lassic

ot
U
z

Pr

The C

828020 classic

TN

THE CLASSIC PRIMER:
A SELF-TEACHING GUIDE

DEC-08-ECPGA-B-D

PREPARED
' BY

COURSE DEVELOPMENT GROUP
EDUCATIONAL SERVICES DEPARTMENT

DIGITAL EQUIPMENT CORPORATION e
MAYNARD, MASSACHUSETTS

June, 1976
First Printing, May 1975

The information in this document is subject to change
without notice and shouid not be construed as a
commitment by Digital Equipment Corporation.
Digital Equipment Corporation assumes no responsi-
bility for any errors that may appear in this Guide.

The software described in this guide is furnished to
the purchaser under a license for use on a single
computer system and can be copied (with the
inclusion of DIGITAL’s copyright notice) only for use
in such system, except as may be otherwise
authorized in writing by DIGITAL.

Digital Equipment Corporation assumes no responsi-
bility for the use or reliability of its software on
equipment that is not supplied by DIGITAL.

Copyright © 1976 by Digital Equipment Corporation

The following are trademarks of Digital Equipment
Corporation:
CLASSIC DEC DIGITAL

o

PREFACE

This book is part of a three-volume set that
documents the CLASSIC system. The three volumes
in this set are:

(1) The CLASSIC Primer: A Self-Teaching Guide
Order No. DEC-08-ECPGA-B-D
(2) The CLASSIC User’s Reference Guide
Order No. DEC-08-ECUGA-B-D
(3) The CLASSIC Installation and Maintenance
Guide
Order No. DEC-08-ECIMA-B-D

The Primer is designed to assist the novice user in
learning to operate CLASSIC and write programs in
the BASIC language. The Usei’'s Reference Giiide
consists primarily of alphabetical directories of all the
commands recognized by CLASSIC with explanations
and examples of each command. The Installation and
Maintenance Guide provides step by step guidance
for installing the CLASSIC system and a detailed
procedure for correcting minor problems.

/.v“n»\y

N

‘Table of Contents

Chapter Page
1 RUNNING CLASSIC i e e e 1-1
How To Runa CLASSICProgramccovun.. 1-1
Selected Programs on the BASIC Program
DemonstrationDisk, 1-8
2 USING CLASSIC ... i e et e e e 21
WhatIs CLASSIC? e i 2-1
Using the CLASSIC Software 2-3
Typing Rules Used inThisGuide 2-3
3 BEGINNING BASIC PROGRAMMING 3-1
UnderstandingWhatToDo 3-1
3-A Calculating.......... e 3-1
3-B Printing Larger NumbersandWords............... 3-5
3-C Printing VariableResults 3-9
3-D EditingLargerPrograms................ 3-15
3-E USiNgDISKFIESoorere e 319
3-F LOOPS .. e 3-22
3-G Creating FOR-NEXTLoopsccvvuevnenn.. 3-28
3-H Supplying Larger AmountsofData................ 3-22
3- Organizing YourPrograms 3-39
4 ADVANCED BASIC PROGRAMMING 4-1
' 4-A NumericFunctionsccoiiiiiinnn 4-1
4-B Alphanumeric and Special Functions
(Part 1) . .. e 4-10
4-C Alphanumeric and Special Functions
(Part 1) .o e e e 4-19
4-D StoringDatainDiskFiles........................ 4-28

4-E Using MonitorCommands 4-36

™

TN

TABLE OF CONTENTS (continued)

Chapter

5 CLASSIC APPLICATIONS
UnderstandingWhatToDo

5-A Examples of CLASSIC Applications

5-B Planning Programs for CLASSIC . ..
5-C Documenting Your Programs.
5-D Transporting Your Programs
5-E Identifying Further Resources

ADDENDUM: USING THE LINE PRINTER
APPENDIX A Write-Ups for Applications Programs

ACEYO2.............ooviit,

GUESS e
HMBABE o
HURKLEl
HURKO2
MORGAG
QUADEQ, QUADO2, and QUADOS ..
SYNONY and SYNSET
WTDAVG e

APPENDIX B DECUS Program Submission Forms .
APPENDIX C Answers To Exercises

Page

5-1

5-2
5-5
5-7
5-9
5-12

_\ Chapter 1
Running Classic

HOW TO RUN A CLASSIC PROGRAM instructor that you want to use the computer. Arrange
for a time to use CLASSIC and ask him or her to lend

you copies of the CLASSIC System disk and the
This chapter will help you learn how to run a computer BASIC Program Demonstration disk. Then follow
program on CLASSIC. Start by telling your teacher or these steps:

BUT IF SOMETHING

.
L DO THIS LIKE THIS GOES WRONG,
READ THIS

Make sure that the computer
is plugged into a 3-holed

. Push the top of the red
ON/OFF switch on the front
of the machine so that it stays

* in.

11

DO THIS LIKE THIS

BUT IF SOMETHING
GOES WRONG, -
READ THIS

You should now hear some
“clicks” from inside the com-
puter. You may even hear the
soft whirr of fans. In a minute,
you should see a short flash-
ing line on the screen.

®

When you hold a CLASSIC
disk, DO NOT TOUCH THE
BROWN PARTS that appear
through the holes in the cover.
Always hold a disk only by its
cover.

DO NOT
TOUCH
HERE

ayeysia
Wel

T H3LSVIN
SMOYYY 40 NOLLO3NIG JHL

J5Y3 HUM TIGNVH-dN 301

Take the CLASSIC System
disk out of its envelope by
placing your thumb on the
label.

disk label
disk cover

disk surface

@

Lift the left-hand door on the
front of the CLASSIC by
pinching its latch between
your thumb and finger.

1-2

If you do not see this line,
make sure that the plug is
pushed all the way in and
press the red ON/OFF switch
again. If nothing happens this
time, ask your teacher or
instructor for help.

envelope

N

N

/"'c\\‘

DO THIS

LIKE THIS

BUT IF SOMETHING
GOES WRONG,
READ THIS

Slide the CLASSIC System
disk into the drawer, label side
up, but DO NOT FORCE THE
DISK into the drawer. It should
slide in smoothly.

®

Close the door over the disk,
but DO NOT FORCE THE
DOOR CLOSED. The door
latch will “click” when it is
closed properly.

®

Take the BASIC Program Dem-
onstration disk out of its
envelope and slide it into the
right-hand drawer. Close the
right-hand door over the sec-
ond disk so that it clicks.

Push the top of the white
START button on the front of
the machine and let it go
again, allowing it to rock out.

W

1-3

If the disk does not slide in
smoothly, make sure that you
have lifted the door all the way
up and that another disk is not
already in the drawer. If you
find another disk, slide it out
and give it to your teacher or
instructor. DO NOT PLACE
THE DISK ON THE DESK
WITHOUT ITS ENVELOPE.

If the door will not close, make
sure that the disk is pushed all
the way in. If you still cannot:
close the door, ask your
teacher or instructor for help.

DO THIS

LIKE THIS

BUT IF SOMETHING
GOES WRONG,
READ THIS

The numbers 0123 should now
appear on the screen.

Press the letter S on the
keyboard.
You should see the letter S
appear and then CLASSIC
should display a dot on the
next line.

®
Look at the CLASSIC keyboard
and find the space bar and the
keys that say CTRL, U, and
RETURN.

CTRL key

space bar

Now type R BASIC after the
dot, pressing the space bar
once between the R and B as
shown in the picture.

01238
.R BASIC__

If all of these numbers do not
appear, press the white
START button again. If they
still do not appear, make sure
that the left-hand disk is
pushed all the way in and that
its door is properly closed.

Then push the white START
button once again. If you still
do not see all the numbers,
ask your teacher or instructor
for help.

If the S does not appear on
screen, press the S key again.
If the dot does not appear,
repeat Step 7. Ask your
teacher or instructor if you
need help.

U key

RETURN key

If you make a mistake, hold
down the CTRL key and press
the U key. This will print A U
and another dot will appear.
Then type R BASIC correctly.

o~

//_-:\\

DO THIS

LIKE THIS

BUT IF SOMETHING
GOES WRONG,
READ THIS

©

Push the wide key that says
RETURN.

CLASSIC should print the
message NEW OR OLD—

Find the keys that say 1 and
0 on the top row of the
keyboard. You must always
use these keys to type the
numbers one and zero. The
keys that say | and O on the
second row of the keyboard
are used to type letters onlv.

number 1 key

SHIFT key

On keys that have two char-

acters like thel* and E} keys,
you can type the upper char-
acter by holding down the
SHIFT key while pressing the
character key. For example, if
you want to type “:”, you must
hoid down the SHIFT key and

press theEl key.

Everything you type will appear on the screen. If you make a
mistake, hold down the CTRL key and type U to tell CLASSIC to
delete the line you have just typed. Then retype the line correctly.

Pushing the RETURN key tells CLASSIC to read the line you have

just typed.

01238
.R BASIC
NEW OR OLD--

letter | key

These are typed by holding down the SHIFT key.

* or

1

These are typed normally.

1-5

If NEW OR OLD— is not
printed, look to see if a new
dot has been printed after any
other message that you might
see. If you see a new dot, type
R BASIC again and push
RETURN.

If you do not see the NEW OR
OLD— message or a new dot,
hold down the CTRL key and
press C. This should cause
CLASSIC to print a new dot.
Then type R BASIC and press
RETURN.

If NEW OR OLD— still does
not appear, ask your teacher
or instructor for help.

number 0 key

letter O key

: key

SHIFT key

DO THIS

LIKE THIS

BUTIF SOMETHING
GOES WRONG,
READ THIS

(P2

Now type OLD RXA1:GUESS
after the NEW OR OLD—
message. Press the space bar
once between the D and R,
and be sure to use the correct
keys for 1 and : as shown in
the picture.

Press the RETURN key again.
CLASSIC should then respond
only with the word READY as
shown in the figure above.

&)
Now type:

RUN
and press RETURN, In 2
minute, CLASSIC should
print:

GUESS BA 3.0

and then display messages for
you to read and questions for
you to answer. The computer
will tell you that it is waiting
for an answer by printing a
question mark (?). Type your
answers after the question
marks. Do not forget to press
the RETURN key after you
type to tell CLASSIC to read
your answer. If you make a
mistake, hold down the CTRL
key and press the U key.

L)

When you have played GUESS
as much as you like, hold
down the CTRL key and type
C. This will cause the READY
message to be displayed
again.

01238
.R BASIC
NEW OR OLD --OLD RXA1:GUESS

READY

01238
.R BASIC
NEW OR OLD__OLD RXA1: GUESS

READY

Typing C while holding down the CTRL key tells CLASSIC to stop
whatever it is doing and let you type new lines.

1-6

If you make a mistake, hold
down the CTRL key and press
U. CLASSIC will respond “DE-
LETED”. Then type OLD
RXA1:GUESS again.

If the message OLD FILE
NAME— is printed, type
RXA1:GUESS and press RE-
TURN.

If the message BAD FILE is
prinfed, type OLD RXAT1:
GUESS again and press RE-
TURN. If BAD FILE is printed
again, ask your teacher or
instructor for heip.

If any other message is
printed, make sure that the
right-hand door is closed
completely and begin again
from Step 7. If you have
further trouble, ask your
teacher or instructor for help.

If a question mark does not
appear after the messages,
ask your teacher or instructor
far help,

-

~

s

N

S

N

DO THIS

LIKE THIS

BUT IF SOMETHING
GOES WRONG,
READ THIS

®
Whenever you see the READY
message, Yyou can ask
CLASSIC to run another pro-
gram. For example, type:
OLD RXA1:SYNONY
and press RETURN. CLASSIC
should respond:
READY
without any other message.

®

Now type RUN and press
RETURN. In a minute, CLAS-
SIC should print:

SYNONY BA 3.0
and then give you further
instructions. SYNONY is a ten
question drill on synonyms
that records the scores
achieved by all the students
who use it. This program will
end by itself, so you do not
have to type CTRL/C.

@
When the READY message
reappears, you can ask CLAS-
SIC to run another program if
you like. The names of some
of the other programs that you
can run using the BASIC
Program Demonstration disk
are:
ACEY02 HURKO02
CALC MORGAG
EASYO03 QUADO3
HMRABI WTDAVG
HURKLE

Each of these programs is ex-

nlaimad Ak tha and Af thie
plainicd alv uic @nu O NS

chapter. To use any of these,
type OLD RXA1: and the
program name as you did for
SYNONY in Step 15. For
example, you might type:
OLD RXA1:ACEY02

and press RETURN. Then type
RLIN as you did in Step 13.

@

When you have finished work-
ing with CLASSIC, type
CTRL/C as many times as
necessary until the dot reap-
pears on the screen at the
beginning of a fine. Then open
the doors over the disks and
gently slide the disks out from
the drawers. Place the disks
back in their envelopes so that
the labels can be seen. Hold
the disks as you did in Step 3.
When both disk drawers are
empty, close their doors and
push the bottom of the red
ON/OFF switch. The display
will disappear. Return the
disks to your teacher or in-
structor.

READY
OLD RXA1: SYNONY
READY

READY

OLD RXA1: SYNONY
READY

RUN

If any other message is dis-
played, type OLD RXA1:
SYNONY and press RETURN
again. If you have further
problems, ask your teacher or
instructor for help.

If further instructions are not
displayed, ask your teacher or
instructor for help.

SELECTED PROGRAMS ON THE
BASIC PROGRAM DEMONSTRATION DISK

Below are explanations of some of the programs that
you can run using the BASIC Program Demonstration
disk. Each program is followed by part of a sample
run. The lines that you type have been circled. For
additional information on these programs, see
Appendix A. (Your teacher or instructor may have
another disk with additional programs that you can
run.)

ACEY02 plays the card game Acey-Deucey. The
computer deals two cards and you bet
on whether a third card will fall be-
tween them. You begin with $100; aces
are high and deuces are low.

OLD' RXA13ACEYQ2

REALY

ACEY02 EA 3.0 30-DEC-75
ACEY-DUCEY TWO
DO YOU WISH TO SEE THE INSTRUCTIONS ('YES® OR 'NCI')?

YOU NOW HAVE $ 100 .
HERE ARE YOUR FIRST TWO CARDS..,

FOUR

TEN

YOUR BET ($)7(5)

YOUR THIRD' CARD IS...
NINE

YOU WIN!!

YOU NOW HAVE ¢ 105 .

HERE ARE YOUR NEXT TWO CARIDS...
NINE
EIGHT

YOUR BET ($)%0)

YOU STILL HAVE s 103 .
HERE ARE YOUR NEXT TWO CARDS...

ACE
SIX

YOUR EET (‘)?<:>
READY

CALC calculates the values of *CLASSIC
arithmetic expressions. Use™ for mul-
tiplication and / for division. Paren-
theses are allowed.

OLD RXA1:CALC
READY

CALC BA 3.0 03-FEE-76

YOUR EXPRESSION?

3+4 = 7
YOUR EXFRESSIONT(ZRD)
2k5 = 10

YOUR EXPRESSION?
7%4/3 = 9,33333

YOUR EXPRESSION?(CD
READY

EASYO03 finds the factors of numbers that you

enter — you type a number and
CLASSIC displays all the numbers that
will divide into it evenly.

(OLD RXAT:EASY03)

READY

&N

EASY03 BA 3.0 JO0-DEC-75

IZASYO3

THIS FROGRAM WILL FIND THE FOSITIVE FACTORS OF ANY NUMBER THAT
YOU ENTER., AFTER YOU HAVE ENTERED' ALL THE NUMBERS THAT YOU
ARE INTERESTEDR INs ENTER "QUIT®" TO STOF THE FROGRAM.

YOUR NUHBER

THE FACTORS OF &0 ARE:

YOUR NUMBERT
REALY

GUESS you try to guess a number between 1

and 100 that the computer has picked.

OLD RXA1:GUESS

READY
GUESS BA 3.0 30-DEC-75

BUESS: THE NUMBER GUESSING GAME

FLEASE TYFE YOUR FIRST NAME AND THEN FRESS THE RETURN KEY.

WHAT IS YOUR FIRST NAME?(KATHY)
HELLO, KATHY!

I AM THINKING OF A NUMEER BETWEEN 1 AND 100 .
TRY TO GUESS WHAT IT IS, (FRESS RETURN AFTER EACH GUESS.)

YOUR GUESSS::)
TOO HIGH~ GUESS AGAIN.

YOUR GUESSH
READY
HMRABI lets you act as governor for the ancient
city of Sumeria for a ten-year term of
office.
READY
HMRABI RA 3.0 30-DEC-75

TRY YOUR HAND AT GOVERNING ANCIENT SUMERIA
SUCCESSFULLY FOR A 10-YR TERM OF OFFICE.

HAMURABI: I BEG TO REFORT TO YOUs

IN YEAR 1 » O FEOFLE STARVED, S5 CAME TO THE CITY.
FOFULATION IS NOW 100

THE CITY NOW OWNS 1000 ACRES.

YOU HARVESTED 3 BUSHELS FER ACRE.

RATS ATE 200 EBUSHELS.

YOU NOW HAVE 2800 BUSHELS IN STORE.

LAND IS TRADING AT 20 BUSHELS FER ACRE.

HOW MANY ACRES IO YOU WISH TO BUY?

HOW MANY ACRES DO YOU WISH TO SELLY

HOW MANY RUSHELS DO YOU WISH TO FEED YOUR PEOFLE?T (2000)

HOW MANY ACRES DO YOU WISH TO FLANT WITH SEED? (300)

N

HAMURAEI! I BEG TO REPORT TO YOU»
IN YEAR 2 » 0 PEOFLE STARVEL, 11 CAME TO THE CITY,
FOFULATION IS NOW 111
THE CITY NOW OWNS 900 ACRES.
YOU HARVESTED' 1 BUSHELS FPER ACRE.
—. - RATS ATE O BUSHELS.
<// N YOU NOW HAVE 3250 EUSHELS IN STORE.

N~ LAND IS TRADING AT 25 BUSHELS FER RE .
HOW MANY ACRES DO YOU WISH TO BUYR?f)
READY
HURKLE hides a Hurkle in a 10 by 10 grid and

you guess where he is hiding. The
Hurkle’s grid looks like this:

v 9 NORTH

8
7
6
5

é/" WEST EAST
4

i L1

e
3 THIS IS
2 GRIDPOINT 7,.3
1

01 23 45 6 7 8 9
SOUTH

\e

HOMEBASE

You type your guess as two numbers
separated by a comma, the first
number corresponding to the east-
west location and the second to the
north-south location.

N

OLD RXA1SHURKLE

READY
HURKLE EA 3.0 30-DEC-75

A HURKLE IS HIDING ON A 10 BY 10 GRIDI. HOMERASE
ON THE GRID IS FOINT 0r0 AND ANY GRIDIFOINT IS A

NORTH

(2,2)

J“r > EAST
T (1.-2)

WEST -
('31'1)

SOUTH

OLD RXA1:HURKO2

READY

HURKO2 RA 3.0 30-DEC-75

HURKLE TWO

DO YOU WISH TO SEE THE INSTRUCTIONS (°*YES® OR 'ND')ﬂE:)

YOUR AVAILABLE OFTIONS ARE NOW *GO", "HELF®"y "INSTR", ®"QUIT®,» °SIZE®,
AND "TRIES*". WHICH WOULI' YOU LIKE TO EXERCISE (ENTER A WORD)

THE HURKLE IS HILING IN AN 8 EY 8 COORDINATE GRII'. HORIZONTAL
VALUES GO FROM —4 TO 4 AND' VERTICAL VALUES GO FROM -4 TO 4 . FIND
THE HURKLE WITHIN 6 GUESSES!

YOUR FIRST GUESS (ENTER COORDINATES SEPARATED BY A COMMA)?
GO EAST...

YOUR SECOND GUESS?(5:0)

YOUR FIRST COORDINATE IS OUTSIIE OF THE HURKLE’S GRIDN! TRY AGAIN...

YOUR SECONI' GUESS?
GO WEST...

YOUR THIRD GUESS? (2:,0)
GO WEST...

YOUR FOURTH GUESS?
HURK! HURK! YOU FOUND THE HURKLE IN 4 GUESSES!!

IF YOU‘D LIKE TO FLAY AGAINs PLEASE ENTER THE "GO" OFTION BELOW.

YOUR AVAILAELE OFTIONS ARE NOW °GO®s “HELF®", "INSTR", "QUIT", "SIZE®»

AND "TRIES*., WHICH WOULL YOU LIKE TO EXERCISE (ENTER A WORD)?COQ
READY

MORGAG

HURKO02

FAIR OF WHOLE NUMBERS SEFARATED BY A COMMA. TRY TO
GUESS THE HURKLE’S GRIDPOINT. YOU GET S TRIES.
AFTER EACH TRYy I WILL TELL YOU THE AFFROXIMATE
DIRECTION TO GO TO LOOK FOR THE HURKLE.

GUESS # 1 7 (a:4)
GO SOUTHEAST

GUESS t 2 ? (375
G0 SOUTHEAST

GUESS % 3 7
GO SDUTHEAST

BUESS $ 4 7@

READY

is a more difficult version of HURKLE
that uses a grid with both positive and
negative locations (a Cartesian co-
ordinate system). The HURKO2 grid
looks like this:

OLD_RXA1{MORGAG
READY
(RUN)

MORGAG BA 3.0

computes the monthly payments on a.
mortgage or any other long term loan.
You supply the amount of the loan,
the annual interest rate, and the
number of years that you will be al-
lowed to pay back the loan.

30-DEC-7S

COMFUTATION OF MORGAGE FAYMENTS

PLEASE INFUT THE FRINCIFAL (WITHOUT CE@SAS)?

INPUT THE TERM (IN YEARS)™

INPUT THE ANNUAL INTEREST EgTE (IN %7

FRINCIFAL
INTEREST RATE
TERM

MONTHLY PAYMENT

$ 29200
?
300 MONTHS
¢ 245,05

SYNONY

IF YOU WANT THE MONTHLY EREAKDOWN ON THE SCREENs ENTER "SCREEN".
IF YOU WANT IT ON DISK ENTER "IISK®.
IF YOU DON’T WANT IT AT ALL ENTER "NO*.

YOUR ENTRY? (SCREEN

OUTSTANIIING INTEREST FRINCIFPAL TOTAL TOTAL

MONTH FRINCIFAL FAYMENT FAYMENT INTEREST FRINCIFAL
1 29200 219 26.05 219 26.05
2 29173.9 21e.8 26.25 437.8 52.3
3 29147.7 218.61 26.44 656.41 78.74
4 29121.2 218.41 26.64 874.82 105.38
S 29094.6 218.21 26.84 1093,03 132,22
) 29067.8 218,01 27.04 1311.04 159.26
7 29040.7 217.81. 27.24 1528.85 186.5
8 29013.5 217.6 27.45 1746.45 213,935
? ~C

READY

QUADOQ3 finds the roots of a quadratic equation.

You supply the values of A, B, and C
for the equation:

Ax2 + Bx+C=0
and the computer will tell you what
values of x will make the equation true.

OLDI RXA1:QUADO3
READY

QUADO3 EBA 3.0 30-LEC~-75

THIS FROGR&M WILL SOLVE THE QUADRATIC EQUATION IN THE FORM:
AX"2 + BX + C = 0.

AFTER EACH 7y TYPE THE REQUESTEL VALUE 2 FUSH RETURN.

THE ROOTS OF
-0.202042
-19.758

omD>
T

2 X"2 + 40 X + 8 = 0 ARE:

D0 YOU WISH TO SOLVE ANOTHER QUALDRATIC EQUATION?
ANSWER YES OR NO & FUSH RETURN.?{0

READY

helps you practice recognizing syno-
nyms by asking you to enter a word
having the same meaning as the com-
puter's word. This program presents
10 words and tells you if your answers
are correct or incorrect for each one. In
addition, the program records the total
number of correct and incorrect re-
sponses that have been typed for each
word.

OLL RXA13:SYNONY
READY

SYNONY EA 3.0 30-DEC-75

SYNONYMS

IF YOU SEE THE MESSAGE: EN AT LINE 2020
RELOW, RUN THE FROGRAM *SYNSET®* EY TYFING:
OLD RXA1ISYNSET
AND' THEN?
RUN

MESSAGE!
NO ERROR MESSAGE

A SYNONYM OF A WORD IS ANOTHER WORD I[N THE ENGLISH LANGUAGE
WHICH HAS THE SAME OR VERY NEARLY THE SAME MEANING.

I CHOOSE A WORD -- YOU TYPE A SYNONYM.

WHAT IS A SYNONYM OF FIRST™(D
READY

WTDAVG calculates a weighted average for aset
of up to 100 numbers. You enter the
weights for each number in the set and
then you may enter as many sets as
you like. This program has several op-
tions that you can exercise (such as
changing the weights for each grade)
which are explained in the instruc-
tions.

OLD RXA1:WTDIAVG
READY

WTDAVG BA 3.0 30-DEC-75

WEIGHTED AVERAGING

DO YOU WISH TO SEE THE INSTRUCTIONS (®YES®" OR 'ND')?@D

HOW MANY GRADES DO YOQU HAVE FOR EACH STUDENT?3

INFUT YOUR RELATIVE WEIGHTS FOR EACH GRADE HELOW:
WEIGHT FOR GRALE # 1 7Q
WEIGHT FOR GRALE % 2 7
WEIGHT FOR GRADE % 3 7

INPUT YOUR GRADEZ _FOR STULENT # 1 BELOW:
GRADE % 1 7
GRADE # 2
GRADE # 3 7

THE WEIGHTED AVERAGE OF STUDENT # 1 ‘S GRAIES = B86.6666

INPUT YOUR BGRADES FOR STUDENT # 2 BELOW:
GRADE # 1 ?€D)
READY

TN

TN
. //

Paiiie
/ \\,

N

Chapter 2

sing Classic

WHAT IS CLASSIC?

CLASSIC is a computer system that is made up of
three parts: hardware, software, and documentation.
The hardware is that part of the system that you can
see and touch and bump into. The software is made

" up of programs that control how the computer works.
" (Think of a television set: the set itself is hardware,

but the programs that you see and hear are software.)
This guide is part of the CLASSIC documentation
which explains how to use the system. Each of these
three parts is described below in more detail.

UHADMNAMADE
nAanwvyYyAanLo

The CLASSIC hardware consists of four units (or
devices):

desk
(1) the desk,
(2) the kt_eybqardlscreen, keyboard
(3) the disk drives, and
(4) the central processing unit. disk
drives

The locations of these units are shown in Figure 2-1.

Desk. Your computer system is housed completely
within a movable desk. All the parts needed for
CLASSIC to work are put together so that the system
may be moved from one classroom to another quickly
and easily.

Keyboard/screen. The CLASSIC keyboard and screen
are used to “talk” or interact with the computer. When
the computer is running, you press keys on the
keyboard and those letters or numbers will appear on
the screen. The keyboard looks like a standard

. typewriter; the screen is like a small television. These
- two devices together are usually called the computer

terminal.

2-1

Disk drives. CLASSIC comes with several flexible
disks that can store your work in much the same way
that tapes for tape recorders store music. Some of
these disks are pre-recorded and are needed to make
the system work. Other disks are blank, allowing you
to store your own work. To be used, the disks must be
placed in the disk drives just as records must be
placed on a record player before you can listen to
them.

Figure 2-‘i
CLASSIC Hardware

screen

computer

Central Processing Unit. The “heart” of your CLASSIC
system is the central processing unit (CPU) which is
hidden at the very back of the desk. The CPU is like
the system’s motor: it must run for the system to do
anything at all. The CPU is sometimes referred to
simply as the computer.

Figure 2-2 shows how the CLASSIC hardware units
relate to each other. Directions for using each unit are
given in the CLASSIC User’s Reference Guide.
Suggestions for keeping the hardware working
properly and correcting minor problems are presented
in the CLASSIC Installation and Maintenance Guide.

SOFTWARE

CLASSIC can run three different types of programs:
the monitor program, the editor program, and BASIC
language programs.

When you push the white START button, CLASSIC
automatically runs the monitor program. You can tell
when this program is running because it prints a dot
(.) or an asterisk (*) when it is waiting for you to type.
The lines that you type when the monitor program is
running are called monitor commands. For example,
the line R BASIC typed after the dot is a monitor
command. Monitor commands are used to perform
certain operations such as copying programs from
one disk to another.

- KEYBOARD

CENTRAL
PROCESSING
UNIT

.
-
E

Figure 2-2

Relationships Between CLASSIC Hardware Units

y

By typing the monitor command R BASIC, you ask
CLASSIC to run the editor program. The lines you
type when the editor program is running are called
editor commands. For example, the line OLD
RXA1:GUESS is an editor command. The editor
program does not print a dot, but does print the word
READY after it completes certain jobs. Editor
commands are used to write, change, and run BASIC
language programs.

BASIC language programs differ from the other types
of CLASSIC programs because you can write them.

B/ e

2-2

BASIC is a language similar to English, and writing a
program in BASIC is like writing directions in English.
You may think of a BASIC language program as a
recipe that tells the computer how to do a specific
job, and each statement line in the program is like a
single step in that recipe. To display the statements
that make up a BASIC language program stored in the
computer's memory on the screen, you can use the
editor LIST command.

The following example demonstrates the difference
between monitor commands, editor commands, and
BASIC language statements. Underlined commands
are typed by the user.

("

TR BASIC NOTE 1
NEW OR OLD (COLL RXA13GUESS NOTE 2
READY

LIST 800 NOTE 3
GUESS EA 3.0 03-FEB-76 N

800 REM KKK TOO LOW OR TOO HIGH

810 REM

820 FRINT * T0OD "3

830 IF G»N THEN 860

840 FRINT °*LOW"3

850 GOTO 870 NOTE 4
860 FRINT *HIGH®j 4

870 FRINT '. GUESS AGAIN.®

880 FRINT

890 LET K=K+1

900 GOTO &30

910 END

REALY J

NOTES:

this operation is com-

pleted.
LIST 800 is an editor com-(' N

(1) R BASIC is a monitor com-
mand that tells CLASSIC
to run the editor program.
Notice the dot that pre-
cedes this command. The
dot was printed by the
monitor program, not
typed by the user.

3

-~

mand that tells CLASSIC
to display the program
stored in its memory on
the screen, beginning with
line 800.

(2) OLD RXA1:GUESS is an (4) These are the BASIC lan-
editor command that tells guage statements that
CLASSIC to find the pro- imiake up part of the pro-

gram called GUESS on
disk drive 1 (RXA1) and
put it into the computer’s

gram GUESS. Note that
each begins with a line
number and is made up of

memory. Notice that simple English words or -
READY is printed when mathematical expressions.
DOCUMENTATION

The CLASSIC documentation is made up of three
Guides:

(1) CLASSIC Installation and Maintenance Guide
(2) The CLASSIC Primer: A Self-Teaching Guide
(3) CLASSIC User’s Reference Guide

These guides contain all the information that you will
need to work with CLASSIC, from installing it to
writing BASIC language computer programs to
correcting minor problems.

CLASSIC Installation and Maintenance Guide. The
CLASSIC system is designed so that it can be
installed by anyone who carefully reads and follows
the directions. The installation involves uncrating the
system, connecting its units, testing its operation,
and copying the BASIC system disk. The CLASSIC
Installation and Maintenance Guide provides step-by-

:/"'“\\i)

7N

step instructions for each of these four processes and
contains a complete maintenance section to help you
keep your CLASSIC in top working order and direct
you in correcting minor problems.

The CLASSIC Primer: A Self-Teaching Guide. The
CLASSIC Primer will help you teach yourself how to
work with CLASSIC. The first few chapters will lead
you through the use of the CLASSIC software, and the
last chapter will help you discover some of the many
ways to use CLASSIC and find further information on
computer uses in instruction. (If you have the
optional FORTRAN |V software but have never used a
computer before, it is recommended that you teach
yourself BASIC before you try to learn FORTRAN.)

