
DEC-OB-ASAC-D

PAL III SYMBOLIC ASSEMBLER

PDP—8 PROGRAMMING MANUAL

For additional copies order No. DEC—08-ASAC—D From Program Library,

Digital Equipment Corporation, Maynard, Massachuseffs Price $1.00

DIGITAL EQUIPMENT CORPORATION . MAYNARD, MASSACHUSETTS

1st Printing August 1965

2nd Printing Rev June 1967

3rd Printing November 1967

4th Printing Rev May 1968

5th Printing Printing October 1968

6th Printing February 1969

Copyright©1965 by Digital Equipment Corporation
1967

1968

1969

Instruction times, operating speeds and the like are in-

cluded in this manual forreference only; they are not to

be taken as specifications.

The following are registered trademarks of Digital

Equipment Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

PREFACE

The PDP-8 comes to the user complete with an extensive selection of system programs and routines making

the full data processing capability of the new computer immediately available to each user, eliminating

many commonly experienced initial programming delays.

The programs described in these abstracts come from two sources, past programming effort on the PDP-5

computer, and present and continuing programming effort on the PDP—8. Thus the PDP-8 programming

system takes advantage of the many man—years of program development and field testing by PDP—5 users.

Although in many cases PDP—8 programs originated as PDP—5 programs, all utility and Functional program

documentation is issued in a new, recursive Format introduced with the PDP—8.

Programs written by users of either the PDP—5 or the PDP-8 and submitted to the users' library (DECUS —

Digital Equipment Corporation Users' Society) are immediately available to PDP—8 users.

Consequently, users of either computer can take immediate advantage of the continuing program develop-

ments for the other.

...

III

CONTENTS

_C_h_a__pt_er Page

I INTRODUCTION ... I—I

2 ILLUSTRATIONS OF PDP-8 ASSEMBLER FEATURES 2-]

The Location Counter ... 2—l

Coding Illustrations ... 2—I

3 THE SOURCE LANGUAGE ... 3-1

The Character Set .. 3-I

Letters 3—l

Digits 3—I

Punctuation Characters 3—l

Ignored Characters .. 3-2

Illegal Characters .. 3-2

Elements 3—2

Number ... 3-2

Symbol 3-3

Parameter Assignments ... 3—3

Symbol Definition .. 3—4

Expressions .. 3-5

Current Address Indicator .. 3-8

Comments 3—9

Pseudo-Instructions ... 3-9

4 PROGRAM PREPARATION AND ASSEMBLER OUTPUT 4—I

Program Tape .. 4-I

5 OPERATING INSTRUCTIONS .. 5-]

Summary .. 5-2

6 SYMBOL TABLE ALTERATION ... 6—I

CONTENTS (continued)

Appendix Page

I SYMBOL LISTS A1—]

2 ASCII CHARACTER SET ... A2-1

vi

CHAPTER 1

INTRODUCTION

The use of an assembly program has become standard practice in the programming of digital computers.

Use of an assembler permits a programmer to code in a more convenient language than basic machine code.

The advantages of this practice are widely recognized: Easily recognized mnemonic codes are used in—

stead of numeric codes; instructions or data may be referred to by a symbolic name; decimal data may be

used as such with the assembler making the required decimal-to-binary conversion; programs may be al—

tered without extensive changes in the source language; and debugging is simplified.

The basic process performed by the Assembler is the substitution of numeric values for symbols, according

to associations found in the symbol table. In addition, the user may request that the Assembler itself as-

sign values to the user's own symbols at assembly time. These symbols are normally used to name memory

locations, which may then be referenced by name.

The ability to use mnemonic names to represent machine instructions is of great value. The name TAD re—

minds the user of the Two's complement ADdition instruction, while the number Iflflg does not. Conse—

quently, the instructions are easier to remember when mnemonics are used. The same is true of location

names. It is much easier to associate the name TOTAL with the location containing the accumulated

total than it is to remember that location I374 contains the total.

Another advantage is that, since the assignment of absolute numbers to symbolic locations is done by the

Assembler, the updating of a program by adding or removing instructions is simplified.

In addition to translating statements directly into their binary equivalents, the Assembler will accept in—

structions for performing translations. These instructions may not look different from other instructions,

but they do not generate binary codes. For this reason, they are referred to as pseudo—instructions. For

example, the pseudo-instruction DEClMAL tells the Assembler that all numbers following in the program

are to be taken as decimal rather than as octal . This instruction is important to the assembly process but

has no binary equivalent in the obiect program . Certain other features of assembly can be directed to the

Assembler by the setting of the switch register, abbreviated SR.

The PDP-8 Assembly System consists ofthe Assembler (PAL III) and the Binary Loader (DEC-O8— LBAA-PM) . A

source program prepared in the source language using ASCII code is translated by the Assembler into a

binary object tape in two passes through the Assembler. The object binary tape is loaded by the Binary

Loader into the computer ready for execution.

I—I

During the first pass of the assembly, all symbols are defined and placed in the Assembler‘s symbol table.

During the second pass, the binary equivalents of the input source language are generated and punched.

The Assembler has an optional third pass, which produces an "assembly listing,
"

or a listing with the lo-

cation, generated binary, and source code side by side on a line.

