always perform the directory command on the current directory. The
filename to exec should be Ibinldir, and there are two arguments, dir and +ba. We supply dir as
argument zero because by convention argument number 0 is the command name. Our program
looks like this:

lib sysdef

text
start sys exec,filen,args

* This point is reached only if the exec fails. There
* would normally be error handling code here, but to keep
* things simple, we will just terminate if an error.
* Note the DO register already has the error from exec.

2-12

. sys term
* strings and data

filen fcc
argO fcc
argl fcc
args dc.!

end

'/binldir',O
'dir',O
, +ba',O
argO,argl,O
start

PROGRAMMER'S GUIDE

If we called this utility ldir, after assembling we could execute it by typing ldir as a command to
the shell. Our program would be loaded and executed by the shell, and it would in turn load and
execute the dir command with a +ba option. Thus typing ldir would produce the same results as
typing dir +ba.

The fork and vfork System Calls
The fork and vfork system calls are used to spawn a new task, and are the only way to create new
tasks. The fork system call creates a new task which is almost identical to the old task (the old
task still exists). The vfork system call is more efficient by creating a new task with the same
memory and stack allocation, same code in the memory space, same open files, pointers, etc.
(See section 4, System Calls, for a more complete description.)

Thus, immediately after a fork, there are essentially two identical tasks or programs running on
the system. Usually you want the new task to do something different, so in most cases the new
task immediately performs an exec call to load some program and execute it. This is the
technique used by the shell to start background jobs. When the shell sees a command ending
with an ampersan9 (&), instead of directly doing an exec it does a fork to create a second shell.
Now the newly created shell will do an exec of the desired command, while the old shell is still
around to accept further commands.

The syntax of either fork command is simply:

sys fork

or

sys vfork

The subtle part of the fork call is in how the two almost-identical tasks know which is which. If
the two tasks have the same code, how can the new one do an exec while the old one does not?
The answer is in the return from a fork call. After the fork operation, execution resumes in each
of the two programs. The difference is in where that execution resumes. In the new task,
execution resumes in the instruction immediately following the fork system call. The old task
resumes execution at a point two bytes past the system call. In this manner, the same program
can be run in two tasks via a fork and yet do different things after the fork. Since the new task
resumes directly after the fork call and the old task resumes two bytes after the fork call, it is
obvious that the first instruction in the new task must be a short branch instruction (which
requires only two bytes). Note that the new task's id is made available to the old task by
supplying the id in the DO register upon return from the fork. If an error occurs when attempting
a fork, the new task is not created, and an error status is returned to the old task (still two bytes
past the fork system cal1)~

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 2-13

PROGRAMMER'S GUIDE

The vfork system call is used when the new task will immediately perform an exec call. Vfork
avoids making a complete copy of the parent tasks address space since the parent task is
completely discarded by the exec call.

The following section of code helps illustrate the fork:

sys fork

* new task begins execution here

bra.s newtsk

* old task resumes execution here

bes
move.l

prwait sys
cmp.l
bne.s

sys
newtsk sys

bra

frkerr
dO,dl
wait
dO,dl
prwait

tenn
exec,name,args
excerr

spawn new task

branch to code for new task

check and branch if error
save new task's id
wait for child task
right one?
wait some more if not
continue code for old task

new task probably does exec
branch if error in exec

In this example, the wait system call at prwait makes the old task wait for the new one (it's child)
to finish before continuing. Note that the wait system call returns the terminated task's id in the
DO register.

2-14

PROGRAMMER'S GUIDE

4400 FILE HANDLING
This topic describes the manipulation of files, console, directories, printers, and other devices on
the 4400.

General File Definitions
Before delving into the actual manipulation of files on the 4400, we need to define and describe
some of their characteristics.

Device Independent I/O
Under the 4400 operating system, anything outside the program's memory, which the program
can write to or read from, is treated the same way. A file on disk, a terminal, a pipe, and a printer
spooler are treated the same way. This concept, termed device independent I/O means you can
develop a program that sends its output to a terminal, and that same program, without change,
will also be able to output to a disk file, printer spooler, pipe, or any other device on the system.
This feature lends a great amount of versatility to the system and makes program development
and updating much smoother.

This device independence is made possible by device driver routines - the system routines that
take care of the specifics of the device for which they are written, creating a standard interface to
the device. There is a routine to open the device and one to close it. These permit the system to
do anything necessary to prepare the device for reading and writing or to finalize anything
necessary when all I/O is complete. The two most important device driver routines are the read
and write routines, which permit the caller to read or write data from the device.

File Descriptors
Afile descriptor infonns the system which file to operate on. (We use the tennfile, but because
of device independence, the file descriptor can refer to a disk file, terminal, pipe, or any other
device). The file descriptor is a four-byte numeric representation of a specific file or device.
This number is assigned to the file by the system when that file is opened or created. The
operating system then keeps track of the file descriptors and the files to which they are assigned.
In this way, the user supplys a number instead of an entire file name each time the file is to be
referenced.

For example, the read system call requires a file descriptor value in the DO register before
making the call. In general use, we would have saved the file descriptor number of the file we
wish to read when it was opened. Now, to do the read, we need only load the DO register with
that number.

File descriptor numbers begin with 0 and extend up to the maximum possible number of open
files on the system per task. This maximum will vary depending on the system configuration, but
generally will be around 20-30.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-15

PROGRAMMER '8 GUIDE

Standard Input and Output
When the shell begins execution of a task, it automatically assigns input and output files to that
task. Generally the input file is the user's keyboard, and the output file is the user's display. In
fact, when a task begins execution, it can always count on three input/output files being already
opened, assigned a file descriptor, and ready for reading or writing: standard input, standard
output, and standard error output. Standard input is an open file ready for reading and is always
assigned a file descriptor of O. Generally the standard input file is the 4400 keyboard. Standard
output is an open file ready for writing to and is always assigned a file descriptor of 1. Generally
the standard output file is the 4400 display. Standard error output is an open file ready for
writing to and is always assigned a file descriptor of 2. This output file is reserved for reporting
error messages. Standard error output is initially the 4400 display.

Because these standard input and output files are already opened and assigned a file descriptor,
the user program does not have to perform any open or create calls in order to perform I/O
activities on them. As soon as a task begins running, it can perform a read with a file descriptor
of 0 (standard input) or write with a file descriptor of 1 or 2 (standard output and error output).

Standard input, output and error can be redirected without any change to the program. In other
words, a program which outputs some message to the user's terminal can also output the message
to a disk file without any modifications. This I/O redirection is accomplished from the shell by
use of the "<", ">"and """ operators (redirected input, output and error, respectively). If the shell
desires, it can provide a standard input, output or error file to the program which is different from
the user's terminal. The user program need not be concerned with what the standard input, output
or error is pointing to. Because of device independence and the fact that the program knows that
the file or device (whatever it may be) has been previously opened, the program simply performs
the I/O and doesn't care where it's going.

Opening, Closing, and Creating Files
Before a file or device can be read from or written to, it must be opened. When a program has
completed all its input and output to a file, it should generally close that file. A user program
may also need the ability to create new files on the system. This addresses those operations in
detail.

The open System Call
The format of an open system call is:

sys open,fname,mode

The fname is a pointer to a zero-terminated string containing the name of the file to be opened.
The mode is a number (0, 1, or 2) which sets the read/write mode. If 0, the file is opened for
reading only. If 1, the file is opened for writing only. If 2, the file is opened for both reading and
writing.

On return from the open call, register DO contains the 4-byte file descriptor number assigned to
that file. All future references to the file is made via this file descriptor.

2-16

PROGRAMMER'S GUIDE

An error is returned from this call if the file to be opened does not exist, if the task opening the
file does not have proper permissions, if too many files are already opened, or if the directory
path leading to the file cannot be searched.

The close System Call
When a task terminates, the operating system automatically closes any files that remain open. It
is wise, however, to manually close files within a program whenever possible. There are two
reasons for doing so. First, since each task has a finite number of files which may be open at one
time, closing a file frees up a slot in which another file may be opened. Second, in case of a
system crash, you are better off having closed any files which no longer require I/O. The close
system call is performed by loading register DO with the file descriptor of the file you wish to
close, then performing a sys close.

The create System Call

The create system call is used to create disk files. Other system calls are used to create
directories, pipes, devices, etc. The format of create is:

sys create,fname,perm

Once again, fname is a pointer to a zero-terminated string containing the name of the file to
create. The file is created in the default directory unless a directory is explicitly specified in the
file name. The perm is a value which permits the user to set the desired permissions on the new
file. (Refer to Section 4, System Calls for details of setting these permissions.)

Note that if the file already exists in the specified directory, it is truncated to zero length (all
existing data deleted). In addition, the original permissions is retained regardless of the perm
value supplied to the create call. In other words if the file fname already exists, the perm
parameter on the create call is ignored.

If the file does not exist, permission setting is subject to any default permission settings the file
owner has previously specified. The perm parameter in the create call allows you to deny
permissions which the default permissions grant, but does not let you grant permissions that the
default permissions deny. You can think of this as a logical AND of the perm parameter and the
default permission byte.

Every task has associated with it a default permissions byte. If that task attempts to create any
new tasks, the new tasks are created with at least those default permissions. As we saw above,
additional permissions may be denied by the perm value specified to a create call. Additionally,
the new task is started with the same default permission byte (for creating more tasks) as it's
parent. In normal use, a user may set the default permissions in his copy of the shell upon first
logging on. If the default permissions are not changed by the user or any task he runs, any files
the user creates will have those default permissions. {Note that the user can change default
permissions with the dperm command and for a task to change its own default permissions with
the deface system call.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-17

PROGRAMMER'S GUIDE

Reading and Writing
Perhaps the most heavily used system calls are read and write. It is by these functions that a
program communicates with the user, disk files, printers, other tasks, and anything else in the
outside world. Reading and writing permits great versatility in how files are accessed. For
example, with a disk file, the user can begin at any particular point in the file (right down to a
specific character) and read or write as many characters as desired from that point. This makes
both sequential and random access of the files quite simple.

The read and write system calls assume a file position pointer has already been set. This is a
pointer which the system maintains to show the current position for reading and writing in a file.
The discussion on seeking, later in this section, shows how it can be set. The only parameters
required, then, are the file descriptor to specify which file, the count of characters to be read or
written, and a memory buffer address to read into or write from.

The read System Call
To execute a read call, you must first load register DO with the file descriptor number. Then you
make the read call with the following syntax:

sys read,buffer,count

The buffer parameter is an address in the user program's memory. It specifies where the data
read from the file should be placed in memory. The count is the maximum number of characters
the programmer wants the system to read. We say maximum because, depending on the
situation, the system may not actually read as many characters as requested. Upon return from
the read system call, register DO contains the number of bytes that was actually read.

When dealing with a regular disk file, the system will always read count bytes if possible. There
are only two reasons that the system would read less than that number from a regular disk file: a
physical I/O error occurs, or the specified count forces the system to attempt to read past the end
of the file. For example, if a file has only 120 characters and a read call is issued with a count
parameter of 256, the read takes place and return with no error, but shows that only 120
characters were actually read. After this call the file position pointer is left pointing at the end of
the file. Any subsequent read call returns with no error, but with the number of bytes read equal
to zero. This is in fact how a user program should detect an end of file condition: a return from a
read system call with no error but with the actual number of characters read being zero.

Reading and writing to the console display and keyboard is handled with the same system calls as
when reading and writing disk files. There is a difference in the result of a read call, however, in
that if the file being read is the console, only one line is returned at most. By one line we mean
all the characters typed since the last carriage return, terminated by a carriage return. Thus, even
though we execute a call with a desired count of 1024 characters to be read, if the user at the
console types the letters halt followed by a carriage return, the read call would return with an
actual-bytes-read count of only five. If the user has not typed anything when the call is issued,
the calling program must wait until something is typed.

As with regular disk files, it is possible to detect an end of file condition from a keyboard by
performing a read and receiving no error and no characters. An end of file condition from a
keyboard is produced by typing a Control-D. Note that the Control-D character itself is not
actually passed on to the operating system, only the end offile condition.

2-18

PROGRAMMER'S GUIDE

As an example of the use of the read call, let's examine a section of code that attempts to read
1024 bytes of data, placing them in a buffer called buffer. We assume the file has already been
opened for reading and the file descriptor is stored atfdsave.

move.1 fdsave,dO get file descriptor
sys read,buffer, 1024 read 1024 bytes into buffer
bes.1 rderr branch if error
tst.1 dO end-of-ftle-condition?
beq.1 endof special handling if so
add.1 #buffer,dO point to end of data
move.1 dO,bufend save buffer end pointer

buffer ds.b 1024

Upon return from the read system call, we first check for a returned error status. If an error
occurred, we assume the program handles it properly at rderr. If no error, we check for an end of
file condition. Recall that an end of file condition is recognized by a program as zero characters
read when there was no error. If we are at the end of the file, the program jumps to endof, where
we again assume that such a condition is properly handled. If we did not receive an error and
were not at the end of the file, our program calculates a pointer to one past the last byte read into
the buffer and stores that pointer at bufend. Normally this pointer should be buffer+1024, but if
the read call returned less than 1024 bytes it would be lower.

The write System Call

The write function is executed by first loading register DO with the file descriptor number and
then issuing the write call:

sys write,buffer,cQunt

The buffer parameter is the address of the location in the user program's memory where the
program writes the data. The count is the number of characters to be written to the file. Upon
return from the write system call, the DO register contains the actual byte count written (if there is
no error). It is not necessary to compare this value to the requested count to be written because if
there was no error, you can be sure the entire write function took place properly.

Let's look at a complete program to send the message Hello there! to the standard output file. If
there is an error in writing to that file, we will then send the message Error writing standard
output. to the standard error output file. (Recall that the standard output is assigned file
descriptor number 1 and standard error output is assigned file descriptor number 2.)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-19

PROGRAMMER'S GUIDE

lib
text

sysdef

* start of main program

sayhi move.1
sys
bec.s
move.!
move.!
sys
move.!
bra.s

done move.l
done2 sys

* strings

hello fcc
hlngequ
erm fcc
elngequ

end

include system definitions

#1,dOwrite to standard. output
write,hello,hlngsend message
doneexit if no error
dO,-(a7)else, save error number
#2,dOwrite to std. error output
write,erm,elngsend error message
(a7)+,dOrestore error number
done2
#O,dO
termterminate program

'Hello there!',$d,O
*-hellocompute length of string
'Error writing standard output.' ,$d,O
*-ermcompute length of string

sayhigive starting address

There is no open system call because we know that the standard output and standard error output
files are already opened and ready for writing when the program begins execution. Note the
convenient method of providing the count of characters to be written. Also note that we did not
look for an error after the system call to write to the standard error output. We really have no
good recourse if an error does occur while reporting an error, so we simply terminate.

Efficiency in Reading and Writing

There are several things a system programmer can do to achieve efficient reading and writing of
files on the 4400. The first and most obvious of these is to read or write as much of a disk file as
possible with a single call. There is much less system overhead in executing one call to read
4096 characters than in executing 32 calls to read 128 characters each. The most efficient reads
and writes are those made in multiples of 512 bytes. This is, of course, due to the fact that the
4400 disk block size is 512 bytes. Due to the way memory mapping works, additional efficiency
can be gained by placing all read and write buffers on 512 byte address boundaries in memory.

By all means do not perform single character I/O with system calls for each character. If single­
character I/O is required, the user program should handle the necessary buffering so that system
calls are made only on a buffer full of characters.

2-20

PROGRAMMER'S GUIDE

Seeking
For each open disk file, the operating system maintains a pointer that indicates the current
position for reading or writing in that file. This pointer can point to any place in the file, right
down to any specific character position. The user does not have direct access to this pointer, but
may use the seek system call to position it to any desired spot in a file. The format of the seek
call is:

sys seek, offset, type

Before making a system call to seek, the user must load the desired file descriptor in register DO.
Seeks are done on a relative basis. That is, a seek amount is supplied to the call and the seek is to
be that amount relative to some reference point. (This reference point is the type parameter
shown aboveJ

There are three possible reference points: the beginning of the file, the current position in the file,
and the end of the file. The type value should be as follows:

type starting position or reference point

o beginning of the file
1 current position in file
2 end of the file

The argument offset is a four-byte 2's complement offset that represents the amount of offset to
be added to the reference point to find the new position in the file. A positive number indicates
forward in the file; a negative number indicates backward into the file. On return from the seek
call, the new current position is left in register DO. This is the current position relative to the start
of the file. To find the current position in a file, you could use a system call of sys seek,O,] ,
finding the result in DO.

As an example, let's construct a simple random access routine. Assume we have a data file with
fixed-length records of 256 characters per record. We know we will never have more than 32000
records in our file, so the record number can be represented in 16 bits. We want to write a
subroutine that will read the record specified by the record number in register AO and leave the
data at the location specified by the AO register. The basic procedure will be to find the starting
position of the desired record in the file by multiplying the record number by the record size of
256. Then we seek to that position and read 256 bytes. Our routine looks like this:

getrec move.1 aO,iread+2 save address for read
ext.! dO make record number long
lsl.l #8,dO record*256 is offset

* seek to record

move.1 dO,Iseek+2 set seek address parameter
move.! fd,dO assume file descriptor at fd
sys ind,Iseek indirect call to seek
bes.! skerr branch if error

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-21

PROGRAMMER'8 GUIDE

* file pointer positioned, now read record

move.l fd,dO get file descriptor
sys ind,iread indirect call to read
bes.l rderr branch if error
rts all finished

Iseek dc.w seek seek function
code
dc.1 0 seek address (unknown)
dc.1 0 type 0: position from begin

iread dc.w read read function code
dc.l 0 buffer location (unknown)
dc.l 256 character count to read

Notice that we used indirect calls to seek and read, because at assembly time we do not know
what address we will need to seek nor where in memory to place the data we read. By using
indirect calls, we can set aside an area of memory (at [seek and ireac/) where these values can be
stored as the program executes.

File Status Information
The status and o/stat calls are used to obtain information about each file or device. O/stat is used
to obtain information about a previously opened file while status obtains information from an
unopened file. The format for o/stat is:

<file descriptor in DO>
sys of stat, buffer

The user must load register DO with the file descriptor of the previously opened file.

The format for status is:

sys status,fname,buffer

With status, the file is specified by providing the /name parameter, which is a pointer to a zero­
terminated string containing the desired file name. In both commands the buffer parameter is a
pointer to a buffer in memory or an area of memory into which the information about the file can
be placed. This buffer must be at least 22 bytes long. When the status or o/stat call is completed,
this buffer contains all the information available for the file in the format described below.

2-22

PROGRAMMER'S GUIDE

Assuming the buffer begins at some location called bu!. the information in the buffer is:

N arne Location Field Size Information in Field

st dev buf 2 device number
st fdn buf+2 2 fdn number st fil

buf+4 1 spare (for word alignment)
st mod buf+S 1 file mode
styrm buf+6 1 permission bits
st cnt buf+7 1 link count
st own buf+8 2 file owner's user id
st siz buf+lO 4 file size in bytes
st mtm buf+14 4 time of last file modification
st_spr buf+18 4 reserved for future use

The device number is a number assigned to the device on which the file resides. The fdn number
is the number of the file descriptor node associated with the file. The file descriptor node is a
block of information about the file and where it resides on the disk. It is from the fdn that status
and o/stat obtain their information.

The link count is the number of directory entries that are linked to the fdn or actual file. More
information on linking can be found later in this section in the discussion titled Directories and
Linking. The file owner's user id is a two-byte id that was assigned to the user by the system
manager when the user was given a user name. The file size in bytes is the exact number of
characters in the file. The time of last modification is the internal representation of the last time
the file was written to.

The file mode and permission bytes each hold several bits of information. This is done by
assigning single bits within the file mode to particular file types and within the permission byte to
the various possible permission types. The state of the particular bit (0 or 1) indicates which type
of file mode or whether permission is given or denied. The File Mode byte is shown in Figure 2-
1.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-23

PROGRAMMER'S GUIDE

BLOCK DEVICE

'--- CHARACTER DEVICE

'----- DIRECTORY

Figure 2-2. File Mode (st_rnod).

5927-2

Only one bit should be set at a time and it indicates the file type. A block device is a device such
as a disk drive which handles data in 512 byte blocks. A character device is one such as the
communications device (Jdev/comm) that handles data single character at a time.

The permissions byte shows what permissions are granted or denied for the file. The Permissions
byte is shown in figure 2-2.

2-24

PROGRAMMER'S GUIDE

OWNER READ PERMISSION

'--- OWNER WRITE PERMISSION

L...-___ OWNER EXECUTE PERMISSION

L..-____ OTHERS READ PERMISSION

'-------_ OTHERS WRITE PERMISSION

1--------- OTHERS EXECUTE PERMISSION

1----------- USER ID BIT FOR PERMISSION

Figure 2-3. Permissions (st yrm).

5927-3

In this byte, any or all of the permission bits may be set at one time. If a bit is set, that type of
permission is granted. If cleared, permission is denied.

The user id permission bit requires further clarification. If this bit is set, it gives the user of a file
the same permissions as the owner while that file is executing. As an example of the usefulness
of this feature, consider a user, joe, who has a database program which manipulates a large data
file. Now joe does not want anybody on the system to be able to directly read or write his data
file, so he denies read and write permissions on that file to others. (Of course, he grants read and
write permissions for himself.) Even though he does not want anyone to be able to read and write
his data file directly, joe would like for other users to be able to run his database program, which
manipulates the data file. All he need do is set the user id permission bit in his database program.
With the user id bit set, anyone who runs the database program has the same permissions as joe,
which allows them to manipulate the data file while running the database program. As soon as
the database program is terminated, however, the other user no longer has the permissions of joe,
the owner.

Another example of the use of the user id bit can be seen in the crdir or create directory
command. A directory is a special type of file, and the only way to create a directory is with the
crtsd system call. That call may only be executed by the system manager. Without the user id
bit, the only person who could use the crdir command (which contains a crtsd system call) would
be the system manager. The crdir program has the user id bit set, however, so that anyone who
runs it temporarily has the same permissions as the owner. The owner of crdir is the system
manager; thus any user can create a directory.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-25

PROGRAMMER'S GUIDE

DIRECTORIES AND LINKING
A directory entry is nothing more than the name of a file and a single pointer to the file descriptor
node (fdn) for the file. This fdn is a small unit on the disk; it contains various infonnation about
a particular file. There is one and only one fdn on a disk for each file which resides on the same
disk. It is possible, however, to have more than one directory entry point to the same fdn. Two
different users could have an entry in their own directory which pointed to the same fdn and
therefore the same file. This feature is called a link and you can see it is possible to have many
links to the same file.

A long directory listing (dir +0 shows the number of directory entries which point to or are linked
to each file. This is always 1 or greater; if it ever goes to zero no one is linked to the file and it
will be deleted. In fact when you remove a file, the command merely removes that name from
the directory. This decrements the link count in the associated fdn. If that count is still non-zero,
someone else is linked to the file and it is not deleted from the disk. If the count does go to zero,
no one else is linked to the file and it is deleted.

An example of linking can be seen in every directory on a 4400 disk. Recall that there are two
entries, . and .. , in each directory. (They don't appear in a dir listing unless you use the +a
option.) The. entry represents the directory in which that entry is found; .. represents the parent
directory of the directory in which it is found. Thus typing . as a directory name is equivalent to
typing the entire path name for the current directory. Typing .. is equivalent to typing the path
name for the parent directory of the current directory. These directory entries are not separate
files, but are links to the current directory file and the parent of the current directory. That is why
you see a link count of more than one for every directory on the system.

The link and unlink system calls allow the programmer to link to files and unlink from files,
respectively. The link function is quite straightforward: one specifies a pointer to the name of the
file to be linked to, and a pointer to the new name that will be put into the directory. The unlink
call is equally straightforward: the programmer simply provides a pointer to the filename or
directory entry to be unlinked. This unlink call is the method of deleting files, the remove
command calls on the unlink function to perfonn the file deletion. Note that a file is not deleted
by an unlink call unless the call removes the last link to the file.

If a file is open when an unlink call is made, the link is removed, but the file will not be deleted
or closed by the operation. The user can still read or write to the file as long as it is left open.
The 4400 operating system waits until the file is actually closed and then checks the link count to
see if it should be deleted from the disk. This creates interesting possibilities for a program. A
file can be opened and then immediately unlinked. As long as the program leaves that file open,
it can read from it or write to it. When the program is finished with the file, it has only to close it.
If no one else is linked to the file, it is immediately deleted.

2-26

PROGRAMMER'S GUIDE

OTHER SYSTEM FUNCTIONS
This discussion describes several features and functions available to the system programmer that
are somewhat specialized. Specific calling formats and parameters will not always be given; for
this refer to Section 4, System Calls.

The Memory Management Functions
Earlier, we learned that when a task is started, it is allocated text, data, and stack memory
according to the program size. The system automatically increases the stack size if necessary.
With the break and stack system calls, it is possible for a running task to change the amount of
memory allocated to it's data or stack spaces. It is also possible to relinquish allocated memory
back to the system, that is to deallocate data or stack memory. The memman system call controls
the activity in a region of memory, and the phys system call permits access to certain system
resources.

The break Function
The means of performing this dynamic memory or stack allocation and deallocation are the break
and stack commands. An address is supplied to break and the system attempts to allocate
memory to be sure there is RAM up through the specified address. Memory is allocated in page
sized sections, so depending on the address specified there may be some memory beyond the
address. If an address is specified which falls below the amount of program memory already
allocated, that memory is relinquished or returned back to the system.

New memory pages are not necessarily allocated to a task when the size of it's address space is
increased using the break command. Instead, new memory pages are allocated only when the
program actually reads or writes to a location within such a page. Thus it is possible for a task to
manage its memory by using the break to set the address space to the maximum size, then
"touching" those pages which it actually use.

The memman Function
The memman function allows individual pages of memory to be managed. These regions may be
disabled or enabled for writing, and locked or unlocked. All resources associated with a page can
be released, causing the system to effectively forget information stored in the page.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-27

PROGRAMMER'S GUIDE

The phys Function
The phys system call makes shared system resources addressable within the address space of the
task. The most commonly accessed resources is the display bit map. Writing to this resource
results in visible changes upon the console display.

The ttyset and ttyget Functions
The 4400's ttyset and ttyget functions provide a way to alter and examine several configuration
parameters of devices. The exact nature of these parameters differ for the various devices. For
example, the console device includes parameters such as the line-cancel character, the backspace
character, mapping of upper to lower case, tab expansion, .etc. For any device the parameters are
represented in six bytes of data. These six bytes can be read with the ttyget system call to
examine the current configurations, or can be set with the ttyset system call to alter the current
configuration. A six-byte buffer must be established in memory to hold the desired
configurations for ttyset or to receive the current configuration information for ttyget. The file
I libl systty contains definitions for the structures and constants.

Console Device parameters
If we assume that a six-byte buffer called ttbuJ, the data has this format:

Name
ttjlg
tt_dly
tt cnc
tt-bks
tt_spd
tt spr

Location
ttbuf
ttbuf+l
ttbuf+2
ttbuf+3
ttbuf+4
ttbuf+5

Contents
Flag byte
(reserved)
Line cancel character (default is Ctrl-U)
Backspace character (default is Ctrl-H)
Terminal speed
Stop output byte

The eight bits of the Flag byte represent eight different modes of operation for the console. When
set, they imply that the indicated mode is in operation. The format of the Flag byte is shown in
figure 2-3.

2-28

PROGRAMMER'S GUIDE

UNUSED

1....-_ UNUSED

'----- UNUSED

'------ UNUSED

UNUSED

'--------- UNUSED

UNUSED

INPUT READY

5927-4

Figure 2-4. Flag Byte (tt_flg).

When set, Any Character Restarts Output bit instructs the console driver to restart the output if it
has been stopped by either an escape or XOFF.

The Terminal Speed byte presently implements only one bit. It is the high order bit (bit 7) and, if
set, indicates that the tenninal has input characters waiting for the program. This bit is
meaningful only when read, i.e. the input-ready condition cannot be set via this bit and ttyset.
The fonnat of the Tenninal Speed byte is shown in figure 2-4.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 2-29

PROGRAMMER'8 GUIDE

RAW I/O MODE

L..-_ ECHO INPUT CHARACTERS

'----- EXPAND TABS ON OUTPUT

'------ MAP UPPER/LOWER CASE

AUTO LINE FEED

'--------------- ECHO BACKSPACE ECHO CHARACTER

SINGLE CHARACTER INPUT MODE

IGNORE CONTROL CHARACTERS

Figure 2-5. Terminal Speed Byte (tt_spd).

5927-5

Under normal input operations, the Input Ready bit is not set until an entire line has been input
and terminated by a carriage return. There are special input modes which can be established,
however, where the Input Ready bit will be set as soon as a single character is input These are
the raw lIO mode and the single character input mode, described later in this section.

The Stop Output byte contains bits which control the stopping and starting of output to the
console. There are two methods by which a user can stop and start output to the console: the
escape key and XON/XOFF processing. The escape key method permits a user to type an escape
character (hex IB) to stop output. A subsequent escape character restarts the output The
XON/XOFF method permits a user to type an XOFF character (hex 13) to stop output and a
subsequent XON character (hex 11) to restart it. The escape and XON/XOFF mechanisms can be
independently enabled or disabled by setting or clearing the proper bits in the tt _spr byte. The
format of the Stop Output byte is shown in figure 2-5.

2-30

PROGRAMMER'S GUIDE

UNUSED

'---- UNUSED

1....---- UNUSED
1...-____ UNUSED

1...-___________ UNUSED

I....---------------ANY CHARACTER RESTARTS OUTPUT

1....-_________________ ENABLE XON/XOFF FOR OUTPUT

1....------------ DISABLE ESC FOR STOPPING OUTPUT

5927-6

Figure 2-6. Stop Output Byte (tt_spr).

The following paragraphs describe each of these modes.

