
PDP-8/I DDT

DYNAMIC DEBUGGING TECHNIQUE

PROGRAMMER’S REFERENCE MANUAL

For additional copies specify Order No. DEC—08—CDDB—D to Program Library,

Digital Equipment Corporation, Maynard, Mass. Price: $2.00

DIGITAL EOLJIF’IVIENT CORPORATION D MAYNAFIO, MASSACHUSETTS

Ist Printing July I967

2nd Printing October I967

3rd Printing January I969

4th Printing (Rev) August I969

Your attention is invited to the last two pages of this

manual. The Reader's Comments page, when filled in

and returned, is benefical to both you and DEC. All

comments received are considered when documenting

subsequent manuals, and when assistance is required, a

knowledgeable DEC representative will contact you.
The Software Information page offers you a means of

keeping up-to—date with DEC's software.

Copyright©I968, I969 by Digital Equipment Corporation

Documents Referenced (available from Program Library, address on title page):

Paper Tape System User's Guide DEC-OB-NGCC—D

PAL III Assembler, Programer's Reference Manual DEC—O8—ASAB—D

MACRO-8 Assembler,Programer's Reference Manual DEC-08-CMAA-D

The following are registered trademarks of Digital

Equipment Corporation, Maynard, Massachusetts:

DEC PDP

FLIP CHIP FOCAL

DIGITAL COMPUTER LAB

CONTENTS

Chapter P_ag__e_

I INTRODUCTION ...
1—1

2 USE OF DDT-8

'

................................... 2-1

Preparations for a Debugging Run 2-2

The Basic Functions of DDT:: A Sample Run 2-3

3 THE FUNCTIONS OF DDT-8 3-1

Storage Requirements 3-I

Loading Procedure 3-I

Symbol Table Tapes 3-2

Definitions ... 3-2

Mode Control .. 3-3

Program Examination and Modification 3-5

Cross-Page Addresses 3—8

Using Combined Operate or IOT Class Instructions 3—8

Output .. 3—9

Special Registers 3-9

Program Execution and Control 3—I0

Restrictions on the Use of Breakpoints 3-13

Word Searches .. 3—13

Defining New Symbols 3-16

Making a New Symbol Tape 3-17

Punching Binary Tapes 3-I8

Appendix

A SUMMARY OF COMMANDS A-I

B INTERNAL SYMBOL TABLE
B—I

PREFACE

This manual describes the keyboard—oriented dynamic debugging program For use

on-line with the PDP-8 family computers.

Chapter 1 explains the purpose and efficiency of DDT (Dynamic Debugging Tech—

nique). In Chapter 2, the reader is taken through an example debugging session

which acquaints him with the ease of debugging with DDT. The use of each DDT

command and special character is explained in Chapter 3 and summarized in an

appendix.

CHAPTER1

INTRODUCWON

Users of most computers, especially large-scale ones, are familiar with the procedure of sub-

mitting a new program for a computer run, waiting for it to be processed (which may take any-

where from a few hours to several days), and finally receiving the compilation and/or assembly

listings, a list or dump of the contents of each 'core memory cell at the time the run was termin-

ated, and perhaps a storage map giving the addresses of the symbols used in the programs. The

user may get a few remarks from the computer operator regarding the failure of the program to

run properly. If the user is present in the machine room when his program is processed, he may

get additional information from the console lights, motion of tapes, etc., but his correcting

must be done away from the computer. Getting a program to work under these conditions takes

considerable time .

DDT (Dynamic Debugging Technique) helps shorten this debugging time by allowing the user

to work on his program atthe computer, to control its execution, and to make corrections

to the program or its data. For example, tracking down a subtle error in a complex section

of coding is a laborious and frustrating job-by hand; but with the breakpoint facility of

DDT-8, the user can interrupt the operation of his program at any point and examine the

state of the machine. In this way, sources of trouble can be located quickly.

Using DDT-8, the programmer can make corrections or insert patches in his program and try

them out immediately. If his corrections work, the user can have the corrected sections and

patches punched out on the spot in the form of tapes which can be loaded along with the pro-

gram the next time it is run, thus eliminating the necessity of creating new symbolic tapes and

reassembling or recompiling each time an error is found.

When working with DDT-8, the user has with him a listing of his program and of his symbols.

In making corrections, he may refer to variables and tags by their symbolic names or by their

octal values; he may add new symbols and delete old ones (for purposes of debugging, symbol

l—l

changes do not carry beyond the immediate debugging run). If he writes in the permanent

corrections on his program listing, he can keep a record of the debugging and eventually

make a new symbolic tape incorporating all his corrections and patches.

The first chapter of this manual explains a typical debugging run. The succeeding chapters

describe the functions of DDT-8 in detail.

1-2

CHAPTE R 2

USE OF DDT-8

This chapter is designed to introduce the basic operations of DDT-8 to the person unfamiliar

with on-line debugging. Although some elementary concepts are explained in detail, any

essential information which appears in this chapter about the DDT commands is also presented

in Chapter 3, where it is accessible for easy reference.

DebUgging a new program can be, and has been, done on varying levels of detail and sophisti-

cation. On the crudest level, the programmer can simply load the program and let it run until

it stops unexpectedly. Then, using the console switches and keys, he can try to find the error(s)

by interpreting the console lights. There are two hazards to this approach. First, by the time

the program stops, the error may have caused all pertinent information, including itself, to be

altered or eliminated; the program may have stopped by the simple process of self—destruction.

Second, the program may not stop at all; it might continue to run in an infinite loop. Such

loops are not always easy to detect.

If the programmer plans his debugging attack beforehand, he can, using the computer console,

place strategic halts in his program before starting it. After each halt, he can examine vari-

ous registers and alter their contents , again using the console. As long as he remembers to

replace each halt with the original instruction before proceeding, he might find sources of error

more readily than if he iust let the program run on. However, errors seldom appear where ex-

pected, so a strategic halt may be of little real use.