The PDP—8 Assembly system also includes the Symbolic Tape Editor (DEC-OB-ESAB-D) For altering or

editing the source language tape; the DEC Debugging Tape (DDT-8, DECvOS-CDDA-D) for debugging

the object program by communicating with it in the source language, and various other utility programs

such as dumps, etc.

The Assembler requires a basic PDP-8 system consisting of the ASR33 Tape Reader and Punch and a 4K

core memory. The Assembler can use either the High-Speed Reader, the High-Speed Punch, or both.

The basic Assembler allows 590 user symbols when using the ASR33 and allows 495 user symbols when

using the high speed reader. The Extended Assembler contains additional symbols For all optional

devices. This symbol list is to be found in the Appendix.

CHAPTER 2

ILLUSTRATIONS OF PDP-8 ASSEMBLER FEATURES

THE LOCATION COUNTER

In general, statements generate l2-bit binary words which are placed into consecutive memory locations

when the object tape is loaded. The location counter is a register used by the PDP-8 Assembler to keep

track of the next memory location available. It is updated after processing each statement. The location

counter may be explicitly set by an element or expression preceded by an asterisk. The element or ex-

pression following the asterisk sets the current location counter to the value of that element or expression.

Subsequent instructions are assembled into subsequent locations.

Example:

*

31555

The next instruction would be placed in location 3%. The location counter is initially set to flZflfl.

CODING ILLUSTRATIONS

To illustrate some of the Features of the PDP—8 Assembler, a small routine has been chosen and coded in

a number of different ways. The routine continually adds I to the contents of a location until the result

is positive, then halts. The instructions used are represented as their octal codes (more compact than the

binary actually used). The number being incremented is in location l7fl. The notation C(A) means the

contents of location A.

“W
II7I2I /C(I7;2I) INTO AC

*UJI
7W1 /ADD I TO AC

“”2
317g /STORE IN LOCATION 17¢

“”3
H791 /FETCH C0753)

“‘54
77w! /SKIP ON POSITIVE AC, CLEAR AC

“”5
51m /JUMP TO LOCATION my:

“‘56
74m /HALT

“7‘5
y; /W|LL CONTAIN NUMBER TO BE INCREMENTED

Since the location counter is automatically incremented, specifying sequential addresses could have been

avoided after the first address in the progression. In addition, the names of the PDP-8 instructions could

have been used in place of the octal codes. The octal representation of these instructions is substituted

by the Assembler whenever symbols appear in the program.

2—I

Example 2:

”W
TAD 17g
lAC

DCA 17¢
TAD 17g
SPA CLA

JMP 1ng
HLT

*l7‘5
Id

The same program could have been written using symbolic address tags. The comma after the symbol A

indicates to the Assembler that the location in which it places the instruction TAD B is to be named A.

Information associating the symbol A with the number of actual locations is placed in the Assembler's sym—

bol table. Consequently, when processing the instruction JMP A, the Assembler finds the symbols JMP

and A in the symbol table and uses these values to form the binary equivalent of the instruction JMP A.

Example 3:

”W
A, TAD B

lAC

DCA B

TAD B

SPA CLA

JMP A

HLT

*l7,0'
B, l3

Unless the user specifically wanted to use location l7¢ for storage, he could let the Assembler assign the

location.

Example 4:

*IW
A, TAD B

lAC

DCA B

TAD B

SPA CLA

JMP A

HLT

B, 15

2-2

CHAPTER 3

THE SOURCE LANGUAGE

This chapter explains the featuresofthe ASCll source language available to the user of PAL lll .

THE CHARACTER SET

Letters

ABCDE...XYZ

Digits

123456789¢

Punctuation Characters

Since a number of characters are invisible (i .e. nonprinting), the following notation is used to represent

them in the examples:

L—J space

—>| tab

) . carriage return

The following characters are used to specify operations to be performed upon symbols or numbers:

Character E?

r_; space combine symbols or numbers

+ plus combine symbols or numbers

- minus combine symbols or numbers

2 carriage return terminate line

—>l tab combine symbols or numbers or format the

source tape

,
comma assign symbolic address

= equals define parameters

* asterisk set current location counter

,- semicolon terminate coding line

$ dollar sign terminate pass

3—]

point has value equal to current location counter

/ slash indicates start of a comment

lgnored Characters

form teed end of a logical page of a source program (See Symbolic Editor DEC-08-ESAB-D)

blank tape used for leader/trailer

rubouts used for deleting characters

code 2%? used for leader/trailer

line feed follows carriage return

lllegal Characters

All other characters are illegal and cause the Illegal Character error printout: lC dddd AT dddd during

PASSl . The First number is the value of the offending character, and the second is the value of the cur-

rent location counter where it occurred. lllegal characters are ignored.

ELEMENTS

.
12

,

Any group of letters, digits, and punctuation which represents binary values less than 2 IS an element.

Number

Any sequence of numbers delimited by punctuation characters forms a number.

Example:

1

l 2

4372

The radix control pseudo-instructions indicate to the Assembler the radix to be used in number interpreta-

tion. The pseudo-instruction DECIMAL indicates that all numbers are to be interpreted as decimal until

the next occurrence of the pseudo-instruction OCTAL.

