
ANCR-1184-4 UC-32

RAMOS
fOCAL PROGRAMMHijB MANUAL

by

W.tl. Myer;3

R.C. Davies

iDM10 i:~ATlOi\lf-\l Ei\lGII'\JEi: Ii\JG LA.BORATORY

Idaho Falls, Idaho - 83401

Reproduced by

NATIONAL TECHNICAL
INFORMAnON SERVICE

U 5 Department 01 Commerce
Springfield VA 22151

T P~.J

PREPARED FOR THE

u So TOf~~(t~~~RG\J COffVUVUSS~O~~
iC.A.hO OPcR,~TIOI'~S OFFICE Ui'\jDER CONTRACT AT(10-1)-1375

Printed in the United States of America
Available from

National 'I'e ch n i.caL Information Service
u. s , of Commerce

This report \'ISS

States Government
Energy Commission,
s uh c o nt r a c t n r s , or
Of a s sur.e s r-:y IGgcl

Port Royal Road
Springfield, Virginia 22161

Price: Printed Copy $4.00 j Hi.c r o f Lch e $2.25

LEGAL NOTICE

prepared as an account of work sponsored by the United
Ne ithef the United States nor the United States ~tomic

[10 (any 0 f t 118 ire n p I 0 ~I e8 S, no (all \i o f t 118 ire 0n t \" act 0 r s ,
t i-~ i r (3 IIIP i 0 y8 es, ill (1 :\ c S 3 I: ~' r ran :,' I eX pes s ar i III [J I : 8

I i 2} iJ iii "LY 0 r f 2 S fJ Q 11 sib i i j t ~I in i 8 C ':~ l! I 3 C ~' II-If] i -L~'-

:1 Cs Z US c I] i ~,
c -, ,1 .~ c. n" I [-I r 0 , 0 n [' r (! t L;S

oJ ;) G ~: r c G G S " 0 u I "L "i I n I
,. iI'

ANCR-1l84-4 Mathematics and Computers
TID-4500

RAMOS
FOCAL PROGRAMMING MANUAL

W. R. Myers

R. C. Davies

AEROJET NUCLEAR CO~1PANY

Date Published - November 1974

PREPARED FOR THE U. S. ATOMIC ENERGY COMMISSION

IDAHO OPERATIONS OFFICE

UNDER CONTRACT NO. AT(10-1)-1375

I

ABSTRACT

RAMOS FOCAL is a version of the Digital Equipment Corporation FOCAL
(Formulating On-Line Calculations in Algebraic Language) high level
interpretive language processor. It has been modified to operate with
the RAMOS PDP-iS operating system, and optimized for the PDP-iS
instruction set. Several features have been added, including program
library operations, program chaining, computed "GOTO", more versatile
output formatting, and program selection of input and output devices.

ii

TABLE OF CONTENTS

ABSTRACT . . · ii

I. INTRODUCTION TO RAMOS FOCAL 1

II. THE FOCAL LANGUAGE 2

i , ARITHMETIC OPERATIONS 2
2. FOCAL SYMBOLS · 3
3. SUBSCRIPTS 3
4. SIMPLE COMMANDS 3
5. OUTPUT FORMAT • 4
6. ALPHANUMERIC OUTPUT 4
7. ABBREVIATIONS · . · 5
8. INDIRECT COMMANDS . 5
9. ERROR DETECTION AND CORRECTION 6

10. SAVING FOCAL PROGRAMS 7

III. FOCAL COMMANDS 8

l. TYPE 8
2. ASK . 9
3. WRITE 9
4. USE . . 9
5. SET • · · . 10
6. ERASE · · . . 10
7. GO 11
8. DO 11
9. IF . · . · 12

10. FOR 13
1l. RETURN 13
12. QUIT 14
13. z . . . 14
14. COMMENT 14
15. LIBRARY 14

15.1 OUT · 14
15.2 IN 14
15.3 XCT 14
15.4 DELETE 14:
15.5 14ERASE
15.6 LIST 14

16. MODIFY 15
17. USING THE TRACE FEATURE · 16
18. FOCAL FUNCTIONS . · · 16

18.1 SQUARE ROOT . · · 16
18.2 NATURAL LOGARITHM 17
18.3 NATURAL EXPONENTIAL 17
18.4 GENERAL EXPONENTIAL 17
18.5 SINE AND COSINE 17
18.6 ARCTANGENT · · 17

iii

18.7
18.8
18.9
18.10
18.11

ABSOLUTE VALUE
INTEGER VALUE
SIGN VALUE ..
TIJIfE-OF-DAY
REGISTER ACCESS

17
17
18
18
18

IV. FOCAL PROGRAM EXAMPLES

1. PRINTING TIME-OF-DAY
2. LOG-LOG INTERPOLATION

2 . 1 A VARIATION
2.2 ANOTHER VARIATION

3. NEUTRON FLUX DETERMINATION

19

19
19
20
21
21

APPENDICES

APPENDIX A - FOCAL COMHAND SUMMARY
APPENDIX B - PROGRAM AND VARIABLES STORAGE FORMAT .
APPENDIX C - COMMENT ON ERROR MESSAGES

iv

23
27
29

I. INTRODUCTION TO RAMOS FOCAL*

FOCAL (Formulating On-Line Calculations in Algebraic Language) is an
on-line, conversational, high level problem solving language developed
by Digital Equipment Corporation for PDP computers. The language
consists of short imperative English statements in which m~thematical

expressions are represented in standard algebraic notation. The FOCAL
language processor is interpretive and therefore relatively slow, but
it makes the full computational power of the host computer easily avail­
able to the user.

There is probably no other computer language that has been modified more
than FOCAL, by individual users, to meet the problem-solvi~g requirements
peculiar to their own needs. RAMOS FOCAL has evolved in several stages
from "standard" DEC PDP-8 FOCAL. The language has been included in the
RAMOS system to provide post-processing, formatting, and report generation
for data that have been partially processed by fast, complex primary data
reduction modules such as 'STRIP' and 'GAUSS'.

FOCAL operates in the RAMOS PDP-IS operating system environment, utilizing
monitor input/output facilities and the monitor-resident re-entrant
floating point arithmetic facilities. FOCAL operates in any available
PDP-IS (4096 word) page; the interpretive language processor occupies
approximately 17S0 locations, leaving 2340 locations for the FOCAL
language program and variables. This space is adequate for a typical
program of approximately ISO statement lines. An operating FOCAL program
may access any of the RAMOS alphanumeric input/output devices including
the paper tape reader and punch, the line printer, and the interprocessor
data links. FOCAL also has access to the RAMOS "coTIllIlon" registers through
a special function.