Raw 1/0 Mode

In raw mode, the console driver effectively does no special processing of the input or output
characters. Each and every character typed on the console is directly input, including backspace
characters, line cancel characters, tab characters, Ctrl-C characters, and so on. Similarly, every
character output to the console is output directly: no tab expansion is performed, no line feeds are
appended to carriage returns, etc. In addition, the parity bit is not stripped on either input or
output.

In raw mode, the executing program has complete control of every character input or output and
the program must perform any special processing itself. Under raw mode a read system call will
not have to wait for an entire line to be input before it can read characters. If there is a single
character available, the read call returns with just that character. It is still possible for a single
read call to read more than one character, but only if the characters have already been typed into
the input buffer before the call is made. This mode is off by default.

Echo Input Characters

If this mode is enabled, each character typed on the keyboard is echoed to the display console.
An example of this mode occurs when a user logs in and is asked for his password. The login
program writes the Password: message and then turns the echo input characters bit off while the
password is entered. In that way the password is not echoed to the screen. This mode is on by
default

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-31

PROGRAMMER'8 GUIDE

Expand Tabs on Output
If the tenninal does not have hardware tab expansion, this bit can be set to allow the tenninal
driver software to automatically expand tabs on output Tab stops are assumed to be at 8 column
intervals. In other words, if this bit is on, then each time a horizontal tab character ($09) is
output, the system spaces over to the next column which is a multiple of 8 (unless it is already at
such a column). This mode is offby default.

Auto Line Feed
When this mode is on, the console driver will automatically output a line feed ($OA) after each
carriage return is output. This mode is on by default.

Single Character Input Mode

Single Character Input Mode allows a program to input one character at a time without having to
wait for a carriage return. When not in the single character input mode, a call to read a single
character would have to wait until an entire line tenninated by a carriage return had been typed
before it would have access to a single character within the line. If single character input mode is
on, the program can read a character as soon as it has been typed. Note that it is still possible to
read multiple characters while in the single character input mode, if they are available. While in
the single character input mode, the parity bit is stripped off of input characters, but only Ctrl-C,
Ctrl-D, and Ctrl-\ are treated as special characters. In other words, tabs, backspaces, and line
cancels are ignored and should be processed by the user's program if desired. This mode is off
by default.

Ignore Control Characters

When this mode is on, the system ignores all control. characters except for the following:

• Carriage Return

• Horizontal Tab

• Ctrl-C

• Ctrl-D

• Ctrl-\

• Backspace Character
(if defined to be a control character)

• Line Cancel Character
(if defined to be a control character)

Those control characters that are ignored will.still be echoed if the echo input characters mode is
also on. This mode is offby default.

2-32

PROGRAMMER'5 GUIDE

Communications Device Parameters
The communication device parameters use the ttyset and ttyget system calls to communicate
option settings to the communications port device driver. The format of the 6-byte buffer used
with these calls is defined differently than for standard tty devices. The file Iliblsyscomm
contains definitions for the structures and constants.

If you call a six-byte buffer cbuf, then the following data is in this format:

Name Location Contents
c com cbuf Command field
c value cbuf+l Additional values
cyarity cbuf+2 Parity selection
c_flag cbuf+3 Flow control
c_ospeed cbuf+4 Output baud rate
c ispeed cbuf+5 Input baud rate

The c_com field is used to request various commands to be executed by the device driver during
ttyset and ttyget calls. Valid values for this field are defined as:

Command Value Description
RESET COMM 1 Reset the communications port
SETUP COMM 2 Set parity, flags and baud rates
EXCL COMM 3 Do not accept open request until closed or reset
BREAK COMM 4 Send break signal for c _value tenths of a second
NOBLOCK COMM 5 Read calls do not block
BLOCK COMM 6 Read calls do block (default)
DTRLOW COMM 7 Set DTR signal low
DTRHIGH COMM 8 Set DTR signal high (default)
RTSLOWCOMM 9 Set RTS signal low
RTSHIGH COMM 10 Set RTS signal high (default)

The RESET COMM command resets the dev/comm device to its default conditions.

The SETUP COMM command causes:

• Parity type and number of stop bits to be set according to the value in the c yarity byte

• Flagging control to be set according to the c Jlag byte

• Baud rate to be set according to the c _ ospeed and c _ispeed bytes

The EXCL_COMM command prohibits another process from opening this device until it is
closed or reset.

The BREAK COMM command sends a break signal whose length in microseconds is the value
in the c _value byte.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 2-33

PROGRAMMER'S GUIDE

The NOBLOCK COMM command lets a read call return from the /dev/comm device when there
is no data. The read calls will not block and a zero count is returned if no bytes are available.

The BLOCK COMM command is the default state and reads will block if no data is available. If
data is available, the data is read into the caller's buffer (up to the requested number of bytes) and
the number of bytes read is returned.

The DTRLOW _ COMM and DTRHIGH_ COMM commands set the Data Transmit Ready signal
low or high, respectively.

The RTSLOW _ COMM and RTSHIGH_ COMM commands set the Request To Send signal low
or high, respectively.

The c yarity byte selects both the parity and the number of stop bits. Valid values for this field
are defined as:

Condition Value Description
LOW PARITY O· Parity bit always 0
HIGH PARITY 1 Parity bit always 1
EVEN PARITY 2 even parity
ODD PARITY 3 odd parity
NO PARITY 4 no parity (default)
TWO STOP BITS Ox80 if most-significant -bit - -

set, then two stop bits,
else one stop bit

The c Jlag byte selects the type of flow control to be used through the communications device.
The valid values are:

Condition Value Description
NO FLAG 0 No control flagging
INPUT FLAG 1 Send "'srQ for input control
OUTPUT FLAG 2 Accept "'srQ for output control
TANDEM FLAG 3 Use both input and output "'srQ (default)
DTR FLAG 4 Use DTRlCTS for flow control

By default, read calls will block if no input is available. If any data is available, it is read into the
caller's buffer (up to the requested number of bytes) and the number of bytes read is returned. If
NOB LOCK _ COMM is requested, then read calls do not block and a zero count is returned if no
bytes are available.

2-34

PROGRAMMER'S GUIDE

The following constants are used in the c _ ospeed and c _ispeed fields to indicate the transmit and
receive baud rates:

Constant Value
EXTERNAL 0

C50 1
C75 2
CllO 3
C134 4
C150 5
C300 6
C600 7
C1200 8
C1800 9
C2400 10
C4800 11
C9600 12
Cl9200 13
C38400 14

Pseudo Device Parameters
A pseudo terminal (pty) is a pair of character devices, a master and a slave device, which provide
an interface identical to that described in /lih/systty and /lih/include/sys/sgtty.h. While other
devices have a hardware device of some sort behind them, lhe slave device has instead, another
process passing data through the master half of the pseudo terminal. Anything written on the
master device is given to the slave device as input and anything written on the slave device is
presented as input to the master device.

The system supports 32 pseudo terminal pairs, named /dev/ptyOO through /dev/pty31. The
system call create yty returns two file descriptors; the master pty in register AO, the slave pty in
register DO. Both a slave and master device are opened by a create-pty call. The slave device
can be closed and reopened again by name, provided the corresponding master device is still
open.

Pseudo terminals can use normal tty calls, ttyset and ttyget. Also, pseudo-terminal information
can be set/returned from the master side of a pty with the contro[yty system call. The file
/lih/syspty contains definitions for the structures and constants.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-35

PROGRAMMER'S GUIDE

The system call control yty is used to control the behavior of a pseudo-terminal channel. The
command structure is:

<master device file descriptor in DO>
sys controlyty ,function,cval
<state in DO>

The functions are:

Function Equ Description
PTY _INQUIRY 0 Return the state of the

channel
PTY SET MODE 1 Change the control - -

mode of the channel
PTY FLUSH READ 3 Clears data queue on - -

output of master
PTY FLUSH WRITE 4 Clears data queue on - -

output of slave
PTY STOP OUTPUT 5 Prevents slave from - -

writing to master
PTY START OUTPUT 6 Allows slave to write to - -

master

All of the functions return the state of the channel in register DO as described by the function
PTY INQUIRY. The function PTY INQUIRY is used to return the state of the channel. Por this
function, eval is ignored. The value returned is a combination of bits which describe the state of
the channel. The bits are:

Mode Bit Description
PTY PACKET MODE 0 Reads status on master
PTY-REMOTE- MODE 1 No edit of data to slave - -
PTY READ WAIT 2 Block on non-satisfied reads - -
PTY WRITE WAIT 3 Don't block on writes
PTY-HANDSHAKE MODE 4 Remote writes not satisfied until consumed
PTY-SLAVE HOLD 7 Prohibit slave from writing data - -
PTY EOP 8 No more slave connections
PTY=OUTPUT_QUEUED 9 Slave has some output queued
PTY INPUT QUEUED

These bits are defined as:

PTY PACKET MODE - -

PTY REMOTE MODE - -

2-36

10 Slave has some input queued

When packet mode is selected on the master side of a pseudo
terminal, reads on the master side return two bytes of status in
addition to any data written by the slave. If any slave data is
available, the status bytes are zero. If no data is present, the
status bytes are the same as those returned by PTY JNQUIRY.
Set to 1 if selected.

If this bit is set, data written by the master and sent to the slave
side, will be flow controlled with no editing. Set to 1 if selected.

PrY READ WAIT - -

PrY WRITE WAIT - -

PROGRAMMER'S GUIDE

If this bit is set, a read on the master side is blocked until slave
data is available. If this bit is clear, read requests on the master
pseudo terminal return regardless of whether data is available.
Set to 1 if selected.

If this bit is set, the master pseudo terminal does not hang on a
write request if the output buffer is full. Set to 1 if selected.

PrY_HANDSHAKE _MODE If this bit is set, a write on the master pseudo terminal is not

PrY SLAVE HOLD - -

PrY EOP

complete until the slave has consumed the data. Set to 1 if
selected.

If this bit is set, the slave pseudo terminal is prohibited from
writing any more data to the channel. Set to 1 if slave pseudo
terminal's I/O is stopped.

Set to 1 if all slave ptys associated with this pty channel are
closed.

The slave pseudo terminal has written data to the channel which
has not yet been consumed by the master. Set to 1 if output
queued on the slave device.

The master pseudo terminal has written data to the slave side
which has not yet been consumed by the slave pseudo terminal.
Set to 1 if input queued on the slave device.

The default mode of a pseudo device channel when created by a create yty call is all modes set to
zero.

The function PTY_SET_MODE is used to change the control mode for the pseudo-terminal
channel. The value cval contains the new mode and should be some combination of the bits
described in the previous section. The new control mode is exactly what is in eval so to perform
an incremental change, the current value must be obtained using PTYJNQUIRY.

The function PTY _FLUSH_READ causes any data written by the master side to the slave input
queue to be purged.

The function PTY _FLUSH_WRITE causes any data written by the slave side that has not yet been
consumed by the master side to be purged.

The function PTY _STOP _OUTPUT prevents the slave side from writing any more data to the
master side. This condition is reflected in the status bitPTY_SLAVE_HOW.

The function PTY_START_OUTPUT allows the slave side to continue writing data to the master
side.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-37

PROGRAMMER'S GUIDE

Pipes
A pipe is a mechanism that permits a task to communicate with a child task.

A pipe allows communication in one direction only; it allows one task to send information to
another, but not to receive. If a pair of tasks need two-way communication, two pipes must be
established; one to send from the first task to the second and one to send from the second task to
the first. Once the pipe is established, the first task sends information to the second by using the
write system call, just as it would in writing to any other device. The second task receives
information from the first by using the read system call. The file descriptor numbers for these
write and read operations are provided by the system when the pipe is created.

The pipe mechanism works sort of like a holding tank with a valve on the input and output lines.
If the tank is not full, the writing task can pump data into it even though the reading task has the
output valve closed (is not actively reading). Likewise, if the tank is not empty, the reading task
can drain information out of it even though the writing task has the input valve closed (is not
currently writing). If the tank is full, the writing task is forced to wait until the reading task has
emptied it before being permitted to pump in more data. If the tank is empty, the reading task
must wait until the writing task has pumped in some data. This holding tank is a 4K disk buffer.
There is a buffer for each pipe, but none show up in any directory. These pipe buffers are placed
on the disk unit which has been configured as the pipe device.

The following section of code establishes a pipe between a task (A) and its child task (B). First,
Task A calls crpipe to create the pipe. Next, we immediately fork to create Task B, and then set
up the file descriptors so that we will be writing from task· A to task B. The code looks
something like this:

2-38

sys crpipe create pipe system call
bes.1 piperr branch if error
move.1 dO,rdfd save read file descriptor
move.1 aO,wrtfd save write file descriptor
sys fork fork to spawn task B
bra.s child new task B here
bes.1 frkerr task A checks for error
move.1 dO,tskBid save task id of child
move.1 rdfd,dO pipe read file descriptor
sys close close read (A only writes)
move.1 wrtfd,pipefd save pipe write file descriptor

* now Task A can write to pipe using pipefd

sys

* code for Task B

child move.1
sys
move.1

term

wrtfd,dO
close
rdfd,pipefd

end of task A

pipe write file descriptor
close write (B only reads)
save pipe read file descriptor

* now Task B can read from pipe using pipefd

PROGRAMMER'S GUIDE

Notice that each task closes the portion of the pipe that it cannot use. As previously stated, a pipe
allows data to be transmitted in only one direction. After performing the fork, both tasks have
open read and write pipe files. Now it is assumed that the writing task will eventually close the
write pipe file, and the reading task will eventually close the read pipe file. However, we must be
sure that the writing task closes the read file and the reading task closes the write file. In fact,
these files should be closed as soon as possible, before any reads or writes to the pipe are
performed.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-39

PROGRAMMER'S GUIDE

Program Interrupts
Program interrupts provide a way to interrupt tasks under software control. One program or task
can send a program interrupt to another task. This permits timing and synchronization among the
tasks in the system. It also gives the programmer the ability to terminate tasks prematurely under
software control.

Sending and Catching Program Interrupts
Here is an example of how a program sends an interrupt.

move.l
sys
bes.l

#327,dO
spint,SIGQUIT
error

get task number in DO
send quit interrupt

Assuming the effective user id of the task executing the above code matches that of task number
327 or that the above task is owned by the system manager, a quit interrupt will be sent to task
327. (We will define the quit interrupt and other interrupts in a moment.) Notice the system call
used to send program interrupts is spinto It is also possible for a program to send an interrupt to
all tasks associated with the terminal which executed the program. Consult the spint description
in Section 4, System Calls for details.

The cpint (for catch program interrupt) provides a way for a task to catch or intercept a program
interrupt when it is received. The task may then permit the interrupt to complete its default
action (usually task termination), may ignore the interrupt completely, or may take some special
user-defined action.

In effect, cpint permits the user to set up an interrupt vector address, so that if a program interrupt
is received, control is vectored to that address. The programmer may place a routine at that
address which handles the interrupt in some special way. Two addresses, $000000 and $000001,
are special. If the address specified for the caught interrupt is $000000, the default action of the
interrupt is allowed to occur, much as if the interrupt had not been caught at all. If the address
specified is $000001, the interrupt is ignored, much as if the interrupt had not even been sent.
Note that no code is actually placed at these addresses. The cpint function recognizes them as
special values and performs the indicated interrupt handling without ever jumping to or using
them as real addresses. Any other address supplied to cpint is assumed to be a valid program
memory address, and control is passed to that location. There, the programmer places the desired
interrupt handling routine; this routine must be exited with an RTR instruction, so that control is
resumed at the same point in the program where the interrupt occurred.

Once a program interrupt has been caught and processed, the system resets itself back to the
default condition, and interrupts are no longer intercepted. Therefore, to continue catching
program interrupts, the programmer must issue a new cpint call after each interrupt is processed.

Table 4-1 shows the program interrupts that are available on the 4400.

2-40

PROGRAMMER'S GUIDE

Table 2-1
4400 PROGRAM INTERRUPTS

Name Number Description Comments
.:slUHU.t' 1 reserved
SIGINT 2 keyboard interrupt
SIGQUIT 3 quit interrupt produces core dump
SIGEMT 4 EMT $AXXX emulation into produces core dump
SIGKILL 5 task kill interrupt can't be caughUignored
SIGPIPE 6 write broken pipe into
SIGBUS 7 bus fault
SIGTRACE 8 reserved
SIGTIME 9 reserved
SIGALRM 10 alarm interrupt
SIGTERM 11 task termination interrupt
SIGTRAPV 12 TRAPV instruction produces core dump
SIGCHK 13 CHK instruction produces core dump
SIGEMT2 14 EMT $FXXX emulation int. produces core dump
SIGTRAPI 15 TRAP #1 instruction produces core dump
SIGTRAP2 16 TRAP #2 instruction produces core dump
SIGTRAP3 17 TRAP #3 instruction produces core dump
SIGTRAP4 18 TRAP #4 instruction produces core dump
SIGTRAP5 19 TRAP #5 instruction produces core dump
SIGTRAP6 20 TRAP #6 instruction produces core dump
SIGPAR 21 reserved produces core dump
SIGILL 22 illegal instruction produces core dump
SIGDIV 23 divide by zero produces core dump
SIGPRIV 24 privilege violation produces core dump
SIGADDR 25 address error produces core dump
SIGDEAD 26 dead child task interrupt ignored by default
SIGWRIT 27 write to read-only memory produces core dump
SIGEXEC 28 reserved produces core dump
SIGBND 29 segmentation violation produces core dump
SIGUSRI 30 user-defined interrupt #1
SIGUSR2 31 user-defined interrupt #2
SIGUSR3 32 user-defined interrupt #3
SIGABORT 33 Program abort
SIGSPLR 34 Spooler interrupt
SIGINPUT 35 Input is ready
SIGDUMP 36 Memory dump
SIGUNORDERED* 42 FPU branch/set on unordered
SIGINEXACT* 43 FPU inexact result
SIGFPDIVIDE* 44 FPU divide by zero
SIGUNDERFLOW* 45 FPU underflow
SIGOPERAND* 46 FPU operand error
SIGOVERFLOW* 47 FPU overflow
SIGSNAN* 48 FPU signaling NAN -
SIGMILLI 62 Millisecond alarm
SIGEVT 63 Mouse/keyboard event interrupt

* These interrupts are produced only by the MC68881 Floating Point Co-processor.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-41

PROGRAMMER'S GUIDE

If not caught or ignored, all of these program interrupts (except SIGDEAD) by default cause
termination of the task to which they are sent. As listed above, some also produce a core dump.
A core dump is a disk file which contains a mirror image of the contents of memory. Each byte
in the program and stack space are written to a disk file immediately after receipt of the interrupt.
This file can be examined to determine the state of memory at the time the interrupt was received.
This is often useful for diagnostic purposes.

Many of the interrupts are initiated by MC68010/68020 exception processing. The cause of those
interrupts can be understood by studying the documentation of the MC68010/68020
microprocessor. Certain interrupts in the list are not directly initiated by the MC68010/68020
and need further definition.

2 Keyboard Interrupt: Generated by typing a Ctrl-C on the keyboard. This interrupt
terminates the foreground task of the associated terminal.

3 Quit Interrupt: Generated by typing a Ctrl-Backslash on the keyboard. This interrupt is
just like the Keyboard Interrupt except that it additionally produces a core dump.

4 EMT $AXXX Emulation Interrupt: Generated by the processor when an instruction with
the pattern 1010 in bits 15 through 12 is encountered.

5 Task Kill Interrupt: Always kills the task to which it is sent. A task may not catch or
ignore this interrupt.

6 Write Broken Pipe Interrupt: Generated when a pipe between two tasks is broken. This
occurs when the reader is closed and the writer attempts further writing.

10 Alarm Interrupt: Generated by the alarm system call after the specified number of
seconds. Unless caught or ignored, this interrupt terminates the task.

11 Task Termination Interrupt: This interrupt is the normal means of interrupting and
terminating a task. Unlike the Task Kill Interrupt, the Task Termination Interrupt may be
caught or ignored.

14 EMT $FXXX Emulation Interrupt: Generated by the MC68010 when an instruction with
the pattern 1111 in bits 15 through 12 is encountered.

26 Dead Child Task Interrupt: When a task terminates, it sends an interrupt to its parent task,
informing the parent that the child has terminated. This interrupt is ignored by default­
it must be explicitly caught by the parent in order to function. This interrupt remains
enabled after it is caught and must be explicitly disabled.

27 Write to Read-Only Memory: An attempt was made to write to a section of memory that
has been reserved as Read-Only by the memory management system.

29 Segmentation Violation: An attempt was made to access memory that is outside the
address space allotted to a task.

30-32 User-Defined Interrupts: These interrupts are additional interrupts that a user program
or set of programs may issue and catch for whatever purpose they wish.

33 Program Abort: A signal has been received to abort the program.

35 Input Ready: This interrupt indicates that data is available to the input device.

36 Memory Dump: An attempt has been made to dump memory that is being used.

2-42

PROGRAMMER'S GUIDE

62 Millisecond Alarm: When enabled, this interrupt occurs every millisecond.

63 Mouse/Keyboard Event Interrupts: This interrupt occurs when the mouse is moved or a
key depressed.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-43

PROGRAMMER'8 GUIDE

On return from a cpint call, register DO contains an address. This address is the address which the
system was using on receipt of program interrupts. In other words, it is the address which was
provided in the previous cpint call. This old address can be used to tell what kind of action a
program was taking on receipt of program interrupts before the current cpint call. For example,
assume we have a program that is ignoring quit interrupts. If we now issue the instruction:

sys cpint,SIGQUIT,O

(which says to take the default action on receipt of a quit interrupt) we would find 1 returned in
the DO register. That 1 is the address which was previously being used, and we know that an
address of 1 says to ignore the interrupt.

Knowing what type of program interrupt action is currently being taken can be very useful in the
case where one task starts another. If one task is ignoring some particular interrupt and that task
starts some new task running, the new task should usually also ignore the interrupt. Assume
Program A starts Program B by doing afork and exec. Also assume Program B nonnally wishes
to catch keyboard interrupts (Ctrl-Cs) and process them in a special way. Program B should be
written to first check how Program A was handling keyboard interrupts. If Program A was not
intercepting keyboard interrupts or was catching them, Program B may go ahead and catch them
and process them as desired. If, however, Program A was ignoring keyboard interrupts, then
Program B should also ignore them. The code for Program B to handle all this properly would
be:

contin

sys
cmpJ
beq
sys

cpint,SIGINT,l
#l,dO
contin
cpint,SIGINT,handle If not, catch it

Start by ignoring
Was program A ignoring?
If so, then so should we

Note that by ignoring the keyboard interrupt while checking what Program A was doing, we
avoid a potential chance for a keyboard interrupt to come through and be improperly handled.

2-44

PROGRAMMER'S GUIDE

As an example of program interrupt catching, let's examine a portion of code that would put a
program to sleep for 30 seconds. The technique is to send an alarm interrupt with the alarm
system call, then put the task to sleep with the stop system call. In order to catch the alarm
interrupt and continue properly in our program, we will use the cpint system call.

sys
move.1
sys
sys

wake rtf

cpint,SIGALRM,wake
#30,dO
alarm
stop

catch alarm & goto wake
delay 30 seconds

wait for alarm interrupt
continue with program

do nothing with interrupt

The cpint system call tells the task to catch any alarm interrupts and handle them as specified by
the code at wake. In this example the code at wake does absolutely nothing but return. That is
because when the alarm is received we want to simply continue execution of the program where
we left off (just after the stop system call).

Interrupted System Calls
Most system calls cannot be interrupted by a program interrupt. That is, once a system call is
executing, it will finish regardless of whether a program interrupt is pending. Once that system
call is completed, the user's program then sees any waiting program interrupt. There are a few
calls, however, which may be terminated by a program interrupt. In particular, those system calls
which may be interrupted are read and write (if the device being read or written is a slow device
such as a terminal or printer) and the stop and wait calls. A read or write call to a fast device,
such as a disk file, is never terminated by a program interrupt.

If a program interrupt does get through to one of the system calls, the following action takes
place. First, the system call immediately terminates, and control passes to the program interrupt
handling code if the interrupt is caught. Then, when the interrupt handling code completes,
control passes to the instruction immediately following the interrupted system call and an error
status is returned. This error status is accompanied by an EINTR error (number 27). In this
way, the program which made the system call can detect that it was interrupted and re-issue the
system call if desired.

As an example, consider a program which prompts the user for a line of data from the terminal.
If a program interrupt is sent to that program while a read system call is getting the data from the
terminal, that call may be prematurely terminated; i.e. not all the data may be returned. Once the
program interrupt handling code was complete, our program would continue right after the read
call, but would show an EINTR error. Our program may choose to treat the EINTR error like any
other and terminate with an error message. An alternative, however, would be to recognize that
it was an EINTR error and loop back in our code to re-issue the prompt and the read system call
to input the data again.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-45

PROGRAMMER'8 GUIDE

Locking and Unlocking Records
The lrec and urec system calls provide a record locking mechanism that prevents more than one
task attempting to access a file at one time. A program or task can lock a record of data until such
time as it is ready to unlock or release it for others to use. While that record is locked, no other
task would be able to access it.

The operating system maintains a table showing what records are locked in the system. These
records may be of any length, as specified by the task which performs the lock. Note that a single
task may lock only one record in a file. However, other tasks can lock other records in that same
file, and a single task can lock a record in more than one file at a time.

When a task issues an lrec call to lock some record within a file, the system first checks the
locked record table to see if the calling task already has a record locked in this file. If so, any
such record is unlocked before the new record lock can be made. Next, the system checks to see
if the record to be locked is available or if some other task may have previously locked some
portion of it. If available for locking, the system makes an entry in the locked record table and
returns to the calling task. If the desired record overlaps some portion of an already locked
record, the system returns with an ELOCK error. At this point, the calling program could take
some appropriate action.

There are three ways for a task to unlock a record. The first is through use of the urec system
call, which unlocks whatever record may have been locked by the calling task for the specified
file. The second is by closing a file. Upon closing, any records locked by the task that opened
the file are automatically unlocked. The third is by locking another record in the same file; this
will automatically unlock any record which is currently locked.

Having said this, we must back up and tell you that locking a record does not really prevent
another task from accessing it. Any program that wishes to can still read or write the data which
some other program has locked in a record. In order for locking to provide the desired results, all
programs must take upon themselves the responsibility of avoiding reading or writing to a locked
record. This may be accomplished by attempting to lock records before reading or writing them.
If the record is available, no error is returned, and we can go ahead with the read or write. If an
error is returned (ELOCK error), we know that someone else already has the record locked and
we should take some other action. One possibility is to put our task to sleep for a few seconds
(with the alarm and stop system calls), and then try locking the record again. Proper use of the
lock and unlock calls yields the same result as if locking actually did prevent another task from
reading or writing. Note that locking and unlocking is not necessary in all cases, only in those
where a data file is shared and conflicts can occur.

2-46

PROGRAMMER'S GUIDE

Shared Text Programs
The 4400 operating system lets you separate an assembly language program into two sections, a
text segment for nonchanging memory or memory which is only read, and a data segment for
memory which can be changed by writing into it. When a task runs this program, a section of
memory is assigned to each segment. If a second task runs the program at the same time, the
system recognizes the fact that it already has a copy of the text segment in memory and only
loads the data segment into memory for the second task. The system then maps the same
memory that contains the text segment for the first task into the address space for the second task
when it runs. For more details on how to produce a shared text type program, refer to Section 3,
The Assembler and Linking Loader.

GENERAL PROGRAMMING PRACTICES
This discussion covers several general programming practices that are recommended when
writing assembly language programs to run on the 4400.

Starting Locations
Assembly language programs should not have specific ongm addresses. Rather, the load
addresses for the text and data sections of a program (as well as the stack established by the
system) should be specified at load time. These addresses can be explicitly specified to the
loader, but should generally assume the default values found in the file /lib/ std env. This file
contains the proper addresses for the hardware memory manager and is automaticaily read by the
linking -loader.

Stack Considerations
When a program begins execution, it is assigned a portion of memory to contain the program
stack. The cpu's system stack pointer (register A7) is left pointing to some location within this
memory. The user's program should not write into locations in memory higher than this initial
stack pointer location. The passed parameters which lie directly above the stack pointer (higher
in memory) may be read, but nothing should be written above the initial stack pointer location.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-47

PROGRAMMER'S GUIDE

Hardware Interrupts and Traps
In general, a user program need not perform any hardware interrupt or trap handling. Some traps
can be handled in the same fashion as program interrupts by using the cpint system call.

Delays
To maintain system efficiency. a user's program should not contain delay routines which tie up
the processor for long periods of time. Because of task switching, a delay loop does not provide
accurate timing delays anyway. The preferred method is to use the alarm system call followed
by a stop system call. The program must also then use the cpint system call to catch the alarm
interrupt and continue with the desired code.

System lib Files Provided
Several system library files are provided for the convenience of the assembly language
programmer. Located in the !lib directory, these files contain definitions for several system
related calls, tables, buffers, etc. The programmer may include these definitions in his programs
by simply using the lib instruction in the assembler. These files include:

syscomm Ttyget and ttyset buffer layout
sysdef System call definitions
sysdisplay System display and event definitions
syserrors System error definitions
sysints Program interrupt definitions
sysstat Status. and of stat buffer layout
systim Time and ttime buffer layouts

An additional file is provided for use by the linking-loader. It is called by the linking loader and
should not be included in an assembler program.

2-48

std env Standard environment for
linking-loader, linked to the file
ldr environ.

PROGRAMMER '8 GUIDE

Generating Unique Filenames
Often, it is necessary for a program to generate a filename. A typical example is when a program
wishes to create a scratch file of some sort. In a single-task environment, the program could just
use some name defined at assembly time. In a multi-task environment, however, more caution is
required. If the program which generates the filename is run as more than one task
(background/foreground for example) there may well be conflicts since each copy of the running
program would be attempting to create and manipulate the same file. The proper technique to
avoid this problem is to have the program include the current task id as part of the filename.
Since each executing copy of the program has a different task id, they each generate different
filenames. Use the gtid system call to obtain the task id number, then convert it to ASCII and
include it as part of the filename.

