TEK PROGRAMMERS Part No. 061-3209-00
REFERENCE Product Group 07

4400 SERIES

ASSEMBLY
LANGUAGE

TE PROGRAMMERS
REFERENCE

Part No. 061-3209-00
Product Group 07

4400 SERIES

ASSEMBLY
LANGUAGE

Please Check for
CHANGE INFORMATION
at the Rear of This Manual

First Printing MAR 1986

Tektronix:

COMMITTED TO EXCELLENCE

Copyright 1986 by Tektronix, Inc., Beaverton, Oregon. Printed in the
United States of America. All rights reserved. Contents of this
publication may not be reproduced in any form without permission of
Tektronix, Inc.

TEKTRONIX is a registered trademark of Tektronix, Inc..
Smalitalk-80 is a registered trademark of Xerox Corp..

Uniflex is a registered trademark of Technical Systems Consultants,
Inc..

Portions of this manual are reprinted with permission of the copyright
holder. Technical Systems Consultants, Inc., of Chapel Hill, North
Carolina.

The operating system software copyright information is embeded in
the code. It can be read via the "info" utility.

WARRANTY FOR SOFTWARE PRODUCTS

Tektronix warrants that this software product will conform to the specifications set forth herein, when used propetrly in
the specified operating environment, for a period of three (3) months from the date of shipment, or if the program is
installed by Tektronix, for a period of three (3) months from the date of installation. If this software product does not
conform as warranted, Tektronix will provide the remedial services specified below. Tektronix does not warrant that
the functions contained in this software product will meet Customer's requirements or that operation of this software
product will be uninterrupted or error-free or that all errors will be corrected.

In order to obtain service under this warranty, Customer must notifiy Tektronix of the defect before the expiration of
the warranty period and make suitable arrangements for such service in accordance with the instructions received
from Tektronix. i Tektronix is unable, within a reasonable time after receipt of such notice, to provide the remedial
services specified below, Customer may terminate the license for the software product and return this software
product and any associated materials to Tektronix for credit or refund.

This warranty shall not apply to any software product that has been modified or altered by Customer. Tektronix shall
not be obligated to furnish service under this warranty with respect to any software product a) that is used in an
operating environment other than that specified or in a manner inconsistent with the Users Manual and documentation
or b) when the software product has been integrated with other software if the result of such integration increases the
time of difficulty of analyzing or servicing the software product or the problems ascribed to the software product.

TEKTRONIX DISCLAIMS ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. TEKTRONIX' RESPONSIBILITY TO PROVIDE REMEDIAL SERVICE WHEN SPECIFIED, REPLACE
DEFECTIVE MEDIA OR REFUND CUSTOMER'S PAYMENT IS THE SOLE AND EXCLUSIVE REMEDY PROVIDED TO
CUSTOMER FOR BREACH OF THIS WARRANTY. TEKTRONIX WILL NOT BE LIABLE FOR ANY INDIRECT, SPECIAL,
INCIDENTAL OR CONSEQUENTIAL DAMAGES IRRESPECTIVE OF WHETHER TEKTRONIX HAS ADVANCE NOTICE
OF THE POSSIBLITY OF SUCH DAMAGES.

PLEASE FORWARD ALL MAIL TO:

Artificial Intelligence Machines
Tektronix, Inc.

P.O. Box 1000 M.S. 60-405
Wilsonville, Oregon 97070
Attention: AIM Documentation

MANUAL REVISION STATUS

PRODUCT: 4400 SERIES ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE

This manual supports the following versions of this product: 4404 Version 1.5, 4405 Version 1.1, and
4406 Version 1.1.

REV DATE DESCRIPTION

MAR 1986 Original Issue

4400 ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE

Table of Contents

SECTION 1 INTRODUCTION

ABOUT THIS MANUAL ...ttt st st eststssssesse e e saesessestesessassessessensessssansssaneen 1-1
WHERE TO FIND INFORMATION coiiiiitiininiiineenirestertstesas e seesessesessessessssssessesessenes 1-1
MANUAL SYNTAX CONVENTIONS ...ttt sres e seesesre s saasesrenees 1-2
SECTION 2 PROGRAMMER'S GUIDE
INTRODUCTION iiiiiteineentniesteserte e eesr s sses e ssastesassestesssssestensasaessesssessassessasssenaasasssens 2-1
SYSTEM CALLS OVERVIEW ..ottt srenrcttsintetete e e ssete e st se et st ssessantesa st aneesanses 2-1
How 4400 Programs RUNcccceriieniiiiieitiiniiieneciensteeestestes e searesesssesbesssesssesssessesssessesssaeseses 2-1
INTRODUCTION TO SYSTEM CALLS ...ttt eresie e sessessesaeseseessesesaessanens 2-2
© The §YS INSLIUCHON ...cevuiiuerieiiiieriecteierecet ettt eae st st esre s e saessas e ssae st e et snsasseseansanes 2-2
System Call EXAMPIE coiviiiieiiiiinieiieercteerie e eeseeesressseseeesseseseesssssessssssssenssaessasesassssssssasans 2-3
Indirect SyStem CallScccceveeriieiereeeiieireereene e seestee et e sres e erane s erne s sse s sesssessesssssssensnsssesseen 2-4
HARDWARE ACCESS TRAPSiiiiieetertirtrteeesestse e sttseseereessaesesassssssessssessanssessnessanans 2-5
FLOATING POINT TRAPS ...ttt st st saes e s st eae st ssasaasse e ssensesensen 2-6
SYSTEM ERRORS ...ttt ettt sttt ssate e st et st e et ssesaesas st entesansesnssasesnensen 2-6
The Task ENVITONIMENE cceeieiierieirieieenteeitinesreeitestestsesseestesasessessessasssesssesssassasssssssassssssens 2-7
AdATESS SPACE eeeviirriieirteie st st estete st e te e e steste st s e st e be st e st asaesaessessessbessansessessaesnaseensens 2-7
Arguments and ENVITONMENLS cccceeveeieriieeiienreceectecieeresteeseeaeseeeseesseseesssesesssessessessesssens 2-8
INITIATING AND TERMINATING TASKS ...ttt e ceraeeecreesveeeree s neaeveens 2-11
TerMINAtNG @ TASK ..cvccceveruerierrreiceesesesteseseseesesse e sessssesassessesssas st sasessenssssessesesessssesesesessesens 2-11
The wait SYStem Callcooeeiiiereecieicreciecrertee e et ee e st s eesesessessesssessaeessessesssesnnensesns 2-11
The exec SyStem Calloooiiiiiere ettt e e et eaesraesresreesnsesasa e e saesnasesen 2-12
The fork and vfork System Callsccccecceririeniniiinieneienere st sr e e saae e eneennes 2-13
4400 FILE HANDLING ccooitetiniiirierenierenententsssesrestssesssas st st eseesensesassessensessassssasssssssansesses 2-15
General File DefiNitioNS ccccceieevieniinieenerseeiienresvasssessessesasssessesssesssessasssesssssasesssessessessnes 2-15
Device Independent I/O cc.ooieviiiiiiciiiininieeeinnenesine et esenesr s es e srse e e ene 2-15
File DESCIIPLOTS ...oveciiieuienierentinrenensensetesentestestereesessessssasseseessassessessessessssssassssnsassessessassesne 2-15
Standard Input and OULPULccceevirineriininienrtctcie e e ste s e sr e e b sressaesseaesae s anees 2-16
Opening, Closing, and Creating Filescccocivvinnennniininiionentcineiesesssse e seessesesseseens 2-16
The open System Callccoccoveviriiriinnenininiesetse s st sae e stestese s seassessesessesaesessesaane 2-16
The close SyStem Callcccoveieiiieniniiinereerse e sres s sae st s e sressassessnessessassesssssassesns 2-17
The create SyStem Callcccovveivirveinenieninnirnte et esse st esaessse s e et e e eesessesssesssseseess 2-17
Reading and WIHtINGc.ccccoiiiiiiiiniicenenteese ettt et snee e sstesse e sese et e st esstsseeeseseneesunas 2-18
The read System Callcccvieeviiiiiiiniinieneererne et sresteeeesesessessassaessunsssesssesssessessnes 2-18
The write System Callccovviiiiiiiniirieneeree et esre e sabessessessesrsssesseens 2-19
Efficiency in Reading and WIHtingccccocoviviiienininiiniciiiic s 2-20
SEEKINE ueveerieieerientereresinteestesesseteestssasesaese st estaesremsesestesssessesensesaase st sbsstsnsesssnessensesesasnsensass 2-21
File Status INfOrMAtioncccoueiiiverieniieiinie ittt ettt e ere s e eresane s ennenaeens 2-22
DIRECTORIES AND LINKINGccconiiiienininieniteiinene sttt sistessssase s s ssnesresssnses 2-26
OTHER SYSTEM FUNCTIONSc.oooiiierirenineenen ettt esessee e ssaeseessesasssnssssssssnesaessssss 2-27
The Memory Management FUNCHONS c.coovevvivineneceiiiiieiincictcti e saeenens 2-27
The break FUNCHON ccvivieciieciiniietieee e ceesieseee st e seae st esesaes s e ssaesrassssest e stosaasssssssesassons 2-27
The memman FUNCHONccoveeeiiirniiniitinteieenent ittt sarese s et esssestssrsesnsesnesanes 2-27
The phys FUNCHON ccooieiriireieiieicictciiic e s b en 2-28
The ttyset and ttyget FUNCHONScccccviviivienminiinincnincniiieciciscstet i enees 2-28
Console DEVICE PATAIMELEIS ccocerriruerreirerrenientiiesesesteessessessessestessessesssssssssesaessassssnnessones 2-28
RaAW IO MOGE ...ttt sttt s st saae e sraestesbe st et esbe s sbaesbeesnesabssnbesnssunes 2-31
Echo INput CRaractersccccoeevereereninineniititeenensscess s s sase s snae e cassnses 2-31

Table of Contents-1

Expand Tabs 0N OQULPUL cccceceeceerecreenreeseensersnssnsseassesssessssnssssssssosssssssssssssssssssssssssssassaces 2-32

AUIO LINE FEEA ... ceeccrerrcecrceeneseesae s sesseassaesssassnsassassssesesameessesensssssesnneesnses 2-32
Single Character INPULt MOAE ccociiniirvinniinnnernientincnnnssssscssisssssssssssesssssssssesssessssssssesns 2-32
Ignore Control CRaraCterscccceceriecneneessinesssinesnssessesssssesssssessssssssesssssessssssesssssssessesns 2-32
Communications Device Parameterscccceveceeceeseenenceeseeseesaeeseessessaneseessasessessessasssesseses 2-33
Pseudo DevICe PArQmELErScccecvverereererereressacsseessnnsssessesssnsssssesensssnssssassssssssansssssssssessassacsss 2-35
PIPES ettt stsnesnescnssanesa s s s s st sses st anes s sess e e s st sa s sunesntsubesasesassbbesab b rbes 2-38
Program INTEITUPLS coiiieeiiiiiinnee ittt e e nesaessssesas st s st s sae e e st sesssass e sasesnssunes 2-40
Sending and Catching Program INtEITUPLScccoceveruivmrirernncneinessnsnnsesnsenessessenessesneesnssene 2-40
Interrupted SyStem Callsccceveeeeveceenenieenrereseceeresres e sreesesaessessesaessessessaesaesessseseesessees 2-44
Locking and Unlocking RECOTAS ccovvvirvuinirnmnnieninniesicessesssscescsnessesessnssesessesessseseeses 2-45
Shared TeXt PIOZIAMScccceveeieereserresenensesssaneassesessssnseesssssssessnssssssssnosssssssssassssssssessssesess 2-46
GENERAL PROGRAMMING PRACTICESococeruirirrennecnrnesnasaesessesessessessesessssnsssssesenns 2-46
Starting LOCALIONS oeccieiniiceeiineenencnenecsnsscatsessssessssstessssssessenessssssssesssssnsssesssassesessesassens 2-46
Stack CoNSIAETAtIONS cccceveeecrrrreeceerrireeseesarsecsasressessersesesssssassessassssssssessessessasssssssssssssssssens 2-46
Hardware INterrupts and TTAPS cccccccevereeneecerenreenernressessassesessessesassesseesssssassessessasneneenes 2-47
DIAYS .coviiiiecietiiecrcceree st seraeseeasseestesaese s vensesesnessssts seenas s srssstesesrsssaestarsenaassanaessanaenasses 2-47
System lib Files Providedcccoceveeerirnereereeneeeesecnessssseseessesssessasssessessessesasessssessessassssens 2-47
Generating Unique Filenamesccocovivecenieeiiiveereneennienseressesesessesssssssessssesssssesessssassssesses 2-48
DEDUSZZINEG ..ecoeieiiiiririeeiienienenseesseessssseesaessesssnesesssesssssessessssssssssesssssssssesssesssasssessesssenssensens 2-48
PROGRAMMING EXAMPLEciteirterrenenenecnaeresessesessesssssssassssssessessessasssssessesssssansans 2-48
SAMPLE Strp UTILITY ceooivtrievenereeenesestesessnsesenstssssssssessssssssesssssssssssessssssassesssesssenssasens 2-50
SECTION 3 THE ASSEMBLER
INTRODUCGTION ccoiirereetrceseneeretsassesesessesssessssssesssesesssssssssssssesessasesssssssssssssassnsasesssssseses 3-1
Invoking the ASSEMDIETccciivirniririeuininenescrnnessesestssesessesteesssessessssessesessassesessessesasessessas 3-1
The Command LiNEcccccecivevierenerinesinseseesseseesseressssessesessesssessssessesassessessssensssesssssssesssses 3-1
Multiple INput SOUICE FilEScceceeeeeeeeveerecrerecrerecieiereieseesesaesssaesessesessssessensesessesessssensesens 3-2
Specifying ASSEmMbLY OPHONS ccccceevereereernererserersessnsesssessessssessessasssesssssessassersessessessessenees 3-3
Order for Specifying Filenames, Options, and Parameterscccecevevereneenrseseecenennserenens 3-4
Sending Output to @ Hardcopy DEVICE cccevcvevereerrrevereneneneeinentsecsseereseesessesesesesseneseseesens 3-5
EXAMPIES: ..oovieiiiriiieiiciiniiniesensesereessessesesssesseseesnsasstesessssessessassassessassesssssesssessessassassessansssasssons 3-5
ASSEMBLER OPERATION & SOURCE LINE COMPONENTScccevevivreecnernrcnennns 3-6
Source Statement FIEldScccoceieceeirenieienieienrineeesissessssesesseseeessessessssessesessassessssessssessesesses 3-6
Label or Symbol Fieldc.cooviiiinieniienreneeninnnrensneseeesessesassessssessessesessessssassessssessssasseserses 3-7
OPCOAE FHEIA ...ttt ettt sssaes s s sesarae e sa e e ses e e st enaesasseseerassesessessasasssncrnes 3-8
Operand FIeldovooeieeccecertceee st ete e sree et sesse e e e s e s b e s sassessas st ensanae st eassaanssneenan 3-8
CommENt FIEId oveeriiicereinecesest et eesrestese e sresesssseseesesseassessesessasssnessesssnsssesessesaesesessens 39
RegIStEr SPECIfICAON cocveeeieriiecreireraiesresseesssesseesseseessesssessessasssssssossassasssassssenssessesssensenss 3-10
EXPIESSIONS ...eoviceeriiriecineniieereesenssesaessesnnessssssassseseesnssssssesssessessessassnesssassasssessansssessesssessessasns 3-10
TEEM TYPES ettt ssessssasses s ssssassassesasssssasssesesnsssae st snsesaesssunssssassnsanes 3-11
TYPES Of EXPIESSIONS eccvieeiiiereesteeeteseeeecansessesessessesassessnesesssssassessessesssensessessssassessessess 3-12
ADSOIULE EXPIESSIONS ccceeveerernerrerrerrersensessaesensesaeassssaessessssessssasssssssessassessassensesaasssssses 3-12
Relocatable EXPIESSIONScccccccereereerenessenieesssseranessessessssesssssssssessesssssssessossssssassesessenes 3-12
EXternal EXPreSSIONScccccceveereerereeneereseeeensessesesnesassssssessessssasssssssasssessessassessssassossses 3-13
EXPIesSion OPETAtOIScccceceeererreereresseraessessssresesssssssssssssssssaassesssssssssessssessssencsssssessessesesns 3-13
ATIthIMEtiC OPEIALOIS ccevecerriverrereeserensesteersesesesesssssssssessessssessssesasssssssssesssssssessessssessns 3-13
LOZICAl OPETALOTS ceoueireienireiesesseressesesesesessssessesssassesessarsssessessasasssssessssessesssasassssesssns 3-14
Relational OPETatOrS cccecrverierrerenuenecsensnsuessssessssassssssssssssssssssssasssessesasssassesssssessssseses 3-14
OPErator PrECEIEIICE ccveiverieereeeesiistienneeessessiesssessessanessseessesssesessasssessssaesnsssassasasssaseses 3-15

Table of Contents-2

INSTRUCTION SET DIFFERENCEScconiviniiiiiiniinitiiss s ssssessssessnes 3-16

InStruction Set EXTENSIONS ccceriveriieeiieeiitieieereeeeesseeseesssesseesssseossessssessssesssesesssessessssses 3-16
AdAressing MOAESscoccceveniriiiininiinniineieneniniisesieseessessessssessessessessnsseessessasssssssssessessesses 3-18
Convenience MINEIMOIECS ccccceeerreeererseersvresssesessecsssssssesssssesesssssssssesssssseserssssesssssesessans 3-18
STANDARD DIRECTIVES OR PSEUDQO-OPSouoiieeeeeecttecneevreeeevecare e creenseens 3-19
QO et saeee st e e e e s asb s e s s e st s s e e e Rt s b et e R b e eR b e b beeRabeerbese b aesnnreenasaensarnesenns 3-19
Q8 ettt er e eaese st s e s e essbe s s et s e s e eras e b ae e ea R s e b ash b e e abaeeReaeante e trsen st aensteransenn 3-20
EQU ceeererreeteeeereesteetessestesarsee e ste e ere st e e es et e tan e e seeeaeR st et et et an e e se et et aese e sate et e st eneententanseseaneeenes 3-20
BIT eeieerieeerneeeeressneeeeserssessasseesensasasessessssessssssssnsesesssnnsssssnsessssessssssssseesesssrraeesssssssrnesesnsnsnsneens 3-21
EVEIL uuveeeiieieeeeeeeeeianessreeaseaesasaessessassesessessnssasanssesasssessssesssesnssnsasssnsonsssessnsssesnannsesnssessennneesns 3-21
(o) « T U USRI 3-21
DOl et ae et ae s bbb e b be sR b ettt aesbe she et b sabee s s R aseesae s ateeerseestaesaneeentesan 3-21
o Lo J U U TR 3-22
TQD ettt et st e ae st e e e ea e e st st et s be e e st e ea e e e e s te st e ae st er e seennentan 3-22
IO ceiiieieeeeceeceecseerrtese e e srteeeste s e ee b assbe s sseessaessaesssesbessessser b asass s sssesrn s enbe e arsennenensneneren 3-23
D e ee et e e e e e e st aese e s e ee s ae st e s s sabe s s s an e R anse s abaee sanneesenar senbeeeannreesan 3-23
O ittt ettt st e e e e s e e st e e e s e et st a s e et se e e st e e sneeseeeneesanensesns 3-24
OPE ettt ettt ettt s ees st sut e s e sae s sane s s e se e s en e s s Rt e R s at e ea st eRe e saae s Rae s neeeentesrneessreabesennes 3-24
DAL oottt st e s et e sa b e e s b e e e b et e b et e st e s e sa e et e e e ea e e e e entes 3-25
1 S U U PR RPRRR 3-25
TINID coceirececreeceeeseerireesee e teeraeeesassrae s srasssesnsnensnassasessesnsesessssssstassssenssssssesensesernressssennsassesanes 3-25
4« J O U USRI 3-26
SEL ceieiiiiiiiieeerereirrsneereteeeeeersteteeeeeteessesratate st aeeeteseesn bt araseeseaaesee st essesnsabanarebetebeeese st e sensensrarnrns 3-26
BPC ittt s s e b sas e b sa b s aese e s e e e e e e e e sRe e nt e s e R aanee e e este e nasereanseens 3-26
SEEL ceieteerceeecee s et et esaee e e e e s s e e e e seae s e e e s e sbe e s Reeabeeassbbeeabe s eRbeehbeeanteeaaseenbe sa st saas e nreonatenn 3-27
SYS tererteenieersrnienatisieseeessnsentassnessnresaesestassasaneasseassresnsasan ceeeeeerte st r e e aesenaa et ae s aeesaae s atesareren 3-27
111 KOTSRS 3-27
CONDITIONAL ASSEMBLY cooiiiiictrniecreeertenrteeseesseessesssesessesssesssssesssssssssssssssssssssesnsans 3-28
The if-endif CIAUSE cooieeeeiiieicieineeneeecerereeessteestsesteereessae sessesssessasessassrsesessssssssesnssessseens 3-28
The if-else-endif CONSLIUCHIONccccevieeereiiieerrenriinerreneersesseessserssressseerssessssesssasesseessressesens 3-29
SPECIAL FEATURES ... oeiteettecteeerecsseeseestsesssesseessesssesesessssesssscsesenssssssssessessnssesssesns 3-30
End of Assembly INfOrMAtON couviviemiiirineiiieeneinteneese ettt seen et e st sessens 3-30
Excessive Branch INAICALOTcccoveeiniiiiiienieniieneecnieciisceereresseseessesesssesssesssessseessessans 3-30
AULO FIEIAING ..ottt et st e ae st s ta e e ssassaese e st e saasseeseaessesssnssnessasanes 3-31
FIX MOGE ..oooeeeeeeeiieeecteecctneeesree e cee e reeessasessassaessssessssassssssssessssssssssssasssasessssessnsssssennsssersnsanasnes 3-31
LOCAL LADEIS eeeeeiiveireeereetteiee e eetseie e sesesssesseesssesssessesssensssesssassssessssssssssnssnessssssssssnsenns 3-31
OBJECT CODE PRODUCTIONouvviceeieiiereetesiesessieeseesssessssessssessssessessssssssssessssessssesssans 3-32
Relocatable (Segmented) Object Code filescocevrvirveeiiciiiienininiceceeenenee e 3-32
The Base and Struct DIrECLIVES cccviieiiiiecieiecrireiiteeseiereesssoreesseeesssraeesessesesssssessssaesssansesns 3-33
BlODAL e et e s s s s 3-34
Define and ENAAESeeoiiiieeecieeeece e eesteesieestaessseessessessssessnsassssnssssrnsesassnssessssassnnns 3-35
EXIEITI oooiieeieeeiiieeeiceeeeireeteeesteeeesseeeisssessssseesssesenssesstessssessaeesssssesssessnnsesansnsessessssasssssessasassnne 3-35
INGIME civieieceireeieerieriererereeestreesesisaseessssssessssssssssessenseasssssssnnssessesssseasessssssseesessasssesesnssarsaeeeens 3-35
Common and ENACOIM oouviiieieeeceiiceieeseteseeeseteserseeseesstsesesssessssssssssssessssnsasssssesssssasssins 3-36
ERROR AND WARNING MESSAGESootireiierieetirecrteesreesneestessssasssessssesssesssssessnnssns 3-37
Possible Non-Fatal ErTor MESSAZESccccueeeruereerenrenrenmennneeiestesesiensessesnessesssesnosnessessessesanns 3-37
Possible Fatal Error Messages
THE LINKING LOADERccoouiieeitinrecneeenrereeseresseesssnsess
TEMMINOIOZY ..ccveeveerriirerirninieeitiststssr ettt st sb s b e s b s b s bbb e saa e b s e shb e snennas
Linking Loader INDULcccovuiiiniriiiiciiiiicicieiei et ss s st srees