COTIllIlonly used programs may be kept on paper tape or in an on-line
(DECtape #6) library. The on-line program library has a capacity of
approximately 70 programs which are accessed through a directory using
a three-character program name. The library commands implement the
capability of chaining program modules together to perform more complex
calculations.

FOCAL may be initiated from any RAMOS command terminal by typing the
monitor command 'FOCAL'. When the monitor has loaded and started the
program, the system will respond by typing 'FOCAL', followed by an
asterisk to indicate that it is ready for user commands or input.

*FOCAL and PDP are trademarks of Digital Equipment Corporation.

1

II . THE FOCAL LANGUAGE

The FOCAL language consists of simple imperative English-language
statements such as: SET A=B; TYPE A; GO 7.32; DO 5, etc. The statements
may be either "direct", indicating that the operation is to be performed
immediately, or "indirect", indicating that the line should be stored as
part of a procedure that will be performed at a later time. The use of
direct statements allows FOCAL to be used as a very powerful calculator,
and enables on-line editing and modification of indirect programs. The
indirect mode is used to write sequential procedures to perform more
complex calculations and to provide a means of saving and restoring
commonly used procedures. A statement preceded by a line number (of the
form GG.SS) is indirect; if the command is entered without the line
number, it is direct and is executed immediately.

1. ARITHMETIC OPERATIONS

FOCAL performs the usual arithmetic operations of addition, sub­
traction, multiplication, division and exponentiation. These are
written by using the following symbols:

Symbol Math Notation FOCAL---
t Exponentiation AB

AtE

* Multiplication A'B A*B

I Division MB AlB

+ Addition A+B A+B

- Subtraction A-B A-B

These operations may be combined into expressions. When FOCAL
evaluates an expression which TIlay include several arithmetic
operations, the order of precedence is: exponentiation, followed by
multiplication, division, addition and subtraction. Expressions
with the same precedence are evaluated from left to right.
Addition and subtraction have the same precedence.

A+B*C+D is A+(B*C)+D not (A+B)*(C+D) nor (A+B)*C+D --
A*B+C*D is (A*B)+(C*D) not A*(B+C)*D nor (A*B+C)*D

X/2*Y is
X

(multiplication has a higher precedence2Y
than division)

Expressions are combinations of arithmetic operations or functions
which may be reduced by FOCAL to a single number. Expressions may
be enclosed in properly paired parentheses, square brackets, or
angle brackets. Expressions may be nested; FOCAL computes the value
of nested expressions by doing the innermost first and working outward.

2

2. FOCAL STI1BOLS

FOCAL allows variables to be represented by alphanumeric symbols
of up to three characters, the first of which must be alphabetic.
If a symbol name consisting of more than three characters is used,
only the first three are recognized. FOCAL includes several
implicitly defined names for function evaluation and numeric
manipulation (see Section 111-18) which may not be used as variable
names.

A
ABC
KAI
lA3
SAMMY
COS

3. SUBSCRIPTS

legal
legal
legal
illegal, first character not alphabetic
legal, but equivalent to 'SAM'
illegal, a reserved function name

FOCAL always allows identifiers, or variable symbols, to be further
identified by subscripts (range ± 65535) which are enclosed in
parentheses immediately following the identifier. A subscript may
also be an expression:

*SET Al(I+3*J)=2.71; SET Xl(5+3*J)=2.79

4. SIMPLE COMMANDS

One of the more useful commands in the language is the 'TYPE'
command which directs FOCAL to evaluate and print the results of
the following expression:

If the user enters:

FOCAL answers:

*TYPE 6.4318+8.1346

14.5664

.:

Another useful command is 'SET', which causes FOCAL to store the
symbol and its numerical value; when the symbol appears in an
expression, the numerical value is used. Thus, the user may type,

*SET A=3.14159; SET B=428.77; SET C=2.71828

These symbols may now be used to identify the values:

i~TYPE A+B+C
434.6300

These two commands alone allow FOCAL to be used as a very powerful
"desk calculator". Both the 'TYPE' and 'SET' commands will be
explained more fully in the next section.

Several statements may be entered on the same line if they are
separated by semi-colons (;). The FOCAL interpreter treats semi­
colons as if they were line terminators in most situations.

3

FOCAL is always checking user input for invalid commands, illegal
formats, and many other kinds of errors, and types an error message
indicating the type of error detected.

5. OUTPUT FORMAT

Numeric output may be printed in fixed-point, floating point
(scientific), or integer formats. On initial loading, the default
format is E18.06, floating point with six digits to the right of
the decimal point and one to the left: X.XXXXXXE±XX, with some
leading blanks. The user may set the format by using the %
character in a 'TYPE' statement:

*TYPE %E18.06,A+B/C

The characters E, F or I may follow the % sign to indicate the type
of format required; if the characters are not used, defaults to E
or F formats are assumed.

Representation

% (only)
%MM.NN
%E
%F
%1
%EMl'1.NN
%Fl'1H.NN
%IMM.NN

Format

E14.06
FMM.NN
E14.06
F12.06
17
EMM.NN
Fl'1l'1. NN
IMM

(MM field width)

(NN "fraction" width)

FOCAL calculations are accurate to 10 decimal digits,. regardless
of the format specified; printed results are always rounded in the
last displayed digit.

A variable name may be used as a format descriptor if the variable
value defines a legitimate format. If the variable 'A' has the
value 12.06, then:

*TYPE %EA,A,%IA,A

causes FOCAL to respond:

1.206000E+01 12

6. ALPHANUMERIC OUTPUT

Text strings are enclosed in quotation marks (" ... ") and may
include most ASCII printing characters and spaces. The carriage
return, line feed, and leader-traile)~ characters are not allowed
in text strings. In order to have FOCAL type a carriage return­
line feed at the end of a text string, the user inserts an excla­
mation mark (:):

4

-.

*TYPE "ALPHA":"BETA":"DELTA":
ALPHA
BETA
DELTA

To get a carriage return without a line feed at the end of a text
typeout, a number sign (U) is used. For a form-feed (useful on the
line printer), the ampersand (&) is used.

7. ABBREVIATIONS

All FOCAL commands may be abbreviated to the first le~ter; the
interpreter does not examine past the first character of any
command. It is good programming practice, especially when writing
large FOCAL programs, to use the one-character representations.
The following two procedures give equivalent results, except that
the first runs faster and uses less computer memory:

1.01
1. 02
1. 03

S ABC=3
S XYZ=7
T %,ABC+XYZ

1. 01
1.02
1. 03

SET
SET
TYPE

ABC=3
XYZ=7
%,ABC+XYZ

-,

.-

8.

For the same reason, it is good practice to use one-character
variable names where practical. Also, since line numbers require
essentially two words of memory, while characters require only
1/3 word, it is good practice to combine several statements,
separated by semi-colons, in each program line.