Debugging
Assembly language debugging on the 4400 is accomplished via the debug command. This
command provides tools such as memory dumps, breakpointing, and single-stepping. Refer to
Section 2, User Commands and Utilities in the Operators Reference Manual, for documentation
on the debug utility.

PROGRAMMING EXAMPLE
The following sample utility demonstrates several of the calls and techniques in writing assembly
language utilities on the 4400. This utility reads a file (or list of files) and strips out all control
characters except for carriage returns ($Od) and horizontal tabs ($09). The syntax of the
command line is as follows:

strip [file] ...

The square brackets indicate that the file name specification is optional. If no filename is
supplied, strip reads the standard input. The three periods (...) indicate that it is possible to
supply more than one file name. In such a case, strip reads all the files in order and writes the
stripped output to the standard output.

Our basic task. then, is to read either a list of files or the standard input, strip the necessary
control characters, and write the result to the standard output device. In order to handle any size
file(s), we shall read and write the data into a buffer. We know that for efficiency, the buffer
should be an even multiple of 512 bytes, but how big a multiple? The code to implement this
utility will obviously be quite small, such that the program and the buffer could easily fit in 4K of
memory. Since this utility will probably not be frequently used, we decided to limit the program
memory utilization to only 4K. We will make the read/write buffer as large as possible within
that 4K space, while keeping it a multiple of 512 bytes.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 2-49

PROGRAMMER'S GUIDE

The first step, after titling and describing the program, is to include the system definitions with
the lib instruction on line 17. Next we actually begin the code section of our program with the
text statement in line 23. In line 27 we load the II a6" register with a pointer to the list of filename
arguments. The list is null if no filename was specified. Notice that we skip eight bytes, four
containing the argument count and four containing argument 0 which is the name of the
command itself.

Lines 28 through 31 check to see if a file or files were specified on the command line. If so, the
argument count (what the system stack is pointing to) will be greater than 1 because argument 0
(the command name) counts as one. If the argument count is 1, no file was specified, so we must
read the standard input. The file descriptor for standard input is 0, so that value is saved in ifd
and we jump ahead to process that input. If a file was specified, we enter a loop to read through
all specified files.

In line 35 we obtain the pointer to the next file in the list and store it at opname. If that pointer is
zero (a null pointer), we have reached the end of the list, and we jump off to the exit code at done.
If it is non-zero, it must be the address of a filename string. Lines 40 through 42 open that file for
read and save the file descriptor in ifd. Note that the open is done via an indirect system call.
This is necessary because when the program is written, we do not know what filename to specify

. in an open call. The pointer to the name of the file to be opened is only discovered as we run the
program. When we stored the filename pointer at opname in line 35, we were actually storing the
filename pointer in the parameter list for the upcoming indirect open system call.

In line 46 we call a subroutine named strip to read through the file whose descriptor is in ifd, strip
out the control characters, and write the result to standard output. Line 47 branches back to the
top of the loop to look for another possible input file.

The strip subroutine is where the control characters are actually stripped. In lines 67 through 69
we read BUFSIZ characters into memory at buffer. Lines 73 and 74 check for end-of-file. If we
were at the end of the file, we jump to strip9 and exit the subroutine. If not, we go on to lines 80
through 91, where the control characters are stripped from the buffer. Note that after the control
characters are stripped, the resulting data is left in the same buffer. Because some characters may
have been stripped out, the location of the end of the data in the buffer may be lower than before
the stripping.

After the stripping, we fall into lines 96 through 101, where the stripped data is written out to
standard output. Lines 96 and 97 calculate the number of characters to write. It is equal to the
difference between the pointer to the end of the data in the buffer and the pointer to the beginning
of the buffer. The result is stored in the parameters for an indirect write call. In line 98 we obtain
the file descriptor for the standard output file. Lines 99 and 100 carry out the indirect write
system call. In 101 we jump back to the beginning of the subroutine to read in another buffer of
data.

Lines 113 through 134 contain the error handling code. If an error occurs, we simply write an
appropriate message to the standard error output (file descriptor 2). The important thing to note
about this code is that we save the error status so that it may be passed on to the term system call.

2-50

PROGRAMMER'S GUIDE

Lines 144 through 158 contain temporary storage and buffers. First are the parameter lists for the
indirect open and write calls mentioned earlier. Line 153 reserves storage space for the current
input file descriptor. Lines 155 through 158 reserve the read/write buffer. The buffer starts on a
512 byte boundary and the end of the buffer is the end of the 4K memory page. Recall that
read/write efficiency is gained not only by a buffer size which is a multiple of 512 bytes, but also
by beginning the buffer on a 512 byte boundary. Line 157 establishes the buffer size by
calculating the difference between the end of the 4K page ($1000) and the beginning of the
buffer. The end statement on line 161 specifies the utility starting address in its operand field.

SAMPLE strip UTILITY

1 ***
2 *
3 * Sample "strip" Utility
4 *
5 * Copyright (c) 1984 by
6 * Technical Systems Consultants, Inc.
7 *
8 * Utility to strip all meaningless control characters from
9 * input file and write stripped version to standard output.
10 * Accepts list of input files or defaults to standard input.
11 * For the purpose of this utility, "meaningless control
12 * characters" are all characters with and ASCII value between
13 * $00 and $lF inclusive except carriage return ($OD) and
14 * horizontal tab ($09).
15 ***
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34

lib sysdef read system definitions

* start of main program

text begin text segment

* start by seeing if any input files were specified

start lea
cmp.1
bhi.s
move.1
bra.s

8(a7),a6
#1, (a7)
main2
#O,ifd
main4

set arg ptr past count & argO
file specified only if argcnt >1
branch if filenames present
else use standard input
go process std. input

* check to see if any more files specified

35 main2
36

move.1
beq.s

(a6)+,opname
done

get next argument in list
branch if no more args

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-51

PROGRAMMER'5 GUIDE

37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86

* open specified file for read

2-52

do indirect open call
branch if error

sys
bes.s
move.1

ind,iopen
opnerr
dO,ifd save input file descriptor

* strip control characters from this file

main4 bsr.s
bra.s

strip
main2

subroutine to strip CTRLs
look for more files

* finished all input files, terminate task

done move.1
sys

#O,dO
term

show normal termination

* subroutine to strip meaningless control characters
* from the file specified by file descriptor in "ifd*
* and write result to standard output.

*begin by reading a buffer full

strip ifd,dO get input file descriptor move.1
sys
bes.s

read, buffer,BUFSIZ read buffer full
rderr branch if read error

* check for end of file (0 characters read)

tst.1
beq.s

dO
strip9

end of input file?
exit if so

* do actual stripping of control characters. This will
* be done in place in the buffer by collapsing the data
* as meaningless control characters are stripped.

move.1 #buffer,aO point to source buffer
move.1 aO,a1 point a1 to destination buffer
bra.s strip6 enter DBcc loop

strip4 move.b (aO) +, d1 get a character into dl
cmp.b $#1F,d1 a control character?
bhi.s strip5 go keep character if not
cmp.b #$OD,d1 a carriage return

87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

beq.s
cmp.b
bne.s

stripS move.b
strip6 dbra

stripS
t$09,d1
strip6
d1, (a1) +
dO,strip4

keep if so
a tab?

PROGRAMMER'S GUIDE

if not, don't keep
put char. in buffer
decrement count; loop if more

* finished stripping, al points to end of buffer of
* stripped data ready to be written

sub.1 tbuffer,a1 find no. of chars to write
move.1 a1,wrtcnt store in parameters
move.1 tl,dO write to standard output
sys ind,iwrite do indirect write
bes.s writerr branch if error
bra.s strip go read another section

strip9 rts exit routine

**

* error handling routines

opnerr move. 1
move. 1
sys
bra.s

rderr move. 1
move. 1
sys
bra.s

wrterr move. 1
move. 1
sys

err

opners
opner1
rderrs
rderr1
wrters
wrter1

move. 1
sys

fcc
equ
fcc
equ
fcc
equ

dO,-(a7)
t2,dO

save error status on stack
standard error output

write,opners,opner1
err
dO,-(a7) save error status on stack
t2,dO standard error output
write,rderrs,rderrl
err
dO,-(a7)
t2,dO

save error status on stack
standard error output

write, wrterr, wrter1

(a7)+,dO
term

pull error status from stack
exit program

"Can't open input file.",$d,O
*-opners
'Error reading input file.',$d,O
*-rderrs
'Error writing output file.',$d,O
*-wrters

ASSEMBLYLANGUAGEPROG~RSREFERENCE 2-53

PROGRAMMER'S GUIDE

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2-54

**

* temporary storage and buffers

data

* indirect open system call
iopen dc.w open
opname dc.1 0
opmode dc.1 0

begin data segment

parameters
open function code
name of file to open
open mode 1 (reading)

* indirect write
iwrite dc.w
wrtbuf dc.1
wrtcnt dc.1

system
write
buffer
o

call parameters

ifd ds.1 1

ds.b 512-24
buffer equ *
BUFSIZ equ $1000-512

ds.b BUFSIZ

end start

write function code
buffer to write from
byte count to write

input file descriptor

reserve up to 512-byte boundary
start on 512-byte boundary
multiple of 512 bytes
reserve space for buffer

Section 3

THE ASSEMBLER
INTRODUCTION
The 4400 assembler supports conditional assembly as well as numerous other directives for
convenient assembler control. The assembler executes in two passes and can accept any size file
so long as sufficient memory is installed to contain the symbol table. Output from the assembler
is in the form of a relocatable object file.

This section describes the operation and use of the Assembler and Linking Loader. The
Assembler accepts most of the Motorola standard mnemonics for instructions, and fully supports
the MC68000/68010/68020 instruction set. This section describes differences between the
Motorola standard for instructions and those supported by the assembler.

This section is not intended to teach the reader assembly language programming nor the full
details of the MC68000 instruction set. It assumes the user has a working knowledge of assembly
language programming and a manual describing the MC68000 instruction set and addressing
modes in full.

Throughout this section, angle brackets « and » are often used to enclose the description of a
particular item. The angle brackets show that it is a single item even though the description may
require several words. In addition, square brackets ([and]) are used to enclose an optional item.

Details of the instruction set, assembler syntax, and addressing modes were obtained from
M68000 J6/32-Bit Microprocessor Programmer's Reference Manual, Copyright 1984 by
Motorola Incorporated.

Invoking the Assembler
Assembler text files must be standard text files with no line numbers or control characters (except
for carriage returns and tabs). Once you have both the assembler and the edited source file on a
disk or diskettes which are inserted in a powered-up system, you are ready to begin.

The Command Line
The minimum command line necessary to assemble a source file is:

++ asm sourcefile

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-1

THE ASSEMBLER

When parameters are omitted, the assembler assumes default parameters. Two types of output
are available from the assembler: object code and assembled source listing. (The options
regarding the assembled source listing output is described a little later.) Object code is written
into a operating system file. It is also possible to disable production of the object code file.
Since no specifications are made concerning object code output in the above example, the
assembler assumes the default case, which is to produce an object file. Since an output-file object
is not specified, the input source file name is used with the characters .r appended. If there is not
room to append those two characters, the last one or two characters of the input file name is
truncated to make room. In our above example, the created binary file would be named
sourcefile.r. Should a file exist with the same name, it will be automatically deleted with no
prompting.

If you wish to create an object file with another name, place the desired file name on the
command line as follows:

++ asm sourcefile +o=objectfile

The +0= is an option to the assembler which specifies that an object file is being created with the
specified name. This example produces an object file named objectfile. Again, if a file by that
name already existed, it would be deleted to permit creation of the new object file.

Multiple Input Source Files
The 4400 assembler is capable of accepting more than one file as the source for assembly. If
multiple input files are specified, they are read in the calling order and assembled together to
produce a single output file. This permits the user to break source programs down into more
convenient size source files that may then be assembled into one object file. As mentioned, the
files are read sequentially in the calling order with the last line of source from the current file
being followed immediately by the first line of the ensuing file. All end statements in the source
are effectively ignored and the assembly is terminated when the last line of the last source file is
read.

There are two ways to specify multiple input files to the assembler: by entering the name of each
file and by a match list in a file specification. Entering each filename would look like this:

++ asm filel file2 file3 file4

A match list in the file specification looks like this:

++ asm file[l-4]

In this example, the square brackets do not denote an optional item, but rather are the method of
specifying a list of match characters. Both of the above examples produces the same result. Note
that in these examples an object file is created by default and is called filel.r (the name is taken
from the first input file). As before, we can also specify an object file name as follows:

++ asm filel file2 file3 file4 +o=command

This results in an object file called command.

3-2

THE ASSEMBLER

Specifying Assembly Options
Now we shall go one step further and add a set of single character option flags that may be set on
the command line as follows:

++ asm sourcefile +options

The plus sign is required to separate the option(s) from the file specification(s). In this example,
the word options following the plus sign represents a single character option flag or list of
character option flags which either enable or disable a particular option or options. In all cases,
they reverse the sense of the particular option from its default sense. Any number of options may
be specified and they may be specified in any order. There may not be spaces within the option
list.

Following is a list and description of the available options:

+b Do not create a binary file on the disk, even if an binary file name is
specified. This is useful when assembling a program to check for errors
before the final program is completed or when obtaining a printed source
listing.

+e

+f

+F

+1

+L

Suppress end summary infonnation. At the end of the assembly, the
assembler may report the size of the segments and the total count of
errors, warnings and excessive jumps. Often the user does not wish to
have any output generated at all; the +e option suppresses this summary
infonnation. If this is used without selecting the +1 and +s options, then
it is possible that no output listing will be generated. However, if there
are any errors reported in the module, this summary infonnation is not
suppressed.

Disables the auto-fielding feature of the assembler such that assembled
output lines appear in the exact fonn as found in the input file.

Enable debug or fix mode. There are two fonns of line comments. One
begins with an asterisk (*) the other with a semicolon (;), both in the
first column of the source line. If the comment begins with a semicolon,
the +F option instructs the assembler to ignore the semicolon and
process the line as though the semicolon never existed. The asterisk in
the first column of a source line always denotes a comment regardless of
the state of this option.

Produce the assembled listing output If specified, the assembler outputs
each line as it is assembled in the second pass, honoring the "lis" and
"nol" options (see the "opt" directive). Those lines containing errors
will always be printed, regardless of whether or not this option is
specified.

Produce a listing of the file during the first pass of the assembler. The
assembler prints unfonnatted lines.(exactly as read) to standard output.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-3

THE ASSEMBLER

+n

+s

+t

+u

Enables the printing of decimal line numbers on each output line. These
numbers are the consecutive number of the line as read by the assembler.
Error lines are always output with the line number, regardless of the
state of this option.

Produce the symbol table output. If this option is specified, the
assembler produces a sorted symbol table at the end of an assembly.
Note that the "1" option will not produce the symbol table output, just
the source listing. In the symbol table, global symbols are preceded by
an "*," and other symbols by a blank.

Limit each symbol to only eight characters internally. Normally, the
user can define and use symbols that contain 63 unique characters.
However, in some cases, it may be necessary to limit the uniqueness of
the symbols to only eight characters.

Produce object code for the MC68000 rather than the MC68010/68020.
This option affects only the code generation for the Move from CCR
instruction. Normally the assembler produces the MC68010/68020
version of this instruction. If this option is specified, the assembler
produces the MC68000 Move from SR instruction (Privileged on the
MC68010/68020), in its place.

Set all undefined symbols as external. In some cases you may wish to
assemble a module that has some undefined external symbols. The +u
option treats all undefined references as external references. The +u
option should not substitute for the good programming practice of listing
all external symbols in the operand field of the extern directive.

+o=<filename> Filename Allows specification of an output object file name (in this
example file).

Order for Specifying Filenames, Options, and Parameters
Input filenames, options, and command line parameters can be specified to the assembler in any
order. The assembler scans the input command line twice, once to pick out all options and
parameters (they all begin with a plus sign) and then again to pick out all file specifications.
Place order is significant only when multiple input files are specified. They are assembled in the
order entered on the calling line.

3-4

THE ASSEMBLER

Sending Output to a Hardcopy Device
The assembler uses the facilities of the 4400's operating system to send the assembled listing to a
hardcopy device. The most common means are to route the standard output to a file that may
later be printed.

Examples:
++ asm test

Assembles a file called test and creates an binary file called test.r in the same directory. No
listing is output (except for any lines with errors) and no symbol table is output.

++ asm test +1s

Same as before except that assembled listing is output to the terminal, as is the symbol table.

++ asm test +o=/bin/test +1s

Assembles a file called test in the current directory and produces an object file in the bin
directory called test. The listing and symbol table are output to the terminal, and if a file by the
name of test already resides in the bin directory, it is automatically deleted before the assembly
starts.

++ asm /john/main +bn1

This command assembles the file main in John's directory but does not produce a binary file.
The assembled listing is output with line numbers. No symbol table is printed.

++ asm fi1e[1-4] +b1n

This command assembles all files beginning withfile and ending with a 1, 2, 3, or 4. No binary
or symbol table is output, and line numbers are turned on

++ asm +u dumper +nel

This command demonstrates the fact that the filenames, and options can come in any desired
order on the command line. The file to be assembled is called dumper. The assembled listing is
output with line numbers. All undefined references are made external, no summary information
will be output, and no symbol table is produced.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-5

THE ASSEMBLER

ASSEMBLER OPERATION & SOURCE LINE
COMPONENTS
The 4400 assembler is a two-pass assembler. In Pass One a symbolic reference table is
constructed and, in Pass Two the code is actually assembled, and a listing and object code are
produced if requested. The source may be supplied in free format, as described below. Each
source line consists of the actual source statement, terminated with a carriage return (OD hex).
The source must be comprised of ASCII characters with their parity or 8th bit cleared to zero.
Special meaning is attached to many of these characters as will be described later. Control
characters ($00 to $FF) other than the carriage return ($00) and horizontal tab ($09) should not
be in the actual source statement part of the line. Their inclusion in the source statement
produces undefined results.

Each source line consists of up to four fields: Label, Opcode, Operand, and Comment. With two
exceptions, every line must have an opcode while the other fields mayor may not be optional.
These two exceptions are:

1. Comment Lines can be inserted anywhere in the source and are ignored by the assembler
during object code production. Comment lines can be either of two types:

a. Any line beginning with an asterisk (hex 2A) or semicolon (hex 3B) in column one.

b. A null line or a line containing only a carriage return. While this line can contain no
text, it is still considered a comment line as it causes a space in the output listing.

2. Lines which contain a label but no opcode or operand field.

Source Statement Fields
The following pages describe the four source statement fields and their format specifications.
The fields are free format which means there can be any number of spaces separating each field.
In general, no spaces are allowed within a field.

3-6

THE ASSEMBLER

Label or Symbol Field
This field may contain a symbolic label or name that is assigned the instruction's address and
may be called upon throughout the source program.

1. Ordinary Labels

a. The label begins in column 1 and must be unique. Labels are optional. If the label is
omitted, the first character of-the line must be a space.

b. A label may consist of letters (A-Z or a-z), numbers (0-9), or an underscore (or 5F
hex). Note that upper and lower case letters are not considered equivalent-:-· Thus
ABC is a different label from Abc.

c. Every label must begin with a letter or underscore.

d. Labels can be of any length, but only the first 63 characters are significant.

e. The label field must be terminated by a space, tab, or a return.

2. Local Labels

a. Local labels follow many of the same rules as ordinary labels. They begin in column
one and they must be terminated by a space, tab or return.

b. Local labels consist of a number from 0 to 99. These numbers may be repeated as
often as desired in the same source module; they need not be in numerical order.
Note that the labels 00 and 0, 01 and 1, etc., are unique labels.

c. Local labels may be treated as ordinary labels; however, they cannot be global or
external. They can not be used in the label field of an equ or set directive.

d. Local labels are referenced by using the local label number terminated with an "f' for
first forward reference found or a "b" for the first backward reference found. A
backward or forward reference can never refer to the same line that it is found on.
For example,

1
2
3

beq 2f
jsrxx
bra2b

"2f' => next occurrence of "2"
both branches point here
"2b" => previous occurrence of "2"

e. Local labels should be used primarily (but not necessarily exclusively) for branching
or jumping around some sections of code. In most cases, branching around a few
lines of code does not warrant the use of an ordinary label. When making a reference
to a nearby location in the program there is often no appropriate name with much
significance; therefore, programmers have tended to use symbols like 11,12, etc. This
can lead to the danger of using the same label twice. Local labels have freed the
programmer from the necessity of thinking of a symbolic name of a location.
Furthermore, local labels require less storage internally and lookup is faster than with
ordinary labels. A maximum of 500 local labels can be used in one module.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-7

THE ASSEMBLER

Opcode Field
This field contains the opcode (mnemonic) or a pseudo-op. It specifies the operation to be
performed. The pseudo-ops recognized by this assembler are described later in this section.

1. The opcode is made up of letters (A-Z or a-z). In this field, upper and lower case can be
used interchangeably.

2. This field must be terminated by a space or tab if there is an operand or by a space, tab, or
return if there is no operand.

3. The opcode may have a length specification associated with it. This length specification
indicates whether the operation is to take place on bytes, words, or long words. The default
is words. The specification consists of a period followed by one of the letters b, W, 1, or s.
Upper case letters are also permitted. The following summarizes the specifications:

.b or .B bytes (8-bits)
.w or.W words (16-bits, the default)

.1 or.L long words (32-bits)

.s or .S short specification (for branches)

Operand Field

The operand provides data or address information required by the opcode. This field mayor may
not be required, depending on the opcode. Operands are generally combinations of register
specifications and mathematical expressions. See the heading of Expressions, later in this section
for the rules for forming valid expressions.

1. The operand field can contain no spaces or tabs.

2. This field is terminated with a space, tab, or return.

3. Any of several types of data may make up the operand: register specifications, numeric
constants, symbols, ASCII literals.

3-8

THE ASSEMBLER

Comment Field
The comment field may be used to insert comments on each line of source. Comments are for the
programmer's convenience only and are ignored by the assembler.

1. The comment field is always optional.

2. This field must be preceded by a space or tab.

3. Comments may contain any characters from SPACE (hex 20) through DELETE (hex 7F)
and the tab character.

4. This field is terminated by a carriage retum

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-9

THE ASSEMBLER

Register Specification
Many opcodes require that the operand following them specify one or more registers. Both lower
and upper case are allowed. The following are possible register names:

DO-D7
AO-A7
A7,SP
USP
CCR
SR
VBR
SFC
DFC
CAAR
CACR
MSP
ISP

Expressions

Data Registers
Address Registers
System stack pointer of the active system state
User stack pointer
Condition Code Register (Part of SR)
Status Register
Vector Base Register (MC68010/20)
Source Function Code Register (MC68010/20)
Destination Function Code Register (MC68010120)
Cache Address Register (MC68020)
Cache Control Register (MC68020)
Master Stack Pointer (MC68020)
Interrupt Stack Pointer (MC68020)

Many operands must include an expression. This expression may be one or more items combined
by any of four operator types: arithmetic, logical, relational, and shift.

Expressions are always evaluated as full 32-bit operations. If the result of the operation is to be
fewer bits, the assembler truncates the upper part.

An expression must not contain any embedded spaces or tabs.

3-10

THE ASSEMBLER

Item Types
The item or items in an expression may be any of the four types listed below. These may stand
alone or may be intermixed by the use of the operators.

1. NUMERICAL CONSTANTS: Numbers may be supplied to the assembler in any of the
four number bases shown below. The number given is converted to 32 bits truncating any
numbers greater than that. If smaller numbers are required, the 32-bit number is then
further truncated to the proper size. To specify which number base is desired, the
programmer must supply a prefix character to a number.

BASE
Decimal
Binary
Octal
Hexadecimal

PREFIX
none

%
@
$

CHARACTERS ALLOWED
Othru9
o or 1
o thru 7
o thru 9, A thru F

If no prefix is assigned, the assembler assumes the number to be decimal.

2. ASCII CONSTANTS: ASCII constants are specified in expressions by enclosing the string
in single or double quotation marks. The string must consist of one to four characters,
depending on the desired size attribute. The specified characters may not include control
characters (must be between 20 hex and 7F hex inclusive).

3. LABELS: An expression may contain labels which have been assigned some address,
constant, relocatable or external value. As described above under the label field, a label
consists of letters, digits, and underscores beginning with a letter or underscore. The label
may be of any length, but only the first 63 characters are significant. Any label used in the
operand field must be defined elsewhere in the program. Local labels may also be used in
the operand field. None of the standard register specifications should be used as a label.

4. PC DESIGNATOR: The asterisk (*) has been set aside as a special PC designator (Program
Counter). It may be used in an expression just as any other value and is equal to the
address of the current instruction. The value of the PC designator is relocatable in the text,
data or bss segments; its value is given at load time.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-11

THE ASSEMBLER

Types of Expressions
Three types of expressions are possible in the 4400 assembler: absolute, relocatable and external
expressions.

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable symbols, under both of the following conditions:

1. The expression contains an even number of relocatable elements.

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple) in a segment must be canceled by another element (or multiple) in the same
segment. In other words, pairs of elements in the same segment must have signs that
oppose each other. The elements that form a pair need not be contiguous in the expression.

For example, textl and text2 are two relocatable symbols in the text segment; the following
examples are absolute expressions.

textl-text2
5*(textl-text2)

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation in a relocatable module.
A relocatable expression consists of a single relocatable symbol or, under all three of the
following conditions, a combination of relocatable and absolute elements.

1. The expression does not contain an even number of relocatable elements.

2. All the relocatable elements but one must be organized in pairs that cancel each other.
That is, for all but one segment, each relocatable element (or multiple) in a segment must
be canceled by another element (or multiple) in the same block.

3. The uncancelled element can have either positive or negative relocation.

For example, text1 and text2 are symbols from the text segment, datal and data2 are symbols
from the data segment, and bss 1 and bss2 are symbols from the bss segment; the following
examples are relocatable:

-bss2+3*5+(data2-data2)
text 1 +(data I-data2)+(bss2-bss 1)
data 1-(bss2-bss 1)

*

3-12

negative relocation from bss segment
relocation from text segment
relocation from data segment

(PC Designator) relocation from current segment

THE ASSEMBLER

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the
current source module. An external expression can consist of a single external symbol, or, under
both of the following conditions, an external expression may consist of an external symbol,
relocatable elements and absolute elements:

1. The expression contains an even number of relocatable elements

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple) in a segment must be canceled by another element in the same segment. In other
words, pairs of elements in the same segment must have signs that oppose each other.

For example, if extl is an external symbol, textl, text2, datal, data2, bssl, bss2 all have the same
meaning as above in the previous examples; then the following examples are external:

(textl-text2)+extl-(data2-datal)
S+extl-3
3/(text2-textl)-ext I

Expression Operators

Operators permit operations such as addition or division to take place during the assembly, and
the result becomes a permanent part of your program. Many of these operators will only apply to
absolute symbols and expressions. It does not make sense to multiply a relocatable or external
value at assembly-time! Only the + and - operators can apply to relocatable and external symbols
and expressions.

Arithmetic Operators

The arithmetic operators are:

Operator
+

*
/

Meaning
Unary or binary addition
Unary or binary subtraction
Multiplication
Division (any remainder is discarded)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-13

THE ASSEMBLER

Logical Operators

The logical operators are:

Operator
&
I

»
«

Meaning
Logical AND operator
Logical OR operator
Logical NOT operator
Shift right operator
Shift left operator

The logical operations are full 32-bit operations. In other words for the AND operation, every bit
from the first operand or item is individually ANDed with its corresponding bit from the second
operand or item. The shift operators shift the left term the number of places indicated by the right
term. Zeroes are shifted in and any bits shifted out are lost.

Relational Operators

The relational operators are:

Operator Meaning
= Equal
< Less than
> Greater than

<> Not equal
<= Less than or equal
>= Greater than or equal

The relational operations yield a true-false result. If the evaluation of the relation is true, the
resulting value be all ones. If false, the resulting value is all zeros. Relational operations are
generally used in conjunction with conditional assembly, as shown in that discussion.

3-14

THE ASSEMBLER

Operator Precedence

Certain operators take precedence over others in an expression. This precedence can be
overcome by the use of parentheses. If there is more than one operator of the same precedence
level, and no parentheses indicate the order in which they should be evaluated, then the
operations are carried out in left to right order.

The following list classifies the operators in order of precedence (highest priority first):

1. Parenthesized expressions

2. Unary + and -

3. Shift operators

4. Multiply and Divide

5. Binary + and -

6. Relational Operators

7. Logical NOT Operator

8. Logical AND and OR Operators

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-15

THE ASSEMBLER

INSTRUCTION SET DIFFERENCES
This discussion describes the differences in the instruction mnemonics accepted by the assembler
and the Motorola standard. The standard is assumed to be that defined in the MC68000 16-Bit
Microprocessor User's Guide, published by Motorola Semiconductor Products, Inc. It is
assumed that the reader is familiar with the contents of the Instruction Set Details portion of that
manual. In particular, the user should be familiar with the description of the assembler syntax
that accompanies the discussion of the individual instructions.

The assembler recognizes the standard instruction set with the exception of some of the so-called
variations. Having a specific opcode for these variations is not necessary, because the assembler
can infer their existence from an analysis of the operands and generate the proper code. This
relieves the programmer from the need for remembering the opcodes, and the particulars of each.
The variations that are handled in this manner are: address, quick, and immediate. Note that the
extend variation is still supported. Thus, the following instructions are not specifically
recognized by the Assembler:

ADDA, ADDQ, ADDI
ANDI
CMPA, CMPI, CMPM
EORI
MOVEA, MOVEQ
ORI
SUBA, SUBQ, SUBI

Use ADD instead
Use AND instead
Use CMP instead
Use EOR instead
Use MOVE instead
Use OR instead
Use SUB instead

Remember that even though these mnemonics are not recognized, the assembler can and does
generate code for address, quick, and immediate instructions. The proper instruction is selected
automatically after analyzing the operands.