Table of Contents-3

Linking LoAder OULPUL ccecueiverreersrecseessenssessnessassessssssssnessaessnssssessassssaassnasssanssssassesssns 3-47

The Standard Environment Fileocceeiiceircrneinenineeneenensrenesiesseessesssesssssssssesessessnes 3-47
Invoking the LOAderccoiiviiiiiiiiiniiiiciiitcinsestsise st sssssse st e ssssssstssssssessssesne 3-47
Valid OPLONS ...ccceiiierereererrerrenrieeesessesesaessessesaessesassessssesssssessssssssessasssesesssssssnsesssssassessasenses 3-48
LIDIATIES ..ottt ettt esessee st et sene st sses e enesasssesessassessesnassnessonsessesaassessasasssssnens 3-52
IDtTOQUCHION ..eoneiirieiitececnerseesnesstesasssrestessestesaesssaseesaessssnsssanssesssassnssssessasssesssessansassenanes 3-52
LiDrary GENETAtIONcccceeeericeeerererieeeserereresessnnessuessnessessseessasssssessesssasesssssssssssasssesssssessessnes 3-53
EXAMPIES ..ottt ettt s s e sttt s sn e nt e e 3-54
Segmentation and Memory ASSIZNMENEc.ccccererreerrereerrenriesenssssesssssseessesssasseessasssssssssnnns 3-54
Relocatable and Executable FIlescccocceeeeinieimnerieninenesenieneesessesseessesesssessessessesenns 3-54
Relocatable MOQUIES c.ooeeeieeeciecieecee ettt e e e seee e e e e e nee e e e s nsensensasannsesnsan 3-55
Executable PrOZTAMS cccccvvieeiiniiniiriniinicinesnisisinsnessssessessesssssssscsssosessessassassasssesassnansenses 3-55
Shared TeXt PIOZTAMScccecrieririecenrenenienrineeseeesacnesneseesaesassesssssessssssessssassassessasasasessans 3-56
Non-shared TeXt PIOZIAMSccccevveererienienieecrenseniuecsnssnsiesssessessssessssssessessasssassssesssssassanns 3-57
Load and Module Maps ccccecrvreereenieeneriensieseessessessessessessasssssssssessassssssassassssssasessessasnses 3-58
L0BA MAP ...oooveeeeeereecee e seeectesaessesseeseestasssessesssessessesssssssseessasasesssesssessasssesssassasssnssasns 3-58
MOUIE MAD ..ottt et e b eaesn e st sssr e stesaesaesranaas e ssas e sresaan 3-58
The Module Map of a Relocatable Modulecccccvirienersennneeneenienesenessensenessessesenns 3-58
MISCEIIANEOUS ooveueeeeeerererrereerenieseneessesestesessesessestssesessesessesasaessesessesansassessssessesssessessrsesesense 3-60
TranSTEr AATESS ...cccoeeevereererieiiiierenrerieeeseseseiseseeses s ssssssesessesssersssessessesensessesassensessssensesasans 3-60
Resolution of Externals With Library Modulescccccocenerviveninieeneneniennereeceseeseeennnns 3-60
Etext, Edata, and ENdccocooiioiniiniceineeseistnrectesteneee st cnessnerneeseessaessessassssessesssessasnessans 3-61
EITOT MESSAZES .ucovecriiireiinenuinnecenaessennsssessessensessesessasssssessessesseessassssssesasssensessenserssssensensenes 3-61
NON-Fatal EITOr MESSAZES ...ccccerveererereerrerterierseresesesisssesessessessessessassessessasssessessensensessesssns 3-61
Fatal EITOT MESSAZES ccceveevererrineneneerientesiessessesessestsseaseesesssssassassesnsssesssssssssensesssnsessenssns 3-62
SECTION 4 SYSTEM CALLS
INTRODUCTION oiiiiriineeneesteassesssessessesesssssssesesessssssssssessssssassessesessesssssssessesssssssssssssns 4-1
OVERVIEW ittt st snsssessesasesassssesassssessessesesaesessessssassssssnassessesasnessassnsensnes 4-1
SYSIEIM EITOTS ...ocviuieiiiicinreintestreseesesteasseeesessssessesessesassssesessessesessesessessesassessessssessesessessssesssen 4-2
System DEfINItIONS cceveeiieeeeireeecreececceeree s seeeseteseereer e seseessesneseessessesesssessensesessensessessensones 4-6
DETAILS OF SYSTEM CALLS couoveieirireenneeneerenessesesssstssessssessessesessesessassessssessessssnsaes 4-7
set_high address Mask ..ottt s es e ses e anesenaes 4-7
AIAMN ottt st et s e e st sr et er e e e s s st et a e e st e et e s e e e se s ntbe e neanteranren 4-8
DIEAK ..oeiiiiiiiicniiniieninient ettt st st sse s e sa et s e st sra e ne st sraesesresb e e ersen e e enasenans e sesaenaeraesnne 4-9
CRACE ettt re e e e e a e e e s e e e st e et e ae e st e s e e e e b et ere b nas 4-10
CIUIT ettt sae s e ee st e e et sa et sae e et e se et e st e sassarsesse s e sseseessentersensensensensensans 4-11
CRHOWIL ittt seee s e e sre e easseassesrarsese st esassessestsrassessassarasssassassessessteresssessessansanes 4-12
CRPIML ottt sae st st e assas e se st esas e b e sesa e e e st asaa e st ne st asassansesaesassesansensesasenanns 4-13
CLOSE ittt naes e e sse st s se st sane sesaes g e sb e assasss s anansansesaessensenasssarasesenntassraesarasane 4-14
(4700111 (o) o N 4-15
CPINE oeeeeeieeeeerteseeraesterseeseesasssessaessessersessssnasssersrassessesssestentansesrsensessessstessessansseessesansneesaesnass 4-17
CTEAE ueeeucrurieerneeieessnresseesessessneesnossesssssassesssontesesontestossessessassesssesssssaesssesasssassnsssserassssssasssses 4-19
CTEALE PLY toveereversienuieseeeeseestersnsssnssssunsstassnesessstosss seesssosesstsessassstsstessesstsoseessssssesstsntssasesssnsernes 4-20
CIPIPE covevvieereienreiresteneetesnesessessseseesesaasseesassassessentesnestessssassesasstsssessisassensesntessessessessassessessesasssans 4-21
CIESA corveeeieeeererirereesecer e e eaesaasnessassesenessnsnsssnnssassntssnasssssessassnassessesrnssssssassassusssasassesnnesasnnes 4-22
ETACE .eiiiiicreecieieererse et seresaeeseesaseseessneseensssnessnssnsssnassessassssnsassaestassssssent sosssonesantaresrbesassnnes 4-23
QUD ettt st et e s sae e st s s b s s e s s SR e RS e s ae e st e b e e R e s e SRR s e s b bbb e R s 4-24
QUPS e tirteiere st sttt s s sa e sr b e b sas st sr e bbb e R e R e SRR e s sR bR s e s b e e eas b ean 4-25
EXEC reerrrerrereeererstenseessersesiossanesaneresassrasatesnseseeesseetesteaestesne s enteeaeeste s tetesatest st sntsbe e sarerns 4-26

Table of Contents-4

EXECE eevvvereeereereeerersrsssserssreessssssssressestassassessnsrssesesessesessssasssesessssnnnsns rererrrerereraeeeeeenaraees v 4-27
fontl e ereeeeee e eeeaneeans errreen——— e e e e e———.—. e 4-29
filtim ... 4-30
FOTK oot cerreese e s teete e ese e saseeessssesns e esnes e ssaessnssensesn teetererertbeaeesssntaeresaebrntenesnns e 4-31

id 4-32
BUA et ettt e s e st e st e e es bbb st e sa e e b e ne st euaeneetes

BUIA ettt st ere e sttt ss e see st st ssassenese st ennesensesessssaensesessesseeeses "33
ind 4-34
ind 35
INAX ettt et s s reeeeeereresaeaaeerans veererreneenens e 4

10 ’ 36
DK ettt sttt et et ss e st et st ek s st neb s saseeseense st snesnensensesenennees b
TOCK ettt sttt s sae e s sae e st e st s e s est s see bt se e aaanese st enassenseseenasnensesessesseneeses D73 T

TEIIMIAIL .eccveeereereeereerseesessessessesssssseessessansssssesnsessasssesnssasessassessssssassesssenssessaessasssasssesssnsssessassses 439
TIOUNE ..eeeveiiereeruereeseseesserseesesssnessenasssssanssssesseassesseessessesssessssnsssesssensennes 4-40
ofstat ccceeueee . . 4-41
OPEIL .eeevieeiieeeeeiuteeessaesesttesessesteaasessessssresansesenssesassenssrsesssssnsssenssnnens errereeererenntesesisesesneessnsnenenss 442
PHYS ettt ettt ettt e saa s se e sraae st e et entennens reeeeereene e eeeaeenaeaeas ceereevees 4-43
PIOFIIE oottt essese et sras e se s e s s e s snnssnesaanneseesnasnsenaenenseneenss DB
read reeeeveereeenraeereeeteeeaaneterens vereereenns 4-45
ump ... reteeeteesesesreeeeeetae st et e a e sheeabeeearaentaeersae s aeasaerse e seensentenernas rereeereereeereens cereerneresneenaaas 4-46

SEIPT covrreeeernene reeeesteeeeesaeeeraeetessaasartenstessaaestestansrensrssssaessaessaasssessssassresssanesseeesss 4-49
SPINE coeieienieeereresenee st criessesesesseresaesessestesesnestesessasassenensssssanssssesasessassessssassessesassassasasssssasassans 430
SEACK evieiiieerereeeiieiiteesieesstessreteessssessecrae e abesssecsssesanessnesanesnsesasstnnsessssrnesasssesnseessseennesans eerreeeenes 451
STALUS .eiiiiieeeeiiireeeeeeeretecesteeesereeessasesstesesssesassssessssssssssssssesessesnsessosseesssrnesssssssssssnessssessonsnnesssnnees A"92

stime 4-53

SLOD eeerreresrenesseseresussesaesassesssessesesasassesesessesesesssesssnasssasenssnssssssassesssessssesasassessssesessesassssasesassare 4-94
.
TEIIIL .eoeeuceueueeneerteneesestenentse st etsses e eaesce s e seste s et saasa st st ss et enesesa st sesart st ssansesesanteseseasasnssesensesanenses 4-56

time cccoeenee .. 4-57
ETUNCALE coveevieeiiieiieeneeeeeereesessneeereeesessssssssssessesessessssssssessesssossassesssessnsssns rerreeerereronenens teerennnenrae 4-58

asesescscssessescsesssasssccescnccacocsrcssssocesrsesssnne

.

TUINE ooeiirereicieeecreeeieeeseesereieseeraesesserssesraessstessaesssessssesnssessesssensesnsssessesssesaseessrasesessssassssesassensases 4=39

ttyget vreerrrsresssesseessasseesrsnssaessasssessaences 4-00

TEYIIUINL Lueeeieeeceeeenneeeeenessesseessesssassessnessesssessesstassessnessssasasssassassesssesssssasnseassassnsessassaasseeseess 4=01

EEYSEL uveererrunerenntnisssnnerareresassonenossarssssesessstssossenssssnsessssssnsesssessssesssssesssnsssssssasssorseenssssesessasasassaes 4-62
A

unmnt . e rerrrrreeeenssnnrresesnnnenes 4-64
UPAALE ...ciiriiiriectineenieeie s st cteese et et sae st saesabe st eeat st e e sbesaensesasesrsebbesabesaasanseraes reeeerersresnnnseers 4-65

UTEC aeveeeveeeeerrereeeeeeesersssrarseesessssssssssessessssssossssssssasesessossosssssesessssssssssesssssssssnsossrssnnnnn reerrerereeerennns 4-66
vfork reeerrerenenenes 4267
WAL evverieeiisseeesecssseessesssessesssssesssssseessosssssessosssssessssssssesssnsesssssssasssnsesssssssssessssssansenersssssnasnssersss 4-08

WIIE coieeivrerreeereesrrescrnscersennsessesesrossensssesssserssensessnssennsssessssenssssennsnnns crrrereeenns ererenerrereneareeernans 4-69

SECTION 5 DISPLAY ACCESS FUNCTIONS
Display FUNCHOMNS ...cccovvieiiiiniiiiiiiieiicniiicieiinci e sb s s b e s 5-3

SECTION 6 KEYBOARD AND MOUSE FUNCTIONS
THE EVENT MANAGER

Table of Contents-5

SECTION 7 FLOATING POINT SUPPORT

Floating POINt REIUINS cccvevueerenierccennenensnssseessossssssssssssssensansssssssossasssssanssnsesstostessisesasssessasass 7-2
Floating POInt FUNCLONScccccccerereceeernnccasssersvecssonssessesssesssnsssesssnssessssssasssanssssesssasssssssensanes 7-2
Figures
2-1. Relationship of Passed POINETS.ccceeereriremnineinunnininnennnisissensessseescssssesssesssuessssnesessenes 29
2-2. File Mode (St_MOd). ...coeirmruneierinririisnnnesiisessesensssesnesesemsssssssssessssssesessssssssssssssnssesanens 2-24
2-3. PermiSSions (St_PIM).ccccevvuirinrmsnrcsuesessssmstessssssessssssnssessesissessssesssnsssessessessssessssessessns 2-25
2-4. Flag Byte (tt_fI8). ..cccoiirciriiiincstcsiecstnsnecmsrassessesessesassissesssssssisssessessesissessssensenssnes 2-29
2-5. Terminal Speed Byte (t_SPd). ..cccvereinninininnninninininseninniaesssiiessessssieessssssens 2-30
2-6. StOp OULPUL BYLE (tL_SPI). .eccceeivecercnnrernerennesesssesnssnsessesassereessassnsassssssssssssssessesssssesssssssnsen 2-31
4-1. Argument And Environment Variables.cccovvvrneiecccnnnncnirnenninnnnienenscnenescsnneneenes 4-28
Tables
2-1 4400 PROGRAM INTERRUPTScivivinrirnnrnnesneniessessssssssssssessesssssessssesssssssessosannes 2-41
5-1 Display FUNCHON COAES cocecerrvrrerurernsnernresesnsessessssnenssssnsssssssesessssassensssesesssenssssesassessses 5-2
6-1 Event manager fUNCHONS cccceeeruereereresssnsassasaesssssassassesasssssssssssssssesssssssssssasssassssassssenes 6-1
6-2 Keys and Event Driver Codesocineniniennsincnnnncnecntnnseesesssssesessessssessesessessssessenes 6-7
7-1 Floating Point FUNCtION COAESccccerrveerereecnnsesesnsseneeseessseeseseeseesessssssnsesssessssessosessesens 7-1

Table of Contents-6

Section 1

INTRODUCTION

ABOUT THIS MANUAL

This manual is the primary programmer’s reference to the 4400 assembly language. This manual
contains a guide to assembly language programming and the system calls that you can use with
the assembler. The 4400 Users Manual contains a complete list of the other manuals available
for the 4400 series.

This manual has the following sections:

Introduction About this manual.

Programmers Guide A general introduction to assembly language programming.
The Assembler A description of the assembler and linking loader.

System Calls A description of the system calls available to the assembler.

The 4400 series assembler is similar on all 4400 series products. When assembling mnemonics,
the assembler generates code that fits the processor of the machine it is running on. To assemble
code for a different processor, set the swiches on the command line appropriately. Information
for setting the switches is found in section 3, The Assembler, of this manual. If you write a
program that uses MC68020 mnemonics, by proberly setting the command line switches it will
assemble and run on a MC68010 or MC68000 processor. This simplifies writing and assembling
programs for use with other microprocessors.

WHERE TO FIND INFORMATION

You have several important sources of information on the 4400:

¢ This manual, the 4400 Series Assembly Language Programmers Reference manual,
contains the details of the assembler and linking loader.

® The 4400 Series Operating System Reference manual contains the syntax and details of
commands and utilities. This manual also contains details about a text editor and a remote
terminal emulator.

® The 4400 Series C Language Reference manual contains detail about the "C" programming
language.

® The 4400 Users manual contains basic information on system installation, startup,
installing software, and the other "how to put commands together" discussions. See the
index of the User’s manual to find how to perform particular tasks.

® The on-line "help" utility contains a brief description of the syntax of user commands.

® The Introduction to Smalltalk-80(tm) manual contains details and a short tutorial on the
Smalltalk-80 programming language.

® The reference manuals for the optional languages for the 4400 product family are also
available.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 1-1

INTRODUCTION

MANUAL SYNTAX CONVENTIONS

Throughout this manual, the 4400 User’s manual, and in the on-line help files, the following
syntax conventions apply:

1. Words standing alone on the command line are keywords. They are the words recognized
by the system and should be typed exactly as shown.

2. Words enclosed by angle brackets (< and >) enclose descriptions that are replaced with a
specific argument. If an expression is enclosed only in angle brackets, it is an essential part
of the command line. For example, in the line:

adduser <user_name>
you must specify the name of the user in place of the expression <user_name>.

3. Words or expressions surrounded by square brackets ([and]) are optional. You may omit
these words or expressions if you wish.

4. If the word list appears as part of a term, that term consists of one or more elements of the
type described in the term, separated by spaces. For example:

<file_name_list>

consists of a series (one or more) of file names separated by spaces.

1-2

Section 2

PROGRAMMER'S GUIDE

INTRODUCTION

This section, the 4400 Programmer’s Guide, provides a general introduction to
MC68000/68010/68020 assembly language programming on the 4400 product family. This
section includes a sample 4400 utility program that you can type in and execute.

For information on the MC68000/68010/68020 assembler, see Section 3, The Assembler and
Linking Loader. For information on system calls, see Section 4, System Calls. System
programming in C is described in the manual, THE 4400 C COMPILER, while programming in
other languages is described in the reference manuals for those languages.

SYSTEM CALLS OVERVIEW

The following paragraphs give an overview of assembly language programs of the 4400 family:
how they run, how they perform system function calls, how they handle errors, and what the task
environment is like.

How 4400 Programs Run

Most programs or utilities are run by typing the name of such a program in response to a prompt
from the shell. The shell assumes the typed name is a file containing an executable binary
program. (There are exceptions, such as command text files, but we will ignore those for now).
This binary program is loaded into memory and executed. If desired, this program can obtain
parameters from the command line. When it is finished, the program terminates, passing control
back to the shell.

Every program that runs on the system is a task. Many tasks may be active at once, but in reality
only one task is running at any given instant. The system switches from task to task so rapidly
that the appearance is that all of the tasks are executing concurrently. If you were to freeze the
system at some point in time, you would see a single task or program in the cpu’s address space.
A task may not have all of RAM assigned to it, but it would have the entire address space
available. Other tasks may be resident in other memory, but that memory is not mapped into the
task’s address space. When the task terminates, its allocated memory is returned to the system,
and control is passed to the parent task (the task which created or initiated the terminating task).

This section discusses how to write a program which the shell can load and execute, how this
program can communicate with the user, system, other tasks, etc, and how to terminate the
program’s execution.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-1

PROGRAMMER'S GUIDE

INTRODUCTION TO SYSTEM CALLS

When a user’s program communicates with the user, a disk file, another task, or anything else in
the system, it uses calls to the operating system. The operating system is essentially another task,
always available, that has built in routines to perform a variety of system oriented functions.
These functions include reading files, writing files, seeking to file locations, setting permissions,
creating pipes, reporting id’s, creating tasks, terminating tasks, mounting devices, reporting the
time, and so on.

A user program executes functions by making a call to the system with a proper function code
and input parameters. The technique of making the call in the assembler code is the sys
instruction recognized by the assembler. In addition to the sys calls, which implement generic
Operating System instructions, other calls made with the #rap instruction allow access to the 4400
series specific hardware, such as the display or floating-point processor.

The sys Instruction

The assembler has a built-in instruction to make system calls. It is the sys instruction and has the
following format:

sys <function>, [<parameterl>, ...<parameter4d>]

The only required portion of the operand is the <function>, which is a numeric code for the
desired function. The parameters required depend on the particular function. There may be no
parameters or as many as four. The function code is a 16-bit value; while parameters are always
32-bit values. Many system functions also require certain values or parameters to be in one or
more of the processor’s cpu-registers before executing a sys instruction. When some parameters

are required in registers, it is the programmer’s responsibility to see that the proper values are
loaded before calling on the system.

When the sys instruction has completed execution, control generally passes to the next instruction
in the program. In some cases, the system function returns one or more values to the calling
program by placing the values in selected cpu registers. In some cases the returned value(s) are
placed at a location specified as one of the input parameters.

Section 4, System Calls, describes the operating system functions. Along with the description,
the necessary parameters and returned values are specified. For example, look at the read system
call in that section. Under the USAGE heading you will see the following:

<file descriptor in DO>
sys read,buffer,count
<bytes read in DO>

This shows that before executing the read function call, you must ensure that the desired file
descriptor must be loaded into the processor’s DO register. In addition to the read function code
itself, you must supply a buffer address (32-bit address of a buffer to read into) and a count (32-
bit count of how many characters to read). After executing the read function, the actual number
of bytes read is returned in the processor’s DO register.