INDIRECT COMMANDS

If a line is prefixed by a line number, that line is not executed
immediately; it is stored by FOCAL for later execution, usually as
part of a sequence of commands. Line numbers must be in the range
1.01 to 999.99. The numbers 1.00, 2.00, etc., are illegal line
numbers; they are used to indicate an entire group of lines. The
number to the left of the point is called the group number; the
number to the right is called the step number. Indirect commands
are executed by using 'GO' or 'DO' commands which may be either
direct or indirect. The 'GO' command followed by a line number
causes FOCAL to execute the command at the specified line number.
The 'GO' command alone, without a line number, causes FOCAL to go
to the lowest numbered line to begin executing the entire program.

The 'DO' command is used to transfer control to a specified step,
or group of steps, and then return automatically to the command
following the 'DO' command.

~'~ERASE ALL
*1.1 SET A=I; SET B=2
~'q. 2 TYPE " STARTING="
~q.3 DO 3.2
oJ~2.1 TYPE" FINISHED="
*3.1 SET A=3; SET B=4
*3.2 TYPE %I2,A+B
~'<GO

STARTING= 3 FINISHED= 7

5

When the 'DO' command at line 1.3 was reached, the 'TYPE' command
at 3.2 was performed and then the program returned to line 2.1.

The 'DO' command can also cause FOCAL to execute a group of commands
and then return automatically to the normal sequence, as shown in
the example below.

i< 1.1 TYPE "A"
*1.2 TYPE "B"
*1.3 TYPE "c"
*1.4 DO 5.0
i< 1. 5 TYPE " END"; GO 6.1
*5.1 TYPE "D"
*5.2 TYPE "E"
i<5.3 TYPE "F"
*6.1 TYPE " "
*GO
ABCDEF END.

When the 'DO' command at line 1.4 was reached, FOCAL executed
lines 5.1, 5.2, and 5.3 and then returned to line 1.5.

An indirect command can be inserted in a program by using the
proper sequential line number. For example,

*4.8 SET A=l; SET B=2
*6.3 TYPE %12.04, B/C+A
4.9 SET C=1.31.29
*GO

where line 4.9 will be executed before line 6.3 and after line
4.8. FOCAL arranges and executes indirect commands in numerical
sequence by line number, starting with the smallest line number
and going to the largest.

9. ERROR DETECTION AND CORRECTION

FOCAL checks for a variety of errors, and, if an error is detected,
prints an error code and the line number (if the error occurred in
an indirect statement) in which the error was detected. Most
errors are due to incorrectly constructed user statements and will
be obvious on examination of the offending line.

The WRITE command without an argument can be used to print out the
entire indirect program so the user can visually check it for errors.

The trace feature is invaluable in program debugging. Any part of
an indirect statement or program may be enclosed in question marks
and when that part of the program is executed that portion surrounded
by questions marks will be printed. If only one question mark is
inserted, the trace feature becomes operative. and the program is
printed out from that point until completion. The trace feature
may also be used to follow program control and to create special
formats (see Section 111-17).

6

-.

If the user types a bad character, or several bad characters, he
can use the RUB OUT key (which echoes a backslash) to erase one
character to the left each time the key is depressed. The entire
input line may be erased by the CNTRL-U key (ASCII erase code) if
used before the line is terminated by the RETURN or ALT-MODE key.

A line can be overwritten by repeating the same line number and
typing the new command.

A line or group of lines may be deleted by using the ERASE command
with an argument. For example, to delete line 2.21, the user types

*ERASE 2.21

To delete all of the lines in group 2, the user types

*ERASE 2.0

Used alone, without an argument, the 'ERASE' command causes FOCAL
to erase the user's entire symbol table. The command 'ERASE ALL'
erases all user input, program and variables.

The 'MODIFY' command is another valuable feature. It may be used
to change any number of characters in a particular line, as
explained in Section 111-16.

Use of the 'ERASE', 'MODIFY' and 'LIBRARY' commands, and entry of
new lines cause all user-defined symbols to be lost because of
text rearrangement operations performed by the interpreter.

10. SAVING FOCAL PROGRMIS

The user FOCAL programs may be saved by punching on paper tape
using the 'WRITE' command, or in a DECtape (unit #6) library using
the 'LIBRARY' commands. The DECtape library has a capacity of
approximately 70 programs per tape. Library programs are accessed
through a directory index by three-character alphanQ~eric names.

7

III. FOCAL COMMANDS

1. TYPE

The 'TYPE' command is used to request that FOCAL type out a text
string, the value of an expression, or the value of an identifier.
For example:

*4.14 TYPE 8.1+3.2-(29.3*5)/2.5t7
4.15 TYPE (2.2+3.5)(7.2/3)/59.1t3
*4.16 TYPE ABC

Several expressions may be computed in a single 'TYPE' command,
with commas separating each expression.

*9.19 TYPE %4.01, A1*2, E+2t5, 2.51*81.1

The user may request printing of all identifiers which he has
defined by typing 'TYPE $' and a carriage return. This causes
FOCAL to type out the identifiers with their values, in the order
in which they were defined. The $ may follow other statements in
a 'TYPE' command, but must be the last operation on the line.

*ERASE
*SET L=33; SET B=87; SET Y=55; SET C9=91
i~TYPE $
L(OO)= 33.0
B(OO)= 87.0
Y(OO)= 55.0

C9(00)= 91. 0

A text string enclosed in quotation marks may be included in a
'TYPE' command. A carriage return may replace the terminating
quotation mark:

*1.2 TYPE fiX SQUARED

A text string or any FOCAL command or group of commands may not
exceed the capacity of a teletype line, which is 72 characters.
A statement may not be continued on a following line. To print
out a longer text, each line must start with a 'TYPE' command.

FOCAL does not automatically perform a carriage return after
executing a 'TYPE' command. The user may insert a carriage return­
line feed by using an exclamation mark (!); to insert a carriage
return without a line feed, the user types a number sign (#); a
form-feed is generated by the ampersand (&). Spaces may be inserted
by enclosing them in quotation marks. These operations are useful
in formatting output.

8

2. ASK

The 'ASK' command is normally used in indirect commands to allow
the user to input data at specific points during the execution of
his program. The 'ASK' command is written in the form~

"<11.99 ASK X,Y,2

When step 11.99 is encountered by FOCAL, it waits
input. The user then types a value in any format
identifier, followed by a line terminator. FOCAL
the user types a value for the second identifier.
until all the identifiers or variables in the ASK
been given values.

for numeric
for the first
then waits until

T::"lis continues
statement have

FOCAL recognizes the value only when a terminator is entered.
Therefore. a value can be changed before typing the::.erminator.
This is done by typing a CNTRL-U~ and they typing the. correct
value followed by the terminator.