The pseudo-instruction OCTAL indicates that all numbers are to be interpreted as octal until the next oc-

currence of the pseudo-instruction DECIMAL. The radix is initially set to octal and remains octal unless

otherwise specified .

3—2

Symbol

Any sequence of letters and digits beginning with a letter and delimited by punctuation characters is a

symbol. Although a symbol may be any length, only the first six characters are considered, and any ad—

ditional characters are ignored; symbols which are identical in their first six characters are considered

identical. Pseudo Instructions may not be used as symbols or tags within a program.

The Assembler has in its permanent symbol table definitions of the symbols for all PDP-8 operation codes,

operate commands, and many IOT commands (see the Appendix for a complete list). These may be used

without prior definition by the user.

Examples:

JMS is a symbol whose value of 4459“ is taken from the operation code

definitions.

A is a user-created symbol. When used as a symbolic address tag,
its value is the address of the instruction it tags. This value is

assigned by the Assembler.

PARAMETER ASSIGNMENTS

A parameter may be assigned by use of the equal sign. The symbol to the left of the equal sign is assigned

the value of the expression on the right.

Examples:

A=6

EXIT=RETURN=JMP l 13

Symbols defined by use of the equal sign may be used in any valid expression.

Example;

A=lfl¢
B=4fl¢
A+B has the value 59¢

TAD A has the value Hg,“

If the expression to the left of the equal sign has already been defined, the ReDefinition diagnostic:

RD XXXXXX AT dddd

Will be typed where XXXXXX is the symbol's name and dddd is the contents of the current location

counter at the point of redefinition. The new value will be stored in the symbol table.

3-3

Example:

*

1W
CLA=76¢¢

will cause the diagnostic:

RD CLA AT WW

Whenever CLA is used after this point, it will have the value 76ml.

SYMBOL DEFINITION

A symbol may be defined by the user in one of two ways

(I) by use of parameter assignment

Example:

DISMIS=JMP l g

and (2) by use of the comma

When a symbol is terminated by a comma, it is assigned a value equal to the current location counter.

If it is defined more than once in this manner, the Assembler will type the duplicate tag diagnostic:

DT XXXXXX AT dddd

where XXXXXX is the symbol, and dddd is the current location counter at the second occurrence of the

attempted symbol definition. The symbol is not redefined.

Example:

*35595
START, TAD A

DCA COUNTER

CONTIN, JMS LEAVE

JMP START

A, -74

COUNTER, fl
START, CLA CLL

The symbol ”START" would have a value of fiBflfl, the symbol "CONTlN" would have a value of $332,

the symbol "A" would have a value of fl3fl4, the symbol "COUNTER" (considered by the Assembler to be

COUNTE) would have a value of 3213;55, and when the Assembler processed the next line, it would type

during PASSl:

3—4

DT S TART AT flSflé

Since the first PASS of PAL lll is used to define all symbols in the symbol table, the Assembler will type

a diagnostic if, at the end of PASSl, there are any symbols remaining undefined. For example:

*71713
A, TAD C

CLA CMA

HLT

JMP Al

C,¢
$

would produce the Undefined Address diagnostic:

UA XXXXXX AT dddd

where XXXXXX is the symbol and dddd is the location at which it was first seen. The entire symbol table

is printed at the end of PASS] . In the case of the above example, this would be:

A 717g
UA A1 AT 7173

c 7174

If, during PASS], PAL lll detects that its symbol table is full (in other words, that there is no more memory

space to store symbols and their associated values), the Symbol Table full diagnostic:

ST XXXXXX AT dddd

is typed. XXXXXX is the symbol that caused overflow, and dddd is the current location when the over—

flow occurred. The Assembler halts and may not be restarted. The source program should be segmented,

or more address arithmetic used, to reduce the number of symbols. PAL lll's symbol capacity is:

Using ASR33; 655 symbols. The basic symbol table contains 65 symbols (see Appendix) leaving 59¢ user-

defined symbols. Using the High-Speed Reader; 56g symbols. The basic symbol table contains 65

symbols leaving 495 user—defined symbols.

EXPRESSIONS

Symbols and numbers are combined with certain operators to form expressions. There are three operators;

+ plus this signifies 2's complement addition

- minus this signifies 2's complement subtraction

I_l space space is interpreted in context. Since a PDP—8 instruction has an opera-

tion code of three bits as well as an indirect bit, a page bit, and seven

address bits, the Assembler must combine memory reference instructions

3-5

in a manner somewhat different from the way in which it combines operate
or [CT instructions. The Assembler accomplishes this by differentiating
the symbols in its permanent symbol table. The following symbols are

used as memory reference instruction op codes;

AND figflfl logical AND

TAD lflflfl Two's complement ADdition

lSZ ZWJfl Index and Skip if Zero

DCA 3flf5fl Deposit and Clear Accumulator

JMS 4528535 JuMp to Subroutine

JMP 5am JUMP

FADD lflflfl Floating ADDition

FSUB 2¢¢¢ Floating SUBtraction

FMPY 3151M Floating MultiPlY

FDIV 415W Floating DIVide

FGET 5km Floating GET

FPUT éflflfl Floating PUT

FNOR 7%39' Floating NORmalize

FEXT 55555555 Floating EXiT

When the Assembler has processed one of these symbols, the space acts as an address field delimiter:

MUM/I
JMP A

A, CLA

A has the value 41m, JMP has the value 512%, and the space acts as a field delimiter. These symbols

are combined as follows:

A 1W W1 33W 91151
JMP W“ Wfl W3 M5

The seven address bits of A are taken, i.e.:

13W 155?“ Ml Wt

The remaining bits of the address are tested to see if they are zero's (page zero reference); if they are not,

the current page bit is set:

12W 1511 PW $3951

The operation code is then ORed into the expression to form:

U151 55“ 95W 553?“

or, written more concisely:

53¢]

3-6

In addition to the above outlined tests, the page bits of the address field are compared with the page bits

of the current location counter. If the page bits of the address field are nonzero and do not equal the page

bits of the current location counter, on out-of—page reference is being attempted and the Illegal Reference

diagnostic is printed on PASSZ or PASS3.

For example:

*4iflfl
A, CLA CLL

*72w'
JMP A

The symbol in the address field of the jump instruction has a value of4l¢¢ while the current location

counter, i.e., the address where the instruction will be placed in memory, has a value of 72%]. This

instruction is illegal on the PDP—8 and will be flagged during PASSZ or PASS3 by the Illegal Reference

diagnostic:

IR 4i¢¢ AT 72¢fl

The value 53¢¢ would be assembled at location 722%.

The symbol I caused the indirect bit (bit 3) to be set in a memory reference instruction: For example:

DCA l 19'

would produce:

QM 1955?! W1 W3

or:

341g

When a space occurs in an expression that does not contain a memory reference instruction op code, it

means inclusive OR:

For example:

CLA CLL

the symbol CLA has a value of 73315 and the symbol CLL has a value of 719% CLA CLL would produce 73%.

User-defined symbols are treated as nonmemory reference instructions (see Pseudo-Instructions).

3-7

For example:

A=333

*222

B, CLA

Then the expressions and their values are shown below;

A+B ¢555
A—B m 1 1

Al—lB ¢333
—A 7445

1-3 7557

3-1 {21221
—7l 77157
etc .

An expression is terminated by either a carriage—return ()) or a semicolon (;). If any information was

generated to be loaded, the current location counter is incremented.

Example:

RAR; RTR; CMA)

Produces three registers of information and the current location counter is incremented after each ex—

pression . The statement:

HALT=HLT CLA)

produces no information to be loaded (it produces an association in the Assembler's symbol table) and

hence does not increment the current location counter.

*4721

TEMP,)
TEM2, g)

The current location counter is not incremented after the line TEMP,) and hence the two symbols TEMP

and TEM2 are assigned the same value, in this case 472i .

CURRENT ADDRESS INDICATOR

The single character period (.) has, at all times, a value equal to the value of the current location counter.

It may be used as any number or symbol (except to the left of the equal sign).

Example:

*2!”
J MP . +2

3—8

is equivalent to JMP 2,62.

*

3%
,+24£M

would produce, in register 3flfl, the quantity 27¢¢

Example:

*ZZWJ
CAL L=J MS 1

27

Since the second line, CALL=JMS l . does notincrement the current location counter, flfl27 would be

placed in register 221313 and CALL would have the value of lflfl ilfl flflfiz or 46i5i38.

The properties of the character (.) have been slightly changed; so that, it now acts as a terminator.

Previously, PAL III would neither diagnose nor correctly assemble expressions such as: JMP. (where

there is no space between the P and the.) PAL III now treats this (JMP.) as it it were this (JMP .)

COMMENTS

A comment field is indicated by the slash (/) character. The Assembler will ignore everything from

the slash to the next carriage return .

Example:

CLA /THIS IS A COMMENT

PSEUDO-INSTRUCTIONS

There are several pseudo-instructions that are used to direct the Assembler. These are:

DECIMAL Set the current radix to decimal

OCTAL Set the current radix to octal

PAUSE Stop the Assembler. The current pass is not terminated. PAUSE must be

at the physical end of the program tape as the reader routines are buffered

and the buffer is emptied when PAUSE is detected. The assembly is con-

tinued by depressing CONTINUE. Two or more tapes must be used with

the PAUSE instruction.

FIELD Causes a field setting to be punched during PASSZ. This is recognized by
the Binary Loader (DEC-O8-LBAA-PM) and causes all subsequent informa-

tion to be loaded into the field specified by the expression. The expres-

sion must be between fl and 7, inclusive.

EXPUNGE Erase the entire symbol table except for the pseudo-instructions.

FIXTAB Fix the current symbol table. Symbols that have been fixed are not

printed in the symbol table at the end of PASSI or PASS3.

3-9

FIXMRI Fix memory reference instruction . This may be given only after

EXPUNGE. It tells the Assembler that the following symbol definition

is a memory reference instruction and is to be treated as described under

Expressions .

Example:

EXPU NGE

FIXMRI TAD=1¢¢¢
FIXMRI DCA=3M25
CLA=72¢125
FIXTAB

PAUSE

When this program segment is read into the Assembler during PASSl, all symbol definitions are

deleted and the three symbols listed are added to the table.

