TektronbD¢

8540

INTEGRATION UNIT

SYSTEM USERS
MANUAL

0OS/40 VERSION 1

Tektronix

COMMITTED TO EXCELLENCE

PLEASE CHECK FOR CHANGE INFORMATION
AT THE REAR OF THIS MANUAL.

8540

INTEGRATION UNIT

SYSTEM USERS
MANUAL

0S/40 VERSION 1

Tektronix, Inc.
P.O. Box 500
Beaverton, Oregon 97077 Serial Number

070-3939-00 First Printing NOV 1981
Product Group 61 Revised OCT 1983

LIMITED RIGHTS LEGEND

Software License No.

Contractor: Tektronix, Inc.
Explanation of Limited Rights Data Identification Method
Used: Entire document subject to limited rights.

Those portions of this technical data indicated as limited rights data shall not,
without the written permission of the above Tektronix, be either (a) used,
released or disclosed in whole or in part outside the Customer, (b) used in whole
or in part by the Customer for manufacture or, in the case of computer software
documentation, for preparing the same or similar computer software, or(c) used
by a party other than the Customer, except for: (i) emergency repair or overhaul
work only, by or for the Customer, where the item or process concerned is not
otherwise reasonably available to enable timely performance of the work,
provided that the release or disclosure hereof outside the Customer shall be
made subject to a prohibition against further use, release or disclosure; or (ii)
release to a foreign government, as the interest of the United States may
require, only for information or evaluation within such government or for
emergency repair or overhaul work by or for such government under the
conditions of (i) above. This legend, together with the indications of the portions
of this data which are subject to such limitations shall be included on any
reproduction hereof which includes any part of the portions subject to such
limitations.

RESTRICTED RIGHTS IN SOFTWARE
The software described in this document is licensed software and éubject to

which it was acquired. The software may be used with a backup computer if the
computer for which or with which it was acquired is inoperative. The software
may be copied for archive or backup purposes. The software may be modified or
combined with other software, subject to the provision that those portions of the
derivative software incorporating restricted rights software are subject to the
same restricted rights.

Copyright © 1981 Tektronix, Inc. All rights reserved. Contents of this publication
may not be reproduced in any form without the written permission of T ekironix,
Inc.

Products of Tekironix, inc. and iis subsidiaries are covered by U.S. and foreign
patents and/or pending patents.

TEKTRON!IX, TEK, SCOPE-MOBILE, and @ are registered trademarks of
Tektronix, Inc. TELEQUIPMENT is a registered trademark of Tektronix U.K.
Limited.

Printed in U.S.A. Specification and price change privileges are reserved.

8540 System Users

ABOUT THIS MANUAL

This manual is your guide to using the 8540 Integration Unit and its operating system, 0S/40.

This manual is not about programming techniques, specific microprocessors, or specific
applications. Instead, it presents the information that will enable you to use the 8540 for your
own tasks in hardware-software integration.

In this manual, you'll find detailed information on all standard 8540 features, including
emulation and intersystem communication. This manual also provides introductory information
on several hardware products you can use with your 8540. Those products are described in
detail in other user manuals.

For new users, a Learning Guide introduces you to the 8540 and its system options, and includes
sample demonstration runs. There's also an Index to help you find your way around the manual,
and a Glossary that describes new terminology and terms that are used in a new way.

For users of DOS/50 (the operating system of the TEKTRONIX 8550 Microcomputer

Development Lab), the Technical Notes section contains a list of differences between DOS/50
and 0S/40.

8540 System Users

CONTENTS

SECTION 1 LEARNING GUIDE Page
ST e 1o [o1 7o 1SR P 1-1
Specification, Installation, Configuration, and Verification............................. 1-1
Overview of the 8540 SyStemM ... ittt ittt et ittt et e 1-2
Getting Started . .. ot e e e 1-8
Starting Up the 8540 i i et et 1-8
Turning Off the 8540 et e e e e e 1-10
How 10 Enter OS /40 CommMands. . .. vuut ittt ittt e e e ie et eneans 1-10
Establishing Communication withthe Hosto, 1-11
More About OS/40 Commandscit ittt ittt it et e 1-13
8540/8560 ConfigUratioNSttt ettt et et ie et i e cea et it 1-15
Emulator Demonstration RUN it it i e i s 1-17
For Continued Learningottt ittt i ie et et e it ettt nenn 1-40
Overview of 8540 User Manuals.ot e e et e i 1-41

SECTION 2 OPERATING PROCEDURES

Communicating with @an 8560 i i i et 2-1
Communicating with @ Host Computer i i it it iena e 2-3
Communicating with an 8550 i e 2-5
Downloading from an 8002A e e, 2-7
Program EXeCULIONttt et et e e e 2-8
Program Debugging.ttt i i i e e e e 2-10
Debugging the Program in the Prototype ...ttt i iia s 2-13
Using the Trigger Trace Analyzer i i i 2-14
Memory Manipulation it it et 2210
SYStEM 1/ O o e e e e e e 2-20

SECTION 3 COMMAND DICTIONARY

ComMMaANA INAEX . .ottt e it et et e e e e e e 3-1
[E € oo 173 T o TS AU 3-2
Other System ComMMaNdsSttt ettt ittt ae e eaaanennnn e 3-2
CoMMANG SYNAX . oottt et e et e e e e 3-2
SPECIAl KBYS . it e e e e e 3-6
CommanNd MemoOTY ATBaSottt it ittt e et et ettt e et enens 3-7
(00T 0 12 0= 1 Vo £ 3-8

SECTION 4 INTERSYSTEM COMMUNICATION

LY d o Te [o1 4 o] o PSP 4-1
LI .41 0T oY o 1Y 41
8540/8560 TERM INterface . ..ottt et et et ettt et e 4-1
0L 0117/ B | o3 (1 & o= O 4-2
B540/8550 IN1erface . ..ottt e i e e e e e 4-4
8540/8002A INterfaCe . .. ottt it e e e e e e 4-6
8540/General Host Interface ...t i it e ettt ie e 4-7

Contents—8540 System Users

SECTION 5 EMULATION Page
It OdUCHION o e e e e 5-1
The EMUIatOr. .o i e e e e e e 5-1
Emuiation Moges e 5-1
Selecting the Target ProCeSSOruiit ittt ittt ettt ettt et e 5-3
Basic EmMulation Tasks ... i i i i i e e e e e 5-3
Considerations for Modes 1 and 2 i et et et e, 5-6
SyMbBOlIiC DEbUG .o e e e e e e 5-7
The Memory Allocation Controller it i e ein e 5-9
The Trigger Trace ANalyzZerttt et et et et ein s 5-13

SECTION 6 SERVICE CALLS

|13 o Yo [To1 4 e o 10N PN 6-1
OV IV W L ittt it ittt i it et e e e e e e e e 6-1
Limitations of File Handling SVCs.t i et it eiee e 6-4
/0 Channels .o i e e e e e e e 6-4
RV O Y o7 o] 1o Y Fo o 1= O 6-5
SV DeMONS I ATION . . ottt e ittt e et e e e e e e 6-6
SV C FUNCHIONS ottt e ettt ettt et e e ettt e et e e 6-10

SECTION 7 EMULATOR SPECIFICS

SECTION 8 PROM PROGRAMMER SPECIFICS

SECTION 9 TECHNICAL NOTES

Note 1. Practical Limits of Emulation i it 9-1
Note 2. Comparison of 0S/40 Version 1 with DOS/50 Version 2 9-1
Note 3. Comparison of the TTA and the RTPA it i it ie e i 9-2

SECTION 10 ERROR MESSAGES

SECTION 11 TABLES

ConVversion Tables i i i i e e e e e 111
Tektronix Hexadecimal Formatttt i i e e ettt i e it e eanaan 11-4
Motorola Load Module Formatttt it i i e it et e e e 11-

Intel Load Moduie FOrMaAtttt e it it et ettt et ettt e i eneens 11-i0

SECTION 12 GLOSSARY

SECTION 13 INDEX

8540 System Users

Section 1
LEARNING GUIDE

Page

INtrodUCHION ... i e e e e e e 1-1
Specification, Installation, Configuration, and Verification.......................... 1-1
Overview of the 8540 System ittt ittt e 1-2
Uses 0f the 8B40 i ittt ettt ettt e 1-2
8540 Parts and FUNCHIONS ...ttt it it e ittt et e et et e ne et e 1-4
The HOSt ComMPULET ..ottt et it et ettt et ettt i a et eaaaenns 1-7
Getting Started e e 1-8
Starting Up the 8540ottt e et e e e e 1-8
Turning Off the 8B40 i e e 1-10
How to Enter OS/40 Commandsuuntritnttne e tetiaraeeeeaenrenaeaaennn 1-10
Establishing Communication withthe Host i, 1-11
More about OS/40 ComMmMaNndsttt ittt ettt e ie et 1-13
8540/8560 Configurationsot i e 1-15
Emulator Demonstration RUn i e e i 1-17
T4 o Yo [o1 (T o 1 NGO 1-17
Examine the Demonstration Program ittt 1-19
Assemble and Load the Demonstration Programt 1-22
Case 1: Assemble on the 8560; Downloadtothe 8540 iiiiien.. 1-22
Case 2: Download from Your Host tothe 8540.ttt it 1-28
Case 3: Patch the Program into Memory i, 1-30
Run the Demonstration Programottt ittt it iiaaneens 1-32
Monitor Program EXECULION .. .vuit ittt ittt it ettt e e ta e tanneanennns 1-35
Summary of Emulator Demonstration RUN ittt it iiiieianann 1-39
For Continued Learning ittt ittt 1-40
Overview of 8540 User Manuals ittt i 1-41

Table
No.

1-1
1-2
1-3

Fig.
No.

1-1
1-2
1-3
1-4
1-5
1-6

8540 System Users

TABLES

Page
Jack Assignments and Device Names for 8540 Peripherals 1-8
COM Interface Checklist i e e 1-9
Basic 8560 Editing Commandso ittt e e 1-25

ILLUSTRATIONS

Page
Role of 8540 in product designc.oiiririneinrranrenneananns 1-3
8540 logical SUDSECHIONS ittt i et e e 1-4
DemoONStration Programttt e 1-16
Demonstration program: Extended Tekhex format 1-18
Demonstration program flowchart i 1-21
Host computer commands for preparing demonstration program............ 1-28

8540 System Users

@

Section 1

LEARNING GUIDE

INTRODUCTION

This Learning Guide gives an overview of the features and functions of the 85640 Integration Unit
and its operating system, 0OS/40. It also presents a demonstration that gives you hands-on
experience with the 8540. This Learning Guide is divided into the following topics:

® Overview of the 8540 System. Explains the role of the 8540 in the development of
microprocessor-based products and describes the parts of a complete 8540 system.

® Getting Started. Provides instructions for starting up your 8540 and establishing
communication with a host computer.

® 8540/8560 Configurations. Explains three ways to connect an 8540, an 8560, and a
system terminal.

& Emutator Demonstration Run. Shows you how to assemble, ioad, execute, and monitor a
simple program.

® For Continued Learning. Helps you decide where to go next in this manual to accomplish
your own tasks.

® Overview of 8540 User Manuals. Describes the types of user manuals that support your
8540.

NOTE

Throughout this manual, the term “microprocessor” refers to both
microprocessors and microcomputers.

SPECIFICATION, INSTALLATION, CONFIGURATION, AND
VERIFICATION

For information on how to install and verify your 8540 hardware, and for product specifications,
refer to your 8540 Installation Guide.

11

Overview of 8540 Learning Guide—8540 System Users

OVERVIEW OF TH
Uses of the 8540
Three principal stages in the development of a microprocessor-based product are:
1. hardware development: design and construction of a hardware prototype of the product
2. software development: design and creation o
microprocessor that controls the product

a
f the program(s) that will execute in

3. hardware/software integration: monitoring the software as it executes in the prototype
hardware, and modifying the software or hardware to correct problems.

The 8540 Integration Unit is an important tool in stages 2 and 3, software development and
hardware/software integration.

Software Development. While your prototype hardware is under development, the 8540 can
help you debug the programs that will execute in the prototype. After you have written your
program and compiled or assembled it on a separate computer (referred to as the host
computer), you can download the program to the 8540 to be executed. As your program
executes in the 8540, an emulator (also called an emulator processor) performs the functions
of the prototype microprocessor. You can use the memory and 1/0 facilities of the 8540 to
simulate the signals your prototype microprocessor will have to deal with.

Hardware/Scftware Integration. Once your prototype hardware is built, you can test its
operation by temporarily replacing the prototype microprocessor with a prototype control
probe from the emulator. Under this arrangement, the 8540 acts as the prototype’s central
processing unit, and you can monitor your program as it interacts with the prototype hardware.
By doing so, you can discover errors that may remain in the software or hardware.

Your 8540 can support a variety of microprocessors. To emulate a particular microprocessor,
you select the appropriate emulator hardware and support software. This design concept allows
you to use a single piece of equipment for the design support of many types of microprocessor-
based products.

Figure 1-1 shows a general procedure for using the 8540 integration Unit to develop a
microprocessor-based product.

Learning Guide—8540 System Users

Overview of 8540

Design
and build
Hardware

Design and code
software

Create source
files using editor

1

Compile/assemble

Host
Computer

program

Syntax
errors?

Edit source code

1

Execute program
in 8540

|
-

Execution
errors?

Isolate errors
with 8540 debug-
ging facilities

Execute program

in prototype

under 8540 control

hardware

Modify
hardware

software
errors

errors

Errors?

)

r—-

Finished
product

-

U

3939-1

Fig. 1-1. Role of 8540 in product design.

You can use the 8540 to accomplish the tasks shown in the lower box. The host computer
performs the tasks shown in the upper box.

1-3

Overview of 85640 Learning Guide—8540 System Users

System
Terminal

|

* J104

] J103 8540 HSI
or Paper Taps [Integration -

- or Faper 1aps 2 or Your
| Reader/Punch Unit RS232 Hast
o ' Computer

PROM | Program
Programmer| Memory

Trace
Analyzer,

Prototype
Data Acquisition Control
Probe for Trigger Probe
Trace Analyzer
User Prototype
Prototype
Memow_

3939-2

Fig. 1-2. 8540 logical subsections.

This functional diagram shows the parts of a complete 8540 system. Shaded areas indicate
equipment that is not part of the minimum 8540 configuration.

8540 Parts and Functions
Figure 1-2 shows the components of a complete 85640 system.

Minimum 8540 System
A minimum 8540 system consists of an 8540 Integration Unit and a system terminal.

1-4

Learning Guide—8540 System Users Overview of 8540

8540 Integration Unit. The 8540 mainframe houses the following components of the 8540
system:

1. 0S/40, the ROM-based operating system of the 8540. OS /40 supervises all functions of
the 8540, which include:
a. general input and output
b. program execution, monitoring, and debugging
¢. PROM programming
d. communication with the host computer.

2. Program memory resides in the 8540. Your 8540 may be configured with 32K, 64K, or
128K of program memory. As you develop your software and integrate it with your
hardware, you can use program memory as a substitute for the memory that will reside in
your prototype hardware.

3. Optional hardware devices (described later under the heading “System Options”) are
attached to or installed in the 8540 mainframe.

System Terminal. The system terminal is a CRT or other RS-232-C-compatible |/0 device
through which you communicate with the 8540. Unless you specify otherwise, 0S/40 accepts
commands from the system terminal keyboard and displays output on the screen or printer of the
system terminal. To specify the system terminal in an 0OS/40 command line, use the device
name CONI (CONsole Input) or CONO (CONsole Output).

System Options

COM Interface Package. The COM Interface package enables you to establish communication
with a host computer using the 0S/40 COM command. This option consists of an RS-232-C-
compatible communication cable and a ROM (containing the COM command software) that
inserts into the 8540’s System ROM board. The 8540 does not need this option in order to
communicate with an 8560 Multi-User Software Development Unit.

Emulator. An emulator consists of one to three circuit boards that reside in the 8540
mainframe. The emulator generally contains a microprocessor of the same type as the one being
emulated, and also contains control circuitry that allows you to start, stop, and monitor program
execution, using 0S/40 commands. Your 8540 can contain up to two single-board emulators or
one multiple-board emulator at a time.

Prototype Control Probe. The prototype control probe connects the prototype hardware to the
emulator and contains additional control circuitry.

Once your prototype and emulator are connected, you can begin transferring responsibility for
timing, I/0, and memory functions from the 8540 to the prototype hardware. To indicate which
of these functions are handled by the 8540 and which are handled by the prototype, you use the
0S/40 EM command to specify the emulation mode. Mode O (system mode) uses only 8540
facilities, and is the only mode you can use until your prototype is connected. Mode 1 (partial
emulation mode) uses a mixture of 8540 and prototype facilities. Mode 2 (full emulation mode)
uses all of the prototype’s facilities. In all three modes you control program execution through
the 8540. Refer to the Emulation section of this manual for a more detailed explanation of the
three emulation modes.

Overview of 8540 Learning Guide—8540 System Users

Trigger-Trace Analyzer (TTA). The

information, control execution of your program, signal external devices, and aid in performance
analysis. The TTA consists of two circuit boards that reside in the 8540 mainframe and data
acquisition hardware that is installed in the 8540 rear panel. If you are familiar with the
TEKTRONIX Real-Time Prototype Analyzer (RTPA) and would like to begin using the TTA, see the
Technical Notes section of this manual for a comparison of the two devices. For more detailed
explanations of the TTA, refer to the Emuiation section of this manuai and to the TTA Users
Manual, which is provided with your TTA hardware.

TTA ic a dabiimmime $anl thant Anm Anmtrira anmA dicnlay ke
11 iS @ GEOUJFing 1O0I tnatl Can Capilure anda Gispiay ous

Memory Allocation Controller (MAC) Option. The MAC optionis a circuit board thatresides in
the 8540 mainframe. It is designed for use with emulators for the Z8001, Z8002, 68000, and
other microprocessors that can access memory outside the range of 8540 program memory.
Using 0S/40 commands that control the MAC option, you can map address blocks used by your
program into program memory. For more information on the MAC option, refer to the Emulation
section of this manuai.

PROM Programmer. The PROM Programmer consists of a circuit board that resides in the 8540
mainframe and a separate assembly that inserts into the 8540 front panel. You may use the
PROM Programmer to read data from a PROM into program or prototype memory, to burn a
PROM with data from program or prototype memory, or to compare the PROM's contents with
the contents of memory.