Text string and format control may be included in an 'ASK' state­
ment just as in the 'TYPE' command:

i<1. 10 ASK : "HOW MANY APPLES DO YOU HAVE? JI ,APPLES
*DO 1.10
HOW MANY APPLES DO YOU HAVE? 25

The identifier 'APP' (FOCAL recognizes the first three characters
only) now has the value 25.

If CNTRL-D (the EOT character) is entered as the first character
in response to an 'ASK', an error is generated which forces FOCAL
out of program execution mode and into command mode. This can be
useful in forcing the termination of a malfunctioning procedure.

3. WRITE

A 'WRITE' command without an argument causes FOCAL
all indirect statements which the user has typed.
ments are those preceded by a line number.

to write out
Indirect state-

A group of line numbers, or a specific line, may be ~yped out with
the WRITE command using arguments~ as shown below.

4. USE

*7.97 WRITE 2.0
i< 7 •98 WRITE 2. 1
*7.99 WRITE

(FOCAL types all group 2 lines)
(FOCAL types line 2.1)
(FOCAL types all numbered lines)

The 'USE' command permits the FOCAL program to access all of the
RAMOS monitor alphanumeric devices for input and output. The
command must be followed by one of the modifiers 'INPUT' or
'OUTPUT', and a mnemonic device name:

9

10.1 USE INPUT PT; ASK : "ENTER A" ,A
10.2 USE OUTPUT LP; TYPE "A = ",A,:

The input and output mnemonic device names that may be used are
specified in the RAMOS user's manual; they include: PT for paper
tape input or output, LP for line printer output, BA for sequence
control text input and TT for RML console teletype input or output.

If the device name is not used, the input and output functions
default to the command terminal from which FOCAL was requested.
This can be useful when FOCAL is called from a batch sequence but
dialogue with the initiating terminal is required:

1. 01 U I; U 0

The entire indirect program may be listed on the line printer by
typing: *U 0 LP;WRITE.

5. SET

The 'SET' command is used to define identifiers. When FOCAL
executes a 'SET' command, the identifier and its value are stored
in the user's symbol table, and that value will be substituted
for the identifier when the identifier is encountered in the
program.

*ERASE ALL
*3.4 SET A=2.55; SET B=8.05
"<3.5 TYPE ; ,A+B
*GO

1,06000E+01

An identifier may be set equal to previously defined identifiers,
which may be used in arithmetic expressions:

"<3.6 SET F=A
*3.7 SET G=(A+B)*2.2t5

6. ERASE

An 'ERASE' command without an argument is used to delete all
identifiers, with their values, from the symbol table.

If the 'ERASE' command is followed by a group number or a specific
line number, a group of lines or a specific line is deleted from
the program.

'~ERASE 2.0
"<ERASE 7 .11

(deletes all group 2 lines)
(deletes line 7.11)

The 'ERASE ALL' command erases all the user's input.

In the following example, an 'ERASE' command is used to delete
line 1.50.

10

i~ERASE ALL
*1.20 SET B=2
i, 1.30 SET C=4
i'l .40 TYPE B+C
*1.50 TYPE B-C
>~ERASE 1.50
*WRITE
C RAMOS FOCAL

1.20 SET B=2
1.30 SET c=4
1.40 TYPE B+C

7. GO

The 'GO' command appearing alone requests that FOCAL execute the
program starting with the lowest numbered line. The remainder of
the program will be executed in line number sequence. Line numbers
must be in the range 1.01 to 999.99, excluding 2.00, 3.00, etc.

The 'GO' command followed by a line number causes FOCAL to transfer
control to a specific line in the indirect program. After executing
the command at the specified line, FOCAL continues ta the next
higher line number, executing the program sequentially.

8. DO

*1.1
-r , 2
*1.3
*1.4
*GO
BCD

TYPE "A"
TYPE "B"
TYPE "c"
TYPE "D"
1.2

.'

The 'DO' command transfers control momentarily to a single line,
a group of lines, or the entire indirect program. If transfer is
made to a single line, the statements on that line are executed,
and control is transferred back to the statement following the
'DO' command. Thus, the 'DO' command makes a subroutine of the
specified group or line.

*1.1 TYPE "X"
*1.2 DO 2.3; TYPE "Y"
i<1.3 TYPE "z"
*2.3 TYPE "A"
*GO
XAYZA

If a 'DO' command transfers control to a group of lines, FOCAL
executes the entire group sequentially and returns control to the
statement following the 'DO' command.

If 'DO' is written without an argument, FOCAL executes the entire
indirect program, as with 'GO'.

11

'DO' commands cause specified portions of the indirect program to
be executed as closed subroutines. These subroutines may also be
terminated by the 'RETURN' command.

IMPORTANT NOTE

If a 'GO' or an 'IF' command is executed within a 'DO' subroutine,
two actions are possible:

(a) If a 'GO' or 'IF' command transfers to a line inside the 'DO'
group, the remaining commands in that group will be executed
as in any subroutine before returning to the command following
the 'DO'.

(b) If transfer is to a line outside the 'DO' group, that line is
executed and control is returned to the command following the
'DO', unless that line contains another 'GO' or 'IF'.

9. IF

In order to transfer control after a comparison, FOCAL contains a
conditional 'IF' statement. The normal form of the 'IF' statement
consists of the word 'IF', a space, a parenthesized expression or
variable, and three line numbers in order, separated by commas.
The expression is evaluated, and the program transfers control to
the first indicated line if the expression is less than zero, to
the second indicated line if the expression has a value of zero,
or to the third indicated line if the value of the expression is
greater than zero.

The program below transfers control to line number 2.10, 2.30 or
2.50, according to the value of the expression in the 'IF' state­
ment.

*2.1 TYPE "LESS THAN ZERO"; QUIT
*2.3 TYPE "EQUAL TO ZERO"; QUIT
,,<2 .5 TYPE "GREATER THAN ZERO"; QUIT
*IF (25-25)2.1,2.3,2.5
EQUAL TO ZERO

The 'IF' statement may be shortened by terminating it with a semi­
colon or carriage return after the first or second line number.
If a semicolon follows the first line number, the expression is
tested and control is transferred to that line if the expression
is less than zero. If the expression is not less than zero, the
program continues with the next statement,

*2.20 IF (X)1.8; TYPE "Q"

In the above sample, when line 2.20 is executed, if X is less than
zero, control is transferred to line 1.8. If not, Q is typed out.

