CHAPTER 4

Page O is used to store commoniy used operands and off:page pointers. *
For instance, the location of an indirect address used by instructions is

PDP-8/E PROGRAMMING SYSTEMS
GENERAL

This chapter deals with the concepts reqvuired to program the PDP-8/E ABS?SEJ;I_'AEL;ADDR cor«e(wcu)ecm PAGE P?SET:S?R
and identifies the system programs available to the user. Two hand- = - e
books, INTRODUCTION TO PROGRAMMING and PROGRAMMING LAN- 7600 3 000
GUAGES, provide a more detailed treatment and desgriptlon of the o3 36 -
commonly used programming languages and programming systems. 7377 - ¥aid
The chapter is divided into 2 sections. Section 1 pl_'ovides basic pro- 72007"7 - 000
gramming guidelines and section 2 identifies the various programming 2000 34 con
systems and commonly used languages available to the user. o 33 AS
. 6577 177
SECTION 1 = 2 w
6377 7
PDP-8/E PROGRAMMING FUNDAMENTALS - 6200 3 (‘)o;
Organization of the standard core memory or any 4096-word field of N4S 30 o
extended memory is summarized as follows: 2;;3 - 3,&7;
Total locations (decimal) . 0-4095 or 4096 5577 ” T
Total addresses (octal) 0-7777 or 10,000 53775409 000 -
25
Number of pages (decimal) 0-31 or 32 52°°5”7 - 000
Page designations (octal) 0-37 or 40 47775000 24 000
: ' 177
Number of locations per page (decimal) 0-127 or 128 %00 i __ooo
Addresses within a page’(octal) 0-177 or 200 2200 22 o
Routines using 128 instructions or less can be written in one page us- ::;7) 21 10:;
ing direct addresses for looping and indirect addresses for data stored w75 - =
in other pages. When planning the location of instructions and data in 37774000 000
core memory, the following locations are reserved for special purposes: 2500 17 (1)(7’(7)
Address Purpose B gig) ‘e g;)
0 (octal) Stores the contents of the program counter follow- 5377 - =
ing a program interrupt. 32003”7 =5 000
1 (octal) Stores the first instruction to be executed following 3000 t4 000
a program interrupt. igc?) 13 M
i i 2577
10 (octal)—17 (octal) Auto-indexing. 77 12 :)(7)2
MEMORY ADDRESSING 222,{, » 77
The programmer has 4096 (decimal) jocations which he may address. i - 000
However, as illustrated in Figure 3-2 of Chapter 3, when an instruction 2000 10 000
is fetched from memory, only bits 5 through 11 contain t.he address of :g; Z g)g
the data. Addressing is accomplished using octal notation. Therefore 577 o 77
the 4096 possible locations require addresses in octal from 0000 to 1377‘.300 000 .
7777. This means that a total of 12 bits is required to spec.ify an ab- 5 s éo;
solute address. So that all locations may be addressed as efficiently as TEad " .
possible, memory is addressed in terms of pages with a coding scheme 07771000 000 —
that allows easy access to any one of the 10,000 octal locations. The 0600 3 o
page addressing scheme is illustrated in Figure 4-1 which shows the 8223, " (,x,)g
relationship of the 40 octal pages with the }0,000 octal locatlons..The rrTe] , =
programmer is interested in only three pages in memory at any one time: ozogm77 000
a. The current page 0000 o oon
b. Page O .
c. A location on other than the current page or page O. Figure 4-1 Memory Addressing Scheme

! 41

usually on Page 0.

4-2

The format of the Central Processor (CPMA) Memory Address Register
establishing the memory page must first be considered. The MA register
is an unequally divided 12-bit register in which the least significant bits
of the MA (bits 5-11) are calied the page address bits and the most
significant bits (bits 0-4) are called the page bits. The 12 bits of the
Memory Address are established by the program counter (PC) and are
re-established each time the PC loads an absolute address for the next
instruction. Bits 0-4 are used to establish the memory page as shown
in Figure 4-2. Because the pages to be addressed include pages 0-37
(octal), only five bits are required. The first two bits represent numbers
from O to 3 and the next three represent numbers from O to 7. Because
the locations to be addressed on any given page include locations 0-177
(octal), only seven bits are required to specify any one location. Bit 5
represents an octal 1 or O; bits 6, 7, and 8 represent the second octal
digit from 0 to 7; bits 9, 10, and 11 represent the last octal digit from
0 to 7. Thus, on the example shown in Figure 4-2, the MA register is
addressing page 5, location 73 (absolute address 1273).