CLASSIC User's Reference Guide. Once you have
learned to use CLASSIC, you will often need a
reference to help you remember rules and the
meanings of error messages. This information is
collected in the CLASSIC User’'s Reference Guide.

If you have the optional FORTRAN IV software, you
will also need the OS/8 Handbook (order number
DEC-08-OSHBA-A-D). Pages 1-78 to 1-92 of the 0S/8
Handbook explain how to create a FORTRAN program
file with the Symbolic Editor. Pages 8-1 to 8-64
describe how a FORTRAN program is compiled,
loaded, and executed, and pages 8-65 to 8-124
discuss the various statements that make up the
FORTRAN 1V language.

- USING THE CLASSIC SOFTWARE

" As you learn to work with CLASSIC, you will make

mistakes. Some of your mistakes will be minor and
can be easily corrected. Others will be major and may
even destroy part of the CLASSIC software. To correct
these major errors, you will need a back-up or
duplicate copvy of vour svstem disks. Therefore,

BEFORE YOU DO ANY WORK ON YOUR SYSTEM,
MAKE SURE THAT THE PERSON IN CHARGE OF

. YOUR CLASSIC SYSTEM HAS BACK-UP COPIES OF
~ ALL THE DISKS THAT YOU WILL USE.

TYPING RULES USED IN THIS GUIDE

Two conventions will be used throughout this Guide
to indicate what CLASSIC will display and what you
should type.

First, everything that you must enter (type in) through
the keyboard will be underlined. Anything that is not
underlined is displayed by CLASSIC. Look at the
following example:

.DATE
NONE

In this example, CLASSIC displays the first dot, you

“type “DATE” (and then press the RETURN key), and

the system displays “NONE” and the second dot.

2-3

Second, “0” will be used to stand for the number
“zero” and “O” for the letter “oh”. You should also
note that there is a “1” key at the upper left-hand
corner of your keyboard which must be used to type
the number “one”. CLASSIC does not recognize lower
case letters, so neither the lower case “L” (“I”’) nor the
upper case “I” can be used for the number “one” as
might be done on a standard typewriter.

’/,-...\

7N

Chapter 3
Beginning Basic

Programming

UNDERSTANDING WHAT TO DO

In Chapter 1 you learned how to start CLASSIC and
run a program. Chapter 2 explained the difference
between the monitor program, the editor program,

~and BASIC language programs. This chapter will help
“you teach yourself about

CLASSIC by writing
programs in the BASIC language and using various
monitor and editor commands.

Each section in Chapter 3 contains exercises to help
you understand how CLASSIC works. Suggested
answers to these exercises are given in Appendix C.
For some exercises, however, there may be more than
one correct answer, especially when you are asked to
write your own computer programs.

'SECTION 3-A

MAKING CALCULATIONS

ENTERING BASIC PROGRAMS

When you typed R BASIC in Chapter 1, CLASSIC set
aside a certain area of its memory for you to use as a
workspace. The workspace is used to write and run
BASIC language programs. When you typed OLD
RXA1:GUESS, you told CLASSIC to read the program
GUESS into your workspace from the disk that it
knows as RXA1. (RXA1 always refers to the disk in the
right-hand disk drive.) To tell CLASSIC that you want
to enter a new program into the workspace from the
keyboard, you could use the editor NEW command.
For example, you might type:

.R BASIC

NEW OR OLD—NEW PROG1
READY

(Remember that lines that are not underlined are ‘
typed by the computer, and lines that are underlined
must be typed by you and ended by pressing the
RETURN key.) The command:
NEW PROG1
tells CLASSIC that you want to write or enter a new
program called PROG1 into the workspace.
If you then type LIST (and push RETURN), CLASSIC
will print:
PROG1
READY

BA 3.0 THIS IS THE HEADER OF

YOUR PROGRAM.

LIST is an editor command just like OLD, RUN, and
NEW. It tells CLASSIC to list the program in your
workspace. If you did not use the OLD command to
read a program into the workspace and have not yet
put a new program into it, your workspace is empty
and only the header will be displayed. The header
consists of:

(1) the name of your program (PROG1),

(2) its extension (a two-letter code indicating its
type, usually BA for BASIC language pro-
grams), and

(3) the version number of the CLASSIC software
(3.0).

When the READY message appears, you may begin
entering a BASIC language program into the
workspace. This is done simply by typing BASIC
language statements at the keyboard. For example,

you might type:

10 PRINT 7
99 END

This program will then be in your workspace. The
program consists of two statements, a PRINT
statement and an END statement.

The END statement must always be the last statement
in your program. '

Notice that each statement begins with a line number.
You may enter statements in any order, but CLASSIC
will automatically put them in order by their line
numbers.

If you type LIST after this program has been entered,
the new contents of the workspace will be displayed.

LIST
PROG1 BA 3.0

10 PRINT 7
99 END

READY

To run this program, you must type RUN (and press
RETURN). In a few seconds, CLASSIC should print:

RUN

PROGT BA 3.0
7

READY

If it does not, your program contains an error and
CLASSIC will print an error message. At this stage,
correct your errors simply by retyping your program

and RUNning it again. Error messages will be
explained later.
SCRATCH is another editor command. It tells

CLASSIC to erase the program in your workspace. If
you enter the SCRATCH command, your workspace
will be empty, just as it was after the NEW command.
You might think of your workspace as a chalkboard
that can be erased by typing SCRATCH. The editor
SCRATCH command may be abbreviated to SC.

Exercise 1. This exercise will help clarify the steps
that you must follow to enter and run a BASIC
language program.

Start CLASSIC as you did in Steps 1 through 8 of
Chapter 1. Then type the lines shown below. If you
make a mistake, simply retype the line.

.R BASIC Tell CLASSIC to run the editor
program.

NEW OR OLD—NEW FIRST

Tell CLASSIC that you are
about to enter a new program

called FIRST.

READY

10 PRINT 3+ 4 Type these lines. This new
program contains two state-

99 END ments. END is the last state-
ment because it has the high-
est line number.

RUN Tell CLASSIC to RUN the pro-
gram.

FIRST BA 3.0 This is the program header.

7 The result is 7 since 3+4=7.

READY

20 PRINT 3-4 Add these three statements to

30 PRINT 3*4 your program by typing them

40 PRINT 3/4 with the line numbers 20, 30,
and 40. '

LIST Tell CLASSIC to LIST the pro- ©

gram in its workspace.
FIRST BA 3.0

10 PRINT 3+ 4 Note that CLASSIC puts the
20 PRINT 3-4 statements in order by the
30 PRINT 3*4 line numbers.
40 PRINT 3/4
99 END
RUN Now RUN the program in your
workspace.
FIRST BA 3.0
7 These are the four results,
-1 one for each of the first four
12 statements in your program.
0.75 /
READY '

Look at your program more carefully. Note the symbol
that is used to perform each of the four arithmetic
operations.

Operation Symbol
Addition +
Subtraction -
Multiplication *
Division /

N

an

P

Exercise 2. SCRATCH your workspace and enter the
following program:

10 PRINT 12+ 3
20 PRINT 12-3
30 PRINT 12*3
40 PRINT 12/3
99 END

Before you RUN this program, write down what you
think the computer will print. Then RUN the program
to check yourself.

Exercise 3. Write original programs using the PRINT
and END statements to make other calculations. Be
sure to SCRATCH your workspace between each
program and include the END statement as the last
statement in your program.

When you write your own programs, you may use any
whole numbers (integers) between 1 and 99999 as line
numbers.

CLASSIC allows line numbers from 1 to 99999.

However, instead of numbering statements with
consecutive numbers (1, 2, 3, etc.) use 10, 20, 30, and
so on. This gives you room to insert a new statement
between two old statements. For example, if you had
already entered a program using 10, 20, 30, 40, and 99
as line numbers, you could insert a statement
between statement 20 and statement 30 by using 25
as the line number of the new statement.

WRITING NUMERICAL EXPRESSIONS

So far, you have used the PRINT statement in the

following form:
line number

PRINT numerical expression

For example:
10 PRINT 3+ 4

line number-J |
PRINT

numerical expression

A PRINT statement in this form tells the computer to
calculate the value (simplest form) of the numerical
expression and print the result on the screen.

A numerical expression can contain more than one
operation. For example, the program:

10 PRINT 3+ 4+5
99 END

will print the number 12 on the screen. CLASSIC
usually prints the value of a numerical expression as a
decimal number. The following table shows the
values that CLASSIC will print for certain numerical
expressions.

3-3

Value
Expression Printed Remarks
3.14 3.14
-123 -123
2+3+4 9 24+3+4=5+4+4=9
2*3/4 1.5 2*3/4=6/4=1.5
1/2+4+3 3.5 1/2+3=.5+3=35
2+3/4 2.75 2+3/4=2+.75=2.75
1/(2+3) 0.2 1/(2+3)=1/56=.2
(2+3)/4 1.25 (2+3)/4=5/4=1.25
1/3 0.333333 Value truncated to

six digits

100/3 33.3333

The table above illustrates each of the following rules:

(1) Arithmetic operations are done in order from left
to right.

(2) All multiplications and divisions are done before
any additions or subtractions. For example, to
evaluate the numerical expression:

4+24/3*2-5

CLASSIC: 44+ 24/3*2-5
S, o/

(a) divides 24 by 3 to get 8, 4+ *2-5

(b) multiplies 8 times 2 to get 16, 4+ 16 -5

(c) adds 4 to 16 to get 20, and then 20 -5
N~

(d) subtracts 5 from 20 to get 15. 15

(3) Parentheses can be used to change the order in
which operations are done: all calculations within
parentheses are done before those outside paren-
theses. For example, to evaluate the numerical

expression:
((6+14)/2-6)*3

CLASSIC: ((6+14)/2-6)*3
A Y

(a) adds 6to14to get 20, (20 /2-6)*3
\‘w
(b) divides 20 by 2 to get 10, (10 -6)*3

f 4 *3
(c) subtracts 6 from 10 to get 4, and then

* (d) multiplies 4 times 3toget12. 12

There is a special program on the BASIC Program
Demonstration disk that you can use to experiment
with numerical expressions. This program is called
CALC and evaluates numerical expressions. A sample
RUN of this program is shown on the next page. Note
that “QUIT” may be used to terminate this program.
(CTRL/C will also work.)

Exercise 4. RUN program CALC from the BASIC
Program Demonstration disk and experiment with
various combinations of the four operations and
parentheses. If you make a mistake that causes
CLASSIC to end the program and print an error
message, simply type RUN again after the READY
message appears and reenter your expression.

Sample Run of CALC:

U BAGLEL

MEW R OLD--0LT KXALTDALD
READY

FLUMN

Cal.l By A0

YOUR BEXFRESSTONTEIH4

2H34+4 = L0

YOLR EXPRESSTONT24+3%4
243484 = L4

YOUR EXFRESSTONTLSCEE)
LAC24+3) = 0.2

YOUR EXFRESSIONTC24+37 74
(243374 1e 25

YOUR EXFRESSTONTLS3
173 = (. 333333

YOUR EXFRESSIONT2/Z
273 = 0.5H6646

YOUR EXFRESSLIONTAULT

READY

LOOKING BACK
You now know five editor commands:

LIST lists the program in the workspace

NEW enters a new program into the work-
space from the keyboard

OLD reads a program into the workspace
from a disk

RUN runs the program in the workspace

SCRATCH erases the program in the workspace

You also know two BASIC language statements:

PRINT prints the value of a numerical expres-
sion on the screen
END signals the end of a BASIC program

In addition, you should remember the following rules:

3-4

(1) BASIC programs are made up of statements.

(2) Each BASIC language statement begins with a
line number.

(3) A line number may be any whole number between
1 and 99999.

(4) The last statement in a BASIC program must be
an END statement.

(5) When evaluating a numerical expression, CLAS-

SIC calculates values inside parentheses first,

then does all multiplications and divisions from

left to right, and finally does all additions and

subtractions from left to right.

If an expression contains parentheses within

parentheses, expressions are evaluated from the

innermost parentheses out.

Program statements with mistakes can be cor-

rected by simply retyping them.

Additional statements can be inserted into an

existing program by using the appropriate line

numbers.

The next section will talk about more things that you
can do with the PRINT statement.

(6)

™
8

O

N

SECTION 3-B
PRINTING LARGER NUMBERS AND WORDS

USING COMMAS AND SEMICOLONS

In the previous section you used the PRINT statement
in the form:

line number PRINT numerical expression

A more general form of the PRINT statement is shown
below:

line number
For example:

10 PRINT 3+ 4,3-4,3*4,3/4
\—#—/
line number

list of expressions—l

PRINT
Note that the expressions in this PRINT statement are
separated by commas. The program:

710 PRINT 3+ 4,3-4,3"4,3/4

PRINT list of expressions

99 END
will cause the computer to print the following results:
RUNNH
7 -1 12 0.75
READY

RUNNH tells the computer to RUN the program in the
workspace but without printing the header (NH
stands for No Header).

The computer prints a result for each expression in
the PRINT statement. Since the statement contained
four expressions, four results were printed.

The results PRINTed by a program are called the
program output.

When commas are used, CLASSIC will print up to five
results on each line. If there are more than five
expressions in the PRINT statement, additional
results are automatically printed on the next line.

For example, the statement:

10 PRINT 3+ 4,3-4,3%4,3/4,3%4"5,3*4/5,3/4*5
will cause the computer to print the following results:

RUNNH
7 -1 12 0.75 60
2.4 3.75

You can think of a line on your screen as being
divided into five print zones, each 14 spaces wide.

A comma in a PRINT statement tells CLASSIC to
move to the next print zone before printing the next
result.

If you use a semicolon (;) instead of a comma to
separate expressions, the results will be packed more
closely together:

10 PRINT 3+ 4;3-4;3*4,3/4 Note the semicolons (;).

99 END
RUNNH
7-112 0.75 The results are “packed” more
- closely together than if you
READY had used commas.
LISTNH tells the computer to
LIST the program in the
workspace but without print-
ing the header (NH stands for
No Header).
LISTNH .
10 PRINT 182533435567 750595105 15125133147 195167177188109520521522523324

?9 END

When you use semicolons to separate expressions,
the computer will print up to 24 results per line. The
actual number, however, depends on the number of
digits that it must print. For example,

READY

RUNNH

1 3 4 3 & 7 8 9 Lol 12

21 22 23 24

13 14 1% 15 U7 in 19 20

REALY

The first 20 results were printed on the first line; the
21st through 24th on the second line.

A semicolon in a PRINT statement tells CLASSIC to
print the next result without moving to the next print
zone.

Whenever CLASSIC prints a number it uses the
following format:

sNb

where: s isthe sign of the number (“-” for negative
and a blank for positive)
N is the number (up to six digits long)

b is ablank

Thus, at least 3 spaces are needed to print each
number. Since output lines (lines PRINTed by
programs) may be up to 72 spaces long and 72/3 =
24, up to 24 results may be printed on each line. This
format also explains the blank space at the beginning
of the output line in the preceding program and the
two spaces between each number: each number is
preceded by a blank that represents the sign of the
number (all positive in this case) and followed by a
blank. The next example demonstrates this more
clearly:
LISTNH

10 FPRINT L:2%
20 FRINT -1

30 PRINT ~197%-
99 END

3343554575859 105 11 L5133 145 1G5 163175185 (9520021522703 24
B8P3~ 1031 15~125-)35-1a45- 13~ La5-172 13

READY
RUNNH
12 3 4 5 46 7 8 % 10 11 12 13 14 15 1o 17 18 1@ oo

D R b I ¥ BN el 41

REAIIY

3-5

Using positive and negative numbers, you can more
easily see the sign-number-blank format (sNb). Note
that if a semicolon or comma ends a PRINT statement
(see line 20), the output of the next PRINT statement
continues on the same line.

Remember these things:

e A PRINT statement can contain more than one
expression.

@ Oneresult is printed for each expression in a PRINT
statement.

e If a PRINT statement contains more than one ex-
pression, the expressions must be separated by a
comma (,) or semicolon (;).

e If commas are used for spacing, up to five results
per line are printed. If semicolons are used, the
results are “packed” more closely together. The
actual spacing depends on the size of the numbers
involved.

o RUNNH is an editor command that tells CLASSIC
to run the program in the workspace without print-
ing the program header.

@ The results PRINTed by a program are called the
program output.

Exercise 5. Write a program to produce the following
results. Use commas and semicolons to adjust
spacing and make your program as short as possible.
Test your program on CLASSIC.

RUNNH

T 22 33 44

0.333333 0.666466 1 1.33333
0.166667 0.233333 0.12% 0.975

-1 -2 -3 -4

RUADY

Exercise 6. Write a program to produce the following
results. Hint: you can have more than one
punctuation mark between two numbers.

RUNNH
G
.25 0.75
0
=023 -0.75
~0.3

READY

STRINGS (ALPHANUMERICAL EXPRESSIONS)

So far, you have printed only numerical expressions.
The PRINT statement in the following program directs
the computer to print a string (alphanumerical
expression).

LISTNH
10 FRINT "STRINGS
97 END

ARE MATIE UF OF LETTERS AND NUMRERS.

REAIY
RUNNH
STRLINGS AaRE MADF Y- OF LETTERS AND NUMBERS.

READY

3-6

The string is enclosed in quotes. While a numerical
expression may contain only the digits 0-9 and signs
for arithmetic operations, a string may contain any
printing character on the keyboard except the
backslash (\) and the underscore (_).

The next example illustrates the difference between
strings and numerical expressions:

LISTNH

10 FRINT "14.6 X 13.8 ="7 14.6 % 13.8
20 FRINT 3,61 + 8,727 "I5 THE SUM OF 3.61 + 8,72"
99 ENI

REALY
RUNNH
14,6 % 13,8 = 201.48
12.33 IS THE SUM OF 3.61 + 8.72

READY

In this example, the strings are:

“14.6 * 13.8 ="
“IS THE SUM OF 3.61 + 8.72"

The numerical expressions are:

146 * 13.8
3.61 + 8.72

Exercise 7. On a separate piece of paper, write down
what the computer will print when the following
program is run. Then run it on the computer to check
your answer.

10 FRINT ®
20 FRINT *
30 FRINT = 3-445, "
40 FRINT " 3X4+5y "
50 FRINT "3/4+43 =" 3/4+5» 7
60 FRINT "&6+5-4%3/2 ="§ 6+5-4%3/2
99 END

Sy 34475 =45
S "3-4/35 ="3
-G "3%4/
y "3/4%5 ="';

3+4/%

Except for certain special characters (“\ ” and “__"),
anything enclosed in quotation marks in a PRINT
statement is printed exactly as it appears. No
arithmetic is performed.

EXPONENTS — RAISING A NUMBER TO A POWER
A number is “raised to a power” by multiplying it by
itself. For example, “2 raised to the power of 3" is
evaluated (computed) by multiplying 2 times itself
three times:

2 =2x2x2=38
In this expression 3 is the exponent of 2.

CLASSIC uses the circumflex (A) to indicate the
operation of exponentiation — raising a number to a
power. (The circumfiex is on the top row of keys
above the 6.) For example, 23 would be typed as 2A 3.
The following program illustrates exponentiation on
CLASSIC:

LISTNH
10 FRINT "572 = 5%5 ="; 5
20 PRINT "2 2

30 FRINT "3"4 =

99 ENI

REALIY
RUNNH

273
374

REALIY

™)

Here are some examples showing the values of
numerical expressions in which the A is used.

Expression Value Remarks

2A5 32 2A5 = 2*2*2*2*2* = 32

SA2 + 4A2 25 3A2+4A2=9+16=25
(2+3)A4 625 (2+3)A4 = 5A4 = 5*5*5*5 = 625

When an expression contains both exponentiation
and other arithmetic functions, the exponentiation is
always done first. This order may, however, be
changed by using parentheses. For example, to
evaluate the expression:

(7-5)A 4*(8+2)
CLASSIC:
(7-5) A4*(8+2)

(a) subtracts 5 from 7 to get 2. T3 A4*(8+2)
e —

(b) adds8to2toget10, 2 A4*10
(c) raises 2 to the 4th power to get 16, 16 *1

(d) and multiplies 16 times 10 to get 160. 160

Exercise 8. Write your own programs or use the CALC
program on the BASIC Program Demonstration disk
to experiment with exponents by finding the values of
the following expressions:

(1) 12 A(4/2) 6) 1010-6
(2) 5° (7) (2+6)A (4-2)
(3) 31442 @) 71
(4) (314)a2 (9) 7A0
(5) 3/(4A2) (10) 0A S

FLOATING -POINT NOTATION

CLASSIC displays very large and very small numbers
in floating -point notation:

LISTNH

10 FRINT 10

20 FRINT 100

30 FRINT 1090

40 FRINT 10000

S0 FRINT 100000
&0 FRINT 1000000
70 FRINT 10000000
?9 ENI

In the program, each number
is expressed in standard or
common notation.

REALDY
RUNNH
10
100
1400
10000
100000

These numbers are printed in
standard notation, exactly as
they are written in the PRINT
statements.

+100000F #5307

000 raon But these are printed in float-

READY ing-point notation.

When you read numbers written in floating-point
notation, substitute the words “times ten to the
power of” for the letter “E”.

3-7

If a number is larger than 999999, it will be printed in
tloating-point notation.

The following examples show the same numbers
expressed in standard notation, scientific notation,
and floating-point notation.

Standard Scientific Floating-
Notation Notation Point
1000000 1x106 .100000E + 007
10000000 1x107 .100000E + 008
100000000 1x108 .100000E + 009
1000000000000 1x1012 .100000E + 013

Look what happens when CLASSIC handles small
numbers:

LISTNH
10 PRINT .1

29 IPRINT .01

30 FRINT .001

40 FRINT 0001,

50 FRINT .00001 These numbers have more
60 FRINT 00000} i H

20 LRINT 000000 than six decimal places ...

80 FRINT +O000G001

20 FRINT .000G00091

?9 END
READT
RUNNH

0.1

0.2309999%

FEREA ...80 they are printed in float-
0. 000 1 ing-point notation.

0.000001

199999
PFIPPGOE
CPPRFPK

READY

But now there is a new problem: why did CLASSIC
print 0.0099999 for line 20 instead of 0.01? And why
did it print all those 9’s in the last three lines? The
answer is that when CLASSIC handles numbers less
than 1, it sometimes converts from standard notation
to floating-point notation as shown in the following
table.

Standard Floating-

Notation Point
A 0.1 or 0.0999999
.01 0.01 or 0.0099999
.001 0.001 or 0.0009999
.0001 0.0001 or 0.0000999
.00001 0.00001 or 0.0000099
.000001 0.000001 or 0.0000009
.0000001 , .100000E-006 or .999999E-007
.00000001 .100000E-007 or .999999E-008
.000000001 .100000E-008 or .999999E-009

In general, floating-point notation is used for
numbers that require more than 6 digits in standard
notation. However, the number after the letter E must
be less than 617 and greater than -617.

You may use floating-point notation whenever you
wish to specify numbers. If the number can be written
in standard notation, a conversion will be made
before it is displayed. The following program
demonstrates this:

L 16 TNH
10 FRINT 3E-
20 FRINT 3E
0 FRINT 3
40 PRINT 3E
99 END

READY

RUNNH
80000

=20000
+ LEHQOOGEAGLO
0 * -fi

READY

Exercise 9. Write your own programs or use the CALC
program to experiment with exponentiation and
floating-point notation before you go on. A sample
run of the CALC program demonstrating these
features is shown at the right. Note the ways
that floating-point numbers may be entered. “E” is
considered to be part of the number just like the digits
0-9 and the signs + or -.

LOOKING BACK

In this section you have looked at ways to use the
PRINT statement with large numbers and words.

Sample Run of Program CAL.C:

o RAGID

NEW DR OLI--0LD RXALICALC

READY

YOUR EXFRESSTIONTLO000000000

10000000000 = ,9929999E+010

YOUR EXFRESSIONT.0000000001

+ 0000000001 = PPPPPYE-OLO

YOUR EXFRESSIONTAE-&

AE-4 = 0.000004

YOUR EXPRESSIONTAE-12

AE-12 = L,399999E-011

YOUR EXFRESSIONTL6T16

15716 = 184467E+0Q20

YOUR EXFRESSTONTISX4736

35%4736 = L165282E4024

YOUR EXFRESSIONT2X3"2

YOUR EXFRESSTIONT2X2X2XK2X2K2K2K2K2K

e Y e B LYk ey ey
MR ER LR R IR SRR IR IR =

YOUR EXFRESSIONT27272

el

~

o Y R Rk Rt R b Loa ke R ke Bk Tt Ran e)
F R M 4

+134077E4155

YOUR EXFRESSIONT(2+3)-4%35/677

YOUR EXFRESSTONT-.3X2E456

~+3¥2EATSH =, 399980E+4546

YOUR EXFRESSIONT3X4E26-31E450

JIX4EL6-F1EAS0 =~ . 3099P0E+432

YOUR EXFRESSIONTQUIT

READY

P

N
i
~ S

~

Remember these things:

® A line on the CLASSIC screen is divided into five
print zones, each 14 spaces wide.

o A comma in a PRINT statement tells CLASSIC to
move to the next print zone before printing the next
result.

® A semicolon in a PRINT statement tells CLASSIC to
print the next result without moving to the next
print zone.

e Strings (alphanumerical expressions) can be made
up of any characters on the keyboard except for
the backslash (\) and the underscore (__).

e The circumflex (A) is used to indicate exponenti-
ation.

o If a number is larger than 999999 or smaller than
.000001, it will be printed in floating-point notation.

@ The largest number that CLASSIC can work with is

1x10617. The smallest is 1x10-617.

SECTION 3-C
PRINTING VARIABLE RESULTS

The programs that you wrote for the-previous sections
always printed out the same results each time you
ran them. If you wanted to solve a different problem,
you had to write a different program. This section wili
show you how to make a single program print
different results.

USING VARIABLES

In mathematics, variables are used to represent
unknown numbers. For example, you have probably
seen the equation:

A=7r2

that is used to represent the area of a circle. This
equation has two variables, “A” and “r’. ‘r” is a
constant, approximately equal to 3.14.

In BASIC, there are several ways to represent
variables. One way is to use capital letters. Each
capital letter refers to a distinct location in the
computer's memory. It may help you to think of part
of the computer’'s memory as containing a set of 26
boxes, labelled A through Z, like this:

A H [od v [
B [1 O P w[
cd J O a1 xOd
o[K O RO vy
E [L O s zOd
FO M O

cOd N [v

Each location can hold one number at any time. The
current number in a location is known as the value of
the variable corresponding to that location. Before a
program is run, the values of all numeric variables are
0.

The following example shows how to assign a value
to a variable in a BASIC program:

10 LET A =3 Assign the value 3 to the variable A.
20 PRINT A Print the value of A.

99 END

RUNNH

3 The value of A is 3.

READY

In its simplest form, the LET statement assigns
values of constants to specific locations in the
computer's memory.

A more general form of the LET statement is shown
below:

line number LET variable = expression
For example:
JOLETS = 2*3+4*5
\\---_--J
/
line number :
LET
variable
expression

The following program demonstrates a simple use of
variables to evaluate expressions:

LISTNH

10 LET A=3
20 LET E=4
30 LET C=3+4
40 LET D=3-4
SO LET E=3%4

&0 LET F=3/4

70 LET G=3"4

80 FRINT ASHFFC:IEFFI0
29 END

READY
RUNNH
3 4 7 -1 12 0.79 =2

READY

The LET statement tells the computer to calculate the
value of the expression to the right of the “ =" symbol
and assign this value to the variable that appears to
the left of the “=" symbol.

The value assigned to a variable in a LET statement
replaces any previous value of that variable. For
example, look at the following program:

LISTNH

10 LET a=1
25 FRINT A
20 LET A=2
25 FRINT A
30 LET A=3
35 PRINT A
?9 END

REALY
RUNNH
1

2

3

REALY

Each time A is printed (lines 15, 25, and 35), a
different resuit is displayed (first “1”, then “2”, then
“3”). The following table shows why this occurred by
tracing the value of A as each statement is executed.

Statement Value Remarks

of A
10LETA =1 1 Assign the value 1 to A.
15 PRINT A 1 Print the current value of A,
20LETA =2 2 Assign the value 2 to A.
25 PRINT A 2 Print the current value of A.
30LETA =3 3 Assign the value 3 to A.
35 PRINT A 3 Print the current value of A.
99 END 3

Exercise 10. What values will be printed by the
following programs? Write your answers on a piece of
paper and then check yourself by running the
programs on CLASSIC.

10 LET X=3 10 LET X=3
20 LET X=5 20 LET Y=5
30 LET X=7 30 LET Z=7

40 PRINT X
99 END

40 FRINT XrYrZ
29 END

VARIABLE EXPRESSIONS

A variable expression is an expression that contains
one or more variables. For example, the following are
variable expressions:

A -C

A-B A*(B +C)
2*X A/B+CID
P/Q 3.14*RA 2

The computer evaluates a variable expression by
assigning values to its variable or variables and
carrying out the indicated operations.

For example, A*B is a variable expression with
variables A and B. If A = 3 and B = 4, then the value
of A*B is 12. But if A = -7 and B = 5, then the value
of A*B is -35.

Here are some more examples:

Variable Value(s) of Vaiue of
Expression Variable(s) Expression
A A=3 3

A=-123 -123
A-B A=12and B=7 5
A=3and B=4 -1
2*X X=3.14 6.28
X=-6 12
P/Q P=35and Q=5 7
P=2and Q=3 0.666666

3-10

~

TN

SN

Variable Value(s) of Value of
expression Variable(s) Expression
-C C=8 -8
C=0 0
C=-12 12
A*(B+C) A=3,B=4,C=5 27
3.14*R A2 R=3 28.26

Each of the following programs directs the computer
to evaluate a variable expression and print the result.

LISTNH LISTNH

10 LET A=3 10 LET A=3
20 LET B=4 20 ILET E=4
30 PRINT A+R 30 FRINT AXE
99 END 99 END
READY READY
RUNNH RUNNH

7 12

READY READY

Exercise 11. What values will be printed by the
following programs? Write down your answer on a
separate piece of paper and check yourself by running
the program on CLASSIC.

10 LET A=3 10 LET A=3
20 LET E=4 20 LET E=4
30 FPRINT A-R 30 PRINT A-R
99 END 99 ENID

" THE INPUT STATEMENT

At the beginning of this section you saw the equation:
A =ar2

which can be used to calculate the area, “A”, of a

circle with radius “r”. Tvo us' bLASSIC to calculate
the area of a circle, you can translate @r2 to the

N BASIC statement:

20 PRINT 3.14*RA2 (%ris approximately

equal to 3.14)

The following discussion shows how you can use a
variation of this statement to find the areas of circles
with different radii:

LISTNH
10 LET R=2

Here is the program. It will

work for R=

15 FRINT *RADIUS®» ®"AREA"
20 FRINT Ry 3.14%R"2
9% END

REALIY

RADTOS AREA Run it.

2 12.56

REALY
For R=2, the area is 12.56.
Do NOT clear the workspace.
Instead enter a new statement
10 and keep the other three

10 LET R=3 statements.

RUNNH

RALIUS AREA

3 2B, 26

READY For R=3, A=28.26.

10 LET R=8 Change statement 10 again.

RUNNH

RADINS AREA And run the program.

8 200.946

READY

For R=8, A=200.96.

You can reduce the amount of work required to find
the three areas by using the INPUT statement. Here is
a program that uses an INPUT statement to permit
input of a value of R:

ILISTNH
10 INFUT R
15 FRINT "RALIUS"y

AREA"
20 FRINT Ry 3.14%R"2
99 END

READY
s The computer types a quest-

ion mark and waits.