This process is often performed to alter the Assembler's symbol table so that it contains only those

symbols that will be used . This may increase the Assembler's capacity for other user-defined symbols.

I Symbolic representation for indirect addressing .

Example:

DCA I STORE

Z Optional method of denoting a Page fl reference.

Example:

DCA Z ADD

CHAPTER 4

PROGRAM PREPARATION AND ASSEMBLER OUTPUT

The source language tape (symbolic tape) is prepared in ASCII code on 8-channel punched paper tape

using an off-line Teletype or the on-line Symbolic Tape Editor (DEC-08-ESAB-D). In general, a program

should begin with leader code which may be blank tape, code 2%], or rubouts.

PROGRAM TAPE

Since the Assembler ignores certain codes, these may be used Freely to produce a more readable symbolic

source tape. These codes are tab, line-feed, and form-feed.

The Assembler will also ignore extraneous spaces, carriage-return/Iine-feed combinations, and blank

tape .

The program body consists of statements and pseudo-instructions. The program is terminated by the dollar

sign Followed by some trailer code. It the program is large, it may be segmented by use of the pseudo-

instruction PAUSE. This often facilitates the editing of the source program since each section will be

physically smaller.

The Assembler initially setsits current location counter toflZflQ’. Thisis reset whenever the asterisk is processed.

During PASSI, all illegal characters cause a diagnostic to be printed. The character is ignored.

The following two programs are identical:

*ZW
/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, fl/START OF PROGRAM

KCC

KSF/WAIT FOR FLAG

JMP.-I/FLAG NOT SET YET

KRB/READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE/IS IT A SPACE?

SNA CLA

HLT/YES
JMP BEGIN+2 /NO: INPUT AGAIN

CHAR, fl/TEMPORARY STORAGE

MSPACE, -24¢/—ASC|I EQUIVALENT

/END OF EXAMPLE

$

*ZW
/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, I5 /START OF PROGRAM

KCC

KSF /WAIT FOR FLAG

JMP.—I /FLAG NOT SET YET

KRB /READ IN CHARACTER

DCA CHAR

TAD CHAR

TAD MSPACE /IS IT A SPACE?

SNA CLA

HLT /YES
JMP BEG|N+2 /NO: INPUT AGAIN

CHAR, y! /TEMPORARY STORAGE

MSPACE, -24IJ /-ASCII EQUIVALENT

/END OF EXAMPLE

$

Both of These programs are identical and produce the same binary code. The second, however, is easier

To read .

During PASSl, the Assembler reads the source tape and defines all symbols used. The user's symbol Table

is printed (or punched) at The end of PASSl . If any symbols remain undefined, The UA diagnostic is

printed. The symbol Table is printed in alphabetic order. If The program listed above were assembled,

The PASSl output would be:

BEGIN may}
CHAR 91213
MSPACE gm 4

During PASSZ, The Assembler reads The source Tape and generates The binary code using The symbol Table

equivalences defined during PASSl . The binary Tape that is punched may be loaded by the Binary Loader

(DEC-08— LBAA-PM). This binary Tape consists of leader code, on originsetting, and Then daTa words. Every

occurrence of an asterisk experssion causes a new origin to be punched on The Tape and resets The A5-

sembler's current location counter. AT the end of PASSZ, The checksum is punched on the binary tape

and trailer code is generated. During PASSZ, The Assembler may diagnose an Illegal Reference. When

using The ASR33 Punch, The diagnostic will be both typed and punched and will be preceded and followed

by rubouts. The Binary Loader will ignore everything that has been punched on a tape between rubouts.

During PASS3, The Assembler reads the source Tape and generates the code from The source statements.

The assembly listing is Typed (or punched). It consists of The current location counter, the generated

code in octal, and the source statement. The symbol table is Typed at the end of the pass. If The program

listed above were assembled, the PASS3 output would be:

4—2

MW
9525?“
152132
M213
152134
$52555
132136
112137
MW
I32] 1

I521 2

gm 3

12121 4

BEGIN

CHAR

WW
642532
6%31
52m
am
321 3

121 3

1 21 4

765g
7432
521212
WW
7545

£32911?!
I52} 3

MSPACE £3214

*ZW
/EXAMPLE OF FORMAT

/GENERATOR
BEGIN, I?!

KCC

KSF

JMP.—I

KRB

DCA CHAR

TAD CHAR

TAD MSPACE

SNA CLA

HLT

JMP BEGIN+2

CHAR, I?!
MSPACE, -24;25
/END OF EXAMPLE

4-3

/START OF PROGRAM

/WAIT FOR FLAG

/FLAG NOT SET YET

/READ IN CHARACTER

/IS IT A SPACE?

/YES
/NO: INPUT AGAIN

/TEMPORARY STORAGE

/—ASCI| EQUIVALENT

CHAPTER 5

OPERATING INSTRUCTIONS

The PAL III Assembler is provided as a binary tape. This is loaded into the PD-P-8 memory by means of

the Binary Loader, using either the ASR33 Reader or the High-Speed Reader (see DEC-08—LBAA—D).