Instruction Set Extensions
The following instruction extensions are recogized by the assembler and are valid only with the
68020 processor. If you use these extensions and attempt to generate compiled code for a 68000
or 68010 microprocessor, the assembler gives you one of the following error messages:

*** Error - Unknown instruction.

*** Error - Unknown addressing mode.

Mnemonic
Bcc
BFxxxx

BKPf
BRA
BSR
CALLM
CAS,CAS2
CHK
CHK2
CMPI

CMP2
cp
DIVS/DIVU
EXTB
LINK
MOVEC
MULSIMULU
PACK
RTM
TST

TRAPcc
UNPK

THE ASSEMBLER

Description
Supports 32-Bit Displacements
Bit Field Instructions (BFCHG,
BFCLR, BFEXTS, BFEXTU,
BFEXTS, BFFFO, BFINS, BFSET,
BFTST)
New Instruction Functionality
Supports 32-Bit Displacement
Supports 32-Bit Displacement
New Instruction
New Instruction
Supports 32-Bit Operands
New Instruction
Supports Program Counter Relative
Addressing Modes
New Instruction
Coprocessor Instructions
Supports 32-Bit and 64-Bit Operands
Supports 8-Bit Extend to 32-Bits
Supports 32-Bit Displacement
Supprts New Control Registers
Supports 32-Bit Operands
New Instruction
New Instruction
Supports Program Counter Relative
Addressing Modes
New Instruction
New Instruction

The default data size is word. Instructions that can manipulate more than one size of data item
may be modified by postfixing a data length specification to the opcode. The data length
specifications are:

.1 or.L
.wor.W
.bor.B

For long word (32 bits)
For word (16 bits, the default)
For byte (8 bits)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-17

THE ASSEMBLER

Addressing Modes
For information about the addressing modes of the processors in the 4400 series family of
products refer to:

Title
M68000 Programmer's
Reference Manual
MC68020 32-Bit
Microprocessor User's Manual
MC68881 Floating-Point
Coprocessor User's Manual

Convenience Mnemonics
CLC Clear carry condition code bit

CLN Clear negative condition code bit

CLV Clear overflow condition code bit

CLX Clear extend condition code bit

CLZ Clear zero condition code bit

SEC Set carry condition code bit

SEN Set negative condition code bit

SEV Set overflow condition cod

SEX Set extend condition code bit

SEZ Set zero condition code bit

3-18

Motorola Part Number
M68000UM(AD4)

MC68020UMJAD

MC68881UMJAD

THE ASSEMBLER

STANDARD DIRECTIVES OR PSEUDO-OPS
Besides the standard machine language mnemonics, the assembler supports several directives or
pseudo-ops. These are instructions for the assembler to perform certain operations, and are not
directly assembled into code. There are three types of directives in this assembler: those
associated with conditional assembly, those associated with macros, and those which generally
can be used anywhere which we shall call standard directives. The standard directives are:

dc fcc opt spc
ds fdb pag sttl
equ fqb rab sys
err info rmb ttl
even lib rzb
fcb log set

Other types of directives are explained in other sections, but are listed here for completeness:

Conditional Relocation
Directives Directives
if base end
ifn bss extern
else common global
endif endcom name

data struct
define text
enddef

de
The de or Define Constant directive defines one or more constants in memory. A size
specification may be postfixed to the directive to indicate that the constant is to be stored in
bytes, words, or long words. The default is words. If multiple operands are specified, the effect
is as though the operands appeared in consecutive de directives. The operands may be actual
values (constants or ASCII strings) or expressions. ASCII strings must be enclosed in single
quotation marks.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-19

THE ASSEMBLER

The constant is aligned on the proper boundary, depending on the size specification (byte
boundary for .b, word boundary for .w, and long word boundary for .1). When ASCII strings are
specified with a word or long word size specification, the string will be padded on the right with
zero bytes if there are not enough characters to exactly fill the last word or long word. If an
ASCII string is specified with a byte size specification, and the instruction or directive following
the dc.b directive requires word or long word alignment, then zeroes are appended to the
character string to force such alignment. Some examples:

ds

labell dc.b 3,7:String'

label2 dc.w 123,'abc',98

dc.! 'a',1310n

The 'abc' will be padded with a zero byte

The 'a' will be padded with 3 zero bytes

The ds or Define Storage directive reserves areas of memory. The reserved memory is not
guaranteed to be initialized in any way. A size specification may be postfixed to the directive to
indicate that bytes, words, or long words are to be reserved. If words or long words are specified,
the reserved memory is properly aligned. A single operand indicates how many bytes, words, or
long words are to be reserved. If a label is present, its value is the address of the lowest memory
location reserved. If the value of the operand is zero, no space is reserved; however, alignment
takes place if ds.w or ds.l is specified. Some examples:

ds.b 20 reserve 20 bytes
ds 10 reserve 10 words
ds.l 5 reserve 5 long words
ds.l 0 force alignment on long word boundary

equ
The equ or Equate directive equates a symbol to the expression given in the operand. No code is
generated by this statement. Once a symbol is equated to some value, it can not be changed at a
later time in the assembly. The form of an equate statement is

<label> equ <nonexternal expression>

The label is strictly required in equate statements. Absolute or relocatable expressions are
allowed; external expressions are illegal. If the expression is relocatable, both the value and the
attribute is assigned to the label.

3-20

\

THE ASSEMBLER

err
The err directive may be used to insert user-defined error messages in the output listing. The
error count is also incremented by one. The format is:

err <message to be printed>

All text past the err directive (excluding leading spaces) is printed as an error message (preceded
by three asterisks) in the output listing. Note that the err directive line itself is not printed. A
common use for the err directive is in conjunction with conditional assembly, to report user­
defined illegal conditions.

even
The even directive is used to force the program counter to an even address (word boundary).

feb
The feb or Form Constant Byte directive is used to set associated memory bytes to some value as
determined by the operand. Feb may be used to set any number of bytes, as shown below:

klabel>] fcb <expr. b,<expr. 2>, ... ,<expr. n>

<expr. x> stands for some absolute, relocatable or external expression. Each expression given
(separated by commas) is evaluated to 8 bits, and the resulting quantities are stored in successive
memory locations. The label is optional.

fcc
The fcc or Form Constant Character directive allows the programmer to specify a string of ASCII
characters delimited by some non-alphanumeric character such as a single quote. All the
characters in the string is converted to their respective ASCII values and stored in memory, one
byte per character. Some examples:

labell fcc 'This is an fcc string'
labe12 fcc .so is this.

fcc /Labels are not required./

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-21

THE ASSEMBLER

There is another method of using fcc which is a deviation from the standard Motorola definition
of this directive. This method allows you to place certain expressions on the same line as the
standard fcc delimited string. The items are separated by commas and are evaluated to 8-bit
results. In some respects this is like the fcb directive. The difference is that in the fcc directive,
expressions must begin with a letter, number or dollar sign, whereas in the fcb directive any valid
expression will work. For example, % 10 101111 is a valid expression for a fcb but not for a fcc
since the percent-sign would look like a delimiter and the assembler would attempt to produce 8
bytes of data from 8 ASCII characters which follow (afcc string). The dollar sign is an exception
to allow hex values such as SOD (carriage return) to be inserted along with strings. Some
examples:

intro fcc 'This string has CR & LF',$D,$A
fcc 'string l',O,'string 2'
fcc $04,extlabel,/delimited string/

Note that more than one delimited string may be placed on a line as in the second example.

fdb
The fdb or Form Double Byte directive is used to create 16 bit constants in memory. It is exactly
like the fcb directive except that 16 bit quantities are evaluated and stored in memory for each
expression given. The form of the statement is:

klabel> 1 fdb <expr. 1>,<expr. 2>, ... ,<expr. n>

Again, the label field is optional. The generated data is guaranteed to be on a word boundary (see
the dc directive).

fqb
The fqb or Form Quad Byte directive is used to create 32-bit constants in memory. It is exactly
like the fdb directive, except that 32-bit quantities are evaluated and stored in memory for each
expression given. The form of the statement is:

[dabel>l fdb <expr. 1>,<expr. 2>, ... ,<expr. n>

Again, the label field is optional. The generated data is guaranteed to be on a word boundary (see
the dc directive).

3-22

THE ASSEMBLER

info
The info directive allows the user to store textual comments in a binary file. A 4400 user can
execute the command info and view the text on the screen. The assembler's info directive places
all text following the info command (excluding leading spaces) into a temporary file called
Itmplasmbinfoxxxxx. where xxxxx represents the current task number. At the end of the
assembly. all text stored in this temporary file is appropriately copied into the normal binary file,
and the temporary file is then deleted. Syntax is as follows:

info This is a comment for the binary file.

info It is a convenient way of inserting version nos.

info Version x.XX - Released XXlXXIXX

Any number of info directives may be inserted at any point in the source listing. No label is
allowed. and no actual binary code is produced.

lib
The lib or Library directive allows the user to specify an external file for inclusion in the
assembled source output. Under normal conditions. the assembler reads all input from the file(s)
specified on the calling line. The lib directive allows the user to temporarily obtain the source
lines from some other file. When all the lines in that external file have been read and assembled,
the assembler resumes reading of the original source file. The proper syntax is:

lib <file spec>

where <file spec> is a standard 4400 file specification.

The assembler first looks for the specified file in the current directory. If the file isn't found in
the current directory. the assembler then looks for a directory named lib in the current directory.
If it finds such a directory. the assembler attempts to find the specified file in that lib directory. If
not found there, the assembler makes a third and final attempt to find the specified file by looking
in the directory !lib. If the file is not found in any of these three directories. the assembler reports
an error.

Any end statements found in the file called by the lib directive are ignored. The lib directive line
itself does not appear in the output listing. Any number of lib instructions may appear in a source
listing. It is also possible to nest lib files up to 7 levels.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-23

THE ASSEMBLER

log
The log directive is used to calculate the log, base 2, of an absolute expression. The result is 32
bits. The statement acts like a set statement, in that the label specified can be redefined with
other log directives or set directives. The fonn of the statement is:

<label> log <absolute expression>

The label field is strictly required.

opt
The opt or Option directive allows the user to choose from several different assembly options.
These options are generally related to the fonnat of the output listing and object code. The
options that can be set with this command are listed below. The proper fonn of this instruction
is:

opt <option l>,<option 2>, ... ,<option n>

Note that any number of options canbe given on one line if separated by commas. No label is
allowed, and no spaces or tabs may be embedded in the option list. The options are set during
Pass Two. If contradicting options are specified, the last one on the command line takes
precedence. If a particular option is not specified, the default case for that option takes effect.
The default cases are signified below by an asterisk.

The allowable options are:

con print conditionally skipped code
noc* suppress conditional code printing

lis* print an assembled listing
nol suppress output of assembled listing

The lis and nol options can be used to selectively tum parts of a program listing on or off as
desired. If the +1 command line option is specified, however, the lis and nol options are
overridden and no listing occurs.

3-24

THE ASSEMBLER

pag
The pag directive causes a page eject in the output listing and prints a header at the top of the
new page. Note that the pag option must be enabled in order for this directive to take effect. It is
possible to assign a new number to the new page by specifying such in the operand field. If no
page number is specified, the next consecutive number is used. No label is allowed and no code
is produced. The pag operator itself does not appear in the listing unless some sort of error is
encountered. The proper form is:

pag [<expression>]

The expression is optional. The first page of a listing does not include the header and is
considered to be page O. Thus, all options, title, and subtitle may be set up and followed by a pag
directive to start the assembled listing at the top of page 1 without the option, title, or subtitle
instructions being in the way.

rab
The rab or Reserve Aligned Bytes directive is used to reserve areas of memory for data storage.
The bytes are forced to a word boundary. The number of bytes specified by the expression in the
operand are skipped during assembly. No code is produced in those memory location and
therefore the contents are undefined at run time. The proper usage is shown here:

[<label>] rab <absolute expression>

The label is optional, and the absolute expression is a 32-bit quantity. Rab directives found in the
text or data segments act like rzb, and produce code which is guaranteed to be on an even
boundary.

rmb
The rmb or Reserve Memory Bytes directive reserves areas of memory for data storage. The
number of bytes specified by the expression in the operand are skipped during assembly. No
code is produced in those memory locations and therefore the contents are undefined at run time.
The proper usage is:

[<label>] rmb <absolute expression>

The label is optional, and the absolute expression is a 32-bit quantity. Any rmb directives found
in the text or data segments act like rzb, and produce code.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-25

THE ASSEMBLER

rzb
The rzb or Reserve Zeroed Bytes directive is used to initialize an area of memory with zeroes.
Beginning with the current PC location, the number of bytes specified is set to zero. The proper
syntax is:

[<label>] rzb <absolute expression>

where the absolute expression is a 32-bit expression. This directive does produce object code.
Any rzb directives found in the bss segment act like rmb.

set
The set directive sets a symbol to the value of some expression, much as an equ directive. The
difference is that a symbol may be set several times within the source (to different values), but
may be equated only once. If a symbol is set to several values within the source, the current
value of the symbol will be the value last set. The statement form is:

<label> set <nonexternal expression>

The label is strictly required, and no code is generated.

spc
The spc or Space directive inserts the specified number of spaces (line feeds) into the output
listing. The general form is:

spc [<space count>[,<keep count>]]

The space count can be any number from 0 to 255. If the page option is selected, spc does not
cause spacing past the top of a new page. The <keep count>, which is optional, is the number of
lines to keep together on a page. If there are not enough lines left on the current page, a page
eject is performed. If there are <keep count> lines left on the page (after printing <space count>
spaces), output continues on the current page. If the page option is not selected, the <keep
count> is ignored. If no operand is given, the assembler defaults to one blank line in the output
listing.

3-26

THE ASSEMBLER

sttl
The sttl or Subtitle directive is used to specify a subtitle to be printed just below the header at the
top of an output listing page. It is specified much as the ttl directive:

sttl <text for the subtitle>

The subtitle may be up to 52 characters in length. If the page option is not selected, this directive
is ignored. As with the ttl option, any number of sttl directives may appear in a source program.
The subtitle can be disabled or turned off by an sttl command with no text following.

sys
The sys or system call directive allows the programmer to setup a system call. Such a call
consists of a TRAP#15 instruction followed by a two byte function code optionally followed by
32-bit parameter values. This directive automatically inserts the TRAP, then obtains the function
code and any other parameters from the operand field.

sys <function>,<parameterl>,<parameter2>, ...

The <function> and <parameter> values may be any legal absolute, relocatable or external
expression. <function> will be stored as 16 bits, all <parameters> will be stored as 32-bits.

ttl
The ttl directive allows the user to specify a title or name to the program being assembled. If the
pag option is also selected, this title is then printed in the header at the top of each output listing
page. If the page option is not selected, this directive is ignored. The proper form is:

ttl <text for the title>

All the text following the ttl directive (excluding leading spaces) is placed in the title buffer. Up
to 32 characters are allowed, with any excess being ignored. It is possible to have any number of
ttl directives in a source The latest one encountered will always be the one used for printing at the
top of the following page(s).

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-27

THE ASSEMBLER

CONDITIONAL ASSEMBLY
The assembler supports conditional assembly - the ability to assemble only certain portions of
your source program depending on the conditions at assembly time. Conditional assembly is
particularly useful in situations where you might need several versions of a program with only
slight changes between versions.

As an example, suppose you required a different version of some program for four different
systems whose output routines varied. Rather than prepare four different source files, you could
prepare one that would assemble a different set of output routines depending on some variable
that was set with an equ directive near the beginning of the source. Then it would only be
necessary to change that one equ statement to produce any of the four final programs.

The if-endif Clause
In its simplest form, conditional assembly is performed with two directives: if and endif. The two
directives are placed in the source listing in that order with any number of lines of source
between. The assembler evaluates the expression associated with the if statement (we will
discuss this expression in a moment), and if the result is true, assembles all the lines between the
if and endif and then continues assembling the lines after the endif. If the result of the expression
is false, the assembler will skip all lines between the if and endifand resume assembly of the lines
after the endif. The syntax of these directives is:

if <expression>

. conditional code goes here

endif

The endif directive requires no additional information, but the if directive requires an expression.
This expression is considered FALSE if the 32-bit result is equal to zero. If the result is not equal
to zero, the expression is considered TRUE.

3-28

THE ASSEMBLER

The if-else-endif Construction
An else directive may be placed between the if and endif statements. In effect, the lines of source
between the if and endif are split into two groups by the else statement. Those lines before the
else are assembled if the expression is true; those after (up to the endij') are ignored. If the
expression is false, the lines before the else are ignored while those after it are assembled. The
if-else-endif construct appears as:

if <expression>

· this code is assembled if the expression is true

else

· this code is assembled if the expression is false

endif

The else statement does not require an operand. There can be only one else between an if-endif
pair.

It is possible to nest if-endif clauses (including elses). That is, an if-endif clause may be part of
the lines of source found inside another if-endif clause. You must be careful, however, to
terminate the inner clause before the outer.

Another form of the conditional directive, ifn (if not) functions just like if, except that the sense of
the test is reversed. Thus, the code immediately following is assembled if the result of the
expression is NOT TRUE. An ifn-else-endif clause appears as follows:

ifn <expression>

· this code is assembled if the expression is FALSE

else

· this code is assembled if the expression is TRUE

endif

NOTE

For conditionals to function properly, they must evaluate to the
same result in Pass One and Pass Two. Thus, if labels are used in
a conditional expression, they must be defined in the source before
the conditional directive is encountered.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-29

THE ASSEMBLER

SPECIAL FEATURES

End of Assembly Information
Upon termination of an assembly and before the symbol table is output, three items of
information may be printed: the total number of errors encountered, the total number of excessive
branches encountered, and the sizes of the text, data and bss segments.

The number of errors is printed in the following manner:

o Errors detected.

Excessive branches (a long branch used where a short branch will suffice) are printed after the
error count, for example:

1 Error detected.
3 Excessive branches detected.

The size of the segments are displayed as follows:

SEGMENT SIZES
TEXT SEGMENT 00002C
DATA SEGMENT = OOOIOA
BSS SEGMENT 000006

All of this information may be suppressed by using the "+e" command line option; however, if
errors are detected, this information is displayed anyway.

Excessive Branch Indicator
To allow size and speed optimization of the final code, the assembler places a greater-than sign
just before the address of any long branch instruction that can be replaced by a short branch. The
total count is reflected in the end-of-assembly information previously described. The following
section of code shows just how it looks:

000000 text
000000 4A80 tst.l dO
000002 6600 0006 bne labl
000006 4A81 tst.l dl
000008 6602 bne.s lab2
OOOOOA 2601 labl move. 1 dl,d3
OOOOOC 2800 lab2 move.l dO,d4
OOOOOE end

Note how the .s postfix was used to create a short branch.

3-30

THE ASSEMBLER

Auto Fielding
The output assembly listing automatically places the four fields of a source line (label,
mnemonic, operand, and comment) in columns. This allows the programmer to edit a condensed
source file without impairing the readability of the assembled listing. The common method of
doing this is to separate the fields by only one space when editing. The assembled output places
all labels in column 25, all opcodes in column 34, and all operands in column 42 and comments
start in column 56 unless the operands field extends into the comments. There are a few cases
where this automatic fielding can break down (such as lines with errors), but these cases are rare
and generally cause no problem. Labels that are longer than 8 characters are printed on a line by
themselves (above the code they are with - if any).

Fix Mode
Comment lines may begin with either an asterisk (*) or a semicolon (;). If a semicolon is used,
the +F option of the assembler assumes that the comment is a valid instruction to be assembled.
Therefore, the assembler acts as though the semicolon did not exist at all; the rest of the
information on that line is assembled. For example:

;labell move.l #2,dO
; sys term

With the +F option invoked, these two lines are assembled. This aides in the debugging process.

Local Labels
Local labels are available in the assembler. These local labels allow the programmer to reuse
labels; in this way meaningless labels can be replaced with local labels. For more information on
local labels, refer to the description of the label field in the Assembler Operation and Source Line
Components discussion earlier in this section.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-31

THE ASSEMBLER

OBJECT CODE PRODUCTION
The object code output from the 4400 assembler is a standard 4400 relocating binary file for
relocatable modules. This object code output can be turned on or off via the "+b" option on the
calling line. The relocatable output module always requires processing by the linking loader to
be executed. For more information about relocatable modules, refer to the discussion of the
linking loader, later in this section.

Relocatable (Segmented) Object Code files
The 4400 operating system supports segmentation of binary files. It permits binary files to be
broken into three segments of code: called text, data, and bss. Each assembly module must
contain one of these directives before any instructions that produce object code can be processed.
The assembler does not default to any given segment when assembling a file.

Any code in a text segment is assumed by the operating system to be read-only. That is, it will
only read code in a text segment and will not attempt to write into it

The data segment is sometimes referred to as initialized data. It is code that has been produced
by the assembler and can be either read or written. For example, the data segment might contain
a temporary variable that requires an initial value. At any point, the variable could be read or re­
written.

The bss segment is an area of reserved memory where no actual code has been produced by the
assembler. It is sometimes referred to as uninitialized data. The binary file does not contain any
code to be placed in this section of memory, only a size value for this segment Its main purpose
is to tell the operating system that memory is required in this area, but it does not need to be
initialized to any values. The bss segment or area of memory can be read or written.

Breaking the binary file into these three sections provides several benefits. The text segment is
known to be read-only. This implies the code is never altered as long as the program runs. The
operating system can make use of this fact by sharing this segment of memory in the event that
more than one users wish to run the program at the same time. This can mean a considerable
increase in efficiency of the system. The data section must be different for each user running the
program. It is information (actual instructions or data) which must be initialized or loaded, but
which can be altered at some later point. The bss segment really contains no code or data in the
binary file. It is just a signal to the operating system that when the file is loaded it needs memory
allocated in the area specified. The program should not assume that the memory in this segment
is initialized to any particular value.

3-32

THE ASSEMBLER

The assembler performs segmentation by maintaining three distinct location counters or program
counters (PC's). At any point in the assembly, only one of these PC's is in effect. Any code
generated by an instruction at that point is assembled at the address in the PC currently in effect.
It is possible to switch to a different PC by use of one of the following three directives in the
opcode field:

text
data
bss

It is necessary to state the segment that is desired before any executable code is produced. It is
possible to change which segment code is currently being generated into at any time. In other
words, you could begin with a text directive, enter 10 lines of code, then switch to the data
segment with a data directive, enter 10 lines of code, then switch back to the text segment with
another text directive, etc. To resume with the last address used by a particular segment, enter the
segment directive:

text
move.1 10,dO
data
temp fcb 0
text
move.1 temp,aO
end

It is not possible to generate code in a bss segment. Any attempt to do so results in an error.

Code generated into the data segment is actually written to a temporary file called
Itmplasmbdataxxxxx (xxxxx represents the current task number). At the end of the assembly, this
data is copied onto the end of the text code found in the main output file, and the temporary file is
immediately deleted.

The Base and Struct Directives
Two other directives related to PC's and segmentation are base and struct. These directives are
used almost exactly like a segment PC directive (especially the bss segment) but serve a different
purpose. They are really just extra PC's that can be set and maintained for the purpose of
establishing offsets from some fixed address in an area outside the three segments. Generally
they are used in conjunction with storing information on a stack. Symbols declared in these
segments can be absolute or relocatable, depending on the attributes of the operand. Symbols
declared in a struct segment can be reused just as if they had been defined using the set directive.
Symbols declared in a base segment may be used only once, like any other label. A short
example program may be the best illustration:

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-33

THE ASSEMBLER

stack equ $EFOOOO

base $000000
temp ds.w 1
saved ds.l 2
junk ds.b 1

text
start move.l stack,aO
8 move.l junk(aO),d2

add.l temp(aO),d2
move.l d2,saved(aO)
bne.s 8b
end

In this example, the base directive allowed us to set up the variables temp, saved, and junk, which
are offsets from the base location of the stack. Had a struct directive been used in place of the
base directive, we could have reused the variables junk, temp and saved in other stack structures.
The struct directive is extremely useful in defining stack structures in subroutines, where names
such as ret_address, Jrameytr, argJ, etc., can be used over and over again without conflict.
These directives do not actually create a segment, they merely set up a new PC which can be
temporarily used to establish offset variables. These directives have most of the same
pennissions and restrictions as the bss segment; they default to location $000000 if first called
without an operand. No code may be generated while the base or struct PC's are in effect, and
new base or struct addresses are allowed. The segments end when a new segment begins.

global
The global directive is used in relocatable modules to inform the assembler that the symbols
declared global should be passed on to the linking loader. The syntax of the global directive is:

global <labeI1>[,<1abeI2>, ...]

LAbell, label2, etc. represent the symbolic names of the labels to be declared as global; each label
should be separated by a comma. The global directives must occur before the use or definition of
the symbol. Normally, global symbols are declared at the beginning of the source module. Local
labels cannot be declared global.

3-34

THE ASSEMBLER

Define and Enddef
These convenience directives work much the way global works. The define directive infonns the
assembler that all labels declared in the label field are declared as global symbols. This define
mode is in effect until a enddef directive is encountered. For example,

data
define
tempI fdb
start move.l
enddef

O,$FFFF
l,dl

This example simply defines the two labels temp1 and start as global. This directive works well
when many symbols must be declared as global while they are initialized to various values.

Extern
The extern directive declares symbols to be external to this particular module. Local labels
cannot be declared external. The syntax of the extern directive is:

extern <labelb[,<labeI2>, .. .1
Labell, label2, etc. are ordinary labels as in global; labels should be separated by a comma.
When the assembler encounters a label declared external in the operand field, external records are
written out to the binary output module. With the global directive, the extern directive should
appear before the actual use of the external symbol, usually at the beginning of the source
module. These external records are used by the linking loader.

Name
Each binary output module can be given a module name with the name directive. The module
name is used by the linking loader in reporting errors and address infonnation; it is strongly
recommended to give each module a name. The syntax of the name directive is:

name <name of the module>

The module name can be a maximum of 14 characters. If more than one name directive occurs in
the source module, the last name given will be the name assigned to the module.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-35

THE ASSEMBLER

Common and Endcom
It is possible to establish common blocks in the assembler. These can only be named and
uninitialized common blocks.

<name> common

A common block declaration is terminated by the use of the endcom directive. The only
directives allowed between the common and endcom are rmb and ds, which define the size of the
common block. Labels may be associated with each rmb or ds within the common block. For
example:

test
tempI
temp2

common
ds.w 5
ds.l 10
endcom

This common block is named test, has two variables (temp] and temp2) associated with it, and is
50 bytes long.

A common block and its variables are considered external by the assembler. Only one common
block of a particular name should appear in a module. Because common blocks are treated as
externals, the linking-loader handles the resolution of references to the common blocks
automatically. For example:

test
tempI
temp2

start

text
common
rmb 4
rmb 2
endcom
move.l templ,dO

Common blocks are useful for passing parameters and keeping common information around.
Furthermore, the common block will have the name of the common block as its module name;
this is done automatically by the assembler. Common blocks must be accompanied by
executable code in the same module that is, a common block cannot be the only item in a single
source module.

3-36

THE ASSEMBLER

ERROR AND WARNING MESSAGES
The assembler issues two types of error messages: fatal and non-fatal. A fatal error is one such as
a disk file read error, which causes an immediate termination of the assembly. A non-fatal error
results in an error message being inserted into the listing and some sort of default code being
assembled if the error is in a code producing line. The assembly is allowed to continue on non­
fatal errors. Error messages may not be suppressed.

All messages are output as English statements, not as error numbers. These messages announce
violations of any of the rules and restrictions set forth in this manual and are essentially self­
explanatory. Non-fatal error messages are preceded by with three asterisks, making them easy to
locate.

Fatal error messages are sent to the standard error output. They are issued in the form:

Last Line = <last line read>
Line Number <line num>
Fatal Error - <error_message _reported_here>

The messages that may come in the third line are listed later in this section. The last line
processed is not reported on read, write, open or seek errors.

Possible Non-Fatal Error Messages
16-bit expression expected.

A 16-bit expression was required in the operand field and the expression found cannot be
represented in 16 bits.

8-bit expression expected.

An 8-bit expression was required in the operand field and the expression found cannot be
represented in 8 bits.

A label declared "global" was not found in the program.

All labels declared via the global directive must be defined in the module.

Absolute expression required.

An absolute expression is required in this context.

Branches not allowed across segment boundaries.

Branches cannot be made to labels in other segments or to externals.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-37

THE ASSEMBLER

Can't subtract two relocatables from different segments.

Subtraction of relocatables is not allowed if they are from different segments.

Couldn't evaluate expression.

The expression could not be evaluated.

Couldn't evaluate expression in passl.

Assembler directives such as ds and rmb must be evaluated in both passes of the assembler. Only
a constant operand is legal, and forward references are not allowed.

Couldn't find that local label.

The local label specified in the expression was not defined. Note that the local labels "0" and
"00" are two distinct labels.

Data register required.

A data register is required as one of the operands for the instruction specified.

Duplicate label found.

The label on this line has been defined more than one time.

Evaluator : attempt to divide by zero.

The divisor of an expression evaluated to zero.

Evaluator: more than one external found in an expression.

Only one external variable can be used per expression.

Evaluator : must shift by positive, non-zero quantity.

Only non-negative shift amounts are legal.

3-38

THE ASSEMBLER

Evaluator: not a valid operation for 2 reloc's or extern's.

The assembler detected an attempt to add to relocatables or externals. Only absolute expressions
can be added to externals or relocatables.

Evaluator: operator only valid for absolutes.

The following operations can be perfonned on absolute expressions only: and, or, exclusive or,
not, multiply, divide, shifts and the logical operators.

Evaluator : unbalanced expression (wrt segments).

The expression evaluator found an expression involving relocatables from different segments. In
expressions containing relocatables, the relocatables must be paired and canceling. A relocatable
expression can only be relocated relative to one segment.

Evaluator: unbalanced parenthesis.

The parentheses in the expression were not balanced properly.

External expression not allowed.

An external expression is not allowed in this context.

External symbol not allowed in this context

In some of the directives, an external symbol is not allowed. For example, the equ cannot have
an external symbol in the operand field; a symbol cannot be equated to an external symbol.