All user-accessible processor registers except for the DO, A0, and CCR registers are left intact
across system calls. The contents of the DO, A0, and CCR registers upon return from a system
call vary depending on the particular call.

2-2

PROGRAMMER'S GUIDE

The actual system function code numbers are defined in the sysdef file located in the /lib
directory. This file is provided on disk so that you can include those definitions in your program
by including the sysdef file in your source via a lib sysdef instruction.

Briefly, the sys function works by generating a software interrupt. When this interrupt occurs, the
handling routine maps the calling task out of the cpu’s address space and maps the operating
system code in. This system code then performs the requested function. It obtains the function
number and parameters from the code directly following the software interrupt itself. When the
system function has completed, the operating system is mapped out, and the task is mapped back
in, to continue with its instructions.

System Call Example

Let’s try a sample program that includes a system function call. The sample program has four
fields: Label, Opcode, Operand and Comment. In section 3, The Assembler, of this manual there
is a description of the source statement fields (columns) in a program. The four source statement
fields are summarized as:

Label Contains a symbolic label or name that can be called upon throughout the
source program.

Opcode Contains the opcode (mnemonic) or pseudo-op.

Operand Provides data ar address information required by the opcode.

Comment Contains comments on each line of code.

The simplest program is one that does nothing at all: as soon as it is initiated, it immediately
terminates. Thus, the only system function we will need to call is the term function. The
description of term in Section 4, System Calls, shows that there are no parameters required on the
sys instruction itself (besides the function code), but that you must put a status value in the DO
register before performing the call. If there are no errors this status should be zero. Thus you can
write an extremely simple program that looks like the following:

Label Opcode Operand Comment

lib sysdef
text

start move.l #0,d0 Put status in DO
sys term Terminate task
end start

The first line includes the definitions of all system function codes so that we can specify the term
function as a symbol (term) and not have to type in the particular number for that function. The
third line puts the status in DO, as required by the term function, and line 4 terminates the
program. In the case of the term function, control is not returned to the calling program after
execution of the call. Of course, that is the reason for the function; it terminates the current task
(the task which made the call) and returns control to that task’s parent. Notice that the program’s
end statement includes the symbol start. This tells the assembler the beginning location for
execution and also induces the assembler to make the resulting code executable by setting the
permission bits. '

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-3

PROGRAMMER'S GUIDE

Let’s assume you call the source file nothing.asm and assemble it with the following commands:

++ asm nothing.asm +s +o=nothing.r
++ load nothing.r +o=nothing

The result would be a binary file that when executed by the command:
++ nothing

would load, run, and immediately return to the shell. This is, of course, a meaningless example,
but it does show the rudimentary steps in writing, assembling, and executing a 4400 assembly
language program.

Indirect System Calls

In order to use the sys instruction directly, you must define all the parameters at assembly time.
When parameters are not known at assembly time (because they will be determined or changed
during the execution of the program), you must use indirect system calls. There are two types of
indirect system calls — ind and indx — and they are themselves system functions called with the
normal sys instruction. They permit the programmer to tell the system that the parameters do not
actually follow the software interrupt, but instead are placed at some other specified location in
memory. This memory location, specified by the programmer, can be in an area of memory
containing data and not program code.

The first of these indirect system call functions is called ind. Its format is:
sys ind, label

The label is the address of the memory locations that contains the actual desired function code
and parameters. Thus, when this function is executed, the system goes to location label and picks
up the desired function code and any necessary parameters. The system executes that function
and returns control to the statement following the sys ind,label instruction.

To illustrate, let’s assume a program that needs to read from a file, but does not know how many
characters to read until it is executing. Somewhere in the first part of the executing program, the
number of characters to be read is determined and stored in a label called rcount. The indirect
function call is used:

move.l rcountjiread+6 Put count to read

move.l fd,d0 Put file descriptor

sys ind,iread Do indirect read call
iread de.w read READ function code

del buffer Read buffer location

de.l 0 Read count (unknown)
buffer ds.b $4000 Space for read buffer

2-4

PROGRAMMER'S GUIDE

(At this point we’re not concerned with details of how the read really works or what the file
descriptor is, we simply want to show how the indirect system call is made.)

The second form of indirect system call is the indx function, and is very similar to the ind
function. The difference is that the call to ind includes a parameter (label) that points to the

. parameters in memory; with the indx function the pointer to the parameters in memory is in the
AOQ register. To see how this works, we can modify the above sample by changing the instruction
sys ind,iread to:

lea iread,a0 Get address of parameter
sys indx Do indirect read call

An obvious use of indx is to push the parameters onto the system stack and point AO to it, thereby
eliminating the need for the parameter buffer in memory. For example:

rriove.l rcount,-(a7) Set count to read
move.l #buffer,-(a7) Set buffer address

move.w #read,-(a7) Set read function code
move.l fd,d0 Put file descriptor
move.l a7,a0 Point to parameters on stack
© Sys indx Do indirect read call
lea 10(a7),a7 Clean parameters off
stack
buffer ds.b $4000 Space for read buffer

Note the importance of the order in which the parameters are pushed onto the stack. Also note
the lea 10(a7),a7 instruction following the function call. It removes the parameters which were
pushed onto the stack so that the stack is where it was before the system call section.

HARDWARE ACCESS TRAPS

The 4400 series Operating System supports direct user program access to hardware facilities such
as the bitmap display, mouse, keyboard and interval timer. The Trap #13 instruction provides
this access. Set register d0 to a value that indentifies the specific function to be performed when
a Trap #13 instruction is executed.

Symbolic names for these function codes are defined in the file /lib/sysdisplay. Section 5,
Display Access Functions and section 6, Keyboard and Mouse Functions, describes the details of
these functions.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-5

PROGRAMMER'S GUIDE

FLOATING POINT TRAPS

The 4404 uses a National Semiconductor 32081 Floating Point co-processor. This is interfaced
to the MC68010 as an I/O device that is accessably only when the processor is operating in
supervisor mode. The 4400 operating system provides routines that allow programs to perform
floating point calculations using the NS32081. Invoke these routines using the Trap #12
instruction. When a Trap #12 instruction is executed, specify the floating point function code in
register d0.

These function codes are defined in the file /lib/sysfloat. Section 7, Floating Point Functions,
describes the details of the support.

The MC68020 based members of the 4400 series do not use the NS32081 floating point
processor. Instead, they use the Motorola MC68881 floating point processor. This processor
implements a superset of functions available with the NS32081. Additionally, the MC68881
floating point processor are optionally accessable to the programmmer without the use of
operating system trap routines.

To maintain compatability with the 4404 programs, MC68020 members of the 4404 series family
also implement the floating point trap routines as an alternate way to access the MC68881.

SYSTEM ERRORS

Upon completion, system calls return to the calling program with an error flag. This flag is the
carry bit in the condition code register. If the bit is zero on return, it implies that no error
occurred. If the bit is set (a one), then an error has occurred and the DO register contains an error
number. The assembler supports two special mnemonics for testing the error status on return
from a system call: bes for branch if error set and bec for branch if error cleared. These are
equivalent to the standard mnemonics bcs and bec.

Section 4, System Calls, contains a list of the error numbers and their meanings. There is also a
file of equates called /lib/syserrors which assign standard labels to the error numbers. These can
be used in a program by simply including the file with a lib syserrors instruction. Note that the
operating system does not report errors directly to the user. Error numbers are returned from
system calls and it is entirely up to the user’s program to report such errors or handle them as
required by the specific application.

2-6

PROGRAMMER'S GUIDE

The Task Environment

A task is a single program which has complete use of the cpu’s directly-accessible address space.
It can call on functions in the operating system, but is essentially a single, stand-alone program.
Each time a program is run, a new task is generated and the program becomes that task.
Whenever that executing task performs some /O or system call that requires it to wait, the task is
mapped out so that another waiting active task may be mapped in and executed. If the executing
task does not perform any type of system call which would cause it to be mapped out, it will
eventually run into a time-slice interrupt which forces the task out so that other tasks can get
some execution time.

In this manner, multiple tasks can be run at what seems like the same time. To assist in keeping
track of all the active tasks, the operating system assigns a unique task id number to each task.
This is a 15 bit unsigned value that can be used to uniquely identify a particular task. The gtid
system call allows a task or program to obtain this task id if desired.

Address Space

The addresses which can be generated by a program make up what is known as the logical
address space. Under hardware memory management, these logical addresses are not presented
directly to the system memory. Instead, they are routed through the hardware memory manager,
which translates the logical addresses into physical addresses. Memory management allows
programs which reside at a particular logical address to actually load into system memory at a
different physical address. The total range of physical addresses makes up the physical address
space.

Although it would be possible to pass the addresses generated by the program directly to the
system memory, the use of a hardware memory manager provides several benefits. First, and
perhaps foremost, it prevents one task from reading from, or writing to, the memory allocated to
another task. In addition, it allows multiple tasks to reside in physical memory without the need
for each task to reside in a different area in the logical address space. Thus, all programs can be
written to execute at the same fixed logical address. No matter where those programs are loaded
into physical memory when they are executed, the memory management unit converts the logical
addresses the program uses to the proper physical addresses.

The 44007s logical address space is divided into four sections: text, data, stack and shared
resources. The program itself resides in the text section. This section cannot be written to during
execution of the program. The data section contains any data the program uses. It can be both
read from and written to during execution. The system stack is located in the stack section. The
shared resource section is an area where resources shared by tasks, such as the display bitmap,
may be accessed. These resources are made addressable by using the phys system call.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-7

PROGRAMMER 'S GUIDE

The memory management unit allocates a certain amount of memory to each section when the
task is initiated. The amount of memory assigned to each section is determined by the size of the
task and its needs. It is also possible, as we shall see later, for a task to add more memory to the
data or stack section during execution.

The address space of a task is futher divided into smaller units called pages. A page is the
smallest unit of memory controllable by the memory management hardware. Using the mmeman
system call, individual pages may be protected, added, or deleted, from a tasks address space.

The size of a page and the maximum size of a tasks address space varies amoung the members of
the 4400 series family. Refer to the appendices of the Operating System Reference for more
information about page and maximum task size.

Arguments and Environments

It is often desirable to pass arguments or parameters to a program when you begin its execution.
The exec and exece system calls provide this ability. Exec and exece are the calls that are used to
begin execution of a program or binary file.

Arguments are passed to a program by leaving them on the system stack. When initiating a
program, the system stack pointer (A7) is left pointing at some unknown location in the stack
page. Any arguments passed to the program are found in a special format just above where the
stack pointer points. The environment variables are also found in this area.

The arguments themselves are simply strings of characters which the program must know how to
use. In order to easily find these strings, the system provides a list of pointers to the beginning of
the strings. In addition, the system provides a count of how many arguments have been passed.

The pointers to the environment variables are found in memory, directly above the pointers to the
arguments. Since there is no count of the pointers to the environment variables, they are
terminated by a null string. Refer to Figure 2-1 for the relationship of the pointers to the strings.

2-8

PROGRAMMER'S GUIDE

\0

ENVIRONMENT STRING POINTERS » ENVIRONMENT STRING (n) \ 0

ENVIRONMENT STRING POINTERS

» ENVIRONMENT STRING (1) \ 0

\ 0
ARGUMENT STRING POINTER 1 ARGUMENT STRING (n)\ 0
' ;
' '
ARGUMENT STRING POINTER »| ARGUMENT STRING (1)\0
STACK POINTER (=———————ipp- ARGUMENT COUNT

5927-1

Figure 2-1. Relationship of Passed Pointers.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-9

PROGRAMMER'S GUIDE

This argument information is laid out as follows:

1. The stack pointer is pointing to the argument count. It is a 4 byte value and should always
be greater than zero.

2. Just above the argument count (higher addresses in memory) is the list of pointers to the
argument strings. These pointers are 32 bit addresses of the actual strings.

3. At the end of the pointer list are four bytes of zero to signify the end of the list. (A null
pointer.)

4. The list of pointers to the environmental variables is next. these pointers are 32 bit
addresses to the actual strings.

5. At the end of the pointer list are four bytes of zero to signify the end of the list. (A null
pointer.)

6. The actual argument strings begin above the zero bytes. Each argument string is the string
of characters that make up the argument followed by a zero byte.

7. The environment strings are next. Each string is the string of characters that make up the
environment variables followed by a zero byte.

8. An additional null string after after the terminal null of the last environmental variable
string terminates the null string.

In general, the shell initiates the programs or utilities that a system programmer writes.
Specifically, they are started when the user types the name of that program in response to the
shell’s prompt. The shell starts the program by performing an exec system call. The arguments
that the shell sets up for the exec (which are those passed to the program) are the arguments that
are typed on the shell command line after the program name. By convention, the shell sets
argument 0 to be the command or program name itself. The arguments after the program name
are then numbered sequentially beginning with one.

The shell performs pattern-matching before passing the arguments to the command. For
example, consider the command:

++1list file*

The shell does not pass file* as an argument to list, but rather searches the directory for all
filenames that match and passes them all as individual arguments. Thus, the list program would
see four arguments:

argument 0 -> list
argument 1 -> filel
argument 2 -> file2
argument 3 -> filename

(Recall that argument number zero is always the name of the program or command being
executed.)

PROGRAMMER'S GUIDE

INITIATING AND TERMINATING TASKS

In a multi-tasking environment, one task can spawn or start a new task. There must, of course,
also be means for terminating tasks and for the parent of a terminating task to be informed of that
termination. The following discussion covers these techniques.

Terminating a Task

Tasks or programs are terminated with the term system call. When this function is executed, the
task is halted and its memory is relinquished to the system. Before calling the term function, the
programmer is required to place an error status value in the DO register. When the task
terminates, this value is passed back to the task’s parent. If there is no error on termination, this
error status should be zero to indicate a clean termination. If the task terminates due to a system
error such as an I/O error, the error value returned by that system call should be used as the error
status for the term function. If the task terminates due to an error defined by the program (for
example, the program expects an argument but none was supplied), the recommended value to
return is $000000FF. By convention the parent task would recognize this as a user-defined error.
The parent would know some error had occurred that caused the program to terminate, but would
not be able to determine the exact nature of the error. A user-defined error should not return a
termination status of greater than $000000FF.

The wait System Call

The wait system function is issued by a task when it wants to wait for one of the child tasks it has
spawned to terminate. It is through the wait command that the parent task receives the
termination status from its child. Wait has the following syntax:

sys wait

When the system call wait returns, the termination status is in the AQ register and the terminated
task’s id is in the DO register.

If there are no child tasks when a wait call is issued, an error is returned. If a child task is still
running when the parent issues a wait, the parent is put to sleep until the child task terminats. If a
child task terminates before its parent has issued a wait, the system will save the child’s task id
and termination status until the parent does issue a wait. If several child tasks have been
spawned, the parent must issue a wait call for each one individually.

The termination status is a two-byte value that is returned in the lower half of the A0 register.
The lower byte (bits 0-7 of AQ) is the low-order byte of the status value passed by the term
system call. If this byte is non-zero, some sort of error condition caused termination. Under
normal termination conditions, the higher byte of the termination status (bits 8-15 of A0) is zero.
If non-zero, the task was terminated by some system interrupt, and the least significant seven bits
of this byte contain the interrupt number. If the most significant bit of this byte is set, a core
dump was produced as a result of the termination. (Interrupt numbers and core dumps are
described later.)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-11

PROGRAMMER'S GUIDE

The exec System Call

At times, a user-written program may wish to load and execute a program by itself without using
the shell. The tool used to load and execute another program or binary file is the exec system
function. That is the function which the shell uses when it loads and executes a program.
(Remember the shell itself is just another program.)

The program that makes the exec call and the new program (a binary file) have the same task id
number. If the exec is successful (i.e. no errors such as the file not existing), there is no return to
the calling program. The calling program is thrown away, making it impossible to return. If,
however, there is an error in attempting to perform the exec function, the system does not load the
new program and returns an error status to the calling program, which is still intact. Thus a
properly written program follows any sys exec call with error handling code.

If the environment variables are to be passed to the new program, use the exece system call.

The exec call requires two arguments: a pointer to the name of the file to be executed and a
pointer to a list of arguments to be supplied to the new program. Exec s format is:

sys exec,fname,arglist

The fname is the pointer to the filename. This filename is a string of appropriate characters
located somewhere in memory and terminated by a zero byte. The arglist is the pointer to a list
of argument pointers. In other words, arglist is an address that points to an address that begins a
list of pointers to arguments. This list of pointers is consecutive 4-byte addresses or pointers to
the actual argument strings. The list is terminated by four bytes of zero (which could be
considered a pointer to zero). Each pointer in the list is the address of the actual argument string
that is terminated by a zero byte. When the exec function is complete, the new program will have
these arguments available in the exact format previously described.

Let’s try an example of the use of exec. As you know the dir command can be run by typing the
name and possible arguments on the shell command line. The shell actually starts execution of
dir by performing an exec. As an exercise, let’s write our own program that executes the dir
command automatically, always providing an argument of +ba. This provides a long directory
with file sizes specified in bytes and includes all files. We will not specify any specific directory,
so our command will always perform the directory command on the current directory. The
filename to exec should be /bin/dir, and there are two arguments, dir and +ba. We supply dir as

argument zero because by convention argument number 0 is the command name. Our program
looks like this:

lib sysdef
text
start sys exec,filen,args

* This point is reached only if the exec fails. There

* would normally be error handling code here, but to keep
* things simple, we will just terminate if an error.

* Note the DO register already has the error from exec.

2-12

PROGRAMMER'S GUIDE

. Sys term
* strings and data

filen fcc “/bin/dir”,0

arg0 fec 7dir’,0

argl fcc “+ba’,0

args dcl arg0,argl,0
end start

If we called this utility /dir, after assembling we could execute it by typing /dir as a command to
the shell. Our program would be loaded and executed by the shell, and it would in turn load and
execute the dir command with a +ba option. Thus typing Idir would produce the same results as
typing dir +ba.

The fork and vfork System Calls

The fork and vfork system calls are used to spawn a new task, and are the only way to create new
tasks. The fork system call creates a new task which is almost identical to the old task (the old
task still exists). The vfork system call is more efficient by creating a new task with the same
memory and stack allocation, same code in the memory space, same open files, pointers, etc.
(See section 4, System Calis, for a more complete description.)

Thus, immediately after a fork, there are essentially two identical tasks or programs running on
the system. Usually you want the new task to do something different, so in most cases the new
task immediately performs an exec call to load some program and execute it. This is the
technique used by the shell to start background jobs. When the shell sees a command ending
with an ampersand (&), instead of directly doing an exec it does a fork to create a second shell.
Now the newly created shell will do an exec of the desired command, while the old shell is still
around to accept further commands.

The syntax of either fork command is simply:
sys fork

or
sys vfork

The subtle part of the fork call is in how the two almost-identical tasks know which is which. If
the two tasks have the same code, how can the new one do an exec while the old one does not?
The answer is in the return from a fork call. After the fork operation, execution resumes in each
of the two programs. The difference is in where that execution resumes. In the new task,
execution resumes in the instruction immediately following the fork system call. The old task
resumes execution at a point two bytes past the system call. In this manner, the same program
can be run in two tasks via a fork and yet do different things after the fork. Since the new task
resumes directly after the fork call and the old task resumes two bytes after the fork call, it is
obvious that the first instruction in the new task must be a short branch instruction (which
requires only two bytes). Note that the new task’s id is made available to the old task by
supplying the id in the DO register upon return from the fork. If an error occurs when attempting
a fork, the new task is not created, and an error status is returned to the old task (still two bytes
past the fork system call),

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-13

PROGRAMMER'S GUIDE

The vfork system call is used when the new task will immediately perform an exec call. Vfork
avoids making a complete copy of the parent tasks address space since the parent task is
completely discarded by the exec call.

The following section of code helps illustrate the fork:

Sys fork spawn new task
* new task begins execution here
bra.s newtsk branch to code for new task

* old task resumes execution here

bes frkerr check and branch if error

move.l d0,d1 save new task’s id
prwait sys wait wait for child task

cmp.] do,d1 right one?

bne.s prwait wait some more if not

continue code for old task

sys term

newtsk sys exec,name,args new task probably does exec
bra excerr branch if error in exec

In this example, the wait system call at prwait makes the old task wait for the new one (it’s child)
to finish before continuing. Note that the wait system call returns the terminated task’s id in the
DO register.

2-14

PROGRAMMER'S GUIDE

4400 FILE HANDLING

This topic describes the manipulation of files, console, directories, printers, and other devices on
the 4400.

General File Definitions

Before delving into the actual manipulation of files on the 4400, we need to define and describe
some of their characteristics.

Device Independent I/O

Under the 4400 operating system, anything outside the program’s memory, which the program
can write to or read from, is treated the same way. A file on disk, a terminal, a pipe, and a printer
spooler are treated the same way. This concept, termed device independent I/0O means you can
develop a program that sends its output to a terminal, and that same program, without change,
will also be able to output to a disk file, printer spooler, pipe, or any other device on the system.
This feature lends a great amount of versatility to the system and makes program development
and updating much smoother.

This device independence is made possible by device driver routines — the system routines that
take care of the specifics of the device for which they are written, creating a standard interface to
- the device. There is a routine to open the device and one to close it. These permit the system to
do anything necessary to prepare the device for reading and writing or to finalize anything
necessary when all I/O is complete. The two most important device driver routines are the read
and write routines, which permit the caller to read or write data from the device.

File Descriptors

A file descriptor informs the system which file to operate on. (We use the term file, but because
of device independence, the file descriptor can refer to a disk file, terminal, pipe, or any other
device). The file descriptor is a four-byte numeric representation of a specific file or device.
This number is assigned to the file by the system when that file is opened or created. The
operating system then keeps track of the file descriptors and the files to which they are assigned.
In this way, the user supplys a number instead of an entire file name each time the file is to be
referenced.

For example, the read system call requires a file descriptor value in the DO register before
making the call. In general use, we would have saved the file descriptor number of the file we
wish to read when it was opened. Now, to do the read, we need only load the DO register with
that number.

File descriptor numbers begin with 0 and extend up to the maximum possible number of open
files on the system per task. This maximum will vary depending on the system configuration, but
generally will be around 20-30.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-15

PROGRAMMER 'S GUIDE

Standard Input and Output

When the shell begins execution of a task, it automatically assigns input and output files to that
task. Generally the input file is the user’s keyboard, and the output file is the user’s display. In
fact, when a task begins execution, it can always count on three input/output files being already
opened, assigned a file descriptor, and ready for reading or writing: standard input, standard
output, and standard error output. Standard input is an open file ready for reading and is always
assigned a file descriptor of 0. Generally the standard input file is the 4400 keyboard. Standard
output is an open file ready for writing to and is always assigned a file descriptor of 1. Generally
the standard output file is the 4400 display. Standard error output is an open file ready for
writing to and is always assigned a file descriptor of 2. This output file is reserved for reporting
error messages. Standard error output is initially the 4400 display.