*3.19 IF (B)1.8,1.9
*3.20 TYPE B

12

In this example, if B is less than zero, control goes to line 1. 8,
if B is equal to zero, control goes to line 1.9. If B is greater
than zero, control goes to the next statement, which in this case
is line 3.20, and the value of B is typed.

VARIABLES AS LINE NUMBERS

Indirect Program line numbers appear as explicit parts of the 'GO',
'DO' and 'IF' statements. These line numbers may be represented
by FOCAL variable names if it is ensured that the variables will
have legitimate line number values when evaluated in these statements.

The statement: ~~FOR I=1,8,2;DO I will cause FOCAL to execute all
lines in group 1, then all lines in groups 3, 5 and 7, in that
order. Variables used as line numbers are rounded in the second
fractional digit; 1.277 represents line 1.28, for example,

10. FOR

This command is used for program loops and iterations. The general
format is

FOR A=B,C,D;(COMMAND)

The identifier A is initialized to the value B, then the command
following the semicolon is executed. When the command has been
executed, the value of A is incremented by D and compared to the
value of C. If A is less than or equal to C, the command after
the semicolon is executed again. This process is repeated until
A is greater than C, and FOCAL goes to the next sequential line.

The identifier A must be a single variable. B, C, and D
either expressions, variables, or numbers. If the comma
D are omitted, it is assumed that the increment is one.
are omitted, 'FOR' is handled like a 'SET' statement and
is performed.

may be
and value of
If C and D
no iteration

,"

11.

The computations involved in the FOR statement are done in floating­
point arithmetic, and it may be necessary, in some circumstances,
to account for this type of arithmetic computation.

The values of the expressions, B, C and D, the initial value, final
value, and increment, are fully determined when the 'FOR' statement
is first encountered. Changing the values of B, C, or D in the
loop can have no effect on the number of iterations performed.

RETURN

The 'RETURN' command is used to exit from a 'DO' subroutine. When
a 'RETURN' command is encountered during execution of a 'DO' sub­
routine, the program exits from its subroutine status and returns
to the command following the 'DO' command that initiated the sub­
routine status.

13

12. QUIT

A 'QUIT' command causes FOCAL to leave program execution mode and
return control to the user. FOCAL types an asterisk and the user
may enter another command.

IMPORTANT NOTE

The 'QUIT' command should only be used in special circumstances
such as debugging programs in development. After a program is
operating satisfactorily, all 'QUIT' commands should be replaced
by 'z' to return control to the RAMOS monitor.

13. Z

The 'z' command terminates execution of the FOCAL program and
returns control to the RAMOS monitor.

14. COIvIMENT

Beginning a statement with the letter C will cause the remainder
of that line to be ignored so that comments may be inserted into
the program. Such lines will be skipped over when the program is
executed, but will be typed out by a 'WRITE' command.

15. LIBRARY

The 'LIBRARY' command group contains six operations to save and
retrieve user FOCAL programs, to print a summary of the library
contents, and to maintain the library index. The FOCAL library
is maintained on DECtape unit #6.

15.1 LIBRARY OUT nam transfers the user FOCAL program to the
library and makes a corresponding entry of "nam", a one- to
three-character alphanumeric identifieL, in the library
index. If a program with name "nam" is already in the
library, it is replaced.

15.2 LIBRARY IN nam retrieves the program with the name "nam"
from the FOCAL library.

15.3 LIBRARY XCI nam retrieves the program with the name "nam"
from the library and starts execution at the lowest-numbered
line.

15.4 LIBRARY DELETE nam removes the entry "nam" from the library
index, freeing the corresponding storage area in the library.

15.5 LIBRARY ERASE clears all entries from the index, ordinarily
used only to prepare a new tape for use as a FOCAL library
tape.

15.6 LIBRARY LIST causes the names of all programs in the library
index to be printed on the current output device.

14

16. MODIFY

Frequently, only a few characters in a particular line require
changes. To facilitate this, and to eliminate the need to replace
the entire line, the FOCAL programmer may use the 'MODIFY' command;
in order to modify the characters in line 5.41, the user types
MODIFY 5.41. This command is terminated by a carriage return
whereupon FOCAL waits for the user to type that character in the
position in which he wishes to make changes or additions. This
character is not printed.* After he has typed the search character,
the program types out the contents of that line until the search
character is found.

At this point, the user has seven options:

a. Type in new characters in addition to the ones that have
already been typed out.

b. Type a TAB (CNTRL-I); this will cause the search to proceed
to the next occurrence, if any, of the search character.

c. Type a CNTRL-Z; this allows the user to change the search
character just as he did when first beginning to use the
'MODIFY' command.

d. Use the RUBOUT key to delete one character to the left each
time RUBOUT is depressed.

e. Type a CNTRL-U to delete the line over to the left margin.

f. Type a carriage return to terminate the line at that point,
removing the text to the right.

g. Type a LINE FEED to save the remainder of the line.

The 'ERASE' and 'MODIFY' commands are generally used only in
immediate mode since they return to command mode upon completion.

Notice the errors in line 7.01 below.

*7.01 JACK AND BILL W$NT UP THE HALL
*MODIFY 7.01

JACK AND B/JILL W$/ENT UP THE HA/ILL
*WRITE 7.01
07.01 JACK AND JILL WENT UP THE HILL

* On full-duplex RM10S terminals; some terminals are wired half-duplex,
and the control characters will be echoed by the hardware. In either
case, the FOCAL action is the same.

15

To modify line 7.01, a B was typed by the user to indicate the
character to be changed. FOCAL stopped typing when it encountered
the search character, B. The user typed the RUBOUT key to delete
the B, and then typed the correct letter J. He then used the
CNTRL-Z key followed by the $, the next character to be changed.
The RUBOUT deleted the $ character, and the user typed an E.
Again a search was made for an A character. This was changed to
I. A LINE FEED was typed to save the remainder of the line.

17. USING THE TRACE FEATURE

As stated in Section 11-9, the trace feature is useful in checking
an operating program. Those parts of the program which the user
has enclosed in question marks will be printed out as they are
executed.

In the following example, parts of three lines are printed:

~~1.1 SET A=l
~<1 • 2 SET B=5
~~1. 3 SET C=3
*1.4 TYPE %13, ?A+B-C?,~

*1.5 TYPE ?B+A/C?,~

*1.6 TYPE ?B-C/A?
i'GO
A+B-C 3
B+A/C 5
B-C/A 2

Also 'GO?' will trace the entire program.

18. FOCAL FUNCTIONS

RAMOS FOCAL supports the six common functions: square root,
natural logarithm and exponent, and sine, cosine and arctangent,
and three numeric modification operators: integer, absolute, and
sign value. Two functions that utilize RA}10S monitor facilities,
time-of-day and "common" register access, are also included.