Extra arguments found.

Only two operands were expected for this opcode, but more were found.

Found zero branch length on short branch.

A short branch cannot be made to the immediately following instruction.

Forced short but long expression found.

The expression which was forced short (via :W) could not be fitted into a word.

IFDEF contained expression that couldn't be evaluated in Pass 1.

In conditional assembly, the assembler must be able to evaluate the condition in both passes.
This expression can therefore not involve a forward reference to any variables.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-39

THE ASSEMBLER

Illegal addressing mode for instruction.

An addressing mode (specified in an operand) was is not legal for this instruction.

Illegal character in label.

Labels must consist only of alphabetic characters, digits and the underscore character.

Illegal expression or misSing operand.

An expression could not be successfully parsed by the expression evaluator.

Illegal nesting of conditionals has occurred.

Conditional assembly rules have been broken. Conditionals can only be nested 20 levels deep
and certain rules apply to their use. See the discussion of conditional assembly for a detailed
description.

Illegal op-code for this segment.

Certain instructions cannot appear in some segments. For instance, no code can be generated in
the BSS segment.

Illegal operand.

An error has been detected in the operand field ..

Illegal register list for "movem".

The register list specified could not be interpreted. See the discussion of the instruction set for
details on register list specification.

Illegal size for instruction.

The size specified by the .b/.w/J extension is not allowed for this instruction.

Illegal special register for instruction.

The special register (USP,CCR,SR,VBR, ...) specified as an operand is not legal for this
instruction.

3-40

THE ASSEMBLER

Immediate size does not match instruction size.

The immediate operand was larger than the size specified in the instruction, or implicit in the
instruction.

Instruction expects only one operand.

The instruction specified has only one operand but more than one was found.

Invalid binary header flag.

The operand of the bhdr directive is not a known binary header flag. The legal binary header
flags are:

Executable $04
Relocatable $05

Invalid local label - 0 thru 99 only.

Local labels must be in the range 0 through 99. Local labels may be reused in the same module.

Invalid option specified.

The only legal options to the opt directive are con, noe, lis, nol. See the discussion of pseudo-ops
and directives for more details.

Invalid transfer address found (external).

External transfer addresses are not supported.

Label required.

The directives, set, equ and log require a label to be specified on the same line.

Negative value not allowed.

A negative value cannot be specified in this instruction.

Nested COMMON's not supported.

Common blocks cannot be nested.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-41

THE ASSEMBLER

No closing delimiter found.

The assembler found the EOL character before finding a closing delimiter in a string expression.

No ENDCOM directive found.

A common block declaration must be bracketed by the two directives common and endcom.
Another segment was entered without an endcom being specified.

Odd branch address found.

A branch to a label on an odd address was detected. Instructions must always begin on an even
boundary. (The assembler takes care of this.) This can happen if a label is on a line by itself after
some odd number of bytes of data, or the label is on a line with data that does not need to be
aligned.

Overlapping register list specified.

The register list in the MOVEM instruction contains registers that have been specified more than
once. The assembler issues this more as a warning than as an error, but the register list should be
corrected.

Phasing Error.

The two passes of the assembler do not agree on the address of the label on the current line. This
error can be caused by other errors in the assembly and should not appear as the only error in a
given module. Only the first phasing error is reported, and checks are made only on lines
containing labels.

Quicknumber (1-8) expected.

The instruction specified requires a quick count in the immediate operand field, and the
expression found was not between 1 and 8 inclusive.

Relocatable displacement from the same segment required.

For PC relative code, the relocatable displacement must be from the same segment as the PC.

3-42

THE ASSEMBLER

Relocatable displacement not allowed.

A relocatable displacement is not allowed in this context.

Relocatable expression required.

A relocatable expression is required in this context.

Symbol found in 'extern' also found as program label.

A symbol declared external to a module via the extern directive cannot be defined in the same
module.

The string was too long for the size specified.

The size specified in the instruction is smaller than the size of the immediate string specified as
the first operand.

Too far for a branch instruction.

The target of a branch instruction must be within the constraints of a 16-bit expression. A jump
will have to be used.

Too far for a short branch.

The target of a short branch must be within the constraints of an eight-bit expression. A long
branch will have to be used here.

Undefined symbol found.

A symbol in an expression has not been defined.

Unknown addressing mode.

The addressing mode specified could not be interpreted by the assembler.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-43

THE ASSEMBLER

Unknown opcode.

The opcode on this line is not a known opcode. See the discussion of instructions and fonnat for
details.

Unknown size specified.

The only legal size extensions on instructions are "s", "b", "w", and "1." A size other than this
was specified.

Word operand required on system call name.

The system call specified is not a legal system call. The system call number must fit in 16 bits
(word). See Section 6, System Calls for more infonnation.

Possible Fatal Error Messages

Library file <file_name> not found

The specified library file could not be located. The assembler searches first in the current
directory, then in a directory called lib in the current directory, and finally in the directory !lib.

Library nesting too deep

Libraries may be nested only up to seven levels deep.

3-44

THE ASSEMBLER

Local label table overflow

The maximum number of local labels allowed in a source file is 500.

No file specified

The assembler found no source files on the command line.

Opening <file_name>: <reason>

The assembler received an error from 4400 while opening the specified file. An explanation of
the error message is given.

Out of space

The assembler's symbol table is grown dynamically and grew to the limits of the size restrictions
imposed by the 4400. The solution is to break the source into multiple modules and assemble
them separately.

Reading <file_name>: <reason>

The assembler received an error from the operating system while reading the specified file. An
explanation of the error message is given.

Seeking in <file_name>: <reason>

The assembler received an error from the operating system while seeking in the specified file. An
explanation of the error message is given.

U requires label

The tlU" option requires a label as its argument. See the section on options for more details.

Unknown option '<char>'

The character specified is not a known option.

Writing to <file_name>: <reason>

The assembler received an error from the operating system while writing to the specified file. An
explanation of the error message is given.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-45

THE ASSEMBLER

THE LINKING LOADER

Terminology
The remainder of this section describes the linking loader. The following additional terms are
used:

loading

module

The placement of instructions and data into memory in preparation for
execution. This preparation includes linking (the matching of symbolic
references and definitions), and relocation of symbols and address
expressions.

A subprogram which has been assembled using the assembler.

module name The name given to a module by the programmer by using the name
directive of the relocating assembler. If the name directive was not used,
the module name is the same as the file name in which it is contained.
Therefore, several modules may have the same name. The output module
of the loader may be given a name by use of the "N" option.

relocatable object-code module

Equivalent to module.

Linking Loader Input

The Linking Loader accepts independently assembled, relocatable object-code modules as input.
Relocatable object-code is generated by the assembler asm in such a way that addresses are not
bound to absolute locations at assembly time; this binding of the address fields is accomplished
by the Linking Loader. The load command binds the addresses at the time the object-code
segments are combined to produce an executable program. The binding or adjustment of the
address fields is termed relocation. Relocation is necessary when an instruction expects an
absolute address as an operand. The address field of this instruction must be increased by a
relocation constant. The relocation constant is the address where the module is loaded for
execution.

Address fields which do not require relocation are absolute addresses; their values remain the
same regardless of the position of the object code segment in memory. Since the loader does not
have access to the source text, it cannot determine if an address field is absolute or relocatable. In
fact, it cannot distinguish addresses from data or opcodes. Therefore, the assembler must indicate
to the loader which address fields require relocation. This communication is accomplished
through relocation records, which are appended to the object-code file produced by the
assembler. Such a file is called a relocatable object-code module.

3-46

THE ASSEMBLER

Often it is desirable for parts of a program (called modules) to be developed separately. Each
module must be assembled separately prior to final merging of all the modules. During this
merging process, it is necessary to resolve references which refer to addresses or data defined in
another module. The resolution of these external references is called linking. The assembler
must provide information to the loader, in a manner similar to relocation records, concerning the
address fields which must be resolved.

Linking Loader Output
As output, load produces an object-code module, a load map, a module map, and a global symbol
table. The object-code module can be either relocatable or executable. A relocatable module
produced by the loader cannot be distinguished from a relocatable module produced by the
assembler. Only the loader, however, can transform multiple relocatable modules into an
executable program.

The Standard Environment File
An environment file,lliblstd_env is supplied with every 4400. The loader uses this file to get the
information necessary to load a given module. The environment file is just an options file
(described earlier in this section) which is processed before any other options on the command
line. This file contains hardware-specific information so the user will not need to specify these
things each time a file is loaded. Information such as the hardware page size and the starting
address of the text or data segments is typically found here. The Iliblstd_env options file is also
linked to lliblldr _environ.

Invoking the Loader
The linking loader accepts as input previously assembled, relocatable object-code modules and
produces as output either:

1. A link-edited, relocatable, object-code module or
2. A link-edited, relocated, executable program.

The command line necessary to invoke the linking loader is:

++ load <relocatable_modules> [+options]

The two plus signs are the system's ready prompt, and load is the name of the linking loader
command file.

<relocatable modules> is a list of one or more file names, separated by blanks, which contain
relocatable object-code modules you wish to load. The object-code modules are loaded in the
order specified.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-47

THE ASSEMBLER

Options is a list of options which must start with a plus sign (" +") and may not contain any
embedded spaces. More than one list of options may be specified, but each list must start with a
plus sign. Some of the options are single characters, while others require an argument. Those
that are single letters may be grouped together; for example: +sm. Those that require arguments
may either stand alone or be the last of a group of options; for example: +smT=400000 (the
T =400000 is an option with an argument). The equal sign is not required in options with an
argument. Therefore, +T=400000 is equivalent to +T400000.

Valid Options
+a=<minimum _number _ o(yages> The "a" option specifies the minimum number of pages to be

allocated to this task when executing. The number of pages specified must
be a non-negative decimal number up to the maximum of 32767.

+A=<maximum _number _ o(jJages>

The "A" option specifies the maximum number of pages to be allocated to
this task when executing. The number of pages specified must be a non­
negative decimal number, and should be greater than or equal to the
minimum specified. The loader automatically adjusts ridiculous page
counts. The maximum number of pages that can be specified is 32767.

+b=<maximum_Iogical_task_size>

3-48

The "b" option tells the operating system the largest size that this task may
grow to while executing. The maximum logical task sizes currently
supported are:

128K
256K
512K
1M
2M
4M
8M

For example :

+b=512K
+b=2M
+b=8m

The letters "M" and "K" may be in upper- or lowercase. The default task
size is 128K. The loader automatically adjusts the task size if it finds that
the size specified by the user or the default size is too small for the
modules being loaded.

THE ASSEMBLER

+B Do not zero the BSS space.

+c=<source _module_type>

The "c" option allows the user to specify from what type of source file this
module was created. This information is placed in the binary header for
use in debugging. The source module types currently recognized are:

ASSEMBLER
C

and are specified as follows:

+c=ASSEMBLER
+c=C

Upper or lower case letters may be used.

+d This option specifies no core dump is to be produced.

+ D[=<start _ of_data _segment>]

+e

+f

The "0" option specifies the data segment bias to add to all data references
(i.e., the starting address of the data segment). The number specified as the
start of the data segment must be in hex and is machine dependent. If no
starting data address is given, the data segment follows the text segment.
The "0" option with no argument forces the data segment to follow the
text segment (the default). This may be necessary if the std _ env file
contains data and/or text starting addresses and the user wishes to load a
module for execution on another machine with different hardware
requirements.

By default, the loader notifies the user only once about each unresolved
external symbol. This option forces it to report every occurrence of every
unresolved external symbol, showing in which module it was unresolved.

This option loads the text page when it is first referenced. (Load on
demand.)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-49

THE ASSEMBLER

+ F[=<options _file_name>]

+i

This option allows the user to place loader command line options in a file
rather than listing them each time on the command line. The file is read by
the loader, and options are set from there as well as from the command
line. The last occurrence of an option always overrides previous
occurrences, so if the options file is specified first, any options found on
the command line will override the same option in the options file. Nested
options files are not supported.

The options specified in the options file must be separated by one or more
spaces, may be on multiple lines, and must begin with a "+" just as they do
on the command line. Only options may be specified in this file, not
modules to be linked. The loader discards all characters up to a "+," so
comments may be inserted before the first option on a given line. For
example, the following is a valid options file.

* Tektronix 4400 environment *
* Machine configuration +C=4
* Text Segment offsets + T=O
* Data Segment offsets +D=O
* Page Size default (hexadecimal) +P=1000
* System call +U=TRAP15

If the "F" option is specified without an argument, the loader looks for the
file called ldr _opts in the current directory, and uses it as the option file.

The "i" option includes all internal symbols in the symbol table for
symbolic debugging. If the "i" option is not specified, only global symbols
are included in the relocatable, object-code module.

+l=<library file name>

+L

+m

3-50

A maximum of five libraries may be specified by repeated use of the "1"
option. If fewer than five libraries are specified, the system library is also
searched in addition to the user libraries. Libraries are searched only when
an executable output program is produced (not when "r" is specified). In
the following example, an effort is made to resolve externals not found in
the user's modules by searching the three libraries lib1, lib2, and Syslib:

++ load echo[1-3].r +l=libl +1=lib2

For more information concerning the formation and use of libraries, see the
discussion of libraries later in this section.

Do not search the libraries for unresolved externals.

Print the load map and the module map. The load map provides
information as to the type of output file produced, the length of the
resulting output object-code module, the number of input modules, and the
transfer address. The module map describes the load address and object­
code length for each input module.

THE ASSEMBLER

+M=<map output file>

+n

+N=<module name>

+o=<file name>

+r

+s

The load map, module map and symbol table are written by default to
standard output. This option specifies a file name to which this
information is to be written, rather than standard output.

Produces an executable output module with totally separate instruction and
data spaces. This option informs the operating system that hardware
support for separate instruction and data spaces is available and to handle
addressing accordingly.

Specifies the name to be given to the output module of the loader (in a
manner similar to the name directive of the assembler). Since the loader
does not propagate the module names of the relocatable input modules to
the output module, the "N" option must be used to assign a name to a
module. If the "N" option is not used, the module name will default to the
name of the file in which it is contained. Both executable programs and
relocatable modules can receive module names. The name is limited to a
maximum of 14 characters.

Specifies the file name for of the output binary file. If the "0" option is not
specified, the output file will be named file _ name.o in the current
directory. If a file by this name already exists, it will be deleted.

This option specifies the page size to use. "n" is given in hex, with a
default of $0.

The "r" option specifies that the loader's binary output is to be a
relocatable object-code module. The effect of this option is as if all the
modules were contained in one source file and assembled with the
assembler.

The "s" option directs the loader to print the global symbol table. If
specified, the loader prints each global symbol and its address.

+S=<initial stack size> - -
This option informs the operating system that a task needs some amount of
stack space when it begins execution. The operating system, by default,
sets up a 4K-byte stack for each user task. This mechanism allows the task
to begin execution with possibly more than the normal amount of stack
space (but never less - the operating system will always round up to the
next 4K-byte boundary).

The "t" option specifies that the loader's binary output is to be a shared
text, executable program. For more information, see Shared Text
Programs in the discussion on segmentation.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-51

THE ASSEMBLER

+T=<start_of_text_segment>

+u

+U=n

+x=<file name>

Libraries

Introduction

This option specifies the text segment bias to be applied to all text
references. The starting address must be in hex; it defaults to 0 when the
"T" option is not specified. The text bias is machine dependent.

This option tells the loader not to print the unresolved external message
when producing a relocatable output module.

This option sets the trap number for system calls.

This option declares the incremental load file name.

A library is a special collection of relocatable modules. When an external cannot be resolved
from the user's modules, the libraries are searched in an effort to resolve it. The loader searches
the user defined libraries in the order specified on the command line before searching the system
library. This allows the user to redefine a system library module or entry point. The search for
an external can be summarized as follows:

1. Can the external be resolved from the user's modules?

2. Can it be found in the user specified libraries?

3. Can the external be resolved from the system library?

When an external is resolved from a module contained in a library, that module is loaded and is
then considered to be a user module. Because of this, library modules can reference other library
modules.

The loader can search a maximum of five libraries when externals cannot be resolved from the
user's modules. Usually, these libraries consist of up to four user libraries and the system library.
The user can, however, specify five libraries on the command line. When five libraries are
specified, the fifth one takes the place of the system library.

When searching for a library, the loader first looks for the specified file in the current directory.
If the file is not found, the loader then looks for the lib directory in the current directory. If it
finds that directory, the loader attempts to find the specified file. If not found, the loader makes a
third and final attempt to find the specified file by looking in the directory !lib. If the file is not
found in any of these three directories, an error message is issued and the loader aborts. This
process also is followed when searching for the system library.

3-52

THE ASSEMBLER

Library Generation
The libgen utility is used to create new libraries and update existing libraries. All modules in a
library must have a name. The name is assigned to a module by the name pseudo-op in the
assembler or by the "N" option of the loader. It is the responsibility of the programmer to ensure
that all modules in a library have names. The libgen utility will not accept a module without a
name.

The syntax for the libgen utility is:

libgen o=<old> n=<new> u=<updates> <options> <deletions>

The arguments may be specified in any order.

The argument o=<old> specifies the name of an existing library file. This library file must have
been created previously by libgen. If libgen is being called to create a new library (instead of
updating an existing one), this argument should be omitted.

The argument n=<new> specifies the name of the new library. If this file already exists, it is
deleted before the new library is written. This argument need not be specified when updating an
existing library. In this case, libgen will put the new library in a scratch file, delete the old library
file, and rename the scratch file, giving it the name of the old library. The command line must
include either the o=<old> or n=<new> argument, or both.

The argument u=<updates> specifies the name of a file containing modules that are to be added
to the library, replacing existing modules in the library if necessary. More than one update file
may be specified by repeating the u= argument. Up to nine files may be specified in this way.

As libgen runs, it produces a report, describing the action that it has taken for each module in the
library. The report includes the module name and the file from which it was read (the old library
or one of the update files). The options are used to eliminate or shorten this report. If the "+1"
option is specified, no report is produced. If the "+a" option is specified, the report only contains
information about those modules that were replaced, added, or deleted. No information about
modules copied from the old library is given.

The <deletions> argument is a list of module names to be deleted from the old library. The
names may be separated by commas or spaces. If a name is specified that cannot be found in the
old library, a warning message is issued. If the "+1" option was specified, no warning is issued.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-53

THE ASSEMBLER

Examples
1. Create a new library with the name binlib containing modules from the files one, two, and

three:

libgen n=binlib u=one u=two u=three

Since a new library is being created, the o=<old> argument was omitted. Note that the u=
argument was repeated for each update file.

2. Update the library named binlib, adding or replacing records from the file new. Produce an
abbreviated report:

libgen o=binlib u=new +a

Since no new library was specified, the new library is given the name of the old library.

3. Update the library named binlib, deleting the modules named diagonal and transpose; add
new modules from the file xyz and write the new library in the file newlib:

libgen obinlib u=xyz n=newlib transpose diagonal

Segmentation and Memory ASSignment

Relocatable and Executable Files

The loader can produce either an executable program or a relocatable module. By default, the
loader produces an executable module: use of the "r" option causes the loader to produce a
relocatable module. The loader can produce two types of executable files: shared text and non­
shared text. The next sections will discuss how load produces the relocatable modules and the
two types of executable programs.

3-54

THE ASSEMBLER

Relocatable Modules
Relocatable modules produced by the assembler have distinct text, data, and bss segments. All of
the text object-code appears in the binary file first, followed by all of the data object-code. Since
there is no object-code in the bss segment, it is thought of as following the data segment. The
loader maintains these distinct segments by combining the text segments of all the relocatable
input modules, followed by the concatenation of data segments, and then (conceptually) all the
bss segments. In addition, the module segments are loaded in the order in which the modules are
specified on the command line.

Common blocks (which contain only bss) are not combined with the bss segments of the other
modules when producing a relocatable output module. Instead, common blocks retain their
identity as separate modules and are appended to the resulting relocatable output module.
Common areas are combined with the bss segments of other modules only when producing an
executable program.

Relocatable modules can be given module names by the use of the name directive of the
assembler. This name is used when printing the module map. If no name was given to a module
by use of the name directive, the name of the file in which it is contained is printed. When
producing a relocatable output module, the loader does not propagate any of these module names
to the output To assign an output module a name, use the "N" option when invoking the loader.

Unlike module names, info fields are collected from the input modules and carried over to the
relocatable output module and ultimately to the executable program.

Executable Programs
When loading modules to produce an executable program, the loader loads modules in the order
specified on the command line. Common areas (that contains only uninitialized data) are loaded
after the last module specified on the command line. Libraries are loaded after the last common
block, or after the last user module on the command line if there are no common blocks.

The two types of executable programs the loader is capable of producing are shared text and
non-shared text

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-55

THE ASSEMBLER

Shared Text Programs
Shared text programs have three distinct segments. The text segment is assumed to be read-only.
This implies the code contained in the text segment is not altered as long as the program runs.
We can take full advantage of this fact by sharing this segment among several users who are
running the program concurrently. This can mean a considerable increase in the efficiency of the
system.

The data segment is also referred to as initialized data. It is information (actual instructions or
data) that must be initialized or loaded, but which can be altered at some later point. For
example, counter variables which must be initialized to zero but will later be incremented should
be placed in the data segment. At any time, the variable could be read or its value changed. Each
user would then need his or her own copy of the data segment.

The bss segment, like the data segment, is also a read/write area. Since a module does not
contain any object code to be loaded into this section of memory, it is also referred to as
uninitialized data. The module does contain the size of the bss segment, however, in order to
inform the operating system that memory is required in this area but does not need to be
initialized.

When producing a shared text program, the loader collects all the text segments from the
relocatable input modules and loads them at the location specified by the "T" option, or at 0 if no
starting text address was given. All of the data segments are then placed either at the address
specified in the liD" option or, if no "D" was given, immediately following the last text address,
rounded up to the granularity specified in the "p" option (or the next even byte if no "p" was
specified). Memory for the bss segments is allocated immediately following the data segments at
the time the program is executed.

There are drawbacks to using shared text. The text portion of a shared text file is always swapped
to disk. Therefore, programs which are used infrequently, or those that only one task would be
running at a time, would make better use of the system resources if they were non-shared.

The following memory map illustrates how the segments are loaded in relation to other segments
and modules. The module numbers are the order in which they appear on the command line; "m"
is the last module specified. Common blocks I-x and library modules I-n, which are loaded to
complete the program, are also represented.

3-56

THE ASSEMBLER

Hardware
Dependent --> Text of mod 1

Text of mod 2

Text of mod m
Text of library 1
Text of library 2

Text of library n
<--+

Depends on ' P' option.
Hardware Dependent.

<--+
Hardware
Dependent --> Data of mod 1

Data of mod 2

Data of mod m
Data of library 1
Data of library 2

Data of library n
Bss of mod 1
Bss of mod 2

Bss of mod m
Bss of common 1
Bss of common 2

Bss of common x
Bss of library 1
Bss of library 2

Bss of library n

Non-shared Text Programs
A non-shared text program has the same form as shared text program except that it is simply not
shared. The non-shared text programs do not incur the overhead of having their text segments
swapped immediately to disk at execution time. The memory map for a non-shared text program
is the same as for a shared text program.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-57

THE ASSEMBLER

Load and Module Maps

Load Map
The "m" option controls the printing of the module and load maps. The load map provides
infonnation about the type of output produced, the length of the resulting output object code
module, the number of input modules, and the transfer address.

Module Map
Use of the "m" option also selects printing of the module map. The module map describes the
load addresses and object code length for each of the input modules.

The Modu Ie Map of a Relocatable Modu Ie

10
11
12

14
15
16

000000
+000000
XOOOO06
+oooooc
+000012
XOOOO18

DOODlE

000000

207C
4EB9
207C
23C8
4EB9
4E75

0000
0000
0000
0000
0000

0000
0000
OOOA
0012
0000

#msg1,aO
pdata
#msg2,aO
aO,msgaddr
pdata

000000 4D65 7373 6167 msg1
OOOOOA 4D65 7373 6167 msg2

fcc "Message
fcc "Message

000000
000000
000012

* Start of BSS segment
bss
rmb

msgaddr rmb
* .. Set transfer address

18
4

18 0000 0000 end Start

1",0
2",0

All of the segments start at address 0 Clines 2, 10, and 14). This is called the base address.
Because of this, it is possible for two labels in different segments to have the same address (offset
from the segment base). lab} and msgaddr are examples of this occurrence. All labels defined in
a segment are relative to its base address. For example, lab1 is 18 bytes from the beginning of
the text segment, and msg2 has an offset of 10 bytes from the base of the data segment.
Throughout the linking process, the distance between start and lab1 will remain constant. No
assumptions, however, can be made about the distance between two labels that reside in different
segments.

3-58

THE ASSEMBLER

To produce a relocatable module from several input modules, the loader must combine all like
segments. In other words, all text segments are concatenated starting with the text segment of the
first input module, followed by the text of the second module, and so on. By doing so, however,
the base address of all modules except the first will be changed. The loader automatically adjusts
any addresses which refer to symbols in these modules which have been relocated.

A small "c" program was compiled, assembled and loaded, producing the following load and
module maps:

* LOAD MAP *

Produced - executable, not overlapped TEXT and DATA.
Module is not shared text.
Starting TEXT address = 000000
Starting DATA address = 400000
Initial stack size = 000000
Granularity = 000000
Binary transfer address 000B38
Number of input modules 5

* MODULE MAP *

TEXT
000000
000050
00032A
000B04
000B38

DATA
400000
40000C
40000C
4000AO
4000AO

BSS
400204
400204
400204
400204
400204

MODULE NAME
test
Long Mul/Div
C System Calls
strlen
C Wrapper

FILE NAME
test.r
/lib/Clib
/lib/Clib
/lib/Clib
/lib/Clib

000B52 400204 400604 * Final Segment Addresses *
The maps show the text segments from each of the modules .are combined and relocated to form
the text segment of the final executable module. The starting text address was specified as O.
The starting data address was 400000. From looking at the module map we can see that all
modules have text segments, the Long Mul/Div and the strlen modules have no data segments,
and only the C Wrapper module has bss. Note also that the bss segment follows immediately
after the data segment. The library /lib/Clib was searched successfully for the routines called
directly and indirectly by the module test. One can see that the binary transfer address is located
in the C Wrapper module (Address $000B38).

The following map was produced using the same file as the previous map. No starting address
for the data segment was specified, therefore the data segment follows the text segment. Since a
granularity was specified as $1000 (The "p" option), the data segment starts at the end of the text
segment (rounded up to the next $1000 boundary). The executable module is to be shared text.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-59

THE ASSEMBLER

* LOAD MAP *

Produced - executable, not overlapped TEXT and DATA.
Module is shared text.
Starting TEXT address = 000000
Starting DATA address = 000000
Initial stack size = 000000
Granularity = 001000
Binary transfer address = 000B38
Number of input modules 5

* MODULE MAP *

TEXT DATA BSS MODULE NAME
000000 001000 001204 test
000050 00100C 001204 Long Mul/Div R
00032A OOIOOC 001204 C System Calls
000B04 0010AO 001204 strlen
000B38 0010AO 001204 C Wrapper

FILE NAME
test.r
/lib/Clib
/lib/Clib
/lib/Clib
/lib/Clib

000B52 001204 001604 * Final Segment Addresses *

Miscellaneous

Transfer Address

A transfer address is the location at which execution is to start when the program is invoked. The
end directive in the relocating assembler can be used to indicate a transfer address.

Only one relocatable module included in a program should contain a transfer address. If more
than one module has a transfer address, the loader prints an error message and aborts.

Resolution of Externals With Library Modules

The loader resolves externals in the following manner:

1. Combine all user modules.

2. Search libraries sequentially resolving all references that the user modules make to the
library modules. (Primary references)

3. Search libraries again, this time resolving any external references made by the library
modules brought in during step 2. (Secondary references)

3-60

THE ASSEMBLER

When resolving externals with library modules, the loader always processes the libraries in the
order specified on the command line. When resolving secondary references (step 3 above), if
bringing in another library module introduces more unresolved externals, then the library search
begins from the beginning again. This way, even though the same module may appear multiple
times in different libraries, only the first occurrence of each module (as defined by the order of
the libraries on the command line) is used.

Etext, Edata, and End
In certain applications, it is desirable to know the last location contained in a particular program
segment (text, data, or bss). Due to the manner in which these modules are loaded, it would be
very difficult to determine these locations in an applications program. To alleviate this difficulty,
the loader has three global symbols which are always available and contain the location of the
end of a segment. These three globals are ETEXT, EDATA, and END; they correspond to the
ends of the text, data, and bss segments respectively.

ETEXT, EDATA, and END may be used like any other user-defined global symbols. Since they
behave like user-defined globals, they always appear in the global symbol table listing. When
used in a module, they should be defined as external. These special symbols are pre-defined, so
users should not give these names to their own global symbols.

Error Messages
The loader produces both fatal and non-fatal error messages. Fatal error messages are of the
form:

Fatal Error: <description_of_error>
Loader aborted!

Non-fatal errors are produced in different forms for different messages.

Non-Fatal Error Messages
Warning: "/lib/std_env" not found.

The Iliblstd_env file is supplied with every 4400. It is an options file which contains hardware­
specific information so that the user does not need to enter them for each load. If you have not
deleted or renamed the file purposely, you should contact your Tektronix service representative.

<symbol_name> unresolved in module <module_name>.

The specified symbol was referenced in the specified module, but the symbol could not be
located in any of the user supplied modules or in the libraries (if libraries are being searched).
This may be expected if a relocatable file is being produced. If an executable file is being
produced it is an error.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-61

THE ASSEMBLER

Symbol name clash: <symbol_name> in module <module_name>.

The specified symbol has been globally declared in more than one module. The module specified
is the one containing the second declaration of the symbol. The name of the global symbol will
have to be changed in one of the modules, and the module will have to be reassembled.

Integer overflow in module <module_name>.
Segment = <segment>.
Offset in module = <offset>.