Because these standard input and output files are already opened and assigned a file descriptor,
the user program does not have to perform any open or create calls in order to perform I/O
activities on them. As soon as a task begins running, it can perform a read with a file descriptor
of 0 (standard input) or write with a file descriptor of 1 or 2 (standard output and error output).

Standard input, output and error can be redirected without any change to the program. In other
words, a program which outputs some message to the user’s terminal can also output the message
to a disk file without any modifications. This I/O redirection is accomplished from the shell by
use of the "<", ">"and """ operators (redirected input, output and error, respectively). If the shell
desires, it can provide a standard input, output or error file to the program which is different from
the user’s terminal. The user program need not be concerned with what the standard input, output
or error is pointing to. Because of device independence and the fact that the program knows that
the file or device (whatever it may be) has been previously opened, the program simply performs
the I/O and doesn’t care where it’s going.

Opening, Closing, and Creating Files

Before a file or device can be read from or written to, it must be opened. When a program has
completed all its input and output to a file, it should generally close that file. A user program
may also need the ability to create new files on the system. This addresses those operations in
detail.

The open System Call
The format of an open system call is:
sys open, fname,mode

The fname is a pointer to a zero-terminated string containing the name of the file to be opened.
The mode is a number (0, 1, or 2) which sets the read/write mode. If 0, the file is opened for
reading only. If 1, the file is opened for writing only. If 2, the file is opened for both reading and
writing.

On return from the open call, register DO contains the 4-byte file descriptor number assigned to
that file. All future references to the file is made via this file descriptor.

2-16

PROGRAMMER'S GUIDE

An error is returned from this call if the file to be opened does not exist, if the task opening the
file does not have proper permissions, if too many files are already opened, or if the directory
path leading to the file cannot be searched.

The close System Call

When a task terminates, the operating system automatically closes any files that remain open. It
is wise, however, to manually close files within a program whenever possible. There are two
reasons for doing so. First, since each task has a finite number of files which may be open at one
time, closing a file frees up a slot in which another file may be opened. Second, in case of a
system crash, you are better off having closed any files which no longer require I/O. The close
system call is performed by loading register DO with the file descriptor of the file you wish to
close, then performing a sys close.

The create System Call

The create system call is used to create disk files. Other system calls are used to create
directories, pipes, devices, etc. The format of create is:

sys create, fname,perm

Once again, fname is a pointer to a zero-terminated string containing the name of the file to
create. The file is created in the default directory unless a directory is explicitly specified in the
file name. The perm is a value which permits the user to set the desired permissions on the new
" file. (Refer to Section 4, System Calls for details of setting these permissions.)

Note that if the file already exists in the specified directory, it is truncated to zero length (all
existing data deleted). In addition, the original permissions is retained regardless of the perm
value supplied to the create call. In other words if the file frame already exists, the perm
parameter on the create call is ignored.

If the file does not exist, permission setting is subject to any default permission settings the file
owner has previously specified. The perm parameter in the create call allows you to deny
permissions which the default permissions grant, but does not let you grant permissions that the
default permissions deny. You can think of this as a logical AND of the perm parameter and the
default permission byte.

Every task has associated with it a default permissions byte. If that task attempts to create any
new tasks, the new tasks are created with at least those default permissions. As we saw above,
additional permissions may be denied by the perm value specified to a create call. Additionally,
the new task is started with the same default permission byte (for creating more tasks) as it’s
parent. In normal use, a user may set the default permissions in his copy of the shell upon first
logging on. If the default permissions are not changed by the user or any task he runs, any files
the user creates will have those default permissions. (Note that the user can change default
permissions with the dperm command and for a task to change its own default permissions with
the defacc system call.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-17

PROGRAMMER 'S GUIDE

Reading and Writing

Perhaps the most heavily used system calls are read and write. It is by these functions that a
program communicates with the user, disk files, printers, other tasks, and anything else in the
outside world. Reading and writing permits great versatility in how files are accessed. For
example, with a disk file, the user can begin at any particular point in the file (right down to a
specific character) and read or write as many characters as desired from that point. This makes
both sequential and random access of the files quite simple.

The read and write system calls assume a file position pointer has already been set. This is a
pointer which the system maintains to show the current position for reading and writing in a file.
The discussion on seeking, later in this section, shows how it can be set. The only parameters
required, then, are the file descriptor to specify which file, the count of characters to be read or
written, and a memory buffer address to read into or write from.

The read System Call

To execute a read call, you must first load register DO with the file descriptor number. Then you
make the read call with the following syntax:

sys read,buffer,count

The buffer parameter is an address in the user program’s memory. It specifies where the data
read from the file should be placed in memory. The count is the maximum number of characters
the programmer wants the system to read. We say maximum because, depending on the
situation, the system may not actually read as many characters as requested. Upon return from
the read system call, register DO contains the number of bytes that was actually read.

When dealing with a regular disk file, the system will always read count bytes if possible. There
are only two reasons that the system would read less than that number from a regular disk file: a
physical I/O error occurs, or the specified count forces the system to attempt to read past the end
of the file. For example, if a file has only 120 characters and a read call is issued with a count
parameter of 256, the read takes place and return with no error, but shows that only 120
characters were actually read. After this call the file position pointer is left pointing at the end of
the file. Any subsequent read call returns with no error, but with the number of bytes read equal
to zero. This is in fact how a user program should detect an end of file condition: a return from a
read system call with no error but with the actual number of characters read being zero.

Reading and writing to the console display and keyboard is handled with the same system calls as
when reading and writing disk files. There is a difference in the result of a read call, however, in
that if the file being read is the console, only one line is returned at most. By one line we mean
all the characters typed since the last carriage return, terminated by a carriage return. Thus, even
though we execute a call with a desired count of 1024 characters to be read, if the user at the
console types the letters halt followed by a carriage return, the read call would return with an
actual-bytes-read count of only five. If the user has not typed anything when the call is issued,
the calling program must wait until something is typed.

As with regular disk files, it is possible to detect an end of file condition from a keyboard by
performing a read and receiving no error and no characters. An end of file condition from a
keyboard is produced by typing a Control-D. Note that the Control-D character itself is not
actually passed on to the operating system, only the end of file condition.

2-18

PROGRAMMER 'S GUIDE

As an example of the use of the read call, let’s examine a section of code that attempts to read
1024 bytes of data, placing them in a buffer called buffer. We assume the file has already been
opened for reading and the file descriptor is stored at fdsave.

move.l fdsave,dO get file descriptor

sys read,buffer,1024 read 1024 bytes into buffer
bes.1 rderr branch if error

tst.1 do end-of-file-condition?
beq.1 endof special handling if so

add.l #buffer,d0 point to end of data

move.l d0,bufend save buffer end pointer
buffer ds.b 1024

Upon return from the read system call, we first check for a returned error status. If an error
occurred, we assume the program handles it properly at rderr. If no error, we check for an end of
file condition. Recall that an end of file condition is recognized by a program as zero characters
read when there was no error. If we are at the end of the file, the program jumps to endof, where
we again assume that such a condition is properly handled. If we did not receive an error and
were not at the end of the file, our program calculates a pointer to one past the last byte read into
the buffer and stores that pointer at bufend. Normally this pointer should be buffer+1024, but if
. the read call returned less than 1024 bytes it would be lower.

The write System Call

The write function is executed by first loading register DO with the file descriptor number and
then issuing the write call:

sys write,buffer, count

The buffer parameter is the address of the location in the user program’s memory where the
program writes the data. The count is the number of characters to be written to the file. Upon
return from the write system call, the DO register contains the actual byte count written (if there is
no error). It is not necessary to compare this value to the requested count to be written because if
there was no error, you can be sure the entire write function took place properly.

Let’s look at a complete program to send the message Hello there! to the standard output file. If
there is an error in writing to that file, we will then send the message Error writing standard
output. to the standard error output file. (Recall that the standard output is assigned file
descriptor number 1 and standard error output is assigned file descriptor number 2.)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-19

PROGRAMMER'S GUIDE

lib sysdef include system definitions
text

* start of main program

sayhi move.l #1,d0Owrite to standard. output
Sys write,hello,hingsend message
bec.s doneexit if no error
move.l dO0,-(a7)else, save error number
move.l #2,dOwrite to std. error output
sys write,erm,elngsend error message
move.l (a7)+,dOrestore error number
bra.s done2

done move.l #0,d0

done2 Sys termterminate program

* strings

hello fcc “Hello there!”,$d,0

hingequ *-hellocompute length of string

erm fcc “Error writing standard output.”,$d,0

elngequ *-ermcompute length of string
end sayhigive starting address

There is no open system call because we know that the standard output and standard error output
files are already opened and ready for writing when the program begins execution. Note the
convenient method of providing the count of characters to be written. Also note that we did not
look for an error after the system call to write to the standard error output. We really have no
good recourse if an error does occur while reporting an error, so we simply terminate.

Efficiency in Reading and Writing

There are several things a system programmer can do to achieve efficient reading and writing of
files on the 4400. The first and most obvious of these is to read or write as much of a disk file as
possible with a single call. There is much less system overhead in executing one call to read
4096 characters than in executing 32 calls to read 128 characters each. The most efficient reads
and writes are those made in multiples of 512 bytes. This is, of course, due to the fact that the
4400 disk block size is 512 bytes. Due to the way memory mapping works, additional efficiency
can be gained by placing all read and write buffers on 512 byte address boundaries in memory.

By all means do not perform single character I/O with system calls for each character. If single-
character I/O is required, the user program should handle the necessary buffering so that system
calls are made only on a buffer full of characters.

2-20

PROGRAMMER'S GUIDE

Seeking

For each open disk file, the operating system maintains a pointer that indicates the current
position for reading or writing in that file. This pointer can point to any place in the file, right
down to any specific character position. The user does not have direct access to this pointer, but
may use the seek system call to position it to any desired spot in a file. The format of the seek
call is:

sys seek,offset,type

Before making a system call to seek, the user must load the desired file descriptor in register DO.
Seeks are done on a relative basis. That is, a seek amount is supplied to the call and the seek is to
be that amount relative to some reference point. (This reference point is the type parameter
shown above.)

There are three possible reference points: the beginning of the file, the current position in the file,
and the end of the file. The #ype value should be as follows:

type starting position or reference point

0 beginning of the file
1 current position in file
2 end of the file

The argument offser is a four-byte 2°s complement offset that represents the amount of offset to
be added to the reference point to find the new position in the file. A positive number indicates
forward in the file; a negative number indicates backward into the file. On return from the seek
call, the new current position is left in register DO. This is the current position relative to the start
of the file. To find the current position in a file, you could use a system call of sys seek,0,1,
finding the result in DO.

As an example, let’s construct a simple random access routine. Assume we have a data file with
fixed-length records of 256 characters per record. We know we will never have more than 32000
records in our file, so the record number can be represented in 16 bits. We want to write a
subroutine that will read the record specified by the record number in register A0 and leave the
data at the location specified by the A0 register. The basic procedure will be to find the starting
position of the desired record in the file by multiplying the record number by the record size of
256. Then we seek to that position and read 256 bytes. Our routine looks like this:

getrec ;:;ove.l a0,iread+2 save address for read
ext.l do make record number long
Isl.1 #8,d0 record*256 is offset

* seek to record

move.l dO,Iseek+2 set seck address parameter

move.l fd,d0 assume file descriptor at fd
sys ind,Iseek indirect call to seek
bes.1 skerr branch if error

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-21

PROGRAMMER'S GUIDE

* file pointer positioned, now read record
po po

move.l fd,d0 get file descriptor
sys ind,iread indirect call to read
bes.1 rderr branch if error
s all finished
Iseek dc.w seek seek function
code
dc.l 0 seek address (unknown)
del 0 type 0: position from begin
iread de.w read read function code
dcl 0 buffer location (unknown)
dcl 256 character count to read

Notice that we used indirect calls to seek and read, because at assembly time we do not know
what address we will need to seek nor where in memory to place the data we read. By using
indirect calls, we can set aside an area of memory (at Iseek and iread) where these values can be
stored as the program executes.

File Status Information

The status and ofstat calls are used to obtain information about each file or device. Ofstat is used

to obtain information about a previously opened file while status obtains information from an
unopened file. The format for ofstat is:

<file descriptor in DO>
sys ofstat,buffer

The user must load register DO with the file descriptor of the previously opened file.
The format for status is:
sys status, fname,buffer

With status, the file is specified by providing the fname parameter, which is a pointer to a zero-
terminated string containing the desired file name. In both commands the buffer parameter is a
pointer to a buffer in memory or an area of memory into which the information about the file can
be placed. This buffer must be at least 22 bytes long. When the status or ofstat call is completed,
this buffer contains all the information available for the file in the format described below.

2-22

PROGRAMMER'S GUIDE

Assuming the buffer begins at some location called buf, the information in the buffer is:

Name Location Field Size Information in Field

st_dev buf 2 device number
st fdn buf+2 2 fdn number st_fil
buf+4 1 spare (for word alignment)
st mod buf+5 1 file mode
st prm buf+6 1 permission bits
st_cnt buf+7 1 link count
st own buf+8 2 file owner’s user id
st_siz buf+10 4 file size in bytes
st mtm buf+14 4 time of last file modification

st_spr buf+18 4 reserved for future use

The device number is a number assigned to the device on which the file resides. The fdn number
is the number of the file descriptor node associated with the file. The file descriptor node is a
block of information about the file and where it resides on the disk. It is from the fdn that status
and ofstat obtain their information.

The link count is the number of directory entries that are linked to the fdn or actual file. More
information on linking can be found later in this section in the discussion titled Directories and
Linking. The file owner’s user id is a two-byte id that was assigned to the user by the system
manager when the user was given a user name. The file size in bytes is the exact number of
characters in the file. The time of last modification is the internal representation of the last time
the file was written to.

. The file mode and permission bytes each hold several bits of information. This is done by
assigning single bits within the file mode to particular file types and within the permission byte to
the various possible permission types. The state of the particular bit (0 or 1) indicates which type

of file mode or whether permission is given or denied. The File Mode byte is shown in Figure 2-
1.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-23

PROGRAMMER 'S GUIDE

7165|413 }|2}11]0

L_ BLOCK DEVICE
CHARACTER DEVICE
DIRECTORY

5927-2

Figure 2-2. File Mode (st_mod).

Only one bit should be set at a time and it indicates the file type. A block device is a device such
as a disk drive which handles data in 512 byte blocks. A character device is one such as the
communications device (/dev/comm) that handles data single character at a time.

The permissions byte shows what permissions are granted or denied for the file. The Permissions
byte is shown in figure 2-2.

2-24

PROGRAMMER'S GUIDE

7]6})}514}3}12]|1]0
L_ OWNER READ PERMISSION
OWNER WRITE PERMISSION
OWNER EXECUTE PERMISSION
OTHERS READ PERMISSION
OTHERS WRITE PERMISSION
OTHERS EXECUTE PERMISSION
USER ID BIT FOR PERMISSION

5927-3

Figure 2-3. Permissions (st_prm).

In this byte, any or all of the permission bits may be set at one time. If a bit is set, that type of
permission is granted. If cleared, permission is denied.

The user id permission bit requires further clarification. If this bit is set, it gives the user of a file
the same permissions as the owner while that file is executing. As an example of the usefulness
of this feature, consider a user, joe, who has a database program which manipulates a large data
file. Now joe does not want anybody on the system to be able to directly read or write his data
file, so he denies read and write permissions on that file to others. (Of course, he grants read and
write permissions for himself.) Even though he does not want anyone to be able to read and write
his data file directly, joe would like for other users to be able to run his database program, which
manipulates the data file. All he need do is set the user id permission bit in his database program.
With the user id bit set, anyone who runs the database program has the same permissions as joe,
which allows them to manipulate the data file while running the database program. As soon as
the database program is terminated, however, the other user no longer has the permissions of joe,
the owner.

Another example of the use of the user id bit can be seen in the crdir or create directory
command. A directory is a special type of file, and the only way to create a directory is with the
crtsd system call. That call may only be executed by the system manager. Without the user id
bit, the only person who could use the crdir command (which contains a crtsd system call) would
be the system manager. The crdir program has the user id bit set, however, so that anyone who
runs it temporarily has the same permissions as the owner. The owner of crdir is the system
manager; thus any user can create a directory.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-25

PROGRAMMER 'S GUIDE

DIRECTORIES AND LINKING

A directory entry is nothing more than the name of a file and a single pointer to the file descriptor
node (fdn) for the file. This fdn is a small unit on the disk; it contains various information about
a particular file. There is one and only one fdn on a disk for each file which resides on the same
disk. It is possible, however, to have more than one directory entry point to the same fdn. Two
different users could have an entry in their own directory which pointed to the same fdn and
therefore the same file. This feature is called a /ink and you can see it is possible to have many
links to the same file.

A long directory listing (dir +1) shows the number of directory entries which point to or are linked
to each file. This is always / or greater; if it ever goes to zero no one is linked to the file and it
will be deleted. In fact when you remove a file, the command merely removes that name from
the directory. This decrements the link count in the associated fdn. If that count is still non-zero,
someone else is linked to the file and it is not deleted from the disk. If the count does go to zero,
no one else is linked to the file and it is deleted.

An example of linking can be seen in every directory on a 4400 disk. Recall that there are two
entries, . and .., in each directory. (They don’t appear in a dir listing unless you use the +a
option.) The . entry represents the directory in which that entry is found; .. represents the parent
directory of the directory in which it is found. Thus typing . as a directory name is equivalent to
typing the entire path name for the current directory. Typing .. is equivalent to typing the path
name for the parent directory of the current directory. These directory entries are not separate
files, but are links to the current directory file and the parent of the current directory. That is why
you see a link count of more than one for every directory on the system.

The link and unlink system calls allow the programmer to link to files and unlink from files,
respectively. The link function is quite straightforward: one specifies a pointer to the name of the
file to be linked to, and a pointer to the new name that will be put into the directory. The unlink
call is equally straightforward: the programmer simply provides a pointer to the filename or
directory entry to be unlinked. This unlink call is the method of deleting files, the remove
command calls on the unlink function to perform the file deletion. Note that a file is not deleted
by an unlink call unless the call removes the last link to the file.

If a file is open when an unlink call is made, the link is removed, but the file will not be deleted
or closed by the operation. The user can still read or write to the file as long as it is left open.
The 4400 operating system waits until the file is actually closed and then checks the link count to
see if it should be deleted from the disk. This creates interesting possibilities for a program. A
file can be opened and then immediately unlinked. As long as the program leaves that file open,
it can read from it or write to it. When the program is finished with the file, it has only to close it.
If no one else is linked to the file, it is immediately deleted.

2-26

PROGRAMMER'S GUIDE

OTHER SYSTEM FUNCTIONS

This discussion describes several features and functions available to the system programmer that
are somewhat specialized. Specific calling formats and parameters will not always be given; for
this refer to Section 4, System Calls.

The Memory Management Functions

Earlier, we learned that when a task is started, it is allocated text, data, and stack memory
according to the program size. The system automatically increases the stack size if necessary.
With the break and stack system calls, it is possible for a running task to change the amount of
memory allocated to it’s data or stack spaces. It is also possible to relinquish allocated memory
back to the system, that is to deallocate data or stack memory. The memman system call controls
the activity in a region of memory, and the phys system call permits access to certain system
resources.

The break Function

The means of performing this dynamic memory or stack allocation and deallocation are the break
and stack commands. An address is supplied to break and the system attempts to allocate
memory to be sure there is RAM up through the specified address. Memory is allocated in page
sized sections, so depending on the address specified there may be some memory beyond the
" address. If an address is specified which falls below the amount of program memory already
allocated, that memory is relinquished or returned back to the system.

New memory pages are not necessarily allocated to a task when the size of it’s address space is
increased using the break command. Instead, new memory pages are allocated only when the
program actually reads or writes to a location within such a page. Thus it is possible for a task to
manage its memory by using the break to set the address space to the maximum size, then
"touching” those pages which it actually use.

The memman Function

The memman function allows individual pages of memory to be managed. These regions may be
disabled or enabled for writing, and locked or unlocked. All resources associated with a page can
be released, causing the system to effectively forget information stored in the page.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-27

PROGRAMMER'S GUIDE

The phys Function

The phys system call makes shared system resources addressable within the address space of the
task. The most commonly accessed resources is the display bit map. Writing to this resource
results in visible changes upon the console display.

The tyset and ttyget Functions

The 4400°s ttyset and ttyget functions provide a way to alter and examine several configuration
parameters of devices. The exact nature of these parameters differ for the various devices. For
example, the console device includes parameters such as the line-cancel character, the backspace
character, mapping of upper to lower case, tab expansion, etc. For any device the parameters are
represented in six bytes of data. These six bytes can be read with the ttyget system call to
examine the current configurations, or can be set with the #tyser system call to alter the current
configuration. A six-byte buffer must be established in memory to hold the desired
configurations for ttyset or to receive the current configuration information for #tyget. The file
/liblsystty contains definitions for the structures and constants.

Console Device parameters

If we assume that a six-byte buffer called #buf, the data has this format:

Name Location Contents

tt flg tbuf Flag byte

tt_ dly ttbuf+l (reserved)

tt cnc ttbuf+2- Line cancel character (default is Ctrl-U)
tt bks ttbuf+3 Backspace character (default is Ctrl-H)
tt spd ttbuf+4 Terminal speed '
tt spr ttbuf+5 Stop output byte

The eight bits of the Flag byte represent eight different modes of operation for the console. When
set, they imply that the indicated mode is in operation. The format of the Flag byte is shown in
figure 2-3.

2-28

PROGRAMMER'S GUIDE

71651413 |2)11}0

L UNUSED
UNUSED
UNUSED
UNUSED
UNUSED
UNUSED

UNUSED
INPUT READY

5927-4

Figure 2-4. Flag Byte (tt_flg).

When set, Any Character Restarts Output bit instructs the console driver to restart the output if it
has been stopped by either an escape or XOFF.