Added to these problems (of console debugging) are the difficulties of interpreting binary con-

sole displays and translating them into symbolic expressions related to the user's program listing.

Further, adding corrections to a program in the form of patches requires seemingly endless man—

ipulation of switches and keys. In all this, the chance of programmer error at the console is

large and is likely to obscure any real gain made from the debugging session.

2—1

What is needed is a program which will assume the tasks which the programmer would have to

perform if he used the console. Such a program would allow the user to examine registers,

change their contents, and make corrections, without having to manipulate switches and keys.

It would allow the easy placement and removal of halts, even to the automatic restoration and

execution of instructions which the halts had displaced. Most important, it would allow the

programmer, using the keyboard and printer, to do all examination and to make all corrections

in the symbolic language of the listing,- the debugging program would perform all the necessary

translation to and from the binary representation.

DDT-8 is such a debugging prOgram. Descended from a line of programs that includes a version

for every computer produced by DEC, it performs all the tasks described above, and many more,

making the programmer's burden light enough to allow him to concentrate on the actual correc-

tion of his program.

PREPARATIONS FOR A DEBUGGING RUN

By the time the prOgrammer is ready to start debugging a new program at the computer, he should

have the following materials:

1 . The binary obiect tape of the program.

The symbol definition tape which was part of the assembly output.

A complete symbolic listing of the program.

A list of the symbols and their definitions.()1th A binary tape of DDT-8 (usually provided at the console).

To begin the debugging run, first ascertain that the BIN Loader is in memory. If it is not, load

it using the procedure described in the Paper Tape System User's Guide, for loading

Rl'M tapes. When the BIN Loader is in the computer, load the programmer's binary program

tape(s) using the same BIN loading procedure. After it has been read successfully, load the

DDT-8 binary tape.

In the machine, there now is: l) the DDT program, which occupies upper

memory between registers 5240 and 7600, inclusive; 2) the User's programs

which must not overlap the area occupied by DDT-8 or its permanent symbol
table; 3) a table of symbol definitions, extending downward from location

2-2

5240 to 5000. This table includes the definitions for all of the PDP-8 mem-

ory reference instructions, operate class instructions, the ten basic lOT in-

structions, and the combined operations CIA and LAS.

Since DDT is to perform all translation between binary and symbolic representation, it must

have access in memory to the user's symbol definitions. To load a symbol tape, perform the

following steps. Note that the high-speed reader may not be used to load symbol tapes. Only

the reader on the ASR 33 console may be used.

1 . Turn the reader off; insert the symbol definition tape.

2. Type the keys ALT MODE (or ESCape) and R ([R)! in that order, and then

turn the reader on.

3. When the computer stops, turn off the reader; press CONTINUE. DDT

will type out the address of the lowest register in memory which is occupied

by a symbol definition.

'The symbols for the user's program are stored in memory immediately below DDT's permanent

table. These symbols, and any others which are entered from the console, comprise the exter-

nal symbol table; these definitions may be removed at any time (see Chapter 3) without harm-

ing the permanent table.

With DDT, the program, and the symbol definitions now in memory, the programmer is ready

to begin debugging. Figure 2-1 is a listing of a program ready for debugging; the remainder

of this chapter will describe the process.

THE BASIC FUNCTIONS OF DDT: A SAMPLE RUN

As soon as DDT has typed the address of the lowest extension of the symbol table, it is ready

for debugging work. The prOgram to be checked out is a subroutine which accumulates the

sum of the first n integers. For testing purposes, a short calling sequence has been included

which provides the integer limit of the sum as an item of data. The first task is to place an in—

teger in the register which holds this datum; namely, the register labeled INT in the calling

*Some teletypes have a key labeled ESC (escape) in place of the ALT MODE key.
DDT will accept either and perform the same function.

2-3

program. By typing the address of the register (which in this case can be done by typing the

address tag), followed by a slash, the user indicates to DDT that he wishes to examine the con-

tents of that register. Thus he types:

INT/

/INTEGER SUMMATION SUBROUTINE

INTSUM, o

CLA

TAD l INTSUM /GET DATA

DCA N

DCA PSUM

LOOP, TAD PSUM /MA|N COMPUTATION

TAD N

DCA PSUM

ISZ N /DECREMENT INDEX

JMP LOOP /NOT FlNISHED

TAD PSUM /F|NISHED. PUT RESULT IN AC.

ISZ INTSUM

IEXIT, JMPI INTSUM /RETURN

N, o

PSUM, o

*400

ITEST, CLA /lNTSUM TEST PROGRAM

JMS INTSUM

INT, 0 /PUT ARGUMENT HERE

RTN, HLT

$

Figure 2-l DDT Sample Program

DDT responds to the typing of the slash by typing an expression which has the value of the con—

tents of the specified register. In this case, C(INT) = O, and the line now appears as follows:

(Note: In all of the examples below, information typed by DDT is underlined to make it dis-

tinguishable from that typed by the programmer. In actual operation, no underlining is present.)

INT/0000

After typing the contents of the register, DDT types five spaces and waits. The register is now

open, which means that its contents are available for modification. The programmer decides

2-4

that the first test integer is l0. This must be an octal integer since DDT performs no decimal

arithmetic. With the register open, he types the number 10. Then, to close the register, he

types a Carriage Return ()) immediately after the number.

[NT/0000 10)
Further access to this register is now denied until he opens it again.

Having provided his data, the programmer is ready to start the program. If it works, it should

stop almost immediately with the sum of the first TO integers, which is 44 displayed in the
8 8'

AC lights. To start the program from DDT, he types the following command.