When the user first receives his PDP-8/E, he should assume that it has
no information content in its memory. Before he can load instructions
into memory, he must first perform the initializing and loading proce-
dures described in Chapter 2. The following discussion assumes that the
preliminary procedures have been completed and that the programmer
now wants to load into core those instructions which will be callied upon
after a program has been written. His main concern is to decide in
which memory locations he desires to place his instructions and in which
locations he wishes to place the corresponding data.

MA REG o 1 2 3 415 6 7 8 9 10 1

ot 0 1 (o2 I o1 1 1 1 1
o —\ AN\ J A\ J
0 Sg 0 7 3g
PAGE BITS PAGE ADDR BITS

[*—(00-37g) — ™" (000-177g) — "]

Figure 4-2 Format Establishing Memory Page

initially, the programmer must load the Central Processor Memory Ad-
dress Register with an address and then deposit a 12-bit instruction
word in the format shown in Figure 4-3.

4-3

OPERAND
BIT f . 1
POSITION O 1 2 3 4 5 6 7 8 9 10 14
o /10/10/i0/10 10 /10 /10 /10 /10 /10 /]o,
EacH BIT 1s W WV W/ N/ WA/ W N
EITHER O ;1__1 4 L J
OR 1 !
OPERATION PAGE ADDRESS BITS
CODE (0 TO177g)
ADDRESS MODE BIT CURRENT PAGE OR PAGE O BIT
O: DIRECT ADDRESSING O: PAGE 0O
1! INDIRECT ADDRESSING 1! CURRENT PAGE

Figure 4-3 Format of a Memory Reference Instruction

The first three bits contain the instruction operation code and have
nothing to do with addressing. The last seven bits address the location
(from O to 177 octal), which will contain either data or a 12-bit address.
Those address bits are located in the Memory Buffer Register, and are
ineffective until bits 3 and 4 are decoded, at which time the address bits
are transferred from the Memory Buffer to the Central Processor Memory
.Address Register. The page address (the first five bits of the MA register)
is determined by whether bit 4 is a O or 1 (see Figure 4-3).

Where to place the instruction word or Data word is a very important

consideration. At this point, the programmer has three choices in the
location of the data:

a. the current page (that page containing the Instruction)
b. page O
C. a page other than page O or the current page.

" MEMORY REFERENCE INSTRUCTION

; ‘ MB
0 2|34 5|6 |78 0|n| N o

CURRENT PAGE: RETAIN PAGE
BITS

PAGE O: SET PAGE BITS TO
ZEROS

o{1|2]3|a]ls|e] 7|89 1o0|ln] MA
REGISTER

PAGE BITS PAGE ADDRESS
BITS (OTO177g)

Figure 4-4 Transfer of Address Portion of MRI into MA Register

4-4

Current Page—If the programmer desires the data to be jocated in the
current page, he must make bit 4 a 1 in the original instruction word.
The logic within the processor causes the first five bits of the MA to
remain, and transfers the last seven bits of the MB (the new address
within a page) to the last seven bits of the MA Register. This method
of updating the MA Register is illustrated in Figure 4-4.

Page 0—Page O is commonly used to store operands or address of
operands or routines. The programmer must set bit 4 word to 0. The
logic within the processor then places all zeros in MA bits O through 4
and transfers the content of the last 7 bits of the MB register to the
last 7 bits of the MA Register. Thus, the page address is now page O and
the address within page O is some address between O and 177 octal.
This is illustrated in Figure 4-4.

Addressing A Page Other Than the Current Page or Page 0—The pro-
grammer may address a page other than the current page or page 0 by
placing a 1 in bit 3 of the original instruction word. As before, the com-
puter then goes to an address on the current page or on page 0, de-
pending on the state of bit 4. The logic within the processor responds to
bit 3 being a 1 by going into a defer state for a new address. This pro-
cedure is called ‘‘Indirect Addressing.”

INDIRECT ADDRESSING .

In the preceding section, the method of directly addressing 400(octal)
memory locations by an MRI] was described—namely those on page 0
and those on the current page. This section describes the method for
addressing the other 7400(octal) memory locations. Bit 3 of an MRI des-
ignates the address mode. When bit 3 is a O, the operand is a direct
address. When bit 3 is a 1, the operand is an indirect address. An in-
direct address (pointer address) identifies the location that contains the
desired address (effective address). To address a location that is not
directly addressable, the absolute address of the desired location is
stored in one of the 400(octal) directly addressable locations (pointer
address); the pointer address is written as the operand of the MRY; and
the letter | is written between the mnemonic and the operand. (During
assembly, the presence of the | resuits in bit 3 of the MRI being set to
1.) Upon execution, the MRI will operate on the contents of the location
identified by the address contained in the pointer location.

The two examples in Figure 4-5 illustrate the difference between direct
addressing and indirect addressing. The first example shows a TAD in-
struction that uses direct addressing to get data stored on pageé O in
location 50; the second is a TAD instruction that uses indirect address-
ing, with a pointer on page O in location 50, to obtain data stored
in location 1275. (When references are made to them from various
pages, constants and pointer addresses can be stored on page 0 to
avoid the necessity of storing them on each applicable page.) The octal
value 1050, in the first example, represents direct addressing (bit 3 = 0);
the octal value 1450, in the second example, represents indirect address-
ing (bit 3 = 1). Both examples assume that the accumulator has previ-
ously been cleared.

45

Location Content
200 TAD 50 (TAD 50 = 1050,)
. .o Instruction

50 1275 Data (Number) To Be Acted Upon By
. . Instruction Address

1275 20 (antent of location 1275 is not used in the exe-
cution of the instruction in location 200.)

NOTE: AC = 1275 after executing the instruction in location 200

Location Content

200 TAD | 50 (TAD | 50 = 1450,)

Designates Indirect Addressing

. . Instruction
50 1275 Pointer Address
1275 20 Data (Number) To Be Acted Upon By
Instruction

Effective Address

NOTE: AC = 20 after executing the instruction in location 200.

Figure 4-5 Comparison of Direct and Indirect Addressing

Thg following three examples illustrate some additional ways in which
|nd|rqct addressing can be used. As shown in example 1, indirect ad-
dressing makes it possible to transfer program control from off page O
(or any.other page) to any desired memory location. (Similarly, indirect
addressing makes it possibie for other memory reference instru'ctions to
addrgss any.of the 4,096(10) memory locations.) Example 2 shows a
DCA instruction that uses indirect addressing with a pointer on the cur-
rent page. The pointer in this case designates a location off the current
page (location 227) in which the data is to be stored. (A pointer address
is normally'stored on the current page when all references to the desig-
nated location are from the current page.) Indirect addressing provides
the means for returning to a main program from a subroutine, as shown

in example 3. Indirect addressing is also effectively u i i i
tpample 3. y used in manipulating

EXAMPLE 1
Location Content
75 JMP | 100 (JMP | 100 = 5500(octal))

Designates Indirect Addressing
Instruction

4-6

100 6000 Pointer Address

6000 DCA 6100 Next Instruction To Be Executed

NOTE: Execution of the instruction in location 75 causes program con-
trol to be transferred to location 6000,. and the next instruction
to be executed is the DCA 6100 instruction.

EXAMPLE 2
Location Content
450 DCA | 577 (DCA | 577 = 3777(octal))
Designates Indirect Addressing
Instruction
577 277 Pointer Address
227 nnnn Data (Number) Stored By Instruction

(Effective Address)

i i i t page.

NOTES: 1. Memory Location 577 is location 177 of curren
Execution of the instruction in location 4}50 causes the
contents of the accumulator to be stored in location 227.

EXAMPLE 3

e

Location Content
207 JMS | 70 (IMS | 70:447Q(octal))
210 TAD 250 (The next instruction to be e)gecuted
. upon return from the subroutine.)
70 2000 (Starting address of the subroutine
stored here.)
2060 aaaa . (Return address stored here by JMS
instruction.) '
2001 iii (First instruction of subroutine.)
2077 JMP | 2000 (Last instruction of subroutine.)

NOTES: 1. Execution of the instruction in location 207 causes the gd-
dress 210 to be stored in location 2000 and the instruction
in location 2001 to be executed next. Execution of the sub-
routine proceeds until the last instruction (JMP I 2000)
causes control to be transferred back to the main program,
continuing with the execution of the instruction stored in
location 210.

47

2. 'A JMS instruction that uses indirect addressing is useful
when the subroutine is too large to store on the current
page. :

3. Storing the pointer address on page O enables instructions
on various pages to have access to the subroutine.

PROGRAMMING OPERATIONS
The programmer can make use of any combination of instructions. The
following sections describe the more common programming operations.

STORING AND LOADING

Data is stored in any core memory location by use of the DCA (Deposit
& Clear AC) instruction. This instruction clears the AC to simplify load-
ing of the next data. If the data deposited is required in the AC for the
next program operation, the DCA must be followed by a TAD for the
same address. All loading of core memory information into the AC is
accomplished by means of the TAD instruction.

The DCA instruction stores the contents of the AC in the referenced
location, destroying the original contents of the location. The AC is then
set to all zeroes. The following example shows the contents of the
accumulator, link, and location 225 before and after executing the in-
struction DCA 225,

DCA 225

AC Link Loc. 225
Before Execution 1234 1 7654
After Execution 0000) 1 1234

The following facts should be kept in mind when using the DCA instruc-
tion: -

a. The state of the link bit is not altered.

b. The AC is cleared.

¢. The original contents of the addressed location are replaced by
the contents of the AC.

PROGRAM CONTROL .