The Terminal Speed byte presently implements only one bit. It is the high order bit (bit 7) and, if
set, indicates that the terminal has input characters waiting for the program. This bit is
meaningful only when read, i.e. the input-ready condition cannot be set via this bit and ztyset.
The format of the Terminal Speed byte is shown in figure 2-4.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-29

PROGRAMMER 'S GUIDE

716})15}]4]|]3]|]2(1]}]0

L_ RAW 10 MODE

ECHO INPUT CHARACTERS

EXPAND TABS ON OUTPUT

MAP UPPER/LOWER CASE

AUTO LINE FEED

ECHO BACKSPACE ECHO CHARACTER

SINGLE CHARACTER INPUT MODE
IGNORE CONTROL CHARACTERS

5927-5

Figure 2-5. Terminal Speed Byte (tt_spd).

Under normal input operations, the /nput Ready bit is not set until an entire line has been input
and terminated by a carriage return. There are special input modes which can be established,
however, where the Input Ready bit will be set as soon as a single character is input. These are
the raw 1/0 mode and the single character input mode, described later in this section.

The Stop Output byte contains bits which control the stopping and starting of output to the
console. There are two methods by which a user can stop and start output to the console: the
escape key and XON/XOFF processing. The escape key method permits a user to type an escape
character (hex 1B) to stop output. A subsequent escape character restarts the output. The
XON/XOFF method permits a user to type an XOFF character (hex 13) to stop output and a
subsequent XON character (hex 11) to restart it. The escape and XON/XOFF mechanisms can be
independently enabled or disabled by setting or clearing the proper bits in the #_spr byte. The
format of the Stop Output byte is shown in figure 2-5.

2-30

PROGRAMMER'S GUIDE

7}]6]5]14]|3}2}]1]}]0

L uNusED

UNUSED

UNUSED

UNUSED

UNUSED

ANY CHARACTER RESTARTS OUTPUT
ENABLE XON/XOFF FOR OUTPUT
DISABLE ESC FOR STOPPING OUTPUT

5927-6

Figure 2-6. Stop Output Byte (tt_spr).

The following paragraphs describe each of these modes.

Raw I/0 Mode

In raw mode, the console driver effectively does no special processing of the input or output
characters. Each and every character typed on the console is directly input, including backspace
characters, line cancel characters, tab characters, Ctrl-C characters, and so on. Similarly, every
character output to the console is output directly: no tab expansion is performed, no line feeds are
appended to carriage returns, etc. In addition, the parity bit is not stripped on either input or
output.

In raw mode, the executing program has complete control of every character input or output and
the program must perform any special processing itself. Under raw mode a read system call will
not have to wait for an entire line to be input before it can read characters. If there is a single
character available, the read call returns with just that character. It is still possible for a single
read call to read more than one character, but only if the characters have already been typed into
the input buffer before the call is made. This mode is off by default.

Echo Input Characters

If this mode is enabled, each character typed on the keyboard is echoed to the display console.
An example of this mode occurs when a user logs in and is asked for his password. The login
program writes the Password: message and then turns the echo input characters bit off while the
password is entered. In that way the password is not echoed to the screen. This mode is on by
default.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-31

PROGRAMMER'S GUIDE

Expand Tabs on Output

If the terminal does not have hardware tab expansion, this bit can be set to allow the terminal
driver software to automatically expand tabs on output. Tab stops are assumed to be at 8 column
intervals. In other words, if this bit is on, then each time a horizontal tab character ($09) is
output, the system spaces over to the next column which is a multiple of 8 (unless it is already at
such a column). This mode is off by default.

Auto Line Feed

When this mode is on, the console driver will automatically output a line feed ($0A) after each
carriage return is output. This mode is on by default.

Single Character Input Mode

Single Character Input Mode allows a program to input one character at a time without having to
wait for a carriage return. When not in the single character input mode, a call to read a single
character would have to wait until an entire line terminated by a carriage return had been typed
before it would have access to a single character within the line. If single character input mode is
on, the program can read a character as soon as it has been typed. Note that it is still possible to
read multiple characters while in the single character input mode, if they are available. While in
the single character input mode, the parity bit is stripped off of input characters, but only Ctrl-C,
Ctrl-D, and Ctrl-\ are treated as special characters. In other words, tabs, backspaces, and line

cancels are ignored and should be processed by the user’s program if desired. This mode is off
by default.

Ignore Control Characters
When this mode is on, the system ignores all control characters except for the following:
® Carriage Return
® Horizontal Tab
* Cul-C
¢ Ctrl-D
® Ctrl-\

® Backspace Character
(if defined to be a control character)

® Line Cancel Character
(if defined to be a control character)

Those control characters that are ignored will still be echoed if the echo input characters mode is
also on. This mode is off by default.

2-32

PROGRAMMER'S GUIDE

Communications Device Parameters

The communication device parameters use the ttyset and ttyget system calls to communicate
option settings to the communications port device driver. The format of the 6-byte buffer used
with these calls is defined differently than for standard tty devices. The file /lib/syscomm
contains definitions for the structures and constants.

If you call a six-byte buffer cbuf, then the following data is in this format:

Name Location Contents
c_com cbuf Command field
c_value cbuf+1 Additional values
c_parity cbuf+2 Parity selection
c_flag cbuf+3 Flow control
c_ospeed | cbuf+4 Output baud rate
c ispeed | cbuf+5 Input baud rate

The ¢_com field is used to request various commands to be executed by the device driver during
ttyset and ttyget calls. Valid values for this field are defined as:

Command Value Description
RESET_COMM 1 Reset the communications port
SETUP_COMM 2 Set parity, flags and baud rates
EXCL_COMM 3 Do not accept open request until closed or reset
BREAK COMM 4 Send break signal for ¢c_value tenths of a second
NOBLOCK_COMM 5 Read calls do not block
BLOCK_COMM 6 Read calls do block (default)
DTRLOW_COMM 7 Set DTR signal low
DTRHIGH_COMM 8 Set DTR signal high (default)
RTSLOW_COMM 9 Set RTS signal low
RTSHIGH COMM 10 Set RTS signal high (default)

The RESET_COMM command resets the dev/comm device to its default conditions.

The SETUP_COMM command causes:
® Parity type and number of stop bits to be set according to the value in the ¢_parity byte
i Flaggihg control to be set according to the c¢_flag byte
¢ Baud rate to be set according to the c¢_ospeed and c_ispeed bytes

The EXCL_COMM command prohibits another process from opening this device until it is
closed or reset.

The BREAK_COMM command sends a break signal whose length in microseconds is the value
in the c_value byte.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-33

PROGRAMMER 'S GUIDE

The NOBLOCK_COMM command lets a read call return from the /dev/comm device when there
is no data. The read calls will not block and a zero count is returned if no bytes are available.

The BLOCK_COMM command is the default state and reads will block if no data is available. If
data is available, the data is read into the caller’s buffer (up to the requested number of bytes) and
the number of bytes read is returned.

The DTRLOW_COMM and DTRHIGH_COMM commands set the Data Transmit Ready signal
low or high, respectively.

The RTSLOW_COMM and RTSHIGH_COMM commands set the Request To Send signal low
or high, respectively.

The c_parity byte selects both the parity and the number of stop bits. Valid values for this field
are defined as:

Condition Value Description
LOW_PARITY 0 Parity bit always O
HIGH_PARITY 1 Parity bit always 1
EVEN_PARITY 2 even parity
ODD_PARITY 3 odd parity
NO_PARITY 4 no parity (default)
TWO_STOP_BITS | 0x80 if most-significant-bit

set, then two stop bits,
else one stop bit

The c_flag byte selects the type of flow control to be used through the communications device.
The valid values are:

Condition Value Description
NO_FLAG 0 No control flagging
INPUT_FLAG 1 Send “S/*Q for input control
OUTPUT_FLAG | 2 Accept "S/"Q for output control
TANDEM_FLAG | 3 Use both input and output “S/°Q (default)
DTR FLAG 4 Use DTR/CTS for flow control

By default, read calls will block if no input is available. If any data is available, it is read into the
caller’s buffer (up to the requested number of bytes) and the number of bytes read is returned. If
NOBLOCK_COMM is requested, then read calls do not block and a zero count is returned if no
bytes are available.

2-34

PROGRAMMER 'S GUIDE

The following constants are used in the ¢_ospeed and c_ispeed fields to indicate the transmit and
receive baud rates:

<
8
=1
&

Constant
EXTERNAL

C50
C75
C110
C134
C150
C300
C600
C1200
C1800
C2400
C4800
C9600
C19200
C38400

VOO AWNMAWND—=O

Pk pd ok ok ek
AW =O

Pseudo Device Parameters

A pseudo terminal (pty) is a pair of character devices, a master and a slave device, which provide
" an interface identical to that described in /lib/systty and /liblincludelsys/sgtty.h. While other
devices have a hardware device of some sort behind them, the slave device has instead, another
process passing data through the master half of the pseudo terminal. Anything written on the
master device is given to the slave device as input and anything written on the slave device is
presented as input to the master device.

The system supports 32 pseudo terminal pairs, named /dev/pty00 through /dev/pty31. The
system call create_pty returns two file descriptors; the master pty in register A0, the slave pty in
register DO. Both a slave and master device are opened by a create-pty call. The slave device
can be closed and reopened again by name, provided the corresponding master device is still

open.
Pseudo terminals can use normal tty calls, ttyset and ttyget. Also, pseudo-terminal information

can be set/returned from the master side of a pty with the control pty system call. The file
/lib/syspty contains definitions for the structures and constants.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE \ 2-35

PROGRAMMER S GUIDE

The system call control_pty is used to control the behavior of a pseudo-terminal channel. The
command structure is:

<master device file descriptor in DO>
sys control_pty,function,cval
<state in DO>

The functions are:

Function Equ Description

PTY_INQUIRY 0 Return the state of the
channel

PTY_SET MODE 1 Change the control
mode of the channel

PTY_FLUSH_READ 3 Clears data queue on
output of master

PTY_FLUSH_WRITE 4 Clears data queue on
output of slave

PTY_STOP_OUTPUT 5 Prevents slave from
writing to master

PTY_START_OUTPUT | 6 Allows slave to write to
master

All of the functions return the state of the channel in register DO as described by the function
PTY INQUIRY. The function PTY_INQUIRY is used to return the state of the channel. For this

function, cval is ignored. The value returned is a combination of bits which describe the state of
the channel. The bits are:

Mode Bit Description
PTY_PACKET MODE 0 Reads status on master
PTY REMOTE_MODE 1 No edit of data to slave
PTY | _READ WAIT 2 Block on non-satisfied reads
P’I‘Y WRITE _WAIT 3 Don’t block on writes
PTY HANDSHAKE MODE | 4 Remote writes not satisfied until consumed
PTY SLAVE _ HOLD 7 Prohibit slave from writing data
PTY_EOF 8 No more slave connections
PTY_OUTPUT_QUEUED 9 Slave has some output queued
PTY INPUT QUEUED 10 | Slave has some input queued

These bits are defined as:

PTY_PACKET_MODE When packet mode is selected on the master side of a pseudo
terminal, reads on the master side return two bytes of status in
addition to any data written by the slave. If any slave data is
available, the status bytes are zero. If no data is present, the
status bytes are the same as those returned by PTY INQUIRY.
Set to 1 if selected.

PTY_REMOTE_MODE If this bit is set, data written by the master and sent to the slave
side, will be flow controlled with no editing. Set to 1 if selected.

2-36

PROGRAMMER'S GUIDE

PTY_READ_WAIT If this bit is set, a read on the master side is blocked until slave
data is available. If this bit is clear, read requests on the master
pseudo terminal return regardless of whether data is available.
Set to 1 if selected.

PTY_WRITE_WAIT If this bit is set, the master pseudo terminal does not hang on a
write request if the output buffer is full. Set to 1 if selected.

PTY_HANDSHAKE MODE If this bit is set, a write on the master pseudo terminal is not
complete until the slave has consumed the data. Set to 1 if
selected.

PTY_SLAVE HOLD If this bit is set, the slave pseudo terminal is prohibited from
writing any more data to the channel. Set to 1 if slave pseudo
terminals I/O is stopped.

PTY_EOF Set to 1 if all slave ptys associated with this pty channel are
closed.

PTY_OUTPUT QUEUED The slave pseudo terminal has written data to the channel which
has not yet been consumed by the master. Set to 1 if output
queued on the slave device.

PTY_INPUT_QUEUED The master pseudo terminal has written data to the slave side
which has not yet been consumed by the slave pseudo terminal.
Set to 1 if input queued on the slave device.

The default mode of a pseudo device channel when created by a create_pty call is all modes set to
zero.

The function PTY SET MODE is used to change the control mode for the pseudo-terminal
channel. The value cval contains the new mode and should be some combination of the bits
described in the previous section. The new control mode is exactly what is in cval so to perform
an incremental change, the current value must be obtained using PTY INQUIRY.

The function PTY FLUSH READ causes any data written by the master side to the slave input
queue to be purged.

The function PTY FLUSH WRITE causes any data written by the slave side that has not yet been
consumed by the master side to be purged.

The function PTY _STOP_OUTPUT prevents the slave side from writing any more data to the
master side. This condition is reflected in the status bit PTY_SLAVE_HOLD.

The function PTY _START OUTPUT allows the slave side to continue writing data to the master
side.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-37

PROGRAMMER 'S GUIDE

Pipes

A pipe is a mechanism that permits a task to communicate with a child task.

A pipe allows communication in one direction only; it allows one task to send information to
another, but not to receive. If a pair of tasks need two-way communication, two pipes must be
established; one to send from the first task to the second and one to send from the second task to
the first. Once the pipe is established, the first task sends information to the second by using the
write system call, just as it would in writing to any other device. The second task receives
information from the first by using the read system call. The file descriptor numbers for these
write and read operations are provided by the system when the pipe is created.

The pipe mechanism works sort of like a holding tank with a valve on the input and output lines.
If the tank is not full, the writing task can pump data into it even though the reading task has the
output valve closed (is not actively reading). Likewise, if the tank is not empty, the reading task
can drain information out of it even though the writing task has the input valve closed (is not
currently writing). If the tank is full, the writing task is forced to wait until the reading task has
emptied it before being permitted to pump in more data. If the tank is empty, the reading task
must wait until the writing task has pumped in some data. This holding tank is a 4K disk buffer.
There is a buffer for each pipe, but none show up in any directory. These pipe buffers are placed
on the disk unit which has been configured as the pipe device.

The following section of code establishes a pipe between a task (A) and its child task (B). First,
Task A calls crpipe to create the pipe. Next, we immediately fork to create Task B, and then set

up the file descriptors so that we will be writing from task A to task B. The code looks
something like this:

2-38

PROGRAMMER'S GUIDE

sys crpipe create pipe system call
bes.1 piperr branch if error

move.l dO,rdfd save read file descriptor
move.l a0,wrtfd save write file descriptor
sys fork fork to spawn task B
bra.s child new task B here

bes.1 frkerr task A checks for error
move.l dO,tskBid save task id of child
move.l rdfd,dO pipe read file descriptor
sys close close read (A only writes)

move.l wrtfd,pipefd save pipe write file descriptor
* now Task A can write to pipe using pipefd

sys term end of task A

* code for Task B

child movel wrtfd,dO pipe write file descriptor
Sys close close write (B only reads)

move.l rdfd,pipefd save pipe read file descriptor
* now Task B can read from pipe using pipefd

Notice that each task closes the portion of the pipe that it cannot use. As previously stated, a pipe
allows data to be transmitted in only one direction. After performing the fork, both tasks have
open read and write pipe files. Now it is assumed that the writing task will eventually close the
write pipe file, and the reading task will eventually close the read pipe file. However, we must be
sure that the writing task closes the read file and the reading task closes the write file. In fact,
these files should be closed as soon as possible, before any reads or writes to the pipe are
performed.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-39

PROGRAMMER'S GUIDE

Program Interrupts

Program interrupts provide a way to interrupt tasks under software control. One program or task
can send a program interrupt to another task. This permits timing and synchronization among the
tasks in the system. It also gives the programmer the ability to terminate tasks prematurely under
software control.

Sending and Catching Program Interrupts

Here is an example of how a program sends an interrupt.

move.l #327,d0 get task number in DO
Sys spint,SIGQUIT send quit interrupt
bes.1 error

Assuming the effective user id of the task executing the above code matches that of task number
327 or that the above task is owned by the system manager, a quit interrupt will be sent to task
327. (We will define the quit interrupt and other interrupts in a moment.) Notice the system call
used to send program interrupts is spint. It is also possible for a program to send an interrupt to
all tasks associated with the terminal which executed the program. Consult the spint description
in Section 4, System Calls for details.

The cpint (for catch program interrupt) provides a way for a task to catch or intercept a program
interrupt when it is received. The task may then permit the interrupt to complete its default
action (usually task termination), may ignore the interrupt completely, or may take some special
user-defined action. :

In effect, cpint permits the user to set up an interrupt vector address, so that if a program interrupt
is received, control is vectored to that address. The programmer may place a routine at that
address which handles the interrupt in some special way. Two addresses, $000000 and $000001,
are special. If the address specified for the caught interrupt is $000000, the default action of the
interrupt is allowed to occur, much as if the interrupt had not been caught at all. If the address
specified is $000001, the interrupt is ignored, much as if the interrupt had not even been sent.
Note that no code is actually placed at these addresses. The cpint function recognizes them as
special values and performs the indicated interrupt handling without ever jumping to or using
them as real addresses. Any other address supplied to cpint is assumed to be a valid program
memory address, and control is passed to that location. There, the programmer places the desired
interrupt handling routine; this routine must be exited with an RTR instruction, so that control is
resumed at the same point in the program where the interrupt occurred.

Once a program interrupt has been caught and processed, the system resets itself back to the
default condition, and interrupts are no longer intercepted. Therefore, to continue catching
program interrupts, the programmer must issue a new cpint call after each interrupt is processed.

Table 4-1 shows the program interrupts that are available on the 4400.

2-40

PROGRAMMER'S GUIDE

Table 2-1
4400 PROGRAM INTERRUPTS
Name Number Description Comments

| SIGHUP T reserved
SIGINT 2 keyboard interrupt
SIGQUIT 3 quit interrupt produces core dump
SIGEMT 4 EMT $AXXX emulation int. produces core dump
SIGKILL 5 task kill interrupt can’t be caught/ignored
SIGPIPE 6 write broken pipe int.
SIGBUS 7 bus fault
SIGTRACE 8 reserved
SIGTIME 9 reserved
SIGALRM 10 alarm interrupt
SIGTERM 11 task termination interrupt
SIGTRAPV 12 TRAPYV instruction produces core dump
SIGCHK 13 CHK instruction produces core dump
SIGEMT2 14 EMT $FXXX emulation int. produces core dump
SIGTRAP1 15 TRAP #1 instruction produces core dump
SIGTRAP2 16 TRAP #2 instruction produces core dump
SIGTRAP3 17 TRAP #3 instruction produces core dump
SIGTRAP4 18 TRAP #4 instruction produces core dump
SIGTRAPS 19 TRAP #5 instruction produces core dump
SIGTRAP6 20 TRAP #6 instruction produces core dump
SIGPAR 21 reserved produces core dump
SIGILL 22 illegal instruction produces core dump
SIGDIV 23 divide by zero produces core dump
SIGPRIV 24 privilege violation produces core dump
SIGADDR 25 address error produces core dump
SIGDEAD 26 dead child task interrupt ignored by default
SIGWRIT 27 write to read-only memory produces core dump
SIGEXEC 28 reserved produces core dump
SIGBND 29 segmentation violation produces core dump
SIGUSR1 30 user-defined interrupt #1
SIGUSR2 31 user-defined interrupt #2
SIGUSR3 32 user-defined interrupt #3
SIGABORT 33 Program abort
SIGSPLR 34 Spooler interrupt
SIGINPUT 35 Input is ready
SIGDUMP 36 Memory dump
SIGUNORDERED* 42 FPU branch/set on unordered
SIGINEXACT* 43 FPU inexact result
SIGFPDIVIDE* 44 FPU divide by zero
SIGUNDERFLOW* 45 FPU underflow
SIGOPERAND* 46 FPU operand error
SIGOVERFLOW* 47 FPU overflow
SIGSNAN* 48 FPU signaling NAN
SIGMILLI 62 Millisecond alarm
SIGEVT 63 Mouse/keyboard event interrupt

* These interrupts are produced only by the MC68881 Floating Point Co-processor.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-41

PROGRAMMER 'S GUIDE

If not caught or ignored, all of these program interrupts (except SIGDEAD) by default cause
termination of the task to which they are sent. As listed above, some also produce a core dump.
A core dump is a disk file which contains a mirror image of the contents of memory. Each byte
in the program and stack space are written to a disk file immediately after receipt of the interrupt.
This file can be examined to determine the state of memory at the time the interrupt was received.
This is often useful for diagnostic purposes.

Many of the interrupts are initiated by MC68010/68020 exception processing. The cause of those
interrupts can be understood by studying the documentation of the MC68010/68020

microprocessor. Certain interrupts in the list are not directly initiated by the MC68010/68020
and need further definition.

2

10

11

14

26

27

29

Keyboard Interrupt: Generated by typing a Ctrl-C on the keyboard. This interrupt
terminates the foreground task of the associated terminal.

Quit Interrupt: Generated by typing a Ctrl-Backslash on the keyboard. This interrupt is
just like the Keyboard Interrupt except that it additionally produces a core dump.

EMT $AXXX Emulation Interrupt: Generated by the processor when an instruction with
the pattern 1010 in bits 15 through 12 is encountered.

Task Kill Interrupt: Always kills the task to which it is sent. A task may not catch or
ignore this interrupt.

Write Broken Pipe Interrupt: Generated when a pipe between two tasks is broken. This
occurs when the reader is closed and the writer attempts further writing.

Alarm Interrupt: Generated by the alarm system call after the specified number of
seconds. Unless caught or ignored, this interrupt terminates the task.

Task Termination Interrupt: This interrupt is the normal means of interrupting and

terminating a task. Unlike the Task Kill Interrupt, the Task Termination Interrupt may be
caught or ignored.

EMT $FXXX Emulation Interrupt: Generated by the MC68010 when an instruction with
the pattern 1111 in bits 15 through 12 is encountered.

Dead Child Task Interrupt: When a task terminates, it sends an interrupt to its parent task,
informing the parent that the child has terminated. This interrupt is ignored by default—
it must be explicitly caught by the parent in order to function. This interrupt remains
enabled after it is caught and must be explicitly disabled.

Write to Read-Only Memory: An attempt was made to write to a section of memory that
has been reserved as Read-Only by the memory management system.