When relocating a field in the module specified, the loader detected overflow out of the size field
being adjusted. This may not always be an error. The address of the field relative to the
specified segment is also reported. Subtracting from an external in a module can result in this
message being produced when in fact the result of the subtraction is exactly as it should be. The
user should look carefully at the code being loaded to determine if the error message should be
ignored or not.

Two-Byte address overflow in module <module name>.
Segment = <segment>.
Offset in module = <offset>.

This error message is similar to the preceeding one, but with one slight difference. A two-byte
address (absolute word addressing mode from the assembler) must be a positive, 16-bit
expression to be a valid address, whereas the previous overflow message requires only that the
result be an unsigned 16-bit expression. This message definitely indicates an error. An address
was forced to absolute short in the assembler when it can not be.

Fatal Error Messages

Illegal minimum page allocation!

The minimum page allocation must be a positive integer. The number specified on the command
line is illegal.

Illegal maximum page allocation!

The maximum page allocation must be a positive integer. The number specified on the command
line is illegal.

3-62

THE ASSEMBLER

Too many libraries!

A maximum of five libraries may be specified on the command line to the loader.

Nested 'F' options!

Option files cannot be nested. Multiple option files can be specified on the command line
though.

Illegal configuration specified!

The configuration specified is not a known configuration. See the "c" option for more
information.

Illegal option <char>!

The character specified is not a known loader option. See the "options" discussion for more
details.

Relocatable, but data/text start specified.
Conflicting options!

When producing a relocatable file as output, no starting text or data addresses can be given.

Opening <file_name>: <reason>

The loader received an error from the operating system when it tried to open the specified file.
An explanation of the error is given.

Reading <file_name>: <reason>

The loader received an error from the operating system while trying to read the specified file. An
explanation of the erroris given.

Writing to <file_name>: <reason>

The loader received an error from the operating system while trying to write to the specified file.
An explanation of the error is given.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 3-63

THE ASSEMBLER

Seeking to <location> in <file_name>: <reason>

The loader received an error from the operating system when it tried to seek to the specified
location in the specified file. An explanation of the error is given.

Unknown module type!

The module type specified on the command line is not a legal type. The loader only recognizes
C, and ASSEMBLER. See the options discussion for more details.

Illegal task size!

The task size specified on the command line is illegal. Allowable task sizes are: 12SK, 256K,
512K, 1M, 2M, 4M, or SM. See the options discussion for more details.

No files given!

The loader found no files on the command line.

Illegal input file <file_name>!

The specified file is not a legal relocatable file produced by the assembler or the loader.

Library <library_name> not found!

The library specified could not be located in the current directory, a directory called lib in the
current directory, or in the llib directory.

Bad library format for <library_name>!

The library specified did not have the correct fonnat for a library created by the libgen utility.

Multiple transfer addresses!

Only one module can contain a binary transfer address. The loader found two user-specified
modules with transfer addresses.

3-64

THE ASSEMBLER

<file_name> contains MC68020 or MC68881 specific instructions.

The relocatable modules have MC68020 or MC68881 code and will not load/link on a MC680 10
based product.

Invalid module combination - no output produced.

The relocatable modules have MC68020 or MC68881 code and will not load/link on a MC68010
based product.

Illegal relocation!

This message is an internal consistency check and should not be issued. If this message is ever
reported, contact your Tektronix service representative.

BSS instruction segment!

This message is an internal consistency check and should not be issued. If this message is ever
reported, contact your Tektronix service representative.

BSS transfer address!

This message is an internal consistency check and should not be issued. If this message is ever
reported, contact your Tektronix service representative.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-65

Section 4

SYSTEM CALLS
INTRODUCTION
Sections 2 and 3 provided an introduction to the 4400 system calls and the use of asm and load.
This section describes each of the system calls, including errors that may be returned after the
system call. This section is meant to be used with the assembler. If you want to make system
calls from a high-level language, see the documentation for that language.

OVERVIEW
Assembly language programs on the 4400 interface to the operating system through system calls
perform functions such as file manipulation and task control. The calls are implemented with the
TRAP #15 opcode followed by a one-word function code which defines the call to be performed.
Up to four 32-bit values (longs) may follow the function code, depending on the particular call.
The 4400 assembler supports the sys pseudo-op which sets up the appropriate machine code for a
system call. Its syntax is:

sys function[,argO,argl,arg2,arg3]

where function is the system call number or name. This pseudo-op produces the TRAP code for
the call- a single word for the function and 32-bit values for each argument.

The arguments to system calls fall into three categories: numbers, pointers, and buffer addresses.
Numbers may be bit patterns (as in the chprm call) or mode codes such as in open. A 32-bit
value is used, even if the number required fits in 16 bits or less. Pointer arguments are used for
calls that require a name or ASCII string (such as file names for open and create). The pointer is
simply the address of the location of the string in memory. The string should always be null
terminated (a 00 byte). A buffer address is used for calls, such as status, that require a place in
the caller's address space to place data generated by the call. A buffer address is simply a 32-bit
address pointing to the start of the data buffer. Some calls also extract data from a caller-supplied
buffer.

Some system calls require information to be passed in registers as well as through arguments.
Most calls use the DO register, but a few use AO as well. All registers are preserved through a
system call unless a value is returned in the register. An error generated in a call always returns
the error number in the DO register.

Condition codes are also preserved through a system call with the exception of the error bit. The
error bit is the same as the carry, and the assembler supports the bes and bee mnemonics -branch
if error set and branch if error clear. These mnemonics are synonymous with bes and bec,
respectively. The error bit always returns cleared if no error resulted from the call; otherwise, it
is set and the error response code is in DO. The usage of each system call is described in a similar
manner. To illustrate, here is an example of the read system call:

<file descriptor in DO>
sys read,buffer,count
<bytes read in DO>

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-1

SYSTEM CALLS

The infonnation in the angle brackets preceding the call shows the data the system expects to find
in the registers. In this example, the DO register should contain the file descriptor number of the
file to be read. Next is the actual system call as it would appear in the assembler source listing.
The system function is read and it has two arguments: buffer and count. Following the call is
infonnation regarding the data to be found in the changed registers. In this example, the DO
register contains a count which represents the actual number of bytes read from the specified file.
Other registers are unchanged.

NOTE

If a system call returns data to a buffer, it may not return it into the
text segment of a program,· it may return the data to the data or
stack segments. For example, the buffer in read, and tbuf in time
may not reside in the text segment.

NOTE

The ind, system call signals an address error if the indirect target
area is in the text segment. Keep the target area for indirect system
calls in the data or stack segments.

System Errors
When the system returns from a system call with the error (carry) bit set, register DO contains the
number of the resulting error. The file Iliblsyserrors lists all of the system errors and their
corresponding error number. Here is a list of all system error numbers and their respective
meanings:

1 EIO 110 error.

This can result from a CRC error, hardware malfunction, or defective media problem while
reading or writing a device.

2 EFAULT System fault.

System faults are detected by the hardware and vary from system to system.

3 EDTOF Data section overflow.

This error can result from a break system call if the data section of a program is growing and
overflows into the stack section.

4 ENDR Not a directory.

The file name specified is not a directory but the system call requires it to be one.

4-2

SYSTEM CALLS

5 EDFUL Device full.

The device currently being written has no more available space.

6 ETMFL Too many files.

Each task is pennitted a maximum of 32 open files at anyone time.

7 EBADF Bad file.

The file descriptor given does not refer to an open file, or the file mode is not correct for the
operation (e.g., the file is open for read and a write is attempted).

8 ENOFL No file.

The file name specified could not be found.

9 EMSDR Missing directory.

One of the directory elements specified in a pathname did not exist.

10 EPRM No pennission.

An attempt was made to perfonn an action (such as file access) for which pennission was denied.

11 EFLX File exists.

The system call requires the file to be previously non-existent.

12 EBARG Bad argument.

A bad argument was presented to a system call. This usually implies a number which is out of
range or a non-existent mode code.

13 ESEEK Seek error.

An attempt was made to seek beyond the beginning of a file or beyond the physically possible
maximum size of a file.

14 EXDEV Crossed devices.

An attempt was made to link to a file on a different device than the existing file.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 4-3

SYSTEM CALLS

15 ENBLK Not a block special file.

The file name specified was not a block special file, and the system call referenced requires it to
be a block device (e.g. mount).

16EBSY Device busy.

The device specified in an unmount is currently being used.

17 ENMNT File not mounted.

The file specified to an unmount call was not previously mounted.

18 EBDEV Bad device specified.

The system call requires a device type file as an argument.

19 EARGC Too many arguments.

Too many arguments were presented to an exec system call and the argument space overflowed.
There is an upper limit of approximately 3000 bytes for arguments.

20 EISDR File is a directory.

The file specified is a directory, and the system call requires it to be a regular type file.

21 ENOTB File is not binary.

An attempt was made to execute a file that was not an executable binary file.

22 EBBIG Binary file too big.

The binary file specified to exec exceeds the physical address space limits.

23 ESTOF Stack overflow.

The stack space overflowed into the task~s data or text space.

24 ENClll..D No children living.

A wait system call was executed with no living child tasks to wait for.

4-4

SYSTEM CALLS

25 ETMT Too many tasks active.

In attempting to fork a new task, the system exceeded its task limit. This error will also result if
the system task table becomes full.

26 EBDCL Bad system call.

A system call function code was encountered that does n,ot represent an existing system call.

27 EINTR Interrupted system call.

One of the program interrupts that the current task was catching occurred during the system call.

28 ENTSK No task found.

The task id referenced in the system call did not represent an active task in the system.

29 ENTTY Not a tty.

The system call (ttyget or ttyset) requires the specified file to represent a tty type device.

30 EPIPE Write to broken pipe.

The system attempted to write data to a pipe that did not have an active read channel open.

31 BLOCK Record lock error.

The specified record can not be locked by this task. Another task has the requested record
locked.

32 ETXOF Text segment overflow.

The program's text segment has exceeded the original specified size.

33 EVFORK lllegal operation in vforked task.

See vfork for more details.

34 EDIRTY Mounted disk is dirty.

The disk you attempted to mount was not unmounted before system shutdown. Run diskrepair to
clean up the disk.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-5

SYSTEM CALLS

System Definitions
Several files containing system definitions reside in the !lib system directory. Use these files as
library files in the assembler whenever the appropriate definitions are required. Here's a general
description of each file:

syscomm TTY buffer for the communications device. Similar for systty, but defined
for the RS-232C host communications port.

sysdef

sysdisplay

syserrors

sysfloat

sysints

sysstat

systim

systty

4-6

System call definitions. All of the system call names are defined in this
file.

System display and event function code definitions. This file contains the
information returned by the getDisplayState system call, the equated
function codes for vector calls and the bit positions within the status long
word displayState record. zx

System errors. All standard system error names and their equated error
numbers appear in this file.

System floating point interface. All floating point routines and their
operation codes are in this file. Also in this file is a sample general calling
sequence for floating point operations.

System program interrupts. All program interrupt names are equated to
their respective numbers in this file.

File status block. This file contains the block definition for the
information returned by the status and of stat system calls.

Time buffer definitions. The time and ttime system calls return their
information in a caller provided buffer. These buffers are defined in this
file.

TTY buffer for the console device. The ttyget and ttyset require a buffer
for their data transferal. The contents of this buffer is defined here.

SYSTEM CALLS

DETAILS OF SYSTEM CALLS

USAGE
<mask inDO>
sys set_high _ address_mask

DESCRIPTION
The value <mask> will be used by the system to load the hardware address mask register. This
hardware register masks the upper address bits from the processor. Each task has its own mask
value which defaults to OxFFFFFFFF.

NOTE

Bits 0-23 are/orced to OxOOFFFFFF by the system.

DIAGNOSTICS
No errors are reported.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-7

SYSTEM CALLS
allU'11i

alarm

USAGE
<seconds in DO>
sys alann
<previous seconds in DO>

DESCRIPTION

Alarm will cause an alarm interrupt to be issued after the number of seconds specified. At alarm
time, the program interrupt SIGALRM is sent to the task. Unless this interrupt is caught or
ignored, it terminates the task. This system call returns immediately to the caller after execution.

DIAGNOSTICS
No errors are possible from this call.

4-8

SYSTEM CALLS
break

break

USAGE
sys break,address

DESCRIPTION
Break changes the amount ,of memory associated with the task. The address specifies the highest
address to be used by the task for data. If the address specified is already in the assigned data
space, any memory beyond it is released back to the system;

DIAGNOSTICS
An error is issued if more memory is requested than is physically possible on the system.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-9

SYSTEM CALLS
chacc

chacc

USAGE
sys chacc,fname,penn

DESCRIPTION
Chacc checks the accessibility of file fname. The perm argument should be 1 for read check, 2
for write check, or 4 for execute check. Any combination of these may be used (e.g. 3 checks
read/write). 1f perm is 0, chacc checks if the directories leading to the file may be searched and if
the file actually exists.

DIAGNOSTICS
Returns an error if the file does not exist, the directory path cannot be searched, or if the
permission is not granted.

4-10

SYSTEM CALLS
chdir

chdir

USAGE
sys chdir ,dimame

DESCRIPTION
Chdir changes the current user directory to that specified by dirname, which points to the actual
name. The caller must have execute pennission in the specified directory.

DIAGNOSTICS
Issues an error if the name specified is not a directory or cannot be searched.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 4-11

SYSTEM CALLS
chown

chown

USAGE
sys chown,fname,ownerid

DESCRIPTION
Chown changes the owner of the file name pointed at by fname. Ownerid should have a
maximum of 16-bit significance. Only the system manager may execute this call.

DIAGNOSTICS
Returns an error if the caller is not the system manager.

4-12

SYSTEM CALLS
chprm

chprm

USAGE
sys chprm,fname,perm

DESCRIPTION

Chprm changes the access permission bits associated with the file name represented by fname.
The new permission bits perm will replace the old. The allowable permissions are:

FACUR ... > %00000001 ($01) owner read permission
FACUW => %00000010 ($02) owner write permission
FACUE => %00000100 ($04) owner execute permission
FACOR => %00001000 ($08) others read permission
FACOW => %00010000 ($10) others write permission
FACOE => %00100000 ($20) others execute permission
FXSET => %01000000 ($40) set id bit for execute

DIAGNOSTICS
Issues an error if the file does not exist, or the caller is not the file owner or system manager.

ASSEMBLY LANGUAGE PR.OGRAMMERS REFERENCE 4-13

SYSTEM CALLS
close

close

USAGE
<file descriptor in DO>
sys close

DESCRIPTION

Close closes the file represented by the specified file descriptor. Files are automatically closed
when the task that opened them terminates, but it is wise to close them manually whenever
possible.

DIAGNOSTICS
Returns an error if the file descriptor is not valid, or if the file has already been closed

4-14

control_pty

USAGE
<master device file descriptor in DO>
sys controlyty ,function,cval
<state in DO>

DESCRIPTION

SYSTEM CALLS
control yty

This is the function used to control the behavior of a pesudo-terminal channel. The structure of
the pseudo-terminals showing the equates is found in the file /lib/syspty and /lib/include/syspty.h.
All functions return the state of the channel as described for the function PTY jNQUIRY.

The function PTY jNQUIRY is used to return the state of the channel. For this function, cval is
ignored. The value returned is a combination of bits which describe the state of the channel. The
bits are:

PrY_PACKET _MODE Bit #0. If this bit is set, reads on the master side return two bytes
of status before any data written by the slave. If any slave data is
available, the status bytes are zero. If no data is present, the
status bytes are the same as those returned by PTYjNQUIRY.

PTY _REMOTE_MODE Bit #1. If this bit is set, data written by the master will be sent as
is to the slave side with no editing.

PrY_READ _WAIT Bit #2. If this bit is set, a read on the master side is blocked until
slave data is available.

PrY_WRITE _WAIT Bit #3. If this bit is set, the master side hangs on a write request
if the output buffer is full.

PTY _HANDSHAKE_MODE Bit #4. If this bit is set, a write on the master side is not
complete until the slave has consumed the data.

PrY _ SLAVE_HOLD Bit #7. If this bit is set, the slave is prohibited from writing any
more data to the channel.

PrY EOF Bit #8. If this bit is set all slave accesses to the channel have
been closed.

PrY_OUTPUT _QUEUED Bit #9. If this bit is set the slave side has written data to the
channel which has not yet been consumed by the master.

PTY _INPUT_QUEUED Bit #10. If this bit is set the master has written data to the slave
side which has not yet been consumed by the slave.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-15

SYSTEM CALLS
controlyfy

The function PTY_SETJvlODE is used to change the control mode for the pseudo-terminal
channel. The value eval contains the new mode and should be some combination of the bits
described in the previous section. The new control mode is exactly what is in eval so to perform
an incremental change, the current value must be obtained using PTY JNQUIRY.

The function PTY _FLUSH_READ causes any data written by the master side to the slave input
queue to be purged.

The function PTY _FLUSH_WRITE causes any data written by the slave side that has not yet been
consumed by the master side to be purged.

The function PTY_STOP _OUTPUT prevents the slave side from writing any more data to the
master side. This condition is reflected in the status bit PTY _SLA VE _ HOW.

The function PTY_START_OUTPUT allows the slave side to continue writing data to the master
side.

DIAGNOSTICS
Issues an error if a bad file descriptor node is used.

4-16

cpint

USAGE
sys cpint,interrupt,address
<old address in DO>

DESCRIPTION

SYSTEM CALLS
cpint

Cpint tells the system what action it should take when interrupt occurs. If the specified address is
0, the default action occurs (usually task termination). If the address is I, the interrupt is ignored.
An even address (not zero) is taken to be a valid user program address where control should be
passed upon interrupt interception.

After interception, the interrupt number is in the DO register. The user's code should exit the
interrupt code via an RTR instruction. Following the return, the task continues at the point it was
interrupted.

After processing an intercepted interrupt, the system resets it back to the default condition;
therefore, to continue catching the interrupt, it is necessary to re-issue a new cpint call each time
the interrupt occurs. An exception is the SIGDEAD interrupt, which is not reset to a default
condition after occuring. It should be noted that the SIGKILL interrupt cannot be ignored or
caught. All interrupts retain their status after a fork, but xec resets all caught interrupts back to
their default state. The system calls for read and write when referencing a slow device (like a
tenninal), and the calls stop and wait may return prematurely if a caught interrupt occurs during
the system's handling of them. If this happens, it looks as if the system call returned an error
(EINTR), and the call can be re-issued if desired.

In the following list of system interrupts, those marked with "*" cause a core dump if not caught
or ignored.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-17

SYSTEM CALLS
cpint

SIGHUP 1
SIGINT 2
SIGQUIT 3*
SIGEMT 4*
SIGKILL 5
SIGPIPE 6
SIGSWAP 7
SIGTRACE 8
SIGTIME 9*
SIGALRM 10
SIGTERM 11
SIGTRAPV 12*
SIGCHK 13*
SIGEMT2 14*
SIGTRAPI 15*
SIGTRAP2 16*
SIGTRAP3 17*
SIGTRAP4 . 18*
SIGTRAP5 19*
SIGTRAP6 20*
SIGPAR 21*
SIGILL 22*
SIGDN 23*
SIGPRIV 24*
SIGADDR 25*
SIGDEAD 26
SIGWRIT 27*
SIGEXEC 28*
SIGBND 29*
SIGUSRI 30
SIGUSR2 31
SIGUSR3 32
SIGABORT 33
SIGSPLR 34
SIGINPUT 35
SIGDUMP 36
SIGMILLI 62
SIGEVT 63

DIAGNOSTICS

Hangup
Keyboard
Quit
EMT $Axxx emulation
Task kill
Broken pipe
Swap error
Trace
Time limit
Alarm
Task terminate
TRAPV instruction
CHK instruction
EMT $Fxxx emulation
TRAP #1 instruction
TRAP #2 instruction
TRAP #3 instruction
TRAP #4 instruction
TRAP #5 instruction
TRAP #6-14 instruction
Parity error
Illegal instruction
DIVIDE by 0
Privileged instruction
Address error
Dead child
Write to READ-ONLY memory
Execute from STACK/DATA space
Segmentation violation
User-defined interrupt #1
User-defined interrupt #2
User-defined interrupt #3
Program abort
Spooler interrupt
Input is ready
Memory dump
Millisecond alarm
Mouse/keyboard event interrupt

Issues an error if the interrupt specified is out of range.

4-18

create

USAGE
sys create,fname,penn
<file descriptor in DO>

DESCRIPTION

SYSTEM CALLS
create

Create creates a new file with the access pennissions specified in perm. The pennissions are the
same as in the chprm call, and are:

F ACUR => %00000001 ($01) owner read pennission
FACUW => %00000010 ($02) owner write pennission
FACUE => %00000100 ($04) owner execute pennission
FACOR => %00001000 ($08) others read pennission
FACOW => %00010000 ($10) others write pennission
FACOE => %00100000 ($20) others execute pennission

If the file already exists, its length is truncated to zero (all data deleted) but the original
pennissions and owner is retained. In either case, the file is ultimately opened for writing. It is
not necessary to specify write pennission even though the file will ultimately be opened for
writing. This allows a task to create a file and disallow others from writing the file until the task
has been completed.

DIAGNOSTICS
Issues an error issued if too many files are open, if the files path can not be searched, or if the
directory it resides in cannot be written.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 4-19

SYSTEM CALLS
createyfy

USAGE
sys create-pty
<slave file descriptor in DO>
<master file descriptor in AO>

DESCRIPTION
This function creates a new pseudo-terminal channel. The file descriptor for slave access is
returned in fd[O]. The file descriptor for master access is returned in fdD]'

Pseudo-terminals must exist as real devices in the device directory named utility via the
command:

makdev /dev/ptyxx p 1 xx

where 'xx' is a decimal number with a possible leading zero.

The function create yty returns access to the first unused pseudo-terminal channel in the system.
As these channels are closed, they will be reused in numerical order. I.e. create yty will always
return the lowest numbered pesudo-terminal channel not currently in use.

Once the channel has been opened using createyty, additional slave accesses may be obtained
using open for the appropriate device.

For slave access, this channel is exactly the same as a normal terminal. For master access,
writing to the channel is seen as input on the slave side and reading from the channel reads
characters output from the slave side.

The function o/stat{) may be applied to a pseudo-terminal. The only difference from a normal
terminal is that the the mode will be S _ SLAVE _PTY or S _MASTER _ PTY.

DIAGNOSTICS
Issues an error if no pseudo-terminal channels are available.

4-20

crpipe

USAGE
sys crpipe
<read file descriptor in DO>
<write file descriptor in AO>

DESCRIPTION

SYSTEM CALLS
crpipe

This call creates a pipe for inter-task communication. This call should be used before a fork
operation, to allow the output of the original task to be used as input by the forked task. Up to
4096 bytes of output can be written into the pipe before the task is suspended. Once the task
doing the reading has read all of the data written, the writing task run again. If the writing task
closes the file (file descriptor from AO) and the reading task consumes all of the data, an end-of­
file condition results.

DIAGNOSTICS
Issues an error if too many files and pipes are opened.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-21

SYSTEM CALLS
crtsd

crtsd

USAGE
sys crtsd,fname,desc,address

DESCRIPTION
This call creates a special file (device) or a new directory. Fname specifies the name of the new
file; desc is a 16-bit descriptor that describes the file's type and permissions. If the file being
created is a special file, the address argument specifies the internal device number. The
descriptor has the type as the most significant byte and the permissions as the least significant
byte. Their definitions follow:

Types

TPBLK => %00000010 ($02) block type device
TPCHR => %00000100 ($04) character type device
TPDIR => %00001000 ($08) directory type file

Permissions

FACUR => %00000001 ($01) owner read permission
FACUW => %00000010 ($02) owner write permission
FACUE => %00000100 ($04) owner execute permission
FACOR => %00001000 ($08) others read permission
FACOW => %00010000 ($10) others write permission
FACOE => %00100000 ($20) others execute permission
FXSET => %01000000 ($40) set id bit for execute

DIAGNOSTICS
Issues an error if the file already exists or if the caller is not the system manager.

4-22

SYSTEM CALLS
deface

deface

USAGE
sys deface, penn

DESCRIPTION
Deface set the default access pennissions as specified by perm. Nonnally, when a file is created,
it is given the pennissions specified in the create system call. The value specified by create is
ANDed with the one's-compliment of a per-task value known as the default pennissions. This
process turns off or disables the pennissions contained in the default pennissions byte, no matter
what the specified pennissions are in the create call. The deface call is used to set the default
pennissions. All forks and execs pass on the existing default value. See ehprm for a list of the
pennission bits and their meaning.

DIAGNOSTICS
No errors generated.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-23

SYSTEM CALLS
dup

dup

USAGE
<file descriptor in DO>
sys dup
<file descriptor in DO>

DESCRIPTION
Dup duplicates the specified file descriptor; in other words, the file associated with the file
descriptor is opened again and given another descriptor, which is returned. The new file is
opened with the same mode as the original (e.g., if the original was open for read, so will the new
one).

DIAGNOSTICS
Issues an error if too many files are opened or the file descriptor is invalid.

4-24

dups

USAGE
<file descriptor in DO>
<specified descriptor in AO>
sys dups
<file descriptor in DO>

DESCRIPTION

SYSTEM CALLS
dups

This call is like dup except the caller may specify the file descriptor of the duplicated open file.
If the specified descriptor is already open, it is closed before being duplicated.

DIAGNOSTICS
Issues an error if too many files are open, or if the file descriptors are invalid.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-25

SYSTEM CALLS
exec

exec

USAGE
sys exec,fname,arglist

fname fcc" ",0

arglst fqb argO,argl, ... ,0
argO fcc" II ,0
argl fcc" ",0

DESCRIPTION

The exec system call executes a binary file. Fname specifies the file to be executed. The calling
task will be terminated and the new one started up. There is no return from a successful exec. A
return indicates an error condition. All open files remain open through the exec. Interrupts that
are being ignored stay in that state, but those that are being caught are reset to their default state.

When the file starts executing, the following arguments are available:

... highest address in task space
o

argO: <argO>
o
argn

argO
sp -> argcnt
. .. low memory ...

The stack pointer is pointing at a 4-byte argument count. Above that is a list of pointers to the
actual arguments, which are at the highest part of memory. Two zero bytes are left at the very
top of the task address space.

DIAGNOSTICS
Results in an error (and a return to the caller of exec) if the file does not exist, it was not
executable binary, there were too many arguments (approximately 3,000 bytes max), or the
memory space was exceeded.

4-26

SYSTEM CALLS
exece

exece

USAGE
sys exece,fname,arglist

fname fcc" ",0

arglst fqb argO , arg 1 , ... ,0
argO fcc" ",0
argl fcc" ",0

DESCRIPTION
The exece system call executes a binary file. Fname specifies the file to be executed. The calling
task will be terminated and the new one started up. There is no return from a successful exece. A
return indicates an error condition. All open files remain open through the exece. Interrupts that
are being ignored stay in that state, but those that are being caught are reset to their default state.

When the file starts executing, the following arguments and environment variables are available:

. .. highest address in task space
o

env varD: <env varD> - -o

argO: <argO>
o
env varn

env varnO
o
argn

argO
sp -> argcnt
... low memory

Arguments are passed to a program by leaving them on the system stack. When initiating a
program, the system stack pointer (A 7) is left pointing at the argument count (see Figure 1). Any
arguments passed to the program are found in a special format just above the argument count.
The environment variables are also found in this area.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-27

SYSTEM CALLS
exece

\ 0

ENVIRONMENT STRING POINTERS r--I ENVIRONMENT STRING (n) \ 0 I
•
I

ENVIRONMENT STRING POINTERS i ENVIRONMENT STRING (1) \ 0 I
\ 0

ARGUMENT STRING POINTER -I ARGUMENT STRING (n) \ 0
•

ARGUMENT STRING POINTER JL ARGUMENT STRING (1) \ 0

I STACK POINTER I .. ARGUMENT COUNT ...

5927-1

Figure 4-1. Argument And Environment Variables.

The arguments themselves are simply strings of characters which the program must know how to
use. In order to easily find these strings, the system provides a list of pointers to the beginning of
the strings. In addition, the system provides a count of how many arguments have been passed.

The pointers to the environment variables are found in memory, directly above the pointers to the
arguments. Unlike argument strings, there is no count of the pointers to the environment
variables, however they are terminated by a null pointer.

DIAGNOSTICS
Results in an error (and a return to the caller of exece) if the file does not exist, it was not
executable binary, there were too many arguments (approximately 3,000 bytes max), or the
memory space was exceeded.

4-28

I

I

SYSTEM CALLS

fentl

USAGE
<file-descriptor in DO>
sys fcntl,function
<state in DO>

DESCRIPTION

lentl

This function is used to change or interrogate the behaviour of a file in the system. Various
behaviours may be modified on a file-by-file, task-by-task basis. Each behaviour may be
set/reset by using a specific function to the JcntU) function.

The function returns a mask that indicating the state of the behaviours that can be modified.

Currently, the functions available are:

FCNTL _NOBLOCK Subsequent read operations on this file descriptor will not cause the task to
be suspended if no data is available. In this mode, the error ENOINPUT
will be returned if no data is available and the signal "INPUT READY"
will be sent to the task when data becomes available.

FCNTL BLOCK Returns the file descriptor to normal blocking mode.

FCNTL _GET _PARAMS Returns the state mask.

FCNTL_INPUT_FD Returns the file descriptor (in DO) of the last file which sent the signal
"INPUT READY".

The value returned is a combination of the state bits below:

FCNTL_P _BLOCK Reads from the file will not cause the task to be suspended. Also, the
signal "INPUT READY" will be sent when input becomes available.

DIAGNOSTICS
No errors are reported

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-29

SYSTEM CALLS
filtim

filtim

USAGE
<time in DO>
sys filtim,fname

DESCRIPTION
Filtim sets the last modified time of the specified file to the value contained in the DO register.
The operating system represents time as the number of seconds that has elased since the epoch. It
defines the epoch as 00:00 (midnight) January I, 1980 Grennwich Mean Time. Only the system
manager can execute this call.

DIAGNOSTICS
Returns an error if the file does not exist, if the file is currently open by another task, or if the
caller is not the system manager.