The Assembler will use either the ASR33 Reader or the high—speed reader to read the source language

tape, and it will use either the ASR33 Punch or the High-Speed Punch for output. The selection of I/O

devices is made by the Assembler when it is started. The source language tape must be in the proper

reader, with the reader and punch turned on. When using the high-speed punch, the symbol table will

be typed on the ASR33 if bit ll of the switch register is 0 (down); it will be punched on the high—spped

punch if bit ll of the switch register is a I (up). When using the high-speed punch, the symbol table

output, the telepunch should be left on, since the symbol table produced may be read by DDT (see

DEC-08-CDDA-D). All diagnostics will be typed on the ASR33 (except for the undefined address diag-

nostic when using the high-speed punch and the bit ll switch option). The binary tape produced during

PASSZ will be punched using the ASR33 punch or the High-Speed Punch if it is included in the machine

configuration and turned on. The only diagnostic in PASSZ will be Illegal Reference. Since this is

typed on the ASR33, it may also be punched on the binary tape. It will, however, be ignored by the

Binary Loader. The bit ll switch option may be used during PASS3 also. If the machine is not equipped

with a High-Speed Punch, bit II will have no effect.

In addition to the binary tape of the Assembler, the user is provided with an ASCII tape containing sym-

bol definitions for the instruction sets of the available options to the PDP-8 (i .e. ,
card readers, mag-

netic tapes, A/D converters). Since there is only a finite amount of space available, expanding the

number of permanent symbols that the Assembler recognizes decreases the maximum number of symbols

the user may have available . For this reason, the ASCII Extended Definitions tape should be edited

to contain definitions for only those options which the user has acquired. This tape should be read into

the Assembler only on PASSI . Since it permanently fixes the symbols it contains, it should not be read

again until PAL III is reloaded.

l . Load the Assembler using either the ASR33 Reader or the High—Speed Reader.

2. Set JUZJZM into the switch register; press LOAD ADDRESS .

3. Place the source language tape in the reader. Turn the reader on; turn the punch on.

PASS]

4. Set Bits I? and] of the switch register for the proper pass. These settings are:

Bit 121 Bit 1

y}] PASS]

] fl PASSZ

]] PASS3

PASS] is required so that the Assembler can initialize its symbol table and define

all user symbols. After PASS] has been made, either PASSZ or PASSB may be made.

5. Bit]] switch option

During PASS] Bit]] =] Punch symbol table on high—speed punch if it isinthe

machine configuration.

Bit]] = 25 Type (and punch) the symbol table on the ASR33.

During PASS2 No effect

During PASS3 Bit]] =] Punch assembly listing tape, in ASCII, on high-speed

punch .

Bit]] =¢ Type assembly listing on ASR33.

6. Press START. The Assembler will halt at the end of each pass. Proceed from step 3.

If the Assembler has halted because of a PAUSE statement, put the next tape into the

reader and press CONTINUE.

SUMMARY

The Assembler reads the source tape, defines all user symbols, and outputs the user

symbol table in alphabetic order. PASS] diagnostics are:

lC dddd AT XXXX Illegal Character

where dddd is the value of the illegal character and xxxx is the value of the current

location counter when the character was processed. The character is ignored.

RD XXXXXX AT dddd ReDefinition

where XXXXXX is the symbol being redefined and dddd is the value of the current

location counter at the point of redefinition. The symbol is redefined.

DT xxxxxx AT dddd Duplicate Tag

5—2

PASSZ

An attempt is being made to redefine a symbol using the comma. XXXXXX is the

symbol and dddd is the value of the current location counter. The previous value of

the symbol is retained and the symbol is not redefined.

ST XXXXXX AT dddd Symbol Table full

where XXXXXX is the symbol causing the overflow and dddd is the value of the Cur-

rent Location Counter at the point of overflow. The Assembler halts and may not be

restarted .

UA XXXXXX AT dddd Undefined Address

where XXXXXX is the symbol that was used, but never defined, and dddd is the value

of the Current Location Counter when the symbol was first processed. This is typed

with the symbol table at the end of PASS] . The symbol is assigned a value equal to

the highest address on the memory page where it was first used.

The Assembler reads the source tape and using the symbol table defined during PASSl,

generates and punches the binary code. This binary tape may then be loaded by the

Binary Loader. The PASSZ diagnostic is:

IR dddd AT xxxx Illegal Reference

where dddd is the address being referenced and xxxx is the value of the Current

Location Counter. The illegal address is then treated as if it were on the proper mem—

ory page.

Example;

*73g6
JMP 3217

would produce:

lR 53397 AT 73¢6

and would generate 53117 to be loaded into location 73156.

5-3

PASSB The Assembler reads the source tape and, using the symbol table defined during PASSl

generates and types the code represented by the source statements. The Current Loca—

tion Counter, the contents, and the source statement are typed side by side on one

line. If bit ll of the switch register is a l and the machine configuration includes

the high-speed punch, the assembly listing will be punched in ASCII. The PASS3

diagnostic is Illegal Reference.