Tektronix offers a separate characteristic module for each family of PROM chips supported. To
use a particular family of PROMs, insert the appropriate characteristic module into the front
panel assembly. Refer to the PROM Programmer Specifics section of this manual for general
information about the 8540's PROM Programmer and for specific information about your

characteristic module.
WARNING l

Because of potential shock hazards, do not attempt to operate the PROM
Programmer before reading the introductory information in the PROM
Programmer Specifics section of this manual.

Line Printer. The iine prinier is a hardcopy ouiput device ithat aitaches io jack 103 on the 8540
rear panel. You can route almost any display produced by 0S /40 to the line printer by specifying
LPT as the output device.

Paper Tape Reader/Punch. You can attach a paper tape reader/punch to jack J103 on the
8540 rear panel. The paper tape reader/punch may be used as an input device (device name
PPTR) or as an output device (PPTP).

=3
1

[«)]
Y]

Learning Guide—8540 System Users Overview of 8540

The Host Computer

A program to be executed on the 8540 must be prepared on a separate computer, called the
host. Programming facilities that are usually provided by the host include file management, text
editing, compiling, assembling, and communication with the 8540.

The Operating Procedures section of this manual describes several procedures for intersystem
communication. The Intersystem Communication section of this manual treats the topic in
greater detail.

The 8560 as Host

The TEKTRONIX 8560 Multi-User Software Development Unit is a time-sharing computer that is
specially designed to serve as host to up to eight 8540s simultaneously. TNIX, the operating
system of the 8560, is derived from Bell Laboratories’ UNIX™ operating system. TNIX
incorporates the many software development tools of UNIX™, plus additional features for
handling tasks that are unique to the development of microprocessor-based software. With your
8540 and 8560 operating together under an arrangement called TERM mode, you have access
to 0S/40 and TNIX at the same time. TERM mode is discussed in more detail later in this
Learning Guide and in the 8560 System Users Manual. (UNIX is a registered trademark of Bell
Laboratories, Incorporated, Murray Hill, New Jersey.)

Other Hosts

If your host computer is not an 8560, you will probably want to have the optional COM Interface
package installed in your 8540. This option enables you to use the 0S/40 COM command to set
up communication between the 8540 and your host computer. The parameters of the COM
command configure your 8540 so that it can use the same RS-232-C-compatible
communication protocol as a terminal attached to your host. Once communication is
established, special directives instruct the COM command to transfer data (such as your
program) to or from the host.

Your host computer must convert your program to Tektronix Hexadecimal Format (Tekhex)
before the COM command can download your program to the 8540. An example of Tekhex is
given in the Emulator Demonstration Run later in this Learning Guide. Tekhex and the COM
command are described in detail in the Intersystem Communication section.

NOTE

In order for an OS/40 command (other than COM) or a user program on the
8540 to access files on the host, the 8540 and the host must be operating in an
8560-style TERM interface. In this manual, it is assumed that the 8560 is the
only computer that can host such a TERM interface with the 8540. However, the
host side of the 8540/8560 communication protocol may be implemented on
computers other than the 8560; such computers could also host a TERM
interface with the 8540.

Getting Started

Learning Guide—8540 System Users

1-8

SETTING STARTED

This subsection provides the basic information you need in order to begin using your 8540,
including how to turn the system on and off, how to enter commands, and how to establish
communication with a host computer.

It is assumed that your 8540 has been unpacked, installed, and checked oiit, and that your
system terminal and other peripherals have been configured to communicate with the 8540. If
any part of your system is not ready for use, refer to your 8540 Installation Guide for instructions.

Throughout this section, it is assumed that the system terminal you use to control the 8540 is
connected (via a cable) to the 8540. The next subsection, "8540/8560 Configurations,”
discusses three different ways to connect an 8540, an 8560, and a system terminal.

Starting Up the 8540

Make Sure Your 8540 Is Plugged In
To make sure that your system is properly plugged in, verify that each of the following steps has
been performed:
® Plug the system terminal into a power socket and connect it to the jack labeled TERMINAL
on the 8540 rear panel.

® Plug any other peripherals into power sockets and connect them to the 8540 rear panel.
Table 1-1 gives a complete list of jack assignments.

® If you want to operate your 8540 in TERM mode with an 8560, connect them with a line
capable of supporting HSI (RS-422) protocol. Plug the female end of the line into the HSI
jack on the 8540 rear panel, and plug the male end into an HS!11/0 jack on the 8560 rear
panei. {Check with your 8560 system engineer to verify that the HSI i/0 jack is configured
for HSI protocol.)

® If you want to operate your 8540 with a host other than the 8560, connect a terminal line
from your host to one of the REMOTE jacks (J101 or J102) on the 8540 rear panel. Use the
space in Table 1-2 to record the jack number and REMOTE port switch settings that are
appropriate for your host.

® Plug the 8540 into a standard wal! socket.

Table 1-1
Jack Assignments and Device Names for 8540 Peripherals
Peripherai Device Jack Device Names

system terminal J104 CONI (input), CONO (output)
line printer J103 LPT

paper tape reader/punch J103 PPTR (reader), PPTP (punch)
external computer J101 REMI (input), REMO (output)
external computer J102 REMI (input), REMO (output)

Learning Guide—8540 System Users Getting Started

Table 1-2
COM Interface Checklist®

Item For your host, use:

REMOTE jack number: J101 (DTE) or
J102 (DCE)

MODE SELECT switch setting
REMOTE BAUD switch setting

COM command parameters to establish
communication

COM command parameters for downloads

COM command parameters for uploads

Log on to host computer

Prepare program in Tekhex format.

Download program to 8540.

Upload program from 8540.

Log off.

2 Fill in the information that is appropriate for your host computer. This table is not applicable if your host is an
8560.

Start Up the 8540 and Its Peripherals

If this is the first time the system is being turned on, refer to the detailed power-up and system
verification procedure in the 8540 Installation Guide.

Turn on the 8540, system terminal, and peripherals in any order. The power switch for the 8540
is on the front panel. The 8540 performs an automatic self-test on power-up or restart. This test
is described in the 8540 Installation Guide.

Within a few seconds, the message

8540 BOOT Vx.x
should appear on your system terminal and the SELF TEST light on the 8540 front panel should
go out. Next, 0S/40 checks its EEPROMSs for a command string called STARTUP. 0S/40
automatically executes the commands in STARTUP whenever you power up or restart your
system. The STARTUP string is discussed in more detail later in this section.

Getting Started Learning Guide—8540 System Users

After the commands in the STARTUP string have been executed, you should see the message
0S/40 Vx.x (xxxx-xx) xx/xx/xx Copyright (C) 1981 Tektronix, Inc.

followed by the OS /40 prompt character (>). The numbers in parentheses {xxxx-xx) can be used
by your Tektronix service representative to determine whether your system is up to date.

if your system faiis to respond as expected, check the foilowing points:

e |f you get no response within five seconds of starting up the 8540, toggle the RESTART
switch on the front panel. Startup should proceed normally.

® The "Copyright” message is displayed only if your 8540 is in LOCAL mode. Your STARTUP
string may contain a command that takes the 8540 out of LOCAL mode and establishes
communication with your host computer. Press the RETURN key once or twice; your host
computer may respond with a login prompt.

If your 8540 and your host computer are not on speaking terms yet, you need to be sure that your
8540 starts up in LOCAL mode. You can prevent execution of the STARTUP string by setting
switch position 1 (DIP switch number S1100)on the 8540's System Controller board to 1 (open).
Refer to your 8540 Installation Guide for instructions on accessing this switch.

if your system has startup probiems that cannot be remedied by either of ithese soiutions, refer io
the verification procedures in your 8540 Instaliation Guide or contact your Tektronix service
representative.

Turning Off the 8540

You may turn off the 8540 and its peripherals in any order. (But don't do it now; you're just
getting started.)

How to Enter 0S/40 Commands

This Learning Guide uses the following conventions in presenting information that is entered or
displayed on the system terminal:

® Prompt—The OS/40 prompt character > is shown at the beginning of each command line
to remind you to wait for the prompt before entering the command.

® Carriage return—In this Learning Guide, the symbol <CR> is shown at the end of each
command line to remind you to end each command with a carriage return. On most
keyboards, you enter a carriage return by pressing the RETURN key.

® Underlined—Characters to be entered by you are underlined. Responses by 0S/40 are not
underiined.

® Numbers—Addresses are in hexadecimal notation uniess otherwise indicated. The suffix
letters H (hexadecimal) and T (decimal) may be used for clarity when both hexadecimal and
decimal numbers are used in the same discussion. For example, 10H = 16T.

® CTRL-x—Several control characters have special meaning to 0S/40. Each control
character is entered by pressing the CTRL key and another key simultaneously. To suspend
a display as it appears on the system terminal, for example, you enter CTRL-S by holding
down the CTRL key and pressing the S key. To resume the display (CTRL-Q), hold down the
CTRL key and press Q. To interrupt the command or program that 0S/40 is executing,
enter CTRL-C.

1-10 &

Learning Guide—8540 System Users Getting Started

Correcting Mistakes in a Command Line

If you notice a mistake in your command line before you enter a carriage return, you have two
ways of correcting the line: delete the entire line and start again, or correct the characters one-
by ore.

® To delete the entire lu..., type CTRL-U. You may then reenter the line.

® To delete characters one-by-one, press the BACKSPACE or RUBOUT key. Either key will
backspace the cursor and erase the deleted character.

Command Example

Let’s assume that your 8540 is started up and waiting for you to enter a command. (You shoulid
see the ">" prompt on your system terminal.) Enter the following command to caiculate the sum
of the hexadecimal numbers 44 and 55:

> calc 44+55 <CR>
99H

0S/40 responds with the answer in hexadecimal. Now let’s try something more exciting.

Establishing Communication with the Host

The ”>" prompt indicates that the 8540 is in LOCAL mode, acting as a stand-alone computer.
The 8540 starts up in LOCAL mode and stays in that mode until it receives a "CONFIG TERM" or
"COM” command that sets up communication with the host. Once you have downloaded a
program from the host, you may return the 8540 to LOCAL mode to execute and debug your
program. This discussion explains how to establish communication with an 8560 (TERM
interface) or with some other host computer (COM interface), and how to return the 8540 to
LOCAL mode.

8560 TERM Interface

The sequence of commands you enter to establish communication with the 85660 depends on
how your 8540, 8560, and system terminal are configured. The three most likely configurations
are discussed in the next subsection, “8540/8560 Configurations.” For now, let's assume that
your system terminal is connected to your 8540 and that the line that runs to the 8560 is plugged
into the HSI jack on the 8540 (as described earlier under “Starting Up the 8540").

Enter the following command to establish communication with the 8560:

> config term <CR>
Now the 8540 is in TERM mode: every character you type is sent directly to the 8560. Press the

RETURN key once or twice; the 8560 responds with its “login:” prompt. Type in your 8560 user
name and password, as described in the Learning Guide of your 8560 System Users Manual.

@ 1-11

Getting Started Learning Guide—8540 System Users

Now you're logged in to TNIX, the operating system of the 8560. The TNIX prompt is "$". Try
typing a TNIX command:
$ date <CR>

T'\I!V nnnnnn Ao ...;tl-. [urren .

Try typing an 0S/40 command:

$ calc 44455 <CR>
99H

TNIX recognizes that CALC isan 0OS/40 command, so it sends the command back to the 8540 for
processing by 0S/40. 0S/40 sends its response back to the 8560, and the 8560 passes the
response to you.

Notice that TNIX expects you to enter commands in lowercase. If you type "CALC 44+55", TNIX
responds “CALC: not found.”

In the Emulator Demonstration Run later in this Learning Guide, you'll see some practical
applications of the 8540/8560 TERM interface. For now, log out from the 8560 and return the
8540 to LOCAL mode: "

$ config local; logout <CR>

The CONFIG command tells the 8540 to stop sending commands to the 8560, and the LOGOUT
command tells the 8560 to stop accepting commands. Notice that these two commands cannot
be entered in a different order or on different lines if they are to have the desired effect.

CAUTION

When your 8540 is in TERM mode, do not toggle the RESTART switch on the 8540
front panel. If you need to interrupt system operation, type CTRL-C.

If you restart the 8540 while it is in TERM mode, the 8540 and 8560 may not be able to
resume communication if any OS/40 commands are still active on the 8560. If your
system seems to hang after you restart the 8540, you or your 8560 superuser must kill
the OS/40 commands from a different terminal. (Use the TNIX command ‘'ps —ax’’ to
list all active processes and use “kill —9’' to kill those processes associated with your
terminal.)

COM Interface
Table 1-2 {earlier in this section) has space for recording the parameters of the COM command

you enter to establish communication with your host computer. Here are some general rules
that may apply to your host:

® The default COM parameters are satisfactory for some computers. Try entering the COM
command without any parameters.

® For most computers, the COM parameters E, L, and M are sufficient to specify your host’s
communication protoco!.

® The COM parameters P, T, C, F, and HS affect data transfer protocols, and can be ignored
until you are ready to test your host computer’s upload and download software.

i-iz REV JAN 1983

Learning Guide—8540 System Users Getting Started

® For more information on the COM command and how to configure your 8540
communication hardware, refer to the Intersystem Communication section of this manual.

When you enter the COM command with the appropriate parameters, the 8540 responds "COM
Vx.x.” Now any characters you type are sent directly to the host. Try logging on to your host and
entering a few commands. The host should respond just as it would if the terminal were
attached directly to the host.

Try entering an 0S/40 command:
calc 44+55 <CR>

Unless your host has its own CALC command, you will probably receive an error message. When
the COM command is executing on the 8540, OS/40 cannot accept other commands.

The null character (ASCH code 00) has a special meaning to the COM command. On most
terminals, the null character is entered as CTRL-@ (hold down the CTRL key and press the keys
that produce the "@" character). When you enter the null character, COM intercepts the
characters you type next and interprets them as a directive to transfer data, display status
information, or terminate communication.

For now, log out of your host, and then terminate communication by entering the null character
and pressing the ESC key on your terminal:

(Log out.)
(null) (esc)

The 8540 should be in LOCAL mode once again.

More about 0S/40 Commands

Type-Ahead

0S/40 has a feature called type-ahead that allows you to enter additional commands even
before the current command has finished executing. When 0S/40 finishes a command, it
issues the > prompt and goes on to the next command entered, if any. If you are in the process of
entering a command when the prompt appears, just keep typing; the prompt has no effect on the
line being entered, other than to disrupt it visually.

Command lines that have been entered but have not yet begun execution are stored in the type-
ahead buffer. This buffer also holds the command line currently being typed and has a capacity
of 128 characters, including carriage returns. To display the contents of the type-ahead buffer,
enter CTRL-R. To delete all text in the type-ahead buffer, type CTRL-U or CTRL-C.

For the sake of clarity in this manual, type-ahead will not be demonstrated; it will be assumed

that you will wait for the > prompt before entering your next command.

Multiple Commands

You may enter more than one command on a line if you separate the commands with
semicolons. Be sure that the command line does not exceed 80 characters.

1-13

Getting Started Learning Guide—8540 System Users

Strings
To save typing, you can assign names to frequently used strings of characters. For example,
suppose the command line that establishes communication with your host computer is:

> COM P=4F4B EQOL=0DOA T=02 M=6 <CR>

The line
> HELLO="COM P=4F4B EOL=0DOA T=02 M=6" <CR>
defines a string named HELLO. Once this string is defined, every time you enter the command
> $HELLO <CR>
the string 'COM P=4F4B EOL=0DOA T=02 M=6' is substituted, and the 8540 establishes
communication with your host. (Notice that the dollar sign is omitted when you define the string,
but present when you use the string.)

You can use the 0S/40 PERMSTR command to save strings in the 85640's EEPROMSs, so that
they are availabie for future use. Strings that are not saved in EEPROM are iost when you restart
the 8540 or turn it off. For example, to save the HELLO string, type

> PERMSTR HELLO <CR>

You can also use the PERMSTR command to delete or display strings from EEPROM. If a string
already exists in EEPROM, you must delete the old version of the string before you can save a
new version.

If you have a sequence of commands to be executed every time you start up the 8540, store them
in the STARTUP string. For example, if you want to select the ZBOA emulator and establish
communication with an 8560 every time-you start up the 8540, type:

> STARTUP="CONFIG TERM; SEL Z80’ <CR>

> PERMSTR -D STARTUP <CR>
> PERMSTR STARTUP <CR>

The first PERMSTR command deletes the old EEPROM version of STARTUP, if any. The second
PERMSTR command saves the new version.

if your STARTUP string contains a CONFIG TERM command, that command must be the first
command in the string.

The name of a string can be 1 to 8 letters or digits; the first character must be a letter. In a string
name, a lowercase letter does not match the corresponding uppercase letter.

TERM Mode Considerations. On the 8560, strings are defined and used according to the same
general rules as described here for the 8540. When your 8540 is operating in TERM most with
an 8560, a string definition (stringname=string) or string substitution ($stringname) always
refers to an 8560 string unless you explicitly specify that the string belongs to the 8540. To
define an 8540 string, precede the string definition with the word "“8540” (8540
stringname=string). To use an 8540 string, precede the dollar sign with a backslash
{(\$stringname).

For most TERM mode applications, it is easiest to use only 8660 strings. You may use 8560
strings in 8540 commands. However, the 8560 does not recognize strings on the 8540, and the
0S/40 PERMSTR command does not recognize 8560 strings.

-

£

REV JAN 1983

Learning Guide—8540 System Users 8540/8560 Configurations

Uppercase and Lowercase

0S/40 commands can be entered in uppercase, lowercase, or a mixture of the two. Uppercase
and lowercase letters are interchangeable except in the name of a string, an emulator (for
example, Z80), or a standard 8540 device (CONI, CONO, LPT, PPTR, PPTP, REMI, and REMO
must be capitalized).

Command examples in this manual may be shown in either uppercase or lowercase. Except as
noted, any parameter shown in lowercase can also be entered in uppercase.

NOTE

If your 8540 is operating in TERM mode with an 8560, all OS/40 command
names must be entered in lowercase.

8540/8560 CONFIGURATIONS

This subsection describes the three common ways to connect an 8540, an 8560, and a system
terminal, and explains how to establish communication between the 8540 and the 8560 in each
configuration.

. Terminal-8540-HSi-8560
In this configuration, the 8540 has its own system terminal, and so can operate in either LOCAL
mode or TERM mode.

Cable Connections. The terminal connects to the TERMINAL jack (J104) on the 8540 rear
panel. The 8540 and 8560 communicate via a line thatruns from the HSI jack on the 8540to the
HSI 1/0 jack on the 8560. The HSI 1/0 jack must be configured for HSI (RS-422) protocol.