ITEST[G

The left bracket (D is the character printed when the ALT MODE (or ESCape) key is struck;

its function here is to identify the succeeding character as a DDT command. The letter G

specifies the action to be performed, which in this case causes DDT to transfer control to

the test program at location ITEST.

The programmer has typed the command; his program starts to function. Immediately he observes

that something is wrong, since it does not stop almost instantaneously, but runs for a very short,

but observable, time. When it does halt, the contents of the AC lights are definitely nglequal

to 448.

At this point, he knows something is wrong, but he is not sure where the error lies. If he could

interrupt the program during its operation, he might get some idea of the nature of the difficulty.

For instance, if he could verify that the data was transferred to the subroutine correctly, he

could eliminate the calling sequence as a source of error.

The DDT facility which allows the programmer to interrupt the program at any time is called the

breakpoint. As its name implies, it allows him to break into the program sequence at some point

and return control to DDT. He can specify a breakpoint by typing the address of the instruction

where he wants to interrupt the sequence; and after this address he types the breakpoint command.

If he requests a breakpoint at location INTSUM+3, the program will be interrupted when the

datum is in the AC, but before it is deposited in the working register N.

2—5

INTSUM+3[B

When this command is given, the information is retained by DDT until the

start command is provided. At that time, the instruction in the register

specified is removed and placed in a temporary storage location in DDT.

In place of this instruction, 0 JMP is substituted which returns control to

DDT.

To ascertain that the error did not destroy the item of data in the calling program, check it by

opening the register .

INT/9919

Having ascertained that the datum is correct, again start the program.

ITESTlG

Almost immediately, the breakpoint is encountered. Control returns to DDT. When the break

occurs, DDT saves the C(AC). It then types the address of the breakpoint, a right parentheses,

and the contents of the AC which have been saved.

IN TSUM+OOO3)OOl O

The programmer sees that the transfer is correct.

In similar fashion, he moves the breakpoint to the end of the subroutine at

the location lEXlT/. He discovers that at this point the error has manifested

itself. He knows now that the trouble is in the initialization or the main

loop. He can investigate the loop by placing a breakpoint at LOOP, to dis-

cover that the datum is placed in register N as desired. Now he moves the

breakpoint to the end of the loop.

LOOP+3[B

ITE srr G

LOO P+0003)(_)01 o

At the end of the first pass through the loop, the C(AC) are equal to the starting value of N.

At this point, however, the C(N) itself have iust been changed. If the subroutine is working

properly, the C(N) should now be equal to 7 . He investigates:
8

N/OOll

By this time the programmer realizes what has been wrong with the program. In attempting to

save space by using the datum as a counting index, he forgot that the ISZ instruction increments

the contents of a register. What he needs is a counter that starts with a negative value. Real-

izing this, he ends the debugging run.

The sample program above was simple; the error was obvious. This is seldom the case; however,

and with long or complex programs, several debugging runs may be required. However, DDT,

with its facilities for handling symbolic expressions, allows the programmer to work entirely in

the language of the Assembler (either MACRO-8 or PAL III), thus shortening the time required

to arrive at a correct, workable program.

A detailed explanation of every function of DDT is provided in the next chapter. For those

interested, a correct subroutine for performing the integer summation will be found in the PAL III

Programmer's Reference Manual.

CHAPTER 3

THE FUNCTIONS OF DDT-8

STORAGE REQU lREME NTS

The operating portion of DDT-8 occupies storage in upper memory from location 5245. to location

7577, inclusive. The permanent symbol table extends downward in memory from location 5237

to location 5000, inclusive. This table contains the definitions of the mnemonics for all the

basic memory reference instructions, the operate class instructions of both Group 1 and Group 2,

the combined instruction CIA and LAS and the symbol I for indirect addressing, and the basic

lOT instructions: KCC, KRS, KRB, KSF; TSF, TCF, TPC, TLS; ION and lOF. Appendix 2

lists all the symbols and definitions in the permanent table.

Space is reserved for the user's symbol table immediately below the permanent table. A maxi-

mum of 250 such external symbols is allowed; hence if the user's table is filled, the lower limit

of space occupied by DDT is 3030. However, space not used for external symbols is available

to the user. Each new symbol defined on line uses four locations in the external table.

During operation, DDT uses location 4 on page 0 for the breakpoint link; thus this register is

not available to the user.

LOADIN G PROCEDURE

To load DDT, the BIN Loader must be in memory. Place the user's binary tape(s) in the reader,

set the switches to 7777, then press LOAD ADDRESS and START in that order. When the tape

has been read, the status of the AC lights will indicate any error in loading. If the lights are

all out, loading was successful; if any lights are on, there was a checksum error and the tape

must be reread .*

After the user's binary tape(s) is in memory, DDT may be loaded using the BIN Loader.

*For more information about the BIN Loader and binary tape format, see the Paper Tape

System User's Guide.

3-1

SYMBOL TABLE TAPES

Part of the punched output of a MACRO-8 or PAL assembly is a tape containing the symbol def-

initions of the assembled program. The definitions from a symbol tape are entered into the DDT

external table by the following procedure; only the ASR 33 tape reader may be used.

l . Turn the reader off; insert the symbol tape.

2. Type ALT MODE (or ESCape) then R ([R) on the keyboard and turn the reader on.

3. When the computer stops, turn off the reader, then press CONTINUE.

DDT will type out the address of the lowest register used by the external sym—

bol table .

4. If more tapes are to be entered, bit 0 of the switch register (SR) must

be down; repeat steps l-3, for each tape.

Reading will continue until the end of the tape is reached or until a total of 250 symbol defin-

itions have been read. If this maximum limit is reached, no further symbols may be added to

the table until some have been deleted. Even if the limit is reached in the middle of a tape,

however, the user may proceed with debugging by typing EOT, then turning the reader off and

pressing CONTINUE. The remaining symbols left unread will not be in the table.