Segmentation Violation: An attempt was made to access memory that is outside the
address space allotted to a task.

30-32 User-Defined Interrupts: These interrupts are additional interrupts that a user program

33
35
36

2-42

or set of programs may issue and catch for whatever purpose they wish.
Program Abort: A signal has been received to abort the program.

Input Ready: This interrupt indicates that data is available to the input device.
Memory Dump: An attempt has been made to dump memory that is being used.

PROGRAMMER'S GUIDE

62 Millisecond Alarm: When enabled, this interrupt occurs every millisecond.

63 Mouse/Keyboard Event Interrupts: This interrupt occurs when the mouse is moved or a
key depressed.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-43

PROGRAMMER'S GUIDE

On return from a cpint call, register DO contains an address. This address is the address which the
system was using on receipt of program interrupts. In other words, it is the address which was
provided in the previous cpint call. This old address can be used to tell what kind of action a
program was taking on receipt of program interrupts before the current cpint call. For example,
assume we have a program that is ignoring quit interrupts. If we now issue the instruction:

sys cpint,SIGQUIT, O

(which says to take the default action on receipt of a quit interrupt) we would find / returned in
the DO register. That 1 is the address which was previously being used, and we know that an
address of 1 says to ignore the interrupt.

Knowing what type of program interrupt action is currently being taken can be very useful in the
case where one task starts another. If one task is ignoring some particular interrupt and that task
starts some new task running, the new task should usually also ignore the interrupt. Assume
Program A starts Program B by doing a fork and exec. Also assume Program B normally wishes
to catch keyboard interrupts (Ctrl-Cs) and process them in a special way. Program B should be
written to first check how Program A was handling keyboard interrupts. If Program A was not
intercepting keyboard interrupts or was catching them, Program B may go ahead and catch them
and process them as desired. If, however, Program A was ignoring keyboard interrupts, then
Program B should also ignore them. The code for Program B to handle all this properly would
be:

Sys cpint,SIGINT, 1 Start by ignoring
cmpl #1,d0 Was program A ignoring?
beq contin If so, then so should we

Sys cpint,SIGINT handle If not, catch it
contin

Note that by ignoring the keyboard interrupt while checking what Program A was doing, we
avoid a potential chance for a keyboard interrupt to come through and be improperly handled.

2-44

PROGRAMMER'S GUIDE

As an example of program interrupt catching, let’s examine a portion of code that would put a
program to sleep for 30 seconds. The technique is to send an alarm interrupt with the alarm
system call, then put the task to sleep with the stop system call. In order to catch the alarm
interrupt and continue properly in our program, we will use the cpint system call.

sys cpint,SIGALRM,wake catch alarm & goto wake
move.l #30,d0 delay 30 seconds
sys alarm

sys stop wait for alarm interrupt
continue with program

wake rtr do nothing with interrupt

The cpint system call tells the task to catch any alarm interrupts and handle them as specified by
the code at wake. In this example the code at wake does absolutely nothing but return. That is
because when the alarm is received we want to simply continue execution of the program where
we left off (just after the stop system call).

Interrupted System Calls

Most system calls cannot be interrupted by a program interrupt. That is, once a system call is
executing, it will finish regardless of whether a program interrupt is pending. Once that system
call is completed, the user’s program then sees any waiting program interrupt. There are a few
calls, however, which may be terminated by a program interrupt. In particular, those system calls
which may be interrupted are read and write (if the device being read or written is a slow device
such as a terminal or printer) and the stop and wait calls. A read or write call to a fast device,
such as a disk file, is never terminated by a program interrupt.

If a program interrupt does get through to one of the system calls, the following action takes
place. First, the system call immediately terminates, and control passes to the program interrupt
handling code if the interrupt is caught. Then, when the interrupt handling code completes,
control passes to the instruction immediately following the interrupted system call and an error
status is returned. This error status is accompanied by an EINTR error (number 27). In this
way, the program which made the system call can detect that it was interrupted and re-issue the
system call if desired.

As an example, consider a program which prompts the user for a line of data from the terminal.
If a program interrupt is sent to that program while a read system call is getting the data from the
terminal, that call may be prematurely terminated; i.e. not all the data may be returned. Once the
program interrupt handling code was complete, our program would continue right after the read
call, but would show an EINTR error. Our program may choose to treat the EINTR error like any
other and terminate with an error message. An alternative , however, would be to recognize that
it was an EINTR error and loop back in our code to re-issue the prompt and the read system call
to input the data again.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-45

PROGRAMMER 'S GUIDE

Locking and Unlocking Records

The Irec and urec system calls provide a record locking mechanism that prevents more than one
task attempting to access a file at one time. A program or task can lock a record of data until such
time as it is ready to unlock or release it for others to use. While that record is locked, no other
task would be able to access it.

The operating system maintains a table showing what records are locked in the system. These
records may be of any length, as specified by the task which performs the lock. Note that a single
task may lock only one record in a file. However, other tasks can lock other records in that same
file, and a single task can lock a record in more than one file at a time.

When a task issues an Irec call to lock some record within a file, the system first checks the
locked record table to see if the calling task already has a record locked in this file. If so, any
such record is unlocked before the new record lock can be made. Next, the system checks to see
if the record to be locked is available or if some other task may have previously locked some
portion of it. If available for locking, the system makes an entry in the locked record table and
returns to the calling task. If the desired record overlaps some portion of an already locked
record, the system returns with an ELOCK error. At this point, the calling program could take
some appropriate action, '

There are three ways for a task to unlock a record. The first is through use of the urec system
call, which unlocks whatever record may have been locked by the calling task for the specified
file. The second is by closing a file. Upon closing, any records locked by the task that opened
the file are automatically unlocked. The third is by locking another record in the same file; this
will automatically unlock any record which is currently locked.

Having said this, we must back up and tell you that locking a record does not really prevent
another task from accessing it. Any program that wishes to can still read or write the data which
some other program has locked in a record. In order for locking to provide the desired results, all
programs must take upon themselves the responsibility of avoiding reading or writing to a locked
record. This may be accomplished by attempting to lock records before reading or writing them.
If the record is available, no error is returned, and we can go ahead with the read or write. If an
error is returned (ELOCK error), we know that someone else already has the record locked and
we should take some other action. One possibility is to put our task to sleep for a few seconds
(with the alarm and stop system calls), and then try locking the record again. Proper use of the
lock and unlock calls yields the same result as if locking actually did prevent another task from
reading or writing. Note that locking and unlocking is not necessary in all cases, only in those
where a data file is shared and conflicts can occur.

2-46

PROGRAMMER'S GUIDE

Shared Text Programs

The 4400 operating system lets you separate an assembly language program into two sections, a
text segment for nonchanging memory or memory which is only read, and a data segment for
memory which can be changed by writing into it. When a task runs this program, a section of
memory is assigned to each segment. If a second task runs the program at the same time, the
system recognizes the fact that it already has a copy of the text segment in memory and only
loads the data segment into memory for the second task. The system then maps the same
memory that contains the text segment for the first task into the address space for the second task
when it runs. For more details on how to produce a shared text type program, refer to Section 3,
The Assembler and Linking Loader.

GENERAL PROGRAMMING PRACTICES

This discussion covers several general programming practices that are recommended when
writing assembly language programs to run on the 4400.

Starting Locations

Assembly language programs should not have specific origin addresses. Rather, the load
addresses for the text and data sections of a program (as well as the stack established by the
system) should be specified at load time. These addresses can be explicitly specified to the
loader, but should generally assume the default values found in the file /lib/ std_env. This file
contains the proper addresses for the hardware memory manager and is automatically read by the
linking-loader.

Stack Considerations

When a program begins execution, it is assigned a portion of memory to contain the program
stack. The cpu’s system stack pointer (register A7) is left pointing to some location within this
memory. The user’s program should not write into locations in memory higher than this initial
stack pointer location. The passed parameters which lie directly above the stack pointer (higher
in memory) may be read, but nothing should be written above the initial stack pointer location.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE : 2-47

PROGRAMMER 'S GUIDE

Hardware Interrupts and Traps

In general, a user program need not perform any hardware interrupt or trap handling. Some traps
can be handled in the same fashion as program interrupts by using the cpint system call.

Delays

To maintain system efficiency, a user’s program should not contain delay routines which tie up
the processor for long periods of time. Because of task switching, a delay loop does not provide
accurate timing delays anyway. The preferred method is to use the alarm system call followed
by a stop system call. The program must also then use the cpint system call to catch the alarm
interrupt and continue with the desired code.

System lib Files Provided

Several system library files are provided for the convenience of the assembly language
programmer. Located in the /lib directory, these files contain definitions for several system
related calls, tables, buffers, etc. The programmer may include these definitions in his programs
by simply using the lib instruction in the assembler. These files include:

syscomm Ttyget and ttyset buffer layout
sysdef System call definitions

sysdisplay System display and event definitions
syserrors System error definitions

sysints Program interrupt definitions
sysstat Status and ofstat buffer layout
systim Time and ttime buffer layouts

An additional file is provided for use by the linking-loader. It is called by the linking loader and
should not be included in an assembler program.

std_env Standard environment for
linking-loader, linked to the file
ldr_environ.

2-48

PROGRAMMER'S GUIDE

Generating Unique Filenames

Often, it is necessary for a program to generate a filename. A typical example is when a program
wishes to create a scratch file of some sort. In a single-task environment, the program could just
use some name defined at assembly time. In a multi-task environment, however, more caution is
required. If the program which generates the filename is run as more than one task
(background/foreground for example) there may well be conflicts since each copy of the running
program would be attempting to create and manipulate the same file. The proper technique to
avoid this problem is to have the program include the current task id as part of the filename.
Since each executing copy of the program has a different task id, they each generate different
filenames. Use the gtid system call to obtain the task id number, then convert it to ASCII and
include it as part of the filename.

Debugging

Assembly language debugging on the 4400 is accomplished via the debug command. This
command provides tools such as memory dumps, breakpointing, and single-stepping. Refer to
Section 2, User Commands and Utilities in the Operators Reference Manual, for documentation
on the debug utility.

PROGRAMMING EXAMPLE

The following sample utility demonstrates several of the calls and techniques in writing assembly
language utilities on the 4400. This utility reads a file (or list of files) and strips out all control
characters except for carriage returns ($0d) and horizontal tabs ($09). The syntax of the
command line is as follows:

strip [file]

The square brackets indicate that the file name specification is optional. If no filename is
supplied, strip reads the standard input. The three periods (...) indicate that it is possible to
supply more than one file name. In such a case, strip reads all the files in order and writes the
stripped output to the standard output.

Our basic task, then, is to read either a list of files or the standard input, strip the necessary
control characters, and write the result to the standard output device. In order to handle any size
file(s), we shall read and write the data into a buffer. We know that for efficiency, the buffer
should be an even multiple of 512 bytes, but how big a multiple? The code to implement this
utility will obviously be quite small, such that the program and the buffer could easily fit in 4K of
memory. Since this utility will probably not be frequently used, we decided to limit the program
memory utilization to only 4K. We will make the read/write buffer as large as possible within
that 4K space, while keeping it a multiple of 512 bytes.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-49

PROGRAMMER 'S GUIDE

The first step, after titling and describing the program, is to include the system definitions with
the /ib instruction on line 17. Next we actually begin the code section of our program with the
text statement in line 23. In line 27 we load the "a6" register with a pointer to the list of filename
arguments. The list is null if no filename was specified. Notice that we skip eight bytes, four
containing the argument count and four containing argument O which is the name of the
command itself.

Lines 28 through 31 check to see if a file or files were specified on the command line. If so, the
argument count (what the system stack is pointing to) will be greater than 1 because argument 0
(the command name) counts as one. If the argument count is 1, no file was specified, so we must
read the standard input. The file descriptor for standard input is O, so that value is saved in ifd
and we jump ahead to process that input. If a file was specified, we enter a loop to read through
all specified files.

In line 35 we obtain the pointer to the next file in the list and store it at opname. If that pointer is
zero (a null pointer), we have reached the end of the list, and we jump off to the exit code at done.
If it is non-zero, it must be the address of a filename string. Lines 40 through 42 open that file for
read and save the file descriptor in ifd. Note that the open is done via an indirect system call.
This is necessary because when the program is written, we do not know what filename to specify
‘in an open call. The pointer to the name of the file to be opened is only discovered as we run the
program. When we stored the filename pointer at opname in line 35, we were actually storing the
filename pointer in the parameter list for the upcoming indirect open system call.

In line 46 we call a subroutine named strip to read through the file whose descriptor is in ifd, strip
out the control characters, and write the result to standard output. Line 47 branches back to the
top of the loop to look for another possible input file.

The strip subroutine is where the control characters are actually stripped. In lines 67 through 69
we read BUFSIZ characters into memory at buffer. Lines 73 and 74 check for end-of-file. If we
were at the end of the file, we jump to strip9 and exit the subroutine. If not, we go on to lines 80
through 91, where the control characters are stripped from the buffer. Note that after the control
characters are stripped, the resulting data is left in the same buffer. Because some characters may

have been stripped out, the location of the end of the data in the buffer may be lower than before
the stripping.

After the stripping, we fall into lines 96 through 101, where the stripped data is written out to
standard output. Lines 96 and 97 calculate the number of characters to write. It is equal to the
difference between the pointer to the end of the data in the buffer and the pointer to the beginning
of the buffer. The result is stored in the parameters for an indirect write call. In line 98 we obtain
the file descriptor for the standard output file. Lines 99 and 100 carry out the indirect write

system call. In 101 we jump back to the beginning of the subroutine to read in another buffer of
data.

Lines 113 through 134 contain the error handling code. If an error occurs, we simply write an
appropriate message to the standard error output (file descriptor 2). The important thing to note
about this code is that we save the error status so that it may be passed on to the term system call.

2-50

PROGRAMMER’S GUIDE

Lines 144 through 158 contain temporary storage and buffers. First are the parameter lists for the
indirect open and write calls mentioned earlier. Line 153 reserves storage space for the current
input file descriptor. Lines 155 through 158 reserve the read/write buffer. The buffer starts on a
512 byte boundary and the end of the buffer is the end of the 4K memory page. Recall that
read/write efficiency is gained not only by a buffer size which is a multiple of 512 bytes, but also
by beginning the buffer on a 512 byte boundary. Line 157 establishes the buffer size by
calculating the difference between the end of the 4K page ($1000) and the beginning of the
buffer. The end statement on line 161 specifies the utility starting address in its operand field.

SAMPLE strip UTILITY

LR R SRS EE SRR SRS LSS RS RS R RS SRS SRR E LT TR LT ELTEEEE LR R R R R R R R
Sample "strip" Utility

Copyright (c) 1984 by
Technical Systems Consultants, Inc.

* % o o F Ok * *

Utility to strip all meaningless control characters from
input file and write stripped version to standard output.
* Accepts list of input files or defaults to standard input.
* For the purpose of this utility, "meaningless control
12 * characters" are all characters with and ASCII value between
*
*

OCoOoJoud WN K

$00 and $1F inclusive except carriage return ($0D) and
horizontal tab ($09).

15 *kkkkhhkhhkhkhkhhkhhkhkhkhkhkhkhkhkhkhkhkhkAAAARAAAAkAkdhkhhkkhkhkkkhkkkx

17 1ib sysdef read system definitions

19 hhkhkhkhkhkkhkhkkhkhkhkhkhkhkhkhkhkhkkkhkkhkkhkhkhkkhkhkkhkkkhkhkkhkhkhkkhkkkhkhkkxx

20 * start of main program
21 *kkhkkkkhkkkhkkhkkhkkhkkhkkhhkkhkkhkkhkkhkhkhkkhkhkhkkkhkhkhkhkhkhkhkkhkkkkkkkkkk

23 text begin text segment

25 * start by seeing if any input files were specified

27 start lea 8 (a7),ab set arg ptr past count & argO

28 cmp.1l #1, (a7) file specified only if argcnt >1
29 bhi.s main2 branch if filenames present

30 move.l #0,ifd else use standard input

31 bra.s main4 go process std. input

32

33 * check to see if any more files specified

34

35 main2 move.l (ab)+,opname get next argument in list

36 beq.s done branch if no more args

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-51

PROGRAMMER 'S GUIDE

37

38 * open specified file for read

39

40 sys ind, iopen do indirect open call

41 bes.s opnerr branch if error

42 move.l do,ifd save input file descriptor
43

44 * strip control characters from this file

45

46 maind4 Dbsr.s strip subroutine to strip CTRLs
47 bra.s main2 look for more files

48 '

49 * finished all input files, terminate task

50

51 done move.l #0,d0 show normal termination
52 sys term

53

54

55

56 AAAAKA AR A A A A A AR AR AR A AR A AR R A A AR A A A Ak A A Ak Ak hkhkdkkk k%

57

58

59 * subroutine to strip meaningless control characters
60 * from the file specified by file descriptor in "ifd*
61 * and write result to standard output.

62

63

64

65 “*begin by reading a buffer full

66

67 strip move.l ifd, do get input file descriptor
68 Sys read, buffer,BUFSIZ read buffer full
69 bes.s rderr branch if read error

70

71 * check for end of file (0 characters read)

72

73 tst.1 do end of input file?

74 beq.s strip9 exit if so

75

76 * do actual stripping of control characters. This will
71 be done in place in the buffer by collapsing the data
78 * as meaningless control characters are stripped.

79

*

80 move.l #buffer,al point to source buffer

81 move.l al,al point al to destination buffer
82 bra.s stripb enter DBcc loop

83 strip4 move.b (a0)+,d1 get a character into dl

84 cmp.b S#1F,d1l a control character?

85 bhi.s strip$5 go keep character if not

86 cmp.b . #$0D,dl a carriage return

2-52

PROGRAMMER'S GUIDE

87

88

89

90

91

92

93

94

95

96

97

98

929

100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136

beq.s strip5 keep if so
cmp.b #509,d1 a tab?
bne.s strip6 if not, don’t keep
strip5 move.b dl, (al)+ put char. in buffer
strip6 dbra d0,strip4 decrement count; loop if more

* finished stripping, al points to end of buffer of
* stripped data ready to be written

sub.1 #buffer,al find no. of chars to write

move.l al,wrtcnt store in parameters

move.l #1,d0 write to standard output

sys ind, iwrite do indirect write

bes.s writerr branch if error

bra.s strip go read another section
strip9 rts exit routine

khkkhkkhkkhkhkkhkhkhkkhkhkhkhkhkdhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkkhkhkhxhhdx

* error handling routines

opnerr move.l do,-(a7) save error status on stack
move.1l #2,d0 standard error output
sys write, opners,opnerl
bra.s err
rderr move.1l do,-(a7) save error status on stack
move.1l #2,d0 standard error output
sys write,rderrs,rderrl
bra.s err
wrterr move.l do,-(a7) save error status on stack
move.l #2,d0 standard error output
sys write,wrterr,wrterl
err move.1l (a7)+,d0 pull error status from stack
sys term exit program
opners fcc "Can’t open input file.",$d,0
opnerl equ *—opners
rderrs fcc 'Error reading input file.’,$d,0
rderrl equ *-rderrs
wrters fcc '"Error writing output file.’,$d,0
wrterl equ *-wrters

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 2-53

PROGRAMMER'S GUIDE

137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

2-54

hhkhkhkhkhkhkhkAhkhhkhkhkhkhkhkhkhkkhkhkhkhkhkhkhkhhkhkhkhkhkhkhkhkhkhhx

* temporary storage and buffers

* indirect
iopen dc

opname dc.

data begin data segment
open system call parameters
Y open open function code
1 0 name of file to open
.1 0 open mode 1 (reading)

opmode dc

* jndirect

write system call parameters

iwrite dc.w write write function code
wrtbuf dc.1 buffer buffer to write from
wrtcnt de.l 0 byte count to write
ifd ds.1 1 input file descriptor

ds.b 512-24 reserve up to 512-byte boundary
buffer equ * start on 512-byte boundary
BUFSIZ equ $1000-512 multiple of 512 bytes

ds.b BUFSIZ reserve space for buffer

end start

Section 3

THE ASSEMBLER
INTRODUCTION

The 4400 assembler supports conditional assembly as well as numerous other directives for
convenient assembler control. The assembler executes in two passes and can accept any size file
so long as sufficient memory is installed to contain the symbol table. Output from the assembler
is in the form of a relocatable object file.

This section describes the operation and use of the Assembler and Linking Loader. The
Assembler accepts most of the Motorola standard mnemonics for instructions, and fully supports
the MC68000/68010/68020 instruction set. This section describes differences between the
Motorola standard for instructions and those supported by the assembler.

This section is not intended to teach the reader assembly language programming nor the full
details of the MC68000 instruction set. It assumes the user has a working knowledge of assembly

language programming and a manual describing the MC68000 instruction set and addressing
modes in full.

Throughout this section, angle brackets (< and >) are often used to enclose the description of a
particular item. The angle brackets show that it is a single item even though the description may
require several words. In addition, square brackets ([and]) are used to enclose an optional item.

Details of the instruction set, assembler syntax, and addressing modes were obtained from
M68000 16/32-Bit Microprocessor Programmer’s Reference Manual, Copyright 1984 by
Motorola Incorporated.

Invoking the Assembler

Assembler text files must be standard text files with no line numbers or control characters (except
for carriage returns and tabs). Once you have both the assembler and the edited source file on a
disk or diskettes which are inserted in a powered-up system, you are ready to begin.

The Command Line

The minimum command line necessary to assemble a source file is:

++ asm sourcefile

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-1

THE ASSEMBLER

When parameters are omitted, the assembler assumes default parameters. Two types of output
are available from the assembler: object code and assembled source listing. (The options
regarding the assembled source listing output is described a little later.) Object code is written
into a operating system file. It is also possible to disable production of the object code file.
Since no specifications are made concerning object code output in the above example, the
assembler assumes the default case, which is to produce an object file. Since an output-file object
is not specified, the input source file name is used with the characters .r appended. If there is not
room to append those two characters, the last one or two characters of the input file name is
truncated to make room. In our above example, the created binary file would be named
sourcefile.r. Should a file exist with the same name, it will be automatically deleted with no
prompting.

If you wish to create an object file with another name, place the desired file name on the
command line as follows:

++ asm sourcefile +o=obijectfile

The +o= is an option to the assembler which specifies that an object file is being created with the
specified name. This example produces an object file named objectfile. Again, if a file by that
name already existed, it would be deleted to permit creation of the new object file.