All function names are three-character identifiers which may be
used in the same manner as normal variable names in arithmetic
expressions, except that they must have parenthesized arguments.
The arguments may be simple variable names or complex expressions.
With the exception of 'REG', the register access function, function
names may not be used as the destination in value assignment
commands; they may not appear on the left side of the equal sign
(=) in the 'SET' and 'FOR' statements.

18.1 SQUARE ROOT

The square root function 'SQT(X), returns the square root
of the absolute value of the argument:

-s A=SQT (B)

16

18.2 NATURAL LOGARITHM

The logarithm function 'LOG(X), returns the value of the
natural logarithm of the absolute value of the argument.
If the argument has zero value 'LOG' returns zero.

*S A=LOG(B)

18.3 NATURAL EXPONENTIAL

The exponentiation function 'EXP(X) , returns the value of eX,
the natural exponent.

*S A=EXP(B)

18.4 GENERAL EXPONENTIAL

The general exponentiation function is included in FOCAL
as an arithmetic operator (t). This operator uses the
RAMOS logarithm and exponential functions:

AtB exp (B*log(IA!))

The arguments, A and B, may have any value, but if the base,
A, is negative, its absolute value is used.

18.5 SINE M~D COSINE

The trigonometric function~ 'SIN(X)' and 'COS(X) , , require
arguments in radians.

*S TAN=SIN(X)/COS(X)

18.6 ARCTANGENT

The arctangent function 'ATN(X) , returns the principle
value of the arctangent of the argument, in the range
±n/2, in radians.

*S X=ATN(Y)

18.7 ABSOLUTE VALUE

The absolute value operator 'ABS(X), evaluates the argument,
then forces the sign positive.

18.8 INTEGER VALUE

The integer value operator 'ITR(X), evaluates the argument
and returns the result rounded to the nearest integer value.
The integer value range is ± 65535.

17

18.9 SIGN VALUE

The sign evaluation operator 'SGN(X), returns a value of +1
for positive arguments (including zero), and -1 for negative
arguments.

18.10 TUlE-OF-DAY

The time-of-day function 'TIM()' returns the time of day,
in seconds, from the RAMOS system clock. The value of the
argument is meaningless to the 'TIM' function, but FOCAL
requires that the parentheses be used.

18.11 REGISTER ACCESS

The 41 RAMOS "common" registers may be used as FOCAL variables.
The name 'REG' is reserved for this purpose. 'REG' is treated
as a function name and must have a parenthesized argument
whose value is in the range zero through forty. The regis­
ters are used to transfer values between different RM10S
program modules, but must be used with caution since they
are available to all operating programs.

*S REG(3)=REG(2)+REG(1)*A

18

IV. FOCAL PROGRAM EXAMPLES

1. PRINTING TlME-OF-DAY

This example is a simple procedure illustrating the seneral format
for FOCAL programs and the use of FOCAL functions. The time-of-day
(in seconds) is read from the RANOS clock and printed on the user
output terminal:

C RAMOS FOCAL
1.10 S T=TIMO
1.20 S H=ITR(T/3600-.5)
1.30 S T=T-H*3600
1.40 S M=ITR(T/60-.5)
1.50 S T=T-W~60

1.60 T %I4,~,H,M,T,::

1.70 Z

Line 1.1 reads the time to the variable 'T'. Line 1,2 extracts
the "hours" information; since 'ITR' rounds the operand, 1/2 must
be subtracted to simulate truncation. Line 1.6 sets the output
format to 14 and prints hours, minutes and seconds c;; a new line.

2. LOG-LOG INTERPOLATION

Many useful functions appear linear when presented in log-log for­
mat. In particular, the efficiency dependence on gamma energy of
Ge(Li) detectors exhibits several such segments. The following
program is used in preparing efficiency tables by interpolatipg
between end-points of "linear" regions:

1.10 T :: "LOG-LOG INTERPOLATION ROUTINE"
1. 20 A : "sTART ENERGY X(1) " ,X (1)
1.21 A :"EFFICIENCY Y(l) ",Y(1)
1. 23 A : "FINAL ENERGY X(2) ",X(2)
1.25 A :"EFFICIENCY Y(2) ",Y(2)
1. 32 A : "ENERGY INCREMENT " , DX
1. 35 A : "MULTIPLIER =",MP
1. 37 S M=LOG(y (1) /Y (2» /LOG(X(1) /X(2»
1.38 S B=LOG(y(l»-M*LOG(X(l»
1.40 D 2
1.45 T :&;U O;Q
2.10 U 0 LP;T &
2.15 DO 1.1
2.20 T i: "ENERGY (KEV) EFFICIENCY"
2.30 D 4
4.10 S X=X(1)
4.40 S Z=M*LOG(X)+B
4.50 S Y=EXP (Z)
4.52 S Y=Y*MP
4.55 T :%F8.02,X,%E18.03,Y
4.60 S X=X+DX
4.70 I (X-X(2»4.4,4.4,4.9
4.90 R

19

Line 1.10 TYPEs the program title on the user's terminal, and
lines 1.20 through 1.35 ASK for the initial and final values of
the segment, and the energy increment required. Lines 1.37 and
1.38 SET the values of the slope and intercept from the input data.

Line 1.40 makes a "subroutine call", telling FOCAL to DO all the
lines in group 2.0. On returning from group 2.0, line 1.45 will
be executed to TYPE a form-feed (the output will have been set to
the line printer), reset the output device to the user teleprinter,
and QUIT. Use of the 'QUIT' command is not ordinarily recommended,
but in this case it allows the user to restart (GO) and interpolate
another segment of the curve. 'z' will have to be entered as a
direct command to release FOCAL and return to the RAMOS monitor.

Group 2.0, lines 2.10 through 2.30, is executed as a subroutine
from line 1.40. Line 2.10 switches the output device to the line
printer (USE OUT LP) and starts a new page (T &). Line 2.15 prints
the program title by executing line 1,10 as a subroutine, and line
2.20 prints column titles. Line 2.30 executes group 4.0 as a
subroutine to calculate and print the pairs of values.

On returning from group 4.0, the command following the 'DO' command
at line 2.30 should be executed (see section 111-18), i.e., the
program should continue at line 4.10. However, group 2.0 is called
as a subroutine (from 1.40), is completed when line 2.30 is executed,
and control is thus passed back another level to the line following
the 'DO 2' statement.

Group 4.0 performs the computations and printing. Line 4.10 SETs
the initial value of X, and lines 4.40 through 4.52 calculate the
interpolated value at X. Line 4.55 prints the values, X in fixed­
point, and Y in floating-point format.