DEFINITIONS

A symbol is a string of up to six letters and numerals, the first of which must be a letter. The

following are legal symbols: FIMAGE, K2, X464PQ, PMLA. The following are not aceptable:

4WD Daes not begin with a letter

F2.8 Contains an illegal character

AN PRC A space cannot be imbedded in a symbol
GANDALF More than six characters

A number is a string of up to four octal digits (integers). Hence, a number may have a maxi—

mum value of 77778. The digits 8 and 9, however, may be used only as characters in a symbol.

3—2

An expression is a symbol, an integer, or a sequence of symbols and integers separated by any

of the following operators:

+ An operator designating addition (arithmetic plus).

- An operator designating subraction (arithmetic minus).

space An operator which indicates that the remainder of the

expression is to be treated as the address part of an in-

struction (see MACRO—8 Programmer's Reference Manual.)

All other characters, except those used for DDT control commands, are illegal.

If two or more spaces appear in succession, all but the first are ignored. Thus,

TAD TEM and TAD TEM are identical expressions.

DDT will respond to an extra CR with CR, LF; the extra CR‘s are otherwise ignored.

The following errors will cause DDT to type a question mark (?) and ignore all the information

typed between the point of the error and the previous tab or CR.

1. Undefined symbol; illegal symbol.

Illegal character.

Undefined control command.AWN Cross-page addressing.

MODE CONTROL

Any expression containing a symbol is symbolic; an expression containing only integers is octal .

The user of DDT is free to use whichever mode is most convenient for the information he is typing

in. On output, DDT will type exclusively in one mode or the other, as determined by one of

the commands described below.

NOTE: When DDT is first set into operation, the output mode is

symbolic .

3—3

[0 This command causes DDT to print any subsequent item

of information as an octal integer. Typed input may be

symbolic or octal . If LOC=2642z

Example:

1 . LDC/1263

2. 2642/1263

[5 This command causes DDT to print any subsequent item

of information as a symbolic expression. Typed input

may be symbolic or octal . If LOC=2642 and C(LOC)=

TAD DATA+4:

Example:

1. LOC/TAD DATA+OOO4

2. 2642/TAD DATA+OOO4

If the user wishes to find the octal value of a symbolic expression typed by himself or by DDT

without changing the output mode, he may use the following command.

= Typed immediately after a symbolic expression, this will

cause DDT to print the value of the expression as an

octal integer.

Example:

1. LOC=2642

2. LOC/TAD DATA+OOO4 =1263

In the second example above, the prevailing output mode

is symbolic and remains so after the use of the equal sign.

PROGRAM EXAMINATION AND MODIFICATION

These commands and operations allow the user to examine and change the contents of any reg-

ister in the PDP-8 core memory.

CAUTION

Be careful not to open and modify any register within the DDT sym-

bol table or program itself. DDT does not protect itself against such

intrusions, which will inevitably cause errors in operation.

/ This is the register examination character. Typed immediately

after an expression, it causes DDT to print the contents of

the register whose address is specified by that expression.

Example: If the user types:

LOC/
DDT will type out the contents of LOC, followed

by 5 spaces, thus:

LOC/TAD DATA+OOO4

The user may now change the contents of the

register if he wishes:

LOC/TAD DATA+OOO4 JMP LOC+IO

pl (CR) This causes DDT to close the opened register after making the

specified changes (if any) in its contents.

Example:

LOC/TAD'. DATA+OOO4 JMP LOC.+I 0)

Typing additional CR's will have no effect on the operation

of DDT.

LF If, after examining and/or modifying the contents of a reg-

ister, the user wishes to open the next register in sequence,

he types a line feed instead of a CR. The open register is

3-5

closed, and DDT then opens the succeeding register, typing

the address, a back slash to indicate that the register was

not opened by the user, the contents of the new register,

and another five spaces.

Example: After examining and changing the contents of

LOC, the user wishes to examine the contents

of LOC+l .

LOC/TAD DATA+OOO4 JMP LOC+10 (LF)

MDCA DATA

The register LOC+T is now open.

The line feed may be used at any time, even if the last reg-

ister examined has’ been closed or if other operations have

intervened. For example, if the following sequence of oper-

ations occurs:

LOG/W JMP .+10)
[0

.+5[B

(LF)

DDT will still open register LOC+l . The breakpoint address

has no effect on the counter within DDT which keeps track of

the last opened register.

lf instead of changing the contents of aregister, the user

wishes to examine the register addressed by those contents,

he types f
,

as follows:

LOC/TAD DATA+OOO4 f

DATA+4\ OPR+337

The register DATA+4 is now open.

3-6

- (period)

Note that this operation is intended for use with unmodified

registers. If the user types it after typing some modifying

information, the register addressed will be the one which is

changed. For example, if the following sequence occurs:

Loc/TAD DATA+OOO4 JMP Loc+iol

the information will be placed in DATA+4, so that the next

line, printed by DDT, will look like this:

DATA+4\JMP LO‘C+OO]O

The register LOC will not be changed.

An indirectaddressmodifier will not be interpreted by the f

operation. If, for example, the register LOC contained

TAD | DATA-t4, and the user typed f as in the previous

example, DDT would still open the register DATA—i4.

The period is used as a symbol whose value is the address

of the last previous register opened. It can be used in

several ways .

Example 1: To check the results of a modification.

LOC/ TAD DATA+OOO4 JMP LOC+I o)
./JMP LOC+OOIO

2. To refer to the currently open register.

LOC/TAD DATA+OOO4 JMP .+10

3. To execute any command starting at an ad-

dress relative to the last opened register.