3-11

The question mark indicates that CLASSIC is waiting
for you io enier daia. Dala consists of numbers
and/or strings that are manipulated when a program

is executed.

If you enter 2 as your data and press the RETURN key,
CLASSIC will print:

RADTUS AREA

o, o 22 rre
e 1256

READY

meaning that a circle with a radius of 2 has an area of
12.56.

The next example demonstrates a run of the above
program for R=2, R=3, and R=8. (Note how the
PRINT statement at line 5 is used to tell the user the
type of entry that should be made.)

LISTNH
S FRINT "RALITUS®;
10 INFUT R

15 FRINT °RADIUS®", “AREA"
20 FRINT Ry 3.14%R™2

?9 ENLD
REALY Run the program.
%S?g Enter 2 and press RETWRN.
RADI IS AREA
2 12.56 ForR=2, A=12.56
REALY
ﬁ%s?s Run the program again.
RALTUS — AREA Enter 3 and press RETURN.
3 28.26 For R=3, A=28.26.
READY
RUNNH Run the program again.
RALIUS?
RADLUSTE ARER Enter 8 and press RETURN.
8 200.96 For R=8, A=200.96.
READY

Numbers may be entered in standard notation as
shown above or in floating-point notation:

LISTNH

S FRINT "RADIUS®;

10 INFUT R

15 FRINT "RADIUS", "AREA®

20 PRINT R» 3,14%R™2
?9 END

REALY

IRUNNH
RADIUST3. 6E4
RADIUS AREA
36000 «A06934E+010

READY

The general form of the INPUT statement is:
line number INPUT list of variables

For example:
10 INPUT A,B,C

line number

INPUT

list of variables

Note that only the variables in the list are separated
by commas. There is no comma following the word
“INPUT” and there is no comma after the last variable
in the list.

The INPUT statement tells the computer to type a
question mark and then wait for the user to enter data.

Values entered in response to an INPUT statement
that contains more than one variable will be assigned
to the variables in sequence. For example:

LISTNH
10 INFUT AsEsG
20 FRINT "a =*; A
30 PRINT "R =*5 R
40 FRINT °C ="5 C
99 END

If too few values are entered, a new question mark will
be printed and the computer will wait for the rest of
the values before it proceeds:

If too many values are entered, the extra values will be
saved and used for the next INPUT statement. When
the next INPUT statement is executed; no question
mark will be printed and the computer will not wait for
data to be entered. It will simply assign the leftover
values to the variables specified in sequence:

~

N

N

- 30GOTOS5

Remember these things:

e The INPUT statement causes the computer to type
a question mark.

e When the question mark appears, you must enter
one value for each variable in the INPUT statement.
The values are entered in the same left-to-right
order as the variables appear in the INPUT
statement.

e Numbers may be entered in standard or floating-
point notation. Type commas between values.

e After entering the last number, press the RETURN
key. If you have done everything correctly, the
computer will proceed.

Exercise 12. The area of a triangle is found by multi-
plying %2 (or 0.5) times the length of its base (B)
times its height (H).

G OPRINT "Ranpiusns H

10 INFUT R

15 PRINT "RADIUS Y "AREA"

20 PRINT Ry Z.14%R™2 AREA = %2BH
29 END

Write a program that asks you to enter B and H and
then prints the area of the triangle with those
dimensions.

Use your program to complete the following table.

‘ B H Area
- 7.3 6.04
82 127
5x104 9x105
23.49N1 17.260

THE GO TO STATEMENT
The following program appeared on page 3-12.

LISTNH

S FPRINT "RADIUS®;

10 INFUT R

15 PRINT "RADIUS®"» "AREA"
20 FRINT Ry 3.14%R™2

?9 ENI!

READY
RUNNH,
RADTUS?2
RADIUS AREA
2 12,56

READY

RUNNH_

RADIUS?S

RADNIUS AREA
3 28.26

READY

RUNNH
RADIUS?S
RADIUS — AREA
8 200.96

READY

When you used it, you had to type RUN for each value
of R (see page 3-12). To eliminate the need to type
RUN for each new value of R, add the foliowing GO
TO statement:

This directs the computer to “GO TO
statement 5” for the next instruction.

The program now looks like this:

5 FPRINT "RADIUS"S
10 INFUT R

15 PRINT "RADCLIS"y
20 FRINT Ry 3. 14%R"
30 60 TO &

99 ENID

"AREA "
-

Here is the GO TO statement.

Here is a RUN of the modified program:

Each time after printing the
results, the computer ex-
ecutes a GO TO 5 and auto-

RUNNH
RADIUST3.14

RADIUS AREA

3.14 30,9591 .

RADIUS?6. 28 matically returns to the INPUT

RALIUS AREA

6.28 123,836 statement.

RANIUST12.54

RanIUS AREA How do you tell the computer

12,56 495,346 that you are finished? Hold

RAausTC CTRL down, press C, and
release. The computer will

print READY.

The GO TO statement has the general form:

line number GO TO line number
For example:
30 GO TO :5
z
line number
GO 70
line number

The GO TO statement tells the computer to branch
(transfer control) to the statement with the stated line
number.

NOTE: The GO TO statement may be used either with
or without the space between the O and T. That is,
both of the following statements will mean the same
thing to the computer:

30GOTOS
30 GOTO 5

The GOTO statement is best understood with the aid
of a flowchart. A flowchart is a diagram that shows
the order in which things will happen. A flowchart for
the program on page 3-12 would look like this:

3-13

START

PRINT PROMPTING
MESSAGE FOR INPUT

:

RECEIVE DATA
FROM KEYBOARD

| "

PRINT COLUMN TITLE

l

PRINT ANSWERS

/

I

NN
N

.

TN

The symbols used in a flowchart indicate the types of
processes to be executed, and the arrows show how
the computer activity flows from one process to
another. The trapezoid symbol (7) is used to indicate
an input or output (I/O) process. An oval (O)
indicates the beginning or end of a program. A branch
(GOTO) is shown by an arrow pointing to the next
process to be executed. In the example, the program
branches from the last statement to the first one.

Exercise 13. Complete the following program to
convert from degrees Centigrade (C) to degrees
Fahrenheit (F). The formula for this conversion is:

F=2 xc+32
5

You write the formula in
BASIC.

10 FRINT "CENTIGRALE TEMFERATURE"#
20 INFUT C

40 FRINT C# "DEG. CENT, =95 F3
50 FRINT

60 GOTO D

99 END

"DEG. FAHREN.*

A PRINT statement without
any expressions tells CLASS-
IC to print a blank line.

You tell CLASSIC where it
should branch to.

Use your program to complete the following table:

Degrees C Degrees F

100
37
6.8
0
-40
-100
-273.16

Most BASIC statements which do not involve input or
output (for example, LET statements) are represented
in a flowchart by rectangles. The rectangle is called
the “process” symbol. For example, this flowchart:

C D

COMPUTE THE AREA OF A
CIRCLE WITH A RADIUS OF 6

/PRINT THE RESULT ;

C D

could be transiated into this program:

START

A

STOP

Lo LET & =
20 PRINT
Y9 END

e lAksHm2
TARES =" A

Exercise 14. Draw a flowchart of the program in
Exercise 13 using the start, process, and |/O
symbols.

LOOKING BACK

This section has added three more BASIC language
statements to your vocabulary. You now know how to
use five statements:

INPUT GO TO
LET END
PRINT

You have been introduced to flowcharts and have
used symbols for three different processes:

() startor Stop
/] Inputor Output (1/0)
l:l General Process

(

N

C

~

7N

You also know seven editor commands:

OLD RUN
NEW RUNNH
SCRATCH LIST
LISTNH

There are many more BASIC statements to learn, but
there are only three more editor commands. The next
section will not teach you any new BASIC statements,
but it will show you more ways to use the statements
that you now know. In addition, the next section will
cover two more editor commands.

SECTION 3-D

EDITING LARGER PROGRAMS

CORRECTING TYPING ERRORS

When you write larger programs, you will make more
typing errors. These can be easily corrected as
discussed below.

Look once again at the program that was used to find
the area of a circle:

5 PRINT "RaADTUS"

10 INFUT R

13 PRINT "RADIUS"y "ORE/"

20 FRINT Ry Z.14%R™2

30 GOTO S

2% END
You can make CLASSIC more conversational by
adding more messages to this program as follows:

110 FRINT °"THIS FROGRAM WILL FIND' THE AREA OF A
120 FRINT "CIRCLE FOR WHICH THE RADIUS IS ENTER
130 FPRINT

140 FRINT “ENTER RELOW THE RADLIUS OF A CIRCLE:"®
150 FRINT

1460 FPRINT "YOQUR FIRST CIRCLE‘S RADIUS®:

170 INFUT R

180 FRINT

190 FRINT “RADIUS®r "AREA®

200 FRINT Ry 3,14%R72

210 FRINT

220 FRINT *YOUR NEXT CIRCLE’S RADIUS®+

230 GOTO 170

240 END

If you try. to enter (type) this program into your
workspace, it is very likely that you will make at least
one typing error. If you make a typing error and notice
it before you press the RETURN key, you can correct
the error in two ways.

First, you can press the DELETE key.

Each press of the DELETE key causes a single
character to be erased from the computer’s memory,
starting with the last character you typed.

When working with the editor, a short line is
displayed each time you press DELETE. When you
have erased back to the incorrect character, you can
resume typing. For example, if you typed “DIRCLE”
instead of “CIRCLE”, you could correct it like this:

140 PRINT “ENTER BELOW THE RADIUS OF A DIRCLE e e e e CIRCLE:”

A short line is displayed each time the DELETE key is pressed.

When you press the RETURN key, CLASSIC will read
this line as:

140 PRINT “ENTER BELOW THE RADIUS OF A CIRCLE:”

3-15

Remember that the space is a character just like a
letter or number, so it must also be deleted if typed
incorrectly. For example, if you typed “BELWO THE”
instead of “BELOW THE”, you could correct it like
this:

140 PRINT “ENTER BELWO THE e e e e e OW THE RADIUS OF A CIRCLE:”

Note that the DELETE key was pressed six times to
delete the characters “WO THE”.

Before you press RETURN, you may also delete the
entire line by typing CTRL/U. CTRL/U is typed by
holding down the CTRL key and pressing the U key.
The editor will respond by printing “DELETED” and
ignore the line. You may then enter the correct line as
shown below:

CTRL/U typed here.

20 PRINT 3.14 DELETED
20 PRINT R, 3.14*RN 2
If you do not notice your error until after you have

pressed the RETURN key, you must completely
retype the line in error.

Suppose that you enter a line with the wrong line
number. For example:

179 INPUT R

This statement must be line 170 because line 230 tells
the program to “GOTO 170”. You can enter the correct
line 170 simply by typing it, but then you will have:
170 INPUT R
179 INPUT R

To erase line 179, simply type the line number again
and press RETURN:

Press
179 | RETURN
Key

and the line will be deleted.

LIST
FROG1 BA 3.0

110 FRINT *THIS FROGRAM WILL FIND THE AREA OF A"
120 FRINT "CIRCLE FOR WHICH THE RADIIUS IS ENTERED.,®
130 FRINT

140 FRINT "ENTER BELOW THE RADIUS (OF A CIRCLE:"
150 FRINT

140 FRINT *"YOUR FIRST CIRCLE‘S RADNIUS"j

170 INFUT R

180 FRINT

190 FRINT "RADIUS"s "AREA"

200 PRINT Ry 3.14%R"2

210 PRINT

220 PRINT "YOUR NEXT CIRCLE’S RADIUS"i

230 GOTO 170

240 END

REALIY

Now you will notice a problem: you cannot see the
entire program on your screen at one time. This can
be helped partially by using the editor LISTNH
command.

The editor LISTNH command tells CLASSIC to list the
program in your workspace but without printing the
header (LIST No Header).

But even with the elimination of the header, the entire
program will not fit on your screen. You can list part
of the program by entering a line number with the
LIST or LISTNH command like this:

LISTNH 170

170 INFUT R

180 FRINT

190 FRINT °*RADIUS®»

“AREA"

200 FRINT Ky 3.14%R72

210 FRINT

220 FRINT "YOUR NEXT ClRULE S RADIUS®§
230 GOTO 170

240 END

READY

When a LIST or LISTNH command is followed by a
line number, the editor lists the program in the

~workspace beginning with the line number specified.

Sometimes you will want to see the first part of a
program but not the later parts. To do this, type LIST
or LISTNH followed by the line number at which you
want the listing to start as described above. When all
the lines that you are interested
displayed, type CTRL/O by holding down the CTRL
key and pressing the letter O key.

CTRL/O tells CLASSIC to stop printing.

To erase a line from the workspace, type its number
followed by the RETURN key.

Exercise 15. Enter the program on page 3-15 into the
workspace. If you make mistakes, use the techniques
discussed to correct them. Then run the program to
make sure it works. (A sample run is shown in
Appendix C.)

LISTING PART OF A PROGRAM

Exercise 16. Try to LIST on the screen the program
that you entered into the workspace in Exercise 15:

In the following example, CTRL/O was typed while
the editor was still listing line 220:

LISTNH 170

170 INFUT R

180 FRINT

120 FRINT "RADIUS", "AREA"
200 PRINT Ry 3+L14%R™2

210 PRINT
220 FRINT
READY

" YOUR

3-16

C

N

in have been .

=

Remember these things:

® Pressing the DELETE key erases one character
at a time, starting with the last character you
typed.

® An entire line may be deleted before the RETURN
key is pressed by typing CTRL/U.

e After thereturn key is pressed, a line containing an
error may be replaced simply by retyping the line.

e A line may be deleted from the workspace by typing
its line number and pressing RETURN.

o The contents of the workspace may be listed with-
out the header by entering LISTNH.

e Part of a program may be listed by entering the
LIST or LISTNH command followed by the line
number at which you wish to begin the Ilstlng

e CTRL/O will halt a listing.

Exercise 17. Experiment with the LIST and LISTNH
commands by displaying on your screen various parts
of the program you entered in Exercise 15. Find
out the maximum number of lines that the CLASSIC
screen can display at once.

CHANGING THE NAME OF THE WORKSPACE

~ If you began this section by responding NEW PROG1

to the NEW OR OLD— query, the name:
PROG1 BA 3.0

appeared every time you typed LIST or RUN. But the
circle area program could be better named, perhaps
AREA, or RADIUS, or CIRCLE. To change the name of
the workspace, use ihe NAME command as shown
below:

NAME CIRCLE
READY

You can verify that the name of the workspace has
been changed by listing its contents:

LIST
CIRCLE BA 3,0

110 FRINT "THIS PROGRAM WILL FIND THE AREA OF A®
120 PRINT °CIRCLE FOR WHICH THE RADRIUS IS ENTERELD.®
130 PRINT

140 FRINT "ENTER RELOW THE RALIUS OF A CIRCLE:"
150 FRINT

160 PRINT "YOUR FIRST CIRCLE’S RADIUS"j

170 INPUT R

180 FRINT

190 PRINT °*RALNIUS®» "AREA"

200 FRINT Rs 3,14%R™2

210 PRINT

220 PRINT "YOUR NEXT CIRCLE’S RADIUS®;

230 GOTO 170

240 END

READY

The editor NAME command changes the name of the

- workspace.

Exercise 18. Change the name of the workspace to
any of the following names and verify the change by
LISTing the contents of the workspace as shown
above.

AREA ROUND
RADIUS CURVE

SAVING PROGRAMS ON DISKS

Programs entered into the workspace can be stored
on adisk with the editor SAVE command. If you store
programs on the disks, you will not have to retype
them every time you use the computer; they can be
read into the workspace with the editor OLD
command as you did with the program GUESS in
Chapter 1.

Programs are stored on the disks in areas called files.
Each file contains one program. Every file has a file
name and a file extension. The file name may be up to
six characters long, and the file extension up to two
characters long. For example,

CIRCLE BA

file name
file extension

The file name is usually used to identify a specific
file, while the file extension is used to indicate the
type of the file. For example, BASIC language
program files usually have the extension “BA”.
Therefore, when you type:

NAME C/IRCLE
the editor adds the extension “BA” to the name
“CIRCLE”. To use a different extension, you could
type:

NAME CIRCLE.JH

If this program was then saved on a disk, you would
nave to teii the editor its exiension o read it into the
workspace, like this:

OLD CIRCLE.JH

You should not use any of the following extensions
because they are reserved for special use by the
CLASSIC software:

Do not use the extensions:
AF SF UF
FF sV

If you simply type the SAVE command, the computer
will write a copy of the workspace on the CLASSIC
System disk with its current name.

SAVE
READY

If another program already exists on the System disk
with the same name as the workspace, the above
command will cause the old program to be deleted
before the new one is stored. You will hear the disk
click when the workspace is being copied onto it.

3-17

If you wish to save a copy of the workspace on the
System disk with a name that is different from the
name of the workspace, you can specify the name
that you want after the SAVE command. For example,

SAVE ROUND

-This command will cause a copy of the workspace to

be stored on the System disk in a file called
ROUND.BA regardless of the current name of the
workspace.

If you wish to use an extension other than “BA”, you
can add the desired extension to the SAVE command.
For example,

SAVE ROUND.CL

will store a copy of the workspace in a file called
ROUND.CL on the System disk.

If you wish to store a program on the disk inserted in
drive 1 (the right-hand disk drive), you must specify
both the device name RXA1 and the name of the file to
be used:

SAVE RXA1:CURVE.CL

This command will cause the workspace to be stored
on the disk in RXA1 in a file called CURVE.CL. If the
extension is omitted, “BA” will again be added by the
system regardless of the name of the workspace.

When storing programs on RXA1, the file name must
always be entered. The command:

SAVE RXA1:
will cause the error message:
BAD FILE

to be displayed and the command will
executed.

not be

Exercise 19. Using the program that you entered in
Exercise 15, experiment with the SAVE command by
storing this program on the System disk and on a disk
inserted in drive 1. Test to see whether your program
has been properly stored by trying to read it back into
the workspace with the editor OLD command. If the
error message BAD FILE is not printed after the OLD
command, your program was properly stored on the
disk.

LOOKING BACK

You have now been introduced to all but one of the
BASIC editor commands. These are:

LIST display the contents of the workspace

LISTNH display the contents of the workspace
without printing the program header

NAME rename the workspace

NEW clear and rename the workspace
(equivalent to SCRATCH followed by
NAME)

OLD read a program into the workspace

RUN execute the program in the workspace

RUNNH execute the program in the workspace

without printing the pfogram header

SAVE copy the program in the workspace
onto a disk
SCRATCH erase the workspace

The BYE command will be explained in the next sec-
tion.

You should also know the special
recognized by the editor:

key entries

CTRL/C return to the editor from a BASIC
language program or to the monitor
from the BASIC editor

CTRL/O stop printing

CTRL/U delete the line being typed

DELETE delete the last character typed

The BASIC editor commands are reviewed in Chapter
3 of the CLASSIC User's Reference Guide. That
chapter provides a quick reference for all the
operations that you can perform with the editor. It
also explains how each editor command can be
abbreviated and what is assumed by each one.

This section has introduced many new concepts. In
addition to the'points made on page 3-17 you should
remember these things:

e Programs may be stored on disks in areas called
files, where each file contains one program.

e Every file has a file name (up to six characters long)
and a file extension (up to two characters long).

e The name of the workspace may be changed with
the editor NAME command.

e The extensions AF, FF, SF, SV, and UF are re-
served for special use by the CLASSIC software and
should not be used for your programs.

e A copy of the workspace can be stored on a disk
with the editor SAVE command.

e If another program already exists on the disks with
the same name as that used in the SAVE command,
it will be erased before the new copy is stored.

e The error message BAD FILE indicates that a SAVE

or OLD command was not properly executed.

Section 3-E continues to discuss files and explains

how to obtain a copy of your program file on the
copier.

N

SECTION 3-E

USING DISK FILES

GOING BACK TO THE MONITOR

Each time a program is SAVEd, its name and
extension are written in the disk directory. The
directory is like a table of contents — it contains the
name, extension, and size of every file on the disk. To
see the directory of your disk you must first get back
to the monitor.

To get back to the monitor program from the editor,
type BYE and press RETURN. The monitor program
will then be read into memory (erasing any program in
the workspace) and will print its dot.

BYE

You can also return to the monitor from the editor by
typing CTRL/C.
Figure 3-1 summarizes the ways to go from the
monitor to the editor to a BASIC language program
and back again.

To display the directory of the System disk on your
screen, enter the DIRECT command to the monitor:

+OIRECT

BAGIC .8V
BRTS .8V
DIRECT .SV

~5

SO-AUG~75
JO0-AUG-75
JO0-AUG~75

o

N b D B NDN =D

BASIC L8F SO-ALG~7%
RASIC WF SO-AUG~7%
CCL +8V 17 30-AUG-7H
FOTF .8V F0-AlG~-75

RCOMF .8V
BASIC .FF
RASIC LUF
BASIC .AF
RESEQ +RA
FIF + 8V
BLOATD &V

J0-AUG~75
FO0-AUG~75
30-ALG~7E
3O-ALG~75
30-AUG~7E
JF0-AUG~75
ZO-AUG~75

(When you enter the monitor DIRECT command on
your system, the output will be different from that
shown above. Also, your directory will be followed by
a message indicating the amount of unused space on
the disk.)

The monitor DIRECT command is used to print the
directory of a disk on the terminal.

MONITOR PROGRAM

f BYE
_.R BASIC o
CTRL/C
-
EDITOR PROGRAM
Y 3
RUN
or CTAL/C
RUNNH |

BASIC PROGRAM

Figure 3-1

Going from the Monitor to the

Editor to a BASIC Language

Program and Back Again
The monitor DIRECT command in the form shown
lists each file on a separate line with the file name and
extension separated by a period (.). After each file
name and extension, this directory shows a number
and a date. The number tells the amount of space that
the file occupies on the disk in units called blocks. If
you think of a disk as a book and the directory as a
table of contents, each file would be a separate
chapter and each block would be a separate page.
Any file takes up at least one block. The date
indicates the date that the file was stored.

If you list the directory of your System disk, you may
find that some files do not have dates after them. This
is because CLASSIC had not been informed of the
date on the day these files were stored.

The monitor DATE command informs CLASSIC of the
current date or tells CLASSIC to print the current date
on the screen. '

Perform the following exercise to help you under-
stand how to use the monitor DATE command.

Exercise 20. Start CLASSIC in the normal manner
(Steps 1 to 8 in Chapter 1). If CLASSIC is already
started, restart it by pressing the white START button
again and typing S. (This will assure that the
computer's memory is cleared.) Then follow these
steps:

(1) List the directory of your System disk by entering
the monitor DIRECT command as shown previ-
ously. Write down the name and extension of one
of the files that does not have a date after it.

If all the files on your disk have dates after them,
enter the following program into your workspace
and SAVE it on your disk as shown:

3-19

(2)

3)

4)

(5)

(6)

JROBARIT
NEW O OLD--NEW DATEST

READY

10 PRINT
29 EnND
SaVE

"DATERT®

READY
BYE

List the directory on your disk again to make sure
that this program has been saved without a date.

Type:

.DATE
and press RETURN. CLASSIC will respond:

NONE
indicating that no date has yet been entered.
Enter today’s date in the form:

.DATE mm/dd/yy

where: mm is the number of this month (1-12)
dd is today's day (1-31)
yy is the last two digits of this year
(00-99)
For example,

.DATE 4/18/76

Repeat Step (2). CLASSIC will respond with the
date currently stored in its memory. For example,
.DATE
SUNDAY APRIL 18, 1976

Type the following commands:
.R BASIC

NEW OR OLD— filenam.ex

(Substitute the file name and extension of the
program that has no date where “filenam.ex”
appears above, just as it appeared when you listed
the directory. For example, “DATEST.BA”")

READY
SAVE Copy the contents of the work-

space back onto the disk.

READY
BYE

Return to the monitor.
List the directory once again:
.DIRECT

This time, the current date should be printed at
the top of your directory and should follow your
program name and size. For example,

CIRCLE.BA 1 18-APR-76

file name#i ‘
size in blocks

creation date
Remember these things:

® The date is entered with the monitor DATE
command in the form:

.DATE mm/dd/yy

e If the monitor DATE command is entered with no
date, the current date recorded by the system will
be displayed. If no date is recorded, “NONE” will
be printed.

e A date following a directory entry indicates the date
that the corresponding file was created.
SHORTENING COMMAND LINES

For some commands, certain parameters can be left
out and the system will assume default parameters.

Defaults are parameters that are not typed by you but
are assumed by the system.

For example, you first used the monitor TYPE
command in the following form:

.TYPE filnam.ex
If you try this command:
.TYPE TTY: <filnam.ex
your file will also be displayed on the screen.

The default output entry for the monitor TYPE
command is “TTY:”.

The short version of the monitor TYPE command is
equivalent to the longer form because CLASSIC
assumes “TTY:” as the default output entry. “TTY:” is
the name CLASSIC calls the keyboard/screen. When
no specific output entries are typed, you need not

type the “< .

The above paragraph spoke of “TTY:” as the name by
which CLASSIC references the keyboard/screen. You
have also seen the entry “RXA1:” that refers to the
disk inserted in disk drive unit 1, the right-hand drive.
Each CLASSIC unit that can be used to enter, display,
or store a file is called a device and has a
corresponding device name. The complete list of
device names that CLASSIC will recognize is as
follows:

RXAO:

SYS: disk inserted in drive unit o (on the

Dsk: | left)

RXA1: disk inserted in drive unit 1 {on the
right)

TTY: keyboard/screen

3-20

7N

~

Whenever a file name is entered, CLASSIC assumes
that the file is on DSK: (RXAO:) unless you
specifically state RXA1:. For example, to run the
GUESS program in Chapter 1 you entered:

NEW OR OLD—OLD RXA1:GUESS

because GUESS.BA was on the disk in drive unit 1. If
you had entered:

NEW OR OLD—OLD GUESS

the system would have looked for GUESS on DSK: by
default. If it was not found, the message:

BAD FILE
would have been printed.

For most commands, then, the default device is DSK:
(RXAO:). Thus,

.DIRECT

prints the directory of the System disk inserted in
drive unit 0. To obtain the directory of the disk
inserted in drive unit 1, you must type:

.DIRECT RXA1:

The default output entry for the monitor DIRECT
command is “TTY:” just as it is for the TYPE
command. If no device is entered, “DSK:” is assumed
by default.

DELETING FILES

Once afile is saved with the editor SAVE command, it
can be erased from the disk by returning to the
monitor and using the monitor DELETE command.
This is done by typing:

.DELETE dev:filnam.ex

where “dev:filnam.ex” is the parameter of this
command and indicates the name and extension of
the file to be erased from the disk “dev:”. If the device
entry is omitted, the default assumed is “DSK:” (the
same as “RXA0:” and “SYS:”).

Exercise 22. Enter a short BASIC program into the
workspace (such as that on page 3-20) and SAVE it on
RXA1. Then use the monitor DELETE command to
erase the file. DO NOT DELETE ANY FILES THAT
YOU HAVE NOT PERSONALLY CREATED. List the
directories of your disks before and after the deletions
to assure that the files have been erased.

LOOKING BACK

With the help of this section, you should now be
familiar with the following monitor commands:

DATE inform CLASSIC of the current date
or print the current date on the
screen

DELETE erase a file from a disk

DIRECT display the directory of a disk

R BASIC start up the BASIC editor

TYPE display a file from a disk on the

screen

Uses of these commands are summarized in Chapter
2 of the CLASSIC User’s Reference Guide. Advanced
monitor commands will be presented in Chapter 4 of
this Primer.

The new concepts introduced in this section are as

follows:

3-21

e Each disk has a directory that contains at least
the name and size of each file on that disk.

e Some commands may accept parameters that
indicate how the command is to be carried out.

e Command parameters usually have an output entry
and an input entry separated by a left angle bracket
(“<”)-

e If output or input parameters are left out of a com-
mand line, the system can sometimes assume
default entries for the missing parameters.

e Each CLASSIC device is referred to by a device
name followed by a colon (:), for example, “TTY:”
means the keyboard/screen.

You are well on your way to becoming a CLASSIC
programmer. The next few sections will help you learn
how to use more BASIC language statements to write
more sophisticated programs.

SECTION 3-F

LOOPS, DECISION POINTS, AND
STRING VARIABLES

TEACHING THE COMPUTER TO COUNT
Look at the following program:

ASSIGN THE VALUE 1 TO K.
PRINT THE CURRENT VALUE
OF K.

INCREASE THE VALUE OF K
BY 1.

GO AROUND AGAIN.

IF YOU DON'T INTERRUPT
THE COMPUTER, IT WILL GO
ON AND ON — COUNTING
NUMBERS.

INTERRUPT THE PROGRAM
BY TYPING CTRL/C.

1¢ LET K=
20 PRINT K

30 LET KsK41

Y
[e]

GOTO 20

Y9 [END

The above program contains a loop:

10 LET K=1 THE VALUE OF K IS INITIAL-

20 PRINT K IZED TO 1 BEFORE THE
LOOPESO LET K=K +1 LOOP IS EXECUTED. EACH
TIME THROUGH THE LOOP,

40 GO TO 20 THE CURRENT VALUE OF K

99 END IS PRINTED AND INCRE-

MENTED BY 1, AND THEN
THE LOOP IS REPEATED.

This program might be translated to a flowchart like

this:
(START)

‘

INITIALIZE
COUNTER

Hl

PRINT VALUE
OF COMPUTER

4 1

INCREMENT COUNTER

—<

The arrows show that the instructions in the last two
symbols are executed over and over.

A LOOP is a set of statements that the computer exe-
cutes repeatedly.

The statement:
30 LETK=K+1
may be analyzed as follows:

Before Statement After

30LETK=K+1

kK [2]
K [2] 30 LET K=K +1 kK [3]
K [3] 30LETK=K-+1 kK [4]

Remember the general form of the LET statement:
line number LET variable = expression

The expression may be any BASIC expression. The
LET statement directs the computer to evaluate the
expression on the right side of the = sign and then
assign the computed value to the variable on the left
side of the = sign. If the expression is a variable
expression, like K+1, it is evaluated using the current
value(s) of its variable(s). Therefore, the statement:

30 LETK=K+1

directs the computer to evaluate the expression K + 1
using the current value of K and then assign the new
value to K.

Exercise 23. Complete the following table on a
separate piece of paper, showing the value that each
variable will have after the statement has been
executed.

Before Statement After
K [25] 30 LET K=K+L k]
E [6] 40 LET E=E+2 e[)
N [a2] 200 LET N=N"*5 N[
X -10 235 LET X=X+5 xl:l
P [Co] 280 LET P=P-20 P[]
Q 310 LETQ=15+Q Q:I
L [5] 325 LETL=L+L+L .
B 340 LET B= -B+B B[]

In order to clarify what happens as the computer
executes the sample program, you can “unwrap” the
loop and trace it. The following table “unwraps” the
loop to show the value of K following the execution of
each statement in the program. Results printed by the
computer are shown under the heading “OUTPUT”.
The program is traced seven times through the loop.

3-22

N

Py

Statement K Output Remarks

10LETK=1

'y

20 PRINT K
30LETK=K+1
40GOTO 20

1 First time through the loop.

20 PRINT K
30LETK=K+1
40GOTO20

2 Second time through the loop.

20 PRINT K
30LETK=K+1
40GOTO 20

3 Third time through the loop.

20 PRINT K
30LETK=K+1
40GOTO 20

4 Fourth time through the loop.

20 PRINT K
30LETK=K+1
40GOTO 20

5 Fifth time through the loop.

20 PRINT K
0LETK=K+1
40GOTO20

6 Sixth time through the loop.

~N~N» [o> B2 4] (S & 0N bW W wp NN =

20 PRINT K
OLETK=K+1
40GOTO 20

7 Seventh time through the loop.

0 0~

and so on.