Multiple Input Source Files

The 4400 assembler is capable of accepting more than one file as the source for assembly. If
multiple input files are specified, they are read in the calling order and assembled together to
produce a single output file. This permits the user to break source programs down into more
convenient size source files that may then be assembled into one object file. As mentioned, the
files are read sequentially in the calling order with the last line of source from the current file
being followed immediately by the first line of the ensuing file. All end statements in the source
are effectively ignored and the assembly is terminated when the last line of the last source file is
read.

There are two ways to specify multiple input files to the assembler: by entering the name of each
file and by a match list in a file specification. Entering each filename would look like this:

++ asm filel file2 file3 file4
A match list in the file specification looks like this:
++ asm file[1-4]

In this example, the square brackets do not denote an optional item, but rather are the method of
specifying a list of match characters. Both of the above examples produces the same result. Note
that in these examples an object file is created by default and is called filel.r (the name is taken
from the first input file). As before, we can also specify an object file name as follows:

++ asm filel file2 file3 filed4 +o=command

This results in an object file called command.

THE ASSEMBLER

Specifying Assembly Options

Now we shall go one step further and add a set of single character option flags that may be set on
the command line as follows:

++ asm sourcefile +options

The plus sign is required to separate the option(s) from the file specification(s). In this example,
the word options following the plus sign represents a single character option flag or list of
character option flags which either enable or disable a particular option or options. In all cases,
they reverse the sense of the particular option from its default sense. Any number of options may
be specified and they may be specified in any order. There may not be spaces within the option
list.

Following is a list and description of the available options:

+b Do not create a binary file on the disk, even if an binary file name is
specified. This is useful when assembling a program to check for errors
before the final program is completed or when obtaining a printed source
listing.

+€ Suppress end summary information. At the end of the assembly, the
assembler may report the size of the segments and the total count of
errors, warnings and excessive jumps. Often the user does not wish to
have any output generated at all; the +e option suppresses this summary
information. If this is used without selecting the +1 and +s options, then
it is possible that no output listing will be generated. However, if there
are any errors reported in the module, this summary information is not
suppressed.

+f Disables the auto-fielding feature of the assembler such that assembled
output lines appear in the exact form as found in the input file.

+F Enable debug or fix mode. There are two forms of line comments. One
begins with an asterisk (*) the other with a semicolon (;), both in the
first column of the source line. If the comment begins with a semicolon,
the +F option instructs the assembler to ignore the semicolon and
process the line as though the semicolon never existed. The asterisk in
the first column of a source line always denotes a comment regardless of
the state of this option.

+1 Produce the assembled listing output. If specified, the assembler outputs
each line as it is assembled in the second pass, honoring the "lis" and
"nol" options (see the "opt" directive). Those lines containing errors
will always be printed, regardless of whether or not this option is
specified. :

+L Produce a listing of the file during the first pass of the assembler. The
assembler prints unformatted lines (exactly as read) to standard output.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 33

THE ASSEMBLER

+n

+S

+S

+t

+u

Enables the printing of decimal line numbers on each output line. These
numbers are the consecutive number of the line as read by the assembler.
Error lines are always output with the line number, regardless of the
state of this option.

Produce the symbol table output. If this option is specified, the
assembler produces a sorted symbol table at the end of an assembly.
Note that the "1" option will not produce the symbol table output, just
the source listing. In the symbol table, global symbols are preceded by
an "*," and other symbols by a blank.

Limit each symbol to only eight characters internally. Normally, the
user can define and use symbols that contain 63 unique characters.
However, in some cases, it may be necessary to limit the uniqueness of
the symbols to only eight characters.

Produce object code for the MC68000 rather than the MC68010/68020.
This option affects only the code generation for the Move from CCR
instruction. Normally the assembler produces the MC68010/68020
version of this instruction. If this option is specified, the assembler
produces the MC68000 Move from SR instruction (Privileged on the
MC68010/68020), in its place.

Set all undefined symbols as external. In some cases you may wish to
assemble a module that has some undefined external symbols. The +u
option treats all undefined references as external references. The +u
option should not substitute for the good programming practice of listing
all external symbols in the operand field of the extern directive.

+o=<filename> Filename Allows specification of an output object file name (in this

example file).

Order for Specifying Filenames, Options, and Parameters

Input filenames, options, and command line parameters can be specified to the assembler in any
order. The assembler scans the input command line twice, once to pick out all options and
parameters (they all begin with a plus sign) and then again to pick out all file specifications.
Place order is significant only when multiple input files are specified. They are assembled in the
order entered on the calling line.

THE ASSEMBLER

Sending Output to a Hardcopy Device

The assembler uses the facilities of the 44007s operating system to send the assembled listing to a
hardcopy device. The most common means are to route the standard output to a file that may
later be printed.

Examples:

++ asm test

Assembles a file called test and creates an binary file called test.r in the same directory. No
listing is output (except for any lines with errors) and no symbol table is output.

++ asm test +1s

Same as before except that assembled listing is output to the terminal, as is the symbol table.

++ asm test +o=/bin/test +1s

Assembles a file called test in the current directory and produces an object file in the bin
directory called test. The listing and symbol table are output to the terminal, and if a file by the
name of fest already resides in the bin directory, it is automatically deleted before the assembly
starts.

++ asm /john/main +bnl

This command assembles the file main in John’s directory but does not produce a binary file.
The assembled listing is output with line numbers. No symbol table is printed.

++ asm file[1-4] +bln

This command assembles all files beginning with file and ending with a 1, 2, 3, or 4. No binary
or symbol table is output, and line numbers are turned on.

++ asm +u dumper +nel

This command demonstrates the fact that the filenames, and options can come in any desired
order on the command line. The file to be assembled is called dumper. The assembled listing is
output with line numbers. All undefined references are made external, no summary information
will be output, and no symbol table is produced.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-5

THE ASSEMBLER

ASSEMBLER OPERATION & SOURCE LINE
COMPONENTS

The 4400 assembler is a two-pass assembler. In Pass One a symbolic reference table is
constructed and, in Pass Two the code is actually assembled, and a listing and object code are
produced if requested. The source may be supplied in free format, as described below. Each
source line consists of the actual source statement, terminated with a carriage return (0D hex).
The source must be comprised of ASCII characters with their parity or 8th bit cleared to zero.
Special meaning is attached to many of these characters as will be described later. Control
characters ($00 to $FF) other than the carriage return ($0D) and horizontal tab ($09) should not
be in the actual source statement part of the line. Their inclusion in the source statement
produces undefined results.

Each source line consists of up to four fields: Label, Opcode, Operand, and Comment. With two

exceptions, every line must have an opcode while the other fields may or may not be optional.
These two exceptions are:

1. Comment Lines can be inserted anywhere in the source and are ignored by the assembler
during object code production. Comment lines can be either of two types: '

a. Any line beginning with an asterisk (hex 2A) or semicolon (hex 3B) in column one.

b. A null line or a line containing only a carriage return. While this line can contain no
text, it is still considered a comment line as it causes a space in the output listing.

2. Lines which contain a label but no opcode or operand field.

Source Statement Fields

The following pages describe the four source statement fields and their format specifications.
The fields are free format which means there can be any number of spaces separating each field.
In general, no spaces are allowed within a field.

3-6

THE ASSEMBLER

Label or Symbol Field

This field may contain a symbolic label or name that is assigned the instruction’s address and
may be called upon throughout the source program.

1. Ordinary Labels

a.

c.
d.

c.

The label begins in column 1 and must be unique. Labels are optional. If the label is
omitted, the first character of the line must be a space.

A label may consist of letters (A-Z or a-z), numbers (0-9), or an underscore (_ or 5SF
hex). Note that upper and lower case letters are not considered equivalent. - Thus
ABC is a different label from Abc.

Every label must begin with a letter or underscore.
Labels can be of any length, but only the first 63 characters are significant.
The label field must be terminated by a space, tab, or a return.

2. Local Labels

a.

Local labels follow many of the same rules as ordinary labels. They begin in column
one and they must be terminated by a space, tab or return.

Local labels consist of a number from 0 to 99. These numbers may be repeated as
often as desired in the same source module; they need not be in numerical order.
Note that the labels 00 and 0, 01 and 1, etc., are unique labels.

Local labels may be treated as ordinary labels; however, they cannot be global or
external. They can not be used in the label field of an equ or set directive.

Local labels are referenced by using the local label number terminated with an "f" for
first forward reference found or a "b" for the first backward reference found. A
backward or forward reference can never refer to the same line that it is found on.
For example,

1 beq2f "2f" => next occurrence of "2"
2 jsrxx both branches point here
3 bra2b "2b" => previous occurrence of "2"

Local labels should be used primarily (but not necessarily exclusively) for branching
or jumping around some sections of code. In most cases, branching around a few
lines of code does not warrant the use of an ordinary label. When making a reference
to a nearby location in the program there is often no appropriate name with much
significance; therefore, programmers have tended to use symbols like 11,12, etc. This
can lead to the danger of using the same label twice. Local labels have freed the
programmer from the necessity of thinking of a symbolic name of a location.
Furthermore, local labels require less storage internally and lookup is faster than with
ordinary labels. A maximum of 500 local labels can be used in one module.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-7

THE ASSEMBLER

Opcode Field

This field contains the opcode (mnemonic) or a pseudo-op. It specifies the operation to be
performed. The pseudo-ops recognized by this assembler are described later in this section.

1.

The opcode is made up of letters (A-Z or a-z). In this field, upper and lower case can be
used interchangeably.

This field must be terminated by a space or tab if there is an operand or by a space, tab, or
return if there is no operand.

The opcode may have a length specification associated with it. This length specification
indicates whether the operation is to take place on bytes, words, or long words. The default
is words. The specification consists of a period followed by one of the letters b, w, [, or s.
Upper case letters are also permitted. The following summarizes the specifications:

bor.B bytes (8-bits)

wor.W words (16-bits, the default)
Jor.L long words (32-bits)

sor.S short specification (for branches)

Operand Field

The operand provides data or address information required by the opcode. This field may or may
not be required, depending on the opcode. Operands are generally combinations of register
specifications and mathematical expressions. See the heading of Expressions, later in this section
- for the rules for forming valid expressions.

L.
2.
3.

The operand field can contain no spaces or tabs.
This field is terminated with a space, tab, or return.

Any of several types of data may make up the operand: register specifications, numeric
constants, symbols, ASCII literals.

THE ASSEMBLER

Comment Field

The comment field may be used to insert comments on each line of source. Comments are for the
programmer’s convenience only and are ignored by the assembler.

1. The comment field is always optional.

2. This field must be preceded by a space or tab.

3. Comments may contain any characters from SPACE (hex 20) through DELETE (hex 7F)
and the tab character.

4. This field is terminated by a carriage return.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 39

THE ASSEMBLER

Register Specification

Many opcodes require that the operand following them specify one or more registers. Both lower
and upper case are allowed. The following are possible register names:

D0-D7 Data Registers

AQ0-A7 Address Registers

A7, SP System stack pointer of the active system state

USP User stack pointer

CCR Condition Code Register (Part of SR)

SR Status Register

VBR Vector Base Register (MC68010/20)

SFC Source Function Code Register (MC68010/20)

DFC Destination Function Code Register (MC68010/20)

CAAR Cache Address Register (MC68020)

CACR Cache Control Register (MC68020)

MSP Master Stack Pointer (MC68020)

ISP Interrupt Stack Pointer (MC68020)
Expressions

(

Many operands must include an expression. This expression may be one or more items combined
by any of four operator types: arithmetic, logical, relational, and shift.

Expressions are always evaluated as full 32-bit operations. If the result of the operation is to be
fewer bits, the assembler truncates the upper part.

An expression must not contain any embedded spaces or tabs.

3-10

THE ASSEMBLER

Item Types

The item or items in an expression may be any of the four types listed below. These may stand
alone or may be intermixed by the use of the operators.

1.

NUMERICAL CONSTANTS: Numbers may be supplied to the assembler in any of the
four number bases shown below. The number given is converted to 32 bits truncating any
numbers greater than that. If smaller numbers are required, the 32-bit number is then
further truncated to the proper size. To specify which number base is desired, the
programmer must supply a prefix character to a number.

| BASE PREFIX CHARACTERS ALLOWED
Decimal none 0thru 9
Binary % Oorl
Octal @ 0 thru 7
Hexadecimal $ Othru9, Athru F

If no prefix is assigned, the assembler assumes the number to be decimal.

ASCII CONSTANTS: ASCII constants are specified in expressions by enclosing the string
in single or double quotation marks. The string must consist of one to four characters,
depending on the desired size attribute. The specified characters may not include control
characters (must be between 20 hex and 7F hex inclusive).

LABELS: An expression may contain labels which have been assigned some address,
constant, relocatable or external value. As described above under the label field, a label
consists of letters, digits, and underscores beginning with a letter or underscore. The label
may be of any length, but only the first 63 characters are significant. Any label used in the
operand field must be defined elsewhere in the program. Local labels may also be used in
the operand field. None of the standard register specifications should be used as a label.

PC DESIGNATOR: The asterisk (*) has been set aside as a special PC designator (Program
Counter). It may be used in an expression just as any other value and is equal to the
address of the current instruction. The value of the PC designator is relocatable in the text,
data or bss segments; its value is given at load time.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-11

THE ASSEMBLER

Types of Expressions

Three types of expressions are possible in the 4400 assembler: absolute, relocatable and external
expressions. '

Absolute Expressions

An expression is absolute if its value is unaffected by program relocation. An expression can be
absolute, even though it contains relocatable symbols, under both of the following conditions:

1. The expression contains an even number of relocatable elements.

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple) in a segment must be canceled by another element (or multiple) in the same
segment. In other words, pairs of elements in the same segment must have signs that
oppose each other. The elements that form a pair need not be contiguous in the expression.

For example, textl and text2 are two relocatable symbols in the text segment; the following
examples are absolute expressions.

textl-text2
5*(textl-text2)

Relocatable Expressions

An expression is relocatable if its value is affected by program relocation in a relocatable module.
A relocatable expression consists of a single relocatable symbol or, under all three of the
following conditions, a combination of relocatable and absolute elements.

1. The expression does not contain an even number of relocatable elements.

2. All the relocatable elements but one must be organized in pairs that cancel each other.
That is, for all but one segment, each relocatable element (or multiple) in a segment must
be canceled by another element (or multiple) in the same block.

3. The uncancelled element can have either positive or negative relocation.

For example, textl and text2 are symbols from the text segment, datal and data2 are symbols
from the data segment, and bssl and bss2 are symbols from the bss segment; the following
examples are relocatable:

-bss2+3*5+(data2-data2) negative relocation from bss segment
textl+(datal-data2)+(bss2-bss1) relocation from text segment
datal-(bss2-bss1) relocation from data segment
*

(PC Designator) relocation from current segment

THE ASSEMBLER

External Expressions

An expression is external if its value depends upon the value of a symbol defined outside of the
current source module. An external expression can consist of a single external symbol, or, under
both of the following conditions, an external expression may consist of an external symbol,
relocatable elements and absolute elements:

1. The expression contains an even number of relocatable elements

2. The relocatable elements must cancel each other. That is, each relocatable element (or
multiple) in a segment must be canceled by another element in the same segment. In other
words, pairs of elements in the same segment must have signs that oppose each other.

For example, if extl is an external symbol, textl, text2, datal, data2, bss1, bss2 all have the same
meaning as above in the previous examples; then the following examples are external:

(text1-text2)+extl-(data2-datal)
S5+ext1-3
3/(text2-textl)-extl

Expression Operators

Operators permit operations such as addition or division to take place during the assembly, and
the result becomes a permanent part of your program. Many of these operators will only apply to
absolute symbols and expressions. It does not make sense to multiply a relocatable or external
value at assembly-time! Only the + and - operators can apply to relocatable and external symbols
and expressions.

Arithmetic Operators

The arithmetic operators are:

Operator Meaning
+ Unary or binary addition
- Unary or binary subtraction
* Multiplication
/ Division (any remainder is discarded)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-13

THE ASSEMBLER

Logical Operators

The logical operators are:

Operator Meaning
& Logical AND operator
| Logical OR operator
! Logical NOT operator
>> Shift right operator
<< Shift left operator

The logical operations are full 32-bit operations. In other words for the AND operation, every bit
from the first operand or item is individually ANDed with its corresponding bit from the second
operand or item. The shift operators shift the left term the number of places indicated by the right
term. Zeroes are shifted in and any bits shifted out are lost.

Relational Operators

The relational operators are:

Operator Meaning
= Equal
< Less than
> Greater than
<> Not equal
<= Less than or equal
>= Greater than or equal

The relational operations yield a true-false result. If the evaluation of the relation is true, the
resulting value be all ones. If false, the resulting value is all zeros. Relational operations are
generally used in conjunction with conditional assembly, as shown in that discussion.

3-14

THE ASSEMBLER

Operator Precedence

Certain operators take precedence over others in an expression. This precedence can be
overcome by the use of parentheses. If there is more than one operator of the same precedence
level, and no parentheses indicate the order in which they should be evaluated, then the
operations are carried out in left to right order.

The following list classifies the operators in order of precedence (highest priority first):
Parenthesized expressions
Unary + and -
Shift operators
Multiply and Divide

Relational Operators
Logical NOT Operator

1.
2
3
4
5. Binary + and -
6
7
8. Logical AND and OR Operators

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-15

THE ASSEMBLER

INSTRUCTION SET DIFFERENCES

This discussion describes the differences in the instruction mnemonics accepted by the assembler
and the Motorola standard. The standard is assumed to be that defined in the MC68000 16-Bit
Microprocessor User’s Guide, published by Motorola Semiconductor Products, Inc. It is
assumed that the reader is familiar with the contents of the Instruction Set Details portion of that
manual. In particular, the user should be familiar with the description of the assembler syntax
that accompanies the discussion of the individual instructions.

The assembler recognizes the standard instruction set with the exception of some of the so-called
variations. Having a specific opcode for these variations is not necessary, because the assembler
can infer their existence from an analysis of the operands and generate the proper code. This
relieves the programmer from the need for remembering the opcodes, and the particulars of each.
The variations that are handled in this manner are: address, quick, and immediate. Note that the
extend variation is still supported. Thus, the following instructions are not specifically
recognized by the Assembler:

ADDA, ADDQ, ADDI Use ADD instead

ANDI Use AND instead
CMPA, CMPI,CMPM Use CMP instead
EORI Use EOR instead
MOVEA, MOVEQ Use MOVE instead
ORI Use OR instead

SUBA, SUBQ, SUBI Use SUB instead

Remember that even though these mnemonics are not recognized, the assembler can and does
generate code for address, quick, and immediate instructions. The proper instruction is selected
automatically after analyzing the operands.

Instruction Set Extensions

The following instruction extensions are recogized by the assembler and are valid only with the
68020 processor. If you use these extensions and attempt to generate compiled code for a 68000
or 68010 microprocessor, the assembler gives you one of the following error messages:

*** Error - Unknown instruction.

*** Error - Unknown addressing mode.

3-16

THE ASSEMBLER

Mnemonic

Description

Bcee
BFxxxx

BKPT
BRA

BSR
CALLM
CAS,CAS2
CHK
CHK2
CMPI

CMP2
cp
DIVS/DIVU
EXTB

LINK
MOVEC
MULS/MULU
PACK

RTM

TST

TRAPcc
UNPK

Supports 32-Bit Displacements

Bit Field Instructions (BFCHG,
BFCLR, BFEXTS, BFEXTU,
BFEXTS, BFFFO, BFINS, BFSET,
BFTST)

New Instruction Functionality
Supports 32-Bit Displacement
Supports 32-Bit Displacement

New Instruction

New Instruction

Supports 32-Bit Operands

New Instruction

Supports Program Counter Relative
Addressing Modes

New Instruction

Coprocessor Instructions

Supports 32-Bit and 64-Bit Operands
Supports 8-Bit Extend to 32-Bits
Supports 32-Bit Displacement
Supprts New Control Registers
Supports 32-Bit Operands

New Instruction

New Instruction

Supports Program Counter Relative
Addressing Modes

New Instruction

New Instruction

The default data size is word. Instructions that can manipulate more than one size of data item
may be modified by postfixing a data length specification to the opcode. The data length

specifications are:
Jor L

wor W

.bor.B

For long word (32 bits)
For word (16 bits, the default)
For byte (8 bits)

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE

THE ASSEMBLER

Addressing Modes

For information about the addressing modes of the processors in the 4400 series family of
products refer to:

Title Motorola Part Number
M68000 Programmer’s M68000UM(AD4)
Reference Manual
MC68020 32-Bit MC68020UM/AD
Microprocessor User’s Manual
MC68881 Floating-Point MC68881UM/AD

Coprocessor User’s Manual

Convenience Mnemonics
CLC Clear carry condition code bit

CLN Clear negative condition code bit
CLV Clear overflow condition code bit
CLX Clear extend condition code bit
CLZ Clear zero condition code bit
SEC Set carry condition code bit

SEN Set negative condition code bit
SEV Set overflow condition cod

SEX Set extend condition code bit
SEZ Set zero condition code bit

3-18

THE ASSEMBLER

STANDARD DIRECTIVES OR PSEUDO-OPS

Besides the standard machine language mnemonics, the assembler supports several directives or
pseudo-ops. These are instructions for the assembler to perform certain operations, and are not
directly assembled into code. There are three types of directives in this assembler: those
associated with conditional assembly, those associated with macros, and those which generally
can be used anywhere which we shall call standard directives. The standard directives are:

dc fcc opt spc
ds fdb pag st
equ fgb rab sys
err info rmb ttl
even lib rzb

fcb log set

Other types of directives are explained in other sections, but are listed here for completeness:

Conditional Relocation

Directives Directives

if base end

ifn bss extern

else common global

endif endcom name
data struct
define text
enddef

dc

The dc or Define Constant directive defines one or more constants in memory. A size
specification may be postfixed to the directive to indicate that the constant is to be stored in
bytes, words, or long words. The default is words. If multiple operands are specified, the effect
is as though the operands appeared in consecutive dc directives. The operands may be actual
values (constants or ASCII strings) or expressions. ASCII strings must be enclosed in single
quotation marks.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-19

THE ASSEMBLER

The constant is aligned on the proper boundary, depending on the size specification (byte
boundary for .5, word boundary for .w, and long word boundary for .J). When ASCII strings are
specified with a word or long word size specification, the string will be padded on the right with
zero bytes if there are not enough characters to exactly fill the last word or long word. If an
ASCII string is specified with a byte size specification, and the instruction or directive following
the dc.b directive requires word or long word alignment, then zeroes are appended to the
character string to force such alignment. Some examples:

labell dc.b 3,7,”String”
label2 dc.w 123,7abc”,98 The “abc” will be padded with a zero byte
dc.l "a%,131072 The “a” will be padded with 3 zero bytes

ds

The ds or Define Storage directive reserves areas of memory. The reserved memory is not
guaranteed to be initialized in any way. A size specification may be postfixed to the directive to
indicate that bytes, words, or long words are to be reserved. If words or long words are specified,
the reserved memory is properly aligned. A single operand indicates how many bytes, words, or
long words are to be reserved. If a label is present, its value is the address of the lowest memory
location reserved. If the value of the operand is zero, no space is reserved; however, alignment
takes place if ds.w or ds.l is specified. Some examples:

ds.b 20 reserve 20 bytes

ds 10 reserve 10 words

ds.l5 reserve 5 long words

ds.10 force alignment on long word boundary
equ

The equ or Equate directive equates a symbol to the expression given in the operand. No code is
generated by this statement. Once a symbol is equated to some value, it can not be changed at a
later time in the assembly. The form of an equate statement is

<label> equ <nonexternal expression>

The label is strictly required in equate statements. Absolute or relocatable expressions are
allowed; external expressions are illegal. If the expression is relocatable, both the value and the
attribute is assigned to the label.