LOC/TAD DATA+OOO4 JMP.+l 0)
. -5[G

3-7

<— (back arrow) An error may be deleted by typing a back arrow. All infor—

mation between the 4—— and the previous tab or CR is ignored;

DDT responds by typing a tab. For example:

LOC/TAD DATA+OOO4 JMP LC4— JMP .+IO

CROSS—PAGE ADDRE SSE’S

When the user types an instruction to be placed in an open register, the address of that in-

struction must be in the same page as the address which contains the open register.

If such a cross-page address is attempted, DDT will signal an error by typing land ignoring

the information .

Example: If LOC = 2642 and XPAG =2770, the following sequence would result in an error

indication:

LOC/TAD DATA+OOO4 DCA XPAG+20)
?

The expression XPAG+20 = 3OIO, which is outside the page containing LOC.

The register LOC will be closed without modification.

Conversely, an expression containing symbols defined outside the page is acceptable if its value

is in the current page.

Example: If LOC = 2642 and XPEG = 30l0, the following sequence is acceptable, since

XPEG-20 has a value which brings it within the current page:

LOC/TAD DATA+OOO4 DCA XPEG—ZO)

USING COMBINED OPERATE OR IOT CLASS INSTRUCTIONS

Except for CIA and LAS, combined Operate Class and IOT instructions are not defined in the

DDT-8 permanent symbol table. To enter such instructions into an open register, the combin-

ation must contain no more than two mnemonics, the second of which must be CLA. Any other

combination will be treated as an error, and the information will be ignored.

3—8

Example: The following attempt is an error.

XPAG/ELA CLA CMA)
?

This attempt is correct.

XPAG/CLA CMA CLA

If the desired combination does not include CLA, the user may do one of two things. He can

define the combined operation as a new symbol (see SLmbol Definition) whose value is the

combined operation code. For example, the operation CLL RAR can be defined as a symbol,

say, CLAR, whose value is 7110.

Alternatively, the user may enter the combined operation as an expression containing the sym-

bol OPR. For example, the operation CLL RAR can be entered as CPR-+110. He may similarly

use the symbol lOT in entering new l/O combinations.

OUTPUT

When operating in symbolic mode, DDT—8 will always attempt to make a symbolic expression

out of the contents of an opened register, regardless of whether the contents are intended to

be such or not. For example, if register DATA contains the number 6i l5, opening the regis-

ter will result in the following line:

DATA/IOT+Ol T5

The user can use the equal sign to ascertain the octal value:

DATA/IOT+OI 15 =6] 1
-———-

SPECIAL REGISTERS

There are five registers contained within DDT which hold information of interest to the user.

These registers may be opened and their contents may be changed.

[A When a breakpoint is encountered, the C(AE) at that

point are placed in this register.

[Y When a breakpoint is encountered, the C(L) at that point

are placed in this register.

3—9

[L This register contains the address of the lower limit of a

word search. Initially, C([L) = 000i .

This register contains the address of the upper limit of a

word search. Initially, C([U) = 5000.

This register contains the mask used in a word search .

Initially, C(lM) = 7777.

PROGRAM EXECUTION AND CONTROL

The commands described in this section allow the user to control the execution of his program.

He

k[B

This command causes DDT to begin the execution of the

user's program, starting with the instruction inithe register

whose address is specified by the expression k. If a break-

point (see below) has been requested, it is inserted just

before control is passed to the user's program.

Example: If the user types

BGINlG

DDT will transfer control to location BGIN.

Likewise,

FILI-5l G

will cause the user's program to start in the fifth

register preceding the one labeled FILI.

Using [(3 without an argument is an error. DDT will ignore

the command, and type _?_ to indicate the mistake.

This causes DDT to insert a breakpoint at the location speci—

fied by the expression k. The breakpoint is not placed im—

mediately, however. When this command is typed, DDT

3-10

stores the value of the address indicated by E. Then, when

the user next types either a [G or a [C (see below) command,

the breakpoint is placed just before control passes to the

user's program. At that time the sequence of operations per-

formed by DDT is as follows:

i . The contents of location _k_are saved in a special register.

2. In place of the instruction in location l_<_, DDT substitutes

the instruction, JMP l 4. Location 4 contains the address of

a special breakpoint handling subroutine within DDT.

3. After the breakpoint has been placed, DDT passes control

to the user's program.

When, during execution, the user's program encounters the location containing the breakpoint,

control is immediately passed (via location 4) to the breakpoint subroutine in DDT. The C(AC)

and C(L) at the point of interruption are saved in the special registers [A and [Y, respectively.

DDT then types out the address of the register containing the breakpoint, followed by a right

parenthesis and the contents of A as an octal number. Control has now returned to DDT, and

the user is free to examine and modify his program.

Only one breakpoint may be in effect at one time. As soon as the user requests a new break-

point using the B command, any previous existing breakpoint is removed. To eliminate the

breakpoint entirely, the command is typed without an argument, thus:

[B

When the breakpoint is removed, the original contents of the break location are restored.

After the breakpoint has occurred and the user has examined his program and made the changes

he wishes, he can cause his program to continue from thngoint of the break by means of the

following command:

This continue command causes DDT first to execute the in-

struction which was originally in the break location, and

then pass control to the next location in the user's program.

The breakpoint remains in effect.

Example: This example illustrates the use of the three commands just described. The comments

explain the events.

FlLl+7[B

BGIN[G

Fl LI+OQO7)7721 2

[C

Breakpoint request.

Program execution is initiated at BGlN. Program runs until

breakpoint location is encountered.

DDT types the address of the break location and the contents

of the AC at the time of the break. Note that location FlLl+7

is not opened.

The user performs such examination and modification as he

desires.

The user‘s program continues, beginning with the execution

of the instruction originally in FlLl+7. The breakpoint re-

mains in effect.