Line 4.60 SETs X to its next value, and the new value is tested in
line 4.70. IF the value is less than or equal to the limit, control
is returned to line 4.40. IF it is greater than the limit, line
4.90 is executed to RETURN from the group 4.0 subroutine.

2.1 A VARIATION

In the group 4.0 subroutine, the value of X is incremented by
explicitly adding the value of DX in line 4.60, and the test
for completion is made using an 'IF' statement in line 4.70;
the initial value is set in line 4.10. All of these operations
may be combined using the 'FOR' statement. For example, group
4.0, above, can be replaced by:

4.40 F X=X(I),X(2) ,DX;D 5
5.10 S Y=MP*(EXP(M*LOG(X)+B»
5.20 T :%8.02,X,%E18.03,Y

Line 4.40 in this example sets the initial value of X, then
executes group 5.0 as a subroutine (note that the "subroutines"
are now nested three deep). X is incremented by DX, executing
group 5.0 each time until the limit value X(2) is exceeded.

20

Note that the computations in lines 4.40 through 4.52 of the
first example are performed in this variation in one line,
using a more complex expression. Note also that since group
4.0 consists in only one line, the 'FOR' statement, line 4.40,
should replace the 'DO 4' statement, line 2.30. This would
save program and stack space but complicate the example.

2.2 ANOTHER VARIATION

Group 5.0 of the second example can be merged into the 'FOR'
statement in line 4.40, immediately above:

4.40 F X=X(1),X(2),DX;T :%8.02,X,%E18.03,MP*EXP(M*LOG(X)+B)

The 'DO 5' statement is replaced by a 'TYPE' command which
evaluates (but does not save) Y as a part of the procedure
required to print it. Again, a "better" procedure would
result from replacing line 2.30 with this line 4.40.

3. NEUTRON FLUX DETERHINATION

In many RAMOS applications, data are pre-processed by primary data
reduction modules such as 'STRIP' and 'GAUSS', and the "raw" results
are passed to conversational post-processor modules for further
operations and report formatting.

The following FOCAL program example is used, as the third in a
sequence of data reduction operations, to calculate the neutron
fast flux measured by a nickel wire irradiated in a nuclear reactor.
It is assumed that a previous FOCAL program has calculated the
irradiation history and decay correction term and has left the
result in "common" register 1/40. It is also assumed that the
gamma spectrum from the wire has been operated on by the 'STRIP'
module to determine the area and standard deviation of the area in
the 58 Co peak; the 'STRIP' results are passed in registers I/O and
1110.

FAST FLUX"

" ,YY

" ,D

% STD DEV
",%,FL

1.12 U I,S W1=REG(10)*100,S S=REG(40)
1.14 S N=7.05E18;S XS=.137E-24
1.17 T ;" NRL DATA REDUCTION CODE
1.20 A ~"DATE: MTH = ",MM," DAY = ",DD," YR
1.30 A ~"SAMPLE ID = ",Y
1.32 A ~"RUN TIME (SEC) = ",T
1.34 A ~ "NEUTRON FLUX MULTIPLIER = ",D
1. 36 A ~ "WEIGHT OF WIRE (MG) = ",WT
1.40 S A=D*lE7*REG(0)/T;S FL=A/(N*S*XS*WT)
1. 50 D 3
1.60 T :&;Z
3.02 U 0 LP;T :;D 1.17
3 . lOT !;, %13 , " DATE = ",MM," -", DD ," -", YY
3.15 T %15, ~ " SAMPLE ID = ",Y
3.20 T ~" RUN TIME (SEC) = ",T
3.25 T %8.03, ~ "FLUX MULTIPLIER
3.30 T :" WEIGHT OF WIRE = ",WT
3.35 T ~: "ISOTOPE DIS /SEC
3.40 T ! I CO- 58" , %, A, %FlO . 02 ,W1 , "

21

The program is ordinarily executed in the batch mode with the
'STRIP' procedure, so that the 'u I' command (USE INPUT) in line
1.12 is required to switch the input device from the sequence con­
trol text to the user terminal for dialogue. The 'z' command
(line 1.60) is required, instead of 'QUIT', to return control to
the monitor on completion of the procedure.

Line 1.12 sets the input device to the (default) user terminal and
extracts two values from the "common" registers. Note that the
'REG (X) , function is used exactly as if it were a FOCAL variable.
Line 1.14 SETs the values of some constants required in the calcu­
lation.

Line 1.17 prints the problem title, and lines 1.20 through 1.36
request input data from the user. The simple calculations are
performed in line 1.40, the results are printed by calling a
"subroutine" in line 1.50; line 1.60 ejects the (line printer)
page and returns control to RAMOS.

Group 3.0 is used as an output routine, called from line 1.50.
Line 3.02 selects the line printer as the output device and prints
the problem title by re-executing line 1.17. Lines 3.10 through
3.30 summarize the input data on the printer, line 3.35 prints
column headings, and line 3.40 prints the numeric data with
several format changes. On completion of group 3.0, control
returns to line 1.60 where the procedure is terminated.

22

APPENDIX A

FOCAL COMMAND SUMMARY

Command

ASK A

Example of Form

ASK X,Y,Z
A P,Q,R

Explanation

Requests FOCAL to wait for
numeric input from current input
device.

COMMENT C COMMENT If a line begins with the letter
C, the remainder of the line will
be ignored.

DO D DO 4.1

DO 4.0

Execute line 4.1; return to
command following DO command.

Execute all group 4 lines; return
to command following DO command,
or when a RETURN is encountered.

ERASE E ERASE
E

ERASE 2.0
E 2

ERASE 2.1
E 2.1

ERASE ALL
E A

Erases the symbol table.

Erases all group 2 lines.

Deletes line 2.1.

Deletes all user input.

FOR F FOR i=x,z,y;(commands) Where the command following is
executed at each new value.

FOR i=x,z;(commands) x
y

initial value of i
value added to i until 1 1S

greater than z (default is 1)

GO

GO?

G

G?

GO

GO 3.4
G 3.4

GO?

23

Starts indirect program at lowest
line number.

Starts indirect program at line
3.4.

Starts at lowest numbered line
and traces entire indirect program
until another? is encountered,
until an error is encountered, or
until completion of program.

Conunand Example of Form Explanation

IF I IF
IF
IF

(X)Ln,Ln,Ln
(X)Ln,Ln;(conunands)
(X)Ln;(commands)

Where X is a defined identifier,
a value, or an expression,
followed by (three) line numbers.

If X is less than zero, control
is transferred to the first line
number.

If X is equal to zero, control is
transferred to the second line
number.

If X is greater than zero, control
is transferred to the third line
number.

LIBRARY L L E

L L

L 0 nam

L D nam

LInam

LXnam

Erase library directory.

List library directory contents.

Output current indirect program
to library with name "nam".

