AN EFFICIENT ALGOL-60 SYSTEM FOR THE PDP8

Roger H. Abbott
A.R.C. Unit of Muscle Mechanisms & Insect Physiology
Department of Zoology, University of Oxford
South Parks Road, Oxford OX1 3PS, U.K.

ABSTRACT

A one-pass compiler translates nearly full Algol-60 into an
intermediate language, whose instructions and variable addresses

are 6 bits long.

The run-time system loads the intermediate

language into core memory, and performs the operations

specified by its 6L instructions.

Execution speed is limited

by floating point arithmetic, and is nearly as fast as pro-

grams written in machine code.

It is about 6 times faster

than 0S/8 Fortran on a machine with EAE, although compiled

programs occupy only one-third of the space.
ware 1s an 8K PDP8 with teletype.
A 12K machine can use Field 2 for array

Monitor or 0S/8.
storage.

INTRODUCTION

The purpose of a compiler is to provide an inter-
face between a program written in a symbolic
language and the equivalent binary patterns on which
the hardware of the machine can operate. This
applied equally to machine code and the so-called
high level languages. There are three fairly
distinct ways to set about this task.

(a) A compiler can be written to translate the
symbolic language into binary or a high level langu-
age into symbolic machine code or binary. The
machine can then run the compiler output as it
stands.

(b) The compiler may translate a high level language
into a code which is not machine code, but whose
instructions perform the functions which are needed
in the high level language concerned. A run-time
program then examines these codes, and executes the
tasks they specify by means of subroutines. We
could include in this class compilers whose output,
although machine code, consists mainly of subroutine
calls. This latter method is not very efficient,
because it takes more instruction bits to specify a
hardware subroutine jump and the address of the sub-
routine than it does to have a code number specify-
ing which out of a list of subroutines should be
executed.

(¢) The high level language can be stored in the
machine as it stands, with no compilation. A run
time program interprets it, in a manner similar to
(b). This method has the dual advantage that the
program is easily modified, and the system can be
made conversational. Focal works in this way, as do
Basic interpreters. The disadvantage of the method
is that programs run relatively slowly. It is not
really a competitor tomethods (a) and (b), which are
used when speed and economy of memory are more
important than user interaction with the running of
the program.

Since the execution of a high level language re-
quires operations more complex than are provided by
the machine instructions of most computers (and
certainly the PDP8!), a program translated by method
(a) will be longer than one translated into an inter-

Minimum hard-
The system can run under

mediate code (b), because operations which could be
performed by subroutine are done by open code. In
the PDP8, floating point arithmetic will limit the
execution speed of a well-designed system, because
it must be done by software, so method (b) should
not be noticeably slower than method (a). A 6 bit
instruction allows 64 different codes, which is quite
sufficient for running Algol. It also suffices as
an address length, since 64 variables in any proced-
ure plus 64 in the main program are adequate. Two 6
bit instructions can be packed into a single PDP8
word. Therefore, method (b) using 6 bit instruct-
ions is the best one for the PDPS8.

DEC do not offer such a system, the nearest being K
Fortran which interprets 12 bit codes. It was
decided to write an Algol compiler because this is

a much more convenient and powerful language than
Fortran, and because the PDP8 lacked an Algol-60
compiler.

Design Objectives

As well as being efficient, a high level language
system should be convenient to operate. In practice,
on a small machine, this means that the translation
should involve the minimum number of passes, with
the compiler output being as short as possible. The
run-time system should also be short, and be designed
in such a way that the Algol program can use any
peripheral devices that the machine has. It should
not be geared to any particular operating system,
such as 03/8 or Monitor, but should be capable of
running under any such system.

THE OBJECT CODE

It was therefore decided that the Algol should be
translated in a single pass into a form which could
be loaded directly into memory. Because of the
desirability of being able to include machine code
statements in the Algol program, the compiler out-
put should be compatible with PAL, so that compiler
output and copied machine code could be compiled

together into absolute binary. In the PDP8, it is
essential that page boundaries be irrelevant, which
means that all label addresses must be 12 bits.
(Variable addresses are 6 bits, as already mention-
ed). This was achieved by having three types of
loadable item:

(a) A signed decimal number, which represents two
separate 6 bit instructions.

(b) A label address, consisting of the letter L
followed by a decimal number.

(¢) Floating point literals. These consist of the
pseudo-op FLTG, followed by the literal, which is
simply copied from the Algol text, followed again
by the pseudo-op DECIMAL,

Labels are defined in one of the ways allowed by
PAL, either by their occurrence followed by a comma,
or by their definition with an equals sign. In the
latter case, they are usually equated with a pre-
viously declared label. It is a simple matter to
have the loader replace these symbolic labels by
their binary equivalents. Floating point literals
are read into the floating point accumulator by the
same routine that reads floating point numbers when
the program is running. The loader transfers them
to the program area.