Establishing Communication. Start up the 8540. Enter the 0S/40 command config term to
enter TERM mode. Log in to the 8560.

B. Terminal-8540-RS232-8560
You may use this configuration in place of configuration A if your 8540 and 8560 are at separate
sites and so must communicate via a modem.

Cable Connections. The terminal connects to the TERMINAL jack (J104) on the 8540 rear
panel. The 8540 and 8560 communicate via a link that runs from the DTE jack (J101) on the
8540 (possibly through a modem) to an HSI 1/0 jack on the 8560. The HSI I/0 jack must be
configured for RS-232-C protocol. The MODE SELECT switch on the 8540 rear panel should be
set to DTE1.

Establishing Communication. Start up the 8540. Enter the OS/40 command
> config term i=r t=7 <CR>
to enter TERM mode. Log in to the 8560.

REV JAN 1983 1-15

8540/8560 Configurations Learning Guide—8540 System Users

If you cannot establish communication, your 8560 1/0O port may he configu

to the 8560 on a different terminal and enter the following command:
$ stty IU >/dev/ttyn <CR>

rad incorrecth
red mcorrect!

<

where n is the number of the HSI I/O jack to which the 8540 is attached. Then restart the 8540
and try the config command again.

C. Terminal-8560-HSI-8540

In this configuration, the 8540 can be operated from any terminal that is attached to the 8560.
Since the 8540 cannot operate in LOCAL mode in this configuration, its STARTUP string must
contain a config term command. To establish this STARTUP string, perform the following steps:

1. Attach a terminal to the 8540 (as in configurations A and B) and start up the 8540 in
LOCAL mode.)
2. Enter the following lines to create the STARTUP string and store it in EEPROM:
> STARTUP='config term’ <CR>

> PERMSTR -D STARTUP <CR>
> PERMSTR STARTUP <CR>

01 ;8085 DEMONSTRATION RUN PROGRAM
02 SECTION DEMO
03 ORG 100H ; START PROGRAM CODE AT ADDRESS 100
04 0100 210005 START LXI H,TABLE ;SET TABLE POINTER
05 0103 0605 MVI B,TSIZE ;SET PASS COUNTER
06 0105 AF XRA A ; CLEAR ACCUMULATOR
07 0106 86 LOOP ADD M ;ADD BYTE FROM TABLE
08 0107 23 INX H ;POINT TO NEXT BYTE
09 0108 05 DCR B ;DECREMENT PASS COUNTER
10 0109 C20601 JNZ LOOP ;LOOP IF NOT FIVE PASSES YET
11 010C D3F7 ouT OF7H ;OTHERWISE CALL EXIT SVC
12 010E 00 NOP ; TO END PROGRAM EXECUTION
13 ;SRB POINTER
14 ORG 40H ;STORE SRB POINTER AT ADDRESS 40
15 0040 0042 BYTE 00,42H ;POINT TO SRB FOR EXIT SVC
16 ;SRB FOR EXIT SVC
17 0042 1A BYTE 1AH ;1AH = FUNCTION CODE FOR EXIT SVC
18 ; TABLE OF NUMBERS TO BE ADDED
19 TSIZE EQU 5 ;TABLE SIZE = §
20 ORG 500H ;SET UP TABLE AT ADDRESS 500
21 TABLE BLOCK TSIZE
22 LIST DBG
23 . END START
—— - -~ A
source code comments

object code

address

source code line number

3939-5

Fig. 1-3. Demonstration program.

1-16 REV JAN 1983

Learning Guide—8540 System Users Demo—Introduction

Cable Connections. The terminal connects to an HSI 1/0 jack on the 8560. This HSI 1/0 jack
must be configured for RS-232-C protocol. The 8540 and 8560 communicate via a line that runs
from the HSI jack on the 8540 to another HSI 1/0 jack on the 8560. This HSI 1/0 jack must be
configured for HSI| (RS-422) protocol.

Establishing Communication. Log in to the 8560. To indicate which 8540 you want to use,
enter the line IlU=n;export U, where n is the number of the HSI I/0 jack to which the 8540 is
attached. Start up the 8540. The STARTUP string puts the 8540 into TERM mode automatically.

EMULATOR DEMONSTRATION RUN

Introduction

This demonstration run shows you how to load, execute, and monitor a simple 8085A assembly
language program on your 8540. If you have an emulator other than the 8085A, refer to the
appropriate Emulator Specifics supplement in this manual for ademonstration thatis parallel to
this one.

In order to perform this demonstration, your 8085A emulator board and emulator control
software ROM must be installed in your 8540.

Figure 1-3 shows the source and object code for the demonstration program.

If you have an 8560, and your 8560 Case 1: 2";;22,,’;,":;? 80854
has an B8080A/808bA assembler
installed, you can create and assem-
ble the program on the 8560 and
then download it to the 8540. This
demonstration shows how.

if you have an 8540 thatis connected
to a host computer other than an
8560, we can't give you a specific list
of commands for creating and assem-
bling the program on your host (since
we don’t know what host you're Case 2:
using). However, Fig. 1-4 gives the
object code for the program in
Extended Tekhex format. You can
create the Tekhex file using your
host’s assembler or text editor, then
download the file to the 8540 via the
8540’s optional COM interface.

T

pomn) [18C

I

—

7.1
T

If neither of these cases applies to

you, you can patch the program into

memory using the P command. This Case 3:

demonstration shows how. any other configuration
3964-5

Once the program is loaded or patched into memory, you can execute the program on your
emulator.

REV JAN 1983 1-17

Demo—Introduction Learning Guide—8540 System Users

(A)

%2769231002100050605AF862305C20601D3F700

%Z0E62B24000421A
%3A3494DEMC010350514L00P3106155TART310015TABLE3S0025TSIZELS
%098153100

(B)

FIRST DATA BLOCK: object code for addresses 100-10E

header

load address object code

I

A

%2769231002100050605AF862305C20601D3F700

SECOND DATA BLOCK: object code for addresses 40-42

header
load object
address code

s i, —e—
%0E62B24000421A

SYMBOL BLOCK

header section
l section definition

I i . ,
| name field symbol definition fields

AR B8

P e -~
%3A3494DEMC010350514LO0P310615START310015TABLE350025TSIZEL1S

TERMINATION BLOCK

header
transfer
address

v ¥

s — g
%098153100
3939.6

Fig. 1-4. Demonstration program: Extended Tekhex format.

Figure 1-4A shows an Extended Tekhex load module that contains the object code and
program symbols for the demonstration program. Figure 1-4B gives the meanings of the
different fields in the message blocks. If you have a host computer other than an 8560, you
can create this load module and download it to your 8540.

Learning Guide—8540 System Users Demo—Examine Program

Examine the Demonstration Program

Explanation of Demonstration Run Program Source Code

The demonstration run program adds five numbers from a table stored in locations 500-504 in
program memory and leaves the sum in the accumulator. You will place values inthetable later
in this demonstration.

The source file contains two kinds of statements: Tektronix assembler directives and 8085A
assembly language instructions. (Text following a semicolon (;) in a source line is treated as a
comment by Tektronix assemblers.) The 8085A assembly language instructions represent the
operations performed by the program; these instructions are discussed under the heading "How
the Demonstration Run Program Works,"” later in this subsection. The assembler directives
provide additional information needed to create the correct object code. The following
paragraphs outline the functions of the assembler directives.

SECTION DEMO. Every program consists of one or more sections. This directive declares a
program section called DEMO. All object code for the demonstration program will reside in this
section. (When you get into more practical programming applications, you may divide your
program into different sections to reduce memory consumption or to make it easier to organize
your program into RAM and ROM areas. Your Assembler Users Manual discusses the concept of
sections in detail.)

ORG 100H. This directive tells the assembler where in memory to locate the object code for the
next instruction. In this case, the object code for the 8085A instruction LXI H,TABLE will be
stored at memory location 100.

ORG 40H. This directive specifies that the information for the Exit service call is to be stored at
address 40. A service call (SVC}) is a request for 0S/40 to perform a special service for an
executing program. An Exit SVC ends program execution and returns control to the operating
system.

An SVC always has at least three parts:
® an |/0 instruction that initiates the SVC
® a service request block (SRB) that contains the parameters of the SVC to be performed
® an SRB pointer that tells where in memory the SRB is located.

SVCs are explained in the Service Calls section of this manual.

In this program, the instruction OUT OF7H directs OS /40 to perform the SVC whose parameters
are pointed to by the address in locations 40 and 41.

BYTE 00,42H. This directive specifies that the SRB pointer (the address of the SRB for the Exit
SVC) is 0042. .

@ 1-19

Demo—Examine Program Learning Guide—8540 System Users

BYTE 1AH. This SRR contains only one parameter: the SVC function code (1A = Exit). No other
parameters are needed.

— e —

TSIZE EQU b. This directive assigns the value 5 to the symboi TSiZE. Other statements in the

program use the symbol TSIZE when referring to the size of the table of numbers to be added.
ORG 500H. This directive specifies that the table will start at address 500.

BLOCK TSIZE. This directive allocates 5 (TSIZE) bytes to the table. The contents of the table are
undefined; you will put values into the table later in this demonstration. The symbol TABLE,
which represents the address of the table (500), is used by the LXI instruction.

LIST DBG. The LIST directive controls various assembler options. LIST DBG specifies that the
symbols in your source code (START, LOOP, TSIZE, and TABLE) will be placed in the object file.
Later in this demonstration, these symbols will be used in 0S/40 commands and displays.

EAND CTART Tha END directive si

END START, The END directi ignalsth
the transfer address: the address of he first instruction to be executed when you start the
program with the G (Go) command. Since START is the label of the LXI instruction, that
instruction will be executed first.

How the Demonstration Program Works
The steps of the program are illustrated in the flowchart in Fig. 1-5.

Set Table Pointer. The first instruction in the program, LXI H,TABLE, loads the address of the
table (500) into the H-L register pair. As a result, the H-L register pair points to the first element
of the table. The label START represents the address of this instruction. START is used by the
END directive to specify that the LXI instruction is the first to be executed.

Set Pass Counter. Register B is used as the pass counter. The MVI B, TSIZE instruction moves
the value b into register B. This step sets the number of passes to 5. Each time a number is taken
from the table and added into the accumulator, register B is decremented.

Clear Accumulator. The XRA A instruction sets the accumulator to zero. We want the
accumulator to be cleared when we start adding numbers from the table.

Add Byte from Table. The ADD M instruction adds the data addressed by the H-L register pair
into the accumulator. The label LOOP represents the address of this instruction; this label is
used by the JNZ instruction.

1-20 @

Learning Guide—8540 System Users Demo—Examine Program

Start

Initialize table pointer

Y

Set pass counter

!

Clear accumulator

"

Add byte from table

!

Point to new byte

|

Reduce pass counter

Pass counter = 0?

3939-3

Fig. 1-5. Demonstration program flowchart.

This flowchart presents the algorithm for the program used in this demonstration run. The
program adds the elements of a table in memory and leaves the sum in the accumulator. The
demonstration run shows how to download the program into memory, execute the program,
and monitor its execution.

© 1-21

Demo—Load Program Learning Guide—8540 System Users

Point to Next Bvte. The INX H instruction increments the address inthe H-L register pair; the H-
L register pair then points to the next byte in the table. For example, the H-L register pair is
initialized to contain the address 500. After the INX H instruction is first executed, the H-L
register pair will contain 501, the address of the second element in the table.

Decrement Pass Counter. The DCR B instruction decrements register B, the pass counter. In
this program, because the DCR B instruction follows the ADD M instruction, the pass counter is
decremented each time a number is added to the accumulator.

Loop If Not Five Passes Yet. The JNZ instruction effectively checks the contents of register B
and jumps to the LOOP label if the register does not contain zero. If register B contains zero, the
program proceeds to the OUT OF7H instruction.

Exit. The QUT OF7H instruction followed by the NOP is a call to the Exit SVC. This SVC invokes
the operating system to handle termination of the program. A NOP always follows an SVC
invocation to allow the system time to execute the SVC.

Assemble and Load the Demonstration Program

Now it's time to create the program so you can run it on your emulator. One of the following
discussions describes the set of steps that is appropriate for your hardware configuration:

® For 8560 users: Case 1: Assembie on the 8560; Downioad to the 8540

@ For users with host computers other thanthe 8560: Case 2: Download from Your Hostto
the 8540

® For other nardware configurations: Case 3: Patch the Program into Memory.

m

Go ahead and work through the discussion that's appropriate for you. Once you've put the
program into program memory, turn to the heading “Run the Demonstration Program,” later in
this section.

Case 1: Assemble on the 8560; Download to the 85640

it on the 8560, then download it to 8540 program memory. If your 8560 does not have an
8080A/8085A assembler, you cannot complete this part of the demonstration, so skip aheadto
the heading "Case 3: Patch the Program into Memory” for instructions.

Start Up and Log In

Start up your 8540, make sure it's in TERM mode, and log in to the 8560 operating system, as
described earlier in this Learning Guide.

Learning Guide—8540 System Users Demo—Load Program

Since you're logged in to TNIX, your system prompt is “$”. (Later in the demonstration, we'll
show the system prompt as “>", in deference to people using 8540s in LOCAL mode.) Every
command you enter is processed by TNIX. If you enter an OS /40 command, TNIX passes ittothe
8540.

Enter the following line to select the 8080A/8085A assembler on the 8560:
$ uP =8085; export uP <CR>

Now select the 8085A emulator on the 8540:

$ sel 8085 <CR>

The sel command automatically sets the emulation mode to O.

Create the Demonstration Program

Enter the following TNIX command lines to create an empty directory called demo and make
demo the working directory. You'll create your source file and related files in this demo
directory.

$ mkdir demo <CR>
$ cd demo <CR>

Now use the TNIX editor, ed, to create the demonstration program source file. The following
command line invokes the editor and specifies that you want to create a file called asm:

$ ed asm <CR>
?asm

The editor responds “?asm” to remind you that asm does not already exist. Notice that the editor
does not give a prompt to let you know it's ready for input.

REV JAN 1983 1-23

Demo—Load Program Learning Guide—8540 System Users

Enter the Text. Now enter the editor command a {(add text) and tyne in the program. Use the
BACKSPACE key to erase typing mistakes.
a <CR>

column column column

g 16 24

A

;8085 DEMONSTRATION RUN PROGRAM <CR>
SECTION DEMO <CR>

ORG 100H ; START PROGRAM CODE AT ADDRESS 100 <CR>
START LXI H,TABLE ;SET TABLE POINTER <CR>

MVI B,TSIZE ;SET PASS COUNTER <CR>

XRA A ; CLEAR ACCUMULATOR <CR>
LOOP ADD M ;ADD BYTE FROM TABLE <CR>

INX H ;POINT TO NEXT BYTE <CR>

DCR B ;DECREMENT PASS COUNTER <CR>

JNZ LOOP ;LOOP IF NOT FIVE PASSES YET <CR>

ouT OF7H ,OTHERWISE CALL EXIT SVC <CR>

NOP ; TO END PROGRAM EXECUTION <CR>
;SRB POINTER <CR>

ORG 40H ;STORE SRB POINTER AT ADDRESS 40 <CR>

BYTE 00,42H ;POINT TO SRB FOR EXIT SVC <CR>

™ ™ T m

;8RB FOR EXIT SVC <CR>

BYTE __ 1AH ;1AH = FUNCTION CODE FOR EXIT SVC <CR>
;TABLE OF NUMBERS TO BE ADDED <CR>
TSIZE EQU 5 ;TABLE SIZE = 5 <CR>

ORG 500H ;SET UP TABLE AT ADDRESS 500 <CR>

TABLE BLOCK TSIZE <CR>
LIST DBG <CR>
END START <CR>
<CR>

At the end of your text, enter a period on a line by itself. The editor will go back to accepting
commands.

Check for Errors. Enter the following editor command to display the text you have entered.
Check for typing mistakes.
1,8p <CR>

print command: displays the lines
in the designated range

t designates last fine in file
I—designates first line in file
If you made any mistakes, go ahead and fix them. In case you're not familiar with ed, Table 1-3

lists the commands you need in order to add, delete, or replace any line. For more information on
ed, refer to your 8560 System Users Manual.

1.24 @

Learning Guide—8540 System Users Demo—Load Program

Table 1-3

Basic 8560 Editing Commands
Command Function
mm,nnp <CR> Displays lines mm through nn
nn <CR> Makes line nn the current line
d <CR> Deletes the current line
a <CR> Adds text after the current line
<line(s) of text>
. <CR>
c <CR> Replaces the current line with the text you type in
<line(s) of text>
. <CR>

Once your text is correct, enter the w command to write the text to the source file, asm:
w <CR>
896

The editor responds with the number of characters it wrote to the file.

Finally, enter the @ command to quit the editor and return to TNIX:
g <CR>
$ «— TNIX prompt

Assemble the Source Code. The TNIX asm (assemble) command translates assembly language
(source code) into binary machine language (object code). The asm command also creates an
assembler listing which can be used to correlate the object code with the source code. Enter the
following command line to assemble the source code in the file asm and create the listing and
object files asml and obj:

$ asm obj asml asm <CR>

L source file

assembler listing file

object file
Tektronix ASM 8080/8085
Vxx.xx-xx (8560)
¥¥x*kxPagsg 2

23 Lines Read

23 Lines Processed
0 Errors

Enter the following command to print the assembler listing on the 8560's line printer:
$ 1lplr asml <CR>

REV JAN 1983 1-25

Demo—Load Program Learning Guide—8540 System Users

Check page 1 of your listing. Did the assembler issue any error messages? There should be none.
If your source code contains errors, take the following steps:

1. Refer to your Assembler Users Manual to find out what the error messages mean.

et A -

2. Enter the command ed asm to get back into the editor and fix the mistakes in your souice
code. Exit the editor with the w and q commands, as before.

w

. Enter the command asm obj asmi asm to re-assembie your source code.

Link the Object Code

The linker creates an executable load file from one or more object files. Enter the following
command to create a load file called load from your object file, obj. Be sure to capitalize all
parameters as shown.

$ link -d -0 obj -o load <CR>

The -d option causes the linker to pass the program symbols from the object file to the load file,
for use in programming debugging.

The files generated by the asm and link commands should now be in your working directory,
demo. Enter the following command to list the files in your working directory:

$ 1s <CR>

asm

asml

load

obj

Notice that there are now four files listed in your directory. obj and asml were created by the
assembler, and load was created by the iinker.

Download the Program to the 8540

Now it's time to download the object code produced by the 8560’s linker into 8540 program
memory.

Zero Out Memory. Before you download any code, use the OS/40 F (Fill) command to fill 8540
program memory with zeros. Later, when you examine memory, the zeros make it easy to
identify the beginning and end of your code. (Zeroing out memory has no effect on how the
program is loaded.) Enter the following command line to fill memory from address 40 through

$ £ 40 11f 00 <CR>

-—d

Learning Guide—8540 System Users v Demo—Load Program

Check That Memory Was Filled with Zeros. Check the contents of memory with the 0S/40 D
(Dump) command. The D command’s display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11F
with the following command line:
$ d 40 11f <CR>
01 2 3 4 56 7 8 9 A BCDTEF
000040 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000EO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000OF0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Download the Object Code. Enter the following command line to download the object code
from the 8560 file load to 8540 program memory:
$ lo <load <CR>

S

load file

Download the Program Symbols. Recall that the source code for the demonstration program
contains the directive LIST DBG. Because of this directive, the object file contains a list of the
symbols that appear in the source code, and the values associated with those symbois. Because
you included the —d option in the link command line, those symbols were passed to the load file.
Use the 0S/40 SYMLO command to download those symbols into the symbol table in 8540
system memory.

$ symlo -s <load <CR>

The -S option means that both addresses and scalars are downloaded. If you omit the -S, only
addresses are downloaded. (A scalar is a numberthatis not an address—for example, TSIZE, the
length of the table.)

Later in this demonstration, whenever you use a symbol in an 0S/40 command line, 0S/40
refers to the symbol table to find the value that the symbol stands for.

You've assembled and linked the demonstration program and downloaded it into memory. Now
skip ahead to the heading "Run the Demonstration Program.”

@ 1-27

-

Demo—Introduction Learning Guide—8540 System Users

Case 2: Download from Your Host to the 8840

= wY e LA 2 H -~ - iy

This discussion gives some general instructions for downloading the demonstration program
from an unspecified host computer to 8540 program memory. If your 8540 is not equipped with
the optional COM Interface Package, you cannot compiete this part of the demonstration, so skip
ahead to the heading “"Case 3: Patch the Program into Memory” for instructions.

Since we don't know what host computer you're using, we can only provide a generail outline for
creating the demonstration program and downloading it to the 8540. Once you have determined
the command sequence that is appropriate for your host, record this information in the space
provided in 1-6.

Create the Extended Tekhex Load Module

Prepare the 8540
(Start up the 8540.)
> SEL 8085 <CR>
> F 40 11F 00 <CR>
> D 40 11F <CR>

Establish Communication

Download the Load Module

Terminate Communication

3939-7

Fig. 1-6. Host computer commands for preparing demonstration program.

Learning Guide—8540 System Users Demo—Load Program

Create the Extended Tekhex Load Module
In order for the object code to be downloaded to the 8540, it must be in Extended Tekhex format,
as shown in Fig. 1-4, earlier in this demonstration. You can create the load module in one of two
ways:

1. Use your host computer’s text editor, and key the load module in by hand.

2. Use your host computer’'s 8085A assembler:

a. Translate the demonstration program into the language of your host’s 8085A
assembler.

Create and assemble the source file.
Link the object code, if necessary.

o

d. Translate the object code produced by the assembler or linker into Extended Tekhex
format. The Intersystem Communication section of this manual provides a general
algorithm for conversion to Extended Tekhex format.

Prepare the 8540

Start up your 8540 and enter the following command to select the 8085A emulator:
> SEL 8085 <CR>

The SEL command automatically sets the emulation mode to 0.

Zero Out Memory. Before you download any code, use the 0S /40 F (Fill) command to fill 8540
program memory with zeros. Later, when you examine memory, the zeros make it easy to
identify the beginning and end of your code. (Zeroing out memory has no effect on how the
program is loaded.) Enter the following command line to fill memory from address 40 through
address 11F with zeros:

> F_40 11F 00 <CR>

Check That Memory Was Filled with Zeros. Check the contents of memory with the 0S/40 D
(Dump) command. The D command’s display shows the data in hexadecimal format, and also
shows the corresponding ASCIl characters. Display the contents of memory addresses 40-11F
with the following command line:

> D 40 11F <CR>
01 2 3 4 56 7 8 9 A B CDEF

000040 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00 OO0
000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 OO0 00 OO0 00 00 OO 00 00 00 00 00 OO0 OO0
000070 00 00 00 OO0 0O 00 00 OO0 OO 00O 00 OO0 00 00 OO0 OO0
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0 OO0 OO0
0000A0 00 00 00 00 00 00 00 00 00 00 O0 00 00 00 00 00
0000BO 00 00 00 00 00 00 00 00 OO0 00 00 OO0 OO 00 00 00
0000CO 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00 00
0000DO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
OOOOFO 00 00 00 00 00 00 00 00 00O 00 00 00 00 00 OO0 OO0
000100 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000110 00 00 00 00 00 00 00 00 00 00 00 00 OO0 00 OO0 00

®

1-29

Demo—Load Program Learning Guide—8540 System Users

Download the Load Moduile to the 8540

Be sure that your 8540 and your host computer are connected via an RS-232-C-compatible
communications link. Then perform the following steps to download the Tekhex load module to
8540 program memory. (Refer to the Intersystem Communication section of this manual to
determine the commands and parameters that are appropriate for your host computer.)

a. Enter the 8540 COM command to establish communication. (The parameters of the
COM command are host-specific.) Log on to your host and execute any necessary
host initialization commands.

b. Enter the command line that downloads the Tekhex load module to the 8540. This
command line consists of a host computer command that performs the download,
followed by a null character (CTRL-@ on most terminals) and a carriage return. COM
places the object code in 8540 program memory, and puts the program symbols into
the symbol table in 8540 system memory.

c. Log off from your host, and then terminate COM command execution by entering the
null character, then pressing the ESC key.

Once you've downloaded the program to the 8540, skip ahead to the heading “Run the
Demonstration Program.”

Case 3: Patch the Program into Memory

This discussion shows you how to patch the demonstration program into 8540 program memory
using the P command, and then add the program symbols into the symbol table using the ADDS
command.

Ordinarily, you would download the object code and symbols from a binary or hexadecimal load
file on a host computer, as illustrated for Cases 1 and 2. The procedure presented here is not
normally used for preparing a program for execution. Use this procedure only if you have no
standard means for preparing the program, but would still like to try out your emulator.

Start Up the 8540

Start up your 8540 and enter the following command to select the 8085A emulator:
> SEL 8085 <CR>

The SEL command automatically sets the emulation mode to O.

Zero Out Memory
Before you patch in any code, use the OS/40F (Fill)command to fill 8540 program memory with
zeros. Later, when you examine memory, the zeros make it easy to identify the beginning and
end of your code. Enter the foliowing command line to fill memory from address 40 through
address 11F with zeros:

> F_40_11F 00 <CR>

Learning Guide—8540 System Users Demo—Introduction

Check That Memory Was Filled with Zeros. Check the contents of memory with the 0S/40 D
(Dump) command. The D command’s display shows the data in hexadecimal format, and also
shows the corresponding ASCII characters. Display the contents of memory addresses 40-11F
with the following command line:

> D 40 11F <CR>
01 2 3 4 5 6 7 8 9 A B CDE F

000040 00 00 00 00 OO0 OO 00 00 OO0 00 00 00 00 00 00 OO0
000050 00 00 00 OO 00 OO0 00 0O 00 00 00 00 00 060 00 OO0
000060 00 00 00 00 00 OO0 00 00 OO0 00 00 00 OO0 00O 00 00
000070 00 00 00 00 00 OO0 OO 00 00 00 00 OO0 OO 00 00 00
000080 00 00 00 00 00 OO 00 0O 00 00 OO0 00 00 00 OO0 OO0
000090 00 00 00 00 00 OO0 00 00 00 00 OO0 OO0 00 00 00 00
0000AO 00 00 00 00 00 OO 00 00 00 00 OO0 00 00 00 OO0 OO
0000BO 00 00 00 00 00 OO0 OO0 00 00 OO0 00 00 00 OO0 00 00
0000CO 00 00 00 00 00 OO 00 00 00 OO0 OO 00 00 00 OO0 OO0
0000DO 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 OO0
OOOCEO 00 00 00 00 00 00 00 00 00 OO0 OO0 00 00 00 00 OO0
OO0OOFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 OO0
000100 00 00 00 00 00 00 00 00 00 00 OO0 00 00 00 00 00
000110 00 00 00 00 00 OO0 00 00 00 00 00 00 00 00 00 00

Patch the Object Code into Memory
The 0S/40 P (Patch) command stores a sequence of bytes into memory, replacing the previous
memory contents. Enter the following command to store the object code for the first three
instructions in the program (LXI, MVI, and XRA) starting at location 100:

> P_100 210005 0605 AF <CR>

XRA A
MVI B, TSIZE
LXI H,TABLE

patch address

Now patch in the next four instructions (ADD, INX, DCR, and JNZ)...
> P 106 86 23 05 C20601 <CR>

... and now the last two instructions (QUT and NOP):
> P _10C D3F7 00 <CR>

Finally, patch in the Exit SVC information at address 40:
> P 40 00421A <CR>

You'll check the contents of memory later in this demonstration.

@ 1-31

Demo—Run Program Learning Guide—8540 System Users

Put Symbols into the Symbol Table
Later in this demonstration, you will use symbols from the demonstration program (START,
LOOP, TSIZE, and TABLE) when communicating with 0S/40. Whenever you use a symbol in a
command line, 0S/40 consults a symbol table in 8540 system memory to find the values that
the symboi stands for. Enter the foiiowing command line to add the program symbols to the
symbol table, aleng with their values:

> ADDS START=100 LOOP=106 -S TSIZE=5 TABLE=500 <CR>

The -S parameter indicates that TSIZE is a scalar, not an address.

The ADDS command cannot provide all the symbol-related information that is provided by the
SYMLO command(asin Case 1) orthe COM command(as in Case 2). Because this information is
missing, some of the symbolic displays you produce later in this demonstration will not match
the displays shown in this manual. For more information on the ADDS command, refer to the
Command Dictionary of this manual.

You've patched the demonstration program into program memory and placed the program
symbols in the symbol table. Now it's time to run the program.

Run the Demonstration Program

From now until the end of the demonstration, the commands you are to enter are shown in
lowercase. If you are not logged in to an 8560, you may enter commands in either lowercase or
uppercase. If you are using an 8560, you must enter the name of every command in lowercase
{and your system prompt is “$", not ">").

Now that you've loaded the program into memory, you need to:
1. verify that the program was loaded correctly
2. put values into the table in memory, for the program to add.

Check Memory Contents Again. Before you loaded the program, you filied memory locations
40-11F with zeros. Look at the same memory area again with the following command line:
> d 40 1if <CR>
01 2 3 4586 7 8 9 ABC CDEF

000040 00 42 1A 00 00 00 00 00 00 00 00 00 00 00 00 00 .B..............

000050 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000060 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000070 00 GO 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000080 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000090 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000A0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000BO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000CO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
0000D0 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
O00OEO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
O00OFO 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
000100 21 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00 !...... #ooo. .
000110 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00

Learning Guide—8540 System Users Demo—Run Program

The object code is loaded in two different blocks:

® The 8085A machine instructions are loaded at address 100 (specified by the first ORG
directive in the source code).

® The information for the Exit SVC is loaded at address 40 (specified by the second ORG
directive).

The contents of the table at address 500 are still undefined, but you’ll put some values into the
table in just a few minutes.

Turn On Symbolic Display. Enter the following command to tell 0S/40 to modify its displays by
replacing hexadecimal numbers with symbols from your program, where appropriate:
> symd on <CR>

Disassemble the Object Code. The DI (DIsassemble) command displays memory contents both

in hexadecimal notation and in assembly language mnemonics. You can use the DI command to

verify that the object code in memory corresponds to your source code. Enter the following

command to disassemble the area of memory occupied by the executable part of your program:
> di 100 10e <CR>

LoC INST MNEM OPER
SECTION (DEMO)

START 210005 LXI H,0500
+000103 0605 MVI B,05
+000105 AF XRA A
LOOP 86 ADD M
+000107 23 INX H
+000108 05 DCR B

+000109 C20601 JNZ 0106
+00010C D3F7 OUT F7
+00010E 00 NOP

Compare the DI display with the assembler listing you generated earlier, or refer back to Fig. 1-3.

The line “SECTION (DEMO)” in the DI display indicates that the object code being disassembled
comes from the program section called DEMO. In fact, the entire memory area used by your
program (location O through the end of the table—location 504) belongs to section DEMO. This
section was declared by the SECTION directive in the source code. (If you used the ADDS
command to create your symbols, as in Case 3, the section name shown in the DI display is
NO.SECTION.)

The LOC (location) column of the DI display contains information that enables you to correlate
the display with your assembler listing. The symbols START and LOOP in the DI display
correspond to the labels START and LOOP in the source code. For those lines of the display
where the location does not correspond to a label in the symbol table, DI substitutes the address
of the instruction relative to the beginning of the section, as shown in the address field of your
assembler listing. If you don’t load the pertinent symbols and related information into the symbol
table (using a command such as SYMLO), the DI command supplies absolute (actual) addresses
in the LOC column. (Since section DEMO begins at address 0, the relative address, or offset, is
the same as the absolute address in this display. This offset feature is much more useful for
sections that don’t start at address O.)

REV JAN 1983 1-33

Demo—Run Program Learning Guide—8540 System Users

Now you‘ve seen that 0S/40 can use the symbol table to translate numbers into symbols to
make a display easier to read. 0S/40 can also translate a symbol in a command line into an
address. For example, since 0S/40 knows that the symbol START is equivalent to the address
100, you could have entered the DI command in any of the following ways:

1TAA 1AT

di 100 10E

di START 10E

di start startiOe
di 100 START+OE

Notice that a symbol can be entered in either lowercase or uppercase.

The feature that enables OS /40 to correlate symbols from your program with the numbers they
represent is termed symbolic debug.

Put Values into the Table in Memory. The demonstration program sums five numbers from a
table in memory. Use the P (Patch) command to store the numbers i, 2, 3, 4, and 5 into the table.
Do you remember what the address of the table is? It doesn’t matter, as long as you remember
that the symbol TABLE represents that address.

> p table 0102030405 <CR>

—

address of string of bytes to be stored
table: 500 at addresses 500-504

Check the Contents of the Table. Use the D command to display the contents of the table.
(When you don‘t specify an upper boundary for the area to be dumped, the D command dumps 16
bytes.)

|——- lower address: 500

upper address: omitted
(defaults to lower address + OF)

6 7 8 9 A B C D E F
D 4E 04 3A C7 16 FE 00 CA 35 05 N.:..... 5.

Notice that bytes 500-504 (the table) contain the values you patched in. Bytes 505-50F contain
random data left over from previous system operations.

The following command dumps only the contents of the table:

> d table tablettsize-1 <CR>
0O 1 2 3 4 5 6 7 8 Y A B C D E F
000500 01 02 03 04 05

Learning Guide—8540 System Users Demo—Run Program

Start Program Execution

Enter the G (Go) command to start program execution at location 100, the transfer address
specified by the END directive in the source code. (If you followed *‘Case 3: Patch the Program
into Memory,” you must enter ‘‘g start” instead.)

> g <CR>
LocC INST MNEM OPER SP F A B C D E H L IM SOD
SECTION (DEMO)
+00010F 00 NOP 0000 54 OF 00 00 00 00 05 05 00 O
—— —— N .,
+00010F <BREAK >
table
accumulator pass pointer

counter

The program executes, and when the Exit SVC occurs, the program breaks (stops), and the
contents of the emulator registers are displayed. The accumulator contains the sum of the
numbers in the memory table: 1+2+3+4+5=0F.

Monitor Program Execution

You have assembled, loaded, and executed the demonstration program. The rest of this
demonstration shows you some commands for monitoring program execution. You can watch
the changes in the emulator’s registers and observe the effect of each instruction as the
program proceeds.

Trace All Instructions. The TRA (TRAce) command lets you observe the changes in the 8085A
registers as the program proceeds. When you enter a TRA command and then start execution
with the G command, display lines are sent to the system terminal. As each instruction
executes, the display line shows the instruction (as in the DIsassemble display) and the contents
of the registers after that instruction has executed. Enter the following command to trace all of
the program'’s instructions:

> tra all <CR>

Enter the command G START (or G 100) to resume program execution back at the beginning of

the program:
> g start <CR>

REV JAN 1983 1-35

Demo—Monitor Program

w

[o}]

As the program executes, the following trace is displayed. Remember that you cantyp

- 1434
to suspend the display and CTRL-Q to resume the display.

15
O
0

LOC INST MNEM OPER SP F A B C D E H L IMSOD
SECTION (DEMO)

START 210005 LXI H,0500 0000 54 OF 00 00 GO 00 05 00 00 ©
+000103 0605 MVI B,05 0000 54 OF 05 00 00 00 05 00 00 O
+000105 AF XRA A 0000 44 00 05 00 0C 0C 05 00 00 ©
LooP 86 ADD M 0000 00 01 05 00 00 00 05 00 00 O
+000107 23 INX H 0000 00 01 05 00 00 00 05 01 00 O
+000108 05 DCR B 0000 10 01 04 00 00 00 05 01 00 O
+000109 C20601 JNZ 0106 0000 10 01 04 00 00 00 05 01 00 O
LOOP 86 ADD M 0000 04 03 04 00 00 00 05 01 00 O
+000107 23 INX H 0000 04 03 04 00 00 00 05 02 00 O
+000108 05 DCR B 0000 14 03 03 00 00 00 05 02 00 ©
+000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02 00 O
LOOP 86 ADD M 0000 04 06 03 00 00 0C 05 02 00 O
+000107 23 INX H 0000 04 06 03 00 00 00 05 0% 00 O
+000108 05 DCR B 0000 10 06 02 00 00 00 05 03 00 O
+000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03 00 O
LOOP 86 ADD M 0000 04 0A 02 00 00 00 05 03 00 O
+000107 23 INX H 0000 04 OA 02 00 00 00 05 04 00 O
+000108 05 DCR B 0000 10 0A 01 00 00 00 05 04 00 O
+000108 C20601 JNZ 0106 0000 10 OA 01 OO0 00 00 05 04 00 ©
LOOP 86 ADD M 0000 04 OF 01 00 00 00 05 04 00 O
+000107 23 INX H 0000 04 OF 01 00 00 00 05 05 00 O
+000108 05 DCR B 0000 54 OF 00 00 00 00 05 05 00 O
LoC INST MNEM OPER SP F A B C D E H L IMSOD
SECTION (DEMO)

+000109 C20601 JNZ 0106 0000 54 OF 00 00 00 00 05 05 00 O
+00010C D3F? OUT F7 0000 54 OF 00 00 00 00 05 05 00 O
+00010C <BREAK TRACE>

After the accumulator is cleared, it begins to store the sum of the numbers being added. The
ADD M instruction adds a number from the table into the accumulator. At the end of the
program, the accumulator contains the sum of the numbers you put into the table.