Statement ABC Remarks

Exercise 24. Trace the following program four times
through the loop by filling in the blanks in the table
below.

Statement ABC Remarks

10LETA=1 —
17LETB=1 - —

These statements are done once.

25LETC=A+B _ _ __
30 PRINT A ——
36LETA=8B - —
43LETB=C - —_—
50GO TO 25

First time through loop.

25LETC=A+B __ _ _
30 PRINT A - —
36 LETA=8B
43LETB=C _ — —
50 GO TO 25

Second time through loop.

continued on next page

25LETC=A+B
30 PRINT A _—
36LETA=B
43LETB=C -
50GO TO 25

Third time through loop.

25LETC=A+B
30 PRINT A
36LETA=B
43LETB=C
50 GO TO 25

Fourth time through loop.

Exercise 25. Without using the computer, show the
first five results printed by the computer under control
of each of the following programs. (Write the values
that will fill in the blanks on a separate piece of

paper.)

LISTNH LISTNH

10 LET X=1 10 LET E=2

20 FRINT X 20 FRINT E

30 LET X=X+2 30 LET E=E+2

40 GOTO 20 40 GOTOD 20

?9 ENI 99 END

REALDY READY

RUNNH RUNNH

and so on. and so on.

Exercise 268. Complete each program below (fill in the
blanks on a separate piece of paper) so that when you
run it, the computer will produce the results shown.

Check your work with the computer.

LISTNH LISTNH LISTNH
10LETJ=|:I 10LETP=|:I 10LET5=|:I
20 PRINT J 20 FRINT F 20 FRINT S
40 6OTO 40 GOTO 40 GOTD
99 END 99 END 99 END
READY REATIY READY
RUNNH RUNNH RUNNH

0 1 Et

1 2 4

2 4 1.33333

3 8 0.444444
4 16 0.148147C
s-C 32 REALY
REALY 447C

READY

SELF-STOPPING LOOPS

The loops that you have seen so far do not stop by
themselves. They go on and on until you manually
interrupt them by typing CTRL/C. Here is a loop that
terminates automatically:

3-23

1O LET l(==== 1

20 PRINT K

30 LET I\ KA1

40 IF K<é6 THEN 20
89 END

This program will print the numbers 1 to 5 and then
stop:

RLUINNH
1

L

k]
'~

L

.

e

:.:"
REALY

The IF statement at line 40 causes the computer to
make a decision. That is, if K is less than 6, the
program will branch to line 20. But if K is not less
than 6, the program will “drop through” to the
statement following the IF statement.

The IF statement directs the computer to examine a
relation between two expressions and branch to a
specified statement if and only if the relation is true.
If the relation is false, the statement with the next
higher line number is executed.

Decision points are represented in a flow chart by a
diamond (¢). The above program would be charted as

follows:
Q START j
|

INITIALIZE
COUNTER

I —

PRINT VALUE
OF COUNTER

INCREMENT
COUNTER BY 1

/

1S
COUNTER VALUE
LESS THAN

Notice that there are two paths leaving the decision
symbol, one labeled “YES” and the other “NO”. The
path followed depends upon the truth of the relation
specified in the IF statement.

Look at another example:

10 FRINT "GUESS MY NUMEER"
20 INFUT G

30 IF G=6 THEN 60
40 FRINT *NOFE.

50 GOTO 20

GUESS AlAIN.

DOES G EQUAL 6?
60 “YUF!

?9 ENI

If G equals 6, CLASSIC executes statements 10, 20,
30, 60, and 99. If G does not equal 6, it executes 10,
20, 30, 40, and 50 and then loops back to statement
20.

The table below traces the computer’'s actions as it
executes each statement of the program. It also
shows the value of G after each statement is carried
out in the following run.

YOU GOT IT!" -

RUNNH
GUESE MY NUMBER
P4
NOFE . GUESS AGATN. .
79
NOFE . GUESS AGATN. « «
i)
YLIF YOu Goro LT
FE AT
Statement G Remarks
10 PRINT “GUESS MY NUMBERT?"
20 INPUT G 4 First case: G=4
30 IF G=6 THEN 60 4 G=6is false.
40 PRINT “NOPE GUESS AGAIN...” 4 “Drop through” to next
statement.
50GO TO 20 Loop around.
20 INPUT G 9 Second case: G=9.
30IFG=6 THEN 60 9 G=6 is false.
40 PRINT “NOPE GUESS AGAIN...” 9 “Drop through” to next
statement.
50GO TO 20 Loop around.
20 INPUT G Third case: G=6.

[o>Xe]

G=6 is true; branch to
statement 60.

30IF G=6 THEN 60

60 PRINT “YUP! YOU GOT IT!” 6

99 END Program stops.

Exercise 27. Draw a flowchart for the above program.

In general, the IF statement looks like this:
n IFeqgrey THEN t
where n =line number of the IF statement
eq =any BASIC expression
r =any legal BASIC relation (see below)

3-24

~

N

‘/,—-\

N

LOOP

e =any BASIC expression

t =line number of the statement to be
executed next if and only if the re-
lation specified between eq and es
(“eq reg”) is true

For example,
35 IF X < 6 THEN 60

Perbt td

n IF e; r es THEN t
is true if X is less than 6
X< 6
is false if X is not less than 6

The following table shows the BASIC relations with
their corresponding conventional relations:

Conventional BASIC Relation

= Equal to
< Less than

> Greater than

Less than or equal to
Greater than or equal to
Not equal to

v A
A
[e]
A

WVIA VA
[e)}

NOTE: GOTO may be substituted for the word THEN
in an IF statement.

For example,

35 IF X < 6 GOTO 60
is the same as:

35 IF X < 6 THEN 60

Exercise 28. The program below causes the computer
to print out “positive” or “negative”, depending upon
the value entered. If 0 is entered, the program stops.
Draw a flowchart for this program and then enter it
into the computer and run it. Check that each of the
paths shown in your flowchart truly reflects the
actions taken by the computer.

LISTNH
=10 FRINT "YOUR NUMRER"3#
20 INFUT N
30 IF N=0 THEN 99

ISN EQUAL TO 0?

NO

Q

40 IF N=O THEN 70

IS N LESS THAN 0’7

&)

Y

50 FRINT "FOSITIVE®

[&0 GOTO 10
70 FRINT °NEGATIVE' g
b 80 GOTO 10
99 END -t

REALY

RUNNH

YOUR NUMBER?&
FOSITIVE

YOUR NUMBERT-4
NEGATIVE

YOUR NUMERERTO

READY

Exercise 29. A number is said to be a factor of a
second number if the first will divide evenly into the
second without leaving a remainder. Write a program
that allows you to enter two numbers and tells you
whether the first is a factor of the second. Use your
program to complete the following table:

First Second Is the First a Factor
Number Number of the Second?
8 64 Yes
6 44 No
12 576 -
42 840 -
103 103 -
13 1276 -
11 6336 -
231 591 -
208 5200 -
184 1417 -
276 826 -
55 1870 -

The following flowchart will help you design your
program:

C o D

le
&

RECEIVE TWO
NUMBERS FROM
KEYBOARD

SUBTRACT FIRST
FROM SECOND

REPORT THAT FIRST
IS A FACTOR OF
SECOND

REPORT THAT FIRST
S NOT A FACTOR
OF SECOND

SUBTRACT FIRST
FROM RESULT

]

STRING VARIABLES

A string variable is different from a numeric variable in

two ways:

@ A string variable name always ends with a dollar
sign ($). For example, A$ and S$ are valid string
variable names.

e A string variable may not be used in a numeric
expression.

3-25

A string variable may only contain up to eight
characters unless you specifically declare it to
contain more (the way to do this will be discussed in
Chapter 4).

The following program demonstrates a simple use of
string variables:

STRING VARIABLES
Lista. | p—
10 LET A$="FIRST* STRING CONSTANTS
20 LET E$="SECOND®
30 LET c#="THIRD"
20 FRINT AsB,C3
99 END

READY
RUNNH_
FIRST SECOND THIRD

READY

In the above program, strings are assigned to variable
locations with the LET statement. Strings may also be
entered in response to an INPUT statement request:

LISTNH

10 FRINT "WHAT 1S YOUR NAMEs FLEASE"j
20 INFUT N$

30 FRINT "HELLOy "7 N%3 *I°

?9 END

READY

RUNNH

WHAT IS YOUR NAMEr FLEASE?EVEYLN
HELLOs EVELYN!

READY

Each string requested by an INPUT statement must be
ended by pressing the RETURN key. Therefore, if two
strings are to be entered, they must be typed on
separate lines. Commas, spaces, and other charac-
ters that can be used to separate numeric data cannot
be used to separate strings. These characters will be
interpreted as part of the string just like any other
characters. The next example demonstrates how this
WOrks:

LISTNH

S FRINT "FLEASE ENTER YOQUR FIRST AND LAST NAMES:®

7 FRINT

10 FRINT "WHAT IS YOUR NAMEy FLEASE"F

20 INPUT Fsrl4

30 PRINT °"HELLOy "i F$§ ® "5 L$5 *1*
99 END

REALY
RUNNH
FLEASE ENTER YOU FIRST AND LAST NAMES:!

WHAT IS YOUR NAMIr FLEASE?JESSE
TJAMES
HELLOr JESSE JAMES!

READY

If you try to assign a string longer than eight
characters to a normal string variable location, the SL
(String too Long) error message will be generated.

Exercise 30. Enter the above program into the

workspace, but add the statement:
40 GOTO 7

Then use this program to experiment with string
variables by entering strings that are of varying
lengths and contain special characters on the
keyboard. If you like, modify the program to
experiment further.

STRING VARIABLES IN IF STATEMENTS

The expressions compared in an IF statement may
contain strings as well as numbers, but evaluating the
relationship between two strings can be a very
involved process. The discussion here will be limited
to evaluating only the equality relationship; inequal-
ities will be discussed in Chapter 4.

Two strings are said to be equal if they contain the
same characters in the same order (including blanks
and punctuation).

For example, the following program will display the
word “EQUAL”:

10 LET Af="YES"

20 LET R "

30 TF A9 N &0
40 FRINT EQUAL"

50 GOTO 99
&0 FRINT "EQUeat."
P9 END

REALDY
RUNNH
EQUAL.

READY

The next example will print “NOT EQUAL”:

LIS VNH
10 LET

A
NT UNOT
1T HY

S0 PRINT "EQUAL"
99 END

REaDyY
RUNMH
NOT EQUAL

[RE AL

In an IF statement, the contents of a string variable
are usually compared to a specified string. For
example,

10 FRINT "WHAT 1S YOUR NAMEs FPLEASE";

20 INFUT N%

30 FPRINT "HELLQy =3 N&%7 "1*

40 FPRINT "IIO YOU G} BY ANY OTHER NAMES"§
50 INFUT A%

60 FRINT

70 IF A$="YES" THEN 10

99 ENID

REALY

RUNNH

WHAT IS YOUR NAME, FIEASE?SCOTT
HELLO» SCOTT!

[0 YOU GO EY ANY OTHER NAMES?YES

WHAT IS YOUR NANE» FLEASE?DOUGLAS

HELLD» DOUGLAS!
DO YOU GO DY ANY OTHER NAMES?NO

REALY

3-26

N

A flowchart will help you follow this program:

START

PRINT
QUESTION

RECEIVE
RESPONSE

FROM
KEYBOARD
SAY "HELLQ"

ASK ABOUT
OTHER
NAMES

DOES
USER HAVE
OTHER NAMES?

YES

Exercise 31. Modify the program that you wrote for
Exercise 29 (page 3-25) to ask the user if he or she has
another number to enter before it recycles for
additional input. Ask the user for a simple “YES” or
“NO” response and use a string variable to store that
response.

LOOKING BACK

You have learned one new BASIC statement in this
section, the IF statement. You have seen how this

statement is used to create self-stopping loops and to

evaluate relationships between both numeric and
string variables. In addition, you have learned how to
use variables to store strings up to eight characters
long.

Remember these things:

® A loop is a set of statements that is executed
repeatedly.

® The IF statement is used to examine a relation
between two expressions. If the relation is true, the
computer branches to a specified statement. If it is
false, execution “drops through” to the next
statement.

e Decision points are represented in a flow chart with
a diamond-shaped symbol.

° Stnng variable names always end with a dollar
sign ($).

® A string variable may not be used in a numeric
expression.

o A standard string variable may not contain more
than eight characters.

e Each string entered in response to an INPUT
request must be ended by pressing the RETURN
key.

® Strings are equal if they are exactly the same,

The next section will show you another way to create
program loops using fewer statements and a more

" flexible format.

3-27

SECTION 3-G
CREATING FOR-NEXT LOOPS

THE FOR AND NEXT STATEMENTS
Loops made with the IF-THEN statement require you
to keep track of the number of times the loop is
executed. You saw the following program on page
3-24.
10 LET K=l
20 FRINT K
30 LET K=K+l
40 IF K<é6 THEN
29 ENID
This program printed the numbers 1 to 5. The
following program is shorter, but will do the same
thing. It uses a FOR and a NEXT statement to add 1 to
K automatically each time the loop is executed:

20

LISTNH

10 FOR K=1 T0 S5
20 FRINT K

30 NEXT K

?9 END

} FOR-NEXT LOOP.

READY
RUNNH

(L P Rt

REALY

Every FOR statement must have a NEXT statement
and every NEXT statement must have a FOR
statement.

The flowchart for this program might look exactly the
same as the one on 3-24, but use of a FOR-NEXT loop
eliminates one statement in the program as compared
to the version using the IF statement. The following
trace will help you understand how a FOR-NEXT loop
works:

Statement K Out- Remarks

put

A FOR-NEXT loop consists of three things:

(1) a FOR statement,

(2) a NEXT statement, and

(3) one or more statements between the FOR state-
ment and the NEXT statement.

A FOR-NEXT loop begins with a FOR statement and
ends with a NEXT statement. The set of statements
between FOR and NEXT is called the body of the
loop.

10FORK=1TO5 1

K starts at 1.

20 PRINT K 1 1 First time through loop.

30 NEXTK 2 K<5. Do it again.

20 PRINT K 2 2 Second time through loop.

30 NEXT K 3 K< 5. Do it again.

20 PRINT K 3 3 Third time through loop.

30 NEXTK 4 K<5. Do it again.

20 PRINT K 4 4 Fourth time through loop.

30 NEXT K 5 K<5. Do it again.

20 PRINT K 5 5 Fifth time through loop.

30 NEXT K 6 K>>5. Stop the loop and reset K to
the terminal value.

99 END 5 Everything stops.

BODY OF THE LOOP

1O FOR X=1 TO 12 THE SAME VARIABLE MUST
BE USED AS AN INDEX IN

s e BOTH PLACES.

50 NEXT X

HERE IS ANOTHER EXAMPLE:

LISTNH - THIS FOR STATEMENT DE-
10 FOR N=2 10 7 FINES A SET OF VALUES
20 FRINT N FOR THE INDEX VARIABLE
99 ENI [2,3,4,5,6,7]

REALY THE BODY OF THE LOOP IS
RUNNH EXECUTED REPEATEDLY,
] ' ONGCE FOR EACH VALUE OF
3' N DEFINED BY THE FOR
4 STATEMENT. NOT. THAT
5 THE INDEX IS INCREMENTED
% BY 1 EACH TIME THROUGH
2 THE LOOP.

READY

Exercise 32. Write down the numbers of the
statements which make up the body of the loop in the
following program:

LIS TNH

e
€82

R N
Fody

LET
30 FRINT
NEXT R
F NI

FREALY

FUNMNH

RADTLS ARk A
2 128946
3 28,24
4 She24

REALY

Exercise 33. The volume of a sphere may be
represented by the equation:

V= —713

Write a program to display a table of volumes for
spheres with radii from 1 to 30.

3-28

C

After a FOR/NEXT loop is completed, the index will
be set equal to the value that it had the last time that
the loop was executed. For example, the value output
by statement 40 below will be 6:

LISTNH

S LET A=0

10 FOR Rs=1 TO &
20 LET A=A+K

30 NEXT K

40 PRINT K

P9 NI

REALY

FUNNH
&

REAINY
The following table shows the set of values defined

for the index in each example of a FOR statement.
Line numbers are omitted.

FOR Statement Index Set of Values for the Index

FORJ=0TO 3 J [0,1,2,3]

FORI=1TO 1 I [1]

FORA=3TOS5 A [3,4,5]

FORX=-2TO2 X [-2,-1,0,1,2]

FORB=1TOOQ B Empty—the loop is skipped.

Exercise 34. Complete the following table on a
- separate piece of paper and then check your answers
by writing programs to test each case.

Set of Values

FOR Statement Variable for the Variable

FORN=1TO®
FORC=0TO5
FORW=-3TOO0
FORE=12TO12
FORT=7TO5
FORX=.5TO25
FORY=1TO25
FORZ=.5TO3

T oz

THE STEP CLAUSE

A variation of the FOR statement is shown in the
following program.

LISTNH
To'POR k=1 70 9 STEP 2 ¢—— NOTE THE STEP CLAUSE.
30 NEXT K

99 END THE STEP 2 CLAUSE CAUSES
READY THE VALUE OF K TO IN-
RUNNH CREASE BY 2 (INSTEAD OF 1)

EACH TIME. YOU CAN VER-
IFY THIS BY EXAMINING THE
PRINTED RESULTS.

BN U

READY

If the STEP clause is omitted, an increment value of 1
is assumed.

The foliowing table shows the set of values defined
for the variable in each FOR statement. Line numbers
are omitted.

FOR Statement Values of the Variable
FORE=0TOB8STEP2 E=0,2,4,6,8
FORE=0TO9STEP2 E=0,2,4,6,8
FORV=1TO3STEP .5 v=1,1.5,2,25,3
FORW=1TO7STEPO W=1,1,1,
FORX=1TO3STEP1 X=1,2,3
FORX=1T0O3 X=1,2,3
FORY=3TO1 STEP -1 Y=3,2,1

Exercise 35. Complete the following table on a
separate piece of paper and then check your answers
by writing programs to test each case.

Values of the
FOR Statement Variable
FORT=0TOG6 STEP 3 T=
FORN=1TOS5STEP1 N=
FORK=100TO 130 STEP 10 K=
FORX=0TO1STEP .25 X=
FORE=0TOOQSTEP 2 E=
FORB=3TOO STEP -1 B=

Exercise 36. The surface area of a sphere may be
represented by the equation:

S =4 712
Write a program to display a table of surface areas for
spheres with radii of 10, 20, 30, ..., 100.
VARIABLE FOR STATEMENTS

By using variables instead of numerals, you can
obtain variable FOR statements such as the one in the
following program:

LISTNH,

ig :_g;”:s'; 10 N THE VALUE FOR N IS EN-

30 FRINT K TERED.

gg g%‘; ‘1*'0 VARIABLE FOR-NEXT LOOP.

99 END 3 1S ENTERED AS THE VALUE

READY OF N.

RKUNNH FOR N=3, K=1,2,3,

73 5IS ENTERED AS THE VALUE
OF N.

FOR N=5, K=1,2,3,4,5

01S ENTERED AS THE VALUE
OF N.

THE FOR LOOP IS SKIPPED
BECAUSE1 N.

-y

lHOU\bb}H L EARST

R
m
>
(=}
=

Each of the three numbers in a FOR statement may be
replaced with a variable:

3-29

50FORK=ITOTSTEPS For example, the following nesting technique is
acceptable:

Initial value

Terminal Value

Step value
BODY OF

LOOP K
Exercise 37. Run the next program on your computer
and use it to complete the following table of index
values corresponding to initial, final, and step values,
in FOR-NEXT loops.

10 FOR K=0 TO 33—
20 FOR L=2 TO 6=

BODY OF LOOPL | LOOPL
30 NEXT |.e—— LOOP K
40 FOR M=1 TO 177

BODY OF LOOP M| LOOP M
50 NEXT M--e—
60 NEXT K

But this is not allowed:

10 FRINT "IN1T1AL» TERMINALy AND STEF VALUES";
20 INFUT I»TsS
30 FOR K=I TO T STEF S

40 FRINT K

S50 NEXT K . - .

70 G010 10 10 FOR Ka-3 TO 69

77 Enn 20 FOR L=2 TD 4

BODY OF LOOP ?
Initial Terminal Step Index 30 NEXT K-
Value Value Value Values 40 NEXT L. -

0 1 0.2
10 0 3

2 5 2 » .] » .

6 6 3 because neither loop is totally contained within the

0.0010 0.0013 0.0001 body of the other.

8 8 -1 - You can use nested loops to generate tables for
-3 -4 -0.3 operations with more than one variable. For example,
-4 -3 *-0.3 the following program displays a multiplication table

926 1852 463 for all combinations of integers from 0 to 9:

0.01 -0.01 -0.005 :

LISTNH
100 FRINT *"MULTIFLICATION TAELE®
110 FRINT

NESTED LOOPS

It is possible to write a program containing one
loop inside another. This is known as nesting loops.

LISTNH

10 FRINT "I*y"J°
15 FRINT

20 FOR I=1 10 2

39 FOR J=1 1037 INSIDE
so w1] NSOF | ouTsIDE LOOP
&0 NEXT T

99 END

REALY
RUNNH
I

[E
(SRR RER ST

[SEXRE)

READY

The inside loop is said to be nested within the outside

120 PRINT * 3

tho bRinT - %¢ s | SIMPLE LOOP

150 NEXT K

160 FRINT

170 FOR I.=0 TO 9
180 FRINT L%

190 FOR M=0 TO 9
200 IF LAM>10 THEN 220
210 FRINT " *j NESTED LOOPS
220 FRINT L*M;
230 NEXT M

240 FRINT
25C NEXT L

?99 END

READY
RUNNH
MULTIFLICATION TARLE

<

1 2 3 4 S & 7 8 ?

0 0 [[[O [0 0 0 0
1 [1 2 3 4 S 4 7 8 @
2 [2 4 -3 8 10 12 14 16 18
3 [3 -3 ? 12 15 18 21 24 27
4 [4 8 12 16 20 24 28 32 34
S [5 10 15 20 26 30 35 40 45
-3 [6 12 18 24 30 346 42 48 54
7 0 7 14 21 28 35 42 49 96 &3
8 [o] 8 16 24 32 40 48 56 64 72
? [? 18 27 36 45 54 63 72 81

READY
loop.
When loops are nested, the inside loop must be (Lines 200 and 210 in the above program were
completely contained within the body of the outside included to format the output so that all numbers
loop. appeared in straight columns.)

3-30

N

P

Exercise 38. Complete the following program by
specifying “C” or “Y” as the index for each of the
FOR-NEXT loops. When completed properly, this
program will graph the equation in line 120.

100 FOR |:| -

110 FRINT
L20 LET X=Y"2

130 FOR D =30 T0 36

140 IF X THEN 170
150 FRINT " "3

160 NEXT []

170 FRINT "X

180 NEXT ||

999 ENII

Run the completed program, changing the equation in
line 120 to produce different graphs. For example,
these equations will produce graphs that fit on the
screen:

120 LET X=AY™3)/4

120 LET X=7%Y

120 LET X=2%X(Y"2)-30

>
>,
.

LOOKING BACK

This section has introduced the technique of creating
loops with the FOR and NEXT statements.

Remember these things:

o A loop made with the FOR and NEXT statements is
usually at least one statement shorter than a similar
loop made with the IF statement. -

® The FOR statement defines a set of values for the
loop index by specifying the initial, terminal, and
step values of that index.

e The body of a loop is executed once for each
member of the set defined by the FOR statement.

o Every FOR statement must have a corresponding
NEXT statement which uses the same index
variable.

e If not specified, the STEP value of a FOR-NEXT
loop is assumed by the system to be +1.

o The NEXT statement causes the body of the loop to
be executed again, using the next member of the
set. However, if all members of the set have al-
ready been used, then the NEXT statement directs

the computer to go to the statement foliowing the
NEXT statement.

® When loops are nested, the inside loop must be
contained totally within the body of the outside
loop.

The next section introduces another way to enter data
to a program and two more ways to name variables.

3-31

SECTION 3-H

SUPPLYING LARGER AMOUNTS OF DATA

THE READ AND DATA STATEMENTS

When programs require a large amount of data, it is
sometimes more convenient to use a data table than
to supply the data through INPUT or LET statements.
A data table is created by using DATA statements,
and this data is entered into the program by means of
READ statements. The following program is a
modification of the program on page 3-13 that
calculated the area of a circle, and demonstrates the
use of a data table.

LISTNH

15 FRINT *RADIUS®s *AREA-

17 READ R ~———— THIS IS A READ STATEMENT.
20 FRINT R» 3.14%R72

30 60TO 17

40 DATA 12.2, 17.3y 29.6- THISIS A DATA STATEMENT.

99 END

REALY
RUNNH

RADIUS AREA HERE ARE THE RESULTS.
12,2 467,357
17.3 939.77

e 7 IHIS MESSAGE MEANS
DA AT LINE 00017 ~———— THAT THE COMPUTER HAS
READY READ ALL THE DATA.

The statement:
17 READ R

tells the computer to read one value of R from the list
of values in the DATA statement. Each time the READ
statement is executed, the computer reads the next
value from the DATA statement. In other words, the
computer remembers what value should be read next.

If there is no more data to be read in the DATA

1 111 "
statement, the computer prints the “DA” message

and stops automatically.

Here is another example using the READ and DATA
statements: :

Four students have each taken three quizzes. Their
scores are:

First Score Second Score Third Score

First Student 66 81 75
Second Student 91 88 95
Third Student 78 78 62
Fourth Student 80 83 86

The following program computes the average of the
three scores for each student:

L1STNH

GT*y "SECONI™ » * THIRD®
Uy "SCORE"y *SLNRE" » "AVERAGE *

20 PRINT *80
30 READ XsY,7
40 LET M=CXtY47)/3

S0 PRINT X»Ys2ZsM
40 GOTO 30

1920 DATA 669819735
?2 I'ATA 91,88,95
94 DATA 78:78562
96 DATA 80,83,86
99 ENI

THIS IS THE DATA TABLE.

READY
RUNNH

FIRST SECOND THIRD
SCORE SCORE SCORE AVERAGE
b6 81 73 74
?1 a8 ?5 71,3333
78 78 &2 72,6666
80 83 86 83
LA AT LINE 00030
READY

THE AVERAGES OF THE
THREE SCORES ARE IN THIS
COLUMN

Data statements are not executed by the computer,
but simply place data in the computer's memory to be
supplied when a READ statement is executed.
Therefore, DATA statements may be placed anywhere
within a program. If they are encountered during
program execution, the computer ignores them and
goes to the next executable statement. DATA
statements do not appear in a flowchart, and the
READ statement is represented as a process. The
above program would be flowcharted as follows:

(START)
PRINT
COLUMN
TITLES

READ DATA FROM
DATA TABLE

!

COMPUTE
AVERAGE 1

I

PRINT
SCORES AND
AVERAGE

Exercise 39. Modify the above program to compute

the average of any number of scores and display a
table like this:

Number
of scores Average
3 89

5 74.4

3-32

X, Y, AND Z DENOTE THE
FIRST, SECOND, AND THIRD
SCORE. M IS THE AVERAGE.

C

N

-

™

Hint: Use a separate DATA statement for each set of
scores and let the first number in the DATA statement
indicate the number of scores in the set. Read this
number and then use it as the terminal value in a
FOR-NEXT loop. Sum the scores by using a
statement of the form:

60 LETS=S+T

where S is the sum of the scores and T is an individual
score.

Run your program using the following data:

Scores

First Student 82 88 97

Second Student 66 78 71 82 75

Third Student 82 86 100 91

Fourth Student 72 82 73 82

Fifth Student 61 73 67 80 84 79

Exercise 40. Modify the program that you wrote for
Exercise 39 so that it will read all the sets of data to be
averaged and then stop. Do this by adding a special
data code, for example, “-99999,” that signals the end
of the data table. Then draw a flowchart for your final
program.

String data may also be entered through DATA
statements. When this is done, however, the string
data must be enclosed in quotes (“). For example,

90 DATA “ONE”, 1, “TWO”, 2

Although numerical and string data can be included in
the same DATA statement, you must make sure that
the numbers are read into numerical variables and the
letters or words are read into string variables. For

example, the following statement could be used to
read the data in statement 90 above:

130 READ A$, A, B$, B
but this statement could not:
10 READ C$, D$, C, D

The following program uses both numerical and
string data:

LISTNH

10 FRINT °NAME®s "AVERAGE"
20 FRINT

30 REAL N$

40 IF N&="ENI-OF-DATA" THEN 99
S0 REAL X»YyZ

60 FRINT N#y (X+Y+Z)/3

70 GOTO 30

80 DATA "HILLEL"s66y81,7%
82 DATA "JESSE"r91s88,95
84 DATA *"JD",80,83,86

846 DATA "STAN",78,78r42
88 DIATA "ENID-OF-DATA®

99 ENI

READY
RLUNNH

NAME AVERAGE
HILLEL 74
JESSE ?1.,3333
Jo 83

STAN 72,6686

REALY

The general form of the READ statement is:
line number READ list of variables
For example:
10 READ X,Y$,Z

line number —— 4]
READ

list of variables

THE VARIABLES ARE SEP-
ARATED BY COMMAS.

The general form of the DATA statement is:
line number DATA list of data values
For example:
90 DA TA\66,81, 75, "DOUGLAS?

N }
line number

DATA

list of data values

The READ statement directs the computer to read one
value from the DATA statement for each variable in
the READ statement.

If there are two or more DATA statements in a
program, the values in the statement with the
smallest line number are used first, then the data in
the statement with the next smallest line number and
SO on.

All the data in a program are considered together as a
single data table.

The following three sets of DATA statements are
equivalent:

20 DATA 2¢3vbeBe 12y 18019y 27v 33264759
90 DATA 2+3v6

91 NATA BrllylGylPy2

P2 DATA 33y26947 459

P0 DATA 2939598912015
?1 DATA 19y27v33y 2647459

THE RESTORE STATEMENT

The RESTORE statement allows you to reuse DATA
statements, beginning with the lowest numbered
DATA statement in the program. An example of the
use of the RESTORE statement is shown on the
following page:

3-33

LLISTNH

10 DATA 2¢3206
20 IATA 8512
30 READ AyE«(5IsE
40 FRINT AF#BiCiIGE
S0 RESTORE

60 READ F»G

70 FRINT FiG

29 END

THE RESTORE STATEMENT
AT LINE 50 ALLOWS THE
READ STATEMENT AT LINE
60 TO OBTAIN VALUES FROM
THE DATA STATEMENT AT
LINE 10.

READY

RUNNH
2 3 & 8 12
2 3

READY

You can think of the computer as working with DATA
statements by maintaining a pointer in the data table.
Each time a value is read, the pointer is advanced to
the next data value so that the computer knows which
value to read next. The RESTORE statement resets
the pointer to the beginning of the data table. Without
the RESTORE statement in the above program, the
“DA” error message would have occurred when
CLASSIC tried to execute line 60, because all of the
data in the data list would have already been read (the
pointer would have been at the end of the data table).

Exercise 41. Write a program to decode messages
written with numbers representing letters of the
alphabet. For example,

20,8, 9,19, 32, 9,19, 28, 20, 8, 5, 34, 4, 5, 3, 15,
4,5,4,37,13,5,19,19,1,7,5,0

would be:
THIS IS THE DECODED MESSAGE

Note that any number over 26 represents a blank and 0
indicates the end of the message. Numbers 1 through
26 indicate the corresponding letters of the alphabet.

HINT: Receive the coded input via an INPUT
statement, checking for the end of the message after
each input. Use the code number to control how far a
data table containing all the letters of the alphabet is

acaarnhad anAd Aiitniit tha latiar fAaiinAd Daoaaat tha Aata
OTAIVIICU diiu Uulpul LT ISHIGT 1UUliu. mnicotlL uiv uatla

table pointer after each search with the RESTORE
statement.

ERROR MESSAGES

Error messages are very common occurrences. They
can be caused by typing errors or problems in
program execution. Most errors are easily corrected.
When working with a BASIC language program, the
computer tries to help you find your errors by printing
a code indicating the type of error and the line in
which it was found. A complete table of all the error
messages that CLASSIC dgenerates is given in

Appendix E of the CLASS/C User’s Reference Guide.

Perhaps you have already seen some of these error
messages when you ran programs previously or made
mistakes in entering monitor and editor commands.
Program error messages are usually of the form

XX AT LINE YY
or
XX YY

where XX is the error code, and
YY is the number of the line in which the error
occured.

To understand these errors, ook up their codes in the
Reference Guide and correct the problem in your
program.

Exercise 42. For each of the following statements,
write the reason for its error (if any) on a separate
piece of paper. If you do not think that a statement
will cause an error message, try it out on your
computer.

Incorrect Statement Reason

10 READ, A,B,C

20 READ, XY

30 REED P,Q,R,S,T
40 READ A+ B

50 READ I;J;K

60 READ AA,BB

70 READ ABC

80 READ 3.14

120 DATA 1/2,2/3,3/4
130 DATA A,B,C,D,E
140 DATA, 3.7,2.9

Error messages for monitor and editor commands are.
usually more informative. However, detailed explana-
tions of these messages are also given in Appendix E
of the Reference Guide to help you understand them.
Each message in Appendix E is followed by a solution
code referring to an entry in the table in Appendix
F. This solution code table suggests actions that
can be taken to correct the error.

OTHER VARIABLE NAMES

So far, you have used only the letters of the alphabet
to name variables. Thus, you have been limited to 26
numeric variables (A through Z) and 26 alphanumeric
variables (A$ through Z$). These have probably been
enough names for you to use, but perhaps you had to
use letters to stand for values that didn’t quite match.
For example, if you used S for “score”, you couldn’t
use it for “sum” and “student number” in the same

program.

CLASSIC allows you to combine a single digit with a
letter to name a variable. For example,

S0 S 82 N1$ N9$
Thus you can now name up to 286 numeric (A-Z and
A0-Z9) and 286 alphanumeric (A$-Z$ and A0$-Z9%)
variables in a single program.

When a letter and a digit are combined in a variable
name, the letter must precede the digit.

The following are not valid variable names:

CC 3G$ PX$ $AO

2J 77 428 L$5
A modification of the averaging program on the
preceding page is shown below. This version

demonstrates the use of combination variable names.
N1$ is the student’s first name, N2$ his or her last

3-34

N

/‘:“\

7N

RN

name, S1, S2, and S3 the three scores, and M the
arithmetic mean or average.

LISTNH
10 FOR K=l TO 4

20 READ NityNZH

30 LET M={Hl4

40 FRINT N2%3

50 NEXT K

&0 TATA "DIOLUG" » " CARL
70 DATA "JANE", "

8O DATA "MARK" "

S0 NATA "RUTH® ¢ " &M
99 ENT

READY

UMMM

€ 2 :
SMEITH RUTH 83

REAIY

SUBSCRIPTED VARIABLES

A third way to name variables is by using subscripts.
A subscript in conventional form looks like this:

X
i_This is a subscript.
The symbol “X3” is read “X sub 3.”
In BASIC, subscripted variables are written in a

slightly different way. Here is a BASIC subscripted
variable:

X(3)
This is a subsCript—f
“X(3)” is read “X sub 3”.
The subscripted variables X(1), X(2), X(3), etc., each
correspond to a location in the computer’'s memory
just like simple variabies:
x@) [

Xy] Xx@ [

Subscripted variables have two advantages over
simple and combination variables. First, you may use
subscripts outside the range of 0 to 9, for example,
X(34), by using the DIM statement (this will be
explained toward the end of this section). Second,
you may refer to a subscripted variable using a
variable as a subscript:

Subscripted variable—!

X(K)
ariable subscript
If K=1, X(K) is X(1).
if K=2, X(K) is X(2).
If K=3, X(K) is X(3).

The set of data [X(1), X(2), X(3), etc.] is referred to as
a list.

A list is made up of all the subscripted variables that
have the same variable name.

Exercise 43. Using the data shown below, complete
the table of values for the subscripted variables
shown.

A() |8 B(1) [3.7 |
A@) |-8] B(2) [9.2 J 2]
A(3) B(3) |3 K |3
A(4) c(2) |4 X
.Subscripted Subscripted
Variable Value Variable Value
A(1) 8 A(2*1) _
A(l) 8 A(l +J) _
A(K) _ Al+2) -
A(X) _ A(2%A1) -
B(l) _ A(X-3) -
B(3) _ AX-K+Y) -
B(J) — A(J*K-X) -
CW) _ AC2) .
B(1+1) A(B(C(2)-1))

The following rules apply to the use of subscripts and
subscripted variables:

(1) A subscript may be a number, a numeric variable,
or a numeric expression.

(2) The value of a subscript must not be negative. If it
is, an FM error message will be displayed and the
program will stop.

(3) if the subscript is not a whoie number, the com-
puter uses the whole number part of the sub-
script. For example:

X(3.7) is the same as X(3).
If K=2.9, P(K) is P(2).
(4) The computer permits a subscript value of zero.

For example, the following program will display
the number 15.

10 LET A(0)=15
20 PRINT A(0)

30 END

Exercise 44. Following are two sections of a program.
Write down the values that will be stored in each
variable location after these statements have been
executed.

3-35

10 FORN=1TO 4 P(1) P(3)
20 LETP(N)=2 A N P(2) P(4)
30 NEXT N

F(1) F(4)
70 LET F(1)=1 F(2) F(5)
75 FORK=2T0O6 F(3) F(6)
80 LET F(K) = K*F(K-1)
85 NEXT K

A use of subscripted variables is demonstrated by the
next example. This program ‘“sorts” numbers by
placing them in order from lowest to highest. Notice
the structure of the two FOR-NEXT loops at lines
170-240 and 180-230.

LISTNH

100 FRINT "UNSORTED DATHD"
110 FOR K=1 TO 10

120 READ NC(K)

130 FRINT NOK) S

140 NEXT K

150 FRINT

160 PRINT

170 FOR Kil=1L TO %

180 FOR K2=K1+1L T 10

190 TF NOKL)Y<=NIK2) THEN 230
200 LET T=N(K1D

210 LET N(RKL)=NOR2)

R20 LET NOK2Y=T

230 NEXT K2

240 NEXT Ki

250 FRINT "S5ORTED DATAZ"
260 FOR K=1 TO 10

270 FRINT NOK)#

280 NEXT K

G000 NATAH &by 7hHs 09y PRy 77y BE 4892567478
PL¢ END

READY *
RUNNH _
UNSORTEDR DATA?

66 TH B9 93 V7 OBY 4B 99 47 78
SORTEN DIATA?

A48 59 && &7 VSTV 78BS 92 93
READY

A flowchart for this program appears below.
This flowchart uses connectors (letters within circles)
to direct program flow to distant points.

C
:

PRINT “UNSORTED"
MESSAGE

b

READ AND PRINT VALUES
OF LIST N IN ORIGINAL

3-36

4

INITIALIZE FIRST COUNTER
(K1) TO1

O——

INITIALIZE SECOND
COUNTER
(K2) TOK1 + 1

YES °

NO

ASSIGN VALUE OF
N(K1)TOT

:

ASSIGN VALUE OF
N(K2) TO N(K1}

!

ASSIGN VALUE OF
TTO N(K2)

o
7

INCREMENT
Y 1

K2 B

INCREMENT
K1 BY1

NO

PRINT
“SORTED"
MESSAGE

l

PRINT SORTED VALUES OF
LISTN

[
C

~

N

PN
/

Ve

Exercise 45. Using the program on the previous page
as a model, write your own program to ‘“invert” a list
of 10 numbers. That is, given the list:

23 4 35 32 19 7 26 8 14 13
your program should output:
13 14 8 26 7 19 32 35 4 23

Use a FOR-NEXT loop and subscripted variables to
perform the inversion.

LARGER DATA SETS

You may use subscripts with values from 0 to 10 for a
variable in any program (A(0) through A(10}). If you
wish to use values greater than 10 you must specify
the largest value that your subscript will have by
using the DIM (dimension) statement.

Look what happens if you try to use 11 as a subscript
without dimensioning a list:

LISTNH

10 LET A(10)=110 . .
20 FRINT A(10) Line 30 used a subscript of
30 LET A(11)=11]1 +—r

40 PRINT AC1L) 11 . .

99 END

READY

s

. .. and an error message was
printed.

SU AT LINE 00030 +——

The following program adds the DIM statement:

LISTNH

5 DIH AC11)

10 LET A(10)=110
20 FRINT AC10)
30 LET AC11)=111
40 FRINT A(11)
99 END

The DIM statement at line 5
tells the computer that the
subscript of A will be at most
1.

READY
RUMH Now the program works as
111 desired.

READY

If you don’t mention a subscripted variable in a DIM
statement, the computer assumes that its subscripts
will not exceed 10 in value.

A DIM statement has the following general form:

line number DIM list of subscripted variables
For example: 10 DIM A(20), B(30)
e/
line number
DIM
list of subscripted
variables

The above DIM statement tells the computer that:

The value of any subscript of A must not exceed 20.
The value of any subscript of B must not exceed 30.
Exercise 46. Modify the program on the previous page

to sort up to 100 numbers. Enter the number of
numbers to be sorted as the first item in the data table

- and use a READ statement to assign it to a variable.

Then construct numerical expressions that use this

variable to specify the terminal values of the indices
of the FOR-NEXT loops.

TWO-DIMENSIONAL DATA SETS

Sometimes it is convenient to organize a set of data
into a two-dimensional matrix or array. Arrays are
made by using variables with two subscripts. For
example,

30 LET A(4,9)=14

Each variable in an array is calied an array element.
The first subscript corresponds to the row number of
the element and the second to its column number. An
array dimensioned with the statement:

15 DIM A(3,4)
can be thought of as existing in the following form:

COLUMNS

Ag,0 | A0,1|A0,2]|A0,3| A0,4
ROWS A0 [A1,1]A1,2|A1,3[A1,4
Ao o |A2,1|A22]|A23|A2,4
A3,0 | A3,1|A3,2[A33[A3 4

This array has 4 rows and 5 columns. Note that this is
one more than the numbers of rows and columns
specified in the DIM statement because the number-

ing begins with 0 rather than 1.

A two-dimensional array provides the easiest method
for tallying survey or test data and recording how
many people responded to each available option. For
example, imagine that you had an eight-question
survey with four possible responses to each question
coded as 1, 2, 3, and 4. The response sheet for this
survey might look like this:

Survey Response Sheet

Directions: Circle the code numbers corresponding to your
responses for each question.

M 1 2 3 4 5 1 2 3 4
2 1 2 3 4 ® 1 2 3 4
3 1 2 3 4 7H 1 2 3 4
49 1 2 3 4 ® 1 2 3 4

The following program tallies the number of people
choosing each response for each question:

3-37

LISTNH
100 OIM T(Bs4)

110 FOR K1=1 TO 8
120 FOR K2=1 TO 4
130 LET T(Kit,K2>=0

INITIALIZING
ROUTINE

140 NEXT K2
150 NEXT K1

160 READ N

170 FOR Ki=1 TO N
180 FUR KP?=1 TU B
190 READ R
200 LET T(K2yRI=F(hIPyRIHT
210 NEXT K2
220 NEXT K1
L=

TALLYING
ROUTINE

230 PRINT "RUESTION®s

s "RILSFUNSTG
240 FRTNT »"1","2"y"3"/"4"

250 FOR K1=1 TO 7
260 FRINT K1y

270 FOR K2=1 (D 4
280 FRINT T(KL+RI)»r
290 NEXT K2

300 NEXT K1

OUTPUT
ROUTINE

500 NATA 5
510 DATH 291y
320 DATA 191y
530 DATA i1y
540 TIATA 2,7,
550 DATA 4r3y
999 ENN

REaDnY
RUNNH
QUESTION

DNOU DI
O e O e
~nouoo~
noasmo=-o
HOoROABO -

READY

The above program uses three pairs of FOR-NEXT
loops. The first nested loop initializes the values of all
the subscripted variables to zero. The second tallies
the responses by reading a response (R) to a specific
question (K2) and then using that response as the
column subscript in the LET statement in line 200.
The third nested loop simply outputs the response
data in a format that will fit on the CLASSIC screen.

Notice that the “zero” elements (T(0,0), T(0,1), T(1,0),
etc.) were not used in the above program. If you
needed to conserve memory space in a very large
program, you could make use of these zero elements
and dimension array T as (7,3) rather than (8,4). You
would then have to change the values of the indices in
the loops as well. Alternatively, you might use the
zero elements to store the number of people who did
not respond to a specific question.

Exercise 47. Write a program to tally results on an
eight-question multiple-choice test with three
possible responses for each question. Output for
each question the number of students who responded
correctly, the number who responded incorrectly, and
the number who did not respond. Use the above
program as a model and store your response data in
a two-dimensional array. You will need two types of
data in your program, the correct responses as well as
the students’ responses. Enter the correct responses
into a one-dimensional data list using READ and
DATA statements. Use the following data to test your
program (0 = no response):

Question Number: 1
Correct Response: 2

Response to Questions

3-38

Student 1 2 3 4 5 6 7 8
A 2 1 3 0 3 3 2 2
B 2 3 3 2 1 1 2 2
C 1 3 2 3 1 2 0 0
D 2 1 2 1 3 2 3 3
E 2 2 3 0 1 3 3 2
F 2 3 2 1 3 2 0 2
G 1 3 3 2 1 3 1 0
H 2 1 2 0 0 1 3 3
| 2 2 3 1 1 2 3 2
J 2 3 2 3 3 2 3 1

LOOKING BACK

You have now learned three ways to supply data to
programs: through LET statements, INPUT state-
ments, and READ/DATA statements. Each of these
has advantages and disadvantages, and thus each
has different applications:

o The LET statement is the most flexible because the
values of expressions can be assigned to specific
variable locations. However, one statement is
needed for each assignment.

The INPUT statement allows you to enter data
while a program is running. It is the easiest way for
other users of your program (besides yourself) to
enter data because it does not require that actual
BASIC language statements be changed. It is,
however, relatively slow.

The READ/DATA statements provide the fastest
way for entering a large amount of data but they are
relatively difficult to correct if they contain an error
(the entire DATA statement must be retyped). Data
statements take up room in the computer's memory
and may not include any expressions that have to
be evaluated.

You also know three ways to name variables: with a
single letter, with a single letter followed by a single
digit, and with one or two subscripts.

You can now write sizeable BASIC language
programs. As your programs get larger and larger,
they become more and more difficult to follow and
understand, both for you and for anyone else who
wishes to use your programs. The next section
introduces some ways to organize your programs so
that they will be easier to follow.

-~
J/

~~

N

SECTION 3-I

ORGANIZING YOUR PROGRAMS

ADDING COMMENTS TO YOUR PROGRAMS

The sample programs that are being discussed are
getting longer and longer. Flowcharts have been used
to make programs easier to understand, and
rectangles have been used to make the listings easier
to follow. You can make your programs easier to
follow by adding comments or remarks to name and
separate the major sections and explain things that
might confuse the reader.

The REM statement is ignored by the computer and
can be used to add remarks to a program.

When the computer encounters a REM statement, it
simply skips over it.

The program below is identical to the program on
page 3-38, but REMarks were added to make it
more readable. Note that any comment may
be typed after the letters “REM”—the entire line is
ignored by the computer.

LISTNH

40 REM k%% TALLY
S0 REM
460 REM THIS PROGRAM TALLIES THE NUMRER OF FEOFLE
70 REM CHOOSING EACH OF 4 RESFONSE FOR EACH OF 9

80 REM QUESTIONS.

20 REM

100 LIM T(8:,4)

102 REM ARRAY "T® STORES THE TALLY COUNTS

104 REM

106 REM XXX INITIALIZING ROUTINE

108 REM

110 FOR Ki=1 TO 8

120 FOR K2=1 TO 4

130 LET T(K1,K2)=0

140 NEXT K2

150 NEXT K1

155 REM

160 REALD N

162 REM "N* IS THE NUMBER 0OF SURVEYS TO RE TALLIED.
164 REM

166 REM XXX TALLYTNG ROUTINE

148 REM

170 FOR Ki=1 TO N

180 FOR K2=1 70O 8

190 READ K

195 REM "R* [S A RESFONSE TO QUESTION NUMRER *K2*.
200 LET T{(K2sR)=T(K2¢R>+1

210 NEXT K2

220 NEXT K1

223 REM

225 REM kX QUTFUT ROUTINE

227 REM

230 FRINT "QUESTION®y»s "RESFONSES®

240 FRINT s"L1"y"2","3"y"4"

245 REM

250 FOR Ki=1 TO 8

260 PRINT K1y

270 FOR Kx=1 TO 4

280 FRINT T(KLsR2)»

290 NEXT K2
300 NEXT Kl
470 REM

480 REM %kxX
490 REM

500 DATA 5
503 REM

505 REM SURVEYS TO RE TALLLED. THE ACTUAL RESFONSES
507 REM GIVEN FOLLOW RELOW:

510 DATA 2r1y454,153v194

520 DATA 1rly3sa52545153

530 DATA 2r1545491:371+3

540 DATA 252y454y1y372y1

S50 DATA 4r3+4915353:252

999 END

DATA TARBLE

THE FIRST DNATA ITEM INTICATFS THE NUMRER OF

REALY

Exercise 48. Add REMarks to the program that you
wrote for Exercise 47 to make the program easier to
follow and understand. Run your modified program to
assure that it still works correctly.

CHANGING THE LINE NUMBERS
IN YOUR PROGRAMS

As programs become modified and. remarks are
added, you often find that you run out of line numbers
with which to add new statements. For example, it
would be difficult to add another routine between
lines 160 and 170 in the TALLY program at the left
because most of the intervening lines numbers have
already been used.

CLASSIC has a special program to resequence the
line numbers in a program. This program is stored in
the file RESEQ.BA on the system disk. To use this
program, you must first store your own program on a
disk with the editor SAVE command. For example,

SAVE RXAT:TALLY.BA

You can then call RESEQ into your workspace with
the command:

OLD RESEQ

When you run RESEQ, the program will first ask you
the name of the file you wish to resequence by
printing:

FILE?

Respond to this query by entering the complete
device, file name, and extension of your program (no
defaults are assumed). For example,

FILE? RXA1:TALLY.BA
RESEQ will then print:
START, STEP?

and wait for you to enter the number that you wish
your program to start with and the difference that you
want between each successive line number (your
entries must be separated by a comma).

A complete example of this procedure is shown
below. (The workspace originally contained the
program shown at the left.)

SAVE RXALITALLY . RBA

THE USER INDICATES THAT
RESEQ SHOULD START WITH

READY LINE NUMBER 100 AND USE
OLD RESER AN INCREMENT OF 10 BE-
REALY TWEEN LINE NUMBERS.
RUNNH WHEN THE READY MES-
FILETRXALSTALLY . BA SAGE REAPPEARS, YOUR
STARTySTEP?L00210 PROGRAM WILL HAVE BEEN
- RESEQUENCED.
READY

To read your original program back into the

workspace, use the editor OLD command:

OLD RXA1:TALLY.BA
The listing on the following page shows the program
at the left after it was resequenced.
When a program contains references to line numbers
(such as GOTO and IF statements), the RESEQ

program automatically changes these references to
correspond to the new line numbers.

3-39

LISTNH

100 REM X%
110 REM
120 REM
130 REM
140 REM
150 REM
160 DIM T(8,4)

170 REM ARRAT *T*
180 REM

190 REM XXX
200 REM

210 FOR Ki=1 T0 8

220 FOR K2=1 TO 4

230 LET T(K1,K2)=0
240 NEXT K2~

250 NEXT K1

260 REM

270 READ

TALLY

THIS FROGRAM TALLLIES THE NUMBER OF FEOFLE
CHONSING EACH OF 4 RESFONSE FOR EAUH OF %
QUESTTONS.

STORES THE TALLY COUNTS

INITIALIZING KOUTINE

280 REM *N"
290 REM

300 REM XXX
310 REM

320 FOR K1=1 TO N

330 FOR K2=1 TO 8

340 READ R

350 REM *R" IS A RESFONSE TO QUESTION NUMBER "K2*.
360 LET T(K2rRI=T(K2sR)+1

370 NEXT K2

380 NEXT K1

390 REM

400 REM XXX
410 REM

420 FRINT "QUESTION",s"RESFONSES®
430 FRINT »"1°y"2","3"5"4"

440 REM

450 FOR K1=1 T0 8

460 FRINT Kir

470 FOR K2=1 ID 4

IS THE NUMBER (F SURVEYS TO BE TALLIED.

TALLYING ROUTINE

OUTPUT ROUTINE

480 FRINT T(KL1sK2)»
490 NEXT K2
S00 NEXT K1

510 REM

S20 REM kkX DATA TARLE

530 REM

540 LATA G

550 REM I'HE FIRST DATA ITEM INNICATES THE NUMEBER OF
560 REM SURVEYS TO RE TALLIEN. THE ACTUAL RESFIONSES

570 REM GIVEN FOLLOW RELOW:
580 DNATA 2y1+4y45193y154
S90 DATA 1y1+374¢2v45193
600 DATA 2rlvA4rvayls3r1rd
610 DATA 252y454y1535291
620 DATA 4534y4517353+3292
630 END

READY

The RESEQ program can be used only with BASIC
language programs that contain 350 or fewer lines.
Any attempt to resequence a larger program will
result in an error message. The RESEQ program may
take as long as 10 or 15 minutes to resequence a large
program, so you should not terminate it prematurely.
As long as the disk drives continue to click, RESEQ is
operating properly.

Exercise 49. Enter the following program into your
workspace and store it on RXA1. Then use RESEQ to
resequence the line numbers so that they begin with
1000 and have an increment of 10. Run the program
before and after you resequence it to make sure that it
works. Do not forget to SAVE this program before you
OLD RESEQ, or you will have to enter it again.

10 READ N

30 IF N<0 THEN 90

35 IF N=0 THEN 72

50 FOR K=1 TO N

60 FRINT *X*;

70 NEXT K

71 60TO 1o

72 FRINT

73 FRINT * ri

74 GOTD 10

90 FOR K=1 T0 -N

100 FRINT * "3

140 IF Nx-220 THEN 10

150 FRINT "FRESS RETURN:®}#

155 INFUT A%

200 TATA ~5r65-179750r~1y47-14y45-554,0

205 DATA ~1s45-13y3y-2r3r0r-1r4y-5,5,-3:3,-8+3+0
210 DATA -1r145,-3r4r-5r4+0s15,-5¢7+0

215 DATA 6ry-4+5r-3515+05-2¢3y-6s2y—624y=674+0

220 DATA —3r3r~45,2,-718707-4y35,-2+s2,y-858+0
225 DATA ~5+5r-9r4r-6+410s-6937-9r15,~20
999 ENL

MULTIPLE STATEMENTS ON ONE LINE

There is one more technique that you can use to
organize your programs: writing more than one BASIC
statement on a single program line. To do this, you
simply need to separate your statements with a
backslash (\). This key is next to the LINE FEED key.
Only the first statement in the line has a line number.
For example, the following line:

40 INPUT A \ PRINT A*12
is equivalent to:

40 INPUT A
50 PRINT A*12

You can only branch to the first statement in any
program line.

The message “try again” could not be printed by the
following statement:

60 IF A$="YES®" THEN 130 \ GOTO 200 \ PRINT *"TRY AGAIN"

because the execution of this statement will always
stop before the PRINT statement is encountered.
There is no way that the program can get to the PRINT
statement without first hitting GOTO 200. For this
reason, GOTO statements should always be last if

they are used in a multiple-statement line.

The use of multiple statements has both advantages
and disadvantages. On the plus side, the technique
saves space in the computer's memory and on your
disks by eliminating the need for some statement
numbers. This can allow you to write larger programs.
The technique also makes some statement groups
(like small FOR-NEXT loops) easier to identify. On
the minus side, errors are harder to correct with
multiple statements on a single line because you
must retype the entire line. Also, complicated
formulas are often confused if several are typed on
the same line. The use of this technique therefore
involves some ‘“give-and-take”. It is generally a good
idea to avoid multiple statements until all the “bugs”
(programming errors) in your program have been
found and corrected. Then go back and merge your
statements to save space.

The following program demonstrates the use of
multiple statements per line to shorten the TALLY
program.

3-40

VAR

N

7N

LISTNH
100 REM X%x TALLY

110 REM

120 REM THIS FROGRAM TALILLTES THE NUMBRER OF FEOFLE

130 REM CHOOSING EACH OF 4 RESFONSE FOR EACH OF 9
140 REM QUESTIONS.

150 REM

160 DIM T(8:4)

170 REM ARRAY "T* STORES THE TALLY COUNTS

180 REM

190 REM k%% INITIALIZING ROUTINE

200 REM

210 FOR K1=%1 TO 8 \ FOR K2=1 TO 4 \ LET T(K1,K2)=0
240 NEXT K2 \ NEXT K1 \ READ N

280 REM "N* IS THE NUMBER OF SURVEYS TO BE TALLIELD.
290 REM

300 REM k%% TALLYING ROUTINE

310 REM

320 FOR K1=1 TO N \ FOR K2=1 TO 8 \ READ R

350 REM "R* IS A RESFONSE T QUESTION NUMBER "K2".
340 LET T(K2,R)=T(K2yR)+1 \ NEXT K2 N\ NEXT K1

390 REM

400 REM *%% OQUTPUT ROUTINE

410 REM

420 FRINT "QUESTION"y»"RESFONSES" \ FPRINT s"1","2","3","4"
440 REM

450 FOR K1=1 TO 8 \ PRINT Kir \ FOR K2=1 TO 4
480 PRINT T(K1,K2)s \ NEXT K2 \ NEXT K1

510 REM

520 REM XkkX DATA TAERLE

530 REM

540 DATA S

950 REM THE FIRST DATA ITEM INDICATES THE NUMBER OF

560 REM SURVEYS TO BE TALLIED. THE ACTUAL RESFONSES
S70 REM GIVEN FOLLOW ERELOW!

S80 LATA 2s154,4y1,3¢v1+4

590 DATA 1,1,3+452+451-3

400 DATA 2,154,4515351,3

610 DATA 2s2y49451935251

620 DATA 4537491939 312,2

630 END

READY

Exercise 50. Use the multiple-statement-line tech-
nique to shorten the program given for Exercise 49
(page 3-40). Run the program after you have
modified it to make sure that it still runs correctly.

SUBROUTINES

REMark statements, evenly sequenced line numbers,
and multiple-statement lines all help improve a BASIC
language program without changing its actual
sequence or logic. That is, the application of any of
these three techniques to a specific program would
not change the flowchart describing how that
program will work. A fourth technique for organizing
your programs, the use of subroutines, involves
arranging the actual statements in your program in a
logical or structured manner.

A subroutine is a group of statements that might be
thought of as a separate program within your main
program. The use of subroutines offers three benefits
in BASIC language programming:

(1) Subroutines help segment. or modularize a
program so that its general structure may be more
easily followed and understood.

(2) If the same operation is performed many times
within the same program, it may be easier to
isolate that operation as a subroutine and branch
to it whenever needed rather than repeat the same
statements many times.

(3) Subroutines can be written so that they are prac-
tically little programs in themselves. For example,
the sort routine discussed on page 3-36 could
easily be made into a subroutine. Once this is
done, this subroutine could be inserted into any
program where such a sort is needed and then
“called” to perform the needed operation.

The program for Exercise 49 uses two FOR-NEXT
loops to perform the same operation: Printing a single
character repeatedly. This program might be better
structured using a subroutine:

?00 REM Xk%x MAIN FROGRAM
990 REM

1000 READI N

1010 IF N+<0 THEN 1100

1020 IF N=0 THEN 1070

1023 REM

1025 REM *XXx N IS FOSITIVE
1027 REM

1030 LET A$="X*

1040 GOSUE 2000

1060 GOTO 1000

1063 REM

1065 REM %%k N IS ZERD
1067 REM

1070 FPRINT

1080 FRINT * "

1090 GOTO 1600

1093 REM

1095 REM %% N IS NEGATIVE
1097 REM

1100 LET N=~N

1110 LET Ag=" "

1120 GOSUR 2000

1130 IF N+20 THEN 1000

1140 PRINT "FRESS RETURN?®S

1150 INFUT A%

1152 STOF

1154 REM

1156 REM ¥kX DIATA TARLE

1158 REM

1160 DATA -Trbr=1757y0v~-1lr4y—1494r-52450
1170 DATA —1r4y-13r3y-8r3s0:-174y-5,55,-3935y-8,350
1180 DATA —-1r14y-3r4r-5y450,159-5¢750

1190 DATA &y-45Sy-3y1590r-2y3y-6125-614y-6r450
1200 DATA ~3r3y~4r2y-778505y-413s-252+-3:8+0
1210 DATA -5r5r=9r05-6+4105-613y-9s15:-20
1900 REM

1910 REM *%% SUBROUTINE

1920 REM

2000 FOR K9=1 TO N

2010 FPRINT AS%j§

2020 NEXT K9

2030 RETURN

?999 ENL

This program has a main routine, a data table, and a
subroutine. The subroutine in lines 2000-2030 is
“called” by the GOSUB statements in lines 1040 and
1120.

The GOSUB statement calls (transfers control to) a
subroutine.

When a GOSUB statement calls the subroutine, the
computer goes to line 2000 and executes lines 2000 to
2020. The RETURN statement in line 2030 sends the
computer back to the line following the GOSUB that
called the subroutine.

The RETURN statement returns control to the
statement following the GOSUB statement that called
the subroutine.

When the subroutine is called by the GOSUB at line
1040, the RETURN statement causes control to
branch to statement 1060. When it is called by the
GOSUB at line 1120, RETURN branches control to
statement 1130.

The STOP statement at line 1145 prevents the
program from ‘“falling into” the subroutine un-
expectedly.

The STOP statement causes program execution to be
terminated.

3-41

If a RETURN statement is encountered before a
GOSUB is executed, a GR error message will result.

Subroutines are represented in a flowchart by a
special symbol: M —TJ- This symbol appears in
the flowchart of the main program to indicate that a
subroutine is called. The actual operation of the
subroutine is usually charted on a separate page. For
example, flowcharts of the program, and subroutine
on the previous page are shown below:

Main Program Flowchart

START

*

READ A NUMBER (N)
FROM THE DATA TABLE

s YES PRINT-N
N<0? SPACES

SKIP TO NEXT
LINE AND PRINT
5 SPACES

PRINT X" P

N TIMES -

Subroutine Flowchart

C

INITIALIZE COUNTER
TO1

|

PRINT CHARACTER
STORED IN A%
l A

INCREMENT COUNTER
BY1

YES

NO

‘ RETURN)

Exercise 51. The following program was discussed on
page 3-36: :

100 FRINT “UNSORTEL DATAZ"
110 FOR K=t TO 10

120 REAL N(K)

130 PRINT N(K)3#

140 NEXT K

150 PRINT

160 PRINT

170 FOR K1=1 TO 9

180 FOR K2=K1+1 TO 10

190 IF N(Ki)><=N(K2) THEN 230
200 LET T=N(KLl>

210 LET N(K1)=N(K2)

220 LET N(K2)=T

230 NEXT K2

240 NEXT K1

250 PRINT "SOKTED TATAS"

260 FOR K=1 TO 10

270 FRINT N(K)#

280 NEXT K

500 DATA 66y75:59¢93,77+85v48,92,67+78
999 END

Note the similarity in the loops at lines 110-140 and
260-280. Restructure this program to use a subroutine
to perform the printing done by these loops.

LOOKING BACK

This chapter has introduced four techniques for
ordganizing your programs: remarks, evenly se-
quenced line numbers, multiple statements on a
single line, and subroutines.

Remember these things:

o Comments may be added to a program listing by
means of the REM statement. These statements are
ignored while the program is being executed.

o Theline numbers in a program may be resequenced
with the RESEQ program.

o More than one statement may be written on a single
program line by separating the statements with
backslashes (\). When this is done, however, the
program can only branch to the first statement in
the line.

® A subroutine can be thoughi of as a “program
within a program” which is “called” by a GOSUB
statement.

e A RETURN statement terminates a subroutine and
transfers control to the statement following the last
GOSUB statement that was executed.

e A STOP statement can be used to terminate the
execution of a program and return control to the
editor.

You now know 15 of the 25 BASIC statements
available on CLASSIC. As you write your own
programs, you will probably find it easier to refer to
the BASIC Statement Directory in Chapter 4 of the
CLASSIC User’s Reference Guide than to refer back to
this self-teaching guide. The BASIC Statement
Directory presents each individual statement and lists
the rules involved in using that statement. The
introductory pages to that chapter review the general
concepts involved in writing BASIC language pro-
grams and introduce the formats used in the
directory.

This section concludes the first self-teaching chapter
on the BASIC language. The next chapter is entitled

3-42

N

‘//"‘m\\

o

“Advanced BASIC Programming” and explains the
advanced features of using BASIC on the CLASSIC
system. Before you go on, make sure that you have
learned all of the statements covered in this chapter
by writing programs of your own which demonstrate
their uses. While working the computer, use the
Reference Guide to help you remember rules and
formats that you may have forgotten.

3-43

N

PN

Chapter 4
Advanced Basic
Programming

SECTION 4-A
NUMERIC FUNCTIONS

A function is a special kind of subroutine. It is similar
to a subroutine because it causes the computer to
perform a special process. It is different from a
subroutine in two ways:

(1) itis called by indicating the function name within
a numerical or string expression (it does not
require a GOSUB statement), and

(2) it requires one or more arguments.

Arguments are numeric values or strings that are
operated on by a function.

Consider the following program. This program uses a
subroutine to find the absolute value* of a number X:

10 INPUT X
20 GASUE 100
J0 FRINT X
40 GOTO 10
100 IF Xe=(0 THEMN 120
110 LET X=X
L20 RETURN
eI NI
REATY
KL
T
4
T dy
4
P
REALY
* For positive numbers and zero, the absolute value of a number
is the same as that number. For negative numbers, the absolute
value of a number is -1 times that number. For example, the

absolute value of +43 is + 43, but the absolute value of -18 is
+18.

Note: CLASSIC does not require the word LET in
variable assignment statements. That is, the follow-
ing statement would be equivalent to statement
number 110 above:

110 X=-X

The programs in this Guide use the word LET to be
consistent with other BASIC language systems (see
Section 5-D).

The following program finds the absolute value of X
using a numeric function:

10 INFUT X

30 FRINT ARS(X)=<—THIS STATEMENT PRINTS
40 GOTO 10 THE ABSOLUTE VALUE OF X.

Y END

REALY
RUNNH
T4

The absolute value function
expression:

is called by the

ABS(X)
function name
argument
The argument can be any number, numeric variable,
or numeric expression, even one containing another
function. This function is called a numeric function

because its argument is numeric and it “returns” a
numeric value.

Numeric functions may be used anywhere that a
numeric expression is allowed.

SIMPLE NUMERIC FUNCTIONS

The square root (SQR) function. In mathematics, the
symbol is used to indicate the square root
operation. In BASIC, the corresponding symbol is
SQR(). The function SQR(X) returns the non-
negative square root of the absolute value of X. Look
at the following example:

10 FRINT SQR(4) s S0R(25)
20 FRINT SQR(~4) »SOR(~2%5)
99 END
RUNNH
2 5
2 5
READY

Perhaps you recall that a/a is used to mean the
non-negative square root of a, and- A/a is used to
mean the negative square root of a.

Here is a program to compute the two square roots of
a:

INFUT A
FRINT S0R Ay ~GRR(A)
30 GOTO 10
9% END
RUNNH
T
2 32
74096
64
%0
0
.
T.41421

sy
(I

READY

LG

~h4
O

w11 421

IF A=0 THERE IS NO NEGA-
TIVE SQUARE ROOT.

THESE ANSWERS ARE AP-
PROXIMATIONS TO THE
SQUARE ROOTS OF 2.

By using the FOR-NEXT loop, you can build your own
square root table:

4-2

10 FOR X=1 T0O 10
20 FPRINT X»S8QR(X)

30 NEXT X
PP END
RUNNH
1 1
2 1441421
3 1.73205
4 2
3 223607
6 2444949
7 2064575
8 2.82843
9 3
10 316228
REALY

Here is another application of the SQR function: If
you know the lengths of two sides of a right triangle,
you can compute the length of the third side by

N

applying the Pythagorean theorem. For example, (

suppose c is the length of the hypotenuse and a and b
are the lengths of the other two sides as indicated in
the diagram below.

Given a and b, you want to compute c:

b
a
G OFRIMT "A"s "Ry [
10 READ Ak
20 LET C=SORA™Z4HE™
30 PRINT AvBG
40 GOTO 10
50 DATA 3eavl2eSylsd
99 N
UM
A I 0
3 4 5
13 5 13
1 1 Ledlal
A AT LINE 00010

RE @Y
From the results, you see that:
Ifa=3and b=4thenc=5

Ifa=12and b=5 then c=13
If a=1 and b=1 then c=1.41421

Note that the argument to the SQR function at line 20
is a numeric expression. The computer evaluates the
expression inside the parentheses and then executes
the SQR function using the result.

TN

.
M

Exercise 52. Suppose that you know the values of a
and c. Write a program to compute and print the value
of b. Then use your program to obtain the value of b
for each of the following:

1 2 3.6

The sign (SGN) function. Suppose that you wanted to
write a program to output the positive square root of a
number when you input a positive number, and the
negative square root when you input a negative
number. Here is one program to do the job:

L0 FRINT "YOUR NUMBER"§
B0 INFUT A
A0 IF ACO THEN &0

40 LET S=80R A2
90 GOTD 70
&0 LET S=-8QR A7

FO OPRINT "ANSBWER = "
20 GOTO 10

Y9 END

READY

FLNMH

FOUR NUMBERT4
ANGWER = 2

TOUR NUMBERT-8
ANSWER = -2, 82843
YOUR NUMRBERT ™0

FREATY
AV _-... .l. (oYl VY U
TOu Gan l i€ llllb prouyrain ublllg l € ounN arnoLoii,
making it considerably shorter in th e process.

The sign (SGN) function returns the value of -1 if the
argument is negative, + 1if it is positive, and 0 if it is
zero.

L. TSTNH

10 FRINT "YOUR NUMEER"
20 INFUT A '

70 PRINT "ANSWER = "3
80 GOTO 10

Y9 END

SHNCAIRSUR(A)D

REaDY

RUNNH

YOUR NUMBERTZS
ANSBWER = . k)‘)‘:’()i}?.
FYOUR NUMBERT '
ANBWER = -11 «.44 445
TOUR NUMRERT™E
READY

Exercise 53. When a number is squared, the result is
always positive. Write a program to output the square
of a number with the opposite sign that the number
had originally. For example, 6 should generate -36,
and -2 should generate 4.

The integer (INT) function. The INT function returns

the value of the largest integer not greater than the

argument. For example,

10 FRINT INTCO) s INTC1) yINTC(2) s INT(3.14)rINT(7.99)
99 END

REALY

RUNNH

) 3 2 3 7
READY

From these results, you can see that:
INT(0) = 0 INT(1) = 1
INT(3.14) = INT(7.99) =

The INT function is best understood with the help of a
number line.

INT(2) =

Point A is at 3. The largest integer not greater than 3
is 3. Therefore, INT(3) =

Point B is at 1.25. The largest integer not greater than
1.25is 1. Therefore, INT(1.25) = 1. Notice that if X is
not an integer, the largest integer not greater than X is
to the left of X on the number line. '

Point C is at -1.25. The largest integer not greater than
-1.25 is -2. Therefore, INT(-1.25) = -2. Once again,
the largest integer not greater than -1.25 is to the left
of -1.25 on the number line:

-2 <-1.25
Remember these things:

e iIf X is a whole number, than INT(X) = X. For

example,
INT(0) = INT(1) =
INT(2) = INT(3) =
INT(-6) = INT(-4) =

e IfXisa posntlve number, then INT(X) is the whole
number part of X. For example,
INT(2.99) = INT(123.45)=123
INT(0.75) = 0 INT(.05) = 0
e If X is a negative number, then INT(X) is one less
than the whole number part of X. For example,
INT(-3.6) = - INT(-12.4) = -
INT(-.3) = - INT(-8.8) = -

Exercise 54. The INT function can be used to round
numbers. Enter the following program into the
computer and use it to round several values to the
nearest whole number:

LO INFUT X

20 PRINT INT(X+0.8)

30 GOTO 10

99 END

43

Exercise 55. Modify the program in Exercise 54 to
round numbers to the nearest tenth and the nearest
hundredth. Finally, try to round a number to the
nearest ten (10, 20, 30, etc.) and the nearest hundred.
To do this, you will have to use a numerical
expression as the function’s argument and then
perform a multiplication or division on the value
returned.

Exercise 56. Let x be a 2-digit whole number. That is,
x is a whole number such that:

10<x<99
Define a number y as follows:
y =sum of the digits of x

For example, if x=10 then y=1+0=1
if x=25, theny=2+5=7
if x=99, theny=9+9=18

Complete the following program to compute y for a
given value of x. RUN it for the DATA shown.

10 READ X

20 LET v=[_]

30 FRINT XsY

40 GOTO 10

0 NATA 10y15s23537540599
9% END

READY

Exercise 57. Let z be the number obtained by
reversing the digits of x. For example:

if x=10then z=01 =1
if x=37 then z=73
if x=99 then z=99

Modify the program that you wrote for the above
exercise so that the computer computes and prints

~ £
the value of z instead of the value of y.

The next two parts of this section discuss logarithmic
and trigonometric functions, respectively. If you have
not yet studied logarithms or trigonometry, skip to
the random number function on page 4-6.

LOGARITHMIC FUNCTIONS

The logarithm (LOG) function. CLASSIC computes
logarithms to the base e, where e=2.71828. These
logarithms are wusually referred to as natural
logarithms. To display the natural logarithm of 6, you
could use the statement:

70 PRINT LOG(6)

The LOG function computes the natural logarithm of
the argument.

Very often, students begin studying logs with the
base 10 rather than the base e. Perhaps you have seen
the rule:

logecb

logab =
logca

Since CLASSIC computes logs to the base e, you can
find the log of N to the base 10 by substituting
specific values into the above equation as follows:

logeN

logygN= —— _
910 loge10

In BASIC, this equation would be:
10 LETL = LOG (N)/LOG(10)
where L is the log of N to the base 10.

The program below demonstrates the use of
the LOG function to create a table relating natural
and base 10 logs. The function itself is called at line
70.

10 PRINT

20 PRINT °*N"y
30 PRINT

40 FOR N=1 TO ?2 STEP 1 \ GOSUE 70 \ NEXT N
S0 FOR N=10 TO 20 STEF 10 \ GOSUB 70 \ NEXT N
60 LET N=100 \ GOSUB 70 \ STOF

70 PRINT Ny LOG(N)r» LOG(N)/LOG(10)

80 RETURN

99 END

“NATURAL LOG OF N", *"LOG OF N TO THE BASE 10*

READY

RUNNH

N NATURAL LOG OF N LOG OF N TO THE BASE 10
1 0 0

2 0.693147 0.,30103
3 1.09861 0.477121
4 1,38629 0.60206
S 1.60944 0.469897
& 1.79176 0.778151
7 1,94591 0.845098
8 2.07944 0.90309
? 2,19722 0.954242
10 2,30258 1

20 2,99573 1.30103
30 3.4012 1,47712
40 3.468888 1.60204
S0 3.91202 1.469897
&0 4.,09434 1.77815
70 4.24849 1.8451
80 4,38203 1.90309
?0 4.49981 1.95424
100 4.60517 2

READY

Exercise 58. Chemists measure the acidity of
solutions in units called pH (potential of Hydrogen).
The pH of a solution is equal to -1 times the log to the
base 10 of the hydrogen ion concentration:

pH = -Iog10 (hydrogen ion concentration)

Write a program which computes the pH of a solution
when you enter a concentration.

The exponent (EXP) function. The exponent function
performs exactly the opposite of the operation
performed by the logarithm function. That is, given
the argument N and using 2.71828 as e, the LOG
function finds X in the following equation:

eX=N [X= LOG(N)]
and the EXP function finds Y in this equation:
Y=eN [Y =EXP(N)]

The EXP function can thus be used to convert
logarithms back into regular numbers. This is called
taking the antilog of a number. You supply a number

P

Ve

and the EXP function will return the number whose
natural logarithm equals that number.

The program below demonstrates the use of
the EXP function to raise e to the Nth power and
the use of the LOG function to reverse the operation
of the EXP function.

100 FRINT

110 PRINT "N"y "EXP(N)®ry °LOGC(EXP(N))>"y "LOG(N)"» "EXF(LOG(N))"
120 PRINT

130 FOR N=1 TO 9 STEF 1 \ GOSUE 180 \ NEXT N

140 FOR N=10 TO 90 STEF 10 \ GOSUB 180 \ NEXT N

150 FOR N=100 TO 900 STEP 100 \ GOSUE 180 \ NEXT N

160 LET N=1000 \ GOSUR 180

170 STOP

180 PRINT N» EXP(N)r LOG(EXF(N))y LOG(N)» EXP(LOG(N))

190 RETURN

200 END

READ'Y

RUNNH

N EXF (N} LOG(EXF(N)) LOG(N) EXF(LOG(N)Y)
1 2.71828 1 0 1

2 7+38905 2 0.693147 2

3 20,0855 3 1.09861 3

4 54.5981 4 1.38629 4

S 148,413 S 1.60944 S

& 403,428 & 1.79176 &

7 1096.63 7 1.94591 7

a8 2980.95 a8 2.07944 8

k4 8103.06 ? 2.19722 8.99999
10 22026.4 10 2,30258 ?.99999
20 +485162E+009 20 2,99573 20

30 +1068B64E+014 30 3.4012 30

40 +235382E+018 40 3.48888 40

S0 .518458E+022 S0 3.91202 49.9999
60 +114198E+027 &0 4,09434 59.9999
70 +251537E+031 70 4.,24849 69.9999
80 +554049E+035 80 4,38203 79.9999
90 +122035E+040 90 4.,49981 89.9999
100 »26B799E+044 099.999 4.60517 99.9998
200 .722528E+087 200 5.,29832 200

300 +194219E+4131 300 5.70378 299.999
400 +522047E+174 400 5.99146 399.999
500 +140335SE+218 500 6.21461 499.998
400 +377210E+261 600 6£.39693 599.999
700 +»101400E+305 700 6.55108 699.998
800 +272534E+348 800 &.68461 799.998
900 2»732614E1+391 899.999 6.80239 899.998
1000 +196938BE+435 0999.99 &£.90775 ?99.998
READY

Exercise 59. Modify the program that you wrote for
Exercise 58 to convert from pH to concentration. You
input a pH, and the computer should output the
corresponding hydrogen ion concentration. (Hint:
you will need a LOG(10) term in your expression
because the EXP function uses the base e rather than
10.)

TRIGONOMETRIC FUNCTIONS

Angles supplied as arguments to CLASSIC trigono-
metric functions must always be expressed in
radians. Radians are related to degress by the
formula:

R=7D/180

where R is the angle measure in radians,
D is the angle measure in degrees, and
@ is the constant 3.14159...

A 180 degree angle, then, is the same as a 3.14159
radian angle. The program in the next column
converts degrees to radians for selected angles using
the above formula.

CLASSIC has two functions that compute trigono-
metric values, the sine (SIN) function and the cosine
(COS) function. To print the sine and cosine of an
angle (A) in radians, you could use the statement:

160 PRINT SIN(A), COS(A)

Degree to Radian Conversion

10 FRINT

20 PRINT "ANGLE IN"» "ANGLE IN°®
J0 PRINT " DEGREES®y "RADIANS®
40 FRINT

60 FOR K=0 TO 3&0 8STEF 15

70 PRINT Kr 3.14159%XK/180

80 NEXT K

99 END
READY
RUNNH
ANGLE IN ANGLE TN
NEGREES RADIANS
0 0
15 0.261799
30 0.523598
45 G.785397
60 1.0472
7% 1.309
20 1.57079
105 1.83259
120 2.09439
135 2+35619
150 2:61799
145 2.87979
180 3.14159
195 3.40339
210 3.466519
225 392699
240 4,18879
235 4.,45058
270 4,71238
285 4,97418
300 9.23598
315 5.49778
330 S 75958
345 6.02138
360 6.28318
REATY

To compute the tangent (T) of an angle (A), you
simply have to divide the sine by the cosine:

50 LET T=SIN(A)/COS(A)

There is also one function to go the other way, the
arctangent (ATN) function. The following statement
will print the measure of the angle A (in radians)
whose tangent is the number T:

60 PRINT ATN(T)

The program on the next page uses the SIN and COS
functions to print a table of sines, cosines, and
tangents for angles measuring between 0 and 4%
radians. It then converts from the tangent back to the
original angle by using the ATN function. Note that

4-5

Trigonometric Functions

100 PRINT

110 FRINT "ANGLE®", "SINE", "COSINE®r "TANGENT"s "ANGLE®

120 FRINT

130 LET F=3.14159

140 FOR K=0 TO 4%F STEF F/4

150 LET A=K

160 FRINT Ky SINCA)» COS5(A)»

170 LET T=(SIN(A)/COS(A))

180 FRINT Ts» ATNAT)

120 NEXT K

200 END

REALDY

RUNNH

ANGLE SINE COSINE TANGENT ANGLE

0 o 0.999999 0 0

0.7853%97 0.707106 0.707108 0.999997 0.7833%96
1.,57079 0.999999 0.000003 333772 1.57079
2.35619 0.70711 -0.707104 -1,00001 -0.785403
3,14159 0.00000637 -0.999999 -0.00000637 ~0,00000637
3,92698 ~0,707101 -0.707113 0.999983 0.78539
4,71238 =0.,999999 -0.00000974 102699 1.57079
S5.49777 -0,707115 0.,707098 -1.,00002 -0.78541
6.28317 -0.00001273 0.,999999 -0.,00001273 -0,00001273
7.06857 0.707096 0.707119 0.999%969 0.785382
7.85397 0.999999 0.00001798 55628.7 1.57078
8.63736 0.,70712 ~0,707093 ~-1.,00004 -0.783417
?.42476 0,00001947 ~0.999%79 -0.,00001947 -0.,00001747
10,2101 -0.707092 =0,707123 0.,999957 0.785376
10,9955 -0.999999 =0.00002397 41721.5 1.57077
11,7809 ~0.707124 0.707088 -1.00005 ~0.785424
12.5663 -0.00002547 0.99999% -0.00002547 =0.00002547

READY

the argument to the SIN and COS functions may be
any value, but the radian angle returned by the ATN
function is always in the range - @ 2 to + % /2. From
your math class, you may remember that an angle of
712 (or 1.57079) radians is the same as an angle of
5 % 12 (or 7.85397) radians. Once again, note the
limitations in CLASSIC’s accuracy by comparing the
values computed for these two angles in the program
output.

Exercise 60. Change lines 130, 150, and 180 in the
above program so that the output is generated for
angles in degrees instead of radians. Use the
conversion formula discussed on the previous page.

Exercise 61. Survevors use trigonometric functions to
find the heights of tall buildings and trees by a
method called triangulation. Use the computer to
perform triangulation as follows.

Look at the figure below:

d
By measuring the distance d and the angle ¢, one
can calculate the height h# with the formula:
h =dtano
Write a program that allows you to input values for d

(in meters) and & (in degrees) and outputs the
corresponding value of the height h.

THE RANDOM NUMBER (RND) FUNCTION

Imagine that you flipped a coin ten times and that
every time it came up “heads” you wrote “1” and every

—

4-6

time it was ‘“tails” you wrote “0”. The numbers that
you had written might look like this:
i 0 1.1 1 0 1 0 0 1

If you rolled a die and wrote down the number of
spots showing on top, you might get this result:

5 2 1 5§ 3 6 4 2 1 4

In each case, a random sequence of numbers was
generated. Each number in the sequence was
selected at random from a given set of numbers. In
the first case, numbers were selected at random from
the set [0,1]. In the second case, they were selected
from the set [1,2,3,4,5,6].

When numbers are selected at random, each number
in the set has the same chance of being selected as
any other member of the set. That is, the probability
of selecting any member of the set is the same as the
probability of selecting any other member.

You can obtain a random sequence of numbers from
the set [0,1,2,3,4,5,6,7,8,9] by using a spinner like the
one pictured below:

SPIN THE WHEEL ... SELECT
THE NUMBER AT WHICH IT

STOPS. THE WHEEL IS
SHOWN STOPPED AT
SEVEN.

Sequences of random numbers are generated by
CLASSIC by using the RND function. Here is a
sequence of 15 random numbers:

READY

10 FOR K=1 T0 15
20 PRINT RNLIMO)»
30 NEXT K

99 ENI

BUENH
. 935
«67R11

+741854
READY

+229581
682372

» 397713

+533074
991239

+709588

+132211
+ 806084

995602
+ 915352

.783713
+237358

Every number in the random sequence is greater than
zero but less than one. In other words,

0<RND(0)<1.

Every time the computer evaluates RND(0), it
generates another random number between zero and
one. In the above program, RND(0) occurred in a
FOR-NEXT loop and was evaluated 15 times.
Therefore, 15 random numbers were printed. The RND
function does not require a specific argument; you
may use 0 or any other number or numeric variable.

Suppose that you wanted a random sequence in
which each number in the sequence is zero or one.
Here is one way to get it:

/‘““\:

~~
,

10 FOR K=1 TO 20

20 FRINT INT(2KRNDC(O))}#

30 NEXT K

29 END

RUNNH.

¢ o 1 0 1 1 1 0 1 1 0 0 1 1
READY

The computer prints only ones and zeroes because
2*RND(0) is always between (but never equal to) 0
and 2. That is,

0<2*RND(0)< 2

The INT(2*RND(0)) can thus be only 1 or 0. Note that
this statement uses one function as the argument for
another (the RND function is part of the argument for
the INT function).

The BRND function is useful if you want to use the
computer to simulate (imitate) a real-life activity in
which chance plays a part. The following program
uses random numbers to simulate flipping a coin 20
times:

10 FOR K=1 TO 20

20 LET R=INT(2%RNI(Q))
30 IF R=1 THEN &0

0 0 1 0 1 0

RIS EITHEROOR 1. IF R=1,
“HEADS” IS PRINTED.
OTHERWISE, R=0 AND
“TAILS” IS PRINTED.

40 FRINT "TAILS"»
50 GOTO 70
60 PRINT "HEADS'), -

70 NEXT K
29 END

READY
RUNNH
TAILS
HEADS
TAILS
TAILS

TAILS
HEALS
TAILS
HEALS

HEADS
TAILS
HEADS
TAILS

TAILS
HEALS
HEADS
HEADS

HEADS
HEADS
TAILS
TAILS

READY
The next program simulates dice rolling:

10 PRINT "HOW MANY ROLLS®";
20 INPUT T

30 PRINT

40 PRINT "FIRST DIE",*SECOND DIE","TOTAL®
50 PRINT

60 FOR K=1 TO T

65 LET A=INT(6%RND(O))+1
70 LET B=INT(6%RND(Q0))+1
80 PRINT ArBrAtE

20 NEXT K

99 END

RUNNH

HOW MANY ROLLSTS

0<:6*RND(0)< 6
THEREFORE INT(6*RND(0))
YIELDS [1,2,3,4,5,6]

FIRST DIE SECOND DIE TOTAL
S

7

?

7

10

S
6
4

COEDLWN

READY

Exercise 62. The possibility set for an expression is
the complete set of values that that expression can
have. The possibility set for INT(2*RND(0)) is [0,1].
What is the possibility set for each of the following
expressions? (Write your answers on a separate piece
of paper.) .

(1) INT(3*RND(0))
(2) INT(6*RND(0))
(3) INT(6*RND(0)) + 1
(4) INT(10*RND(0))
(5) INT(10*RND(0))/10

Look what happens when you run the program on
the previous page more than once:

READY

RUNNH
0.,361572
0,539795
0.125244

0.332764
0.8479
0.389404

0.633057
0.026123
0.974853

0,350342
0.54126
0.516357

0,670166
0.934326
0,465088

READY

RUNNH
0.361572
0,539795
0.125244

0.332764
0.8479
0.389404

0.633057
0.026123
0.,974853

0.350342
0.54126
0.516357

04670166
0.,934326
0,465088

READY

4-7

The set of random numbers returned is the same both
times. To get a new set of random numbers, you must
use the RANDOMIZE statement.

The RANDOMIZE statement allows a new set of
random numbers to be generated.

2 RANDOMIZE

10 FOR K=1 TO 15
20 PRINT RND(O)s
30 NEXT K

99 END

READY

RUNNH
0.,630615
0.374268
0.929443

0.206299
0,0817871
0.837158

0.,171631
0,825439
0.392334

0.126221
0.700928
0.,147705

0.447021
0.354736
0.7146
READY

READY

The above output is different than that in the previous
column. The only difference in the program is that the
RANDOMIZE statement has been added.

Remember these things:

e The RND function returns a random value between
0 and 1.

e The RANDOMIZE statement allows a new set of
random numbers to be generated by the RND
function.

Exercise 63. Write a program to simulate the rolling of
two dice 1000 times and output the percent of times
that each possible total occurs. Your output might
look something like this:

RUNNH

TOTAL DOTS SHOWN FERCENT DOCCURRENCE
2 2.5

READY
-— -t

insert the RANDOMIZE state
program several times to see how

DEFINING YOUR OWN FUNCTIONS

In addition to the functions supplied by CLASSIC,
you can also define your own functions. This is done
by using the DEF statement. For example,

10 DEF FNA(X) =X+3
If this function has been defined, the statement:
20 PRINT FNA(6)

will cause the number 9 to be printed, because
6+3=09.

All user-defined functions begin with the letters FN
and have one additional letter. Therefore, you can
define up to 26 functions in any one program. Each
function can have either one or two arguments. The
variables used as the arguments in the DEF statement
are called “dummy” arguments and need not have any
other significance in your program; they are simply
used in the definition of the operation to be carried
out. The formula specified in the DEF statement may
be any valid numerical expression, and it may contain
up to 14 dummy arguments.

AMIOIALIIZE o erim Abe o
rurr e

The general format of the DEF statement is as
follows:

line number DEF FNa(x,y) = formula
For example,

10 DEF FNP (A,B) = SQR(AA2+BA 2)
N~

line number —j |
DEF

N’
' ‘ 1
FN

function identifier

dummy arguments

formula

Only the dummy arguments may be used as variables

in the formula.

The next example program defines a function that
converts Fahrenheit temperature to Centigrade. The
math formula for this conversion is:

5
C=(F-32)x2
()X

Note the way that this is translated into BASIC with
the DEF statement:

10 OEF FRNCOCT)= (T, 323K5/9
20 PFRINT
3C FRINT "FAHRENHETIT TEMPFERATURE®" S
40 IMNFUT &
GO FRINT FNOCA s "DEGREES CENTIGRAIE"
60 GOTO 20
P9 END
RUNNH
FAHRENHETT TEMFERATURE®Z]Z
1176 DEGREES CENTIGRADE

FAMRENHETT TEMPERATURE®T
17.6 DEGREES

32

CENTLGRATIE

FAHRENHETT TEMFERATURETTY8, 4
4.6 LDEGREES CENTIGRALE

FAHRENHELT TEMFERATURET®™

READY —

The next example shows an adaption of the above
program to change either Fahrenheit to Centigrade or
Centigrade to Fahrenheit. This program has two DEF
statements. Note the awkward way in which the
words FAHRENHEIT and CENTIGRADE are assigned
to locations A1$, A28, B1$, and B2$ at lines 210 to
240 because these words are too long to fit into a

single string variable (limited to 8 characters). The
next section will show you a way to solve this
problem more elegantly and perform other operations
on strings.

100 REM xkx TEMPERATURE CONVERSIONS
110 REM

120 REM %k FUNCTION DEFINITIONS

130 DEF FNC(T)=(T-32)%5/9

140 DEF FNF(T)=(9/5)%T+32

150 REM xkkx USER TEMFERATURE INPUT
160 PRINT \ PRINT *TEMPERATURE"}

170 INPUT TOy T$

180 IF T$=°C® THEN 270

190 REM %%% FAHRENHEIT TO CENTIGRADE
200 LET A=FNC(TO)

210 LET Ai1$="FAHREN"

220 LET A2%="HEIT"

230 LET B1$="CENTI"®

240 LET R2$="GRADE"

250 GOTO 330

260 REM %X¥ CENTIGRADE TO FAHRENHEIT
270 LET A=FNF(TO)

280 LET A1$="CENTI"

290 LET A24="GRALE"

300 LET Bi$="FAHREN"

310 LET B2¢="HEIT"

320 REM %%xX ANSWER PRINT-0UT

330 PRINT TO# "DEGREES "% Al$# AZ$F " = ";
340 PRINT A3 "DEGREES "5 B1l$i E2¢

350 GOTO 160

360 END

READY
RUNNH
TEMFERATURET32 F
32 DEGREES FAHRENHEIT =

0 DEGREES CENTIGRADE

TEMPERATURET?8.6 F
?8.6 DEGREES FAHRENHEIT =

37 DEGREES CENTIGRALE

TEMFERATURET100 C
100 DEGREES CENTIGRADE =

212 DEGREES FAHRENHEIT

TEMFPERATURET-273.15 C
-273.15 DEGREES CENTIGRADE = -459.67 DEGREES FAHRENHEIT

TEMFERATURET™C_

READY

Exercise 64. When a program uses formulas that
contain the same term, it is sometimes easier to
define this term as a function-rather than type it in
several statements. For example, the following
formulas all contain the term “7r”:

circumference of a circle
area of a circle

29ir = 2-(%r)
T2 = r-(7T)

i r3 =i r2.(’,Tr)
3 3
47712 = 4r-(7r1)

volume of a sphere

surface area of a sphere

Write a program that allows you to input a value for r
and outputs each of the above four values. Define 7 r
as a function and use it to evaluate this term whenever
needed.

LOOKING BACK

You now know all of the numeric functions that are
available in CLASSIC BASIC. They are:

ABS returns the absolute value of an expression.

ATN returns the angle (in radians) whose tangent is
the given argument

COS returns the cosine of the angle specified in
radians

EXP returns the value of e (2.71828) raised to the

4-8

. N

e

~

P

Panns

FNa
INT
LOG
RND
SGN
SIN

SQR

power of the argument

returns a value computed by a corresponding
DEF statement

returns the value of the largest integer not
greater than the argument

returns the natural logarithm of the argument
returns a random number between 0 and 1
returns 1 if the argument is positive, 0 if it is
zero, and -1 if it is negative

returns the sine of the angle specified in
radians

returns the square root of the argument

Before you go on to the next section, you might like
to study the program below. This program plays
the game of 23 Matches and uses the RND and
INT functions to figure out how to beat you. Enter this
program into your computer and run it. If you look at
the program carefully, you might be able to figure out
a strategy to beat CLASSIC.

The Game of 23 Matches

100 REM

X%x%x23 MATCHES

110 FRINT “LET’S FLAY 23 MATCHES. WE START WITH 23 MATCHES.
115 FRINT "YOU MOVE FIRST. YOU MAY TAKE 1,2 OR 3 MATCHES.®
120 PRINT "THEN I MOVE...I MAY TAKE 1,2 OR 3 MATCHES."

125 PRINT "YOU MOVE, I MOVE AND' SO ON. THE ONE WHO HAS TO*
130 FRINT "TAKE THE LAST MATCH LOSES."

135 PRINT "GOOD LUCK AND' MAY THE BEST COMFUTER (HA HA) WIN.®
140 FRINT

150 LET

M=23

200 REM XXXTHE HUMAN MOVES

205 FRINT

210 PRINT "THERE ARE NOW®"#M; "MATCHES."
215 PRINT

220 PRINT "HOW MANY DO YOU TAKE®#

230 INFUT H

240 IF H>M THEN 510

250 IF H<*INT(H) THEN 510

260 IF H<=0 THEN 510

270 IF Hx=4 THEN 510

280 LET

M=M-H

290 IF M=0 THEN 410

300 REM

XXXTHE COMFUTER MOVES

305 IF M=1 THEN 440

340 LET

R=M—-4XINT(M/4)

N TC Bond TUCM IEA
aF RTEL O ThRN oV

S

330 LET

C=INT(3XRND(O))+1

340 GO TO 3460

350 LET
360 LET

C=(R+3)—-4XINT((R+3)/4)
M=M-C

370 IF M=0 THEN 440

375 FRINT

380 FRINT "I TOOK®"#Ci"+ss"}
390 GO TO 210

400 REM

XXXSOMERODY WON (SEE LINES 290,305,370)

410 FRINT

420 FRINT "I WON!!! BETTER LUCK NEXT TIME."
430 GO TO 140

440 PRINT

450 FRINT "0.K. SO YOU WON. LET’S FLAY AGAIN."
460 GO TO 140

500 REM

¥XXTHE HUMAN CHEATED! (SEE LINES 240 THRU 270)

510 PRINT *YOU CHEATED! BUT I‘LL GIVE YOU ANOTHER CHANCE."
520 GO TO 215

999 END

REALY

4-9

SECTION 4-B

STRING AND SPECIAL FUNCTIONS (Part 1)

LONGER STRINGS

Here is part of the temperature conversion program
that you saw on the previous page:

280 LET AL$="CENTIL"
290 LET A2%="GRATE
300 LET Blé="FAHREN"
310 LET BI$="HEIT"

In this program, the words “Fahrenheit” and
“Centigrade” have to be split up because they are over
eight characters long. If you tried to read all the
characters into a single string variable location, you
would get an error message:

280 LET A$="CENTIGRAI
B " FAHRENHE T

[
T

330 FRINT "THIS FROGRAM CONVERTS "sass" TO "iR$
3460 ENI

RUNNH

SL AT LINE 00280

READY

The SL error message means that a string was too
long to be stored in the variable location desired.

CLASSIC normally allows a maximum of eight
characters to be stored in each string variable
location. By using the DIM statement, however, you
can cause CLASSIC to store up to 72 characters in a
single variable location:

145 DIM A%$C10) v BECLO)

280 LET A$="CENTIGRADE"

290 Eishs* FAHRE N

330 PRINT “THIS FROGRAM CONVERTS
360 END

"FAEF" TO "FR¢$
READY

RUNNH
THIS FROGRAM CONVERTS CENTIGRALE TO FAHRENHELT

REALY

By adding statement 145 to the temperature
conversion program and changing the string vari-
ables, the program can be simplified. in the following
listing, the statements outlined by rectangles were
changed from the previous version.

100 XXX TEMPERATURE CONVERSTONS

110

120

130

140

143 KKK DIMENSTON OF STRING LENGTHS
145 DIM A$C10) s Fb

148 LET A${1)="Fa

149 L
1350 F

INPUT
L& FRINT N FRINT]

170 INFUT TOs T4

180 IF Te='0" THEN 270
190 REM Kk FAHRENHELT TO CENTIGRADE
200 LET A=FNCITO)

230 LET A%
230 LET R

"FAHRENHELT "
ENTLGRADE"

250 6OTO 330
260 REM ok CENTIGRANE TO FAHRENHELT
270 LET A=FNF{TO)

CENTIGRADE®
AHRENHELT"

280 LE
300 LE

320 REM k¥ ANSWER PRINT--0UT

330 FRINT TO3 "DEGREES
340 PRINT A% “DEGREES

350 GOTO 160
350 END
Note that the statement:

145 DIM A%(10), B#(10)

does not dimension string arrays. It dimensions two
strings, A$ and B$, each up to 10 characters long.

The statement DIM S$(n) dimensions a single string
variable, S$, with a length of n characters.

To dimension a string list, you must supply two
numbers within the parentheses of a DIM statement:

145 DIM AS(2510)

148 LET A$(1)="FAHRENHEIT"
149
330 PRINT “THIS FPROGRAM CONVERTS "3 A$(;/§ TTO OYF oAs)
360 END

REALY
RUNNH
THIS FROGRAM CONVERTS FAHRENHEIT TO CENTIGRADE

READY

The statement:
145 DIM A$(2,10)

does not set up a two-dimensional array. It
dimensions 3 strings, A$(0), A$(1), and A$(2), each
up to 10 characters long.

The statement DIM S$(m,n) dimensions m + 1 stiring
variables, each up to n characters long.

The temperature conversion program can now be
further modified. As before, the changed statements
are outlined by rectangles in the following listing.

160 REM ok TEMPERATURE CONVERSIONS
110 REM
120 REM NITIONSG

KoKk

130 : T
140
143 REM

Xokxk

D
PE:

i DIM AB(2y10)

4-10

N

N

//::‘\\A

™

148 LET A$(1)="F

149 LET A% (Z)="(

150 REM kkk USER TE
160 PRINT N FRINT "TE
170 INFUT T0y T4

180 IF TéE="C" THEN 270

190 REM kkk FAHRENHELT T0 CENTIGRAUE
200 LET A=FNCITO)

< INFLUT

240 REM

280 GOTO 330
260 REM kX%
270 LET A=FNFTO?!

CENTIGRADE 7O FAHRENHELT

I DR0 |ET K2]

F20 REM kkk ANSWER FRINT-QUT

330 FRINT TOs "Ll
240 FRINT As "D

CFASCKYE " om "
" B

ATBO GOTO 140
60 END

Exercise 65. The program to play the game of 23
Matches shown on page 4-9 pits you against the
computer. Modify this program so that the computer
acts only as a scorekeeper (and referee) and allows
you to play 23 Matches with up to 10 other people.
Use a string list to store the names of all the players
(up to 20 characters each) and print out the name of
the player who should move next. The part of your
program that accepts and analyzes input might be
modeled after lines 220 to 350 of the program on
page 4-9. The sample solution to this exercise that
appears in Appendix C is modeled after the flowchart
which appears in the next column.

‘ START ’

DIMENSION STRING LIST

'GET NUMBER OF PLAYER.,
FROM KEYBOARD
ASK USERS TO ENTER
NAMES OF ALL PLAYERS

INITIALIZE MATCH COUNT TO 23

GET PLAYER'S MOVE
FROM KEYBOARD

DECREMENT MATCH COUNT F 8

PRINT NAME

OF
WINNER

[2e]
PLAYERS WISH TO
PLAY AGAIN?

COMBINING STRINGS

Sometimes it is convenient to combine two or more
strings.

The process of combining strings is known as con-
catenation.Concatenation is indicated by using the
ampersand(&).

When strings are concatenated, one is appended to
another:

4-11

10 FRINT "ME® & *yQue
§9 END
ELINNH
MEYOU

REATY

Concatenation can be used to combine two or more
strings into a single variable:

10 LET As="aRCD"
20 LET Be$="EFGH"
40 LET Nd=A% & E$
SO PRINT D

60 LET E$=R$ & A%
70 FRINT E¢

P9 END

REALY
RUNNH
ARCIEFGH
EFGHARCD

READY
The length of a concatenated string cannot exceed the
maximum length allowed by the system. In the
following program, the SL (String too Long) error
message was printed because the maximum length of
F$ is 8 and the length of A$ & B$ & C$ is 12:

10 LET As="ARCEO"

20 LET Be=s"EFGH®

30 LET Dge" TR

80 LET Fé=04% & R$ & C%
PO FRINT F4

Y@ END

REATY
RUINNH

SloAT LINE 00080

READY
The problem can be corrected by adding a DIM
statement:

P LY T R A A
LG LET ad=taRrecn®

20 T2 O G "

30 LET Ch="TIKLT

820 i 2) A 5 A
20 FRINT F¢
R END
RLINNKH

ABRCOEFGHT. KL

READY

Note that A$ & B$ does not produce the same result
as B$ & A$. Strings are always combined in
the order shown in the statement, and parentheses
have no effect:

10 LET A$="ARCY

20 LET B#= "DEF"

30 LET C$="GHI"

40 PRINT 0¢&R$E&CS
S0 FPRINT A$&(RERCSH)
40 FRINT (AEE)&CH
9% ENI

READY
RUNNH
ARCDEFGHT
ABRCDEFGHI
ARCIEFGH

READY

Following is a demonstration of combining strings by
concatenating first names and last names. The pro-
gram reads a first name and a last name and then
stores them both in a single variable location with the
last name first, a comma and a space, and then the
first name. Note also the format of the DIM statement
at line 10.

10 DIM N$(3,20)

20 FOR K=1 TO 3

30 READ' F$, L%

40 LET N$(K)=L$ & "» " & F$

50 NEXT K

60 DATA °ROER®, "JONES®r "RITA"» "LAND"s "FRANK®"s °"SMITH®
70 FOR K=1 TO 3

80 FRINT Ns(K)

90 NEXT K

?9 END

REALDY

RUNNH

JONESs EOE
LANLIy RITA
SMITHy FRANK

REALYY

Exercise 66. Use concatenation in a FOR-NEXT loop
to create a program that works like this:

24 HI
HIHIHIH]I
?22 LOW
éOWLOW

The output should be the result of printing a single
variable with a statement such as:

70 PRINT S$

Hint: Look at the INPUT statement in line 170 of the
program on page 4-8.

4-12

4
Q

N

~

STRING TO NUMERIC CONVERSION

The value (VAL) function. Your work with CLASSIC
so far has generally kept strings and numbers
separate, even though you know that both types of
data may be operated on by the computer. The
statement:

40 LETA=A/10
is correct, but:
40 LET A=A$/10
is not. Look at the following program:

1O FPRINT N FRINT "YOUR NUMBER®
20 INFUT A%

30 IF As="QUIT" THEN %9

40 LET A=A%/10

S0 LET A=INT(AY+1L0X{A-INT (A))
S0 FRINT "ANSWER= "§A

70 GOTO 10

99 END

READY
RUNNI
MT 40

RE MDY

This program results in an MT (Mixed Type) error
message because statement 40 tries to perform a
numeric operation on a string variable.

The above program is trying to let the user input data
for the equation at line 50 and, at the same time,
recognize the entry “QUIT” as an indication that the
user has entered all the data. The problem is that
string and numeric data are stored in the computer in
different ways, and the computer cannot work with
one where the other is expected. Thus, the statement:

40 LET A=A$/10

is not allowed even though A$ may be “25” or some
other number. The way in which data typed in
response to an INPUT query wiil be stored depends
upon the type of variable used in the INPUT
statement. That is, you can type “25” as a response to
either of the following statements:

20 INPUT A
20 INPUT A%

but the first one will store your response as a number
and the second will store it as a string.

Strings can be converted to numerics by using the
VAL function:

40 LET A=VAL(A$)

The VAL function converts strings to their numeric
equivalent.

Here is the corrected program:
TO PRINT N PRINT “YOUR NUMBER®"S
20 INFUT A%
F0 IF Af="QUIT" THEN 99

389 LET A=UALCAE)
40 LET A=A710

SO0 LET A=INT(AYHLOXA~TINT(A))
SO FRINT "ANSUWER= "3aA

70 GOTD 10

29 END

READY
RN

YOUR NUMBERT3E
ANGWER= 8

YOUR NUMBERTZE
ANSWER= 13

YOUR NUMBERT3
ANSWER= 3% —

YOUR NUMBERTGUILT

RE ALY
Note that the user may now enter both numbers and

strings. The VAL function in line 35 converts strings
to numerics for use in the equation in line 40.

The above program calculates the sum of the digits in
a two-digit number. By modifying this program to
recognize the response “HELP”, you can make it more
meaningful to the user:

10 PRINT \ PRINT *YOUR NUMBER®:

20 INPUT A$

30 IF A$="QUIT" THEN 99

35 IF A$="HELF®" THEN 75

40 LET A=VAL (A$)/10

50 LET A=INT(A)+10X%(A-INT(A))

60 PRINT “ANSWER ="}§ A

70 GOTO 10

75 FRINT \ PRINT *THIS PROGRAM WILL COMFUTE THE SuM *
80 PRINT "OF THE DIGITS IN A 2-RIGIT NUMBER. * \ GOTO 10
99 END

READY
RUNNH

YOUR NUMBERTHELF

THIS PROGRAM WILL COMFUTE THE SUM
OF THE DIGITS IN A 2~DIGIT NUMBER.

YOUR NUMBERT42
ANSWER = 6 —

YOUR NUMERERTQUIT

READY

The argument supplied to the VAL function must be a
valid string expression; the only operation allowed is
concatenation. Following are some experiments with
the VAL function to demonstrate how it works with
different arguments:

413

10 FRINT Val.(4%5)
99 END
RUNNH
FrR 10

READY

10 PRINT VAL (*4%5®)
22 ENID

RUNNH

4

READY

10 PRINT VAL 4% "5%)
29 END

RUNNH

MT 10

FR 10

READY

10 PRINT Val.("4"g"5)
29 END
RUNNH

45

READY

LOOK UP THESE ERROR
MESSAGES IN APPENDIX E
OF THE CLASSIC USER’S
GUIDE.

Exercise 67. Use the VAL function to modify the game
of 23 Matches on page 4-9 so that it recognizes the
response “UNCLE”. Program this response to
indicate that the human player concedes victory to the
computer and wishes to begin the game again with 23
matches.

The string (STR$) function. CLASSIC also has a
function that converts numbers to their equivalent
strings. '

The STR$ function coverts numbers to strings. The
resultant strings do not have a leading or trailing
blank.

The following two programs demonstrate the differ-
ence between numeric and string output:

10 FOR K=0 TO 9

10 FOR K=0 T 9 THIS STATEMENT PRINTS
20 FRINT K3 - NUMBERS.

30 NEXT K

99 END

REALY
FLINNH

e 1 2 3 4 5 6 7 8 9

REALTY

THIS STATEMENT PRINTS
20 FRINT 8TR$(K)i <———— STRINGS.

30 NEXT K

P9 END

READY
RUNNH

Q1234546789

READY

Note the presence of the leading and trailing blanks in
the first program and their absence in the second.

The STRS function is very useful in formatting output,
especially when used together with the length (LEN)
function. The combined use of these functions is
discussed below.

OUTPUT FORMATTING

The length (LEN) function. The LEN function allows
you to determine the number of characters in a string.
Here is a simple program to demonstrate how the
LEN function works:

10 FRINT LENC*THE QUICK")

20 PRINT LENC"SLY FOX®)

30 PRINT LENC"JUMPED OVER THE")
40 PRINT LENC"LAZY RROWN INOG®)
9% END

RLINNH

|l N S s

L
4
READY

Here is another example:

10 DIM A$(72)

20 FRINT \ PRINT "YOUR ENTRY"}
30 INFUT A$
40 FRINT *

50 GOTO 20

%% END

LENGTH ="7 LEN(A$)

READY
RUNNH

YOUR ENTRYTNOW IS THE TIME
LENGTH = 15

YOUR ENTRYTZFOR ALL GOOD MEN
LENGTH = 16

YOUR ENTRY?TO COME TO THE AID OF THEIR COUNTRY.
LENGTH = 36

YDUR ENTRY?"C
READY -

4-14

ah

.

i .

a

VN

The LEN function returns the number of characters in
the string indicated in the argument.

With a little work, you can use this function to format
numbers as described below.

The format used by CLASSIC to print numeric data
causes numbers to be lined up at the left
(left-justified) rather than at the right (as is usually
done). Look at the following program:
10 LET N=l
20 FOR K=1
30 FRINT N
40 LET N=NX10
G0 NEXT K
9% ENID

TD &

READY
RUNNH
1
10
100
1000
10000
100000

REATY
To cause these numbers to be lined up at the right

(right-justified), you must first know the number of
 digits in each. Unfortunately, the following expres-

sion is not allowed:

LEN(N)
because the argument in the LEN function must be a
string. Using the STR$ function, you can convert N to
a string and then find its iengin:

5 LET L=LEN(STR$(N))

Following is a FOR-NEXT loop that uses the LEN and
STR$ functions in a form similar to that shown above:
70 FDR KO=1 TO &-LEN(STR${N)

B30 PRINT * "%

PO NEXT KO
This loop prints a number of blanks depending upon
the number of digits in N. If N =47, then STR$(N) will
be “47” and LEN(STR$(N))=2. Since 6-2=4, this
FOR-NEXT loop will be executed 4 times and print 4
blanks.

Exercise 68. Copy the following table onto a separate
piece of paper and fill in the blanks.

N LEN(STRS$(N)) 6-LEN(STR$(N))
47 2 4
126 . _
8 . _
2873 . _
61045 _

Check your work by running the following program:
10 READ N

20 PRINT NeLENCSTR$ NI v&-LEN(ETRS (NI)

30 GOTO 10
40 DATA 47v126v832873961045
29 END

READY
The FOR-NEXT loop discussed above was added as a
subroutine to the program in column 1 to produce the
following results:
10 LET N=l
20 FOR K=l
295 GBOSUR 70
30 FRINT N
40 LET N=NXLO
S50 NEXT K
&0 BTOF
7O FUOR KO=1 TO &~LENCSTRS (M)
HO OPRINT " "5
FO NEXT KO
90 RETURN
P9 ENI
READY
1
10
100
1000
1LOGO0
LOOGOON
READY
Here is one more example. This time, the above
program was modified to line up the decimal points in
numeric output:

TO &

20 FOR K=1 TO &

23 READ N

25 GOSUB 70

30 FPRINT N

50 NEXT K

55 DATA 2,75+333.7¢36.74,489.491,5738r92.4725
60 STOF

70 FOR KO=1 TO 4-LEN(STR$(INT(N)))
80 PRINT * *3

20 NEXT KO

25 RETURN

99 END

READY
RUNNH
2,75
333.7
36.74
489,491
5738

92,4725

READY

This program used the INT function and considered
only the number of digits in the integral part of N.
Thus, line 70 used three functions, one inside the

4-15

next. CLASSIC evaluates each function in turn from
the inside out and then uses the result as the
argument to the next function. This is called
“nesting” functions, and is the same as nesting
parentheses when writing numerical expressions.

When functions are nested, you must make sure that
the value returned by each function is of the correct
type (numeric or string) to be used as the argument
for the next function to be called.

Exercise 69. The following program displays a table
of the squares and square roots of numbers. Modify
this program so that the output is formatted by lining
up the decimal points.

10 FRINT "N°®»"SQUARE ROOT","FOURTH ROOT"
20 LET N=.1

30 FOR K=1 TO 7

40 FPRINT N»

SO PRINT SQR(N)»y

60 FRINT SQR(SQR(N))

70 LET N=INT(NX10+.5)

80 NEXT K

99 END

RUNNH

N SQUARE ROOT FOURTR ROOT
0.1 0.316228 0.562341
1 1 1

10 3.16228 1,77828
100 10 3.16228
1000 31.6228 5.62341
10000 100 10
100000 316.228 17.7828

READY

Hint: Assign the value to be printed to a temporary
variable and use this variable in your subroutine.

The tab (TAB) function. Another function that can be
used to format output is the TAB function. This
function may only be used in a PRINT statement.
Before using it, however, you must understand that
CLASSIC allows you to display output in only 72 of
the 80 character positions on your screen.

Exercise 70. Enter and run the following program on

your CLASSIC system to demonstrate the way in
which the columns are numbered on the screen:

30 FRINT &
A0 NEXT K2
50 FRINT ="
&0 MEXT K1

QG

You will see that after 72 characters are printed, the
cursor moves to the beginning of the next line before
printing continues.

The argument to the TAB function indicates the
column position at which the next character should
be printed.

If the cursor is not already at or past the column
position indicated by the argument, it is moved to
that position before printing continues:

1O FRINT TARCL) 5 "%
20 FRINT TARBC2)5"%x"
30 FRINT TABCZ) "%
PP END

READY
RUNNH
X
X
X

READY

If the cursor is past the position specified in the
argument, the TAB function has no effect.

The next example prints out the column numbers to
help you understand the TAB function:

10 FOR Ki=1 TO 7
20 FOR K2=1 TO %
30 PRINT STR$(K2);
40 NEXT K2
50 PRINT "~*j
&0 NEXT K1
70 FRINT =12"
80 FRINT TAB(&)5 'THIS MESSAGE EEGAN IN COLUMN &*
?0 PRINT TAB(27); °*THIS MESSAGE BEGAN IN COLUMN 27°
95 FRINT TAE(42)F *THIS MESSAGE BEGAN IN COLUMN 42°
99 END
READY
RUNNH
123454678%-123456789-123456789-123456789-123456789-123456789-123456789-12
THIS MESSAGE BEGAN IN COLUNMN 6
THIS MESSAGE BEGAN IN COLUMN 27
THIS MESSAGE BEGAN IN COLUMN 42

By using the TAB function, you can simplify the
formatting program that was shown on the previous
page. The following program formats integers:

1O LET N=1

20 FOR K=1 TO &

30 FRINT TAR(Z-LENC(STR$(NIIIF N
40 LET N=NklG

30 NEXT K

PO END

' L
Ry

NN

READY

FH
1
10
100
1QO0
LOOOO
100000

READY

The next program formats decimals:

20 FOR K=1 TO 6

23 READ N

30 PRINT TAB(S-LEN(STR$(INT(N)?))$ N

S0 NEXT K

S5 DATA 2,75y 337.3¢36.74r 48%.491r 5738,92.4725
99 END

READY
RUNNH
2.75
337.3
36.74
489,491
5738
?2.4725

READY

4-16

SN

ey

-

/.—\\\
’
/

Line 30 above contains four functions nested one
inside the next. Note that each returns the correct
type of data (string or numeric) required as an

" argument by the next function to be evaluated.

Exercise 71. Modify the program that you wrote for
Exercise 69 so that it uses the TAB function to help
format the output. You may wish to define part of the
formatting formula in a function to simplify the
programming.

The TAB function is extremely useful for drawing
graphs. The program below graphs the equation
supplied at line 30. (The subroutine at line
80 prints out the column numbers.) Note what
happens when the argument to the TAB function is
greater than 72.

10 GOSURB 80

20 FOR K=1 TO 10

30 LET T=K

40 PRINT TAR(T)>i "X%*

S0 NEXT K

60 GOSUBR 80

70 STOF

80 FOR KI=1 TQ 7 \ FOR K2=1 TQ 9 \ PRINT STR$(K2}ji
?0 PRINT "—"7 \ NEXT K1 \ PRINT *12® \ RETURN

?9? END

\ NEXT K2

READY

KLNNH
123456789-123456789-123456789-123456789-123456789~123456789-123456789-12
*

X
123456789-123456789-1234546789-123456789-123456789-123456789-123456789-12

READY

30 LET T=T+K

RUNNH
123456789~123456789-123456789-123456789-123456789-123456789-123456789~12
X

X
X
X
X

x
X
x
123456789-123456789-123456789-123456789-123456789-123456789-123456789-12

READY
30 LET T=K"2

RUNNH
2

34567689-123456789-123456789-123456789-123456789-123456789-123456789-12
X

X
X

*

x
123456789~-123456789-123456789-123456789-123456789-123456789-123456789-12

READY

Exercise 72. Enter the above program into your
workspace and run it for different equations by
changing line 30. The following equations will
produce some interesting results:

30 LET T=36+((4-K)/2)» 3

30 LET T=72*RND(0)

30 LETT=2*T+1

30 LET T=36-(4-K)A 2
Here is one last example for people interested in

math: The program below graphs the sine function.
Once again, you can change the statement at line 30

_to graph other functions (for example, cosine and

tangent).

10 LET FP=3,14159

20 FOR K=0 TO 4%F STEF F/6
30 LET T=11+10%SIN(K)

40 FRINT TAR(T)i "%'

50 NEXT K

?9 END

READRY
RUNNH

REALY

The print (PNT) function. The fourth function that
CLASSIC provides to help you format screen output is
the PNT function.

The PNT function is used to control the screen
through a BASIC language program.

Like the TAB function, the PNT function may only be
used in a PRINT statement.

Exercise 73. The following program demonstrates
simple screen operations that can be performed with
the PNT function. Enter and run this program on your
CLASSIC.
1O LET fthe"BEFORE"
20 LET Be="aFTER"

TES PN Rl
W8S PNELITAY 1Y

A0 PRINT "Ne "SNsSABsFPNT (NI s RS
S50 60T 30

S0 DaTh 789510913

P9 OEND

FEATY

Your results should demonstrate the following
actions (line numbers are omitted).

Statement Action

PRINT PNT(7) sounds terminal buzzer

PRINT PNT(8) moves cursor one space to the left

PRINT PNT(9) moves cursor to next tab stop (tabs
stop are in every 8th column: 8,16,
24 etc.)

PRINT PNT(10) moves cursor down one line

PRINT PNT(13) moves cursor to left-hand margin

of current line

The PRINT statement automatically positions the
cursor at the beginning of the following line unless
you end the statement line with a semicolon.

417

Therefore, the following program will print an asterisk
at the beginning of a new line instead of in column 8.

10 FRINT
B0 FRINT
BN
iy
LM
([N

%

RE ALY

CHELLOY $FNT (9
Il*ll

By adding a semicolon at the end of line 10, the
program works as follows:

1O FRINT "HELLO" $PNT(9)
Ui

L L O

REALY

The CLASSIC screen may also be operated in Escape
Mode. This mode allows certain characters to control
the operation of the screen and copier. Under program
control, Escape Mode is activated by supplying 27 as
the argument to the PNT function:

40 PRINT PNT(27)

The special operation performed is then determined
by the next character printed. For example,

40 PRINT PNT(27); “A”
moves the cursor up one line.

Exercise 74. Below is a modification of the program
for Exercise 73 to demonstrate the use of the PNT
function with Escape Mode. The statements at line 33
and 35 were added just to slow things down enough
for you to see what each operation does. Enter and
run this program. Respond to the input query by

typing any character and pressing RETURN.

1O LET Ad="REFORE"

20 LET Be="aAFTER"

30 READ N

3% PRINT "CONTINUE®

35 INPUT Z4¢

A0 FRINT "Nb="3N$s ""sABsPNTI27) NGBS
S50 GOTO X0

A0 DATa "AYy "Ly THY s Ty TR

Y END

REATY

Your results should demonstrate the following
actions:

4-18

Statement Action

PRINT PNT(27); “A”
PRINT PNT(27); “C”

moves cursor up one line
moves cursor right one posi-

tion
PRINT PNT(27); “H” moves cursor to upper left-
hand corner of screen

(“home” position)
erases from cursor position
to end of screen

erases line from cursor to
right margin

PRINT PNT(27); “J”

PRINT PNT(27); “K”

LOOKING BACK

This section has brought you a long way toward
understanding some of CLASSIC’s more powerful
capabilities. It has presented many examples, and

hopefully you will see a use for these functions in(

some of the programs that you plan to write.
Remember these things:

o Undimensioned strings may not exceed 8 char-
acters in length.

e The DIM statement may be used to allow strings up
to 72 characters in length. For example:

10 DIM R$(72)

o String variables may have (at most) one subscript.(N

These variables are dimensioned with the form:
10 DIM S$(m,n)

where m is the maximum-valued subscript allowed
and n is the maximum length of each string.

o Strings may be concatenated by using the amper-
sand operator.

The functions presented in this section are sum-
marized below:

C

-

LEN returns the number of characters in a string’
PNT controls special operations on the screen
STR$ converts numeric data to strings

TAB positions the cursor along a print line

VAL converts string data to numerics

The next section will help you learn about the
remaining six functions available on your CLASSIC
system.

-

TN

SECTION 4-C
STRING AND SPECIAL FUNCTIONS
(Part 11)

AUTOMATIC PROGRAM TRACING

You have traced several programs manually to gain an
understanding of how specific statements control
program flow. Tracing is also valuable for finding
bugs in complicated programs. CLASSIC can trace
programs automatically by using the TRC function.

The TRC function is used as a switch: it either turns
trace mode on or turns it off, depending upon the
value of the argument.

TRC(1) turns trace mode on. TRC(0) turns trace mode
off.

When trace mode is on, the line number of each
statement executed is printed between percent signs
(%).

10 LET D=TRC(1)

20 LET K=1

30 FPRINT "K NDW EQUALS'i K
40 LET K=K+1

45 IF K<=3 THEN30

29 END

READY THE LINE NUMBER OF EACH
RupRH, STATEMENT EXECUTED IS
% 30 x DISPLAYED ENCLOSED IN
PERCENT SIGNS AS THE

PROGRAM RUNS.

TURN TRACE ON.

K NOW EQUALS 1
% 40 Z
% 45 X
Z 30 %
K NOW EQUALS 2
% 40 %
Z 45 %
4 30 %
K NOW EQUALS 3
% 40 Z
%45 %

READY

Normal mode is resumed in the following program by
turning the trace off with the statement at line 50:

10 LET D=TRC(1)
20 LET K=1
30 PRINT "K NOW EQUALS"; K
40 LET K=K+1

4S5 IF K<=3 THEN30

50 LET D=TRC(O)

TURN TRACE ON.

TURN TRACE OFF.
55 IF K<=6 THEN 30
99 END

READY
RUN

TRA BA 3.0 30-DEC-75
20 %

30 %

NOW EQUALS 1
40 %

45 2%

30 Z

NOW EQUALS 2
40 Z

45 %

30 %

NOW EQUALS 3
40 %

A4S %
S0 %
NOW EQUALS 4
NOW EQUALS S
NOW EQUALS 6

FAAANNNANNNANNMANN

READY

Even when trace mode is on, the line numbers of .

some statements are not printed. If you modify the
above program by creating a FOR-NEXT loop, the line
number of the NEXT statement will not be printed in
the trace:

10 LET D=TRC(1)

20 FOR K=1 TO 3%

30 FRINT *K NOW EQUALS"F K
40 NEXT K

S50 LET D=TRC(O)

A0 PRINT “END OF FROGRAM®
99 ENID

FRE&DY

RUNNH

20

30 %

NOW EQUALS 1
30 %

NOW EQUALS 2
30 %

NOW EQUALS 3
530 %

END OF FROGRAM

NMIEINAMNAN

REALY

Note that the line number of statement 60 is not
printed because trace mode is turned off at line 50

The program below prints numbers in ascending
order. Note that the line numbers of the GOTO
statements (40 and 60) are not printed in the trace.

10 LET D=TRC(1)
15 READ Ay B
20 IF AxB THEN S0
30 FRINT Aj B
40 GOTO 1S

S50 PRINT By A
60 GOTOD 15

70 DATA 457

B0 DATA 993

?0 IATA S935

9% END

READY
RUNNH
%X 1S5 %«
4 20 %
% 30 %
4 7

NN
[R N
ooU
N NN

3 9

Py =

NNMNN
[d
NN

DA AT LINE 00015

REALY

4-19

The following table lists all the BASIC language
statements that are available on CLASSIC and
indicates which ones are traced by the TRC function:

Traced Not Traced
CHAIN DATA
CLOSE# DEF

FILE# DIM

FOR END
GOSUB GOTO

IF NEXT

IF END# RANDOMIZE
INPUT REM
INPUT# STOP

LET

PRINT

PRINT#

READ

RESTORE

RESTORE#

RETURN

In all of the programs that have been discussed so far,
trace mode has been turned on with the statement:

10 LET D=TRC(1)
and turned off with:
50 LET D=TRC(0)

The D in these statements has no meaning; it only
serves as a placeholder in the statement syntax
(grammar). You may use any variable name you
choose on the left of the equal sign.

Exercise 76. If you have previously SAVEd a program
On a disk, read it into the workspace with the editor
OLD command and add the functions TRC(1) and
TRC(0Q) at different places. Run the program to see
how this function affects its output. If you have not
previously SAVEd a program or would like to write a
new one, enter a new program or one that you wrote
for a previous exercise into the workspace with the
editor NEW command. Include branching statements
and several TRC functions. Run your program to see
what happens.

GAINING ACCESS TO THE SYSTEM DATE

You learned how to enter the date into your CLASSIC
system with the monitor DATE command on page
3-19. You can gain access to this date under program
control with the date (DATS$) function.

The DATS$ function returns the system date as an
eight-character string.

+0A 2/4/74 -€—————— A NEW DATE IS ENTERED.

+ 14
WETINESDAY FERRUARY

THE USER
197 6=« CONFIRMS THE
SYSTEM DATE.

4y

+ R RASIC
TEIT P 1 T N " THE USER STARTS UP
NEW OR OLD~~NEW DATOMOw— THE BASIC EDITOR.

READY A NEW
1O PRINT"TODAY 'S DATE IS *50AT$ (0)€PROGRAM
99 END IS ENTERED.
RUN

THE DATS FUNCTION

) RETURNS THE
04-FEE-76<—53oTEM DATE AS
AN EIGHT CHAR-
ACTER STRING.

DATOMO EBA 3.0
TODAY S DATE I8 02/04/76

READY

The argument to the DAT$ function is not significant;
it may be any number or numeric expression. If a date
has not been entered with the monitor DATE
command, the DATS$ function returns an empty string
(it has a length of 0).

You can also use the DAT$ function as part of a string
expression:

10 LET D$ = DATS$(0)

Since the system date is returned as a string
containing only eight characters, the variable on the
left side of the equal sign in the above statement does
not need to be dimensioned.

Among other uses, the DAT$ function is useful for
dating entries in data files. Data files are introduced
in Section 4-D.

THE CLASSIC CHARACTER CODE

The character (CHR$) function. Suppose that you
wanted to write a program with the backslash (\)
as part of the print-out. Look what happens:

10 PRINT "FIRST FART N SECOND FaART®
¢ END

RLINNI

a5 10

.5 10

READY

These error messages are printed because CLASSIC
interprets line 10 as a multiple-statement line, with
two statements separated by the backslash. Neither
statement is complete, so two error messages are
generated.

Since the backslash causes this problem, CLASSIC
provides the character (CHR$) function to reference
characters by a special code:

10 PRINT "FIRST FART "7 CHR$(28)}
99 END
RUNNH

"SECOND PART"

The dialogue on the next column demonstrates how
the DAT$ function works:

FIRST PART \SECOND FART

READY

4-20

~

N

Each character that CLASSIC can display has code
number between 0 and 63. The backslash is number
28, so the statement:

10 PRINT CHR$(28)
prints the backslash character.

The CHR$ function can also be used to assign
characters to a string variable:

10 LM AK(26)

20 FOR K=1 T0O 26

30 LET A$=A% & CHRE(K)
~ 40 NEXT K
' 50 PRINT A%

@9 END

REALDY
RUNNH
ARCDEFGHT JRKLMNOFARSTUVWXY Z

READY

The above program concatenates A$ with each
successive character from code number 1 to code
number 26. From the print-out for this program, you
can see that characters 1 to 26 correspond to the
letters of the alphabet.

The decimal code number of each character that can
be printed by CLASSIC is shown in the following
table:

Decimal Character Decimal Character
0 @ 32 (space)
1 A 33 !
2 B 34 ¢
3 C 35 #
4 D 36 $
5 E 37 %
6 F 38 &
7 G 39 /
8 H 40 (
9 I 41)

10 J 42 *
11 K 43 +
12 L 44 ,

13 M 45 -
14 N 46 .

15 0] 47 /

16 P 48 0
17 Q 49 1

18 R 50 2
19 S 51 3
20 T 52 4
21 U 53 5
22 \ 54 6
23 W 55 7
24 X 56 8
25 Y 57 9
26 Y4 58 :

Decimal Character Decimal Character
27 [59 ;
28 \ 60 <
29] 61 =
30 A 62 >
31 - 63 ?

Besides providing a method for printing the
backslash, the CHR$ function is also useful for
understanding the sequence by which CLASSIC sorts
string data. This application will be discussed in
conjunction with the ASC function.

The ASC function. The ASC function reverses the
operation of the CHR$ function.

The ASC function returns the code number of the
character supplied as its argument.

The statement:
30 PRINT ASC(“E”)
will therefore cause the number 5 to be printed.

The program below demonstrates the use of
the ASC function to convert characters to their
equivalent code numbers. Note that if the argument to
the ASC function contains more than one character,
for example, “ERIC”, the code number of the first
character in the string (“E” in this case) is returned.

10 FRINT \ PRINT "YOUR CHARACTER"#
20 INFUT Cs
.30 FRINT *

40 GOTO 10

99 ENI

*# C$+# " IS CHARACTER NUMBER"# ASC(C$)

READY
RUNNH

YDUR CHARACTER?J
J IS5 CHARACTER NUMRER 10

YOUR CHARACTERZH
H IS CHARACTER NUMEER 8

YOUR CHARACTERTE
E IS CHARACTER NUMEER 5

YOUR CHARACTERT#
¥ IS CHARACTER NUMEER 35

YOUR CHARACTERTM
\ IS CHARACTER NUMEER 28

YOUR CHARACTER?C
C IS CHARACTER NUMEER 3

YOUR CHARACTER?7C
READY

Sorting string data. The IF statement has been used
many times to compare the values of numeric
variables. The following program, for example, is a
modification of the one that was used on page 4-19 to
print two numbers in ascending order:

10 FRINT N FRINT "FIRST NUMBER®

1% INFUT A :

18 FRINT °*SECOND NUMBER®SF

20 INFUT R

30 IF AXR THEN &40
40 FRINT * *"§ AF
S50 GOTO 10

"COMES BEFORE®"F R

continued on next page

4-21

60 FRINT * ®sRy "COMES REFORE" A
70 GOTO 10

99 ENI

RUNNKH

FIRST NUMBER 78§
SECONII NUMBRERTS
9 COMES REFORE 8

FIRGT NUMBER 712
SECOND NUMBER?T4
4 COMES BEFORE 12

FIRST MNUMERER %7C
REALY

Here is a second modification of the program to allow
it to compare strings:

LISTNH

10 FRINT \ PRINT *FIRST LETTER"j
15 INPUT A%

18 FRINT “"SECOND LETTER®"S

20 INFUT B$

30 IF A%$>B$ THEN 60

40 FRINT * “?A%7" COMES BEFORE "+B$
%0 GOTO 10

60 PRINT " *3B%$3* COMES BEFORE "7A$
70 GOTO 10

99 END

?
READY
RUNNH

FIRST LETTER?A
SECOND LETTER?J
A COMES BEFORE J

FIRST LETTER?&
SECOND LETTERT®
COMES REFORE &

FIRST LETTER?"C

READY
In the first case above, A comes before J because A is
character number 1 and J is character number 10. In
the second case, # comes before & because # is

f‘hﬂrﬂf‘*ﬂr nllmhnr Q5 and & =s chuluutcl llulllbwl 38

Look what happens when you compare strings that
are two to eight characters in length:

10 PRINT \ PRINT *"FIRST NAME"j{
15 INPUT A%

18 PRINT "SECOND NAME"#

20 INPUT F$

30 IF A$»B$ THEN 60

40 FRINT * *; A$; ' COMES BEFORE '; B$
50 GOTO 10
60 PRINT * *; B$; * COMES BEFORE " A$
70 GOTO 10

99 END

READY
RUNNH

FIRST NAME?JOSEPH
SECOND NAMETMARY
JOSEPH COMES BEFORE MARY

FIRST NAMETMOSES
SECOND NAMETAARON
AARON COMES BEFORE MOSES

FIRST NAME?ABRAHAM
SECOND NAMETISAAC
ABRAHAM COMES BEFORE ISAAC

FIRST NAME?ART
SECOND NAMET?ARTHUR
ARTHUR COMES BEFORE ART

FIRST NAME?BILLY
SECONDI NAME?BILL
BILLY COMES BEFORE BILL

FIRST NAME?~C
READY

4-22

Here CLASSIC makes the decision as to which string
is greater by comparing the two first characters. If
these characters are the same, the two second
characters are compared. If these are the same, the
two third characters are compared, and so on. For
example, when comparing JOSEPH to JOHN, the
decision as to which is greater is made after the third
pair of characters:

E
JOHN comes before JOSEPH (“JOHN” < “JOSEPH”)

because H is character number 8 and S is character
number 19.

Look at the last two comparisons in the previous
program. CLASSIC reported that ARTHUR comes
before ART and BILLY comes before BILL. This order
is not consistent with the rules that most people
follow when putting names in alphabetical order. In
the phone book, for example, ART would come before
ARTHUR.

This comparison problem is caused by the fact that
CLASSIC ran out of letters in one of the strings before
a decision could be made:

T
A
When this happens, CLASSIC concatenates the

shorter string with spaces until it is the same length
as the longer string:

A R T H U R

REEE

/\ Fa 1- L | - [

(“v” represents a space.) CLASSIC therefore decides
that ARTHUR comes before ART because H
(character number 8) comes before space (character
number 32).

You saw a program to sort numbers on page 3-36. The
program on the following page performs the same
operation with strings. That is, it arranges the
elements in a one-dimensional string array in
ascending order by successive comparisons. This
program uses nested loops with K1 and K2 as the
indices of the two loops. The comparison is done at
line 240. If A$(K1) < A$(K2), the program increments
K2 and another comparison is made. But if
AS$(K1) > A$(K2), the string in A$(K1) is switched with
the string in A$(K2) by the statements at lines 250-270
before incrementing K2.

H

U R

N

N

100 FOR K=1 TO 3 \ READI A$(K)> \ NEXT K
110 DATA “*BE"s"BEE","BEET",»"BEETS",*BEETLE"

120 FOR Ki1=1 TO 4

130 FOR K2=K1i+1 TO 5

240 IF A%(K1)<A%(K2) THEN 280
2950 LET T4=A%$(K1)

260 LET A$(K1)=A%$(K2)

270 LET A$S(K2)=T%

280 NEXT. K2

290 NEXT K1

SORT ROUTINE

300 PRINT N\ PRINT "SORTED DATAL®\ FRINT
310 FOR K=1 TO §

320 FRINT A%(K)

330 NEXT K

299 END

READY

RUNNH

SORTED DATA?

BREETLE
BEETS
BEET
BEE

BE

REALY

Note the form of the two FOR statements in this
program:

120 FOR K1=1TO 4
130 FORK2=K1+1TO 5

This arrangement makes the maximum number of
comparisons that are ever needed to sort any five
pieces of data with the routine used in this program.
This type of sorting routine is called a bubble sort
hecause the smaller values are “hubbled” up to the

top of the list in a stepwise manner.

Since CLASSIC concatenates shorter strings with
spaces before a comparison is made, the results of
the above program were not printed in alphabetical
order as you would find them in the dictionary. You
can modify this procedure by concatenating shorter
strings with the at sign (@) before the values of the
strings are compared. Since the @ sign is character
number 0, this action will cause the value of the
shorter string to be less than the value of the longer
string if the corresponding leading characters are the
same.

B E @
B E E
BE @ comes before BEE because @ comes before E.

The following program demonstrates concatenation
with the at sign.

100 FOR K=1 TO 5 \ READ A%$(K) \ NEXT K

110 DATA "BE"r»"BEE®s"BEET","REETS®s"BEETLE"
120 FOR Ki=1 TO 4

130 FOR K2=K1+l 70 5

140 IF LEN(A$(K1))=LEN(A$(K2)) THEN 240

150 LET X$=A$(K1)

155 LET Y$=A$(K2)

160 IF LENCX$)SLEN(Y$) THEN 210 NEWSTATEMENTS
170 FOR K=1 TO LEN(Y$)-LEN(X$) TO CONCATENATE
180 LET X$=X$ & "@°* SHORTER

o9 BoTO 530 STRINGS WITH
210 FOR K=1 TO LEN(X$)-LEN(Y$) THE AT (@) SIGN
220 LET Y$=Y$ & "@" BEFORE COM-
225 NEXT K

230 IF X$<Y$ THEN 280 PARISON.

235 GOTO 250

240 IF A$(K1)<A%$(K2) THEN 280
250 LET T$=A%$(K1)

260 LET A$(K1)=A%$(K2)

270 LET A$(K2)=T$

280 NEXT K2

290 NEXT K1

300 FRINT \ FRINT "SORTED DATAZ*\ FRINT
310 FOR K=1 7O S

320 FPRINT A%$(K)

330 NEXT K

299 END

READY
RUNNH

SORTED DATA:

BE

BEE
REET
BEETLE
BEETS

READY

In this program, the lengths of A$(K1) and A$(K2) are
compared at line 140. If they are of equal lengths, the
program branches to line 240 where a normal
comparison is made. (Line 240 is exactly the same as
it was in the previous program.) But if the strings are
of unequal length, they are first stored in temporary
variables (X$ and Y$ — see lines 150 and 155). The
program then determines which is shorter (line 160),
and the shorter string is concatenated with @ signs
until it is the same length as the longer string (lines
170-190 and 210-225). A comparison is then made
between the modified strings (line 230). If the relation
specified in line 230 is true, the program branches to
line 280, K2 is incremented, and the loop is repeated.
If the relation is false, the program goes to line 250
and the values of A$(K1) and A$(K2) are switched.

Exercise 77. Modify the above program to sort
up to 100 strings, each 20 characters in length.
Indicate the number of strings to be sorted as the first
item in your data table. Use a DIM statement to
dimension your string list and modify the FOR
statements to handle a variable number of data items.

TAKING STRINGS APART

On page 4-10 you learned how to put strings together
by concatenation. The last two functions that
CLASSIC provides will allow you to take strings apart.

The position (POS) function. The position function is
used to search one string to find out if another string
is contained within it. This function takes three
arguments:

POS(A$,T3,N)
function name ~———4 I
string to be searched
string to be searched for

position at which to begin search

The function POS(AS$,T$,N) searches string A$ for the
first occurrence of T$ starting at position N.

If T$ is part of A$, the POS function returns the
number of the position at which the first character in
T$ occurs in A$. If T$ is not in A$, the POS function
returns the value 0.

Look at the following example:

10 DIM A$(32)

15 FOR J=1 70 2

20 FOR K=1 70O 26 \ LET A$=A%$ & CHR$(K) \ NEXT K
25 NEXT J

30 FRINT \ FOR K=1 TO 5 \ FRINT
35 PRINT "i2*

40 FRINT A%

90 FRINT FOS(A%r "N®y 1)

60 FRINT FOS(A$, "NO", 1)

70 FRINT FOS(A$s *N*, 20)

80 FRINT FOS(A%y "XYZ"r 26)

?0 FRINT FOS(A%, "FED®y 1)

?9 END

"123456789-"7 \NEXT K

RUNNH

123456789-123456789~1234546789-123456789-123454789-12
ABCDEFGHIJKLMNOFQRSTUVWXYZARCIEF GHI JKLMNOFQRSTUVWXYZ
14

14

40

o0

[

READY

Notice that the value 14 is printed by line 60 as well as
line 50 because the POS function returns the number
of the position at which the first character of the
string to be searched for (“N” or “NO”) occurs. The
value 40 was printed by line 70 because the search for
N started at position 20 rather than position 1. Line 90
printed 0 because the string FED was not found at all.

Exercise 78. Enter the following program to the
computer and use it to experiment with the POS
function as shown in the sample run.

10 DIM A$(26)

20 FOR K=1 TO 26 \ LET A3=A$ & CHR$(K) \ NEXT K
30 FRINT \ FRINT *123456789-123456789-123456"
40 FPRINT As

S0 PRINT \ FRINT “WHAT LETTER DO YOU NEED";

60 INFUT Ts

45 LET P=FOS(A$:T3,1)

70 PRINT * *; T¢; * IS AT POSITION"iF

80 GOTO 50

?9 END

READY
RUNNH

1234546789-123456789-123454
ARCIEFGHI JKLMNOFQRSTUVWXYZ

WHAT LETTER DO YOU NEEDTE
E IS AT FOSITION S

WHAT LETTER 0O YOU NEED7Y
V IS AT FOSITION 22

WHAT LETTER DO YOU NEED?JKL
JKL IS AT FOSITION 10

WHAT LETTER DO YOU NEEDZ’
4 IS AT POSITION

WHAT LETTER DO YOU NEED?TC
READY

The next set of examples will examine a use of the
POS function to search for a “key” set of characters in
a user entry.

Begin by studying the program below. This program
presents the user with two one-digit numbers and
asks him or her to enter the sum.

110 PRINT \ FRINT
120 RANDOMIZE

130 LET A=INT(10XRND(O))

140 LET R=INT(10XRND(O))>

150 PRINT \ FRINT "HOW MUCH IS"F @&j
140 INFUT C

180 IF C=A+E THEN 230
210 FRINT * INCORRECT.
220 GOTO 150

230 PRINT " CORRECT!"
240 GOTO 130

270 END

"THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC."

5 Ej

FLEASE TRY AGAIN.,."

READY
RUNNH

THIS FROGRAM HELFS YDOU FRACTICE ARITHMETIC.

HOW MUCH IS 3 + 7 r10
CORRECT!

HOW MUCH IS &6 + 9 712
INCORRECT, FLEASE TRY AGAIN...

HOW MUCH IS & + 9 15
CORRECT!

HOW MUCH IS 4 + 8 7 "c
READY

Suppose the user decided to enter “IT’S 3” instead of
just “3” when asked for the sum of 3 and 0. Look what
would happen:

RUNNH

THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC.

HOW MUCH IS 8 + B TIT’S 16
INCORRECT., PLEASE TRY AGAIN...

HOW MUCH IS 8 + 8 INCORRECT. FPLEASE TRY AGAIN...
HOW MUCH IS 8 + 8 INCORRECT. PLEASE TRY AGAIN...
HOW MUCH IS 8 + 8 INCORRECT. PLEASE TRY AGAIN. ..
HOW MUCH IS 8 + 8 CORRECT!

HOW MUCH IS 8 + 3 7°C
READY -

Carnh rnharantar in thna n
L—Cl\lll \lllcllcl\ll(; 11U il y

system as a 0. Since there are four characters (I,T,,
and S), the system prints the “incorrect” message
four times before it finally reaches the 3 and judges
the answer “correct”.

A modified version of this program that corrects
the above problem is shown on the next page. This
version uses the POS function to search the user’s
entry for the correct answer. The new statements have
been enclosed in boxes.

100 DIM A$(72)
110 FRINT \ FRINT "THIS FROGRAM HELFS YOU FPRACTICE ARITHMETIC.®
120 RANDOMIZE

130 LET A=INT(10XRND(0))

140 LET B=INT(10XRND(0))

150 PRINT \ FRINT "HOW MUCH IS*"5 Af
160 INFUT A%

170 LET C$=STR$ (A+R)

180 IF FOS(A$s "QUIT*,1)>0 THEN 270
190 IF POS(A$y "HELF",1)>0 THEN 250
200 IF POS(A$sCHs1)-0 THEN 230

"t Bj

210 FRINT * INCORRECT. FLEASE TRY AGAIN..."
220 GOTO 150
230 PRINT " CORRECT!*

240 GOTO 130

250 FRINT * "3 A7 "+'3 RBj "=
260 GOTO 130

270 ENIl

"$A+Ri ", HERE’S ANDTHER..."

READY
RUNNH

‘THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC.

4-24

SN

N

.

HOW MUCH IS 7 + 0 ?IT’S 7
CORRECT!

HOW MUCH IS 7 + & ?THE ANSWER IS 13
CORRECT! -

HOW MUCH IS 7 + 2 TuUM...87
INCORRECT. FLEASE TRY AGAIN...

HOW MUCH IS 7 + 2 TWOULDl YOU BELIEVE, 9
CORRECT!

HOW MUCH IS 3 + 8 ?I NEED A LITTLE HELF
3 + 8 =11 . HERE'S ANOTHER...

HOW MUCH IS 1 + 3 ?B0SHs I KNOW THAT’S 411!
CORRECT!

HOW MUCH IS 8 + 4 ?PWON’T YOU EVER QUIT?

READY

In order to use the POS function, both the user's
response and the correct answer had to be stored as
strings (see lines 160 and 170). Once this was done, it
was also possible to search for the words “QUIT” and
“HELP” (lines 180 and 190). This type of response
decoding is called a keyword search.

Note the form of the IF statement at line 180:
180 IF POS(AS,“QUIT”,1)> 0 THEN 270

Remember that the POS function returns a positive
integer if the second string is found in the first, and a
value of 0 if it is not. This IF statement will therefore
cause a branch if and only if “QUIT” is in AS.

Exercise 79. Enter the above program and see if you
can fool this program by making it think that an
incorrect answer is correct.

The segment (SEGS$) function. Here is one way that
the arithmetic program can be fooled:

. RUNNH

THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC.

HOW MUCH IS 9 + 9 718
CORRECT!

HOW MUCH IS 7 + 3 ?-10
CORRECT!

HOW MUCH IS 6 + 1 ?"C

READY -

In the second problem (3+ 1), the program searched
the user’s response fora 4. It found a4 and judged the
answer to be correct even though the actual entry was
negative 4. By using the SEGS$ function, you can make
the program sophisticated enough to distinguish
between positive 4 and negative 4 even when working
with strings.

The SEG$ function returns a segment of the string
specified in its argument.

The following program demonstrates how the SEG$
function works:

10 DIIM A$(26)

20 FOR K=1 TO 26 \ LET A$=A¢ & CHR$(K) \ NEXT K
30 PRINT "123456789-123456789-123456"

40 PRINT A%

SO0 FRINT SEG$(A$s2,6)

60 FRINT SEG$(A$,13,24)

70 PRINT SEG$(A$r4,10)

80 FRINT SEG$(A$,21,21)

99 END

READY

RUNNH
123456789-123456789-123456
ABCDEFGHI.JKLMNOFPQRSTUVWXYZ
BCDEF

MNOPQRSTUVWX

DEFGHIJ

u

READY

The program returns segments of the string A$ (which
contains the 26 letters of the alphabet). The complete
string and the number of each position are first
printed by lines 30 and 40. Lines 50 through 80 then
print segments of this string.

Like the POS function, the SEG$ function requires
three arguments:

SEG$ (A$,X,Y)
function name —4 _1
string to be segmented

position of first character
position of last character

The function SEG$ (AS$,X,Y) returns the Xth through
Yth characters in A$ inclusive.

Exercise 80. Enter the program below into your
computer and use it to experiment with the SEG$
function as in the sample run shown.

On page 4-26 is a modification of the arithmetic
program which uses the SEG$ function to catch
negative inputs. The modified statements are
enclosed in a box. Note that both numeric arguments
to the SEG$ function are the same in this case (P-1),
because the program only needs to compare a single
character.

Here is another way to trick the arithmetic program:

RUNNH

THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC.

HOW MUCH IS 7 + 4 PTHE ANSWER IS NOT 11
CORRECT!

10 DIM A$(26)

20 FOR K=1 TO 26 \ LET A%$=A% & CHR$(K) \ NEXT K
30 FPRINT \ FRINT "123456789-123456789~123456"
40 FRINT A%

50 FPRINT \ FRINT
60 INFUT XsY

70 FRINT TAR(X)§ SEGE(A%s+XsY)
80 GOTO S0

99 END

"WHICH LETTERS WOULD YOU LIKE"#

4-25

READY
RUNNH

1234546789-123456789-123454

THIS IS THE STRING TO BE
ABRCNEFGHIJKLMNOFQRSTUVWXYZ :

SEGMENTED

E THROUGH 12TH
WHICH LETTERS WOULD YOU LIKE?4,12 CHARADTERS ARE RETURN.

DEFGHIJKL ED-

THE 18TH THROUGH 22ND

WHICH LETTERS WOULLD YOU LIKE?T18y22 (EDSAHACTERSAHE RETURN-

RETUV

WHICH LETTERS WOULL YOU LIKE?T7,14
GHIJKLMN

X=Y SO ONLY ONE CHAR-

WHICH LETTERS WOULD YOU LIKE?11s11 XgY SOONLY ONE

K

WHICH LETTERS WOULD YOU LIKE?10530 v enxs)soY IS SETTO
JKLMNDFQRSTUVUWXYZ T LEN(XS), or28.

WHICH LETTERS WOULD YOU LIKE?14s8 X__Y S0 NO CHARACTERS

ARE RETURNED.

WHEN X=0IT IS SET TO 1 BY
THE STYSTEM.

IF X OR Y IS NEGATIVE, AN
ERROR MESSAGE IS PRINT-

WHICH LETTERS WOULLt YOU LIKE?1,5
ARCILE

ED AND THE PROGRAM

WHICH LETTERS WOULD YOU LIKE?QsS
—_— STOPS.

ARCDE

WHICH LETTERS WOULD YOU LIKE?-1,5
FM AT LINE 00070

READY

100 DIM AS(72)

110 PRINT \ FRINT *THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC.®

120 RANDOMIZE

130 LET A=INT(10%RND(O))

140 LET B=INT(10%RNI(O))>

150 FRINT N\ FRINT "HOW MUCH IS*; Aj

160 INFUT A%

170 LET C$=STR$(AtR)

180 IF POS(A%$r “QUIT",1)>0 THEN 270

190 IF FOS(A$y "HELF'sy 1)x0 THEN 250
200 IF POS(A%$,C$,1)x0 THEN 230

210 PRINT * INCORRECT, FLEASE TRY AGAIN..."
220 GOTO 130

"+"§ EF

230 LET P=FOS(A$,C$,1)
232 IF SEG$(A%$rP-1,F~1)<x"~" THEN 236
234 GOTO 210

236 FRINT * CORRECT!*
240 GOTO 130

250 FRINT * *34: °£%:;E:"=':A$E:*, MHERE’C ANOTHER, ..
260 GOTO 130

270 END

READY

RUNNH

THIS FROGRAM HELFS YOU PRACTICE ARITHMETIC.

HOW MUCH IS 2 + ¢ 7-11
INCORRECT. FLEASE TRY AGAIN...

HOW MUCH IS 2 + 9 711
CORRECT! \

HOW MUCH IS 5 + 1 7-6
INCORRECT. FLEASE TRY AGAIN,..

HOW MUCH IS § + 1 74
CORRECT! -

HOW MUCH IS ? + O THELF
?+ 0 =9 ., HERE’'S ANOTHER...

HOW MUCH IS 2 + 1 TLET’S QUIT FOR NOW

REALY

This problem can be corrected by adding the
following statements:

236 IF FOS(A%$y "NOT*»1)=0 THEN 238
237 IF FOS(A%y"NOT"»1)<FOS(A%$,CE»1)THEN 210
238 FRINT " CORRECT!®

The run below demonstrates this improvement, but
also turns up another weakness, failure to recognize
“N!T”.

AN
THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC. (fH

HOW MUCH IS8 O + 4 TTHE ANSWER
INCORRECT .

I8 NOT 4
FLEASE TRY AGAIN...

HOW MUCH IS 0 +
CORRECT!

4 TPTHE ANSWER IS 4777

HOW MUCH IS 1 + 7 PTHAT CAN’T BE B
CORRECT!

HOW MUCH I8 2 + 5 TWOWs,WE RETTER QUIT

REALY

Exercise 81. Try to fix this problem yourself.
(You may have to resequence the program to get more
room). Run your new version and find still more ways
to increase the program’s ability to detect incorrect
answers.

Exercise 82. For a real challenge, try to fix the
following problem:

RUNNH

THIS FROGRAM HELFS YOU FRACTICE ARITHMETIC.

HOW MUCH IS ? + 6 T0123459678%9101112131415161718

CORRECT!

HOW MUCH IS ¢ + 0 T012345678%9101112131415161718

CORRECT!

MUCH IS5 7 + 8 T0123456789101112131415161718

[l =t ¥t]
NREG]Y ¢

HoW
C

HOW MUCH IS 8 + 7 7°C
READY -

Hint: Use the POS function to find the correct answer.
Then use the SEG$ function to check the positions
before and after the correct answer (if any). You can
find out if the characters in these two positions are
numbers by examining their codes using the ASC
function to see if they fall between 48 and 57.

LOOKING BACK

In this section, you have studied the last six functions
that are available in CLASSIC BASIC:

ASC(X$) returns the code number of
the first character in X$

CHR$(N) returns the character whose
code number is N

DATS$(0) returns the system date (if

any) in the form MM/DD/YY

4-26

N

(

POS(A$,T$,N) searches A$ for the first
occurrence of T$ starting at

position N

SEG$(AS$,X,Y) returns a segment of A$ from
positions X to Y

TRC(N) turns trace mode on if N=1
and turns trace mode off if
N=0

Perhaps you have noticed the following rule:

Functions whose names end in a dollar sign ($)
always return strings. All other functions return
numbers.

Chapter 5 in the CLASSIC User’s Reference Guide
summarizes all of the BASIC functions that are
available on the CLASSIC system and provides a
ready reference for your future use. For more
examples of function usage, look at the listings of the
programs supplied in Appendix A.

The next section will introduce you to the use of disk
files for storing data and help you learn the remaining
seven statements that can be used in a BASIC
language program on CLASSIC.

4-27

SECTION 4-D

STORING DATA IN DISK FILES

PROGRAM CHAINING

It is possible to write a BASIC program so large that
CLASSIC will not be able to run it. When this
happens, you will get the TB (Too Big) error
message. The easiest way to correct this problem is
usually to break the program into two parts and then
chain from one program to the other. Chaining is
performed with the BASIC CHAIN statement. For
example:

30 CHAIN “RXA1:TARGET.BA”

The CHAIN statement causes the program specified
to be run.

The general format of the CHAIN statement is:
line number CHAIN “dev:filnam.ex”

The complete device, file name, and extension of the
program to be run should be specified, as no default
parameters are assumed by the system. No matter
how many programs are chained to each other, the
workspace will always contain the first program in the
chain when control finally returns to the editor.

A simple use of the CHAIN statement is demon-
strated at the right.

Besides allowing programs to be of virtually unlimited
size, the CHAIN statement can also be used to create
a master control program for a set of computer
programs. The program on the next page prints out a
list of all the programs on the BASIC Program
Demonstration Disk and -allows you to chain to a
program simply by entering a file name.

Look at the format of the CHAIN statement at line
420. Since a string expression is used rather than a
‘simpie string, “HXAi:” and ¥*.BA” have to be
concatenated with A$ to complete the dev:filnam.ex
form required as the parameter of the CHAIN
statement. Note once again that the workspace
contains the first program in the chain when control
finally returns to the editor. Therefore, RUNNH
causes the index program to be rerun. The CL error
message results because file RXA1:GEUSS.BA could
hot be found.

To prevent the CL message, you can modify