THE COMPILER

The most often quoted advantage of Algol over Fort-
ran is that procedures can be called recursively
with the evaluation of factorial beling used as an
example. This is doubly unfortunate, firstly
because factorial is most naturally and efficiently
evaluated without recursion, and secondly because
the main advantage of Algol is that the language 1s
defined recursively. For example, in the condition
statement:

if Boolean then S1 else S2;

32 may be any statement, concluding another condit-
ional:

if Boolean then Sl else if B then S3 else Shs

As a further example, the
...end may be nested, and
can be declared after any
Janguage which is defined recursively requires a
recursively written compiler. Algol provides recur-
sion, and as it is an Algol compiler which we wish
te construct, the obvious thing to do 1s to write
the compiler in Algol.

statement brackets begin..
variables and procedures
begin., Evidently, a

ALGOL COMPILED
'IF* B *TAEN' Si5 s JUMP IF FALSE LI;
s2; S1;
Li: 52;4\
'*IF* B 'THEN" 51 Ly JUMP IF FALSE L 13
'*ELSE' 525 533 Sl,‘,JUMP Les
Lt ¥4
La: 533
'"ELSE'*1F' 52366 *TAEY''COMMEIT' 366 1S 'IF':
‘BEGIJ''IVTEGER® LI,LE; .
L1:=IFCLAUSE; 'IF® BS5=366 'TiEl" CARIC33)s STATEMETTS
IF' BS#212 *TAEI' LLECILD)
VELSE''BEGIN' ABES; L2:=JYMPIEY; LDEC(LI)S
STATEMEIT; LDEC(L2)
"ENL®
'END* CONLDITIONAL

Fig. 1. Section of Algol Compiler

The top part of Fig. 1 shows, on the left, the two
possible forms of Algol conditional statment. 82
may be another conditional statement, but S1 may not
because the resulting statement is ambiguous. On
the right are shown the translated equivalents, with
the 1f, then and else removed. B stands for the
code that evaluates the Boolean expression B, and S1,
S2 and S3 for the codes that execute the Algol
statements of the same names. "Jump if false" is a
code whose Jjob it is to examine the result of the
Boolean expression, and jump to a label if it is
false. Colons signify the definition of a label.
Note that the compiled programs are the same up to
the arrow. After the arrow, the code depends on
whether S1 was terminated by ; or by else. The
lower part of Fig. 1 shows the portion of the com-
piler which deals with conditional statements. It
is part of procedure statement, which is called
recursively in two places. Because of this recur-
sion the label numbers of the two labels are held in
locally declared integers, so that they remain
intact through the recursive calls. 1nteger
procedure if clause compiles a Boolean expression,
checks that the next symbol is then, outputs the
conditional Jjump and returns as its value the label
number of the conditional jump. The compiler then
checks that the next symbol 1s not another if (s1
may not be conditional), and if not it compiles S1.
Next it checks to see whether S1 was terminated by
else (212). If it was not, all it has to do is
declare the label L1, but if it was, it must compile
a jump to a new label (L2), declare L1, compile S2
and finally declare I12.

The original intention was to write the compiler in
full Algol-60, using a full compiler to compile
itself. This proved to be impossible because of
space problems. Firstly, it is necessary in a full
system to check the types of procedure parameters at
run time, This check is omitted in the compiler
writing Algol system, which saves a great deal of
space as the compiler consists mainly of procedure
calls (the example in Fig. 1 consists entirely of
procedure calls). Secondly, real quantities are not
needed in the compiler, and so the compiler operating
system does not have routines for dealing with them,
leaving more space for identifier tables.

THE RUN-TIME SYSTEM
All run-time programs contain routines for doing
arithmetic, evaluating Boolean expressions, entering
subroutines and so on. The main feature which
distinguishes Algol from Fortran is the way the data
is organised, since variables are created as they are
declared, and cease to exist when the block in which
they are declared is left. In the PDP8 system
variable allocation within a procedure is handled by
the compiler. In addition recursion must be allowed
for. Some text-books, modern ones included, state
that this is one of the big difficulties of writing
Algol systems, but in reality 1t is easy. The method
is shown in Fig. 2. All that is necessary is to
refer to variables by their position in the memory
relative to a base pointer. This contains the
address of Bottom in Fig. 2. Another pointer marks
the next free space at the end of the variables.
When a procedure is entered, the base pointer is set
ta the previous value of the next free space pointer,
so that the new procedure has a section of memory
all to itself. This arrangement is known as a stack.

Top of B
Procedure B nd arrgz 23
Called by A valu
Dope vector Elements
ist array of
Link to A [pacedepthi | array
Procedure A 1 A ‘?[’ basq
Called by main Depthparrays \
Array de|
Variables Lower bound 3
Link to main Array base A Muttiplier 3
Main Top of A Lower bound 2
program Bottom of A Multiplier 2
Return address Lower bound1
Number of B |BottomB | No. subscripts,
Active data Current procedure 22 Single array

ROGALGOL 8K DATA STORAGE

Fig. 2

Within the new procedure's memory are stored the
previous values of the pointers, so that the
machine can be restored to its previous state when
exit from the procedure is called for. The return
address is also held in this area. The first
location in the procedure variable areacontains a
unique number which identifies the procedure.