5—4

CHAPTER 6

SYMBOL TABLE ALTERATION

PAL III contains a table of symbol definitions for the basic PDP-8 and its most common optional peripheral

devices. These are the symbols such as TAD, RFC or SPA, which do not have to be defined in every pro-

gram . This table is considered to be PAL III's permanent symbol table. All the symbols it contains are

listed under the heading BASIC SYMBOLS in Appendix I of this manual. If the user had purchased one or

more of the optional devices whose instruction set is not defined among the BASIC SYMBOLS, for example,

EAE or an A/D CONVERTER, it would be desirable if he could add the necessary symbol definitions to the

permanent symbol table. This would eliminate the need for him to define these symbols in every program

he writes. The opposite case would be the user who needs more space for his symbols. He would like to be

able to delete all definitions except the ones he will actually use in his program.

For such purposes PAL III has three pseudo-instructions that may be used to alter its permanent symbol

table. These pseudo-instructions are recognized by the Assembler only during PASSI . During either

PAS$2 or 3, they are ignored and have no effect.

The pseudo-instructions that alter the symbol table are:

EXPUN GE Erase the entire permanent symbol table, except for the 9 pseudo-instructions

listed in Appendix I under BASIC SYMBOLS.

FIXMRI Fix Memory Reference Instructions. This must be followed on the same line by

a symbol definition statement (parameter assignment) since the memory reference

instructions are constructed in the symbol immediately following the pseudo-

instructions. In other words the letters FIXMRI must be followed by one space,

the symbol for the MRI to be defined, an equal sign, and the actual value of the

symbol to the immediate left of the equal sign. The pseudo-instruction must be

repeated for each MRI to be defined . All MRI's must be defined before the

definition of any other symbol.

EXAMPLE: EXPUNGE

FIX MRI TAD = 1000

FIX MRI DCA = 3000

FIXTAB FIX the current symbol TABLE .
All symbols that have been defined before the

occurance of this pseudo-instruction are made part of the permanent symbol table

and will not be printed in the symbol table at the end of PASSl or PASS3.

An actual tape to add two symbols to those already in PAL III's permanent symbol table would have punched

on it in ASCII:

CDF=62¢T
C IF=62¢2
FIXTAB

PAUSE

To use such a tape the user would:

I . Read in PAL III with the Binary Loader.

2 Set 200 in the SWITCH REGISTER and press LOAD ADDRESS.

3 Set switches for PASSl .

4. Put definitions tape (ASCII) in the proper reader.

5 Press START .

The PAUSE pseudo-instruction at the end of the tape indicates to the Assembler that the current PASS is

not ended and another tape is to follow .

6. With switches still set to PASSl, put user's program in reader and press CONTINUE on the

console .

The next program to be assembled should not be preceded by the definitions since they are already in the

permanent symbol table and will be there until PAL III is reloaded.

After altering the symbol table to fit his needs the user might wish to keep PAL III in this state. This can

be done by punching a binary of the section of core occupied by PAL with its new symbol table .

To do this:

i . Read in PAL III and modify symbol table as desired.

2. PAL III's symbol table begins at location 23508. Count all the symbols in the altered symbol

table . Since each symbol and its value require four registers, multiply this number by 4.

Convert this number to octal and add it to 23508. This number is the upper limit of PAL III

The lower limit is OOOl .

6-2

3. Using the directions for Binary Punch Routine. (Digital—8-5-U) and the limits as stated in 2

above punch out the PAL III Assembler itself.

4. The output of the Binary Punch Routine is the Assembler with the modified Symbol Table and

may be loaded with the binary loader.

EXAMPLE: PAL III is loaded.

The following ASCII tape is read in on PASS] :

CDF = 6201

CIF = 6202

RDF = 6214

RIF = 6224

RMF = 6244

RIB = 6234

FIXTAB

PAUSE

The Assembler now has in its symbol table the "MEMORY EXTENSION CONTROL" symbols and

definitions. Six symbols were added and none removed . There were 84 symbols in the basic

Assembler, there are now 90 symbols which require a total of 360 or 550 locations. Since
(10) 8

the symbol table starts at 2350, it extends to 23508
+

5508 or 3l208 . The Binary Punch

Routine is used to punch from 000i8 through 3l20 and the output is the Assembler with all the
8

basic symbols plus memory extension symbols.

APPENDIX 1

SYMBOL LISTS

BASIC SYMBOLS

/PSEUDO INSTRUCTIONS

FIELD

EXPUNGE

FIXMRI

PAUSE

FIXTAB

DECIMAL

OCTAL

I

z

/MEMORY REFERENCE INSTRUCTIONS /FLOATING-POINT INSTRUCTIONS

AND WW FEXT WW
TAD 1mg FADD Iggy!
IS-Z 2mg FSUB 212W
DCA 3mg FMPY 3mg
JMS 4mm FDIV 4W9!
JMP 5mg FGET 5mm