Oftentimes, the user would like to place a breakpoint at a location within a loop in his pro-

gram. Since loops can run to thousands of repetitions, some means must be available to pre-

vent a break from occurring every time the location is encountered. This is done using the [C

command; after the breakpoint is encountered the first time, the user can specify how many times

the loop must be executed before another break is to occur, as follows:

Example: After the first breakpoint occurrence, the user wishes to wait for 250 repetitions
8

before the next break.

FlLl+7[B

BGIN[G

F l Ll+0007)772] l

250[C

The break is requested.

The break is placed; the program begins.

The first break occurs.

The program continues. The next break will not occur until

the location FlLl+7 has been encountered 250 times.

3-12

FlL|.+OQO7225§£) The next break occurs after 250 times through the loop.

Restrictions on the Use of Breakpoints

The user must not place a breakpoint at any of the following places in his program:

l . Within any section of the program which operates with the program

interrupt enabled.

2. At any location that contains an instruction which is modified during

the course of the program. For example, if the prOgram contains a sequence

which includes the following instructions:

152 B

B, TAD A

a breakpoint may not be inserted at location B.

When the user's program comes to a halt, control may be returned to DDT

by setting the Switch Register to 5400 and pressing LOAD ADDRESS and

START, in that order.

3. In a register containing a subroutine jump (JMS) which is followed by

one or more arguments for that subroutine .

A breakpoint may be inserted at the point of a subroutine call if the JMS instruction is not fol-

lowed by any subroutine arguments, but the breakpoint may not be removed until control has

returned from the subroutine to the calling program.

WORD SEARCHES

The searching operations are used to determine if a given quantity is present in any of the regis-

ters of a particular section of memory. The search is initiated by the following command:

3—13

k[W DDT will perform a word search and print the address and contents of

every register in the desired section of memory whose contents are

equal to the value of the expressionlg. If the expression lg is omitted,

a search for the quantity 0000 masked by C([M) is assumed .

The conditions for any search are set by the following criteria:

l . The contents of every register searched are masked by the contents of the

special register M, using the Boolean AND operation. The resulting logical

product is then compared with the value ofl_<_. If the two quantities are

identical, the address and contents of the examined register are printed on

the teletype-writer .

2. The search is conducted over that section of memory whose lower limit is

given by the C([L), and whose upper limit is given by the C([U), except for

the special case described in the next paragraph.

3. If the C([M) = 7777 and the expression l_<_ contains any symbol in its address

part (for instance, ISZ FlLl+5,- FlLl is the symbol), the search will be conducted

only on the page for which that symbol is defined, regardless of the search

limits specified by C([L) and C([U). For any other case, including that where

the address tag of l_<_ is defined for page 0, the search is conducted according

to the limits set.

A search never alters the contents of any register examined.

Addresses and register contents are printed as symbolic expressions or octal integers, according

to the mode at the time of the search.

Example: Search locations 2600 to 3000 for all occurrences of the expression TAD DATA,

where DATA = 2740. The C([M) = 7777. The C([L) and C([U) are at their in—

itial values.

[L\OOOT 2600
’)

[U\5000 3000
)

TAD DATA [w

LociTAD DATA

LOC+0015\TAD DATA

FILI+0002\TAD DATA

NoTe ThaT in This example, The C([L) and C([U) could have been leTT alone, since The expres-

sion l<_ conTained The symbol DATA in The address parT. Had The user requesTed a search for The

expression TAD 2740, he would have had To seT The limiTs as shown for The desired search .

Example: Search locaTions 2000 To 4000 for all occurrences of an ISZ insTrucTion.

[L\(_)92_l_ 2000)
[U_5_009_ 4000

)
[M\Z_7ZZ 7000)
ISZEW

The addresses raTher Than Tags are Typed ouT when symbols are noT defined.

2002\ISZ 2l35

2053\ISZ 2l35

2] l l\ISZ 0017

(eTc .)

The search will conTinue unTil all regisTers conTaining an 152 are found. NoTe ThaT The seTTing

of The mask limiTs The invesTigaTion To The firsT Three biTs of each regisTer, so ThaT only insTruc—

Tion codes are considered .

Example: ObTain a dump of any secTion of memory. The search is conducTed beTween The limiTs

seT, and The addresses and conTenTs of all regisTers in The searched secTion are prinTed .

[L_000l_ 2600)
[U\§9_<_$_5_ 3000)
[M\Z_7_7_Z 0)
[W

2600\ 0000

2601\ CLA

2602\TAD 2610

(etc .)

The search will continue to the specified limit, printing the contents of every register. Note

the following points: The mask is set to 0 to insure that results of every comparison are the

same, i.e., O. The search is conducted for all registers containing 0, so that the results of

each comparison are equal to the desired quantity, 0. Always remember that the contents of

the registers themselves are 99.“ altered.

DEFINING NEW SYMBOLS

Often, during the course of a debugging run, the user will want to add new symbols to the ex-

ternal table. This is especially so when he adds a sequence of instructions to his program as a

patch elsewhere in memory. The patch is usually identified by a symbol which is the address

tag of the first instruction in the patch. In order to use the symbol in subsequent debugging

operations, he must add its definition to the external table as follows:

l. Set bit 0 of Switch Register down.

2. Type [R (ALT MODE or ESCape, and then R).

3. Type carriage return, line feed, in that order.

4. Type the symbol, at least one space, and an octal integer whose value

is the definition of the symbol.

5. If more than one symbol is to be defined, repeat steps 3 and 4 for each

definition.

6. After the last definition, type carriage return, line feed, EOT, in that order.

7. Press CONTINUE. DDT will type out the new lower limit of the exter-

nal table.