4-30

SYSTEM CALLS
fork

fork

USAGE
sys fork
<new task returns here>
<old task here (pc+2), new task id in DO>

DESCRIPTION
Fork creates a new task. The new task inherits a copy of the caller's core image, all open files,
and file pointers. The new task is identical to the original except that the old task returns 2 bytes
past the system call and has the newly created task's id in the DO register.

DIAGNOSTICS
Issues an error if more than 32 tasks have been created or the system task table is full.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-31

SYSTEM CALLS
gtid

gtid

USAGE
sys gtid
<task id in DO>

DESCRIPTION
This call returns the current task's system id. This number can be used to generate unique file
names.

DIAGNOSTICS
No errors are returned.

4-32

guid

USAGE
sys guid
<actual user id in DO>
<effective user id in AO>

DESCRIPTION

SYSTEM CALLS
guid

Guid returns both the actual user id (which identifies the login id of person logged on the system)
and the effective id (which defines the current access permissions of the running task).

DIAGNOSTICS
No errors are possible.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-33

SYSTEM CALLS
ind

ind

USAGE
sys ind,label

DESCRIPTION

The inti system call is used where it is necessary to create system calls or their arguments on the
fly (in the running program). The label points to an address that contains the actual call and its
arguments. the task resumes execution after the sys inti and not after the labeled code. Another
ind or indx call may not be called from indo

DIAGNOSTICS
Issues an error if the value at the label is not a valid system call, or if it is an indirect call.

4-34

SYSTEM CALLS
indX

indx

USAGE
sys indx

DESCRIPTION

This call is similar to ind, but allows the system function code and arguments to be anywhere in
memory. including the stack. Where ind had a label pointing to the system call and parameters,
this call requires AO to point to the call and parameters. One application of indx is to push the
arguments and system call code on the stack. point to the call, then issue an indx call. Another
ind or indx call may not be called from indx.

DIAGNOSTICS
Reports an error if the system function is not a valid system call, or if it is another indirect call.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-35

SYSTEM CALLS
link

link

USAGE
sys link,fname 1 ,fname2

DESCRIPTION
This call links [name1 to [name2. After the link, reference to [name2 will access the contents of
[name1. The files ~ntents and attributes are not changed in any way.

DIAGNOSTICS
Issues an error if [name1 does not exist, if [name2 already exists, if [name2's directory is write
protected, if [name1 is a directory, or if the file names are on different devices.

4-36

SYSTEMCAUS
lock

lock

USAGE
sys lock,flag

DESCRIPTION
Lock keeps a task from being swapped (that is, it locks a task in memory). Only the system
manager may execute this call. If flag is non-zero, the task is locked; if it is zero, the task is
unlocked.

DIAGNOSTICS
Issues an error if the caller is not the system manager.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-37

SYSTEM CALLS
l1'ec

Iree

USAGE
<file descriptor in DO>
sys lrec,count

DESCRIPTION
Lrec makes an entry in the system's locked record table. Before the new entry is made, all other
entries in the table associated with the calling task and the specified file is removed. Count
represents the number of bytes in the file (record size) to be locked from the current file position.
If the specified record overlaps any part of another task's entry in the lock table for the same file,
an error results (ELOCK). Only regular files may be referenced (e.g., no devices, . pipes, or
directories). Closing a file removes the lock table entry created as does the uret: system call.
Note that the part of the file specified is not actually locked from other's use, but proper use of
the lrec and urec calls will have the same effect.

DIAGNOSTICS
Produces an error if there is no file for the specified descriptor, the file is not a regular file, the
record is locked by another task, or the lock table is temporarily full.

4-38

SYSTEM CALLS
memman

memman

USAGE
sys memman,function,start_ address,end _address

DESCRIPTION
The memman system call is used to control regions of memory. The region of a task's logical
address space is specified by start_address and end_address.

In all cases, the region operated on is a set of pages and may be different than the address range
specified. Depending upon the function selected, the pages selected are rounded outward or
inward to the next page boundary. The function arguments, 0 - 5, defines control activity that
rounds the page size outward. By adding 32 to the function argument, the page size is rounded
inward.

The function argument defines the control activity:

Rounds Page Size Function Operation
0 Clear the "dirty bit"
1 Lock the region in memory

Outward 2 Unlock the region from memory
3 Write disable the region
4 Write enable the region
5 Release the storage associated with the region

32+0 Clear the "dirty bit"
32+1 Lock the region in memory

Inward 32+2 Unlock the region from memory
32+3 Write disable the region
32+4 Write enable the region
32+5 Release the storage associated with the region

DIAGNOSTICS
Issues an error if the function number is not valid, the address range specified is out of the task's
address space, or if the start_address is greater the the end_address.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-39

SYSTEM CALLS
mount

mount

USAGE
sys mount,sname,fname,mode

DESCRIPTION
Mount mounts a special file on the file system. The file /name should be a directory; after the
mount, any reference to /name will reference the root directory of the special file (block device)
sname. The mode is normally 0; if it is non-zero, the device is mounted as read only (Le. writing
not permitted).

DIAGNOSTICS
Issues an error if sname is not an appropriate file, if it is already mounted, if/name does not exist,
or if too many devices are currently mounted.

4-40

of stat

USAGE
<file descriptor in DO>
sys ofstat,buffer

DESCRIPTION

SYSTEM CALLS
oJstat

This call returns the status of an open file. The file is referenced by its file descriptor (obtained
when the file was opened or created). The status infonnation is returned in the user space pointed
at by buffer. See the status call for a description of the returned infonnation.

DIAGNOSTICS
Returns an error if the file descriptor is not valid (i.e. the file is not open or the descriptor is out­
of-range).

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-41

SYSTEM CALLS
open

open

USAGE
sys open,fname,mode
<file descriptor in DO>

DESCRIPTION

Open opens an existing file called/name. The file is opened for reading ifmode is 0, for writing
if mode is 1, or for both reading and writing if mode is 2. Open returns a file descriptor that must
be used for future file references.

DIAGNOSTICS
An errorwiU··be issued· if the file does not exist, the path directories cannot be searched, too many
files are open, or the permissions do not grant the requested mode.

4-42

SYSTEM CALLS
phys

phys

USAGE
sys phys,object
<logical base address in DO>

DESCRIPTION

The phys system call permits access to certain system resources. Resources represented by object
are:

Object Resource
1 Display bit map
2 Reserved
3 Reserved
4 Time of day clock

The object numbers are defined above. If the number is positive, the resource is mapped into the
task's address space. If the number is negative, it is mapped out. An object number of 0 unmaps
all previously mapped in resources. The logical address of the base of the mapped in resource is
returned in DO.

DIAGNOSTICS
Returns an error if the object number is not valid.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 4-43

SYSTEM CALLS
profile

profile

USAGE
sys profil,prpc,buffer,bsize,scale

DESCRIPTION
The profile call sets up a buffer and parameters that the system uses to profile a running task. If
profiling is enabled, each time a clock tick occurs (every tenth second) a word in the buffer that
corresponds to the current value of the program counter in the running task is incremented. The
prpc value represents the lowest address in the running task to be profiled. The argument buffer
specifies the address of the profile buffer, and bsize specifies its size. The buffer size also
determines the highest address in the running task to be profiled since pc addresses too large to be
mapped into the buffer are ignored.

The scale value is used to scale the task program counter and must be a power of 2 (maximum
size is 128). Profiling may be disabled by setting scale to 0 or 1.

Here's what happens when a clock interrupt occurs during execution of a task for which profiling
is enabled:

1. The profile value prpc is subtracted from the task's current program counter, and the result
is divided by the scale factor.

2. This value is then multiplied by 2 to form an offset into the buffer.

3. If this offset is less than bsize, the 16 bit word residing at buffer+offset is incremented by
one.

DIAGNOSTICS
No errors are issued.

4-44

read

USAGE
<file descriptor in DO>
sys read,buffer,count
<bytes read in DO>

DESCRIPTION

SYSTEM CALLS
read

This call reads the file represented by the specified file descriptor. The memory in the user's
space pointed to by buffer is filled with data from the file. A maximum of count bytes is read.
All bytes requested will not necessarily be returned. If the file is a terminal, at most, one line is
returned. If the returned byte count is zero and no error is reported, the end-of-file has been
reached. I/O requests block the current program until the read is fullfilled.

DIAGNOSTICS
Issues an error if a physical I/O error occurred, or if a bad file descriptor or bad count was
specified.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-45

SYSTEM CALLS
rump

rump

USAGE
<resource-name in AO>
sys rump,function

DESCRIPTION

The function RUMP CREATE creates a new named resource. The purpose of such resources is
to provide a mechanism for controlling access to physical resources such as I/O devices or special
shared memory. There are four operations which may be applied to a named resource. These
are:

create
destroy
enqueue
dequeue

create the resource
remove the resource from the system
obtain exclusive access to the resource
relinquish access to the resource.

If the create function succeeds, a new named resource will be created with the name given by the
argument resource. This must be a NULL terminated character string of 16 or fewer characters
(including the NULL). Otherwise, it returns the system error code in DO.

The create function does not give access of the resource to to the creator.

The function RUMP_ENQUEUE obtains exclusive access to the named resource for the task.

If the function succeeds, access to the named resource with the name given by the argument
resource will be granted. Otherwise, it returns the system error code in DO.

If any other task currently has access to the resource, the calling task will wait until the resource
becomes free. This waiting is done in a First-In/First-Out fashion to guarantee equal access to all
tasks.

The function RUMP_DEQUEUE releases access to the named resource.

If the function succeeds, access to the named resource with the name given by the argument
resource will be given up. Otherwise, it returns the system error code in DO.

If any other tasks are currently waiting for access to the resource, then the first such task will be
gi ven access to the resource.

4-46

SYSTEM CALLS
rump

The function RUMP flESTROY destroys a named resource.

If the function succeeds, the named resource with the name given by the argument resource will
be destroyed. Otherwise, it returns the system error code in DO.

Only an idle resource can be destroyed. If any task currently has access to the resource, the
destroy function is not permitted.

DIAGNOSTICS
No errors are reported

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-47

SYSTEM CALLS
seek

seek

USAGE
<file descriptor in DO>
sys seek,position,type
<position in DO>

DESCRIPTION
Seek positions a file's read/write pointer to the specified file location. The file is specified by the
file descriptor. The argument position represents a four-byte, signed offset. The starting point
for this offset is determined as follows by the type argument:

type starting position
o Position from the beginning of the file
1 Position from the current position
2 Position from the end of the file

The returned value is the resulting position of the file.

If a seek is performed past the end of the file when writing, a gap in the file is created (no actual
device space is allocated). This gap is read as zeros. To determine the current position in the file,
use sys seek,O,I, which positions the pointer 0 bytes from the current position.

DIAGNOSTICS
Returns an error if a file descriptor is invalid or if the seek is attempted on a pipe.

4-48

setpr

USAGE
<priority bias in DO>
sys setpr

DESCRIPTION

SYSTEM CALLS
setpr

Setpr sets the priority bias used by the system scheduler. The value specified is subtracted from
the normal user priority, so the effect is that of lowering the task's priority. Only the system
manager may specify negative arguments (which will increase the task's priority). The priority
bias specified should be in the range of 25 to -25.

DIAGNOSTICS
No errors are issued.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 449

SYSTEM CALLS
spint

spint

USAGE
<task number in DO>
sys spint,interrupt

DESCRIPTION
This call sends a program interrupt to a task. The task is specified by its task number; the
receiving task must have the same effective user id unless the caller is the system manager. The
interrupt argument specifies which interrupt to send. See cpint for a list of interrupts.

If the specified task number is zero, the interrupt is sent to all tasks associated with the caller's
control terminal. If the task number is -1 and the caller is the system manager, the interrupt is
sent to all tasks in the system with the exception of tasks 0 and 1 (the scheduler and the
initializer).

DIAGNOSTICS
Issues an error if the specified task does not exist or if the effective user id's do not match.

4-50

stack

USAGE
<address in AO>
sys stack

DESCRIPTION

SYSTEM CALLS
stack

The system extends the user's stack memory to include the address specified. If the address is
higher than what is currently allocated, all lower memory is released to the system. A task
initially starts with stack space between 100 and 3000 bytes depending on the number of
arguments passed from exec. The system automatically allocates additional space to the stack.
This call allows explicit control over the stock allocation.

DIAGNOSTICS
Issues an error if the request for memory overflows into the data segment.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-51

SYSTEM CALLS
status

status

USAGE
sys status,fname,buffer

DESCRIPTION
The file jname has its status read and returned to the user in the space specified by buffer. The
data returned by this call (as well as ojstat) has the following format:

* buffer begin *
st dev rmb 2 device number
st fdn rmb 2 fdn number
st_ fil rmb 1 filler for alignment
st mod rmb 1 file modes - see below -
styrm rmb 1 permission bits - see below -
st cnt rmb 1 link count
st-own rmb 2 file owner's user id
st_siz rmb 4 file size in bytes
st mtm rmb 4 last time file was modified
st_spr rmb 4 future use only

* mode codes

FSBLK => %00000010 ($2) block device
FSCHR => %00000100 ($4) character device
FSDIR => %00001000 ($8) directory

* permissions

FACUR => %00000001 ($01) owner read permission
FACUW => %00000010 ($02) owner write permission
FACUE => %00000100 ($04) owner execute permission
FACOR => %00001000 ($08) others read permission
FACOW => %00010000 ($10) others write permission
FACOE => %00100000 ($20) others execute permission
FXSET => %01000000 ($40) set id bit for execute

DIAGNOSTICS
Issues an error if the file does not exist or the directory path cannot be searched.

4-52

stime

USAGE
<ti.meinDO>
sys stime

DESCRIPTION

SYSTEM CALLS
stime

This call sets the system time and date. The time is measured in seconds from 0000 January 1,
1980, local time. Only the system manager can execute this call.

DIAGNOSTICS
Reports an error if the caller is not the system manager.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-53

SYSTEM CALLS
stop

stop

USAGE
sys stop

DESCRIPTION

Stop halts a task until a program interrupt is received from spint or alarm. When stop returns, it
will always have an ~rror (EINTR) .. The system error list is found in the file / liblsyserror.

DIAGNOSTICS
Always returns with an error (EINTR).

4-54

suid

USAGE
<user id in DO>
sys suid

DESCRIPTION

SYSTEM CALLS
suid

This call sets the effective and actual user id. While a program is running, you can change the
effective user id of the program's user to the actual id of the program's owner. This call can be
executed only if the actual user id matches the id in the argument, or if the caller is the system
manager. If you are the system manager, you can change the actual user id of any user.

DIAGNOSTICS
Issues an error if the caller is not the system manager or if the actual user id does not match.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-55

SYSTEM CALLS
term

term

USAGE
<status in DO>
sys tenn

DESCRIPTION

Term tenninates the current task. The status specified is made available to the parent task. The
status is usually zero if there were no errors in the tenninating task. A non-zero status should
indicate some error condition. This system call does not retum to the caller.

DIAGNOSTICS
No errors reported.

4-56

SYSTEM CALLS
time

time

USAGE
sys time,tbuf

DESCRIPTION
The time call returns the system's current time. Internally, the time is kept as a four-byte number,
representing the number of seconds that have elapsed since 0000 January 1, 1980 local time. The
time information is placed at the address specified by tbuf and has the following format:

tm sec rmb 4 Time in seconds
tm_tik rmb 1 Ticks in current second (tenths)
tm dst rmb 1 Reserved
tm zon rmb 2 Reserved

The tm _ tik value may be used for finer measurements.

NOTE

The time system call does not permit the result buffer to reside in
the text segment. An attempt to do so results in an address error
exception. Put the buffer in the data or stack segment.

DIAGNOSTICS
No errors are issued.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-57

SYSTEM CALLS
truncate

truncate

USAGE
<file descriptor in DO>
sys truncate

DESCRIPTION

The truncate system call truncates an existing file's size. The file must be opened for write and
the file descriptor passed in DO. The file is truncated at the current file position. To truncate at a
specified location, it is necessary to use the seek system call prior to truncate.

DIAGNOSTICS

Returns an error if the file descriptor is not valid or the file is not open for write.

4-58

SYSTEM CALLS
ttime

ttime

USAGE
sys ttime,buffer

DESCRIPTION
This call is used to obtain the accounting time information about a task. All times are represented
in tenths of seconds. The information is returned to the user at buffer and has the following
format:

ti usr rmb 4 Task's usertime
ti_sys rmb 4 Task's system time
ti chu rmb 4 Children's user time
ti_chs rmb 4 Children's system time

The child times shown are the totals of all children tasks spawned by this task and its children.

DIAGNOSTICS
No errors are issued.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-59

SYSTEM CALLS
ttyget

ttyget

USAGE
<file descriptor in DO>
sys ttyget,ttbuf

DESCRIPTION
This call returns infonnation about a tenninal. The infonnation returned is put in the 6-byte
buffer pointed to by ttbuf. The following fonnats describe the data:

* ttbuf

tt flg nnb 1 Flags byte - see below -
tt-dly nnb 1 Delay byte - reserved -
tt = cnc nnb 1 Line cancel char (default is AX)
tt_ bks nnb 1 Backspace character (default is AH)
tt_spd nnb 1 Tenninal speed - see below -
tt_spr nnb 1 Stop output byte - see below-

* flags

RAW => %00000001 ($01) Raw i/o mode
ECHO => %00000010 ($02) Echo input characters
XTABS => %00000100 ($04) Expand tabs on output
CRMOD => %00010000 ($10) Output cr and lfforcr
BSECH => %00100000 ($20) Echo backspace echo char
SCHR => %01000000 ($40) Single character input mode

* speeds

INCHR => %10000000 ($80) Input ready to be consumed

* stop output

XANY => %00100000 ($20) Accept any character to restart output
XONXOF => %01000000 ($40) Enable XON/XOFF for start/stop output
ESCOFF => %10000000 ($80) Disable ESC for start/stop output

For more infonnationabout the ttyset function, refer to the topic THE "ttyset" AND "ttyget"
FUNCTIONS in section 2 of this manual.

DIAGNOSTICS
Returns an error if the specified file is not a character device.

4-60

SYSTEM CALLS
ttynum

ttynum

USAGE
sys ttynum
<tenninal number in DO>

DESCRIPTION
This call returns the number of the calling task's terminal. For example, tty02 returns $0002 in
the DO register.

DIAGNOSTICS
No errors are issued.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-61

SYSTEM CALLS
ttyset

ttyset

USAGE
<file descriptor in DO>
sys ttyset,ttbuf

DESCRIPTION
This call sets device dependent information described in ttyget. For /dev/console, the data in ttbuf
is exactly as described in ttyget. For more information about the ttyset function, refer to the topic
THE "ttyset" AND "ttyget" FUNCTIONS in section 2 of this manual.

In normal use, you would first execute a ttyget system call to obtain the existing configuration.
Next, use the logical operators AND or OR to set or clear the desired bits. (Be careful not to alter
any bits other than those that must be changed.) Finally, execute the ttyset system call.

DIAGNOSTICS
Issues an error if the file specified is not a character device.

SYSTEM CALLS
unlink

unlink

USAGE
sys unlink,fname

DESCRIPTION
Unlink removes the fname entry from a directory. If this is the last link to the file, the file will be
deleted and its device space will be freed. If the file is open, it will not be destroyed until the file
is closed.

DIAGNOSTICS
Issues an error if the file does not exist, the directory cannot be written, or the directory path
cannot be searched.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-63

SYSTEM CALLS
unmnt

unmnt

USAGE
sys unmnt,sname

DESCRIPTION

This call unmounts a special file sname from the system. The file associated with the special file
reverts to its ordinary interpretation (see mount).

DIAGNOSTICS
Issues an error if the file system specified is busy or is not mounted.

4-64

SYSTEM CALLS
updlite

update

USAGE
sys update

DESCRIPTION

Update updates all infonnation on the disks; it writes out all data that is in memory waiting to be
written to the disks.

DIAGNOSTICS

No errors are reported.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 4-65

SYSTEM CALLS
uree

urec

USAGE
<file descriptor in DO>
sys urec

DESCRIPTION
Urec removes an entry in the system's lock table (previously installed by Irec). All entries
associated with the calling task and specified file are removed.

DIAGNOSTICS
Issues an error if the specified file descriptor is bad.

4-66

SYSTEM CALLS
vfork

vfork

USAGE
sys vfork
<new task returns here>
<old task here (pc+2), new id in DO>

DESCRIPTION
Vfork is a more efficient fork operation and is only available on virtual memory systems. Its
operation is identical to fork but instead of the child task receiving new memory, it uses the same
memory as the parent. After a vfork, the parent is halted until the child task either terminates or
execs another file.

There are several restrictions placed on the child task created by vfork. The system will not let
the child change its memory size or execute the system calls memman, fork, or vfork. The user of
vfork should make sure the child task does not alter the stack frame in any way or change data
that the parent is not expecting changed.

DIAGNOSTICS
Issues an error if too many tasks have been created or if the system task table is full.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 4-67

SYSTEM CALLS
wait

wait

USAGE
sys wait
<task id in DO>
<tenn status in AO>

DESCRIPTION
This call is used to wait for a program interrupt or the tennination of a child task. A wait must be
executed for each of a task's children. The task id of the terminated task is returned, as well as its
tennination status. The low byte of this status is the value passed by the term system call. A
non-zero value here usually represents some sort of error condition. The high byte of the status is
zero for nonnal tennination. If non-zero, this byte contains the interrupt number that caused it to
tenninate. If the most significant bit of the status is set, a core dump was produced as a result of
tennination. Consult cpint for a list of interrupt numbers.

DIAGNOSTICS
Issues an error if there are no children tasks.

4-68

write

USAGE
<file descriptor in DO>
sys write,buffer,count
<byte count written in DO>

SYSTEM CALLS
write

Write writes count bytes of data from location buffer to the file specified by the file descriptor. If
the returned byte count does not equal the requested count, it should be considered an error.
Writes that are multiples of 512 bytes and begin on 512 byte address boundaries are the most
efficient.

DIAGNOSTICS
Issues an error if the file descriptor is invalid or if a physical I/O error resulted.

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 4-69

Section 5

DISPLAY ACCESS FUNCTIONS
The operating system provides access to display functions through the processor's trap
instruction. To invoke these functions, load register DO with the function code (parameters for
the functions go in other registers) and issue a trap #13 instruction.

On return, the carry bit is cleared if there were no errors. If an error occurs, the carry bit is set
and register DO contains an error code. Table 5-1, Display Function Codes summarizes the
display function codes.

When functions pass an X,Y coordinate pair in registers, the X-coordinate is a signed 16-bit
integer value in the upper half of the register, the Y-coordinate is a signed 16-bit integer value in
the lower half of the register.

A program using two display functions follows. The program inverts the display so text is white
on a black background, waits for two seconds, then returns the display to normal.

lib sysdef
lib sysints
lib sysdisplay
text

start sys cpint,SIGALRM, wake catch alarm and goto wake

move.1 #whiteOnBlack,dO whiteOnBlack equ #13
trap #13 access display function

move.1 #2,dO set seconds for alarm
sys alarm begin alarm call
sys stop wait for alarm interrupt

wake move.1 #blackOnWhite,dO blackOnWhite equ #12
trap #13 access display function

move.1 #0 ,dO get status in DO
sys term terminate task
end start

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-1

DISPLAY ACCESS FUNCTIONS

Code Name
0 curserOn
1 curserOff
2 curserLink
3 curserUnlink
4 curserPanOn
5 cuserPanOff
6 displayOn
7 displayOff
8 joyPanOn
9 joyPanOff
10 timeoutOn
11 timeoutOff
12 blackOn White
13 whiteOnBlack
14 terminalOn
15 terminalOff
16 getMousePoint

17 setMousePoint

18 getCursorPoint

19 setCursorPoint

20 getButtons
21 setSource

22 setDest

23 updateComplete

24 getCursorform
25 setCursorform
26 getViewport

27 setViewport

28 getDisplayState

29 setKeyboardCode

30 getMouseBounds

31 setMouseBounds

32 XYtoRC
33 RCtoXY
34 setCursorOffset
35 getCursorOffset

5-2

Table 5-1
Display Function Codes

Description
Displays the cursor
Suspends display of the cursor
Causes the cursor to track the mouse
Breaks the links that caused the cursor to track the mouse
Causes the viewport to pan when the cursor reaches an edge
Disables viewport panning via cursor movement
Makes the display visible
Blanks the display
Turns on panning viajoydisk
Disconnects the joydisk from viewport panning
Causes the screen to automatically blank if inactive for ten minutes
Disables automatic blanking
Sets the display to Normal Video mode
Sets the display to Inverse Video mode
Enables use of the terminal emulator with the display
Disables use of the terminal emulator with the display
The position of the mouse is returned as an (X,y) pair in the high and low
halves of register DO
The current mouse position is set to the position passed as an (X,y) pair in
the high and low halves of register DO
The current cursor position is returned as an (X, Y) pair in the high and
low halves of register DO
The current cursor position is set to the position passed as an (X,y) pair in
register DO
The state of the mouse buttons is returned in register DO
The source rectangle for a bitBlt operation is passes as an argument in
registers Dl and D2
The destination rectangle for a bitBlt operation is passed as an argument in
registers Dl and D2
This function allows the cursor to be displayed in areas previously
specified as source or destination rectangles
This function gets the cursor
This stores the image of the cursor
Returns the position of the upper left corner of the physical 640 X 480
physical viewport in the 1024 X 1024 virtual display
Sets the display hardware to start updating from a specific position within
the display bit-map
The current state of the display is returned in a record pointed to by
register AO
The form of output generated by the keyboard is set by the value passed in
D1
Return the limits of the rectangle within which the mouse and cursor are
constrained in DO and D
Set the limits of the rectangle within which the mouse and cursor are
constrained
Convert screen coordinates to terminal row and column
Convert terminal row and column to screen coordinates
The cursor offset is passed as an (X, Y) pair in register D 1
The cursor offset is returned as an (X, Y) pair in register DO

Display Functions

cursorOn

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description
Display Function 0

DISPlAY ACCESS FUNCTIONS

Displays the cursor. Returns 1 in DO if the cursor was previously enabled, 0 if it was not.

cursorOff

Usage
<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description
Display Function 1

Suspends display of the cursor. Returns 1 in DO of the cursor was previously enabled, 0 if it was
disabled.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-3

DISPLAY ACCESS FUNCTIONS

cursorLink

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 2

Causes the cursor to track the mouse. The mouse location is set to the present cursor location.
Returns 1 in DO if the cursor was previously linked, 0 if it was not.

cursorUnlink

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 3

Breaks the links that caused the cursor to track the mouse. Returns 1 in DO if the cursor and
mouse were linked, 0 if not.

5-4

cursorPanOn

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 4

DISPLAY ACCESS FUNCTIONS

Causes the viewport to pan when the cursor reaches an edge. Returns 1 in DO if previously
enabled, 0 if not.

cursorPanOff

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 5

Disables viewport panning via cursor movement. Returns 1 in DO if previously enabled, 0 if not.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-5

DISPlAY ACCESS FUNCTIONS

displayOn

Usage
<display function in DO>
trap #13
<error code in DO>

Description

Display Function 6

Makes the display visible. Returns 1 in DO if previously visible, 0 if blanked.

displayOff

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description
Display Function 7

Blanks the display, by turning the display off. Returns 1 in DO if previously visible, 0 if blanked.

5-6

joyPanOn

Usage
<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description
Display Function 8

DISPLAY ACCESS FUNCTIONS

Turns on panning via joydisk. Returns 1 in DO if previously enabled, 0 if not

joyPanOff

Usage
<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description
Display Function 9

Disconnects the joydisk from viewport panning. Returns 1 in DO if panning were previously
enabled, 0 if not.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-7

DISPLAY ACCESS FUNCTIONS

timeoutOn

Usage
<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description
Display Function 10

Causes the screen to automaticallY blank if inactive for ten minutes. Returns 1 in DO if
previously enabled, 0 if not.

timeoutOff

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 11

Disables automatic blanking. Returns 1 in DO if previously enabled, 0 if not.

5-8

blackOnWhite

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 12

DISPLAY ACCESS FUNCTIONS

Sets the display to Normal Video mode. Returns 1 in DO if was previously black on white, 0 if
white on black.

whiteOnBlack

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 13

Sets the display to Inverse Video mode. Returns 1 in DO if was previously black on white, 0 if
white on black.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-9

DISPLAY ACCESS FUNCTIONS

terminalOn

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 14

Enables use of the terminal emulator with the display. Returns 1 in DO if previously enabled, 0 if
not.

terminalOff

Usage

<display function in DO>
trap #13
<if carry is cleared, previous state in DO>
<if carry is set, error code in DO>

Description

Display Function 15

Disables use of the terminal emulator with the display. Returns 1 in DO if previously enabled, 0
if not.

5-10

getMousePoint

Usage

<display function in DO>
trap #13
<if carry is cleared, coordinates state in DO>
<if carry is set, error code in DO>

Description

Display Function 16

DISPLAY ACCESS FUNCTIONS

The position of the mouse is returned as an (X,Y) pair in the register DO. The X-coordinate is in
the high half and the Y -coordinate is in the low half of register DO. If the cursor is linked to the
mouse, this is the same as the mouse position.

setMousePoint

Usage

<display function in DO>
<new mouse X,Y pair in Dl >
trap #13
<if carry is cleared, 0 in DO>
<if carry is set, error code in DO>

Description

Display Function 17

The current mouse position is set to the position passed as an (X, Y) pair in the high (X) and low
(Y) halves of register DO. If the cursor is linked to the mouse, the cursor position is also set.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-11

DISPLAY ACCESS FUNCTIONS

getCursorPoint

Usage

<display function in DO>
trap #13
<if carry is cleared, coordinates state in DO>
<if carry is set, error code in DO>

Description

Display Function 18

The current cursor position is returned as an (X,Y) pair in the high (X) and low (Y) halves of
register DO. If the cursor is linked to the mouse, this is the same as the mouse position.

setCursorPoint

Usage

<display function in DO>
<new cursor position X, Y pair in D 1 >
trap #13
<if carry is cleared, 0 in DO>
<if carry is set, error code in DO>

Description

Display Function 19

The current cursor position is set to the position passed as an (X,Y) pair in register Dl. The X­
coordinate is in the top half of register Dl and the Y-coordinate is in the lower half of Dl. If the
mouse is linked to the cursor, the mouse position is also set.