FPUT 6mm
FNOR 715W

/PROGRAM INTERRUPT

ION 6W1
IOF éflm
/H|GH-SPEED READER /TELEPRINTER/PUNCH
RSF 69!“ TSF @2141
RRB 69112 TCF 6,642

I4 L 6466% IR: 6344
/H|GH—SPEED PUNCH /GROUP I OPERATES

PSF @2121 NOP 713W
PCF 6¢22 IAC 7W1
PPC 652524 RAL 7W4
PLS 6,626 RTL 7¢¢6

/KEYBOARD/READER RAR 7mg
KSF 6¢31 RTR 7¢I2
KCC 6¢32 CML 7mg
I<RS (m4 CMA 7¢4¢
KRB 6¢36 CLL 7mg

CLA 72m

/GROUP 2 OPERATES /COMBINED OPERATES

HLT 74m CIA 7¢4I
OSR 74PM LAs 76¢4

Al—l

SKP 74142! STL 712$
SNL 742421 GLK 72214
SZL 7432 STA 724g
SZA 74421
SNA 74521
SMA 75m
SPA 751 g

/DECTAPE DUAL TRANSPORT TYPE 555 AND CONTROL TYPE 552

MMMM 6757 MMSF 6761

MMMF 6756 MMCF 6772

MMML 6766 MMSC 6771

MMLS 6751 MMRS 6774

MMLM 6752 MMCC 6762

MMLF 6754 MMLC 6764

/DECTAPE TRANSPORT TYPE TU55 AND CONTROL TYPE Tcm

DTRA 6761 DTSF 6771

DTCA 6762 DTRB 6772

DTXA 6764 DTLB 6774

/MEMORY PARITY TYPE 188

SMP 61 m
CMP 61 T214

EXTENDED SYMBOLS

/PDP -5 EAE SYMBOLS 153*

CAM 6W1 SZO 6114

LMQ 61132 DIV 6121

LAR 61,64 RDM 6122

MUL 6111 SAF 6124

RDA 6112

/PDP—8 EAE SYMBOLS 182

MUY 7M5 ASR 7415

DVI 7427 LSR 7417

NMI 7411 MQL 7421

SHL 7413 SCA 7441

MQA 75W CAM 7621

/MEMORY EXTENSION CONTROL TYPE 183

CDF 62,01 RIF 6224

CIF 6222 RMF 6244

RDF 6214 RIB 6234

/AUTO RESTART TYPE KR¢1

SPL = 6122

*
PDP—5 EAE symbol definitions do not appear on the actual tape due to a conflict in the CAM
instructions of PDP—5 and PDP-8. PDP-8 EAE symbols should be deleted if those for PDP-5 are

inserted in the extended symbols tape.

A1 —2

/AD CONVERTER TYPE 189

ADC 6fl¢4

/AD CONVERTER/MULTIPLEXER T38E/T 39E

ADSF 653T ADCC

ADCV 6532 ADSC

ADRB 6534 ADIC

/OSCILLOSCOPE DISPLAY TYPE 34D

DCX 6155]
,

DYL

DXL 6¢53 DIX

DC Y 6¢61 DIY

DXS 62557 DYS

/SCOPE TYPE 3ON

DLB 612574

/LIGHT PEN TYPE 37¢

DSF 61671 DCF

/PLOTTER AND CONTROL TYPE 35EB

PLSF 65m PLCF

PLPU 65¢4 PLPR

PLPU 6512 PLDD

PLPL 6521 PLUD

PLPD 6524

/CARD READER AND CONTROL TYPE CRWC

RCSF 663] RCSP

RCRA 6632 RCSE

RCRB 6634 RCRD

/CARD READER TYPE 451

CRSF 6632 CERS

CRRB 667T CRSA

CRSB 6674

/CARD PUNCH AND CONTROL TYPE 45¢

CPSF 663T CPSE

CPLB

CPCF 664] /CERS

/LINE PRINTER TYPE 645

,LCF 6652 LPR

LSF 6661 LCB

LLB 6664

AT—3

654]

6542

6544

6¢63
6fl54

6¢64
6fl67

6572

65m
65]]

6514

6522

667 T

667]

6674

6634 /also services card punch 450

6672

6642

6644

as appears under card reader 451

6655

6662

173179

3379

[3’79

17W9

:iOXll

NOXll

d>lS.|.J_

TELL].

31v91311

11791311

173179on

33179111

[317933mm

389EldAJ.SWELLSASNOIlVDINnWWODVLVG/

17199DVS

3199DVH

[£99DSH

EIOXEHdIl'IflW3681Sid/KlOJ.NOIldO/

VL33VEldAJ.1031No3CI'IOHGNV31dW‘v’S'IEINNVHZ)lHOIEl/

3819

7319

1319

1319

vv19

[V19

3919

3219

1819

3319

3319

9119

1119

3319

V399

1399

3199

9399

1ch].

1.831

:ICISJ.

W:|IJ_

VDHW

33W

:EIIW

CIEDW

:IEISW

:IAAHW

:IMGW

31W

3nsw

CDW

NDEICI

EISHCI

:EIHCI

NDEIG

17819SEISJ.

[€19lHMl

ZZZ9HSSJ.

9[[9EMS].

9119(188].

389EldAJ.3cm3113Novw/

91719v3w

312193M3w

ve19s31vv

3819JHHVV

3919330vv

3319:IN\IW

33193AA3vv

1319amsw

3M93Nw

9319SLVV

1319339w

V19EldAl33w3113N9vw/

33993930

9l999130

[[993330

93993330

[93CINV393wn301v13as/