Example: To define the symbols PATCHI and PATCH2, the operations will appear as follows

(Assume that the current limit of the table is 4775):

,1 (If)

PATCHI 610) (If)

PATCH2 620) (If)

(EOT)

(Press CONTINUE)

4665 (new limit of the table)

If the user makes an error while typing a definition, he cannot use4— to eliminate the infor—

mation. The erroneous definition must be entered.

A symbol already in the table may not be redefined. Only new symbols can be added.

NOTE: Extra carriage return, line feed pairs may not be inserted

between definitions; they will cause errors in subsequent table look-

up when DDT is operating.

To completely expunge the external symbol table (for instance, when starting a new debugging

run with DDT already in memory), the following command is used:

[X

On receipt of this command, DDT removes all definitions in the external table. The permanent

table is unaffected .

MAKING A NEW SYMBOL TAPE

DDT may be used to make a new symbol definition tape. If a number of new symbols have been

defined in the course of a debugging run, the user can put these definitions on tape for future

debugging purposes. The procedure is as follows. Only the ASR 33 console punch may be used.

I. Place the ASR 33 console OFF LINE; turn on the punch.

2. Punch a length of leader tape by the following method: strike and hold

down_i_n orderthe keys SHIFT, CTRL, REPT,@ . When enough tape has

been punched with leader-trailer code, release the keys in reverse order.

3. Type RUBOUT.

4. Type CR, LF.

5. Type the symbol, at least one space, and the definition (an octal number).

6. Repeat steps 4 and 5 for each definition required.

7. After the last definition, type CR, LF, EOT. (Note that steps 4—7 are

identical with steps 3-6 described in the preceding section, Defining New

Symbols.)

8. Punch a length of trailer by repeating step 2.

9. Turn the punch off; place the console ON LINE. Remove the new tape

from the punch .

A tape punched in the above manner can be read into DDT's external table by the method de-

scribed under Symbol Table Tapes (page ll).

Punching Binary Tapes

After making the desired corrections and changes, the user may punch out a new binary tape

of his program. This allows the debugged preram to be used immediately, without waiting

for the programmer to incorporate the corrections in a new symbolic tape and reassemble the

program. The punching procedure given below may be used for either the Teletype console

punch or the optional high-speed punch. The device is indicated by the setting of“ bit 0 of

Switch Register.

Bit O of Switch Register Device to be Used

up Console punch (low speed)

down High—speed punch

3—18

In the following description, instructions in parentheses apply to the use of the console punch.

If the high-speed punch is used, these instructions for turning the punch off and on may be

ignored.

[T This command is used to obtain a segment of leader~trailer.

a;b[P This command causes DDT to punch a block of binary tape with

the information contained in the section of core memory desig-

nated by the expressions 3 (lower limit) and _b_ (upper limit),

inclusive. gand bmay be any kind of acceptable terms.

[E This command is used at the end of punching operations and causes

DDT to punch a checksum block, fol lowed by a length of trailer tape .

The punching procedure, using these three commands, is as follows:

I . (Turn the punch off), type [T.

2. Turn punch on and press CONTINUE .

3. When punching is completed (turn punch off) type the lower limit, a

semicolon, the upper limit, and [P.

4. (Turn on punch), press CONTINUE.

To punch more blocks, repeat steps 3 and 4 for each block.

5. After the last block has been punched (turn off punch) type [E .

6. (Turn on punch), press CONTINUE. The computer will punch a check-

sum block and a length of trailer.

7. When the entire operation is finished (turn off punch) remove the tape,

depress CONTINUE. This binary tape may be loaded by the BIN Loader.

CAUTION

The user should not try to punch the section of memory between

5000 and 7600 which contains DDT.

If the user wishes to restart DDT before he has punched a complete tape (i.e., between data

blocks) he must set the console switches to 540i to preserve the checksum. Subsequent restarts

must also be to 540] until the checksum block has been punched.

3-20

Character

space

.1.

/

carriage return

line-feed

. (period)

‘.___

[S

[O

N[W

k[B

le

[R

APPENDIX A

SUMMARY OF COMMANDS

Action

Separation character.

Arithmetic plus.

Arithmetic minus.

Register examination character. When it follows the address

register, it causes the register to be opened and its contents

printed.

Make modifications, if any, and close register.

Make modifications, if any, close register, and open next se-

quential register.

When it immediately follows a register printout, it causes the

register addressed therein to be opened.

Type last quantity as an octal integer.

Current location

Delete the line currently being typed.

Sets DDT to type out in symbolic mode .

Sets DDT to type out in octal mode.

_V_V_o_r£l searchforall occurrences of the expression N masked with C([M) .

Insert a breakpoint at the location specified by lg. If no address

is specified, remove any breakpoint.

Continue fromabreakpoint n times automatically. If n is absent,

it is assumed to be i .

Qgto the location specified by k.

liegd symbol table into external symbol table or define symbols

on line.

Punch leader-trailer code.

A-i

Oibl P PM binary tape from memory bounded by the addresses a and b.

[E Punch End of tape: checksum and trailer.

The following symbols are the address tags of certain registers in DDT whose contents are avail-

able to the user.

[A Accumulator storage (at breakpoints).

[Y Link storage (at breakpoints).

[M Mask used in search.

[L [.Qy_e_r limit of search.

[U [4999; limit of search.