This 1s needed when a procedure called at a yet
higher level refers to variables in the procedure
under consideration. It is also used at labels
declared in the Algol program, because such labels
can be jumped to from procedures active at higher
levels, in which case the pointers must be reset.
The compiled program has at every label the identi-
fication number of the procedure in which the label
is declared. At run time, this number is checked
against the identifying number of the procedure
level pointed at by the base pointer. If it is
different, procedure levels are removed until the
numbers correspond. Jumps into procedures which
do not exist in the memory at the time of the Jump
are prohibited by the compiler.

Arrays present a special problem because they may
appear and disappear within a single procedure and
their size is not known until run-time. Arrays
are held on a separate stack, which is embedded
within the ordinary variable stack. Blocks in
which arrays are declared are numbered by depth

of declaration. At the beginning of each array
level are two words, the first containing the
current declaration depth, and the second the
pointer to the base of the previous level. When
the 12K overlay is in operation, a third word points
at the next free space in field 2, where array
elements are stored. The array base pointer is
stored along with the top and base pointers in the
link information. Each array starts with a dope
vector, which contains all the information neces-
sary to work out the address of an element, given
the subscripts. This dope vector is set up at run
time when the array is declared. In the 8K system,
the array elements are immediately above the dope
vector, but in 12K Algol the last word of the
vector contains the address in field 2 where the
array begins.

The operating system tape includes the loader,
which occupies with its tables the memory which

will be used for data storage when the program is
running. Currently, the compiler output is loaded
into field O starting at location 200, but the code
is word-wise relocatable, and the system could
easily be modified to load and run the code in any
part of any memory field.

INPUT/OUTPUT

All the built-in input/output procedures have as
their first parameter a device number, which must
be in the range 0-7. The numbers are logical
device numbers, and are used to address a table of
input/output machine code routine addresses. Users
can assign any device to any number by placing the
address of the routine in the table, using an over-
lay to the run-time system. In the standard system
device O gives a failure indication in input proc-
cedures, but can be used to suppress output by the
output procedures. Device 1 is the teletype and
device 2 the high-speed reader/punch combination.
Device 3 is the systems device, whose routines are
written as an overlay to the run-time program, so
that various operating systems can be catered for.
Currently, Monitor and 0S/8 overlays are available.
Although the input/output procedures are normally
used for just that, the organisation of the run
time system allows them to be used for activating
any pilece of machine code.

SYSTEM PERFORMANCE

Speed

The speed attalnable in a program which uses float-
ing point arithmetic is limited by the speed of the
floating point software. The statement A:=A+B-A/
BxB has been timed in a program written in machine
code and in Algol. In a machine which has no EAE
Algol is only about 15% slower. If an EAE is
available, Algol is about 80% slower, although it
is nearly twice as fast as on a machine without
EAE. It is believed that this extra time is spent
mainly in needless arithmetic stack operations. It
is planned to re-write the run time system to avoid
these, and when this is done Algol should be nearly
as fast as machine code on a machine with EAE.

Time Length

2 " 16 37 122 25
msec|words

AN
< VA% Y
V) % /////// ///,////

A=00 AzA+B-A/BxB A=exp(sin(1.0)
[] N]
OS/8FORTRAN ALGOL ALGOL + EAE

EXECUTION TIME & CODE LENGTH

Fig. 3

Fig. 3 shows a more detailed comparison between
0S/8 Fortran and Algol. In each case, the Algol
values are represented as a fraction of the 0S/8
Fortran values. Without EAE, Algol is about 3
times as fast, and with EAE about 6 times as fast.
Fortran is hardly speeded up at all by use of the
EAE, because its speed is not limited by the speed
of the arithmetic routines.

Storage requirements

Fig. 3 also shows that the compiled Algol code is
only one-third of the length of compiled Fortran
code. However, the saving in space is greater, for
two reasons. Firstly there is a greater amount of
memory available for storing programs. Fig. b
shows a memory map of an 8K machine, the cross-
hatched areas are ones occupied by the system, and

7777
077
/
DATA
/ // 07777
(Systems device) | |(Systems device)
PROGRAM PROGRAM
(+DATA) DATA
e U
ROGALGOL 0S/8 FORTRAN

MEMORY_ AVAILABLE TO USER

Fig, h

The hatched areas are occuplied by system routines.
The items in brackets are optional.

not available to the programmer. The Fortran
system is evidently much longer, although it has to
be admitted that this is partly due to the greater
facilities of the input/output handler.

The second reason is more subtle. When using
machine code, we automatically think of writing a
program as a series of subroutines, which are often
short, because this saves space and makes the logic
of the program easier to follow. Fortran is very
bad at subroutines, because each one occupies at
least one page, and has to be compiled separately.
This is sometimes quoted as an advantage of Fort-
ran, and although this may be true in general it is
certainly not true of the PDP8 implementation.
Algol is efficient in this respect. In the system
described here, the minimum length of a compiled
procedure is 3 words, compared with Fortran's 128
words.

The Algol compiler is about the same length as the
Fortran compiler. The complete Algol run-time

12

routines are about as long as the linking loader
program needed by the Fortran system.

A good starting reference for those wishing to
learn more about Algol Compilers is Vol. 3 of
Annual Reviews in Automatic Programming.