Register B, the pass counter, is set to contain 5 (TSIZE) at the beginning of the program. It
decreases by one (because of the DCR B instruction) each time a number is added into the
accumulator. The program ends after register B reaches zero.

The H-L register pair, set to contain 500 (TABLE) at the start of the program, increases by one

{because of the INX H instruction) each time a number is added to the accumuiator. At the end of
the program, the register pair has been incremented five times and contains 505.

Trace to the Line Printer. By adding the parameter >LPT to a command, you can direct that
command'’s output to the line printer instead of to the system terminal. First, verify that your line
printer is properly connected and powered up. Then enter the following command to execute the
program with trace output directed to the line printer:

Learning Guide—8540 System Users

'@

Learning Guide-——8540 System Users

NOTE

If you are operating in TERM mode with an 8560, use one of the following commands
in place of the command shown:

® g start | |p1r sends the display to the 8560’ line printer.

® g start \>>LPT sends the display to the 8540'’s line printer.

> g start >LPT <CR>

Demo—Monitor Program

Trace Jump Instructions Only. Another way to monitor the program’s execution is to look only
at the jump instructions. By tracing the jump instructions, you can still observe the changes in
the registers, but you save time and space by not tracing the instructions within the loop. Enter
the following command to trace only the jump instructions when the loop is being executed:
> tra jmp loop 109 <CR>

——

L=

—

(106)

upper address

lower address

Within this range,
only jump instructions
are traced.

Check the Status of the Trace. The TRA command without any parameters displays the trace
conditions that are currently set. Because you can have up to three trace selections in effect at
the same time, it can be useful to be able to see which selections are active. Check your trace

status with the following command line:

> tra <CR>
ALL,000000, OOFFFF
JMP ,LOOP, 000109

TRACE
TRACE

As you've specified, TRA ALL is in effect for addresses 0-105, TRA JMP is in effect for addresses
106-108, and TRA ALL is again in effect for addresses 10A~-FFFF.

Again, start your program with the G command. The following trace is displayed:
> g start <CR>

LOC
SECTION
START
+000103
+000105
+000109
+000109
+000109
+000109
+00010C
+00010C

INST
(DEMO)
210005
0605
AF
C20601
C20601
C20601
C20601
D3F7
<BREAK

MNEM

LXI
MVI

JNZ
JNZ
JNZ
JNZ
ouT

OPER

H, 0500
B,05
A
0106
0106
0106
0106
F7
TRACE>

SP

0000
0000
0000
0000
0000
0000
0000
0000

F

54
54
44
10
14
10
10
54

A B C D E H L

OF
OF
00
01
03
06
OA
OF

00
05
05
04
03
02
01
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

00
00
00
00
00
00
00
00

05
05
05
05
05
05
05
05

00
00
00
01
02
03
04
05

IM SOD

00
00
00
00
00
00
00
00

[eNeNoNoNeoRoNeRol

As with the TRA ALL display, observe that register B (the pass counter) is decremented; the H-L
register pair (the table pointer) is incremented; and the accumulator stores the sum of the
numbers from the table. With the TRA JMP selection in effect, the instructions within the loop
are not displayed.

REV JAN 1983

1-37

‘

Demo—Monitor Program Learning Guide—8540 System Users

Tt n Donnbonn o i P Y TPty o
OU a chal\punu |\|UVV llldl YUU VC SEEN NoOw lIIC proyraiii au b l

& il
new task: to add only the third and fourth numbers from the table. To perform this task, you want

the pass counter to contain 2, and the table pointer to contain 502 (the address of the third
number in the fab!e\ You can acconnphch these t\hannec withgout alte ng tha nblnnf code in

. L~ - ~onm o
urnuers toycuict, lieie s a

Vu o LER~1R] LA R aitent LT U

memory. First, stop program execution after the pass counter and the table pointer have been
set. Next, whiie the program is stopped, enter new values for the pass counter and tabie pointer.
When execution resumes, the program will treat the new values as if they were the original
programmed values.

Enter the following command line to trace all of the instructions as the program executes:
> tra_all <CR>

Check the status of the trace with the following command line:
> tra <CR>
TRACE ALL, 000000, 00FFFF

The trace selections you set earlier are made obsolete by the TRA ALL command just entered.

Now you set a breakpoint so that the program stops after the table pointer and pass counter have
been set. The following command will cause the program to stop after it executes the MVI
instruction at address 103

> bk 1 103 <CR>

f Lzbreakpcint address
l—breakpoint number

{(can be 1 or 2)

Use the G command to start program execution:
> g start <CR>

LOC INST MNEM OPER SP F A B C D E H L IMSOD
SECTION {(DEMO)

START 210005 LXI H,0500 0000 54 OF 00 00 00 00 05 00 OO O
+000103 0605 MVI B,05 0000 54 OF 05 00 00 00 05 00 OO O
+000103 <BREAK TRACE, BKPT1>

The TRA ALL command enabled display of all instructions up to and including the instruction at
the breakpoint.

Set New Values in Pass Counter and Table Pointer; Check Results. Now that vou've reached
the breakpoint, you can change the contents of the registers while execution is stopped. The
break display shows that register B (the pass counter) contains 5, and the H-L register pair (the
table pointer) contains the address 500. Use the S (Set) commandto set the number of passesto
two and set the table pointer to 502.

> s B=2 L=2 <CR>

———

Lcontents of low byte
of H-L register pair

contents of register B

Learning Guide—8540 System Users Demo—Summary

The S command does not produce a display, but you can use the DS (Display Status) command to
check the values in the registers you changed. DS displays the contents of each emulator
register and status flag. Check the result of the previous S command with the following
command line:

> ds <CR>

PC=0105 SP=0000 F=54 A=0F B=02 C=00 D=00 E=00 H=05 L=02

SOD=0 SID=0 I7=0 16=0 I5=0 IE=0 M7=1 M6=1 M5=1

The DS display shows that the pass counter and table pointer now contain the new values.

Resume Program Execution. If you enter the G command with no parameters, program
execution starts where it left off. Resume program execution after the breakpoint with the
following command:

> g <CR>

LOC INST MNEM OPER SP F A B C D E H L IMSOD
SECTION (DEMO)

+000105 AF XRA A 0000 44 00 02 00 00 00 05 02 00 O
LOOP 86 ADD M 0000 04 03 02 00 00 00 05 02 00 O
+000107 23 INX H 0000 04 03 02 00 00 00 05 03 00 O
+000108 05 DCR B 0000 10 03 01 00 00 00 05 03 00 ©
+000109 C20601 JNZ 0106 0000 10 03 01 00 00 OO 05 03 00 ©
LOOP 86 ADD M 0000 00 07 01 00 00 OO 05 03 00 O
+000107 23 INX H 0000 00 07 01 00 00 OO 05 04 OO ©
+000108 08 DCR B 0000 84 07 00 00 0C 00 05 04 00 ©
+000109 C20601 JNZ 0106 0000 54 07 00 OO 00 00 05 04 00 O
+00010C D3F7 OUT F7 0000 54 07 00 00 00 00 05 04 OO O
+00010C <BREAK TRACE>

Notice that the program performed two passes through the loop, and that the program added the
third and fourth numbers in the table: 3+4=7.

Summary of Emulator Demonstration Run

You have assembled, loaded, executed, and monitored the demonstration run program. Review
the commands you used:

® SEL—selects the 8085A assembler and emulator

® ASM (TNIX command)—creates object code from an assembly language program
® LINK (TNIX command)—Ilinks object code into a load module

® F—fills an area of memory with a specified value

® D—displays memory contents in ASCIl and hexadecimal format

® LO or COM—downloads object code into memory

® SYMLO or COM—downloads program symbols for use in symbolic debug

® Dl—translates memory contents into assembly language mnemonics

® P—patches a string of bytes into memory

® G—begins or resumes program execution

® TRA—selects instructions to be traced during program execution

@ 1-39

For Continued Learning Learning Guide—8540 System Users

® BK—sets a breakpoint
® S—modifies emulator registers

® DS—displays emulator registers

Delete the Demonstration Run Files

Now that you've finished the demonstration run, you can delete the files you created on the host.
If your files are on the 8560, you can use the following procedure to delete them.

Enter the following command to remove all the files in the working directory:
$ rm * <CR>

Now move from the demo directory back into the parent directory and remove the demo
directory itself:

$cd .. <CR>
$ rmdir demo <CR>

$ config local; logout <CR>

You can turn off the 8540 and its peripherals in any order.

FOR CONTINUED LEARNING

This Learning Guide introduced the basic concepts needed to use your 8540 It gave you an
overview of the 8540 and related products, and showed you how to prepare, download, execute,
and monitor a program. To obtain more detailed explanations of various 8540 operations, refer
to the following sections:

Section 2, Operating Procedures. Describes a series of tasks and lists the commands needed
to perform these tasks.

Section 3, Command Dictionary. Provides a description and examples of each 0S/40
command. The Command Dictionary is arranged aiphabeticaily by command name. it is
preceded by a classified list of commands to help you choose a command by its function if you
don’t remember its name.

Section 4, Intersystem Communication. Gives the technical information needed to set up
communication between the 8540 and another computer system.

Section 5, Emulation. Summarizes the emulation features of the 8540. The emulator
demonstration run in this Learning Guide demonstrated program execution in emulation mode
0. Section 5 discusses modes 1 and 2 as well, and gives detailed explanations of symbolic debug,
the Memory Allocation Controller (MAC) option, and the Trigger-Trace Analyzer (TTA).

B
(a)
D)

Learning Guide—8540 System Users Overview of 8540 User Manuals

Section 6, Service Calls. Explains what service calls are and how you use them in your program
to access 170 devices on the 8540 and files on the 8560.

Section 7, Emulator Specifics. Provides a place to insert your Emulator Specifics supplements.
Each supplement gives reference information that is specific to a particular emulator, and also
contains a demonstration run and installation instructions for that emulator.

Section 8, PROM Programmer Specifics. Describes the general features and operation of the
PROM Programmer. Add your PROM Programmer Specifics supplements to this section. Each
supplement provides reference information that is specific to a particular PROM Programmer
characteristic module.

Section 9, Technical Notes. Provides miscellaneous technical information. Technical Note 1
discusses the practical limits of emulation. Technical Note 2 summarizes the differences
between 0S/40 Version 1 and DOS/50 Version 2, the operating system of the 8550
Microcomputer Development Lab. Technical Note 3 summarizes the differences between the
RTPA and the TTA.

Section 10, Error Messages. Explains each OS /40 error message, giving a description of the
problem and possible solutions.

Section 11, Tables. Summarizes reference information in tabular form.

Section 12, Glossary. Defines special terms used in this manual.

Section 13, Index. Gives you a place to start when you don’t know where else to look.

OVERVIEW OF 8540 USER MANUALS

This subsection describes the types of user manuals you will receive as you add options to your
8540 system, and explains how each manual relates to the product it documents.

Core Manuals and Specifics Supplements

Many software products produced by Tektronix have a microprocessor-independentpartanda
microprocessor-specific part. The microprocessor-independent part is common to every
product of the same type, and minimizes your effort in using your 8540 with a new
microprocessor. The microprocessor-specific part allows you to exploit the features of the
microprocessor you have chosen.

For example, on the 8560, all B Series assemblers have the same standard directives, error
messages, and special features, but each assembler supports the instruction set, addressing
modes, and other features of a different microprocessor.

B)

1-41

Overview of 8540 User Manuals Learning Guide—8540 System Users

To document software that has both microprocessor-independent and microprocessor-specific
features, Tektronix provides core manuals and specifics supplements.

Core Manuals

Py |

A core manual is a looseleaf book that documents the microprocessor-independent featuresof a
product. A core manual has at least one empty section into which specifics supplements are
inserted.

Examples of core manuals include:

® the 8540 System Users Manual (this manual), which describes the standard features of
0S/40 and introduces you to many system options. This manual has an Emulator Specifics
section and a PROM Programmer Specifics section.

© the 8500 Modular MDL Series Assembler Core Users Manuai for B Series Assembiers,
which tells you how to use the B Series Linker and Library Generator and describes the
microprocessor-independent features of the B Series Assembler. This Assembler Users
Manual has an Assembler Specifics section. (It also contains a Host Specifics section,

aimnan D CAaving acan —— PRy A [~¥a)

hinra ara availakla e 85 no rinll oo slen QAN L
SiNCE€ O OTIiEs aSSEIMUIEIS ai€ avaitaoi€ ON tNE 000U asS Wei as tneé ooov.)

Specifics Supplements

A specifics supplement is a relatively short document that is designed to be inserted into the
Specifics section of a core manual. A specifics supplement explains the microprocessor-specific
features of a software product. It usually tells how to install the software into the operating
system and provides a microprocessor-specific demonstration run.

Examples of specifics supplements include:
® Emulator Specifics and PROM Programmer Specifics supplements to this manual
® Assembler Specifics supplements to the Assembler Users Manual

Stand-Alone Manuals

Some products are either fully microprocessor-independent or fully microprocessor-specific.
Such a product is documented in a single complete manual.

An example of a stand-alone manual is the Trigger-Trace Analyzer Users Manual, which
describes the TTA in detail and explains its various applications.

Reference Booklets and Cards

Most software products are also accompanied by a reference booklet or reference card that
summarizes the most commonly used information from the user manual.

-
EN
N
=

8540 System Users

Section 2

OPERATING PROCEDURES

Page
Introduction i 2-1 Using the Trigger Trace Analyzer
L . Breaking on a Designated Instruction
Commur!lcatlng Wlth. an_8560 2-1 Breaking on a Specified Pass Through a Loop ...
Establlshlqg Communication With the 8560 2-1 Breaking When Execution Proceeds Outside
Downloading a Program from the 8560 .
to 8540 Program Memory 2.9 a DesignatedRangeot
ST s e Breaking When the Program Writes in
Uploading a Program from 8540 .
Proaram M to the 8560 2.9 a Designated Memory Area
ogram NIemory 10 the 890U - ... wovvrree - oveee Saving an Execution Trace Record Without
Downloading Program Symbols from the 8560 2-2 .
Terminating Communication with an 8560 2.2 Interrupting the Program
""""" Recording Instructions Before and After
Communicating with a Host Computer 2-3 a Designated Instruction
Establishing Communication with the Recording Instructions Executed After
HOSt COMPULET & .. v ottt e e eee e e 2-3 a Designated Instruction
Downloading a Program from the Host Computer Determining the Execution Time of a
to 85640 Program Memoryc.ocivviiininn.. 2-4 Program Segment it
Uploading a Program from 8540 Program Counting the Occurrences of an Event
Memory to the Host Computer.................... 2-5 Measuring the Interval Between Probe Events . ..
Terminating Communication with the Host 2-5 Breaking on a Probe Event
Communicating withan 8550 2-5 Memory Manipulation
Establishing Communication with an 85650 2-5 Displaying the Contents of Memory
Downloading a Program from the 8550 to Changing the Contents of a Section of Memory. ...
8540 Program Memoryooviienenn 2-6 initializing a Block of Memory
Uploading a Program from 8540 Program Breaking When the Program Writes in
Memory tothe 8550.......ccciiiiiiiiiii 2-7 a Designated Memory Block
Terminating Communication With an 8550......... 2-7 Disassembling the Contents of Memory
Downloading from an 8002A 2-7 System 1/0 ...
Program Executionccovuinini .. 2-8 Displaying the Current Channel Assignments.....
Selecting the Target Processor 2-8 Assigning a Channel
Selecting the Emulation Mode..................... 2-8 Closing a Channel ...,
Executing the Program............................ 2-8
Displaying the Emulator Registers 2-9
Setting the Emulator Registers 2-9
Creating and Defininga Symbol 2-9 "_LUSTRAT'ONS
Creating a Virtual MemoryMap 2-9
Logging Commands to the Line Printer............ 2-10 Fi
Program Debuggingcccounei... 2-10 ng
Turning Symbolic Qutput On and Off 2-10 ’
Tracing All of the Program 2-10 2-1 Hardware configuration for 8540/8560
Tracing Part of the Program 2-11 interface............. il
Tracing Program Branches 2-11 2-2 Establish communication with the
Stepping Through the Program 2-12 hOSt COMPULET .« + v e e e e
Setting a Breakpoint 2-12 ERY :
Clearing a Breakpoint............................ 2-13 2-3 Virtual memory map assignments
Displaying Breakpoints........................... 2-13
Executing a Segment of Code Repeatedly 2-13
Debugging the Program in the Prototype 2-13
Selecting SVCst 2-13
Selecting Prototype 1/0 2-14
Displaying Memory Map Assignments 2-14

8540 System Users

Section 1, the
overview of the

Section 2

OPERATING PROCEDURES

Learning Guide, presented a general
8540’s operating system and a simple

demonstration program. This section presents some
common procedures using 0S/40 commands with your
8540 Integration Unit. Each procedure identifies para-
meters that you supply when performing the procedure.

The procedures i
format:

Description:

Procedure:

Parameters:

Comments:

Examples:

See also:

n this section are given in the following

A summary of the action(s) performed by
the procedure.

The information entered or displayed at
the system terminal.

The following conventions are used in
the procedure description:

Underlined: A character sequence entered
by the user.

No underline: A character sequence
displayed by 0S/40.

Bold: An exact character sequence; if
these characters are underlined, enter
them exactly as shown.

Not bold: A parameter that you supply
when performing the procedure.

A description of the values to be supplied
by you.

The operating limits and options for this
procedure.

One or more demonstrations of correct
entry format.

Cross-references to related procedures.

COMMUNICATING WITH AN

8560

Establishing Communication with the 8560

Description:

This procedure establishes a TERM
interface with an 8560. With your 8540
and 8560 operating in TERM mode, you

Procedure:

Comments:

have access to all resources of both
systems simultaneously.

The 8540 is connected to the 8560 by an
HSI cable. The system terminal is
connected to the 8540 by an RS-232-C
cable. Figure 2-1 shows how the various
units are connected together.

{Connect the cables as shown in Fig. 2-1.)
(Start up the 8540.)

>config term <cr>
<cf>

Login:

{Log in to the 8560.)

Refer to your 8560 System Users Manual
for more information concerning this
procedure.

8560

HSI1/0

TERMINAL

RS-232-C HSI

TERMINAL HSI
J104

8540

3939-4

Fig. 2-1. Hardware configuration for 85640/8560 interface.

To communicate with an 8560, connect the cables as
shown in this figure.

2-1

Communicating with an 8560

Operating Procedures—8540 System Users

Downloading a Program From the 8560
to 8540 Program Memory

Description: This procedure downloads a file from the

8560 to 8540 program memory.

Procedure:

Parameters: 8560file—The name of the 8560 file to
ioad into 8540 program memory.
Comments: To load an 8560 file into prototype

memory, first select emulation mode 2,
then follow the above procedure.

NOTE

The file must be in Tektronix A Series or B Series load
module format, as produced by a Tektronix assembler
or linker.

See also: ® Uploading a program from 8540

program memory to the 8560

Uploading a Program from 8540
Program Memory to the 8560

Description: This procedure saves a program from
8540 program memory onto a file on the

8560.

Procedure: $ sav >8560file loadd hiadd transadd

8560file—The 8560 file that is to receive
the program from 8540 program memory.

Parameters:

loadd—The lower limit of the data block
to be saved.

hiadd—The upper limit of the data block
to be saved.

transadd—The transfer address of the
program.

The file is created in Tektronix A Series or
B Series load module format, as produced

hee n Talbtraniv nanamhlar Ar linbar
MUY O IGRUUIIIA a3JTHIVIGTE Ul HTIRGE.

Comments:

See also: ® Downloading a program from the

8560 to 8540 program memory

Downloading Program Symbols from the
8560

Description: This procedure loads the symbols from an
8560 load file into the symbol table in
8540 system memory.

Procedure: $ symlo <8560file -a -s

Parameters: 8560file—The name of the 8560 load

file containing the symbol definitions you
want to load.

NOTE

The file must be in A Series or B Series load module
format, as produced by a Tektronix linker.

Comments: The -a option causes the command to
append the symbols to those already in
the table. If vou omit the -a, the existing
symbols are overwritten. If you omit the

-s, scalars are not loaded.

See also: ® Creating and defining a symbol

Terminating Communication with an 8560

Description: This procedure terminates communica-

tion between the 8540 and the 8560.

Procedure: $ config local; logout

This command line breaks the communi-
cation link between the 8540 and the
8560. Both the 8540 and the 8560 are
returned to normal operations. The
CONFIG command tells the 8540 to stop
passing commands to the 8560. The
LOGOUT command tells TNIX (the 8560
operating system) to stop accepting
commands.

Comments:

See also: ® Establishing communication with the
o
v

)

-~
{

Operating Procedures—8540 System Users

Communicating with a Host Computer

COMMUNICATING WITH A HOST

COMPUTER

Establishing Communication with the Host

Computer

Description:

This procedure prepares the 8540 to
operate as an "intelligent” terminal to a
host computer. Six types of data transfer
are available while communicating with
a host computer. The two most commonly
used data transfers are:

1. A formatted download, which
transfers an object file in Tekhex
format from the host computer to
8540 program memory.

2. A formatted upload, which trans-
fers object code in Tekhex format
from 8540 program memory to a
file on the host computer.

Before establishing communication, you
must first have attached your communi-
cation link (a cable or modem) to the
proper jack (usually J101) on the 8540
rear panel.

NOTE

The following procedures are deliberately simplified
because of the differences in host computer
requirements. Refer to the Intersystem Communica-
tion section of this manual, and to your system

engineer, for the host-computer-specific commands
and COM parameters that you will use in these

procedures.

Procedure:

Parameters:

Comments:

(Establish data transmission between the
host computer and the 8540. See Fig. 2-2.)

> com setup

(Initialize your terminal session, as required
by the host computer.)

setup—A sequence of parameters that
informs the 8540 of the host computer-
dependent features. Refer to the Inter-
system Communication section of this
manual to determine this sequence.

After you have determined the specific
procedure for establishing communica-
tion with your host computer, record this
information in the space provided in Fig.
2-2.

To terminate communication, enter the
null character (ASCIl 00) and press the
ESC key on your terminal. On the
TEKTRONIX 4024/4025 and CT8500
terminals, the null character is generated
by entering CTRL-@ (pressing the @ key
while holding down the CTRL key).

Other terminals may generate the null
character differently. Refer to vyour
terminal users manual for specific
information.

2-3

Communicating with a Host Computer Operating Procedures—8540 System Users

Prepare the 8540:

(Record here the steps to be

taken when preparing your 8540

for communication with the

host computer. See the Intersystem
Communication section of this manual
for more information.)

Enter the COM command:

{Record here the appropriate
COM command parameters, as
designated in the Intersystem

Communication section of this

manual.)

Host computer commands:

(Record here the host computer
commands to initialize your
terminal session.) 3939.8

Fig. 2-2. Establishing communication with the host computer.

After you have determined the specific procedure for estahlishing communication with your host computer, record this information in
the space provided in Fig. 2-2, for ease in future reference. Refer to the Intersystem Communication section s f
information.

o
=
g
=

Downloading a Program From the Host

A program must be available on the host
Computer to 8540 Program Memory prog

computer to send Tekhex blocks to the

Description: This procedure transfers a load file in 8540 and interpret the 854Q's responses.
Tekhex format from the host computer to Refer to the Intersystem Communication
8540 program memory (a formatted section of this manual for the require-
downioad). ments of this program.

2.4 @

Operating Procedures—8540 System Users

Communicating with an 8550

(Establish communication with the host
computer.)

command{null)

Procedure:

{This command transfers a Tekhex format-
ted file from the host computer to the 8540.
The object code is loaded into program
memory at the locations specified in the
Tekhex data blocks. When transfer is
complete, DNLOAD: is displayed and 0S /40
is ready to accept another upload or
download command.)

command—A host computer command
which invokes a program that downloads
a Tekhex load module to the 8540.

Parameters:

(nullj—A character generated on most
terminals by entering CTRL-@.

® Establishing communication with the
host computer

See also:

Uploading a Program from 8540 Program
Memory to the Host Computer

This procedure transfers the contents of
8540 program memory to the host
computer in Standard or Extended
Tekhex format (a formatted upload). You
can use the F parameter of the COM
command to distinguish between Standard
Tekhex and Extended Tekhex. For more
information about the COM command,
refer to the Intersystem Communication
section of this manual.

Description:

A program must be available on the host
computer to receive Tekhex blocks from
the 8540. Refer to the Intersystem
Communication section for the require-
ments of this program.

Procedure: {Establish communication with the host

computer.)
(Load into 8540 program memory the
program that you want to upload.)

command(null)loadd hiadd transadd
(When the transfer is completed, UPLOAD:
is displayed on the terminal. At this point,
0S/40 is ready to accept another upload or
download command.)

command—A host computer command
which invokes a program that uploads a

Parameters:

Tekhex load module from 8540 program
memory.

(null)—A character generated on most
terminals by entering CTRL-@.

loadd—The lower boundary of the block
of memory to be transferred.

hiadd—The upper boundary of the block
of memory to be transferred.

transadd—The transfer address.

® Establishing communication with the
host computer

See also:

Terminating Communication with the Host

This procedure terminates the communi-
cation link between the 8540 and the
host computer, returning the system to
normal operation.

Description:

Procedure: (Log out from the host computer.)
{Enter a null character and press the ESC
key:)

(null)(ESC)

Enter the null character by entering
CTRL-@ (typing @ while holding down
the CTRL key).

Comments:

® Establishing communication with the
host computer

See also:

COMMUNICATING WITH AN
8550

Establishing Communication with an 8550

This procedure prepares the 8540 for
communication with an 8550 used as the
host computer. Six types of data transfer
are available while communicating with
the 8550; the two most common are:

Description:

1. A formatted download, which
transfers a file in Tekhex format
from the 8550 to 8540 program
memory.

2. A formatted upload, which trans-
fers the contents of 8540 program
memory in Tekhex format to a file
on the 8550.

2-5

Communicating with an 8550

Operating Procedures—8540 System Users

Procedure: (Connect the RS-232-C cable, as described 8550 to 8540 program memory (a
in the “"Comments” part of this procedure.) formatted download). All commands are
PSPPI D aman entered on the 8540 system terminal. For
{ETHer e lUIIUW"Ig commana on ine oo<4v . .
terminal:) more information about Tekhex format,

' refer to the Tables section of this manual.
> com p=7E7E
COM Vx.x Procedure: {Estabiish communication between the
(Enter the following command on the 8550:) 8550 and the 8540.)
Enter U or D; A, B, or H, and 8550
> host .
HO_ST—V filespec:
XX DHfilespec
(The 8550 is ready to be used as the host Y L .
. Enter transfer sequence, beginning with
computer. Subsequent displays and com-
R null character:
mands are at the 8540 system terminal.
DOS /50 prompts you for acommand which (nulh)
informs the 8550 of the type of transfer.) Parameters: filespec—The 8550 file containing the
Enter U or D; A, B, or H; and 8550 object program that you want to down-
filespec: load to 8540 program memory.

Comments: The 8550 must be connected to the 8540 (null)—A character generated on most
with an RS-232-C cable. The female end terminals by entering CTRL-@.
of the cable connects to the J101 jack on . . -
the 8540 mainframe. The male end Lomments: (ljne memory l_?cz;u;nthand tr‘an? erf ?:
connects to the DCE jack (J102) on the l’fss af’_f specitied by the contents ot the
8301. The MODE SELECT switches on object file.
both systems should be in the CNTL (L) . L
position. To terminate communication Example: (Establish communication between the

enter (null}{esc) on the 8540. Then enter
(CTRL-C) followed by the command a -a
on the 8550.

8550 and the 8540.)

Enter U or D; A, B, or H; and 8550 filespec:

DH/VOL/MYVOL/PROG1/LOAD
Enter transfer sequence, beginning

NOTE with null character:
When the HOST command successfully completes a (“ll})
*0000 1E (First block sent to

data transfer, the error code FF (end-of-file) is
returned to the 8550 system terminal. This does not
signify an error condition; it is merely an informa-
tional message.

addresses 0000-001D.)
*001E 1E (Second block sent to
addresses OQiE-QO3B.)

Certain limitations exist in the data transfer rate. See

the Intersystem Communication section of this .

manual for information concerning the baud rate. *0200 0000 (Termination block—
transfer address-0200.)

DNLOAD:

each file transfer before issuing the next prompt.

The Tekhex formatted file, /VOL/
MiYVOL/PROG1/LOAD is downioaded
to 8540 program memory. The memory
locations and transfer address are speci-
fied by the contents of the file.

See also: ® Downloading a program from the

8550 to 8540 program memory

® Uploading a program from 8540
program memory to the 8550

Downloading a Program from the 8550
to 8540 Program Memory

Description:

See also: ® Establishing communication with an

8550

® Uploading a program from 8540
program memory to the 8550

This procedure transfers an executable
object file in Tekhex format from the

2-6 7

Operating Procedures—8540 System Users Downloading from an 8002A

Uploading a Program from 8540 See also: ® Establishing communication with an

Program Memory to the 8550

Description: This procedure transfers the contents of

program memory in the 8540 to an 8550
Tekhex formatted file (a formatted up-
load). All commands are entered on the
8540 system terminal. For more informa-
tion about Tekhex format, refer to the
Tables section of this manual.

Procedure: (Establish communication between the

8550 and the 8540.)

Enter U or D; A, B, or H; and 8550
filespec:

UHfilespec

Enter transfer sequence, beginning with
null character:

(null)loadd hiadd transadd

Parameters: filespec—The 8550 file that is to receive

Example:

the data from the 8540.

(null)—A character generated on most
terminals by entering CTRL-@.

loadd—The lower boundary of the block
of memory to be transferred.

hiadd—The upper boundary of the block
of memory to be transferred.

transadd—The transfer address.
(Establish communication between the

8540 and the 8550.)

Enter U or D; A, B, or H; and 8550 filespec:
UH/VOL/MYVOL/PROG1/LOAD
Enter transfer sequence, beginning

with null character:

(null)OFO00 OF3FF OF200
BLOCK SENT AT: FOOO
BLOCK SENT AT: FOlE

BLOCK SENT AT: F3FC
BLOCK SENT AT: F200

(Termination block.)
UPLOAD:

In this example, bytes FOOO-F3FF of
program memory are uploaded to the
8550 file /VOL/MYVOL/PROG1/LOAD
in Tekhex format. F200 is the transfer
address.

8550

® Downloading a program from the
8550 to 8540 program memory

Terminating Communication With an 8550

Description:

Procedure:

Comments:

See also:

This procedure terminates the communi-
cation link between the 8540 and the
8550.

{Enter (null}{ESC) on the 8540 terminal by
typing CTRL-@ and pressing the ESC key.
Then enter the following commands on the
8550 terminal.)

(CTRL-C)

>>a -a

These commands terminate the com-
munication programs that are running
and return the systems to normal
operation.

® Establishing communication with an
8550

DOWNLOADING FROM AN

8002A

Downloading from an 8002A

Description:

Procedure:

This procedure transfers an executable
object file in Tekhex format from the
8002A to 8540 program memory.

(Establish communication between the
8540 and the 8002A.)

(Connect the RS-232-C cable, as described
in the “Comments” part of this procedure.)
(Enter the following command on the 8540
system terminal:)

> COM P=3F E=L L=l

(Enter the following command on the
8002A system terminal:)

> SEND

(Enter the following command on the 8540
system terminal:)

filename(null)

{When the download is complete, the 8540
terminal displays the message DNLOAD:

(To terminate communication, enter (null)
(ESC) on the 8540 terminal by typing CTRL-
@ and pressing the ESC key.)

2-7

Program Execution

Operating Procedures—8540 System Users

Selecting the Emulation Mode

Parameters: filename—The name of the Tekhex file
on the 8002A.
{(null)—A character generated on most
terminals by entering CTRL-@.
Comments: The 8540 is connected to the 8002A via

an RS-232-C cable. The cable connects
to jack J102 (DTE) on the 8540 rear panel
and jack J101 on the 8002A rear panel.
The MODE SELECT switch on the 8540
should be set to CNTL (L), and the
REMOTE BAUD switch to 2400. On the
8002A System Communication board,
verify that the J1 jumper is in the lower
position, and that the PORT1 baud rate is
set to 2400.

Each system must have its own system
terminal.

The SEND command does not issue a
prompt.

PROGRAM EXECUTION

Selecting the Target Processor

Description: This procedure selects the proper emula-
tor control software for the micropro-

cessor you are programming.

Procedure: > sel microprocessor

Parameters: microprocessor—The 0S/40 name of
the target processor. See the Emulator
Specifics section of this manual for the

0S/40 name of your microprocessor.

Comments: 0S/40 automatically performs several
commands internally to initialize the
emulator when you select the target
processor. Refer to the discussion of the
SEL command in the Command Dictionary
section of this manual for further

information.

Example: > sel 8085

This command line selects the 8085A
emulator on the 8540. (The command
also selects 8080A/8085A assembler
and compiler software on the 8560, if you
are in TERM mode.)

2-8

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure selects the emulation
mode in which the the system operates.

> em mode
mode—O0, 1, or 2.

Mode O is system mode. Execution in this
mode uses program memory, 8540
system /0 (through SVCs), and the
emulator clock. The system is placed in
emulation mode O whenever the target
processor is selected.

Mode 1 is partial emulation mode.
Execution in this mode uses program
memory and/or prototype memory (de-
pending on the memory map assign-
ments), SVCs and/or prototype 1/0, and
the prototype’s clock.

Mode 2 is full emulation mode. Execution
in this mode uses the prototype’s
memory, |/0, and clock, and may also
use SVCs.

The emulation mode is set to mode O
when you enter the SEL command. When
executing programs in emulation modes
1 and 2, your prototype must be
connected to the system via the prototype
control probe.

> em 1

This example selects emulation mode 1
(partia! emulation mode).

® Selecting the target processor

Executing the Program

Description: This procedure begins program execution
at the specified address. The program
must already reside in memory.

Procedure: > g addr

Parameters: addr—The address of the next instruc-

tion to be executed. If this parameter is
omitted, execution continues at the
address in the emulator’s program
counter.

Operating Procedures—8540 System Users

Program Execution

Example: > g 300

This example starts program execution at
address 300.

See also: ® Downloading a program from the

8560

® Downloading a program from the host
computer

® Downloading a program from the
8550

® Downloading a program from the
8002A

Displaying the Emulator Registers

Description: This procedure displays the contents of
the emulator registers.

Procedure: > ds

Comments: For more information on the DS com-
mand, see the Emulator Specifics supple-
ment for your microprocessor.

Example: > sel 8085
> ds

PC=0000 SP=0000 F=00 A=00 B=00 C=00 D=00 E=00 H=00 L=00
50D=0 SID=0 17=0 I6=0 I5=0 IE=0 M7=1 M6=1 M5=1

See also: ® Setting the emulator registers

Setting the Emulator Registers

Description: This procedure changes values in indi-
vidual emulator registers.

Procedure: > s r1=valuel r2=value2...

Parameters: r1—The name of an emulator register
you want to set.
value1—The value you want to store in
the register.
r2—The name of another emulator
register you want to set.
value2—The value you want to store in
the register.

@

Example: > s A=0El B=00
This example sets the emulator registers
A and B to E1 and OO, respectively.

See also: ® Displaying the emulator registers

Creating and Defining a Symbol

Description: This procedure adds a symbol to the

symbol table and assigns it a value.

Procedure: > adds symbol=value

Parameters: symbol-The name of the symbol thatyou

are creating.
value—The value of the new symbol.

Comments: You can enter more than one symbol
definition on the same line. If a symbol
represents a scalar (not an address),

precede it with a -S.

Example: > adds start=100 -s tablesize=50t

This exampie defines two symbois: start
and tablesize with the wvalues 100
(hexadecimal) and 50 (decimal} respec-
tively.

See also: ® Downloading symbols from the 8560

Creating a Virtual Memory Map

Description: This procedure allows your program to
access a block of memory locations at
virtual addresses rather than at their
actual physical addresses in program
memory. This procedure is useful if your
program accesses addresses beyond the

limits of physical program memory.

NOTE

If you are using the Memory Allocation Controller
(MAC) option or the 8086/8088 emulator, the AL
command has a different syntax and use, so do not
use this procedure. Refer to the Emulation section of
this manual for an explanation of the MAC option.