Delete directory entry "nam".

Input program with name "nam"
from program library.

Load and execute program with
name "nam".

MODIFY

QUIT

RETURN

SET

TYPE

M

Q

R

S

T

MODIFY 1.15
M 1.15

QUIT

RETURN

SET A=5/B*C;
S A=3

TYPE A+B-C;
T A+B-C;

TYPE A-B, C/E;

TYPE "TEXT STRING"
T ~"MORE TEXT"

24

Enables editing of any character
on line 1.15 (see below).

Returns control to the user.

Terminates DO subroutines,
returning to the original sequence.

Defines identifiers in the symbol
table.

Evaluates expression and types
out result in current output format.

Computes and types each expression
separated by conunas.

Types text. May be followed or
preceded by ! to generate carriage
return-line feed, # to generate
carriage return, & to generate
form-feed.

Command

USE

WRITE

z

U

w

z

Example of Form

U I

U I inp

U 0

U 0 out

WRITE

\lJRITE 1.0

WRITE 1.1
W 1.1

z

Explanation

Sets input device to user command
terminal.

Sets input device to monitor
input device "inp".

Sets output device to user
command terminal.

Sets output device to monitor
output device "out",

FOCAL types out the entire
indirect program.

FOCAL types out all group 1 lines.

FOCAL types out line 1.1

Returns control to the Rili~OS

monitor.

SUMMARY OF FUNCTIONS

Square Root

Absolute Value

Sign Part

Integer Part

Exponent

Sine

Cosine

Arctangent

Logarithm

Register Access

Time-of-day

SQT(x)

ABS(x)

SGN(x)

ITR(x)

EXP (x)

SIN (x)

COS (x)

ATN(x)

LOG(x)

REG (x)

TIM 0

25

Root of absolute value of x.

Absolute value of x.

-1 if x negative, +1 if positive
or zero.

x is rounded to nearest integer.

N 1 . 1 xatura exponentla, e .

Sine of x; x in radians.

Cosine of x.

Principal value arctangent.

Natural logarithm of absolute
value of x.

RAMOS "common" registers, x in
range zero through 40.

Time-of-day, in seconds, from
RAMOS clock.

MODIFY OPERATIONS

After a 'MODIFY' command, the user types a search character, and FOCAL
types out the contents of that line until the search character is typed.
The user may then perform any of the following optional operations.

a. Type in new characters. FOCAL will add these to the line at
the point of insertion.

b. Type a TAB. FOCAL will proceed to the next occurrence of the
search character.

c. Type a CNTRL-Z. After this, the user will enter a new search
character.

d. Type RUBOUT. This deletes characters to the left, one
character for each time the user strikes the RUBOUT key.

e. Type CNTRL-U. Deletes the line over to the left margin, but
not the line number.

f. Type RETURN. Terminates the line, deleting characters over to
the right margin.

g. Type LINE FEED. Saves the remainder of the line from the point
at which LINE FEED is typed over to the right margin.

ASK/TYPE CONTROL CHARACTERS

%

"

&

$

SPACE

RETURN

ALT-MODE

per-cent

double quote

exclamation

number sign

ampersand

dollar

comma

semi-colon

Format delimiter (section 11.5)

Text delimiter (section 11.6)

Carriage return and line feed

Carriage return only

Form feed

Type the symbol table contents

Terminator for names

Terminator for expressions

Terminator for commands

Terminator for lines

Terminator for lines

26

APPENDIX B

PROGRM1 M~D VARIABLES STORAGE FORMAT

1. NUMERIC STORAGE FOID1AT

All numeric values in RAMOS FOCAL are stored and evaluated in three­
word floating mode format, allowing a precision greater than ten
decimal digits and a magnitude range spanning 78000 decades.

Five memory words are required for each variable generated by FOCAL,
one each for the variable name and the subscript, and three for the
variable value:

name
subscript
low mantissa
high mantissa
two's exponent

three sixbit characters, right adjusted, blank filled.
two's-complement integer.

and sign of mantissa.
two's-complement integer.

2. PROGRAM STORAGE FORMAT

Following the line number and leading blanks, each line of an
indirect program is stored exactly as it is entered, three characters
per word in sixbit ASCII format. In addition to the character
storage, one word is required for the line number and one word to
indicate the location of the next line in numeric sequence. The line
numbers are stored with the group number iri the high eleven bits of
the word, and the step number in the low seven bits:

word 1f1
it2
1f3
1f4

etc.

address of next line
group no. I step no.
1st 2nd I 3rd
4th 5th I

etc

3. ESTIMATING PROGRAM SIZE

The size of a FOCAL program with all variables can be calculated
from:

5'" (no. of var ,) + L
all

lines

char.

(2 + in line)
3

The amount of core available at any stage in program entry can be
determined by typing the direct statement:

*F I=1,lE5;S X(I)=O

27

An error code will be given when the available memory has been
exhausted; one then ty~es:

*T : "RENAINING =",5>'<1

and FOCAL will print the number of memory words remaining for
program expansion or variable storage.

An operating program requires several words for the interpreter to
use for stack operations, so not all of the memory reported by this
operation is really available to the user.

28

APPENDIX C

COMMENT ON ERROR MESSAGES

FOCAL prints error messages in one of two forms: for direct commands,
only an octal error code is printed; if an error is detected while
executing an indirect program, the octal error code is printed with
the number of the line in which the error is detected.

The error code is a six-digit octal number of which only the low order
four digits are significant. The error message: *432736 18.03, indicates
that error #2736 occurs in line 18.03. The octal error number represents
the memory address, in the FOCAL interpreter program, where the error is
detected.

The FOCAL error codes are not summarized for several reasons:

a. The errors commonly made by FOCAL users are usually easily
recognized on examination of the offending line; an error
summary is not ordinarily required.

b. The error codes represent memory addresses in the interpreter.
RAMOS FOCAL is subject to internal change and upgrading, and
the error codes are therefore not fixed. There are several
ways each in which several error types are recognized,
and the task of updating an error table is, in view of (a),
not worth the effort.

c. In situations where errors are not recognized, tracing the
error code to the assembly listing of the interpreter will
define the error more completely than a reasonably succinct
error code table.

Some of the more common user errors are:

Bad line number format
Illegal command used
Nonexistent line referenced by DO, GO or IF
Nonexistent group referenced by DO
Bad argument for MODIFY
Command input buffer exceeded
Bad argument for ERASE
Variable storage exceeded
Bad argument in IF command
Missing operator in an expression
Bad argument in FOR, SET, or ASK
Operator missing before parenthesis
Error to left of equal sign
Parentheses do not match
Function not followed immediately by parens
Double operators in an expression
Error in FOR command format

29