3-20

THE ASSEMBLER

err

The err directive may be used to insert user-defined error messages in the output listing. The
error count is also incremented by one. The format is:

err <message to be printed>

All text past the err directive (excluding leading spaces) is printed as an error message (preceded
by three asterisks) in the output listing. Note that the err directive line itself is not printed. A
common use for the err directive is in conjunction with conditional assembly, to report user-
defined illegal conditions.

even

The even directive is used to force the program counter to an even address (word boundary).

fcb

The fcb or Form Constant Byte directive is used to set associated memory bytes to some value as
determined by the operand. Fcb may be used to set any number of bytes, as shown below:

[<label>] fcb <expr. 1>,<expr. 2>, ... ,<expr. n>

<expr. x> stands for some absolute, relocatable or external expression. Each expression given
(separated by commas) is evaluated to 8 bits, and the resulting quantities are stored in successive
memory locations. The label is optional.

fce

The fec or Form Constant Character directive allows the programmer to specify a string of ASCII
characters delimited by some non-alphanumeric character such as a single quote. All the
characters in the string is converted to their respective ASCII values and stored in memory, one
byte per character. Some examples:

labell fcc 'This is an fcc string’
label2 fcc .so is this.
fcc /Labels are not required./

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-21

THE ASSEMBLER

There is another method of using fcc which is a deviation from the standard Motorola definition
of this directive. This method allows you to place certain expressions on the same line as the
standard fcc delimited string. The items are separated by commas and are evaluated to 8-bit
results. In some respects this is like the fcb directive. The difference is that in the fcc directive,
expressions must begin with a letter, number or dollar sign, whereas in the fcb directive any valid
expression will work. For example, %$10101111 is a valid expression for a fcb but not for a fcc
since the percent-sign would look like a delimiter and the assembler would attempt to produce 8
bytes of data from 8 ASCII characters which follow (a fec string). The dollar sign is an exception
to allow hex values such as $0D (carriage return) to be inserted along with strings. Some
examples: ‘

intro fcc 'This string has CR & LF’,S$D,SA
fcc ’string 1/,0,’string 2
fcc $04,extlabel,/delimited string/

Note that more than one delimited string may be placed on a line as in the second example.

fdb

The fdb or Form Double Byte directive is used to create 16 bit constants in memory. It is exactly
like the fcb directive except that 16 bit quantities are evaluated and stored in memory for each
expression given. The form of the statement is:

[<label>] fdb <expr. 1>,<expr. 2>,...,<expr. n>

Again, the label field is optional. The generated data is guaranteed to be on a word boundary (see
the dc directive).

fgb

The fgb or Form Quad Byte directive is used to create 32-bit constants in memory. It is exactly
like the fdb directive, except that 32-bit quantities are evaluated and stored in memory for each
expression given. The form of the statement is:

[<label>] fdb <expr. 1>,<expr. 2>,...,<expr. n>

Again, the label field is optional. The generated data is guaranteed to be on a word boundary (see
the dc directive).

3-22

THE ASSEMBLER

info

The info directive allows the user to store textual comments in a binary file. A 4400 user can
execute the command info and view the text on the screen. The assembler’s info directive places
all text following the info command (excluding leading spaces) into a temporary file called
/tmplasmbinfoxxxxx, where xxxxx represents the current task number. At the end of the
assembly, all text stored in this temporary file is appropriately copied into the normal binary file,
and the temporary file is then deleted. Syntax is as follows:

info This is a comment for the binary file.
info It is a convenient way of inserting version nos.

info Version X. XX - Released XX/XX/XX

Any number of info directives may be inserted at any point in the source listing. No label is
allowed, and no actual binary code is produced.

lib

The lib or Library directive allows the user to specify an external file for inclusion in the
assembled source output. Under normal conditions, the assembler reads all input from the file(s)
specified on the calling line. The /ib directive allows the user to temporarily obtain the source

lines from some other file. When all the lines in that external file have been read and assembled,
the assembler resumes reading of the original source file. The proper syntax is:

lib <file spec>
where <file spec> is a standard 4400 file specification.

The assembler first looks for the specified file in the current directory. If the file isn’t found in
the current directory, the assembler then looks for a directory named /ib in the current directory.
If it finds such a directory, the assembler attempts to find the specified file in that lib directory. If
not found there, the assembler makes a third and final attempt to find the specified file by looking
in the directory /lib. If the file is not found in any of these three directories, the assembler reports
an error.

Any end statements found in the file called by the /ib directive are ignored. The Iib directive line
itself does not appear in the output listing. Any number of /ib instructions may appear in a source
listing. It is also possible to nest /ib files up to 7 levels.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE ' 3-23

THE ASSEMBLER

log

The log directive is used to calculate the log, base 2, of an absolute expression. The result is 32
bits. The statement acts like a set statement, in that the label specified can be redefined with
other log directives or set directives. The form of the statement is:

<label> log <absolute expression>
The label field is strictly required.

opt

The opt or Option directive allows the user to choose from several different assembly options.
These options are generally related to the format of the output listing and object code. The
options that can be set with this command are listed below. The proper form of this instruction
is:

opt <option 1>,<option 2>, ... ,<option n>

Note that any number of options canbe given on one line if separated by commas. No label is
allowed, and no spaces or tabs may be embedded in the option list. The options are set during
Pass Two. If contradicting options are specified, the last one on the command line takes
precedence. If a particular option is not specified, the default case for that option takes effect.
The default cases are signified below by an asterisk.

The allowable options are:
con print conditionally skipped code
noc* suppress conditional code printing
lis* print an assembled listing
nol suppress output of assembled listing

The lis and nol options can be used to selectively turn parts of a program listing on or off as
desired. If the +! command line option is specified, however, the lis and nol options are
overridden and no listing occurs.

3-24

THE ASSEMBLER

pag

The pag directive causes a page eject in the output listing and prints a header at the top of the
new page. Note that the pag option must be enabled in order for this directive to take effect. It is
possible to assign a new number to the new page by specifying such in the operand field. If no
page number is specified, the next consecutive number is used. No label is allowed and no code
is produced. The pag operator itself does not appear in the listing unless some sort of error is
encountered. The proper form is:

pag [<expression>]

The expression is optional. The first page of a listing does not include the header and is
considered to be page 0. Thus, all options, title, and subtitle may be set up and followed by a pag
directive to start the assembled listing at the top of page 1 without the option, title, or subtitle
instructions being in the way.

rab

The rab or Reserve Aligned Bytes directive is used to reserve areas of memory for data storage.
The bytes are forced to a word boundary. The number of bytes specified by the expressicn in the
operand are skipped during assembly. No code is produced in those memory location and
therefore the contents are undefined at run time. The proper usage is shown here:

[<label>] rab <absolute expression>

The label is optional, and the absolute expression is a 32-bit quantity. Rab directives found in the
text or data segments act like rzb, and produce code which is guaranteed to be on an even
boundary.

rmb

The rmb or Reserve Memory Bytes directive reserves areas of memory for data storage. The
number of bytes specified by the expression in the operand are skipped during assembly. No
code is produced in those memory locations and therefore the contents are undefined at run time.
The proper usage is:

[<label>] rmb <absolute expression>

The label is optional, and the absolute expression is a 32-bit quantity. Any rmb directives found
in the text or data segments act like rzb, and produce code.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-25

THE ASSEMBLER

rzb

The rzb or Reserve Zeroed Bytes directive is used to initialize an area of memory with zeroes.
Beginning with the current PC location, the number of bytes specified is set to zero. The proper
syntax is:

[<label>] rzb <absolute expression>

where the absolute expression is a 32-bit expression. This directive does produce object code.
Any rzb directives found in the bss segment act like rmb.

set

The set directive sets a symbol to the value of some expression, much as an equ directive. The
difference is that a symbol may be sez several times within the source (to different values), but
may be equated only once. If a symbol is set to several values within the source, the current
value of the symbol will be the value last set. The statement form is:

<label> set <nonexternal expression>

The label is strictly required, and no code is generated.

spc

The spc or Space directive inserts the specified number of spaces (line feeds) into the output
listing. The general form is:

spc [<space count>[,<keep count>]]

The space count can be any number from O to 255. If the page option is selected, spc does not
cause spacing past the top of a new page. The <keep count>, which is optional, is the number of
lines to keep together on a page. If there are not enough lines left on the current page, a page
eject is performed. If there are <keep count> lines left on the page (after printing <space count>
spaces), output continues on the current page. If the page option is not selected, the <keep
count> is ignored. If no operand is given, the assembler defaults to one blank line in the output
listing.

3-26

THE ASSEMBLER

sttl

The sl or Subtitle directive is used to specify a subtitle to be printed just below the header at the
top of an output listing page. It is specified much as the #! directive:

sttl <text for the subtitle>

The subtitle may be up to 52 characters in length. If the page option is not selected, this directive
is ignored. As with the #/ option, any number of szzl directives may appear in a source program.
The subtitle can be disabled or turned off by an stt/ command with no text following.

sys

The sys or system call directive allows the programmer to setup a system call. Such a call
consists of a TRAP#1S5 instruction followed by a two byte function code optionally followed by
32-bit parameter values. This directive automatically inserts the TRAP, then obtains the function
code and any other parameters from the operand field.

sys <function>,<parameterl>,<parameter2>, ...

The <function> and <parameter> values may be any legal absolute, relocatable or external
expression. <function> will be stored as 16 bits, all <parameters> will be stored as 32-bits.

ttl

The #l directive allows the user to specify a title or name to the program being assembled. If the
pag option is also selected, this title is then printed in the header at the top of each output listing
page. If the page option is not selected, this directive is ignored. The proper form is:

ttl <text for the title>

All the text following the] directive (excluding leading spaces) is placed in the title buffer. Up
to 32 characters are allowed, with any excess being ignored. It is possible to have any number of
ttl directives in a source The latest one encountered will always be the one used for printing at the
top of the following page(s).

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-27

THE ASSEMBLER

CONDITIONAL ASSEMBLY

The assembler supports conditional assembly — the ability to assemble only certain portions of
your source program depending on the conditions at assembly time. Conditional assembly is
particularly useful in situations where you might need several versions of a program with only
slight changes between versions.

As an example, suppose you required a different version of some program for four different
systems whose output routines varied. Rather than prepare four different source files, you could
prepare one that would assemble a different set of output routines depending on some variable
that was set with an equ directive near the beginning of the source. Then it would only be
necessary to change that one equ statement to produce any of the four final programs.

The if-endif Clause

In its simplest form, conditional assembly is performed with two directives: if and endif. The two
directives are placed in the source listing in that order with any number of lines of source
between. The assembler evaluates the expression associated with the if statement (we will
discuss this expression in a moment), and if the result is true, assembles all the lines between the
if and endif and then continues assembling the lines after the endif. If the result of the expression
is false, the assembler will skip all lines between the if and endif and resume assembly of the lines
after the endif. The syntax of these directives is:

if <expression>
. conditional code goes here
endif
The endif directive requires no additional information, but the if directive requires an expression.

This expression is considered FALSE if the 32-bit result is equal to zero. If the result is not equal
to zero, the expression is considered TRUE.

3-28

THE ASSEMBLER

The if-else-endif Construction

An else directive may be placed between the if and endif statements. In effect, the lines of source
between the if and endif are split into two groups by the else statement. Those lines before the
else are assembled if the expression is true; those after (up to the endif) are ignored. If the
expression is false, the lines before the else are ignored while those after it are assembled. The
if-else-endif construct appears as:

if <expression>

: this code is assembled if the expression is true
élse

: this code is assembled if the expression is false
endif

The else statement does not require an operand. There can be only one else between an if-endif
pair.

It is possible to nest if-endif clauses (including elses). That is, an if-endif clause may be part of
the lines of source found inside another if-endif clause. You must be careful, however, to
terminate the inner clause before the outer.

Another form of the conditional directive, ifn (if not) functions just like if, except that the sense of
the test is reversed. Thus, the code immediately following is assembled if the result of the
expression is NOT TRUE. An ifn-else-endif clause appears as follows:

ifn <expression>
: this code is assembled if the expression is FALSE
élse
: this code is assembled if the expression is TRUE
endif
NOTE
For conditionals to function properly, they must evaluate to the
same result in Pass One and Pass Two. Thus, if labels are used in

a conditional expression, they must be defined in the source before
the conditional directive is encountered.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-29

THE ASSEMBLER

SPECIAL FEATURES

End of Assembly Information

Upon termination of an assembly and before the symbol table is output, three items of
information may be printed: the total number of errors encountered, the total number of excessive
branches encountered, and the sizes of the text, data and bss segments.

The number of errors is printed in the following manner:
0 Errors detected.

Excessive branches (a long branch used where a short branch will suffice) are printed after the
error count, for example:

1 Error detected.
3 Excessive branches detected.

The size of the segments are displayed as follows:
SEGMENT SIZES

TEXT SEGMENT = 00002C
DATA SEGMENT = 00010A
BSS SEGMENT = 000006

All of this information may be suppressed by using the "+¢" command line option; however, if
errors are detected, this information is displayed anyway.

'Excessive Branch Indicator

To allow size and speed optimization of the final code, the assembler places a greater-than sign
just before the address of any long branch instruction that can be replaced by a short branch. The
total count is reflected in the end-of-assembly information previously described. The following
section of code shows just how it looks:

000000 text

000000 4A80 tst.l do
000002 6600 0006 bne labl
000006 4A81 tst.l dl
000008 6602 bne.s lab2
00000A 2601 labl move.l dl,d3
00000C 2800 lab2 move.l d0,d4
00000E end

Note how the .s postfix was used to create a short branch.

3-30

THE ASSEMBLER

Auto Fielding

The output assembly listing automatically places the four fields of a source line (label,
mnemonic, operand, and comment) in columns. This allows the programmer to edit a condensed
source file without impairing the readability of the assembled listing. The common method of
doing this is to separate the fields by only one space when editing. The assembled output places
all labels in column 25, all opcodes in column 34, and all operands in column 42 and comments
start in column 56 unless the operands field extends into the comments. There are a few cases
where this automatic fielding can break down (such as lines with errors), but these cases are rare
and generally cause no problem. Labels that are longer than 8 characters are printed on a line by
themselves (above the code they are with — if any).

Fix Mode

Comment lines may begin with either an asterisk (*) or a semicolon (;). If a semicolon is used,
the +F option of the assembler assumes that the comment is a valid instruction to be assembled.
Therefore, the assembler acts as though the semicolon did not exist at all; the rest of the
information on that line is assembled. For example:

;labell move.l #2,d0
; sys term

With the +F option invoked, these two lines are assembled. This aides in the debugging process.

Local Labels

Local labels are available in the assembler. These local labels allow the programmer to reuse
labels; in this way meaningless labels can be replaced with local labels. For more information on
local labels, refer to the description of the label field in the Assembler Operation and Source Line
Components discussion earlier in this section.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-31

THE ASSEMBLER

OBJECT CODE PRODUCTION

The object code output from the 4400 assembler is a standard 4400 relocating binary file for
relocatable modules. This object code output can be turned on or off via the "+b" option on the
calling line. The relocatable output module always requires processing by the linking loader to
be executed. For more information about relocatable modules, refer to the discussion of the
linking loader, later in this section.

Relocatable (Segmented) Object Code files

The 4400 operating system supports segmentation of binary files. It permits binary files to be
broken into three segments of code: called text, data, and bss. Each assembly module must
contain one of these directives before any instructions that produce object code can be processed.
The assembler does not default to any given segment when assembling a file.

Any code in a text segment is assumed by the operating system to be read-only. That is, it will
only read code in a text segment and will not attempt to write into it.

The data segment is sometimes referred to as initialized data. It is code that has been produced
by the assembler and can be either read or written. For example, the data segment might contain
a temporary variable that requires an initial value. At any point, the variable could be read or re-
written.

The bss segment is an area of reserved memory where no actual code has been produced by the
assembler. It is sometimes referred to as uninitialized data. The binary file does not contain any
code to be placed in this section of memory, only a size value for this segment. Its main purpose
is to tell the operating system that memory is required in this area, but it does not need to be
initialized to any values. The bss segment or area of memory can be read or written.

Breaking the binary file into these three sections provides several benefits. The zext segment is
known to be read-only. This implies the code is never altered as long as the program runs. The
operating system can make use of this fact by sharing this segment of memory in the event that
more than one users wish to run the program at the same time. This can mean a considerable
increase in efficiency of the system. The data section must be different for each user running the
program. It is information (actual instructions or data) which must be initialized or loaded, but
which can be altered at some later point. The bss segment really contains no code or data in the
binary file. Itis just a signal to the operating system that when the file is loaded it needs memory
allocated in the area specified. The program should not assume that the memory in this segment
is initialized to any particular value.

3-32

THE ASSEMBLER

The assembler performs segmentation by maintaining three distinct location counters or program
counters (PC’s). At any point in the assembly, only one of these PC’s is in effect. Any code
generated by an instruction at that point is assembled at the address in the PC currently in effect.
It is possible to switch to a different PC by use of one of the following three directives in the
opcode field:

text
data
bss

It is necessary to state the segment that is desired before any executable code is produced. It is
possible to change which segment code is currently being generated into at any time. In other
words, you could begin with a text directive, enter 10 lines of code, then switch to the data
segment with a data directive, enter 10 lines of code, then switch back to the text segment with
another text directive, etc. To resume with the last address used by a particular segment, enter the
segment directive:

text

move.l 10,d0

data

temp fcb 0
text

move.l temp,a0

end

It is not possible to generate code in a bss segment. Any attempt to do so results in an error.

Code generated into the data segment is actually written to a temporary file called
/tmplasmbdataxxxxx (xxxxx represents the current task number). At the end of the assembly, this
data is copied onto the end of the text code found in the main output file, and the temporary file is
immediately deleted.

The Base and Struct Directives

Two other directives related to PC’s and segmentation are base and struct. These directives are
used almost exactly like a segment PC directive (especially the bss segment) but serve a different
purpose. They are really just extra PC’s that can be set and maintained for the purpose of
establishing offsets from some fixed address in an area outside the three segments. Generally
they are used in conjunction with storing information on a stack. Symbols declared in these
segments can be absolute or relocatable, depending on the attributes of the operand. Symbols
declared in a struct segment can be reused just as if they had been defined using the set directive.
Symbols declared in a base segment may be used only once, like any other label. A short
example program may be the best illustration:

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-33

THE ASSEMBLER

stack equ SEF0000

base $000000
temp ds.w 1

saved ds.1l 2
junk ds.b 1
text
start move.l stack,a0
8 move.l junk(al),d2

add.l temp (a0) ,d2
move.l d2,saved(al)
bne.s 8b

end

In this example, the base directive allowed us to set up the variables temp, saved, and junk, which
are offsets from the base location of the stack. Had a struct directive been used in place of the
base directive, we could have reused the variables junk, temp and saved in other stack structures.
The struct directive is extremely useful in defining stack structures in subroutines, where names
such as ret_address, frame_ptr, argl, etc., can be used over and over again without conflict.
These directives do not actually create a segment, they merely set up a new PC which can be
temporarily used to establish offset variables. These directives have most of the same
permissions and restrictions as the bss segment; they default to location $000000 if first called
without an operand. No code may be generated while the base or struct PC’s are in effect, and
new base or struct addresses are allowed. The segments end when a new segment begins.

global

The global directive is used in relocatable modules to inform the assembler that the symbols
declared global should be passed on to the linking loader. The syntax of the global directive is:

global <labell>[,<label2>, . . .]

Labell, label2, etc. represent the symbolic names of the labels to be declared as global; each label
should be separated by a comma. The global directives must occur before the use or definition of
the symbol. Normally, global symbols are declared at the beginning of the source module. Local
labels cannot be declared global.

3-34

THE ASSEMBLER

Define and Enddef

These convenience directives work much the way global works. The define directive informs the
assembler that all labels declared in the label field are declared as global symbols. This define
mode is in effect until a enddef directive is encountered. For example,

data

define

templ fdb 0,$FFFF
start move.l 1,d1
enddef

This example simply defines the two labels templ and szart as global. This directive works well
when many symbols must be declared as global while they are initialized to various values.

Extern

The extern directive declares symbols to be external to this particular module. Local labels
cannot be declared external. The syntax of the extern directive is:

extern <labell>[,<label2>, . . .]

Labell, label2, etc. are ordinary labels as in global; labels should be separated by a comma.
‘When the assembler encounters a label declared external in the operand field, external records are
written out to the binary output module. With the global directive, the extern directive should
appear before the actual use of the external symbol, usually at the beginning of the source
module. These external records are used by the linking loader.

Name

Each binary output module can be given a module name with the name directive. The module
name is used by the linking loader in reporting errors and address information; it is strongly
recommended to give each module a name. The syntax of the name directive is:

name <name of the module>

The module name can be a maximum of 14 characters. If more than one name directive occurs in
the source module, the last name given will be the name assigned to the module.

ASSEMBLY LANGUAGE PROGRAMMERS REFERENCE 3-35

THE ASSEMBLER

Common and Endcom

It is possible to establish common blocks in the assembler. These can only be named and
uninitialized common blocks.

<name> common

A common block declaration is terminated by the use of the endcom directive. The only
directives allowed between the common and endcom are rmb and ds, which define the size of the
comm