Procedure: > al actual blocks virtual

2-9

Program Debugging

Operating Procedures—8540 System Users

Parameters:

Example:

actual—The physical address of the first
memory location that you want to
allocate to a different area.

blocks—The number of 4K-byte blocks to
be reallocated.

virtual—The address that your program
uses to refer to the beginning of the
reallocated memory area. The addresses
actual and virtual should be multipies of
1000H.

> al 2000 3 OAOOO

This example makes the three 4K-byte
blocks of memory starting at location
2000 appear to be addressable starting at
location AOQOOQ. See Fig. 2-3.

Logging Commands to the Line Printer

Description: This procedure sends a copy of your
terminal input/output to the line printer,
Procedure: > log LPT
Comments: This command line sends all terminal
input/output to both the terminal and the
line printer.
0000
2000 Physical address
Actually |
4FFF {Actually located here)
7FFF (32K)
A000 Virtual address
(Appears to be
CFFF located here)
FFFF (64K)
3457-19

Fig. 2-3. Virtual memory map assignments.

2-10

Example:

> log LPT

(0S/40 commands)

{Log CONC turns off the display
to the line printer.)

PROGRAM DEBUGGING
Turning Symbeolic Qutput On and Off

Description:

Procedure:

Comments:

See also:

This procedure turns symbolic display on
or off.

> symd on
or

> sumgd of

Freiss H

This command only affects the way in
which commands like TRA and DI display
their output. f SYMD is on, symbols are
substituted for address. You can still use
symbols in expressions and use com-
mands like SYMB and ADDS even if
SYMD is off. For information regarding
symbolic debug, refer to the Emulation
section of this manual.

® Tracing all of the program

® Executing the program

Tracing All of the Program

Description:

Procedure:

Parameters:

This procedure displays each instruction
as it is executed. Tracing continues until
the end of the program is reached or until
a break occurs.

> tra all
> g sirt

strt—The memory address at which
program execution is to begin. If this
parameter is omitted, execution begins at
the transfer address of the program.

Operating Procedures—8540 System Users Program Debugging

Example: The example in Display 2-1 loads PROG1 Comments: The first command line (TRA OFF)
from the 8560 and displays each cancels any previous trace selections.
instruction as it is executed. TRA OFF may be omitted if no other trace

selections have been entered.

See also: ® Tracing part of the program »

. Example: See Display 2-2.
® Tracing program branches
See also: ® Tracing all of the program

Tracing Part of the Program ® Tracing program branches

Description: This procedure displays the trace of a
specified portion of the program. Instruc-
tions outside the specified range are not
included in the display. Tracing Program Branches

Procedure: > tra off Description: This procedure traces only those instruc-
> tra all loadd hiadd tions that change the normal execution
> g strt ’ flow of the program (branches, subrou-

tine calls, etc.).

Parameters: loadd—The lowest address to be traced.

Procedure: > tra jmp
hiadd—The highest address to be traced. > g strt
strt—The memory address at which Parameters: strt—The memory address at which
program execution is to begin. program execution is to begin.
> lo <PROGL
> tra all
> g 100

LOC INST MNEM OPER sp F A B C D E H L IM SOD

000100 210005 LXI H,0500 0000 04 OF 01 00 00 00 05 00 07 O

000103 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 O

000105 AF XRA A 0000 44 0C 05 00 00 00 05 00 07 O

000106 86 ADD M 0000 00 01 05 00 00 00 05 00 07 O

000107 23 INX H 0000 00 01 05 00 00 00 05 01 07 ©

Display 2-1.
> tra off
> tra all 103 106
> g 100

LoC INST MNEM OPER SP F A B CDE H L IM SOD

000103 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 O

000105 AF XRA A 0000 44 00 05 00 00 00 05 00 07 O

000106 86 ADD M 000C 00 01 05 00 00 00 05 00 07 O

000106 86 ADD M 0000 04 03 04 00 00 00 05 01 07 O

000106 86 ADD M 0000 04 OF 01 00 0O 00 05 04 07 O

Display 2-2.

@ 2-11

Program Debugging

Operating Procedures—8540 System Users

Example: The example in Display 2-3 loads PROG1 See also: @ Tracing all of the program
from the“ .8560 [a(\d exe(?utes it while ® Tracing part of the program
iracing ait orancn INsiiructions.
See also: ® Tracing all of the program
® Tracing part of the program
Setting a Breakpoint
Description This procedure sets a program breakpoint.
Stepping Through the Program The breakpoint stops execution if the
Description: This procedure stops program execution specified memory address is accessed for
after each trace line is displayed. To an instruction fetch or for any other
execute the next instruction, enter the G memory read or write. For most emulators,
command. up to two breakpoints may be specified at
a time.
Procedure: > tra -s all
> g strt
Procedure: > bk n address
Parameters: strt—The memory address at which
program execution is to begin. Parameters: n—The number of the breakpoint. 1 or 2
for most emulators.
Example: The example in Display 2-4 loads and
executes PROG1, stopping after each address—The memory address where
instruction. program execution is to be interrupted.
> lo <PROG1
> tra jmp
> g 100
LOC INST MNEM OPER SP F A B C D E H L IM SOD
000109 20601 JNZ 0106 0000 10 01 04 00 00 00 05 01 07 O
000109 C20601 JNZ 0106 0000 14 03 03 00 00 00 05 02 07 O
000109 C20601 JNZ 0106 0000 10 06 02 00 00 00 05 03 07 O
000109 C20601 JNZ 0106 0000 10 OA 01 00 00 OO 05 04 07 0
Display 2-3.
> 1o <PROGI
> tra -s all
> g 100
LOC INST MNEM OPER Sp F A B C D E H L IM SOD
000100 210005 LXI H,0500 0000 04 OF 01 00 00 00 05 00 07 O
000100 “BREAK TRACE>
.
LOC INST MNEM OPER SP F A B C D EH L IM sSOD
000103 0605 MVI B,05 0000 04 OF 05 00 00 00 05 00 07 O
000103 -BREAK TRACE"
Display 2-4.

Operating Procedures—8540 System Users

Debugging the Program in the Prototype

F.ample- The example In Vispiay ¢ © 10aus and
executes PROG1. Execution is inter-
rupted when the program accesses
address 504.

See also: ® Clearing a breakpoint

® Displaying breakpoints

Clearing a Breakpoint

Description: This procedure cancels a breakpoint set
by a previous BK command.

Procedure: > bk n clr

Parameters: n—The number of the breakpoint that
you want to cancel. For most emulators,
valid entries for this parameter are 1, 2,
or all.

Examples: > bk 1 clr
This example cancels breakpoint 1.
* bk all clr
This command clears all breakpoints.

See also: ® Setting a breakpoint

Displaying Breakpoints

See also: ® Setting a breakpoint

® Clearing a breakpoint

Executing a Segment of Code Repeatedly

This procedure executes a segment of
code repeatedly until you press CTRL-C.

Description:

Procedure: > bk 1 addr

> g -r start

addr—The address of the end of the
segment of code that you want to repeat.

Parameters:

start—The start address of the segment
of code that you want to repeat.

The segment of code is repeatedly
executed until you enter a CTRL-C. Refer
to the Command Dictionary of this
manual for more information about the g
-r command.

Comments:

Example: > bk 1 8F10

> g -r 100

This example executes the code between
addresses 100 and 8F10 repeatedly until
you enter CTRL-C.

See also: ® Executing the program

® Tracing part of the program

Description: This procedure displays all breakpoints.
Procedure: > bk
Example: DEBUGGING THE PROGRAM IN
> b 158 we THE PROTOTYPE
> bk 2 47F .
> bk Selecting SVCs
BK 1 000058 WT (Breaks when your program Description: This procedure enables the system
writes at address 0058.) service call (SVC) features.
BK 2 00047F RD WT (Breaks when your program
reads or writes at 047F.) Procedure: > svc on
> bk 1 504
> 8
Loc INST MNEM OPER SP F A B CDEH L IM SOD
000106 86 ADD M 0000 04 OF 01 00 00 00 05 04 07 O
000106 <BREAK BK1> —
ADD M adds the bytes
at address 504 into
the accumulator.
Display 2-5.
@ 2-13

Using the Trigger Trace Analyzer

Operating Procedures—8540 System Users

Comments: When this feature is ON, 0S5/40
executes SVCs in all emulation modes. If
an 1/0 operation is found that can he
translated into an SVC, it is treated as an
SVC. Changing to emulation mode 1 or 2

disables the SVC feature, but it can be

Exampie: > em 1

> sve on

These command lines select emulation
mode 1 and then enables the use of
SVCs.

See also: ® Selecting prototype 1/0

® Selecting the emulation mode

Selecting Prototype |/0

Description: This procedure turns the SVC feature
OFF. When SVCs are OFF, all SVC
invocations are treated as normal 1/0
instructions. If your program uses SVCs,
do not execute it while the SVC featureis
OFF unless the extraneous |/0 instruc-
tions are taken into consideration.

NOTE

Prototype 1/0 is available only in modes 1 and 2.

Procedure: > svc off

See also: ® Selecting the emulation mode

Displaying Memory Map Assignments
Description: This procedure displays the current

memory map assignments.

Procedure: > map

Comments: Each line of the display consists of a
memory address range and one of the

following parameters:

® PRW — Program memory, read and
write access.

® PRO — Program memory, read-only
access.

2-14

® URW — Prototype memory, read and
write access.

® URO — Prototype memory, read-only
access.

The program/prototype designaticn ap-
plies only in mode 1; the read-only
designation applies only to program
memory. ‘

NOTE

Refer to the Emulator Specifics section of this
manual for specific information about the MAP
command for your microprocessor.

Example: > map
0000-007F URW
0080-00FF PRO
0100-017F URW
0180-01FF PRW

F980-FOFF URW

See also: ® (Creating a virtual memory map

® Displaying the contents of memory

USING THE TRIGGER TRACE
ANALYZER

NOTE

To perform the procedures in this subsection, you
must have the Trigger Trace Analyzer (TTA) option
installed in your 8540 Integration Unit. TTA
commands are available only after you have usedthe
SEL command to select the emulator software.

Breaking on a Designated Instruction

Description: This procedure uses the TTA to produce a
breakpoint. The program continuestorun
until the designated instruction is exe-
cuted. At that time, a break occurs and
0S/40 returns control of the system to

you.

Procedure: > eve -s 1 clr a=addr b=f

> g strt

Operating Procedures—8540 System Users

Using the Trigger Trace Analyzer

Parameters:

Comments:

Example:

See also:

strt—The starting point for program
execution.

addr—The address of the designated
instruction.

The EVE command line establishes the
conditions of event 1. The CLR parameter
erases any previous conditions design-
ated for event 1. The parameters a=addr
and b=f set event 1 to trigger on any
instruction fetch from addr. The -s
parameter sets a breakpoint at event 1.

> eve -s 1 clr a=30E8 b=f

In this example, a break occurs when an
instruction fetch from 30E8 is performed.

® Setting a breakpoint

® Breaking on aspecified passthrough a
loop

Breaking on a Specified Pass Through

a Loop

Description:

Procedure:

Parameters:

Comments:

This procedure uses the TTA to stop
execution of a program when the
designated instruction is executed the
specified number of times.

> eve 2 a=addr b=f
> cou -s 2 clr s=ev2 o=delay v=pass
> gstrt

addr—The address of the designated
instruction.

pass—The number of times to execute
the instruction before stopping: can be
any expression that evaluates to a
number in that range.

The s=ev2 parameter counts the number
of times that event 2 occurs. The o=delay
parameter counts down from the value of
pass and enables a breakpoint when it
reaches 0. The v=pass parameter starts
the counter at pass .

If the instruction at address addr is
executed fewer than pass times, no break
occurs. In that case, the program
continues either until termination, or
until you type CTRL-C to regain control of

Example:

See also:

the system. Refer to the Trigger Trace
Analyzer Users Manual for more infor-
mation.

> eve £ a=2F04 b=f
> cou -s 2 clr s=ev2 o=delay v=3
>

g

In this example, the instruction at 2F04 is
executed 3 times before a breakpoint
occurs.

® Breaking on a designated instruction

Breaking When Execution Proceeds
Outside a Designated Range

Description:

Procedure:

Parameters:

Comments:

Example:

See also:

This procedure uses the TTA to stop
execution of a program when the
instruction to be executed lies outside the
designated address range.

> eve 1 -s clr an=loadd hiadd b=f
> gstrt

strt—The starting point for program
execution.

loadd—The lowest address that can be
executed without causing a break.

hiadd—The highest address that can be
executed without causing a break.

The loadd address must be less than the
hiadd address. Also, for meaningful
results, the starting address of the
program must lie between loadd and
hiadd.

> eve 1 -s clr an=3100 4100 b=f

In this example, program execution halts
when the program proceeds outside of
the range 3100—4100.

® Breaking when the program writes in
a designated memory area

Breaking When the Program Writes
in a Designated Memory Area

Description:

Procedure:

This procedure uses the TTA to stop
execution when an attempt is made to
alter the contents of a designated
memory area.

> eve -s 1 clr a=loadd hiadd b=m wt
> gstrt

2-15

Using the Trigger Trace Analyzer

Operating Procedures—8540 System Users

strt—The starting point for program
execution.

Parameters:

loadd—The lowest address of the desig-
nated memory area.

hiadd—The highest address of the
designated memory area.

The EVE command iine restricis the
break to only those situations where a
memory write (M WT) is attempted into a
memory location inside the designated
range. The value of loadd must not
exceed that of hiadd.

Comments:

You can also use the MAP command to
designate an area of program memory as
read-only. The first write to that area
causes a break to occur. Refer to the
Command Dictionary for information on
the MAP command.

Example: > eve -s 1 clr a=0C800 OE800 b=m wt

This example halts program execution
when the program writes to memory in
the range C800—EB800.

See also: ® Breaking when execution proceeds

outside a designated range

Saving an Execution Trace Record
Without Interrupting the Program

Description: This procedure uses the TTA to record
and display 255 instruction cycles exe-
cuted before a designated instruction.
The program does not terminate when
the designated instruction is executed,
but proceeds until reaching the break-
point address.

Procedure: > eve 4 clr a=addr b=f
> acq all for 1 cyc aftertrig4
> eve -s 1 clr a=quit b=f
> g strt
(Wan—or program execution to terminate.)

Parameters: strt—The starting point for program

execution.

addr—The address of the instruction
where you want to stop recording.

2-16

quit—The address at which a break
occurs. If you want execution to continue
until the program is completed, omit the
EVE -S command line, as in the following
procedure.

The EVE command lines describe the
conditions that generate events 1 and 4.
The DISP command line displays the
contents of the Acquisition Memory on
the system terminal.

Example: > eve 4 clr a=4F64 b=f

> acq all for 1 cyc aftertrigé
> eve -s 1 clr a=OFFFF b=f
> g 4000

> disp

This example saves a record of the 255
instruction cycles executed before the
instruction at 4F64 is executed.

® Recording instructions executed be-
fore and after a designated instruction

See also:
® Recording instructions executed after

a designated instruction

Recording Instructions Executed Before
and After a Designated instruction

Description: This procedure uses the TTA to record
and display 127 instruction cycles exe-
cuted before and 127 instruction cycles
after the execution of a designated
instruction.

Procedure: > eve 4 clr a=addr b=f
> acq all for 127 cyc aftertrig4
> g strt

Parameters: strt—The starting point for program
execution.
addr—The address of the designated
instruction.

Example: > eve 4 clr a=3A24 b=f

> acq all for 127 cyc aftertrigé

This example saves a trace record of 127
instruction cycles before and 127 in-
struction cycles after the instruction at
address 3A24,

)

Operating Procedures—8540 System Users

Using the Trigger Trace Analyzer

See also: ® Saving an execution trace record
without interrupting the program

® Recording instructions executed after
a designated instruction

Recording Instructions Executed
After a Designated Instruction

Description: This procedure uses the TTA to record
and display up to 255 instruction cycles
that were executed after the designated

instruction.

> eve 4 clr a=addr b=f
> acq all for 255 cyc aftertrig4
> g strt

Procedure:

Parameters: strt—The starting point for program

execution.

addr—The address of the designated
instruction.

> eve 4 clr a=0B024 b=f
> acq all for 255 cyc aftertrig4

Example:

This example saves a trace record of 255
instruction cycles after the instruction
executed from address B024.

See also: e Saving an execution trace record

without interrupting the program

® Recording instructions executed be-

fore and after an instruction

Determining the Execution Time
of a Program Segment

This procedure uses the TTA to calculate
the time elapsed between the execution
of two designated instructions. Program
execution terminates when the second
instruction is executed. Time can be
calculated in any time units allowed by
the COU command.

Description:

> eve 1 clr a=addr1 b=f

> cou 2 clr s=units o=arm g=segh v=0
> eve -s 2 clr a=addr2 b=f

> g

(W-Eit for program execution to terminate.)
>ts ¢ 2

Procedure:

Parameters: units—Any valid COU unit. Refer to the
Emulation section of this manual for

information about the COU command.

addr1—The address at which you want
to start timing.

addr2—The address at which you want

to stop timing.
Comments: The CLR parameter of the EVE commands
clears any previously set EVE conditions
ontriggers 1 and 2. The CLR parameter of
the COU command clears any previously
set conditions on counter 2. The s=units
parameter sets the time units to count.
The o=arm parameter causes the counter
to count in ascending order. The v=0
parameter starts the counter at O. The
g=seqh parameter tells the counter to
start counting when trigger 1 occurs. The
EVE 2 command line stops the counter
when the instruction at the specified
address is fetched. The TS command
displays the value in the counter.

> eve 1 clr a=3320 b=f

> cou 2 clr s=cyc o=arm g=seqh v=0
> eve -s 2 clr a=5F40 b=f

> 8

Example:

> ts -c 2

This example displays the number of bus
cycles that occurred during the execution
of the program segment in the address
range 3320—5F40.

See also: ® Measuring the interval between probe

events

® Counting the occurrences of an event

Counting the Occurrences of an Event

This procedure counts the number of
times that a specified event occurs.

Description:

> eve 1 clr event

> cou 2 clr s=ev1 o=arm v=0

> g

(W-E\it for program execution to terminate.)
>ts ¢ 2

Procedure:

Parameters: event—The sequence of parameters that

define the event.

Using the Trigger Trace Analyzer

Operating Procedures—8540 System Users

Comments:

See also:

The parameter s=evl increments the

counter when event 1 occurs. The o=arm

narameter tells the counter to count in

ascending order. The v=0 parameter

starts the counter at 0. After the program

executes, the TS command line displays
H r 9

o
or £,

clr s=evl o=arm v=0

> ts -c 2

This procedure counts the number of
times the program fetches an instruction
from address 1030.