5-12

DISPLAY ACCESS FUNCTIONS

getButtons

Usage
<display function in DO>
trap #13
<if carry is cleared, bitmask with current state of mouse buttons in DO>
<if carry is set, error code in DO>

Description
Display Function 20

The state of the mouse buttons is returned in register DO. Bit 0 corresponds to the right button,
bit 1 to the middle button, and bit 2 to the left button. Zero in a bit indicates that the
corresponding button is up, one indicates that it is pressed. The carry bit is cleared if there are no
errors.

setSource

Usage

<display function in DO>
<X,Y coordinates of upper left comer of rectangle in D1>
<X,Y coordinates of lower right comer of rectangle in D2>
trap #13
<if carry cleared, undefined code in DO>
<if carry cleared, undefined code in D 1 >
<if carry cleared, undefined code in D2>
<if carry set, error code in DO>

Description
Display Function 21

The source rectangle for a bitBlt operation is passes as an argument in registers D1 and D2. It is
encoded as:

upper-left-corner (XO,YO) in the high and low halves of
register Dl

lower-right-corner (Xl,Yl) in the high and low halves of
register D2.

The operating system insures that the cursor is not displayed in this area. The carry bit is cleared
to indicate no errors.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-13

DISPLAY ACCESS FUNCTIONS

setDest

Usage

<display function in DO>
<X,Y coordinates of upper left corner of rectangle in Dl>
<X, Y coordinates of lower right corner of rectangle in D2>
trap #13
<if carry cleared, undefined code in DO>
<if carry cleared, undefined code in D 1 >
<if carry cleared, undefined code in D2>
<if carry set, error code in DO>

Description

Display Function 22

The destination rectangle for a bitBlt operation is passed as an argument in registers Dl and D2.
It is encoded as:

upper-left-corner (XO,YO) in the high and low halves of
register Dl

lower-right-corner (Xl,Yl) in the high and low halves of
register D2.

The operating system insures that the cursor is not displayed in this area. The carry bit is cleared
to indicate no errors.

updateComplete

Usage

<display function in DO>
trap #13
<if carry is cleared, 0 in DO>
<if carry is set, error code in DO>

Description

Display Function 23

This function allows the cursor to be displayed in areas previously specified as source or
destination rectangles.

5-14

getCursorform

Usage

<display function in DO>
<address of cursor image in AO>
trap #13
<error code in DO>
<no change in AO>

Description

Display Function 24

DISPLAY ACCESS FUNCTIONS

This function gets the cursor (a 16 X 16 pixel bit-map stored as sixteen consecutive words). You
must pass a pointer to this bit-map in register AO. The current cusor image is copied into the
user's buffer

setCursorform

Usage

<display function in DO>
<address of cusor image in AO>
trap #13
<error code in DO>
<no change in AO>

Description

Display Function 25

This stores the image of the cursor (as a 16 X 16 bit-map of sixteen consecutive words) beginning
at the address passed as a pointer in register AO. This changes the image of the graphics cursor.
If the cursor is visible on the screen, the old image will immediatly be replaced by the new
cursor.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-15

DISPLAY ACCESS FUNCTIONS

getViewport

Usage
<display function in DO>
trap #13
<X,Y coordinate of the vewport's upper left comer in DO>

Description
Display Function 26

Returns the position of the upper left comer of the physical 640 X 480 physical viewport in the
virtual display. This position is returned as an (X,Y) pair in the high and low halves of register
DO. Refer to the appendices in the 4400 Series Operating System Reference for information
about the virtual display.

setViewport

Usage

<display function in DO>
<new X,Y position of viewport in 01>
trap #13
<if carry is cleared, 0 in DO>
<if carry is set, error in DO>

Description

Display Function 27

Sets the display hardware to start updating from a specific position within the display bit-map.
The position is specified as an X,Y pair passed in the high and low halves of register 01. This is
used to position the viewport anywhere within the virtual display. Refer to the appendices in the
4400 Series Operating System Reference for information about the virtual display. The 4406
accepts this command and returns with no changes.

5-16

getDisplayState

Usage

<display function in DO>
<address of buffer to receive state report in AO>
trap #13
<0 or error code in DO>
<no change in AO>

Description
Display Function 28

DISPLAY ACCESS FUNCTIONS

The current state of the display is returned in a record pointed to by register AO. The display state
area must be at least 36 words (I8-long) in length (at an even address). The structure is found in
/lib/include/graphics.h. The display state area contains the following information:

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-17

DISPLAY ACCESS FUNCTIONS

1* structure and bit definitions for save/restore state *1
struct DISPSTATE{

};

long statebits; /*bits defines below*/
struct POINT viewp; /*upper left comer of viewport*/
struct POINT ulmouseb; I*upper left comer of mousebounds*/
struct POINT lrmouseb; /*lower left comer of mousebounds*/
short curarray[16]; I*the bits for the cursor */
char keycode; /*kb encoding (O=event,lasni)*1
char activefont; /*active font*/
short lineincr; I*byte increment between lines of screen*/
short dispwidth; I*width of virtual display bitmap*1
short dispheight; /*height of virtual display bitmap*/
short viewwidth; I*width of visible viewport*1
short viewheight; I*height of visible viewport*/
short cursorxoffset; /*x offset for cursor*/
short cursoryoffset; I*y offset for cursor*1
long 11_ reserved[2]; I*reserved for future use*1

#define DS_DISPON OxOOOI 1* I-display enabled, O=disabled*1
#define DS_SCRSAVE Ox0002 1*I=screen save enabled, O=disabled*1
#define DS _VIDEO Ox0004 1* 1 =video normal,O=video inverse*1
#define DS_TERMEM Ox0008 1*I=terminal emulatorenabled,O=disabled*1
#define DB _ CAPSLOCK Ox0010 1*I=caps lock LED on, 0=0ff*1

1* Ox0020 reserved *1
1* Ox0040 resreved *1
1* Ox0080 reserved *1

#define DS_CURSOR OxOl00 1* 1 =cursor enabled,O=disabled*1
#define DS_TRACK Ox0200 1* 1 =cursor tracks mouse,O=disabled*1
#define DS _PANCUR Ox0400 1* 1 =cursor panning enabled,O=disabled*1
#define DS_PANDISK Ox0800 1*I=joydisk panning enabled,O=disabled*1

1* Oxl000 reserved */
1* Ox2000 reserved *1
1* Ox4000 reserved *1
1* Ox8000 reserved *1

#define DS_KBEVENTS Ox 10000 1* 1 =keyboard generates event codes,O=not*1
1* Ox20000 through Ox80000000 are reserved *1

5-18

DISPLAY ACCESS FUNCTIONS

setKeyboardCode

Usage

<display function in DO>
<code set designator in D 1>
trap #13
<carry clear - old code set designator in DO>
<carry set - error code in DO>

Description

Display Function 29

The form of output generated by the keyboard is set by the value passed in D1. Valid values are:

o sets keyboard output to event codes

1 sets keyboard output to ANSI terminal code sequences.

This call is normally only used after an Enable Event Processing call which implicitly sets the
keyboard code to 0 (event codes). The previous keyboard code is return in DO.

getMouseBounds

Usage

<display function in DO>
trap #13
<if carry cleared, X, Y coordinate of upper left corner mouse bounds in DO>
<if carry cleared, X, Y coordinate of lower right corner mouse bounds in DO>
<if carry set, error code in DO>

Description

Display Function 30

Return the limits of the rectangle within which the mouse and cursor are constrained in DO and
D 1. DO contains the coordinates of the upper left corner of the rectangle. D 1 contains the
coordinates of the lower right comer. The upper half of each register is the X-coordinate, the
lower half is the Y -coordinate.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-19

DISPLAY ACCESS FUNCTIONS

setMouse8ounds

Usage
<display function in DO>
<new X,Ypair upper left corner mouse bound in D1>
<new X,Y pair lower right corner mouse bound in D2>
trap #13
<if carry cleard 0 in DO>
<if carry set error code in DO>

Description

Display Function 31

Set the limits of the rectangle within which the mouse and cursor are constrained. Dl contains
the coordinates of the upper left corner of the rectangle. D2 contains the coordinates of the lower
right corner. The upper half of each register is the X-coordinate, the lower half is the Y­
coordinate.

XYtoRC

Usage
<display function in DO>
<X, Y coordinate in D 1 >
trap #13
<if carry cleared, character row, column containing point in DO>
<if carry set, error code in DO>

Description

Display Function 32

Convert screen coordinates to terminal row and column. Dl contains the coordinates of a point
on the portion of the virtual display used by the ANSI terminal emulator. Upon return the top
half of DO will contain the index of the terminal character row which contains that point. The
lower half of DO will contain the index of the character column.

5-20

DISPLAY ACCESS FUNCTIONS

RCtoXY

Usage

<display function in DO>
<character row, column in Dl>
trap #13
<if carry cleared, X,Y coordinate of upper left comer character in DO>
<if carry cleared, width and height of character in D I >
<if carry set, error code in DO>

Description
Display Function 33

Convert tenninal row and column to screen coordinates. The top half of D 1 contains the index of
a tenninal character row and the lower half of Dl contains the index of the character column.
Upon return DO contains the coordinate of the upper left comer of the character cell. The top half
of Dl contains the width (in pixels) of the character cell and the bottom half contains the height
of the character cell.

setCursorOffset

Usage
<display function in DO>
<X,Y offset of cursor-point in Db
trap #13
<error code in DO>

Description

Display Function 34

The cursor-point offset is passed as an (X,Y) pair in register D1. This offset is the distance from
the top-left comer (0,0) of the cursor description to the point that is used as the reference for
position and control of the cursor.

ASSEMBLY LANGUAGE PROGRAMMING REFERENCE 5-21

DISPLAY ACCESS FUNCTIONS

getCursorOffset

Usage

<display function in DO>
trap #13
<if carry is cleared, X,Y offset of the cursor-point in DO>
<if carry is set, error code in DO>

Description

Display Function 35

The cursor-point offset is returned as an (X, Y) pair in register DO. The offset is the distance from
the top-left comer (0,0) of the cursor description to the point that is used as the reference for
position and control of the cursor.

5-22

Section 6

KEYBOARD AND MOUSE FUNCTIONS

THE EVENT MANAGER
The event manager creates a buffered stream of 16-bit values which encode actual events. In
general, the high-order 4 bits of the values are event type codes and the low-order 12 bits are
event parameters. The following event-type codes are assigned:

o delta time
1 mouse X location
2 mouse Y location
3 key or button pressed
4 key or button released
5 absolute time

Whenever the keyboard or mouse changes state, a time event is generated (either a type 0 or type
5 event) which reports the time of the event. This is followed by an event value which specifies
the actual change which occurred.

Event Manager Functions
The operating system provides access to the event manager functions through the same
mechanism as to the display functions (see section 5, Display Access Functions). The trap #13
instruction invokes the function whose code is passed in register DO (see section 2, topic
Hardware Access Traps). The event manager functions are summarized in Table 6-1, Event
manager functions and described in the text following.

Table 6-1
Event manager functions

Code Name Description
40 eventsEnable Turns on the event manager
41 eventsDisable Turns off the event manager
42 eventSignalOn Requests notification when events occur
43 eventMouselnterval Specifies how often mouse motion events are created for a continuously

moving mouse
44 getEventCount Returns in register DO the number of event values in the event buffer

waiting to be processed
45 getNewEventCount Returns in register DO the number of event values in the event buffer

which have occurred since the previous call to this function
46 getNextEvent Returns in register DO the next event value in the event buffer
47 getMillisecondTime Returns in register DO the number of milliseconds since the system was

turned on (a 32-bit value)
48 setAlarmTime A 32-bit millisecond time relative to system power-up in register DO
49 clearAlarm Clears any pending alarms that the process has requested

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 6-1

KEYBOARD AND MOUSE FUNCTIONS

events Enable

Usage

<event funtion in DO>
trap #13
<if carry is cleared, previous state of events in DO>
<if carry is set, error code in DO>

Description

Event Function 40

Turns on the event manager. Any subsequent user input action will cause event values to be
created. Normal keyboard input through the console device and terminal emulator are disabled.
Register DO contains 0 if events were disabled, non-zero if events were disabled, before the call.

events Disable

Usage

<event funtion in DO>
trap #13
<if carry is cleared, previous state of events in DO>
<if carry is set, error code in DO>

Description

Event Function 41

Turns off the event manager. Keyboard input through the console device and terminal emulator
is enabled. Register DO contains 0 if events were disabled, non-zero if events were disabled,
before the call.

6-2

eventSignalOn

Usage

<event funtion in DO>
trap #13
<if carry is cleared, 0 in DO>
<if carry is set, error code in DO>

Description

Event Function 42

KEYBOARD AND MOUSE FUNCTIONS

Requests the event manager to signal the current process when events occur. The event signal is
disabled after being issued. '

eventMouselnterval

Usage

<event funtion in DO>
<frequency to create mouse motion events in D 1 >
trap #13
<if carry is cleared, 0 in DO>
<if carry is set, error code in DO>

Description

Event Function 43

Specifies how frequently mouse motion events are to be created if the mouse is continuously
moving. The frequency value is passed in register D1 and is specified in units of milliseconds
(granularity of milliseconds). A value of 0 indicates that mouse motion events should not be
created

ASSEMBLYLANGUAGEPROG~ERSREFERENCE 6-3

KEYBOARD AND MOUSE FUNCTIONS

getEventCou nt

Usage

<event funtion in DO>
trap #13
<if carry is cleared, number of entries in event queue3 is in DO>
<if carry is set, error code in DO>

Description

Event Function 44

Returns in register DO the number of event values in the event buffer waiting to be processed.

getNewEventCount

Usage

<event funtion in DO>
trap #13
<if carry is cleared, number of new entries since last call is in DO>
<if carry is set, error code in DO>

Description

Event Function 45

Returns in register DO the number of event values in the event buffer which have occurred since
the previous call to this function.

6-4

KEYBOARD AND MOUSE FUNCTIONS

getNextEvent

Usage
<event funtion in DO>
trap #13
<if carry is cleared, the next event entry in DO>
<if carry is set, error code in DO>

Description

Event Function 46

Returns in register DO, the next event value in the event buffer.

getMiIIisecondTime

Usage

<event funtion in DO>
trap #13
<if carry is cleared, current millisecond clock value in DO>
<if carry is set, error code in DO>

Description

Event Function 47

Returns in register DO the number of milliseconds since the system was turned on (a 32-bit
value).

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 6-5

KEYBOARD AND MOUSE FUNCTIONS

setAlarmTime

Usage

<event funtion in DO>
<time at which to signal in D 1 >
trap #13
<if carry is cleared, 0 in DO>
<if carry is set, error code in DO>

Description

Event Function 48

A 32-bit millisecond time relative to system power-up is passed in register DO. The requesting
process will be signaled when this time is reached.

clearAlarm

Usage

<event funtion in DO>
trap #13
<if carry is cleared,current pending alarm time, or 0, in DO>
<if carry is set, error code in DO>

Description

Event Function 49

Clears any pending alarms that the process has requested. Returns the millisecond value of any
pending alarms, or zero if there are no pending alarms, in DO.

6-6

KEYBOARD AND MOUSE FUNCTIONS

Event Manager Key Codes
Each key on the keyboard, each position of the joydisk, and each of the mouse buttons has an
event driver code associated with it. Table 6-2 shows the event code associated with each key.

Table 6-2
Keys and Event Driver Codes

Key Label Event Code Key Label Event Code Key Label Event Code
Backspace 8 F 102 Break 141

Tab 9 G 103 Enter 150
Line Feed 10 H 104 Pad, 151

Return 13 I 105 Pad - 152
Escape 27 J 106 Pad. 153

(space bar) 32 K 107 Pad 0 154
, " 39 L 108 Pad 1 155
>. 46 M 109 Pad 2 156
<, 44 N 110 Pad 3 157
- 45 0 111 Pad 4 158
I? 47 P 112 Pad 5 159
0) 48 Q 113 Pad 6 160
1! 49 R 114 Pad 7 161

2@ 50 S 115 Pad 8 162
3# 51 T 116 Pad 9 163
4$ 52 u 117 F1 201
5% 53 V 118 F2 202
6 A 54 W 119 F3 203
7& 55 X 120 F4 204
8* 56 y 121 F5 205
9(57 Z 122 F6 206
,. 59 1- 124 F7 207
=+ 61 Rubout 127 F8 208
[{ 91 Mouse right 128 F9 209
\ . 92 Mouse middle 129 FlO 210
]} 93 Mouse left 130 F11 211
A 97 Shift (left) 136 F12 212
B 98 Shift (right) 137 Joydisk up 213
C 99 Control 138 Joydisk down 214
D 100 Caps lock 139 Joydisk right 215
E 101 +-T 140 Joydisk left 216

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 6-7

Section 7

FLOATING POINT SUPPORT
The operating system provides access to the floating point hardware. Floating point values are in
IEEE format. Both 32-bit single precision and 64-bit double precision formats are supported.

These operations are invoked by a trap #12 instruction with function code and arguments stored
in registers. The floating point function code is passed in register 02. Operands are passed in
registers DO and AO if they are single precision or integer, or in register pairs 00/01 and AOIAI
if they are double precision. If only one operand is required it is passed in DO (or DOlO!). The
result is returned in register DO for single precision, and in register pair OOIDI for double
precision.

For subtracts, compares, and divides, the value in register AO (or AO/A!) is subtracted from,
compared to, and divided into the value in register DO (or OO/D!). For compare operations the
processor's condition codes are set to reflect the result of the comparison. The floor function
converts a floating point number to the largest integer less than or equal to it. The file
Iliblsysfloat contains symbolic definitions of the floating point functions for use by assembly
language programs and are summarized in Table 7-1, Floating Point Function Codes. For
compatibility the MC68020/68881 based systems of the 4400 series products emulate this
interface.

Table 7-1
Floating Point Function Codes

Code Name Description
0 FADD Add two single precision numbers
1 FSUB Subtract two single precision numbers
2 FMUL Multiply two single precision numbers
3 FDIY Divide two single precision numbers
4 FCMP Compare two single precision numbers
5 FNEG Negate a single precision number
6 FABS Take absolute value of a single precision number
7 PItoF Convert integer to single precision floating point
8 FFtolr Round single precision floating point to integer
9 Fftolt Truncate single precision floating point to integer
10 FFtoIt Floor function for single precision numbers
11 FFtoD Convert single precision number to double precision
12 FDtoF Convert double precision number to single precision
13 FDADD Add two double precision numbers
14 FDSUB Subtract two double precision numbers
15 FDMUL Multiply two double precision numbers
16 FDDIV Divide two double precision numbers
17 FDCMP Compare two double precision numbers
18 FDNEG Negate a double precision number
19 FDABS Take absolute value of a double precision number
20 PItoD Convert an integer to double precision floating point
21 FDtoIr Round double precision floating point to integer
22 FDtoIt Truncate double precision floating point to integer
23 FDtoIf Floor function for double precision numbers
24 FsetStat The value in DO is written into the 32081's Status Register
25 FgetStat The value of the 32081'5 status register is returned in DO

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 7-1

FLOATING POINT SUPPORT

Floating Point Returns
A successfull execution of a floating point system call returns with the V (overflow) bit cleared.
If an error occurs, the routine returns with the V bit set and the error indicated by the contents of
Register DO. The error codes are:

Result had an underflow. Trap on underflow was enabled.
T}

$0002
$0003
$0004

$0005

$0006

$4000

$8000

Floating Point Functions

FADD
FP Function 0

Description

Add two single precision numbers.

FSUB
FP Function 1

Description

Subtract two single precision numbers.

7-2

Result overflowed.
Divide by zero error.
Invalid op operand passed to
FPU. (This error should not
ever occurr.)
FPU passed an operand that is
not a valid floating point value.
Result was inexact with trap on
inexact result enabled.
Driver called with invalid
operand (>25) in D2.
FPU failed to complete an
operation.

FLOATING POINT SUPPORT

FMUL
FP Function 2

Description
Multiply two single precision numbers.

FDIV
FP Function 3

Description
Divide two single precision numbers.

FCMP
FP Function 4

Description

Compare two single precision numbers.

FNEG
FP Function 5

Description

Negate a single precision number.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 7-3

FLOATING POINT SUPPORT

FABS

FP Function 6

Description

Take absolute value of a single precision number.

FltoF

FP Function 7

Description

Convert integer to single precision floating point.

FFtolr
FP Function 8

Description

Round single precision floating point to integer.

FTtolt

FP Function 9

Description

Truncate single precision floating point to integer.

7-4

FLOATING POINT SUPPORT

FFtolt
FP Function 10

Description

Floor function for single precision numbers.

FFtoD
FP Function 11

Description

Convert single precision number to double precision.

FDtoF
FP Function 12

Description
Convert double precision number to single precision.

FDADD
FP Function 13

Description

Add two double precision numbers.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 7-5

FLOATING POINT SUPPORT

FDSUB
FP Function 14

Description

Subtract two double precision numbers.

FDMUL

FP Function 15

Description

Multiply two double precision numbers.

FDDIV
FP Function 16

Description

Divide two double precision numbers.

FDCMP
FP Function 17

Description

Compare two double precision numbers.

7-6

FLOATING POINT SUPPORT

FDNEG
FP Function 18

Description

Negate a double precision number.

FDABS
FP Function 19

Description

Take absolute value of a double precision number.

FltoD
FP Function 20

Description

Convert an integer to double precision floating point.

FDtolr
FP Function 21

Description

Round double precision floating point to integer.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 7-7

FLOATING POINT SUPPORT

FDtolt
FP Function 22

Description
Truncate double precision floating point to integer.

FDtolf
FP Function 23

Description

Floor function for double precision numbers.

FsetStat
FP function 24

Description

The value in DO is written into the 32081' s Status Register. Bits 7 and 8 may be used to specify a
rounding mode. Bits 9-15 may be used to store an arbitrary value. No other bits have any effect
if set. Note that changing the rounding modes will have a global effect on all processes using the
floating point processor.

FgetStat
FP Function 25

Description

The value of the 32081's status register is returned in DO.

7-8

Assembler
comments

binary file 3-21
convenience mnemonics 3-16
directives 3-17

define constant 3-17
define storage 3-18
equate 3-18
error messages 3-19
even 3-19
form constant byte 3-19
form constant character 3-19
form quad byte 3-20
info 3-21
library 3-21
log 3-22
option 3-22
reserve memory 3-18
reserve memory bytes 3-23
reserve zeroed bytes 3-24
reserved aligned bytes 3-23
set 3-24
space 3-24
specifying strings 3-19
subtitle 3-25
system call 3-25
title 3-25
ttl 3-25

error information 3-28, 3-35
excessive branches 3-28
symbol table 3-28

external file
inclusion 3-21

fix mode 3-29
instruction set

addressing modes 3-16
labels 3-29
listing format 3-23, 3-24, 3-25, 3-29

fields 3-29
title 3-25

object code output 3-30
pag 3-23
pseudo-ops 3-17

Assembler command line 3-1
naming files 3-1

auto deletion 3-2

4400 Series Assembly Language Reference

Index

match list 3-2
multiple files 3-2
object file 3-2

options 3-3
auto-fielding 3-3
binary 3-3
debug 3-3
external undefined 3-4
listing 3-3, 3-5
listing decimals 3-4
object code switch 3-4
summary information 3-3
symbol table 3-4

parameter order 3-4
Assembler description

fields 3-6
source line 3-6
source lines
comment 3-6
null 3-6

two-pass 3-6
Assembler source

absolute expressions 3-10
absolute expressions
relocation 3-10

ASCII constants 3-10
comment 3-8
expressions 3-9
external expressions 3-11
instruction set 3-14

differences 3-14
label 3-7
labels 3-10
local labels
branching 3-7
jumping 3-7
storage 3-7

numeric constants
base 3-9

opcode 3-8
length specification 3-8

opcode
terminator 3-8

operand 3-8
operators 3-12

arithmetic 3-12

Index-l

logical 3-12
precedence 3-13
relational 3-13

PC designator 3-10
pseudo-op 3-8
registers 3-9
relocatable expressions 3-11
selecting options 3-22
symbol field 3-7

Binary programs
running 2-1

Changing memory allocation 2-27
Communications device parameters 2-33
Comparing numbers 7-1
Condition code register 2-6
Conditional assembly 3-26

if-else-endif 3-27
if-endif 3-26

Debugging 2-49
Delays 2-48
Device driver routines 2-15
Device independence 2-15
Device number 2-23
Directories 2-26

long listing 2-26
Display function codes 5-1
Display functions 5-1,5-3

example 5-1
Dividing numbers 7-1
Echo input characters 2-31
Event manager 6-1
Event manager functions 6-1
Event manager key codes 6-7
Event-type codes 6-1
Example

random access routine 2-21
File descriptors 2-15
File handling 2-15

closing 2-16
creating 2-16
device independent I/O 2-15
opening 2-16

File status information 2-22
Floating point

precision 7-1
summary 7-1
support 7-1

Floating point system call 7-2

Index-2

General programming 2-47
Handling errors 2-7
Hardware interrupts and traps 2-48
IEEE number format 7-1
Interrupts

example 5-1
Joydisk 6-7
Lib files

provided 2-48
Libraries 3-49

externals 3-49
generation 3-49

llib/sysfloat file 7 -2
Link count 2-23
Linker 3-43
Linking 2-26
Linking loader 3-43

command file 3-44
options 3-44

error messages 3-57
input 3-43

Linking loader
invoking 3-44
library modules
resolving externals 3-56

output 3-44
output
edata 3-57
end 3-57
error messages 3-57
etext 3-57
executable program 3-50,3-51
load map 3-54
module map 3-54
multiple input modules 3-55
relocatable module 3-50,3-51

Transfer Address 3-56
Load file 3-44
Loader 3-43
Locking and unlocking records 2-46
Logical address space 2-7
Memory management 2-7
Mouse buttons 6-7
Object code

bss segment 3-30
data segment 3-30
directive
base 3-32

common 3-34
define 3-33
endcom 3-34
enddef 3-33
extern 3-33

directive
global 3-32

directive
name 3-33

directive
struct 3-32

segmentation 3-31
segmentation
binary files 3-30

Pattern matching 2-10
Pipes 2-38

establishing 2-38
Program interrupts 2-40

alarm 2-42
catching 2-40
dead child task 2-42
emulation 2-42
ignoring 2-44
input ready 2-42
keyboard 2-42
memory dump 2-42
millisecond alarm 2-43
mouse/keyboard event 2-43

. program abort 2-42
quit 2-42
segmentation violation 2-42
sending 2-40
system calls 2-45
task kill 2-42
task termination 2-42
user-defined 2-42
write broken pipe 2-42
write to read-only memory 2-42

Pseudo device parameters 2-35
Raw 110 mode 2-31
Redirection 2-16
Registers
condition code 2-6
passing parameters 2-2
status during a call 2-2

Shared text programs 2-47
Stack considerations 2-47
Standard 110 2-16

4400 Series Assembly Language Reference

redirection 2-16
Subtracting numbers 7-1
System calls 2-2

alarm 4-8
arguments 2-8
break 2-27, 4-9
buffer address 4-1
chace 4-10
chdir 4-11
chown 4-12
chpnn 4-13
close 2-17,4-14
condition codes 4-1
controljJty 2-36,4-15
cpint 4-17
create 2-17,4-19
create jJty 4-20
crpipe 4-21
crtsd 4-22
deface 4-23
definitions 4-5
dup 4-24
dups 4-25
environment 2-8
errors 2-6, 4-2
exec 2-12,4-26
exece 4-27
fend 4-29
file
default pennission byte 2-17

filtim 4-30
fork 2-13,4-31
identical tasks 2-13

function code numbers 2-3
getting environment strings 2-8
gtid 4-32,4-33
implementing 4-1
ind 4-34
indirect 2-4
ind 2-4
indx 2-5

indx 4-35
interrupt 2-3
link 2-26,4-36
lock 4-37
lrec 2-46, 4-38
memman 2-27,4-39
memory management 2-27

Index-3

mount 4-40
numeric codes 2-2
of stat 2-22, 4-41
open 2-16,4-42
passing argument strings 2-8
passing arguments 2-10
passing information 4-1
phys 2-28,4-43
profile 4-44
program interrupts 2-45
read 2-18,2-20,4-45
returning 2-19

register status 2-2
returning values 2-2
rump 4-46
seek 2-21,4-48
set_high _ address _mask 4-7
setpr 4-49
spint 4-50
stack 4-51
status 2-22,4-52
stime 4-53
stop 4-54
suid 4-55
sys 2-2
syscomm 4-6
sysdef 4-6
sysdisplay 4-6
syserrors 4-6
sysfloat 4-6
sysints 4-6
sysstat 4-6
systim 4-6
systty 4-6
term 4-56
time 4-57
truncate 4-58
ttime 4-59
ttyget 2-28, 4-60
ttynum 4-61
ttyset 2-28, 4-62
unlink 2-26,4-63
unmnt 4-64
update 4-65
urec 2-46, 4-66
vfork 2-13,4-67
wait 2-11, 4-68
write 2-18,2-19,2-20,4-69

Index-4

Task 2-7
id number 2-7
initiating 2-11
mUltiple 2-7
simultaneous execution 2-7
terminating 2-11

Task size 2-8
Tasks 2-1

terminating 2-1
Terminating tasks

status register 2-11
Trap instruction 5-1
Traps

co-processor 2-6
floating point 2-6
compatibility 2-6

hardware access 2-5
Ttyset, ttyget
I/O
auto line feed 2-32
expand tabs 2-32
input control characters 2-32
processing 2-31
single character input 2-32

Unique filenames 2-49
Userid 2-25