The Program Counter is used to direct the processor to the next address
of the next instruction to be fetched. Therefore, the content of the PC
Register is always one more than the content of the Central Processor
Memory Address (CPMA) Register. When an instruction has been com-
pleted and the processor is ready to go into a new fetch, the content of
the Program Counter is transferred into the CPMA Register and the
Program Counter with its original address is incremented by 41, thereby
pointing to the next sequential address. This procedure is called Program
Control because it directs the processor to the next instruction. Because
this rigid sequence of instructions is not always desirable for practical
programming, the PDP-8/E provides a means of jumping out of this -
sequence to transfer Program Control from one sequence of instructions
to another or to allow the processor to enter a subroutine which is itself
a sequence of instructions and re-enter the main program when the sub-
routine has been completed. '

48

Transfer of program controf to any core memory location uses the JMP
or JMS instructions. The JMP | and JMS | (indirect address, bit 3 = 1)
are used to transfer program control to any location in core memory
which is not in the current page or page 0.

The JMS Y is used to enter a subroutine which starts at location Y +_1
in the current page or page 0. The contents of the PC are stored in
the specified address Y, and address ¥ + 1 is transfgrred into the PC_.
Subroutines or other pages may be entered via an indirect JMS. To exit
a subroutine, the last instruction is a JMP | Y, which returns program
control to the location stored in Y.

The JMP .instruction loads the effective address of the instruction _into
the program counter, thereby changing the program sequence since
the PC specifies the next instruction to be performed. In the following
example, execution of the instruction in location 250 (JMP 300) causes
the program to jump over the instructions in locations 251 through 277
and immediately transfer control to the instruction in location 300.

Location Content
250 JMP 300 (This instruction transfers program
. control to location 300.)

300 DCA 300

NOTE: The JMP instruction does not affect the contents of the AC or
link.

A program written to perform a specific operation oftep includt_as sets of
instructions which perform intermediate tasks. These intermediate tasks
may be finding a square root, or typing a character on a .keyboard. .Such
operations are often performed many times in the running of one pro-
gram and may be coded as subroutines. To eliminate the need of writing
the complete set of instructions each time the operation must be per-
formed, the JMS (jump to subroutine) instruction is used. The JMS'm-
struction stores a pointer address in the first location of the subroutine
and transfers control to the second location of the subroutine. After the
subroutine is executed, the pointer address identifies the next in§truc-
tion to be executed. Thus, the programmer has at his disposal a‘simple
means of exiting from the normal flow of his program to perform an
intermediate task and a means of returning to the correct loc;atlpn upon
completion of the task. (This return is accomplished using indirect ad-
dressing, which is discussed elsewhere in this chapter.)

The following example illustrates the action of the JMS instruction:

Location Content
PROGRAM))
200 JMS 350 (This instruction stores 0201 in loca-

tion 350 and transfers program con-

trol to location 351.)
4.9

201 DCA 270 (This instruction stores the contents
of the AC in location 270 upon return
from the subroutine.)

SUBROUTINE
350 0000 (This location is assumed to have an
initial value of 0000; after JMS 350
is executed, it is 0201.)
351 iii (First instruction of subroutine)
375 JMP 1 350 (Last instruction of subroutine)

The following should be kept in mind when using the JMS:

1. The value of the PC (the address of the JMS instruction +1) is
always stored in the first location of the subroutine, replacing
the original contents.

2. Program control is always transferred to the location designated
by the operand + 1 (second location of the subroutine).

3. The normal return from a subroutine is made by using an in-
direct JMP to the first location of the subroutine (JMP 1 350 in
the above exampie); (Indirect addressing, as discussed in this
chapter effectively transfers control to location 201).

4. When the results of the subroutine processing are contained in
the AC and are to be used in the main program, they must be
stored upon return from the subroutine before further calcula-
tions are performed. (In the above example, the results of the
subroutine processing are stored in location 270.)

ARITHMETIC OPERATIONS

One arithmetic instruction is included in the order code, the two's
complement add (TAD). Using this instruction, routines can easily be
written to perform addition, subtraction, multiplication, and division in
two's complement arithmetic.

Two’s Complement Arithmetic

In two’s complement arithmetic, addition, subtraction, multiplication,
and division of binary numbers are performed in accordance with the
common rules of binary arithmetic. In the PDP-8/E, as in other machines
utilizing complementation techniques, negative numbers are represented
as the complements of positive numbers, and subtraction is achieved by
complement addition. Representation of negative values in one's com-
plement arithmetic is slightly different from that in two’s complement
arithmetic.

The one's complement of a number is the complement of the absolute
positive value; that is, all 1s are replaced by Os and all Os are replaced
by 1s. The two’s complement of a number is equal to one plus the one's
complement of the number.

4-10