® Breaking on a specified pass through a
loop

® Measuring the interval between probe
events

Measuring the Interval Between Probe

Events

Description:

Procedure:

Parameters:

2-18

This procedure uses the TTA test clips to
measure the time interval between two
external events. The program terminates
when the conditions of the second probe
event are satisfied.

(Attach the TTA test clips to the desired
signal lines in your prototype.)

> eve 1 clr p=begn

> cou 2 clr s=units o=arm g=seqh v=0
> eve -s 2 p=end

> g strt

strt—The starting point for program
execution.

units—Any valid COU unit. Refer to the
Emulation section of this manual for
information about the COU command.

begn—Eight characters representing the
states of the eight test clips when the
measurement is to begin. Each character
can be O (logic low), 1 (logic high), or X
(don’t care). If the first character is "X",
put a zero in front of it.

end—Eight characters (0, 1, or X)
representing the states of the eight test
clips when measurement {and program
execution) is to end.

Comments:

Example:

See also:

This procedure is similar to that used for
determining the execution time of a
conditions for starting and stopping the
counter are defined in terms of the test
clip values instead of the designated

inctriintinn fatehne Tho alank and AarAanind
THIOMLE UL LIV IULULIITO. 17110 VIVUR Ul v 8! vunig

lines of the TTA test probe must be
attached for the TTA to function properly.

(Attach the TTA test clips to the desired
signal lines in your prototype.)

> eve 1 clr p=Oxxxxxxxl
> cou 2 clr s=cyc o=arm g=segh v=o

> eve -s 2 p=ll1llxxxx

This example measures the number of
bus cycies between the time probe clip O
goes high and the time clips 4-7 become
high simultaneously.

® Rreaking on a probe event

e Determining the execution time of a
program segment

Breaking on a Probe Event

Description:

Procedure:

Parameters:

Comments:

Example:

This procedure uses the TTA to stop
program execution when the conditions
of the probe event are satisfied.

(Attach the probe test clips to the desired
signal lines in your prototype.)

> eve -s 1 p=begn
> g strt

begn—Eight characters representing the
states of the eight test clips when the
measurement is to begin. Each character
can be 0 {logic low), 1 {logic high), or X
(don't care).

strt—The starting point for program
execution.

The EVE command line definesevent 1 in
terms of a probe test clip value. The clock
and ground lines of the test clips must be
attached for the TTA to function properly.

> eve -s 1 p=lxxxxx01l

This example halts program execution
when the 0 and 7 clips go high and the 1
clip goes low.

@

Operating Procedures—8540 System Users

See also:

® Measuring the interval between probe
events

Memory Manipulation

Changing the Contents of a
Section of Memory

Description: This procedure modifies consecutive
memory locations.
Procedure: > p addr hexstring
Displaying the Contents of Memory —
. . . Parameters: addr—The starting address of the data in
Description: This procedure displays the contents of a dd g ess atal
program or prototype memory that you
selected area of memory.
want to change.
Procedure: > d loadd hiadd . .
oce _ hexstring—A sequence of hexadecimal
Parameters: loadd—The lower limit of the memory dlglts.rhe hexstring dirgctly replaces the
area to be displayed. values in memory starting at the desig-
nated address on a byte-by-byte basis.
hiadd—The upper limit of the memory Each pair of digits represents cone byte;
area to be displayed. thus the string must contain an even
number of digits. For word-oriented
Example: In Display 2-6, the system terminal microprocessors, the number of digits in
displays 16-byte data blocks from pro- the string must be divisible by 4.
gram or prototype memory. The display
starts with memory address 0000 and Example: In Display 2-7, the contents of memory
continues to 002F. locations 400 through 40C are replaced
with the specified hexadecimal string.
See also: ® Changing the contents of a section of
memory See also: e Displaying the contents of memory
® |nitializing a block of memory ® |nitializing a block of memory
> d 0 2F
01 2 3 4 56 7 8 9 ABCDTETF
000000 00 00 00 00 00 00 00 00 00 00 00 60 00 00 00 21
000010 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00 00 oo
000020 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
Display 2-6.
> 4400
01 2 3 4 5 6 7 8 9 A B CDE F
000400 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00 00
> p 400 00050605AF862305C20601D3F7
> 4 400
01 2 3 456 7 8 9 ABCDEF
000400 00 05 06 05 AF 86 23 05 C2 06 01 D3 F7 00 00 00
Display 2-7.

2-19

System 1/0

Operating Procedures—8540 System Users

Initializing a Block of Memory

Description: This procedure initializes memory loca-
tions with a specified value.

Procedure: > f loadd hiadd hexstring
Parameters: loadd—The lowest memory address to be
initialized.

hiadd—The highest memory address to
be initialized. Must be greater than or
equal to that of loadd .

hexstring—The value that is to fill the
designated memory area. If the target
processor is word-oriented, this string
must contain a multiple of 4 hexadecimal
digits. Otherwise, an even number of
digits are required.

Example: > £ 0 OFF 0000

This command line fills memory locations
0000-00FF with the value O.

See also: ® Displaying the contents of memory

® Changing the contents of a section of
memory

Breaking When the Program Writes
in a Designated Memory Block

Description: This procedure causes program execution
to halt when the program attempts to
write to a specified block of program

memory.
Procedure: > map pro loadd hiadd
Parameters: loadd—The starting address of the

memory range.

hiadd The ending address of the memory

range.

Comments: The value of loadd should be less than
that of hiadd. More than one range of
addresses can be specified on the MAP
command line.

Example: > lo <progl
> map pro 3A00 4FFF
> g 100

If during execution, progl attempts to
write into a memory location within the
range 3A00-4FFF, a break is generated.

2-20

See also:

® Breaking when the program writes in
a designated memory area

Disassembling the Contents of Memory

N
Description:

Procedure:

Parameters:

Example:

See also:

This procedure translates the object code
in the specified address range to its
corresponding mnemonics and operands,

and displays this information.
> di loadd hiadd

loadd—The memory address where
disassembly is to begin.

hiadd—The memory address where
disassembly is to stop.

> di 100 10E

LoC INST MNEM OPER
000100 2100056 LXI H,0500

000103 08605 MVI B,05
000105 AF XRA A
000106 86 ADD M
000107 23 INX H
000108 05 DCR B

000109 C20601 JNZ 0106
00010C D3F7 OUT F7
00010E 00 NOP

The contents of memory locations 0100-
010E are transiated into mnemonics and
operands and are displayed on the
system terminal.

® Displaying the contents of memory

® Changing the contents of a section of
memory

SYSTEM I/0O

Displaying the Current Channel

Assignments

Description:

Procedure:

Comments:

This procedure dispiays ihe cuiteni {/0
channel assignments.

> stat

This command displays the following
information:

® The 0S/40 name of the currently
selected target processor.

® The present assignments of channels
0-7.

@

Operating Procedures—8540 System Users

System 1/0

Example:

See also:

> stat
8085 is the selected processor
Channel 6 is assigned to LPT

® Assigning a channel

® Closing a channel

Assigning a Channel

Description:

Procedure:

Parameters:

Comments:

@

This procedure associates a physical
device or file with an 1/0O channel
number.

> as n filespec

n—A logical I/0 channel number. This
number must be between O and 7,
inclusive.

filespec—The device or 8560 file to be
assigned to the channel number.

1/0 channels allow your programs to
read or write to files or devices via service
calls (SVCs).

Example;

See also:

> as 3 tablel 5 LPT

This example assigns the 8560 file table1
to channel 3 and the line printer to
channel 5.

® Displaying the channel assignments

® Closing a channel

Closing a Channel

Description:

Procedure:

Parameters:

Example:

See also:

This procedure disconnects a file or
device from an 1/0 channel previously
opened with the AS command.

>cln

n—The number of the 1/0 channel
number that you want to close. This
number must be between O and 7,
inclusive.

>cl 4

This command line disconnects channel
4 from the file or device to which it was
assigned.

® Assigning a channel

® Displaying the channel assignments

2-21

8540 System Users

Section 3
COMMAND DICTIONARY

Page
Command IndeX i e e e e e e 3-1
INtrodUCHiON ..o e e e it e 3-2
Other System Commandsttt et 3-2
Command SyNtaX. ... e e 3-2
Notation CoNVENtiONS ... ot i ittt et ettt et ettt s et et 3-2
ComMmMaAaNd Line ...t e e e et 3-2
B4 1 o O 3-4
Legal Address EXpresSionsSt ittt et et ettt et e e e 3-5
Special Keys.o e e e 3-6
Command MemoOry Areasttt ittt ittt ettt it et ie e 3-7
COMMANAS ... ottt e e e e e 3-8

TABLES
Table
No.
3-1T SYStEM DOVICES oottt i e e e e 3-12
3-2 Typesof Data Transferoiiiiiiii i it i et et et et 3-21
3-3 EX Command Options . ..ottt it e e e 3-29
ILLUSTRATIONS

Fig.
No.
3-1 Sample syntax blockot e et 3-2
3-2 Syntax for string definition i e e e 34
3-3 AL command eXample ...t e e e e 3-11

Command Dictionary—8540 System Users

Section 3

COMMAND DICTIONARY

COMMAND INDEX

Page
Memory Management Commands

AL—Allocates memory to logical address map 3-10
COM—Sets up communications with host

FooTa] o 10} (-] GO 3-19
D—Displays memory contents 3-24
DEAL—Deallocates memory from logical address

30T T o O 3-25
EX—Displays or alters memory contents 3-29
F—Fills program/prototype memory with data 3-30
LO—Loads program into memory 3-34

MAP—Sets or displays memory map assignments . 3-35
MEM—Specifies memory to be available to

emulator............. ... i, e 3-38
MEMSP—Defines memory space to be used by

memory COmmands.counviniinnnnennnnn.. 3-39
MOV—Moves data between program and

ProtOtYPe MEeMOTY .. .v ittt i eieeeennns 3-40
NOMEN—Specifies memory unavailable to

emulator. 3-41
P—Alters memory contents 3-42
RH—Reads hexadecimal code into memory........ 3-48
SAV—Saves memory contents in file ,............ 3-52
SEA—Searches memory for value or string........ 3-52
WH—Saves memory contents in hexadecimal

format 3-64
X—Loads and executes program 3-65

Debugging and Emulation

Commands

ADDS—Adds symbol to symbol table 3-9
AS—Assigns channel to device or file............. 3-12
@

Page
BK—Sets or displays breakpoint condition 3-13
CL—Disconnects channel from device or file 3-16
CLOCK—Controls program clock 3-17
Di—Translates object code to mnemonics 3-26
DS—Displays contents of emulator registers....... 3-24
EM—Selects emulation mode 3-28
G—Begins program execution 3-32
RD—Reads from emulator port 3-45
REMS—Removes symbol from symbol table 3-46
RESET—Reinitializes emulator.................... 3-47
S—Assigns value to register or symbol............ 3-51
SVC—Controls execution of service calls from
USEr Programt eriiinnenannnneeennns 3-57
SYMB—Returns symbolic equivalent of value...... 3-58
SYMD—Controls symbolic display output.......... 3-59
SYMLO—Loads symbols into symbol table 3-61
TRA—Controls display of executed instructions 3-62
WRT—Writes to emulator I/O port................ 3-65

Miscellaneous System Commands

A—Aborts user program or command execution 3-8
CALC—Evaluates arithmetic expression 3-15
CO—Resumes execution of suspended command .. 3-18
CONFIG—Defines system configuration and host

interfaceo e 3-22
LOG—Logs terminal input/output to device 3-34
PERMSTR—Stores user-defined string in

EEPROM 3-43
ROMPATCH—Updates operating system 3-49
SEL—Selects target processorchip 3-54
STAT—Displays system status.................... 3-55
STR—Displays or deletes temporary user strings... 3-55
SUSP—Suspends command 3-56

3-1

Command Dictionary—8540 System Users

INTRODUCTION

This Command Dictionary describes most 0S/40 com-
mands. The Command Index on the preceding page lists all
commands described in this section according to their
functions. The “Commands” subsection lists the commands

alnhahetically
alp .

naoolLan

This section is divided into the following subsections:

® Other System Commands. Tells where to look for
documentation of subsystem commands.

® Command Syntax. Describes the notation conventions
used in syntax blocks; command lines; and legal address
expressions.

® Special Keys. Describes the special function keys that
the operating system recognizes.

® Commands. Describes commands in detail. Each
command description consists of the following parts: a
syntax block, parameter definitions, an explanation of
the function and use of the command, and one or more
examples.

OTHER SYSTEM COMMANDS

Commands that invoke or use major subsystems are fully
documented in other manuals, and are notdescribed in this
Command Dictionary. The following list shows the
manuals that fully describe each subsystem command.

® PROM Programmer commands (CPR, PSTAT, PTYPE,
RPR, WPR)—PROM Programmer Specifics supplement

® TTA commands {(ACQ, AD, BRE, BUS, CONS, COU, CTR,
DATA, DISP, EVE, PRO, QUA, TCLR, TS)—Trigger Trace
Analyzer Users Manual

COMMAND SYNTAX

Each command description includes a syntax block that
illustrates the format for a command. This subsection
describes the notation conventions used in the syntax
blocks; command line format, strings, and legal address
expressions.

Notation Conventions

The syntax block for each command illustrates the
command entry: the command name, whether or not each
part of the command entry must be included, and the order
in which to enter parts of the command entry. Figure 3-1
illustrates a sample syntax block.

3-2

SYNTAX

[PA] {address}
sample [-m)] file1 [file2] PB string §... 3939.9A

Fig. 3-1. Sampie syntax biock.

This figure illustrates a syntax block for a fictional operating
system command: sample is the command name; -m is a
command modifier; and file1, file2, PA, PB, address, and
string are command parameters. The braces, brackets, and
trailing dots are for syntactical representation only.

Command Line

A command line consists of one of more commands and/or
string definitions separated by semicolons (;). The
maximum length of a command line is 80 characters,
including spaces and the terminating carriage return.

If you enter a command line that contains more than 80
characters, a command buffer overflow error will occur.
The excess characters will be stored in the type-ahead
buffer and used as the beginning of the next command line.
You must type CTRL-U or CTRL-C to delete the excess
characters before entering another command. (The long
command line wi!l not be executed.)

Braces { } in a syntax block surround required parts of the
command line. Brackets [] in a syntax block surround
optional parts of the command line. When parts are
stacked, you choose one part from the ones in the stack.
Braces and brackets serve only torepresent the syntax, and
should not be entered as part of the command line.

Boldface letters and other characters in the syntax block
are required in the command line, and should be entered
exactly as they appear in the syntax block.

Three trailing dots in a syntax block show that the
preceding element of the command line may be repeated as
many times as needed, up to the maximum iine iength of 80
characters.

Underlined letters within a required parameter represent
the acceptable short form of the parameter.

For most parts of a command line, you may use either
uppercase or lowercase letters. The exceptions are as
follows: String names must appear as they did when
created. Command names must be entered in lowercase if
you are in TERM mode with an 8560.

REV JAN 1983

Command Dictionary—8540 System Users

Command Name

A command name is a word that represents an operating
system command. Every command must begin with a
cummand name.

Delimiters

A delimiter separates parts of the command from each
other. Allowed delimiters are spaces, commas, or tabs,
with one comma being equivalent to one or more spaces or
tabs.

Command Modifiers

A command modifier (a special type of parameter) consists
of a dash (-) followed by a letter. Figure 3-1 contains the
command modifier -m.

Multiple command modifiers (when used) can be strung
together: ~A -B -C can be entered as ~ABC. A command
modifier, if specified, can usually occur anywhere in the
command line; its position in the line is not significant
except in the following instance.

When a dash modifier is used to modify a parameter
instead of the command, the dash modifier must
immediately precede the appropriate parameter. For
example, in the command line SEA 0 100 -A HELLO the
third parameter is ~A HELLO, signifying the ASCII string
"HELLO".

Using a modifier affects only one invocation of acommand.

Certain commands may produce unexpected results if you

specify command modifiers that are invalid or contradictory.

Parameters

Parameters specify how the command is executed.

Parameters in boldface must be entered exactly as they
appear in the syntax block, when used.

Parameters which are not in boldface describe the type of
parameter. Acceptable entries for parameter types are
described in the PARAMETERS explanation for each
command.

Parameters may be required or optional, as described in the
following paragraphs.

Required Parameters. Required single parameters appear
in the command line without braces or brackets. In Fig. 3-1,
file1 is a required parameter.

Optional Parameters. Optional parameters are enclosed
in brackets [] in the syntax block. In Fig. 3-1, file2 is an
optional parameter.

REV JAN 1983

Omitting Parameters. To omit an optional parameter,
enter two commas in its place. For example, to omit file2
from the command line, enter:

> SAMPLE -M MYFILE, ,PA 100

Use three commas when you omit two consecutive
parameters. For example, to omit file2, and PA or PB from
the command line, enter:

> SAMPLE -M MYFILE,,,100

Do not enter commas to omit a command modifier or the
final parameter(s) in a command line. For example, to omit
-M from the command line, you can enter:

> SAMPLE MYFILE YOURFILE PA 100

Choice of Parameters. Parameters are stacked one above
another when there is a choice between two or more
parameters. If the parameters are stacked withinbraces {},
one of the parameters must be used. In Fig. 3-1, either
address or string must be chosen. If the parameters are
stacked within brackets [], the selection is optional. In Fig.
3-1, you may select either PA or PB or neither.

Repeated Parameters. When three dots follow a
parameter (or a group of parameters enclosed in brackets
or braces), the parameter may be repeated any number of
times up to the end of the command line. In Fig. 3-1, the
choice of address or string may be repeated as manytimes
as the line length permits.

Examples

Here are some examples of how the fictitious SAMPLE
command (shown in Fig. 3-1) could be used:

> SAMPLE MYFILE,, 6 ”some text”

> SAMPLE -M YFL MFL PB “txta” 10 OF “txtb”

> SAMPLE -M HISFILE,,PB 80 90 OAO OBO

Redirecting Standard Input and Output

In general, the operating system commands take input
from standard input and send output to standard output.
The system terminal usually serves as both standard input
and standard output.

However, you can redirect command input and output. A
left arrow (<) redirects input, so the command can read
from a file or device other than the system terminal. A right
arrow (>) redirects output, so the command can send
results to a file or device other than the system terminal.

The 1/0 redirection arrow can be inserted in a command
line anywhere after the command name, and can be
applied to any command.

Command Dictionary—8540 System Users

Using more than one input arrow (<) or more than one
output arrow (>) in one command entry causes an e