A—2

APPENDIX B

INTERNAL SYMBOL TABLE

AN D = 0 CMA = 7040

TAD = 1 000 CM L = 7020

IS Z = 2000 RAR = 701 0

DC A = 3000 RAL = 7004

J MS : 4000 RTR = 701 2

J MP = 5000 RTL = 7006

IOT = 6000 lAC = 700]

0 PR = 7000 SMA = 7500

C LA = 7200 S ZA = 7440

KC C = 6032 S PA = 751 0

K RS = 6034 SNA = 7450

KR B = 6036 SN L = 7420

TSF = 604] SZL = 7430

TC F = 6042 S K P = 74] 0

TPC = 6044 0 SR = 7404

T L5 = 6046 H LT = 7402

IO N = 6001 C IA = 7041

IOF = 6002 LAS = 7604

KSF = 6031 I = 400

C LL = 7] 00

B—1

Accumulator A-2

Address Tags A-2

Addressing ,

Cross- Page 3-8

Indirect 3-7

ALT MODE Key 2-3, 2-5

B

Back-Arrow Key (see Left-Arrow Key)

Binary Loader (BIN)

Loading Programs 2-2

Breakpoint 2-5, 3-1 I , A-2

Command 2-6, A-I

Restrictions 3-13

C

Carriage Return 2-5, 3-5, A-l

Characters, Special A-I

Closing Registers 2-5, A-l

Commands

A 3-9, A-2

B 3-10, A-I

C 3-12, A-I

Control 3-10

E 3-19, A-2

Examination 3-5

Execution 3-10

G 3-10, A-I

L 3-10, A-2

M 3-10, A-2

Mode Control 3-3, -4

Modification 3-5

O 3-4

P 3-19, A-2

R 3-16, A-l

S 3-4, A-l

Summary A-l ,
-2

T 3-19, A-l

U 3-10, A-2

W 3-14, A-2

INDEX

X 3-17

Y 3-9,A-2

Control

Output 3-9, 3-18

Program 3-10

D

Debugging

With DDT 2-2

Without DDT 2-l

E

Equal Sign 3-4, A-I

Error Messages 3-3

ESCape Key (see ALT MODE)

Expression 3-3

External Symbol Table

Contents 2-3

Deleting 3-17

F

Functions, Basic 2-3

I

Input/Output

Combinations 3-9

Control 3-4, 3-18

Instructions 3-] ,
3-]

Instructions

Combined 3-8

IOT 3-1, 3-1

Operate 3-1, 3-8

Integer 3-2

Internal Symbol Table

Contents 2-3, 3-1, 3-8, 3-]

Locations 2-2, -3

L

Leader/Trailer Tape 3-18, -I9

Left-Arrow Key 3-8, A-I

Left Bracket 2-5, A—I

LINE FEED Key 3—5, A-I

Loaders, Tape 2-2

Loading

BIN 2—2

DDT 2-2, 3-]

Procedures 3—], —2

Programs 2-2

RIM 2-2

Symbol Tapes 2-3, 3-2

Locations

Breakpoint 3-1

DDT 2-2

SymbolTables 2-2

M

Messages, Error 3-3

Mode Control

Octal 3-3

Symbolic 3-3

N

Number 3-2

O

OctalMode 3-4

Opening Registers 2-4, A-I

Operator 3-3

Output 3-9

Binary Tape 3-18

Device 3-18

P

Period Key 3-17

INDEX (Cont)

Permanent Symbol Table (see Internal Symbol
Table)

Plus Sign Key 3-16

Punching Binary Tapes 3-8

R

Read-In Mode Loader (RIM)

Loading BIN 2-2

Register

Closing 2-5, A-I

Opening 2-4, A-I

Special 3-9

Requirements

Software 2-2

Storage 2-2, 3-I

Restrictions, Breakpoint 3-13

RETURN Key (see Carriage Return)

RUBOUT Key 3-18

S

Sample Program 2-4

Search Command 3-13, A-2

Slash Key 2-4, 3-5, A-I

Storage

Breakpoint A-2

DDT 2-2

Symbol Table 2-3, 3-2

Summary, Command A-I ,
-2

Switch Register Options

Input 3-2

Output 3-18, -I9

Symbol Table

External 2-3, 3-2, 3-16

Internal 2-2, 3-1 ,
B-2

Storage 2-2, 3-2

Tapes 3-2

IN D EX (Cont)

Symbolic Mode 3-4

Symbols

Defining New 3-16, -l7

Tape 2-3, 3-2

T

Tables , Symbol

External 2-3, 3-2, 3-16

Infernal 2-2, 3-I , B-l

Tape

BIN 2—2

DDT 2-2, 3-1

Leader/Trailer 3-18

Ou’rpuf 3-18

Program 2-2, 3-2

RIM 2-2

symbol 2—3, 3-2, 3—18

U

Up-Arrow Key 3-6, A-l

User-Defined Symbols (see External Symbols)

W

Word Search 3-13

DDT

READER’S COMMENTS PROGRAMMER'S REFERENCE MANUAL

DEC—08—CDDB-D

Digital Equipment Corporation maintains a continuous effort to improve the quality and usefulness of its

publications. To do this effectively we need user feedback ~

your critical evaluation of this manual.

Please comment on this manual’s completeness, accuracy, organization, usability, and readability.

Did you find errors in this manual?

How can this manual be improved?

DEC also strives to keep its customers informed of current DEC software and publications. Thus, the following period-

ically distributed publications are available upon request. Please check the appropriate boxes for a current issue of the

publication(s) desired.

C] Software Manual Update, a quarterly collection of revisions to current software manuals.

0 User’s Bookshelf, a bibliography of current software manuals.

C] Program Library Price List, a list of currently available software programs and manuals.

Please describe your position.

Name Organization

Street Department

City State Zip or Country

—————————————————-—FoldHere--——-—-———-——-—-——-——
-——

——————————————DoNotTear-FoldHereandStaple—-———-————-—-———————-

FIRSTCLASS

PERMITNO.33

MAYNARD,MASS.

BUSINESSREPLYMAIL

NOPOSTAGESTAMPNECESSARYIFMAILEDINTHEUNITEDSTATES

Eflfifllall

DigitalEquipmentCorporation

SoftwareInformationServices

146MainStreet,Bldg.3-5

Maynard,Massachusetts01754

Postagewillbepaidby:

